Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_fitpack_py.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_interpolate.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/fitpack.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/__init__.py +169 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ctest.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_cytest.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_filters.py +1852 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_fourier.py +307 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_interpolation.py +1010 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_measurements.py +1681 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_morphology.py +2520 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_nd_image.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_docstrings.py +208 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_label.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_support.py +119 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/filters.py +27 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/fourier.py +21 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/interpolation.py +23 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/measurements.py +24 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/morphology.py +27 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__init__.py +13 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_c_api.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_filters.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_fourier.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_interpolation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_measurements.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_morphology.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_ni_support.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_splines.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_c_api.py +102 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_datatypes.py +66 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_filters.py +2189 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_fourier.py +151 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_interpolation.py +1327 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_measurements.py +1409 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_ni_support.py +77 -0
- llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_splines.py +65 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dcsrch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentialevolution.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_isotonic.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linesearch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_rs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_milp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_numdiff.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_root.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_shgo.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_slsqp_py.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_fitpack_py.cpython-310.pyc
ADDED
Binary file (27.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_interpolate.cpython-310.pyc
ADDED
Binary file (71.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/interpolate/__pycache__/fitpack.cpython-310.pyc
ADDED
Binary file (725 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/__init__.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=========================================================
|
3 |
+
Multidimensional image processing (:mod:`scipy.ndimage`)
|
4 |
+
=========================================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.ndimage
|
7 |
+
|
8 |
+
This package contains various functions for multidimensional image
|
9 |
+
processing.
|
10 |
+
|
11 |
+
|
12 |
+
Filters
|
13 |
+
=======
|
14 |
+
|
15 |
+
.. autosummary::
|
16 |
+
:toctree: generated/
|
17 |
+
|
18 |
+
convolve - Multidimensional convolution
|
19 |
+
convolve1d - 1-D convolution along the given axis
|
20 |
+
correlate - Multidimensional correlation
|
21 |
+
correlate1d - 1-D correlation along the given axis
|
22 |
+
gaussian_filter
|
23 |
+
gaussian_filter1d
|
24 |
+
gaussian_gradient_magnitude
|
25 |
+
gaussian_laplace
|
26 |
+
generic_filter - Multidimensional filter using a given function
|
27 |
+
generic_filter1d - 1-D generic filter along the given axis
|
28 |
+
generic_gradient_magnitude
|
29 |
+
generic_laplace
|
30 |
+
laplace - N-D Laplace filter based on approximate second derivatives
|
31 |
+
maximum_filter
|
32 |
+
maximum_filter1d
|
33 |
+
median_filter - Calculates a multidimensional median filter
|
34 |
+
minimum_filter
|
35 |
+
minimum_filter1d
|
36 |
+
percentile_filter - Calculates a multidimensional percentile filter
|
37 |
+
prewitt
|
38 |
+
rank_filter - Calculates a multidimensional rank filter
|
39 |
+
sobel
|
40 |
+
uniform_filter - Multidimensional uniform filter
|
41 |
+
uniform_filter1d - 1-D uniform filter along the given axis
|
42 |
+
|
43 |
+
Fourier filters
|
44 |
+
===============
|
45 |
+
|
46 |
+
.. autosummary::
|
47 |
+
:toctree: generated/
|
48 |
+
|
49 |
+
fourier_ellipsoid
|
50 |
+
fourier_gaussian
|
51 |
+
fourier_shift
|
52 |
+
fourier_uniform
|
53 |
+
|
54 |
+
Interpolation
|
55 |
+
=============
|
56 |
+
|
57 |
+
.. autosummary::
|
58 |
+
:toctree: generated/
|
59 |
+
|
60 |
+
affine_transform - Apply an affine transformation
|
61 |
+
geometric_transform - Apply an arbitrary geometric transform
|
62 |
+
map_coordinates - Map input array to new coordinates by interpolation
|
63 |
+
rotate - Rotate an array
|
64 |
+
shift - Shift an array
|
65 |
+
spline_filter
|
66 |
+
spline_filter1d
|
67 |
+
zoom - Zoom an array
|
68 |
+
|
69 |
+
Measurements
|
70 |
+
============
|
71 |
+
|
72 |
+
.. autosummary::
|
73 |
+
:toctree: generated/
|
74 |
+
|
75 |
+
center_of_mass - The center of mass of the values of an array at labels
|
76 |
+
extrema - Min's and max's of an array at labels, with their positions
|
77 |
+
find_objects - Find objects in a labeled array
|
78 |
+
histogram - Histogram of the values of an array, optionally at labels
|
79 |
+
label - Label features in an array
|
80 |
+
labeled_comprehension
|
81 |
+
maximum
|
82 |
+
maximum_position
|
83 |
+
mean - Mean of the values of an array at labels
|
84 |
+
median
|
85 |
+
minimum
|
86 |
+
minimum_position
|
87 |
+
standard_deviation - Standard deviation of an N-D image array
|
88 |
+
sum_labels - Sum of the values of the array
|
89 |
+
value_indices - Find indices of each distinct value in given array
|
90 |
+
variance - Variance of the values of an N-D image array
|
91 |
+
watershed_ift
|
92 |
+
|
93 |
+
Morphology
|
94 |
+
==========
|
95 |
+
|
96 |
+
.. autosummary::
|
97 |
+
:toctree: generated/
|
98 |
+
|
99 |
+
binary_closing
|
100 |
+
binary_dilation
|
101 |
+
binary_erosion
|
102 |
+
binary_fill_holes
|
103 |
+
binary_hit_or_miss
|
104 |
+
binary_opening
|
105 |
+
binary_propagation
|
106 |
+
black_tophat
|
107 |
+
distance_transform_bf
|
108 |
+
distance_transform_cdt
|
109 |
+
distance_transform_edt
|
110 |
+
generate_binary_structure
|
111 |
+
grey_closing
|
112 |
+
grey_dilation
|
113 |
+
grey_erosion
|
114 |
+
grey_opening
|
115 |
+
iterate_structure
|
116 |
+
morphological_gradient
|
117 |
+
morphological_laplace
|
118 |
+
white_tophat
|
119 |
+
|
120 |
+
"""
|
121 |
+
|
122 |
+
# Copyright (C) 2003-2005 Peter J. Verveer
|
123 |
+
#
|
124 |
+
# Redistribution and use in source and binary forms, with or without
|
125 |
+
# modification, are permitted provided that the following conditions
|
126 |
+
# are met:
|
127 |
+
#
|
128 |
+
# 1. Redistributions of source code must retain the above copyright
|
129 |
+
# notice, this list of conditions and the following disclaimer.
|
130 |
+
#
|
131 |
+
# 2. Redistributions in binary form must reproduce the above
|
132 |
+
# copyright notice, this list of conditions and the following
|
133 |
+
# disclaimer in the documentation and/or other materials provided
|
134 |
+
# with the distribution.
|
135 |
+
#
|
136 |
+
# 3. The name of the author may not be used to endorse or promote
|
137 |
+
# products derived from this software without specific prior
|
138 |
+
# written permission.
|
139 |
+
#
|
140 |
+
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
141 |
+
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
142 |
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
143 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
144 |
+
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
145 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
146 |
+
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
147 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
148 |
+
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
149 |
+
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
150 |
+
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
151 |
+
|
152 |
+
from ._filters import *
|
153 |
+
from ._fourier import *
|
154 |
+
from ._interpolation import *
|
155 |
+
from ._measurements import *
|
156 |
+
from ._morphology import *
|
157 |
+
|
158 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
159 |
+
from . import filters
|
160 |
+
from . import fourier
|
161 |
+
from . import interpolation
|
162 |
+
from . import measurements
|
163 |
+
from . import morphology
|
164 |
+
|
165 |
+
__all__ = [s for s in dir() if not s.startswith('_')]
|
166 |
+
|
167 |
+
from scipy._lib._testutils import PytestTester
|
168 |
+
test = PytestTester(__name__)
|
169 |
+
del PytestTester
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ctest.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (17 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_cytest.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (91 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_filters.py
ADDED
@@ -0,0 +1,1852 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2003-2005 Peter J. Verveer
|
2 |
+
#
|
3 |
+
# Redistribution and use in source and binary forms, with or without
|
4 |
+
# modification, are permitted provided that the following conditions
|
5 |
+
# are met:
|
6 |
+
#
|
7 |
+
# 1. Redistributions of source code must retain the above copyright
|
8 |
+
# notice, this list of conditions and the following disclaimer.
|
9 |
+
#
|
10 |
+
# 2. Redistributions in binary form must reproduce the above
|
11 |
+
# copyright notice, this list of conditions and the following
|
12 |
+
# disclaimer in the documentation and/or other materials provided
|
13 |
+
# with the distribution.
|
14 |
+
#
|
15 |
+
# 3. The name of the author may not be used to endorse or promote
|
16 |
+
# products derived from this software without specific prior
|
17 |
+
# written permission.
|
18 |
+
#
|
19 |
+
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
20 |
+
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
21 |
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
23 |
+
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
25 |
+
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
27 |
+
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
28 |
+
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
29 |
+
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
|
31 |
+
from collections.abc import Iterable
|
32 |
+
import numbers
|
33 |
+
import warnings
|
34 |
+
import numpy
|
35 |
+
import operator
|
36 |
+
|
37 |
+
from scipy._lib._util import normalize_axis_index
|
38 |
+
from . import _ni_support
|
39 |
+
from . import _nd_image
|
40 |
+
from . import _ni_docstrings
|
41 |
+
|
42 |
+
__all__ = ['correlate1d', 'convolve1d', 'gaussian_filter1d', 'gaussian_filter',
|
43 |
+
'prewitt', 'sobel', 'generic_laplace', 'laplace',
|
44 |
+
'gaussian_laplace', 'generic_gradient_magnitude',
|
45 |
+
'gaussian_gradient_magnitude', 'correlate', 'convolve',
|
46 |
+
'uniform_filter1d', 'uniform_filter', 'minimum_filter1d',
|
47 |
+
'maximum_filter1d', 'minimum_filter', 'maximum_filter',
|
48 |
+
'rank_filter', 'median_filter', 'percentile_filter',
|
49 |
+
'generic_filter1d', 'generic_filter']
|
50 |
+
|
51 |
+
|
52 |
+
def _invalid_origin(origin, lenw):
|
53 |
+
return (origin < -(lenw // 2)) or (origin > (lenw - 1) // 2)
|
54 |
+
|
55 |
+
|
56 |
+
def _complex_via_real_components(func, input, weights, output, cval, **kwargs):
|
57 |
+
"""Complex convolution via a linear combination of real convolutions."""
|
58 |
+
complex_input = input.dtype.kind == 'c'
|
59 |
+
complex_weights = weights.dtype.kind == 'c'
|
60 |
+
if complex_input and complex_weights:
|
61 |
+
# real component of the output
|
62 |
+
func(input.real, weights.real, output=output.real,
|
63 |
+
cval=numpy.real(cval), **kwargs)
|
64 |
+
output.real -= func(input.imag, weights.imag, output=None,
|
65 |
+
cval=numpy.imag(cval), **kwargs)
|
66 |
+
# imaginary component of the output
|
67 |
+
func(input.real, weights.imag, output=output.imag,
|
68 |
+
cval=numpy.real(cval), **kwargs)
|
69 |
+
output.imag += func(input.imag, weights.real, output=None,
|
70 |
+
cval=numpy.imag(cval), **kwargs)
|
71 |
+
elif complex_input:
|
72 |
+
func(input.real, weights, output=output.real, cval=numpy.real(cval),
|
73 |
+
**kwargs)
|
74 |
+
func(input.imag, weights, output=output.imag, cval=numpy.imag(cval),
|
75 |
+
**kwargs)
|
76 |
+
else:
|
77 |
+
if numpy.iscomplexobj(cval):
|
78 |
+
raise ValueError("Cannot provide a complex-valued cval when the "
|
79 |
+
"input is real.")
|
80 |
+
func(input, weights.real, output=output.real, cval=cval, **kwargs)
|
81 |
+
func(input, weights.imag, output=output.imag, cval=cval, **kwargs)
|
82 |
+
return output
|
83 |
+
|
84 |
+
|
85 |
+
@_ni_docstrings.docfiller
|
86 |
+
def correlate1d(input, weights, axis=-1, output=None, mode="reflect",
|
87 |
+
cval=0.0, origin=0):
|
88 |
+
"""Calculate a 1-D correlation along the given axis.
|
89 |
+
|
90 |
+
The lines of the array along the given axis are correlated with the
|
91 |
+
given weights.
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
%(input)s
|
96 |
+
weights : array
|
97 |
+
1-D sequence of numbers.
|
98 |
+
%(axis)s
|
99 |
+
%(output)s
|
100 |
+
%(mode_reflect)s
|
101 |
+
%(cval)s
|
102 |
+
%(origin)s
|
103 |
+
|
104 |
+
Returns
|
105 |
+
-------
|
106 |
+
result : ndarray
|
107 |
+
Correlation result. Has the same shape as `input`.
|
108 |
+
|
109 |
+
Examples
|
110 |
+
--------
|
111 |
+
>>> from scipy.ndimage import correlate1d
|
112 |
+
>>> correlate1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3])
|
113 |
+
array([ 8, 26, 8, 12, 7, 28, 36, 9])
|
114 |
+
"""
|
115 |
+
input = numpy.asarray(input)
|
116 |
+
weights = numpy.asarray(weights)
|
117 |
+
complex_input = input.dtype.kind == 'c'
|
118 |
+
complex_weights = weights.dtype.kind == 'c'
|
119 |
+
if complex_input or complex_weights:
|
120 |
+
if complex_weights:
|
121 |
+
weights = weights.conj()
|
122 |
+
weights = weights.astype(numpy.complex128, copy=False)
|
123 |
+
kwargs = dict(axis=axis, mode=mode, origin=origin)
|
124 |
+
output = _ni_support._get_output(output, input, complex_output=True)
|
125 |
+
return _complex_via_real_components(correlate1d, input, weights,
|
126 |
+
output, cval, **kwargs)
|
127 |
+
|
128 |
+
output = _ni_support._get_output(output, input)
|
129 |
+
weights = numpy.asarray(weights, dtype=numpy.float64)
|
130 |
+
if weights.ndim != 1 or weights.shape[0] < 1:
|
131 |
+
raise RuntimeError('no filter weights given')
|
132 |
+
if not weights.flags.contiguous:
|
133 |
+
weights = weights.copy()
|
134 |
+
axis = normalize_axis_index(axis, input.ndim)
|
135 |
+
if _invalid_origin(origin, len(weights)):
|
136 |
+
raise ValueError('Invalid origin; origin must satisfy '
|
137 |
+
'-(len(weights) // 2) <= origin <= '
|
138 |
+
'(len(weights)-1) // 2')
|
139 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
140 |
+
_nd_image.correlate1d(input, weights, axis, output, mode, cval,
|
141 |
+
origin)
|
142 |
+
return output
|
143 |
+
|
144 |
+
|
145 |
+
@_ni_docstrings.docfiller
|
146 |
+
def convolve1d(input, weights, axis=-1, output=None, mode="reflect",
|
147 |
+
cval=0.0, origin=0):
|
148 |
+
"""Calculate a 1-D convolution along the given axis.
|
149 |
+
|
150 |
+
The lines of the array along the given axis are convolved with the
|
151 |
+
given weights.
|
152 |
+
|
153 |
+
Parameters
|
154 |
+
----------
|
155 |
+
%(input)s
|
156 |
+
weights : ndarray
|
157 |
+
1-D sequence of numbers.
|
158 |
+
%(axis)s
|
159 |
+
%(output)s
|
160 |
+
%(mode_reflect)s
|
161 |
+
%(cval)s
|
162 |
+
%(origin)s
|
163 |
+
|
164 |
+
Returns
|
165 |
+
-------
|
166 |
+
convolve1d : ndarray
|
167 |
+
Convolved array with same shape as input
|
168 |
+
|
169 |
+
Examples
|
170 |
+
--------
|
171 |
+
>>> from scipy.ndimage import convolve1d
|
172 |
+
>>> convolve1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3])
|
173 |
+
array([14, 24, 4, 13, 12, 36, 27, 0])
|
174 |
+
"""
|
175 |
+
weights = weights[::-1]
|
176 |
+
origin = -origin
|
177 |
+
if not len(weights) & 1:
|
178 |
+
origin -= 1
|
179 |
+
weights = numpy.asarray(weights)
|
180 |
+
if weights.dtype.kind == 'c':
|
181 |
+
# pre-conjugate here to counteract the conjugation in correlate1d
|
182 |
+
weights = weights.conj()
|
183 |
+
return correlate1d(input, weights, axis, output, mode, cval, origin)
|
184 |
+
|
185 |
+
|
186 |
+
def _gaussian_kernel1d(sigma, order, radius):
|
187 |
+
"""
|
188 |
+
Computes a 1-D Gaussian convolution kernel.
|
189 |
+
"""
|
190 |
+
if order < 0:
|
191 |
+
raise ValueError('order must be non-negative')
|
192 |
+
exponent_range = numpy.arange(order + 1)
|
193 |
+
sigma2 = sigma * sigma
|
194 |
+
x = numpy.arange(-radius, radius+1)
|
195 |
+
phi_x = numpy.exp(-0.5 / sigma2 * x ** 2)
|
196 |
+
phi_x = phi_x / phi_x.sum()
|
197 |
+
|
198 |
+
if order == 0:
|
199 |
+
return phi_x
|
200 |
+
else:
|
201 |
+
# f(x) = q(x) * phi(x) = q(x) * exp(p(x))
|
202 |
+
# f'(x) = (q'(x) + q(x) * p'(x)) * phi(x)
|
203 |
+
# p'(x) = -1 / sigma ** 2
|
204 |
+
# Implement q'(x) + q(x) * p'(x) as a matrix operator and apply to the
|
205 |
+
# coefficients of q(x)
|
206 |
+
q = numpy.zeros(order + 1)
|
207 |
+
q[0] = 1
|
208 |
+
D = numpy.diag(exponent_range[1:], 1) # D @ q(x) = q'(x)
|
209 |
+
P = numpy.diag(numpy.ones(order)/-sigma2, -1) # P @ q(x) = q(x) * p'(x)
|
210 |
+
Q_deriv = D + P
|
211 |
+
for _ in range(order):
|
212 |
+
q = Q_deriv.dot(q)
|
213 |
+
q = (x[:, None] ** exponent_range).dot(q)
|
214 |
+
return q * phi_x
|
215 |
+
|
216 |
+
|
217 |
+
@_ni_docstrings.docfiller
|
218 |
+
def gaussian_filter1d(input, sigma, axis=-1, order=0, output=None,
|
219 |
+
mode="reflect", cval=0.0, truncate=4.0, *, radius=None):
|
220 |
+
"""1-D Gaussian filter.
|
221 |
+
|
222 |
+
Parameters
|
223 |
+
----------
|
224 |
+
%(input)s
|
225 |
+
sigma : scalar
|
226 |
+
standard deviation for Gaussian kernel
|
227 |
+
%(axis)s
|
228 |
+
order : int, optional
|
229 |
+
An order of 0 corresponds to convolution with a Gaussian
|
230 |
+
kernel. A positive order corresponds to convolution with
|
231 |
+
that derivative of a Gaussian.
|
232 |
+
%(output)s
|
233 |
+
%(mode_reflect)s
|
234 |
+
%(cval)s
|
235 |
+
truncate : float, optional
|
236 |
+
Truncate the filter at this many standard deviations.
|
237 |
+
Default is 4.0.
|
238 |
+
radius : None or int, optional
|
239 |
+
Radius of the Gaussian kernel. If specified, the size of
|
240 |
+
the kernel will be ``2*radius + 1``, and `truncate` is ignored.
|
241 |
+
Default is None.
|
242 |
+
|
243 |
+
Returns
|
244 |
+
-------
|
245 |
+
gaussian_filter1d : ndarray
|
246 |
+
|
247 |
+
Notes
|
248 |
+
-----
|
249 |
+
The Gaussian kernel will have size ``2*radius + 1`` along each axis. If
|
250 |
+
`radius` is None, a default ``radius = round(truncate * sigma)`` will be
|
251 |
+
used.
|
252 |
+
|
253 |
+
Examples
|
254 |
+
--------
|
255 |
+
>>> from scipy.ndimage import gaussian_filter1d
|
256 |
+
>>> import numpy as np
|
257 |
+
>>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 1)
|
258 |
+
array([ 1.42704095, 2.06782203, 3. , 3.93217797, 4.57295905])
|
259 |
+
>>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 4)
|
260 |
+
array([ 2.91948343, 2.95023502, 3. , 3.04976498, 3.08051657])
|
261 |
+
>>> import matplotlib.pyplot as plt
|
262 |
+
>>> rng = np.random.default_rng()
|
263 |
+
>>> x = rng.standard_normal(101).cumsum()
|
264 |
+
>>> y3 = gaussian_filter1d(x, 3)
|
265 |
+
>>> y6 = gaussian_filter1d(x, 6)
|
266 |
+
>>> plt.plot(x, 'k', label='original data')
|
267 |
+
>>> plt.plot(y3, '--', label='filtered, sigma=3')
|
268 |
+
>>> plt.plot(y6, ':', label='filtered, sigma=6')
|
269 |
+
>>> plt.legend()
|
270 |
+
>>> plt.grid()
|
271 |
+
>>> plt.show()
|
272 |
+
|
273 |
+
"""
|
274 |
+
sd = float(sigma)
|
275 |
+
# make the radius of the filter equal to truncate standard deviations
|
276 |
+
lw = int(truncate * sd + 0.5)
|
277 |
+
if radius is not None:
|
278 |
+
lw = radius
|
279 |
+
if not isinstance(lw, numbers.Integral) or lw < 0:
|
280 |
+
raise ValueError('Radius must be a nonnegative integer.')
|
281 |
+
# Since we are calling correlate, not convolve, revert the kernel
|
282 |
+
weights = _gaussian_kernel1d(sigma, order, lw)[::-1]
|
283 |
+
return correlate1d(input, weights, axis, output, mode, cval, 0)
|
284 |
+
|
285 |
+
|
286 |
+
@_ni_docstrings.docfiller
|
287 |
+
def gaussian_filter(input, sigma, order=0, output=None,
|
288 |
+
mode="reflect", cval=0.0, truncate=4.0, *, radius=None,
|
289 |
+
axes=None):
|
290 |
+
"""Multidimensional Gaussian filter.
|
291 |
+
|
292 |
+
Parameters
|
293 |
+
----------
|
294 |
+
%(input)s
|
295 |
+
sigma : scalar or sequence of scalars
|
296 |
+
Standard deviation for Gaussian kernel. The standard
|
297 |
+
deviations of the Gaussian filter are given for each axis as a
|
298 |
+
sequence, or as a single number, in which case it is equal for
|
299 |
+
all axes.
|
300 |
+
order : int or sequence of ints, optional
|
301 |
+
The order of the filter along each axis is given as a sequence
|
302 |
+
of integers, or as a single number. An order of 0 corresponds
|
303 |
+
to convolution with a Gaussian kernel. A positive order
|
304 |
+
corresponds to convolution with that derivative of a Gaussian.
|
305 |
+
%(output)s
|
306 |
+
%(mode_multiple)s
|
307 |
+
%(cval)s
|
308 |
+
truncate : float, optional
|
309 |
+
Truncate the filter at this many standard deviations.
|
310 |
+
Default is 4.0.
|
311 |
+
radius : None or int or sequence of ints, optional
|
312 |
+
Radius of the Gaussian kernel. The radius are given for each axis
|
313 |
+
as a sequence, or as a single number, in which case it is equal
|
314 |
+
for all axes. If specified, the size of the kernel along each axis
|
315 |
+
will be ``2*radius + 1``, and `truncate` is ignored.
|
316 |
+
Default is None.
|
317 |
+
axes : tuple of int or None, optional
|
318 |
+
If None, `input` is filtered along all axes. Otherwise,
|
319 |
+
`input` is filtered along the specified axes. When `axes` is
|
320 |
+
specified, any tuples used for `sigma`, `order`, `mode` and/or `radius`
|
321 |
+
must match the length of `axes`. The ith entry in any of these tuples
|
322 |
+
corresponds to the ith entry in `axes`.
|
323 |
+
|
324 |
+
Returns
|
325 |
+
-------
|
326 |
+
gaussian_filter : ndarray
|
327 |
+
Returned array of same shape as `input`.
|
328 |
+
|
329 |
+
Notes
|
330 |
+
-----
|
331 |
+
The multidimensional filter is implemented as a sequence of
|
332 |
+
1-D convolution filters. The intermediate arrays are
|
333 |
+
stored in the same data type as the output. Therefore, for output
|
334 |
+
types with a limited precision, the results may be imprecise
|
335 |
+
because intermediate results may be stored with insufficient
|
336 |
+
precision.
|
337 |
+
|
338 |
+
The Gaussian kernel will have size ``2*radius + 1`` along each axis. If
|
339 |
+
`radius` is None, the default ``radius = round(truncate * sigma)`` will be
|
340 |
+
used.
|
341 |
+
|
342 |
+
Examples
|
343 |
+
--------
|
344 |
+
>>> from scipy.ndimage import gaussian_filter
|
345 |
+
>>> import numpy as np
|
346 |
+
>>> a = np.arange(50, step=2).reshape((5,5))
|
347 |
+
>>> a
|
348 |
+
array([[ 0, 2, 4, 6, 8],
|
349 |
+
[10, 12, 14, 16, 18],
|
350 |
+
[20, 22, 24, 26, 28],
|
351 |
+
[30, 32, 34, 36, 38],
|
352 |
+
[40, 42, 44, 46, 48]])
|
353 |
+
>>> gaussian_filter(a, sigma=1)
|
354 |
+
array([[ 4, 6, 8, 9, 11],
|
355 |
+
[10, 12, 14, 15, 17],
|
356 |
+
[20, 22, 24, 25, 27],
|
357 |
+
[29, 31, 33, 34, 36],
|
358 |
+
[35, 37, 39, 40, 42]])
|
359 |
+
|
360 |
+
>>> from scipy import datasets
|
361 |
+
>>> import matplotlib.pyplot as plt
|
362 |
+
>>> fig = plt.figure()
|
363 |
+
>>> plt.gray() # show the filtered result in grayscale
|
364 |
+
>>> ax1 = fig.add_subplot(121) # left side
|
365 |
+
>>> ax2 = fig.add_subplot(122) # right side
|
366 |
+
>>> ascent = datasets.ascent()
|
367 |
+
>>> result = gaussian_filter(ascent, sigma=5)
|
368 |
+
>>> ax1.imshow(ascent)
|
369 |
+
>>> ax2.imshow(result)
|
370 |
+
>>> plt.show()
|
371 |
+
"""
|
372 |
+
input = numpy.asarray(input)
|
373 |
+
output = _ni_support._get_output(output, input)
|
374 |
+
|
375 |
+
axes = _ni_support._check_axes(axes, input.ndim)
|
376 |
+
num_axes = len(axes)
|
377 |
+
orders = _ni_support._normalize_sequence(order, num_axes)
|
378 |
+
sigmas = _ni_support._normalize_sequence(sigma, num_axes)
|
379 |
+
modes = _ni_support._normalize_sequence(mode, num_axes)
|
380 |
+
radiuses = _ni_support._normalize_sequence(radius, num_axes)
|
381 |
+
axes = [(axes[ii], sigmas[ii], orders[ii], modes[ii], radiuses[ii])
|
382 |
+
for ii in range(num_axes) if sigmas[ii] > 1e-15]
|
383 |
+
if len(axes) > 0:
|
384 |
+
for axis, sigma, order, mode, radius in axes:
|
385 |
+
gaussian_filter1d(input, sigma, axis, order, output,
|
386 |
+
mode, cval, truncate, radius=radius)
|
387 |
+
input = output
|
388 |
+
else:
|
389 |
+
output[...] = input[...]
|
390 |
+
return output
|
391 |
+
|
392 |
+
|
393 |
+
@_ni_docstrings.docfiller
|
394 |
+
def prewitt(input, axis=-1, output=None, mode="reflect", cval=0.0):
|
395 |
+
"""Calculate a Prewitt filter.
|
396 |
+
|
397 |
+
Parameters
|
398 |
+
----------
|
399 |
+
%(input)s
|
400 |
+
%(axis)s
|
401 |
+
%(output)s
|
402 |
+
%(mode_multiple)s
|
403 |
+
%(cval)s
|
404 |
+
|
405 |
+
Returns
|
406 |
+
-------
|
407 |
+
prewitt : ndarray
|
408 |
+
Filtered array. Has the same shape as `input`.
|
409 |
+
|
410 |
+
See Also
|
411 |
+
--------
|
412 |
+
sobel: Sobel filter
|
413 |
+
|
414 |
+
Notes
|
415 |
+
-----
|
416 |
+
This function computes the one-dimensional Prewitt filter.
|
417 |
+
Horizontal edges are emphasised with the horizontal transform (axis=0),
|
418 |
+
vertical edges with the vertical transform (axis=1), and so on for higher
|
419 |
+
dimensions. These can be combined to give the magnitude.
|
420 |
+
|
421 |
+
Examples
|
422 |
+
--------
|
423 |
+
>>> from scipy import ndimage, datasets
|
424 |
+
>>> import matplotlib.pyplot as plt
|
425 |
+
>>> import numpy as np
|
426 |
+
>>> ascent = datasets.ascent()
|
427 |
+
>>> prewitt_h = ndimage.prewitt(ascent, axis=0)
|
428 |
+
>>> prewitt_v = ndimage.prewitt(ascent, axis=1)
|
429 |
+
>>> magnitude = np.sqrt(prewitt_h ** 2 + prewitt_v ** 2)
|
430 |
+
>>> magnitude *= 255 / np.max(magnitude) # Normalization
|
431 |
+
>>> fig, axes = plt.subplots(2, 2, figsize = (8, 8))
|
432 |
+
>>> plt.gray()
|
433 |
+
>>> axes[0, 0].imshow(ascent)
|
434 |
+
>>> axes[0, 1].imshow(prewitt_h)
|
435 |
+
>>> axes[1, 0].imshow(prewitt_v)
|
436 |
+
>>> axes[1, 1].imshow(magnitude)
|
437 |
+
>>> titles = ["original", "horizontal", "vertical", "magnitude"]
|
438 |
+
>>> for i, ax in enumerate(axes.ravel()):
|
439 |
+
... ax.set_title(titles[i])
|
440 |
+
... ax.axis("off")
|
441 |
+
>>> plt.show()
|
442 |
+
|
443 |
+
"""
|
444 |
+
input = numpy.asarray(input)
|
445 |
+
axis = normalize_axis_index(axis, input.ndim)
|
446 |
+
output = _ni_support._get_output(output, input)
|
447 |
+
modes = _ni_support._normalize_sequence(mode, input.ndim)
|
448 |
+
correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0)
|
449 |
+
axes = [ii for ii in range(input.ndim) if ii != axis]
|
450 |
+
for ii in axes:
|
451 |
+
correlate1d(output, [1, 1, 1], ii, output, modes[ii], cval, 0,)
|
452 |
+
return output
|
453 |
+
|
454 |
+
|
455 |
+
@_ni_docstrings.docfiller
|
456 |
+
def sobel(input, axis=-1, output=None, mode="reflect", cval=0.0):
|
457 |
+
"""Calculate a Sobel filter.
|
458 |
+
|
459 |
+
Parameters
|
460 |
+
----------
|
461 |
+
%(input)s
|
462 |
+
%(axis)s
|
463 |
+
%(output)s
|
464 |
+
%(mode_multiple)s
|
465 |
+
%(cval)s
|
466 |
+
|
467 |
+
Returns
|
468 |
+
-------
|
469 |
+
sobel : ndarray
|
470 |
+
Filtered array. Has the same shape as `input`.
|
471 |
+
|
472 |
+
Notes
|
473 |
+
-----
|
474 |
+
This function computes the axis-specific Sobel gradient.
|
475 |
+
The horizontal edges can be emphasised with the horizontal transform (axis=0),
|
476 |
+
the vertical edges with the vertical transform (axis=1) and so on for higher
|
477 |
+
dimensions. These can be combined to give the magnitude.
|
478 |
+
|
479 |
+
Examples
|
480 |
+
--------
|
481 |
+
>>> from scipy import ndimage, datasets
|
482 |
+
>>> import matplotlib.pyplot as plt
|
483 |
+
>>> import numpy as np
|
484 |
+
>>> ascent = datasets.ascent().astype('int32')
|
485 |
+
>>> sobel_h = ndimage.sobel(ascent, 0) # horizontal gradient
|
486 |
+
>>> sobel_v = ndimage.sobel(ascent, 1) # vertical gradient
|
487 |
+
>>> magnitude = np.sqrt(sobel_h**2 + sobel_v**2)
|
488 |
+
>>> magnitude *= 255.0 / np.max(magnitude) # normalization
|
489 |
+
>>> fig, axs = plt.subplots(2, 2, figsize=(8, 8))
|
490 |
+
>>> plt.gray() # show the filtered result in grayscale
|
491 |
+
>>> axs[0, 0].imshow(ascent)
|
492 |
+
>>> axs[0, 1].imshow(sobel_h)
|
493 |
+
>>> axs[1, 0].imshow(sobel_v)
|
494 |
+
>>> axs[1, 1].imshow(magnitude)
|
495 |
+
>>> titles = ["original", "horizontal", "vertical", "magnitude"]
|
496 |
+
>>> for i, ax in enumerate(axs.ravel()):
|
497 |
+
... ax.set_title(titles[i])
|
498 |
+
... ax.axis("off")
|
499 |
+
>>> plt.show()
|
500 |
+
|
501 |
+
"""
|
502 |
+
input = numpy.asarray(input)
|
503 |
+
axis = normalize_axis_index(axis, input.ndim)
|
504 |
+
output = _ni_support._get_output(output, input)
|
505 |
+
modes = _ni_support._normalize_sequence(mode, input.ndim)
|
506 |
+
correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0)
|
507 |
+
axes = [ii for ii in range(input.ndim) if ii != axis]
|
508 |
+
for ii in axes:
|
509 |
+
correlate1d(output, [1, 2, 1], ii, output, modes[ii], cval, 0)
|
510 |
+
return output
|
511 |
+
|
512 |
+
|
513 |
+
@_ni_docstrings.docfiller
|
514 |
+
def generic_laplace(input, derivative2, output=None, mode="reflect",
|
515 |
+
cval=0.0,
|
516 |
+
extra_arguments=(),
|
517 |
+
extra_keywords=None):
|
518 |
+
"""
|
519 |
+
N-D Laplace filter using a provided second derivative function.
|
520 |
+
|
521 |
+
Parameters
|
522 |
+
----------
|
523 |
+
%(input)s
|
524 |
+
derivative2 : callable
|
525 |
+
Callable with the following signature::
|
526 |
+
|
527 |
+
derivative2(input, axis, output, mode, cval,
|
528 |
+
*extra_arguments, **extra_keywords)
|
529 |
+
|
530 |
+
See `extra_arguments`, `extra_keywords` below.
|
531 |
+
%(output)s
|
532 |
+
%(mode_multiple)s
|
533 |
+
%(cval)s
|
534 |
+
%(extra_keywords)s
|
535 |
+
%(extra_arguments)s
|
536 |
+
|
537 |
+
Returns
|
538 |
+
-------
|
539 |
+
generic_laplace : ndarray
|
540 |
+
Filtered array. Has the same shape as `input`.
|
541 |
+
|
542 |
+
"""
|
543 |
+
if extra_keywords is None:
|
544 |
+
extra_keywords = {}
|
545 |
+
input = numpy.asarray(input)
|
546 |
+
output = _ni_support._get_output(output, input)
|
547 |
+
axes = list(range(input.ndim))
|
548 |
+
if len(axes) > 0:
|
549 |
+
modes = _ni_support._normalize_sequence(mode, len(axes))
|
550 |
+
derivative2(input, axes[0], output, modes[0], cval,
|
551 |
+
*extra_arguments, **extra_keywords)
|
552 |
+
for ii in range(1, len(axes)):
|
553 |
+
tmp = derivative2(input, axes[ii], output.dtype, modes[ii], cval,
|
554 |
+
*extra_arguments, **extra_keywords)
|
555 |
+
output += tmp
|
556 |
+
else:
|
557 |
+
output[...] = input[...]
|
558 |
+
return output
|
559 |
+
|
560 |
+
|
561 |
+
@_ni_docstrings.docfiller
|
562 |
+
def laplace(input, output=None, mode="reflect", cval=0.0):
|
563 |
+
"""N-D Laplace filter based on approximate second derivatives.
|
564 |
+
|
565 |
+
Parameters
|
566 |
+
----------
|
567 |
+
%(input)s
|
568 |
+
%(output)s
|
569 |
+
%(mode_multiple)s
|
570 |
+
%(cval)s
|
571 |
+
|
572 |
+
Returns
|
573 |
+
-------
|
574 |
+
laplace : ndarray
|
575 |
+
Filtered array. Has the same shape as `input`.
|
576 |
+
|
577 |
+
Examples
|
578 |
+
--------
|
579 |
+
>>> from scipy import ndimage, datasets
|
580 |
+
>>> import matplotlib.pyplot as plt
|
581 |
+
>>> fig = plt.figure()
|
582 |
+
>>> plt.gray() # show the filtered result in grayscale
|
583 |
+
>>> ax1 = fig.add_subplot(121) # left side
|
584 |
+
>>> ax2 = fig.add_subplot(122) # right side
|
585 |
+
>>> ascent = datasets.ascent()
|
586 |
+
>>> result = ndimage.laplace(ascent)
|
587 |
+
>>> ax1.imshow(ascent)
|
588 |
+
>>> ax2.imshow(result)
|
589 |
+
>>> plt.show()
|
590 |
+
"""
|
591 |
+
def derivative2(input, axis, output, mode, cval):
|
592 |
+
return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0)
|
593 |
+
return generic_laplace(input, derivative2, output, mode, cval)
|
594 |
+
|
595 |
+
|
596 |
+
@_ni_docstrings.docfiller
|
597 |
+
def gaussian_laplace(input, sigma, output=None, mode="reflect",
|
598 |
+
cval=0.0, **kwargs):
|
599 |
+
"""Multidimensional Laplace filter using Gaussian second derivatives.
|
600 |
+
|
601 |
+
Parameters
|
602 |
+
----------
|
603 |
+
%(input)s
|
604 |
+
sigma : scalar or sequence of scalars
|
605 |
+
The standard deviations of the Gaussian filter are given for
|
606 |
+
each axis as a sequence, or as a single number, in which case
|
607 |
+
it is equal for all axes.
|
608 |
+
%(output)s
|
609 |
+
%(mode_multiple)s
|
610 |
+
%(cval)s
|
611 |
+
Extra keyword arguments will be passed to gaussian_filter().
|
612 |
+
|
613 |
+
Returns
|
614 |
+
-------
|
615 |
+
gaussian_laplace : ndarray
|
616 |
+
Filtered array. Has the same shape as `input`.
|
617 |
+
|
618 |
+
Examples
|
619 |
+
--------
|
620 |
+
>>> from scipy import ndimage, datasets
|
621 |
+
>>> import matplotlib.pyplot as plt
|
622 |
+
>>> ascent = datasets.ascent()
|
623 |
+
|
624 |
+
>>> fig = plt.figure()
|
625 |
+
>>> plt.gray() # show the filtered result in grayscale
|
626 |
+
>>> ax1 = fig.add_subplot(121) # left side
|
627 |
+
>>> ax2 = fig.add_subplot(122) # right side
|
628 |
+
|
629 |
+
>>> result = ndimage.gaussian_laplace(ascent, sigma=1)
|
630 |
+
>>> ax1.imshow(result)
|
631 |
+
|
632 |
+
>>> result = ndimage.gaussian_laplace(ascent, sigma=3)
|
633 |
+
>>> ax2.imshow(result)
|
634 |
+
>>> plt.show()
|
635 |
+
"""
|
636 |
+
input = numpy.asarray(input)
|
637 |
+
|
638 |
+
def derivative2(input, axis, output, mode, cval, sigma, **kwargs):
|
639 |
+
order = [0] * input.ndim
|
640 |
+
order[axis] = 2
|
641 |
+
return gaussian_filter(input, sigma, order, output, mode, cval,
|
642 |
+
**kwargs)
|
643 |
+
|
644 |
+
return generic_laplace(input, derivative2, output, mode, cval,
|
645 |
+
extra_arguments=(sigma,),
|
646 |
+
extra_keywords=kwargs)
|
647 |
+
|
648 |
+
|
649 |
+
@_ni_docstrings.docfiller
|
650 |
+
def generic_gradient_magnitude(input, derivative, output=None,
|
651 |
+
mode="reflect", cval=0.0,
|
652 |
+
extra_arguments=(), extra_keywords=None):
|
653 |
+
"""Gradient magnitude using a provided gradient function.
|
654 |
+
|
655 |
+
Parameters
|
656 |
+
----------
|
657 |
+
%(input)s
|
658 |
+
derivative : callable
|
659 |
+
Callable with the following signature::
|
660 |
+
|
661 |
+
derivative(input, axis, output, mode, cval,
|
662 |
+
*extra_arguments, **extra_keywords)
|
663 |
+
|
664 |
+
See `extra_arguments`, `extra_keywords` below.
|
665 |
+
`derivative` can assume that `input` and `output` are ndarrays.
|
666 |
+
Note that the output from `derivative` is modified inplace;
|
667 |
+
be careful to copy important inputs before returning them.
|
668 |
+
%(output)s
|
669 |
+
%(mode_multiple)s
|
670 |
+
%(cval)s
|
671 |
+
%(extra_keywords)s
|
672 |
+
%(extra_arguments)s
|
673 |
+
|
674 |
+
Returns
|
675 |
+
-------
|
676 |
+
generic_gradient_matnitude : ndarray
|
677 |
+
Filtered array. Has the same shape as `input`.
|
678 |
+
|
679 |
+
"""
|
680 |
+
if extra_keywords is None:
|
681 |
+
extra_keywords = {}
|
682 |
+
input = numpy.asarray(input)
|
683 |
+
output = _ni_support._get_output(output, input)
|
684 |
+
axes = list(range(input.ndim))
|
685 |
+
if len(axes) > 0:
|
686 |
+
modes = _ni_support._normalize_sequence(mode, len(axes))
|
687 |
+
derivative(input, axes[0], output, modes[0], cval,
|
688 |
+
*extra_arguments, **extra_keywords)
|
689 |
+
numpy.multiply(output, output, output)
|
690 |
+
for ii in range(1, len(axes)):
|
691 |
+
tmp = derivative(input, axes[ii], output.dtype, modes[ii], cval,
|
692 |
+
*extra_arguments, **extra_keywords)
|
693 |
+
numpy.multiply(tmp, tmp, tmp)
|
694 |
+
output += tmp
|
695 |
+
# This allows the sqrt to work with a different default casting
|
696 |
+
numpy.sqrt(output, output, casting='unsafe')
|
697 |
+
else:
|
698 |
+
output[...] = input[...]
|
699 |
+
return output
|
700 |
+
|
701 |
+
|
702 |
+
@_ni_docstrings.docfiller
|
703 |
+
def gaussian_gradient_magnitude(input, sigma, output=None,
|
704 |
+
mode="reflect", cval=0.0, **kwargs):
|
705 |
+
"""Multidimensional gradient magnitude using Gaussian derivatives.
|
706 |
+
|
707 |
+
Parameters
|
708 |
+
----------
|
709 |
+
%(input)s
|
710 |
+
sigma : scalar or sequence of scalars
|
711 |
+
The standard deviations of the Gaussian filter are given for
|
712 |
+
each axis as a sequence, or as a single number, in which case
|
713 |
+
it is equal for all axes.
|
714 |
+
%(output)s
|
715 |
+
%(mode_multiple)s
|
716 |
+
%(cval)s
|
717 |
+
Extra keyword arguments will be passed to gaussian_filter().
|
718 |
+
|
719 |
+
Returns
|
720 |
+
-------
|
721 |
+
gaussian_gradient_magnitude : ndarray
|
722 |
+
Filtered array. Has the same shape as `input`.
|
723 |
+
|
724 |
+
Examples
|
725 |
+
--------
|
726 |
+
>>> from scipy import ndimage, datasets
|
727 |
+
>>> import matplotlib.pyplot as plt
|
728 |
+
>>> fig = plt.figure()
|
729 |
+
>>> plt.gray() # show the filtered result in grayscale
|
730 |
+
>>> ax1 = fig.add_subplot(121) # left side
|
731 |
+
>>> ax2 = fig.add_subplot(122) # right side
|
732 |
+
>>> ascent = datasets.ascent()
|
733 |
+
>>> result = ndimage.gaussian_gradient_magnitude(ascent, sigma=5)
|
734 |
+
>>> ax1.imshow(ascent)
|
735 |
+
>>> ax2.imshow(result)
|
736 |
+
>>> plt.show()
|
737 |
+
"""
|
738 |
+
input = numpy.asarray(input)
|
739 |
+
|
740 |
+
def derivative(input, axis, output, mode, cval, sigma, **kwargs):
|
741 |
+
order = [0] * input.ndim
|
742 |
+
order[axis] = 1
|
743 |
+
return gaussian_filter(input, sigma, order, output, mode,
|
744 |
+
cval, **kwargs)
|
745 |
+
|
746 |
+
return generic_gradient_magnitude(input, derivative, output, mode,
|
747 |
+
cval, extra_arguments=(sigma,),
|
748 |
+
extra_keywords=kwargs)
|
749 |
+
|
750 |
+
|
751 |
+
def _correlate_or_convolve(input, weights, output, mode, cval, origin,
|
752 |
+
convolution):
|
753 |
+
input = numpy.asarray(input)
|
754 |
+
weights = numpy.asarray(weights)
|
755 |
+
complex_input = input.dtype.kind == 'c'
|
756 |
+
complex_weights = weights.dtype.kind == 'c'
|
757 |
+
if complex_input or complex_weights:
|
758 |
+
if complex_weights and not convolution:
|
759 |
+
# As for numpy.correlate, conjugate weights rather than input.
|
760 |
+
weights = weights.conj()
|
761 |
+
kwargs = dict(
|
762 |
+
mode=mode, origin=origin, convolution=convolution
|
763 |
+
)
|
764 |
+
output = _ni_support._get_output(output, input, complex_output=True)
|
765 |
+
|
766 |
+
return _complex_via_real_components(_correlate_or_convolve, input,
|
767 |
+
weights, output, cval, **kwargs)
|
768 |
+
|
769 |
+
origins = _ni_support._normalize_sequence(origin, input.ndim)
|
770 |
+
weights = numpy.asarray(weights, dtype=numpy.float64)
|
771 |
+
wshape = [ii for ii in weights.shape if ii > 0]
|
772 |
+
if len(wshape) != input.ndim:
|
773 |
+
raise RuntimeError('filter weights array has incorrect shape.')
|
774 |
+
if convolution:
|
775 |
+
weights = weights[tuple([slice(None, None, -1)] * weights.ndim)]
|
776 |
+
for ii in range(len(origins)):
|
777 |
+
origins[ii] = -origins[ii]
|
778 |
+
if not weights.shape[ii] & 1:
|
779 |
+
origins[ii] -= 1
|
780 |
+
for origin, lenw in zip(origins, wshape):
|
781 |
+
if _invalid_origin(origin, lenw):
|
782 |
+
raise ValueError('Invalid origin; origin must satisfy '
|
783 |
+
'-(weights.shape[k] // 2) <= origin[k] <= '
|
784 |
+
'(weights.shape[k]-1) // 2')
|
785 |
+
|
786 |
+
if not weights.flags.contiguous:
|
787 |
+
weights = weights.copy()
|
788 |
+
output = _ni_support._get_output(output, input)
|
789 |
+
temp_needed = numpy.may_share_memory(input, output)
|
790 |
+
if temp_needed:
|
791 |
+
# input and output arrays cannot share memory
|
792 |
+
temp = output
|
793 |
+
output = _ni_support._get_output(output.dtype, input)
|
794 |
+
if not isinstance(mode, str) and isinstance(mode, Iterable):
|
795 |
+
raise RuntimeError("A sequence of modes is not supported")
|
796 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
797 |
+
_nd_image.correlate(input, weights, output, mode, cval, origins)
|
798 |
+
if temp_needed:
|
799 |
+
temp[...] = output
|
800 |
+
output = temp
|
801 |
+
return output
|
802 |
+
|
803 |
+
|
804 |
+
@_ni_docstrings.docfiller
|
805 |
+
def correlate(input, weights, output=None, mode='reflect', cval=0.0,
|
806 |
+
origin=0):
|
807 |
+
"""
|
808 |
+
Multidimensional correlation.
|
809 |
+
|
810 |
+
The array is correlated with the given kernel.
|
811 |
+
|
812 |
+
Parameters
|
813 |
+
----------
|
814 |
+
%(input)s
|
815 |
+
weights : ndarray
|
816 |
+
array of weights, same number of dimensions as input
|
817 |
+
%(output)s
|
818 |
+
%(mode_reflect)s
|
819 |
+
%(cval)s
|
820 |
+
%(origin_multiple)s
|
821 |
+
|
822 |
+
Returns
|
823 |
+
-------
|
824 |
+
result : ndarray
|
825 |
+
The result of correlation of `input` with `weights`.
|
826 |
+
|
827 |
+
See Also
|
828 |
+
--------
|
829 |
+
convolve : Convolve an image with a kernel.
|
830 |
+
|
831 |
+
Examples
|
832 |
+
--------
|
833 |
+
Correlation is the process of moving a filter mask often referred to
|
834 |
+
as kernel over the image and computing the sum of products at each location.
|
835 |
+
|
836 |
+
>>> from scipy.ndimage import correlate
|
837 |
+
>>> import numpy as np
|
838 |
+
>>> input_img = np.arange(25).reshape(5,5)
|
839 |
+
>>> print(input_img)
|
840 |
+
[[ 0 1 2 3 4]
|
841 |
+
[ 5 6 7 8 9]
|
842 |
+
[10 11 12 13 14]
|
843 |
+
[15 16 17 18 19]
|
844 |
+
[20 21 22 23 24]]
|
845 |
+
|
846 |
+
Define a kernel (weights) for correlation. In this example, it is for sum of
|
847 |
+
center and up, down, left and right next elements.
|
848 |
+
|
849 |
+
>>> weights = [[0, 1, 0],
|
850 |
+
... [1, 1, 1],
|
851 |
+
... [0, 1, 0]]
|
852 |
+
|
853 |
+
We can calculate a correlation result:
|
854 |
+
For example, element ``[2,2]`` is ``7 + 11 + 12 + 13 + 17 = 60``.
|
855 |
+
|
856 |
+
>>> correlate(input_img, weights)
|
857 |
+
array([[ 6, 10, 15, 20, 24],
|
858 |
+
[ 26, 30, 35, 40, 44],
|
859 |
+
[ 51, 55, 60, 65, 69],
|
860 |
+
[ 76, 80, 85, 90, 94],
|
861 |
+
[ 96, 100, 105, 110, 114]])
|
862 |
+
|
863 |
+
"""
|
864 |
+
return _correlate_or_convolve(input, weights, output, mode, cval,
|
865 |
+
origin, False)
|
866 |
+
|
867 |
+
|
868 |
+
@_ni_docstrings.docfiller
|
869 |
+
def convolve(input, weights, output=None, mode='reflect', cval=0.0,
|
870 |
+
origin=0):
|
871 |
+
"""
|
872 |
+
Multidimensional convolution.
|
873 |
+
|
874 |
+
The array is convolved with the given kernel.
|
875 |
+
|
876 |
+
Parameters
|
877 |
+
----------
|
878 |
+
%(input)s
|
879 |
+
weights : array_like
|
880 |
+
Array of weights, same number of dimensions as input
|
881 |
+
%(output)s
|
882 |
+
%(mode_reflect)s
|
883 |
+
cval : scalar, optional
|
884 |
+
Value to fill past edges of input if `mode` is 'constant'. Default
|
885 |
+
is 0.0
|
886 |
+
origin : int, optional
|
887 |
+
Controls the origin of the input signal, which is where the
|
888 |
+
filter is centered to produce the first element of the output.
|
889 |
+
Positive values shift the filter to the right, and negative values
|
890 |
+
shift the filter to the left. Default is 0.
|
891 |
+
|
892 |
+
Returns
|
893 |
+
-------
|
894 |
+
result : ndarray
|
895 |
+
The result of convolution of `input` with `weights`.
|
896 |
+
|
897 |
+
See Also
|
898 |
+
--------
|
899 |
+
correlate : Correlate an image with a kernel.
|
900 |
+
|
901 |
+
Notes
|
902 |
+
-----
|
903 |
+
Each value in result is :math:`C_i = \\sum_j{I_{i+k-j} W_j}`, where
|
904 |
+
W is the `weights` kernel,
|
905 |
+
j is the N-D spatial index over :math:`W`,
|
906 |
+
I is the `input` and k is the coordinate of the center of
|
907 |
+
W, specified by `origin` in the input parameters.
|
908 |
+
|
909 |
+
Examples
|
910 |
+
--------
|
911 |
+
Perhaps the simplest case to understand is ``mode='constant', cval=0.0``,
|
912 |
+
because in this case borders (i.e., where the `weights` kernel, centered
|
913 |
+
on any one value, extends beyond an edge of `input`) are treated as zeros.
|
914 |
+
|
915 |
+
>>> import numpy as np
|
916 |
+
>>> a = np.array([[1, 2, 0, 0],
|
917 |
+
... [5, 3, 0, 4],
|
918 |
+
... [0, 0, 0, 7],
|
919 |
+
... [9, 3, 0, 0]])
|
920 |
+
>>> k = np.array([[1,1,1],[1,1,0],[1,0,0]])
|
921 |
+
>>> from scipy import ndimage
|
922 |
+
>>> ndimage.convolve(a, k, mode='constant', cval=0.0)
|
923 |
+
array([[11, 10, 7, 4],
|
924 |
+
[10, 3, 11, 11],
|
925 |
+
[15, 12, 14, 7],
|
926 |
+
[12, 3, 7, 0]])
|
927 |
+
|
928 |
+
Setting ``cval=1.0`` is equivalent to padding the outer edge of `input`
|
929 |
+
with 1.0's (and then extracting only the original region of the result).
|
930 |
+
|
931 |
+
>>> ndimage.convolve(a, k, mode='constant', cval=1.0)
|
932 |
+
array([[13, 11, 8, 7],
|
933 |
+
[11, 3, 11, 14],
|
934 |
+
[16, 12, 14, 10],
|
935 |
+
[15, 6, 10, 5]])
|
936 |
+
|
937 |
+
With ``mode='reflect'`` (the default), outer values are reflected at the
|
938 |
+
edge of `input` to fill in missing values.
|
939 |
+
|
940 |
+
>>> b = np.array([[2, 0, 0],
|
941 |
+
... [1, 0, 0],
|
942 |
+
... [0, 0, 0]])
|
943 |
+
>>> k = np.array([[0,1,0], [0,1,0], [0,1,0]])
|
944 |
+
>>> ndimage.convolve(b, k, mode='reflect')
|
945 |
+
array([[5, 0, 0],
|
946 |
+
[3, 0, 0],
|
947 |
+
[1, 0, 0]])
|
948 |
+
|
949 |
+
This includes diagonally at the corners.
|
950 |
+
|
951 |
+
>>> k = np.array([[1,0,0],[0,1,0],[0,0,1]])
|
952 |
+
>>> ndimage.convolve(b, k)
|
953 |
+
array([[4, 2, 0],
|
954 |
+
[3, 2, 0],
|
955 |
+
[1, 1, 0]])
|
956 |
+
|
957 |
+
With ``mode='nearest'``, the single nearest value in to an edge in
|
958 |
+
`input` is repeated as many times as needed to match the overlapping
|
959 |
+
`weights`.
|
960 |
+
|
961 |
+
>>> c = np.array([[2, 0, 1],
|
962 |
+
... [1, 0, 0],
|
963 |
+
... [0, 0, 0]])
|
964 |
+
>>> k = np.array([[0, 1, 0],
|
965 |
+
... [0, 1, 0],
|
966 |
+
... [0, 1, 0],
|
967 |
+
... [0, 1, 0],
|
968 |
+
... [0, 1, 0]])
|
969 |
+
>>> ndimage.convolve(c, k, mode='nearest')
|
970 |
+
array([[7, 0, 3],
|
971 |
+
[5, 0, 2],
|
972 |
+
[3, 0, 1]])
|
973 |
+
|
974 |
+
"""
|
975 |
+
return _correlate_or_convolve(input, weights, output, mode, cval,
|
976 |
+
origin, True)
|
977 |
+
|
978 |
+
|
979 |
+
@_ni_docstrings.docfiller
|
980 |
+
def uniform_filter1d(input, size, axis=-1, output=None,
|
981 |
+
mode="reflect", cval=0.0, origin=0):
|
982 |
+
"""Calculate a 1-D uniform filter along the given axis.
|
983 |
+
|
984 |
+
The lines of the array along the given axis are filtered with a
|
985 |
+
uniform filter of given size.
|
986 |
+
|
987 |
+
Parameters
|
988 |
+
----------
|
989 |
+
%(input)s
|
990 |
+
size : int
|
991 |
+
length of uniform filter
|
992 |
+
%(axis)s
|
993 |
+
%(output)s
|
994 |
+
%(mode_reflect)s
|
995 |
+
%(cval)s
|
996 |
+
%(origin)s
|
997 |
+
|
998 |
+
Returns
|
999 |
+
-------
|
1000 |
+
result : ndarray
|
1001 |
+
Filtered array. Has same shape as `input`.
|
1002 |
+
|
1003 |
+
Examples
|
1004 |
+
--------
|
1005 |
+
>>> from scipy.ndimage import uniform_filter1d
|
1006 |
+
>>> uniform_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3)
|
1007 |
+
array([4, 3, 4, 1, 4, 6, 6, 3])
|
1008 |
+
"""
|
1009 |
+
input = numpy.asarray(input)
|
1010 |
+
axis = normalize_axis_index(axis, input.ndim)
|
1011 |
+
if size < 1:
|
1012 |
+
raise RuntimeError('incorrect filter size')
|
1013 |
+
complex_output = input.dtype.kind == 'c'
|
1014 |
+
output = _ni_support._get_output(output, input,
|
1015 |
+
complex_output=complex_output)
|
1016 |
+
if (size // 2 + origin < 0) or (size // 2 + origin >= size):
|
1017 |
+
raise ValueError('invalid origin')
|
1018 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
1019 |
+
if not complex_output:
|
1020 |
+
_nd_image.uniform_filter1d(input, size, axis, output, mode, cval,
|
1021 |
+
origin)
|
1022 |
+
else:
|
1023 |
+
_nd_image.uniform_filter1d(input.real, size, axis, output.real, mode,
|
1024 |
+
numpy.real(cval), origin)
|
1025 |
+
_nd_image.uniform_filter1d(input.imag, size, axis, output.imag, mode,
|
1026 |
+
numpy.imag(cval), origin)
|
1027 |
+
return output
|
1028 |
+
|
1029 |
+
|
1030 |
+
@_ni_docstrings.docfiller
|
1031 |
+
def uniform_filter(input, size=3, output=None, mode="reflect",
|
1032 |
+
cval=0.0, origin=0, *, axes=None):
|
1033 |
+
"""Multidimensional uniform filter.
|
1034 |
+
|
1035 |
+
Parameters
|
1036 |
+
----------
|
1037 |
+
%(input)s
|
1038 |
+
size : int or sequence of ints, optional
|
1039 |
+
The sizes of the uniform filter are given for each axis as a
|
1040 |
+
sequence, or as a single number, in which case the size is
|
1041 |
+
equal for all axes.
|
1042 |
+
%(output)s
|
1043 |
+
%(mode_multiple)s
|
1044 |
+
%(cval)s
|
1045 |
+
%(origin_multiple)s
|
1046 |
+
axes : tuple of int or None, optional
|
1047 |
+
If None, `input` is filtered along all axes. Otherwise,
|
1048 |
+
`input` is filtered along the specified axes. When `axes` is
|
1049 |
+
specified, any tuples used for `size`, `origin`, and/or `mode`
|
1050 |
+
must match the length of `axes`. The ith entry in any of these tuples
|
1051 |
+
corresponds to the ith entry in `axes`.
|
1052 |
+
|
1053 |
+
Returns
|
1054 |
+
-------
|
1055 |
+
uniform_filter : ndarray
|
1056 |
+
Filtered array. Has the same shape as `input`.
|
1057 |
+
|
1058 |
+
Notes
|
1059 |
+
-----
|
1060 |
+
The multidimensional filter is implemented as a sequence of
|
1061 |
+
1-D uniform filters. The intermediate arrays are stored
|
1062 |
+
in the same data type as the output. Therefore, for output types
|
1063 |
+
with a limited precision, the results may be imprecise because
|
1064 |
+
intermediate results may be stored with insufficient precision.
|
1065 |
+
|
1066 |
+
Examples
|
1067 |
+
--------
|
1068 |
+
>>> from scipy import ndimage, datasets
|
1069 |
+
>>> import matplotlib.pyplot as plt
|
1070 |
+
>>> fig = plt.figure()
|
1071 |
+
>>> plt.gray() # show the filtered result in grayscale
|
1072 |
+
>>> ax1 = fig.add_subplot(121) # left side
|
1073 |
+
>>> ax2 = fig.add_subplot(122) # right side
|
1074 |
+
>>> ascent = datasets.ascent()
|
1075 |
+
>>> result = ndimage.uniform_filter(ascent, size=20)
|
1076 |
+
>>> ax1.imshow(ascent)
|
1077 |
+
>>> ax2.imshow(result)
|
1078 |
+
>>> plt.show()
|
1079 |
+
"""
|
1080 |
+
input = numpy.asarray(input)
|
1081 |
+
output = _ni_support._get_output(output, input,
|
1082 |
+
complex_output=input.dtype.kind == 'c')
|
1083 |
+
axes = _ni_support._check_axes(axes, input.ndim)
|
1084 |
+
num_axes = len(axes)
|
1085 |
+
sizes = _ni_support._normalize_sequence(size, num_axes)
|
1086 |
+
origins = _ni_support._normalize_sequence(origin, num_axes)
|
1087 |
+
modes = _ni_support._normalize_sequence(mode, num_axes)
|
1088 |
+
axes = [(axes[ii], sizes[ii], origins[ii], modes[ii])
|
1089 |
+
for ii in range(num_axes) if sizes[ii] > 1]
|
1090 |
+
if len(axes) > 0:
|
1091 |
+
for axis, size, origin, mode in axes:
|
1092 |
+
uniform_filter1d(input, int(size), axis, output, mode,
|
1093 |
+
cval, origin)
|
1094 |
+
input = output
|
1095 |
+
else:
|
1096 |
+
output[...] = input[...]
|
1097 |
+
return output
|
1098 |
+
|
1099 |
+
|
1100 |
+
@_ni_docstrings.docfiller
|
1101 |
+
def minimum_filter1d(input, size, axis=-1, output=None,
|
1102 |
+
mode="reflect", cval=0.0, origin=0):
|
1103 |
+
"""Calculate a 1-D minimum filter along the given axis.
|
1104 |
+
|
1105 |
+
The lines of the array along the given axis are filtered with a
|
1106 |
+
minimum filter of given size.
|
1107 |
+
|
1108 |
+
Parameters
|
1109 |
+
----------
|
1110 |
+
%(input)s
|
1111 |
+
size : int
|
1112 |
+
length along which to calculate 1D minimum
|
1113 |
+
%(axis)s
|
1114 |
+
%(output)s
|
1115 |
+
%(mode_reflect)s
|
1116 |
+
%(cval)s
|
1117 |
+
%(origin)s
|
1118 |
+
|
1119 |
+
Returns
|
1120 |
+
-------
|
1121 |
+
result : ndarray.
|
1122 |
+
Filtered image. Has the same shape as `input`.
|
1123 |
+
|
1124 |
+
Notes
|
1125 |
+
-----
|
1126 |
+
This function implements the MINLIST algorithm [1]_, as described by
|
1127 |
+
Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being
|
1128 |
+
the `input` length, regardless of filter size.
|
1129 |
+
|
1130 |
+
References
|
1131 |
+
----------
|
1132 |
+
.. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777
|
1133 |
+
.. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html
|
1134 |
+
|
1135 |
+
|
1136 |
+
Examples
|
1137 |
+
--------
|
1138 |
+
>>> from scipy.ndimage import minimum_filter1d
|
1139 |
+
>>> minimum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3)
|
1140 |
+
array([2, 0, 0, 0, 1, 1, 0, 0])
|
1141 |
+
"""
|
1142 |
+
input = numpy.asarray(input)
|
1143 |
+
if numpy.iscomplexobj(input):
|
1144 |
+
raise TypeError('Complex type not supported')
|
1145 |
+
axis = normalize_axis_index(axis, input.ndim)
|
1146 |
+
if size < 1:
|
1147 |
+
raise RuntimeError('incorrect filter size')
|
1148 |
+
output = _ni_support._get_output(output, input)
|
1149 |
+
if (size // 2 + origin < 0) or (size // 2 + origin >= size):
|
1150 |
+
raise ValueError('invalid origin')
|
1151 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
1152 |
+
_nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval,
|
1153 |
+
origin, 1)
|
1154 |
+
return output
|
1155 |
+
|
1156 |
+
|
1157 |
+
@_ni_docstrings.docfiller
|
1158 |
+
def maximum_filter1d(input, size, axis=-1, output=None,
|
1159 |
+
mode="reflect", cval=0.0, origin=0):
|
1160 |
+
"""Calculate a 1-D maximum filter along the given axis.
|
1161 |
+
|
1162 |
+
The lines of the array along the given axis are filtered with a
|
1163 |
+
maximum filter of given size.
|
1164 |
+
|
1165 |
+
Parameters
|
1166 |
+
----------
|
1167 |
+
%(input)s
|
1168 |
+
size : int
|
1169 |
+
Length along which to calculate the 1-D maximum.
|
1170 |
+
%(axis)s
|
1171 |
+
%(output)s
|
1172 |
+
%(mode_reflect)s
|
1173 |
+
%(cval)s
|
1174 |
+
%(origin)s
|
1175 |
+
|
1176 |
+
Returns
|
1177 |
+
-------
|
1178 |
+
maximum1d : ndarray, None
|
1179 |
+
Maximum-filtered array with same shape as input.
|
1180 |
+
None if `output` is not None
|
1181 |
+
|
1182 |
+
Notes
|
1183 |
+
-----
|
1184 |
+
This function implements the MAXLIST algorithm [1]_, as described by
|
1185 |
+
Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being
|
1186 |
+
the `input` length, regardless of filter size.
|
1187 |
+
|
1188 |
+
References
|
1189 |
+
----------
|
1190 |
+
.. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777
|
1191 |
+
.. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html
|
1192 |
+
|
1193 |
+
Examples
|
1194 |
+
--------
|
1195 |
+
>>> from scipy.ndimage import maximum_filter1d
|
1196 |
+
>>> maximum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3)
|
1197 |
+
array([8, 8, 8, 4, 9, 9, 9, 9])
|
1198 |
+
"""
|
1199 |
+
input = numpy.asarray(input)
|
1200 |
+
if numpy.iscomplexobj(input):
|
1201 |
+
raise TypeError('Complex type not supported')
|
1202 |
+
axis = normalize_axis_index(axis, input.ndim)
|
1203 |
+
if size < 1:
|
1204 |
+
raise RuntimeError('incorrect filter size')
|
1205 |
+
output = _ni_support._get_output(output, input)
|
1206 |
+
if (size // 2 + origin < 0) or (size // 2 + origin >= size):
|
1207 |
+
raise ValueError('invalid origin')
|
1208 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
1209 |
+
_nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval,
|
1210 |
+
origin, 0)
|
1211 |
+
return output
|
1212 |
+
|
1213 |
+
|
1214 |
+
def _min_or_max_filter(input, size, footprint, structure, output, mode,
|
1215 |
+
cval, origin, minimum, axes=None):
|
1216 |
+
if (size is not None) and (footprint is not None):
|
1217 |
+
warnings.warn("ignoring size because footprint is set",
|
1218 |
+
UserWarning, stacklevel=3)
|
1219 |
+
if structure is None:
|
1220 |
+
if footprint is None:
|
1221 |
+
if size is None:
|
1222 |
+
raise RuntimeError("no footprint provided")
|
1223 |
+
separable = True
|
1224 |
+
else:
|
1225 |
+
footprint = numpy.asarray(footprint, dtype=bool)
|
1226 |
+
if not footprint.any():
|
1227 |
+
raise ValueError("All-zero footprint is not supported.")
|
1228 |
+
if footprint.all():
|
1229 |
+
size = footprint.shape
|
1230 |
+
footprint = None
|
1231 |
+
separable = True
|
1232 |
+
else:
|
1233 |
+
separable = False
|
1234 |
+
else:
|
1235 |
+
structure = numpy.asarray(structure, dtype=numpy.float64)
|
1236 |
+
separable = False
|
1237 |
+
if footprint is None:
|
1238 |
+
footprint = numpy.ones(structure.shape, bool)
|
1239 |
+
else:
|
1240 |
+
footprint = numpy.asarray(footprint, dtype=bool)
|
1241 |
+
input = numpy.asarray(input)
|
1242 |
+
if numpy.iscomplexobj(input):
|
1243 |
+
raise TypeError('Complex type not supported')
|
1244 |
+
output = _ni_support._get_output(output, input)
|
1245 |
+
temp_needed = numpy.may_share_memory(input, output)
|
1246 |
+
if temp_needed:
|
1247 |
+
# input and output arrays cannot share memory
|
1248 |
+
temp = output
|
1249 |
+
output = _ni_support._get_output(output.dtype, input)
|
1250 |
+
axes = _ni_support._check_axes(axes, input.ndim)
|
1251 |
+
num_axes = len(axes)
|
1252 |
+
if separable:
|
1253 |
+
origins = _ni_support._normalize_sequence(origin, num_axes)
|
1254 |
+
sizes = _ni_support._normalize_sequence(size, num_axes)
|
1255 |
+
modes = _ni_support._normalize_sequence(mode, num_axes)
|
1256 |
+
axes = [(axes[ii], sizes[ii], origins[ii], modes[ii])
|
1257 |
+
for ii in range(len(axes)) if sizes[ii] > 1]
|
1258 |
+
if minimum:
|
1259 |
+
filter_ = minimum_filter1d
|
1260 |
+
else:
|
1261 |
+
filter_ = maximum_filter1d
|
1262 |
+
if len(axes) > 0:
|
1263 |
+
for axis, size, origin, mode in axes:
|
1264 |
+
filter_(input, int(size), axis, output, mode, cval, origin)
|
1265 |
+
input = output
|
1266 |
+
else:
|
1267 |
+
output[...] = input[...]
|
1268 |
+
else:
|
1269 |
+
origins = _ni_support._normalize_sequence(origin, input.ndim)
|
1270 |
+
if num_axes < input.ndim:
|
1271 |
+
if footprint.ndim != num_axes:
|
1272 |
+
raise RuntimeError("footprint array has incorrect shape")
|
1273 |
+
footprint = numpy.expand_dims(
|
1274 |
+
footprint,
|
1275 |
+
tuple(ax for ax in range(input.ndim) if ax not in axes)
|
1276 |
+
)
|
1277 |
+
fshape = [ii for ii in footprint.shape if ii > 0]
|
1278 |
+
if len(fshape) != input.ndim:
|
1279 |
+
raise RuntimeError('footprint array has incorrect shape.')
|
1280 |
+
for origin, lenf in zip(origins, fshape):
|
1281 |
+
if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf):
|
1282 |
+
raise ValueError('invalid origin')
|
1283 |
+
if not footprint.flags.contiguous:
|
1284 |
+
footprint = footprint.copy()
|
1285 |
+
if structure is not None:
|
1286 |
+
if len(structure.shape) != input.ndim:
|
1287 |
+
raise RuntimeError('structure array has incorrect shape')
|
1288 |
+
if num_axes != structure.ndim:
|
1289 |
+
structure = numpy.expand_dims(
|
1290 |
+
structure,
|
1291 |
+
tuple(ax for ax in range(structure.ndim) if ax not in axes)
|
1292 |
+
)
|
1293 |
+
if not structure.flags.contiguous:
|
1294 |
+
structure = structure.copy()
|
1295 |
+
if not isinstance(mode, str) and isinstance(mode, Iterable):
|
1296 |
+
raise RuntimeError(
|
1297 |
+
"A sequence of modes is not supported for non-separable "
|
1298 |
+
"footprints")
|
1299 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
1300 |
+
_nd_image.min_or_max_filter(input, footprint, structure, output,
|
1301 |
+
mode, cval, origins, minimum)
|
1302 |
+
if temp_needed:
|
1303 |
+
temp[...] = output
|
1304 |
+
output = temp
|
1305 |
+
return output
|
1306 |
+
|
1307 |
+
|
1308 |
+
@_ni_docstrings.docfiller
|
1309 |
+
def minimum_filter(input, size=None, footprint=None, output=None,
|
1310 |
+
mode="reflect", cval=0.0, origin=0, *, axes=None):
|
1311 |
+
"""Calculate a multidimensional minimum filter.
|
1312 |
+
|
1313 |
+
Parameters
|
1314 |
+
----------
|
1315 |
+
%(input)s
|
1316 |
+
%(size_foot)s
|
1317 |
+
%(output)s
|
1318 |
+
%(mode_multiple)s
|
1319 |
+
%(cval)s
|
1320 |
+
%(origin_multiple)s
|
1321 |
+
axes : tuple of int or None, optional
|
1322 |
+
If None, `input` is filtered along all axes. Otherwise,
|
1323 |
+
`input` is filtered along the specified axes. When `axes` is
|
1324 |
+
specified, any tuples used for `size`, `origin`, and/or `mode`
|
1325 |
+
must match the length of `axes`. The ith entry in any of these tuples
|
1326 |
+
corresponds to the ith entry in `axes`.
|
1327 |
+
|
1328 |
+
Returns
|
1329 |
+
-------
|
1330 |
+
minimum_filter : ndarray
|
1331 |
+
Filtered array. Has the same shape as `input`.
|
1332 |
+
|
1333 |
+
Notes
|
1334 |
+
-----
|
1335 |
+
A sequence of modes (one per axis) is only supported when the footprint is
|
1336 |
+
separable. Otherwise, a single mode string must be provided.
|
1337 |
+
|
1338 |
+
Examples
|
1339 |
+
--------
|
1340 |
+
>>> from scipy import ndimage, datasets
|
1341 |
+
>>> import matplotlib.pyplot as plt
|
1342 |
+
>>> fig = plt.figure()
|
1343 |
+
>>> plt.gray() # show the filtered result in grayscale
|
1344 |
+
>>> ax1 = fig.add_subplot(121) # left side
|
1345 |
+
>>> ax2 = fig.add_subplot(122) # right side
|
1346 |
+
>>> ascent = datasets.ascent()
|
1347 |
+
>>> result = ndimage.minimum_filter(ascent, size=20)
|
1348 |
+
>>> ax1.imshow(ascent)
|
1349 |
+
>>> ax2.imshow(result)
|
1350 |
+
>>> plt.show()
|
1351 |
+
"""
|
1352 |
+
return _min_or_max_filter(input, size, footprint, None, output, mode,
|
1353 |
+
cval, origin, 1, axes)
|
1354 |
+
|
1355 |
+
|
1356 |
+
@_ni_docstrings.docfiller
|
1357 |
+
def maximum_filter(input, size=None, footprint=None, output=None,
|
1358 |
+
mode="reflect", cval=0.0, origin=0, *, axes=None):
|
1359 |
+
"""Calculate a multidimensional maximum filter.
|
1360 |
+
|
1361 |
+
Parameters
|
1362 |
+
----------
|
1363 |
+
%(input)s
|
1364 |
+
%(size_foot)s
|
1365 |
+
%(output)s
|
1366 |
+
%(mode_multiple)s
|
1367 |
+
%(cval)s
|
1368 |
+
%(origin_multiple)s
|
1369 |
+
axes : tuple of int or None, optional
|
1370 |
+
If None, `input` is filtered along all axes. Otherwise,
|
1371 |
+
`input` is filtered along the specified axes. When `axes` is
|
1372 |
+
specified, any tuples used for `size`, `origin`, and/or `mode`
|
1373 |
+
must match the length of `axes`. The ith entry in any of these tuples
|
1374 |
+
corresponds to the ith entry in `axes`.
|
1375 |
+
|
1376 |
+
Returns
|
1377 |
+
-------
|
1378 |
+
maximum_filter : ndarray
|
1379 |
+
Filtered array. Has the same shape as `input`.
|
1380 |
+
|
1381 |
+
Notes
|
1382 |
+
-----
|
1383 |
+
A sequence of modes (one per axis) is only supported when the footprint is
|
1384 |
+
separable. Otherwise, a single mode string must be provided.
|
1385 |
+
|
1386 |
+
Examples
|
1387 |
+
--------
|
1388 |
+
>>> from scipy import ndimage, datasets
|
1389 |
+
>>> import matplotlib.pyplot as plt
|
1390 |
+
>>> fig = plt.figure()
|
1391 |
+
>>> plt.gray() # show the filtered result in grayscale
|
1392 |
+
>>> ax1 = fig.add_subplot(121) # left side
|
1393 |
+
>>> ax2 = fig.add_subplot(122) # right side
|
1394 |
+
>>> ascent = datasets.ascent()
|
1395 |
+
>>> result = ndimage.maximum_filter(ascent, size=20)
|
1396 |
+
>>> ax1.imshow(ascent)
|
1397 |
+
>>> ax2.imshow(result)
|
1398 |
+
>>> plt.show()
|
1399 |
+
"""
|
1400 |
+
return _min_or_max_filter(input, size, footprint, None, output, mode,
|
1401 |
+
cval, origin, 0, axes)
|
1402 |
+
|
1403 |
+
|
1404 |
+
@_ni_docstrings.docfiller
|
1405 |
+
def _rank_filter(input, rank, size=None, footprint=None, output=None,
|
1406 |
+
mode="reflect", cval=0.0, origin=0, operation='rank',
|
1407 |
+
axes=None):
|
1408 |
+
if (size is not None) and (footprint is not None):
|
1409 |
+
warnings.warn("ignoring size because footprint is set",
|
1410 |
+
UserWarning, stacklevel=3)
|
1411 |
+
input = numpy.asarray(input)
|
1412 |
+
if numpy.iscomplexobj(input):
|
1413 |
+
raise TypeError('Complex type not supported')
|
1414 |
+
axes = _ni_support._check_axes(axes, input.ndim)
|
1415 |
+
num_axes = len(axes)
|
1416 |
+
origins = _ni_support._normalize_sequence(origin, num_axes)
|
1417 |
+
if footprint is None:
|
1418 |
+
if size is None:
|
1419 |
+
raise RuntimeError("no footprint or filter size provided")
|
1420 |
+
sizes = _ni_support._normalize_sequence(size, num_axes)
|
1421 |
+
footprint = numpy.ones(sizes, dtype=bool)
|
1422 |
+
else:
|
1423 |
+
footprint = numpy.asarray(footprint, dtype=bool)
|
1424 |
+
if num_axes < input.ndim:
|
1425 |
+
# set origin = 0 for any axes not being filtered
|
1426 |
+
origins_temp = [0,] * input.ndim
|
1427 |
+
for o, ax in zip(origins, axes):
|
1428 |
+
origins_temp[ax] = o
|
1429 |
+
origins = origins_temp
|
1430 |
+
|
1431 |
+
if not isinstance(mode, str) and isinstance(mode, Iterable):
|
1432 |
+
# set mode = 'constant' for any axes not being filtered
|
1433 |
+
modes = _ni_support._normalize_sequence(mode, num_axes)
|
1434 |
+
modes_temp = ['constant'] * input.ndim
|
1435 |
+
for m, ax in zip(modes, axes):
|
1436 |
+
modes_temp[ax] = m
|
1437 |
+
mode = modes_temp
|
1438 |
+
|
1439 |
+
# insert singleton dimension along any non-filtered axes
|
1440 |
+
if footprint.ndim != num_axes:
|
1441 |
+
raise RuntimeError("footprint array has incorrect shape")
|
1442 |
+
footprint = numpy.expand_dims(
|
1443 |
+
footprint,
|
1444 |
+
tuple(ax for ax in range(input.ndim) if ax not in axes)
|
1445 |
+
)
|
1446 |
+
fshape = [ii for ii in footprint.shape if ii > 0]
|
1447 |
+
if len(fshape) != input.ndim:
|
1448 |
+
raise RuntimeError('footprint array has incorrect shape.')
|
1449 |
+
for origin, lenf in zip(origins, fshape):
|
1450 |
+
if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf):
|
1451 |
+
raise ValueError('invalid origin')
|
1452 |
+
if not footprint.flags.contiguous:
|
1453 |
+
footprint = footprint.copy()
|
1454 |
+
filter_size = numpy.where(footprint, 1, 0).sum()
|
1455 |
+
if operation == 'median':
|
1456 |
+
rank = filter_size // 2
|
1457 |
+
elif operation == 'percentile':
|
1458 |
+
percentile = rank
|
1459 |
+
if percentile < 0.0:
|
1460 |
+
percentile += 100.0
|
1461 |
+
if percentile < 0 or percentile > 100:
|
1462 |
+
raise RuntimeError('invalid percentile')
|
1463 |
+
if percentile == 100.0:
|
1464 |
+
rank = filter_size - 1
|
1465 |
+
else:
|
1466 |
+
rank = int(float(filter_size) * percentile / 100.0)
|
1467 |
+
if rank < 0:
|
1468 |
+
rank += filter_size
|
1469 |
+
if rank < 0 or rank >= filter_size:
|
1470 |
+
raise RuntimeError('rank not within filter footprint size')
|
1471 |
+
if rank == 0:
|
1472 |
+
return minimum_filter(input, None, footprint, output, mode, cval,
|
1473 |
+
origins, axes=None)
|
1474 |
+
elif rank == filter_size - 1:
|
1475 |
+
return maximum_filter(input, None, footprint, output, mode, cval,
|
1476 |
+
origins, axes=None)
|
1477 |
+
else:
|
1478 |
+
output = _ni_support._get_output(output, input)
|
1479 |
+
temp_needed = numpy.may_share_memory(input, output)
|
1480 |
+
if temp_needed:
|
1481 |
+
# input and output arrays cannot share memory
|
1482 |
+
temp = output
|
1483 |
+
output = _ni_support._get_output(output.dtype, input)
|
1484 |
+
if not isinstance(mode, str) and isinstance(mode, Iterable):
|
1485 |
+
raise RuntimeError(
|
1486 |
+
"A sequence of modes is not supported by non-separable rank "
|
1487 |
+
"filters")
|
1488 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
1489 |
+
_nd_image.rank_filter(input, rank, footprint, output, mode, cval,
|
1490 |
+
origins)
|
1491 |
+
if temp_needed:
|
1492 |
+
temp[...] = output
|
1493 |
+
output = temp
|
1494 |
+
return output
|
1495 |
+
|
1496 |
+
|
1497 |
+
@_ni_docstrings.docfiller
|
1498 |
+
def rank_filter(input, rank, size=None, footprint=None, output=None,
|
1499 |
+
mode="reflect", cval=0.0, origin=0, *, axes=None):
|
1500 |
+
"""Calculate a multidimensional rank filter.
|
1501 |
+
|
1502 |
+
Parameters
|
1503 |
+
----------
|
1504 |
+
%(input)s
|
1505 |
+
rank : int
|
1506 |
+
The rank parameter may be less than zero, i.e., rank = -1
|
1507 |
+
indicates the largest element.
|
1508 |
+
%(size_foot)s
|
1509 |
+
%(output)s
|
1510 |
+
%(mode_reflect)s
|
1511 |
+
%(cval)s
|
1512 |
+
%(origin_multiple)s
|
1513 |
+
axes : tuple of int or None, optional
|
1514 |
+
If None, `input` is filtered along all axes. Otherwise,
|
1515 |
+
`input` is filtered along the specified axes.
|
1516 |
+
|
1517 |
+
Returns
|
1518 |
+
-------
|
1519 |
+
rank_filter : ndarray
|
1520 |
+
Filtered array. Has the same shape as `input`.
|
1521 |
+
|
1522 |
+
Examples
|
1523 |
+
--------
|
1524 |
+
>>> from scipy import ndimage, datasets
|
1525 |
+
>>> import matplotlib.pyplot as plt
|
1526 |
+
>>> fig = plt.figure()
|
1527 |
+
>>> plt.gray() # show the filtered result in grayscale
|
1528 |
+
>>> ax1 = fig.add_subplot(121) # left side
|
1529 |
+
>>> ax2 = fig.add_subplot(122) # right side
|
1530 |
+
>>> ascent = datasets.ascent()
|
1531 |
+
>>> result = ndimage.rank_filter(ascent, rank=42, size=20)
|
1532 |
+
>>> ax1.imshow(ascent)
|
1533 |
+
>>> ax2.imshow(result)
|
1534 |
+
>>> plt.show()
|
1535 |
+
"""
|
1536 |
+
rank = operator.index(rank)
|
1537 |
+
return _rank_filter(input, rank, size, footprint, output, mode, cval,
|
1538 |
+
origin, 'rank', axes=axes)
|
1539 |
+
|
1540 |
+
|
1541 |
+
@_ni_docstrings.docfiller
|
1542 |
+
def median_filter(input, size=None, footprint=None, output=None,
|
1543 |
+
mode="reflect", cval=0.0, origin=0, *, axes=None):
|
1544 |
+
"""
|
1545 |
+
Calculate a multidimensional median filter.
|
1546 |
+
|
1547 |
+
Parameters
|
1548 |
+
----------
|
1549 |
+
%(input)s
|
1550 |
+
%(size_foot)s
|
1551 |
+
%(output)s
|
1552 |
+
%(mode_reflect)s
|
1553 |
+
%(cval)s
|
1554 |
+
%(origin_multiple)s
|
1555 |
+
axes : tuple of int or None, optional
|
1556 |
+
If None, `input` is filtered along all axes. Otherwise,
|
1557 |
+
`input` is filtered along the specified axes.
|
1558 |
+
|
1559 |
+
Returns
|
1560 |
+
-------
|
1561 |
+
median_filter : ndarray
|
1562 |
+
Filtered array. Has the same shape as `input`.
|
1563 |
+
|
1564 |
+
See Also
|
1565 |
+
--------
|
1566 |
+
scipy.signal.medfilt2d
|
1567 |
+
|
1568 |
+
Notes
|
1569 |
+
-----
|
1570 |
+
For 2-dimensional images with ``uint8``, ``float32`` or ``float64`` dtypes
|
1571 |
+
the specialised function `scipy.signal.medfilt2d` may be faster. It is
|
1572 |
+
however limited to constant mode with ``cval=0``.
|
1573 |
+
|
1574 |
+
Examples
|
1575 |
+
--------
|
1576 |
+
>>> from scipy import ndimage, datasets
|
1577 |
+
>>> import matplotlib.pyplot as plt
|
1578 |
+
>>> fig = plt.figure()
|
1579 |
+
>>> plt.gray() # show the filtered result in grayscale
|
1580 |
+
>>> ax1 = fig.add_subplot(121) # left side
|
1581 |
+
>>> ax2 = fig.add_subplot(122) # right side
|
1582 |
+
>>> ascent = datasets.ascent()
|
1583 |
+
>>> result = ndimage.median_filter(ascent, size=20)
|
1584 |
+
>>> ax1.imshow(ascent)
|
1585 |
+
>>> ax2.imshow(result)
|
1586 |
+
>>> plt.show()
|
1587 |
+
"""
|
1588 |
+
return _rank_filter(input, 0, size, footprint, output, mode, cval,
|
1589 |
+
origin, 'median', axes=axes)
|
1590 |
+
|
1591 |
+
|
1592 |
+
@_ni_docstrings.docfiller
|
1593 |
+
def percentile_filter(input, percentile, size=None, footprint=None,
|
1594 |
+
output=None, mode="reflect", cval=0.0, origin=0, *,
|
1595 |
+
axes=None):
|
1596 |
+
"""Calculate a multidimensional percentile filter.
|
1597 |
+
|
1598 |
+
Parameters
|
1599 |
+
----------
|
1600 |
+
%(input)s
|
1601 |
+
percentile : scalar
|
1602 |
+
The percentile parameter may be less than zero, i.e.,
|
1603 |
+
percentile = -20 equals percentile = 80
|
1604 |
+
%(size_foot)s
|
1605 |
+
%(output)s
|
1606 |
+
%(mode_reflect)s
|
1607 |
+
%(cval)s
|
1608 |
+
%(origin_multiple)s
|
1609 |
+
axes : tuple of int or None, optional
|
1610 |
+
If None, `input` is filtered along all axes. Otherwise,
|
1611 |
+
`input` is filtered along the specified axes.
|
1612 |
+
|
1613 |
+
Returns
|
1614 |
+
-------
|
1615 |
+
percentile_filter : ndarray
|
1616 |
+
Filtered array. Has the same shape as `input`.
|
1617 |
+
|
1618 |
+
Examples
|
1619 |
+
--------
|
1620 |
+
>>> from scipy import ndimage, datasets
|
1621 |
+
>>> import matplotlib.pyplot as plt
|
1622 |
+
>>> fig = plt.figure()
|
1623 |
+
>>> plt.gray() # show the filtered result in grayscale
|
1624 |
+
>>> ax1 = fig.add_subplot(121) # left side
|
1625 |
+
>>> ax2 = fig.add_subplot(122) # right side
|
1626 |
+
>>> ascent = datasets.ascent()
|
1627 |
+
>>> result = ndimage.percentile_filter(ascent, percentile=20, size=20)
|
1628 |
+
>>> ax1.imshow(ascent)
|
1629 |
+
>>> ax2.imshow(result)
|
1630 |
+
>>> plt.show()
|
1631 |
+
"""
|
1632 |
+
return _rank_filter(input, percentile, size, footprint, output, mode,
|
1633 |
+
cval, origin, 'percentile', axes=axes)
|
1634 |
+
|
1635 |
+
|
1636 |
+
@_ni_docstrings.docfiller
|
1637 |
+
def generic_filter1d(input, function, filter_size, axis=-1,
|
1638 |
+
output=None, mode="reflect", cval=0.0, origin=0,
|
1639 |
+
extra_arguments=(), extra_keywords=None):
|
1640 |
+
"""Calculate a 1-D filter along the given axis.
|
1641 |
+
|
1642 |
+
`generic_filter1d` iterates over the lines of the array, calling the
|
1643 |
+
given function at each line. The arguments of the line are the
|
1644 |
+
input line, and the output line. The input and output lines are 1-D
|
1645 |
+
double arrays. The input line is extended appropriately according
|
1646 |
+
to the filter size and origin. The output line must be modified
|
1647 |
+
in-place with the result.
|
1648 |
+
|
1649 |
+
Parameters
|
1650 |
+
----------
|
1651 |
+
%(input)s
|
1652 |
+
function : {callable, scipy.LowLevelCallable}
|
1653 |
+
Function to apply along given axis.
|
1654 |
+
filter_size : scalar
|
1655 |
+
Length of the filter.
|
1656 |
+
%(axis)s
|
1657 |
+
%(output)s
|
1658 |
+
%(mode_reflect)s
|
1659 |
+
%(cval)s
|
1660 |
+
%(origin)s
|
1661 |
+
%(extra_arguments)s
|
1662 |
+
%(extra_keywords)s
|
1663 |
+
|
1664 |
+
Returns
|
1665 |
+
-------
|
1666 |
+
generic_filter1d : ndarray
|
1667 |
+
Filtered array. Has the same shape as `input`.
|
1668 |
+
|
1669 |
+
Notes
|
1670 |
+
-----
|
1671 |
+
This function also accepts low-level callback functions with one of
|
1672 |
+
the following signatures and wrapped in `scipy.LowLevelCallable`:
|
1673 |
+
|
1674 |
+
.. code:: c
|
1675 |
+
|
1676 |
+
int function(double *input_line, npy_intp input_length,
|
1677 |
+
double *output_line, npy_intp output_length,
|
1678 |
+
void *user_data)
|
1679 |
+
int function(double *input_line, intptr_t input_length,
|
1680 |
+
double *output_line, intptr_t output_length,
|
1681 |
+
void *user_data)
|
1682 |
+
|
1683 |
+
The calling function iterates over the lines of the input and output
|
1684 |
+
arrays, calling the callback function at each line. The current line
|
1685 |
+
is extended according to the border conditions set by the calling
|
1686 |
+
function, and the result is copied into the array that is passed
|
1687 |
+
through ``input_line``. The length of the input line (after extension)
|
1688 |
+
is passed through ``input_length``. The callback function should apply
|
1689 |
+
the filter and store the result in the array passed through
|
1690 |
+
``output_line``. The length of the output line is passed through
|
1691 |
+
``output_length``. ``user_data`` is the data pointer provided
|
1692 |
+
to `scipy.LowLevelCallable` as-is.
|
1693 |
+
|
1694 |
+
The callback function must return an integer error status that is zero
|
1695 |
+
if something went wrong and one otherwise. If an error occurs, you should
|
1696 |
+
normally set the python error status with an informative message
|
1697 |
+
before returning, otherwise a default error message is set by the
|
1698 |
+
calling function.
|
1699 |
+
|
1700 |
+
In addition, some other low-level function pointer specifications
|
1701 |
+
are accepted, but these are for backward compatibility only and should
|
1702 |
+
not be used in new code.
|
1703 |
+
|
1704 |
+
"""
|
1705 |
+
if extra_keywords is None:
|
1706 |
+
extra_keywords = {}
|
1707 |
+
input = numpy.asarray(input)
|
1708 |
+
if numpy.iscomplexobj(input):
|
1709 |
+
raise TypeError('Complex type not supported')
|
1710 |
+
output = _ni_support._get_output(output, input)
|
1711 |
+
if filter_size < 1:
|
1712 |
+
raise RuntimeError('invalid filter size')
|
1713 |
+
axis = normalize_axis_index(axis, input.ndim)
|
1714 |
+
if (filter_size // 2 + origin < 0) or (filter_size // 2 + origin >=
|
1715 |
+
filter_size):
|
1716 |
+
raise ValueError('invalid origin')
|
1717 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
1718 |
+
_nd_image.generic_filter1d(input, function, filter_size, axis, output,
|
1719 |
+
mode, cval, origin, extra_arguments,
|
1720 |
+
extra_keywords)
|
1721 |
+
return output
|
1722 |
+
|
1723 |
+
|
1724 |
+
@_ni_docstrings.docfiller
|
1725 |
+
def generic_filter(input, function, size=None, footprint=None,
|
1726 |
+
output=None, mode="reflect", cval=0.0, origin=0,
|
1727 |
+
extra_arguments=(), extra_keywords=None):
|
1728 |
+
"""Calculate a multidimensional filter using the given function.
|
1729 |
+
|
1730 |
+
At each element the provided function is called. The input values
|
1731 |
+
within the filter footprint at that element are passed to the function
|
1732 |
+
as a 1-D array of double values.
|
1733 |
+
|
1734 |
+
Parameters
|
1735 |
+
----------
|
1736 |
+
%(input)s
|
1737 |
+
function : {callable, scipy.LowLevelCallable}
|
1738 |
+
Function to apply at each element.
|
1739 |
+
%(size_foot)s
|
1740 |
+
%(output)s
|
1741 |
+
%(mode_reflect)s
|
1742 |
+
%(cval)s
|
1743 |
+
%(origin_multiple)s
|
1744 |
+
%(extra_arguments)s
|
1745 |
+
%(extra_keywords)s
|
1746 |
+
|
1747 |
+
Returns
|
1748 |
+
-------
|
1749 |
+
generic_filter : ndarray
|
1750 |
+
Filtered array. Has the same shape as `input`.
|
1751 |
+
|
1752 |
+
Notes
|
1753 |
+
-----
|
1754 |
+
This function also accepts low-level callback functions with one of
|
1755 |
+
the following signatures and wrapped in `scipy.LowLevelCallable`:
|
1756 |
+
|
1757 |
+
.. code:: c
|
1758 |
+
|
1759 |
+
int callback(double *buffer, npy_intp filter_size,
|
1760 |
+
double *return_value, void *user_data)
|
1761 |
+
int callback(double *buffer, intptr_t filter_size,
|
1762 |
+
double *return_value, void *user_data)
|
1763 |
+
|
1764 |
+
The calling function iterates over the elements of the input and
|
1765 |
+
output arrays, calling the callback function at each element. The
|
1766 |
+
elements within the footprint of the filter at the current element are
|
1767 |
+
passed through the ``buffer`` parameter, and the number of elements
|
1768 |
+
within the footprint through ``filter_size``. The calculated value is
|
1769 |
+
returned in ``return_value``. ``user_data`` is the data pointer provided
|
1770 |
+
to `scipy.LowLevelCallable` as-is.
|
1771 |
+
|
1772 |
+
The callback function must return an integer error status that is zero
|
1773 |
+
if something went wrong and one otherwise. If an error occurs, you should
|
1774 |
+
normally set the python error status with an informative message
|
1775 |
+
before returning, otherwise a default error message is set by the
|
1776 |
+
calling function.
|
1777 |
+
|
1778 |
+
In addition, some other low-level function pointer specifications
|
1779 |
+
are accepted, but these are for backward compatibility only and should
|
1780 |
+
not be used in new code.
|
1781 |
+
|
1782 |
+
Examples
|
1783 |
+
--------
|
1784 |
+
Import the necessary modules and load the example image used for
|
1785 |
+
filtering.
|
1786 |
+
|
1787 |
+
>>> import numpy as np
|
1788 |
+
>>> from scipy import datasets
|
1789 |
+
>>> from scipy.ndimage import generic_filter
|
1790 |
+
>>> import matplotlib.pyplot as plt
|
1791 |
+
>>> ascent = datasets.ascent()
|
1792 |
+
|
1793 |
+
Compute a maximum filter with kernel size 10 by passing a simple NumPy
|
1794 |
+
aggregation function as argument to `function`.
|
1795 |
+
|
1796 |
+
>>> maximum_filter_result = generic_filter(ascent, np.amax, [10, 10])
|
1797 |
+
|
1798 |
+
While a maximmum filter could also directly be obtained using
|
1799 |
+
`maximum_filter`, `generic_filter` allows generic Python function or
|
1800 |
+
`scipy.LowLevelCallable` to be used as a filter. Here, we compute the
|
1801 |
+
range between maximum and minimum value as an example for a kernel size
|
1802 |
+
of 5.
|
1803 |
+
|
1804 |
+
>>> def custom_filter(image):
|
1805 |
+
... return np.amax(image) - np.amin(image)
|
1806 |
+
>>> custom_filter_result = generic_filter(ascent, custom_filter, [5, 5])
|
1807 |
+
|
1808 |
+
Plot the original and filtered images.
|
1809 |
+
|
1810 |
+
>>> fig, axes = plt.subplots(3, 1, figsize=(4, 12))
|
1811 |
+
>>> plt.gray() # show the filtered result in grayscale
|
1812 |
+
>>> top, middle, bottom = axes
|
1813 |
+
>>> for ax in axes:
|
1814 |
+
... ax.set_axis_off() # remove coordinate system
|
1815 |
+
>>> top.imshow(ascent)
|
1816 |
+
>>> top.set_title("Original image")
|
1817 |
+
>>> middle.imshow(maximum_filter_result)
|
1818 |
+
>>> middle.set_title("Maximum filter, Kernel: 10x10")
|
1819 |
+
>>> bottom.imshow(custom_filter_result)
|
1820 |
+
>>> bottom.set_title("Custom filter, Kernel: 5x5")
|
1821 |
+
>>> fig.tight_layout()
|
1822 |
+
|
1823 |
+
"""
|
1824 |
+
if (size is not None) and (footprint is not None):
|
1825 |
+
warnings.warn("ignoring size because footprint is set",
|
1826 |
+
UserWarning, stacklevel=2)
|
1827 |
+
if extra_keywords is None:
|
1828 |
+
extra_keywords = {}
|
1829 |
+
input = numpy.asarray(input)
|
1830 |
+
if numpy.iscomplexobj(input):
|
1831 |
+
raise TypeError('Complex type not supported')
|
1832 |
+
origins = _ni_support._normalize_sequence(origin, input.ndim)
|
1833 |
+
if footprint is None:
|
1834 |
+
if size is None:
|
1835 |
+
raise RuntimeError("no footprint or filter size provided")
|
1836 |
+
sizes = _ni_support._normalize_sequence(size, input.ndim)
|
1837 |
+
footprint = numpy.ones(sizes, dtype=bool)
|
1838 |
+
else:
|
1839 |
+
footprint = numpy.asarray(footprint, dtype=bool)
|
1840 |
+
fshape = [ii for ii in footprint.shape if ii > 0]
|
1841 |
+
if len(fshape) != input.ndim:
|
1842 |
+
raise RuntimeError('filter footprint array has incorrect shape.')
|
1843 |
+
for origin, lenf in zip(origins, fshape):
|
1844 |
+
if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf):
|
1845 |
+
raise ValueError('invalid origin')
|
1846 |
+
if not footprint.flags.contiguous:
|
1847 |
+
footprint = footprint.copy()
|
1848 |
+
output = _ni_support._get_output(output, input)
|
1849 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
1850 |
+
_nd_image.generic_filter(input, function, footprint, output, mode,
|
1851 |
+
cval, origins, extra_arguments, extra_keywords)
|
1852 |
+
return output
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_fourier.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2003-2005 Peter J. Verveer
|
2 |
+
#
|
3 |
+
# Redistribution and use in source and binary forms, with or without
|
4 |
+
# modification, are permitted provided that the following conditions
|
5 |
+
# are met:
|
6 |
+
#
|
7 |
+
# 1. Redistributions of source code must retain the above copyright
|
8 |
+
# notice, this list of conditions and the following disclaimer.
|
9 |
+
#
|
10 |
+
# 2. Redistributions in binary form must reproduce the above
|
11 |
+
# copyright notice, this list of conditions and the following
|
12 |
+
# disclaimer in the documentation and/or other materials provided
|
13 |
+
# with the distribution.
|
14 |
+
#
|
15 |
+
# 3. The name of the author may not be used to endorse or promote
|
16 |
+
# products derived from this software without specific prior
|
17 |
+
# written permission.
|
18 |
+
#
|
19 |
+
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
20 |
+
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
21 |
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
23 |
+
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
25 |
+
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
27 |
+
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
28 |
+
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
29 |
+
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
|
31 |
+
import numpy
|
32 |
+
from scipy._lib._util import normalize_axis_index
|
33 |
+
from . import _ni_support
|
34 |
+
from . import _nd_image
|
35 |
+
|
36 |
+
__all__ = ['fourier_gaussian', 'fourier_uniform', 'fourier_ellipsoid',
|
37 |
+
'fourier_shift']
|
38 |
+
|
39 |
+
|
40 |
+
def _get_output_fourier(output, input):
|
41 |
+
if output is None:
|
42 |
+
if input.dtype.type in [numpy.complex64, numpy.complex128,
|
43 |
+
numpy.float32]:
|
44 |
+
output = numpy.zeros(input.shape, dtype=input.dtype)
|
45 |
+
else:
|
46 |
+
output = numpy.zeros(input.shape, dtype=numpy.float64)
|
47 |
+
elif type(output) is type:
|
48 |
+
if output not in [numpy.complex64, numpy.complex128,
|
49 |
+
numpy.float32, numpy.float64]:
|
50 |
+
raise RuntimeError("output type not supported")
|
51 |
+
output = numpy.zeros(input.shape, dtype=output)
|
52 |
+
elif output.shape != input.shape:
|
53 |
+
raise RuntimeError("output shape not correct")
|
54 |
+
return output
|
55 |
+
|
56 |
+
|
57 |
+
def _get_output_fourier_complex(output, input):
|
58 |
+
if output is None:
|
59 |
+
if input.dtype.type in [numpy.complex64, numpy.complex128]:
|
60 |
+
output = numpy.zeros(input.shape, dtype=input.dtype)
|
61 |
+
else:
|
62 |
+
output = numpy.zeros(input.shape, dtype=numpy.complex128)
|
63 |
+
elif type(output) is type:
|
64 |
+
if output not in [numpy.complex64, numpy.complex128]:
|
65 |
+
raise RuntimeError("output type not supported")
|
66 |
+
output = numpy.zeros(input.shape, dtype=output)
|
67 |
+
elif output.shape != input.shape:
|
68 |
+
raise RuntimeError("output shape not correct")
|
69 |
+
return output
|
70 |
+
|
71 |
+
|
72 |
+
def fourier_gaussian(input, sigma, n=-1, axis=-1, output=None):
|
73 |
+
"""
|
74 |
+
Multidimensional Gaussian fourier filter.
|
75 |
+
|
76 |
+
The array is multiplied with the fourier transform of a Gaussian
|
77 |
+
kernel.
|
78 |
+
|
79 |
+
Parameters
|
80 |
+
----------
|
81 |
+
input : array_like
|
82 |
+
The input array.
|
83 |
+
sigma : float or sequence
|
84 |
+
The sigma of the Gaussian kernel. If a float, `sigma` is the same for
|
85 |
+
all axes. If a sequence, `sigma` has to contain one value for each
|
86 |
+
axis.
|
87 |
+
n : int, optional
|
88 |
+
If `n` is negative (default), then the input is assumed to be the
|
89 |
+
result of a complex fft.
|
90 |
+
If `n` is larger than or equal to zero, the input is assumed to be the
|
91 |
+
result of a real fft, and `n` gives the length of the array before
|
92 |
+
transformation along the real transform direction.
|
93 |
+
axis : int, optional
|
94 |
+
The axis of the real transform.
|
95 |
+
output : ndarray, optional
|
96 |
+
If given, the result of filtering the input is placed in this array.
|
97 |
+
|
98 |
+
Returns
|
99 |
+
-------
|
100 |
+
fourier_gaussian : ndarray
|
101 |
+
The filtered input.
|
102 |
+
|
103 |
+
Examples
|
104 |
+
--------
|
105 |
+
>>> from scipy import ndimage, datasets
|
106 |
+
>>> import numpy.fft
|
107 |
+
>>> import matplotlib.pyplot as plt
|
108 |
+
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
|
109 |
+
>>> plt.gray() # show the filtered result in grayscale
|
110 |
+
>>> ascent = datasets.ascent()
|
111 |
+
>>> input_ = numpy.fft.fft2(ascent)
|
112 |
+
>>> result = ndimage.fourier_gaussian(input_, sigma=4)
|
113 |
+
>>> result = numpy.fft.ifft2(result)
|
114 |
+
>>> ax1.imshow(ascent)
|
115 |
+
>>> ax2.imshow(result.real) # the imaginary part is an artifact
|
116 |
+
>>> plt.show()
|
117 |
+
"""
|
118 |
+
input = numpy.asarray(input)
|
119 |
+
output = _get_output_fourier(output, input)
|
120 |
+
axis = normalize_axis_index(axis, input.ndim)
|
121 |
+
sigmas = _ni_support._normalize_sequence(sigma, input.ndim)
|
122 |
+
sigmas = numpy.asarray(sigmas, dtype=numpy.float64)
|
123 |
+
if not sigmas.flags.contiguous:
|
124 |
+
sigmas = sigmas.copy()
|
125 |
+
|
126 |
+
_nd_image.fourier_filter(input, sigmas, n, axis, output, 0)
|
127 |
+
return output
|
128 |
+
|
129 |
+
|
130 |
+
def fourier_uniform(input, size, n=-1, axis=-1, output=None):
|
131 |
+
"""
|
132 |
+
Multidimensional uniform fourier filter.
|
133 |
+
|
134 |
+
The array is multiplied with the Fourier transform of a box of given
|
135 |
+
size.
|
136 |
+
|
137 |
+
Parameters
|
138 |
+
----------
|
139 |
+
input : array_like
|
140 |
+
The input array.
|
141 |
+
size : float or sequence
|
142 |
+
The size of the box used for filtering.
|
143 |
+
If a float, `size` is the same for all axes. If a sequence, `size` has
|
144 |
+
to contain one value for each axis.
|
145 |
+
n : int, optional
|
146 |
+
If `n` is negative (default), then the input is assumed to be the
|
147 |
+
result of a complex fft.
|
148 |
+
If `n` is larger than or equal to zero, the input is assumed to be the
|
149 |
+
result of a real fft, and `n` gives the length of the array before
|
150 |
+
transformation along the real transform direction.
|
151 |
+
axis : int, optional
|
152 |
+
The axis of the real transform.
|
153 |
+
output : ndarray, optional
|
154 |
+
If given, the result of filtering the input is placed in this array.
|
155 |
+
|
156 |
+
Returns
|
157 |
+
-------
|
158 |
+
fourier_uniform : ndarray
|
159 |
+
The filtered input.
|
160 |
+
|
161 |
+
Examples
|
162 |
+
--------
|
163 |
+
>>> from scipy import ndimage, datasets
|
164 |
+
>>> import numpy.fft
|
165 |
+
>>> import matplotlib.pyplot as plt
|
166 |
+
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
|
167 |
+
>>> plt.gray() # show the filtered result in grayscale
|
168 |
+
>>> ascent = datasets.ascent()
|
169 |
+
>>> input_ = numpy.fft.fft2(ascent)
|
170 |
+
>>> result = ndimage.fourier_uniform(input_, size=20)
|
171 |
+
>>> result = numpy.fft.ifft2(result)
|
172 |
+
>>> ax1.imshow(ascent)
|
173 |
+
>>> ax2.imshow(result.real) # the imaginary part is an artifact
|
174 |
+
>>> plt.show()
|
175 |
+
"""
|
176 |
+
input = numpy.asarray(input)
|
177 |
+
output = _get_output_fourier(output, input)
|
178 |
+
axis = normalize_axis_index(axis, input.ndim)
|
179 |
+
sizes = _ni_support._normalize_sequence(size, input.ndim)
|
180 |
+
sizes = numpy.asarray(sizes, dtype=numpy.float64)
|
181 |
+
if not sizes.flags.contiguous:
|
182 |
+
sizes = sizes.copy()
|
183 |
+
_nd_image.fourier_filter(input, sizes, n, axis, output, 1)
|
184 |
+
return output
|
185 |
+
|
186 |
+
|
187 |
+
def fourier_ellipsoid(input, size, n=-1, axis=-1, output=None):
|
188 |
+
"""
|
189 |
+
Multidimensional ellipsoid Fourier filter.
|
190 |
+
|
191 |
+
The array is multiplied with the fourier transform of an ellipsoid of
|
192 |
+
given sizes.
|
193 |
+
|
194 |
+
Parameters
|
195 |
+
----------
|
196 |
+
input : array_like
|
197 |
+
The input array.
|
198 |
+
size : float or sequence
|
199 |
+
The size of the box used for filtering.
|
200 |
+
If a float, `size` is the same for all axes. If a sequence, `size` has
|
201 |
+
to contain one value for each axis.
|
202 |
+
n : int, optional
|
203 |
+
If `n` is negative (default), then the input is assumed to be the
|
204 |
+
result of a complex fft.
|
205 |
+
If `n` is larger than or equal to zero, the input is assumed to be the
|
206 |
+
result of a real fft, and `n` gives the length of the array before
|
207 |
+
transformation along the real transform direction.
|
208 |
+
axis : int, optional
|
209 |
+
The axis of the real transform.
|
210 |
+
output : ndarray, optional
|
211 |
+
If given, the result of filtering the input is placed in this array.
|
212 |
+
|
213 |
+
Returns
|
214 |
+
-------
|
215 |
+
fourier_ellipsoid : ndarray
|
216 |
+
The filtered input.
|
217 |
+
|
218 |
+
Notes
|
219 |
+
-----
|
220 |
+
This function is implemented for arrays of rank 1, 2, or 3.
|
221 |
+
|
222 |
+
Examples
|
223 |
+
--------
|
224 |
+
>>> from scipy import ndimage, datasets
|
225 |
+
>>> import numpy.fft
|
226 |
+
>>> import matplotlib.pyplot as plt
|
227 |
+
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
|
228 |
+
>>> plt.gray() # show the filtered result in grayscale
|
229 |
+
>>> ascent = datasets.ascent()
|
230 |
+
>>> input_ = numpy.fft.fft2(ascent)
|
231 |
+
>>> result = ndimage.fourier_ellipsoid(input_, size=20)
|
232 |
+
>>> result = numpy.fft.ifft2(result)
|
233 |
+
>>> ax1.imshow(ascent)
|
234 |
+
>>> ax2.imshow(result.real) # the imaginary part is an artifact
|
235 |
+
>>> plt.show()
|
236 |
+
"""
|
237 |
+
input = numpy.asarray(input)
|
238 |
+
if input.ndim > 3:
|
239 |
+
raise NotImplementedError("Only 1d, 2d and 3d inputs are supported")
|
240 |
+
output = _get_output_fourier(output, input)
|
241 |
+
if output.size == 0:
|
242 |
+
# The C code has a bug that can result in a segfault with arrays
|
243 |
+
# that have size 0 (gh-17270), so check here.
|
244 |
+
return output
|
245 |
+
axis = normalize_axis_index(axis, input.ndim)
|
246 |
+
sizes = _ni_support._normalize_sequence(size, input.ndim)
|
247 |
+
sizes = numpy.asarray(sizes, dtype=numpy.float64)
|
248 |
+
if not sizes.flags.contiguous:
|
249 |
+
sizes = sizes.copy()
|
250 |
+
_nd_image.fourier_filter(input, sizes, n, axis, output, 2)
|
251 |
+
return output
|
252 |
+
|
253 |
+
|
254 |
+
def fourier_shift(input, shift, n=-1, axis=-1, output=None):
|
255 |
+
"""
|
256 |
+
Multidimensional Fourier shift filter.
|
257 |
+
|
258 |
+
The array is multiplied with the Fourier transform of a shift operation.
|
259 |
+
|
260 |
+
Parameters
|
261 |
+
----------
|
262 |
+
input : array_like
|
263 |
+
The input array.
|
264 |
+
shift : float or sequence
|
265 |
+
The size of the box used for filtering.
|
266 |
+
If a float, `shift` is the same for all axes. If a sequence, `shift`
|
267 |
+
has to contain one value for each axis.
|
268 |
+
n : int, optional
|
269 |
+
If `n` is negative (default), then the input is assumed to be the
|
270 |
+
result of a complex fft.
|
271 |
+
If `n` is larger than or equal to zero, the input is assumed to be the
|
272 |
+
result of a real fft, and `n` gives the length of the array before
|
273 |
+
transformation along the real transform direction.
|
274 |
+
axis : int, optional
|
275 |
+
The axis of the real transform.
|
276 |
+
output : ndarray, optional
|
277 |
+
If given, the result of shifting the input is placed in this array.
|
278 |
+
|
279 |
+
Returns
|
280 |
+
-------
|
281 |
+
fourier_shift : ndarray
|
282 |
+
The shifted input.
|
283 |
+
|
284 |
+
Examples
|
285 |
+
--------
|
286 |
+
>>> from scipy import ndimage, datasets
|
287 |
+
>>> import matplotlib.pyplot as plt
|
288 |
+
>>> import numpy.fft
|
289 |
+
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
|
290 |
+
>>> plt.gray() # show the filtered result in grayscale
|
291 |
+
>>> ascent = datasets.ascent()
|
292 |
+
>>> input_ = numpy.fft.fft2(ascent)
|
293 |
+
>>> result = ndimage.fourier_shift(input_, shift=200)
|
294 |
+
>>> result = numpy.fft.ifft2(result)
|
295 |
+
>>> ax1.imshow(ascent)
|
296 |
+
>>> ax2.imshow(result.real) # the imaginary part is an artifact
|
297 |
+
>>> plt.show()
|
298 |
+
"""
|
299 |
+
input = numpy.asarray(input)
|
300 |
+
output = _get_output_fourier_complex(output, input)
|
301 |
+
axis = normalize_axis_index(axis, input.ndim)
|
302 |
+
shifts = _ni_support._normalize_sequence(shift, input.ndim)
|
303 |
+
shifts = numpy.asarray(shifts, dtype=numpy.float64)
|
304 |
+
if not shifts.flags.contiguous:
|
305 |
+
shifts = shifts.copy()
|
306 |
+
_nd_image.fourier_shift(input, shifts, n, axis, output)
|
307 |
+
return output
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_interpolation.py
ADDED
@@ -0,0 +1,1010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2003-2005 Peter J. Verveer
|
2 |
+
#
|
3 |
+
# Redistribution and use in source and binary forms, with or without
|
4 |
+
# modification, are permitted provided that the following conditions
|
5 |
+
# are met:
|
6 |
+
#
|
7 |
+
# 1. Redistributions of source code must retain the above copyright
|
8 |
+
# notice, this list of conditions and the following disclaimer.
|
9 |
+
#
|
10 |
+
# 2. Redistributions in binary form must reproduce the above
|
11 |
+
# copyright notice, this list of conditions and the following
|
12 |
+
# disclaimer in the documentation and/or other materials provided
|
13 |
+
# with the distribution.
|
14 |
+
#
|
15 |
+
# 3. The name of the author may not be used to endorse or promote
|
16 |
+
# products derived from this software without specific prior
|
17 |
+
# written permission.
|
18 |
+
#
|
19 |
+
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
20 |
+
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
21 |
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
23 |
+
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
25 |
+
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
27 |
+
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
28 |
+
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
29 |
+
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
|
31 |
+
import itertools
|
32 |
+
import warnings
|
33 |
+
|
34 |
+
import numpy
|
35 |
+
from scipy._lib._util import normalize_axis_index
|
36 |
+
|
37 |
+
from scipy import special
|
38 |
+
from . import _ni_support
|
39 |
+
from . import _nd_image
|
40 |
+
from ._ni_docstrings import docfiller
|
41 |
+
|
42 |
+
|
43 |
+
__all__ = ['spline_filter1d', 'spline_filter', 'geometric_transform',
|
44 |
+
'map_coordinates', 'affine_transform', 'shift', 'zoom', 'rotate']
|
45 |
+
|
46 |
+
|
47 |
+
@docfiller
|
48 |
+
def spline_filter1d(input, order=3, axis=-1, output=numpy.float64,
|
49 |
+
mode='mirror'):
|
50 |
+
"""
|
51 |
+
Calculate a 1-D spline filter along the given axis.
|
52 |
+
|
53 |
+
The lines of the array along the given axis are filtered by a
|
54 |
+
spline filter. The order of the spline must be >= 2 and <= 5.
|
55 |
+
|
56 |
+
Parameters
|
57 |
+
----------
|
58 |
+
%(input)s
|
59 |
+
order : int, optional
|
60 |
+
The order of the spline, default is 3.
|
61 |
+
axis : int, optional
|
62 |
+
The axis along which the spline filter is applied. Default is the last
|
63 |
+
axis.
|
64 |
+
output : ndarray or dtype, optional
|
65 |
+
The array in which to place the output, or the dtype of the returned
|
66 |
+
array. Default is ``numpy.float64``.
|
67 |
+
%(mode_interp_mirror)s
|
68 |
+
|
69 |
+
Returns
|
70 |
+
-------
|
71 |
+
spline_filter1d : ndarray
|
72 |
+
The filtered input.
|
73 |
+
|
74 |
+
See Also
|
75 |
+
--------
|
76 |
+
spline_filter : Multidimensional spline filter.
|
77 |
+
|
78 |
+
Notes
|
79 |
+
-----
|
80 |
+
All of the interpolation functions in `ndimage` do spline interpolation of
|
81 |
+
the input image. If using B-splines of `order > 1`, the input image
|
82 |
+
values have to be converted to B-spline coefficients first, which is
|
83 |
+
done by applying this 1-D filter sequentially along all
|
84 |
+
axes of the input. All functions that require B-spline coefficients
|
85 |
+
will automatically filter their inputs, a behavior controllable with
|
86 |
+
the `prefilter` keyword argument. For functions that accept a `mode`
|
87 |
+
parameter, the result will only be correct if it matches the `mode`
|
88 |
+
used when filtering.
|
89 |
+
|
90 |
+
For complex-valued `input`, this function processes the real and imaginary
|
91 |
+
components independently.
|
92 |
+
|
93 |
+
.. versionadded:: 1.6.0
|
94 |
+
Complex-valued support added.
|
95 |
+
|
96 |
+
Examples
|
97 |
+
--------
|
98 |
+
We can filter an image using 1-D spline along the given axis:
|
99 |
+
|
100 |
+
>>> from scipy.ndimage import spline_filter1d
|
101 |
+
>>> import numpy as np
|
102 |
+
>>> import matplotlib.pyplot as plt
|
103 |
+
>>> orig_img = np.eye(20) # create an image
|
104 |
+
>>> orig_img[10, :] = 1.0
|
105 |
+
>>> sp_filter_axis_0 = spline_filter1d(orig_img, axis=0)
|
106 |
+
>>> sp_filter_axis_1 = spline_filter1d(orig_img, axis=1)
|
107 |
+
>>> f, ax = plt.subplots(1, 3, sharex=True)
|
108 |
+
>>> for ind, data in enumerate([[orig_img, "original image"],
|
109 |
+
... [sp_filter_axis_0, "spline filter (axis=0)"],
|
110 |
+
... [sp_filter_axis_1, "spline filter (axis=1)"]]):
|
111 |
+
... ax[ind].imshow(data[0], cmap='gray_r')
|
112 |
+
... ax[ind].set_title(data[1])
|
113 |
+
>>> plt.tight_layout()
|
114 |
+
>>> plt.show()
|
115 |
+
|
116 |
+
"""
|
117 |
+
if order < 0 or order > 5:
|
118 |
+
raise RuntimeError('spline order not supported')
|
119 |
+
input = numpy.asarray(input)
|
120 |
+
complex_output = numpy.iscomplexobj(input)
|
121 |
+
output = _ni_support._get_output(output, input,
|
122 |
+
complex_output=complex_output)
|
123 |
+
if complex_output:
|
124 |
+
spline_filter1d(input.real, order, axis, output.real, mode)
|
125 |
+
spline_filter1d(input.imag, order, axis, output.imag, mode)
|
126 |
+
return output
|
127 |
+
if order in [0, 1]:
|
128 |
+
output[...] = numpy.array(input)
|
129 |
+
else:
|
130 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
131 |
+
axis = normalize_axis_index(axis, input.ndim)
|
132 |
+
_nd_image.spline_filter1d(input, order, axis, output, mode)
|
133 |
+
return output
|
134 |
+
|
135 |
+
@docfiller
|
136 |
+
def spline_filter(input, order=3, output=numpy.float64, mode='mirror'):
|
137 |
+
"""
|
138 |
+
Multidimensional spline filter.
|
139 |
+
|
140 |
+
Parameters
|
141 |
+
----------
|
142 |
+
%(input)s
|
143 |
+
order : int, optional
|
144 |
+
The order of the spline, default is 3.
|
145 |
+
output : ndarray or dtype, optional
|
146 |
+
The array in which to place the output, or the dtype of the returned
|
147 |
+
array. Default is ``numpy.float64``.
|
148 |
+
%(mode_interp_mirror)s
|
149 |
+
|
150 |
+
Returns
|
151 |
+
-------
|
152 |
+
spline_filter : ndarray
|
153 |
+
Filtered array. Has the same shape as `input`.
|
154 |
+
|
155 |
+
See Also
|
156 |
+
--------
|
157 |
+
spline_filter1d : Calculate a 1-D spline filter along the given axis.
|
158 |
+
|
159 |
+
Notes
|
160 |
+
-----
|
161 |
+
The multidimensional filter is implemented as a sequence of
|
162 |
+
1-D spline filters. The intermediate arrays are stored
|
163 |
+
in the same data type as the output. Therefore, for output types
|
164 |
+
with a limited precision, the results may be imprecise because
|
165 |
+
intermediate results may be stored with insufficient precision.
|
166 |
+
|
167 |
+
For complex-valued `input`, this function processes the real and imaginary
|
168 |
+
components independently.
|
169 |
+
|
170 |
+
.. versionadded:: 1.6.0
|
171 |
+
Complex-valued support added.
|
172 |
+
|
173 |
+
Examples
|
174 |
+
--------
|
175 |
+
We can filter an image using multidimentional splines:
|
176 |
+
|
177 |
+
>>> from scipy.ndimage import spline_filter
|
178 |
+
>>> import numpy as np
|
179 |
+
>>> import matplotlib.pyplot as plt
|
180 |
+
>>> orig_img = np.eye(20) # create an image
|
181 |
+
>>> orig_img[10, :] = 1.0
|
182 |
+
>>> sp_filter = spline_filter(orig_img, order=3)
|
183 |
+
>>> f, ax = plt.subplots(1, 2, sharex=True)
|
184 |
+
>>> for ind, data in enumerate([[orig_img, "original image"],
|
185 |
+
... [sp_filter, "spline filter"]]):
|
186 |
+
... ax[ind].imshow(data[0], cmap='gray_r')
|
187 |
+
... ax[ind].set_title(data[1])
|
188 |
+
>>> plt.tight_layout()
|
189 |
+
>>> plt.show()
|
190 |
+
|
191 |
+
"""
|
192 |
+
if order < 2 or order > 5:
|
193 |
+
raise RuntimeError('spline order not supported')
|
194 |
+
input = numpy.asarray(input)
|
195 |
+
complex_output = numpy.iscomplexobj(input)
|
196 |
+
output = _ni_support._get_output(output, input,
|
197 |
+
complex_output=complex_output)
|
198 |
+
if complex_output:
|
199 |
+
spline_filter(input.real, order, output.real, mode)
|
200 |
+
spline_filter(input.imag, order, output.imag, mode)
|
201 |
+
return output
|
202 |
+
if order not in [0, 1] and input.ndim > 0:
|
203 |
+
for axis in range(input.ndim):
|
204 |
+
spline_filter1d(input, order, axis, output=output, mode=mode)
|
205 |
+
input = output
|
206 |
+
else:
|
207 |
+
output[...] = input[...]
|
208 |
+
return output
|
209 |
+
|
210 |
+
|
211 |
+
def _prepad_for_spline_filter(input, mode, cval):
|
212 |
+
if mode in ['nearest', 'grid-constant']:
|
213 |
+
npad = 12
|
214 |
+
if mode == 'grid-constant':
|
215 |
+
padded = numpy.pad(input, npad, mode='constant',
|
216 |
+
constant_values=cval)
|
217 |
+
elif mode == 'nearest':
|
218 |
+
padded = numpy.pad(input, npad, mode='edge')
|
219 |
+
else:
|
220 |
+
# other modes have exact boundary conditions implemented so
|
221 |
+
# no prepadding is needed
|
222 |
+
npad = 0
|
223 |
+
padded = input
|
224 |
+
return padded, npad
|
225 |
+
|
226 |
+
|
227 |
+
@docfiller
|
228 |
+
def geometric_transform(input, mapping, output_shape=None,
|
229 |
+
output=None, order=3,
|
230 |
+
mode='constant', cval=0.0, prefilter=True,
|
231 |
+
extra_arguments=(), extra_keywords={}):
|
232 |
+
"""
|
233 |
+
Apply an arbitrary geometric transform.
|
234 |
+
|
235 |
+
The given mapping function is used to find, for each point in the
|
236 |
+
output, the corresponding coordinates in the input. The value of the
|
237 |
+
input at those coordinates is determined by spline interpolation of
|
238 |
+
the requested order.
|
239 |
+
|
240 |
+
Parameters
|
241 |
+
----------
|
242 |
+
%(input)s
|
243 |
+
mapping : {callable, scipy.LowLevelCallable}
|
244 |
+
A callable object that accepts a tuple of length equal to the output
|
245 |
+
array rank, and returns the corresponding input coordinates as a tuple
|
246 |
+
of length equal to the input array rank.
|
247 |
+
output_shape : tuple of ints, optional
|
248 |
+
Shape tuple.
|
249 |
+
%(output)s
|
250 |
+
order : int, optional
|
251 |
+
The order of the spline interpolation, default is 3.
|
252 |
+
The order has to be in the range 0-5.
|
253 |
+
%(mode_interp_constant)s
|
254 |
+
%(cval)s
|
255 |
+
%(prefilter)s
|
256 |
+
extra_arguments : tuple, optional
|
257 |
+
Extra arguments passed to `mapping`.
|
258 |
+
extra_keywords : dict, optional
|
259 |
+
Extra keywords passed to `mapping`.
|
260 |
+
|
261 |
+
Returns
|
262 |
+
-------
|
263 |
+
output : ndarray
|
264 |
+
The filtered input.
|
265 |
+
|
266 |
+
See Also
|
267 |
+
--------
|
268 |
+
map_coordinates, affine_transform, spline_filter1d
|
269 |
+
|
270 |
+
|
271 |
+
Notes
|
272 |
+
-----
|
273 |
+
This function also accepts low-level callback functions with one
|
274 |
+
the following signatures and wrapped in `scipy.LowLevelCallable`:
|
275 |
+
|
276 |
+
.. code:: c
|
277 |
+
|
278 |
+
int mapping(npy_intp *output_coordinates, double *input_coordinates,
|
279 |
+
int output_rank, int input_rank, void *user_data)
|
280 |
+
int mapping(intptr_t *output_coordinates, double *input_coordinates,
|
281 |
+
int output_rank, int input_rank, void *user_data)
|
282 |
+
|
283 |
+
The calling function iterates over the elements of the output array,
|
284 |
+
calling the callback function at each element. The coordinates of the
|
285 |
+
current output element are passed through ``output_coordinates``. The
|
286 |
+
callback function must return the coordinates at which the input must
|
287 |
+
be interpolated in ``input_coordinates``. The rank of the input and
|
288 |
+
output arrays are given by ``input_rank`` and ``output_rank``
|
289 |
+
respectively. ``user_data`` is the data pointer provided
|
290 |
+
to `scipy.LowLevelCallable` as-is.
|
291 |
+
|
292 |
+
The callback function must return an integer error status that is zero
|
293 |
+
if something went wrong and one otherwise. If an error occurs, you should
|
294 |
+
normally set the Python error status with an informative message
|
295 |
+
before returning, otherwise a default error message is set by the
|
296 |
+
calling function.
|
297 |
+
|
298 |
+
In addition, some other low-level function pointer specifications
|
299 |
+
are accepted, but these are for backward compatibility only and should
|
300 |
+
not be used in new code.
|
301 |
+
|
302 |
+
For complex-valued `input`, this function transforms the real and imaginary
|
303 |
+
components independently.
|
304 |
+
|
305 |
+
.. versionadded:: 1.6.0
|
306 |
+
Complex-valued support added.
|
307 |
+
|
308 |
+
Examples
|
309 |
+
--------
|
310 |
+
>>> import numpy as np
|
311 |
+
>>> from scipy.ndimage import geometric_transform
|
312 |
+
>>> a = np.arange(12.).reshape((4, 3))
|
313 |
+
>>> def shift_func(output_coords):
|
314 |
+
... return (output_coords[0] - 0.5, output_coords[1] - 0.5)
|
315 |
+
...
|
316 |
+
>>> geometric_transform(a, shift_func)
|
317 |
+
array([[ 0. , 0. , 0. ],
|
318 |
+
[ 0. , 1.362, 2.738],
|
319 |
+
[ 0. , 4.812, 6.187],
|
320 |
+
[ 0. , 8.263, 9.637]])
|
321 |
+
|
322 |
+
>>> b = [1, 2, 3, 4, 5]
|
323 |
+
>>> def shift_func(output_coords):
|
324 |
+
... return (output_coords[0] - 3,)
|
325 |
+
...
|
326 |
+
>>> geometric_transform(b, shift_func, mode='constant')
|
327 |
+
array([0, 0, 0, 1, 2])
|
328 |
+
>>> geometric_transform(b, shift_func, mode='nearest')
|
329 |
+
array([1, 1, 1, 1, 2])
|
330 |
+
>>> geometric_transform(b, shift_func, mode='reflect')
|
331 |
+
array([3, 2, 1, 1, 2])
|
332 |
+
>>> geometric_transform(b, shift_func, mode='wrap')
|
333 |
+
array([2, 3, 4, 1, 2])
|
334 |
+
|
335 |
+
"""
|
336 |
+
if order < 0 or order > 5:
|
337 |
+
raise RuntimeError('spline order not supported')
|
338 |
+
input = numpy.asarray(input)
|
339 |
+
if output_shape is None:
|
340 |
+
output_shape = input.shape
|
341 |
+
if input.ndim < 1 or len(output_shape) < 1:
|
342 |
+
raise RuntimeError('input and output rank must be > 0')
|
343 |
+
complex_output = numpy.iscomplexobj(input)
|
344 |
+
output = _ni_support._get_output(output, input, shape=output_shape,
|
345 |
+
complex_output=complex_output)
|
346 |
+
if complex_output:
|
347 |
+
kwargs = dict(order=order, mode=mode, prefilter=prefilter,
|
348 |
+
output_shape=output_shape,
|
349 |
+
extra_arguments=extra_arguments,
|
350 |
+
extra_keywords=extra_keywords)
|
351 |
+
geometric_transform(input.real, mapping, output=output.real,
|
352 |
+
cval=numpy.real(cval), **kwargs)
|
353 |
+
geometric_transform(input.imag, mapping, output=output.imag,
|
354 |
+
cval=numpy.imag(cval), **kwargs)
|
355 |
+
return output
|
356 |
+
|
357 |
+
if prefilter and order > 1:
|
358 |
+
padded, npad = _prepad_for_spline_filter(input, mode, cval)
|
359 |
+
filtered = spline_filter(padded, order, output=numpy.float64,
|
360 |
+
mode=mode)
|
361 |
+
else:
|
362 |
+
npad = 0
|
363 |
+
filtered = input
|
364 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
365 |
+
_nd_image.geometric_transform(filtered, mapping, None, None, None, output,
|
366 |
+
order, mode, cval, npad, extra_arguments,
|
367 |
+
extra_keywords)
|
368 |
+
return output
|
369 |
+
|
370 |
+
|
371 |
+
@docfiller
|
372 |
+
def map_coordinates(input, coordinates, output=None, order=3,
|
373 |
+
mode='constant', cval=0.0, prefilter=True):
|
374 |
+
"""
|
375 |
+
Map the input array to new coordinates by interpolation.
|
376 |
+
|
377 |
+
The array of coordinates is used to find, for each point in the output,
|
378 |
+
the corresponding coordinates in the input. The value of the input at
|
379 |
+
those coordinates is determined by spline interpolation of the
|
380 |
+
requested order.
|
381 |
+
|
382 |
+
The shape of the output is derived from that of the coordinate
|
383 |
+
array by dropping the first axis. The values of the array along
|
384 |
+
the first axis are the coordinates in the input array at which the
|
385 |
+
output value is found.
|
386 |
+
|
387 |
+
Parameters
|
388 |
+
----------
|
389 |
+
%(input)s
|
390 |
+
coordinates : array_like
|
391 |
+
The coordinates at which `input` is evaluated.
|
392 |
+
%(output)s
|
393 |
+
order : int, optional
|
394 |
+
The order of the spline interpolation, default is 3.
|
395 |
+
The order has to be in the range 0-5.
|
396 |
+
%(mode_interp_constant)s
|
397 |
+
%(cval)s
|
398 |
+
%(prefilter)s
|
399 |
+
|
400 |
+
Returns
|
401 |
+
-------
|
402 |
+
map_coordinates : ndarray
|
403 |
+
The result of transforming the input. The shape of the output is
|
404 |
+
derived from that of `coordinates` by dropping the first axis.
|
405 |
+
|
406 |
+
See Also
|
407 |
+
--------
|
408 |
+
spline_filter, geometric_transform, scipy.interpolate
|
409 |
+
|
410 |
+
Notes
|
411 |
+
-----
|
412 |
+
For complex-valued `input`, this function maps the real and imaginary
|
413 |
+
components independently.
|
414 |
+
|
415 |
+
.. versionadded:: 1.6.0
|
416 |
+
Complex-valued support added.
|
417 |
+
|
418 |
+
Examples
|
419 |
+
--------
|
420 |
+
>>> from scipy import ndimage
|
421 |
+
>>> import numpy as np
|
422 |
+
>>> a = np.arange(12.).reshape((4, 3))
|
423 |
+
>>> a
|
424 |
+
array([[ 0., 1., 2.],
|
425 |
+
[ 3., 4., 5.],
|
426 |
+
[ 6., 7., 8.],
|
427 |
+
[ 9., 10., 11.]])
|
428 |
+
>>> ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
|
429 |
+
array([ 2., 7.])
|
430 |
+
|
431 |
+
Above, the interpolated value of a[0.5, 0.5] gives output[0], while
|
432 |
+
a[2, 1] is output[1].
|
433 |
+
|
434 |
+
>>> inds = np.array([[0.5, 2], [0.5, 4]])
|
435 |
+
>>> ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
|
436 |
+
array([ 2. , -33.3])
|
437 |
+
>>> ndimage.map_coordinates(a, inds, order=1, mode='nearest')
|
438 |
+
array([ 2., 8.])
|
439 |
+
>>> ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
|
440 |
+
array([ True, False], dtype=bool)
|
441 |
+
|
442 |
+
"""
|
443 |
+
if order < 0 or order > 5:
|
444 |
+
raise RuntimeError('spline order not supported')
|
445 |
+
input = numpy.asarray(input)
|
446 |
+
coordinates = numpy.asarray(coordinates)
|
447 |
+
if numpy.iscomplexobj(coordinates):
|
448 |
+
raise TypeError('Complex type not supported')
|
449 |
+
output_shape = coordinates.shape[1:]
|
450 |
+
if input.ndim < 1 or len(output_shape) < 1:
|
451 |
+
raise RuntimeError('input and output rank must be > 0')
|
452 |
+
if coordinates.shape[0] != input.ndim:
|
453 |
+
raise RuntimeError('invalid shape for coordinate array')
|
454 |
+
complex_output = numpy.iscomplexobj(input)
|
455 |
+
output = _ni_support._get_output(output, input, shape=output_shape,
|
456 |
+
complex_output=complex_output)
|
457 |
+
if complex_output:
|
458 |
+
kwargs = dict(order=order, mode=mode, prefilter=prefilter)
|
459 |
+
map_coordinates(input.real, coordinates, output=output.real,
|
460 |
+
cval=numpy.real(cval), **kwargs)
|
461 |
+
map_coordinates(input.imag, coordinates, output=output.imag,
|
462 |
+
cval=numpy.imag(cval), **kwargs)
|
463 |
+
return output
|
464 |
+
if prefilter and order > 1:
|
465 |
+
padded, npad = _prepad_for_spline_filter(input, mode, cval)
|
466 |
+
filtered = spline_filter(padded, order, output=numpy.float64,
|
467 |
+
mode=mode)
|
468 |
+
else:
|
469 |
+
npad = 0
|
470 |
+
filtered = input
|
471 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
472 |
+
_nd_image.geometric_transform(filtered, None, coordinates, None, None,
|
473 |
+
output, order, mode, cval, npad, None, None)
|
474 |
+
return output
|
475 |
+
|
476 |
+
|
477 |
+
@docfiller
|
478 |
+
def affine_transform(input, matrix, offset=0.0, output_shape=None,
|
479 |
+
output=None, order=3,
|
480 |
+
mode='constant', cval=0.0, prefilter=True):
|
481 |
+
"""
|
482 |
+
Apply an affine transformation.
|
483 |
+
|
484 |
+
Given an output image pixel index vector ``o``, the pixel value
|
485 |
+
is determined from the input image at position
|
486 |
+
``np.dot(matrix, o) + offset``.
|
487 |
+
|
488 |
+
This does 'pull' (or 'backward') resampling, transforming the output space
|
489 |
+
to the input to locate data. Affine transformations are often described in
|
490 |
+
the 'push' (or 'forward') direction, transforming input to output. If you
|
491 |
+
have a matrix for the 'push' transformation, use its inverse
|
492 |
+
(:func:`numpy.linalg.inv`) in this function.
|
493 |
+
|
494 |
+
Parameters
|
495 |
+
----------
|
496 |
+
%(input)s
|
497 |
+
matrix : ndarray
|
498 |
+
The inverse coordinate transformation matrix, mapping output
|
499 |
+
coordinates to input coordinates. If ``ndim`` is the number of
|
500 |
+
dimensions of ``input``, the given matrix must have one of the
|
501 |
+
following shapes:
|
502 |
+
|
503 |
+
- ``(ndim, ndim)``: the linear transformation matrix for each
|
504 |
+
output coordinate.
|
505 |
+
- ``(ndim,)``: assume that the 2-D transformation matrix is
|
506 |
+
diagonal, with the diagonal specified by the given value. A more
|
507 |
+
efficient algorithm is then used that exploits the separability
|
508 |
+
of the problem.
|
509 |
+
- ``(ndim + 1, ndim + 1)``: assume that the transformation is
|
510 |
+
specified using homogeneous coordinates [1]_. In this case, any
|
511 |
+
value passed to ``offset`` is ignored.
|
512 |
+
- ``(ndim, ndim + 1)``: as above, but the bottom row of a
|
513 |
+
homogeneous transformation matrix is always ``[0, 0, ..., 1]``,
|
514 |
+
and may be omitted.
|
515 |
+
|
516 |
+
offset : float or sequence, optional
|
517 |
+
The offset into the array where the transform is applied. If a float,
|
518 |
+
`offset` is the same for each axis. If a sequence, `offset` should
|
519 |
+
contain one value for each axis.
|
520 |
+
output_shape : tuple of ints, optional
|
521 |
+
Shape tuple.
|
522 |
+
%(output)s
|
523 |
+
order : int, optional
|
524 |
+
The order of the spline interpolation, default is 3.
|
525 |
+
The order has to be in the range 0-5.
|
526 |
+
%(mode_interp_constant)s
|
527 |
+
%(cval)s
|
528 |
+
%(prefilter)s
|
529 |
+
|
530 |
+
Returns
|
531 |
+
-------
|
532 |
+
affine_transform : ndarray
|
533 |
+
The transformed input.
|
534 |
+
|
535 |
+
Notes
|
536 |
+
-----
|
537 |
+
The given matrix and offset are used to find for each point in the
|
538 |
+
output the corresponding coordinates in the input by an affine
|
539 |
+
transformation. The value of the input at those coordinates is
|
540 |
+
determined by spline interpolation of the requested order. Points
|
541 |
+
outside the boundaries of the input are filled according to the given
|
542 |
+
mode.
|
543 |
+
|
544 |
+
.. versionchanged:: 0.18.0
|
545 |
+
Previously, the exact interpretation of the affine transformation
|
546 |
+
depended on whether the matrix was supplied as a 1-D or a
|
547 |
+
2-D array. If a 1-D array was supplied
|
548 |
+
to the matrix parameter, the output pixel value at index ``o``
|
549 |
+
was determined from the input image at position
|
550 |
+
``matrix * (o + offset)``.
|
551 |
+
|
552 |
+
For complex-valued `input`, this function transforms the real and imaginary
|
553 |
+
components independently.
|
554 |
+
|
555 |
+
.. versionadded:: 1.6.0
|
556 |
+
Complex-valued support added.
|
557 |
+
|
558 |
+
References
|
559 |
+
----------
|
560 |
+
.. [1] https://en.wikipedia.org/wiki/Homogeneous_coordinates
|
561 |
+
"""
|
562 |
+
if order < 0 or order > 5:
|
563 |
+
raise RuntimeError('spline order not supported')
|
564 |
+
input = numpy.asarray(input)
|
565 |
+
if output_shape is None:
|
566 |
+
if isinstance(output, numpy.ndarray):
|
567 |
+
output_shape = output.shape
|
568 |
+
else:
|
569 |
+
output_shape = input.shape
|
570 |
+
if input.ndim < 1 or len(output_shape) < 1:
|
571 |
+
raise RuntimeError('input and output rank must be > 0')
|
572 |
+
complex_output = numpy.iscomplexobj(input)
|
573 |
+
output = _ni_support._get_output(output, input, shape=output_shape,
|
574 |
+
complex_output=complex_output)
|
575 |
+
if complex_output:
|
576 |
+
kwargs = dict(offset=offset, output_shape=output_shape, order=order,
|
577 |
+
mode=mode, prefilter=prefilter)
|
578 |
+
affine_transform(input.real, matrix, output=output.real,
|
579 |
+
cval=numpy.real(cval), **kwargs)
|
580 |
+
affine_transform(input.imag, matrix, output=output.imag,
|
581 |
+
cval=numpy.imag(cval), **kwargs)
|
582 |
+
return output
|
583 |
+
if prefilter and order > 1:
|
584 |
+
padded, npad = _prepad_for_spline_filter(input, mode, cval)
|
585 |
+
filtered = spline_filter(padded, order, output=numpy.float64,
|
586 |
+
mode=mode)
|
587 |
+
else:
|
588 |
+
npad = 0
|
589 |
+
filtered = input
|
590 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
591 |
+
matrix = numpy.asarray(matrix, dtype=numpy.float64)
|
592 |
+
if matrix.ndim not in [1, 2] or matrix.shape[0] < 1:
|
593 |
+
raise RuntimeError('no proper affine matrix provided')
|
594 |
+
if (matrix.ndim == 2 and matrix.shape[1] == input.ndim + 1 and
|
595 |
+
(matrix.shape[0] in [input.ndim, input.ndim + 1])):
|
596 |
+
if matrix.shape[0] == input.ndim + 1:
|
597 |
+
exptd = [0] * input.ndim + [1]
|
598 |
+
if not numpy.all(matrix[input.ndim] == exptd):
|
599 |
+
msg = ('Expected homogeneous transformation matrix with '
|
600 |
+
'shape {} for image shape {}, but bottom row was '
|
601 |
+
'not equal to {}'.format(matrix.shape, input.shape, exptd))
|
602 |
+
raise ValueError(msg)
|
603 |
+
# assume input is homogeneous coordinate transformation matrix
|
604 |
+
offset = matrix[:input.ndim, input.ndim]
|
605 |
+
matrix = matrix[:input.ndim, :input.ndim]
|
606 |
+
if matrix.shape[0] != input.ndim:
|
607 |
+
raise RuntimeError('affine matrix has wrong number of rows')
|
608 |
+
if matrix.ndim == 2 and matrix.shape[1] != output.ndim:
|
609 |
+
raise RuntimeError('affine matrix has wrong number of columns')
|
610 |
+
if not matrix.flags.contiguous:
|
611 |
+
matrix = matrix.copy()
|
612 |
+
offset = _ni_support._normalize_sequence(offset, input.ndim)
|
613 |
+
offset = numpy.asarray(offset, dtype=numpy.float64)
|
614 |
+
if offset.ndim != 1 or offset.shape[0] < 1:
|
615 |
+
raise RuntimeError('no proper offset provided')
|
616 |
+
if not offset.flags.contiguous:
|
617 |
+
offset = offset.copy()
|
618 |
+
if matrix.ndim == 1:
|
619 |
+
warnings.warn(
|
620 |
+
"The behavior of affine_transform with a 1-D "
|
621 |
+
"array supplied for the matrix parameter has changed in "
|
622 |
+
"SciPy 0.18.0.",
|
623 |
+
stacklevel=2
|
624 |
+
)
|
625 |
+
_nd_image.zoom_shift(filtered, matrix, offset/matrix, output, order,
|
626 |
+
mode, cval, npad, False)
|
627 |
+
else:
|
628 |
+
_nd_image.geometric_transform(filtered, None, None, matrix, offset,
|
629 |
+
output, order, mode, cval, npad, None,
|
630 |
+
None)
|
631 |
+
return output
|
632 |
+
|
633 |
+
|
634 |
+
@docfiller
|
635 |
+
def shift(input, shift, output=None, order=3, mode='constant', cval=0.0,
|
636 |
+
prefilter=True):
|
637 |
+
"""
|
638 |
+
Shift an array.
|
639 |
+
|
640 |
+
The array is shifted using spline interpolation of the requested order.
|
641 |
+
Points outside the boundaries of the input are filled according to the
|
642 |
+
given mode.
|
643 |
+
|
644 |
+
Parameters
|
645 |
+
----------
|
646 |
+
%(input)s
|
647 |
+
shift : float or sequence
|
648 |
+
The shift along the axes. If a float, `shift` is the same for each
|
649 |
+
axis. If a sequence, `shift` should contain one value for each axis.
|
650 |
+
%(output)s
|
651 |
+
order : int, optional
|
652 |
+
The order of the spline interpolation, default is 3.
|
653 |
+
The order has to be in the range 0-5.
|
654 |
+
%(mode_interp_constant)s
|
655 |
+
%(cval)s
|
656 |
+
%(prefilter)s
|
657 |
+
|
658 |
+
Returns
|
659 |
+
-------
|
660 |
+
shift : ndarray
|
661 |
+
The shifted input.
|
662 |
+
|
663 |
+
See Also
|
664 |
+
--------
|
665 |
+
affine_transform : Affine transformations
|
666 |
+
|
667 |
+
Notes
|
668 |
+
-----
|
669 |
+
For complex-valued `input`, this function shifts the real and imaginary
|
670 |
+
components independently.
|
671 |
+
|
672 |
+
.. versionadded:: 1.6.0
|
673 |
+
Complex-valued support added.
|
674 |
+
|
675 |
+
Examples
|
676 |
+
--------
|
677 |
+
Import the necessary modules and an exemplary image.
|
678 |
+
|
679 |
+
>>> from scipy.ndimage import shift
|
680 |
+
>>> import matplotlib.pyplot as plt
|
681 |
+
>>> from scipy import datasets
|
682 |
+
>>> image = datasets.ascent()
|
683 |
+
|
684 |
+
Shift the image vertically by 20 pixels.
|
685 |
+
|
686 |
+
>>> image_shifted_vertically = shift(image, (20, 0))
|
687 |
+
|
688 |
+
Shift the image vertically by -200 pixels and horizontally by 100 pixels.
|
689 |
+
|
690 |
+
>>> image_shifted_both_directions = shift(image, (-200, 100))
|
691 |
+
|
692 |
+
Plot the original and the shifted images.
|
693 |
+
|
694 |
+
>>> fig, axes = plt.subplots(3, 1, figsize=(4, 12))
|
695 |
+
>>> plt.gray() # show the filtered result in grayscale
|
696 |
+
>>> top, middle, bottom = axes
|
697 |
+
>>> for ax in axes:
|
698 |
+
... ax.set_axis_off() # remove coordinate system
|
699 |
+
>>> top.imshow(image)
|
700 |
+
>>> top.set_title("Original image")
|
701 |
+
>>> middle.imshow(image_shifted_vertically)
|
702 |
+
>>> middle.set_title("Vertically shifted image")
|
703 |
+
>>> bottom.imshow(image_shifted_both_directions)
|
704 |
+
>>> bottom.set_title("Image shifted in both directions")
|
705 |
+
>>> fig.tight_layout()
|
706 |
+
"""
|
707 |
+
if order < 0 or order > 5:
|
708 |
+
raise RuntimeError('spline order not supported')
|
709 |
+
input = numpy.asarray(input)
|
710 |
+
if input.ndim < 1:
|
711 |
+
raise RuntimeError('input and output rank must be > 0')
|
712 |
+
complex_output = numpy.iscomplexobj(input)
|
713 |
+
output = _ni_support._get_output(output, input,
|
714 |
+
complex_output=complex_output)
|
715 |
+
if complex_output:
|
716 |
+
# import under different name to avoid confusion with shift parameter
|
717 |
+
from scipy.ndimage._interpolation import shift as _shift
|
718 |
+
|
719 |
+
kwargs = dict(order=order, mode=mode, prefilter=prefilter)
|
720 |
+
_shift(input.real, shift, output=output.real, cval=numpy.real(cval),
|
721 |
+
**kwargs)
|
722 |
+
_shift(input.imag, shift, output=output.imag, cval=numpy.imag(cval),
|
723 |
+
**kwargs)
|
724 |
+
return output
|
725 |
+
if prefilter and order > 1:
|
726 |
+
padded, npad = _prepad_for_spline_filter(input, mode, cval)
|
727 |
+
filtered = spline_filter(padded, order, output=numpy.float64,
|
728 |
+
mode=mode)
|
729 |
+
else:
|
730 |
+
npad = 0
|
731 |
+
filtered = input
|
732 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
733 |
+
shift = _ni_support._normalize_sequence(shift, input.ndim)
|
734 |
+
shift = [-ii for ii in shift]
|
735 |
+
shift = numpy.asarray(shift, dtype=numpy.float64)
|
736 |
+
if not shift.flags.contiguous:
|
737 |
+
shift = shift.copy()
|
738 |
+
_nd_image.zoom_shift(filtered, None, shift, output, order, mode, cval,
|
739 |
+
npad, False)
|
740 |
+
return output
|
741 |
+
|
742 |
+
|
743 |
+
@docfiller
|
744 |
+
def zoom(input, zoom, output=None, order=3, mode='constant', cval=0.0,
|
745 |
+
prefilter=True, *, grid_mode=False):
|
746 |
+
"""
|
747 |
+
Zoom an array.
|
748 |
+
|
749 |
+
The array is zoomed using spline interpolation of the requested order.
|
750 |
+
|
751 |
+
Parameters
|
752 |
+
----------
|
753 |
+
%(input)s
|
754 |
+
zoom : float or sequence
|
755 |
+
The zoom factor along the axes. If a float, `zoom` is the same for each
|
756 |
+
axis. If a sequence, `zoom` should contain one value for each axis.
|
757 |
+
%(output)s
|
758 |
+
order : int, optional
|
759 |
+
The order of the spline interpolation, default is 3.
|
760 |
+
The order has to be in the range 0-5.
|
761 |
+
%(mode_interp_constant)s
|
762 |
+
%(cval)s
|
763 |
+
%(prefilter)s
|
764 |
+
grid_mode : bool, optional
|
765 |
+
If False, the distance from the pixel centers is zoomed. Otherwise, the
|
766 |
+
distance including the full pixel extent is used. For example, a 1d
|
767 |
+
signal of length 5 is considered to have length 4 when `grid_mode` is
|
768 |
+
False, but length 5 when `grid_mode` is True. See the following
|
769 |
+
visual illustration:
|
770 |
+
|
771 |
+
.. code-block:: text
|
772 |
+
|
773 |
+
| pixel 1 | pixel 2 | pixel 3 | pixel 4 | pixel 5 |
|
774 |
+
|<-------------------------------------->|
|
775 |
+
vs.
|
776 |
+
|<----------------------------------------------->|
|
777 |
+
|
778 |
+
The starting point of the arrow in the diagram above corresponds to
|
779 |
+
coordinate location 0 in each mode.
|
780 |
+
|
781 |
+
Returns
|
782 |
+
-------
|
783 |
+
zoom : ndarray
|
784 |
+
The zoomed input.
|
785 |
+
|
786 |
+
Notes
|
787 |
+
-----
|
788 |
+
For complex-valued `input`, this function zooms the real and imaginary
|
789 |
+
components independently.
|
790 |
+
|
791 |
+
.. versionadded:: 1.6.0
|
792 |
+
Complex-valued support added.
|
793 |
+
|
794 |
+
Examples
|
795 |
+
--------
|
796 |
+
>>> from scipy import ndimage, datasets
|
797 |
+
>>> import matplotlib.pyplot as plt
|
798 |
+
|
799 |
+
>>> fig = plt.figure()
|
800 |
+
>>> ax1 = fig.add_subplot(121) # left side
|
801 |
+
>>> ax2 = fig.add_subplot(122) # right side
|
802 |
+
>>> ascent = datasets.ascent()
|
803 |
+
>>> result = ndimage.zoom(ascent, 3.0)
|
804 |
+
>>> ax1.imshow(ascent, vmin=0, vmax=255)
|
805 |
+
>>> ax2.imshow(result, vmin=0, vmax=255)
|
806 |
+
>>> plt.show()
|
807 |
+
|
808 |
+
>>> print(ascent.shape)
|
809 |
+
(512, 512)
|
810 |
+
|
811 |
+
>>> print(result.shape)
|
812 |
+
(1536, 1536)
|
813 |
+
"""
|
814 |
+
if order < 0 or order > 5:
|
815 |
+
raise RuntimeError('spline order not supported')
|
816 |
+
input = numpy.asarray(input)
|
817 |
+
if input.ndim < 1:
|
818 |
+
raise RuntimeError('input and output rank must be > 0')
|
819 |
+
zoom = _ni_support._normalize_sequence(zoom, input.ndim)
|
820 |
+
output_shape = tuple(
|
821 |
+
[int(round(ii * jj)) for ii, jj in zip(input.shape, zoom)])
|
822 |
+
complex_output = numpy.iscomplexobj(input)
|
823 |
+
output = _ni_support._get_output(output, input, shape=output_shape,
|
824 |
+
complex_output=complex_output)
|
825 |
+
if complex_output:
|
826 |
+
# import under different name to avoid confusion with zoom parameter
|
827 |
+
from scipy.ndimage._interpolation import zoom as _zoom
|
828 |
+
|
829 |
+
kwargs = dict(order=order, mode=mode, prefilter=prefilter)
|
830 |
+
_zoom(input.real, zoom, output=output.real, cval=numpy.real(cval),
|
831 |
+
**kwargs)
|
832 |
+
_zoom(input.imag, zoom, output=output.imag, cval=numpy.imag(cval),
|
833 |
+
**kwargs)
|
834 |
+
return output
|
835 |
+
if prefilter and order > 1:
|
836 |
+
padded, npad = _prepad_for_spline_filter(input, mode, cval)
|
837 |
+
filtered = spline_filter(padded, order, output=numpy.float64,
|
838 |
+
mode=mode)
|
839 |
+
else:
|
840 |
+
npad = 0
|
841 |
+
filtered = input
|
842 |
+
if grid_mode:
|
843 |
+
# warn about modes that may have surprising behavior
|
844 |
+
suggest_mode = None
|
845 |
+
if mode == 'constant':
|
846 |
+
suggest_mode = 'grid-constant'
|
847 |
+
elif mode == 'wrap':
|
848 |
+
suggest_mode = 'grid-wrap'
|
849 |
+
if suggest_mode is not None:
|
850 |
+
warnings.warn(
|
851 |
+
("It is recommended to use mode = {} instead of {} when "
|
852 |
+
"grid_mode is True.").format(suggest_mode, mode),
|
853 |
+
stacklevel=2
|
854 |
+
)
|
855 |
+
mode = _ni_support._extend_mode_to_code(mode)
|
856 |
+
|
857 |
+
zoom_div = numpy.array(output_shape)
|
858 |
+
zoom_nominator = numpy.array(input.shape)
|
859 |
+
if not grid_mode:
|
860 |
+
zoom_div -= 1
|
861 |
+
zoom_nominator -= 1
|
862 |
+
|
863 |
+
# Zooming to infinite values is unpredictable, so just choose
|
864 |
+
# zoom factor 1 instead
|
865 |
+
zoom = numpy.divide(zoom_nominator, zoom_div,
|
866 |
+
out=numpy.ones_like(input.shape, dtype=numpy.float64),
|
867 |
+
where=zoom_div != 0)
|
868 |
+
zoom = numpy.ascontiguousarray(zoom)
|
869 |
+
_nd_image.zoom_shift(filtered, zoom, None, output, order, mode, cval, npad,
|
870 |
+
grid_mode)
|
871 |
+
return output
|
872 |
+
|
873 |
+
|
874 |
+
@docfiller
|
875 |
+
def rotate(input, angle, axes=(1, 0), reshape=True, output=None, order=3,
|
876 |
+
mode='constant', cval=0.0, prefilter=True):
|
877 |
+
"""
|
878 |
+
Rotate an array.
|
879 |
+
|
880 |
+
The array is rotated in the plane defined by the two axes given by the
|
881 |
+
`axes` parameter using spline interpolation of the requested order.
|
882 |
+
|
883 |
+
Parameters
|
884 |
+
----------
|
885 |
+
%(input)s
|
886 |
+
angle : float
|
887 |
+
The rotation angle in degrees.
|
888 |
+
axes : tuple of 2 ints, optional
|
889 |
+
The two axes that define the plane of rotation. Default is the first
|
890 |
+
two axes.
|
891 |
+
reshape : bool, optional
|
892 |
+
If `reshape` is true, the output shape is adapted so that the input
|
893 |
+
array is contained completely in the output. Default is True.
|
894 |
+
%(output)s
|
895 |
+
order : int, optional
|
896 |
+
The order of the spline interpolation, default is 3.
|
897 |
+
The order has to be in the range 0-5.
|
898 |
+
%(mode_interp_constant)s
|
899 |
+
%(cval)s
|
900 |
+
%(prefilter)s
|
901 |
+
|
902 |
+
Returns
|
903 |
+
-------
|
904 |
+
rotate : ndarray
|
905 |
+
The rotated input.
|
906 |
+
|
907 |
+
Notes
|
908 |
+
-----
|
909 |
+
For complex-valued `input`, this function rotates the real and imaginary
|
910 |
+
components independently.
|
911 |
+
|
912 |
+
.. versionadded:: 1.6.0
|
913 |
+
Complex-valued support added.
|
914 |
+
|
915 |
+
Examples
|
916 |
+
--------
|
917 |
+
>>> from scipy import ndimage, datasets
|
918 |
+
>>> import matplotlib.pyplot as plt
|
919 |
+
>>> fig = plt.figure(figsize=(10, 3))
|
920 |
+
>>> ax1, ax2, ax3 = fig.subplots(1, 3)
|
921 |
+
>>> img = datasets.ascent()
|
922 |
+
>>> img_45 = ndimage.rotate(img, 45, reshape=False)
|
923 |
+
>>> full_img_45 = ndimage.rotate(img, 45, reshape=True)
|
924 |
+
>>> ax1.imshow(img, cmap='gray')
|
925 |
+
>>> ax1.set_axis_off()
|
926 |
+
>>> ax2.imshow(img_45, cmap='gray')
|
927 |
+
>>> ax2.set_axis_off()
|
928 |
+
>>> ax3.imshow(full_img_45, cmap='gray')
|
929 |
+
>>> ax3.set_axis_off()
|
930 |
+
>>> fig.set_layout_engine('tight')
|
931 |
+
>>> plt.show()
|
932 |
+
>>> print(img.shape)
|
933 |
+
(512, 512)
|
934 |
+
>>> print(img_45.shape)
|
935 |
+
(512, 512)
|
936 |
+
>>> print(full_img_45.shape)
|
937 |
+
(724, 724)
|
938 |
+
|
939 |
+
"""
|
940 |
+
input_arr = numpy.asarray(input)
|
941 |
+
ndim = input_arr.ndim
|
942 |
+
|
943 |
+
if ndim < 2:
|
944 |
+
raise ValueError('input array should be at least 2D')
|
945 |
+
|
946 |
+
axes = list(axes)
|
947 |
+
|
948 |
+
if len(axes) != 2:
|
949 |
+
raise ValueError('axes should contain exactly two values')
|
950 |
+
|
951 |
+
if not all([float(ax).is_integer() for ax in axes]):
|
952 |
+
raise ValueError('axes should contain only integer values')
|
953 |
+
|
954 |
+
if axes[0] < 0:
|
955 |
+
axes[0] += ndim
|
956 |
+
if axes[1] < 0:
|
957 |
+
axes[1] += ndim
|
958 |
+
if axes[0] < 0 or axes[1] < 0 or axes[0] >= ndim or axes[1] >= ndim:
|
959 |
+
raise ValueError('invalid rotation plane specified')
|
960 |
+
|
961 |
+
axes.sort()
|
962 |
+
|
963 |
+
c, s = special.cosdg(angle), special.sindg(angle)
|
964 |
+
|
965 |
+
rot_matrix = numpy.array([[c, s],
|
966 |
+
[-s, c]])
|
967 |
+
|
968 |
+
img_shape = numpy.asarray(input_arr.shape)
|
969 |
+
in_plane_shape = img_shape[axes]
|
970 |
+
if reshape:
|
971 |
+
# Compute transformed input bounds
|
972 |
+
iy, ix = in_plane_shape
|
973 |
+
out_bounds = rot_matrix @ [[0, 0, iy, iy],
|
974 |
+
[0, ix, 0, ix]]
|
975 |
+
# Compute the shape of the transformed input plane
|
976 |
+
out_plane_shape = (numpy.ptp(out_bounds, axis=1) + 0.5).astype(int)
|
977 |
+
else:
|
978 |
+
out_plane_shape = img_shape[axes]
|
979 |
+
|
980 |
+
out_center = rot_matrix @ ((out_plane_shape - 1) / 2)
|
981 |
+
in_center = (in_plane_shape - 1) / 2
|
982 |
+
offset = in_center - out_center
|
983 |
+
|
984 |
+
output_shape = img_shape
|
985 |
+
output_shape[axes] = out_plane_shape
|
986 |
+
output_shape = tuple(output_shape)
|
987 |
+
|
988 |
+
complex_output = numpy.iscomplexobj(input_arr)
|
989 |
+
output = _ni_support._get_output(output, input_arr, shape=output_shape,
|
990 |
+
complex_output=complex_output)
|
991 |
+
|
992 |
+
if ndim <= 2:
|
993 |
+
affine_transform(input_arr, rot_matrix, offset, output_shape, output,
|
994 |
+
order, mode, cval, prefilter)
|
995 |
+
else:
|
996 |
+
# If ndim > 2, the rotation is applied over all the planes
|
997 |
+
# parallel to axes
|
998 |
+
planes_coord = itertools.product(
|
999 |
+
*[[slice(None)] if ax in axes else range(img_shape[ax])
|
1000 |
+
for ax in range(ndim)])
|
1001 |
+
|
1002 |
+
out_plane_shape = tuple(out_plane_shape)
|
1003 |
+
|
1004 |
+
for coordinates in planes_coord:
|
1005 |
+
ia = input_arr[coordinates]
|
1006 |
+
oa = output[coordinates]
|
1007 |
+
affine_transform(ia, rot_matrix, offset, out_plane_shape,
|
1008 |
+
oa, order, mode, cval, prefilter)
|
1009 |
+
|
1010 |
+
return output
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_measurements.py
ADDED
@@ -0,0 +1,1681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2003-2005 Peter J. Verveer
|
2 |
+
#
|
3 |
+
# Redistribution and use in source and binary forms, with or without
|
4 |
+
# modification, are permitted provided that the following conditions
|
5 |
+
# are met:
|
6 |
+
#
|
7 |
+
# 1. Redistributions of source code must retain the above copyright
|
8 |
+
# notice, this list of conditions and the following disclaimer.
|
9 |
+
#
|
10 |
+
# 2. Redistributions in binary form must reproduce the above
|
11 |
+
# copyright notice, this list of conditions and the following
|
12 |
+
# disclaimer in the documentation and/or other materials provided
|
13 |
+
# with the distribution.
|
14 |
+
#
|
15 |
+
# 3. The name of the author may not be used to endorse or promote
|
16 |
+
# products derived from this software without specific prior
|
17 |
+
# written permission.
|
18 |
+
#
|
19 |
+
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
20 |
+
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
21 |
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
23 |
+
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
25 |
+
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
27 |
+
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
28 |
+
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
29 |
+
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
|
31 |
+
import numpy
|
32 |
+
import numpy as np
|
33 |
+
from . import _ni_support
|
34 |
+
from . import _ni_label
|
35 |
+
from . import _nd_image
|
36 |
+
from . import _morphology
|
37 |
+
|
38 |
+
__all__ = ['label', 'find_objects', 'labeled_comprehension', 'sum', 'mean',
|
39 |
+
'variance', 'standard_deviation', 'minimum', 'maximum', 'median',
|
40 |
+
'minimum_position', 'maximum_position', 'extrema', 'center_of_mass',
|
41 |
+
'histogram', 'watershed_ift', 'sum_labels', 'value_indices']
|
42 |
+
|
43 |
+
|
44 |
+
def label(input, structure=None, output=None):
|
45 |
+
"""
|
46 |
+
Label features in an array.
|
47 |
+
|
48 |
+
Parameters
|
49 |
+
----------
|
50 |
+
input : array_like
|
51 |
+
An array-like object to be labeled. Any non-zero values in `input` are
|
52 |
+
counted as features and zero values are considered the background.
|
53 |
+
structure : array_like, optional
|
54 |
+
A structuring element that defines feature connections.
|
55 |
+
`structure` must be centrosymmetric
|
56 |
+
(see Notes).
|
57 |
+
If no structuring element is provided,
|
58 |
+
one is automatically generated with a squared connectivity equal to
|
59 |
+
one. That is, for a 2-D `input` array, the default structuring element
|
60 |
+
is::
|
61 |
+
|
62 |
+
[[0,1,0],
|
63 |
+
[1,1,1],
|
64 |
+
[0,1,0]]
|
65 |
+
|
66 |
+
output : (None, data-type, array_like), optional
|
67 |
+
If `output` is a data type, it specifies the type of the resulting
|
68 |
+
labeled feature array.
|
69 |
+
If `output` is an array-like object, then `output` will be updated
|
70 |
+
with the labeled features from this function. This function can
|
71 |
+
operate in-place, by passing output=input.
|
72 |
+
Note that the output must be able to store the largest label, or this
|
73 |
+
function will raise an Exception.
|
74 |
+
|
75 |
+
Returns
|
76 |
+
-------
|
77 |
+
label : ndarray or int
|
78 |
+
An integer ndarray where each unique feature in `input` has a unique
|
79 |
+
label in the returned array.
|
80 |
+
num_features : int
|
81 |
+
How many objects were found.
|
82 |
+
|
83 |
+
If `output` is None, this function returns a tuple of
|
84 |
+
(`labeled_array`, `num_features`).
|
85 |
+
|
86 |
+
If `output` is a ndarray, then it will be updated with values in
|
87 |
+
`labeled_array` and only `num_features` will be returned by this
|
88 |
+
function.
|
89 |
+
|
90 |
+
See Also
|
91 |
+
--------
|
92 |
+
find_objects : generate a list of slices for the labeled features (or
|
93 |
+
objects); useful for finding features' position or
|
94 |
+
dimensions
|
95 |
+
|
96 |
+
Notes
|
97 |
+
-----
|
98 |
+
A centrosymmetric matrix is a matrix that is symmetric about the center.
|
99 |
+
See [1]_ for more information.
|
100 |
+
|
101 |
+
The `structure` matrix must be centrosymmetric to ensure
|
102 |
+
two-way connections.
|
103 |
+
For instance, if the `structure` matrix is not centrosymmetric
|
104 |
+
and is defined as::
|
105 |
+
|
106 |
+
[[0,1,0],
|
107 |
+
[1,1,0],
|
108 |
+
[0,0,0]]
|
109 |
+
|
110 |
+
and the `input` is::
|
111 |
+
|
112 |
+
[[1,2],
|
113 |
+
[0,3]]
|
114 |
+
|
115 |
+
then the structure matrix would indicate the
|
116 |
+
entry 2 in the input is connected to 1,
|
117 |
+
but 1 is not connected to 2.
|
118 |
+
|
119 |
+
References
|
120 |
+
----------
|
121 |
+
.. [1] James R. Weaver, "Centrosymmetric (cross-symmetric)
|
122 |
+
matrices, their basic properties, eigenvalues, and
|
123 |
+
eigenvectors." The American Mathematical Monthly 92.10
|
124 |
+
(1985): 711-717.
|
125 |
+
|
126 |
+
Examples
|
127 |
+
--------
|
128 |
+
Create an image with some features, then label it using the default
|
129 |
+
(cross-shaped) structuring element:
|
130 |
+
|
131 |
+
>>> from scipy.ndimage import label, generate_binary_structure
|
132 |
+
>>> import numpy as np
|
133 |
+
>>> a = np.array([[0,0,1,1,0,0],
|
134 |
+
... [0,0,0,1,0,0],
|
135 |
+
... [1,1,0,0,1,0],
|
136 |
+
... [0,0,0,1,0,0]])
|
137 |
+
>>> labeled_array, num_features = label(a)
|
138 |
+
|
139 |
+
Each of the 4 features are labeled with a different integer:
|
140 |
+
|
141 |
+
>>> num_features
|
142 |
+
4
|
143 |
+
>>> labeled_array
|
144 |
+
array([[0, 0, 1, 1, 0, 0],
|
145 |
+
[0, 0, 0, 1, 0, 0],
|
146 |
+
[2, 2, 0, 0, 3, 0],
|
147 |
+
[0, 0, 0, 4, 0, 0]])
|
148 |
+
|
149 |
+
Generate a structuring element that will consider features connected even
|
150 |
+
if they touch diagonally:
|
151 |
+
|
152 |
+
>>> s = generate_binary_structure(2,2)
|
153 |
+
|
154 |
+
or,
|
155 |
+
|
156 |
+
>>> s = [[1,1,1],
|
157 |
+
... [1,1,1],
|
158 |
+
... [1,1,1]]
|
159 |
+
|
160 |
+
Label the image using the new structuring element:
|
161 |
+
|
162 |
+
>>> labeled_array, num_features = label(a, structure=s)
|
163 |
+
|
164 |
+
Show the 2 labeled features (note that features 1, 3, and 4 from above are
|
165 |
+
now considered a single feature):
|
166 |
+
|
167 |
+
>>> num_features
|
168 |
+
2
|
169 |
+
>>> labeled_array
|
170 |
+
array([[0, 0, 1, 1, 0, 0],
|
171 |
+
[0, 0, 0, 1, 0, 0],
|
172 |
+
[2, 2, 0, 0, 1, 0],
|
173 |
+
[0, 0, 0, 1, 0, 0]])
|
174 |
+
|
175 |
+
"""
|
176 |
+
input = numpy.asarray(input)
|
177 |
+
if numpy.iscomplexobj(input):
|
178 |
+
raise TypeError('Complex type not supported')
|
179 |
+
if structure is None:
|
180 |
+
structure = _morphology.generate_binary_structure(input.ndim, 1)
|
181 |
+
structure = numpy.asarray(structure, dtype=bool)
|
182 |
+
if structure.ndim != input.ndim:
|
183 |
+
raise RuntimeError('structure and input must have equal rank')
|
184 |
+
for ii in structure.shape:
|
185 |
+
if ii != 3:
|
186 |
+
raise ValueError('structure dimensions must be equal to 3')
|
187 |
+
|
188 |
+
# Use 32 bits if it's large enough for this image.
|
189 |
+
# _ni_label.label() needs two entries for background and
|
190 |
+
# foreground tracking
|
191 |
+
need_64bits = input.size >= (2**31 - 2)
|
192 |
+
|
193 |
+
if isinstance(output, numpy.ndarray):
|
194 |
+
if output.shape != input.shape:
|
195 |
+
raise ValueError("output shape not correct")
|
196 |
+
caller_provided_output = True
|
197 |
+
else:
|
198 |
+
caller_provided_output = False
|
199 |
+
if output is None:
|
200 |
+
output = np.empty(input.shape, np.intp if need_64bits else np.int32)
|
201 |
+
else:
|
202 |
+
output = np.empty(input.shape, output)
|
203 |
+
|
204 |
+
# handle scalars, 0-D arrays
|
205 |
+
if input.ndim == 0 or input.size == 0:
|
206 |
+
if input.ndim == 0:
|
207 |
+
# scalar
|
208 |
+
maxlabel = 1 if (input != 0) else 0
|
209 |
+
output[...] = maxlabel
|
210 |
+
else:
|
211 |
+
# 0-D
|
212 |
+
maxlabel = 0
|
213 |
+
if caller_provided_output:
|
214 |
+
return maxlabel
|
215 |
+
else:
|
216 |
+
return output, maxlabel
|
217 |
+
|
218 |
+
try:
|
219 |
+
max_label = _ni_label._label(input, structure, output)
|
220 |
+
except _ni_label.NeedMoreBits as e:
|
221 |
+
# Make another attempt with enough bits, then try to cast to the
|
222 |
+
# new type.
|
223 |
+
tmp_output = np.empty(input.shape, np.intp if need_64bits else np.int32)
|
224 |
+
max_label = _ni_label._label(input, structure, tmp_output)
|
225 |
+
output[...] = tmp_output[...]
|
226 |
+
if not np.all(output == tmp_output):
|
227 |
+
# refuse to return bad results
|
228 |
+
raise RuntimeError(
|
229 |
+
"insufficient bit-depth in requested output type"
|
230 |
+
) from e
|
231 |
+
|
232 |
+
if caller_provided_output:
|
233 |
+
# result was written in-place
|
234 |
+
return max_label
|
235 |
+
else:
|
236 |
+
return output, max_label
|
237 |
+
|
238 |
+
|
239 |
+
def find_objects(input, max_label=0):
|
240 |
+
"""
|
241 |
+
Find objects in a labeled array.
|
242 |
+
|
243 |
+
Parameters
|
244 |
+
----------
|
245 |
+
input : ndarray of ints
|
246 |
+
Array containing objects defined by different labels. Labels with
|
247 |
+
value 0 are ignored.
|
248 |
+
max_label : int, optional
|
249 |
+
Maximum label to be searched for in `input`. If max_label is not
|
250 |
+
given, the positions of all objects are returned.
|
251 |
+
|
252 |
+
Returns
|
253 |
+
-------
|
254 |
+
object_slices : list of tuples
|
255 |
+
A list of tuples, with each tuple containing N slices (with N the
|
256 |
+
dimension of the input array). Slices correspond to the minimal
|
257 |
+
parallelepiped that contains the object. If a number is missing,
|
258 |
+
None is returned instead of a slice. The label ``l`` corresponds to
|
259 |
+
the index ``l-1`` in the returned list.
|
260 |
+
|
261 |
+
See Also
|
262 |
+
--------
|
263 |
+
label, center_of_mass
|
264 |
+
|
265 |
+
Notes
|
266 |
+
-----
|
267 |
+
This function is very useful for isolating a volume of interest inside
|
268 |
+
a 3-D array, that cannot be "seen through".
|
269 |
+
|
270 |
+
Examples
|
271 |
+
--------
|
272 |
+
>>> from scipy import ndimage
|
273 |
+
>>> import numpy as np
|
274 |
+
>>> a = np.zeros((6,6), dtype=int)
|
275 |
+
>>> a[2:4, 2:4] = 1
|
276 |
+
>>> a[4, 4] = 1
|
277 |
+
>>> a[:2, :3] = 2
|
278 |
+
>>> a[0, 5] = 3
|
279 |
+
>>> a
|
280 |
+
array([[2, 2, 2, 0, 0, 3],
|
281 |
+
[2, 2, 2, 0, 0, 0],
|
282 |
+
[0, 0, 1, 1, 0, 0],
|
283 |
+
[0, 0, 1, 1, 0, 0],
|
284 |
+
[0, 0, 0, 0, 1, 0],
|
285 |
+
[0, 0, 0, 0, 0, 0]])
|
286 |
+
>>> ndimage.find_objects(a)
|
287 |
+
[(slice(2, 5, None), slice(2, 5, None)),
|
288 |
+
(slice(0, 2, None), slice(0, 3, None)),
|
289 |
+
(slice(0, 1, None), slice(5, 6, None))]
|
290 |
+
>>> ndimage.find_objects(a, max_label=2)
|
291 |
+
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))]
|
292 |
+
>>> ndimage.find_objects(a == 1, max_label=2)
|
293 |
+
[(slice(2, 5, None), slice(2, 5, None)), None]
|
294 |
+
|
295 |
+
>>> loc = ndimage.find_objects(a)[0]
|
296 |
+
>>> a[loc]
|
297 |
+
array([[1, 1, 0],
|
298 |
+
[1, 1, 0],
|
299 |
+
[0, 0, 1]])
|
300 |
+
|
301 |
+
"""
|
302 |
+
input = numpy.asarray(input)
|
303 |
+
if numpy.iscomplexobj(input):
|
304 |
+
raise TypeError('Complex type not supported')
|
305 |
+
|
306 |
+
if max_label < 1:
|
307 |
+
max_label = input.max()
|
308 |
+
|
309 |
+
return _nd_image.find_objects(input, max_label)
|
310 |
+
|
311 |
+
|
312 |
+
def value_indices(arr, *, ignore_value=None):
|
313 |
+
"""
|
314 |
+
Find indices of each distinct value in given array.
|
315 |
+
|
316 |
+
Parameters
|
317 |
+
----------
|
318 |
+
arr : ndarray of ints
|
319 |
+
Array containing integer values.
|
320 |
+
ignore_value : int, optional
|
321 |
+
This value will be ignored in searching the `arr` array. If not
|
322 |
+
given, all values found will be included in output. Default
|
323 |
+
is None.
|
324 |
+
|
325 |
+
Returns
|
326 |
+
-------
|
327 |
+
indices : dictionary
|
328 |
+
A Python dictionary of array indices for each distinct value. The
|
329 |
+
dictionary is keyed by the distinct values, the entries are array
|
330 |
+
index tuples covering all occurrences of the value within the
|
331 |
+
array.
|
332 |
+
|
333 |
+
This dictionary can occupy significant memory, usually several times
|
334 |
+
the size of the input array.
|
335 |
+
|
336 |
+
See Also
|
337 |
+
--------
|
338 |
+
label, maximum, median, minimum_position, extrema, sum, mean, variance,
|
339 |
+
standard_deviation, numpy.where, numpy.unique
|
340 |
+
|
341 |
+
Notes
|
342 |
+
-----
|
343 |
+
For a small array with few distinct values, one might use
|
344 |
+
`numpy.unique()` to find all possible values, and ``(arr == val)`` to
|
345 |
+
locate each value within that array. However, for large arrays,
|
346 |
+
with many distinct values, this can become extremely inefficient,
|
347 |
+
as locating each value would require a new search through the entire
|
348 |
+
array. Using this function, there is essentially one search, with
|
349 |
+
the indices saved for all distinct values.
|
350 |
+
|
351 |
+
This is useful when matching a categorical image (e.g. a segmentation
|
352 |
+
or classification) to an associated image of other data, allowing
|
353 |
+
any per-class statistic(s) to then be calculated. Provides a
|
354 |
+
more flexible alternative to functions like ``scipy.ndimage.mean()``
|
355 |
+
and ``scipy.ndimage.variance()``.
|
356 |
+
|
357 |
+
Some other closely related functionality, with different strengths and
|
358 |
+
weaknesses, can also be found in ``scipy.stats.binned_statistic()`` and
|
359 |
+
the `scikit-image <https://scikit-image.org/>`_ function
|
360 |
+
``skimage.measure.regionprops()``.
|
361 |
+
|
362 |
+
Note for IDL users: this provides functionality equivalent to IDL's
|
363 |
+
REVERSE_INDICES option (as per the IDL documentation for the
|
364 |
+
`HISTOGRAM <https://www.l3harrisgeospatial.com/docs/histogram.html>`_
|
365 |
+
function).
|
366 |
+
|
367 |
+
.. versionadded:: 1.10.0
|
368 |
+
|
369 |
+
Examples
|
370 |
+
--------
|
371 |
+
>>> import numpy as np
|
372 |
+
>>> from scipy import ndimage
|
373 |
+
>>> a = np.zeros((6, 6), dtype=int)
|
374 |
+
>>> a[2:4, 2:4] = 1
|
375 |
+
>>> a[4, 4] = 1
|
376 |
+
>>> a[:2, :3] = 2
|
377 |
+
>>> a[0, 5] = 3
|
378 |
+
>>> a
|
379 |
+
array([[2, 2, 2, 0, 0, 3],
|
380 |
+
[2, 2, 2, 0, 0, 0],
|
381 |
+
[0, 0, 1, 1, 0, 0],
|
382 |
+
[0, 0, 1, 1, 0, 0],
|
383 |
+
[0, 0, 0, 0, 1, 0],
|
384 |
+
[0, 0, 0, 0, 0, 0]])
|
385 |
+
>>> val_indices = ndimage.value_indices(a)
|
386 |
+
|
387 |
+
The dictionary `val_indices` will have an entry for each distinct
|
388 |
+
value in the input array.
|
389 |
+
|
390 |
+
>>> val_indices.keys()
|
391 |
+
dict_keys([0, 1, 2, 3])
|
392 |
+
|
393 |
+
The entry for each value is an index tuple, locating the elements
|
394 |
+
with that value.
|
395 |
+
|
396 |
+
>>> ndx1 = val_indices[1]
|
397 |
+
>>> ndx1
|
398 |
+
(array([2, 2, 3, 3, 4]), array([2, 3, 2, 3, 4]))
|
399 |
+
|
400 |
+
This can be used to index into the original array, or any other
|
401 |
+
array with the same shape.
|
402 |
+
|
403 |
+
>>> a[ndx1]
|
404 |
+
array([1, 1, 1, 1, 1])
|
405 |
+
|
406 |
+
If the zeros were to be ignored, then the resulting dictionary
|
407 |
+
would no longer have an entry for zero.
|
408 |
+
|
409 |
+
>>> val_indices = ndimage.value_indices(a, ignore_value=0)
|
410 |
+
>>> val_indices.keys()
|
411 |
+
dict_keys([1, 2, 3])
|
412 |
+
|
413 |
+
"""
|
414 |
+
# Cope with ignore_value being None, without too much extra complexity
|
415 |
+
# in the C code. If not None, the value is passed in as a numpy array
|
416 |
+
# with the same dtype as arr.
|
417 |
+
ignore_value_arr = numpy.zeros((1,), dtype=arr.dtype)
|
418 |
+
ignoreIsNone = (ignore_value is None)
|
419 |
+
if not ignoreIsNone:
|
420 |
+
ignore_value_arr[0] = ignore_value_arr.dtype.type(ignore_value)
|
421 |
+
|
422 |
+
val_indices = _nd_image.value_indices(arr, ignoreIsNone, ignore_value_arr)
|
423 |
+
return val_indices
|
424 |
+
|
425 |
+
|
426 |
+
def labeled_comprehension(input, labels, index, func, out_dtype, default,
|
427 |
+
pass_positions=False):
|
428 |
+
"""
|
429 |
+
Roughly equivalent to [func(input[labels == i]) for i in index].
|
430 |
+
|
431 |
+
Sequentially applies an arbitrary function (that works on array_like input)
|
432 |
+
to subsets of an N-D image array specified by `labels` and `index`.
|
433 |
+
The option exists to provide the function with positional parameters as the
|
434 |
+
second argument.
|
435 |
+
|
436 |
+
Parameters
|
437 |
+
----------
|
438 |
+
input : array_like
|
439 |
+
Data from which to select `labels` to process.
|
440 |
+
labels : array_like or None
|
441 |
+
Labels to objects in `input`.
|
442 |
+
If not None, array must be same shape as `input`.
|
443 |
+
If None, `func` is applied to raveled `input`.
|
444 |
+
index : int, sequence of ints or None
|
445 |
+
Subset of `labels` to which to apply `func`.
|
446 |
+
If a scalar, a single value is returned.
|
447 |
+
If None, `func` is applied to all non-zero values of `labels`.
|
448 |
+
func : callable
|
449 |
+
Python function to apply to `labels` from `input`.
|
450 |
+
out_dtype : dtype
|
451 |
+
Dtype to use for `result`.
|
452 |
+
default : int, float or None
|
453 |
+
Default return value when a element of `index` does not exist
|
454 |
+
in `labels`.
|
455 |
+
pass_positions : bool, optional
|
456 |
+
If True, pass linear indices to `func` as a second argument.
|
457 |
+
Default is False.
|
458 |
+
|
459 |
+
Returns
|
460 |
+
-------
|
461 |
+
result : ndarray
|
462 |
+
Result of applying `func` to each of `labels` to `input` in `index`.
|
463 |
+
|
464 |
+
Examples
|
465 |
+
--------
|
466 |
+
>>> import numpy as np
|
467 |
+
>>> a = np.array([[1, 2, 0, 0],
|
468 |
+
... [5, 3, 0, 4],
|
469 |
+
... [0, 0, 0, 7],
|
470 |
+
... [9, 3, 0, 0]])
|
471 |
+
>>> from scipy import ndimage
|
472 |
+
>>> lbl, nlbl = ndimage.label(a)
|
473 |
+
>>> lbls = np.arange(1, nlbl+1)
|
474 |
+
>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, 0)
|
475 |
+
array([ 2.75, 5.5 , 6. ])
|
476 |
+
|
477 |
+
Falling back to `default`:
|
478 |
+
|
479 |
+
>>> lbls = np.arange(1, nlbl+2)
|
480 |
+
>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, -1)
|
481 |
+
array([ 2.75, 5.5 , 6. , -1. ])
|
482 |
+
|
483 |
+
Passing positions:
|
484 |
+
|
485 |
+
>>> def fn(val, pos):
|
486 |
+
... print("fn says: %s : %s" % (val, pos))
|
487 |
+
... return (val.sum()) if (pos.sum() % 2 == 0) else (-val.sum())
|
488 |
+
...
|
489 |
+
>>> ndimage.labeled_comprehension(a, lbl, lbls, fn, float, 0, True)
|
490 |
+
fn says: [1 2 5 3] : [0 1 4 5]
|
491 |
+
fn says: [4 7] : [ 7 11]
|
492 |
+
fn says: [9 3] : [12 13]
|
493 |
+
array([ 11., 11., -12., 0.])
|
494 |
+
|
495 |
+
"""
|
496 |
+
|
497 |
+
as_scalar = numpy.isscalar(index)
|
498 |
+
input = numpy.asarray(input)
|
499 |
+
|
500 |
+
if pass_positions:
|
501 |
+
positions = numpy.arange(input.size).reshape(input.shape)
|
502 |
+
|
503 |
+
if labels is None:
|
504 |
+
if index is not None:
|
505 |
+
raise ValueError("index without defined labels")
|
506 |
+
if not pass_positions:
|
507 |
+
return func(input.ravel())
|
508 |
+
else:
|
509 |
+
return func(input.ravel(), positions.ravel())
|
510 |
+
|
511 |
+
try:
|
512 |
+
input, labels = numpy.broadcast_arrays(input, labels)
|
513 |
+
except ValueError as e:
|
514 |
+
raise ValueError("input and labels must have the same shape "
|
515 |
+
"(excepting dimensions with width 1)") from e
|
516 |
+
|
517 |
+
if index is None:
|
518 |
+
if not pass_positions:
|
519 |
+
return func(input[labels > 0])
|
520 |
+
else:
|
521 |
+
return func(input[labels > 0], positions[labels > 0])
|
522 |
+
|
523 |
+
index = numpy.atleast_1d(index)
|
524 |
+
if np.any(index.astype(labels.dtype).astype(index.dtype) != index):
|
525 |
+
raise ValueError(f"Cannot convert index values from <{index.dtype}> to "
|
526 |
+
f"<{labels.dtype}> (labels' type) without loss of precision")
|
527 |
+
|
528 |
+
index = index.astype(labels.dtype)
|
529 |
+
|
530 |
+
# optimization: find min/max in index,
|
531 |
+
# and select those parts of labels, input, and positions
|
532 |
+
lo = index.min()
|
533 |
+
hi = index.max()
|
534 |
+
mask = (labels >= lo) & (labels <= hi)
|
535 |
+
|
536 |
+
# this also ravels the arrays
|
537 |
+
labels = labels[mask]
|
538 |
+
input = input[mask]
|
539 |
+
if pass_positions:
|
540 |
+
positions = positions[mask]
|
541 |
+
|
542 |
+
# sort everything by labels
|
543 |
+
label_order = labels.argsort()
|
544 |
+
labels = labels[label_order]
|
545 |
+
input = input[label_order]
|
546 |
+
if pass_positions:
|
547 |
+
positions = positions[label_order]
|
548 |
+
|
549 |
+
index_order = index.argsort()
|
550 |
+
sorted_index = index[index_order]
|
551 |
+
|
552 |
+
def do_map(inputs, output):
|
553 |
+
"""labels must be sorted"""
|
554 |
+
nidx = sorted_index.size
|
555 |
+
|
556 |
+
# Find boundaries for each stretch of constant labels
|
557 |
+
# This could be faster, but we already paid N log N to sort labels.
|
558 |
+
lo = numpy.searchsorted(labels, sorted_index, side='left')
|
559 |
+
hi = numpy.searchsorted(labels, sorted_index, side='right')
|
560 |
+
|
561 |
+
for i, l, h in zip(range(nidx), lo, hi):
|
562 |
+
if l == h:
|
563 |
+
continue
|
564 |
+
output[i] = func(*[inp[l:h] for inp in inputs])
|
565 |
+
|
566 |
+
temp = numpy.empty(index.shape, out_dtype)
|
567 |
+
temp[:] = default
|
568 |
+
if not pass_positions:
|
569 |
+
do_map([input], temp)
|
570 |
+
else:
|
571 |
+
do_map([input, positions], temp)
|
572 |
+
|
573 |
+
output = numpy.zeros(index.shape, out_dtype)
|
574 |
+
output[index_order] = temp
|
575 |
+
if as_scalar:
|
576 |
+
output = output[0]
|
577 |
+
|
578 |
+
return output
|
579 |
+
|
580 |
+
|
581 |
+
def _safely_castable_to_int(dt):
|
582 |
+
"""Test whether the NumPy data type `dt` can be safely cast to an int."""
|
583 |
+
int_size = np.dtype(int).itemsize
|
584 |
+
safe = ((np.issubdtype(dt, np.signedinteger) and dt.itemsize <= int_size) or
|
585 |
+
(np.issubdtype(dt, np.unsignedinteger) and dt.itemsize < int_size))
|
586 |
+
return safe
|
587 |
+
|
588 |
+
|
589 |
+
def _stats(input, labels=None, index=None, centered=False):
|
590 |
+
"""Count, sum, and optionally compute (sum - centre)^2 of input by label
|
591 |
+
|
592 |
+
Parameters
|
593 |
+
----------
|
594 |
+
input : array_like, N-D
|
595 |
+
The input data to be analyzed.
|
596 |
+
labels : array_like (N-D), optional
|
597 |
+
The labels of the data in `input`. This array must be broadcast
|
598 |
+
compatible with `input`; typically, it is the same shape as `input`.
|
599 |
+
If `labels` is None, all nonzero values in `input` are treated as
|
600 |
+
the single labeled group.
|
601 |
+
index : label or sequence of labels, optional
|
602 |
+
These are the labels of the groups for which the stats are computed.
|
603 |
+
If `index` is None, the stats are computed for the single group where
|
604 |
+
`labels` is greater than 0.
|
605 |
+
centered : bool, optional
|
606 |
+
If True, the centered sum of squares for each labeled group is
|
607 |
+
also returned. Default is False.
|
608 |
+
|
609 |
+
Returns
|
610 |
+
-------
|
611 |
+
counts : int or ndarray of ints
|
612 |
+
The number of elements in each labeled group.
|
613 |
+
sums : scalar or ndarray of scalars
|
614 |
+
The sums of the values in each labeled group.
|
615 |
+
sums_c : scalar or ndarray of scalars, optional
|
616 |
+
The sums of mean-centered squares of the values in each labeled group.
|
617 |
+
This is only returned if `centered` is True.
|
618 |
+
|
619 |
+
"""
|
620 |
+
def single_group(vals):
|
621 |
+
if centered:
|
622 |
+
vals_c = vals - vals.mean()
|
623 |
+
return vals.size, vals.sum(), (vals_c * vals_c.conjugate()).sum()
|
624 |
+
else:
|
625 |
+
return vals.size, vals.sum()
|
626 |
+
|
627 |
+
if labels is None:
|
628 |
+
return single_group(input)
|
629 |
+
|
630 |
+
# ensure input and labels match sizes
|
631 |
+
input, labels = numpy.broadcast_arrays(input, labels)
|
632 |
+
|
633 |
+
if index is None:
|
634 |
+
return single_group(input[labels > 0])
|
635 |
+
|
636 |
+
if numpy.isscalar(index):
|
637 |
+
return single_group(input[labels == index])
|
638 |
+
|
639 |
+
def _sum_centered(labels):
|
640 |
+
# `labels` is expected to be an ndarray with the same shape as `input`.
|
641 |
+
# It must contain the label indices (which are not necessarily the labels
|
642 |
+
# themselves).
|
643 |
+
means = sums / counts
|
644 |
+
centered_input = input - means[labels]
|
645 |
+
# bincount expects 1-D inputs, so we ravel the arguments.
|
646 |
+
bc = numpy.bincount(labels.ravel(),
|
647 |
+
weights=(centered_input *
|
648 |
+
centered_input.conjugate()).ravel())
|
649 |
+
return bc
|
650 |
+
|
651 |
+
# Remap labels to unique integers if necessary, or if the largest
|
652 |
+
# label is larger than the number of values.
|
653 |
+
|
654 |
+
if (not _safely_castable_to_int(labels.dtype) or
|
655 |
+
labels.min() < 0 or labels.max() > labels.size):
|
656 |
+
# Use numpy.unique to generate the label indices. `new_labels` will
|
657 |
+
# be 1-D, but it should be interpreted as the flattened N-D array of
|
658 |
+
# label indices.
|
659 |
+
unique_labels, new_labels = numpy.unique(labels, return_inverse=True)
|
660 |
+
new_labels = np.reshape(new_labels, (-1,)) # flatten, since it may be >1-D
|
661 |
+
counts = numpy.bincount(new_labels)
|
662 |
+
sums = numpy.bincount(new_labels, weights=input.ravel())
|
663 |
+
if centered:
|
664 |
+
# Compute the sum of the mean-centered squares.
|
665 |
+
# We must reshape new_labels to the N-D shape of `input` before
|
666 |
+
# passing it _sum_centered.
|
667 |
+
sums_c = _sum_centered(new_labels.reshape(labels.shape))
|
668 |
+
idxs = numpy.searchsorted(unique_labels, index)
|
669 |
+
# make all of idxs valid
|
670 |
+
idxs[idxs >= unique_labels.size] = 0
|
671 |
+
found = (unique_labels[idxs] == index)
|
672 |
+
else:
|
673 |
+
# labels are an integer type allowed by bincount, and there aren't too
|
674 |
+
# many, so call bincount directly.
|
675 |
+
counts = numpy.bincount(labels.ravel())
|
676 |
+
sums = numpy.bincount(labels.ravel(), weights=input.ravel())
|
677 |
+
if centered:
|
678 |
+
sums_c = _sum_centered(labels)
|
679 |
+
# make sure all index values are valid
|
680 |
+
idxs = numpy.asanyarray(index, numpy.int_).copy()
|
681 |
+
found = (idxs >= 0) & (idxs < counts.size)
|
682 |
+
idxs[~found] = 0
|
683 |
+
|
684 |
+
counts = counts[idxs]
|
685 |
+
counts[~found] = 0
|
686 |
+
sums = sums[idxs]
|
687 |
+
sums[~found] = 0
|
688 |
+
|
689 |
+
if not centered:
|
690 |
+
return (counts, sums)
|
691 |
+
else:
|
692 |
+
sums_c = sums_c[idxs]
|
693 |
+
sums_c[~found] = 0
|
694 |
+
return (counts, sums, sums_c)
|
695 |
+
|
696 |
+
|
697 |
+
def sum(input, labels=None, index=None):
|
698 |
+
"""
|
699 |
+
Calculate the sum of the values of the array.
|
700 |
+
|
701 |
+
Notes
|
702 |
+
-----
|
703 |
+
This is an alias for `ndimage.sum_labels` kept for backwards compatibility
|
704 |
+
reasons, for new code please prefer `sum_labels`. See the `sum_labels`
|
705 |
+
docstring for more details.
|
706 |
+
|
707 |
+
"""
|
708 |
+
return sum_labels(input, labels, index)
|
709 |
+
|
710 |
+
|
711 |
+
def sum_labels(input, labels=None, index=None):
|
712 |
+
"""
|
713 |
+
Calculate the sum of the values of the array.
|
714 |
+
|
715 |
+
Parameters
|
716 |
+
----------
|
717 |
+
input : array_like
|
718 |
+
Values of `input` inside the regions defined by `labels`
|
719 |
+
are summed together.
|
720 |
+
labels : array_like of ints, optional
|
721 |
+
Assign labels to the values of the array. Has to have the same shape as
|
722 |
+
`input`.
|
723 |
+
index : array_like, optional
|
724 |
+
A single label number or a sequence of label numbers of
|
725 |
+
the objects to be measured.
|
726 |
+
|
727 |
+
Returns
|
728 |
+
-------
|
729 |
+
sum : ndarray or scalar
|
730 |
+
An array of the sums of values of `input` inside the regions defined
|
731 |
+
by `labels` with the same shape as `index`. If 'index' is None or scalar,
|
732 |
+
a scalar is returned.
|
733 |
+
|
734 |
+
See Also
|
735 |
+
--------
|
736 |
+
mean, median
|
737 |
+
|
738 |
+
Examples
|
739 |
+
--------
|
740 |
+
>>> from scipy import ndimage
|
741 |
+
>>> input = [0,1,2,3]
|
742 |
+
>>> labels = [1,1,2,2]
|
743 |
+
>>> ndimage.sum_labels(input, labels, index=[1,2])
|
744 |
+
[1.0, 5.0]
|
745 |
+
>>> ndimage.sum_labels(input, labels, index=1)
|
746 |
+
1
|
747 |
+
>>> ndimage.sum_labels(input, labels)
|
748 |
+
6
|
749 |
+
|
750 |
+
|
751 |
+
"""
|
752 |
+
count, sum = _stats(input, labels, index)
|
753 |
+
return sum
|
754 |
+
|
755 |
+
|
756 |
+
def mean(input, labels=None, index=None):
|
757 |
+
"""
|
758 |
+
Calculate the mean of the values of an array at labels.
|
759 |
+
|
760 |
+
Parameters
|
761 |
+
----------
|
762 |
+
input : array_like
|
763 |
+
Array on which to compute the mean of elements over distinct
|
764 |
+
regions.
|
765 |
+
labels : array_like, optional
|
766 |
+
Array of labels of same shape, or broadcastable to the same shape as
|
767 |
+
`input`. All elements sharing the same label form one region over
|
768 |
+
which the mean of the elements is computed.
|
769 |
+
index : int or sequence of ints, optional
|
770 |
+
Labels of the objects over which the mean is to be computed.
|
771 |
+
Default is None, in which case the mean for all values where label is
|
772 |
+
greater than 0 is calculated.
|
773 |
+
|
774 |
+
Returns
|
775 |
+
-------
|
776 |
+
out : list
|
777 |
+
Sequence of same length as `index`, with the mean of the different
|
778 |
+
regions labeled by the labels in `index`.
|
779 |
+
|
780 |
+
See Also
|
781 |
+
--------
|
782 |
+
variance, standard_deviation, minimum, maximum, sum, label
|
783 |
+
|
784 |
+
Examples
|
785 |
+
--------
|
786 |
+
>>> from scipy import ndimage
|
787 |
+
>>> import numpy as np
|
788 |
+
>>> a = np.arange(25).reshape((5,5))
|
789 |
+
>>> labels = np.zeros_like(a)
|
790 |
+
>>> labels[3:5,3:5] = 1
|
791 |
+
>>> index = np.unique(labels)
|
792 |
+
>>> labels
|
793 |
+
array([[0, 0, 0, 0, 0],
|
794 |
+
[0, 0, 0, 0, 0],
|
795 |
+
[0, 0, 0, 0, 0],
|
796 |
+
[0, 0, 0, 1, 1],
|
797 |
+
[0, 0, 0, 1, 1]])
|
798 |
+
>>> index
|
799 |
+
array([0, 1])
|
800 |
+
>>> ndimage.mean(a, labels=labels, index=index)
|
801 |
+
[10.285714285714286, 21.0]
|
802 |
+
|
803 |
+
"""
|
804 |
+
|
805 |
+
count, sum = _stats(input, labels, index)
|
806 |
+
return sum / numpy.asanyarray(count).astype(numpy.float64)
|
807 |
+
|
808 |
+
|
809 |
+
def variance(input, labels=None, index=None):
|
810 |
+
"""
|
811 |
+
Calculate the variance of the values of an N-D image array, optionally at
|
812 |
+
specified sub-regions.
|
813 |
+
|
814 |
+
Parameters
|
815 |
+
----------
|
816 |
+
input : array_like
|
817 |
+
Nd-image data to process.
|
818 |
+
labels : array_like, optional
|
819 |
+
Labels defining sub-regions in `input`.
|
820 |
+
If not None, must be same shape as `input`.
|
821 |
+
index : int or sequence of ints, optional
|
822 |
+
`labels` to include in output. If None (default), all values where
|
823 |
+
`labels` is non-zero are used.
|
824 |
+
|
825 |
+
Returns
|
826 |
+
-------
|
827 |
+
variance : float or ndarray
|
828 |
+
Values of variance, for each sub-region if `labels` and `index` are
|
829 |
+
specified.
|
830 |
+
|
831 |
+
See Also
|
832 |
+
--------
|
833 |
+
label, standard_deviation, maximum, minimum, extrema
|
834 |
+
|
835 |
+
Examples
|
836 |
+
--------
|
837 |
+
>>> import numpy as np
|
838 |
+
>>> a = np.array([[1, 2, 0, 0],
|
839 |
+
... [5, 3, 0, 4],
|
840 |
+
... [0, 0, 0, 7],
|
841 |
+
... [9, 3, 0, 0]])
|
842 |
+
>>> from scipy import ndimage
|
843 |
+
>>> ndimage.variance(a)
|
844 |
+
7.609375
|
845 |
+
|
846 |
+
Features to process can be specified using `labels` and `index`:
|
847 |
+
|
848 |
+
>>> lbl, nlbl = ndimage.label(a)
|
849 |
+
>>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1))
|
850 |
+
array([ 2.1875, 2.25 , 9. ])
|
851 |
+
|
852 |
+
If no index is given, all non-zero `labels` are processed:
|
853 |
+
|
854 |
+
>>> ndimage.variance(a, lbl)
|
855 |
+
6.1875
|
856 |
+
|
857 |
+
"""
|
858 |
+
count, sum, sum_c_sq = _stats(input, labels, index, centered=True)
|
859 |
+
return sum_c_sq / np.asanyarray(count).astype(float)
|
860 |
+
|
861 |
+
|
862 |
+
def standard_deviation(input, labels=None, index=None):
|
863 |
+
"""
|
864 |
+
Calculate the standard deviation of the values of an N-D image array,
|
865 |
+
optionally at specified sub-regions.
|
866 |
+
|
867 |
+
Parameters
|
868 |
+
----------
|
869 |
+
input : array_like
|
870 |
+
N-D image data to process.
|
871 |
+
labels : array_like, optional
|
872 |
+
Labels to identify sub-regions in `input`.
|
873 |
+
If not None, must be same shape as `input`.
|
874 |
+
index : int or sequence of ints, optional
|
875 |
+
`labels` to include in output. If None (default), all values where
|
876 |
+
`labels` is non-zero are used.
|
877 |
+
|
878 |
+
Returns
|
879 |
+
-------
|
880 |
+
standard_deviation : float or ndarray
|
881 |
+
Values of standard deviation, for each sub-region if `labels` and
|
882 |
+
`index` are specified.
|
883 |
+
|
884 |
+
See Also
|
885 |
+
--------
|
886 |
+
label, variance, maximum, minimum, extrema
|
887 |
+
|
888 |
+
Examples
|
889 |
+
--------
|
890 |
+
>>> import numpy as np
|
891 |
+
>>> a = np.array([[1, 2, 0, 0],
|
892 |
+
... [5, 3, 0, 4],
|
893 |
+
... [0, 0, 0, 7],
|
894 |
+
... [9, 3, 0, 0]])
|
895 |
+
>>> from scipy import ndimage
|
896 |
+
>>> ndimage.standard_deviation(a)
|
897 |
+
2.7585095613392387
|
898 |
+
|
899 |
+
Features to process can be specified using `labels` and `index`:
|
900 |
+
|
901 |
+
>>> lbl, nlbl = ndimage.label(a)
|
902 |
+
>>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1))
|
903 |
+
array([ 1.479, 1.5 , 3. ])
|
904 |
+
|
905 |
+
If no index is given, non-zero `labels` are processed:
|
906 |
+
|
907 |
+
>>> ndimage.standard_deviation(a, lbl)
|
908 |
+
2.4874685927665499
|
909 |
+
|
910 |
+
"""
|
911 |
+
return numpy.sqrt(variance(input, labels, index))
|
912 |
+
|
913 |
+
|
914 |
+
def _select(input, labels=None, index=None, find_min=False, find_max=False,
|
915 |
+
find_min_positions=False, find_max_positions=False,
|
916 |
+
find_median=False):
|
917 |
+
"""Returns min, max, or both, plus their positions (if requested), and
|
918 |
+
median."""
|
919 |
+
|
920 |
+
input = numpy.asanyarray(input)
|
921 |
+
|
922 |
+
find_positions = find_min_positions or find_max_positions
|
923 |
+
positions = None
|
924 |
+
if find_positions:
|
925 |
+
positions = numpy.arange(input.size).reshape(input.shape)
|
926 |
+
|
927 |
+
def single_group(vals, positions):
|
928 |
+
result = []
|
929 |
+
if find_min:
|
930 |
+
result += [vals.min()]
|
931 |
+
if find_min_positions:
|
932 |
+
result += [positions[vals == vals.min()][0]]
|
933 |
+
if find_max:
|
934 |
+
result += [vals.max()]
|
935 |
+
if find_max_positions:
|
936 |
+
result += [positions[vals == vals.max()][0]]
|
937 |
+
if find_median:
|
938 |
+
result += [numpy.median(vals)]
|
939 |
+
return result
|
940 |
+
|
941 |
+
if labels is None:
|
942 |
+
return single_group(input, positions)
|
943 |
+
|
944 |
+
# ensure input and labels match sizes
|
945 |
+
input, labels = numpy.broadcast_arrays(input, labels)
|
946 |
+
|
947 |
+
if index is None:
|
948 |
+
mask = (labels > 0)
|
949 |
+
masked_positions = None
|
950 |
+
if find_positions:
|
951 |
+
masked_positions = positions[mask]
|
952 |
+
return single_group(input[mask], masked_positions)
|
953 |
+
|
954 |
+
if numpy.isscalar(index):
|
955 |
+
mask = (labels == index)
|
956 |
+
masked_positions = None
|
957 |
+
if find_positions:
|
958 |
+
masked_positions = positions[mask]
|
959 |
+
return single_group(input[mask], masked_positions)
|
960 |
+
|
961 |
+
# remap labels to unique integers if necessary, or if the largest
|
962 |
+
# label is larger than the number of values.
|
963 |
+
if (not _safely_castable_to_int(labels.dtype) or
|
964 |
+
labels.min() < 0 or labels.max() > labels.size):
|
965 |
+
# remap labels, and indexes
|
966 |
+
unique_labels, labels = numpy.unique(labels, return_inverse=True)
|
967 |
+
idxs = numpy.searchsorted(unique_labels, index)
|
968 |
+
|
969 |
+
# make all of idxs valid
|
970 |
+
idxs[idxs >= unique_labels.size] = 0
|
971 |
+
found = (unique_labels[idxs] == index)
|
972 |
+
else:
|
973 |
+
# labels are an integer type, and there aren't too many
|
974 |
+
idxs = numpy.asanyarray(index, numpy.int_).copy()
|
975 |
+
found = (idxs >= 0) & (idxs <= labels.max())
|
976 |
+
|
977 |
+
idxs[~ found] = labels.max() + 1
|
978 |
+
|
979 |
+
if find_median:
|
980 |
+
order = numpy.lexsort((input.ravel(), labels.ravel()))
|
981 |
+
else:
|
982 |
+
order = input.ravel().argsort()
|
983 |
+
input = input.ravel()[order]
|
984 |
+
labels = labels.ravel()[order]
|
985 |
+
if find_positions:
|
986 |
+
positions = positions.ravel()[order]
|
987 |
+
|
988 |
+
result = []
|
989 |
+
if find_min:
|
990 |
+
mins = numpy.zeros(labels.max() + 2, input.dtype)
|
991 |
+
mins[labels[::-1]] = input[::-1]
|
992 |
+
result += [mins[idxs]]
|
993 |
+
if find_min_positions:
|
994 |
+
minpos = numpy.zeros(labels.max() + 2, int)
|
995 |
+
minpos[labels[::-1]] = positions[::-1]
|
996 |
+
result += [minpos[idxs]]
|
997 |
+
if find_max:
|
998 |
+
maxs = numpy.zeros(labels.max() + 2, input.dtype)
|
999 |
+
maxs[labels] = input
|
1000 |
+
result += [maxs[idxs]]
|
1001 |
+
if find_max_positions:
|
1002 |
+
maxpos = numpy.zeros(labels.max() + 2, int)
|
1003 |
+
maxpos[labels] = positions
|
1004 |
+
result += [maxpos[idxs]]
|
1005 |
+
if find_median:
|
1006 |
+
locs = numpy.arange(len(labels))
|
1007 |
+
lo = numpy.zeros(labels.max() + 2, numpy.int_)
|
1008 |
+
lo[labels[::-1]] = locs[::-1]
|
1009 |
+
hi = numpy.zeros(labels.max() + 2, numpy.int_)
|
1010 |
+
hi[labels] = locs
|
1011 |
+
lo = lo[idxs]
|
1012 |
+
hi = hi[idxs]
|
1013 |
+
# lo is an index to the lowest value in input for each label,
|
1014 |
+
# hi is an index to the largest value.
|
1015 |
+
# move them to be either the same ((hi - lo) % 2 == 0) or next
|
1016 |
+
# to each other ((hi - lo) % 2 == 1), then average.
|
1017 |
+
step = (hi - lo) // 2
|
1018 |
+
lo += step
|
1019 |
+
hi -= step
|
1020 |
+
if (np.issubdtype(input.dtype, np.integer)
|
1021 |
+
or np.issubdtype(input.dtype, np.bool_)):
|
1022 |
+
# avoid integer overflow or boolean addition (gh-12836)
|
1023 |
+
result += [(input[lo].astype('d') + input[hi].astype('d')) / 2.0]
|
1024 |
+
else:
|
1025 |
+
result += [(input[lo] + input[hi]) / 2.0]
|
1026 |
+
|
1027 |
+
return result
|
1028 |
+
|
1029 |
+
|
1030 |
+
def minimum(input, labels=None, index=None):
|
1031 |
+
"""
|
1032 |
+
Calculate the minimum of the values of an array over labeled regions.
|
1033 |
+
|
1034 |
+
Parameters
|
1035 |
+
----------
|
1036 |
+
input : array_like
|
1037 |
+
Array_like of values. For each region specified by `labels`, the
|
1038 |
+
minimal values of `input` over the region is computed.
|
1039 |
+
labels : array_like, optional
|
1040 |
+
An array_like of integers marking different regions over which the
|
1041 |
+
minimum value of `input` is to be computed. `labels` must have the
|
1042 |
+
same shape as `input`. If `labels` is not specified, the minimum
|
1043 |
+
over the whole array is returned.
|
1044 |
+
index : array_like, optional
|
1045 |
+
A list of region labels that are taken into account for computing the
|
1046 |
+
minima. If index is None, the minimum over all elements where `labels`
|
1047 |
+
is non-zero is returned.
|
1048 |
+
|
1049 |
+
Returns
|
1050 |
+
-------
|
1051 |
+
minimum : float or list of floats
|
1052 |
+
List of minima of `input` over the regions determined by `labels` and
|
1053 |
+
whose index is in `index`. If `index` or `labels` are not specified, a
|
1054 |
+
float is returned: the minimal value of `input` if `labels` is None,
|
1055 |
+
and the minimal value of elements where `labels` is greater than zero
|
1056 |
+
if `index` is None.
|
1057 |
+
|
1058 |
+
See Also
|
1059 |
+
--------
|
1060 |
+
label, maximum, median, minimum_position, extrema, sum, mean, variance,
|
1061 |
+
standard_deviation
|
1062 |
+
|
1063 |
+
Notes
|
1064 |
+
-----
|
1065 |
+
The function returns a Python list and not a NumPy array, use
|
1066 |
+
`np.array` to convert the list to an array.
|
1067 |
+
|
1068 |
+
Examples
|
1069 |
+
--------
|
1070 |
+
>>> from scipy import ndimage
|
1071 |
+
>>> import numpy as np
|
1072 |
+
>>> a = np.array([[1, 2, 0, 0],
|
1073 |
+
... [5, 3, 0, 4],
|
1074 |
+
... [0, 0, 0, 7],
|
1075 |
+
... [9, 3, 0, 0]])
|
1076 |
+
>>> labels, labels_nb = ndimage.label(a)
|
1077 |
+
>>> labels
|
1078 |
+
array([[1, 1, 0, 0],
|
1079 |
+
[1, 1, 0, 2],
|
1080 |
+
[0, 0, 0, 2],
|
1081 |
+
[3, 3, 0, 0]])
|
1082 |
+
>>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1))
|
1083 |
+
[1.0, 4.0, 3.0]
|
1084 |
+
>>> ndimage.minimum(a)
|
1085 |
+
0.0
|
1086 |
+
>>> ndimage.minimum(a, labels=labels)
|
1087 |
+
1.0
|
1088 |
+
|
1089 |
+
"""
|
1090 |
+
return _select(input, labels, index, find_min=True)[0]
|
1091 |
+
|
1092 |
+
|
1093 |
+
def maximum(input, labels=None, index=None):
|
1094 |
+
"""
|
1095 |
+
Calculate the maximum of the values of an array over labeled regions.
|
1096 |
+
|
1097 |
+
Parameters
|
1098 |
+
----------
|
1099 |
+
input : array_like
|
1100 |
+
Array_like of values. For each region specified by `labels`, the
|
1101 |
+
maximal values of `input` over the region is computed.
|
1102 |
+
labels : array_like, optional
|
1103 |
+
An array of integers marking different regions over which the
|
1104 |
+
maximum value of `input` is to be computed. `labels` must have the
|
1105 |
+
same shape as `input`. If `labels` is not specified, the maximum
|
1106 |
+
over the whole array is returned.
|
1107 |
+
index : array_like, optional
|
1108 |
+
A list of region labels that are taken into account for computing the
|
1109 |
+
maxima. If index is None, the maximum over all elements where `labels`
|
1110 |
+
is non-zero is returned.
|
1111 |
+
|
1112 |
+
Returns
|
1113 |
+
-------
|
1114 |
+
output : float or list of floats
|
1115 |
+
List of maxima of `input` over the regions determined by `labels` and
|
1116 |
+
whose index is in `index`. If `index` or `labels` are not specified, a
|
1117 |
+
float is returned: the maximal value of `input` if `labels` is None,
|
1118 |
+
and the maximal value of elements where `labels` is greater than zero
|
1119 |
+
if `index` is None.
|
1120 |
+
|
1121 |
+
See Also
|
1122 |
+
--------
|
1123 |
+
label, minimum, median, maximum_position, extrema, sum, mean, variance,
|
1124 |
+
standard_deviation
|
1125 |
+
|
1126 |
+
Notes
|
1127 |
+
-----
|
1128 |
+
The function returns a Python list and not a NumPy array, use
|
1129 |
+
`np.array` to convert the list to an array.
|
1130 |
+
|
1131 |
+
Examples
|
1132 |
+
--------
|
1133 |
+
>>> import numpy as np
|
1134 |
+
>>> a = np.arange(16).reshape((4,4))
|
1135 |
+
>>> a
|
1136 |
+
array([[ 0, 1, 2, 3],
|
1137 |
+
[ 4, 5, 6, 7],
|
1138 |
+
[ 8, 9, 10, 11],
|
1139 |
+
[12, 13, 14, 15]])
|
1140 |
+
>>> labels = np.zeros_like(a)
|
1141 |
+
>>> labels[:2,:2] = 1
|
1142 |
+
>>> labels[2:, 1:3] = 2
|
1143 |
+
>>> labels
|
1144 |
+
array([[1, 1, 0, 0],
|
1145 |
+
[1, 1, 0, 0],
|
1146 |
+
[0, 2, 2, 0],
|
1147 |
+
[0, 2, 2, 0]])
|
1148 |
+
>>> from scipy import ndimage
|
1149 |
+
>>> ndimage.maximum(a)
|
1150 |
+
15.0
|
1151 |
+
>>> ndimage.maximum(a, labels=labels, index=[1,2])
|
1152 |
+
[5.0, 14.0]
|
1153 |
+
>>> ndimage.maximum(a, labels=labels)
|
1154 |
+
14.0
|
1155 |
+
|
1156 |
+
>>> b = np.array([[1, 2, 0, 0],
|
1157 |
+
... [5, 3, 0, 4],
|
1158 |
+
... [0, 0, 0, 7],
|
1159 |
+
... [9, 3, 0, 0]])
|
1160 |
+
>>> labels, labels_nb = ndimage.label(b)
|
1161 |
+
>>> labels
|
1162 |
+
array([[1, 1, 0, 0],
|
1163 |
+
[1, 1, 0, 2],
|
1164 |
+
[0, 0, 0, 2],
|
1165 |
+
[3, 3, 0, 0]])
|
1166 |
+
>>> ndimage.maximum(b, labels=labels, index=np.arange(1, labels_nb + 1))
|
1167 |
+
[5.0, 7.0, 9.0]
|
1168 |
+
|
1169 |
+
"""
|
1170 |
+
return _select(input, labels, index, find_max=True)[0]
|
1171 |
+
|
1172 |
+
|
1173 |
+
def median(input, labels=None, index=None):
|
1174 |
+
"""
|
1175 |
+
Calculate the median of the values of an array over labeled regions.
|
1176 |
+
|
1177 |
+
Parameters
|
1178 |
+
----------
|
1179 |
+
input : array_like
|
1180 |
+
Array_like of values. For each region specified by `labels`, the
|
1181 |
+
median value of `input` over the region is computed.
|
1182 |
+
labels : array_like, optional
|
1183 |
+
An array_like of integers marking different regions over which the
|
1184 |
+
median value of `input` is to be computed. `labels` must have the
|
1185 |
+
same shape as `input`. If `labels` is not specified, the median
|
1186 |
+
over the whole array is returned.
|
1187 |
+
index : array_like, optional
|
1188 |
+
A list of region labels that are taken into account for computing the
|
1189 |
+
medians. If index is None, the median over all elements where `labels`
|
1190 |
+
is non-zero is returned.
|
1191 |
+
|
1192 |
+
Returns
|
1193 |
+
-------
|
1194 |
+
median : float or list of floats
|
1195 |
+
List of medians of `input` over the regions determined by `labels` and
|
1196 |
+
whose index is in `index`. If `index` or `labels` are not specified, a
|
1197 |
+
float is returned: the median value of `input` if `labels` is None,
|
1198 |
+
and the median value of elements where `labels` is greater than zero
|
1199 |
+
if `index` is None.
|
1200 |
+
|
1201 |
+
See Also
|
1202 |
+
--------
|
1203 |
+
label, minimum, maximum, extrema, sum, mean, variance, standard_deviation
|
1204 |
+
|
1205 |
+
Notes
|
1206 |
+
-----
|
1207 |
+
The function returns a Python list and not a NumPy array, use
|
1208 |
+
`np.array` to convert the list to an array.
|
1209 |
+
|
1210 |
+
Examples
|
1211 |
+
--------
|
1212 |
+
>>> from scipy import ndimage
|
1213 |
+
>>> import numpy as np
|
1214 |
+
>>> a = np.array([[1, 2, 0, 1],
|
1215 |
+
... [5, 3, 0, 4],
|
1216 |
+
... [0, 0, 0, 7],
|
1217 |
+
... [9, 3, 0, 0]])
|
1218 |
+
>>> labels, labels_nb = ndimage.label(a)
|
1219 |
+
>>> labels
|
1220 |
+
array([[1, 1, 0, 2],
|
1221 |
+
[1, 1, 0, 2],
|
1222 |
+
[0, 0, 0, 2],
|
1223 |
+
[3, 3, 0, 0]])
|
1224 |
+
>>> ndimage.median(a, labels=labels, index=np.arange(1, labels_nb + 1))
|
1225 |
+
[2.5, 4.0, 6.0]
|
1226 |
+
>>> ndimage.median(a)
|
1227 |
+
1.0
|
1228 |
+
>>> ndimage.median(a, labels=labels)
|
1229 |
+
3.0
|
1230 |
+
|
1231 |
+
"""
|
1232 |
+
return _select(input, labels, index, find_median=True)[0]
|
1233 |
+
|
1234 |
+
|
1235 |
+
def minimum_position(input, labels=None, index=None):
|
1236 |
+
"""
|
1237 |
+
Find the positions of the minimums of the values of an array at labels.
|
1238 |
+
|
1239 |
+
Parameters
|
1240 |
+
----------
|
1241 |
+
input : array_like
|
1242 |
+
Array_like of values.
|
1243 |
+
labels : array_like, optional
|
1244 |
+
An array of integers marking different regions over which the
|
1245 |
+
position of the minimum value of `input` is to be computed.
|
1246 |
+
`labels` must have the same shape as `input`. If `labels` is not
|
1247 |
+
specified, the location of the first minimum over the whole
|
1248 |
+
array is returned.
|
1249 |
+
|
1250 |
+
The `labels` argument only works when `index` is specified.
|
1251 |
+
index : array_like, optional
|
1252 |
+
A list of region labels that are taken into account for finding the
|
1253 |
+
location of the minima. If `index` is None, the ``first`` minimum
|
1254 |
+
over all elements where `labels` is non-zero is returned.
|
1255 |
+
|
1256 |
+
The `index` argument only works when `labels` is specified.
|
1257 |
+
|
1258 |
+
Returns
|
1259 |
+
-------
|
1260 |
+
output : list of tuples of ints
|
1261 |
+
Tuple of ints or list of tuples of ints that specify the location
|
1262 |
+
of minima of `input` over the regions determined by `labels` and
|
1263 |
+
whose index is in `index`.
|
1264 |
+
|
1265 |
+
If `index` or `labels` are not specified, a tuple of ints is
|
1266 |
+
returned specifying the location of the first minimal value of `input`.
|
1267 |
+
|
1268 |
+
See Also
|
1269 |
+
--------
|
1270 |
+
label, minimum, median, maximum_position, extrema, sum, mean, variance,
|
1271 |
+
standard_deviation
|
1272 |
+
|
1273 |
+
Examples
|
1274 |
+
--------
|
1275 |
+
>>> import numpy as np
|
1276 |
+
>>> a = np.array([[10, 20, 30],
|
1277 |
+
... [40, 80, 100],
|
1278 |
+
... [1, 100, 200]])
|
1279 |
+
>>> b = np.array([[1, 2, 0, 1],
|
1280 |
+
... [5, 3, 0, 4],
|
1281 |
+
... [0, 0, 0, 7],
|
1282 |
+
... [9, 3, 0, 0]])
|
1283 |
+
|
1284 |
+
>>> from scipy import ndimage
|
1285 |
+
|
1286 |
+
>>> ndimage.minimum_position(a)
|
1287 |
+
(2, 0)
|
1288 |
+
>>> ndimage.minimum_position(b)
|
1289 |
+
(0, 2)
|
1290 |
+
|
1291 |
+
Features to process can be specified using `labels` and `index`:
|
1292 |
+
|
1293 |
+
>>> label, pos = ndimage.label(a)
|
1294 |
+
>>> ndimage.minimum_position(a, label, index=np.arange(1, pos+1))
|
1295 |
+
[(2, 0)]
|
1296 |
+
|
1297 |
+
>>> label, pos = ndimage.label(b)
|
1298 |
+
>>> ndimage.minimum_position(b, label, index=np.arange(1, pos+1))
|
1299 |
+
[(0, 0), (0, 3), (3, 1)]
|
1300 |
+
|
1301 |
+
"""
|
1302 |
+
dims = numpy.array(numpy.asarray(input).shape)
|
1303 |
+
# see numpy.unravel_index to understand this line.
|
1304 |
+
dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1]
|
1305 |
+
|
1306 |
+
result = _select(input, labels, index, find_min_positions=True)[0]
|
1307 |
+
|
1308 |
+
if numpy.isscalar(result):
|
1309 |
+
return tuple((result // dim_prod) % dims)
|
1310 |
+
|
1311 |
+
return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims]
|
1312 |
+
|
1313 |
+
|
1314 |
+
def maximum_position(input, labels=None, index=None):
|
1315 |
+
"""
|
1316 |
+
Find the positions of the maximums of the values of an array at labels.
|
1317 |
+
|
1318 |
+
For each region specified by `labels`, the position of the maximum
|
1319 |
+
value of `input` within the region is returned.
|
1320 |
+
|
1321 |
+
Parameters
|
1322 |
+
----------
|
1323 |
+
input : array_like
|
1324 |
+
Array_like of values.
|
1325 |
+
labels : array_like, optional
|
1326 |
+
An array of integers marking different regions over which the
|
1327 |
+
position of the maximum value of `input` is to be computed.
|
1328 |
+
`labels` must have the same shape as `input`. If `labels` is not
|
1329 |
+
specified, the location of the first maximum over the whole
|
1330 |
+
array is returned.
|
1331 |
+
|
1332 |
+
The `labels` argument only works when `index` is specified.
|
1333 |
+
index : array_like, optional
|
1334 |
+
A list of region labels that are taken into account for finding the
|
1335 |
+
location of the maxima. If `index` is None, the first maximum
|
1336 |
+
over all elements where `labels` is non-zero is returned.
|
1337 |
+
|
1338 |
+
The `index` argument only works when `labels` is specified.
|
1339 |
+
|
1340 |
+
Returns
|
1341 |
+
-------
|
1342 |
+
output : list of tuples of ints
|
1343 |
+
List of tuples of ints that specify the location of maxima of
|
1344 |
+
`input` over the regions determined by `labels` and whose index
|
1345 |
+
is in `index`.
|
1346 |
+
|
1347 |
+
If `index` or `labels` are not specified, a tuple of ints is
|
1348 |
+
returned specifying the location of the ``first`` maximal value
|
1349 |
+
of `input`.
|
1350 |
+
|
1351 |
+
See Also
|
1352 |
+
--------
|
1353 |
+
label, minimum, median, maximum_position, extrema, sum, mean, variance,
|
1354 |
+
standard_deviation
|
1355 |
+
|
1356 |
+
Examples
|
1357 |
+
--------
|
1358 |
+
>>> from scipy import ndimage
|
1359 |
+
>>> import numpy as np
|
1360 |
+
>>> a = np.array([[1, 2, 0, 0],
|
1361 |
+
... [5, 3, 0, 4],
|
1362 |
+
... [0, 0, 0, 7],
|
1363 |
+
... [9, 3, 0, 0]])
|
1364 |
+
>>> ndimage.maximum_position(a)
|
1365 |
+
(3, 0)
|
1366 |
+
|
1367 |
+
Features to process can be specified using `labels` and `index`:
|
1368 |
+
|
1369 |
+
>>> lbl = np.array([[0, 1, 2, 3],
|
1370 |
+
... [0, 1, 2, 3],
|
1371 |
+
... [0, 1, 2, 3],
|
1372 |
+
... [0, 1, 2, 3]])
|
1373 |
+
>>> ndimage.maximum_position(a, lbl, 1)
|
1374 |
+
(1, 1)
|
1375 |
+
|
1376 |
+
If no index is given, non-zero `labels` are processed:
|
1377 |
+
|
1378 |
+
>>> ndimage.maximum_position(a, lbl)
|
1379 |
+
(2, 3)
|
1380 |
+
|
1381 |
+
If there are no maxima, the position of the first element is returned:
|
1382 |
+
|
1383 |
+
>>> ndimage.maximum_position(a, lbl, 2)
|
1384 |
+
(0, 2)
|
1385 |
+
|
1386 |
+
"""
|
1387 |
+
dims = numpy.array(numpy.asarray(input).shape)
|
1388 |
+
# see numpy.unravel_index to understand this line.
|
1389 |
+
dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1]
|
1390 |
+
|
1391 |
+
result = _select(input, labels, index, find_max_positions=True)[0]
|
1392 |
+
|
1393 |
+
if numpy.isscalar(result):
|
1394 |
+
return tuple((result // dim_prod) % dims)
|
1395 |
+
|
1396 |
+
return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims]
|
1397 |
+
|
1398 |
+
|
1399 |
+
def extrema(input, labels=None, index=None):
|
1400 |
+
"""
|
1401 |
+
Calculate the minimums and maximums of the values of an array
|
1402 |
+
at labels, along with their positions.
|
1403 |
+
|
1404 |
+
Parameters
|
1405 |
+
----------
|
1406 |
+
input : ndarray
|
1407 |
+
N-D image data to process.
|
1408 |
+
labels : ndarray, optional
|
1409 |
+
Labels of features in input.
|
1410 |
+
If not None, must be same shape as `input`.
|
1411 |
+
index : int or sequence of ints, optional
|
1412 |
+
Labels to include in output. If None (default), all values where
|
1413 |
+
non-zero `labels` are used.
|
1414 |
+
|
1415 |
+
Returns
|
1416 |
+
-------
|
1417 |
+
minimums, maximums : int or ndarray
|
1418 |
+
Values of minimums and maximums in each feature.
|
1419 |
+
min_positions, max_positions : tuple or list of tuples
|
1420 |
+
Each tuple gives the N-D coordinates of the corresponding minimum
|
1421 |
+
or maximum.
|
1422 |
+
|
1423 |
+
See Also
|
1424 |
+
--------
|
1425 |
+
maximum, minimum, maximum_position, minimum_position, center_of_mass
|
1426 |
+
|
1427 |
+
Examples
|
1428 |
+
--------
|
1429 |
+
>>> import numpy as np
|
1430 |
+
>>> a = np.array([[1, 2, 0, 0],
|
1431 |
+
... [5, 3, 0, 4],
|
1432 |
+
... [0, 0, 0, 7],
|
1433 |
+
... [9, 3, 0, 0]])
|
1434 |
+
>>> from scipy import ndimage
|
1435 |
+
>>> ndimage.extrema(a)
|
1436 |
+
(0, 9, (0, 2), (3, 0))
|
1437 |
+
|
1438 |
+
Features to process can be specified using `labels` and `index`:
|
1439 |
+
|
1440 |
+
>>> lbl, nlbl = ndimage.label(a)
|
1441 |
+
>>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1))
|
1442 |
+
(array([1, 4, 3]),
|
1443 |
+
array([5, 7, 9]),
|
1444 |
+
[(0, 0), (1, 3), (3, 1)],
|
1445 |
+
[(1, 0), (2, 3), (3, 0)])
|
1446 |
+
|
1447 |
+
If no index is given, non-zero `labels` are processed:
|
1448 |
+
|
1449 |
+
>>> ndimage.extrema(a, lbl)
|
1450 |
+
(1, 9, (0, 0), (3, 0))
|
1451 |
+
|
1452 |
+
"""
|
1453 |
+
dims = numpy.array(numpy.asarray(input).shape)
|
1454 |
+
# see numpy.unravel_index to understand this line.
|
1455 |
+
dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1]
|
1456 |
+
|
1457 |
+
minimums, min_positions, maximums, max_positions = _select(input, labels,
|
1458 |
+
index,
|
1459 |
+
find_min=True,
|
1460 |
+
find_max=True,
|
1461 |
+
find_min_positions=True,
|
1462 |
+
find_max_positions=True)
|
1463 |
+
|
1464 |
+
if numpy.isscalar(minimums):
|
1465 |
+
return (minimums, maximums, tuple((min_positions // dim_prod) % dims),
|
1466 |
+
tuple((max_positions // dim_prod) % dims))
|
1467 |
+
|
1468 |
+
min_positions = [
|
1469 |
+
tuple(v) for v in (min_positions.reshape(-1, 1) // dim_prod) % dims
|
1470 |
+
]
|
1471 |
+
max_positions = [
|
1472 |
+
tuple(v) for v in (max_positions.reshape(-1, 1) // dim_prod) % dims
|
1473 |
+
]
|
1474 |
+
|
1475 |
+
return minimums, maximums, min_positions, max_positions
|
1476 |
+
|
1477 |
+
|
1478 |
+
def center_of_mass(input, labels=None, index=None):
|
1479 |
+
"""
|
1480 |
+
Calculate the center of mass of the values of an array at labels.
|
1481 |
+
|
1482 |
+
Parameters
|
1483 |
+
----------
|
1484 |
+
input : ndarray
|
1485 |
+
Data from which to calculate center-of-mass. The masses can either
|
1486 |
+
be positive or negative.
|
1487 |
+
labels : ndarray, optional
|
1488 |
+
Labels for objects in `input`, as generated by `ndimage.label`.
|
1489 |
+
Only used with `index`. Dimensions must be the same as `input`.
|
1490 |
+
index : int or sequence of ints, optional
|
1491 |
+
Labels for which to calculate centers-of-mass. If not specified,
|
1492 |
+
the combined center of mass of all labels greater than zero
|
1493 |
+
will be calculated. Only used with `labels`.
|
1494 |
+
|
1495 |
+
Returns
|
1496 |
+
-------
|
1497 |
+
center_of_mass : tuple, or list of tuples
|
1498 |
+
Coordinates of centers-of-mass.
|
1499 |
+
|
1500 |
+
Examples
|
1501 |
+
--------
|
1502 |
+
>>> import numpy as np
|
1503 |
+
>>> a = np.array(([0,0,0,0],
|
1504 |
+
... [0,1,1,0],
|
1505 |
+
... [0,1,1,0],
|
1506 |
+
... [0,1,1,0]))
|
1507 |
+
>>> from scipy import ndimage
|
1508 |
+
>>> ndimage.center_of_mass(a)
|
1509 |
+
(2.0, 1.5)
|
1510 |
+
|
1511 |
+
Calculation of multiple objects in an image
|
1512 |
+
|
1513 |
+
>>> b = np.array(([0,1,1,0],
|
1514 |
+
... [0,1,0,0],
|
1515 |
+
... [0,0,0,0],
|
1516 |
+
... [0,0,1,1],
|
1517 |
+
... [0,0,1,1]))
|
1518 |
+
>>> lbl = ndimage.label(b)[0]
|
1519 |
+
>>> ndimage.center_of_mass(b, lbl, [1,2])
|
1520 |
+
[(0.33333333333333331, 1.3333333333333333), (3.5, 2.5)]
|
1521 |
+
|
1522 |
+
Negative masses are also accepted, which can occur for example when
|
1523 |
+
bias is removed from measured data due to random noise.
|
1524 |
+
|
1525 |
+
>>> c = np.array(([-1,0,0,0],
|
1526 |
+
... [0,-1,-1,0],
|
1527 |
+
... [0,1,-1,0],
|
1528 |
+
... [0,1,1,0]))
|
1529 |
+
>>> ndimage.center_of_mass(c)
|
1530 |
+
(-4.0, 1.0)
|
1531 |
+
|
1532 |
+
If there are division by zero issues, the function does not raise an
|
1533 |
+
error but rather issues a RuntimeWarning before returning inf and/or NaN.
|
1534 |
+
|
1535 |
+
>>> d = np.array([-1, 1])
|
1536 |
+
>>> ndimage.center_of_mass(d)
|
1537 |
+
(inf,)
|
1538 |
+
"""
|
1539 |
+
normalizer = sum(input, labels, index)
|
1540 |
+
grids = numpy.ogrid[[slice(0, i) for i in input.shape]]
|
1541 |
+
|
1542 |
+
results = [sum(input * grids[dir].astype(float), labels, index) / normalizer
|
1543 |
+
for dir in range(input.ndim)]
|
1544 |
+
|
1545 |
+
if numpy.isscalar(results[0]):
|
1546 |
+
return tuple(results)
|
1547 |
+
|
1548 |
+
return [tuple(v) for v in numpy.array(results).T]
|
1549 |
+
|
1550 |
+
|
1551 |
+
def histogram(input, min, max, bins, labels=None, index=None):
|
1552 |
+
"""
|
1553 |
+
Calculate the histogram of the values of an array, optionally at labels.
|
1554 |
+
|
1555 |
+
Histogram calculates the frequency of values in an array within bins
|
1556 |
+
determined by `min`, `max`, and `bins`. The `labels` and `index`
|
1557 |
+
keywords can limit the scope of the histogram to specified sub-regions
|
1558 |
+
within the array.
|
1559 |
+
|
1560 |
+
Parameters
|
1561 |
+
----------
|
1562 |
+
input : array_like
|
1563 |
+
Data for which to calculate histogram.
|
1564 |
+
min, max : int
|
1565 |
+
Minimum and maximum values of range of histogram bins.
|
1566 |
+
bins : int
|
1567 |
+
Number of bins.
|
1568 |
+
labels : array_like, optional
|
1569 |
+
Labels for objects in `input`.
|
1570 |
+
If not None, must be same shape as `input`.
|
1571 |
+
index : int or sequence of ints, optional
|
1572 |
+
Label or labels for which to calculate histogram. If None, all values
|
1573 |
+
where label is greater than zero are used
|
1574 |
+
|
1575 |
+
Returns
|
1576 |
+
-------
|
1577 |
+
hist : ndarray
|
1578 |
+
Histogram counts.
|
1579 |
+
|
1580 |
+
Examples
|
1581 |
+
--------
|
1582 |
+
>>> import numpy as np
|
1583 |
+
>>> a = np.array([[ 0. , 0.2146, 0.5962, 0. ],
|
1584 |
+
... [ 0. , 0.7778, 0. , 0. ],
|
1585 |
+
... [ 0. , 0. , 0. , 0. ],
|
1586 |
+
... [ 0. , 0. , 0.7181, 0.2787],
|
1587 |
+
... [ 0. , 0. , 0.6573, 0.3094]])
|
1588 |
+
>>> from scipy import ndimage
|
1589 |
+
>>> ndimage.histogram(a, 0, 1, 10)
|
1590 |
+
array([13, 0, 2, 1, 0, 1, 1, 2, 0, 0])
|
1591 |
+
|
1592 |
+
With labels and no indices, non-zero elements are counted:
|
1593 |
+
|
1594 |
+
>>> lbl, nlbl = ndimage.label(a)
|
1595 |
+
>>> ndimage.histogram(a, 0, 1, 10, lbl)
|
1596 |
+
array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0])
|
1597 |
+
|
1598 |
+
Indices can be used to count only certain objects:
|
1599 |
+
|
1600 |
+
>>> ndimage.histogram(a, 0, 1, 10, lbl, 2)
|
1601 |
+
array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0])
|
1602 |
+
|
1603 |
+
"""
|
1604 |
+
_bins = numpy.linspace(min, max, bins + 1)
|
1605 |
+
|
1606 |
+
def _hist(vals):
|
1607 |
+
return numpy.histogram(vals, _bins)[0]
|
1608 |
+
|
1609 |
+
return labeled_comprehension(input, labels, index, _hist, object, None,
|
1610 |
+
pass_positions=False)
|
1611 |
+
|
1612 |
+
|
1613 |
+
def watershed_ift(input, markers, structure=None, output=None):
|
1614 |
+
"""
|
1615 |
+
Apply watershed from markers using image foresting transform algorithm.
|
1616 |
+
|
1617 |
+
Parameters
|
1618 |
+
----------
|
1619 |
+
input : array_like
|
1620 |
+
Input.
|
1621 |
+
markers : array_like
|
1622 |
+
Markers are points within each watershed that form the beginning
|
1623 |
+
of the process. Negative markers are considered background markers
|
1624 |
+
which are processed after the other markers.
|
1625 |
+
structure : structure element, optional
|
1626 |
+
A structuring element defining the connectivity of the object can be
|
1627 |
+
provided. If None, an element is generated with a squared
|
1628 |
+
connectivity equal to one.
|
1629 |
+
output : ndarray, optional
|
1630 |
+
An output array can optionally be provided. The same shape as input.
|
1631 |
+
|
1632 |
+
Returns
|
1633 |
+
-------
|
1634 |
+
watershed_ift : ndarray
|
1635 |
+
Output. Same shape as `input`.
|
1636 |
+
|
1637 |
+
References
|
1638 |
+
----------
|
1639 |
+
.. [1] A.X. Falcao, J. Stolfi and R. de Alencar Lotufo, "The image
|
1640 |
+
foresting transform: theory, algorithms, and applications",
|
1641 |
+
Pattern Analysis and Machine Intelligence, vol. 26, pp. 19-29, 2004.
|
1642 |
+
|
1643 |
+
"""
|
1644 |
+
input = numpy.asarray(input)
|
1645 |
+
if input.dtype.type not in [numpy.uint8, numpy.uint16]:
|
1646 |
+
raise TypeError('only 8 and 16 unsigned inputs are supported')
|
1647 |
+
|
1648 |
+
if structure is None:
|
1649 |
+
structure = _morphology.generate_binary_structure(input.ndim, 1)
|
1650 |
+
structure = numpy.asarray(structure, dtype=bool)
|
1651 |
+
if structure.ndim != input.ndim:
|
1652 |
+
raise RuntimeError('structure and input must have equal rank')
|
1653 |
+
for ii in structure.shape:
|
1654 |
+
if ii != 3:
|
1655 |
+
raise RuntimeError('structure dimensions must be equal to 3')
|
1656 |
+
|
1657 |
+
if not structure.flags.contiguous:
|
1658 |
+
structure = structure.copy()
|
1659 |
+
markers = numpy.asarray(markers)
|
1660 |
+
if input.shape != markers.shape:
|
1661 |
+
raise RuntimeError('input and markers must have equal shape')
|
1662 |
+
|
1663 |
+
integral_types = [numpy.int8,
|
1664 |
+
numpy.int16,
|
1665 |
+
numpy.int32,
|
1666 |
+
numpy.int64,
|
1667 |
+
numpy.intc,
|
1668 |
+
numpy.intp]
|
1669 |
+
|
1670 |
+
if markers.dtype.type not in integral_types:
|
1671 |
+
raise RuntimeError('marker should be of integer type')
|
1672 |
+
|
1673 |
+
if isinstance(output, numpy.ndarray):
|
1674 |
+
if output.dtype.type not in integral_types:
|
1675 |
+
raise RuntimeError('output should be of integer type')
|
1676 |
+
else:
|
1677 |
+
output = markers.dtype
|
1678 |
+
|
1679 |
+
output = _ni_support._get_output(output, input)
|
1680 |
+
_nd_image.watershed_ift(input, markers, structure, output)
|
1681 |
+
return output
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_morphology.py
ADDED
@@ -0,0 +1,2520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2003-2005 Peter J. Verveer
|
2 |
+
#
|
3 |
+
# Redistribution and use in source and binary forms, with or without
|
4 |
+
# modification, are permitted provided that the following conditions
|
5 |
+
# are met:
|
6 |
+
#
|
7 |
+
# 1. Redistributions of source code must retain the above copyright
|
8 |
+
# notice, this list of conditions and the following disclaimer.
|
9 |
+
#
|
10 |
+
# 2. Redistributions in binary form must reproduce the above
|
11 |
+
# copyright notice, this list of conditions and the following
|
12 |
+
# disclaimer in the documentation and/or other materials provided
|
13 |
+
# with the distribution.
|
14 |
+
#
|
15 |
+
# 3. The name of the author may not be used to endorse or promote
|
16 |
+
# products derived from this software without specific prior
|
17 |
+
# written permission.
|
18 |
+
#
|
19 |
+
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
20 |
+
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
21 |
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
23 |
+
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
25 |
+
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
27 |
+
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
28 |
+
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
29 |
+
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
|
31 |
+
import warnings
|
32 |
+
import operator
|
33 |
+
|
34 |
+
import numpy
|
35 |
+
from . import _ni_support
|
36 |
+
from . import _nd_image
|
37 |
+
from . import _filters
|
38 |
+
|
39 |
+
__all__ = ['iterate_structure', 'generate_binary_structure', 'binary_erosion',
|
40 |
+
'binary_dilation', 'binary_opening', 'binary_closing',
|
41 |
+
'binary_hit_or_miss', 'binary_propagation', 'binary_fill_holes',
|
42 |
+
'grey_erosion', 'grey_dilation', 'grey_opening', 'grey_closing',
|
43 |
+
'morphological_gradient', 'morphological_laplace', 'white_tophat',
|
44 |
+
'black_tophat', 'distance_transform_bf', 'distance_transform_cdt',
|
45 |
+
'distance_transform_edt']
|
46 |
+
|
47 |
+
|
48 |
+
def _center_is_true(structure, origin):
|
49 |
+
structure = numpy.array(structure)
|
50 |
+
coor = tuple([oo + ss // 2 for ss, oo in zip(structure.shape,
|
51 |
+
origin)])
|
52 |
+
return bool(structure[coor])
|
53 |
+
|
54 |
+
|
55 |
+
def iterate_structure(structure, iterations, origin=None):
|
56 |
+
"""
|
57 |
+
Iterate a structure by dilating it with itself.
|
58 |
+
|
59 |
+
Parameters
|
60 |
+
----------
|
61 |
+
structure : array_like
|
62 |
+
Structuring element (an array of bools, for example), to be dilated with
|
63 |
+
itself.
|
64 |
+
iterations : int
|
65 |
+
number of dilations performed on the structure with itself
|
66 |
+
origin : optional
|
67 |
+
If origin is None, only the iterated structure is returned. If
|
68 |
+
not, a tuple of the iterated structure and the modified origin is
|
69 |
+
returned.
|
70 |
+
|
71 |
+
Returns
|
72 |
+
-------
|
73 |
+
iterate_structure : ndarray of bools
|
74 |
+
A new structuring element obtained by dilating `structure`
|
75 |
+
(`iterations` - 1) times with itself.
|
76 |
+
|
77 |
+
See Also
|
78 |
+
--------
|
79 |
+
generate_binary_structure
|
80 |
+
|
81 |
+
Examples
|
82 |
+
--------
|
83 |
+
>>> from scipy import ndimage
|
84 |
+
>>> struct = ndimage.generate_binary_structure(2, 1)
|
85 |
+
>>> struct.astype(int)
|
86 |
+
array([[0, 1, 0],
|
87 |
+
[1, 1, 1],
|
88 |
+
[0, 1, 0]])
|
89 |
+
>>> ndimage.iterate_structure(struct, 2).astype(int)
|
90 |
+
array([[0, 0, 1, 0, 0],
|
91 |
+
[0, 1, 1, 1, 0],
|
92 |
+
[1, 1, 1, 1, 1],
|
93 |
+
[0, 1, 1, 1, 0],
|
94 |
+
[0, 0, 1, 0, 0]])
|
95 |
+
>>> ndimage.iterate_structure(struct, 3).astype(int)
|
96 |
+
array([[0, 0, 0, 1, 0, 0, 0],
|
97 |
+
[0, 0, 1, 1, 1, 0, 0],
|
98 |
+
[0, 1, 1, 1, 1, 1, 0],
|
99 |
+
[1, 1, 1, 1, 1, 1, 1],
|
100 |
+
[0, 1, 1, 1, 1, 1, 0],
|
101 |
+
[0, 0, 1, 1, 1, 0, 0],
|
102 |
+
[0, 0, 0, 1, 0, 0, 0]])
|
103 |
+
|
104 |
+
"""
|
105 |
+
structure = numpy.asarray(structure)
|
106 |
+
if iterations < 2:
|
107 |
+
return structure.copy()
|
108 |
+
ni = iterations - 1
|
109 |
+
shape = [ii + ni * (ii - 1) for ii in structure.shape]
|
110 |
+
pos = [ni * (structure.shape[ii] // 2) for ii in range(len(shape))]
|
111 |
+
slc = tuple(slice(pos[ii], pos[ii] + structure.shape[ii], None)
|
112 |
+
for ii in range(len(shape)))
|
113 |
+
out = numpy.zeros(shape, bool)
|
114 |
+
out[slc] = structure != 0
|
115 |
+
out = binary_dilation(out, structure, iterations=ni)
|
116 |
+
if origin is None:
|
117 |
+
return out
|
118 |
+
else:
|
119 |
+
origin = _ni_support._normalize_sequence(origin, structure.ndim)
|
120 |
+
origin = [iterations * o for o in origin]
|
121 |
+
return out, origin
|
122 |
+
|
123 |
+
|
124 |
+
def generate_binary_structure(rank, connectivity):
|
125 |
+
"""
|
126 |
+
Generate a binary structure for binary morphological operations.
|
127 |
+
|
128 |
+
Parameters
|
129 |
+
----------
|
130 |
+
rank : int
|
131 |
+
Number of dimensions of the array to which the structuring element
|
132 |
+
will be applied, as returned by `np.ndim`.
|
133 |
+
connectivity : int
|
134 |
+
`connectivity` determines which elements of the output array belong
|
135 |
+
to the structure, i.e., are considered as neighbors of the central
|
136 |
+
element. Elements up to a squared distance of `connectivity` from
|
137 |
+
the center are considered neighbors. `connectivity` may range from 1
|
138 |
+
(no diagonal elements are neighbors) to `rank` (all elements are
|
139 |
+
neighbors).
|
140 |
+
|
141 |
+
Returns
|
142 |
+
-------
|
143 |
+
output : ndarray of bools
|
144 |
+
Structuring element which may be used for binary morphological
|
145 |
+
operations, with `rank` dimensions and all dimensions equal to 3.
|
146 |
+
|
147 |
+
See Also
|
148 |
+
--------
|
149 |
+
iterate_structure, binary_dilation, binary_erosion
|
150 |
+
|
151 |
+
Notes
|
152 |
+
-----
|
153 |
+
`generate_binary_structure` can only create structuring elements with
|
154 |
+
dimensions equal to 3, i.e., minimal dimensions. For larger structuring
|
155 |
+
elements, that are useful e.g., for eroding large objects, one may either
|
156 |
+
use `iterate_structure`, or create directly custom arrays with
|
157 |
+
numpy functions such as `numpy.ones`.
|
158 |
+
|
159 |
+
Examples
|
160 |
+
--------
|
161 |
+
>>> from scipy import ndimage
|
162 |
+
>>> import numpy as np
|
163 |
+
>>> struct = ndimage.generate_binary_structure(2, 1)
|
164 |
+
>>> struct
|
165 |
+
array([[False, True, False],
|
166 |
+
[ True, True, True],
|
167 |
+
[False, True, False]], dtype=bool)
|
168 |
+
>>> a = np.zeros((5,5))
|
169 |
+
>>> a[2, 2] = 1
|
170 |
+
>>> a
|
171 |
+
array([[ 0., 0., 0., 0., 0.],
|
172 |
+
[ 0., 0., 0., 0., 0.],
|
173 |
+
[ 0., 0., 1., 0., 0.],
|
174 |
+
[ 0., 0., 0., 0., 0.],
|
175 |
+
[ 0., 0., 0., 0., 0.]])
|
176 |
+
>>> b = ndimage.binary_dilation(a, structure=struct).astype(a.dtype)
|
177 |
+
>>> b
|
178 |
+
array([[ 0., 0., 0., 0., 0.],
|
179 |
+
[ 0., 0., 1., 0., 0.],
|
180 |
+
[ 0., 1., 1., 1., 0.],
|
181 |
+
[ 0., 0., 1., 0., 0.],
|
182 |
+
[ 0., 0., 0., 0., 0.]])
|
183 |
+
>>> ndimage.binary_dilation(b, structure=struct).astype(a.dtype)
|
184 |
+
array([[ 0., 0., 1., 0., 0.],
|
185 |
+
[ 0., 1., 1., 1., 0.],
|
186 |
+
[ 1., 1., 1., 1., 1.],
|
187 |
+
[ 0., 1., 1., 1., 0.],
|
188 |
+
[ 0., 0., 1., 0., 0.]])
|
189 |
+
>>> struct = ndimage.generate_binary_structure(2, 2)
|
190 |
+
>>> struct
|
191 |
+
array([[ True, True, True],
|
192 |
+
[ True, True, True],
|
193 |
+
[ True, True, True]], dtype=bool)
|
194 |
+
>>> struct = ndimage.generate_binary_structure(3, 1)
|
195 |
+
>>> struct # no diagonal elements
|
196 |
+
array([[[False, False, False],
|
197 |
+
[False, True, False],
|
198 |
+
[False, False, False]],
|
199 |
+
[[False, True, False],
|
200 |
+
[ True, True, True],
|
201 |
+
[False, True, False]],
|
202 |
+
[[False, False, False],
|
203 |
+
[False, True, False],
|
204 |
+
[False, False, False]]], dtype=bool)
|
205 |
+
|
206 |
+
"""
|
207 |
+
if connectivity < 1:
|
208 |
+
connectivity = 1
|
209 |
+
if rank < 1:
|
210 |
+
return numpy.array(True, dtype=bool)
|
211 |
+
output = numpy.fabs(numpy.indices([3] * rank) - 1)
|
212 |
+
output = numpy.add.reduce(output, 0)
|
213 |
+
return output <= connectivity
|
214 |
+
|
215 |
+
|
216 |
+
def _binary_erosion(input, structure, iterations, mask, output,
|
217 |
+
border_value, origin, invert, brute_force):
|
218 |
+
try:
|
219 |
+
iterations = operator.index(iterations)
|
220 |
+
except TypeError as e:
|
221 |
+
raise TypeError('iterations parameter should be an integer') from e
|
222 |
+
|
223 |
+
input = numpy.asarray(input)
|
224 |
+
if numpy.iscomplexobj(input):
|
225 |
+
raise TypeError('Complex type not supported')
|
226 |
+
if structure is None:
|
227 |
+
structure = generate_binary_structure(input.ndim, 1)
|
228 |
+
else:
|
229 |
+
structure = numpy.asarray(structure, dtype=bool)
|
230 |
+
if structure.ndim != input.ndim:
|
231 |
+
raise RuntimeError('structure and input must have same dimensionality')
|
232 |
+
if not structure.flags.contiguous:
|
233 |
+
structure = structure.copy()
|
234 |
+
if numpy.prod(structure.shape, axis=0) < 1:
|
235 |
+
raise RuntimeError('structure must not be empty')
|
236 |
+
if mask is not None:
|
237 |
+
mask = numpy.asarray(mask)
|
238 |
+
if mask.shape != input.shape:
|
239 |
+
raise RuntimeError('mask and input must have equal sizes')
|
240 |
+
origin = _ni_support._normalize_sequence(origin, input.ndim)
|
241 |
+
cit = _center_is_true(structure, origin)
|
242 |
+
if isinstance(output, numpy.ndarray):
|
243 |
+
if numpy.iscomplexobj(output):
|
244 |
+
raise TypeError('Complex output type not supported')
|
245 |
+
else:
|
246 |
+
output = bool
|
247 |
+
output = _ni_support._get_output(output, input)
|
248 |
+
temp_needed = numpy.may_share_memory(input, output)
|
249 |
+
if temp_needed:
|
250 |
+
# input and output arrays cannot share memory
|
251 |
+
temp = output
|
252 |
+
output = _ni_support._get_output(output.dtype, input)
|
253 |
+
if iterations == 1:
|
254 |
+
_nd_image.binary_erosion(input, structure, mask, output,
|
255 |
+
border_value, origin, invert, cit, 0)
|
256 |
+
elif cit and not brute_force:
|
257 |
+
changed, coordinate_list = _nd_image.binary_erosion(
|
258 |
+
input, structure, mask, output,
|
259 |
+
border_value, origin, invert, cit, 1)
|
260 |
+
structure = structure[tuple([slice(None, None, -1)] *
|
261 |
+
structure.ndim)]
|
262 |
+
for ii in range(len(origin)):
|
263 |
+
origin[ii] = -origin[ii]
|
264 |
+
if not structure.shape[ii] & 1:
|
265 |
+
origin[ii] -= 1
|
266 |
+
if mask is not None:
|
267 |
+
mask = numpy.asarray(mask, dtype=numpy.int8)
|
268 |
+
if not structure.flags.contiguous:
|
269 |
+
structure = structure.copy()
|
270 |
+
_nd_image.binary_erosion2(output, structure, mask, iterations - 1,
|
271 |
+
origin, invert, coordinate_list)
|
272 |
+
else:
|
273 |
+
tmp_in = numpy.empty_like(input, dtype=bool)
|
274 |
+
tmp_out = output
|
275 |
+
if iterations >= 1 and not iterations & 1:
|
276 |
+
tmp_in, tmp_out = tmp_out, tmp_in
|
277 |
+
changed = _nd_image.binary_erosion(
|
278 |
+
input, structure, mask, tmp_out,
|
279 |
+
border_value, origin, invert, cit, 0)
|
280 |
+
ii = 1
|
281 |
+
while ii < iterations or (iterations < 1 and changed):
|
282 |
+
tmp_in, tmp_out = tmp_out, tmp_in
|
283 |
+
changed = _nd_image.binary_erosion(
|
284 |
+
tmp_in, structure, mask, tmp_out,
|
285 |
+
border_value, origin, invert, cit, 0)
|
286 |
+
ii += 1
|
287 |
+
if temp_needed:
|
288 |
+
temp[...] = output
|
289 |
+
output = temp
|
290 |
+
return output
|
291 |
+
|
292 |
+
|
293 |
+
def binary_erosion(input, structure=None, iterations=1, mask=None, output=None,
|
294 |
+
border_value=0, origin=0, brute_force=False):
|
295 |
+
"""
|
296 |
+
Multidimensional binary erosion with a given structuring element.
|
297 |
+
|
298 |
+
Binary erosion is a mathematical morphology operation used for image
|
299 |
+
processing.
|
300 |
+
|
301 |
+
Parameters
|
302 |
+
----------
|
303 |
+
input : array_like
|
304 |
+
Binary image to be eroded. Non-zero (True) elements form
|
305 |
+
the subset to be eroded.
|
306 |
+
structure : array_like, optional
|
307 |
+
Structuring element used for the erosion. Non-zero elements are
|
308 |
+
considered True. If no structuring element is provided, an element
|
309 |
+
is generated with a square connectivity equal to one.
|
310 |
+
iterations : int, optional
|
311 |
+
The erosion is repeated `iterations` times (one, by default).
|
312 |
+
If iterations is less than 1, the erosion is repeated until the
|
313 |
+
result does not change anymore.
|
314 |
+
mask : array_like, optional
|
315 |
+
If a mask is given, only those elements with a True value at
|
316 |
+
the corresponding mask element are modified at each iteration.
|
317 |
+
output : ndarray, optional
|
318 |
+
Array of the same shape as input, into which the output is placed.
|
319 |
+
By default, a new array is created.
|
320 |
+
border_value : int (cast to 0 or 1), optional
|
321 |
+
Value at the border in the output array.
|
322 |
+
origin : int or tuple of ints, optional
|
323 |
+
Placement of the filter, by default 0.
|
324 |
+
brute_force : boolean, optional
|
325 |
+
Memory condition: if False, only the pixels whose value was changed in
|
326 |
+
the last iteration are tracked as candidates to be updated (eroded) in
|
327 |
+
the current iteration; if True all pixels are considered as candidates
|
328 |
+
for erosion, regardless of what happened in the previous iteration.
|
329 |
+
False by default.
|
330 |
+
|
331 |
+
Returns
|
332 |
+
-------
|
333 |
+
binary_erosion : ndarray of bools
|
334 |
+
Erosion of the input by the structuring element.
|
335 |
+
|
336 |
+
See Also
|
337 |
+
--------
|
338 |
+
grey_erosion, binary_dilation, binary_closing, binary_opening,
|
339 |
+
generate_binary_structure
|
340 |
+
|
341 |
+
Notes
|
342 |
+
-----
|
343 |
+
Erosion [1]_ is a mathematical morphology operation [2]_ that uses a
|
344 |
+
structuring element for shrinking the shapes in an image. The binary
|
345 |
+
erosion of an image by a structuring element is the locus of the points
|
346 |
+
where a superimposition of the structuring element centered on the point
|
347 |
+
is entirely contained in the set of non-zero elements of the image.
|
348 |
+
|
349 |
+
References
|
350 |
+
----------
|
351 |
+
.. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29
|
352 |
+
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
|
353 |
+
|
354 |
+
Examples
|
355 |
+
--------
|
356 |
+
>>> from scipy import ndimage
|
357 |
+
>>> import numpy as np
|
358 |
+
>>> a = np.zeros((7,7), dtype=int)
|
359 |
+
>>> a[1:6, 2:5] = 1
|
360 |
+
>>> a
|
361 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
362 |
+
[0, 0, 1, 1, 1, 0, 0],
|
363 |
+
[0, 0, 1, 1, 1, 0, 0],
|
364 |
+
[0, 0, 1, 1, 1, 0, 0],
|
365 |
+
[0, 0, 1, 1, 1, 0, 0],
|
366 |
+
[0, 0, 1, 1, 1, 0, 0],
|
367 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
368 |
+
>>> ndimage.binary_erosion(a).astype(a.dtype)
|
369 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
370 |
+
[0, 0, 0, 0, 0, 0, 0],
|
371 |
+
[0, 0, 0, 1, 0, 0, 0],
|
372 |
+
[0, 0, 0, 1, 0, 0, 0],
|
373 |
+
[0, 0, 0, 1, 0, 0, 0],
|
374 |
+
[0, 0, 0, 0, 0, 0, 0],
|
375 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
376 |
+
>>> #Erosion removes objects smaller than the structure
|
377 |
+
>>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
|
378 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
379 |
+
[0, 0, 0, 0, 0, 0, 0],
|
380 |
+
[0, 0, 0, 0, 0, 0, 0],
|
381 |
+
[0, 0, 0, 0, 0, 0, 0],
|
382 |
+
[0, 0, 0, 0, 0, 0, 0],
|
383 |
+
[0, 0, 0, 0, 0, 0, 0],
|
384 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
385 |
+
|
386 |
+
"""
|
387 |
+
return _binary_erosion(input, structure, iterations, mask,
|
388 |
+
output, border_value, origin, 0, brute_force)
|
389 |
+
|
390 |
+
|
391 |
+
def binary_dilation(input, structure=None, iterations=1, mask=None,
|
392 |
+
output=None, border_value=0, origin=0,
|
393 |
+
brute_force=False):
|
394 |
+
"""
|
395 |
+
Multidimensional binary dilation with the given structuring element.
|
396 |
+
|
397 |
+
Parameters
|
398 |
+
----------
|
399 |
+
input : array_like
|
400 |
+
Binary array_like to be dilated. Non-zero (True) elements form
|
401 |
+
the subset to be dilated.
|
402 |
+
structure : array_like, optional
|
403 |
+
Structuring element used for the dilation. Non-zero elements are
|
404 |
+
considered True. If no structuring element is provided an element
|
405 |
+
is generated with a square connectivity equal to one.
|
406 |
+
iterations : int, optional
|
407 |
+
The dilation is repeated `iterations` times (one, by default).
|
408 |
+
If iterations is less than 1, the dilation is repeated until the
|
409 |
+
result does not change anymore. Only an integer of iterations is
|
410 |
+
accepted.
|
411 |
+
mask : array_like, optional
|
412 |
+
If a mask is given, only those elements with a True value at
|
413 |
+
the corresponding mask element are modified at each iteration.
|
414 |
+
output : ndarray, optional
|
415 |
+
Array of the same shape as input, into which the output is placed.
|
416 |
+
By default, a new array is created.
|
417 |
+
border_value : int (cast to 0 or 1), optional
|
418 |
+
Value at the border in the output array.
|
419 |
+
origin : int or tuple of ints, optional
|
420 |
+
Placement of the filter, by default 0.
|
421 |
+
brute_force : boolean, optional
|
422 |
+
Memory condition: if False, only the pixels whose value was changed in
|
423 |
+
the last iteration are tracked as candidates to be updated (dilated)
|
424 |
+
in the current iteration; if True all pixels are considered as
|
425 |
+
candidates for dilation, regardless of what happened in the previous
|
426 |
+
iteration. False by default.
|
427 |
+
|
428 |
+
Returns
|
429 |
+
-------
|
430 |
+
binary_dilation : ndarray of bools
|
431 |
+
Dilation of the input by the structuring element.
|
432 |
+
|
433 |
+
See Also
|
434 |
+
--------
|
435 |
+
grey_dilation, binary_erosion, binary_closing, binary_opening,
|
436 |
+
generate_binary_structure
|
437 |
+
|
438 |
+
Notes
|
439 |
+
-----
|
440 |
+
Dilation [1]_ is a mathematical morphology operation [2]_ that uses a
|
441 |
+
structuring element for expanding the shapes in an image. The binary
|
442 |
+
dilation of an image by a structuring element is the locus of the points
|
443 |
+
covered by the structuring element, when its center lies within the
|
444 |
+
non-zero points of the image.
|
445 |
+
|
446 |
+
References
|
447 |
+
----------
|
448 |
+
.. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29
|
449 |
+
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
|
450 |
+
|
451 |
+
Examples
|
452 |
+
--------
|
453 |
+
>>> from scipy import ndimage
|
454 |
+
>>> import numpy as np
|
455 |
+
>>> a = np.zeros((5, 5))
|
456 |
+
>>> a[2, 2] = 1
|
457 |
+
>>> a
|
458 |
+
array([[ 0., 0., 0., 0., 0.],
|
459 |
+
[ 0., 0., 0., 0., 0.],
|
460 |
+
[ 0., 0., 1., 0., 0.],
|
461 |
+
[ 0., 0., 0., 0., 0.],
|
462 |
+
[ 0., 0., 0., 0., 0.]])
|
463 |
+
>>> ndimage.binary_dilation(a)
|
464 |
+
array([[False, False, False, False, False],
|
465 |
+
[False, False, True, False, False],
|
466 |
+
[False, True, True, True, False],
|
467 |
+
[False, False, True, False, False],
|
468 |
+
[False, False, False, False, False]], dtype=bool)
|
469 |
+
>>> ndimage.binary_dilation(a).astype(a.dtype)
|
470 |
+
array([[ 0., 0., 0., 0., 0.],
|
471 |
+
[ 0., 0., 1., 0., 0.],
|
472 |
+
[ 0., 1., 1., 1., 0.],
|
473 |
+
[ 0., 0., 1., 0., 0.],
|
474 |
+
[ 0., 0., 0., 0., 0.]])
|
475 |
+
>>> # 3x3 structuring element with connectivity 1, used by default
|
476 |
+
>>> struct1 = ndimage.generate_binary_structure(2, 1)
|
477 |
+
>>> struct1
|
478 |
+
array([[False, True, False],
|
479 |
+
[ True, True, True],
|
480 |
+
[False, True, False]], dtype=bool)
|
481 |
+
>>> # 3x3 structuring element with connectivity 2
|
482 |
+
>>> struct2 = ndimage.generate_binary_structure(2, 2)
|
483 |
+
>>> struct2
|
484 |
+
array([[ True, True, True],
|
485 |
+
[ True, True, True],
|
486 |
+
[ True, True, True]], dtype=bool)
|
487 |
+
>>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
|
488 |
+
array([[ 0., 0., 0., 0., 0.],
|
489 |
+
[ 0., 0., 1., 0., 0.],
|
490 |
+
[ 0., 1., 1., 1., 0.],
|
491 |
+
[ 0., 0., 1., 0., 0.],
|
492 |
+
[ 0., 0., 0., 0., 0.]])
|
493 |
+
>>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
|
494 |
+
array([[ 0., 0., 0., 0., 0.],
|
495 |
+
[ 0., 1., 1., 1., 0.],
|
496 |
+
[ 0., 1., 1., 1., 0.],
|
497 |
+
[ 0., 1., 1., 1., 0.],
|
498 |
+
[ 0., 0., 0., 0., 0.]])
|
499 |
+
>>> ndimage.binary_dilation(a, structure=struct1,\\
|
500 |
+
... iterations=2).astype(a.dtype)
|
501 |
+
array([[ 0., 0., 1., 0., 0.],
|
502 |
+
[ 0., 1., 1., 1., 0.],
|
503 |
+
[ 1., 1., 1., 1., 1.],
|
504 |
+
[ 0., 1., 1., 1., 0.],
|
505 |
+
[ 0., 0., 1., 0., 0.]])
|
506 |
+
|
507 |
+
"""
|
508 |
+
input = numpy.asarray(input)
|
509 |
+
if structure is None:
|
510 |
+
structure = generate_binary_structure(input.ndim, 1)
|
511 |
+
origin = _ni_support._normalize_sequence(origin, input.ndim)
|
512 |
+
structure = numpy.asarray(structure)
|
513 |
+
structure = structure[tuple([slice(None, None, -1)] *
|
514 |
+
structure.ndim)]
|
515 |
+
for ii in range(len(origin)):
|
516 |
+
origin[ii] = -origin[ii]
|
517 |
+
if not structure.shape[ii] & 1:
|
518 |
+
origin[ii] -= 1
|
519 |
+
|
520 |
+
return _binary_erosion(input, structure, iterations, mask,
|
521 |
+
output, border_value, origin, 1, brute_force)
|
522 |
+
|
523 |
+
|
524 |
+
def binary_opening(input, structure=None, iterations=1, output=None,
|
525 |
+
origin=0, mask=None, border_value=0, brute_force=False):
|
526 |
+
"""
|
527 |
+
Multidimensional binary opening with the given structuring element.
|
528 |
+
|
529 |
+
The *opening* of an input image by a structuring element is the
|
530 |
+
*dilation* of the *erosion* of the image by the structuring element.
|
531 |
+
|
532 |
+
Parameters
|
533 |
+
----------
|
534 |
+
input : array_like
|
535 |
+
Binary array_like to be opened. Non-zero (True) elements form
|
536 |
+
the subset to be opened.
|
537 |
+
structure : array_like, optional
|
538 |
+
Structuring element used for the opening. Non-zero elements are
|
539 |
+
considered True. If no structuring element is provided an element
|
540 |
+
is generated with a square connectivity equal to one (i.e., only
|
541 |
+
nearest neighbors are connected to the center, diagonally-connected
|
542 |
+
elements are not considered neighbors).
|
543 |
+
iterations : int, optional
|
544 |
+
The erosion step of the opening, then the dilation step are each
|
545 |
+
repeated `iterations` times (one, by default). If `iterations` is
|
546 |
+
less than 1, each operation is repeated until the result does
|
547 |
+
not change anymore. Only an integer of iterations is accepted.
|
548 |
+
output : ndarray, optional
|
549 |
+
Array of the same shape as input, into which the output is placed.
|
550 |
+
By default, a new array is created.
|
551 |
+
origin : int or tuple of ints, optional
|
552 |
+
Placement of the filter, by default 0.
|
553 |
+
mask : array_like, optional
|
554 |
+
If a mask is given, only those elements with a True value at
|
555 |
+
the corresponding mask element are modified at each iteration.
|
556 |
+
|
557 |
+
.. versionadded:: 1.1.0
|
558 |
+
border_value : int (cast to 0 or 1), optional
|
559 |
+
Value at the border in the output array.
|
560 |
+
|
561 |
+
.. versionadded:: 1.1.0
|
562 |
+
brute_force : boolean, optional
|
563 |
+
Memory condition: if False, only the pixels whose value was changed in
|
564 |
+
the last iteration are tracked as candidates to be updated in the
|
565 |
+
current iteration; if true all pixels are considered as candidates for
|
566 |
+
update, regardless of what happened in the previous iteration.
|
567 |
+
False by default.
|
568 |
+
|
569 |
+
.. versionadded:: 1.1.0
|
570 |
+
|
571 |
+
Returns
|
572 |
+
-------
|
573 |
+
binary_opening : ndarray of bools
|
574 |
+
Opening of the input by the structuring element.
|
575 |
+
|
576 |
+
See Also
|
577 |
+
--------
|
578 |
+
grey_opening, binary_closing, binary_erosion, binary_dilation,
|
579 |
+
generate_binary_structure
|
580 |
+
|
581 |
+
Notes
|
582 |
+
-----
|
583 |
+
*Opening* [1]_ is a mathematical morphology operation [2]_ that
|
584 |
+
consists in the succession of an erosion and a dilation of the
|
585 |
+
input with the same structuring element. Opening, therefore, removes
|
586 |
+
objects smaller than the structuring element.
|
587 |
+
|
588 |
+
Together with *closing* (`binary_closing`), opening can be used for
|
589 |
+
noise removal.
|
590 |
+
|
591 |
+
References
|
592 |
+
----------
|
593 |
+
.. [1] https://en.wikipedia.org/wiki/Opening_%28morphology%29
|
594 |
+
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
|
595 |
+
|
596 |
+
Examples
|
597 |
+
--------
|
598 |
+
>>> from scipy import ndimage
|
599 |
+
>>> import numpy as np
|
600 |
+
>>> a = np.zeros((5,5), dtype=int)
|
601 |
+
>>> a[1:4, 1:4] = 1; a[4, 4] = 1
|
602 |
+
>>> a
|
603 |
+
array([[0, 0, 0, 0, 0],
|
604 |
+
[0, 1, 1, 1, 0],
|
605 |
+
[0, 1, 1, 1, 0],
|
606 |
+
[0, 1, 1, 1, 0],
|
607 |
+
[0, 0, 0, 0, 1]])
|
608 |
+
>>> # Opening removes small objects
|
609 |
+
>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(int)
|
610 |
+
array([[0, 0, 0, 0, 0],
|
611 |
+
[0, 1, 1, 1, 0],
|
612 |
+
[0, 1, 1, 1, 0],
|
613 |
+
[0, 1, 1, 1, 0],
|
614 |
+
[0, 0, 0, 0, 0]])
|
615 |
+
>>> # Opening can also smooth corners
|
616 |
+
>>> ndimage.binary_opening(a).astype(int)
|
617 |
+
array([[0, 0, 0, 0, 0],
|
618 |
+
[0, 0, 1, 0, 0],
|
619 |
+
[0, 1, 1, 1, 0],
|
620 |
+
[0, 0, 1, 0, 0],
|
621 |
+
[0, 0, 0, 0, 0]])
|
622 |
+
>>> # Opening is the dilation of the erosion of the input
|
623 |
+
>>> ndimage.binary_erosion(a).astype(int)
|
624 |
+
array([[0, 0, 0, 0, 0],
|
625 |
+
[0, 0, 0, 0, 0],
|
626 |
+
[0, 0, 1, 0, 0],
|
627 |
+
[0, 0, 0, 0, 0],
|
628 |
+
[0, 0, 0, 0, 0]])
|
629 |
+
>>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(int)
|
630 |
+
array([[0, 0, 0, 0, 0],
|
631 |
+
[0, 0, 1, 0, 0],
|
632 |
+
[0, 1, 1, 1, 0],
|
633 |
+
[0, 0, 1, 0, 0],
|
634 |
+
[0, 0, 0, 0, 0]])
|
635 |
+
|
636 |
+
"""
|
637 |
+
input = numpy.asarray(input)
|
638 |
+
if structure is None:
|
639 |
+
rank = input.ndim
|
640 |
+
structure = generate_binary_structure(rank, 1)
|
641 |
+
|
642 |
+
tmp = binary_erosion(input, structure, iterations, mask, None,
|
643 |
+
border_value, origin, brute_force)
|
644 |
+
return binary_dilation(tmp, structure, iterations, mask, output,
|
645 |
+
border_value, origin, brute_force)
|
646 |
+
|
647 |
+
|
648 |
+
def binary_closing(input, structure=None, iterations=1, output=None,
|
649 |
+
origin=0, mask=None, border_value=0, brute_force=False):
|
650 |
+
"""
|
651 |
+
Multidimensional binary closing with the given structuring element.
|
652 |
+
|
653 |
+
The *closing* of an input image by a structuring element is the
|
654 |
+
*erosion* of the *dilation* of the image by the structuring element.
|
655 |
+
|
656 |
+
Parameters
|
657 |
+
----------
|
658 |
+
input : array_like
|
659 |
+
Binary array_like to be closed. Non-zero (True) elements form
|
660 |
+
the subset to be closed.
|
661 |
+
structure : array_like, optional
|
662 |
+
Structuring element used for the closing. Non-zero elements are
|
663 |
+
considered True. If no structuring element is provided an element
|
664 |
+
is generated with a square connectivity equal to one (i.e., only
|
665 |
+
nearest neighbors are connected to the center, diagonally-connected
|
666 |
+
elements are not considered neighbors).
|
667 |
+
iterations : int, optional
|
668 |
+
The dilation step of the closing, then the erosion step are each
|
669 |
+
repeated `iterations` times (one, by default). If iterations is
|
670 |
+
less than 1, each operations is repeated until the result does
|
671 |
+
not change anymore. Only an integer of iterations is accepted.
|
672 |
+
output : ndarray, optional
|
673 |
+
Array of the same shape as input, into which the output is placed.
|
674 |
+
By default, a new array is created.
|
675 |
+
origin : int or tuple of ints, optional
|
676 |
+
Placement of the filter, by default 0.
|
677 |
+
mask : array_like, optional
|
678 |
+
If a mask is given, only those elements with a True value at
|
679 |
+
the corresponding mask element are modified at each iteration.
|
680 |
+
|
681 |
+
.. versionadded:: 1.1.0
|
682 |
+
border_value : int (cast to 0 or 1), optional
|
683 |
+
Value at the border in the output array.
|
684 |
+
|
685 |
+
.. versionadded:: 1.1.0
|
686 |
+
brute_force : boolean, optional
|
687 |
+
Memory condition: if False, only the pixels whose value was changed in
|
688 |
+
the last iteration are tracked as candidates to be updated in the
|
689 |
+
current iteration; if true al pixels are considered as candidates for
|
690 |
+
update, regardless of what happened in the previous iteration.
|
691 |
+
False by default.
|
692 |
+
|
693 |
+
.. versionadded:: 1.1.0
|
694 |
+
|
695 |
+
Returns
|
696 |
+
-------
|
697 |
+
binary_closing : ndarray of bools
|
698 |
+
Closing of the input by the structuring element.
|
699 |
+
|
700 |
+
See Also
|
701 |
+
--------
|
702 |
+
grey_closing, binary_opening, binary_dilation, binary_erosion,
|
703 |
+
generate_binary_structure
|
704 |
+
|
705 |
+
Notes
|
706 |
+
-----
|
707 |
+
*Closing* [1]_ is a mathematical morphology operation [2]_ that
|
708 |
+
consists in the succession of a dilation and an erosion of the
|
709 |
+
input with the same structuring element. Closing therefore fills
|
710 |
+
holes smaller than the structuring element.
|
711 |
+
|
712 |
+
Together with *opening* (`binary_opening`), closing can be used for
|
713 |
+
noise removal.
|
714 |
+
|
715 |
+
References
|
716 |
+
----------
|
717 |
+
.. [1] https://en.wikipedia.org/wiki/Closing_%28morphology%29
|
718 |
+
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
|
719 |
+
|
720 |
+
Examples
|
721 |
+
--------
|
722 |
+
>>> from scipy import ndimage
|
723 |
+
>>> import numpy as np
|
724 |
+
>>> a = np.zeros((5,5), dtype=int)
|
725 |
+
>>> a[1:-1, 1:-1] = 1; a[2,2] = 0
|
726 |
+
>>> a
|
727 |
+
array([[0, 0, 0, 0, 0],
|
728 |
+
[0, 1, 1, 1, 0],
|
729 |
+
[0, 1, 0, 1, 0],
|
730 |
+
[0, 1, 1, 1, 0],
|
731 |
+
[0, 0, 0, 0, 0]])
|
732 |
+
>>> # Closing removes small holes
|
733 |
+
>>> ndimage.binary_closing(a).astype(int)
|
734 |
+
array([[0, 0, 0, 0, 0],
|
735 |
+
[0, 1, 1, 1, 0],
|
736 |
+
[0, 1, 1, 1, 0],
|
737 |
+
[0, 1, 1, 1, 0],
|
738 |
+
[0, 0, 0, 0, 0]])
|
739 |
+
>>> # Closing is the erosion of the dilation of the input
|
740 |
+
>>> ndimage.binary_dilation(a).astype(int)
|
741 |
+
array([[0, 1, 1, 1, 0],
|
742 |
+
[1, 1, 1, 1, 1],
|
743 |
+
[1, 1, 1, 1, 1],
|
744 |
+
[1, 1, 1, 1, 1],
|
745 |
+
[0, 1, 1, 1, 0]])
|
746 |
+
>>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int)
|
747 |
+
array([[0, 0, 0, 0, 0],
|
748 |
+
[0, 1, 1, 1, 0],
|
749 |
+
[0, 1, 1, 1, 0],
|
750 |
+
[0, 1, 1, 1, 0],
|
751 |
+
[0, 0, 0, 0, 0]])
|
752 |
+
|
753 |
+
|
754 |
+
>>> a = np.zeros((7,7), dtype=int)
|
755 |
+
>>> a[1:6, 2:5] = 1; a[1:3,3] = 0
|
756 |
+
>>> a
|
757 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
758 |
+
[0, 0, 1, 0, 1, 0, 0],
|
759 |
+
[0, 0, 1, 0, 1, 0, 0],
|
760 |
+
[0, 0, 1, 1, 1, 0, 0],
|
761 |
+
[0, 0, 1, 1, 1, 0, 0],
|
762 |
+
[0, 0, 1, 1, 1, 0, 0],
|
763 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
764 |
+
>>> # In addition to removing holes, closing can also
|
765 |
+
>>> # coarsen boundaries with fine hollows.
|
766 |
+
>>> ndimage.binary_closing(a).astype(int)
|
767 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
768 |
+
[0, 0, 1, 0, 1, 0, 0],
|
769 |
+
[0, 0, 1, 1, 1, 0, 0],
|
770 |
+
[0, 0, 1, 1, 1, 0, 0],
|
771 |
+
[0, 0, 1, 1, 1, 0, 0],
|
772 |
+
[0, 0, 1, 1, 1, 0, 0],
|
773 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
774 |
+
>>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int)
|
775 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
776 |
+
[0, 0, 1, 1, 1, 0, 0],
|
777 |
+
[0, 0, 1, 1, 1, 0, 0],
|
778 |
+
[0, 0, 1, 1, 1, 0, 0],
|
779 |
+
[0, 0, 1, 1, 1, 0, 0],
|
780 |
+
[0, 0, 1, 1, 1, 0, 0],
|
781 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
782 |
+
|
783 |
+
"""
|
784 |
+
input = numpy.asarray(input)
|
785 |
+
if structure is None:
|
786 |
+
rank = input.ndim
|
787 |
+
structure = generate_binary_structure(rank, 1)
|
788 |
+
|
789 |
+
tmp = binary_dilation(input, structure, iterations, mask, None,
|
790 |
+
border_value, origin, brute_force)
|
791 |
+
return binary_erosion(tmp, structure, iterations, mask, output,
|
792 |
+
border_value, origin, brute_force)
|
793 |
+
|
794 |
+
|
795 |
+
def binary_hit_or_miss(input, structure1=None, structure2=None,
|
796 |
+
output=None, origin1=0, origin2=None):
|
797 |
+
"""
|
798 |
+
Multidimensional binary hit-or-miss transform.
|
799 |
+
|
800 |
+
The hit-or-miss transform finds the locations of a given pattern
|
801 |
+
inside the input image.
|
802 |
+
|
803 |
+
Parameters
|
804 |
+
----------
|
805 |
+
input : array_like (cast to booleans)
|
806 |
+
Binary image where a pattern is to be detected.
|
807 |
+
structure1 : array_like (cast to booleans), optional
|
808 |
+
Part of the structuring element to be fitted to the foreground
|
809 |
+
(non-zero elements) of `input`. If no value is provided, a
|
810 |
+
structure of square connectivity 1 is chosen.
|
811 |
+
structure2 : array_like (cast to booleans), optional
|
812 |
+
Second part of the structuring element that has to miss completely
|
813 |
+
the foreground. If no value is provided, the complementary of
|
814 |
+
`structure1` is taken.
|
815 |
+
output : ndarray, optional
|
816 |
+
Array of the same shape as input, into which the output is placed.
|
817 |
+
By default, a new array is created.
|
818 |
+
origin1 : int or tuple of ints, optional
|
819 |
+
Placement of the first part of the structuring element `structure1`,
|
820 |
+
by default 0 for a centered structure.
|
821 |
+
origin2 : int or tuple of ints, optional
|
822 |
+
Placement of the second part of the structuring element `structure2`,
|
823 |
+
by default 0 for a centered structure. If a value is provided for
|
824 |
+
`origin1` and not for `origin2`, then `origin2` is set to `origin1`.
|
825 |
+
|
826 |
+
Returns
|
827 |
+
-------
|
828 |
+
binary_hit_or_miss : ndarray
|
829 |
+
Hit-or-miss transform of `input` with the given structuring
|
830 |
+
element (`structure1`, `structure2`).
|
831 |
+
|
832 |
+
See Also
|
833 |
+
--------
|
834 |
+
binary_erosion
|
835 |
+
|
836 |
+
References
|
837 |
+
----------
|
838 |
+
.. [1] https://en.wikipedia.org/wiki/Hit-or-miss_transform
|
839 |
+
|
840 |
+
Examples
|
841 |
+
--------
|
842 |
+
>>> from scipy import ndimage
|
843 |
+
>>> import numpy as np
|
844 |
+
>>> a = np.zeros((7,7), dtype=int)
|
845 |
+
>>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1
|
846 |
+
>>> a
|
847 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
848 |
+
[0, 1, 0, 0, 0, 0, 0],
|
849 |
+
[0, 0, 1, 1, 0, 0, 0],
|
850 |
+
[0, 0, 1, 1, 0, 0, 0],
|
851 |
+
[0, 0, 0, 0, 1, 1, 0],
|
852 |
+
[0, 0, 0, 0, 1, 1, 0],
|
853 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
854 |
+
>>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]])
|
855 |
+
>>> structure1
|
856 |
+
array([[1, 0, 0],
|
857 |
+
[0, 1, 1],
|
858 |
+
[0, 1, 1]])
|
859 |
+
>>> # Find the matches of structure1 in the array a
|
860 |
+
>>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(int)
|
861 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
862 |
+
[0, 0, 0, 0, 0, 0, 0],
|
863 |
+
[0, 0, 1, 0, 0, 0, 0],
|
864 |
+
[0, 0, 0, 0, 0, 0, 0],
|
865 |
+
[0, 0, 0, 0, 1, 0, 0],
|
866 |
+
[0, 0, 0, 0, 0, 0, 0],
|
867 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
868 |
+
>>> # Change the origin of the filter
|
869 |
+
>>> # origin1=1 is equivalent to origin1=(1,1) here
|
870 |
+
>>> ndimage.binary_hit_or_miss(a, structure1=structure1,\\
|
871 |
+
... origin1=1).astype(int)
|
872 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
873 |
+
[0, 0, 0, 0, 0, 0, 0],
|
874 |
+
[0, 0, 0, 0, 0, 0, 0],
|
875 |
+
[0, 0, 0, 1, 0, 0, 0],
|
876 |
+
[0, 0, 0, 0, 0, 0, 0],
|
877 |
+
[0, 0, 0, 0, 0, 1, 0],
|
878 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
879 |
+
|
880 |
+
"""
|
881 |
+
input = numpy.asarray(input)
|
882 |
+
if structure1 is None:
|
883 |
+
structure1 = generate_binary_structure(input.ndim, 1)
|
884 |
+
if structure2 is None:
|
885 |
+
structure2 = numpy.logical_not(structure1)
|
886 |
+
origin1 = _ni_support._normalize_sequence(origin1, input.ndim)
|
887 |
+
if origin2 is None:
|
888 |
+
origin2 = origin1
|
889 |
+
else:
|
890 |
+
origin2 = _ni_support._normalize_sequence(origin2, input.ndim)
|
891 |
+
|
892 |
+
tmp1 = _binary_erosion(input, structure1, 1, None, None, 0, origin1,
|
893 |
+
0, False)
|
894 |
+
inplace = isinstance(output, numpy.ndarray)
|
895 |
+
result = _binary_erosion(input, structure2, 1, None, output, 0,
|
896 |
+
origin2, 1, False)
|
897 |
+
if inplace:
|
898 |
+
numpy.logical_not(output, output)
|
899 |
+
numpy.logical_and(tmp1, output, output)
|
900 |
+
else:
|
901 |
+
numpy.logical_not(result, result)
|
902 |
+
return numpy.logical_and(tmp1, result)
|
903 |
+
|
904 |
+
|
905 |
+
def binary_propagation(input, structure=None, mask=None,
|
906 |
+
output=None, border_value=0, origin=0):
|
907 |
+
"""
|
908 |
+
Multidimensional binary propagation with the given structuring element.
|
909 |
+
|
910 |
+
Parameters
|
911 |
+
----------
|
912 |
+
input : array_like
|
913 |
+
Binary image to be propagated inside `mask`.
|
914 |
+
structure : array_like, optional
|
915 |
+
Structuring element used in the successive dilations. The output
|
916 |
+
may depend on the structuring element, especially if `mask` has
|
917 |
+
several connex components. If no structuring element is
|
918 |
+
provided, an element is generated with a squared connectivity equal
|
919 |
+
to one.
|
920 |
+
mask : array_like, optional
|
921 |
+
Binary mask defining the region into which `input` is allowed to
|
922 |
+
propagate.
|
923 |
+
output : ndarray, optional
|
924 |
+
Array of the same shape as input, into which the output is placed.
|
925 |
+
By default, a new array is created.
|
926 |
+
border_value : int (cast to 0 or 1), optional
|
927 |
+
Value at the border in the output array.
|
928 |
+
origin : int or tuple of ints, optional
|
929 |
+
Placement of the filter, by default 0.
|
930 |
+
|
931 |
+
Returns
|
932 |
+
-------
|
933 |
+
binary_propagation : ndarray
|
934 |
+
Binary propagation of `input` inside `mask`.
|
935 |
+
|
936 |
+
Notes
|
937 |
+
-----
|
938 |
+
This function is functionally equivalent to calling binary_dilation
|
939 |
+
with the number of iterations less than one: iterative dilation until
|
940 |
+
the result does not change anymore.
|
941 |
+
|
942 |
+
The succession of an erosion and propagation inside the original image
|
943 |
+
can be used instead of an *opening* for deleting small objects while
|
944 |
+
keeping the contours of larger objects untouched.
|
945 |
+
|
946 |
+
References
|
947 |
+
----------
|
948 |
+
.. [1] http://cmm.ensmp.fr/~serra/cours/pdf/en/ch6en.pdf, slide 15.
|
949 |
+
.. [2] I.T. Young, J.J. Gerbrands, and L.J. van Vliet, "Fundamentals of
|
950 |
+
image processing", 1998
|
951 |
+
ftp://qiftp.tudelft.nl/DIPimage/docs/FIP2.3.pdf
|
952 |
+
|
953 |
+
Examples
|
954 |
+
--------
|
955 |
+
>>> from scipy import ndimage
|
956 |
+
>>> import numpy as np
|
957 |
+
>>> input = np.zeros((8, 8), dtype=int)
|
958 |
+
>>> input[2, 2] = 1
|
959 |
+
>>> mask = np.zeros((8, 8), dtype=int)
|
960 |
+
>>> mask[1:4, 1:4] = mask[4, 4] = mask[6:8, 6:8] = 1
|
961 |
+
>>> input
|
962 |
+
array([[0, 0, 0, 0, 0, 0, 0, 0],
|
963 |
+
[0, 0, 0, 0, 0, 0, 0, 0],
|
964 |
+
[0, 0, 1, 0, 0, 0, 0, 0],
|
965 |
+
[0, 0, 0, 0, 0, 0, 0, 0],
|
966 |
+
[0, 0, 0, 0, 0, 0, 0, 0],
|
967 |
+
[0, 0, 0, 0, 0, 0, 0, 0],
|
968 |
+
[0, 0, 0, 0, 0, 0, 0, 0],
|
969 |
+
[0, 0, 0, 0, 0, 0, 0, 0]])
|
970 |
+
>>> mask
|
971 |
+
array([[0, 0, 0, 0, 0, 0, 0, 0],
|
972 |
+
[0, 1, 1, 1, 0, 0, 0, 0],
|
973 |
+
[0, 1, 1, 1, 0, 0, 0, 0],
|
974 |
+
[0, 1, 1, 1, 0, 0, 0, 0],
|
975 |
+
[0, 0, 0, 0, 1, 0, 0, 0],
|
976 |
+
[0, 0, 0, 0, 0, 0, 0, 0],
|
977 |
+
[0, 0, 0, 0, 0, 0, 1, 1],
|
978 |
+
[0, 0, 0, 0, 0, 0, 1, 1]])
|
979 |
+
>>> ndimage.binary_propagation(input, mask=mask).astype(int)
|
980 |
+
array([[0, 0, 0, 0, 0, 0, 0, 0],
|
981 |
+
[0, 1, 1, 1, 0, 0, 0, 0],
|
982 |
+
[0, 1, 1, 1, 0, 0, 0, 0],
|
983 |
+
[0, 1, 1, 1, 0, 0, 0, 0],
|
984 |
+
[0, 0, 0, 0, 0, 0, 0, 0],
|
985 |
+
[0, 0, 0, 0, 0, 0, 0, 0],
|
986 |
+
[0, 0, 0, 0, 0, 0, 0, 0],
|
987 |
+
[0, 0, 0, 0, 0, 0, 0, 0]])
|
988 |
+
>>> ndimage.binary_propagation(input, mask=mask,\\
|
989 |
+
... structure=np.ones((3,3))).astype(int)
|
990 |
+
array([[0, 0, 0, 0, 0, 0, 0, 0],
|
991 |
+
[0, 1, 1, 1, 0, 0, 0, 0],
|
992 |
+
[0, 1, 1, 1, 0, 0, 0, 0],
|
993 |
+
[0, 1, 1, 1, 0, 0, 0, 0],
|
994 |
+
[0, 0, 0, 0, 1, 0, 0, 0],
|
995 |
+
[0, 0, 0, 0, 0, 0, 0, 0],
|
996 |
+
[0, 0, 0, 0, 0, 0, 0, 0],
|
997 |
+
[0, 0, 0, 0, 0, 0, 0, 0]])
|
998 |
+
|
999 |
+
>>> # Comparison between opening and erosion+propagation
|
1000 |
+
>>> a = np.zeros((6,6), dtype=int)
|
1001 |
+
>>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1
|
1002 |
+
>>> a
|
1003 |
+
array([[1, 0, 0, 0, 0, 0],
|
1004 |
+
[0, 0, 0, 0, 0, 0],
|
1005 |
+
[0, 0, 1, 1, 1, 0],
|
1006 |
+
[0, 0, 1, 1, 1, 0],
|
1007 |
+
[0, 0, 1, 1, 1, 0],
|
1008 |
+
[0, 0, 0, 0, 0, 1]])
|
1009 |
+
>>> ndimage.binary_opening(a).astype(int)
|
1010 |
+
array([[0, 0, 0, 0, 0, 0],
|
1011 |
+
[0, 0, 0, 0, 0, 0],
|
1012 |
+
[0, 0, 0, 1, 0, 0],
|
1013 |
+
[0, 0, 1, 1, 1, 0],
|
1014 |
+
[0, 0, 0, 1, 0, 0],
|
1015 |
+
[0, 0, 0, 0, 0, 0]])
|
1016 |
+
>>> b = ndimage.binary_erosion(a)
|
1017 |
+
>>> b.astype(int)
|
1018 |
+
array([[0, 0, 0, 0, 0, 0],
|
1019 |
+
[0, 0, 0, 0, 0, 0],
|
1020 |
+
[0, 0, 0, 0, 0, 0],
|
1021 |
+
[0, 0, 0, 1, 0, 0],
|
1022 |
+
[0, 0, 0, 0, 0, 0],
|
1023 |
+
[0, 0, 0, 0, 0, 0]])
|
1024 |
+
>>> ndimage.binary_propagation(b, mask=a).astype(int)
|
1025 |
+
array([[0, 0, 0, 0, 0, 0],
|
1026 |
+
[0, 0, 0, 0, 0, 0],
|
1027 |
+
[0, 0, 1, 1, 1, 0],
|
1028 |
+
[0, 0, 1, 1, 1, 0],
|
1029 |
+
[0, 0, 1, 1, 1, 0],
|
1030 |
+
[0, 0, 0, 0, 0, 0]])
|
1031 |
+
|
1032 |
+
"""
|
1033 |
+
return binary_dilation(input, structure, -1, mask, output,
|
1034 |
+
border_value, origin)
|
1035 |
+
|
1036 |
+
|
1037 |
+
def binary_fill_holes(input, structure=None, output=None, origin=0):
|
1038 |
+
"""
|
1039 |
+
Fill the holes in binary objects.
|
1040 |
+
|
1041 |
+
|
1042 |
+
Parameters
|
1043 |
+
----------
|
1044 |
+
input : array_like
|
1045 |
+
N-D binary array with holes to be filled
|
1046 |
+
structure : array_like, optional
|
1047 |
+
Structuring element used in the computation; large-size elements
|
1048 |
+
make computations faster but may miss holes separated from the
|
1049 |
+
background by thin regions. The default element (with a square
|
1050 |
+
connectivity equal to one) yields the intuitive result where all
|
1051 |
+
holes in the input have been filled.
|
1052 |
+
output : ndarray, optional
|
1053 |
+
Array of the same shape as input, into which the output is placed.
|
1054 |
+
By default, a new array is created.
|
1055 |
+
origin : int, tuple of ints, optional
|
1056 |
+
Position of the structuring element.
|
1057 |
+
|
1058 |
+
Returns
|
1059 |
+
-------
|
1060 |
+
out : ndarray
|
1061 |
+
Transformation of the initial image `input` where holes have been
|
1062 |
+
filled.
|
1063 |
+
|
1064 |
+
See Also
|
1065 |
+
--------
|
1066 |
+
binary_dilation, binary_propagation, label
|
1067 |
+
|
1068 |
+
Notes
|
1069 |
+
-----
|
1070 |
+
The algorithm used in this function consists in invading the complementary
|
1071 |
+
of the shapes in `input` from the outer boundary of the image,
|
1072 |
+
using binary dilations. Holes are not connected to the boundary and are
|
1073 |
+
therefore not invaded. The result is the complementary subset of the
|
1074 |
+
invaded region.
|
1075 |
+
|
1076 |
+
References
|
1077 |
+
----------
|
1078 |
+
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
|
1079 |
+
|
1080 |
+
|
1081 |
+
Examples
|
1082 |
+
--------
|
1083 |
+
>>> from scipy import ndimage
|
1084 |
+
>>> import numpy as np
|
1085 |
+
>>> a = np.zeros((5, 5), dtype=int)
|
1086 |
+
>>> a[1:4, 1:4] = 1
|
1087 |
+
>>> a[2,2] = 0
|
1088 |
+
>>> a
|
1089 |
+
array([[0, 0, 0, 0, 0],
|
1090 |
+
[0, 1, 1, 1, 0],
|
1091 |
+
[0, 1, 0, 1, 0],
|
1092 |
+
[0, 1, 1, 1, 0],
|
1093 |
+
[0, 0, 0, 0, 0]])
|
1094 |
+
>>> ndimage.binary_fill_holes(a).astype(int)
|
1095 |
+
array([[0, 0, 0, 0, 0],
|
1096 |
+
[0, 1, 1, 1, 0],
|
1097 |
+
[0, 1, 1, 1, 0],
|
1098 |
+
[0, 1, 1, 1, 0],
|
1099 |
+
[0, 0, 0, 0, 0]])
|
1100 |
+
>>> # Too big structuring element
|
1101 |
+
>>> ndimage.binary_fill_holes(a, structure=np.ones((5,5))).astype(int)
|
1102 |
+
array([[0, 0, 0, 0, 0],
|
1103 |
+
[0, 1, 1, 1, 0],
|
1104 |
+
[0, 1, 0, 1, 0],
|
1105 |
+
[0, 1, 1, 1, 0],
|
1106 |
+
[0, 0, 0, 0, 0]])
|
1107 |
+
|
1108 |
+
"""
|
1109 |
+
mask = numpy.logical_not(input)
|
1110 |
+
tmp = numpy.zeros(mask.shape, bool)
|
1111 |
+
inplace = isinstance(output, numpy.ndarray)
|
1112 |
+
if inplace:
|
1113 |
+
binary_dilation(tmp, structure, -1, mask, output, 1, origin)
|
1114 |
+
numpy.logical_not(output, output)
|
1115 |
+
else:
|
1116 |
+
output = binary_dilation(tmp, structure, -1, mask, None, 1,
|
1117 |
+
origin)
|
1118 |
+
numpy.logical_not(output, output)
|
1119 |
+
return output
|
1120 |
+
|
1121 |
+
|
1122 |
+
def grey_erosion(input, size=None, footprint=None, structure=None,
|
1123 |
+
output=None, mode="reflect", cval=0.0, origin=0):
|
1124 |
+
"""
|
1125 |
+
Calculate a greyscale erosion, using either a structuring element,
|
1126 |
+
or a footprint corresponding to a flat structuring element.
|
1127 |
+
|
1128 |
+
Grayscale erosion is a mathematical morphology operation. For the
|
1129 |
+
simple case of a full and flat structuring element, it can be viewed
|
1130 |
+
as a minimum filter over a sliding window.
|
1131 |
+
|
1132 |
+
Parameters
|
1133 |
+
----------
|
1134 |
+
input : array_like
|
1135 |
+
Array over which the grayscale erosion is to be computed.
|
1136 |
+
size : tuple of ints
|
1137 |
+
Shape of a flat and full structuring element used for the grayscale
|
1138 |
+
erosion. Optional if `footprint` or `structure` is provided.
|
1139 |
+
footprint : array of ints, optional
|
1140 |
+
Positions of non-infinite elements of a flat structuring element
|
1141 |
+
used for the grayscale erosion. Non-zero values give the set of
|
1142 |
+
neighbors of the center over which the minimum is chosen.
|
1143 |
+
structure : array of ints, optional
|
1144 |
+
Structuring element used for the grayscale erosion. `structure`
|
1145 |
+
may be a non-flat structuring element.
|
1146 |
+
output : array, optional
|
1147 |
+
An array used for storing the output of the erosion may be provided.
|
1148 |
+
mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
|
1149 |
+
The `mode` parameter determines how the array borders are
|
1150 |
+
handled, where `cval` is the value when mode is equal to
|
1151 |
+
'constant'. Default is 'reflect'
|
1152 |
+
cval : scalar, optional
|
1153 |
+
Value to fill past edges of input if `mode` is 'constant'. Default
|
1154 |
+
is 0.0.
|
1155 |
+
origin : scalar, optional
|
1156 |
+
The `origin` parameter controls the placement of the filter.
|
1157 |
+
Default 0
|
1158 |
+
|
1159 |
+
Returns
|
1160 |
+
-------
|
1161 |
+
output : ndarray
|
1162 |
+
Grayscale erosion of `input`.
|
1163 |
+
|
1164 |
+
See Also
|
1165 |
+
--------
|
1166 |
+
binary_erosion, grey_dilation, grey_opening, grey_closing
|
1167 |
+
generate_binary_structure, minimum_filter
|
1168 |
+
|
1169 |
+
Notes
|
1170 |
+
-----
|
1171 |
+
The grayscale erosion of an image input by a structuring element s defined
|
1172 |
+
over a domain E is given by:
|
1173 |
+
|
1174 |
+
(input+s)(x) = min {input(y) - s(x-y), for y in E}
|
1175 |
+
|
1176 |
+
In particular, for structuring elements defined as
|
1177 |
+
s(y) = 0 for y in E, the grayscale erosion computes the minimum of the
|
1178 |
+
input image inside a sliding window defined by E.
|
1179 |
+
|
1180 |
+
Grayscale erosion [1]_ is a *mathematical morphology* operation [2]_.
|
1181 |
+
|
1182 |
+
References
|
1183 |
+
----------
|
1184 |
+
.. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29
|
1185 |
+
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
|
1186 |
+
|
1187 |
+
Examples
|
1188 |
+
--------
|
1189 |
+
>>> from scipy import ndimage
|
1190 |
+
>>> import numpy as np
|
1191 |
+
>>> a = np.zeros((7,7), dtype=int)
|
1192 |
+
>>> a[1:6, 1:6] = 3
|
1193 |
+
>>> a[4,4] = 2; a[2,3] = 1
|
1194 |
+
>>> a
|
1195 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
1196 |
+
[0, 3, 3, 3, 3, 3, 0],
|
1197 |
+
[0, 3, 3, 1, 3, 3, 0],
|
1198 |
+
[0, 3, 3, 3, 3, 3, 0],
|
1199 |
+
[0, 3, 3, 3, 2, 3, 0],
|
1200 |
+
[0, 3, 3, 3, 3, 3, 0],
|
1201 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
1202 |
+
>>> ndimage.grey_erosion(a, size=(3,3))
|
1203 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
1204 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1205 |
+
[0, 0, 1, 1, 1, 0, 0],
|
1206 |
+
[0, 0, 1, 1, 1, 0, 0],
|
1207 |
+
[0, 0, 3, 2, 2, 0, 0],
|
1208 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1209 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
1210 |
+
>>> footprint = ndimage.generate_binary_structure(2, 1)
|
1211 |
+
>>> footprint
|
1212 |
+
array([[False, True, False],
|
1213 |
+
[ True, True, True],
|
1214 |
+
[False, True, False]], dtype=bool)
|
1215 |
+
>>> # Diagonally-connected elements are not considered neighbors
|
1216 |
+
>>> ndimage.grey_erosion(a, footprint=footprint)
|
1217 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
1218 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1219 |
+
[0, 0, 1, 1, 1, 0, 0],
|
1220 |
+
[0, 0, 3, 1, 2, 0, 0],
|
1221 |
+
[0, 0, 3, 2, 2, 0, 0],
|
1222 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1223 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
1224 |
+
|
1225 |
+
"""
|
1226 |
+
if size is None and footprint is None and structure is None:
|
1227 |
+
raise ValueError("size, footprint, or structure must be specified")
|
1228 |
+
|
1229 |
+
return _filters._min_or_max_filter(input, size, footprint, structure,
|
1230 |
+
output, mode, cval, origin, 1)
|
1231 |
+
|
1232 |
+
|
1233 |
+
def grey_dilation(input, size=None, footprint=None, structure=None,
|
1234 |
+
output=None, mode="reflect", cval=0.0, origin=0):
|
1235 |
+
"""
|
1236 |
+
Calculate a greyscale dilation, using either a structuring element,
|
1237 |
+
or a footprint corresponding to a flat structuring element.
|
1238 |
+
|
1239 |
+
Grayscale dilation is a mathematical morphology operation. For the
|
1240 |
+
simple case of a full and flat structuring element, it can be viewed
|
1241 |
+
as a maximum filter over a sliding window.
|
1242 |
+
|
1243 |
+
Parameters
|
1244 |
+
----------
|
1245 |
+
input : array_like
|
1246 |
+
Array over which the grayscale dilation is to be computed.
|
1247 |
+
size : tuple of ints
|
1248 |
+
Shape of a flat and full structuring element used for the grayscale
|
1249 |
+
dilation. Optional if `footprint` or `structure` is provided.
|
1250 |
+
footprint : array of ints, optional
|
1251 |
+
Positions of non-infinite elements of a flat structuring element
|
1252 |
+
used for the grayscale dilation. Non-zero values give the set of
|
1253 |
+
neighbors of the center over which the maximum is chosen.
|
1254 |
+
structure : array of ints, optional
|
1255 |
+
Structuring element used for the grayscale dilation. `structure`
|
1256 |
+
may be a non-flat structuring element.
|
1257 |
+
output : array, optional
|
1258 |
+
An array used for storing the output of the dilation may be provided.
|
1259 |
+
mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
|
1260 |
+
The `mode` parameter determines how the array borders are
|
1261 |
+
handled, where `cval` is the value when mode is equal to
|
1262 |
+
'constant'. Default is 'reflect'
|
1263 |
+
cval : scalar, optional
|
1264 |
+
Value to fill past edges of input if `mode` is 'constant'. Default
|
1265 |
+
is 0.0.
|
1266 |
+
origin : scalar, optional
|
1267 |
+
The `origin` parameter controls the placement of the filter.
|
1268 |
+
Default 0
|
1269 |
+
|
1270 |
+
Returns
|
1271 |
+
-------
|
1272 |
+
grey_dilation : ndarray
|
1273 |
+
Grayscale dilation of `input`.
|
1274 |
+
|
1275 |
+
See Also
|
1276 |
+
--------
|
1277 |
+
binary_dilation, grey_erosion, grey_closing, grey_opening
|
1278 |
+
generate_binary_structure, maximum_filter
|
1279 |
+
|
1280 |
+
Notes
|
1281 |
+
-----
|
1282 |
+
The grayscale dilation of an image input by a structuring element s defined
|
1283 |
+
over a domain E is given by:
|
1284 |
+
|
1285 |
+
(input+s)(x) = max {input(y) + s(x-y), for y in E}
|
1286 |
+
|
1287 |
+
In particular, for structuring elements defined as
|
1288 |
+
s(y) = 0 for y in E, the grayscale dilation computes the maximum of the
|
1289 |
+
input image inside a sliding window defined by E.
|
1290 |
+
|
1291 |
+
Grayscale dilation [1]_ is a *mathematical morphology* operation [2]_.
|
1292 |
+
|
1293 |
+
References
|
1294 |
+
----------
|
1295 |
+
.. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29
|
1296 |
+
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
|
1297 |
+
|
1298 |
+
Examples
|
1299 |
+
--------
|
1300 |
+
>>> from scipy import ndimage
|
1301 |
+
>>> import numpy as np
|
1302 |
+
>>> a = np.zeros((7,7), dtype=int)
|
1303 |
+
>>> a[2:5, 2:5] = 1
|
1304 |
+
>>> a[4,4] = 2; a[2,3] = 3
|
1305 |
+
>>> a
|
1306 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
1307 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1308 |
+
[0, 0, 1, 3, 1, 0, 0],
|
1309 |
+
[0, 0, 1, 1, 1, 0, 0],
|
1310 |
+
[0, 0, 1, 1, 2, 0, 0],
|
1311 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1312 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
1313 |
+
>>> ndimage.grey_dilation(a, size=(3,3))
|
1314 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
1315 |
+
[0, 1, 3, 3, 3, 1, 0],
|
1316 |
+
[0, 1, 3, 3, 3, 1, 0],
|
1317 |
+
[0, 1, 3, 3, 3, 2, 0],
|
1318 |
+
[0, 1, 1, 2, 2, 2, 0],
|
1319 |
+
[0, 1, 1, 2, 2, 2, 0],
|
1320 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
1321 |
+
>>> ndimage.grey_dilation(a, footprint=np.ones((3,3)))
|
1322 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
1323 |
+
[0, 1, 3, 3, 3, 1, 0],
|
1324 |
+
[0, 1, 3, 3, 3, 1, 0],
|
1325 |
+
[0, 1, 3, 3, 3, 2, 0],
|
1326 |
+
[0, 1, 1, 2, 2, 2, 0],
|
1327 |
+
[0, 1, 1, 2, 2, 2, 0],
|
1328 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
1329 |
+
>>> s = ndimage.generate_binary_structure(2,1)
|
1330 |
+
>>> s
|
1331 |
+
array([[False, True, False],
|
1332 |
+
[ True, True, True],
|
1333 |
+
[False, True, False]], dtype=bool)
|
1334 |
+
>>> ndimage.grey_dilation(a, footprint=s)
|
1335 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
1336 |
+
[0, 0, 1, 3, 1, 0, 0],
|
1337 |
+
[0, 1, 3, 3, 3, 1, 0],
|
1338 |
+
[0, 1, 1, 3, 2, 1, 0],
|
1339 |
+
[0, 1, 1, 2, 2, 2, 0],
|
1340 |
+
[0, 0, 1, 1, 2, 0, 0],
|
1341 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
1342 |
+
>>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3)))
|
1343 |
+
array([[1, 1, 1, 1, 1, 1, 1],
|
1344 |
+
[1, 2, 4, 4, 4, 2, 1],
|
1345 |
+
[1, 2, 4, 4, 4, 2, 1],
|
1346 |
+
[1, 2, 4, 4, 4, 3, 1],
|
1347 |
+
[1, 2, 2, 3, 3, 3, 1],
|
1348 |
+
[1, 2, 2, 3, 3, 3, 1],
|
1349 |
+
[1, 1, 1, 1, 1, 1, 1]])
|
1350 |
+
|
1351 |
+
"""
|
1352 |
+
if size is None and footprint is None and structure is None:
|
1353 |
+
raise ValueError("size, footprint, or structure must be specified")
|
1354 |
+
if structure is not None:
|
1355 |
+
structure = numpy.asarray(structure)
|
1356 |
+
structure = structure[tuple([slice(None, None, -1)] *
|
1357 |
+
structure.ndim)]
|
1358 |
+
if footprint is not None:
|
1359 |
+
footprint = numpy.asarray(footprint)
|
1360 |
+
footprint = footprint[tuple([slice(None, None, -1)] *
|
1361 |
+
footprint.ndim)]
|
1362 |
+
|
1363 |
+
input = numpy.asarray(input)
|
1364 |
+
origin = _ni_support._normalize_sequence(origin, input.ndim)
|
1365 |
+
for ii in range(len(origin)):
|
1366 |
+
origin[ii] = -origin[ii]
|
1367 |
+
if footprint is not None:
|
1368 |
+
sz = footprint.shape[ii]
|
1369 |
+
elif structure is not None:
|
1370 |
+
sz = structure.shape[ii]
|
1371 |
+
elif numpy.isscalar(size):
|
1372 |
+
sz = size
|
1373 |
+
else:
|
1374 |
+
sz = size[ii]
|
1375 |
+
if not sz & 1:
|
1376 |
+
origin[ii] -= 1
|
1377 |
+
|
1378 |
+
return _filters._min_or_max_filter(input, size, footprint, structure,
|
1379 |
+
output, mode, cval, origin, 0)
|
1380 |
+
|
1381 |
+
|
1382 |
+
def grey_opening(input, size=None, footprint=None, structure=None,
|
1383 |
+
output=None, mode="reflect", cval=0.0, origin=0):
|
1384 |
+
"""
|
1385 |
+
Multidimensional grayscale opening.
|
1386 |
+
|
1387 |
+
A grayscale opening consists in the succession of a grayscale erosion,
|
1388 |
+
and a grayscale dilation.
|
1389 |
+
|
1390 |
+
Parameters
|
1391 |
+
----------
|
1392 |
+
input : array_like
|
1393 |
+
Array over which the grayscale opening is to be computed.
|
1394 |
+
size : tuple of ints
|
1395 |
+
Shape of a flat and full structuring element used for the grayscale
|
1396 |
+
opening. Optional if `footprint` or `structure` is provided.
|
1397 |
+
footprint : array of ints, optional
|
1398 |
+
Positions of non-infinite elements of a flat structuring element
|
1399 |
+
used for the grayscale opening.
|
1400 |
+
structure : array of ints, optional
|
1401 |
+
Structuring element used for the grayscale opening. `structure`
|
1402 |
+
may be a non-flat structuring element.
|
1403 |
+
output : array, optional
|
1404 |
+
An array used for storing the output of the opening may be provided.
|
1405 |
+
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
|
1406 |
+
The `mode` parameter determines how the array borders are
|
1407 |
+
handled, where `cval` is the value when mode is equal to
|
1408 |
+
'constant'. Default is 'reflect'
|
1409 |
+
cval : scalar, optional
|
1410 |
+
Value to fill past edges of input if `mode` is 'constant'. Default
|
1411 |
+
is 0.0.
|
1412 |
+
origin : scalar, optional
|
1413 |
+
The `origin` parameter controls the placement of the filter.
|
1414 |
+
Default 0
|
1415 |
+
|
1416 |
+
Returns
|
1417 |
+
-------
|
1418 |
+
grey_opening : ndarray
|
1419 |
+
Result of the grayscale opening of `input` with `structure`.
|
1420 |
+
|
1421 |
+
See Also
|
1422 |
+
--------
|
1423 |
+
binary_opening, grey_dilation, grey_erosion, grey_closing
|
1424 |
+
generate_binary_structure
|
1425 |
+
|
1426 |
+
Notes
|
1427 |
+
-----
|
1428 |
+
The action of a grayscale opening with a flat structuring element amounts
|
1429 |
+
to smoothen high local maxima, whereas binary opening erases small objects.
|
1430 |
+
|
1431 |
+
References
|
1432 |
+
----------
|
1433 |
+
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
|
1434 |
+
|
1435 |
+
Examples
|
1436 |
+
--------
|
1437 |
+
>>> from scipy import ndimage
|
1438 |
+
>>> import numpy as np
|
1439 |
+
>>> a = np.arange(36).reshape((6,6))
|
1440 |
+
>>> a[3, 3] = 50
|
1441 |
+
>>> a
|
1442 |
+
array([[ 0, 1, 2, 3, 4, 5],
|
1443 |
+
[ 6, 7, 8, 9, 10, 11],
|
1444 |
+
[12, 13, 14, 15, 16, 17],
|
1445 |
+
[18, 19, 20, 50, 22, 23],
|
1446 |
+
[24, 25, 26, 27, 28, 29],
|
1447 |
+
[30, 31, 32, 33, 34, 35]])
|
1448 |
+
>>> ndimage.grey_opening(a, size=(3,3))
|
1449 |
+
array([[ 0, 1, 2, 3, 4, 4],
|
1450 |
+
[ 6, 7, 8, 9, 10, 10],
|
1451 |
+
[12, 13, 14, 15, 16, 16],
|
1452 |
+
[18, 19, 20, 22, 22, 22],
|
1453 |
+
[24, 25, 26, 27, 28, 28],
|
1454 |
+
[24, 25, 26, 27, 28, 28]])
|
1455 |
+
>>> # Note that the local maximum a[3,3] has disappeared
|
1456 |
+
|
1457 |
+
"""
|
1458 |
+
if (size is not None) and (footprint is not None):
|
1459 |
+
warnings.warn("ignoring size because footprint is set",
|
1460 |
+
UserWarning, stacklevel=2)
|
1461 |
+
tmp = grey_erosion(input, size, footprint, structure, None, mode,
|
1462 |
+
cval, origin)
|
1463 |
+
return grey_dilation(tmp, size, footprint, structure, output, mode,
|
1464 |
+
cval, origin)
|
1465 |
+
|
1466 |
+
|
1467 |
+
def grey_closing(input, size=None, footprint=None, structure=None,
|
1468 |
+
output=None, mode="reflect", cval=0.0, origin=0):
|
1469 |
+
"""
|
1470 |
+
Multidimensional grayscale closing.
|
1471 |
+
|
1472 |
+
A grayscale closing consists in the succession of a grayscale dilation,
|
1473 |
+
and a grayscale erosion.
|
1474 |
+
|
1475 |
+
Parameters
|
1476 |
+
----------
|
1477 |
+
input : array_like
|
1478 |
+
Array over which the grayscale closing is to be computed.
|
1479 |
+
size : tuple of ints
|
1480 |
+
Shape of a flat and full structuring element used for the grayscale
|
1481 |
+
closing. Optional if `footprint` or `structure` is provided.
|
1482 |
+
footprint : array of ints, optional
|
1483 |
+
Positions of non-infinite elements of a flat structuring element
|
1484 |
+
used for the grayscale closing.
|
1485 |
+
structure : array of ints, optional
|
1486 |
+
Structuring element used for the grayscale closing. `structure`
|
1487 |
+
may be a non-flat structuring element.
|
1488 |
+
output : array, optional
|
1489 |
+
An array used for storing the output of the closing may be provided.
|
1490 |
+
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
|
1491 |
+
The `mode` parameter determines how the array borders are
|
1492 |
+
handled, where `cval` is the value when mode is equal to
|
1493 |
+
'constant'. Default is 'reflect'
|
1494 |
+
cval : scalar, optional
|
1495 |
+
Value to fill past edges of input if `mode` is 'constant'. Default
|
1496 |
+
is 0.0.
|
1497 |
+
origin : scalar, optional
|
1498 |
+
The `origin` parameter controls the placement of the filter.
|
1499 |
+
Default 0
|
1500 |
+
|
1501 |
+
Returns
|
1502 |
+
-------
|
1503 |
+
grey_closing : ndarray
|
1504 |
+
Result of the grayscale closing of `input` with `structure`.
|
1505 |
+
|
1506 |
+
See Also
|
1507 |
+
--------
|
1508 |
+
binary_closing, grey_dilation, grey_erosion, grey_opening,
|
1509 |
+
generate_binary_structure
|
1510 |
+
|
1511 |
+
Notes
|
1512 |
+
-----
|
1513 |
+
The action of a grayscale closing with a flat structuring element amounts
|
1514 |
+
to smoothen deep local minima, whereas binary closing fills small holes.
|
1515 |
+
|
1516 |
+
References
|
1517 |
+
----------
|
1518 |
+
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
|
1519 |
+
|
1520 |
+
Examples
|
1521 |
+
--------
|
1522 |
+
>>> from scipy import ndimage
|
1523 |
+
>>> import numpy as np
|
1524 |
+
>>> a = np.arange(36).reshape((6,6))
|
1525 |
+
>>> a[3,3] = 0
|
1526 |
+
>>> a
|
1527 |
+
array([[ 0, 1, 2, 3, 4, 5],
|
1528 |
+
[ 6, 7, 8, 9, 10, 11],
|
1529 |
+
[12, 13, 14, 15, 16, 17],
|
1530 |
+
[18, 19, 20, 0, 22, 23],
|
1531 |
+
[24, 25, 26, 27, 28, 29],
|
1532 |
+
[30, 31, 32, 33, 34, 35]])
|
1533 |
+
>>> ndimage.grey_closing(a, size=(3,3))
|
1534 |
+
array([[ 7, 7, 8, 9, 10, 11],
|
1535 |
+
[ 7, 7, 8, 9, 10, 11],
|
1536 |
+
[13, 13, 14, 15, 16, 17],
|
1537 |
+
[19, 19, 20, 20, 22, 23],
|
1538 |
+
[25, 25, 26, 27, 28, 29],
|
1539 |
+
[31, 31, 32, 33, 34, 35]])
|
1540 |
+
>>> # Note that the local minimum a[3,3] has disappeared
|
1541 |
+
|
1542 |
+
"""
|
1543 |
+
if (size is not None) and (footprint is not None):
|
1544 |
+
warnings.warn("ignoring size because footprint is set",
|
1545 |
+
UserWarning, stacklevel=2)
|
1546 |
+
tmp = grey_dilation(input, size, footprint, structure, None, mode,
|
1547 |
+
cval, origin)
|
1548 |
+
return grey_erosion(tmp, size, footprint, structure, output, mode,
|
1549 |
+
cval, origin)
|
1550 |
+
|
1551 |
+
|
1552 |
+
def morphological_gradient(input, size=None, footprint=None, structure=None,
|
1553 |
+
output=None, mode="reflect", cval=0.0, origin=0):
|
1554 |
+
"""
|
1555 |
+
Multidimensional morphological gradient.
|
1556 |
+
|
1557 |
+
The morphological gradient is calculated as the difference between a
|
1558 |
+
dilation and an erosion of the input with a given structuring element.
|
1559 |
+
|
1560 |
+
Parameters
|
1561 |
+
----------
|
1562 |
+
input : array_like
|
1563 |
+
Array over which to compute the morphlogical gradient.
|
1564 |
+
size : tuple of ints
|
1565 |
+
Shape of a flat and full structuring element used for the mathematical
|
1566 |
+
morphology operations. Optional if `footprint` or `structure` is
|
1567 |
+
provided. A larger `size` yields a more blurred gradient.
|
1568 |
+
footprint : array of ints, optional
|
1569 |
+
Positions of non-infinite elements of a flat structuring element
|
1570 |
+
used for the morphology operations. Larger footprints
|
1571 |
+
give a more blurred morphological gradient.
|
1572 |
+
structure : array of ints, optional
|
1573 |
+
Structuring element used for the morphology operations.
|
1574 |
+
`structure` may be a non-flat structuring element.
|
1575 |
+
output : array, optional
|
1576 |
+
An array used for storing the output of the morphological gradient
|
1577 |
+
may be provided.
|
1578 |
+
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
|
1579 |
+
The `mode` parameter determines how the array borders are
|
1580 |
+
handled, where `cval` is the value when mode is equal to
|
1581 |
+
'constant'. Default is 'reflect'
|
1582 |
+
cval : scalar, optional
|
1583 |
+
Value to fill past edges of input if `mode` is 'constant'. Default
|
1584 |
+
is 0.0.
|
1585 |
+
origin : scalar, optional
|
1586 |
+
The `origin` parameter controls the placement of the filter.
|
1587 |
+
Default 0
|
1588 |
+
|
1589 |
+
Returns
|
1590 |
+
-------
|
1591 |
+
morphological_gradient : ndarray
|
1592 |
+
Morphological gradient of `input`.
|
1593 |
+
|
1594 |
+
See Also
|
1595 |
+
--------
|
1596 |
+
grey_dilation, grey_erosion, gaussian_gradient_magnitude
|
1597 |
+
|
1598 |
+
Notes
|
1599 |
+
-----
|
1600 |
+
For a flat structuring element, the morphological gradient
|
1601 |
+
computed at a given point corresponds to the maximal difference
|
1602 |
+
between elements of the input among the elements covered by the
|
1603 |
+
structuring element centered on the point.
|
1604 |
+
|
1605 |
+
References
|
1606 |
+
----------
|
1607 |
+
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
|
1608 |
+
|
1609 |
+
Examples
|
1610 |
+
--------
|
1611 |
+
>>> from scipy import ndimage
|
1612 |
+
>>> import numpy as np
|
1613 |
+
>>> a = np.zeros((7,7), dtype=int)
|
1614 |
+
>>> a[2:5, 2:5] = 1
|
1615 |
+
>>> ndimage.morphological_gradient(a, size=(3,3))
|
1616 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
1617 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1618 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1619 |
+
[0, 1, 1, 0, 1, 1, 0],
|
1620 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1621 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1622 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
1623 |
+
>>> # The morphological gradient is computed as the difference
|
1624 |
+
>>> # between a dilation and an erosion
|
1625 |
+
>>> ndimage.grey_dilation(a, size=(3,3)) -\\
|
1626 |
+
... ndimage.grey_erosion(a, size=(3,3))
|
1627 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
1628 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1629 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1630 |
+
[0, 1, 1, 0, 1, 1, 0],
|
1631 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1632 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1633 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
1634 |
+
>>> a = np.zeros((7,7), dtype=int)
|
1635 |
+
>>> a[2:5, 2:5] = 1
|
1636 |
+
>>> a[4,4] = 2; a[2,3] = 3
|
1637 |
+
>>> a
|
1638 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
1639 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1640 |
+
[0, 0, 1, 3, 1, 0, 0],
|
1641 |
+
[0, 0, 1, 1, 1, 0, 0],
|
1642 |
+
[0, 0, 1, 1, 2, 0, 0],
|
1643 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1644 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
1645 |
+
>>> ndimage.morphological_gradient(a, size=(3,3))
|
1646 |
+
array([[0, 0, 0, 0, 0, 0, 0],
|
1647 |
+
[0, 1, 3, 3, 3, 1, 0],
|
1648 |
+
[0, 1, 3, 3, 3, 1, 0],
|
1649 |
+
[0, 1, 3, 2, 3, 2, 0],
|
1650 |
+
[0, 1, 1, 2, 2, 2, 0],
|
1651 |
+
[0, 1, 1, 2, 2, 2, 0],
|
1652 |
+
[0, 0, 0, 0, 0, 0, 0]])
|
1653 |
+
|
1654 |
+
"""
|
1655 |
+
tmp = grey_dilation(input, size, footprint, structure, None, mode,
|
1656 |
+
cval, origin)
|
1657 |
+
if isinstance(output, numpy.ndarray):
|
1658 |
+
grey_erosion(input, size, footprint, structure, output, mode,
|
1659 |
+
cval, origin)
|
1660 |
+
return numpy.subtract(tmp, output, output)
|
1661 |
+
else:
|
1662 |
+
return (tmp - grey_erosion(input, size, footprint, structure,
|
1663 |
+
None, mode, cval, origin))
|
1664 |
+
|
1665 |
+
|
1666 |
+
def morphological_laplace(input, size=None, footprint=None,
|
1667 |
+
structure=None, output=None,
|
1668 |
+
mode="reflect", cval=0.0, origin=0):
|
1669 |
+
"""
|
1670 |
+
Multidimensional morphological laplace.
|
1671 |
+
|
1672 |
+
Parameters
|
1673 |
+
----------
|
1674 |
+
input : array_like
|
1675 |
+
Input.
|
1676 |
+
size : int or sequence of ints, optional
|
1677 |
+
See `structure`.
|
1678 |
+
footprint : bool or ndarray, optional
|
1679 |
+
See `structure`.
|
1680 |
+
structure : structure, optional
|
1681 |
+
Either `size`, `footprint`, or the `structure` must be provided.
|
1682 |
+
output : ndarray, optional
|
1683 |
+
An output array can optionally be provided.
|
1684 |
+
mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
|
1685 |
+
The mode parameter determines how the array borders are handled.
|
1686 |
+
For 'constant' mode, values beyond borders are set to be `cval`.
|
1687 |
+
Default is 'reflect'.
|
1688 |
+
cval : scalar, optional
|
1689 |
+
Value to fill past edges of input if mode is 'constant'.
|
1690 |
+
Default is 0.0
|
1691 |
+
origin : origin, optional
|
1692 |
+
The origin parameter controls the placement of the filter.
|
1693 |
+
|
1694 |
+
Returns
|
1695 |
+
-------
|
1696 |
+
morphological_laplace : ndarray
|
1697 |
+
Output
|
1698 |
+
|
1699 |
+
"""
|
1700 |
+
tmp1 = grey_dilation(input, size, footprint, structure, None, mode,
|
1701 |
+
cval, origin)
|
1702 |
+
if isinstance(output, numpy.ndarray):
|
1703 |
+
grey_erosion(input, size, footprint, structure, output, mode,
|
1704 |
+
cval, origin)
|
1705 |
+
numpy.add(tmp1, output, output)
|
1706 |
+
numpy.subtract(output, input, output)
|
1707 |
+
return numpy.subtract(output, input, output)
|
1708 |
+
else:
|
1709 |
+
tmp2 = grey_erosion(input, size, footprint, structure, None, mode,
|
1710 |
+
cval, origin)
|
1711 |
+
numpy.add(tmp1, tmp2, tmp2)
|
1712 |
+
numpy.subtract(tmp2, input, tmp2)
|
1713 |
+
numpy.subtract(tmp2, input, tmp2)
|
1714 |
+
return tmp2
|
1715 |
+
|
1716 |
+
|
1717 |
+
def white_tophat(input, size=None, footprint=None, structure=None,
|
1718 |
+
output=None, mode="reflect", cval=0.0, origin=0):
|
1719 |
+
"""
|
1720 |
+
Multidimensional white tophat filter.
|
1721 |
+
|
1722 |
+
Parameters
|
1723 |
+
----------
|
1724 |
+
input : array_like
|
1725 |
+
Input.
|
1726 |
+
size : tuple of ints
|
1727 |
+
Shape of a flat and full structuring element used for the filter.
|
1728 |
+
Optional if `footprint` or `structure` is provided.
|
1729 |
+
footprint : array of ints, optional
|
1730 |
+
Positions of elements of a flat structuring element
|
1731 |
+
used for the white tophat filter.
|
1732 |
+
structure : array of ints, optional
|
1733 |
+
Structuring element used for the filter. `structure`
|
1734 |
+
may be a non-flat structuring element.
|
1735 |
+
output : array, optional
|
1736 |
+
An array used for storing the output of the filter may be provided.
|
1737 |
+
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
|
1738 |
+
The `mode` parameter determines how the array borders are
|
1739 |
+
handled, where `cval` is the value when mode is equal to
|
1740 |
+
'constant'. Default is 'reflect'
|
1741 |
+
cval : scalar, optional
|
1742 |
+
Value to fill past edges of input if `mode` is 'constant'.
|
1743 |
+
Default is 0.0.
|
1744 |
+
origin : scalar, optional
|
1745 |
+
The `origin` parameter controls the placement of the filter.
|
1746 |
+
Default is 0.
|
1747 |
+
|
1748 |
+
Returns
|
1749 |
+
-------
|
1750 |
+
output : ndarray
|
1751 |
+
Result of the filter of `input` with `structure`.
|
1752 |
+
|
1753 |
+
See Also
|
1754 |
+
--------
|
1755 |
+
black_tophat
|
1756 |
+
|
1757 |
+
Examples
|
1758 |
+
--------
|
1759 |
+
Subtract gray background from a bright peak.
|
1760 |
+
|
1761 |
+
>>> from scipy.ndimage import generate_binary_structure, white_tophat
|
1762 |
+
>>> import numpy as np
|
1763 |
+
>>> square = generate_binary_structure(rank=2, connectivity=3)
|
1764 |
+
>>> bright_on_gray = np.array([[2, 3, 3, 3, 2],
|
1765 |
+
... [3, 4, 5, 4, 3],
|
1766 |
+
... [3, 5, 9, 5, 3],
|
1767 |
+
... [3, 4, 5, 4, 3],
|
1768 |
+
... [2, 3, 3, 3, 2]])
|
1769 |
+
>>> white_tophat(input=bright_on_gray, structure=square)
|
1770 |
+
array([[0, 0, 0, 0, 0],
|
1771 |
+
[0, 0, 1, 0, 0],
|
1772 |
+
[0, 1, 5, 1, 0],
|
1773 |
+
[0, 0, 1, 0, 0],
|
1774 |
+
[0, 0, 0, 0, 0]])
|
1775 |
+
|
1776 |
+
"""
|
1777 |
+
if (size is not None) and (footprint is not None):
|
1778 |
+
warnings.warn("ignoring size because footprint is set",
|
1779 |
+
UserWarning, stacklevel=2)
|
1780 |
+
tmp = grey_erosion(input, size, footprint, structure, None, mode,
|
1781 |
+
cval, origin)
|
1782 |
+
tmp = grey_dilation(tmp, size, footprint, structure, output, mode,
|
1783 |
+
cval, origin)
|
1784 |
+
if tmp is None:
|
1785 |
+
tmp = output
|
1786 |
+
|
1787 |
+
if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_:
|
1788 |
+
numpy.bitwise_xor(input, tmp, out=tmp)
|
1789 |
+
else:
|
1790 |
+
numpy.subtract(input, tmp, out=tmp)
|
1791 |
+
return tmp
|
1792 |
+
|
1793 |
+
|
1794 |
+
def black_tophat(input, size=None, footprint=None,
|
1795 |
+
structure=None, output=None, mode="reflect",
|
1796 |
+
cval=0.0, origin=0):
|
1797 |
+
"""
|
1798 |
+
Multidimensional black tophat filter.
|
1799 |
+
|
1800 |
+
Parameters
|
1801 |
+
----------
|
1802 |
+
input : array_like
|
1803 |
+
Input.
|
1804 |
+
size : tuple of ints, optional
|
1805 |
+
Shape of a flat and full structuring element used for the filter.
|
1806 |
+
Optional if `footprint` or `structure` is provided.
|
1807 |
+
footprint : array of ints, optional
|
1808 |
+
Positions of non-infinite elements of a flat structuring element
|
1809 |
+
used for the black tophat filter.
|
1810 |
+
structure : array of ints, optional
|
1811 |
+
Structuring element used for the filter. `structure`
|
1812 |
+
may be a non-flat structuring element.
|
1813 |
+
output : array, optional
|
1814 |
+
An array used for storing the output of the filter may be provided.
|
1815 |
+
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
|
1816 |
+
The `mode` parameter determines how the array borders are
|
1817 |
+
handled, where `cval` is the value when mode is equal to
|
1818 |
+
'constant'. Default is 'reflect'
|
1819 |
+
cval : scalar, optional
|
1820 |
+
Value to fill past edges of input if `mode` is 'constant'. Default
|
1821 |
+
is 0.0.
|
1822 |
+
origin : scalar, optional
|
1823 |
+
The `origin` parameter controls the placement of the filter.
|
1824 |
+
Default 0
|
1825 |
+
|
1826 |
+
Returns
|
1827 |
+
-------
|
1828 |
+
black_tophat : ndarray
|
1829 |
+
Result of the filter of `input` with `structure`.
|
1830 |
+
|
1831 |
+
See Also
|
1832 |
+
--------
|
1833 |
+
white_tophat, grey_opening, grey_closing
|
1834 |
+
|
1835 |
+
Examples
|
1836 |
+
--------
|
1837 |
+
Change dark peak to bright peak and subtract background.
|
1838 |
+
|
1839 |
+
>>> from scipy.ndimage import generate_binary_structure, black_tophat
|
1840 |
+
>>> import numpy as np
|
1841 |
+
>>> square = generate_binary_structure(rank=2, connectivity=3)
|
1842 |
+
>>> dark_on_gray = np.array([[7, 6, 6, 6, 7],
|
1843 |
+
... [6, 5, 4, 5, 6],
|
1844 |
+
... [6, 4, 0, 4, 6],
|
1845 |
+
... [6, 5, 4, 5, 6],
|
1846 |
+
... [7, 6, 6, 6, 7]])
|
1847 |
+
>>> black_tophat(input=dark_on_gray, structure=square)
|
1848 |
+
array([[0, 0, 0, 0, 0],
|
1849 |
+
[0, 0, 1, 0, 0],
|
1850 |
+
[0, 1, 5, 1, 0],
|
1851 |
+
[0, 0, 1, 0, 0],
|
1852 |
+
[0, 0, 0, 0, 0]])
|
1853 |
+
|
1854 |
+
"""
|
1855 |
+
if (size is not None) and (footprint is not None):
|
1856 |
+
warnings.warn("ignoring size because footprint is set",
|
1857 |
+
UserWarning, stacklevel=2)
|
1858 |
+
tmp = grey_dilation(input, size, footprint, structure, None, mode,
|
1859 |
+
cval, origin)
|
1860 |
+
tmp = grey_erosion(tmp, size, footprint, structure, output, mode,
|
1861 |
+
cval, origin)
|
1862 |
+
if tmp is None:
|
1863 |
+
tmp = output
|
1864 |
+
|
1865 |
+
if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_:
|
1866 |
+
numpy.bitwise_xor(tmp, input, out=tmp)
|
1867 |
+
else:
|
1868 |
+
numpy.subtract(tmp, input, out=tmp)
|
1869 |
+
return tmp
|
1870 |
+
|
1871 |
+
|
1872 |
+
def distance_transform_bf(input, metric="euclidean", sampling=None,
|
1873 |
+
return_distances=True, return_indices=False,
|
1874 |
+
distances=None, indices=None):
|
1875 |
+
"""
|
1876 |
+
Distance transform function by a brute force algorithm.
|
1877 |
+
|
1878 |
+
This function calculates the distance transform of the `input`, by
|
1879 |
+
replacing each foreground (non-zero) element, with its
|
1880 |
+
shortest distance to the background (any zero-valued element).
|
1881 |
+
|
1882 |
+
In addition to the distance transform, the feature transform can
|
1883 |
+
be calculated. In this case the index of the closest background
|
1884 |
+
element to each foreground element is returned in a separate array.
|
1885 |
+
|
1886 |
+
Parameters
|
1887 |
+
----------
|
1888 |
+
input : array_like
|
1889 |
+
Input
|
1890 |
+
metric : {'euclidean', 'taxicab', 'chessboard'}, optional
|
1891 |
+
'cityblock' and 'manhattan' are also valid, and map to 'taxicab'.
|
1892 |
+
The default is 'euclidean'.
|
1893 |
+
sampling : float, or sequence of float, optional
|
1894 |
+
This parameter is only used when `metric` is 'euclidean'.
|
1895 |
+
Spacing of elements along each dimension. If a sequence, must be of
|
1896 |
+
length equal to the input rank; if a single number, this is used for
|
1897 |
+
all axes. If not specified, a grid spacing of unity is implied.
|
1898 |
+
return_distances : bool, optional
|
1899 |
+
Whether to calculate the distance transform.
|
1900 |
+
Default is True.
|
1901 |
+
return_indices : bool, optional
|
1902 |
+
Whether to calculate the feature transform.
|
1903 |
+
Default is False.
|
1904 |
+
distances : ndarray, optional
|
1905 |
+
An output array to store the calculated distance transform, instead of
|
1906 |
+
returning it.
|
1907 |
+
`return_distances` must be True.
|
1908 |
+
It must be the same shape as `input`, and of type float64 if `metric`
|
1909 |
+
is 'euclidean', uint32 otherwise.
|
1910 |
+
indices : int32 ndarray, optional
|
1911 |
+
An output array to store the calculated feature transform, instead of
|
1912 |
+
returning it.
|
1913 |
+
`return_indicies` must be True.
|
1914 |
+
Its shape must be `(input.ndim,) + input.shape`.
|
1915 |
+
|
1916 |
+
Returns
|
1917 |
+
-------
|
1918 |
+
distances : ndarray, optional
|
1919 |
+
The calculated distance transform. Returned only when
|
1920 |
+
`return_distances` is True and `distances` is not supplied.
|
1921 |
+
It will have the same shape as the input array.
|
1922 |
+
indices : int32 ndarray, optional
|
1923 |
+
The calculated feature transform. It has an input-shaped array for each
|
1924 |
+
dimension of the input. See distance_transform_edt documentation for an
|
1925 |
+
example.
|
1926 |
+
Returned only when `return_indices` is True and `indices` is not
|
1927 |
+
supplied.
|
1928 |
+
|
1929 |
+
See Also
|
1930 |
+
--------
|
1931 |
+
distance_transform_cdt : Faster distance transform for taxicab and
|
1932 |
+
chessboard metrics
|
1933 |
+
distance_transform_edt : Faster distance transform for euclidean metric
|
1934 |
+
|
1935 |
+
Notes
|
1936 |
+
-----
|
1937 |
+
This function employs a slow brute force algorithm. See also the
|
1938 |
+
function `distance_transform_cdt` for more efficient taxicab [1]_ and
|
1939 |
+
chessboard algorithms [2]_.
|
1940 |
+
|
1941 |
+
References
|
1942 |
+
----------
|
1943 |
+
.. [1] Taxicab distance. Wikipedia, 2023.
|
1944 |
+
https://en.wikipedia.org/wiki/Taxicab_geometry
|
1945 |
+
.. [2] Chessboard distance. Wikipedia, 2023.
|
1946 |
+
https://en.wikipedia.org/wiki/Chebyshev_distance
|
1947 |
+
|
1948 |
+
Examples
|
1949 |
+
--------
|
1950 |
+
Import the necessary modules.
|
1951 |
+
|
1952 |
+
>>> import numpy as np
|
1953 |
+
>>> from scipy.ndimage import distance_transform_bf
|
1954 |
+
>>> import matplotlib.pyplot as plt
|
1955 |
+
>>> from mpl_toolkits.axes_grid1 import ImageGrid
|
1956 |
+
|
1957 |
+
First, we create a toy binary image.
|
1958 |
+
|
1959 |
+
>>> def add_circle(center_x, center_y, radius, image, fillvalue=1):
|
1960 |
+
... # fill circular area with 1
|
1961 |
+
... xx, yy = np.mgrid[:image.shape[0], :image.shape[1]]
|
1962 |
+
... circle = (xx - center_x) ** 2 + (yy - center_y) ** 2
|
1963 |
+
... circle_shape = np.sqrt(circle) < radius
|
1964 |
+
... image[circle_shape] = fillvalue
|
1965 |
+
... return image
|
1966 |
+
>>> image = np.zeros((100, 100), dtype=np.uint8)
|
1967 |
+
>>> image[35:65, 20:80] = 1
|
1968 |
+
>>> image = add_circle(28, 65, 10, image)
|
1969 |
+
>>> image = add_circle(37, 30, 10, image)
|
1970 |
+
>>> image = add_circle(70, 45, 20, image)
|
1971 |
+
>>> image = add_circle(45, 80, 10, image)
|
1972 |
+
|
1973 |
+
Next, we set up the figure.
|
1974 |
+
|
1975 |
+
>>> fig = plt.figure(figsize=(8, 8)) # set up the figure structure
|
1976 |
+
>>> grid = ImageGrid(fig, 111, nrows_ncols=(2, 2), axes_pad=(0.4, 0.3),
|
1977 |
+
... label_mode="1", share_all=True,
|
1978 |
+
... cbar_location="right", cbar_mode="each",
|
1979 |
+
... cbar_size="7%", cbar_pad="2%")
|
1980 |
+
>>> for ax in grid:
|
1981 |
+
... ax.axis('off') # remove axes from images
|
1982 |
+
|
1983 |
+
The top left image is the original binary image.
|
1984 |
+
|
1985 |
+
>>> binary_image = grid[0].imshow(image, cmap='gray')
|
1986 |
+
>>> cbar_binary_image = grid.cbar_axes[0].colorbar(binary_image)
|
1987 |
+
>>> cbar_binary_image.set_ticks([0, 1])
|
1988 |
+
>>> grid[0].set_title("Binary image: foreground in white")
|
1989 |
+
|
1990 |
+
The distance transform calculates the distance between foreground pixels
|
1991 |
+
and the image background according to a distance metric. Available metrics
|
1992 |
+
in `distance_transform_bf` are: ``euclidean`` (default), ``taxicab``
|
1993 |
+
and ``chessboard``. The top right image contains the distance transform
|
1994 |
+
based on the ``euclidean`` metric.
|
1995 |
+
|
1996 |
+
>>> distance_transform_euclidean = distance_transform_bf(image)
|
1997 |
+
>>> euclidean_transform = grid[1].imshow(distance_transform_euclidean,
|
1998 |
+
... cmap='gray')
|
1999 |
+
>>> cbar_euclidean = grid.cbar_axes[1].colorbar(euclidean_transform)
|
2000 |
+
>>> colorbar_ticks = [0, 10, 20]
|
2001 |
+
>>> cbar_euclidean.set_ticks(colorbar_ticks)
|
2002 |
+
>>> grid[1].set_title("Euclidean distance")
|
2003 |
+
|
2004 |
+
The lower left image contains the distance transform using the ``taxicab``
|
2005 |
+
metric.
|
2006 |
+
|
2007 |
+
>>> distance_transform_taxicab = distance_transform_bf(image,
|
2008 |
+
... metric='taxicab')
|
2009 |
+
>>> taxicab_transformation = grid[2].imshow(distance_transform_taxicab,
|
2010 |
+
... cmap='gray')
|
2011 |
+
>>> cbar_taxicab = grid.cbar_axes[2].colorbar(taxicab_transformation)
|
2012 |
+
>>> cbar_taxicab.set_ticks(colorbar_ticks)
|
2013 |
+
>>> grid[2].set_title("Taxicab distance")
|
2014 |
+
|
2015 |
+
Finally, the lower right image contains the distance transform using the
|
2016 |
+
``chessboard`` metric.
|
2017 |
+
|
2018 |
+
>>> distance_transform_cb = distance_transform_bf(image,
|
2019 |
+
... metric='chessboard')
|
2020 |
+
>>> chessboard_transformation = grid[3].imshow(distance_transform_cb,
|
2021 |
+
... cmap='gray')
|
2022 |
+
>>> cbar_taxicab = grid.cbar_axes[3].colorbar(chessboard_transformation)
|
2023 |
+
>>> cbar_taxicab.set_ticks(colorbar_ticks)
|
2024 |
+
>>> grid[3].set_title("Chessboard distance")
|
2025 |
+
>>> plt.show()
|
2026 |
+
|
2027 |
+
"""
|
2028 |
+
ft_inplace = isinstance(indices, numpy.ndarray)
|
2029 |
+
dt_inplace = isinstance(distances, numpy.ndarray)
|
2030 |
+
_distance_tranform_arg_check(
|
2031 |
+
dt_inplace, ft_inplace, return_distances, return_indices
|
2032 |
+
)
|
2033 |
+
|
2034 |
+
tmp1 = numpy.asarray(input) != 0
|
2035 |
+
struct = generate_binary_structure(tmp1.ndim, tmp1.ndim)
|
2036 |
+
tmp2 = binary_dilation(tmp1, struct)
|
2037 |
+
tmp2 = numpy.logical_xor(tmp1, tmp2)
|
2038 |
+
tmp1 = tmp1.astype(numpy.int8) - tmp2.astype(numpy.int8)
|
2039 |
+
metric = metric.lower()
|
2040 |
+
if metric == 'euclidean':
|
2041 |
+
metric = 1
|
2042 |
+
elif metric in ['taxicab', 'cityblock', 'manhattan']:
|
2043 |
+
metric = 2
|
2044 |
+
elif metric == 'chessboard':
|
2045 |
+
metric = 3
|
2046 |
+
else:
|
2047 |
+
raise RuntimeError('distance metric not supported')
|
2048 |
+
if sampling is not None:
|
2049 |
+
sampling = _ni_support._normalize_sequence(sampling, tmp1.ndim)
|
2050 |
+
sampling = numpy.asarray(sampling, dtype=numpy.float64)
|
2051 |
+
if not sampling.flags.contiguous:
|
2052 |
+
sampling = sampling.copy()
|
2053 |
+
if return_indices:
|
2054 |
+
ft = numpy.zeros(tmp1.shape, dtype=numpy.int32)
|
2055 |
+
else:
|
2056 |
+
ft = None
|
2057 |
+
if return_distances:
|
2058 |
+
if distances is None:
|
2059 |
+
if metric == 1:
|
2060 |
+
dt = numpy.zeros(tmp1.shape, dtype=numpy.float64)
|
2061 |
+
else:
|
2062 |
+
dt = numpy.zeros(tmp1.shape, dtype=numpy.uint32)
|
2063 |
+
else:
|
2064 |
+
if distances.shape != tmp1.shape:
|
2065 |
+
raise RuntimeError('distances array has wrong shape')
|
2066 |
+
if metric == 1:
|
2067 |
+
if distances.dtype.type != numpy.float64:
|
2068 |
+
raise RuntimeError('distances array must be float64')
|
2069 |
+
else:
|
2070 |
+
if distances.dtype.type != numpy.uint32:
|
2071 |
+
raise RuntimeError('distances array must be uint32')
|
2072 |
+
dt = distances
|
2073 |
+
else:
|
2074 |
+
dt = None
|
2075 |
+
|
2076 |
+
_nd_image.distance_transform_bf(tmp1, metric, sampling, dt, ft)
|
2077 |
+
if return_indices:
|
2078 |
+
if isinstance(indices, numpy.ndarray):
|
2079 |
+
if indices.dtype.type != numpy.int32:
|
2080 |
+
raise RuntimeError('indices array must be int32')
|
2081 |
+
if indices.shape != (tmp1.ndim,) + tmp1.shape:
|
2082 |
+
raise RuntimeError('indices array has wrong shape')
|
2083 |
+
tmp2 = indices
|
2084 |
+
else:
|
2085 |
+
tmp2 = numpy.indices(tmp1.shape, dtype=numpy.int32)
|
2086 |
+
ft = numpy.ravel(ft)
|
2087 |
+
for ii in range(tmp2.shape[0]):
|
2088 |
+
rtmp = numpy.ravel(tmp2[ii, ...])[ft]
|
2089 |
+
rtmp.shape = tmp1.shape
|
2090 |
+
tmp2[ii, ...] = rtmp
|
2091 |
+
ft = tmp2
|
2092 |
+
|
2093 |
+
# construct and return the result
|
2094 |
+
result = []
|
2095 |
+
if return_distances and not dt_inplace:
|
2096 |
+
result.append(dt)
|
2097 |
+
if return_indices and not ft_inplace:
|
2098 |
+
result.append(ft)
|
2099 |
+
|
2100 |
+
if len(result) == 2:
|
2101 |
+
return tuple(result)
|
2102 |
+
elif len(result) == 1:
|
2103 |
+
return result[0]
|
2104 |
+
else:
|
2105 |
+
return None
|
2106 |
+
|
2107 |
+
|
2108 |
+
def distance_transform_cdt(input, metric='chessboard', return_distances=True,
|
2109 |
+
return_indices=False, distances=None, indices=None):
|
2110 |
+
"""
|
2111 |
+
Distance transform for chamfer type of transforms.
|
2112 |
+
|
2113 |
+
This function calculates the distance transform of the `input`, by
|
2114 |
+
replacing each foreground (non-zero) element, with its
|
2115 |
+
shortest distance to the background (any zero-valued element).
|
2116 |
+
|
2117 |
+
In addition to the distance transform, the feature transform can
|
2118 |
+
be calculated. In this case the index of the closest background
|
2119 |
+
element to each foreground element is returned in a separate array.
|
2120 |
+
|
2121 |
+
Parameters
|
2122 |
+
----------
|
2123 |
+
input : array_like
|
2124 |
+
Input. Values of 0 are treated as background.
|
2125 |
+
metric : {'chessboard', 'taxicab'} or array_like, optional
|
2126 |
+
The `metric` determines the type of chamfering that is done. If the
|
2127 |
+
`metric` is equal to 'taxicab' a structure is generated using
|
2128 |
+
`generate_binary_structure` with a squared distance equal to 1. If
|
2129 |
+
the `metric` is equal to 'chessboard', a `metric` is generated
|
2130 |
+
using `generate_binary_structure` with a squared distance equal to
|
2131 |
+
the dimensionality of the array. These choices correspond to the
|
2132 |
+
common interpretations of the 'taxicab' and the 'chessboard'
|
2133 |
+
distance metrics in two dimensions.
|
2134 |
+
A custom metric may be provided, in the form of a matrix where
|
2135 |
+
each dimension has a length of three.
|
2136 |
+
'cityblock' and 'manhattan' are also valid, and map to 'taxicab'.
|
2137 |
+
The default is 'chessboard'.
|
2138 |
+
return_distances : bool, optional
|
2139 |
+
Whether to calculate the distance transform.
|
2140 |
+
Default is True.
|
2141 |
+
return_indices : bool, optional
|
2142 |
+
Whether to calculate the feature transform.
|
2143 |
+
Default is False.
|
2144 |
+
distances : int32 ndarray, optional
|
2145 |
+
An output array to store the calculated distance transform, instead of
|
2146 |
+
returning it.
|
2147 |
+
`return_distances` must be True.
|
2148 |
+
It must be the same shape as `input`.
|
2149 |
+
indices : int32 ndarray, optional
|
2150 |
+
An output array to store the calculated feature transform, instead of
|
2151 |
+
returning it.
|
2152 |
+
`return_indicies` must be True.
|
2153 |
+
Its shape must be `(input.ndim,) + input.shape`.
|
2154 |
+
|
2155 |
+
Returns
|
2156 |
+
-------
|
2157 |
+
distances : int32 ndarray, optional
|
2158 |
+
The calculated distance transform. Returned only when
|
2159 |
+
`return_distances` is True, and `distances` is not supplied.
|
2160 |
+
It will have the same shape as the input array.
|
2161 |
+
indices : int32 ndarray, optional
|
2162 |
+
The calculated feature transform. It has an input-shaped array for each
|
2163 |
+
dimension of the input. See distance_transform_edt documentation for an
|
2164 |
+
example.
|
2165 |
+
Returned only when `return_indices` is True, and `indices` is not
|
2166 |
+
supplied.
|
2167 |
+
|
2168 |
+
See Also
|
2169 |
+
--------
|
2170 |
+
distance_transform_edt : Fast distance transform for euclidean metric
|
2171 |
+
distance_transform_bf : Distance transform for different metrics using
|
2172 |
+
a slower brute force algorithm
|
2173 |
+
|
2174 |
+
Examples
|
2175 |
+
--------
|
2176 |
+
Import the necessary modules.
|
2177 |
+
|
2178 |
+
>>> import numpy as np
|
2179 |
+
>>> from scipy.ndimage import distance_transform_cdt
|
2180 |
+
>>> import matplotlib.pyplot as plt
|
2181 |
+
>>> from mpl_toolkits.axes_grid1 import ImageGrid
|
2182 |
+
|
2183 |
+
First, we create a toy binary image.
|
2184 |
+
|
2185 |
+
>>> def add_circle(center_x, center_y, radius, image, fillvalue=1):
|
2186 |
+
... # fill circular area with 1
|
2187 |
+
... xx, yy = np.mgrid[:image.shape[0], :image.shape[1]]
|
2188 |
+
... circle = (xx - center_x) ** 2 + (yy - center_y) ** 2
|
2189 |
+
... circle_shape = np.sqrt(circle) < radius
|
2190 |
+
... image[circle_shape] = fillvalue
|
2191 |
+
... return image
|
2192 |
+
>>> image = np.zeros((100, 100), dtype=np.uint8)
|
2193 |
+
>>> image[35:65, 20:80] = 1
|
2194 |
+
>>> image = add_circle(28, 65, 10, image)
|
2195 |
+
>>> image = add_circle(37, 30, 10, image)
|
2196 |
+
>>> image = add_circle(70, 45, 20, image)
|
2197 |
+
>>> image = add_circle(45, 80, 10, image)
|
2198 |
+
|
2199 |
+
Next, we set up the figure.
|
2200 |
+
|
2201 |
+
>>> fig = plt.figure(figsize=(5, 15))
|
2202 |
+
>>> grid = ImageGrid(fig, 111, nrows_ncols=(3, 1), axes_pad=(0.5, 0.3),
|
2203 |
+
... label_mode="1", share_all=True,
|
2204 |
+
... cbar_location="right", cbar_mode="each",
|
2205 |
+
... cbar_size="7%", cbar_pad="2%")
|
2206 |
+
>>> for ax in grid:
|
2207 |
+
... ax.axis('off')
|
2208 |
+
>>> top, middle, bottom = grid
|
2209 |
+
>>> colorbar_ticks = [0, 10, 20]
|
2210 |
+
|
2211 |
+
The top image contains the original binary image.
|
2212 |
+
|
2213 |
+
>>> binary_image = top.imshow(image, cmap='gray')
|
2214 |
+
>>> cbar_binary_image = top.cax.colorbar(binary_image)
|
2215 |
+
>>> cbar_binary_image.set_ticks([0, 1])
|
2216 |
+
>>> top.set_title("Binary image: foreground in white")
|
2217 |
+
|
2218 |
+
The middle image contains the distance transform using the ``taxicab``
|
2219 |
+
metric.
|
2220 |
+
|
2221 |
+
>>> distance_taxicab = distance_transform_cdt(image, metric="taxicab")
|
2222 |
+
>>> taxicab_transform = middle.imshow(distance_taxicab, cmap='gray')
|
2223 |
+
>>> cbar_taxicab = middle.cax.colorbar(taxicab_transform)
|
2224 |
+
>>> cbar_taxicab.set_ticks(colorbar_ticks)
|
2225 |
+
>>> middle.set_title("Taxicab metric")
|
2226 |
+
|
2227 |
+
The bottom image contains the distance transform using the ``chessboard``
|
2228 |
+
metric.
|
2229 |
+
|
2230 |
+
>>> distance_chessboard = distance_transform_cdt(image,
|
2231 |
+
... metric="chessboard")
|
2232 |
+
>>> chessboard_transform = bottom.imshow(distance_chessboard, cmap='gray')
|
2233 |
+
>>> cbar_chessboard = bottom.cax.colorbar(chessboard_transform)
|
2234 |
+
>>> cbar_chessboard.set_ticks(colorbar_ticks)
|
2235 |
+
>>> bottom.set_title("Chessboard metric")
|
2236 |
+
>>> plt.tight_layout()
|
2237 |
+
>>> plt.show()
|
2238 |
+
|
2239 |
+
"""
|
2240 |
+
ft_inplace = isinstance(indices, numpy.ndarray)
|
2241 |
+
dt_inplace = isinstance(distances, numpy.ndarray)
|
2242 |
+
_distance_tranform_arg_check(
|
2243 |
+
dt_inplace, ft_inplace, return_distances, return_indices
|
2244 |
+
)
|
2245 |
+
input = numpy.asarray(input)
|
2246 |
+
if isinstance(metric, str):
|
2247 |
+
if metric in ['taxicab', 'cityblock', 'manhattan']:
|
2248 |
+
rank = input.ndim
|
2249 |
+
metric = generate_binary_structure(rank, 1)
|
2250 |
+
elif metric == 'chessboard':
|
2251 |
+
rank = input.ndim
|
2252 |
+
metric = generate_binary_structure(rank, rank)
|
2253 |
+
else:
|
2254 |
+
raise ValueError('invalid metric provided')
|
2255 |
+
else:
|
2256 |
+
try:
|
2257 |
+
metric = numpy.asarray(metric)
|
2258 |
+
except Exception as e:
|
2259 |
+
raise ValueError('invalid metric provided') from e
|
2260 |
+
for s in metric.shape:
|
2261 |
+
if s != 3:
|
2262 |
+
raise ValueError('metric sizes must be equal to 3')
|
2263 |
+
|
2264 |
+
if not metric.flags.contiguous:
|
2265 |
+
metric = metric.copy()
|
2266 |
+
if dt_inplace:
|
2267 |
+
if distances.dtype.type != numpy.int32:
|
2268 |
+
raise ValueError('distances must be of int32 type')
|
2269 |
+
if distances.shape != input.shape:
|
2270 |
+
raise ValueError('distances has wrong shape')
|
2271 |
+
dt = distances
|
2272 |
+
dt[...] = numpy.where(input, -1, 0).astype(numpy.int32)
|
2273 |
+
else:
|
2274 |
+
dt = numpy.where(input, -1, 0).astype(numpy.int32)
|
2275 |
+
|
2276 |
+
rank = dt.ndim
|
2277 |
+
if return_indices:
|
2278 |
+
sz = numpy.prod(dt.shape, axis=0)
|
2279 |
+
ft = numpy.arange(sz, dtype=numpy.int32)
|
2280 |
+
ft.shape = dt.shape
|
2281 |
+
else:
|
2282 |
+
ft = None
|
2283 |
+
|
2284 |
+
_nd_image.distance_transform_op(metric, dt, ft)
|
2285 |
+
dt = dt[tuple([slice(None, None, -1)] * rank)]
|
2286 |
+
if return_indices:
|
2287 |
+
ft = ft[tuple([slice(None, None, -1)] * rank)]
|
2288 |
+
_nd_image.distance_transform_op(metric, dt, ft)
|
2289 |
+
dt = dt[tuple([slice(None, None, -1)] * rank)]
|
2290 |
+
if return_indices:
|
2291 |
+
ft = ft[tuple([slice(None, None, -1)] * rank)]
|
2292 |
+
ft = numpy.ravel(ft)
|
2293 |
+
if ft_inplace:
|
2294 |
+
if indices.dtype.type != numpy.int32:
|
2295 |
+
raise ValueError('indices array must be int32')
|
2296 |
+
if indices.shape != (dt.ndim,) + dt.shape:
|
2297 |
+
raise ValueError('indices array has wrong shape')
|
2298 |
+
tmp = indices
|
2299 |
+
else:
|
2300 |
+
tmp = numpy.indices(dt.shape, dtype=numpy.int32)
|
2301 |
+
for ii in range(tmp.shape[0]):
|
2302 |
+
rtmp = numpy.ravel(tmp[ii, ...])[ft]
|
2303 |
+
rtmp.shape = dt.shape
|
2304 |
+
tmp[ii, ...] = rtmp
|
2305 |
+
ft = tmp
|
2306 |
+
|
2307 |
+
# construct and return the result
|
2308 |
+
result = []
|
2309 |
+
if return_distances and not dt_inplace:
|
2310 |
+
result.append(dt)
|
2311 |
+
if return_indices and not ft_inplace:
|
2312 |
+
result.append(ft)
|
2313 |
+
|
2314 |
+
if len(result) == 2:
|
2315 |
+
return tuple(result)
|
2316 |
+
elif len(result) == 1:
|
2317 |
+
return result[0]
|
2318 |
+
else:
|
2319 |
+
return None
|
2320 |
+
|
2321 |
+
|
2322 |
+
def distance_transform_edt(input, sampling=None, return_distances=True,
|
2323 |
+
return_indices=False, distances=None, indices=None):
|
2324 |
+
"""
|
2325 |
+
Exact Euclidean distance transform.
|
2326 |
+
|
2327 |
+
This function calculates the distance transform of the `input`, by
|
2328 |
+
replacing each foreground (non-zero) element, with its
|
2329 |
+
shortest distance to the background (any zero-valued element).
|
2330 |
+
|
2331 |
+
In addition to the distance transform, the feature transform can
|
2332 |
+
be calculated. In this case the index of the closest background
|
2333 |
+
element to each foreground element is returned in a separate array.
|
2334 |
+
|
2335 |
+
Parameters
|
2336 |
+
----------
|
2337 |
+
input : array_like
|
2338 |
+
Input data to transform. Can be any type but will be converted
|
2339 |
+
into binary: 1 wherever input equates to True, 0 elsewhere.
|
2340 |
+
sampling : float, or sequence of float, optional
|
2341 |
+
Spacing of elements along each dimension. If a sequence, must be of
|
2342 |
+
length equal to the input rank; if a single number, this is used for
|
2343 |
+
all axes. If not specified, a grid spacing of unity is implied.
|
2344 |
+
return_distances : bool, optional
|
2345 |
+
Whether to calculate the distance transform.
|
2346 |
+
Default is True.
|
2347 |
+
return_indices : bool, optional
|
2348 |
+
Whether to calculate the feature transform.
|
2349 |
+
Default is False.
|
2350 |
+
distances : float64 ndarray, optional
|
2351 |
+
An output array to store the calculated distance transform, instead of
|
2352 |
+
returning it.
|
2353 |
+
`return_distances` must be True.
|
2354 |
+
It must be the same shape as `input`.
|
2355 |
+
indices : int32 ndarray, optional
|
2356 |
+
An output array to store the calculated feature transform, instead of
|
2357 |
+
returning it.
|
2358 |
+
`return_indicies` must be True.
|
2359 |
+
Its shape must be `(input.ndim,) + input.shape`.
|
2360 |
+
|
2361 |
+
Returns
|
2362 |
+
-------
|
2363 |
+
distances : float64 ndarray, optional
|
2364 |
+
The calculated distance transform. Returned only when
|
2365 |
+
`return_distances` is True and `distances` is not supplied.
|
2366 |
+
It will have the same shape as the input array.
|
2367 |
+
indices : int32 ndarray, optional
|
2368 |
+
The calculated feature transform. It has an input-shaped array for each
|
2369 |
+
dimension of the input. See example below.
|
2370 |
+
Returned only when `return_indices` is True and `indices` is not
|
2371 |
+
supplied.
|
2372 |
+
|
2373 |
+
Notes
|
2374 |
+
-----
|
2375 |
+
The Euclidean distance transform gives values of the Euclidean
|
2376 |
+
distance::
|
2377 |
+
|
2378 |
+
n
|
2379 |
+
y_i = sqrt(sum (x[i]-b[i])**2)
|
2380 |
+
i
|
2381 |
+
|
2382 |
+
where b[i] is the background point (value 0) with the smallest
|
2383 |
+
Euclidean distance to input points x[i], and n is the
|
2384 |
+
number of dimensions.
|
2385 |
+
|
2386 |
+
Examples
|
2387 |
+
--------
|
2388 |
+
>>> from scipy import ndimage
|
2389 |
+
>>> import numpy as np
|
2390 |
+
>>> a = np.array(([0,1,1,1,1],
|
2391 |
+
... [0,0,1,1,1],
|
2392 |
+
... [0,1,1,1,1],
|
2393 |
+
... [0,1,1,1,0],
|
2394 |
+
... [0,1,1,0,0]))
|
2395 |
+
>>> ndimage.distance_transform_edt(a)
|
2396 |
+
array([[ 0. , 1. , 1.4142, 2.2361, 3. ],
|
2397 |
+
[ 0. , 0. , 1. , 2. , 2. ],
|
2398 |
+
[ 0. , 1. , 1.4142, 1.4142, 1. ],
|
2399 |
+
[ 0. , 1. , 1.4142, 1. , 0. ],
|
2400 |
+
[ 0. , 1. , 1. , 0. , 0. ]])
|
2401 |
+
|
2402 |
+
With a sampling of 2 units along x, 1 along y:
|
2403 |
+
|
2404 |
+
>>> ndimage.distance_transform_edt(a, sampling=[2,1])
|
2405 |
+
array([[ 0. , 1. , 2. , 2.8284, 3.6056],
|
2406 |
+
[ 0. , 0. , 1. , 2. , 3. ],
|
2407 |
+
[ 0. , 1. , 2. , 2.2361, 2. ],
|
2408 |
+
[ 0. , 1. , 2. , 1. , 0. ],
|
2409 |
+
[ 0. , 1. , 1. , 0. , 0. ]])
|
2410 |
+
|
2411 |
+
Asking for indices as well:
|
2412 |
+
|
2413 |
+
>>> edt, inds = ndimage.distance_transform_edt(a, return_indices=True)
|
2414 |
+
>>> inds
|
2415 |
+
array([[[0, 0, 1, 1, 3],
|
2416 |
+
[1, 1, 1, 1, 3],
|
2417 |
+
[2, 2, 1, 3, 3],
|
2418 |
+
[3, 3, 4, 4, 3],
|
2419 |
+
[4, 4, 4, 4, 4]],
|
2420 |
+
[[0, 0, 1, 1, 4],
|
2421 |
+
[0, 1, 1, 1, 4],
|
2422 |
+
[0, 0, 1, 4, 4],
|
2423 |
+
[0, 0, 3, 3, 4],
|
2424 |
+
[0, 0, 3, 3, 4]]])
|
2425 |
+
|
2426 |
+
With arrays provided for inplace outputs:
|
2427 |
+
|
2428 |
+
>>> indices = np.zeros(((np.ndim(a),) + a.shape), dtype=np.int32)
|
2429 |
+
>>> ndimage.distance_transform_edt(a, return_indices=True, indices=indices)
|
2430 |
+
array([[ 0. , 1. , 1.4142, 2.2361, 3. ],
|
2431 |
+
[ 0. , 0. , 1. , 2. , 2. ],
|
2432 |
+
[ 0. , 1. , 1.4142, 1.4142, 1. ],
|
2433 |
+
[ 0. , 1. , 1.4142, 1. , 0. ],
|
2434 |
+
[ 0. , 1. , 1. , 0. , 0. ]])
|
2435 |
+
>>> indices
|
2436 |
+
array([[[0, 0, 1, 1, 3],
|
2437 |
+
[1, 1, 1, 1, 3],
|
2438 |
+
[2, 2, 1, 3, 3],
|
2439 |
+
[3, 3, 4, 4, 3],
|
2440 |
+
[4, 4, 4, 4, 4]],
|
2441 |
+
[[0, 0, 1, 1, 4],
|
2442 |
+
[0, 1, 1, 1, 4],
|
2443 |
+
[0, 0, 1, 4, 4],
|
2444 |
+
[0, 0, 3, 3, 4],
|
2445 |
+
[0, 0, 3, 3, 4]]])
|
2446 |
+
|
2447 |
+
"""
|
2448 |
+
ft_inplace = isinstance(indices, numpy.ndarray)
|
2449 |
+
dt_inplace = isinstance(distances, numpy.ndarray)
|
2450 |
+
_distance_tranform_arg_check(
|
2451 |
+
dt_inplace, ft_inplace, return_distances, return_indices
|
2452 |
+
)
|
2453 |
+
|
2454 |
+
# calculate the feature transform
|
2455 |
+
input = numpy.atleast_1d(numpy.where(input, 1, 0).astype(numpy.int8))
|
2456 |
+
if sampling is not None:
|
2457 |
+
sampling = _ni_support._normalize_sequence(sampling, input.ndim)
|
2458 |
+
sampling = numpy.asarray(sampling, dtype=numpy.float64)
|
2459 |
+
if not sampling.flags.contiguous:
|
2460 |
+
sampling = sampling.copy()
|
2461 |
+
|
2462 |
+
if ft_inplace:
|
2463 |
+
ft = indices
|
2464 |
+
if ft.shape != (input.ndim,) + input.shape:
|
2465 |
+
raise RuntimeError('indices array has wrong shape')
|
2466 |
+
if ft.dtype.type != numpy.int32:
|
2467 |
+
raise RuntimeError('indices array must be int32')
|
2468 |
+
else:
|
2469 |
+
ft = numpy.zeros((input.ndim,) + input.shape, dtype=numpy.int32)
|
2470 |
+
|
2471 |
+
_nd_image.euclidean_feature_transform(input, sampling, ft)
|
2472 |
+
# if requested, calculate the distance transform
|
2473 |
+
if return_distances:
|
2474 |
+
dt = ft - numpy.indices(input.shape, dtype=ft.dtype)
|
2475 |
+
dt = dt.astype(numpy.float64)
|
2476 |
+
if sampling is not None:
|
2477 |
+
for ii in range(len(sampling)):
|
2478 |
+
dt[ii, ...] *= sampling[ii]
|
2479 |
+
numpy.multiply(dt, dt, dt)
|
2480 |
+
if dt_inplace:
|
2481 |
+
dt = numpy.add.reduce(dt, axis=0)
|
2482 |
+
if distances.shape != dt.shape:
|
2483 |
+
raise RuntimeError('distances array has wrong shape')
|
2484 |
+
if distances.dtype.type != numpy.float64:
|
2485 |
+
raise RuntimeError('distances array must be float64')
|
2486 |
+
numpy.sqrt(dt, distances)
|
2487 |
+
else:
|
2488 |
+
dt = numpy.add.reduce(dt, axis=0)
|
2489 |
+
dt = numpy.sqrt(dt)
|
2490 |
+
|
2491 |
+
# construct and return the result
|
2492 |
+
result = []
|
2493 |
+
if return_distances and not dt_inplace:
|
2494 |
+
result.append(dt)
|
2495 |
+
if return_indices and not ft_inplace:
|
2496 |
+
result.append(ft)
|
2497 |
+
|
2498 |
+
if len(result) == 2:
|
2499 |
+
return tuple(result)
|
2500 |
+
elif len(result) == 1:
|
2501 |
+
return result[0]
|
2502 |
+
else:
|
2503 |
+
return None
|
2504 |
+
|
2505 |
+
|
2506 |
+
def _distance_tranform_arg_check(distances_out, indices_out,
|
2507 |
+
return_distances, return_indices):
|
2508 |
+
"""Raise a RuntimeError if the arguments are invalid"""
|
2509 |
+
error_msgs = []
|
2510 |
+
if (not return_distances) and (not return_indices):
|
2511 |
+
error_msgs.append(
|
2512 |
+
'at least one of return_distances/return_indices must be True')
|
2513 |
+
if distances_out and not return_distances:
|
2514 |
+
error_msgs.append(
|
2515 |
+
'return_distances must be True if distances is supplied'
|
2516 |
+
)
|
2517 |
+
if indices_out and not return_indices:
|
2518 |
+
error_msgs.append('return_indices must be True if indices is supplied')
|
2519 |
+
if error_msgs:
|
2520 |
+
raise RuntimeError(', '.join(error_msgs))
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_nd_image.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (147 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_docstrings.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Docstring components common to several ndimage functions."""
|
2 |
+
from scipy._lib import doccer
|
3 |
+
|
4 |
+
__all__ = ['docfiller']
|
5 |
+
|
6 |
+
|
7 |
+
_input_doc = (
|
8 |
+
"""input : array_like
|
9 |
+
The input array.""")
|
10 |
+
_axis_doc = (
|
11 |
+
"""axis : int, optional
|
12 |
+
The axis of `input` along which to calculate. Default is -1.""")
|
13 |
+
_output_doc = (
|
14 |
+
"""output : array or dtype, optional
|
15 |
+
The array in which to place the output, or the dtype of the
|
16 |
+
returned array. By default an array of the same dtype as input
|
17 |
+
will be created.""")
|
18 |
+
_size_foot_doc = (
|
19 |
+
"""size : scalar or tuple, optional
|
20 |
+
See footprint, below. Ignored if footprint is given.
|
21 |
+
footprint : array, optional
|
22 |
+
Either `size` or `footprint` must be defined. `size` gives
|
23 |
+
the shape that is taken from the input array, at every element
|
24 |
+
position, to define the input to the filter function.
|
25 |
+
`footprint` is a boolean array that specifies (implicitly) a
|
26 |
+
shape, but also which of the elements within this shape will get
|
27 |
+
passed to the filter function. Thus ``size=(n,m)`` is equivalent
|
28 |
+
to ``footprint=np.ones((n,m))``. We adjust `size` to the number
|
29 |
+
of dimensions of the input array, so that, if the input array is
|
30 |
+
shape (10,10,10), and `size` is 2, then the actual size used is
|
31 |
+
(2,2,2). When `footprint` is given, `size` is ignored.""")
|
32 |
+
_mode_reflect_doc = (
|
33 |
+
"""mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
|
34 |
+
The `mode` parameter determines how the input array is extended
|
35 |
+
beyond its boundaries. Default is 'reflect'. Behavior for each valid
|
36 |
+
value is as follows:
|
37 |
+
|
38 |
+
'reflect' (`d c b a | a b c d | d c b a`)
|
39 |
+
The input is extended by reflecting about the edge of the last
|
40 |
+
pixel. This mode is also sometimes referred to as half-sample
|
41 |
+
symmetric.
|
42 |
+
|
43 |
+
'constant' (`k k k k | a b c d | k k k k`)
|
44 |
+
The input is extended by filling all values beyond the edge with
|
45 |
+
the same constant value, defined by the `cval` parameter.
|
46 |
+
|
47 |
+
'nearest' (`a a a a | a b c d | d d d d`)
|
48 |
+
The input is extended by replicating the last pixel.
|
49 |
+
|
50 |
+
'mirror' (`d c b | a b c d | c b a`)
|
51 |
+
The input is extended by reflecting about the center of the last
|
52 |
+
pixel. This mode is also sometimes referred to as whole-sample
|
53 |
+
symmetric.
|
54 |
+
|
55 |
+
'wrap' (`a b c d | a b c d | a b c d`)
|
56 |
+
The input is extended by wrapping around to the opposite edge.
|
57 |
+
|
58 |
+
For consistency with the interpolation functions, the following mode
|
59 |
+
names can also be used:
|
60 |
+
|
61 |
+
'grid-mirror'
|
62 |
+
This is a synonym for 'reflect'.
|
63 |
+
|
64 |
+
'grid-constant'
|
65 |
+
This is a synonym for 'constant'.
|
66 |
+
|
67 |
+
'grid-wrap'
|
68 |
+
This is a synonym for 'wrap'.""")
|
69 |
+
|
70 |
+
_mode_interp_constant_doc = (
|
71 |
+
"""mode : {'reflect', 'grid-mirror', 'constant', 'grid-constant', 'nearest', \
|
72 |
+
'mirror', 'grid-wrap', 'wrap'}, optional
|
73 |
+
The `mode` parameter determines how the input array is extended
|
74 |
+
beyond its boundaries. Default is 'constant'. Behavior for each valid
|
75 |
+
value is as follows (see additional plots and details on
|
76 |
+
:ref:`boundary modes <ndimage-interpolation-modes>`):
|
77 |
+
|
78 |
+
'reflect' (`d c b a | a b c d | d c b a`)
|
79 |
+
The input is extended by reflecting about the edge of the last
|
80 |
+
pixel. This mode is also sometimes referred to as half-sample
|
81 |
+
symmetric.
|
82 |
+
|
83 |
+
'grid-mirror'
|
84 |
+
This is a synonym for 'reflect'.
|
85 |
+
|
86 |
+
'constant' (`k k k k | a b c d | k k k k`)
|
87 |
+
The input is extended by filling all values beyond the edge with
|
88 |
+
the same constant value, defined by the `cval` parameter. No
|
89 |
+
interpolation is performed beyond the edges of the input.
|
90 |
+
|
91 |
+
'grid-constant' (`k k k k | a b c d | k k k k`)
|
92 |
+
The input is extended by filling all values beyond the edge with
|
93 |
+
the same constant value, defined by the `cval` parameter. Interpolation
|
94 |
+
occurs for samples outside the input's extent as well.
|
95 |
+
|
96 |
+
'nearest' (`a a a a | a b c d | d d d d`)
|
97 |
+
The input is extended by replicating the last pixel.
|
98 |
+
|
99 |
+
'mirror' (`d c b | a b c d | c b a`)
|
100 |
+
The input is extended by reflecting about the center of the last
|
101 |
+
pixel. This mode is also sometimes referred to as whole-sample
|
102 |
+
symmetric.
|
103 |
+
|
104 |
+
'grid-wrap' (`a b c d | a b c d | a b c d`)
|
105 |
+
The input is extended by wrapping around to the opposite edge.
|
106 |
+
|
107 |
+
'wrap' (`d b c d | a b c d | b c a b`)
|
108 |
+
The input is extended by wrapping around to the opposite edge, but in a
|
109 |
+
way such that the last point and initial point exactly overlap. In this
|
110 |
+
case it is not well defined which sample will be chosen at the point of
|
111 |
+
overlap.""")
|
112 |
+
_mode_interp_mirror_doc = (
|
113 |
+
_mode_interp_constant_doc.replace("Default is 'constant'",
|
114 |
+
"Default is 'mirror'")
|
115 |
+
)
|
116 |
+
assert _mode_interp_mirror_doc != _mode_interp_constant_doc, \
|
117 |
+
'Default not replaced'
|
118 |
+
|
119 |
+
_mode_multiple_doc = (
|
120 |
+
"""mode : str or sequence, optional
|
121 |
+
The `mode` parameter determines how the input array is extended
|
122 |
+
when the filter overlaps a border. By passing a sequence of modes
|
123 |
+
with length equal to the number of dimensions of the input array,
|
124 |
+
different modes can be specified along each axis. Default value is
|
125 |
+
'reflect'. The valid values and their behavior is as follows:
|
126 |
+
|
127 |
+
'reflect' (`d c b a | a b c d | d c b a`)
|
128 |
+
The input is extended by reflecting about the edge of the last
|
129 |
+
pixel. This mode is also sometimes referred to as half-sample
|
130 |
+
symmetric.
|
131 |
+
|
132 |
+
'constant' (`k k k k | a b c d | k k k k`)
|
133 |
+
The input is extended by filling all values beyond the edge with
|
134 |
+
the same constant value, defined by the `cval` parameter.
|
135 |
+
|
136 |
+
'nearest' (`a a a a | a b c d | d d d d`)
|
137 |
+
The input is extended by replicating the last pixel.
|
138 |
+
|
139 |
+
'mirror' (`d c b | a b c d | c b a`)
|
140 |
+
The input is extended by reflecting about the center of the last
|
141 |
+
pixel. This mode is also sometimes referred to as whole-sample
|
142 |
+
symmetric.
|
143 |
+
|
144 |
+
'wrap' (`a b c d | a b c d | a b c d`)
|
145 |
+
The input is extended by wrapping around to the opposite edge.
|
146 |
+
|
147 |
+
For consistency with the interpolation functions, the following mode
|
148 |
+
names can also be used:
|
149 |
+
|
150 |
+
'grid-constant'
|
151 |
+
This is a synonym for 'constant'.
|
152 |
+
|
153 |
+
'grid-mirror'
|
154 |
+
This is a synonym for 'reflect'.
|
155 |
+
|
156 |
+
'grid-wrap'
|
157 |
+
This is a synonym for 'wrap'.""")
|
158 |
+
_cval_doc = (
|
159 |
+
"""cval : scalar, optional
|
160 |
+
Value to fill past edges of input if `mode` is 'constant'. Default
|
161 |
+
is 0.0.""")
|
162 |
+
_origin_doc = (
|
163 |
+
"""origin : int, optional
|
164 |
+
Controls the placement of the filter on the input array's pixels.
|
165 |
+
A value of 0 (the default) centers the filter over the pixel, with
|
166 |
+
positive values shifting the filter to the left, and negative ones
|
167 |
+
to the right.""")
|
168 |
+
_origin_multiple_doc = (
|
169 |
+
"""origin : int or sequence, optional
|
170 |
+
Controls the placement of the filter on the input array's pixels.
|
171 |
+
A value of 0 (the default) centers the filter over the pixel, with
|
172 |
+
positive values shifting the filter to the left, and negative ones
|
173 |
+
to the right. By passing a sequence of origins with length equal to
|
174 |
+
the number of dimensions of the input array, different shifts can
|
175 |
+
be specified along each axis.""")
|
176 |
+
_extra_arguments_doc = (
|
177 |
+
"""extra_arguments : sequence, optional
|
178 |
+
Sequence of extra positional arguments to pass to passed function.""")
|
179 |
+
_extra_keywords_doc = (
|
180 |
+
"""extra_keywords : dict, optional
|
181 |
+
dict of extra keyword arguments to pass to passed function.""")
|
182 |
+
_prefilter_doc = (
|
183 |
+
"""prefilter : bool, optional
|
184 |
+
Determines if the input array is prefiltered with `spline_filter`
|
185 |
+
before interpolation. The default is True, which will create a
|
186 |
+
temporary `float64` array of filtered values if `order > 1`. If
|
187 |
+
setting this to False, the output will be slightly blurred if
|
188 |
+
`order > 1`, unless the input is prefiltered, i.e. it is the result
|
189 |
+
of calling `spline_filter` on the original input.""")
|
190 |
+
|
191 |
+
docdict = {
|
192 |
+
'input': _input_doc,
|
193 |
+
'axis': _axis_doc,
|
194 |
+
'output': _output_doc,
|
195 |
+
'size_foot': _size_foot_doc,
|
196 |
+
'mode_interp_constant': _mode_interp_constant_doc,
|
197 |
+
'mode_interp_mirror': _mode_interp_mirror_doc,
|
198 |
+
'mode_reflect': _mode_reflect_doc,
|
199 |
+
'mode_multiple': _mode_multiple_doc,
|
200 |
+
'cval': _cval_doc,
|
201 |
+
'origin': _origin_doc,
|
202 |
+
'origin_multiple': _origin_multiple_doc,
|
203 |
+
'extra_arguments': _extra_arguments_doc,
|
204 |
+
'extra_keywords': _extra_keywords_doc,
|
205 |
+
'prefilter': _prefilter_doc
|
206 |
+
}
|
207 |
+
|
208 |
+
docfiller = doccer.filldoc(docdict)
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_label.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (428 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/_ni_support.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2003-2005 Peter J. Verveer
|
2 |
+
#
|
3 |
+
# Redistribution and use in source and binary forms, with or without
|
4 |
+
# modification, are permitted provided that the following conditions
|
5 |
+
# are met:
|
6 |
+
#
|
7 |
+
# 1. Redistributions of source code must retain the above copyright
|
8 |
+
# notice, this list of conditions and the following disclaimer.
|
9 |
+
#
|
10 |
+
# 2. Redistributions in binary form must reproduce the above
|
11 |
+
# copyright notice, this list of conditions and the following
|
12 |
+
# disclaimer in the documentation and/or other materials provided
|
13 |
+
# with the distribution.
|
14 |
+
#
|
15 |
+
# 3. The name of the author may not be used to endorse or promote
|
16 |
+
# products derived from this software without specific prior
|
17 |
+
# written permission.
|
18 |
+
#
|
19 |
+
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
20 |
+
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
21 |
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
23 |
+
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
25 |
+
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
27 |
+
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
28 |
+
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
29 |
+
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
|
31 |
+
from collections.abc import Iterable
|
32 |
+
import operator
|
33 |
+
import warnings
|
34 |
+
import numpy
|
35 |
+
|
36 |
+
|
37 |
+
def _extend_mode_to_code(mode):
|
38 |
+
"""Convert an extension mode to the corresponding integer code.
|
39 |
+
"""
|
40 |
+
if mode == 'nearest':
|
41 |
+
return 0
|
42 |
+
elif mode == 'wrap':
|
43 |
+
return 1
|
44 |
+
elif mode in ['reflect', 'grid-mirror']:
|
45 |
+
return 2
|
46 |
+
elif mode == 'mirror':
|
47 |
+
return 3
|
48 |
+
elif mode == 'constant':
|
49 |
+
return 4
|
50 |
+
elif mode == 'grid-wrap':
|
51 |
+
return 5
|
52 |
+
elif mode == 'grid-constant':
|
53 |
+
return 6
|
54 |
+
else:
|
55 |
+
raise RuntimeError('boundary mode not supported')
|
56 |
+
|
57 |
+
|
58 |
+
def _normalize_sequence(input, rank):
|
59 |
+
"""If input is a scalar, create a sequence of length equal to the
|
60 |
+
rank by duplicating the input. If input is a sequence,
|
61 |
+
check if its length is equal to the length of array.
|
62 |
+
"""
|
63 |
+
is_str = isinstance(input, str)
|
64 |
+
if not is_str and isinstance(input, Iterable):
|
65 |
+
normalized = list(input)
|
66 |
+
if len(normalized) != rank:
|
67 |
+
err = "sequence argument must have length equal to input rank"
|
68 |
+
raise RuntimeError(err)
|
69 |
+
else:
|
70 |
+
normalized = [input] * rank
|
71 |
+
return normalized
|
72 |
+
|
73 |
+
|
74 |
+
def _get_output(output, input, shape=None, complex_output=False):
|
75 |
+
if shape is None:
|
76 |
+
shape = input.shape
|
77 |
+
if output is None:
|
78 |
+
if not complex_output:
|
79 |
+
output = numpy.zeros(shape, dtype=input.dtype.name)
|
80 |
+
else:
|
81 |
+
complex_type = numpy.promote_types(input.dtype, numpy.complex64)
|
82 |
+
output = numpy.zeros(shape, dtype=complex_type)
|
83 |
+
elif isinstance(output, (type, numpy.dtype)):
|
84 |
+
# Classes (like `np.float32`) and dtypes are interpreted as dtype
|
85 |
+
if complex_output and numpy.dtype(output).kind != 'c':
|
86 |
+
warnings.warn("promoting specified output dtype to complex", stacklevel=3)
|
87 |
+
output = numpy.promote_types(output, numpy.complex64)
|
88 |
+
output = numpy.zeros(shape, dtype=output)
|
89 |
+
elif isinstance(output, str):
|
90 |
+
output = numpy.dtype(output)
|
91 |
+
if complex_output and output.kind != 'c':
|
92 |
+
raise RuntimeError("output must have complex dtype")
|
93 |
+
elif not issubclass(output.type, numpy.number):
|
94 |
+
raise RuntimeError("output must have numeric dtype")
|
95 |
+
output = numpy.zeros(shape, dtype=output)
|
96 |
+
elif output.shape != shape:
|
97 |
+
raise RuntimeError("output shape not correct")
|
98 |
+
elif complex_output and output.dtype.kind != 'c':
|
99 |
+
raise RuntimeError("output must have complex dtype")
|
100 |
+
return output
|
101 |
+
|
102 |
+
|
103 |
+
def _check_axes(axes, ndim):
|
104 |
+
if axes is None:
|
105 |
+
return tuple(range(ndim))
|
106 |
+
elif numpy.isscalar(axes):
|
107 |
+
axes = (operator.index(axes),)
|
108 |
+
elif isinstance(axes, Iterable):
|
109 |
+
for ax in axes:
|
110 |
+
axes = tuple(operator.index(ax) for ax in axes)
|
111 |
+
if ax < -ndim or ax > ndim - 1:
|
112 |
+
raise ValueError(f"specified axis: {ax} is out of range")
|
113 |
+
axes = tuple(ax % ndim if ax < 0 else ax for ax in axes)
|
114 |
+
else:
|
115 |
+
message = "axes must be an integer, iterable of integers, or None"
|
116 |
+
raise ValueError(message)
|
117 |
+
if len(tuple(set(axes))) != len(axes):
|
118 |
+
raise ValueError("axes must be unique")
|
119 |
+
return axes
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/filters.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.ndimage` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'correlate1d', 'convolve1d', 'gaussian_filter1d',
|
10 |
+
'gaussian_filter', 'prewitt', 'sobel', 'generic_laplace',
|
11 |
+
'laplace', 'gaussian_laplace', 'generic_gradient_magnitude',
|
12 |
+
'gaussian_gradient_magnitude', 'correlate', 'convolve',
|
13 |
+
'uniform_filter1d', 'uniform_filter', 'minimum_filter1d',
|
14 |
+
'maximum_filter1d', 'minimum_filter', 'maximum_filter',
|
15 |
+
'rank_filter', 'median_filter', 'percentile_filter',
|
16 |
+
'generic_filter1d', 'generic_filter'
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def __dir__():
|
21 |
+
return __all__
|
22 |
+
|
23 |
+
|
24 |
+
def __getattr__(name):
|
25 |
+
return _sub_module_deprecation(sub_package='ndimage', module='filters',
|
26 |
+
private_modules=['_filters'], all=__all__,
|
27 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/fourier.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.ndimage` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'fourier_gaussian', 'fourier_uniform',
|
10 |
+
'fourier_ellipsoid', 'fourier_shift'
|
11 |
+
]
|
12 |
+
|
13 |
+
|
14 |
+
def __dir__():
|
15 |
+
return __all__
|
16 |
+
|
17 |
+
|
18 |
+
def __getattr__(name):
|
19 |
+
return _sub_module_deprecation(sub_package='ndimage', module='fourier',
|
20 |
+
private_modules=['_fourier'], all=__all__,
|
21 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/interpolation.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.ndimage` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'spline_filter1d', 'spline_filter',
|
10 |
+
'geometric_transform', 'map_coordinates',
|
11 |
+
'affine_transform', 'shift', 'zoom', 'rotate',
|
12 |
+
'docfiller'
|
13 |
+
]
|
14 |
+
|
15 |
+
|
16 |
+
def __dir__():
|
17 |
+
return __all__
|
18 |
+
|
19 |
+
|
20 |
+
def __getattr__(name):
|
21 |
+
return _sub_module_deprecation(sub_package='ndimage', module='interpolation',
|
22 |
+
private_modules=['_interpolation'], all=__all__,
|
23 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/measurements.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.ndimage` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'label', 'find_objects', 'labeled_comprehension',
|
10 |
+
'sum', 'mean', 'variance', 'standard_deviation',
|
11 |
+
'minimum', 'maximum', 'median', 'minimum_position',
|
12 |
+
'maximum_position', 'extrema', 'center_of_mass',
|
13 |
+
'histogram', 'watershed_ift', 'sum_labels'
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
def __dir__():
|
18 |
+
return __all__
|
19 |
+
|
20 |
+
|
21 |
+
def __getattr__(name):
|
22 |
+
return _sub_module_deprecation(sub_package='ndimage', module='measurements',
|
23 |
+
private_modules=['_measurements'], all=__all__,
|
24 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/morphology.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.ndimage` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'iterate_structure', 'generate_binary_structure',
|
10 |
+
'binary_erosion', 'binary_dilation', 'binary_opening',
|
11 |
+
'binary_closing', 'binary_hit_or_miss', 'binary_propagation',
|
12 |
+
'binary_fill_holes', 'grey_erosion', 'grey_dilation',
|
13 |
+
'grey_opening', 'grey_closing', 'morphological_gradient',
|
14 |
+
'morphological_laplace', 'white_tophat', 'black_tophat',
|
15 |
+
'distance_transform_bf', 'distance_transform_cdt',
|
16 |
+
'distance_transform_edt'
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def __dir__():
|
21 |
+
return __all__
|
22 |
+
|
23 |
+
|
24 |
+
def __getattr__(name):
|
25 |
+
return _sub_module_deprecation(sub_package='ndimage', module='morphology',
|
26 |
+
private_modules=['_morphology'], all=__all__,
|
27 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import numpy
|
3 |
+
|
4 |
+
# list of numarray data types
|
5 |
+
integer_types: list[type] = [
|
6 |
+
numpy.int8, numpy.uint8, numpy.int16, numpy.uint16,
|
7 |
+
numpy.int32, numpy.uint32, numpy.int64, numpy.uint64]
|
8 |
+
|
9 |
+
float_types: list[type] = [numpy.float32, numpy.float64]
|
10 |
+
|
11 |
+
complex_types: list[type] = [numpy.complex64, numpy.complex128]
|
12 |
+
|
13 |
+
types: list[type] = integer_types + float_types
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (567 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_c_api.cpython-310.pyc
ADDED
Binary file (4.15 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_filters.cpython-310.pyc
ADDED
Binary file (63.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_fourier.cpython-310.pyc
ADDED
Binary file (5.23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_interpolation.cpython-310.pyc
ADDED
Binary file (46.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_measurements.cpython-310.pyc
ADDED
Binary file (36.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_morphology.cpython-310.pyc
ADDED
Binary file (60 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_ni_support.cpython-310.pyc
ADDED
Binary file (1.88 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/__pycache__/test_splines.cpython-310.pyc
ADDED
Binary file (2.01 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_c_api.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numpy.testing import assert_allclose
|
3 |
+
|
4 |
+
from scipy import ndimage
|
5 |
+
from scipy.ndimage import _ctest
|
6 |
+
from scipy.ndimage import _cytest
|
7 |
+
from scipy._lib._ccallback import LowLevelCallable
|
8 |
+
|
9 |
+
FILTER1D_FUNCTIONS = [
|
10 |
+
lambda filter_size: _ctest.filter1d(filter_size),
|
11 |
+
lambda filter_size: _cytest.filter1d(filter_size, with_signature=False),
|
12 |
+
lambda filter_size: LowLevelCallable(
|
13 |
+
_cytest.filter1d(filter_size, with_signature=True)
|
14 |
+
),
|
15 |
+
lambda filter_size: LowLevelCallable.from_cython(
|
16 |
+
_cytest, "_filter1d",
|
17 |
+
_cytest.filter1d_capsule(filter_size),
|
18 |
+
),
|
19 |
+
]
|
20 |
+
|
21 |
+
FILTER2D_FUNCTIONS = [
|
22 |
+
lambda weights: _ctest.filter2d(weights),
|
23 |
+
lambda weights: _cytest.filter2d(weights, with_signature=False),
|
24 |
+
lambda weights: LowLevelCallable(_cytest.filter2d(weights, with_signature=True)),
|
25 |
+
lambda weights: LowLevelCallable.from_cython(_cytest,
|
26 |
+
"_filter2d",
|
27 |
+
_cytest.filter2d_capsule(weights),),
|
28 |
+
]
|
29 |
+
|
30 |
+
TRANSFORM_FUNCTIONS = [
|
31 |
+
lambda shift: _ctest.transform(shift),
|
32 |
+
lambda shift: _cytest.transform(shift, with_signature=False),
|
33 |
+
lambda shift: LowLevelCallable(_cytest.transform(shift, with_signature=True)),
|
34 |
+
lambda shift: LowLevelCallable.from_cython(_cytest,
|
35 |
+
"_transform",
|
36 |
+
_cytest.transform_capsule(shift),),
|
37 |
+
]
|
38 |
+
|
39 |
+
|
40 |
+
def test_generic_filter():
|
41 |
+
def filter2d(footprint_elements, weights):
|
42 |
+
return (weights*footprint_elements).sum()
|
43 |
+
|
44 |
+
def check(j):
|
45 |
+
func = FILTER2D_FUNCTIONS[j]
|
46 |
+
|
47 |
+
im = np.ones((20, 20))
|
48 |
+
im[:10,:10] = 0
|
49 |
+
footprint = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
|
50 |
+
footprint_size = np.count_nonzero(footprint)
|
51 |
+
weights = np.ones(footprint_size)/footprint_size
|
52 |
+
|
53 |
+
res = ndimage.generic_filter(im, func(weights),
|
54 |
+
footprint=footprint)
|
55 |
+
std = ndimage.generic_filter(im, filter2d, footprint=footprint,
|
56 |
+
extra_arguments=(weights,))
|
57 |
+
assert_allclose(res, std, err_msg=f"#{j} failed")
|
58 |
+
|
59 |
+
for j, func in enumerate(FILTER2D_FUNCTIONS):
|
60 |
+
check(j)
|
61 |
+
|
62 |
+
|
63 |
+
def test_generic_filter1d():
|
64 |
+
def filter1d(input_line, output_line, filter_size):
|
65 |
+
for i in range(output_line.size):
|
66 |
+
output_line[i] = 0
|
67 |
+
for j in range(filter_size):
|
68 |
+
output_line[i] += input_line[i+j]
|
69 |
+
output_line /= filter_size
|
70 |
+
|
71 |
+
def check(j):
|
72 |
+
func = FILTER1D_FUNCTIONS[j]
|
73 |
+
|
74 |
+
im = np.tile(np.hstack((np.zeros(10), np.ones(10))), (10, 1))
|
75 |
+
filter_size = 3
|
76 |
+
|
77 |
+
res = ndimage.generic_filter1d(im, func(filter_size),
|
78 |
+
filter_size)
|
79 |
+
std = ndimage.generic_filter1d(im, filter1d, filter_size,
|
80 |
+
extra_arguments=(filter_size,))
|
81 |
+
assert_allclose(res, std, err_msg=f"#{j} failed")
|
82 |
+
|
83 |
+
for j, func in enumerate(FILTER1D_FUNCTIONS):
|
84 |
+
check(j)
|
85 |
+
|
86 |
+
|
87 |
+
def test_geometric_transform():
|
88 |
+
def transform(output_coordinates, shift):
|
89 |
+
return output_coordinates[0] - shift, output_coordinates[1] - shift
|
90 |
+
|
91 |
+
def check(j):
|
92 |
+
func = TRANSFORM_FUNCTIONS[j]
|
93 |
+
|
94 |
+
im = np.arange(12).reshape(4, 3).astype(np.float64)
|
95 |
+
shift = 0.5
|
96 |
+
|
97 |
+
res = ndimage.geometric_transform(im, func(shift))
|
98 |
+
std = ndimage.geometric_transform(im, transform, extra_arguments=(shift,))
|
99 |
+
assert_allclose(res, std, err_msg=f"#{j} failed")
|
100 |
+
|
101 |
+
for j, func in enumerate(TRANSFORM_FUNCTIONS):
|
102 |
+
check(j)
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_datatypes.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Testing data types for ndimage calls
|
2 |
+
"""
|
3 |
+
import numpy as np
|
4 |
+
from numpy.testing import assert_array_almost_equal, assert_
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from scipy import ndimage
|
8 |
+
|
9 |
+
|
10 |
+
def test_map_coordinates_dts():
|
11 |
+
# check that ndimage accepts different data types for interpolation
|
12 |
+
data = np.array([[4, 1, 3, 2],
|
13 |
+
[7, 6, 8, 5],
|
14 |
+
[3, 5, 3, 6]])
|
15 |
+
shifted_data = np.array([[0, 0, 0, 0],
|
16 |
+
[0, 4, 1, 3],
|
17 |
+
[0, 7, 6, 8]])
|
18 |
+
idx = np.indices(data.shape)
|
19 |
+
dts = (np.uint8, np.uint16, np.uint32, np.uint64,
|
20 |
+
np.int8, np.int16, np.int32, np.int64,
|
21 |
+
np.intp, np.uintp, np.float32, np.float64)
|
22 |
+
for order in range(0, 6):
|
23 |
+
for data_dt in dts:
|
24 |
+
these_data = data.astype(data_dt)
|
25 |
+
for coord_dt in dts:
|
26 |
+
# affine mapping
|
27 |
+
mat = np.eye(2, dtype=coord_dt)
|
28 |
+
off = np.zeros((2,), dtype=coord_dt)
|
29 |
+
out = ndimage.affine_transform(these_data, mat, off)
|
30 |
+
assert_array_almost_equal(these_data, out)
|
31 |
+
# map coordinates
|
32 |
+
coords_m1 = idx.astype(coord_dt) - 1
|
33 |
+
coords_p10 = idx.astype(coord_dt) + 10
|
34 |
+
out = ndimage.map_coordinates(these_data, coords_m1, order=order)
|
35 |
+
assert_array_almost_equal(out, shifted_data)
|
36 |
+
# check constant fill works
|
37 |
+
out = ndimage.map_coordinates(these_data, coords_p10, order=order)
|
38 |
+
assert_array_almost_equal(out, np.zeros((3,4)))
|
39 |
+
# check shift and zoom
|
40 |
+
out = ndimage.shift(these_data, 1)
|
41 |
+
assert_array_almost_equal(out, shifted_data)
|
42 |
+
out = ndimage.zoom(these_data, 1)
|
43 |
+
assert_array_almost_equal(these_data, out)
|
44 |
+
|
45 |
+
|
46 |
+
@pytest.mark.xfail(True, reason="Broken on many platforms")
|
47 |
+
def test_uint64_max():
|
48 |
+
# Test interpolation respects uint64 max. Reported to fail at least on
|
49 |
+
# win32 (due to the 32 bit visual C compiler using signed int64 when
|
50 |
+
# converting between uint64 to double) and Debian on s390x.
|
51 |
+
# Interpolation is always done in double precision floating point, so
|
52 |
+
# we use the largest uint64 value for which int(float(big)) still fits
|
53 |
+
# in a uint64.
|
54 |
+
# This test was last enabled on macOS only, and there it started failing
|
55 |
+
# on arm64 as well (see gh-19117).
|
56 |
+
big = 2**64 - 1025
|
57 |
+
arr = np.array([big, big, big], dtype=np.uint64)
|
58 |
+
# Tests geometric transform (map_coordinates, affine_transform)
|
59 |
+
inds = np.indices(arr.shape) - 0.1
|
60 |
+
x = ndimage.map_coordinates(arr, inds)
|
61 |
+
assert_(x[1] == int(float(big)))
|
62 |
+
assert_(x[2] == int(float(big)))
|
63 |
+
# Tests zoom / shift
|
64 |
+
x = ndimage.shift(arr, 0.1)
|
65 |
+
assert_(x[1] == int(float(big)))
|
66 |
+
assert_(x[2] == int(float(big)))
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_filters.py
ADDED
@@ -0,0 +1,2189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
''' Some tests for filters '''
|
2 |
+
import functools
|
3 |
+
import itertools
|
4 |
+
import math
|
5 |
+
import numpy
|
6 |
+
|
7 |
+
from numpy.testing import (assert_equal, assert_allclose,
|
8 |
+
assert_array_almost_equal,
|
9 |
+
assert_array_equal, assert_almost_equal,
|
10 |
+
suppress_warnings, assert_)
|
11 |
+
import pytest
|
12 |
+
from pytest import raises as assert_raises
|
13 |
+
|
14 |
+
from scipy import ndimage
|
15 |
+
from scipy.ndimage._filters import _gaussian_kernel1d
|
16 |
+
|
17 |
+
from . import types, float_types, complex_types
|
18 |
+
|
19 |
+
|
20 |
+
def sumsq(a, b):
|
21 |
+
return math.sqrt(((a - b)**2).sum())
|
22 |
+
|
23 |
+
|
24 |
+
def _complex_correlate(array, kernel, real_dtype, convolve=False,
|
25 |
+
mode="reflect", cval=0, ):
|
26 |
+
"""Utility to perform a reference complex-valued convolutions.
|
27 |
+
|
28 |
+
When convolve==False, correlation is performed instead
|
29 |
+
"""
|
30 |
+
array = numpy.asarray(array)
|
31 |
+
kernel = numpy.asarray(kernel)
|
32 |
+
complex_array = array.dtype.kind == 'c'
|
33 |
+
complex_kernel = kernel.dtype.kind == 'c'
|
34 |
+
if array.ndim == 1:
|
35 |
+
func = ndimage.convolve1d if convolve else ndimage.correlate1d
|
36 |
+
else:
|
37 |
+
func = ndimage.convolve if convolve else ndimage.correlate
|
38 |
+
if not convolve:
|
39 |
+
kernel = kernel.conj()
|
40 |
+
if complex_array and complex_kernel:
|
41 |
+
# use: real(cval) for array.real component
|
42 |
+
# imag(cval) for array.imag component
|
43 |
+
output = (
|
44 |
+
func(array.real, kernel.real, output=real_dtype,
|
45 |
+
mode=mode, cval=numpy.real(cval)) -
|
46 |
+
func(array.imag, kernel.imag, output=real_dtype,
|
47 |
+
mode=mode, cval=numpy.imag(cval)) +
|
48 |
+
1j * func(array.imag, kernel.real, output=real_dtype,
|
49 |
+
mode=mode, cval=numpy.imag(cval)) +
|
50 |
+
1j * func(array.real, kernel.imag, output=real_dtype,
|
51 |
+
mode=mode, cval=numpy.real(cval))
|
52 |
+
)
|
53 |
+
elif complex_array:
|
54 |
+
output = (
|
55 |
+
func(array.real, kernel, output=real_dtype, mode=mode,
|
56 |
+
cval=numpy.real(cval)) +
|
57 |
+
1j * func(array.imag, kernel, output=real_dtype, mode=mode,
|
58 |
+
cval=numpy.imag(cval))
|
59 |
+
)
|
60 |
+
elif complex_kernel:
|
61 |
+
# real array so cval is real too
|
62 |
+
output = (
|
63 |
+
func(array, kernel.real, output=real_dtype, mode=mode, cval=cval) +
|
64 |
+
1j * func(array, kernel.imag, output=real_dtype, mode=mode,
|
65 |
+
cval=cval)
|
66 |
+
)
|
67 |
+
return output
|
68 |
+
|
69 |
+
|
70 |
+
def _cases_axes_tuple_length_mismatch():
|
71 |
+
# Generate combinations of filter function, valid kwargs, and
|
72 |
+
# keyword-value pairs for which the value will become with mismatched
|
73 |
+
# (invalid) size
|
74 |
+
filter_func = ndimage.gaussian_filter
|
75 |
+
kwargs = dict(radius=3, mode='constant', sigma=1.0, order=0)
|
76 |
+
for key, val in kwargs.items():
|
77 |
+
yield filter_func, kwargs, key, val
|
78 |
+
|
79 |
+
filter_funcs = [ndimage.uniform_filter, ndimage.minimum_filter,
|
80 |
+
ndimage.maximum_filter]
|
81 |
+
kwargs = dict(size=3, mode='constant', origin=0)
|
82 |
+
for filter_func in filter_funcs:
|
83 |
+
for key, val in kwargs.items():
|
84 |
+
yield filter_func, kwargs, key, val
|
85 |
+
|
86 |
+
|
87 |
+
class TestNdimageFilters:
|
88 |
+
|
89 |
+
def _validate_complex(self, array, kernel, type2, mode='reflect', cval=0):
|
90 |
+
# utility for validating complex-valued correlations
|
91 |
+
real_dtype = numpy.asarray([], dtype=type2).real.dtype
|
92 |
+
expected = _complex_correlate(
|
93 |
+
array, kernel, real_dtype, convolve=False, mode=mode, cval=cval
|
94 |
+
)
|
95 |
+
|
96 |
+
if array.ndim == 1:
|
97 |
+
correlate = functools.partial(ndimage.correlate1d, axis=-1,
|
98 |
+
mode=mode, cval=cval)
|
99 |
+
convolve = functools.partial(ndimage.convolve1d, axis=-1,
|
100 |
+
mode=mode, cval=cval)
|
101 |
+
else:
|
102 |
+
correlate = functools.partial(ndimage.correlate, mode=mode,
|
103 |
+
cval=cval)
|
104 |
+
convolve = functools.partial(ndimage.convolve, mode=mode,
|
105 |
+
cval=cval)
|
106 |
+
|
107 |
+
# test correlate output dtype
|
108 |
+
output = correlate(array, kernel, output=type2)
|
109 |
+
assert_array_almost_equal(expected, output)
|
110 |
+
assert_equal(output.dtype.type, type2)
|
111 |
+
|
112 |
+
# test correlate with pre-allocated output
|
113 |
+
output = numpy.zeros_like(array, dtype=type2)
|
114 |
+
correlate(array, kernel, output=output)
|
115 |
+
assert_array_almost_equal(expected, output)
|
116 |
+
|
117 |
+
# test convolve output dtype
|
118 |
+
output = convolve(array, kernel, output=type2)
|
119 |
+
expected = _complex_correlate(
|
120 |
+
array, kernel, real_dtype, convolve=True, mode=mode, cval=cval,
|
121 |
+
)
|
122 |
+
assert_array_almost_equal(expected, output)
|
123 |
+
assert_equal(output.dtype.type, type2)
|
124 |
+
|
125 |
+
# convolve with pre-allocated output
|
126 |
+
convolve(array, kernel, output=output)
|
127 |
+
assert_array_almost_equal(expected, output)
|
128 |
+
assert_equal(output.dtype.type, type2)
|
129 |
+
|
130 |
+
# warns if the output is not a complex dtype
|
131 |
+
with pytest.warns(UserWarning,
|
132 |
+
match="promoting specified output dtype to complex"):
|
133 |
+
correlate(array, kernel, output=real_dtype)
|
134 |
+
|
135 |
+
with pytest.warns(UserWarning,
|
136 |
+
match="promoting specified output dtype to complex"):
|
137 |
+
convolve(array, kernel, output=real_dtype)
|
138 |
+
|
139 |
+
# raises if output array is provided, but is not complex-valued
|
140 |
+
output_real = numpy.zeros_like(array, dtype=real_dtype)
|
141 |
+
with assert_raises(RuntimeError):
|
142 |
+
correlate(array, kernel, output=output_real)
|
143 |
+
|
144 |
+
with assert_raises(RuntimeError):
|
145 |
+
convolve(array, kernel, output=output_real)
|
146 |
+
|
147 |
+
def test_correlate01(self):
|
148 |
+
array = numpy.array([1, 2])
|
149 |
+
weights = numpy.array([2])
|
150 |
+
expected = [2, 4]
|
151 |
+
|
152 |
+
output = ndimage.correlate(array, weights)
|
153 |
+
assert_array_almost_equal(output, expected)
|
154 |
+
|
155 |
+
output = ndimage.convolve(array, weights)
|
156 |
+
assert_array_almost_equal(output, expected)
|
157 |
+
|
158 |
+
output = ndimage.correlate1d(array, weights)
|
159 |
+
assert_array_almost_equal(output, expected)
|
160 |
+
|
161 |
+
output = ndimage.convolve1d(array, weights)
|
162 |
+
assert_array_almost_equal(output, expected)
|
163 |
+
|
164 |
+
def test_correlate01_overlap(self):
|
165 |
+
array = numpy.arange(256).reshape(16, 16)
|
166 |
+
weights = numpy.array([2])
|
167 |
+
expected = 2 * array
|
168 |
+
|
169 |
+
ndimage.correlate1d(array, weights, output=array)
|
170 |
+
assert_array_almost_equal(array, expected)
|
171 |
+
|
172 |
+
def test_correlate02(self):
|
173 |
+
array = numpy.array([1, 2, 3])
|
174 |
+
kernel = numpy.array([1])
|
175 |
+
|
176 |
+
output = ndimage.correlate(array, kernel)
|
177 |
+
assert_array_almost_equal(array, output)
|
178 |
+
|
179 |
+
output = ndimage.convolve(array, kernel)
|
180 |
+
assert_array_almost_equal(array, output)
|
181 |
+
|
182 |
+
output = ndimage.correlate1d(array, kernel)
|
183 |
+
assert_array_almost_equal(array, output)
|
184 |
+
|
185 |
+
output = ndimage.convolve1d(array, kernel)
|
186 |
+
assert_array_almost_equal(array, output)
|
187 |
+
|
188 |
+
def test_correlate03(self):
|
189 |
+
array = numpy.array([1])
|
190 |
+
weights = numpy.array([1, 1])
|
191 |
+
expected = [2]
|
192 |
+
|
193 |
+
output = ndimage.correlate(array, weights)
|
194 |
+
assert_array_almost_equal(output, expected)
|
195 |
+
|
196 |
+
output = ndimage.convolve(array, weights)
|
197 |
+
assert_array_almost_equal(output, expected)
|
198 |
+
|
199 |
+
output = ndimage.correlate1d(array, weights)
|
200 |
+
assert_array_almost_equal(output, expected)
|
201 |
+
|
202 |
+
output = ndimage.convolve1d(array, weights)
|
203 |
+
assert_array_almost_equal(output, expected)
|
204 |
+
|
205 |
+
def test_correlate04(self):
|
206 |
+
array = numpy.array([1, 2])
|
207 |
+
tcor = [2, 3]
|
208 |
+
tcov = [3, 4]
|
209 |
+
weights = numpy.array([1, 1])
|
210 |
+
output = ndimage.correlate(array, weights)
|
211 |
+
assert_array_almost_equal(output, tcor)
|
212 |
+
output = ndimage.convolve(array, weights)
|
213 |
+
assert_array_almost_equal(output, tcov)
|
214 |
+
output = ndimage.correlate1d(array, weights)
|
215 |
+
assert_array_almost_equal(output, tcor)
|
216 |
+
output = ndimage.convolve1d(array, weights)
|
217 |
+
assert_array_almost_equal(output, tcov)
|
218 |
+
|
219 |
+
def test_correlate05(self):
|
220 |
+
array = numpy.array([1, 2, 3])
|
221 |
+
tcor = [2, 3, 5]
|
222 |
+
tcov = [3, 5, 6]
|
223 |
+
kernel = numpy.array([1, 1])
|
224 |
+
output = ndimage.correlate(array, kernel)
|
225 |
+
assert_array_almost_equal(tcor, output)
|
226 |
+
output = ndimage.convolve(array, kernel)
|
227 |
+
assert_array_almost_equal(tcov, output)
|
228 |
+
output = ndimage.correlate1d(array, kernel)
|
229 |
+
assert_array_almost_equal(tcor, output)
|
230 |
+
output = ndimage.convolve1d(array, kernel)
|
231 |
+
assert_array_almost_equal(tcov, output)
|
232 |
+
|
233 |
+
def test_correlate06(self):
|
234 |
+
array = numpy.array([1, 2, 3])
|
235 |
+
tcor = [9, 14, 17]
|
236 |
+
tcov = [7, 10, 15]
|
237 |
+
weights = numpy.array([1, 2, 3])
|
238 |
+
output = ndimage.correlate(array, weights)
|
239 |
+
assert_array_almost_equal(output, tcor)
|
240 |
+
output = ndimage.convolve(array, weights)
|
241 |
+
assert_array_almost_equal(output, tcov)
|
242 |
+
output = ndimage.correlate1d(array, weights)
|
243 |
+
assert_array_almost_equal(output, tcor)
|
244 |
+
output = ndimage.convolve1d(array, weights)
|
245 |
+
assert_array_almost_equal(output, tcov)
|
246 |
+
|
247 |
+
def test_correlate07(self):
|
248 |
+
array = numpy.array([1, 2, 3])
|
249 |
+
expected = [5, 8, 11]
|
250 |
+
weights = numpy.array([1, 2, 1])
|
251 |
+
output = ndimage.correlate(array, weights)
|
252 |
+
assert_array_almost_equal(output, expected)
|
253 |
+
output = ndimage.convolve(array, weights)
|
254 |
+
assert_array_almost_equal(output, expected)
|
255 |
+
output = ndimage.correlate1d(array, weights)
|
256 |
+
assert_array_almost_equal(output, expected)
|
257 |
+
output = ndimage.convolve1d(array, weights)
|
258 |
+
assert_array_almost_equal(output, expected)
|
259 |
+
|
260 |
+
def test_correlate08(self):
|
261 |
+
array = numpy.array([1, 2, 3])
|
262 |
+
tcor = [1, 2, 5]
|
263 |
+
tcov = [3, 6, 7]
|
264 |
+
weights = numpy.array([1, 2, -1])
|
265 |
+
output = ndimage.correlate(array, weights)
|
266 |
+
assert_array_almost_equal(output, tcor)
|
267 |
+
output = ndimage.convolve(array, weights)
|
268 |
+
assert_array_almost_equal(output, tcov)
|
269 |
+
output = ndimage.correlate1d(array, weights)
|
270 |
+
assert_array_almost_equal(output, tcor)
|
271 |
+
output = ndimage.convolve1d(array, weights)
|
272 |
+
assert_array_almost_equal(output, tcov)
|
273 |
+
|
274 |
+
def test_correlate09(self):
|
275 |
+
array = []
|
276 |
+
kernel = numpy.array([1, 1])
|
277 |
+
output = ndimage.correlate(array, kernel)
|
278 |
+
assert_array_almost_equal(array, output)
|
279 |
+
output = ndimage.convolve(array, kernel)
|
280 |
+
assert_array_almost_equal(array, output)
|
281 |
+
output = ndimage.correlate1d(array, kernel)
|
282 |
+
assert_array_almost_equal(array, output)
|
283 |
+
output = ndimage.convolve1d(array, kernel)
|
284 |
+
assert_array_almost_equal(array, output)
|
285 |
+
|
286 |
+
def test_correlate10(self):
|
287 |
+
array = [[]]
|
288 |
+
kernel = numpy.array([[1, 1]])
|
289 |
+
output = ndimage.correlate(array, kernel)
|
290 |
+
assert_array_almost_equal(array, output)
|
291 |
+
output = ndimage.convolve(array, kernel)
|
292 |
+
assert_array_almost_equal(array, output)
|
293 |
+
|
294 |
+
def test_correlate11(self):
|
295 |
+
array = numpy.array([[1, 2, 3],
|
296 |
+
[4, 5, 6]])
|
297 |
+
kernel = numpy.array([[1, 1],
|
298 |
+
[1, 1]])
|
299 |
+
output = ndimage.correlate(array, kernel)
|
300 |
+
assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output)
|
301 |
+
output = ndimage.convolve(array, kernel)
|
302 |
+
assert_array_almost_equal([[12, 16, 18], [18, 22, 24]], output)
|
303 |
+
|
304 |
+
def test_correlate12(self):
|
305 |
+
array = numpy.array([[1, 2, 3],
|
306 |
+
[4, 5, 6]])
|
307 |
+
kernel = numpy.array([[1, 0],
|
308 |
+
[0, 1]])
|
309 |
+
output = ndimage.correlate(array, kernel)
|
310 |
+
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
|
311 |
+
output = ndimage.convolve(array, kernel)
|
312 |
+
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
|
313 |
+
|
314 |
+
@pytest.mark.parametrize('dtype_array', types)
|
315 |
+
@pytest.mark.parametrize('dtype_kernel', types)
|
316 |
+
def test_correlate13(self, dtype_array, dtype_kernel):
|
317 |
+
kernel = numpy.array([[1, 0],
|
318 |
+
[0, 1]])
|
319 |
+
array = numpy.array([[1, 2, 3],
|
320 |
+
[4, 5, 6]], dtype_array)
|
321 |
+
output = ndimage.correlate(array, kernel, output=dtype_kernel)
|
322 |
+
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
|
323 |
+
assert_equal(output.dtype.type, dtype_kernel)
|
324 |
+
|
325 |
+
output = ndimage.convolve(array, kernel,
|
326 |
+
output=dtype_kernel)
|
327 |
+
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
|
328 |
+
assert_equal(output.dtype.type, dtype_kernel)
|
329 |
+
|
330 |
+
@pytest.mark.parametrize('dtype_array', types)
|
331 |
+
@pytest.mark.parametrize('dtype_output', types)
|
332 |
+
def test_correlate14(self, dtype_array, dtype_output):
|
333 |
+
kernel = numpy.array([[1, 0],
|
334 |
+
[0, 1]])
|
335 |
+
array = numpy.array([[1, 2, 3],
|
336 |
+
[4, 5, 6]], dtype_array)
|
337 |
+
output = numpy.zeros(array.shape, dtype_output)
|
338 |
+
ndimage.correlate(array, kernel, output=output)
|
339 |
+
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
|
340 |
+
assert_equal(output.dtype.type, dtype_output)
|
341 |
+
|
342 |
+
ndimage.convolve(array, kernel, output=output)
|
343 |
+
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
|
344 |
+
assert_equal(output.dtype.type, dtype_output)
|
345 |
+
|
346 |
+
@pytest.mark.parametrize('dtype_array', types)
|
347 |
+
def test_correlate15(self, dtype_array):
|
348 |
+
kernel = numpy.array([[1, 0],
|
349 |
+
[0, 1]])
|
350 |
+
array = numpy.array([[1, 2, 3],
|
351 |
+
[4, 5, 6]], dtype_array)
|
352 |
+
output = ndimage.correlate(array, kernel, output=numpy.float32)
|
353 |
+
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
|
354 |
+
assert_equal(output.dtype.type, numpy.float32)
|
355 |
+
|
356 |
+
output = ndimage.convolve(array, kernel, output=numpy.float32)
|
357 |
+
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
|
358 |
+
assert_equal(output.dtype.type, numpy.float32)
|
359 |
+
|
360 |
+
@pytest.mark.parametrize('dtype_array', types)
|
361 |
+
def test_correlate16(self, dtype_array):
|
362 |
+
kernel = numpy.array([[0.5, 0],
|
363 |
+
[0, 0.5]])
|
364 |
+
array = numpy.array([[1, 2, 3], [4, 5, 6]], dtype_array)
|
365 |
+
output = ndimage.correlate(array, kernel, output=numpy.float32)
|
366 |
+
assert_array_almost_equal([[1, 1.5, 2.5], [2.5, 3, 4]], output)
|
367 |
+
assert_equal(output.dtype.type, numpy.float32)
|
368 |
+
|
369 |
+
output = ndimage.convolve(array, kernel, output=numpy.float32)
|
370 |
+
assert_array_almost_equal([[3, 4, 4.5], [4.5, 5.5, 6]], output)
|
371 |
+
assert_equal(output.dtype.type, numpy.float32)
|
372 |
+
|
373 |
+
def test_correlate17(self):
|
374 |
+
array = numpy.array([1, 2, 3])
|
375 |
+
tcor = [3, 5, 6]
|
376 |
+
tcov = [2, 3, 5]
|
377 |
+
kernel = numpy.array([1, 1])
|
378 |
+
output = ndimage.correlate(array, kernel, origin=-1)
|
379 |
+
assert_array_almost_equal(tcor, output)
|
380 |
+
output = ndimage.convolve(array, kernel, origin=-1)
|
381 |
+
assert_array_almost_equal(tcov, output)
|
382 |
+
output = ndimage.correlate1d(array, kernel, origin=-1)
|
383 |
+
assert_array_almost_equal(tcor, output)
|
384 |
+
output = ndimage.convolve1d(array, kernel, origin=-1)
|
385 |
+
assert_array_almost_equal(tcov, output)
|
386 |
+
|
387 |
+
@pytest.mark.parametrize('dtype_array', types)
|
388 |
+
def test_correlate18(self, dtype_array):
|
389 |
+
kernel = numpy.array([[1, 0],
|
390 |
+
[0, 1]])
|
391 |
+
array = numpy.array([[1, 2, 3],
|
392 |
+
[4, 5, 6]], dtype_array)
|
393 |
+
output = ndimage.correlate(array, kernel,
|
394 |
+
output=numpy.float32,
|
395 |
+
mode='nearest', origin=-1)
|
396 |
+
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
|
397 |
+
assert_equal(output.dtype.type, numpy.float32)
|
398 |
+
|
399 |
+
output = ndimage.convolve(array, kernel,
|
400 |
+
output=numpy.float32,
|
401 |
+
mode='nearest', origin=-1)
|
402 |
+
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
|
403 |
+
assert_equal(output.dtype.type, numpy.float32)
|
404 |
+
|
405 |
+
def test_correlate_mode_sequence(self):
|
406 |
+
kernel = numpy.ones((2, 2))
|
407 |
+
array = numpy.ones((3, 3), float)
|
408 |
+
with assert_raises(RuntimeError):
|
409 |
+
ndimage.correlate(array, kernel, mode=['nearest', 'reflect'])
|
410 |
+
with assert_raises(RuntimeError):
|
411 |
+
ndimage.convolve(array, kernel, mode=['nearest', 'reflect'])
|
412 |
+
|
413 |
+
@pytest.mark.parametrize('dtype_array', types)
|
414 |
+
def test_correlate19(self, dtype_array):
|
415 |
+
kernel = numpy.array([[1, 0],
|
416 |
+
[0, 1]])
|
417 |
+
array = numpy.array([[1, 2, 3],
|
418 |
+
[4, 5, 6]], dtype_array)
|
419 |
+
output = ndimage.correlate(array, kernel,
|
420 |
+
output=numpy.float32,
|
421 |
+
mode='nearest', origin=[-1, 0])
|
422 |
+
assert_array_almost_equal([[5, 6, 8], [8, 9, 11]], output)
|
423 |
+
assert_equal(output.dtype.type, numpy.float32)
|
424 |
+
|
425 |
+
output = ndimage.convolve(array, kernel,
|
426 |
+
output=numpy.float32,
|
427 |
+
mode='nearest', origin=[-1, 0])
|
428 |
+
assert_array_almost_equal([[3, 5, 6], [6, 8, 9]], output)
|
429 |
+
assert_equal(output.dtype.type, numpy.float32)
|
430 |
+
|
431 |
+
@pytest.mark.parametrize('dtype_array', types)
|
432 |
+
@pytest.mark.parametrize('dtype_output', types)
|
433 |
+
def test_correlate20(self, dtype_array, dtype_output):
|
434 |
+
weights = numpy.array([1, 2, 1])
|
435 |
+
expected = [[5, 10, 15], [7, 14, 21]]
|
436 |
+
array = numpy.array([[1, 2, 3],
|
437 |
+
[2, 4, 6]], dtype_array)
|
438 |
+
output = numpy.zeros((2, 3), dtype_output)
|
439 |
+
ndimage.correlate1d(array, weights, axis=0, output=output)
|
440 |
+
assert_array_almost_equal(output, expected)
|
441 |
+
ndimage.convolve1d(array, weights, axis=0, output=output)
|
442 |
+
assert_array_almost_equal(output, expected)
|
443 |
+
|
444 |
+
def test_correlate21(self):
|
445 |
+
array = numpy.array([[1, 2, 3],
|
446 |
+
[2, 4, 6]])
|
447 |
+
expected = [[5, 10, 15], [7, 14, 21]]
|
448 |
+
weights = numpy.array([1, 2, 1])
|
449 |
+
output = ndimage.correlate1d(array, weights, axis=0)
|
450 |
+
assert_array_almost_equal(output, expected)
|
451 |
+
output = ndimage.convolve1d(array, weights, axis=0)
|
452 |
+
assert_array_almost_equal(output, expected)
|
453 |
+
|
454 |
+
@pytest.mark.parametrize('dtype_array', types)
|
455 |
+
@pytest.mark.parametrize('dtype_output', types)
|
456 |
+
def test_correlate22(self, dtype_array, dtype_output):
|
457 |
+
weights = numpy.array([1, 2, 1])
|
458 |
+
expected = [[6, 12, 18], [6, 12, 18]]
|
459 |
+
array = numpy.array([[1, 2, 3],
|
460 |
+
[2, 4, 6]], dtype_array)
|
461 |
+
output = numpy.zeros((2, 3), dtype_output)
|
462 |
+
ndimage.correlate1d(array, weights, axis=0,
|
463 |
+
mode='wrap', output=output)
|
464 |
+
assert_array_almost_equal(output, expected)
|
465 |
+
ndimage.convolve1d(array, weights, axis=0,
|
466 |
+
mode='wrap', output=output)
|
467 |
+
assert_array_almost_equal(output, expected)
|
468 |
+
|
469 |
+
@pytest.mark.parametrize('dtype_array', types)
|
470 |
+
@pytest.mark.parametrize('dtype_output', types)
|
471 |
+
def test_correlate23(self, dtype_array, dtype_output):
|
472 |
+
weights = numpy.array([1, 2, 1])
|
473 |
+
expected = [[5, 10, 15], [7, 14, 21]]
|
474 |
+
array = numpy.array([[1, 2, 3],
|
475 |
+
[2, 4, 6]], dtype_array)
|
476 |
+
output = numpy.zeros((2, 3), dtype_output)
|
477 |
+
ndimage.correlate1d(array, weights, axis=0,
|
478 |
+
mode='nearest', output=output)
|
479 |
+
assert_array_almost_equal(output, expected)
|
480 |
+
ndimage.convolve1d(array, weights, axis=0,
|
481 |
+
mode='nearest', output=output)
|
482 |
+
assert_array_almost_equal(output, expected)
|
483 |
+
|
484 |
+
@pytest.mark.parametrize('dtype_array', types)
|
485 |
+
@pytest.mark.parametrize('dtype_output', types)
|
486 |
+
def test_correlate24(self, dtype_array, dtype_output):
|
487 |
+
weights = numpy.array([1, 2, 1])
|
488 |
+
tcor = [[7, 14, 21], [8, 16, 24]]
|
489 |
+
tcov = [[4, 8, 12], [5, 10, 15]]
|
490 |
+
array = numpy.array([[1, 2, 3],
|
491 |
+
[2, 4, 6]], dtype_array)
|
492 |
+
output = numpy.zeros((2, 3), dtype_output)
|
493 |
+
ndimage.correlate1d(array, weights, axis=0,
|
494 |
+
mode='nearest', output=output, origin=-1)
|
495 |
+
assert_array_almost_equal(output, tcor)
|
496 |
+
ndimage.convolve1d(array, weights, axis=0,
|
497 |
+
mode='nearest', output=output, origin=-1)
|
498 |
+
assert_array_almost_equal(output, tcov)
|
499 |
+
|
500 |
+
@pytest.mark.parametrize('dtype_array', types)
|
501 |
+
@pytest.mark.parametrize('dtype_output', types)
|
502 |
+
def test_correlate25(self, dtype_array, dtype_output):
|
503 |
+
weights = numpy.array([1, 2, 1])
|
504 |
+
tcor = [[4, 8, 12], [5, 10, 15]]
|
505 |
+
tcov = [[7, 14, 21], [8, 16, 24]]
|
506 |
+
array = numpy.array([[1, 2, 3],
|
507 |
+
[2, 4, 6]], dtype_array)
|
508 |
+
output = numpy.zeros((2, 3), dtype_output)
|
509 |
+
ndimage.correlate1d(array, weights, axis=0,
|
510 |
+
mode='nearest', output=output, origin=1)
|
511 |
+
assert_array_almost_equal(output, tcor)
|
512 |
+
ndimage.convolve1d(array, weights, axis=0,
|
513 |
+
mode='nearest', output=output, origin=1)
|
514 |
+
assert_array_almost_equal(output, tcov)
|
515 |
+
|
516 |
+
def test_correlate26(self):
|
517 |
+
# test fix for gh-11661 (mirror extension of a length 1 signal)
|
518 |
+
y = ndimage.convolve1d(numpy.ones(1), numpy.ones(5), mode='mirror')
|
519 |
+
assert_array_equal(y, numpy.array(5.))
|
520 |
+
|
521 |
+
y = ndimage.correlate1d(numpy.ones(1), numpy.ones(5), mode='mirror')
|
522 |
+
assert_array_equal(y, numpy.array(5.))
|
523 |
+
|
524 |
+
@pytest.mark.parametrize('dtype_kernel', complex_types)
|
525 |
+
@pytest.mark.parametrize('dtype_input', types)
|
526 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
527 |
+
def test_correlate_complex_kernel(self, dtype_input, dtype_kernel,
|
528 |
+
dtype_output):
|
529 |
+
kernel = numpy.array([[1, 0],
|
530 |
+
[0, 1 + 1j]], dtype_kernel)
|
531 |
+
array = numpy.array([[1, 2, 3],
|
532 |
+
[4, 5, 6]], dtype_input)
|
533 |
+
self._validate_complex(array, kernel, dtype_output)
|
534 |
+
|
535 |
+
@pytest.mark.parametrize('dtype_kernel', complex_types)
|
536 |
+
@pytest.mark.parametrize('dtype_input', types)
|
537 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
538 |
+
@pytest.mark.parametrize('mode', ['grid-constant', 'constant'])
|
539 |
+
def test_correlate_complex_kernel_cval(self, dtype_input, dtype_kernel,
|
540 |
+
dtype_output, mode):
|
541 |
+
# test use of non-zero cval with complex inputs
|
542 |
+
# also verifies that mode 'grid-constant' does not segfault
|
543 |
+
kernel = numpy.array([[1, 0],
|
544 |
+
[0, 1 + 1j]], dtype_kernel)
|
545 |
+
array = numpy.array([[1, 2, 3],
|
546 |
+
[4, 5, 6]], dtype_input)
|
547 |
+
self._validate_complex(array, kernel, dtype_output, mode=mode,
|
548 |
+
cval=5.0)
|
549 |
+
|
550 |
+
@pytest.mark.parametrize('dtype_kernel', complex_types)
|
551 |
+
@pytest.mark.parametrize('dtype_input', types)
|
552 |
+
def test_correlate_complex_kernel_invalid_cval(self, dtype_input,
|
553 |
+
dtype_kernel):
|
554 |
+
# cannot give complex cval with a real image
|
555 |
+
kernel = numpy.array([[1, 0],
|
556 |
+
[0, 1 + 1j]], dtype_kernel)
|
557 |
+
array = numpy.array([[1, 2, 3],
|
558 |
+
[4, 5, 6]], dtype_input)
|
559 |
+
for func in [ndimage.convolve, ndimage.correlate, ndimage.convolve1d,
|
560 |
+
ndimage.correlate1d]:
|
561 |
+
with pytest.raises(ValueError):
|
562 |
+
func(array, kernel, mode='constant', cval=5.0 + 1.0j,
|
563 |
+
output=numpy.complex64)
|
564 |
+
|
565 |
+
@pytest.mark.parametrize('dtype_kernel', complex_types)
|
566 |
+
@pytest.mark.parametrize('dtype_input', types)
|
567 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
568 |
+
def test_correlate1d_complex_kernel(self, dtype_input, dtype_kernel,
|
569 |
+
dtype_output):
|
570 |
+
kernel = numpy.array([1, 1 + 1j], dtype_kernel)
|
571 |
+
array = numpy.array([1, 2, 3, 4, 5, 6], dtype_input)
|
572 |
+
self._validate_complex(array, kernel, dtype_output)
|
573 |
+
|
574 |
+
@pytest.mark.parametrize('dtype_kernel', complex_types)
|
575 |
+
@pytest.mark.parametrize('dtype_input', types)
|
576 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
577 |
+
def test_correlate1d_complex_kernel_cval(self, dtype_input, dtype_kernel,
|
578 |
+
dtype_output):
|
579 |
+
kernel = numpy.array([1, 1 + 1j], dtype_kernel)
|
580 |
+
array = numpy.array([1, 2, 3, 4, 5, 6], dtype_input)
|
581 |
+
self._validate_complex(array, kernel, dtype_output, mode='constant',
|
582 |
+
cval=5.0)
|
583 |
+
|
584 |
+
@pytest.mark.parametrize('dtype_kernel', types)
|
585 |
+
@pytest.mark.parametrize('dtype_input', complex_types)
|
586 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
587 |
+
def test_correlate_complex_input(self, dtype_input, dtype_kernel,
|
588 |
+
dtype_output):
|
589 |
+
kernel = numpy.array([[1, 0],
|
590 |
+
[0, 1]], dtype_kernel)
|
591 |
+
array = numpy.array([[1, 2j, 3],
|
592 |
+
[1 + 4j, 5, 6j]], dtype_input)
|
593 |
+
self._validate_complex(array, kernel, dtype_output)
|
594 |
+
|
595 |
+
@pytest.mark.parametrize('dtype_kernel', types)
|
596 |
+
@pytest.mark.parametrize('dtype_input', complex_types)
|
597 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
598 |
+
def test_correlate1d_complex_input(self, dtype_input, dtype_kernel,
|
599 |
+
dtype_output):
|
600 |
+
kernel = numpy.array([1, 0, 1], dtype_kernel)
|
601 |
+
array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype_input)
|
602 |
+
self._validate_complex(array, kernel, dtype_output)
|
603 |
+
|
604 |
+
@pytest.mark.parametrize('dtype_kernel', types)
|
605 |
+
@pytest.mark.parametrize('dtype_input', complex_types)
|
606 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
607 |
+
def test_correlate1d_complex_input_cval(self, dtype_input, dtype_kernel,
|
608 |
+
dtype_output):
|
609 |
+
kernel = numpy.array([1, 0, 1], dtype_kernel)
|
610 |
+
array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype_input)
|
611 |
+
self._validate_complex(array, kernel, dtype_output, mode='constant',
|
612 |
+
cval=5 - 3j)
|
613 |
+
|
614 |
+
@pytest.mark.parametrize('dtype', complex_types)
|
615 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
616 |
+
def test_correlate_complex_input_and_kernel(self, dtype, dtype_output):
|
617 |
+
kernel = numpy.array([[1, 0],
|
618 |
+
[0, 1 + 1j]], dtype)
|
619 |
+
array = numpy.array([[1, 2j, 3],
|
620 |
+
[1 + 4j, 5, 6j]], dtype)
|
621 |
+
self._validate_complex(array, kernel, dtype_output)
|
622 |
+
|
623 |
+
@pytest.mark.parametrize('dtype', complex_types)
|
624 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
625 |
+
def test_correlate_complex_input_and_kernel_cval(self, dtype,
|
626 |
+
dtype_output):
|
627 |
+
kernel = numpy.array([[1, 0],
|
628 |
+
[0, 1 + 1j]], dtype)
|
629 |
+
array = numpy.array([[1, 2, 3],
|
630 |
+
[4, 5, 6]], dtype)
|
631 |
+
self._validate_complex(array, kernel, dtype_output, mode='constant',
|
632 |
+
cval=5.0 + 2.0j)
|
633 |
+
|
634 |
+
@pytest.mark.parametrize('dtype', complex_types)
|
635 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
636 |
+
def test_correlate1d_complex_input_and_kernel(self, dtype, dtype_output):
|
637 |
+
kernel = numpy.array([1, 1 + 1j], dtype)
|
638 |
+
array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype)
|
639 |
+
self._validate_complex(array, kernel, dtype_output)
|
640 |
+
|
641 |
+
@pytest.mark.parametrize('dtype', complex_types)
|
642 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
643 |
+
def test_correlate1d_complex_input_and_kernel_cval(self, dtype,
|
644 |
+
dtype_output):
|
645 |
+
kernel = numpy.array([1, 1 + 1j], dtype)
|
646 |
+
array = numpy.array([1, 2j, 3, 1 + 4j, 5, 6j], dtype)
|
647 |
+
self._validate_complex(array, kernel, dtype_output, mode='constant',
|
648 |
+
cval=5.0 + 2.0j)
|
649 |
+
|
650 |
+
def test_gauss01(self):
|
651 |
+
input = numpy.array([[1, 2, 3],
|
652 |
+
[2, 4, 6]], numpy.float32)
|
653 |
+
output = ndimage.gaussian_filter(input, 0)
|
654 |
+
assert_array_almost_equal(output, input)
|
655 |
+
|
656 |
+
def test_gauss02(self):
|
657 |
+
input = numpy.array([[1, 2, 3],
|
658 |
+
[2, 4, 6]], numpy.float32)
|
659 |
+
output = ndimage.gaussian_filter(input, 1.0)
|
660 |
+
assert_equal(input.dtype, output.dtype)
|
661 |
+
assert_equal(input.shape, output.shape)
|
662 |
+
|
663 |
+
def test_gauss03(self):
|
664 |
+
# single precision data
|
665 |
+
input = numpy.arange(100 * 100).astype(numpy.float32)
|
666 |
+
input.shape = (100, 100)
|
667 |
+
output = ndimage.gaussian_filter(input, [1.0, 1.0])
|
668 |
+
|
669 |
+
assert_equal(input.dtype, output.dtype)
|
670 |
+
assert_equal(input.shape, output.shape)
|
671 |
+
|
672 |
+
# input.sum() is 49995000.0. With single precision floats, we can't
|
673 |
+
# expect more than 8 digits of accuracy, so use decimal=0 in this test.
|
674 |
+
assert_almost_equal(output.sum(dtype='d'), input.sum(dtype='d'),
|
675 |
+
decimal=0)
|
676 |
+
assert_(sumsq(input, output) > 1.0)
|
677 |
+
|
678 |
+
def test_gauss04(self):
|
679 |
+
input = numpy.arange(100 * 100).astype(numpy.float32)
|
680 |
+
input.shape = (100, 100)
|
681 |
+
otype = numpy.float64
|
682 |
+
output = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype)
|
683 |
+
assert_equal(output.dtype.type, numpy.float64)
|
684 |
+
assert_equal(input.shape, output.shape)
|
685 |
+
assert_(sumsq(input, output) > 1.0)
|
686 |
+
|
687 |
+
def test_gauss05(self):
|
688 |
+
input = numpy.arange(100 * 100).astype(numpy.float32)
|
689 |
+
input.shape = (100, 100)
|
690 |
+
otype = numpy.float64
|
691 |
+
output = ndimage.gaussian_filter(input, [1.0, 1.0],
|
692 |
+
order=1, output=otype)
|
693 |
+
assert_equal(output.dtype.type, numpy.float64)
|
694 |
+
assert_equal(input.shape, output.shape)
|
695 |
+
assert_(sumsq(input, output) > 1.0)
|
696 |
+
|
697 |
+
def test_gauss06(self):
|
698 |
+
input = numpy.arange(100 * 100).astype(numpy.float32)
|
699 |
+
input.shape = (100, 100)
|
700 |
+
otype = numpy.float64
|
701 |
+
output1 = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype)
|
702 |
+
output2 = ndimage.gaussian_filter(input, 1.0, output=otype)
|
703 |
+
assert_array_almost_equal(output1, output2)
|
704 |
+
|
705 |
+
def test_gauss_memory_overlap(self):
|
706 |
+
input = numpy.arange(100 * 100).astype(numpy.float32)
|
707 |
+
input.shape = (100, 100)
|
708 |
+
output1 = ndimage.gaussian_filter(input, 1.0)
|
709 |
+
ndimage.gaussian_filter(input, 1.0, output=input)
|
710 |
+
assert_array_almost_equal(output1, input)
|
711 |
+
|
712 |
+
@pytest.mark.parametrize(('filter_func', 'extra_args', 'size0', 'size'),
|
713 |
+
[(ndimage.gaussian_filter, (), 0, 1.0),
|
714 |
+
(ndimage.uniform_filter, (), 1, 3),
|
715 |
+
(ndimage.minimum_filter, (), 1, 3),
|
716 |
+
(ndimage.maximum_filter, (), 1, 3),
|
717 |
+
(ndimage.median_filter, (), 1, 3),
|
718 |
+
(ndimage.rank_filter, (1,), 1, 3),
|
719 |
+
(ndimage.percentile_filter, (40,), 1, 3)])
|
720 |
+
@pytest.mark.parametrize(
|
721 |
+
'axes',
|
722 |
+
tuple(itertools.combinations(range(-3, 3), 1))
|
723 |
+
+ tuple(itertools.combinations(range(-3, 3), 2))
|
724 |
+
+ ((0, 1, 2),))
|
725 |
+
def test_filter_axes(self, filter_func, extra_args, size0, size, axes):
|
726 |
+
# Note: `size` is called `sigma` in `gaussian_filter`
|
727 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
|
728 |
+
axes = numpy.array(axes)
|
729 |
+
|
730 |
+
if len(set(axes % array.ndim)) != len(axes):
|
731 |
+
# parametrized cases with duplicate axes raise an error
|
732 |
+
with pytest.raises(ValueError, match="axes must be unique"):
|
733 |
+
filter_func(array, *extra_args, size, axes=axes)
|
734 |
+
return
|
735 |
+
output = filter_func(array, *extra_args, size, axes=axes)
|
736 |
+
|
737 |
+
# result should be equivalent to sigma=0.0/size=1 on unfiltered axes
|
738 |
+
all_sizes = (size if ax in (axes % array.ndim) else size0
|
739 |
+
for ax in range(array.ndim))
|
740 |
+
expected = filter_func(array, *extra_args, all_sizes)
|
741 |
+
assert_allclose(output, expected)
|
742 |
+
|
743 |
+
kwargs_gauss = dict(radius=[4, 2, 3], order=[0, 1, 2],
|
744 |
+
mode=['reflect', 'nearest', 'constant'])
|
745 |
+
kwargs_other = dict(origin=(-1, 0, 1),
|
746 |
+
mode=['reflect', 'nearest', 'constant'])
|
747 |
+
kwargs_rank = dict(origin=(-1, 0, 1))
|
748 |
+
|
749 |
+
@pytest.mark.parametrize("filter_func, size0, size, kwargs",
|
750 |
+
[(ndimage.gaussian_filter, 0, 1.0, kwargs_gauss),
|
751 |
+
(ndimage.uniform_filter, 1, 3, kwargs_other),
|
752 |
+
(ndimage.maximum_filter, 1, 3, kwargs_other),
|
753 |
+
(ndimage.minimum_filter, 1, 3, kwargs_other),
|
754 |
+
(ndimage.median_filter, 1, 3, kwargs_rank),
|
755 |
+
(ndimage.rank_filter, 1, 3, kwargs_rank),
|
756 |
+
(ndimage.percentile_filter, 1, 3, kwargs_rank)])
|
757 |
+
@pytest.mark.parametrize('axes', itertools.combinations(range(-3, 3), 2))
|
758 |
+
def test_filter_axes_kwargs(self, filter_func, size0, size, kwargs, axes):
|
759 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
|
760 |
+
|
761 |
+
kwargs = {key: numpy.array(val) for key, val in kwargs.items()}
|
762 |
+
axes = numpy.array(axes)
|
763 |
+
n_axes = axes.size
|
764 |
+
|
765 |
+
if filter_func == ndimage.rank_filter:
|
766 |
+
args = (2,) # (rank,)
|
767 |
+
elif filter_func == ndimage.percentile_filter:
|
768 |
+
args = (30,) # (percentile,)
|
769 |
+
else:
|
770 |
+
args = ()
|
771 |
+
|
772 |
+
# form kwargs that specify only the axes in `axes`
|
773 |
+
reduced_kwargs = {key: val[axes] for key, val in kwargs.items()}
|
774 |
+
if len(set(axes % array.ndim)) != len(axes):
|
775 |
+
# parametrized cases with duplicate axes raise an error
|
776 |
+
with pytest.raises(ValueError, match="axes must be unique"):
|
777 |
+
filter_func(array, *args, [size]*n_axes, axes=axes,
|
778 |
+
**reduced_kwargs)
|
779 |
+
return
|
780 |
+
|
781 |
+
output = filter_func(array, *args, [size]*n_axes, axes=axes,
|
782 |
+
**reduced_kwargs)
|
783 |
+
|
784 |
+
# result should be equivalent to sigma=0.0/size=1 on unfiltered axes
|
785 |
+
size_3d = numpy.full(array.ndim, fill_value=size0)
|
786 |
+
size_3d[axes] = size
|
787 |
+
if 'origin' in kwargs:
|
788 |
+
# origin should be zero on the axis that has size 0
|
789 |
+
origin = numpy.array([0, 0, 0])
|
790 |
+
origin[axes] = reduced_kwargs['origin']
|
791 |
+
kwargs['origin'] = origin
|
792 |
+
expected = filter_func(array, *args, size_3d, **kwargs)
|
793 |
+
assert_allclose(output, expected)
|
794 |
+
|
795 |
+
@pytest.mark.parametrize(
|
796 |
+
'filter_func, args',
|
797 |
+
[(ndimage.gaussian_filter, (1.0,)), # args = (sigma,)
|
798 |
+
(ndimage.uniform_filter, (3,)), # args = (size,)
|
799 |
+
(ndimage.minimum_filter, (3,)), # args = (size,)
|
800 |
+
(ndimage.maximum_filter, (3,)), # args = (size,)
|
801 |
+
(ndimage.median_filter, (3,)), # args = (size,)
|
802 |
+
(ndimage.rank_filter, (2, 3)), # args = (rank, size)
|
803 |
+
(ndimage.percentile_filter, (30, 3))]) # args = (percentile, size)
|
804 |
+
@pytest.mark.parametrize(
|
805 |
+
'axes', [(1.5,), (0, 1, 2, 3), (3,), (-4,)]
|
806 |
+
)
|
807 |
+
def test_filter_invalid_axes(self, filter_func, args, axes):
|
808 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
|
809 |
+
if any(isinstance(ax, float) for ax in axes):
|
810 |
+
error_class = TypeError
|
811 |
+
match = "cannot be interpreted as an integer"
|
812 |
+
else:
|
813 |
+
error_class = ValueError
|
814 |
+
match = "out of range"
|
815 |
+
with pytest.raises(error_class, match=match):
|
816 |
+
filter_func(array, *args, axes=axes)
|
817 |
+
|
818 |
+
@pytest.mark.parametrize(
|
819 |
+
'filter_func, kwargs',
|
820 |
+
[(ndimage.minimum_filter, {}),
|
821 |
+
(ndimage.maximum_filter, {}),
|
822 |
+
(ndimage.median_filter, {}),
|
823 |
+
(ndimage.rank_filter, dict(rank=3)),
|
824 |
+
(ndimage.percentile_filter, dict(percentile=30))])
|
825 |
+
@pytest.mark.parametrize(
|
826 |
+
'axes', [(0, ), (1, 2), (0, 1, 2)]
|
827 |
+
)
|
828 |
+
@pytest.mark.parametrize('separable_footprint', [False, True])
|
829 |
+
def test_filter_invalid_footprint_ndim(self, filter_func, kwargs, axes,
|
830 |
+
separable_footprint):
|
831 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
|
832 |
+
# create a footprint with one too many dimensions
|
833 |
+
footprint = numpy.ones((3,) * (len(axes) + 1))
|
834 |
+
if not separable_footprint:
|
835 |
+
footprint[(0,) * footprint.ndim] = 0
|
836 |
+
if (filter_func in [ndimage.minimum_filter, ndimage.maximum_filter]
|
837 |
+
and separable_footprint):
|
838 |
+
match = "sequence argument must have length equal to input rank"
|
839 |
+
else:
|
840 |
+
match = "footprint array has incorrect shape"
|
841 |
+
with pytest.raises(RuntimeError, match=match):
|
842 |
+
filter_func(array, **kwargs, footprint=footprint, axes=axes)
|
843 |
+
|
844 |
+
@pytest.mark.parametrize('n_mismatch', [1, 3])
|
845 |
+
@pytest.mark.parametrize('filter_func, kwargs, key, val',
|
846 |
+
_cases_axes_tuple_length_mismatch())
|
847 |
+
def test_filter_tuple_length_mismatch(self, n_mismatch, filter_func,
|
848 |
+
kwargs, key, val):
|
849 |
+
# Test for the intended RuntimeError when a kwargs has an invalid size
|
850 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float64).reshape(6, 8, 12)
|
851 |
+
kwargs = dict(**kwargs, axes=(0, 1))
|
852 |
+
kwargs[key] = (val,) * n_mismatch
|
853 |
+
err_msg = "sequence argument must have length equal to input rank"
|
854 |
+
with pytest.raises(RuntimeError, match=err_msg):
|
855 |
+
filter_func(array, **kwargs)
|
856 |
+
|
857 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
858 |
+
def test_prewitt01(self, dtype):
|
859 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
860 |
+
[5, 8, 3, 7, 1],
|
861 |
+
[5, 6, 9, 3, 5]], dtype)
|
862 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
|
863 |
+
t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 1)
|
864 |
+
output = ndimage.prewitt(array, 0)
|
865 |
+
assert_array_almost_equal(t, output)
|
866 |
+
|
867 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
868 |
+
def test_prewitt02(self, dtype):
|
869 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
870 |
+
[5, 8, 3, 7, 1],
|
871 |
+
[5, 6, 9, 3, 5]], dtype)
|
872 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
|
873 |
+
t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 1)
|
874 |
+
output = numpy.zeros(array.shape, dtype)
|
875 |
+
ndimage.prewitt(array, 0, output)
|
876 |
+
assert_array_almost_equal(t, output)
|
877 |
+
|
878 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
879 |
+
def test_prewitt03(self, dtype):
|
880 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
881 |
+
[5, 8, 3, 7, 1],
|
882 |
+
[5, 6, 9, 3, 5]], dtype)
|
883 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 1)
|
884 |
+
t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 0)
|
885 |
+
output = ndimage.prewitt(array, 1)
|
886 |
+
assert_array_almost_equal(t, output)
|
887 |
+
|
888 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
889 |
+
def test_prewitt04(self, dtype):
|
890 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
891 |
+
[5, 8, 3, 7, 1],
|
892 |
+
[5, 6, 9, 3, 5]], dtype)
|
893 |
+
t = ndimage.prewitt(array, -1)
|
894 |
+
output = ndimage.prewitt(array, 1)
|
895 |
+
assert_array_almost_equal(t, output)
|
896 |
+
|
897 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
898 |
+
def test_sobel01(self, dtype):
|
899 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
900 |
+
[5, 8, 3, 7, 1],
|
901 |
+
[5, 6, 9, 3, 5]], dtype)
|
902 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
|
903 |
+
t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 1)
|
904 |
+
output = ndimage.sobel(array, 0)
|
905 |
+
assert_array_almost_equal(t, output)
|
906 |
+
|
907 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
908 |
+
def test_sobel02(self, dtype):
|
909 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
910 |
+
[5, 8, 3, 7, 1],
|
911 |
+
[5, 6, 9, 3, 5]], dtype)
|
912 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
|
913 |
+
t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 1)
|
914 |
+
output = numpy.zeros(array.shape, dtype)
|
915 |
+
ndimage.sobel(array, 0, output)
|
916 |
+
assert_array_almost_equal(t, output)
|
917 |
+
|
918 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
919 |
+
def test_sobel03(self, dtype):
|
920 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
921 |
+
[5, 8, 3, 7, 1],
|
922 |
+
[5, 6, 9, 3, 5]], dtype)
|
923 |
+
t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 1)
|
924 |
+
t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 0)
|
925 |
+
output = numpy.zeros(array.shape, dtype)
|
926 |
+
output = ndimage.sobel(array, 1)
|
927 |
+
assert_array_almost_equal(t, output)
|
928 |
+
|
929 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
930 |
+
def test_sobel04(self, dtype):
|
931 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
932 |
+
[5, 8, 3, 7, 1],
|
933 |
+
[5, 6, 9, 3, 5]], dtype)
|
934 |
+
t = ndimage.sobel(array, -1)
|
935 |
+
output = ndimage.sobel(array, 1)
|
936 |
+
assert_array_almost_equal(t, output)
|
937 |
+
|
938 |
+
@pytest.mark.parametrize('dtype',
|
939 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
940 |
+
numpy.complex64, numpy.complex128])
|
941 |
+
def test_laplace01(self, dtype):
|
942 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
943 |
+
[5, 8, 3, 7, 1],
|
944 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
945 |
+
tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
|
946 |
+
tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
|
947 |
+
output = ndimage.laplace(array)
|
948 |
+
assert_array_almost_equal(tmp1 + tmp2, output)
|
949 |
+
|
950 |
+
@pytest.mark.parametrize('dtype',
|
951 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
952 |
+
numpy.complex64, numpy.complex128])
|
953 |
+
def test_laplace02(self, dtype):
|
954 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
955 |
+
[5, 8, 3, 7, 1],
|
956 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
957 |
+
tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
|
958 |
+
tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
|
959 |
+
output = numpy.zeros(array.shape, dtype)
|
960 |
+
ndimage.laplace(array, output=output)
|
961 |
+
assert_array_almost_equal(tmp1 + tmp2, output)
|
962 |
+
|
963 |
+
@pytest.mark.parametrize('dtype',
|
964 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
965 |
+
numpy.complex64, numpy.complex128])
|
966 |
+
def test_gaussian_laplace01(self, dtype):
|
967 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
968 |
+
[5, 8, 3, 7, 1],
|
969 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
970 |
+
tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0])
|
971 |
+
tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2])
|
972 |
+
output = ndimage.gaussian_laplace(array, 1.0)
|
973 |
+
assert_array_almost_equal(tmp1 + tmp2, output)
|
974 |
+
|
975 |
+
@pytest.mark.parametrize('dtype',
|
976 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
977 |
+
numpy.complex64, numpy.complex128])
|
978 |
+
def test_gaussian_laplace02(self, dtype):
|
979 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
980 |
+
[5, 8, 3, 7, 1],
|
981 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
982 |
+
tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0])
|
983 |
+
tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2])
|
984 |
+
output = numpy.zeros(array.shape, dtype)
|
985 |
+
ndimage.gaussian_laplace(array, 1.0, output)
|
986 |
+
assert_array_almost_equal(tmp1 + tmp2, output)
|
987 |
+
|
988 |
+
@pytest.mark.parametrize('dtype', types + complex_types)
|
989 |
+
def test_generic_laplace01(self, dtype):
|
990 |
+
def derivative2(input, axis, output, mode, cval, a, b):
|
991 |
+
sigma = [a, b / 2.0]
|
992 |
+
input = numpy.asarray(input)
|
993 |
+
order = [0] * input.ndim
|
994 |
+
order[axis] = 2
|
995 |
+
return ndimage.gaussian_filter(input, sigma, order,
|
996 |
+
output, mode, cval)
|
997 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
998 |
+
[5, 8, 3, 7, 1],
|
999 |
+
[5, 6, 9, 3, 5]], dtype)
|
1000 |
+
output = numpy.zeros(array.shape, dtype)
|
1001 |
+
tmp = ndimage.generic_laplace(array, derivative2,
|
1002 |
+
extra_arguments=(1.0,),
|
1003 |
+
extra_keywords={'b': 2.0})
|
1004 |
+
ndimage.gaussian_laplace(array, 1.0, output)
|
1005 |
+
assert_array_almost_equal(tmp, output)
|
1006 |
+
|
1007 |
+
@pytest.mark.parametrize('dtype',
|
1008 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
1009 |
+
numpy.complex64, numpy.complex128])
|
1010 |
+
def test_gaussian_gradient_magnitude01(self, dtype):
|
1011 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1012 |
+
[5, 8, 3, 7, 1],
|
1013 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
1014 |
+
tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0])
|
1015 |
+
tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1])
|
1016 |
+
output = ndimage.gaussian_gradient_magnitude(array, 1.0)
|
1017 |
+
expected = tmp1 * tmp1 + tmp2 * tmp2
|
1018 |
+
expected = numpy.sqrt(expected).astype(dtype)
|
1019 |
+
assert_array_almost_equal(expected, output)
|
1020 |
+
|
1021 |
+
@pytest.mark.parametrize('dtype',
|
1022 |
+
[numpy.int32, numpy.float32, numpy.float64,
|
1023 |
+
numpy.complex64, numpy.complex128])
|
1024 |
+
def test_gaussian_gradient_magnitude02(self, dtype):
|
1025 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1026 |
+
[5, 8, 3, 7, 1],
|
1027 |
+
[5, 6, 9, 3, 5]], dtype) * 100
|
1028 |
+
tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0])
|
1029 |
+
tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1])
|
1030 |
+
output = numpy.zeros(array.shape, dtype)
|
1031 |
+
ndimage.gaussian_gradient_magnitude(array, 1.0, output)
|
1032 |
+
expected = tmp1 * tmp1 + tmp2 * tmp2
|
1033 |
+
expected = numpy.sqrt(expected).astype(dtype)
|
1034 |
+
assert_array_almost_equal(expected, output)
|
1035 |
+
|
1036 |
+
def test_generic_gradient_magnitude01(self):
|
1037 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1038 |
+
[5, 8, 3, 7, 1],
|
1039 |
+
[5, 6, 9, 3, 5]], numpy.float64)
|
1040 |
+
|
1041 |
+
def derivative(input, axis, output, mode, cval, a, b):
|
1042 |
+
sigma = [a, b / 2.0]
|
1043 |
+
input = numpy.asarray(input)
|
1044 |
+
order = [0] * input.ndim
|
1045 |
+
order[axis] = 1
|
1046 |
+
return ndimage.gaussian_filter(input, sigma, order,
|
1047 |
+
output, mode, cval)
|
1048 |
+
tmp1 = ndimage.gaussian_gradient_magnitude(array, 1.0)
|
1049 |
+
tmp2 = ndimage.generic_gradient_magnitude(
|
1050 |
+
array, derivative, extra_arguments=(1.0,),
|
1051 |
+
extra_keywords={'b': 2.0})
|
1052 |
+
assert_array_almost_equal(tmp1, tmp2)
|
1053 |
+
|
1054 |
+
def test_uniform01(self):
|
1055 |
+
array = numpy.array([2, 4, 6])
|
1056 |
+
size = 2
|
1057 |
+
output = ndimage.uniform_filter1d(array, size, origin=-1)
|
1058 |
+
assert_array_almost_equal([3, 5, 6], output)
|
1059 |
+
|
1060 |
+
def test_uniform01_complex(self):
|
1061 |
+
array = numpy.array([2 + 1j, 4 + 2j, 6 + 3j], dtype=numpy.complex128)
|
1062 |
+
size = 2
|
1063 |
+
output = ndimage.uniform_filter1d(array, size, origin=-1)
|
1064 |
+
assert_array_almost_equal([3, 5, 6], output.real)
|
1065 |
+
assert_array_almost_equal([1.5, 2.5, 3], output.imag)
|
1066 |
+
|
1067 |
+
def test_uniform02(self):
|
1068 |
+
array = numpy.array([1, 2, 3])
|
1069 |
+
filter_shape = [0]
|
1070 |
+
output = ndimage.uniform_filter(array, filter_shape)
|
1071 |
+
assert_array_almost_equal(array, output)
|
1072 |
+
|
1073 |
+
def test_uniform03(self):
|
1074 |
+
array = numpy.array([1, 2, 3])
|
1075 |
+
filter_shape = [1]
|
1076 |
+
output = ndimage.uniform_filter(array, filter_shape)
|
1077 |
+
assert_array_almost_equal(array, output)
|
1078 |
+
|
1079 |
+
def test_uniform04(self):
|
1080 |
+
array = numpy.array([2, 4, 6])
|
1081 |
+
filter_shape = [2]
|
1082 |
+
output = ndimage.uniform_filter(array, filter_shape)
|
1083 |
+
assert_array_almost_equal([2, 3, 5], output)
|
1084 |
+
|
1085 |
+
def test_uniform05(self):
|
1086 |
+
array = []
|
1087 |
+
filter_shape = [1]
|
1088 |
+
output = ndimage.uniform_filter(array, filter_shape)
|
1089 |
+
assert_array_almost_equal([], output)
|
1090 |
+
|
1091 |
+
@pytest.mark.parametrize('dtype_array', types)
|
1092 |
+
@pytest.mark.parametrize('dtype_output', types)
|
1093 |
+
def test_uniform06(self, dtype_array, dtype_output):
|
1094 |
+
filter_shape = [2, 2]
|
1095 |
+
array = numpy.array([[4, 8, 12],
|
1096 |
+
[16, 20, 24]], dtype_array)
|
1097 |
+
output = ndimage.uniform_filter(
|
1098 |
+
array, filter_shape, output=dtype_output)
|
1099 |
+
assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output)
|
1100 |
+
assert_equal(output.dtype.type, dtype_output)
|
1101 |
+
|
1102 |
+
@pytest.mark.parametrize('dtype_array', complex_types)
|
1103 |
+
@pytest.mark.parametrize('dtype_output', complex_types)
|
1104 |
+
def test_uniform06_complex(self, dtype_array, dtype_output):
|
1105 |
+
filter_shape = [2, 2]
|
1106 |
+
array = numpy.array([[4, 8 + 5j, 12],
|
1107 |
+
[16, 20, 24]], dtype_array)
|
1108 |
+
output = ndimage.uniform_filter(
|
1109 |
+
array, filter_shape, output=dtype_output)
|
1110 |
+
assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output.real)
|
1111 |
+
assert_equal(output.dtype.type, dtype_output)
|
1112 |
+
|
1113 |
+
def test_minimum_filter01(self):
|
1114 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
1115 |
+
filter_shape = numpy.array([2])
|
1116 |
+
output = ndimage.minimum_filter(array, filter_shape)
|
1117 |
+
assert_array_almost_equal([1, 1, 2, 3, 4], output)
|
1118 |
+
|
1119 |
+
def test_minimum_filter02(self):
|
1120 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
1121 |
+
filter_shape = numpy.array([3])
|
1122 |
+
output = ndimage.minimum_filter(array, filter_shape)
|
1123 |
+
assert_array_almost_equal([1, 1, 2, 3, 4], output)
|
1124 |
+
|
1125 |
+
def test_minimum_filter03(self):
|
1126 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
1127 |
+
filter_shape = numpy.array([2])
|
1128 |
+
output = ndimage.minimum_filter(array, filter_shape)
|
1129 |
+
assert_array_almost_equal([3, 2, 2, 1, 1], output)
|
1130 |
+
|
1131 |
+
def test_minimum_filter04(self):
|
1132 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
1133 |
+
filter_shape = numpy.array([3])
|
1134 |
+
output = ndimage.minimum_filter(array, filter_shape)
|
1135 |
+
assert_array_almost_equal([2, 2, 1, 1, 1], output)
|
1136 |
+
|
1137 |
+
def test_minimum_filter05(self):
|
1138 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1139 |
+
[7, 6, 9, 3, 5],
|
1140 |
+
[5, 8, 3, 7, 1]])
|
1141 |
+
filter_shape = numpy.array([2, 3])
|
1142 |
+
output = ndimage.minimum_filter(array, filter_shape)
|
1143 |
+
assert_array_almost_equal([[2, 2, 1, 1, 1],
|
1144 |
+
[2, 2, 1, 1, 1],
|
1145 |
+
[5, 3, 3, 1, 1]], output)
|
1146 |
+
|
1147 |
+
def test_minimum_filter05_overlap(self):
|
1148 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1149 |
+
[7, 6, 9, 3, 5],
|
1150 |
+
[5, 8, 3, 7, 1]])
|
1151 |
+
filter_shape = numpy.array([2, 3])
|
1152 |
+
ndimage.minimum_filter(array, filter_shape, output=array)
|
1153 |
+
assert_array_almost_equal([[2, 2, 1, 1, 1],
|
1154 |
+
[2, 2, 1, 1, 1],
|
1155 |
+
[5, 3, 3, 1, 1]], array)
|
1156 |
+
|
1157 |
+
def test_minimum_filter06(self):
|
1158 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1159 |
+
[7, 6, 9, 3, 5],
|
1160 |
+
[5, 8, 3, 7, 1]])
|
1161 |
+
footprint = [[1, 1, 1], [1, 1, 1]]
|
1162 |
+
output = ndimage.minimum_filter(array, footprint=footprint)
|
1163 |
+
assert_array_almost_equal([[2, 2, 1, 1, 1],
|
1164 |
+
[2, 2, 1, 1, 1],
|
1165 |
+
[5, 3, 3, 1, 1]], output)
|
1166 |
+
# separable footprint should allow mode sequence
|
1167 |
+
output2 = ndimage.minimum_filter(array, footprint=footprint,
|
1168 |
+
mode=['reflect', 'reflect'])
|
1169 |
+
assert_array_almost_equal(output2, output)
|
1170 |
+
|
1171 |
+
def test_minimum_filter07(self):
|
1172 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1173 |
+
[7, 6, 9, 3, 5],
|
1174 |
+
[5, 8, 3, 7, 1]])
|
1175 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
1176 |
+
output = ndimage.minimum_filter(array, footprint=footprint)
|
1177 |
+
assert_array_almost_equal([[2, 2, 1, 1, 1],
|
1178 |
+
[2, 3, 1, 3, 1],
|
1179 |
+
[5, 5, 3, 3, 1]], output)
|
1180 |
+
with assert_raises(RuntimeError):
|
1181 |
+
ndimage.minimum_filter(array, footprint=footprint,
|
1182 |
+
mode=['reflect', 'constant'])
|
1183 |
+
|
1184 |
+
def test_minimum_filter08(self):
|
1185 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1186 |
+
[7, 6, 9, 3, 5],
|
1187 |
+
[5, 8, 3, 7, 1]])
|
1188 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
1189 |
+
output = ndimage.minimum_filter(array, footprint=footprint, origin=-1)
|
1190 |
+
assert_array_almost_equal([[3, 1, 3, 1, 1],
|
1191 |
+
[5, 3, 3, 1, 1],
|
1192 |
+
[3, 3, 1, 1, 1]], output)
|
1193 |
+
|
1194 |
+
def test_minimum_filter09(self):
|
1195 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1196 |
+
[7, 6, 9, 3, 5],
|
1197 |
+
[5, 8, 3, 7, 1]])
|
1198 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
1199 |
+
output = ndimage.minimum_filter(array, footprint=footprint,
|
1200 |
+
origin=[-1, 0])
|
1201 |
+
assert_array_almost_equal([[2, 3, 1, 3, 1],
|
1202 |
+
[5, 5, 3, 3, 1],
|
1203 |
+
[5, 3, 3, 1, 1]], output)
|
1204 |
+
|
1205 |
+
def test_maximum_filter01(self):
|
1206 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
1207 |
+
filter_shape = numpy.array([2])
|
1208 |
+
output = ndimage.maximum_filter(array, filter_shape)
|
1209 |
+
assert_array_almost_equal([1, 2, 3, 4, 5], output)
|
1210 |
+
|
1211 |
+
def test_maximum_filter02(self):
|
1212 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
1213 |
+
filter_shape = numpy.array([3])
|
1214 |
+
output = ndimage.maximum_filter(array, filter_shape)
|
1215 |
+
assert_array_almost_equal([2, 3, 4, 5, 5], output)
|
1216 |
+
|
1217 |
+
def test_maximum_filter03(self):
|
1218 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
1219 |
+
filter_shape = numpy.array([2])
|
1220 |
+
output = ndimage.maximum_filter(array, filter_shape)
|
1221 |
+
assert_array_almost_equal([3, 3, 5, 5, 4], output)
|
1222 |
+
|
1223 |
+
def test_maximum_filter04(self):
|
1224 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
1225 |
+
filter_shape = numpy.array([3])
|
1226 |
+
output = ndimage.maximum_filter(array, filter_shape)
|
1227 |
+
assert_array_almost_equal([3, 5, 5, 5, 4], output)
|
1228 |
+
|
1229 |
+
def test_maximum_filter05(self):
|
1230 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1231 |
+
[7, 6, 9, 3, 5],
|
1232 |
+
[5, 8, 3, 7, 1]])
|
1233 |
+
filter_shape = numpy.array([2, 3])
|
1234 |
+
output = ndimage.maximum_filter(array, filter_shape)
|
1235 |
+
assert_array_almost_equal([[3, 5, 5, 5, 4],
|
1236 |
+
[7, 9, 9, 9, 5],
|
1237 |
+
[8, 9, 9, 9, 7]], output)
|
1238 |
+
|
1239 |
+
def test_maximum_filter06(self):
|
1240 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1241 |
+
[7, 6, 9, 3, 5],
|
1242 |
+
[5, 8, 3, 7, 1]])
|
1243 |
+
footprint = [[1, 1, 1], [1, 1, 1]]
|
1244 |
+
output = ndimage.maximum_filter(array, footprint=footprint)
|
1245 |
+
assert_array_almost_equal([[3, 5, 5, 5, 4],
|
1246 |
+
[7, 9, 9, 9, 5],
|
1247 |
+
[8, 9, 9, 9, 7]], output)
|
1248 |
+
# separable footprint should allow mode sequence
|
1249 |
+
output2 = ndimage.maximum_filter(array, footprint=footprint,
|
1250 |
+
mode=['reflect', 'reflect'])
|
1251 |
+
assert_array_almost_equal(output2, output)
|
1252 |
+
|
1253 |
+
def test_maximum_filter07(self):
|
1254 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1255 |
+
[7, 6, 9, 3, 5],
|
1256 |
+
[5, 8, 3, 7, 1]])
|
1257 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
1258 |
+
output = ndimage.maximum_filter(array, footprint=footprint)
|
1259 |
+
assert_array_almost_equal([[3, 5, 5, 5, 4],
|
1260 |
+
[7, 7, 9, 9, 5],
|
1261 |
+
[7, 9, 8, 9, 7]], output)
|
1262 |
+
# non-separable footprint should not allow mode sequence
|
1263 |
+
with assert_raises(RuntimeError):
|
1264 |
+
ndimage.maximum_filter(array, footprint=footprint,
|
1265 |
+
mode=['reflect', 'reflect'])
|
1266 |
+
|
1267 |
+
def test_maximum_filter08(self):
|
1268 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1269 |
+
[7, 6, 9, 3, 5],
|
1270 |
+
[5, 8, 3, 7, 1]])
|
1271 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
1272 |
+
output = ndimage.maximum_filter(array, footprint=footprint, origin=-1)
|
1273 |
+
assert_array_almost_equal([[7, 9, 9, 5, 5],
|
1274 |
+
[9, 8, 9, 7, 5],
|
1275 |
+
[8, 8, 7, 7, 7]], output)
|
1276 |
+
|
1277 |
+
def test_maximum_filter09(self):
|
1278 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1279 |
+
[7, 6, 9, 3, 5],
|
1280 |
+
[5, 8, 3, 7, 1]])
|
1281 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
1282 |
+
output = ndimage.maximum_filter(array, footprint=footprint,
|
1283 |
+
origin=[-1, 0])
|
1284 |
+
assert_array_almost_equal([[7, 7, 9, 9, 5],
|
1285 |
+
[7, 9, 8, 9, 7],
|
1286 |
+
[8, 8, 8, 7, 7]], output)
|
1287 |
+
|
1288 |
+
@pytest.mark.parametrize(
|
1289 |
+
'axes', tuple(itertools.combinations(range(-3, 3), 2))
|
1290 |
+
)
|
1291 |
+
@pytest.mark.parametrize(
|
1292 |
+
'filter_func, kwargs',
|
1293 |
+
[(ndimage.minimum_filter, {}),
|
1294 |
+
(ndimage.maximum_filter, {}),
|
1295 |
+
(ndimage.median_filter, {}),
|
1296 |
+
(ndimage.rank_filter, dict(rank=3)),
|
1297 |
+
(ndimage.percentile_filter, dict(percentile=60))]
|
1298 |
+
)
|
1299 |
+
def test_minmax_nonseparable_axes(self, filter_func, axes, kwargs):
|
1300 |
+
array = numpy.arange(6 * 8 * 12, dtype=numpy.float32).reshape(6, 8, 12)
|
1301 |
+
# use 2D triangular footprint because it is non-separable
|
1302 |
+
footprint = numpy.tri(5)
|
1303 |
+
axes = numpy.array(axes)
|
1304 |
+
|
1305 |
+
if len(set(axes % array.ndim)) != len(axes):
|
1306 |
+
# parametrized cases with duplicate axes raise an error
|
1307 |
+
with pytest.raises(ValueError):
|
1308 |
+
filter_func(array, footprint=footprint, axes=axes, **kwargs)
|
1309 |
+
return
|
1310 |
+
output = filter_func(array, footprint=footprint, axes=axes, **kwargs)
|
1311 |
+
|
1312 |
+
missing_axis = tuple(set(range(3)) - set(axes % array.ndim))[0]
|
1313 |
+
footprint_3d = numpy.expand_dims(footprint, missing_axis)
|
1314 |
+
expected = filter_func(array, footprint=footprint_3d, **kwargs)
|
1315 |
+
assert_allclose(output, expected)
|
1316 |
+
|
1317 |
+
def test_rank01(self):
|
1318 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
1319 |
+
output = ndimage.rank_filter(array, 1, size=2)
|
1320 |
+
assert_array_almost_equal(array, output)
|
1321 |
+
output = ndimage.percentile_filter(array, 100, size=2)
|
1322 |
+
assert_array_almost_equal(array, output)
|
1323 |
+
output = ndimage.median_filter(array, 2)
|
1324 |
+
assert_array_almost_equal(array, output)
|
1325 |
+
|
1326 |
+
def test_rank02(self):
|
1327 |
+
array = numpy.array([1, 2, 3, 4, 5])
|
1328 |
+
output = ndimage.rank_filter(array, 1, size=[3])
|
1329 |
+
assert_array_almost_equal(array, output)
|
1330 |
+
output = ndimage.percentile_filter(array, 50, size=3)
|
1331 |
+
assert_array_almost_equal(array, output)
|
1332 |
+
output = ndimage.median_filter(array, (3,))
|
1333 |
+
assert_array_almost_equal(array, output)
|
1334 |
+
|
1335 |
+
def test_rank03(self):
|
1336 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
1337 |
+
output = ndimage.rank_filter(array, 1, size=[2])
|
1338 |
+
assert_array_almost_equal([3, 3, 5, 5, 4], output)
|
1339 |
+
output = ndimage.percentile_filter(array, 100, size=2)
|
1340 |
+
assert_array_almost_equal([3, 3, 5, 5, 4], output)
|
1341 |
+
|
1342 |
+
def test_rank04(self):
|
1343 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
1344 |
+
expected = [3, 3, 2, 4, 4]
|
1345 |
+
output = ndimage.rank_filter(array, 1, size=3)
|
1346 |
+
assert_array_almost_equal(expected, output)
|
1347 |
+
output = ndimage.percentile_filter(array, 50, size=3)
|
1348 |
+
assert_array_almost_equal(expected, output)
|
1349 |
+
output = ndimage.median_filter(array, size=3)
|
1350 |
+
assert_array_almost_equal(expected, output)
|
1351 |
+
|
1352 |
+
def test_rank05(self):
|
1353 |
+
array = numpy.array([3, 2, 5, 1, 4])
|
1354 |
+
expected = [3, 3, 2, 4, 4]
|
1355 |
+
output = ndimage.rank_filter(array, -2, size=3)
|
1356 |
+
assert_array_almost_equal(expected, output)
|
1357 |
+
|
1358 |
+
def test_rank06(self):
|
1359 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1360 |
+
[5, 8, 3, 7, 1],
|
1361 |
+
[5, 6, 9, 3, 5]])
|
1362 |
+
expected = [[2, 2, 1, 1, 1],
|
1363 |
+
[3, 3, 2, 1, 1],
|
1364 |
+
[5, 5, 3, 3, 1]]
|
1365 |
+
output = ndimage.rank_filter(array, 1, size=[2, 3])
|
1366 |
+
assert_array_almost_equal(expected, output)
|
1367 |
+
output = ndimage.percentile_filter(array, 17, size=(2, 3))
|
1368 |
+
assert_array_almost_equal(expected, output)
|
1369 |
+
|
1370 |
+
def test_rank06_overlap(self):
|
1371 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1372 |
+
[5, 8, 3, 7, 1],
|
1373 |
+
[5, 6, 9, 3, 5]])
|
1374 |
+
array_copy = array.copy()
|
1375 |
+
expected = [[2, 2, 1, 1, 1],
|
1376 |
+
[3, 3, 2, 1, 1],
|
1377 |
+
[5, 5, 3, 3, 1]]
|
1378 |
+
ndimage.rank_filter(array, 1, size=[2, 3], output=array)
|
1379 |
+
assert_array_almost_equal(expected, array)
|
1380 |
+
|
1381 |
+
ndimage.percentile_filter(array_copy, 17, size=(2, 3),
|
1382 |
+
output=array_copy)
|
1383 |
+
assert_array_almost_equal(expected, array_copy)
|
1384 |
+
|
1385 |
+
def test_rank07(self):
|
1386 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1387 |
+
[5, 8, 3, 7, 1],
|
1388 |
+
[5, 6, 9, 3, 5]])
|
1389 |
+
expected = [[3, 5, 5, 5, 4],
|
1390 |
+
[5, 5, 7, 5, 4],
|
1391 |
+
[6, 8, 8, 7, 5]]
|
1392 |
+
output = ndimage.rank_filter(array, -2, size=[2, 3])
|
1393 |
+
assert_array_almost_equal(expected, output)
|
1394 |
+
|
1395 |
+
def test_rank08(self):
|
1396 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1397 |
+
[5, 8, 3, 7, 1],
|
1398 |
+
[5, 6, 9, 3, 5]])
|
1399 |
+
expected = [[3, 3, 2, 4, 4],
|
1400 |
+
[5, 5, 5, 4, 4],
|
1401 |
+
[5, 6, 7, 5, 5]]
|
1402 |
+
output = ndimage.percentile_filter(array, 50.0, size=(2, 3))
|
1403 |
+
assert_array_almost_equal(expected, output)
|
1404 |
+
output = ndimage.rank_filter(array, 3, size=(2, 3))
|
1405 |
+
assert_array_almost_equal(expected, output)
|
1406 |
+
output = ndimage.median_filter(array, size=(2, 3))
|
1407 |
+
assert_array_almost_equal(expected, output)
|
1408 |
+
|
1409 |
+
# non-separable: does not allow mode sequence
|
1410 |
+
with assert_raises(RuntimeError):
|
1411 |
+
ndimage.percentile_filter(array, 50.0, size=(2, 3),
|
1412 |
+
mode=['reflect', 'constant'])
|
1413 |
+
with assert_raises(RuntimeError):
|
1414 |
+
ndimage.rank_filter(array, 3, size=(2, 3), mode=['reflect']*2)
|
1415 |
+
with assert_raises(RuntimeError):
|
1416 |
+
ndimage.median_filter(array, size=(2, 3), mode=['reflect']*2)
|
1417 |
+
|
1418 |
+
@pytest.mark.parametrize('dtype', types)
|
1419 |
+
def test_rank09(self, dtype):
|
1420 |
+
expected = [[3, 3, 2, 4, 4],
|
1421 |
+
[3, 5, 2, 5, 1],
|
1422 |
+
[5, 5, 8, 3, 5]]
|
1423 |
+
footprint = [[1, 0, 1], [0, 1, 0]]
|
1424 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1425 |
+
[5, 8, 3, 7, 1],
|
1426 |
+
[5, 6, 9, 3, 5]], dtype)
|
1427 |
+
output = ndimage.rank_filter(array, 1, footprint=footprint)
|
1428 |
+
assert_array_almost_equal(expected, output)
|
1429 |
+
output = ndimage.percentile_filter(array, 35, footprint=footprint)
|
1430 |
+
assert_array_almost_equal(expected, output)
|
1431 |
+
|
1432 |
+
def test_rank10(self):
|
1433 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1434 |
+
[7, 6, 9, 3, 5],
|
1435 |
+
[5, 8, 3, 7, 1]])
|
1436 |
+
expected = [[2, 2, 1, 1, 1],
|
1437 |
+
[2, 3, 1, 3, 1],
|
1438 |
+
[5, 5, 3, 3, 1]]
|
1439 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
1440 |
+
output = ndimage.rank_filter(array, 0, footprint=footprint)
|
1441 |
+
assert_array_almost_equal(expected, output)
|
1442 |
+
output = ndimage.percentile_filter(array, 0.0, footprint=footprint)
|
1443 |
+
assert_array_almost_equal(expected, output)
|
1444 |
+
|
1445 |
+
def test_rank11(self):
|
1446 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1447 |
+
[7, 6, 9, 3, 5],
|
1448 |
+
[5, 8, 3, 7, 1]])
|
1449 |
+
expected = [[3, 5, 5, 5, 4],
|
1450 |
+
[7, 7, 9, 9, 5],
|
1451 |
+
[7, 9, 8, 9, 7]]
|
1452 |
+
footprint = [[1, 0, 1], [1, 1, 0]]
|
1453 |
+
output = ndimage.rank_filter(array, -1, footprint=footprint)
|
1454 |
+
assert_array_almost_equal(expected, output)
|
1455 |
+
output = ndimage.percentile_filter(array, 100.0, footprint=footprint)
|
1456 |
+
assert_array_almost_equal(expected, output)
|
1457 |
+
|
1458 |
+
@pytest.mark.parametrize('dtype', types)
|
1459 |
+
def test_rank12(self, dtype):
|
1460 |
+
expected = [[3, 3, 2, 4, 4],
|
1461 |
+
[3, 5, 2, 5, 1],
|
1462 |
+
[5, 5, 8, 3, 5]]
|
1463 |
+
footprint = [[1, 0, 1], [0, 1, 0]]
|
1464 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1465 |
+
[5, 8, 3, 7, 1],
|
1466 |
+
[5, 6, 9, 3, 5]], dtype)
|
1467 |
+
output = ndimage.rank_filter(array, 1, footprint=footprint)
|
1468 |
+
assert_array_almost_equal(expected, output)
|
1469 |
+
output = ndimage.percentile_filter(array, 50.0,
|
1470 |
+
footprint=footprint)
|
1471 |
+
assert_array_almost_equal(expected, output)
|
1472 |
+
output = ndimage.median_filter(array, footprint=footprint)
|
1473 |
+
assert_array_almost_equal(expected, output)
|
1474 |
+
|
1475 |
+
@pytest.mark.parametrize('dtype', types)
|
1476 |
+
def test_rank13(self, dtype):
|
1477 |
+
expected = [[5, 2, 5, 1, 1],
|
1478 |
+
[5, 8, 3, 5, 5],
|
1479 |
+
[6, 6, 5, 5, 5]]
|
1480 |
+
footprint = [[1, 0, 1], [0, 1, 0]]
|
1481 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1482 |
+
[5, 8, 3, 7, 1],
|
1483 |
+
[5, 6, 9, 3, 5]], dtype)
|
1484 |
+
output = ndimage.rank_filter(array, 1, footprint=footprint,
|
1485 |
+
origin=-1)
|
1486 |
+
assert_array_almost_equal(expected, output)
|
1487 |
+
|
1488 |
+
@pytest.mark.parametrize('dtype', types)
|
1489 |
+
def test_rank14(self, dtype):
|
1490 |
+
expected = [[3, 5, 2, 5, 1],
|
1491 |
+
[5, 5, 8, 3, 5],
|
1492 |
+
[5, 6, 6, 5, 5]]
|
1493 |
+
footprint = [[1, 0, 1], [0, 1, 0]]
|
1494 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1495 |
+
[5, 8, 3, 7, 1],
|
1496 |
+
[5, 6, 9, 3, 5]], dtype)
|
1497 |
+
output = ndimage.rank_filter(array, 1, footprint=footprint,
|
1498 |
+
origin=[-1, 0])
|
1499 |
+
assert_array_almost_equal(expected, output)
|
1500 |
+
|
1501 |
+
@pytest.mark.parametrize('dtype', types)
|
1502 |
+
def test_rank15(self, dtype):
|
1503 |
+
expected = [[2, 3, 1, 4, 1],
|
1504 |
+
[5, 3, 7, 1, 1],
|
1505 |
+
[5, 5, 3, 3, 3]]
|
1506 |
+
footprint = [[1, 0, 1], [0, 1, 0]]
|
1507 |
+
array = numpy.array([[3, 2, 5, 1, 4],
|
1508 |
+
[5, 8, 3, 7, 1],
|
1509 |
+
[5, 6, 9, 3, 5]], dtype)
|
1510 |
+
output = ndimage.rank_filter(array, 0, footprint=footprint,
|
1511 |
+
origin=[-1, 0])
|
1512 |
+
assert_array_almost_equal(expected, output)
|
1513 |
+
|
1514 |
+
@pytest.mark.parametrize('dtype', types)
|
1515 |
+
def test_generic_filter1d01(self, dtype):
|
1516 |
+
weights = numpy.array([1.1, 2.2, 3.3])
|
1517 |
+
|
1518 |
+
def _filter_func(input, output, fltr, total):
|
1519 |
+
fltr = fltr / total
|
1520 |
+
for ii in range(input.shape[0] - 2):
|
1521 |
+
output[ii] = input[ii] * fltr[0]
|
1522 |
+
output[ii] += input[ii + 1] * fltr[1]
|
1523 |
+
output[ii] += input[ii + 2] * fltr[2]
|
1524 |
+
a = numpy.arange(12, dtype=dtype)
|
1525 |
+
a.shape = (3, 4)
|
1526 |
+
r1 = ndimage.correlate1d(a, weights / weights.sum(), 0, origin=-1)
|
1527 |
+
r2 = ndimage.generic_filter1d(
|
1528 |
+
a, _filter_func, 3, axis=0, origin=-1,
|
1529 |
+
extra_arguments=(weights,),
|
1530 |
+
extra_keywords={'total': weights.sum()})
|
1531 |
+
assert_array_almost_equal(r1, r2)
|
1532 |
+
|
1533 |
+
@pytest.mark.parametrize('dtype', types)
|
1534 |
+
def test_generic_filter01(self, dtype):
|
1535 |
+
filter_ = numpy.array([[1.0, 2.0], [3.0, 4.0]])
|
1536 |
+
footprint = numpy.array([[1, 0], [0, 1]])
|
1537 |
+
cf = numpy.array([1., 4.])
|
1538 |
+
|
1539 |
+
def _filter_func(buffer, weights, total=1.0):
|
1540 |
+
weights = cf / total
|
1541 |
+
return (buffer * weights).sum()
|
1542 |
+
|
1543 |
+
a = numpy.arange(12, dtype=dtype)
|
1544 |
+
a.shape = (3, 4)
|
1545 |
+
r1 = ndimage.correlate(a, filter_ * footprint)
|
1546 |
+
if dtype in float_types:
|
1547 |
+
r1 /= 5
|
1548 |
+
else:
|
1549 |
+
r1 //= 5
|
1550 |
+
r2 = ndimage.generic_filter(
|
1551 |
+
a, _filter_func, footprint=footprint, extra_arguments=(cf,),
|
1552 |
+
extra_keywords={'total': cf.sum()})
|
1553 |
+
assert_array_almost_equal(r1, r2)
|
1554 |
+
|
1555 |
+
# generic_filter doesn't allow mode sequence
|
1556 |
+
with assert_raises(RuntimeError):
|
1557 |
+
r2 = ndimage.generic_filter(
|
1558 |
+
a, _filter_func, mode=['reflect', 'reflect'],
|
1559 |
+
footprint=footprint, extra_arguments=(cf,),
|
1560 |
+
extra_keywords={'total': cf.sum()})
|
1561 |
+
|
1562 |
+
@pytest.mark.parametrize(
|
1563 |
+
'mode, expected_value',
|
1564 |
+
[('nearest', [1, 1, 2]),
|
1565 |
+
('wrap', [3, 1, 2]),
|
1566 |
+
('reflect', [1, 1, 2]),
|
1567 |
+
('mirror', [2, 1, 2]),
|
1568 |
+
('constant', [0, 1, 2])]
|
1569 |
+
)
|
1570 |
+
def test_extend01(self, mode, expected_value):
|
1571 |
+
array = numpy.array([1, 2, 3])
|
1572 |
+
weights = numpy.array([1, 0])
|
1573 |
+
output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
|
1574 |
+
assert_array_equal(output, expected_value)
|
1575 |
+
|
1576 |
+
@pytest.mark.parametrize(
|
1577 |
+
'mode, expected_value',
|
1578 |
+
[('nearest', [1, 1, 1]),
|
1579 |
+
('wrap', [3, 1, 2]),
|
1580 |
+
('reflect', [3, 3, 2]),
|
1581 |
+
('mirror', [1, 2, 3]),
|
1582 |
+
('constant', [0, 0, 0])]
|
1583 |
+
)
|
1584 |
+
def test_extend02(self, mode, expected_value):
|
1585 |
+
array = numpy.array([1, 2, 3])
|
1586 |
+
weights = numpy.array([1, 0, 0, 0, 0, 0, 0, 0])
|
1587 |
+
output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
|
1588 |
+
assert_array_equal(output, expected_value)
|
1589 |
+
|
1590 |
+
@pytest.mark.parametrize(
|
1591 |
+
'mode, expected_value',
|
1592 |
+
[('nearest', [2, 3, 3]),
|
1593 |
+
('wrap', [2, 3, 1]),
|
1594 |
+
('reflect', [2, 3, 3]),
|
1595 |
+
('mirror', [2, 3, 2]),
|
1596 |
+
('constant', [2, 3, 0])]
|
1597 |
+
)
|
1598 |
+
def test_extend03(self, mode, expected_value):
|
1599 |
+
array = numpy.array([1, 2, 3])
|
1600 |
+
weights = numpy.array([0, 0, 1])
|
1601 |
+
output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
|
1602 |
+
assert_array_equal(output, expected_value)
|
1603 |
+
|
1604 |
+
@pytest.mark.parametrize(
|
1605 |
+
'mode, expected_value',
|
1606 |
+
[('nearest', [3, 3, 3]),
|
1607 |
+
('wrap', [2, 3, 1]),
|
1608 |
+
('reflect', [2, 1, 1]),
|
1609 |
+
('mirror', [1, 2, 3]),
|
1610 |
+
('constant', [0, 0, 0])]
|
1611 |
+
)
|
1612 |
+
def test_extend04(self, mode, expected_value):
|
1613 |
+
array = numpy.array([1, 2, 3])
|
1614 |
+
weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
|
1615 |
+
output = ndimage.correlate1d(array, weights, 0, mode=mode, cval=0)
|
1616 |
+
assert_array_equal(output, expected_value)
|
1617 |
+
|
1618 |
+
@pytest.mark.parametrize(
|
1619 |
+
'mode, expected_value',
|
1620 |
+
[('nearest', [[1, 1, 2], [1, 1, 2], [4, 4, 5]]),
|
1621 |
+
('wrap', [[9, 7, 8], [3, 1, 2], [6, 4, 5]]),
|
1622 |
+
('reflect', [[1, 1, 2], [1, 1, 2], [4, 4, 5]]),
|
1623 |
+
('mirror', [[5, 4, 5], [2, 1, 2], [5, 4, 5]]),
|
1624 |
+
('constant', [[0, 0, 0], [0, 1, 2], [0, 4, 5]])]
|
1625 |
+
)
|
1626 |
+
def test_extend05(self, mode, expected_value):
|
1627 |
+
array = numpy.array([[1, 2, 3],
|
1628 |
+
[4, 5, 6],
|
1629 |
+
[7, 8, 9]])
|
1630 |
+
weights = numpy.array([[1, 0], [0, 0]])
|
1631 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
1632 |
+
assert_array_equal(output, expected_value)
|
1633 |
+
|
1634 |
+
@pytest.mark.parametrize(
|
1635 |
+
'mode, expected_value',
|
1636 |
+
[('nearest', [[5, 6, 6], [8, 9, 9], [8, 9, 9]]),
|
1637 |
+
('wrap', [[5, 6, 4], [8, 9, 7], [2, 3, 1]]),
|
1638 |
+
('reflect', [[5, 6, 6], [8, 9, 9], [8, 9, 9]]),
|
1639 |
+
('mirror', [[5, 6, 5], [8, 9, 8], [5, 6, 5]]),
|
1640 |
+
('constant', [[5, 6, 0], [8, 9, 0], [0, 0, 0]])]
|
1641 |
+
)
|
1642 |
+
def test_extend06(self, mode, expected_value):
|
1643 |
+
array = numpy.array([[1, 2, 3],
|
1644 |
+
[4, 5, 6],
|
1645 |
+
[7, 8, 9]])
|
1646 |
+
weights = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]])
|
1647 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
1648 |
+
assert_array_equal(output, expected_value)
|
1649 |
+
|
1650 |
+
@pytest.mark.parametrize(
|
1651 |
+
'mode, expected_value',
|
1652 |
+
[('nearest', [3, 3, 3]),
|
1653 |
+
('wrap', [2, 3, 1]),
|
1654 |
+
('reflect', [2, 1, 1]),
|
1655 |
+
('mirror', [1, 2, 3]),
|
1656 |
+
('constant', [0, 0, 0])]
|
1657 |
+
)
|
1658 |
+
def test_extend07(self, mode, expected_value):
|
1659 |
+
array = numpy.array([1, 2, 3])
|
1660 |
+
weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
|
1661 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
1662 |
+
assert_array_equal(output, expected_value)
|
1663 |
+
|
1664 |
+
@pytest.mark.parametrize(
|
1665 |
+
'mode, expected_value',
|
1666 |
+
[('nearest', [[3], [3], [3]]),
|
1667 |
+
('wrap', [[2], [3], [1]]),
|
1668 |
+
('reflect', [[2], [1], [1]]),
|
1669 |
+
('mirror', [[1], [2], [3]]),
|
1670 |
+
('constant', [[0], [0], [0]])]
|
1671 |
+
)
|
1672 |
+
def test_extend08(self, mode, expected_value):
|
1673 |
+
array = numpy.array([[1], [2], [3]])
|
1674 |
+
weights = numpy.array([[0], [0], [0], [0], [0], [0], [0], [0], [1]])
|
1675 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
1676 |
+
assert_array_equal(output, expected_value)
|
1677 |
+
|
1678 |
+
@pytest.mark.parametrize(
|
1679 |
+
'mode, expected_value',
|
1680 |
+
[('nearest', [3, 3, 3]),
|
1681 |
+
('wrap', [2, 3, 1]),
|
1682 |
+
('reflect', [2, 1, 1]),
|
1683 |
+
('mirror', [1, 2, 3]),
|
1684 |
+
('constant', [0, 0, 0])]
|
1685 |
+
)
|
1686 |
+
def test_extend09(self, mode, expected_value):
|
1687 |
+
array = numpy.array([1, 2, 3])
|
1688 |
+
weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
|
1689 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
1690 |
+
assert_array_equal(output, expected_value)
|
1691 |
+
|
1692 |
+
@pytest.mark.parametrize(
|
1693 |
+
'mode, expected_value',
|
1694 |
+
[('nearest', [[3], [3], [3]]),
|
1695 |
+
('wrap', [[2], [3], [1]]),
|
1696 |
+
('reflect', [[2], [1], [1]]),
|
1697 |
+
('mirror', [[1], [2], [3]]),
|
1698 |
+
('constant', [[0], [0], [0]])]
|
1699 |
+
)
|
1700 |
+
def test_extend10(self, mode, expected_value):
|
1701 |
+
array = numpy.array([[1], [2], [3]])
|
1702 |
+
weights = numpy.array([[0], [0], [0], [0], [0], [0], [0], [0], [1]])
|
1703 |
+
output = ndimage.correlate(array, weights, mode=mode, cval=0)
|
1704 |
+
assert_array_equal(output, expected_value)
|
1705 |
+
|
1706 |
+
|
1707 |
+
def test_ticket_701():
|
1708 |
+
# Test generic filter sizes
|
1709 |
+
arr = numpy.arange(4).reshape((2, 2))
|
1710 |
+
def func(x):
|
1711 |
+
return numpy.min(x)
|
1712 |
+
res = ndimage.generic_filter(arr, func, size=(1, 1))
|
1713 |
+
# The following raises an error unless ticket 701 is fixed
|
1714 |
+
res2 = ndimage.generic_filter(arr, func, size=1)
|
1715 |
+
assert_equal(res, res2)
|
1716 |
+
|
1717 |
+
|
1718 |
+
def test_gh_5430():
|
1719 |
+
# At least one of these raises an error unless gh-5430 is
|
1720 |
+
# fixed. In py2k an int is implemented using a C long, so
|
1721 |
+
# which one fails depends on your system. In py3k there is only
|
1722 |
+
# one arbitrary precision integer type, so both should fail.
|
1723 |
+
sigma = numpy.int32(1)
|
1724 |
+
out = ndimage._ni_support._normalize_sequence(sigma, 1)
|
1725 |
+
assert_equal(out, [sigma])
|
1726 |
+
sigma = numpy.int64(1)
|
1727 |
+
out = ndimage._ni_support._normalize_sequence(sigma, 1)
|
1728 |
+
assert_equal(out, [sigma])
|
1729 |
+
# This worked before; make sure it still works
|
1730 |
+
sigma = 1
|
1731 |
+
out = ndimage._ni_support._normalize_sequence(sigma, 1)
|
1732 |
+
assert_equal(out, [sigma])
|
1733 |
+
# This worked before; make sure it still works
|
1734 |
+
sigma = [1, 1]
|
1735 |
+
out = ndimage._ni_support._normalize_sequence(sigma, 2)
|
1736 |
+
assert_equal(out, sigma)
|
1737 |
+
# Also include the OPs original example to make sure we fixed the issue
|
1738 |
+
x = numpy.random.normal(size=(256, 256))
|
1739 |
+
perlin = numpy.zeros_like(x)
|
1740 |
+
for i in 2**numpy.arange(6):
|
1741 |
+
perlin += ndimage.gaussian_filter(x, i, mode="wrap") * i**2
|
1742 |
+
# This also fixes gh-4106, show that the OPs example now runs.
|
1743 |
+
x = numpy.int64(21)
|
1744 |
+
ndimage._ni_support._normalize_sequence(x, 0)
|
1745 |
+
|
1746 |
+
|
1747 |
+
def test_gaussian_kernel1d():
|
1748 |
+
radius = 10
|
1749 |
+
sigma = 2
|
1750 |
+
sigma2 = sigma * sigma
|
1751 |
+
x = numpy.arange(-radius, radius + 1, dtype=numpy.double)
|
1752 |
+
phi_x = numpy.exp(-0.5 * x * x / sigma2)
|
1753 |
+
phi_x /= phi_x.sum()
|
1754 |
+
assert_allclose(phi_x, _gaussian_kernel1d(sigma, 0, radius))
|
1755 |
+
assert_allclose(-phi_x * x / sigma2, _gaussian_kernel1d(sigma, 1, radius))
|
1756 |
+
assert_allclose(phi_x * (x * x / sigma2 - 1) / sigma2,
|
1757 |
+
_gaussian_kernel1d(sigma, 2, radius))
|
1758 |
+
assert_allclose(phi_x * (3 - x * x / sigma2) * x / (sigma2 * sigma2),
|
1759 |
+
_gaussian_kernel1d(sigma, 3, radius))
|
1760 |
+
|
1761 |
+
|
1762 |
+
def test_orders_gauss():
|
1763 |
+
# Check order inputs to Gaussians
|
1764 |
+
arr = numpy.zeros((1,))
|
1765 |
+
assert_equal(0, ndimage.gaussian_filter(arr, 1, order=0))
|
1766 |
+
assert_equal(0, ndimage.gaussian_filter(arr, 1, order=3))
|
1767 |
+
assert_raises(ValueError, ndimage.gaussian_filter, arr, 1, -1)
|
1768 |
+
assert_equal(0, ndimage.gaussian_filter1d(arr, 1, axis=-1, order=0))
|
1769 |
+
assert_equal(0, ndimage.gaussian_filter1d(arr, 1, axis=-1, order=3))
|
1770 |
+
assert_raises(ValueError, ndimage.gaussian_filter1d, arr, 1, -1, -1)
|
1771 |
+
|
1772 |
+
|
1773 |
+
def test_valid_origins():
|
1774 |
+
"""Regression test for #1311."""
|
1775 |
+
def func(x):
|
1776 |
+
return numpy.mean(x)
|
1777 |
+
data = numpy.array([1, 2, 3, 4, 5], dtype=numpy.float64)
|
1778 |
+
assert_raises(ValueError, ndimage.generic_filter, data, func, size=3,
|
1779 |
+
origin=2)
|
1780 |
+
assert_raises(ValueError, ndimage.generic_filter1d, data, func,
|
1781 |
+
filter_size=3, origin=2)
|
1782 |
+
assert_raises(ValueError, ndimage.percentile_filter, data, 0.2, size=3,
|
1783 |
+
origin=2)
|
1784 |
+
|
1785 |
+
for filter in [ndimage.uniform_filter, ndimage.minimum_filter,
|
1786 |
+
ndimage.maximum_filter, ndimage.maximum_filter1d,
|
1787 |
+
ndimage.median_filter, ndimage.minimum_filter1d]:
|
1788 |
+
# This should work, since for size == 3, the valid range for origin is
|
1789 |
+
# -1 to 1.
|
1790 |
+
list(filter(data, 3, origin=-1))
|
1791 |
+
list(filter(data, 3, origin=1))
|
1792 |
+
# Just check this raises an error instead of silently accepting or
|
1793 |
+
# segfaulting.
|
1794 |
+
assert_raises(ValueError, filter, data, 3, origin=2)
|
1795 |
+
|
1796 |
+
|
1797 |
+
def test_bad_convolve_and_correlate_origins():
|
1798 |
+
"""Regression test for gh-822."""
|
1799 |
+
# Before gh-822 was fixed, these would generate seg. faults or
|
1800 |
+
# other crashes on many system.
|
1801 |
+
assert_raises(ValueError, ndimage.correlate1d,
|
1802 |
+
[0, 1, 2, 3, 4, 5], [1, 1, 2, 0], origin=2)
|
1803 |
+
assert_raises(ValueError, ndimage.correlate,
|
1804 |
+
[0, 1, 2, 3, 4, 5], [0, 1, 2], origin=[2])
|
1805 |
+
assert_raises(ValueError, ndimage.correlate,
|
1806 |
+
numpy.ones((3, 5)), numpy.ones((2, 2)), origin=[0, 1])
|
1807 |
+
|
1808 |
+
assert_raises(ValueError, ndimage.convolve1d,
|
1809 |
+
numpy.arange(10), numpy.ones(3), origin=-2)
|
1810 |
+
assert_raises(ValueError, ndimage.convolve,
|
1811 |
+
numpy.arange(10), numpy.ones(3), origin=[-2])
|
1812 |
+
assert_raises(ValueError, ndimage.convolve,
|
1813 |
+
numpy.ones((3, 5)), numpy.ones((2, 2)), origin=[0, -2])
|
1814 |
+
|
1815 |
+
|
1816 |
+
def test_multiple_modes():
|
1817 |
+
# Test that the filters with multiple mode cababilities for different
|
1818 |
+
# dimensions give the same result as applying a single mode.
|
1819 |
+
arr = numpy.array([[1., 0., 0.],
|
1820 |
+
[1., 1., 0.],
|
1821 |
+
[0., 0., 0.]])
|
1822 |
+
|
1823 |
+
mode1 = 'reflect'
|
1824 |
+
mode2 = ['reflect', 'reflect']
|
1825 |
+
|
1826 |
+
assert_equal(ndimage.gaussian_filter(arr, 1, mode=mode1),
|
1827 |
+
ndimage.gaussian_filter(arr, 1, mode=mode2))
|
1828 |
+
assert_equal(ndimage.prewitt(arr, mode=mode1),
|
1829 |
+
ndimage.prewitt(arr, mode=mode2))
|
1830 |
+
assert_equal(ndimage.sobel(arr, mode=mode1),
|
1831 |
+
ndimage.sobel(arr, mode=mode2))
|
1832 |
+
assert_equal(ndimage.laplace(arr, mode=mode1),
|
1833 |
+
ndimage.laplace(arr, mode=mode2))
|
1834 |
+
assert_equal(ndimage.gaussian_laplace(arr, 1, mode=mode1),
|
1835 |
+
ndimage.gaussian_laplace(arr, 1, mode=mode2))
|
1836 |
+
assert_equal(ndimage.maximum_filter(arr, size=5, mode=mode1),
|
1837 |
+
ndimage.maximum_filter(arr, size=5, mode=mode2))
|
1838 |
+
assert_equal(ndimage.minimum_filter(arr, size=5, mode=mode1),
|
1839 |
+
ndimage.minimum_filter(arr, size=5, mode=mode2))
|
1840 |
+
assert_equal(ndimage.gaussian_gradient_magnitude(arr, 1, mode=mode1),
|
1841 |
+
ndimage.gaussian_gradient_magnitude(arr, 1, mode=mode2))
|
1842 |
+
assert_equal(ndimage.uniform_filter(arr, 5, mode=mode1),
|
1843 |
+
ndimage.uniform_filter(arr, 5, mode=mode2))
|
1844 |
+
|
1845 |
+
|
1846 |
+
def test_multiple_modes_sequentially():
|
1847 |
+
# Test that the filters with multiple mode cababilities for different
|
1848 |
+
# dimensions give the same result as applying the filters with
|
1849 |
+
# different modes sequentially
|
1850 |
+
arr = numpy.array([[1., 0., 0.],
|
1851 |
+
[1., 1., 0.],
|
1852 |
+
[0., 0., 0.]])
|
1853 |
+
|
1854 |
+
modes = ['reflect', 'wrap']
|
1855 |
+
|
1856 |
+
expected = ndimage.gaussian_filter1d(arr, 1, axis=0, mode=modes[0])
|
1857 |
+
expected = ndimage.gaussian_filter1d(expected, 1, axis=1, mode=modes[1])
|
1858 |
+
assert_equal(expected,
|
1859 |
+
ndimage.gaussian_filter(arr, 1, mode=modes))
|
1860 |
+
|
1861 |
+
expected = ndimage.uniform_filter1d(arr, 5, axis=0, mode=modes[0])
|
1862 |
+
expected = ndimage.uniform_filter1d(expected, 5, axis=1, mode=modes[1])
|
1863 |
+
assert_equal(expected,
|
1864 |
+
ndimage.uniform_filter(arr, 5, mode=modes))
|
1865 |
+
|
1866 |
+
expected = ndimage.maximum_filter1d(arr, size=5, axis=0, mode=modes[0])
|
1867 |
+
expected = ndimage.maximum_filter1d(expected, size=5, axis=1,
|
1868 |
+
mode=modes[1])
|
1869 |
+
assert_equal(expected,
|
1870 |
+
ndimage.maximum_filter(arr, size=5, mode=modes))
|
1871 |
+
|
1872 |
+
expected = ndimage.minimum_filter1d(arr, size=5, axis=0, mode=modes[0])
|
1873 |
+
expected = ndimage.minimum_filter1d(expected, size=5, axis=1,
|
1874 |
+
mode=modes[1])
|
1875 |
+
assert_equal(expected,
|
1876 |
+
ndimage.minimum_filter(arr, size=5, mode=modes))
|
1877 |
+
|
1878 |
+
|
1879 |
+
def test_multiple_modes_prewitt():
|
1880 |
+
# Test prewitt filter for multiple extrapolation modes
|
1881 |
+
arr = numpy.array([[1., 0., 0.],
|
1882 |
+
[1., 1., 0.],
|
1883 |
+
[0., 0., 0.]])
|
1884 |
+
|
1885 |
+
expected = numpy.array([[1., -3., 2.],
|
1886 |
+
[1., -2., 1.],
|
1887 |
+
[1., -1., 0.]])
|
1888 |
+
|
1889 |
+
modes = ['reflect', 'wrap']
|
1890 |
+
|
1891 |
+
assert_equal(expected,
|
1892 |
+
ndimage.prewitt(arr, mode=modes))
|
1893 |
+
|
1894 |
+
|
1895 |
+
def test_multiple_modes_sobel():
|
1896 |
+
# Test sobel filter for multiple extrapolation modes
|
1897 |
+
arr = numpy.array([[1., 0., 0.],
|
1898 |
+
[1., 1., 0.],
|
1899 |
+
[0., 0., 0.]])
|
1900 |
+
|
1901 |
+
expected = numpy.array([[1., -4., 3.],
|
1902 |
+
[2., -3., 1.],
|
1903 |
+
[1., -1., 0.]])
|
1904 |
+
|
1905 |
+
modes = ['reflect', 'wrap']
|
1906 |
+
|
1907 |
+
assert_equal(expected,
|
1908 |
+
ndimage.sobel(arr, mode=modes))
|
1909 |
+
|
1910 |
+
|
1911 |
+
def test_multiple_modes_laplace():
|
1912 |
+
# Test laplace filter for multiple extrapolation modes
|
1913 |
+
arr = numpy.array([[1., 0., 0.],
|
1914 |
+
[1., 1., 0.],
|
1915 |
+
[0., 0., 0.]])
|
1916 |
+
|
1917 |
+
expected = numpy.array([[-2., 2., 1.],
|
1918 |
+
[-2., -3., 2.],
|
1919 |
+
[1., 1., 0.]])
|
1920 |
+
|
1921 |
+
modes = ['reflect', 'wrap']
|
1922 |
+
|
1923 |
+
assert_equal(expected,
|
1924 |
+
ndimage.laplace(arr, mode=modes))
|
1925 |
+
|
1926 |
+
|
1927 |
+
def test_multiple_modes_gaussian_laplace():
|
1928 |
+
# Test gaussian_laplace filter for multiple extrapolation modes
|
1929 |
+
arr = numpy.array([[1., 0., 0.],
|
1930 |
+
[1., 1., 0.],
|
1931 |
+
[0., 0., 0.]])
|
1932 |
+
|
1933 |
+
expected = numpy.array([[-0.28438687, 0.01559809, 0.19773499],
|
1934 |
+
[-0.36630503, -0.20069774, 0.07483620],
|
1935 |
+
[0.15849176, 0.18495566, 0.21934094]])
|
1936 |
+
|
1937 |
+
modes = ['reflect', 'wrap']
|
1938 |
+
|
1939 |
+
assert_almost_equal(expected,
|
1940 |
+
ndimage.gaussian_laplace(arr, 1, mode=modes))
|
1941 |
+
|
1942 |
+
|
1943 |
+
def test_multiple_modes_gaussian_gradient_magnitude():
|
1944 |
+
# Test gaussian_gradient_magnitude filter for multiple
|
1945 |
+
# extrapolation modes
|
1946 |
+
arr = numpy.array([[1., 0., 0.],
|
1947 |
+
[1., 1., 0.],
|
1948 |
+
[0., 0., 0.]])
|
1949 |
+
|
1950 |
+
expected = numpy.array([[0.04928965, 0.09745625, 0.06405368],
|
1951 |
+
[0.23056905, 0.14025305, 0.04550846],
|
1952 |
+
[0.19894369, 0.14950060, 0.06796850]])
|
1953 |
+
|
1954 |
+
modes = ['reflect', 'wrap']
|
1955 |
+
|
1956 |
+
calculated = ndimage.gaussian_gradient_magnitude(arr, 1, mode=modes)
|
1957 |
+
|
1958 |
+
assert_almost_equal(expected, calculated)
|
1959 |
+
|
1960 |
+
|
1961 |
+
def test_multiple_modes_uniform():
|
1962 |
+
# Test uniform filter for multiple extrapolation modes
|
1963 |
+
arr = numpy.array([[1., 0., 0.],
|
1964 |
+
[1., 1., 0.],
|
1965 |
+
[0., 0., 0.]])
|
1966 |
+
|
1967 |
+
expected = numpy.array([[0.32, 0.40, 0.48],
|
1968 |
+
[0.20, 0.28, 0.32],
|
1969 |
+
[0.28, 0.32, 0.40]])
|
1970 |
+
|
1971 |
+
modes = ['reflect', 'wrap']
|
1972 |
+
|
1973 |
+
assert_almost_equal(expected,
|
1974 |
+
ndimage.uniform_filter(arr, 5, mode=modes))
|
1975 |
+
|
1976 |
+
|
1977 |
+
def test_gaussian_truncate():
|
1978 |
+
# Test that Gaussian filters can be truncated at different widths.
|
1979 |
+
# These tests only check that the result has the expected number
|
1980 |
+
# of nonzero elements.
|
1981 |
+
arr = numpy.zeros((100, 100), float)
|
1982 |
+
arr[50, 50] = 1
|
1983 |
+
num_nonzeros_2 = (ndimage.gaussian_filter(arr, 5, truncate=2) > 0).sum()
|
1984 |
+
assert_equal(num_nonzeros_2, 21**2)
|
1985 |
+
num_nonzeros_5 = (ndimage.gaussian_filter(arr, 5, truncate=5) > 0).sum()
|
1986 |
+
assert_equal(num_nonzeros_5, 51**2)
|
1987 |
+
|
1988 |
+
# Test truncate when sigma is a sequence.
|
1989 |
+
f = ndimage.gaussian_filter(arr, [0.5, 2.5], truncate=3.5)
|
1990 |
+
fpos = f > 0
|
1991 |
+
n0 = fpos.any(axis=0).sum()
|
1992 |
+
# n0 should be 2*int(2.5*3.5 + 0.5) + 1
|
1993 |
+
assert_equal(n0, 19)
|
1994 |
+
n1 = fpos.any(axis=1).sum()
|
1995 |
+
# n1 should be 2*int(0.5*3.5 + 0.5) + 1
|
1996 |
+
assert_equal(n1, 5)
|
1997 |
+
|
1998 |
+
# Test gaussian_filter1d.
|
1999 |
+
x = numpy.zeros(51)
|
2000 |
+
x[25] = 1
|
2001 |
+
f = ndimage.gaussian_filter1d(x, sigma=2, truncate=3.5)
|
2002 |
+
n = (f > 0).sum()
|
2003 |
+
assert_equal(n, 15)
|
2004 |
+
|
2005 |
+
# Test gaussian_laplace
|
2006 |
+
y = ndimage.gaussian_laplace(x, sigma=2, truncate=3.5)
|
2007 |
+
nonzero_indices = numpy.nonzero(y != 0)[0]
|
2008 |
+
n = numpy.ptp(nonzero_indices) + 1
|
2009 |
+
assert_equal(n, 15)
|
2010 |
+
|
2011 |
+
# Test gaussian_gradient_magnitude
|
2012 |
+
y = ndimage.gaussian_gradient_magnitude(x, sigma=2, truncate=3.5)
|
2013 |
+
nonzero_indices = numpy.nonzero(y != 0)[0]
|
2014 |
+
n = numpy.ptp(nonzero_indices) + 1
|
2015 |
+
assert_equal(n, 15)
|
2016 |
+
|
2017 |
+
|
2018 |
+
def test_gaussian_radius():
|
2019 |
+
# Test that Gaussian filters with radius argument produce the same
|
2020 |
+
# results as the filters with corresponding truncate argument.
|
2021 |
+
# radius = int(truncate * sigma + 0.5)
|
2022 |
+
# Test gaussian_filter1d
|
2023 |
+
x = numpy.zeros(7)
|
2024 |
+
x[3] = 1
|
2025 |
+
f1 = ndimage.gaussian_filter1d(x, sigma=2, truncate=1.5)
|
2026 |
+
f2 = ndimage.gaussian_filter1d(x, sigma=2, radius=3)
|
2027 |
+
assert_equal(f1, f2)
|
2028 |
+
|
2029 |
+
# Test gaussian_filter when sigma is a number.
|
2030 |
+
a = numpy.zeros((9, 9))
|
2031 |
+
a[4, 4] = 1
|
2032 |
+
f1 = ndimage.gaussian_filter(a, sigma=0.5, truncate=3.5)
|
2033 |
+
f2 = ndimage.gaussian_filter(a, sigma=0.5, radius=2)
|
2034 |
+
assert_equal(f1, f2)
|
2035 |
+
|
2036 |
+
# Test gaussian_filter when sigma is a sequence.
|
2037 |
+
a = numpy.zeros((50, 50))
|
2038 |
+
a[25, 25] = 1
|
2039 |
+
f1 = ndimage.gaussian_filter(a, sigma=[0.5, 2.5], truncate=3.5)
|
2040 |
+
f2 = ndimage.gaussian_filter(a, sigma=[0.5, 2.5], radius=[2, 9])
|
2041 |
+
assert_equal(f1, f2)
|
2042 |
+
|
2043 |
+
|
2044 |
+
def test_gaussian_radius_invalid():
|
2045 |
+
# radius must be a nonnegative integer
|
2046 |
+
with assert_raises(ValueError):
|
2047 |
+
ndimage.gaussian_filter1d(numpy.zeros(8), sigma=1, radius=-1)
|
2048 |
+
with assert_raises(ValueError):
|
2049 |
+
ndimage.gaussian_filter1d(numpy.zeros(8), sigma=1, radius=1.1)
|
2050 |
+
|
2051 |
+
|
2052 |
+
class TestThreading:
|
2053 |
+
def check_func_thread(self, n, fun, args, out):
|
2054 |
+
from threading import Thread
|
2055 |
+
thrds = [Thread(target=fun, args=args, kwargs={'output': out[x]})
|
2056 |
+
for x in range(n)]
|
2057 |
+
[t.start() for t in thrds]
|
2058 |
+
[t.join() for t in thrds]
|
2059 |
+
|
2060 |
+
def check_func_serial(self, n, fun, args, out):
|
2061 |
+
for i in range(n):
|
2062 |
+
fun(*args, output=out[i])
|
2063 |
+
|
2064 |
+
def test_correlate1d(self):
|
2065 |
+
d = numpy.random.randn(5000)
|
2066 |
+
os = numpy.empty((4, d.size))
|
2067 |
+
ot = numpy.empty_like(os)
|
2068 |
+
k = numpy.arange(5)
|
2069 |
+
self.check_func_serial(4, ndimage.correlate1d, (d, k), os)
|
2070 |
+
self.check_func_thread(4, ndimage.correlate1d, (d, k), ot)
|
2071 |
+
assert_array_equal(os, ot)
|
2072 |
+
|
2073 |
+
def test_correlate(self):
|
2074 |
+
d = numpy.random.randn(500, 500)
|
2075 |
+
k = numpy.random.randn(10, 10)
|
2076 |
+
os = numpy.empty([4] + list(d.shape))
|
2077 |
+
ot = numpy.empty_like(os)
|
2078 |
+
self.check_func_serial(4, ndimage.correlate, (d, k), os)
|
2079 |
+
self.check_func_thread(4, ndimage.correlate, (d, k), ot)
|
2080 |
+
assert_array_equal(os, ot)
|
2081 |
+
|
2082 |
+
def test_median_filter(self):
|
2083 |
+
d = numpy.random.randn(500, 500)
|
2084 |
+
os = numpy.empty([4] + list(d.shape))
|
2085 |
+
ot = numpy.empty_like(os)
|
2086 |
+
self.check_func_serial(4, ndimage.median_filter, (d, 3), os)
|
2087 |
+
self.check_func_thread(4, ndimage.median_filter, (d, 3), ot)
|
2088 |
+
assert_array_equal(os, ot)
|
2089 |
+
|
2090 |
+
def test_uniform_filter1d(self):
|
2091 |
+
d = numpy.random.randn(5000)
|
2092 |
+
os = numpy.empty((4, d.size))
|
2093 |
+
ot = numpy.empty_like(os)
|
2094 |
+
self.check_func_serial(4, ndimage.uniform_filter1d, (d, 5), os)
|
2095 |
+
self.check_func_thread(4, ndimage.uniform_filter1d, (d, 5), ot)
|
2096 |
+
assert_array_equal(os, ot)
|
2097 |
+
|
2098 |
+
def test_minmax_filter(self):
|
2099 |
+
d = numpy.random.randn(500, 500)
|
2100 |
+
os = numpy.empty([4] + list(d.shape))
|
2101 |
+
ot = numpy.empty_like(os)
|
2102 |
+
self.check_func_serial(4, ndimage.maximum_filter, (d, 3), os)
|
2103 |
+
self.check_func_thread(4, ndimage.maximum_filter, (d, 3), ot)
|
2104 |
+
assert_array_equal(os, ot)
|
2105 |
+
self.check_func_serial(4, ndimage.minimum_filter, (d, 3), os)
|
2106 |
+
self.check_func_thread(4, ndimage.minimum_filter, (d, 3), ot)
|
2107 |
+
assert_array_equal(os, ot)
|
2108 |
+
|
2109 |
+
|
2110 |
+
def test_minmaximum_filter1d():
|
2111 |
+
# Regression gh-3898
|
2112 |
+
in_ = numpy.arange(10)
|
2113 |
+
out = ndimage.minimum_filter1d(in_, 1)
|
2114 |
+
assert_equal(in_, out)
|
2115 |
+
out = ndimage.maximum_filter1d(in_, 1)
|
2116 |
+
assert_equal(in_, out)
|
2117 |
+
# Test reflect
|
2118 |
+
out = ndimage.minimum_filter1d(in_, 5, mode='reflect')
|
2119 |
+
assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out)
|
2120 |
+
out = ndimage.maximum_filter1d(in_, 5, mode='reflect')
|
2121 |
+
assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out)
|
2122 |
+
# Test constant
|
2123 |
+
out = ndimage.minimum_filter1d(in_, 5, mode='constant', cval=-1)
|
2124 |
+
assert_equal([-1, -1, 0, 1, 2, 3, 4, 5, -1, -1], out)
|
2125 |
+
out = ndimage.maximum_filter1d(in_, 5, mode='constant', cval=10)
|
2126 |
+
assert_equal([10, 10, 4, 5, 6, 7, 8, 9, 10, 10], out)
|
2127 |
+
# Test nearest
|
2128 |
+
out = ndimage.minimum_filter1d(in_, 5, mode='nearest')
|
2129 |
+
assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out)
|
2130 |
+
out = ndimage.maximum_filter1d(in_, 5, mode='nearest')
|
2131 |
+
assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out)
|
2132 |
+
# Test wrap
|
2133 |
+
out = ndimage.minimum_filter1d(in_, 5, mode='wrap')
|
2134 |
+
assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 0, 0], out)
|
2135 |
+
out = ndimage.maximum_filter1d(in_, 5, mode='wrap')
|
2136 |
+
assert_equal([9, 9, 4, 5, 6, 7, 8, 9, 9, 9], out)
|
2137 |
+
|
2138 |
+
|
2139 |
+
def test_uniform_filter1d_roundoff_errors():
|
2140 |
+
# gh-6930
|
2141 |
+
in_ = numpy.repeat([0, 1, 0], [9, 9, 9])
|
2142 |
+
for filter_size in range(3, 10):
|
2143 |
+
out = ndimage.uniform_filter1d(in_, filter_size)
|
2144 |
+
assert_equal(out.sum(), 10 - filter_size)
|
2145 |
+
|
2146 |
+
|
2147 |
+
def test_footprint_all_zeros():
|
2148 |
+
# regression test for gh-6876: footprint of all zeros segfaults
|
2149 |
+
arr = numpy.random.randint(0, 100, (100, 100))
|
2150 |
+
kernel = numpy.zeros((3, 3), bool)
|
2151 |
+
with assert_raises(ValueError):
|
2152 |
+
ndimage.maximum_filter(arr, footprint=kernel)
|
2153 |
+
|
2154 |
+
|
2155 |
+
def test_gaussian_filter():
|
2156 |
+
# Test gaussian filter with numpy.float16
|
2157 |
+
# gh-8207
|
2158 |
+
data = numpy.array([1], dtype=numpy.float16)
|
2159 |
+
sigma = 1.0
|
2160 |
+
with assert_raises(RuntimeError):
|
2161 |
+
ndimage.gaussian_filter(data, sigma)
|
2162 |
+
|
2163 |
+
|
2164 |
+
def test_rank_filter_noninteger_rank():
|
2165 |
+
# regression test for issue 9388: ValueError for
|
2166 |
+
# non integer rank when performing rank_filter
|
2167 |
+
arr = numpy.random.random((10, 20, 30))
|
2168 |
+
assert_raises(TypeError, ndimage.rank_filter, arr, 0.5,
|
2169 |
+
footprint=numpy.ones((1, 1, 10), dtype=bool))
|
2170 |
+
|
2171 |
+
|
2172 |
+
def test_size_footprint_both_set():
|
2173 |
+
# test for input validation, expect user warning when
|
2174 |
+
# size and footprint is set
|
2175 |
+
with suppress_warnings() as sup:
|
2176 |
+
sup.filter(UserWarning,
|
2177 |
+
"ignoring size because footprint is set")
|
2178 |
+
arr = numpy.random.random((10, 20, 30))
|
2179 |
+
ndimage.rank_filter(arr, 5, size=2, footprint=numpy.ones((1, 1, 10),
|
2180 |
+
dtype=bool))
|
2181 |
+
|
2182 |
+
|
2183 |
+
def test_byte_order_median():
|
2184 |
+
"""Regression test for #413: median_filter does not handle bytes orders."""
|
2185 |
+
a = numpy.arange(9, dtype='<f4').reshape(3, 3)
|
2186 |
+
ref = ndimage.median_filter(a, (3, 3))
|
2187 |
+
b = numpy.arange(9, dtype='>f4').reshape(3, 3)
|
2188 |
+
t = ndimage.median_filter(b, (3, 3))
|
2189 |
+
assert_array_almost_equal(ref, t)
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_fourier.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy
|
2 |
+
from numpy import fft
|
3 |
+
from numpy.testing import (assert_almost_equal, assert_array_almost_equal,
|
4 |
+
assert_equal)
|
5 |
+
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
from scipy import ndimage
|
9 |
+
|
10 |
+
|
11 |
+
class TestNdimageFourier:
|
12 |
+
|
13 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
|
14 |
+
@pytest.mark.parametrize('dtype, dec',
|
15 |
+
[(numpy.float32, 6), (numpy.float64, 14)])
|
16 |
+
def test_fourier_gaussian_real01(self, shape, dtype, dec):
|
17 |
+
a = numpy.zeros(shape, dtype)
|
18 |
+
a[0, 0] = 1.0
|
19 |
+
a = fft.rfft(a, shape[0], 0)
|
20 |
+
a = fft.fft(a, shape[1], 1)
|
21 |
+
a = ndimage.fourier_gaussian(a, [5.0, 2.5], shape[0], 0)
|
22 |
+
a = fft.ifft(a, shape[1], 1)
|
23 |
+
a = fft.irfft(a, shape[0], 0)
|
24 |
+
assert_almost_equal(ndimage.sum(a), 1, decimal=dec)
|
25 |
+
|
26 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
27 |
+
@pytest.mark.parametrize('dtype, dec',
|
28 |
+
[(numpy.complex64, 6), (numpy.complex128, 14)])
|
29 |
+
def test_fourier_gaussian_complex01(self, shape, dtype, dec):
|
30 |
+
a = numpy.zeros(shape, dtype)
|
31 |
+
a[0, 0] = 1.0
|
32 |
+
a = fft.fft(a, shape[0], 0)
|
33 |
+
a = fft.fft(a, shape[1], 1)
|
34 |
+
a = ndimage.fourier_gaussian(a, [5.0, 2.5], -1, 0)
|
35 |
+
a = fft.ifft(a, shape[1], 1)
|
36 |
+
a = fft.ifft(a, shape[0], 0)
|
37 |
+
assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
|
38 |
+
|
39 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
|
40 |
+
@pytest.mark.parametrize('dtype, dec',
|
41 |
+
[(numpy.float32, 6), (numpy.float64, 14)])
|
42 |
+
def test_fourier_uniform_real01(self, shape, dtype, dec):
|
43 |
+
a = numpy.zeros(shape, dtype)
|
44 |
+
a[0, 0] = 1.0
|
45 |
+
a = fft.rfft(a, shape[0], 0)
|
46 |
+
a = fft.fft(a, shape[1], 1)
|
47 |
+
a = ndimage.fourier_uniform(a, [5.0, 2.5], shape[0], 0)
|
48 |
+
a = fft.ifft(a, shape[1], 1)
|
49 |
+
a = fft.irfft(a, shape[0], 0)
|
50 |
+
assert_almost_equal(ndimage.sum(a), 1.0, decimal=dec)
|
51 |
+
|
52 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
53 |
+
@pytest.mark.parametrize('dtype, dec',
|
54 |
+
[(numpy.complex64, 6), (numpy.complex128, 14)])
|
55 |
+
def test_fourier_uniform_complex01(self, shape, dtype, dec):
|
56 |
+
a = numpy.zeros(shape, dtype)
|
57 |
+
a[0, 0] = 1.0
|
58 |
+
a = fft.fft(a, shape[0], 0)
|
59 |
+
a = fft.fft(a, shape[1], 1)
|
60 |
+
a = ndimage.fourier_uniform(a, [5.0, 2.5], -1, 0)
|
61 |
+
a = fft.ifft(a, shape[1], 1)
|
62 |
+
a = fft.ifft(a, shape[0], 0)
|
63 |
+
assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
|
64 |
+
|
65 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
66 |
+
@pytest.mark.parametrize('dtype, dec',
|
67 |
+
[(numpy.float32, 4), (numpy.float64, 11)])
|
68 |
+
def test_fourier_shift_real01(self, shape, dtype, dec):
|
69 |
+
expected = numpy.arange(shape[0] * shape[1], dtype=dtype)
|
70 |
+
expected.shape = shape
|
71 |
+
a = fft.rfft(expected, shape[0], 0)
|
72 |
+
a = fft.fft(a, shape[1], 1)
|
73 |
+
a = ndimage.fourier_shift(a, [1, 1], shape[0], 0)
|
74 |
+
a = fft.ifft(a, shape[1], 1)
|
75 |
+
a = fft.irfft(a, shape[0], 0)
|
76 |
+
assert_array_almost_equal(a[1:, 1:], expected[:-1, :-1],
|
77 |
+
decimal=dec)
|
78 |
+
assert_array_almost_equal(a.imag, numpy.zeros(shape),
|
79 |
+
decimal=dec)
|
80 |
+
|
81 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
82 |
+
@pytest.mark.parametrize('dtype, dec',
|
83 |
+
[(numpy.complex64, 4), (numpy.complex128, 11)])
|
84 |
+
def test_fourier_shift_complex01(self, shape, dtype, dec):
|
85 |
+
expected = numpy.arange(shape[0] * shape[1], dtype=dtype)
|
86 |
+
expected.shape = shape
|
87 |
+
a = fft.fft(expected, shape[0], 0)
|
88 |
+
a = fft.fft(a, shape[1], 1)
|
89 |
+
a = ndimage.fourier_shift(a, [1, 1], -1, 0)
|
90 |
+
a = fft.ifft(a, shape[1], 1)
|
91 |
+
a = fft.ifft(a, shape[0], 0)
|
92 |
+
assert_array_almost_equal(a.real[1:, 1:], expected[:-1, :-1],
|
93 |
+
decimal=dec)
|
94 |
+
assert_array_almost_equal(a.imag, numpy.zeros(shape),
|
95 |
+
decimal=dec)
|
96 |
+
|
97 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
|
98 |
+
@pytest.mark.parametrize('dtype, dec',
|
99 |
+
[(numpy.float32, 5), (numpy.float64, 14)])
|
100 |
+
def test_fourier_ellipsoid_real01(self, shape, dtype, dec):
|
101 |
+
a = numpy.zeros(shape, dtype)
|
102 |
+
a[0, 0] = 1.0
|
103 |
+
a = fft.rfft(a, shape[0], 0)
|
104 |
+
a = fft.fft(a, shape[1], 1)
|
105 |
+
a = ndimage.fourier_ellipsoid(a, [5.0, 2.5],
|
106 |
+
shape[0], 0)
|
107 |
+
a = fft.ifft(a, shape[1], 1)
|
108 |
+
a = fft.irfft(a, shape[0], 0)
|
109 |
+
assert_almost_equal(ndimage.sum(a), 1.0, decimal=dec)
|
110 |
+
|
111 |
+
@pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
|
112 |
+
@pytest.mark.parametrize('dtype, dec',
|
113 |
+
[(numpy.complex64, 5), (numpy.complex128, 14)])
|
114 |
+
def test_fourier_ellipsoid_complex01(self, shape, dtype, dec):
|
115 |
+
a = numpy.zeros(shape, dtype)
|
116 |
+
a[0, 0] = 1.0
|
117 |
+
a = fft.fft(a, shape[0], 0)
|
118 |
+
a = fft.fft(a, shape[1], 1)
|
119 |
+
a = ndimage.fourier_ellipsoid(a, [5.0, 2.5], -1, 0)
|
120 |
+
a = fft.ifft(a, shape[1], 1)
|
121 |
+
a = fft.ifft(a, shape[0], 0)
|
122 |
+
assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
|
123 |
+
|
124 |
+
def test_fourier_ellipsoid_unimplemented_ndim(self):
|
125 |
+
# arrays with ndim > 3 raise NotImplementedError
|
126 |
+
x = numpy.ones((4, 6, 8, 10), dtype=numpy.complex128)
|
127 |
+
with pytest.raises(NotImplementedError):
|
128 |
+
ndimage.fourier_ellipsoid(x, 3)
|
129 |
+
|
130 |
+
def test_fourier_ellipsoid_1d_complex(self):
|
131 |
+
# expected result of 1d ellipsoid is the same as for fourier_uniform
|
132 |
+
for shape in [(32, ), (31, )]:
|
133 |
+
for type_, dec in zip([numpy.complex64, numpy.complex128],
|
134 |
+
[5, 14]):
|
135 |
+
x = numpy.ones(shape, dtype=type_)
|
136 |
+
a = ndimage.fourier_ellipsoid(x, 5, -1, 0)
|
137 |
+
b = ndimage.fourier_uniform(x, 5, -1, 0)
|
138 |
+
assert_array_almost_equal(a, b, decimal=dec)
|
139 |
+
|
140 |
+
@pytest.mark.parametrize('shape', [(0, ), (0, 10), (10, 0)])
|
141 |
+
@pytest.mark.parametrize('dtype',
|
142 |
+
[numpy.float32, numpy.float64,
|
143 |
+
numpy.complex64, numpy.complex128])
|
144 |
+
@pytest.mark.parametrize('test_func',
|
145 |
+
[ndimage.fourier_ellipsoid,
|
146 |
+
ndimage.fourier_gaussian,
|
147 |
+
ndimage.fourier_uniform])
|
148 |
+
def test_fourier_zero_length_dims(self, shape, dtype, test_func):
|
149 |
+
a = numpy.ones(shape, dtype)
|
150 |
+
b = test_func(a, 3)
|
151 |
+
assert_equal(a, b)
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_interpolation.py
ADDED
@@ -0,0 +1,1327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import numpy
|
4 |
+
from numpy.testing import (assert_, assert_equal, assert_array_equal,
|
5 |
+
assert_array_almost_equal, assert_allclose,
|
6 |
+
suppress_warnings)
|
7 |
+
import pytest
|
8 |
+
from pytest import raises as assert_raises
|
9 |
+
import scipy.ndimage as ndimage
|
10 |
+
|
11 |
+
from . import types
|
12 |
+
|
13 |
+
eps = 1e-12
|
14 |
+
|
15 |
+
ndimage_to_numpy_mode = {
|
16 |
+
'mirror': 'reflect',
|
17 |
+
'reflect': 'symmetric',
|
18 |
+
'grid-mirror': 'symmetric',
|
19 |
+
'grid-wrap': 'wrap',
|
20 |
+
'nearest': 'edge',
|
21 |
+
'grid-constant': 'constant',
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
class TestNdimageInterpolation:
|
26 |
+
|
27 |
+
@pytest.mark.parametrize(
|
28 |
+
'mode, expected_value',
|
29 |
+
[('nearest', [1.5, 2.5, 3.5, 4, 4, 4, 4]),
|
30 |
+
('wrap', [1.5, 2.5, 3.5, 1.5, 2.5, 3.5, 1.5]),
|
31 |
+
('grid-wrap', [1.5, 2.5, 3.5, 2.5, 1.5, 2.5, 3.5]),
|
32 |
+
('mirror', [1.5, 2.5, 3.5, 3.5, 2.5, 1.5, 1.5]),
|
33 |
+
('reflect', [1.5, 2.5, 3.5, 4, 3.5, 2.5, 1.5]),
|
34 |
+
('constant', [1.5, 2.5, 3.5, -1, -1, -1, -1]),
|
35 |
+
('grid-constant', [1.5, 2.5, 3.5, 1.5, -1, -1, -1])]
|
36 |
+
)
|
37 |
+
def test_boundaries(self, mode, expected_value):
|
38 |
+
def shift(x):
|
39 |
+
return (x[0] + 0.5,)
|
40 |
+
|
41 |
+
data = numpy.array([1, 2, 3, 4.])
|
42 |
+
assert_array_equal(
|
43 |
+
expected_value,
|
44 |
+
ndimage.geometric_transform(data, shift, cval=-1, mode=mode,
|
45 |
+
output_shape=(7,), order=1))
|
46 |
+
|
47 |
+
@pytest.mark.parametrize(
|
48 |
+
'mode, expected_value',
|
49 |
+
[('nearest', [1, 1, 2, 3]),
|
50 |
+
('wrap', [3, 1, 2, 3]),
|
51 |
+
('grid-wrap', [4, 1, 2, 3]),
|
52 |
+
('mirror', [2, 1, 2, 3]),
|
53 |
+
('reflect', [1, 1, 2, 3]),
|
54 |
+
('constant', [-1, 1, 2, 3]),
|
55 |
+
('grid-constant', [-1, 1, 2, 3])]
|
56 |
+
)
|
57 |
+
def test_boundaries2(self, mode, expected_value):
|
58 |
+
def shift(x):
|
59 |
+
return (x[0] - 0.9,)
|
60 |
+
|
61 |
+
data = numpy.array([1, 2, 3, 4])
|
62 |
+
assert_array_equal(
|
63 |
+
expected_value,
|
64 |
+
ndimage.geometric_transform(data, shift, cval=-1, mode=mode,
|
65 |
+
output_shape=(4,)))
|
66 |
+
|
67 |
+
@pytest.mark.parametrize('mode', ['mirror', 'reflect', 'grid-mirror',
|
68 |
+
'grid-wrap', 'grid-constant',
|
69 |
+
'nearest'])
|
70 |
+
@pytest.mark.parametrize('order', range(6))
|
71 |
+
def test_boundary_spline_accuracy(self, mode, order):
|
72 |
+
"""Tests based on examples from gh-2640"""
|
73 |
+
data = numpy.arange(-6, 7, dtype=float)
|
74 |
+
x = numpy.linspace(-8, 15, num=1000)
|
75 |
+
y = ndimage.map_coordinates(data, [x], order=order, mode=mode)
|
76 |
+
|
77 |
+
# compute expected value using explicit padding via numpy.pad
|
78 |
+
npad = 32
|
79 |
+
pad_mode = ndimage_to_numpy_mode.get(mode)
|
80 |
+
padded = numpy.pad(data, npad, mode=pad_mode)
|
81 |
+
expected = ndimage.map_coordinates(padded, [npad + x], order=order,
|
82 |
+
mode=mode)
|
83 |
+
|
84 |
+
atol = 1e-5 if mode == 'grid-constant' else 1e-12
|
85 |
+
assert_allclose(y, expected, rtol=1e-7, atol=atol)
|
86 |
+
|
87 |
+
@pytest.mark.parametrize('order', range(2, 6))
|
88 |
+
@pytest.mark.parametrize('dtype', types)
|
89 |
+
def test_spline01(self, dtype, order):
|
90 |
+
data = numpy.ones([], dtype)
|
91 |
+
out = ndimage.spline_filter(data, order=order)
|
92 |
+
assert_array_almost_equal(out, 1)
|
93 |
+
|
94 |
+
@pytest.mark.parametrize('order', range(2, 6))
|
95 |
+
@pytest.mark.parametrize('dtype', types)
|
96 |
+
def test_spline02(self, dtype, order):
|
97 |
+
data = numpy.array([1], dtype)
|
98 |
+
out = ndimage.spline_filter(data, order=order)
|
99 |
+
assert_array_almost_equal(out, [1])
|
100 |
+
|
101 |
+
@pytest.mark.parametrize('order', range(2, 6))
|
102 |
+
@pytest.mark.parametrize('dtype', types)
|
103 |
+
def test_spline03(self, dtype, order):
|
104 |
+
data = numpy.ones([], dtype)
|
105 |
+
out = ndimage.spline_filter(data, order, output=dtype)
|
106 |
+
assert_array_almost_equal(out, 1)
|
107 |
+
|
108 |
+
@pytest.mark.parametrize('order', range(2, 6))
|
109 |
+
@pytest.mark.parametrize('dtype', types)
|
110 |
+
def test_spline04(self, dtype, order):
|
111 |
+
data = numpy.ones([4], dtype)
|
112 |
+
out = ndimage.spline_filter(data, order)
|
113 |
+
assert_array_almost_equal(out, [1, 1, 1, 1])
|
114 |
+
|
115 |
+
@pytest.mark.parametrize('order', range(2, 6))
|
116 |
+
@pytest.mark.parametrize('dtype', types)
|
117 |
+
def test_spline05(self, dtype, order):
|
118 |
+
data = numpy.ones([4, 4], dtype)
|
119 |
+
out = ndimage.spline_filter(data, order=order)
|
120 |
+
assert_array_almost_equal(out, [[1, 1, 1, 1],
|
121 |
+
[1, 1, 1, 1],
|
122 |
+
[1, 1, 1, 1],
|
123 |
+
[1, 1, 1, 1]])
|
124 |
+
|
125 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
126 |
+
def test_geometric_transform01(self, order):
|
127 |
+
data = numpy.array([1])
|
128 |
+
|
129 |
+
def mapping(x):
|
130 |
+
return x
|
131 |
+
|
132 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
133 |
+
order=order)
|
134 |
+
assert_array_almost_equal(out, [1])
|
135 |
+
|
136 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
137 |
+
def test_geometric_transform02(self, order):
|
138 |
+
data = numpy.ones([4])
|
139 |
+
|
140 |
+
def mapping(x):
|
141 |
+
return x
|
142 |
+
|
143 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
144 |
+
order=order)
|
145 |
+
assert_array_almost_equal(out, [1, 1, 1, 1])
|
146 |
+
|
147 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
148 |
+
def test_geometric_transform03(self, order):
|
149 |
+
data = numpy.ones([4])
|
150 |
+
|
151 |
+
def mapping(x):
|
152 |
+
return (x[0] - 1,)
|
153 |
+
|
154 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
155 |
+
order=order)
|
156 |
+
assert_array_almost_equal(out, [0, 1, 1, 1])
|
157 |
+
|
158 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
159 |
+
def test_geometric_transform04(self, order):
|
160 |
+
data = numpy.array([4, 1, 3, 2])
|
161 |
+
|
162 |
+
def mapping(x):
|
163 |
+
return (x[0] - 1,)
|
164 |
+
|
165 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
166 |
+
order=order)
|
167 |
+
assert_array_almost_equal(out, [0, 4, 1, 3])
|
168 |
+
|
169 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
170 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
171 |
+
def test_geometric_transform05(self, order, dtype):
|
172 |
+
data = numpy.array([[1, 1, 1, 1],
|
173 |
+
[1, 1, 1, 1],
|
174 |
+
[1, 1, 1, 1]], dtype=dtype)
|
175 |
+
expected = numpy.array([[0, 1, 1, 1],
|
176 |
+
[0, 1, 1, 1],
|
177 |
+
[0, 1, 1, 1]], dtype=dtype)
|
178 |
+
if data.dtype.kind == 'c':
|
179 |
+
data -= 1j * data
|
180 |
+
expected -= 1j * expected
|
181 |
+
|
182 |
+
def mapping(x):
|
183 |
+
return (x[0], x[1] - 1)
|
184 |
+
|
185 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
186 |
+
order=order)
|
187 |
+
assert_array_almost_equal(out, expected)
|
188 |
+
|
189 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
190 |
+
def test_geometric_transform06(self, order):
|
191 |
+
data = numpy.array([[4, 1, 3, 2],
|
192 |
+
[7, 6, 8, 5],
|
193 |
+
[3, 5, 3, 6]])
|
194 |
+
|
195 |
+
def mapping(x):
|
196 |
+
return (x[0], x[1] - 1)
|
197 |
+
|
198 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
199 |
+
order=order)
|
200 |
+
assert_array_almost_equal(out, [[0, 4, 1, 3],
|
201 |
+
[0, 7, 6, 8],
|
202 |
+
[0, 3, 5, 3]])
|
203 |
+
|
204 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
205 |
+
def test_geometric_transform07(self, order):
|
206 |
+
data = numpy.array([[4, 1, 3, 2],
|
207 |
+
[7, 6, 8, 5],
|
208 |
+
[3, 5, 3, 6]])
|
209 |
+
|
210 |
+
def mapping(x):
|
211 |
+
return (x[0] - 1, x[1])
|
212 |
+
|
213 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
214 |
+
order=order)
|
215 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
216 |
+
[4, 1, 3, 2],
|
217 |
+
[7, 6, 8, 5]])
|
218 |
+
|
219 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
220 |
+
def test_geometric_transform08(self, order):
|
221 |
+
data = numpy.array([[4, 1, 3, 2],
|
222 |
+
[7, 6, 8, 5],
|
223 |
+
[3, 5, 3, 6]])
|
224 |
+
|
225 |
+
def mapping(x):
|
226 |
+
return (x[0] - 1, x[1] - 1)
|
227 |
+
|
228 |
+
out = ndimage.geometric_transform(data, mapping, data.shape,
|
229 |
+
order=order)
|
230 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
231 |
+
[0, 4, 1, 3],
|
232 |
+
[0, 7, 6, 8]])
|
233 |
+
|
234 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
235 |
+
def test_geometric_transform10(self, order):
|
236 |
+
data = numpy.array([[4, 1, 3, 2],
|
237 |
+
[7, 6, 8, 5],
|
238 |
+
[3, 5, 3, 6]])
|
239 |
+
|
240 |
+
def mapping(x):
|
241 |
+
return (x[0] - 1, x[1] - 1)
|
242 |
+
|
243 |
+
if (order > 1):
|
244 |
+
filtered = ndimage.spline_filter(data, order=order)
|
245 |
+
else:
|
246 |
+
filtered = data
|
247 |
+
out = ndimage.geometric_transform(filtered, mapping, data.shape,
|
248 |
+
order=order, prefilter=False)
|
249 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
250 |
+
[0, 4, 1, 3],
|
251 |
+
[0, 7, 6, 8]])
|
252 |
+
|
253 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
254 |
+
def test_geometric_transform13(self, order):
|
255 |
+
data = numpy.ones([2], numpy.float64)
|
256 |
+
|
257 |
+
def mapping(x):
|
258 |
+
return (x[0] // 2,)
|
259 |
+
|
260 |
+
out = ndimage.geometric_transform(data, mapping, [4], order=order)
|
261 |
+
assert_array_almost_equal(out, [1, 1, 1, 1])
|
262 |
+
|
263 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
264 |
+
def test_geometric_transform14(self, order):
|
265 |
+
data = [1, 5, 2, 6, 3, 7, 4, 4]
|
266 |
+
|
267 |
+
def mapping(x):
|
268 |
+
return (2 * x[0],)
|
269 |
+
|
270 |
+
out = ndimage.geometric_transform(data, mapping, [4], order=order)
|
271 |
+
assert_array_almost_equal(out, [1, 2, 3, 4])
|
272 |
+
|
273 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
274 |
+
def test_geometric_transform15(self, order):
|
275 |
+
data = [1, 2, 3, 4]
|
276 |
+
|
277 |
+
def mapping(x):
|
278 |
+
return (x[0] / 2,)
|
279 |
+
|
280 |
+
out = ndimage.geometric_transform(data, mapping, [8], order=order)
|
281 |
+
assert_array_almost_equal(out[::2], [1, 2, 3, 4])
|
282 |
+
|
283 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
284 |
+
def test_geometric_transform16(self, order):
|
285 |
+
data = [[1, 2, 3, 4],
|
286 |
+
[5, 6, 7, 8],
|
287 |
+
[9.0, 10, 11, 12]]
|
288 |
+
|
289 |
+
def mapping(x):
|
290 |
+
return (x[0], x[1] * 2)
|
291 |
+
|
292 |
+
out = ndimage.geometric_transform(data, mapping, (3, 2),
|
293 |
+
order=order)
|
294 |
+
assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]])
|
295 |
+
|
296 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
297 |
+
def test_geometric_transform17(self, order):
|
298 |
+
data = [[1, 2, 3, 4],
|
299 |
+
[5, 6, 7, 8],
|
300 |
+
[9, 10, 11, 12]]
|
301 |
+
|
302 |
+
def mapping(x):
|
303 |
+
return (x[0] * 2, x[1])
|
304 |
+
|
305 |
+
out = ndimage.geometric_transform(data, mapping, (1, 4),
|
306 |
+
order=order)
|
307 |
+
assert_array_almost_equal(out, [[1, 2, 3, 4]])
|
308 |
+
|
309 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
310 |
+
def test_geometric_transform18(self, order):
|
311 |
+
data = [[1, 2, 3, 4],
|
312 |
+
[5, 6, 7, 8],
|
313 |
+
[9, 10, 11, 12]]
|
314 |
+
|
315 |
+
def mapping(x):
|
316 |
+
return (x[0] * 2, x[1] * 2)
|
317 |
+
|
318 |
+
out = ndimage.geometric_transform(data, mapping, (1, 2),
|
319 |
+
order=order)
|
320 |
+
assert_array_almost_equal(out, [[1, 3]])
|
321 |
+
|
322 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
323 |
+
def test_geometric_transform19(self, order):
|
324 |
+
data = [[1, 2, 3, 4],
|
325 |
+
[5, 6, 7, 8],
|
326 |
+
[9, 10, 11, 12]]
|
327 |
+
|
328 |
+
def mapping(x):
|
329 |
+
return (x[0], x[1] / 2)
|
330 |
+
|
331 |
+
out = ndimage.geometric_transform(data, mapping, (3, 8),
|
332 |
+
order=order)
|
333 |
+
assert_array_almost_equal(out[..., ::2], data)
|
334 |
+
|
335 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
336 |
+
def test_geometric_transform20(self, order):
|
337 |
+
data = [[1, 2, 3, 4],
|
338 |
+
[5, 6, 7, 8],
|
339 |
+
[9, 10, 11, 12]]
|
340 |
+
|
341 |
+
def mapping(x):
|
342 |
+
return (x[0] / 2, x[1])
|
343 |
+
|
344 |
+
out = ndimage.geometric_transform(data, mapping, (6, 4),
|
345 |
+
order=order)
|
346 |
+
assert_array_almost_equal(out[::2, ...], data)
|
347 |
+
|
348 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
349 |
+
def test_geometric_transform21(self, order):
|
350 |
+
data = [[1, 2, 3, 4],
|
351 |
+
[5, 6, 7, 8],
|
352 |
+
[9, 10, 11, 12]]
|
353 |
+
|
354 |
+
def mapping(x):
|
355 |
+
return (x[0] / 2, x[1] / 2)
|
356 |
+
|
357 |
+
out = ndimage.geometric_transform(data, mapping, (6, 8),
|
358 |
+
order=order)
|
359 |
+
assert_array_almost_equal(out[::2, ::2], data)
|
360 |
+
|
361 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
362 |
+
def test_geometric_transform22(self, order):
|
363 |
+
data = numpy.array([[1, 2, 3, 4],
|
364 |
+
[5, 6, 7, 8],
|
365 |
+
[9, 10, 11, 12]], numpy.float64)
|
366 |
+
|
367 |
+
def mapping1(x):
|
368 |
+
return (x[0] / 2, x[1] / 2)
|
369 |
+
|
370 |
+
def mapping2(x):
|
371 |
+
return (x[0] * 2, x[1] * 2)
|
372 |
+
|
373 |
+
out = ndimage.geometric_transform(data, mapping1,
|
374 |
+
(6, 8), order=order)
|
375 |
+
out = ndimage.geometric_transform(out, mapping2,
|
376 |
+
(3, 4), order=order)
|
377 |
+
assert_array_almost_equal(out, data)
|
378 |
+
|
379 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
380 |
+
def test_geometric_transform23(self, order):
|
381 |
+
data = [[1, 2, 3, 4],
|
382 |
+
[5, 6, 7, 8],
|
383 |
+
[9, 10, 11, 12]]
|
384 |
+
|
385 |
+
def mapping(x):
|
386 |
+
return (1, x[0] * 2)
|
387 |
+
|
388 |
+
out = ndimage.geometric_transform(data, mapping, (2,), order=order)
|
389 |
+
out = out.astype(numpy.int32)
|
390 |
+
assert_array_almost_equal(out, [5, 7])
|
391 |
+
|
392 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
393 |
+
def test_geometric_transform24(self, order):
|
394 |
+
data = [[1, 2, 3, 4],
|
395 |
+
[5, 6, 7, 8],
|
396 |
+
[9, 10, 11, 12]]
|
397 |
+
|
398 |
+
def mapping(x, a, b):
|
399 |
+
return (a, x[0] * b)
|
400 |
+
|
401 |
+
out = ndimage.geometric_transform(
|
402 |
+
data, mapping, (2,), order=order, extra_arguments=(1,),
|
403 |
+
extra_keywords={'b': 2})
|
404 |
+
assert_array_almost_equal(out, [5, 7])
|
405 |
+
|
406 |
+
def test_geometric_transform_grid_constant_order1(self):
|
407 |
+
# verify interpolation outside the original bounds
|
408 |
+
x = numpy.array([[1, 2, 3],
|
409 |
+
[4, 5, 6]], dtype=float)
|
410 |
+
|
411 |
+
def mapping(x):
|
412 |
+
return (x[0] - 0.5), (x[1] - 0.5)
|
413 |
+
|
414 |
+
expected_result = numpy.array([[0.25, 0.75, 1.25],
|
415 |
+
[1.25, 3.00, 4.00]])
|
416 |
+
assert_array_almost_equal(
|
417 |
+
ndimage.geometric_transform(x, mapping, mode='grid-constant',
|
418 |
+
order=1),
|
419 |
+
expected_result,
|
420 |
+
)
|
421 |
+
|
422 |
+
@pytest.mark.parametrize('mode', ['grid-constant', 'grid-wrap', 'nearest',
|
423 |
+
'mirror', 'reflect'])
|
424 |
+
@pytest.mark.parametrize('order', range(6))
|
425 |
+
def test_geometric_transform_vs_padded(self, order, mode):
|
426 |
+
x = numpy.arange(144, dtype=float).reshape(12, 12)
|
427 |
+
|
428 |
+
def mapping(x):
|
429 |
+
return (x[0] - 0.4), (x[1] + 2.3)
|
430 |
+
|
431 |
+
# Manually pad and then extract center after the transform to get the
|
432 |
+
# expected result.
|
433 |
+
npad = 24
|
434 |
+
pad_mode = ndimage_to_numpy_mode.get(mode)
|
435 |
+
xp = numpy.pad(x, npad, mode=pad_mode)
|
436 |
+
center_slice = tuple([slice(npad, -npad)] * x.ndim)
|
437 |
+
expected_result = ndimage.geometric_transform(
|
438 |
+
xp, mapping, mode=mode, order=order)[center_slice]
|
439 |
+
|
440 |
+
assert_allclose(
|
441 |
+
ndimage.geometric_transform(x, mapping, mode=mode,
|
442 |
+
order=order),
|
443 |
+
expected_result,
|
444 |
+
rtol=1e-7,
|
445 |
+
)
|
446 |
+
|
447 |
+
def test_geometric_transform_endianness_with_output_parameter(self):
|
448 |
+
# geometric transform given output ndarray or dtype with
|
449 |
+
# non-native endianness. see issue #4127
|
450 |
+
data = numpy.array([1])
|
451 |
+
|
452 |
+
def mapping(x):
|
453 |
+
return x
|
454 |
+
|
455 |
+
for out in [data.dtype, data.dtype.newbyteorder(),
|
456 |
+
numpy.empty_like(data),
|
457 |
+
numpy.empty_like(data).astype(data.dtype.newbyteorder())]:
|
458 |
+
returned = ndimage.geometric_transform(data, mapping, data.shape,
|
459 |
+
output=out)
|
460 |
+
result = out if returned is None else returned
|
461 |
+
assert_array_almost_equal(result, [1])
|
462 |
+
|
463 |
+
def test_geometric_transform_with_string_output(self):
|
464 |
+
data = numpy.array([1])
|
465 |
+
|
466 |
+
def mapping(x):
|
467 |
+
return x
|
468 |
+
|
469 |
+
out = ndimage.geometric_transform(data, mapping, output='f')
|
470 |
+
assert_(out.dtype is numpy.dtype('f'))
|
471 |
+
assert_array_almost_equal(out, [1])
|
472 |
+
|
473 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
474 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
475 |
+
def test_map_coordinates01(self, order, dtype):
|
476 |
+
data = numpy.array([[4, 1, 3, 2],
|
477 |
+
[7, 6, 8, 5],
|
478 |
+
[3, 5, 3, 6]])
|
479 |
+
expected = numpy.array([[0, 0, 0, 0],
|
480 |
+
[0, 4, 1, 3],
|
481 |
+
[0, 7, 6, 8]])
|
482 |
+
if data.dtype.kind == 'c':
|
483 |
+
data = data - 1j * data
|
484 |
+
expected = expected - 1j * expected
|
485 |
+
|
486 |
+
idx = numpy.indices(data.shape)
|
487 |
+
idx -= 1
|
488 |
+
|
489 |
+
out = ndimage.map_coordinates(data, idx, order=order)
|
490 |
+
assert_array_almost_equal(out, expected)
|
491 |
+
|
492 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
493 |
+
def test_map_coordinates02(self, order):
|
494 |
+
data = numpy.array([[4, 1, 3, 2],
|
495 |
+
[7, 6, 8, 5],
|
496 |
+
[3, 5, 3, 6]])
|
497 |
+
idx = numpy.indices(data.shape, numpy.float64)
|
498 |
+
idx -= 0.5
|
499 |
+
|
500 |
+
out1 = ndimage.shift(data, 0.5, order=order)
|
501 |
+
out2 = ndimage.map_coordinates(data, idx, order=order)
|
502 |
+
assert_array_almost_equal(out1, out2)
|
503 |
+
|
504 |
+
def test_map_coordinates03(self):
|
505 |
+
data = numpy.array([[4, 1, 3, 2],
|
506 |
+
[7, 6, 8, 5],
|
507 |
+
[3, 5, 3, 6]], order='F')
|
508 |
+
idx = numpy.indices(data.shape) - 1
|
509 |
+
out = ndimage.map_coordinates(data, idx)
|
510 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
511 |
+
[0, 4, 1, 3],
|
512 |
+
[0, 7, 6, 8]])
|
513 |
+
assert_array_almost_equal(out, ndimage.shift(data, (1, 1)))
|
514 |
+
idx = numpy.indices(data[::2].shape) - 1
|
515 |
+
out = ndimage.map_coordinates(data[::2], idx)
|
516 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
517 |
+
[0, 4, 1, 3]])
|
518 |
+
assert_array_almost_equal(out, ndimage.shift(data[::2], (1, 1)))
|
519 |
+
idx = numpy.indices(data[:, ::2].shape) - 1
|
520 |
+
out = ndimage.map_coordinates(data[:, ::2], idx)
|
521 |
+
assert_array_almost_equal(out, [[0, 0], [0, 4], [0, 7]])
|
522 |
+
assert_array_almost_equal(out, ndimage.shift(data[:, ::2], (1, 1)))
|
523 |
+
|
524 |
+
def test_map_coordinates_endianness_with_output_parameter(self):
|
525 |
+
# output parameter given as array or dtype with either endianness
|
526 |
+
# see issue #4127
|
527 |
+
data = numpy.array([[1, 2], [7, 6]])
|
528 |
+
expected = numpy.array([[0, 0], [0, 1]])
|
529 |
+
idx = numpy.indices(data.shape)
|
530 |
+
idx -= 1
|
531 |
+
for out in [
|
532 |
+
data.dtype,
|
533 |
+
data.dtype.newbyteorder(),
|
534 |
+
numpy.empty_like(expected),
|
535 |
+
numpy.empty_like(expected).astype(expected.dtype.newbyteorder())
|
536 |
+
]:
|
537 |
+
returned = ndimage.map_coordinates(data, idx, output=out)
|
538 |
+
result = out if returned is None else returned
|
539 |
+
assert_array_almost_equal(result, expected)
|
540 |
+
|
541 |
+
def test_map_coordinates_with_string_output(self):
|
542 |
+
data = numpy.array([[1]])
|
543 |
+
idx = numpy.indices(data.shape)
|
544 |
+
out = ndimage.map_coordinates(data, idx, output='f')
|
545 |
+
assert_(out.dtype is numpy.dtype('f'))
|
546 |
+
assert_array_almost_equal(out, [[1]])
|
547 |
+
|
548 |
+
@pytest.mark.skipif('win32' in sys.platform or numpy.intp(0).itemsize < 8,
|
549 |
+
reason='do not run on 32 bit or windows '
|
550 |
+
'(no sparse memory)')
|
551 |
+
def test_map_coordinates_large_data(self):
|
552 |
+
# check crash on large data
|
553 |
+
try:
|
554 |
+
n = 30000
|
555 |
+
a = numpy.empty(n**2, dtype=numpy.float32).reshape(n, n)
|
556 |
+
# fill the part we might read
|
557 |
+
a[n - 3:, n - 3:] = 0
|
558 |
+
ndimage.map_coordinates(a, [[n - 1.5], [n - 1.5]], order=1)
|
559 |
+
except MemoryError as e:
|
560 |
+
raise pytest.skip('Not enough memory available') from e
|
561 |
+
|
562 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
563 |
+
def test_affine_transform01(self, order):
|
564 |
+
data = numpy.array([1])
|
565 |
+
out = ndimage.affine_transform(data, [[1]], order=order)
|
566 |
+
assert_array_almost_equal(out, [1])
|
567 |
+
|
568 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
569 |
+
def test_affine_transform02(self, order):
|
570 |
+
data = numpy.ones([4])
|
571 |
+
out = ndimage.affine_transform(data, [[1]], order=order)
|
572 |
+
assert_array_almost_equal(out, [1, 1, 1, 1])
|
573 |
+
|
574 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
575 |
+
def test_affine_transform03(self, order):
|
576 |
+
data = numpy.ones([4])
|
577 |
+
out = ndimage.affine_transform(data, [[1]], -1, order=order)
|
578 |
+
assert_array_almost_equal(out, [0, 1, 1, 1])
|
579 |
+
|
580 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
581 |
+
def test_affine_transform04(self, order):
|
582 |
+
data = numpy.array([4, 1, 3, 2])
|
583 |
+
out = ndimage.affine_transform(data, [[1]], -1, order=order)
|
584 |
+
assert_array_almost_equal(out, [0, 4, 1, 3])
|
585 |
+
|
586 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
587 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
588 |
+
def test_affine_transform05(self, order, dtype):
|
589 |
+
data = numpy.array([[1, 1, 1, 1],
|
590 |
+
[1, 1, 1, 1],
|
591 |
+
[1, 1, 1, 1]], dtype=dtype)
|
592 |
+
expected = numpy.array([[0, 1, 1, 1],
|
593 |
+
[0, 1, 1, 1],
|
594 |
+
[0, 1, 1, 1]], dtype=dtype)
|
595 |
+
if data.dtype.kind == 'c':
|
596 |
+
data -= 1j * data
|
597 |
+
expected -= 1j * expected
|
598 |
+
out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
|
599 |
+
[0, -1], order=order)
|
600 |
+
assert_array_almost_equal(out, expected)
|
601 |
+
|
602 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
603 |
+
def test_affine_transform06(self, order):
|
604 |
+
data = numpy.array([[4, 1, 3, 2],
|
605 |
+
[7, 6, 8, 5],
|
606 |
+
[3, 5, 3, 6]])
|
607 |
+
out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
|
608 |
+
[0, -1], order=order)
|
609 |
+
assert_array_almost_equal(out, [[0, 4, 1, 3],
|
610 |
+
[0, 7, 6, 8],
|
611 |
+
[0, 3, 5, 3]])
|
612 |
+
|
613 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
614 |
+
def test_affine_transform07(self, order):
|
615 |
+
data = numpy.array([[4, 1, 3, 2],
|
616 |
+
[7, 6, 8, 5],
|
617 |
+
[3, 5, 3, 6]])
|
618 |
+
out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
|
619 |
+
[-1, 0], order=order)
|
620 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
621 |
+
[4, 1, 3, 2],
|
622 |
+
[7, 6, 8, 5]])
|
623 |
+
|
624 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
625 |
+
def test_affine_transform08(self, order):
|
626 |
+
data = numpy.array([[4, 1, 3, 2],
|
627 |
+
[7, 6, 8, 5],
|
628 |
+
[3, 5, 3, 6]])
|
629 |
+
out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
|
630 |
+
[-1, -1], order=order)
|
631 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
632 |
+
[0, 4, 1, 3],
|
633 |
+
[0, 7, 6, 8]])
|
634 |
+
|
635 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
636 |
+
def test_affine_transform09(self, order):
|
637 |
+
data = numpy.array([[4, 1, 3, 2],
|
638 |
+
[7, 6, 8, 5],
|
639 |
+
[3, 5, 3, 6]])
|
640 |
+
if (order > 1):
|
641 |
+
filtered = ndimage.spline_filter(data, order=order)
|
642 |
+
else:
|
643 |
+
filtered = data
|
644 |
+
out = ndimage.affine_transform(filtered, [[1, 0], [0, 1]],
|
645 |
+
[-1, -1], order=order,
|
646 |
+
prefilter=False)
|
647 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
648 |
+
[0, 4, 1, 3],
|
649 |
+
[0, 7, 6, 8]])
|
650 |
+
|
651 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
652 |
+
def test_affine_transform10(self, order):
|
653 |
+
data = numpy.ones([2], numpy.float64)
|
654 |
+
out = ndimage.affine_transform(data, [[0.5]], output_shape=(4,),
|
655 |
+
order=order)
|
656 |
+
assert_array_almost_equal(out, [1, 1, 1, 0])
|
657 |
+
|
658 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
659 |
+
def test_affine_transform11(self, order):
|
660 |
+
data = [1, 5, 2, 6, 3, 7, 4, 4]
|
661 |
+
out = ndimage.affine_transform(data, [[2]], 0, (4,), order=order)
|
662 |
+
assert_array_almost_equal(out, [1, 2, 3, 4])
|
663 |
+
|
664 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
665 |
+
def test_affine_transform12(self, order):
|
666 |
+
data = [1, 2, 3, 4]
|
667 |
+
out = ndimage.affine_transform(data, [[0.5]], 0, (8,), order=order)
|
668 |
+
assert_array_almost_equal(out[::2], [1, 2, 3, 4])
|
669 |
+
|
670 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
671 |
+
def test_affine_transform13(self, order):
|
672 |
+
data = [[1, 2, 3, 4],
|
673 |
+
[5, 6, 7, 8],
|
674 |
+
[9.0, 10, 11, 12]]
|
675 |
+
out = ndimage.affine_transform(data, [[1, 0], [0, 2]], 0, (3, 2),
|
676 |
+
order=order)
|
677 |
+
assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]])
|
678 |
+
|
679 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
680 |
+
def test_affine_transform14(self, order):
|
681 |
+
data = [[1, 2, 3, 4],
|
682 |
+
[5, 6, 7, 8],
|
683 |
+
[9, 10, 11, 12]]
|
684 |
+
out = ndimage.affine_transform(data, [[2, 0], [0, 1]], 0, (1, 4),
|
685 |
+
order=order)
|
686 |
+
assert_array_almost_equal(out, [[1, 2, 3, 4]])
|
687 |
+
|
688 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
689 |
+
def test_affine_transform15(self, order):
|
690 |
+
data = [[1, 2, 3, 4],
|
691 |
+
[5, 6, 7, 8],
|
692 |
+
[9, 10, 11, 12]]
|
693 |
+
out = ndimage.affine_transform(data, [[2, 0], [0, 2]], 0, (1, 2),
|
694 |
+
order=order)
|
695 |
+
assert_array_almost_equal(out, [[1, 3]])
|
696 |
+
|
697 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
698 |
+
def test_affine_transform16(self, order):
|
699 |
+
data = [[1, 2, 3, 4],
|
700 |
+
[5, 6, 7, 8],
|
701 |
+
[9, 10, 11, 12]]
|
702 |
+
out = ndimage.affine_transform(data, [[1, 0.0], [0, 0.5]], 0,
|
703 |
+
(3, 8), order=order)
|
704 |
+
assert_array_almost_equal(out[..., ::2], data)
|
705 |
+
|
706 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
707 |
+
def test_affine_transform17(self, order):
|
708 |
+
data = [[1, 2, 3, 4],
|
709 |
+
[5, 6, 7, 8],
|
710 |
+
[9, 10, 11, 12]]
|
711 |
+
out = ndimage.affine_transform(data, [[0.5, 0], [0, 1]], 0,
|
712 |
+
(6, 4), order=order)
|
713 |
+
assert_array_almost_equal(out[::2, ...], data)
|
714 |
+
|
715 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
716 |
+
def test_affine_transform18(self, order):
|
717 |
+
data = [[1, 2, 3, 4],
|
718 |
+
[5, 6, 7, 8],
|
719 |
+
[9, 10, 11, 12]]
|
720 |
+
out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0,
|
721 |
+
(6, 8), order=order)
|
722 |
+
assert_array_almost_equal(out[::2, ::2], data)
|
723 |
+
|
724 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
725 |
+
def test_affine_transform19(self, order):
|
726 |
+
data = numpy.array([[1, 2, 3, 4],
|
727 |
+
[5, 6, 7, 8],
|
728 |
+
[9, 10, 11, 12]], numpy.float64)
|
729 |
+
out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0,
|
730 |
+
(6, 8), order=order)
|
731 |
+
out = ndimage.affine_transform(out, [[2.0, 0], [0, 2.0]], 0,
|
732 |
+
(3, 4), order=order)
|
733 |
+
assert_array_almost_equal(out, data)
|
734 |
+
|
735 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
736 |
+
def test_affine_transform20(self, order):
|
737 |
+
data = [[1, 2, 3, 4],
|
738 |
+
[5, 6, 7, 8],
|
739 |
+
[9, 10, 11, 12]]
|
740 |
+
out = ndimage.affine_transform(data, [[0], [2]], 0, (2,),
|
741 |
+
order=order)
|
742 |
+
assert_array_almost_equal(out, [1, 3])
|
743 |
+
|
744 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
745 |
+
def test_affine_transform21(self, order):
|
746 |
+
data = [[1, 2, 3, 4],
|
747 |
+
[5, 6, 7, 8],
|
748 |
+
[9, 10, 11, 12]]
|
749 |
+
out = ndimage.affine_transform(data, [[2], [0]], 0, (2,),
|
750 |
+
order=order)
|
751 |
+
assert_array_almost_equal(out, [1, 9])
|
752 |
+
|
753 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
754 |
+
def test_affine_transform22(self, order):
|
755 |
+
# shift and offset interaction; see issue #1547
|
756 |
+
data = numpy.array([4, 1, 3, 2])
|
757 |
+
out = ndimage.affine_transform(data, [[2]], [-1], (3,),
|
758 |
+
order=order)
|
759 |
+
assert_array_almost_equal(out, [0, 1, 2])
|
760 |
+
|
761 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
762 |
+
def test_affine_transform23(self, order):
|
763 |
+
# shift and offset interaction; see issue #1547
|
764 |
+
data = numpy.array([4, 1, 3, 2])
|
765 |
+
out = ndimage.affine_transform(data, [[0.5]], [-1], (8,),
|
766 |
+
order=order)
|
767 |
+
assert_array_almost_equal(out[::2], [0, 4, 1, 3])
|
768 |
+
|
769 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
770 |
+
def test_affine_transform24(self, order):
|
771 |
+
# consistency between diagonal and non-diagonal case; see issue #1547
|
772 |
+
data = numpy.array([4, 1, 3, 2])
|
773 |
+
with suppress_warnings() as sup:
|
774 |
+
sup.filter(UserWarning,
|
775 |
+
'The behavior of affine_transform with a 1-D array .* '
|
776 |
+
'has changed')
|
777 |
+
out1 = ndimage.affine_transform(data, [2], -1, order=order)
|
778 |
+
out2 = ndimage.affine_transform(data, [[2]], -1, order=order)
|
779 |
+
assert_array_almost_equal(out1, out2)
|
780 |
+
|
781 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
782 |
+
def test_affine_transform25(self, order):
|
783 |
+
# consistency between diagonal and non-diagonal case; see issue #1547
|
784 |
+
data = numpy.array([4, 1, 3, 2])
|
785 |
+
with suppress_warnings() as sup:
|
786 |
+
sup.filter(UserWarning,
|
787 |
+
'The behavior of affine_transform with a 1-D array .* '
|
788 |
+
'has changed')
|
789 |
+
out1 = ndimage.affine_transform(data, [0.5], -1, order=order)
|
790 |
+
out2 = ndimage.affine_transform(data, [[0.5]], -1, order=order)
|
791 |
+
assert_array_almost_equal(out1, out2)
|
792 |
+
|
793 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
794 |
+
def test_affine_transform26(self, order):
|
795 |
+
# test homogeneous coordinates
|
796 |
+
data = numpy.array([[4, 1, 3, 2],
|
797 |
+
[7, 6, 8, 5],
|
798 |
+
[3, 5, 3, 6]])
|
799 |
+
if (order > 1):
|
800 |
+
filtered = ndimage.spline_filter(data, order=order)
|
801 |
+
else:
|
802 |
+
filtered = data
|
803 |
+
tform_original = numpy.eye(2)
|
804 |
+
offset_original = -numpy.ones((2, 1))
|
805 |
+
tform_h1 = numpy.hstack((tform_original, offset_original))
|
806 |
+
tform_h2 = numpy.vstack((tform_h1, [[0, 0, 1]]))
|
807 |
+
out1 = ndimage.affine_transform(filtered, tform_original,
|
808 |
+
offset_original.ravel(),
|
809 |
+
order=order, prefilter=False)
|
810 |
+
out2 = ndimage.affine_transform(filtered, tform_h1, order=order,
|
811 |
+
prefilter=False)
|
812 |
+
out3 = ndimage.affine_transform(filtered, tform_h2, order=order,
|
813 |
+
prefilter=False)
|
814 |
+
for out in [out1, out2, out3]:
|
815 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
816 |
+
[0, 4, 1, 3],
|
817 |
+
[0, 7, 6, 8]])
|
818 |
+
|
819 |
+
def test_affine_transform27(self):
|
820 |
+
# test valid homogeneous transformation matrix
|
821 |
+
data = numpy.array([[4, 1, 3, 2],
|
822 |
+
[7, 6, 8, 5],
|
823 |
+
[3, 5, 3, 6]])
|
824 |
+
tform_h1 = numpy.hstack((numpy.eye(2), -numpy.ones((2, 1))))
|
825 |
+
tform_h2 = numpy.vstack((tform_h1, [[5, 2, 1]]))
|
826 |
+
assert_raises(ValueError, ndimage.affine_transform, data, tform_h2)
|
827 |
+
|
828 |
+
def test_affine_transform_1d_endianness_with_output_parameter(self):
|
829 |
+
# 1d affine transform given output ndarray or dtype with
|
830 |
+
# either endianness. see issue #7388
|
831 |
+
data = numpy.ones((2, 2))
|
832 |
+
for out in [numpy.empty_like(data),
|
833 |
+
numpy.empty_like(data).astype(data.dtype.newbyteorder()),
|
834 |
+
data.dtype, data.dtype.newbyteorder()]:
|
835 |
+
with suppress_warnings() as sup:
|
836 |
+
sup.filter(UserWarning,
|
837 |
+
'The behavior of affine_transform with a 1-D array '
|
838 |
+
'.* has changed')
|
839 |
+
returned = ndimage.affine_transform(data, [1, 1], output=out)
|
840 |
+
result = out if returned is None else returned
|
841 |
+
assert_array_almost_equal(result, [[1, 1], [1, 1]])
|
842 |
+
|
843 |
+
def test_affine_transform_multi_d_endianness_with_output_parameter(self):
|
844 |
+
# affine transform given output ndarray or dtype with either endianness
|
845 |
+
# see issue #4127
|
846 |
+
data = numpy.array([1])
|
847 |
+
for out in [data.dtype, data.dtype.newbyteorder(),
|
848 |
+
numpy.empty_like(data),
|
849 |
+
numpy.empty_like(data).astype(data.dtype.newbyteorder())]:
|
850 |
+
returned = ndimage.affine_transform(data, [[1]], output=out)
|
851 |
+
result = out if returned is None else returned
|
852 |
+
assert_array_almost_equal(result, [1])
|
853 |
+
|
854 |
+
def test_affine_transform_output_shape(self):
|
855 |
+
# don't require output_shape when out of a different size is given
|
856 |
+
data = numpy.arange(8, dtype=numpy.float64)
|
857 |
+
out = numpy.ones((16,))
|
858 |
+
|
859 |
+
ndimage.affine_transform(data, [[1]], output=out)
|
860 |
+
assert_array_almost_equal(out[:8], data)
|
861 |
+
|
862 |
+
# mismatched output shape raises an error
|
863 |
+
with pytest.raises(RuntimeError):
|
864 |
+
ndimage.affine_transform(
|
865 |
+
data, [[1]], output=out, output_shape=(12,))
|
866 |
+
|
867 |
+
def test_affine_transform_with_string_output(self):
|
868 |
+
data = numpy.array([1])
|
869 |
+
out = ndimage.affine_transform(data, [[1]], output='f')
|
870 |
+
assert_(out.dtype is numpy.dtype('f'))
|
871 |
+
assert_array_almost_equal(out, [1])
|
872 |
+
|
873 |
+
@pytest.mark.parametrize('shift',
|
874 |
+
[(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)])
|
875 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
876 |
+
def test_affine_transform_shift_via_grid_wrap(self, shift, order):
|
877 |
+
# For mode 'grid-wrap', integer shifts should match numpy.roll
|
878 |
+
x = numpy.array([[0, 1],
|
879 |
+
[2, 3]])
|
880 |
+
affine = numpy.zeros((2, 3))
|
881 |
+
affine[:2, :2] = numpy.eye(2)
|
882 |
+
affine[:, 2] = shift
|
883 |
+
assert_array_almost_equal(
|
884 |
+
ndimage.affine_transform(x, affine, mode='grid-wrap', order=order),
|
885 |
+
numpy.roll(x, shift, axis=(0, 1)),
|
886 |
+
)
|
887 |
+
|
888 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
889 |
+
def test_affine_transform_shift_reflect(self, order):
|
890 |
+
# shift by x.shape results in reflection
|
891 |
+
x = numpy.array([[0, 1, 2],
|
892 |
+
[3, 4, 5]])
|
893 |
+
affine = numpy.zeros((2, 3))
|
894 |
+
affine[:2, :2] = numpy.eye(2)
|
895 |
+
affine[:, 2] = x.shape
|
896 |
+
assert_array_almost_equal(
|
897 |
+
ndimage.affine_transform(x, affine, mode='reflect', order=order),
|
898 |
+
x[::-1, ::-1],
|
899 |
+
)
|
900 |
+
|
901 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
902 |
+
def test_shift01(self, order):
|
903 |
+
data = numpy.array([1])
|
904 |
+
out = ndimage.shift(data, [1], order=order)
|
905 |
+
assert_array_almost_equal(out, [0])
|
906 |
+
|
907 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
908 |
+
def test_shift02(self, order):
|
909 |
+
data = numpy.ones([4])
|
910 |
+
out = ndimage.shift(data, [1], order=order)
|
911 |
+
assert_array_almost_equal(out, [0, 1, 1, 1])
|
912 |
+
|
913 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
914 |
+
def test_shift03(self, order):
|
915 |
+
data = numpy.ones([4])
|
916 |
+
out = ndimage.shift(data, -1, order=order)
|
917 |
+
assert_array_almost_equal(out, [1, 1, 1, 0])
|
918 |
+
|
919 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
920 |
+
def test_shift04(self, order):
|
921 |
+
data = numpy.array([4, 1, 3, 2])
|
922 |
+
out = ndimage.shift(data, 1, order=order)
|
923 |
+
assert_array_almost_equal(out, [0, 4, 1, 3])
|
924 |
+
|
925 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
926 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
927 |
+
def test_shift05(self, order, dtype):
|
928 |
+
data = numpy.array([[1, 1, 1, 1],
|
929 |
+
[1, 1, 1, 1],
|
930 |
+
[1, 1, 1, 1]], dtype=dtype)
|
931 |
+
expected = numpy.array([[0, 1, 1, 1],
|
932 |
+
[0, 1, 1, 1],
|
933 |
+
[0, 1, 1, 1]], dtype=dtype)
|
934 |
+
if data.dtype.kind == 'c':
|
935 |
+
data -= 1j * data
|
936 |
+
expected -= 1j * expected
|
937 |
+
out = ndimage.shift(data, [0, 1], order=order)
|
938 |
+
assert_array_almost_equal(out, expected)
|
939 |
+
|
940 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
941 |
+
@pytest.mark.parametrize('mode', ['constant', 'grid-constant'])
|
942 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
943 |
+
def test_shift_with_nonzero_cval(self, order, mode, dtype):
|
944 |
+
data = numpy.array([[1, 1, 1, 1],
|
945 |
+
[1, 1, 1, 1],
|
946 |
+
[1, 1, 1, 1]], dtype=dtype)
|
947 |
+
|
948 |
+
expected = numpy.array([[0, 1, 1, 1],
|
949 |
+
[0, 1, 1, 1],
|
950 |
+
[0, 1, 1, 1]], dtype=dtype)
|
951 |
+
|
952 |
+
if data.dtype.kind == 'c':
|
953 |
+
data -= 1j * data
|
954 |
+
expected -= 1j * expected
|
955 |
+
cval = 5.0
|
956 |
+
expected[:, 0] = cval # specific to shift of [0, 1] used below
|
957 |
+
out = ndimage.shift(data, [0, 1], order=order, mode=mode, cval=cval)
|
958 |
+
assert_array_almost_equal(out, expected)
|
959 |
+
|
960 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
961 |
+
def test_shift06(self, order):
|
962 |
+
data = numpy.array([[4, 1, 3, 2],
|
963 |
+
[7, 6, 8, 5],
|
964 |
+
[3, 5, 3, 6]])
|
965 |
+
out = ndimage.shift(data, [0, 1], order=order)
|
966 |
+
assert_array_almost_equal(out, [[0, 4, 1, 3],
|
967 |
+
[0, 7, 6, 8],
|
968 |
+
[0, 3, 5, 3]])
|
969 |
+
|
970 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
971 |
+
def test_shift07(self, order):
|
972 |
+
data = numpy.array([[4, 1, 3, 2],
|
973 |
+
[7, 6, 8, 5],
|
974 |
+
[3, 5, 3, 6]])
|
975 |
+
out = ndimage.shift(data, [1, 0], order=order)
|
976 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
977 |
+
[4, 1, 3, 2],
|
978 |
+
[7, 6, 8, 5]])
|
979 |
+
|
980 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
981 |
+
def test_shift08(self, order):
|
982 |
+
data = numpy.array([[4, 1, 3, 2],
|
983 |
+
[7, 6, 8, 5],
|
984 |
+
[3, 5, 3, 6]])
|
985 |
+
out = ndimage.shift(data, [1, 1], order=order)
|
986 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
987 |
+
[0, 4, 1, 3],
|
988 |
+
[0, 7, 6, 8]])
|
989 |
+
|
990 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
991 |
+
def test_shift09(self, order):
|
992 |
+
data = numpy.array([[4, 1, 3, 2],
|
993 |
+
[7, 6, 8, 5],
|
994 |
+
[3, 5, 3, 6]])
|
995 |
+
if (order > 1):
|
996 |
+
filtered = ndimage.spline_filter(data, order=order)
|
997 |
+
else:
|
998 |
+
filtered = data
|
999 |
+
out = ndimage.shift(filtered, [1, 1], order=order, prefilter=False)
|
1000 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0],
|
1001 |
+
[0, 4, 1, 3],
|
1002 |
+
[0, 7, 6, 8]])
|
1003 |
+
|
1004 |
+
@pytest.mark.parametrize('shift',
|
1005 |
+
[(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)])
|
1006 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1007 |
+
def test_shift_grid_wrap(self, shift, order):
|
1008 |
+
# For mode 'grid-wrap', integer shifts should match numpy.roll
|
1009 |
+
x = numpy.array([[0, 1],
|
1010 |
+
[2, 3]])
|
1011 |
+
assert_array_almost_equal(
|
1012 |
+
ndimage.shift(x, shift, mode='grid-wrap', order=order),
|
1013 |
+
numpy.roll(x, shift, axis=(0, 1)),
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
@pytest.mark.parametrize('shift',
|
1017 |
+
[(1, 0), (0, 1), (-1, 1), (3, -5), (2, 7)])
|
1018 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1019 |
+
def test_shift_grid_constant1(self, shift, order):
|
1020 |
+
# For integer shifts, 'constant' and 'grid-constant' should be equal
|
1021 |
+
x = numpy.arange(20).reshape((5, 4))
|
1022 |
+
assert_array_almost_equal(
|
1023 |
+
ndimage.shift(x, shift, mode='grid-constant', order=order),
|
1024 |
+
ndimage.shift(x, shift, mode='constant', order=order),
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
def test_shift_grid_constant_order1(self):
|
1028 |
+
x = numpy.array([[1, 2, 3],
|
1029 |
+
[4, 5, 6]], dtype=float)
|
1030 |
+
expected_result = numpy.array([[0.25, 0.75, 1.25],
|
1031 |
+
[1.25, 3.00, 4.00]])
|
1032 |
+
assert_array_almost_equal(
|
1033 |
+
ndimage.shift(x, (0.5, 0.5), mode='grid-constant', order=1),
|
1034 |
+
expected_result,
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1038 |
+
def test_shift_reflect(self, order):
|
1039 |
+
# shift by x.shape results in reflection
|
1040 |
+
x = numpy.array([[0, 1, 2],
|
1041 |
+
[3, 4, 5]])
|
1042 |
+
assert_array_almost_equal(
|
1043 |
+
ndimage.shift(x, x.shape, mode='reflect', order=order),
|
1044 |
+
x[::-1, ::-1],
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1048 |
+
@pytest.mark.parametrize('prefilter', [False, True])
|
1049 |
+
def test_shift_nearest_boundary(self, order, prefilter):
|
1050 |
+
# verify that shifting at least order // 2 beyond the end of the array
|
1051 |
+
# gives a value equal to the edge value.
|
1052 |
+
x = numpy.arange(16)
|
1053 |
+
kwargs = dict(mode='nearest', order=order, prefilter=prefilter)
|
1054 |
+
assert_array_almost_equal(
|
1055 |
+
ndimage.shift(x, order // 2 + 1, **kwargs)[0], x[0],
|
1056 |
+
)
|
1057 |
+
assert_array_almost_equal(
|
1058 |
+
ndimage.shift(x, -order // 2 - 1, **kwargs)[-1], x[-1],
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
@pytest.mark.parametrize('mode', ['grid-constant', 'grid-wrap', 'nearest',
|
1062 |
+
'mirror', 'reflect'])
|
1063 |
+
@pytest.mark.parametrize('order', range(6))
|
1064 |
+
def test_shift_vs_padded(self, order, mode):
|
1065 |
+
x = numpy.arange(144, dtype=float).reshape(12, 12)
|
1066 |
+
shift = (0.4, -2.3)
|
1067 |
+
|
1068 |
+
# manually pad and then extract center to get expected result
|
1069 |
+
npad = 32
|
1070 |
+
pad_mode = ndimage_to_numpy_mode.get(mode)
|
1071 |
+
xp = numpy.pad(x, npad, mode=pad_mode)
|
1072 |
+
center_slice = tuple([slice(npad, -npad)] * x.ndim)
|
1073 |
+
expected_result = ndimage.shift(
|
1074 |
+
xp, shift, mode=mode, order=order)[center_slice]
|
1075 |
+
|
1076 |
+
assert_allclose(
|
1077 |
+
ndimage.shift(x, shift, mode=mode, order=order),
|
1078 |
+
expected_result,
|
1079 |
+
rtol=1e-7,
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1083 |
+
def test_zoom1(self, order):
|
1084 |
+
for z in [2, [2, 2]]:
|
1085 |
+
arr = numpy.array(list(range(25))).reshape((5, 5)).astype(float)
|
1086 |
+
arr = ndimage.zoom(arr, z, order=order)
|
1087 |
+
assert_equal(arr.shape, (10, 10))
|
1088 |
+
assert_(numpy.all(arr[-1, :] != 0))
|
1089 |
+
assert_(numpy.all(arr[-1, :] >= (20 - eps)))
|
1090 |
+
assert_(numpy.all(arr[0, :] <= (5 + eps)))
|
1091 |
+
assert_(numpy.all(arr >= (0 - eps)))
|
1092 |
+
assert_(numpy.all(arr <= (24 + eps)))
|
1093 |
+
|
1094 |
+
def test_zoom2(self):
|
1095 |
+
arr = numpy.arange(12).reshape((3, 4))
|
1096 |
+
out = ndimage.zoom(ndimage.zoom(arr, 2), 0.5)
|
1097 |
+
assert_array_equal(out, arr)
|
1098 |
+
|
1099 |
+
def test_zoom3(self):
|
1100 |
+
arr = numpy.array([[1, 2]])
|
1101 |
+
out1 = ndimage.zoom(arr, (2, 1))
|
1102 |
+
out2 = ndimage.zoom(arr, (1, 2))
|
1103 |
+
|
1104 |
+
assert_array_almost_equal(out1, numpy.array([[1, 2], [1, 2]]))
|
1105 |
+
assert_array_almost_equal(out2, numpy.array([[1, 1, 2, 2]]))
|
1106 |
+
|
1107 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1108 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
1109 |
+
def test_zoom_affine01(self, order, dtype):
|
1110 |
+
data = numpy.asarray([[1, 2, 3, 4],
|
1111 |
+
[5, 6, 7, 8],
|
1112 |
+
[9, 10, 11, 12]], dtype=dtype)
|
1113 |
+
if data.dtype.kind == 'c':
|
1114 |
+
data -= 1j * data
|
1115 |
+
with suppress_warnings() as sup:
|
1116 |
+
sup.filter(UserWarning,
|
1117 |
+
'The behavior of affine_transform with a 1-D array .* '
|
1118 |
+
'has changed')
|
1119 |
+
out = ndimage.affine_transform(data, [0.5, 0.5], 0,
|
1120 |
+
(6, 8), order=order)
|
1121 |
+
assert_array_almost_equal(out[::2, ::2], data)
|
1122 |
+
|
1123 |
+
def test_zoom_infinity(self):
|
1124 |
+
# Ticket #1419 regression test
|
1125 |
+
dim = 8
|
1126 |
+
ndimage.zoom(numpy.zeros((dim, dim)), 1. / dim, mode='nearest')
|
1127 |
+
|
1128 |
+
def test_zoom_zoomfactor_one(self):
|
1129 |
+
# Ticket #1122 regression test
|
1130 |
+
arr = numpy.zeros((1, 5, 5))
|
1131 |
+
zoom = (1.0, 2.0, 2.0)
|
1132 |
+
|
1133 |
+
out = ndimage.zoom(arr, zoom, cval=7)
|
1134 |
+
ref = numpy.zeros((1, 10, 10))
|
1135 |
+
assert_array_almost_equal(out, ref)
|
1136 |
+
|
1137 |
+
def test_zoom_output_shape_roundoff(self):
|
1138 |
+
arr = numpy.zeros((3, 11, 25))
|
1139 |
+
zoom = (4.0 / 3, 15.0 / 11, 29.0 / 25)
|
1140 |
+
out = ndimage.zoom(arr, zoom)
|
1141 |
+
assert_array_equal(out.shape, (4, 15, 29))
|
1142 |
+
|
1143 |
+
@pytest.mark.parametrize('zoom', [(1, 1), (3, 5), (8, 2), (8, 8)])
|
1144 |
+
@pytest.mark.parametrize('mode', ['nearest', 'constant', 'wrap', 'reflect',
|
1145 |
+
'mirror', 'grid-wrap', 'grid-mirror',
|
1146 |
+
'grid-constant'])
|
1147 |
+
def test_zoom_by_int_order0(self, zoom, mode):
|
1148 |
+
# order 0 zoom should be the same as replication via numpy.kron
|
1149 |
+
# Note: This is not True for general x shapes when grid_mode is False,
|
1150 |
+
# but works here for all modes because the size ratio happens to
|
1151 |
+
# always be an integer when x.shape = (2, 2).
|
1152 |
+
x = numpy.array([[0, 1],
|
1153 |
+
[2, 3]], dtype=float)
|
1154 |
+
# x = numpy.arange(16, dtype=float).reshape(4, 4)
|
1155 |
+
assert_array_almost_equal(
|
1156 |
+
ndimage.zoom(x, zoom, order=0, mode=mode),
|
1157 |
+
numpy.kron(x, numpy.ones(zoom))
|
1158 |
+
)
|
1159 |
+
|
1160 |
+
@pytest.mark.parametrize('shape', [(2, 3), (4, 4)])
|
1161 |
+
@pytest.mark.parametrize('zoom', [(1, 1), (3, 5), (8, 2), (8, 8)])
|
1162 |
+
@pytest.mark.parametrize('mode', ['nearest', 'reflect', 'mirror',
|
1163 |
+
'grid-wrap', 'grid-constant'])
|
1164 |
+
def test_zoom_grid_by_int_order0(self, shape, zoom, mode):
|
1165 |
+
# When grid_mode is True, order 0 zoom should be the same as
|
1166 |
+
# replication via numpy.kron. The only exceptions to this are the
|
1167 |
+
# non-grid modes 'constant' and 'wrap'.
|
1168 |
+
x = numpy.arange(numpy.prod(shape), dtype=float).reshape(shape)
|
1169 |
+
assert_array_almost_equal(
|
1170 |
+
ndimage.zoom(x, zoom, order=0, mode=mode, grid_mode=True),
|
1171 |
+
numpy.kron(x, numpy.ones(zoom))
|
1172 |
+
)
|
1173 |
+
|
1174 |
+
@pytest.mark.parametrize('mode', ['constant', 'wrap'])
|
1175 |
+
def test_zoom_grid_mode_warnings(self, mode):
|
1176 |
+
# Warn on use of non-grid modes when grid_mode is True
|
1177 |
+
x = numpy.arange(9, dtype=float).reshape((3, 3))
|
1178 |
+
with pytest.warns(UserWarning,
|
1179 |
+
match="It is recommended to use mode"):
|
1180 |
+
ndimage.zoom(x, 2, mode=mode, grid_mode=True),
|
1181 |
+
|
1182 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1183 |
+
def test_rotate01(self, order):
|
1184 |
+
data = numpy.array([[0, 0, 0, 0],
|
1185 |
+
[0, 1, 1, 0],
|
1186 |
+
[0, 0, 0, 0]], dtype=numpy.float64)
|
1187 |
+
out = ndimage.rotate(data, 0, order=order)
|
1188 |
+
assert_array_almost_equal(out, data)
|
1189 |
+
|
1190 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1191 |
+
def test_rotate02(self, order):
|
1192 |
+
data = numpy.array([[0, 0, 0, 0],
|
1193 |
+
[0, 1, 0, 0],
|
1194 |
+
[0, 0, 0, 0]], dtype=numpy.float64)
|
1195 |
+
expected = numpy.array([[0, 0, 0],
|
1196 |
+
[0, 0, 0],
|
1197 |
+
[0, 1, 0],
|
1198 |
+
[0, 0, 0]], dtype=numpy.float64)
|
1199 |
+
out = ndimage.rotate(data, 90, order=order)
|
1200 |
+
assert_array_almost_equal(out, expected)
|
1201 |
+
|
1202 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1203 |
+
@pytest.mark.parametrize('dtype', [numpy.float64, numpy.complex128])
|
1204 |
+
def test_rotate03(self, order, dtype):
|
1205 |
+
data = numpy.array([[0, 0, 0, 0, 0],
|
1206 |
+
[0, 1, 1, 0, 0],
|
1207 |
+
[0, 0, 0, 0, 0]], dtype=dtype)
|
1208 |
+
expected = numpy.array([[0, 0, 0],
|
1209 |
+
[0, 0, 0],
|
1210 |
+
[0, 1, 0],
|
1211 |
+
[0, 1, 0],
|
1212 |
+
[0, 0, 0]], dtype=dtype)
|
1213 |
+
if data.dtype.kind == 'c':
|
1214 |
+
data -= 1j * data
|
1215 |
+
expected -= 1j * expected
|
1216 |
+
out = ndimage.rotate(data, 90, order=order)
|
1217 |
+
assert_array_almost_equal(out, expected)
|
1218 |
+
|
1219 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1220 |
+
def test_rotate04(self, order):
|
1221 |
+
data = numpy.array([[0, 0, 0, 0, 0],
|
1222 |
+
[0, 1, 1, 0, 0],
|
1223 |
+
[0, 0, 0, 0, 0]], dtype=numpy.float64)
|
1224 |
+
expected = numpy.array([[0, 0, 0, 0, 0],
|
1225 |
+
[0, 0, 1, 0, 0],
|
1226 |
+
[0, 0, 1, 0, 0]], dtype=numpy.float64)
|
1227 |
+
out = ndimage.rotate(data, 90, reshape=False, order=order)
|
1228 |
+
assert_array_almost_equal(out, expected)
|
1229 |
+
|
1230 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1231 |
+
def test_rotate05(self, order):
|
1232 |
+
data = numpy.empty((4, 3, 3))
|
1233 |
+
for i in range(3):
|
1234 |
+
data[:, :, i] = numpy.array([[0, 0, 0],
|
1235 |
+
[0, 1, 0],
|
1236 |
+
[0, 1, 0],
|
1237 |
+
[0, 0, 0]], dtype=numpy.float64)
|
1238 |
+
expected = numpy.array([[0, 0, 0, 0],
|
1239 |
+
[0, 1, 1, 0],
|
1240 |
+
[0, 0, 0, 0]], dtype=numpy.float64)
|
1241 |
+
out = ndimage.rotate(data, 90, order=order)
|
1242 |
+
for i in range(3):
|
1243 |
+
assert_array_almost_equal(out[:, :, i], expected)
|
1244 |
+
|
1245 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1246 |
+
def test_rotate06(self, order):
|
1247 |
+
data = numpy.empty((3, 4, 3))
|
1248 |
+
for i in range(3):
|
1249 |
+
data[:, :, i] = numpy.array([[0, 0, 0, 0],
|
1250 |
+
[0, 1, 1, 0],
|
1251 |
+
[0, 0, 0, 0]], dtype=numpy.float64)
|
1252 |
+
expected = numpy.array([[0, 0, 0],
|
1253 |
+
[0, 1, 0],
|
1254 |
+
[0, 1, 0],
|
1255 |
+
[0, 0, 0]], dtype=numpy.float64)
|
1256 |
+
out = ndimage.rotate(data, 90, order=order)
|
1257 |
+
for i in range(3):
|
1258 |
+
assert_array_almost_equal(out[:, :, i], expected)
|
1259 |
+
|
1260 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1261 |
+
def test_rotate07(self, order):
|
1262 |
+
data = numpy.array([[[0, 0, 0, 0, 0],
|
1263 |
+
[0, 1, 1, 0, 0],
|
1264 |
+
[0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
|
1265 |
+
data = data.transpose()
|
1266 |
+
expected = numpy.array([[[0, 0, 0],
|
1267 |
+
[0, 1, 0],
|
1268 |
+
[0, 1, 0],
|
1269 |
+
[0, 0, 0],
|
1270 |
+
[0, 0, 0]]] * 2, dtype=numpy.float64)
|
1271 |
+
expected = expected.transpose([2, 1, 0])
|
1272 |
+
out = ndimage.rotate(data, 90, axes=(0, 1), order=order)
|
1273 |
+
assert_array_almost_equal(out, expected)
|
1274 |
+
|
1275 |
+
@pytest.mark.parametrize('order', range(0, 6))
|
1276 |
+
def test_rotate08(self, order):
|
1277 |
+
data = numpy.array([[[0, 0, 0, 0, 0],
|
1278 |
+
[0, 1, 1, 0, 0],
|
1279 |
+
[0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
|
1280 |
+
data = data.transpose()
|
1281 |
+
expected = numpy.array([[[0, 0, 1, 0, 0],
|
1282 |
+
[0, 0, 1, 0, 0],
|
1283 |
+
[0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
|
1284 |
+
expected = expected.transpose()
|
1285 |
+
out = ndimage.rotate(data, 90, axes=(0, 1), reshape=False, order=order)
|
1286 |
+
assert_array_almost_equal(out, expected)
|
1287 |
+
|
1288 |
+
def test_rotate09(self):
|
1289 |
+
data = numpy.array([[0, 0, 0, 0, 0],
|
1290 |
+
[0, 1, 1, 0, 0],
|
1291 |
+
[0, 0, 0, 0, 0]] * 2, dtype=numpy.float64)
|
1292 |
+
with assert_raises(ValueError):
|
1293 |
+
ndimage.rotate(data, 90, axes=(0, data.ndim))
|
1294 |
+
|
1295 |
+
def test_rotate10(self):
|
1296 |
+
data = numpy.arange(45, dtype=numpy.float64).reshape((3, 5, 3))
|
1297 |
+
|
1298 |
+
# The output of ndimage.rotate before refactoring
|
1299 |
+
expected = numpy.array([[[0.0, 0.0, 0.0],
|
1300 |
+
[0.0, 0.0, 0.0],
|
1301 |
+
[6.54914793, 7.54914793, 8.54914793],
|
1302 |
+
[10.84520162, 11.84520162, 12.84520162],
|
1303 |
+
[0.0, 0.0, 0.0]],
|
1304 |
+
[[6.19286575, 7.19286575, 8.19286575],
|
1305 |
+
[13.4730712, 14.4730712, 15.4730712],
|
1306 |
+
[21.0, 22.0, 23.0],
|
1307 |
+
[28.5269288, 29.5269288, 30.5269288],
|
1308 |
+
[35.80713425, 36.80713425, 37.80713425]],
|
1309 |
+
[[0.0, 0.0, 0.0],
|
1310 |
+
[31.15479838, 32.15479838, 33.15479838],
|
1311 |
+
[35.45085207, 36.45085207, 37.45085207],
|
1312 |
+
[0.0, 0.0, 0.0],
|
1313 |
+
[0.0, 0.0, 0.0]]])
|
1314 |
+
|
1315 |
+
out = ndimage.rotate(data, angle=12, reshape=False)
|
1316 |
+
assert_array_almost_equal(out, expected)
|
1317 |
+
|
1318 |
+
def test_rotate_exact_180(self):
|
1319 |
+
a = numpy.tile(numpy.arange(5), (5, 1))
|
1320 |
+
b = ndimage.rotate(ndimage.rotate(a, 180), -180)
|
1321 |
+
assert_equal(a, b)
|
1322 |
+
|
1323 |
+
|
1324 |
+
def test_zoom_output_shape():
|
1325 |
+
"""Ticket #643"""
|
1326 |
+
x = numpy.arange(12).reshape((3, 4))
|
1327 |
+
ndimage.zoom(x, 2, output=numpy.zeros((6, 8)))
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_measurements.py
ADDED
@@ -0,0 +1,1409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy.testing import (
|
5 |
+
assert_,
|
6 |
+
assert_allclose,
|
7 |
+
assert_almost_equal,
|
8 |
+
assert_array_almost_equal,
|
9 |
+
assert_array_equal,
|
10 |
+
assert_equal,
|
11 |
+
suppress_warnings,
|
12 |
+
)
|
13 |
+
from pytest import raises as assert_raises
|
14 |
+
|
15 |
+
import scipy.ndimage as ndimage
|
16 |
+
|
17 |
+
|
18 |
+
from . import types
|
19 |
+
|
20 |
+
|
21 |
+
class Test_measurements_stats:
|
22 |
+
"""ndimage._measurements._stats() is a utility used by other functions."""
|
23 |
+
|
24 |
+
def test_a(self):
|
25 |
+
x = [0, 1, 2, 6]
|
26 |
+
labels = [0, 0, 1, 1]
|
27 |
+
index = [0, 1]
|
28 |
+
for shp in [(4,), (2, 2)]:
|
29 |
+
x = np.array(x).reshape(shp)
|
30 |
+
labels = np.array(labels).reshape(shp)
|
31 |
+
counts, sums = ndimage._measurements._stats(
|
32 |
+
x, labels=labels, index=index)
|
33 |
+
assert_array_equal(counts, [2, 2])
|
34 |
+
assert_array_equal(sums, [1.0, 8.0])
|
35 |
+
|
36 |
+
def test_b(self):
|
37 |
+
# Same data as test_a, but different labels. The label 9 exceeds the
|
38 |
+
# length of 'labels', so this test will follow a different code path.
|
39 |
+
x = [0, 1, 2, 6]
|
40 |
+
labels = [0, 0, 9, 9]
|
41 |
+
index = [0, 9]
|
42 |
+
for shp in [(4,), (2, 2)]:
|
43 |
+
x = np.array(x).reshape(shp)
|
44 |
+
labels = np.array(labels).reshape(shp)
|
45 |
+
counts, sums = ndimage._measurements._stats(
|
46 |
+
x, labels=labels, index=index)
|
47 |
+
assert_array_equal(counts, [2, 2])
|
48 |
+
assert_array_equal(sums, [1.0, 8.0])
|
49 |
+
|
50 |
+
def test_a_centered(self):
|
51 |
+
x = [0, 1, 2, 6]
|
52 |
+
labels = [0, 0, 1, 1]
|
53 |
+
index = [0, 1]
|
54 |
+
for shp in [(4,), (2, 2)]:
|
55 |
+
x = np.array(x).reshape(shp)
|
56 |
+
labels = np.array(labels).reshape(shp)
|
57 |
+
counts, sums, centers = ndimage._measurements._stats(
|
58 |
+
x, labels=labels, index=index, centered=True)
|
59 |
+
assert_array_equal(counts, [2, 2])
|
60 |
+
assert_array_equal(sums, [1.0, 8.0])
|
61 |
+
assert_array_equal(centers, [0.5, 8.0])
|
62 |
+
|
63 |
+
def test_b_centered(self):
|
64 |
+
x = [0, 1, 2, 6]
|
65 |
+
labels = [0, 0, 9, 9]
|
66 |
+
index = [0, 9]
|
67 |
+
for shp in [(4,), (2, 2)]:
|
68 |
+
x = np.array(x).reshape(shp)
|
69 |
+
labels = np.array(labels).reshape(shp)
|
70 |
+
counts, sums, centers = ndimage._measurements._stats(
|
71 |
+
x, labels=labels, index=index, centered=True)
|
72 |
+
assert_array_equal(counts, [2, 2])
|
73 |
+
assert_array_equal(sums, [1.0, 8.0])
|
74 |
+
assert_array_equal(centers, [0.5, 8.0])
|
75 |
+
|
76 |
+
def test_nonint_labels(self):
|
77 |
+
x = [0, 1, 2, 6]
|
78 |
+
labels = [0.0, 0.0, 9.0, 9.0]
|
79 |
+
index = [0.0, 9.0]
|
80 |
+
for shp in [(4,), (2, 2)]:
|
81 |
+
x = np.array(x).reshape(shp)
|
82 |
+
labels = np.array(labels).reshape(shp)
|
83 |
+
counts, sums, centers = ndimage._measurements._stats(
|
84 |
+
x, labels=labels, index=index, centered=True)
|
85 |
+
assert_array_equal(counts, [2, 2])
|
86 |
+
assert_array_equal(sums, [1.0, 8.0])
|
87 |
+
assert_array_equal(centers, [0.5, 8.0])
|
88 |
+
|
89 |
+
|
90 |
+
class Test_measurements_select:
|
91 |
+
"""ndimage._measurements._select() is a utility used by other functions."""
|
92 |
+
|
93 |
+
def test_basic(self):
|
94 |
+
x = [0, 1, 6, 2]
|
95 |
+
cases = [
|
96 |
+
([0, 0, 1, 1], [0, 1]), # "Small" integer labels
|
97 |
+
([0, 0, 9, 9], [0, 9]), # A label larger than len(labels)
|
98 |
+
([0.0, 0.0, 7.0, 7.0], [0.0, 7.0]), # Non-integer labels
|
99 |
+
]
|
100 |
+
for labels, index in cases:
|
101 |
+
result = ndimage._measurements._select(
|
102 |
+
x, labels=labels, index=index)
|
103 |
+
assert_(len(result) == 0)
|
104 |
+
result = ndimage._measurements._select(
|
105 |
+
x, labels=labels, index=index, find_max=True)
|
106 |
+
assert_(len(result) == 1)
|
107 |
+
assert_array_equal(result[0], [1, 6])
|
108 |
+
result = ndimage._measurements._select(
|
109 |
+
x, labels=labels, index=index, find_min=True)
|
110 |
+
assert_(len(result) == 1)
|
111 |
+
assert_array_equal(result[0], [0, 2])
|
112 |
+
result = ndimage._measurements._select(
|
113 |
+
x, labels=labels, index=index, find_min=True,
|
114 |
+
find_min_positions=True)
|
115 |
+
assert_(len(result) == 2)
|
116 |
+
assert_array_equal(result[0], [0, 2])
|
117 |
+
assert_array_equal(result[1], [0, 3])
|
118 |
+
assert_equal(result[1].dtype.kind, 'i')
|
119 |
+
result = ndimage._measurements._select(
|
120 |
+
x, labels=labels, index=index, find_max=True,
|
121 |
+
find_max_positions=True)
|
122 |
+
assert_(len(result) == 2)
|
123 |
+
assert_array_equal(result[0], [1, 6])
|
124 |
+
assert_array_equal(result[1], [1, 2])
|
125 |
+
assert_equal(result[1].dtype.kind, 'i')
|
126 |
+
|
127 |
+
|
128 |
+
def test_label01():
|
129 |
+
data = np.ones([])
|
130 |
+
out, n = ndimage.label(data)
|
131 |
+
assert_array_almost_equal(out, 1)
|
132 |
+
assert_equal(n, 1)
|
133 |
+
|
134 |
+
|
135 |
+
def test_label02():
|
136 |
+
data = np.zeros([])
|
137 |
+
out, n = ndimage.label(data)
|
138 |
+
assert_array_almost_equal(out, 0)
|
139 |
+
assert_equal(n, 0)
|
140 |
+
|
141 |
+
|
142 |
+
def test_label03():
|
143 |
+
data = np.ones([1])
|
144 |
+
out, n = ndimage.label(data)
|
145 |
+
assert_array_almost_equal(out, [1])
|
146 |
+
assert_equal(n, 1)
|
147 |
+
|
148 |
+
|
149 |
+
def test_label04():
|
150 |
+
data = np.zeros([1])
|
151 |
+
out, n = ndimage.label(data)
|
152 |
+
assert_array_almost_equal(out, [0])
|
153 |
+
assert_equal(n, 0)
|
154 |
+
|
155 |
+
|
156 |
+
def test_label05():
|
157 |
+
data = np.ones([5])
|
158 |
+
out, n = ndimage.label(data)
|
159 |
+
assert_array_almost_equal(out, [1, 1, 1, 1, 1])
|
160 |
+
assert_equal(n, 1)
|
161 |
+
|
162 |
+
|
163 |
+
def test_label06():
|
164 |
+
data = np.array([1, 0, 1, 1, 0, 1])
|
165 |
+
out, n = ndimage.label(data)
|
166 |
+
assert_array_almost_equal(out, [1, 0, 2, 2, 0, 3])
|
167 |
+
assert_equal(n, 3)
|
168 |
+
|
169 |
+
|
170 |
+
def test_label07():
|
171 |
+
data = np.array([[0, 0, 0, 0, 0, 0],
|
172 |
+
[0, 0, 0, 0, 0, 0],
|
173 |
+
[0, 0, 0, 0, 0, 0],
|
174 |
+
[0, 0, 0, 0, 0, 0],
|
175 |
+
[0, 0, 0, 0, 0, 0],
|
176 |
+
[0, 0, 0, 0, 0, 0]])
|
177 |
+
out, n = ndimage.label(data)
|
178 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0, 0, 0],
|
179 |
+
[0, 0, 0, 0, 0, 0],
|
180 |
+
[0, 0, 0, 0, 0, 0],
|
181 |
+
[0, 0, 0, 0, 0, 0],
|
182 |
+
[0, 0, 0, 0, 0, 0],
|
183 |
+
[0, 0, 0, 0, 0, 0]])
|
184 |
+
assert_equal(n, 0)
|
185 |
+
|
186 |
+
|
187 |
+
def test_label08():
|
188 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
189 |
+
[0, 0, 1, 1, 0, 0],
|
190 |
+
[0, 0, 1, 1, 1, 0],
|
191 |
+
[1, 1, 0, 0, 0, 0],
|
192 |
+
[1, 1, 0, 0, 0, 0],
|
193 |
+
[0, 0, 0, 1, 1, 0]])
|
194 |
+
out, n = ndimage.label(data)
|
195 |
+
assert_array_almost_equal(out, [[1, 0, 0, 0, 0, 0],
|
196 |
+
[0, 0, 2, 2, 0, 0],
|
197 |
+
[0, 0, 2, 2, 2, 0],
|
198 |
+
[3, 3, 0, 0, 0, 0],
|
199 |
+
[3, 3, 0, 0, 0, 0],
|
200 |
+
[0, 0, 0, 4, 4, 0]])
|
201 |
+
assert_equal(n, 4)
|
202 |
+
|
203 |
+
|
204 |
+
def test_label09():
|
205 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
206 |
+
[0, 0, 1, 1, 0, 0],
|
207 |
+
[0, 0, 1, 1, 1, 0],
|
208 |
+
[1, 1, 0, 0, 0, 0],
|
209 |
+
[1, 1, 0, 0, 0, 0],
|
210 |
+
[0, 0, 0, 1, 1, 0]])
|
211 |
+
struct = ndimage.generate_binary_structure(2, 2)
|
212 |
+
out, n = ndimage.label(data, struct)
|
213 |
+
assert_array_almost_equal(out, [[1, 0, 0, 0, 0, 0],
|
214 |
+
[0, 0, 2, 2, 0, 0],
|
215 |
+
[0, 0, 2, 2, 2, 0],
|
216 |
+
[2, 2, 0, 0, 0, 0],
|
217 |
+
[2, 2, 0, 0, 0, 0],
|
218 |
+
[0, 0, 0, 3, 3, 0]])
|
219 |
+
assert_equal(n, 3)
|
220 |
+
|
221 |
+
|
222 |
+
def test_label10():
|
223 |
+
data = np.array([[0, 0, 0, 0, 0, 0],
|
224 |
+
[0, 1, 1, 0, 1, 0],
|
225 |
+
[0, 1, 1, 1, 1, 0],
|
226 |
+
[0, 0, 0, 0, 0, 0]])
|
227 |
+
struct = ndimage.generate_binary_structure(2, 2)
|
228 |
+
out, n = ndimage.label(data, struct)
|
229 |
+
assert_array_almost_equal(out, [[0, 0, 0, 0, 0, 0],
|
230 |
+
[0, 1, 1, 0, 1, 0],
|
231 |
+
[0, 1, 1, 1, 1, 0],
|
232 |
+
[0, 0, 0, 0, 0, 0]])
|
233 |
+
assert_equal(n, 1)
|
234 |
+
|
235 |
+
|
236 |
+
def test_label11():
|
237 |
+
for type in types:
|
238 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
239 |
+
[0, 0, 1, 1, 0, 0],
|
240 |
+
[0, 0, 1, 1, 1, 0],
|
241 |
+
[1, 1, 0, 0, 0, 0],
|
242 |
+
[1, 1, 0, 0, 0, 0],
|
243 |
+
[0, 0, 0, 1, 1, 0]], type)
|
244 |
+
out, n = ndimage.label(data)
|
245 |
+
expected = [[1, 0, 0, 0, 0, 0],
|
246 |
+
[0, 0, 2, 2, 0, 0],
|
247 |
+
[0, 0, 2, 2, 2, 0],
|
248 |
+
[3, 3, 0, 0, 0, 0],
|
249 |
+
[3, 3, 0, 0, 0, 0],
|
250 |
+
[0, 0, 0, 4, 4, 0]]
|
251 |
+
assert_array_almost_equal(out, expected)
|
252 |
+
assert_equal(n, 4)
|
253 |
+
|
254 |
+
|
255 |
+
def test_label11_inplace():
|
256 |
+
for type in types:
|
257 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
258 |
+
[0, 0, 1, 1, 0, 0],
|
259 |
+
[0, 0, 1, 1, 1, 0],
|
260 |
+
[1, 1, 0, 0, 0, 0],
|
261 |
+
[1, 1, 0, 0, 0, 0],
|
262 |
+
[0, 0, 0, 1, 1, 0]], type)
|
263 |
+
n = ndimage.label(data, output=data)
|
264 |
+
expected = [[1, 0, 0, 0, 0, 0],
|
265 |
+
[0, 0, 2, 2, 0, 0],
|
266 |
+
[0, 0, 2, 2, 2, 0],
|
267 |
+
[3, 3, 0, 0, 0, 0],
|
268 |
+
[3, 3, 0, 0, 0, 0],
|
269 |
+
[0, 0, 0, 4, 4, 0]]
|
270 |
+
assert_array_almost_equal(data, expected)
|
271 |
+
assert_equal(n, 4)
|
272 |
+
|
273 |
+
|
274 |
+
def test_label12():
|
275 |
+
for type in types:
|
276 |
+
data = np.array([[0, 0, 0, 0, 1, 1],
|
277 |
+
[0, 0, 0, 0, 0, 1],
|
278 |
+
[0, 0, 1, 0, 1, 1],
|
279 |
+
[0, 0, 1, 1, 1, 1],
|
280 |
+
[0, 0, 0, 1, 1, 0]], type)
|
281 |
+
out, n = ndimage.label(data)
|
282 |
+
expected = [[0, 0, 0, 0, 1, 1],
|
283 |
+
[0, 0, 0, 0, 0, 1],
|
284 |
+
[0, 0, 1, 0, 1, 1],
|
285 |
+
[0, 0, 1, 1, 1, 1],
|
286 |
+
[0, 0, 0, 1, 1, 0]]
|
287 |
+
assert_array_almost_equal(out, expected)
|
288 |
+
assert_equal(n, 1)
|
289 |
+
|
290 |
+
|
291 |
+
def test_label13():
|
292 |
+
for type in types:
|
293 |
+
data = np.array([[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1],
|
294 |
+
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1],
|
295 |
+
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
|
296 |
+
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
|
297 |
+
type)
|
298 |
+
out, n = ndimage.label(data)
|
299 |
+
expected = [[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1],
|
300 |
+
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1],
|
301 |
+
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
|
302 |
+
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
|
303 |
+
assert_array_almost_equal(out, expected)
|
304 |
+
assert_equal(n, 1)
|
305 |
+
|
306 |
+
|
307 |
+
def test_label_output_typed():
|
308 |
+
data = np.ones([5])
|
309 |
+
for t in types:
|
310 |
+
output = np.zeros([5], dtype=t)
|
311 |
+
n = ndimage.label(data, output=output)
|
312 |
+
assert_array_almost_equal(output, 1)
|
313 |
+
assert_equal(n, 1)
|
314 |
+
|
315 |
+
|
316 |
+
def test_label_output_dtype():
|
317 |
+
data = np.ones([5])
|
318 |
+
for t in types:
|
319 |
+
output, n = ndimage.label(data, output=t)
|
320 |
+
assert_array_almost_equal(output, 1)
|
321 |
+
assert output.dtype == t
|
322 |
+
|
323 |
+
|
324 |
+
def test_label_output_wrong_size():
|
325 |
+
data = np.ones([5])
|
326 |
+
for t in types:
|
327 |
+
output = np.zeros([10], t)
|
328 |
+
assert_raises((RuntimeError, ValueError),
|
329 |
+
ndimage.label, data, output=output)
|
330 |
+
|
331 |
+
|
332 |
+
def test_label_structuring_elements():
|
333 |
+
data = np.loadtxt(os.path.join(os.path.dirname(
|
334 |
+
__file__), "data", "label_inputs.txt"))
|
335 |
+
strels = np.loadtxt(os.path.join(
|
336 |
+
os.path.dirname(__file__), "data", "label_strels.txt"))
|
337 |
+
results = np.loadtxt(os.path.join(
|
338 |
+
os.path.dirname(__file__), "data", "label_results.txt"))
|
339 |
+
data = data.reshape((-1, 7, 7))
|
340 |
+
strels = strels.reshape((-1, 3, 3))
|
341 |
+
results = results.reshape((-1, 7, 7))
|
342 |
+
r = 0
|
343 |
+
for i in range(data.shape[0]):
|
344 |
+
d = data[i, :, :]
|
345 |
+
for j in range(strels.shape[0]):
|
346 |
+
s = strels[j, :, :]
|
347 |
+
assert_equal(ndimage.label(d, s)[0], results[r, :, :])
|
348 |
+
r += 1
|
349 |
+
|
350 |
+
|
351 |
+
def test_ticket_742():
|
352 |
+
def SE(img, thresh=.7, size=4):
|
353 |
+
mask = img > thresh
|
354 |
+
rank = len(mask.shape)
|
355 |
+
la, co = ndimage.label(mask,
|
356 |
+
ndimage.generate_binary_structure(rank, rank))
|
357 |
+
_ = ndimage.find_objects(la)
|
358 |
+
|
359 |
+
if np.dtype(np.intp) != np.dtype('i'):
|
360 |
+
shape = (3, 1240, 1240)
|
361 |
+
a = np.random.rand(np.prod(shape)).reshape(shape)
|
362 |
+
# shouldn't crash
|
363 |
+
SE(a)
|
364 |
+
|
365 |
+
|
366 |
+
def test_gh_issue_3025():
|
367 |
+
"""Github issue #3025 - improper merging of labels"""
|
368 |
+
d = np.zeros((60, 320))
|
369 |
+
d[:, :257] = 1
|
370 |
+
d[:, 260:] = 1
|
371 |
+
d[36, 257] = 1
|
372 |
+
d[35, 258] = 1
|
373 |
+
d[35, 259] = 1
|
374 |
+
assert ndimage.label(d, np.ones((3, 3)))[1] == 1
|
375 |
+
|
376 |
+
|
377 |
+
def test_label_default_dtype():
|
378 |
+
test_array = np.random.rand(10, 10)
|
379 |
+
label, no_features = ndimage.label(test_array > 0.5)
|
380 |
+
assert_(label.dtype in (np.int32, np.int64))
|
381 |
+
# Shouldn't raise an exception
|
382 |
+
ndimage.find_objects(label)
|
383 |
+
|
384 |
+
|
385 |
+
def test_find_objects01():
|
386 |
+
data = np.ones([], dtype=int)
|
387 |
+
out = ndimage.find_objects(data)
|
388 |
+
assert_(out == [()])
|
389 |
+
|
390 |
+
|
391 |
+
def test_find_objects02():
|
392 |
+
data = np.zeros([], dtype=int)
|
393 |
+
out = ndimage.find_objects(data)
|
394 |
+
assert_(out == [])
|
395 |
+
|
396 |
+
|
397 |
+
def test_find_objects03():
|
398 |
+
data = np.ones([1], dtype=int)
|
399 |
+
out = ndimage.find_objects(data)
|
400 |
+
assert_equal(out, [(slice(0, 1, None),)])
|
401 |
+
|
402 |
+
|
403 |
+
def test_find_objects04():
|
404 |
+
data = np.zeros([1], dtype=int)
|
405 |
+
out = ndimage.find_objects(data)
|
406 |
+
assert_equal(out, [])
|
407 |
+
|
408 |
+
|
409 |
+
def test_find_objects05():
|
410 |
+
data = np.ones([5], dtype=int)
|
411 |
+
out = ndimage.find_objects(data)
|
412 |
+
assert_equal(out, [(slice(0, 5, None),)])
|
413 |
+
|
414 |
+
|
415 |
+
def test_find_objects06():
|
416 |
+
data = np.array([1, 0, 2, 2, 0, 3])
|
417 |
+
out = ndimage.find_objects(data)
|
418 |
+
assert_equal(out, [(slice(0, 1, None),),
|
419 |
+
(slice(2, 4, None),),
|
420 |
+
(slice(5, 6, None),)])
|
421 |
+
|
422 |
+
|
423 |
+
def test_find_objects07():
|
424 |
+
data = np.array([[0, 0, 0, 0, 0, 0],
|
425 |
+
[0, 0, 0, 0, 0, 0],
|
426 |
+
[0, 0, 0, 0, 0, 0],
|
427 |
+
[0, 0, 0, 0, 0, 0],
|
428 |
+
[0, 0, 0, 0, 0, 0],
|
429 |
+
[0, 0, 0, 0, 0, 0]])
|
430 |
+
out = ndimage.find_objects(data)
|
431 |
+
assert_equal(out, [])
|
432 |
+
|
433 |
+
|
434 |
+
def test_find_objects08():
|
435 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
436 |
+
[0, 0, 2, 2, 0, 0],
|
437 |
+
[0, 0, 2, 2, 2, 0],
|
438 |
+
[3, 3, 0, 0, 0, 0],
|
439 |
+
[3, 3, 0, 0, 0, 0],
|
440 |
+
[0, 0, 0, 4, 4, 0]])
|
441 |
+
out = ndimage.find_objects(data)
|
442 |
+
assert_equal(out, [(slice(0, 1, None), slice(0, 1, None)),
|
443 |
+
(slice(1, 3, None), slice(2, 5, None)),
|
444 |
+
(slice(3, 5, None), slice(0, 2, None)),
|
445 |
+
(slice(5, 6, None), slice(3, 5, None))])
|
446 |
+
|
447 |
+
|
448 |
+
def test_find_objects09():
|
449 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
450 |
+
[0, 0, 2, 2, 0, 0],
|
451 |
+
[0, 0, 2, 2, 2, 0],
|
452 |
+
[0, 0, 0, 0, 0, 0],
|
453 |
+
[0, 0, 0, 0, 0, 0],
|
454 |
+
[0, 0, 0, 4, 4, 0]])
|
455 |
+
out = ndimage.find_objects(data)
|
456 |
+
assert_equal(out, [(slice(0, 1, None), slice(0, 1, None)),
|
457 |
+
(slice(1, 3, None), slice(2, 5, None)),
|
458 |
+
None,
|
459 |
+
(slice(5, 6, None), slice(3, 5, None))])
|
460 |
+
|
461 |
+
|
462 |
+
def test_value_indices01():
|
463 |
+
"Test dictionary keys and entries"
|
464 |
+
data = np.array([[1, 0, 0, 0, 0, 0],
|
465 |
+
[0, 0, 2, 2, 0, 0],
|
466 |
+
[0, 0, 2, 2, 2, 0],
|
467 |
+
[0, 0, 0, 0, 0, 0],
|
468 |
+
[0, 0, 0, 0, 0, 0],
|
469 |
+
[0, 0, 0, 4, 4, 0]])
|
470 |
+
vi = ndimage.value_indices(data, ignore_value=0)
|
471 |
+
true_keys = [1, 2, 4]
|
472 |
+
assert_equal(list(vi.keys()), true_keys)
|
473 |
+
|
474 |
+
truevi = {}
|
475 |
+
for k in true_keys:
|
476 |
+
truevi[k] = np.where(data == k)
|
477 |
+
|
478 |
+
vi = ndimage.value_indices(data, ignore_value=0)
|
479 |
+
assert_equal(vi, truevi)
|
480 |
+
|
481 |
+
|
482 |
+
def test_value_indices02():
|
483 |
+
"Test input checking"
|
484 |
+
data = np.zeros((5, 4), dtype=np.float32)
|
485 |
+
msg = "Parameter 'arr' must be an integer array"
|
486 |
+
with assert_raises(ValueError, match=msg):
|
487 |
+
ndimage.value_indices(data)
|
488 |
+
|
489 |
+
|
490 |
+
def test_value_indices03():
|
491 |
+
"Test different input array shapes, from 1-D to 4-D"
|
492 |
+
for shape in [(36,), (18, 2), (3, 3, 4), (3, 3, 2, 2)]:
|
493 |
+
a = np.array((12*[1]+12*[2]+12*[3]), dtype=np.int32).reshape(shape)
|
494 |
+
trueKeys = np.unique(a)
|
495 |
+
vi = ndimage.value_indices(a)
|
496 |
+
assert_equal(list(vi.keys()), list(trueKeys))
|
497 |
+
for k in trueKeys:
|
498 |
+
trueNdx = np.where(a == k)
|
499 |
+
assert_equal(vi[k], trueNdx)
|
500 |
+
|
501 |
+
|
502 |
+
def test_sum01():
|
503 |
+
for type in types:
|
504 |
+
input = np.array([], type)
|
505 |
+
output = ndimage.sum(input)
|
506 |
+
assert_equal(output, 0.0)
|
507 |
+
|
508 |
+
|
509 |
+
def test_sum02():
|
510 |
+
for type in types:
|
511 |
+
input = np.zeros([0, 4], type)
|
512 |
+
output = ndimage.sum(input)
|
513 |
+
assert_equal(output, 0.0)
|
514 |
+
|
515 |
+
|
516 |
+
def test_sum03():
|
517 |
+
for type in types:
|
518 |
+
input = np.ones([], type)
|
519 |
+
output = ndimage.sum(input)
|
520 |
+
assert_almost_equal(output, 1.0)
|
521 |
+
|
522 |
+
|
523 |
+
def test_sum04():
|
524 |
+
for type in types:
|
525 |
+
input = np.array([1, 2], type)
|
526 |
+
output = ndimage.sum(input)
|
527 |
+
assert_almost_equal(output, 3.0)
|
528 |
+
|
529 |
+
|
530 |
+
def test_sum05():
|
531 |
+
for type in types:
|
532 |
+
input = np.array([[1, 2], [3, 4]], type)
|
533 |
+
output = ndimage.sum(input)
|
534 |
+
assert_almost_equal(output, 10.0)
|
535 |
+
|
536 |
+
|
537 |
+
def test_sum06():
|
538 |
+
labels = np.array([], bool)
|
539 |
+
for type in types:
|
540 |
+
input = np.array([], type)
|
541 |
+
output = ndimage.sum(input, labels=labels)
|
542 |
+
assert_equal(output, 0.0)
|
543 |
+
|
544 |
+
|
545 |
+
def test_sum07():
|
546 |
+
labels = np.ones([0, 4], bool)
|
547 |
+
for type in types:
|
548 |
+
input = np.zeros([0, 4], type)
|
549 |
+
output = ndimage.sum(input, labels=labels)
|
550 |
+
assert_equal(output, 0.0)
|
551 |
+
|
552 |
+
|
553 |
+
def test_sum08():
|
554 |
+
labels = np.array([1, 0], bool)
|
555 |
+
for type in types:
|
556 |
+
input = np.array([1, 2], type)
|
557 |
+
output = ndimage.sum(input, labels=labels)
|
558 |
+
assert_equal(output, 1.0)
|
559 |
+
|
560 |
+
|
561 |
+
def test_sum09():
|
562 |
+
labels = np.array([1, 0], bool)
|
563 |
+
for type in types:
|
564 |
+
input = np.array([[1, 2], [3, 4]], type)
|
565 |
+
output = ndimage.sum(input, labels=labels)
|
566 |
+
assert_almost_equal(output, 4.0)
|
567 |
+
|
568 |
+
|
569 |
+
def test_sum10():
|
570 |
+
labels = np.array([1, 0], bool)
|
571 |
+
input = np.array([[1, 2], [3, 4]], bool)
|
572 |
+
output = ndimage.sum(input, labels=labels)
|
573 |
+
assert_almost_equal(output, 2.0)
|
574 |
+
|
575 |
+
|
576 |
+
def test_sum11():
|
577 |
+
labels = np.array([1, 2], np.int8)
|
578 |
+
for type in types:
|
579 |
+
input = np.array([[1, 2], [3, 4]], type)
|
580 |
+
output = ndimage.sum(input, labels=labels,
|
581 |
+
index=2)
|
582 |
+
assert_almost_equal(output, 6.0)
|
583 |
+
|
584 |
+
|
585 |
+
def test_sum12():
|
586 |
+
labels = np.array([[1, 2], [2, 4]], np.int8)
|
587 |
+
for type in types:
|
588 |
+
input = np.array([[1, 2], [3, 4]], type)
|
589 |
+
output = ndimage.sum(input, labels=labels, index=[4, 8, 2])
|
590 |
+
assert_array_almost_equal(output, [4.0, 0.0, 5.0])
|
591 |
+
|
592 |
+
|
593 |
+
def test_sum_labels():
|
594 |
+
labels = np.array([[1, 2], [2, 4]], np.int8)
|
595 |
+
for type in types:
|
596 |
+
input = np.array([[1, 2], [3, 4]], type)
|
597 |
+
output_sum = ndimage.sum(input, labels=labels, index=[4, 8, 2])
|
598 |
+
output_labels = ndimage.sum_labels(
|
599 |
+
input, labels=labels, index=[4, 8, 2])
|
600 |
+
|
601 |
+
assert (output_sum == output_labels).all()
|
602 |
+
assert_array_almost_equal(output_labels, [4.0, 0.0, 5.0])
|
603 |
+
|
604 |
+
|
605 |
+
def test_mean01():
|
606 |
+
labels = np.array([1, 0], bool)
|
607 |
+
for type in types:
|
608 |
+
input = np.array([[1, 2], [3, 4]], type)
|
609 |
+
output = ndimage.mean(input, labels=labels)
|
610 |
+
assert_almost_equal(output, 2.0)
|
611 |
+
|
612 |
+
|
613 |
+
def test_mean02():
|
614 |
+
labels = np.array([1, 0], bool)
|
615 |
+
input = np.array([[1, 2], [3, 4]], bool)
|
616 |
+
output = ndimage.mean(input, labels=labels)
|
617 |
+
assert_almost_equal(output, 1.0)
|
618 |
+
|
619 |
+
|
620 |
+
def test_mean03():
|
621 |
+
labels = np.array([1, 2])
|
622 |
+
for type in types:
|
623 |
+
input = np.array([[1, 2], [3, 4]], type)
|
624 |
+
output = ndimage.mean(input, labels=labels,
|
625 |
+
index=2)
|
626 |
+
assert_almost_equal(output, 3.0)
|
627 |
+
|
628 |
+
|
629 |
+
def test_mean04():
|
630 |
+
labels = np.array([[1, 2], [2, 4]], np.int8)
|
631 |
+
with np.errstate(all='ignore'):
|
632 |
+
for type in types:
|
633 |
+
input = np.array([[1, 2], [3, 4]], type)
|
634 |
+
output = ndimage.mean(input, labels=labels,
|
635 |
+
index=[4, 8, 2])
|
636 |
+
assert_array_almost_equal(output[[0, 2]], [4.0, 2.5])
|
637 |
+
assert_(np.isnan(output[1]))
|
638 |
+
|
639 |
+
|
640 |
+
def test_minimum01():
|
641 |
+
labels = np.array([1, 0], bool)
|
642 |
+
for type in types:
|
643 |
+
input = np.array([[1, 2], [3, 4]], type)
|
644 |
+
output = ndimage.minimum(input, labels=labels)
|
645 |
+
assert_almost_equal(output, 1.0)
|
646 |
+
|
647 |
+
|
648 |
+
def test_minimum02():
|
649 |
+
labels = np.array([1, 0], bool)
|
650 |
+
input = np.array([[2, 2], [2, 4]], bool)
|
651 |
+
output = ndimage.minimum(input, labels=labels)
|
652 |
+
assert_almost_equal(output, 1.0)
|
653 |
+
|
654 |
+
|
655 |
+
def test_minimum03():
|
656 |
+
labels = np.array([1, 2])
|
657 |
+
for type in types:
|
658 |
+
input = np.array([[1, 2], [3, 4]], type)
|
659 |
+
output = ndimage.minimum(input, labels=labels,
|
660 |
+
index=2)
|
661 |
+
assert_almost_equal(output, 2.0)
|
662 |
+
|
663 |
+
|
664 |
+
def test_minimum04():
|
665 |
+
labels = np.array([[1, 2], [2, 3]])
|
666 |
+
for type in types:
|
667 |
+
input = np.array([[1, 2], [3, 4]], type)
|
668 |
+
output = ndimage.minimum(input, labels=labels,
|
669 |
+
index=[2, 3, 8])
|
670 |
+
assert_array_almost_equal(output, [2.0, 4.0, 0.0])
|
671 |
+
|
672 |
+
|
673 |
+
def test_maximum01():
|
674 |
+
labels = np.array([1, 0], bool)
|
675 |
+
for type in types:
|
676 |
+
input = np.array([[1, 2], [3, 4]], type)
|
677 |
+
output = ndimage.maximum(input, labels=labels)
|
678 |
+
assert_almost_equal(output, 3.0)
|
679 |
+
|
680 |
+
|
681 |
+
def test_maximum02():
|
682 |
+
labels = np.array([1, 0], bool)
|
683 |
+
input = np.array([[2, 2], [2, 4]], bool)
|
684 |
+
output = ndimage.maximum(input, labels=labels)
|
685 |
+
assert_almost_equal(output, 1.0)
|
686 |
+
|
687 |
+
|
688 |
+
def test_maximum03():
|
689 |
+
labels = np.array([1, 2])
|
690 |
+
for type in types:
|
691 |
+
input = np.array([[1, 2], [3, 4]], type)
|
692 |
+
output = ndimage.maximum(input, labels=labels,
|
693 |
+
index=2)
|
694 |
+
assert_almost_equal(output, 4.0)
|
695 |
+
|
696 |
+
|
697 |
+
def test_maximum04():
|
698 |
+
labels = np.array([[1, 2], [2, 3]])
|
699 |
+
for type in types:
|
700 |
+
input = np.array([[1, 2], [3, 4]], type)
|
701 |
+
output = ndimage.maximum(input, labels=labels,
|
702 |
+
index=[2, 3, 8])
|
703 |
+
assert_array_almost_equal(output, [3.0, 4.0, 0.0])
|
704 |
+
|
705 |
+
|
706 |
+
def test_maximum05():
|
707 |
+
# Regression test for ticket #501 (Trac)
|
708 |
+
x = np.array([-3, -2, -1])
|
709 |
+
assert_equal(ndimage.maximum(x), -1)
|
710 |
+
|
711 |
+
|
712 |
+
def test_median01():
|
713 |
+
a = np.array([[1, 2, 0, 1],
|
714 |
+
[5, 3, 0, 4],
|
715 |
+
[0, 0, 0, 7],
|
716 |
+
[9, 3, 0, 0]])
|
717 |
+
labels = np.array([[1, 1, 0, 2],
|
718 |
+
[1, 1, 0, 2],
|
719 |
+
[0, 0, 0, 2],
|
720 |
+
[3, 3, 0, 0]])
|
721 |
+
output = ndimage.median(a, labels=labels, index=[1, 2, 3])
|
722 |
+
assert_array_almost_equal(output, [2.5, 4.0, 6.0])
|
723 |
+
|
724 |
+
|
725 |
+
def test_median02():
|
726 |
+
a = np.array([[1, 2, 0, 1],
|
727 |
+
[5, 3, 0, 4],
|
728 |
+
[0, 0, 0, 7],
|
729 |
+
[9, 3, 0, 0]])
|
730 |
+
output = ndimage.median(a)
|
731 |
+
assert_almost_equal(output, 1.0)
|
732 |
+
|
733 |
+
|
734 |
+
def test_median03():
|
735 |
+
a = np.array([[1, 2, 0, 1],
|
736 |
+
[5, 3, 0, 4],
|
737 |
+
[0, 0, 0, 7],
|
738 |
+
[9, 3, 0, 0]])
|
739 |
+
labels = np.array([[1, 1, 0, 2],
|
740 |
+
[1, 1, 0, 2],
|
741 |
+
[0, 0, 0, 2],
|
742 |
+
[3, 3, 0, 0]])
|
743 |
+
output = ndimage.median(a, labels=labels)
|
744 |
+
assert_almost_equal(output, 3.0)
|
745 |
+
|
746 |
+
|
747 |
+
def test_median_gh12836_bool():
|
748 |
+
# test boolean addition fix on example from gh-12836
|
749 |
+
a = np.asarray([1, 1], dtype=bool)
|
750 |
+
output = ndimage.median(a, labels=np.ones((2,)), index=[1])
|
751 |
+
assert_array_almost_equal(output, [1.0])
|
752 |
+
|
753 |
+
|
754 |
+
def test_median_no_int_overflow():
|
755 |
+
# test integer overflow fix on example from gh-12836
|
756 |
+
a = np.asarray([65, 70], dtype=np.int8)
|
757 |
+
output = ndimage.median(a, labels=np.ones((2,)), index=[1])
|
758 |
+
assert_array_almost_equal(output, [67.5])
|
759 |
+
|
760 |
+
|
761 |
+
def test_variance01():
|
762 |
+
with np.errstate(all='ignore'):
|
763 |
+
for type in types:
|
764 |
+
input = np.array([], type)
|
765 |
+
with suppress_warnings() as sup:
|
766 |
+
sup.filter(RuntimeWarning, "Mean of empty slice")
|
767 |
+
output = ndimage.variance(input)
|
768 |
+
assert_(np.isnan(output))
|
769 |
+
|
770 |
+
|
771 |
+
def test_variance02():
|
772 |
+
for type in types:
|
773 |
+
input = np.array([1], type)
|
774 |
+
output = ndimage.variance(input)
|
775 |
+
assert_almost_equal(output, 0.0)
|
776 |
+
|
777 |
+
|
778 |
+
def test_variance03():
|
779 |
+
for type in types:
|
780 |
+
input = np.array([1, 3], type)
|
781 |
+
output = ndimage.variance(input)
|
782 |
+
assert_almost_equal(output, 1.0)
|
783 |
+
|
784 |
+
|
785 |
+
def test_variance04():
|
786 |
+
input = np.array([1, 0], bool)
|
787 |
+
output = ndimage.variance(input)
|
788 |
+
assert_almost_equal(output, 0.25)
|
789 |
+
|
790 |
+
|
791 |
+
def test_variance05():
|
792 |
+
labels = [2, 2, 3]
|
793 |
+
for type in types:
|
794 |
+
input = np.array([1, 3, 8], type)
|
795 |
+
output = ndimage.variance(input, labels, 2)
|
796 |
+
assert_almost_equal(output, 1.0)
|
797 |
+
|
798 |
+
|
799 |
+
def test_variance06():
|
800 |
+
labels = [2, 2, 3, 3, 4]
|
801 |
+
with np.errstate(all='ignore'):
|
802 |
+
for type in types:
|
803 |
+
input = np.array([1, 3, 8, 10, 8], type)
|
804 |
+
output = ndimage.variance(input, labels, [2, 3, 4])
|
805 |
+
assert_array_almost_equal(output, [1.0, 1.0, 0.0])
|
806 |
+
|
807 |
+
|
808 |
+
def test_standard_deviation01():
|
809 |
+
with np.errstate(all='ignore'):
|
810 |
+
for type in types:
|
811 |
+
input = np.array([], type)
|
812 |
+
with suppress_warnings() as sup:
|
813 |
+
sup.filter(RuntimeWarning, "Mean of empty slice")
|
814 |
+
output = ndimage.standard_deviation(input)
|
815 |
+
assert_(np.isnan(output))
|
816 |
+
|
817 |
+
|
818 |
+
def test_standard_deviation02():
|
819 |
+
for type in types:
|
820 |
+
input = np.array([1], type)
|
821 |
+
output = ndimage.standard_deviation(input)
|
822 |
+
assert_almost_equal(output, 0.0)
|
823 |
+
|
824 |
+
|
825 |
+
def test_standard_deviation03():
|
826 |
+
for type in types:
|
827 |
+
input = np.array([1, 3], type)
|
828 |
+
output = ndimage.standard_deviation(input)
|
829 |
+
assert_almost_equal(output, np.sqrt(1.0))
|
830 |
+
|
831 |
+
|
832 |
+
def test_standard_deviation04():
|
833 |
+
input = np.array([1, 0], bool)
|
834 |
+
output = ndimage.standard_deviation(input)
|
835 |
+
assert_almost_equal(output, 0.5)
|
836 |
+
|
837 |
+
|
838 |
+
def test_standard_deviation05():
|
839 |
+
labels = [2, 2, 3]
|
840 |
+
for type in types:
|
841 |
+
input = np.array([1, 3, 8], type)
|
842 |
+
output = ndimage.standard_deviation(input, labels, 2)
|
843 |
+
assert_almost_equal(output, 1.0)
|
844 |
+
|
845 |
+
|
846 |
+
def test_standard_deviation06():
|
847 |
+
labels = [2, 2, 3, 3, 4]
|
848 |
+
with np.errstate(all='ignore'):
|
849 |
+
for type in types:
|
850 |
+
input = np.array([1, 3, 8, 10, 8], type)
|
851 |
+
output = ndimage.standard_deviation(input, labels, [2, 3, 4])
|
852 |
+
assert_array_almost_equal(output, [1.0, 1.0, 0.0])
|
853 |
+
|
854 |
+
|
855 |
+
def test_standard_deviation07():
|
856 |
+
labels = [1]
|
857 |
+
with np.errstate(all='ignore'):
|
858 |
+
for type in types:
|
859 |
+
input = np.array([-0.00619519], type)
|
860 |
+
output = ndimage.standard_deviation(input, labels, [1])
|
861 |
+
assert_array_almost_equal(output, [0])
|
862 |
+
|
863 |
+
|
864 |
+
def test_minimum_position01():
|
865 |
+
labels = np.array([1, 0], bool)
|
866 |
+
for type in types:
|
867 |
+
input = np.array([[1, 2], [3, 4]], type)
|
868 |
+
output = ndimage.minimum_position(input, labels=labels)
|
869 |
+
assert_equal(output, (0, 0))
|
870 |
+
|
871 |
+
|
872 |
+
def test_minimum_position02():
|
873 |
+
for type in types:
|
874 |
+
input = np.array([[5, 4, 2, 5],
|
875 |
+
[3, 7, 0, 2],
|
876 |
+
[1, 5, 1, 1]], type)
|
877 |
+
output = ndimage.minimum_position(input)
|
878 |
+
assert_equal(output, (1, 2))
|
879 |
+
|
880 |
+
|
881 |
+
def test_minimum_position03():
|
882 |
+
input = np.array([[5, 4, 2, 5],
|
883 |
+
[3, 7, 0, 2],
|
884 |
+
[1, 5, 1, 1]], bool)
|
885 |
+
output = ndimage.minimum_position(input)
|
886 |
+
assert_equal(output, (1, 2))
|
887 |
+
|
888 |
+
|
889 |
+
def test_minimum_position04():
|
890 |
+
input = np.array([[5, 4, 2, 5],
|
891 |
+
[3, 7, 1, 2],
|
892 |
+
[1, 5, 1, 1]], bool)
|
893 |
+
output = ndimage.minimum_position(input)
|
894 |
+
assert_equal(output, (0, 0))
|
895 |
+
|
896 |
+
|
897 |
+
def test_minimum_position05():
|
898 |
+
labels = [1, 2, 0, 4]
|
899 |
+
for type in types:
|
900 |
+
input = np.array([[5, 4, 2, 5],
|
901 |
+
[3, 7, 0, 2],
|
902 |
+
[1, 5, 2, 3]], type)
|
903 |
+
output = ndimage.minimum_position(input, labels)
|
904 |
+
assert_equal(output, (2, 0))
|
905 |
+
|
906 |
+
|
907 |
+
def test_minimum_position06():
|
908 |
+
labels = [1, 2, 3, 4]
|
909 |
+
for type in types:
|
910 |
+
input = np.array([[5, 4, 2, 5],
|
911 |
+
[3, 7, 0, 2],
|
912 |
+
[1, 5, 1, 1]], type)
|
913 |
+
output = ndimage.minimum_position(input, labels, 2)
|
914 |
+
assert_equal(output, (0, 1))
|
915 |
+
|
916 |
+
|
917 |
+
def test_minimum_position07():
|
918 |
+
labels = [1, 2, 3, 4]
|
919 |
+
for type in types:
|
920 |
+
input = np.array([[5, 4, 2, 5],
|
921 |
+
[3, 7, 0, 2],
|
922 |
+
[1, 5, 1, 1]], type)
|
923 |
+
output = ndimage.minimum_position(input, labels,
|
924 |
+
[2, 3])
|
925 |
+
assert_equal(output[0], (0, 1))
|
926 |
+
assert_equal(output[1], (1, 2))
|
927 |
+
|
928 |
+
|
929 |
+
def test_maximum_position01():
|
930 |
+
labels = np.array([1, 0], bool)
|
931 |
+
for type in types:
|
932 |
+
input = np.array([[1, 2], [3, 4]], type)
|
933 |
+
output = ndimage.maximum_position(input,
|
934 |
+
labels=labels)
|
935 |
+
assert_equal(output, (1, 0))
|
936 |
+
|
937 |
+
|
938 |
+
def test_maximum_position02():
|
939 |
+
for type in types:
|
940 |
+
input = np.array([[5, 4, 2, 5],
|
941 |
+
[3, 7, 8, 2],
|
942 |
+
[1, 5, 1, 1]], type)
|
943 |
+
output = ndimage.maximum_position(input)
|
944 |
+
assert_equal(output, (1, 2))
|
945 |
+
|
946 |
+
|
947 |
+
def test_maximum_position03():
|
948 |
+
input = np.array([[5, 4, 2, 5],
|
949 |
+
[3, 7, 8, 2],
|
950 |
+
[1, 5, 1, 1]], bool)
|
951 |
+
output = ndimage.maximum_position(input)
|
952 |
+
assert_equal(output, (0, 0))
|
953 |
+
|
954 |
+
|
955 |
+
def test_maximum_position04():
|
956 |
+
labels = [1, 2, 0, 4]
|
957 |
+
for type in types:
|
958 |
+
input = np.array([[5, 4, 2, 5],
|
959 |
+
[3, 7, 8, 2],
|
960 |
+
[1, 5, 1, 1]], type)
|
961 |
+
output = ndimage.maximum_position(input, labels)
|
962 |
+
assert_equal(output, (1, 1))
|
963 |
+
|
964 |
+
|
965 |
+
def test_maximum_position05():
|
966 |
+
labels = [1, 2, 0, 4]
|
967 |
+
for type in types:
|
968 |
+
input = np.array([[5, 4, 2, 5],
|
969 |
+
[3, 7, 8, 2],
|
970 |
+
[1, 5, 1, 1]], type)
|
971 |
+
output = ndimage.maximum_position(input, labels, 1)
|
972 |
+
assert_equal(output, (0, 0))
|
973 |
+
|
974 |
+
|
975 |
+
def test_maximum_position06():
|
976 |
+
labels = [1, 2, 0, 4]
|
977 |
+
for type in types:
|
978 |
+
input = np.array([[5, 4, 2, 5],
|
979 |
+
[3, 7, 8, 2],
|
980 |
+
[1, 5, 1, 1]], type)
|
981 |
+
output = ndimage.maximum_position(input, labels,
|
982 |
+
[1, 2])
|
983 |
+
assert_equal(output[0], (0, 0))
|
984 |
+
assert_equal(output[1], (1, 1))
|
985 |
+
|
986 |
+
|
987 |
+
def test_maximum_position07():
|
988 |
+
# Test float labels
|
989 |
+
labels = np.array([1.0, 2.5, 0.0, 4.5])
|
990 |
+
for type in types:
|
991 |
+
input = np.array([[5, 4, 2, 5],
|
992 |
+
[3, 7, 8, 2],
|
993 |
+
[1, 5, 1, 1]], type)
|
994 |
+
output = ndimage.maximum_position(input, labels,
|
995 |
+
[1.0, 4.5])
|
996 |
+
assert_equal(output[0], (0, 0))
|
997 |
+
assert_equal(output[1], (0, 3))
|
998 |
+
|
999 |
+
|
1000 |
+
def test_extrema01():
|
1001 |
+
labels = np.array([1, 0], bool)
|
1002 |
+
for type in types:
|
1003 |
+
input = np.array([[1, 2], [3, 4]], type)
|
1004 |
+
output1 = ndimage.extrema(input, labels=labels)
|
1005 |
+
output2 = ndimage.minimum(input, labels=labels)
|
1006 |
+
output3 = ndimage.maximum(input, labels=labels)
|
1007 |
+
output4 = ndimage.minimum_position(input,
|
1008 |
+
labels=labels)
|
1009 |
+
output5 = ndimage.maximum_position(input,
|
1010 |
+
labels=labels)
|
1011 |
+
assert_equal(output1, (output2, output3, output4, output5))
|
1012 |
+
|
1013 |
+
|
1014 |
+
def test_extrema02():
|
1015 |
+
labels = np.array([1, 2])
|
1016 |
+
for type in types:
|
1017 |
+
input = np.array([[1, 2], [3, 4]], type)
|
1018 |
+
output1 = ndimage.extrema(input, labels=labels,
|
1019 |
+
index=2)
|
1020 |
+
output2 = ndimage.minimum(input, labels=labels,
|
1021 |
+
index=2)
|
1022 |
+
output3 = ndimage.maximum(input, labels=labels,
|
1023 |
+
index=2)
|
1024 |
+
output4 = ndimage.minimum_position(input,
|
1025 |
+
labels=labels, index=2)
|
1026 |
+
output5 = ndimage.maximum_position(input,
|
1027 |
+
labels=labels, index=2)
|
1028 |
+
assert_equal(output1, (output2, output3, output4, output5))
|
1029 |
+
|
1030 |
+
|
1031 |
+
def test_extrema03():
|
1032 |
+
labels = np.array([[1, 2], [2, 3]])
|
1033 |
+
for type in types:
|
1034 |
+
input = np.array([[1, 2], [3, 4]], type)
|
1035 |
+
output1 = ndimage.extrema(input, labels=labels,
|
1036 |
+
index=[2, 3, 8])
|
1037 |
+
output2 = ndimage.minimum(input, labels=labels,
|
1038 |
+
index=[2, 3, 8])
|
1039 |
+
output3 = ndimage.maximum(input, labels=labels,
|
1040 |
+
index=[2, 3, 8])
|
1041 |
+
output4 = ndimage.minimum_position(input,
|
1042 |
+
labels=labels, index=[2, 3, 8])
|
1043 |
+
output5 = ndimage.maximum_position(input,
|
1044 |
+
labels=labels, index=[2, 3, 8])
|
1045 |
+
assert_array_almost_equal(output1[0], output2)
|
1046 |
+
assert_array_almost_equal(output1[1], output3)
|
1047 |
+
assert_array_almost_equal(output1[2], output4)
|
1048 |
+
assert_array_almost_equal(output1[3], output5)
|
1049 |
+
|
1050 |
+
|
1051 |
+
def test_extrema04():
|
1052 |
+
labels = [1, 2, 0, 4]
|
1053 |
+
for type in types:
|
1054 |
+
input = np.array([[5, 4, 2, 5],
|
1055 |
+
[3, 7, 8, 2],
|
1056 |
+
[1, 5, 1, 1]], type)
|
1057 |
+
output1 = ndimage.extrema(input, labels, [1, 2])
|
1058 |
+
output2 = ndimage.minimum(input, labels, [1, 2])
|
1059 |
+
output3 = ndimage.maximum(input, labels, [1, 2])
|
1060 |
+
output4 = ndimage.minimum_position(input, labels,
|
1061 |
+
[1, 2])
|
1062 |
+
output5 = ndimage.maximum_position(input, labels,
|
1063 |
+
[1, 2])
|
1064 |
+
assert_array_almost_equal(output1[0], output2)
|
1065 |
+
assert_array_almost_equal(output1[1], output3)
|
1066 |
+
assert_array_almost_equal(output1[2], output4)
|
1067 |
+
assert_array_almost_equal(output1[3], output5)
|
1068 |
+
|
1069 |
+
|
1070 |
+
def test_center_of_mass01():
|
1071 |
+
expected = [0.0, 0.0]
|
1072 |
+
for type in types:
|
1073 |
+
input = np.array([[1, 0], [0, 0]], type)
|
1074 |
+
output = ndimage.center_of_mass(input)
|
1075 |
+
assert_array_almost_equal(output, expected)
|
1076 |
+
|
1077 |
+
|
1078 |
+
def test_center_of_mass02():
|
1079 |
+
expected = [1, 0]
|
1080 |
+
for type in types:
|
1081 |
+
input = np.array([[0, 0], [1, 0]], type)
|
1082 |
+
output = ndimage.center_of_mass(input)
|
1083 |
+
assert_array_almost_equal(output, expected)
|
1084 |
+
|
1085 |
+
|
1086 |
+
def test_center_of_mass03():
|
1087 |
+
expected = [0, 1]
|
1088 |
+
for type in types:
|
1089 |
+
input = np.array([[0, 1], [0, 0]], type)
|
1090 |
+
output = ndimage.center_of_mass(input)
|
1091 |
+
assert_array_almost_equal(output, expected)
|
1092 |
+
|
1093 |
+
|
1094 |
+
def test_center_of_mass04():
|
1095 |
+
expected = [1, 1]
|
1096 |
+
for type in types:
|
1097 |
+
input = np.array([[0, 0], [0, 1]], type)
|
1098 |
+
output = ndimage.center_of_mass(input)
|
1099 |
+
assert_array_almost_equal(output, expected)
|
1100 |
+
|
1101 |
+
|
1102 |
+
def test_center_of_mass05():
|
1103 |
+
expected = [0.5, 0.5]
|
1104 |
+
for type in types:
|
1105 |
+
input = np.array([[1, 1], [1, 1]], type)
|
1106 |
+
output = ndimage.center_of_mass(input)
|
1107 |
+
assert_array_almost_equal(output, expected)
|
1108 |
+
|
1109 |
+
|
1110 |
+
def test_center_of_mass06():
|
1111 |
+
expected = [0.5, 0.5]
|
1112 |
+
input = np.array([[1, 2], [3, 1]], bool)
|
1113 |
+
output = ndimage.center_of_mass(input)
|
1114 |
+
assert_array_almost_equal(output, expected)
|
1115 |
+
|
1116 |
+
|
1117 |
+
def test_center_of_mass07():
|
1118 |
+
labels = [1, 0]
|
1119 |
+
expected = [0.5, 0.0]
|
1120 |
+
input = np.array([[1, 2], [3, 1]], bool)
|
1121 |
+
output = ndimage.center_of_mass(input, labels)
|
1122 |
+
assert_array_almost_equal(output, expected)
|
1123 |
+
|
1124 |
+
|
1125 |
+
def test_center_of_mass08():
|
1126 |
+
labels = [1, 2]
|
1127 |
+
expected = [0.5, 1.0]
|
1128 |
+
input = np.array([[5, 2], [3, 1]], bool)
|
1129 |
+
output = ndimage.center_of_mass(input, labels, 2)
|
1130 |
+
assert_array_almost_equal(output, expected)
|
1131 |
+
|
1132 |
+
|
1133 |
+
def test_center_of_mass09():
|
1134 |
+
labels = [1, 2]
|
1135 |
+
expected = [(0.5, 0.0), (0.5, 1.0)]
|
1136 |
+
input = np.array([[1, 2], [1, 1]], bool)
|
1137 |
+
output = ndimage.center_of_mass(input, labels, [1, 2])
|
1138 |
+
assert_array_almost_equal(output, expected)
|
1139 |
+
|
1140 |
+
|
1141 |
+
def test_histogram01():
|
1142 |
+
expected = np.ones(10)
|
1143 |
+
input = np.arange(10)
|
1144 |
+
output = ndimage.histogram(input, 0, 10, 10)
|
1145 |
+
assert_array_almost_equal(output, expected)
|
1146 |
+
|
1147 |
+
|
1148 |
+
def test_histogram02():
|
1149 |
+
labels = [1, 1, 1, 1, 2, 2, 2, 2]
|
1150 |
+
expected = [0, 2, 0, 1, 1]
|
1151 |
+
input = np.array([1, 1, 3, 4, 3, 3, 3, 3])
|
1152 |
+
output = ndimage.histogram(input, 0, 4, 5, labels, 1)
|
1153 |
+
assert_array_almost_equal(output, expected)
|
1154 |
+
|
1155 |
+
|
1156 |
+
def test_histogram03():
|
1157 |
+
labels = [1, 0, 1, 1, 2, 2, 2, 2]
|
1158 |
+
expected1 = [0, 1, 0, 1, 1]
|
1159 |
+
expected2 = [0, 0, 0, 3, 0]
|
1160 |
+
input = np.array([1, 1, 3, 4, 3, 5, 3, 3])
|
1161 |
+
output = ndimage.histogram(input, 0, 4, 5, labels, (1, 2))
|
1162 |
+
|
1163 |
+
assert_array_almost_equal(output[0], expected1)
|
1164 |
+
assert_array_almost_equal(output[1], expected2)
|
1165 |
+
|
1166 |
+
|
1167 |
+
def test_stat_funcs_2d():
|
1168 |
+
a = np.array([[5, 6, 0, 0, 0], [8, 9, 0, 0, 0], [0, 0, 0, 3, 5]])
|
1169 |
+
lbl = np.array([[1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 0, 2, 2]])
|
1170 |
+
|
1171 |
+
mean = ndimage.mean(a, labels=lbl, index=[1, 2])
|
1172 |
+
assert_array_equal(mean, [7.0, 4.0])
|
1173 |
+
|
1174 |
+
var = ndimage.variance(a, labels=lbl, index=[1, 2])
|
1175 |
+
assert_array_equal(var, [2.5, 1.0])
|
1176 |
+
|
1177 |
+
std = ndimage.standard_deviation(a, labels=lbl, index=[1, 2])
|
1178 |
+
assert_array_almost_equal(std, np.sqrt([2.5, 1.0]))
|
1179 |
+
|
1180 |
+
med = ndimage.median(a, labels=lbl, index=[1, 2])
|
1181 |
+
assert_array_equal(med, [7.0, 4.0])
|
1182 |
+
|
1183 |
+
min = ndimage.minimum(a, labels=lbl, index=[1, 2])
|
1184 |
+
assert_array_equal(min, [5, 3])
|
1185 |
+
|
1186 |
+
max = ndimage.maximum(a, labels=lbl, index=[1, 2])
|
1187 |
+
assert_array_equal(max, [9, 5])
|
1188 |
+
|
1189 |
+
|
1190 |
+
class TestWatershedIft:
|
1191 |
+
|
1192 |
+
def test_watershed_ift01(self):
|
1193 |
+
data = np.array([[0, 0, 0, 0, 0, 0, 0],
|
1194 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1195 |
+
[0, 1, 0, 0, 0, 1, 0],
|
1196 |
+
[0, 1, 0, 0, 0, 1, 0],
|
1197 |
+
[0, 1, 0, 0, 0, 1, 0],
|
1198 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1199 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1200 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
1201 |
+
markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
|
1202 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1203 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1204 |
+
[0, 0, 0, 1, 0, 0, 0],
|
1205 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1206 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1207 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1208 |
+
[0, 0, 0, 0, 0, 0, 0]], np.int8)
|
1209 |
+
out = ndimage.watershed_ift(data, markers, structure=[[1, 1, 1],
|
1210 |
+
[1, 1, 1],
|
1211 |
+
[1, 1, 1]])
|
1212 |
+
expected = [[-1, -1, -1, -1, -1, -1, -1],
|
1213 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1214 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1215 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1216 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1217 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1218 |
+
[-1, -1, -1, -1, -1, -1, -1],
|
1219 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
1220 |
+
assert_array_almost_equal(out, expected)
|
1221 |
+
|
1222 |
+
def test_watershed_ift02(self):
|
1223 |
+
data = np.array([[0, 0, 0, 0, 0, 0, 0],
|
1224 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1225 |
+
[0, 1, 0, 0, 0, 1, 0],
|
1226 |
+
[0, 1, 0, 0, 0, 1, 0],
|
1227 |
+
[0, 1, 0, 0, 0, 1, 0],
|
1228 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1229 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1230 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
1231 |
+
markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
|
1232 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1233 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1234 |
+
[0, 0, 0, 1, 0, 0, 0],
|
1235 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1236 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1237 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1238 |
+
[0, 0, 0, 0, 0, 0, 0]], np.int8)
|
1239 |
+
out = ndimage.watershed_ift(data, markers)
|
1240 |
+
expected = [[-1, -1, -1, -1, -1, -1, -1],
|
1241 |
+
[-1, -1, 1, 1, 1, -1, -1],
|
1242 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1243 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1244 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1245 |
+
[-1, -1, 1, 1, 1, -1, -1],
|
1246 |
+
[-1, -1, -1, -1, -1, -1, -1],
|
1247 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
1248 |
+
assert_array_almost_equal(out, expected)
|
1249 |
+
|
1250 |
+
def test_watershed_ift03(self):
|
1251 |
+
data = np.array([[0, 0, 0, 0, 0, 0, 0],
|
1252 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1253 |
+
[0, 1, 0, 1, 0, 1, 0],
|
1254 |
+
[0, 1, 0, 1, 0, 1, 0],
|
1255 |
+
[0, 1, 0, 1, 0, 1, 0],
|
1256 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1257 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
1258 |
+
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
|
1259 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1260 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1261 |
+
[0, 0, 2, 0, 3, 0, 0],
|
1262 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1263 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1264 |
+
[0, 0, 0, 0, 0, 0, -1]], np.int8)
|
1265 |
+
out = ndimage.watershed_ift(data, markers)
|
1266 |
+
expected = [[-1, -1, -1, -1, -1, -1, -1],
|
1267 |
+
[-1, -1, 2, -1, 3, -1, -1],
|
1268 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
1269 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
1270 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
1271 |
+
[-1, -1, 2, -1, 3, -1, -1],
|
1272 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
1273 |
+
assert_array_almost_equal(out, expected)
|
1274 |
+
|
1275 |
+
def test_watershed_ift04(self):
|
1276 |
+
data = np.array([[0, 0, 0, 0, 0, 0, 0],
|
1277 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1278 |
+
[0, 1, 0, 1, 0, 1, 0],
|
1279 |
+
[0, 1, 0, 1, 0, 1, 0],
|
1280 |
+
[0, 1, 0, 1, 0, 1, 0],
|
1281 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1282 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
1283 |
+
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
|
1284 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1285 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1286 |
+
[0, 0, 2, 0, 3, 0, 0],
|
1287 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1288 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1289 |
+
[0, 0, 0, 0, 0, 0, -1]],
|
1290 |
+
np.int8)
|
1291 |
+
out = ndimage.watershed_ift(data, markers,
|
1292 |
+
structure=[[1, 1, 1],
|
1293 |
+
[1, 1, 1],
|
1294 |
+
[1, 1, 1]])
|
1295 |
+
expected = [[-1, -1, -1, -1, -1, -1, -1],
|
1296 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
1297 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
1298 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
1299 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
1300 |
+
[-1, 2, 2, 3, 3, 3, -1],
|
1301 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
1302 |
+
assert_array_almost_equal(out, expected)
|
1303 |
+
|
1304 |
+
def test_watershed_ift05(self):
|
1305 |
+
data = np.array([[0, 0, 0, 0, 0, 0, 0],
|
1306 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1307 |
+
[0, 1, 0, 1, 0, 1, 0],
|
1308 |
+
[0, 1, 0, 1, 0, 1, 0],
|
1309 |
+
[0, 1, 0, 1, 0, 1, 0],
|
1310 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1311 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
1312 |
+
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
|
1313 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1314 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1315 |
+
[0, 0, 3, 0, 2, 0, 0],
|
1316 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1317 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1318 |
+
[0, 0, 0, 0, 0, 0, -1]],
|
1319 |
+
np.int8)
|
1320 |
+
out = ndimage.watershed_ift(data, markers,
|
1321 |
+
structure=[[1, 1, 1],
|
1322 |
+
[1, 1, 1],
|
1323 |
+
[1, 1, 1]])
|
1324 |
+
expected = [[-1, -1, -1, -1, -1, -1, -1],
|
1325 |
+
[-1, 3, 3, 2, 2, 2, -1],
|
1326 |
+
[-1, 3, 3, 2, 2, 2, -1],
|
1327 |
+
[-1, 3, 3, 2, 2, 2, -1],
|
1328 |
+
[-1, 3, 3, 2, 2, 2, -1],
|
1329 |
+
[-1, 3, 3, 2, 2, 2, -1],
|
1330 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
1331 |
+
assert_array_almost_equal(out, expected)
|
1332 |
+
|
1333 |
+
def test_watershed_ift06(self):
|
1334 |
+
data = np.array([[0, 1, 0, 0, 0, 1, 0],
|
1335 |
+
[0, 1, 0, 0, 0, 1, 0],
|
1336 |
+
[0, 1, 0, 0, 0, 1, 0],
|
1337 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1338 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1339 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
1340 |
+
markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
|
1341 |
+
[0, 0, 0, 1, 0, 0, 0],
|
1342 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1343 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1344 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1345 |
+
[0, 0, 0, 0, 0, 0, 0]], np.int8)
|
1346 |
+
out = ndimage.watershed_ift(data, markers,
|
1347 |
+
structure=[[1, 1, 1],
|
1348 |
+
[1, 1, 1],
|
1349 |
+
[1, 1, 1]])
|
1350 |
+
expected = [[-1, 1, 1, 1, 1, 1, -1],
|
1351 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1352 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1353 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1354 |
+
[-1, -1, -1, -1, -1, -1, -1],
|
1355 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
1356 |
+
assert_array_almost_equal(out, expected)
|
1357 |
+
|
1358 |
+
def test_watershed_ift07(self):
|
1359 |
+
shape = (7, 6)
|
1360 |
+
data = np.zeros(shape, dtype=np.uint8)
|
1361 |
+
data = data.transpose()
|
1362 |
+
data[...] = np.array([[0, 1, 0, 0, 0, 1, 0],
|
1363 |
+
[0, 1, 0, 0, 0, 1, 0],
|
1364 |
+
[0, 1, 0, 0, 0, 1, 0],
|
1365 |
+
[0, 1, 1, 1, 1, 1, 0],
|
1366 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1367 |
+
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
|
1368 |
+
markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
|
1369 |
+
[0, 0, 0, 1, 0, 0, 0],
|
1370 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1371 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1372 |
+
[0, 0, 0, 0, 0, 0, 0],
|
1373 |
+
[0, 0, 0, 0, 0, 0, 0]], np.int8)
|
1374 |
+
out = np.zeros(shape, dtype=np.int16)
|
1375 |
+
out = out.transpose()
|
1376 |
+
ndimage.watershed_ift(data, markers,
|
1377 |
+
structure=[[1, 1, 1],
|
1378 |
+
[1, 1, 1],
|
1379 |
+
[1, 1, 1]],
|
1380 |
+
output=out)
|
1381 |
+
expected = [[-1, 1, 1, 1, 1, 1, -1],
|
1382 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1383 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1384 |
+
[-1, 1, 1, 1, 1, 1, -1],
|
1385 |
+
[-1, -1, -1, -1, -1, -1, -1],
|
1386 |
+
[-1, -1, -1, -1, -1, -1, -1]]
|
1387 |
+
assert_array_almost_equal(out, expected)
|
1388 |
+
|
1389 |
+
def test_watershed_ift08(self):
|
1390 |
+
# Test cost larger than uint8. See gh-10069.
|
1391 |
+
data = np.array([[256, 0],
|
1392 |
+
[0, 0]], np.uint16)
|
1393 |
+
markers = np.array([[1, 0],
|
1394 |
+
[0, 0]], np.int8)
|
1395 |
+
out = ndimage.watershed_ift(data, markers)
|
1396 |
+
expected = [[1, 1],
|
1397 |
+
[1, 1]]
|
1398 |
+
assert_array_almost_equal(out, expected)
|
1399 |
+
|
1400 |
+
def test_watershed_ift09(self):
|
1401 |
+
# Test large cost. See gh-19575
|
1402 |
+
data = np.array([[np.iinfo(np.uint16).max, 0],
|
1403 |
+
[0, 0]], np.uint16)
|
1404 |
+
markers = np.array([[1, 0],
|
1405 |
+
[0, 0]], np.int8)
|
1406 |
+
out = ndimage.watershed_ift(data, markers)
|
1407 |
+
expected = [[1, 1],
|
1408 |
+
[1, 1]]
|
1409 |
+
assert_allclose(out, expected)
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_ni_support.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from .._ni_support import _get_output
|
5 |
+
|
6 |
+
|
7 |
+
@pytest.mark.parametrize(
|
8 |
+
'dtype',
|
9 |
+
[
|
10 |
+
# String specifiers
|
11 |
+
'f4', 'float32', 'complex64', 'complex128',
|
12 |
+
# Type and dtype specifiers
|
13 |
+
np.float32, float, np.dtype('f4'),
|
14 |
+
# Derive from input
|
15 |
+
None,
|
16 |
+
],
|
17 |
+
)
|
18 |
+
def test_get_output_basic(dtype):
|
19 |
+
shape = (2, 3)
|
20 |
+
|
21 |
+
input_ = np.zeros(shape, 'float32')
|
22 |
+
|
23 |
+
# For None, derive dtype from input
|
24 |
+
expected_dtype = 'float32' if dtype is None else dtype
|
25 |
+
|
26 |
+
# Output is dtype-specifier, retrieve shape from input
|
27 |
+
result = _get_output(dtype, input_)
|
28 |
+
assert result.shape == shape
|
29 |
+
assert result.dtype == np.dtype(expected_dtype)
|
30 |
+
|
31 |
+
# Output is dtype specifier, with explicit shape, overriding input
|
32 |
+
result = _get_output(dtype, input_, shape=(3, 2))
|
33 |
+
assert result.shape == (3, 2)
|
34 |
+
assert result.dtype == np.dtype(expected_dtype)
|
35 |
+
|
36 |
+
# Output is pre-allocated array, return directly
|
37 |
+
output = np.zeros(shape, dtype)
|
38 |
+
result = _get_output(output, input_)
|
39 |
+
assert result is output
|
40 |
+
|
41 |
+
|
42 |
+
def test_get_output_complex():
|
43 |
+
shape = (2, 3)
|
44 |
+
|
45 |
+
input_ = np.zeros(shape)
|
46 |
+
|
47 |
+
# None, promote input type to complex
|
48 |
+
result = _get_output(None, input_, complex_output=True)
|
49 |
+
assert result.shape == shape
|
50 |
+
assert result.dtype == np.dtype('complex128')
|
51 |
+
|
52 |
+
# Explicit type, promote type to complex
|
53 |
+
with pytest.warns(UserWarning, match='promoting specified output dtype to complex'):
|
54 |
+
result = _get_output(float, input_, complex_output=True)
|
55 |
+
assert result.shape == shape
|
56 |
+
assert result.dtype == np.dtype('complex128')
|
57 |
+
|
58 |
+
# String specifier, simply verify complex output
|
59 |
+
result = _get_output('complex64', input_, complex_output=True)
|
60 |
+
assert result.shape == shape
|
61 |
+
assert result.dtype == np.dtype('complex64')
|
62 |
+
|
63 |
+
|
64 |
+
def test_get_output_error_cases():
|
65 |
+
input_ = np.zeros((2, 3), 'float32')
|
66 |
+
|
67 |
+
# Two separate paths can raise the same error
|
68 |
+
with pytest.raises(RuntimeError, match='output must have complex dtype'):
|
69 |
+
_get_output('float32', input_, complex_output=True)
|
70 |
+
with pytest.raises(RuntimeError, match='output must have complex dtype'):
|
71 |
+
_get_output(np.zeros((2, 3)), input_, complex_output=True)
|
72 |
+
|
73 |
+
with pytest.raises(RuntimeError, match='output must have numeric dtype'):
|
74 |
+
_get_output('void', input_)
|
75 |
+
|
76 |
+
with pytest.raises(RuntimeError, match='shape not correct'):
|
77 |
+
_get_output(np.zeros((3, 2)), input_)
|
llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/test_splines.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for spline filtering."""
|
2 |
+
import numpy as np
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
from numpy.testing import assert_almost_equal
|
6 |
+
|
7 |
+
from scipy import ndimage
|
8 |
+
|
9 |
+
|
10 |
+
def get_spline_knot_values(order):
|
11 |
+
"""Knot values to the right of a B-spline's center."""
|
12 |
+
knot_values = {0: [1],
|
13 |
+
1: [1],
|
14 |
+
2: [6, 1],
|
15 |
+
3: [4, 1],
|
16 |
+
4: [230, 76, 1],
|
17 |
+
5: [66, 26, 1]}
|
18 |
+
|
19 |
+
return knot_values[order]
|
20 |
+
|
21 |
+
|
22 |
+
def make_spline_knot_matrix(n, order, mode='mirror'):
|
23 |
+
"""Matrix to invert to find the spline coefficients."""
|
24 |
+
knot_values = get_spline_knot_values(order)
|
25 |
+
|
26 |
+
matrix = np.zeros((n, n))
|
27 |
+
for diag, knot_value in enumerate(knot_values):
|
28 |
+
indices = np.arange(diag, n)
|
29 |
+
if diag == 0:
|
30 |
+
matrix[indices, indices] = knot_value
|
31 |
+
else:
|
32 |
+
matrix[indices, indices - diag] = knot_value
|
33 |
+
matrix[indices - diag, indices] = knot_value
|
34 |
+
|
35 |
+
knot_values_sum = knot_values[0] + 2 * sum(knot_values[1:])
|
36 |
+
|
37 |
+
if mode == 'mirror':
|
38 |
+
start, step = 1, 1
|
39 |
+
elif mode == 'reflect':
|
40 |
+
start, step = 0, 1
|
41 |
+
elif mode == 'grid-wrap':
|
42 |
+
start, step = -1, -1
|
43 |
+
else:
|
44 |
+
raise ValueError(f'unsupported mode {mode}')
|
45 |
+
|
46 |
+
for row in range(len(knot_values) - 1):
|
47 |
+
for idx, knot_value in enumerate(knot_values[row + 1:]):
|
48 |
+
matrix[row, start + step*idx] += knot_value
|
49 |
+
matrix[-row - 1, -start - 1 - step*idx] += knot_value
|
50 |
+
|
51 |
+
return matrix / knot_values_sum
|
52 |
+
|
53 |
+
|
54 |
+
@pytest.mark.parametrize('order', [0, 1, 2, 3, 4, 5])
|
55 |
+
@pytest.mark.parametrize('mode', ['mirror', 'grid-wrap', 'reflect'])
|
56 |
+
def test_spline_filter_vs_matrix_solution(order, mode):
|
57 |
+
n = 100
|
58 |
+
eye = np.eye(n, dtype=float)
|
59 |
+
spline_filter_axis_0 = ndimage.spline_filter1d(eye, axis=0, order=order,
|
60 |
+
mode=mode)
|
61 |
+
spline_filter_axis_1 = ndimage.spline_filter1d(eye, axis=1, order=order,
|
62 |
+
mode=mode)
|
63 |
+
matrix = make_spline_knot_matrix(n, order, mode=mode)
|
64 |
+
assert_almost_equal(eye, np.dot(spline_filter_axis_0, matrix))
|
65 |
+
assert_almost_equal(eye, np.dot(spline_filter_axis_1, matrix.T))
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_dcsrch.cpython-310.pyc
ADDED
Binary file (16.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_differentialevolution.cpython-310.pyc
ADDED
Binary file (62.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_isotonic.cpython-310.pyc
ADDED
Binary file (5.78 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linesearch.cpython-310.pyc
ADDED
Binary file (21 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog.cpython-310.pyc
ADDED
Binary file (27.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_linprog_rs.cpython-310.pyc
ADDED
Binary file (16.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_milp.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_numdiff.cpython-310.pyc
ADDED
Binary file (23.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_root.cpython-310.pyc
ADDED
Binary file (25.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_shgo.cpython-310.pyc
ADDED
Binary file (44.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/optimize/__pycache__/_slsqp_py.cpython-310.pyc
ADDED
Binary file (15 kB). View file
|
|