Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_beam.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_truss.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__init__.py +59 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/circuitplot.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/circuitutils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/fermion.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/qubit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/anticommutator.py +149 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/circuitplot.py +370 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/operatorset.py +280 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/piab.py +72 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/qasm.py +224 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/represent.py +574 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tensorproduct.py +423 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_anticommutator.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_boson.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_cartesian.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_cg.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_circuitplot.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_commutator.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_dagger.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_density.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_grover.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_hilbert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_matrixutils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_operatorordering.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_operatorset.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_pauli.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_piab.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_printing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qapply.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qft.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qubit.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_represent.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_sho1d.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_shor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_spin.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_state.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_tensorproduct.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_anticommutator.py +56 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_boson.py +50 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_cartesian.py +104 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_cg.py +178 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_circuitplot.py +69 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_circuitutils.py +402 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_commutator.py +81 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_constants.py +13 -0
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_beam.cpython-310.pyc
ADDED
Binary file (21.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/tests/__pycache__/test_truss.cpython-310.pyc
ADDED
Binary file (2.66 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__init__.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Names exposed by 'from sympy.physics.quantum import *'
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
'AntiCommutator',
|
5 |
+
|
6 |
+
'qapply',
|
7 |
+
|
8 |
+
'Commutator',
|
9 |
+
|
10 |
+
'Dagger',
|
11 |
+
|
12 |
+
'HilbertSpaceError', 'HilbertSpace', 'TensorProductHilbertSpace',
|
13 |
+
'TensorPowerHilbertSpace', 'DirectSumHilbertSpace', 'ComplexSpace', 'L2',
|
14 |
+
'FockSpace',
|
15 |
+
|
16 |
+
'InnerProduct',
|
17 |
+
|
18 |
+
'Operator', 'HermitianOperator', 'UnitaryOperator', 'IdentityOperator',
|
19 |
+
'OuterProduct', 'DifferentialOperator',
|
20 |
+
|
21 |
+
'represent', 'rep_innerproduct', 'rep_expectation', 'integrate_result',
|
22 |
+
'get_basis', 'enumerate_states',
|
23 |
+
|
24 |
+
'KetBase', 'BraBase', 'StateBase', 'State', 'Ket', 'Bra', 'TimeDepState',
|
25 |
+
'TimeDepBra', 'TimeDepKet', 'OrthogonalKet', 'OrthogonalBra',
|
26 |
+
'OrthogonalState', 'Wavefunction',
|
27 |
+
|
28 |
+
'TensorProduct', 'tensor_product_simp',
|
29 |
+
|
30 |
+
'hbar', 'HBar',
|
31 |
+
|
32 |
+
]
|
33 |
+
from .anticommutator import AntiCommutator
|
34 |
+
|
35 |
+
from .qapply import qapply
|
36 |
+
|
37 |
+
from .commutator import Commutator
|
38 |
+
|
39 |
+
from .dagger import Dagger
|
40 |
+
|
41 |
+
from .hilbert import (HilbertSpaceError, HilbertSpace,
|
42 |
+
TensorProductHilbertSpace, TensorPowerHilbertSpace,
|
43 |
+
DirectSumHilbertSpace, ComplexSpace, L2, FockSpace)
|
44 |
+
|
45 |
+
from .innerproduct import InnerProduct
|
46 |
+
|
47 |
+
from .operator import (Operator, HermitianOperator, UnitaryOperator,
|
48 |
+
IdentityOperator, OuterProduct, DifferentialOperator)
|
49 |
+
|
50 |
+
from .represent import (represent, rep_innerproduct, rep_expectation,
|
51 |
+
integrate_result, get_basis, enumerate_states)
|
52 |
+
|
53 |
+
from .state import (KetBase, BraBase, StateBase, State, Ket, Bra,
|
54 |
+
TimeDepState, TimeDepBra, TimeDepKet, OrthogonalKet,
|
55 |
+
OrthogonalBra, OrthogonalState, Wavefunction)
|
56 |
+
|
57 |
+
from .tensorproduct import TensorProduct, tensor_product_simp
|
58 |
+
|
59 |
+
from .constants import hbar, HBar
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.62 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/circuitplot.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/circuitutils.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/fermion.cpython-310.pyc
ADDED
Binary file (5.75 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/qubit.cpython-310.pyc
ADDED
Binary file (22.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/anticommutator.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""The anti-commutator: ``{A,B} = A*B + B*A``."""
|
2 |
+
|
3 |
+
from sympy.core.expr import Expr
|
4 |
+
from sympy.core.mul import Mul
|
5 |
+
from sympy.core.numbers import Integer
|
6 |
+
from sympy.core.singleton import S
|
7 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
8 |
+
|
9 |
+
from sympy.physics.quantum.operator import Operator
|
10 |
+
from sympy.physics.quantum.dagger import Dagger
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
'AntiCommutator'
|
14 |
+
]
|
15 |
+
|
16 |
+
#-----------------------------------------------------------------------------
|
17 |
+
# Anti-commutator
|
18 |
+
#-----------------------------------------------------------------------------
|
19 |
+
|
20 |
+
|
21 |
+
class AntiCommutator(Expr):
|
22 |
+
"""The standard anticommutator, in an unevaluated state.
|
23 |
+
|
24 |
+
Explanation
|
25 |
+
===========
|
26 |
+
|
27 |
+
Evaluating an anticommutator is defined [1]_ as: ``{A, B} = A*B + B*A``.
|
28 |
+
This class returns the anticommutator in an unevaluated form. To evaluate
|
29 |
+
the anticommutator, use the ``.doit()`` method.
|
30 |
+
|
31 |
+
Canonical ordering of an anticommutator is ``{A, B}`` for ``A < B``. The
|
32 |
+
arguments of the anticommutator are put into canonical order using
|
33 |
+
``__cmp__``. If ``B < A``, then ``{A, B}`` is returned as ``{B, A}``.
|
34 |
+
|
35 |
+
Parameters
|
36 |
+
==========
|
37 |
+
|
38 |
+
A : Expr
|
39 |
+
The first argument of the anticommutator {A,B}.
|
40 |
+
B : Expr
|
41 |
+
The second argument of the anticommutator {A,B}.
|
42 |
+
|
43 |
+
Examples
|
44 |
+
========
|
45 |
+
|
46 |
+
>>> from sympy import symbols
|
47 |
+
>>> from sympy.physics.quantum import AntiCommutator
|
48 |
+
>>> from sympy.physics.quantum import Operator, Dagger
|
49 |
+
>>> x, y = symbols('x,y')
|
50 |
+
>>> A = Operator('A')
|
51 |
+
>>> B = Operator('B')
|
52 |
+
|
53 |
+
Create an anticommutator and use ``doit()`` to multiply them out.
|
54 |
+
|
55 |
+
>>> ac = AntiCommutator(A,B); ac
|
56 |
+
{A,B}
|
57 |
+
>>> ac.doit()
|
58 |
+
A*B + B*A
|
59 |
+
|
60 |
+
The commutator orders it arguments in canonical order:
|
61 |
+
|
62 |
+
>>> ac = AntiCommutator(B,A); ac
|
63 |
+
{A,B}
|
64 |
+
|
65 |
+
Commutative constants are factored out:
|
66 |
+
|
67 |
+
>>> AntiCommutator(3*x*A,x*y*B)
|
68 |
+
3*x**2*y*{A,B}
|
69 |
+
|
70 |
+
Adjoint operations applied to the anticommutator are properly applied to
|
71 |
+
the arguments:
|
72 |
+
|
73 |
+
>>> Dagger(AntiCommutator(A,B))
|
74 |
+
{Dagger(A),Dagger(B)}
|
75 |
+
|
76 |
+
References
|
77 |
+
==========
|
78 |
+
|
79 |
+
.. [1] https://en.wikipedia.org/wiki/Commutator
|
80 |
+
"""
|
81 |
+
is_commutative = False
|
82 |
+
|
83 |
+
def __new__(cls, A, B):
|
84 |
+
r = cls.eval(A, B)
|
85 |
+
if r is not None:
|
86 |
+
return r
|
87 |
+
obj = Expr.__new__(cls, A, B)
|
88 |
+
return obj
|
89 |
+
|
90 |
+
@classmethod
|
91 |
+
def eval(cls, a, b):
|
92 |
+
if not (a and b):
|
93 |
+
return S.Zero
|
94 |
+
if a == b:
|
95 |
+
return Integer(2)*a**2
|
96 |
+
if a.is_commutative or b.is_commutative:
|
97 |
+
return Integer(2)*a*b
|
98 |
+
|
99 |
+
# [xA,yB] -> xy*[A,B]
|
100 |
+
ca, nca = a.args_cnc()
|
101 |
+
cb, ncb = b.args_cnc()
|
102 |
+
c_part = ca + cb
|
103 |
+
if c_part:
|
104 |
+
return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))
|
105 |
+
|
106 |
+
# Canonical ordering of arguments
|
107 |
+
#The Commutator [A,B] is on canonical form if A < B.
|
108 |
+
if a.compare(b) == 1:
|
109 |
+
return cls(b, a)
|
110 |
+
|
111 |
+
def doit(self, **hints):
|
112 |
+
""" Evaluate anticommutator """
|
113 |
+
A = self.args[0]
|
114 |
+
B = self.args[1]
|
115 |
+
if isinstance(A, Operator) and isinstance(B, Operator):
|
116 |
+
try:
|
117 |
+
comm = A._eval_anticommutator(B, **hints)
|
118 |
+
except NotImplementedError:
|
119 |
+
try:
|
120 |
+
comm = B._eval_anticommutator(A, **hints)
|
121 |
+
except NotImplementedError:
|
122 |
+
comm = None
|
123 |
+
if comm is not None:
|
124 |
+
return comm.doit(**hints)
|
125 |
+
return (A*B + B*A).doit(**hints)
|
126 |
+
|
127 |
+
def _eval_adjoint(self):
|
128 |
+
return AntiCommutator(Dagger(self.args[0]), Dagger(self.args[1]))
|
129 |
+
|
130 |
+
def _sympyrepr(self, printer, *args):
|
131 |
+
return "%s(%s,%s)" % (
|
132 |
+
self.__class__.__name__, printer._print(
|
133 |
+
self.args[0]), printer._print(self.args[1])
|
134 |
+
)
|
135 |
+
|
136 |
+
def _sympystr(self, printer, *args):
|
137 |
+
return "{%s,%s}" % (
|
138 |
+
printer._print(self.args[0]), printer._print(self.args[1]))
|
139 |
+
|
140 |
+
def _pretty(self, printer, *args):
|
141 |
+
pform = printer._print(self.args[0], *args)
|
142 |
+
pform = prettyForm(*pform.right(prettyForm(',')))
|
143 |
+
pform = prettyForm(*pform.right(printer._print(self.args[1], *args)))
|
144 |
+
pform = prettyForm(*pform.parens(left='{', right='}'))
|
145 |
+
return pform
|
146 |
+
|
147 |
+
def _latex(self, printer, *args):
|
148 |
+
return "\\left\\{%s,%s\\right\\}" % tuple([
|
149 |
+
printer._print(arg, *args) for arg in self.args])
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/circuitplot.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Matplotlib based plotting of quantum circuits.
|
2 |
+
|
3 |
+
Todo:
|
4 |
+
|
5 |
+
* Optimize printing of large circuits.
|
6 |
+
* Get this to work with single gates.
|
7 |
+
* Do a better job checking the form of circuits to make sure it is a Mul of
|
8 |
+
Gates.
|
9 |
+
* Get multi-target gates plotting.
|
10 |
+
* Get initial and final states to plot.
|
11 |
+
* Get measurements to plot. Might need to rethink measurement as a gate
|
12 |
+
issue.
|
13 |
+
* Get scale and figsize to be handled in a better way.
|
14 |
+
* Write some tests/examples!
|
15 |
+
"""
|
16 |
+
|
17 |
+
from __future__ import annotations
|
18 |
+
|
19 |
+
from sympy.core.mul import Mul
|
20 |
+
from sympy.external import import_module
|
21 |
+
from sympy.physics.quantum.gate import Gate, OneQubitGate, CGate, CGateS
|
22 |
+
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
'CircuitPlot',
|
26 |
+
'circuit_plot',
|
27 |
+
'labeller',
|
28 |
+
'Mz',
|
29 |
+
'Mx',
|
30 |
+
'CreateOneQubitGate',
|
31 |
+
'CreateCGate',
|
32 |
+
]
|
33 |
+
|
34 |
+
np = import_module('numpy')
|
35 |
+
matplotlib = import_module(
|
36 |
+
'matplotlib', import_kwargs={'fromlist': ['pyplot']},
|
37 |
+
catch=(RuntimeError,)) # This is raised in environments that have no display.
|
38 |
+
|
39 |
+
if np and matplotlib:
|
40 |
+
pyplot = matplotlib.pyplot
|
41 |
+
Line2D = matplotlib.lines.Line2D
|
42 |
+
Circle = matplotlib.patches.Circle
|
43 |
+
|
44 |
+
#from matplotlib import rc
|
45 |
+
#rc('text',usetex=True)
|
46 |
+
|
47 |
+
class CircuitPlot:
|
48 |
+
"""A class for managing a circuit plot."""
|
49 |
+
|
50 |
+
scale = 1.0
|
51 |
+
fontsize = 20.0
|
52 |
+
linewidth = 1.0
|
53 |
+
control_radius = 0.05
|
54 |
+
not_radius = 0.15
|
55 |
+
swap_delta = 0.05
|
56 |
+
labels: list[str] = []
|
57 |
+
inits: dict[str, str] = {}
|
58 |
+
label_buffer = 0.5
|
59 |
+
|
60 |
+
def __init__(self, c, nqubits, **kwargs):
|
61 |
+
if not np or not matplotlib:
|
62 |
+
raise ImportError('numpy or matplotlib not available.')
|
63 |
+
self.circuit = c
|
64 |
+
self.ngates = len(self.circuit.args)
|
65 |
+
self.nqubits = nqubits
|
66 |
+
self.update(kwargs)
|
67 |
+
self._create_grid()
|
68 |
+
self._create_figure()
|
69 |
+
self._plot_wires()
|
70 |
+
self._plot_gates()
|
71 |
+
self._finish()
|
72 |
+
|
73 |
+
def update(self, kwargs):
|
74 |
+
"""Load the kwargs into the instance dict."""
|
75 |
+
self.__dict__.update(kwargs)
|
76 |
+
|
77 |
+
def _create_grid(self):
|
78 |
+
"""Create the grid of wires."""
|
79 |
+
scale = self.scale
|
80 |
+
wire_grid = np.arange(0.0, self.nqubits*scale, scale, dtype=float)
|
81 |
+
gate_grid = np.arange(0.0, self.ngates*scale, scale, dtype=float)
|
82 |
+
self._wire_grid = wire_grid
|
83 |
+
self._gate_grid = gate_grid
|
84 |
+
|
85 |
+
def _create_figure(self):
|
86 |
+
"""Create the main matplotlib figure."""
|
87 |
+
self._figure = pyplot.figure(
|
88 |
+
figsize=(self.ngates*self.scale, self.nqubits*self.scale),
|
89 |
+
facecolor='w',
|
90 |
+
edgecolor='w'
|
91 |
+
)
|
92 |
+
ax = self._figure.add_subplot(
|
93 |
+
1, 1, 1,
|
94 |
+
frameon=True
|
95 |
+
)
|
96 |
+
ax.set_axis_off()
|
97 |
+
offset = 0.5*self.scale
|
98 |
+
ax.set_xlim(self._gate_grid[0] - offset, self._gate_grid[-1] + offset)
|
99 |
+
ax.set_ylim(self._wire_grid[0] - offset, self._wire_grid[-1] + offset)
|
100 |
+
ax.set_aspect('equal')
|
101 |
+
self._axes = ax
|
102 |
+
|
103 |
+
def _plot_wires(self):
|
104 |
+
"""Plot the wires of the circuit diagram."""
|
105 |
+
xstart = self._gate_grid[0]
|
106 |
+
xstop = self._gate_grid[-1]
|
107 |
+
xdata = (xstart - self.scale, xstop + self.scale)
|
108 |
+
for i in range(self.nqubits):
|
109 |
+
ydata = (self._wire_grid[i], self._wire_grid[i])
|
110 |
+
line = Line2D(
|
111 |
+
xdata, ydata,
|
112 |
+
color='k',
|
113 |
+
lw=self.linewidth
|
114 |
+
)
|
115 |
+
self._axes.add_line(line)
|
116 |
+
if self.labels:
|
117 |
+
init_label_buffer = 0
|
118 |
+
if self.inits.get(self.labels[i]): init_label_buffer = 0.25
|
119 |
+
self._axes.text(
|
120 |
+
xdata[0]-self.label_buffer-init_label_buffer,ydata[0],
|
121 |
+
render_label(self.labels[i],self.inits),
|
122 |
+
size=self.fontsize,
|
123 |
+
color='k',ha='center',va='center')
|
124 |
+
self._plot_measured_wires()
|
125 |
+
|
126 |
+
def _plot_measured_wires(self):
|
127 |
+
ismeasured = self._measurements()
|
128 |
+
xstop = self._gate_grid[-1]
|
129 |
+
dy = 0.04 # amount to shift wires when doubled
|
130 |
+
# Plot doubled wires after they are measured
|
131 |
+
for im in ismeasured:
|
132 |
+
xdata = (self._gate_grid[ismeasured[im]],xstop+self.scale)
|
133 |
+
ydata = (self._wire_grid[im]+dy,self._wire_grid[im]+dy)
|
134 |
+
line = Line2D(
|
135 |
+
xdata, ydata,
|
136 |
+
color='k',
|
137 |
+
lw=self.linewidth
|
138 |
+
)
|
139 |
+
self._axes.add_line(line)
|
140 |
+
# Also double any controlled lines off these wires
|
141 |
+
for i,g in enumerate(self._gates()):
|
142 |
+
if isinstance(g, (CGate, CGateS)):
|
143 |
+
wires = g.controls + g.targets
|
144 |
+
for wire in wires:
|
145 |
+
if wire in ismeasured and \
|
146 |
+
self._gate_grid[i] > self._gate_grid[ismeasured[wire]]:
|
147 |
+
ydata = min(wires), max(wires)
|
148 |
+
xdata = self._gate_grid[i]-dy, self._gate_grid[i]-dy
|
149 |
+
line = Line2D(
|
150 |
+
xdata, ydata,
|
151 |
+
color='k',
|
152 |
+
lw=self.linewidth
|
153 |
+
)
|
154 |
+
self._axes.add_line(line)
|
155 |
+
def _gates(self):
|
156 |
+
"""Create a list of all gates in the circuit plot."""
|
157 |
+
gates = []
|
158 |
+
if isinstance(self.circuit, Mul):
|
159 |
+
for g in reversed(self.circuit.args):
|
160 |
+
if isinstance(g, Gate):
|
161 |
+
gates.append(g)
|
162 |
+
elif isinstance(self.circuit, Gate):
|
163 |
+
gates.append(self.circuit)
|
164 |
+
return gates
|
165 |
+
|
166 |
+
def _plot_gates(self):
|
167 |
+
"""Iterate through the gates and plot each of them."""
|
168 |
+
for i, gate in enumerate(self._gates()):
|
169 |
+
gate.plot_gate(self, i)
|
170 |
+
|
171 |
+
def _measurements(self):
|
172 |
+
"""Return a dict ``{i:j}`` where i is the index of the wire that has
|
173 |
+
been measured, and j is the gate where the wire is measured.
|
174 |
+
"""
|
175 |
+
ismeasured = {}
|
176 |
+
for i,g in enumerate(self._gates()):
|
177 |
+
if getattr(g,'measurement',False):
|
178 |
+
for target in g.targets:
|
179 |
+
if target in ismeasured:
|
180 |
+
if ismeasured[target] > i:
|
181 |
+
ismeasured[target] = i
|
182 |
+
else:
|
183 |
+
ismeasured[target] = i
|
184 |
+
return ismeasured
|
185 |
+
|
186 |
+
def _finish(self):
|
187 |
+
# Disable clipping to make panning work well for large circuits.
|
188 |
+
for o in self._figure.findobj():
|
189 |
+
o.set_clip_on(False)
|
190 |
+
|
191 |
+
def one_qubit_box(self, t, gate_idx, wire_idx):
|
192 |
+
"""Draw a box for a single qubit gate."""
|
193 |
+
x = self._gate_grid[gate_idx]
|
194 |
+
y = self._wire_grid[wire_idx]
|
195 |
+
self._axes.text(
|
196 |
+
x, y, t,
|
197 |
+
color='k',
|
198 |
+
ha='center',
|
199 |
+
va='center',
|
200 |
+
bbox={"ec": 'k', "fc": 'w', "fill": True, "lw": self.linewidth},
|
201 |
+
size=self.fontsize
|
202 |
+
)
|
203 |
+
|
204 |
+
def two_qubit_box(self, t, gate_idx, wire_idx):
|
205 |
+
"""Draw a box for a two qubit gate. Does not work yet.
|
206 |
+
"""
|
207 |
+
# x = self._gate_grid[gate_idx]
|
208 |
+
# y = self._wire_grid[wire_idx]+0.5
|
209 |
+
print(self._gate_grid)
|
210 |
+
print(self._wire_grid)
|
211 |
+
# unused:
|
212 |
+
# obj = self._axes.text(
|
213 |
+
# x, y, t,
|
214 |
+
# color='k',
|
215 |
+
# ha='center',
|
216 |
+
# va='center',
|
217 |
+
# bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth),
|
218 |
+
# size=self.fontsize
|
219 |
+
# )
|
220 |
+
|
221 |
+
def control_line(self, gate_idx, min_wire, max_wire):
|
222 |
+
"""Draw a vertical control line."""
|
223 |
+
xdata = (self._gate_grid[gate_idx], self._gate_grid[gate_idx])
|
224 |
+
ydata = (self._wire_grid[min_wire], self._wire_grid[max_wire])
|
225 |
+
line = Line2D(
|
226 |
+
xdata, ydata,
|
227 |
+
color='k',
|
228 |
+
lw=self.linewidth
|
229 |
+
)
|
230 |
+
self._axes.add_line(line)
|
231 |
+
|
232 |
+
def control_point(self, gate_idx, wire_idx):
|
233 |
+
"""Draw a control point."""
|
234 |
+
x = self._gate_grid[gate_idx]
|
235 |
+
y = self._wire_grid[wire_idx]
|
236 |
+
radius = self.control_radius
|
237 |
+
c = Circle(
|
238 |
+
(x, y),
|
239 |
+
radius*self.scale,
|
240 |
+
ec='k',
|
241 |
+
fc='k',
|
242 |
+
fill=True,
|
243 |
+
lw=self.linewidth
|
244 |
+
)
|
245 |
+
self._axes.add_patch(c)
|
246 |
+
|
247 |
+
def not_point(self, gate_idx, wire_idx):
|
248 |
+
"""Draw a NOT gates as the circle with plus in the middle."""
|
249 |
+
x = self._gate_grid[gate_idx]
|
250 |
+
y = self._wire_grid[wire_idx]
|
251 |
+
radius = self.not_radius
|
252 |
+
c = Circle(
|
253 |
+
(x, y),
|
254 |
+
radius,
|
255 |
+
ec='k',
|
256 |
+
fc='w',
|
257 |
+
fill=False,
|
258 |
+
lw=self.linewidth
|
259 |
+
)
|
260 |
+
self._axes.add_patch(c)
|
261 |
+
l = Line2D(
|
262 |
+
(x, x), (y - radius, y + radius),
|
263 |
+
color='k',
|
264 |
+
lw=self.linewidth
|
265 |
+
)
|
266 |
+
self._axes.add_line(l)
|
267 |
+
|
268 |
+
def swap_point(self, gate_idx, wire_idx):
|
269 |
+
"""Draw a swap point as a cross."""
|
270 |
+
x = self._gate_grid[gate_idx]
|
271 |
+
y = self._wire_grid[wire_idx]
|
272 |
+
d = self.swap_delta
|
273 |
+
l1 = Line2D(
|
274 |
+
(x - d, x + d),
|
275 |
+
(y - d, y + d),
|
276 |
+
color='k',
|
277 |
+
lw=self.linewidth
|
278 |
+
)
|
279 |
+
l2 = Line2D(
|
280 |
+
(x - d, x + d),
|
281 |
+
(y + d, y - d),
|
282 |
+
color='k',
|
283 |
+
lw=self.linewidth
|
284 |
+
)
|
285 |
+
self._axes.add_line(l1)
|
286 |
+
self._axes.add_line(l2)
|
287 |
+
|
288 |
+
def circuit_plot(c, nqubits, **kwargs):
|
289 |
+
"""Draw the circuit diagram for the circuit with nqubits.
|
290 |
+
|
291 |
+
Parameters
|
292 |
+
==========
|
293 |
+
|
294 |
+
c : circuit
|
295 |
+
The circuit to plot. Should be a product of Gate instances.
|
296 |
+
nqubits : int
|
297 |
+
The number of qubits to include in the circuit. Must be at least
|
298 |
+
as big as the largest ``min_qubits`` of the gates.
|
299 |
+
"""
|
300 |
+
return CircuitPlot(c, nqubits, **kwargs)
|
301 |
+
|
302 |
+
def render_label(label, inits={}):
|
303 |
+
"""Slightly more flexible way to render labels.
|
304 |
+
|
305 |
+
>>> from sympy.physics.quantum.circuitplot import render_label
|
306 |
+
>>> render_label('q0')
|
307 |
+
'$\\\\left|q0\\\\right\\\\rangle$'
|
308 |
+
>>> render_label('q0', {'q0':'0'})
|
309 |
+
'$\\\\left|q0\\\\right\\\\rangle=\\\\left|0\\\\right\\\\rangle$'
|
310 |
+
"""
|
311 |
+
init = inits.get(label)
|
312 |
+
if init:
|
313 |
+
return r'$\left|%s\right\rangle=\left|%s\right\rangle$' % (label, init)
|
314 |
+
return r'$\left|%s\right\rangle$' % label
|
315 |
+
|
316 |
+
def labeller(n, symbol='q'):
|
317 |
+
"""Autogenerate labels for wires of quantum circuits.
|
318 |
+
|
319 |
+
Parameters
|
320 |
+
==========
|
321 |
+
|
322 |
+
n : int
|
323 |
+
number of qubits in the circuit.
|
324 |
+
symbol : string
|
325 |
+
A character string to precede all gate labels. E.g. 'q_0', 'q_1', etc.
|
326 |
+
|
327 |
+
>>> from sympy.physics.quantum.circuitplot import labeller
|
328 |
+
>>> labeller(2)
|
329 |
+
['q_1', 'q_0']
|
330 |
+
>>> labeller(3,'j')
|
331 |
+
['j_2', 'j_1', 'j_0']
|
332 |
+
"""
|
333 |
+
return ['%s_%d' % (symbol,n-i-1) for i in range(n)]
|
334 |
+
|
335 |
+
class Mz(OneQubitGate):
|
336 |
+
"""Mock-up of a z measurement gate.
|
337 |
+
|
338 |
+
This is in circuitplot rather than gate.py because it's not a real
|
339 |
+
gate, it just draws one.
|
340 |
+
"""
|
341 |
+
measurement = True
|
342 |
+
gate_name='Mz'
|
343 |
+
gate_name_latex='M_z'
|
344 |
+
|
345 |
+
class Mx(OneQubitGate):
|
346 |
+
"""Mock-up of an x measurement gate.
|
347 |
+
|
348 |
+
This is in circuitplot rather than gate.py because it's not a real
|
349 |
+
gate, it just draws one.
|
350 |
+
"""
|
351 |
+
measurement = True
|
352 |
+
gate_name='Mx'
|
353 |
+
gate_name_latex='M_x'
|
354 |
+
|
355 |
+
class CreateOneQubitGate(type):
|
356 |
+
def __new__(mcl, name, latexname=None):
|
357 |
+
if not latexname:
|
358 |
+
latexname = name
|
359 |
+
return type(name + "Gate", (OneQubitGate,),
|
360 |
+
{'gate_name': name, 'gate_name_latex': latexname})
|
361 |
+
|
362 |
+
def CreateCGate(name, latexname=None):
|
363 |
+
"""Use a lexical closure to make a controlled gate.
|
364 |
+
"""
|
365 |
+
if not latexname:
|
366 |
+
latexname = name
|
367 |
+
onequbitgate = CreateOneQubitGate(name, latexname)
|
368 |
+
def ControlledGate(ctrls,target):
|
369 |
+
return CGate(tuple(ctrls),onequbitgate(target))
|
370 |
+
return ControlledGate
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/operatorset.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" A module for mapping operators to their corresponding eigenstates
|
2 |
+
and vice versa
|
3 |
+
|
4 |
+
It contains a global dictionary with eigenstate-operator pairings.
|
5 |
+
If a new state-operator pair is created, this dictionary should be
|
6 |
+
updated as well.
|
7 |
+
|
8 |
+
It also contains functions operators_to_state and state_to_operators
|
9 |
+
for mapping between the two. These can handle both classes and
|
10 |
+
instances of operators and states. See the individual function
|
11 |
+
descriptions for details.
|
12 |
+
|
13 |
+
TODO List:
|
14 |
+
- Update the dictionary with a complete list of state-operator pairs
|
15 |
+
"""
|
16 |
+
|
17 |
+
from sympy.physics.quantum.cartesian import (XOp, YOp, ZOp, XKet, PxOp, PxKet,
|
18 |
+
PositionKet3D)
|
19 |
+
from sympy.physics.quantum.operator import Operator
|
20 |
+
from sympy.physics.quantum.state import StateBase, BraBase, Ket
|
21 |
+
from sympy.physics.quantum.spin import (JxOp, JyOp, JzOp, J2Op, JxKet, JyKet,
|
22 |
+
JzKet)
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
'operators_to_state',
|
26 |
+
'state_to_operators'
|
27 |
+
]
|
28 |
+
|
29 |
+
#state_mapping stores the mappings between states and their associated
|
30 |
+
#operators or tuples of operators. This should be updated when new
|
31 |
+
#classes are written! Entries are of the form PxKet : PxOp or
|
32 |
+
#something like 3DKet : (ROp, ThetaOp, PhiOp)
|
33 |
+
|
34 |
+
#frozenset is used so that the reverse mapping can be made
|
35 |
+
#(regular sets are not hashable because they are mutable
|
36 |
+
state_mapping = { JxKet: frozenset((J2Op, JxOp)),
|
37 |
+
JyKet: frozenset((J2Op, JyOp)),
|
38 |
+
JzKet: frozenset((J2Op, JzOp)),
|
39 |
+
Ket: Operator,
|
40 |
+
PositionKet3D: frozenset((XOp, YOp, ZOp)),
|
41 |
+
PxKet: PxOp,
|
42 |
+
XKet: XOp }
|
43 |
+
|
44 |
+
op_mapping = {v: k for k, v in state_mapping.items()}
|
45 |
+
|
46 |
+
|
47 |
+
def operators_to_state(operators, **options):
|
48 |
+
""" Returns the eigenstate of the given operator or set of operators
|
49 |
+
|
50 |
+
A global function for mapping operator classes to their associated
|
51 |
+
states. It takes either an Operator or a set of operators and
|
52 |
+
returns the state associated with these.
|
53 |
+
|
54 |
+
This function can handle both instances of a given operator or
|
55 |
+
just the class itself (i.e. both XOp() and XOp)
|
56 |
+
|
57 |
+
There are multiple use cases to consider:
|
58 |
+
|
59 |
+
1) A class or set of classes is passed: First, we try to
|
60 |
+
instantiate default instances for these operators. If this fails,
|
61 |
+
then the class is simply returned. If we succeed in instantiating
|
62 |
+
default instances, then we try to call state._operators_to_state
|
63 |
+
on the operator instances. If this fails, the class is returned.
|
64 |
+
Otherwise, the instance returned by _operators_to_state is returned.
|
65 |
+
|
66 |
+
2) An instance or set of instances is passed: In this case,
|
67 |
+
state._operators_to_state is called on the instances passed. If
|
68 |
+
this fails, a state class is returned. If the method returns an
|
69 |
+
instance, that instance is returned.
|
70 |
+
|
71 |
+
In both cases, if the operator class or set does not exist in the
|
72 |
+
state_mapping dictionary, None is returned.
|
73 |
+
|
74 |
+
Parameters
|
75 |
+
==========
|
76 |
+
|
77 |
+
arg: Operator or set
|
78 |
+
The class or instance of the operator or set of operators
|
79 |
+
to be mapped to a state
|
80 |
+
|
81 |
+
Examples
|
82 |
+
========
|
83 |
+
|
84 |
+
>>> from sympy.physics.quantum.cartesian import XOp, PxOp
|
85 |
+
>>> from sympy.physics.quantum.operatorset import operators_to_state
|
86 |
+
>>> from sympy.physics.quantum.operator import Operator
|
87 |
+
>>> operators_to_state(XOp)
|
88 |
+
|x>
|
89 |
+
>>> operators_to_state(XOp())
|
90 |
+
|x>
|
91 |
+
>>> operators_to_state(PxOp)
|
92 |
+
|px>
|
93 |
+
>>> operators_to_state(PxOp())
|
94 |
+
|px>
|
95 |
+
>>> operators_to_state(Operator)
|
96 |
+
|psi>
|
97 |
+
>>> operators_to_state(Operator())
|
98 |
+
|psi>
|
99 |
+
"""
|
100 |
+
|
101 |
+
if not (isinstance(operators, Operator)
|
102 |
+
or isinstance(operators, set) or issubclass(operators, Operator)):
|
103 |
+
raise NotImplementedError("Argument is not an Operator or a set!")
|
104 |
+
|
105 |
+
if isinstance(operators, set):
|
106 |
+
for s in operators:
|
107 |
+
if not (isinstance(s, Operator)
|
108 |
+
or issubclass(s, Operator)):
|
109 |
+
raise NotImplementedError("Set is not all Operators!")
|
110 |
+
|
111 |
+
ops = frozenset(operators)
|
112 |
+
|
113 |
+
if ops in op_mapping: # ops is a list of classes in this case
|
114 |
+
#Try to get an object from default instances of the
|
115 |
+
#operators...if this fails, return the class
|
116 |
+
try:
|
117 |
+
op_instances = [op() for op in ops]
|
118 |
+
ret = _get_state(op_mapping[ops], set(op_instances), **options)
|
119 |
+
except NotImplementedError:
|
120 |
+
ret = op_mapping[ops]
|
121 |
+
|
122 |
+
return ret
|
123 |
+
else:
|
124 |
+
tmp = [type(o) for o in ops]
|
125 |
+
classes = frozenset(tmp)
|
126 |
+
|
127 |
+
if classes in op_mapping:
|
128 |
+
ret = _get_state(op_mapping[classes], ops, **options)
|
129 |
+
else:
|
130 |
+
ret = None
|
131 |
+
|
132 |
+
return ret
|
133 |
+
else:
|
134 |
+
if operators in op_mapping:
|
135 |
+
try:
|
136 |
+
op_instance = operators()
|
137 |
+
ret = _get_state(op_mapping[operators], op_instance, **options)
|
138 |
+
except NotImplementedError:
|
139 |
+
ret = op_mapping[operators]
|
140 |
+
|
141 |
+
return ret
|
142 |
+
elif type(operators) in op_mapping:
|
143 |
+
return _get_state(op_mapping[type(operators)], operators, **options)
|
144 |
+
else:
|
145 |
+
return None
|
146 |
+
|
147 |
+
|
148 |
+
def state_to_operators(state, **options):
|
149 |
+
""" Returns the operator or set of operators corresponding to the
|
150 |
+
given eigenstate
|
151 |
+
|
152 |
+
A global function for mapping state classes to their associated
|
153 |
+
operators or sets of operators. It takes either a state class
|
154 |
+
or instance.
|
155 |
+
|
156 |
+
This function can handle both instances of a given state or just
|
157 |
+
the class itself (i.e. both XKet() and XKet)
|
158 |
+
|
159 |
+
There are multiple use cases to consider:
|
160 |
+
|
161 |
+
1) A state class is passed: In this case, we first try
|
162 |
+
instantiating a default instance of the class. If this succeeds,
|
163 |
+
then we try to call state._state_to_operators on that instance.
|
164 |
+
If the creation of the default instance or if the calling of
|
165 |
+
_state_to_operators fails, then either an operator class or set of
|
166 |
+
operator classes is returned. Otherwise, the appropriate
|
167 |
+
operator instances are returned.
|
168 |
+
|
169 |
+
2) A state instance is returned: Here, state._state_to_operators
|
170 |
+
is called for the instance. If this fails, then a class or set of
|
171 |
+
operator classes is returned. Otherwise, the instances are returned.
|
172 |
+
|
173 |
+
In either case, if the state's class does not exist in
|
174 |
+
state_mapping, None is returned.
|
175 |
+
|
176 |
+
Parameters
|
177 |
+
==========
|
178 |
+
|
179 |
+
arg: StateBase class or instance (or subclasses)
|
180 |
+
The class or instance of the state to be mapped to an
|
181 |
+
operator or set of operators
|
182 |
+
|
183 |
+
Examples
|
184 |
+
========
|
185 |
+
|
186 |
+
>>> from sympy.physics.quantum.cartesian import XKet, PxKet, XBra, PxBra
|
187 |
+
>>> from sympy.physics.quantum.operatorset import state_to_operators
|
188 |
+
>>> from sympy.physics.quantum.state import Ket, Bra
|
189 |
+
>>> state_to_operators(XKet)
|
190 |
+
X
|
191 |
+
>>> state_to_operators(XKet())
|
192 |
+
X
|
193 |
+
>>> state_to_operators(PxKet)
|
194 |
+
Px
|
195 |
+
>>> state_to_operators(PxKet())
|
196 |
+
Px
|
197 |
+
>>> state_to_operators(PxBra)
|
198 |
+
Px
|
199 |
+
>>> state_to_operators(XBra)
|
200 |
+
X
|
201 |
+
>>> state_to_operators(Ket)
|
202 |
+
O
|
203 |
+
>>> state_to_operators(Bra)
|
204 |
+
O
|
205 |
+
"""
|
206 |
+
|
207 |
+
if not (isinstance(state, StateBase) or issubclass(state, StateBase)):
|
208 |
+
raise NotImplementedError("Argument is not a state!")
|
209 |
+
|
210 |
+
if state in state_mapping: # state is a class
|
211 |
+
state_inst = _make_default(state)
|
212 |
+
try:
|
213 |
+
ret = _get_ops(state_inst,
|
214 |
+
_make_set(state_mapping[state]), **options)
|
215 |
+
except (NotImplementedError, TypeError):
|
216 |
+
ret = state_mapping[state]
|
217 |
+
elif type(state) in state_mapping:
|
218 |
+
ret = _get_ops(state,
|
219 |
+
_make_set(state_mapping[type(state)]), **options)
|
220 |
+
elif isinstance(state, BraBase) and state.dual_class() in state_mapping:
|
221 |
+
ret = _get_ops(state,
|
222 |
+
_make_set(state_mapping[state.dual_class()]))
|
223 |
+
elif issubclass(state, BraBase) and state.dual_class() in state_mapping:
|
224 |
+
state_inst = _make_default(state)
|
225 |
+
try:
|
226 |
+
ret = _get_ops(state_inst,
|
227 |
+
_make_set(state_mapping[state.dual_class()]))
|
228 |
+
except (NotImplementedError, TypeError):
|
229 |
+
ret = state_mapping[state.dual_class()]
|
230 |
+
else:
|
231 |
+
ret = None
|
232 |
+
|
233 |
+
return _make_set(ret)
|
234 |
+
|
235 |
+
|
236 |
+
def _make_default(expr):
|
237 |
+
# XXX: Catching TypeError like this is a bad way of distinguishing between
|
238 |
+
# classes and instances. The logic using this function should be rewritten
|
239 |
+
# somehow.
|
240 |
+
try:
|
241 |
+
ret = expr()
|
242 |
+
except TypeError:
|
243 |
+
ret = expr
|
244 |
+
|
245 |
+
return ret
|
246 |
+
|
247 |
+
|
248 |
+
def _get_state(state_class, ops, **options):
|
249 |
+
# Try to get a state instance from the operator INSTANCES.
|
250 |
+
# If this fails, get the class
|
251 |
+
try:
|
252 |
+
ret = state_class._operators_to_state(ops, **options)
|
253 |
+
except NotImplementedError:
|
254 |
+
ret = _make_default(state_class)
|
255 |
+
|
256 |
+
return ret
|
257 |
+
|
258 |
+
|
259 |
+
def _get_ops(state_inst, op_classes, **options):
|
260 |
+
# Try to get operator instances from the state INSTANCE.
|
261 |
+
# If this fails, just return the classes
|
262 |
+
try:
|
263 |
+
ret = state_inst._state_to_operators(op_classes, **options)
|
264 |
+
except NotImplementedError:
|
265 |
+
if isinstance(op_classes, (set, tuple, frozenset)):
|
266 |
+
ret = tuple(_make_default(x) for x in op_classes)
|
267 |
+
else:
|
268 |
+
ret = _make_default(op_classes)
|
269 |
+
|
270 |
+
if isinstance(ret, set) and len(ret) == 1:
|
271 |
+
return ret[0]
|
272 |
+
|
273 |
+
return ret
|
274 |
+
|
275 |
+
|
276 |
+
def _make_set(ops):
|
277 |
+
if isinstance(ops, (tuple, list, frozenset)):
|
278 |
+
return set(ops)
|
279 |
+
else:
|
280 |
+
return ops
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/piab.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""1D quantum particle in a box."""
|
2 |
+
|
3 |
+
from sympy.core.numbers import pi
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import Symbol
|
6 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
7 |
+
from sympy.functions.elementary.trigonometric import sin
|
8 |
+
from sympy.sets.sets import Interval
|
9 |
+
|
10 |
+
from sympy.physics.quantum.operator import HermitianOperator
|
11 |
+
from sympy.physics.quantum.state import Ket, Bra
|
12 |
+
from sympy.physics.quantum.constants import hbar
|
13 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
14 |
+
from sympy.physics.quantum.hilbert import L2
|
15 |
+
|
16 |
+
m = Symbol('m')
|
17 |
+
L = Symbol('L')
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = [
|
21 |
+
'PIABHamiltonian',
|
22 |
+
'PIABKet',
|
23 |
+
'PIABBra'
|
24 |
+
]
|
25 |
+
|
26 |
+
|
27 |
+
class PIABHamiltonian(HermitianOperator):
|
28 |
+
"""Particle in a box Hamiltonian operator."""
|
29 |
+
|
30 |
+
@classmethod
|
31 |
+
def _eval_hilbert_space(cls, label):
|
32 |
+
return L2(Interval(S.NegativeInfinity, S.Infinity))
|
33 |
+
|
34 |
+
def _apply_operator_PIABKet(self, ket, **options):
|
35 |
+
n = ket.label[0]
|
36 |
+
return (n**2*pi**2*hbar**2)/(2*m*L**2)*ket
|
37 |
+
|
38 |
+
|
39 |
+
class PIABKet(Ket):
|
40 |
+
"""Particle in a box eigenket."""
|
41 |
+
|
42 |
+
@classmethod
|
43 |
+
def _eval_hilbert_space(cls, args):
|
44 |
+
return L2(Interval(S.NegativeInfinity, S.Infinity))
|
45 |
+
|
46 |
+
@classmethod
|
47 |
+
def dual_class(self):
|
48 |
+
return PIABBra
|
49 |
+
|
50 |
+
def _represent_default_basis(self, **options):
|
51 |
+
return self._represent_XOp(None, **options)
|
52 |
+
|
53 |
+
def _represent_XOp(self, basis, **options):
|
54 |
+
x = Symbol('x')
|
55 |
+
n = Symbol('n')
|
56 |
+
subs_info = options.get('subs', {})
|
57 |
+
return sqrt(2/L)*sin(n*pi*x/L).subs(subs_info)
|
58 |
+
|
59 |
+
def _eval_innerproduct_PIABBra(self, bra):
|
60 |
+
return KroneckerDelta(bra.label[0], self.label[0])
|
61 |
+
|
62 |
+
|
63 |
+
class PIABBra(Bra):
|
64 |
+
"""Particle in a box eigenbra."""
|
65 |
+
|
66 |
+
@classmethod
|
67 |
+
def _eval_hilbert_space(cls, label):
|
68 |
+
return L2(Interval(S.NegativeInfinity, S.Infinity))
|
69 |
+
|
70 |
+
@classmethod
|
71 |
+
def dual_class(self):
|
72 |
+
return PIABKet
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/qasm.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
qasm.py - Functions to parse a set of qasm commands into a SymPy Circuit.
|
4 |
+
|
5 |
+
Examples taken from Chuang's page: https://web.archive.org/web/20220120121541/https://www.media.mit.edu/quanta/qasm2circ/
|
6 |
+
|
7 |
+
The code returns a circuit and an associated list of labels.
|
8 |
+
|
9 |
+
>>> from sympy.physics.quantum.qasm import Qasm
|
10 |
+
>>> q = Qasm('qubit q0', 'qubit q1', 'h q0', 'cnot q0,q1')
|
11 |
+
>>> q.get_circuit()
|
12 |
+
CNOT(1,0)*H(1)
|
13 |
+
|
14 |
+
>>> q = Qasm('qubit q0', 'qubit q1', 'cnot q0,q1', 'cnot q1,q0', 'cnot q0,q1')
|
15 |
+
>>> q.get_circuit()
|
16 |
+
CNOT(1,0)*CNOT(0,1)*CNOT(1,0)
|
17 |
+
"""
|
18 |
+
|
19 |
+
__all__ = [
|
20 |
+
'Qasm',
|
21 |
+
]
|
22 |
+
|
23 |
+
from math import prod
|
24 |
+
|
25 |
+
from sympy.physics.quantum.gate import H, CNOT, X, Z, CGate, CGateS, SWAP, S, T,CPHASE
|
26 |
+
from sympy.physics.quantum.circuitplot import Mz
|
27 |
+
|
28 |
+
def read_qasm(lines):
|
29 |
+
return Qasm(*lines.splitlines())
|
30 |
+
|
31 |
+
def read_qasm_file(filename):
|
32 |
+
return Qasm(*open(filename).readlines())
|
33 |
+
|
34 |
+
def flip_index(i, n):
|
35 |
+
"""Reorder qubit indices from largest to smallest.
|
36 |
+
|
37 |
+
>>> from sympy.physics.quantum.qasm import flip_index
|
38 |
+
>>> flip_index(0, 2)
|
39 |
+
1
|
40 |
+
>>> flip_index(1, 2)
|
41 |
+
0
|
42 |
+
"""
|
43 |
+
return n-i-1
|
44 |
+
|
45 |
+
def trim(line):
|
46 |
+
"""Remove everything following comment # characters in line.
|
47 |
+
|
48 |
+
>>> from sympy.physics.quantum.qasm import trim
|
49 |
+
>>> trim('nothing happens here')
|
50 |
+
'nothing happens here'
|
51 |
+
>>> trim('something #happens here')
|
52 |
+
'something '
|
53 |
+
"""
|
54 |
+
if '#' not in line:
|
55 |
+
return line
|
56 |
+
return line.split('#')[0]
|
57 |
+
|
58 |
+
def get_index(target, labels):
|
59 |
+
"""Get qubit labels from the rest of the line,and return indices
|
60 |
+
|
61 |
+
>>> from sympy.physics.quantum.qasm import get_index
|
62 |
+
>>> get_index('q0', ['q0', 'q1'])
|
63 |
+
1
|
64 |
+
>>> get_index('q1', ['q0', 'q1'])
|
65 |
+
0
|
66 |
+
"""
|
67 |
+
nq = len(labels)
|
68 |
+
return flip_index(labels.index(target), nq)
|
69 |
+
|
70 |
+
def get_indices(targets, labels):
|
71 |
+
return [get_index(t, labels) for t in targets]
|
72 |
+
|
73 |
+
def nonblank(args):
|
74 |
+
for line in args:
|
75 |
+
line = trim(line)
|
76 |
+
if line.isspace():
|
77 |
+
continue
|
78 |
+
yield line
|
79 |
+
return
|
80 |
+
|
81 |
+
def fullsplit(line):
|
82 |
+
words = line.split()
|
83 |
+
rest = ' '.join(words[1:])
|
84 |
+
return fixcommand(words[0]), [s.strip() for s in rest.split(',')]
|
85 |
+
|
86 |
+
def fixcommand(c):
|
87 |
+
"""Fix Qasm command names.
|
88 |
+
|
89 |
+
Remove all of forbidden characters from command c, and
|
90 |
+
replace 'def' with 'qdef'.
|
91 |
+
"""
|
92 |
+
forbidden_characters = ['-']
|
93 |
+
c = c.lower()
|
94 |
+
for char in forbidden_characters:
|
95 |
+
c = c.replace(char, '')
|
96 |
+
if c == 'def':
|
97 |
+
return 'qdef'
|
98 |
+
return c
|
99 |
+
|
100 |
+
def stripquotes(s):
|
101 |
+
"""Replace explicit quotes in a string.
|
102 |
+
|
103 |
+
>>> from sympy.physics.quantum.qasm import stripquotes
|
104 |
+
>>> stripquotes("'S'") == 'S'
|
105 |
+
True
|
106 |
+
>>> stripquotes('"S"') == 'S'
|
107 |
+
True
|
108 |
+
>>> stripquotes('S') == 'S'
|
109 |
+
True
|
110 |
+
"""
|
111 |
+
s = s.replace('"', '') # Remove second set of quotes?
|
112 |
+
s = s.replace("'", '')
|
113 |
+
return s
|
114 |
+
|
115 |
+
class Qasm:
|
116 |
+
"""Class to form objects from Qasm lines
|
117 |
+
|
118 |
+
>>> from sympy.physics.quantum.qasm import Qasm
|
119 |
+
>>> q = Qasm('qubit q0', 'qubit q1', 'h q0', 'cnot q0,q1')
|
120 |
+
>>> q.get_circuit()
|
121 |
+
CNOT(1,0)*H(1)
|
122 |
+
>>> q = Qasm('qubit q0', 'qubit q1', 'cnot q0,q1', 'cnot q1,q0', 'cnot q0,q1')
|
123 |
+
>>> q.get_circuit()
|
124 |
+
CNOT(1,0)*CNOT(0,1)*CNOT(1,0)
|
125 |
+
"""
|
126 |
+
def __init__(self, *args, **kwargs):
|
127 |
+
self.defs = {}
|
128 |
+
self.circuit = []
|
129 |
+
self.labels = []
|
130 |
+
self.inits = {}
|
131 |
+
self.add(*args)
|
132 |
+
self.kwargs = kwargs
|
133 |
+
|
134 |
+
def add(self, *lines):
|
135 |
+
for line in nonblank(lines):
|
136 |
+
command, rest = fullsplit(line)
|
137 |
+
if self.defs.get(command): #defs come first, since you can override built-in
|
138 |
+
function = self.defs.get(command)
|
139 |
+
indices = self.indices(rest)
|
140 |
+
if len(indices) == 1:
|
141 |
+
self.circuit.append(function(indices[0]))
|
142 |
+
else:
|
143 |
+
self.circuit.append(function(indices[:-1], indices[-1]))
|
144 |
+
elif hasattr(self, command):
|
145 |
+
function = getattr(self, command)
|
146 |
+
function(*rest)
|
147 |
+
else:
|
148 |
+
print("Function %s not defined. Skipping" % command)
|
149 |
+
|
150 |
+
def get_circuit(self):
|
151 |
+
return prod(reversed(self.circuit))
|
152 |
+
|
153 |
+
def get_labels(self):
|
154 |
+
return list(reversed(self.labels))
|
155 |
+
|
156 |
+
def plot(self):
|
157 |
+
from sympy.physics.quantum.circuitplot import CircuitPlot
|
158 |
+
circuit, labels = self.get_circuit(), self.get_labels()
|
159 |
+
CircuitPlot(circuit, len(labels), labels=labels, inits=self.inits)
|
160 |
+
|
161 |
+
def qubit(self, arg, init=None):
|
162 |
+
self.labels.append(arg)
|
163 |
+
if init: self.inits[arg] = init
|
164 |
+
|
165 |
+
def indices(self, args):
|
166 |
+
return get_indices(args, self.labels)
|
167 |
+
|
168 |
+
def index(self, arg):
|
169 |
+
return get_index(arg, self.labels)
|
170 |
+
|
171 |
+
def nop(self, *args):
|
172 |
+
pass
|
173 |
+
|
174 |
+
def x(self, arg):
|
175 |
+
self.circuit.append(X(self.index(arg)))
|
176 |
+
|
177 |
+
def z(self, arg):
|
178 |
+
self.circuit.append(Z(self.index(arg)))
|
179 |
+
|
180 |
+
def h(self, arg):
|
181 |
+
self.circuit.append(H(self.index(arg)))
|
182 |
+
|
183 |
+
def s(self, arg):
|
184 |
+
self.circuit.append(S(self.index(arg)))
|
185 |
+
|
186 |
+
def t(self, arg):
|
187 |
+
self.circuit.append(T(self.index(arg)))
|
188 |
+
|
189 |
+
def measure(self, arg):
|
190 |
+
self.circuit.append(Mz(self.index(arg)))
|
191 |
+
|
192 |
+
def cnot(self, a1, a2):
|
193 |
+
self.circuit.append(CNOT(*self.indices([a1, a2])))
|
194 |
+
|
195 |
+
def swap(self, a1, a2):
|
196 |
+
self.circuit.append(SWAP(*self.indices([a1, a2])))
|
197 |
+
|
198 |
+
def cphase(self, a1, a2):
|
199 |
+
self.circuit.append(CPHASE(*self.indices([a1, a2])))
|
200 |
+
|
201 |
+
def toffoli(self, a1, a2, a3):
|
202 |
+
i1, i2, i3 = self.indices([a1, a2, a3])
|
203 |
+
self.circuit.append(CGateS((i1, i2), X(i3)))
|
204 |
+
|
205 |
+
def cx(self, a1, a2):
|
206 |
+
fi, fj = self.indices([a1, a2])
|
207 |
+
self.circuit.append(CGate(fi, X(fj)))
|
208 |
+
|
209 |
+
def cz(self, a1, a2):
|
210 |
+
fi, fj = self.indices([a1, a2])
|
211 |
+
self.circuit.append(CGate(fi, Z(fj)))
|
212 |
+
|
213 |
+
def defbox(self, *args):
|
214 |
+
print("defbox not supported yet. Skipping: ", args)
|
215 |
+
|
216 |
+
def qdef(self, name, ncontrols, symbol):
|
217 |
+
from sympy.physics.quantum.circuitplot import CreateOneQubitGate, CreateCGate
|
218 |
+
ncontrols = int(ncontrols)
|
219 |
+
command = fixcommand(name)
|
220 |
+
symbol = stripquotes(symbol)
|
221 |
+
if ncontrols > 0:
|
222 |
+
self.defs[command] = CreateCGate(symbol)
|
223 |
+
else:
|
224 |
+
self.defs[command] = CreateOneQubitGate(symbol)
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/represent.py
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Logic for representing operators in state in various bases.
|
2 |
+
|
3 |
+
TODO:
|
4 |
+
|
5 |
+
* Get represent working with continuous hilbert spaces.
|
6 |
+
* Document default basis functionality.
|
7 |
+
"""
|
8 |
+
|
9 |
+
from sympy.core.add import Add
|
10 |
+
from sympy.core.expr import Expr
|
11 |
+
from sympy.core.mul import Mul
|
12 |
+
from sympy.core.numbers import I
|
13 |
+
from sympy.core.power import Pow
|
14 |
+
from sympy.integrals.integrals import integrate
|
15 |
+
from sympy.physics.quantum.dagger import Dagger
|
16 |
+
from sympy.physics.quantum.commutator import Commutator
|
17 |
+
from sympy.physics.quantum.anticommutator import AntiCommutator
|
18 |
+
from sympy.physics.quantum.innerproduct import InnerProduct
|
19 |
+
from sympy.physics.quantum.qexpr import QExpr
|
20 |
+
from sympy.physics.quantum.tensorproduct import TensorProduct
|
21 |
+
from sympy.physics.quantum.matrixutils import flatten_scalar
|
22 |
+
from sympy.physics.quantum.state import KetBase, BraBase, StateBase
|
23 |
+
from sympy.physics.quantum.operator import Operator, OuterProduct
|
24 |
+
from sympy.physics.quantum.qapply import qapply
|
25 |
+
from sympy.physics.quantum.operatorset import operators_to_state, state_to_operators
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
'represent',
|
29 |
+
'rep_innerproduct',
|
30 |
+
'rep_expectation',
|
31 |
+
'integrate_result',
|
32 |
+
'get_basis',
|
33 |
+
'enumerate_states'
|
34 |
+
]
|
35 |
+
|
36 |
+
#-----------------------------------------------------------------------------
|
37 |
+
# Represent
|
38 |
+
#-----------------------------------------------------------------------------
|
39 |
+
|
40 |
+
|
41 |
+
def _sympy_to_scalar(e):
|
42 |
+
"""Convert from a SymPy scalar to a Python scalar."""
|
43 |
+
if isinstance(e, Expr):
|
44 |
+
if e.is_Integer:
|
45 |
+
return int(e)
|
46 |
+
elif e.is_Float:
|
47 |
+
return float(e)
|
48 |
+
elif e.is_Rational:
|
49 |
+
return float(e)
|
50 |
+
elif e.is_Number or e.is_NumberSymbol or e == I:
|
51 |
+
return complex(e)
|
52 |
+
raise TypeError('Expected number, got: %r' % e)
|
53 |
+
|
54 |
+
|
55 |
+
def represent(expr, **options):
|
56 |
+
"""Represent the quantum expression in the given basis.
|
57 |
+
|
58 |
+
In quantum mechanics abstract states and operators can be represented in
|
59 |
+
various basis sets. Under this operation the follow transforms happen:
|
60 |
+
|
61 |
+
* Ket -> column vector or function
|
62 |
+
* Bra -> row vector of function
|
63 |
+
* Operator -> matrix or differential operator
|
64 |
+
|
65 |
+
This function is the top-level interface for this action.
|
66 |
+
|
67 |
+
This function walks the SymPy expression tree looking for ``QExpr``
|
68 |
+
instances that have a ``_represent`` method. This method is then called
|
69 |
+
and the object is replaced by the representation returned by this method.
|
70 |
+
By default, the ``_represent`` method will dispatch to other methods
|
71 |
+
that handle the representation logic for a particular basis set. The
|
72 |
+
naming convention for these methods is the following::
|
73 |
+
|
74 |
+
def _represent_FooBasis(self, e, basis, **options)
|
75 |
+
|
76 |
+
This function will have the logic for representing instances of its class
|
77 |
+
in the basis set having a class named ``FooBasis``.
|
78 |
+
|
79 |
+
Parameters
|
80 |
+
==========
|
81 |
+
|
82 |
+
expr : Expr
|
83 |
+
The expression to represent.
|
84 |
+
basis : Operator, basis set
|
85 |
+
An object that contains the information about the basis set. If an
|
86 |
+
operator is used, the basis is assumed to be the orthonormal
|
87 |
+
eigenvectors of that operator. In general though, the basis argument
|
88 |
+
can be any object that contains the basis set information.
|
89 |
+
options : dict
|
90 |
+
Key/value pairs of options that are passed to the underlying method
|
91 |
+
that finds the representation. These options can be used to
|
92 |
+
control how the representation is done. For example, this is where
|
93 |
+
the size of the basis set would be set.
|
94 |
+
|
95 |
+
Returns
|
96 |
+
=======
|
97 |
+
|
98 |
+
e : Expr
|
99 |
+
The SymPy expression of the represented quantum expression.
|
100 |
+
|
101 |
+
Examples
|
102 |
+
========
|
103 |
+
|
104 |
+
Here we subclass ``Operator`` and ``Ket`` to create the z-spin operator
|
105 |
+
and its spin 1/2 up eigenstate. By defining the ``_represent_SzOp``
|
106 |
+
method, the ket can be represented in the z-spin basis.
|
107 |
+
|
108 |
+
>>> from sympy.physics.quantum import Operator, represent, Ket
|
109 |
+
>>> from sympy import Matrix
|
110 |
+
|
111 |
+
>>> class SzUpKet(Ket):
|
112 |
+
... def _represent_SzOp(self, basis, **options):
|
113 |
+
... return Matrix([1,0])
|
114 |
+
...
|
115 |
+
>>> class SzOp(Operator):
|
116 |
+
... pass
|
117 |
+
...
|
118 |
+
>>> sz = SzOp('Sz')
|
119 |
+
>>> up = SzUpKet('up')
|
120 |
+
>>> represent(up, basis=sz)
|
121 |
+
Matrix([
|
122 |
+
[1],
|
123 |
+
[0]])
|
124 |
+
|
125 |
+
Here we see an example of representations in a continuous
|
126 |
+
basis. We see that the result of representing various combinations
|
127 |
+
of cartesian position operators and kets give us continuous
|
128 |
+
expressions involving DiracDelta functions.
|
129 |
+
|
130 |
+
>>> from sympy.physics.quantum.cartesian import XOp, XKet, XBra
|
131 |
+
>>> X = XOp()
|
132 |
+
>>> x = XKet()
|
133 |
+
>>> y = XBra('y')
|
134 |
+
>>> represent(X*x)
|
135 |
+
x*DiracDelta(x - x_2)
|
136 |
+
>>> represent(X*x*y)
|
137 |
+
x*DiracDelta(x - x_3)*DiracDelta(x_1 - y)
|
138 |
+
|
139 |
+
"""
|
140 |
+
|
141 |
+
format = options.get('format', 'sympy')
|
142 |
+
if format == 'numpy':
|
143 |
+
import numpy as np
|
144 |
+
if isinstance(expr, QExpr) and not isinstance(expr, OuterProduct):
|
145 |
+
options['replace_none'] = False
|
146 |
+
temp_basis = get_basis(expr, **options)
|
147 |
+
if temp_basis is not None:
|
148 |
+
options['basis'] = temp_basis
|
149 |
+
try:
|
150 |
+
return expr._represent(**options)
|
151 |
+
except NotImplementedError as strerr:
|
152 |
+
#If no _represent_FOO method exists, map to the
|
153 |
+
#appropriate basis state and try
|
154 |
+
#the other methods of representation
|
155 |
+
options['replace_none'] = True
|
156 |
+
|
157 |
+
if isinstance(expr, (KetBase, BraBase)):
|
158 |
+
try:
|
159 |
+
return rep_innerproduct(expr, **options)
|
160 |
+
except NotImplementedError:
|
161 |
+
raise NotImplementedError(strerr)
|
162 |
+
elif isinstance(expr, Operator):
|
163 |
+
try:
|
164 |
+
return rep_expectation(expr, **options)
|
165 |
+
except NotImplementedError:
|
166 |
+
raise NotImplementedError(strerr)
|
167 |
+
else:
|
168 |
+
raise NotImplementedError(strerr)
|
169 |
+
elif isinstance(expr, Add):
|
170 |
+
result = represent(expr.args[0], **options)
|
171 |
+
for args in expr.args[1:]:
|
172 |
+
# scipy.sparse doesn't support += so we use plain = here.
|
173 |
+
result = result + represent(args, **options)
|
174 |
+
return result
|
175 |
+
elif isinstance(expr, Pow):
|
176 |
+
base, exp = expr.as_base_exp()
|
177 |
+
if format in ('numpy', 'scipy.sparse'):
|
178 |
+
exp = _sympy_to_scalar(exp)
|
179 |
+
base = represent(base, **options)
|
180 |
+
# scipy.sparse doesn't support negative exponents
|
181 |
+
# and warns when inverting a matrix in csr format.
|
182 |
+
if format == 'scipy.sparse' and exp < 0:
|
183 |
+
from scipy.sparse.linalg import inv
|
184 |
+
exp = - exp
|
185 |
+
base = inv(base.tocsc()).tocsr()
|
186 |
+
if format == 'numpy':
|
187 |
+
return np.linalg.matrix_power(base, exp)
|
188 |
+
return base ** exp
|
189 |
+
elif isinstance(expr, TensorProduct):
|
190 |
+
new_args = [represent(arg, **options) for arg in expr.args]
|
191 |
+
return TensorProduct(*new_args)
|
192 |
+
elif isinstance(expr, Dagger):
|
193 |
+
return Dagger(represent(expr.args[0], **options))
|
194 |
+
elif isinstance(expr, Commutator):
|
195 |
+
A = expr.args[0]
|
196 |
+
B = expr.args[1]
|
197 |
+
return represent(Mul(A, B) - Mul(B, A), **options)
|
198 |
+
elif isinstance(expr, AntiCommutator):
|
199 |
+
A = expr.args[0]
|
200 |
+
B = expr.args[1]
|
201 |
+
return represent(Mul(A, B) + Mul(B, A), **options)
|
202 |
+
elif isinstance(expr, InnerProduct):
|
203 |
+
return represent(Mul(expr.bra, expr.ket), **options)
|
204 |
+
elif not isinstance(expr, (Mul, OuterProduct)):
|
205 |
+
# For numpy and scipy.sparse, we can only handle numerical prefactors.
|
206 |
+
if format in ('numpy', 'scipy.sparse'):
|
207 |
+
return _sympy_to_scalar(expr)
|
208 |
+
return expr
|
209 |
+
|
210 |
+
if not isinstance(expr, (Mul, OuterProduct)):
|
211 |
+
raise TypeError('Mul expected, got: %r' % expr)
|
212 |
+
|
213 |
+
if "index" in options:
|
214 |
+
options["index"] += 1
|
215 |
+
else:
|
216 |
+
options["index"] = 1
|
217 |
+
|
218 |
+
if "unities" not in options:
|
219 |
+
options["unities"] = []
|
220 |
+
|
221 |
+
result = represent(expr.args[-1], **options)
|
222 |
+
last_arg = expr.args[-1]
|
223 |
+
|
224 |
+
for arg in reversed(expr.args[:-1]):
|
225 |
+
if isinstance(last_arg, Operator):
|
226 |
+
options["index"] += 1
|
227 |
+
options["unities"].append(options["index"])
|
228 |
+
elif isinstance(last_arg, BraBase) and isinstance(arg, KetBase):
|
229 |
+
options["index"] += 1
|
230 |
+
elif isinstance(last_arg, KetBase) and isinstance(arg, Operator):
|
231 |
+
options["unities"].append(options["index"])
|
232 |
+
elif isinstance(last_arg, KetBase) and isinstance(arg, BraBase):
|
233 |
+
options["unities"].append(options["index"])
|
234 |
+
|
235 |
+
next_arg = represent(arg, **options)
|
236 |
+
if format == 'numpy' and isinstance(next_arg, np.ndarray):
|
237 |
+
# Must use np.matmult to "matrix multiply" two np.ndarray
|
238 |
+
result = np.matmul(next_arg, result)
|
239 |
+
else:
|
240 |
+
result = next_arg*result
|
241 |
+
last_arg = arg
|
242 |
+
|
243 |
+
# All three matrix formats create 1 by 1 matrices when inner products of
|
244 |
+
# vectors are taken. In these cases, we simply return a scalar.
|
245 |
+
result = flatten_scalar(result)
|
246 |
+
|
247 |
+
result = integrate_result(expr, result, **options)
|
248 |
+
|
249 |
+
return result
|
250 |
+
|
251 |
+
|
252 |
+
def rep_innerproduct(expr, **options):
|
253 |
+
"""
|
254 |
+
Returns an innerproduct like representation (e.g. ``<x'|x>``) for the
|
255 |
+
given state.
|
256 |
+
|
257 |
+
Attempts to calculate inner product with a bra from the specified
|
258 |
+
basis. Should only be passed an instance of KetBase or BraBase
|
259 |
+
|
260 |
+
Parameters
|
261 |
+
==========
|
262 |
+
|
263 |
+
expr : KetBase or BraBase
|
264 |
+
The expression to be represented
|
265 |
+
|
266 |
+
Examples
|
267 |
+
========
|
268 |
+
|
269 |
+
>>> from sympy.physics.quantum.represent import rep_innerproduct
|
270 |
+
>>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
|
271 |
+
>>> rep_innerproduct(XKet())
|
272 |
+
DiracDelta(x - x_1)
|
273 |
+
>>> rep_innerproduct(XKet(), basis=PxOp())
|
274 |
+
sqrt(2)*exp(-I*px_1*x/hbar)/(2*sqrt(hbar)*sqrt(pi))
|
275 |
+
>>> rep_innerproduct(PxKet(), basis=XOp())
|
276 |
+
sqrt(2)*exp(I*px*x_1/hbar)/(2*sqrt(hbar)*sqrt(pi))
|
277 |
+
|
278 |
+
"""
|
279 |
+
|
280 |
+
if not isinstance(expr, (KetBase, BraBase)):
|
281 |
+
raise TypeError("expr passed is not a Bra or Ket")
|
282 |
+
|
283 |
+
basis = get_basis(expr, **options)
|
284 |
+
|
285 |
+
if not isinstance(basis, StateBase):
|
286 |
+
raise NotImplementedError("Can't form this representation!")
|
287 |
+
|
288 |
+
if "index" not in options:
|
289 |
+
options["index"] = 1
|
290 |
+
|
291 |
+
basis_kets = enumerate_states(basis, options["index"], 2)
|
292 |
+
|
293 |
+
if isinstance(expr, BraBase):
|
294 |
+
bra = expr
|
295 |
+
ket = (basis_kets[1] if basis_kets[0].dual == expr else basis_kets[0])
|
296 |
+
else:
|
297 |
+
bra = (basis_kets[1].dual if basis_kets[0]
|
298 |
+
== expr else basis_kets[0].dual)
|
299 |
+
ket = expr
|
300 |
+
|
301 |
+
prod = InnerProduct(bra, ket)
|
302 |
+
result = prod.doit()
|
303 |
+
|
304 |
+
format = options.get('format', 'sympy')
|
305 |
+
return expr._format_represent(result, format)
|
306 |
+
|
307 |
+
|
308 |
+
def rep_expectation(expr, **options):
|
309 |
+
"""
|
310 |
+
Returns an ``<x'|A|x>`` type representation for the given operator.
|
311 |
+
|
312 |
+
Parameters
|
313 |
+
==========
|
314 |
+
|
315 |
+
expr : Operator
|
316 |
+
Operator to be represented in the specified basis
|
317 |
+
|
318 |
+
Examples
|
319 |
+
========
|
320 |
+
|
321 |
+
>>> from sympy.physics.quantum.cartesian import XOp, PxOp, PxKet
|
322 |
+
>>> from sympy.physics.quantum.represent import rep_expectation
|
323 |
+
>>> rep_expectation(XOp())
|
324 |
+
x_1*DiracDelta(x_1 - x_2)
|
325 |
+
>>> rep_expectation(XOp(), basis=PxOp())
|
326 |
+
<px_2|*X*|px_1>
|
327 |
+
>>> rep_expectation(XOp(), basis=PxKet())
|
328 |
+
<px_2|*X*|px_1>
|
329 |
+
|
330 |
+
"""
|
331 |
+
|
332 |
+
if "index" not in options:
|
333 |
+
options["index"] = 1
|
334 |
+
|
335 |
+
if not isinstance(expr, Operator):
|
336 |
+
raise TypeError("The passed expression is not an operator")
|
337 |
+
|
338 |
+
basis_state = get_basis(expr, **options)
|
339 |
+
|
340 |
+
if basis_state is None or not isinstance(basis_state, StateBase):
|
341 |
+
raise NotImplementedError("Could not get basis kets for this operator")
|
342 |
+
|
343 |
+
basis_kets = enumerate_states(basis_state, options["index"], 2)
|
344 |
+
|
345 |
+
bra = basis_kets[1].dual
|
346 |
+
ket = basis_kets[0]
|
347 |
+
|
348 |
+
return qapply(bra*expr*ket)
|
349 |
+
|
350 |
+
|
351 |
+
def integrate_result(orig_expr, result, **options):
|
352 |
+
"""
|
353 |
+
Returns the result of integrating over any unities ``(|x><x|)`` in
|
354 |
+
the given expression. Intended for integrating over the result of
|
355 |
+
representations in continuous bases.
|
356 |
+
|
357 |
+
This function integrates over any unities that may have been
|
358 |
+
inserted into the quantum expression and returns the result.
|
359 |
+
It uses the interval of the Hilbert space of the basis state
|
360 |
+
passed to it in order to figure out the limits of integration.
|
361 |
+
The unities option must be
|
362 |
+
specified for this to work.
|
363 |
+
|
364 |
+
Note: This is mostly used internally by represent(). Examples are
|
365 |
+
given merely to show the use cases.
|
366 |
+
|
367 |
+
Parameters
|
368 |
+
==========
|
369 |
+
|
370 |
+
orig_expr : quantum expression
|
371 |
+
The original expression which was to be represented
|
372 |
+
|
373 |
+
result: Expr
|
374 |
+
The resulting representation that we wish to integrate over
|
375 |
+
|
376 |
+
Examples
|
377 |
+
========
|
378 |
+
|
379 |
+
>>> from sympy import symbols, DiracDelta
|
380 |
+
>>> from sympy.physics.quantum.represent import integrate_result
|
381 |
+
>>> from sympy.physics.quantum.cartesian import XOp, XKet
|
382 |
+
>>> x_ket = XKet()
|
383 |
+
>>> X_op = XOp()
|
384 |
+
>>> x, x_1, x_2 = symbols('x, x_1, x_2')
|
385 |
+
>>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2))
|
386 |
+
x*DiracDelta(x - x_1)*DiracDelta(x_1 - x_2)
|
387 |
+
>>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2),
|
388 |
+
... unities=[1])
|
389 |
+
x*DiracDelta(x - x_2)
|
390 |
+
|
391 |
+
"""
|
392 |
+
if not isinstance(result, Expr):
|
393 |
+
return result
|
394 |
+
|
395 |
+
options['replace_none'] = True
|
396 |
+
if "basis" not in options:
|
397 |
+
arg = orig_expr.args[-1]
|
398 |
+
options["basis"] = get_basis(arg, **options)
|
399 |
+
elif not isinstance(options["basis"], StateBase):
|
400 |
+
options["basis"] = get_basis(orig_expr, **options)
|
401 |
+
|
402 |
+
basis = options.pop("basis", None)
|
403 |
+
|
404 |
+
if basis is None:
|
405 |
+
return result
|
406 |
+
|
407 |
+
unities = options.pop("unities", [])
|
408 |
+
|
409 |
+
if len(unities) == 0:
|
410 |
+
return result
|
411 |
+
|
412 |
+
kets = enumerate_states(basis, unities)
|
413 |
+
coords = [k.label[0] for k in kets]
|
414 |
+
|
415 |
+
for coord in coords:
|
416 |
+
if coord in result.free_symbols:
|
417 |
+
#TODO: Add support for sets of operators
|
418 |
+
basis_op = state_to_operators(basis)
|
419 |
+
start = basis_op.hilbert_space.interval.start
|
420 |
+
end = basis_op.hilbert_space.interval.end
|
421 |
+
result = integrate(result, (coord, start, end))
|
422 |
+
|
423 |
+
return result
|
424 |
+
|
425 |
+
|
426 |
+
def get_basis(expr, *, basis=None, replace_none=True, **options):
|
427 |
+
"""
|
428 |
+
Returns a basis state instance corresponding to the basis specified in
|
429 |
+
options=s. If no basis is specified, the function tries to form a default
|
430 |
+
basis state of the given expression.
|
431 |
+
|
432 |
+
There are three behaviors:
|
433 |
+
|
434 |
+
1. The basis specified in options is already an instance of StateBase. If
|
435 |
+
this is the case, it is simply returned. If the class is specified but
|
436 |
+
not an instance, a default instance is returned.
|
437 |
+
|
438 |
+
2. The basis specified is an operator or set of operators. If this
|
439 |
+
is the case, the operator_to_state mapping method is used.
|
440 |
+
|
441 |
+
3. No basis is specified. If expr is a state, then a default instance of
|
442 |
+
its class is returned. If expr is an operator, then it is mapped to the
|
443 |
+
corresponding state. If it is neither, then we cannot obtain the basis
|
444 |
+
state.
|
445 |
+
|
446 |
+
If the basis cannot be mapped, then it is not changed.
|
447 |
+
|
448 |
+
This will be called from within represent, and represent will
|
449 |
+
only pass QExpr's.
|
450 |
+
|
451 |
+
TODO (?): Support for Muls and other types of expressions?
|
452 |
+
|
453 |
+
Parameters
|
454 |
+
==========
|
455 |
+
|
456 |
+
expr : Operator or StateBase
|
457 |
+
Expression whose basis is sought
|
458 |
+
|
459 |
+
Examples
|
460 |
+
========
|
461 |
+
|
462 |
+
>>> from sympy.physics.quantum.represent import get_basis
|
463 |
+
>>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
|
464 |
+
>>> x = XKet()
|
465 |
+
>>> X = XOp()
|
466 |
+
>>> get_basis(x)
|
467 |
+
|x>
|
468 |
+
>>> get_basis(X)
|
469 |
+
|x>
|
470 |
+
>>> get_basis(x, basis=PxOp())
|
471 |
+
|px>
|
472 |
+
>>> get_basis(x, basis=PxKet)
|
473 |
+
|px>
|
474 |
+
|
475 |
+
"""
|
476 |
+
|
477 |
+
if basis is None and not replace_none:
|
478 |
+
return None
|
479 |
+
|
480 |
+
if basis is None:
|
481 |
+
if isinstance(expr, KetBase):
|
482 |
+
return _make_default(expr.__class__)
|
483 |
+
elif isinstance(expr, BraBase):
|
484 |
+
return _make_default(expr.dual_class())
|
485 |
+
elif isinstance(expr, Operator):
|
486 |
+
state_inst = operators_to_state(expr)
|
487 |
+
return (state_inst if state_inst is not None else None)
|
488 |
+
else:
|
489 |
+
return None
|
490 |
+
elif (isinstance(basis, Operator) or
|
491 |
+
(not isinstance(basis, StateBase) and issubclass(basis, Operator))):
|
492 |
+
state = operators_to_state(basis)
|
493 |
+
if state is None:
|
494 |
+
return None
|
495 |
+
elif isinstance(state, StateBase):
|
496 |
+
return state
|
497 |
+
else:
|
498 |
+
return _make_default(state)
|
499 |
+
elif isinstance(basis, StateBase):
|
500 |
+
return basis
|
501 |
+
elif issubclass(basis, StateBase):
|
502 |
+
return _make_default(basis)
|
503 |
+
else:
|
504 |
+
return None
|
505 |
+
|
506 |
+
|
507 |
+
def _make_default(expr):
|
508 |
+
# XXX: Catching TypeError like this is a bad way of distinguishing
|
509 |
+
# instances from classes. The logic using this function should be
|
510 |
+
# rewritten somehow.
|
511 |
+
try:
|
512 |
+
expr = expr()
|
513 |
+
except TypeError:
|
514 |
+
return expr
|
515 |
+
|
516 |
+
return expr
|
517 |
+
|
518 |
+
|
519 |
+
def enumerate_states(*args, **options):
|
520 |
+
"""
|
521 |
+
Returns instances of the given state with dummy indices appended
|
522 |
+
|
523 |
+
Operates in two different modes:
|
524 |
+
|
525 |
+
1. Two arguments are passed to it. The first is the base state which is to
|
526 |
+
be indexed, and the second argument is a list of indices to append.
|
527 |
+
|
528 |
+
2. Three arguments are passed. The first is again the base state to be
|
529 |
+
indexed. The second is the start index for counting. The final argument
|
530 |
+
is the number of kets you wish to receive.
|
531 |
+
|
532 |
+
Tries to call state._enumerate_state. If this fails, returns an empty list
|
533 |
+
|
534 |
+
Parameters
|
535 |
+
==========
|
536 |
+
|
537 |
+
args : list
|
538 |
+
See list of operation modes above for explanation
|
539 |
+
|
540 |
+
Examples
|
541 |
+
========
|
542 |
+
|
543 |
+
>>> from sympy.physics.quantum.cartesian import XBra, XKet
|
544 |
+
>>> from sympy.physics.quantum.represent import enumerate_states
|
545 |
+
>>> test = XKet('foo')
|
546 |
+
>>> enumerate_states(test, 1, 3)
|
547 |
+
[|foo_1>, |foo_2>, |foo_3>]
|
548 |
+
>>> test2 = XBra('bar')
|
549 |
+
>>> enumerate_states(test2, [4, 5, 10])
|
550 |
+
[<bar_4|, <bar_5|, <bar_10|]
|
551 |
+
|
552 |
+
"""
|
553 |
+
|
554 |
+
state = args[0]
|
555 |
+
|
556 |
+
if len(args) not in (2, 3):
|
557 |
+
raise NotImplementedError("Wrong number of arguments!")
|
558 |
+
|
559 |
+
if not isinstance(state, StateBase):
|
560 |
+
raise TypeError("First argument is not a state!")
|
561 |
+
|
562 |
+
if len(args) == 3:
|
563 |
+
num_states = args[2]
|
564 |
+
options['start_index'] = args[1]
|
565 |
+
else:
|
566 |
+
num_states = len(args[1])
|
567 |
+
options['index_list'] = args[1]
|
568 |
+
|
569 |
+
try:
|
570 |
+
ret = state._enumerate_state(num_states, **options)
|
571 |
+
except NotImplementedError:
|
572 |
+
ret = []
|
573 |
+
|
574 |
+
return ret
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tensorproduct.py
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Abstract tensor product."""
|
2 |
+
|
3 |
+
from sympy.core.add import Add
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
from sympy.core.mul import Mul
|
6 |
+
from sympy.core.power import Pow
|
7 |
+
from sympy.core.sympify import sympify
|
8 |
+
from sympy.matrices.dense import MutableDenseMatrix as Matrix
|
9 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
10 |
+
|
11 |
+
from sympy.physics.quantum.qexpr import QuantumError
|
12 |
+
from sympy.physics.quantum.dagger import Dagger
|
13 |
+
from sympy.physics.quantum.commutator import Commutator
|
14 |
+
from sympy.physics.quantum.anticommutator import AntiCommutator
|
15 |
+
from sympy.physics.quantum.state import Ket, Bra
|
16 |
+
from sympy.physics.quantum.matrixutils import (
|
17 |
+
numpy_ndarray,
|
18 |
+
scipy_sparse_matrix,
|
19 |
+
matrix_tensor_product
|
20 |
+
)
|
21 |
+
from sympy.physics.quantum.trace import Tr
|
22 |
+
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
'TensorProduct',
|
26 |
+
'tensor_product_simp'
|
27 |
+
]
|
28 |
+
|
29 |
+
#-----------------------------------------------------------------------------
|
30 |
+
# Tensor product
|
31 |
+
#-----------------------------------------------------------------------------
|
32 |
+
|
33 |
+
_combined_printing = False
|
34 |
+
|
35 |
+
|
36 |
+
def combined_tensor_printing(combined):
|
37 |
+
"""Set flag controlling whether tensor products of states should be
|
38 |
+
printed as a combined bra/ket or as an explicit tensor product of different
|
39 |
+
bra/kets. This is a global setting for all TensorProduct class instances.
|
40 |
+
|
41 |
+
Parameters
|
42 |
+
----------
|
43 |
+
combine : bool
|
44 |
+
When true, tensor product states are combined into one ket/bra, and
|
45 |
+
when false explicit tensor product notation is used between each
|
46 |
+
ket/bra.
|
47 |
+
"""
|
48 |
+
global _combined_printing
|
49 |
+
_combined_printing = combined
|
50 |
+
|
51 |
+
|
52 |
+
class TensorProduct(Expr):
|
53 |
+
"""The tensor product of two or more arguments.
|
54 |
+
|
55 |
+
For matrices, this uses ``matrix_tensor_product`` to compute the Kronecker
|
56 |
+
or tensor product matrix. For other objects a symbolic ``TensorProduct``
|
57 |
+
instance is returned. The tensor product is a non-commutative
|
58 |
+
multiplication that is used primarily with operators and states in quantum
|
59 |
+
mechanics.
|
60 |
+
|
61 |
+
Currently, the tensor product distinguishes between commutative and
|
62 |
+
non-commutative arguments. Commutative arguments are assumed to be scalars
|
63 |
+
and are pulled out in front of the ``TensorProduct``. Non-commutative
|
64 |
+
arguments remain in the resulting ``TensorProduct``.
|
65 |
+
|
66 |
+
Parameters
|
67 |
+
==========
|
68 |
+
|
69 |
+
args : tuple
|
70 |
+
A sequence of the objects to take the tensor product of.
|
71 |
+
|
72 |
+
Examples
|
73 |
+
========
|
74 |
+
|
75 |
+
Start with a simple tensor product of SymPy matrices::
|
76 |
+
|
77 |
+
>>> from sympy import Matrix
|
78 |
+
>>> from sympy.physics.quantum import TensorProduct
|
79 |
+
|
80 |
+
>>> m1 = Matrix([[1,2],[3,4]])
|
81 |
+
>>> m2 = Matrix([[1,0],[0,1]])
|
82 |
+
>>> TensorProduct(m1, m2)
|
83 |
+
Matrix([
|
84 |
+
[1, 0, 2, 0],
|
85 |
+
[0, 1, 0, 2],
|
86 |
+
[3, 0, 4, 0],
|
87 |
+
[0, 3, 0, 4]])
|
88 |
+
>>> TensorProduct(m2, m1)
|
89 |
+
Matrix([
|
90 |
+
[1, 2, 0, 0],
|
91 |
+
[3, 4, 0, 0],
|
92 |
+
[0, 0, 1, 2],
|
93 |
+
[0, 0, 3, 4]])
|
94 |
+
|
95 |
+
We can also construct tensor products of non-commutative symbols:
|
96 |
+
|
97 |
+
>>> from sympy import Symbol
|
98 |
+
>>> A = Symbol('A',commutative=False)
|
99 |
+
>>> B = Symbol('B',commutative=False)
|
100 |
+
>>> tp = TensorProduct(A, B)
|
101 |
+
>>> tp
|
102 |
+
AxB
|
103 |
+
|
104 |
+
We can take the dagger of a tensor product (note the order does NOT reverse
|
105 |
+
like the dagger of a normal product):
|
106 |
+
|
107 |
+
>>> from sympy.physics.quantum import Dagger
|
108 |
+
>>> Dagger(tp)
|
109 |
+
Dagger(A)xDagger(B)
|
110 |
+
|
111 |
+
Expand can be used to distribute a tensor product across addition:
|
112 |
+
|
113 |
+
>>> C = Symbol('C',commutative=False)
|
114 |
+
>>> tp = TensorProduct(A+B,C)
|
115 |
+
>>> tp
|
116 |
+
(A + B)xC
|
117 |
+
>>> tp.expand(tensorproduct=True)
|
118 |
+
AxC + BxC
|
119 |
+
"""
|
120 |
+
is_commutative = False
|
121 |
+
|
122 |
+
def __new__(cls, *args):
|
123 |
+
if isinstance(args[0], (Matrix, numpy_ndarray, scipy_sparse_matrix)):
|
124 |
+
return matrix_tensor_product(*args)
|
125 |
+
c_part, new_args = cls.flatten(sympify(args))
|
126 |
+
c_part = Mul(*c_part)
|
127 |
+
if len(new_args) == 0:
|
128 |
+
return c_part
|
129 |
+
elif len(new_args) == 1:
|
130 |
+
return c_part * new_args[0]
|
131 |
+
else:
|
132 |
+
tp = Expr.__new__(cls, *new_args)
|
133 |
+
return c_part * tp
|
134 |
+
|
135 |
+
@classmethod
|
136 |
+
def flatten(cls, args):
|
137 |
+
# TODO: disallow nested TensorProducts.
|
138 |
+
c_part = []
|
139 |
+
nc_parts = []
|
140 |
+
for arg in args:
|
141 |
+
cp, ncp = arg.args_cnc()
|
142 |
+
c_part.extend(list(cp))
|
143 |
+
nc_parts.append(Mul._from_args(ncp))
|
144 |
+
return c_part, nc_parts
|
145 |
+
|
146 |
+
def _eval_adjoint(self):
|
147 |
+
return TensorProduct(*[Dagger(i) for i in self.args])
|
148 |
+
|
149 |
+
def _eval_rewrite(self, rule, args, **hints):
|
150 |
+
return TensorProduct(*args).expand(tensorproduct=True)
|
151 |
+
|
152 |
+
def _sympystr(self, printer, *args):
|
153 |
+
length = len(self.args)
|
154 |
+
s = ''
|
155 |
+
for i in range(length):
|
156 |
+
if isinstance(self.args[i], (Add, Pow, Mul)):
|
157 |
+
s = s + '('
|
158 |
+
s = s + printer._print(self.args[i])
|
159 |
+
if isinstance(self.args[i], (Add, Pow, Mul)):
|
160 |
+
s = s + ')'
|
161 |
+
if i != length - 1:
|
162 |
+
s = s + 'x'
|
163 |
+
return s
|
164 |
+
|
165 |
+
def _pretty(self, printer, *args):
|
166 |
+
|
167 |
+
if (_combined_printing and
|
168 |
+
(all(isinstance(arg, Ket) for arg in self.args) or
|
169 |
+
all(isinstance(arg, Bra) for arg in self.args))):
|
170 |
+
|
171 |
+
length = len(self.args)
|
172 |
+
pform = printer._print('', *args)
|
173 |
+
for i in range(length):
|
174 |
+
next_pform = printer._print('', *args)
|
175 |
+
length_i = len(self.args[i].args)
|
176 |
+
for j in range(length_i):
|
177 |
+
part_pform = printer._print(self.args[i].args[j], *args)
|
178 |
+
next_pform = prettyForm(*next_pform.right(part_pform))
|
179 |
+
if j != length_i - 1:
|
180 |
+
next_pform = prettyForm(*next_pform.right(', '))
|
181 |
+
|
182 |
+
if len(self.args[i].args) > 1:
|
183 |
+
next_pform = prettyForm(
|
184 |
+
*next_pform.parens(left='{', right='}'))
|
185 |
+
pform = prettyForm(*pform.right(next_pform))
|
186 |
+
if i != length - 1:
|
187 |
+
pform = prettyForm(*pform.right(',' + ' '))
|
188 |
+
|
189 |
+
pform = prettyForm(*pform.left(self.args[0].lbracket))
|
190 |
+
pform = prettyForm(*pform.right(self.args[0].rbracket))
|
191 |
+
return pform
|
192 |
+
|
193 |
+
length = len(self.args)
|
194 |
+
pform = printer._print('', *args)
|
195 |
+
for i in range(length):
|
196 |
+
next_pform = printer._print(self.args[i], *args)
|
197 |
+
if isinstance(self.args[i], (Add, Mul)):
|
198 |
+
next_pform = prettyForm(
|
199 |
+
*next_pform.parens(left='(', right=')')
|
200 |
+
)
|
201 |
+
pform = prettyForm(*pform.right(next_pform))
|
202 |
+
if i != length - 1:
|
203 |
+
if printer._use_unicode:
|
204 |
+
pform = prettyForm(*pform.right('\N{N-ARY CIRCLED TIMES OPERATOR}' + ' '))
|
205 |
+
else:
|
206 |
+
pform = prettyForm(*pform.right('x' + ' '))
|
207 |
+
return pform
|
208 |
+
|
209 |
+
def _latex(self, printer, *args):
|
210 |
+
|
211 |
+
if (_combined_printing and
|
212 |
+
(all(isinstance(arg, Ket) for arg in self.args) or
|
213 |
+
all(isinstance(arg, Bra) for arg in self.args))):
|
214 |
+
|
215 |
+
def _label_wrap(label, nlabels):
|
216 |
+
return label if nlabels == 1 else r"\left\{%s\right\}" % label
|
217 |
+
|
218 |
+
s = r", ".join([_label_wrap(arg._print_label_latex(printer, *args),
|
219 |
+
len(arg.args)) for arg in self.args])
|
220 |
+
|
221 |
+
return r"{%s%s%s}" % (self.args[0].lbracket_latex, s,
|
222 |
+
self.args[0].rbracket_latex)
|
223 |
+
|
224 |
+
length = len(self.args)
|
225 |
+
s = ''
|
226 |
+
for i in range(length):
|
227 |
+
if isinstance(self.args[i], (Add, Mul)):
|
228 |
+
s = s + '\\left('
|
229 |
+
# The extra {} brackets are needed to get matplotlib's latex
|
230 |
+
# rendered to render this properly.
|
231 |
+
s = s + '{' + printer._print(self.args[i], *args) + '}'
|
232 |
+
if isinstance(self.args[i], (Add, Mul)):
|
233 |
+
s = s + '\\right)'
|
234 |
+
if i != length - 1:
|
235 |
+
s = s + '\\otimes '
|
236 |
+
return s
|
237 |
+
|
238 |
+
def doit(self, **hints):
|
239 |
+
return TensorProduct(*[item.doit(**hints) for item in self.args])
|
240 |
+
|
241 |
+
def _eval_expand_tensorproduct(self, **hints):
|
242 |
+
"""Distribute TensorProducts across addition."""
|
243 |
+
args = self.args
|
244 |
+
add_args = []
|
245 |
+
for i in range(len(args)):
|
246 |
+
if isinstance(args[i], Add):
|
247 |
+
for aa in args[i].args:
|
248 |
+
tp = TensorProduct(*args[:i] + (aa,) + args[i + 1:])
|
249 |
+
c_part, nc_part = tp.args_cnc()
|
250 |
+
# Check for TensorProduct object: is the one object in nc_part, if any:
|
251 |
+
# (Note: any other object type to be expanded must be added here)
|
252 |
+
if len(nc_part) == 1 and isinstance(nc_part[0], TensorProduct):
|
253 |
+
nc_part = (nc_part[0]._eval_expand_tensorproduct(), )
|
254 |
+
add_args.append(Mul(*c_part)*Mul(*nc_part))
|
255 |
+
break
|
256 |
+
|
257 |
+
if add_args:
|
258 |
+
return Add(*add_args)
|
259 |
+
else:
|
260 |
+
return self
|
261 |
+
|
262 |
+
def _eval_trace(self, **kwargs):
|
263 |
+
indices = kwargs.get('indices', None)
|
264 |
+
exp = tensor_product_simp(self)
|
265 |
+
|
266 |
+
if indices is None or len(indices) == 0:
|
267 |
+
return Mul(*[Tr(arg).doit() for arg in exp.args])
|
268 |
+
else:
|
269 |
+
return Mul(*[Tr(value).doit() if idx in indices else value
|
270 |
+
for idx, value in enumerate(exp.args)])
|
271 |
+
|
272 |
+
|
273 |
+
def tensor_product_simp_Mul(e):
|
274 |
+
"""Simplify a Mul with TensorProducts.
|
275 |
+
|
276 |
+
Current the main use of this is to simplify a ``Mul`` of ``TensorProduct``s
|
277 |
+
to a ``TensorProduct`` of ``Muls``. It currently only works for relatively
|
278 |
+
simple cases where the initial ``Mul`` only has scalars and raw
|
279 |
+
``TensorProduct``s, not ``Add``, ``Pow``, ``Commutator``s of
|
280 |
+
``TensorProduct``s.
|
281 |
+
|
282 |
+
Parameters
|
283 |
+
==========
|
284 |
+
|
285 |
+
e : Expr
|
286 |
+
A ``Mul`` of ``TensorProduct``s to be simplified.
|
287 |
+
|
288 |
+
Returns
|
289 |
+
=======
|
290 |
+
|
291 |
+
e : Expr
|
292 |
+
A ``TensorProduct`` of ``Mul``s.
|
293 |
+
|
294 |
+
Examples
|
295 |
+
========
|
296 |
+
|
297 |
+
This is an example of the type of simplification that this function
|
298 |
+
performs::
|
299 |
+
|
300 |
+
>>> from sympy.physics.quantum.tensorproduct import \
|
301 |
+
tensor_product_simp_Mul, TensorProduct
|
302 |
+
>>> from sympy import Symbol
|
303 |
+
>>> A = Symbol('A',commutative=False)
|
304 |
+
>>> B = Symbol('B',commutative=False)
|
305 |
+
>>> C = Symbol('C',commutative=False)
|
306 |
+
>>> D = Symbol('D',commutative=False)
|
307 |
+
>>> e = TensorProduct(A,B)*TensorProduct(C,D)
|
308 |
+
>>> e
|
309 |
+
AxB*CxD
|
310 |
+
>>> tensor_product_simp_Mul(e)
|
311 |
+
(A*C)x(B*D)
|
312 |
+
|
313 |
+
"""
|
314 |
+
# TODO: This won't work with Muls that have other composites of
|
315 |
+
# TensorProducts, like an Add, Commutator, etc.
|
316 |
+
# TODO: This only works for the equivalent of single Qbit gates.
|
317 |
+
if not isinstance(e, Mul):
|
318 |
+
return e
|
319 |
+
c_part, nc_part = e.args_cnc()
|
320 |
+
n_nc = len(nc_part)
|
321 |
+
if n_nc == 0:
|
322 |
+
return e
|
323 |
+
elif n_nc == 1:
|
324 |
+
if isinstance(nc_part[0], Pow):
|
325 |
+
return Mul(*c_part) * tensor_product_simp_Pow(nc_part[0])
|
326 |
+
return e
|
327 |
+
elif e.has(TensorProduct):
|
328 |
+
current = nc_part[0]
|
329 |
+
if not isinstance(current, TensorProduct):
|
330 |
+
if isinstance(current, Pow):
|
331 |
+
if isinstance(current.base, TensorProduct):
|
332 |
+
current = tensor_product_simp_Pow(current)
|
333 |
+
else:
|
334 |
+
raise TypeError('TensorProduct expected, got: %r' % current)
|
335 |
+
n_terms = len(current.args)
|
336 |
+
new_args = list(current.args)
|
337 |
+
for next in nc_part[1:]:
|
338 |
+
# TODO: check the hilbert spaces of next and current here.
|
339 |
+
if isinstance(next, TensorProduct):
|
340 |
+
if n_terms != len(next.args):
|
341 |
+
raise QuantumError(
|
342 |
+
'TensorProducts of different lengths: %r and %r' %
|
343 |
+
(current, next)
|
344 |
+
)
|
345 |
+
for i in range(len(new_args)):
|
346 |
+
new_args[i] = new_args[i] * next.args[i]
|
347 |
+
else:
|
348 |
+
if isinstance(next, Pow):
|
349 |
+
if isinstance(next.base, TensorProduct):
|
350 |
+
new_tp = tensor_product_simp_Pow(next)
|
351 |
+
for i in range(len(new_args)):
|
352 |
+
new_args[i] = new_args[i] * new_tp.args[i]
|
353 |
+
else:
|
354 |
+
raise TypeError('TensorProduct expected, got: %r' % next)
|
355 |
+
else:
|
356 |
+
raise TypeError('TensorProduct expected, got: %r' % next)
|
357 |
+
current = next
|
358 |
+
return Mul(*c_part) * TensorProduct(*new_args)
|
359 |
+
elif e.has(Pow):
|
360 |
+
new_args = [ tensor_product_simp_Pow(nc) for nc in nc_part ]
|
361 |
+
return tensor_product_simp_Mul(Mul(*c_part) * TensorProduct(*new_args))
|
362 |
+
else:
|
363 |
+
return e
|
364 |
+
|
365 |
+
def tensor_product_simp_Pow(e):
|
366 |
+
"""Evaluates ``Pow`` expressions whose base is ``TensorProduct``"""
|
367 |
+
if not isinstance(e, Pow):
|
368 |
+
return e
|
369 |
+
|
370 |
+
if isinstance(e.base, TensorProduct):
|
371 |
+
return TensorProduct(*[ b**e.exp for b in e.base.args])
|
372 |
+
else:
|
373 |
+
return e
|
374 |
+
|
375 |
+
def tensor_product_simp(e, **hints):
|
376 |
+
"""Try to simplify and combine TensorProducts.
|
377 |
+
|
378 |
+
In general this will try to pull expressions inside of ``TensorProducts``.
|
379 |
+
It currently only works for relatively simple cases where the products have
|
380 |
+
only scalars, raw ``TensorProducts``, not ``Add``, ``Pow``, ``Commutators``
|
381 |
+
of ``TensorProducts``. It is best to see what it does by showing examples.
|
382 |
+
|
383 |
+
Examples
|
384 |
+
========
|
385 |
+
|
386 |
+
>>> from sympy.physics.quantum import tensor_product_simp
|
387 |
+
>>> from sympy.physics.quantum import TensorProduct
|
388 |
+
>>> from sympy import Symbol
|
389 |
+
>>> A = Symbol('A',commutative=False)
|
390 |
+
>>> B = Symbol('B',commutative=False)
|
391 |
+
>>> C = Symbol('C',commutative=False)
|
392 |
+
>>> D = Symbol('D',commutative=False)
|
393 |
+
|
394 |
+
First see what happens to products of tensor products:
|
395 |
+
|
396 |
+
>>> e = TensorProduct(A,B)*TensorProduct(C,D)
|
397 |
+
>>> e
|
398 |
+
AxB*CxD
|
399 |
+
>>> tensor_product_simp(e)
|
400 |
+
(A*C)x(B*D)
|
401 |
+
|
402 |
+
This is the core logic of this function, and it works inside, powers, sums,
|
403 |
+
commutators and anticommutators as well:
|
404 |
+
|
405 |
+
>>> tensor_product_simp(e**2)
|
406 |
+
(A*C)x(B*D)**2
|
407 |
+
|
408 |
+
"""
|
409 |
+
if isinstance(e, Add):
|
410 |
+
return Add(*[tensor_product_simp(arg) for arg in e.args])
|
411 |
+
elif isinstance(e, Pow):
|
412 |
+
if isinstance(e.base, TensorProduct):
|
413 |
+
return tensor_product_simp_Pow(e)
|
414 |
+
else:
|
415 |
+
return tensor_product_simp(e.base) ** e.exp
|
416 |
+
elif isinstance(e, Mul):
|
417 |
+
return tensor_product_simp_Mul(e)
|
418 |
+
elif isinstance(e, Commutator):
|
419 |
+
return Commutator(*[tensor_product_simp(arg) for arg in e.args])
|
420 |
+
elif isinstance(e, AntiCommutator):
|
421 |
+
return AntiCommutator(*[tensor_product_simp(arg) for arg in e.args])
|
422 |
+
else:
|
423 |
+
return e
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (200 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_anticommutator.cpython-310.pyc
ADDED
Binary file (2.36 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_boson.cpython-310.pyc
ADDED
Binary file (1.71 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_cartesian.cpython-310.pyc
ADDED
Binary file (3.91 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_cg.cpython-310.pyc
ADDED
Binary file (7.04 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_circuitplot.cpython-310.pyc
ADDED
Binary file (2.81 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_commutator.cpython-310.pyc
ADDED
Binary file (3.46 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_dagger.cpython-310.pyc
ADDED
Binary file (2.94 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_density.cpython-310.pyc
ADDED
Binary file (8.47 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_grover.cpython-310.pyc
ADDED
Binary file (3.46 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_hilbert.cpython-310.pyc
ADDED
Binary file (2.94 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_matrixutils.cpython-310.pyc
ADDED
Binary file (3.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_operatorordering.cpython-310.pyc
ADDED
Binary file (1.41 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_operatorset.cpython-310.pyc
ADDED
Binary file (2.52 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_pauli.cpython-310.pyc
ADDED
Binary file (5.32 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_piab.cpython-310.pyc
ADDED
Binary file (1.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_printing.cpython-310.pyc
ADDED
Binary file (27.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qapply.cpython-310.pyc
ADDED
Binary file (6.36 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qft.cpython-310.pyc
ADDED
Binary file (2.57 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_qubit.cpython-310.pyc
ADDED
Binary file (7.99 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_represent.cpython-310.pyc
ADDED
Binary file (6.09 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_sho1d.cpython-310.pyc
ADDED
Binary file (4.98 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_shor.cpython-310.pyc
ADDED
Binary file (1.04 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_spin.cpython-310.pyc
ADDED
Binary file (200 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_state.cpython-310.pyc
ADDED
Binary file (7.26 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/__pycache__/test_tensorproduct.cpython-310.pyc
ADDED
Binary file (4.42 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_anticommutator.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import Integer
|
2 |
+
from sympy.core.symbol import symbols
|
3 |
+
|
4 |
+
from sympy.physics.quantum.dagger import Dagger
|
5 |
+
from sympy.physics.quantum.anticommutator import AntiCommutator as AComm
|
6 |
+
from sympy.physics.quantum.operator import Operator
|
7 |
+
|
8 |
+
|
9 |
+
a, b, c = symbols('a,b,c')
|
10 |
+
A, B, C, D = symbols('A,B,C,D', commutative=False)
|
11 |
+
|
12 |
+
|
13 |
+
def test_anticommutator():
|
14 |
+
ac = AComm(A, B)
|
15 |
+
assert isinstance(ac, AComm)
|
16 |
+
assert ac.is_commutative is False
|
17 |
+
assert ac.subs(A, C) == AComm(C, B)
|
18 |
+
|
19 |
+
|
20 |
+
def test_commutator_identities():
|
21 |
+
assert AComm(a*A, b*B) == a*b*AComm(A, B)
|
22 |
+
assert AComm(A, A) == 2*A**2
|
23 |
+
assert AComm(A, B) == AComm(B, A)
|
24 |
+
assert AComm(a, b) == 2*a*b
|
25 |
+
assert AComm(A, B).doit() == A*B + B*A
|
26 |
+
|
27 |
+
|
28 |
+
def test_anticommutator_dagger():
|
29 |
+
assert Dagger(AComm(A, B)) == AComm(Dagger(A), Dagger(B))
|
30 |
+
|
31 |
+
|
32 |
+
class Foo(Operator):
|
33 |
+
|
34 |
+
def _eval_anticommutator_Bar(self, bar):
|
35 |
+
return Integer(0)
|
36 |
+
|
37 |
+
|
38 |
+
class Bar(Operator):
|
39 |
+
pass
|
40 |
+
|
41 |
+
|
42 |
+
class Tam(Operator):
|
43 |
+
|
44 |
+
def _eval_anticommutator_Foo(self, foo):
|
45 |
+
return Integer(1)
|
46 |
+
|
47 |
+
|
48 |
+
def test_eval_commutator():
|
49 |
+
F = Foo('F')
|
50 |
+
B = Bar('B')
|
51 |
+
T = Tam('T')
|
52 |
+
assert AComm(F, B).doit() == 0
|
53 |
+
assert AComm(B, F).doit() == 0
|
54 |
+
assert AComm(F, T).doit() == 1
|
55 |
+
assert AComm(T, F).doit() == 1
|
56 |
+
assert AComm(B, T).doit() == B*T + T*B
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_boson.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import prod
|
2 |
+
|
3 |
+
from sympy.core.numbers import Rational
|
4 |
+
from sympy.functions.elementary.exponential import exp
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.physics.quantum import Dagger, Commutator, qapply
|
7 |
+
from sympy.physics.quantum.boson import BosonOp
|
8 |
+
from sympy.physics.quantum.boson import (
|
9 |
+
BosonFockKet, BosonFockBra, BosonCoherentKet, BosonCoherentBra)
|
10 |
+
|
11 |
+
|
12 |
+
def test_bosonoperator():
|
13 |
+
a = BosonOp('a')
|
14 |
+
b = BosonOp('b')
|
15 |
+
|
16 |
+
assert isinstance(a, BosonOp)
|
17 |
+
assert isinstance(Dagger(a), BosonOp)
|
18 |
+
|
19 |
+
assert a.is_annihilation
|
20 |
+
assert not Dagger(a).is_annihilation
|
21 |
+
|
22 |
+
assert BosonOp("a") == BosonOp("a", True)
|
23 |
+
assert BosonOp("a") != BosonOp("c")
|
24 |
+
assert BosonOp("a", True) != BosonOp("a", False)
|
25 |
+
|
26 |
+
assert Commutator(a, Dagger(a)).doit() == 1
|
27 |
+
|
28 |
+
assert Commutator(a, Dagger(b)).doit() == a * Dagger(b) - Dagger(b) * a
|
29 |
+
|
30 |
+
assert Dagger(exp(a)) == exp(Dagger(a))
|
31 |
+
|
32 |
+
|
33 |
+
def test_boson_states():
|
34 |
+
a = BosonOp("a")
|
35 |
+
|
36 |
+
# Fock states
|
37 |
+
n = 3
|
38 |
+
assert (BosonFockBra(0) * BosonFockKet(1)).doit() == 0
|
39 |
+
assert (BosonFockBra(1) * BosonFockKet(1)).doit() == 1
|
40 |
+
assert qapply(BosonFockBra(n) * Dagger(a)**n * BosonFockKet(0)) \
|
41 |
+
== sqrt(prod(range(1, n+1)))
|
42 |
+
|
43 |
+
# Coherent states
|
44 |
+
alpha1, alpha2 = 1.2, 4.3
|
45 |
+
assert (BosonCoherentBra(alpha1) * BosonCoherentKet(alpha1)).doit() == 1
|
46 |
+
assert (BosonCoherentBra(alpha2) * BosonCoherentKet(alpha2)).doit() == 1
|
47 |
+
assert abs((BosonCoherentBra(alpha1) * BosonCoherentKet(alpha2)).doit() -
|
48 |
+
exp((alpha1 - alpha2) ** 2 * Rational(-1, 2))) < 1e-12
|
49 |
+
assert qapply(a * BosonCoherentKet(alpha1)) == \
|
50 |
+
alpha1 * BosonCoherentKet(alpha1)
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_cartesian.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for cartesian.py"""
|
2 |
+
|
3 |
+
from sympy.core.numbers import (I, pi)
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import symbols
|
6 |
+
from sympy.functions.elementary.exponential import exp
|
7 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
8 |
+
from sympy.functions.special.delta_functions import DiracDelta
|
9 |
+
from sympy.sets.sets import Interval
|
10 |
+
|
11 |
+
from sympy.physics.quantum import qapply, represent, L2, Dagger
|
12 |
+
from sympy.physics.quantum import Commutator, hbar
|
13 |
+
from sympy.physics.quantum.cartesian import (
|
14 |
+
XOp, YOp, ZOp, PxOp, X, Y, Z, Px, XKet, XBra, PxKet, PxBra,
|
15 |
+
PositionKet3D, PositionBra3D
|
16 |
+
)
|
17 |
+
from sympy.physics.quantum.operator import DifferentialOperator
|
18 |
+
|
19 |
+
x, y, z, x_1, x_2, x_3, y_1, z_1 = symbols('x,y,z,x_1,x_2,x_3,y_1,z_1')
|
20 |
+
px, py, px_1, px_2 = symbols('px py px_1 px_2')
|
21 |
+
|
22 |
+
|
23 |
+
def test_x():
|
24 |
+
assert X.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity))
|
25 |
+
assert Commutator(X, Px).doit() == I*hbar
|
26 |
+
assert qapply(X*XKet(x)) == x*XKet(x)
|
27 |
+
assert XKet(x).dual_class() == XBra
|
28 |
+
assert XBra(x).dual_class() == XKet
|
29 |
+
assert (Dagger(XKet(y))*XKet(x)).doit() == DiracDelta(x - y)
|
30 |
+
assert (PxBra(px)*XKet(x)).doit() == \
|
31 |
+
exp(-I*x*px/hbar)/sqrt(2*pi*hbar)
|
32 |
+
assert represent(XKet(x)) == DiracDelta(x - x_1)
|
33 |
+
assert represent(XBra(x)) == DiracDelta(-x + x_1)
|
34 |
+
assert XBra(x).position == x
|
35 |
+
assert represent(XOp()*XKet()) == x*DiracDelta(x - x_2)
|
36 |
+
assert represent(XOp()*XKet()*XBra('y')) == \
|
37 |
+
x*DiracDelta(x - x_3)*DiracDelta(x_1 - y)
|
38 |
+
assert represent(XBra("y")*XKet()) == DiracDelta(x - y)
|
39 |
+
assert represent(
|
40 |
+
XKet()*XBra()) == DiracDelta(x - x_2) * DiracDelta(x_1 - x)
|
41 |
+
|
42 |
+
rep_p = represent(XOp(), basis=PxOp)
|
43 |
+
assert rep_p == hbar*I*DiracDelta(px_1 - px_2)*DifferentialOperator(px_1)
|
44 |
+
assert rep_p == represent(XOp(), basis=PxOp())
|
45 |
+
assert rep_p == represent(XOp(), basis=PxKet)
|
46 |
+
assert rep_p == represent(XOp(), basis=PxKet())
|
47 |
+
|
48 |
+
assert represent(XOp()*PxKet(), basis=PxKet) == \
|
49 |
+
hbar*I*DiracDelta(px - px_2)*DifferentialOperator(px)
|
50 |
+
|
51 |
+
|
52 |
+
def test_p():
|
53 |
+
assert Px.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity))
|
54 |
+
assert qapply(Px*PxKet(px)) == px*PxKet(px)
|
55 |
+
assert PxKet(px).dual_class() == PxBra
|
56 |
+
assert PxBra(x).dual_class() == PxKet
|
57 |
+
assert (Dagger(PxKet(py))*PxKet(px)).doit() == DiracDelta(px - py)
|
58 |
+
assert (XBra(x)*PxKet(px)).doit() == \
|
59 |
+
exp(I*x*px/hbar)/sqrt(2*pi*hbar)
|
60 |
+
assert represent(PxKet(px)) == DiracDelta(px - px_1)
|
61 |
+
|
62 |
+
rep_x = represent(PxOp(), basis=XOp)
|
63 |
+
assert rep_x == -hbar*I*DiracDelta(x_1 - x_2)*DifferentialOperator(x_1)
|
64 |
+
assert rep_x == represent(PxOp(), basis=XOp())
|
65 |
+
assert rep_x == represent(PxOp(), basis=XKet)
|
66 |
+
assert rep_x == represent(PxOp(), basis=XKet())
|
67 |
+
|
68 |
+
assert represent(PxOp()*XKet(), basis=XKet) == \
|
69 |
+
-hbar*I*DiracDelta(x - x_2)*DifferentialOperator(x)
|
70 |
+
assert represent(XBra("y")*PxOp()*XKet(), basis=XKet) == \
|
71 |
+
-hbar*I*DiracDelta(x - y)*DifferentialOperator(x)
|
72 |
+
|
73 |
+
|
74 |
+
def test_3dpos():
|
75 |
+
assert Y.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity))
|
76 |
+
assert Z.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity))
|
77 |
+
|
78 |
+
test_ket = PositionKet3D(x, y, z)
|
79 |
+
assert qapply(X*test_ket) == x*test_ket
|
80 |
+
assert qapply(Y*test_ket) == y*test_ket
|
81 |
+
assert qapply(Z*test_ket) == z*test_ket
|
82 |
+
assert qapply(X*Y*test_ket) == x*y*test_ket
|
83 |
+
assert qapply(X*Y*Z*test_ket) == x*y*z*test_ket
|
84 |
+
assert qapply(Y*Z*test_ket) == y*z*test_ket
|
85 |
+
|
86 |
+
assert PositionKet3D() == test_ket
|
87 |
+
assert YOp() == Y
|
88 |
+
assert ZOp() == Z
|
89 |
+
|
90 |
+
assert PositionKet3D.dual_class() == PositionBra3D
|
91 |
+
assert PositionBra3D.dual_class() == PositionKet3D
|
92 |
+
|
93 |
+
other_ket = PositionKet3D(x_1, y_1, z_1)
|
94 |
+
assert (Dagger(other_ket)*test_ket).doit() == \
|
95 |
+
DiracDelta(x - x_1)*DiracDelta(y - y_1)*DiracDelta(z - z_1)
|
96 |
+
|
97 |
+
assert test_ket.position_x == x
|
98 |
+
assert test_ket.position_y == y
|
99 |
+
assert test_ket.position_z == z
|
100 |
+
assert other_ket.position_x == x_1
|
101 |
+
assert other_ket.position_y == y_1
|
102 |
+
assert other_ket.position_z == z_1
|
103 |
+
|
104 |
+
# TODO: Add tests for representations
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_cg.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.core.numbers import Rational
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.core.symbol import symbols
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.physics.quantum.cg import Wigner3j, Wigner6j, Wigner9j, CG, cg_simp
|
7 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
8 |
+
|
9 |
+
|
10 |
+
def test_cg_simp_add():
|
11 |
+
j, m1, m1p, m2, m2p = symbols('j m1 m1p m2 m2p')
|
12 |
+
# Test Varshalovich 8.7.1 Eq 1
|
13 |
+
a = CG(S.Half, S.Half, 0, 0, S.Half, S.Half)
|
14 |
+
b = CG(S.Half, Rational(-1, 2), 0, 0, S.Half, Rational(-1, 2))
|
15 |
+
c = CG(1, 1, 0, 0, 1, 1)
|
16 |
+
d = CG(1, 0, 0, 0, 1, 0)
|
17 |
+
e = CG(1, -1, 0, 0, 1, -1)
|
18 |
+
assert cg_simp(a + b) == 2
|
19 |
+
assert cg_simp(c + d + e) == 3
|
20 |
+
assert cg_simp(a + b + c + d + e) == 5
|
21 |
+
assert cg_simp(a + b + c) == 2 + c
|
22 |
+
assert cg_simp(2*a + b) == 2 + a
|
23 |
+
assert cg_simp(2*c + d + e) == 3 + c
|
24 |
+
assert cg_simp(5*a + 5*b) == 10
|
25 |
+
assert cg_simp(5*c + 5*d + 5*e) == 15
|
26 |
+
assert cg_simp(-a - b) == -2
|
27 |
+
assert cg_simp(-c - d - e) == -3
|
28 |
+
assert cg_simp(-6*a - 6*b) == -12
|
29 |
+
assert cg_simp(-4*c - 4*d - 4*e) == -12
|
30 |
+
a = CG(S.Half, S.Half, j, 0, S.Half, S.Half)
|
31 |
+
b = CG(S.Half, Rational(-1, 2), j, 0, S.Half, Rational(-1, 2))
|
32 |
+
c = CG(1, 1, j, 0, 1, 1)
|
33 |
+
d = CG(1, 0, j, 0, 1, 0)
|
34 |
+
e = CG(1, -1, j, 0, 1, -1)
|
35 |
+
assert cg_simp(a + b) == 2*KroneckerDelta(j, 0)
|
36 |
+
assert cg_simp(c + d + e) == 3*KroneckerDelta(j, 0)
|
37 |
+
assert cg_simp(a + b + c + d + e) == 5*KroneckerDelta(j, 0)
|
38 |
+
assert cg_simp(a + b + c) == 2*KroneckerDelta(j, 0) + c
|
39 |
+
assert cg_simp(2*a + b) == 2*KroneckerDelta(j, 0) + a
|
40 |
+
assert cg_simp(2*c + d + e) == 3*KroneckerDelta(j, 0) + c
|
41 |
+
assert cg_simp(5*a + 5*b) == 10*KroneckerDelta(j, 0)
|
42 |
+
assert cg_simp(5*c + 5*d + 5*e) == 15*KroneckerDelta(j, 0)
|
43 |
+
assert cg_simp(-a - b) == -2*KroneckerDelta(j, 0)
|
44 |
+
assert cg_simp(-c - d - e) == -3*KroneckerDelta(j, 0)
|
45 |
+
assert cg_simp(-6*a - 6*b) == -12*KroneckerDelta(j, 0)
|
46 |
+
assert cg_simp(-4*c - 4*d - 4*e) == -12*KroneckerDelta(j, 0)
|
47 |
+
# Test Varshalovich 8.7.1 Eq 2
|
48 |
+
a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 0, 0)
|
49 |
+
b = CG(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0)
|
50 |
+
c = CG(1, 1, 1, -1, 0, 0)
|
51 |
+
d = CG(1, 0, 1, 0, 0, 0)
|
52 |
+
e = CG(1, -1, 1, 1, 0, 0)
|
53 |
+
assert cg_simp(a - b) == sqrt(2)
|
54 |
+
assert cg_simp(c - d + e) == sqrt(3)
|
55 |
+
assert cg_simp(a - b + c - d + e) == sqrt(2) + sqrt(3)
|
56 |
+
assert cg_simp(a - b + c) == sqrt(2) + c
|
57 |
+
assert cg_simp(2*a - b) == sqrt(2) + a
|
58 |
+
assert cg_simp(2*c - d + e) == sqrt(3) + c
|
59 |
+
assert cg_simp(5*a - 5*b) == 5*sqrt(2)
|
60 |
+
assert cg_simp(5*c - 5*d + 5*e) == 5*sqrt(3)
|
61 |
+
assert cg_simp(-a + b) == -sqrt(2)
|
62 |
+
assert cg_simp(-c + d - e) == -sqrt(3)
|
63 |
+
assert cg_simp(-6*a + 6*b) == -6*sqrt(2)
|
64 |
+
assert cg_simp(-4*c + 4*d - 4*e) == -4*sqrt(3)
|
65 |
+
a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), j, 0)
|
66 |
+
b = CG(S.Half, Rational(-1, 2), S.Half, S.Half, j, 0)
|
67 |
+
c = CG(1, 1, 1, -1, j, 0)
|
68 |
+
d = CG(1, 0, 1, 0, j, 0)
|
69 |
+
e = CG(1, -1, 1, 1, j, 0)
|
70 |
+
assert cg_simp(a - b) == sqrt(2)*KroneckerDelta(j, 0)
|
71 |
+
assert cg_simp(c - d + e) == sqrt(3)*KroneckerDelta(j, 0)
|
72 |
+
assert cg_simp(a - b + c - d + e) == sqrt(
|
73 |
+
2)*KroneckerDelta(j, 0) + sqrt(3)*KroneckerDelta(j, 0)
|
74 |
+
assert cg_simp(a - b + c) == sqrt(2)*KroneckerDelta(j, 0) + c
|
75 |
+
assert cg_simp(2*a - b) == sqrt(2)*KroneckerDelta(j, 0) + a
|
76 |
+
assert cg_simp(2*c - d + e) == sqrt(3)*KroneckerDelta(j, 0) + c
|
77 |
+
assert cg_simp(5*a - 5*b) == 5*sqrt(2)*KroneckerDelta(j, 0)
|
78 |
+
assert cg_simp(5*c - 5*d + 5*e) == 5*sqrt(3)*KroneckerDelta(j, 0)
|
79 |
+
assert cg_simp(-a + b) == -sqrt(2)*KroneckerDelta(j, 0)
|
80 |
+
assert cg_simp(-c + d - e) == -sqrt(3)*KroneckerDelta(j, 0)
|
81 |
+
assert cg_simp(-6*a + 6*b) == -6*sqrt(2)*KroneckerDelta(j, 0)
|
82 |
+
assert cg_simp(-4*c + 4*d - 4*e) == -4*sqrt(3)*KroneckerDelta(j, 0)
|
83 |
+
# Test Varshalovich 8.7.2 Eq 9
|
84 |
+
# alpha=alphap,beta=betap case
|
85 |
+
# numerical
|
86 |
+
a = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 1, 0)**2
|
87 |
+
b = CG(S.Half, S.Half, S.Half, Rational(-1, 2), 0, 0)**2
|
88 |
+
c = CG(1, 0, 1, 1, 1, 1)**2
|
89 |
+
d = CG(1, 0, 1, 1, 2, 1)**2
|
90 |
+
assert cg_simp(a + b) == 1
|
91 |
+
assert cg_simp(c + d) == 1
|
92 |
+
assert cg_simp(a + b + c + d) == 2
|
93 |
+
assert cg_simp(4*a + 4*b) == 4
|
94 |
+
assert cg_simp(4*c + 4*d) == 4
|
95 |
+
assert cg_simp(5*a + 3*b) == 3 + 2*a
|
96 |
+
assert cg_simp(5*c + 3*d) == 3 + 2*c
|
97 |
+
assert cg_simp(-a - b) == -1
|
98 |
+
assert cg_simp(-c - d) == -1
|
99 |
+
# symbolic
|
100 |
+
a = CG(S.Half, m1, S.Half, m2, 1, 1)**2
|
101 |
+
b = CG(S.Half, m1, S.Half, m2, 1, 0)**2
|
102 |
+
c = CG(S.Half, m1, S.Half, m2, 1, -1)**2
|
103 |
+
d = CG(S.Half, m1, S.Half, m2, 0, 0)**2
|
104 |
+
assert cg_simp(a + b + c + d) == 1
|
105 |
+
assert cg_simp(4*a + 4*b + 4*c + 4*d) == 4
|
106 |
+
assert cg_simp(3*a + 5*b + 3*c + 4*d) == 3 + 2*b + d
|
107 |
+
assert cg_simp(-a - b - c - d) == -1
|
108 |
+
a = CG(1, m1, 1, m2, 2, 2)**2
|
109 |
+
b = CG(1, m1, 1, m2, 2, 1)**2
|
110 |
+
c = CG(1, m1, 1, m2, 2, 0)**2
|
111 |
+
d = CG(1, m1, 1, m2, 2, -1)**2
|
112 |
+
e = CG(1, m1, 1, m2, 2, -2)**2
|
113 |
+
f = CG(1, m1, 1, m2, 1, 1)**2
|
114 |
+
g = CG(1, m1, 1, m2, 1, 0)**2
|
115 |
+
h = CG(1, m1, 1, m2, 1, -1)**2
|
116 |
+
i = CG(1, m1, 1, m2, 0, 0)**2
|
117 |
+
assert cg_simp(a + b + c + d + e + f + g + h + i) == 1
|
118 |
+
assert cg_simp(4*(a + b + c + d + e + f + g + h + i)) == 4
|
119 |
+
assert cg_simp(a + b + 2*c + d + 4*e + f + g + h + i) == 1 + c + 3*e
|
120 |
+
assert cg_simp(-a - b - c - d - e - f - g - h - i) == -1
|
121 |
+
# alpha!=alphap or beta!=betap case
|
122 |
+
# numerical
|
123 |
+
a = CG(S.Half, S(
|
124 |
+
1)/2, S.Half, Rational(-1, 2), 1, 0)*CG(S.Half, Rational(-1, 2), S.Half, S.Half, 1, 0)
|
125 |
+
b = CG(S.Half, S(
|
126 |
+
1)/2, S.Half, Rational(-1, 2), 0, 0)*CG(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0)
|
127 |
+
c = CG(1, 1, 1, 0, 2, 1)*CG(1, 0, 1, 1, 2, 1)
|
128 |
+
d = CG(1, 1, 1, 0, 1, 1)*CG(1, 0, 1, 1, 1, 1)
|
129 |
+
assert cg_simp(a + b) == 0
|
130 |
+
assert cg_simp(c + d) == 0
|
131 |
+
# symbolic
|
132 |
+
a = CG(S.Half, m1, S.Half, m2, 1, 1)*CG(S.Half, m1p, S.Half, m2p, 1, 1)
|
133 |
+
b = CG(S.Half, m1, S.Half, m2, 1, 0)*CG(S.Half, m1p, S.Half, m2p, 1, 0)
|
134 |
+
c = CG(S.Half, m1, S.Half, m2, 1, -1)*CG(S.Half, m1p, S.Half, m2p, 1, -1)
|
135 |
+
d = CG(S.Half, m1, S.Half, m2, 0, 0)*CG(S.Half, m1p, S.Half, m2p, 0, 0)
|
136 |
+
assert cg_simp(a + b + c + d) == KroneckerDelta(m1, m1p)*KroneckerDelta(m2, m2p)
|
137 |
+
a = CG(1, m1, 1, m2, 2, 2)*CG(1, m1p, 1, m2p, 2, 2)
|
138 |
+
b = CG(1, m1, 1, m2, 2, 1)*CG(1, m1p, 1, m2p, 2, 1)
|
139 |
+
c = CG(1, m1, 1, m2, 2, 0)*CG(1, m1p, 1, m2p, 2, 0)
|
140 |
+
d = CG(1, m1, 1, m2, 2, -1)*CG(1, m1p, 1, m2p, 2, -1)
|
141 |
+
e = CG(1, m1, 1, m2, 2, -2)*CG(1, m1p, 1, m2p, 2, -2)
|
142 |
+
f = CG(1, m1, 1, m2, 1, 1)*CG(1, m1p, 1, m2p, 1, 1)
|
143 |
+
g = CG(1, m1, 1, m2, 1, 0)*CG(1, m1p, 1, m2p, 1, 0)
|
144 |
+
h = CG(1, m1, 1, m2, 1, -1)*CG(1, m1p, 1, m2p, 1, -1)
|
145 |
+
i = CG(1, m1, 1, m2, 0, 0)*CG(1, m1p, 1, m2p, 0, 0)
|
146 |
+
assert cg_simp(
|
147 |
+
a + b + c + d + e + f + g + h + i) == KroneckerDelta(m1, m1p)*KroneckerDelta(m2, m2p)
|
148 |
+
|
149 |
+
|
150 |
+
def test_cg_simp_sum():
|
151 |
+
x, a, b, c, cp, alpha, beta, gamma, gammap = symbols(
|
152 |
+
'x a b c cp alpha beta gamma gammap')
|
153 |
+
# Varshalovich 8.7.1 Eq 1
|
154 |
+
assert cg_simp(x * Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)
|
155 |
+
)) == x*(2*a + 1)*KroneckerDelta(b, 0)
|
156 |
+
assert cg_simp(x * Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)) + CG(1, 0, 1, 0, 1, 0)) == x*(2*a + 1)*KroneckerDelta(b, 0) + CG(1, 0, 1, 0, 1, 0)
|
157 |
+
assert cg_simp(2 * Sum(CG(1, alpha, 0, 0, 1, alpha), (alpha, -1, 1))) == 6
|
158 |
+
# Varshalovich 8.7.1 Eq 2
|
159 |
+
assert cg_simp(x*Sum((-1)**(a - alpha) * CG(a, alpha, a, -alpha, c,
|
160 |
+
0), (alpha, -a, a))) == x*sqrt(2*a + 1)*KroneckerDelta(c, 0)
|
161 |
+
assert cg_simp(3*Sum((-1)**(2 - alpha) * CG(
|
162 |
+
2, alpha, 2, -alpha, 0, 0), (alpha, -2, 2))) == 3*sqrt(5)
|
163 |
+
# Varshalovich 8.7.2 Eq 4
|
164 |
+
assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, cp, gammap), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)
|
165 |
+
assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, c, gammap), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(gamma, gammap)
|
166 |
+
assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, cp, gamma), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(c, cp)
|
167 |
+
assert cg_simp(Sum(CG(
|
168 |
+
a, alpha, b, beta, c, gamma)**2, (alpha, -a, a), (beta, -b, b))) == 1
|
169 |
+
assert cg_simp(Sum(CG(2, alpha, 1, beta, 2, gamma)*CG(2, alpha, 1, beta, 2, gammap), (alpha, -2, 2), (beta, -1, 1))) == KroneckerDelta(gamma, gammap)
|
170 |
+
|
171 |
+
|
172 |
+
def test_doit():
|
173 |
+
assert Wigner3j(S.Half, Rational(-1, 2), S.Half, S.Half, 0, 0).doit() == -sqrt(2)/2
|
174 |
+
assert Wigner6j(1, 2, 3, 2, 1, 2).doit() == sqrt(21)/105
|
175 |
+
assert Wigner6j(3, 1, 2, 2, 2, 1).doit() == sqrt(21) / 105
|
176 |
+
assert Wigner9j(
|
177 |
+
2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0).doit() == sqrt(2)/12
|
178 |
+
assert CG(S.Half, S.Half, S.Half, Rational(-1, 2), 1, 0).doit() == sqrt(2)/2
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_circuitplot.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.physics.quantum.circuitplot import labeller, render_label, Mz, CreateOneQubitGate,\
|
2 |
+
CreateCGate
|
3 |
+
from sympy.physics.quantum.gate import CNOT, H, SWAP, CGate, S, T
|
4 |
+
from sympy.external import import_module
|
5 |
+
from sympy.testing.pytest import skip
|
6 |
+
|
7 |
+
mpl = import_module('matplotlib')
|
8 |
+
|
9 |
+
def test_render_label():
|
10 |
+
assert render_label('q0') == r'$\left|q0\right\rangle$'
|
11 |
+
assert render_label('q0', {'q0': '0'}) == r'$\left|q0\right\rangle=\left|0\right\rangle$'
|
12 |
+
|
13 |
+
def test_Mz():
|
14 |
+
assert str(Mz(0)) == 'Mz(0)'
|
15 |
+
|
16 |
+
def test_create1():
|
17 |
+
Qgate = CreateOneQubitGate('Q')
|
18 |
+
assert str(Qgate(0)) == 'Q(0)'
|
19 |
+
|
20 |
+
def test_createc():
|
21 |
+
Qgate = CreateCGate('Q')
|
22 |
+
assert str(Qgate([1],0)) == 'C((1),Q(0))'
|
23 |
+
|
24 |
+
def test_labeller():
|
25 |
+
"""Test the labeller utility"""
|
26 |
+
assert labeller(2) == ['q_1', 'q_0']
|
27 |
+
assert labeller(3,'j') == ['j_2', 'j_1', 'j_0']
|
28 |
+
|
29 |
+
def test_cnot():
|
30 |
+
"""Test a simple cnot circuit. Right now this only makes sure the code doesn't
|
31 |
+
raise an exception, and some simple properties
|
32 |
+
"""
|
33 |
+
if not mpl:
|
34 |
+
skip("matplotlib not installed")
|
35 |
+
else:
|
36 |
+
from sympy.physics.quantum.circuitplot import CircuitPlot
|
37 |
+
|
38 |
+
c = CircuitPlot(CNOT(1,0),2,labels=labeller(2))
|
39 |
+
assert c.ngates == 2
|
40 |
+
assert c.nqubits == 2
|
41 |
+
assert c.labels == ['q_1', 'q_0']
|
42 |
+
|
43 |
+
c = CircuitPlot(CNOT(1,0),2)
|
44 |
+
assert c.ngates == 2
|
45 |
+
assert c.nqubits == 2
|
46 |
+
assert c.labels == []
|
47 |
+
|
48 |
+
def test_ex1():
|
49 |
+
if not mpl:
|
50 |
+
skip("matplotlib not installed")
|
51 |
+
else:
|
52 |
+
from sympy.physics.quantum.circuitplot import CircuitPlot
|
53 |
+
|
54 |
+
c = CircuitPlot(CNOT(1,0)*H(1),2,labels=labeller(2))
|
55 |
+
assert c.ngates == 2
|
56 |
+
assert c.nqubits == 2
|
57 |
+
assert c.labels == ['q_1', 'q_0']
|
58 |
+
|
59 |
+
def test_ex4():
|
60 |
+
if not mpl:
|
61 |
+
skip("matplotlib not installed")
|
62 |
+
else:
|
63 |
+
from sympy.physics.quantum.circuitplot import CircuitPlot
|
64 |
+
|
65 |
+
c = CircuitPlot(SWAP(0,2)*H(0)* CGate((0,),S(1)) *H(1)*CGate((0,),T(2))\
|
66 |
+
*CGate((1,),S(2))*H(2),3,labels=labeller(3,'j'))
|
67 |
+
assert c.ngates == 7
|
68 |
+
assert c.nqubits == 3
|
69 |
+
assert c.labels == ['j_2', 'j_1', 'j_0']
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_circuitutils.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.mul import Mul
|
2 |
+
from sympy.core.numbers import Integer
|
3 |
+
from sympy.core.symbol import Symbol
|
4 |
+
from sympy.utilities import numbered_symbols
|
5 |
+
from sympy.physics.quantum.gate import X, Y, Z, H, CNOT, CGate
|
6 |
+
from sympy.physics.quantum.identitysearch import bfs_identity_search
|
7 |
+
from sympy.physics.quantum.circuitutils import (kmp_table, find_subcircuit,
|
8 |
+
replace_subcircuit, convert_to_symbolic_indices,
|
9 |
+
convert_to_real_indices, random_reduce, random_insert,
|
10 |
+
flatten_ids)
|
11 |
+
from sympy.testing.pytest import slow
|
12 |
+
|
13 |
+
|
14 |
+
def create_gate_sequence(qubit=0):
|
15 |
+
gates = (X(qubit), Y(qubit), Z(qubit), H(qubit))
|
16 |
+
return gates
|
17 |
+
|
18 |
+
|
19 |
+
def test_kmp_table():
|
20 |
+
word = ('a', 'b', 'c', 'd', 'a', 'b', 'd')
|
21 |
+
expected_table = [-1, 0, 0, 0, 0, 1, 2]
|
22 |
+
assert expected_table == kmp_table(word)
|
23 |
+
|
24 |
+
word = ('P', 'A', 'R', 'T', 'I', 'C', 'I', 'P', 'A', 'T', 'E', ' ',
|
25 |
+
'I', 'N', ' ', 'P', 'A', 'R', 'A', 'C', 'H', 'U', 'T', 'E')
|
26 |
+
expected_table = [-1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0,
|
27 |
+
0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0]
|
28 |
+
assert expected_table == kmp_table(word)
|
29 |
+
|
30 |
+
x = X(0)
|
31 |
+
y = Y(0)
|
32 |
+
z = Z(0)
|
33 |
+
h = H(0)
|
34 |
+
word = (x, y, y, x, z)
|
35 |
+
expected_table = [-1, 0, 0, 0, 1]
|
36 |
+
assert expected_table == kmp_table(word)
|
37 |
+
|
38 |
+
word = (x, x, y, h, z)
|
39 |
+
expected_table = [-1, 0, 1, 0, 0]
|
40 |
+
assert expected_table == kmp_table(word)
|
41 |
+
|
42 |
+
|
43 |
+
def test_find_subcircuit():
|
44 |
+
x = X(0)
|
45 |
+
y = Y(0)
|
46 |
+
z = Z(0)
|
47 |
+
h = H(0)
|
48 |
+
x1 = X(1)
|
49 |
+
y1 = Y(1)
|
50 |
+
|
51 |
+
i0 = Symbol('i0')
|
52 |
+
x_i0 = X(i0)
|
53 |
+
y_i0 = Y(i0)
|
54 |
+
z_i0 = Z(i0)
|
55 |
+
h_i0 = H(i0)
|
56 |
+
|
57 |
+
circuit = (x, y, z)
|
58 |
+
|
59 |
+
assert find_subcircuit(circuit, (x,)) == 0
|
60 |
+
assert find_subcircuit(circuit, (x1,)) == -1
|
61 |
+
assert find_subcircuit(circuit, (y,)) == 1
|
62 |
+
assert find_subcircuit(circuit, (h,)) == -1
|
63 |
+
assert find_subcircuit(circuit, Mul(x, h)) == -1
|
64 |
+
assert find_subcircuit(circuit, Mul(x, y, z)) == 0
|
65 |
+
assert find_subcircuit(circuit, Mul(y, z)) == 1
|
66 |
+
assert find_subcircuit(Mul(*circuit), (x, y, z, h)) == -1
|
67 |
+
assert find_subcircuit(Mul(*circuit), (z, y, x)) == -1
|
68 |
+
assert find_subcircuit(circuit, (x,), start=2, end=1) == -1
|
69 |
+
|
70 |
+
circuit = (x, y, x, y, z)
|
71 |
+
assert find_subcircuit(Mul(*circuit), Mul(x, y, z)) == 2
|
72 |
+
assert find_subcircuit(circuit, (x,), start=1) == 2
|
73 |
+
assert find_subcircuit(circuit, (x, y), start=1, end=2) == -1
|
74 |
+
assert find_subcircuit(Mul(*circuit), (x, y), start=1, end=3) == -1
|
75 |
+
assert find_subcircuit(circuit, (x, y), start=1, end=4) == 2
|
76 |
+
assert find_subcircuit(circuit, (x, y), start=2, end=4) == 2
|
77 |
+
|
78 |
+
circuit = (x, y, z, x1, x, y, z, h, x, y, x1,
|
79 |
+
x, y, z, h, y1, h)
|
80 |
+
assert find_subcircuit(circuit, (x, y, z, h, y1)) == 11
|
81 |
+
|
82 |
+
circuit = (x, y, x_i0, y_i0, z_i0, z)
|
83 |
+
assert find_subcircuit(circuit, (x_i0, y_i0, z_i0)) == 2
|
84 |
+
|
85 |
+
circuit = (x_i0, y_i0, z_i0, x_i0, y_i0, h_i0)
|
86 |
+
subcircuit = (x_i0, y_i0, z_i0)
|
87 |
+
result = find_subcircuit(circuit, subcircuit)
|
88 |
+
assert result == 0
|
89 |
+
|
90 |
+
|
91 |
+
def test_replace_subcircuit():
|
92 |
+
x = X(0)
|
93 |
+
y = Y(0)
|
94 |
+
z = Z(0)
|
95 |
+
h = H(0)
|
96 |
+
cnot = CNOT(1, 0)
|
97 |
+
cgate_z = CGate((0,), Z(1))
|
98 |
+
|
99 |
+
# Standard cases
|
100 |
+
circuit = (z, y, x, x)
|
101 |
+
remove = (z, y, x)
|
102 |
+
assert replace_subcircuit(circuit, Mul(*remove)) == (x,)
|
103 |
+
assert replace_subcircuit(circuit, remove + (x,)) == ()
|
104 |
+
assert replace_subcircuit(circuit, remove, pos=1) == circuit
|
105 |
+
assert replace_subcircuit(circuit, remove, pos=0) == (x,)
|
106 |
+
assert replace_subcircuit(circuit, (x, x), pos=2) == (z, y)
|
107 |
+
assert replace_subcircuit(circuit, (h,)) == circuit
|
108 |
+
|
109 |
+
circuit = (x, y, x, y, z)
|
110 |
+
remove = (x, y, z)
|
111 |
+
assert replace_subcircuit(Mul(*circuit), Mul(*remove)) == (x, y)
|
112 |
+
remove = (x, y, x, y)
|
113 |
+
assert replace_subcircuit(circuit, remove) == (z,)
|
114 |
+
|
115 |
+
circuit = (x, h, cgate_z, h, cnot)
|
116 |
+
remove = (x, h, cgate_z)
|
117 |
+
assert replace_subcircuit(circuit, Mul(*remove), pos=-1) == (h, cnot)
|
118 |
+
assert replace_subcircuit(circuit, remove, pos=1) == circuit
|
119 |
+
remove = (h, h)
|
120 |
+
assert replace_subcircuit(circuit, remove) == circuit
|
121 |
+
remove = (h, cgate_z, h, cnot)
|
122 |
+
assert replace_subcircuit(circuit, remove) == (x,)
|
123 |
+
|
124 |
+
replace = (h, x)
|
125 |
+
actual = replace_subcircuit(circuit, remove,
|
126 |
+
replace=replace)
|
127 |
+
assert actual == (x, h, x)
|
128 |
+
|
129 |
+
circuit = (x, y, h, x, y, z)
|
130 |
+
remove = (x, y)
|
131 |
+
replace = (cnot, cgate_z)
|
132 |
+
actual = replace_subcircuit(circuit, remove,
|
133 |
+
replace=Mul(*replace))
|
134 |
+
assert actual == (cnot, cgate_z, h, x, y, z)
|
135 |
+
|
136 |
+
actual = replace_subcircuit(circuit, remove,
|
137 |
+
replace=replace, pos=1)
|
138 |
+
assert actual == (x, y, h, cnot, cgate_z, z)
|
139 |
+
|
140 |
+
|
141 |
+
def test_convert_to_symbolic_indices():
|
142 |
+
(x, y, z, h) = create_gate_sequence()
|
143 |
+
|
144 |
+
i0 = Symbol('i0')
|
145 |
+
exp_map = {i0: Integer(0)}
|
146 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices((x,))
|
147 |
+
assert actual == (X(i0),)
|
148 |
+
assert act_map == exp_map
|
149 |
+
|
150 |
+
expected = (X(i0), Y(i0), Z(i0), H(i0))
|
151 |
+
exp_map = {i0: Integer(0)}
|
152 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices((x, y, z, h))
|
153 |
+
assert actual == expected
|
154 |
+
assert exp_map == act_map
|
155 |
+
|
156 |
+
(x1, y1, z1, h1) = create_gate_sequence(1)
|
157 |
+
i1 = Symbol('i1')
|
158 |
+
|
159 |
+
expected = (X(i0), Y(i0), Z(i0), H(i0))
|
160 |
+
exp_map = {i0: Integer(1)}
|
161 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices((x1, y1, z1, h1))
|
162 |
+
assert actual == expected
|
163 |
+
assert act_map == exp_map
|
164 |
+
|
165 |
+
expected = (X(i0), Y(i0), Z(i0), H(i0), X(i1), Y(i1), Z(i1), H(i1))
|
166 |
+
exp_map = {i0: Integer(0), i1: Integer(1)}
|
167 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices((x, y, z, h,
|
168 |
+
x1, y1, z1, h1))
|
169 |
+
assert actual == expected
|
170 |
+
assert act_map == exp_map
|
171 |
+
|
172 |
+
exp_map = {i0: Integer(1), i1: Integer(0)}
|
173 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices(Mul(x1, y1,
|
174 |
+
z1, h1, x, y, z, h))
|
175 |
+
assert actual == expected
|
176 |
+
assert act_map == exp_map
|
177 |
+
|
178 |
+
expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1), H(i0), H(i1))
|
179 |
+
exp_map = {i0: Integer(0), i1: Integer(1)}
|
180 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices(Mul(x, x1,
|
181 |
+
y, y1, z, z1, h, h1))
|
182 |
+
assert actual == expected
|
183 |
+
assert act_map == exp_map
|
184 |
+
|
185 |
+
exp_map = {i0: Integer(1), i1: Integer(0)}
|
186 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices((x1, x, y1, y,
|
187 |
+
z1, z, h1, h))
|
188 |
+
assert actual == expected
|
189 |
+
assert act_map == exp_map
|
190 |
+
|
191 |
+
cnot_10 = CNOT(1, 0)
|
192 |
+
cnot_01 = CNOT(0, 1)
|
193 |
+
cgate_z_10 = CGate(1, Z(0))
|
194 |
+
cgate_z_01 = CGate(0, Z(1))
|
195 |
+
|
196 |
+
expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1),
|
197 |
+
H(i0), H(i1), CNOT(i1, i0), CNOT(i0, i1),
|
198 |
+
CGate(i1, Z(i0)), CGate(i0, Z(i1)))
|
199 |
+
exp_map = {i0: Integer(0), i1: Integer(1)}
|
200 |
+
args = (x, x1, y, y1, z, z1, h, h1, cnot_10, cnot_01,
|
201 |
+
cgate_z_10, cgate_z_01)
|
202 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
|
203 |
+
assert actual == expected
|
204 |
+
assert act_map == exp_map
|
205 |
+
|
206 |
+
args = (x1, x, y1, y, z1, z, h1, h, cnot_10, cnot_01,
|
207 |
+
cgate_z_10, cgate_z_01)
|
208 |
+
expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1),
|
209 |
+
H(i0), H(i1), CNOT(i0, i1), CNOT(i1, i0),
|
210 |
+
CGate(i0, Z(i1)), CGate(i1, Z(i0)))
|
211 |
+
exp_map = {i0: Integer(1), i1: Integer(0)}
|
212 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
|
213 |
+
assert actual == expected
|
214 |
+
assert act_map == exp_map
|
215 |
+
|
216 |
+
args = (cnot_10, h, cgate_z_01, h)
|
217 |
+
expected = (CNOT(i0, i1), H(i1), CGate(i1, Z(i0)), H(i1))
|
218 |
+
exp_map = {i0: Integer(1), i1: Integer(0)}
|
219 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
|
220 |
+
assert actual == expected
|
221 |
+
assert act_map == exp_map
|
222 |
+
|
223 |
+
args = (cnot_01, h1, cgate_z_10, h1)
|
224 |
+
exp_map = {i0: Integer(0), i1: Integer(1)}
|
225 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
|
226 |
+
assert actual == expected
|
227 |
+
assert act_map == exp_map
|
228 |
+
|
229 |
+
args = (cnot_10, h1, cgate_z_01, h1)
|
230 |
+
expected = (CNOT(i0, i1), H(i0), CGate(i1, Z(i0)), H(i0))
|
231 |
+
exp_map = {i0: Integer(1), i1: Integer(0)}
|
232 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
|
233 |
+
assert actual == expected
|
234 |
+
assert act_map == exp_map
|
235 |
+
|
236 |
+
i2 = Symbol('i2')
|
237 |
+
ccgate_z = CGate(0, CGate(1, Z(2)))
|
238 |
+
ccgate_x = CGate(1, CGate(2, X(0)))
|
239 |
+
args = (ccgate_z, ccgate_x)
|
240 |
+
|
241 |
+
expected = (CGate(i0, CGate(i1, Z(i2))), CGate(i1, CGate(i2, X(i0))))
|
242 |
+
exp_map = {i0: Integer(0), i1: Integer(1), i2: Integer(2)}
|
243 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
|
244 |
+
assert actual == expected
|
245 |
+
assert act_map == exp_map
|
246 |
+
|
247 |
+
ndx_map = {i0: Integer(0)}
|
248 |
+
index_gen = numbered_symbols(prefix='i', start=1)
|
249 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices(args,
|
250 |
+
qubit_map=ndx_map,
|
251 |
+
start=i0,
|
252 |
+
gen=index_gen)
|
253 |
+
assert actual == expected
|
254 |
+
assert act_map == exp_map
|
255 |
+
|
256 |
+
i3 = Symbol('i3')
|
257 |
+
cgate_x0_c321 = CGate((3, 2, 1), X(0))
|
258 |
+
exp_map = {i0: Integer(3), i1: Integer(2),
|
259 |
+
i2: Integer(1), i3: Integer(0)}
|
260 |
+
expected = (CGate((i0, i1, i2), X(i3)),)
|
261 |
+
args = (cgate_x0_c321,)
|
262 |
+
actual, act_map, sndx, gen = convert_to_symbolic_indices(args)
|
263 |
+
assert actual == expected
|
264 |
+
assert act_map == exp_map
|
265 |
+
|
266 |
+
|
267 |
+
def test_convert_to_real_indices():
|
268 |
+
i0 = Symbol('i0')
|
269 |
+
i1 = Symbol('i1')
|
270 |
+
|
271 |
+
(x, y, z, h) = create_gate_sequence()
|
272 |
+
|
273 |
+
x_i0 = X(i0)
|
274 |
+
y_i0 = Y(i0)
|
275 |
+
z_i0 = Z(i0)
|
276 |
+
|
277 |
+
qubit_map = {i0: 0}
|
278 |
+
args = (z_i0, y_i0, x_i0)
|
279 |
+
expected = (z, y, x)
|
280 |
+
actual = convert_to_real_indices(args, qubit_map)
|
281 |
+
assert actual == expected
|
282 |
+
|
283 |
+
cnot_10 = CNOT(1, 0)
|
284 |
+
cnot_01 = CNOT(0, 1)
|
285 |
+
cgate_z_10 = CGate(1, Z(0))
|
286 |
+
cgate_z_01 = CGate(0, Z(1))
|
287 |
+
|
288 |
+
cnot_i1_i0 = CNOT(i1, i0)
|
289 |
+
cnot_i0_i1 = CNOT(i0, i1)
|
290 |
+
cgate_z_i1_i0 = CGate(i1, Z(i0))
|
291 |
+
|
292 |
+
qubit_map = {i0: 0, i1: 1}
|
293 |
+
args = (cnot_i1_i0,)
|
294 |
+
expected = (cnot_10,)
|
295 |
+
actual = convert_to_real_indices(args, qubit_map)
|
296 |
+
assert actual == expected
|
297 |
+
|
298 |
+
args = (cgate_z_i1_i0,)
|
299 |
+
expected = (cgate_z_10,)
|
300 |
+
actual = convert_to_real_indices(args, qubit_map)
|
301 |
+
assert actual == expected
|
302 |
+
|
303 |
+
args = (cnot_i0_i1,)
|
304 |
+
expected = (cnot_01,)
|
305 |
+
actual = convert_to_real_indices(args, qubit_map)
|
306 |
+
assert actual == expected
|
307 |
+
|
308 |
+
qubit_map = {i0: 1, i1: 0}
|
309 |
+
args = (cgate_z_i1_i0,)
|
310 |
+
expected = (cgate_z_01,)
|
311 |
+
actual = convert_to_real_indices(args, qubit_map)
|
312 |
+
assert actual == expected
|
313 |
+
|
314 |
+
i2 = Symbol('i2')
|
315 |
+
ccgate_z = CGate(i0, CGate(i1, Z(i2)))
|
316 |
+
ccgate_x = CGate(i1, CGate(i2, X(i0)))
|
317 |
+
|
318 |
+
qubit_map = {i0: 0, i1: 1, i2: 2}
|
319 |
+
args = (ccgate_z, ccgate_x)
|
320 |
+
expected = (CGate(0, CGate(1, Z(2))), CGate(1, CGate(2, X(0))))
|
321 |
+
actual = convert_to_real_indices(Mul(*args), qubit_map)
|
322 |
+
assert actual == expected
|
323 |
+
|
324 |
+
qubit_map = {i0: 1, i2: 0, i1: 2}
|
325 |
+
args = (ccgate_x, ccgate_z)
|
326 |
+
expected = (CGate(2, CGate(0, X(1))), CGate(1, CGate(2, Z(0))))
|
327 |
+
actual = convert_to_real_indices(args, qubit_map)
|
328 |
+
assert actual == expected
|
329 |
+
|
330 |
+
|
331 |
+
@slow
|
332 |
+
def test_random_reduce():
|
333 |
+
x = X(0)
|
334 |
+
y = Y(0)
|
335 |
+
z = Z(0)
|
336 |
+
h = H(0)
|
337 |
+
cnot = CNOT(1, 0)
|
338 |
+
cgate_z = CGate((0,), Z(1))
|
339 |
+
|
340 |
+
gate_list = [x, y, z]
|
341 |
+
ids = list(bfs_identity_search(gate_list, 1, max_depth=4))
|
342 |
+
|
343 |
+
circuit = (x, y, h, z, cnot)
|
344 |
+
assert random_reduce(circuit, []) == circuit
|
345 |
+
assert random_reduce(circuit, ids) == circuit
|
346 |
+
|
347 |
+
seq = [2, 11, 9, 3, 5]
|
348 |
+
circuit = (x, y, z, x, y, h)
|
349 |
+
assert random_reduce(circuit, ids, seed=seq) == (x, y, h)
|
350 |
+
|
351 |
+
circuit = (x, x, y, y, z, z)
|
352 |
+
assert random_reduce(circuit, ids, seed=seq) == (x, x, y, y)
|
353 |
+
|
354 |
+
seq = [14, 13, 0]
|
355 |
+
assert random_reduce(circuit, ids, seed=seq) == (y, y, z, z)
|
356 |
+
|
357 |
+
gate_list = [x, y, z, h, cnot, cgate_z]
|
358 |
+
ids = list(bfs_identity_search(gate_list, 2, max_depth=4))
|
359 |
+
|
360 |
+
seq = [25]
|
361 |
+
circuit = (x, y, z, y, h, y, h, cgate_z, h, cnot)
|
362 |
+
expected = (x, y, z, cgate_z, h, cnot)
|
363 |
+
assert random_reduce(circuit, ids, seed=seq) == expected
|
364 |
+
circuit = Mul(*circuit)
|
365 |
+
assert random_reduce(circuit, ids, seed=seq) == expected
|
366 |
+
|
367 |
+
|
368 |
+
@slow
|
369 |
+
def test_random_insert():
|
370 |
+
x = X(0)
|
371 |
+
y = Y(0)
|
372 |
+
z = Z(0)
|
373 |
+
h = H(0)
|
374 |
+
cnot = CNOT(1, 0)
|
375 |
+
cgate_z = CGate((0,), Z(1))
|
376 |
+
|
377 |
+
choices = [(x, x)]
|
378 |
+
circuit = (y, y)
|
379 |
+
loc, choice = 0, 0
|
380 |
+
actual = random_insert(circuit, choices, seed=[loc, choice])
|
381 |
+
assert actual == (x, x, y, y)
|
382 |
+
|
383 |
+
circuit = (x, y, z, h)
|
384 |
+
choices = [(h, h), (x, y, z)]
|
385 |
+
expected = (x, x, y, z, y, z, h)
|
386 |
+
loc, choice = 1, 1
|
387 |
+
actual = random_insert(circuit, choices, seed=[loc, choice])
|
388 |
+
assert actual == expected
|
389 |
+
|
390 |
+
gate_list = [x, y, z, h, cnot, cgate_z]
|
391 |
+
ids = list(bfs_identity_search(gate_list, 2, max_depth=4))
|
392 |
+
|
393 |
+
eq_ids = flatten_ids(ids)
|
394 |
+
|
395 |
+
circuit = (x, y, h, cnot, cgate_z)
|
396 |
+
expected = (x, z, x, z, x, y, h, cnot, cgate_z)
|
397 |
+
loc, choice = 1, 30
|
398 |
+
actual = random_insert(circuit, eq_ids, seed=[loc, choice])
|
399 |
+
assert actual == expected
|
400 |
+
circuit = Mul(*circuit)
|
401 |
+
actual = random_insert(circuit, eq_ids, seed=[loc, choice])
|
402 |
+
assert actual == expected
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_commutator.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import Integer
|
2 |
+
from sympy.core.symbol import symbols
|
3 |
+
|
4 |
+
from sympy.physics.quantum.dagger import Dagger
|
5 |
+
from sympy.physics.quantum.commutator import Commutator as Comm
|
6 |
+
from sympy.physics.quantum.operator import Operator
|
7 |
+
|
8 |
+
|
9 |
+
a, b, c = symbols('a,b,c')
|
10 |
+
n = symbols('n', integer=True)
|
11 |
+
A, B, C, D = symbols('A,B,C,D', commutative=False)
|
12 |
+
|
13 |
+
|
14 |
+
def test_commutator():
|
15 |
+
c = Comm(A, B)
|
16 |
+
assert c.is_commutative is False
|
17 |
+
assert isinstance(c, Comm)
|
18 |
+
assert c.subs(A, C) == Comm(C, B)
|
19 |
+
|
20 |
+
|
21 |
+
def test_commutator_identities():
|
22 |
+
assert Comm(a*A, b*B) == a*b*Comm(A, B)
|
23 |
+
assert Comm(A, A) == 0
|
24 |
+
assert Comm(a, b) == 0
|
25 |
+
assert Comm(A, B) == -Comm(B, A)
|
26 |
+
assert Comm(A, B).doit() == A*B - B*A
|
27 |
+
assert Comm(A, B*C).expand(commutator=True) == Comm(A, B)*C + B*Comm(A, C)
|
28 |
+
assert Comm(A*B, C*D).expand(commutator=True) == \
|
29 |
+
A*C*Comm(B, D) + A*Comm(B, C)*D + C*Comm(A, D)*B + Comm(A, C)*D*B
|
30 |
+
assert Comm(A, B**2).expand(commutator=True) == Comm(A, B)*B + B*Comm(A, B)
|
31 |
+
assert Comm(A**2, C**2).expand(commutator=True) == \
|
32 |
+
Comm(A*B, C*D).expand(commutator=True).replace(B, A).replace(D, C) == \
|
33 |
+
A*C*Comm(A, C) + A*Comm(A, C)*C + C*Comm(A, C)*A + Comm(A, C)*C*A
|
34 |
+
assert Comm(A, C**-2).expand(commutator=True) == \
|
35 |
+
Comm(A, (1/C)*(1/D)).expand(commutator=True).replace(D, C)
|
36 |
+
assert Comm(A + B, C + D).expand(commutator=True) == \
|
37 |
+
Comm(A, C) + Comm(A, D) + Comm(B, C) + Comm(B, D)
|
38 |
+
assert Comm(A, B + C).expand(commutator=True) == Comm(A, B) + Comm(A, C)
|
39 |
+
assert Comm(A**n, B).expand(commutator=True) == Comm(A**n, B)
|
40 |
+
|
41 |
+
e = Comm(A, Comm(B, C)) + Comm(B, Comm(C, A)) + Comm(C, Comm(A, B))
|
42 |
+
assert e.doit().expand() == 0
|
43 |
+
|
44 |
+
|
45 |
+
def test_commutator_dagger():
|
46 |
+
comm = Comm(A*B, C)
|
47 |
+
assert Dagger(comm).expand(commutator=True) == \
|
48 |
+
- Comm(Dagger(B), Dagger(C))*Dagger(A) - \
|
49 |
+
Dagger(B)*Comm(Dagger(A), Dagger(C))
|
50 |
+
|
51 |
+
|
52 |
+
class Foo(Operator):
|
53 |
+
|
54 |
+
def _eval_commutator_Bar(self, bar):
|
55 |
+
return Integer(0)
|
56 |
+
|
57 |
+
|
58 |
+
class Bar(Operator):
|
59 |
+
pass
|
60 |
+
|
61 |
+
|
62 |
+
class Tam(Operator):
|
63 |
+
|
64 |
+
def _eval_commutator_Foo(self, foo):
|
65 |
+
return Integer(1)
|
66 |
+
|
67 |
+
|
68 |
+
def test_eval_commutator():
|
69 |
+
F = Foo('F')
|
70 |
+
B = Bar('B')
|
71 |
+
T = Tam('T')
|
72 |
+
assert Comm(F, B).doit() == 0
|
73 |
+
assert Comm(B, F).doit() == 0
|
74 |
+
assert Comm(F, T).doit() == -1
|
75 |
+
assert Comm(T, F).doit() == 1
|
76 |
+
assert Comm(B, T).doit() == B*T - T*B
|
77 |
+
assert Comm(F**2, B).expand(commutator=True).doit() == 0
|
78 |
+
assert Comm(F**2, T).expand(commutator=True).doit() == -2*F
|
79 |
+
assert Comm(F, T**2).expand(commutator=True).doit() == -2*T
|
80 |
+
assert Comm(T**2, F).expand(commutator=True).doit() == 2*T
|
81 |
+
assert Comm(T**2, F**3).expand(commutator=True).doit() == 2*F*T*F + 2*F**2*T + 2*T*F**2
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/tests/test_constants.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import Float
|
2 |
+
|
3 |
+
from sympy.physics.quantum.constants import hbar
|
4 |
+
|
5 |
+
|
6 |
+
def test_hbar():
|
7 |
+
assert hbar.is_commutative is True
|
8 |
+
assert hbar.is_real is True
|
9 |
+
assert hbar.is_positive is True
|
10 |
+
assert hbar.is_negative is False
|
11 |
+
assert hbar.is_irrational is True
|
12 |
+
|
13 |
+
assert hbar.evalf() == Float(1.05457162e-34)
|