Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/__init__.py +56 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/configuration_dinat.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/modeling_dinat.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/configuration_dinat.py +152 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/modeling_dinat.py +976 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__init__.py +103 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/configuration_flaubert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/modeling_flaubert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/modeling_tf_flaubert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/tokenization_flaubert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/configuration_flaubert.py +234 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/modeling_flaubert.py +1302 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/modeling_tf_flaubert.py +1337 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/tokenization_flaubert.py +565 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__init__.py +112 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/configuration_gptj.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_flax_gptj.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_gptj.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_tf_gptj.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/configuration_gptj.py +218 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/modeling_flax_gptj.py +718 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/modeling_gptj.py +1427 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/modeling_tf_gptj.py +1099 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__init__.py +57 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__pycache__/configuration_llava.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__pycache__/convert_llava_weights_to_hf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__pycache__/modeling_llava.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__pycache__/processing_llava.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/llava/configuration_llava.py +156 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/llava/convert_llava_weights_to_hf.py +148 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/llava/modeling_llava.py +572 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/llava/processing_llava.py +135 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__pycache__/configuration_musicgen.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__pycache__/convert_musicgen_transformers.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__pycache__/modeling_musicgen.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__pycache__/processing_musicgen.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/configuration_musicgen.py +258 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/modeling_musicgen.py +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/__init__.py +62 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/__pycache__/configuration_starcoder2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/__pycache__/modeling_starcoder2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/configuration_starcoder2.py +148 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/modeling_starcoder2.py +1378 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/tapas/__init__.py +95 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_dinat": ["DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DinatConfig"]}
|
20 |
+
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_torch_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["modeling_dinat"] = [
|
29 |
+
"DINAT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
30 |
+
"DinatForImageClassification",
|
31 |
+
"DinatModel",
|
32 |
+
"DinatPreTrainedModel",
|
33 |
+
"DinatBackbone",
|
34 |
+
]
|
35 |
+
|
36 |
+
if TYPE_CHECKING:
|
37 |
+
from .configuration_dinat import DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP, DinatConfig
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_torch_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
from .modeling_dinat import (
|
46 |
+
DINAT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
47 |
+
DinatBackbone,
|
48 |
+
DinatForImageClassification,
|
49 |
+
DinatModel,
|
50 |
+
DinatPreTrainedModel,
|
51 |
+
)
|
52 |
+
|
53 |
+
else:
|
54 |
+
import sys
|
55 |
+
|
56 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (966 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/configuration_dinat.cpython-310.pyc
ADDED
Binary file (6.57 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/modeling_dinat.cpython-310.pyc
ADDED
Binary file (32.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/configuration_dinat.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Dilated Neighborhood Attention Transformer model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from ..deprecated._archive_maps import DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class DinatConfig(BackboneConfigMixin, PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`DinatModel`]. It is used to instantiate a Dinat
|
31 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
32 |
+
defaults will yield a similar configuration to that of the Dinat
|
33 |
+
[shi-labs/dinat-mini-in1k-224](https://huggingface.co/shi-labs/dinat-mini-in1k-224) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
patch_size (`int`, *optional*, defaults to 4):
|
40 |
+
The size (resolution) of each patch. NOTE: Only patch size of 4 is supported at the moment.
|
41 |
+
num_channels (`int`, *optional*, defaults to 3):
|
42 |
+
The number of input channels.
|
43 |
+
embed_dim (`int`, *optional*, defaults to 64):
|
44 |
+
Dimensionality of patch embedding.
|
45 |
+
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 5]`):
|
46 |
+
Number of layers in each level of the encoder.
|
47 |
+
num_heads (`List[int]`, *optional*, defaults to `[2, 4, 8, 16]`):
|
48 |
+
Number of attention heads in each layer of the Transformer encoder.
|
49 |
+
kernel_size (`int`, *optional*, defaults to 7):
|
50 |
+
Neighborhood Attention kernel size.
|
51 |
+
dilations (`List[List[int]]`, *optional*, defaults to `[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]]`):
|
52 |
+
Dilation value of each NA layer in the Transformer encoder.
|
53 |
+
mlp_ratio (`float`, *optional*, defaults to 3.0):
|
54 |
+
Ratio of MLP hidden dimensionality to embedding dimensionality.
|
55 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
56 |
+
Whether or not a learnable bias should be added to the queries, keys and values.
|
57 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
58 |
+
The dropout probability for all fully connected layers in the embeddings and encoder.
|
59 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio for the attention probabilities.
|
61 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
62 |
+
Stochastic depth rate.
|
63 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
64 |
+
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
|
65 |
+
`"selu"` and `"gelu_new"` are supported.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
69 |
+
The epsilon used by the layer normalization layers.
|
70 |
+
layer_scale_init_value (`float`, *optional*, defaults to 0.0):
|
71 |
+
The initial value for the layer scale. Disabled if <=0.
|
72 |
+
out_features (`List[str]`, *optional*):
|
73 |
+
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
74 |
+
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
75 |
+
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
76 |
+
same order as defined in the `stage_names` attribute.
|
77 |
+
out_indices (`List[int]`, *optional*):
|
78 |
+
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
79 |
+
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
80 |
+
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
81 |
+
same order as defined in the `stage_names` attribute.
|
82 |
+
|
83 |
+
Example:
|
84 |
+
|
85 |
+
```python
|
86 |
+
>>> from transformers import DinatConfig, DinatModel
|
87 |
+
|
88 |
+
>>> # Initializing a Dinat shi-labs/dinat-mini-in1k-224 style configuration
|
89 |
+
>>> configuration = DinatConfig()
|
90 |
+
|
91 |
+
>>> # Initializing a model (with random weights) from the shi-labs/dinat-mini-in1k-224 style configuration
|
92 |
+
>>> model = DinatModel(configuration)
|
93 |
+
|
94 |
+
>>> # Accessing the model configuration
|
95 |
+
>>> configuration = model.config
|
96 |
+
```"""
|
97 |
+
|
98 |
+
model_type = "dinat"
|
99 |
+
|
100 |
+
attribute_map = {
|
101 |
+
"num_attention_heads": "num_heads",
|
102 |
+
"num_hidden_layers": "num_layers",
|
103 |
+
}
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
patch_size=4,
|
108 |
+
num_channels=3,
|
109 |
+
embed_dim=64,
|
110 |
+
depths=[3, 4, 6, 5],
|
111 |
+
num_heads=[2, 4, 8, 16],
|
112 |
+
kernel_size=7,
|
113 |
+
dilations=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]],
|
114 |
+
mlp_ratio=3.0,
|
115 |
+
qkv_bias=True,
|
116 |
+
hidden_dropout_prob=0.0,
|
117 |
+
attention_probs_dropout_prob=0.0,
|
118 |
+
drop_path_rate=0.1,
|
119 |
+
hidden_act="gelu",
|
120 |
+
initializer_range=0.02,
|
121 |
+
layer_norm_eps=1e-5,
|
122 |
+
layer_scale_init_value=0.0,
|
123 |
+
out_features=None,
|
124 |
+
out_indices=None,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
super().__init__(**kwargs)
|
128 |
+
|
129 |
+
self.patch_size = patch_size
|
130 |
+
self.num_channels = num_channels
|
131 |
+
self.embed_dim = embed_dim
|
132 |
+
self.depths = depths
|
133 |
+
self.num_layers = len(depths)
|
134 |
+
self.num_heads = num_heads
|
135 |
+
self.kernel_size = kernel_size
|
136 |
+
self.dilations = dilations
|
137 |
+
self.mlp_ratio = mlp_ratio
|
138 |
+
self.qkv_bias = qkv_bias
|
139 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
140 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
141 |
+
self.drop_path_rate = drop_path_rate
|
142 |
+
self.hidden_act = hidden_act
|
143 |
+
self.layer_norm_eps = layer_norm_eps
|
144 |
+
self.initializer_range = initializer_range
|
145 |
+
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
|
146 |
+
# this indicates the channel dimension after the last stage of the model
|
147 |
+
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
|
148 |
+
self.layer_scale_init_value = layer_scale_init_value
|
149 |
+
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
|
150 |
+
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
151 |
+
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
152 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dinat/modeling_dinat.py
ADDED
@@ -0,0 +1,976 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Dilated Neighborhood Attention Transformer model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import BackboneOutput
|
29 |
+
from ...modeling_utils import PreTrainedModel
|
30 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
31 |
+
from ...utils import (
|
32 |
+
ModelOutput,
|
33 |
+
OptionalDependencyNotAvailable,
|
34 |
+
add_code_sample_docstrings,
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
is_natten_available,
|
38 |
+
logging,
|
39 |
+
replace_return_docstrings,
|
40 |
+
requires_backends,
|
41 |
+
)
|
42 |
+
from ...utils.backbone_utils import BackboneMixin
|
43 |
+
from .configuration_dinat import DinatConfig
|
44 |
+
|
45 |
+
|
46 |
+
if is_natten_available():
|
47 |
+
from natten.functional import natten2dav, natten2dqkrpb
|
48 |
+
else:
|
49 |
+
|
50 |
+
def natten2dqkrpb(*args, **kwargs):
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
|
53 |
+
def natten2dav(*args, **kwargs):
|
54 |
+
raise OptionalDependencyNotAvailable()
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__)
|
58 |
+
|
59 |
+
# General docstring
|
60 |
+
_CONFIG_FOR_DOC = "DinatConfig"
|
61 |
+
|
62 |
+
# Base docstring
|
63 |
+
_CHECKPOINT_FOR_DOC = "shi-labs/dinat-mini-in1k-224"
|
64 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 7, 7, 512]
|
65 |
+
|
66 |
+
# Image classification docstring
|
67 |
+
_IMAGE_CLASS_CHECKPOINT = "shi-labs/dinat-mini-in1k-224"
|
68 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
69 |
+
|
70 |
+
|
71 |
+
from ..deprecated._archive_maps import DINAT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
72 |
+
|
73 |
+
|
74 |
+
# drop_path and DinatDropPath are from the timm library.
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
# Copied from transformers.models.nat.modeling_nat.NatEncoderOutput with Nat->Dinat
|
79 |
+
class DinatEncoderOutput(ModelOutput):
|
80 |
+
"""
|
81 |
+
Dinat encoder's outputs, with potential hidden states and attentions.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
85 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
86 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
87 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
88 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
89 |
+
|
90 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
91 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
92 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
93 |
+
sequence_length)`.
|
94 |
+
|
95 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
96 |
+
heads.
|
97 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
98 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
99 |
+
shape `(batch_size, hidden_size, height, width)`.
|
100 |
+
|
101 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
102 |
+
include the spatial dimensions.
|
103 |
+
"""
|
104 |
+
|
105 |
+
last_hidden_state: torch.FloatTensor = None
|
106 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
107 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
108 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
109 |
+
|
110 |
+
|
111 |
+
@dataclass
|
112 |
+
# Copied from transformers.models.nat.modeling_nat.NatModelOutput with Nat->Dinat
|
113 |
+
class DinatModelOutput(ModelOutput):
|
114 |
+
"""
|
115 |
+
Dinat model's outputs that also contains a pooling of the last hidden states.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
119 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
120 |
+
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
|
121 |
+
Average pooling of the last layer hidden-state.
|
122 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
123 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
124 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
125 |
+
|
126 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
127 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
128 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
129 |
+
sequence_length)`.
|
130 |
+
|
131 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
132 |
+
heads.
|
133 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
134 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
135 |
+
shape `(batch_size, hidden_size, height, width)`.
|
136 |
+
|
137 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
138 |
+
include the spatial dimensions.
|
139 |
+
"""
|
140 |
+
|
141 |
+
last_hidden_state: torch.FloatTensor = None
|
142 |
+
pooler_output: Optional[torch.FloatTensor] = None
|
143 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
144 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
145 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
146 |
+
|
147 |
+
|
148 |
+
@dataclass
|
149 |
+
# Copied from transformers.models.nat.modeling_nat.NatImageClassifierOutput with Nat->Dinat
|
150 |
+
class DinatImageClassifierOutput(ModelOutput):
|
151 |
+
"""
|
152 |
+
Dinat outputs for image classification.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
156 |
+
Classification (or regression if config.num_labels==1) loss.
|
157 |
+
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
158 |
+
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
159 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
160 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
161 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
162 |
+
|
163 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
164 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
165 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
166 |
+
sequence_length)`.
|
167 |
+
|
168 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
169 |
+
heads.
|
170 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
171 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
172 |
+
shape `(batch_size, hidden_size, height, width)`.
|
173 |
+
|
174 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
175 |
+
include the spatial dimensions.
|
176 |
+
"""
|
177 |
+
|
178 |
+
loss: Optional[torch.FloatTensor] = None
|
179 |
+
logits: torch.FloatTensor = None
|
180 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
181 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
182 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
183 |
+
|
184 |
+
|
185 |
+
# Copied from transformers.models.nat.modeling_nat.NatEmbeddings with Nat->Dinat
|
186 |
+
class DinatEmbeddings(nn.Module):
|
187 |
+
"""
|
188 |
+
Construct the patch and position embeddings.
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(self, config):
|
192 |
+
super().__init__()
|
193 |
+
|
194 |
+
self.patch_embeddings = DinatPatchEmbeddings(config)
|
195 |
+
|
196 |
+
self.norm = nn.LayerNorm(config.embed_dim)
|
197 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
198 |
+
|
199 |
+
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor]:
|
200 |
+
embeddings = self.patch_embeddings(pixel_values)
|
201 |
+
embeddings = self.norm(embeddings)
|
202 |
+
|
203 |
+
embeddings = self.dropout(embeddings)
|
204 |
+
|
205 |
+
return embeddings
|
206 |
+
|
207 |
+
|
208 |
+
# Copied from transformers.models.nat.modeling_nat.NatPatchEmbeddings with Nat->Dinat
|
209 |
+
class DinatPatchEmbeddings(nn.Module):
|
210 |
+
"""
|
211 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
212 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, height, width, hidden_size)` to be consumed by a
|
213 |
+
Transformer.
|
214 |
+
"""
|
215 |
+
|
216 |
+
def __init__(self, config):
|
217 |
+
super().__init__()
|
218 |
+
patch_size = config.patch_size
|
219 |
+
num_channels, hidden_size = config.num_channels, config.embed_dim
|
220 |
+
self.num_channels = num_channels
|
221 |
+
|
222 |
+
if patch_size == 4:
|
223 |
+
pass
|
224 |
+
else:
|
225 |
+
# TODO: Support arbitrary patch sizes.
|
226 |
+
raise ValueError("Dinat only supports patch size of 4 at the moment.")
|
227 |
+
|
228 |
+
self.projection = nn.Sequential(
|
229 |
+
nn.Conv2d(self.num_channels, hidden_size // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
230 |
+
nn.Conv2d(hidden_size // 2, hidden_size, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
231 |
+
)
|
232 |
+
|
233 |
+
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> torch.Tensor:
|
234 |
+
_, num_channels, height, width = pixel_values.shape
|
235 |
+
if num_channels != self.num_channels:
|
236 |
+
raise ValueError(
|
237 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
238 |
+
)
|
239 |
+
embeddings = self.projection(pixel_values)
|
240 |
+
embeddings = embeddings.permute(0, 2, 3, 1)
|
241 |
+
|
242 |
+
return embeddings
|
243 |
+
|
244 |
+
|
245 |
+
# Copied from transformers.models.nat.modeling_nat.NatDownsampler with Nat->Dinat
|
246 |
+
class DinatDownsampler(nn.Module):
|
247 |
+
"""
|
248 |
+
Convolutional Downsampling Layer.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
dim (`int`):
|
252 |
+
Number of input channels.
|
253 |
+
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
|
254 |
+
Normalization layer class.
|
255 |
+
"""
|
256 |
+
|
257 |
+
def __init__(self, dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
|
258 |
+
super().__init__()
|
259 |
+
self.dim = dim
|
260 |
+
self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
261 |
+
self.norm = norm_layer(2 * dim)
|
262 |
+
|
263 |
+
def forward(self, input_feature: torch.Tensor) -> torch.Tensor:
|
264 |
+
input_feature = self.reduction(input_feature.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
|
265 |
+
input_feature = self.norm(input_feature)
|
266 |
+
return input_feature
|
267 |
+
|
268 |
+
|
269 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
270 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
271 |
+
"""
|
272 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
273 |
+
|
274 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
275 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
276 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
277 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
278 |
+
argument.
|
279 |
+
"""
|
280 |
+
if drop_prob == 0.0 or not training:
|
281 |
+
return input
|
282 |
+
keep_prob = 1 - drop_prob
|
283 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
284 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
285 |
+
random_tensor.floor_() # binarize
|
286 |
+
output = input.div(keep_prob) * random_tensor
|
287 |
+
return output
|
288 |
+
|
289 |
+
|
290 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Dinat
|
291 |
+
class DinatDropPath(nn.Module):
|
292 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
293 |
+
|
294 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
295 |
+
super().__init__()
|
296 |
+
self.drop_prob = drop_prob
|
297 |
+
|
298 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
299 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
300 |
+
|
301 |
+
def extra_repr(self) -> str:
|
302 |
+
return "p={}".format(self.drop_prob)
|
303 |
+
|
304 |
+
|
305 |
+
class NeighborhoodAttention(nn.Module):
|
306 |
+
def __init__(self, config, dim, num_heads, kernel_size, dilation):
|
307 |
+
super().__init__()
|
308 |
+
if dim % num_heads != 0:
|
309 |
+
raise ValueError(
|
310 |
+
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
|
311 |
+
)
|
312 |
+
|
313 |
+
self.num_attention_heads = num_heads
|
314 |
+
self.attention_head_size = int(dim / num_heads)
|
315 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
316 |
+
self.kernel_size = kernel_size
|
317 |
+
self.dilation = dilation
|
318 |
+
|
319 |
+
# rpb is learnable relative positional biases; same concept is used Swin.
|
320 |
+
self.rpb = nn.Parameter(torch.zeros(num_heads, (2 * self.kernel_size - 1), (2 * self.kernel_size - 1)))
|
321 |
+
|
322 |
+
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
323 |
+
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
324 |
+
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
325 |
+
|
326 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
327 |
+
|
328 |
+
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttention.transpose_for_scores with Nat->Dinat
|
329 |
+
def transpose_for_scores(self, x):
|
330 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
331 |
+
x = x.view(new_x_shape)
|
332 |
+
return x.permute(0, 3, 1, 2, 4)
|
333 |
+
|
334 |
+
def forward(
|
335 |
+
self,
|
336 |
+
hidden_states: torch.Tensor,
|
337 |
+
output_attentions: Optional[bool] = False,
|
338 |
+
) -> Tuple[torch.Tensor]:
|
339 |
+
query_layer = self.transpose_for_scores(self.query(hidden_states))
|
340 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
341 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
342 |
+
|
343 |
+
# Apply the scale factor before computing attention weights. It's usually more efficient because
|
344 |
+
# attention weights are typically a bigger tensor compared to query.
|
345 |
+
# It gives identical results because scalars are commutable in matrix multiplication.
|
346 |
+
query_layer = query_layer / math.sqrt(self.attention_head_size)
|
347 |
+
|
348 |
+
# Compute NA between "query" and "key" to get the raw attention scores, and add relative positional biases.
|
349 |
+
attention_scores = natten2dqkrpb(query_layer, key_layer, self.rpb, self.kernel_size, self.dilation)
|
350 |
+
|
351 |
+
# Normalize the attention scores to probabilities.
|
352 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
353 |
+
|
354 |
+
# This is actually dropping out entire tokens to attend to, which might
|
355 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
356 |
+
attention_probs = self.dropout(attention_probs)
|
357 |
+
|
358 |
+
context_layer = natten2dav(attention_probs, value_layer, self.kernel_size, self.dilation)
|
359 |
+
context_layer = context_layer.permute(0, 2, 3, 1, 4).contiguous()
|
360 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
361 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
362 |
+
|
363 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
364 |
+
|
365 |
+
return outputs
|
366 |
+
|
367 |
+
|
368 |
+
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionOutput
|
369 |
+
class NeighborhoodAttentionOutput(nn.Module):
|
370 |
+
def __init__(self, config, dim):
|
371 |
+
super().__init__()
|
372 |
+
self.dense = nn.Linear(dim, dim)
|
373 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
374 |
+
|
375 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
376 |
+
hidden_states = self.dense(hidden_states)
|
377 |
+
hidden_states = self.dropout(hidden_states)
|
378 |
+
|
379 |
+
return hidden_states
|
380 |
+
|
381 |
+
|
382 |
+
class NeighborhoodAttentionModule(nn.Module):
|
383 |
+
def __init__(self, config, dim, num_heads, kernel_size, dilation):
|
384 |
+
super().__init__()
|
385 |
+
self.self = NeighborhoodAttention(config, dim, num_heads, kernel_size, dilation)
|
386 |
+
self.output = NeighborhoodAttentionOutput(config, dim)
|
387 |
+
self.pruned_heads = set()
|
388 |
+
|
389 |
+
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionModule.prune_heads
|
390 |
+
def prune_heads(self, heads):
|
391 |
+
if len(heads) == 0:
|
392 |
+
return
|
393 |
+
heads, index = find_pruneable_heads_and_indices(
|
394 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
395 |
+
)
|
396 |
+
|
397 |
+
# Prune linear layers
|
398 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
399 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
400 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
401 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
402 |
+
|
403 |
+
# Update hyper params and store pruned heads
|
404 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
405 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
406 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
407 |
+
|
408 |
+
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionModule.forward
|
409 |
+
def forward(
|
410 |
+
self,
|
411 |
+
hidden_states: torch.Tensor,
|
412 |
+
output_attentions: Optional[bool] = False,
|
413 |
+
) -> Tuple[torch.Tensor]:
|
414 |
+
self_outputs = self.self(hidden_states, output_attentions)
|
415 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
416 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
417 |
+
return outputs
|
418 |
+
|
419 |
+
|
420 |
+
# Copied from transformers.models.nat.modeling_nat.NatIntermediate with Nat->Dinat
|
421 |
+
class DinatIntermediate(nn.Module):
|
422 |
+
def __init__(self, config, dim):
|
423 |
+
super().__init__()
|
424 |
+
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
|
425 |
+
if isinstance(config.hidden_act, str):
|
426 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
427 |
+
else:
|
428 |
+
self.intermediate_act_fn = config.hidden_act
|
429 |
+
|
430 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
431 |
+
hidden_states = self.dense(hidden_states)
|
432 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
433 |
+
return hidden_states
|
434 |
+
|
435 |
+
|
436 |
+
# Copied from transformers.models.nat.modeling_nat.NatOutput with Nat->Dinat
|
437 |
+
class DinatOutput(nn.Module):
|
438 |
+
def __init__(self, config, dim):
|
439 |
+
super().__init__()
|
440 |
+
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
|
441 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
442 |
+
|
443 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
444 |
+
hidden_states = self.dense(hidden_states)
|
445 |
+
hidden_states = self.dropout(hidden_states)
|
446 |
+
return hidden_states
|
447 |
+
|
448 |
+
|
449 |
+
class DinatLayer(nn.Module):
|
450 |
+
def __init__(self, config, dim, num_heads, dilation, drop_path_rate=0.0):
|
451 |
+
super().__init__()
|
452 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
453 |
+
self.kernel_size = config.kernel_size
|
454 |
+
self.dilation = dilation
|
455 |
+
self.window_size = self.kernel_size * self.dilation
|
456 |
+
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
457 |
+
self.attention = NeighborhoodAttentionModule(
|
458 |
+
config, dim, num_heads, kernel_size=self.kernel_size, dilation=self.dilation
|
459 |
+
)
|
460 |
+
self.drop_path = DinatDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
461 |
+
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
462 |
+
self.intermediate = DinatIntermediate(config, dim)
|
463 |
+
self.output = DinatOutput(config, dim)
|
464 |
+
self.layer_scale_parameters = (
|
465 |
+
nn.Parameter(config.layer_scale_init_value * torch.ones((2, dim)), requires_grad=True)
|
466 |
+
if config.layer_scale_init_value > 0
|
467 |
+
else None
|
468 |
+
)
|
469 |
+
|
470 |
+
def maybe_pad(self, hidden_states, height, width):
|
471 |
+
window_size = self.window_size
|
472 |
+
pad_values = (0, 0, 0, 0, 0, 0)
|
473 |
+
if height < window_size or width < window_size:
|
474 |
+
pad_l = pad_t = 0
|
475 |
+
pad_r = max(0, window_size - width)
|
476 |
+
pad_b = max(0, window_size - height)
|
477 |
+
pad_values = (0, 0, pad_l, pad_r, pad_t, pad_b)
|
478 |
+
hidden_states = nn.functional.pad(hidden_states, pad_values)
|
479 |
+
return hidden_states, pad_values
|
480 |
+
|
481 |
+
def forward(
|
482 |
+
self,
|
483 |
+
hidden_states: torch.Tensor,
|
484 |
+
output_attentions: Optional[bool] = False,
|
485 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
486 |
+
batch_size, height, width, channels = hidden_states.size()
|
487 |
+
shortcut = hidden_states
|
488 |
+
|
489 |
+
hidden_states = self.layernorm_before(hidden_states)
|
490 |
+
# pad hidden_states if they are smaller than kernel size x dilation
|
491 |
+
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
|
492 |
+
|
493 |
+
_, height_pad, width_pad, _ = hidden_states.shape
|
494 |
+
|
495 |
+
attention_outputs = self.attention(hidden_states, output_attentions=output_attentions)
|
496 |
+
|
497 |
+
attention_output = attention_outputs[0]
|
498 |
+
|
499 |
+
was_padded = pad_values[3] > 0 or pad_values[5] > 0
|
500 |
+
if was_padded:
|
501 |
+
attention_output = attention_output[:, :height, :width, :].contiguous()
|
502 |
+
|
503 |
+
if self.layer_scale_parameters is not None:
|
504 |
+
attention_output = self.layer_scale_parameters[0] * attention_output
|
505 |
+
|
506 |
+
hidden_states = shortcut + self.drop_path(attention_output)
|
507 |
+
|
508 |
+
layer_output = self.layernorm_after(hidden_states)
|
509 |
+
layer_output = self.output(self.intermediate(layer_output))
|
510 |
+
|
511 |
+
if self.layer_scale_parameters is not None:
|
512 |
+
layer_output = self.layer_scale_parameters[1] * layer_output
|
513 |
+
|
514 |
+
layer_output = hidden_states + self.drop_path(layer_output)
|
515 |
+
|
516 |
+
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
|
517 |
+
return layer_outputs
|
518 |
+
|
519 |
+
|
520 |
+
class DinatStage(nn.Module):
|
521 |
+
def __init__(self, config, dim, depth, num_heads, dilations, drop_path_rate, downsample):
|
522 |
+
super().__init__()
|
523 |
+
self.config = config
|
524 |
+
self.dim = dim
|
525 |
+
self.layers = nn.ModuleList(
|
526 |
+
[
|
527 |
+
DinatLayer(
|
528 |
+
config=config,
|
529 |
+
dim=dim,
|
530 |
+
num_heads=num_heads,
|
531 |
+
dilation=dilations[i],
|
532 |
+
drop_path_rate=drop_path_rate[i],
|
533 |
+
)
|
534 |
+
for i in range(depth)
|
535 |
+
]
|
536 |
+
)
|
537 |
+
|
538 |
+
# patch merging layer
|
539 |
+
if downsample is not None:
|
540 |
+
self.downsample = downsample(dim=dim, norm_layer=nn.LayerNorm)
|
541 |
+
else:
|
542 |
+
self.downsample = None
|
543 |
+
|
544 |
+
self.pointing = False
|
545 |
+
|
546 |
+
# Copied from transformers.models.nat.modeling_nat.NatStage.forward
|
547 |
+
def forward(
|
548 |
+
self,
|
549 |
+
hidden_states: torch.Tensor,
|
550 |
+
output_attentions: Optional[bool] = False,
|
551 |
+
) -> Tuple[torch.Tensor]:
|
552 |
+
_, height, width, _ = hidden_states.size()
|
553 |
+
for i, layer_module in enumerate(self.layers):
|
554 |
+
layer_outputs = layer_module(hidden_states, output_attentions)
|
555 |
+
hidden_states = layer_outputs[0]
|
556 |
+
|
557 |
+
hidden_states_before_downsampling = hidden_states
|
558 |
+
if self.downsample is not None:
|
559 |
+
hidden_states = self.downsample(hidden_states_before_downsampling)
|
560 |
+
|
561 |
+
stage_outputs = (hidden_states, hidden_states_before_downsampling)
|
562 |
+
|
563 |
+
if output_attentions:
|
564 |
+
stage_outputs += layer_outputs[1:]
|
565 |
+
return stage_outputs
|
566 |
+
|
567 |
+
|
568 |
+
class DinatEncoder(nn.Module):
|
569 |
+
def __init__(self, config):
|
570 |
+
super().__init__()
|
571 |
+
self.num_levels = len(config.depths)
|
572 |
+
self.config = config
|
573 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
|
574 |
+
self.levels = nn.ModuleList(
|
575 |
+
[
|
576 |
+
DinatStage(
|
577 |
+
config=config,
|
578 |
+
dim=int(config.embed_dim * 2**i_layer),
|
579 |
+
depth=config.depths[i_layer],
|
580 |
+
num_heads=config.num_heads[i_layer],
|
581 |
+
dilations=config.dilations[i_layer],
|
582 |
+
drop_path_rate=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
|
583 |
+
downsample=DinatDownsampler if (i_layer < self.num_levels - 1) else None,
|
584 |
+
)
|
585 |
+
for i_layer in range(self.num_levels)
|
586 |
+
]
|
587 |
+
)
|
588 |
+
|
589 |
+
# Copied from transformers.models.nat.modeling_nat.NatEncoder.forward with Nat->Dinat
|
590 |
+
def forward(
|
591 |
+
self,
|
592 |
+
hidden_states: torch.Tensor,
|
593 |
+
output_attentions: Optional[bool] = False,
|
594 |
+
output_hidden_states: Optional[bool] = False,
|
595 |
+
output_hidden_states_before_downsampling: Optional[bool] = False,
|
596 |
+
return_dict: Optional[bool] = True,
|
597 |
+
) -> Union[Tuple, DinatEncoderOutput]:
|
598 |
+
all_hidden_states = () if output_hidden_states else None
|
599 |
+
all_reshaped_hidden_states = () if output_hidden_states else None
|
600 |
+
all_self_attentions = () if output_attentions else None
|
601 |
+
|
602 |
+
if output_hidden_states:
|
603 |
+
# rearrange b h w c -> b c h w
|
604 |
+
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2)
|
605 |
+
all_hidden_states += (hidden_states,)
|
606 |
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
607 |
+
|
608 |
+
for i, layer_module in enumerate(self.levels):
|
609 |
+
layer_outputs = layer_module(hidden_states, output_attentions)
|
610 |
+
|
611 |
+
hidden_states = layer_outputs[0]
|
612 |
+
hidden_states_before_downsampling = layer_outputs[1]
|
613 |
+
|
614 |
+
if output_hidden_states and output_hidden_states_before_downsampling:
|
615 |
+
# rearrange b h w c -> b c h w
|
616 |
+
reshaped_hidden_state = hidden_states_before_downsampling.permute(0, 3, 1, 2)
|
617 |
+
all_hidden_states += (hidden_states_before_downsampling,)
|
618 |
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
619 |
+
elif output_hidden_states and not output_hidden_states_before_downsampling:
|
620 |
+
# rearrange b h w c -> b c h w
|
621 |
+
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2)
|
622 |
+
all_hidden_states += (hidden_states,)
|
623 |
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
624 |
+
|
625 |
+
if output_attentions:
|
626 |
+
all_self_attentions += layer_outputs[2:]
|
627 |
+
|
628 |
+
if not return_dict:
|
629 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
630 |
+
|
631 |
+
return DinatEncoderOutput(
|
632 |
+
last_hidden_state=hidden_states,
|
633 |
+
hidden_states=all_hidden_states,
|
634 |
+
attentions=all_self_attentions,
|
635 |
+
reshaped_hidden_states=all_reshaped_hidden_states,
|
636 |
+
)
|
637 |
+
|
638 |
+
|
639 |
+
class DinatPreTrainedModel(PreTrainedModel):
|
640 |
+
"""
|
641 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
642 |
+
models.
|
643 |
+
"""
|
644 |
+
|
645 |
+
config_class = DinatConfig
|
646 |
+
base_model_prefix = "dinat"
|
647 |
+
main_input_name = "pixel_values"
|
648 |
+
|
649 |
+
def _init_weights(self, module):
|
650 |
+
"""Initialize the weights"""
|
651 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
652 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
653 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
654 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
655 |
+
if module.bias is not None:
|
656 |
+
module.bias.data.zero_()
|
657 |
+
elif isinstance(module, nn.LayerNorm):
|
658 |
+
module.bias.data.zero_()
|
659 |
+
module.weight.data.fill_(1.0)
|
660 |
+
|
661 |
+
|
662 |
+
DINAT_START_DOCSTRING = r"""
|
663 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
664 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
665 |
+
behavior.
|
666 |
+
|
667 |
+
Parameters:
|
668 |
+
config ([`DinatConfig`]): Model configuration class with all the parameters of the model.
|
669 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
670 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
671 |
+
"""
|
672 |
+
|
673 |
+
DINAT_INPUTS_DOCSTRING = r"""
|
674 |
+
Args:
|
675 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
676 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
|
677 |
+
for details.
|
678 |
+
|
679 |
+
output_attentions (`bool`, *optional*):
|
680 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
681 |
+
tensors for more detail.
|
682 |
+
output_hidden_states (`bool`, *optional*):
|
683 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
684 |
+
more detail.
|
685 |
+
return_dict (`bool`, *optional*):
|
686 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
687 |
+
"""
|
688 |
+
|
689 |
+
|
690 |
+
@add_start_docstrings(
|
691 |
+
"The bare Dinat Model transformer outputting raw hidden-states without any specific head on top.",
|
692 |
+
DINAT_START_DOCSTRING,
|
693 |
+
)
|
694 |
+
# Copied from transformers.models.nat.modeling_nat.NatModel with Nat->Dinat, NAT->DINAT
|
695 |
+
class DinatModel(DinatPreTrainedModel):
|
696 |
+
def __init__(self, config, add_pooling_layer=True):
|
697 |
+
super().__init__(config)
|
698 |
+
|
699 |
+
requires_backends(self, ["natten"])
|
700 |
+
|
701 |
+
self.config = config
|
702 |
+
self.num_levels = len(config.depths)
|
703 |
+
self.num_features = int(config.embed_dim * 2 ** (self.num_levels - 1))
|
704 |
+
|
705 |
+
self.embeddings = DinatEmbeddings(config)
|
706 |
+
self.encoder = DinatEncoder(config)
|
707 |
+
|
708 |
+
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
|
709 |
+
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
|
710 |
+
|
711 |
+
# Initialize weights and apply final processing
|
712 |
+
self.post_init()
|
713 |
+
|
714 |
+
def get_input_embeddings(self):
|
715 |
+
return self.embeddings.patch_embeddings
|
716 |
+
|
717 |
+
def _prune_heads(self, heads_to_prune):
|
718 |
+
"""
|
719 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
720 |
+
class PreTrainedModel
|
721 |
+
"""
|
722 |
+
for layer, heads in heads_to_prune.items():
|
723 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
724 |
+
|
725 |
+
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
|
726 |
+
@add_code_sample_docstrings(
|
727 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
728 |
+
output_type=DinatModelOutput,
|
729 |
+
config_class=_CONFIG_FOR_DOC,
|
730 |
+
modality="vision",
|
731 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
732 |
+
)
|
733 |
+
def forward(
|
734 |
+
self,
|
735 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
736 |
+
output_attentions: Optional[bool] = None,
|
737 |
+
output_hidden_states: Optional[bool] = None,
|
738 |
+
return_dict: Optional[bool] = None,
|
739 |
+
) -> Union[Tuple, DinatModelOutput]:
|
740 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
741 |
+
output_hidden_states = (
|
742 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
743 |
+
)
|
744 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
745 |
+
|
746 |
+
if pixel_values is None:
|
747 |
+
raise ValueError("You have to specify pixel_values")
|
748 |
+
|
749 |
+
embedding_output = self.embeddings(pixel_values)
|
750 |
+
|
751 |
+
encoder_outputs = self.encoder(
|
752 |
+
embedding_output,
|
753 |
+
output_attentions=output_attentions,
|
754 |
+
output_hidden_states=output_hidden_states,
|
755 |
+
return_dict=return_dict,
|
756 |
+
)
|
757 |
+
|
758 |
+
sequence_output = encoder_outputs[0]
|
759 |
+
sequence_output = self.layernorm(sequence_output)
|
760 |
+
|
761 |
+
pooled_output = None
|
762 |
+
if self.pooler is not None:
|
763 |
+
pooled_output = self.pooler(sequence_output.flatten(1, 2).transpose(1, 2))
|
764 |
+
pooled_output = torch.flatten(pooled_output, 1)
|
765 |
+
|
766 |
+
if not return_dict:
|
767 |
+
output = (sequence_output, pooled_output) + encoder_outputs[1:]
|
768 |
+
|
769 |
+
return output
|
770 |
+
|
771 |
+
return DinatModelOutput(
|
772 |
+
last_hidden_state=sequence_output,
|
773 |
+
pooler_output=pooled_output,
|
774 |
+
hidden_states=encoder_outputs.hidden_states,
|
775 |
+
attentions=encoder_outputs.attentions,
|
776 |
+
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
|
777 |
+
)
|
778 |
+
|
779 |
+
|
780 |
+
@add_start_docstrings(
|
781 |
+
"""
|
782 |
+
Dinat Model transformer with an image classification head on top (a linear layer on top of the final hidden state
|
783 |
+
of the [CLS] token) e.g. for ImageNet.
|
784 |
+
""",
|
785 |
+
DINAT_START_DOCSTRING,
|
786 |
+
)
|
787 |
+
class DinatForImageClassification(DinatPreTrainedModel):
|
788 |
+
def __init__(self, config):
|
789 |
+
super().__init__(config)
|
790 |
+
|
791 |
+
requires_backends(self, ["natten"])
|
792 |
+
|
793 |
+
self.num_labels = config.num_labels
|
794 |
+
self.dinat = DinatModel(config)
|
795 |
+
|
796 |
+
# Classifier head
|
797 |
+
self.classifier = (
|
798 |
+
nn.Linear(self.dinat.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
799 |
+
)
|
800 |
+
|
801 |
+
# Initialize weights and apply final processing
|
802 |
+
self.post_init()
|
803 |
+
|
804 |
+
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
|
805 |
+
@add_code_sample_docstrings(
|
806 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
807 |
+
output_type=DinatImageClassifierOutput,
|
808 |
+
config_class=_CONFIG_FOR_DOC,
|
809 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
810 |
+
)
|
811 |
+
def forward(
|
812 |
+
self,
|
813 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
814 |
+
labels: Optional[torch.LongTensor] = None,
|
815 |
+
output_attentions: Optional[bool] = None,
|
816 |
+
output_hidden_states: Optional[bool] = None,
|
817 |
+
return_dict: Optional[bool] = None,
|
818 |
+
) -> Union[Tuple, DinatImageClassifierOutput]:
|
819 |
+
r"""
|
820 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
821 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
822 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
823 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
824 |
+
"""
|
825 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
826 |
+
|
827 |
+
outputs = self.dinat(
|
828 |
+
pixel_values,
|
829 |
+
output_attentions=output_attentions,
|
830 |
+
output_hidden_states=output_hidden_states,
|
831 |
+
return_dict=return_dict,
|
832 |
+
)
|
833 |
+
|
834 |
+
pooled_output = outputs[1]
|
835 |
+
|
836 |
+
logits = self.classifier(pooled_output)
|
837 |
+
|
838 |
+
loss = None
|
839 |
+
if labels is not None:
|
840 |
+
if self.config.problem_type is None:
|
841 |
+
if self.num_labels == 1:
|
842 |
+
self.config.problem_type = "regression"
|
843 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
844 |
+
self.config.problem_type = "single_label_classification"
|
845 |
+
else:
|
846 |
+
self.config.problem_type = "multi_label_classification"
|
847 |
+
|
848 |
+
if self.config.problem_type == "regression":
|
849 |
+
loss_fct = MSELoss()
|
850 |
+
if self.num_labels == 1:
|
851 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
852 |
+
else:
|
853 |
+
loss = loss_fct(logits, labels)
|
854 |
+
elif self.config.problem_type == "single_label_classification":
|
855 |
+
loss_fct = CrossEntropyLoss()
|
856 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
857 |
+
elif self.config.problem_type == "multi_label_classification":
|
858 |
+
loss_fct = BCEWithLogitsLoss()
|
859 |
+
loss = loss_fct(logits, labels)
|
860 |
+
|
861 |
+
if not return_dict:
|
862 |
+
output = (logits,) + outputs[2:]
|
863 |
+
return ((loss,) + output) if loss is not None else output
|
864 |
+
|
865 |
+
return DinatImageClassifierOutput(
|
866 |
+
loss=loss,
|
867 |
+
logits=logits,
|
868 |
+
hidden_states=outputs.hidden_states,
|
869 |
+
attentions=outputs.attentions,
|
870 |
+
reshaped_hidden_states=outputs.reshaped_hidden_states,
|
871 |
+
)
|
872 |
+
|
873 |
+
|
874 |
+
@add_start_docstrings(
|
875 |
+
"NAT backbone, to be used with frameworks like DETR and MaskFormer.",
|
876 |
+
DINAT_START_DOCSTRING,
|
877 |
+
)
|
878 |
+
class DinatBackbone(DinatPreTrainedModel, BackboneMixin):
|
879 |
+
def __init__(self, config):
|
880 |
+
super().__init__(config)
|
881 |
+
super()._init_backbone(config)
|
882 |
+
|
883 |
+
requires_backends(self, ["natten"])
|
884 |
+
|
885 |
+
self.embeddings = DinatEmbeddings(config)
|
886 |
+
self.encoder = DinatEncoder(config)
|
887 |
+
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
|
888 |
+
|
889 |
+
# Add layer norms to hidden states of out_features
|
890 |
+
hidden_states_norms = {}
|
891 |
+
for stage, num_channels in zip(self._out_features, self.channels):
|
892 |
+
hidden_states_norms[stage] = nn.LayerNorm(num_channels)
|
893 |
+
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
|
894 |
+
|
895 |
+
# Initialize weights and apply final processing
|
896 |
+
self.post_init()
|
897 |
+
|
898 |
+
def get_input_embeddings(self):
|
899 |
+
return self.embeddings.patch_embeddings
|
900 |
+
|
901 |
+
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
|
902 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
903 |
+
def forward(
|
904 |
+
self,
|
905 |
+
pixel_values: torch.Tensor,
|
906 |
+
output_hidden_states: Optional[bool] = None,
|
907 |
+
output_attentions: Optional[bool] = None,
|
908 |
+
return_dict: Optional[bool] = None,
|
909 |
+
) -> BackboneOutput:
|
910 |
+
"""
|
911 |
+
Returns:
|
912 |
+
|
913 |
+
Examples:
|
914 |
+
|
915 |
+
```python
|
916 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
917 |
+
>>> import torch
|
918 |
+
>>> from PIL import Image
|
919 |
+
>>> import requests
|
920 |
+
|
921 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
922 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
923 |
+
|
924 |
+
>>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
|
925 |
+
>>> model = AutoBackbone.from_pretrained(
|
926 |
+
... "shi-labs/nat-mini-in1k-224", out_features=["stage1", "stage2", "stage3", "stage4"]
|
927 |
+
... )
|
928 |
+
|
929 |
+
>>> inputs = processor(image, return_tensors="pt")
|
930 |
+
|
931 |
+
>>> outputs = model(**inputs)
|
932 |
+
|
933 |
+
>>> feature_maps = outputs.feature_maps
|
934 |
+
>>> list(feature_maps[-1].shape)
|
935 |
+
[1, 512, 7, 7]
|
936 |
+
```"""
|
937 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
938 |
+
output_hidden_states = (
|
939 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
940 |
+
)
|
941 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
942 |
+
|
943 |
+
embedding_output = self.embeddings(pixel_values)
|
944 |
+
|
945 |
+
outputs = self.encoder(
|
946 |
+
embedding_output,
|
947 |
+
output_attentions=output_attentions,
|
948 |
+
output_hidden_states=True,
|
949 |
+
output_hidden_states_before_downsampling=True,
|
950 |
+
return_dict=True,
|
951 |
+
)
|
952 |
+
|
953 |
+
hidden_states = outputs.reshaped_hidden_states
|
954 |
+
|
955 |
+
feature_maps = ()
|
956 |
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
957 |
+
if stage in self.out_features:
|
958 |
+
batch_size, num_channels, height, width = hidden_state.shape
|
959 |
+
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous()
|
960 |
+
hidden_state = hidden_state.view(batch_size, height * width, num_channels)
|
961 |
+
hidden_state = self.hidden_states_norms[stage](hidden_state)
|
962 |
+
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
|
963 |
+
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
|
964 |
+
feature_maps += (hidden_state,)
|
965 |
+
|
966 |
+
if not return_dict:
|
967 |
+
output = (feature_maps,)
|
968 |
+
if output_hidden_states:
|
969 |
+
output += (outputs.hidden_states,)
|
970 |
+
return output
|
971 |
+
|
972 |
+
return BackboneOutput(
|
973 |
+
feature_maps=feature_maps,
|
974 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
975 |
+
attentions=outputs.attentions,
|
976 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__init__.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertOnnxConfig"],
|
22 |
+
"tokenization_flaubert": ["FlaubertTokenizer"],
|
23 |
+
}
|
24 |
+
|
25 |
+
try:
|
26 |
+
if not is_torch_available():
|
27 |
+
raise OptionalDependencyNotAvailable()
|
28 |
+
except OptionalDependencyNotAvailable:
|
29 |
+
pass
|
30 |
+
else:
|
31 |
+
_import_structure["modeling_flaubert"] = [
|
32 |
+
"FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
33 |
+
"FlaubertForMultipleChoice",
|
34 |
+
"FlaubertForQuestionAnswering",
|
35 |
+
"FlaubertForQuestionAnsweringSimple",
|
36 |
+
"FlaubertForSequenceClassification",
|
37 |
+
"FlaubertForTokenClassification",
|
38 |
+
"FlaubertModel",
|
39 |
+
"FlaubertWithLMHeadModel",
|
40 |
+
"FlaubertPreTrainedModel",
|
41 |
+
]
|
42 |
+
|
43 |
+
try:
|
44 |
+
if not is_tf_available():
|
45 |
+
raise OptionalDependencyNotAvailable()
|
46 |
+
except OptionalDependencyNotAvailable:
|
47 |
+
pass
|
48 |
+
else:
|
49 |
+
_import_structure["modeling_tf_flaubert"] = [
|
50 |
+
"TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
51 |
+
"TFFlaubertForMultipleChoice",
|
52 |
+
"TFFlaubertForQuestionAnsweringSimple",
|
53 |
+
"TFFlaubertForSequenceClassification",
|
54 |
+
"TFFlaubertForTokenClassification",
|
55 |
+
"TFFlaubertModel",
|
56 |
+
"TFFlaubertPreTrainedModel",
|
57 |
+
"TFFlaubertWithLMHeadModel",
|
58 |
+
]
|
59 |
+
|
60 |
+
|
61 |
+
if TYPE_CHECKING:
|
62 |
+
from .configuration_flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertOnnxConfig
|
63 |
+
from .tokenization_flaubert import FlaubertTokenizer
|
64 |
+
|
65 |
+
try:
|
66 |
+
if not is_torch_available():
|
67 |
+
raise OptionalDependencyNotAvailable()
|
68 |
+
except OptionalDependencyNotAvailable:
|
69 |
+
pass
|
70 |
+
else:
|
71 |
+
from .modeling_flaubert import (
|
72 |
+
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
73 |
+
FlaubertForMultipleChoice,
|
74 |
+
FlaubertForQuestionAnswering,
|
75 |
+
FlaubertForQuestionAnsweringSimple,
|
76 |
+
FlaubertForSequenceClassification,
|
77 |
+
FlaubertForTokenClassification,
|
78 |
+
FlaubertModel,
|
79 |
+
FlaubertPreTrainedModel,
|
80 |
+
FlaubertWithLMHeadModel,
|
81 |
+
)
|
82 |
+
|
83 |
+
try:
|
84 |
+
if not is_tf_available():
|
85 |
+
raise OptionalDependencyNotAvailable()
|
86 |
+
except OptionalDependencyNotAvailable:
|
87 |
+
pass
|
88 |
+
else:
|
89 |
+
from .modeling_tf_flaubert import (
|
90 |
+
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
91 |
+
TFFlaubertForMultipleChoice,
|
92 |
+
TFFlaubertForQuestionAnsweringSimple,
|
93 |
+
TFFlaubertForSequenceClassification,
|
94 |
+
TFFlaubertForTokenClassification,
|
95 |
+
TFFlaubertModel,
|
96 |
+
TFFlaubertPreTrainedModel,
|
97 |
+
TFFlaubertWithLMHeadModel,
|
98 |
+
)
|
99 |
+
|
100 |
+
else:
|
101 |
+
import sys
|
102 |
+
|
103 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.79 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/configuration_flaubert.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/modeling_flaubert.cpython-310.pyc
ADDED
Binary file (38.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/modeling_tf_flaubert.cpython-310.pyc
ADDED
Binary file (38.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/tokenization_flaubert.cpython-310.pyc
ADDED
Binary file (18.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/configuration_flaubert.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Flaubert configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Mapping
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...onnx import OnnxConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
class FlaubertConfig(PretrainedConfig):
|
31 |
+
"""
|
32 |
+
This is the configuration class to store the configuration of a [`FlaubertModel`] or a [`TFFlaubertModel`]. It is
|
33 |
+
used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture.
|
34 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the FlauBERT
|
35 |
+
[flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
pre_norm (`bool`, *optional*, defaults to `False`):
|
42 |
+
Whether to apply the layer normalization before or after the feed forward layer following the attention in
|
43 |
+
each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018)
|
44 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
45 |
+
Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with
|
46 |
+
Structured Dropout. ICLR 2020)
|
47 |
+
vocab_size (`int`, *optional*, defaults to 30145):
|
48 |
+
Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by
|
49 |
+
the `inputs_ids` passed when calling [`FlaubertModel`] or [`TFFlaubertModel`].
|
50 |
+
emb_dim (`int`, *optional*, defaults to 2048):
|
51 |
+
Dimensionality of the encoder layers and the pooler layer.
|
52 |
+
n_layer (`int`, *optional*, defaults to 12):
|
53 |
+
Number of hidden layers in the Transformer encoder.
|
54 |
+
n_head (`int`, *optional*, defaults to 16):
|
55 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
56 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
57 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
58 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for the attention mechanism
|
60 |
+
gelu_activation (`bool`, *optional*, defaults to `True`):
|
61 |
+
Whether or not to use a *gelu* activation instead of *relu*.
|
62 |
+
sinusoidal_embeddings (`bool`, *optional*, defaults to `False`):
|
63 |
+
Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
|
64 |
+
causal (`bool`, *optional*, defaults to `False`):
|
65 |
+
Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
|
66 |
+
order to only attend to the left-side context instead if a bidirectional context.
|
67 |
+
asm (`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
|
69 |
+
layer.
|
70 |
+
n_langs (`int`, *optional*, defaults to 1):
|
71 |
+
The number of languages the model handles. Set to 1 for monolingual models.
|
72 |
+
use_lang_emb (`bool`, *optional*, defaults to `True`)
|
73 |
+
Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual
|
74 |
+
models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information
|
75 |
+
on how to use them.
|
76 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
77 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
78 |
+
just in case (e.g., 512 or 1024 or 2048).
|
79 |
+
embed_init_std (`float`, *optional*, defaults to 2048^-0.5):
|
80 |
+
The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
|
81 |
+
init_std (`int`, *optional*, defaults to 50257):
|
82 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
|
83 |
+
embedding matrices.
|
84 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
85 |
+
The epsilon used by the layer normalization layers.
|
86 |
+
bos_index (`int`, *optional*, defaults to 0):
|
87 |
+
The index of the beginning of sentence token in the vocabulary.
|
88 |
+
eos_index (`int`, *optional*, defaults to 1):
|
89 |
+
The index of the end of sentence token in the vocabulary.
|
90 |
+
pad_index (`int`, *optional*, defaults to 2):
|
91 |
+
The index of the padding token in the vocabulary.
|
92 |
+
unk_index (`int`, *optional*, defaults to 3):
|
93 |
+
The index of the unknown token in the vocabulary.
|
94 |
+
mask_index (`int`, *optional*, defaults to 5):
|
95 |
+
The index of the masking token in the vocabulary.
|
96 |
+
is_encoder(`bool`, *optional*, defaults to `True`):
|
97 |
+
Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
|
98 |
+
summary_type (`string`, *optional*, defaults to "first"):
|
99 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
100 |
+
|
101 |
+
Has to be one of the following options:
|
102 |
+
|
103 |
+
- `"last"`: Take the last token hidden state (like XLNet).
|
104 |
+
- `"first"`: Take the first token hidden state (like BERT).
|
105 |
+
- `"mean"`: Take the mean of all tokens hidden states.
|
106 |
+
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
107 |
+
- `"attn"`: Not implemented now, use multi-head attention.
|
108 |
+
summary_use_proj (`bool`, *optional*, defaults to `True`):
|
109 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
110 |
+
|
111 |
+
Whether or not to add a projection after the vector extraction.
|
112 |
+
summary_activation (`str`, *optional*):
|
113 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
114 |
+
|
115 |
+
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
|
116 |
+
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
|
117 |
+
Used in the sequence classification and multiple choice models.
|
118 |
+
|
119 |
+
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
|
120 |
+
summary_first_dropout (`float`, *optional*, defaults to 0.1):
|
121 |
+
Used in the sequence classification and multiple choice models.
|
122 |
+
|
123 |
+
The dropout ratio to be used after the projection and activation.
|
124 |
+
start_n_top (`int`, *optional*, defaults to 5):
|
125 |
+
Used in the SQuAD evaluation script.
|
126 |
+
end_n_top (`int`, *optional*, defaults to 5):
|
127 |
+
Used in the SQuAD evaluation script.
|
128 |
+
mask_token_id (`int`, *optional*, defaults to 0):
|
129 |
+
Model agnostic parameter to identify masked tokens when generating text in an MLM context.
|
130 |
+
lang_id (`int`, *optional*, defaults to 1):
|
131 |
+
The ID of the language used by the model. This parameter is used when generating text in a given language.
|
132 |
+
"""
|
133 |
+
|
134 |
+
model_type = "flaubert"
|
135 |
+
attribute_map = {
|
136 |
+
"hidden_size": "emb_dim",
|
137 |
+
"num_attention_heads": "n_heads",
|
138 |
+
"num_hidden_layers": "n_layers",
|
139 |
+
"n_words": "vocab_size", # For backward compatibility
|
140 |
+
}
|
141 |
+
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
pre_norm=False,
|
145 |
+
layerdrop=0.0,
|
146 |
+
vocab_size=30145,
|
147 |
+
emb_dim=2048,
|
148 |
+
n_layers=12,
|
149 |
+
n_heads=16,
|
150 |
+
dropout=0.1,
|
151 |
+
attention_dropout=0.1,
|
152 |
+
gelu_activation=True,
|
153 |
+
sinusoidal_embeddings=False,
|
154 |
+
causal=False,
|
155 |
+
asm=False,
|
156 |
+
n_langs=1,
|
157 |
+
use_lang_emb=True,
|
158 |
+
max_position_embeddings=512,
|
159 |
+
embed_init_std=2048**-0.5,
|
160 |
+
layer_norm_eps=1e-12,
|
161 |
+
init_std=0.02,
|
162 |
+
bos_index=0,
|
163 |
+
eos_index=1,
|
164 |
+
pad_index=2,
|
165 |
+
unk_index=3,
|
166 |
+
mask_index=5,
|
167 |
+
is_encoder=True,
|
168 |
+
summary_type="first",
|
169 |
+
summary_use_proj=True,
|
170 |
+
summary_activation=None,
|
171 |
+
summary_proj_to_labels=True,
|
172 |
+
summary_first_dropout=0.1,
|
173 |
+
start_n_top=5,
|
174 |
+
end_n_top=5,
|
175 |
+
mask_token_id=0,
|
176 |
+
lang_id=0,
|
177 |
+
pad_token_id=2,
|
178 |
+
bos_token_id=0,
|
179 |
+
**kwargs,
|
180 |
+
):
|
181 |
+
"""Constructs FlaubertConfig."""
|
182 |
+
self.pre_norm = pre_norm
|
183 |
+
self.layerdrop = layerdrop
|
184 |
+
self.vocab_size = vocab_size
|
185 |
+
self.emb_dim = emb_dim
|
186 |
+
self.n_layers = n_layers
|
187 |
+
self.n_heads = n_heads
|
188 |
+
self.dropout = dropout
|
189 |
+
self.attention_dropout = attention_dropout
|
190 |
+
self.gelu_activation = gelu_activation
|
191 |
+
self.sinusoidal_embeddings = sinusoidal_embeddings
|
192 |
+
self.causal = causal
|
193 |
+
self.asm = asm
|
194 |
+
self.n_langs = n_langs
|
195 |
+
self.use_lang_emb = use_lang_emb
|
196 |
+
self.layer_norm_eps = layer_norm_eps
|
197 |
+
self.bos_index = bos_index
|
198 |
+
self.eos_index = eos_index
|
199 |
+
self.pad_index = pad_index
|
200 |
+
self.unk_index = unk_index
|
201 |
+
self.mask_index = mask_index
|
202 |
+
self.is_encoder = is_encoder
|
203 |
+
self.max_position_embeddings = max_position_embeddings
|
204 |
+
self.embed_init_std = embed_init_std
|
205 |
+
self.init_std = init_std
|
206 |
+
self.summary_type = summary_type
|
207 |
+
self.summary_use_proj = summary_use_proj
|
208 |
+
self.summary_activation = summary_activation
|
209 |
+
self.summary_proj_to_labels = summary_proj_to_labels
|
210 |
+
self.summary_first_dropout = summary_first_dropout
|
211 |
+
self.start_n_top = start_n_top
|
212 |
+
self.end_n_top = end_n_top
|
213 |
+
self.mask_token_id = mask_token_id
|
214 |
+
self.lang_id = lang_id
|
215 |
+
|
216 |
+
if "n_words" in kwargs:
|
217 |
+
self.n_words = kwargs["n_words"]
|
218 |
+
|
219 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs)
|
220 |
+
|
221 |
+
|
222 |
+
class FlaubertOnnxConfig(OnnxConfig):
|
223 |
+
@property
|
224 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
225 |
+
if self.task == "multiple-choice":
|
226 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
227 |
+
else:
|
228 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
229 |
+
return OrderedDict(
|
230 |
+
[
|
231 |
+
("input_ids", dynamic_axis),
|
232 |
+
("attention_mask", dynamic_axis),
|
233 |
+
]
|
234 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/modeling_flaubert.py
ADDED
@@ -0,0 +1,1302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Flaubert model, based on XLM."""
|
16 |
+
|
17 |
+
import itertools
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Dict, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import gelu
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BaseModelOutput,
|
30 |
+
MaskedLMOutput,
|
31 |
+
MultipleChoiceModelOutput,
|
32 |
+
QuestionAnsweringModelOutput,
|
33 |
+
SequenceClassifierOutput,
|
34 |
+
TokenClassifierOutput,
|
35 |
+
)
|
36 |
+
from ...modeling_utils import PreTrainedModel, SequenceSummary, SQuADHead
|
37 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
38 |
+
from ...utils import (
|
39 |
+
ModelOutput,
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
from .configuration_flaubert import FlaubertConfig
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
_CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased"
|
52 |
+
_CONFIG_FOR_DOC = "FlaubertConfig"
|
53 |
+
|
54 |
+
|
55 |
+
from ..deprecated._archive_maps import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
56 |
+
|
57 |
+
|
58 |
+
# Copied from transformers.models.xlm.modeling_xlm.create_sinusoidal_embeddings
|
59 |
+
def create_sinusoidal_embeddings(n_pos, dim, out):
|
60 |
+
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
|
61 |
+
out.requires_grad = False
|
62 |
+
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
63 |
+
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
64 |
+
out.detach_()
|
65 |
+
|
66 |
+
|
67 |
+
# Copied from transformers.models.xlm.modeling_xlm.get_masks
|
68 |
+
def get_masks(slen, lengths, causal, padding_mask=None):
|
69 |
+
"""
|
70 |
+
Generate hidden states mask, and optionally an attention mask.
|
71 |
+
"""
|
72 |
+
alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
|
73 |
+
if padding_mask is not None:
|
74 |
+
mask = padding_mask
|
75 |
+
else:
|
76 |
+
assert lengths.max().item() <= slen
|
77 |
+
mask = alen < lengths[:, None]
|
78 |
+
|
79 |
+
# attention mask is the same as mask, or triangular inferior attention (causal)
|
80 |
+
bs = lengths.size(0)
|
81 |
+
if causal:
|
82 |
+
attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
|
83 |
+
else:
|
84 |
+
attn_mask = mask
|
85 |
+
|
86 |
+
# sanity check
|
87 |
+
assert mask.size() == (bs, slen)
|
88 |
+
assert causal is False or attn_mask.size() == (bs, slen, slen)
|
89 |
+
|
90 |
+
return mask, attn_mask
|
91 |
+
|
92 |
+
|
93 |
+
# Copied from transformers.models.xlm.modeling_xlm.MultiHeadAttention
|
94 |
+
class MultiHeadAttention(nn.Module):
|
95 |
+
NEW_ID = itertools.count()
|
96 |
+
|
97 |
+
def __init__(self, n_heads, dim, config):
|
98 |
+
super().__init__()
|
99 |
+
self.layer_id = next(MultiHeadAttention.NEW_ID)
|
100 |
+
self.dim = dim
|
101 |
+
self.n_heads = n_heads
|
102 |
+
self.dropout = config.attention_dropout
|
103 |
+
assert self.dim % self.n_heads == 0
|
104 |
+
|
105 |
+
self.q_lin = nn.Linear(dim, dim)
|
106 |
+
self.k_lin = nn.Linear(dim, dim)
|
107 |
+
self.v_lin = nn.Linear(dim, dim)
|
108 |
+
self.out_lin = nn.Linear(dim, dim)
|
109 |
+
self.pruned_heads = set()
|
110 |
+
|
111 |
+
def prune_heads(self, heads):
|
112 |
+
attention_head_size = self.dim // self.n_heads
|
113 |
+
if len(heads) == 0:
|
114 |
+
return
|
115 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, attention_head_size, self.pruned_heads)
|
116 |
+
# Prune linear layers
|
117 |
+
self.q_lin = prune_linear_layer(self.q_lin, index)
|
118 |
+
self.k_lin = prune_linear_layer(self.k_lin, index)
|
119 |
+
self.v_lin = prune_linear_layer(self.v_lin, index)
|
120 |
+
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
|
121 |
+
# Update hyper params
|
122 |
+
self.n_heads = self.n_heads - len(heads)
|
123 |
+
self.dim = attention_head_size * self.n_heads
|
124 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
125 |
+
|
126 |
+
def forward(self, input, mask, kv=None, cache=None, head_mask=None, output_attentions=False):
|
127 |
+
"""
|
128 |
+
Self-attention (if kv is None) or attention over source sentence (provided by kv).
|
129 |
+
"""
|
130 |
+
# Input is (bs, qlen, dim)
|
131 |
+
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
|
132 |
+
bs, qlen, dim = input.size()
|
133 |
+
if kv is None:
|
134 |
+
klen = qlen if cache is None else cache["slen"] + qlen
|
135 |
+
else:
|
136 |
+
klen = kv.size(1)
|
137 |
+
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
|
138 |
+
n_heads = self.n_heads
|
139 |
+
dim_per_head = self.dim // n_heads
|
140 |
+
mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)
|
141 |
+
|
142 |
+
def shape(x):
|
143 |
+
"""projection"""
|
144 |
+
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
|
145 |
+
|
146 |
+
def unshape(x):
|
147 |
+
"""compute context"""
|
148 |
+
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
|
149 |
+
|
150 |
+
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
151 |
+
if kv is None:
|
152 |
+
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
153 |
+
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
154 |
+
elif cache is None or self.layer_id not in cache:
|
155 |
+
k = v = kv
|
156 |
+
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
|
157 |
+
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
|
158 |
+
|
159 |
+
if cache is not None:
|
160 |
+
if self.layer_id in cache:
|
161 |
+
if kv is None:
|
162 |
+
k_, v_ = cache[self.layer_id]
|
163 |
+
k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head)
|
164 |
+
v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head)
|
165 |
+
else:
|
166 |
+
k, v = cache[self.layer_id]
|
167 |
+
cache[self.layer_id] = (k, v)
|
168 |
+
|
169 |
+
q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head)
|
170 |
+
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen)
|
171 |
+
mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen)
|
172 |
+
scores.masked_fill_(mask, torch.finfo(scores.dtype).min) # (bs, n_heads, qlen, klen)
|
173 |
+
|
174 |
+
weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen)
|
175 |
+
weights = nn.functional.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen)
|
176 |
+
|
177 |
+
# Mask heads if we want to
|
178 |
+
if head_mask is not None:
|
179 |
+
weights = weights * head_mask
|
180 |
+
|
181 |
+
context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
|
182 |
+
context = unshape(context) # (bs, qlen, dim)
|
183 |
+
|
184 |
+
outputs = (self.out_lin(context),)
|
185 |
+
if output_attentions:
|
186 |
+
outputs = outputs + (weights,)
|
187 |
+
return outputs
|
188 |
+
|
189 |
+
|
190 |
+
# Copied from transformers.models.xlm.modeling_xlm.TransformerFFN
|
191 |
+
class TransformerFFN(nn.Module):
|
192 |
+
def __init__(self, in_dim, dim_hidden, out_dim, config):
|
193 |
+
super().__init__()
|
194 |
+
self.dropout = config.dropout
|
195 |
+
self.lin1 = nn.Linear(in_dim, dim_hidden)
|
196 |
+
self.lin2 = nn.Linear(dim_hidden, out_dim)
|
197 |
+
self.act = gelu if config.gelu_activation else nn.functional.relu
|
198 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
199 |
+
self.seq_len_dim = 1
|
200 |
+
|
201 |
+
def forward(self, input):
|
202 |
+
return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input)
|
203 |
+
|
204 |
+
def ff_chunk(self, input):
|
205 |
+
x = self.lin1(input)
|
206 |
+
x = self.act(x)
|
207 |
+
x = self.lin2(x)
|
208 |
+
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
209 |
+
return x
|
210 |
+
|
211 |
+
|
212 |
+
FLAUBERT_START_DOCSTRING = r"""
|
213 |
+
|
214 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
215 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
216 |
+
etc.)
|
217 |
+
|
218 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
219 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
220 |
+
and behavior.
|
221 |
+
|
222 |
+
Parameters:
|
223 |
+
config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model.
|
224 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
225 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
226 |
+
"""
|
227 |
+
|
228 |
+
FLAUBERT_INPUTS_DOCSTRING = r"""
|
229 |
+
Args:
|
230 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
231 |
+
Indices of input sequence tokens in the vocabulary.
|
232 |
+
|
233 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
234 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
235 |
+
|
236 |
+
[What are input IDs?](../glossary#input-ids)
|
237 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
238 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
239 |
+
|
240 |
+
- 1 for tokens that are **not masked**,
|
241 |
+
- 0 for tokens that are **masked**.
|
242 |
+
|
243 |
+
[What are attention masks?](../glossary#attention-mask)
|
244 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
245 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
246 |
+
1]`:
|
247 |
+
|
248 |
+
- 0 corresponds to a *sentence A* token,
|
249 |
+
- 1 corresponds to a *sentence B* token.
|
250 |
+
|
251 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
252 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
253 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
254 |
+
config.max_position_embeddings - 1]`.
|
255 |
+
|
256 |
+
[What are position IDs?](../glossary#position-ids)
|
257 |
+
lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
258 |
+
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
|
259 |
+
also use `attention_mask` for the same result (see above), kept here for compatibility. Indices selected in
|
260 |
+
`[0, ..., input_ids.size(-1)]`:
|
261 |
+
cache (`Dict[str, torch.FloatTensor]`, *optional*):
|
262 |
+
Dictionary strings to `torch.FloatTensor` that contains precomputed hidden-states (key and values in the
|
263 |
+
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential
|
264 |
+
decoding. The dictionary object will be modified in-place during the forward pass to add newly computed
|
265 |
+
hidden-states.
|
266 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
267 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
268 |
+
|
269 |
+
- 1 indicates the head is **not masked**,
|
270 |
+
- 0 indicates the head is **masked**.
|
271 |
+
|
272 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
273 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
274 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
275 |
+
model's internal embedding lookup matrix.
|
276 |
+
output_attentions (`bool`, *optional*):
|
277 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
278 |
+
tensors for more detail.
|
279 |
+
output_hidden_states (`bool`, *optional*):
|
280 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
281 |
+
more detail.
|
282 |
+
return_dict (`bool`, *optional*):
|
283 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
284 |
+
"""
|
285 |
+
|
286 |
+
|
287 |
+
@add_start_docstrings(
|
288 |
+
"The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.",
|
289 |
+
FLAUBERT_START_DOCSTRING,
|
290 |
+
)
|
291 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMPredLayer with XLM->Flaubert
|
292 |
+
class FlaubertPredLayer(nn.Module):
|
293 |
+
"""
|
294 |
+
Prediction layer (cross_entropy or adaptive_softmax).
|
295 |
+
"""
|
296 |
+
|
297 |
+
def __init__(self, config):
|
298 |
+
super().__init__()
|
299 |
+
self.asm = config.asm
|
300 |
+
self.n_words = config.n_words
|
301 |
+
self.pad_index = config.pad_index
|
302 |
+
dim = config.emb_dim
|
303 |
+
|
304 |
+
if config.asm is False:
|
305 |
+
self.proj = nn.Linear(dim, config.n_words, bias=True)
|
306 |
+
else:
|
307 |
+
self.proj = nn.AdaptiveLogSoftmaxWithLoss(
|
308 |
+
in_features=dim,
|
309 |
+
n_classes=config.n_words,
|
310 |
+
cutoffs=config.asm_cutoffs,
|
311 |
+
div_value=config.asm_div_value,
|
312 |
+
head_bias=True, # default is False
|
313 |
+
)
|
314 |
+
|
315 |
+
def forward(self, x, y=None):
|
316 |
+
"""Compute the loss, and optionally the scores."""
|
317 |
+
outputs = ()
|
318 |
+
if self.asm is False:
|
319 |
+
scores = self.proj(x)
|
320 |
+
outputs = (scores,) + outputs
|
321 |
+
if y is not None:
|
322 |
+
loss = nn.functional.cross_entropy(scores.view(-1, self.n_words), y.view(-1), reduction="mean")
|
323 |
+
outputs = (loss,) + outputs
|
324 |
+
else:
|
325 |
+
scores = self.proj.log_prob(x)
|
326 |
+
outputs = (scores,) + outputs
|
327 |
+
if y is not None:
|
328 |
+
_, loss = self.proj(x, y)
|
329 |
+
outputs = (loss,) + outputs
|
330 |
+
|
331 |
+
return outputs
|
332 |
+
|
333 |
+
|
334 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMPreTrainedModel with XLM->Flaubert
|
335 |
+
class FlaubertPreTrainedModel(PreTrainedModel):
|
336 |
+
"""
|
337 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
338 |
+
models.
|
339 |
+
"""
|
340 |
+
|
341 |
+
config_class = FlaubertConfig
|
342 |
+
load_tf_weights = None
|
343 |
+
base_model_prefix = "transformer"
|
344 |
+
|
345 |
+
def __init__(self, *inputs, **kwargs):
|
346 |
+
super().__init__(*inputs, **kwargs)
|
347 |
+
|
348 |
+
@property
|
349 |
+
def dummy_inputs(self):
|
350 |
+
inputs_list = torch.tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])
|
351 |
+
attns_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
|
352 |
+
if self.config.use_lang_emb and self.config.n_langs > 1:
|
353 |
+
langs_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
|
354 |
+
else:
|
355 |
+
langs_list = None
|
356 |
+
return {"input_ids": inputs_list, "attention_mask": attns_list, "langs": langs_list}
|
357 |
+
|
358 |
+
def _init_weights(self, module):
|
359 |
+
"""Initialize the weights."""
|
360 |
+
if isinstance(module, nn.Embedding):
|
361 |
+
if self.config is not None and self.config.embed_init_std is not None:
|
362 |
+
nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
|
363 |
+
if module.padding_idx is not None:
|
364 |
+
module.weight.data[module.padding_idx].zero_()
|
365 |
+
if isinstance(module, nn.Linear):
|
366 |
+
if self.config is not None and self.config.init_std is not None:
|
367 |
+
nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
|
368 |
+
if module.bias is not None:
|
369 |
+
nn.init.constant_(module.bias, 0.0)
|
370 |
+
if isinstance(module, nn.LayerNorm):
|
371 |
+
module.bias.data.zero_()
|
372 |
+
module.weight.data.fill_(1.0)
|
373 |
+
if isinstance(module, FlaubertModel) and self.config.sinusoidal_embeddings:
|
374 |
+
create_sinusoidal_embeddings(
|
375 |
+
self.config.max_position_embeddings, self.config.emb_dim, out=module.position_embeddings.weight
|
376 |
+
)
|
377 |
+
|
378 |
+
|
379 |
+
class FlaubertModel(FlaubertPreTrainedModel):
|
380 |
+
def __init__(self, config): # , dico, is_encoder, with_output):
|
381 |
+
super().__init__(config)
|
382 |
+
|
383 |
+
# encoder / decoder, output layer
|
384 |
+
self.is_encoder = config.is_encoder
|
385 |
+
self.is_decoder = not config.is_encoder
|
386 |
+
if self.is_decoder:
|
387 |
+
raise NotImplementedError("Currently Flaubert can only be used as an encoder")
|
388 |
+
# self.with_output = with_output
|
389 |
+
self.causal = config.causal
|
390 |
+
|
391 |
+
# dictionary / languages
|
392 |
+
self.n_langs = config.n_langs
|
393 |
+
self.use_lang_emb = config.use_lang_emb
|
394 |
+
self.n_words = config.n_words
|
395 |
+
self.eos_index = config.eos_index
|
396 |
+
self.pad_index = config.pad_index
|
397 |
+
# self.dico = dico
|
398 |
+
# self.id2lang = config.id2lang
|
399 |
+
# self.lang2id = config.lang2id
|
400 |
+
# assert len(self.dico) == self.n_words
|
401 |
+
# assert len(self.id2lang) == len(self.lang2id) == self.n_langs
|
402 |
+
|
403 |
+
# model parameters
|
404 |
+
self.dim = config.emb_dim # 512 by default
|
405 |
+
self.hidden_dim = self.dim * 4 # 2048 by default
|
406 |
+
self.n_heads = config.n_heads # 8 by default
|
407 |
+
self.n_layers = config.n_layers
|
408 |
+
self.dropout = config.dropout
|
409 |
+
self.attention_dropout = config.attention_dropout
|
410 |
+
assert self.dim % self.n_heads == 0, "transformer dim must be a multiple of n_heads"
|
411 |
+
|
412 |
+
# embeddings
|
413 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
|
414 |
+
if config.n_langs > 1 and config.use_lang_emb:
|
415 |
+
self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
|
416 |
+
self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
|
417 |
+
self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
|
418 |
+
|
419 |
+
# transformer layers
|
420 |
+
self.attentions = nn.ModuleList()
|
421 |
+
self.layer_norm1 = nn.ModuleList()
|
422 |
+
self.ffns = nn.ModuleList()
|
423 |
+
self.layer_norm2 = nn.ModuleList()
|
424 |
+
# if self.is_decoder:
|
425 |
+
# self.layer_norm15 = nn.ModuleList()
|
426 |
+
# self.encoder_attn = nn.ModuleList()
|
427 |
+
|
428 |
+
for _ in range(self.n_layers):
|
429 |
+
self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
|
430 |
+
self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
431 |
+
# if self.is_decoder:
|
432 |
+
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
433 |
+
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
|
434 |
+
self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
|
435 |
+
self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
436 |
+
|
437 |
+
if hasattr(config, "pruned_heads"):
|
438 |
+
pruned_heads = config.pruned_heads.copy().items()
|
439 |
+
config.pruned_heads = {}
|
440 |
+
for layer, heads in pruned_heads:
|
441 |
+
if self.attentions[int(layer)].n_heads == config.n_heads:
|
442 |
+
self.prune_heads({int(layer): list(map(int, heads))})
|
443 |
+
|
444 |
+
# Initialize weights and apply final processing
|
445 |
+
self.post_init()
|
446 |
+
|
447 |
+
self.layerdrop = getattr(config, "layerdrop", 0.0)
|
448 |
+
self.pre_norm = getattr(config, "pre_norm", False)
|
449 |
+
self.register_buffer(
|
450 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
451 |
+
)
|
452 |
+
|
453 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMModel.get_input_embeddings
|
454 |
+
def get_input_embeddings(self):
|
455 |
+
return self.embeddings
|
456 |
+
|
457 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMModel.set_input_embeddings
|
458 |
+
def set_input_embeddings(self, new_embeddings):
|
459 |
+
self.embeddings = new_embeddings
|
460 |
+
|
461 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMModel._prune_heads
|
462 |
+
def _prune_heads(self, heads_to_prune):
|
463 |
+
"""
|
464 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
465 |
+
class PreTrainedModel
|
466 |
+
"""
|
467 |
+
for layer, heads in heads_to_prune.items():
|
468 |
+
self.attentions[layer].prune_heads(heads)
|
469 |
+
|
470 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
|
471 |
+
@add_code_sample_docstrings(
|
472 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
473 |
+
output_type=BaseModelOutput,
|
474 |
+
config_class=_CONFIG_FOR_DOC,
|
475 |
+
)
|
476 |
+
def forward(
|
477 |
+
self,
|
478 |
+
input_ids: Optional[torch.LongTensor] = None,
|
479 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
480 |
+
langs: Optional[torch.Tensor] = None,
|
481 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
482 |
+
position_ids: Optional[torch.LongTensor] = None,
|
483 |
+
lengths: Optional[torch.LongTensor] = None,
|
484 |
+
cache: Optional[Dict[str, torch.FloatTensor]] = None,
|
485 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
486 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
487 |
+
output_attentions: Optional[bool] = None,
|
488 |
+
output_hidden_states: Optional[bool] = None,
|
489 |
+
return_dict: Optional[bool] = None,
|
490 |
+
) -> Union[Tuple, BaseModelOutput]:
|
491 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
492 |
+
output_hidden_states = (
|
493 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
494 |
+
)
|
495 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
496 |
+
|
497 |
+
# removed: src_enc=None, src_len=None
|
498 |
+
if input_ids is not None:
|
499 |
+
bs, slen = input_ids.size()
|
500 |
+
else:
|
501 |
+
bs, slen = inputs_embeds.size()[:-1]
|
502 |
+
|
503 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
504 |
+
|
505 |
+
if lengths is None:
|
506 |
+
if input_ids is not None:
|
507 |
+
lengths = (input_ids != self.pad_index).sum(dim=1).long()
|
508 |
+
else:
|
509 |
+
lengths = torch.tensor([slen] * bs, device=device)
|
510 |
+
# mask = input_ids != self.pad_index
|
511 |
+
|
512 |
+
# check inputs
|
513 |
+
assert lengths.size(0) == bs
|
514 |
+
assert lengths.max().item() <= slen
|
515 |
+
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
|
516 |
+
# assert (src_enc is None) == (src_len is None)
|
517 |
+
# if src_enc is not None:
|
518 |
+
# assert self.is_decoder
|
519 |
+
# assert src_enc.size(0) == bs
|
520 |
+
|
521 |
+
# generate masks
|
522 |
+
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
|
523 |
+
# if self.is_decoder and src_enc is not None:
|
524 |
+
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
|
525 |
+
|
526 |
+
# Setting the position-ids to the registered buffer in constructor, it helps
|
527 |
+
# when tracing the model without passing position-ids, solves
|
528 |
+
# isues similar to issue #5664
|
529 |
+
if position_ids is None:
|
530 |
+
if hasattr(self, "position_ids"):
|
531 |
+
position_ids = self.position_ids[:, :slen]
|
532 |
+
position_ids = position_ids.expand((bs, slen))
|
533 |
+
else:
|
534 |
+
position_ids = torch.arange(slen, dtype=torch.long, device=device)
|
535 |
+
position_ids = position_ids.unsqueeze(0).expand((bs, slen))
|
536 |
+
else:
|
537 |
+
assert position_ids.size() == (bs, slen) # (slen, bs)
|
538 |
+
# position_ids = position_ids.transpose(0, 1)
|
539 |
+
|
540 |
+
# langs
|
541 |
+
if langs is not None:
|
542 |
+
assert langs.size() == (bs, slen) # (slen, bs)
|
543 |
+
# langs = langs.transpose(0, 1)
|
544 |
+
|
545 |
+
# Prepare head mask if needed
|
546 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layers)
|
547 |
+
|
548 |
+
# do not recompute cached elements
|
549 |
+
if cache is not None and input_ids is not None:
|
550 |
+
_slen = slen - cache["slen"]
|
551 |
+
input_ids = input_ids[:, -_slen:]
|
552 |
+
position_ids = position_ids[:, -_slen:]
|
553 |
+
if langs is not None:
|
554 |
+
langs = langs[:, -_slen:]
|
555 |
+
mask = mask[:, -_slen:]
|
556 |
+
attn_mask = attn_mask[:, -_slen:]
|
557 |
+
|
558 |
+
# embeddings
|
559 |
+
if inputs_embeds is None:
|
560 |
+
inputs_embeds = self.embeddings(input_ids)
|
561 |
+
|
562 |
+
tensor = inputs_embeds + self.position_embeddings(position_ids).expand_as(inputs_embeds)
|
563 |
+
if langs is not None and self.use_lang_emb and self.config.n_langs > 1:
|
564 |
+
tensor = tensor + self.lang_embeddings(langs)
|
565 |
+
if token_type_ids is not None:
|
566 |
+
tensor = tensor + self.embeddings(token_type_ids)
|
567 |
+
tensor = self.layer_norm_emb(tensor)
|
568 |
+
tensor = nn.functional.dropout(tensor, p=self.dropout, training=self.training)
|
569 |
+
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
|
570 |
+
|
571 |
+
# transformer layers
|
572 |
+
hidden_states = () if output_hidden_states else None
|
573 |
+
attentions = () if output_attentions else None
|
574 |
+
for i in range(self.n_layers):
|
575 |
+
# LayerDrop
|
576 |
+
if self.training:
|
577 |
+
dropout_probability = torch.rand([])
|
578 |
+
if dropout_probability < self.layerdrop:
|
579 |
+
continue
|
580 |
+
|
581 |
+
if output_hidden_states:
|
582 |
+
hidden_states = hidden_states + (tensor,)
|
583 |
+
|
584 |
+
# self attention
|
585 |
+
if not self.pre_norm:
|
586 |
+
attn_outputs = self.attentions[i](
|
587 |
+
tensor,
|
588 |
+
attn_mask,
|
589 |
+
cache=cache,
|
590 |
+
head_mask=head_mask[i],
|
591 |
+
output_attentions=output_attentions,
|
592 |
+
)
|
593 |
+
attn = attn_outputs[0]
|
594 |
+
if output_attentions:
|
595 |
+
attentions = attentions + (attn_outputs[1],)
|
596 |
+
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
|
597 |
+
tensor = tensor + attn
|
598 |
+
tensor = self.layer_norm1[i](tensor)
|
599 |
+
else:
|
600 |
+
tensor_normalized = self.layer_norm1[i](tensor)
|
601 |
+
attn_outputs = self.attentions[i](tensor_normalized, attn_mask, cache=cache, head_mask=head_mask[i])
|
602 |
+
attn = attn_outputs[0]
|
603 |
+
if output_attentions:
|
604 |
+
attentions = attentions + (attn_outputs[1],)
|
605 |
+
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
|
606 |
+
tensor = tensor + attn
|
607 |
+
|
608 |
+
# encoder attention (for decoder only)
|
609 |
+
# if self.is_decoder and src_enc is not None:
|
610 |
+
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
|
611 |
+
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
|
612 |
+
# tensor = tensor + attn
|
613 |
+
# tensor = self.layer_norm15[i](tensor)
|
614 |
+
|
615 |
+
# FFN
|
616 |
+
if not self.pre_norm:
|
617 |
+
tensor = tensor + self.ffns[i](tensor)
|
618 |
+
tensor = self.layer_norm2[i](tensor)
|
619 |
+
else:
|
620 |
+
tensor_normalized = self.layer_norm2[i](tensor)
|
621 |
+
tensor = tensor + self.ffns[i](tensor_normalized)
|
622 |
+
|
623 |
+
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
|
624 |
+
|
625 |
+
# Add last hidden state
|
626 |
+
if output_hidden_states:
|
627 |
+
hidden_states = hidden_states + (tensor,)
|
628 |
+
|
629 |
+
# update cache length
|
630 |
+
if cache is not None:
|
631 |
+
cache["slen"] += tensor.size(1)
|
632 |
+
|
633 |
+
# move back sequence length to dimension 0
|
634 |
+
# tensor = tensor.transpose(0, 1)
|
635 |
+
|
636 |
+
if not return_dict:
|
637 |
+
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)
|
638 |
+
|
639 |
+
return BaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
|
640 |
+
|
641 |
+
|
642 |
+
@add_start_docstrings(
|
643 |
+
"""
|
644 |
+
The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
645 |
+
embeddings).
|
646 |
+
""",
|
647 |
+
FLAUBERT_START_DOCSTRING,
|
648 |
+
)
|
649 |
+
# Copied transformers.models.xlm.modeling_xlm.XLMWithLMHeadModel with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
650 |
+
class FlaubertWithLMHeadModel(FlaubertPreTrainedModel):
|
651 |
+
_tied_weights_keys = ["pred_layer.proj.weight"]
|
652 |
+
|
653 |
+
def __init__(self, config):
|
654 |
+
super().__init__(config)
|
655 |
+
self.transformer = FlaubertModel(config)
|
656 |
+
self.pred_layer = FlaubertPredLayer(config)
|
657 |
+
|
658 |
+
# Initialize weights and apply final processing
|
659 |
+
self.post_init()
|
660 |
+
|
661 |
+
def get_output_embeddings(self):
|
662 |
+
return self.pred_layer.proj
|
663 |
+
|
664 |
+
def set_output_embeddings(self, new_embeddings):
|
665 |
+
self.pred_layer.proj = new_embeddings
|
666 |
+
|
667 |
+
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
668 |
+
mask_token_id = self.config.mask_token_id
|
669 |
+
lang_id = self.config.lang_id
|
670 |
+
|
671 |
+
effective_batch_size = input_ids.shape[0]
|
672 |
+
mask_token = torch.full((effective_batch_size, 1), mask_token_id, dtype=torch.long, device=input_ids.device)
|
673 |
+
input_ids = torch.cat([input_ids, mask_token], dim=1)
|
674 |
+
if lang_id is not None:
|
675 |
+
langs = torch.full_like(input_ids, lang_id)
|
676 |
+
else:
|
677 |
+
langs = None
|
678 |
+
return {"input_ids": input_ids, "langs": langs}
|
679 |
+
|
680 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
681 |
+
@add_code_sample_docstrings(
|
682 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
683 |
+
output_type=MaskedLMOutput,
|
684 |
+
config_class=_CONFIG_FOR_DOC,
|
685 |
+
mask="<special1>",
|
686 |
+
)
|
687 |
+
def forward(
|
688 |
+
self,
|
689 |
+
input_ids: Optional[torch.Tensor] = None,
|
690 |
+
attention_mask: Optional[torch.Tensor] = None,
|
691 |
+
langs: Optional[torch.Tensor] = None,
|
692 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
693 |
+
position_ids: Optional[torch.Tensor] = None,
|
694 |
+
lengths: Optional[torch.Tensor] = None,
|
695 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
696 |
+
head_mask: Optional[torch.Tensor] = None,
|
697 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
698 |
+
labels: Optional[torch.Tensor] = None,
|
699 |
+
output_attentions: Optional[bool] = None,
|
700 |
+
output_hidden_states: Optional[bool] = None,
|
701 |
+
return_dict: Optional[bool] = None,
|
702 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
703 |
+
r"""
|
704 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
705 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
706 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
707 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
708 |
+
"""
|
709 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
710 |
+
|
711 |
+
transformer_outputs = self.transformer(
|
712 |
+
input_ids,
|
713 |
+
attention_mask=attention_mask,
|
714 |
+
langs=langs,
|
715 |
+
token_type_ids=token_type_ids,
|
716 |
+
position_ids=position_ids,
|
717 |
+
lengths=lengths,
|
718 |
+
cache=cache,
|
719 |
+
head_mask=head_mask,
|
720 |
+
inputs_embeds=inputs_embeds,
|
721 |
+
output_attentions=output_attentions,
|
722 |
+
output_hidden_states=output_hidden_states,
|
723 |
+
return_dict=return_dict,
|
724 |
+
)
|
725 |
+
|
726 |
+
output = transformer_outputs[0]
|
727 |
+
outputs = self.pred_layer(output, labels) # (loss, logits) or (logits,) depending on if labels are provided.
|
728 |
+
|
729 |
+
if not return_dict:
|
730 |
+
return outputs + transformer_outputs[1:]
|
731 |
+
|
732 |
+
return MaskedLMOutput(
|
733 |
+
loss=outputs[0] if labels is not None else None,
|
734 |
+
logits=outputs[0] if labels is None else outputs[1],
|
735 |
+
hidden_states=transformer_outputs.hidden_states,
|
736 |
+
attentions=transformer_outputs.attentions,
|
737 |
+
)
|
738 |
+
|
739 |
+
|
740 |
+
@add_start_docstrings(
|
741 |
+
"""
|
742 |
+
Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
|
743 |
+
e.g. for GLUE tasks.
|
744 |
+
""",
|
745 |
+
FLAUBERT_START_DOCSTRING,
|
746 |
+
)
|
747 |
+
# Copied transformers.models.xlm.modeling_xlm.XLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
748 |
+
class FlaubertForSequenceClassification(FlaubertPreTrainedModel):
|
749 |
+
def __init__(self, config):
|
750 |
+
super().__init__(config)
|
751 |
+
self.num_labels = config.num_labels
|
752 |
+
self.config = config
|
753 |
+
|
754 |
+
self.transformer = FlaubertModel(config)
|
755 |
+
self.sequence_summary = SequenceSummary(config)
|
756 |
+
|
757 |
+
# Initialize weights and apply final processing
|
758 |
+
self.post_init()
|
759 |
+
|
760 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
761 |
+
@add_code_sample_docstrings(
|
762 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
763 |
+
output_type=SequenceClassifierOutput,
|
764 |
+
config_class=_CONFIG_FOR_DOC,
|
765 |
+
)
|
766 |
+
def forward(
|
767 |
+
self,
|
768 |
+
input_ids: Optional[torch.Tensor] = None,
|
769 |
+
attention_mask: Optional[torch.Tensor] = None,
|
770 |
+
langs: Optional[torch.Tensor] = None,
|
771 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
772 |
+
position_ids: Optional[torch.Tensor] = None,
|
773 |
+
lengths: Optional[torch.Tensor] = None,
|
774 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
775 |
+
head_mask: Optional[torch.Tensor] = None,
|
776 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
777 |
+
labels: Optional[torch.Tensor] = None,
|
778 |
+
output_attentions: Optional[bool] = None,
|
779 |
+
output_hidden_states: Optional[bool] = None,
|
780 |
+
return_dict: Optional[bool] = None,
|
781 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
782 |
+
r"""
|
783 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
784 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
785 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
786 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
787 |
+
"""
|
788 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
789 |
+
|
790 |
+
transformer_outputs = self.transformer(
|
791 |
+
input_ids,
|
792 |
+
attention_mask=attention_mask,
|
793 |
+
langs=langs,
|
794 |
+
token_type_ids=token_type_ids,
|
795 |
+
position_ids=position_ids,
|
796 |
+
lengths=lengths,
|
797 |
+
cache=cache,
|
798 |
+
head_mask=head_mask,
|
799 |
+
inputs_embeds=inputs_embeds,
|
800 |
+
output_attentions=output_attentions,
|
801 |
+
output_hidden_states=output_hidden_states,
|
802 |
+
return_dict=return_dict,
|
803 |
+
)
|
804 |
+
|
805 |
+
output = transformer_outputs[0]
|
806 |
+
logits = self.sequence_summary(output)
|
807 |
+
|
808 |
+
loss = None
|
809 |
+
if labels is not None:
|
810 |
+
if self.config.problem_type is None:
|
811 |
+
if self.num_labels == 1:
|
812 |
+
self.config.problem_type = "regression"
|
813 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
814 |
+
self.config.problem_type = "single_label_classification"
|
815 |
+
else:
|
816 |
+
self.config.problem_type = "multi_label_classification"
|
817 |
+
|
818 |
+
if self.config.problem_type == "regression":
|
819 |
+
loss_fct = MSELoss()
|
820 |
+
if self.num_labels == 1:
|
821 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
822 |
+
else:
|
823 |
+
loss = loss_fct(logits, labels)
|
824 |
+
elif self.config.problem_type == "single_label_classification":
|
825 |
+
loss_fct = CrossEntropyLoss()
|
826 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
827 |
+
elif self.config.problem_type == "multi_label_classification":
|
828 |
+
loss_fct = BCEWithLogitsLoss()
|
829 |
+
loss = loss_fct(logits, labels)
|
830 |
+
|
831 |
+
if not return_dict:
|
832 |
+
output = (logits,) + transformer_outputs[1:]
|
833 |
+
return ((loss,) + output) if loss is not None else output
|
834 |
+
|
835 |
+
return SequenceClassifierOutput(
|
836 |
+
loss=loss,
|
837 |
+
logits=logits,
|
838 |
+
hidden_states=transformer_outputs.hidden_states,
|
839 |
+
attentions=transformer_outputs.attentions,
|
840 |
+
)
|
841 |
+
|
842 |
+
|
843 |
+
@add_start_docstrings(
|
844 |
+
"""
|
845 |
+
Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
846 |
+
Named-Entity-Recognition (NER) tasks.
|
847 |
+
""",
|
848 |
+
FLAUBERT_START_DOCSTRING,
|
849 |
+
)
|
850 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
851 |
+
class FlaubertForTokenClassification(FlaubertPreTrainedModel):
|
852 |
+
def __init__(self, config):
|
853 |
+
super().__init__(config)
|
854 |
+
self.num_labels = config.num_labels
|
855 |
+
|
856 |
+
self.transformer = FlaubertModel(config)
|
857 |
+
self.dropout = nn.Dropout(config.dropout)
|
858 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
859 |
+
|
860 |
+
# Initialize weights and apply final processing
|
861 |
+
self.post_init()
|
862 |
+
|
863 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
864 |
+
@add_code_sample_docstrings(
|
865 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
866 |
+
output_type=TokenClassifierOutput,
|
867 |
+
config_class=_CONFIG_FOR_DOC,
|
868 |
+
)
|
869 |
+
def forward(
|
870 |
+
self,
|
871 |
+
input_ids: Optional[torch.Tensor] = None,
|
872 |
+
attention_mask: Optional[torch.Tensor] = None,
|
873 |
+
langs: Optional[torch.Tensor] = None,
|
874 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
875 |
+
position_ids: Optional[torch.Tensor] = None,
|
876 |
+
lengths: Optional[torch.Tensor] = None,
|
877 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
878 |
+
head_mask: Optional[torch.Tensor] = None,
|
879 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
880 |
+
labels: Optional[torch.Tensor] = None,
|
881 |
+
output_attentions: Optional[bool] = None,
|
882 |
+
output_hidden_states: Optional[bool] = None,
|
883 |
+
return_dict: Optional[bool] = None,
|
884 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
885 |
+
r"""
|
886 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
887 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
888 |
+
"""
|
889 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
890 |
+
|
891 |
+
outputs = self.transformer(
|
892 |
+
input_ids,
|
893 |
+
attention_mask=attention_mask,
|
894 |
+
langs=langs,
|
895 |
+
token_type_ids=token_type_ids,
|
896 |
+
position_ids=position_ids,
|
897 |
+
lengths=lengths,
|
898 |
+
cache=cache,
|
899 |
+
head_mask=head_mask,
|
900 |
+
inputs_embeds=inputs_embeds,
|
901 |
+
output_attentions=output_attentions,
|
902 |
+
output_hidden_states=output_hidden_states,
|
903 |
+
return_dict=return_dict,
|
904 |
+
)
|
905 |
+
|
906 |
+
sequence_output = outputs[0]
|
907 |
+
|
908 |
+
sequence_output = self.dropout(sequence_output)
|
909 |
+
logits = self.classifier(sequence_output)
|
910 |
+
|
911 |
+
loss = None
|
912 |
+
if labels is not None:
|
913 |
+
loss_fct = CrossEntropyLoss()
|
914 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
915 |
+
|
916 |
+
if not return_dict:
|
917 |
+
output = (logits,) + outputs[1:]
|
918 |
+
return ((loss,) + output) if loss is not None else output
|
919 |
+
|
920 |
+
return TokenClassifierOutput(
|
921 |
+
loss=loss,
|
922 |
+
logits=logits,
|
923 |
+
hidden_states=outputs.hidden_states,
|
924 |
+
attentions=outputs.attentions,
|
925 |
+
)
|
926 |
+
|
927 |
+
|
928 |
+
@add_start_docstrings(
|
929 |
+
"""
|
930 |
+
Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
931 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
932 |
+
""",
|
933 |
+
FLAUBERT_START_DOCSTRING,
|
934 |
+
)
|
935 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
936 |
+
class FlaubertForQuestionAnsweringSimple(FlaubertPreTrainedModel):
|
937 |
+
def __init__(self, config):
|
938 |
+
super().__init__(config)
|
939 |
+
|
940 |
+
self.transformer = FlaubertModel(config)
|
941 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
942 |
+
|
943 |
+
# Initialize weights and apply final processing
|
944 |
+
self.post_init()
|
945 |
+
|
946 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
947 |
+
@add_code_sample_docstrings(
|
948 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
949 |
+
output_type=QuestionAnsweringModelOutput,
|
950 |
+
config_class=_CONFIG_FOR_DOC,
|
951 |
+
)
|
952 |
+
def forward(
|
953 |
+
self,
|
954 |
+
input_ids: Optional[torch.Tensor] = None,
|
955 |
+
attention_mask: Optional[torch.Tensor] = None,
|
956 |
+
langs: Optional[torch.Tensor] = None,
|
957 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
958 |
+
position_ids: Optional[torch.Tensor] = None,
|
959 |
+
lengths: Optional[torch.Tensor] = None,
|
960 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
961 |
+
head_mask: Optional[torch.Tensor] = None,
|
962 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
963 |
+
start_positions: Optional[torch.Tensor] = None,
|
964 |
+
end_positions: Optional[torch.Tensor] = None,
|
965 |
+
output_attentions: Optional[bool] = None,
|
966 |
+
output_hidden_states: Optional[bool] = None,
|
967 |
+
return_dict: Optional[bool] = None,
|
968 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
969 |
+
r"""
|
970 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
971 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
972 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
973 |
+
are not taken into account for computing the loss.
|
974 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
975 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
976 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
977 |
+
are not taken into account for computing the loss.
|
978 |
+
"""
|
979 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
980 |
+
|
981 |
+
transformer_outputs = self.transformer(
|
982 |
+
input_ids,
|
983 |
+
attention_mask=attention_mask,
|
984 |
+
langs=langs,
|
985 |
+
token_type_ids=token_type_ids,
|
986 |
+
position_ids=position_ids,
|
987 |
+
lengths=lengths,
|
988 |
+
cache=cache,
|
989 |
+
head_mask=head_mask,
|
990 |
+
inputs_embeds=inputs_embeds,
|
991 |
+
output_attentions=output_attentions,
|
992 |
+
output_hidden_states=output_hidden_states,
|
993 |
+
return_dict=return_dict,
|
994 |
+
)
|
995 |
+
|
996 |
+
sequence_output = transformer_outputs[0]
|
997 |
+
|
998 |
+
logits = self.qa_outputs(sequence_output)
|
999 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1000 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1001 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1002 |
+
|
1003 |
+
total_loss = None
|
1004 |
+
if start_positions is not None and end_positions is not None:
|
1005 |
+
# If we are on multi-GPU, split add a dimension
|
1006 |
+
if len(start_positions.size()) > 1:
|
1007 |
+
start_positions = start_positions.squeeze(-1)
|
1008 |
+
if len(end_positions.size()) > 1:
|
1009 |
+
end_positions = end_positions.squeeze(-1)
|
1010 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1011 |
+
ignored_index = start_logits.size(1)
|
1012 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1013 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1014 |
+
|
1015 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1016 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1017 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1018 |
+
total_loss = (start_loss + end_loss) / 2
|
1019 |
+
|
1020 |
+
if not return_dict:
|
1021 |
+
output = (start_logits, end_logits) + transformer_outputs[1:]
|
1022 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1023 |
+
|
1024 |
+
return QuestionAnsweringModelOutput(
|
1025 |
+
loss=total_loss,
|
1026 |
+
start_logits=start_logits,
|
1027 |
+
end_logits=end_logits,
|
1028 |
+
hidden_states=transformer_outputs.hidden_states,
|
1029 |
+
attentions=transformer_outputs.attentions,
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
|
1033 |
+
@add_start_docstrings(
|
1034 |
+
"""
|
1035 |
+
Flaubert Model with a beam-search span classification head on top for extractive question-answering tasks like
|
1036 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1037 |
+
""",
|
1038 |
+
FLAUBERT_START_DOCSTRING,
|
1039 |
+
)
|
1040 |
+
@dataclass
|
1041 |
+
# Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnsweringOutput with XLM->Flaubert
|
1042 |
+
class FlaubertForQuestionAnsweringOutput(ModelOutput):
|
1043 |
+
"""
|
1044 |
+
Base class for outputs of question answering models using a `SquadHead`.
|
1045 |
+
|
1046 |
+
Args:
|
1047 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
|
1048 |
+
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
|
1049 |
+
losses.
|
1050 |
+
start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
1051 |
+
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
|
1052 |
+
start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
1053 |
+
Indices for the top config.start_n_top start token possibilities (beam-search).
|
1054 |
+
end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
1055 |
+
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
|
1056 |
+
(beam-search).
|
1057 |
+
end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
1058 |
+
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
|
1059 |
+
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
1060 |
+
Log probabilities for the `is_impossible` label of the answers.
|
1061 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
1062 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
1063 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
1064 |
+
|
1065 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1066 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
1067 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
1068 |
+
sequence_length)`.
|
1069 |
+
|
1070 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1071 |
+
heads.
|
1072 |
+
"""
|
1073 |
+
|
1074 |
+
loss: Optional[torch.FloatTensor] = None
|
1075 |
+
start_top_log_probs: Optional[torch.FloatTensor] = None
|
1076 |
+
start_top_index: Optional[torch.LongTensor] = None
|
1077 |
+
end_top_log_probs: Optional[torch.FloatTensor] = None
|
1078 |
+
end_top_index: Optional[torch.LongTensor] = None
|
1079 |
+
cls_logits: Optional[torch.FloatTensor] = None
|
1080 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
1081 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
1082 |
+
|
1083 |
+
|
1084 |
+
# Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnswering with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
1085 |
+
class FlaubertForQuestionAnswering(FlaubertPreTrainedModel):
|
1086 |
+
def __init__(self, config):
|
1087 |
+
super().__init__(config)
|
1088 |
+
|
1089 |
+
self.transformer = FlaubertModel(config)
|
1090 |
+
self.qa_outputs = SQuADHead(config)
|
1091 |
+
|
1092 |
+
# Initialize weights and apply final processing
|
1093 |
+
self.post_init()
|
1094 |
+
|
1095 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1096 |
+
@replace_return_docstrings(output_type=FlaubertForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
|
1097 |
+
def forward(
|
1098 |
+
self,
|
1099 |
+
input_ids: Optional[torch.Tensor] = None,
|
1100 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1101 |
+
langs: Optional[torch.Tensor] = None,
|
1102 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1103 |
+
position_ids: Optional[torch.Tensor] = None,
|
1104 |
+
lengths: Optional[torch.Tensor] = None,
|
1105 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
1106 |
+
head_mask: Optional[torch.Tensor] = None,
|
1107 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1108 |
+
start_positions: Optional[torch.Tensor] = None,
|
1109 |
+
end_positions: Optional[torch.Tensor] = None,
|
1110 |
+
is_impossible: Optional[torch.Tensor] = None,
|
1111 |
+
cls_index: Optional[torch.Tensor] = None,
|
1112 |
+
p_mask: Optional[torch.Tensor] = None,
|
1113 |
+
output_attentions: Optional[bool] = None,
|
1114 |
+
output_hidden_states: Optional[bool] = None,
|
1115 |
+
return_dict: Optional[bool] = None,
|
1116 |
+
) -> Union[Tuple, FlaubertForQuestionAnsweringOutput]:
|
1117 |
+
r"""
|
1118 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1119 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1120 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1121 |
+
are not taken into account for computing the loss.
|
1122 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1123 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1124 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1125 |
+
are not taken into account for computing the loss.
|
1126 |
+
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1127 |
+
Labels whether a question has an answer or no answer (SQuAD 2.0)
|
1128 |
+
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1129 |
+
Labels for position (index) of the classification token to use as input for computing plausibility of the
|
1130 |
+
answer.
|
1131 |
+
p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1132 |
+
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
|
1133 |
+
masked. 0.0 mean token is not masked.
|
1134 |
+
|
1135 |
+
Returns:
|
1136 |
+
|
1137 |
+
Example:
|
1138 |
+
|
1139 |
+
```python
|
1140 |
+
>>> from transformers import XLMTokenizer, XLMForQuestionAnswering
|
1141 |
+
>>> import torch
|
1142 |
+
|
1143 |
+
>>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-mlm-en-2048")
|
1144 |
+
>>> model = XLMForQuestionAnswering.from_pretrained("FacebookAI/xlm-mlm-en-2048")
|
1145 |
+
|
1146 |
+
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
|
1147 |
+
... 0
|
1148 |
+
... ) # Batch size 1
|
1149 |
+
>>> start_positions = torch.tensor([1])
|
1150 |
+
>>> end_positions = torch.tensor([3])
|
1151 |
+
|
1152 |
+
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
1153 |
+
>>> loss = outputs.loss
|
1154 |
+
```"""
|
1155 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1156 |
+
|
1157 |
+
transformer_outputs = self.transformer(
|
1158 |
+
input_ids,
|
1159 |
+
attention_mask=attention_mask,
|
1160 |
+
langs=langs,
|
1161 |
+
token_type_ids=token_type_ids,
|
1162 |
+
position_ids=position_ids,
|
1163 |
+
lengths=lengths,
|
1164 |
+
cache=cache,
|
1165 |
+
head_mask=head_mask,
|
1166 |
+
inputs_embeds=inputs_embeds,
|
1167 |
+
output_attentions=output_attentions,
|
1168 |
+
output_hidden_states=output_hidden_states,
|
1169 |
+
return_dict=return_dict,
|
1170 |
+
)
|
1171 |
+
|
1172 |
+
output = transformer_outputs[0]
|
1173 |
+
|
1174 |
+
outputs = self.qa_outputs(
|
1175 |
+
output,
|
1176 |
+
start_positions=start_positions,
|
1177 |
+
end_positions=end_positions,
|
1178 |
+
cls_index=cls_index,
|
1179 |
+
is_impossible=is_impossible,
|
1180 |
+
p_mask=p_mask,
|
1181 |
+
return_dict=return_dict,
|
1182 |
+
)
|
1183 |
+
|
1184 |
+
if not return_dict:
|
1185 |
+
return outputs + transformer_outputs[1:]
|
1186 |
+
|
1187 |
+
return FlaubertForQuestionAnsweringOutput(
|
1188 |
+
loss=outputs.loss,
|
1189 |
+
start_top_log_probs=outputs.start_top_log_probs,
|
1190 |
+
start_top_index=outputs.start_top_index,
|
1191 |
+
end_top_log_probs=outputs.end_top_log_probs,
|
1192 |
+
end_top_index=outputs.end_top_index,
|
1193 |
+
cls_logits=outputs.cls_logits,
|
1194 |
+
hidden_states=transformer_outputs.hidden_states,
|
1195 |
+
attentions=transformer_outputs.attentions,
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
|
1199 |
+
@add_start_docstrings(
|
1200 |
+
"""
|
1201 |
+
Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1202 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1203 |
+
""",
|
1204 |
+
FLAUBERT_START_DOCSTRING,
|
1205 |
+
)
|
1206 |
+
# Copied from transformer.models.xlm.modeling_xlm.XLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
1207 |
+
class FlaubertForMultipleChoice(FlaubertPreTrainedModel):
|
1208 |
+
def __init__(self, config, *inputs, **kwargs):
|
1209 |
+
super().__init__(config, *inputs, **kwargs)
|
1210 |
+
|
1211 |
+
self.transformer = FlaubertModel(config)
|
1212 |
+
self.sequence_summary = SequenceSummary(config)
|
1213 |
+
self.logits_proj = nn.Linear(config.num_labels, 1)
|
1214 |
+
|
1215 |
+
# Initialize weights and apply final processing
|
1216 |
+
self.post_init()
|
1217 |
+
|
1218 |
+
@add_start_docstrings_to_model_forward(
|
1219 |
+
FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1220 |
+
)
|
1221 |
+
@add_code_sample_docstrings(
|
1222 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1223 |
+
output_type=MultipleChoiceModelOutput,
|
1224 |
+
config_class=_CONFIG_FOR_DOC,
|
1225 |
+
)
|
1226 |
+
def forward(
|
1227 |
+
self,
|
1228 |
+
input_ids: Optional[torch.Tensor] = None,
|
1229 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1230 |
+
langs: Optional[torch.Tensor] = None,
|
1231 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1232 |
+
position_ids: Optional[torch.Tensor] = None,
|
1233 |
+
lengths: Optional[torch.Tensor] = None,
|
1234 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
1235 |
+
head_mask: Optional[torch.Tensor] = None,
|
1236 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1237 |
+
labels: Optional[torch.Tensor] = None,
|
1238 |
+
output_attentions: Optional[bool] = None,
|
1239 |
+
output_hidden_states: Optional[bool] = None,
|
1240 |
+
return_dict: Optional[bool] = None,
|
1241 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
1242 |
+
r"""
|
1243 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1244 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1245 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1246 |
+
`input_ids` above)
|
1247 |
+
"""
|
1248 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1249 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1250 |
+
|
1251 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1252 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1253 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1254 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1255 |
+
langs = langs.view(-1, langs.size(-1)) if langs is not None else None
|
1256 |
+
inputs_embeds = (
|
1257 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1258 |
+
if inputs_embeds is not None
|
1259 |
+
else None
|
1260 |
+
)
|
1261 |
+
|
1262 |
+
if lengths is not None:
|
1263 |
+
logger.warning(
|
1264 |
+
"The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the "
|
1265 |
+
"attention mask instead."
|
1266 |
+
)
|
1267 |
+
lengths = None
|
1268 |
+
|
1269 |
+
transformer_outputs = self.transformer(
|
1270 |
+
input_ids=input_ids,
|
1271 |
+
attention_mask=attention_mask,
|
1272 |
+
langs=langs,
|
1273 |
+
token_type_ids=token_type_ids,
|
1274 |
+
position_ids=position_ids,
|
1275 |
+
lengths=lengths,
|
1276 |
+
cache=cache,
|
1277 |
+
head_mask=head_mask,
|
1278 |
+
inputs_embeds=inputs_embeds,
|
1279 |
+
output_attentions=output_attentions,
|
1280 |
+
output_hidden_states=output_hidden_states,
|
1281 |
+
return_dict=return_dict,
|
1282 |
+
)
|
1283 |
+
output = transformer_outputs[0]
|
1284 |
+
logits = self.sequence_summary(output)
|
1285 |
+
logits = self.logits_proj(logits)
|
1286 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1287 |
+
|
1288 |
+
loss = None
|
1289 |
+
if labels is not None:
|
1290 |
+
loss_fct = CrossEntropyLoss()
|
1291 |
+
loss = loss_fct(reshaped_logits, labels)
|
1292 |
+
|
1293 |
+
if not return_dict:
|
1294 |
+
output = (reshaped_logits,) + transformer_outputs[1:]
|
1295 |
+
return ((loss,) + output) if loss is not None else output
|
1296 |
+
|
1297 |
+
return MultipleChoiceModelOutput(
|
1298 |
+
loss=loss,
|
1299 |
+
logits=reshaped_logits,
|
1300 |
+
hidden_states=transformer_outputs.hidden_states,
|
1301 |
+
attentions=transformer_outputs.attentions,
|
1302 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/modeling_tf_flaubert.py
ADDED
@@ -0,0 +1,1337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
TF 2.0 Flaubert model.
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
from __future__ import annotations
|
21 |
+
|
22 |
+
import itertools
|
23 |
+
import random
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass
|
26 |
+
from typing import Dict, Optional, Tuple, Union
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
import tensorflow as tf
|
30 |
+
|
31 |
+
from ...activations_tf import get_tf_activation
|
32 |
+
from ...modeling_tf_outputs import (
|
33 |
+
TFBaseModelOutput,
|
34 |
+
TFMultipleChoiceModelOutput,
|
35 |
+
TFQuestionAnsweringModelOutput,
|
36 |
+
TFSequenceClassifierOutput,
|
37 |
+
TFTokenClassifierOutput,
|
38 |
+
)
|
39 |
+
from ...modeling_tf_utils import (
|
40 |
+
TFModelInputType,
|
41 |
+
TFMultipleChoiceLoss,
|
42 |
+
TFPreTrainedModel,
|
43 |
+
TFQuestionAnsweringLoss,
|
44 |
+
TFSequenceClassificationLoss,
|
45 |
+
TFSequenceSummary,
|
46 |
+
TFSharedEmbeddings,
|
47 |
+
TFTokenClassificationLoss,
|
48 |
+
get_initializer,
|
49 |
+
keras,
|
50 |
+
keras_serializable,
|
51 |
+
unpack_inputs,
|
52 |
+
)
|
53 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
54 |
+
from ...utils import (
|
55 |
+
MULTIPLE_CHOICE_DUMMY_INPUTS,
|
56 |
+
ModelOutput,
|
57 |
+
add_code_sample_docstrings,
|
58 |
+
add_start_docstrings,
|
59 |
+
add_start_docstrings_to_model_forward,
|
60 |
+
logging,
|
61 |
+
)
|
62 |
+
from .configuration_flaubert import FlaubertConfig
|
63 |
+
|
64 |
+
|
65 |
+
logger = logging.get_logger(__name__)
|
66 |
+
|
67 |
+
_CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased"
|
68 |
+
_CONFIG_FOR_DOC = "FlaubertConfig"
|
69 |
+
|
70 |
+
|
71 |
+
from ..deprecated._archive_maps import TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
72 |
+
|
73 |
+
|
74 |
+
FLAUBERT_START_DOCSTRING = r"""
|
75 |
+
|
76 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
77 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
78 |
+
etc.)
|
79 |
+
|
80 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
81 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
82 |
+
behavior.
|
83 |
+
|
84 |
+
<Tip>
|
85 |
+
|
86 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
87 |
+
|
88 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
89 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
90 |
+
|
91 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
92 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
93 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
94 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
95 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
96 |
+
positional argument:
|
97 |
+
|
98 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
99 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
100 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
101 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
102 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
103 |
+
|
104 |
+
Note that when creating models and layers with
|
105 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
106 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
107 |
+
|
108 |
+
</Tip>
|
109 |
+
|
110 |
+
Parameters:
|
111 |
+
config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model.
|
112 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
113 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
114 |
+
"""
|
115 |
+
|
116 |
+
FLAUBERT_INPUTS_DOCSTRING = r"""
|
117 |
+
Args:
|
118 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
|
119 |
+
Indices of input sequence tokens in the vocabulary.
|
120 |
+
|
121 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
122 |
+
[`PreTrainedTokenizer.encode`] for details.
|
123 |
+
|
124 |
+
[What are input IDs?](../glossary#input-ids)
|
125 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
126 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
127 |
+
|
128 |
+
- `1` for tokens that are **not masked**,
|
129 |
+
- `0` for tokens that are **masked**.
|
130 |
+
|
131 |
+
[What are attention masks?](../glossary#attention-mask)
|
132 |
+
langs (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
133 |
+
A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are
|
134 |
+
languages ids which can be obtained from the language names by using two conversion mappings provided in
|
135 |
+
the configuration of the model (only provided for multilingual models). More precisely, the *language name
|
136 |
+
to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the
|
137 |
+
*language id to language name* mapping is in `model.config.id2lang` (dictionary int to string).
|
138 |
+
|
139 |
+
See usage examples detailed in the [multilingual documentation](../multilingual).
|
140 |
+
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
141 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
142 |
+
1]`:
|
143 |
+
|
144 |
+
- `0` corresponds to a *sentence A* token,
|
145 |
+
- `1` corresponds to a *sentence B* token.
|
146 |
+
|
147 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
148 |
+
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
149 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
150 |
+
config.max_position_embeddings - 1]`.
|
151 |
+
|
152 |
+
[What are position IDs?](../glossary#position-ids)
|
153 |
+
lengths (`tf.Tensor` or `Numpy array` of shape `(batch_size,)`, *optional*):
|
154 |
+
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
|
155 |
+
also use *attention_mask* for the same result (see above), kept here for compatibility Indices selected in
|
156 |
+
`[0, ..., input_ids.size(-1)]`:
|
157 |
+
cache (`Dict[str, tf.Tensor]`, *optional*):
|
158 |
+
Dictionary string to `tf.FloatTensor` that contains precomputed hidden states (key and values in the
|
159 |
+
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential
|
160 |
+
decoding.
|
161 |
+
|
162 |
+
The dictionary object will be modified in-place during the forward pass to add newly computed
|
163 |
+
hidden-states.
|
164 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
165 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
166 |
+
|
167 |
+
- `1` indicates the head is **not masked**,
|
168 |
+
- `0` indicates the head is **masked**.
|
169 |
+
|
170 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
171 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
172 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
173 |
+
model's internal embedding lookup matrix.
|
174 |
+
output_attentions (`bool`, *optional*):
|
175 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
176 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
177 |
+
config will be used instead.
|
178 |
+
output_hidden_states (`bool`, *optional*):
|
179 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
180 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
181 |
+
used instead.
|
182 |
+
return_dict (`bool`, *optional*):
|
183 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
184 |
+
eager mode, in graph mode the value will always be set to True.
|
185 |
+
training (`bool`, *optional*, defaults to `False`):
|
186 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
187 |
+
behaviors between training and evaluation).
|
188 |
+
"""
|
189 |
+
|
190 |
+
|
191 |
+
def get_masks(slen, lengths, causal, padding_mask=None):
|
192 |
+
"""
|
193 |
+
Generate hidden states mask, and optionally an attention mask.
|
194 |
+
"""
|
195 |
+
bs = shape_list(lengths)[0]
|
196 |
+
if padding_mask is not None:
|
197 |
+
mask = padding_mask
|
198 |
+
else:
|
199 |
+
# assert lengths.max().item() <= slen
|
200 |
+
alen = tf.range(slen, dtype=lengths.dtype)
|
201 |
+
mask = alen < tf.expand_dims(lengths, axis=1)
|
202 |
+
|
203 |
+
# attention mask is the same as mask, or triangular inferior attention (causal)
|
204 |
+
if causal:
|
205 |
+
attn_mask = tf.less_equal(
|
206 |
+
tf.tile(tf.reshape(alen, (1, 1, slen)), (bs, slen, 1)), tf.reshape(alen, (1, slen, 1))
|
207 |
+
)
|
208 |
+
else:
|
209 |
+
attn_mask = mask
|
210 |
+
|
211 |
+
# sanity check
|
212 |
+
# assert shape_list(mask) == [bs, slen]
|
213 |
+
tf.debugging.assert_equal(shape_list(mask), [bs, slen])
|
214 |
+
if causal:
|
215 |
+
tf.debugging.assert_equal(shape_list(attn_mask), [bs, slen, slen])
|
216 |
+
|
217 |
+
return mask, attn_mask
|
218 |
+
|
219 |
+
|
220 |
+
class TFFlaubertPreTrainedModel(TFPreTrainedModel):
|
221 |
+
"""
|
222 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
223 |
+
models.
|
224 |
+
"""
|
225 |
+
|
226 |
+
config_class = FlaubertConfig
|
227 |
+
base_model_prefix = "transformer"
|
228 |
+
|
229 |
+
@property
|
230 |
+
def dummy_inputs(self):
|
231 |
+
# Sometimes Flaubert has language embeddings so don't forget to build them as well if needed
|
232 |
+
inputs_list = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]], dtype=tf.int32)
|
233 |
+
attns_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32)
|
234 |
+
if self.config.use_lang_emb and self.config.n_langs > 1:
|
235 |
+
return {
|
236 |
+
"input_ids": inputs_list,
|
237 |
+
"attention_mask": attns_list,
|
238 |
+
"langs": tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32),
|
239 |
+
}
|
240 |
+
else:
|
241 |
+
return {"input_ids": inputs_list, "attention_mask": attns_list}
|
242 |
+
|
243 |
+
|
244 |
+
@add_start_docstrings(
|
245 |
+
"The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.",
|
246 |
+
FLAUBERT_START_DOCSTRING,
|
247 |
+
)
|
248 |
+
class TFFlaubertModel(TFFlaubertPreTrainedModel):
|
249 |
+
def __init__(self, config, *inputs, **kwargs):
|
250 |
+
super().__init__(config, *inputs, **kwargs)
|
251 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
252 |
+
|
253 |
+
@unpack_inputs
|
254 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
|
255 |
+
@add_code_sample_docstrings(
|
256 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
257 |
+
output_type=TFBaseModelOutput,
|
258 |
+
config_class=_CONFIG_FOR_DOC,
|
259 |
+
)
|
260 |
+
def call(
|
261 |
+
self,
|
262 |
+
input_ids: np.ndarray | tf.Tensor | None = None,
|
263 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
264 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
265 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
266 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
267 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
268 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
269 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
270 |
+
inputs_embeds: tf.Tensor | None = None,
|
271 |
+
output_attentions: Optional[bool] = None,
|
272 |
+
output_hidden_states: Optional[bool] = None,
|
273 |
+
return_dict: Optional[bool] = None,
|
274 |
+
training: Optional[bool] = False,
|
275 |
+
) -> Union[Tuple, TFBaseModelOutput]:
|
276 |
+
outputs = self.transformer(
|
277 |
+
input_ids=input_ids,
|
278 |
+
attention_mask=attention_mask,
|
279 |
+
langs=langs,
|
280 |
+
token_type_ids=token_type_ids,
|
281 |
+
position_ids=position_ids,
|
282 |
+
lengths=lengths,
|
283 |
+
cache=cache,
|
284 |
+
head_mask=head_mask,
|
285 |
+
inputs_embeds=inputs_embeds,
|
286 |
+
output_attentions=output_attentions,
|
287 |
+
output_hidden_states=output_hidden_states,
|
288 |
+
return_dict=return_dict,
|
289 |
+
training=training,
|
290 |
+
)
|
291 |
+
|
292 |
+
return outputs
|
293 |
+
|
294 |
+
def build(self, input_shape=None):
|
295 |
+
if self.built:
|
296 |
+
return
|
297 |
+
self.built = True
|
298 |
+
if getattr(self, "transformer", None) is not None:
|
299 |
+
with tf.name_scope(self.transformer.name):
|
300 |
+
self.transformer.build(None)
|
301 |
+
|
302 |
+
|
303 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMMultiHeadAttention with XLM->Flaubert
|
304 |
+
class TFFlaubertMultiHeadAttention(keras.layers.Layer):
|
305 |
+
NEW_ID = itertools.count()
|
306 |
+
|
307 |
+
def __init__(self, n_heads, dim, config, **kwargs):
|
308 |
+
super().__init__(**kwargs)
|
309 |
+
self.layer_id = next(TFFlaubertMultiHeadAttention.NEW_ID)
|
310 |
+
self.dim = dim
|
311 |
+
self.n_heads = n_heads
|
312 |
+
self.output_attentions = config.output_attentions
|
313 |
+
assert self.dim % self.n_heads == 0
|
314 |
+
|
315 |
+
self.q_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="q_lin")
|
316 |
+
self.k_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="k_lin")
|
317 |
+
self.v_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="v_lin")
|
318 |
+
self.out_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="out_lin")
|
319 |
+
self.dropout = keras.layers.Dropout(config.attention_dropout)
|
320 |
+
self.pruned_heads = set()
|
321 |
+
self.dim = dim
|
322 |
+
|
323 |
+
def prune_heads(self, heads):
|
324 |
+
raise NotImplementedError
|
325 |
+
|
326 |
+
def call(self, input, mask, kv, cache, head_mask, output_attentions, training=False):
|
327 |
+
"""
|
328 |
+
Self-attention (if kv is None) or attention over source sentence (provided by kv).
|
329 |
+
"""
|
330 |
+
# Input is (bs, qlen, dim)
|
331 |
+
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
|
332 |
+
bs, qlen, dim = shape_list(input)
|
333 |
+
|
334 |
+
if kv is None:
|
335 |
+
klen = qlen if cache is None else cache["slen"] + qlen
|
336 |
+
else:
|
337 |
+
klen = shape_list(kv)[1]
|
338 |
+
|
339 |
+
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
|
340 |
+
dim_per_head = self.dim // self.n_heads
|
341 |
+
mask_reshape = (bs, 1, qlen, klen) if len(shape_list(mask)) == 3 else (bs, 1, 1, klen)
|
342 |
+
|
343 |
+
def shape(x):
|
344 |
+
"""projection"""
|
345 |
+
return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3))
|
346 |
+
|
347 |
+
def unshape(x):
|
348 |
+
"""compute context"""
|
349 |
+
return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head))
|
350 |
+
|
351 |
+
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
352 |
+
|
353 |
+
if kv is None:
|
354 |
+
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
355 |
+
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
356 |
+
elif cache is None or self.layer_id not in cache:
|
357 |
+
k = v = kv
|
358 |
+
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
|
359 |
+
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
|
360 |
+
|
361 |
+
if cache is not None:
|
362 |
+
if self.layer_id in cache:
|
363 |
+
if kv is None:
|
364 |
+
k_, v_ = cache[self.layer_id]
|
365 |
+
k = tf.concat([k_, k], axis=2) # (bs, n_heads, klen, dim_per_head)
|
366 |
+
v = tf.concat([v_, v], axis=2) # (bs, n_heads, klen, dim_per_head)
|
367 |
+
else:
|
368 |
+
k, v = cache[self.layer_id]
|
369 |
+
|
370 |
+
cache[self.layer_id] = (k, v)
|
371 |
+
|
372 |
+
f_dim_per_head = tf.cast(dim_per_head, dtype=q.dtype)
|
373 |
+
q = tf.multiply(q, tf.math.rsqrt(f_dim_per_head)) # (bs, n_heads, qlen, dim_per_head)
|
374 |
+
k = tf.cast(k, dtype=q.dtype)
|
375 |
+
scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, qlen, klen)
|
376 |
+
mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen)
|
377 |
+
# scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen)
|
378 |
+
mask = tf.cast(mask, dtype=scores.dtype)
|
379 |
+
scores = scores - 1e30 * (1.0 - mask)
|
380 |
+
weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen)
|
381 |
+
weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen)
|
382 |
+
|
383 |
+
# Mask heads if we want to
|
384 |
+
if head_mask is not None:
|
385 |
+
weights = weights * head_mask
|
386 |
+
|
387 |
+
context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
|
388 |
+
context = unshape(context) # (bs, qlen, dim)
|
389 |
+
outputs = (self.out_lin(context),)
|
390 |
+
|
391 |
+
if output_attentions:
|
392 |
+
outputs = outputs + (weights,)
|
393 |
+
|
394 |
+
return outputs
|
395 |
+
|
396 |
+
def build(self, input_shape=None):
|
397 |
+
if self.built:
|
398 |
+
return
|
399 |
+
self.built = True
|
400 |
+
if getattr(self, "q_lin", None) is not None:
|
401 |
+
with tf.name_scope(self.q_lin.name):
|
402 |
+
self.q_lin.build([None, None, self.dim])
|
403 |
+
if getattr(self, "k_lin", None) is not None:
|
404 |
+
with tf.name_scope(self.k_lin.name):
|
405 |
+
self.k_lin.build([None, None, self.dim])
|
406 |
+
if getattr(self, "v_lin", None) is not None:
|
407 |
+
with tf.name_scope(self.v_lin.name):
|
408 |
+
self.v_lin.build([None, None, self.dim])
|
409 |
+
if getattr(self, "out_lin", None) is not None:
|
410 |
+
with tf.name_scope(self.out_lin.name):
|
411 |
+
self.out_lin.build([None, None, self.dim])
|
412 |
+
|
413 |
+
|
414 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMTransformerFFN
|
415 |
+
class TFFlaubertTransformerFFN(keras.layers.Layer):
|
416 |
+
def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs):
|
417 |
+
super().__init__(**kwargs)
|
418 |
+
|
419 |
+
self.lin1 = keras.layers.Dense(dim_hidden, kernel_initializer=get_initializer(config.init_std), name="lin1")
|
420 |
+
self.lin2 = keras.layers.Dense(out_dim, kernel_initializer=get_initializer(config.init_std), name="lin2")
|
421 |
+
self.act = get_tf_activation("gelu") if config.gelu_activation else get_tf_activation("relu")
|
422 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
423 |
+
self.in_dim = in_dim
|
424 |
+
self.dim_hidden = dim_hidden
|
425 |
+
|
426 |
+
def call(self, input, training=False):
|
427 |
+
x = self.lin1(input)
|
428 |
+
x = self.act(x)
|
429 |
+
x = self.lin2(x)
|
430 |
+
x = self.dropout(x, training=training)
|
431 |
+
|
432 |
+
return x
|
433 |
+
|
434 |
+
def build(self, input_shape=None):
|
435 |
+
if self.built:
|
436 |
+
return
|
437 |
+
self.built = True
|
438 |
+
if getattr(self, "lin1", None) is not None:
|
439 |
+
with tf.name_scope(self.lin1.name):
|
440 |
+
self.lin1.build([None, None, self.in_dim])
|
441 |
+
if getattr(self, "lin2", None) is not None:
|
442 |
+
with tf.name_scope(self.lin2.name):
|
443 |
+
self.lin2.build([None, None, self.dim_hidden])
|
444 |
+
|
445 |
+
|
446 |
+
@keras_serializable
|
447 |
+
class TFFlaubertMainLayer(keras.layers.Layer):
|
448 |
+
config_class = FlaubertConfig
|
449 |
+
|
450 |
+
def __init__(self, config, **kwargs):
|
451 |
+
super().__init__(**kwargs)
|
452 |
+
|
453 |
+
self.config = config
|
454 |
+
self.n_heads = config.n_heads
|
455 |
+
self.n_langs = config.n_langs
|
456 |
+
self.dim = config.emb_dim
|
457 |
+
self.hidden_dim = self.dim * 4
|
458 |
+
self.n_words = config.n_words
|
459 |
+
self.pad_index = config.pad_index
|
460 |
+
self.causal = config.causal
|
461 |
+
self.n_layers = config.n_layers
|
462 |
+
self.use_lang_emb = config.use_lang_emb
|
463 |
+
self.layerdrop = getattr(config, "layerdrop", 0.0)
|
464 |
+
self.pre_norm = getattr(config, "pre_norm", False)
|
465 |
+
self.output_attentions = config.output_attentions
|
466 |
+
self.output_hidden_states = config.output_hidden_states
|
467 |
+
self.return_dict = config.use_return_dict
|
468 |
+
self.max_position_embeddings = config.max_position_embeddings
|
469 |
+
self.embed_init_std = config.embed_init_std
|
470 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
471 |
+
self.embeddings = TFSharedEmbeddings(
|
472 |
+
self.n_words, self.dim, initializer_range=config.embed_init_std, name="embeddings"
|
473 |
+
)
|
474 |
+
self.layer_norm_emb = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm_emb")
|
475 |
+
self.attentions = []
|
476 |
+
self.layer_norm1 = []
|
477 |
+
self.ffns = []
|
478 |
+
self.layer_norm2 = []
|
479 |
+
|
480 |
+
for i in range(self.n_layers):
|
481 |
+
self.attentions.append(
|
482 |
+
TFFlaubertMultiHeadAttention(self.n_heads, self.dim, config=config, name=f"attentions_._{i}")
|
483 |
+
)
|
484 |
+
self.layer_norm1.append(
|
485 |
+
keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm1_._{i}")
|
486 |
+
)
|
487 |
+
# if self.is_decoder:
|
488 |
+
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
489 |
+
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
|
490 |
+
self.ffns.append(
|
491 |
+
TFFlaubertTransformerFFN(self.dim, self.hidden_dim, self.dim, config=config, name=f"ffns_._{i}")
|
492 |
+
)
|
493 |
+
self.layer_norm2.append(
|
494 |
+
keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm2_._{i}")
|
495 |
+
)
|
496 |
+
|
497 |
+
def build(self, input_shape=None):
|
498 |
+
with tf.name_scope("position_embeddings"):
|
499 |
+
self.position_embeddings = self.add_weight(
|
500 |
+
name="embeddings",
|
501 |
+
shape=[self.max_position_embeddings, self.dim],
|
502 |
+
initializer=get_initializer(self.embed_init_std),
|
503 |
+
)
|
504 |
+
|
505 |
+
if self.n_langs > 1 and self.use_lang_emb:
|
506 |
+
with tf.name_scope("lang_embeddings"):
|
507 |
+
self.lang_embeddings = self.add_weight(
|
508 |
+
name="embeddings",
|
509 |
+
shape=[self.n_langs, self.dim],
|
510 |
+
initializer=get_initializer(self.embed_init_std),
|
511 |
+
)
|
512 |
+
|
513 |
+
if self.built:
|
514 |
+
return
|
515 |
+
self.built = True
|
516 |
+
if getattr(self, "embeddings", None) is not None:
|
517 |
+
with tf.name_scope(self.embeddings.name):
|
518 |
+
self.embeddings.build(None)
|
519 |
+
if getattr(self, "layer_norm_emb", None) is not None:
|
520 |
+
with tf.name_scope(self.layer_norm_emb.name):
|
521 |
+
self.layer_norm_emb.build([None, None, self.dim])
|
522 |
+
for layer in self.attentions:
|
523 |
+
with tf.name_scope(layer.name):
|
524 |
+
layer.build(None)
|
525 |
+
for layer in self.layer_norm1:
|
526 |
+
with tf.name_scope(layer.name):
|
527 |
+
layer.build([None, None, self.dim])
|
528 |
+
for layer in self.ffns:
|
529 |
+
with tf.name_scope(layer.name):
|
530 |
+
layer.build(None)
|
531 |
+
for layer in self.layer_norm2:
|
532 |
+
with tf.name_scope(layer.name):
|
533 |
+
layer.build([None, None, self.dim])
|
534 |
+
|
535 |
+
def get_input_embeddings(self):
|
536 |
+
return self.embeddings
|
537 |
+
|
538 |
+
def set_input_embeddings(self, value):
|
539 |
+
self.embeddings.weight = value
|
540 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
541 |
+
|
542 |
+
@unpack_inputs
|
543 |
+
def call(
|
544 |
+
self,
|
545 |
+
input_ids: np.ndarray | tf.Tensor | None = None,
|
546 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
547 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
548 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
549 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
550 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
551 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
552 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
553 |
+
inputs_embeds: tf.Tensor | None = None,
|
554 |
+
output_attentions: Optional[bool] = None,
|
555 |
+
output_hidden_states: Optional[bool] = None,
|
556 |
+
return_dict: Optional[bool] = None,
|
557 |
+
training: Optional[bool] = False,
|
558 |
+
) -> Union[Tuple, TFBaseModelOutput]:
|
559 |
+
# removed: src_enc=None, src_len=None
|
560 |
+
|
561 |
+
if input_ids is not None and inputs_embeds is not None:
|
562 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
563 |
+
elif input_ids is not None:
|
564 |
+
bs, slen = shape_list(input_ids)
|
565 |
+
elif inputs_embeds is not None:
|
566 |
+
bs, slen = shape_list(inputs_embeds)[:2]
|
567 |
+
else:
|
568 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
569 |
+
|
570 |
+
if lengths is None:
|
571 |
+
if input_ids is not None:
|
572 |
+
lengths = tf.reduce_sum(
|
573 |
+
tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=input_ids.dtype), axis=1
|
574 |
+
)
|
575 |
+
else:
|
576 |
+
lengths = tf.convert_to_tensor([slen] * bs)
|
577 |
+
# mask = input_ids != self.pad_index
|
578 |
+
|
579 |
+
# check inputs
|
580 |
+
# assert shape_list(lengths)[0] == bs
|
581 |
+
(
|
582 |
+
tf.debugging.assert_equal(shape_list(lengths)[0], bs),
|
583 |
+
f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched",
|
584 |
+
)
|
585 |
+
# assert lengths.max().item() <= slen
|
586 |
+
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
|
587 |
+
# assert (src_enc is None) == (src_len is None)
|
588 |
+
# if src_enc is not None:
|
589 |
+
# assert self.is_decoder
|
590 |
+
# assert src_enc.size(0) == bs
|
591 |
+
|
592 |
+
# generate masks
|
593 |
+
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
|
594 |
+
# if self.is_decoder and src_enc is not None:
|
595 |
+
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
|
596 |
+
|
597 |
+
# position_ids
|
598 |
+
if position_ids is None:
|
599 |
+
position_ids = tf.expand_dims(tf.range(slen), axis=0)
|
600 |
+
position_ids = tf.tile(position_ids, (bs, 1))
|
601 |
+
|
602 |
+
# assert shape_list(position_ids) == [bs, slen] # (slen, bs)
|
603 |
+
(
|
604 |
+
tf.debugging.assert_equal(shape_list(position_ids), [bs, slen]),
|
605 |
+
f"Position id shape {shape_list(position_ids)} and input shape {[bs, slen]} mismatched",
|
606 |
+
)
|
607 |
+
# position_ids = position_ids.transpose(0, 1)
|
608 |
+
|
609 |
+
# langs
|
610 |
+
if langs is not None:
|
611 |
+
# assert shape_list(langs) == [bs, slen] # (slen, bs)
|
612 |
+
(
|
613 |
+
tf.debugging.assert_equal(shape_list(langs), [bs, slen]),
|
614 |
+
f"Lang shape {shape_list(langs)} and input shape {[bs, slen]} mismatched",
|
615 |
+
)
|
616 |
+
# langs = langs.transpose(0, 1)
|
617 |
+
|
618 |
+
# Prepare head mask if needed
|
619 |
+
# 1.0 in head_mask indicate we keep the head
|
620 |
+
# attention_probs has shape bsz x n_heads x N x N
|
621 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
622 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
|
623 |
+
if head_mask is not None:
|
624 |
+
raise NotImplementedError
|
625 |
+
else:
|
626 |
+
head_mask = [None] * self.n_layers
|
627 |
+
|
628 |
+
# do not recompute cached elements
|
629 |
+
if cache is not None and input_ids is not None:
|
630 |
+
_slen = slen - cache["slen"]
|
631 |
+
input_ids = input_ids[:, -_slen:]
|
632 |
+
position_ids = position_ids[:, -_slen:]
|
633 |
+
if langs is not None:
|
634 |
+
langs = langs[:, -_slen:]
|
635 |
+
mask = mask[:, -_slen:]
|
636 |
+
attn_mask = attn_mask[:, -_slen:]
|
637 |
+
|
638 |
+
# embeddings
|
639 |
+
if inputs_embeds is None:
|
640 |
+
check_embeddings_within_bounds(input_ids, self.embeddings.vocab_size)
|
641 |
+
inputs_embeds = self.embeddings(input_ids)
|
642 |
+
|
643 |
+
tensor = inputs_embeds + tf.gather(self.position_embeddings, position_ids)
|
644 |
+
|
645 |
+
if langs is not None and self.use_lang_emb:
|
646 |
+
tensor = tensor + tf.gather(self.lang_embeddings, langs)
|
647 |
+
if token_type_ids is not None:
|
648 |
+
tensor = tensor + self.embeddings(token_type_ids)
|
649 |
+
|
650 |
+
tensor = self.layer_norm_emb(tensor)
|
651 |
+
tensor = self.dropout(tensor, training=training)
|
652 |
+
mask = tf.cast(mask, dtype=tensor.dtype)
|
653 |
+
tensor = tensor * tf.expand_dims(mask, axis=-1)
|
654 |
+
|
655 |
+
# hidden_states and attentions cannot be None in graph mode.
|
656 |
+
hidden_states = () if output_hidden_states else None
|
657 |
+
attentions = () if output_attentions else None
|
658 |
+
|
659 |
+
# transformer layers
|
660 |
+
for i in range(self.n_layers):
|
661 |
+
# LayerDrop
|
662 |
+
dropout_probability = random.uniform(0, 1)
|
663 |
+
|
664 |
+
if training and (dropout_probability < self.layerdrop):
|
665 |
+
continue
|
666 |
+
|
667 |
+
if output_hidden_states:
|
668 |
+
hidden_states = hidden_states + (tensor,)
|
669 |
+
|
670 |
+
# self attention
|
671 |
+
if not self.pre_norm:
|
672 |
+
attn_outputs = self.attentions[i](
|
673 |
+
tensor,
|
674 |
+
attn_mask,
|
675 |
+
None,
|
676 |
+
cache,
|
677 |
+
head_mask[i],
|
678 |
+
output_attentions,
|
679 |
+
training=training,
|
680 |
+
)
|
681 |
+
attn = attn_outputs[0]
|
682 |
+
|
683 |
+
if output_attentions:
|
684 |
+
attentions = attentions + (attn_outputs[1],)
|
685 |
+
|
686 |
+
attn = self.dropout(attn, training=training)
|
687 |
+
tensor = tensor + attn
|
688 |
+
tensor = self.layer_norm1[i](tensor)
|
689 |
+
else:
|
690 |
+
tensor_normalized = self.layer_norm1[i](tensor)
|
691 |
+
attn_outputs = self.attentions[i](
|
692 |
+
tensor_normalized,
|
693 |
+
attn_mask,
|
694 |
+
None,
|
695 |
+
cache,
|
696 |
+
head_mask[i],
|
697 |
+
output_attentions,
|
698 |
+
training=training,
|
699 |
+
)
|
700 |
+
attn = attn_outputs[0]
|
701 |
+
|
702 |
+
if output_attentions:
|
703 |
+
attentions = attentions + (attn_outputs[1],)
|
704 |
+
|
705 |
+
attn = self.dropout(attn, training=training)
|
706 |
+
tensor = tensor + attn
|
707 |
+
|
708 |
+
# encoder attention (for decoder only)
|
709 |
+
# if self.is_decoder and src_enc is not None:
|
710 |
+
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
|
711 |
+
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
|
712 |
+
# tensor = tensor + attn
|
713 |
+
# tensor = self.layer_norm15[i](tensor)
|
714 |
+
|
715 |
+
# FFN
|
716 |
+
if not self.pre_norm:
|
717 |
+
tensor = tensor + self.ffns[i](tensor)
|
718 |
+
tensor = self.layer_norm2[i](tensor)
|
719 |
+
else:
|
720 |
+
tensor_normalized = self.layer_norm2[i](tensor)
|
721 |
+
tensor = tensor + self.ffns[i](tensor_normalized)
|
722 |
+
|
723 |
+
tensor = tensor * tf.expand_dims(mask, axis=-1)
|
724 |
+
|
725 |
+
# Add last hidden state
|
726 |
+
if output_hidden_states:
|
727 |
+
hidden_states = hidden_states + (tensor,)
|
728 |
+
|
729 |
+
# update cache length
|
730 |
+
if cache is not None:
|
731 |
+
cache["slen"] += tensor.size(1)
|
732 |
+
|
733 |
+
# move back sequence length to dimension 0
|
734 |
+
# tensor = tensor.transpose(0, 1)
|
735 |
+
|
736 |
+
if not return_dict:
|
737 |
+
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)
|
738 |
+
|
739 |
+
return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
|
740 |
+
|
741 |
+
|
742 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMPredLayer
|
743 |
+
class TFFlaubertPredLayer(keras.layers.Layer):
|
744 |
+
"""
|
745 |
+
Prediction layer (cross_entropy or adaptive_softmax).
|
746 |
+
"""
|
747 |
+
|
748 |
+
def __init__(self, config, input_embeddings, **kwargs):
|
749 |
+
super().__init__(**kwargs)
|
750 |
+
|
751 |
+
self.asm = config.asm
|
752 |
+
self.n_words = config.n_words
|
753 |
+
self.pad_index = config.pad_index
|
754 |
+
|
755 |
+
if config.asm is False:
|
756 |
+
self.input_embeddings = input_embeddings
|
757 |
+
else:
|
758 |
+
raise NotImplementedError
|
759 |
+
# self.proj = nn.AdaptiveLogSoftmaxWithLoss(
|
760 |
+
# in_features=dim,
|
761 |
+
# n_classes=config.n_words,
|
762 |
+
# cutoffs=config.asm_cutoffs,
|
763 |
+
# div_value=config.asm_div_value,
|
764 |
+
# head_bias=True, # default is False
|
765 |
+
# )
|
766 |
+
|
767 |
+
def build(self, input_shape):
|
768 |
+
# The output weights are the same as the input embeddings, but there is an output-only bias for each token.
|
769 |
+
self.bias = self.add_weight(shape=(self.n_words,), initializer="zeros", trainable=True, name="bias")
|
770 |
+
|
771 |
+
super().build(input_shape)
|
772 |
+
|
773 |
+
def get_output_embeddings(self):
|
774 |
+
return self.input_embeddings
|
775 |
+
|
776 |
+
def set_output_embeddings(self, value):
|
777 |
+
self.input_embeddings.weight = value
|
778 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
779 |
+
|
780 |
+
def get_bias(self):
|
781 |
+
return {"bias": self.bias}
|
782 |
+
|
783 |
+
def set_bias(self, value):
|
784 |
+
self.bias = value["bias"]
|
785 |
+
self.vocab_size = shape_list(value["bias"])[0]
|
786 |
+
|
787 |
+
def call(self, hidden_states):
|
788 |
+
hidden_states = self.input_embeddings(hidden_states, mode="linear")
|
789 |
+
hidden_states = hidden_states + self.bias
|
790 |
+
|
791 |
+
return hidden_states
|
792 |
+
|
793 |
+
|
794 |
+
@dataclass
|
795 |
+
class TFFlaubertWithLMHeadModelOutput(ModelOutput):
|
796 |
+
"""
|
797 |
+
Base class for [`TFFlaubertWithLMHeadModel`] outputs.
|
798 |
+
|
799 |
+
Args:
|
800 |
+
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
801 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
802 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
803 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
804 |
+
`(batch_size, sequence_length, hidden_size)`.
|
805 |
+
|
806 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
807 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
808 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
809 |
+
sequence_length)`.
|
810 |
+
|
811 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
812 |
+
heads.
|
813 |
+
"""
|
814 |
+
|
815 |
+
logits: tf.Tensor = None
|
816 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
817 |
+
attentions: Tuple[tf.Tensor] | None = None
|
818 |
+
|
819 |
+
|
820 |
+
@add_start_docstrings(
|
821 |
+
"""
|
822 |
+
The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
823 |
+
embeddings).
|
824 |
+
""",
|
825 |
+
FLAUBERT_START_DOCSTRING,
|
826 |
+
)
|
827 |
+
class TFFlaubertWithLMHeadModel(TFFlaubertPreTrainedModel):
|
828 |
+
def __init__(self, config, *inputs, **kwargs):
|
829 |
+
super().__init__(config, *inputs, **kwargs)
|
830 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
831 |
+
self.pred_layer = TFFlaubertPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj")
|
832 |
+
# Flaubert does not have past caching features
|
833 |
+
self.supports_xla_generation = False
|
834 |
+
|
835 |
+
def get_lm_head(self):
|
836 |
+
return self.pred_layer
|
837 |
+
|
838 |
+
def get_prefix_bias_name(self):
|
839 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
840 |
+
return self.name + "/" + self.pred_layer.name
|
841 |
+
|
842 |
+
def prepare_inputs_for_generation(self, inputs, **kwargs):
|
843 |
+
mask_token_id = self.config.mask_token_id
|
844 |
+
lang_id = self.config.lang_id
|
845 |
+
|
846 |
+
effective_batch_size = inputs.shape[0]
|
847 |
+
mask_token = tf.fill((effective_batch_size, 1), 1) * mask_token_id
|
848 |
+
inputs = tf.concat([inputs, mask_token], axis=1)
|
849 |
+
|
850 |
+
if lang_id is not None:
|
851 |
+
langs = tf.ones_like(inputs) * lang_id
|
852 |
+
else:
|
853 |
+
langs = None
|
854 |
+
return {"input_ids": inputs, "langs": langs}
|
855 |
+
|
856 |
+
@unpack_inputs
|
857 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
|
858 |
+
@add_code_sample_docstrings(
|
859 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
860 |
+
output_type=TFFlaubertWithLMHeadModelOutput,
|
861 |
+
config_class=_CONFIG_FOR_DOC,
|
862 |
+
)
|
863 |
+
def call(
|
864 |
+
self,
|
865 |
+
input_ids: np.ndarray | tf.Tensor | None = None,
|
866 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
867 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
868 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
869 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
870 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
871 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
872 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
873 |
+
inputs_embeds: tf.Tensor | None = None,
|
874 |
+
output_attentions: Optional[bool] = None,
|
875 |
+
output_hidden_states: Optional[bool] = None,
|
876 |
+
return_dict: Optional[bool] = None,
|
877 |
+
training: Optional[bool] = False,
|
878 |
+
) -> Union[Tuple, TFFlaubertWithLMHeadModelOutput]:
|
879 |
+
transformer_outputs = self.transformer(
|
880 |
+
input_ids=input_ids,
|
881 |
+
attention_mask=attention_mask,
|
882 |
+
langs=langs,
|
883 |
+
token_type_ids=token_type_ids,
|
884 |
+
position_ids=position_ids,
|
885 |
+
lengths=lengths,
|
886 |
+
cache=cache,
|
887 |
+
head_mask=head_mask,
|
888 |
+
inputs_embeds=inputs_embeds,
|
889 |
+
output_attentions=output_attentions,
|
890 |
+
output_hidden_states=output_hidden_states,
|
891 |
+
return_dict=return_dict,
|
892 |
+
training=training,
|
893 |
+
)
|
894 |
+
output = transformer_outputs[0]
|
895 |
+
outputs = self.pred_layer(output)
|
896 |
+
|
897 |
+
if not return_dict:
|
898 |
+
return (outputs,) + transformer_outputs[1:]
|
899 |
+
|
900 |
+
return TFFlaubertWithLMHeadModelOutput(
|
901 |
+
logits=outputs, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions
|
902 |
+
)
|
903 |
+
|
904 |
+
def build(self, input_shape=None):
|
905 |
+
if self.built:
|
906 |
+
return
|
907 |
+
self.built = True
|
908 |
+
if getattr(self, "transformer", None) is not None:
|
909 |
+
with tf.name_scope(self.transformer.name):
|
910 |
+
self.transformer.build(None)
|
911 |
+
if getattr(self, "pred_layer", None) is not None:
|
912 |
+
with tf.name_scope(self.pred_layer.name):
|
913 |
+
self.pred_layer.build(None)
|
914 |
+
|
915 |
+
|
916 |
+
@add_start_docstrings(
|
917 |
+
"""
|
918 |
+
Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
|
919 |
+
e.g. for GLUE tasks.
|
920 |
+
""",
|
921 |
+
FLAUBERT_START_DOCSTRING,
|
922 |
+
)
|
923 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
924 |
+
class TFFlaubertForSequenceClassification(TFFlaubertPreTrainedModel, TFSequenceClassificationLoss):
|
925 |
+
def __init__(self, config, *inputs, **kwargs):
|
926 |
+
super().__init__(config, *inputs, **kwargs)
|
927 |
+
self.num_labels = config.num_labels
|
928 |
+
|
929 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
930 |
+
self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary")
|
931 |
+
|
932 |
+
@unpack_inputs
|
933 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
934 |
+
@add_code_sample_docstrings(
|
935 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
936 |
+
output_type=TFSequenceClassifierOutput,
|
937 |
+
config_class=_CONFIG_FOR_DOC,
|
938 |
+
)
|
939 |
+
def call(
|
940 |
+
self,
|
941 |
+
input_ids: TFModelInputType | None = None,
|
942 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
943 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
944 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
945 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
946 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
947 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
948 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
949 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
950 |
+
output_attentions: Optional[bool] = None,
|
951 |
+
output_hidden_states: Optional[bool] = None,
|
952 |
+
return_dict: Optional[bool] = None,
|
953 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
954 |
+
training: bool = False,
|
955 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
956 |
+
r"""
|
957 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
958 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
959 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
960 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
961 |
+
"""
|
962 |
+
transformer_outputs = self.transformer(
|
963 |
+
input_ids=input_ids,
|
964 |
+
attention_mask=attention_mask,
|
965 |
+
langs=langs,
|
966 |
+
token_type_ids=token_type_ids,
|
967 |
+
position_ids=position_ids,
|
968 |
+
lengths=lengths,
|
969 |
+
cache=cache,
|
970 |
+
head_mask=head_mask,
|
971 |
+
inputs_embeds=inputs_embeds,
|
972 |
+
output_attentions=output_attentions,
|
973 |
+
output_hidden_states=output_hidden_states,
|
974 |
+
return_dict=return_dict,
|
975 |
+
training=training,
|
976 |
+
)
|
977 |
+
output = transformer_outputs[0]
|
978 |
+
|
979 |
+
logits = self.sequence_summary(output)
|
980 |
+
|
981 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
982 |
+
|
983 |
+
if not return_dict:
|
984 |
+
output = (logits,) + transformer_outputs[1:]
|
985 |
+
return ((loss,) + output) if loss is not None else output
|
986 |
+
|
987 |
+
return TFSequenceClassifierOutput(
|
988 |
+
loss=loss,
|
989 |
+
logits=logits,
|
990 |
+
hidden_states=transformer_outputs.hidden_states,
|
991 |
+
attentions=transformer_outputs.attentions,
|
992 |
+
)
|
993 |
+
|
994 |
+
def build(self, input_shape=None):
|
995 |
+
if self.built:
|
996 |
+
return
|
997 |
+
self.built = True
|
998 |
+
if getattr(self, "transformer", None) is not None:
|
999 |
+
with tf.name_scope(self.transformer.name):
|
1000 |
+
self.transformer.build(None)
|
1001 |
+
if getattr(self, "sequence_summary", None) is not None:
|
1002 |
+
with tf.name_scope(self.sequence_summary.name):
|
1003 |
+
self.sequence_summary.build(None)
|
1004 |
+
|
1005 |
+
|
1006 |
+
@add_start_docstrings(
|
1007 |
+
"""
|
1008 |
+
Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1009 |
+
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1010 |
+
""",
|
1011 |
+
FLAUBERT_START_DOCSTRING,
|
1012 |
+
)
|
1013 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
1014 |
+
class TFFlaubertForQuestionAnsweringSimple(TFFlaubertPreTrainedModel, TFQuestionAnsweringLoss):
|
1015 |
+
def __init__(self, config, *inputs, **kwargs):
|
1016 |
+
super().__init__(config, *inputs, **kwargs)
|
1017 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
1018 |
+
self.qa_outputs = keras.layers.Dense(
|
1019 |
+
config.num_labels, kernel_initializer=get_initializer(config.init_std), name="qa_outputs"
|
1020 |
+
)
|
1021 |
+
self.config = config
|
1022 |
+
|
1023 |
+
@unpack_inputs
|
1024 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1025 |
+
@add_code_sample_docstrings(
|
1026 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1027 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1028 |
+
config_class=_CONFIG_FOR_DOC,
|
1029 |
+
)
|
1030 |
+
def call(
|
1031 |
+
self,
|
1032 |
+
input_ids: TFModelInputType | None = None,
|
1033 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1034 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
1035 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1036 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1037 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
1038 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
1039 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1040 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1041 |
+
output_attentions: Optional[bool] = None,
|
1042 |
+
output_hidden_states: Optional[bool] = None,
|
1043 |
+
return_dict: Optional[bool] = None,
|
1044 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1045 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1046 |
+
training: bool = False,
|
1047 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1048 |
+
r"""
|
1049 |
+
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1050 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1051 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1052 |
+
are not taken into account for computing the loss.
|
1053 |
+
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1054 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1055 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1056 |
+
are not taken into account for computing the loss.
|
1057 |
+
"""
|
1058 |
+
transformer_outputs = self.transformer(
|
1059 |
+
input_ids=input_ids,
|
1060 |
+
attention_mask=attention_mask,
|
1061 |
+
langs=langs,
|
1062 |
+
token_type_ids=token_type_ids,
|
1063 |
+
position_ids=position_ids,
|
1064 |
+
lengths=lengths,
|
1065 |
+
cache=cache,
|
1066 |
+
head_mask=head_mask,
|
1067 |
+
inputs_embeds=inputs_embeds,
|
1068 |
+
output_attentions=output_attentions,
|
1069 |
+
output_hidden_states=output_hidden_states,
|
1070 |
+
return_dict=return_dict,
|
1071 |
+
training=training,
|
1072 |
+
)
|
1073 |
+
sequence_output = transformer_outputs[0]
|
1074 |
+
|
1075 |
+
logits = self.qa_outputs(sequence_output)
|
1076 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
1077 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
1078 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
1079 |
+
|
1080 |
+
loss = None
|
1081 |
+
if start_positions is not None and end_positions is not None:
|
1082 |
+
labels = {"start_position": start_positions}
|
1083 |
+
labels["end_position"] = end_positions
|
1084 |
+
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
|
1085 |
+
|
1086 |
+
if not return_dict:
|
1087 |
+
output = (start_logits, end_logits) + transformer_outputs[1:]
|
1088 |
+
return ((loss,) + output) if loss is not None else output
|
1089 |
+
|
1090 |
+
return TFQuestionAnsweringModelOutput(
|
1091 |
+
loss=loss,
|
1092 |
+
start_logits=start_logits,
|
1093 |
+
end_logits=end_logits,
|
1094 |
+
hidden_states=transformer_outputs.hidden_states,
|
1095 |
+
attentions=transformer_outputs.attentions,
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
def build(self, input_shape=None):
|
1099 |
+
if self.built:
|
1100 |
+
return
|
1101 |
+
self.built = True
|
1102 |
+
if getattr(self, "transformer", None) is not None:
|
1103 |
+
with tf.name_scope(self.transformer.name):
|
1104 |
+
self.transformer.build(None)
|
1105 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1106 |
+
with tf.name_scope(self.qa_outputs.name):
|
1107 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
1108 |
+
|
1109 |
+
|
1110 |
+
@add_start_docstrings(
|
1111 |
+
"""
|
1112 |
+
Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1113 |
+
Named-Entity-Recognition (NER) tasks.
|
1114 |
+
""",
|
1115 |
+
FLAUBERT_START_DOCSTRING,
|
1116 |
+
)
|
1117 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
1118 |
+
class TFFlaubertForTokenClassification(TFFlaubertPreTrainedModel, TFTokenClassificationLoss):
|
1119 |
+
def __init__(self, config, *inputs, **kwargs):
|
1120 |
+
super().__init__(config, *inputs, **kwargs)
|
1121 |
+
self.num_labels = config.num_labels
|
1122 |
+
|
1123 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
1124 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
1125 |
+
self.classifier = keras.layers.Dense(
|
1126 |
+
config.num_labels, kernel_initializer=get_initializer(config.init_std), name="classifier"
|
1127 |
+
)
|
1128 |
+
self.config = config
|
1129 |
+
|
1130 |
+
@unpack_inputs
|
1131 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1132 |
+
@add_code_sample_docstrings(
|
1133 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1134 |
+
output_type=TFTokenClassifierOutput,
|
1135 |
+
config_class=_CONFIG_FOR_DOC,
|
1136 |
+
)
|
1137 |
+
def call(
|
1138 |
+
self,
|
1139 |
+
input_ids: TFModelInputType | None = None,
|
1140 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1141 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
1142 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1143 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1144 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
1145 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
1146 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1147 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1148 |
+
output_attentions: Optional[bool] = None,
|
1149 |
+
output_hidden_states: Optional[bool] = None,
|
1150 |
+
return_dict: Optional[bool] = None,
|
1151 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1152 |
+
training: bool = False,
|
1153 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1154 |
+
r"""
|
1155 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1156 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1157 |
+
"""
|
1158 |
+
transformer_outputs = self.transformer(
|
1159 |
+
input_ids=input_ids,
|
1160 |
+
attention_mask=attention_mask,
|
1161 |
+
langs=langs,
|
1162 |
+
token_type_ids=token_type_ids,
|
1163 |
+
position_ids=position_ids,
|
1164 |
+
lengths=lengths,
|
1165 |
+
cache=cache,
|
1166 |
+
head_mask=head_mask,
|
1167 |
+
inputs_embeds=inputs_embeds,
|
1168 |
+
output_attentions=output_attentions,
|
1169 |
+
output_hidden_states=output_hidden_states,
|
1170 |
+
return_dict=return_dict,
|
1171 |
+
training=training,
|
1172 |
+
)
|
1173 |
+
sequence_output = transformer_outputs[0]
|
1174 |
+
|
1175 |
+
sequence_output = self.dropout(sequence_output, training=training)
|
1176 |
+
logits = self.classifier(sequence_output)
|
1177 |
+
|
1178 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1179 |
+
|
1180 |
+
if not return_dict:
|
1181 |
+
output = (logits,) + transformer_outputs[1:]
|
1182 |
+
return ((loss,) + output) if loss is not None else output
|
1183 |
+
|
1184 |
+
return TFTokenClassifierOutput(
|
1185 |
+
loss=loss,
|
1186 |
+
logits=logits,
|
1187 |
+
hidden_states=transformer_outputs.hidden_states,
|
1188 |
+
attentions=transformer_outputs.attentions,
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
def build(self, input_shape=None):
|
1192 |
+
if self.built:
|
1193 |
+
return
|
1194 |
+
self.built = True
|
1195 |
+
if getattr(self, "transformer", None) is not None:
|
1196 |
+
with tf.name_scope(self.transformer.name):
|
1197 |
+
self.transformer.build(None)
|
1198 |
+
if getattr(self, "classifier", None) is not None:
|
1199 |
+
with tf.name_scope(self.classifier.name):
|
1200 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1201 |
+
|
1202 |
+
|
1203 |
+
@add_start_docstrings(
|
1204 |
+
"""
|
1205 |
+
Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1206 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1207 |
+
""",
|
1208 |
+
FLAUBERT_START_DOCSTRING,
|
1209 |
+
)
|
1210 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
1211 |
+
class TFFlaubertForMultipleChoice(TFFlaubertPreTrainedModel, TFMultipleChoiceLoss):
|
1212 |
+
def __init__(self, config, *inputs, **kwargs):
|
1213 |
+
super().__init__(config, *inputs, **kwargs)
|
1214 |
+
|
1215 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
1216 |
+
self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary")
|
1217 |
+
self.logits_proj = keras.layers.Dense(
|
1218 |
+
1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj"
|
1219 |
+
)
|
1220 |
+
self.config = config
|
1221 |
+
|
1222 |
+
@property
|
1223 |
+
def dummy_inputs(self):
|
1224 |
+
"""
|
1225 |
+
Dummy inputs to build the network.
|
1226 |
+
|
1227 |
+
Returns:
|
1228 |
+
tf.Tensor with dummy inputs
|
1229 |
+
"""
|
1230 |
+
# Sometimes Flaubert has language embeddings so don't forget to build them as well if needed
|
1231 |
+
if self.config.use_lang_emb and self.config.n_langs > 1:
|
1232 |
+
return {
|
1233 |
+
"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
|
1234 |
+
"langs": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
|
1235 |
+
}
|
1236 |
+
else:
|
1237 |
+
return {
|
1238 |
+
"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
|
1239 |
+
}
|
1240 |
+
|
1241 |
+
@unpack_inputs
|
1242 |
+
@add_start_docstrings_to_model_forward(
|
1243 |
+
FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1244 |
+
)
|
1245 |
+
@add_code_sample_docstrings(
|
1246 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1247 |
+
output_type=TFMultipleChoiceModelOutput,
|
1248 |
+
config_class=_CONFIG_FOR_DOC,
|
1249 |
+
)
|
1250 |
+
def call(
|
1251 |
+
self,
|
1252 |
+
input_ids: TFModelInputType | None = None,
|
1253 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1254 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
1255 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1256 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1257 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
1258 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
1259 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1260 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1261 |
+
output_attentions: Optional[bool] = None,
|
1262 |
+
output_hidden_states: Optional[bool] = None,
|
1263 |
+
return_dict: Optional[bool] = None,
|
1264 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1265 |
+
training: bool = False,
|
1266 |
+
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
|
1267 |
+
if input_ids is not None:
|
1268 |
+
num_choices = shape_list(input_ids)[1]
|
1269 |
+
seq_length = shape_list(input_ids)[2]
|
1270 |
+
else:
|
1271 |
+
num_choices = shape_list(inputs_embeds)[1]
|
1272 |
+
seq_length = shape_list(inputs_embeds)[2]
|
1273 |
+
|
1274 |
+
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
|
1275 |
+
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
|
1276 |
+
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
|
1277 |
+
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
|
1278 |
+
flat_langs = tf.reshape(langs, (-1, seq_length)) if langs is not None else None
|
1279 |
+
flat_inputs_embeds = (
|
1280 |
+
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
|
1281 |
+
if inputs_embeds is not None
|
1282 |
+
else None
|
1283 |
+
)
|
1284 |
+
|
1285 |
+
if lengths is not None:
|
1286 |
+
logger.warning(
|
1287 |
+
"The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the "
|
1288 |
+
"attention mask instead.",
|
1289 |
+
)
|
1290 |
+
lengths = None
|
1291 |
+
|
1292 |
+
transformer_outputs = self.transformer(
|
1293 |
+
flat_input_ids,
|
1294 |
+
flat_attention_mask,
|
1295 |
+
flat_langs,
|
1296 |
+
flat_token_type_ids,
|
1297 |
+
flat_position_ids,
|
1298 |
+
lengths,
|
1299 |
+
cache,
|
1300 |
+
head_mask,
|
1301 |
+
flat_inputs_embeds,
|
1302 |
+
output_attentions,
|
1303 |
+
output_hidden_states,
|
1304 |
+
return_dict=return_dict,
|
1305 |
+
training=training,
|
1306 |
+
)
|
1307 |
+
output = transformer_outputs[0]
|
1308 |
+
logits = self.sequence_summary(output)
|
1309 |
+
logits = self.logits_proj(logits)
|
1310 |
+
reshaped_logits = tf.reshape(logits, (-1, num_choices))
|
1311 |
+
|
1312 |
+
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
|
1313 |
+
|
1314 |
+
if not return_dict:
|
1315 |
+
output = (reshaped_logits,) + transformer_outputs[1:]
|
1316 |
+
return ((loss,) + output) if loss is not None else output
|
1317 |
+
|
1318 |
+
return TFMultipleChoiceModelOutput(
|
1319 |
+
loss=loss,
|
1320 |
+
logits=reshaped_logits,
|
1321 |
+
hidden_states=transformer_outputs.hidden_states,
|
1322 |
+
attentions=transformer_outputs.attentions,
|
1323 |
+
)
|
1324 |
+
|
1325 |
+
def build(self, input_shape=None):
|
1326 |
+
if self.built:
|
1327 |
+
return
|
1328 |
+
self.built = True
|
1329 |
+
if getattr(self, "transformer", None) is not None:
|
1330 |
+
with tf.name_scope(self.transformer.name):
|
1331 |
+
self.transformer.build(None)
|
1332 |
+
if getattr(self, "sequence_summary", None) is not None:
|
1333 |
+
with tf.name_scope(self.sequence_summary.name):
|
1334 |
+
self.sequence_summary.build(None)
|
1335 |
+
if getattr(self, "logits_proj", None) is not None:
|
1336 |
+
with tf.name_scope(self.logits_proj.name):
|
1337 |
+
self.logits_proj.build([None, None, self.config.num_labels])
|
llmeval-env/lib/python3.10/site-packages/transformers/models/flaubert/tokenization_flaubert.py
ADDED
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Flaubert."""
|
16 |
+
|
17 |
+
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
import unicodedata
|
22 |
+
from typing import List, Optional, Tuple
|
23 |
+
|
24 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {
|
31 |
+
"vocab_file": "vocab.json",
|
32 |
+
"merges_file": "merges.txt",
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
def convert_to_unicode(text):
|
37 |
+
"""
|
38 |
+
Converts `text` to Unicode (if it's not already), assuming UTF-8 input.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def ensure_text(s, encoding="utf-8", errors="strict"):
|
42 |
+
if isinstance(s, bytes):
|
43 |
+
return s.decode(encoding, errors)
|
44 |
+
elif isinstance(s, str):
|
45 |
+
return s
|
46 |
+
else:
|
47 |
+
raise TypeError(f"not expecting type '{type(s)}'")
|
48 |
+
|
49 |
+
return ensure_text(text, encoding="utf-8", errors="ignore")
|
50 |
+
|
51 |
+
|
52 |
+
# Copied from transformers.models.xlm.tokenization_xlm.get_pairs
|
53 |
+
def get_pairs(word):
|
54 |
+
"""
|
55 |
+
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
|
56 |
+
strings)
|
57 |
+
"""
|
58 |
+
pairs = set()
|
59 |
+
prev_char = word[0]
|
60 |
+
for char in word[1:]:
|
61 |
+
pairs.add((prev_char, char))
|
62 |
+
prev_char = char
|
63 |
+
return pairs
|
64 |
+
|
65 |
+
|
66 |
+
# Copied from transformers.models.xlm.tokenization_xlm.replace_unicode_punct
|
67 |
+
def replace_unicode_punct(text):
|
68 |
+
"""
|
69 |
+
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
|
70 |
+
"""
|
71 |
+
text = text.replace(",", ",")
|
72 |
+
text = re.sub(r"。\s*", ". ", text)
|
73 |
+
text = text.replace("、", ",")
|
74 |
+
text = text.replace("”", '"')
|
75 |
+
text = text.replace("“", '"')
|
76 |
+
text = text.replace("∶", ":")
|
77 |
+
text = text.replace(":", ":")
|
78 |
+
text = text.replace("?", "?")
|
79 |
+
text = text.replace("《", '"')
|
80 |
+
text = text.replace("》", '"')
|
81 |
+
text = text.replace(")", ")")
|
82 |
+
text = text.replace("!", "!")
|
83 |
+
text = text.replace("(", "(")
|
84 |
+
text = text.replace(";", ";")
|
85 |
+
text = text.replace("1", "1")
|
86 |
+
text = text.replace("」", '"')
|
87 |
+
text = text.replace("「", '"')
|
88 |
+
text = text.replace("0", "0")
|
89 |
+
text = text.replace("3", "3")
|
90 |
+
text = text.replace("2", "2")
|
91 |
+
text = text.replace("5", "5")
|
92 |
+
text = text.replace("6", "6")
|
93 |
+
text = text.replace("9", "9")
|
94 |
+
text = text.replace("7", "7")
|
95 |
+
text = text.replace("8", "8")
|
96 |
+
text = text.replace("4", "4")
|
97 |
+
text = re.sub(r".\s*", ". ", text)
|
98 |
+
text = text.replace("~", "~")
|
99 |
+
text = text.replace("’", "'")
|
100 |
+
text = text.replace("…", "...")
|
101 |
+
text = text.replace("━", "-")
|
102 |
+
text = text.replace("〈", "<")
|
103 |
+
text = text.replace("〉", ">")
|
104 |
+
text = text.replace("【", "[")
|
105 |
+
text = text.replace("】", "]")
|
106 |
+
text = text.replace("%", "%")
|
107 |
+
return text
|
108 |
+
|
109 |
+
|
110 |
+
# Copied from transformers.models.xlm.tokenization_xlm.remove_non_printing_char
|
111 |
+
def remove_non_printing_char(text):
|
112 |
+
"""
|
113 |
+
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
|
114 |
+
"""
|
115 |
+
output = []
|
116 |
+
for char in text:
|
117 |
+
cat = unicodedata.category(char)
|
118 |
+
if cat.startswith("C"):
|
119 |
+
continue
|
120 |
+
output.append(char)
|
121 |
+
return "".join(output)
|
122 |
+
|
123 |
+
|
124 |
+
class FlaubertTokenizer(PreTrainedTokenizer):
|
125 |
+
"""
|
126 |
+
Construct a Flaubert tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following:
|
127 |
+
|
128 |
+
- Moses preprocessing and tokenization.
|
129 |
+
- Normalizing all inputs text.
|
130 |
+
- The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like
|
131 |
+
"__classify__") to a vocabulary.
|
132 |
+
- The argument `do_lowercase` controls lower casing (automatically set for pretrained vocabularies).
|
133 |
+
|
134 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
135 |
+
this superclass for more information regarding those methods.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
vocab_file (`str`):
|
139 |
+
Vocabulary file.
|
140 |
+
merges_file (`str`):
|
141 |
+
Merges file.
|
142 |
+
do_lowercase (`bool`, *optional*, defaults to `False`):
|
143 |
+
Controls lower casing.
|
144 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
145 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
146 |
+
token instead.
|
147 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
148 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
149 |
+
|
150 |
+
<Tip>
|
151 |
+
|
152 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
153 |
+
sequence. The token used is the `cls_token`.
|
154 |
+
|
155 |
+
</Tip>
|
156 |
+
|
157 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
158 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
159 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
160 |
+
token of a sequence built with special tokens.
|
161 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
162 |
+
The token used for padding, for example when batching sequences of different lengths.
|
163 |
+
cls_token (`str`, *optional*, defaults to `"</s>"`):
|
164 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
165 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
166 |
+
mask_token (`str`, *optional*, defaults to `"<special1>"`):
|
167 |
+
The token used for masking values. This is the token used when training this model with masked language
|
168 |
+
modeling. This is the token which the model will try to predict.
|
169 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `['<special0>', '<special1>', '<special2>', '<special3>', '<special4>', '<special5>', '<special6>', '<special7>', '<special8>', '<special9>']`):
|
170 |
+
List of additional special tokens.
|
171 |
+
lang2id (`Dict[str, int]`, *optional*):
|
172 |
+
Dictionary mapping languages string identifiers to their IDs.
|
173 |
+
id2lang (`Dict[int, str]`, *optional*):
|
174 |
+
Dictionary mapping language IDs to their string identifiers.
|
175 |
+
"""
|
176 |
+
|
177 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
178 |
+
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
vocab_file,
|
182 |
+
merges_file,
|
183 |
+
do_lowercase=False,
|
184 |
+
unk_token="<unk>",
|
185 |
+
bos_token="<s>",
|
186 |
+
sep_token="</s>",
|
187 |
+
pad_token="<pad>",
|
188 |
+
cls_token="</s>",
|
189 |
+
mask_token="<special1>",
|
190 |
+
additional_special_tokens=[
|
191 |
+
"<special0>",
|
192 |
+
"<special1>",
|
193 |
+
"<special2>",
|
194 |
+
"<special3>",
|
195 |
+
"<special4>",
|
196 |
+
"<special5>",
|
197 |
+
"<special6>",
|
198 |
+
"<special7>",
|
199 |
+
"<special8>",
|
200 |
+
"<special9>",
|
201 |
+
],
|
202 |
+
lang2id=None,
|
203 |
+
id2lang=None,
|
204 |
+
**kwargs,
|
205 |
+
):
|
206 |
+
do_lowercase_and_remove_accent = kwargs.pop("do_lowercase_and_remove_accent", None)
|
207 |
+
if do_lowercase_and_remove_accent is not None:
|
208 |
+
logger.warning(
|
209 |
+
"`do_lowercase_and_remove_accent` is passed as a keyword argument, but this won't do anything."
|
210 |
+
" `FlaubertTokenizer` will always set it to `False`."
|
211 |
+
)
|
212 |
+
# always `False`
|
213 |
+
self.do_lowercase_and_remove_accent = False
|
214 |
+
|
215 |
+
self.do_lowercase = do_lowercase
|
216 |
+
|
217 |
+
try:
|
218 |
+
import sacremoses
|
219 |
+
except ImportError:
|
220 |
+
raise ImportError(
|
221 |
+
"You need to install sacremoses to use FlaubertTokenizer. "
|
222 |
+
"See https://pypi.org/project/sacremoses/ for installation."
|
223 |
+
)
|
224 |
+
|
225 |
+
self.sm = sacremoses
|
226 |
+
|
227 |
+
# cache of sm.MosesPunctNormalizer instance
|
228 |
+
self.cache_moses_punct_normalizer = {}
|
229 |
+
# cache of sm.MosesTokenizer instance
|
230 |
+
self.cache_moses_tokenizer = {}
|
231 |
+
self.lang_with_custom_tokenizer = {"zh", "th", "ja"}
|
232 |
+
self.lang2id = lang2id
|
233 |
+
self.id2lang = id2lang
|
234 |
+
if lang2id is not None and id2lang is not None:
|
235 |
+
assert len(lang2id) == len(id2lang)
|
236 |
+
|
237 |
+
self.ja_word_tokenizer = None
|
238 |
+
self.zh_word_tokenizer = None
|
239 |
+
|
240 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
241 |
+
self.encoder = json.load(vocab_handle)
|
242 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
243 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
244 |
+
merges = merges_handle.read().split("\n")[:-1]
|
245 |
+
merges = [tuple(merge.split()[:2]) for merge in merges]
|
246 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
247 |
+
self.cache = {}
|
248 |
+
|
249 |
+
super().__init__(
|
250 |
+
unk_token=unk_token,
|
251 |
+
bos_token=bos_token,
|
252 |
+
sep_token=sep_token,
|
253 |
+
pad_token=pad_token,
|
254 |
+
cls_token=cls_token,
|
255 |
+
mask_token=mask_token,
|
256 |
+
additional_special_tokens=additional_special_tokens,
|
257 |
+
lang2id=lang2id,
|
258 |
+
id2lang=id2lang,
|
259 |
+
**kwargs,
|
260 |
+
)
|
261 |
+
|
262 |
+
@property
|
263 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.do_lower_case
|
264 |
+
def do_lower_case(self):
|
265 |
+
return self.do_lowercase_and_remove_accent
|
266 |
+
|
267 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_punct_norm
|
268 |
+
def moses_punct_norm(self, text, lang):
|
269 |
+
if lang not in self.cache_moses_punct_normalizer:
|
270 |
+
punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang)
|
271 |
+
self.cache_moses_punct_normalizer[lang] = punct_normalizer
|
272 |
+
else:
|
273 |
+
punct_normalizer = self.cache_moses_punct_normalizer[lang]
|
274 |
+
return punct_normalizer.normalize(text)
|
275 |
+
|
276 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_tokenize
|
277 |
+
def moses_tokenize(self, text, lang):
|
278 |
+
if lang not in self.cache_moses_tokenizer:
|
279 |
+
moses_tokenizer = self.sm.MosesTokenizer(lang=lang)
|
280 |
+
self.cache_moses_tokenizer[lang] = moses_tokenizer
|
281 |
+
else:
|
282 |
+
moses_tokenizer = self.cache_moses_tokenizer[lang]
|
283 |
+
return moses_tokenizer.tokenize(text, return_str=False, escape=False)
|
284 |
+
|
285 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_pipeline
|
286 |
+
def moses_pipeline(self, text, lang):
|
287 |
+
text = replace_unicode_punct(text)
|
288 |
+
text = self.moses_punct_norm(text, lang)
|
289 |
+
text = remove_non_printing_char(text)
|
290 |
+
return text
|
291 |
+
|
292 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.ja_tokenize
|
293 |
+
def ja_tokenize(self, text):
|
294 |
+
if self.ja_word_tokenizer is None:
|
295 |
+
try:
|
296 |
+
import Mykytea
|
297 |
+
|
298 |
+
self.ja_word_tokenizer = Mykytea.Mykytea(
|
299 |
+
f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin"
|
300 |
+
)
|
301 |
+
except (AttributeError, ImportError):
|
302 |
+
logger.error(
|
303 |
+
"Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper"
|
304 |
+
" (https://github.com/chezou/Mykytea-python) with the following steps"
|
305 |
+
)
|
306 |
+
logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea")
|
307 |
+
logger.error("2. autoreconf -i")
|
308 |
+
logger.error("3. ./configure --prefix=$HOME/local")
|
309 |
+
logger.error("4. make && make install")
|
310 |
+
logger.error("5. pip install kytea")
|
311 |
+
raise
|
312 |
+
return list(self.ja_word_tokenizer.getWS(text))
|
313 |
+
|
314 |
+
@property
|
315 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.vocab_size
|
316 |
+
def vocab_size(self):
|
317 |
+
return len(self.encoder)
|
318 |
+
|
319 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_vocab
|
320 |
+
def get_vocab(self):
|
321 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
322 |
+
|
323 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.bpe
|
324 |
+
def bpe(self, token):
|
325 |
+
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
326 |
+
if token in self.cache:
|
327 |
+
return self.cache[token]
|
328 |
+
pairs = get_pairs(word)
|
329 |
+
|
330 |
+
if not pairs:
|
331 |
+
return token + "</w>"
|
332 |
+
|
333 |
+
while True:
|
334 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
335 |
+
if bigram not in self.bpe_ranks:
|
336 |
+
break
|
337 |
+
first, second = bigram
|
338 |
+
new_word = []
|
339 |
+
i = 0
|
340 |
+
while i < len(word):
|
341 |
+
try:
|
342 |
+
j = word.index(first, i)
|
343 |
+
except ValueError:
|
344 |
+
new_word.extend(word[i:])
|
345 |
+
break
|
346 |
+
else:
|
347 |
+
new_word.extend(word[i:j])
|
348 |
+
i = j
|
349 |
+
|
350 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
351 |
+
new_word.append(first + second)
|
352 |
+
i += 2
|
353 |
+
else:
|
354 |
+
new_word.append(word[i])
|
355 |
+
i += 1
|
356 |
+
new_word = tuple(new_word)
|
357 |
+
word = new_word
|
358 |
+
if len(word) == 1:
|
359 |
+
break
|
360 |
+
else:
|
361 |
+
pairs = get_pairs(word)
|
362 |
+
word = " ".join(word)
|
363 |
+
if word == "\n </w>":
|
364 |
+
word = "\n</w>"
|
365 |
+
self.cache[token] = word
|
366 |
+
return word
|
367 |
+
|
368 |
+
def preprocess_text(self, text):
|
369 |
+
text = text.replace("``", '"').replace("''", '"')
|
370 |
+
text = convert_to_unicode(text)
|
371 |
+
text = unicodedata.normalize("NFC", text)
|
372 |
+
|
373 |
+
if self.do_lowercase:
|
374 |
+
text = text.lower()
|
375 |
+
|
376 |
+
return text
|
377 |
+
|
378 |
+
def _tokenize(self, text, bypass_tokenizer=False):
|
379 |
+
"""
|
380 |
+
Tokenize a string given language code using Moses.
|
381 |
+
|
382 |
+
Details of tokenization:
|
383 |
+
|
384 |
+
- [sacremoses](https://github.com/alvations/sacremoses): port of Moses
|
385 |
+
- Install with `pip install sacremoses`
|
386 |
+
|
387 |
+
Args:
|
388 |
+
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
|
389 |
+
(bool). If True, we only apply BPE.
|
390 |
+
|
391 |
+
Returns:
|
392 |
+
List of tokens.
|
393 |
+
"""
|
394 |
+
lang = "fr"
|
395 |
+
if lang and self.lang2id and lang not in self.lang2id:
|
396 |
+
logger.error(
|
397 |
+
"Supplied language code not found in lang2id mapping. Please check that your language is supported by"
|
398 |
+
" the loaded pretrained model."
|
399 |
+
)
|
400 |
+
|
401 |
+
if bypass_tokenizer:
|
402 |
+
text = text.split()
|
403 |
+
else:
|
404 |
+
text = self.preprocess_text(text)
|
405 |
+
text = self.moses_pipeline(text, lang=lang)
|
406 |
+
text = self.moses_tokenize(text, lang=lang)
|
407 |
+
|
408 |
+
split_tokens = []
|
409 |
+
for token in text:
|
410 |
+
if token:
|
411 |
+
split_tokens.extend(list(self.bpe(token).split(" ")))
|
412 |
+
|
413 |
+
return split_tokens
|
414 |
+
|
415 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_token_to_id
|
416 |
+
def _convert_token_to_id(self, token):
|
417 |
+
"""Converts a token (str) in an id using the vocab."""
|
418 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
419 |
+
|
420 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_id_to_token
|
421 |
+
def _convert_id_to_token(self, index):
|
422 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
423 |
+
return self.decoder.get(index, self.unk_token)
|
424 |
+
|
425 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.convert_tokens_to_string
|
426 |
+
def convert_tokens_to_string(self, tokens):
|
427 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
428 |
+
out_string = "".join(tokens).replace("</w>", " ").strip()
|
429 |
+
return out_string
|
430 |
+
|
431 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.build_inputs_with_special_tokens
|
432 |
+
def build_inputs_with_special_tokens(
|
433 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
434 |
+
) -> List[int]:
|
435 |
+
"""
|
436 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
437 |
+
adding special tokens. An XLM sequence has the following format:
|
438 |
+
|
439 |
+
- single sequence: `<s> X </s>`
|
440 |
+
- pair of sequences: `<s> A </s> B </s>`
|
441 |
+
|
442 |
+
Args:
|
443 |
+
token_ids_0 (`List[int]`):
|
444 |
+
List of IDs to which the special tokens will be added.
|
445 |
+
token_ids_1 (`List[int]`, *optional*):
|
446 |
+
Optional second list of IDs for sequence pairs.
|
447 |
+
|
448 |
+
Returns:
|
449 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
450 |
+
|
451 |
+
"""
|
452 |
+
bos = [self.bos_token_id]
|
453 |
+
sep = [self.sep_token_id]
|
454 |
+
|
455 |
+
if token_ids_1 is None:
|
456 |
+
return bos + token_ids_0 + sep
|
457 |
+
return bos + token_ids_0 + sep + token_ids_1 + sep
|
458 |
+
|
459 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_special_tokens_mask
|
460 |
+
def get_special_tokens_mask(
|
461 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
462 |
+
) -> List[int]:
|
463 |
+
"""
|
464 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
465 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
466 |
+
|
467 |
+
Args:
|
468 |
+
token_ids_0 (`List[int]`):
|
469 |
+
List of IDs.
|
470 |
+
token_ids_1 (`List[int]`, *optional*):
|
471 |
+
Optional second list of IDs for sequence pairs.
|
472 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
473 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
474 |
+
|
475 |
+
Returns:
|
476 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
477 |
+
"""
|
478 |
+
|
479 |
+
if already_has_special_tokens:
|
480 |
+
return super().get_special_tokens_mask(
|
481 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
482 |
+
)
|
483 |
+
|
484 |
+
if token_ids_1 is not None:
|
485 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
486 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
487 |
+
|
488 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.create_token_type_ids_from_sequences
|
489 |
+
def create_token_type_ids_from_sequences(
|
490 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
491 |
+
) -> List[int]:
|
492 |
+
"""
|
493 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence
|
494 |
+
pair mask has the following format:
|
495 |
+
|
496 |
+
```
|
497 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
498 |
+
| first sequence | second sequence |
|
499 |
+
```
|
500 |
+
|
501 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
502 |
+
|
503 |
+
Args:
|
504 |
+
token_ids_0 (`List[int]`):
|
505 |
+
List of IDs.
|
506 |
+
token_ids_1 (`List[int]`, *optional*):
|
507 |
+
Optional second list of IDs for sequence pairs.
|
508 |
+
|
509 |
+
Returns:
|
510 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
511 |
+
"""
|
512 |
+
sep = [self.sep_token_id]
|
513 |
+
cls = [self.cls_token_id]
|
514 |
+
if token_ids_1 is None:
|
515 |
+
return len(cls + token_ids_0 + sep) * [0]
|
516 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
517 |
+
|
518 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.save_vocabulary
|
519 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
520 |
+
if not os.path.isdir(save_directory):
|
521 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
522 |
+
return
|
523 |
+
vocab_file = os.path.join(
|
524 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
525 |
+
)
|
526 |
+
merge_file = os.path.join(
|
527 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
528 |
+
)
|
529 |
+
|
530 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
531 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
532 |
+
|
533 |
+
index = 0
|
534 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
535 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
536 |
+
if index != token_index:
|
537 |
+
logger.warning(
|
538 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
539 |
+
" Please check that the tokenizer is not corrupted!"
|
540 |
+
)
|
541 |
+
index = token_index
|
542 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
543 |
+
index += 1
|
544 |
+
|
545 |
+
return vocab_file, merge_file
|
546 |
+
|
547 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__getstate__
|
548 |
+
def __getstate__(self):
|
549 |
+
state = self.__dict__.copy()
|
550 |
+
state["sm"] = None
|
551 |
+
return state
|
552 |
+
|
553 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__setstate__
|
554 |
+
def __setstate__(self, d):
|
555 |
+
self.__dict__ = d
|
556 |
+
|
557 |
+
try:
|
558 |
+
import sacremoses
|
559 |
+
except ImportError:
|
560 |
+
raise ImportError(
|
561 |
+
"You need to install sacremoses to use XLMTokenizer. "
|
562 |
+
"See https://pypi.org/project/sacremoses/ for installation."
|
563 |
+
)
|
564 |
+
|
565 |
+
self.sm = sacremoses
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__init__.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_flax_available,
|
20 |
+
is_tf_available,
|
21 |
+
is_torch_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {"configuration_gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig", "GPTJOnnxConfig"]}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_torch_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["modeling_gptj"] = [
|
34 |
+
"GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST",
|
35 |
+
"GPTJForCausalLM",
|
36 |
+
"GPTJForQuestionAnswering",
|
37 |
+
"GPTJForSequenceClassification",
|
38 |
+
"GPTJModel",
|
39 |
+
"GPTJPreTrainedModel",
|
40 |
+
]
|
41 |
+
|
42 |
+
try:
|
43 |
+
if not is_tf_available():
|
44 |
+
raise OptionalDependencyNotAvailable()
|
45 |
+
except OptionalDependencyNotAvailable:
|
46 |
+
pass
|
47 |
+
else:
|
48 |
+
_import_structure["modeling_tf_gptj"] = [
|
49 |
+
"TFGPTJForCausalLM",
|
50 |
+
"TFGPTJForQuestionAnswering",
|
51 |
+
"TFGPTJForSequenceClassification",
|
52 |
+
"TFGPTJModel",
|
53 |
+
"TFGPTJPreTrainedModel",
|
54 |
+
]
|
55 |
+
|
56 |
+
try:
|
57 |
+
if not is_flax_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
_import_structure["modeling_flax_gptj"] = [
|
63 |
+
"FlaxGPTJForCausalLM",
|
64 |
+
"FlaxGPTJModel",
|
65 |
+
"FlaxGPTJPreTrainedModel",
|
66 |
+
]
|
67 |
+
|
68 |
+
|
69 |
+
if TYPE_CHECKING:
|
70 |
+
from .configuration_gptj import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTJConfig, GPTJOnnxConfig
|
71 |
+
|
72 |
+
try:
|
73 |
+
if not is_torch_available():
|
74 |
+
raise OptionalDependencyNotAvailable()
|
75 |
+
except OptionalDependencyNotAvailable:
|
76 |
+
pass
|
77 |
+
else:
|
78 |
+
from .modeling_gptj import (
|
79 |
+
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST,
|
80 |
+
GPTJForCausalLM,
|
81 |
+
GPTJForQuestionAnswering,
|
82 |
+
GPTJForSequenceClassification,
|
83 |
+
GPTJModel,
|
84 |
+
GPTJPreTrainedModel,
|
85 |
+
)
|
86 |
+
|
87 |
+
try:
|
88 |
+
if not is_tf_available():
|
89 |
+
raise OptionalDependencyNotAvailable()
|
90 |
+
except OptionalDependencyNotAvailable:
|
91 |
+
pass
|
92 |
+
else:
|
93 |
+
from .modeling_tf_gptj import (
|
94 |
+
TFGPTJForCausalLM,
|
95 |
+
TFGPTJForQuestionAnswering,
|
96 |
+
TFGPTJForSequenceClassification,
|
97 |
+
TFGPTJModel,
|
98 |
+
TFGPTJPreTrainedModel,
|
99 |
+
)
|
100 |
+
|
101 |
+
try:
|
102 |
+
if not is_flax_available():
|
103 |
+
raise OptionalDependencyNotAvailable()
|
104 |
+
except OptionalDependencyNotAvailable:
|
105 |
+
pass
|
106 |
+
else:
|
107 |
+
from .modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel
|
108 |
+
|
109 |
+
else:
|
110 |
+
import sys
|
111 |
+
|
112 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.59 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/configuration_gptj.cpython-310.pyc
ADDED
Binary file (7.67 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_flax_gptj.cpython-310.pyc
ADDED
Binary file (21 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_gptj.cpython-310.pyc
ADDED
Binary file (38.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_tf_gptj.cpython-310.pyc
ADDED
Binary file (33.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/configuration_gptj.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GPT-J model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Any, List, Mapping, Optional
|
18 |
+
|
19 |
+
from ... import PreTrainedTokenizer, TensorType, is_torch_available
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...onnx import OnnxConfigWithPast, PatchingSpec
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
from ..deprecated._archive_maps import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
29 |
+
|
30 |
+
|
31 |
+
class GPTJConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the GPT-J
|
36 |
+
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
|
37 |
+
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
38 |
+
for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 50400):
|
42 |
+
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`GPTJModel`].
|
44 |
+
n_positions (`int`, *optional*, defaults to 2048):
|
45 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
46 |
+
just in case (e.g., 512 or 1024 or 2048).
|
47 |
+
n_embd (`int`, *optional*, defaults to 4096):
|
48 |
+
Dimensionality of the embeddings and hidden states.
|
49 |
+
n_layer (`int`, *optional*, defaults to 28):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
n_head (`int`, *optional*, defaults to 16):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
rotary_dim (`int`, *optional*, defaults to 64):
|
54 |
+
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
55 |
+
n_inner (`int`, *optional*, defaults to None):
|
56 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
57 |
+
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
58 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
59 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
60 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
61 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
62 |
+
The dropout ratio for the embeddings.
|
63 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
64 |
+
The dropout ratio for the attention.
|
65 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
66 |
+
The epsilon to use in the layer normalization layers.
|
67 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
71 |
+
|
72 |
+
Example:
|
73 |
+
|
74 |
+
```python
|
75 |
+
>>> from transformers import GPTJModel, GPTJConfig
|
76 |
+
|
77 |
+
>>> # Initializing a GPT-J 6B configuration
|
78 |
+
>>> configuration = GPTJConfig()
|
79 |
+
|
80 |
+
>>> # Initializing a model from the configuration
|
81 |
+
>>> model = GPTJModel(configuration)
|
82 |
+
|
83 |
+
>>> # Accessing the model configuration
|
84 |
+
>>> configuration = model.config
|
85 |
+
```"""
|
86 |
+
|
87 |
+
model_type = "gptj"
|
88 |
+
attribute_map = {
|
89 |
+
"max_position_embeddings": "n_positions",
|
90 |
+
"hidden_size": "n_embd",
|
91 |
+
"num_attention_heads": "n_head",
|
92 |
+
"num_hidden_layers": "n_layer",
|
93 |
+
}
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
vocab_size=50400,
|
98 |
+
n_positions=2048,
|
99 |
+
n_embd=4096,
|
100 |
+
n_layer=28,
|
101 |
+
n_head=16,
|
102 |
+
rotary_dim=64,
|
103 |
+
n_inner=None,
|
104 |
+
activation_function="gelu_new",
|
105 |
+
resid_pdrop=0.0,
|
106 |
+
embd_pdrop=0.0,
|
107 |
+
attn_pdrop=0.0,
|
108 |
+
layer_norm_epsilon=1e-5,
|
109 |
+
initializer_range=0.02,
|
110 |
+
use_cache=True,
|
111 |
+
bos_token_id=50256,
|
112 |
+
eos_token_id=50256,
|
113 |
+
tie_word_embeddings=False,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
self.vocab_size = vocab_size
|
117 |
+
self.n_positions = n_positions
|
118 |
+
self.n_embd = n_embd
|
119 |
+
self.n_layer = n_layer
|
120 |
+
self.n_head = n_head
|
121 |
+
self.n_inner = n_inner
|
122 |
+
self.rotary_dim = rotary_dim
|
123 |
+
self.activation_function = activation_function
|
124 |
+
self.resid_pdrop = resid_pdrop
|
125 |
+
self.embd_pdrop = embd_pdrop
|
126 |
+
self.attn_pdrop = attn_pdrop
|
127 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
128 |
+
self.initializer_range = initializer_range
|
129 |
+
self.use_cache = use_cache
|
130 |
+
|
131 |
+
self.bos_token_id = bos_token_id
|
132 |
+
self.eos_token_id = eos_token_id
|
133 |
+
|
134 |
+
super().__init__(
|
135 |
+
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig
|
140 |
+
class GPTJOnnxConfig(OnnxConfigWithPast):
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
config: PretrainedConfig,
|
144 |
+
task: str = "default",
|
145 |
+
patching_specs: List[PatchingSpec] = None,
|
146 |
+
use_past: bool = False,
|
147 |
+
):
|
148 |
+
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
149 |
+
if not getattr(self._config, "pad_token_id", None):
|
150 |
+
# TODO: how to do that better?
|
151 |
+
self._config.pad_token_id = 0
|
152 |
+
|
153 |
+
@property
|
154 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
155 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
156 |
+
if self.use_past:
|
157 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
158 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
159 |
+
else:
|
160 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
161 |
+
|
162 |
+
return common_inputs
|
163 |
+
|
164 |
+
@property
|
165 |
+
def num_layers(self) -> int:
|
166 |
+
return self._config.n_layer
|
167 |
+
|
168 |
+
@property
|
169 |
+
def num_attention_heads(self) -> int:
|
170 |
+
return self._config.n_head
|
171 |
+
|
172 |
+
def generate_dummy_inputs(
|
173 |
+
self,
|
174 |
+
tokenizer: PreTrainedTokenizer,
|
175 |
+
batch_size: int = -1,
|
176 |
+
seq_length: int = -1,
|
177 |
+
is_pair: bool = False,
|
178 |
+
framework: Optional[TensorType] = None,
|
179 |
+
) -> Mapping[str, Any]:
|
180 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
181 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
182 |
+
)
|
183 |
+
|
184 |
+
# We need to order the input in the way they appears in the forward()
|
185 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
186 |
+
|
187 |
+
# Need to add the past_keys
|
188 |
+
if self.use_past:
|
189 |
+
if not is_torch_available():
|
190 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
191 |
+
else:
|
192 |
+
import torch
|
193 |
+
|
194 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
195 |
+
# Not using the same length for past_key_values
|
196 |
+
past_key_values_length = seqlen + 2
|
197 |
+
past_shape = (
|
198 |
+
batch,
|
199 |
+
self.num_attention_heads,
|
200 |
+
past_key_values_length,
|
201 |
+
self._config.hidden_size // self.num_attention_heads,
|
202 |
+
)
|
203 |
+
ordered_inputs["past_key_values"] = [
|
204 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
|
205 |
+
]
|
206 |
+
|
207 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
208 |
+
if self.use_past:
|
209 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
210 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
211 |
+
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
212 |
+
)
|
213 |
+
|
214 |
+
return ordered_inputs
|
215 |
+
|
216 |
+
@property
|
217 |
+
def default_onnx_opset(self) -> int:
|
218 |
+
return 13
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/modeling_flax_gptj.py
ADDED
@@ -0,0 +1,718 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from functools import partial
|
17 |
+
from typing import Optional, Tuple
|
18 |
+
|
19 |
+
import flax.linen as nn
|
20 |
+
import jax
|
21 |
+
import jax.numpy as jnp
|
22 |
+
import numpy as np
|
23 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
24 |
+
from flax.linen import combine_masks, make_causal_mask
|
25 |
+
from flax.linen.attention import dot_product_attention_weights
|
26 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
27 |
+
from jax import lax
|
28 |
+
|
29 |
+
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
|
30 |
+
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
|
31 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
32 |
+
from .configuration_gptj import GPTJConfig
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
_CHECKPOINT_FOR_DOC = "gptj"
|
38 |
+
_CONFIG_FOR_DOC = "GPTJConfig"
|
39 |
+
|
40 |
+
|
41 |
+
GPTJ_START_DOCSTRING = r"""
|
42 |
+
|
43 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
44 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
45 |
+
etc.)
|
46 |
+
|
47 |
+
This model is also a Flax Linen
|
48 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
49 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
50 |
+
|
51 |
+
Finally, this model supports inherent JAX features such as:
|
52 |
+
|
53 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
54 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
55 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
56 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
57 |
+
|
58 |
+
Parameters:
|
59 |
+
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
|
60 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
61 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
62 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
63 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
64 |
+
`jax.numpy.bfloat16` (on TPUs).
|
65 |
+
|
66 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
67 |
+
specified all the computation will be performed with the given `dtype`.
|
68 |
+
|
69 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
70 |
+
parameters.**
|
71 |
+
|
72 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
73 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
74 |
+
"""
|
75 |
+
|
76 |
+
GPTJ_INPUTS_DOCSTRING = r"""
|
77 |
+
Args:
|
78 |
+
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
|
79 |
+
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
|
80 |
+
|
81 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
82 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
83 |
+
|
84 |
+
[What are input IDs?](../glossary#input-ids)
|
85 |
+
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
86 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
87 |
+
|
88 |
+
- 1 for tokens that are **not masked**,
|
89 |
+
- 0 for tokens that are **masked**.
|
90 |
+
|
91 |
+
[What are attention masks?](../glossary#attention-mask)
|
92 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
93 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
94 |
+
config.max_position_embeddings - 1]`.
|
95 |
+
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
|
96 |
+
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
|
97 |
+
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
|
98 |
+
output_attentions (`bool`, *optional*):
|
99 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
100 |
+
tensors for more detail.
|
101 |
+
output_hidden_states (`bool`, *optional*):
|
102 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
103 |
+
more detail.
|
104 |
+
return_dict (`bool`, *optional*):
|
105 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
106 |
+
"""
|
107 |
+
|
108 |
+
|
109 |
+
def create_sinusoidal_positions(num_pos, dim):
|
110 |
+
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
|
111 |
+
sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32")
|
112 |
+
sin, cos = np.sin(sinusoid_inp), np.cos(sinusoid_inp)
|
113 |
+
|
114 |
+
sentinel = dim // 2 + dim % 2
|
115 |
+
out = np.zeros((num_pos, dim))
|
116 |
+
out[:, 0:sentinel] = sin
|
117 |
+
out[:, sentinel:] = cos
|
118 |
+
|
119 |
+
return jnp.array(out)
|
120 |
+
|
121 |
+
|
122 |
+
def rotate_every_two(tensor):
|
123 |
+
rotate_half_tensor = jnp.stack((-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1)
|
124 |
+
rotate_half_tensor = rotate_half_tensor.reshape(rotate_half_tensor.shape[:-2] + (-1,))
|
125 |
+
return rotate_half_tensor
|
126 |
+
|
127 |
+
|
128 |
+
def apply_rotary_pos_emb(tensor, sincos):
|
129 |
+
sin_pos, cos_pos = sincos
|
130 |
+
sin_pos = sin_pos[:, :, None, :].repeat(2, 3)
|
131 |
+
cos_pos = cos_pos[:, :, None, :].repeat(2, 3)
|
132 |
+
return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos)
|
133 |
+
|
134 |
+
|
135 |
+
class FlaxGPTJAttention(nn.Module):
|
136 |
+
config: GPTJConfig
|
137 |
+
dtype: jnp.dtype = jnp.float32
|
138 |
+
causal: bool = True
|
139 |
+
is_cross_attention: bool = False
|
140 |
+
|
141 |
+
def setup(self):
|
142 |
+
config = self.config
|
143 |
+
self.embed_dim = config.hidden_size
|
144 |
+
self.num_heads = config.num_attention_heads
|
145 |
+
self.head_dim = self.embed_dim // self.num_heads
|
146 |
+
|
147 |
+
self.rotary_dim = config.rotary_dim
|
148 |
+
|
149 |
+
dense = partial(
|
150 |
+
nn.Dense,
|
151 |
+
self.embed_dim,
|
152 |
+
use_bias=False,
|
153 |
+
dtype=self.dtype,
|
154 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
155 |
+
)
|
156 |
+
|
157 |
+
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
|
158 |
+
self.out_proj = dense()
|
159 |
+
|
160 |
+
self.resid_dropout = nn.Dropout(rate=config.resid_pdrop)
|
161 |
+
|
162 |
+
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
|
163 |
+
|
164 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
165 |
+
self.embed_positions = create_sinusoidal_positions(config.max_position_embeddings, pos_embd_dim)
|
166 |
+
|
167 |
+
def _split_heads(self, hidden_states):
|
168 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
|
169 |
+
|
170 |
+
def _merge_heads(self, hidden_states):
|
171 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
172 |
+
|
173 |
+
@nn.compact
|
174 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
175 |
+
"""
|
176 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
177 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
178 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
179 |
+
"""
|
180 |
+
# detect if we're initializing by absence of existing cache data.
|
181 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
182 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
183 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
184 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
185 |
+
|
186 |
+
if is_initialized:
|
187 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
188 |
+
# update key, value caches with our new 1d spatial slices
|
189 |
+
cur_index = cache_index.value
|
190 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
191 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
192 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
193 |
+
cached_key.value = key
|
194 |
+
cached_value.value = value
|
195 |
+
num_updated_cache_vectors = query.shape[1]
|
196 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
197 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key
|
198 |
+
# positions that have already been generated and cached, not the remaining zero elements.
|
199 |
+
pad_mask = jnp.broadcast_to(
|
200 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
201 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
202 |
+
)
|
203 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
204 |
+
return key, value, attention_mask
|
205 |
+
|
206 |
+
def __call__(
|
207 |
+
self,
|
208 |
+
hidden_states,
|
209 |
+
attention_mask,
|
210 |
+
position_ids,
|
211 |
+
deterministic: bool = True,
|
212 |
+
init_cache: bool = False,
|
213 |
+
output_attentions: bool = False,
|
214 |
+
):
|
215 |
+
query = self.q_proj(hidden_states)
|
216 |
+
key = self.k_proj(hidden_states)
|
217 |
+
value = self.v_proj(hidden_states)
|
218 |
+
|
219 |
+
query = self._split_heads(query)
|
220 |
+
key = self._split_heads(key)
|
221 |
+
value = self._split_heads(value)
|
222 |
+
|
223 |
+
sincos = jnp.take(self.embed_positions, position_ids, axis=0)
|
224 |
+
sincos = jnp.split(sincos, 2, axis=-1)
|
225 |
+
if self.rotary_dim is not None:
|
226 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
227 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
228 |
+
|
229 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
230 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
231 |
+
|
232 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos)
|
233 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos)
|
234 |
+
|
235 |
+
key = jnp.concatenate([k_rot, k_pass], axis=-1)
|
236 |
+
query = jnp.concatenate([q_rot, q_pass], axis=-1)
|
237 |
+
else:
|
238 |
+
key = apply_rotary_pos_emb(key, sincos)
|
239 |
+
query = apply_rotary_pos_emb(query, sincos)
|
240 |
+
|
241 |
+
query_length, key_length = query.shape[1], key.shape[1]
|
242 |
+
|
243 |
+
if self.has_variable("cache", "cached_key"):
|
244 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
245 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
246 |
+
causal_mask = lax.dynamic_slice(
|
247 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
251 |
+
|
252 |
+
batch_size = hidden_states.shape[0]
|
253 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
254 |
+
|
255 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
256 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
257 |
+
|
258 |
+
dropout_rng = None
|
259 |
+
if not deterministic and self.config.attn_pdrop > 0.0:
|
260 |
+
dropout_rng = self.make_rng("dropout")
|
261 |
+
|
262 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
263 |
+
# and cache the keys and values step by step.
|
264 |
+
if self.has_variable("cache", "cached_key") or init_cache:
|
265 |
+
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
|
266 |
+
|
267 |
+
# transform boolean mask into float mask
|
268 |
+
attention_bias = lax.select(
|
269 |
+
attention_mask > 0,
|
270 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
271 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
272 |
+
)
|
273 |
+
|
274 |
+
# usual dot product attention
|
275 |
+
attn_weights = dot_product_attention_weights(
|
276 |
+
query,
|
277 |
+
key,
|
278 |
+
bias=attention_bias,
|
279 |
+
dropout_rng=dropout_rng,
|
280 |
+
dropout_rate=self.config.attn_pdrop,
|
281 |
+
deterministic=deterministic,
|
282 |
+
dtype=self.dtype,
|
283 |
+
precision=None,
|
284 |
+
)
|
285 |
+
|
286 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
|
287 |
+
attn_output = self._merge_heads(attn_output)
|
288 |
+
attn_output = self.out_proj(attn_output)
|
289 |
+
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
|
290 |
+
|
291 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
292 |
+
return outputs
|
293 |
+
|
294 |
+
|
295 |
+
class FlaxGPTJMLP(nn.Module):
|
296 |
+
config: GPTJConfig
|
297 |
+
intermediate_size: int
|
298 |
+
dtype: jnp.dtype = jnp.float32
|
299 |
+
|
300 |
+
def setup(self):
|
301 |
+
embed_dim = self.config.hidden_size
|
302 |
+
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
|
303 |
+
|
304 |
+
self.fc_in = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=kernel_init)
|
305 |
+
self.fc_out = nn.Dense(embed_dim, dtype=self.dtype, kernel_init=kernel_init)
|
306 |
+
|
307 |
+
self.act = ACT2FN[self.config.activation_function]
|
308 |
+
self.dropout = nn.Dropout(rate=self.config.resid_pdrop)
|
309 |
+
|
310 |
+
def __call__(self, hidden_states, deterministic: bool = True):
|
311 |
+
hidden_states = self.fc_in(hidden_states)
|
312 |
+
hidden_states = self.act(hidden_states)
|
313 |
+
hidden_states = self.fc_out(hidden_states)
|
314 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
315 |
+
return hidden_states
|
316 |
+
|
317 |
+
|
318 |
+
class FlaxGPTJBlock(nn.Module):
|
319 |
+
config: GPTJConfig
|
320 |
+
dtype: jnp.dtype = jnp.float32
|
321 |
+
|
322 |
+
def setup(self):
|
323 |
+
hidden_size = self.config.hidden_size
|
324 |
+
inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size
|
325 |
+
|
326 |
+
self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
327 |
+
self.attn = FlaxGPTJAttention(self.config, dtype=self.dtype)
|
328 |
+
|
329 |
+
self.mlp = FlaxGPTJMLP(self.config, inner_dim, dtype=self.dtype)
|
330 |
+
|
331 |
+
def __call__(
|
332 |
+
self,
|
333 |
+
hidden_states,
|
334 |
+
attention_mask=None,
|
335 |
+
position_ids=None,
|
336 |
+
deterministic: bool = True,
|
337 |
+
init_cache: bool = False,
|
338 |
+
output_attentions: bool = False,
|
339 |
+
):
|
340 |
+
residual = hidden_states
|
341 |
+
hidden_states = self.ln_1(hidden_states)
|
342 |
+
attn_outputs = self.attn(
|
343 |
+
hidden_states,
|
344 |
+
attention_mask=attention_mask,
|
345 |
+
position_ids=position_ids,
|
346 |
+
deterministic=deterministic,
|
347 |
+
init_cache=init_cache,
|
348 |
+
output_attentions=output_attentions,
|
349 |
+
)
|
350 |
+
attn_output = attn_outputs[0]
|
351 |
+
|
352 |
+
feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
|
353 |
+
# residual connection
|
354 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
355 |
+
|
356 |
+
return (hidden_states,) + attn_outputs[1:]
|
357 |
+
|
358 |
+
|
359 |
+
class FlaxGPTJPreTrainedModel(FlaxPreTrainedModel):
|
360 |
+
"""
|
361 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
362 |
+
models.
|
363 |
+
"""
|
364 |
+
|
365 |
+
config_class = GPTJConfig
|
366 |
+
base_model_prefix = "transformer"
|
367 |
+
module_class: nn.Module = None
|
368 |
+
|
369 |
+
def __init__(
|
370 |
+
self,
|
371 |
+
config: GPTJConfig,
|
372 |
+
input_shape: Tuple = (1, 1),
|
373 |
+
seed: int = 0,
|
374 |
+
dtype: jnp.dtype = jnp.float32,
|
375 |
+
_do_init: bool = True,
|
376 |
+
**kwargs,
|
377 |
+
):
|
378 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
379 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
380 |
+
|
381 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
382 |
+
# init input tensors
|
383 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
384 |
+
attention_mask = jnp.ones_like(input_ids)
|
385 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
|
386 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
387 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
388 |
+
|
389 |
+
if self.config.add_cross_attention:
|
390 |
+
encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,))
|
391 |
+
encoder_attention_mask = attention_mask
|
392 |
+
module_init_outputs = self.module.init(
|
393 |
+
rngs,
|
394 |
+
input_ids,
|
395 |
+
attention_mask,
|
396 |
+
position_ids,
|
397 |
+
encoder_hidden_states,
|
398 |
+
encoder_attention_mask,
|
399 |
+
return_dict=False,
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)
|
403 |
+
|
404 |
+
random_params = module_init_outputs["params"]
|
405 |
+
|
406 |
+
if params is not None:
|
407 |
+
random_params = flatten_dict(unfreeze(random_params))
|
408 |
+
params = flatten_dict(unfreeze(params))
|
409 |
+
for missing_key in self._missing_keys:
|
410 |
+
params[missing_key] = random_params[missing_key]
|
411 |
+
self._missing_keys = set()
|
412 |
+
return freeze(unflatten_dict(params))
|
413 |
+
else:
|
414 |
+
return random_params
|
415 |
+
|
416 |
+
def init_cache(self, batch_size, max_length):
|
417 |
+
r"""
|
418 |
+
Args:
|
419 |
+
batch_size (`int`):
|
420 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
421 |
+
max_length (`int`):
|
422 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
423 |
+
cache.
|
424 |
+
"""
|
425 |
+
# init input variables to retrieve cache
|
426 |
+
input_ids = jnp.ones((batch_size, max_length))
|
427 |
+
attention_mask = jnp.ones_like(input_ids)
|
428 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
429 |
+
|
430 |
+
init_variables = self.module.init(
|
431 |
+
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
|
432 |
+
)
|
433 |
+
return init_variables["cache"]
|
434 |
+
|
435 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING)
|
436 |
+
def __call__(
|
437 |
+
self,
|
438 |
+
input_ids,
|
439 |
+
attention_mask=None,
|
440 |
+
position_ids=None,
|
441 |
+
params: dict = None,
|
442 |
+
past_key_values: dict = None,
|
443 |
+
dropout_rng: jax.random.PRNGKey = None,
|
444 |
+
train: bool = False,
|
445 |
+
output_attentions: Optional[bool] = None,
|
446 |
+
output_hidden_states: Optional[bool] = None,
|
447 |
+
return_dict: Optional[bool] = None,
|
448 |
+
):
|
449 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
450 |
+
output_hidden_states = (
|
451 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
452 |
+
)
|
453 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
454 |
+
|
455 |
+
batch_size, sequence_length = input_ids.shape
|
456 |
+
|
457 |
+
if position_ids is None:
|
458 |
+
if past_key_values is not None:
|
459 |
+
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
|
460 |
+
|
461 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
462 |
+
|
463 |
+
if attention_mask is None:
|
464 |
+
attention_mask = jnp.ones((batch_size, sequence_length))
|
465 |
+
|
466 |
+
# Handle any PRNG if needed
|
467 |
+
rngs = {}
|
468 |
+
if dropout_rng is not None:
|
469 |
+
rngs["dropout"] = dropout_rng
|
470 |
+
|
471 |
+
inputs = {"params": params or self.params}
|
472 |
+
|
473 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTJAttention module
|
474 |
+
if past_key_values:
|
475 |
+
inputs["cache"] = past_key_values
|
476 |
+
mutable = ["cache"]
|
477 |
+
else:
|
478 |
+
mutable = False
|
479 |
+
|
480 |
+
outputs = self.module.apply(
|
481 |
+
inputs,
|
482 |
+
jnp.array(input_ids, dtype="i4"),
|
483 |
+
jnp.array(attention_mask, dtype="i4"),
|
484 |
+
jnp.array(position_ids, dtype="i4"),
|
485 |
+
not train,
|
486 |
+
False,
|
487 |
+
output_attentions,
|
488 |
+
output_hidden_states,
|
489 |
+
return_dict,
|
490 |
+
rngs=rngs,
|
491 |
+
mutable=mutable,
|
492 |
+
)
|
493 |
+
|
494 |
+
# add updated cache to model output
|
495 |
+
if past_key_values is not None and return_dict:
|
496 |
+
outputs, past_key_values = outputs
|
497 |
+
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
498 |
+
return outputs
|
499 |
+
elif past_key_values is not None and not return_dict:
|
500 |
+
outputs, past_key_values = outputs
|
501 |
+
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
502 |
+
|
503 |
+
return outputs
|
504 |
+
|
505 |
+
|
506 |
+
class FlaxGPTJBlockCollection(nn.Module):
|
507 |
+
config: GPTJConfig
|
508 |
+
dtype: jnp.dtype = jnp.float32
|
509 |
+
|
510 |
+
def setup(self):
|
511 |
+
self.blocks = [
|
512 |
+
FlaxGPTJBlock(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
|
513 |
+
]
|
514 |
+
|
515 |
+
def __call__(
|
516 |
+
self,
|
517 |
+
hidden_states,
|
518 |
+
attention_mask=None,
|
519 |
+
position_ids=None,
|
520 |
+
deterministic: bool = True,
|
521 |
+
init_cache: bool = False,
|
522 |
+
output_attentions: bool = False,
|
523 |
+
output_hidden_states: bool = False,
|
524 |
+
return_dict: bool = True,
|
525 |
+
):
|
526 |
+
all_attentions = () if output_attentions else None
|
527 |
+
all_hidden_states = () if output_hidden_states else None
|
528 |
+
|
529 |
+
for block in self.blocks:
|
530 |
+
if output_hidden_states:
|
531 |
+
all_hidden_states += (hidden_states,)
|
532 |
+
|
533 |
+
layer_outputs = block(
|
534 |
+
hidden_states,
|
535 |
+
attention_mask,
|
536 |
+
position_ids=position_ids,
|
537 |
+
deterministic=deterministic,
|
538 |
+
init_cache=init_cache,
|
539 |
+
output_attentions=output_attentions,
|
540 |
+
)
|
541 |
+
hidden_states = layer_outputs[0]
|
542 |
+
|
543 |
+
if output_attentions:
|
544 |
+
all_attentions += (layer_outputs[1],)
|
545 |
+
|
546 |
+
# this contains possible `None` values - `FlaxGPTJModule` will filter them out
|
547 |
+
outputs = (hidden_states, all_hidden_states, all_attentions)
|
548 |
+
|
549 |
+
return outputs
|
550 |
+
|
551 |
+
|
552 |
+
class FlaxGPTJModule(nn.Module):
|
553 |
+
config: GPTJConfig
|
554 |
+
dtype: jnp.dtype = jnp.float32
|
555 |
+
|
556 |
+
def setup(self):
|
557 |
+
self.embed_dim = self.config.hidden_size
|
558 |
+
|
559 |
+
self.wte = nn.Embed(
|
560 |
+
self.config.vocab_size,
|
561 |
+
self.config.hidden_size,
|
562 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
563 |
+
)
|
564 |
+
self.dropout = nn.Dropout(rate=self.config.embd_pdrop)
|
565 |
+
self.h = FlaxGPTJBlockCollection(self.config, dtype=self.dtype)
|
566 |
+
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
567 |
+
|
568 |
+
def __call__(
|
569 |
+
self,
|
570 |
+
input_ids,
|
571 |
+
attention_mask,
|
572 |
+
position_ids,
|
573 |
+
deterministic=True,
|
574 |
+
init_cache: bool = False,
|
575 |
+
output_attentions: bool = False,
|
576 |
+
output_hidden_states: bool = False,
|
577 |
+
return_dict: bool = True,
|
578 |
+
):
|
579 |
+
input_embeds = self.wte(input_ids.astype("i4"))
|
580 |
+
|
581 |
+
hidden_states = self.dropout(input_embeds, deterministic=deterministic)
|
582 |
+
|
583 |
+
outputs = self.h(
|
584 |
+
hidden_states,
|
585 |
+
attention_mask,
|
586 |
+
position_ids=position_ids,
|
587 |
+
deterministic=deterministic,
|
588 |
+
init_cache=init_cache,
|
589 |
+
output_attentions=output_attentions,
|
590 |
+
output_hidden_states=output_hidden_states,
|
591 |
+
return_dict=return_dict,
|
592 |
+
)
|
593 |
+
|
594 |
+
hidden_states = outputs[0]
|
595 |
+
hidden_states = self.ln_f(hidden_states)
|
596 |
+
|
597 |
+
if output_hidden_states:
|
598 |
+
all_hidden_states = outputs[1] + (hidden_states,)
|
599 |
+
outputs = (hidden_states, all_hidden_states) + outputs[2:]
|
600 |
+
else:
|
601 |
+
outputs = (hidden_states,) + outputs[1:]
|
602 |
+
|
603 |
+
if not return_dict:
|
604 |
+
return tuple(v for v in outputs if v is not None)
|
605 |
+
|
606 |
+
return FlaxBaseModelOutput(
|
607 |
+
last_hidden_state=hidden_states,
|
608 |
+
hidden_states=outputs[1],
|
609 |
+
attentions=outputs[-1],
|
610 |
+
)
|
611 |
+
|
612 |
+
|
613 |
+
@add_start_docstrings(
|
614 |
+
"The bare GPTJ Model transformer outputting raw hidden-states without any specific head on top.",
|
615 |
+
GPTJ_START_DOCSTRING,
|
616 |
+
)
|
617 |
+
class FlaxGPTJModel(FlaxGPTJPreTrainedModel):
|
618 |
+
module_class = FlaxGPTJModule
|
619 |
+
|
620 |
+
|
621 |
+
append_call_sample_docstring(
|
622 |
+
FlaxGPTJModel,
|
623 |
+
_CHECKPOINT_FOR_DOC,
|
624 |
+
FlaxCausalLMOutput,
|
625 |
+
_CONFIG_FOR_DOC,
|
626 |
+
)
|
627 |
+
|
628 |
+
|
629 |
+
class FlaxGPTJForCausalLMModule(nn.Module):
|
630 |
+
config: GPTJConfig
|
631 |
+
dtype: jnp.dtype = jnp.float32
|
632 |
+
|
633 |
+
def setup(self):
|
634 |
+
self.transformer = FlaxGPTJModule(self.config, dtype=self.dtype)
|
635 |
+
self.lm_head = nn.Dense(
|
636 |
+
self.config.vocab_size,
|
637 |
+
dtype=self.dtype,
|
638 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
639 |
+
)
|
640 |
+
|
641 |
+
def __call__(
|
642 |
+
self,
|
643 |
+
input_ids,
|
644 |
+
attention_mask,
|
645 |
+
position_ids,
|
646 |
+
deterministic: bool = True,
|
647 |
+
init_cache: bool = False,
|
648 |
+
output_attentions: bool = False,
|
649 |
+
output_hidden_states: bool = False,
|
650 |
+
return_dict: bool = True,
|
651 |
+
):
|
652 |
+
outputs = self.transformer(
|
653 |
+
input_ids,
|
654 |
+
attention_mask,
|
655 |
+
position_ids,
|
656 |
+
deterministic=deterministic,
|
657 |
+
init_cache=init_cache,
|
658 |
+
output_attentions=output_attentions,
|
659 |
+
output_hidden_states=output_hidden_states,
|
660 |
+
return_dict=return_dict,
|
661 |
+
)
|
662 |
+
|
663 |
+
hidden_states = outputs[0]
|
664 |
+
|
665 |
+
if self.config.tie_word_embeddings:
|
666 |
+
shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
|
667 |
+
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
|
668 |
+
else:
|
669 |
+
lm_logits = self.lm_head(hidden_states)
|
670 |
+
|
671 |
+
if not return_dict:
|
672 |
+
return (lm_logits,) + outputs[1:]
|
673 |
+
|
674 |
+
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
675 |
+
|
676 |
+
|
677 |
+
@add_start_docstrings(
|
678 |
+
"""
|
679 |
+
The GPTJ Model transformer with a language modeling head on top.
|
680 |
+
""",
|
681 |
+
GPTJ_START_DOCSTRING,
|
682 |
+
)
|
683 |
+
class FlaxGPTJForCausalLM(FlaxGPTJPreTrainedModel):
|
684 |
+
module_class = FlaxGPTJForCausalLMModule
|
685 |
+
|
686 |
+
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
687 |
+
# initializing the cache
|
688 |
+
batch_size, seq_length = input_ids.shape
|
689 |
+
|
690 |
+
past_key_values = self.init_cache(batch_size, max_length)
|
691 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
692 |
+
# But since GPTJ uses a causal mask, those positions are masked anyways.
|
693 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
694 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
695 |
+
if attention_mask is not None:
|
696 |
+
position_ids = attention_mask.cumsum(axis=-1) - 1
|
697 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
|
698 |
+
else:
|
699 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
700 |
+
|
701 |
+
return {
|
702 |
+
"past_key_values": past_key_values,
|
703 |
+
"attention_mask": extended_attention_mask,
|
704 |
+
"position_ids": position_ids,
|
705 |
+
}
|
706 |
+
|
707 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
708 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
709 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
710 |
+
return model_kwargs
|
711 |
+
|
712 |
+
|
713 |
+
append_call_sample_docstring(
|
714 |
+
FlaxGPTJForCausalLM,
|
715 |
+
_CHECKPOINT_FOR_DOC,
|
716 |
+
FlaxCausalLMOutput,
|
717 |
+
_CONFIG_FOR_DOC,
|
718 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/modeling_gptj.py
ADDED
@@ -0,0 +1,1427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GPT-J model."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.fx
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BaseModelOutputWithPast,
|
30 |
+
CausalLMOutputWithPast,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutputWithPast,
|
33 |
+
)
|
34 |
+
from ...modeling_utils import PreTrainedModel
|
35 |
+
from ...utils import (
|
36 |
+
add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
is_flash_attn_2_available,
|
40 |
+
is_flash_attn_greater_or_equal_2_10,
|
41 |
+
is_torch_fx_proxy,
|
42 |
+
logging,
|
43 |
+
)
|
44 |
+
from ...utils.model_parallel_utils import assert_device_map, get_device_map
|
45 |
+
from .configuration_gptj import GPTJConfig
|
46 |
+
|
47 |
+
|
48 |
+
if is_flash_attn_2_available():
|
49 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
50 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj"
|
56 |
+
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
|
57 |
+
_CONFIG_FOR_DOC = "GPTJConfig"
|
58 |
+
|
59 |
+
|
60 |
+
from ..deprecated._archive_maps import GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
61 |
+
|
62 |
+
|
63 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
64 |
+
def _get_unpad_data(attention_mask):
|
65 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
66 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
67 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
68 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
69 |
+
return (
|
70 |
+
indices,
|
71 |
+
cu_seqlens,
|
72 |
+
max_seqlen_in_batch,
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
77 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim))
|
78 |
+
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq).float()
|
79 |
+
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
80 |
+
|
81 |
+
|
82 |
+
@torch.fx.wrap
|
83 |
+
def get_embed_positions(embed_positions, position_ids):
|
84 |
+
return embed_positions.to(position_ids.device).repeat(position_ids.shape[0], 1, 1)
|
85 |
+
|
86 |
+
|
87 |
+
def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
|
88 |
+
x1 = x[:, :, :, ::2]
|
89 |
+
x2 = x[:, :, :, 1::2]
|
90 |
+
x = torch.stack((-x2, x1), dim=-1)
|
91 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
92 |
+
|
93 |
+
|
94 |
+
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
|
95 |
+
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
96 |
+
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
97 |
+
return (tensor * cos) + (rotate_every_two(tensor) * sin)
|
98 |
+
|
99 |
+
|
100 |
+
class GPTJAttention(nn.Module):
|
101 |
+
def __init__(self, config):
|
102 |
+
super().__init__()
|
103 |
+
self.config = config
|
104 |
+
max_positions = config.max_position_embeddings
|
105 |
+
self.register_buffer(
|
106 |
+
"bias",
|
107 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
108 |
+
1, 1, max_positions, max_positions
|
109 |
+
),
|
110 |
+
persistent=False,
|
111 |
+
)
|
112 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
|
113 |
+
|
114 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
115 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
116 |
+
|
117 |
+
self.is_causal = True
|
118 |
+
|
119 |
+
self.embed_dim = config.hidden_size
|
120 |
+
self.num_attention_heads = config.num_attention_heads
|
121 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
122 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
123 |
+
raise ValueError(
|
124 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
125 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
126 |
+
)
|
127 |
+
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
128 |
+
|
129 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
130 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
131 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
132 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
133 |
+
self.rotary_dim = config.rotary_dim
|
134 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
135 |
+
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
|
136 |
+
|
137 |
+
def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
|
138 |
+
"""
|
139 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
140 |
+
"""
|
141 |
+
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
142 |
+
tensor = tensor.view(new_shape)
|
143 |
+
if rotary:
|
144 |
+
return tensor
|
145 |
+
if len(tensor.shape) == 5:
|
146 |
+
return tensor.permute(0, 1, 3, 2, 4) # (batch, blocks, head, block_length, head_features)
|
147 |
+
elif len(tensor.shape) == 4:
|
148 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
149 |
+
else:
|
150 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
151 |
+
|
152 |
+
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
153 |
+
"""
|
154 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
155 |
+
"""
|
156 |
+
if len(tensor.shape) == 5:
|
157 |
+
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
158 |
+
elif len(tensor.shape) == 4:
|
159 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
160 |
+
else:
|
161 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
162 |
+
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
163 |
+
return tensor.view(new_shape)
|
164 |
+
|
165 |
+
def _attn(
|
166 |
+
self,
|
167 |
+
query,
|
168 |
+
key,
|
169 |
+
value,
|
170 |
+
attention_mask=None,
|
171 |
+
head_mask=None,
|
172 |
+
):
|
173 |
+
# compute causal mask from causal mask buffer
|
174 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
175 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
176 |
+
|
177 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
178 |
+
query = query.to(torch.float32)
|
179 |
+
key = key.to(torch.float32)
|
180 |
+
|
181 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
182 |
+
|
183 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
184 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
185 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
186 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
187 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
188 |
+
|
189 |
+
attn_weights = attn_weights / self.scale_attn
|
190 |
+
|
191 |
+
if attention_mask is not None:
|
192 |
+
# Apply the attention mask
|
193 |
+
attn_weights = attn_weights + attention_mask
|
194 |
+
|
195 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
196 |
+
attn_weights = attn_weights.to(value.dtype)
|
197 |
+
attn_weights = self.attn_dropout(attn_weights)
|
198 |
+
|
199 |
+
# Mask heads if we want to
|
200 |
+
if head_mask is not None:
|
201 |
+
attn_weights = attn_weights * head_mask
|
202 |
+
|
203 |
+
attn_output = torch.matmul(attn_weights, value)
|
204 |
+
|
205 |
+
return attn_output, attn_weights
|
206 |
+
|
207 |
+
def _get_embed_positions(self, position_ids):
|
208 |
+
embed_positions = self.embed_positions
|
209 |
+
if embed_positions.device != position_ids.device:
|
210 |
+
embed_positions = embed_positions.to(position_ids.device)
|
211 |
+
self.embed_positions = embed_positions
|
212 |
+
return embed_positions.repeat(position_ids.shape[0], 1, 1)
|
213 |
+
|
214 |
+
def forward(
|
215 |
+
self,
|
216 |
+
hidden_states: torch.FloatTensor,
|
217 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
218 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
219 |
+
position_ids: Optional[torch.LongTensor] = None,
|
220 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
221 |
+
use_cache: Optional[bool] = False,
|
222 |
+
output_attentions: Optional[bool] = False,
|
223 |
+
) -> Union[
|
224 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
225 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
226 |
+
]:
|
227 |
+
query = self.q_proj(hidden_states)
|
228 |
+
key = self.k_proj(hidden_states)
|
229 |
+
value = self.v_proj(hidden_states)
|
230 |
+
|
231 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
|
232 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
233 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
234 |
+
|
235 |
+
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
236 |
+
# The logic to conditionally copy to GPU could not be traced, so we do this
|
237 |
+
# every time in the torch.fx case
|
238 |
+
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
239 |
+
else:
|
240 |
+
embed_positions = self._get_embed_positions(position_ids)
|
241 |
+
|
242 |
+
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
|
243 |
+
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
244 |
+
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
245 |
+
|
246 |
+
if self.rotary_dim is not None:
|
247 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
248 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
249 |
+
|
250 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
251 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
252 |
+
|
253 |
+
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
|
254 |
+
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
|
255 |
+
|
256 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
257 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
258 |
+
else:
|
259 |
+
key = apply_rotary_pos_emb(key, sin, cos)
|
260 |
+
query = apply_rotary_pos_emb(query, sin, cos)
|
261 |
+
|
262 |
+
key = key.permute(0, 2, 1, 3)
|
263 |
+
query = query.permute(0, 2, 1, 3)
|
264 |
+
|
265 |
+
if layer_past is not None:
|
266 |
+
past_key = layer_past[0]
|
267 |
+
past_value = layer_past[1]
|
268 |
+
key = torch.cat((past_key, key), dim=-2)
|
269 |
+
value = torch.cat((past_value, value), dim=-2)
|
270 |
+
|
271 |
+
if use_cache is True:
|
272 |
+
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation.
|
273 |
+
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128
|
274 |
+
present = (key.to(hidden_states.dtype), value)
|
275 |
+
else:
|
276 |
+
present = None
|
277 |
+
|
278 |
+
# compute self-attention: V x Softmax(QK^T)
|
279 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
280 |
+
|
281 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
282 |
+
attn_output = self.out_proj(attn_output)
|
283 |
+
attn_output = self.resid_dropout(attn_output)
|
284 |
+
|
285 |
+
outputs = (attn_output, present)
|
286 |
+
if output_attentions:
|
287 |
+
outputs += (attn_weights,)
|
288 |
+
|
289 |
+
return outputs # a, present, (attentions)
|
290 |
+
|
291 |
+
|
292 |
+
class GPTJFlashAttention2(GPTJAttention):
|
293 |
+
"""
|
294 |
+
GPTJ flash attention module. This module inherits from `GPTJAttention` as the weights of the module stays
|
295 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
296 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
297 |
+
"""
|
298 |
+
|
299 |
+
def __init__(self, *args, **kwargs):
|
300 |
+
super().__init__(*args, **kwargs)
|
301 |
+
|
302 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
303 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
304 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
305 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
hidden_states: torch.FloatTensor,
|
310 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
311 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
312 |
+
position_ids: Optional[torch.LongTensor] = None,
|
313 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
314 |
+
use_cache: Optional[bool] = False,
|
315 |
+
output_attentions: Optional[bool] = False,
|
316 |
+
) -> Union[
|
317 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
318 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
319 |
+
]:
|
320 |
+
query = self.q_proj(hidden_states)
|
321 |
+
key = self.k_proj(hidden_states)
|
322 |
+
value = self.v_proj(hidden_states)
|
323 |
+
|
324 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
|
325 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
326 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
327 |
+
|
328 |
+
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
329 |
+
# The logic to conditionally copy to GPU could not be traced, so we do this
|
330 |
+
# every time in the torch.fx case
|
331 |
+
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
332 |
+
else:
|
333 |
+
embed_positions = self._get_embed_positions(position_ids)
|
334 |
+
|
335 |
+
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
|
336 |
+
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
337 |
+
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
338 |
+
|
339 |
+
if self.rotary_dim is not None:
|
340 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
341 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
342 |
+
|
343 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
344 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
345 |
+
|
346 |
+
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
|
347 |
+
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
|
348 |
+
|
349 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
350 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
351 |
+
else:
|
352 |
+
key = apply_rotary_pos_emb(key, sin, cos)
|
353 |
+
query = apply_rotary_pos_emb(query, sin, cos)
|
354 |
+
|
355 |
+
# tanspose to have the desired shape
|
356 |
+
# before transpose: batch_size x seq_length x num_attention_heads x head_dim
|
357 |
+
# after transpose: batch_size x num_attention_heads x seq_length x head_dim
|
358 |
+
key = key.permute(0, 2, 1, 3)
|
359 |
+
query = query.permute(0, 2, 1, 3)
|
360 |
+
# value: batch_size x num_attention_heads x seq_length x head_dim
|
361 |
+
|
362 |
+
if layer_past is not None:
|
363 |
+
past_key = layer_past[0]
|
364 |
+
past_value = layer_past[1]
|
365 |
+
key = torch.cat((past_key, key), dim=-2)
|
366 |
+
value = torch.cat((past_value, value), dim=-2)
|
367 |
+
|
368 |
+
if use_cache is True:
|
369 |
+
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation.
|
370 |
+
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128
|
371 |
+
present = (key.to(hidden_states.dtype), value)
|
372 |
+
else:
|
373 |
+
present = None
|
374 |
+
|
375 |
+
# The Flash attention requires the input to have the shape
|
376 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
377 |
+
# therefore we need to keep the original shape for query and key, and reshape value
|
378 |
+
# to have the correct shape.
|
379 |
+
key = key.permute(0, 2, 1, 3).contiguous()
|
380 |
+
query = query.permute(0, 2, 1, 3).contiguous()
|
381 |
+
value = value.permute(0, 2, 1, 3).contiguous()
|
382 |
+
|
383 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
384 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
385 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
386 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
387 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
388 |
+
|
389 |
+
input_dtype = query.dtype
|
390 |
+
if input_dtype == torch.float32:
|
391 |
+
if torch.is_autocast_enabled():
|
392 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
393 |
+
# Handle the case where the model is quantized
|
394 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
395 |
+
target_dtype = self.config._pre_quantization_dtype
|
396 |
+
else:
|
397 |
+
target_dtype = self.q_proj.weight.dtype
|
398 |
+
|
399 |
+
logger.warning_once(
|
400 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
401 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
402 |
+
f" {target_dtype}."
|
403 |
+
)
|
404 |
+
|
405 |
+
query = query.to(target_dtype)
|
406 |
+
key = key.to(target_dtype)
|
407 |
+
value = value.to(target_dtype)
|
408 |
+
|
409 |
+
attention_dropout = self.config.attn_pdrop if self.training else 0.0 # attn_pdrop in gptj
|
410 |
+
|
411 |
+
query_length = query.shape[1]
|
412 |
+
|
413 |
+
# Compute attention
|
414 |
+
attn_weights = self._flash_attention_forward(
|
415 |
+
query,
|
416 |
+
key,
|
417 |
+
value,
|
418 |
+
attention_mask,
|
419 |
+
query_length,
|
420 |
+
dropout=attention_dropout,
|
421 |
+
)
|
422 |
+
|
423 |
+
# Reshape outputs
|
424 |
+
attn_output = attn_weights.reshape(
|
425 |
+
attn_weights.shape[0], attn_weights.shape[1], attn_weights.shape[2] * attn_weights.shape[3]
|
426 |
+
)
|
427 |
+
attn_output = self.out_proj(attn_output)
|
428 |
+
attn_output = self.resid_dropout(attn_output)
|
429 |
+
|
430 |
+
outputs = (attn_output, present)
|
431 |
+
if output_attentions:
|
432 |
+
outputs += (attn_weights,)
|
433 |
+
|
434 |
+
return outputs
|
435 |
+
|
436 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
437 |
+
def _flash_attention_forward(
|
438 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
439 |
+
):
|
440 |
+
"""
|
441 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
442 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
443 |
+
|
444 |
+
Args:
|
445 |
+
query_states (`torch.Tensor`):
|
446 |
+
Input query states to be passed to Flash Attention API
|
447 |
+
key_states (`torch.Tensor`):
|
448 |
+
Input key states to be passed to Flash Attention API
|
449 |
+
value_states (`torch.Tensor`):
|
450 |
+
Input value states to be passed to Flash Attention API
|
451 |
+
attention_mask (`torch.Tensor`):
|
452 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
453 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
454 |
+
dropout (`float`):
|
455 |
+
Attention dropout
|
456 |
+
softmax_scale (`float`, *optional*):
|
457 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
458 |
+
"""
|
459 |
+
if not self._flash_attn_uses_top_left_mask:
|
460 |
+
causal = self.is_causal
|
461 |
+
else:
|
462 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
463 |
+
causal = self.is_causal and query_length != 1
|
464 |
+
|
465 |
+
# Contains at least one padding token in the sequence
|
466 |
+
if attention_mask is not None:
|
467 |
+
batch_size = query_states.shape[0]
|
468 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
469 |
+
query_states, key_states, value_states, attention_mask, query_length
|
470 |
+
)
|
471 |
+
|
472 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
473 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
474 |
+
|
475 |
+
attn_output_unpad = flash_attn_varlen_func(
|
476 |
+
query_states,
|
477 |
+
key_states,
|
478 |
+
value_states,
|
479 |
+
cu_seqlens_q=cu_seqlens_q,
|
480 |
+
cu_seqlens_k=cu_seqlens_k,
|
481 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
482 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
483 |
+
dropout_p=dropout,
|
484 |
+
softmax_scale=softmax_scale,
|
485 |
+
causal=causal,
|
486 |
+
)
|
487 |
+
|
488 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
489 |
+
else:
|
490 |
+
attn_output = flash_attn_func(
|
491 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
492 |
+
)
|
493 |
+
|
494 |
+
return attn_output
|
495 |
+
|
496 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input with num_heads->num_attention_heads
|
497 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
498 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
499 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
500 |
+
|
501 |
+
key_layer = index_first_axis(
|
502 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
503 |
+
)
|
504 |
+
value_layer = index_first_axis(
|
505 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
506 |
+
)
|
507 |
+
if query_length == kv_seq_len:
|
508 |
+
query_layer = index_first_axis(
|
509 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads, head_dim), indices_k
|
510 |
+
)
|
511 |
+
cu_seqlens_q = cu_seqlens_k
|
512 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
513 |
+
indices_q = indices_k
|
514 |
+
elif query_length == 1:
|
515 |
+
max_seqlen_in_batch_q = 1
|
516 |
+
cu_seqlens_q = torch.arange(
|
517 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
518 |
+
) # There is a memcpy here, that is very bad.
|
519 |
+
indices_q = cu_seqlens_q[:-1]
|
520 |
+
query_layer = query_layer.squeeze(1)
|
521 |
+
else:
|
522 |
+
# The -q_len: slice assumes left padding.
|
523 |
+
attention_mask = attention_mask[:, -query_length:]
|
524 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
525 |
+
|
526 |
+
return (
|
527 |
+
query_layer,
|
528 |
+
key_layer,
|
529 |
+
value_layer,
|
530 |
+
indices_q,
|
531 |
+
(cu_seqlens_q, cu_seqlens_k),
|
532 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
533 |
+
)
|
534 |
+
|
535 |
+
|
536 |
+
GPTJ_ATTENTION_CLASSES = {
|
537 |
+
"eager": GPTJAttention,
|
538 |
+
"flash_attention_2": GPTJFlashAttention2,
|
539 |
+
}
|
540 |
+
|
541 |
+
|
542 |
+
class GPTJMLP(nn.Module):
|
543 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
544 |
+
super().__init__()
|
545 |
+
embed_dim = config.n_embd
|
546 |
+
|
547 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
548 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
549 |
+
|
550 |
+
self.act = ACT2FN[config.activation_function]
|
551 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
552 |
+
|
553 |
+
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
554 |
+
hidden_states = self.fc_in(hidden_states)
|
555 |
+
hidden_states = self.act(hidden_states)
|
556 |
+
hidden_states = self.fc_out(hidden_states)
|
557 |
+
hidden_states = self.dropout(hidden_states)
|
558 |
+
return hidden_states
|
559 |
+
|
560 |
+
|
561 |
+
class GPTJBlock(nn.Module):
|
562 |
+
def __init__(self, config):
|
563 |
+
super().__init__()
|
564 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
565 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
566 |
+
self.attn = GPTJ_ATTENTION_CLASSES[config._attn_implementation](config)
|
567 |
+
self.mlp = GPTJMLP(inner_dim, config)
|
568 |
+
|
569 |
+
def forward(
|
570 |
+
self,
|
571 |
+
hidden_states: Optional[torch.FloatTensor],
|
572 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
573 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
574 |
+
position_ids: Optional[torch.LongTensor] = None,
|
575 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
576 |
+
use_cache: Optional[bool] = False,
|
577 |
+
output_attentions: Optional[bool] = False,
|
578 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
579 |
+
residual = hidden_states
|
580 |
+
hidden_states = self.ln_1(hidden_states)
|
581 |
+
attn_outputs = self.attn(
|
582 |
+
hidden_states=hidden_states,
|
583 |
+
layer_past=layer_past,
|
584 |
+
attention_mask=attention_mask,
|
585 |
+
position_ids=position_ids,
|
586 |
+
head_mask=head_mask,
|
587 |
+
use_cache=use_cache,
|
588 |
+
output_attentions=output_attentions,
|
589 |
+
)
|
590 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
591 |
+
outputs = attn_outputs[1:]
|
592 |
+
|
593 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
594 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
595 |
+
|
596 |
+
if use_cache:
|
597 |
+
outputs = (hidden_states,) + outputs
|
598 |
+
else:
|
599 |
+
outputs = (hidden_states,) + outputs[1:]
|
600 |
+
|
601 |
+
return outputs # hidden_states, present, (attentions)
|
602 |
+
|
603 |
+
|
604 |
+
class GPTJPreTrainedModel(PreTrainedModel):
|
605 |
+
"""
|
606 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
607 |
+
models.
|
608 |
+
"""
|
609 |
+
|
610 |
+
config_class = GPTJConfig
|
611 |
+
base_model_prefix = "transformer"
|
612 |
+
is_parallelizable = True
|
613 |
+
supports_gradient_checkpointing = True
|
614 |
+
_no_split_modules = ["GPTJBlock"]
|
615 |
+
_skip_keys_device_placement = "past_key_values"
|
616 |
+
_supports_flash_attn_2 = True
|
617 |
+
|
618 |
+
def __init__(self, *inputs, **kwargs):
|
619 |
+
super().__init__(*inputs, **kwargs)
|
620 |
+
|
621 |
+
def _init_weights(self, module):
|
622 |
+
"""Initialize the weights."""
|
623 |
+
if isinstance(module, (nn.Linear,)):
|
624 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
625 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
626 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
627 |
+
if module.bias is not None:
|
628 |
+
module.bias.data.zero_()
|
629 |
+
elif isinstance(module, nn.Embedding):
|
630 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
631 |
+
if module.padding_idx is not None:
|
632 |
+
module.weight.data[module.padding_idx].zero_()
|
633 |
+
elif isinstance(module, nn.LayerNorm):
|
634 |
+
module.bias.data.zero_()
|
635 |
+
module.weight.data.fill_(1.0)
|
636 |
+
|
637 |
+
|
638 |
+
GPTJ_START_DOCSTRING = r"""
|
639 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
640 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
641 |
+
behavior.
|
642 |
+
|
643 |
+
Parameters:
|
644 |
+
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
|
645 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
646 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
647 |
+
"""
|
648 |
+
|
649 |
+
GPTJ_INPUTS_DOCSTRING = r"""
|
650 |
+
Args:
|
651 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
652 |
+
Indices of input sequence tokens in the vocabulary.
|
653 |
+
|
654 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
655 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
656 |
+
|
657 |
+
[What are input IDs?](../glossary#input-ids)
|
658 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
659 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
660 |
+
|
661 |
+
- 1 for tokens that are **not masked**,
|
662 |
+
- 0 for tokens that are **masked**.
|
663 |
+
|
664 |
+
[What are attention masks?](../glossary#attention-mask)
|
665 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
666 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
667 |
+
1]`:
|
668 |
+
|
669 |
+
- 0 corresponds to a *sentence A* token,
|
670 |
+
- 1 corresponds to a *sentence B* token.
|
671 |
+
|
672 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
673 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
674 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
675 |
+
config.n_positions - 1]`.
|
676 |
+
|
677 |
+
[What are position IDs?](../glossary#position-ids)
|
678 |
+
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
|
679 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
680 |
+
|
681 |
+
- 1 indicates the head is **not masked**,
|
682 |
+
- 0 indicates the head is **masked**.
|
683 |
+
|
684 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
|
685 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
686 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
687 |
+
model's internal embedding lookup matrix.
|
688 |
+
output_attentions (`bool`, *optional*):
|
689 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
690 |
+
tensors for more detail.
|
691 |
+
output_hidden_states (`bool`, *optional*):
|
692 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
693 |
+
more detail.
|
694 |
+
return_dict (`bool`, *optional*):
|
695 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
696 |
+
"""
|
697 |
+
|
698 |
+
PARALLELIZE_DOCSTRING = r"""
|
699 |
+
This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute
|
700 |
+
attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks
|
701 |
+
across all devices.
|
702 |
+
|
703 |
+
Args:
|
704 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
705 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
706 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
707 |
+
have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the
|
708 |
+
following number of attention modules:
|
709 |
+
|
710 |
+
- gpt-j-6B: 28
|
711 |
+
|
712 |
+
Example:
|
713 |
+
|
714 |
+
```python
|
715 |
+
# Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules:
|
716 |
+
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
717 |
+
device_map = {
|
718 |
+
0: [0, 1, 2, 3, 4, 5, 6],
|
719 |
+
1: [7, 8, 9, 10, 11, 12, 13],
|
720 |
+
2: [14, 15, 16, 17, 18, 19, 20],
|
721 |
+
3: [21, 22, 23, 24, 25, 26, 27],
|
722 |
+
}
|
723 |
+
model.parallelize(device_map)
|
724 |
+
```
|
725 |
+
"""
|
726 |
+
|
727 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
728 |
+
Moves the model to CPU from a model parallel state.
|
729 |
+
|
730 |
+
Example:
|
731 |
+
|
732 |
+
```python
|
733 |
+
# On a 4 GPU machine with gpt-j-6B:
|
734 |
+
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
735 |
+
device_map = {
|
736 |
+
0: [0, 1, 2, 3, 4, 5, 6],
|
737 |
+
1: [7, 8, 9, 10, 11, 12, 13],
|
738 |
+
2: [14, 15, 16, 17, 18, 19, 20],
|
739 |
+
3: [21, 22, 23, 24, 25, 26, 27],
|
740 |
+
}
|
741 |
+
model.parallelize(device_map) # Splits the model across several devices
|
742 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
743 |
+
```
|
744 |
+
"""
|
745 |
+
|
746 |
+
|
747 |
+
@add_start_docstrings(
|
748 |
+
"The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
|
749 |
+
GPTJ_START_DOCSTRING,
|
750 |
+
)
|
751 |
+
class GPTJModel(GPTJPreTrainedModel):
|
752 |
+
def __init__(self, config):
|
753 |
+
super().__init__(config)
|
754 |
+
|
755 |
+
self.embed_dim = config.n_embd
|
756 |
+
self.vocab_size = config.vocab_size
|
757 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
758 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
759 |
+
self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)])
|
760 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
761 |
+
|
762 |
+
# Model parallel
|
763 |
+
self.model_parallel = False
|
764 |
+
self.device_map = None
|
765 |
+
self.gradient_checkpointing = False
|
766 |
+
|
767 |
+
# Initialize weights and apply final processing
|
768 |
+
self.post_init()
|
769 |
+
|
770 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
771 |
+
|
772 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
773 |
+
def parallelize(self, device_map=None):
|
774 |
+
warnings.warn(
|
775 |
+
"`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
776 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
777 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
778 |
+
" ...}",
|
779 |
+
FutureWarning,
|
780 |
+
)
|
781 |
+
# Check validity of device_map
|
782 |
+
self.device_map = (
|
783 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
784 |
+
)
|
785 |
+
assert_device_map(self.device_map, len(self.h))
|
786 |
+
self.model_parallel = True
|
787 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
788 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
789 |
+
self.wte = self.wte.to(self.first_device)
|
790 |
+
# Load onto devices
|
791 |
+
for k, v in self.device_map.items():
|
792 |
+
for block in v:
|
793 |
+
cuda_device = "cuda:" + str(k)
|
794 |
+
self.h[block] = self.h[block].to(cuda_device)
|
795 |
+
# ln_f to last
|
796 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
797 |
+
|
798 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
799 |
+
def deparallelize(self):
|
800 |
+
warnings.warn(
|
801 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
802 |
+
FutureWarning,
|
803 |
+
)
|
804 |
+
self.model_parallel = False
|
805 |
+
self.device_map = None
|
806 |
+
self.first_device = "cpu"
|
807 |
+
self.last_device = "cpu"
|
808 |
+
self.wte = self.wte.to("cpu")
|
809 |
+
for index in range(len(self.h)):
|
810 |
+
self.h[index] = self.h[index].to("cpu")
|
811 |
+
self.ln_f = self.ln_f.to("cpu")
|
812 |
+
torch.cuda.empty_cache()
|
813 |
+
|
814 |
+
def get_input_embeddings(self):
|
815 |
+
return self.wte
|
816 |
+
|
817 |
+
def set_input_embeddings(self, new_embeddings):
|
818 |
+
self.wte = new_embeddings
|
819 |
+
|
820 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
821 |
+
@add_code_sample_docstrings(
|
822 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
823 |
+
output_type=BaseModelOutputWithPast,
|
824 |
+
config_class=_CONFIG_FOR_DOC,
|
825 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
826 |
+
)
|
827 |
+
def forward(
|
828 |
+
self,
|
829 |
+
input_ids: Optional[torch.LongTensor] = None,
|
830 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
831 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
832 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
833 |
+
position_ids: Optional[torch.LongTensor] = None,
|
834 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
835 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
836 |
+
use_cache: Optional[bool] = None,
|
837 |
+
output_attentions: Optional[bool] = None,
|
838 |
+
output_hidden_states: Optional[bool] = None,
|
839 |
+
return_dict: Optional[bool] = None,
|
840 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
841 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
842 |
+
output_hidden_states = (
|
843 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
844 |
+
)
|
845 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
846 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
847 |
+
|
848 |
+
if input_ids is not None and inputs_embeds is not None:
|
849 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
850 |
+
elif input_ids is not None:
|
851 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
852 |
+
input_shape = input_ids.size()
|
853 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
854 |
+
batch_size = input_ids.shape[0]
|
855 |
+
elif inputs_embeds is not None:
|
856 |
+
input_shape = inputs_embeds.size()[:-1]
|
857 |
+
batch_size = inputs_embeds.shape[0]
|
858 |
+
else:
|
859 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
860 |
+
|
861 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
862 |
+
|
863 |
+
if token_type_ids is not None:
|
864 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
865 |
+
|
866 |
+
if past_key_values is None:
|
867 |
+
past_length = 0
|
868 |
+
past_key_values = tuple([None] * len(self.h))
|
869 |
+
else:
|
870 |
+
past_length = past_key_values[0][0].size(-2)
|
871 |
+
|
872 |
+
if position_ids is None:
|
873 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
874 |
+
position_ids = position_ids.unsqueeze(0)
|
875 |
+
|
876 |
+
if not self._use_flash_attention_2:
|
877 |
+
# Attention mask.
|
878 |
+
if attention_mask is not None:
|
879 |
+
if batch_size <= 0:
|
880 |
+
raise ValueError("batch_size has to be defined and > 0")
|
881 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
882 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
883 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
884 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
885 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
886 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
887 |
+
attention_mask = attention_mask[:, None, None, :]
|
888 |
+
|
889 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
890 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
891 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
892 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
893 |
+
# effectively the same as removing these entirely.
|
894 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
895 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
896 |
+
|
897 |
+
# Prepare head mask if needed
|
898 |
+
# 1.0 in head_mask indicate we keep the head
|
899 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
900 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
901 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
902 |
+
|
903 |
+
if inputs_embeds is None:
|
904 |
+
inputs_embeds = self.wte(input_ids)
|
905 |
+
|
906 |
+
hidden_states = inputs_embeds
|
907 |
+
|
908 |
+
if token_type_ids is not None:
|
909 |
+
token_type_embeds = self.wte(token_type_ids)
|
910 |
+
hidden_states = hidden_states + token_type_embeds
|
911 |
+
|
912 |
+
hidden_states = self.drop(hidden_states)
|
913 |
+
|
914 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
915 |
+
|
916 |
+
if self.gradient_checkpointing and self.training:
|
917 |
+
if use_cache:
|
918 |
+
logger.warning_once(
|
919 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
920 |
+
)
|
921 |
+
use_cache = False
|
922 |
+
|
923 |
+
presents = () if use_cache else None
|
924 |
+
all_self_attentions = () if output_attentions else None
|
925 |
+
all_hidden_states = () if output_hidden_states else None
|
926 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
927 |
+
# Model parallel
|
928 |
+
if self.model_parallel:
|
929 |
+
torch.cuda.set_device(hidden_states.device)
|
930 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
931 |
+
if layer_past is not None:
|
932 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
933 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
934 |
+
if attention_mask is not None:
|
935 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
936 |
+
if isinstance(head_mask, torch.Tensor):
|
937 |
+
head_mask = head_mask.to(hidden_states.device)
|
938 |
+
if output_hidden_states:
|
939 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
940 |
+
|
941 |
+
if self.gradient_checkpointing and self.training:
|
942 |
+
outputs = self._gradient_checkpointing_func(
|
943 |
+
block.__call__,
|
944 |
+
hidden_states,
|
945 |
+
None,
|
946 |
+
attention_mask,
|
947 |
+
position_ids,
|
948 |
+
head_mask[i],
|
949 |
+
use_cache,
|
950 |
+
output_attentions,
|
951 |
+
)
|
952 |
+
else:
|
953 |
+
outputs = block(
|
954 |
+
hidden_states=hidden_states,
|
955 |
+
layer_past=layer_past,
|
956 |
+
attention_mask=attention_mask,
|
957 |
+
position_ids=position_ids,
|
958 |
+
head_mask=head_mask[i],
|
959 |
+
use_cache=use_cache,
|
960 |
+
output_attentions=output_attentions,
|
961 |
+
)
|
962 |
+
|
963 |
+
hidden_states = outputs[0]
|
964 |
+
if use_cache is True:
|
965 |
+
presents = presents + (outputs[1],)
|
966 |
+
|
967 |
+
if output_attentions:
|
968 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
969 |
+
|
970 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
971 |
+
if self.model_parallel:
|
972 |
+
for k, v in self.device_map.items():
|
973 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
974 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
975 |
+
|
976 |
+
hidden_states = self.ln_f(hidden_states)
|
977 |
+
|
978 |
+
hidden_states = hidden_states.view(output_shape)
|
979 |
+
# Add last hidden state
|
980 |
+
if output_hidden_states:
|
981 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
982 |
+
|
983 |
+
if not return_dict:
|
984 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
985 |
+
|
986 |
+
return BaseModelOutputWithPast(
|
987 |
+
last_hidden_state=hidden_states,
|
988 |
+
past_key_values=presents,
|
989 |
+
hidden_states=all_hidden_states,
|
990 |
+
attentions=all_self_attentions,
|
991 |
+
)
|
992 |
+
|
993 |
+
|
994 |
+
@add_start_docstrings(
|
995 |
+
"""
|
996 |
+
The GPT-J Model transformer with a language modeling head on top.
|
997 |
+
""",
|
998 |
+
GPTJ_START_DOCSTRING,
|
999 |
+
)
|
1000 |
+
class GPTJForCausalLM(GPTJPreTrainedModel):
|
1001 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1002 |
+
|
1003 |
+
def __init__(self, config):
|
1004 |
+
super().__init__(config)
|
1005 |
+
self.transformer = GPTJModel(config)
|
1006 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
1007 |
+
|
1008 |
+
# Model parallel
|
1009 |
+
self.model_parallel = False
|
1010 |
+
self.device_map = None
|
1011 |
+
|
1012 |
+
# Initialize weights and apply final processing
|
1013 |
+
self.post_init()
|
1014 |
+
|
1015 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1016 |
+
def parallelize(self, device_map=None):
|
1017 |
+
warnings.warn(
|
1018 |
+
"`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
1019 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
1020 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
1021 |
+
" 0, 'transformer.h.1': 1, ...}",
|
1022 |
+
FutureWarning,
|
1023 |
+
)
|
1024 |
+
self.device_map = (
|
1025 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
1026 |
+
if device_map is None
|
1027 |
+
else device_map
|
1028 |
+
)
|
1029 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
1030 |
+
self.transformer.parallelize(self.device_map)
|
1031 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
1032 |
+
self.model_parallel = True
|
1033 |
+
|
1034 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1035 |
+
def deparallelize(self):
|
1036 |
+
warnings.warn(
|
1037 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
1038 |
+
FutureWarning,
|
1039 |
+
)
|
1040 |
+
self.transformer.deparallelize()
|
1041 |
+
self.transformer = self.transformer.to("cpu")
|
1042 |
+
self.lm_head = self.lm_head.to("cpu")
|
1043 |
+
self.model_parallel = False
|
1044 |
+
torch.cuda.empty_cache()
|
1045 |
+
|
1046 |
+
def get_output_embeddings(self):
|
1047 |
+
return self.lm_head
|
1048 |
+
|
1049 |
+
def set_output_embeddings(self, new_embeddings):
|
1050 |
+
self.lm_head = new_embeddings
|
1051 |
+
|
1052 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
1053 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
1054 |
+
# Omit tokens covered by past_key_values
|
1055 |
+
if past_key_values:
|
1056 |
+
past_length = past_key_values[0][0].shape[2]
|
1057 |
+
|
1058 |
+
# Some generation methods already pass only the last input ID
|
1059 |
+
if input_ids.shape[1] > past_length:
|
1060 |
+
remove_prefix_length = past_length
|
1061 |
+
else:
|
1062 |
+
# Default to old behavior: keep only final ID
|
1063 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1064 |
+
|
1065 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1066 |
+
if token_type_ids is not None:
|
1067 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
1068 |
+
|
1069 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1070 |
+
position_ids = kwargs.get("position_ids", None)
|
1071 |
+
|
1072 |
+
if attention_mask is not None and position_ids is None:
|
1073 |
+
# create position_ids on the fly for batch generation
|
1074 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1075 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1076 |
+
if past_key_values:
|
1077 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1078 |
+
|
1079 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1080 |
+
if inputs_embeds is not None and past_key_values is None:
|
1081 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1082 |
+
else:
|
1083 |
+
model_inputs = {"input_ids": input_ids}
|
1084 |
+
|
1085 |
+
model_inputs.update(
|
1086 |
+
{
|
1087 |
+
"past_key_values": past_key_values,
|
1088 |
+
"use_cache": kwargs.get("use_cache"),
|
1089 |
+
"position_ids": position_ids,
|
1090 |
+
"attention_mask": attention_mask,
|
1091 |
+
"token_type_ids": token_type_ids,
|
1092 |
+
}
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
return model_inputs
|
1096 |
+
|
1097 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1098 |
+
@add_code_sample_docstrings(
|
1099 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1100 |
+
output_type=CausalLMOutputWithPast,
|
1101 |
+
config_class=_CONFIG_FOR_DOC,
|
1102 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1103 |
+
)
|
1104 |
+
def forward(
|
1105 |
+
self,
|
1106 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1107 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1108 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1109 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1110 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1111 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1112 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1113 |
+
labels: Optional[torch.LongTensor] = None,
|
1114 |
+
use_cache: Optional[bool] = None,
|
1115 |
+
output_attentions: Optional[bool] = None,
|
1116 |
+
output_hidden_states: Optional[bool] = None,
|
1117 |
+
return_dict: Optional[bool] = None,
|
1118 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1119 |
+
r"""
|
1120 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1121 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1122 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1123 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1124 |
+
"""
|
1125 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1126 |
+
|
1127 |
+
transformer_outputs = self.transformer(
|
1128 |
+
input_ids,
|
1129 |
+
past_key_values=past_key_values,
|
1130 |
+
attention_mask=attention_mask,
|
1131 |
+
token_type_ids=token_type_ids,
|
1132 |
+
position_ids=position_ids,
|
1133 |
+
head_mask=head_mask,
|
1134 |
+
inputs_embeds=inputs_embeds,
|
1135 |
+
use_cache=use_cache,
|
1136 |
+
output_attentions=output_attentions,
|
1137 |
+
output_hidden_states=output_hidden_states,
|
1138 |
+
return_dict=return_dict,
|
1139 |
+
)
|
1140 |
+
hidden_states = transformer_outputs[0]
|
1141 |
+
|
1142 |
+
# Set device for model parallelism
|
1143 |
+
if self.model_parallel:
|
1144 |
+
torch.cuda.set_device(self.transformer.first_device)
|
1145 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
1146 |
+
|
1147 |
+
# make sure sampling in fp16 works correctly and
|
1148 |
+
# compute loss in fp32 to match with mesh-tf version
|
1149 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
1150 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
1151 |
+
|
1152 |
+
loss = None
|
1153 |
+
if labels is not None:
|
1154 |
+
# move labels to correct device to enable model parallelism
|
1155 |
+
labels = labels.to(lm_logits.device)
|
1156 |
+
# Shift so that tokens < n predict n
|
1157 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1158 |
+
shift_labels = labels[..., 1:].contiguous()
|
1159 |
+
# Flatten the tokens
|
1160 |
+
loss_fct = CrossEntropyLoss()
|
1161 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1162 |
+
|
1163 |
+
loss = loss.to(hidden_states.dtype)
|
1164 |
+
|
1165 |
+
if not return_dict:
|
1166 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1167 |
+
return ((loss,) + output) if loss is not None else output
|
1168 |
+
|
1169 |
+
return CausalLMOutputWithPast(
|
1170 |
+
loss=loss,
|
1171 |
+
logits=lm_logits,
|
1172 |
+
past_key_values=transformer_outputs.past_key_values,
|
1173 |
+
hidden_states=transformer_outputs.hidden_states,
|
1174 |
+
attentions=transformer_outputs.attentions,
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
@staticmethod
|
1178 |
+
def _reorder_cache(
|
1179 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
1180 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
1181 |
+
"""
|
1182 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
1183 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1184 |
+
beam_idx at every generation step.
|
1185 |
+
"""
|
1186 |
+
return tuple(
|
1187 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
1188 |
+
for layer_past in past_key_values
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
|
1192 |
+
@add_start_docstrings(
|
1193 |
+
"""
|
1194 |
+
The GPT-J Model transformer with a sequence classification head on top (linear layer).
|
1195 |
+
|
1196 |
+
[`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1197 |
+
(e.g. GPT, GPT-2, GPT-Neo) do.
|
1198 |
+
|
1199 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1200 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1201 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1202 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1203 |
+
each row of the batch).
|
1204 |
+
""",
|
1205 |
+
GPTJ_START_DOCSTRING,
|
1206 |
+
)
|
1207 |
+
class GPTJForSequenceClassification(GPTJPreTrainedModel):
|
1208 |
+
def __init__(self, config):
|
1209 |
+
super().__init__(config)
|
1210 |
+
self.num_labels = config.num_labels
|
1211 |
+
self.transformer = GPTJModel(config)
|
1212 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1213 |
+
|
1214 |
+
# Model parallel
|
1215 |
+
self.model_parallel = False
|
1216 |
+
self.device_map = None
|
1217 |
+
|
1218 |
+
# Initialize weights and apply final processing
|
1219 |
+
self.post_init()
|
1220 |
+
|
1221 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1222 |
+
@add_code_sample_docstrings(
|
1223 |
+
checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification",
|
1224 |
+
output_type=SequenceClassifierOutputWithPast,
|
1225 |
+
config_class=_CONFIG_FOR_DOC,
|
1226 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1227 |
+
)
|
1228 |
+
def forward(
|
1229 |
+
self,
|
1230 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1231 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1232 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1233 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1234 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1235 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1236 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1237 |
+
labels: Optional[torch.LongTensor] = None,
|
1238 |
+
use_cache: Optional[bool] = None,
|
1239 |
+
output_attentions: Optional[bool] = None,
|
1240 |
+
output_hidden_states: Optional[bool] = None,
|
1241 |
+
return_dict: Optional[bool] = None,
|
1242 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1243 |
+
r"""
|
1244 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1245 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1246 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1247 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1248 |
+
"""
|
1249 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1250 |
+
|
1251 |
+
transformer_outputs = self.transformer(
|
1252 |
+
input_ids,
|
1253 |
+
past_key_values=past_key_values,
|
1254 |
+
attention_mask=attention_mask,
|
1255 |
+
token_type_ids=token_type_ids,
|
1256 |
+
position_ids=position_ids,
|
1257 |
+
head_mask=head_mask,
|
1258 |
+
inputs_embeds=inputs_embeds,
|
1259 |
+
use_cache=use_cache,
|
1260 |
+
output_attentions=output_attentions,
|
1261 |
+
output_hidden_states=output_hidden_states,
|
1262 |
+
return_dict=return_dict,
|
1263 |
+
)
|
1264 |
+
hidden_states = transformer_outputs[0]
|
1265 |
+
logits = self.score(hidden_states)
|
1266 |
+
|
1267 |
+
if input_ids is not None:
|
1268 |
+
batch_size = input_ids.shape[0]
|
1269 |
+
else:
|
1270 |
+
batch_size = inputs_embeds.shape[0]
|
1271 |
+
|
1272 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1273 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1274 |
+
if self.config.pad_token_id is None:
|
1275 |
+
sequence_lengths = -1
|
1276 |
+
else:
|
1277 |
+
if input_ids is not None:
|
1278 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1279 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1280 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1281 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1282 |
+
else:
|
1283 |
+
sequence_lengths = -1
|
1284 |
+
logger.warning(
|
1285 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1286 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1287 |
+
)
|
1288 |
+
|
1289 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1290 |
+
|
1291 |
+
loss = None
|
1292 |
+
if labels is not None:
|
1293 |
+
labels = labels.to(pooled_logits.device)
|
1294 |
+
if self.config.problem_type is None:
|
1295 |
+
if self.num_labels == 1:
|
1296 |
+
self.config.problem_type = "regression"
|
1297 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1298 |
+
self.config.problem_type = "single_label_classification"
|
1299 |
+
else:
|
1300 |
+
self.config.problem_type = "multi_label_classification"
|
1301 |
+
|
1302 |
+
if self.config.problem_type == "regression":
|
1303 |
+
loss_fct = MSELoss()
|
1304 |
+
if self.num_labels == 1:
|
1305 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1306 |
+
else:
|
1307 |
+
loss = loss_fct(pooled_logits, labels)
|
1308 |
+
elif self.config.problem_type == "single_label_classification":
|
1309 |
+
loss_fct = CrossEntropyLoss()
|
1310 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1311 |
+
elif self.config.problem_type == "multi_label_classification":
|
1312 |
+
loss_fct = BCEWithLogitsLoss()
|
1313 |
+
loss = loss_fct(pooled_logits, labels)
|
1314 |
+
if not return_dict:
|
1315 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1316 |
+
return ((loss,) + output) if loss is not None else output
|
1317 |
+
|
1318 |
+
return SequenceClassifierOutputWithPast(
|
1319 |
+
loss=loss,
|
1320 |
+
logits=pooled_logits,
|
1321 |
+
past_key_values=transformer_outputs.past_key_values,
|
1322 |
+
hidden_states=transformer_outputs.hidden_states,
|
1323 |
+
attentions=transformer_outputs.attentions,
|
1324 |
+
)
|
1325 |
+
|
1326 |
+
|
1327 |
+
@add_start_docstrings(
|
1328 |
+
"""
|
1329 |
+
The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
|
1330 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1331 |
+
""",
|
1332 |
+
GPTJ_START_DOCSTRING,
|
1333 |
+
)
|
1334 |
+
class GPTJForQuestionAnswering(GPTJPreTrainedModel):
|
1335 |
+
def __init__(self, config):
|
1336 |
+
super().__init__(config)
|
1337 |
+
self.num_labels = config.num_labels
|
1338 |
+
self.transformer = GPTJModel(config)
|
1339 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1340 |
+
|
1341 |
+
# Model parallel
|
1342 |
+
self.model_parallel = False
|
1343 |
+
self.device_map = None
|
1344 |
+
|
1345 |
+
# Initialize weights and apply final processing
|
1346 |
+
self.post_init()
|
1347 |
+
|
1348 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1349 |
+
@add_code_sample_docstrings(
|
1350 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1351 |
+
output_type=QuestionAnsweringModelOutput,
|
1352 |
+
config_class=_CONFIG_FOR_DOC,
|
1353 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1354 |
+
)
|
1355 |
+
def forward(
|
1356 |
+
self,
|
1357 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1358 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1359 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1360 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1361 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1362 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1363 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1364 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1365 |
+
output_attentions: Optional[bool] = None,
|
1366 |
+
output_hidden_states: Optional[bool] = None,
|
1367 |
+
return_dict: Optional[bool] = None,
|
1368 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1369 |
+
r"""
|
1370 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1371 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1372 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1373 |
+
are not taken into account for computing the loss.
|
1374 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1375 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1376 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1377 |
+
are not taken into account for computing the loss.
|
1378 |
+
"""
|
1379 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1380 |
+
|
1381 |
+
outputs = self.transformer(
|
1382 |
+
input_ids,
|
1383 |
+
attention_mask=attention_mask,
|
1384 |
+
token_type_ids=token_type_ids,
|
1385 |
+
position_ids=position_ids,
|
1386 |
+
head_mask=head_mask,
|
1387 |
+
inputs_embeds=inputs_embeds,
|
1388 |
+
output_attentions=output_attentions,
|
1389 |
+
output_hidden_states=output_hidden_states,
|
1390 |
+
return_dict=return_dict,
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
sequence_output = outputs[0]
|
1394 |
+
|
1395 |
+
logits = self.qa_outputs(sequence_output)
|
1396 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1397 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1398 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1399 |
+
|
1400 |
+
total_loss = None
|
1401 |
+
if start_positions is not None and end_positions is not None:
|
1402 |
+
# If we are on multi-GPU, split add a dimension
|
1403 |
+
if len(start_positions.size()) > 1:
|
1404 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1405 |
+
if len(end_positions.size()) > 1:
|
1406 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1407 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1408 |
+
ignored_index = start_logits.size(1)
|
1409 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1410 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1411 |
+
|
1412 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1413 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1414 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1415 |
+
total_loss = (start_loss + end_loss) / 2
|
1416 |
+
|
1417 |
+
if not return_dict:
|
1418 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1419 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1420 |
+
|
1421 |
+
return QuestionAnsweringModelOutput(
|
1422 |
+
loss=total_loss,
|
1423 |
+
start_logits=start_logits,
|
1424 |
+
end_logits=end_logits,
|
1425 |
+
hidden_states=outputs.hidden_states,
|
1426 |
+
attentions=outputs.attentions,
|
1427 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptj/modeling_tf_gptj.py
ADDED
@@ -0,0 +1,1099 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 GPT-J model."""
|
16 |
+
|
17 |
+
from __future__ import annotations
|
18 |
+
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import tensorflow as tf
|
23 |
+
|
24 |
+
from ...activations_tf import get_tf_activation
|
25 |
+
from ...file_utils import (
|
26 |
+
add_code_sample_docstrings,
|
27 |
+
add_start_docstrings,
|
28 |
+
add_start_docstrings_to_model_forward,
|
29 |
+
)
|
30 |
+
from ...modeling_tf_outputs import (
|
31 |
+
TFBaseModelOutputWithPast,
|
32 |
+
TFCausalLMOutputWithPast,
|
33 |
+
TFQuestionAnsweringModelOutput,
|
34 |
+
TFSequenceClassifierOutputWithPast,
|
35 |
+
)
|
36 |
+
from ...modeling_tf_utils import (
|
37 |
+
TFCausalLanguageModelingLoss,
|
38 |
+
TFModelInputType,
|
39 |
+
TFPreTrainedModel,
|
40 |
+
TFQuestionAnsweringLoss,
|
41 |
+
TFSequenceClassificationLoss,
|
42 |
+
TFSharedEmbeddings,
|
43 |
+
get_initializer,
|
44 |
+
keras,
|
45 |
+
keras_serializable,
|
46 |
+
unpack_inputs,
|
47 |
+
)
|
48 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
49 |
+
from ...utils import logging
|
50 |
+
from .configuration_gptj import GPTJConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
|
56 |
+
_CONFIG_FOR_DOC = "GPTJConfig"
|
57 |
+
|
58 |
+
|
59 |
+
def create_sinusoidal_positions(num_pos: int, dim: int) -> tf.Tensor:
|
60 |
+
inv_freq = tf.cast(1.0 / (10000 ** (tf.range(0, dim, 2) / dim)), tf.float32)
|
61 |
+
sinusoid_inp = tf.cast(tf.einsum("i , j -> i j", tf.range(num_pos, dtype=tf.float32), inv_freq), tf.float32)
|
62 |
+
sin, cos = tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)
|
63 |
+
out = tf.concat((sin, cos), axis=1)
|
64 |
+
return out
|
65 |
+
|
66 |
+
|
67 |
+
def rotate_every_two(x: tf.Tensor) -> tf.Tensor:
|
68 |
+
rotate_half_tensor = tf.stack((-x[:, :, :, 1::2], x[:, :, :, ::2]), axis=-1)
|
69 |
+
new_shape = shape_list(rotate_half_tensor)[:-2] + [tf.math.reduce_prod(shape_list(rotate_half_tensor)[-2:])]
|
70 |
+
rotate_half_tensor = tf.reshape(rotate_half_tensor, new_shape)
|
71 |
+
return rotate_half_tensor
|
72 |
+
|
73 |
+
|
74 |
+
def apply_rotary_pos_emb(tensor: tf.Tensor, sincos: tf.Tensor) -> tf.Tensor:
|
75 |
+
sin_pos, cos_pos = sincos
|
76 |
+
sin_pos = tf.repeat(sin_pos[:, :, None, :], 2, 3)
|
77 |
+
cos_pos = tf.repeat(cos_pos[:, :, None, :], 2, 3)
|
78 |
+
return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos)
|
79 |
+
|
80 |
+
|
81 |
+
class TFGPTJAttention(keras.layers.Layer):
|
82 |
+
def __init__(self, config: GPTJConfig, **kwargs):
|
83 |
+
super().__init__(**kwargs)
|
84 |
+
|
85 |
+
self.embed_dim = config.hidden_size
|
86 |
+
self.num_attention_heads = config.num_attention_heads
|
87 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
88 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
89 |
+
raise ValueError(
|
90 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
91 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
92 |
+
)
|
93 |
+
self.scale_attn = self.head_dim**0.5
|
94 |
+
self.rotary_dim = config.rotary_dim
|
95 |
+
|
96 |
+
self.attn_dropout = keras.layers.Dropout(config.attn_pdrop)
|
97 |
+
self.resid_dropout = keras.layers.Dropout(config.resid_pdrop)
|
98 |
+
|
99 |
+
self.q_proj = keras.layers.Dense(
|
100 |
+
self.embed_dim,
|
101 |
+
use_bias=False,
|
102 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
103 |
+
name="q_proj",
|
104 |
+
)
|
105 |
+
self.k_proj = keras.layers.Dense(
|
106 |
+
self.embed_dim,
|
107 |
+
use_bias=False,
|
108 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
109 |
+
name="k_proj",
|
110 |
+
)
|
111 |
+
self.v_proj = keras.layers.Dense(
|
112 |
+
self.embed_dim,
|
113 |
+
use_bias=False,
|
114 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
115 |
+
name="v_proj",
|
116 |
+
)
|
117 |
+
self.out_proj = keras.layers.Dense(
|
118 |
+
self.embed_dim,
|
119 |
+
use_bias=False,
|
120 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
121 |
+
name="out_proj",
|
122 |
+
)
|
123 |
+
|
124 |
+
self.max_positions = config.max_position_embeddings
|
125 |
+
self.lower_triangle_mask = tf.reshape(
|
126 |
+
tf.cast(tf.experimental.numpy.tril(tf.ones((self.max_positions, self.max_positions))), tf.int8),
|
127 |
+
(1, 1, self.max_positions, self.max_positions),
|
128 |
+
)
|
129 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
130 |
+
self.embed_positions = create_sinusoidal_positions(self.max_positions, pos_embd_dim)
|
131 |
+
|
132 |
+
def get_causal_mask(self, key_length, query_length) -> tf.Tensor:
|
133 |
+
return tf.cast(self.lower_triangle_mask[:, :, key_length - query_length : key_length, :key_length], tf.bool)
|
134 |
+
|
135 |
+
@staticmethod
|
136 |
+
def get_masked_bias(dtype: tf.DType) -> tf.Tensor:
|
137 |
+
return tf.cast(tf.constant(-1e9), dtype)
|
138 |
+
|
139 |
+
def _split_heads(self, hidden_states: tf.Tensor, rotary: bool) -> tf.Tensor:
|
140 |
+
"""
|
141 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
142 |
+
"""
|
143 |
+
new_shape = shape_list(hidden_states)[:-1] + [self.num_attention_heads, self.head_dim]
|
144 |
+
hidden_states = tf.reshape(hidden_states, new_shape)
|
145 |
+
if rotary:
|
146 |
+
return hidden_states
|
147 |
+
if len(shape_list(hidden_states)) == 4:
|
148 |
+
return tf.transpose(hidden_states, (0, 2, 1, 3)) # (batch, head, seq_length, head_features)
|
149 |
+
if len(shape_list(hidden_states)) == 5:
|
150 |
+
return tf.transpose(hidden_states, (0, 1, 3, 2, 4)) # (batch, blocks, head, block_length, head_features)
|
151 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(shape_list(hidden_states))}")
|
152 |
+
|
153 |
+
def _merge_heads(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
154 |
+
"""
|
155 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
156 |
+
"""
|
157 |
+
if len(shape_list(hidden_states)) == 4:
|
158 |
+
hidden_states = tf.transpose(hidden_states, (0, 2, 1, 3))
|
159 |
+
elif len(shape_list(hidden_states)) == 5:
|
160 |
+
hidden_states = tf.transpose(hidden_states, (0, 1, 3, 2, 4))
|
161 |
+
else:
|
162 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(shape_list(hidden_states))}")
|
163 |
+
new_shape = shape_list(hidden_states)[:-2] + [self.num_attention_heads * self.head_dim]
|
164 |
+
return tf.reshape(hidden_states, new_shape)
|
165 |
+
|
166 |
+
def _attn(
|
167 |
+
self,
|
168 |
+
query: tf.Tensor,
|
169 |
+
key: tf.Tensor,
|
170 |
+
value: tf.Tensor,
|
171 |
+
attention_mask: tf.Tensor | None = None,
|
172 |
+
head_mask: tf.Tensor | None = None,
|
173 |
+
) -> Tuple[tf.Tensor, tf.Tensor]:
|
174 |
+
# compute causal mask from causal mask buffer
|
175 |
+
query_length, key_length = shape_list(query)[-2], shape_list(key)[-2]
|
176 |
+
causal_mask = self.get_causal_mask(key_length, query_length)
|
177 |
+
|
178 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
179 |
+
query = tf.cast(query, tf.float32)
|
180 |
+
key = tf.cast(key, tf.float32)
|
181 |
+
|
182 |
+
attn_weights = tf.matmul(query, key, transpose_b=True)
|
183 |
+
attn_weights = tf.where(causal_mask, attn_weights, self.get_masked_bias(attn_weights.dtype))
|
184 |
+
|
185 |
+
attn_weights = attn_weights / self.scale_attn
|
186 |
+
|
187 |
+
if attention_mask is not None:
|
188 |
+
# Apply the attention mask
|
189 |
+
attn_weights = attn_weights + attention_mask
|
190 |
+
|
191 |
+
attn_weights = stable_softmax(attn_weights, axis=-1)
|
192 |
+
attn_weights = tf.cast(attn_weights, value.dtype)
|
193 |
+
attn_weights = self.attn_dropout(attn_weights)
|
194 |
+
|
195 |
+
# Mask heads if we want to
|
196 |
+
if head_mask is not None:
|
197 |
+
attn_weights = attn_weights * head_mask
|
198 |
+
|
199 |
+
attn_output = tf.matmul(attn_weights, value)
|
200 |
+
|
201 |
+
return attn_output, attn_weights
|
202 |
+
|
203 |
+
def call(
|
204 |
+
self,
|
205 |
+
hidden_states: tf.Tensor,
|
206 |
+
layer_past: Optional[Tuple[tf.Tensor, tf.Tensor]] = None,
|
207 |
+
attention_mask: tf.Tensor | None = None,
|
208 |
+
position_ids: tf.Tensor | None = None,
|
209 |
+
head_mask: tf.Tensor | None = None,
|
210 |
+
use_cache: bool = False,
|
211 |
+
output_attentions: bool = False,
|
212 |
+
):
|
213 |
+
query = self.q_proj(hidden_states)
|
214 |
+
key = self.k_proj(hidden_states)
|
215 |
+
value = self.v_proj(hidden_states)
|
216 |
+
|
217 |
+
query = self._split_heads(query, True)
|
218 |
+
key = self._split_heads(key, True)
|
219 |
+
value = self._split_heads(value, False)
|
220 |
+
|
221 |
+
sincos = tf.cast(tf.gather(self.embed_positions, position_ids, axis=0), hidden_states.dtype)
|
222 |
+
sincos = tf.split(sincos, 2, axis=-1)
|
223 |
+
if self.rotary_dim is not None:
|
224 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
225 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
226 |
+
|
227 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
228 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
229 |
+
|
230 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos)
|
231 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos)
|
232 |
+
|
233 |
+
key = tf.concat((k_rot, k_pass), axis=-1)
|
234 |
+
query = tf.concat((q_rot, q_pass), axis=-1)
|
235 |
+
else:
|
236 |
+
key = apply_rotary_pos_emb(key, sincos)
|
237 |
+
query = apply_rotary_pos_emb(query, sincos)
|
238 |
+
|
239 |
+
key = tf.transpose(key, (0, 2, 1, 3))
|
240 |
+
query = tf.transpose(query, (0, 2, 1, 3))
|
241 |
+
|
242 |
+
if layer_past is not None:
|
243 |
+
past_key = layer_past[0]
|
244 |
+
past_value = layer_past[1]
|
245 |
+
key = tf.concat((past_key, key), axis=-2)
|
246 |
+
value = tf.concat((past_value, value), axis=-2)
|
247 |
+
|
248 |
+
if use_cache is True:
|
249 |
+
present = (key, value)
|
250 |
+
else:
|
251 |
+
present = None
|
252 |
+
|
253 |
+
# compute self-attention: V x Softmax(QK^T)
|
254 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
255 |
+
|
256 |
+
attn_output = self._merge_heads(attn_output)
|
257 |
+
attn_output = self.out_proj(attn_output)
|
258 |
+
attn_output = self.resid_dropout(attn_output)
|
259 |
+
|
260 |
+
outputs = (attn_output, present)
|
261 |
+
if output_attentions:
|
262 |
+
outputs += (attn_weights,)
|
263 |
+
|
264 |
+
return outputs # a, present, (attentions)
|
265 |
+
|
266 |
+
def build(self, input_shape=None):
|
267 |
+
if self.built:
|
268 |
+
return
|
269 |
+
self.built = True
|
270 |
+
if getattr(self, "q_proj", None) is not None:
|
271 |
+
with tf.name_scope(self.q_proj.name):
|
272 |
+
self.q_proj.build([None, None, self.embed_dim])
|
273 |
+
if getattr(self, "k_proj", None) is not None:
|
274 |
+
with tf.name_scope(self.k_proj.name):
|
275 |
+
self.k_proj.build([None, None, self.embed_dim])
|
276 |
+
if getattr(self, "v_proj", None) is not None:
|
277 |
+
with tf.name_scope(self.v_proj.name):
|
278 |
+
self.v_proj.build([None, None, self.embed_dim])
|
279 |
+
if getattr(self, "out_proj", None) is not None:
|
280 |
+
with tf.name_scope(self.out_proj.name):
|
281 |
+
self.out_proj.build([None, None, self.embed_dim])
|
282 |
+
|
283 |
+
|
284 |
+
class TFGPTJMLP(keras.layers.Layer):
|
285 |
+
def __init__(self, intermediate_size: int, config: GPTJConfig, **kwargs):
|
286 |
+
super().__init__(**kwargs)
|
287 |
+
embed_dim = config.n_embd
|
288 |
+
|
289 |
+
self.fc_in = keras.layers.Dense(
|
290 |
+
intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="fc_in"
|
291 |
+
)
|
292 |
+
self.fc_out = keras.layers.Dense(
|
293 |
+
embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="fc_out"
|
294 |
+
)
|
295 |
+
|
296 |
+
self.act = get_tf_activation(config.activation_function)
|
297 |
+
self.dropout = keras.layers.Dropout(config.embd_pdrop)
|
298 |
+
self.embed_dim = config.n_embd
|
299 |
+
self.intermediate_size = intermediate_size
|
300 |
+
|
301 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
302 |
+
hidden_states = self.fc_in(hidden_states)
|
303 |
+
hidden_states = self.act(hidden_states)
|
304 |
+
hidden_states = self.fc_out(hidden_states)
|
305 |
+
hidden_states = self.dropout(hidden_states)
|
306 |
+
return hidden_states
|
307 |
+
|
308 |
+
def build(self, input_shape=None):
|
309 |
+
if self.built:
|
310 |
+
return
|
311 |
+
self.built = True
|
312 |
+
if getattr(self, "fc_in", None) is not None:
|
313 |
+
with tf.name_scope(self.fc_in.name):
|
314 |
+
self.fc_in.build([None, None, self.embed_dim])
|
315 |
+
if getattr(self, "fc_out", None) is not None:
|
316 |
+
with tf.name_scope(self.fc_out.name):
|
317 |
+
self.fc_out.build([None, None, self.intermediate_size])
|
318 |
+
|
319 |
+
|
320 |
+
class TFGPTJBlock(keras.layers.Layer):
|
321 |
+
def __init__(self, config: GPTJConfig, **kwargs):
|
322 |
+
super().__init__(**kwargs)
|
323 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
324 |
+
self.ln_1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1")
|
325 |
+
self.attn = TFGPTJAttention(config, name="attn")
|
326 |
+
self.mlp = TFGPTJMLP(inner_dim, config, name="mlp")
|
327 |
+
self.config = config
|
328 |
+
|
329 |
+
def call(
|
330 |
+
self,
|
331 |
+
hidden_states: tf.Tensor,
|
332 |
+
layer_past: tf.Tensor | None = None,
|
333 |
+
attention_mask: tf.Tensor | None = None,
|
334 |
+
position_ids: tf.Tensor | None = None,
|
335 |
+
head_mask: tf.Tensor | None = None,
|
336 |
+
use_cache: bool = False,
|
337 |
+
output_attentions: bool = False,
|
338 |
+
):
|
339 |
+
residual = hidden_states
|
340 |
+
hidden_states = self.ln_1(hidden_states)
|
341 |
+
attn_outputs = self.attn(
|
342 |
+
hidden_states=hidden_states,
|
343 |
+
layer_past=layer_past,
|
344 |
+
attention_mask=attention_mask,
|
345 |
+
position_ids=position_ids,
|
346 |
+
head_mask=head_mask,
|
347 |
+
use_cache=use_cache,
|
348 |
+
output_attentions=output_attentions,
|
349 |
+
) # attn_outputs: attn_output, present, (attentions)
|
350 |
+
attn_output = attn_outputs[0]
|
351 |
+
outputs = attn_outputs[1:]
|
352 |
+
|
353 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
354 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
355 |
+
|
356 |
+
if use_cache:
|
357 |
+
outputs = (hidden_states,) + outputs
|
358 |
+
else:
|
359 |
+
outputs = (hidden_states,) + outputs[1:]
|
360 |
+
return outputs # hidden_states, present, (attentions)
|
361 |
+
|
362 |
+
def build(self, input_shape=None):
|
363 |
+
if self.built:
|
364 |
+
return
|
365 |
+
self.built = True
|
366 |
+
if getattr(self, "ln_1", None) is not None:
|
367 |
+
with tf.name_scope(self.ln_1.name):
|
368 |
+
self.ln_1.build([None, None, self.config.n_embd])
|
369 |
+
if getattr(self, "attn", None) is not None:
|
370 |
+
with tf.name_scope(self.attn.name):
|
371 |
+
self.attn.build(None)
|
372 |
+
if getattr(self, "mlp", None) is not None:
|
373 |
+
with tf.name_scope(self.mlp.name):
|
374 |
+
self.mlp.build(None)
|
375 |
+
|
376 |
+
|
377 |
+
@keras_serializable
|
378 |
+
class TFGPTJMainLayer(keras.layers.Layer):
|
379 |
+
config_class = GPTJConfig
|
380 |
+
|
381 |
+
def __init__(self, config: GPTJConfig, *inputs, **kwargs):
|
382 |
+
super().__init__(*inputs, **kwargs)
|
383 |
+
|
384 |
+
self.config = config
|
385 |
+
self.output_attentions = config.output_attentions
|
386 |
+
self.output_hidden_states = config.output_hidden_states
|
387 |
+
self.use_cache = config.use_cache
|
388 |
+
self.return_dict = config.use_return_dict
|
389 |
+
|
390 |
+
self.num_hidden_layers = config.n_layer
|
391 |
+
self.n_embd = config.n_embd
|
392 |
+
self.n_positions = config.n_positions
|
393 |
+
self.initializer_range = config.initializer_range
|
394 |
+
|
395 |
+
self.wte = TFSharedEmbeddings(
|
396 |
+
config.vocab_size, config.hidden_size, initializer_range=config.initializer_range, name="wte"
|
397 |
+
)
|
398 |
+
self.drop = keras.layers.Dropout(config.embd_pdrop)
|
399 |
+
self.h = [TFGPTJBlock(config, name=f"h_._{i}") for i in range(config.n_layer)]
|
400 |
+
self.ln_f = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_f")
|
401 |
+
self.embed_dim = config.n_embd
|
402 |
+
|
403 |
+
def get_input_embeddings(self):
|
404 |
+
return self.wte
|
405 |
+
|
406 |
+
def set_input_embeddings(self, value: tf.Tensor):
|
407 |
+
self.wte.weight = value
|
408 |
+
self.wte.vocab_size = shape_list(value)[0]
|
409 |
+
|
410 |
+
def _prune_heads(self, heads_to_prune):
|
411 |
+
"""
|
412 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
413 |
+
"""
|
414 |
+
raise NotImplementedError
|
415 |
+
|
416 |
+
@unpack_inputs
|
417 |
+
def call(
|
418 |
+
self,
|
419 |
+
input_ids=None,
|
420 |
+
past_key_values=None,
|
421 |
+
attention_mask=None,
|
422 |
+
token_type_ids=None,
|
423 |
+
position_ids=None,
|
424 |
+
head_mask=None,
|
425 |
+
inputs_embeds=None,
|
426 |
+
use_cache=None,
|
427 |
+
output_attentions=None,
|
428 |
+
output_hidden_states=None,
|
429 |
+
return_dict=None,
|
430 |
+
training=False,
|
431 |
+
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
|
432 |
+
if input_ids is not None and inputs_embeds is not None:
|
433 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
434 |
+
elif input_ids is not None:
|
435 |
+
input_shape = shape_list(input_ids)
|
436 |
+
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
|
437 |
+
elif inputs_embeds is not None:
|
438 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
439 |
+
else:
|
440 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
441 |
+
|
442 |
+
if past_key_values is None:
|
443 |
+
past_length = 0
|
444 |
+
past_key_values = [None] * len(self.h)
|
445 |
+
else:
|
446 |
+
past_length = shape_list(past_key_values[0][0])[-2]
|
447 |
+
|
448 |
+
if position_ids is None:
|
449 |
+
position_ids = tf.expand_dims(tf.range(past_length, input_shape[-1] + past_length), axis=0)
|
450 |
+
|
451 |
+
if attention_mask is not None:
|
452 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
453 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
454 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
455 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
456 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
457 |
+
attention_mask_shape = shape_list(attention_mask)
|
458 |
+
attention_mask = tf.reshape(attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]))
|
459 |
+
|
460 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
461 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
462 |
+
# positions we want to attend and -10000.0 for masked positions.
|
463 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
464 |
+
# effectively the same as removing these entirely.
|
465 |
+
one_cst = tf.constant(1.0)
|
466 |
+
attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype)
|
467 |
+
attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0))
|
468 |
+
|
469 |
+
# Prepare head mask if needed
|
470 |
+
# 1.0 in head_mask indicate we keep the head
|
471 |
+
# attention_probs has shape bsz x n_heads x N x N
|
472 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
473 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
474 |
+
if head_mask is not None:
|
475 |
+
raise NotImplementedError
|
476 |
+
else:
|
477 |
+
head_mask = [None] * self.num_hidden_layers
|
478 |
+
# head_mask = tf.constant([0] * self.num_hidden_layers)
|
479 |
+
|
480 |
+
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
|
481 |
+
|
482 |
+
if inputs_embeds is None:
|
483 |
+
check_embeddings_within_bounds(input_ids, self.wte.vocab_size)
|
484 |
+
inputs_embeds = self.wte(input_ids, mode="embedding")
|
485 |
+
|
486 |
+
if token_type_ids is not None:
|
487 |
+
token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
|
488 |
+
token_type_embeds = self.wte(token_type_ids, mode="embedding")
|
489 |
+
else:
|
490 |
+
token_type_embeds = tf.constant(0.0)
|
491 |
+
|
492 |
+
token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
|
493 |
+
hidden_states = inputs_embeds + token_type_embeds
|
494 |
+
hidden_states = self.drop(hidden_states, training=training)
|
495 |
+
|
496 |
+
output_shape = input_shape + [shape_list(hidden_states)[-1]]
|
497 |
+
|
498 |
+
presents = () if use_cache else None
|
499 |
+
all_attentions = () if output_attentions else None
|
500 |
+
all_hidden_states = () if output_hidden_states else None
|
501 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
502 |
+
if output_hidden_states:
|
503 |
+
all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)
|
504 |
+
|
505 |
+
outputs = block(
|
506 |
+
hidden_states=hidden_states,
|
507 |
+
layer_past=layer_past,
|
508 |
+
attention_mask=attention_mask,
|
509 |
+
position_ids=position_ids,
|
510 |
+
head_mask=head_mask[i],
|
511 |
+
use_cache=use_cache,
|
512 |
+
output_attentions=output_attentions,
|
513 |
+
training=training,
|
514 |
+
)
|
515 |
+
|
516 |
+
hidden_states = outputs[0]
|
517 |
+
if use_cache:
|
518 |
+
presents = presents + (outputs[1],)
|
519 |
+
|
520 |
+
if output_attentions:
|
521 |
+
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
522 |
+
|
523 |
+
hidden_states = self.ln_f(hidden_states)
|
524 |
+
|
525 |
+
hidden_states = tf.reshape(hidden_states, output_shape)
|
526 |
+
# Add last hidden state
|
527 |
+
if output_hidden_states:
|
528 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
529 |
+
|
530 |
+
if output_attentions:
|
531 |
+
# let the number of heads free (-1) so we can extract attention even after head pruning
|
532 |
+
attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
|
533 |
+
all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
|
534 |
+
|
535 |
+
if not return_dict:
|
536 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
|
537 |
+
|
538 |
+
return TFBaseModelOutputWithPast(
|
539 |
+
last_hidden_state=hidden_states,
|
540 |
+
past_key_values=presents,
|
541 |
+
hidden_states=all_hidden_states,
|
542 |
+
attentions=all_attentions,
|
543 |
+
)
|
544 |
+
|
545 |
+
def build(self, input_shape=None):
|
546 |
+
if self.built:
|
547 |
+
return
|
548 |
+
self.built = True
|
549 |
+
if getattr(self, "wte", None) is not None:
|
550 |
+
with tf.name_scope(self.wte.name):
|
551 |
+
self.wte.build(None)
|
552 |
+
if getattr(self, "ln_f", None) is not None:
|
553 |
+
with tf.name_scope(self.ln_f.name):
|
554 |
+
self.ln_f.build([None, None, self.embed_dim])
|
555 |
+
if getattr(self, "h", None) is not None:
|
556 |
+
for layer in self.h:
|
557 |
+
with tf.name_scope(layer.name):
|
558 |
+
layer.build(None)
|
559 |
+
|
560 |
+
|
561 |
+
class TFGPTJPreTrainedModel(TFPreTrainedModel):
|
562 |
+
"""
|
563 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
564 |
+
models.
|
565 |
+
"""
|
566 |
+
|
567 |
+
config_class = GPTJConfig
|
568 |
+
base_model_prefix = "transformer"
|
569 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
570 |
+
_keys_to_ignore_on_load_unexpected = [r"h.\d+.attn.bias"]
|
571 |
+
|
572 |
+
|
573 |
+
GPTJ_START_DOCSTRING = r"""
|
574 |
+
|
575 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
576 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
577 |
+
etc.)
|
578 |
+
|
579 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
580 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
581 |
+
behavior.
|
582 |
+
|
583 |
+
<Tip>
|
584 |
+
|
585 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
586 |
+
|
587 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
588 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
589 |
+
|
590 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
591 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
592 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
593 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
594 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
595 |
+
positional argument:
|
596 |
+
|
597 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
598 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
599 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
600 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
601 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
602 |
+
|
603 |
+
Note that when creating models and layers with
|
604 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
605 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
606 |
+
|
607 |
+
</Tip>
|
608 |
+
|
609 |
+
Parameters:
|
610 |
+
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
|
611 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
612 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
613 |
+
"""
|
614 |
+
|
615 |
+
GPTJ_INPUTS_DOCSTRING = r"""
|
616 |
+
Args:
|
617 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, input_ids_length)`):
|
618 |
+
`input_ids_length` = `sequence_length` if `past` is `None` else `past[0].shape[-2]` (`sequence_length` of
|
619 |
+
input past key value states). Indices of input sequence tokens in the vocabulary.
|
620 |
+
|
621 |
+
If `past` is used, only input IDs that do not have their past calculated should be passed as `input_ids`.
|
622 |
+
|
623 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
624 |
+
[`PreTrainedTokenizer.encode`] for details.
|
625 |
+
|
626 |
+
[What are input IDs?](../glossary#input-ids)
|
627 |
+
past_key_values (`List[tf.Tensor]` of length `config.n_layers`):
|
628 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
|
629 |
+
`past` output below). Can be used to speed up sequential decoding. The token ids which have their past
|
630 |
+
given to this model should not be passed as input ids as they have already been computed.
|
631 |
+
attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
632 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
633 |
+
|
634 |
+
- 1 for tokens that are **not masked**,
|
635 |
+
- 0 for tokens that are **masked**.
|
636 |
+
|
637 |
+
[What are attention masks?](../glossary#attention-mask)
|
638 |
+
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
639 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
640 |
+
1]`:
|
641 |
+
|
642 |
+
- 0 corresponds to a *sentence A* token,
|
643 |
+
- 1 corresponds to a *sentence B* token.
|
644 |
+
|
645 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
646 |
+
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
647 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
648 |
+
config.max_position_embeddings - 1]`.
|
649 |
+
|
650 |
+
[What are position IDs?](../glossary#position-ids)
|
651 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
652 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
653 |
+
|
654 |
+
- 1 indicates the head is **not masked**,
|
655 |
+
- 0 indicates the head is **masked**.
|
656 |
+
|
657 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
658 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
659 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
660 |
+
model's internal embedding lookup matrix.
|
661 |
+
output_attentions (`bool`, *optional*):
|
662 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
663 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
664 |
+
config will be used instead.
|
665 |
+
output_hidden_states (`bool`, *optional*):
|
666 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
667 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
668 |
+
used instead.
|
669 |
+
return_dict (`bool`, *optional*):
|
670 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
671 |
+
in eager mode, in graph mode the value will always be set to True.
|
672 |
+
training (`bool`, *optional*, defaults to `False`):
|
673 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
674 |
+
behaviors between training and evaluation).
|
675 |
+
"""
|
676 |
+
|
677 |
+
|
678 |
+
@add_start_docstrings(
|
679 |
+
"The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
|
680 |
+
GPTJ_START_DOCSTRING,
|
681 |
+
)
|
682 |
+
class TFGPTJModel(TFGPTJPreTrainedModel):
|
683 |
+
def __init__(self, config, *inputs, **kwargs):
|
684 |
+
super().__init__(config, *inputs, **kwargs)
|
685 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
686 |
+
|
687 |
+
@unpack_inputs
|
688 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING)
|
689 |
+
@add_code_sample_docstrings(
|
690 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
691 |
+
output_type=TFBaseModelOutputWithPast,
|
692 |
+
config_class=_CONFIG_FOR_DOC,
|
693 |
+
)
|
694 |
+
def call(
|
695 |
+
self,
|
696 |
+
input_ids: TFModelInputType | None = None,
|
697 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
698 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
699 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
700 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
701 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
702 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
703 |
+
use_cache: Optional[bool] = None,
|
704 |
+
output_attentions: Optional[bool] = None,
|
705 |
+
output_hidden_states: Optional[bool] = None,
|
706 |
+
return_dict: Optional[bool] = None,
|
707 |
+
training: Optional[bool] = False,
|
708 |
+
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
|
709 |
+
r"""
|
710 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
711 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
712 |
+
`past`). Set to `False` during training, `True` during generation
|
713 |
+
"""
|
714 |
+
|
715 |
+
outputs = self.transformer(
|
716 |
+
input_ids=input_ids,
|
717 |
+
past_key_values=past_key_values,
|
718 |
+
attention_mask=attention_mask,
|
719 |
+
token_type_ids=token_type_ids,
|
720 |
+
position_ids=position_ids,
|
721 |
+
head_mask=head_mask,
|
722 |
+
inputs_embeds=inputs_embeds,
|
723 |
+
use_cache=use_cache,
|
724 |
+
output_attentions=output_attentions,
|
725 |
+
output_hidden_states=output_hidden_states,
|
726 |
+
return_dict=return_dict,
|
727 |
+
training=training,
|
728 |
+
)
|
729 |
+
|
730 |
+
return outputs
|
731 |
+
|
732 |
+
def build(self, input_shape=None):
|
733 |
+
if self.built:
|
734 |
+
return
|
735 |
+
self.built = True
|
736 |
+
if getattr(self, "transformer", None) is not None:
|
737 |
+
with tf.name_scope(self.transformer.name):
|
738 |
+
self.transformer.build(None)
|
739 |
+
|
740 |
+
|
741 |
+
@add_start_docstrings(
|
742 |
+
"""
|
743 |
+
The GPT-J Model transformer with a language modeling head on top.
|
744 |
+
""",
|
745 |
+
GPTJ_START_DOCSTRING,
|
746 |
+
)
|
747 |
+
class TFGPTJForCausalLM(TFGPTJPreTrainedModel, TFCausalLanguageModelingLoss):
|
748 |
+
def __init__(self, config, *inputs, **kwargs):
|
749 |
+
super().__init__(config, *inputs, **kwargs)
|
750 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
751 |
+
self.lm_head = keras.layers.Dense(
|
752 |
+
config.vocab_size, kernel_initializer=get_initializer(config.initializer_range), name="lm_head"
|
753 |
+
)
|
754 |
+
self.config = config
|
755 |
+
|
756 |
+
def get_output_embeddings(self):
|
757 |
+
return self.lm_head
|
758 |
+
|
759 |
+
def set_output_embeddings(self, new_embeddings):
|
760 |
+
self.lm_head = new_embeddings
|
761 |
+
|
762 |
+
def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs):
|
763 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
764 |
+
# only last token for inputs_ids if past is defined in kwargs
|
765 |
+
if past_key_values:
|
766 |
+
inputs = tf.expand_dims(inputs[:, -1], -1)
|
767 |
+
if token_type_ids is not None:
|
768 |
+
token_type_ids = tf.expand_dims(token_type_ids[:, -1], -1)
|
769 |
+
|
770 |
+
position_ids = kwargs.get("position_ids", None)
|
771 |
+
attention_mask = kwargs.get("attention_mask", None)
|
772 |
+
|
773 |
+
if attention_mask is not None and position_ids is None:
|
774 |
+
position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True)
|
775 |
+
if past_key_values:
|
776 |
+
position_ids = tf.expand_dims(position_ids[:, -1], -1)
|
777 |
+
|
778 |
+
return {
|
779 |
+
"input_ids": inputs,
|
780 |
+
"attention_mask": attention_mask,
|
781 |
+
"position_ids": position_ids,
|
782 |
+
"past_key_values": past_key_values,
|
783 |
+
"use_cache": use_cache,
|
784 |
+
"token_type_ids": token_type_ids,
|
785 |
+
}
|
786 |
+
|
787 |
+
@unpack_inputs
|
788 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
789 |
+
@add_code_sample_docstrings(
|
790 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
791 |
+
output_type=TFCausalLMOutputWithPast,
|
792 |
+
config_class=_CONFIG_FOR_DOC,
|
793 |
+
)
|
794 |
+
def call(
|
795 |
+
self,
|
796 |
+
input_ids: TFModelInputType | None = None,
|
797 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
798 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
799 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
800 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
801 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
802 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
803 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
804 |
+
use_cache: Optional[bool] = None,
|
805 |
+
output_attentions: Optional[bool] = None,
|
806 |
+
output_hidden_states: Optional[bool] = None,
|
807 |
+
return_dict: Optional[bool] = None,
|
808 |
+
training: Optional[bool] = False,
|
809 |
+
) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]:
|
810 |
+
r"""
|
811 |
+
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
812 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
813 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
814 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
815 |
+
"""
|
816 |
+
|
817 |
+
transformer_outputs = self.transformer(
|
818 |
+
input_ids=input_ids,
|
819 |
+
past_key_values=past_key_values,
|
820 |
+
attention_mask=attention_mask,
|
821 |
+
token_type_ids=token_type_ids,
|
822 |
+
position_ids=position_ids,
|
823 |
+
head_mask=head_mask,
|
824 |
+
inputs_embeds=inputs_embeds,
|
825 |
+
use_cache=use_cache,
|
826 |
+
output_attentions=output_attentions,
|
827 |
+
output_hidden_states=output_hidden_states,
|
828 |
+
return_dict=return_dict,
|
829 |
+
training=training,
|
830 |
+
)
|
831 |
+
hidden_states = transformer_outputs[0]
|
832 |
+
lm_logits = self.lm_head(hidden_states)
|
833 |
+
|
834 |
+
loss = None
|
835 |
+
if labels is not None:
|
836 |
+
# shift labels to the left and cut last logit token
|
837 |
+
shifted_logits = lm_logits[:, :-1]
|
838 |
+
labels = labels[:, 1:]
|
839 |
+
loss = self.hf_compute_loss(labels, shifted_logits)
|
840 |
+
|
841 |
+
if not return_dict:
|
842 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
843 |
+
return ((loss,) + output) if loss is not None else output
|
844 |
+
|
845 |
+
return TFCausalLMOutputWithPast(
|
846 |
+
loss=loss,
|
847 |
+
logits=lm_logits,
|
848 |
+
past_key_values=transformer_outputs.past_key_values,
|
849 |
+
hidden_states=transformer_outputs.hidden_states,
|
850 |
+
attentions=transformer_outputs.attentions,
|
851 |
+
)
|
852 |
+
|
853 |
+
def build(self, input_shape=None):
|
854 |
+
if self.built:
|
855 |
+
return
|
856 |
+
self.built = True
|
857 |
+
if getattr(self, "transformer", None) is not None:
|
858 |
+
with tf.name_scope(self.transformer.name):
|
859 |
+
self.transformer.build(None)
|
860 |
+
if getattr(self, "lm_head", None) is not None:
|
861 |
+
with tf.name_scope(self.lm_head.name):
|
862 |
+
self.lm_head.build([None, None, self.config.n_embd])
|
863 |
+
|
864 |
+
|
865 |
+
@add_start_docstrings(
|
866 |
+
"""
|
867 |
+
The GPT-J Model transformer with a sequence classification head on top (linear layer).
|
868 |
+
|
869 |
+
[`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
870 |
+
(e.g. GPT, GPT-2, GPT-Neo) do.
|
871 |
+
|
872 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
873 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
874 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
875 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
876 |
+
each row of the batch).
|
877 |
+
""",
|
878 |
+
GPTJ_START_DOCSTRING,
|
879 |
+
)
|
880 |
+
class TFGPTJForSequenceClassification(TFGPTJPreTrainedModel, TFSequenceClassificationLoss):
|
881 |
+
_keys_to_ignore_on_load_missing = [r"h.\d+.attn.masked_bias", r"h.\d+.attn.bias", r"lm_head.weight"]
|
882 |
+
|
883 |
+
def __init__(self, config, *inputs, **kwargs):
|
884 |
+
super().__init__(config, *inputs, **kwargs)
|
885 |
+
self.num_labels = config.num_labels
|
886 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
887 |
+
self.score = keras.layers.Dense(
|
888 |
+
self.num_labels,
|
889 |
+
use_bias=False,
|
890 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
891 |
+
name="score",
|
892 |
+
)
|
893 |
+
self.config = config
|
894 |
+
|
895 |
+
@unpack_inputs
|
896 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
897 |
+
@add_code_sample_docstrings(
|
898 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
899 |
+
output_type=TFSequenceClassifierOutputWithPast,
|
900 |
+
config_class=_CONFIG_FOR_DOC,
|
901 |
+
)
|
902 |
+
def call(
|
903 |
+
self,
|
904 |
+
input_ids: TFModelInputType | None = None,
|
905 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
906 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
907 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
908 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
909 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
910 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
911 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
912 |
+
use_cache: Optional[bool] = None,
|
913 |
+
output_attentions: Optional[bool] = None,
|
914 |
+
output_hidden_states: Optional[bool] = None,
|
915 |
+
return_dict: Optional[bool] = None,
|
916 |
+
training: Optional[bool] = False,
|
917 |
+
) -> Union[TFSequenceClassifierOutputWithPast, Tuple[tf.Tensor]]:
|
918 |
+
r"""
|
919 |
+
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
|
920 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
921 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
922 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
923 |
+
"""
|
924 |
+
|
925 |
+
transformer_outputs = self.transformer(
|
926 |
+
input_ids=input_ids,
|
927 |
+
past_key_values=past_key_values,
|
928 |
+
attention_mask=attention_mask,
|
929 |
+
token_type_ids=token_type_ids,
|
930 |
+
position_ids=position_ids,
|
931 |
+
head_mask=head_mask,
|
932 |
+
inputs_embeds=inputs_embeds,
|
933 |
+
use_cache=use_cache,
|
934 |
+
output_attentions=output_attentions,
|
935 |
+
output_hidden_states=output_hidden_states,
|
936 |
+
return_dict=return_dict,
|
937 |
+
training=training,
|
938 |
+
)
|
939 |
+
hidden_states = transformer_outputs[0]
|
940 |
+
logits = self.score(hidden_states)
|
941 |
+
logits_shape = shape_list(logits)
|
942 |
+
in_logits = None
|
943 |
+
if self.config.pad_token_id is None:
|
944 |
+
sequence_lengths = -1
|
945 |
+
else:
|
946 |
+
if input_ids is not None:
|
947 |
+
sequence_lengths = (
|
948 |
+
tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1)
|
949 |
+
- 1
|
950 |
+
)
|
951 |
+
sequence_lengths = tf.where(
|
952 |
+
sequence_lengths >= 0,
|
953 |
+
sequence_lengths,
|
954 |
+
tf.cast(shape_list(input_ids[-1]), sequence_lengths.dtype) - 1,
|
955 |
+
)
|
956 |
+
in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1)
|
957 |
+
else:
|
958 |
+
sequence_lengths = -1
|
959 |
+
logger.warning(
|
960 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
961 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
962 |
+
)
|
963 |
+
loss = None
|
964 |
+
|
965 |
+
if labels is not None:
|
966 |
+
if self.config.pad_token_id is None and logits_shape[0] != 1:
|
967 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
968 |
+
|
969 |
+
if not tf.is_tensor(sequence_lengths):
|
970 |
+
in_logits = logits[0 : logits_shape[0], sequence_lengths]
|
971 |
+
|
972 |
+
loss = self.hf_compute_loss(tf.reshape(labels, [-1]), tf.reshape(in_logits, [-1, self.num_labels]))
|
973 |
+
pooled_logits = in_logits if in_logits is not None else logits
|
974 |
+
|
975 |
+
if not return_dict:
|
976 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
977 |
+
return ((loss,) + output) if loss is not None else output
|
978 |
+
|
979 |
+
return TFSequenceClassifierOutputWithPast(
|
980 |
+
loss=loss,
|
981 |
+
logits=pooled_logits,
|
982 |
+
past_key_values=transformer_outputs.past_key_values,
|
983 |
+
hidden_states=transformer_outputs.hidden_states,
|
984 |
+
attentions=transformer_outputs.attentions,
|
985 |
+
)
|
986 |
+
|
987 |
+
def build(self, input_shape=None):
|
988 |
+
if self.built:
|
989 |
+
return
|
990 |
+
self.built = True
|
991 |
+
if getattr(self, "transformer", None) is not None:
|
992 |
+
with tf.name_scope(self.transformer.name):
|
993 |
+
self.transformer.build(None)
|
994 |
+
if getattr(self, "score", None) is not None:
|
995 |
+
with tf.name_scope(self.score.name):
|
996 |
+
self.score.build([None, None, self.config.n_embd])
|
997 |
+
|
998 |
+
|
999 |
+
@add_start_docstrings(
|
1000 |
+
"""
|
1001 |
+
The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
|
1002 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1003 |
+
""",
|
1004 |
+
GPTJ_START_DOCSTRING,
|
1005 |
+
)
|
1006 |
+
class TFGPTJForQuestionAnswering(TFGPTJPreTrainedModel, TFQuestionAnsweringLoss):
|
1007 |
+
_keys_to_ignore_on_load_missing = [r"h.\d+.attn.masked_bias", r"h.\d+.attn.bias", r"lm_head.weight"]
|
1008 |
+
|
1009 |
+
def __init__(self, config, *inputs, **kwargs):
|
1010 |
+
super().__init__(config, *inputs, **kwargs)
|
1011 |
+
self.num_labels = config.num_labels
|
1012 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
1013 |
+
self.qa_outputs = keras.layers.Dense(
|
1014 |
+
self.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
1015 |
+
)
|
1016 |
+
self.config = config
|
1017 |
+
|
1018 |
+
@unpack_inputs
|
1019 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1020 |
+
@add_code_sample_docstrings(
|
1021 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1022 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1023 |
+
config_class=_CONFIG_FOR_DOC,
|
1024 |
+
)
|
1025 |
+
def call(
|
1026 |
+
self,
|
1027 |
+
input_ids: TFModelInputType | None = None,
|
1028 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1029 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1030 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1031 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1032 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1033 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1034 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1035 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1036 |
+
output_attentions: Optional[bool] = None,
|
1037 |
+
output_hidden_states: Optional[bool] = None,
|
1038 |
+
return_dict: Optional[bool] = None,
|
1039 |
+
training: Optional[bool] = False,
|
1040 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1041 |
+
r"""
|
1042 |
+
start_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1043 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1044 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1045 |
+
are not taken into account for computing the loss.
|
1046 |
+
end_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1047 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1048 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1049 |
+
are not taken into account for computing the loss.
|
1050 |
+
"""
|
1051 |
+
|
1052 |
+
transformer_outputs = self.transformer(
|
1053 |
+
input_ids=input_ids,
|
1054 |
+
past_key_values=past_key_values,
|
1055 |
+
attention_mask=attention_mask,
|
1056 |
+
token_type_ids=token_type_ids,
|
1057 |
+
position_ids=position_ids,
|
1058 |
+
head_mask=head_mask,
|
1059 |
+
inputs_embeds=inputs_embeds,
|
1060 |
+
output_attentions=output_attentions,
|
1061 |
+
output_hidden_states=output_hidden_states,
|
1062 |
+
return_dict=return_dict,
|
1063 |
+
training=training,
|
1064 |
+
)
|
1065 |
+
sequence_output = transformer_outputs[0]
|
1066 |
+
|
1067 |
+
logits = self.qa_outputs(sequence_output)
|
1068 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
1069 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
1070 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
1071 |
+
|
1072 |
+
loss = None
|
1073 |
+
if start_positions is not None and end_positions is not None:
|
1074 |
+
labels = {"start_position": start_positions}
|
1075 |
+
labels["end_position"] = end_positions
|
1076 |
+
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
|
1077 |
+
|
1078 |
+
if not return_dict:
|
1079 |
+
output = (start_logits, end_logits) + transformer_outputs[2:]
|
1080 |
+
return ((loss,) + output) if loss is not None else output
|
1081 |
+
|
1082 |
+
return TFQuestionAnsweringModelOutput(
|
1083 |
+
loss=loss,
|
1084 |
+
start_logits=start_logits,
|
1085 |
+
end_logits=end_logits,
|
1086 |
+
hidden_states=transformer_outputs.hidden_states,
|
1087 |
+
attentions=transformer_outputs.attentions,
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
def build(self, input_shape=None):
|
1091 |
+
if self.built:
|
1092 |
+
return
|
1093 |
+
self.built = True
|
1094 |
+
if getattr(self, "transformer", None) is not None:
|
1095 |
+
with tf.name_scope(self.transformer.name):
|
1096 |
+
self.transformer.build(None)
|
1097 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1098 |
+
with tf.name_scope(self.qa_outputs.name):
|
1099 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__init__.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_llava": ["LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlavaConfig"],
|
21 |
+
"processing_llava": ["LlavaProcessor"],
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
try:
|
26 |
+
if not is_torch_available():
|
27 |
+
raise OptionalDependencyNotAvailable()
|
28 |
+
except OptionalDependencyNotAvailable:
|
29 |
+
pass
|
30 |
+
else:
|
31 |
+
_import_structure["modeling_llava"] = [
|
32 |
+
"LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
33 |
+
"LlavaForConditionalGeneration",
|
34 |
+
"LlavaPreTrainedModel",
|
35 |
+
]
|
36 |
+
|
37 |
+
|
38 |
+
if TYPE_CHECKING:
|
39 |
+
from .configuration_llava import LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlavaConfig
|
40 |
+
from .processing_llava import LlavaProcessor
|
41 |
+
|
42 |
+
try:
|
43 |
+
if not is_torch_available():
|
44 |
+
raise OptionalDependencyNotAvailable()
|
45 |
+
except OptionalDependencyNotAvailable:
|
46 |
+
pass
|
47 |
+
else:
|
48 |
+
from .modeling_llava import (
|
49 |
+
LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
50 |
+
LlavaForConditionalGeneration,
|
51 |
+
LlavaPreTrainedModel,
|
52 |
+
)
|
53 |
+
|
54 |
+
else:
|
55 |
+
import sys
|
56 |
+
|
57 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (942 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__pycache__/configuration_llava.cpython-310.pyc
ADDED
Binary file (4.99 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__pycache__/convert_llava_weights_to_hf.cpython-310.pyc
ADDED
Binary file (4.47 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__pycache__/modeling_llava.cpython-310.pyc
ADDED
Binary file (20.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/llava/__pycache__/processing_llava.cpython-310.pyc
ADDED
Binary file (6.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/llava/configuration_llava.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
""" Llava model configuration"""
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
from ..auto import CONFIG_MAPPING
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
from ..deprecated._archive_maps import LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
27 |
+
|
28 |
+
|
29 |
+
class LlavaConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an
|
32 |
+
Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
33 |
+
with the defaults will yield a similar configuration to that of the Llava-9B.
|
34 |
+
|
35 |
+
e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b)
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
|
42 |
+
The config object or dictionary of the vision backbone.
|
43 |
+
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
|
44 |
+
The config object or dictionary of the text backbone.
|
45 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
46 |
+
The ignore index for the loss function.
|
47 |
+
image_token_index (`int`, *optional*, defaults to 32000):
|
48 |
+
The image token index to encode the image prompt.
|
49 |
+
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
50 |
+
The activation function used by the multimodal projector.
|
51 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
52 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
53 |
+
Can be one of `"default"` or `"full"`.
|
54 |
+
vision_feature_layer (`int`, *optional*, defaults to -2):
|
55 |
+
The index of the layer to select the vision feature.
|
56 |
+
|
57 |
+
Example:
|
58 |
+
|
59 |
+
```python
|
60 |
+
>>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig
|
61 |
+
|
62 |
+
>>> # Initializing a CLIP-vision config
|
63 |
+
>>> vision_config = CLIPVisionConfig()
|
64 |
+
|
65 |
+
>>> # Initializing a Llama config
|
66 |
+
>>> text_config = LlamaConfig()
|
67 |
+
|
68 |
+
>>> # Initializing a Llava llava-1.5-7b style configuration
|
69 |
+
>>> configuration = LlavaConfig(vision_config, text_config)
|
70 |
+
|
71 |
+
>>> # Initializing a model from the llava-1.5-7b style configuration
|
72 |
+
>>> model = LlavaForConditionalGeneration(configuration)
|
73 |
+
|
74 |
+
>>> # Accessing the model configuration
|
75 |
+
>>> configuration = model.config
|
76 |
+
```"""
|
77 |
+
|
78 |
+
model_type = "llava"
|
79 |
+
is_composition = False
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
vision_config=None,
|
84 |
+
text_config=None,
|
85 |
+
ignore_index=-100,
|
86 |
+
image_token_index=32000,
|
87 |
+
projector_hidden_act="gelu",
|
88 |
+
vision_feature_select_strategy="default",
|
89 |
+
vision_feature_layer=-2,
|
90 |
+
**kwargs,
|
91 |
+
):
|
92 |
+
self.ignore_index = ignore_index
|
93 |
+
self.image_token_index = image_token_index
|
94 |
+
self.projector_hidden_act = projector_hidden_act
|
95 |
+
|
96 |
+
if vision_feature_select_strategy not in ["default", "full"]:
|
97 |
+
raise ValueError(
|
98 |
+
"vision_feature_select_strategy should be one of 'default', 'full'."
|
99 |
+
f"Got: {vision_feature_select_strategy}"
|
100 |
+
)
|
101 |
+
|
102 |
+
if "vocab_size" in kwargs:
|
103 |
+
warnings.warn(
|
104 |
+
"The `vocab_size` argument is deprecated and will be removed in v4.42, since it can be inferred from the `text_config`. Passing this argument has no effect",
|
105 |
+
FutureWarning,
|
106 |
+
)
|
107 |
+
|
108 |
+
self.vision_feature_select_strategy = vision_feature_select_strategy
|
109 |
+
self.vision_feature_layer = vision_feature_layer
|
110 |
+
|
111 |
+
if isinstance(vision_config, dict):
|
112 |
+
vision_config["model_type"] = (
|
113 |
+
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
|
114 |
+
)
|
115 |
+
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
|
116 |
+
elif vision_config is None:
|
117 |
+
vision_config = CONFIG_MAPPING["clip_vision_model"](
|
118 |
+
intermediate_size=4096,
|
119 |
+
hidden_size=1024,
|
120 |
+
patch_size=14,
|
121 |
+
image_size=336,
|
122 |
+
num_hidden_layers=24,
|
123 |
+
num_attention_heads=16,
|
124 |
+
vocab_size=32000,
|
125 |
+
projection_dim=768,
|
126 |
+
)
|
127 |
+
|
128 |
+
self.vision_config = vision_config
|
129 |
+
|
130 |
+
if isinstance(text_config, dict):
|
131 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
|
132 |
+
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
133 |
+
elif text_config is None:
|
134 |
+
text_config = CONFIG_MAPPING["llama"]()
|
135 |
+
|
136 |
+
self.text_config = text_config
|
137 |
+
self._vocab_size = self.text_config.vocab_size
|
138 |
+
|
139 |
+
super().__init__(**kwargs)
|
140 |
+
|
141 |
+
@property
|
142 |
+
def vocab_size(self):
|
143 |
+
warnings.warn(
|
144 |
+
"The `vocab_size` attribute is deprecated and will be removed in v4.42, Please use `text_config.vocab_size` instead.",
|
145 |
+
FutureWarning,
|
146 |
+
)
|
147 |
+
return self._vocab_size
|
148 |
+
|
149 |
+
@vocab_size.setter
|
150 |
+
def vocab_size(self, value):
|
151 |
+
self._vocab_size = value
|
152 |
+
|
153 |
+
def to_dict(self):
|
154 |
+
output = super().to_dict()
|
155 |
+
output.pop("_vocab_size", None)
|
156 |
+
return output
|
llmeval-env/lib/python3.10/site-packages/transformers/models/llava/convert_llava_weights_to_hf.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import argparse
|
15 |
+
|
16 |
+
import torch
|
17 |
+
from huggingface_hub import hf_hub_download
|
18 |
+
|
19 |
+
from transformers import (
|
20 |
+
AddedToken,
|
21 |
+
AutoConfig,
|
22 |
+
AutoTokenizer,
|
23 |
+
CLIPImageProcessor,
|
24 |
+
LlavaConfig,
|
25 |
+
LlavaForConditionalGeneration,
|
26 |
+
LlavaProcessor,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
EPILOG_TXT = """Example:
|
31 |
+
python transformers/src/transformers/models/llava/convert_llava_weights_to_hf.py --text_model_id lmsys/vicuna-7b-v1.5 --vision_model_id openai/clip-vit-large-patch14-336 --output_hub_path org/llava-v1.5-7b-conv --old_state_dict_id liuhaotian/llava-v1.5-7b
|
32 |
+
|
33 |
+
Example for creating the old state dict file with Python:
|
34 |
+
|
35 |
+
import torch
|
36 |
+
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
|
37 |
+
|
38 |
+
# load model
|
39 |
+
kwargs = {"device_map": "auto", "torch_dtype": torch.float16}
|
40 |
+
model = LlavaLlamaForCausalLM.from_pretrained("liuhaotian/llava-v1.5-7b", low_cpu_mem_usage=True, **kwargs)
|
41 |
+
|
42 |
+
# load vision tower
|
43 |
+
model.get_vision_tower().load_model()
|
44 |
+
|
45 |
+
# Save state dict
|
46 |
+
torch.save(model.state_dict(), "tmp/hf_models/llava-v1.5-7b/model_state_dict.bin")
|
47 |
+
"""
|
48 |
+
|
49 |
+
KEYS_TO_MODIFY_MAPPING = {
|
50 |
+
"model.vision_tower.": "",
|
51 |
+
"model.mm_projector": "multi_modal_projector",
|
52 |
+
"model": "model.model",
|
53 |
+
"vision_model.model": "vision_model",
|
54 |
+
"lm_head": "language_model.lm_head",
|
55 |
+
"model.model": "language_model.model",
|
56 |
+
"multi_modal_projector.0": "multi_modal_projector.linear_1",
|
57 |
+
"multi_modal_projector.2": "multi_modal_projector.linear_2",
|
58 |
+
}
|
59 |
+
|
60 |
+
|
61 |
+
def convert_state_dict_to_hf(state_dict):
|
62 |
+
new_state_dict = {}
|
63 |
+
for key, value in state_dict.items():
|
64 |
+
if key.endswith(".inv_freq"):
|
65 |
+
continue
|
66 |
+
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
|
67 |
+
if key_to_modify in key:
|
68 |
+
key = key.replace(key_to_modify, new_key)
|
69 |
+
|
70 |
+
new_state_dict[key] = value
|
71 |
+
return new_state_dict
|
72 |
+
|
73 |
+
|
74 |
+
def convert_llava_llama_to_hf(text_model_id, vision_model_id, output_hub_path, old_state_dict_id):
|
75 |
+
torch.set_default_dtype(torch.float16)
|
76 |
+
text_config = AutoConfig.from_pretrained(text_model_id)
|
77 |
+
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(text_model_id)
|
79 |
+
tokenizer.add_tokens(AddedToken("<image>", special=True, normalized=False), special_tokens=True)
|
80 |
+
tokenizer.add_special_tokens({"pad_token": "<pad>"})
|
81 |
+
|
82 |
+
image_processor = CLIPImageProcessor.from_pretrained(vision_model_id)
|
83 |
+
|
84 |
+
processor = LlavaProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
85 |
+
|
86 |
+
config = LlavaConfig(text_config=text_config)
|
87 |
+
config.pad_token_id = 32001
|
88 |
+
|
89 |
+
with torch.device("meta"):
|
90 |
+
model = LlavaForConditionalGeneration(config)
|
91 |
+
|
92 |
+
# Pad to 64 for performance reasons
|
93 |
+
pad_shape = 64
|
94 |
+
|
95 |
+
state_dict_path = hf_hub_download(old_state_dict_id, "model_state_dict.bin")
|
96 |
+
|
97 |
+
state_dict = torch.load(state_dict_path, map_location="cpu")
|
98 |
+
state_dict = convert_state_dict_to_hf(state_dict)
|
99 |
+
model.load_state_dict(state_dict, strict=True, assign=True)
|
100 |
+
|
101 |
+
pre_expansion_embeddings = model.language_model.model.embed_tokens.weight.data
|
102 |
+
mu = torch.mean(pre_expansion_embeddings, dim=0).float()
|
103 |
+
n = pre_expansion_embeddings.size()[0]
|
104 |
+
sigma = ((pre_expansion_embeddings - mu).T @ (pre_expansion_embeddings - mu)) / n
|
105 |
+
dist = torch.distributions.multivariate_normal.MultivariateNormal(mu, covariance_matrix=1e-5 * sigma)
|
106 |
+
|
107 |
+
# We add an image token so we resize the model
|
108 |
+
model.resize_token_embeddings(config.text_config.vocab_size + 2, pad_shape)
|
109 |
+
model.language_model.model.embed_tokens.weight.data[32000:] = torch.stack(
|
110 |
+
tuple((dist.sample() for _ in range(model.language_model.model.embed_tokens.weight.data[32000:].shape[0]))),
|
111 |
+
dim=0,
|
112 |
+
)
|
113 |
+
model.language_model.lm_head.weight.data[32000:] = torch.stack(
|
114 |
+
tuple((dist.sample() for _ in range(model.language_model.lm_head.weight.data[32000:].shape[0]))),
|
115 |
+
dim=0,
|
116 |
+
)
|
117 |
+
|
118 |
+
model.push_to_hub(output_hub_path)
|
119 |
+
processor.push_to_hub(output_hub_path)
|
120 |
+
|
121 |
+
|
122 |
+
def main():
|
123 |
+
parser = argparse.ArgumentParser(
|
124 |
+
epilog=EPILOG_TXT,
|
125 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
126 |
+
)
|
127 |
+
parser.add_argument(
|
128 |
+
"--text_model_id",
|
129 |
+
help="Hub location of the text model",
|
130 |
+
)
|
131 |
+
parser.add_argument(
|
132 |
+
"--vision_model_id",
|
133 |
+
help="Hub location of the vision model",
|
134 |
+
)
|
135 |
+
parser.add_argument(
|
136 |
+
"--output_hub_path",
|
137 |
+
help="Location on the hub of the converted model",
|
138 |
+
)
|
139 |
+
parser.add_argument(
|
140 |
+
"--old_state_dict_id",
|
141 |
+
help="Location on the hub of the raw state dict of the original model. The filename needs to be `model_state_dict.bin`",
|
142 |
+
)
|
143 |
+
args = parser.parse_args()
|
144 |
+
convert_llava_llama_to_hf(args.text_model_id, args.vision_model_id, args.output_hub_path, args.old_state_dict_id)
|
145 |
+
|
146 |
+
|
147 |
+
if __name__ == "__main__":
|
148 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/transformers/models/llava/modeling_llava.py
ADDED
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Llava model."""
|
16 |
+
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
|
24 |
+
from ... import PreTrainedModel
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...cache_utils import Cache
|
27 |
+
from ...modeling_outputs import ModelOutput
|
28 |
+
from ...utils import (
|
29 |
+
add_start_docstrings,
|
30 |
+
add_start_docstrings_to_model_forward,
|
31 |
+
logging,
|
32 |
+
replace_return_docstrings,
|
33 |
+
)
|
34 |
+
from ..auto import AutoModel, AutoModelForCausalLM
|
35 |
+
from .configuration_llava import LlavaConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CONFIG_FOR_DOC = "LlavaConfig"
|
41 |
+
|
42 |
+
|
43 |
+
from ..deprecated._archive_maps import LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava
|
48 |
+
class LlavaCausalLMOutputWithPast(ModelOutput):
|
49 |
+
"""
|
50 |
+
Base class for Llava causal language model (or autoregressive) outputs.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
54 |
+
Language modeling loss (for next-token prediction).
|
55 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
56 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
57 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
58 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
59 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
60 |
+
|
61 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
62 |
+
`past_key_values` input) to speed up sequential decoding.
|
63 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
64 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
65 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
66 |
+
|
67 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
68 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
69 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
70 |
+
sequence_length)`.
|
71 |
+
|
72 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
73 |
+
heads.
|
74 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
75 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
76 |
+
sequence_length, hidden_size)`.
|
77 |
+
|
78 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
79 |
+
"""
|
80 |
+
|
81 |
+
loss: Optional[torch.FloatTensor] = None
|
82 |
+
logits: torch.FloatTensor = None
|
83 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
84 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
85 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
86 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
87 |
+
|
88 |
+
|
89 |
+
class LlavaMultiModalProjector(nn.Module):
|
90 |
+
def __init__(self, config: LlavaConfig):
|
91 |
+
super().__init__()
|
92 |
+
|
93 |
+
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
94 |
+
self.act = ACT2FN[config.projector_hidden_act]
|
95 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
96 |
+
|
97 |
+
def forward(self, image_features):
|
98 |
+
hidden_states = self.linear_1(image_features)
|
99 |
+
hidden_states = self.act(hidden_states)
|
100 |
+
hidden_states = self.linear_2(hidden_states)
|
101 |
+
return hidden_states
|
102 |
+
|
103 |
+
|
104 |
+
LLAVA_START_DOCSTRING = r"""
|
105 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
106 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
107 |
+
etc.)
|
108 |
+
|
109 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
110 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
111 |
+
and behavior.
|
112 |
+
|
113 |
+
Parameters:
|
114 |
+
config ([`LlavaConfig`] or [`LlavaVisionConfig`]):
|
115 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
116 |
+
load the weights associated with the model, only the configuration. Check out the
|
117 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
118 |
+
"""
|
119 |
+
|
120 |
+
|
121 |
+
@add_start_docstrings(
|
122 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
123 |
+
LLAVA_START_DOCSTRING,
|
124 |
+
)
|
125 |
+
class LlavaPreTrainedModel(PreTrainedModel):
|
126 |
+
config_class = LlavaConfig
|
127 |
+
base_model_prefix = "model"
|
128 |
+
supports_gradient_checkpointing = True
|
129 |
+
_no_split_modules = ["LlavaVisionAttention"]
|
130 |
+
_skip_keys_device_placement = "past_key_values"
|
131 |
+
_supports_flash_attn_2 = True
|
132 |
+
|
133 |
+
def _init_weights(self, module):
|
134 |
+
# important: this ported version of Llava isn't meant for training from scratch - only
|
135 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
136 |
+
# https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose
|
137 |
+
std = (
|
138 |
+
self.config.initializer_range
|
139 |
+
if hasattr(self.config, "initializer_range")
|
140 |
+
else self.config.text_config.initializer_range
|
141 |
+
)
|
142 |
+
|
143 |
+
if hasattr(module, "class_embedding"):
|
144 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
145 |
+
|
146 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
147 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
148 |
+
if module.bias is not None:
|
149 |
+
module.bias.data.zero_()
|
150 |
+
elif isinstance(module, nn.Embedding):
|
151 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
152 |
+
if module.padding_idx is not None:
|
153 |
+
module.weight.data[module.padding_idx].zero_()
|
154 |
+
|
155 |
+
@property
|
156 |
+
def _supports_sdpa(self):
|
157 |
+
"""
|
158 |
+
Retrieve language_model's attribute to check whether the model supports
|
159 |
+
SDPA or not.
|
160 |
+
"""
|
161 |
+
return self.language_model._supports_sdpa
|
162 |
+
|
163 |
+
|
164 |
+
LLAVA_INPUTS_DOCSTRING = r"""
|
165 |
+
Args:
|
166 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
167 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
168 |
+
it.
|
169 |
+
|
170 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
171 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
172 |
+
|
173 |
+
[What are input IDs?](../glossary#input-ids)
|
174 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
175 |
+
The tensors corresponding to the input images. Pixel values can be obtained using
|
176 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses
|
177 |
+
[`CLIPImageProcessor`] for processing images).
|
178 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
179 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
180 |
+
|
181 |
+
- 1 for tokens that are **not masked**,
|
182 |
+
- 0 for tokens that are **masked**.
|
183 |
+
|
184 |
+
[What are attention masks?](../glossary#attention-mask)
|
185 |
+
|
186 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
187 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
188 |
+
|
189 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
190 |
+
`past_key_values`).
|
191 |
+
|
192 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
193 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
194 |
+
information on the default strategy.
|
195 |
+
|
196 |
+
- 1 indicates the head is **not masked**,
|
197 |
+
- 0 indicates the head is **masked**.
|
198 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
199 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
200 |
+
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
201 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
202 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
203 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
204 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
205 |
+
|
206 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
207 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
208 |
+
|
209 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
210 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
211 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
212 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
213 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
214 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
215 |
+
model's internal embedding lookup matrix.
|
216 |
+
vision_feature_layer (`int`, *optional*, defaults to -2):
|
217 |
+
The index of the layer to select the vision feature.
|
218 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
219 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
220 |
+
Can be one of `"default"` or `"full"`.
|
221 |
+
use_cache (`bool`, *optional*):
|
222 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
223 |
+
`past_key_values`).
|
224 |
+
output_attentions (`bool`, *optional*):
|
225 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
226 |
+
tensors for more detail.
|
227 |
+
output_hidden_states (`bool`, *optional*):
|
228 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
229 |
+
more detail.
|
230 |
+
return_dict (`bool`, *optional*):
|
231 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
232 |
+
"""
|
233 |
+
|
234 |
+
|
235 |
+
@add_start_docstrings(
|
236 |
+
"""The LLAVA model which consists of a vision backbone and a language model.""",
|
237 |
+
LLAVA_START_DOCSTRING,
|
238 |
+
)
|
239 |
+
class LlavaForConditionalGeneration(LlavaPreTrainedModel):
|
240 |
+
def __init__(self, config: LlavaConfig):
|
241 |
+
super().__init__(config)
|
242 |
+
self.vision_tower = AutoModel.from_config(config.vision_config)
|
243 |
+
|
244 |
+
self.multi_modal_projector = LlavaMultiModalProjector(config)
|
245 |
+
self.vocab_size = config.text_config.vocab_size
|
246 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
247 |
+
config.text_config, attn_implementation=config._attn_implementation
|
248 |
+
)
|
249 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
250 |
+
self.post_init()
|
251 |
+
|
252 |
+
def get_input_embeddings(self):
|
253 |
+
return self.language_model.get_input_embeddings()
|
254 |
+
|
255 |
+
def set_input_embeddings(self, value):
|
256 |
+
self.language_model.set_input_embeddings(value)
|
257 |
+
|
258 |
+
def get_output_embeddings(self):
|
259 |
+
return self.language_model.get_output_embeddings()
|
260 |
+
|
261 |
+
def set_output_embeddings(self, new_embeddings):
|
262 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
263 |
+
|
264 |
+
def set_decoder(self, decoder):
|
265 |
+
self.language_model.set_decoder(decoder)
|
266 |
+
|
267 |
+
def get_decoder(self):
|
268 |
+
return self.language_model.get_decoder()
|
269 |
+
|
270 |
+
def tie_weights(self):
|
271 |
+
return self.language_model.tie_weights()
|
272 |
+
|
273 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
274 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
275 |
+
# update vocab size
|
276 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
277 |
+
self.vocab_size = model_embeds.num_embeddings
|
278 |
+
return model_embeds
|
279 |
+
|
280 |
+
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
|
281 |
+
num_images, num_image_patches, embed_dim = image_features.shape
|
282 |
+
batch_size, sequence_length = input_ids.shape
|
283 |
+
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
|
284 |
+
# 1. Create a mask to know where special image tokens are
|
285 |
+
special_image_token_mask = input_ids == self.config.image_token_index
|
286 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
287 |
+
# Compute the maximum embed dimension
|
288 |
+
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
|
289 |
+
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
|
290 |
+
|
291 |
+
# 2. Compute the positions where text should be written
|
292 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
293 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
|
294 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
295 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
296 |
+
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
|
297 |
+
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
298 |
+
if left_padding:
|
299 |
+
new_token_positions += nb_image_pad[:, None] # offset for left padding
|
300 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
301 |
+
|
302 |
+
# 3. Create the full embedding, already padded to the maximum position
|
303 |
+
final_embedding = torch.zeros(
|
304 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
305 |
+
)
|
306 |
+
final_attention_mask = torch.zeros(
|
307 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
308 |
+
)
|
309 |
+
if labels is not None:
|
310 |
+
final_labels = torch.full(
|
311 |
+
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
|
312 |
+
)
|
313 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
314 |
+
# set the corresponding tensors into their correct target device.
|
315 |
+
target_device = inputs_embeds.device
|
316 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
317 |
+
batch_indices.to(target_device),
|
318 |
+
non_image_indices.to(target_device),
|
319 |
+
text_to_overwrite.to(target_device),
|
320 |
+
)
|
321 |
+
attention_mask = attention_mask.to(target_device)
|
322 |
+
|
323 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
324 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
325 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
326 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
327 |
+
if labels is not None:
|
328 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
329 |
+
|
330 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
|
331 |
+
image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
|
332 |
+
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
|
333 |
+
|
334 |
+
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
|
335 |
+
raise ValueError(
|
336 |
+
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
337 |
+
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
|
338 |
+
)
|
339 |
+
|
340 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
341 |
+
final_attention_mask |= image_to_overwrite
|
342 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
343 |
+
|
344 |
+
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
345 |
+
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
|
346 |
+
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
347 |
+
|
348 |
+
final_embedding[batch_indices, indices_to_mask] = 0
|
349 |
+
|
350 |
+
if labels is None:
|
351 |
+
final_labels = None
|
352 |
+
|
353 |
+
return final_embedding, final_attention_mask, final_labels, position_ids
|
354 |
+
|
355 |
+
@add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING)
|
356 |
+
@replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
357 |
+
def forward(
|
358 |
+
self,
|
359 |
+
input_ids: torch.LongTensor = None,
|
360 |
+
pixel_values: torch.FloatTensor = None,
|
361 |
+
attention_mask: Optional[torch.Tensor] = None,
|
362 |
+
position_ids: Optional[torch.LongTensor] = None,
|
363 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
364 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
365 |
+
vision_feature_layer: Optional[int] = None,
|
366 |
+
vision_feature_select_strategy: Optional[str] = None,
|
367 |
+
labels: Optional[torch.LongTensor] = None,
|
368 |
+
use_cache: Optional[bool] = None,
|
369 |
+
output_attentions: Optional[bool] = None,
|
370 |
+
output_hidden_states: Optional[bool] = None,
|
371 |
+
return_dict: Optional[bool] = None,
|
372 |
+
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
|
373 |
+
r"""
|
374 |
+
Args:
|
375 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
376 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
377 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
378 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
379 |
+
|
380 |
+
Returns:
|
381 |
+
|
382 |
+
Example:
|
383 |
+
|
384 |
+
```python
|
385 |
+
>>> from PIL import Image
|
386 |
+
>>> import requests
|
387 |
+
>>> from transformers import AutoProcessor, LlavaForConditionalGeneration
|
388 |
+
|
389 |
+
>>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
390 |
+
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
391 |
+
|
392 |
+
>>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
|
393 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
394 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
395 |
+
|
396 |
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
397 |
+
|
398 |
+
>>> # Generate
|
399 |
+
>>> generate_ids = model.generate(**inputs, max_new_tokens=15)
|
400 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
401 |
+
"USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
|
402 |
+
```"""
|
403 |
+
|
404 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
405 |
+
output_hidden_states = (
|
406 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
407 |
+
)
|
408 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
409 |
+
vision_feature_layer = (
|
410 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
411 |
+
)
|
412 |
+
vision_feature_select_strategy = (
|
413 |
+
vision_feature_select_strategy
|
414 |
+
if vision_feature_select_strategy is not None
|
415 |
+
else self.config.vision_feature_select_strategy
|
416 |
+
)
|
417 |
+
|
418 |
+
if inputs_embeds is None:
|
419 |
+
# 1. Extra the input embeddings
|
420 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
421 |
+
|
422 |
+
# 2. Merge text and images
|
423 |
+
if pixel_values is not None and input_ids.shape[1] != 1:
|
424 |
+
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
425 |
+
# this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
|
426 |
+
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
|
427 |
+
|
428 |
+
if vision_feature_select_strategy == "default":
|
429 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
430 |
+
elif vision_feature_select_strategy == "full":
|
431 |
+
selected_image_feature = selected_image_feature
|
432 |
+
else:
|
433 |
+
raise ValueError(
|
434 |
+
f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
|
435 |
+
)
|
436 |
+
|
437 |
+
image_features = self.multi_modal_projector(selected_image_feature)
|
438 |
+
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
|
439 |
+
image_features, inputs_embeds, input_ids, attention_mask, labels
|
440 |
+
)
|
441 |
+
if labels is None:
|
442 |
+
labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long)
|
443 |
+
|
444 |
+
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
445 |
+
# generation with cache
|
446 |
+
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
|
447 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
448 |
+
# that are set to 0
|
449 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
450 |
+
|
451 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
452 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
453 |
+
|
454 |
+
# Get the target length
|
455 |
+
target_length = input_ids.shape[1]
|
456 |
+
past_length = first_layer_past_key_value.shape[-1]
|
457 |
+
|
458 |
+
extended_attention_mask = torch.ones(
|
459 |
+
(attention_mask.shape[0], past_length),
|
460 |
+
dtype=attention_mask.dtype,
|
461 |
+
device=attention_mask.device,
|
462 |
+
)
|
463 |
+
|
464 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
465 |
+
# if one uses Llava + Fused modules where the cache on the
|
466 |
+
# first iteration is already big enough, or if one passes custom cache
|
467 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
468 |
+
new_batch_index = batch_index[valid_indices]
|
469 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
470 |
+
|
471 |
+
# Zero-out the places where we don't need to attend
|
472 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
473 |
+
|
474 |
+
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
475 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
476 |
+
|
477 |
+
outputs = self.language_model(
|
478 |
+
attention_mask=attention_mask,
|
479 |
+
position_ids=position_ids,
|
480 |
+
past_key_values=past_key_values,
|
481 |
+
inputs_embeds=inputs_embeds,
|
482 |
+
use_cache=use_cache,
|
483 |
+
output_attentions=output_attentions,
|
484 |
+
output_hidden_states=output_hidden_states,
|
485 |
+
return_dict=return_dict,
|
486 |
+
)
|
487 |
+
|
488 |
+
logits = outputs[0]
|
489 |
+
|
490 |
+
loss = None
|
491 |
+
if labels is not None:
|
492 |
+
# Shift so that tokens < n predict n
|
493 |
+
if attention_mask is not None:
|
494 |
+
shift_attention_mask = attention_mask[..., 1:]
|
495 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
496 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
497 |
+
else:
|
498 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
499 |
+
shift_labels = labels[..., 1:].contiguous()
|
500 |
+
# Flatten the tokens
|
501 |
+
loss_fct = nn.CrossEntropyLoss()
|
502 |
+
loss = loss_fct(
|
503 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
504 |
+
)
|
505 |
+
|
506 |
+
if not return_dict:
|
507 |
+
output = (logits,) + outputs[1:]
|
508 |
+
return (loss,) + output if loss is not None else output
|
509 |
+
|
510 |
+
return LlavaCausalLMOutputWithPast(
|
511 |
+
loss=loss,
|
512 |
+
logits=logits,
|
513 |
+
past_key_values=outputs.past_key_values,
|
514 |
+
hidden_states=outputs.hidden_states,
|
515 |
+
attentions=outputs.attentions,
|
516 |
+
)
|
517 |
+
|
518 |
+
def prepare_inputs_for_generation(
|
519 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs
|
520 |
+
):
|
521 |
+
if past_key_values is not None:
|
522 |
+
if isinstance(past_key_values, Cache):
|
523 |
+
cache_length = past_key_values.get_seq_length()
|
524 |
+
past_length = past_key_values.seen_tokens
|
525 |
+
else:
|
526 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
527 |
+
|
528 |
+
# Keep only the unprocessed tokens:
|
529 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
530 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
531 |
+
# input)
|
532 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
533 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
534 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
535 |
+
# input_ids based on the past_length.
|
536 |
+
elif past_length < input_ids.shape[1]:
|
537 |
+
input_ids = input_ids[:, past_length:]
|
538 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
539 |
+
elif self.config.image_token_index in input_ids:
|
540 |
+
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
|
541 |
+
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
|
542 |
+
# older attention values, as their corresponding values are not part of the input.
|
543 |
+
if cache_length < past_length and attention_mask is not None:
|
544 |
+
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
|
545 |
+
|
546 |
+
position_ids = kwargs.get("position_ids", None)
|
547 |
+
if attention_mask is not None and position_ids is None:
|
548 |
+
# create position_ids on the fly for batch generation
|
549 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
550 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
551 |
+
if past_key_values:
|
552 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
553 |
+
|
554 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
555 |
+
if inputs_embeds is not None and past_key_values is None:
|
556 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
557 |
+
else:
|
558 |
+
model_inputs = {"input_ids": input_ids}
|
559 |
+
|
560 |
+
model_inputs.update(
|
561 |
+
{
|
562 |
+
"position_ids": position_ids,
|
563 |
+
"past_key_values": past_key_values,
|
564 |
+
"use_cache": kwargs.get("use_cache"),
|
565 |
+
"attention_mask": attention_mask,
|
566 |
+
"pixel_values": pixel_values,
|
567 |
+
}
|
568 |
+
)
|
569 |
+
return model_inputs
|
570 |
+
|
571 |
+
def _reorder_cache(self, *args, **kwargs):
|
572 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/llava/processing_llava.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for Llava.
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
from typing import List, Optional, Union
|
21 |
+
|
22 |
+
from ...feature_extraction_utils import BatchFeature
|
23 |
+
from ...image_utils import ImageInput
|
24 |
+
from ...processing_utils import ProcessorMixin
|
25 |
+
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
26 |
+
from ...utils import TensorType
|
27 |
+
|
28 |
+
|
29 |
+
class LlavaProcessor(ProcessorMixin):
|
30 |
+
r"""
|
31 |
+
Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor.
|
32 |
+
|
33 |
+
[`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
|
34 |
+
[`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
image_processor ([`CLIPImageProcessor`], *optional*):
|
38 |
+
The image processor is a required input.
|
39 |
+
tokenizer ([`LlamaTokenizerFast`], *optional*):
|
40 |
+
The tokenizer is a required input.
|
41 |
+
"""
|
42 |
+
|
43 |
+
attributes = ["image_processor", "tokenizer"]
|
44 |
+
image_processor_class = "CLIPImageProcessor"
|
45 |
+
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
46 |
+
|
47 |
+
def __init__(self, image_processor=None, tokenizer=None):
|
48 |
+
super().__init__(image_processor, tokenizer)
|
49 |
+
|
50 |
+
def __call__(
|
51 |
+
self,
|
52 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
53 |
+
images: ImageInput = None,
|
54 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
55 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
56 |
+
max_length=None,
|
57 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
58 |
+
) -> BatchFeature:
|
59 |
+
"""
|
60 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
61 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
62 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
63 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
64 |
+
of the above two methods for more information.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
68 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
69 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
70 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
71 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
72 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
73 |
+
tensor. Both channels-first and channels-last formats are supported.
|
74 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
75 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
76 |
+
index) among:
|
77 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
78 |
+
sequence if provided).
|
79 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
80 |
+
acceptable input length for the model if that argument is not provided.
|
81 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
82 |
+
lengths).
|
83 |
+
max_length (`int`, *optional*):
|
84 |
+
Maximum length of the returned list and optionally padding length (see above).
|
85 |
+
truncation (`bool`, *optional*):
|
86 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
87 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
88 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
89 |
+
|
90 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
91 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
92 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
93 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
97 |
+
|
98 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
99 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
100 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
101 |
+
`None`).
|
102 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
103 |
+
"""
|
104 |
+
if images is not None:
|
105 |
+
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
|
106 |
+
else:
|
107 |
+
pixel_values = None
|
108 |
+
text_inputs = self.tokenizer(
|
109 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
110 |
+
)
|
111 |
+
|
112 |
+
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
|
113 |
+
|
114 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
115 |
+
def batch_decode(self, *args, **kwargs):
|
116 |
+
"""
|
117 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
118 |
+
refer to the docstring of this method for more information.
|
119 |
+
"""
|
120 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
121 |
+
|
122 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
123 |
+
def decode(self, *args, **kwargs):
|
124 |
+
"""
|
125 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
126 |
+
the docstring of this method for more information.
|
127 |
+
"""
|
128 |
+
return self.tokenizer.decode(*args, **kwargs)
|
129 |
+
|
130 |
+
@property
|
131 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
132 |
+
def model_input_names(self):
|
133 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
134 |
+
image_processor_input_names = self.image_processor.model_input_names
|
135 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__pycache__/configuration_musicgen.cpython-310.pyc
ADDED
Binary file (9.87 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__pycache__/convert_musicgen_transformers.cpython-310.pyc
ADDED
Binary file (6.25 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__pycache__/modeling_musicgen.cpython-310.pyc
ADDED
Binary file (81 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__pycache__/processing_musicgen.cpython-310.pyc
ADDED
Binary file (4.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/configuration_musicgen.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MusicGen model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
from ..auto.configuration_auto import AutoConfig
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from ..deprecated._archive_maps import MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class MusicgenDecoderConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of an [`MusicgenDecoder`]. It is used to instantiate a
|
31 |
+
MusicGen decoder according to the specified arguments, defining the model architecture. Instantiating a
|
32 |
+
configuration with the defaults will yield a similar configuration to that of the MusicGen
|
33 |
+
[facebook/musicgen-small](https://huggingface.co/facebook/musicgen-small) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 2048):
|
41 |
+
Vocabulary size of the MusicgenDecoder model. Defines the number of different tokens that can be
|
42 |
+
represented by the `inputs_ids` passed when calling [`MusicgenDecoder`].
|
43 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
44 |
+
Dimensionality of the layers and the pooler layer.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
46 |
+
Number of decoder layers.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
48 |
+
Number of attention heads for each attention layer in the Transformer block.
|
49 |
+
ffn_dim (`int`, *optional*, defaults to 4096):
|
50 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block.
|
51 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
52 |
+
The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`,
|
53 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
54 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
55 |
+
The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler.
|
56 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
57 |
+
The dropout ratio for the attention probabilities.
|
58 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout ratio for activations inside the fully connected layer.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
61 |
+
The maximum sequence length that this model might ever be used with. Typically, set this to something large
|
62 |
+
just in case (e.g., 512 or 1024 or 2048).
|
63 |
+
initializer_factor (`float`, *optional*, defaults to 0.02):
|
64 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
65 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
66 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
67 |
+
for more details.
|
68 |
+
scale_embedding (`bool`, *optional*, defaults to `False`):
|
69 |
+
Scale embeddings by diving by sqrt(hidden_size).
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether the model should return the last key/values attentions (not used by all models)
|
72 |
+
num_codebooks (`int`, *optional*, defaults to 4):
|
73 |
+
The number of parallel codebooks forwarded to the model.
|
74 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
75 |
+
Whether input and output word embeddings should be tied.
|
76 |
+
audio_channels (`int`, *optional*, defaults to 1
|
77 |
+
Number of channels in the audio data. Either 1 for mono or 2 for stereo. Stereo models generate a separate
|
78 |
+
audio stream for the left/right output channels. Mono models generate a single audio stream output.
|
79 |
+
"""
|
80 |
+
|
81 |
+
model_type = "musicgen_decoder"
|
82 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
vocab_size=2048,
|
87 |
+
max_position_embeddings=2048,
|
88 |
+
num_hidden_layers=24,
|
89 |
+
ffn_dim=4096,
|
90 |
+
num_attention_heads=16,
|
91 |
+
layerdrop=0.0,
|
92 |
+
use_cache=True,
|
93 |
+
activation_function="gelu",
|
94 |
+
hidden_size=1024,
|
95 |
+
dropout=0.1,
|
96 |
+
attention_dropout=0.0,
|
97 |
+
activation_dropout=0.0,
|
98 |
+
initializer_factor=0.02,
|
99 |
+
scale_embedding=False,
|
100 |
+
num_codebooks=4,
|
101 |
+
audio_channels=1,
|
102 |
+
pad_token_id=2048,
|
103 |
+
bos_token_id=2048,
|
104 |
+
eos_token_id=None,
|
105 |
+
tie_word_embeddings=False,
|
106 |
+
**kwargs,
|
107 |
+
):
|
108 |
+
self.vocab_size = vocab_size
|
109 |
+
self.max_position_embeddings = max_position_embeddings
|
110 |
+
self.hidden_size = hidden_size
|
111 |
+
self.ffn_dim = ffn_dim
|
112 |
+
self.num_hidden_layers = num_hidden_layers
|
113 |
+
self.num_attention_heads = num_attention_heads
|
114 |
+
self.dropout = dropout
|
115 |
+
self.attention_dropout = attention_dropout
|
116 |
+
self.activation_dropout = activation_dropout
|
117 |
+
self.activation_function = activation_function
|
118 |
+
self.initializer_factor = initializer_factor
|
119 |
+
self.layerdrop = layerdrop
|
120 |
+
self.use_cache = use_cache
|
121 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
122 |
+
self.num_codebooks = num_codebooks
|
123 |
+
|
124 |
+
if audio_channels not in [1, 2]:
|
125 |
+
raise ValueError(f"Expected 1 (mono) or 2 (stereo) audio channels, got {audio_channels} channels.")
|
126 |
+
self.audio_channels = audio_channels
|
127 |
+
|
128 |
+
super().__init__(
|
129 |
+
pad_token_id=pad_token_id,
|
130 |
+
bos_token_id=bos_token_id,
|
131 |
+
eos_token_id=eos_token_id,
|
132 |
+
tie_word_embeddings=tie_word_embeddings,
|
133 |
+
**kwargs,
|
134 |
+
)
|
135 |
+
|
136 |
+
|
137 |
+
class MusicgenConfig(PretrainedConfig):
|
138 |
+
r"""
|
139 |
+
This is the configuration class to store the configuration of a [`MusicgenModel`]. It is used to instantiate a
|
140 |
+
MusicGen model according to the specified arguments, defining the text encoder, audio encoder and MusicGen decoder
|
141 |
+
configs.
|
142 |
+
|
143 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
144 |
+
documentation from [`PretrainedConfig`] for more information.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
kwargs (*optional*):
|
148 |
+
Dictionary of keyword arguments. Notably:
|
149 |
+
|
150 |
+
- **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
|
151 |
+
defines the text encoder config.
|
152 |
+
- **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
|
153 |
+
defines the audio encoder config.
|
154 |
+
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
|
155 |
+
the decoder config.
|
156 |
+
|
157 |
+
Example:
|
158 |
+
|
159 |
+
```python
|
160 |
+
>>> from transformers import (
|
161 |
+
... MusicgenConfig,
|
162 |
+
... MusicgenDecoderConfig,
|
163 |
+
... T5Config,
|
164 |
+
... EncodecConfig,
|
165 |
+
... MusicgenForConditionalGeneration,
|
166 |
+
... )
|
167 |
+
|
168 |
+
>>> # Initializing text encoder, audio encoder, and decoder model configurations
|
169 |
+
>>> text_encoder_config = T5Config()
|
170 |
+
>>> audio_encoder_config = EncodecConfig()
|
171 |
+
>>> decoder_config = MusicgenDecoderConfig()
|
172 |
+
|
173 |
+
>>> configuration = MusicgenConfig.from_sub_models_config(
|
174 |
+
... text_encoder_config, audio_encoder_config, decoder_config
|
175 |
+
... )
|
176 |
+
|
177 |
+
>>> # Initializing a MusicgenForConditionalGeneration (with random weights) from the facebook/musicgen-small style configuration
|
178 |
+
>>> model = MusicgenForConditionalGeneration(configuration)
|
179 |
+
|
180 |
+
>>> # Accessing the model configuration
|
181 |
+
>>> configuration = model.config
|
182 |
+
>>> config_text_encoder = model.config.text_encoder
|
183 |
+
>>> config_audio_encoder = model.config.audio_encoder
|
184 |
+
>>> config_decoder = model.config.decoder
|
185 |
+
|
186 |
+
>>> # Saving the model, including its configuration
|
187 |
+
>>> model.save_pretrained("musicgen-model")
|
188 |
+
|
189 |
+
>>> # loading model and config from pretrained folder
|
190 |
+
>>> musicgen_config = MusicgenConfig.from_pretrained("musicgen-model")
|
191 |
+
>>> model = MusicgenForConditionalGeneration.from_pretrained("musicgen-model", config=musicgen_config)
|
192 |
+
```"""
|
193 |
+
|
194 |
+
model_type = "musicgen"
|
195 |
+
is_composition = True
|
196 |
+
|
197 |
+
def __init__(self, **kwargs):
|
198 |
+
super().__init__(**kwargs)
|
199 |
+
if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs:
|
200 |
+
raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config")
|
201 |
+
|
202 |
+
text_encoder_config = kwargs.pop("text_encoder")
|
203 |
+
text_encoder_model_type = text_encoder_config.pop("model_type")
|
204 |
+
|
205 |
+
audio_encoder_config = kwargs.pop("audio_encoder")
|
206 |
+
audio_encoder_model_type = audio_encoder_config.pop("model_type")
|
207 |
+
|
208 |
+
decoder_config = kwargs.pop("decoder")
|
209 |
+
|
210 |
+
self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config)
|
211 |
+
self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
|
212 |
+
self.decoder = MusicgenDecoderConfig(**decoder_config)
|
213 |
+
self.is_encoder_decoder = True
|
214 |
+
|
215 |
+
@classmethod
|
216 |
+
def from_sub_models_config(
|
217 |
+
cls,
|
218 |
+
text_encoder_config: PretrainedConfig,
|
219 |
+
audio_encoder_config: PretrainedConfig,
|
220 |
+
decoder_config: MusicgenDecoderConfig,
|
221 |
+
**kwargs,
|
222 |
+
):
|
223 |
+
r"""
|
224 |
+
Instantiate a [`MusicgenConfig`] (or a derived class) from text encoder, audio encoder and decoder
|
225 |
+
configurations.
|
226 |
+
|
227 |
+
Returns:
|
228 |
+
[`MusicgenConfig`]: An instance of a configuration object
|
229 |
+
"""
|
230 |
+
|
231 |
+
return cls(
|
232 |
+
text_encoder=text_encoder_config.to_dict(),
|
233 |
+
audio_encoder=audio_encoder_config.to_dict(),
|
234 |
+
decoder=decoder_config.to_dict(),
|
235 |
+
**kwargs,
|
236 |
+
)
|
237 |
+
|
238 |
+
@property
|
239 |
+
# This is a property because you might want to change the codec model on the fly
|
240 |
+
def sampling_rate(self):
|
241 |
+
return self.audio_encoder.sampling_rate
|
242 |
+
|
243 |
+
@property
|
244 |
+
def _attn_implementation(self):
|
245 |
+
# This property is made private for now (as it cannot be changed and a PreTrainedModel.use_attn_implementation method needs to be implemented.)
|
246 |
+
if hasattr(self, "_attn_implementation_internal"):
|
247 |
+
if self._attn_implementation_internal is None:
|
248 |
+
# `config.attn_implementation` should never be None, for backward compatibility.
|
249 |
+
return "eager"
|
250 |
+
else:
|
251 |
+
return self._attn_implementation_internal
|
252 |
+
else:
|
253 |
+
return "eager"
|
254 |
+
|
255 |
+
@_attn_implementation.setter
|
256 |
+
def _attn_implementation(self, value):
|
257 |
+
self._attn_implementation_internal = value
|
258 |
+
self.decoder._attn_implementation = value
|
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/modeling_musicgen.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/__init__.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 BigCode and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_torch_available,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
_import_structure = {
|
24 |
+
"configuration_starcoder2": ["STARCODER2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Starcoder2Config"],
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_starcoder2"] = [
|
35 |
+
"Starcoder2ForCausalLM",
|
36 |
+
"Starcoder2Model",
|
37 |
+
"Starcoder2PreTrainedModel",
|
38 |
+
"Starcoder2ForSequenceClassification",
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
if TYPE_CHECKING:
|
43 |
+
from .configuration_starcoder2 import STARCODER2_PRETRAINED_CONFIG_ARCHIVE_MAP, Starcoder2Config
|
44 |
+
|
45 |
+
try:
|
46 |
+
if not is_torch_available():
|
47 |
+
raise OptionalDependencyNotAvailable()
|
48 |
+
except OptionalDependencyNotAvailable:
|
49 |
+
pass
|
50 |
+
else:
|
51 |
+
from .modeling_starcoder2 import (
|
52 |
+
Starcoder2ForCausalLM,
|
53 |
+
Starcoder2ForSequenceClassification,
|
54 |
+
Starcoder2Model,
|
55 |
+
Starcoder2PreTrainedModel,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
else:
|
60 |
+
import sys
|
61 |
+
|
62 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (968 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/__pycache__/configuration_starcoder2.cpython-310.pyc
ADDED
Binary file (6.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/__pycache__/modeling_starcoder2.cpython-310.pyc
ADDED
Binary file (38.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/configuration_starcoder2.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Starcoder2 model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import STARCODER2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class Starcoder2Config(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`Starcoder2Model`]. It is used to instantiate a
|
30 |
+
Starcoder2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
31 |
+
with the defaults will yield a similar configuration to that of the [bigcode/starcoder2-7b_16k](https://huggingface.co/bigcode/starcoder2-7b_16k) model.
|
32 |
+
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 49152):
|
40 |
+
Vocabulary size of the Starcoder2 model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`Starcoder2Model`]
|
42 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
43 |
+
Dimension of the hidden representations.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 12288):
|
45 |
+
Dimension of the MLP representations.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 30):
|
47 |
+
Number of hidden layers in the Transformer encoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 24):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
num_key_value_heads (`int`, *optional*, defaults to 2):
|
51 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
52 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
53 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
54 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
55 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
56 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
58 |
+
The non-linear activation function (function or string) in the decoder.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
60 |
+
The maximum sequence length that this model might ever be used with. Starcoder2's sliding window attention
|
61 |
+
allows sequence of up to 4096*32 tokens.
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
65 |
+
Epsilon value for the layer norm
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
bos_token_id (`int`, *optional*, defaults to 50256):
|
70 |
+
The id of the "beginning-of-sequence" token.
|
71 |
+
eos_token_id (`int`, *optional*, defaults to 50256):
|
72 |
+
The id of the "end-of-sequence" token.
|
73 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
74 |
+
The base period of the RoPE embeddings.
|
75 |
+
sliding_window (`int`, *optional*):
|
76 |
+
Sliding window attention window size. If not specified, will default to `None` (no sliding window).
|
77 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
78 |
+
The dropout ratio for the attention probabilities.
|
79 |
+
residual_dropout (`float`, *optional*, defaults to 0.0):
|
80 |
+
Residual connection dropout value.
|
81 |
+
embedding_dropout (`float`, *optional*, defaults to 0.0):
|
82 |
+
Embedding dropout.
|
83 |
+
use_bias (`bool`, *optional*, defaults to `True`):
|
84 |
+
Whether to use bias term on linear layers of the model.
|
85 |
+
|
86 |
+
|
87 |
+
```python
|
88 |
+
>>> from transformers import Starcoder2Model, Starcoder2Config
|
89 |
+
|
90 |
+
>>> # Initializing a Starcoder2 7B style configuration
|
91 |
+
>>> configuration = Starcoder2Config()
|
92 |
+
|
93 |
+
>>> # Initializing a model from the Starcoder2 7B style configuration
|
94 |
+
>>> model = Starcoder2Model(configuration)
|
95 |
+
|
96 |
+
>>> # Accessing the model configuration
|
97 |
+
>>> configuration = model.config
|
98 |
+
```"""
|
99 |
+
|
100 |
+
model_type = "starcoder2"
|
101 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
vocab_size=49152,
|
106 |
+
hidden_size=3072,
|
107 |
+
intermediate_size=12288,
|
108 |
+
num_hidden_layers=30,
|
109 |
+
num_attention_heads=24,
|
110 |
+
num_key_value_heads=2,
|
111 |
+
hidden_act="gelu_pytorch_tanh",
|
112 |
+
max_position_embeddings=4096,
|
113 |
+
initializer_range=0.018042,
|
114 |
+
norm_epsilon=1e-5,
|
115 |
+
use_cache=True,
|
116 |
+
bos_token_id=50256,
|
117 |
+
eos_token_id=50256,
|
118 |
+
rope_theta=10000.0,
|
119 |
+
sliding_window=None,
|
120 |
+
attention_dropout=0.0,
|
121 |
+
residual_dropout=0.0,
|
122 |
+
embedding_dropout=0.0,
|
123 |
+
use_bias=True,
|
124 |
+
**kwargs,
|
125 |
+
):
|
126 |
+
self.vocab_size = vocab_size
|
127 |
+
self.max_position_embeddings = max_position_embeddings
|
128 |
+
self.hidden_size = hidden_size
|
129 |
+
self.intermediate_size = intermediate_size
|
130 |
+
self.num_hidden_layers = num_hidden_layers
|
131 |
+
self.num_attention_heads = num_attention_heads
|
132 |
+
self.sliding_window = sliding_window
|
133 |
+
self.use_bias = use_bias
|
134 |
+
self.num_key_value_heads = num_key_value_heads
|
135 |
+
self.hidden_act = hidden_act
|
136 |
+
self.initializer_range = initializer_range
|
137 |
+
self.norm_epsilon = norm_epsilon
|
138 |
+
self.use_cache = use_cache
|
139 |
+
self.rope_theta = rope_theta
|
140 |
+
self.attention_dropout = attention_dropout
|
141 |
+
self.residual_dropout = residual_dropout
|
142 |
+
self.embedding_dropout = embedding_dropout
|
143 |
+
|
144 |
+
super().__init__(
|
145 |
+
bos_token_id=bos_token_id,
|
146 |
+
eos_token_id=eos_token_id,
|
147 |
+
**kwargs,
|
148 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/starcoder2/modeling_starcoder2.py
ADDED
@@ -0,0 +1,1378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Starcoder2 model."""
|
21 |
+
import inspect
|
22 |
+
import math
|
23 |
+
import warnings
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from ...activations import ACT2FN
|
33 |
+
from ...cache_utils import Cache, DynamicCache
|
34 |
+
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
35 |
+
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
36 |
+
from ...modeling_utils import PreTrainedModel
|
37 |
+
from ...utils import (
|
38 |
+
add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
is_flash_attn_2_available,
|
41 |
+
is_flash_attn_greater_or_equal_2_10,
|
42 |
+
logging,
|
43 |
+
replace_return_docstrings,
|
44 |
+
)
|
45 |
+
from .configuration_starcoder2 import Starcoder2Config
|
46 |
+
|
47 |
+
|
48 |
+
if is_flash_attn_2_available():
|
49 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
50 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
51 |
+
|
52 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
_CONFIG_FOR_DOC = "Starcoder2Config"
|
58 |
+
|
59 |
+
|
60 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
61 |
+
def _get_unpad_data(attention_mask):
|
62 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
63 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
64 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
65 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
66 |
+
return (
|
67 |
+
indices,
|
68 |
+
cu_seqlens,
|
69 |
+
max_seqlen_in_batch,
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Starcoder2
|
74 |
+
class Starcoder2RotaryEmbedding(nn.Module):
|
75 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
76 |
+
super().__init__()
|
77 |
+
|
78 |
+
self.dim = dim
|
79 |
+
self.max_position_embeddings = max_position_embeddings
|
80 |
+
self.base = base
|
81 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
82 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
83 |
+
|
84 |
+
# Build here to make `torch.jit.trace` work.
|
85 |
+
self._set_cos_sin_cache(
|
86 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
87 |
+
)
|
88 |
+
|
89 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
90 |
+
self.max_seq_len_cached = seq_len
|
91 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
92 |
+
|
93 |
+
freqs = torch.outer(t, self.inv_freq)
|
94 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
95 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
96 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
97 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
98 |
+
|
99 |
+
def forward(self, x, seq_len=None):
|
100 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
101 |
+
if seq_len > self.max_seq_len_cached:
|
102 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
103 |
+
|
104 |
+
return (
|
105 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
106 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
111 |
+
def rotate_half(x):
|
112 |
+
"""Rotates half the hidden dims of the input."""
|
113 |
+
x1 = x[..., : x.shape[-1] // 2]
|
114 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
115 |
+
return torch.cat((-x2, x1), dim=-1)
|
116 |
+
|
117 |
+
|
118 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
119 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
120 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
q (`torch.Tensor`): The query tensor.
|
124 |
+
k (`torch.Tensor`): The key tensor.
|
125 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
126 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
127 |
+
position_ids (`torch.Tensor`):
|
128 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
129 |
+
used to pass offsetted position ids when working with a KV-cache.
|
130 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
131 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
132 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
133 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
134 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
135 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
136 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
137 |
+
Returns:
|
138 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
139 |
+
"""
|
140 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
141 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
142 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
143 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
144 |
+
return q_embed, k_embed
|
145 |
+
|
146 |
+
|
147 |
+
class Starcoder2MLP(nn.Module):
|
148 |
+
def __init__(self, config: Starcoder2Config):
|
149 |
+
super().__init__()
|
150 |
+
embed_dim = config.hidden_size
|
151 |
+
self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias)
|
152 |
+
self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias)
|
153 |
+
self.act = ACT2FN[config.hidden_act]
|
154 |
+
self.residual_dropout = config.residual_dropout
|
155 |
+
|
156 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
157 |
+
hidden_states = self.c_fc(hidden_states)
|
158 |
+
hidden_states = self.act(hidden_states)
|
159 |
+
hidden_states = self.c_proj(hidden_states)
|
160 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training)
|
161 |
+
return hidden_states
|
162 |
+
|
163 |
+
|
164 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
165 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
166 |
+
"""
|
167 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
168 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
169 |
+
"""
|
170 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
171 |
+
if n_rep == 1:
|
172 |
+
return hidden_states
|
173 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
174 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
175 |
+
|
176 |
+
|
177 |
+
class Starcoder2Attention(nn.Module):
|
178 |
+
"""
|
179 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
180 |
+
and "Generating Long Sequences with Sparse Transformers".
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, config: Starcoder2Config, layer_idx: Optional[int] = None):
|
184 |
+
super().__init__()
|
185 |
+
self.config = config
|
186 |
+
self.layer_idx = layer_idx
|
187 |
+
if layer_idx is None:
|
188 |
+
logger.warning_once(
|
189 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
190 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
191 |
+
"when creating this class."
|
192 |
+
)
|
193 |
+
|
194 |
+
self.hidden_size = config.hidden_size
|
195 |
+
self.num_heads = config.num_attention_heads
|
196 |
+
self.head_dim = self.hidden_size // self.num_heads
|
197 |
+
self.num_key_value_heads = config.num_key_value_heads
|
198 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
199 |
+
self.max_position_embeddings = config.max_position_embeddings
|
200 |
+
self.rope_theta = config.rope_theta
|
201 |
+
self.use_bias = config.use_bias
|
202 |
+
self.is_causal = True
|
203 |
+
self.attention_dropout = config.attention_dropout
|
204 |
+
self.residual_dropout = config.residual_dropout
|
205 |
+
|
206 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
207 |
+
raise ValueError(
|
208 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
209 |
+
f" and `num_heads`: {self.num_heads})."
|
210 |
+
)
|
211 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.use_bias)
|
212 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.use_bias)
|
213 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.use_bias)
|
214 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.use_bias)
|
215 |
+
|
216 |
+
self.rotary_emb = Starcoder2RotaryEmbedding(
|
217 |
+
self.head_dim,
|
218 |
+
max_position_embeddings=self.max_position_embeddings,
|
219 |
+
base=self.rope_theta,
|
220 |
+
)
|
221 |
+
|
222 |
+
def forward(
|
223 |
+
self,
|
224 |
+
hidden_states: torch.Tensor,
|
225 |
+
attention_mask: Optional[torch.Tensor] = None,
|
226 |
+
position_ids: Optional[torch.LongTensor] = None,
|
227 |
+
past_key_value: Optional[Cache] = None,
|
228 |
+
output_attentions: bool = False,
|
229 |
+
use_cache: bool = False,
|
230 |
+
**kwargs,
|
231 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
232 |
+
if "padding_mask" in kwargs:
|
233 |
+
warnings.warn(
|
234 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
235 |
+
)
|
236 |
+
bsz, q_len, _ = hidden_states.size()
|
237 |
+
|
238 |
+
query_states = self.q_proj(hidden_states)
|
239 |
+
key_states = self.k_proj(hidden_states)
|
240 |
+
value_states = self.v_proj(hidden_states)
|
241 |
+
|
242 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
243 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
244 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
245 |
+
|
246 |
+
kv_seq_len = key_states.shape[-2]
|
247 |
+
if past_key_value is not None:
|
248 |
+
if self.layer_idx is None:
|
249 |
+
raise ValueError(
|
250 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
251 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
252 |
+
"with a layer index."
|
253 |
+
)
|
254 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
255 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
256 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
257 |
+
|
258 |
+
if past_key_value is not None:
|
259 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
260 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
261 |
+
|
262 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
263 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
264 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
265 |
+
|
266 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
267 |
+
|
268 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
269 |
+
raise ValueError(
|
270 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
271 |
+
f" {attn_weights.size()}"
|
272 |
+
)
|
273 |
+
|
274 |
+
if attention_mask is not None:
|
275 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
276 |
+
raise ValueError(
|
277 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
278 |
+
)
|
279 |
+
|
280 |
+
attn_weights = attn_weights + attention_mask
|
281 |
+
|
282 |
+
# upcast attention to fp32
|
283 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
284 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
285 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
286 |
+
|
287 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
288 |
+
raise ValueError(
|
289 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
290 |
+
f" {attn_output.size()}"
|
291 |
+
)
|
292 |
+
|
293 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
294 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
295 |
+
|
296 |
+
attn_output = self.o_proj(attn_output)
|
297 |
+
attn_output = nn.functional.dropout(attn_output, p=self.residual_dropout, training=self.training)
|
298 |
+
|
299 |
+
if not output_attentions:
|
300 |
+
attn_weights = None
|
301 |
+
|
302 |
+
return attn_output, attn_weights, past_key_value
|
303 |
+
|
304 |
+
|
305 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Starcoder2
|
306 |
+
class Starcoder2FlashAttention2(Starcoder2Attention):
|
307 |
+
"""
|
308 |
+
Starcoder2 flash attention module. This module inherits from `Starcoder2Attention` as the weights of the module stays
|
309 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
310 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
311 |
+
"""
|
312 |
+
|
313 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
314 |
+
def __init__(self, *args, **kwargs):
|
315 |
+
super().__init__(*args, **kwargs)
|
316 |
+
|
317 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
318 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
319 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
320 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
321 |
+
|
322 |
+
# Ignore copy
|
323 |
+
def forward(
|
324 |
+
self,
|
325 |
+
hidden_states: torch.Tensor,
|
326 |
+
attention_mask: Optional[torch.Tensor] = None,
|
327 |
+
position_ids: Optional[torch.LongTensor] = None,
|
328 |
+
past_key_value: Optional[Cache] = None,
|
329 |
+
output_attentions: bool = False,
|
330 |
+
use_cache: bool = False,
|
331 |
+
**kwargs,
|
332 |
+
):
|
333 |
+
if "padding_mask" in kwargs:
|
334 |
+
warnings.warn(
|
335 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
336 |
+
)
|
337 |
+
|
338 |
+
# overwrite attention_mask with padding_mask
|
339 |
+
attention_mask = kwargs.pop("padding_mask")
|
340 |
+
bsz, q_len, _ = hidden_states.size()
|
341 |
+
|
342 |
+
query_states = self.q_proj(hidden_states)
|
343 |
+
key_states = self.k_proj(hidden_states)
|
344 |
+
value_states = self.v_proj(hidden_states)
|
345 |
+
|
346 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
347 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
348 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
349 |
+
|
350 |
+
kv_seq_len = key_states.shape[-2]
|
351 |
+
if past_key_value is not None:
|
352 |
+
if self.layer_idx is None:
|
353 |
+
raise ValueError(
|
354 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
355 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
356 |
+
"with a layer index."
|
357 |
+
)
|
358 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
359 |
+
|
360 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
361 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
362 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
363 |
+
|
364 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
365 |
+
|
366 |
+
use_sliding_windows = (
|
367 |
+
_flash_supports_window_size
|
368 |
+
and getattr(self.config, "sliding_window", None) is not None
|
369 |
+
and kv_seq_len > self.config.sliding_window
|
370 |
+
)
|
371 |
+
|
372 |
+
if not _flash_supports_window_size:
|
373 |
+
logger.warning_once(
|
374 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
375 |
+
" make sure to upgrade flash-attn library."
|
376 |
+
)
|
377 |
+
|
378 |
+
if past_key_value is not None:
|
379 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
380 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
381 |
+
if (
|
382 |
+
getattr(self.config, "sliding_window", None) is not None
|
383 |
+
and kv_seq_len > self.config.sliding_window
|
384 |
+
and cache_has_contents
|
385 |
+
):
|
386 |
+
slicing_tokens = 1 - self.config.sliding_window
|
387 |
+
|
388 |
+
past_key = past_key_value[self.layer_idx][0]
|
389 |
+
past_value = past_key_value[self.layer_idx][1]
|
390 |
+
|
391 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
392 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
393 |
+
|
394 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
395 |
+
raise ValueError(
|
396 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
397 |
+
f" {past_key.shape}"
|
398 |
+
)
|
399 |
+
|
400 |
+
if attention_mask is not None:
|
401 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
402 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
403 |
+
|
404 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
405 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
406 |
+
|
407 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
408 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
409 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
410 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
411 |
+
|
412 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
413 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
414 |
+
# cast them back in float16 just to be sure everything works as expected.
|
415 |
+
input_dtype = query_states.dtype
|
416 |
+
if input_dtype == torch.float32:
|
417 |
+
if torch.is_autocast_enabled():
|
418 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
419 |
+
# Handle the case where the model is quantized
|
420 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
421 |
+
target_dtype = self.config._pre_quantization_dtype
|
422 |
+
else:
|
423 |
+
target_dtype = self.q_proj.weight.dtype
|
424 |
+
|
425 |
+
logger.warning_once(
|
426 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
427 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
428 |
+
f" {target_dtype}."
|
429 |
+
)
|
430 |
+
|
431 |
+
query_states = query_states.to(target_dtype)
|
432 |
+
key_states = key_states.to(target_dtype)
|
433 |
+
value_states = value_states.to(target_dtype)
|
434 |
+
|
435 |
+
# Reashape to the expected shape for Flash Attention
|
436 |
+
query_states = query_states.transpose(1, 2)
|
437 |
+
key_states = key_states.transpose(1, 2)
|
438 |
+
value_states = value_states.transpose(1, 2)
|
439 |
+
|
440 |
+
attn_output = self._flash_attention_forward(
|
441 |
+
query_states,
|
442 |
+
key_states,
|
443 |
+
value_states,
|
444 |
+
attention_mask,
|
445 |
+
q_len,
|
446 |
+
dropout=dropout_rate,
|
447 |
+
use_sliding_windows=use_sliding_windows,
|
448 |
+
)
|
449 |
+
|
450 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
451 |
+
attn_output = self.o_proj(attn_output)
|
452 |
+
attn_output = nn.functional.dropout(attn_output, p=self.residual_dropout, training=self.training)
|
453 |
+
|
454 |
+
if not output_attentions:
|
455 |
+
attn_weights = None
|
456 |
+
|
457 |
+
return attn_output, attn_weights, past_key_value
|
458 |
+
|
459 |
+
def _flash_attention_forward(
|
460 |
+
self,
|
461 |
+
query_states,
|
462 |
+
key_states,
|
463 |
+
value_states,
|
464 |
+
attention_mask,
|
465 |
+
query_length,
|
466 |
+
dropout=0.0,
|
467 |
+
softmax_scale=None,
|
468 |
+
use_sliding_windows=False,
|
469 |
+
):
|
470 |
+
"""
|
471 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
472 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
query_states (`torch.Tensor`):
|
476 |
+
Input query states to be passed to Flash Attention API
|
477 |
+
key_states (`torch.Tensor`):
|
478 |
+
Input key states to be passed to Flash Attention API
|
479 |
+
value_states (`torch.Tensor`):
|
480 |
+
Input value states to be passed to Flash Attention API
|
481 |
+
attention_mask (`torch.Tensor`):
|
482 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
483 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
484 |
+
dropout (`float`):
|
485 |
+
Attention dropout
|
486 |
+
softmax_scale (`float`, *optional*):
|
487 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
488 |
+
use_sliding_windows (`bool`, *optional*):
|
489 |
+
Whether to activate sliding window attention.
|
490 |
+
"""
|
491 |
+
if not self._flash_attn_uses_top_left_mask:
|
492 |
+
causal = self.is_causal
|
493 |
+
else:
|
494 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
495 |
+
causal = self.is_causal and query_length != 1
|
496 |
+
|
497 |
+
# Contains at least one padding token in the sequence
|
498 |
+
if attention_mask is not None:
|
499 |
+
batch_size = query_states.shape[0]
|
500 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
501 |
+
query_states, key_states, value_states, attention_mask, query_length
|
502 |
+
)
|
503 |
+
|
504 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
505 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
506 |
+
|
507 |
+
if not use_sliding_windows:
|
508 |
+
attn_output_unpad = flash_attn_varlen_func(
|
509 |
+
query_states,
|
510 |
+
key_states,
|
511 |
+
value_states,
|
512 |
+
cu_seqlens_q=cu_seqlens_q,
|
513 |
+
cu_seqlens_k=cu_seqlens_k,
|
514 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
515 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
516 |
+
dropout_p=dropout,
|
517 |
+
softmax_scale=softmax_scale,
|
518 |
+
causal=causal,
|
519 |
+
)
|
520 |
+
else:
|
521 |
+
attn_output_unpad = flash_attn_varlen_func(
|
522 |
+
query_states,
|
523 |
+
key_states,
|
524 |
+
value_states,
|
525 |
+
cu_seqlens_q=cu_seqlens_q,
|
526 |
+
cu_seqlens_k=cu_seqlens_k,
|
527 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
528 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
529 |
+
dropout_p=dropout,
|
530 |
+
softmax_scale=softmax_scale,
|
531 |
+
causal=causal,
|
532 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
533 |
+
)
|
534 |
+
|
535 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
536 |
+
else:
|
537 |
+
if not use_sliding_windows:
|
538 |
+
attn_output = flash_attn_func(
|
539 |
+
query_states,
|
540 |
+
key_states,
|
541 |
+
value_states,
|
542 |
+
dropout,
|
543 |
+
softmax_scale=softmax_scale,
|
544 |
+
causal=causal,
|
545 |
+
)
|
546 |
+
else:
|
547 |
+
attn_output = flash_attn_func(
|
548 |
+
query_states,
|
549 |
+
key_states,
|
550 |
+
value_states,
|
551 |
+
dropout,
|
552 |
+
softmax_scale=softmax_scale,
|
553 |
+
causal=causal,
|
554 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
555 |
+
)
|
556 |
+
|
557 |
+
return attn_output
|
558 |
+
|
559 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
560 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
561 |
+
|
562 |
+
# On the first iteration we need to properly re-create the padding mask
|
563 |
+
# by slicing it on the proper place
|
564 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
565 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
566 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
567 |
+
|
568 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
569 |
+
|
570 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
571 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
572 |
+
|
573 |
+
if query_length == kv_seq_len:
|
574 |
+
query_layer = index_first_axis(
|
575 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
576 |
+
)
|
577 |
+
cu_seqlens_q = cu_seqlens_k
|
578 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
579 |
+
indices_q = indices_k
|
580 |
+
elif query_length == 1:
|
581 |
+
max_seqlen_in_batch_q = 1
|
582 |
+
cu_seqlens_q = torch.arange(
|
583 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
584 |
+
) # There is a memcpy here, that is very bad.
|
585 |
+
indices_q = cu_seqlens_q[:-1]
|
586 |
+
query_layer = query_layer.squeeze(1)
|
587 |
+
else:
|
588 |
+
# The -q_len: slice assumes left padding.
|
589 |
+
attention_mask = attention_mask[:, -query_length:]
|
590 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
591 |
+
|
592 |
+
return (
|
593 |
+
query_layer,
|
594 |
+
key_layer,
|
595 |
+
value_layer,
|
596 |
+
indices_q,
|
597 |
+
(cu_seqlens_q, cu_seqlens_k),
|
598 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
599 |
+
)
|
600 |
+
|
601 |
+
|
602 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Starcoder2
|
603 |
+
class Starcoder2SdpaAttention(Starcoder2Attention):
|
604 |
+
"""
|
605 |
+
Starcoder2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
606 |
+
`Starcoder2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
607 |
+
SDPA API.
|
608 |
+
"""
|
609 |
+
|
610 |
+
# Ignore copy
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
hidden_states: torch.Tensor,
|
614 |
+
attention_mask: Optional[torch.Tensor] = None,
|
615 |
+
position_ids: Optional[torch.LongTensor] = None,
|
616 |
+
past_key_value: Optional[Cache] = None,
|
617 |
+
output_attentions: bool = False,
|
618 |
+
use_cache: bool = False,
|
619 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
620 |
+
if output_attentions:
|
621 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
622 |
+
logger.warning_once(
|
623 |
+
"Starcoder2Model is using Starcoder2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
624 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
625 |
+
)
|
626 |
+
return super().forward(
|
627 |
+
hidden_states=hidden_states,
|
628 |
+
attention_mask=attention_mask,
|
629 |
+
position_ids=position_ids,
|
630 |
+
past_key_value=past_key_value,
|
631 |
+
output_attentions=output_attentions,
|
632 |
+
use_cache=use_cache,
|
633 |
+
)
|
634 |
+
|
635 |
+
bsz, q_len, _ = hidden_states.size()
|
636 |
+
|
637 |
+
query_states = self.q_proj(hidden_states)
|
638 |
+
key_states = self.k_proj(hidden_states)
|
639 |
+
value_states = self.v_proj(hidden_states)
|
640 |
+
|
641 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
642 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
643 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
644 |
+
|
645 |
+
kv_seq_len = key_states.shape[-2]
|
646 |
+
if past_key_value is not None:
|
647 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
648 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
649 |
+
|
650 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
651 |
+
|
652 |
+
if past_key_value is not None:
|
653 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
654 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
655 |
+
|
656 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
657 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
658 |
+
|
659 |
+
if attention_mask is not None:
|
660 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
661 |
+
raise ValueError(
|
662 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
663 |
+
)
|
664 |
+
|
665 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
666 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
667 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
668 |
+
query_states = query_states.contiguous()
|
669 |
+
key_states = key_states.contiguous()
|
670 |
+
value_states = value_states.contiguous()
|
671 |
+
|
672 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
673 |
+
query_states,
|
674 |
+
key_states,
|
675 |
+
value_states,
|
676 |
+
attn_mask=attention_mask,
|
677 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
678 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
679 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
680 |
+
)
|
681 |
+
|
682 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
683 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
684 |
+
|
685 |
+
attn_output = self.o_proj(attn_output)
|
686 |
+
# The difference with Mistral is that here it uses dropout
|
687 |
+
attn_output = nn.functional.dropout(attn_output, p=self.residual_dropout, training=self.training)
|
688 |
+
|
689 |
+
return attn_output, None, past_key_value
|
690 |
+
|
691 |
+
|
692 |
+
STARCODER2_ATTENTION_CLASSES = {
|
693 |
+
"eager": Starcoder2Attention,
|
694 |
+
"flash_attention_2": Starcoder2FlashAttention2,
|
695 |
+
"sdpa": Starcoder2SdpaAttention,
|
696 |
+
}
|
697 |
+
|
698 |
+
|
699 |
+
class Starcoder2DecoderLayer(nn.Module):
|
700 |
+
def __init__(self, config: Starcoder2Config, layer_idx: int):
|
701 |
+
super().__init__()
|
702 |
+
self.hidden_size = config.hidden_size
|
703 |
+
|
704 |
+
self.self_attn = STARCODER2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
705 |
+
|
706 |
+
self.mlp = Starcoder2MLP(config)
|
707 |
+
|
708 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
|
709 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
|
710 |
+
|
711 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralDecoderLayer.forward
|
712 |
+
def forward(
|
713 |
+
self,
|
714 |
+
hidden_states: torch.Tensor,
|
715 |
+
attention_mask: Optional[torch.Tensor] = None,
|
716 |
+
position_ids: Optional[torch.LongTensor] = None,
|
717 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
718 |
+
output_attentions: Optional[bool] = False,
|
719 |
+
use_cache: Optional[bool] = False,
|
720 |
+
**kwargs,
|
721 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
722 |
+
if "padding_mask" in kwargs:
|
723 |
+
warnings.warn(
|
724 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
725 |
+
)
|
726 |
+
"""
|
727 |
+
Args:
|
728 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
729 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
730 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
731 |
+
output_attentions (`bool`, *optional*):
|
732 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
733 |
+
returned tensors for more detail.
|
734 |
+
use_cache (`bool`, *optional*):
|
735 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
736 |
+
(see `past_key_values`).
|
737 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
738 |
+
"""
|
739 |
+
|
740 |
+
residual = hidden_states
|
741 |
+
|
742 |
+
hidden_states = self.input_layernorm(hidden_states)
|
743 |
+
|
744 |
+
# Self Attention
|
745 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
746 |
+
hidden_states=hidden_states,
|
747 |
+
attention_mask=attention_mask,
|
748 |
+
position_ids=position_ids,
|
749 |
+
past_key_value=past_key_value,
|
750 |
+
output_attentions=output_attentions,
|
751 |
+
use_cache=use_cache,
|
752 |
+
)
|
753 |
+
hidden_states = residual + hidden_states
|
754 |
+
|
755 |
+
# Fully Connected
|
756 |
+
residual = hidden_states
|
757 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
758 |
+
hidden_states = self.mlp(hidden_states)
|
759 |
+
hidden_states = residual + hidden_states
|
760 |
+
|
761 |
+
outputs = (hidden_states,)
|
762 |
+
|
763 |
+
if output_attentions:
|
764 |
+
outputs += (self_attn_weights,)
|
765 |
+
|
766 |
+
if use_cache:
|
767 |
+
outputs += (present_key_value,)
|
768 |
+
|
769 |
+
return outputs
|
770 |
+
|
771 |
+
|
772 |
+
STARCODER2_START_DOCSTRING = r"""
|
773 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
774 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
775 |
+
etc.)
|
776 |
+
|
777 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
778 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
779 |
+
and behavior.
|
780 |
+
|
781 |
+
Parameters:
|
782 |
+
config ([`Starcoder2Config`]):
|
783 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
784 |
+
load the weights associated with the model, only the configuration. Check out the
|
785 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
786 |
+
"""
|
787 |
+
|
788 |
+
|
789 |
+
@add_start_docstrings(
|
790 |
+
"The bare Starcoder2 Model outputting raw hidden-states without any specific head on top.",
|
791 |
+
STARCODER2_START_DOCSTRING,
|
792 |
+
)
|
793 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Starcoder2
|
794 |
+
class Starcoder2PreTrainedModel(PreTrainedModel):
|
795 |
+
config_class = Starcoder2Config
|
796 |
+
base_model_prefix = "model"
|
797 |
+
supports_gradient_checkpointing = True
|
798 |
+
_no_split_modules = ["Starcoder2DecoderLayer"]
|
799 |
+
_skip_keys_device_placement = "past_key_values"
|
800 |
+
_supports_flash_attn_2 = True
|
801 |
+
_supports_sdpa = True
|
802 |
+
_supports_cache_class = True
|
803 |
+
|
804 |
+
def _init_weights(self, module):
|
805 |
+
std = self.config.initializer_range
|
806 |
+
if isinstance(module, nn.Linear):
|
807 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
808 |
+
if module.bias is not None:
|
809 |
+
module.bias.data.zero_()
|
810 |
+
elif isinstance(module, nn.Embedding):
|
811 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
812 |
+
if module.padding_idx is not None:
|
813 |
+
module.weight.data[module.padding_idx].zero_()
|
814 |
+
|
815 |
+
|
816 |
+
STARCODER2_INPUTS_DOCSTRING = r"""
|
817 |
+
Args:
|
818 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
819 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
820 |
+
it.
|
821 |
+
|
822 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
823 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
824 |
+
|
825 |
+
[What are input IDs?](../glossary#input-ids)
|
826 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
827 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
828 |
+
|
829 |
+
- 1 for tokens that are **not masked**,
|
830 |
+
- 0 for tokens that are **masked**.
|
831 |
+
|
832 |
+
[What are attention masks?](../glossary#attention-mask)
|
833 |
+
|
834 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
835 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
836 |
+
|
837 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
838 |
+
`past_key_values`).
|
839 |
+
|
840 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
841 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
842 |
+
information on the default strategy.
|
843 |
+
|
844 |
+
- 1 indicates the head is **not masked**,
|
845 |
+
- 0 indicates the head is **masked**.
|
846 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
847 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
848 |
+
config.n_positions - 1]`.
|
849 |
+
|
850 |
+
[What are position IDs?](../glossary#position-ids)
|
851 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
852 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
853 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
854 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
855 |
+
|
856 |
+
Two formats are allowed:
|
857 |
+
- a [`~cache_utils.Cache`] instance;
|
858 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
859 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
860 |
+
cache format.
|
861 |
+
|
862 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
863 |
+
legacy cache format will be returned.
|
864 |
+
|
865 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
866 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
867 |
+
of shape `(batch_size, sequence_length)`.
|
868 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
869 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
870 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
871 |
+
model's internal embedding lookup matrix.
|
872 |
+
use_cache (`bool`, *optional*):
|
873 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
874 |
+
`past_key_values`).
|
875 |
+
output_attentions (`bool`, *optional*):
|
876 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
877 |
+
tensors for more detail.
|
878 |
+
output_hidden_states (`bool`, *optional*):
|
879 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
880 |
+
more detail.
|
881 |
+
return_dict (`bool`, *optional*):
|
882 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
883 |
+
"""
|
884 |
+
|
885 |
+
|
886 |
+
@add_start_docstrings(
|
887 |
+
"The bare Starcoder2 Model outputting raw hidden-states without any specific head on top.",
|
888 |
+
STARCODER2_START_DOCSTRING,
|
889 |
+
)
|
890 |
+
class Starcoder2Model(Starcoder2PreTrainedModel):
|
891 |
+
"""
|
892 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Starcoder2DecoderLayer`]
|
893 |
+
|
894 |
+
Args:
|
895 |
+
config: Starcoder2Config
|
896 |
+
"""
|
897 |
+
|
898 |
+
def __init__(self, config: Starcoder2Config):
|
899 |
+
super().__init__(config)
|
900 |
+
self.padding_idx = config.pad_token_id
|
901 |
+
self.vocab_size = config.vocab_size
|
902 |
+
|
903 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
904 |
+
self.embedding_dropout = config.embedding_dropout
|
905 |
+
self.layers = nn.ModuleList(
|
906 |
+
[Starcoder2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
907 |
+
)
|
908 |
+
self._attn_implementation = config._attn_implementation
|
909 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
|
910 |
+
self.gradient_checkpointing = False
|
911 |
+
# Initialize weights and apply final processing
|
912 |
+
self.post_init()
|
913 |
+
|
914 |
+
def get_input_embeddings(self):
|
915 |
+
return self.embed_tokens
|
916 |
+
|
917 |
+
def set_input_embeddings(self, value):
|
918 |
+
self.embed_tokens = value
|
919 |
+
|
920 |
+
@add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING)
|
921 |
+
def forward(
|
922 |
+
self,
|
923 |
+
input_ids: torch.LongTensor = None,
|
924 |
+
attention_mask: Optional[torch.Tensor] = None,
|
925 |
+
position_ids: Optional[torch.LongTensor] = None,
|
926 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
927 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
928 |
+
use_cache: Optional[bool] = None,
|
929 |
+
output_attentions: Optional[bool] = None,
|
930 |
+
output_hidden_states: Optional[bool] = None,
|
931 |
+
return_dict: Optional[bool] = None,
|
932 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
933 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
934 |
+
output_hidden_states = (
|
935 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
936 |
+
)
|
937 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
938 |
+
|
939 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
940 |
+
|
941 |
+
# retrieve input_ids and inputs_embeds
|
942 |
+
if input_ids is not None and inputs_embeds is not None:
|
943 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
944 |
+
elif input_ids is not None:
|
945 |
+
batch_size, seq_length = input_ids.shape
|
946 |
+
elif inputs_embeds is not None:
|
947 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
948 |
+
else:
|
949 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
950 |
+
|
951 |
+
if self.gradient_checkpointing and self.training:
|
952 |
+
if use_cache:
|
953 |
+
logger.warning_once(
|
954 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
955 |
+
)
|
956 |
+
use_cache = False
|
957 |
+
|
958 |
+
past_key_values_length = 0
|
959 |
+
|
960 |
+
if use_cache:
|
961 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
962 |
+
if use_legacy_cache:
|
963 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
964 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
965 |
+
|
966 |
+
if position_ids is None:
|
967 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
968 |
+
position_ids = torch.arange(
|
969 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
970 |
+
)
|
971 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
972 |
+
else:
|
973 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
974 |
+
|
975 |
+
if inputs_embeds is None:
|
976 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
977 |
+
|
978 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
979 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
980 |
+
if is_padding_right:
|
981 |
+
raise ValueError(
|
982 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
983 |
+
" this may lead to unexpected behaviour for Flash Attention version of Starcoder2. Make sure to "
|
984 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
985 |
+
)
|
986 |
+
|
987 |
+
if self._attn_implementation == "flash_attention_2":
|
988 |
+
# 2d mask is passed through the layers
|
989 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
990 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
991 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
992 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
993 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
994 |
+
attention_mask,
|
995 |
+
(batch_size, seq_length),
|
996 |
+
inputs_embeds,
|
997 |
+
past_key_values_length,
|
998 |
+
sliding_window=self.config.sliding_window,
|
999 |
+
)
|
1000 |
+
else:
|
1001 |
+
# 4d mask is passed through the layers
|
1002 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1003 |
+
attention_mask,
|
1004 |
+
(batch_size, seq_length),
|
1005 |
+
inputs_embeds,
|
1006 |
+
past_key_values_length,
|
1007 |
+
sliding_window=self.config.sliding_window,
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
hidden_states = inputs_embeds
|
1011 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.embedding_dropout, training=self.training)
|
1012 |
+
|
1013 |
+
# decoder layers
|
1014 |
+
all_hidden_states = () if output_hidden_states else None
|
1015 |
+
all_self_attns = () if output_attentions else None
|
1016 |
+
next_decoder_cache = None
|
1017 |
+
|
1018 |
+
for decoder_layer in self.layers:
|
1019 |
+
if output_hidden_states:
|
1020 |
+
all_hidden_states += (hidden_states,)
|
1021 |
+
|
1022 |
+
if self.gradient_checkpointing and self.training:
|
1023 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1024 |
+
decoder_layer.__call__,
|
1025 |
+
hidden_states,
|
1026 |
+
attention_mask,
|
1027 |
+
position_ids,
|
1028 |
+
past_key_values,
|
1029 |
+
output_attentions,
|
1030 |
+
use_cache,
|
1031 |
+
)
|
1032 |
+
else:
|
1033 |
+
layer_outputs = decoder_layer(
|
1034 |
+
hidden_states,
|
1035 |
+
attention_mask=attention_mask,
|
1036 |
+
position_ids=position_ids,
|
1037 |
+
past_key_value=past_key_values,
|
1038 |
+
output_attentions=output_attentions,
|
1039 |
+
use_cache=use_cache,
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
hidden_states = layer_outputs[0]
|
1043 |
+
|
1044 |
+
if use_cache:
|
1045 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1046 |
+
|
1047 |
+
if output_attentions:
|
1048 |
+
all_self_attns += (layer_outputs[1],)
|
1049 |
+
|
1050 |
+
hidden_states = self.norm(hidden_states)
|
1051 |
+
|
1052 |
+
# add hidden states from the last decoder layer
|
1053 |
+
if output_hidden_states:
|
1054 |
+
all_hidden_states += (hidden_states,)
|
1055 |
+
|
1056 |
+
next_cache = None
|
1057 |
+
if use_cache:
|
1058 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1059 |
+
|
1060 |
+
if not return_dict:
|
1061 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1062 |
+
return BaseModelOutputWithPast(
|
1063 |
+
last_hidden_state=hidden_states,
|
1064 |
+
past_key_values=next_cache,
|
1065 |
+
hidden_states=all_hidden_states,
|
1066 |
+
attentions=all_self_attns,
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
|
1070 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralForCausalLM with MISTRAL->STARCODER2,Mistral-7B-v0.1->starcoder2-7b_16k,Mistral->Starcoder2,mistralai->bigcode
|
1071 |
+
class Starcoder2ForCausalLM(Starcoder2PreTrainedModel):
|
1072 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1073 |
+
|
1074 |
+
def __init__(self, config):
|
1075 |
+
super().__init__(config)
|
1076 |
+
self.model = Starcoder2Model(config)
|
1077 |
+
self.vocab_size = config.vocab_size
|
1078 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1079 |
+
|
1080 |
+
# Initialize weights and apply final processing
|
1081 |
+
self.post_init()
|
1082 |
+
|
1083 |
+
def get_input_embeddings(self):
|
1084 |
+
return self.model.embed_tokens
|
1085 |
+
|
1086 |
+
def set_input_embeddings(self, value):
|
1087 |
+
self.model.embed_tokens = value
|
1088 |
+
|
1089 |
+
def get_output_embeddings(self):
|
1090 |
+
return self.lm_head
|
1091 |
+
|
1092 |
+
def set_output_embeddings(self, new_embeddings):
|
1093 |
+
self.lm_head = new_embeddings
|
1094 |
+
|
1095 |
+
def set_decoder(self, decoder):
|
1096 |
+
self.model = decoder
|
1097 |
+
|
1098 |
+
def get_decoder(self):
|
1099 |
+
return self.model
|
1100 |
+
|
1101 |
+
@add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING)
|
1102 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1103 |
+
def forward(
|
1104 |
+
self,
|
1105 |
+
input_ids: torch.LongTensor = None,
|
1106 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1107 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1108 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1109 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1110 |
+
labels: Optional[torch.LongTensor] = None,
|
1111 |
+
use_cache: Optional[bool] = None,
|
1112 |
+
output_attentions: Optional[bool] = None,
|
1113 |
+
output_hidden_states: Optional[bool] = None,
|
1114 |
+
return_dict: Optional[bool] = None,
|
1115 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1116 |
+
r"""
|
1117 |
+
Args:
|
1118 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1119 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1120 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1121 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1122 |
+
|
1123 |
+
Returns:
|
1124 |
+
|
1125 |
+
Example:
|
1126 |
+
|
1127 |
+
```python
|
1128 |
+
>>> from transformers import AutoTokenizer, Starcoder2ForCausalLM
|
1129 |
+
|
1130 |
+
>>> model = Starcoder2ForCausalLM.from_pretrained("bigcode/starcoder2-7b_16k")
|
1131 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder2-7b_16k")
|
1132 |
+
|
1133 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1134 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1135 |
+
|
1136 |
+
>>> # Generate
|
1137 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1138 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1139 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1140 |
+
```"""
|
1141 |
+
|
1142 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1143 |
+
output_hidden_states = (
|
1144 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1145 |
+
)
|
1146 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1147 |
+
|
1148 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1149 |
+
outputs = self.model(
|
1150 |
+
input_ids=input_ids,
|
1151 |
+
attention_mask=attention_mask,
|
1152 |
+
position_ids=position_ids,
|
1153 |
+
past_key_values=past_key_values,
|
1154 |
+
inputs_embeds=inputs_embeds,
|
1155 |
+
use_cache=use_cache,
|
1156 |
+
output_attentions=output_attentions,
|
1157 |
+
output_hidden_states=output_hidden_states,
|
1158 |
+
return_dict=return_dict,
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
hidden_states = outputs[0]
|
1162 |
+
logits = self.lm_head(hidden_states)
|
1163 |
+
logits = logits.float()
|
1164 |
+
|
1165 |
+
loss = None
|
1166 |
+
if labels is not None:
|
1167 |
+
# Shift so that tokens < n predict n
|
1168 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1169 |
+
shift_labels = labels[..., 1:].contiguous()
|
1170 |
+
# Flatten the tokens
|
1171 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1172 |
+
shift_labels = shift_labels.view(-1)
|
1173 |
+
# Ensure tensors are on the same device
|
1174 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1175 |
+
loss_fct = CrossEntropyLoss()
|
1176 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1177 |
+
|
1178 |
+
if not return_dict:
|
1179 |
+
output = (logits,) + outputs[1:]
|
1180 |
+
return (loss,) + output if loss is not None else output
|
1181 |
+
|
1182 |
+
return CausalLMOutputWithPast(
|
1183 |
+
loss=loss,
|
1184 |
+
logits=logits,
|
1185 |
+
past_key_values=outputs.past_key_values,
|
1186 |
+
hidden_states=outputs.hidden_states,
|
1187 |
+
attentions=outputs.attentions,
|
1188 |
+
)
|
1189 |
+
|
1190 |
+
def prepare_inputs_for_generation(
|
1191 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1192 |
+
):
|
1193 |
+
# Omit tokens covered by past_key_values
|
1194 |
+
if past_key_values is not None:
|
1195 |
+
if isinstance(past_key_values, Cache):
|
1196 |
+
cache_length = past_key_values.get_seq_length()
|
1197 |
+
past_length = past_key_values.seen_tokens
|
1198 |
+
max_cache_length = past_key_values.get_max_length()
|
1199 |
+
else:
|
1200 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1201 |
+
max_cache_length = None
|
1202 |
+
|
1203 |
+
# Keep only the unprocessed tokens:
|
1204 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1205 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1206 |
+
# input)
|
1207 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1208 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1209 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1210 |
+
# input_ids based on the past_length.
|
1211 |
+
elif past_length < input_ids.shape[1]:
|
1212 |
+
input_ids = input_ids[:, past_length:]
|
1213 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1214 |
+
|
1215 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1216 |
+
if (
|
1217 |
+
max_cache_length is not None
|
1218 |
+
and attention_mask is not None
|
1219 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1220 |
+
):
|
1221 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1222 |
+
|
1223 |
+
position_ids = kwargs.get("position_ids", None)
|
1224 |
+
if attention_mask is not None and position_ids is None:
|
1225 |
+
# create position_ids on the fly for batch generation
|
1226 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1227 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1228 |
+
if past_key_values:
|
1229 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1230 |
+
|
1231 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1232 |
+
if inputs_embeds is not None and past_key_values is None:
|
1233 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1234 |
+
else:
|
1235 |
+
model_inputs = {"input_ids": input_ids}
|
1236 |
+
|
1237 |
+
model_inputs.update(
|
1238 |
+
{
|
1239 |
+
"position_ids": position_ids,
|
1240 |
+
"past_key_values": past_key_values,
|
1241 |
+
"use_cache": kwargs.get("use_cache"),
|
1242 |
+
"attention_mask": attention_mask,
|
1243 |
+
}
|
1244 |
+
)
|
1245 |
+
return model_inputs
|
1246 |
+
|
1247 |
+
@staticmethod
|
1248 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1249 |
+
reordered_past = ()
|
1250 |
+
for layer_past in past_key_values:
|
1251 |
+
reordered_past += (
|
1252 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1253 |
+
)
|
1254 |
+
return reordered_past
|
1255 |
+
|
1256 |
+
|
1257 |
+
@add_start_docstrings(
|
1258 |
+
"""
|
1259 |
+
The Starcoder2 Model transformer with a sequence classification head on top (linear layer).
|
1260 |
+
|
1261 |
+
[`Starcoder2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1262 |
+
(e.g. GPT-2) do.
|
1263 |
+
|
1264 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1265 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1266 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1267 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1268 |
+
each row of the batch).
|
1269 |
+
""",
|
1270 |
+
STARCODER2_START_DOCSTRING,
|
1271 |
+
)
|
1272 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Starcoder2, LLAMA->STARCODER2
|
1273 |
+
class Starcoder2ForSequenceClassification(Starcoder2PreTrainedModel):
|
1274 |
+
def __init__(self, config):
|
1275 |
+
super().__init__(config)
|
1276 |
+
self.num_labels = config.num_labels
|
1277 |
+
self.model = Starcoder2Model(config)
|
1278 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1279 |
+
|
1280 |
+
# Initialize weights and apply final processing
|
1281 |
+
self.post_init()
|
1282 |
+
|
1283 |
+
def get_input_embeddings(self):
|
1284 |
+
return self.model.embed_tokens
|
1285 |
+
|
1286 |
+
def set_input_embeddings(self, value):
|
1287 |
+
self.model.embed_tokens = value
|
1288 |
+
|
1289 |
+
@add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING)
|
1290 |
+
def forward(
|
1291 |
+
self,
|
1292 |
+
input_ids: torch.LongTensor = None,
|
1293 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1294 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1295 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1296 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1297 |
+
labels: Optional[torch.LongTensor] = None,
|
1298 |
+
use_cache: Optional[bool] = None,
|
1299 |
+
output_attentions: Optional[bool] = None,
|
1300 |
+
output_hidden_states: Optional[bool] = None,
|
1301 |
+
return_dict: Optional[bool] = None,
|
1302 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1303 |
+
r"""
|
1304 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1305 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1306 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1307 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1308 |
+
"""
|
1309 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1310 |
+
|
1311 |
+
transformer_outputs = self.model(
|
1312 |
+
input_ids,
|
1313 |
+
attention_mask=attention_mask,
|
1314 |
+
position_ids=position_ids,
|
1315 |
+
past_key_values=past_key_values,
|
1316 |
+
inputs_embeds=inputs_embeds,
|
1317 |
+
use_cache=use_cache,
|
1318 |
+
output_attentions=output_attentions,
|
1319 |
+
output_hidden_states=output_hidden_states,
|
1320 |
+
return_dict=return_dict,
|
1321 |
+
)
|
1322 |
+
hidden_states = transformer_outputs[0]
|
1323 |
+
logits = self.score(hidden_states)
|
1324 |
+
|
1325 |
+
if input_ids is not None:
|
1326 |
+
batch_size = input_ids.shape[0]
|
1327 |
+
else:
|
1328 |
+
batch_size = inputs_embeds.shape[0]
|
1329 |
+
|
1330 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1331 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1332 |
+
if self.config.pad_token_id is None:
|
1333 |
+
sequence_lengths = -1
|
1334 |
+
else:
|
1335 |
+
if input_ids is not None:
|
1336 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1337 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1338 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1339 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1340 |
+
else:
|
1341 |
+
sequence_lengths = -1
|
1342 |
+
|
1343 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1344 |
+
|
1345 |
+
loss = None
|
1346 |
+
if labels is not None:
|
1347 |
+
labels = labels.to(logits.device)
|
1348 |
+
if self.config.problem_type is None:
|
1349 |
+
if self.num_labels == 1:
|
1350 |
+
self.config.problem_type = "regression"
|
1351 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1352 |
+
self.config.problem_type = "single_label_classification"
|
1353 |
+
else:
|
1354 |
+
self.config.problem_type = "multi_label_classification"
|
1355 |
+
|
1356 |
+
if self.config.problem_type == "regression":
|
1357 |
+
loss_fct = MSELoss()
|
1358 |
+
if self.num_labels == 1:
|
1359 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1360 |
+
else:
|
1361 |
+
loss = loss_fct(pooled_logits, labels)
|
1362 |
+
elif self.config.problem_type == "single_label_classification":
|
1363 |
+
loss_fct = CrossEntropyLoss()
|
1364 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1365 |
+
elif self.config.problem_type == "multi_label_classification":
|
1366 |
+
loss_fct = BCEWithLogitsLoss()
|
1367 |
+
loss = loss_fct(pooled_logits, labels)
|
1368 |
+
if not return_dict:
|
1369 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1370 |
+
return ((loss,) + output) if loss is not None else output
|
1371 |
+
|
1372 |
+
return SequenceClassifierOutputWithPast(
|
1373 |
+
loss=loss,
|
1374 |
+
logits=pooled_logits,
|
1375 |
+
past_key_values=transformer_outputs.past_key_values,
|
1376 |
+
hidden_states=transformer_outputs.hidden_states,
|
1377 |
+
attentions=transformer_outputs.attentions,
|
1378 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/tapas/__init__.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"],
|
22 |
+
"tokenization_tapas": ["TapasTokenizer"],
|
23 |
+
}
|
24 |
+
|
25 |
+
try:
|
26 |
+
if not is_torch_available():
|
27 |
+
raise OptionalDependencyNotAvailable()
|
28 |
+
except OptionalDependencyNotAvailable:
|
29 |
+
pass
|
30 |
+
else:
|
31 |
+
_import_structure["modeling_tapas"] = [
|
32 |
+
"TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
33 |
+
"TapasForMaskedLM",
|
34 |
+
"TapasForQuestionAnswering",
|
35 |
+
"TapasForSequenceClassification",
|
36 |
+
"TapasModel",
|
37 |
+
"TapasPreTrainedModel",
|
38 |
+
"load_tf_weights_in_tapas",
|
39 |
+
]
|
40 |
+
try:
|
41 |
+
if not is_tf_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_tf_tapas"] = [
|
47 |
+
"TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"TFTapasForMaskedLM",
|
49 |
+
"TFTapasForQuestionAnswering",
|
50 |
+
"TFTapasForSequenceClassification",
|
51 |
+
"TFTapasModel",
|
52 |
+
"TFTapasPreTrainedModel",
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
if TYPE_CHECKING:
|
57 |
+
from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
|
58 |
+
from .tokenization_tapas import TapasTokenizer
|
59 |
+
|
60 |
+
try:
|
61 |
+
if not is_torch_available():
|
62 |
+
raise OptionalDependencyNotAvailable()
|
63 |
+
except OptionalDependencyNotAvailable:
|
64 |
+
pass
|
65 |
+
else:
|
66 |
+
from .modeling_tapas import (
|
67 |
+
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
68 |
+
TapasForMaskedLM,
|
69 |
+
TapasForQuestionAnswering,
|
70 |
+
TapasForSequenceClassification,
|
71 |
+
TapasModel,
|
72 |
+
TapasPreTrainedModel,
|
73 |
+
load_tf_weights_in_tapas,
|
74 |
+
)
|
75 |
+
|
76 |
+
try:
|
77 |
+
if not is_tf_available():
|
78 |
+
raise OptionalDependencyNotAvailable()
|
79 |
+
except OptionalDependencyNotAvailable:
|
80 |
+
pass
|
81 |
+
else:
|
82 |
+
from .modeling_tf_tapas import (
|
83 |
+
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
84 |
+
TFTapasForMaskedLM,
|
85 |
+
TFTapasForQuestionAnswering,
|
86 |
+
TFTapasForSequenceClassification,
|
87 |
+
TFTapasModel,
|
88 |
+
TFTapasPreTrainedModel,
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
else:
|
93 |
+
import sys
|
94 |
+
|
95 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|