Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__init__.py +148 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/configuration_mbart.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/convert_mbart_original_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_flax_mbart.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_mbart.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_tf_mbart.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/configuration_mbart.py +386 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/convert_mbart_original_checkpoint_to_pytorch.py +83 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_flax_mbart.py +1771 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_mbart.py +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_tf_mbart.py +1573 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart.py +337 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart_fast.py +270 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__init__.py +69 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/configuration_megatron_bert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/convert_megatron_bert_checkpoint.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/modeling_megatron_bert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/configuration_megatron_bert.py +129 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py +334 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/modeling_megatron_bert.py +1836 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__init__.py +85 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/configuration_mobilenet_v1.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/convert_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/feature_extraction_mobilenet_v1.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/image_processing_mobilenet_v1.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/modeling_mobilenet_v1.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +126 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/convert_original_tf_checkpoint_to_pytorch.py +142 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/feature_extraction_mobilenet_v1.py +33 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +326 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +482 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__init__.py +62 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/configuration_mpt.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/modeling_mpt.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/configuration_mpt.py +246 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/modeling_mpt.py +942 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__init__.py +67 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/convert_musicgen_transformers.py +235 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/processing_musicgen.py +140 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__init__.py +59 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/configuration_recurrent_gemma.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/convert_recurrent_gemma_to_hf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/modeling_recurrent_gemma.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__init__.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_flax_available,
|
20 |
+
is_sentencepiece_available,
|
21 |
+
is_tf_available,
|
22 |
+
is_tokenizers_available,
|
23 |
+
is_torch_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_sentencepiece_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["tokenization_mbart"] = ["MBartTokenizer"]
|
36 |
+
|
37 |
+
try:
|
38 |
+
if not is_tokenizers_available():
|
39 |
+
raise OptionalDependencyNotAvailable()
|
40 |
+
except OptionalDependencyNotAvailable:
|
41 |
+
pass
|
42 |
+
else:
|
43 |
+
_import_structure["tokenization_mbart_fast"] = ["MBartTokenizerFast"]
|
44 |
+
|
45 |
+
try:
|
46 |
+
if not is_torch_available():
|
47 |
+
raise OptionalDependencyNotAvailable()
|
48 |
+
except OptionalDependencyNotAvailable:
|
49 |
+
pass
|
50 |
+
else:
|
51 |
+
_import_structure["modeling_mbart"] = [
|
52 |
+
"MBART_PRETRAINED_MODEL_ARCHIVE_LIST",
|
53 |
+
"MBartForCausalLM",
|
54 |
+
"MBartForConditionalGeneration",
|
55 |
+
"MBartForQuestionAnswering",
|
56 |
+
"MBartForSequenceClassification",
|
57 |
+
"MBartModel",
|
58 |
+
"MBartPreTrainedModel",
|
59 |
+
]
|
60 |
+
|
61 |
+
try:
|
62 |
+
if not is_tf_available():
|
63 |
+
raise OptionalDependencyNotAvailable()
|
64 |
+
except OptionalDependencyNotAvailable:
|
65 |
+
pass
|
66 |
+
else:
|
67 |
+
_import_structure["modeling_tf_mbart"] = [
|
68 |
+
"TFMBartForConditionalGeneration",
|
69 |
+
"TFMBartModel",
|
70 |
+
"TFMBartPreTrainedModel",
|
71 |
+
]
|
72 |
+
|
73 |
+
try:
|
74 |
+
if not is_flax_available():
|
75 |
+
raise OptionalDependencyNotAvailable()
|
76 |
+
except OptionalDependencyNotAvailable:
|
77 |
+
pass
|
78 |
+
else:
|
79 |
+
_import_structure["modeling_flax_mbart"] = [
|
80 |
+
"FlaxMBartForConditionalGeneration",
|
81 |
+
"FlaxMBartForQuestionAnswering",
|
82 |
+
"FlaxMBartForSequenceClassification",
|
83 |
+
"FlaxMBartModel",
|
84 |
+
"FlaxMBartPreTrainedModel",
|
85 |
+
]
|
86 |
+
|
87 |
+
|
88 |
+
if TYPE_CHECKING:
|
89 |
+
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
|
90 |
+
|
91 |
+
try:
|
92 |
+
if not is_sentencepiece_available():
|
93 |
+
raise OptionalDependencyNotAvailable()
|
94 |
+
except OptionalDependencyNotAvailable:
|
95 |
+
pass
|
96 |
+
else:
|
97 |
+
from .tokenization_mbart import MBartTokenizer
|
98 |
+
|
99 |
+
try:
|
100 |
+
if not is_tokenizers_available():
|
101 |
+
raise OptionalDependencyNotAvailable()
|
102 |
+
except OptionalDependencyNotAvailable:
|
103 |
+
pass
|
104 |
+
else:
|
105 |
+
from .tokenization_mbart_fast import MBartTokenizerFast
|
106 |
+
|
107 |
+
try:
|
108 |
+
if not is_torch_available():
|
109 |
+
raise OptionalDependencyNotAvailable()
|
110 |
+
except OptionalDependencyNotAvailable:
|
111 |
+
pass
|
112 |
+
else:
|
113 |
+
from .modeling_mbart import (
|
114 |
+
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
|
115 |
+
MBartForCausalLM,
|
116 |
+
MBartForConditionalGeneration,
|
117 |
+
MBartForQuestionAnswering,
|
118 |
+
MBartForSequenceClassification,
|
119 |
+
MBartModel,
|
120 |
+
MBartPreTrainedModel,
|
121 |
+
)
|
122 |
+
|
123 |
+
try:
|
124 |
+
if not is_tf_available():
|
125 |
+
raise OptionalDependencyNotAvailable()
|
126 |
+
except OptionalDependencyNotAvailable:
|
127 |
+
pass
|
128 |
+
else:
|
129 |
+
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
|
130 |
+
|
131 |
+
try:
|
132 |
+
if not is_flax_available():
|
133 |
+
raise OptionalDependencyNotAvailable()
|
134 |
+
except OptionalDependencyNotAvailable:
|
135 |
+
pass
|
136 |
+
else:
|
137 |
+
from .modeling_flax_mbart import (
|
138 |
+
FlaxMBartForConditionalGeneration,
|
139 |
+
FlaxMBartForQuestionAnswering,
|
140 |
+
FlaxMBartForSequenceClassification,
|
141 |
+
FlaxMBartModel,
|
142 |
+
FlaxMBartPreTrainedModel,
|
143 |
+
)
|
144 |
+
|
145 |
+
else:
|
146 |
+
import sys
|
147 |
+
|
148 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/configuration_mbart.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/convert_mbart_original_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (2.31 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_flax_mbart.cpython-310.pyc
ADDED
Binary file (48.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_mbart.cpython-310.pyc
ADDED
Binary file (66.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_tf_mbart.cpython-310.pyc
ADDED
Binary file (51.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart_fast.cpython-310.pyc
ADDED
Binary file (9.23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/configuration_mbart.py
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MBART model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Any, Mapping, Optional
|
18 |
+
|
19 |
+
from ... import PreTrainedTokenizer
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
|
22 |
+
from ...onnx.utils import compute_effective_axis_dimension
|
23 |
+
from ...utils import TensorType, is_torch_available, logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
class MBartConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`MBartModel`]. It is used to instantiate an MBART
|
32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
33 |
+
defaults will yield a similar configuration to that of the MBART
|
34 |
+
[facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 50265):
|
42 |
+
Vocabulary size of the MBART model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`MBartModel`] or [`TFMBartModel`].
|
44 |
+
d_model (`int`, *optional*, defaults to 1024):
|
45 |
+
Dimensionality of the layers and the pooler layer.
|
46 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
47 |
+
Number of encoder layers.
|
48 |
+
decoder_layers (`int`, *optional*, defaults to 12):
|
49 |
+
Number of decoder layers.
|
50 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
53 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
54 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
55 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
56 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
57 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
58 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
59 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
60 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
61 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
62 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
63 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for the attention probabilities.
|
65 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
+
The dropout ratio for activations inside the fully connected layer.
|
67 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
68 |
+
The dropout ratio for classifier.
|
69 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
70 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
71 |
+
just in case (e.g., 512 or 1024 or 2048).
|
72 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
73 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
74 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
75 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
76 |
+
for more details.
|
77 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
78 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
79 |
+
for more details.
|
80 |
+
scale_embedding (`bool`, *optional*, defaults to `False`):
|
81 |
+
Scale embeddings by diving by sqrt(d_model).
|
82 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
83 |
+
Whether or not the model should return the last key/values attentions (not used by all models)
|
84 |
+
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
85 |
+
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
86 |
+
`eos_token_id`.
|
87 |
+
|
88 |
+
Example:
|
89 |
+
|
90 |
+
```python
|
91 |
+
>>> from transformers import MBartConfig, MBartModel
|
92 |
+
|
93 |
+
>>> # Initializing a MBART facebook/mbart-large-cc25 style configuration
|
94 |
+
>>> configuration = MBartConfig()
|
95 |
+
|
96 |
+
>>> # Initializing a model (with random weights) from the facebook/mbart-large-cc25 style configuration
|
97 |
+
>>> model = MBartModel(configuration)
|
98 |
+
|
99 |
+
>>> # Accessing the model configuration
|
100 |
+
>>> configuration = model.config
|
101 |
+
```"""
|
102 |
+
|
103 |
+
model_type = "mbart"
|
104 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
105 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
106 |
+
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
vocab_size=50265,
|
110 |
+
max_position_embeddings=1024,
|
111 |
+
encoder_layers=12,
|
112 |
+
encoder_ffn_dim=4096,
|
113 |
+
encoder_attention_heads=16,
|
114 |
+
decoder_layers=12,
|
115 |
+
decoder_ffn_dim=4096,
|
116 |
+
decoder_attention_heads=16,
|
117 |
+
encoder_layerdrop=0.0,
|
118 |
+
decoder_layerdrop=0.0,
|
119 |
+
use_cache=True,
|
120 |
+
is_encoder_decoder=True,
|
121 |
+
activation_function="gelu",
|
122 |
+
d_model=1024,
|
123 |
+
dropout=0.1,
|
124 |
+
attention_dropout=0.0,
|
125 |
+
activation_dropout=0.0,
|
126 |
+
init_std=0.02,
|
127 |
+
classifier_dropout=0.0,
|
128 |
+
scale_embedding=False,
|
129 |
+
pad_token_id=1,
|
130 |
+
bos_token_id=0,
|
131 |
+
eos_token_id=2,
|
132 |
+
forced_eos_token_id=2,
|
133 |
+
**kwargs,
|
134 |
+
):
|
135 |
+
self.vocab_size = vocab_size
|
136 |
+
self.max_position_embeddings = max_position_embeddings
|
137 |
+
self.d_model = d_model
|
138 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
139 |
+
self.encoder_layers = encoder_layers
|
140 |
+
self.encoder_attention_heads = encoder_attention_heads
|
141 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
142 |
+
self.decoder_layers = decoder_layers
|
143 |
+
self.decoder_attention_heads = decoder_attention_heads
|
144 |
+
self.dropout = dropout
|
145 |
+
self.attention_dropout = attention_dropout
|
146 |
+
self.activation_dropout = activation_dropout
|
147 |
+
self.activation_function = activation_function
|
148 |
+
self.init_std = init_std
|
149 |
+
self.encoder_layerdrop = encoder_layerdrop
|
150 |
+
self.decoder_layerdrop = decoder_layerdrop
|
151 |
+
self.classifier_dropout = classifier_dropout
|
152 |
+
self.use_cache = use_cache
|
153 |
+
self.num_hidden_layers = encoder_layers
|
154 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
155 |
+
super().__init__(
|
156 |
+
pad_token_id=pad_token_id,
|
157 |
+
bos_token_id=bos_token_id,
|
158 |
+
eos_token_id=eos_token_id,
|
159 |
+
is_encoder_decoder=is_encoder_decoder,
|
160 |
+
forced_eos_token_id=forced_eos_token_id,
|
161 |
+
**kwargs,
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig with Bart->MBart
|
166 |
+
class MBartOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
167 |
+
@property
|
168 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
169 |
+
if self.task in ["default", "seq2seq-lm"]:
|
170 |
+
common_inputs = OrderedDict(
|
171 |
+
[
|
172 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
173 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
174 |
+
]
|
175 |
+
)
|
176 |
+
|
177 |
+
if self.use_past:
|
178 |
+
common_inputs["decoder_input_ids"] = {0: "batch"}
|
179 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
|
180 |
+
else:
|
181 |
+
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
182 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
|
183 |
+
|
184 |
+
if self.use_past:
|
185 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
186 |
+
elif self.task == "causal-lm":
|
187 |
+
# TODO: figure this case out.
|
188 |
+
common_inputs = OrderedDict(
|
189 |
+
[
|
190 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
191 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
192 |
+
]
|
193 |
+
)
|
194 |
+
if self.use_past:
|
195 |
+
num_encoder_layers, _ = self.num_layers
|
196 |
+
for i in range(num_encoder_layers):
|
197 |
+
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
198 |
+
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
199 |
+
else:
|
200 |
+
common_inputs = OrderedDict(
|
201 |
+
[
|
202 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
203 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
204 |
+
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
|
205 |
+
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
|
206 |
+
]
|
207 |
+
)
|
208 |
+
|
209 |
+
return common_inputs
|
210 |
+
|
211 |
+
@property
|
212 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
213 |
+
if self.task in ["default", "seq2seq-lm"]:
|
214 |
+
common_outputs = super().outputs
|
215 |
+
else:
|
216 |
+
common_outputs = super(OnnxConfigWithPast, self).outputs
|
217 |
+
if self.use_past:
|
218 |
+
num_encoder_layers, _ = self.num_layers
|
219 |
+
for i in range(num_encoder_layers):
|
220 |
+
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
221 |
+
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
222 |
+
return common_outputs
|
223 |
+
|
224 |
+
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
|
225 |
+
self,
|
226 |
+
tokenizer: PreTrainedTokenizer,
|
227 |
+
batch_size: int = -1,
|
228 |
+
seq_length: int = -1,
|
229 |
+
is_pair: bool = False,
|
230 |
+
framework: Optional[TensorType] = None,
|
231 |
+
) -> Mapping[str, Any]:
|
232 |
+
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
233 |
+
tokenizer, batch_size, seq_length, is_pair, framework
|
234 |
+
)
|
235 |
+
|
236 |
+
# Generate decoder inputs
|
237 |
+
decoder_seq_length = seq_length if not self.use_past else 1
|
238 |
+
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
239 |
+
tokenizer, batch_size, decoder_seq_length, is_pair, framework
|
240 |
+
)
|
241 |
+
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
|
242 |
+
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
243 |
+
|
244 |
+
if self.use_past:
|
245 |
+
if not is_torch_available():
|
246 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
247 |
+
else:
|
248 |
+
import torch
|
249 |
+
batch, encoder_seq_length = common_inputs["input_ids"].shape
|
250 |
+
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
251 |
+
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
|
252 |
+
encoder_shape = (
|
253 |
+
batch,
|
254 |
+
num_encoder_attention_heads,
|
255 |
+
encoder_seq_length,
|
256 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
257 |
+
)
|
258 |
+
decoder_past_length = decoder_seq_length + 3
|
259 |
+
decoder_shape = (
|
260 |
+
batch,
|
261 |
+
num_decoder_attention_heads,
|
262 |
+
decoder_past_length,
|
263 |
+
self._config.hidden_size // num_decoder_attention_heads,
|
264 |
+
)
|
265 |
+
|
266 |
+
common_inputs["decoder_attention_mask"] = torch.cat(
|
267 |
+
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
|
268 |
+
)
|
269 |
+
|
270 |
+
common_inputs["past_key_values"] = []
|
271 |
+
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
272 |
+
num_encoder_layers, num_decoder_layers = self.num_layers
|
273 |
+
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
274 |
+
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
275 |
+
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
276 |
+
|
277 |
+
for _ in range(min_num_layers):
|
278 |
+
common_inputs["past_key_values"].append(
|
279 |
+
(
|
280 |
+
torch.zeros(decoder_shape),
|
281 |
+
torch.zeros(decoder_shape),
|
282 |
+
torch.zeros(encoder_shape),
|
283 |
+
torch.zeros(encoder_shape),
|
284 |
+
)
|
285 |
+
)
|
286 |
+
# TODO: test this.
|
287 |
+
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
288 |
+
for _ in range(min_num_layers, max_num_layers):
|
289 |
+
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
|
290 |
+
return common_inputs
|
291 |
+
|
292 |
+
def _generate_dummy_inputs_for_causal_lm(
|
293 |
+
self,
|
294 |
+
tokenizer: PreTrainedTokenizer,
|
295 |
+
batch_size: int = -1,
|
296 |
+
seq_length: int = -1,
|
297 |
+
is_pair: bool = False,
|
298 |
+
framework: Optional[TensorType] = None,
|
299 |
+
) -> Mapping[str, Any]:
|
300 |
+
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
301 |
+
tokenizer, batch_size, seq_length, is_pair, framework
|
302 |
+
)
|
303 |
+
|
304 |
+
if self.use_past:
|
305 |
+
if not is_torch_available():
|
306 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
307 |
+
else:
|
308 |
+
import torch
|
309 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
310 |
+
# Not using the same length for past_key_values
|
311 |
+
past_key_values_length = seqlen + 2
|
312 |
+
num_encoder_layers, _ = self.num_layers
|
313 |
+
num_encoder_attention_heads, _ = self.num_attention_heads
|
314 |
+
past_shape = (
|
315 |
+
batch,
|
316 |
+
num_encoder_attention_heads,
|
317 |
+
past_key_values_length,
|
318 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
319 |
+
)
|
320 |
+
|
321 |
+
mask_dtype = common_inputs["attention_mask"].dtype
|
322 |
+
common_inputs["attention_mask"] = torch.cat(
|
323 |
+
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
324 |
+
)
|
325 |
+
common_inputs["past_key_values"] = [
|
326 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
|
327 |
+
]
|
328 |
+
return common_inputs
|
329 |
+
|
330 |
+
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
331 |
+
self,
|
332 |
+
tokenizer: PreTrainedTokenizer,
|
333 |
+
batch_size: int = -1,
|
334 |
+
seq_length: int = -1,
|
335 |
+
is_pair: bool = False,
|
336 |
+
framework: Optional[TensorType] = None,
|
337 |
+
) -> Mapping[str, Any]:
|
338 |
+
# Copied from OnnxConfig.generate_dummy_inputs
|
339 |
+
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
|
340 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
341 |
+
batch_size = compute_effective_axis_dimension(
|
342 |
+
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
|
343 |
+
)
|
344 |
+
|
345 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
346 |
+
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
|
347 |
+
seq_length = compute_effective_axis_dimension(
|
348 |
+
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
|
349 |
+
)
|
350 |
+
|
351 |
+
# Generate dummy inputs according to compute batch and sequence
|
352 |
+
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
|
353 |
+
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
|
354 |
+
return common_inputs
|
355 |
+
|
356 |
+
def generate_dummy_inputs(
|
357 |
+
self,
|
358 |
+
tokenizer: PreTrainedTokenizer,
|
359 |
+
batch_size: int = -1,
|
360 |
+
seq_length: int = -1,
|
361 |
+
is_pair: bool = False,
|
362 |
+
framework: Optional[TensorType] = None,
|
363 |
+
) -> Mapping[str, Any]:
|
364 |
+
if self.task in ["default", "seq2seq-lm"]:
|
365 |
+
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
|
366 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
367 |
+
)
|
368 |
+
|
369 |
+
elif self.task == "causal-lm":
|
370 |
+
common_inputs = self._generate_dummy_inputs_for_causal_lm(
|
371 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
372 |
+
)
|
373 |
+
else:
|
374 |
+
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
375 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
376 |
+
)
|
377 |
+
|
378 |
+
return common_inputs
|
379 |
+
|
380 |
+
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
|
381 |
+
if self.task in ["default", "seq2seq-lm"]:
|
382 |
+
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
|
383 |
+
else:
|
384 |
+
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
|
385 |
+
flattened_output, name, idx, t
|
386 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/convert_mbart_original_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from transformers import MBartConfig, MBartForConditionalGeneration
|
21 |
+
|
22 |
+
|
23 |
+
def remove_ignore_keys_(state_dict):
|
24 |
+
ignore_keys = [
|
25 |
+
"encoder.version",
|
26 |
+
"decoder.version",
|
27 |
+
"model.encoder.version",
|
28 |
+
"model.decoder.version",
|
29 |
+
"_float_tensor",
|
30 |
+
"decoder.output_projection.weight",
|
31 |
+
]
|
32 |
+
for k in ignore_keys:
|
33 |
+
state_dict.pop(k, None)
|
34 |
+
|
35 |
+
|
36 |
+
def make_linear_from_emb(emb):
|
37 |
+
vocab_size, emb_size = emb.weight.shape
|
38 |
+
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
|
39 |
+
lin_layer.weight.data = emb.weight.data
|
40 |
+
return lin_layer
|
41 |
+
|
42 |
+
|
43 |
+
def convert_fairseq_mbart_checkpoint_from_disk(
|
44 |
+
checkpoint_path, hf_config_path="facebook/mbart-large-en-ro", finetuned=False, mbart_50=False
|
45 |
+
):
|
46 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
|
47 |
+
remove_ignore_keys_(state_dict)
|
48 |
+
vocab_size = state_dict["encoder.embed_tokens.weight"].shape[0]
|
49 |
+
|
50 |
+
mbart_config = MBartConfig.from_pretrained(hf_config_path, vocab_size=vocab_size)
|
51 |
+
if mbart_50 and finetuned:
|
52 |
+
mbart_config.activation_function = "relu"
|
53 |
+
|
54 |
+
state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"]
|
55 |
+
model = MBartForConditionalGeneration(mbart_config)
|
56 |
+
model.model.load_state_dict(state_dict)
|
57 |
+
|
58 |
+
if finetuned:
|
59 |
+
model.lm_head = make_linear_from_emb(model.model.shared)
|
60 |
+
|
61 |
+
return model
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
parser = argparse.ArgumentParser()
|
66 |
+
# Required parameters
|
67 |
+
parser.add_argument(
|
68 |
+
"fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem."
|
69 |
+
)
|
70 |
+
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
71 |
+
parser.add_argument(
|
72 |
+
"--hf_config",
|
73 |
+
default="facebook/mbart-large-cc25",
|
74 |
+
type=str,
|
75 |
+
help="Which huggingface architecture to use: mbart-large",
|
76 |
+
)
|
77 |
+
parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint")
|
78 |
+
parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint")
|
79 |
+
args = parser.parse_args()
|
80 |
+
model = convert_fairseq_mbart_checkpoint_from_disk(
|
81 |
+
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_50=args.mbart_50
|
82 |
+
)
|
83 |
+
model.save_pretrained(args.pytorch_dump_folder_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_flax_mbart.py
ADDED
@@ -0,0 +1,1771 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Flax MBart model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import random
|
19 |
+
from functools import partial
|
20 |
+
from typing import Callable, Optional, Tuple
|
21 |
+
|
22 |
+
import flax.linen as nn
|
23 |
+
import jax
|
24 |
+
import jax.numpy as jnp
|
25 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
26 |
+
from flax.linen import combine_masks, make_causal_mask
|
27 |
+
from flax.linen.attention import dot_product_attention_weights
|
28 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
29 |
+
from jax import lax
|
30 |
+
from jax.random import PRNGKey
|
31 |
+
|
32 |
+
from ...modeling_flax_outputs import (
|
33 |
+
FlaxBaseModelOutput,
|
34 |
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
35 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
36 |
+
FlaxSeq2SeqLMOutput,
|
37 |
+
FlaxSeq2SeqModelOutput,
|
38 |
+
FlaxSeq2SeqQuestionAnsweringModelOutput,
|
39 |
+
FlaxSeq2SeqSequenceClassifierOutput,
|
40 |
+
)
|
41 |
+
from ...modeling_flax_utils import (
|
42 |
+
ACT2FN,
|
43 |
+
FlaxPreTrainedModel,
|
44 |
+
append_call_sample_docstring,
|
45 |
+
append_replace_return_docstrings,
|
46 |
+
overwrite_call_docstring,
|
47 |
+
)
|
48 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
49 |
+
from .configuration_mbart import MBartConfig
|
50 |
+
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25"
|
55 |
+
_CONFIG_FOR_DOC = "MBartConfig"
|
56 |
+
|
57 |
+
|
58 |
+
MBART_START_DOCSTRING = r"""
|
59 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
60 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
61 |
+
etc.)
|
62 |
+
|
63 |
+
This model is also a Flax Linen
|
64 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
65 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
66 |
+
|
67 |
+
Finally, this model supports inherent JAX features such as:
|
68 |
+
|
69 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
70 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
71 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
72 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
73 |
+
|
74 |
+
Parameters:
|
75 |
+
config ([`MBartConfig`]): Model configuration class with all the parameters of the model.
|
76 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
77 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
78 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
79 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
80 |
+
`jax.numpy.bfloat16` (on TPUs).
|
81 |
+
|
82 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
83 |
+
specified all the computation will be performed with the given `dtype`.
|
84 |
+
|
85 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
86 |
+
parameters.**
|
87 |
+
|
88 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
89 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
90 |
+
"""
|
91 |
+
|
92 |
+
MBART_INPUTS_DOCSTRING = r"""
|
93 |
+
Args:
|
94 |
+
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
|
95 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
96 |
+
it.
|
97 |
+
|
98 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
99 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
100 |
+
|
101 |
+
[What are input IDs?](../glossary#input-ids)
|
102 |
+
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
103 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
104 |
+
|
105 |
+
- 1 for tokens that are **not masked**,
|
106 |
+
- 0 for tokens that are **masked**.
|
107 |
+
|
108 |
+
[What are attention masks?](../glossary#attention-mask)
|
109 |
+
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
110 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
111 |
+
|
112 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
113 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
114 |
+
|
115 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
116 |
+
|
117 |
+
For translation and summarization training, `decoder_input_ids` should be provided. If no
|
118 |
+
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
|
119 |
+
for denoising pre-training following the paper.
|
120 |
+
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
121 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
122 |
+
be used by default.
|
123 |
+
|
124 |
+
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
|
125 |
+
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
|
126 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
127 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
128 |
+
config.max_position_embeddings - 1]`.
|
129 |
+
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
130 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
131 |
+
range `[0, config.max_position_embeddings - 1]`.
|
132 |
+
output_attentions (`bool`, *optional*):
|
133 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
134 |
+
tensors for more detail.
|
135 |
+
output_hidden_states (`bool`, *optional*):
|
136 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
137 |
+
more detail.
|
138 |
+
return_dict (`bool`, *optional*):
|
139 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
140 |
+
"""
|
141 |
+
|
142 |
+
|
143 |
+
MBART_ENCODE_INPUTS_DOCSTRING = r"""
|
144 |
+
Args:
|
145 |
+
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
|
146 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
147 |
+
it.
|
148 |
+
|
149 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
150 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
151 |
+
|
152 |
+
[What are input IDs?](../glossary#input-ids)
|
153 |
+
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
154 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
155 |
+
|
156 |
+
- 1 for tokens that are **not masked**,
|
157 |
+
- 0 for tokens that are **masked**.
|
158 |
+
|
159 |
+
[What are attention masks?](../glossary#attention-mask)
|
160 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
161 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
162 |
+
config.max_position_embeddings - 1]`.
|
163 |
+
output_attentions (`bool`, *optional*):
|
164 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
165 |
+
tensors for more detail.
|
166 |
+
output_hidden_states (`bool`, *optional*):
|
167 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
168 |
+
more detail.
|
169 |
+
return_dict (`bool`, *optional*):
|
170 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
171 |
+
"""
|
172 |
+
|
173 |
+
MBART_DECODE_INPUTS_DOCSTRING = r"""
|
174 |
+
Args:
|
175 |
+
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
|
176 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
177 |
+
|
178 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
179 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
180 |
+
|
181 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
182 |
+
|
183 |
+
For translation and summarization training, `decoder_input_ids` should be provided. If no
|
184 |
+
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
|
185 |
+
for denoising pre-training following the paper.
|
186 |
+
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
|
187 |
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
188 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
189 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
190 |
+
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
191 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
192 |
+
|
193 |
+
- 1 for tokens that are **not masked**,
|
194 |
+
- 0 for tokens that are **masked**.
|
195 |
+
|
196 |
+
[What are attention masks?](../glossary#attention-mask)
|
197 |
+
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
198 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
199 |
+
be used by default.
|
200 |
+
|
201 |
+
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
|
202 |
+
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
|
203 |
+
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
204 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
205 |
+
range `[0, config.max_position_embeddings - 1]`.
|
206 |
+
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
|
207 |
+
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
|
208 |
+
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
|
209 |
+
output_attentions (`bool`, *optional*):
|
210 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
211 |
+
tensors for more detail.
|
212 |
+
output_hidden_states (`bool`, *optional*):
|
213 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
214 |
+
more detail.
|
215 |
+
return_dict (`bool`, *optional*):
|
216 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
217 |
+
"""
|
218 |
+
|
219 |
+
|
220 |
+
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int) -> jnp.ndarray:
|
221 |
+
"""
|
222 |
+
Shift input ids one token to the right, and wrap the last non pad token (the <LID> token) Note that MBart does not
|
223 |
+
have a single `decoder_start_token_id` in contrast to other Bart-like models.
|
224 |
+
"""
|
225 |
+
prev_output_tokens = jnp.array(input_ids).copy()
|
226 |
+
|
227 |
+
if pad_token_id is None:
|
228 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
229 |
+
|
230 |
+
# replace possible -100 values in labels by `pad_token_id`
|
231 |
+
prev_output_tokens = jnp.where(prev_output_tokens == -100, pad_token_id, input_ids)
|
232 |
+
index_of_eos = (jnp.where(prev_output_tokens != pad_token_id, 1, 0).sum(axis=-1) - 1).reshape(-1, 1)
|
233 |
+
decoder_start_tokens = jnp.array(
|
234 |
+
[prev_output_tokens[i, eos_idx] for i, eos_idx in enumerate(index_of_eos)], dtype=jnp.int32
|
235 |
+
).squeeze()
|
236 |
+
|
237 |
+
prev_output_tokens = prev_output_tokens.at[:, 1:].set(prev_output_tokens[:, :-1])
|
238 |
+
prev_output_tokens = prev_output_tokens.at[:, 0].set(decoder_start_tokens)
|
239 |
+
|
240 |
+
return prev_output_tokens
|
241 |
+
|
242 |
+
|
243 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->MBart
|
244 |
+
class FlaxMBartAttention(nn.Module):
|
245 |
+
config: MBartConfig
|
246 |
+
embed_dim: int
|
247 |
+
num_heads: int
|
248 |
+
dropout: float = 0.0
|
249 |
+
causal: bool = False
|
250 |
+
bias: bool = True
|
251 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
252 |
+
|
253 |
+
def setup(self) -> None:
|
254 |
+
self.head_dim = self.embed_dim // self.num_heads
|
255 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
256 |
+
raise ValueError(
|
257 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
258 |
+
f" and `num_heads`: {self.num_heads})."
|
259 |
+
)
|
260 |
+
|
261 |
+
dense = partial(
|
262 |
+
nn.Dense,
|
263 |
+
self.embed_dim,
|
264 |
+
use_bias=self.bias,
|
265 |
+
dtype=self.dtype,
|
266 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
267 |
+
)
|
268 |
+
|
269 |
+
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
|
270 |
+
self.out_proj = dense()
|
271 |
+
|
272 |
+
self.dropout_layer = nn.Dropout(rate=self.dropout)
|
273 |
+
|
274 |
+
if self.causal:
|
275 |
+
self.causal_mask = make_causal_mask(
|
276 |
+
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
|
277 |
+
)
|
278 |
+
|
279 |
+
def _split_heads(self, hidden_states):
|
280 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
|
281 |
+
|
282 |
+
def _merge_heads(self, hidden_states):
|
283 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
284 |
+
|
285 |
+
@nn.compact
|
286 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
287 |
+
"""
|
288 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
289 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
290 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
291 |
+
"""
|
292 |
+
# detect if we're initializing by absence of existing cache data.
|
293 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
294 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
295 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
296 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
297 |
+
|
298 |
+
if is_initialized:
|
299 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
300 |
+
# update key, value caches with our new 1d spatial slices
|
301 |
+
cur_index = cache_index.value
|
302 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
303 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
304 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
305 |
+
cached_key.value = key
|
306 |
+
cached_value.value = value
|
307 |
+
num_updated_cache_vectors = query.shape[1]
|
308 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
309 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
310 |
+
pad_mask = jnp.broadcast_to(
|
311 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
312 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
313 |
+
)
|
314 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
315 |
+
return key, value, attention_mask
|
316 |
+
|
317 |
+
def __call__(
|
318 |
+
self,
|
319 |
+
hidden_states: jnp.ndarray,
|
320 |
+
key_value_states: Optional[jnp.ndarray] = None,
|
321 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
322 |
+
init_cache: bool = False,
|
323 |
+
deterministic: bool = True,
|
324 |
+
) -> Tuple[jnp.ndarray]:
|
325 |
+
"""Input shape: Batch x Time x Channel"""
|
326 |
+
|
327 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
328 |
+
# for the decoder
|
329 |
+
is_cross_attention = key_value_states is not None
|
330 |
+
batch_size = hidden_states.shape[0]
|
331 |
+
|
332 |
+
# get query proj
|
333 |
+
query_states = self.q_proj(hidden_states)
|
334 |
+
# get key, value proj
|
335 |
+
if is_cross_attention:
|
336 |
+
# cross_attentions
|
337 |
+
key_states = self.k_proj(key_value_states)
|
338 |
+
value_states = self.v_proj(key_value_states)
|
339 |
+
else:
|
340 |
+
# self_attention
|
341 |
+
key_states = self.k_proj(hidden_states)
|
342 |
+
value_states = self.v_proj(hidden_states)
|
343 |
+
|
344 |
+
query_states = self._split_heads(query_states)
|
345 |
+
key_states = self._split_heads(key_states)
|
346 |
+
value_states = self._split_heads(value_states)
|
347 |
+
|
348 |
+
# handle cache prepare causal attention mask
|
349 |
+
if self.causal:
|
350 |
+
query_length, key_length = query_states.shape[1], key_states.shape[1]
|
351 |
+
if self.has_variable("cache", "cached_key"):
|
352 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
353 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
354 |
+
causal_mask = lax.dynamic_slice(
|
355 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
359 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
360 |
+
|
361 |
+
# combine masks if needed
|
362 |
+
if attention_mask is not None and self.causal:
|
363 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
364 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
365 |
+
elif self.causal:
|
366 |
+
attention_mask = causal_mask
|
367 |
+
elif attention_mask is not None:
|
368 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
369 |
+
|
370 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
371 |
+
# and cache the keys and values step by step.
|
372 |
+
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
373 |
+
key_states, value_states, attention_mask = self._concatenate_to_cache(
|
374 |
+
key_states, value_states, query_states, attention_mask
|
375 |
+
)
|
376 |
+
|
377 |
+
# Convert the boolean attention mask to an attention bias.
|
378 |
+
if attention_mask is not None:
|
379 |
+
# attention mask in the form of attention bias
|
380 |
+
attention_bias = lax.select(
|
381 |
+
attention_mask > 0,
|
382 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
383 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
384 |
+
)
|
385 |
+
else:
|
386 |
+
attention_bias = None
|
387 |
+
|
388 |
+
dropout_rng = None
|
389 |
+
if not deterministic and self.dropout > 0.0:
|
390 |
+
dropout_rng = self.make_rng("dropout")
|
391 |
+
|
392 |
+
attn_weights = dot_product_attention_weights(
|
393 |
+
query_states,
|
394 |
+
key_states,
|
395 |
+
bias=attention_bias,
|
396 |
+
dropout_rng=dropout_rng,
|
397 |
+
dropout_rate=self.dropout,
|
398 |
+
broadcast_dropout=True,
|
399 |
+
deterministic=deterministic,
|
400 |
+
dtype=self.dtype,
|
401 |
+
precision=None,
|
402 |
+
)
|
403 |
+
|
404 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
405 |
+
attn_output = self._merge_heads(attn_output)
|
406 |
+
attn_output = self.out_proj(attn_output)
|
407 |
+
|
408 |
+
return attn_output, attn_weights
|
409 |
+
|
410 |
+
|
411 |
+
class FlaxMBartEncoderLayer(nn.Module):
|
412 |
+
config: MBartConfig
|
413 |
+
dtype: jnp.dtype = jnp.float32
|
414 |
+
|
415 |
+
def setup(self) -> None:
|
416 |
+
self.embed_dim = self.config.d_model
|
417 |
+
self.self_attn = FlaxMBartAttention(
|
418 |
+
config=self.config,
|
419 |
+
embed_dim=self.embed_dim,
|
420 |
+
num_heads=self.config.encoder_attention_heads,
|
421 |
+
dropout=self.config.attention_dropout,
|
422 |
+
dtype=self.dtype,
|
423 |
+
)
|
424 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
425 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
426 |
+
self.activation_fn = ACT2FN[self.config.activation_function]
|
427 |
+
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
428 |
+
self.fc1 = nn.Dense(
|
429 |
+
self.config.encoder_ffn_dim,
|
430 |
+
dtype=self.dtype,
|
431 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
432 |
+
)
|
433 |
+
self.fc2 = nn.Dense(
|
434 |
+
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
435 |
+
)
|
436 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
437 |
+
|
438 |
+
def __call__(
|
439 |
+
self,
|
440 |
+
hidden_states: jnp.ndarray,
|
441 |
+
attention_mask: jnp.ndarray,
|
442 |
+
output_attentions: bool = True,
|
443 |
+
deterministic: bool = True,
|
444 |
+
) -> Tuple[jnp.ndarray]:
|
445 |
+
residual = hidden_states
|
446 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
447 |
+
hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
|
448 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
449 |
+
hidden_states = residual + hidden_states
|
450 |
+
|
451 |
+
residual = hidden_states
|
452 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
453 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
454 |
+
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
|
455 |
+
hidden_states = self.fc2(hidden_states)
|
456 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
457 |
+
hidden_states = residual + hidden_states
|
458 |
+
|
459 |
+
outputs = (hidden_states,)
|
460 |
+
|
461 |
+
if output_attentions:
|
462 |
+
outputs += (attn_weights,)
|
463 |
+
|
464 |
+
return outputs
|
465 |
+
|
466 |
+
|
467 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->MBart
|
468 |
+
class FlaxMBartEncoderLayerCollection(nn.Module):
|
469 |
+
config: MBartConfig
|
470 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
471 |
+
|
472 |
+
def setup(self):
|
473 |
+
self.layers = [
|
474 |
+
FlaxMBartEncoderLayer(self.config, name=str(i), dtype=self.dtype)
|
475 |
+
for i in range(self.config.encoder_layers)
|
476 |
+
]
|
477 |
+
self.layerdrop = self.config.encoder_layerdrop
|
478 |
+
|
479 |
+
def __call__(
|
480 |
+
self,
|
481 |
+
hidden_states,
|
482 |
+
attention_mask,
|
483 |
+
deterministic: bool = True,
|
484 |
+
output_attentions: bool = False,
|
485 |
+
output_hidden_states: bool = False,
|
486 |
+
return_dict: bool = True,
|
487 |
+
):
|
488 |
+
all_attentions = () if output_attentions else None
|
489 |
+
all_hidden_states = () if output_hidden_states else None
|
490 |
+
|
491 |
+
for encoder_layer in self.layers:
|
492 |
+
if output_hidden_states:
|
493 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
494 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
495 |
+
dropout_probability = random.uniform(0, 1)
|
496 |
+
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
|
497 |
+
layer_outputs = (None, None)
|
498 |
+
else:
|
499 |
+
layer_outputs = encoder_layer(
|
500 |
+
hidden_states,
|
501 |
+
attention_mask,
|
502 |
+
output_attentions,
|
503 |
+
deterministic,
|
504 |
+
)
|
505 |
+
hidden_states = layer_outputs[0]
|
506 |
+
if output_attentions:
|
507 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
508 |
+
|
509 |
+
if output_hidden_states:
|
510 |
+
all_hidden_states += (hidden_states,)
|
511 |
+
|
512 |
+
outputs = (hidden_states, all_hidden_states, all_attentions)
|
513 |
+
|
514 |
+
if not return_dict:
|
515 |
+
return tuple(v for v in outputs if v is not None)
|
516 |
+
|
517 |
+
return FlaxBaseModelOutput(
|
518 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
519 |
+
)
|
520 |
+
|
521 |
+
|
522 |
+
class FlaxMBartDecoderLayer(nn.Module):
|
523 |
+
config: MBartConfig
|
524 |
+
dtype: jnp.dtype = jnp.float32
|
525 |
+
|
526 |
+
def setup(self) -> None:
|
527 |
+
self.embed_dim = self.config.d_model
|
528 |
+
self.self_attn = FlaxMBartAttention(
|
529 |
+
config=self.config,
|
530 |
+
embed_dim=self.embed_dim,
|
531 |
+
num_heads=self.config.decoder_attention_heads,
|
532 |
+
dropout=self.config.attention_dropout,
|
533 |
+
causal=True,
|
534 |
+
dtype=self.dtype,
|
535 |
+
)
|
536 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
537 |
+
self.activation_fn = ACT2FN[self.config.activation_function]
|
538 |
+
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
539 |
+
|
540 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
541 |
+
self.encoder_attn = FlaxMBartAttention(
|
542 |
+
config=self.config,
|
543 |
+
embed_dim=self.embed_dim,
|
544 |
+
num_heads=self.config.decoder_attention_heads,
|
545 |
+
dropout=self.config.attention_dropout,
|
546 |
+
dtype=self.dtype,
|
547 |
+
)
|
548 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
549 |
+
self.fc1 = nn.Dense(
|
550 |
+
self.config.decoder_ffn_dim,
|
551 |
+
dtype=self.dtype,
|
552 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
553 |
+
)
|
554 |
+
self.fc2 = nn.Dense(
|
555 |
+
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
556 |
+
)
|
557 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
558 |
+
|
559 |
+
def __call__(
|
560 |
+
self,
|
561 |
+
hidden_states: jnp.ndarray,
|
562 |
+
attention_mask: jnp.ndarray,
|
563 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
564 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
565 |
+
init_cache: bool = False,
|
566 |
+
output_attentions: bool = True,
|
567 |
+
deterministic: bool = True,
|
568 |
+
) -> Tuple[jnp.ndarray]:
|
569 |
+
residual = hidden_states
|
570 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
571 |
+
|
572 |
+
# Self Attention
|
573 |
+
hidden_states, self_attn_weights = self.self_attn(
|
574 |
+
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
|
575 |
+
)
|
576 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
577 |
+
hidden_states = residual + hidden_states
|
578 |
+
|
579 |
+
# Cross-Attention Block
|
580 |
+
cross_attn_weights = None
|
581 |
+
if encoder_hidden_states is not None:
|
582 |
+
residual = hidden_states
|
583 |
+
|
584 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
585 |
+
hidden_states, cross_attn_weights = self.encoder_attn(
|
586 |
+
hidden_states=hidden_states,
|
587 |
+
key_value_states=encoder_hidden_states,
|
588 |
+
attention_mask=encoder_attention_mask,
|
589 |
+
)
|
590 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
591 |
+
hidden_states = residual + hidden_states
|
592 |
+
|
593 |
+
# Fully Connected
|
594 |
+
residual = hidden_states
|
595 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
596 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
597 |
+
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
|
598 |
+
hidden_states = self.fc2(hidden_states)
|
599 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
600 |
+
hidden_states = residual + hidden_states
|
601 |
+
|
602 |
+
outputs = (hidden_states,)
|
603 |
+
|
604 |
+
if output_attentions:
|
605 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
606 |
+
|
607 |
+
return outputs
|
608 |
+
|
609 |
+
|
610 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->MBart
|
611 |
+
class FlaxMBartDecoderLayerCollection(nn.Module):
|
612 |
+
config: MBartConfig
|
613 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
614 |
+
|
615 |
+
def setup(self):
|
616 |
+
self.layers = [
|
617 |
+
FlaxMBartDecoderLayer(self.config, name=str(i), dtype=self.dtype)
|
618 |
+
for i in range(self.config.decoder_layers)
|
619 |
+
]
|
620 |
+
self.layerdrop = self.config.decoder_layerdrop
|
621 |
+
|
622 |
+
def __call__(
|
623 |
+
self,
|
624 |
+
hidden_states,
|
625 |
+
attention_mask,
|
626 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
627 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
628 |
+
deterministic: bool = True,
|
629 |
+
init_cache: bool = False,
|
630 |
+
output_attentions: bool = False,
|
631 |
+
output_hidden_states: bool = False,
|
632 |
+
return_dict: bool = True,
|
633 |
+
):
|
634 |
+
# decoder layers
|
635 |
+
all_hidden_states = () if output_hidden_states else None
|
636 |
+
all_self_attns = () if output_attentions else None
|
637 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
638 |
+
|
639 |
+
for decoder_layer in self.layers:
|
640 |
+
if output_hidden_states:
|
641 |
+
all_hidden_states += (hidden_states,)
|
642 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
643 |
+
dropout_probability = random.uniform(0, 1)
|
644 |
+
if not deterministic and (dropout_probability < self.layerdrop):
|
645 |
+
layer_outputs = (None, None, None)
|
646 |
+
else:
|
647 |
+
layer_outputs = decoder_layer(
|
648 |
+
hidden_states,
|
649 |
+
attention_mask=attention_mask,
|
650 |
+
encoder_hidden_states=encoder_hidden_states,
|
651 |
+
encoder_attention_mask=encoder_attention_mask,
|
652 |
+
init_cache=init_cache,
|
653 |
+
output_attentions=output_attentions,
|
654 |
+
deterministic=deterministic,
|
655 |
+
)
|
656 |
+
|
657 |
+
hidden_states = layer_outputs[0]
|
658 |
+
if output_attentions:
|
659 |
+
all_self_attns += (layer_outputs[1],)
|
660 |
+
|
661 |
+
if encoder_hidden_states is not None:
|
662 |
+
all_cross_attentions += (layer_outputs[2],)
|
663 |
+
|
664 |
+
# add hidden states from the last decoder layer
|
665 |
+
if output_hidden_states:
|
666 |
+
all_hidden_states += (hidden_states,)
|
667 |
+
|
668 |
+
outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
|
669 |
+
|
670 |
+
if not return_dict:
|
671 |
+
return tuple(v for v in outputs if v is not None)
|
672 |
+
|
673 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
674 |
+
last_hidden_state=hidden_states,
|
675 |
+
hidden_states=all_hidden_states,
|
676 |
+
attentions=all_self_attns,
|
677 |
+
cross_attentions=all_cross_attentions,
|
678 |
+
)
|
679 |
+
|
680 |
+
|
681 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartClassificationHead with Bart->MBart
|
682 |
+
class FlaxMBartClassificationHead(nn.Module):
|
683 |
+
"""Head for sentence-level classification tasks."""
|
684 |
+
|
685 |
+
config: MBartConfig
|
686 |
+
inner_dim: int
|
687 |
+
num_classes: int
|
688 |
+
pooler_dropout: float
|
689 |
+
dtype: jnp.dtype = jnp.float32
|
690 |
+
|
691 |
+
def setup(self):
|
692 |
+
self.dense = nn.Dense(
|
693 |
+
self.inner_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
694 |
+
)
|
695 |
+
self.dropout = nn.Dropout(rate=self.pooler_dropout)
|
696 |
+
self.out_proj = nn.Dense(
|
697 |
+
self.num_classes,
|
698 |
+
dtype=self.dtype,
|
699 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
700 |
+
)
|
701 |
+
|
702 |
+
def __call__(self, hidden_states: jnp.ndarray, deterministic: bool):
|
703 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
704 |
+
hidden_states = self.dense(hidden_states)
|
705 |
+
hidden_states = jnp.tanh(hidden_states)
|
706 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
707 |
+
hidden_states = self.out_proj(hidden_states)
|
708 |
+
return hidden_states
|
709 |
+
|
710 |
+
|
711 |
+
class FlaxMBartEncoder(nn.Module):
|
712 |
+
config: MBartConfig
|
713 |
+
embed_tokens: nn.Embed
|
714 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
715 |
+
|
716 |
+
def setup(self):
|
717 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
718 |
+
|
719 |
+
embed_dim = self.config.d_model
|
720 |
+
self.padding_idx = self.config.pad_token_id
|
721 |
+
self.max_source_positions = self.config.max_position_embeddings
|
722 |
+
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
723 |
+
|
724 |
+
# MBart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
725 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
726 |
+
self.offset = 2
|
727 |
+
self.embed_positions = nn.Embed(
|
728 |
+
self.config.max_position_embeddings + self.offset,
|
729 |
+
embed_dim,
|
730 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
731 |
+
)
|
732 |
+
self.layers = FlaxMBartEncoderLayerCollection(self.config, self.dtype)
|
733 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
734 |
+
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
735 |
+
|
736 |
+
def __call__(
|
737 |
+
self,
|
738 |
+
input_ids,
|
739 |
+
attention_mask,
|
740 |
+
position_ids,
|
741 |
+
output_attentions: bool = False,
|
742 |
+
output_hidden_states: bool = False,
|
743 |
+
return_dict: bool = True,
|
744 |
+
deterministic: bool = True,
|
745 |
+
):
|
746 |
+
input_shape = input_ids.shape
|
747 |
+
input_ids = input_ids.reshape(-1, input_shape[-1])
|
748 |
+
|
749 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
750 |
+
|
751 |
+
embed_pos = self.embed_positions(position_ids + self.offset)
|
752 |
+
|
753 |
+
hidden_states = inputs_embeds + embed_pos
|
754 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
755 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
756 |
+
|
757 |
+
outputs = self.layers(
|
758 |
+
hidden_states,
|
759 |
+
attention_mask,
|
760 |
+
deterministic=deterministic,
|
761 |
+
output_attentions=output_attentions,
|
762 |
+
output_hidden_states=output_hidden_states,
|
763 |
+
return_dict=return_dict,
|
764 |
+
)
|
765 |
+
|
766 |
+
last_hidden_states = outputs[0]
|
767 |
+
last_hidden_states = self.layer_norm(last_hidden_states)
|
768 |
+
|
769 |
+
# update the last element in `hidden_states` after applying `layernorm` above
|
770 |
+
hidden_states = None
|
771 |
+
if output_hidden_states:
|
772 |
+
hidden_states = outputs[1]
|
773 |
+
hidden_states = hidden_states[:-1] + (last_hidden_states,)
|
774 |
+
|
775 |
+
if not return_dict:
|
776 |
+
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
|
777 |
+
return tuple(v for v in outputs if v is not None)
|
778 |
+
|
779 |
+
return FlaxBaseModelOutput(
|
780 |
+
last_hidden_state=last_hidden_states,
|
781 |
+
hidden_states=hidden_states,
|
782 |
+
attentions=outputs.attentions,
|
783 |
+
)
|
784 |
+
|
785 |
+
|
786 |
+
class FlaxMBartDecoder(nn.Module):
|
787 |
+
config: MBartConfig
|
788 |
+
embed_tokens: nn.Embed
|
789 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
790 |
+
|
791 |
+
def setup(self):
|
792 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
793 |
+
|
794 |
+
embed_dim = self.config.d_model
|
795 |
+
self.padding_idx = self.config.pad_token_id
|
796 |
+
self.max_target_positions = self.config.max_position_embeddings
|
797 |
+
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
798 |
+
|
799 |
+
# MBart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
800 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
801 |
+
self.offset = 2
|
802 |
+
self.embed_positions = nn.Embed(
|
803 |
+
self.config.max_position_embeddings + self.offset,
|
804 |
+
embed_dim,
|
805 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
806 |
+
)
|
807 |
+
|
808 |
+
self.layers = FlaxMBartDecoderLayerCollection(self.config, self.dtype)
|
809 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
810 |
+
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
811 |
+
|
812 |
+
def __call__(
|
813 |
+
self,
|
814 |
+
input_ids,
|
815 |
+
attention_mask,
|
816 |
+
position_ids,
|
817 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
818 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
819 |
+
init_cache: bool = False,
|
820 |
+
output_attentions: bool = False,
|
821 |
+
output_hidden_states: bool = False,
|
822 |
+
return_dict: bool = True,
|
823 |
+
deterministic: bool = True,
|
824 |
+
):
|
825 |
+
input_shape = input_ids.shape
|
826 |
+
input_ids = input_ids.reshape(-1, input_shape[-1])
|
827 |
+
|
828 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
829 |
+
|
830 |
+
# embed positions
|
831 |
+
positions = self.embed_positions(position_ids + self.offset)
|
832 |
+
|
833 |
+
hidden_states = inputs_embeds + positions
|
834 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
835 |
+
|
836 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
837 |
+
|
838 |
+
outputs = self.layers(
|
839 |
+
hidden_states,
|
840 |
+
attention_mask,
|
841 |
+
encoder_hidden_states,
|
842 |
+
encoder_attention_mask,
|
843 |
+
deterministic=deterministic,
|
844 |
+
init_cache=init_cache,
|
845 |
+
output_attentions=output_attentions,
|
846 |
+
output_hidden_states=output_hidden_states,
|
847 |
+
return_dict=return_dict,
|
848 |
+
)
|
849 |
+
|
850 |
+
last_hidden_states = outputs[0]
|
851 |
+
last_hidden_states = self.layer_norm(last_hidden_states)
|
852 |
+
|
853 |
+
# update the last element in `hidden_states` after applying `layernorm` above
|
854 |
+
hidden_states = None
|
855 |
+
if output_hidden_states:
|
856 |
+
hidden_states = outputs[1]
|
857 |
+
hidden_states = hidden_states[:-1] + (last_hidden_states,)
|
858 |
+
|
859 |
+
if not return_dict:
|
860 |
+
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
|
861 |
+
return tuple(v for v in outputs if v is not None)
|
862 |
+
|
863 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
864 |
+
last_hidden_state=last_hidden_states,
|
865 |
+
hidden_states=hidden_states,
|
866 |
+
attentions=outputs.attentions,
|
867 |
+
cross_attentions=outputs.cross_attentions,
|
868 |
+
)
|
869 |
+
|
870 |
+
|
871 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->MBart
|
872 |
+
class FlaxMBartModule(nn.Module):
|
873 |
+
config: MBartConfig
|
874 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
875 |
+
|
876 |
+
def setup(self):
|
877 |
+
self.shared = nn.Embed(
|
878 |
+
self.config.vocab_size,
|
879 |
+
self.config.d_model,
|
880 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
881 |
+
dtype=self.dtype,
|
882 |
+
)
|
883 |
+
|
884 |
+
self.encoder = FlaxMBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
885 |
+
self.decoder = FlaxMBartDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
886 |
+
|
887 |
+
def _get_encoder_module(self):
|
888 |
+
return self.encoder
|
889 |
+
|
890 |
+
def _get_decoder_module(self):
|
891 |
+
return self.decoder
|
892 |
+
|
893 |
+
def __call__(
|
894 |
+
self,
|
895 |
+
input_ids,
|
896 |
+
attention_mask,
|
897 |
+
decoder_input_ids,
|
898 |
+
decoder_attention_mask,
|
899 |
+
position_ids,
|
900 |
+
decoder_position_ids,
|
901 |
+
output_attentions: bool = False,
|
902 |
+
output_hidden_states: bool = False,
|
903 |
+
return_dict: bool = True,
|
904 |
+
deterministic: bool = True,
|
905 |
+
):
|
906 |
+
encoder_outputs = self.encoder(
|
907 |
+
input_ids=input_ids,
|
908 |
+
attention_mask=attention_mask,
|
909 |
+
position_ids=position_ids,
|
910 |
+
output_attentions=output_attentions,
|
911 |
+
output_hidden_states=output_hidden_states,
|
912 |
+
return_dict=return_dict,
|
913 |
+
deterministic=deterministic,
|
914 |
+
)
|
915 |
+
|
916 |
+
decoder_outputs = self.decoder(
|
917 |
+
input_ids=decoder_input_ids,
|
918 |
+
attention_mask=decoder_attention_mask,
|
919 |
+
position_ids=decoder_position_ids,
|
920 |
+
encoder_hidden_states=encoder_outputs[0],
|
921 |
+
encoder_attention_mask=attention_mask,
|
922 |
+
output_attentions=output_attentions,
|
923 |
+
output_hidden_states=output_hidden_states,
|
924 |
+
return_dict=return_dict,
|
925 |
+
deterministic=deterministic,
|
926 |
+
)
|
927 |
+
|
928 |
+
if not return_dict:
|
929 |
+
return decoder_outputs + encoder_outputs
|
930 |
+
|
931 |
+
return FlaxSeq2SeqModelOutput(
|
932 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
933 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
934 |
+
decoder_attentions=decoder_outputs.attentions,
|
935 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
936 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
937 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
938 |
+
encoder_attentions=encoder_outputs.attentions,
|
939 |
+
)
|
940 |
+
|
941 |
+
|
942 |
+
class FlaxMBartPreTrainedModel(FlaxPreTrainedModel):
|
943 |
+
config_class = MBartConfig
|
944 |
+
base_model_prefix: str = "model"
|
945 |
+
module_class: nn.Module = None
|
946 |
+
|
947 |
+
def __init__(
|
948 |
+
self,
|
949 |
+
config: MBartConfig,
|
950 |
+
input_shape: Tuple[int] = (1, 1),
|
951 |
+
seed: int = 0,
|
952 |
+
dtype: jnp.dtype = jnp.float32,
|
953 |
+
_do_init: bool = True,
|
954 |
+
**kwargs,
|
955 |
+
):
|
956 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
957 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
958 |
+
|
959 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
960 |
+
# init input tensors
|
961 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
962 |
+
# make sure initialization pass will work for FlaxMBartForSequenceClassificationModule
|
963 |
+
input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
|
964 |
+
attention_mask = jnp.ones_like(input_ids)
|
965 |
+
decoder_input_ids = input_ids
|
966 |
+
decoder_attention_mask = jnp.ones_like(input_ids)
|
967 |
+
|
968 |
+
batch_size, sequence_length = input_ids.shape
|
969 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
970 |
+
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
971 |
+
|
972 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
973 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
974 |
+
|
975 |
+
random_params = self.module.init(
|
976 |
+
rngs,
|
977 |
+
input_ids,
|
978 |
+
attention_mask,
|
979 |
+
decoder_input_ids,
|
980 |
+
decoder_attention_mask,
|
981 |
+
position_ids,
|
982 |
+
decoder_position_ids,
|
983 |
+
)["params"]
|
984 |
+
|
985 |
+
if params is not None:
|
986 |
+
random_params = flatten_dict(unfreeze(random_params))
|
987 |
+
params = flatten_dict(unfreeze(params))
|
988 |
+
for missing_key in self._missing_keys:
|
989 |
+
params[missing_key] = random_params[missing_key]
|
990 |
+
self._missing_keys = set()
|
991 |
+
return freeze(unflatten_dict(params))
|
992 |
+
else:
|
993 |
+
return random_params
|
994 |
+
|
995 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel.init_cache with Bart->MBart
|
996 |
+
def init_cache(self, batch_size, max_length, encoder_outputs):
|
997 |
+
r"""
|
998 |
+
Args:
|
999 |
+
batch_size (`int`):
|
1000 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
1001 |
+
max_length (`int`):
|
1002 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
1003 |
+
cache.
|
1004 |
+
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
|
1005 |
+
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
|
1006 |
+
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
|
1007 |
+
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
|
1008 |
+
cross-attention of the decoder.
|
1009 |
+
"""
|
1010 |
+
# init input variables to retrieve cache
|
1011 |
+
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
1012 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
1013 |
+
decoder_position_ids = jnp.broadcast_to(
|
1014 |
+
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
1018 |
+
decoder_module = module._get_decoder_module()
|
1019 |
+
return decoder_module(
|
1020 |
+
decoder_input_ids,
|
1021 |
+
decoder_attention_mask,
|
1022 |
+
decoder_position_ids,
|
1023 |
+
**kwargs,
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
init_variables = self.module.init(
|
1027 |
+
jax.random.PRNGKey(0),
|
1028 |
+
decoder_input_ids=decoder_input_ids,
|
1029 |
+
decoder_attention_mask=decoder_attention_mask,
|
1030 |
+
decoder_position_ids=decoder_position_ids,
|
1031 |
+
encoder_hidden_states=encoder_outputs[0],
|
1032 |
+
init_cache=True,
|
1033 |
+
method=_decoder_forward, # we only need to call the decoder to init the cache
|
1034 |
+
)
|
1035 |
+
return unfreeze(init_variables["cache"])
|
1036 |
+
|
1037 |
+
@add_start_docstrings(MBART_ENCODE_INPUTS_DOCSTRING)
|
1038 |
+
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=MBartConfig)
|
1039 |
+
def encode(
|
1040 |
+
self,
|
1041 |
+
input_ids: jnp.ndarray,
|
1042 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
1043 |
+
position_ids: Optional[jnp.ndarray] = None,
|
1044 |
+
output_attentions: Optional[bool] = None,
|
1045 |
+
output_hidden_states: Optional[bool] = None,
|
1046 |
+
return_dict: Optional[bool] = None,
|
1047 |
+
train: bool = False,
|
1048 |
+
params: dict = None,
|
1049 |
+
dropout_rng: PRNGKey = None,
|
1050 |
+
):
|
1051 |
+
r"""
|
1052 |
+
Returns:
|
1053 |
+
|
1054 |
+
Example:
|
1055 |
+
|
1056 |
+
```python
|
1057 |
+
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
|
1058 |
+
|
1059 |
+
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
|
1060 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
|
1061 |
+
|
1062 |
+
>>> text = "My friends are cool but they eat too many carbs."
|
1063 |
+
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
|
1064 |
+
>>> encoder_outputs = model.encode(**inputs)
|
1065 |
+
```"""
|
1066 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1067 |
+
output_hidden_states = (
|
1068 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1069 |
+
)
|
1070 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1071 |
+
|
1072 |
+
if attention_mask is None:
|
1073 |
+
attention_mask = jnp.ones_like(input_ids)
|
1074 |
+
if position_ids is None:
|
1075 |
+
batch_size, sequence_length = input_ids.shape
|
1076 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
1077 |
+
|
1078 |
+
# Handle any PRNG if needed
|
1079 |
+
rngs = {}
|
1080 |
+
if dropout_rng is not None:
|
1081 |
+
rngs["dropout"] = dropout_rng
|
1082 |
+
|
1083 |
+
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
|
1084 |
+
encode_module = module._get_encoder_module()
|
1085 |
+
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
|
1086 |
+
|
1087 |
+
return self.module.apply(
|
1088 |
+
{"params": params or self.params},
|
1089 |
+
input_ids=jnp.array(input_ids, dtype="i4"),
|
1090 |
+
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
1091 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
1092 |
+
output_attentions=output_attentions,
|
1093 |
+
output_hidden_states=output_hidden_states,
|
1094 |
+
return_dict=return_dict,
|
1095 |
+
deterministic=not train,
|
1096 |
+
rngs=rngs,
|
1097 |
+
method=_encoder_forward,
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
@add_start_docstrings(MBART_DECODE_INPUTS_DOCSTRING)
|
1101 |
+
@replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=MBartConfig)
|
1102 |
+
def decode(
|
1103 |
+
self,
|
1104 |
+
decoder_input_ids,
|
1105 |
+
encoder_outputs,
|
1106 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1107 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1108 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1109 |
+
past_key_values: dict = None,
|
1110 |
+
output_attentions: Optional[bool] = None,
|
1111 |
+
output_hidden_states: Optional[bool] = None,
|
1112 |
+
return_dict: Optional[bool] = None,
|
1113 |
+
train: bool = False,
|
1114 |
+
params: dict = None,
|
1115 |
+
dropout_rng: PRNGKey = None,
|
1116 |
+
):
|
1117 |
+
r"""
|
1118 |
+
Returns:
|
1119 |
+
|
1120 |
+
Example:
|
1121 |
+
|
1122 |
+
```python
|
1123 |
+
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
|
1124 |
+
|
1125 |
+
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
|
1126 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
|
1127 |
+
|
1128 |
+
>>> text = "My friends are cool but they eat too many carbs."
|
1129 |
+
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
|
1130 |
+
>>> encoder_outputs = model.encode(**inputs)
|
1131 |
+
|
1132 |
+
>>> decoder_start_token_id = model.config.decoder_start_token_id
|
1133 |
+
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
1134 |
+
|
1135 |
+
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
|
1136 |
+
>>> last_decoder_hidden_states = outputs.last_hidden_state
|
1137 |
+
```"""
|
1138 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1139 |
+
output_hidden_states = (
|
1140 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1141 |
+
)
|
1142 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1143 |
+
|
1144 |
+
encoder_hidden_states = encoder_outputs[0]
|
1145 |
+
if encoder_attention_mask is None:
|
1146 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
1147 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1148 |
+
|
1149 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1150 |
+
if decoder_attention_mask is None:
|
1151 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1152 |
+
|
1153 |
+
if decoder_position_ids is None:
|
1154 |
+
if past_key_values is not None:
|
1155 |
+
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
|
1156 |
+
|
1157 |
+
decoder_position_ids = jnp.broadcast_to(
|
1158 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
# Handle any PRNG if needed
|
1162 |
+
rngs = {}
|
1163 |
+
if dropout_rng is not None:
|
1164 |
+
rngs["dropout"] = dropout_rng
|
1165 |
+
|
1166 |
+
inputs = {"params": params or self.params}
|
1167 |
+
|
1168 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
1169 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
1170 |
+
# it can be changed by FlaxMBartAttention module
|
1171 |
+
if past_key_values:
|
1172 |
+
inputs["cache"] = past_key_values
|
1173 |
+
mutable = ["cache"]
|
1174 |
+
else:
|
1175 |
+
mutable = False
|
1176 |
+
|
1177 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
1178 |
+
decoder_module = module._get_decoder_module()
|
1179 |
+
return decoder_module(
|
1180 |
+
decoder_input_ids,
|
1181 |
+
decoder_attention_mask,
|
1182 |
+
decoder_position_ids,
|
1183 |
+
**kwargs,
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
outputs = self.module.apply(
|
1187 |
+
inputs,
|
1188 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1189 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1190 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1191 |
+
encoder_hidden_states=encoder_hidden_states,
|
1192 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
1193 |
+
output_attentions=output_attentions,
|
1194 |
+
output_hidden_states=output_hidden_states,
|
1195 |
+
return_dict=return_dict,
|
1196 |
+
deterministic=not train,
|
1197 |
+
rngs=rngs,
|
1198 |
+
mutable=mutable,
|
1199 |
+
method=_decoder_forward,
|
1200 |
+
)
|
1201 |
+
|
1202 |
+
# add updated cache to model output
|
1203 |
+
if past_key_values is not None and return_dict:
|
1204 |
+
outputs, past = outputs
|
1205 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
1206 |
+
return outputs
|
1207 |
+
elif past_key_values is not None and not return_dict:
|
1208 |
+
outputs, past = outputs
|
1209 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
1210 |
+
|
1211 |
+
return outputs
|
1212 |
+
|
1213 |
+
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
|
1214 |
+
def __call__(
|
1215 |
+
self,
|
1216 |
+
input_ids: jnp.ndarray,
|
1217 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
1218 |
+
decoder_input_ids: Optional[jnp.ndarray] = None,
|
1219 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1220 |
+
position_ids: Optional[jnp.ndarray] = None,
|
1221 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1222 |
+
output_attentions: Optional[bool] = None,
|
1223 |
+
output_hidden_states: Optional[bool] = None,
|
1224 |
+
return_dict: Optional[bool] = None,
|
1225 |
+
train: bool = False,
|
1226 |
+
params: dict = None,
|
1227 |
+
dropout_rng: PRNGKey = None,
|
1228 |
+
):
|
1229 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1230 |
+
output_hidden_states = (
|
1231 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1232 |
+
)
|
1233 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1234 |
+
|
1235 |
+
# prepare encoder inputs
|
1236 |
+
if attention_mask is None:
|
1237 |
+
attention_mask = jnp.ones_like(input_ids)
|
1238 |
+
if position_ids is None:
|
1239 |
+
batch_size, sequence_length = input_ids.shape
|
1240 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
1241 |
+
|
1242 |
+
# prepare decoder inputs
|
1243 |
+
if decoder_input_ids is None:
|
1244 |
+
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)
|
1245 |
+
if decoder_attention_mask is None:
|
1246 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
1247 |
+
if decoder_position_ids is None:
|
1248 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1249 |
+
decoder_position_ids = jnp.broadcast_to(
|
1250 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1251 |
+
)
|
1252 |
+
|
1253 |
+
# Handle any PRNG if needed
|
1254 |
+
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
1255 |
+
|
1256 |
+
return self.module.apply(
|
1257 |
+
{"params": params or self.params},
|
1258 |
+
input_ids=jnp.array(input_ids, dtype="i4"),
|
1259 |
+
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
1260 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
1261 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1262 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1263 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1264 |
+
output_attentions=output_attentions,
|
1265 |
+
output_hidden_states=output_hidden_states,
|
1266 |
+
return_dict=return_dict,
|
1267 |
+
deterministic=not train,
|
1268 |
+
rngs=rngs,
|
1269 |
+
)
|
1270 |
+
|
1271 |
+
|
1272 |
+
@add_start_docstrings(
|
1273 |
+
"The bare MBart Model transformer outputting raw hidden-states without any specific head on top.",
|
1274 |
+
MBART_START_DOCSTRING,
|
1275 |
+
)
|
1276 |
+
class FlaxMBartModel(FlaxMBartPreTrainedModel):
|
1277 |
+
config: MBartConfig
|
1278 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
1279 |
+
module_class = FlaxMBartModule
|
1280 |
+
|
1281 |
+
|
1282 |
+
append_call_sample_docstring(FlaxMBartModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
|
1283 |
+
|
1284 |
+
|
1285 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->MBart
|
1286 |
+
class FlaxMBartForConditionalGenerationModule(nn.Module):
|
1287 |
+
config: MBartConfig
|
1288 |
+
dtype: jnp.dtype = jnp.float32
|
1289 |
+
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
|
1290 |
+
|
1291 |
+
def setup(self):
|
1292 |
+
self.model = FlaxMBartModule(config=self.config, dtype=self.dtype)
|
1293 |
+
self.lm_head = nn.Dense(
|
1294 |
+
self.model.shared.num_embeddings,
|
1295 |
+
use_bias=False,
|
1296 |
+
dtype=self.dtype,
|
1297 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
1298 |
+
)
|
1299 |
+
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
|
1300 |
+
|
1301 |
+
def _get_encoder_module(self):
|
1302 |
+
return self.model.encoder
|
1303 |
+
|
1304 |
+
def _get_decoder_module(self):
|
1305 |
+
return self.model.decoder
|
1306 |
+
|
1307 |
+
def __call__(
|
1308 |
+
self,
|
1309 |
+
input_ids,
|
1310 |
+
attention_mask,
|
1311 |
+
decoder_input_ids,
|
1312 |
+
decoder_attention_mask,
|
1313 |
+
position_ids,
|
1314 |
+
decoder_position_ids,
|
1315 |
+
output_attentions: bool = False,
|
1316 |
+
output_hidden_states: bool = False,
|
1317 |
+
return_dict: bool = True,
|
1318 |
+
deterministic: bool = True,
|
1319 |
+
):
|
1320 |
+
outputs = self.model(
|
1321 |
+
input_ids=input_ids,
|
1322 |
+
attention_mask=attention_mask,
|
1323 |
+
decoder_input_ids=decoder_input_ids,
|
1324 |
+
decoder_attention_mask=decoder_attention_mask,
|
1325 |
+
position_ids=position_ids,
|
1326 |
+
decoder_position_ids=decoder_position_ids,
|
1327 |
+
output_attentions=output_attentions,
|
1328 |
+
output_hidden_states=output_hidden_states,
|
1329 |
+
return_dict=return_dict,
|
1330 |
+
deterministic=deterministic,
|
1331 |
+
)
|
1332 |
+
|
1333 |
+
hidden_states = outputs[0]
|
1334 |
+
|
1335 |
+
if self.config.tie_word_embeddings:
|
1336 |
+
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
|
1337 |
+
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
1338 |
+
else:
|
1339 |
+
lm_logits = self.lm_head(hidden_states)
|
1340 |
+
|
1341 |
+
lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
|
1342 |
+
|
1343 |
+
if not return_dict:
|
1344 |
+
output = (lm_logits,) + outputs[1:]
|
1345 |
+
return output
|
1346 |
+
|
1347 |
+
return FlaxSeq2SeqLMOutput(
|
1348 |
+
logits=lm_logits,
|
1349 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1350 |
+
decoder_attentions=outputs.decoder_attentions,
|
1351 |
+
cross_attentions=outputs.cross_attentions,
|
1352 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1353 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1354 |
+
encoder_attentions=outputs.encoder_attentions,
|
1355 |
+
)
|
1356 |
+
|
1357 |
+
|
1358 |
+
@add_start_docstrings(
|
1359 |
+
"The MMBart Model with a language modeling head. Can be used for summarization.", MBART_START_DOCSTRING
|
1360 |
+
)
|
1361 |
+
class FlaxMBartForConditionalGeneration(FlaxMBartPreTrainedModel):
|
1362 |
+
module_class = FlaxMBartForConditionalGenerationModule
|
1363 |
+
dtype: jnp.dtype = jnp.float32
|
1364 |
+
|
1365 |
+
@add_start_docstrings(MBART_DECODE_INPUTS_DOCSTRING)
|
1366 |
+
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=MBartConfig)
|
1367 |
+
def decode(
|
1368 |
+
self,
|
1369 |
+
decoder_input_ids,
|
1370 |
+
encoder_outputs,
|
1371 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1372 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1373 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1374 |
+
past_key_values: dict = None,
|
1375 |
+
output_attentions: Optional[bool] = None,
|
1376 |
+
output_hidden_states: Optional[bool] = None,
|
1377 |
+
return_dict: Optional[bool] = None,
|
1378 |
+
train: bool = False,
|
1379 |
+
params: dict = None,
|
1380 |
+
dropout_rng: PRNGKey = None,
|
1381 |
+
):
|
1382 |
+
r"""
|
1383 |
+
Returns:
|
1384 |
+
|
1385 |
+
Example:
|
1386 |
+
|
1387 |
+
```python
|
1388 |
+
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
|
1389 |
+
|
1390 |
+
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
|
1391 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
|
1392 |
+
|
1393 |
+
>>> text = "My friends are cool but they eat too many carbs."
|
1394 |
+
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
|
1395 |
+
>>> encoder_outputs = model.encode(**inputs)
|
1396 |
+
|
1397 |
+
>>> decoder_start_token_id = model.config.decoder_start_token_id
|
1398 |
+
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
1399 |
+
|
1400 |
+
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
|
1401 |
+
>>> logits = outputs.logits
|
1402 |
+
```"""
|
1403 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1404 |
+
output_hidden_states = (
|
1405 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1406 |
+
)
|
1407 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1408 |
+
|
1409 |
+
encoder_hidden_states = encoder_outputs[0]
|
1410 |
+
if encoder_attention_mask is None:
|
1411 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
1412 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1413 |
+
|
1414 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1415 |
+
if decoder_attention_mask is None:
|
1416 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1417 |
+
|
1418 |
+
if decoder_position_ids is None:
|
1419 |
+
if past_key_values is not None:
|
1420 |
+
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
|
1421 |
+
|
1422 |
+
decoder_position_ids = jnp.broadcast_to(
|
1423 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1424 |
+
)
|
1425 |
+
|
1426 |
+
# Handle any PRNG if needed
|
1427 |
+
rngs = {}
|
1428 |
+
if dropout_rng is not None:
|
1429 |
+
rngs["dropout"] = dropout_rng
|
1430 |
+
|
1431 |
+
inputs = {"params": params or self.params}
|
1432 |
+
|
1433 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
1434 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
1435 |
+
# it can be changed by FlaxMBartAttention module
|
1436 |
+
if past_key_values:
|
1437 |
+
inputs["cache"] = past_key_values
|
1438 |
+
mutable = ["cache"]
|
1439 |
+
else:
|
1440 |
+
mutable = False
|
1441 |
+
|
1442 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
1443 |
+
decoder_module = module._get_decoder_module()
|
1444 |
+
outputs = decoder_module(
|
1445 |
+
decoder_input_ids,
|
1446 |
+
decoder_attention_mask,
|
1447 |
+
decoder_position_ids,
|
1448 |
+
**kwargs,
|
1449 |
+
)
|
1450 |
+
hidden_states = outputs[0]
|
1451 |
+
|
1452 |
+
if self.config.tie_word_embeddings:
|
1453 |
+
shared_embedding = module.model.variables["params"]["shared"]["embedding"]
|
1454 |
+
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
1455 |
+
else:
|
1456 |
+
lm_logits = module.lm_head(hidden_states)
|
1457 |
+
|
1458 |
+
lm_logits += module.final_logits_bias.astype(self.dtype)
|
1459 |
+
return lm_logits, outputs
|
1460 |
+
|
1461 |
+
outputs = self.module.apply(
|
1462 |
+
inputs,
|
1463 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1464 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1465 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1466 |
+
encoder_hidden_states=encoder_hidden_states,
|
1467 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
1468 |
+
output_attentions=output_attentions,
|
1469 |
+
output_hidden_states=output_hidden_states,
|
1470 |
+
return_dict=return_dict,
|
1471 |
+
deterministic=not train,
|
1472 |
+
rngs=rngs,
|
1473 |
+
mutable=mutable,
|
1474 |
+
method=_decoder_forward,
|
1475 |
+
)
|
1476 |
+
|
1477 |
+
if past_key_values is None:
|
1478 |
+
lm_logits, decoder_outputs = outputs
|
1479 |
+
else:
|
1480 |
+
(lm_logits, decoder_outputs), past = outputs
|
1481 |
+
|
1482 |
+
if return_dict:
|
1483 |
+
outputs = FlaxCausalLMOutputWithCrossAttentions(
|
1484 |
+
logits=lm_logits,
|
1485 |
+
hidden_states=decoder_outputs.hidden_states,
|
1486 |
+
attentions=decoder_outputs.attentions,
|
1487 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1488 |
+
)
|
1489 |
+
else:
|
1490 |
+
outputs = (lm_logits,) + decoder_outputs[1:]
|
1491 |
+
|
1492 |
+
# add updated cache to model output
|
1493 |
+
if past_key_values is not None and return_dict:
|
1494 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
1495 |
+
return outputs
|
1496 |
+
elif past_key_values is not None and not return_dict:
|
1497 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
1498 |
+
|
1499 |
+
return outputs
|
1500 |
+
|
1501 |
+
def prepare_inputs_for_generation(
|
1502 |
+
self,
|
1503 |
+
decoder_input_ids,
|
1504 |
+
max_length,
|
1505 |
+
attention_mask: Optional[jax.Array] = None,
|
1506 |
+
decoder_attention_mask: Optional[jax.Array] = None,
|
1507 |
+
encoder_outputs=None,
|
1508 |
+
**kwargs,
|
1509 |
+
):
|
1510 |
+
# initializing the cache
|
1511 |
+
batch_size, seq_length = decoder_input_ids.shape
|
1512 |
+
|
1513 |
+
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
|
1514 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
1515 |
+
# But since the decoder uses a causal mask, those positions are masked anyways.
|
1516 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
1517 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
1518 |
+
if decoder_attention_mask is not None:
|
1519 |
+
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
1520 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
|
1521 |
+
else:
|
1522 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
1523 |
+
|
1524 |
+
return {
|
1525 |
+
"past_key_values": past_key_values,
|
1526 |
+
"encoder_outputs": encoder_outputs,
|
1527 |
+
"encoder_attention_mask": attention_mask,
|
1528 |
+
"decoder_attention_mask": extended_attention_mask,
|
1529 |
+
"decoder_position_ids": position_ids,
|
1530 |
+
}
|
1531 |
+
|
1532 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
1533 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
1534 |
+
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
|
1535 |
+
return model_kwargs
|
1536 |
+
|
1537 |
+
|
1538 |
+
FLAX_MBART_CONDITIONAL_GENERATION_DOCSTRING = r"""
|
1539 |
+
Returns:
|
1540 |
+
|
1541 |
+
Summarization example:
|
1542 |
+
|
1543 |
+
```python
|
1544 |
+
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration, MBartConfig
|
1545 |
+
|
1546 |
+
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
|
1547 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
|
1548 |
+
|
1549 |
+
>>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen."
|
1550 |
+
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
|
1551 |
+
|
1552 |
+
>>> # Generate Summary
|
1553 |
+
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5).sequences
|
1554 |
+
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
|
1555 |
+
```
|
1556 |
+
|
1557 |
+
Mask filling example:
|
1558 |
+
|
1559 |
+
```python
|
1560 |
+
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
|
1561 |
+
|
1562 |
+
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
|
1563 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
|
1564 |
+
|
1565 |
+
>>> # de_DE is the language symbol id <LID> for German
|
1566 |
+
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
|
1567 |
+
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="np")["input_ids"]
|
1568 |
+
|
1569 |
+
>>> logits = model(input_ids).logits
|
1570 |
+
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item()
|
1571 |
+
>>> probs = logits[0, masked_index].softmax(dim=0)
|
1572 |
+
>>> values, predictions = probs.topk(5)
|
1573 |
+
|
1574 |
+
>>> tokenizer.decode(predictions).split()
|
1575 |
+
```
|
1576 |
+
"""
|
1577 |
+
|
1578 |
+
overwrite_call_docstring(
|
1579 |
+
FlaxMBartForConditionalGeneration, MBART_INPUTS_DOCSTRING + FLAX_MBART_CONDITIONAL_GENERATION_DOCSTRING
|
1580 |
+
)
|
1581 |
+
append_replace_return_docstrings(
|
1582 |
+
FlaxMBartForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
|
1583 |
+
)
|
1584 |
+
|
1585 |
+
|
1586 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForSequenceClassificationModule with Bart->MBart
|
1587 |
+
class FlaxMBartForSequenceClassificationModule(nn.Module):
|
1588 |
+
config: MBartConfig
|
1589 |
+
dtype: jnp.dtype = jnp.float32
|
1590 |
+
num_labels: Optional[int] = None
|
1591 |
+
|
1592 |
+
def setup(self):
|
1593 |
+
self.model = FlaxMBartModule(config=self.config, dtype=self.dtype)
|
1594 |
+
self.classification_head = FlaxMBartClassificationHead(
|
1595 |
+
config=self.config,
|
1596 |
+
inner_dim=self.config.d_model,
|
1597 |
+
num_classes=self.num_labels if self.num_labels is not None else self.config.num_labels,
|
1598 |
+
pooler_dropout=self.config.classifier_dropout,
|
1599 |
+
)
|
1600 |
+
|
1601 |
+
def _get_encoder_module(self):
|
1602 |
+
return self.model.encoder
|
1603 |
+
|
1604 |
+
def _get_decoder_module(self):
|
1605 |
+
return self.model.decoder
|
1606 |
+
|
1607 |
+
def __call__(
|
1608 |
+
self,
|
1609 |
+
input_ids,
|
1610 |
+
attention_mask,
|
1611 |
+
decoder_input_ids,
|
1612 |
+
decoder_attention_mask,
|
1613 |
+
position_ids,
|
1614 |
+
decoder_position_ids,
|
1615 |
+
output_attentions: bool = False,
|
1616 |
+
output_hidden_states: bool = False,
|
1617 |
+
return_dict: bool = True,
|
1618 |
+
deterministic: bool = True,
|
1619 |
+
):
|
1620 |
+
outputs = self.model(
|
1621 |
+
input_ids=input_ids,
|
1622 |
+
attention_mask=attention_mask,
|
1623 |
+
decoder_input_ids=decoder_input_ids,
|
1624 |
+
decoder_attention_mask=decoder_attention_mask,
|
1625 |
+
position_ids=position_ids,
|
1626 |
+
decoder_position_ids=decoder_position_ids,
|
1627 |
+
output_attentions=output_attentions,
|
1628 |
+
output_hidden_states=output_hidden_states,
|
1629 |
+
return_dict=return_dict,
|
1630 |
+
deterministic=deterministic,
|
1631 |
+
)
|
1632 |
+
|
1633 |
+
hidden_states = outputs[0] # last hidden state
|
1634 |
+
|
1635 |
+
eos_mask = jnp.where(input_ids == self.config.eos_token_id, 1, 0)
|
1636 |
+
|
1637 |
+
# The first condition is necessary to overcome jax._src.errors.ConcretizationTypeError during JIT compilation
|
1638 |
+
if type(eos_mask) != jax.interpreters.partial_eval.DynamicJaxprTracer:
|
1639 |
+
if len(jnp.unique(eos_mask.sum(1))) > 1:
|
1640 |
+
raise ValueError("All examples must have the same number of <eos> tokens.")
|
1641 |
+
|
1642 |
+
if any(eos_mask.sum(1) == 0):
|
1643 |
+
raise ValueError("There are missing <eos> tokens in input_ids")
|
1644 |
+
|
1645 |
+
# Ensure to keep 1 only for the last <eos> token for each example
|
1646 |
+
eos_mask_noised = eos_mask + jnp.arange(eos_mask.shape[1]) * 1e-6
|
1647 |
+
eos_mask = jnp.where(eos_mask_noised == eos_mask_noised.max(1).reshape(-1, 1), 1, 0)
|
1648 |
+
|
1649 |
+
sentence_representation = jnp.einsum("ijk, ij -> ijk", hidden_states, eos_mask).sum(1)
|
1650 |
+
logits = self.classification_head(sentence_representation, deterministic=deterministic)
|
1651 |
+
|
1652 |
+
if not return_dict:
|
1653 |
+
output = (logits,) + outputs[1:]
|
1654 |
+
return output
|
1655 |
+
|
1656 |
+
return FlaxSeq2SeqSequenceClassifierOutput(
|
1657 |
+
logits=logits,
|
1658 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1659 |
+
decoder_attentions=outputs.decoder_attentions,
|
1660 |
+
cross_attentions=outputs.cross_attentions,
|
1661 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1662 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1663 |
+
encoder_attentions=outputs.encoder_attentions,
|
1664 |
+
)
|
1665 |
+
|
1666 |
+
|
1667 |
+
@add_start_docstrings(
|
1668 |
+
"""
|
1669 |
+
MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
|
1670 |
+
tasks.
|
1671 |
+
""",
|
1672 |
+
MBART_START_DOCSTRING,
|
1673 |
+
)
|
1674 |
+
class FlaxMBartForSequenceClassification(FlaxMBartPreTrainedModel):
|
1675 |
+
module_class = FlaxMBartForSequenceClassificationModule
|
1676 |
+
dtype = jnp.float32
|
1677 |
+
|
1678 |
+
|
1679 |
+
append_call_sample_docstring(
|
1680 |
+
FlaxMBartForSequenceClassification,
|
1681 |
+
_CHECKPOINT_FOR_DOC,
|
1682 |
+
FlaxSeq2SeqSequenceClassifierOutput,
|
1683 |
+
_CONFIG_FOR_DOC,
|
1684 |
+
)
|
1685 |
+
|
1686 |
+
|
1687 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForQuestionAnsweringModule with Bart->MBart
|
1688 |
+
class FlaxMBartForQuestionAnsweringModule(nn.Module):
|
1689 |
+
config: MBartConfig
|
1690 |
+
dtype: jnp.dtype = jnp.float32
|
1691 |
+
num_labels = 2
|
1692 |
+
|
1693 |
+
def setup(self):
|
1694 |
+
self.model = FlaxMBartModule(config=self.config, dtype=self.dtype)
|
1695 |
+
self.qa_outputs = nn.Dense(
|
1696 |
+
self.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
1697 |
+
)
|
1698 |
+
|
1699 |
+
def _get_encoder_module(self):
|
1700 |
+
return self.model.encoder
|
1701 |
+
|
1702 |
+
def _get_decoder_module(self):
|
1703 |
+
return self.model.decoder
|
1704 |
+
|
1705 |
+
def __call__(
|
1706 |
+
self,
|
1707 |
+
input_ids,
|
1708 |
+
attention_mask,
|
1709 |
+
decoder_input_ids,
|
1710 |
+
decoder_attention_mask,
|
1711 |
+
position_ids,
|
1712 |
+
decoder_position_ids,
|
1713 |
+
output_attentions: bool = False,
|
1714 |
+
output_hidden_states: bool = False,
|
1715 |
+
return_dict: bool = True,
|
1716 |
+
deterministic: bool = True,
|
1717 |
+
):
|
1718 |
+
outputs = self.model(
|
1719 |
+
input_ids=input_ids,
|
1720 |
+
attention_mask=attention_mask,
|
1721 |
+
decoder_input_ids=decoder_input_ids,
|
1722 |
+
decoder_attention_mask=decoder_attention_mask,
|
1723 |
+
position_ids=position_ids,
|
1724 |
+
decoder_position_ids=decoder_position_ids,
|
1725 |
+
output_attentions=output_attentions,
|
1726 |
+
output_hidden_states=output_hidden_states,
|
1727 |
+
return_dict=return_dict,
|
1728 |
+
deterministic=deterministic,
|
1729 |
+
)
|
1730 |
+
|
1731 |
+
sequence_output = outputs[0]
|
1732 |
+
|
1733 |
+
logits = self.qa_outputs(sequence_output)
|
1734 |
+
start_logits, end_logits = jnp.split(logits, logits.shape[-1], axis=-1)
|
1735 |
+
start_logits = start_logits.squeeze(-1)
|
1736 |
+
end_logits = end_logits.squeeze(-1)
|
1737 |
+
|
1738 |
+
if not return_dict:
|
1739 |
+
output = (start_logits, end_logits) + outputs[1:]
|
1740 |
+
return output
|
1741 |
+
|
1742 |
+
return FlaxSeq2SeqQuestionAnsweringModelOutput(
|
1743 |
+
start_logits=start_logits,
|
1744 |
+
end_logits=end_logits,
|
1745 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1746 |
+
decoder_attentions=outputs.decoder_attentions,
|
1747 |
+
cross_attentions=outputs.cross_attentions,
|
1748 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1749 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1750 |
+
encoder_attentions=outputs.encoder_attentions,
|
1751 |
+
)
|
1752 |
+
|
1753 |
+
|
1754 |
+
@add_start_docstrings(
|
1755 |
+
"""
|
1756 |
+
MBart Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1757 |
+
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1758 |
+
""",
|
1759 |
+
MBART_START_DOCSTRING,
|
1760 |
+
)
|
1761 |
+
class FlaxMBartForQuestionAnswering(FlaxMBartPreTrainedModel):
|
1762 |
+
module_class = FlaxMBartForQuestionAnsweringModule
|
1763 |
+
dtype = jnp.float32
|
1764 |
+
|
1765 |
+
|
1766 |
+
append_call_sample_docstring(
|
1767 |
+
FlaxMBartForQuestionAnswering,
|
1768 |
+
_CHECKPOINT_FOR_DOC,
|
1769 |
+
FlaxSeq2SeqQuestionAnsweringModelOutput,
|
1770 |
+
_CONFIG_FOR_DOC,
|
1771 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_mbart.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/modeling_tf_mbart.py
ADDED
@@ -0,0 +1,1573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 MBart model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import random
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import tensorflow as tf
|
24 |
+
|
25 |
+
from ...activations_tf import get_tf_activation
|
26 |
+
from ...modeling_tf_outputs import (
|
27 |
+
TFBaseModelOutput,
|
28 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
TFSeq2SeqLMOutput,
|
30 |
+
TFSeq2SeqModelOutput,
|
31 |
+
)
|
32 |
+
|
33 |
+
# Public API
|
34 |
+
from ...modeling_tf_utils import (
|
35 |
+
TFCausalLanguageModelingLoss,
|
36 |
+
TFModelInputType,
|
37 |
+
TFPreTrainedModel,
|
38 |
+
keras,
|
39 |
+
keras_serializable,
|
40 |
+
unpack_inputs,
|
41 |
+
)
|
42 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
43 |
+
from ...utils import (
|
44 |
+
add_code_sample_docstrings,
|
45 |
+
add_end_docstrings,
|
46 |
+
add_start_docstrings,
|
47 |
+
add_start_docstrings_to_model_forward,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from .configuration_mbart import MBartConfig
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
|
56 |
+
_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25"
|
57 |
+
_CONFIG_FOR_DOC = "MBartConfig"
|
58 |
+
|
59 |
+
|
60 |
+
LARGE_NEGATIVE = -1e8
|
61 |
+
|
62 |
+
|
63 |
+
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int):
|
64 |
+
"""
|
65 |
+
Shift input ids one token to the right, and wrap the last non pad token (the <LID> token) Note that MBart does not
|
66 |
+
have a single `decoder_start_token_id` in contrast to other Bart-like models.
|
67 |
+
"""
|
68 |
+
if pad_token_id is None:
|
69 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
70 |
+
# replace possible -100 values in labels by `pad_token_id`
|
71 |
+
input_ids = tf.where(
|
72 |
+
input_ids == -100, tf.fill(shape_list(input_ids), tf.cast(pad_token_id, input_ids.dtype)), input_ids
|
73 |
+
)
|
74 |
+
language_id_index = (
|
75 |
+
tf.reduce_sum(tf.cast(tf.math.not_equal(input_ids, pad_token_id), dtype=input_ids.dtype), axis=-1) - 1
|
76 |
+
)
|
77 |
+
language_id_index = tf.stack(
|
78 |
+
[tf.range(shape_list(input_ids)[0], dtype=input_ids.dtype), language_id_index], axis=-1
|
79 |
+
)
|
80 |
+
languages_ids = tf.gather_nd(input_ids, language_id_index)
|
81 |
+
|
82 |
+
shifted_input_ids = tf.concat([tf.expand_dims(languages_ids, axis=-1), input_ids[:, :-1]], axis=-1)
|
83 |
+
|
84 |
+
return shifted_input_ids
|
85 |
+
|
86 |
+
|
87 |
+
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
|
88 |
+
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
|
89 |
+
"""
|
90 |
+
Make causal mask used for bi-directional self-attention.
|
91 |
+
"""
|
92 |
+
bsz = input_ids_shape[0]
|
93 |
+
tgt_len = input_ids_shape[1]
|
94 |
+
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
|
95 |
+
mask_cond = tf.range(shape_list(mask)[-1])
|
96 |
+
|
97 |
+
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
|
98 |
+
|
99 |
+
if past_key_values_length > 0:
|
100 |
+
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
|
101 |
+
|
102 |
+
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
|
103 |
+
|
104 |
+
|
105 |
+
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
|
106 |
+
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
|
107 |
+
"""
|
108 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
109 |
+
"""
|
110 |
+
src_len = shape_list(mask)[1]
|
111 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
112 |
+
one_cst = tf.constant(1.0)
|
113 |
+
mask = tf.cast(mask, dtype=one_cst.dtype)
|
114 |
+
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
|
115 |
+
|
116 |
+
return (one_cst - expanded_mask) * LARGE_NEGATIVE
|
117 |
+
|
118 |
+
|
119 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartLearnedPositionalEmbedding with Bart->MBart
|
120 |
+
class TFMBartLearnedPositionalEmbedding(keras.layers.Embedding):
|
121 |
+
"""
|
122 |
+
This module learns positional embeddings up to a fixed maximum size.
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
|
126 |
+
# MBart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
127 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
128 |
+
self.offset = 2
|
129 |
+
super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs)
|
130 |
+
|
131 |
+
def call(
|
132 |
+
self,
|
133 |
+
input_shape: Optional[tf.TensorShape] = None,
|
134 |
+
past_key_values_length: int = 0,
|
135 |
+
position_ids: tf.Tensor | None = None,
|
136 |
+
):
|
137 |
+
"""Input is expected to be of size [bsz x seqlen]."""
|
138 |
+
if position_ids is None:
|
139 |
+
seq_len = input_shape[1]
|
140 |
+
position_ids = tf.range(seq_len, delta=1, name="range")
|
141 |
+
position_ids += past_key_values_length
|
142 |
+
|
143 |
+
offset_dtype = position_ids.dtype if isinstance(position_ids, tf.Tensor) else tf.int32
|
144 |
+
return super().call(position_ids + tf.constant(self.offset, dtype=offset_dtype))
|
145 |
+
|
146 |
+
|
147 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->MBart
|
148 |
+
class TFMBartAttention(keras.layers.Layer):
|
149 |
+
"""Multi-headed attention from "Attention Is All You Need"""
|
150 |
+
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
embed_dim: int,
|
154 |
+
num_heads: int,
|
155 |
+
dropout: float = 0.0,
|
156 |
+
is_decoder: bool = False,
|
157 |
+
bias: bool = True,
|
158 |
+
**kwargs,
|
159 |
+
):
|
160 |
+
super().__init__(**kwargs)
|
161 |
+
self.embed_dim = embed_dim
|
162 |
+
|
163 |
+
self.num_heads = num_heads
|
164 |
+
self.dropout = keras.layers.Dropout(dropout)
|
165 |
+
self.head_dim = embed_dim // num_heads
|
166 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
167 |
+
raise ValueError(
|
168 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
169 |
+
f" and `num_heads`: {num_heads})."
|
170 |
+
)
|
171 |
+
self.scaling = self.head_dim**-0.5
|
172 |
+
self.is_decoder = is_decoder
|
173 |
+
|
174 |
+
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
|
175 |
+
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
|
176 |
+
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
|
177 |
+
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
|
178 |
+
|
179 |
+
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
|
180 |
+
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
|
181 |
+
|
182 |
+
def call(
|
183 |
+
self,
|
184 |
+
hidden_states: tf.Tensor,
|
185 |
+
key_value_states: tf.Tensor | None = None,
|
186 |
+
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
|
187 |
+
attention_mask: tf.Tensor | None = None,
|
188 |
+
layer_head_mask: tf.Tensor | None = None,
|
189 |
+
training: Optional[bool] = False,
|
190 |
+
) -> Tuple[tf.Tensor, tf.Tensor | None]:
|
191 |
+
"""Input shape: Batch x Time x Channel"""
|
192 |
+
|
193 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
194 |
+
# for the decoder
|
195 |
+
is_cross_attention = key_value_states is not None
|
196 |
+
bsz, tgt_len, embed_dim = shape_list(hidden_states)
|
197 |
+
|
198 |
+
# get query proj
|
199 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
200 |
+
# get key, value proj
|
201 |
+
if is_cross_attention and past_key_value is not None:
|
202 |
+
# reuse k,v, cross_attentions
|
203 |
+
key_states = past_key_value[0]
|
204 |
+
value_states = past_key_value[1]
|
205 |
+
elif is_cross_attention:
|
206 |
+
# cross_attentions
|
207 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
208 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
209 |
+
elif past_key_value is not None:
|
210 |
+
# reuse k, v, self_attention
|
211 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
212 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
213 |
+
key_states = tf.concat([past_key_value[0], key_states], axis=2)
|
214 |
+
value_states = tf.concat([past_key_value[1], value_states], axis=2)
|
215 |
+
else:
|
216 |
+
# self_attention
|
217 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
218 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
219 |
+
|
220 |
+
if self.is_decoder:
|
221 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
222 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
223 |
+
# key/value_states (first "if" case)
|
224 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
225 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
226 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
227 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
228 |
+
past_key_value = (key_states, value_states)
|
229 |
+
|
230 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
231 |
+
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
|
232 |
+
key_states = tf.reshape(key_states, proj_shape)
|
233 |
+
value_states = tf.reshape(value_states, proj_shape)
|
234 |
+
|
235 |
+
src_len = shape_list(key_states)[1]
|
236 |
+
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
|
237 |
+
|
238 |
+
tf.debugging.assert_equal(
|
239 |
+
shape_list(attn_weights),
|
240 |
+
[bsz * self.num_heads, tgt_len, src_len],
|
241 |
+
message=(
|
242 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
243 |
+
f" {shape_list(attn_weights)}"
|
244 |
+
),
|
245 |
+
)
|
246 |
+
|
247 |
+
if attention_mask is not None:
|
248 |
+
tf.debugging.assert_equal(
|
249 |
+
shape_list(attention_mask),
|
250 |
+
[bsz, 1, tgt_len, src_len],
|
251 |
+
message=(
|
252 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
253 |
+
f" {shape_list(attention_mask)}"
|
254 |
+
),
|
255 |
+
)
|
256 |
+
|
257 |
+
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
|
258 |
+
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
|
259 |
+
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
260 |
+
|
261 |
+
attn_weights = stable_softmax(attn_weights, axis=-1)
|
262 |
+
|
263 |
+
if layer_head_mask is not None:
|
264 |
+
tf.debugging.assert_equal(
|
265 |
+
shape_list(layer_head_mask),
|
266 |
+
[self.num_heads],
|
267 |
+
message=(
|
268 |
+
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
|
269 |
+
f" {shape_list(layer_head_mask)}"
|
270 |
+
),
|
271 |
+
)
|
272 |
+
|
273 |
+
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
|
274 |
+
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
|
275 |
+
)
|
276 |
+
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
277 |
+
|
278 |
+
attn_probs = self.dropout(attn_weights, training=training)
|
279 |
+
attn_output = tf.matmul(attn_probs, value_states)
|
280 |
+
|
281 |
+
tf.debugging.assert_equal(
|
282 |
+
shape_list(attn_output),
|
283 |
+
[bsz * self.num_heads, tgt_len, self.head_dim],
|
284 |
+
message=(
|
285 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
286 |
+
f" {shape_list(attn_output)}"
|
287 |
+
),
|
288 |
+
)
|
289 |
+
|
290 |
+
attn_output = tf.transpose(
|
291 |
+
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
|
292 |
+
)
|
293 |
+
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
|
294 |
+
|
295 |
+
attn_output = self.out_proj(attn_output)
|
296 |
+
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
|
297 |
+
|
298 |
+
return attn_output, attn_weights, past_key_value
|
299 |
+
|
300 |
+
def build(self, input_shape=None):
|
301 |
+
if self.built:
|
302 |
+
return
|
303 |
+
self.built = True
|
304 |
+
if getattr(self, "k_proj", None) is not None:
|
305 |
+
with tf.name_scope(self.k_proj.name):
|
306 |
+
self.k_proj.build([None, None, self.embed_dim])
|
307 |
+
if getattr(self, "q_proj", None) is not None:
|
308 |
+
with tf.name_scope(self.q_proj.name):
|
309 |
+
self.q_proj.build([None, None, self.embed_dim])
|
310 |
+
if getattr(self, "v_proj", None) is not None:
|
311 |
+
with tf.name_scope(self.v_proj.name):
|
312 |
+
self.v_proj.build([None, None, self.embed_dim])
|
313 |
+
if getattr(self, "out_proj", None) is not None:
|
314 |
+
with tf.name_scope(self.out_proj.name):
|
315 |
+
self.out_proj.build([None, None, self.embed_dim])
|
316 |
+
|
317 |
+
|
318 |
+
class TFMBartEncoderLayer(keras.layers.Layer):
|
319 |
+
def __init__(self, config: MBartConfig, **kwargs):
|
320 |
+
super().__init__(**kwargs)
|
321 |
+
self.embed_dim = config.d_model
|
322 |
+
self.self_attn = TFMBartAttention(
|
323 |
+
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
|
324 |
+
)
|
325 |
+
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
326 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
327 |
+
self.activation_fn = get_tf_activation(config.activation_function)
|
328 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
329 |
+
self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
|
330 |
+
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
|
331 |
+
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
332 |
+
self.config = config
|
333 |
+
|
334 |
+
def call(
|
335 |
+
self,
|
336 |
+
hidden_states: tf.Tensor,
|
337 |
+
attention_mask: tf.Tensor,
|
338 |
+
layer_head_mask: tf.Tensor,
|
339 |
+
training: Optional[bool] = False,
|
340 |
+
):
|
341 |
+
"""
|
342 |
+
Args:
|
343 |
+
hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
|
344 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
345 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
346 |
+
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
347 |
+
*(encoder_attention_heads,)*
|
348 |
+
"""
|
349 |
+
residual = hidden_states
|
350 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
351 |
+
hidden_states, self_attn_weights, _ = self.self_attn(
|
352 |
+
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
|
353 |
+
)
|
354 |
+
|
355 |
+
tf.debugging.assert_equal(
|
356 |
+
shape_list(hidden_states),
|
357 |
+
shape_list(residual),
|
358 |
+
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
|
359 |
+
)
|
360 |
+
|
361 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
362 |
+
hidden_states = residual + hidden_states
|
363 |
+
|
364 |
+
residual = hidden_states
|
365 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
366 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
367 |
+
hidden_states = self.activation_dropout(hidden_states, training=training)
|
368 |
+
hidden_states = self.fc2(hidden_states)
|
369 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
370 |
+
hidden_states = residual + hidden_states
|
371 |
+
|
372 |
+
return hidden_states, self_attn_weights
|
373 |
+
|
374 |
+
def build(self, input_shape=None):
|
375 |
+
if self.built:
|
376 |
+
return
|
377 |
+
self.built = True
|
378 |
+
if getattr(self, "self_attn", None) is not None:
|
379 |
+
with tf.name_scope(self.self_attn.name):
|
380 |
+
self.self_attn.build(None)
|
381 |
+
if getattr(self, "self_attn_layer_norm", None) is not None:
|
382 |
+
with tf.name_scope(self.self_attn_layer_norm.name):
|
383 |
+
self.self_attn_layer_norm.build([None, None, self.embed_dim])
|
384 |
+
if getattr(self, "fc1", None) is not None:
|
385 |
+
with tf.name_scope(self.fc1.name):
|
386 |
+
self.fc1.build([None, None, self.embed_dim])
|
387 |
+
if getattr(self, "fc2", None) is not None:
|
388 |
+
with tf.name_scope(self.fc2.name):
|
389 |
+
self.fc2.build([None, None, self.config.encoder_ffn_dim])
|
390 |
+
if getattr(self, "final_layer_norm", None) is not None:
|
391 |
+
with tf.name_scope(self.final_layer_norm.name):
|
392 |
+
self.final_layer_norm.build([None, None, self.embed_dim])
|
393 |
+
|
394 |
+
|
395 |
+
class TFMBartDecoderLayer(keras.layers.Layer):
|
396 |
+
def __init__(self, config: MBartConfig, **kwargs):
|
397 |
+
super().__init__(**kwargs)
|
398 |
+
self.embed_dim = config.d_model
|
399 |
+
self.self_attn = TFMBartAttention(
|
400 |
+
embed_dim=self.embed_dim,
|
401 |
+
num_heads=config.decoder_attention_heads,
|
402 |
+
dropout=config.attention_dropout,
|
403 |
+
name="self_attn",
|
404 |
+
is_decoder=True,
|
405 |
+
)
|
406 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
407 |
+
self.activation_fn = get_tf_activation(config.activation_function)
|
408 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
409 |
+
|
410 |
+
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
411 |
+
self.encoder_attn = TFMBartAttention(
|
412 |
+
self.embed_dim,
|
413 |
+
config.decoder_attention_heads,
|
414 |
+
dropout=config.attention_dropout,
|
415 |
+
name="encoder_attn",
|
416 |
+
is_decoder=True,
|
417 |
+
)
|
418 |
+
self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
|
419 |
+
self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
|
420 |
+
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
|
421 |
+
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
422 |
+
self.config = config
|
423 |
+
|
424 |
+
def call(
|
425 |
+
self,
|
426 |
+
hidden_states: tf.Tensor,
|
427 |
+
attention_mask: tf.Tensor | None = None,
|
428 |
+
encoder_hidden_states: tf.Tensor | None = None,
|
429 |
+
encoder_attention_mask: tf.Tensor | None = None,
|
430 |
+
layer_head_mask: tf.Tensor | None = None,
|
431 |
+
cross_attn_layer_head_mask: tf.Tensor | None = None,
|
432 |
+
past_key_value: Tuple[tf.Tensor] | None = None,
|
433 |
+
training: Optional[bool] = False,
|
434 |
+
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
|
435 |
+
"""
|
436 |
+
Args:
|
437 |
+
hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
|
438 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
439 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
440 |
+
encoder_hidden_states (`tf.Tensor`):
|
441 |
+
cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
|
442 |
+
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
|
443 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
444 |
+
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
445 |
+
*(decoder_attention_heads,)*
|
446 |
+
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
|
447 |
+
*(decoder_attention_heads,)*
|
448 |
+
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
|
449 |
+
"""
|
450 |
+
residual = hidden_states
|
451 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
452 |
+
|
453 |
+
# Self Attention
|
454 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
455 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
456 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
457 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
458 |
+
hidden_states=hidden_states,
|
459 |
+
past_key_value=self_attn_past_key_value,
|
460 |
+
attention_mask=attention_mask,
|
461 |
+
layer_head_mask=layer_head_mask,
|
462 |
+
)
|
463 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
464 |
+
hidden_states = residual + hidden_states
|
465 |
+
|
466 |
+
# Cross-Attention Block
|
467 |
+
cross_attn_present_key_value = None
|
468 |
+
cross_attn_weights = None
|
469 |
+
if encoder_hidden_states is not None:
|
470 |
+
residual = hidden_states
|
471 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
472 |
+
|
473 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
474 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
475 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
476 |
+
hidden_states=hidden_states,
|
477 |
+
key_value_states=encoder_hidden_states,
|
478 |
+
attention_mask=encoder_attention_mask,
|
479 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
480 |
+
past_key_value=cross_attn_past_key_value,
|
481 |
+
)
|
482 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
483 |
+
hidden_states = residual + hidden_states
|
484 |
+
|
485 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
486 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
487 |
+
|
488 |
+
# Fully Connected
|
489 |
+
residual = hidden_states
|
490 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
491 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
492 |
+
hidden_states = self.activation_dropout(hidden_states, training=training)
|
493 |
+
hidden_states = self.fc2(hidden_states)
|
494 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
495 |
+
hidden_states = residual + hidden_states
|
496 |
+
|
497 |
+
return (
|
498 |
+
hidden_states,
|
499 |
+
self_attn_weights,
|
500 |
+
cross_attn_weights,
|
501 |
+
present_key_value,
|
502 |
+
)
|
503 |
+
|
504 |
+
def build(self, input_shape=None):
|
505 |
+
if self.built:
|
506 |
+
return
|
507 |
+
self.built = True
|
508 |
+
if getattr(self, "self_attn", None) is not None:
|
509 |
+
with tf.name_scope(self.self_attn.name):
|
510 |
+
self.self_attn.build(None)
|
511 |
+
if getattr(self, "self_attn_layer_norm", None) is not None:
|
512 |
+
with tf.name_scope(self.self_attn_layer_norm.name):
|
513 |
+
self.self_attn_layer_norm.build([None, None, self.embed_dim])
|
514 |
+
if getattr(self, "encoder_attn", None) is not None:
|
515 |
+
with tf.name_scope(self.encoder_attn.name):
|
516 |
+
self.encoder_attn.build(None)
|
517 |
+
if getattr(self, "encoder_attn_layer_norm", None) is not None:
|
518 |
+
with tf.name_scope(self.encoder_attn_layer_norm.name):
|
519 |
+
self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
|
520 |
+
if getattr(self, "fc1", None) is not None:
|
521 |
+
with tf.name_scope(self.fc1.name):
|
522 |
+
self.fc1.build([None, None, self.embed_dim])
|
523 |
+
if getattr(self, "fc2", None) is not None:
|
524 |
+
with tf.name_scope(self.fc2.name):
|
525 |
+
self.fc2.build([None, None, self.config.decoder_ffn_dim])
|
526 |
+
if getattr(self, "final_layer_norm", None) is not None:
|
527 |
+
with tf.name_scope(self.final_layer_norm.name):
|
528 |
+
self.final_layer_norm.build([None, None, self.embed_dim])
|
529 |
+
|
530 |
+
|
531 |
+
class TFMBartPreTrainedModel(TFPreTrainedModel):
|
532 |
+
config_class = MBartConfig
|
533 |
+
base_model_prefix = "model"
|
534 |
+
|
535 |
+
|
536 |
+
MBART_START_DOCSTRING = r"""
|
537 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
538 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
539 |
+
etc.)
|
540 |
+
|
541 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
542 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
543 |
+
behavior.
|
544 |
+
|
545 |
+
<Tip>
|
546 |
+
|
547 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
548 |
+
|
549 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
550 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
551 |
+
|
552 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
553 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
554 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
555 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
556 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
557 |
+
positional argument:
|
558 |
+
|
559 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
560 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
561 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
562 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
563 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
564 |
+
|
565 |
+
Note that when creating models and layers with
|
566 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
567 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
568 |
+
|
569 |
+
</Tip>
|
570 |
+
|
571 |
+
Args:
|
572 |
+
config ([`MBartConfig`]): Model configuration class with all the parameters of the model.
|
573 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
574 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
575 |
+
"""
|
576 |
+
|
577 |
+
MBART_INPUTS_DOCSTRING = r"""
|
578 |
+
Args:
|
579 |
+
input_ids (`tf.Tensor` of shape `({0})`):
|
580 |
+
Indices of input sequence tokens in the vocabulary.
|
581 |
+
|
582 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
583 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
584 |
+
|
585 |
+
[What are input IDs?](../glossary#input-ids)
|
586 |
+
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
|
587 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
588 |
+
|
589 |
+
- 1 for tokens that are **not masked**,
|
590 |
+
- 0 for tokens that are **masked**.
|
591 |
+
|
592 |
+
[What are attention masks?](../glossary#attention-mask)
|
593 |
+
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
594 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
595 |
+
|
596 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
597 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
598 |
+
|
599 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
600 |
+
|
601 |
+
MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that
|
602 |
+
varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If
|
603 |
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
604 |
+
`past_key_values`).
|
605 |
+
|
606 |
+
For translation and summarization training, `decoder_input_ids` should be provided. If no
|
607 |
+
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
|
608 |
+
for denoising pre-training following the paper.
|
609 |
+
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
610 |
+
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
|
611 |
+
decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
612 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
613 |
+
range `[0, config.max_position_embeddings - 1]`.
|
614 |
+
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
615 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
616 |
+
|
617 |
+
- 1 indicates the head is **not masked**,
|
618 |
+
- 0 indicates the head is **masked**.
|
619 |
+
|
620 |
+
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
621 |
+
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
622 |
+
|
623 |
+
- 1 indicates the head is **not masked**,
|
624 |
+
- 0 indicates the head is **masked**.
|
625 |
+
|
626 |
+
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
627 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
628 |
+
|
629 |
+
- 1 indicates the head is **not masked**,
|
630 |
+
- 0 indicates the head is **masked**.
|
631 |
+
|
632 |
+
encoder_outputs (`tf.FloatTensor`, *optional*):
|
633 |
+
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
634 |
+
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
|
635 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
636 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
637 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
638 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
639 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
640 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
641 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
642 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
643 |
+
than the model's internal embedding lookup matrix.
|
644 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
645 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
646 |
+
`past_key_values`). Set to `False` during training, `True` during generation
|
647 |
+
output_attentions (`bool`, *optional*):
|
648 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
649 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
650 |
+
config will be used instead.
|
651 |
+
output_hidden_states (`bool`, *optional*):
|
652 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
653 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
654 |
+
used instead.
|
655 |
+
return_dict (`bool`, *optional*):
|
656 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
657 |
+
eager mode, in graph mode the value will always be set to True.
|
658 |
+
training (`bool`, *optional*, defaults to `False`):
|
659 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
660 |
+
behaviors between training and evaluation).
|
661 |
+
"""
|
662 |
+
|
663 |
+
MBART_GENERATION_EXAMPLE = r"""
|
664 |
+
Translation example:
|
665 |
+
|
666 |
+
```python
|
667 |
+
>>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration
|
668 |
+
|
669 |
+
>>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
|
670 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro")
|
671 |
+
|
672 |
+
>>> example_english_phrase = "42 is the answer"
|
673 |
+
>>> inputs = tokenizer(example_english_phrase, return_tensors="tf")
|
674 |
+
|
675 |
+
>>> # Translate
|
676 |
+
>>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5)
|
677 |
+
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
678 |
+
'42 este răspuns'
|
679 |
+
```
|
680 |
+
|
681 |
+
Mask filling example:
|
682 |
+
|
683 |
+
```python
|
684 |
+
>>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration
|
685 |
+
>>> import tensorflow as tf
|
686 |
+
|
687 |
+
>>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
|
688 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
|
689 |
+
|
690 |
+
>>> # de_DE is the language symbol id <LID> for German
|
691 |
+
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
|
692 |
+
|
693 |
+
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="tf")["input_ids"]
|
694 |
+
>>> logits = model(input_ids).logits
|
695 |
+
|
696 |
+
>>> masked_index = tf.where(input_ids[0] == tokenizer.mask_token_id)[0, 0]
|
697 |
+
>>> probs = tf.nn.softmax(logits[0, masked_index], axis=0)
|
698 |
+
>>> values, predictions = tf.math.top_k(probs, 5)
|
699 |
+
|
700 |
+
>>> tokenizer.decode(predictions).split()
|
701 |
+
['nett', 'sehr', 'ganz', 'nicht', 'so']
|
702 |
+
```
|
703 |
+
"""
|
704 |
+
|
705 |
+
|
706 |
+
@keras_serializable
|
707 |
+
class TFMBartEncoder(keras.layers.Layer):
|
708 |
+
config_class = MBartConfig
|
709 |
+
"""
|
710 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
711 |
+
[`TFMBartEncoderLayer`].
|
712 |
+
|
713 |
+
Args:
|
714 |
+
config: MBartConfig
|
715 |
+
"""
|
716 |
+
|
717 |
+
def __init__(self, config: MBartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
|
718 |
+
super().__init__(**kwargs)
|
719 |
+
self.config = config
|
720 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
721 |
+
self.layerdrop = config.encoder_layerdrop
|
722 |
+
self.padding_idx = config.pad_token_id
|
723 |
+
self.max_source_positions = config.max_position_embeddings
|
724 |
+
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
|
725 |
+
|
726 |
+
self.embed_tokens = embed_tokens
|
727 |
+
self.embed_positions = TFMBartLearnedPositionalEmbedding(
|
728 |
+
config.max_position_embeddings,
|
729 |
+
config.d_model,
|
730 |
+
name="embed_positions",
|
731 |
+
)
|
732 |
+
self.layers = [TFMBartEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
|
733 |
+
self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
|
734 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
|
735 |
+
self.embed_dim = config.d_model
|
736 |
+
|
737 |
+
def get_embed_tokens(self):
|
738 |
+
return self.embed_tokens
|
739 |
+
|
740 |
+
def set_embed_tokens(self, embed_tokens):
|
741 |
+
self.embed_tokens = embed_tokens
|
742 |
+
|
743 |
+
@unpack_inputs
|
744 |
+
def call(
|
745 |
+
self,
|
746 |
+
input_ids: TFModelInputType | None = None,
|
747 |
+
inputs_embeds: tf.Tensor | None = None,
|
748 |
+
attention_mask: tf.Tensor | None = None,
|
749 |
+
head_mask: tf.Tensor | None = None,
|
750 |
+
output_attentions: Optional[bool] = None,
|
751 |
+
output_hidden_states: Optional[bool] = None,
|
752 |
+
return_dict: Optional[bool] = None,
|
753 |
+
training: Optional[bool] = False,
|
754 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
|
755 |
+
"""
|
756 |
+
Args:
|
757 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
758 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
759 |
+
provide it.
|
760 |
+
|
761 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
762 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
763 |
+
|
764 |
+
[What are input IDs?](../glossary#input-ids)
|
765 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
766 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
767 |
+
|
768 |
+
- 1 for tokens that are **not masked**,
|
769 |
+
- 0 for tokens that are **masked**.
|
770 |
+
|
771 |
+
[What are attention masks?](../glossary#attention-mask)
|
772 |
+
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
|
773 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
774 |
+
|
775 |
+
- 1 indicates the head is **not masked**,
|
776 |
+
- 0 indicates the head is **masked**.
|
777 |
+
|
778 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
779 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
780 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
781 |
+
than the model's internal embedding lookup matrix.
|
782 |
+
output_attentions (`bool`, *optional*):
|
783 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
784 |
+
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
|
785 |
+
in the config will be used instead.
|
786 |
+
output_hidden_states (`bool`, *optional*):
|
787 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
788 |
+
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
|
789 |
+
will be used instead.
|
790 |
+
return_dict (`bool`, *optional*):
|
791 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
792 |
+
in eager mode, in graph mode the value will always be set to True.
|
793 |
+
training (`bool`, *optional*, defaults to `False`):
|
794 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
795 |
+
behaviors between training and evaluation).
|
796 |
+
"""
|
797 |
+
|
798 |
+
if input_ids is not None and inputs_embeds is not None:
|
799 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
800 |
+
elif input_ids is not None:
|
801 |
+
input_shape = shape_list(input_ids)
|
802 |
+
elif inputs_embeds is not None:
|
803 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
804 |
+
else:
|
805 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
806 |
+
|
807 |
+
if inputs_embeds is None:
|
808 |
+
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
|
809 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
810 |
+
|
811 |
+
embed_pos = self.embed_positions(input_shape)
|
812 |
+
hidden_states = inputs_embeds + embed_pos
|
813 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
814 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
815 |
+
|
816 |
+
# check attention mask and invert
|
817 |
+
if attention_mask is not None:
|
818 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
819 |
+
attention_mask = _expand_mask(attention_mask)
|
820 |
+
else:
|
821 |
+
attention_mask = None
|
822 |
+
|
823 |
+
encoder_states = () if output_hidden_states else None
|
824 |
+
all_attentions = () if output_attentions else None
|
825 |
+
|
826 |
+
# check if head_mask has a correct number of layers specified if desired
|
827 |
+
if head_mask is not None:
|
828 |
+
tf.debugging.assert_equal(
|
829 |
+
shape_list(head_mask)[0],
|
830 |
+
len(self.layers),
|
831 |
+
message=(
|
832 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
833 |
+
f" {shape_list(head_mask)[0]}."
|
834 |
+
),
|
835 |
+
)
|
836 |
+
|
837 |
+
# encoder layers
|
838 |
+
for idx, encoder_layer in enumerate(self.layers):
|
839 |
+
if output_hidden_states:
|
840 |
+
encoder_states = encoder_states + (hidden_states,)
|
841 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
842 |
+
dropout_probability = random.uniform(0, 1)
|
843 |
+
if training and (dropout_probability < self.layerdrop): # skip the layer
|
844 |
+
continue
|
845 |
+
|
846 |
+
hidden_states, attn = encoder_layer(
|
847 |
+
hidden_states,
|
848 |
+
attention_mask,
|
849 |
+
head_mask[idx] if head_mask is not None else None,
|
850 |
+
)
|
851 |
+
|
852 |
+
if output_attentions:
|
853 |
+
all_attentions += (attn,)
|
854 |
+
|
855 |
+
hidden_states = self.layer_norm(hidden_states)
|
856 |
+
|
857 |
+
if output_hidden_states:
|
858 |
+
encoder_states = encoder_states + (hidden_states,)
|
859 |
+
|
860 |
+
if not return_dict:
|
861 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
862 |
+
return TFBaseModelOutput(
|
863 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
864 |
+
)
|
865 |
+
|
866 |
+
def build(self, input_shape=None):
|
867 |
+
if self.built:
|
868 |
+
return
|
869 |
+
self.built = True
|
870 |
+
if getattr(self, "embed_positions", None) is not None:
|
871 |
+
with tf.name_scope(self.embed_positions.name):
|
872 |
+
self.embed_positions.build(None)
|
873 |
+
if getattr(self, "layernorm_embedding", None) is not None:
|
874 |
+
with tf.name_scope(self.layernorm_embedding.name):
|
875 |
+
self.layernorm_embedding.build([None, None, self.embed_dim])
|
876 |
+
if getattr(self, "layer_norm", None) is not None:
|
877 |
+
with tf.name_scope(self.layer_norm.name):
|
878 |
+
self.layer_norm.build([None, None, self.config.d_model])
|
879 |
+
if getattr(self, "layers", None) is not None:
|
880 |
+
for layer in self.layers:
|
881 |
+
with tf.name_scope(layer.name):
|
882 |
+
layer.build(None)
|
883 |
+
|
884 |
+
|
885 |
+
@keras_serializable
|
886 |
+
class TFMBartDecoder(keras.layers.Layer):
|
887 |
+
config_class = MBartConfig
|
888 |
+
"""
|
889 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFMBartDecoderLayer`]
|
890 |
+
|
891 |
+
Args:
|
892 |
+
config: MBartConfig
|
893 |
+
embed_tokens: output embedding
|
894 |
+
"""
|
895 |
+
|
896 |
+
def __init__(self, config: MBartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
|
897 |
+
super().__init__(**kwargs)
|
898 |
+
self.config = config
|
899 |
+
self.padding_idx = config.pad_token_id
|
900 |
+
self.embed_tokens = embed_tokens
|
901 |
+
self.layerdrop = config.decoder_layerdrop
|
902 |
+
self.embed_positions = TFMBartLearnedPositionalEmbedding(
|
903 |
+
config.max_position_embeddings,
|
904 |
+
config.d_model,
|
905 |
+
name="embed_positions",
|
906 |
+
)
|
907 |
+
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
|
908 |
+
self.layers = [TFMBartDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
|
909 |
+
self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
|
910 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
|
911 |
+
|
912 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
913 |
+
|
914 |
+
def get_embed_tokens(self):
|
915 |
+
return self.embed_tokens
|
916 |
+
|
917 |
+
def set_embed_tokens(self, embed_tokens):
|
918 |
+
self.embed_tokens = embed_tokens
|
919 |
+
|
920 |
+
@unpack_inputs
|
921 |
+
def call(
|
922 |
+
self,
|
923 |
+
input_ids: TFModelInputType = None,
|
924 |
+
inputs_embeds: tf.Tensor | None = None,
|
925 |
+
attention_mask: tf.Tensor | None = None,
|
926 |
+
position_ids: tf.Tensor | None = None,
|
927 |
+
encoder_hidden_states: tf.Tensor | None = None,
|
928 |
+
encoder_attention_mask: tf.Tensor | None = None,
|
929 |
+
head_mask: tf.Tensor | None = None,
|
930 |
+
cross_attn_head_mask: tf.Tensor | None = None,
|
931 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
|
932 |
+
use_cache: Optional[bool] = None,
|
933 |
+
output_attentions: Optional[bool] = None,
|
934 |
+
output_hidden_states: Optional[bool] = None,
|
935 |
+
return_dict: Optional[bool] = None,
|
936 |
+
training: Optional[bool] = False,
|
937 |
+
) -> Union[
|
938 |
+
TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]
|
939 |
+
]:
|
940 |
+
r"""
|
941 |
+
Args:
|
942 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
943 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
944 |
+
provide it.
|
945 |
+
|
946 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
947 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
948 |
+
|
949 |
+
[What are input IDs?](../glossary#input-ids)
|
950 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
951 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
952 |
+
|
953 |
+
- 1 for tokens that are **not masked**,
|
954 |
+
- 0 for tokens that are **masked**.
|
955 |
+
|
956 |
+
[What are attention masks?](../glossary#attention-mask)
|
957 |
+
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
958 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
959 |
+
range `[0, config.max_position_embeddings - 1]`.
|
960 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
961 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
962 |
+
of the decoder.
|
963 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
964 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
965 |
+
selected in `[0, 1]`:
|
966 |
+
|
967 |
+
- 1 for tokens that are **not masked**,
|
968 |
+
- 0 for tokens that are **masked**.
|
969 |
+
|
970 |
+
[What are attention masks?](../glossary#attention-mask)
|
971 |
+
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
972 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
973 |
+
|
974 |
+
- 1 indicates the head is **not masked**,
|
975 |
+
- 0 indicates the head is **masked**.
|
976 |
+
|
977 |
+
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
978 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
979 |
+
|
980 |
+
- 1 indicates the head is **not masked**,
|
981 |
+
- 0 indicates the head is **masked**.
|
982 |
+
|
983 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
984 |
+
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
|
985 |
+
decoding.
|
986 |
+
|
987 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
988 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
989 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
990 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
991 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
992 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
993 |
+
than the model's internal embedding lookup matrix.
|
994 |
+
output_attentions (`bool`, *optional*):
|
995 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
996 |
+
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
|
997 |
+
in the config will be used instead.
|
998 |
+
output_hidden_states (`bool`, *optional*):
|
999 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1000 |
+
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
|
1001 |
+
will be used instead.
|
1002 |
+
return_dict (`bool`, *optional*):
|
1003 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
1004 |
+
in eager mode, in graph mode the value will always be set to True.
|
1005 |
+
training (`bool`, *optional*, defaults to `False`):
|
1006 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1007 |
+
behaviors between training and evaluation).
|
1008 |
+
"""
|
1009 |
+
|
1010 |
+
if input_ids is not None and inputs_embeds is not None:
|
1011 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1012 |
+
elif input_ids is not None:
|
1013 |
+
input_shape = shape_list(input_ids)
|
1014 |
+
elif inputs_embeds is not None:
|
1015 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
1016 |
+
else:
|
1017 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1018 |
+
|
1019 |
+
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
|
1020 |
+
|
1021 |
+
# embed positions
|
1022 |
+
if position_ids is None:
|
1023 |
+
positions = self.embed_positions(input_shape, past_key_values_length)
|
1024 |
+
else:
|
1025 |
+
positions = self.embed_positions(input_shape, position_ids=position_ids)
|
1026 |
+
|
1027 |
+
if inputs_embeds is None:
|
1028 |
+
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
|
1029 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1030 |
+
|
1031 |
+
hidden_states = inputs_embeds
|
1032 |
+
|
1033 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1034 |
+
if input_shape[-1] > 1:
|
1035 |
+
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
|
1036 |
+
else:
|
1037 |
+
combined_attention_mask = _expand_mask(
|
1038 |
+
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
if attention_mask is not None:
|
1042 |
+
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
|
1043 |
+
|
1044 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1045 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1046 |
+
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
|
1047 |
+
|
1048 |
+
hidden_states = self.layernorm_embedding(hidden_states + positions)
|
1049 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
1050 |
+
|
1051 |
+
# decoder layers
|
1052 |
+
all_hidden_states = () if output_hidden_states else None
|
1053 |
+
all_self_attns = () if output_attentions else None
|
1054 |
+
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
|
1055 |
+
present_key_values = () if use_cache else None
|
1056 |
+
|
1057 |
+
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
|
1058 |
+
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
|
1059 |
+
if attn_mask is not None:
|
1060 |
+
tf.debugging.assert_equal(
|
1061 |
+
shape_list(attn_mask)[0],
|
1062 |
+
len(self.layers),
|
1063 |
+
message=(
|
1064 |
+
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
|
1065 |
+
f" {shape_list(attn_mask)[0]}."
|
1066 |
+
),
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1070 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1071 |
+
if output_hidden_states:
|
1072 |
+
all_hidden_states += (hidden_states,)
|
1073 |
+
dropout_probability = random.uniform(0, 1)
|
1074 |
+
|
1075 |
+
if training and (dropout_probability < self.layerdrop):
|
1076 |
+
continue
|
1077 |
+
|
1078 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1079 |
+
|
1080 |
+
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
|
1081 |
+
hidden_states,
|
1082 |
+
attention_mask=combined_attention_mask,
|
1083 |
+
encoder_hidden_states=encoder_hidden_states,
|
1084 |
+
encoder_attention_mask=encoder_attention_mask,
|
1085 |
+
layer_head_mask=head_mask[idx] if head_mask is not None else None,
|
1086 |
+
cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
1087 |
+
past_key_value=past_key_value,
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
if use_cache:
|
1091 |
+
present_key_values += (present_key_value,)
|
1092 |
+
|
1093 |
+
if output_attentions:
|
1094 |
+
all_self_attns += (layer_self_attn,)
|
1095 |
+
|
1096 |
+
if encoder_hidden_states is not None:
|
1097 |
+
all_cross_attns += (layer_cross_attn,)
|
1098 |
+
|
1099 |
+
hidden_states = self.layer_norm(hidden_states)
|
1100 |
+
|
1101 |
+
if output_hidden_states:
|
1102 |
+
all_hidden_states += (hidden_states,)
|
1103 |
+
|
1104 |
+
if not return_dict:
|
1105 |
+
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
|
1106 |
+
else:
|
1107 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
1108 |
+
last_hidden_state=hidden_states,
|
1109 |
+
past_key_values=present_key_values,
|
1110 |
+
hidden_states=all_hidden_states,
|
1111 |
+
attentions=all_self_attns,
|
1112 |
+
cross_attentions=all_cross_attns,
|
1113 |
+
)
|
1114 |
+
|
1115 |
+
def build(self, input_shape=None):
|
1116 |
+
if self.built:
|
1117 |
+
return
|
1118 |
+
self.built = True
|
1119 |
+
if getattr(self, "embed_positions", None) is not None:
|
1120 |
+
with tf.name_scope(self.embed_positions.name):
|
1121 |
+
self.embed_positions.build(None)
|
1122 |
+
if getattr(self, "layernorm_embedding", None) is not None:
|
1123 |
+
with tf.name_scope(self.layernorm_embedding.name):
|
1124 |
+
self.layernorm_embedding.build([None, None, self.config.d_model])
|
1125 |
+
if getattr(self, "layer_norm", None) is not None:
|
1126 |
+
with tf.name_scope(self.layer_norm.name):
|
1127 |
+
self.layer_norm.build([None, None, self.config.d_model])
|
1128 |
+
if getattr(self, "layers", None) is not None:
|
1129 |
+
for layer in self.layers:
|
1130 |
+
with tf.name_scope(layer.name):
|
1131 |
+
layer.build(None)
|
1132 |
+
|
1133 |
+
|
1134 |
+
@keras_serializable
|
1135 |
+
class TFMBartMainLayer(keras.layers.Layer):
|
1136 |
+
config_class = MBartConfig
|
1137 |
+
|
1138 |
+
def __init__(self, config: MBartConfig, **kwargs):
|
1139 |
+
super().__init__(**kwargs)
|
1140 |
+
|
1141 |
+
self.config = config
|
1142 |
+
self.shared = keras.layers.Embedding(
|
1143 |
+
input_dim=config.vocab_size,
|
1144 |
+
output_dim=config.d_model,
|
1145 |
+
embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
|
1146 |
+
name="model.shared",
|
1147 |
+
)
|
1148 |
+
# Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
|
1149 |
+
self.shared.load_weight_prefix = "model.shared"
|
1150 |
+
|
1151 |
+
self.encoder = TFMBartEncoder(config, self.shared, name="encoder")
|
1152 |
+
self.decoder = TFMBartDecoder(config, self.shared, name="decoder")
|
1153 |
+
|
1154 |
+
def get_input_embeddings(self):
|
1155 |
+
return self.shared
|
1156 |
+
|
1157 |
+
def set_input_embeddings(self, new_embeddings):
|
1158 |
+
self.shared = new_embeddings
|
1159 |
+
self.encoder.embed_tokens = self.shared
|
1160 |
+
self.decoder.embed_tokens = self.shared
|
1161 |
+
|
1162 |
+
@unpack_inputs
|
1163 |
+
def call(
|
1164 |
+
self,
|
1165 |
+
input_ids: TFModelInputType = None,
|
1166 |
+
attention_mask: tf.Tensor | None = None,
|
1167 |
+
decoder_input_ids: tf.Tensor | None = None,
|
1168 |
+
decoder_attention_mask: tf.Tensor | None = None,
|
1169 |
+
decoder_position_ids: tf.Tensor | None = None,
|
1170 |
+
head_mask: tf.Tensor | None = None,
|
1171 |
+
decoder_head_mask: tf.Tensor | None = None,
|
1172 |
+
cross_attn_head_mask: tf.Tensor | None = None,
|
1173 |
+
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
1174 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
|
1175 |
+
inputs_embeds: tf.Tensor | None = None,
|
1176 |
+
decoder_inputs_embeds: tf.Tensor | None = None,
|
1177 |
+
use_cache: Optional[bool] = None,
|
1178 |
+
output_attentions: Optional[bool] = None,
|
1179 |
+
output_hidden_states: Optional[bool] = None,
|
1180 |
+
return_dict: Optional[bool] = None,
|
1181 |
+
training: Optional[bool] = False,
|
1182 |
+
**kwargs,
|
1183 |
+
) -> Union[TFSeq2SeqModelOutput, tf.Tensor]:
|
1184 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1185 |
+
use_cache = False
|
1186 |
+
|
1187 |
+
output_hidden_states = (
|
1188 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
if decoder_input_ids is None and input_ids is not None:
|
1192 |
+
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)
|
1193 |
+
|
1194 |
+
if encoder_outputs is None:
|
1195 |
+
encoder_outputs = self.encoder(
|
1196 |
+
input_ids=input_ids,
|
1197 |
+
attention_mask=attention_mask,
|
1198 |
+
head_mask=head_mask,
|
1199 |
+
inputs_embeds=inputs_embeds,
|
1200 |
+
output_attentions=output_attentions,
|
1201 |
+
output_hidden_states=output_hidden_states,
|
1202 |
+
return_dict=return_dict,
|
1203 |
+
training=training,
|
1204 |
+
)
|
1205 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
|
1206 |
+
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
|
1207 |
+
encoder_outputs = TFBaseModelOutput(
|
1208 |
+
last_hidden_state=encoder_outputs[0],
|
1209 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1210 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1211 |
+
)
|
1212 |
+
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
|
1213 |
+
elif not return_dict and not isinstance(encoder_outputs, tuple):
|
1214 |
+
encoder_outputs = encoder_outputs.to_tuple()
|
1215 |
+
|
1216 |
+
decoder_outputs = self.decoder(
|
1217 |
+
decoder_input_ids,
|
1218 |
+
attention_mask=decoder_attention_mask,
|
1219 |
+
position_ids=decoder_position_ids,
|
1220 |
+
encoder_hidden_states=encoder_outputs[0],
|
1221 |
+
encoder_attention_mask=attention_mask,
|
1222 |
+
head_mask=decoder_head_mask,
|
1223 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1224 |
+
past_key_values=past_key_values,
|
1225 |
+
inputs_embeds=decoder_inputs_embeds,
|
1226 |
+
use_cache=use_cache,
|
1227 |
+
output_attentions=output_attentions,
|
1228 |
+
output_hidden_states=output_hidden_states,
|
1229 |
+
return_dict=return_dict,
|
1230 |
+
training=training,
|
1231 |
+
)
|
1232 |
+
|
1233 |
+
if not return_dict:
|
1234 |
+
return decoder_outputs + encoder_outputs
|
1235 |
+
|
1236 |
+
return TFSeq2SeqModelOutput(
|
1237 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1238 |
+
past_key_values=decoder_outputs.past_key_values,
|
1239 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1240 |
+
decoder_attentions=decoder_outputs.attentions,
|
1241 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1242 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1243 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1244 |
+
encoder_attentions=encoder_outputs.attentions,
|
1245 |
+
)
|
1246 |
+
|
1247 |
+
def build(self, input_shape=None):
|
1248 |
+
if self.built:
|
1249 |
+
return
|
1250 |
+
self.built = True
|
1251 |
+
# The shared/tied weights expect to be in the model base namespace
|
1252 |
+
# Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
|
1253 |
+
# the current one.
|
1254 |
+
with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
|
1255 |
+
self.shared.build(None)
|
1256 |
+
if getattr(self, "encoder", None) is not None:
|
1257 |
+
with tf.name_scope(self.encoder.name):
|
1258 |
+
self.encoder.build(None)
|
1259 |
+
if getattr(self, "decoder", None) is not None:
|
1260 |
+
with tf.name_scope(self.decoder.name):
|
1261 |
+
self.decoder.build(None)
|
1262 |
+
|
1263 |
+
|
1264 |
+
@add_start_docstrings(
|
1265 |
+
"The bare MBART Model outputting raw hidden-states without any specific head on top.",
|
1266 |
+
MBART_START_DOCSTRING,
|
1267 |
+
)
|
1268 |
+
class TFMBartModel(TFMBartPreTrainedModel):
|
1269 |
+
def __init__(self, config: MBartConfig, *inputs, **kwargs):
|
1270 |
+
super().__init__(config, *inputs, **kwargs)
|
1271 |
+
|
1272 |
+
self.model = TFMBartMainLayer(config, name="model")
|
1273 |
+
|
1274 |
+
def get_encoder(self):
|
1275 |
+
return self.model.encoder
|
1276 |
+
|
1277 |
+
def get_decoder(self):
|
1278 |
+
return self.model.decoder
|
1279 |
+
|
1280 |
+
@unpack_inputs
|
1281 |
+
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1282 |
+
@add_code_sample_docstrings(
|
1283 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1284 |
+
output_type=TFSeq2SeqModelOutput,
|
1285 |
+
config_class=_CONFIG_FOR_DOC,
|
1286 |
+
)
|
1287 |
+
def call(
|
1288 |
+
self,
|
1289 |
+
input_ids: TFModelInputType = None,
|
1290 |
+
attention_mask: tf.Tensor | None = None,
|
1291 |
+
decoder_input_ids: tf.Tensor | None = None,
|
1292 |
+
decoder_attention_mask: tf.Tensor | None = None,
|
1293 |
+
decoder_position_ids: tf.Tensor | None = None,
|
1294 |
+
head_mask: tf.Tensor | None = None,
|
1295 |
+
decoder_head_mask: tf.Tensor | None = None,
|
1296 |
+
cross_attn_head_mask: tf.Tensor | None = None,
|
1297 |
+
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
1298 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
|
1299 |
+
inputs_embeds: tf.Tensor | None = None,
|
1300 |
+
decoder_inputs_embeds: tf.Tensor | None = None,
|
1301 |
+
use_cache: Optional[bool] = None,
|
1302 |
+
output_attentions: Optional[bool] = None,
|
1303 |
+
output_hidden_states: Optional[bool] = None,
|
1304 |
+
return_dict: Optional[bool] = None,
|
1305 |
+
training: Optional[bool] = False,
|
1306 |
+
**kwargs,
|
1307 |
+
) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]:
|
1308 |
+
outputs = self.model(
|
1309 |
+
input_ids=input_ids,
|
1310 |
+
attention_mask=attention_mask,
|
1311 |
+
decoder_input_ids=decoder_input_ids,
|
1312 |
+
decoder_attention_mask=decoder_attention_mask,
|
1313 |
+
decoder_position_ids=decoder_position_ids,
|
1314 |
+
head_mask=head_mask,
|
1315 |
+
decoder_head_mask=decoder_head_mask,
|
1316 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1317 |
+
encoder_outputs=encoder_outputs,
|
1318 |
+
past_key_values=past_key_values,
|
1319 |
+
inputs_embeds=inputs_embeds,
|
1320 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1321 |
+
use_cache=use_cache,
|
1322 |
+
output_attentions=output_attentions,
|
1323 |
+
output_hidden_states=output_hidden_states,
|
1324 |
+
return_dict=return_dict,
|
1325 |
+
training=training,
|
1326 |
+
)
|
1327 |
+
|
1328 |
+
return outputs
|
1329 |
+
|
1330 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
|
1331 |
+
def serving_output(self, output):
|
1332 |
+
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
1333 |
+
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
1334 |
+
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
1335 |
+
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
1336 |
+
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
1337 |
+
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
1338 |
+
|
1339 |
+
return TFSeq2SeqModelOutput(
|
1340 |
+
last_hidden_state=output.last_hidden_state,
|
1341 |
+
past_key_values=pkv,
|
1342 |
+
decoder_hidden_states=dec_hs,
|
1343 |
+
decoder_attentions=dec_attns,
|
1344 |
+
cross_attentions=cross_attns,
|
1345 |
+
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
1346 |
+
encoder_hidden_states=enc_hs,
|
1347 |
+
encoder_attentions=enc_attns,
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
def build(self, input_shape=None):
|
1351 |
+
if self.built:
|
1352 |
+
return
|
1353 |
+
self.built = True
|
1354 |
+
if getattr(self, "model", None) is not None:
|
1355 |
+
with tf.name_scope(self.model.name):
|
1356 |
+
self.model.build(None)
|
1357 |
+
|
1358 |
+
|
1359 |
+
# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
|
1360 |
+
class BiasLayer(keras.layers.Layer):
|
1361 |
+
"""
|
1362 |
+
Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
|
1363 |
+
so all weights have to be registered in a layer.
|
1364 |
+
"""
|
1365 |
+
|
1366 |
+
def __init__(self, shape, initializer, trainable, name, **kwargs):
|
1367 |
+
super().__init__(name=name, **kwargs)
|
1368 |
+
# Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
|
1369 |
+
# "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
|
1370 |
+
# https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
|
1371 |
+
self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
|
1372 |
+
|
1373 |
+
def call(self, x):
|
1374 |
+
return x + self.bias
|
1375 |
+
|
1376 |
+
|
1377 |
+
@add_start_docstrings(
|
1378 |
+
"The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models.",
|
1379 |
+
MBART_START_DOCSTRING,
|
1380 |
+
)
|
1381 |
+
class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageModelingLoss):
|
1382 |
+
_keys_to_ignore_on_load_unexpected = [
|
1383 |
+
r"model.encoder.embed_tokens.weight",
|
1384 |
+
r"model.decoder.embed_tokens.weight",
|
1385 |
+
]
|
1386 |
+
|
1387 |
+
def __init__(self, config, *inputs, **kwargs):
|
1388 |
+
super().__init__(config, *inputs, **kwargs)
|
1389 |
+
self.model = TFMBartMainLayer(config, name="model")
|
1390 |
+
self.use_cache = config.use_cache
|
1391 |
+
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
|
1392 |
+
self.bias_layer = BiasLayer(
|
1393 |
+
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
|
1394 |
+
)
|
1395 |
+
|
1396 |
+
def get_decoder(self):
|
1397 |
+
return self.model.decoder
|
1398 |
+
|
1399 |
+
def get_encoder(self):
|
1400 |
+
return self.model.encoder
|
1401 |
+
|
1402 |
+
def get_output_embeddings(self):
|
1403 |
+
return self.get_input_embeddings()
|
1404 |
+
|
1405 |
+
def set_output_embeddings(self, value):
|
1406 |
+
self.set_input_embeddings(value)
|
1407 |
+
|
1408 |
+
def get_bias(self):
|
1409 |
+
return {"final_logits_bias": self.bias_layer.bias}
|
1410 |
+
|
1411 |
+
def set_bias(self, value):
|
1412 |
+
# Replaces the existing layers containing bias for correct (de)serialization.
|
1413 |
+
vocab_size = value["final_logits_bias"].shape[-1]
|
1414 |
+
self.bias_layer = BiasLayer(
|
1415 |
+
name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
|
1416 |
+
)
|
1417 |
+
self.bias_layer.bias.assign(value["final_logits_bias"])
|
1418 |
+
|
1419 |
+
@unpack_inputs
|
1420 |
+
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
|
1421 |
+
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1422 |
+
@add_end_docstrings(MBART_GENERATION_EXAMPLE)
|
1423 |
+
def call(
|
1424 |
+
self,
|
1425 |
+
input_ids: TFModelInputType = None,
|
1426 |
+
attention_mask: tf.Tensor | None = None,
|
1427 |
+
decoder_input_ids: tf.Tensor | None = None,
|
1428 |
+
decoder_attention_mask: tf.Tensor | None = None,
|
1429 |
+
decoder_position_ids: tf.Tensor | None = None,
|
1430 |
+
head_mask: tf.Tensor | None = None,
|
1431 |
+
decoder_head_mask: tf.Tensor | None = None,
|
1432 |
+
cross_attn_head_mask: tf.Tensor | None = None,
|
1433 |
+
encoder_outputs: Optional[TFBaseModelOutput] = None,
|
1434 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] = None,
|
1435 |
+
inputs_embeds: tf.Tensor | None = None,
|
1436 |
+
decoder_inputs_embeds: tf.Tensor | None = None,
|
1437 |
+
use_cache: Optional[bool] = None,
|
1438 |
+
output_attentions: Optional[bool] = None,
|
1439 |
+
output_hidden_states: Optional[bool] = None,
|
1440 |
+
return_dict: Optional[bool] = None,
|
1441 |
+
labels: tf.Tensor | None = None,
|
1442 |
+
training: Optional[bool] = False,
|
1443 |
+
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
|
1444 |
+
"""
|
1445 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1446 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1447 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1448 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1449 |
+
|
1450 |
+
Returns:
|
1451 |
+
|
1452 |
+
"""
|
1453 |
+
|
1454 |
+
if labels is not None:
|
1455 |
+
labels = tf.where(
|
1456 |
+
labels == self.config.pad_token_id,
|
1457 |
+
tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
|
1458 |
+
labels,
|
1459 |
+
)
|
1460 |
+
use_cache = False
|
1461 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1462 |
+
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id)
|
1463 |
+
|
1464 |
+
outputs = self.model(
|
1465 |
+
input_ids,
|
1466 |
+
attention_mask=attention_mask,
|
1467 |
+
decoder_input_ids=decoder_input_ids,
|
1468 |
+
encoder_outputs=encoder_outputs,
|
1469 |
+
decoder_attention_mask=decoder_attention_mask,
|
1470 |
+
decoder_position_ids=decoder_position_ids,
|
1471 |
+
head_mask=head_mask,
|
1472 |
+
decoder_head_mask=decoder_head_mask,
|
1473 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1474 |
+
past_key_values=past_key_values,
|
1475 |
+
inputs_embeds=inputs_embeds,
|
1476 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1477 |
+
use_cache=use_cache,
|
1478 |
+
output_attentions=output_attentions,
|
1479 |
+
output_hidden_states=output_hidden_states,
|
1480 |
+
return_dict=return_dict,
|
1481 |
+
training=training,
|
1482 |
+
)
|
1483 |
+
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
|
1484 |
+
lm_logits = self.bias_layer(lm_logits)
|
1485 |
+
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
|
1486 |
+
|
1487 |
+
if not return_dict:
|
1488 |
+
output = (lm_logits,) + outputs[1:]
|
1489 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1490 |
+
return TFSeq2SeqLMOutput(
|
1491 |
+
loss=masked_lm_loss,
|
1492 |
+
logits=lm_logits,
|
1493 |
+
past_key_values=outputs.past_key_values, # index 1 of d outputs
|
1494 |
+
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
|
1495 |
+
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
|
1496 |
+
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
|
1497 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
|
1498 |
+
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
|
1499 |
+
encoder_attentions=outputs.encoder_attentions, # 2 of e out
|
1500 |
+
)
|
1501 |
+
|
1502 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
|
1503 |
+
def serving_output(self, output):
|
1504 |
+
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
1505 |
+
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
1506 |
+
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
1507 |
+
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
1508 |
+
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
1509 |
+
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
1510 |
+
|
1511 |
+
return TFSeq2SeqLMOutput(
|
1512 |
+
logits=output.logits,
|
1513 |
+
past_key_values=pkv,
|
1514 |
+
decoder_hidden_states=dec_hs,
|
1515 |
+
decoder_attentions=dec_attns,
|
1516 |
+
cross_attentions=cross_attns,
|
1517 |
+
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
1518 |
+
encoder_hidden_states=enc_hs,
|
1519 |
+
encoder_attentions=enc_attns,
|
1520 |
+
)
|
1521 |
+
|
1522 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
|
1523 |
+
def prepare_inputs_for_generation(
|
1524 |
+
self,
|
1525 |
+
decoder_input_ids,
|
1526 |
+
past_key_values=None,
|
1527 |
+
attention_mask=None,
|
1528 |
+
decoder_attention_mask=None,
|
1529 |
+
head_mask=None,
|
1530 |
+
decoder_head_mask=None,
|
1531 |
+
cross_attn_head_mask=None,
|
1532 |
+
use_cache=None,
|
1533 |
+
encoder_outputs=None,
|
1534 |
+
**kwargs,
|
1535 |
+
):
|
1536 |
+
# cut decoder_input_ids if past_key_values is used
|
1537 |
+
if past_key_values is not None:
|
1538 |
+
decoder_input_ids = decoder_input_ids[:, -1:]
|
1539 |
+
|
1540 |
+
if decoder_attention_mask is not None: # xla
|
1541 |
+
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
|
1542 |
+
elif past_key_values is not None: # no xla + past_key_values
|
1543 |
+
decoder_position_ids = past_key_values[0][0].shape[2]
|
1544 |
+
else: # no xla + no past_key_values
|
1545 |
+
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
|
1546 |
+
|
1547 |
+
return {
|
1548 |
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
1549 |
+
"encoder_outputs": encoder_outputs,
|
1550 |
+
"past_key_values": past_key_values,
|
1551 |
+
"decoder_input_ids": decoder_input_ids,
|
1552 |
+
"attention_mask": attention_mask,
|
1553 |
+
"decoder_attention_mask": decoder_attention_mask,
|
1554 |
+
"decoder_position_ids": decoder_position_ids,
|
1555 |
+
"head_mask": head_mask,
|
1556 |
+
"decoder_head_mask": decoder_head_mask,
|
1557 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1558 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1559 |
+
}
|
1560 |
+
|
1561 |
+
def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
|
1562 |
+
return shift_tokens_right(labels, self.config.pad_token_id)
|
1563 |
+
|
1564 |
+
def build(self, input_shape=None):
|
1565 |
+
if self.built:
|
1566 |
+
return
|
1567 |
+
self.built = True
|
1568 |
+
if getattr(self, "model", None) is not None:
|
1569 |
+
with tf.name_scope(self.model.name):
|
1570 |
+
self.model.build(None)
|
1571 |
+
if getattr(self, "bias_layer", None) is not None:
|
1572 |
+
with tf.name_scope(self.bias_layer.name):
|
1573 |
+
self.bias_layer.build(None)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from shutil import copyfile
|
18 |
+
from typing import Any, Dict, List, Optional, Tuple
|
19 |
+
|
20 |
+
import sentencepiece as spm
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
SPIECE_UNDERLINE = "▁"
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
|
31 |
+
|
32 |
+
|
33 |
+
FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] # fmt: skip
|
34 |
+
|
35 |
+
|
36 |
+
class MBartTokenizer(PreTrainedTokenizer):
|
37 |
+
"""
|
38 |
+
Construct an MBART tokenizer.
|
39 |
+
|
40 |
+
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
|
41 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
42 |
+
|
43 |
+
The tokenization method is `<tokens> <eos> <language code>` for source language documents, and `<language code>
|
44 |
+
<tokens> <eos>` for target language documents.
|
45 |
+
|
46 |
+
Examples:
|
47 |
+
|
48 |
+
```python
|
49 |
+
>>> from transformers import MBartTokenizer
|
50 |
+
|
51 |
+
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO")
|
52 |
+
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
|
53 |
+
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
54 |
+
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
|
55 |
+
```"""
|
56 |
+
|
57 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
58 |
+
model_input_names = ["input_ids", "attention_mask"]
|
59 |
+
|
60 |
+
prefix_tokens: List[int] = []
|
61 |
+
suffix_tokens: List[int] = []
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
vocab_file,
|
66 |
+
bos_token="<s>",
|
67 |
+
eos_token="</s>",
|
68 |
+
sep_token="</s>",
|
69 |
+
cls_token="<s>",
|
70 |
+
unk_token="<unk>",
|
71 |
+
pad_token="<pad>",
|
72 |
+
mask_token="<mask>",
|
73 |
+
tokenizer_file=None,
|
74 |
+
src_lang=None,
|
75 |
+
tgt_lang=None,
|
76 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
77 |
+
additional_special_tokens=None,
|
78 |
+
**kwargs,
|
79 |
+
):
|
80 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
81 |
+
mask_token = (
|
82 |
+
AddedToken(mask_token, lstrip=True, normalized=False) if isinstance(mask_token, str) else mask_token
|
83 |
+
)
|
84 |
+
|
85 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
86 |
+
|
87 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
88 |
+
self.sp_model.Load(str(vocab_file))
|
89 |
+
self.vocab_file = vocab_file
|
90 |
+
|
91 |
+
# Original fairseq vocab and spm vocab must be "aligned":
|
92 |
+
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
93 |
+
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
|
94 |
+
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
|
95 |
+
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
|
96 |
+
|
97 |
+
# Mimic fairseq token-to-id alignment for the first 4 token
|
98 |
+
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
99 |
+
|
100 |
+
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
101 |
+
self.fairseq_offset = 1
|
102 |
+
|
103 |
+
self.sp_model_size = len(self.sp_model)
|
104 |
+
self.lang_code_to_id = {
|
105 |
+
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES)
|
106 |
+
}
|
107 |
+
self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()}
|
108 |
+
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
|
109 |
+
|
110 |
+
self.fairseq_tokens_to_ids.update(self.lang_code_to_id)
|
111 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
112 |
+
_additional_special_tokens = list(self.lang_code_to_id.keys())
|
113 |
+
|
114 |
+
if additional_special_tokens is not None:
|
115 |
+
# Only add those special tokens if they are not already there.
|
116 |
+
_additional_special_tokens.extend(
|
117 |
+
[t for t in additional_special_tokens if t not in _additional_special_tokens]
|
118 |
+
)
|
119 |
+
|
120 |
+
super().__init__(
|
121 |
+
bos_token=bos_token,
|
122 |
+
eos_token=eos_token,
|
123 |
+
unk_token=unk_token,
|
124 |
+
sep_token=sep_token,
|
125 |
+
cls_token=cls_token,
|
126 |
+
pad_token=pad_token,
|
127 |
+
mask_token=mask_token,
|
128 |
+
tokenizer_file=None,
|
129 |
+
src_lang=src_lang,
|
130 |
+
tgt_lang=tgt_lang,
|
131 |
+
additional_special_tokens=_additional_special_tokens,
|
132 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
133 |
+
**kwargs,
|
134 |
+
)
|
135 |
+
|
136 |
+
self._src_lang = src_lang if src_lang is not None else "en_XX"
|
137 |
+
self.cur_lang_code_id = self.lang_code_to_id[self._src_lang]
|
138 |
+
self.tgt_lang = tgt_lang
|
139 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
140 |
+
|
141 |
+
def __getstate__(self):
|
142 |
+
state = self.__dict__.copy()
|
143 |
+
state["sp_model"] = None
|
144 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
145 |
+
return state
|
146 |
+
|
147 |
+
def __setstate__(self, d):
|
148 |
+
self.__dict__ = d
|
149 |
+
|
150 |
+
# for backward compatibility
|
151 |
+
if not hasattr(self, "sp_model_kwargs"):
|
152 |
+
self.sp_model_kwargs = {}
|
153 |
+
|
154 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
155 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
156 |
+
|
157 |
+
@property
|
158 |
+
def vocab_size(self):
|
159 |
+
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token
|
160 |
+
|
161 |
+
@property
|
162 |
+
def src_lang(self) -> str:
|
163 |
+
return self._src_lang
|
164 |
+
|
165 |
+
@src_lang.setter
|
166 |
+
def src_lang(self, new_src_lang: str) -> None:
|
167 |
+
self._src_lang = new_src_lang
|
168 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
169 |
+
|
170 |
+
def get_special_tokens_mask(
|
171 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
172 |
+
) -> List[int]:
|
173 |
+
"""
|
174 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
175 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
token_ids_0 (`List[int]`):
|
179 |
+
List of IDs.
|
180 |
+
token_ids_1 (`List[int]`, *optional*):
|
181 |
+
Optional second list of IDs for sequence pairs.
|
182 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
183 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
184 |
+
|
185 |
+
Returns:
|
186 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
187 |
+
"""
|
188 |
+
|
189 |
+
if already_has_special_tokens:
|
190 |
+
return super().get_special_tokens_mask(
|
191 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
192 |
+
)
|
193 |
+
|
194 |
+
prefix_ones = [1] * len(self.prefix_tokens)
|
195 |
+
suffix_ones = [1] * len(self.suffix_tokens)
|
196 |
+
if token_ids_1 is None:
|
197 |
+
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
|
198 |
+
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
|
199 |
+
|
200 |
+
def build_inputs_with_special_tokens(
|
201 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
202 |
+
) -> List[int]:
|
203 |
+
"""
|
204 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
205 |
+
adding special tokens. An MBART sequence has the following format, where `X` represents the sequence:
|
206 |
+
|
207 |
+
- `input_ids` (for encoder) `X [eos, src_lang_code]`
|
208 |
+
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
|
209 |
+
|
210 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
211 |
+
separator.
|
212 |
+
|
213 |
+
Args:
|
214 |
+
token_ids_0 (`List[int]`):
|
215 |
+
List of IDs to which the special tokens will be added.
|
216 |
+
token_ids_1 (`List[int]`, *optional*):
|
217 |
+
Optional second list of IDs for sequence pairs.
|
218 |
+
|
219 |
+
Returns:
|
220 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
221 |
+
"""
|
222 |
+
if token_ids_1 is None:
|
223 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
224 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
225 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
226 |
+
|
227 |
+
def create_token_type_ids_from_sequences(
|
228 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
229 |
+
) -> List[int]:
|
230 |
+
"""
|
231 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. mBART does not
|
232 |
+
make use of token type ids, therefore a list of zeros is returned.
|
233 |
+
|
234 |
+
Args:
|
235 |
+
token_ids_0 (`List[int]`):
|
236 |
+
List of IDs.
|
237 |
+
token_ids_1 (`List[int]`, *optional*):
|
238 |
+
Optional second list of IDs for sequence pairs.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
`List[int]`: List of zeros.
|
242 |
+
|
243 |
+
"""
|
244 |
+
|
245 |
+
sep = [self.sep_token_id]
|
246 |
+
cls = [self.cls_token_id]
|
247 |
+
|
248 |
+
if token_ids_1 is None:
|
249 |
+
return len(cls + token_ids_0 + sep) * [0]
|
250 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
251 |
+
|
252 |
+
def _build_translation_inputs(
|
253 |
+
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
|
254 |
+
):
|
255 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
256 |
+
if src_lang is None or tgt_lang is None:
|
257 |
+
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
|
258 |
+
self.src_lang = src_lang
|
259 |
+
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
|
260 |
+
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
|
261 |
+
inputs["forced_bos_token_id"] = tgt_lang_id
|
262 |
+
return inputs
|
263 |
+
|
264 |
+
def get_vocab(self):
|
265 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
266 |
+
vocab.update(self.added_tokens_encoder)
|
267 |
+
return vocab
|
268 |
+
|
269 |
+
def _tokenize(self, text: str) -> List[str]:
|
270 |
+
return self.sp_model.encode(text, out_type=str)
|
271 |
+
|
272 |
+
def _convert_token_to_id(self, token):
|
273 |
+
"""Converts a token (str) in an id using the vocab."""
|
274 |
+
if token in self.fairseq_tokens_to_ids:
|
275 |
+
return self.fairseq_tokens_to_ids[token]
|
276 |
+
spm_id = self.sp_model.PieceToId(token)
|
277 |
+
|
278 |
+
# Need to return unknown token if the SP model returned 0
|
279 |
+
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
|
280 |
+
|
281 |
+
def _convert_id_to_token(self, index):
|
282 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
283 |
+
if index in self.fairseq_ids_to_tokens:
|
284 |
+
return self.fairseq_ids_to_tokens[index]
|
285 |
+
return self.sp_model.IdToPiece(index - self.fairseq_offset)
|
286 |
+
|
287 |
+
def convert_tokens_to_string(self, tokens):
|
288 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
289 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
290 |
+
return out_string
|
291 |
+
|
292 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
293 |
+
if not os.path.isdir(save_directory):
|
294 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
295 |
+
return
|
296 |
+
out_vocab_file = os.path.join(
|
297 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
298 |
+
)
|
299 |
+
|
300 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
301 |
+
copyfile(self.vocab_file, out_vocab_file)
|
302 |
+
elif not os.path.isfile(self.vocab_file):
|
303 |
+
with open(out_vocab_file, "wb") as fi:
|
304 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
305 |
+
fi.write(content_spiece_model)
|
306 |
+
|
307 |
+
return (out_vocab_file,)
|
308 |
+
|
309 |
+
def prepare_seq2seq_batch(
|
310 |
+
self,
|
311 |
+
src_texts: List[str],
|
312 |
+
src_lang: str = "en_XX",
|
313 |
+
tgt_texts: Optional[List[str]] = None,
|
314 |
+
tgt_lang: str = "ro_RO",
|
315 |
+
**kwargs,
|
316 |
+
) -> BatchEncoding:
|
317 |
+
self.src_lang = src_lang
|
318 |
+
self.tgt_lang = tgt_lang
|
319 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
320 |
+
|
321 |
+
def _switch_to_input_mode(self):
|
322 |
+
return self.set_src_lang_special_tokens(self.src_lang)
|
323 |
+
|
324 |
+
def _switch_to_target_mode(self):
|
325 |
+
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
326 |
+
|
327 |
+
def set_src_lang_special_tokens(self, src_lang) -> None:
|
328 |
+
"""Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code]."""
|
329 |
+
self.cur_lang_code = self.lang_code_to_id[src_lang]
|
330 |
+
self.prefix_tokens = []
|
331 |
+
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
332 |
+
|
333 |
+
def set_tgt_lang_special_tokens(self, lang: str) -> None:
|
334 |
+
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code]."""
|
335 |
+
self.cur_lang_code = self.lang_code_to_id[lang]
|
336 |
+
self.prefix_tokens = []
|
337 |
+
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart_fast.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from shutil import copyfile
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from tokenizers import processors
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken, BatchEncoding
|
23 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
24 |
+
from ...utils import is_sentencepiece_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if is_sentencepiece_available():
|
28 |
+
from .tokenization_mbart import MBartTokenizer
|
29 |
+
else:
|
30 |
+
MBartTokenizer = None
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
|
37 |
+
|
38 |
+
|
39 |
+
FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] # fmt: skip
|
40 |
+
|
41 |
+
|
42 |
+
class MBartTokenizerFast(PreTrainedTokenizerFast):
|
43 |
+
"""
|
44 |
+
Construct a "fast" MBART tokenizer (backed by HuggingFace's *tokenizers* library). Based on
|
45 |
+
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
|
46 |
+
|
47 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
48 |
+
refer to this superclass for more information regarding those methods.
|
49 |
+
|
50 |
+
The tokenization method is `<tokens> <eos> <language code>` for source language documents, and `<language code>
|
51 |
+
<tokens> <eos>` for target language documents.
|
52 |
+
|
53 |
+
Examples:
|
54 |
+
|
55 |
+
```python
|
56 |
+
>>> from transformers import MBartTokenizerFast
|
57 |
+
|
58 |
+
>>> tokenizer = MBartTokenizerFast.from_pretrained(
|
59 |
+
... "facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO"
|
60 |
+
... )
|
61 |
+
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
|
62 |
+
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
63 |
+
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
|
64 |
+
```"""
|
65 |
+
|
66 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
67 |
+
model_input_names = ["input_ids", "attention_mask"]
|
68 |
+
slow_tokenizer_class = MBartTokenizer
|
69 |
+
|
70 |
+
prefix_tokens: List[int] = []
|
71 |
+
suffix_tokens: List[int] = []
|
72 |
+
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
vocab_file=None,
|
76 |
+
tokenizer_file=None,
|
77 |
+
bos_token="<s>",
|
78 |
+
eos_token="</s>",
|
79 |
+
sep_token="</s>",
|
80 |
+
cls_token="<s>",
|
81 |
+
unk_token="<unk>",
|
82 |
+
pad_token="<pad>",
|
83 |
+
mask_token="<mask>",
|
84 |
+
src_lang=None,
|
85 |
+
tgt_lang=None,
|
86 |
+
additional_special_tokens=None,
|
87 |
+
**kwargs,
|
88 |
+
):
|
89 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
90 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
91 |
+
|
92 |
+
_additional_special_tokens = FAIRSEQ_LANGUAGE_CODES.copy()
|
93 |
+
|
94 |
+
if additional_special_tokens is not None:
|
95 |
+
# Only add those special tokens if they are not already there.
|
96 |
+
_additional_special_tokens.extend(
|
97 |
+
[t for t in additional_special_tokens if t not in _additional_special_tokens]
|
98 |
+
)
|
99 |
+
|
100 |
+
super().__init__(
|
101 |
+
vocab_file=vocab_file,
|
102 |
+
tokenizer_file=tokenizer_file,
|
103 |
+
bos_token=bos_token,
|
104 |
+
eos_token=eos_token,
|
105 |
+
sep_token=sep_token,
|
106 |
+
cls_token=cls_token,
|
107 |
+
unk_token=unk_token,
|
108 |
+
pad_token=pad_token,
|
109 |
+
mask_token=mask_token,
|
110 |
+
src_lang=src_lang,
|
111 |
+
tgt_lang=tgt_lang,
|
112 |
+
additional_special_tokens=_additional_special_tokens,
|
113 |
+
**kwargs,
|
114 |
+
)
|
115 |
+
|
116 |
+
self.vocab_file = vocab_file
|
117 |
+
self.lang_code_to_id = {
|
118 |
+
lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES
|
119 |
+
}
|
120 |
+
|
121 |
+
self._src_lang = src_lang if src_lang is not None else "en_XX"
|
122 |
+
self.cur_lang_code = self.convert_tokens_to_ids(self._src_lang)
|
123 |
+
self.tgt_lang = tgt_lang
|
124 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
125 |
+
|
126 |
+
@property
|
127 |
+
def can_save_slow_tokenizer(self) -> bool:
|
128 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
129 |
+
|
130 |
+
@property
|
131 |
+
def src_lang(self) -> str:
|
132 |
+
return self._src_lang
|
133 |
+
|
134 |
+
@src_lang.setter
|
135 |
+
def src_lang(self, new_src_lang: str) -> None:
|
136 |
+
self._src_lang = new_src_lang
|
137 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
138 |
+
|
139 |
+
def build_inputs_with_special_tokens(
|
140 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
141 |
+
) -> List[int]:
|
142 |
+
"""
|
143 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
144 |
+
adding special tokens. The special tokens depend on calling set_lang.
|
145 |
+
|
146 |
+
An MBART sequence has the following format, where `X` represents the sequence:
|
147 |
+
|
148 |
+
- `input_ids` (for encoder) `X [eos, src_lang_code]`
|
149 |
+
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
|
150 |
+
|
151 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
152 |
+
separator.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
token_ids_0 (`List[int]`):
|
156 |
+
List of IDs to which the special tokens will be added.
|
157 |
+
token_ids_1 (`List[int]`, *optional*):
|
158 |
+
Optional second list of IDs for sequence pairs.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
162 |
+
"""
|
163 |
+
if token_ids_1 is None:
|
164 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
165 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
166 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
167 |
+
|
168 |
+
def create_token_type_ids_from_sequences(
|
169 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
170 |
+
) -> List[int]:
|
171 |
+
"""
|
172 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. mBART does not
|
173 |
+
make use of token type ids, therefore a list of zeros is returned.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
token_ids_0 (`List[int]`):
|
177 |
+
List of IDs.
|
178 |
+
token_ids_1 (`List[int]`, *optional*):
|
179 |
+
Optional second list of IDs for sequence pairs.
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
`List[int]`: List of zeros.
|
183 |
+
|
184 |
+
"""
|
185 |
+
|
186 |
+
sep = [self.sep_token_id]
|
187 |
+
cls = [self.cls_token_id]
|
188 |
+
|
189 |
+
if token_ids_1 is None:
|
190 |
+
return len(cls + token_ids_0 + sep) * [0]
|
191 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
192 |
+
|
193 |
+
def _build_translation_inputs(
|
194 |
+
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
|
195 |
+
):
|
196 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
197 |
+
if src_lang is None or tgt_lang is None:
|
198 |
+
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
|
199 |
+
self.src_lang = src_lang
|
200 |
+
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
|
201 |
+
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
|
202 |
+
inputs["forced_bos_token_id"] = tgt_lang_id
|
203 |
+
return inputs
|
204 |
+
|
205 |
+
def prepare_seq2seq_batch(
|
206 |
+
self,
|
207 |
+
src_texts: List[str],
|
208 |
+
src_lang: str = "en_XX",
|
209 |
+
tgt_texts: Optional[List[str]] = None,
|
210 |
+
tgt_lang: str = "ro_RO",
|
211 |
+
**kwargs,
|
212 |
+
) -> BatchEncoding:
|
213 |
+
self.src_lang = src_lang
|
214 |
+
self.tgt_lang = tgt_lang
|
215 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
216 |
+
|
217 |
+
def _switch_to_input_mode(self):
|
218 |
+
return self.set_src_lang_special_tokens(self.src_lang)
|
219 |
+
|
220 |
+
def _switch_to_target_mode(self):
|
221 |
+
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
222 |
+
|
223 |
+
def set_src_lang_special_tokens(self, src_lang) -> None:
|
224 |
+
"""Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code]."""
|
225 |
+
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
|
226 |
+
self.prefix_tokens = []
|
227 |
+
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
228 |
+
|
229 |
+
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
230 |
+
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
231 |
+
|
232 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
233 |
+
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
|
234 |
+
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
|
235 |
+
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
|
236 |
+
)
|
237 |
+
|
238 |
+
def set_tgt_lang_special_tokens(self, lang: str) -> None:
|
239 |
+
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code]."""
|
240 |
+
self.cur_lang_code = self.convert_tokens_to_ids(lang)
|
241 |
+
self.prefix_tokens = []
|
242 |
+
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
243 |
+
|
244 |
+
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
245 |
+
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
246 |
+
|
247 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
248 |
+
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
|
249 |
+
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
|
250 |
+
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
|
251 |
+
)
|
252 |
+
|
253 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
254 |
+
if not self.can_save_slow_tokenizer:
|
255 |
+
raise ValueError(
|
256 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
257 |
+
"tokenizer."
|
258 |
+
)
|
259 |
+
|
260 |
+
if not os.path.isdir(save_directory):
|
261 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
|
262 |
+
return
|
263 |
+
out_vocab_file = os.path.join(
|
264 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
265 |
+
)
|
266 |
+
|
267 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
268 |
+
copyfile(self.vocab_file, out_vocab_file)
|
269 |
+
|
270 |
+
return (out_vocab_file,)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__init__.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
|
21 |
+
}
|
22 |
+
|
23 |
+
try:
|
24 |
+
if not is_torch_available():
|
25 |
+
raise OptionalDependencyNotAvailable()
|
26 |
+
except OptionalDependencyNotAvailable:
|
27 |
+
pass
|
28 |
+
else:
|
29 |
+
_import_structure["modeling_megatron_bert"] = [
|
30 |
+
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
31 |
+
"MegatronBertForCausalLM",
|
32 |
+
"MegatronBertForMaskedLM",
|
33 |
+
"MegatronBertForMultipleChoice",
|
34 |
+
"MegatronBertForNextSentencePrediction",
|
35 |
+
"MegatronBertForPreTraining",
|
36 |
+
"MegatronBertForQuestionAnswering",
|
37 |
+
"MegatronBertForSequenceClassification",
|
38 |
+
"MegatronBertForTokenClassification",
|
39 |
+
"MegatronBertModel",
|
40 |
+
"MegatronBertPreTrainedModel",
|
41 |
+
]
|
42 |
+
|
43 |
+
if TYPE_CHECKING:
|
44 |
+
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
|
45 |
+
|
46 |
+
try:
|
47 |
+
if not is_torch_available():
|
48 |
+
raise OptionalDependencyNotAvailable()
|
49 |
+
except OptionalDependencyNotAvailable:
|
50 |
+
pass
|
51 |
+
else:
|
52 |
+
from .modeling_megatron_bert import (
|
53 |
+
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
54 |
+
MegatronBertForCausalLM,
|
55 |
+
MegatronBertForMaskedLM,
|
56 |
+
MegatronBertForMultipleChoice,
|
57 |
+
MegatronBertForNextSentencePrediction,
|
58 |
+
MegatronBertForPreTraining,
|
59 |
+
MegatronBertForQuestionAnswering,
|
60 |
+
MegatronBertForSequenceClassification,
|
61 |
+
MegatronBertForTokenClassification,
|
62 |
+
MegatronBertModel,
|
63 |
+
MegatronBertPreTrainedModel,
|
64 |
+
)
|
65 |
+
|
66 |
+
else:
|
67 |
+
import sys
|
68 |
+
|
69 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.27 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/configuration_megatron_bert.cpython-310.pyc
ADDED
Binary file (5.88 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/convert_megatron_bert_checkpoint.cpython-310.pyc
ADDED
Binary file (5.84 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/__pycache__/modeling_megatron_bert.cpython-310.pyc
ADDED
Binary file (54.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/configuration_megatron_bert.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021- NVIDIA Corporation and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MEGATRON_BERT model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class MegatronBertConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`MegatronBertModel`]. It is used to instantiate a
|
30 |
+
MEGATRON_BERT model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the MEGATRON_BERT
|
32 |
+
[nvidia/megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 29056):
|
40 |
+
Vocabulary size of the MEGATRON_BERT model. Defines the number of different tokens that can be represented
|
41 |
+
by the `inputs_ids` passed when calling [`MegatronBertModel`].
|
42 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
43 |
+
Dimensionality of the encoder layers and the pooler layer.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
45 |
+
Number of hidden layers in the Transformer encoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
+
intermediate_size (`int`, *optional*, defaults to 4096):
|
49 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
50 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
51 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
52 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
53 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
54 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
55 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
56 |
+
The dropout ratio for the attention probabilities.
|
57 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
58 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
59 |
+
just in case (e.g., 512 or 1024 or 2048).
|
60 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
61 |
+
The vocabulary size of the `token_type_ids` passed when calling [`MegatronBertModel`].
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
65 |
+
The epsilon used by the layer normalization layers.
|
66 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
67 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
68 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
69 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
70 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
71 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
72 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
73 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
74 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
75 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
76 |
+
relevant if `config.is_decoder=True`.
|
77 |
+
|
78 |
+
Examples:
|
79 |
+
|
80 |
+
```python
|
81 |
+
>>> from transformers import MegatronBertConfig, MegatronBertModel
|
82 |
+
|
83 |
+
>>> # Initializing a MEGATRON_BERT google-bert/bert-base-uncased style configuration
|
84 |
+
>>> configuration = MegatronBertConfig()
|
85 |
+
|
86 |
+
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
|
87 |
+
>>> model = MegatronBertModel(configuration)
|
88 |
+
|
89 |
+
>>> # Accessing the model configuration
|
90 |
+
>>> configuration = model.config
|
91 |
+
```"""
|
92 |
+
|
93 |
+
model_type = "megatron-bert"
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
vocab_size=29056,
|
98 |
+
hidden_size=1024,
|
99 |
+
num_hidden_layers=24,
|
100 |
+
num_attention_heads=16,
|
101 |
+
intermediate_size=4096,
|
102 |
+
hidden_act="gelu",
|
103 |
+
hidden_dropout_prob=0.1,
|
104 |
+
attention_probs_dropout_prob=0.1,
|
105 |
+
max_position_embeddings=512,
|
106 |
+
type_vocab_size=2,
|
107 |
+
initializer_range=0.02,
|
108 |
+
layer_norm_eps=1e-12,
|
109 |
+
pad_token_id=0,
|
110 |
+
position_embedding_type="absolute",
|
111 |
+
use_cache=True,
|
112 |
+
**kwargs,
|
113 |
+
):
|
114 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
115 |
+
|
116 |
+
self.vocab_size = vocab_size
|
117 |
+
self.hidden_size = hidden_size
|
118 |
+
self.num_hidden_layers = num_hidden_layers
|
119 |
+
self.num_attention_heads = num_attention_heads
|
120 |
+
self.hidden_act = hidden_act
|
121 |
+
self.intermediate_size = intermediate_size
|
122 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
123 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
124 |
+
self.max_position_embeddings = max_position_embeddings
|
125 |
+
self.type_vocab_size = type_vocab_size
|
126 |
+
self.initializer_range = initializer_range
|
127 |
+
self.layer_norm_eps = layer_norm_eps
|
128 |
+
self.position_embedding_type = position_embedding_type
|
129 |
+
self.use_cache = use_cache
|
llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
####################################################################################################
|
2 |
+
|
3 |
+
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
####################################################################################################
|
18 |
+
|
19 |
+
#
|
20 |
+
# Note: If when running this conversion script you're getting an exception:
|
21 |
+
# ModuleNotFoundError: No module named 'megatron.model.enums'
|
22 |
+
# you need to tell python where to find the clone of Megatron-LM, e.g.:
|
23 |
+
#
|
24 |
+
# cd /tmp
|
25 |
+
# git clone https://github.com/NVIDIA/Megatron-LM
|
26 |
+
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py ...
|
27 |
+
#
|
28 |
+
# if you already have it cloned elsewhere, simply adjust the path to the existing path
|
29 |
+
#
|
30 |
+
# If the training was done using a Megatron-LM fork, e.g.,
|
31 |
+
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
|
32 |
+
# in your path, i.e., /path/to/Megatron-DeepSpeed/
|
33 |
+
#
|
34 |
+
|
35 |
+
import argparse
|
36 |
+
import os
|
37 |
+
import re
|
38 |
+
import zipfile
|
39 |
+
|
40 |
+
import torch
|
41 |
+
|
42 |
+
from transformers import MegatronBertConfig
|
43 |
+
|
44 |
+
|
45 |
+
####################################################################################################
|
46 |
+
|
47 |
+
|
48 |
+
def recursive_print(name, val, spaces=0):
|
49 |
+
# Format the message.
|
50 |
+
if name is None:
|
51 |
+
msg = None
|
52 |
+
else:
|
53 |
+
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
|
54 |
+
msg = fmt.format(name)
|
55 |
+
|
56 |
+
# Print and recurse (if needed).
|
57 |
+
if isinstance(val, dict):
|
58 |
+
if msg is not None:
|
59 |
+
print(msg)
|
60 |
+
for k in val.keys():
|
61 |
+
recursive_print(k, val[k], spaces + 2)
|
62 |
+
elif isinstance(val, torch.Tensor):
|
63 |
+
print(msg, ":", val.size())
|
64 |
+
else:
|
65 |
+
print(msg, ":", val)
|
66 |
+
|
67 |
+
|
68 |
+
def fix_query_key_value_ordering(param, checkpoint_version, num_splits, num_heads, hidden_size):
|
69 |
+
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
|
70 |
+
# for compatibility with later versions of NVIDIA Megatron-LM.
|
71 |
+
# The inverse operation is performed inside Megatron-LM to read checkpoints:
|
72 |
+
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
|
73 |
+
# If param is the weight tensor of the self-attention block, the returned tensor
|
74 |
+
# will have to be transposed one more time to be read by HuggingFace BERT.
|
75 |
+
input_shape = param.size()
|
76 |
+
if checkpoint_version == 1.0:
|
77 |
+
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
|
78 |
+
saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:]
|
79 |
+
param = param.view(*saved_shape)
|
80 |
+
param = param.transpose(0, 2)
|
81 |
+
param = param.transpose(1, 2).contiguous()
|
82 |
+
elif checkpoint_version >= 2.0:
|
83 |
+
# other versions store [num_heads * num_splits * hidden_size, :]
|
84 |
+
saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:]
|
85 |
+
param = param.view(*saved_shape)
|
86 |
+
param = param.transpose(0, 1).contiguous()
|
87 |
+
param = param.view(*input_shape)
|
88 |
+
return param
|
89 |
+
|
90 |
+
|
91 |
+
####################################################################################################
|
92 |
+
|
93 |
+
|
94 |
+
def convert_megatron_checkpoint(args, input_state_dict, config):
|
95 |
+
# The converted output model.
|
96 |
+
output_state_dict = {}
|
97 |
+
|
98 |
+
# old versions did not store training args
|
99 |
+
ds_args = input_state_dict.get("args", None)
|
100 |
+
if ds_args is not None:
|
101 |
+
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
|
102 |
+
# from pprint import pprint
|
103 |
+
# pprint(vars(ds_args))
|
104 |
+
|
105 |
+
config.tokenizer_type = ds_args.tokenizer_type
|
106 |
+
config.vocab_size = ds_args.padded_vocab_size
|
107 |
+
config.max_position_embeddings = ds_args.max_position_embeddings
|
108 |
+
config.hidden_size = ds_args.hidden_size
|
109 |
+
config.num_hidden_layers = ds_args.num_layers
|
110 |
+
config.num_attention_heads = ds_args.num_attention_heads
|
111 |
+
config.intermediate_size = ds_args.ffn_hidden_size if "ffn_hidden_size" in ds_args else 4 * ds_args.hidden_size
|
112 |
+
# pprint(config)
|
113 |
+
|
114 |
+
# The number of heads.
|
115 |
+
heads = config.num_attention_heads
|
116 |
+
# The hidden_size per head.
|
117 |
+
hidden_size_per_head = config.hidden_size // heads
|
118 |
+
# Megatron-LM checkpoint version
|
119 |
+
if "checkpoint_version" in input_state_dict.keys():
|
120 |
+
checkpoint_version = input_state_dict["checkpoint_version"]
|
121 |
+
else:
|
122 |
+
checkpoint_version = 0.0
|
123 |
+
|
124 |
+
# The model.
|
125 |
+
model = input_state_dict["model"]
|
126 |
+
# The language model.
|
127 |
+
lm = model["language_model"]
|
128 |
+
# The embeddings.
|
129 |
+
embeddings = lm["embedding"]
|
130 |
+
|
131 |
+
# The word embeddings.
|
132 |
+
word_embeddings = embeddings["word_embeddings"]["weight"]
|
133 |
+
# Truncate the embedding table to vocab_size rows.
|
134 |
+
word_embeddings = word_embeddings[: config.vocab_size, :]
|
135 |
+
# Store the word embeddings.
|
136 |
+
output_state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings
|
137 |
+
|
138 |
+
# The position embeddings.
|
139 |
+
pos_embeddings = embeddings["position_embeddings"]["weight"]
|
140 |
+
assert pos_embeddings.size(0) == config.max_position_embeddings and pos_embeddings.size(1) == config.hidden_size
|
141 |
+
# Store the position embeddings.
|
142 |
+
output_state_dict["bert.embeddings.position_embeddings.weight"] = pos_embeddings
|
143 |
+
|
144 |
+
# The token-type embeddings.
|
145 |
+
tokentype_embeddings = embeddings["tokentype_embeddings"]["weight"]
|
146 |
+
# Store the position embeddings.
|
147 |
+
output_state_dict["bert.embeddings.token_type_embeddings.weight"] = tokentype_embeddings
|
148 |
+
|
149 |
+
# The transformer.
|
150 |
+
transformer = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"]
|
151 |
+
|
152 |
+
# The regex to extract layer names.
|
153 |
+
layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
|
154 |
+
|
155 |
+
# The simple map of names for "automated" rules.
|
156 |
+
megatron_to_transformers = {
|
157 |
+
"attention.dense": ".attention.output.dense.",
|
158 |
+
"self_attention.dense": ".attention.output.dense.",
|
159 |
+
"mlp.dense_h_to_4h": ".intermediate.dense.",
|
160 |
+
"mlp.dense_4h_to_h": ".output.dense.",
|
161 |
+
}
|
162 |
+
|
163 |
+
# Keep track of the attention/query/value tensor.
|
164 |
+
attention_qkv_weight = None
|
165 |
+
|
166 |
+
# Extract the layers.
|
167 |
+
for key, val in transformer.items():
|
168 |
+
# Match the name.
|
169 |
+
m = layer_re.match(key)
|
170 |
+
|
171 |
+
# Stop if that's not a layer
|
172 |
+
if m is None:
|
173 |
+
break
|
174 |
+
|
175 |
+
# The index of the layer.
|
176 |
+
layer_idx = int(m.group(1))
|
177 |
+
# The name of the operation.
|
178 |
+
op_name = m.group(2)
|
179 |
+
# Is it a weight or a bias?
|
180 |
+
weight_or_bias = m.group(3)
|
181 |
+
|
182 |
+
# The name of the layer.
|
183 |
+
layer_name = f"bert.encoder.layer.{layer_idx}"
|
184 |
+
|
185 |
+
# For layernorm(s), simply store the layer norm.
|
186 |
+
if op_name.endswith("layernorm"):
|
187 |
+
ln_name = "attention.ln" if op_name.startswith("input") else "ln"
|
188 |
+
output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = val
|
189 |
+
|
190 |
+
# Transpose the QKV matrix.
|
191 |
+
elif (
|
192 |
+
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
|
193 |
+
) and weight_or_bias == "weight":
|
194 |
+
# Make sure the QKV pointer is nil.
|
195 |
+
assert attention_qkv_weight is None, ""
|
196 |
+
|
197 |
+
out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head)
|
198 |
+
# Store the tensor as we need the bias as well to interleave QKV and biases.
|
199 |
+
attention_qkv_weight = out_val
|
200 |
+
|
201 |
+
# Transpose the bias.
|
202 |
+
elif (
|
203 |
+
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
|
204 |
+
) and weight_or_bias == "bias":
|
205 |
+
# Make sure we read the weight tensor.
|
206 |
+
assert attention_qkv_weight is not None, ""
|
207 |
+
|
208 |
+
# Split the QKV matrix into Q, K and V. Megatron stores Q,K,V interleaved.
|
209 |
+
q = attention_qkv_weight[0 * config.hidden_size : 1 * config.hidden_size, :]
|
210 |
+
k = attention_qkv_weight[1 * config.hidden_size : 2 * config.hidden_size, :]
|
211 |
+
v = attention_qkv_weight[2 * config.hidden_size : 3 * config.hidden_size, :]
|
212 |
+
|
213 |
+
out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head)
|
214 |
+
# Split the bias.
|
215 |
+
q_bias = out_val[0 * config.hidden_size : 1 * config.hidden_size]
|
216 |
+
k_bias = out_val[1 * config.hidden_size : 2 * config.hidden_size]
|
217 |
+
v_bias = out_val[2 * config.hidden_size : 3 * config.hidden_size]
|
218 |
+
|
219 |
+
# Store.
|
220 |
+
output_state_dict[f"{layer_name}.attention.self.query.weight"] = q
|
221 |
+
output_state_dict[f"{layer_name}.attention.self.query.bias"] = q_bias
|
222 |
+
output_state_dict[f"{layer_name}.attention.self.key.weight"] = k
|
223 |
+
output_state_dict[f"{layer_name}.attention.self.key.bias"] = k_bias
|
224 |
+
output_state_dict[f"{layer_name}.attention.self.value.weight"] = v
|
225 |
+
output_state_dict[f"{layer_name}.attention.self.value.bias"] = v_bias
|
226 |
+
|
227 |
+
# Clear the stored tensor.
|
228 |
+
attention_qkv_weight = None
|
229 |
+
|
230 |
+
# Copy weights and biases as is.
|
231 |
+
elif weight_or_bias in ["weight", "bias"]:
|
232 |
+
out_name = megatron_to_transformers[op_name]
|
233 |
+
output_state_dict[layer_name + out_name + weight_or_bias] = val
|
234 |
+
|
235 |
+
# The final layernorm.
|
236 |
+
output_state_dict["bert.encoder.ln.weight"] = transformer["final_layernorm.weight"]
|
237 |
+
output_state_dict["bert.encoder.ln.bias"] = transformer["final_layernorm.bias"]
|
238 |
+
|
239 |
+
# The pooler.
|
240 |
+
pooler = lm["pooler"]
|
241 |
+
|
242 |
+
# Store the matrix and the bias.
|
243 |
+
output_state_dict["bert.pooler.dense.weight"] = pooler["dense.weight"]
|
244 |
+
output_state_dict["bert.pooler.dense.bias"] = pooler["dense.bias"]
|
245 |
+
|
246 |
+
# The LM head from Megatron (for RACE).
|
247 |
+
lm_head = model["lm_head"]
|
248 |
+
|
249 |
+
# The transform matrix.
|
250 |
+
output_state_dict["cls.predictions.transform.dense.weight"] = lm_head["dense.weight"]
|
251 |
+
output_state_dict["cls.predictions.transform.dense.bias"] = lm_head["dense.bias"]
|
252 |
+
|
253 |
+
# The transform LN.
|
254 |
+
output_state_dict["cls.predictions.transform.LayerNorm.weight"] = lm_head["layernorm.weight"]
|
255 |
+
output_state_dict["cls.predictions.transform.LayerNorm.bias"] = lm_head["layernorm.bias"]
|
256 |
+
|
257 |
+
# For the decoder, we replicate the weights.
|
258 |
+
output_state_dict["cls.predictions.decoder.weight"] = word_embeddings
|
259 |
+
output_state_dict["cls.predictions.bias"] = lm_head["bias"]
|
260 |
+
|
261 |
+
# The classifier from Megatron (for MLNI).
|
262 |
+
binary_head = model["binary_head"]
|
263 |
+
|
264 |
+
# Store the classifier.
|
265 |
+
output_state_dict["cls.seq_relationship.weight"] = binary_head["weight"]
|
266 |
+
output_state_dict["cls.seq_relationship.bias"] = binary_head["bias"]
|
267 |
+
|
268 |
+
# It should be done!
|
269 |
+
return output_state_dict
|
270 |
+
|
271 |
+
|
272 |
+
####################################################################################################
|
273 |
+
|
274 |
+
|
275 |
+
def main():
|
276 |
+
# Create the argument parser.
|
277 |
+
parser = argparse.ArgumentParser()
|
278 |
+
parser.add_argument("--print-checkpoint-structure", action="store_true")
|
279 |
+
parser.add_argument("path_to_checkpoint", type=str, help="Path to the ZIP file containing the checkpoint")
|
280 |
+
parser.add_argument(
|
281 |
+
"--config_file",
|
282 |
+
default="",
|
283 |
+
type=str,
|
284 |
+
help="An optional config json file describing the pre-trained model.",
|
285 |
+
)
|
286 |
+
args = parser.parse_args()
|
287 |
+
|
288 |
+
# Extract the basename.
|
289 |
+
basename = os.path.dirname(args.path_to_checkpoint)
|
290 |
+
|
291 |
+
# Load the model.
|
292 |
+
# the .zip is very optional, let's keep it for backward compatibility
|
293 |
+
print(f'Extracting PyTorch state dictionary from "{args.path_to_checkpoint}"')
|
294 |
+
if args.path_to_checkpoint.endswith(".zip"):
|
295 |
+
with zipfile.ZipFile(args.path_to_checkpoint, "r") as checkpoint:
|
296 |
+
with checkpoint.open("release/mp_rank_00/model_optim_rng.pt") as pytorch_dict:
|
297 |
+
input_state_dict = torch.load(pytorch_dict, map_location="cpu")
|
298 |
+
else:
|
299 |
+
input_state_dict = torch.load(args.path_to_checkpoint, map_location="cpu")
|
300 |
+
|
301 |
+
if args.config_file == "":
|
302 |
+
# Default config of megatron-bert 345m
|
303 |
+
config = MegatronBertConfig()
|
304 |
+
|
305 |
+
# different megatron-bert-*-345m models have different vocab sizes, so override the default
|
306 |
+
# config (which is for megatron-bert-cased-345m) with the actual vocab dimension
|
307 |
+
config.vocab_size = input_state_dict["model"]["lm_head"]["bias"].numel()
|
308 |
+
else:
|
309 |
+
config = MegatronBertConfig.from_json_file(args.config_file)
|
310 |
+
|
311 |
+
# Convert.
|
312 |
+
print("Converting")
|
313 |
+
output_state_dict = convert_megatron_checkpoint(args, input_state_dict, config)
|
314 |
+
|
315 |
+
# Print the structure of converted state dict.
|
316 |
+
if args.print_checkpoint_structure:
|
317 |
+
recursive_print(None, output_state_dict)
|
318 |
+
|
319 |
+
# Store the config to file.
|
320 |
+
print("Saving config")
|
321 |
+
config.save_pretrained(basename)
|
322 |
+
|
323 |
+
# Store the state_dict to file.
|
324 |
+
output_checkpoint_file = os.path.join(basename, "pytorch_model.bin")
|
325 |
+
print(f'Saving checkpoint to "{output_checkpoint_file}"')
|
326 |
+
torch.save(output_state_dict, output_checkpoint_file)
|
327 |
+
|
328 |
+
|
329 |
+
####################################################################################################
|
330 |
+
|
331 |
+
if __name__ == "__main__":
|
332 |
+
main()
|
333 |
+
|
334 |
+
####################################################################################################
|
llmeval-env/lib/python3.10/site-packages/transformers/models/megatron_bert/modeling_megatron_bert.py
ADDED
@@ -0,0 +1,1836 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PyTorch MegatronBERT model."""
|
17 |
+
|
18 |
+
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
import warnings
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from ...activations import ACT2FN
|
31 |
+
from ...modeling_outputs import (
|
32 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
33 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
34 |
+
CausalLMOutputWithCrossAttentions,
|
35 |
+
MaskedLMOutput,
|
36 |
+
MultipleChoiceModelOutput,
|
37 |
+
NextSentencePredictorOutput,
|
38 |
+
QuestionAnsweringModelOutput,
|
39 |
+
SequenceClassifierOutput,
|
40 |
+
TokenClassifierOutput,
|
41 |
+
)
|
42 |
+
from ...modeling_utils import PreTrainedModel
|
43 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
44 |
+
from ...utils import (
|
45 |
+
ModelOutput,
|
46 |
+
add_code_sample_docstrings,
|
47 |
+
add_start_docstrings,
|
48 |
+
add_start_docstrings_to_model_forward,
|
49 |
+
logging,
|
50 |
+
replace_return_docstrings,
|
51 |
+
)
|
52 |
+
from .configuration_megatron_bert import MegatronBertConfig
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
_CONFIG_FOR_DOC = "MegatronBertConfig"
|
58 |
+
_CHECKPOINT_FOR_DOC = "nvidia/megatron-bert-cased-345m"
|
59 |
+
|
60 |
+
|
61 |
+
from ..deprecated._archive_maps import MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
62 |
+
|
63 |
+
|
64 |
+
def load_tf_weights_in_megatron_bert(model, config, tf_checkpoint_path):
|
65 |
+
"""Load tf checkpoints in a pytorch model."""
|
66 |
+
try:
|
67 |
+
import re
|
68 |
+
|
69 |
+
import numpy as np
|
70 |
+
import tensorflow as tf
|
71 |
+
except ImportError:
|
72 |
+
logger.error(
|
73 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
74 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
75 |
+
)
|
76 |
+
raise
|
77 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
78 |
+
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
|
79 |
+
# Load weights from TF model
|
80 |
+
init_vars = tf.train.list_variables(tf_path)
|
81 |
+
names = []
|
82 |
+
arrays = []
|
83 |
+
for name, shape in init_vars:
|
84 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
85 |
+
array = tf.train.load_variable(tf_path, name)
|
86 |
+
names.append(name)
|
87 |
+
arrays.append(array)
|
88 |
+
|
89 |
+
for name, array in zip(names, arrays):
|
90 |
+
name = name.split("/")
|
91 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
92 |
+
# which are not required for using pretrained model
|
93 |
+
if any(
|
94 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
95 |
+
for n in name
|
96 |
+
):
|
97 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
98 |
+
continue
|
99 |
+
pointer = model
|
100 |
+
for m_name in name:
|
101 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
102 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
103 |
+
else:
|
104 |
+
scope_names = [m_name]
|
105 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
106 |
+
pointer = getattr(pointer, "weight")
|
107 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
108 |
+
pointer = getattr(pointer, "bias")
|
109 |
+
elif scope_names[0] == "output_weights":
|
110 |
+
pointer = getattr(pointer, "weight")
|
111 |
+
elif scope_names[0] == "squad":
|
112 |
+
pointer = getattr(pointer, "classifier")
|
113 |
+
else:
|
114 |
+
try:
|
115 |
+
pointer = getattr(pointer, scope_names[0])
|
116 |
+
except AttributeError:
|
117 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
118 |
+
continue
|
119 |
+
if len(scope_names) >= 2:
|
120 |
+
num = int(scope_names[1])
|
121 |
+
pointer = pointer[num]
|
122 |
+
if m_name[-11:] == "_embeddings":
|
123 |
+
pointer = getattr(pointer, "weight")
|
124 |
+
elif m_name == "kernel":
|
125 |
+
array = np.transpose(array)
|
126 |
+
if pointer.shape != array.shape:
|
127 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
128 |
+
logger.info("Initialize PyTorch weight {}".format(name))
|
129 |
+
pointer.data = torch.from_numpy(array)
|
130 |
+
return model
|
131 |
+
|
132 |
+
|
133 |
+
class MegatronBertEmbeddings(nn.Module):
|
134 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
135 |
+
|
136 |
+
def __init__(self, config):
|
137 |
+
super().__init__()
|
138 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
139 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
140 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
141 |
+
|
142 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
143 |
+
# any TensorFlow checkpoint file
|
144 |
+
|
145 |
+
# In Megatron, layer-norm is applied after the 1st dropout.
|
146 |
+
# self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
147 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
148 |
+
|
149 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
150 |
+
self.register_buffer(
|
151 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
152 |
+
)
|
153 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
154 |
+
|
155 |
+
def forward(
|
156 |
+
self,
|
157 |
+
input_ids: Optional[torch.LongTensor] = None,
|
158 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
159 |
+
position_ids: Optional[torch.LongTensor] = None,
|
160 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
161 |
+
past_key_values_length: int = 0,
|
162 |
+
) -> torch.Tensor:
|
163 |
+
if input_ids is not None:
|
164 |
+
input_shape = input_ids.size()
|
165 |
+
else:
|
166 |
+
input_shape = inputs_embeds.size()[:-1]
|
167 |
+
|
168 |
+
seq_length = input_shape[1]
|
169 |
+
|
170 |
+
if position_ids is None:
|
171 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
172 |
+
|
173 |
+
if token_type_ids is None:
|
174 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
175 |
+
|
176 |
+
if inputs_embeds is None:
|
177 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
178 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
179 |
+
|
180 |
+
embeddings = inputs_embeds + token_type_embeddings
|
181 |
+
if self.position_embedding_type == "absolute":
|
182 |
+
position_embeddings = self.position_embeddings(position_ids)
|
183 |
+
embeddings += position_embeddings
|
184 |
+
|
185 |
+
# Megatron BERT moves that layer norm after the drop-out (and to each layer).
|
186 |
+
# embeddings = self.LayerNorm(embeddings)
|
187 |
+
embeddings = self.dropout(embeddings)
|
188 |
+
return embeddings
|
189 |
+
|
190 |
+
|
191 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->MegatronBert
|
192 |
+
class MegatronBertSelfAttention(nn.Module):
|
193 |
+
def __init__(self, config, position_embedding_type=None):
|
194 |
+
super().__init__()
|
195 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
196 |
+
raise ValueError(
|
197 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
198 |
+
f"heads ({config.num_attention_heads})"
|
199 |
+
)
|
200 |
+
|
201 |
+
self.num_attention_heads = config.num_attention_heads
|
202 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
203 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
204 |
+
|
205 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
206 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
207 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
208 |
+
|
209 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
210 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
211 |
+
config, "position_embedding_type", "absolute"
|
212 |
+
)
|
213 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
214 |
+
self.max_position_embeddings = config.max_position_embeddings
|
215 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
216 |
+
|
217 |
+
self.is_decoder = config.is_decoder
|
218 |
+
|
219 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
220 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
221 |
+
x = x.view(new_x_shape)
|
222 |
+
return x.permute(0, 2, 1, 3)
|
223 |
+
|
224 |
+
def forward(
|
225 |
+
self,
|
226 |
+
hidden_states: torch.Tensor,
|
227 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
228 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
229 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
230 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
231 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
232 |
+
output_attentions: Optional[bool] = False,
|
233 |
+
) -> Tuple[torch.Tensor]:
|
234 |
+
mixed_query_layer = self.query(hidden_states)
|
235 |
+
|
236 |
+
# If this is instantiated as a cross-attention module, the keys
|
237 |
+
# and values come from an encoder; the attention mask needs to be
|
238 |
+
# such that the encoder's padding tokens are not attended to.
|
239 |
+
is_cross_attention = encoder_hidden_states is not None
|
240 |
+
|
241 |
+
if is_cross_attention and past_key_value is not None:
|
242 |
+
# reuse k,v, cross_attentions
|
243 |
+
key_layer = past_key_value[0]
|
244 |
+
value_layer = past_key_value[1]
|
245 |
+
attention_mask = encoder_attention_mask
|
246 |
+
elif is_cross_attention:
|
247 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
248 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
249 |
+
attention_mask = encoder_attention_mask
|
250 |
+
elif past_key_value is not None:
|
251 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
252 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
253 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
254 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
255 |
+
else:
|
256 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
257 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
258 |
+
|
259 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
260 |
+
|
261 |
+
use_cache = past_key_value is not None
|
262 |
+
if self.is_decoder:
|
263 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
264 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
265 |
+
# key/value_states (first "if" case)
|
266 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
267 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
268 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
269 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
270 |
+
past_key_value = (key_layer, value_layer)
|
271 |
+
|
272 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
273 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
274 |
+
|
275 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
276 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
277 |
+
if use_cache:
|
278 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
279 |
+
-1, 1
|
280 |
+
)
|
281 |
+
else:
|
282 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
283 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
284 |
+
distance = position_ids_l - position_ids_r
|
285 |
+
|
286 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
287 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
288 |
+
|
289 |
+
if self.position_embedding_type == "relative_key":
|
290 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
291 |
+
attention_scores = attention_scores + relative_position_scores
|
292 |
+
elif self.position_embedding_type == "relative_key_query":
|
293 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
294 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
295 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
296 |
+
|
297 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
298 |
+
if attention_mask is not None:
|
299 |
+
# Apply the attention mask is (precomputed for all layers in MegatronBertModel forward() function)
|
300 |
+
attention_scores = attention_scores + attention_mask
|
301 |
+
|
302 |
+
# Normalize the attention scores to probabilities.
|
303 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
304 |
+
|
305 |
+
# This is actually dropping out entire tokens to attend to, which might
|
306 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
307 |
+
attention_probs = self.dropout(attention_probs)
|
308 |
+
|
309 |
+
# Mask heads if we want to
|
310 |
+
if head_mask is not None:
|
311 |
+
attention_probs = attention_probs * head_mask
|
312 |
+
|
313 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
314 |
+
|
315 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
316 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
317 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
318 |
+
|
319 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
320 |
+
|
321 |
+
if self.is_decoder:
|
322 |
+
outputs = outputs + (past_key_value,)
|
323 |
+
return outputs
|
324 |
+
|
325 |
+
|
326 |
+
# Based transformers.models.bert.modeling_bert.BertSelfOutput. Moved LayerNorm to MegatronBertAttention below.
|
327 |
+
class MegatronBertSelfOutput(nn.Module):
|
328 |
+
def __init__(self, config):
|
329 |
+
super().__init__()
|
330 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
331 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
332 |
+
|
333 |
+
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
|
334 |
+
hidden_states = self.dense(hidden_states)
|
335 |
+
hidden_states = self.dropout(hidden_states)
|
336 |
+
return residual + hidden_states
|
337 |
+
|
338 |
+
|
339 |
+
# Based transformers.models.bert.modeling_bert.BertAttention. Added LayerNorm.
|
340 |
+
class MegatronBertAttention(nn.Module):
|
341 |
+
def __init__(self, config):
|
342 |
+
super().__init__()
|
343 |
+
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
344 |
+
self.self = MegatronBertSelfAttention(config)
|
345 |
+
self.output = MegatronBertSelfOutput(config)
|
346 |
+
self.pruned_heads = set()
|
347 |
+
|
348 |
+
def prune_heads(self, heads):
|
349 |
+
if len(heads) == 0:
|
350 |
+
return
|
351 |
+
heads, index = find_pruneable_heads_and_indices(
|
352 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
353 |
+
)
|
354 |
+
|
355 |
+
# Prune linear layers
|
356 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
357 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
358 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
359 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
360 |
+
|
361 |
+
# Update hyper params and store pruned heads
|
362 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
363 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
364 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
365 |
+
|
366 |
+
def forward(
|
367 |
+
self,
|
368 |
+
hidden_states: torch.Tensor,
|
369 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
370 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
371 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
372 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
373 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
374 |
+
output_attentions: Optional[bool] = False,
|
375 |
+
) -> Tuple[torch.Tensor]:
|
376 |
+
ln_outputs = self.ln(hidden_states)
|
377 |
+
self_outputs = self.self(
|
378 |
+
ln_outputs,
|
379 |
+
attention_mask,
|
380 |
+
head_mask,
|
381 |
+
encoder_hidden_states,
|
382 |
+
encoder_attention_mask,
|
383 |
+
past_key_value,
|
384 |
+
output_attentions,
|
385 |
+
)
|
386 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
387 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
388 |
+
return outputs
|
389 |
+
|
390 |
+
|
391 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->MegatronBert
|
392 |
+
class MegatronBertIntermediate(nn.Module):
|
393 |
+
def __init__(self, config):
|
394 |
+
super().__init__()
|
395 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
396 |
+
if isinstance(config.hidden_act, str):
|
397 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
398 |
+
else:
|
399 |
+
self.intermediate_act_fn = config.hidden_act
|
400 |
+
|
401 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
402 |
+
hidden_states = self.dense(hidden_states)
|
403 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
404 |
+
return hidden_states
|
405 |
+
|
406 |
+
|
407 |
+
# Based on transformers.models.bert.modeling_bert.BertOutput. Moved LayerNorm to MegatronBertLayer below.
|
408 |
+
class MegatronBertOutput(nn.Module):
|
409 |
+
def __init__(self, config):
|
410 |
+
super().__init__()
|
411 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
412 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
413 |
+
|
414 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
415 |
+
hidden_states = self.dense(hidden_states)
|
416 |
+
hidden_states = self.dropout(hidden_states)
|
417 |
+
return input_tensor + hidden_states
|
418 |
+
|
419 |
+
|
420 |
+
# Based on transformers.models.bert.modeling_bert.BertLayer. Added LayerNorm.
|
421 |
+
class MegatronBertLayer(nn.Module):
|
422 |
+
def __init__(self, config):
|
423 |
+
super().__init__()
|
424 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
425 |
+
self.seq_len_dim = 1
|
426 |
+
self.attention = MegatronBertAttention(config)
|
427 |
+
self.is_decoder = config.is_decoder
|
428 |
+
self.add_cross_attention = config.add_cross_attention
|
429 |
+
if self.add_cross_attention:
|
430 |
+
if not self.is_decoder:
|
431 |
+
raise TypeError(f"{self} should be used as a decoder model if cross attention is added")
|
432 |
+
self.crossattention = MegatronBertAttention(config)
|
433 |
+
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
434 |
+
self.intermediate = MegatronBertIntermediate(config)
|
435 |
+
self.output = MegatronBertOutput(config)
|
436 |
+
|
437 |
+
def forward(
|
438 |
+
self,
|
439 |
+
hidden_states: torch.Tensor,
|
440 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
441 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
442 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
443 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
444 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
445 |
+
output_attentions: Optional[bool] = False,
|
446 |
+
) -> Tuple[torch.Tensor]:
|
447 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
448 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
449 |
+
self_attention_outputs = self.attention(
|
450 |
+
hidden_states,
|
451 |
+
attention_mask,
|
452 |
+
head_mask,
|
453 |
+
output_attentions=output_attentions,
|
454 |
+
past_key_value=self_attn_past_key_value,
|
455 |
+
)
|
456 |
+
attention_output = self_attention_outputs[0]
|
457 |
+
|
458 |
+
# if decoder, the last output is tuple of self-attn cache
|
459 |
+
if self.is_decoder:
|
460 |
+
outputs = self_attention_outputs[1:-1]
|
461 |
+
present_key_value = self_attention_outputs[-1]
|
462 |
+
else:
|
463 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
464 |
+
|
465 |
+
cross_attn_present_key_value = None
|
466 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
467 |
+
if not hasattr(self, "crossattention"):
|
468 |
+
raise AttributeError(
|
469 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
470 |
+
" by setting `config.add_cross_attention=True`"
|
471 |
+
)
|
472 |
+
|
473 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
474 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
475 |
+
cross_attention_outputs = self.crossattention(
|
476 |
+
attention_output,
|
477 |
+
attention_mask,
|
478 |
+
head_mask,
|
479 |
+
encoder_hidden_states,
|
480 |
+
encoder_attention_mask,
|
481 |
+
cross_attn_past_key_value,
|
482 |
+
output_attentions,
|
483 |
+
)
|
484 |
+
attention_output = cross_attention_outputs[0]
|
485 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
486 |
+
|
487 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
488 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
489 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
490 |
+
|
491 |
+
layer_output = apply_chunking_to_forward(
|
492 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
493 |
+
)
|
494 |
+
outputs = (layer_output,) + outputs
|
495 |
+
|
496 |
+
# if decoder, return the attn key/values as the last output
|
497 |
+
if self.is_decoder:
|
498 |
+
outputs = outputs + (present_key_value,)
|
499 |
+
|
500 |
+
return outputs
|
501 |
+
|
502 |
+
def feed_forward_chunk(self, attention_output):
|
503 |
+
ln_output = self.ln(attention_output)
|
504 |
+
intermediate_output = self.intermediate(ln_output)
|
505 |
+
layer_output = self.output(intermediate_output, attention_output)
|
506 |
+
return layer_output
|
507 |
+
|
508 |
+
|
509 |
+
class MegatronBertEncoder(nn.Module):
|
510 |
+
def __init__(self, config):
|
511 |
+
super().__init__()
|
512 |
+
self.config = config
|
513 |
+
self.layer = nn.ModuleList([MegatronBertLayer(config) for _ in range(config.num_hidden_layers)])
|
514 |
+
|
515 |
+
# The final layer norm. We removed the 1st LN, moved LN to each hidden layer and this one
|
516 |
+
# is simply the final LN (Transformer's BERT has it attached to each hidden layer).
|
517 |
+
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
518 |
+
self.gradient_checkpointing = False
|
519 |
+
|
520 |
+
def forward(
|
521 |
+
self,
|
522 |
+
hidden_states: torch.Tensor,
|
523 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
524 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
525 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
526 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
527 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
528 |
+
use_cache: Optional[bool] = None,
|
529 |
+
output_attentions: Optional[bool] = False,
|
530 |
+
output_hidden_states: Optional[bool] = False,
|
531 |
+
return_dict: Optional[bool] = True,
|
532 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
533 |
+
if self.gradient_checkpointing and self.training:
|
534 |
+
if use_cache:
|
535 |
+
logger.warning_once(
|
536 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
537 |
+
)
|
538 |
+
use_cache = False
|
539 |
+
all_hidden_states = () if output_hidden_states else None
|
540 |
+
all_self_attentions = () if output_attentions else None
|
541 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
542 |
+
|
543 |
+
next_decoder_cache = () if use_cache else None
|
544 |
+
for i, layer_module in enumerate(self.layer):
|
545 |
+
if output_hidden_states:
|
546 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
547 |
+
|
548 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
549 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
550 |
+
|
551 |
+
if self.gradient_checkpointing and self.training:
|
552 |
+
layer_outputs = self._gradient_checkpointing_func(
|
553 |
+
layer_module.__call__,
|
554 |
+
hidden_states,
|
555 |
+
attention_mask,
|
556 |
+
layer_head_mask,
|
557 |
+
encoder_hidden_states,
|
558 |
+
encoder_attention_mask,
|
559 |
+
past_key_value,
|
560 |
+
output_attentions,
|
561 |
+
)
|
562 |
+
else:
|
563 |
+
layer_outputs = layer_module(
|
564 |
+
hidden_states,
|
565 |
+
attention_mask,
|
566 |
+
layer_head_mask,
|
567 |
+
encoder_hidden_states,
|
568 |
+
encoder_attention_mask,
|
569 |
+
past_key_value,
|
570 |
+
output_attentions,
|
571 |
+
)
|
572 |
+
|
573 |
+
# Because we moved the layer-norm at the end of the hidden layer, we have non-normali-
|
574 |
+
# zed data here. If that's really needed, we must apply LN to match Transformer's BERT.
|
575 |
+
|
576 |
+
hidden_states = layer_outputs[0]
|
577 |
+
if use_cache:
|
578 |
+
next_decoder_cache += (layer_outputs[-1],)
|
579 |
+
if output_attentions:
|
580 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
581 |
+
if self.config.add_cross_attention:
|
582 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
583 |
+
|
584 |
+
# Finalize the hidden states.
|
585 |
+
hidden_states = self.ln(hidden_states)
|
586 |
+
|
587 |
+
if output_hidden_states:
|
588 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
589 |
+
|
590 |
+
if not return_dict:
|
591 |
+
return tuple(
|
592 |
+
v
|
593 |
+
for v in [
|
594 |
+
hidden_states,
|
595 |
+
next_decoder_cache,
|
596 |
+
all_hidden_states,
|
597 |
+
all_self_attentions,
|
598 |
+
all_cross_attentions,
|
599 |
+
]
|
600 |
+
if v is not None
|
601 |
+
)
|
602 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
603 |
+
last_hidden_state=hidden_states,
|
604 |
+
past_key_values=next_decoder_cache,
|
605 |
+
hidden_states=all_hidden_states,
|
606 |
+
attentions=all_self_attentions,
|
607 |
+
cross_attentions=all_cross_attentions,
|
608 |
+
)
|
609 |
+
|
610 |
+
|
611 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->MegatronBert
|
612 |
+
class MegatronBertPooler(nn.Module):
|
613 |
+
def __init__(self, config):
|
614 |
+
super().__init__()
|
615 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
616 |
+
self.activation = nn.Tanh()
|
617 |
+
|
618 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
619 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
620 |
+
# to the first token.
|
621 |
+
first_token_tensor = hidden_states[:, 0]
|
622 |
+
pooled_output = self.dense(first_token_tensor)
|
623 |
+
pooled_output = self.activation(pooled_output)
|
624 |
+
return pooled_output
|
625 |
+
|
626 |
+
|
627 |
+
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->MegatronBert
|
628 |
+
class MegatronBertPredictionHeadTransform(nn.Module):
|
629 |
+
def __init__(self, config):
|
630 |
+
super().__init__()
|
631 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
632 |
+
if isinstance(config.hidden_act, str):
|
633 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
634 |
+
else:
|
635 |
+
self.transform_act_fn = config.hidden_act
|
636 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
637 |
+
|
638 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
639 |
+
hidden_states = self.dense(hidden_states)
|
640 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
641 |
+
hidden_states = self.LayerNorm(hidden_states)
|
642 |
+
return hidden_states
|
643 |
+
|
644 |
+
|
645 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->MegatronBert
|
646 |
+
class MegatronBertLMPredictionHead(nn.Module):
|
647 |
+
def __init__(self, config):
|
648 |
+
super().__init__()
|
649 |
+
self.transform = MegatronBertPredictionHeadTransform(config)
|
650 |
+
|
651 |
+
# The output weights are the same as the input embeddings, but there is
|
652 |
+
# an output-only bias for each token.
|
653 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
654 |
+
|
655 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
656 |
+
|
657 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
658 |
+
self.decoder.bias = self.bias
|
659 |
+
|
660 |
+
def forward(self, hidden_states):
|
661 |
+
hidden_states = self.transform(hidden_states)
|
662 |
+
hidden_states = self.decoder(hidden_states)
|
663 |
+
return hidden_states
|
664 |
+
|
665 |
+
|
666 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->MegatronBert
|
667 |
+
class MegatronBertOnlyMLMHead(nn.Module):
|
668 |
+
def __init__(self, config):
|
669 |
+
super().__init__()
|
670 |
+
self.predictions = MegatronBertLMPredictionHead(config)
|
671 |
+
|
672 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
673 |
+
prediction_scores = self.predictions(sequence_output)
|
674 |
+
return prediction_scores
|
675 |
+
|
676 |
+
|
677 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->MegatronBert
|
678 |
+
class MegatronBertOnlyNSPHead(nn.Module):
|
679 |
+
def __init__(self, config):
|
680 |
+
super().__init__()
|
681 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
682 |
+
|
683 |
+
def forward(self, pooled_output):
|
684 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
685 |
+
return seq_relationship_score
|
686 |
+
|
687 |
+
|
688 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->MegatronBert
|
689 |
+
class MegatronBertPreTrainingHeads(nn.Module):
|
690 |
+
def __init__(self, config):
|
691 |
+
super().__init__()
|
692 |
+
self.predictions = MegatronBertLMPredictionHead(config)
|
693 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
694 |
+
|
695 |
+
def forward(self, sequence_output, pooled_output):
|
696 |
+
prediction_scores = self.predictions(sequence_output)
|
697 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
698 |
+
return prediction_scores, seq_relationship_score
|
699 |
+
|
700 |
+
|
701 |
+
class MegatronBertPreTrainedModel(PreTrainedModel):
|
702 |
+
"""
|
703 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
704 |
+
models.
|
705 |
+
"""
|
706 |
+
|
707 |
+
config_class = MegatronBertConfig
|
708 |
+
load_tf_weights = load_tf_weights_in_megatron_bert
|
709 |
+
base_model_prefix = "bert"
|
710 |
+
supports_gradient_checkpointing = True
|
711 |
+
|
712 |
+
def _init_weights(self, module):
|
713 |
+
"""Initialize the weights"""
|
714 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
715 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
716 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
717 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
718 |
+
elif isinstance(module, nn.LayerNorm):
|
719 |
+
module.bias.data.zero_()
|
720 |
+
module.weight.data.fill_(1.0)
|
721 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
722 |
+
module.bias.data.zero_()
|
723 |
+
|
724 |
+
|
725 |
+
@dataclass
|
726 |
+
# Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->MegatronBert
|
727 |
+
class MegatronBertForPreTrainingOutput(ModelOutput):
|
728 |
+
"""
|
729 |
+
Output type of [`MegatronBertForPreTraining`].
|
730 |
+
|
731 |
+
Args:
|
732 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
733 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
734 |
+
(classification) loss.
|
735 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
736 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
737 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
738 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
739 |
+
before SoftMax).
|
740 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
741 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
742 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
743 |
+
|
744 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
745 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
746 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
747 |
+
sequence_length)`.
|
748 |
+
|
749 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
750 |
+
heads.
|
751 |
+
"""
|
752 |
+
|
753 |
+
loss: Optional[torch.FloatTensor] = None
|
754 |
+
prediction_logits: torch.FloatTensor = None
|
755 |
+
seq_relationship_logits: torch.FloatTensor = None
|
756 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
757 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
758 |
+
|
759 |
+
|
760 |
+
MEGATRON_BERT_START_DOCSTRING = r"""
|
761 |
+
|
762 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
763 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
764 |
+
etc.)
|
765 |
+
|
766 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
767 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
768 |
+
and behavior.
|
769 |
+
|
770 |
+
Parameters:
|
771 |
+
config ([`MegatronBertConfig`]): Model configuration class with all the parameters of the model.
|
772 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
773 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
774 |
+
"""
|
775 |
+
|
776 |
+
MEGATRON_BERT_INPUTS_DOCSTRING = r"""
|
777 |
+
Args:
|
778 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
779 |
+
Indices of input sequence tokens in the vocabulary.
|
780 |
+
|
781 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
782 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
783 |
+
|
784 |
+
[What are input IDs?](../glossary#input-ids)
|
785 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
786 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
787 |
+
|
788 |
+
- 1 for tokens that are **not masked**,
|
789 |
+
- 0 for tokens that are **masked**.
|
790 |
+
|
791 |
+
[What are attention masks?](../glossary#attention-mask)
|
792 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
793 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
794 |
+
1]`:
|
795 |
+
|
796 |
+
- 0 corresponds to a *sentence A* token,
|
797 |
+
- 1 corresponds to a *sentence B* token.
|
798 |
+
|
799 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
800 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
801 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
802 |
+
config.max_position_embeddings - 1]`.
|
803 |
+
|
804 |
+
[What are position IDs?](../glossary#position-ids)
|
805 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
806 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
807 |
+
|
808 |
+
- 1 indicates the head is **not masked**,
|
809 |
+
- 0 indicates the head is **masked**.
|
810 |
+
|
811 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
812 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
813 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
814 |
+
model's internal embedding lookup matrix.
|
815 |
+
output_attentions (`bool`, *optional*):
|
816 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
817 |
+
tensors for more detail.
|
818 |
+
output_hidden_states (`bool`, *optional*):
|
819 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
820 |
+
more detail.
|
821 |
+
return_dict (`bool`, *optional*):
|
822 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
823 |
+
"""
|
824 |
+
|
825 |
+
|
826 |
+
@add_start_docstrings(
|
827 |
+
"The bare MegatronBert Model transformer outputting raw hidden-states without any specific head on top.",
|
828 |
+
MEGATRON_BERT_START_DOCSTRING,
|
829 |
+
)
|
830 |
+
class MegatronBertModel(MegatronBertPreTrainedModel):
|
831 |
+
"""
|
832 |
+
|
833 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
834 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
835 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
836 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
837 |
+
|
838 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
839 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
840 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
841 |
+
"""
|
842 |
+
|
843 |
+
def __init__(self, config, add_pooling_layer=True):
|
844 |
+
super().__init__(config)
|
845 |
+
self.config = config
|
846 |
+
|
847 |
+
self.embeddings = MegatronBertEmbeddings(config)
|
848 |
+
self.encoder = MegatronBertEncoder(config)
|
849 |
+
|
850 |
+
self.pooler = MegatronBertPooler(config) if add_pooling_layer else None
|
851 |
+
|
852 |
+
# Initialize weights and apply final processing
|
853 |
+
self.post_init()
|
854 |
+
|
855 |
+
def get_input_embeddings(self):
|
856 |
+
return self.embeddings.word_embeddings
|
857 |
+
|
858 |
+
def set_input_embeddings(self, value):
|
859 |
+
self.embeddings.word_embeddings = value
|
860 |
+
|
861 |
+
def _prune_heads(self, heads_to_prune):
|
862 |
+
"""
|
863 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
864 |
+
class PreTrainedModel
|
865 |
+
"""
|
866 |
+
for layer, heads in heads_to_prune.items():
|
867 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
868 |
+
|
869 |
+
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
870 |
+
@add_code_sample_docstrings(
|
871 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
872 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
873 |
+
config_class=_CONFIG_FOR_DOC,
|
874 |
+
)
|
875 |
+
def forward(
|
876 |
+
self,
|
877 |
+
input_ids: Optional[torch.LongTensor] = None,
|
878 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
879 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
880 |
+
position_ids: Optional[torch.LongTensor] = None,
|
881 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
882 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
883 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
884 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
885 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
886 |
+
use_cache: Optional[bool] = None,
|
887 |
+
output_attentions: Optional[bool] = None,
|
888 |
+
output_hidden_states: Optional[bool] = None,
|
889 |
+
return_dict: Optional[bool] = None,
|
890 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
|
891 |
+
r"""
|
892 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
893 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
894 |
+
the model is configured as a decoder.
|
895 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
896 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
897 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
898 |
+
|
899 |
+
- 1 for tokens that are **not masked**,
|
900 |
+
- 0 for tokens that are **masked**.
|
901 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
902 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
903 |
+
|
904 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
905 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
906 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
907 |
+
use_cache (`bool`, *optional*):
|
908 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
909 |
+
`past_key_values`).
|
910 |
+
"""
|
911 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
912 |
+
output_hidden_states = (
|
913 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
914 |
+
)
|
915 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
916 |
+
|
917 |
+
if self.config.is_decoder:
|
918 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
919 |
+
else:
|
920 |
+
use_cache = False
|
921 |
+
|
922 |
+
if input_ids is not None and inputs_embeds is not None:
|
923 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
924 |
+
elif input_ids is not None:
|
925 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
926 |
+
input_shape = input_ids.size()
|
927 |
+
elif inputs_embeds is not None:
|
928 |
+
input_shape = inputs_embeds.size()[:-1]
|
929 |
+
else:
|
930 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
931 |
+
|
932 |
+
batch_size, seq_length = input_shape
|
933 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
934 |
+
|
935 |
+
# past_key_values_length
|
936 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
937 |
+
|
938 |
+
if attention_mask is None:
|
939 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
940 |
+
if token_type_ids is None:
|
941 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
942 |
+
|
943 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
944 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
945 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
946 |
+
|
947 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
948 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
949 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
950 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
951 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
952 |
+
if encoder_attention_mask is None:
|
953 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
954 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
955 |
+
else:
|
956 |
+
encoder_extended_attention_mask = None
|
957 |
+
|
958 |
+
# Prepare head mask if needed
|
959 |
+
# 1.0 in head_mask indicate we keep the head
|
960 |
+
# attention_probs has shape bsz x n_heads x N x N
|
961 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
962 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
963 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
964 |
+
|
965 |
+
embedding_output = self.embeddings(
|
966 |
+
input_ids=input_ids,
|
967 |
+
position_ids=position_ids,
|
968 |
+
token_type_ids=token_type_ids,
|
969 |
+
inputs_embeds=inputs_embeds,
|
970 |
+
past_key_values_length=past_key_values_length,
|
971 |
+
)
|
972 |
+
encoder_outputs = self.encoder(
|
973 |
+
embedding_output,
|
974 |
+
attention_mask=extended_attention_mask,
|
975 |
+
head_mask=head_mask,
|
976 |
+
encoder_hidden_states=encoder_hidden_states,
|
977 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
978 |
+
past_key_values=past_key_values,
|
979 |
+
use_cache=use_cache,
|
980 |
+
output_attentions=output_attentions,
|
981 |
+
output_hidden_states=output_hidden_states,
|
982 |
+
return_dict=return_dict,
|
983 |
+
)
|
984 |
+
sequence_output = encoder_outputs[0]
|
985 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
986 |
+
|
987 |
+
if not return_dict:
|
988 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
989 |
+
|
990 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
991 |
+
last_hidden_state=sequence_output,
|
992 |
+
pooler_output=pooled_output,
|
993 |
+
past_key_values=encoder_outputs.past_key_values,
|
994 |
+
hidden_states=encoder_outputs.hidden_states,
|
995 |
+
attentions=encoder_outputs.attentions,
|
996 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
997 |
+
)
|
998 |
+
|
999 |
+
|
1000 |
+
@add_start_docstrings(
|
1001 |
+
"""
|
1002 |
+
MegatronBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
|
1003 |
+
`next sentence prediction (classification)` head.
|
1004 |
+
""",
|
1005 |
+
MEGATRON_BERT_START_DOCSTRING,
|
1006 |
+
)
|
1007 |
+
class MegatronBertForPreTraining(MegatronBertPreTrainedModel):
|
1008 |
+
_tied_weights_keys = ["cls.predictions.decoder"]
|
1009 |
+
|
1010 |
+
def __init__(self, config, add_binary_head=True):
|
1011 |
+
super().__init__(config)
|
1012 |
+
|
1013 |
+
self.bert = MegatronBertModel(config)
|
1014 |
+
self.cls = MegatronBertPreTrainingHeads(config)
|
1015 |
+
|
1016 |
+
# Initialize weights and apply final processing
|
1017 |
+
self.post_init()
|
1018 |
+
|
1019 |
+
def get_output_embeddings(self):
|
1020 |
+
return self.cls.predictions.decoder
|
1021 |
+
|
1022 |
+
def set_output_embeddings(self, new_embeddings):
|
1023 |
+
self.cls.predictions.decoder = new_embeddings
|
1024 |
+
|
1025 |
+
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1026 |
+
@replace_return_docstrings(output_type=MegatronBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1027 |
+
def forward(
|
1028 |
+
self,
|
1029 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1030 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1031 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1032 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1033 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1034 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1035 |
+
labels: Optional[torch.LongTensor] = None,
|
1036 |
+
next_sentence_label: Optional[torch.LongTensor] = None,
|
1037 |
+
output_attentions: Optional[bool] = None,
|
1038 |
+
output_hidden_states: Optional[bool] = None,
|
1039 |
+
return_dict: Optional[bool] = None,
|
1040 |
+
) -> Union[Tuple, MegatronBertForPreTrainingOutput]:
|
1041 |
+
r"""
|
1042 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1043 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1044 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1045 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1046 |
+
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1047 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1048 |
+
(see `input_ids` docstring) Indices should be in `[0, 1]`:
|
1049 |
+
|
1050 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1051 |
+
- 1 indicates sequence B is a random sequence.
|
1052 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1053 |
+
Used to hide legacy arguments that have been deprecated.
|
1054 |
+
|
1055 |
+
Returns:
|
1056 |
+
|
1057 |
+
Example:
|
1058 |
+
|
1059 |
+
```python
|
1060 |
+
>>> from transformers import AutoTokenizer, MegatronBertForPreTraining
|
1061 |
+
>>> import torch
|
1062 |
+
|
1063 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
|
1064 |
+
>>> model = MegatronBertForPreTraining.from_pretrained("nvidia/megatron-bert-cased-345m")
|
1065 |
+
|
1066 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1067 |
+
>>> outputs = model(**inputs)
|
1068 |
+
|
1069 |
+
>>> prediction_logits = outputs.prediction_logits
|
1070 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
1071 |
+
```"""
|
1072 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1073 |
+
|
1074 |
+
outputs = self.bert(
|
1075 |
+
input_ids,
|
1076 |
+
attention_mask=attention_mask,
|
1077 |
+
token_type_ids=token_type_ids,
|
1078 |
+
position_ids=position_ids,
|
1079 |
+
head_mask=head_mask,
|
1080 |
+
inputs_embeds=inputs_embeds,
|
1081 |
+
output_attentions=output_attentions,
|
1082 |
+
output_hidden_states=output_hidden_states,
|
1083 |
+
return_dict=return_dict,
|
1084 |
+
)
|
1085 |
+
|
1086 |
+
sequence_output, pooled_output = outputs[:2]
|
1087 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
1088 |
+
|
1089 |
+
total_loss = None
|
1090 |
+
if labels is not None and next_sentence_label is not None:
|
1091 |
+
loss_fct = CrossEntropyLoss()
|
1092 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1093 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1094 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
1095 |
+
|
1096 |
+
if not return_dict:
|
1097 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1098 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1099 |
+
|
1100 |
+
return MegatronBertForPreTrainingOutput(
|
1101 |
+
loss=total_loss,
|
1102 |
+
prediction_logits=prediction_scores,
|
1103 |
+
seq_relationship_logits=seq_relationship_score,
|
1104 |
+
hidden_states=outputs.hidden_states,
|
1105 |
+
attentions=outputs.attentions,
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
|
1109 |
+
@add_start_docstrings(
|
1110 |
+
"""MegatronBert Model with a `language modeling` head on top for CLM fine-tuning.""",
|
1111 |
+
MEGATRON_BERT_START_DOCSTRING,
|
1112 |
+
)
|
1113 |
+
class MegatronBertForCausalLM(MegatronBertPreTrainedModel):
|
1114 |
+
_tied_weights_keys = ["cls.predictions.decoder"]
|
1115 |
+
|
1116 |
+
def __init__(self, config):
|
1117 |
+
super().__init__(config)
|
1118 |
+
|
1119 |
+
if not config.is_decoder:
|
1120 |
+
logger.warning("If you want to use `MegatronBertForCausalLM` as a standalone, add `is_decoder=True.`")
|
1121 |
+
|
1122 |
+
self.bert = MegatronBertModel(config, add_pooling_layer=False)
|
1123 |
+
self.cls = MegatronBertOnlyMLMHead(config)
|
1124 |
+
|
1125 |
+
# Initialize weights and apply final processing
|
1126 |
+
self.post_init()
|
1127 |
+
|
1128 |
+
def get_output_embeddings(self):
|
1129 |
+
return self.cls.predictions.decoder
|
1130 |
+
|
1131 |
+
def set_output_embeddings(self, new_embeddings):
|
1132 |
+
self.cls.predictions.decoder = new_embeddings
|
1133 |
+
|
1134 |
+
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1135 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
1136 |
+
def forward(
|
1137 |
+
self,
|
1138 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1139 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1140 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1141 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1142 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1143 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1144 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1145 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1146 |
+
labels: Optional[torch.LongTensor] = None,
|
1147 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1148 |
+
use_cache: Optional[bool] = None,
|
1149 |
+
output_attentions: Optional[bool] = None,
|
1150 |
+
output_hidden_states: Optional[bool] = None,
|
1151 |
+
return_dict: Optional[bool] = None,
|
1152 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
1153 |
+
r"""
|
1154 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1155 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1156 |
+
the model is configured as a decoder.
|
1157 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1158 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1159 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1160 |
+
|
1161 |
+
- 1 for tokens that are **not masked**,
|
1162 |
+
- 0 for tokens that are **masked**.
|
1163 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1164 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1165 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1166 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
1167 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1168 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1169 |
+
|
1170 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1171 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1172 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1173 |
+
use_cache (`bool`, *optional*):
|
1174 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1175 |
+
`past_key_values`).
|
1176 |
+
|
1177 |
+
Returns:
|
1178 |
+
|
1179 |
+
Example:
|
1180 |
+
|
1181 |
+
```python
|
1182 |
+
>>> from transformers import AutoTokenizer, MegatronBertForCausalLM, MegatronBertConfig
|
1183 |
+
>>> import torch
|
1184 |
+
|
1185 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
|
1186 |
+
>>> model = MegatronBertForCausalLM.from_pretrained("nvidia/megatron-bert-cased-345m", is_decoder=True)
|
1187 |
+
|
1188 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1189 |
+
>>> outputs = model(**inputs)
|
1190 |
+
|
1191 |
+
>>> prediction_logits = outputs.logits
|
1192 |
+
```"""
|
1193 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1194 |
+
if labels is not None:
|
1195 |
+
use_cache = False
|
1196 |
+
|
1197 |
+
outputs = self.bert(
|
1198 |
+
input_ids,
|
1199 |
+
attention_mask=attention_mask,
|
1200 |
+
token_type_ids=token_type_ids,
|
1201 |
+
position_ids=position_ids,
|
1202 |
+
head_mask=head_mask,
|
1203 |
+
inputs_embeds=inputs_embeds,
|
1204 |
+
encoder_hidden_states=encoder_hidden_states,
|
1205 |
+
encoder_attention_mask=encoder_attention_mask,
|
1206 |
+
past_key_values=past_key_values,
|
1207 |
+
use_cache=use_cache,
|
1208 |
+
output_attentions=output_attentions,
|
1209 |
+
output_hidden_states=output_hidden_states,
|
1210 |
+
return_dict=return_dict,
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
sequence_output = outputs[0]
|
1214 |
+
prediction_scores = self.cls(sequence_output)
|
1215 |
+
|
1216 |
+
lm_loss = None
|
1217 |
+
if labels is not None:
|
1218 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1219 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1220 |
+
labels = labels[:, 1:].contiguous()
|
1221 |
+
loss_fct = CrossEntropyLoss()
|
1222 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1223 |
+
|
1224 |
+
if not return_dict:
|
1225 |
+
output = (prediction_scores,) + outputs[2:]
|
1226 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1227 |
+
|
1228 |
+
return CausalLMOutputWithCrossAttentions(
|
1229 |
+
loss=lm_loss,
|
1230 |
+
logits=prediction_scores,
|
1231 |
+
past_key_values=outputs.past_key_values,
|
1232 |
+
hidden_states=outputs.hidden_states,
|
1233 |
+
attentions=outputs.attentions,
|
1234 |
+
cross_attentions=outputs.cross_attentions,
|
1235 |
+
)
|
1236 |
+
|
1237 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
1238 |
+
input_shape = input_ids.shape
|
1239 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1240 |
+
if attention_mask is None:
|
1241 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1242 |
+
|
1243 |
+
# cut decoder_input_ids if past_key_values is used
|
1244 |
+
if past_key_values is not None:
|
1245 |
+
past_length = past_key_values[0][0].shape[2]
|
1246 |
+
|
1247 |
+
# Some generation methods already pass only the last input ID
|
1248 |
+
if input_ids.shape[1] > past_length:
|
1249 |
+
remove_prefix_length = past_length
|
1250 |
+
else:
|
1251 |
+
# Default to old behavior: keep only final ID
|
1252 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1253 |
+
|
1254 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1255 |
+
|
1256 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
|
1257 |
+
|
1258 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1259 |
+
reordered_past = ()
|
1260 |
+
for layer_past in past_key_values:
|
1261 |
+
reordered_past += (
|
1262 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1263 |
+
)
|
1264 |
+
return reordered_past
|
1265 |
+
|
1266 |
+
|
1267 |
+
@add_start_docstrings("""MegatronBert Model with a `language modeling` head on top.""", MEGATRON_BERT_START_DOCSTRING)
|
1268 |
+
class MegatronBertForMaskedLM(MegatronBertPreTrainedModel):
|
1269 |
+
_tied_weights_keys = ["cls.predictions.decoder"]
|
1270 |
+
|
1271 |
+
def __init__(self, config):
|
1272 |
+
super().__init__(config)
|
1273 |
+
|
1274 |
+
if config.is_decoder:
|
1275 |
+
logger.warning(
|
1276 |
+
"If you want to use `MegatronBertForMaskedLM` make sure `config.is_decoder=False` for "
|
1277 |
+
"bi-directional self-attention."
|
1278 |
+
)
|
1279 |
+
|
1280 |
+
self.bert = MegatronBertModel(config, add_pooling_layer=False)
|
1281 |
+
self.cls = MegatronBertOnlyMLMHead(config)
|
1282 |
+
|
1283 |
+
# Initialize weights and apply final processing
|
1284 |
+
self.post_init()
|
1285 |
+
|
1286 |
+
def get_output_embeddings(self):
|
1287 |
+
return self.cls.predictions.decoder
|
1288 |
+
|
1289 |
+
def set_output_embeddings(self, new_embeddings):
|
1290 |
+
self.cls.predictions.decoder = new_embeddings
|
1291 |
+
|
1292 |
+
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1293 |
+
@add_code_sample_docstrings(
|
1294 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1295 |
+
output_type=MaskedLMOutput,
|
1296 |
+
config_class=_CONFIG_FOR_DOC,
|
1297 |
+
)
|
1298 |
+
def forward(
|
1299 |
+
self,
|
1300 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1301 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1302 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1303 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1304 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1305 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1306 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1307 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1308 |
+
labels: Optional[torch.LongTensor] = None,
|
1309 |
+
output_attentions: Optional[bool] = None,
|
1310 |
+
output_hidden_states: Optional[bool] = None,
|
1311 |
+
return_dict: Optional[bool] = None,
|
1312 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1313 |
+
r"""
|
1314 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1315 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1316 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1317 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1318 |
+
"""
|
1319 |
+
|
1320 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1321 |
+
|
1322 |
+
outputs = self.bert(
|
1323 |
+
input_ids,
|
1324 |
+
attention_mask=attention_mask,
|
1325 |
+
token_type_ids=token_type_ids,
|
1326 |
+
position_ids=position_ids,
|
1327 |
+
head_mask=head_mask,
|
1328 |
+
inputs_embeds=inputs_embeds,
|
1329 |
+
encoder_hidden_states=encoder_hidden_states,
|
1330 |
+
encoder_attention_mask=encoder_attention_mask,
|
1331 |
+
output_attentions=output_attentions,
|
1332 |
+
output_hidden_states=output_hidden_states,
|
1333 |
+
return_dict=return_dict,
|
1334 |
+
)
|
1335 |
+
|
1336 |
+
sequence_output = outputs[0]
|
1337 |
+
prediction_scores = self.cls(sequence_output)
|
1338 |
+
|
1339 |
+
masked_lm_loss = None
|
1340 |
+
if labels is not None:
|
1341 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1342 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1343 |
+
|
1344 |
+
if not return_dict:
|
1345 |
+
output = (prediction_scores,) + outputs[2:]
|
1346 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1347 |
+
|
1348 |
+
return MaskedLMOutput(
|
1349 |
+
loss=masked_lm_loss,
|
1350 |
+
logits=prediction_scores,
|
1351 |
+
hidden_states=outputs.hidden_states,
|
1352 |
+
attentions=outputs.attentions,
|
1353 |
+
)
|
1354 |
+
|
1355 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1356 |
+
input_shape = input_ids.shape
|
1357 |
+
effective_batch_size = input_shape[0]
|
1358 |
+
|
1359 |
+
# add a dummy token
|
1360 |
+
if self.config.pad_token_id is None:
|
1361 |
+
raise ValueError("The PAD token should be defined for generation")
|
1362 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1363 |
+
dummy_token = torch.full(
|
1364 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1365 |
+
)
|
1366 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1367 |
+
|
1368 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1369 |
+
|
1370 |
+
|
1371 |
+
@add_start_docstrings(
|
1372 |
+
"""MegatronBert Model with a `next sentence prediction (classification)` head on top.""",
|
1373 |
+
MEGATRON_BERT_START_DOCSTRING,
|
1374 |
+
)
|
1375 |
+
class MegatronBertForNextSentencePrediction(MegatronBertPreTrainedModel):
|
1376 |
+
def __init__(self, config):
|
1377 |
+
super().__init__(config)
|
1378 |
+
|
1379 |
+
self.bert = MegatronBertModel(config)
|
1380 |
+
self.cls = MegatronBertOnlyNSPHead(config)
|
1381 |
+
|
1382 |
+
# Initialize weights and apply final processing
|
1383 |
+
self.post_init()
|
1384 |
+
|
1385 |
+
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1386 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1387 |
+
def forward(
|
1388 |
+
self,
|
1389 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1390 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1391 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1392 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1393 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1394 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1395 |
+
labels: Optional[torch.LongTensor] = None,
|
1396 |
+
output_attentions: Optional[bool] = None,
|
1397 |
+
output_hidden_states: Optional[bool] = None,
|
1398 |
+
return_dict: Optional[bool] = None,
|
1399 |
+
**kwargs,
|
1400 |
+
) -> Union[Tuple, NextSentencePredictorOutput]:
|
1401 |
+
r"""
|
1402 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1403 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1404 |
+
(see `input_ids` docstring). Indices should be in `[0, 1]`:
|
1405 |
+
|
1406 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1407 |
+
- 1 indicates sequence B is a random sequence.
|
1408 |
+
|
1409 |
+
Returns:
|
1410 |
+
|
1411 |
+
Example:
|
1412 |
+
|
1413 |
+
```python
|
1414 |
+
>>> from transformers import AutoTokenizer, MegatronBertForNextSentencePrediction
|
1415 |
+
>>> import torch
|
1416 |
+
|
1417 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
|
1418 |
+
>>> model = MegatronBertForNextSentencePrediction.from_pretrained("nvidia/megatron-bert-cased-345m")
|
1419 |
+
|
1420 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1421 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1422 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
1423 |
+
|
1424 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
1425 |
+
>>> logits = outputs.logits
|
1426 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1427 |
+
```"""
|
1428 |
+
|
1429 |
+
if "next_sentence_label" in kwargs:
|
1430 |
+
warnings.warn(
|
1431 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
|
1432 |
+
" `labels` instead.",
|
1433 |
+
FutureWarning,
|
1434 |
+
)
|
1435 |
+
labels = kwargs.pop("next_sentence_label")
|
1436 |
+
|
1437 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1438 |
+
|
1439 |
+
outputs = self.bert(
|
1440 |
+
input_ids,
|
1441 |
+
attention_mask=attention_mask,
|
1442 |
+
token_type_ids=token_type_ids,
|
1443 |
+
position_ids=position_ids,
|
1444 |
+
head_mask=head_mask,
|
1445 |
+
inputs_embeds=inputs_embeds,
|
1446 |
+
output_attentions=output_attentions,
|
1447 |
+
output_hidden_states=output_hidden_states,
|
1448 |
+
return_dict=return_dict,
|
1449 |
+
)
|
1450 |
+
|
1451 |
+
pooled_output = outputs[1]
|
1452 |
+
|
1453 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1454 |
+
|
1455 |
+
next_sentence_loss = None
|
1456 |
+
if labels is not None:
|
1457 |
+
loss_fct = CrossEntropyLoss()
|
1458 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
1459 |
+
|
1460 |
+
if not return_dict:
|
1461 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1462 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1463 |
+
|
1464 |
+
return NextSentencePredictorOutput(
|
1465 |
+
loss=next_sentence_loss,
|
1466 |
+
logits=seq_relationship_scores,
|
1467 |
+
hidden_states=outputs.hidden_states,
|
1468 |
+
attentions=outputs.attentions,
|
1469 |
+
)
|
1470 |
+
|
1471 |
+
|
1472 |
+
@add_start_docstrings(
|
1473 |
+
"""
|
1474 |
+
MegatronBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1475 |
+
pooled output) e.g. for GLUE tasks.
|
1476 |
+
""",
|
1477 |
+
MEGATRON_BERT_START_DOCSTRING,
|
1478 |
+
)
|
1479 |
+
class MegatronBertForSequenceClassification(MegatronBertPreTrainedModel):
|
1480 |
+
def __init__(self, config):
|
1481 |
+
super().__init__(config)
|
1482 |
+
self.num_labels = config.num_labels
|
1483 |
+
|
1484 |
+
self.bert = MegatronBertModel(config)
|
1485 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1486 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1487 |
+
|
1488 |
+
# Initialize weights and apply final processing
|
1489 |
+
self.post_init()
|
1490 |
+
|
1491 |
+
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1492 |
+
@add_code_sample_docstrings(
|
1493 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1494 |
+
output_type=SequenceClassifierOutput,
|
1495 |
+
config_class=_CONFIG_FOR_DOC,
|
1496 |
+
)
|
1497 |
+
def forward(
|
1498 |
+
self,
|
1499 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1500 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1501 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1502 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1503 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1504 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1505 |
+
labels: Optional[torch.LongTensor] = None,
|
1506 |
+
output_attentions: Optional[bool] = None,
|
1507 |
+
output_hidden_states: Optional[bool] = None,
|
1508 |
+
return_dict: Optional[bool] = None,
|
1509 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1510 |
+
r"""
|
1511 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1512 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1513 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1514 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1515 |
+
"""
|
1516 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1517 |
+
|
1518 |
+
outputs = self.bert(
|
1519 |
+
input_ids,
|
1520 |
+
attention_mask=attention_mask,
|
1521 |
+
token_type_ids=token_type_ids,
|
1522 |
+
position_ids=position_ids,
|
1523 |
+
head_mask=head_mask,
|
1524 |
+
inputs_embeds=inputs_embeds,
|
1525 |
+
output_attentions=output_attentions,
|
1526 |
+
output_hidden_states=output_hidden_states,
|
1527 |
+
return_dict=return_dict,
|
1528 |
+
)
|
1529 |
+
|
1530 |
+
pooled_output = outputs[1]
|
1531 |
+
|
1532 |
+
pooled_output = self.dropout(pooled_output)
|
1533 |
+
logits = self.classifier(pooled_output)
|
1534 |
+
|
1535 |
+
loss = None
|
1536 |
+
if labels is not None:
|
1537 |
+
if self.config.problem_type is None:
|
1538 |
+
if self.num_labels == 1:
|
1539 |
+
self.config.problem_type = "regression"
|
1540 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1541 |
+
self.config.problem_type = "single_label_classification"
|
1542 |
+
else:
|
1543 |
+
self.config.problem_type = "multi_label_classification"
|
1544 |
+
|
1545 |
+
if self.config.problem_type == "regression":
|
1546 |
+
loss_fct = MSELoss()
|
1547 |
+
if self.num_labels == 1:
|
1548 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1549 |
+
else:
|
1550 |
+
loss = loss_fct(logits, labels)
|
1551 |
+
elif self.config.problem_type == "single_label_classification":
|
1552 |
+
loss_fct = CrossEntropyLoss()
|
1553 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1554 |
+
elif self.config.problem_type == "multi_label_classification":
|
1555 |
+
loss_fct = BCEWithLogitsLoss()
|
1556 |
+
loss = loss_fct(logits, labels)
|
1557 |
+
if not return_dict:
|
1558 |
+
output = (logits,) + outputs[2:]
|
1559 |
+
return ((loss,) + output) if loss is not None else output
|
1560 |
+
|
1561 |
+
return SequenceClassifierOutput(
|
1562 |
+
loss=loss,
|
1563 |
+
logits=logits,
|
1564 |
+
hidden_states=outputs.hidden_states,
|
1565 |
+
attentions=outputs.attentions,
|
1566 |
+
)
|
1567 |
+
|
1568 |
+
|
1569 |
+
@add_start_docstrings(
|
1570 |
+
"""
|
1571 |
+
MegatronBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output
|
1572 |
+
and a softmax) e.g. for RocStories/SWAG tasks.
|
1573 |
+
""",
|
1574 |
+
MEGATRON_BERT_START_DOCSTRING,
|
1575 |
+
)
|
1576 |
+
class MegatronBertForMultipleChoice(MegatronBertPreTrainedModel):
|
1577 |
+
def __init__(self, config):
|
1578 |
+
super().__init__(config)
|
1579 |
+
|
1580 |
+
self.bert = MegatronBertModel(config)
|
1581 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1582 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1583 |
+
|
1584 |
+
# Initialize weights and apply final processing
|
1585 |
+
self.post_init()
|
1586 |
+
|
1587 |
+
@add_start_docstrings_to_model_forward(
|
1588 |
+
MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1589 |
+
)
|
1590 |
+
@add_code_sample_docstrings(
|
1591 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1592 |
+
output_type=MultipleChoiceModelOutput,
|
1593 |
+
config_class=_CONFIG_FOR_DOC,
|
1594 |
+
)
|
1595 |
+
def forward(
|
1596 |
+
self,
|
1597 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1598 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1599 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1600 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1601 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1602 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1603 |
+
labels: Optional[torch.LongTensor] = None,
|
1604 |
+
output_attentions: Optional[bool] = None,
|
1605 |
+
output_hidden_states: Optional[bool] = None,
|
1606 |
+
return_dict: Optional[bool] = None,
|
1607 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
1608 |
+
r"""
|
1609 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1610 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1611 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1612 |
+
`input_ids` above)
|
1613 |
+
"""
|
1614 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1615 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1616 |
+
|
1617 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1618 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1619 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1620 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1621 |
+
inputs_embeds = (
|
1622 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1623 |
+
if inputs_embeds is not None
|
1624 |
+
else None
|
1625 |
+
)
|
1626 |
+
|
1627 |
+
outputs = self.bert(
|
1628 |
+
input_ids,
|
1629 |
+
attention_mask=attention_mask,
|
1630 |
+
token_type_ids=token_type_ids,
|
1631 |
+
position_ids=position_ids,
|
1632 |
+
head_mask=head_mask,
|
1633 |
+
inputs_embeds=inputs_embeds,
|
1634 |
+
output_attentions=output_attentions,
|
1635 |
+
output_hidden_states=output_hidden_states,
|
1636 |
+
return_dict=return_dict,
|
1637 |
+
)
|
1638 |
+
|
1639 |
+
pooled_output = outputs[1]
|
1640 |
+
|
1641 |
+
pooled_output = self.dropout(pooled_output)
|
1642 |
+
logits = self.classifier(pooled_output)
|
1643 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1644 |
+
|
1645 |
+
loss = None
|
1646 |
+
if labels is not None:
|
1647 |
+
loss_fct = CrossEntropyLoss()
|
1648 |
+
loss = loss_fct(reshaped_logits, labels)
|
1649 |
+
|
1650 |
+
if not return_dict:
|
1651 |
+
output = (reshaped_logits,) + outputs[2:]
|
1652 |
+
return ((loss,) + output) if loss is not None else output
|
1653 |
+
|
1654 |
+
return MultipleChoiceModelOutput(
|
1655 |
+
loss=loss,
|
1656 |
+
logits=reshaped_logits,
|
1657 |
+
hidden_states=outputs.hidden_states,
|
1658 |
+
attentions=outputs.attentions,
|
1659 |
+
)
|
1660 |
+
|
1661 |
+
|
1662 |
+
@add_start_docstrings(
|
1663 |
+
"""
|
1664 |
+
MegatronBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
|
1665 |
+
for Named-Entity-Recognition (NER) tasks.
|
1666 |
+
""",
|
1667 |
+
MEGATRON_BERT_START_DOCSTRING,
|
1668 |
+
)
|
1669 |
+
class MegatronBertForTokenClassification(MegatronBertPreTrainedModel):
|
1670 |
+
def __init__(self, config):
|
1671 |
+
super().__init__(config)
|
1672 |
+
self.num_labels = config.num_labels
|
1673 |
+
|
1674 |
+
self.bert = MegatronBertModel(config, add_pooling_layer=False)
|
1675 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1676 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1677 |
+
|
1678 |
+
# Initialize weights and apply final processing
|
1679 |
+
self.post_init()
|
1680 |
+
|
1681 |
+
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1682 |
+
@add_code_sample_docstrings(
|
1683 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1684 |
+
output_type=TokenClassifierOutput,
|
1685 |
+
config_class=_CONFIG_FOR_DOC,
|
1686 |
+
)
|
1687 |
+
def forward(
|
1688 |
+
self,
|
1689 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1690 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1691 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1692 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1693 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1694 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1695 |
+
labels: Optional[torch.LongTensor] = None,
|
1696 |
+
output_attentions: Optional[bool] = None,
|
1697 |
+
output_hidden_states: Optional[bool] = None,
|
1698 |
+
return_dict: Optional[bool] = None,
|
1699 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1700 |
+
r"""
|
1701 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1702 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1703 |
+
"""
|
1704 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1705 |
+
|
1706 |
+
outputs = self.bert(
|
1707 |
+
input_ids,
|
1708 |
+
attention_mask=attention_mask,
|
1709 |
+
token_type_ids=token_type_ids,
|
1710 |
+
position_ids=position_ids,
|
1711 |
+
head_mask=head_mask,
|
1712 |
+
inputs_embeds=inputs_embeds,
|
1713 |
+
output_attentions=output_attentions,
|
1714 |
+
output_hidden_states=output_hidden_states,
|
1715 |
+
return_dict=return_dict,
|
1716 |
+
)
|
1717 |
+
|
1718 |
+
sequence_output = outputs[0]
|
1719 |
+
|
1720 |
+
sequence_output = self.dropout(sequence_output)
|
1721 |
+
logits = self.classifier(sequence_output)
|
1722 |
+
|
1723 |
+
loss = None
|
1724 |
+
if labels is not None:
|
1725 |
+
loss_fct = CrossEntropyLoss()
|
1726 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1727 |
+
|
1728 |
+
if not return_dict:
|
1729 |
+
output = (logits,) + outputs[2:]
|
1730 |
+
return ((loss,) + output) if loss is not None else output
|
1731 |
+
|
1732 |
+
return TokenClassifierOutput(
|
1733 |
+
loss=loss,
|
1734 |
+
logits=logits,
|
1735 |
+
hidden_states=outputs.hidden_states,
|
1736 |
+
attentions=outputs.attentions,
|
1737 |
+
)
|
1738 |
+
|
1739 |
+
|
1740 |
+
@add_start_docstrings(
|
1741 |
+
"""
|
1742 |
+
MegatronBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
|
1743 |
+
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1744 |
+
""",
|
1745 |
+
MEGATRON_BERT_START_DOCSTRING,
|
1746 |
+
)
|
1747 |
+
class MegatronBertForQuestionAnswering(MegatronBertPreTrainedModel):
|
1748 |
+
def __init__(self, config):
|
1749 |
+
super().__init__(config)
|
1750 |
+
self.num_labels = config.num_labels
|
1751 |
+
|
1752 |
+
self.bert = MegatronBertModel(config, add_pooling_layer=False)
|
1753 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1754 |
+
|
1755 |
+
# Initialize weights and apply final processing
|
1756 |
+
self.post_init()
|
1757 |
+
|
1758 |
+
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1759 |
+
@add_code_sample_docstrings(
|
1760 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1761 |
+
output_type=QuestionAnsweringModelOutput,
|
1762 |
+
config_class=_CONFIG_FOR_DOC,
|
1763 |
+
)
|
1764 |
+
def forward(
|
1765 |
+
self,
|
1766 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1767 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1768 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1769 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1770 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1771 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1772 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1773 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1774 |
+
output_attentions: Optional[bool] = None,
|
1775 |
+
output_hidden_states: Optional[bool] = None,
|
1776 |
+
return_dict: Optional[bool] = None,
|
1777 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1778 |
+
r"""
|
1779 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1780 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1781 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1782 |
+
are not taken into account for computing the loss.
|
1783 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1784 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1785 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1786 |
+
are not taken into account for computing the loss.
|
1787 |
+
"""
|
1788 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1789 |
+
|
1790 |
+
outputs = self.bert(
|
1791 |
+
input_ids,
|
1792 |
+
attention_mask=attention_mask,
|
1793 |
+
token_type_ids=token_type_ids,
|
1794 |
+
position_ids=position_ids,
|
1795 |
+
head_mask=head_mask,
|
1796 |
+
inputs_embeds=inputs_embeds,
|
1797 |
+
output_attentions=output_attentions,
|
1798 |
+
output_hidden_states=output_hidden_states,
|
1799 |
+
return_dict=return_dict,
|
1800 |
+
)
|
1801 |
+
|
1802 |
+
sequence_output = outputs[0]
|
1803 |
+
|
1804 |
+
logits = self.qa_outputs(sequence_output)
|
1805 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1806 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1807 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1808 |
+
|
1809 |
+
total_loss = None
|
1810 |
+
if start_positions is not None and end_positions is not None:
|
1811 |
+
# If we are on multi-GPU, split add a dimension
|
1812 |
+
if len(start_positions.size()) > 1:
|
1813 |
+
start_positions = start_positions.squeeze(-1)
|
1814 |
+
if len(end_positions.size()) > 1:
|
1815 |
+
end_positions = end_positions.squeeze(-1)
|
1816 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1817 |
+
ignored_index = start_logits.size(1)
|
1818 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1819 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1820 |
+
|
1821 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1822 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1823 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1824 |
+
total_loss = (start_loss + end_loss) / 2
|
1825 |
+
|
1826 |
+
if not return_dict:
|
1827 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1828 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1829 |
+
|
1830 |
+
return QuestionAnsweringModelOutput(
|
1831 |
+
loss=total_loss,
|
1832 |
+
start_logits=start_logits,
|
1833 |
+
end_logits=end_logits,
|
1834 |
+
hidden_states=outputs.hidden_states,
|
1835 |
+
attentions=outputs.attentions,
|
1836 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__init__.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_mobilenet_v1": [
|
21 |
+
"MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"MobileNetV1Config",
|
23 |
+
"MobileNetV1OnnxConfig",
|
24 |
+
],
|
25 |
+
}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_vision_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["feature_extraction_mobilenet_v1"] = ["MobileNetV1FeatureExtractor"]
|
34 |
+
_import_structure["image_processing_mobilenet_v1"] = ["MobileNetV1ImageProcessor"]
|
35 |
+
|
36 |
+
try:
|
37 |
+
if not is_torch_available():
|
38 |
+
raise OptionalDependencyNotAvailable()
|
39 |
+
except OptionalDependencyNotAvailable:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
_import_structure["modeling_mobilenet_v1"] = [
|
43 |
+
"MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST",
|
44 |
+
"MobileNetV1ForImageClassification",
|
45 |
+
"MobileNetV1Model",
|
46 |
+
"MobileNetV1PreTrainedModel",
|
47 |
+
"load_tf_weights_in_mobilenet_v1",
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
if TYPE_CHECKING:
|
52 |
+
from .configuration_mobilenet_v1 import (
|
53 |
+
MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
54 |
+
MobileNetV1Config,
|
55 |
+
MobileNetV1OnnxConfig,
|
56 |
+
)
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_vision_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
from .feature_extraction_mobilenet_v1 import MobileNetV1FeatureExtractor
|
65 |
+
from .image_processing_mobilenet_v1 import MobileNetV1ImageProcessor
|
66 |
+
|
67 |
+
try:
|
68 |
+
if not is_torch_available():
|
69 |
+
raise OptionalDependencyNotAvailable()
|
70 |
+
except OptionalDependencyNotAvailable:
|
71 |
+
pass
|
72 |
+
else:
|
73 |
+
from .modeling_mobilenet_v1 import (
|
74 |
+
MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST,
|
75 |
+
MobileNetV1ForImageClassification,
|
76 |
+
MobileNetV1Model,
|
77 |
+
MobileNetV1PreTrainedModel,
|
78 |
+
load_tf_weights_in_mobilenet_v1,
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
else:
|
83 |
+
import sys
|
84 |
+
|
85 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.38 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/configuration_mobilenet_v1.cpython-310.pyc
ADDED
Binary file (4.88 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/convert_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (3.88 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/feature_extraction_mobilenet_v1.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/image_processing_mobilenet_v1.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/modeling_mobilenet_v1.cpython-310.pyc
ADDED
Binary file (13.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MobileNetV1 model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...onnx import OnnxConfig
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
from ..deprecated._archive_maps import MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
31 |
+
|
32 |
+
|
33 |
+
class MobileNetV1Config(PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of a [`MobileNetV1Model`]. It is used to instantiate a
|
36 |
+
MobileNetV1 model according to the specified arguments, defining the model architecture. Instantiating a
|
37 |
+
configuration with the defaults will yield a similar configuration to that of the MobileNetV1
|
38 |
+
[google/mobilenet_v1_1.0_224](https://huggingface.co/google/mobilenet_v1_1.0_224) architecture.
|
39 |
+
|
40 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
41 |
+
documentation from [`PretrainedConfig`] for more information.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
num_channels (`int`, *optional*, defaults to 3):
|
45 |
+
The number of input channels.
|
46 |
+
image_size (`int`, *optional*, defaults to 224):
|
47 |
+
The size (resolution) of each image.
|
48 |
+
depth_multiplier (`float`, *optional*, defaults to 1.0):
|
49 |
+
Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32
|
50 |
+
channels. This is sometimes also called "alpha" or "width multiplier".
|
51 |
+
min_depth (`int`, *optional*, defaults to 8):
|
52 |
+
All layers will have at least this many channels.
|
53 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`):
|
54 |
+
The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
|
55 |
+
tf_padding (`bool`, *optional*, defaults to `True`):
|
56 |
+
Whether to use TensorFlow padding rules on the convolution layers.
|
57 |
+
classifier_dropout_prob (`float`, *optional*, defaults to 0.999):
|
58 |
+
The dropout ratio for attached classifiers.
|
59 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
60 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
61 |
+
layer_norm_eps (`float`, *optional*, defaults to 0.001):
|
62 |
+
The epsilon used by the layer normalization layers.
|
63 |
+
|
64 |
+
Example:
|
65 |
+
|
66 |
+
```python
|
67 |
+
>>> from transformers import MobileNetV1Config, MobileNetV1Model
|
68 |
+
|
69 |
+
>>> # Initializing a "mobilenet_v1_1.0_224" style configuration
|
70 |
+
>>> configuration = MobileNetV1Config()
|
71 |
+
|
72 |
+
>>> # Initializing a model from the "mobilenet_v1_1.0_224" style configuration
|
73 |
+
>>> model = MobileNetV1Model(configuration)
|
74 |
+
|
75 |
+
>>> # Accessing the model configuration
|
76 |
+
>>> configuration = model.config
|
77 |
+
```"""
|
78 |
+
|
79 |
+
model_type = "mobilenet_v1"
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
num_channels=3,
|
84 |
+
image_size=224,
|
85 |
+
depth_multiplier=1.0,
|
86 |
+
min_depth=8,
|
87 |
+
hidden_act="relu6",
|
88 |
+
tf_padding=True,
|
89 |
+
classifier_dropout_prob=0.999,
|
90 |
+
initializer_range=0.02,
|
91 |
+
layer_norm_eps=0.001,
|
92 |
+
**kwargs,
|
93 |
+
):
|
94 |
+
super().__init__(**kwargs)
|
95 |
+
|
96 |
+
if depth_multiplier <= 0:
|
97 |
+
raise ValueError("depth_multiplier must be greater than zero.")
|
98 |
+
|
99 |
+
self.num_channels = num_channels
|
100 |
+
self.image_size = image_size
|
101 |
+
self.depth_multiplier = depth_multiplier
|
102 |
+
self.min_depth = min_depth
|
103 |
+
self.hidden_act = hidden_act
|
104 |
+
self.tf_padding = tf_padding
|
105 |
+
self.classifier_dropout_prob = classifier_dropout_prob
|
106 |
+
self.initializer_range = initializer_range
|
107 |
+
self.layer_norm_eps = layer_norm_eps
|
108 |
+
|
109 |
+
|
110 |
+
class MobileNetV1OnnxConfig(OnnxConfig):
|
111 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
112 |
+
|
113 |
+
@property
|
114 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
115 |
+
return OrderedDict([("pixel_values", {0: "batch"})])
|
116 |
+
|
117 |
+
@property
|
118 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
119 |
+
if self.task == "image-classification":
|
120 |
+
return OrderedDict([("logits", {0: "batch"})])
|
121 |
+
else:
|
122 |
+
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
|
123 |
+
|
124 |
+
@property
|
125 |
+
def atol_for_validation(self) -> float:
|
126 |
+
return 1e-4
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/convert_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert MobileNetV1 checkpoints from the tensorflow/models library."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
import re
|
21 |
+
from pathlib import Path
|
22 |
+
|
23 |
+
import requests
|
24 |
+
import torch
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
from transformers import (
|
29 |
+
MobileNetV1Config,
|
30 |
+
MobileNetV1ForImageClassification,
|
31 |
+
MobileNetV1ImageProcessor,
|
32 |
+
load_tf_weights_in_mobilenet_v1,
|
33 |
+
)
|
34 |
+
from transformers.utils import logging
|
35 |
+
|
36 |
+
|
37 |
+
logging.set_verbosity_info()
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
def get_mobilenet_v1_config(model_name):
|
42 |
+
config = MobileNetV1Config(layer_norm_eps=0.001)
|
43 |
+
|
44 |
+
if "_quant" in model_name:
|
45 |
+
raise ValueError("Quantized models are not supported.")
|
46 |
+
|
47 |
+
matches = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$", model_name)
|
48 |
+
if matches:
|
49 |
+
config.depth_multiplier = float(matches[1])
|
50 |
+
config.image_size = int(matches[2])
|
51 |
+
|
52 |
+
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
|
53 |
+
# the usual 1000. The first class (index 0) is "background".
|
54 |
+
config.num_labels = 1001
|
55 |
+
filename = "imagenet-1k-id2label.json"
|
56 |
+
repo_id = "huggingface/label-files"
|
57 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
58 |
+
id2label = {int(k) + 1: v for k, v in id2label.items()}
|
59 |
+
id2label[0] = "background"
|
60 |
+
config.id2label = id2label
|
61 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
62 |
+
|
63 |
+
return config
|
64 |
+
|
65 |
+
|
66 |
+
# We will verify our results on an image of cute cats
|
67 |
+
def prepare_img():
|
68 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
69 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
70 |
+
return im
|
71 |
+
|
72 |
+
|
73 |
+
@torch.no_grad()
|
74 |
+
def convert_movilevit_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False):
|
75 |
+
"""
|
76 |
+
Copy/paste/tweak model's weights to our MobileNetV1 structure.
|
77 |
+
"""
|
78 |
+
config = get_mobilenet_v1_config(model_name)
|
79 |
+
|
80 |
+
# Load 🤗 model
|
81 |
+
model = MobileNetV1ForImageClassification(config).eval()
|
82 |
+
|
83 |
+
# Load weights from TensorFlow checkpoint
|
84 |
+
load_tf_weights_in_mobilenet_v1(model, config, checkpoint_path)
|
85 |
+
|
86 |
+
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
|
87 |
+
image_processor = MobileNetV1ImageProcessor(
|
88 |
+
crop_size={"width": config.image_size, "height": config.image_size},
|
89 |
+
size={"shortest_edge": config.image_size + 32},
|
90 |
+
)
|
91 |
+
encoding = image_processor(images=prepare_img(), return_tensors="pt")
|
92 |
+
outputs = model(**encoding)
|
93 |
+
logits = outputs.logits
|
94 |
+
|
95 |
+
assert logits.shape == (1, 1001)
|
96 |
+
|
97 |
+
if model_name == "mobilenet_v1_1.0_224":
|
98 |
+
expected_logits = torch.tensor([-4.1739, -1.1233, 3.1205])
|
99 |
+
elif model_name == "mobilenet_v1_0.75_192":
|
100 |
+
expected_logits = torch.tensor([-3.9440, -2.3141, -0.3333])
|
101 |
+
else:
|
102 |
+
expected_logits = None
|
103 |
+
|
104 |
+
if expected_logits is not None:
|
105 |
+
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4)
|
106 |
+
|
107 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
108 |
+
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
|
109 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
110 |
+
print(f"Saving image processor to {pytorch_dump_folder_path}")
|
111 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
112 |
+
|
113 |
+
if push_to_hub:
|
114 |
+
print("Pushing to the hub...")
|
115 |
+
repo_id = "google/" + model_name
|
116 |
+
image_processor.push_to_hub(repo_id)
|
117 |
+
model.push_to_hub(repo_id)
|
118 |
+
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
parser = argparse.ArgumentParser()
|
122 |
+
# Required parameters
|
123 |
+
parser.add_argument(
|
124 |
+
"--model_name",
|
125 |
+
default="mobilenet_v1_1.0_224",
|
126 |
+
type=str,
|
127 |
+
help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.",
|
128 |
+
)
|
129 |
+
parser.add_argument(
|
130 |
+
"--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
|
131 |
+
)
|
132 |
+
parser.add_argument(
|
133 |
+
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
|
134 |
+
)
|
135 |
+
parser.add_argument(
|
136 |
+
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
137 |
+
)
|
138 |
+
|
139 |
+
args = parser.parse_args()
|
140 |
+
convert_movilevit_checkpoint(
|
141 |
+
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
|
142 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/feature_extraction_mobilenet_v1.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for MobileNetV1."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_mobilenet_v1 import MobileNetV1ImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class MobileNetV1FeatureExtractor(MobileNetV1ImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class MobileNetV1FeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
30 |
+
" Please use MobileNetV1ImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for MobileNetV1."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
get_resize_output_image_size,
|
24 |
+
resize,
|
25 |
+
to_channel_dimension_format,
|
26 |
+
)
|
27 |
+
from ...image_utils import (
|
28 |
+
IMAGENET_STANDARD_MEAN,
|
29 |
+
IMAGENET_STANDARD_STD,
|
30 |
+
ChannelDimension,
|
31 |
+
ImageInput,
|
32 |
+
PILImageResampling,
|
33 |
+
infer_channel_dimension_format,
|
34 |
+
is_scaled_image,
|
35 |
+
make_list_of_images,
|
36 |
+
to_numpy_array,
|
37 |
+
valid_images,
|
38 |
+
validate_kwargs,
|
39 |
+
validate_preprocess_arguments,
|
40 |
+
)
|
41 |
+
from ...utils import TensorType, logging
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
|
47 |
+
class MobileNetV1ImageProcessor(BaseImageProcessor):
|
48 |
+
r"""
|
49 |
+
Constructs a MobileNetV1 image processor.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
53 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
54 |
+
`do_resize` in the `preprocess` method.
|
55 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`):
|
56 |
+
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
57 |
+
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
58 |
+
method.
|
59 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
60 |
+
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
|
61 |
+
`preprocess` method.
|
62 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
|
64 |
+
is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
|
65 |
+
`preprocess` method.
|
66 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
|
67 |
+
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
|
68 |
+
Can be overridden by the `crop_size` parameter in the `preprocess` method.
|
69 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
|
71 |
+
parameter in the `preprocess` method.
|
72 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
73 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
74 |
+
`preprocess` method.
|
75 |
+
do_normalize:
|
76 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
77 |
+
method.
|
78 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
79 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
80 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
81 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
82 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
83 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
84 |
+
"""
|
85 |
+
|
86 |
+
model_input_names = ["pixel_values"]
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
do_resize: bool = True,
|
91 |
+
size: Optional[Dict[str, int]] = None,
|
92 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
93 |
+
do_center_crop: bool = True,
|
94 |
+
crop_size: Dict[str, int] = None,
|
95 |
+
do_rescale: bool = True,
|
96 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
97 |
+
do_normalize: bool = True,
|
98 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
99 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
100 |
+
**kwargs,
|
101 |
+
) -> None:
|
102 |
+
super().__init__(**kwargs)
|
103 |
+
size = size if size is not None else {"shortest_edge": 256}
|
104 |
+
size = get_size_dict(size, default_to_square=False)
|
105 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
106 |
+
crop_size = get_size_dict(crop_size)
|
107 |
+
self.do_resize = do_resize
|
108 |
+
self.size = size
|
109 |
+
self.resample = resample
|
110 |
+
self.do_center_crop = do_center_crop
|
111 |
+
self.crop_size = crop_size
|
112 |
+
self.do_rescale = do_rescale
|
113 |
+
self.rescale_factor = rescale_factor
|
114 |
+
self.do_normalize = do_normalize
|
115 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
116 |
+
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
117 |
+
self._valid_processor_keys = [
|
118 |
+
"images",
|
119 |
+
"do_resize",
|
120 |
+
"size",
|
121 |
+
"resample",
|
122 |
+
"do_center_crop",
|
123 |
+
"crop_size",
|
124 |
+
"do_rescale",
|
125 |
+
"rescale_factor",
|
126 |
+
"do_normalize",
|
127 |
+
"image_mean",
|
128 |
+
"image_std",
|
129 |
+
"return_tensors",
|
130 |
+
"data_format",
|
131 |
+
"input_data_format",
|
132 |
+
]
|
133 |
+
|
134 |
+
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
|
135 |
+
def resize(
|
136 |
+
self,
|
137 |
+
image: np.ndarray,
|
138 |
+
size: Dict[str, int],
|
139 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
140 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
141 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
142 |
+
**kwargs,
|
143 |
+
) -> np.ndarray:
|
144 |
+
"""
|
145 |
+
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
146 |
+
resized to keep the input aspect ratio.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
image (`np.ndarray`):
|
150 |
+
Image to resize.
|
151 |
+
size (`Dict[str, int]`):
|
152 |
+
Size of the output image.
|
153 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
154 |
+
Resampling filter to use when resiizing the image.
|
155 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
156 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
157 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
158 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
159 |
+
"""
|
160 |
+
default_to_square = True
|
161 |
+
if "shortest_edge" in size:
|
162 |
+
size = size["shortest_edge"]
|
163 |
+
default_to_square = False
|
164 |
+
elif "height" in size and "width" in size:
|
165 |
+
size = (size["height"], size["width"])
|
166 |
+
else:
|
167 |
+
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
|
168 |
+
|
169 |
+
output_size = get_resize_output_image_size(
|
170 |
+
image,
|
171 |
+
size=size,
|
172 |
+
default_to_square=default_to_square,
|
173 |
+
input_data_format=input_data_format,
|
174 |
+
)
|
175 |
+
return resize(
|
176 |
+
image,
|
177 |
+
size=output_size,
|
178 |
+
resample=resample,
|
179 |
+
data_format=data_format,
|
180 |
+
input_data_format=input_data_format,
|
181 |
+
**kwargs,
|
182 |
+
)
|
183 |
+
|
184 |
+
def preprocess(
|
185 |
+
self,
|
186 |
+
images: ImageInput,
|
187 |
+
do_resize: Optional[bool] = None,
|
188 |
+
size: Dict[str, int] = None,
|
189 |
+
resample: PILImageResampling = None,
|
190 |
+
do_center_crop: bool = None,
|
191 |
+
crop_size: Dict[str, int] = None,
|
192 |
+
do_rescale: Optional[bool] = None,
|
193 |
+
rescale_factor: Optional[float] = None,
|
194 |
+
do_normalize: Optional[bool] = None,
|
195 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
196 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
197 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
198 |
+
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
|
199 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
200 |
+
**kwargs,
|
201 |
+
):
|
202 |
+
"""
|
203 |
+
Preprocess an image or batch of images.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
images (`ImageInput`):
|
207 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
208 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
209 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
210 |
+
Whether to resize the image.
|
211 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
212 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
213 |
+
the longest edge resized to keep the input aspect ratio.
|
214 |
+
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
|
215 |
+
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
|
216 |
+
an effect if `do_resize` is set to `True`.
|
217 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
218 |
+
Whether to center crop the image.
|
219 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
220 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
221 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
222 |
+
Whether to rescale the image values between [0 - 1].
|
223 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
224 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
225 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
226 |
+
Whether to normalize the image.
|
227 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
228 |
+
Image mean to use if `do_normalize` is set to `True`.
|
229 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
230 |
+
Image standard deviation to use if `do_normalize` is set to `True`.
|
231 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
232 |
+
The type of tensors to return. Can be one of:
|
233 |
+
- Unset: Return a list of `np.ndarray`.
|
234 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
235 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
236 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
237 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
238 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
239 |
+
The channel dimension format for the output image. Can be one of:
|
240 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
241 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
242 |
+
- Unset: Use the channel dimension format of the input image.
|
243 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
244 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
245 |
+
from the input image. Can be one of:
|
246 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
247 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
248 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
249 |
+
"""
|
250 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
251 |
+
size = size if size is not None else self.size
|
252 |
+
size = get_size_dict(size, default_to_square=False)
|
253 |
+
resample = resample if resample is not None else self.resample
|
254 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
255 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
256 |
+
crop_size = get_size_dict(crop_size)
|
257 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
258 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
259 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
260 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
261 |
+
image_std = image_std if image_std is not None else self.image_std
|
262 |
+
|
263 |
+
images = make_list_of_images(images)
|
264 |
+
|
265 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
266 |
+
|
267 |
+
if not valid_images(images):
|
268 |
+
raise ValueError(
|
269 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
270 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
271 |
+
)
|
272 |
+
validate_preprocess_arguments(
|
273 |
+
do_rescale=do_rescale,
|
274 |
+
rescale_factor=rescale_factor,
|
275 |
+
do_normalize=do_normalize,
|
276 |
+
image_mean=image_mean,
|
277 |
+
image_std=image_std,
|
278 |
+
do_center_crop=do_center_crop,
|
279 |
+
crop_size=crop_size,
|
280 |
+
do_resize=do_resize,
|
281 |
+
size=size,
|
282 |
+
resample=resample,
|
283 |
+
)
|
284 |
+
|
285 |
+
# All transformations expect numpy arrays.
|
286 |
+
images = [to_numpy_array(image) for image in images]
|
287 |
+
|
288 |
+
if is_scaled_image(images[0]) and do_rescale:
|
289 |
+
logger.warning_once(
|
290 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
291 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
292 |
+
)
|
293 |
+
|
294 |
+
if input_data_format is None:
|
295 |
+
# We assume that all images have the same channel dimension format.
|
296 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
297 |
+
|
298 |
+
if do_resize:
|
299 |
+
images = [
|
300 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
301 |
+
for image in images
|
302 |
+
]
|
303 |
+
|
304 |
+
if do_center_crop:
|
305 |
+
images = [
|
306 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
307 |
+
]
|
308 |
+
|
309 |
+
if do_rescale:
|
310 |
+
images = [
|
311 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
312 |
+
for image in images
|
313 |
+
]
|
314 |
+
|
315 |
+
if do_normalize:
|
316 |
+
images = [
|
317 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
318 |
+
for image in images
|
319 |
+
]
|
320 |
+
|
321 |
+
images = [
|
322 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
323 |
+
]
|
324 |
+
|
325 |
+
data = {"pixel_values": images}
|
326 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v1/modeling_mobilenet_v1.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch MobileNetV1 model."""
|
16 |
+
|
17 |
+
|
18 |
+
from typing import Optional, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
23 |
+
|
24 |
+
from ...activations import ACT2FN
|
25 |
+
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
|
26 |
+
from ...modeling_utils import PreTrainedModel
|
27 |
+
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
28 |
+
from .configuration_mobilenet_v1 import MobileNetV1Config
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
# General docstring
|
35 |
+
_CONFIG_FOR_DOC = "MobileNetV1Config"
|
36 |
+
|
37 |
+
# Base docstring
|
38 |
+
_CHECKPOINT_FOR_DOC = "google/mobilenet_v1_1.0_224"
|
39 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 1024, 7, 7]
|
40 |
+
|
41 |
+
# Image classification docstring
|
42 |
+
_IMAGE_CLASS_CHECKPOINT = "google/mobilenet_v1_1.0_224"
|
43 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
44 |
+
|
45 |
+
|
46 |
+
from ..deprecated._archive_maps import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
47 |
+
|
48 |
+
|
49 |
+
def _build_tf_to_pytorch_map(model, config, tf_weights=None):
|
50 |
+
"""
|
51 |
+
A map of modules from TF to PyTorch.
|
52 |
+
"""
|
53 |
+
|
54 |
+
tf_to_pt_map = {}
|
55 |
+
|
56 |
+
if isinstance(model, MobileNetV1ForImageClassification):
|
57 |
+
backbone = model.mobilenet_v1
|
58 |
+
else:
|
59 |
+
backbone = model
|
60 |
+
|
61 |
+
prefix = "MobilenetV1/Conv2d_0/"
|
62 |
+
tf_to_pt_map[prefix + "weights"] = backbone.conv_stem.convolution.weight
|
63 |
+
tf_to_pt_map[prefix + "BatchNorm/beta"] = backbone.conv_stem.normalization.bias
|
64 |
+
tf_to_pt_map[prefix + "BatchNorm/gamma"] = backbone.conv_stem.normalization.weight
|
65 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.normalization.running_mean
|
66 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.normalization.running_var
|
67 |
+
|
68 |
+
for i in range(13):
|
69 |
+
tf_index = i + 1
|
70 |
+
pt_index = i * 2
|
71 |
+
|
72 |
+
pointer = backbone.layer[pt_index]
|
73 |
+
prefix = f"MobilenetV1/Conv2d_{tf_index}_depthwise/"
|
74 |
+
tf_to_pt_map[prefix + "depthwise_weights"] = pointer.convolution.weight
|
75 |
+
tf_to_pt_map[prefix + "BatchNorm/beta"] = pointer.normalization.bias
|
76 |
+
tf_to_pt_map[prefix + "BatchNorm/gamma"] = pointer.normalization.weight
|
77 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.normalization.running_mean
|
78 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.normalization.running_var
|
79 |
+
|
80 |
+
pointer = backbone.layer[pt_index + 1]
|
81 |
+
prefix = f"MobilenetV1/Conv2d_{tf_index}_pointwise/"
|
82 |
+
tf_to_pt_map[prefix + "weights"] = pointer.convolution.weight
|
83 |
+
tf_to_pt_map[prefix + "BatchNorm/beta"] = pointer.normalization.bias
|
84 |
+
tf_to_pt_map[prefix + "BatchNorm/gamma"] = pointer.normalization.weight
|
85 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.normalization.running_mean
|
86 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.normalization.running_var
|
87 |
+
|
88 |
+
if isinstance(model, MobileNetV1ForImageClassification):
|
89 |
+
prefix = "MobilenetV1/Logits/Conv2d_1c_1x1/"
|
90 |
+
tf_to_pt_map[prefix + "weights"] = model.classifier.weight
|
91 |
+
tf_to_pt_map[prefix + "biases"] = model.classifier.bias
|
92 |
+
|
93 |
+
return tf_to_pt_map
|
94 |
+
|
95 |
+
|
96 |
+
def load_tf_weights_in_mobilenet_v1(model, config, tf_checkpoint_path):
|
97 |
+
"""Load TensorFlow checkpoints in a PyTorch model."""
|
98 |
+
try:
|
99 |
+
import numpy as np
|
100 |
+
import tensorflow as tf
|
101 |
+
except ImportError:
|
102 |
+
logger.error(
|
103 |
+
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
|
104 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
105 |
+
)
|
106 |
+
raise
|
107 |
+
|
108 |
+
# Load weights from TF model
|
109 |
+
init_vars = tf.train.list_variables(tf_checkpoint_path)
|
110 |
+
tf_weights = {}
|
111 |
+
for name, shape in init_vars:
|
112 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
113 |
+
array = tf.train.load_variable(tf_checkpoint_path, name)
|
114 |
+
tf_weights[name] = array
|
115 |
+
|
116 |
+
# Build TF to PyTorch weights loading map
|
117 |
+
tf_to_pt_map = _build_tf_to_pytorch_map(model, config, tf_weights)
|
118 |
+
|
119 |
+
for name, pointer in tf_to_pt_map.items():
|
120 |
+
logger.info(f"Importing {name}")
|
121 |
+
if name not in tf_weights:
|
122 |
+
logger.info(f"{name} not in tf pre-trained weights, skipping")
|
123 |
+
continue
|
124 |
+
|
125 |
+
array = tf_weights[name]
|
126 |
+
|
127 |
+
if "depthwise_weights" in name:
|
128 |
+
logger.info("Transposing depthwise")
|
129 |
+
array = np.transpose(array, (2, 3, 0, 1))
|
130 |
+
elif "weights" in name:
|
131 |
+
logger.info("Transposing")
|
132 |
+
if len(pointer.shape) == 2: # copying into linear layer
|
133 |
+
array = array.squeeze().transpose()
|
134 |
+
else:
|
135 |
+
array = np.transpose(array, (3, 2, 0, 1))
|
136 |
+
|
137 |
+
if pointer.shape != array.shape:
|
138 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
139 |
+
|
140 |
+
logger.info(f"Initialize PyTorch weight {name} {array.shape}")
|
141 |
+
pointer.data = torch.from_numpy(array)
|
142 |
+
|
143 |
+
tf_weights.pop(name, None)
|
144 |
+
tf_weights.pop(name + "/RMSProp", None)
|
145 |
+
tf_weights.pop(name + "/RMSProp_1", None)
|
146 |
+
tf_weights.pop(name + "/ExponentialMovingAverage", None)
|
147 |
+
|
148 |
+
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}")
|
149 |
+
return model
|
150 |
+
|
151 |
+
|
152 |
+
def apply_tf_padding(features: torch.Tensor, conv_layer: nn.Conv2d) -> torch.Tensor:
|
153 |
+
"""
|
154 |
+
Apply TensorFlow-style "SAME" padding to a convolution layer. See the notes at:
|
155 |
+
https://www.tensorflow.org/api_docs/python/tf/nn#notes_on_padding_2
|
156 |
+
"""
|
157 |
+
in_height, in_width = features.shape[-2:]
|
158 |
+
stride_height, stride_width = conv_layer.stride
|
159 |
+
kernel_height, kernel_width = conv_layer.kernel_size
|
160 |
+
|
161 |
+
if in_height % stride_height == 0:
|
162 |
+
pad_along_height = max(kernel_height - stride_height, 0)
|
163 |
+
else:
|
164 |
+
pad_along_height = max(kernel_height - (in_height % stride_height), 0)
|
165 |
+
|
166 |
+
if in_width % stride_width == 0:
|
167 |
+
pad_along_width = max(kernel_width - stride_width, 0)
|
168 |
+
else:
|
169 |
+
pad_along_width = max(kernel_width - (in_width % stride_width), 0)
|
170 |
+
|
171 |
+
pad_left = pad_along_width // 2
|
172 |
+
pad_right = pad_along_width - pad_left
|
173 |
+
pad_top = pad_along_height // 2
|
174 |
+
pad_bottom = pad_along_height - pad_top
|
175 |
+
|
176 |
+
padding = (pad_left, pad_right, pad_top, pad_bottom)
|
177 |
+
return nn.functional.pad(features, padding, "constant", 0.0)
|
178 |
+
|
179 |
+
|
180 |
+
class MobileNetV1ConvLayer(nn.Module):
|
181 |
+
def __init__(
|
182 |
+
self,
|
183 |
+
config: MobileNetV1Config,
|
184 |
+
in_channels: int,
|
185 |
+
out_channels: int,
|
186 |
+
kernel_size: int,
|
187 |
+
stride: Optional[int] = 1,
|
188 |
+
groups: Optional[int] = 1,
|
189 |
+
bias: bool = False,
|
190 |
+
use_normalization: Optional[bool] = True,
|
191 |
+
use_activation: Optional[bool or str] = True,
|
192 |
+
) -> None:
|
193 |
+
super().__init__()
|
194 |
+
self.config = config
|
195 |
+
|
196 |
+
if in_channels % groups != 0:
|
197 |
+
raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
|
198 |
+
if out_channels % groups != 0:
|
199 |
+
raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
|
200 |
+
|
201 |
+
padding = 0 if config.tf_padding else int((kernel_size - 1) / 2)
|
202 |
+
|
203 |
+
self.convolution = nn.Conv2d(
|
204 |
+
in_channels=in_channels,
|
205 |
+
out_channels=out_channels,
|
206 |
+
kernel_size=kernel_size,
|
207 |
+
stride=stride,
|
208 |
+
padding=padding,
|
209 |
+
groups=groups,
|
210 |
+
bias=bias,
|
211 |
+
padding_mode="zeros",
|
212 |
+
)
|
213 |
+
|
214 |
+
if use_normalization:
|
215 |
+
self.normalization = nn.BatchNorm2d(
|
216 |
+
num_features=out_channels,
|
217 |
+
eps=config.layer_norm_eps,
|
218 |
+
momentum=0.9997,
|
219 |
+
affine=True,
|
220 |
+
track_running_stats=True,
|
221 |
+
)
|
222 |
+
else:
|
223 |
+
self.normalization = None
|
224 |
+
|
225 |
+
if use_activation:
|
226 |
+
if isinstance(use_activation, str):
|
227 |
+
self.activation = ACT2FN[use_activation]
|
228 |
+
elif isinstance(config.hidden_act, str):
|
229 |
+
self.activation = ACT2FN[config.hidden_act]
|
230 |
+
else:
|
231 |
+
self.activation = config.hidden_act
|
232 |
+
else:
|
233 |
+
self.activation = None
|
234 |
+
|
235 |
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
236 |
+
if self.config.tf_padding:
|
237 |
+
features = apply_tf_padding(features, self.convolution)
|
238 |
+
features = self.convolution(features)
|
239 |
+
if self.normalization is not None:
|
240 |
+
features = self.normalization(features)
|
241 |
+
if self.activation is not None:
|
242 |
+
features = self.activation(features)
|
243 |
+
return features
|
244 |
+
|
245 |
+
|
246 |
+
class MobileNetV1PreTrainedModel(PreTrainedModel):
|
247 |
+
"""
|
248 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
249 |
+
models.
|
250 |
+
"""
|
251 |
+
|
252 |
+
config_class = MobileNetV1Config
|
253 |
+
load_tf_weights = load_tf_weights_in_mobilenet_v1
|
254 |
+
base_model_prefix = "mobilenet_v1"
|
255 |
+
main_input_name = "pixel_values"
|
256 |
+
supports_gradient_checkpointing = False
|
257 |
+
|
258 |
+
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d]) -> None:
|
259 |
+
"""Initialize the weights"""
|
260 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
261 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
262 |
+
if module.bias is not None:
|
263 |
+
module.bias.data.zero_()
|
264 |
+
elif isinstance(module, nn.BatchNorm2d):
|
265 |
+
module.bias.data.zero_()
|
266 |
+
module.weight.data.fill_(1.0)
|
267 |
+
|
268 |
+
|
269 |
+
MOBILENET_V1_START_DOCSTRING = r"""
|
270 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
271 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
272 |
+
behavior.
|
273 |
+
|
274 |
+
Parameters:
|
275 |
+
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
|
276 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
277 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
278 |
+
"""
|
279 |
+
|
280 |
+
MOBILENET_V1_INPUTS_DOCSTRING = r"""
|
281 |
+
Args:
|
282 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
283 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
284 |
+
[`MobileNetV1ImageProcessor.__call__`] for details.
|
285 |
+
output_hidden_states (`bool`, *optional*):
|
286 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
287 |
+
more detail.
|
288 |
+
return_dict (`bool`, *optional*):
|
289 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
290 |
+
"""
|
291 |
+
|
292 |
+
|
293 |
+
@add_start_docstrings(
|
294 |
+
"The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.",
|
295 |
+
MOBILENET_V1_START_DOCSTRING,
|
296 |
+
)
|
297 |
+
class MobileNetV1Model(MobileNetV1PreTrainedModel):
|
298 |
+
def __init__(self, config: MobileNetV1Config, add_pooling_layer: bool = True):
|
299 |
+
super().__init__(config)
|
300 |
+
self.config = config
|
301 |
+
|
302 |
+
depth = 32
|
303 |
+
out_channels = max(int(depth * config.depth_multiplier), config.min_depth)
|
304 |
+
|
305 |
+
self.conv_stem = MobileNetV1ConvLayer(
|
306 |
+
config,
|
307 |
+
in_channels=config.num_channels,
|
308 |
+
out_channels=out_channels,
|
309 |
+
kernel_size=3,
|
310 |
+
stride=2,
|
311 |
+
)
|
312 |
+
|
313 |
+
strides = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
|
314 |
+
|
315 |
+
self.layer = nn.ModuleList()
|
316 |
+
for i in range(13):
|
317 |
+
in_channels = out_channels
|
318 |
+
|
319 |
+
if strides[i] == 2 or i == 0:
|
320 |
+
depth *= 2
|
321 |
+
out_channels = max(int(depth * config.depth_multiplier), config.min_depth)
|
322 |
+
|
323 |
+
self.layer.append(
|
324 |
+
MobileNetV1ConvLayer(
|
325 |
+
config,
|
326 |
+
in_channels=in_channels,
|
327 |
+
out_channels=in_channels,
|
328 |
+
kernel_size=3,
|
329 |
+
stride=strides[i],
|
330 |
+
groups=in_channels,
|
331 |
+
)
|
332 |
+
)
|
333 |
+
|
334 |
+
self.layer.append(
|
335 |
+
MobileNetV1ConvLayer(
|
336 |
+
config,
|
337 |
+
in_channels=in_channels,
|
338 |
+
out_channels=out_channels,
|
339 |
+
kernel_size=1,
|
340 |
+
)
|
341 |
+
)
|
342 |
+
|
343 |
+
self.pooler = nn.AdaptiveAvgPool2d((1, 1)) if add_pooling_layer else None
|
344 |
+
|
345 |
+
# Initialize weights and apply final processing
|
346 |
+
self.post_init()
|
347 |
+
|
348 |
+
def _prune_heads(self, heads_to_prune):
|
349 |
+
raise NotImplementedError
|
350 |
+
|
351 |
+
@add_start_docstrings_to_model_forward(MOBILENET_V1_INPUTS_DOCSTRING)
|
352 |
+
@add_code_sample_docstrings(
|
353 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
354 |
+
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
355 |
+
config_class=_CONFIG_FOR_DOC,
|
356 |
+
modality="vision",
|
357 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
358 |
+
)
|
359 |
+
def forward(
|
360 |
+
self,
|
361 |
+
pixel_values: Optional[torch.Tensor] = None,
|
362 |
+
output_hidden_states: Optional[bool] = None,
|
363 |
+
return_dict: Optional[bool] = None,
|
364 |
+
) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
|
365 |
+
output_hidden_states = (
|
366 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
367 |
+
)
|
368 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
369 |
+
|
370 |
+
if pixel_values is None:
|
371 |
+
raise ValueError("You have to specify pixel_values")
|
372 |
+
|
373 |
+
hidden_states = self.conv_stem(pixel_values)
|
374 |
+
|
375 |
+
all_hidden_states = () if output_hidden_states else None
|
376 |
+
|
377 |
+
for i, layer_module in enumerate(self.layer):
|
378 |
+
hidden_states = layer_module(hidden_states)
|
379 |
+
|
380 |
+
if output_hidden_states:
|
381 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
382 |
+
|
383 |
+
last_hidden_state = hidden_states
|
384 |
+
|
385 |
+
if self.pooler is not None:
|
386 |
+
pooled_output = torch.flatten(self.pooler(last_hidden_state), start_dim=1)
|
387 |
+
else:
|
388 |
+
pooled_output = None
|
389 |
+
|
390 |
+
if not return_dict:
|
391 |
+
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None)
|
392 |
+
|
393 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
394 |
+
last_hidden_state=last_hidden_state,
|
395 |
+
pooler_output=pooled_output,
|
396 |
+
hidden_states=all_hidden_states,
|
397 |
+
)
|
398 |
+
|
399 |
+
|
400 |
+
@add_start_docstrings(
|
401 |
+
"""
|
402 |
+
MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
403 |
+
ImageNet.
|
404 |
+
""",
|
405 |
+
MOBILENET_V1_START_DOCSTRING,
|
406 |
+
)
|
407 |
+
class MobileNetV1ForImageClassification(MobileNetV1PreTrainedModel):
|
408 |
+
def __init__(self, config: MobileNetV1Config) -> None:
|
409 |
+
super().__init__(config)
|
410 |
+
|
411 |
+
self.num_labels = config.num_labels
|
412 |
+
self.mobilenet_v1 = MobileNetV1Model(config)
|
413 |
+
|
414 |
+
last_hidden_size = self.mobilenet_v1.layer[-1].convolution.out_channels
|
415 |
+
|
416 |
+
# Classifier head
|
417 |
+
self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True)
|
418 |
+
self.classifier = nn.Linear(last_hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
419 |
+
|
420 |
+
# Initialize weights and apply final processing
|
421 |
+
self.post_init()
|
422 |
+
|
423 |
+
@add_start_docstrings_to_model_forward(MOBILENET_V1_INPUTS_DOCSTRING)
|
424 |
+
@add_code_sample_docstrings(
|
425 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
426 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
427 |
+
config_class=_CONFIG_FOR_DOC,
|
428 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
429 |
+
)
|
430 |
+
def forward(
|
431 |
+
self,
|
432 |
+
pixel_values: Optional[torch.Tensor] = None,
|
433 |
+
output_hidden_states: Optional[bool] = None,
|
434 |
+
labels: Optional[torch.Tensor] = None,
|
435 |
+
return_dict: Optional[bool] = None,
|
436 |
+
) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
|
437 |
+
r"""
|
438 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
439 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
440 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
|
441 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
442 |
+
"""
|
443 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
444 |
+
|
445 |
+
outputs = self.mobilenet_v1(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
446 |
+
|
447 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
448 |
+
|
449 |
+
logits = self.classifier(self.dropout(pooled_output))
|
450 |
+
|
451 |
+
loss = None
|
452 |
+
if labels is not None:
|
453 |
+
if self.config.problem_type is None:
|
454 |
+
if self.num_labels == 1:
|
455 |
+
self.config.problem_type = "regression"
|
456 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
457 |
+
self.config.problem_type = "single_label_classification"
|
458 |
+
else:
|
459 |
+
self.config.problem_type = "multi_label_classification"
|
460 |
+
|
461 |
+
if self.config.problem_type == "regression":
|
462 |
+
loss_fct = MSELoss()
|
463 |
+
if self.num_labels == 1:
|
464 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
465 |
+
else:
|
466 |
+
loss = loss_fct(logits, labels)
|
467 |
+
elif self.config.problem_type == "single_label_classification":
|
468 |
+
loss_fct = CrossEntropyLoss()
|
469 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
470 |
+
elif self.config.problem_type == "multi_label_classification":
|
471 |
+
loss_fct = BCEWithLogitsLoss()
|
472 |
+
loss = loss_fct(logits, labels)
|
473 |
+
|
474 |
+
if not return_dict:
|
475 |
+
output = (logits,) + outputs[2:]
|
476 |
+
return ((loss,) + output) if loss is not None else output
|
477 |
+
|
478 |
+
return ImageClassifierOutputWithNoAttention(
|
479 |
+
loss=loss,
|
480 |
+
logits=logits,
|
481 |
+
hidden_states=outputs.hidden_states,
|
482 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__init__.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_mpt": ["MPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MptConfig", "MptOnnxConfig"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_torch_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["modeling_mpt"] = [
|
31 |
+
"MPT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
32 |
+
"MptForCausalLM",
|
33 |
+
"MptModel",
|
34 |
+
"MptPreTrainedModel",
|
35 |
+
"MptForSequenceClassification",
|
36 |
+
"MptForTokenClassification",
|
37 |
+
"MptForQuestionAnswering",
|
38 |
+
]
|
39 |
+
|
40 |
+
if TYPE_CHECKING:
|
41 |
+
from .configuration_mpt import MPT_PRETRAINED_CONFIG_ARCHIVE_MAP, MptConfig, MptOnnxConfig
|
42 |
+
|
43 |
+
try:
|
44 |
+
if not is_torch_available():
|
45 |
+
raise OptionalDependencyNotAvailable()
|
46 |
+
except OptionalDependencyNotAvailable:
|
47 |
+
pass
|
48 |
+
else:
|
49 |
+
from .modeling_mpt import (
|
50 |
+
MPT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
51 |
+
MptForCausalLM,
|
52 |
+
MptForQuestionAnswering,
|
53 |
+
MptForSequenceClassification,
|
54 |
+
MptForTokenClassification,
|
55 |
+
MptModel,
|
56 |
+
MptPreTrainedModel,
|
57 |
+
)
|
58 |
+
|
59 |
+
else:
|
60 |
+
import sys
|
61 |
+
|
62 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.05 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/configuration_mpt.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/__pycache__/modeling_mpt.cpython-310.pyc
ADDED
Binary file (27.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/configuration_mpt.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Mpt configuration"""
|
16 |
+
from typing import TYPE_CHECKING, Optional, Union
|
17 |
+
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
pass
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
from ..deprecated._archive_maps import MPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
30 |
+
|
31 |
+
|
32 |
+
class MptAttentionConfig(PretrainedConfig):
|
33 |
+
"""
|
34 |
+
This is the configuration class to store the configuration of a [`MptAttention`] class. It is used to instantiate
|
35 |
+
attention layers according to the specified arguments, defining the layers architecture. Instantiating a
|
36 |
+
configuration with the defaults will yield a similar configuration to that of the MPT
|
37 |
+
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) architecture. Most of the arguments are kept for backward
|
38 |
+
compatibility with previous MPT models that are hosted on the Hub (previously with `trust_remote_code=True`).
|
39 |
+
|
40 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
41 |
+
documentation from [`PretrainedConfig`] for more information.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
attn_type (`str`, *optional*, defaults to `"multihead_attention"`):
|
45 |
+
type of attention to use. Options: `"multihead_attention"`, `"multiquery_attention"`.
|
46 |
+
attn_pdrop (`float`, *optional*, defaults to 0.0):
|
47 |
+
The dropout probability for the attention layers.
|
48 |
+
attn_impl (`str`, *optional*, defaults to `"torch"`):
|
49 |
+
The attention implementation to use. One of `"torch"`, `"flash"`, or `"triton"`.
|
50 |
+
clip_qkv (`float`, *optional*):
|
51 |
+
If not `None`, clip the queries, keys, and values in the attention layer to this value.
|
52 |
+
softmax_scale (`float`, *optional*, defaults to `None`):
|
53 |
+
If not `None`, scale the softmax in the attention layer by this value. If `None`, will default to
|
54 |
+
`1/sqrt(hidden_size)`.
|
55 |
+
prefix_lm (`bool`, *optional*, defaults to `False`)):
|
56 |
+
Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument
|
57 |
+
which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another
|
58 |
+
bi-directionally. Tokens outside the prefix use causal attention.
|
59 |
+
qk_ln (`bool`, *optional*, defaults to `False`):
|
60 |
+
Whether to apply layer normalization to the queries and keys in the attention layer.
|
61 |
+
attn_uses_sequence_id (`bool`, *optional*, defaults to `False`)):
|
62 |
+
Whether to restrict attention to tokens that have the same token_type_ids. When the model is in `train`
|
63 |
+
mode, this requires passing an extra *token_type_ids* argument which indicates which sub-sequence each
|
64 |
+
token belongs to. Defaults to `False` meaning any provided *token_type_ids* will be ignored.
|
65 |
+
alibi (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not to use the alibi bias instead of positional embedding.
|
67 |
+
alibi_bias_max (`int`, *optional*, defaults to 8):
|
68 |
+
The maximum value of the alibi bias.
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
attn_type="multihead_attention",
|
74 |
+
attn_pdrop=0,
|
75 |
+
attn_impl="torch",
|
76 |
+
clip_qkv=None,
|
77 |
+
softmax_scale=None,
|
78 |
+
prefix_lm=False,
|
79 |
+
qk_ln=False,
|
80 |
+
attn_uses_sequence_id=False,
|
81 |
+
alibi=True,
|
82 |
+
alibi_bias_max=8,
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
super().__init__()
|
86 |
+
self.attn_type = attn_type
|
87 |
+
self.attn_pdrop = attn_pdrop
|
88 |
+
self.attn_impl = attn_impl
|
89 |
+
self.clip_qkv = clip_qkv
|
90 |
+
self.softmax_scale = softmax_scale
|
91 |
+
self.prefix_lm = prefix_lm
|
92 |
+
self.attn_uses_sequence_id = attn_uses_sequence_id
|
93 |
+
self.alibi = alibi
|
94 |
+
self.qk_ln = qk_ln
|
95 |
+
self.alibi_bias_max = alibi_bias_max
|
96 |
+
|
97 |
+
if attn_type not in ["multihead_attention", "multiquery_attention"]:
|
98 |
+
raise ValueError(
|
99 |
+
f"`attn_type` has to be either `multihead_attention` or `multiquery_attention`. Received: {attn_type}"
|
100 |
+
)
|
101 |
+
|
102 |
+
@classmethod
|
103 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs) -> "PretrainedConfig":
|
104 |
+
cls._set_token_in_kwargs(kwargs)
|
105 |
+
|
106 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
107 |
+
|
108 |
+
if config_dict.get("model_type") == "mpt":
|
109 |
+
config_dict = config_dict["attn_config"]
|
110 |
+
|
111 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
112 |
+
logger.warning(
|
113 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
114 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
115 |
+
)
|
116 |
+
|
117 |
+
return cls.from_dict(config_dict, **kwargs)
|
118 |
+
|
119 |
+
|
120 |
+
class MptConfig(PretrainedConfig):
|
121 |
+
"""
|
122 |
+
This is the configuration class to store the configuration of a [`MptModel`]. It is used to instantiate a Mpt model
|
123 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
124 |
+
defaults will yield a similar configuration to the Mpt-7b architecture
|
125 |
+
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b).
|
126 |
+
|
127 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
128 |
+
documentation from [`PretrainedConfig`] for more information.
|
129 |
+
|
130 |
+
|
131 |
+
Args:
|
132 |
+
d_model (`int`, *optional*, defaults to 2048):
|
133 |
+
Dimensionality of the embeddings and hidden states.
|
134 |
+
n_heads (`int`, *optional*, defaults to 16):
|
135 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
136 |
+
n_layers (`int`, *optional*, defaults to 24):
|
137 |
+
Number of hidden layers in the Transformer encoder.
|
138 |
+
expansion_ratio (`int`, *optional*, defaults to 4):
|
139 |
+
The ratio of the up/down scale in the MLP.
|
140 |
+
max_seq_len (`int`, *optional*, defaults to 2048):
|
141 |
+
The maximum sequence length of the model.
|
142 |
+
vocab_size (`int`, *optional*, defaults to 50368):
|
143 |
+
Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented by
|
144 |
+
the `inputs_ids` passed when calling [`MptModel`]. Check [this
|
145 |
+
discussion](https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a) on how the
|
146 |
+
`vocab_size` has been defined.
|
147 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
148 |
+
The dropout probability applied to the attention output before combining with residual.
|
149 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
150 |
+
The epsilon to use in the layer normalization layers.
|
151 |
+
emb_pdrop (`float`, *optional*, defaults to 0.0):
|
152 |
+
The dropout probability for the embedding layer.
|
153 |
+
learned_pos_emb (`bool`, *optional*, defaults to `True`):
|
154 |
+
Whether to use learned positional embeddings.
|
155 |
+
attn_config (`dict`, *optional*):
|
156 |
+
A dictionary used to configure the model's attention module.
|
157 |
+
init_device (`str`, *optional*, defaults to `"cpu"`):
|
158 |
+
The device to use for parameter initialization. Defined for backward compatibility
|
159 |
+
logit_scale (`float`, *optional*):
|
160 |
+
If not None, scale the logits by this value.
|
161 |
+
no_bias (`bool`, *optional*, defaults to `True`):
|
162 |
+
Whether to use bias in all linear layers.
|
163 |
+
verbose (`int`, *optional*, defaults to 0):
|
164 |
+
The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This
|
165 |
+
argument is deprecated.
|
166 |
+
embedding_fraction (`float`, *optional*, defaults to 1.0):
|
167 |
+
The fraction to scale the gradients of the embedding layer by.
|
168 |
+
norm_type (`str`, *optional*, defaults to `"low_precision_layernorm"`):
|
169 |
+
Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for backward
|
170 |
+
compatibility.
|
171 |
+
use_cache (`bool`, *optional*, defaults to `False`):
|
172 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
173 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
174 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
175 |
+
|
176 |
+
Example:
|
177 |
+
|
178 |
+
```python
|
179 |
+
>>> from transformers import MptConfig, MptModel
|
180 |
+
|
181 |
+
>>> # Initializing a Mpt configuration
|
182 |
+
>>> configuration = MptConfig()
|
183 |
+
|
184 |
+
>>> # Initializing a model (with random weights) from the configuration
|
185 |
+
>>> model = MptModel(configuration)
|
186 |
+
|
187 |
+
>>> # Accessing the model configuration
|
188 |
+
>>> configuration = model.config
|
189 |
+
```
|
190 |
+
"""
|
191 |
+
|
192 |
+
model_type = "mpt"
|
193 |
+
attribute_map = {
|
194 |
+
"num_attention_heads": "n_heads",
|
195 |
+
"hidden_size": "d_model",
|
196 |
+
"num_hidden_layers": "n_layers",
|
197 |
+
}
|
198 |
+
|
199 |
+
def __init__(
|
200 |
+
self,
|
201 |
+
d_model: int = 2048,
|
202 |
+
n_heads: int = 16,
|
203 |
+
n_layers: int = 24,
|
204 |
+
expansion_ratio: int = 4,
|
205 |
+
max_seq_len: int = 2048,
|
206 |
+
vocab_size: int = 50368,
|
207 |
+
resid_pdrop: float = 0.0,
|
208 |
+
layer_norm_epsilon: float = 1e-5,
|
209 |
+
emb_pdrop: float = 0.0,
|
210 |
+
learned_pos_emb: bool = True,
|
211 |
+
attn_config: MptAttentionConfig = None,
|
212 |
+
init_device: str = "cpu",
|
213 |
+
logit_scale: Optional[Union[float, str]] = None,
|
214 |
+
no_bias: bool = True,
|
215 |
+
verbose: int = 0,
|
216 |
+
embedding_fraction: float = 1.0,
|
217 |
+
norm_type: str = "low_precision_layernorm",
|
218 |
+
use_cache: bool = False,
|
219 |
+
initializer_range=0.02,
|
220 |
+
**kwargs,
|
221 |
+
):
|
222 |
+
if attn_config is None:
|
223 |
+
self.attn_config = MptAttentionConfig()
|
224 |
+
elif isinstance(attn_config, dict):
|
225 |
+
self.attn_config = MptAttentionConfig(**attn_config)
|
226 |
+
else:
|
227 |
+
self.attn_config = attn_config
|
228 |
+
self.d_model = d_model
|
229 |
+
self.n_heads = n_heads
|
230 |
+
self.n_layers = n_layers
|
231 |
+
self.expansion_ratio = expansion_ratio
|
232 |
+
self.max_seq_len = max_seq_len
|
233 |
+
self.vocab_size = vocab_size
|
234 |
+
self.resid_pdrop = resid_pdrop
|
235 |
+
self.emb_pdrop = emb_pdrop
|
236 |
+
self.learned_pos_emb = learned_pos_emb
|
237 |
+
self.init_device = init_device
|
238 |
+
self.logit_scale = logit_scale
|
239 |
+
self.no_bias = no_bias
|
240 |
+
self.verbose = verbose
|
241 |
+
self.embedding_fraction = embedding_fraction
|
242 |
+
self.norm_type = norm_type
|
243 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
244 |
+
self.use_cache = use_cache
|
245 |
+
self.initializer_range = initializer_range
|
246 |
+
super().__init__(**kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mpt/modeling_mpt.py
ADDED
@@ -0,0 +1,942 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch MPT model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
24 |
+
from torch.nn import functional as F
|
25 |
+
|
26 |
+
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
27 |
+
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
CausalLMOutputWithCrossAttentions,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutputWithPast,
|
33 |
+
TokenClassifierOutput,
|
34 |
+
)
|
35 |
+
from ...modeling_utils import PreTrainedModel
|
36 |
+
from ...utils import logging
|
37 |
+
from .configuration_mpt import MptConfig
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CHECKPOINT_FOR_DOC = "mosaicml/mpt-7b"
|
43 |
+
_CONFIG_FOR_DOC = "MptConfig"
|
44 |
+
|
45 |
+
|
46 |
+
from ..deprecated._archive_maps import MPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
47 |
+
|
48 |
+
|
49 |
+
def build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max=8, device=None):
|
50 |
+
r"""
|
51 |
+
Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it
|
52 |
+
relies on a translation invariance of softmax for quick implementation. This implementation has been copied from
|
53 |
+
the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi:
|
54 |
+
https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292
|
55 |
+
"""
|
56 |
+
alibi = torch.arange(1 - sequence_length, 1, dtype=torch.int32, device=device).view(1, 1, 1, sequence_length)
|
57 |
+
num_heads_power_of_2 = 2 ** math.ceil(math.log2(num_heads))
|
58 |
+
|
59 |
+
base = torch.arange(1, num_heads_power_of_2 + 1, dtype=torch.int64, device=device).float()
|
60 |
+
base = base * (alibi_bias_max / num_heads_power_of_2)
|
61 |
+
|
62 |
+
slopes = 1.0 / torch.pow(2, base)
|
63 |
+
slopes = slopes.view(1, num_heads_power_of_2, 1, 1)
|
64 |
+
|
65 |
+
if num_heads_power_of_2 != num_heads:
|
66 |
+
slopes = torch.concat([slopes[:, 1::2, ...], slopes[:, ::2, ...]], dim=1)[:, :num_heads, ...]
|
67 |
+
|
68 |
+
alibi = alibi * slopes
|
69 |
+
return alibi.squeeze(0)
|
70 |
+
|
71 |
+
|
72 |
+
class MptAttention(nn.Module):
|
73 |
+
"""Multi-head self attention.
|
74 |
+
Using torch or triton attention implemetation enables user to also use additive bias.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(self, config: MptConfig):
|
78 |
+
super().__init__()
|
79 |
+
self.hidden_size = config.hidden_size
|
80 |
+
self.n_heads = config.n_heads
|
81 |
+
self.max_seq_length = config.max_seq_len
|
82 |
+
self.head_dim = self.hidden_size // self.n_heads
|
83 |
+
self.softmax_scale = config.attn_config.softmax_scale
|
84 |
+
if self.softmax_scale is None:
|
85 |
+
self.softmax_scale = 1 / math.sqrt(self.hidden_size / self.n_heads)
|
86 |
+
|
87 |
+
self.attn_dropout_p = config.attn_config.attn_pdrop
|
88 |
+
self.Wqkv = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
89 |
+
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
90 |
+
|
91 |
+
def forward(
|
92 |
+
self,
|
93 |
+
hidden_states: torch.Tensor,
|
94 |
+
position_bias: torch.Tensor,
|
95 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
96 |
+
attention_mask: Optional[torch.Tensor] = None,
|
97 |
+
):
|
98 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
99 |
+
|
100 |
+
mixed_qkv = self.Wqkv(hidden_states)
|
101 |
+
query_states, key_states, value_states = mixed_qkv.chunk(3, dim=2)
|
102 |
+
query_states = query_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2)
|
103 |
+
key_states = key_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2)
|
104 |
+
value_states = value_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2)
|
105 |
+
|
106 |
+
if past_key_value is not None:
|
107 |
+
if len(past_key_value) != 0:
|
108 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
109 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
110 |
+
past_key_value = (key_states, value_states)
|
111 |
+
else:
|
112 |
+
past_key_value = (key_states, value_states)
|
113 |
+
|
114 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) * self.softmax_scale
|
115 |
+
|
116 |
+
query_length = seq_length if past_key_value is None else seq_length + past_key_value[0].shape[2]
|
117 |
+
|
118 |
+
if position_bias is not None:
|
119 |
+
if len(position_bias.shape) != 3:
|
120 |
+
raise ValueError(f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias.shape)}")
|
121 |
+
key_length = key_states.shape[-2]
|
122 |
+
|
123 |
+
position_bias_query_index = max(0, position_bias.size(1) - query_length)
|
124 |
+
position_bias_key_index = max(0, position_bias.size(2) - key_length)
|
125 |
+
|
126 |
+
position_bias = position_bias[:, position_bias_query_index:, position_bias_key_index:]
|
127 |
+
|
128 |
+
attention_scores = attention_scores + position_bias
|
129 |
+
|
130 |
+
if attention_mask is not None:
|
131 |
+
attention_scores = attention_scores.masked_fill(attention_mask, torch.finfo(query_states.dtype).min)
|
132 |
+
|
133 |
+
# (batch_size, n_heads, seq_length, key_length)
|
134 |
+
attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).to(value_states.dtype)
|
135 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attn_dropout_p, training=self.training)
|
136 |
+
|
137 |
+
context_states = torch.matmul(attn_weights, value_states)
|
138 |
+
context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1)
|
139 |
+
attn_output = self.out_proj(context_states)
|
140 |
+
|
141 |
+
return attn_output, attn_weights, past_key_value
|
142 |
+
|
143 |
+
|
144 |
+
class MptMLP(nn.Module):
|
145 |
+
def __init__(self, config: MptConfig):
|
146 |
+
super().__init__()
|
147 |
+
hidden_size = config.hidden_size
|
148 |
+
|
149 |
+
self.up_proj = nn.Linear(hidden_size, 4 * hidden_size, bias=False)
|
150 |
+
self.act = nn.GELU(approximate="none")
|
151 |
+
self.down_proj = nn.Linear(4 * hidden_size, hidden_size, bias=False)
|
152 |
+
self.hidden_dropout = config.attn_config.attn_pdrop
|
153 |
+
|
154 |
+
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
|
155 |
+
hidden_states = self.act(self.up_proj(hidden_states))
|
156 |
+
|
157 |
+
intermediate_output = self.down_proj(hidden_states)
|
158 |
+
|
159 |
+
output = F.dropout(intermediate_output, p=self.hidden_dropout, training=self.training)
|
160 |
+
output = output + residual
|
161 |
+
|
162 |
+
return output
|
163 |
+
|
164 |
+
|
165 |
+
class MptBlock(nn.Module):
|
166 |
+
def __init__(self, config: MptConfig):
|
167 |
+
super().__init__()
|
168 |
+
hidden_size = config.hidden_size
|
169 |
+
|
170 |
+
self.norm_1 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
171 |
+
# backward compatibility with weights on the Hub
|
172 |
+
self.norm_1.bias = None
|
173 |
+
|
174 |
+
self.num_heads = config.n_heads
|
175 |
+
self.attn = MptAttention(config)
|
176 |
+
|
177 |
+
self.norm_2 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
178 |
+
# backward compatibility with weights on the Hub
|
179 |
+
self.norm_2.bias = None
|
180 |
+
|
181 |
+
self.ffn = MptMLP(config)
|
182 |
+
|
183 |
+
self.dropout_rate = config.attn_config.attn_pdrop
|
184 |
+
self.resid_attn_dropout = nn.Dropout(self.dropout_rate)
|
185 |
+
|
186 |
+
def forward(
|
187 |
+
self,
|
188 |
+
hidden_states: torch.Tensor,
|
189 |
+
position_bias: torch.Tensor,
|
190 |
+
attention_mask: torch.Tensor,
|
191 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
192 |
+
use_cache: bool = False,
|
193 |
+
output_attentions: bool = False,
|
194 |
+
):
|
195 |
+
# hidden_states: [batch_size, seq_length, hidden_size]
|
196 |
+
# Layer norm at the beginning of the transformer layer.
|
197 |
+
layernorm_output = self.norm_1(hidden_states)
|
198 |
+
|
199 |
+
residual = hidden_states
|
200 |
+
|
201 |
+
# Self attention.
|
202 |
+
attn_outputs, attn_weights, past_key_value = self.attn(
|
203 |
+
layernorm_output,
|
204 |
+
position_bias=position_bias,
|
205 |
+
attention_mask=attention_mask,
|
206 |
+
past_key_value=layer_past,
|
207 |
+
)
|
208 |
+
|
209 |
+
hidden_states = self.resid_attn_dropout(attn_outputs) + residual
|
210 |
+
|
211 |
+
layernorm_output = self.norm_2(hidden_states)
|
212 |
+
|
213 |
+
# Get residual
|
214 |
+
residual = hidden_states
|
215 |
+
|
216 |
+
# MLP.
|
217 |
+
output = self.ffn(layernorm_output, residual)
|
218 |
+
outputs = (output,)
|
219 |
+
|
220 |
+
if use_cache:
|
221 |
+
outputs += (past_key_value,)
|
222 |
+
|
223 |
+
if output_attentions:
|
224 |
+
outputs += (attn_weights,)
|
225 |
+
|
226 |
+
return outputs # hidden_states, present, attentions
|
227 |
+
|
228 |
+
|
229 |
+
class MptPreTrainedModel(PreTrainedModel):
|
230 |
+
config_class = MptConfig
|
231 |
+
base_model_prefix = "transformer"
|
232 |
+
supports_gradient_checkpointing = True
|
233 |
+
_no_split_modules = ["MptBlock"]
|
234 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.*."]
|
235 |
+
|
236 |
+
def __init__(self, *inputs, **kwargs):
|
237 |
+
super().__init__(*inputs, **kwargs)
|
238 |
+
|
239 |
+
def _init_weights(self, module: nn.Module):
|
240 |
+
"""Initialize the weights."""
|
241 |
+
if isinstance(module, nn.Linear):
|
242 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
243 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
244 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
245 |
+
if module.bias is not None:
|
246 |
+
module.bias.data.zero_()
|
247 |
+
elif isinstance(module, nn.Embedding):
|
248 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
249 |
+
if module.padding_idx is not None:
|
250 |
+
module.weight.data[module.padding_idx].zero_()
|
251 |
+
elif isinstance(module, LayerNorm):
|
252 |
+
if module.bias is not None:
|
253 |
+
module.bias.data.zero_()
|
254 |
+
module.weight.data.fill_(1.0)
|
255 |
+
|
256 |
+
@staticmethod
|
257 |
+
def _convert_to_mpt_cache(
|
258 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
|
259 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
260 |
+
"""
|
261 |
+
Converts the cache to the format expected by Mpt, i.e. to tuple(tuple([batch_size * num_heads, ...]))
|
262 |
+
"""
|
263 |
+
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
264 |
+
batch_size_times_num_heads = batch_size * num_heads
|
265 |
+
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
|
266 |
+
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
267 |
+
return tuple(
|
268 |
+
(
|
269 |
+
layer_past[0].reshape(batch_size_times_num_heads, head_dim, seq_length),
|
270 |
+
layer_past[1].reshape(batch_size_times_num_heads, seq_length, head_dim),
|
271 |
+
)
|
272 |
+
for layer_past in past_key_value
|
273 |
+
)
|
274 |
+
|
275 |
+
|
276 |
+
MPT_START_DOCSTRING = r"""
|
277 |
+
|
278 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
279 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
280 |
+
|
281 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
282 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
283 |
+
and behavior.
|
284 |
+
|
285 |
+
Parameters:
|
286 |
+
config ([`MptConfig`]): Model configuration class with all the parameters of the model.
|
287 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
288 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
289 |
+
"""
|
290 |
+
|
291 |
+
MPT_INPUTS_DOCSTRING = r"""
|
292 |
+
Args:
|
293 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
294 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
|
295 |
+
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
296 |
+
|
297 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
298 |
+
`input_ids`.
|
299 |
+
|
300 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
301 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
302 |
+
|
303 |
+
[What are input IDs?](../glossary#input-ids)
|
304 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
305 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
306 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
307 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
308 |
+
|
309 |
+
Each element of `past_key_values` is a tuple (past_key, past_value):
|
310 |
+
- past_key: [batch_size * num_heads, head_dim, kv_length]
|
311 |
+
- past_value: [batch_size * num_heads, kv_length, head_dim]
|
312 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
313 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
314 |
+
|
315 |
+
- 1 for tokens that are **not masked**,
|
316 |
+
- 0 for tokens that are **masked**.
|
317 |
+
|
318 |
+
[What are attention masks?](../glossary#attention-mask)
|
319 |
+
|
320 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
321 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
322 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
323 |
+
model's internal embedding lookup matrix.
|
324 |
+
|
325 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
326 |
+
`past_key_values`).
|
327 |
+
use_cache (`bool`, *optional*):
|
328 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
329 |
+
`past_key_values`).
|
330 |
+
output_attentions (`bool`, *optional*):
|
331 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
332 |
+
tensors for more detail.
|
333 |
+
output_hidden_states (`bool`, *optional*):
|
334 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
335 |
+
more detail.
|
336 |
+
return_dict (`bool`, *optional*):
|
337 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
338 |
+
"""
|
339 |
+
|
340 |
+
|
341 |
+
@add_start_docstrings(
|
342 |
+
"The bare Mpt Model transformer outputting raw hidden-states without any specific head on top.",
|
343 |
+
MPT_START_DOCSTRING,
|
344 |
+
)
|
345 |
+
class MptModel(MptPreTrainedModel):
|
346 |
+
def __init__(self, config: MptConfig):
|
347 |
+
super().__init__(config)
|
348 |
+
|
349 |
+
self.hidden_size = config.hidden_size
|
350 |
+
self.num_heads = config.n_heads
|
351 |
+
|
352 |
+
# Embedding + LN Embedding
|
353 |
+
self.wte = nn.Embedding(config.vocab_size, self.hidden_size)
|
354 |
+
|
355 |
+
# Transformer blocks
|
356 |
+
self.blocks = nn.ModuleList([MptBlock(config) for _ in range(config.n_layers)])
|
357 |
+
|
358 |
+
# Final Layer Norm
|
359 |
+
self.norm_f = LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)
|
360 |
+
# backward compatibility with weights on the Hub
|
361 |
+
self.norm_f.bias = None
|
362 |
+
|
363 |
+
self.gradient_checkpointing = False
|
364 |
+
|
365 |
+
# Initialize weights and apply final processing
|
366 |
+
self.post_init()
|
367 |
+
|
368 |
+
def get_input_embeddings(self):
|
369 |
+
return self.wte
|
370 |
+
|
371 |
+
def build_mpt_alibi_tensor(self, num_heads, sequence_length, alibi_bias_max=8, device=None):
|
372 |
+
return build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max, device)
|
373 |
+
|
374 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
375 |
+
self.wte = new_embeddings
|
376 |
+
|
377 |
+
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
|
378 |
+
@add_code_sample_docstrings(
|
379 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
380 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
381 |
+
config_class=_CONFIG_FOR_DOC,
|
382 |
+
)
|
383 |
+
def forward(
|
384 |
+
self,
|
385 |
+
input_ids: Optional[torch.LongTensor] = None,
|
386 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
387 |
+
attention_mask: Optional[torch.Tensor] = None,
|
388 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
389 |
+
use_cache: Optional[bool] = None,
|
390 |
+
output_attentions: Optional[bool] = None,
|
391 |
+
output_hidden_states: Optional[bool] = None,
|
392 |
+
return_dict: Optional[bool] = None,
|
393 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
394 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
395 |
+
output_hidden_states = (
|
396 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
397 |
+
)
|
398 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
399 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
400 |
+
|
401 |
+
if input_ids is not None and inputs_embeds is not None:
|
402 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
403 |
+
elif input_ids is not None:
|
404 |
+
batch_size, seq_length = input_ids.shape
|
405 |
+
elif inputs_embeds is not None:
|
406 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
407 |
+
else:
|
408 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
409 |
+
|
410 |
+
if past_key_values is None:
|
411 |
+
past_key_values = tuple([None] * len(self.blocks))
|
412 |
+
|
413 |
+
if inputs_embeds is None:
|
414 |
+
inputs_embeds = self.wte(input_ids)
|
415 |
+
|
416 |
+
hidden_states = inputs_embeds
|
417 |
+
|
418 |
+
presents = () if use_cache else None
|
419 |
+
all_self_attentions = () if output_attentions else None
|
420 |
+
all_hidden_states = () if output_hidden_states else None
|
421 |
+
|
422 |
+
if self.gradient_checkpointing and self.training:
|
423 |
+
if use_cache:
|
424 |
+
logger.warning_once(
|
425 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
426 |
+
)
|
427 |
+
use_cache = False
|
428 |
+
|
429 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
430 |
+
seq_length_with_past = seq_length
|
431 |
+
past_key_values_length = 0
|
432 |
+
if past_key_values[0] is not None:
|
433 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
434 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
435 |
+
if attention_mask is None:
|
436 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
437 |
+
else:
|
438 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
439 |
+
|
440 |
+
alibi = self.build_mpt_alibi_tensor(self.num_heads, self.config.max_seq_len, device=hidden_states.device)
|
441 |
+
|
442 |
+
causal_mask = _prepare_4d_causal_attention_mask(
|
443 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
444 |
+
)
|
445 |
+
causal_mask = causal_mask.bool()
|
446 |
+
|
447 |
+
for block, layer_past in zip(self.blocks, past_key_values):
|
448 |
+
if output_hidden_states:
|
449 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
450 |
+
|
451 |
+
if self.gradient_checkpointing and self.training:
|
452 |
+
outputs = self._gradient_checkpointing_func(
|
453 |
+
block.__call__,
|
454 |
+
hidden_states,
|
455 |
+
alibi,
|
456 |
+
causal_mask,
|
457 |
+
layer_past,
|
458 |
+
use_cache,
|
459 |
+
output_attentions,
|
460 |
+
)
|
461 |
+
else:
|
462 |
+
outputs = block(
|
463 |
+
hidden_states,
|
464 |
+
layer_past=layer_past,
|
465 |
+
attention_mask=causal_mask,
|
466 |
+
use_cache=use_cache,
|
467 |
+
output_attentions=output_attentions,
|
468 |
+
position_bias=alibi,
|
469 |
+
)
|
470 |
+
|
471 |
+
hidden_states = outputs[0]
|
472 |
+
if use_cache is True:
|
473 |
+
presents = presents + (outputs[1],)
|
474 |
+
|
475 |
+
if output_attentions:
|
476 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
477 |
+
|
478 |
+
# Add last hidden state
|
479 |
+
hidden_states = self.norm_f(hidden_states)
|
480 |
+
|
481 |
+
if output_hidden_states:
|
482 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
483 |
+
|
484 |
+
if not return_dict:
|
485 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
486 |
+
|
487 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
488 |
+
last_hidden_state=hidden_states,
|
489 |
+
past_key_values=presents,
|
490 |
+
hidden_states=all_hidden_states,
|
491 |
+
attentions=all_self_attentions,
|
492 |
+
)
|
493 |
+
|
494 |
+
|
495 |
+
@add_start_docstrings(
|
496 |
+
"""
|
497 |
+
The MPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
498 |
+
embeddings).
|
499 |
+
""",
|
500 |
+
MPT_START_DOCSTRING,
|
501 |
+
)
|
502 |
+
class MptForCausalLM(MptPreTrainedModel):
|
503 |
+
_tied_weights_keys = ["lm_head.weight"]
|
504 |
+
|
505 |
+
def __init__(self, config: MptConfig):
|
506 |
+
super().__init__(config)
|
507 |
+
self.transformer = MptModel(config)
|
508 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
509 |
+
|
510 |
+
# Initialize weights and apply final processing
|
511 |
+
self.post_init()
|
512 |
+
|
513 |
+
def get_output_embeddings(self):
|
514 |
+
return self.lm_head
|
515 |
+
|
516 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
517 |
+
self.lm_head = new_embeddings
|
518 |
+
|
519 |
+
def prepare_inputs_for_generation(
|
520 |
+
self,
|
521 |
+
input_ids: torch.LongTensor,
|
522 |
+
past_key_values: Optional[torch.Tensor] = None,
|
523 |
+
attention_mask: Optional[torch.Tensor] = None,
|
524 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
525 |
+
use_cache: Optional[bool] = None,
|
526 |
+
**kwargs,
|
527 |
+
) -> dict:
|
528 |
+
# only last tokens for input_ids if past is not None
|
529 |
+
if past_key_values is not None:
|
530 |
+
past_length = past_key_values[0][0].shape[2]
|
531 |
+
|
532 |
+
# Some generation methods already pass only the last input ID
|
533 |
+
if input_ids.shape[1] > past_length:
|
534 |
+
remove_prefix_length = past_length
|
535 |
+
else:
|
536 |
+
# Default to old behavior: keep only final ID
|
537 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
538 |
+
|
539 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
540 |
+
|
541 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
542 |
+
if inputs_embeds is not None and past_key_values is None:
|
543 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
544 |
+
else:
|
545 |
+
model_inputs = {"input_ids": input_ids}
|
546 |
+
|
547 |
+
model_inputs.update(
|
548 |
+
{
|
549 |
+
"past_key_values": past_key_values, # NITS should it be layer_past?
|
550 |
+
"use_cache": use_cache,
|
551 |
+
"attention_mask": attention_mask,
|
552 |
+
}
|
553 |
+
)
|
554 |
+
return model_inputs
|
555 |
+
|
556 |
+
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
|
557 |
+
@add_code_sample_docstrings(
|
558 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
559 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
560 |
+
config_class=_CONFIG_FOR_DOC,
|
561 |
+
)
|
562 |
+
def forward(
|
563 |
+
self,
|
564 |
+
input_ids: Optional[torch.LongTensor] = None,
|
565 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
566 |
+
attention_mask: Optional[torch.Tensor] = None,
|
567 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
568 |
+
labels: Optional[torch.Tensor] = None,
|
569 |
+
use_cache: Optional[bool] = None,
|
570 |
+
output_attentions: Optional[bool] = None,
|
571 |
+
output_hidden_states: Optional[bool] = None,
|
572 |
+
return_dict: Optional[bool] = None,
|
573 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
574 |
+
r"""
|
575 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
576 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
577 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
578 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
579 |
+
"""
|
580 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
581 |
+
|
582 |
+
transformer_outputs = self.transformer(
|
583 |
+
input_ids,
|
584 |
+
past_key_values=past_key_values,
|
585 |
+
attention_mask=attention_mask,
|
586 |
+
inputs_embeds=inputs_embeds,
|
587 |
+
use_cache=use_cache,
|
588 |
+
output_attentions=output_attentions,
|
589 |
+
output_hidden_states=output_hidden_states,
|
590 |
+
return_dict=return_dict,
|
591 |
+
)
|
592 |
+
hidden_states = transformer_outputs[0]
|
593 |
+
|
594 |
+
lm_logits = self.lm_head(hidden_states)
|
595 |
+
|
596 |
+
loss = None
|
597 |
+
if labels is not None:
|
598 |
+
# move labels to correct device to enable model parallelism
|
599 |
+
labels = labels.to(lm_logits.device)
|
600 |
+
# Shift so that tokens < n predict n
|
601 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
602 |
+
shift_labels = labels[..., 1:].contiguous()
|
603 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
604 |
+
# Flatten the tokens
|
605 |
+
loss_fct = CrossEntropyLoss()
|
606 |
+
loss = loss_fct(
|
607 |
+
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
608 |
+
)
|
609 |
+
|
610 |
+
if not return_dict:
|
611 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
612 |
+
return ((loss,) + output) if loss is not None else output
|
613 |
+
|
614 |
+
return CausalLMOutputWithCrossAttentions(
|
615 |
+
loss=loss,
|
616 |
+
logits=lm_logits,
|
617 |
+
past_key_values=transformer_outputs.past_key_values,
|
618 |
+
hidden_states=transformer_outputs.hidden_states,
|
619 |
+
attentions=transformer_outputs.attentions,
|
620 |
+
)
|
621 |
+
|
622 |
+
def _reorder_cache(
|
623 |
+
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
624 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
625 |
+
"""
|
626 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
627 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
628 |
+
beam_idx at every generation step.
|
629 |
+
|
630 |
+
Output shares the same memory storage as `past`.
|
631 |
+
"""
|
632 |
+
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
633 |
+
device_to_beam_idx = {
|
634 |
+
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
635 |
+
}
|
636 |
+
reordered_past = tuple(
|
637 |
+
(
|
638 |
+
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
639 |
+
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
640 |
+
)
|
641 |
+
for layer_past in past
|
642 |
+
)
|
643 |
+
return reordered_past
|
644 |
+
|
645 |
+
|
646 |
+
@add_start_docstrings(
|
647 |
+
"""
|
648 |
+
The MPT Model transformer with a sequence classification head on top (linear layer).
|
649 |
+
|
650 |
+
[`MptForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
651 |
+
(e.g. GPT-1) do.
|
652 |
+
|
653 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
654 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
655 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
656 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
657 |
+
each row of the batch).
|
658 |
+
""",
|
659 |
+
MPT_START_DOCSTRING,
|
660 |
+
)
|
661 |
+
class MptForSequenceClassification(MptPreTrainedModel):
|
662 |
+
def __init__(self, config: MptConfig):
|
663 |
+
super().__init__(config)
|
664 |
+
self.num_labels = config.num_labels
|
665 |
+
self.transformer = MptModel(config)
|
666 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
667 |
+
|
668 |
+
# Initialize weights and apply final processing
|
669 |
+
self.post_init()
|
670 |
+
|
671 |
+
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
|
672 |
+
@add_code_sample_docstrings(
|
673 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
674 |
+
output_type=SequenceClassifierOutputWithPast,
|
675 |
+
config_class=_CONFIG_FOR_DOC,
|
676 |
+
)
|
677 |
+
def forward(
|
678 |
+
self,
|
679 |
+
input_ids: Optional[torch.LongTensor] = None,
|
680 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
681 |
+
attention_mask: Optional[torch.Tensor] = None,
|
682 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
683 |
+
labels: Optional[torch.Tensor] = None,
|
684 |
+
use_cache: Optional[bool] = None,
|
685 |
+
output_attentions: Optional[bool] = None,
|
686 |
+
output_hidden_states: Optional[bool] = None,
|
687 |
+
return_dict: Optional[bool] = None,
|
688 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
689 |
+
r"""
|
690 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
691 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
692 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
693 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
694 |
+
"""
|
695 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
696 |
+
|
697 |
+
transformer_outputs = self.transformer(
|
698 |
+
input_ids,
|
699 |
+
past_key_values=past_key_values,
|
700 |
+
attention_mask=attention_mask,
|
701 |
+
inputs_embeds=inputs_embeds,
|
702 |
+
use_cache=use_cache,
|
703 |
+
output_attentions=output_attentions,
|
704 |
+
output_hidden_states=output_hidden_states,
|
705 |
+
return_dict=return_dict,
|
706 |
+
)
|
707 |
+
|
708 |
+
hidden_states = transformer_outputs[0]
|
709 |
+
logits = self.score(hidden_states)
|
710 |
+
|
711 |
+
if input_ids is not None:
|
712 |
+
batch_size = input_ids.shape[0]
|
713 |
+
else:
|
714 |
+
batch_size = inputs_embeds.shape[0]
|
715 |
+
|
716 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
717 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
718 |
+
if self.config.pad_token_id is None:
|
719 |
+
sequence_lengths = -1
|
720 |
+
else:
|
721 |
+
if input_ids is not None:
|
722 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
723 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
724 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
725 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
726 |
+
else:
|
727 |
+
sequence_lengths = -1
|
728 |
+
logger.warning(
|
729 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
730 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
731 |
+
)
|
732 |
+
|
733 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
734 |
+
|
735 |
+
loss = None
|
736 |
+
if labels is not None:
|
737 |
+
if self.config.problem_type is None:
|
738 |
+
if self.num_labels == 1:
|
739 |
+
self.config.problem_type = "regression"
|
740 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
741 |
+
self.config.problem_type = "single_label_classification"
|
742 |
+
else:
|
743 |
+
self.config.problem_type = "multi_label_classification"
|
744 |
+
|
745 |
+
if self.config.problem_type == "regression":
|
746 |
+
loss_fct = MSELoss()
|
747 |
+
if self.num_labels == 1:
|
748 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
749 |
+
else:
|
750 |
+
loss = loss_fct(pooled_logits, labels)
|
751 |
+
elif self.config.problem_type == "single_label_classification":
|
752 |
+
loss_fct = CrossEntropyLoss()
|
753 |
+
loss = loss_fct(pooled_logits, labels)
|
754 |
+
elif self.config.problem_type == "multi_label_classification":
|
755 |
+
loss_fct = BCEWithLogitsLoss()
|
756 |
+
loss = loss_fct(pooled_logits, labels)
|
757 |
+
if not return_dict:
|
758 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
759 |
+
return ((loss,) + output) if loss is not None else output
|
760 |
+
|
761 |
+
return SequenceClassifierOutputWithPast(
|
762 |
+
loss=loss,
|
763 |
+
logits=pooled_logits,
|
764 |
+
past_key_values=transformer_outputs.past_key_values,
|
765 |
+
hidden_states=transformer_outputs.hidden_states,
|
766 |
+
attentions=transformer_outputs.attentions,
|
767 |
+
)
|
768 |
+
|
769 |
+
|
770 |
+
@add_start_docstrings(
|
771 |
+
"""
|
772 |
+
MPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
773 |
+
Named-Entity-Recognition (NER) tasks.
|
774 |
+
""",
|
775 |
+
MPT_START_DOCSTRING,
|
776 |
+
)
|
777 |
+
class MptForTokenClassification(MptPreTrainedModel):
|
778 |
+
def __init__(self, config: MptConfig):
|
779 |
+
super().__init__(config)
|
780 |
+
self.num_labels = config.num_labels
|
781 |
+
|
782 |
+
self.transformer = MptModel(config)
|
783 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
784 |
+
classifier_dropout = config.classifier_dropout
|
785 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
786 |
+
classifier_dropout = config.hidden_dropout
|
787 |
+
else:
|
788 |
+
classifier_dropout = 0.1
|
789 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
790 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
791 |
+
|
792 |
+
# Initialize weights and apply final processing
|
793 |
+
self.post_init()
|
794 |
+
|
795 |
+
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
|
796 |
+
@add_code_sample_docstrings(
|
797 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
798 |
+
output_type=TokenClassifierOutput,
|
799 |
+
config_class=_CONFIG_FOR_DOC,
|
800 |
+
)
|
801 |
+
def forward(
|
802 |
+
self,
|
803 |
+
input_ids: Optional[torch.LongTensor] = None,
|
804 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
805 |
+
attention_mask: Optional[torch.Tensor] = None,
|
806 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
807 |
+
labels: Optional[torch.Tensor] = None,
|
808 |
+
use_cache: Optional[bool] = None,
|
809 |
+
output_attentions: Optional[bool] = None,
|
810 |
+
output_hidden_states: Optional[bool] = None,
|
811 |
+
return_dict: Optional[bool] = None,
|
812 |
+
**deprecated_arguments,
|
813 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
814 |
+
r"""
|
815 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
816 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
817 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
818 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
819 |
+
"""
|
820 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
821 |
+
|
822 |
+
transformer_outputs = self.transformer(
|
823 |
+
input_ids,
|
824 |
+
past_key_values=past_key_values,
|
825 |
+
attention_mask=attention_mask,
|
826 |
+
inputs_embeds=inputs_embeds,
|
827 |
+
use_cache=use_cache,
|
828 |
+
output_attentions=output_attentions,
|
829 |
+
output_hidden_states=output_hidden_states,
|
830 |
+
return_dict=return_dict,
|
831 |
+
)
|
832 |
+
|
833 |
+
hidden_states = transformer_outputs[0]
|
834 |
+
hidden_states = self.dropout(hidden_states)
|
835 |
+
logits = self.classifier(hidden_states)
|
836 |
+
|
837 |
+
loss = None
|
838 |
+
if labels is not None:
|
839 |
+
# move labels to correct device to enable model parallelism
|
840 |
+
labels = labels.to(logits.device)
|
841 |
+
batch_size, seq_length = labels.shape
|
842 |
+
loss_fct = CrossEntropyLoss()
|
843 |
+
loss = loss_fct(
|
844 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
845 |
+
)
|
846 |
+
|
847 |
+
if not return_dict:
|
848 |
+
output = (logits,) + transformer_outputs[2:]
|
849 |
+
return ((loss,) + output) if loss is not None else output
|
850 |
+
|
851 |
+
return TokenClassifierOutput(
|
852 |
+
loss=loss,
|
853 |
+
logits=logits,
|
854 |
+
hidden_states=transformer_outputs.hidden_states,
|
855 |
+
attentions=transformer_outputs.attentions,
|
856 |
+
)
|
857 |
+
|
858 |
+
|
859 |
+
@add_start_docstrings(
|
860 |
+
"""
|
861 |
+
The MPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD
|
862 |
+
(a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
863 |
+
""",
|
864 |
+
MPT_START_DOCSTRING,
|
865 |
+
)
|
866 |
+
class MptForQuestionAnswering(MptPreTrainedModel):
|
867 |
+
def __init__(self, config):
|
868 |
+
super().__init__(config)
|
869 |
+
self.transformer = MptModel(config)
|
870 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
871 |
+
|
872 |
+
# Initialize weights and apply final processing
|
873 |
+
self.post_init()
|
874 |
+
|
875 |
+
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
876 |
+
def forward(
|
877 |
+
self,
|
878 |
+
input_ids: Optional[torch.LongTensor] = None,
|
879 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
880 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
881 |
+
start_positions: Optional[torch.LongTensor] = None,
|
882 |
+
end_positions: Optional[torch.LongTensor] = None,
|
883 |
+
output_attentions: Optional[bool] = None,
|
884 |
+
output_hidden_states: Optional[bool] = None,
|
885 |
+
return_dict: Optional[bool] = None,
|
886 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
887 |
+
r"""
|
888 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
889 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
890 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
891 |
+
are not taken into account for computing the loss.
|
892 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
893 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
894 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
895 |
+
are not taken into account for computing the loss.
|
896 |
+
"""
|
897 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
898 |
+
|
899 |
+
outputs = self.transformer(
|
900 |
+
input_ids,
|
901 |
+
attention_mask=attention_mask,
|
902 |
+
inputs_embeds=inputs_embeds,
|
903 |
+
output_attentions=output_attentions,
|
904 |
+
output_hidden_states=output_hidden_states,
|
905 |
+
return_dict=return_dict,
|
906 |
+
)
|
907 |
+
|
908 |
+
sequence_output = outputs[0]
|
909 |
+
|
910 |
+
logits = self.qa_outputs(sequence_output)
|
911 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
912 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
913 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
914 |
+
|
915 |
+
total_loss = None
|
916 |
+
if start_positions is not None and end_positions is not None:
|
917 |
+
# If we are on multi-GPU, split add a dimension
|
918 |
+
if len(start_positions.size()) > 1:
|
919 |
+
start_positions = start_positions.squeeze(-1)
|
920 |
+
if len(end_positions.size()) > 1:
|
921 |
+
end_positions = end_positions.squeeze(-1)
|
922 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
923 |
+
ignored_index = start_logits.size(1)
|
924 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
925 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
926 |
+
|
927 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
928 |
+
start_loss = loss_fct(start_logits, start_positions)
|
929 |
+
end_loss = loss_fct(end_logits, end_positions)
|
930 |
+
total_loss = (start_loss + end_loss) / 2
|
931 |
+
|
932 |
+
if not return_dict:
|
933 |
+
output = (start_logits, end_logits) + outputs[2:]
|
934 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
935 |
+
|
936 |
+
return QuestionAnsweringModelOutput(
|
937 |
+
loss=total_loss,
|
938 |
+
start_logits=start_logits,
|
939 |
+
end_logits=end_logits,
|
940 |
+
hidden_states=outputs.hidden_states,
|
941 |
+
attentions=outputs.attentions,
|
942 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/__init__.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_musicgen": [
|
21 |
+
"MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"MusicgenConfig",
|
23 |
+
"MusicgenDecoderConfig",
|
24 |
+
],
|
25 |
+
"processing_musicgen": ["MusicgenProcessor"],
|
26 |
+
}
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_musicgen"] = [
|
35 |
+
"MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
36 |
+
"MusicgenForConditionalGeneration",
|
37 |
+
"MusicgenForCausalLM",
|
38 |
+
"MusicgenModel",
|
39 |
+
"MusicgenPreTrainedModel",
|
40 |
+
]
|
41 |
+
|
42 |
+
if TYPE_CHECKING:
|
43 |
+
from .configuration_musicgen import (
|
44 |
+
MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
45 |
+
MusicgenConfig,
|
46 |
+
MusicgenDecoderConfig,
|
47 |
+
)
|
48 |
+
from .processing_musicgen import MusicgenProcessor
|
49 |
+
|
50 |
+
try:
|
51 |
+
if not is_torch_available():
|
52 |
+
raise OptionalDependencyNotAvailable()
|
53 |
+
except OptionalDependencyNotAvailable:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
from .modeling_musicgen import (
|
57 |
+
MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
58 |
+
MusicgenForCausalLM,
|
59 |
+
MusicgenForConditionalGeneration,
|
60 |
+
MusicgenModel,
|
61 |
+
MusicgenPreTrainedModel,
|
62 |
+
)
|
63 |
+
|
64 |
+
else:
|
65 |
+
import sys
|
66 |
+
|
67 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/convert_musicgen_transformers.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert MusicGen checkpoints from the original repository."""
|
16 |
+
import argparse
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, OrderedDict, Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from audiocraft.models import MusicGen
|
22 |
+
|
23 |
+
from transformers import (
|
24 |
+
AutoFeatureExtractor,
|
25 |
+
AutoTokenizer,
|
26 |
+
EncodecModel,
|
27 |
+
MusicgenDecoderConfig,
|
28 |
+
MusicgenForConditionalGeneration,
|
29 |
+
MusicgenProcessor,
|
30 |
+
T5EncoderModel,
|
31 |
+
)
|
32 |
+
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
|
33 |
+
from transformers.utils import logging
|
34 |
+
|
35 |
+
|
36 |
+
logging.set_verbosity_info()
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
EXPECTED_MISSING_KEYS = ["model.decoder.embed_positions.weights"]
|
41 |
+
|
42 |
+
|
43 |
+
def rename_keys(name):
|
44 |
+
if "emb" in name:
|
45 |
+
name = name.replace("emb", "model.decoder.embed_tokens")
|
46 |
+
if "transformer" in name:
|
47 |
+
name = name.replace("transformer", "model.decoder")
|
48 |
+
if "cross_attention" in name:
|
49 |
+
name = name.replace("cross_attention", "encoder_attn")
|
50 |
+
if "linear1" in name:
|
51 |
+
name = name.replace("linear1", "fc1")
|
52 |
+
if "linear2" in name:
|
53 |
+
name = name.replace("linear2", "fc2")
|
54 |
+
if "norm1" in name:
|
55 |
+
name = name.replace("norm1", "self_attn_layer_norm")
|
56 |
+
if "norm_cross" in name:
|
57 |
+
name = name.replace("norm_cross", "encoder_attn_layer_norm")
|
58 |
+
if "norm2" in name:
|
59 |
+
name = name.replace("norm2", "final_layer_norm")
|
60 |
+
if "out_norm" in name:
|
61 |
+
name = name.replace("out_norm", "model.decoder.layer_norm")
|
62 |
+
if "linears" in name:
|
63 |
+
name = name.replace("linears", "lm_heads")
|
64 |
+
if "condition_provider.conditioners.description.output_proj" in name:
|
65 |
+
name = name.replace("condition_provider.conditioners.description.output_proj", "enc_to_dec_proj")
|
66 |
+
return name
|
67 |
+
|
68 |
+
|
69 |
+
def rename_state_dict(state_dict: OrderedDict, hidden_size: int) -> Tuple[Dict, Dict]:
|
70 |
+
"""Function that takes the fairseq Musicgen state dict and renames it according to the HF
|
71 |
+
module names. It further partitions the state dict into the decoder (LM) state dict, and that for the
|
72 |
+
encoder-decoder projection."""
|
73 |
+
keys = list(state_dict.keys())
|
74 |
+
enc_dec_proj_state_dict = {}
|
75 |
+
for key in keys:
|
76 |
+
val = state_dict.pop(key)
|
77 |
+
key = rename_keys(key)
|
78 |
+
if "in_proj_weight" in key:
|
79 |
+
# split fused qkv proj
|
80 |
+
state_dict[key.replace("in_proj_weight", "q_proj.weight")] = val[:hidden_size, :]
|
81 |
+
state_dict[key.replace("in_proj_weight", "k_proj.weight")] = val[hidden_size : 2 * hidden_size, :]
|
82 |
+
state_dict[key.replace("in_proj_weight", "v_proj.weight")] = val[-hidden_size:, :]
|
83 |
+
elif "enc_to_dec_proj" in key:
|
84 |
+
enc_dec_proj_state_dict[key[len("enc_to_dec_proj.") :]] = val
|
85 |
+
else:
|
86 |
+
state_dict[key] = val
|
87 |
+
return state_dict, enc_dec_proj_state_dict
|
88 |
+
|
89 |
+
|
90 |
+
def decoder_config_from_checkpoint(checkpoint: str) -> MusicgenDecoderConfig:
|
91 |
+
if checkpoint == "small" or checkpoint == "facebook/musicgen-stereo-small":
|
92 |
+
# default config values
|
93 |
+
hidden_size = 1024
|
94 |
+
num_hidden_layers = 24
|
95 |
+
num_attention_heads = 16
|
96 |
+
elif checkpoint == "medium" or checkpoint == "facebook/musicgen-stereo-medium":
|
97 |
+
hidden_size = 1536
|
98 |
+
num_hidden_layers = 48
|
99 |
+
num_attention_heads = 24
|
100 |
+
elif checkpoint == "large" or checkpoint == "facebook/musicgen-stereo-large":
|
101 |
+
hidden_size = 2048
|
102 |
+
num_hidden_layers = 48
|
103 |
+
num_attention_heads = 32
|
104 |
+
else:
|
105 |
+
raise ValueError(
|
106 |
+
"Checkpoint should be one of `['small', 'medium', 'large']` for the mono checkpoints, "
|
107 |
+
"or `['facebook/musicgen-stereo-small', 'facebook/musicgen-stereo-medium', 'facebook/musicgen-stereo-large']` "
|
108 |
+
f"for the stereo checkpoints, got {checkpoint}."
|
109 |
+
)
|
110 |
+
|
111 |
+
if "stereo" in checkpoint:
|
112 |
+
audio_channels = 2
|
113 |
+
num_codebooks = 8
|
114 |
+
else:
|
115 |
+
audio_channels = 1
|
116 |
+
num_codebooks = 4
|
117 |
+
|
118 |
+
config = MusicgenDecoderConfig(
|
119 |
+
hidden_size=hidden_size,
|
120 |
+
ffn_dim=hidden_size * 4,
|
121 |
+
num_hidden_layers=num_hidden_layers,
|
122 |
+
num_attention_heads=num_attention_heads,
|
123 |
+
num_codebooks=num_codebooks,
|
124 |
+
audio_channels=audio_channels,
|
125 |
+
)
|
126 |
+
return config
|
127 |
+
|
128 |
+
|
129 |
+
@torch.no_grad()
|
130 |
+
def convert_musicgen_checkpoint(
|
131 |
+
checkpoint, pytorch_dump_folder=None, repo_id=None, device="cpu", safe_serialization=False
|
132 |
+
):
|
133 |
+
fairseq_model = MusicGen.get_pretrained(checkpoint, device=device)
|
134 |
+
decoder_config = decoder_config_from_checkpoint(checkpoint)
|
135 |
+
|
136 |
+
decoder_state_dict = fairseq_model.lm.state_dict()
|
137 |
+
decoder_state_dict, enc_dec_proj_state_dict = rename_state_dict(
|
138 |
+
decoder_state_dict, hidden_size=decoder_config.hidden_size
|
139 |
+
)
|
140 |
+
|
141 |
+
text_encoder = T5EncoderModel.from_pretrained("google-t5/t5-base")
|
142 |
+
audio_encoder = EncodecModel.from_pretrained("facebook/encodec_32khz")
|
143 |
+
decoder = MusicgenForCausalLM(decoder_config).eval()
|
144 |
+
|
145 |
+
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
|
146 |
+
missing_keys, unexpected_keys = decoder.load_state_dict(decoder_state_dict, strict=False)
|
147 |
+
|
148 |
+
for key in missing_keys.copy():
|
149 |
+
if key.startswith(("text_encoder", "audio_encoder")) or key in EXPECTED_MISSING_KEYS:
|
150 |
+
missing_keys.remove(key)
|
151 |
+
|
152 |
+
if len(missing_keys) > 0:
|
153 |
+
raise ValueError(f"Missing key(s) in state_dict: {missing_keys}")
|
154 |
+
|
155 |
+
if len(unexpected_keys) > 0:
|
156 |
+
raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}")
|
157 |
+
|
158 |
+
# init the composite model
|
159 |
+
model = MusicgenForConditionalGeneration(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder)
|
160 |
+
|
161 |
+
# load the pre-trained enc-dec projection (from the decoder state dict)
|
162 |
+
model.enc_to_dec_proj.load_state_dict(enc_dec_proj_state_dict)
|
163 |
+
|
164 |
+
# check we can do a forward pass
|
165 |
+
input_ids = torch.arange(0, 2 * decoder_config.num_codebooks, dtype=torch.long).reshape(2, -1)
|
166 |
+
decoder_input_ids = input_ids.reshape(2 * decoder_config.num_codebooks, -1)
|
167 |
+
|
168 |
+
with torch.no_grad():
|
169 |
+
logits = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits
|
170 |
+
|
171 |
+
if logits.shape != (2 * decoder_config.num_codebooks, 1, 2048):
|
172 |
+
raise ValueError("Incorrect shape for logits")
|
173 |
+
|
174 |
+
# now construct the processor
|
175 |
+
tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
|
176 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
177 |
+
"facebook/encodec_32khz", padding_side="left", feature_size=decoder_config.audio_channels
|
178 |
+
)
|
179 |
+
|
180 |
+
processor = MusicgenProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
181 |
+
|
182 |
+
# set the appropriate bos/pad token ids
|
183 |
+
model.generation_config.decoder_start_token_id = 2048
|
184 |
+
model.generation_config.pad_token_id = 2048
|
185 |
+
|
186 |
+
# set other default generation config params
|
187 |
+
model.generation_config.max_length = int(30 * audio_encoder.config.frame_rate)
|
188 |
+
model.generation_config.do_sample = True
|
189 |
+
model.generation_config.guidance_scale = 3.0
|
190 |
+
|
191 |
+
if pytorch_dump_folder is not None:
|
192 |
+
Path(pytorch_dump_folder).mkdir(exist_ok=True)
|
193 |
+
logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}")
|
194 |
+
model.save_pretrained(pytorch_dump_folder, safe_serialization=safe_serialization)
|
195 |
+
processor.save_pretrained(pytorch_dump_folder)
|
196 |
+
|
197 |
+
if repo_id:
|
198 |
+
logger.info(f"Pushing model {checkpoint} to {repo_id}")
|
199 |
+
model.push_to_hub(repo_id, safe_serialization=safe_serialization)
|
200 |
+
processor.push_to_hub(repo_id)
|
201 |
+
|
202 |
+
|
203 |
+
if __name__ == "__main__":
|
204 |
+
parser = argparse.ArgumentParser()
|
205 |
+
# Required parameters
|
206 |
+
parser.add_argument(
|
207 |
+
"--checkpoint",
|
208 |
+
default="small",
|
209 |
+
type=str,
|
210 |
+
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: "
|
211 |
+
"`['small', 'medium', 'large']` for the mono checkpoints, or "
|
212 |
+
"`['facebook/musicgen-stereo-small', 'facebook/musicgen-stereo-medium', 'facebook/musicgen-stereo-large']` "
|
213 |
+
"for the stereo checkpoints.",
|
214 |
+
)
|
215 |
+
parser.add_argument(
|
216 |
+
"--pytorch_dump_folder",
|
217 |
+
required=True,
|
218 |
+
default=None,
|
219 |
+
type=str,
|
220 |
+
help="Path to the output PyTorch model directory.",
|
221 |
+
)
|
222 |
+
parser.add_argument(
|
223 |
+
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
|
224 |
+
)
|
225 |
+
parser.add_argument(
|
226 |
+
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
|
227 |
+
)
|
228 |
+
parser.add_argument(
|
229 |
+
"--safe_serialization",
|
230 |
+
action="store_true",
|
231 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).",
|
232 |
+
)
|
233 |
+
|
234 |
+
args = parser.parse_args()
|
235 |
+
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/musicgen/processing_musicgen.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Text/audio processor class for MusicGen
|
17 |
+
"""
|
18 |
+
from typing import List, Optional
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from ...processing_utils import ProcessorMixin
|
23 |
+
from ...utils import to_numpy
|
24 |
+
|
25 |
+
|
26 |
+
class MusicgenProcessor(ProcessorMixin):
|
27 |
+
r"""
|
28 |
+
Constructs a MusicGen processor which wraps an EnCodec feature extractor and a T5 tokenizer into a single processor
|
29 |
+
class.
|
30 |
+
|
31 |
+
[`MusicgenProcessor`] offers all the functionalities of [`EncodecFeatureExtractor`] and [`TTokenizer`]. See
|
32 |
+
[`~MusicgenProcessor.__call__`] and [`~MusicgenProcessor.decode`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
feature_extractor (`EncodecFeatureExtractor`):
|
36 |
+
An instance of [`EncodecFeatureExtractor`]. The feature extractor is a required input.
|
37 |
+
tokenizer (`T5Tokenizer`):
|
38 |
+
An instance of [`T5Tokenizer`]. The tokenizer is a required input.
|
39 |
+
"""
|
40 |
+
|
41 |
+
feature_extractor_class = "EncodecFeatureExtractor"
|
42 |
+
tokenizer_class = ("T5Tokenizer", "T5TokenizerFast")
|
43 |
+
|
44 |
+
def __init__(self, feature_extractor, tokenizer):
|
45 |
+
super().__init__(feature_extractor, tokenizer)
|
46 |
+
self.current_processor = self.feature_extractor
|
47 |
+
self._in_target_context_manager = False
|
48 |
+
|
49 |
+
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
|
50 |
+
return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)
|
51 |
+
|
52 |
+
def __call__(self, *args, **kwargs):
|
53 |
+
"""
|
54 |
+
Forwards the `audio` argument to EncodecFeatureExtractor's [`~EncodecFeatureExtractor.__call__`] and the `text`
|
55 |
+
argument to [`~T5Tokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
|
56 |
+
information.
|
57 |
+
"""
|
58 |
+
# For backward compatibility
|
59 |
+
if self._in_target_context_manager:
|
60 |
+
return self.current_processor(*args, **kwargs)
|
61 |
+
|
62 |
+
audio = kwargs.pop("audio", None)
|
63 |
+
sampling_rate = kwargs.pop("sampling_rate", None)
|
64 |
+
text = kwargs.pop("text", None)
|
65 |
+
if len(args) > 0:
|
66 |
+
audio = args[0]
|
67 |
+
args = args[1:]
|
68 |
+
|
69 |
+
if audio is None and text is None:
|
70 |
+
raise ValueError("You need to specify either an `audio` or `text` input to process.")
|
71 |
+
|
72 |
+
if text is not None:
|
73 |
+
inputs = self.tokenizer(text, **kwargs)
|
74 |
+
|
75 |
+
if audio is not None:
|
76 |
+
audio_inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
|
77 |
+
|
78 |
+
if audio is None:
|
79 |
+
return inputs
|
80 |
+
|
81 |
+
elif text is None:
|
82 |
+
return audio_inputs
|
83 |
+
|
84 |
+
else:
|
85 |
+
inputs["input_values"] = audio_inputs["input_values"]
|
86 |
+
if "padding_mask" in audio_inputs:
|
87 |
+
inputs["padding_mask"] = audio_inputs["padding_mask"]
|
88 |
+
return inputs
|
89 |
+
|
90 |
+
def batch_decode(self, *args, **kwargs):
|
91 |
+
"""
|
92 |
+
This method is used to decode either batches of audio outputs from the MusicGen model, or batches of token ids
|
93 |
+
from the tokenizer. In the case of decoding token ids, this method forwards all its arguments to T5Tokenizer's
|
94 |
+
[`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information.
|
95 |
+
"""
|
96 |
+
audio_values = kwargs.pop("audio", None)
|
97 |
+
padding_mask = kwargs.pop("padding_mask", None)
|
98 |
+
|
99 |
+
if len(args) > 0:
|
100 |
+
audio_values = args[0]
|
101 |
+
args = args[1:]
|
102 |
+
|
103 |
+
if audio_values is not None:
|
104 |
+
return self._decode_audio(audio_values, padding_mask=padding_mask)
|
105 |
+
else:
|
106 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
107 |
+
|
108 |
+
def decode(self, *args, **kwargs):
|
109 |
+
"""
|
110 |
+
This method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
|
111 |
+
docstring of this method for more information.
|
112 |
+
"""
|
113 |
+
return self.tokenizer.decode(*args, **kwargs)
|
114 |
+
|
115 |
+
def _decode_audio(self, audio_values, padding_mask: Optional = None) -> List[np.ndarray]:
|
116 |
+
"""
|
117 |
+
This method strips any padding from the audio values to return a list of numpy audio arrays.
|
118 |
+
"""
|
119 |
+
audio_values = to_numpy(audio_values)
|
120 |
+
bsz, channels, seq_len = audio_values.shape
|
121 |
+
|
122 |
+
if padding_mask is None:
|
123 |
+
return list(audio_values)
|
124 |
+
|
125 |
+
padding_mask = to_numpy(padding_mask)
|
126 |
+
|
127 |
+
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
|
128 |
+
# token (so that the generated audio values are **not** treated as padded tokens)
|
129 |
+
difference = seq_len - padding_mask.shape[-1]
|
130 |
+
padding_value = 1 - self.feature_extractor.padding_value
|
131 |
+
padding_mask = np.pad(padding_mask, ((0, 0), (0, difference)), "constant", constant_values=padding_value)
|
132 |
+
|
133 |
+
audio_values = audio_values.tolist()
|
134 |
+
for i in range(bsz):
|
135 |
+
sliced_audio = np.asarray(audio_values[i])[
|
136 |
+
padding_mask[i][None, :] != self.feature_extractor.padding_value
|
137 |
+
]
|
138 |
+
audio_values[i] = sliced_audio.reshape(channels, -1)
|
139 |
+
|
140 |
+
return audio_values
|
llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__init__.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_torch_available,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
_import_structure = {
|
24 |
+
"configuration_recurrent_gemma": ["RecurrentGemmaConfig"],
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_recurrent_gemma"] = [
|
35 |
+
"RecurrentGemmaForCausalLM",
|
36 |
+
"RecurrentGemmaModel",
|
37 |
+
"RecurrentGemmaPreTrainedModel",
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
if TYPE_CHECKING:
|
42 |
+
from .configuration_recurrent_gemma import RecurrentGemmaConfig
|
43 |
+
|
44 |
+
try:
|
45 |
+
if not is_torch_available():
|
46 |
+
raise OptionalDependencyNotAvailable()
|
47 |
+
except OptionalDependencyNotAvailable:
|
48 |
+
pass
|
49 |
+
else:
|
50 |
+
from .modeling_recurrent_gemma import (
|
51 |
+
RecurrentGemmaForCausalLM,
|
52 |
+
RecurrentGemmaModel,
|
53 |
+
RecurrentGemmaPreTrainedModel,
|
54 |
+
)
|
55 |
+
|
56 |
+
else:
|
57 |
+
import sys
|
58 |
+
|
59 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (873 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/configuration_recurrent_gemma.cpython-310.pyc
ADDED
Binary file (6.72 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/convert_recurrent_gemma_to_hf.cpython-310.pyc
ADDED
Binary file (5.66 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/recurrent_gemma/__pycache__/modeling_recurrent_gemma.cpython-310.pyc
ADDED
Binary file (31.4 kB). View file
|
|