Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__init__.py +63 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/configuration_biogpt.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/convert_biogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/modeling_biogpt.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/tokenization_biogpt.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/configuration_biogpt.py +134 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/convert_biogpt_original_pytorch_checkpoint_to_pytorch.py +292 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/modeling_biogpt.py +924 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/tokenization_biogpt.py +357 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__init__.py +135 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_audio.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_text.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_vision.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_audio.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_text.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_vision.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_tf_data2vec_vision.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_audio.py +285 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_text.py +153 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_vision.py +193 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.py +286 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py +208 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py +374 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_audio.py +1514 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_text.py +1557 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_vision.py +1228 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_tf_data2vec_vision.py +1717 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__init__.py +120 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/configuration_deberta.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/modeling_deberta.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/modeling_tf_deberta.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/tokenization_deberta.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/tokenization_deberta_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/configuration_deberta.py +193 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/modeling_deberta.py +1426 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/modeling_tf_deberta.py +1644 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/tokenization_deberta.py +393 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/tokenization_deberta_fast.py +247 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__init__.py +75 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/configuration_mask2former.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/convert_mask2former_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/modeling_mask2former.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__init__.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"],
|
21 |
+
"tokenization_biogpt": ["BioGptTokenizer"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_torch_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["modeling_biogpt"] = [
|
31 |
+
"BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
32 |
+
"BioGptForCausalLM",
|
33 |
+
"BioGptForTokenClassification",
|
34 |
+
"BioGptForSequenceClassification",
|
35 |
+
"BioGptModel",
|
36 |
+
"BioGptPreTrainedModel",
|
37 |
+
]
|
38 |
+
|
39 |
+
|
40 |
+
if TYPE_CHECKING:
|
41 |
+
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
|
42 |
+
from .tokenization_biogpt import BioGptTokenizer
|
43 |
+
|
44 |
+
try:
|
45 |
+
if not is_torch_available():
|
46 |
+
raise OptionalDependencyNotAvailable()
|
47 |
+
except OptionalDependencyNotAvailable:
|
48 |
+
pass
|
49 |
+
else:
|
50 |
+
from .modeling_biogpt import (
|
51 |
+
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
52 |
+
BioGptForCausalLM,
|
53 |
+
BioGptForSequenceClassification,
|
54 |
+
BioGptForTokenClassification,
|
55 |
+
BioGptModel,
|
56 |
+
BioGptPreTrainedModel,
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
else:
|
61 |
+
import sys
|
62 |
+
|
63 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.14 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/configuration_biogpt.cpython-310.pyc
ADDED
Binary file (5.51 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/convert_biogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (8.05 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/modeling_biogpt.cpython-310.pyc
ADDED
Binary file (26.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/tokenization_biogpt.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/configuration_biogpt.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" BioGPT model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class BioGptConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`BioGptModel`]. It is used to instantiate an
|
30 |
+
BioGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
31 |
+
with the defaults will yield a similar configuration to that of the BioGPT
|
32 |
+
[microsoft/biogpt](https://huggingface.co/microsoft/biogpt) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 42384):
|
40 |
+
Vocabulary size of the BioGPT model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`BioGptModel`].
|
42 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
43 |
+
Dimension of the encoder layers and the pooler layer.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
45 |
+
Number of hidden layers in the Transformer encoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
+
intermediate_size (`int`, *optional*, defaults to 4096):
|
49 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
50 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
51 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
52 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
53 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
54 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
55 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
56 |
+
The dropout ratio for the attention probabilities.
|
57 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
58 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
59 |
+
just in case (e.g., 512 or 1024 or 2048).
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
63 |
+
The epsilon used by the layer normalization layers.
|
64 |
+
scale_embedding (`bool`, *optional*, defaults to `True`):
|
65 |
+
Scale embeddings by diving by sqrt(d_model).
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
70 |
+
Please refer to the paper about LayerDrop: https://arxiv.org/abs/1909.11556 for further details
|
71 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
72 |
+
The dropout ratio for activations inside the fully connected layer.
|
73 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
74 |
+
Padding token id.
|
75 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
76 |
+
Beginning of stream token id.
|
77 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
78 |
+
End of stream token id.
|
79 |
+
|
80 |
+
Example:
|
81 |
+
|
82 |
+
```python
|
83 |
+
>>> from transformers import BioGptModel, BioGptConfig
|
84 |
+
|
85 |
+
>>> # Initializing a BioGPT microsoft/biogpt style configuration
|
86 |
+
>>> configuration = BioGptConfig()
|
87 |
+
|
88 |
+
>>> # Initializing a model from the microsoft/biogpt style configuration
|
89 |
+
>>> model = BioGptModel(configuration)
|
90 |
+
|
91 |
+
>>> # Accessing the model configuration
|
92 |
+
>>> configuration = model.config
|
93 |
+
```"""
|
94 |
+
|
95 |
+
model_type = "biogpt"
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
vocab_size=42384,
|
100 |
+
hidden_size=1024,
|
101 |
+
num_hidden_layers=24,
|
102 |
+
num_attention_heads=16,
|
103 |
+
intermediate_size=4096,
|
104 |
+
hidden_act="gelu",
|
105 |
+
hidden_dropout_prob=0.1,
|
106 |
+
attention_probs_dropout_prob=0.1,
|
107 |
+
max_position_embeddings=1024,
|
108 |
+
initializer_range=0.02,
|
109 |
+
layer_norm_eps=1e-12,
|
110 |
+
scale_embedding=True,
|
111 |
+
use_cache=True,
|
112 |
+
layerdrop=0.0,
|
113 |
+
activation_dropout=0.0,
|
114 |
+
pad_token_id=1,
|
115 |
+
bos_token_id=0,
|
116 |
+
eos_token_id=2,
|
117 |
+
**kwargs,
|
118 |
+
):
|
119 |
+
self.vocab_size = vocab_size
|
120 |
+
self.max_position_embeddings = max_position_embeddings
|
121 |
+
self.hidden_size = hidden_size
|
122 |
+
self.num_hidden_layers = num_hidden_layers
|
123 |
+
self.num_attention_heads = num_attention_heads
|
124 |
+
self.intermediate_size = intermediate_size
|
125 |
+
self.hidden_act = hidden_act
|
126 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
127 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
128 |
+
self.initializer_range = initializer_range
|
129 |
+
self.layer_norm_eps = layer_norm_eps
|
130 |
+
self.scale_embedding = scale_embedding
|
131 |
+
self.use_cache = use_cache
|
132 |
+
self.layerdrop = layerdrop
|
133 |
+
self.activation_dropout = activation_dropout
|
134 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/convert_biogpt_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
import shutil
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
from transformers import BioGptConfig, BioGptForCausalLM
|
26 |
+
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
|
27 |
+
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
|
28 |
+
from transformers.utils import WEIGHTS_NAME, logging
|
29 |
+
|
30 |
+
|
31 |
+
logging.set_verbosity_warning()
|
32 |
+
|
33 |
+
json_indent = 2
|
34 |
+
|
35 |
+
|
36 |
+
# modified from https://github.com/facebookresearch/fairseq/blob/dd74992d0d143155998e9ed4076826bcea80fb06/fairseq/data/dictionary.py#L18
|
37 |
+
class Dictionary:
|
38 |
+
"""A mapping from symbols to consecutive integers"""
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
*, # begin keyword-only arguments
|
43 |
+
bos="<s>",
|
44 |
+
pad="<pad>",
|
45 |
+
eos="</s>",
|
46 |
+
unk="<unk>",
|
47 |
+
extra_special_symbols=None,
|
48 |
+
):
|
49 |
+
self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos
|
50 |
+
self.symbols = []
|
51 |
+
self.count = []
|
52 |
+
self.indices = {}
|
53 |
+
self.bos_index = self.add_symbol(bos)
|
54 |
+
self.pad_index = self.add_symbol(pad)
|
55 |
+
self.eos_index = self.add_symbol(eos)
|
56 |
+
self.unk_index = self.add_symbol(unk)
|
57 |
+
if extra_special_symbols:
|
58 |
+
for s in extra_special_symbols:
|
59 |
+
self.add_symbol(s)
|
60 |
+
self.nspecial = len(self.symbols)
|
61 |
+
|
62 |
+
def __eq__(self, other):
|
63 |
+
return self.indices == other.indices
|
64 |
+
|
65 |
+
def __getitem__(self, idx):
|
66 |
+
if idx < len(self.symbols):
|
67 |
+
return self.symbols[idx]
|
68 |
+
return self.unk_word
|
69 |
+
|
70 |
+
def __len__(self):
|
71 |
+
"""Returns the number of symbols in the dictionary"""
|
72 |
+
return len(self.symbols)
|
73 |
+
|
74 |
+
def __contains__(self, sym):
|
75 |
+
return sym in self.indices
|
76 |
+
|
77 |
+
@classmethod
|
78 |
+
def load(cls, f):
|
79 |
+
"""Loads the dictionary from a text file with the format:
|
80 |
+
|
81 |
+
```
|
82 |
+
<symbol0> <count0>
|
83 |
+
<symbol1> <count1>
|
84 |
+
...
|
85 |
+
```
|
86 |
+
"""
|
87 |
+
d = cls()
|
88 |
+
d.add_from_file(f)
|
89 |
+
return d
|
90 |
+
|
91 |
+
def add_symbol(self, word, n=1, overwrite=False):
|
92 |
+
"""Adds a word to the dictionary"""
|
93 |
+
if word in self.indices and not overwrite:
|
94 |
+
idx = self.indices[word]
|
95 |
+
self.count[idx] = self.count[idx] + n
|
96 |
+
return idx
|
97 |
+
else:
|
98 |
+
idx = len(self.symbols)
|
99 |
+
self.indices[word] = idx
|
100 |
+
self.symbols.append(word)
|
101 |
+
self.count.append(n)
|
102 |
+
return idx
|
103 |
+
|
104 |
+
def _load_meta(self, lines):
|
105 |
+
return 0
|
106 |
+
|
107 |
+
def add_from_file(self, f):
|
108 |
+
"""
|
109 |
+
Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
|
110 |
+
"""
|
111 |
+
if isinstance(f, str):
|
112 |
+
try:
|
113 |
+
with open(f, "r", encoding="utf-8") as fd:
|
114 |
+
self.add_from_file(fd)
|
115 |
+
except FileNotFoundError as fnfe:
|
116 |
+
raise fnfe
|
117 |
+
except UnicodeError:
|
118 |
+
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(f))
|
119 |
+
return
|
120 |
+
|
121 |
+
lines = f.readlines()
|
122 |
+
indices_start_line = self._load_meta(lines)
|
123 |
+
|
124 |
+
for line in lines[indices_start_line:]:
|
125 |
+
try:
|
126 |
+
line, field = line.rstrip().rsplit(" ", 1)
|
127 |
+
if field == "#fairseq:overwrite":
|
128 |
+
overwrite = True
|
129 |
+
line, field = line.rsplit(" ", 1)
|
130 |
+
else:
|
131 |
+
overwrite = False
|
132 |
+
count = int(field)
|
133 |
+
word = line
|
134 |
+
if word in self and not overwrite:
|
135 |
+
raise RuntimeError(
|
136 |
+
"Duplicate word found when loading Dictionary: '{}'. "
|
137 |
+
"Duplicate words can overwrite earlier ones by adding the "
|
138 |
+
"#fairseq:overwrite flag at the end of the corresponding row "
|
139 |
+
"in the dictionary file. If using the Camembert model, please "
|
140 |
+
"download an updated copy of the model file.".format(word)
|
141 |
+
)
|
142 |
+
self.add_symbol(word, n=count, overwrite=overwrite)
|
143 |
+
except ValueError:
|
144 |
+
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'")
|
145 |
+
|
146 |
+
|
147 |
+
def rewrite_dict_keys(d):
|
148 |
+
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
|
149 |
+
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
|
150 |
+
d2 = dict((re.sub(r"@@$", "", k), v) if k.endswith("@@") else (re.sub(r"$", "</w>", k), v) for k, v in d.items())
|
151 |
+
keep_keys = "<s> <pad> </s> <unk>".split()
|
152 |
+
# restore the special tokens
|
153 |
+
for k in keep_keys:
|
154 |
+
del d2[f"{k}</w>"]
|
155 |
+
d2[k] = d[k] # restore
|
156 |
+
return d2
|
157 |
+
|
158 |
+
|
159 |
+
def convert_biogpt_checkpoint_to_pytorch(biogpt_checkpoint_path, pytorch_dump_folder_path):
|
160 |
+
# prep
|
161 |
+
if not os.path.exists(biogpt_checkpoint_path):
|
162 |
+
raise ValueError(f"path {biogpt_checkpoint_path} does not exist!")
|
163 |
+
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
|
164 |
+
print(f"Writing results to {pytorch_dump_folder_path}")
|
165 |
+
|
166 |
+
# handle various types of models
|
167 |
+
|
168 |
+
checkpoint_file = os.path.join(biogpt_checkpoint_path, "checkpoint.pt")
|
169 |
+
if not os.path.isfile(checkpoint_file):
|
170 |
+
raise ValueError(f"path to the file {checkpoint_file} does not exist!")
|
171 |
+
chkpt = torch.load(checkpoint_file, map_location="cpu")
|
172 |
+
|
173 |
+
args = chkpt["cfg"]["model"]
|
174 |
+
|
175 |
+
# dicts
|
176 |
+
dict_file = os.path.join(biogpt_checkpoint_path, "dict.txt")
|
177 |
+
if not os.path.isfile(dict_file):
|
178 |
+
raise ValueError(f"path to the file {dict_file} does not exist!")
|
179 |
+
src_dict = Dictionary.load(dict_file)
|
180 |
+
src_vocab = rewrite_dict_keys(src_dict.indices)
|
181 |
+
src_vocab_size = len(src_vocab)
|
182 |
+
src_vocab_file = os.path.join(pytorch_dump_folder_path, VOCAB_FILES_NAMES["vocab_file"])
|
183 |
+
print(f"Generating {src_vocab_file} of {src_vocab_size} records")
|
184 |
+
with open(src_vocab_file, "w", encoding="utf-8") as f:
|
185 |
+
f.write(json.dumps(src_vocab, ensure_ascii=False, indent=json_indent))
|
186 |
+
|
187 |
+
# merges_file (bpecodes)
|
188 |
+
bpecodes_file = os.path.join(biogpt_checkpoint_path, "bpecodes")
|
189 |
+
if not os.path.isfile(bpecodes_file):
|
190 |
+
raise ValueError(f"path to the file {bpecodes_file} does not exist!")
|
191 |
+
|
192 |
+
merges_file = os.path.join(pytorch_dump_folder_path, VOCAB_FILES_NAMES["merges_file"])
|
193 |
+
shutil.copyfile(bpecodes_file, merges_file)
|
194 |
+
|
195 |
+
# model config
|
196 |
+
biogpt_model_config_file = os.path.join(pytorch_dump_folder_path, "config.json")
|
197 |
+
|
198 |
+
model_conf = {
|
199 |
+
"activation_dropout": args["activation_dropout"],
|
200 |
+
"architectures": ["BioGptForCausalLM"],
|
201 |
+
"attention_probs_dropout_prob": args["attention_dropout"],
|
202 |
+
"bos_token_id": 0,
|
203 |
+
"eos_token_id": 2,
|
204 |
+
"hidden_act": args["activation_fn"],
|
205 |
+
"hidden_dropout_prob": args["dropout"],
|
206 |
+
"hidden_size": args["decoder_embed_dim"],
|
207 |
+
"initializer_range": 0.02,
|
208 |
+
"intermediate_size": args["decoder_ffn_embed_dim"],
|
209 |
+
"layer_norm_eps": 1e-12,
|
210 |
+
"layerdrop": args["decoder_layerdrop"],
|
211 |
+
"max_position_embeddings": args["max_target_positions"],
|
212 |
+
"model_type": "biogpt",
|
213 |
+
"num_attention_heads": args["decoder_attention_heads"],
|
214 |
+
"num_hidden_layers": args["decoder_layers"],
|
215 |
+
"pad_token_id": 1,
|
216 |
+
"scale_embedding": not args["no_scale_embedding"],
|
217 |
+
"tie_word_embeddings": args["share_decoder_input_output_embed"],
|
218 |
+
"vocab_size": src_vocab_size,
|
219 |
+
}
|
220 |
+
|
221 |
+
# good hparam defaults to start with
|
222 |
+
|
223 |
+
print(f"Generating {biogpt_model_config_file}")
|
224 |
+
with open(biogpt_model_config_file, "w", encoding="utf-8") as f:
|
225 |
+
f.write(json.dumps(model_conf, ensure_ascii=False, indent=json_indent))
|
226 |
+
|
227 |
+
# tokenizer config
|
228 |
+
biogpt_tokenizer_config_file = os.path.join(pytorch_dump_folder_path, TOKENIZER_CONFIG_FILE)
|
229 |
+
|
230 |
+
tokenizer_conf = {
|
231 |
+
"bos_token": "<s>",
|
232 |
+
"eos_token": "</s>",
|
233 |
+
"model_max_length": 1024,
|
234 |
+
"pad_token": "<pad>",
|
235 |
+
"special_tokens_map_file": None,
|
236 |
+
"tokenizer_class": "BioGptTokenizer",
|
237 |
+
"unk_token": "<unk>",
|
238 |
+
}
|
239 |
+
|
240 |
+
print(f"Generating {biogpt_tokenizer_config_file}")
|
241 |
+
with open(biogpt_tokenizer_config_file, "w", encoding="utf-8") as f:
|
242 |
+
f.write(json.dumps(tokenizer_conf, ensure_ascii=False, indent=json_indent))
|
243 |
+
|
244 |
+
# model
|
245 |
+
model_state_dict = chkpt["model"]
|
246 |
+
|
247 |
+
# remove unneeded keys
|
248 |
+
ignore_keys = [
|
249 |
+
"decoder.version",
|
250 |
+
]
|
251 |
+
for k in ignore_keys:
|
252 |
+
model_state_dict.pop(k, None)
|
253 |
+
|
254 |
+
layer_names = list(model_state_dict.keys())
|
255 |
+
for layer_name in layer_names:
|
256 |
+
if layer_name.endswith("output_projection.weight"):
|
257 |
+
model_state_dict[layer_name.replace("decoder.", "")] = model_state_dict.pop(layer_name)
|
258 |
+
else:
|
259 |
+
model_state_dict[layer_name.replace("decoder", "biogpt")] = model_state_dict.pop(layer_name)
|
260 |
+
|
261 |
+
config = BioGptConfig.from_pretrained(pytorch_dump_folder_path)
|
262 |
+
model_new = BioGptForCausalLM(config)
|
263 |
+
|
264 |
+
# check that it loads ok
|
265 |
+
model_new.load_state_dict(model_state_dict)
|
266 |
+
|
267 |
+
# save
|
268 |
+
pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME)
|
269 |
+
print(f"Generating {pytorch_weights_dump_path}")
|
270 |
+
torch.save(model_state_dict, pytorch_weights_dump_path)
|
271 |
+
|
272 |
+
print("Conversion is done!")
|
273 |
+
|
274 |
+
|
275 |
+
if __name__ == "__main__":
|
276 |
+
parser = argparse.ArgumentParser()
|
277 |
+
# Required parameters
|
278 |
+
parser.add_argument(
|
279 |
+
"--biogpt_checkpoint_path",
|
280 |
+
default=None,
|
281 |
+
type=str,
|
282 |
+
required=True,
|
283 |
+
help=(
|
284 |
+
"Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"
|
285 |
+
" bpecodes, etc."
|
286 |
+
),
|
287 |
+
)
|
288 |
+
parser.add_argument(
|
289 |
+
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
290 |
+
)
|
291 |
+
args = parser.parse_args()
|
292 |
+
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/modeling_biogpt.py
ADDED
@@ -0,0 +1,924 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch BioGPT model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
CausalLMOutputWithCrossAttentions,
|
31 |
+
SequenceClassifierOutputWithPast,
|
32 |
+
TokenClassifierOutput,
|
33 |
+
)
|
34 |
+
from ...modeling_utils import PreTrainedModel
|
35 |
+
from ...utils import (
|
36 |
+
add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
logging,
|
40 |
+
)
|
41 |
+
from .configuration_biogpt import BioGptConfig
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_CHECKPOINT_FOR_DOC = "microsoft/biogpt"
|
47 |
+
_CONFIG_FOR_DOC = "BioGptConfig"
|
48 |
+
|
49 |
+
|
50 |
+
from ..deprecated._archive_maps import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
51 |
+
|
52 |
+
|
53 |
+
# Copied from transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding with OPT->BioGpt
|
54 |
+
class BioGptLearnedPositionalEmbedding(nn.Embedding):
|
55 |
+
"""
|
56 |
+
This module learns positional embeddings up to a fixed maximum size.
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(self, num_embeddings: int, embedding_dim: int):
|
60 |
+
# BioGpt is set up so that if padding_idx is specified then offset the embedding ids by 2
|
61 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
62 |
+
self.offset = 2
|
63 |
+
super().__init__(num_embeddings + self.offset, embedding_dim)
|
64 |
+
|
65 |
+
def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0):
|
66 |
+
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
67 |
+
attention_mask = attention_mask.long()
|
68 |
+
|
69 |
+
# create positions depending on attention_mask
|
70 |
+
positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1
|
71 |
+
|
72 |
+
# cut positions if `past_key_values_length` is > 0
|
73 |
+
positions = positions[:, past_key_values_length:]
|
74 |
+
|
75 |
+
return super().forward(positions + self.offset)
|
76 |
+
|
77 |
+
|
78 |
+
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BioGpt
|
79 |
+
class BioGptAttention(nn.Module):
|
80 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
embed_dim: int,
|
85 |
+
num_heads: int,
|
86 |
+
dropout: float = 0.0,
|
87 |
+
is_decoder: bool = False,
|
88 |
+
bias: bool = True,
|
89 |
+
is_causal: bool = False,
|
90 |
+
config: Optional[BioGptConfig] = None,
|
91 |
+
):
|
92 |
+
super().__init__()
|
93 |
+
self.embed_dim = embed_dim
|
94 |
+
self.num_heads = num_heads
|
95 |
+
self.dropout = dropout
|
96 |
+
self.head_dim = embed_dim // num_heads
|
97 |
+
self.config = config
|
98 |
+
|
99 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
100 |
+
raise ValueError(
|
101 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
102 |
+
f" and `num_heads`: {num_heads})."
|
103 |
+
)
|
104 |
+
self.scaling = self.head_dim**-0.5
|
105 |
+
self.is_decoder = is_decoder
|
106 |
+
self.is_causal = is_causal
|
107 |
+
|
108 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
109 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
110 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
111 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
112 |
+
|
113 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
114 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
hidden_states: torch.Tensor,
|
119 |
+
key_value_states: Optional[torch.Tensor] = None,
|
120 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
121 |
+
attention_mask: Optional[torch.Tensor] = None,
|
122 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
123 |
+
output_attentions: bool = False,
|
124 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
125 |
+
"""Input shape: Batch x Time x Channel"""
|
126 |
+
|
127 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
128 |
+
# for the decoder
|
129 |
+
is_cross_attention = key_value_states is not None
|
130 |
+
|
131 |
+
bsz, tgt_len, _ = hidden_states.size()
|
132 |
+
|
133 |
+
# get query proj
|
134 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
135 |
+
# get key, value proj
|
136 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
137 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
138 |
+
# the provided `key_value_states` to support prefix tuning
|
139 |
+
if (
|
140 |
+
is_cross_attention
|
141 |
+
and past_key_value is not None
|
142 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
143 |
+
):
|
144 |
+
# reuse k,v, cross_attentions
|
145 |
+
key_states = past_key_value[0]
|
146 |
+
value_states = past_key_value[1]
|
147 |
+
elif is_cross_attention:
|
148 |
+
# cross_attentions
|
149 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
150 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
151 |
+
elif past_key_value is not None:
|
152 |
+
# reuse k, v, self_attention
|
153 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
154 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
155 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
156 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
157 |
+
else:
|
158 |
+
# self_attention
|
159 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
160 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
161 |
+
|
162 |
+
if self.is_decoder:
|
163 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
164 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
165 |
+
# key/value_states (first "if" case)
|
166 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
167 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
168 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
169 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
170 |
+
past_key_value = (key_states, value_states)
|
171 |
+
|
172 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
173 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
174 |
+
key_states = key_states.reshape(*proj_shape)
|
175 |
+
value_states = value_states.reshape(*proj_shape)
|
176 |
+
|
177 |
+
src_len = key_states.size(1)
|
178 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
179 |
+
|
180 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
181 |
+
raise ValueError(
|
182 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
183 |
+
f" {attn_weights.size()}"
|
184 |
+
)
|
185 |
+
|
186 |
+
if attention_mask is not None:
|
187 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
188 |
+
raise ValueError(
|
189 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
190 |
+
)
|
191 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
192 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
193 |
+
|
194 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
195 |
+
|
196 |
+
if layer_head_mask is not None:
|
197 |
+
if layer_head_mask.size() != (self.num_heads,):
|
198 |
+
raise ValueError(
|
199 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
200 |
+
f" {layer_head_mask.size()}"
|
201 |
+
)
|
202 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
203 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
204 |
+
|
205 |
+
if output_attentions:
|
206 |
+
# this operation is a bit awkward, but it's required to
|
207 |
+
# make sure that attn_weights keeps its gradient.
|
208 |
+
# In order to do so, attn_weights have to be reshaped
|
209 |
+
# twice and have to be reused in the following
|
210 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
211 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
212 |
+
else:
|
213 |
+
attn_weights_reshaped = None
|
214 |
+
|
215 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
216 |
+
|
217 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
218 |
+
|
219 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
220 |
+
raise ValueError(
|
221 |
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
222 |
+
f" {attn_output.size()}"
|
223 |
+
)
|
224 |
+
|
225 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
226 |
+
attn_output = attn_output.transpose(1, 2)
|
227 |
+
|
228 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
229 |
+
# partitioned across GPUs when using tensor-parallelism.
|
230 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
231 |
+
|
232 |
+
attn_output = self.out_proj(attn_output)
|
233 |
+
|
234 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
235 |
+
|
236 |
+
|
237 |
+
class BioGptDecoderLayer(nn.Module):
|
238 |
+
def __init__(self, config: BioGptConfig):
|
239 |
+
super().__init__()
|
240 |
+
self.embed_dim = config.hidden_size
|
241 |
+
|
242 |
+
self.self_attn = BioGptAttention(
|
243 |
+
embed_dim=self.embed_dim,
|
244 |
+
num_heads=config.num_attention_heads,
|
245 |
+
dropout=config.attention_probs_dropout_prob,
|
246 |
+
is_decoder=True,
|
247 |
+
)
|
248 |
+
self.dropout = config.hidden_dropout_prob
|
249 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
250 |
+
self.activation_dropout = config.activation_dropout
|
251 |
+
|
252 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
253 |
+
|
254 |
+
self.fc1 = nn.Linear(self.embed_dim, config.intermediate_size)
|
255 |
+
self.fc2 = nn.Linear(config.intermediate_size, self.embed_dim)
|
256 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
257 |
+
|
258 |
+
def forward(
|
259 |
+
self,
|
260 |
+
hidden_states: torch.Tensor,
|
261 |
+
attention_mask: Optional[torch.Tensor] = None,
|
262 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
263 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
264 |
+
output_attentions: Optional[bool] = False,
|
265 |
+
use_cache: Optional[bool] = True,
|
266 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
267 |
+
"""
|
268 |
+
Args:
|
269 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
270 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
271 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
272 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
273 |
+
`(encoder_attention_heads,)`.
|
274 |
+
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
275 |
+
output_attentions (`bool`, *optional*):
|
276 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
277 |
+
returned tensors for more detail.
|
278 |
+
use_cache (`bool`, *optional*):
|
279 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
280 |
+
(see `past_key_values`).
|
281 |
+
"""
|
282 |
+
residual = hidden_states
|
283 |
+
|
284 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
285 |
+
|
286 |
+
# Self Attention
|
287 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
288 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
289 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
290 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
291 |
+
hidden_states=hidden_states,
|
292 |
+
past_key_value=self_attn_past_key_value,
|
293 |
+
attention_mask=attention_mask,
|
294 |
+
layer_head_mask=layer_head_mask,
|
295 |
+
output_attentions=output_attentions,
|
296 |
+
)
|
297 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
298 |
+
hidden_states = residual + hidden_states
|
299 |
+
|
300 |
+
# Fully Connected
|
301 |
+
residual = hidden_states
|
302 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
303 |
+
hidden_states = self.fc1(hidden_states)
|
304 |
+
hidden_states = self.activation_fn(hidden_states)
|
305 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
306 |
+
hidden_states = self.fc2(hidden_states)
|
307 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
308 |
+
hidden_states = residual + hidden_states
|
309 |
+
|
310 |
+
outputs = (hidden_states,)
|
311 |
+
|
312 |
+
if output_attentions:
|
313 |
+
outputs += (self_attn_weights,)
|
314 |
+
|
315 |
+
if use_cache:
|
316 |
+
outputs += (present_key_value,)
|
317 |
+
|
318 |
+
return outputs
|
319 |
+
|
320 |
+
|
321 |
+
class BioGptPreTrainedModel(PreTrainedModel):
|
322 |
+
"""
|
323 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
324 |
+
models.
|
325 |
+
"""
|
326 |
+
|
327 |
+
config_class = BioGptConfig
|
328 |
+
base_model_prefix = "biogpt"
|
329 |
+
supports_gradient_checkpointing = True
|
330 |
+
|
331 |
+
def _init_weights(self, module):
|
332 |
+
"""Initialize the weights"""
|
333 |
+
if isinstance(module, nn.Linear):
|
334 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
335 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
336 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
337 |
+
if module.bias is not None:
|
338 |
+
module.bias.data.zero_()
|
339 |
+
elif isinstance(module, nn.Embedding):
|
340 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
341 |
+
if module.padding_idx is not None:
|
342 |
+
module.weight.data[module.padding_idx].zero_()
|
343 |
+
elif isinstance(module, nn.LayerNorm):
|
344 |
+
module.bias.data.zero_()
|
345 |
+
module.weight.data.fill_(1.0)
|
346 |
+
|
347 |
+
|
348 |
+
BIOGPT_START_DOCSTRING = r"""
|
349 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
350 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
351 |
+
behavior.
|
352 |
+
|
353 |
+
Parameters:
|
354 |
+
config ([`~BioGptConfig`]): Model configuration class with all the parameters of the model.
|
355 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
356 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
357 |
+
"""
|
358 |
+
|
359 |
+
BIOGPT_INPUTS_DOCSTRING = r"""
|
360 |
+
Args:
|
361 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
362 |
+
Indices of input sequence tokens in the vocabulary.
|
363 |
+
|
364 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
365 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
366 |
+
|
367 |
+
[What are input IDs?](../glossary#input-ids)
|
368 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
369 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
370 |
+
|
371 |
+
- 1 for tokens that are **not masked**,
|
372 |
+
- 0 for tokens that are **masked**.
|
373 |
+
|
374 |
+
[What are attention masks?](../glossary#attention-mask)
|
375 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
376 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
377 |
+
|
378 |
+
- 1 indicates the head is **not masked**,
|
379 |
+
- 0 indicates the head is **masked**.
|
380 |
+
|
381 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
382 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
383 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
384 |
+
model's internal embedding lookup matrix.
|
385 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
386 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
387 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
388 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
389 |
+
|
390 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
391 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
392 |
+
|
393 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
394 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
395 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
396 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
397 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
398 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
399 |
+
than the model's internal embedding lookup matrix.
|
400 |
+
use_cache (`bool`, *optional*):
|
401 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
402 |
+
`past_key_values`).
|
403 |
+
output_attentions (`bool`, *optional*):
|
404 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
405 |
+
tensors for more detail.
|
406 |
+
output_hidden_states (`bool`, *optional*):
|
407 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
408 |
+
more detail.
|
409 |
+
return_dict (`bool`, *optional*):
|
410 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
411 |
+
"""
|
412 |
+
|
413 |
+
|
414 |
+
@add_start_docstrings(
|
415 |
+
"The bare BioGPT Model transformer outputting raw hidden-states without any specific head on top.",
|
416 |
+
BIOGPT_START_DOCSTRING,
|
417 |
+
)
|
418 |
+
class BioGptModel(BioGptPreTrainedModel):
|
419 |
+
def __init__(self, config: BioGptConfig):
|
420 |
+
super().__init__(config)
|
421 |
+
self.config = config
|
422 |
+
self.layerdrop = config.layerdrop
|
423 |
+
self.dropout = config.hidden_dropout_prob
|
424 |
+
self.embed_dim = config.hidden_size
|
425 |
+
self.padding_idx = config.pad_token_id
|
426 |
+
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
|
427 |
+
|
428 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, self.embed_dim, self.padding_idx)
|
429 |
+
self.embed_positions = BioGptLearnedPositionalEmbedding(config.max_position_embeddings, self.embed_dim)
|
430 |
+
|
431 |
+
self.layers = nn.ModuleList([BioGptDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
432 |
+
self.layer_norm = nn.LayerNorm(self.embed_dim)
|
433 |
+
|
434 |
+
self.gradient_checkpointing = False
|
435 |
+
# Initialize weights and apply final processing
|
436 |
+
self.post_init()
|
437 |
+
|
438 |
+
def get_input_embeddings(self):
|
439 |
+
return self.embed_tokens
|
440 |
+
|
441 |
+
def set_input_embeddings(self, value):
|
442 |
+
self.embed_tokens = value
|
443 |
+
|
444 |
+
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
445 |
+
@add_code_sample_docstrings(
|
446 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
447 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
448 |
+
config_class=_CONFIG_FOR_DOC,
|
449 |
+
)
|
450 |
+
def forward(
|
451 |
+
self,
|
452 |
+
input_ids: Optional[torch.LongTensor] = None,
|
453 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
454 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
455 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
456 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
457 |
+
use_cache: Optional[bool] = None,
|
458 |
+
output_attentions: Optional[bool] = None,
|
459 |
+
output_hidden_states: Optional[bool] = None,
|
460 |
+
return_dict: Optional[bool] = None,
|
461 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
462 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
463 |
+
output_hidden_states = (
|
464 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
465 |
+
)
|
466 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
467 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
468 |
+
|
469 |
+
# retrieve input_ids and inputs_embeds
|
470 |
+
if input_ids is not None and inputs_embeds is not None:
|
471 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
472 |
+
elif input_ids is not None:
|
473 |
+
input = input_ids
|
474 |
+
input_shape = input.size()
|
475 |
+
elif inputs_embeds is not None:
|
476 |
+
input_shape = inputs_embeds.size()[:-1]
|
477 |
+
input = inputs_embeds[:, :, -1]
|
478 |
+
else:
|
479 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
480 |
+
|
481 |
+
# past_key_values_length
|
482 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
483 |
+
|
484 |
+
if inputs_embeds is None:
|
485 |
+
inputs_embeds = self.embed_tokens(input) * self.embed_scale
|
486 |
+
|
487 |
+
if attention_mask is None:
|
488 |
+
attention_mask = torch.ones(
|
489 |
+
(inputs_embeds.shape[0], inputs_embeds.shape[1] + past_key_values_length),
|
490 |
+
dtype=torch.bool,
|
491 |
+
device=inputs_embeds.device,
|
492 |
+
)
|
493 |
+
elif attention_mask.shape[1] != past_key_values_length + input_shape[1]:
|
494 |
+
raise ValueError(
|
495 |
+
f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
|
496 |
+
f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)"
|
497 |
+
)
|
498 |
+
|
499 |
+
# embed positions
|
500 |
+
positions = self.embed_positions(attention_mask, past_key_values_length)
|
501 |
+
|
502 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
503 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
504 |
+
)
|
505 |
+
|
506 |
+
hidden_states = inputs_embeds + positions
|
507 |
+
|
508 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
509 |
+
|
510 |
+
if self.gradient_checkpointing and self.training:
|
511 |
+
if use_cache:
|
512 |
+
logger.warning_once(
|
513 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
514 |
+
)
|
515 |
+
use_cache = False
|
516 |
+
|
517 |
+
all_hidden_states = () if output_hidden_states else None
|
518 |
+
all_self_attns = () if output_attentions else None
|
519 |
+
all_cross_attentions = None
|
520 |
+
next_decoder_cache = () if use_cache else None
|
521 |
+
|
522 |
+
for idx, decoder_layer in enumerate(self.layers):
|
523 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
524 |
+
if output_hidden_states:
|
525 |
+
all_hidden_states += (hidden_states,)
|
526 |
+
if self.training:
|
527 |
+
dropout_probability = torch.rand([])
|
528 |
+
if dropout_probability < self.layerdrop:
|
529 |
+
continue
|
530 |
+
|
531 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
532 |
+
|
533 |
+
if self.gradient_checkpointing and self.training:
|
534 |
+
layer_outputs = self._gradient_checkpointing_func(
|
535 |
+
decoder_layer.__call__,
|
536 |
+
hidden_states,
|
537 |
+
attention_mask,
|
538 |
+
head_mask[idx] if head_mask is not None else None,
|
539 |
+
None,
|
540 |
+
output_attentions,
|
541 |
+
use_cache,
|
542 |
+
)
|
543 |
+
else:
|
544 |
+
layer_outputs = decoder_layer(
|
545 |
+
hidden_states,
|
546 |
+
attention_mask=attention_mask,
|
547 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
548 |
+
past_key_value=past_key_value,
|
549 |
+
output_attentions=output_attentions,
|
550 |
+
use_cache=use_cache,
|
551 |
+
)
|
552 |
+
|
553 |
+
hidden_states = layer_outputs[0]
|
554 |
+
|
555 |
+
if use_cache:
|
556 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
557 |
+
|
558 |
+
if output_attentions:
|
559 |
+
all_self_attns += (layer_outputs[1],)
|
560 |
+
|
561 |
+
# add hidden states from the last decoder layer
|
562 |
+
if output_hidden_states:
|
563 |
+
all_hidden_states += (hidden_states,)
|
564 |
+
|
565 |
+
hidden_states = self.layer_norm(hidden_states)
|
566 |
+
|
567 |
+
next_cache = next_decoder_cache if use_cache else None
|
568 |
+
|
569 |
+
if not return_dict:
|
570 |
+
return tuple(
|
571 |
+
v
|
572 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
573 |
+
if v is not None
|
574 |
+
)
|
575 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
576 |
+
last_hidden_state=hidden_states,
|
577 |
+
past_key_values=next_cache,
|
578 |
+
hidden_states=all_hidden_states,
|
579 |
+
attentions=all_self_attns,
|
580 |
+
cross_attentions=all_cross_attentions,
|
581 |
+
)
|
582 |
+
|
583 |
+
|
584 |
+
@add_start_docstrings(
|
585 |
+
"""BioGPT Model with a `language modeling` head on top for CLM fine-tuning.""", BIOGPT_START_DOCSTRING
|
586 |
+
)
|
587 |
+
class BioGptForCausalLM(BioGptPreTrainedModel):
|
588 |
+
_tied_weights_keys = ["output_projection.weight"]
|
589 |
+
|
590 |
+
def __init__(self, config):
|
591 |
+
super().__init__(config)
|
592 |
+
|
593 |
+
self.biogpt = BioGptModel(config)
|
594 |
+
self.output_projection = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
595 |
+
|
596 |
+
# Initialize weights and apply final processing
|
597 |
+
self.post_init()
|
598 |
+
|
599 |
+
def get_output_embeddings(self):
|
600 |
+
return self.output_projection
|
601 |
+
|
602 |
+
def set_output_embeddings(self, new_embeddings):
|
603 |
+
self.output_projection = new_embeddings
|
604 |
+
|
605 |
+
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
606 |
+
@add_code_sample_docstrings(
|
607 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
608 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
609 |
+
config_class=_CONFIG_FOR_DOC,
|
610 |
+
)
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
input_ids: Optional[torch.LongTensor] = None,
|
614 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
615 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
616 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
617 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
618 |
+
labels: Optional[torch.LongTensor] = None,
|
619 |
+
use_cache: Optional[bool] = None,
|
620 |
+
output_attentions: Optional[bool] = None,
|
621 |
+
output_hidden_states: Optional[bool] = None,
|
622 |
+
return_dict: Optional[bool] = None,
|
623 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
624 |
+
r"""
|
625 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
626 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
627 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
628 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
629 |
+
"""
|
630 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
631 |
+
|
632 |
+
outputs = self.biogpt(
|
633 |
+
input_ids,
|
634 |
+
attention_mask=attention_mask,
|
635 |
+
head_mask=head_mask,
|
636 |
+
inputs_embeds=inputs_embeds,
|
637 |
+
past_key_values=past_key_values,
|
638 |
+
use_cache=use_cache,
|
639 |
+
output_attentions=output_attentions,
|
640 |
+
output_hidden_states=output_hidden_states,
|
641 |
+
return_dict=return_dict,
|
642 |
+
)
|
643 |
+
|
644 |
+
sequence_output = outputs[0]
|
645 |
+
prediction_scores = self.output_projection(sequence_output)
|
646 |
+
|
647 |
+
lm_loss = None
|
648 |
+
if labels is not None:
|
649 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
650 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
651 |
+
labels = labels[:, 1:].contiguous()
|
652 |
+
loss_fct = CrossEntropyLoss()
|
653 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
654 |
+
|
655 |
+
if not return_dict:
|
656 |
+
output = (prediction_scores,) + outputs[1:]
|
657 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
658 |
+
|
659 |
+
return CausalLMOutputWithCrossAttentions(
|
660 |
+
loss=lm_loss,
|
661 |
+
logits=prediction_scores,
|
662 |
+
past_key_values=outputs.past_key_values,
|
663 |
+
hidden_states=outputs.hidden_states,
|
664 |
+
attentions=outputs.attentions,
|
665 |
+
cross_attentions=outputs.cross_attentions,
|
666 |
+
)
|
667 |
+
|
668 |
+
def prepare_inputs_for_generation(
|
669 |
+
self, input_ids, attention_mask, inputs_embeds=None, past_key_values=None, **kwargs
|
670 |
+
):
|
671 |
+
# only last tokens for inputs_ids if past is defined in kwargs
|
672 |
+
if past_key_values is not None:
|
673 |
+
past_length = past_key_values[0][0].shape[2]
|
674 |
+
|
675 |
+
# Some generation methods already pass only the last input ID
|
676 |
+
if input_ids.shape[1] > past_length:
|
677 |
+
remove_prefix_length = past_length
|
678 |
+
else:
|
679 |
+
# Default to old behavior: keep only final ID
|
680 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
681 |
+
|
682 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
683 |
+
|
684 |
+
if inputs_embeds is not None and past_key_values is None:
|
685 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
686 |
+
else:
|
687 |
+
model_inputs = {"input_ids": input_ids}
|
688 |
+
|
689 |
+
model_inputs.update(
|
690 |
+
{
|
691 |
+
"attention_mask": attention_mask,
|
692 |
+
"past_key_values": past_key_values,
|
693 |
+
"use_cache": kwargs.get("use_cache"),
|
694 |
+
}
|
695 |
+
)
|
696 |
+
|
697 |
+
return model_inputs
|
698 |
+
|
699 |
+
@staticmethod
|
700 |
+
def _reorder_cache(past_key_values, beam_idx):
|
701 |
+
reordered_past = ()
|
702 |
+
for layer_past in past_key_values:
|
703 |
+
reordered_past += (
|
704 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
705 |
+
)
|
706 |
+
return reordered_past
|
707 |
+
|
708 |
+
|
709 |
+
@add_start_docstrings(
|
710 |
+
"""
|
711 |
+
BioGPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
712 |
+
Named-Entity-Recognition (NER) tasks.
|
713 |
+
""",
|
714 |
+
BIOGPT_START_DOCSTRING,
|
715 |
+
)
|
716 |
+
class BioGptForTokenClassification(BioGptPreTrainedModel):
|
717 |
+
def __init__(self, config):
|
718 |
+
super().__init__(config)
|
719 |
+
self.num_labels = config.num_labels
|
720 |
+
|
721 |
+
self.biogpt = BioGptModel(config)
|
722 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
723 |
+
classifier_dropout = config.classifier_dropout
|
724 |
+
else:
|
725 |
+
classifier_dropout = config.hidden_dropout_prob
|
726 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
727 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
728 |
+
|
729 |
+
self.post_init()
|
730 |
+
|
731 |
+
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING)
|
732 |
+
@add_code_sample_docstrings(
|
733 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
734 |
+
output_type=TokenClassifierOutput,
|
735 |
+
config_class=_CONFIG_FOR_DOC,
|
736 |
+
)
|
737 |
+
def forward(
|
738 |
+
self,
|
739 |
+
input_ids: Optional[torch.LongTensor] = None,
|
740 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
741 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
742 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
743 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
744 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
745 |
+
labels: Optional[torch.LongTensor] = None,
|
746 |
+
use_cache: Optional[bool] = None,
|
747 |
+
output_attentions: Optional[bool] = None,
|
748 |
+
output_hidden_states: Optional[bool] = None,
|
749 |
+
return_dict: Optional[bool] = None,
|
750 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
751 |
+
r"""
|
752 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
753 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
754 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
755 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
756 |
+
"""
|
757 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
758 |
+
|
759 |
+
transformer_outputs = self.biogpt(
|
760 |
+
input_ids,
|
761 |
+
past_key_values=past_key_values,
|
762 |
+
attention_mask=attention_mask,
|
763 |
+
head_mask=head_mask,
|
764 |
+
inputs_embeds=inputs_embeds,
|
765 |
+
use_cache=use_cache,
|
766 |
+
output_attentions=output_attentions,
|
767 |
+
output_hidden_states=output_hidden_states,
|
768 |
+
return_dict=return_dict,
|
769 |
+
)
|
770 |
+
|
771 |
+
hidden_states = transformer_outputs[0]
|
772 |
+
hidden_states = self.dropout(hidden_states)
|
773 |
+
logits = self.classifier(hidden_states)
|
774 |
+
|
775 |
+
loss = None
|
776 |
+
if labels is not None:
|
777 |
+
loss_fct = CrossEntropyLoss()
|
778 |
+
# Only keep active parts of the loss
|
779 |
+
if attention_mask is not None:
|
780 |
+
active_loss = attention_mask.view(-1) == 1
|
781 |
+
active_logits = logits.view(-1, self.num_labels)
|
782 |
+
active_labels = torch.where(
|
783 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
784 |
+
)
|
785 |
+
loss = loss_fct(active_logits, active_labels)
|
786 |
+
else:
|
787 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
788 |
+
|
789 |
+
if not return_dict:
|
790 |
+
output = (logits,) + transformer_outputs[2:]
|
791 |
+
return ((loss,) + output) if loss is not None else output
|
792 |
+
|
793 |
+
return TokenClassifierOutput(
|
794 |
+
loss=loss,
|
795 |
+
logits=logits,
|
796 |
+
hidden_states=transformer_outputs.hidden_states,
|
797 |
+
attentions=transformer_outputs.attentions,
|
798 |
+
)
|
799 |
+
|
800 |
+
|
801 |
+
@add_start_docstrings(
|
802 |
+
"""
|
803 |
+
The BioGpt Model transformer with a sequence classification head on top (linear layer).
|
804 |
+
|
805 |
+
[`BioGptForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
806 |
+
(e.g. GPT-2) do.
|
807 |
+
|
808 |
+
Since it does classification on the last token, it is required to know the position of the last token. If a
|
809 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
810 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
811 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
812 |
+
each row of the batch).
|
813 |
+
""",
|
814 |
+
BIOGPT_START_DOCSTRING,
|
815 |
+
)
|
816 |
+
class BioGptForSequenceClassification(BioGptPreTrainedModel):
|
817 |
+
def __init__(self, config: BioGptConfig):
|
818 |
+
super().__init__(config)
|
819 |
+
self.num_labels = config.num_labels
|
820 |
+
self.biogpt = BioGptModel(config)
|
821 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
822 |
+
|
823 |
+
# Initialize weights and apply final processing
|
824 |
+
self.post_init()
|
825 |
+
|
826 |
+
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING)
|
827 |
+
@add_code_sample_docstrings(
|
828 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
829 |
+
output_type=SequenceClassifierOutputWithPast,
|
830 |
+
config_class=_CONFIG_FOR_DOC,
|
831 |
+
)
|
832 |
+
def forward(
|
833 |
+
self,
|
834 |
+
input_ids: Optional[torch.LongTensor] = None,
|
835 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
836 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
837 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
838 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
839 |
+
labels: Optional[torch.LongTensor] = None,
|
840 |
+
use_cache: Optional[bool] = None,
|
841 |
+
output_attentions: Optional[bool] = None,
|
842 |
+
output_hidden_states: Optional[bool] = None,
|
843 |
+
return_dict: Optional[bool] = None,
|
844 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
845 |
+
r"""
|
846 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
847 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
848 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
849 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
850 |
+
"""
|
851 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
852 |
+
|
853 |
+
transformer_outputs = self.biogpt(
|
854 |
+
input_ids,
|
855 |
+
past_key_values=past_key_values,
|
856 |
+
attention_mask=attention_mask,
|
857 |
+
head_mask=head_mask,
|
858 |
+
inputs_embeds=inputs_embeds,
|
859 |
+
use_cache=use_cache,
|
860 |
+
output_attentions=output_attentions,
|
861 |
+
output_hidden_states=output_hidden_states,
|
862 |
+
return_dict=return_dict,
|
863 |
+
)
|
864 |
+
hidden_states = transformer_outputs[0]
|
865 |
+
logits = self.score(hidden_states)
|
866 |
+
|
867 |
+
if input_ids is not None:
|
868 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
869 |
+
else:
|
870 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
871 |
+
|
872 |
+
if self.config.pad_token_id is None:
|
873 |
+
sequence_length = -1
|
874 |
+
else:
|
875 |
+
if input_ids is not None:
|
876 |
+
sequence_length = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
877 |
+
else:
|
878 |
+
sequence_length = -1
|
879 |
+
logger.warning(
|
880 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
881 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
882 |
+
)
|
883 |
+
|
884 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_length]
|
885 |
+
|
886 |
+
loss = None
|
887 |
+
if labels is not None:
|
888 |
+
if self.config.problem_type is None:
|
889 |
+
if self.num_labels == 1:
|
890 |
+
self.config.problem_type = "regression"
|
891 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
892 |
+
self.config.problem_type = "single_label_classification"
|
893 |
+
else:
|
894 |
+
self.config.problem_type = "multi_label_classification"
|
895 |
+
|
896 |
+
if self.config.problem_type == "regression":
|
897 |
+
loss_fct = MSELoss()
|
898 |
+
if self.num_labels == 1:
|
899 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
900 |
+
else:
|
901 |
+
loss = loss_fct(pooled_logits, labels)
|
902 |
+
elif self.config.problem_type == "single_label_classification":
|
903 |
+
loss_fct = CrossEntropyLoss()
|
904 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
905 |
+
elif self.config.problem_type == "multi_label_classification":
|
906 |
+
loss_fct = BCEWithLogitsLoss()
|
907 |
+
loss = loss_fct(pooled_logits, labels)
|
908 |
+
if not return_dict:
|
909 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
910 |
+
return ((loss,) + output) if loss is not None else output
|
911 |
+
|
912 |
+
return SequenceClassifierOutputWithPast(
|
913 |
+
loss=loss,
|
914 |
+
logits=pooled_logits,
|
915 |
+
past_key_values=transformer_outputs.past_key_values,
|
916 |
+
hidden_states=transformer_outputs.hidden_states,
|
917 |
+
attentions=transformer_outputs.attentions,
|
918 |
+
)
|
919 |
+
|
920 |
+
def get_input_embeddings(self):
|
921 |
+
return self.biogpt.embed_tokens
|
922 |
+
|
923 |
+
def set_input_embeddings(self, value):
|
924 |
+
self.biogpt.embed_tokens = value
|
llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/tokenization_biogpt.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for BioGPT."""
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
VOCAB_FILES_NAMES = {
|
27 |
+
"vocab_file": "vocab.json",
|
28 |
+
"merges_file": "merges.txt",
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
def get_pairs(word):
|
33 |
+
"""
|
34 |
+
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
|
35 |
+
strings)
|
36 |
+
"""
|
37 |
+
pairs = set()
|
38 |
+
prev_char = word[0]
|
39 |
+
for char in word[1:]:
|
40 |
+
pairs.add((prev_char, char))
|
41 |
+
prev_char = char
|
42 |
+
return pairs
|
43 |
+
|
44 |
+
|
45 |
+
class BioGptTokenizer(PreTrainedTokenizer):
|
46 |
+
"""
|
47 |
+
Construct an FAIRSEQ Transformer tokenizer. Moses tokenization followed by Byte-Pair Encoding.
|
48 |
+
|
49 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
50 |
+
this superclass for more information regarding those methods.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
vocab_file (`str`):
|
54 |
+
Path to the vocabulary file.
|
55 |
+
merges_file (`str`):
|
56 |
+
Merges file.
|
57 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
58 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
59 |
+
token instead.
|
60 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
61 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
62 |
+
|
63 |
+
<Tip>
|
64 |
+
|
65 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
66 |
+
sequence. The token used is the `cls_token`.
|
67 |
+
|
68 |
+
</Tip>
|
69 |
+
|
70 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
71 |
+
The end of sequence token.
|
72 |
+
|
73 |
+
<Tip>
|
74 |
+
|
75 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
76 |
+
The token used is the `sep_token`.
|
77 |
+
|
78 |
+
</Tip>
|
79 |
+
|
80 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
81 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
82 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
83 |
+
token of a sequence built with special tokens.
|
84 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
85 |
+
The token used for padding, for example when batching sequences of different lengths.
|
86 |
+
"""
|
87 |
+
|
88 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
89 |
+
model_input_names = ["input_ids", "attention_mask"]
|
90 |
+
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
vocab_file,
|
94 |
+
merges_file,
|
95 |
+
unk_token="<unk>",
|
96 |
+
bos_token="<s>",
|
97 |
+
eos_token="</s>",
|
98 |
+
sep_token="</s>",
|
99 |
+
pad_token="<pad>",
|
100 |
+
**kwargs,
|
101 |
+
):
|
102 |
+
try:
|
103 |
+
import sacremoses
|
104 |
+
except ImportError:
|
105 |
+
raise ImportError(
|
106 |
+
"You need to install sacremoses to use BioGptTokenizer. "
|
107 |
+
"See https://pypi.org/project/sacremoses/ for installation."
|
108 |
+
)
|
109 |
+
|
110 |
+
self.lang = "en"
|
111 |
+
self.sm = sacremoses
|
112 |
+
# cache of sm.MosesTokenizer instance
|
113 |
+
self.cache_moses_tokenizer = {}
|
114 |
+
self.cache_moses_detokenizer = {}
|
115 |
+
|
116 |
+
""" Initialisation"""
|
117 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
118 |
+
self.encoder = json.load(vocab_handle)
|
119 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
120 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
121 |
+
merges = merges_handle.read().split("\n")[:-1]
|
122 |
+
merges = [tuple(merge.split()[:2]) for merge in merges]
|
123 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
124 |
+
self.cache = {}
|
125 |
+
|
126 |
+
super().__init__(
|
127 |
+
bos_token=bos_token,
|
128 |
+
eos_token=eos_token,
|
129 |
+
sep_token=sep_token,
|
130 |
+
unk_token=unk_token,
|
131 |
+
pad_token=pad_token,
|
132 |
+
**kwargs,
|
133 |
+
)
|
134 |
+
|
135 |
+
@property
|
136 |
+
def vocab_size(self):
|
137 |
+
"""Returns vocab size"""
|
138 |
+
return len(self.encoder)
|
139 |
+
|
140 |
+
def get_vocab(self):
|
141 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
142 |
+
|
143 |
+
def moses_tokenize(self, text, lang):
|
144 |
+
if lang not in self.cache_moses_tokenizer:
|
145 |
+
moses_tokenizer = self.sm.MosesTokenizer(lang=lang)
|
146 |
+
self.cache_moses_tokenizer[lang] = moses_tokenizer
|
147 |
+
return self.cache_moses_tokenizer[lang].tokenize(
|
148 |
+
text, aggressive_dash_splits=True, return_str=False, escape=True
|
149 |
+
)
|
150 |
+
|
151 |
+
def moses_detokenize(self, tokens, lang):
|
152 |
+
if lang not in self.cache_moses_detokenizer:
|
153 |
+
moses_detokenizer = self.sm.MosesDetokenizer(lang=lang)
|
154 |
+
self.cache_moses_detokenizer[lang] = moses_detokenizer
|
155 |
+
return self.cache_moses_detokenizer[lang].detokenize(tokens)
|
156 |
+
|
157 |
+
def bpe(self, token):
|
158 |
+
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
159 |
+
if token in self.cache:
|
160 |
+
return self.cache[token]
|
161 |
+
pairs = get_pairs(word)
|
162 |
+
|
163 |
+
if not pairs:
|
164 |
+
return token + "</w>"
|
165 |
+
|
166 |
+
while True:
|
167 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
168 |
+
if bigram not in self.bpe_ranks:
|
169 |
+
break
|
170 |
+
first, second = bigram
|
171 |
+
new_word = []
|
172 |
+
i = 0
|
173 |
+
while i < len(word):
|
174 |
+
try:
|
175 |
+
j = word.index(first, i)
|
176 |
+
except ValueError:
|
177 |
+
new_word.extend(word[i:])
|
178 |
+
break
|
179 |
+
else:
|
180 |
+
new_word.extend(word[i:j])
|
181 |
+
i = j
|
182 |
+
|
183 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
184 |
+
new_word.append(first + second)
|
185 |
+
i += 2
|
186 |
+
else:
|
187 |
+
new_word.append(word[i])
|
188 |
+
i += 1
|
189 |
+
new_word = tuple(new_word)
|
190 |
+
word = new_word
|
191 |
+
if len(word) == 1:
|
192 |
+
break
|
193 |
+
else:
|
194 |
+
pairs = get_pairs(word)
|
195 |
+
word = " ".join(word)
|
196 |
+
if word == "\n </w>":
|
197 |
+
word = "\n</w>"
|
198 |
+
self.cache[token] = word
|
199 |
+
return word
|
200 |
+
|
201 |
+
def _tokenize(self, text, bypass_tokenizer=False):
|
202 |
+
"""Returns a tokenized string."""
|
203 |
+
if bypass_tokenizer:
|
204 |
+
text = text.split()
|
205 |
+
else:
|
206 |
+
text = self.moses_tokenize(text, self.lang)
|
207 |
+
|
208 |
+
split_tokens = []
|
209 |
+
for token in text:
|
210 |
+
if token:
|
211 |
+
split_tokens.extend(list(self.bpe(token).split(" ")))
|
212 |
+
|
213 |
+
return split_tokens
|
214 |
+
|
215 |
+
def _convert_token_to_id(self, token):
|
216 |
+
"""Converts a token (str) in an id using the vocab."""
|
217 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
218 |
+
|
219 |
+
def _convert_id_to_token(self, index):
|
220 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
221 |
+
return self.decoder.get(index, self.unk_token)
|
222 |
+
|
223 |
+
def convert_tokens_to_string(self, tokens):
|
224 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
225 |
+
# remove BPE
|
226 |
+
tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens]
|
227 |
+
tokens = "".join(tokens).split()
|
228 |
+
# detokenize
|
229 |
+
text = self.moses_detokenize(tokens, self.lang)
|
230 |
+
return text
|
231 |
+
|
232 |
+
def build_inputs_with_special_tokens(
|
233 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
234 |
+
) -> List[int]:
|
235 |
+
"""
|
236 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
237 |
+
adding special tokens. A BioGPT sequence has the following format:
|
238 |
+
|
239 |
+
- single sequence: `</s> X `
|
240 |
+
- pair of sequences: `</s> A </s> B `
|
241 |
+
|
242 |
+
Args:
|
243 |
+
token_ids_0 (`List[int]`):
|
244 |
+
List of IDs to which the special tokens will be added.
|
245 |
+
token_ids_1 (`List[int]`, *optional*):
|
246 |
+
Optional second list of IDs for sequence pairs.
|
247 |
+
|
248 |
+
Returns:
|
249 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
250 |
+
"""
|
251 |
+
if token_ids_1 is None:
|
252 |
+
return [self.sep_token_id] + token_ids_0
|
253 |
+
sep = [self.sep_token_id]
|
254 |
+
return sep + token_ids_0 + sep + token_ids_1
|
255 |
+
|
256 |
+
def get_special_tokens_mask(
|
257 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
258 |
+
) -> List[int]:
|
259 |
+
"""
|
260 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
261 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
token_ids_0 (`List[int]`):
|
265 |
+
List of IDs.
|
266 |
+
token_ids_1 (`List[int]`, *optional*):
|
267 |
+
Optional second list of IDs for sequence pairs.
|
268 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
269 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
270 |
+
|
271 |
+
Returns:
|
272 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
273 |
+
"""
|
274 |
+
if already_has_special_tokens:
|
275 |
+
return super().get_special_tokens_mask(
|
276 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
277 |
+
)
|
278 |
+
# no bos used in fairseq
|
279 |
+
if token_ids_1 is not None:
|
280 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
281 |
+
return [1] + ([0] * len(token_ids_0))
|
282 |
+
|
283 |
+
def create_token_type_ids_from_sequences(
|
284 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
285 |
+
) -> List[int]:
|
286 |
+
"""
|
287 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ
|
288 |
+
Transformer sequence pair mask has the following format:
|
289 |
+
|
290 |
+
```
|
291 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
292 |
+
| first sequence | second sequence |
|
293 |
+
```
|
294 |
+
|
295 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
296 |
+
|
297 |
+
Args:
|
298 |
+
token_ids_0 (`List[int]`):
|
299 |
+
List of IDs.
|
300 |
+
token_ids_1 (`List[int]`, *optional*):
|
301 |
+
Optional second list of IDs for sequence pairs.
|
302 |
+
|
303 |
+
Returns:
|
304 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
305 |
+
"""
|
306 |
+
sep = [self.sep_token_id]
|
307 |
+
|
308 |
+
# no bos used in fairseq
|
309 |
+
if token_ids_1 is None:
|
310 |
+
return len(token_ids_0 + sep) * [0]
|
311 |
+
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
312 |
+
|
313 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
314 |
+
if not os.path.isdir(save_directory):
|
315 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
316 |
+
return
|
317 |
+
vocab_file = os.path.join(
|
318 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
319 |
+
)
|
320 |
+
merge_file = os.path.join(
|
321 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
322 |
+
)
|
323 |
+
|
324 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
325 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
326 |
+
|
327 |
+
index = 0
|
328 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
329 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
330 |
+
if index != token_index:
|
331 |
+
logger.warning(
|
332 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
333 |
+
" Please check that the tokenizer is not corrupted!"
|
334 |
+
)
|
335 |
+
index = token_index
|
336 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
337 |
+
index += 1
|
338 |
+
|
339 |
+
return vocab_file, merge_file
|
340 |
+
|
341 |
+
def __getstate__(self):
|
342 |
+
state = self.__dict__.copy()
|
343 |
+
state["sm"] = None
|
344 |
+
return state
|
345 |
+
|
346 |
+
def __setstate__(self, d):
|
347 |
+
self.__dict__ = d
|
348 |
+
|
349 |
+
try:
|
350 |
+
import sacremoses
|
351 |
+
except ImportError:
|
352 |
+
raise ImportError(
|
353 |
+
"You need to install sacremoses to use XLMTokenizer. "
|
354 |
+
"See https://pypi.org/project/sacremoses/ for installation."
|
355 |
+
)
|
356 |
+
|
357 |
+
self.sm = sacremoses
|
llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__init__.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"],
|
22 |
+
"configuration_data2vec_text": [
|
23 |
+
"DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
24 |
+
"Data2VecTextConfig",
|
25 |
+
"Data2VecTextOnnxConfig",
|
26 |
+
],
|
27 |
+
"configuration_data2vec_vision": [
|
28 |
+
"DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
29 |
+
"Data2VecVisionConfig",
|
30 |
+
"Data2VecVisionOnnxConfig",
|
31 |
+
],
|
32 |
+
}
|
33 |
+
|
34 |
+
try:
|
35 |
+
if not is_torch_available():
|
36 |
+
raise OptionalDependencyNotAvailable()
|
37 |
+
except OptionalDependencyNotAvailable:
|
38 |
+
pass
|
39 |
+
else:
|
40 |
+
_import_structure["modeling_data2vec_audio"] = [
|
41 |
+
"DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST",
|
42 |
+
"Data2VecAudioForAudioFrameClassification",
|
43 |
+
"Data2VecAudioForCTC",
|
44 |
+
"Data2VecAudioForSequenceClassification",
|
45 |
+
"Data2VecAudioForXVector",
|
46 |
+
"Data2VecAudioModel",
|
47 |
+
"Data2VecAudioPreTrainedModel",
|
48 |
+
]
|
49 |
+
_import_structure["modeling_data2vec_text"] = [
|
50 |
+
"DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
51 |
+
"Data2VecTextForCausalLM",
|
52 |
+
"Data2VecTextForMaskedLM",
|
53 |
+
"Data2VecTextForMultipleChoice",
|
54 |
+
"Data2VecTextForQuestionAnswering",
|
55 |
+
"Data2VecTextForSequenceClassification",
|
56 |
+
"Data2VecTextForTokenClassification",
|
57 |
+
"Data2VecTextModel",
|
58 |
+
"Data2VecTextPreTrainedModel",
|
59 |
+
]
|
60 |
+
_import_structure["modeling_data2vec_vision"] = [
|
61 |
+
"DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST",
|
62 |
+
"Data2VecVisionForImageClassification",
|
63 |
+
"Data2VecVisionForMaskedImageModeling",
|
64 |
+
"Data2VecVisionForSemanticSegmentation",
|
65 |
+
"Data2VecVisionModel",
|
66 |
+
"Data2VecVisionPreTrainedModel",
|
67 |
+
]
|
68 |
+
|
69 |
+
if is_tf_available():
|
70 |
+
_import_structure["modeling_tf_data2vec_vision"] = [
|
71 |
+
"TFData2VecVisionForImageClassification",
|
72 |
+
"TFData2VecVisionForSemanticSegmentation",
|
73 |
+
"TFData2VecVisionModel",
|
74 |
+
"TFData2VecVisionPreTrainedModel",
|
75 |
+
]
|
76 |
+
|
77 |
+
if TYPE_CHECKING:
|
78 |
+
from .configuration_data2vec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, Data2VecAudioConfig
|
79 |
+
from .configuration_data2vec_text import (
|
80 |
+
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
81 |
+
Data2VecTextConfig,
|
82 |
+
Data2VecTextOnnxConfig,
|
83 |
+
)
|
84 |
+
from .configuration_data2vec_vision import (
|
85 |
+
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
86 |
+
Data2VecVisionConfig,
|
87 |
+
Data2VecVisionOnnxConfig,
|
88 |
+
)
|
89 |
+
|
90 |
+
try:
|
91 |
+
if not is_torch_available():
|
92 |
+
raise OptionalDependencyNotAvailable()
|
93 |
+
except OptionalDependencyNotAvailable:
|
94 |
+
pass
|
95 |
+
else:
|
96 |
+
from .modeling_data2vec_audio import (
|
97 |
+
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
|
98 |
+
Data2VecAudioForAudioFrameClassification,
|
99 |
+
Data2VecAudioForCTC,
|
100 |
+
Data2VecAudioForSequenceClassification,
|
101 |
+
Data2VecAudioForXVector,
|
102 |
+
Data2VecAudioModel,
|
103 |
+
Data2VecAudioPreTrainedModel,
|
104 |
+
)
|
105 |
+
from .modeling_data2vec_text import (
|
106 |
+
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
107 |
+
Data2VecTextForCausalLM,
|
108 |
+
Data2VecTextForMaskedLM,
|
109 |
+
Data2VecTextForMultipleChoice,
|
110 |
+
Data2VecTextForQuestionAnswering,
|
111 |
+
Data2VecTextForSequenceClassification,
|
112 |
+
Data2VecTextForTokenClassification,
|
113 |
+
Data2VecTextModel,
|
114 |
+
Data2VecTextPreTrainedModel,
|
115 |
+
)
|
116 |
+
from .modeling_data2vec_vision import (
|
117 |
+
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
|
118 |
+
Data2VecVisionForImageClassification,
|
119 |
+
Data2VecVisionForMaskedImageModeling,
|
120 |
+
Data2VecVisionForSemanticSegmentation,
|
121 |
+
Data2VecVisionModel,
|
122 |
+
Data2VecVisionPreTrainedModel,
|
123 |
+
)
|
124 |
+
if is_tf_available():
|
125 |
+
from .modeling_tf_data2vec_vision import (
|
126 |
+
TFData2VecVisionForImageClassification,
|
127 |
+
TFData2VecVisionForSemanticSegmentation,
|
128 |
+
TFData2VecVisionModel,
|
129 |
+
TFData2VecVisionPreTrainedModel,
|
130 |
+
)
|
131 |
+
|
132 |
+
else:
|
133 |
+
import sys
|
134 |
+
|
135 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.48 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_audio.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_text.cpython-310.pyc
ADDED
Binary file (6.72 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_vision.cpython-310.pyc
ADDED
Binary file (8.12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (7.48 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (5.14 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (9.42 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_audio.cpython-310.pyc
ADDED
Binary file (41 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_text.cpython-310.pyc
ADDED
Binary file (45.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_vision.cpython-310.pyc
ADDED
Binary file (38.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_tf_data2vec_vision.cpython-310.pyc
ADDED
Binary file (52.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_audio.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Data2VecText configuration"""
|
16 |
+
|
17 |
+
import math
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class Data2VecAudioConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`Data2VecAudioModel`]. It is used to instantiate
|
29 |
+
an Data2VecAudio model according to the specified arguments, defining the model architecture. Instantiating a
|
30 |
+
configuration with the defaults will yield a similar configuration to that of the Data2VecAudio
|
31 |
+
[facebook/data2vec-audio-base-960h](https://huggingface.co/facebook/data2vec-audio-base-960h) architecture.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 32):
|
39 |
+
Vocabulary size of the Data2VecAudio model. Defines the number of different tokens that can be represented
|
40 |
+
by the `inputs_ids` passed when calling [`Data2VecAudioModel`] or [`TFData2VecAudioModel`]. Vocabulary size
|
41 |
+
of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the
|
42 |
+
forward method of [`Data2VecAudioModel`].
|
43 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
44 |
+
Dimensionality of the encoder layers and the pooler layer.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
50 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
51 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
52 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
53 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
54 |
+
hidden_dropout (`float`, *optional*, defaults to 0.1):
|
55 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
56 |
+
activation_dropout (`float`, *optional*, defaults to 0.1):
|
57 |
+
The dropout ratio for activations inside the fully connected layer.
|
58 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout ratio for the attention probabilities.
|
60 |
+
final_dropout (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for the final projection layer of [`Data2VecAudioForCTC`].
|
62 |
+
layerdrop (`float`, *optional*, defaults to 0.1):
|
63 |
+
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
|
64 |
+
details.
|
65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
68 |
+
The epsilon used by the layer normalization layers.
|
69 |
+
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
|
70 |
+
The dropout probability for output of the feature encoder.
|
71 |
+
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
|
72 |
+
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
|
73 |
+
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
|
74 |
+
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
|
75 |
+
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
|
76 |
+
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
|
77 |
+
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
|
78 |
+
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
|
79 |
+
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
|
80 |
+
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
|
81 |
+
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
|
82 |
+
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
|
83 |
+
*conv_dim*.
|
84 |
+
conv_bias (`bool`, *optional*, defaults to `False`):
|
85 |
+
Whether the 1D convolutional layers have a bias.
|
86 |
+
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
|
87 |
+
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
|
88 |
+
embeddings layer.
|
89 |
+
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
|
90 |
+
Number of groups of 1D convolutional positional embeddings layer.
|
91 |
+
mask_time_prob (`float`, *optional*, defaults to 0.05):
|
92 |
+
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
|
93 |
+
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
|
94 |
+
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
|
95 |
+
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
|
96 |
+
mask_time_length (`int`, *optional*, defaults to 10):
|
97 |
+
Length of vector span along the time axis.
|
98 |
+
mask_time_min_masks (`int`, *optional*, defaults to 2),:
|
99 |
+
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
|
100 |
+
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
|
101 |
+
mask_time_min_masks''
|
102 |
+
mask_feature_prob (`float`, *optional*, defaults to 0.0):
|
103 |
+
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
|
104 |
+
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
|
105 |
+
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
|
106 |
+
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
|
107 |
+
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
|
108 |
+
True`.
|
109 |
+
mask_feature_length (`int`, *optional*, defaults to 10):
|
110 |
+
Length of vector span along the feature axis.
|
111 |
+
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
|
112 |
+
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
|
113 |
+
step, irrespectively of `mask_feature_prob`. Only relevant if
|
114 |
+
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
|
115 |
+
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
|
116 |
+
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
|
117 |
+
instance of [`Data2VecAudioForCTC`].
|
118 |
+
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
|
119 |
+
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
|
120 |
+
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
|
121 |
+
of [`Data2VecAudioForCTC`].
|
122 |
+
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
|
123 |
+
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
|
124 |
+
instance of [`Data2VecAudioForSequenceClassification`].
|
125 |
+
classifier_proj_size (`int`, *optional*, defaults to 256):
|
126 |
+
Dimensionality of the projection before token mean-pooling for classification.
|
127 |
+
tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
|
128 |
+
A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
|
129 |
+
module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
|
130 |
+
tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
|
131 |
+
A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
|
132 |
+
*XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
|
133 |
+
tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
|
134 |
+
A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
|
135 |
+
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
|
136 |
+
xvector_output_dim (`int`, *optional*, defaults to 512):
|
137 |
+
Dimensionality of the *XVector* embedding vectors.
|
138 |
+
add_adapter (`bool`, *optional*, defaults to `False`):
|
139 |
+
Whether a convolutional network should be stacked on top of the Data2VecAudio Encoder. Can be very useful
|
140 |
+
for warm-starting Data2VecAudio for SpeechEncoderDecoder models.
|
141 |
+
adapter_kernel_size (`int`, *optional*, defaults to 3):
|
142 |
+
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
|
143 |
+
adapter_stride (`int`, *optional*, defaults to 2):
|
144 |
+
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
|
145 |
+
num_adapter_layers (`int`, *optional*, defaults to 3):
|
146 |
+
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
|
147 |
+
True`.
|
148 |
+
output_hidden_size (`int`, *optional*):
|
149 |
+
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
|
150 |
+
if `add_adapter is True`.
|
151 |
+
|
152 |
+
Example:
|
153 |
+
|
154 |
+
```python
|
155 |
+
>>> from transformers import Data2VecAudioConfig, Data2VecAudioModel
|
156 |
+
|
157 |
+
>>> # Initializing a Data2VecAudio facebook/data2vec-audio-base-960h style configuration
|
158 |
+
>>> configuration = Data2VecAudioConfig()
|
159 |
+
|
160 |
+
>>> # Initializing a model (with random weights) from the facebook/data2vec-audio-base-960h style configuration
|
161 |
+
>>> model = Data2VecAudioModel(configuration)
|
162 |
+
|
163 |
+
>>> # Accessing the model configuration
|
164 |
+
>>> configuration = model.config
|
165 |
+
```"""
|
166 |
+
|
167 |
+
model_type = "data2vec-audio"
|
168 |
+
|
169 |
+
def __init__(
|
170 |
+
self,
|
171 |
+
vocab_size=32,
|
172 |
+
hidden_size=768,
|
173 |
+
num_hidden_layers=12,
|
174 |
+
num_attention_heads=12,
|
175 |
+
intermediate_size=3072,
|
176 |
+
hidden_act="gelu",
|
177 |
+
hidden_dropout=0.1,
|
178 |
+
activation_dropout=0.1,
|
179 |
+
attention_dropout=0.1,
|
180 |
+
feat_proj_dropout=0.0,
|
181 |
+
final_dropout=0.1,
|
182 |
+
layerdrop=0.1,
|
183 |
+
initializer_range=0.02,
|
184 |
+
layer_norm_eps=1e-5,
|
185 |
+
feat_extract_activation="gelu",
|
186 |
+
conv_dim=(512, 512, 512, 512, 512, 512, 512),
|
187 |
+
conv_stride=(5, 2, 2, 2, 2, 2, 2),
|
188 |
+
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
|
189 |
+
conv_bias=False,
|
190 |
+
num_conv_pos_embedding_groups=16,
|
191 |
+
conv_pos_kernel_size=19,
|
192 |
+
num_conv_pos_embeddings=5,
|
193 |
+
mask_time_prob=0.05,
|
194 |
+
mask_time_length=10,
|
195 |
+
mask_time_min_masks=2,
|
196 |
+
mask_feature_prob=0.0,
|
197 |
+
mask_feature_length=10,
|
198 |
+
mask_feature_min_masks=0,
|
199 |
+
ctc_loss_reduction="sum",
|
200 |
+
ctc_zero_infinity=False,
|
201 |
+
use_weighted_layer_sum=False,
|
202 |
+
classifier_proj_size=256,
|
203 |
+
tdnn_dim=(512, 512, 512, 512, 1500),
|
204 |
+
tdnn_kernel=(5, 3, 3, 1, 1),
|
205 |
+
tdnn_dilation=(1, 2, 3, 1, 1),
|
206 |
+
xvector_output_dim=512,
|
207 |
+
pad_token_id=0,
|
208 |
+
bos_token_id=1,
|
209 |
+
eos_token_id=2,
|
210 |
+
add_adapter=False,
|
211 |
+
adapter_kernel_size=3,
|
212 |
+
adapter_stride=2,
|
213 |
+
num_adapter_layers=3,
|
214 |
+
output_hidden_size=None,
|
215 |
+
**kwargs,
|
216 |
+
):
|
217 |
+
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
|
218 |
+
self.hidden_size = hidden_size
|
219 |
+
self.feat_extract_activation = feat_extract_activation
|
220 |
+
self.conv_dim = list(conv_dim)
|
221 |
+
self.conv_stride = list(conv_stride)
|
222 |
+
self.conv_kernel = list(conv_kernel)
|
223 |
+
self.conv_bias = conv_bias
|
224 |
+
self.num_conv_pos_embeddings = num_conv_pos_embeddings
|
225 |
+
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
|
226 |
+
self.conv_pos_kernel_size = conv_pos_kernel_size
|
227 |
+
self.num_feat_extract_layers = len(self.conv_dim)
|
228 |
+
self.num_hidden_layers = num_hidden_layers
|
229 |
+
self.intermediate_size = intermediate_size
|
230 |
+
self.hidden_act = hidden_act
|
231 |
+
self.num_attention_heads = num_attention_heads
|
232 |
+
self.hidden_dropout = hidden_dropout
|
233 |
+
self.attention_dropout = attention_dropout
|
234 |
+
self.activation_dropout = activation_dropout
|
235 |
+
self.feat_proj_dropout = feat_proj_dropout
|
236 |
+
self.final_dropout = final_dropout
|
237 |
+
self.layerdrop = layerdrop
|
238 |
+
self.layer_norm_eps = layer_norm_eps
|
239 |
+
self.initializer_range = initializer_range
|
240 |
+
self.vocab_size = vocab_size
|
241 |
+
self.use_weighted_layer_sum = use_weighted_layer_sum
|
242 |
+
|
243 |
+
if (
|
244 |
+
(len(self.conv_stride) != self.num_feat_extract_layers)
|
245 |
+
or (len(self.conv_kernel) != self.num_feat_extract_layers)
|
246 |
+
or (len(self.conv_dim) != self.num_feat_extract_layers)
|
247 |
+
):
|
248 |
+
raise ValueError(
|
249 |
+
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
|
250 |
+
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
|
251 |
+
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
|
252 |
+
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
|
253 |
+
)
|
254 |
+
|
255 |
+
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
|
256 |
+
self.mask_time_prob = mask_time_prob
|
257 |
+
self.mask_time_length = mask_time_length
|
258 |
+
self.mask_time_min_masks = mask_time_min_masks
|
259 |
+
self.mask_feature_prob = mask_feature_prob
|
260 |
+
self.mask_feature_length = mask_feature_length
|
261 |
+
self.mask_feature_min_masks = mask_feature_min_masks
|
262 |
+
|
263 |
+
# ctc loss
|
264 |
+
self.ctc_loss_reduction = ctc_loss_reduction
|
265 |
+
self.ctc_zero_infinity = ctc_zero_infinity
|
266 |
+
|
267 |
+
# adapter
|
268 |
+
self.add_adapter = add_adapter
|
269 |
+
self.adapter_kernel_size = adapter_kernel_size
|
270 |
+
self.adapter_stride = adapter_stride
|
271 |
+
self.num_adapter_layers = num_adapter_layers
|
272 |
+
self.output_hidden_size = output_hidden_size or hidden_size
|
273 |
+
|
274 |
+
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
|
275 |
+
self.classifier_proj_size = classifier_proj_size
|
276 |
+
|
277 |
+
# XVector-specific parameters. Feel free to ignore for other classes.
|
278 |
+
self.tdnn_dim = list(tdnn_dim)
|
279 |
+
self.tdnn_kernel = list(tdnn_kernel)
|
280 |
+
self.tdnn_dilation = list(tdnn_dilation)
|
281 |
+
self.xvector_output_dim = xvector_output_dim
|
282 |
+
|
283 |
+
@property
|
284 |
+
def inputs_to_logits_ratio(self):
|
285 |
+
return math.prod(self.conv_stride)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_text.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Data2VecText configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Mapping
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...onnx import OnnxConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
class Data2VecTextConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`Data2VecTextModel`] and [`Data2VecTextModel`]. It
|
33 |
+
is used to instantiate a Data2VecText model according to the specified arguments, defining the model architecture.
|
34 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Data2VecText
|
35 |
+
[facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
43 |
+
Vocabulary size of the DATA2VEC model. Defines the number of different tokens that can be represented by
|
44 |
+
the `inputs_ids` passed when calling [`Data2VecModel`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
+
Dimensionality of the encoder layers and the pooler layer.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
52 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
53 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
54 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
55 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
56 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
57 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
58 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout ratio for the attention probabilities.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
61 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
62 |
+
just in case (e.g., 512 or 1024 or 2048).
|
63 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
64 |
+
The vocabulary size of the `token_type_ids` passed when calling [`Data2VecModel`].
|
65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
68 |
+
The epsilon used by the layer normalization layers.
|
69 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
70 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
71 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
72 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
73 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
74 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
75 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
76 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
77 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
79 |
+
relevant if `config.is_decoder=True`.
|
80 |
+
classifier_dropout (`float`, *optional*):
|
81 |
+
The dropout ratio for the classification head.
|
82 |
+
|
83 |
+
Examples:
|
84 |
+
|
85 |
+
```python
|
86 |
+
>>> from transformers import Data2VecTextConfig, Data2VecTextModel
|
87 |
+
|
88 |
+
>>> # Initializing a Data2VecText facebook/data2vec-text-base style configuration
|
89 |
+
>>> configuration = Data2VecTextConfig()
|
90 |
+
|
91 |
+
>>> # Initializing a model (with random weights) from the facebook/data2vec-text-base style configuration
|
92 |
+
>>> model = Data2VecTextModel(configuration)
|
93 |
+
|
94 |
+
>>> # Accessing the model configuration
|
95 |
+
>>> configuration = model.config
|
96 |
+
```"""
|
97 |
+
|
98 |
+
model_type = "data2vec-text"
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
vocab_size=30522,
|
103 |
+
hidden_size=768,
|
104 |
+
num_hidden_layers=12,
|
105 |
+
num_attention_heads=12,
|
106 |
+
intermediate_size=3072,
|
107 |
+
hidden_act="gelu",
|
108 |
+
hidden_dropout_prob=0.1,
|
109 |
+
attention_probs_dropout_prob=0.1,
|
110 |
+
max_position_embeddings=512,
|
111 |
+
type_vocab_size=2,
|
112 |
+
initializer_range=0.02,
|
113 |
+
layer_norm_eps=1e-12,
|
114 |
+
pad_token_id=1,
|
115 |
+
bos_token_id=0,
|
116 |
+
eos_token_id=2,
|
117 |
+
position_embedding_type="absolute",
|
118 |
+
use_cache=True,
|
119 |
+
classifier_dropout=None,
|
120 |
+
**kwargs,
|
121 |
+
):
|
122 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
123 |
+
|
124 |
+
self.vocab_size = vocab_size
|
125 |
+
self.hidden_size = hidden_size
|
126 |
+
self.num_hidden_layers = num_hidden_layers
|
127 |
+
self.num_attention_heads = num_attention_heads
|
128 |
+
self.hidden_act = hidden_act
|
129 |
+
self.intermediate_size = intermediate_size
|
130 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
131 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
132 |
+
self.max_position_embeddings = max_position_embeddings
|
133 |
+
self.type_vocab_size = type_vocab_size
|
134 |
+
self.initializer_range = initializer_range
|
135 |
+
self.layer_norm_eps = layer_norm_eps
|
136 |
+
self.position_embedding_type = position_embedding_type
|
137 |
+
self.use_cache = use_cache
|
138 |
+
self.classifier_dropout = classifier_dropout
|
139 |
+
|
140 |
+
|
141 |
+
class Data2VecTextOnnxConfig(OnnxConfig):
|
142 |
+
@property
|
143 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
144 |
+
if self.task == "multiple-choice":
|
145 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
146 |
+
else:
|
147 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
148 |
+
return OrderedDict(
|
149 |
+
[
|
150 |
+
("input_ids", dynamic_axis),
|
151 |
+
("attention_mask", dynamic_axis),
|
152 |
+
]
|
153 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_vision.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Meta Platforms and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Data2VecVision model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Mapping
|
18 |
+
|
19 |
+
from packaging import version
|
20 |
+
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfig
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
from ..deprecated._archive_maps import DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
30 |
+
|
31 |
+
|
32 |
+
class Data2VecVisionConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`Data2VecVisionModel`]. It is used to instantiate
|
35 |
+
an Data2VecVision model according to the specified arguments, defining the model architecture. Instantiating a
|
36 |
+
configuration with the defaults will yield a similar configuration to that of the Data2VecVision
|
37 |
+
[facebook/data2vec-vision-base](https://huggingface.co/facebook/data2vec-vision-base) architecture.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
41 |
+
Dimensionality of the encoder layers and the pooler layer.
|
42 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
43 |
+
Number of hidden layers in the Transformer encoder.
|
44 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
45 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
47 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
48 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
49 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
50 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
51 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
52 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
53 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
54 |
+
The dropout ratio for the attention probabilities.
|
55 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
56 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
57 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
58 |
+
The epsilon used by the layer normalization layers.
|
59 |
+
image_size (`int`, *optional*, defaults to 224):
|
60 |
+
The size (resolution) of each image.
|
61 |
+
patch_size (`int`, *optional*, defaults to 16):
|
62 |
+
The size (resolution) of each patch.
|
63 |
+
num_channels (`int`, *optional*, defaults to 3):
|
64 |
+
The number of input channels.
|
65 |
+
use_mask_token (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to use a mask token for masked image modeling.
|
67 |
+
use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether to use BERT-style absolute position embeddings.
|
69 |
+
use_relative_position_bias (`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether to use T5-style relative position embeddings in the self-attention layers.
|
71 |
+
use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
|
72 |
+
Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
|
73 |
+
layer_scale_init_value (`float`, *optional*, defaults to 0.1):
|
74 |
+
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
|
75 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
76 |
+
Stochastic depth rate per sample (when applied in the main path of residual layers).
|
77 |
+
use_mean_pooling (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
|
79 |
+
CLS token, before applying the classification head.
|
80 |
+
out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`):
|
81 |
+
Indices of the feature maps to use for semantic segmentation.
|
82 |
+
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
|
83 |
+
Pooling scales used in Pooling Pyramid Module applied on the last feature map.
|
84 |
+
use_auxiliary_head (`bool`, *optional*, defaults to `True`):
|
85 |
+
Whether to use an auxiliary head during training.
|
86 |
+
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
|
87 |
+
Weight of the cross-entropy loss of the auxiliary head.
|
88 |
+
auxiliary_channels (`int`, *optional*, defaults to 256):
|
89 |
+
Number of channels to use in the auxiliary head.
|
90 |
+
auxiliary_num_convs (`int`, *optional*, defaults to 1):
|
91 |
+
Number of convolutional layers to use in the auxiliary head.
|
92 |
+
auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
|
93 |
+
Whether to concatenate the output of the auxiliary head with the input before the classification layer.
|
94 |
+
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
|
95 |
+
The index that is ignored by the loss function of the semantic segmentation model.
|
96 |
+
|
97 |
+
Example:
|
98 |
+
|
99 |
+
```python
|
100 |
+
>>> from transformers import Data2VecVisionConfig, Data2VecVisionModel
|
101 |
+
|
102 |
+
>>> # Initializing a Data2VecVision data2vec_vision-base-patch16-224-in22k style configuration
|
103 |
+
>>> configuration = Data2VecVisionConfig()
|
104 |
+
|
105 |
+
>>> # Initializing a model (with random weights) from the data2vec_vision-base-patch16-224-in22k style configuration
|
106 |
+
>>> model = Data2VecVisionModel(configuration)
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = "data2vec-vision"
|
113 |
+
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
hidden_size=768,
|
117 |
+
num_hidden_layers=12,
|
118 |
+
num_attention_heads=12,
|
119 |
+
intermediate_size=3072,
|
120 |
+
hidden_act="gelu",
|
121 |
+
hidden_dropout_prob=0.0,
|
122 |
+
attention_probs_dropout_prob=0.0,
|
123 |
+
initializer_range=0.02,
|
124 |
+
layer_norm_eps=1e-12,
|
125 |
+
image_size=224,
|
126 |
+
patch_size=16,
|
127 |
+
num_channels=3,
|
128 |
+
use_mask_token=False,
|
129 |
+
use_absolute_position_embeddings=False,
|
130 |
+
use_relative_position_bias=False,
|
131 |
+
use_shared_relative_position_bias=False,
|
132 |
+
layer_scale_init_value=0.1,
|
133 |
+
drop_path_rate=0.1,
|
134 |
+
use_mean_pooling=True,
|
135 |
+
out_indices=[3, 5, 7, 11],
|
136 |
+
pool_scales=[1, 2, 3, 6],
|
137 |
+
use_auxiliary_head=True,
|
138 |
+
auxiliary_loss_weight=0.4,
|
139 |
+
auxiliary_channels=256,
|
140 |
+
auxiliary_num_convs=1,
|
141 |
+
auxiliary_concat_input=False,
|
142 |
+
semantic_loss_ignore_index=255,
|
143 |
+
**kwargs,
|
144 |
+
):
|
145 |
+
super().__init__(**kwargs)
|
146 |
+
|
147 |
+
self.hidden_size = hidden_size
|
148 |
+
self.num_hidden_layers = num_hidden_layers
|
149 |
+
self.num_attention_heads = num_attention_heads
|
150 |
+
self.intermediate_size = intermediate_size
|
151 |
+
self.hidden_act = hidden_act
|
152 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
153 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
154 |
+
self.initializer_range = initializer_range
|
155 |
+
self.layer_norm_eps = layer_norm_eps
|
156 |
+
|
157 |
+
self.image_size = image_size
|
158 |
+
self.patch_size = patch_size
|
159 |
+
self.num_channels = num_channels
|
160 |
+
self.use_mask_token = use_mask_token
|
161 |
+
self.use_absolute_position_embeddings = use_absolute_position_embeddings
|
162 |
+
self.use_relative_position_bias = use_relative_position_bias
|
163 |
+
self.use_shared_relative_position_bias = use_shared_relative_position_bias
|
164 |
+
self.layer_scale_init_value = layer_scale_init_value
|
165 |
+
self.drop_path_rate = drop_path_rate
|
166 |
+
self.use_mean_pooling = use_mean_pooling
|
167 |
+
# decode head attributes (semantic segmentation)
|
168 |
+
self.out_indices = out_indices
|
169 |
+
self.pool_scales = pool_scales
|
170 |
+
# auxiliary head attributes (semantic segmentation)
|
171 |
+
self.use_auxiliary_head = use_auxiliary_head
|
172 |
+
self.auxiliary_loss_weight = auxiliary_loss_weight
|
173 |
+
self.auxiliary_channels = auxiliary_channels
|
174 |
+
self.auxiliary_num_convs = auxiliary_num_convs
|
175 |
+
self.auxiliary_concat_input = auxiliary_concat_input
|
176 |
+
self.semantic_loss_ignore_index = semantic_loss_ignore_index
|
177 |
+
|
178 |
+
|
179 |
+
# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig
|
180 |
+
class Data2VecVisionOnnxConfig(OnnxConfig):
|
181 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
182 |
+
|
183 |
+
@property
|
184 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
185 |
+
return OrderedDict(
|
186 |
+
[
|
187 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
188 |
+
]
|
189 |
+
)
|
190 |
+
|
191 |
+
@property
|
192 |
+
def atol_for_validation(self) -> float:
|
193 |
+
return 1e-4
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Wav2Vec2 checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import os
|
20 |
+
from functools import reduce
|
21 |
+
|
22 |
+
import fairseq
|
23 |
+
import torch
|
24 |
+
from datasets import load_dataset
|
25 |
+
|
26 |
+
from transformers import Wav2Vec2Processor, logging
|
27 |
+
from transformers.models.data2vec.configuration_data2vec_audio import Data2VecAudioConfig
|
28 |
+
|
29 |
+
# Copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_audio.py
|
30 |
+
from transformers.models.data2vec.data2vec_audio import Data2VecAudioModel as Dummy # noqa: F401
|
31 |
+
from transformers.models.data2vec.modeling_data2vec_audio import Data2VecAudioForCTC, Data2VecAudioModel
|
32 |
+
|
33 |
+
|
34 |
+
logging.set_verbosity_info()
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
MAPPING = {
|
38 |
+
"post_extract_proj": "feature_projection.projection",
|
39 |
+
"models.0.layer_norm": "feature_projection.layer_norm",
|
40 |
+
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
|
41 |
+
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
|
42 |
+
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
|
43 |
+
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
|
44 |
+
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
|
45 |
+
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
|
46 |
+
"fc2": "encoder.layers.*.feed_forward.output_dense",
|
47 |
+
"final_layer_norm": "encoder.layers.*.final_layer_norm",
|
48 |
+
"encoder.layer_norm": "encoder.layer_norm",
|
49 |
+
"w2v_model.layer_norm": "feature_projection.layer_norm",
|
50 |
+
"w2v_encoder.proj": "lm_head",
|
51 |
+
"mask_emb": "masked_spec_embed",
|
52 |
+
}
|
53 |
+
TOP_LEVEL_KEYS = [
|
54 |
+
"lm_head",
|
55 |
+
]
|
56 |
+
|
57 |
+
|
58 |
+
def set_recursively(hf_pointer, key, value, full_name, weight_type):
|
59 |
+
for attribute in key.split("."):
|
60 |
+
hf_pointer = getattr(hf_pointer, attribute)
|
61 |
+
|
62 |
+
if weight_type is not None:
|
63 |
+
hf_shape = getattr(hf_pointer, weight_type).shape
|
64 |
+
else:
|
65 |
+
hf_shape = hf_pointer.shape
|
66 |
+
|
67 |
+
if hf_shape != value.shape:
|
68 |
+
raise ValueError(
|
69 |
+
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
|
70 |
+
f" {value.shape} for {full_name}"
|
71 |
+
)
|
72 |
+
|
73 |
+
if weight_type == "weight":
|
74 |
+
hf_pointer.weight.data = value
|
75 |
+
elif weight_type == "weight_g":
|
76 |
+
hf_pointer.weight_g.data = value
|
77 |
+
elif weight_type == "weight_v":
|
78 |
+
hf_pointer.weight_v.data = value
|
79 |
+
elif weight_type == "bias":
|
80 |
+
hf_pointer.bias.data = value
|
81 |
+
else:
|
82 |
+
hf_pointer.data = value
|
83 |
+
|
84 |
+
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.")
|
85 |
+
|
86 |
+
|
87 |
+
def recursively_load_weights(fairseq_model, hf_model, is_headless):
|
88 |
+
unused_weights = []
|
89 |
+
fairseq_dict = fairseq_model.state_dict()
|
90 |
+
|
91 |
+
if not is_headless:
|
92 |
+
feature_extractor = hf_model.data2vec_audio.feature_extractor
|
93 |
+
pos_conv_embedding = hf_model.data2vec_audio.encoder.pos_conv_embed
|
94 |
+
|
95 |
+
else:
|
96 |
+
feature_extractor = hf_model.feature_extractor
|
97 |
+
pos_conv_embedding = hf_model.encoder.pos_conv_embed
|
98 |
+
|
99 |
+
for name, value in fairseq_dict.items():
|
100 |
+
is_used = False
|
101 |
+
if "conv_layers" in name:
|
102 |
+
load_conv_layer(
|
103 |
+
name,
|
104 |
+
value,
|
105 |
+
feature_extractor,
|
106 |
+
unused_weights,
|
107 |
+
)
|
108 |
+
is_used = True
|
109 |
+
elif "pos_conv" in name:
|
110 |
+
load_pos_conv_layer(
|
111 |
+
name,
|
112 |
+
value,
|
113 |
+
pos_conv_embedding,
|
114 |
+
unused_weights,
|
115 |
+
)
|
116 |
+
is_used = True
|
117 |
+
else:
|
118 |
+
for key, mapped_key in MAPPING.items():
|
119 |
+
if not is_headless:
|
120 |
+
mapped_key = "data2vec_audio." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
|
121 |
+
if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
|
122 |
+
is_used = True
|
123 |
+
if "*" in mapped_key:
|
124 |
+
layer_index = name.split(key)[0].split(".")[-2]
|
125 |
+
mapped_key = mapped_key.replace("*", layer_index)
|
126 |
+
if "weight_g" in name:
|
127 |
+
weight_type = "weight_g"
|
128 |
+
elif "weight_v" in name:
|
129 |
+
weight_type = "weight_v"
|
130 |
+
elif "bias" in name:
|
131 |
+
weight_type = "bias"
|
132 |
+
elif "weight" in name:
|
133 |
+
# TODO: don't match quantizer.weight_proj
|
134 |
+
weight_type = "weight"
|
135 |
+
else:
|
136 |
+
weight_type = None
|
137 |
+
set_recursively(hf_model, mapped_key, value, name, weight_type)
|
138 |
+
continue
|
139 |
+
if not is_used:
|
140 |
+
unused_weights.append(name)
|
141 |
+
|
142 |
+
logger.warning(f"Unused weights: {unused_weights}")
|
143 |
+
|
144 |
+
|
145 |
+
def access_by_string(module, path):
|
146 |
+
names = path.split(".")
|
147 |
+
return reduce(getattr, names, module)
|
148 |
+
|
149 |
+
|
150 |
+
def set_weights(full_name, module, fsq_value, hf_weight_path):
|
151 |
+
hf_weight = access_by_string(module, hf_weight_path)
|
152 |
+
hf_value = hf_weight.data
|
153 |
+
|
154 |
+
if fsq_value.shape != hf_value.shape:
|
155 |
+
raise ValueError(f"{full_name} has size {fsq_value.shape}, but {hf_value.shape} was found.")
|
156 |
+
hf_weight.data = fsq_value
|
157 |
+
logger.info(f"{full_name} was correctly initialized from {hf_weight_path}.")
|
158 |
+
|
159 |
+
|
160 |
+
def load_conv_layer(full_name, value, feature_extractor, unused_weights):
|
161 |
+
name = full_name.split("conv_layers.")[-1]
|
162 |
+
items = name.split(".")
|
163 |
+
layer_id = int(items[0])
|
164 |
+
type_id = int(items[1])
|
165 |
+
|
166 |
+
weight_type = name.split(".")[-1]
|
167 |
+
if type_id == 0:
|
168 |
+
layer_type = "conv"
|
169 |
+
elif type_id == 2:
|
170 |
+
layer_type = "layer_norm"
|
171 |
+
else:
|
172 |
+
unused_weights.append(full_name)
|
173 |
+
return
|
174 |
+
|
175 |
+
set_weights(full_name, feature_extractor, value, f"conv_layers.{layer_id}.{layer_type}.{weight_type}")
|
176 |
+
|
177 |
+
|
178 |
+
def load_pos_conv_layer(full_name, value, pos_conv_embeddings, unused_weights):
|
179 |
+
name = full_name.split("pos_conv.")[-1]
|
180 |
+
items = name.split(".")
|
181 |
+
layer_id = int(items[0])
|
182 |
+
type_id = int(items[1])
|
183 |
+
|
184 |
+
weight_type = name.split(".")[-1]
|
185 |
+
if type_id != 0:
|
186 |
+
unused_weights.append(full_name)
|
187 |
+
return
|
188 |
+
else:
|
189 |
+
layer_type = "conv"
|
190 |
+
|
191 |
+
set_weights(full_name, pos_conv_embeddings, value, f"layers.{layer_id}.{layer_type}.{weight_type}")
|
192 |
+
|
193 |
+
|
194 |
+
@torch.no_grad()
|
195 |
+
def convert_wav2vec2_checkpoint(
|
196 |
+
checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True
|
197 |
+
):
|
198 |
+
"""
|
199 |
+
Copy/paste/tweak model's weights to transformers design.
|
200 |
+
"""
|
201 |
+
if config_path is not None:
|
202 |
+
config = Data2VecAudioConfig.from_pretrained(config_path)
|
203 |
+
else:
|
204 |
+
config = Data2VecAudioConfig()
|
205 |
+
|
206 |
+
if not is_finetuned:
|
207 |
+
# Modify final_proj layer name
|
208 |
+
hf_wav2vec = Data2VecAudioModel(config)
|
209 |
+
data2vec_checkpoint_dir = os.path.dirname(checkpoint_path)
|
210 |
+
|
211 |
+
state_dict = torch.load(checkpoint_path)
|
212 |
+
state_dict["model"]["final_proj.weight"] = state_dict["model"].pop("final_proj.0.weight")
|
213 |
+
state_dict["model"]["final_proj.bias"] = state_dict["model"].pop("final_proj.0.bias")
|
214 |
+
converted_ckpt = os.path.join(data2vec_checkpoint_dir, "converted.pt")
|
215 |
+
torch.save(state_dict, converted_ckpt)
|
216 |
+
else:
|
217 |
+
hf_wav2vec = Data2VecAudioForCTC(config)
|
218 |
+
converted_ckpt = checkpoint_path
|
219 |
+
|
220 |
+
def load_data2vec(path):
|
221 |
+
model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([path])
|
222 |
+
return model[0].eval()
|
223 |
+
|
224 |
+
model = load_data2vec(converted_ckpt)
|
225 |
+
|
226 |
+
recursively_load_weights(model, hf_wav2vec, not is_finetuned)
|
227 |
+
|
228 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-lv60")
|
229 |
+
|
230 |
+
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
231 |
+
input_audio = [x["array"] for x in ds[:4]["audio"]]
|
232 |
+
|
233 |
+
inputs = processor(input_audio, return_tensors="pt", padding=True)
|
234 |
+
|
235 |
+
input_values = inputs.input_values
|
236 |
+
attention_mask = inputs.attention_mask
|
237 |
+
# input_values = inputs.input_values[:, :-1]
|
238 |
+
# attention_mask = inputs.attention_mask[:, :-1]
|
239 |
+
|
240 |
+
hf_wav2vec.eval()
|
241 |
+
model.eval()
|
242 |
+
if is_finetuned:
|
243 |
+
their_output = model(source=input_values, padding_mask=(1 - attention_mask), mask=False, features_only=True)[
|
244 |
+
"encoder_out"
|
245 |
+
].transpose(0, 1)
|
246 |
+
our_output = hf_wav2vec(input_values, attention_mask=attention_mask)["logits"]
|
247 |
+
|
248 |
+
pred_ids = torch.argmax(our_output, dim=-1)
|
249 |
+
output_string = processor.batch_decode(pred_ids)
|
250 |
+
|
251 |
+
print(f"Expected Output: {ds[:4]['text']}, Pred: {output_string}")
|
252 |
+
else:
|
253 |
+
their_output = model(source=input_values, padding_mask=(1 - attention_mask), mask=False, features_only=True)[
|
254 |
+
"layer_results"
|
255 |
+
][-1][0].transpose(0, 1)
|
256 |
+
our_output = hf_wav2vec(input_values, attention_mask=attention_mask)["last_hidden_state"]
|
257 |
+
|
258 |
+
print(our_output.shape, their_output.shape)
|
259 |
+
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
|
260 |
+
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7
|
261 |
+
success = torch.allclose(our_output, their_output, atol=1e-3)
|
262 |
+
print("Do both models output the same tensors?", "🔥" if success else "💩")
|
263 |
+
if not success:
|
264 |
+
raise Exception("Something went wRoNg")
|
265 |
+
|
266 |
+
hf_wav2vec.save_pretrained(pytorch_dump_folder_path)
|
267 |
+
|
268 |
+
if is_finetuned:
|
269 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
270 |
+
else:
|
271 |
+
processor.feature_extractor.save_pretrained(pytorch_dump_folder_path)
|
272 |
+
|
273 |
+
|
274 |
+
if __name__ == "__main__":
|
275 |
+
parser = argparse.ArgumentParser()
|
276 |
+
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
277 |
+
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
|
278 |
+
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
|
279 |
+
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
|
280 |
+
parser.add_argument(
|
281 |
+
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
|
282 |
+
)
|
283 |
+
args = parser.parse_args()
|
284 |
+
convert_wav2vec2_checkpoint(
|
285 |
+
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
|
286 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert data2vec checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import os
|
20 |
+
import pathlib
|
21 |
+
|
22 |
+
import fairseq
|
23 |
+
import torch
|
24 |
+
from fairseq.modules import TransformerSentenceEncoderLayer
|
25 |
+
from packaging import version
|
26 |
+
|
27 |
+
from transformers import (
|
28 |
+
Data2VecTextConfig,
|
29 |
+
Data2VecTextForMaskedLM,
|
30 |
+
Data2VecTextForSequenceClassification,
|
31 |
+
Data2VecTextModel,
|
32 |
+
)
|
33 |
+
from transformers.models.bert.modeling_bert import (
|
34 |
+
BertIntermediate,
|
35 |
+
BertLayer,
|
36 |
+
BertOutput,
|
37 |
+
BertSelfAttention,
|
38 |
+
BertSelfOutput,
|
39 |
+
)
|
40 |
+
|
41 |
+
# IMPORTANT: In order for this script to run, please make sure to download the dictionary: `dict.txt` from wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
|
42 |
+
# File copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_text.py
|
43 |
+
from transformers.utils import logging
|
44 |
+
|
45 |
+
|
46 |
+
if version.parse(fairseq.__version__) < version.parse("0.9.0"):
|
47 |
+
raise Exception("requires fairseq >= 0.9.0")
|
48 |
+
|
49 |
+
|
50 |
+
logging.set_verbosity_info()
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
SAMPLE_TEXT = "Hello world! cécé herlolip"
|
54 |
+
|
55 |
+
|
56 |
+
def convert_data2vec_checkpoint_to_pytorch(
|
57 |
+
data2vec_checkpoint_path: str, pytorch_dump_folder_path: str, classification_head: bool
|
58 |
+
):
|
59 |
+
"""
|
60 |
+
Copy/paste/tweak data2vec's weights to our BERT structure.
|
61 |
+
"""
|
62 |
+
data2vec_checkpoint_dir, data2vec_checkpoint_file_name = os.path.split(data2vec_checkpoint_path)
|
63 |
+
data2vec = Data2VecTextModel.from_pretrained(
|
64 |
+
data2vec_checkpoint_dir, checkpoint_file=data2vec_checkpoint_file_name
|
65 |
+
)
|
66 |
+
data2vec.eval() # disable dropout
|
67 |
+
data2vec_model = data2vec.models[0]
|
68 |
+
data2vec_sent_encoder = data2vec_model.encoder.sentence_encoder
|
69 |
+
config = Data2VecTextConfig(
|
70 |
+
vocab_size=data2vec_sent_encoder.embed_tokens.num_embeddings,
|
71 |
+
hidden_size=data2vec_model.args.encoder_embed_dim,
|
72 |
+
num_hidden_layers=data2vec_model.args.encoder_layers,
|
73 |
+
num_attention_heads=data2vec_model.args.encoder_attention_heads,
|
74 |
+
intermediate_size=data2vec_model.args.encoder_ffn_embed_dim,
|
75 |
+
max_position_embeddings=514,
|
76 |
+
type_vocab_size=1,
|
77 |
+
layer_norm_eps=1e-5, # PyTorch default used in fairseq
|
78 |
+
)
|
79 |
+
if classification_head:
|
80 |
+
config.num_labels = data2vec.model.classification_heads["mnli"].out_proj.weight.shape[0]
|
81 |
+
print("Our BERT config:", config)
|
82 |
+
|
83 |
+
model = Data2VecTextForSequenceClassification(config) if classification_head else Data2VecTextForMaskedLM(config)
|
84 |
+
model.eval()
|
85 |
+
|
86 |
+
# Now let's copy all the weights.
|
87 |
+
# Embeddings
|
88 |
+
model.data2vec_text.embeddings.word_embeddings.weight = data2vec_sent_encoder.embed_tokens.weight
|
89 |
+
model.data2vec_text.embeddings.position_embeddings.weight = data2vec_sent_encoder.embed_positions.weight
|
90 |
+
model.data2vec_text.embeddings.token_type_embeddings.weight.data = torch.zeros_like(
|
91 |
+
model.data2vec_text.embeddings.token_type_embeddings.weight
|
92 |
+
) # just zero them out b/c data2vec doesn't use them.
|
93 |
+
model.data2vec_text.embeddings.LayerNorm.weight = data2vec_sent_encoder.layernorm_embedding.weight
|
94 |
+
model.data2vec_text.embeddings.LayerNorm.bias = data2vec_sent_encoder.layernorm_embedding.bias
|
95 |
+
|
96 |
+
for i in range(config.num_hidden_layers):
|
97 |
+
# Encoder: start of layer
|
98 |
+
layer: BertLayer = model.data2vec_text.encoder.layer[i]
|
99 |
+
data2vec_layer: TransformerSentenceEncoderLayer = data2vec_sent_encoder.layers[i]
|
100 |
+
|
101 |
+
# self attention
|
102 |
+
self_attn: BertSelfAttention = layer.attention.self
|
103 |
+
assert data2vec_layer.self_attn.k_proj.weight.data.shape == torch.Size(
|
104 |
+
(config.hidden_size, config.hidden_size)
|
105 |
+
), (
|
106 |
+
"Shape for data2vec_layer.self_attn.k_proj.weight.data should be"
|
107 |
+
f" {torch.Size((config.hidden_size, config.hidden_size))}"
|
108 |
+
)
|
109 |
+
assert data2vec_layer.self_attn.q_proj.weight.data.shape == torch.Size(
|
110 |
+
(config.hidden_size, config.hidden_size)
|
111 |
+
), (
|
112 |
+
"Shape for data2vec_layer.self_attn.q_proj.weight.data should be"
|
113 |
+
f" {torch.Size((config.hidden_size, config.hidden_size))}"
|
114 |
+
)
|
115 |
+
assert data2vec_layer.self_attn.v_proj.weight.data.shape == torch.Size(
|
116 |
+
(config.hidden_size, config.hidden_size)
|
117 |
+
), (
|
118 |
+
"Shape for data2vec_layer.self_attn.v_proj.weight.data should be"
|
119 |
+
f" {torch.Size((config.hidden_size, config.hidden_size))}"
|
120 |
+
)
|
121 |
+
|
122 |
+
self_attn.query.weight.data = data2vec_layer.self_attn.q_proj.weight
|
123 |
+
self_attn.query.bias.data = data2vec_layer.self_attn.q_proj.bias
|
124 |
+
self_attn.key.weight.data = data2vec_layer.self_attn.k_proj.weight
|
125 |
+
self_attn.key.bias.data = data2vec_layer.self_attn.k_proj.bias
|
126 |
+
self_attn.value.weight.data = data2vec_layer.self_attn.v_proj.weight
|
127 |
+
self_attn.value.bias.data = data2vec_layer.self_attn.v_proj.bias
|
128 |
+
|
129 |
+
# self-attention output
|
130 |
+
self_output: BertSelfOutput = layer.attention.output
|
131 |
+
assert (
|
132 |
+
self_output.dense.weight.shape == data2vec_layer.self_attn.out_proj.weight.shape
|
133 |
+
), f"Shape for self_output.dense.weight should be {data2vec_layer.self_attn.out_proj.weight.shape}"
|
134 |
+
self_output.dense.weight = data2vec_layer.self_attn.out_proj.weight
|
135 |
+
self_output.dense.bias = data2vec_layer.self_attn.out_proj.bias
|
136 |
+
self_output.LayerNorm.weight = data2vec_layer.self_attn_layer_norm.weight
|
137 |
+
self_output.LayerNorm.bias = data2vec_layer.self_attn_layer_norm.bias
|
138 |
+
|
139 |
+
# intermediate
|
140 |
+
intermediate: BertIntermediate = layer.intermediate
|
141 |
+
assert (
|
142 |
+
intermediate.dense.weight.shape == data2vec_layer.fc1.weight.shape
|
143 |
+
), f"Shape for intermediate.dense.weight should be {data2vec_layer.fc1.weight.shape}"
|
144 |
+
intermediate.dense.weight = data2vec_layer.fc1.weight
|
145 |
+
intermediate.dense.bias = data2vec_layer.fc1.bias
|
146 |
+
|
147 |
+
# output
|
148 |
+
bert_output: BertOutput = layer.output
|
149 |
+
assert (
|
150 |
+
bert_output.dense.weight.shape == data2vec_layer.fc2.weight.shape
|
151 |
+
), f"Shape for bert_output.dense.weight should be {data2vec_layer.fc2.weight.shape}"
|
152 |
+
bert_output.dense.weight = data2vec_layer.fc2.weight
|
153 |
+
bert_output.dense.bias = data2vec_layer.fc2.bias
|
154 |
+
bert_output.LayerNorm.weight = data2vec_layer.final_layer_norm.weight
|
155 |
+
bert_output.LayerNorm.bias = data2vec_layer.final_layer_norm.bias
|
156 |
+
# end of layer
|
157 |
+
|
158 |
+
if classification_head:
|
159 |
+
model.classifier.dense.weight = data2vec.model.classification_heads["mnli"].dense.weight
|
160 |
+
model.classifier.dense.bias = data2vec.model.classification_heads["mnli"].dense.bias
|
161 |
+
model.classifier.out_proj.weight = data2vec.model.classification_heads["mnli"].out_proj.weight
|
162 |
+
model.classifier.out_proj.bias = data2vec.model.classification_heads["mnli"].out_proj.bias
|
163 |
+
else:
|
164 |
+
# LM Head
|
165 |
+
model.lm_head.dense.weight = data2vec_model.encoder.lm_head.dense.weight
|
166 |
+
model.lm_head.dense.bias = data2vec_model.encoder.lm_head.dense.bias
|
167 |
+
model.lm_head.layer_norm.weight = data2vec_model.encoder.lm_head.layer_norm.weight
|
168 |
+
model.lm_head.layer_norm.bias = data2vec_model.encoder.lm_head.layer_norm.bias
|
169 |
+
model.lm_head.decoder.weight = data2vec_model.encoder.lm_head.weight
|
170 |
+
model.lm_head.decoder.bias = data2vec_model.encoder.lm_head.bias
|
171 |
+
|
172 |
+
# Let's check that we get the same results.
|
173 |
+
input_ids: torch.Tensor = data2vec.encode(SAMPLE_TEXT).unsqueeze(0) # batch of size 1
|
174 |
+
|
175 |
+
our_output = model(input_ids)[0]
|
176 |
+
if classification_head:
|
177 |
+
their_output = data2vec.model.classification_heads["mnli"](data2vec.extract_features(input_ids))
|
178 |
+
else:
|
179 |
+
their_output = data2vec_model(input_ids)[0]
|
180 |
+
print(our_output.shape, their_output.shape)
|
181 |
+
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
|
182 |
+
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7
|
183 |
+
success = torch.allclose(our_output, their_output, atol=1e-3)
|
184 |
+
print("Do both models output the same tensors?", "🔥" if success else "💩")
|
185 |
+
if not success:
|
186 |
+
raise Exception("Something went wRoNg")
|
187 |
+
|
188 |
+
pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
|
189 |
+
print(f"Saving model to {pytorch_dump_folder_path}")
|
190 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
191 |
+
|
192 |
+
|
193 |
+
if __name__ == "__main__":
|
194 |
+
parser = argparse.ArgumentParser()
|
195 |
+
# Required parameters
|
196 |
+
parser.add_argument(
|
197 |
+
"--checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
|
198 |
+
)
|
199 |
+
parser.add_argument(
|
200 |
+
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
201 |
+
)
|
202 |
+
parser.add_argument(
|
203 |
+
"--classification_head", action="store_true", help="Whether to convert a final classification head."
|
204 |
+
)
|
205 |
+
args = parser.parse_args()
|
206 |
+
convert_data2vec_checkpoint_to_pytorch(
|
207 |
+
args.checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
|
208 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from PIL import Image
|
8 |
+
from timm.models import create_model
|
9 |
+
|
10 |
+
from transformers import (
|
11 |
+
BeitImageProcessor,
|
12 |
+
Data2VecVisionConfig,
|
13 |
+
Data2VecVisionForImageClassification,
|
14 |
+
Data2VecVisionModel,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def create_rename_keys(config, has_lm_head=False, is_semantic=False, hf_prefix="data2vec."):
|
19 |
+
prefix = "backbone." if is_semantic else ""
|
20 |
+
|
21 |
+
rename_keys = []
|
22 |
+
for i in range(config.num_hidden_layers):
|
23 |
+
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
|
24 |
+
rename_keys.append(
|
25 |
+
(f"{prefix}blocks.{i}.norm1.weight", f"{hf_prefix}encoder.layer.{i}.layernorm_before.weight")
|
26 |
+
)
|
27 |
+
rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"{hf_prefix}encoder.layer.{i}.layernorm_before.bias"))
|
28 |
+
rename_keys.append(
|
29 |
+
(f"{prefix}blocks.{i}.attn.proj.weight", f"{hf_prefix}encoder.layer.{i}.attention.output.dense.weight")
|
30 |
+
)
|
31 |
+
rename_keys.append(
|
32 |
+
(f"{prefix}blocks.{i}.attn.proj.bias", f"{hf_prefix}encoder.layer.{i}.attention.output.dense.bias")
|
33 |
+
)
|
34 |
+
rename_keys.append(
|
35 |
+
(f"{prefix}blocks.{i}.norm2.weight", f"{hf_prefix}encoder.layer.{i}.layernorm_after.weight")
|
36 |
+
)
|
37 |
+
rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"{hf_prefix}encoder.layer.{i}.layernorm_after.bias"))
|
38 |
+
rename_keys.append(
|
39 |
+
(f"{prefix}blocks.{i}.mlp.fc1.weight", f"{hf_prefix}encoder.layer.{i}.intermediate.dense.weight")
|
40 |
+
)
|
41 |
+
rename_keys.append(
|
42 |
+
(f"{prefix}blocks.{i}.mlp.fc1.bias", f"{hf_prefix}encoder.layer.{i}.intermediate.dense.bias")
|
43 |
+
)
|
44 |
+
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"{hf_prefix}encoder.layer.{i}.output.dense.weight"))
|
45 |
+
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"{hf_prefix}encoder.layer.{i}.output.dense.bias"))
|
46 |
+
|
47 |
+
# projection layer + position embeddings
|
48 |
+
rename_keys.extend(
|
49 |
+
[
|
50 |
+
(f"{prefix}cls_token", f"{hf_prefix}embeddings.cls_token"),
|
51 |
+
(f"{prefix}patch_embed.proj.weight", f"{hf_prefix}embeddings.patch_embeddings.projection.weight"),
|
52 |
+
(f"{prefix}patch_embed.proj.bias", f"{hf_prefix}embeddings.patch_embeddings.projection.bias"),
|
53 |
+
]
|
54 |
+
)
|
55 |
+
|
56 |
+
if has_lm_head:
|
57 |
+
# mask token + shared relative position bias + layernorm
|
58 |
+
rename_keys.extend(
|
59 |
+
[
|
60 |
+
("mask_token", f"{hf_prefix}embeddings.mask_token"),
|
61 |
+
(
|
62 |
+
"rel_pos_bias.relative_position_bias_table",
|
63 |
+
f"{hf_prefix}encoder.relative_position_bias.relative_position_bias_table",
|
64 |
+
),
|
65 |
+
(
|
66 |
+
"rel_pos_bias.relative_position_index",
|
67 |
+
f"{hf_prefix}encoder.relative_position_bias.relative_position_index",
|
68 |
+
),
|
69 |
+
("norm.weight", "layernorm.weight"),
|
70 |
+
("norm.bias", "layernorm.bias"),
|
71 |
+
]
|
72 |
+
)
|
73 |
+
elif is_semantic:
|
74 |
+
# semantic segmentation classification heads
|
75 |
+
rename_keys.extend(
|
76 |
+
[
|
77 |
+
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
|
78 |
+
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
|
79 |
+
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
|
80 |
+
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
|
81 |
+
]
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
# layernorm + classification head
|
85 |
+
rename_keys.extend(
|
86 |
+
[
|
87 |
+
("fc_norm.weight", f"{hf_prefix}pooler.layernorm.weight"),
|
88 |
+
("fc_norm.bias", f"{hf_prefix}pooler.layernorm.bias"),
|
89 |
+
("head.weight", "classifier.weight"),
|
90 |
+
("head.bias", "classifier.bias"),
|
91 |
+
]
|
92 |
+
)
|
93 |
+
|
94 |
+
return rename_keys
|
95 |
+
|
96 |
+
|
97 |
+
def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False, hf_prefix="data2vec_vision."):
|
98 |
+
for i in range(config.num_hidden_layers):
|
99 |
+
prefix = "backbone." if is_semantic else ""
|
100 |
+
# queries, keys and values
|
101 |
+
in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight")
|
102 |
+
q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias")
|
103 |
+
v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias")
|
104 |
+
|
105 |
+
state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
|
106 |
+
: config.hidden_size, :
|
107 |
+
]
|
108 |
+
state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.query.bias"] = q_bias
|
109 |
+
state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
|
110 |
+
config.hidden_size : config.hidden_size * 2, :
|
111 |
+
]
|
112 |
+
state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
|
113 |
+
-config.hidden_size :, :
|
114 |
+
]
|
115 |
+
state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.value.bias"] = v_bias
|
116 |
+
|
117 |
+
# gamma_1 and gamma_2
|
118 |
+
# we call them lambda because otherwise they are renamed when using .from_pretrained
|
119 |
+
gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1")
|
120 |
+
gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2")
|
121 |
+
|
122 |
+
state_dict[f"{hf_prefix}encoder.layer.{i}.lambda_1"] = gamma_1
|
123 |
+
state_dict[f"{hf_prefix}encoder.layer.{i}.lambda_2"] = gamma_2
|
124 |
+
|
125 |
+
# relative_position bias table + index
|
126 |
+
if not has_lm_head:
|
127 |
+
# each layer has its own relative position bias
|
128 |
+
table = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_bias_table")
|
129 |
+
index = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_index")
|
130 |
+
|
131 |
+
state_dict[
|
132 |
+
f"{hf_prefix}encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_bias_table"
|
133 |
+
] = table
|
134 |
+
state_dict[
|
135 |
+
f"{hf_prefix}encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_index"
|
136 |
+
] = index
|
137 |
+
|
138 |
+
|
139 |
+
def get_args():
|
140 |
+
parser = argparse.ArgumentParser(
|
141 |
+
"Convert Data2VecVision to HF for image classification and pretraining", add_help=False
|
142 |
+
)
|
143 |
+
parser.add_argument("--hf_checkpoint_name", type=str)
|
144 |
+
parser.add_argument("--input_size", default=224, type=int, help="images input size")
|
145 |
+
parser.add_argument("--beit_checkpoint", default="", help="beit checkpoint")
|
146 |
+
|
147 |
+
return parser.parse_args()
|
148 |
+
|
149 |
+
|
150 |
+
def load_beit_model(args, is_finetuned, is_large):
|
151 |
+
def load_state_dict(model, state_dict, prefix="", ignore_missing="relative_position_index"):
|
152 |
+
missing_keys = []
|
153 |
+
unexpected_keys = []
|
154 |
+
error_msgs = []
|
155 |
+
# copy state_dict so _load_from_state_dict can modify it
|
156 |
+
metadata = getattr(state_dict, "_metadata", None)
|
157 |
+
state_dict = state_dict.copy()
|
158 |
+
if metadata is not None:
|
159 |
+
state_dict._metadata = metadata
|
160 |
+
|
161 |
+
def load(module, prefix=""):
|
162 |
+
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
163 |
+
module._load_from_state_dict(
|
164 |
+
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
|
165 |
+
)
|
166 |
+
for name, child in module._modules.items():
|
167 |
+
if child is not None:
|
168 |
+
load(child, prefix + name + ".")
|
169 |
+
|
170 |
+
load(model, prefix=prefix)
|
171 |
+
|
172 |
+
warn_missing_keys = []
|
173 |
+
ignore_missing_keys = []
|
174 |
+
for key in missing_keys:
|
175 |
+
keep_flag = True
|
176 |
+
for ignore_key in ignore_missing.split("|"):
|
177 |
+
if ignore_key in key:
|
178 |
+
keep_flag = False
|
179 |
+
break
|
180 |
+
if keep_flag:
|
181 |
+
warn_missing_keys.append(key)
|
182 |
+
else:
|
183 |
+
ignore_missing_keys.append(key)
|
184 |
+
|
185 |
+
missing_keys = warn_missing_keys
|
186 |
+
|
187 |
+
if len(missing_keys) > 0:
|
188 |
+
print(
|
189 |
+
"Weights of {} not initialized from pretrained model: {}".format(
|
190 |
+
model.__class__.__name__, missing_keys
|
191 |
+
)
|
192 |
+
)
|
193 |
+
if len(unexpected_keys) > 0:
|
194 |
+
print("Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys))
|
195 |
+
if len(ignore_missing_keys) > 0:
|
196 |
+
print(
|
197 |
+
"Ignored weights of {} not initialized from pretrained model: {}".format(
|
198 |
+
model.__class__.__name__, ignore_missing_keys
|
199 |
+
)
|
200 |
+
)
|
201 |
+
if len(error_msgs) > 0:
|
202 |
+
print("\n".join(error_msgs))
|
203 |
+
|
204 |
+
model_kwargs = {
|
205 |
+
"pretrained": False,
|
206 |
+
"use_shared_rel_pos_bias": True,
|
207 |
+
"use_abs_pos_emb": False,
|
208 |
+
"init_values": 0.1,
|
209 |
+
}
|
210 |
+
|
211 |
+
if is_finetuned:
|
212 |
+
model_kwargs.update(
|
213 |
+
{
|
214 |
+
"num_classes": 1000,
|
215 |
+
"use_mean_pooling": True,
|
216 |
+
"init_scale": 0.001,
|
217 |
+
"use_rel_pos_bias": True,
|
218 |
+
}
|
219 |
+
)
|
220 |
+
|
221 |
+
model = create_model(
|
222 |
+
"beit_large_patch16_224" if is_large else "beit_base_patch16_224",
|
223 |
+
**model_kwargs,
|
224 |
+
)
|
225 |
+
patch_size = model.patch_embed.patch_size
|
226 |
+
args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1])
|
227 |
+
checkpoint = torch.load(args.beit_checkpoint, map_location="cpu")
|
228 |
+
|
229 |
+
print(f"Load ckpt from {args.beit_checkpoint}")
|
230 |
+
checkpoint_model = None
|
231 |
+
for model_key in ("model", "module"):
|
232 |
+
if model_key in checkpoint:
|
233 |
+
checkpoint_model = checkpoint[model_key]
|
234 |
+
print(f"Load state_dict by model_key = {model_key}")
|
235 |
+
break
|
236 |
+
|
237 |
+
all_keys = list(checkpoint_model.keys())
|
238 |
+
for key in all_keys:
|
239 |
+
if "relative_position_index" in key:
|
240 |
+
checkpoint_model.pop(key)
|
241 |
+
|
242 |
+
if "relative_position_bias_table" in key:
|
243 |
+
rel_pos_bias = checkpoint_model[key]
|
244 |
+
src_num_pos, num_attn_heads = rel_pos_bias.size()
|
245 |
+
dst_num_pos, _ = model.state_dict()[key].size()
|
246 |
+
dst_patch_shape = model.patch_embed.patch_shape
|
247 |
+
if dst_patch_shape[0] != dst_patch_shape[1]:
|
248 |
+
raise NotImplementedError()
|
249 |
+
|
250 |
+
load_state_dict(model, checkpoint_model, prefix="")
|
251 |
+
|
252 |
+
return model
|
253 |
+
|
254 |
+
|
255 |
+
def main():
|
256 |
+
args = get_args()
|
257 |
+
|
258 |
+
is_finetuned = "ft1k" in args.hf_checkpoint_name
|
259 |
+
is_large = "large" in args.hf_checkpoint_name
|
260 |
+
|
261 |
+
if is_finetuned:
|
262 |
+
# To convert Beit's data2vec_vision to HF you need to copy
|
263 |
+
# https://github.com/facebookresearch/data2vec_vision/blob/main/beit/modeling_finetune.py
|
264 |
+
# into this folder.
|
265 |
+
import modeling_finetune # noqa: F401
|
266 |
+
else:
|
267 |
+
# To convert Beit's data2vec_vision to HF you need to copy
|
268 |
+
# https://github.com/facebookresearch/data2vec_vision/blob/main/beit/modeling_cyclical.py
|
269 |
+
# into this folder
|
270 |
+
# IMPORTANT: Note that for now we've only converted the down-stream
|
271 |
+
# model and not the full pretrained model. This means for the integration
|
272 |
+
# test you need to add a `return x` after the following line:
|
273 |
+
# https://github.com/facebookresearch/data2vec_vision/blob/af9a36349aaed59ae66e69b5dabeef2d62fdc5da/beit/modeling_cyclical.py#L197
|
274 |
+
# to make the integration test pass.
|
275 |
+
import modeling_cyclical # noqa: F401
|
276 |
+
|
277 |
+
# 1. Create model config
|
278 |
+
config = Data2VecVisionConfig()
|
279 |
+
if is_finetuned:
|
280 |
+
config.use_relative_position_bias = True
|
281 |
+
config.use_shared_relative_position_bias = False
|
282 |
+
config.use_mean_pooling = True
|
283 |
+
config.num_labels = 1000
|
284 |
+
|
285 |
+
repo_id = "huggingface/label-files"
|
286 |
+
filename = "imagenet-1k-id2label.json"
|
287 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
288 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
289 |
+
config.id2label = id2label
|
290 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
291 |
+
else:
|
292 |
+
config.use_relative_position_bias = False
|
293 |
+
config.use_shared_relative_position_bias = True
|
294 |
+
config.use_mean_pooling = False
|
295 |
+
|
296 |
+
if is_large:
|
297 |
+
config.hidden_size = 1024
|
298 |
+
config.intermediate_size = 4096
|
299 |
+
config.num_hidden_layers = 24
|
300 |
+
config.num_attention_heads = 16
|
301 |
+
|
302 |
+
# 2. Load Beit model
|
303 |
+
orig_model = load_beit_model(args, is_finetuned, is_large)
|
304 |
+
orig_model.eval()
|
305 |
+
|
306 |
+
# 3. Forward Beit model
|
307 |
+
image_processor = BeitImageProcessor(size=config.image_size, do_center_crop=False)
|
308 |
+
image = Image.open("../../../../tests/fixtures/tests_samples/COCO/000000039769.png")
|
309 |
+
encoding = image_processor(images=image, return_tensors="pt")
|
310 |
+
pixel_values = encoding["pixel_values"]
|
311 |
+
|
312 |
+
orig_args = (pixel_values,) if is_finetuned else (pixel_values, None)
|
313 |
+
with torch.no_grad():
|
314 |
+
orig_model_output = orig_model(*orig_args)
|
315 |
+
|
316 |
+
# 4. Load HF Data2VecVision model
|
317 |
+
if is_finetuned:
|
318 |
+
hf_model = Data2VecVisionForImageClassification(config)
|
319 |
+
hf_model.eval()
|
320 |
+
has_lm_head = False
|
321 |
+
hf_prefix = "data2vec_vision."
|
322 |
+
else:
|
323 |
+
hf_model = Data2VecVisionModel(config)
|
324 |
+
hf_model.eval()
|
325 |
+
has_lm_head = True
|
326 |
+
hf_prefix = ""
|
327 |
+
|
328 |
+
rename_keys = create_rename_keys(config, hf_prefix=hf_prefix, has_lm_head=has_lm_head)
|
329 |
+
state_dict = orig_model.state_dict()
|
330 |
+
for src, dest in rename_keys:
|
331 |
+
val = state_dict.pop(src)
|
332 |
+
state_dict[dest] = val
|
333 |
+
|
334 |
+
read_in_q_k_v(state_dict, config, hf_prefix=hf_prefix, has_lm_head=has_lm_head)
|
335 |
+
missing_keys, unexpected_keys = hf_model.load_state_dict(state_dict, strict=False)
|
336 |
+
print("HF missing", missing_keys)
|
337 |
+
print("HF unexpected_keys", unexpected_keys)
|
338 |
+
|
339 |
+
# 5. Forward HF Data2VecVision model
|
340 |
+
with torch.no_grad():
|
341 |
+
hf_model_output = hf_model(pixel_values)
|
342 |
+
|
343 |
+
hf_output = hf_model_output.logits if is_finetuned else hf_model_output.last_hidden_state
|
344 |
+
|
345 |
+
# 6. Compare
|
346 |
+
max_absolute_diff = torch.max(torch.abs(hf_output - orig_model_output)).item()
|
347 |
+
|
348 |
+
print(f"max_absolute_diff = {max_absolute_diff}")
|
349 |
+
success = torch.allclose(hf_output, orig_model_output, atol=1e-3)
|
350 |
+
print("Do both models output the same tensors?", "🔥" if success else "💩")
|
351 |
+
if not success:
|
352 |
+
raise Exception("Something went wRoNg")
|
353 |
+
|
354 |
+
# 7. Save
|
355 |
+
print(f"Saving to {args.hf_checkpoint_name}")
|
356 |
+
hf_model.save_pretrained(args.hf_checkpoint_name)
|
357 |
+
image_processor.save_pretrained(args.hf_checkpoint_name)
|
358 |
+
|
359 |
+
|
360 |
+
if __name__ == "__main__":
|
361 |
+
main()
|
362 |
+
# Run the following to convert checkpoints
|
363 |
+
# python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \
|
364 |
+
# --beit_checkpoint ./pretrained_base.pt \
|
365 |
+
# --hf_checkpoint_name "./data2vec-vision-base"
|
366 |
+
# python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \
|
367 |
+
# --beit_checkpoint ./finetuned_base.pt \
|
368 |
+
# --hf_checkpoint_name "./data2vec-vision-base-ft1k"
|
369 |
+
# python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \
|
370 |
+
# --beit_checkpoint ./pretrained_large.pt \
|
371 |
+
# --hf_checkpoint_name "./data2vec-vision-large"
|
372 |
+
# python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \
|
373 |
+
# --beit_checkpoint ./finetuned_large.pt \
|
374 |
+
# --hf_checkpoint_name "./data2vec-vision-large-ft1k"
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_audio.py
ADDED
@@ -0,0 +1,1514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Data2VecAudio model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import warnings
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import CrossEntropyLoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
|
29 |
+
from ...modeling_outputs import (
|
30 |
+
BaseModelOutput,
|
31 |
+
CausalLMOutput,
|
32 |
+
SequenceClassifierOutput,
|
33 |
+
TokenClassifierOutput,
|
34 |
+
Wav2Vec2BaseModelOutput,
|
35 |
+
XVectorOutput,
|
36 |
+
)
|
37 |
+
from ...modeling_utils import PreTrainedModel
|
38 |
+
from ...utils import (
|
39 |
+
add_code_sample_docstrings,
|
40 |
+
add_start_docstrings,
|
41 |
+
add_start_docstrings_to_model_forward,
|
42 |
+
is_peft_available,
|
43 |
+
logging,
|
44 |
+
)
|
45 |
+
from .configuration_data2vec_audio import Data2VecAudioConfig
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
_HIDDEN_STATES_START_POSITION = 2
|
52 |
+
|
53 |
+
# General docstring
|
54 |
+
_CONFIG_FOR_DOC = "Data2VecAudioConfig"
|
55 |
+
|
56 |
+
# Base docstring
|
57 |
+
_CHECKPOINT_FOR_DOC = "facebook/data2vec-audio-base-960h"
|
58 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768]
|
59 |
+
|
60 |
+
# CTC docstring
|
61 |
+
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
|
62 |
+
_CTC_EXPECTED_LOSS = 66.95
|
63 |
+
|
64 |
+
|
65 |
+
from ..deprecated._archive_maps import DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
66 |
+
|
67 |
+
|
68 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
|
69 |
+
def _compute_mask_indices(
|
70 |
+
shape: Tuple[int, int],
|
71 |
+
mask_prob: float,
|
72 |
+
mask_length: int,
|
73 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
74 |
+
min_masks: int = 0,
|
75 |
+
) -> np.ndarray:
|
76 |
+
"""
|
77 |
+
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
|
78 |
+
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
|
79 |
+
CPU as part of the preprocessing during training.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
|
83 |
+
the first element is the batch size and the second element is the length of the axis to span.
|
84 |
+
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
|
85 |
+
independently generated mask spans of length `mask_length` is computed by
|
86 |
+
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
|
87 |
+
actual percentage will be smaller.
|
88 |
+
mask_length: size of the mask
|
89 |
+
min_masks: minimum number of masked spans
|
90 |
+
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
|
91 |
+
each batch dimension.
|
92 |
+
"""
|
93 |
+
batch_size, sequence_length = shape
|
94 |
+
|
95 |
+
if mask_length < 1:
|
96 |
+
raise ValueError("`mask_length` has to be bigger than 0.")
|
97 |
+
|
98 |
+
if mask_length > sequence_length:
|
99 |
+
raise ValueError(
|
100 |
+
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
|
101 |
+
f" and `sequence_length`: {sequence_length}`"
|
102 |
+
)
|
103 |
+
|
104 |
+
# epsilon is used for probabilistic rounding
|
105 |
+
epsilon = np.random.rand(1).item()
|
106 |
+
|
107 |
+
def compute_num_masked_span(input_length):
|
108 |
+
"""Given input length, compute how many spans should be masked"""
|
109 |
+
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
|
110 |
+
num_masked_span = max(num_masked_span, min_masks)
|
111 |
+
|
112 |
+
# make sure num masked span <= sequence_length
|
113 |
+
if num_masked_span * mask_length > sequence_length:
|
114 |
+
num_masked_span = sequence_length // mask_length
|
115 |
+
|
116 |
+
# make sure num_masked span is also <= input_length - (mask_length - 1)
|
117 |
+
if input_length - (mask_length - 1) < num_masked_span:
|
118 |
+
num_masked_span = max(input_length - (mask_length - 1), 0)
|
119 |
+
|
120 |
+
return num_masked_span
|
121 |
+
|
122 |
+
# compute number of masked spans in batch
|
123 |
+
input_lengths = (
|
124 |
+
attention_mask.sum(-1).detach().tolist()
|
125 |
+
if attention_mask is not None
|
126 |
+
else [sequence_length for _ in range(batch_size)]
|
127 |
+
)
|
128 |
+
|
129 |
+
# SpecAugment mask to fill
|
130 |
+
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
|
131 |
+
spec_aug_mask_idxs = []
|
132 |
+
|
133 |
+
max_num_masked_span = compute_num_masked_span(sequence_length)
|
134 |
+
|
135 |
+
if max_num_masked_span == 0:
|
136 |
+
return spec_aug_mask
|
137 |
+
|
138 |
+
for input_length in input_lengths:
|
139 |
+
# compute num of masked spans for this input
|
140 |
+
num_masked_span = compute_num_masked_span(input_length)
|
141 |
+
|
142 |
+
# get random indices to mask
|
143 |
+
spec_aug_mask_idx = np.random.choice(
|
144 |
+
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
|
145 |
+
)
|
146 |
+
|
147 |
+
# pick first sampled index that will serve as a dummy index to pad vector
|
148 |
+
# to ensure same dimension for all batches due to probabilistic rounding
|
149 |
+
# Picking first sample just pads those vectors twice.
|
150 |
+
if len(spec_aug_mask_idx) == 0:
|
151 |
+
# this case can only happen if `input_length` is strictly smaller then
|
152 |
+
# `sequence_length` in which case the last token has to be a padding
|
153 |
+
# token which we can use as a dummy mask id
|
154 |
+
dummy_mask_idx = sequence_length - 1
|
155 |
+
else:
|
156 |
+
dummy_mask_idx = spec_aug_mask_idx[0]
|
157 |
+
|
158 |
+
spec_aug_mask_idx = np.concatenate(
|
159 |
+
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
|
160 |
+
)
|
161 |
+
spec_aug_mask_idxs.append(spec_aug_mask_idx)
|
162 |
+
|
163 |
+
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
|
164 |
+
|
165 |
+
# expand masked indices to masked spans
|
166 |
+
spec_aug_mask_idxs = np.broadcast_to(
|
167 |
+
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
|
168 |
+
)
|
169 |
+
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
|
170 |
+
|
171 |
+
# add offset to the starting indexes so that indexes now create a span
|
172 |
+
offsets = np.arange(mask_length)[None, None, :]
|
173 |
+
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
|
174 |
+
batch_size, max_num_masked_span * mask_length
|
175 |
+
)
|
176 |
+
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
|
177 |
+
|
178 |
+
# ensure that we cannot have indices larger than sequence_length
|
179 |
+
if spec_aug_mask_idxs.max() > sequence_length - 1:
|
180 |
+
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
|
181 |
+
|
182 |
+
# scatter indices to mask
|
183 |
+
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
|
184 |
+
|
185 |
+
return spec_aug_mask
|
186 |
+
|
187 |
+
|
188 |
+
class Data2VecAudioConvLayer(nn.Module):
|
189 |
+
def __init__(self, config, layer_id=0):
|
190 |
+
super().__init__()
|
191 |
+
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
|
192 |
+
self.out_conv_dim = config.conv_dim[layer_id]
|
193 |
+
|
194 |
+
self.conv = nn.Conv1d(
|
195 |
+
self.in_conv_dim,
|
196 |
+
self.out_conv_dim,
|
197 |
+
kernel_size=config.conv_kernel[layer_id],
|
198 |
+
stride=config.conv_stride[layer_id],
|
199 |
+
bias=config.conv_bias,
|
200 |
+
)
|
201 |
+
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
|
202 |
+
self.activation = ACT2FN[config.feat_extract_activation]
|
203 |
+
|
204 |
+
def forward(self, hidden_states):
|
205 |
+
hidden_states = self.conv(hidden_states)
|
206 |
+
|
207 |
+
hidden_states = hidden_states.transpose(-2, -1)
|
208 |
+
hidden_states = self.layer_norm(hidden_states)
|
209 |
+
hidden_states = hidden_states.transpose(-2, -1)
|
210 |
+
|
211 |
+
hidden_states = self.activation(hidden_states)
|
212 |
+
return hidden_states
|
213 |
+
|
214 |
+
|
215 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->Data2VecAudio
|
216 |
+
class Data2VecAudioPadLayer(nn.Module):
|
217 |
+
def __init__(self, num_conv_pos_embeddings):
|
218 |
+
super().__init__()
|
219 |
+
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
|
220 |
+
|
221 |
+
def forward(self, hidden_states):
|
222 |
+
if self.num_pad_remove > 0:
|
223 |
+
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
|
224 |
+
return hidden_states
|
225 |
+
|
226 |
+
|
227 |
+
class Data2VecAudioPositionalConvLayer(nn.Module):
|
228 |
+
def __init__(self, config):
|
229 |
+
super().__init__()
|
230 |
+
self.conv = nn.Conv1d(
|
231 |
+
config.hidden_size,
|
232 |
+
config.hidden_size,
|
233 |
+
kernel_size=config.conv_pos_kernel_size,
|
234 |
+
padding=config.conv_pos_kernel_size // 2,
|
235 |
+
groups=config.num_conv_pos_embedding_groups,
|
236 |
+
)
|
237 |
+
|
238 |
+
self.padding = Data2VecAudioPadLayer(config.conv_pos_kernel_size)
|
239 |
+
self.activation = ACT2FN[config.feat_extract_activation]
|
240 |
+
# no learnable parameters
|
241 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, elementwise_affine=False)
|
242 |
+
|
243 |
+
def forward(self, hidden_states):
|
244 |
+
hidden_states = self.conv(hidden_states)
|
245 |
+
hidden_states = self.padding(hidden_states)
|
246 |
+
|
247 |
+
hidden_states = hidden_states.transpose(1, 2)
|
248 |
+
hidden_states = self.layer_norm(hidden_states)
|
249 |
+
hidden_states = hidden_states.transpose(1, 2)
|
250 |
+
hidden_states = self.activation(hidden_states)
|
251 |
+
return hidden_states
|
252 |
+
|
253 |
+
|
254 |
+
class Data2VecAudioPositionalConvEmbedding(nn.Module):
|
255 |
+
def __init__(self, config):
|
256 |
+
super().__init__()
|
257 |
+
self.layers = nn.ModuleList(
|
258 |
+
[Data2VecAudioPositionalConvLayer(config) for _ in range(config.num_conv_pos_embeddings)]
|
259 |
+
)
|
260 |
+
|
261 |
+
def forward(self, hidden_states):
|
262 |
+
hidden_states = hidden_states.transpose(1, 2)
|
263 |
+
for layer in self.layers:
|
264 |
+
hidden_states = layer(hidden_states)
|
265 |
+
hidden_states = hidden_states.transpose(1, 2)
|
266 |
+
return hidden_states
|
267 |
+
|
268 |
+
|
269 |
+
class Data2VecAudioFeatureEncoder(nn.Module):
|
270 |
+
"""Construct the features from raw audio waveform"""
|
271 |
+
|
272 |
+
def __init__(self, config):
|
273 |
+
super().__init__()
|
274 |
+
self.conv_layers = nn.ModuleList(
|
275 |
+
[Data2VecAudioConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)]
|
276 |
+
)
|
277 |
+
self.gradient_checkpointing = False
|
278 |
+
self._requires_grad = True
|
279 |
+
|
280 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder._freeze_parameters
|
281 |
+
def _freeze_parameters(self):
|
282 |
+
for param in self.parameters():
|
283 |
+
param.requires_grad = False
|
284 |
+
self._requires_grad = False
|
285 |
+
|
286 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder.forward
|
287 |
+
def forward(self, input_values):
|
288 |
+
hidden_states = input_values[:, None]
|
289 |
+
|
290 |
+
# make sure hidden_states require grad for gradient_checkpointing
|
291 |
+
if self._requires_grad and self.training:
|
292 |
+
hidden_states.requires_grad = True
|
293 |
+
|
294 |
+
for conv_layer in self.conv_layers:
|
295 |
+
if self._requires_grad and self.gradient_checkpointing and self.training:
|
296 |
+
hidden_states = self._gradient_checkpointing_func(
|
297 |
+
conv_layer.__call__,
|
298 |
+
hidden_states,
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
hidden_states = conv_layer(hidden_states)
|
302 |
+
|
303 |
+
return hidden_states
|
304 |
+
|
305 |
+
|
306 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->Data2VecAudio
|
307 |
+
class Data2VecAudioFeatureProjection(nn.Module):
|
308 |
+
def __init__(self, config):
|
309 |
+
super().__init__()
|
310 |
+
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
|
311 |
+
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
|
312 |
+
self.dropout = nn.Dropout(config.feat_proj_dropout)
|
313 |
+
|
314 |
+
def forward(self, hidden_states):
|
315 |
+
# non-projected hidden states are needed for quantization
|
316 |
+
norm_hidden_states = self.layer_norm(hidden_states)
|
317 |
+
hidden_states = self.projection(norm_hidden_states)
|
318 |
+
hidden_states = self.dropout(hidden_states)
|
319 |
+
return hidden_states, norm_hidden_states
|
320 |
+
|
321 |
+
|
322 |
+
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Data2VecAudio
|
323 |
+
class Data2VecAudioAttention(nn.Module):
|
324 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
325 |
+
|
326 |
+
def __init__(
|
327 |
+
self,
|
328 |
+
embed_dim: int,
|
329 |
+
num_heads: int,
|
330 |
+
dropout: float = 0.0,
|
331 |
+
is_decoder: bool = False,
|
332 |
+
bias: bool = True,
|
333 |
+
is_causal: bool = False,
|
334 |
+
config: Optional[Data2VecAudioConfig] = None,
|
335 |
+
):
|
336 |
+
super().__init__()
|
337 |
+
self.embed_dim = embed_dim
|
338 |
+
self.num_heads = num_heads
|
339 |
+
self.dropout = dropout
|
340 |
+
self.head_dim = embed_dim // num_heads
|
341 |
+
self.config = config
|
342 |
+
|
343 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
344 |
+
raise ValueError(
|
345 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
346 |
+
f" and `num_heads`: {num_heads})."
|
347 |
+
)
|
348 |
+
self.scaling = self.head_dim**-0.5
|
349 |
+
self.is_decoder = is_decoder
|
350 |
+
self.is_causal = is_causal
|
351 |
+
|
352 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
353 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
354 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
355 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
356 |
+
|
357 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
358 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
359 |
+
|
360 |
+
def forward(
|
361 |
+
self,
|
362 |
+
hidden_states: torch.Tensor,
|
363 |
+
key_value_states: Optional[torch.Tensor] = None,
|
364 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
365 |
+
attention_mask: Optional[torch.Tensor] = None,
|
366 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
367 |
+
output_attentions: bool = False,
|
368 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
369 |
+
"""Input shape: Batch x Time x Channel"""
|
370 |
+
|
371 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
372 |
+
# for the decoder
|
373 |
+
is_cross_attention = key_value_states is not None
|
374 |
+
|
375 |
+
bsz, tgt_len, _ = hidden_states.size()
|
376 |
+
|
377 |
+
# get query proj
|
378 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
379 |
+
# get key, value proj
|
380 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
381 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
382 |
+
# the provided `key_value_states` to support prefix tuning
|
383 |
+
if (
|
384 |
+
is_cross_attention
|
385 |
+
and past_key_value is not None
|
386 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
387 |
+
):
|
388 |
+
# reuse k,v, cross_attentions
|
389 |
+
key_states = past_key_value[0]
|
390 |
+
value_states = past_key_value[1]
|
391 |
+
elif is_cross_attention:
|
392 |
+
# cross_attentions
|
393 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
394 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
395 |
+
elif past_key_value is not None:
|
396 |
+
# reuse k, v, self_attention
|
397 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
398 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
399 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
400 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
401 |
+
else:
|
402 |
+
# self_attention
|
403 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
404 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
405 |
+
|
406 |
+
if self.is_decoder:
|
407 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
408 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
409 |
+
# key/value_states (first "if" case)
|
410 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
411 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
412 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
413 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
414 |
+
past_key_value = (key_states, value_states)
|
415 |
+
|
416 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
417 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
418 |
+
key_states = key_states.reshape(*proj_shape)
|
419 |
+
value_states = value_states.reshape(*proj_shape)
|
420 |
+
|
421 |
+
src_len = key_states.size(1)
|
422 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
423 |
+
|
424 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
425 |
+
raise ValueError(
|
426 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
427 |
+
f" {attn_weights.size()}"
|
428 |
+
)
|
429 |
+
|
430 |
+
if attention_mask is not None:
|
431 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
432 |
+
raise ValueError(
|
433 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
434 |
+
)
|
435 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
436 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
437 |
+
|
438 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
439 |
+
|
440 |
+
if layer_head_mask is not None:
|
441 |
+
if layer_head_mask.size() != (self.num_heads,):
|
442 |
+
raise ValueError(
|
443 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
444 |
+
f" {layer_head_mask.size()}"
|
445 |
+
)
|
446 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
447 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
448 |
+
|
449 |
+
if output_attentions:
|
450 |
+
# this operation is a bit awkward, but it's required to
|
451 |
+
# make sure that attn_weights keeps its gradient.
|
452 |
+
# In order to do so, attn_weights have to be reshaped
|
453 |
+
# twice and have to be reused in the following
|
454 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
455 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
456 |
+
else:
|
457 |
+
attn_weights_reshaped = None
|
458 |
+
|
459 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
460 |
+
|
461 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
462 |
+
|
463 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
464 |
+
raise ValueError(
|
465 |
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
466 |
+
f" {attn_output.size()}"
|
467 |
+
)
|
468 |
+
|
469 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
470 |
+
attn_output = attn_output.transpose(1, 2)
|
471 |
+
|
472 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
473 |
+
# partitioned across GPUs when using tensor-parallelism.
|
474 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
475 |
+
|
476 |
+
attn_output = self.out_proj(attn_output)
|
477 |
+
|
478 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
479 |
+
|
480 |
+
|
481 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->Data2VecAudio
|
482 |
+
class Data2VecAudioFeedForward(nn.Module):
|
483 |
+
def __init__(self, config):
|
484 |
+
super().__init__()
|
485 |
+
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
|
486 |
+
|
487 |
+
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
488 |
+
if isinstance(config.hidden_act, str):
|
489 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
490 |
+
else:
|
491 |
+
self.intermediate_act_fn = config.hidden_act
|
492 |
+
|
493 |
+
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
494 |
+
self.output_dropout = nn.Dropout(config.hidden_dropout)
|
495 |
+
|
496 |
+
def forward(self, hidden_states):
|
497 |
+
hidden_states = self.intermediate_dense(hidden_states)
|
498 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
499 |
+
hidden_states = self.intermediate_dropout(hidden_states)
|
500 |
+
|
501 |
+
hidden_states = self.output_dense(hidden_states)
|
502 |
+
hidden_states = self.output_dropout(hidden_states)
|
503 |
+
return hidden_states
|
504 |
+
|
505 |
+
|
506 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->Data2VecAudio
|
507 |
+
class Data2VecAudioEncoderLayer(nn.Module):
|
508 |
+
def __init__(self, config):
|
509 |
+
super().__init__()
|
510 |
+
self.attention = Data2VecAudioAttention(
|
511 |
+
embed_dim=config.hidden_size,
|
512 |
+
num_heads=config.num_attention_heads,
|
513 |
+
dropout=config.attention_dropout,
|
514 |
+
is_decoder=False,
|
515 |
+
)
|
516 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
517 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
518 |
+
self.feed_forward = Data2VecAudioFeedForward(config)
|
519 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
520 |
+
|
521 |
+
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
|
522 |
+
attn_residual = hidden_states
|
523 |
+
hidden_states, attn_weights, _ = self.attention(
|
524 |
+
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
525 |
+
)
|
526 |
+
hidden_states = self.dropout(hidden_states)
|
527 |
+
hidden_states = attn_residual + hidden_states
|
528 |
+
|
529 |
+
hidden_states = self.layer_norm(hidden_states)
|
530 |
+
hidden_states = hidden_states + self.feed_forward(hidden_states)
|
531 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
532 |
+
|
533 |
+
outputs = (hidden_states,)
|
534 |
+
|
535 |
+
if output_attentions:
|
536 |
+
outputs += (attn_weights,)
|
537 |
+
|
538 |
+
return outputs
|
539 |
+
|
540 |
+
|
541 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->Data2VecAudio
|
542 |
+
class Data2VecAudioEncoder(nn.Module):
|
543 |
+
def __init__(self, config):
|
544 |
+
super().__init__()
|
545 |
+
self.config = config
|
546 |
+
self.pos_conv_embed = Data2VecAudioPositionalConvEmbedding(config)
|
547 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
548 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
549 |
+
self.layers = nn.ModuleList([Data2VecAudioEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
550 |
+
self.gradient_checkpointing = False
|
551 |
+
|
552 |
+
def forward(
|
553 |
+
self,
|
554 |
+
hidden_states: torch.tensor,
|
555 |
+
attention_mask: Optional[torch.Tensor] = None,
|
556 |
+
output_attentions: bool = False,
|
557 |
+
output_hidden_states: bool = False,
|
558 |
+
return_dict: bool = True,
|
559 |
+
):
|
560 |
+
all_hidden_states = () if output_hidden_states else None
|
561 |
+
all_self_attentions = () if output_attentions else None
|
562 |
+
|
563 |
+
if attention_mask is not None:
|
564 |
+
# make sure padded tokens output 0
|
565 |
+
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
|
566 |
+
hidden_states[~expand_attention_mask] = 0
|
567 |
+
|
568 |
+
# extend attention_mask
|
569 |
+
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
|
570 |
+
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
571 |
+
attention_mask = attention_mask.expand(
|
572 |
+
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
|
573 |
+
)
|
574 |
+
|
575 |
+
position_embeddings = self.pos_conv_embed(hidden_states)
|
576 |
+
hidden_states = hidden_states + position_embeddings
|
577 |
+
hidden_states = self.layer_norm(hidden_states)
|
578 |
+
hidden_states = self.dropout(hidden_states)
|
579 |
+
|
580 |
+
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
581 |
+
|
582 |
+
for layer in self.layers:
|
583 |
+
if output_hidden_states:
|
584 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
585 |
+
|
586 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
587 |
+
dropout_probability = torch.rand([])
|
588 |
+
|
589 |
+
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
|
590 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
591 |
+
# under deepspeed zero3 all gpus must run in sync
|
592 |
+
if self.gradient_checkpointing and self.training:
|
593 |
+
layer_outputs = self._gradient_checkpointing_func(
|
594 |
+
layer.__call__,
|
595 |
+
hidden_states,
|
596 |
+
attention_mask,
|
597 |
+
output_attentions,
|
598 |
+
)
|
599 |
+
else:
|
600 |
+
layer_outputs = layer(
|
601 |
+
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
602 |
+
)
|
603 |
+
hidden_states = layer_outputs[0]
|
604 |
+
|
605 |
+
if skip_the_layer:
|
606 |
+
layer_outputs = (None, None)
|
607 |
+
|
608 |
+
if output_attentions:
|
609 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
610 |
+
|
611 |
+
if output_hidden_states:
|
612 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
613 |
+
|
614 |
+
if not return_dict:
|
615 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
616 |
+
return BaseModelOutput(
|
617 |
+
last_hidden_state=hidden_states,
|
618 |
+
hidden_states=all_hidden_states,
|
619 |
+
attentions=all_self_attentions,
|
620 |
+
)
|
621 |
+
|
622 |
+
|
623 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->Data2VecAudio
|
624 |
+
class Data2VecAudioAdapter(nn.Module):
|
625 |
+
def __init__(self, config):
|
626 |
+
super().__init__()
|
627 |
+
|
628 |
+
# feature dim might need to be down-projected
|
629 |
+
if config.output_hidden_size != config.hidden_size:
|
630 |
+
self.proj = nn.Linear(config.hidden_size, config.output_hidden_size)
|
631 |
+
self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size)
|
632 |
+
else:
|
633 |
+
self.proj = self.proj_layer_norm = None
|
634 |
+
|
635 |
+
self.layers = nn.ModuleList(Data2VecAudioAdapterLayer(config) for _ in range(config.num_adapter_layers))
|
636 |
+
self.layerdrop = config.layerdrop
|
637 |
+
|
638 |
+
def forward(self, hidden_states):
|
639 |
+
# down project hidden_states if necessary
|
640 |
+
if self.proj is not None and self.proj_layer_norm is not None:
|
641 |
+
hidden_states = self.proj(hidden_states)
|
642 |
+
hidden_states = self.proj_layer_norm(hidden_states)
|
643 |
+
|
644 |
+
hidden_states = hidden_states.transpose(1, 2)
|
645 |
+
|
646 |
+
for layer in self.layers:
|
647 |
+
layerdrop_prob = np.random.random()
|
648 |
+
if not self.training or (layerdrop_prob > self.layerdrop):
|
649 |
+
hidden_states = layer(hidden_states)
|
650 |
+
|
651 |
+
hidden_states = hidden_states.transpose(1, 2)
|
652 |
+
return hidden_states
|
653 |
+
|
654 |
+
|
655 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->Data2VecAudio
|
656 |
+
class Data2VecAudioAdapterLayer(nn.Module):
|
657 |
+
def __init__(self, config):
|
658 |
+
super().__init__()
|
659 |
+
self.conv = nn.Conv1d(
|
660 |
+
config.output_hidden_size,
|
661 |
+
2 * config.output_hidden_size,
|
662 |
+
config.adapter_kernel_size,
|
663 |
+
stride=config.adapter_stride,
|
664 |
+
padding=1,
|
665 |
+
)
|
666 |
+
|
667 |
+
def forward(self, hidden_states):
|
668 |
+
hidden_states = self.conv(hidden_states)
|
669 |
+
hidden_states = nn.functional.glu(hidden_states, dim=1)
|
670 |
+
|
671 |
+
return hidden_states
|
672 |
+
|
673 |
+
|
674 |
+
class Data2VecAudioPreTrainedModel(PreTrainedModel):
|
675 |
+
"""
|
676 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
677 |
+
models.
|
678 |
+
"""
|
679 |
+
|
680 |
+
config_class = Data2VecAudioConfig
|
681 |
+
base_model_prefix = "data2vec_audio"
|
682 |
+
main_input_name = "input_values"
|
683 |
+
supports_gradient_checkpointing = True
|
684 |
+
|
685 |
+
def _init_weights(self, module):
|
686 |
+
"""Initialize the weights"""
|
687 |
+
if isinstance(module, Data2VecAudioFeatureProjection):
|
688 |
+
k = math.sqrt(1 / module.projection.in_features)
|
689 |
+
nn.init.uniform_(module.projection.weight, a=-k, b=k)
|
690 |
+
nn.init.uniform_(module.projection.bias, a=-k, b=k)
|
691 |
+
elif isinstance(module, Data2VecAudioPositionalConvLayer):
|
692 |
+
nn.init.constant_(module.conv.bias, 0)
|
693 |
+
elif isinstance(module, nn.Linear):
|
694 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
695 |
+
|
696 |
+
if module.bias is not None:
|
697 |
+
module.bias.data.zero_()
|
698 |
+
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
699 |
+
if module.bias is not None:
|
700 |
+
module.bias.data.zero_()
|
701 |
+
if module.weight is not None:
|
702 |
+
module.weight.data.fill_(1.0)
|
703 |
+
elif isinstance(module, nn.Conv1d):
|
704 |
+
nn.init.kaiming_normal_(module.weight)
|
705 |
+
|
706 |
+
if module.bias is not None:
|
707 |
+
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
|
708 |
+
nn.init.uniform_(module.bias, a=-k, b=k)
|
709 |
+
|
710 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PreTrainedModel._get_feat_extract_output_lengths with
|
711 |
+
def _get_feat_extract_output_lengths(
|
712 |
+
self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
|
713 |
+
):
|
714 |
+
"""
|
715 |
+
Computes the output length of the convolutional layers
|
716 |
+
"""
|
717 |
+
|
718 |
+
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
|
719 |
+
|
720 |
+
def _conv_out_length(input_length, kernel_size, stride):
|
721 |
+
# 1D convolutional layer output length formula taken
|
722 |
+
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
|
723 |
+
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
|
724 |
+
|
725 |
+
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
|
726 |
+
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
|
727 |
+
|
728 |
+
if add_adapter:
|
729 |
+
for _ in range(self.config.num_adapter_layers):
|
730 |
+
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
|
731 |
+
|
732 |
+
return input_lengths
|
733 |
+
|
734 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PreTrainedModel._get_feature_vector_attention_mask
|
735 |
+
def _get_feature_vector_attention_mask(
|
736 |
+
self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None
|
737 |
+
):
|
738 |
+
# Effectively attention_mask.sum(-1), but not inplace to be able to run
|
739 |
+
# on inference mode.
|
740 |
+
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
|
741 |
+
|
742 |
+
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
|
743 |
+
output_lengths = output_lengths.to(torch.long)
|
744 |
+
|
745 |
+
batch_size = attention_mask.shape[0]
|
746 |
+
|
747 |
+
attention_mask = torch.zeros(
|
748 |
+
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
|
749 |
+
)
|
750 |
+
# these two operations makes sure that all values before the output lengths idxs are attended to
|
751 |
+
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
|
752 |
+
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
|
753 |
+
return attention_mask
|
754 |
+
|
755 |
+
|
756 |
+
DATA2VEC_AUDIO_START_DOCSTRING = r"""
|
757 |
+
Data2VecAudio was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and
|
758 |
+
Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and
|
759 |
+
Michael Auli.
|
760 |
+
|
761 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
762 |
+
library implements for all its model (such as downloading or saving etc.).
|
763 |
+
|
764 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
765 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
766 |
+
behavior.
|
767 |
+
|
768 |
+
Parameters:
|
769 |
+
config ([`Data2VecAudioConfig`]): Model configuration class with all the parameters of the model.
|
770 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
771 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
772 |
+
"""
|
773 |
+
|
774 |
+
|
775 |
+
DATA2VEC_AUDIO_INPUTS_DOCSTRING = r"""
|
776 |
+
Args:
|
777 |
+
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
778 |
+
Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file
|
779 |
+
into an array of type *List[float]* or a *numpy.ndarray*, *e.g.* via the soundfile library (*pip install
|
780 |
+
soundfile*). To prepare the array into *input_values*, the [`AutoProcessor`] should be used for padding and
|
781 |
+
conversion into a tensor of type *torch.FloatTensor*. See [`Wav2Vec2Processor.__call__`] for details.
|
782 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
783 |
+
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
|
784 |
+
1]`:
|
785 |
+
|
786 |
+
- 1 for tokens that are **not masked**,
|
787 |
+
- 0 for tokens that are **masked**.
|
788 |
+
|
789 |
+
[What are attention masks?](../glossary#attention-mask)
|
790 |
+
|
791 |
+
<Tip warning={true}>
|
792 |
+
|
793 |
+
`attention_mask` should be passed if the corresponding processor has `config.return_attention_mask ==
|
794 |
+
True`, which is the case for all pre-trained Data2Vec Audio models. Be aware that that even with
|
795 |
+
`attention_mask`, zero-padded inputs will have slightly different outputs compared to non-padded inputs
|
796 |
+
because there are more than one convolutional layer in the positional encodings. For a more detailed
|
797 |
+
explanation, see [here](https://github.com/huggingface/transformers/issues/25621#issuecomment-1713759349).
|
798 |
+
|
799 |
+
</Tip>
|
800 |
+
|
801 |
+
output_attentions (`bool`, *optional*):
|
802 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
803 |
+
tensors for more detail.
|
804 |
+
output_hidden_states (`bool`, *optional*):
|
805 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
806 |
+
more detail.
|
807 |
+
return_dict (`bool`, *optional*):
|
808 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
809 |
+
"""
|
810 |
+
|
811 |
+
|
812 |
+
@add_start_docstrings(
|
813 |
+
"The bare Data2VecAudio Model transformer outputting raw hidden-states without any specific head on top.",
|
814 |
+
DATA2VEC_AUDIO_START_DOCSTRING,
|
815 |
+
)
|
816 |
+
class Data2VecAudioModel(Data2VecAudioPreTrainedModel):
|
817 |
+
def __init__(self, config: Data2VecAudioConfig):
|
818 |
+
super().__init__(config)
|
819 |
+
self.config = config
|
820 |
+
self.feature_extractor = Data2VecAudioFeatureEncoder(config)
|
821 |
+
self.feature_projection = Data2VecAudioFeatureProjection(config)
|
822 |
+
|
823 |
+
# model only needs masking vector if mask prob is > 0.0
|
824 |
+
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
825 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
|
826 |
+
|
827 |
+
self.encoder = Data2VecAudioEncoder(config)
|
828 |
+
|
829 |
+
self.adapter = Data2VecAudioAdapter(config) if config.add_adapter else None
|
830 |
+
|
831 |
+
# Initialize weights and apply final processing
|
832 |
+
self.post_init()
|
833 |
+
|
834 |
+
def freeze_feature_encoder(self):
|
835 |
+
"""
|
836 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
837 |
+
not be updated during training.
|
838 |
+
"""
|
839 |
+
self.feature_extractor._freeze_parameters()
|
840 |
+
|
841 |
+
def _mask_hidden_states(
|
842 |
+
self,
|
843 |
+
hidden_states: torch.FloatTensor,
|
844 |
+
mask_time_indices: Optional[torch.FloatTensor] = None,
|
845 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
846 |
+
):
|
847 |
+
"""
|
848 |
+
Masks extracted features along time axis and/or along feature axis according to
|
849 |
+
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
850 |
+
"""
|
851 |
+
|
852 |
+
# `config.apply_spec_augment` can set masking to False
|
853 |
+
if not getattr(self.config, "apply_spec_augment", True):
|
854 |
+
return hidden_states
|
855 |
+
|
856 |
+
# generate indices & apply SpecAugment along time axis
|
857 |
+
batch_size, sequence_length, hidden_size = hidden_states.size()
|
858 |
+
|
859 |
+
if mask_time_indices is not None:
|
860 |
+
# apply SpecAugment along time axis with given mask_time_indices
|
861 |
+
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
862 |
+
elif self.config.mask_time_prob > 0 and self.training:
|
863 |
+
mask_time_indices = _compute_mask_indices(
|
864 |
+
(batch_size, sequence_length),
|
865 |
+
mask_prob=self.config.mask_time_prob,
|
866 |
+
mask_length=self.config.mask_time_length,
|
867 |
+
attention_mask=attention_mask,
|
868 |
+
min_masks=self.config.mask_time_min_masks,
|
869 |
+
)
|
870 |
+
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
871 |
+
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
872 |
+
|
873 |
+
if self.config.mask_feature_prob > 0 and self.training:
|
874 |
+
# generate indices & apply SpecAugment along feature axis
|
875 |
+
mask_feature_indices = _compute_mask_indices(
|
876 |
+
(batch_size, hidden_size),
|
877 |
+
mask_prob=self.config.mask_feature_prob,
|
878 |
+
mask_length=self.config.mask_feature_length,
|
879 |
+
min_masks=self.config.mask_feature_min_masks,
|
880 |
+
)
|
881 |
+
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
|
882 |
+
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
|
883 |
+
hidden_states[mask_feature_indices] = 0
|
884 |
+
|
885 |
+
return hidden_states
|
886 |
+
|
887 |
+
@add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING)
|
888 |
+
@add_code_sample_docstrings(
|
889 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
890 |
+
output_type=Wav2Vec2BaseModelOutput,
|
891 |
+
config_class=_CONFIG_FOR_DOC,
|
892 |
+
modality="audio",
|
893 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
894 |
+
)
|
895 |
+
def forward(
|
896 |
+
self,
|
897 |
+
input_values: Optional[torch.Tensor],
|
898 |
+
attention_mask: Optional[torch.Tensor] = None,
|
899 |
+
mask_time_indices: Optional[torch.FloatTensor] = None,
|
900 |
+
output_attentions: Optional[bool] = None,
|
901 |
+
output_hidden_states: Optional[bool] = None,
|
902 |
+
return_dict: Optional[bool] = None,
|
903 |
+
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
|
904 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
905 |
+
output_hidden_states = (
|
906 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
907 |
+
)
|
908 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
909 |
+
|
910 |
+
extract_features = self.feature_extractor(input_values)
|
911 |
+
extract_features = extract_features.transpose(1, 2)
|
912 |
+
|
913 |
+
if attention_mask is not None:
|
914 |
+
# compute reduced attention_mask corresponding to feature vectors
|
915 |
+
attention_mask = self._get_feature_vector_attention_mask(
|
916 |
+
extract_features.shape[1], attention_mask, add_adapter=False
|
917 |
+
)
|
918 |
+
|
919 |
+
hidden_states, extract_features = self.feature_projection(extract_features)
|
920 |
+
hidden_states = self._mask_hidden_states(
|
921 |
+
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
922 |
+
)
|
923 |
+
|
924 |
+
encoder_outputs = self.encoder(
|
925 |
+
hidden_states,
|
926 |
+
attention_mask=attention_mask,
|
927 |
+
output_attentions=output_attentions,
|
928 |
+
output_hidden_states=output_hidden_states,
|
929 |
+
return_dict=return_dict,
|
930 |
+
)
|
931 |
+
|
932 |
+
hidden_states = encoder_outputs[0]
|
933 |
+
|
934 |
+
if self.adapter is not None:
|
935 |
+
hidden_states = self.adapter(hidden_states)
|
936 |
+
|
937 |
+
if not return_dict:
|
938 |
+
return (hidden_states, extract_features) + encoder_outputs[1:]
|
939 |
+
|
940 |
+
return Wav2Vec2BaseModelOutput(
|
941 |
+
last_hidden_state=hidden_states,
|
942 |
+
extract_features=extract_features,
|
943 |
+
hidden_states=encoder_outputs.hidden_states,
|
944 |
+
attentions=encoder_outputs.attentions,
|
945 |
+
)
|
946 |
+
|
947 |
+
|
948 |
+
@add_start_docstrings(
|
949 |
+
"""Data2VecAudio Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
|
950 |
+
DATA2VEC_AUDIO_START_DOCSTRING,
|
951 |
+
)
|
952 |
+
class Data2VecAudioForCTC(Data2VecAudioPreTrainedModel):
|
953 |
+
def __init__(self, config):
|
954 |
+
super().__init__(config)
|
955 |
+
|
956 |
+
self.data2vec_audio = Data2VecAudioModel(config)
|
957 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
958 |
+
|
959 |
+
if config.vocab_size is None:
|
960 |
+
raise ValueError(
|
961 |
+
f"You are trying to instantiate {self.__class__} with a configuration that "
|
962 |
+
"does not define the vocabulary size of the language model head. Please "
|
963 |
+
"instantiate the model as follows: `Data2VecAudioForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
|
964 |
+
"or define `vocab_size` of your model's configuration."
|
965 |
+
)
|
966 |
+
output_hidden_size = (
|
967 |
+
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
|
968 |
+
)
|
969 |
+
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
|
970 |
+
|
971 |
+
# Initialize weights and apply final processing
|
972 |
+
self.post_init()
|
973 |
+
|
974 |
+
def freeze_feature_extractor(self):
|
975 |
+
"""
|
976 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
977 |
+
not be updated during training.
|
978 |
+
"""
|
979 |
+
warnings.warn(
|
980 |
+
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
981 |
+
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
982 |
+
FutureWarning,
|
983 |
+
)
|
984 |
+
self.freeze_feature_encoder()
|
985 |
+
|
986 |
+
def freeze_feature_encoder(self):
|
987 |
+
"""
|
988 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
989 |
+
not be updated during training.
|
990 |
+
"""
|
991 |
+
self.data2vec_audio.feature_extractor._freeze_parameters()
|
992 |
+
|
993 |
+
@add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING)
|
994 |
+
@add_code_sample_docstrings(
|
995 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
996 |
+
output_type=CausalLMOutput,
|
997 |
+
config_class=_CONFIG_FOR_DOC,
|
998 |
+
expected_output=_CTC_EXPECTED_OUTPUT,
|
999 |
+
expected_loss=_CTC_EXPECTED_LOSS,
|
1000 |
+
)
|
1001 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward with wav2vec2->data2vec_audio
|
1002 |
+
def forward(
|
1003 |
+
self,
|
1004 |
+
input_values: Optional[torch.Tensor],
|
1005 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1006 |
+
output_attentions: Optional[bool] = None,
|
1007 |
+
output_hidden_states: Optional[bool] = None,
|
1008 |
+
return_dict: Optional[bool] = None,
|
1009 |
+
labels: Optional[torch.Tensor] = None,
|
1010 |
+
) -> Union[Tuple, CausalLMOutput]:
|
1011 |
+
r"""
|
1012 |
+
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
1013 |
+
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
1014 |
+
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
|
1015 |
+
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
|
1016 |
+
config.vocab_size - 1]`.
|
1017 |
+
"""
|
1018 |
+
|
1019 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1020 |
+
|
1021 |
+
outputs = self.data2vec_audio(
|
1022 |
+
input_values,
|
1023 |
+
attention_mask=attention_mask,
|
1024 |
+
output_attentions=output_attentions,
|
1025 |
+
output_hidden_states=output_hidden_states,
|
1026 |
+
return_dict=return_dict,
|
1027 |
+
)
|
1028 |
+
|
1029 |
+
hidden_states = outputs[0]
|
1030 |
+
hidden_states = self.dropout(hidden_states)
|
1031 |
+
|
1032 |
+
logits = self.lm_head(hidden_states)
|
1033 |
+
|
1034 |
+
loss = None
|
1035 |
+
if labels is not None:
|
1036 |
+
if labels.max() >= self.config.vocab_size:
|
1037 |
+
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
|
1038 |
+
|
1039 |
+
# retrieve loss input_lengths from attention_mask
|
1040 |
+
attention_mask = (
|
1041 |
+
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
|
1042 |
+
)
|
1043 |
+
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
|
1044 |
+
|
1045 |
+
# assuming that padded tokens are filled with -100
|
1046 |
+
# when not being attended to
|
1047 |
+
labels_mask = labels >= 0
|
1048 |
+
target_lengths = labels_mask.sum(-1)
|
1049 |
+
flattened_targets = labels.masked_select(labels_mask)
|
1050 |
+
|
1051 |
+
# ctc_loss doesn't support fp16
|
1052 |
+
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
|
1053 |
+
|
1054 |
+
with torch.backends.cudnn.flags(enabled=False):
|
1055 |
+
loss = nn.functional.ctc_loss(
|
1056 |
+
log_probs,
|
1057 |
+
flattened_targets,
|
1058 |
+
input_lengths,
|
1059 |
+
target_lengths,
|
1060 |
+
blank=self.config.pad_token_id,
|
1061 |
+
reduction=self.config.ctc_loss_reduction,
|
1062 |
+
zero_infinity=self.config.ctc_zero_infinity,
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
if not return_dict:
|
1066 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
1067 |
+
return ((loss,) + output) if loss is not None else output
|
1068 |
+
|
1069 |
+
return CausalLMOutput(
|
1070 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
1071 |
+
)
|
1072 |
+
|
1073 |
+
|
1074 |
+
@add_start_docstrings(
|
1075 |
+
"""
|
1076 |
+
Data2VecAudio Model with a sequence classification head on top (a linear layer over the pooled output) for tasks
|
1077 |
+
like SUPERB Keyword Spotting.
|
1078 |
+
""",
|
1079 |
+
DATA2VEC_AUDIO_START_DOCSTRING,
|
1080 |
+
)
|
1081 |
+
class Data2VecAudioForSequenceClassification(Data2VecAudioPreTrainedModel):
|
1082 |
+
def __init__(self, config):
|
1083 |
+
super().__init__(config)
|
1084 |
+
|
1085 |
+
if hasattr(config, "add_adapter") and config.add_adapter:
|
1086 |
+
raise ValueError(
|
1087 |
+
"Sequence classification does not support the use of Data2VecAudio adapters (config.add_adapter=True)"
|
1088 |
+
)
|
1089 |
+
self.data2vec_audio = Data2VecAudioModel(config)
|
1090 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
1091 |
+
if config.use_weighted_layer_sum:
|
1092 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
1093 |
+
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
1094 |
+
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
|
1095 |
+
|
1096 |
+
# Initialize weights and apply final processing
|
1097 |
+
self.post_init()
|
1098 |
+
|
1099 |
+
def freeze_feature_extractor(self):
|
1100 |
+
"""
|
1101 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
|
1102 |
+
not be updated during training.
|
1103 |
+
"""
|
1104 |
+
warnings.warn(
|
1105 |
+
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
1106 |
+
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
1107 |
+
FutureWarning,
|
1108 |
+
)
|
1109 |
+
self.freeze_feature_encoder()
|
1110 |
+
|
1111 |
+
def freeze_feature_encoder(self):
|
1112 |
+
"""
|
1113 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
1114 |
+
not be updated during training.
|
1115 |
+
"""
|
1116 |
+
self.data2vec_audio.feature_extractor._freeze_parameters()
|
1117 |
+
|
1118 |
+
def freeze_base_model(self):
|
1119 |
+
"""
|
1120 |
+
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
1121 |
+
be updated during training. Only the classification head will be updated.
|
1122 |
+
"""
|
1123 |
+
for param in self.data2vec_audio.parameters():
|
1124 |
+
param.requires_grad = False
|
1125 |
+
|
1126 |
+
@add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING)
|
1127 |
+
@add_code_sample_docstrings(
|
1128 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1129 |
+
output_type=SequenceClassifierOutput,
|
1130 |
+
config_class=_CONFIG_FOR_DOC,
|
1131 |
+
modality="audio",
|
1132 |
+
)
|
1133 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with wav2vec2->data2vec_audio
|
1134 |
+
def forward(
|
1135 |
+
self,
|
1136 |
+
input_values: Optional[torch.Tensor],
|
1137 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1138 |
+
output_attentions: Optional[bool] = None,
|
1139 |
+
output_hidden_states: Optional[bool] = None,
|
1140 |
+
return_dict: Optional[bool] = None,
|
1141 |
+
labels: Optional[torch.Tensor] = None,
|
1142 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1143 |
+
r"""
|
1144 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1145 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1146 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1147 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1148 |
+
"""
|
1149 |
+
|
1150 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1151 |
+
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
1152 |
+
|
1153 |
+
outputs = self.data2vec_audio(
|
1154 |
+
input_values,
|
1155 |
+
attention_mask=attention_mask,
|
1156 |
+
output_attentions=output_attentions,
|
1157 |
+
output_hidden_states=output_hidden_states,
|
1158 |
+
return_dict=return_dict,
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
if self.config.use_weighted_layer_sum:
|
1162 |
+
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
1163 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
1164 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
1165 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
1166 |
+
else:
|
1167 |
+
hidden_states = outputs[0]
|
1168 |
+
|
1169 |
+
hidden_states = self.projector(hidden_states)
|
1170 |
+
if attention_mask is None:
|
1171 |
+
pooled_output = hidden_states.mean(dim=1)
|
1172 |
+
else:
|
1173 |
+
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
|
1174 |
+
hidden_states[~padding_mask] = 0.0
|
1175 |
+
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
|
1176 |
+
|
1177 |
+
logits = self.classifier(pooled_output)
|
1178 |
+
|
1179 |
+
loss = None
|
1180 |
+
if labels is not None:
|
1181 |
+
loss_fct = CrossEntropyLoss()
|
1182 |
+
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
1183 |
+
|
1184 |
+
if not return_dict:
|
1185 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
1186 |
+
return ((loss,) + output) if loss is not None else output
|
1187 |
+
|
1188 |
+
return SequenceClassifierOutput(
|
1189 |
+
loss=loss,
|
1190 |
+
logits=logits,
|
1191 |
+
hidden_states=outputs.hidden_states,
|
1192 |
+
attentions=outputs.attentions,
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
|
1196 |
+
@add_start_docstrings(
|
1197 |
+
"""
|
1198 |
+
Data2VecAudio Model with a frame classification head on top for tasks like Speaker Diarization.
|
1199 |
+
""",
|
1200 |
+
DATA2VEC_AUDIO_START_DOCSTRING,
|
1201 |
+
)
|
1202 |
+
class Data2VecAudioForAudioFrameClassification(Data2VecAudioPreTrainedModel):
|
1203 |
+
def __init__(self, config):
|
1204 |
+
super().__init__(config)
|
1205 |
+
|
1206 |
+
if hasattr(config, "add_adapter") and config.add_adapter:
|
1207 |
+
raise ValueError(
|
1208 |
+
"Audio frame classification does not support the use of Data2VecAudio adapters"
|
1209 |
+
" (config.add_adapter=True)"
|
1210 |
+
)
|
1211 |
+
self.data2vec_audio = Data2VecAudioModel(config)
|
1212 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
1213 |
+
if config.use_weighted_layer_sum:
|
1214 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
1215 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1216 |
+
self.num_labels = config.num_labels
|
1217 |
+
|
1218 |
+
self.init_weights()
|
1219 |
+
|
1220 |
+
def freeze_feature_extractor(self):
|
1221 |
+
"""
|
1222 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
1223 |
+
not be updated during training.
|
1224 |
+
"""
|
1225 |
+
warnings.warn(
|
1226 |
+
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
1227 |
+
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
1228 |
+
FutureWarning,
|
1229 |
+
)
|
1230 |
+
self.freeze_feature_encoder()
|
1231 |
+
|
1232 |
+
def freeze_feature_encoder(self):
|
1233 |
+
"""
|
1234 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
1235 |
+
not be updated during training.
|
1236 |
+
"""
|
1237 |
+
self.data2vec_audio.feature_extractor._freeze_parameters()
|
1238 |
+
|
1239 |
+
def freeze_base_model(self):
|
1240 |
+
"""
|
1241 |
+
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
1242 |
+
be updated during training. Only the classification head will be updated.
|
1243 |
+
"""
|
1244 |
+
for param in self.data2vec_audio.parameters():
|
1245 |
+
param.requires_grad = False
|
1246 |
+
|
1247 |
+
@add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING)
|
1248 |
+
@add_code_sample_docstrings(
|
1249 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1250 |
+
output_type=TokenClassifierOutput,
|
1251 |
+
config_class=_CONFIG_FOR_DOC,
|
1252 |
+
modality="audio",
|
1253 |
+
)
|
1254 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.forward with wav2vec2->data2vec_audio
|
1255 |
+
def forward(
|
1256 |
+
self,
|
1257 |
+
input_values: Optional[torch.Tensor],
|
1258 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1259 |
+
labels: Optional[torch.Tensor] = None,
|
1260 |
+
output_attentions: Optional[bool] = None,
|
1261 |
+
output_hidden_states: Optional[bool] = None,
|
1262 |
+
return_dict: Optional[bool] = None,
|
1263 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1264 |
+
r"""
|
1265 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1266 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1267 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1268 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1269 |
+
"""
|
1270 |
+
|
1271 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1272 |
+
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
1273 |
+
|
1274 |
+
outputs = self.data2vec_audio(
|
1275 |
+
input_values,
|
1276 |
+
attention_mask=attention_mask,
|
1277 |
+
output_attentions=output_attentions,
|
1278 |
+
output_hidden_states=output_hidden_states,
|
1279 |
+
return_dict=return_dict,
|
1280 |
+
)
|
1281 |
+
|
1282 |
+
if self.config.use_weighted_layer_sum:
|
1283 |
+
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
1284 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
1285 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
1286 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
1287 |
+
else:
|
1288 |
+
hidden_states = outputs[0]
|
1289 |
+
|
1290 |
+
logits = self.classifier(hidden_states)
|
1291 |
+
|
1292 |
+
loss = None
|
1293 |
+
if labels is not None:
|
1294 |
+
loss_fct = CrossEntropyLoss()
|
1295 |
+
loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))
|
1296 |
+
|
1297 |
+
if not return_dict:
|
1298 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
1299 |
+
return output
|
1300 |
+
|
1301 |
+
return TokenClassifierOutput(
|
1302 |
+
loss=loss,
|
1303 |
+
logits=logits,
|
1304 |
+
hidden_states=outputs.hidden_states,
|
1305 |
+
attentions=outputs.attentions,
|
1306 |
+
)
|
1307 |
+
|
1308 |
+
|
1309 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss
|
1310 |
+
class AMSoftmaxLoss(nn.Module):
|
1311 |
+
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
|
1312 |
+
super(AMSoftmaxLoss, self).__init__()
|
1313 |
+
self.scale = scale
|
1314 |
+
self.margin = margin
|
1315 |
+
self.num_labels = num_labels
|
1316 |
+
self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
|
1317 |
+
self.loss = nn.CrossEntropyLoss()
|
1318 |
+
|
1319 |
+
def forward(self, hidden_states, labels):
|
1320 |
+
labels = labels.flatten()
|
1321 |
+
weight = nn.functional.normalize(self.weight, dim=0)
|
1322 |
+
hidden_states = nn.functional.normalize(hidden_states, dim=1)
|
1323 |
+
cos_theta = torch.mm(hidden_states, weight)
|
1324 |
+
psi = cos_theta - self.margin
|
1325 |
+
|
1326 |
+
onehot = nn.functional.one_hot(labels, self.num_labels)
|
1327 |
+
logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
|
1328 |
+
loss = self.loss(logits, labels)
|
1329 |
+
|
1330 |
+
return loss
|
1331 |
+
|
1332 |
+
|
1333 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer
|
1334 |
+
class TDNNLayer(nn.Module):
|
1335 |
+
def __init__(self, config, layer_id=0):
|
1336 |
+
super().__init__()
|
1337 |
+
self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
|
1338 |
+
self.out_conv_dim = config.tdnn_dim[layer_id]
|
1339 |
+
self.kernel_size = config.tdnn_kernel[layer_id]
|
1340 |
+
self.dilation = config.tdnn_dilation[layer_id]
|
1341 |
+
|
1342 |
+
self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
|
1343 |
+
self.activation = nn.ReLU()
|
1344 |
+
|
1345 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1346 |
+
if is_peft_available():
|
1347 |
+
from peft.tuners.lora import LoraLayer
|
1348 |
+
|
1349 |
+
if isinstance(self.kernel, LoraLayer):
|
1350 |
+
warnings.warn(
|
1351 |
+
"Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. "
|
1352 |
+
"You should exclude TDNNLayer from LoRA's target modules.",
|
1353 |
+
)
|
1354 |
+
|
1355 |
+
# for backward compatibility, we keep nn.Linear but call F.conv1d for speed up
|
1356 |
+
hidden_states = hidden_states.transpose(1, 2)
|
1357 |
+
weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2)
|
1358 |
+
hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation)
|
1359 |
+
hidden_states = hidden_states.transpose(1, 2)
|
1360 |
+
|
1361 |
+
hidden_states = self.activation(hidden_states)
|
1362 |
+
return hidden_states
|
1363 |
+
|
1364 |
+
|
1365 |
+
@add_start_docstrings(
|
1366 |
+
"""
|
1367 |
+
Data2VecAudio Model with an XVector feature extraction head on top for tasks like Speaker Verification.
|
1368 |
+
""",
|
1369 |
+
DATA2VEC_AUDIO_START_DOCSTRING,
|
1370 |
+
)
|
1371 |
+
class Data2VecAudioForXVector(Data2VecAudioPreTrainedModel):
|
1372 |
+
def __init__(self, config):
|
1373 |
+
super().__init__(config)
|
1374 |
+
|
1375 |
+
self.data2vec_audio = Data2VecAudioModel(config)
|
1376 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
1377 |
+
if config.use_weighted_layer_sum:
|
1378 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
1379 |
+
self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])
|
1380 |
+
|
1381 |
+
tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
|
1382 |
+
self.tdnn = nn.ModuleList(tdnn_layers)
|
1383 |
+
|
1384 |
+
self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
|
1385 |
+
self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)
|
1386 |
+
|
1387 |
+
self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)
|
1388 |
+
|
1389 |
+
self.init_weights()
|
1390 |
+
|
1391 |
+
def freeze_feature_extractor(self):
|
1392 |
+
"""
|
1393 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
1394 |
+
not be updated during training.
|
1395 |
+
"""
|
1396 |
+
warnings.warn(
|
1397 |
+
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
1398 |
+
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
1399 |
+
FutureWarning,
|
1400 |
+
)
|
1401 |
+
self.freeze_feature_encoder()
|
1402 |
+
|
1403 |
+
def freeze_feature_encoder(self):
|
1404 |
+
"""
|
1405 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
1406 |
+
not be updated during training.
|
1407 |
+
"""
|
1408 |
+
self.data2vec_audio.feature_extractor._freeze_parameters()
|
1409 |
+
|
1410 |
+
def freeze_base_model(self):
|
1411 |
+
"""
|
1412 |
+
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
1413 |
+
be updated during training. Only the classification head will be updated.
|
1414 |
+
"""
|
1415 |
+
for param in self.data2vec_audio.parameters():
|
1416 |
+
param.requires_grad = False
|
1417 |
+
|
1418 |
+
def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
|
1419 |
+
"""
|
1420 |
+
Computes the output length of the TDNN layers
|
1421 |
+
"""
|
1422 |
+
|
1423 |
+
def _conv_out_length(input_length, kernel_size, stride):
|
1424 |
+
# 1D convolutional layer output length formula taken
|
1425 |
+
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
|
1426 |
+
return (input_length - kernel_size) // stride + 1
|
1427 |
+
|
1428 |
+
for kernel_size in self.config.tdnn_kernel:
|
1429 |
+
input_lengths = _conv_out_length(input_lengths, kernel_size, 1)
|
1430 |
+
|
1431 |
+
return input_lengths
|
1432 |
+
|
1433 |
+
@add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING)
|
1434 |
+
@add_code_sample_docstrings(
|
1435 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1436 |
+
output_type=XVectorOutput,
|
1437 |
+
config_class=_CONFIG_FOR_DOC,
|
1438 |
+
modality="audio",
|
1439 |
+
)
|
1440 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.forward with wav2vec2->data2vec_audio
|
1441 |
+
def forward(
|
1442 |
+
self,
|
1443 |
+
input_values: Optional[torch.Tensor],
|
1444 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1445 |
+
output_attentions: Optional[bool] = None,
|
1446 |
+
output_hidden_states: Optional[bool] = None,
|
1447 |
+
return_dict: Optional[bool] = None,
|
1448 |
+
labels: Optional[torch.Tensor] = None,
|
1449 |
+
) -> Union[Tuple, XVectorOutput]:
|
1450 |
+
r"""
|
1451 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1452 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1453 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1454 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1455 |
+
"""
|
1456 |
+
|
1457 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1458 |
+
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
1459 |
+
|
1460 |
+
outputs = self.data2vec_audio(
|
1461 |
+
input_values,
|
1462 |
+
attention_mask=attention_mask,
|
1463 |
+
output_attentions=output_attentions,
|
1464 |
+
output_hidden_states=output_hidden_states,
|
1465 |
+
return_dict=return_dict,
|
1466 |
+
)
|
1467 |
+
|
1468 |
+
if self.config.use_weighted_layer_sum:
|
1469 |
+
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
1470 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
1471 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
1472 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
1473 |
+
else:
|
1474 |
+
hidden_states = outputs[0]
|
1475 |
+
|
1476 |
+
hidden_states = self.projector(hidden_states)
|
1477 |
+
|
1478 |
+
for tdnn_layer in self.tdnn:
|
1479 |
+
hidden_states = tdnn_layer(hidden_states)
|
1480 |
+
|
1481 |
+
# Statistic Pooling
|
1482 |
+
if attention_mask is None:
|
1483 |
+
mean_features = hidden_states.mean(dim=1)
|
1484 |
+
std_features = hidden_states.std(dim=1)
|
1485 |
+
else:
|
1486 |
+
feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
|
1487 |
+
tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
|
1488 |
+
mean_features = []
|
1489 |
+
std_features = []
|
1490 |
+
for i, length in enumerate(tdnn_output_lengths):
|
1491 |
+
mean_features.append(hidden_states[i, :length].mean(dim=0))
|
1492 |
+
std_features.append(hidden_states[i, :length].std(dim=0))
|
1493 |
+
mean_features = torch.stack(mean_features)
|
1494 |
+
std_features = torch.stack(std_features)
|
1495 |
+
statistic_pooling = torch.cat([mean_features, std_features], dim=-1)
|
1496 |
+
|
1497 |
+
output_embeddings = self.feature_extractor(statistic_pooling)
|
1498 |
+
logits = self.classifier(output_embeddings)
|
1499 |
+
|
1500 |
+
loss = None
|
1501 |
+
if labels is not None:
|
1502 |
+
loss = self.objective(logits, labels)
|
1503 |
+
|
1504 |
+
if not return_dict:
|
1505 |
+
output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
|
1506 |
+
return ((loss,) + output) if loss is not None else output
|
1507 |
+
|
1508 |
+
return XVectorOutput(
|
1509 |
+
loss=loss,
|
1510 |
+
logits=logits,
|
1511 |
+
embeddings=output_embeddings,
|
1512 |
+
hidden_states=outputs.hidden_states,
|
1513 |
+
attentions=outputs.attentions,
|
1514 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_text.py
ADDED
@@ -0,0 +1,1557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Data2VecText model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from ...activations import ACT2FN, gelu
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
28 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
29 |
+
CausalLMOutputWithCrossAttentions,
|
30 |
+
MaskedLMOutput,
|
31 |
+
MultipleChoiceModelOutput,
|
32 |
+
QuestionAnsweringModelOutput,
|
33 |
+
SequenceClassifierOutput,
|
34 |
+
TokenClassifierOutput,
|
35 |
+
)
|
36 |
+
from ...modeling_utils import PreTrainedModel
|
37 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
38 |
+
from ...utils import (
|
39 |
+
add_code_sample_docstrings,
|
40 |
+
add_start_docstrings,
|
41 |
+
add_start_docstrings_to_model_forward,
|
42 |
+
logging,
|
43 |
+
replace_return_docstrings,
|
44 |
+
)
|
45 |
+
from .configuration_data2vec_text import Data2VecTextConfig
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
_HIDDEN_STATES_START_POSITION = 2
|
52 |
+
|
53 |
+
# General docstring
|
54 |
+
_CHECKPOINT_FOR_DOC = "facebook/data2vec-text-base"
|
55 |
+
_CONFIG_FOR_DOC = "Data2VecTextConfig"
|
56 |
+
|
57 |
+
|
58 |
+
from ..deprecated._archive_maps import DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
59 |
+
|
60 |
+
|
61 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Data2VecText
|
62 |
+
class Data2VecTextForTextEmbeddings(nn.Module):
|
63 |
+
"""
|
64 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
65 |
+
"""
|
66 |
+
|
67 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
|
68 |
+
def __init__(self, config):
|
69 |
+
super().__init__()
|
70 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
71 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
72 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
73 |
+
|
74 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
75 |
+
# any TensorFlow checkpoint file
|
76 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
77 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
78 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
79 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
80 |
+
self.register_buffer(
|
81 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
82 |
+
)
|
83 |
+
self.register_buffer(
|
84 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
85 |
+
)
|
86 |
+
|
87 |
+
# End copy
|
88 |
+
self.padding_idx = config.pad_token_id
|
89 |
+
self.position_embeddings = nn.Embedding(
|
90 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
91 |
+
)
|
92 |
+
|
93 |
+
def forward(
|
94 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
95 |
+
):
|
96 |
+
if position_ids is None:
|
97 |
+
if input_ids is not None:
|
98 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
99 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
100 |
+
else:
|
101 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
102 |
+
|
103 |
+
if input_ids is not None:
|
104 |
+
input_shape = input_ids.size()
|
105 |
+
else:
|
106 |
+
input_shape = inputs_embeds.size()[:-1]
|
107 |
+
|
108 |
+
seq_length = input_shape[1]
|
109 |
+
|
110 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
111 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
112 |
+
# issue #5664
|
113 |
+
if token_type_ids is None:
|
114 |
+
if hasattr(self, "token_type_ids"):
|
115 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
116 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
117 |
+
token_type_ids = buffered_token_type_ids_expanded
|
118 |
+
else:
|
119 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
120 |
+
|
121 |
+
if inputs_embeds is None:
|
122 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
123 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
124 |
+
|
125 |
+
embeddings = inputs_embeds + token_type_embeddings
|
126 |
+
if self.position_embedding_type == "absolute":
|
127 |
+
position_embeddings = self.position_embeddings(position_ids)
|
128 |
+
embeddings += position_embeddings
|
129 |
+
embeddings = self.LayerNorm(embeddings)
|
130 |
+
embeddings = self.dropout(embeddings)
|
131 |
+
return embeddings
|
132 |
+
|
133 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
134 |
+
"""
|
135 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
inputs_embeds: torch.Tensor
|
139 |
+
|
140 |
+
Returns: torch.Tensor
|
141 |
+
"""
|
142 |
+
input_shape = inputs_embeds.size()[:-1]
|
143 |
+
sequence_length = input_shape[1]
|
144 |
+
|
145 |
+
position_ids = torch.arange(
|
146 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
147 |
+
)
|
148 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
149 |
+
|
150 |
+
|
151 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Data2VecText
|
152 |
+
class Data2VecTextSelfAttention(nn.Module):
|
153 |
+
def __init__(self, config, position_embedding_type=None):
|
154 |
+
super().__init__()
|
155 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
156 |
+
raise ValueError(
|
157 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
158 |
+
f"heads ({config.num_attention_heads})"
|
159 |
+
)
|
160 |
+
|
161 |
+
self.num_attention_heads = config.num_attention_heads
|
162 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
163 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
164 |
+
|
165 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
166 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
167 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
168 |
+
|
169 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
170 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
171 |
+
config, "position_embedding_type", "absolute"
|
172 |
+
)
|
173 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
174 |
+
self.max_position_embeddings = config.max_position_embeddings
|
175 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
176 |
+
|
177 |
+
self.is_decoder = config.is_decoder
|
178 |
+
|
179 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
180 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
181 |
+
x = x.view(new_x_shape)
|
182 |
+
return x.permute(0, 2, 1, 3)
|
183 |
+
|
184 |
+
def forward(
|
185 |
+
self,
|
186 |
+
hidden_states: torch.Tensor,
|
187 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
188 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
189 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
190 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
191 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
192 |
+
output_attentions: Optional[bool] = False,
|
193 |
+
) -> Tuple[torch.Tensor]:
|
194 |
+
mixed_query_layer = self.query(hidden_states)
|
195 |
+
|
196 |
+
# If this is instantiated as a cross-attention module, the keys
|
197 |
+
# and values come from an encoder; the attention mask needs to be
|
198 |
+
# such that the encoder's padding tokens are not attended to.
|
199 |
+
is_cross_attention = encoder_hidden_states is not None
|
200 |
+
|
201 |
+
if is_cross_attention and past_key_value is not None:
|
202 |
+
# reuse k,v, cross_attentions
|
203 |
+
key_layer = past_key_value[0]
|
204 |
+
value_layer = past_key_value[1]
|
205 |
+
attention_mask = encoder_attention_mask
|
206 |
+
elif is_cross_attention:
|
207 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
208 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
209 |
+
attention_mask = encoder_attention_mask
|
210 |
+
elif past_key_value is not None:
|
211 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
212 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
213 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
214 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
215 |
+
else:
|
216 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
217 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
218 |
+
|
219 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
220 |
+
|
221 |
+
use_cache = past_key_value is not None
|
222 |
+
if self.is_decoder:
|
223 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
224 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
225 |
+
# key/value_states (first "if" case)
|
226 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
227 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
228 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
229 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
230 |
+
past_key_value = (key_layer, value_layer)
|
231 |
+
|
232 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
233 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
234 |
+
|
235 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
236 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
237 |
+
if use_cache:
|
238 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
239 |
+
-1, 1
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
243 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
244 |
+
distance = position_ids_l - position_ids_r
|
245 |
+
|
246 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
247 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
248 |
+
|
249 |
+
if self.position_embedding_type == "relative_key":
|
250 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
251 |
+
attention_scores = attention_scores + relative_position_scores
|
252 |
+
elif self.position_embedding_type == "relative_key_query":
|
253 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
254 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
255 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
256 |
+
|
257 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
258 |
+
if attention_mask is not None:
|
259 |
+
# Apply the attention mask is (precomputed for all layers in Data2VecTextModel forward() function)
|
260 |
+
attention_scores = attention_scores + attention_mask
|
261 |
+
|
262 |
+
# Normalize the attention scores to probabilities.
|
263 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
264 |
+
|
265 |
+
# This is actually dropping out entire tokens to attend to, which might
|
266 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
267 |
+
attention_probs = self.dropout(attention_probs)
|
268 |
+
|
269 |
+
# Mask heads if we want to
|
270 |
+
if head_mask is not None:
|
271 |
+
attention_probs = attention_probs * head_mask
|
272 |
+
|
273 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
274 |
+
|
275 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
276 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
277 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
278 |
+
|
279 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
280 |
+
|
281 |
+
if self.is_decoder:
|
282 |
+
outputs = outputs + (past_key_value,)
|
283 |
+
return outputs
|
284 |
+
|
285 |
+
|
286 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
287 |
+
class Data2VecTextSelfOutput(nn.Module):
|
288 |
+
def __init__(self, config):
|
289 |
+
super().__init__()
|
290 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
291 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
292 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
293 |
+
|
294 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
295 |
+
hidden_states = self.dense(hidden_states)
|
296 |
+
hidden_states = self.dropout(hidden_states)
|
297 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
298 |
+
return hidden_states
|
299 |
+
|
300 |
+
|
301 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Data2VecText
|
302 |
+
class Data2VecTextAttention(nn.Module):
|
303 |
+
def __init__(self, config, position_embedding_type=None):
|
304 |
+
super().__init__()
|
305 |
+
self.self = Data2VecTextSelfAttention(config, position_embedding_type=position_embedding_type)
|
306 |
+
self.output = Data2VecTextSelfOutput(config)
|
307 |
+
self.pruned_heads = set()
|
308 |
+
|
309 |
+
def prune_heads(self, heads):
|
310 |
+
if len(heads) == 0:
|
311 |
+
return
|
312 |
+
heads, index = find_pruneable_heads_and_indices(
|
313 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
314 |
+
)
|
315 |
+
|
316 |
+
# Prune linear layers
|
317 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
318 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
319 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
320 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
321 |
+
|
322 |
+
# Update hyper params and store pruned heads
|
323 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
324 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
325 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
326 |
+
|
327 |
+
def forward(
|
328 |
+
self,
|
329 |
+
hidden_states: torch.Tensor,
|
330 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
331 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
332 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
333 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
334 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
335 |
+
output_attentions: Optional[bool] = False,
|
336 |
+
) -> Tuple[torch.Tensor]:
|
337 |
+
self_outputs = self.self(
|
338 |
+
hidden_states,
|
339 |
+
attention_mask,
|
340 |
+
head_mask,
|
341 |
+
encoder_hidden_states,
|
342 |
+
encoder_attention_mask,
|
343 |
+
past_key_value,
|
344 |
+
output_attentions,
|
345 |
+
)
|
346 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
347 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
348 |
+
return outputs
|
349 |
+
|
350 |
+
|
351 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
352 |
+
class Data2VecTextIntermediate(nn.Module):
|
353 |
+
def __init__(self, config):
|
354 |
+
super().__init__()
|
355 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
356 |
+
if isinstance(config.hidden_act, str):
|
357 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
358 |
+
else:
|
359 |
+
self.intermediate_act_fn = config.hidden_act
|
360 |
+
|
361 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
362 |
+
hidden_states = self.dense(hidden_states)
|
363 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
364 |
+
return hidden_states
|
365 |
+
|
366 |
+
|
367 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
368 |
+
class Data2VecTextOutput(nn.Module):
|
369 |
+
def __init__(self, config):
|
370 |
+
super().__init__()
|
371 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
372 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
373 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
374 |
+
|
375 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
376 |
+
hidden_states = self.dense(hidden_states)
|
377 |
+
hidden_states = self.dropout(hidden_states)
|
378 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
379 |
+
return hidden_states
|
380 |
+
|
381 |
+
|
382 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Data2VecText
|
383 |
+
class Data2VecTextLayer(nn.Module):
|
384 |
+
def __init__(self, config):
|
385 |
+
super().__init__()
|
386 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
387 |
+
self.seq_len_dim = 1
|
388 |
+
self.attention = Data2VecTextAttention(config)
|
389 |
+
self.is_decoder = config.is_decoder
|
390 |
+
self.add_cross_attention = config.add_cross_attention
|
391 |
+
if self.add_cross_attention:
|
392 |
+
if not self.is_decoder:
|
393 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
394 |
+
self.crossattention = Data2VecTextAttention(config, position_embedding_type="absolute")
|
395 |
+
self.intermediate = Data2VecTextIntermediate(config)
|
396 |
+
self.output = Data2VecTextOutput(config)
|
397 |
+
|
398 |
+
def forward(
|
399 |
+
self,
|
400 |
+
hidden_states: torch.Tensor,
|
401 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
402 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
403 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
404 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
405 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
406 |
+
output_attentions: Optional[bool] = False,
|
407 |
+
) -> Tuple[torch.Tensor]:
|
408 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
409 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
410 |
+
self_attention_outputs = self.attention(
|
411 |
+
hidden_states,
|
412 |
+
attention_mask,
|
413 |
+
head_mask,
|
414 |
+
output_attentions=output_attentions,
|
415 |
+
past_key_value=self_attn_past_key_value,
|
416 |
+
)
|
417 |
+
attention_output = self_attention_outputs[0]
|
418 |
+
|
419 |
+
# if decoder, the last output is tuple of self-attn cache
|
420 |
+
if self.is_decoder:
|
421 |
+
outputs = self_attention_outputs[1:-1]
|
422 |
+
present_key_value = self_attention_outputs[-1]
|
423 |
+
else:
|
424 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
425 |
+
|
426 |
+
cross_attn_present_key_value = None
|
427 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
428 |
+
if not hasattr(self, "crossattention"):
|
429 |
+
raise ValueError(
|
430 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
431 |
+
" by setting `config.add_cross_attention=True`"
|
432 |
+
)
|
433 |
+
|
434 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
435 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
436 |
+
cross_attention_outputs = self.crossattention(
|
437 |
+
attention_output,
|
438 |
+
attention_mask,
|
439 |
+
head_mask,
|
440 |
+
encoder_hidden_states,
|
441 |
+
encoder_attention_mask,
|
442 |
+
cross_attn_past_key_value,
|
443 |
+
output_attentions,
|
444 |
+
)
|
445 |
+
attention_output = cross_attention_outputs[0]
|
446 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
447 |
+
|
448 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
449 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
450 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
451 |
+
|
452 |
+
layer_output = apply_chunking_to_forward(
|
453 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
454 |
+
)
|
455 |
+
outputs = (layer_output,) + outputs
|
456 |
+
|
457 |
+
# if decoder, return the attn key/values as the last output
|
458 |
+
if self.is_decoder:
|
459 |
+
outputs = outputs + (present_key_value,)
|
460 |
+
|
461 |
+
return outputs
|
462 |
+
|
463 |
+
def feed_forward_chunk(self, attention_output):
|
464 |
+
intermediate_output = self.intermediate(attention_output)
|
465 |
+
layer_output = self.output(intermediate_output, attention_output)
|
466 |
+
return layer_output
|
467 |
+
|
468 |
+
|
469 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Data2VecText
|
470 |
+
class Data2VecTextEncoder(nn.Module):
|
471 |
+
def __init__(self, config):
|
472 |
+
super().__init__()
|
473 |
+
self.config = config
|
474 |
+
self.layer = nn.ModuleList([Data2VecTextLayer(config) for _ in range(config.num_hidden_layers)])
|
475 |
+
self.gradient_checkpointing = False
|
476 |
+
|
477 |
+
def forward(
|
478 |
+
self,
|
479 |
+
hidden_states: torch.Tensor,
|
480 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
481 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
482 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
483 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
484 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
485 |
+
use_cache: Optional[bool] = None,
|
486 |
+
output_attentions: Optional[bool] = False,
|
487 |
+
output_hidden_states: Optional[bool] = False,
|
488 |
+
return_dict: Optional[bool] = True,
|
489 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
490 |
+
all_hidden_states = () if output_hidden_states else None
|
491 |
+
all_self_attentions = () if output_attentions else None
|
492 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
493 |
+
|
494 |
+
if self.gradient_checkpointing and self.training:
|
495 |
+
if use_cache:
|
496 |
+
logger.warning_once(
|
497 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
498 |
+
)
|
499 |
+
use_cache = False
|
500 |
+
|
501 |
+
next_decoder_cache = () if use_cache else None
|
502 |
+
for i, layer_module in enumerate(self.layer):
|
503 |
+
if output_hidden_states:
|
504 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
505 |
+
|
506 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
507 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
508 |
+
|
509 |
+
if self.gradient_checkpointing and self.training:
|
510 |
+
layer_outputs = self._gradient_checkpointing_func(
|
511 |
+
layer_module.__call__,
|
512 |
+
hidden_states,
|
513 |
+
attention_mask,
|
514 |
+
layer_head_mask,
|
515 |
+
encoder_hidden_states,
|
516 |
+
encoder_attention_mask,
|
517 |
+
past_key_value,
|
518 |
+
output_attentions,
|
519 |
+
)
|
520 |
+
else:
|
521 |
+
layer_outputs = layer_module(
|
522 |
+
hidden_states,
|
523 |
+
attention_mask,
|
524 |
+
layer_head_mask,
|
525 |
+
encoder_hidden_states,
|
526 |
+
encoder_attention_mask,
|
527 |
+
past_key_value,
|
528 |
+
output_attentions,
|
529 |
+
)
|
530 |
+
|
531 |
+
hidden_states = layer_outputs[0]
|
532 |
+
if use_cache:
|
533 |
+
next_decoder_cache += (layer_outputs[-1],)
|
534 |
+
if output_attentions:
|
535 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
536 |
+
if self.config.add_cross_attention:
|
537 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
538 |
+
|
539 |
+
if output_hidden_states:
|
540 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
541 |
+
|
542 |
+
if not return_dict:
|
543 |
+
return tuple(
|
544 |
+
v
|
545 |
+
for v in [
|
546 |
+
hidden_states,
|
547 |
+
next_decoder_cache,
|
548 |
+
all_hidden_states,
|
549 |
+
all_self_attentions,
|
550 |
+
all_cross_attentions,
|
551 |
+
]
|
552 |
+
if v is not None
|
553 |
+
)
|
554 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
555 |
+
last_hidden_state=hidden_states,
|
556 |
+
past_key_values=next_decoder_cache,
|
557 |
+
hidden_states=all_hidden_states,
|
558 |
+
attentions=all_self_attentions,
|
559 |
+
cross_attentions=all_cross_attentions,
|
560 |
+
)
|
561 |
+
|
562 |
+
|
563 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
564 |
+
class Data2VecTextPooler(nn.Module):
|
565 |
+
def __init__(self, config):
|
566 |
+
super().__init__()
|
567 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
568 |
+
self.activation = nn.Tanh()
|
569 |
+
|
570 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
571 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
572 |
+
# to the first token.
|
573 |
+
first_token_tensor = hidden_states[:, 0]
|
574 |
+
pooled_output = self.dense(first_token_tensor)
|
575 |
+
pooled_output = self.activation(pooled_output)
|
576 |
+
return pooled_output
|
577 |
+
|
578 |
+
|
579 |
+
class Data2VecTextPreTrainedModel(PreTrainedModel):
|
580 |
+
"""
|
581 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
582 |
+
models.
|
583 |
+
"""
|
584 |
+
|
585 |
+
config_class = Data2VecTextConfig
|
586 |
+
base_model_prefix = "data2vec_text"
|
587 |
+
supports_gradient_checkpointing = True
|
588 |
+
_no_split_modules = ["Data2VecTextForTextEmbeddings", "Data2VecTextLayer"]
|
589 |
+
|
590 |
+
def _init_weights(self, module):
|
591 |
+
"""Initialize the weights"""
|
592 |
+
if isinstance(module, nn.Linear):
|
593 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
594 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
595 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
596 |
+
if module.bias is not None:
|
597 |
+
module.bias.data.zero_()
|
598 |
+
elif isinstance(module, nn.Embedding):
|
599 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
600 |
+
if module.padding_idx is not None:
|
601 |
+
module.weight.data[module.padding_idx].zero_()
|
602 |
+
elif isinstance(module, nn.LayerNorm):
|
603 |
+
if hasattr(module, "bias") and module.bias is not None:
|
604 |
+
module.bias.data.zero_()
|
605 |
+
if hasattr(module, "weight") and module.weight is not None:
|
606 |
+
module.weight.data.fill_(1.0)
|
607 |
+
|
608 |
+
|
609 |
+
DATA2VECTEXT_START_DOCSTRING = r"""
|
610 |
+
Data2VecText was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and
|
611 |
+
Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and
|
612 |
+
Michael Auli.
|
613 |
+
|
614 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
615 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
616 |
+
etc.)
|
617 |
+
|
618 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
619 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
620 |
+
and behavior.
|
621 |
+
|
622 |
+
Parameters:
|
623 |
+
config ([`Data2VecTextConfig`]): Model configuration class with all the parameters of the
|
624 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
625 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
626 |
+
"""
|
627 |
+
|
628 |
+
DATA2VECTEXT_INPUTS_DOCSTRING = r"""
|
629 |
+
Args:
|
630 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
631 |
+
Indices of input sequence tokens in the vocabulary.
|
632 |
+
|
633 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
634 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
635 |
+
|
636 |
+
[What are input IDs?](../glossary#input-ids)
|
637 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
638 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
639 |
+
|
640 |
+
- 1 for tokens that are **not masked**,
|
641 |
+
- 0 for tokens that are **masked**.
|
642 |
+
|
643 |
+
[What are attention masks?](../glossary#attention-mask)
|
644 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
645 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
646 |
+
1]`:
|
647 |
+
|
648 |
+
- 0 corresponds to a *sentence A* token,
|
649 |
+
- 1 corresponds to a *sentence B* token.
|
650 |
+
|
651 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
652 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
653 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
654 |
+
config.max_position_embeddings - 1]`.
|
655 |
+
|
656 |
+
[What are position IDs?](../glossary#position-ids)
|
657 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
658 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
659 |
+
|
660 |
+
- 1 indicates the head is **not masked**,
|
661 |
+
- 0 indicates the head is **masked**.
|
662 |
+
|
663 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
664 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
665 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
666 |
+
model's internal embedding lookup matrix.
|
667 |
+
output_attentions (`bool`, *optional*):
|
668 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
669 |
+
tensors for more detail.
|
670 |
+
output_hidden_states (`bool`, *optional*):
|
671 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
672 |
+
more detail.
|
673 |
+
return_dict (`bool`, *optional*):
|
674 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
675 |
+
"""
|
676 |
+
|
677 |
+
|
678 |
+
@add_start_docstrings(
|
679 |
+
"The bare Data2VecText Model for text transformer outputting raw hidden-states without any specific head on top.",
|
680 |
+
DATA2VECTEXT_START_DOCSTRING,
|
681 |
+
)
|
682 |
+
class Data2VecTextModel(Data2VecTextPreTrainedModel):
|
683 |
+
"""
|
684 |
+
|
685 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
686 |
+
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
|
687 |
+
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
688 |
+
Kaiser and Illia Polosukhin.
|
689 |
+
|
690 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
691 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
692 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
693 |
+
|
694 |
+
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
|
695 |
+
|
696 |
+
"""
|
697 |
+
|
698 |
+
def __init__(self, config, add_pooling_layer=True):
|
699 |
+
super().__init__(config)
|
700 |
+
self.config = config
|
701 |
+
|
702 |
+
self.embeddings = Data2VecTextForTextEmbeddings(config)
|
703 |
+
self.encoder = Data2VecTextEncoder(config)
|
704 |
+
|
705 |
+
self.pooler = Data2VecTextPooler(config) if add_pooling_layer else None
|
706 |
+
|
707 |
+
# Initialize weights and apply final processing
|
708 |
+
self.post_init()
|
709 |
+
|
710 |
+
def get_input_embeddings(self):
|
711 |
+
return self.embeddings.word_embeddings
|
712 |
+
|
713 |
+
def set_input_embeddings(self, value):
|
714 |
+
self.embeddings.word_embeddings = value
|
715 |
+
|
716 |
+
def _prune_heads(self, heads_to_prune):
|
717 |
+
"""
|
718 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
719 |
+
class PreTrainedModel
|
720 |
+
"""
|
721 |
+
for layer, heads in heads_to_prune.items():
|
722 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
723 |
+
|
724 |
+
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
725 |
+
@add_code_sample_docstrings(
|
726 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
727 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
728 |
+
config_class=_CONFIG_FOR_DOC,
|
729 |
+
)
|
730 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
|
731 |
+
def forward(
|
732 |
+
self,
|
733 |
+
input_ids: Optional[torch.Tensor] = None,
|
734 |
+
attention_mask: Optional[torch.Tensor] = None,
|
735 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
736 |
+
position_ids: Optional[torch.Tensor] = None,
|
737 |
+
head_mask: Optional[torch.Tensor] = None,
|
738 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
739 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
740 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
741 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
742 |
+
use_cache: Optional[bool] = None,
|
743 |
+
output_attentions: Optional[bool] = None,
|
744 |
+
output_hidden_states: Optional[bool] = None,
|
745 |
+
return_dict: Optional[bool] = None,
|
746 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
747 |
+
r"""
|
748 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
749 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
750 |
+
the model is configured as a decoder.
|
751 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
752 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
753 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
754 |
+
|
755 |
+
- 1 for tokens that are **not masked**,
|
756 |
+
- 0 for tokens that are **masked**.
|
757 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
758 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
759 |
+
|
760 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
761 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
762 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
763 |
+
use_cache (`bool`, *optional*):
|
764 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
765 |
+
`past_key_values`).
|
766 |
+
"""
|
767 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
768 |
+
output_hidden_states = (
|
769 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
770 |
+
)
|
771 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
772 |
+
|
773 |
+
if self.config.is_decoder:
|
774 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
775 |
+
else:
|
776 |
+
use_cache = False
|
777 |
+
|
778 |
+
if input_ids is not None and inputs_embeds is not None:
|
779 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
780 |
+
elif input_ids is not None:
|
781 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
782 |
+
input_shape = input_ids.size()
|
783 |
+
elif inputs_embeds is not None:
|
784 |
+
input_shape = inputs_embeds.size()[:-1]
|
785 |
+
else:
|
786 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
787 |
+
|
788 |
+
batch_size, seq_length = input_shape
|
789 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
790 |
+
|
791 |
+
# past_key_values_length
|
792 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
793 |
+
|
794 |
+
if attention_mask is None:
|
795 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
796 |
+
|
797 |
+
if token_type_ids is None:
|
798 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
799 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
800 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
801 |
+
token_type_ids = buffered_token_type_ids_expanded
|
802 |
+
else:
|
803 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
804 |
+
|
805 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
806 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
807 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
808 |
+
|
809 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
810 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
811 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
812 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
813 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
814 |
+
if encoder_attention_mask is None:
|
815 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
816 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
817 |
+
else:
|
818 |
+
encoder_extended_attention_mask = None
|
819 |
+
|
820 |
+
# Prepare head mask if needed
|
821 |
+
# 1.0 in head_mask indicate we keep the head
|
822 |
+
# attention_probs has shape bsz x n_heads x N x N
|
823 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
824 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
825 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
826 |
+
|
827 |
+
embedding_output = self.embeddings(
|
828 |
+
input_ids=input_ids,
|
829 |
+
position_ids=position_ids,
|
830 |
+
token_type_ids=token_type_ids,
|
831 |
+
inputs_embeds=inputs_embeds,
|
832 |
+
past_key_values_length=past_key_values_length,
|
833 |
+
)
|
834 |
+
encoder_outputs = self.encoder(
|
835 |
+
embedding_output,
|
836 |
+
attention_mask=extended_attention_mask,
|
837 |
+
head_mask=head_mask,
|
838 |
+
encoder_hidden_states=encoder_hidden_states,
|
839 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
840 |
+
past_key_values=past_key_values,
|
841 |
+
use_cache=use_cache,
|
842 |
+
output_attentions=output_attentions,
|
843 |
+
output_hidden_states=output_hidden_states,
|
844 |
+
return_dict=return_dict,
|
845 |
+
)
|
846 |
+
sequence_output = encoder_outputs[0]
|
847 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
848 |
+
|
849 |
+
if not return_dict:
|
850 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
851 |
+
|
852 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
853 |
+
last_hidden_state=sequence_output,
|
854 |
+
pooler_output=pooled_output,
|
855 |
+
past_key_values=encoder_outputs.past_key_values,
|
856 |
+
hidden_states=encoder_outputs.hidden_states,
|
857 |
+
attentions=encoder_outputs.attentions,
|
858 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
859 |
+
)
|
860 |
+
|
861 |
+
|
862 |
+
@add_start_docstrings(
|
863 |
+
"""Data2VecText Model with a `language modeling` head on top for CLM fine-tuning.""", DATA2VECTEXT_START_DOCSTRING
|
864 |
+
)
|
865 |
+
class Data2VecTextForCausalLM(Data2VecTextPreTrainedModel):
|
866 |
+
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
|
867 |
+
|
868 |
+
def __init__(self, config):
|
869 |
+
super().__init__(config)
|
870 |
+
|
871 |
+
if not config.is_decoder:
|
872 |
+
logger.warning("If you want to use `Data2VecTextLMHeadModel` as a standalone, add `is_decoder=True.`")
|
873 |
+
|
874 |
+
self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False)
|
875 |
+
self.lm_head = Data2VecTextLMHead(config)
|
876 |
+
|
877 |
+
# Initialize weights and apply final processing
|
878 |
+
self.post_init()
|
879 |
+
|
880 |
+
def get_output_embeddings(self):
|
881 |
+
return self.lm_head.decoder
|
882 |
+
|
883 |
+
def set_output_embeddings(self, new_embeddings):
|
884 |
+
self.lm_head.decoder = new_embeddings
|
885 |
+
|
886 |
+
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
887 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
888 |
+
def forward(
|
889 |
+
self,
|
890 |
+
input_ids: Optional[torch.LongTensor] = None,
|
891 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
892 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
893 |
+
position_ids: Optional[torch.LongTensor] = None,
|
894 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
895 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
896 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
897 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
898 |
+
labels: Optional[torch.LongTensor] = None,
|
899 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
900 |
+
use_cache: Optional[bool] = None,
|
901 |
+
output_attentions: Optional[bool] = None,
|
902 |
+
output_hidden_states: Optional[bool] = None,
|
903 |
+
return_dict: Optional[bool] = None,
|
904 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
905 |
+
r"""
|
906 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
907 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
908 |
+
the model is configured as a decoder.
|
909 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
910 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
911 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
912 |
+
|
913 |
+
- 1 for tokens that are **not masked**,
|
914 |
+
- 0 for tokens that are **masked**.
|
915 |
+
|
916 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
917 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
918 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
919 |
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
920 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
921 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
922 |
+
|
923 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
924 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
925 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
926 |
+
use_cache (`bool`, *optional*):
|
927 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
928 |
+
`past_key_values`).
|
929 |
+
|
930 |
+
Returns:
|
931 |
+
|
932 |
+
Example:
|
933 |
+
|
934 |
+
```python
|
935 |
+
>>> from transformers import AutoTokenizer, Data2VecTextForCausalLM, Data2VecTextConfig
|
936 |
+
>>> import torch
|
937 |
+
|
938 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/data2vec-text-base")
|
939 |
+
>>> config = Data2VecTextConfig.from_pretrained("facebook/data2vec-text-base")
|
940 |
+
>>> config.is_decoder = True
|
941 |
+
>>> model = Data2VecTextForCausalLM.from_pretrained("facebook/data2vec-text-base", config=config)
|
942 |
+
|
943 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
944 |
+
>>> outputs = model(**inputs)
|
945 |
+
|
946 |
+
>>> prediction_logits = outputs.logits
|
947 |
+
```"""
|
948 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
949 |
+
if labels is not None:
|
950 |
+
use_cache = False
|
951 |
+
|
952 |
+
outputs = self.data2vec_text(
|
953 |
+
input_ids,
|
954 |
+
attention_mask=attention_mask,
|
955 |
+
token_type_ids=token_type_ids,
|
956 |
+
position_ids=position_ids,
|
957 |
+
head_mask=head_mask,
|
958 |
+
inputs_embeds=inputs_embeds,
|
959 |
+
encoder_hidden_states=encoder_hidden_states,
|
960 |
+
encoder_attention_mask=encoder_attention_mask,
|
961 |
+
past_key_values=past_key_values,
|
962 |
+
use_cache=use_cache,
|
963 |
+
output_attentions=output_attentions,
|
964 |
+
output_hidden_states=output_hidden_states,
|
965 |
+
return_dict=return_dict,
|
966 |
+
)
|
967 |
+
|
968 |
+
sequence_output = outputs[0]
|
969 |
+
prediction_scores = self.lm_head(sequence_output)
|
970 |
+
|
971 |
+
lm_loss = None
|
972 |
+
if labels is not None:
|
973 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
974 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
975 |
+
labels = labels[:, 1:].contiguous()
|
976 |
+
loss_fct = CrossEntropyLoss()
|
977 |
+
|
978 |
+
labels = labels.to(shifted_prediction_scores.device)
|
979 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
980 |
+
|
981 |
+
if not return_dict:
|
982 |
+
output = (prediction_scores,) + outputs[2:]
|
983 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
984 |
+
|
985 |
+
return CausalLMOutputWithCrossAttentions(
|
986 |
+
loss=lm_loss,
|
987 |
+
logits=prediction_scores,
|
988 |
+
past_key_values=outputs.past_key_values,
|
989 |
+
hidden_states=outputs.hidden_states,
|
990 |
+
attentions=outputs.attentions,
|
991 |
+
cross_attentions=outputs.cross_attentions,
|
992 |
+
)
|
993 |
+
|
994 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
995 |
+
input_shape = input_ids.shape
|
996 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
997 |
+
if attention_mask is None:
|
998 |
+
attention_mask = input_ids.new_ones(input_shape)
|
999 |
+
|
1000 |
+
# cut decoder_input_ids if past_key_values is used
|
1001 |
+
if past_key_values is not None:
|
1002 |
+
past_length = past_key_values[0][0].shape[2]
|
1003 |
+
|
1004 |
+
# Some generation methods already pass only the last input ID
|
1005 |
+
if input_ids.shape[1] > past_length:
|
1006 |
+
remove_prefix_length = past_length
|
1007 |
+
else:
|
1008 |
+
# Default to old behavior: keep only final ID
|
1009 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1010 |
+
|
1011 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1012 |
+
|
1013 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
|
1014 |
+
|
1015 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1016 |
+
reordered_past = ()
|
1017 |
+
for layer_past in past_key_values:
|
1018 |
+
reordered_past += (
|
1019 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1020 |
+
)
|
1021 |
+
return reordered_past
|
1022 |
+
|
1023 |
+
|
1024 |
+
@add_start_docstrings("""data2vec Model with a `language modeling` head on top.""", DATA2VECTEXT_START_DOCSTRING)
|
1025 |
+
class Data2VecTextForMaskedLM(Data2VecTextPreTrainedModel):
|
1026 |
+
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
|
1027 |
+
|
1028 |
+
def __init__(self, config):
|
1029 |
+
super().__init__(config)
|
1030 |
+
|
1031 |
+
if config.is_decoder:
|
1032 |
+
logger.warning(
|
1033 |
+
"If you want to use `Data2VecTextForMaskedLM` make sure `config.is_decoder=False` for "
|
1034 |
+
"bi-directional self-attention."
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False)
|
1038 |
+
self.lm_head = Data2VecTextLMHead(config)
|
1039 |
+
|
1040 |
+
# Initialize weights and apply final processing
|
1041 |
+
self.post_init()
|
1042 |
+
|
1043 |
+
def get_output_embeddings(self):
|
1044 |
+
return self.lm_head.decoder
|
1045 |
+
|
1046 |
+
def set_output_embeddings(self, new_embeddings):
|
1047 |
+
self.lm_head.decoder = new_embeddings
|
1048 |
+
|
1049 |
+
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1050 |
+
@add_code_sample_docstrings(
|
1051 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1052 |
+
output_type=MaskedLMOutput,
|
1053 |
+
config_class=_CONFIG_FOR_DOC,
|
1054 |
+
mask="<mask>",
|
1055 |
+
)
|
1056 |
+
def forward(
|
1057 |
+
self,
|
1058 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1059 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1060 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1061 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1062 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1063 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1064 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1065 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1066 |
+
labels: Optional[torch.LongTensor] = None,
|
1067 |
+
output_attentions: Optional[bool] = None,
|
1068 |
+
output_hidden_states: Optional[bool] = None,
|
1069 |
+
return_dict: Optional[bool] = None,
|
1070 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1071 |
+
r"""
|
1072 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1073 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1074 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1075 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1076 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1077 |
+
Used to hide legacy arguments that have been deprecated.
|
1078 |
+
"""
|
1079 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1080 |
+
|
1081 |
+
outputs = self.data2vec_text(
|
1082 |
+
input_ids,
|
1083 |
+
attention_mask=attention_mask,
|
1084 |
+
token_type_ids=token_type_ids,
|
1085 |
+
position_ids=position_ids,
|
1086 |
+
head_mask=head_mask,
|
1087 |
+
inputs_embeds=inputs_embeds,
|
1088 |
+
encoder_hidden_states=encoder_hidden_states,
|
1089 |
+
encoder_attention_mask=encoder_attention_mask,
|
1090 |
+
output_attentions=output_attentions,
|
1091 |
+
output_hidden_states=output_hidden_states,
|
1092 |
+
return_dict=return_dict,
|
1093 |
+
)
|
1094 |
+
sequence_output = outputs[0]
|
1095 |
+
prediction_scores = self.lm_head(sequence_output)
|
1096 |
+
|
1097 |
+
masked_lm_loss = None
|
1098 |
+
if labels is not None:
|
1099 |
+
loss_fct = CrossEntropyLoss()
|
1100 |
+
|
1101 |
+
labels = labels.to(prediction_scores.device)
|
1102 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1103 |
+
|
1104 |
+
if not return_dict:
|
1105 |
+
output = (prediction_scores,) + outputs[2:]
|
1106 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1107 |
+
|
1108 |
+
return MaskedLMOutput(
|
1109 |
+
loss=masked_lm_loss,
|
1110 |
+
logits=prediction_scores,
|
1111 |
+
hidden_states=outputs.hidden_states,
|
1112 |
+
attentions=outputs.attentions,
|
1113 |
+
)
|
1114 |
+
|
1115 |
+
|
1116 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Data2VecText
|
1117 |
+
class Data2VecTextLMHead(nn.Module):
|
1118 |
+
"""Data2VecText Head for masked language modeling."""
|
1119 |
+
|
1120 |
+
def __init__(self, config):
|
1121 |
+
super().__init__()
|
1122 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1123 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1124 |
+
|
1125 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
1126 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1127 |
+
self.decoder.bias = self.bias
|
1128 |
+
|
1129 |
+
def forward(self, features, **kwargs):
|
1130 |
+
x = self.dense(features)
|
1131 |
+
x = gelu(x)
|
1132 |
+
x = self.layer_norm(x)
|
1133 |
+
|
1134 |
+
# project back to size of vocabulary with bias
|
1135 |
+
x = self.decoder(x)
|
1136 |
+
|
1137 |
+
return x
|
1138 |
+
|
1139 |
+
def _tie_weights(self):
|
1140 |
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
1141 |
+
# For accelerate compatibility and to not break backward compatibility
|
1142 |
+
if self.decoder.bias.device.type == "meta":
|
1143 |
+
self.decoder.bias = self.bias
|
1144 |
+
else:
|
1145 |
+
self.bias = self.decoder.bias
|
1146 |
+
|
1147 |
+
|
1148 |
+
@add_start_docstrings(
|
1149 |
+
"""
|
1150 |
+
Data2VecText Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1151 |
+
pooled output) e.g. for GLUE tasks.
|
1152 |
+
""",
|
1153 |
+
DATA2VECTEXT_START_DOCSTRING,
|
1154 |
+
)
|
1155 |
+
class Data2VecTextForSequenceClassification(Data2VecTextPreTrainedModel):
|
1156 |
+
def __init__(self, config):
|
1157 |
+
super().__init__(config)
|
1158 |
+
self.num_labels = config.num_labels
|
1159 |
+
self.config = config
|
1160 |
+
|
1161 |
+
self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False)
|
1162 |
+
self.classifier = Data2VecTextClassificationHead(config)
|
1163 |
+
|
1164 |
+
# Initialize weights and apply final processing
|
1165 |
+
self.post_init()
|
1166 |
+
|
1167 |
+
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1168 |
+
@add_code_sample_docstrings(
|
1169 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1170 |
+
output_type=SequenceClassifierOutput,
|
1171 |
+
config_class=_CONFIG_FOR_DOC,
|
1172 |
+
)
|
1173 |
+
def forward(
|
1174 |
+
self,
|
1175 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1176 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1177 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1178 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1179 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1180 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1181 |
+
labels: Optional[torch.LongTensor] = None,
|
1182 |
+
output_attentions: Optional[bool] = None,
|
1183 |
+
output_hidden_states: Optional[bool] = None,
|
1184 |
+
return_dict: Optional[bool] = None,
|
1185 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1186 |
+
r"""
|
1187 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1188 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1189 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1190 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1191 |
+
"""
|
1192 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1193 |
+
|
1194 |
+
outputs = self.data2vec_text(
|
1195 |
+
input_ids,
|
1196 |
+
attention_mask=attention_mask,
|
1197 |
+
token_type_ids=token_type_ids,
|
1198 |
+
position_ids=position_ids,
|
1199 |
+
head_mask=head_mask,
|
1200 |
+
inputs_embeds=inputs_embeds,
|
1201 |
+
output_attentions=output_attentions,
|
1202 |
+
output_hidden_states=output_hidden_states,
|
1203 |
+
return_dict=return_dict,
|
1204 |
+
)
|
1205 |
+
sequence_output = outputs[0]
|
1206 |
+
logits = self.classifier(sequence_output)
|
1207 |
+
|
1208 |
+
loss = None
|
1209 |
+
if labels is not None:
|
1210 |
+
labels = labels.to(logits.device)
|
1211 |
+
|
1212 |
+
if self.config.problem_type is None:
|
1213 |
+
if self.num_labels == 1:
|
1214 |
+
self.config.problem_type = "regression"
|
1215 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1216 |
+
self.config.problem_type = "single_label_classification"
|
1217 |
+
else:
|
1218 |
+
self.config.problem_type = "multi_label_classification"
|
1219 |
+
|
1220 |
+
if self.config.problem_type == "regression":
|
1221 |
+
loss_fct = MSELoss()
|
1222 |
+
if self.num_labels == 1:
|
1223 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1224 |
+
else:
|
1225 |
+
loss = loss_fct(logits, labels)
|
1226 |
+
elif self.config.problem_type == "single_label_classification":
|
1227 |
+
loss_fct = CrossEntropyLoss()
|
1228 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1229 |
+
elif self.config.problem_type == "multi_label_classification":
|
1230 |
+
loss_fct = BCEWithLogitsLoss()
|
1231 |
+
loss = loss_fct(logits, labels)
|
1232 |
+
|
1233 |
+
if not return_dict:
|
1234 |
+
output = (logits,) + outputs[2:]
|
1235 |
+
return ((loss,) + output) if loss is not None else output
|
1236 |
+
|
1237 |
+
return SequenceClassifierOutput(
|
1238 |
+
loss=loss,
|
1239 |
+
logits=logits,
|
1240 |
+
hidden_states=outputs.hidden_states,
|
1241 |
+
attentions=outputs.attentions,
|
1242 |
+
)
|
1243 |
+
|
1244 |
+
|
1245 |
+
@add_start_docstrings(
|
1246 |
+
"""
|
1247 |
+
Data2VecText Model with a multiple choice classification head on top (a linear layer on top of the pooled output
|
1248 |
+
and a softmax) e.g. for RocStories/SWAG tasks.
|
1249 |
+
""",
|
1250 |
+
DATA2VECTEXT_START_DOCSTRING,
|
1251 |
+
)
|
1252 |
+
class Data2VecTextForMultipleChoice(Data2VecTextPreTrainedModel):
|
1253 |
+
def __init__(self, config):
|
1254 |
+
super().__init__(config)
|
1255 |
+
|
1256 |
+
self.data2vec_text = Data2VecTextModel(config)
|
1257 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1258 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1259 |
+
|
1260 |
+
# Initialize weights and apply final processing
|
1261 |
+
self.post_init()
|
1262 |
+
|
1263 |
+
@add_start_docstrings_to_model_forward(
|
1264 |
+
DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1265 |
+
)
|
1266 |
+
@add_code_sample_docstrings(
|
1267 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1268 |
+
output_type=MultipleChoiceModelOutput,
|
1269 |
+
config_class=_CONFIG_FOR_DOC,
|
1270 |
+
)
|
1271 |
+
def forward(
|
1272 |
+
self,
|
1273 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1274 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1275 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1276 |
+
labels: Optional[torch.LongTensor] = None,
|
1277 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1278 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1279 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1280 |
+
output_attentions: Optional[bool] = None,
|
1281 |
+
output_hidden_states: Optional[bool] = None,
|
1282 |
+
return_dict: Optional[bool] = None,
|
1283 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
1284 |
+
r"""
|
1285 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1286 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1287 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1288 |
+
`input_ids` above)
|
1289 |
+
"""
|
1290 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1291 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1292 |
+
|
1293 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1294 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1295 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1296 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1297 |
+
flat_inputs_embeds = (
|
1298 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1299 |
+
if inputs_embeds is not None
|
1300 |
+
else None
|
1301 |
+
)
|
1302 |
+
|
1303 |
+
outputs = self.data2vec_text(
|
1304 |
+
flat_input_ids,
|
1305 |
+
position_ids=flat_position_ids,
|
1306 |
+
token_type_ids=flat_token_type_ids,
|
1307 |
+
attention_mask=flat_attention_mask,
|
1308 |
+
head_mask=head_mask,
|
1309 |
+
inputs_embeds=flat_inputs_embeds,
|
1310 |
+
output_attentions=output_attentions,
|
1311 |
+
output_hidden_states=output_hidden_states,
|
1312 |
+
return_dict=return_dict,
|
1313 |
+
)
|
1314 |
+
pooled_output = outputs[1]
|
1315 |
+
|
1316 |
+
pooled_output = self.dropout(pooled_output)
|
1317 |
+
logits = self.classifier(pooled_output)
|
1318 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1319 |
+
|
1320 |
+
loss = None
|
1321 |
+
if labels is not None:
|
1322 |
+
loss_fct = CrossEntropyLoss()
|
1323 |
+
|
1324 |
+
labels = labels.to(reshaped_logits.device)
|
1325 |
+
loss = loss_fct(reshaped_logits, labels)
|
1326 |
+
|
1327 |
+
if not return_dict:
|
1328 |
+
output = (reshaped_logits,) + outputs[2:]
|
1329 |
+
return ((loss,) + output) if loss is not None else output
|
1330 |
+
|
1331 |
+
return MultipleChoiceModelOutput(
|
1332 |
+
loss=loss,
|
1333 |
+
logits=reshaped_logits,
|
1334 |
+
hidden_states=outputs.hidden_states,
|
1335 |
+
attentions=outputs.attentions,
|
1336 |
+
)
|
1337 |
+
|
1338 |
+
|
1339 |
+
@add_start_docstrings(
|
1340 |
+
"""
|
1341 |
+
Data2VecText Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
|
1342 |
+
for Named-Entity-Recognition (NER) tasks.
|
1343 |
+
""",
|
1344 |
+
DATA2VECTEXT_START_DOCSTRING,
|
1345 |
+
)
|
1346 |
+
class Data2VecTextForTokenClassification(Data2VecTextPreTrainedModel):
|
1347 |
+
def __init__(self, config):
|
1348 |
+
super().__init__(config)
|
1349 |
+
self.num_labels = config.num_labels
|
1350 |
+
|
1351 |
+
self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False)
|
1352 |
+
classifier_dropout = (
|
1353 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1354 |
+
)
|
1355 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1356 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1357 |
+
|
1358 |
+
# Initialize weights and apply final processing
|
1359 |
+
self.post_init()
|
1360 |
+
|
1361 |
+
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1362 |
+
@add_code_sample_docstrings(
|
1363 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1364 |
+
output_type=TokenClassifierOutput,
|
1365 |
+
config_class=_CONFIG_FOR_DOC,
|
1366 |
+
)
|
1367 |
+
def forward(
|
1368 |
+
self,
|
1369 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1370 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1371 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1372 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1373 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1374 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1375 |
+
labels: Optional[torch.LongTensor] = None,
|
1376 |
+
output_attentions: Optional[bool] = None,
|
1377 |
+
output_hidden_states: Optional[bool] = None,
|
1378 |
+
return_dict: Optional[bool] = None,
|
1379 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1380 |
+
r"""
|
1381 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1382 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1383 |
+
"""
|
1384 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1385 |
+
|
1386 |
+
outputs = self.data2vec_text(
|
1387 |
+
input_ids,
|
1388 |
+
attention_mask=attention_mask,
|
1389 |
+
token_type_ids=token_type_ids,
|
1390 |
+
position_ids=position_ids,
|
1391 |
+
head_mask=head_mask,
|
1392 |
+
inputs_embeds=inputs_embeds,
|
1393 |
+
output_attentions=output_attentions,
|
1394 |
+
output_hidden_states=output_hidden_states,
|
1395 |
+
return_dict=return_dict,
|
1396 |
+
)
|
1397 |
+
|
1398 |
+
sequence_output = outputs[0]
|
1399 |
+
|
1400 |
+
sequence_output = self.dropout(sequence_output)
|
1401 |
+
logits = self.classifier(sequence_output)
|
1402 |
+
|
1403 |
+
loss = None
|
1404 |
+
if labels is not None:
|
1405 |
+
loss_fct = CrossEntropyLoss()
|
1406 |
+
|
1407 |
+
labels = labels.to(logits.device)
|
1408 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1409 |
+
|
1410 |
+
if not return_dict:
|
1411 |
+
output = (logits,) + outputs[2:]
|
1412 |
+
return ((loss,) + output) if loss is not None else output
|
1413 |
+
|
1414 |
+
return TokenClassifierOutput(
|
1415 |
+
loss=loss,
|
1416 |
+
logits=logits,
|
1417 |
+
hidden_states=outputs.hidden_states,
|
1418 |
+
attentions=outputs.attentions,
|
1419 |
+
)
|
1420 |
+
|
1421 |
+
|
1422 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Data2VecText
|
1423 |
+
class Data2VecTextClassificationHead(nn.Module):
|
1424 |
+
"""Head for sentence-level classification tasks."""
|
1425 |
+
|
1426 |
+
def __init__(self, config):
|
1427 |
+
super().__init__()
|
1428 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1429 |
+
classifier_dropout = (
|
1430 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1431 |
+
)
|
1432 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1433 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1434 |
+
|
1435 |
+
def forward(self, features, **kwargs):
|
1436 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1437 |
+
x = self.dropout(x)
|
1438 |
+
x = self.dense(x)
|
1439 |
+
x = torch.tanh(x)
|
1440 |
+
x = self.dropout(x)
|
1441 |
+
x = self.out_proj(x)
|
1442 |
+
return x
|
1443 |
+
|
1444 |
+
|
1445 |
+
@add_start_docstrings(
|
1446 |
+
"""
|
1447 |
+
Data2VecText Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
|
1448 |
+
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1449 |
+
""",
|
1450 |
+
DATA2VECTEXT_START_DOCSTRING,
|
1451 |
+
)
|
1452 |
+
class Data2VecTextForQuestionAnswering(Data2VecTextPreTrainedModel):
|
1453 |
+
def __init__(self, config):
|
1454 |
+
super().__init__(config)
|
1455 |
+
self.num_labels = config.num_labels
|
1456 |
+
|
1457 |
+
self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False)
|
1458 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1459 |
+
|
1460 |
+
# Initialize weights and apply final processing
|
1461 |
+
self.post_init()
|
1462 |
+
|
1463 |
+
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1464 |
+
@add_code_sample_docstrings(
|
1465 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1466 |
+
output_type=QuestionAnsweringModelOutput,
|
1467 |
+
config_class=_CONFIG_FOR_DOC,
|
1468 |
+
)
|
1469 |
+
def forward(
|
1470 |
+
self,
|
1471 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1472 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1473 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1474 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1475 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1476 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1477 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1478 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1479 |
+
output_attentions: Optional[bool] = None,
|
1480 |
+
output_hidden_states: Optional[bool] = None,
|
1481 |
+
return_dict: Optional[bool] = None,
|
1482 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1483 |
+
r"""
|
1484 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1485 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1486 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1487 |
+
are not taken into account for computing the loss.
|
1488 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1489 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1490 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1491 |
+
are not taken into account for computing the loss.
|
1492 |
+
"""
|
1493 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1494 |
+
|
1495 |
+
outputs = self.data2vec_text(
|
1496 |
+
input_ids,
|
1497 |
+
attention_mask=attention_mask,
|
1498 |
+
token_type_ids=token_type_ids,
|
1499 |
+
position_ids=position_ids,
|
1500 |
+
head_mask=head_mask,
|
1501 |
+
inputs_embeds=inputs_embeds,
|
1502 |
+
output_attentions=output_attentions,
|
1503 |
+
output_hidden_states=output_hidden_states,
|
1504 |
+
return_dict=return_dict,
|
1505 |
+
)
|
1506 |
+
|
1507 |
+
sequence_output = outputs[0]
|
1508 |
+
|
1509 |
+
logits = self.qa_outputs(sequence_output)
|
1510 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1511 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1512 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1513 |
+
|
1514 |
+
total_loss = None
|
1515 |
+
if start_positions is not None and end_positions is not None:
|
1516 |
+
# If we are on multi-GPU, split add a dimension
|
1517 |
+
if len(start_positions.size()) > 1:
|
1518 |
+
start_positions = start_positions.squeeze(-1)
|
1519 |
+
if len(end_positions.size()) > 1:
|
1520 |
+
end_positions = end_positions.squeeze(-1)
|
1521 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1522 |
+
ignored_index = start_logits.size(1)
|
1523 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1524 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1525 |
+
|
1526 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1527 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1528 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1529 |
+
total_loss = (start_loss + end_loss) / 2
|
1530 |
+
|
1531 |
+
if not return_dict:
|
1532 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1533 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1534 |
+
|
1535 |
+
return QuestionAnsweringModelOutput(
|
1536 |
+
loss=total_loss,
|
1537 |
+
start_logits=start_logits,
|
1538 |
+
end_logits=end_logits,
|
1539 |
+
hidden_states=outputs.hidden_states,
|
1540 |
+
attentions=outputs.attentions,
|
1541 |
+
)
|
1542 |
+
|
1543 |
+
|
1544 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
1545 |
+
"""
|
1546 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1547 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1548 |
+
|
1549 |
+
Args:
|
1550 |
+
x: torch.Tensor x:
|
1551 |
+
|
1552 |
+
Returns: torch.Tensor
|
1553 |
+
"""
|
1554 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1555 |
+
mask = input_ids.ne(padding_idx).int()
|
1556 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
1557 |
+
return incremental_indices.long() + padding_idx
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_vision.py
ADDED
@@ -0,0 +1,1228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Data2VecVision model."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections.abc
|
19 |
+
import math
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
+
|
28 |
+
from ...activations import ACT2FN
|
29 |
+
from ...modeling_outputs import (
|
30 |
+
BaseModelOutput,
|
31 |
+
BaseModelOutputWithPooling,
|
32 |
+
ImageClassifierOutput,
|
33 |
+
SemanticSegmenterOutput,
|
34 |
+
)
|
35 |
+
from ...modeling_utils import PreTrainedModel
|
36 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
|
37 |
+
from ...utils import (
|
38 |
+
add_code_sample_docstrings,
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward,
|
41 |
+
logging,
|
42 |
+
replace_return_docstrings,
|
43 |
+
)
|
44 |
+
from .configuration_data2vec_vision import Data2VecVisionConfig
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
# General docstring
|
50 |
+
_CONFIG_FOR_DOC = "Data2VecVisionConfig"
|
51 |
+
|
52 |
+
# Base docstring
|
53 |
+
_CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base"
|
54 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
|
55 |
+
|
56 |
+
# Image classification docstring
|
57 |
+
_IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k"
|
58 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote"
|
59 |
+
|
60 |
+
|
61 |
+
from ..deprecated._archive_maps import DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
# Copied from transformers.models.beit.modeling_beit.BeitModelOutputWithPooling with Beit->Data2VecVision
|
66 |
+
class Data2VecVisionModelOutputWithPooling(BaseModelOutputWithPooling):
|
67 |
+
"""
|
68 |
+
Class for outputs of [`Data2VecVisionModel`].
|
69 |
+
|
70 |
+
Args:
|
71 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
72 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
73 |
+
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
|
74 |
+
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
|
75 |
+
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
|
76 |
+
will be returned.
|
77 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
78 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
79 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
80 |
+
|
81 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
82 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
83 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
84 |
+
sequence_length)`.
|
85 |
+
|
86 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
87 |
+
heads.
|
88 |
+
"""
|
89 |
+
|
90 |
+
|
91 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
92 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
93 |
+
"""
|
94 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
95 |
+
|
96 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
97 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
98 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
99 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
100 |
+
argument.
|
101 |
+
"""
|
102 |
+
if drop_prob == 0.0 or not training:
|
103 |
+
return input
|
104 |
+
keep_prob = 1 - drop_prob
|
105 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
106 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
107 |
+
random_tensor.floor_() # binarize
|
108 |
+
output = input.div(keep_prob) * random_tensor
|
109 |
+
return output
|
110 |
+
|
111 |
+
|
112 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Data2VecVision
|
113 |
+
class Data2VecVisionDropPath(nn.Module):
|
114 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
115 |
+
|
116 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
117 |
+
super().__init__()
|
118 |
+
self.drop_prob = drop_prob
|
119 |
+
|
120 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
121 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
122 |
+
|
123 |
+
def extra_repr(self) -> str:
|
124 |
+
return "p={}".format(self.drop_prob)
|
125 |
+
|
126 |
+
|
127 |
+
# Copied from transformers.models.beit.modeling_beit.BeitEmbeddings with Beit->Data2VecVision
|
128 |
+
class Data2VecVisionEmbeddings(nn.Module):
|
129 |
+
"""
|
130 |
+
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
|
131 |
+
|
132 |
+
"""
|
133 |
+
|
134 |
+
def __init__(self, config: Data2VecVisionConfig) -> None:
|
135 |
+
super().__init__()
|
136 |
+
|
137 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
138 |
+
if config.use_mask_token:
|
139 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
140 |
+
else:
|
141 |
+
self.mask_token = None
|
142 |
+
self.patch_embeddings = Data2VecVisionPatchEmbeddings(config)
|
143 |
+
num_patches = self.patch_embeddings.num_patches
|
144 |
+
if config.use_absolute_position_embeddings:
|
145 |
+
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
|
146 |
+
else:
|
147 |
+
self.position_embeddings = None
|
148 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
149 |
+
|
150 |
+
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor:
|
151 |
+
embeddings, (patch_height, patch_width) = self.patch_embeddings(
|
152 |
+
pixel_values, self.position_embeddings[:, 1:, :] if self.position_embeddings is not None else None
|
153 |
+
)
|
154 |
+
batch_size, seq_len, _ = embeddings.size()
|
155 |
+
|
156 |
+
if bool_masked_pos is not None:
|
157 |
+
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
|
158 |
+
# replace the masked visual tokens by mask_tokens
|
159 |
+
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
|
160 |
+
embeddings = embeddings * (1 - w) + mask_tokens * w
|
161 |
+
|
162 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
163 |
+
if self.position_embeddings is not None:
|
164 |
+
cls_tokens = cls_tokens + self.position_embeddings[:, :1, :]
|
165 |
+
|
166 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
167 |
+
|
168 |
+
embeddings = self.dropout(embeddings)
|
169 |
+
|
170 |
+
return embeddings, (patch_height, patch_width)
|
171 |
+
|
172 |
+
|
173 |
+
# Copied from transformers.models.beit.modeling_beit.BeitPatchEmbeddings with Beit->Data2VecVision
|
174 |
+
class Data2VecVisionPatchEmbeddings(nn.Module):
|
175 |
+
"""
|
176 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
177 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
178 |
+
Transformer.
|
179 |
+
"""
|
180 |
+
|
181 |
+
def __init__(self, config):
|
182 |
+
super().__init__()
|
183 |
+
image_size, patch_size = config.image_size, config.patch_size
|
184 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
185 |
+
|
186 |
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
187 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
188 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
189 |
+
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
|
190 |
+
self.image_size = image_size
|
191 |
+
self.patch_size = patch_size
|
192 |
+
self.num_channels = num_channels
|
193 |
+
self.num_patches = num_patches
|
194 |
+
self.patch_shape = patch_shape
|
195 |
+
|
196 |
+
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
197 |
+
|
198 |
+
def forward(self, pixel_values: torch.Tensor, position_embedding: Optional[torch.Tensor] = None) -> torch.Tensor:
|
199 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
200 |
+
if num_channels != self.num_channels:
|
201 |
+
raise ValueError(
|
202 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
203 |
+
)
|
204 |
+
|
205 |
+
embeddings = self.projection(pixel_values)
|
206 |
+
patch_height, patch_width = embeddings.shape[2], embeddings.shape[3]
|
207 |
+
|
208 |
+
if position_embedding is not None:
|
209 |
+
# interpolate the position embedding to the corresponding size
|
210 |
+
position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(
|
211 |
+
0, 3, 1, 2
|
212 |
+
)
|
213 |
+
position_embedding = nn.functional.interpolate(
|
214 |
+
position_embedding, size=(patch_height, patch_width), mode="bicubic"
|
215 |
+
)
|
216 |
+
embeddings = embeddings + position_embedding
|
217 |
+
|
218 |
+
embeddings = embeddings.flatten(2).transpose(1, 2)
|
219 |
+
|
220 |
+
return embeddings, (patch_height, patch_width)
|
221 |
+
|
222 |
+
|
223 |
+
# Copied from transformers.models.beit.modeling_beit.BeitSelfAttention with Beit->Data2VecVision
|
224 |
+
class Data2VecVisionSelfAttention(nn.Module):
|
225 |
+
def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None:
|
226 |
+
super().__init__()
|
227 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
228 |
+
raise ValueError(
|
229 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
230 |
+
f"heads {config.num_attention_heads}."
|
231 |
+
)
|
232 |
+
|
233 |
+
self.num_attention_heads = config.num_attention_heads
|
234 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
235 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
236 |
+
|
237 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
238 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
239 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
240 |
+
|
241 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
242 |
+
|
243 |
+
if window_size:
|
244 |
+
self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size)
|
245 |
+
else:
|
246 |
+
self.relative_position_bias = None
|
247 |
+
|
248 |
+
def transpose_for_scores(self, x):
|
249 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
250 |
+
x = x.view(*new_x_shape)
|
251 |
+
return x.permute(0, 2, 1, 3)
|
252 |
+
|
253 |
+
def forward(
|
254 |
+
self,
|
255 |
+
hidden_states: torch.Tensor,
|
256 |
+
head_mask: Optional[torch.Tensor] = None,
|
257 |
+
output_attentions: bool = False,
|
258 |
+
relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None,
|
259 |
+
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
|
260 |
+
mixed_query_layer = self.query(hidden_states)
|
261 |
+
|
262 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
263 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
264 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
265 |
+
|
266 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
267 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
268 |
+
|
269 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
270 |
+
|
271 |
+
# Add relative position bias if present.
|
272 |
+
if self.relative_position_bias is not None:
|
273 |
+
attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0)
|
274 |
+
|
275 |
+
# Add shared relative position bias if provided.
|
276 |
+
if relative_position_bias is not None:
|
277 |
+
attention_scores = attention_scores + relative_position_bias
|
278 |
+
|
279 |
+
# Normalize the attention scores to probabilities.
|
280 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
281 |
+
|
282 |
+
# This is actually dropping out entire tokens to attend to, which might
|
283 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
284 |
+
attention_probs = self.dropout(attention_probs)
|
285 |
+
|
286 |
+
# Mask heads if we want to
|
287 |
+
if head_mask is not None:
|
288 |
+
attention_probs = attention_probs * head_mask
|
289 |
+
|
290 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
291 |
+
|
292 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
293 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
294 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
295 |
+
|
296 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
297 |
+
|
298 |
+
return outputs
|
299 |
+
|
300 |
+
|
301 |
+
# Copied from transformers.models.beit.modeling_beit.BeitSelfOutput with Beit->Data2VecVision
|
302 |
+
class Data2VecVisionSelfOutput(nn.Module):
|
303 |
+
"""
|
304 |
+
The residual connection is defined in Data2VecVisionLayer instead of here (as is the case with other models), due to the
|
305 |
+
layernorm applied before each block.
|
306 |
+
"""
|
307 |
+
|
308 |
+
def __init__(self, config: Data2VecVisionConfig) -> None:
|
309 |
+
super().__init__()
|
310 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
311 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
312 |
+
|
313 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor:
|
314 |
+
hidden_states = self.dense(hidden_states)
|
315 |
+
hidden_states = self.dropout(hidden_states)
|
316 |
+
|
317 |
+
return hidden_states
|
318 |
+
|
319 |
+
|
320 |
+
# Copied from transformers.models.beit.modeling_beit.BeitAttention with Beit->Data2VecVision
|
321 |
+
class Data2VecVisionAttention(nn.Module):
|
322 |
+
def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None:
|
323 |
+
super().__init__()
|
324 |
+
self.attention = Data2VecVisionSelfAttention(config, window_size=window_size)
|
325 |
+
self.output = Data2VecVisionSelfOutput(config)
|
326 |
+
self.pruned_heads = set()
|
327 |
+
|
328 |
+
def prune_heads(self, heads):
|
329 |
+
if len(heads) == 0:
|
330 |
+
return
|
331 |
+
heads, index = find_pruneable_heads_and_indices(
|
332 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
333 |
+
)
|
334 |
+
|
335 |
+
# Prune linear layers
|
336 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
337 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
338 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
339 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
340 |
+
|
341 |
+
# Update hyper params and store pruned heads
|
342 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
343 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
344 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
345 |
+
|
346 |
+
def forward(
|
347 |
+
self,
|
348 |
+
hidden_states: torch.Tensor,
|
349 |
+
head_mask: Optional[torch.Tensor] = None,
|
350 |
+
output_attentions: bool = False,
|
351 |
+
relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None,
|
352 |
+
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
|
353 |
+
self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias)
|
354 |
+
|
355 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
356 |
+
|
357 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
358 |
+
return outputs
|
359 |
+
|
360 |
+
|
361 |
+
# Copied from transformers.models.beit.modeling_beit.BeitIntermediate with Beit->Data2VecVision
|
362 |
+
class Data2VecVisionIntermediate(nn.Module):
|
363 |
+
def __init__(self, config: Data2VecVisionConfig) -> None:
|
364 |
+
super().__init__()
|
365 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
366 |
+
if isinstance(config.hidden_act, str):
|
367 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
368 |
+
else:
|
369 |
+
self.intermediate_act_fn = config.hidden_act
|
370 |
+
|
371 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
372 |
+
hidden_states = self.dense(hidden_states)
|
373 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
374 |
+
|
375 |
+
return hidden_states
|
376 |
+
|
377 |
+
|
378 |
+
# Copied from transformers.models.beit.modeling_beit.BeitOutput with Beit->Data2VecVision
|
379 |
+
class Data2VecVisionOutput(nn.Module):
|
380 |
+
def __init__(self, config: Data2VecVisionConfig) -> None:
|
381 |
+
super().__init__()
|
382 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
383 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
384 |
+
|
385 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
386 |
+
hidden_states = self.dense(hidden_states)
|
387 |
+
hidden_states = self.dropout(hidden_states)
|
388 |
+
|
389 |
+
return hidden_states
|
390 |
+
|
391 |
+
|
392 |
+
# Copied from transformers.models.beit.modeling_beit.BeitLayer with Beit->Data2VecVision,BEiT->Data2VecVision
|
393 |
+
class Data2VecVisionLayer(nn.Module):
|
394 |
+
"""This corresponds to the Block class in the timm implementation."""
|
395 |
+
|
396 |
+
def __init__(
|
397 |
+
self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0
|
398 |
+
) -> None:
|
399 |
+
super().__init__()
|
400 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
401 |
+
self.seq_len_dim = 1
|
402 |
+
self.attention = Data2VecVisionAttention(config, window_size=window_size)
|
403 |
+
self.intermediate = Data2VecVisionIntermediate(config)
|
404 |
+
self.output = Data2VecVisionOutput(config)
|
405 |
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
406 |
+
self.drop_path = Data2VecVisionDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
407 |
+
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
408 |
+
|
409 |
+
init_values = config.layer_scale_init_value
|
410 |
+
if init_values > 0:
|
411 |
+
self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
|
412 |
+
self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
|
413 |
+
else:
|
414 |
+
self.lambda_1, self.lambda_2 = None, None
|
415 |
+
|
416 |
+
def forward(
|
417 |
+
self,
|
418 |
+
hidden_states: torch.Tensor,
|
419 |
+
head_mask: Optional[torch.Tensor] = None,
|
420 |
+
output_attentions: bool = False,
|
421 |
+
relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None,
|
422 |
+
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
|
423 |
+
self_attention_outputs = self.attention(
|
424 |
+
self.layernorm_before(hidden_states), # in Data2VecVision, layernorm is applied before self-attention
|
425 |
+
head_mask,
|
426 |
+
output_attentions=output_attentions,
|
427 |
+
relative_position_bias=relative_position_bias,
|
428 |
+
)
|
429 |
+
attention_output = self_attention_outputs[0]
|
430 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
431 |
+
|
432 |
+
# apply lambda_1 if present
|
433 |
+
if self.lambda_1 is not None:
|
434 |
+
attention_output = self.lambda_1 * attention_output
|
435 |
+
|
436 |
+
# first residual connection
|
437 |
+
hidden_states = self.drop_path(attention_output) + hidden_states
|
438 |
+
|
439 |
+
# in Data2VecVision, layernorm is also applied after self-attention
|
440 |
+
layer_output = self.layernorm_after(hidden_states)
|
441 |
+
|
442 |
+
layer_output = self.intermediate(layer_output)
|
443 |
+
layer_output = self.output(layer_output)
|
444 |
+
|
445 |
+
if self.lambda_2 is not None:
|
446 |
+
layer_output = self.lambda_2 * layer_output
|
447 |
+
|
448 |
+
# second residual connection
|
449 |
+
layer_output = self.drop_path(layer_output) + hidden_states
|
450 |
+
|
451 |
+
outputs = (layer_output,) + outputs
|
452 |
+
|
453 |
+
return outputs
|
454 |
+
|
455 |
+
|
456 |
+
# Copied from transformers.models.beit.modeling_beit.BeitRelativePositionBias with Beit->Data2VecVision
|
457 |
+
class Data2VecVisionRelativePositionBias(nn.Module):
|
458 |
+
def __init__(self, config: Data2VecVisionConfig, window_size: tuple) -> None:
|
459 |
+
super().__init__()
|
460 |
+
self.window_size = window_size
|
461 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
462 |
+
self.relative_position_bias_table = nn.Parameter(
|
463 |
+
torch.zeros(self.num_relative_distance, config.num_attention_heads)
|
464 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
465 |
+
# cls to token & token 2 cls & cls to cls
|
466 |
+
|
467 |
+
# get pair-wise relative position index for each token inside the window
|
468 |
+
coords_h = torch.arange(window_size[0])
|
469 |
+
coords_w = torch.arange(window_size[1])
|
470 |
+
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww
|
471 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
472 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
473 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
474 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
475 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
476 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
477 |
+
relative_position_index = torch.zeros(
|
478 |
+
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
|
479 |
+
)
|
480 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
481 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
482 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
483 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
484 |
+
|
485 |
+
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
|
486 |
+
|
487 |
+
def forward(self) -> torch.Tensor:
|
488 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
489 |
+
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
|
490 |
+
) # Wh*Ww,Wh*Ww,nH
|
491 |
+
|
492 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
493 |
+
|
494 |
+
|
495 |
+
# Copied from transformers.models.beit.modeling_beit.BeitEncoder with Beit->Data2VecVision
|
496 |
+
class Data2VecVisionEncoder(nn.Module):
|
497 |
+
def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None:
|
498 |
+
super().__init__()
|
499 |
+
self.config = config
|
500 |
+
if config.use_shared_relative_position_bias:
|
501 |
+
self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size)
|
502 |
+
else:
|
503 |
+
self.relative_position_bias = None
|
504 |
+
|
505 |
+
# stochastic depth decay rule
|
506 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
507 |
+
self.layer = nn.ModuleList(
|
508 |
+
[
|
509 |
+
Data2VecVisionLayer(
|
510 |
+
config,
|
511 |
+
window_size=window_size if config.use_relative_position_bias else None,
|
512 |
+
drop_path_rate=dpr[i],
|
513 |
+
)
|
514 |
+
for i in range(config.num_hidden_layers)
|
515 |
+
]
|
516 |
+
)
|
517 |
+
self.gradient_checkpointing = False
|
518 |
+
|
519 |
+
def forward(
|
520 |
+
self,
|
521 |
+
hidden_states: torch.Tensor,
|
522 |
+
head_mask: Optional[torch.Tensor] = None,
|
523 |
+
output_attentions: bool = False,
|
524 |
+
output_hidden_states: bool = False,
|
525 |
+
return_dict: bool = True,
|
526 |
+
) -> Union[tuple, BaseModelOutput]:
|
527 |
+
all_hidden_states = () if output_hidden_states else None
|
528 |
+
all_self_attentions = () if output_attentions else None
|
529 |
+
|
530 |
+
for i, layer_module in enumerate(self.layer):
|
531 |
+
if output_hidden_states:
|
532 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
533 |
+
|
534 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
535 |
+
|
536 |
+
if self.gradient_checkpointing and self.training:
|
537 |
+
layer_outputs = self._gradient_checkpointing_func(
|
538 |
+
layer_module.__call__,
|
539 |
+
hidden_states,
|
540 |
+
layer_head_mask,
|
541 |
+
output_attentions,
|
542 |
+
)
|
543 |
+
else:
|
544 |
+
relative_position_bias = (
|
545 |
+
self.relative_position_bias() if self.relative_position_bias is not None else None
|
546 |
+
)
|
547 |
+
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias)
|
548 |
+
|
549 |
+
hidden_states = layer_outputs[0]
|
550 |
+
|
551 |
+
if output_attentions:
|
552 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
553 |
+
|
554 |
+
if output_hidden_states:
|
555 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
556 |
+
|
557 |
+
if not return_dict:
|
558 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
559 |
+
return BaseModelOutput(
|
560 |
+
last_hidden_state=hidden_states,
|
561 |
+
hidden_states=all_hidden_states,
|
562 |
+
attentions=all_self_attentions,
|
563 |
+
)
|
564 |
+
|
565 |
+
|
566 |
+
# Copied from transformers.models.beit.modeling_beit.BeitPreTrainedModel with Beit->Data2VecVision,beit->data2vec_vision
|
567 |
+
class Data2VecVisionPreTrainedModel(PreTrainedModel):
|
568 |
+
"""
|
569 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
570 |
+
models.
|
571 |
+
"""
|
572 |
+
|
573 |
+
config_class = Data2VecVisionConfig
|
574 |
+
base_model_prefix = "data2vec_vision"
|
575 |
+
main_input_name = "pixel_values"
|
576 |
+
supports_gradient_checkpointing = True
|
577 |
+
|
578 |
+
def _init_weights(self, module):
|
579 |
+
"""Initialize the weights"""
|
580 |
+
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
|
581 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
582 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
583 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
584 |
+
if module.bias is not None:
|
585 |
+
module.bias.data.zero_()
|
586 |
+
elif isinstance(module, nn.Embedding):
|
587 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
588 |
+
if module.padding_idx is not None:
|
589 |
+
module.weight.data[module.padding_idx].zero_()
|
590 |
+
elif isinstance(module, nn.LayerNorm):
|
591 |
+
module.bias.data.zero_()
|
592 |
+
module.weight.data.fill_(1.0)
|
593 |
+
|
594 |
+
|
595 |
+
DATA2VEC_VISION_START_DOCSTRING = r"""
|
596 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
597 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
598 |
+
behavior.
|
599 |
+
|
600 |
+
Parameters:
|
601 |
+
config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model.
|
602 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
603 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
604 |
+
"""
|
605 |
+
|
606 |
+
DATA2VEC_VISION_INPUTS_DOCSTRING = r"""
|
607 |
+
Args:
|
608 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
609 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
610 |
+
[`BeitImageProcessor.__call__`] for details.
|
611 |
+
|
612 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
613 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
614 |
+
|
615 |
+
- 1 indicates the head is **not masked**,
|
616 |
+
- 0 indicates the head is **masked**.
|
617 |
+
|
618 |
+
output_attentions (`bool`, *optional*):
|
619 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
620 |
+
tensors for more detail.
|
621 |
+
output_hidden_states (`bool`, *optional*):
|
622 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
623 |
+
more detail.
|
624 |
+
return_dict (`bool`, *optional*):
|
625 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
626 |
+
"""
|
627 |
+
|
628 |
+
|
629 |
+
@add_start_docstrings(
|
630 |
+
"The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.",
|
631 |
+
DATA2VEC_VISION_START_DOCSTRING,
|
632 |
+
)
|
633 |
+
# Copied from transformers.models.beit.modeling_beit.BeitModel with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,True->False
|
634 |
+
class Data2VecVisionModel(Data2VecVisionPreTrainedModel):
|
635 |
+
def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False) -> None:
|
636 |
+
super().__init__(config)
|
637 |
+
self.config = config
|
638 |
+
|
639 |
+
self.embeddings = Data2VecVisionEmbeddings(config)
|
640 |
+
self.encoder = Data2VecVisionEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)
|
641 |
+
|
642 |
+
self.layernorm = (
|
643 |
+
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
644 |
+
)
|
645 |
+
self.pooler = Data2VecVisionPooler(config) if add_pooling_layer else None
|
646 |
+
|
647 |
+
# Initialize weights and apply final processing
|
648 |
+
self.post_init()
|
649 |
+
|
650 |
+
def get_input_embeddings(self):
|
651 |
+
return self.embeddings.patch_embeddings
|
652 |
+
|
653 |
+
def _prune_heads(self, heads_to_prune):
|
654 |
+
"""
|
655 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
656 |
+
class PreTrainedModel
|
657 |
+
"""
|
658 |
+
for layer, heads in heads_to_prune.items():
|
659 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
660 |
+
|
661 |
+
@add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
|
662 |
+
@add_code_sample_docstrings(
|
663 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
664 |
+
output_type=Data2VecVisionModelOutputWithPooling,
|
665 |
+
config_class=_CONFIG_FOR_DOC,
|
666 |
+
modality="vision",
|
667 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
668 |
+
)
|
669 |
+
def forward(
|
670 |
+
self,
|
671 |
+
pixel_values: Optional[torch.Tensor] = None,
|
672 |
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
673 |
+
head_mask: Optional[torch.Tensor] = None,
|
674 |
+
output_attentions: Optional[bool] = None,
|
675 |
+
output_hidden_states: Optional[bool] = None,
|
676 |
+
return_dict: Optional[bool] = None,
|
677 |
+
) -> Union[tuple, Data2VecVisionModelOutputWithPooling]:
|
678 |
+
r"""
|
679 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
|
680 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
681 |
+
"""
|
682 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
683 |
+
output_hidden_states = (
|
684 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
685 |
+
)
|
686 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
687 |
+
|
688 |
+
if pixel_values is None:
|
689 |
+
raise ValueError("You have to specify pixel_values")
|
690 |
+
|
691 |
+
# Prepare head mask if needed
|
692 |
+
# 1.0 in head_mask indicate we keep the head
|
693 |
+
# attention_probs has shape bsz x n_heads x N x N
|
694 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
695 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
696 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
697 |
+
|
698 |
+
embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values, bool_masked_pos)
|
699 |
+
|
700 |
+
encoder_outputs = self.encoder(
|
701 |
+
embedding_output,
|
702 |
+
head_mask=head_mask,
|
703 |
+
output_attentions=output_attentions,
|
704 |
+
output_hidden_states=output_hidden_states,
|
705 |
+
return_dict=return_dict,
|
706 |
+
)
|
707 |
+
sequence_output = encoder_outputs[0]
|
708 |
+
sequence_output = self.layernorm(sequence_output)
|
709 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
710 |
+
|
711 |
+
if not return_dict:
|
712 |
+
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
|
713 |
+
return head_outputs + encoder_outputs[1:]
|
714 |
+
|
715 |
+
return Data2VecVisionModelOutputWithPooling(
|
716 |
+
last_hidden_state=sequence_output,
|
717 |
+
pooler_output=pooled_output,
|
718 |
+
hidden_states=encoder_outputs.hidden_states,
|
719 |
+
attentions=encoder_outputs.attentions,
|
720 |
+
)
|
721 |
+
|
722 |
+
|
723 |
+
# Copied from transformers.models.beit.modeling_beit.BeitPooler with Beit->Data2VecVision
|
724 |
+
class Data2VecVisionPooler(nn.Module):
|
725 |
+
def __init__(self, config: Data2VecVisionConfig) -> None:
|
726 |
+
super().__init__()
|
727 |
+
self.layernorm = (
|
728 |
+
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
|
729 |
+
)
|
730 |
+
|
731 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
732 |
+
if self.layernorm is not None:
|
733 |
+
# Mean pool the final hidden states of the patch tokens
|
734 |
+
patch_tokens = hidden_states[:, 1:, :]
|
735 |
+
pooled_output = self.layernorm(patch_tokens.mean(1))
|
736 |
+
else:
|
737 |
+
# Pool by simply taking the final hidden state of the [CLS] token
|
738 |
+
pooled_output = hidden_states[:, 0]
|
739 |
+
|
740 |
+
return pooled_output
|
741 |
+
|
742 |
+
|
743 |
+
@add_start_docstrings(
|
744 |
+
"""
|
745 |
+
Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of
|
746 |
+
the final hidden states of the patch tokens) e.g. for ImageNet.
|
747 |
+
""",
|
748 |
+
DATA2VEC_VISION_START_DOCSTRING,
|
749 |
+
)
|
750 |
+
# Copied from transformers.models.beit.modeling_beit.BeitForImageClassification with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,beit->data2vec_vision
|
751 |
+
class Data2VecVisionForImageClassification(Data2VecVisionPreTrainedModel):
|
752 |
+
def __init__(self, config: Data2VecVisionConfig) -> None:
|
753 |
+
super().__init__(config)
|
754 |
+
|
755 |
+
self.num_labels = config.num_labels
|
756 |
+
self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=True)
|
757 |
+
|
758 |
+
# Classifier head
|
759 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
760 |
+
|
761 |
+
# Initialize weights and apply final processing
|
762 |
+
self.post_init()
|
763 |
+
|
764 |
+
@add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
|
765 |
+
@add_code_sample_docstrings(
|
766 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
767 |
+
output_type=ImageClassifierOutput,
|
768 |
+
config_class=_CONFIG_FOR_DOC,
|
769 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
770 |
+
)
|
771 |
+
def forward(
|
772 |
+
self,
|
773 |
+
pixel_values: Optional[torch.Tensor] = None,
|
774 |
+
head_mask: Optional[torch.Tensor] = None,
|
775 |
+
labels: Optional[torch.Tensor] = None,
|
776 |
+
output_attentions: Optional[bool] = None,
|
777 |
+
output_hidden_states: Optional[bool] = None,
|
778 |
+
return_dict: Optional[bool] = None,
|
779 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
780 |
+
r"""
|
781 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
782 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
783 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
784 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
785 |
+
"""
|
786 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
787 |
+
outputs = self.data2vec_vision(
|
788 |
+
pixel_values,
|
789 |
+
head_mask=head_mask,
|
790 |
+
output_attentions=output_attentions,
|
791 |
+
output_hidden_states=output_hidden_states,
|
792 |
+
return_dict=return_dict,
|
793 |
+
)
|
794 |
+
|
795 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
796 |
+
|
797 |
+
logits = self.classifier(pooled_output)
|
798 |
+
|
799 |
+
loss = None
|
800 |
+
if labels is not None:
|
801 |
+
if self.config.problem_type is None:
|
802 |
+
if self.num_labels == 1:
|
803 |
+
self.config.problem_type = "regression"
|
804 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
805 |
+
self.config.problem_type = "single_label_classification"
|
806 |
+
else:
|
807 |
+
self.config.problem_type = "multi_label_classification"
|
808 |
+
|
809 |
+
if self.config.problem_type == "regression":
|
810 |
+
loss_fct = MSELoss()
|
811 |
+
if self.num_labels == 1:
|
812 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
813 |
+
else:
|
814 |
+
loss = loss_fct(logits, labels)
|
815 |
+
elif self.config.problem_type == "single_label_classification":
|
816 |
+
loss_fct = CrossEntropyLoss()
|
817 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
818 |
+
elif self.config.problem_type == "multi_label_classification":
|
819 |
+
loss_fct = BCEWithLogitsLoss()
|
820 |
+
loss = loss_fct(logits, labels)
|
821 |
+
if not return_dict:
|
822 |
+
output = (logits,) + outputs[2:]
|
823 |
+
return ((loss,) + output) if loss is not None else output
|
824 |
+
|
825 |
+
return ImageClassifierOutput(
|
826 |
+
loss=loss,
|
827 |
+
logits=logits,
|
828 |
+
hidden_states=outputs.hidden_states,
|
829 |
+
attentions=outputs.attentions,
|
830 |
+
)
|
831 |
+
|
832 |
+
|
833 |
+
# Copied from transformers.models.beit.modeling_beit.BeitConvModule with Beit->Data2VecVision
|
834 |
+
class Data2VecVisionConvModule(nn.Module):
|
835 |
+
"""
|
836 |
+
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
|
837 |
+
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
|
838 |
+
|
839 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
840 |
+
"""
|
841 |
+
|
842 |
+
def __init__(
|
843 |
+
self,
|
844 |
+
in_channels: int,
|
845 |
+
out_channels: int,
|
846 |
+
kernel_size: Union[int, Tuple[int, int]],
|
847 |
+
padding: Union[int, Tuple[int, int], str] = 0,
|
848 |
+
bias: bool = False,
|
849 |
+
dilation: Union[int, Tuple[int, int]] = 1,
|
850 |
+
) -> None:
|
851 |
+
super().__init__()
|
852 |
+
self.conv = nn.Conv2d(
|
853 |
+
in_channels=in_channels,
|
854 |
+
out_channels=out_channels,
|
855 |
+
kernel_size=kernel_size,
|
856 |
+
padding=padding,
|
857 |
+
bias=bias,
|
858 |
+
dilation=dilation,
|
859 |
+
)
|
860 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
861 |
+
self.activation = nn.ReLU()
|
862 |
+
|
863 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
864 |
+
output = self.conv(input)
|
865 |
+
output = self.bn(output)
|
866 |
+
output = self.activation(output)
|
867 |
+
|
868 |
+
return output
|
869 |
+
|
870 |
+
|
871 |
+
# Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingBlock with Beit->Data2VecVision
|
872 |
+
class Data2VecVisionPyramidPoolingBlock(nn.Module):
|
873 |
+
def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None:
|
874 |
+
super().__init__()
|
875 |
+
self.layers = [
|
876 |
+
nn.AdaptiveAvgPool2d(pool_scale),
|
877 |
+
Data2VecVisionConvModule(in_channels, channels, kernel_size=1),
|
878 |
+
]
|
879 |
+
for i, layer in enumerate(self.layers):
|
880 |
+
self.add_module(str(i), layer)
|
881 |
+
|
882 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
883 |
+
hidden_state = input
|
884 |
+
for layer in self.layers:
|
885 |
+
hidden_state = layer(hidden_state)
|
886 |
+
return hidden_state
|
887 |
+
|
888 |
+
|
889 |
+
# Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingModule with Beit->Data2VecVision
|
890 |
+
class Data2VecVisionPyramidPoolingModule(nn.Module):
|
891 |
+
"""
|
892 |
+
Pyramid Pooling Module (PPM) used in PSPNet.
|
893 |
+
|
894 |
+
Args:
|
895 |
+
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
|
896 |
+
Module.
|
897 |
+
in_channels (int): Input channels.
|
898 |
+
channels (int): Channels after modules, before conv_seg.
|
899 |
+
align_corners (bool): align_corners argument of F.interpolate.
|
900 |
+
|
901 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
902 |
+
"""
|
903 |
+
|
904 |
+
def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None:
|
905 |
+
super().__init__()
|
906 |
+
self.pool_scales = pool_scales
|
907 |
+
self.align_corners = align_corners
|
908 |
+
self.in_channels = in_channels
|
909 |
+
self.channels = channels
|
910 |
+
self.blocks = []
|
911 |
+
for i, pool_scale in enumerate(pool_scales):
|
912 |
+
block = Data2VecVisionPyramidPoolingBlock(
|
913 |
+
pool_scale=pool_scale, in_channels=in_channels, channels=channels
|
914 |
+
)
|
915 |
+
self.blocks.append(block)
|
916 |
+
self.add_module(str(i), block)
|
917 |
+
|
918 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
919 |
+
ppm_outs = []
|
920 |
+
for ppm in self.blocks:
|
921 |
+
ppm_out = ppm(x)
|
922 |
+
upsampled_ppm_out = nn.functional.interpolate(
|
923 |
+
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
|
924 |
+
)
|
925 |
+
ppm_outs.append(upsampled_ppm_out)
|
926 |
+
return ppm_outs
|
927 |
+
|
928 |
+
|
929 |
+
# Copied from transformers.models.beit.modeling_beit.BeitUperHead with Beit->Data2VecVision
|
930 |
+
class Data2VecVisionUperHead(nn.Module):
|
931 |
+
"""
|
932 |
+
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
|
933 |
+
[UPerNet](https://arxiv.org/abs/1807.10221).
|
934 |
+
|
935 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
936 |
+
"""
|
937 |
+
|
938 |
+
def __init__(self, config: Data2VecVisionConfig) -> None:
|
939 |
+
super().__init__()
|
940 |
+
|
941 |
+
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
|
942 |
+
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
|
943 |
+
self.channels = config.hidden_size
|
944 |
+
self.align_corners = False
|
945 |
+
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
|
946 |
+
|
947 |
+
# PSP Module
|
948 |
+
self.psp_modules = Data2VecVisionPyramidPoolingModule(
|
949 |
+
self.pool_scales,
|
950 |
+
self.in_channels[-1],
|
951 |
+
self.channels,
|
952 |
+
align_corners=self.align_corners,
|
953 |
+
)
|
954 |
+
self.bottleneck = Data2VecVisionConvModule(
|
955 |
+
self.in_channels[-1] + len(self.pool_scales) * self.channels,
|
956 |
+
self.channels,
|
957 |
+
kernel_size=3,
|
958 |
+
padding=1,
|
959 |
+
)
|
960 |
+
# FPN Module
|
961 |
+
self.lateral_convs = nn.ModuleList()
|
962 |
+
self.fpn_convs = nn.ModuleList()
|
963 |
+
for in_channels in self.in_channels[:-1]: # skip the top layer
|
964 |
+
l_conv = Data2VecVisionConvModule(in_channels, self.channels, kernel_size=1)
|
965 |
+
fpn_conv = Data2VecVisionConvModule(self.channels, self.channels, kernel_size=3, padding=1)
|
966 |
+
self.lateral_convs.append(l_conv)
|
967 |
+
self.fpn_convs.append(fpn_conv)
|
968 |
+
|
969 |
+
self.fpn_bottleneck = Data2VecVisionConvModule(
|
970 |
+
len(self.in_channels) * self.channels,
|
971 |
+
self.channels,
|
972 |
+
kernel_size=3,
|
973 |
+
padding=1,
|
974 |
+
)
|
975 |
+
|
976 |
+
def psp_forward(self, inputs):
|
977 |
+
x = inputs[-1]
|
978 |
+
psp_outs = [x]
|
979 |
+
psp_outs.extend(self.psp_modules(x))
|
980 |
+
psp_outs = torch.cat(psp_outs, dim=1)
|
981 |
+
output = self.bottleneck(psp_outs)
|
982 |
+
|
983 |
+
return output
|
984 |
+
|
985 |
+
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
986 |
+
# build laterals
|
987 |
+
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
|
988 |
+
|
989 |
+
laterals.append(self.psp_forward(encoder_hidden_states))
|
990 |
+
|
991 |
+
# build top-down path
|
992 |
+
used_backbone_levels = len(laterals)
|
993 |
+
for i in range(used_backbone_levels - 1, 0, -1):
|
994 |
+
prev_shape = laterals[i - 1].shape[2:]
|
995 |
+
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
|
996 |
+
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
|
997 |
+
)
|
998 |
+
|
999 |
+
# build outputs
|
1000 |
+
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
|
1001 |
+
# append psp feature
|
1002 |
+
fpn_outs.append(laterals[-1])
|
1003 |
+
|
1004 |
+
for i in range(used_backbone_levels - 1, 0, -1):
|
1005 |
+
fpn_outs[i] = nn.functional.interpolate(
|
1006 |
+
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
|
1007 |
+
)
|
1008 |
+
fpn_outs = torch.cat(fpn_outs, dim=1)
|
1009 |
+
output = self.fpn_bottleneck(fpn_outs)
|
1010 |
+
output = self.classifier(output)
|
1011 |
+
|
1012 |
+
return output
|
1013 |
+
|
1014 |
+
|
1015 |
+
# Copied from transformers.models.beit.modeling_beit.BeitFCNHead with Beit->Data2VecVision
|
1016 |
+
class Data2VecVisionFCNHead(nn.Module):
|
1017 |
+
"""
|
1018 |
+
Fully Convolution Networks for Semantic Segmentation. This head is implemented of
|
1019 |
+
[FCNNet](https://arxiv.org/abs/1411.4038>).
|
1020 |
+
|
1021 |
+
Args:
|
1022 |
+
config (Data2VecVisionConfig): Configuration.
|
1023 |
+
in_channels
|
1024 |
+
kernel_size (int): The kernel size for convs in the head. Default: 3.
|
1025 |
+
dilation (int): The dilation rate for convs in the head. Default: 1.
|
1026 |
+
|
1027 |
+
|
1028 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1029 |
+
"""
|
1030 |
+
|
1031 |
+
def __init__(
|
1032 |
+
self,
|
1033 |
+
config: Data2VecVisionConfig,
|
1034 |
+
in_index: int = 2,
|
1035 |
+
kernel_size: int = 3,
|
1036 |
+
dilation: Union[int, Tuple[int, int]] = 1,
|
1037 |
+
) -> None:
|
1038 |
+
super().__init__()
|
1039 |
+
self.in_channels = config.hidden_size
|
1040 |
+
self.channels = config.auxiliary_channels
|
1041 |
+
self.num_convs = config.auxiliary_num_convs
|
1042 |
+
self.concat_input = config.auxiliary_concat_input
|
1043 |
+
self.in_index = in_index
|
1044 |
+
|
1045 |
+
conv_padding = (kernel_size // 2) * dilation
|
1046 |
+
convs = []
|
1047 |
+
convs.append(
|
1048 |
+
Data2VecVisionConvModule(
|
1049 |
+
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
|
1050 |
+
)
|
1051 |
+
)
|
1052 |
+
for i in range(self.num_convs - 1):
|
1053 |
+
convs.append(
|
1054 |
+
Data2VecVisionConvModule(
|
1055 |
+
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
|
1056 |
+
)
|
1057 |
+
)
|
1058 |
+
if self.num_convs == 0:
|
1059 |
+
self.convs = nn.Identity()
|
1060 |
+
else:
|
1061 |
+
self.convs = nn.Sequential(*convs)
|
1062 |
+
if self.concat_input:
|
1063 |
+
self.conv_cat = Data2VecVisionConvModule(
|
1064 |
+
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
|
1065 |
+
)
|
1066 |
+
|
1067 |
+
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
|
1068 |
+
|
1069 |
+
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
1070 |
+
# just take the relevant feature maps
|
1071 |
+
hidden_states = encoder_hidden_states[self.in_index]
|
1072 |
+
output = self.convs(hidden_states)
|
1073 |
+
if self.concat_input:
|
1074 |
+
output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
|
1075 |
+
output = self.classifier(output)
|
1076 |
+
return output
|
1077 |
+
|
1078 |
+
|
1079 |
+
@add_start_docstrings(
|
1080 |
+
"""
|
1081 |
+
Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
|
1082 |
+
""",
|
1083 |
+
DATA2VEC_VISION_START_DOCSTRING,
|
1084 |
+
)
|
1085 |
+
# Copied from transformers.models.beit.modeling_beit.BeitForSemanticSegmentation with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,microsoft/beit-base-finetuned-ade-640-640->facebook/data2vec-vision-base,beit->data2vec_vision
|
1086 |
+
class Data2VecVisionForSemanticSegmentation(Data2VecVisionPreTrainedModel):
|
1087 |
+
def __init__(self, config: Data2VecVisionConfig) -> None:
|
1088 |
+
super().__init__(config)
|
1089 |
+
|
1090 |
+
self.num_labels = config.num_labels
|
1091 |
+
self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=False)
|
1092 |
+
|
1093 |
+
# FPNs
|
1094 |
+
if len(self.config.out_indices) != 4:
|
1095 |
+
raise ValueError(
|
1096 |
+
"Data2VecVisionForSemanticSegmentation requires config.out_indices to be a list of 4 integers, "
|
1097 |
+
"specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of "
|
1098 |
+
"a base-sized architecture."
|
1099 |
+
)
|
1100 |
+
self.fpn1 = nn.Sequential(
|
1101 |
+
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
|
1102 |
+
nn.BatchNorm2d(config.hidden_size),
|
1103 |
+
nn.GELU(),
|
1104 |
+
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
|
1105 |
+
)
|
1106 |
+
self.fpn2 = nn.Sequential(
|
1107 |
+
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
|
1108 |
+
)
|
1109 |
+
self.fpn3 = nn.Identity()
|
1110 |
+
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
|
1111 |
+
|
1112 |
+
# Semantic segmentation head(s)
|
1113 |
+
self.decode_head = Data2VecVisionUperHead(config)
|
1114 |
+
self.auxiliary_head = Data2VecVisionFCNHead(config) if config.use_auxiliary_head else None
|
1115 |
+
|
1116 |
+
# Initialize weights and apply final processing
|
1117 |
+
self.post_init()
|
1118 |
+
|
1119 |
+
def compute_loss(self, logits, auxiliary_logits, labels):
|
1120 |
+
# upsample logits to the images' original size
|
1121 |
+
upsampled_logits = nn.functional.interpolate(
|
1122 |
+
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
1123 |
+
)
|
1124 |
+
if auxiliary_logits is not None:
|
1125 |
+
upsampled_auxiliary_logits = nn.functional.interpolate(
|
1126 |
+
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
1127 |
+
)
|
1128 |
+
# compute weighted loss
|
1129 |
+
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
|
1130 |
+
main_loss = loss_fct(upsampled_logits, labels)
|
1131 |
+
loss = main_loss
|
1132 |
+
if auxiliary_logits is not None:
|
1133 |
+
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
|
1134 |
+
loss += self.config.auxiliary_loss_weight * auxiliary_loss
|
1135 |
+
|
1136 |
+
return loss
|
1137 |
+
|
1138 |
+
@add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
|
1139 |
+
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
|
1140 |
+
def forward(
|
1141 |
+
self,
|
1142 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1143 |
+
head_mask: Optional[torch.Tensor] = None,
|
1144 |
+
labels: Optional[torch.Tensor] = None,
|
1145 |
+
output_attentions: Optional[bool] = None,
|
1146 |
+
output_hidden_states: Optional[bool] = None,
|
1147 |
+
return_dict: Optional[bool] = None,
|
1148 |
+
) -> Union[tuple, SemanticSegmenterOutput]:
|
1149 |
+
r"""
|
1150 |
+
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
1151 |
+
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
|
1152 |
+
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
|
1153 |
+
|
1154 |
+
Returns:
|
1155 |
+
|
1156 |
+
Examples:
|
1157 |
+
|
1158 |
+
```python
|
1159 |
+
>>> from transformers import AutoImageProcessor, Data2VecVisionForSemanticSegmentation
|
1160 |
+
>>> from PIL import Image
|
1161 |
+
>>> import requests
|
1162 |
+
|
1163 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1164 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1165 |
+
|
1166 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base")
|
1167 |
+
>>> model = Data2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base")
|
1168 |
+
|
1169 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
1170 |
+
>>> outputs = model(**inputs)
|
1171 |
+
>>> # logits are of shape (batch_size, num_labels, height, width)
|
1172 |
+
>>> logits = outputs.logits
|
1173 |
+
```"""
|
1174 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1175 |
+
output_hidden_states = (
|
1176 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
outputs = self.data2vec_vision(
|
1180 |
+
pixel_values,
|
1181 |
+
head_mask=head_mask,
|
1182 |
+
output_attentions=output_attentions,
|
1183 |
+
output_hidden_states=True, # we need the intermediate hidden states
|
1184 |
+
return_dict=return_dict,
|
1185 |
+
)
|
1186 |
+
|
1187 |
+
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
1188 |
+
|
1189 |
+
# only keep certain features, and reshape
|
1190 |
+
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings
|
1191 |
+
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
|
1192 |
+
batch_size = pixel_values.shape[0]
|
1193 |
+
patch_resolution = self.config.image_size // self.config.patch_size
|
1194 |
+
features = [
|
1195 |
+
x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
|
1196 |
+
]
|
1197 |
+
|
1198 |
+
# apply FPNs
|
1199 |
+
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
|
1200 |
+
for i in range(len(features)):
|
1201 |
+
features[i] = ops[i](features[i])
|
1202 |
+
|
1203 |
+
logits = self.decode_head(features)
|
1204 |
+
|
1205 |
+
auxiliary_logits = None
|
1206 |
+
if self.auxiliary_head is not None:
|
1207 |
+
auxiliary_logits = self.auxiliary_head(features)
|
1208 |
+
|
1209 |
+
loss = None
|
1210 |
+
if labels is not None:
|
1211 |
+
if self.config.num_labels == 1:
|
1212 |
+
raise ValueError("The number of labels should be greater than one")
|
1213 |
+
else:
|
1214 |
+
loss = self.compute_loss(logits, auxiliary_logits, labels)
|
1215 |
+
|
1216 |
+
if not return_dict:
|
1217 |
+
if output_hidden_states:
|
1218 |
+
output = (logits,) + outputs[1:]
|
1219 |
+
else:
|
1220 |
+
output = (logits,) + outputs[2:]
|
1221 |
+
return ((loss,) + output) if loss is not None else output
|
1222 |
+
|
1223 |
+
return SemanticSegmenterOutput(
|
1224 |
+
loss=loss,
|
1225 |
+
logits=logits,
|
1226 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
1227 |
+
attentions=outputs.attentions,
|
1228 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_tf_data2vec_vision.py
ADDED
@@ -0,0 +1,1717 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 Data2Vec Vision model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import collections.abc
|
21 |
+
import math
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
from ...activations_tf import get_tf_activation
|
29 |
+
from ...modeling_tf_outputs import (
|
30 |
+
TFBaseModelOutput,
|
31 |
+
TFBaseModelOutputWithPooling,
|
32 |
+
TFSemanticSegmenterOutput,
|
33 |
+
TFSequenceClassifierOutput,
|
34 |
+
)
|
35 |
+
from ...modeling_tf_utils import (
|
36 |
+
TFModelInputType,
|
37 |
+
TFPreTrainedModel,
|
38 |
+
TFSequenceClassificationLoss,
|
39 |
+
get_initializer,
|
40 |
+
keras,
|
41 |
+
keras_serializable,
|
42 |
+
unpack_inputs,
|
43 |
+
)
|
44 |
+
from ...tf_utils import shape_list, stable_softmax
|
45 |
+
from ...utils import (
|
46 |
+
add_code_sample_docstrings,
|
47 |
+
add_start_docstrings,
|
48 |
+
add_start_docstrings_to_model_forward,
|
49 |
+
logging,
|
50 |
+
replace_return_docstrings,
|
51 |
+
)
|
52 |
+
from .configuration_data2vec_vision import Data2VecVisionConfig
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
# General docstring
|
58 |
+
_CONFIG_FOR_DOC = "Data2VecVisionConfig"
|
59 |
+
|
60 |
+
# Base docstring
|
61 |
+
_CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base"
|
62 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
|
63 |
+
|
64 |
+
# Image classification docstring
|
65 |
+
_IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k"
|
66 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote"
|
67 |
+
|
68 |
+
|
69 |
+
@dataclass
|
70 |
+
class TFData2VecVisionModelOutputWithPooling(TFBaseModelOutputWithPooling):
|
71 |
+
"""
|
72 |
+
Class for outputs of [`TFData2VecVisionModel`].
|
73 |
+
|
74 |
+
Args:
|
75 |
+
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
76 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
77 |
+
pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`):
|
78 |
+
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
|
79 |
+
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
|
80 |
+
will be returned.
|
81 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
82 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
83 |
+
`(batch_size, sequence_length, hidden_size)`.
|
84 |
+
|
85 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
86 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
87 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
88 |
+
sequence_length)`.
|
89 |
+
|
90 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
91 |
+
heads.
|
92 |
+
"""
|
93 |
+
|
94 |
+
last_hidden_state: tf.Tensor = None
|
95 |
+
pooler_output: tf.Tensor = None
|
96 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
97 |
+
attentions: Tuple[tf.Tensor] | None = None
|
98 |
+
|
99 |
+
|
100 |
+
class TFData2VecVisionDropPath(keras.layers.Layer):
|
101 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
102 |
+
References:
|
103 |
+
(1) github.com:rwightman/pytorch-image-models
|
104 |
+
"""
|
105 |
+
|
106 |
+
def __init__(self, drop_path, **kwargs):
|
107 |
+
super().__init__(**kwargs)
|
108 |
+
self.drop_path = drop_path
|
109 |
+
|
110 |
+
def call(self, x, training=None):
|
111 |
+
if training:
|
112 |
+
keep_prob = 1 - self.drop_path
|
113 |
+
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
|
114 |
+
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
|
115 |
+
random_tensor = tf.floor(random_tensor)
|
116 |
+
return (x / keep_prob) * random_tensor
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
class TFData2VecVisionEmbeddings(keras.layers.Layer):
|
121 |
+
"""
|
122 |
+
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
|
123 |
+
|
124 |
+
"""
|
125 |
+
|
126 |
+
def __init__(self, config: Data2VecVisionConfig, **kwargs):
|
127 |
+
super().__init__(**kwargs)
|
128 |
+
self.config = config
|
129 |
+
|
130 |
+
self.patch_embeddings = TFData2VecVisionPatchEmbeddings(config, name="patch_embeddings")
|
131 |
+
self.num_patches = self.patch_embeddings.num_patches
|
132 |
+
self.config = config
|
133 |
+
|
134 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
135 |
+
|
136 |
+
def build(self, input_shape=None):
|
137 |
+
self.cls_token = self.add_weight(
|
138 |
+
shape=(1, 1, self.config.hidden_size),
|
139 |
+
initializer=tf.random_normal_initializer(stddev=self.config.initializer_range),
|
140 |
+
trainable=True,
|
141 |
+
name="cls_token",
|
142 |
+
)
|
143 |
+
if self.config.use_mask_token:
|
144 |
+
self.mask_token = self.add_weight(
|
145 |
+
shape=(1, 1, self.config.hidden_size),
|
146 |
+
initializer=tf.random_normal_initializer(stddev=self.config.initializer_range),
|
147 |
+
trainable=True,
|
148 |
+
name="mask_token",
|
149 |
+
)
|
150 |
+
else:
|
151 |
+
self.mask_token = None
|
152 |
+
|
153 |
+
if self.config.use_absolute_position_embeddings:
|
154 |
+
self.position_embeddings = self.add_weight(
|
155 |
+
shape=(1, self.num_patches + 1, self.config.hidden_size),
|
156 |
+
initializer=tf.random_normal_initializer(stddev=self.config.initializer_range),
|
157 |
+
trainable=True,
|
158 |
+
name="position_embeddings",
|
159 |
+
)
|
160 |
+
else:
|
161 |
+
self.position_embeddings = None
|
162 |
+
|
163 |
+
if self.built:
|
164 |
+
return
|
165 |
+
self.built = True
|
166 |
+
if getattr(self, "patch_embeddings", None) is not None:
|
167 |
+
with tf.name_scope(self.patch_embeddings.name):
|
168 |
+
self.patch_embeddings.build(None)
|
169 |
+
|
170 |
+
def call(self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None) -> tf.Tensor:
|
171 |
+
embeddings = self.patch_embeddings(pixel_values)
|
172 |
+
batch_size, seq_len, projection_dim = shape_list(embeddings)
|
173 |
+
|
174 |
+
cls_tokens = tf.tile(self.cls_token, (batch_size, 1, 1))
|
175 |
+
|
176 |
+
if bool_masked_pos is not None:
|
177 |
+
mask_tokens = tf.broadcast_to(self.mask_token, (batch_size, seq_len, projection_dim))
|
178 |
+
# replace the masked visual tokens by mask_tokens
|
179 |
+
w = bool_masked_pos[..., None]
|
180 |
+
w = tf.cast(w, mask_tokens.dtype)
|
181 |
+
# since TF doesn't support eager tensor assignment
|
182 |
+
embeddings = embeddings * (1 - w) + mask_tokens * w
|
183 |
+
|
184 |
+
embeddings = tf.concat([cls_tokens, embeddings], axis=1)
|
185 |
+
if self.position_embeddings is not None:
|
186 |
+
embeddings = embeddings + self.position_embeddings
|
187 |
+
embeddings = self.dropout(embeddings)
|
188 |
+
|
189 |
+
return embeddings
|
190 |
+
|
191 |
+
|
192 |
+
class TFData2VecVisionPatchEmbeddings(keras.layers.Layer):
|
193 |
+
"""
|
194 |
+
Image to Patch Embedding.
|
195 |
+
"""
|
196 |
+
|
197 |
+
def __init__(self, config: Data2VecVisionConfig, **kwargs):
|
198 |
+
super().__init__(**kwargs)
|
199 |
+
self.config = config
|
200 |
+
|
201 |
+
image_size, patch_size = config.image_size, config.patch_size
|
202 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
203 |
+
|
204 |
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
205 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
206 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
207 |
+
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
|
208 |
+
self.image_size = image_size
|
209 |
+
self.patch_size = patch_size
|
210 |
+
self.num_patches = num_patches
|
211 |
+
self.patch_shape = patch_shape
|
212 |
+
self.num_channels = num_channels
|
213 |
+
|
214 |
+
self.projection = keras.layers.Conv2D(
|
215 |
+
filters=hidden_size,
|
216 |
+
kernel_size=patch_size,
|
217 |
+
strides=patch_size,
|
218 |
+
padding="valid",
|
219 |
+
data_format="channels_last",
|
220 |
+
kernel_initializer="glorot_uniform", # following torch.nn.Linear
|
221 |
+
bias_initializer="zeros",
|
222 |
+
name="projection",
|
223 |
+
)
|
224 |
+
|
225 |
+
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
|
226 |
+
batch_size, num_channels, height, width = shape_list(pixel_values)
|
227 |
+
if tf.executing_eagerly():
|
228 |
+
if num_channels != self.num_channels:
|
229 |
+
raise ValueError(
|
230 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the"
|
231 |
+
" configuration."
|
232 |
+
)
|
233 |
+
if height != self.image_size[0] or width != self.image_size[1]:
|
234 |
+
raise ValueError(
|
235 |
+
f"Input image size ({height}*{width}) doesn't match model"
|
236 |
+
f" ({self.image_size[0]}*{self.image_size[1]})."
|
237 |
+
)
|
238 |
+
|
239 |
+
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
|
240 |
+
# So change the input format from `NCHW` to `NHWC`.
|
241 |
+
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
|
242 |
+
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
|
243 |
+
|
244 |
+
projection = self.projection(pixel_values)
|
245 |
+
|
246 |
+
# Change the 2D spatial dimensions to a single temporal dimension.
|
247 |
+
# shape = (batch_size, num_patches, out_channels=embed_dim)
|
248 |
+
num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0])
|
249 |
+
|
250 |
+
return tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1))
|
251 |
+
|
252 |
+
def build(self, input_shape=None):
|
253 |
+
if self.built:
|
254 |
+
return
|
255 |
+
self.built = True
|
256 |
+
if getattr(self, "projection", None) is not None:
|
257 |
+
with tf.name_scope(self.projection.name):
|
258 |
+
self.projection.build([None, None, None, self.num_channels])
|
259 |
+
|
260 |
+
|
261 |
+
class TFData2VecVisionSelfAttention(keras.layers.Layer):
|
262 |
+
def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs):
|
263 |
+
super().__init__(**kwargs)
|
264 |
+
|
265 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
266 |
+
raise ValueError(
|
267 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
|
268 |
+
f"of attention heads ({config.num_attention_heads})"
|
269 |
+
)
|
270 |
+
|
271 |
+
self.num_attention_heads = config.num_attention_heads
|
272 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
273 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
274 |
+
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
|
275 |
+
|
276 |
+
self.query = keras.layers.Dense(
|
277 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
|
278 |
+
)
|
279 |
+
self.key = keras.layers.Dense(
|
280 |
+
units=self.all_head_size,
|
281 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
282 |
+
name="key",
|
283 |
+
use_bias=False,
|
284 |
+
)
|
285 |
+
self.value = keras.layers.Dense(
|
286 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
|
287 |
+
)
|
288 |
+
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
|
289 |
+
|
290 |
+
if window_size:
|
291 |
+
self.relative_position_bias = TFData2VecVisionRelativePositionBias(
|
292 |
+
config, window_size=window_size, name="relative_position_bias"
|
293 |
+
)
|
294 |
+
else:
|
295 |
+
self.relative_position_bias = None
|
296 |
+
self.config = config
|
297 |
+
|
298 |
+
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
|
299 |
+
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
|
300 |
+
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
301 |
+
|
302 |
+
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
|
303 |
+
return tf.transpose(tensor, perm=[0, 2, 1, 3])
|
304 |
+
|
305 |
+
def call(
|
306 |
+
self,
|
307 |
+
hidden_states: tf.Tensor,
|
308 |
+
head_mask: tf.Tensor,
|
309 |
+
output_attentions: bool,
|
310 |
+
relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None,
|
311 |
+
training: bool = False,
|
312 |
+
) -> Tuple[tf.Tensor]:
|
313 |
+
batch_size = shape_list(hidden_states)[0]
|
314 |
+
mixed_query_layer = self.query(inputs=hidden_states)
|
315 |
+
mixed_key_layer = self.key(inputs=hidden_states)
|
316 |
+
mixed_value_layer = self.value(inputs=hidden_states)
|
317 |
+
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
|
318 |
+
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
|
319 |
+
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
|
320 |
+
|
321 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
322 |
+
# (batch size, num_heads, seq_len_q, seq_len_k)
|
323 |
+
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
324 |
+
attention_scores = attention_scores / self.sqrt_att_head_size
|
325 |
+
|
326 |
+
# Add relative position bias if present.
|
327 |
+
if self.relative_position_bias is not None:
|
328 |
+
# Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras
|
329 |
+
# might complain about `Layer.call()` not being invoked properly. In this case this input
|
330 |
+
# i.e., 0.0 is not going to be used in any calculations so we're safe.
|
331 |
+
attention_scores = attention_scores + self.relative_position_bias(0.0)[None, ...]
|
332 |
+
|
333 |
+
# Add shared relative position bias if provided.
|
334 |
+
if relative_position_bias is not None:
|
335 |
+
attention_scores = attention_scores + relative_position_bias
|
336 |
+
|
337 |
+
# Normalize the attention scores to probabilities.
|
338 |
+
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
|
339 |
+
|
340 |
+
# This is actually dropping out entire tokens to attend to, which might
|
341 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
342 |
+
attention_probs = self.dropout(inputs=attention_probs, training=training)
|
343 |
+
|
344 |
+
# Mask heads if we want to
|
345 |
+
if head_mask is not None:
|
346 |
+
attention_probs = tf.multiply(attention_probs, head_mask)
|
347 |
+
|
348 |
+
attention_output = tf.matmul(attention_probs, value_layer)
|
349 |
+
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
|
350 |
+
|
351 |
+
# (batch_size, seq_len_q, all_head_size)
|
352 |
+
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
|
353 |
+
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
|
354 |
+
|
355 |
+
return outputs
|
356 |
+
|
357 |
+
def build(self, input_shape=None):
|
358 |
+
if self.built:
|
359 |
+
return
|
360 |
+
self.built = True
|
361 |
+
if getattr(self, "query", None) is not None:
|
362 |
+
with tf.name_scope(self.query.name):
|
363 |
+
self.query.build([None, None, self.config.hidden_size])
|
364 |
+
if getattr(self, "key", None) is not None:
|
365 |
+
with tf.name_scope(self.key.name):
|
366 |
+
self.key.build([None, None, self.config.hidden_size])
|
367 |
+
if getattr(self, "value", None) is not None:
|
368 |
+
with tf.name_scope(self.value.name):
|
369 |
+
self.value.build([None, None, self.config.hidden_size])
|
370 |
+
if getattr(self, "relative_position_bias", None) is not None:
|
371 |
+
with tf.name_scope(self.relative_position_bias.name):
|
372 |
+
self.relative_position_bias.build(None)
|
373 |
+
|
374 |
+
|
375 |
+
class TFData2VecVisionSelfOutput(keras.layers.Layer):
|
376 |
+
"""
|
377 |
+
The residual connection is defined in TFData2VecVisionLayer instead of here (as is the case with other models), due
|
378 |
+
to the layernorm applied before each block.
|
379 |
+
"""
|
380 |
+
|
381 |
+
def __init__(self, config: Data2VecVisionConfig, **kwargs):
|
382 |
+
super().__init__(**kwargs)
|
383 |
+
|
384 |
+
self.dense = keras.layers.Dense(
|
385 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
386 |
+
)
|
387 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
388 |
+
self.config = config
|
389 |
+
|
390 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, gamma=None, training: bool = False) -> tf.Tensor:
|
391 |
+
hidden_states = self.dense(inputs=hidden_states)
|
392 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
393 |
+
|
394 |
+
return hidden_states
|
395 |
+
|
396 |
+
def build(self, input_shape=None):
|
397 |
+
if self.built:
|
398 |
+
return
|
399 |
+
self.built = True
|
400 |
+
if getattr(self, "dense", None) is not None:
|
401 |
+
with tf.name_scope(self.dense.name):
|
402 |
+
self.dense.build([None, None, self.config.hidden_size])
|
403 |
+
|
404 |
+
|
405 |
+
class TFData2VecVisionAttention(keras.layers.Layer):
|
406 |
+
def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs):
|
407 |
+
super().__init__(**kwargs)
|
408 |
+
|
409 |
+
self.attention = TFData2VecVisionSelfAttention(config, window_size=window_size, name="attention")
|
410 |
+
self.dense_output = TFData2VecVisionSelfOutput(config, name="output")
|
411 |
+
|
412 |
+
def prune_heads(self, heads):
|
413 |
+
raise NotImplementedError
|
414 |
+
|
415 |
+
def call(
|
416 |
+
self,
|
417 |
+
input_tensor: tf.Tensor,
|
418 |
+
head_mask: tf.Tensor,
|
419 |
+
output_attentions: bool,
|
420 |
+
relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None,
|
421 |
+
training: bool = False,
|
422 |
+
) -> Tuple[tf.Tensor]:
|
423 |
+
self_outputs = self.attention(
|
424 |
+
hidden_states=input_tensor,
|
425 |
+
head_mask=head_mask,
|
426 |
+
output_attentions=output_attentions,
|
427 |
+
relative_position_bias=relative_position_bias,
|
428 |
+
training=training,
|
429 |
+
)
|
430 |
+
attention_output = self.dense_output(
|
431 |
+
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
|
432 |
+
)
|
433 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
434 |
+
|
435 |
+
return outputs
|
436 |
+
|
437 |
+
def build(self, input_shape=None):
|
438 |
+
if self.built:
|
439 |
+
return
|
440 |
+
self.built = True
|
441 |
+
if getattr(self, "attention", None) is not None:
|
442 |
+
with tf.name_scope(self.attention.name):
|
443 |
+
self.attention.build(None)
|
444 |
+
if getattr(self, "dense_output", None) is not None:
|
445 |
+
with tf.name_scope(self.dense_output.name):
|
446 |
+
self.dense_output.build(None)
|
447 |
+
|
448 |
+
|
449 |
+
# Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->Data2VecVision
|
450 |
+
class TFData2VecVisionIntermediate(keras.layers.Layer):
|
451 |
+
def __init__(self, config: Data2VecVisionConfig, **kwargs):
|
452 |
+
super().__init__(**kwargs)
|
453 |
+
|
454 |
+
self.dense = keras.layers.Dense(
|
455 |
+
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
456 |
+
)
|
457 |
+
|
458 |
+
if isinstance(config.hidden_act, str):
|
459 |
+
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
|
460 |
+
else:
|
461 |
+
self.intermediate_act_fn = config.hidden_act
|
462 |
+
self.config = config
|
463 |
+
|
464 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
465 |
+
hidden_states = self.dense(inputs=hidden_states)
|
466 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
467 |
+
|
468 |
+
return hidden_states
|
469 |
+
|
470 |
+
def build(self, input_shape=None):
|
471 |
+
if self.built:
|
472 |
+
return
|
473 |
+
self.built = True
|
474 |
+
if getattr(self, "dense", None) is not None:
|
475 |
+
with tf.name_scope(self.dense.name):
|
476 |
+
self.dense.build([None, None, self.config.hidden_size])
|
477 |
+
|
478 |
+
|
479 |
+
class TFData2VecVisionOutput(keras.layers.Layer):
|
480 |
+
def __init__(self, config: Data2VecVisionConfig, **kwargs):
|
481 |
+
super().__init__(**kwargs)
|
482 |
+
|
483 |
+
self.dense = keras.layers.Dense(
|
484 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
485 |
+
)
|
486 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
487 |
+
self.config = config
|
488 |
+
|
489 |
+
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
|
490 |
+
hidden_states = self.dense(inputs=hidden_states)
|
491 |
+
hidden_states = self.dropout(inputs=hidden_states, training=training)
|
492 |
+
|
493 |
+
return hidden_states
|
494 |
+
|
495 |
+
def build(self, input_shape=None):
|
496 |
+
if self.built:
|
497 |
+
return
|
498 |
+
self.built = True
|
499 |
+
if getattr(self, "dense", None) is not None:
|
500 |
+
with tf.name_scope(self.dense.name):
|
501 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
502 |
+
|
503 |
+
|
504 |
+
class TFData2VecVisionLayer(keras.layers.Layer):
|
505 |
+
"""This corresponds to the Block class in the timm implementation."""
|
506 |
+
|
507 |
+
def __init__(
|
508 |
+
self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0, **kwargs
|
509 |
+
):
|
510 |
+
super().__init__(**kwargs)
|
511 |
+
self.config = config
|
512 |
+
|
513 |
+
self.attention = TFData2VecVisionAttention(config, window_size=window_size, name="attention")
|
514 |
+
self.intermediate = TFData2VecVisionIntermediate(config, name="intermediate")
|
515 |
+
self.data2vec_output = TFData2VecVisionOutput(config, name="output")
|
516 |
+
|
517 |
+
self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before")
|
518 |
+
self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after")
|
519 |
+
# Using `layers.Activation` instead of `tf.identity` to better control `training`
|
520 |
+
# behaviour.
|
521 |
+
self.drop_path = (
|
522 |
+
TFData2VecVisionDropPath(drop_path_rate, name="drop_path")
|
523 |
+
if drop_path_rate > 0.0
|
524 |
+
else keras.layers.Activation("linear", name="drop_path")
|
525 |
+
)
|
526 |
+
self.init_values = config.layer_scale_init_value
|
527 |
+
|
528 |
+
def build(self, input_shape: tf.TensorShape = None):
|
529 |
+
if self.init_values > 0:
|
530 |
+
self.lambda_1 = self.add_weight(
|
531 |
+
shape=(self.config.hidden_size),
|
532 |
+
initializer="ones",
|
533 |
+
trainable=True,
|
534 |
+
name="lambda_1",
|
535 |
+
)
|
536 |
+
self.lambda_2 = self.add_weight(
|
537 |
+
shape=(self.config.hidden_size),
|
538 |
+
initializer="ones",
|
539 |
+
trainable=True,
|
540 |
+
name="lambda_2",
|
541 |
+
)
|
542 |
+
self.lambda_1.assign(self.init_values * tf.ones((self.config.hidden_size)))
|
543 |
+
self.lambda_2.assign(self.init_values * tf.ones((self.config.hidden_size)))
|
544 |
+
else:
|
545 |
+
self.lambda_1, self.lambda_2 = None, None
|
546 |
+
|
547 |
+
if self.built:
|
548 |
+
return
|
549 |
+
self.built = True
|
550 |
+
if getattr(self, "attention", None) is not None:
|
551 |
+
with tf.name_scope(self.attention.name):
|
552 |
+
self.attention.build(None)
|
553 |
+
if getattr(self, "intermediate", None) is not None:
|
554 |
+
with tf.name_scope(self.intermediate.name):
|
555 |
+
self.intermediate.build(None)
|
556 |
+
if getattr(self, "data2vec_output", None) is not None:
|
557 |
+
with tf.name_scope(self.data2vec_output.name):
|
558 |
+
self.data2vec_output.build(None)
|
559 |
+
if getattr(self, "layernorm_before", None) is not None:
|
560 |
+
with tf.name_scope(self.layernorm_before.name):
|
561 |
+
self.layernorm_before.build([None, None, self.config.hidden_size])
|
562 |
+
if getattr(self, "layernorm_after", None) is not None:
|
563 |
+
with tf.name_scope(self.layernorm_after.name):
|
564 |
+
self.layernorm_after.build([None, None, self.config.hidden_size])
|
565 |
+
if getattr(self, "drop_path", None) is not None:
|
566 |
+
with tf.name_scope(self.drop_path.name):
|
567 |
+
self.drop_path.build(None)
|
568 |
+
|
569 |
+
def call(
|
570 |
+
self,
|
571 |
+
hidden_states: tf.Tensor,
|
572 |
+
head_mask: tf.Tensor,
|
573 |
+
output_attentions: bool,
|
574 |
+
relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None,
|
575 |
+
training: bool = False,
|
576 |
+
) -> Tuple[tf.Tensor]:
|
577 |
+
self_attention_outputs = self.attention(
|
578 |
+
# in Data2VecVision, layernorm is applied before self-attention
|
579 |
+
input_tensor=self.layernorm_before(inputs=hidden_states),
|
580 |
+
head_mask=head_mask,
|
581 |
+
output_attentions=output_attentions,
|
582 |
+
relative_position_bias=relative_position_bias,
|
583 |
+
training=training,
|
584 |
+
)
|
585 |
+
attention_output = self_attention_outputs[0]
|
586 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
587 |
+
|
588 |
+
# apply lambda_1 if present
|
589 |
+
if self.lambda_1 is not None:
|
590 |
+
attention_output = self.lambda_1 * attention_output
|
591 |
+
|
592 |
+
# first residual connection
|
593 |
+
hidden_states = self.drop_path(attention_output) + hidden_states
|
594 |
+
|
595 |
+
# in Data2VecVision, layernorm is also applied after self-attention
|
596 |
+
layer_output = self.layernorm_after(hidden_states)
|
597 |
+
|
598 |
+
layer_output = self.intermediate(layer_output)
|
599 |
+
layer_output = self.data2vec_output(layer_output)
|
600 |
+
|
601 |
+
if self.lambda_2 is not None:
|
602 |
+
layer_output = self.lambda_2 * layer_output
|
603 |
+
|
604 |
+
# second residual connection
|
605 |
+
layer_output = self.drop_path(layer_output) + hidden_states
|
606 |
+
|
607 |
+
outputs = (layer_output,) + outputs
|
608 |
+
|
609 |
+
return outputs
|
610 |
+
|
611 |
+
|
612 |
+
# Taken and modified from here:
|
613 |
+
# https://github.com/leondgarse/keras_cv_attention_models/blob/main/keras_cv_attention_models/beit/beit.py#L28
|
614 |
+
class TFData2VecVisionRelativePositionBias(keras.layers.Layer):
|
615 |
+
def __init__(self, config: Data2VecVisionConfig, window_size: tuple, **kwargs) -> None:
|
616 |
+
super().__init__(**kwargs)
|
617 |
+
self.config = config
|
618 |
+
|
619 |
+
self.window_size = window_size
|
620 |
+
# +3 for cls_token_pos_len
|
621 |
+
# window_size can be something like (14, 14)
|
622 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
623 |
+
|
624 |
+
self.relative_position_index = self.get_position_index()
|
625 |
+
|
626 |
+
def build(self, input_shape):
|
627 |
+
self.relative_position_bias_table = self.add_weight(
|
628 |
+
shape=(self.num_relative_distance, self.config.num_attention_heads),
|
629 |
+
initializer="zeros",
|
630 |
+
trainable=True,
|
631 |
+
name="relative_position_bias_table",
|
632 |
+
) # [2*Wh-1 * 2*Ww-1, nH]
|
633 |
+
# cls to token & token 2 cls & cls to cls
|
634 |
+
|
635 |
+
super().build(input_shape)
|
636 |
+
|
637 |
+
def get_position_index(self):
|
638 |
+
# get pair-wise relative position index for each token inside the window
|
639 |
+
xx, yy = tf.meshgrid(range(self.window_size[0]), range(self.window_size[1]))
|
640 |
+
coords = tf.stack([yy, xx], axis=0) # [2, Wh, Ww]
|
641 |
+
coords_flatten = tf.reshape(coords, [2, -1]) # [2, Wh*Ww]
|
642 |
+
|
643 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Wh*Ww, Wh*Ww]
|
644 |
+
relative_coords = tf.transpose(relative_coords, perm=[1, 2, 0]) # [Wh*Ww, Wh*Ww, 2]
|
645 |
+
|
646 |
+
xx = (relative_coords[:, :, 0] + self.window_size[0] - 1) * (2 * self.window_size[1] - 1)
|
647 |
+
yy = relative_coords[:, :, 1] + self.window_size[1] - 1
|
648 |
+
relative_coords = tf.stack([xx, yy], axis=-1)
|
649 |
+
|
650 |
+
relative_position_index = tf.reduce_sum(relative_coords, axis=-1) # [Wh*Ww, Wh*Ww]
|
651 |
+
|
652 |
+
top = tf.ones((1, relative_position_index.shape[1]), dtype=relative_position_index.dtype) * (
|
653 |
+
self.num_relative_distance - 3
|
654 |
+
)
|
655 |
+
left = tf.ones((relative_position_index.shape[0], 1), dtype=relative_position_index.dtype) * (
|
656 |
+
self.num_relative_distance - 2
|
657 |
+
)
|
658 |
+
corner = tf.ones((1, 1), dtype=relative_position_index.dtype) * (self.num_relative_distance - 1)
|
659 |
+
|
660 |
+
left_corner = tf.concat([corner, left], axis=0)
|
661 |
+
relative_position_index = tf.concat([top, relative_position_index], axis=0)
|
662 |
+
relative_position_index = tf.concat([left_corner, relative_position_index], axis=1) # [Wh*Ww + 1, Wh*Ww + 1]
|
663 |
+
return relative_position_index
|
664 |
+
|
665 |
+
def call(self, inputs=None) -> tf.Tensor:
|
666 |
+
relative_position_bias = tf.gather(self.relative_position_bias_table, self.relative_position_index, axis=0)
|
667 |
+
return tf.transpose(relative_position_bias, [2, 0, 1])
|
668 |
+
|
669 |
+
|
670 |
+
class TFData2VecVisionEncoder(keras.layers.Layer):
|
671 |
+
def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs):
|
672 |
+
super().__init__(**kwargs)
|
673 |
+
self.config = config
|
674 |
+
if config.use_shared_relative_position_bias:
|
675 |
+
self.relative_position_bias = TFData2VecVisionRelativePositionBias(
|
676 |
+
config, window_size=window_size, name="relative_position_bias"
|
677 |
+
)
|
678 |
+
else:
|
679 |
+
self.relative_position_bias = None
|
680 |
+
|
681 |
+
# stochastic depth decay rule
|
682 |
+
dpr = list(tf.linspace(0.0, config.drop_path_rate, config.num_hidden_layers))
|
683 |
+
self.layer = [
|
684 |
+
TFData2VecVisionLayer(
|
685 |
+
config,
|
686 |
+
window_size=window_size if config.use_relative_position_bias else None,
|
687 |
+
drop_path_rate=dpr[i],
|
688 |
+
name=f"layer_._{i}",
|
689 |
+
)
|
690 |
+
for i in range(config.num_hidden_layers)
|
691 |
+
]
|
692 |
+
|
693 |
+
def call(
|
694 |
+
self,
|
695 |
+
hidden_states: tf.Tensor,
|
696 |
+
head_mask: tf.Tensor | None = None,
|
697 |
+
output_attentions: bool = False,
|
698 |
+
output_hidden_states: bool = False,
|
699 |
+
return_dict: bool = True,
|
700 |
+
) -> Union[tuple, TFBaseModelOutput]:
|
701 |
+
all_hidden_states = () if output_hidden_states else None
|
702 |
+
all_self_attentions = () if output_attentions else None
|
703 |
+
|
704 |
+
for i, layer_module in enumerate(self.layer):
|
705 |
+
if output_hidden_states:
|
706 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
707 |
+
|
708 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
709 |
+
# Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras
|
710 |
+
# might complain about `Layer.call()` not being invoked properly. In this case this input
|
711 |
+
# i.e., 0.0 is not going to be used in any calculations so we're safe.
|
712 |
+
relative_position_bias = (
|
713 |
+
self.relative_position_bias(0.0) if self.relative_position_bias is not None else None
|
714 |
+
)
|
715 |
+
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias)
|
716 |
+
|
717 |
+
hidden_states = layer_outputs[0]
|
718 |
+
|
719 |
+
if output_attentions:
|
720 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
721 |
+
|
722 |
+
if output_hidden_states:
|
723 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
724 |
+
|
725 |
+
if not return_dict:
|
726 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
727 |
+
|
728 |
+
return TFBaseModelOutput(
|
729 |
+
last_hidden_state=hidden_states,
|
730 |
+
hidden_states=all_hidden_states,
|
731 |
+
attentions=all_self_attentions,
|
732 |
+
)
|
733 |
+
|
734 |
+
def build(self, input_shape=None):
|
735 |
+
if self.built:
|
736 |
+
return
|
737 |
+
self.built = True
|
738 |
+
if getattr(self, "relative_position_bias", None) is not None:
|
739 |
+
with tf.name_scope(self.relative_position_bias.name):
|
740 |
+
self.relative_position_bias.build(None)
|
741 |
+
if getattr(self, "layer", None) is not None:
|
742 |
+
for layer in self.layer:
|
743 |
+
with tf.name_scope(layer.name):
|
744 |
+
layer.build(None)
|
745 |
+
|
746 |
+
|
747 |
+
@keras_serializable
|
748 |
+
class TFData2VecVisionMainLayer(keras.layers.Layer):
|
749 |
+
config_class = Data2VecVisionConfig
|
750 |
+
|
751 |
+
def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = True, **kwargs):
|
752 |
+
super().__init__(**kwargs)
|
753 |
+
|
754 |
+
self.config = config
|
755 |
+
self.add_pooling_layer = add_pooling_layer
|
756 |
+
|
757 |
+
self.embeddings = TFData2VecVisionEmbeddings(config, name="embeddings")
|
758 |
+
self.encoder = TFData2VecVisionEncoder(
|
759 |
+
config, window_size=self.embeddings.patch_embeddings.patch_shape, name="encoder"
|
760 |
+
)
|
761 |
+
self.layernorm = (
|
762 |
+
tf.identity
|
763 |
+
if config.use_mean_pooling
|
764 |
+
else keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
|
765 |
+
)
|
766 |
+
|
767 |
+
# We are setting the `data_format` like so because from here on we will revert to the
|
768 |
+
# NCHW output format
|
769 |
+
self.pooler = TFData2VecVisionPooler(config, name="pooler") if add_pooling_layer else None
|
770 |
+
|
771 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
772 |
+
return self.embeddings.patch_embeddings
|
773 |
+
|
774 |
+
def _prune_heads(self, heads_to_prune):
|
775 |
+
"""
|
776 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
777 |
+
class PreTrainedModel
|
778 |
+
"""
|
779 |
+
raise NotImplementedError
|
780 |
+
|
781 |
+
@unpack_inputs
|
782 |
+
def call(
|
783 |
+
self,
|
784 |
+
pixel_values: tf.Tensor | None = None,
|
785 |
+
bool_masked_pos: tf.Tensor | None = None,
|
786 |
+
head_mask: tf.Tensor | None = None,
|
787 |
+
output_attentions: Optional[bool] = None,
|
788 |
+
output_hidden_states: Optional[bool] = None,
|
789 |
+
return_dict: Optional[bool] = None,
|
790 |
+
training: bool = False,
|
791 |
+
) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]:
|
792 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
793 |
+
output_hidden_states = (
|
794 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
795 |
+
)
|
796 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
797 |
+
|
798 |
+
if pixel_values is None:
|
799 |
+
raise ValueError("You have to specify pixel_values")
|
800 |
+
|
801 |
+
# Prepare head mask if needed
|
802 |
+
# 1.0 in head_mask indicate we keep the head
|
803 |
+
# attention_probs has shape bsz x n_heads x N x N
|
804 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
805 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
806 |
+
if head_mask is not None:
|
807 |
+
raise NotImplementedError
|
808 |
+
else:
|
809 |
+
head_mask = [None] * self.config.num_hidden_layers
|
810 |
+
|
811 |
+
embedding_output = self.embeddings(pixel_values, bool_masked_pos, training=training)
|
812 |
+
|
813 |
+
encoder_outputs = self.encoder(
|
814 |
+
embedding_output,
|
815 |
+
head_mask=head_mask,
|
816 |
+
output_attentions=output_attentions,
|
817 |
+
output_hidden_states=output_hidden_states,
|
818 |
+
return_dict=return_dict,
|
819 |
+
training=training,
|
820 |
+
)
|
821 |
+
|
822 |
+
sequence_output = encoder_outputs[0]
|
823 |
+
sequence_output = self.layernorm(sequence_output)
|
824 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
825 |
+
|
826 |
+
if not return_dict:
|
827 |
+
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
|
828 |
+
return head_outputs + encoder_outputs[1:]
|
829 |
+
|
830 |
+
return TFData2VecVisionModelOutputWithPooling(
|
831 |
+
last_hidden_state=sequence_output,
|
832 |
+
pooler_output=pooled_output,
|
833 |
+
hidden_states=encoder_outputs.hidden_states,
|
834 |
+
attentions=encoder_outputs.attentions,
|
835 |
+
)
|
836 |
+
|
837 |
+
def build(self, input_shape=None):
|
838 |
+
if self.built:
|
839 |
+
return
|
840 |
+
self.built = True
|
841 |
+
if getattr(self, "embeddings", None) is not None:
|
842 |
+
with tf.name_scope(self.embeddings.name):
|
843 |
+
self.embeddings.build(None)
|
844 |
+
if getattr(self, "encoder", None) is not None:
|
845 |
+
with tf.name_scope(self.encoder.name):
|
846 |
+
self.encoder.build(None)
|
847 |
+
if getattr(self, "layernorm", None) is not None:
|
848 |
+
if hasattr(self.layernorm, "name"):
|
849 |
+
with tf.name_scope(self.layernorm.name):
|
850 |
+
self.layernorm.build((None, self.config.hidden_size))
|
851 |
+
if getattr(self, "pooler", None) is not None:
|
852 |
+
with tf.name_scope(self.pooler.name):
|
853 |
+
self.pooler.build(None)
|
854 |
+
|
855 |
+
|
856 |
+
class TFData2VecVisionPooler(keras.layers.Layer):
|
857 |
+
def __init__(self, config: Data2VecVisionConfig, **kwargs):
|
858 |
+
super().__init__(**kwargs)
|
859 |
+
self.layernorm = (
|
860 |
+
keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
|
861 |
+
if config.use_mean_pooling
|
862 |
+
else None
|
863 |
+
)
|
864 |
+
self.config = config
|
865 |
+
|
866 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
867 |
+
if self.layernorm is not None:
|
868 |
+
# Mean pool the final hidden states of the patch tokens
|
869 |
+
patch_tokens = hidden_states[:, 1:, :]
|
870 |
+
pooled_output = self.layernorm(tf.reduce_mean(patch_tokens, axis=1))
|
871 |
+
else:
|
872 |
+
# Pool by simply taking the final hidden state of the [CLS] token
|
873 |
+
pooled_output = hidden_states[:, 0]
|
874 |
+
|
875 |
+
return pooled_output
|
876 |
+
|
877 |
+
def build(self, input_shape=None):
|
878 |
+
if self.built:
|
879 |
+
return
|
880 |
+
self.built = True
|
881 |
+
if getattr(self, "layernorm", None) is not None:
|
882 |
+
if hasattr(self.layernorm, "name"):
|
883 |
+
with tf.name_scope(self.layernorm.name):
|
884 |
+
self.layernorm.build((None, self.config.hidden_size))
|
885 |
+
|
886 |
+
|
887 |
+
class TFData2VecVisionPreTrainedModel(TFPreTrainedModel):
|
888 |
+
"""
|
889 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
890 |
+
models.
|
891 |
+
"""
|
892 |
+
|
893 |
+
config_class = Data2VecVisionConfig
|
894 |
+
base_model_prefix = "data2vec_vision"
|
895 |
+
main_input_name = "pixel_values"
|
896 |
+
_keys_to_ignore_on_load_unexpected = [r"relative_position_index"]
|
897 |
+
|
898 |
+
|
899 |
+
DATA2VEC_VISION_START_DOCSTRING = r"""
|
900 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
901 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
902 |
+
etc.).
|
903 |
+
|
904 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
905 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
906 |
+
behavior.
|
907 |
+
|
908 |
+
<Tip>
|
909 |
+
|
910 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
911 |
+
|
912 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
913 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
914 |
+
|
915 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
916 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
917 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
918 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
919 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
920 |
+
positional argument:
|
921 |
+
|
922 |
+
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
|
923 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
924 |
+
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
|
925 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
926 |
+
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
|
927 |
+
|
928 |
+
Note that when creating models and layers with
|
929 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
930 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
931 |
+
|
932 |
+
</Tip>
|
933 |
+
|
934 |
+
Args:
|
935 |
+
config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model.
|
936 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
937 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
938 |
+
"""
|
939 |
+
|
940 |
+
DATA2VEC_VISION_INPUTS_DOCSTRING = r"""
|
941 |
+
Args:
|
942 |
+
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
|
943 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
944 |
+
[`BeitImageProcessor.__call__`] for details.
|
945 |
+
|
946 |
+
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
947 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
948 |
+
- 1 indicates the head is **not masked**,
|
949 |
+
- 0 indicates the head is **masked**.
|
950 |
+
|
951 |
+
output_attentions (`bool`, *optional*):
|
952 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
953 |
+
tensors for more detail.
|
954 |
+
|
955 |
+
output_hidden_states (`bool`, *optional*):
|
956 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
957 |
+
more detail.
|
958 |
+
|
959 |
+
return_dict (`bool`, *optional*):
|
960 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
961 |
+
in eager mode, in graph mode the value will always be set to True.
|
962 |
+
|
963 |
+
training (`bool`, *optional*, defaults to `False``):
|
964 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
965 |
+
behaviors between training and evaluation).
|
966 |
+
"""
|
967 |
+
|
968 |
+
|
969 |
+
@add_start_docstrings(
|
970 |
+
"The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.",
|
971 |
+
DATA2VEC_VISION_START_DOCSTRING,
|
972 |
+
)
|
973 |
+
class TFData2VecVisionModel(TFData2VecVisionPreTrainedModel):
|
974 |
+
def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False, *inputs, **kwargs):
|
975 |
+
super().__init__(config, *inputs, **kwargs)
|
976 |
+
self.config = config
|
977 |
+
|
978 |
+
self.data2vec_vision = TFData2VecVisionMainLayer(
|
979 |
+
config, add_pooling_layer=add_pooling_layer, name="data2vec_vision"
|
980 |
+
)
|
981 |
+
|
982 |
+
def get_input_embeddings(self):
|
983 |
+
return self.data2vec_vision.get_input_embeddings()
|
984 |
+
|
985 |
+
@unpack_inputs
|
986 |
+
@add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
|
987 |
+
@add_code_sample_docstrings(
|
988 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
989 |
+
output_type=TFData2VecVisionModelOutputWithPooling,
|
990 |
+
config_class=_CONFIG_FOR_DOC,
|
991 |
+
modality="vision",
|
992 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
993 |
+
)
|
994 |
+
def call(
|
995 |
+
self,
|
996 |
+
pixel_values: TFModelInputType | None = None,
|
997 |
+
bool_masked_pos: tf.Tensor | None = None,
|
998 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
999 |
+
output_attentions: Optional[bool] = None,
|
1000 |
+
output_hidden_states: Optional[bool] = None,
|
1001 |
+
return_dict: Optional[bool] = None,
|
1002 |
+
training: bool = False,
|
1003 |
+
) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]:
|
1004 |
+
r"""
|
1005 |
+
bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`, *optional*):
|
1006 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
1007 |
+
"""
|
1008 |
+
outputs = self.data2vec_vision(
|
1009 |
+
pixel_values=pixel_values,
|
1010 |
+
bool_masked_pos=bool_masked_pos,
|
1011 |
+
head_mask=head_mask,
|
1012 |
+
output_attentions=output_attentions,
|
1013 |
+
output_hidden_states=output_hidden_states,
|
1014 |
+
return_dict=return_dict,
|
1015 |
+
training=training,
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
return outputs
|
1019 |
+
|
1020 |
+
def build(self, input_shape=None):
|
1021 |
+
if self.built:
|
1022 |
+
return
|
1023 |
+
self.built = True
|
1024 |
+
if getattr(self, "data2vec_vision", None) is not None:
|
1025 |
+
with tf.name_scope(self.data2vec_vision.name):
|
1026 |
+
self.data2vec_vision.build(None)
|
1027 |
+
|
1028 |
+
|
1029 |
+
@add_start_docstrings(
|
1030 |
+
"""
|
1031 |
+
Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of
|
1032 |
+
the final hidden states of the patch tokens) e.g. for ImageNet.
|
1033 |
+
""",
|
1034 |
+
DATA2VEC_VISION_START_DOCSTRING,
|
1035 |
+
)
|
1036 |
+
class TFData2VecVisionForImageClassification(TFData2VecVisionPreTrainedModel, TFSequenceClassificationLoss):
|
1037 |
+
def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs):
|
1038 |
+
super().__init__(config, *inputs, **kwargs)
|
1039 |
+
|
1040 |
+
self.num_labels = config.num_labels
|
1041 |
+
self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=True, name="data2vec_vision")
|
1042 |
+
|
1043 |
+
# Classifier head
|
1044 |
+
self.classifier = keras.layers.Dense(
|
1045 |
+
units=config.num_labels,
|
1046 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1047 |
+
name="classifier",
|
1048 |
+
)
|
1049 |
+
self.config = config
|
1050 |
+
|
1051 |
+
@unpack_inputs
|
1052 |
+
@add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
|
1053 |
+
@add_code_sample_docstrings(
|
1054 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
1055 |
+
output_type=TFSequenceClassifierOutput,
|
1056 |
+
config_class=_CONFIG_FOR_DOC,
|
1057 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
1058 |
+
)
|
1059 |
+
def call(
|
1060 |
+
self,
|
1061 |
+
pixel_values: TFModelInputType | None = None,
|
1062 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1063 |
+
output_attentions: Optional[bool] = None,
|
1064 |
+
output_hidden_states: Optional[bool] = None,
|
1065 |
+
return_dict: Optional[bool] = None,
|
1066 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1067 |
+
training: Optional[bool] = False,
|
1068 |
+
) -> Union[TFSequenceClassifierOutput, tuple]:
|
1069 |
+
r"""
|
1070 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1071 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
1072 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1073 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1074 |
+
"""
|
1075 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1076 |
+
|
1077 |
+
outputs = self.data2vec_vision(
|
1078 |
+
pixel_values=pixel_values,
|
1079 |
+
head_mask=head_mask,
|
1080 |
+
output_attentions=output_attentions,
|
1081 |
+
output_hidden_states=output_hidden_states,
|
1082 |
+
return_dict=return_dict,
|
1083 |
+
training=training,
|
1084 |
+
)
|
1085 |
+
|
1086 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
1087 |
+
logits = self.classifier(pooled_output)
|
1088 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1089 |
+
|
1090 |
+
if not return_dict:
|
1091 |
+
output = (logits,) + outputs[2:]
|
1092 |
+
return ((loss,) + output) if loss is not None else output
|
1093 |
+
|
1094 |
+
return TFSequenceClassifierOutput(
|
1095 |
+
loss=loss,
|
1096 |
+
logits=logits,
|
1097 |
+
hidden_states=outputs.hidden_states,
|
1098 |
+
attentions=outputs.attentions,
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
def build(self, input_shape=None):
|
1102 |
+
if self.built:
|
1103 |
+
return
|
1104 |
+
self.built = True
|
1105 |
+
if getattr(self, "data2vec_vision", None) is not None:
|
1106 |
+
with tf.name_scope(self.data2vec_vision.name):
|
1107 |
+
self.data2vec_vision.build(None)
|
1108 |
+
if getattr(self, "classifier", None) is not None:
|
1109 |
+
with tf.name_scope(self.classifier.name):
|
1110 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1111 |
+
|
1112 |
+
|
1113 |
+
class TFData2VecVisionConvModule(keras.layers.Layer):
|
1114 |
+
"""
|
1115 |
+
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
|
1116 |
+
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
|
1117 |
+
|
1118 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1119 |
+
"""
|
1120 |
+
|
1121 |
+
def __init__(
|
1122 |
+
self,
|
1123 |
+
in_channels: int,
|
1124 |
+
out_channels: int,
|
1125 |
+
kernel_size: Union[int, Tuple[int, int]],
|
1126 |
+
padding: str = "valid",
|
1127 |
+
bias: bool = False,
|
1128 |
+
dilation: Union[int, Tuple[int, int]] = 1,
|
1129 |
+
**kwargs,
|
1130 |
+
) -> None:
|
1131 |
+
super().__init__(**kwargs)
|
1132 |
+
self.conv = keras.layers.Conv2D(
|
1133 |
+
filters=out_channels,
|
1134 |
+
kernel_size=kernel_size,
|
1135 |
+
padding=padding,
|
1136 |
+
use_bias=bias,
|
1137 |
+
dilation_rate=dilation,
|
1138 |
+
name="conv",
|
1139 |
+
)
|
1140 |
+
self.bn = keras.layers.BatchNormalization(name="bn", momentum=0.9, epsilon=1e-5)
|
1141 |
+
self.activation = tf.nn.relu
|
1142 |
+
self.in_channels = in_channels
|
1143 |
+
self.out_channels = out_channels
|
1144 |
+
|
1145 |
+
def call(self, input: tf.Tensor) -> tf.Tensor:
|
1146 |
+
output = self.conv(input)
|
1147 |
+
output = self.bn(output)
|
1148 |
+
output = self.activation(output)
|
1149 |
+
return output
|
1150 |
+
|
1151 |
+
def build(self, input_shape=None):
|
1152 |
+
if self.built:
|
1153 |
+
return
|
1154 |
+
self.built = True
|
1155 |
+
if getattr(self, "conv", None) is not None:
|
1156 |
+
with tf.name_scope(self.conv.name):
|
1157 |
+
self.conv.build([None, None, None, self.in_channels])
|
1158 |
+
if getattr(self, "bn", None) is not None:
|
1159 |
+
with tf.name_scope(self.bn.name):
|
1160 |
+
self.bn.build((None, None, None, self.out_channels))
|
1161 |
+
|
1162 |
+
|
1163 |
+
class TFAdaptiveAvgPool2D(keras.layers.Layer):
|
1164 |
+
def __init__(self, output_dims: Tuple[int, int], input_ordering: str = "NHWC", **kwargs):
|
1165 |
+
super().__init__(**kwargs)
|
1166 |
+
self.output_dims = output_dims
|
1167 |
+
self.input_ordering = input_ordering
|
1168 |
+
if input_ordering not in ("NCHW", "NHWC"):
|
1169 |
+
raise ValueError("Unrecognized input_ordering, should be 'NCHW' or 'NHWC'!")
|
1170 |
+
self.h_axis = input_ordering.index("H")
|
1171 |
+
self.w_axis = input_ordering.index("W")
|
1172 |
+
|
1173 |
+
def pseudo_1d_pool(self, inputs: tf.Tensor, h_pooling: bool):
|
1174 |
+
# Figure out which axis we're pooling on
|
1175 |
+
if h_pooling:
|
1176 |
+
axis = self.h_axis
|
1177 |
+
output_dim = self.output_dims[0]
|
1178 |
+
else:
|
1179 |
+
axis = self.w_axis
|
1180 |
+
output_dim = self.output_dims[1]
|
1181 |
+
input_dim = inputs.shape[axis]
|
1182 |
+
|
1183 |
+
# Figure out the potential pooling windows
|
1184 |
+
# This is the key idea - the torch op always uses only two
|
1185 |
+
# consecutive pooling window sizes, like 3 and 4. Therefore,
|
1186 |
+
# if we pool with both possible sizes, we simply need to gather
|
1187 |
+
# the 'correct' pool at each position to reimplement the torch op.
|
1188 |
+
small_window = math.ceil(input_dim / output_dim)
|
1189 |
+
big_window = small_window + 1
|
1190 |
+
if h_pooling:
|
1191 |
+
output_dim = self.output_dims[0]
|
1192 |
+
small_window_shape = (small_window, 1)
|
1193 |
+
big_window_shape = (big_window, 1)
|
1194 |
+
else:
|
1195 |
+
output_dim = self.output_dims[1]
|
1196 |
+
small_window_shape = (1, small_window)
|
1197 |
+
big_window_shape = (1, big_window)
|
1198 |
+
|
1199 |
+
# For resizes to 1, or integer resizes, we can take quick shortcuts
|
1200 |
+
if output_dim == input_dim:
|
1201 |
+
return inputs
|
1202 |
+
elif output_dim == 1:
|
1203 |
+
return tf.reduce_mean(inputs, axis=axis, keepdims=True)
|
1204 |
+
elif input_dim % output_dim == 0:
|
1205 |
+
return tf.nn.avg_pool2d(
|
1206 |
+
inputs,
|
1207 |
+
ksize=small_window_shape,
|
1208 |
+
strides=small_window_shape,
|
1209 |
+
padding="VALID",
|
1210 |
+
data_format=self.input_ordering,
|
1211 |
+
)
|
1212 |
+
# When upscaling by an integer factor we can also take a quick shortcut
|
1213 |
+
elif output_dim > input_dim and output_dim % input_dim == 0:
|
1214 |
+
return tf.repeat(inputs, repeats=output_dim // input_dim, axis=axis)
|
1215 |
+
|
1216 |
+
# For non-integer resizes, we pool with both possible window sizes and concatenate them
|
1217 |
+
if output_dim < input_dim:
|
1218 |
+
small_pool = tf.nn.avg_pool2d(
|
1219 |
+
inputs, ksize=small_window_shape, strides=1, padding="VALID", data_format=self.input_ordering
|
1220 |
+
)
|
1221 |
+
big_pool = tf.nn.avg_pool2d(
|
1222 |
+
inputs, ksize=big_window_shape, strides=1, padding="VALID", data_format=self.input_ordering
|
1223 |
+
)
|
1224 |
+
both_pool = tf.concat([small_pool, big_pool], axis=axis)
|
1225 |
+
else:
|
1226 |
+
# When we're actually upscaling instead, then we build the pools a bit differently
|
1227 |
+
small_pool = inputs
|
1228 |
+
big_pool = tf.nn.avg_pool2d(
|
1229 |
+
inputs, ksize=big_window_shape, strides=1, padding="VALID", data_format=self.input_ordering
|
1230 |
+
)
|
1231 |
+
both_pool = tf.concat([small_pool, big_pool], axis=axis)
|
1232 |
+
|
1233 |
+
# We compute vectors of the start and end positions for each pooling window
|
1234 |
+
# Each (start, end) pair here corresponds to a single output position
|
1235 |
+
window_starts = tf.math.floor((tf.range(output_dim, dtype=tf.float32) * input_dim) / output_dim)
|
1236 |
+
window_starts = tf.cast(window_starts, tf.int64)
|
1237 |
+
window_ends = tf.math.ceil((tf.range(1, output_dim + 1, dtype=tf.float32) * input_dim) / output_dim)
|
1238 |
+
window_ends = tf.cast(window_ends, tf.int64)
|
1239 |
+
|
1240 |
+
# pool_selector is a boolean array of shape (output_dim,) where 1 indicates that output position
|
1241 |
+
# has a big receptive field and 0 indicates that that output position has a small receptive field
|
1242 |
+
pool_selector = tf.cast(window_ends - window_starts - small_window, tf.bool)
|
1243 |
+
|
1244 |
+
# Since we concatenated the small and big pools, we need to do a bit of
|
1245 |
+
# pointer arithmetic to get the indices of the big pools
|
1246 |
+
small_indices = window_starts
|
1247 |
+
big_indices = window_starts + small_pool.shape[axis]
|
1248 |
+
|
1249 |
+
# Finally, we use the pool_selector to generate a list of indices, one per output position
|
1250 |
+
gather_indices = tf.where(pool_selector, big_indices, small_indices)
|
1251 |
+
|
1252 |
+
# Gathering from those indices yields the final, correct pooling
|
1253 |
+
return tf.gather(both_pool, gather_indices, axis=axis)
|
1254 |
+
|
1255 |
+
def call(self, inputs: tf.Tensor):
|
1256 |
+
if self.input_ordering == "NHWC":
|
1257 |
+
input_shape = inputs.shape[1:3]
|
1258 |
+
else:
|
1259 |
+
input_shape = inputs.shape[2:]
|
1260 |
+
|
1261 |
+
# We break the task down into each possible case
|
1262 |
+
# Firstly, if we're resizing down to 1, it's just tf.reduce_mean
|
1263 |
+
if self.output_dims[0] == self.output_dims[1] == 1:
|
1264 |
+
if self.input_ordering == "NHWC":
|
1265 |
+
reduce_dims = [1, 2]
|
1266 |
+
else:
|
1267 |
+
reduce_dims = [2, 3]
|
1268 |
+
return tf.reduce_mean(inputs, axis=reduce_dims, keepdims=True)
|
1269 |
+
# Secondly, if we're resizing by an integer factor on both dimensions, we can take a quick shortcut
|
1270 |
+
elif input_shape[0] % self.output_dims[0] == 0 and input_shape[1] % self.output_dims[1] == 0:
|
1271 |
+
h_resize = int(input_shape[0] // self.output_dims[0])
|
1272 |
+
w_resize = int(input_shape[1] // self.output_dims[1])
|
1273 |
+
return tf.nn.avg_pool2d(
|
1274 |
+
inputs,
|
1275 |
+
ksize=(h_resize, w_resize),
|
1276 |
+
strides=(h_resize, w_resize),
|
1277 |
+
padding="VALID",
|
1278 |
+
data_format=self.input_ordering,
|
1279 |
+
)
|
1280 |
+
else:
|
1281 |
+
# Finally, if we can't take the shortcut, we do a 1D pool on each axis. pseudo_1d_pool will take a shortcut
|
1282 |
+
# for dimensions where an integer resize is possible. It can also handle upscaling.
|
1283 |
+
h_pooled = self.pseudo_1d_pool(inputs, h_pooling=True)
|
1284 |
+
return self.pseudo_1d_pool(h_pooled, h_pooling=False)
|
1285 |
+
|
1286 |
+
|
1287 |
+
class TFData2VecVisionPyramidPoolingModule(keras.layers.Layer):
|
1288 |
+
"""
|
1289 |
+
Pyramid Pooling Module (PPM) used in PSPNet.
|
1290 |
+
|
1291 |
+
Args:
|
1292 |
+
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
|
1293 |
+
Module.
|
1294 |
+
channels (int): Channels after modules, before conv_seg.
|
1295 |
+
|
1296 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1297 |
+
"""
|
1298 |
+
|
1299 |
+
def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, out_channels: int, **kwargs) -> None:
|
1300 |
+
super().__init__(**kwargs)
|
1301 |
+
self.pool_scales = pool_scales
|
1302 |
+
self.in_channels = in_channels
|
1303 |
+
self.out_channels = out_channels
|
1304 |
+
|
1305 |
+
self.layer_list = []
|
1306 |
+
for idx, pool_scale in enumerate(pool_scales):
|
1307 |
+
pool_scale = pool_scale if isinstance(pool_scale, collections.abc.Iterable) else (pool_scale, pool_scale)
|
1308 |
+
self.layer_list.append(
|
1309 |
+
[
|
1310 |
+
TFAdaptiveAvgPool2D(output_dims=pool_scale),
|
1311 |
+
TFData2VecVisionConvModule(
|
1312 |
+
in_channels=in_channels, out_channels=self.out_channels, kernel_size=1, name=f"{idx}.1"
|
1313 |
+
),
|
1314 |
+
]
|
1315 |
+
)
|
1316 |
+
|
1317 |
+
def call(self, x: tf.Tensor) -> List[tf.Tensor]:
|
1318 |
+
ppm_outs = []
|
1319 |
+
inputs = x
|
1320 |
+
|
1321 |
+
for ppm in self.layer_list:
|
1322 |
+
for layer_module in ppm:
|
1323 |
+
ppm_out = layer_module(x)
|
1324 |
+
x = ppm_out
|
1325 |
+
|
1326 |
+
upsampled_ppm_out = tf.image.resize(ppm_out, size=shape_list(inputs)[1:-1], method="bilinear")
|
1327 |
+
ppm_outs.append(upsampled_ppm_out)
|
1328 |
+
return ppm_outs
|
1329 |
+
|
1330 |
+
def build(self, input_shape=None):
|
1331 |
+
for layer in self.layer_list:
|
1332 |
+
for layer_module in layer:
|
1333 |
+
with tf.name_scope(layer_module.name):
|
1334 |
+
layer_module.build(None)
|
1335 |
+
|
1336 |
+
|
1337 |
+
class TFData2VecVisionUperHead(keras.layers.Layer):
|
1338 |
+
"""
|
1339 |
+
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
|
1340 |
+
[UPerNet](https://arxiv.org/abs/1807.10221).
|
1341 |
+
|
1342 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1343 |
+
"""
|
1344 |
+
|
1345 |
+
def __init__(self, config: Data2VecVisionConfig, **kwargs) -> None:
|
1346 |
+
super().__init__(**kwargs)
|
1347 |
+
|
1348 |
+
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
|
1349 |
+
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
|
1350 |
+
self.channels = config.hidden_size
|
1351 |
+
self.classifier = keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier")
|
1352 |
+
|
1353 |
+
# PSP Module
|
1354 |
+
self.psp_modules = TFData2VecVisionPyramidPoolingModule(
|
1355 |
+
self.pool_scales, self.in_channels[-1], self.channels, name="psp_modules"
|
1356 |
+
)
|
1357 |
+
self.bottleneck = TFData2VecVisionConvModule(
|
1358 |
+
self.in_channels[-1] + len(self.pool_scales) * self.channels,
|
1359 |
+
self.channels,
|
1360 |
+
kernel_size=3,
|
1361 |
+
padding="same",
|
1362 |
+
name="bottleneck",
|
1363 |
+
)
|
1364 |
+
# FPN Module
|
1365 |
+
self.lateral_convs = []
|
1366 |
+
self.fpn_convs = []
|
1367 |
+
for idx, in_channels in enumerate(self.in_channels[:-1]): # skip the top layer
|
1368 |
+
l_conv = TFData2VecVisionConvModule(
|
1369 |
+
in_channels, out_channels=self.channels, kernel_size=1, name=f"lateral_convs.{idx}"
|
1370 |
+
)
|
1371 |
+
fpn_conv = TFData2VecVisionConvModule(
|
1372 |
+
in_channels=self.channels,
|
1373 |
+
out_channels=self.channels,
|
1374 |
+
kernel_size=3,
|
1375 |
+
padding="same",
|
1376 |
+
name=f"fpn_convs.{idx}",
|
1377 |
+
)
|
1378 |
+
self.lateral_convs.append(l_conv)
|
1379 |
+
self.fpn_convs.append(fpn_conv)
|
1380 |
+
|
1381 |
+
self.fpn_bottleneck = TFData2VecVisionConvModule(
|
1382 |
+
in_channels=len(self.in_channels) * self.channels,
|
1383 |
+
out_channels=self.channels,
|
1384 |
+
kernel_size=3,
|
1385 |
+
padding="same",
|
1386 |
+
name="fpn_bottleneck",
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
def psp_forward(self, inputs):
|
1390 |
+
x = inputs[-1]
|
1391 |
+
psp_outs = [x]
|
1392 |
+
psp_outs.extend(self.psp_modules(x))
|
1393 |
+
psp_outs = tf.concat(psp_outs, axis=-1)
|
1394 |
+
output = self.bottleneck(psp_outs)
|
1395 |
+
|
1396 |
+
return output
|
1397 |
+
|
1398 |
+
def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor:
|
1399 |
+
# build laterals
|
1400 |
+
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
|
1401 |
+
|
1402 |
+
laterals.append(self.psp_forward(encoder_hidden_states))
|
1403 |
+
|
1404 |
+
# build top-down path
|
1405 |
+
used_backbone_levels = len(laterals)
|
1406 |
+
for i in range(used_backbone_levels - 1, 0, -1):
|
1407 |
+
prev_shape = shape_list(laterals[i - 1])[1:-1]
|
1408 |
+
laterals[i - 1] = laterals[i - 1] + tf.image.resize(laterals[i], size=prev_shape, method="bilinear")
|
1409 |
+
|
1410 |
+
# build outputs
|
1411 |
+
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
|
1412 |
+
# append psp feature
|
1413 |
+
fpn_outs.append(laterals[-1])
|
1414 |
+
|
1415 |
+
for i in range(used_backbone_levels - 1, 0, -1):
|
1416 |
+
fpn_outs[i] = tf.image.resize(fpn_outs[i], size=shape_list(fpn_outs[0])[1:-1], method="bilinear")
|
1417 |
+
fpn_outs = tf.concat(fpn_outs, axis=-1)
|
1418 |
+
output = self.fpn_bottleneck(fpn_outs)
|
1419 |
+
output = self.classifier(output)
|
1420 |
+
|
1421 |
+
return output
|
1422 |
+
|
1423 |
+
def build(self, input_shape=None):
|
1424 |
+
if self.built:
|
1425 |
+
return
|
1426 |
+
self.built = True
|
1427 |
+
if getattr(self, "classifier", None) is not None:
|
1428 |
+
with tf.name_scope(self.classifier.name):
|
1429 |
+
self.classifier.build([None, None, None, self.channels])
|
1430 |
+
if getattr(self, "psp_modules", None) is not None:
|
1431 |
+
with tf.name_scope(self.psp_modules.name):
|
1432 |
+
self.psp_modules.build(None)
|
1433 |
+
if getattr(self, "bottleneck", None) is not None:
|
1434 |
+
with tf.name_scope(self.bottleneck.name):
|
1435 |
+
self.bottleneck.build(None)
|
1436 |
+
if getattr(self, "fpn_bottleneck", None) is not None:
|
1437 |
+
with tf.name_scope(self.fpn_bottleneck.name):
|
1438 |
+
self.fpn_bottleneck.build(None)
|
1439 |
+
for layer in self.lateral_convs:
|
1440 |
+
with tf.name_scope(layer.name):
|
1441 |
+
layer.build(None)
|
1442 |
+
for layer in self.fpn_convs:
|
1443 |
+
with tf.name_scope(layer.name):
|
1444 |
+
layer.build(None)
|
1445 |
+
|
1446 |
+
|
1447 |
+
class TFData2VecVisionFCNHead(keras.layers.Layer):
|
1448 |
+
"""
|
1449 |
+
Fully Convolution Networks for Semantic Segmentation. This head is implemented from
|
1450 |
+
[FCNNet](https://arxiv.org/abs/1411.4038).
|
1451 |
+
|
1452 |
+
Args:
|
1453 |
+
config (Data2VecVisionConfig): Configuration.
|
1454 |
+
kernel_size (int): The kernel size for convs in the head. Default: 3.
|
1455 |
+
dilation (int): The dilation rate for convs in the head. Default: 1.
|
1456 |
+
|
1457 |
+
|
1458 |
+
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
|
1459 |
+
"""
|
1460 |
+
|
1461 |
+
def __init__(
|
1462 |
+
self,
|
1463 |
+
config: Data2VecVisionConfig,
|
1464 |
+
in_index: int = 2,
|
1465 |
+
kernel_size: int = 3,
|
1466 |
+
dilation: Union[int, Tuple[int, int]] = 1,
|
1467 |
+
**kwargs,
|
1468 |
+
) -> None:
|
1469 |
+
super().__init__(**kwargs)
|
1470 |
+
self.in_channels = config.hidden_size
|
1471 |
+
self.channels = config.auxiliary_channels
|
1472 |
+
self.num_convs = config.auxiliary_num_convs
|
1473 |
+
self.concat_input = config.auxiliary_concat_input
|
1474 |
+
self.in_index = in_index
|
1475 |
+
|
1476 |
+
convs = []
|
1477 |
+
convs.append(
|
1478 |
+
TFData2VecVisionConvModule(
|
1479 |
+
in_channels=self.in_channels,
|
1480 |
+
out_channels=self.channels,
|
1481 |
+
kernel_size=kernel_size,
|
1482 |
+
padding="same",
|
1483 |
+
dilation=dilation,
|
1484 |
+
name="convs.0",
|
1485 |
+
)
|
1486 |
+
)
|
1487 |
+
for i in range(self.num_convs - 1):
|
1488 |
+
convs.append(
|
1489 |
+
TFData2VecVisionConvModule(
|
1490 |
+
in_channels=self.channels,
|
1491 |
+
out_channels=self.channels,
|
1492 |
+
kernel_size=kernel_size,
|
1493 |
+
padding="same",
|
1494 |
+
dilation=dilation,
|
1495 |
+
name=f"conv_module_{i+2}",
|
1496 |
+
)
|
1497 |
+
)
|
1498 |
+
if self.num_convs == 0:
|
1499 |
+
self.convs = [tf.identity]
|
1500 |
+
else:
|
1501 |
+
self.convs = convs
|
1502 |
+
if self.concat_input:
|
1503 |
+
self.conv_cat = TFData2VecVisionConvModule(
|
1504 |
+
self.in_channels + self.channels,
|
1505 |
+
out_channels=self.channels,
|
1506 |
+
kernel_size=kernel_size,
|
1507 |
+
padding="same",
|
1508 |
+
name="conv_cat",
|
1509 |
+
)
|
1510 |
+
|
1511 |
+
self.classifier = keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier")
|
1512 |
+
|
1513 |
+
def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor:
|
1514 |
+
# just take the relevant feature maps
|
1515 |
+
hidden_states = encoder_hidden_states[self.in_index]
|
1516 |
+
output = hidden_states
|
1517 |
+
for layer_module in self.convs:
|
1518 |
+
output = layer_module(output)
|
1519 |
+
if self.concat_input:
|
1520 |
+
output = self.conv_cat(tf.concat([hidden_states, output], axis=-1))
|
1521 |
+
output = self.classifier(output)
|
1522 |
+
return output
|
1523 |
+
|
1524 |
+
def build(self, input_shape=None):
|
1525 |
+
if self.built:
|
1526 |
+
return
|
1527 |
+
self.built = True
|
1528 |
+
if getattr(self, "classifier", None) is not None:
|
1529 |
+
with tf.name_scope(self.classifier.name):
|
1530 |
+
self.classifier.build([None, None, None, self.channels])
|
1531 |
+
if getattr(self, "conv_cat", None) is not None:
|
1532 |
+
with tf.name_scope(self.conv_cat.name):
|
1533 |
+
self.conv_cat.build(None)
|
1534 |
+
|
1535 |
+
|
1536 |
+
@add_start_docstrings(
|
1537 |
+
"""
|
1538 |
+
Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
|
1539 |
+
""",
|
1540 |
+
DATA2VEC_VISION_START_DOCSTRING,
|
1541 |
+
)
|
1542 |
+
class TFData2VecVisionForSemanticSegmentation(TFData2VecVisionPreTrainedModel):
|
1543 |
+
def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs) -> None:
|
1544 |
+
super().__init__(config, *inputs, **kwargs)
|
1545 |
+
self.num_labels = config.num_labels
|
1546 |
+
self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=False, name="data2vec_vision")
|
1547 |
+
|
1548 |
+
# FPNs
|
1549 |
+
self.fpn1 = [
|
1550 |
+
keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.0"),
|
1551 |
+
keras.layers.BatchNormalization(name="fpn1.1", momentum=0.9, epsilon=1e-5),
|
1552 |
+
keras.layers.Activation("gelu"),
|
1553 |
+
keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.3"),
|
1554 |
+
]
|
1555 |
+
self.fpn2 = [keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn2.0")]
|
1556 |
+
|
1557 |
+
self.fpn3 = tf.identity
|
1558 |
+
self.fpn4 = keras.layers.MaxPool2D(pool_size=2, strides=2)
|
1559 |
+
|
1560 |
+
# Semantic segmentation head(s)
|
1561 |
+
self.decode_head = TFData2VecVisionUperHead(config, name="decode_head")
|
1562 |
+
self.auxiliary_head = (
|
1563 |
+
TFData2VecVisionFCNHead(config, name="auxiliary_head") if config.use_auxiliary_head else None
|
1564 |
+
)
|
1565 |
+
|
1566 |
+
def compute_loss(self, logits, auxiliary_logits, labels):
|
1567 |
+
# upsample logits to the images' original size
|
1568 |
+
if len(shape_list(labels)) > 3:
|
1569 |
+
label_interp_shape = shape_list(labels)[1:-1]
|
1570 |
+
else:
|
1571 |
+
label_interp_shape = shape_list(labels)[-2:]
|
1572 |
+
|
1573 |
+
upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear")
|
1574 |
+
if auxiliary_logits is not None:
|
1575 |
+
upsampled_auxiliary_logits = tf.image.resize(auxiliary_logits, size=label_interp_shape, method="bilinear")
|
1576 |
+
# compute weighted loss
|
1577 |
+
loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none")
|
1578 |
+
|
1579 |
+
# Copied from https://www.tensorflow.org/text/tutorials/transformer#loss_and_metrics.
|
1580 |
+
# Utility to mask the index to ignore during computing the loss.
|
1581 |
+
def masked_loss(real, pred):
|
1582 |
+
mask = tf.math.logical_not(tf.math.equal(real, self.config.semantic_loss_ignore_index))
|
1583 |
+
loss_ = loss_fct(real, pred)
|
1584 |
+
mask = tf.cast(mask, dtype=loss_.dtype)
|
1585 |
+
loss_ *= mask
|
1586 |
+
reduced_masked_loss = tf.reduce_sum(loss_) / tf.reduce_sum(mask)
|
1587 |
+
return tf.reshape(reduced_masked_loss, (1,))
|
1588 |
+
|
1589 |
+
main_loss = masked_loss(labels, upsampled_logits)
|
1590 |
+
auxiliary_loss = masked_loss(labels, upsampled_auxiliary_logits)
|
1591 |
+
loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
|
1592 |
+
|
1593 |
+
return loss
|
1594 |
+
|
1595 |
+
@unpack_inputs
|
1596 |
+
@add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
|
1597 |
+
@replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
|
1598 |
+
def call(
|
1599 |
+
self,
|
1600 |
+
pixel_values: tf.Tensor | None = None,
|
1601 |
+
head_mask: tf.Tensor | None = None,
|
1602 |
+
labels: tf.Tensor | None = None,
|
1603 |
+
output_attentions: Optional[bool] = None,
|
1604 |
+
output_hidden_states: Optional[bool] = None,
|
1605 |
+
return_dict: Optional[bool] = None,
|
1606 |
+
) -> Union[tuple, TFSemanticSegmenterOutput]:
|
1607 |
+
r"""
|
1608 |
+
labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*):
|
1609 |
+
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
|
1610 |
+
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
|
1611 |
+
|
1612 |
+
Returns:
|
1613 |
+
|
1614 |
+
Examples:
|
1615 |
+
|
1616 |
+
```python
|
1617 |
+
>>> from transformers import AutoImageProcessor, TFData2VecVisionForSemanticSegmentation
|
1618 |
+
>>> from PIL import Image
|
1619 |
+
>>> import requests
|
1620 |
+
|
1621 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1622 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1623 |
+
|
1624 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base")
|
1625 |
+
>>> model = TFData2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base")
|
1626 |
+
|
1627 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
1628 |
+
>>> outputs = model(**inputs)
|
1629 |
+
>>> # logits are of shape (batch_size, num_labels, height, width)
|
1630 |
+
>>> logits = outputs.logits
|
1631 |
+
```"""
|
1632 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1633 |
+
output_hidden_states = (
|
1634 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1635 |
+
)
|
1636 |
+
|
1637 |
+
outputs = self.data2vec_vision(
|
1638 |
+
pixel_values,
|
1639 |
+
head_mask=head_mask,
|
1640 |
+
output_attentions=output_attentions,
|
1641 |
+
output_hidden_states=True, # we need the intermediate hidden states
|
1642 |
+
return_dict=return_dict,
|
1643 |
+
)
|
1644 |
+
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
1645 |
+
|
1646 |
+
# only keep certain features, and reshape
|
1647 |
+
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings
|
1648 |
+
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
|
1649 |
+
patch_resolution = self.config.image_size // self.config.patch_size
|
1650 |
+
|
1651 |
+
def reshape_features(x):
|
1652 |
+
# We do it this way so TF can always infer the non-batch dims at compile time
|
1653 |
+
x = tf.reshape(x, (-1, patch_resolution, patch_resolution, self.config.hidden_size))
|
1654 |
+
return x
|
1655 |
+
|
1656 |
+
features = [reshape_features(x[:, 1:, :]) for x in features]
|
1657 |
+
|
1658 |
+
# apply FPNs
|
1659 |
+
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
|
1660 |
+
for module in ops[0]:
|
1661 |
+
features[0] = module(features[0])
|
1662 |
+
features[1] = ops[1][0](features[1])
|
1663 |
+
for i in range(len(features[2:])):
|
1664 |
+
features[i + 2] = ops[i + 2](features[i + 2])
|
1665 |
+
|
1666 |
+
logits = self.decode_head(features)
|
1667 |
+
# Tranpose the logits to maintain consistency in the output formats.
|
1668 |
+
transposed_logits = tf.transpose(logits, perm=[0, 3, 1, 2])
|
1669 |
+
|
1670 |
+
auxiliary_logits = None
|
1671 |
+
if self.auxiliary_head is not None:
|
1672 |
+
auxiliary_logits = self.auxiliary_head(features)
|
1673 |
+
|
1674 |
+
loss = None
|
1675 |
+
if labels is not None:
|
1676 |
+
if self.config.num_labels == 1:
|
1677 |
+
raise ValueError("The number of labels should be greater than one")
|
1678 |
+
else:
|
1679 |
+
loss = self.compute_loss(logits, auxiliary_logits, labels)
|
1680 |
+
|
1681 |
+
if not return_dict:
|
1682 |
+
if output_hidden_states:
|
1683 |
+
output = (logits,) + outputs[1:]
|
1684 |
+
else:
|
1685 |
+
output = (logits,) + outputs[2:]
|
1686 |
+
return ((loss,) + output) if loss is not None else output
|
1687 |
+
|
1688 |
+
return TFSemanticSegmenterOutput(
|
1689 |
+
loss=loss,
|
1690 |
+
logits=transposed_logits,
|
1691 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
1692 |
+
attentions=outputs.attentions,
|
1693 |
+
)
|
1694 |
+
|
1695 |
+
def build(self, input_shape=None):
|
1696 |
+
if self.built:
|
1697 |
+
return
|
1698 |
+
self.built = True
|
1699 |
+
if getattr(self, "data2vec_vision", None) is not None:
|
1700 |
+
with tf.name_scope(self.data2vec_vision.name):
|
1701 |
+
self.data2vec_vision.build(None)
|
1702 |
+
if getattr(self, "decode_head", None) is not None:
|
1703 |
+
with tf.name_scope(self.decode_head.name):
|
1704 |
+
self.decode_head.build(None)
|
1705 |
+
if getattr(self, "auxiliary_head", None) is not None:
|
1706 |
+
with tf.name_scope(self.auxiliary_head.name):
|
1707 |
+
self.auxiliary_head.build(None)
|
1708 |
+
if getattr(self, "fpn1", None) is not None:
|
1709 |
+
with tf.name_scope(self.fpn1[0].name):
|
1710 |
+
self.fpn1[0].build([None, None, None, self.config.hidden_size])
|
1711 |
+
with tf.name_scope(self.fpn1[1].name):
|
1712 |
+
self.fpn1[1].build((None, None, None, self.config.hidden_size))
|
1713 |
+
with tf.name_scope(self.fpn1[3].name):
|
1714 |
+
self.fpn1[3].build([None, None, None, self.config.hidden_size])
|
1715 |
+
if getattr(self, "fpn2", None) is not None:
|
1716 |
+
with tf.name_scope(self.fpn2[0].name):
|
1717 |
+
self.fpn2[0].build([None, None, None, self.config.hidden_size])
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__init__.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_tf_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"],
|
28 |
+
"tokenization_deberta": ["DebertaTokenizer"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_tokenizers_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["tokenization_deberta_fast"] = ["DebertaTokenizerFast"]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_torch_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["modeling_deberta"] = [
|
46 |
+
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
47 |
+
"DebertaForMaskedLM",
|
48 |
+
"DebertaForQuestionAnswering",
|
49 |
+
"DebertaForSequenceClassification",
|
50 |
+
"DebertaForTokenClassification",
|
51 |
+
"DebertaModel",
|
52 |
+
"DebertaPreTrainedModel",
|
53 |
+
]
|
54 |
+
|
55 |
+
try:
|
56 |
+
if not is_tf_available():
|
57 |
+
raise OptionalDependencyNotAvailable()
|
58 |
+
except OptionalDependencyNotAvailable:
|
59 |
+
pass
|
60 |
+
else:
|
61 |
+
_import_structure["modeling_tf_deberta"] = [
|
62 |
+
"TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
63 |
+
"TFDebertaForMaskedLM",
|
64 |
+
"TFDebertaForQuestionAnswering",
|
65 |
+
"TFDebertaForSequenceClassification",
|
66 |
+
"TFDebertaForTokenClassification",
|
67 |
+
"TFDebertaModel",
|
68 |
+
"TFDebertaPreTrainedModel",
|
69 |
+
]
|
70 |
+
|
71 |
+
|
72 |
+
if TYPE_CHECKING:
|
73 |
+
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
|
74 |
+
from .tokenization_deberta import DebertaTokenizer
|
75 |
+
|
76 |
+
try:
|
77 |
+
if not is_tokenizers_available():
|
78 |
+
raise OptionalDependencyNotAvailable()
|
79 |
+
except OptionalDependencyNotAvailable:
|
80 |
+
pass
|
81 |
+
else:
|
82 |
+
from .tokenization_deberta_fast import DebertaTokenizerFast
|
83 |
+
|
84 |
+
try:
|
85 |
+
if not is_torch_available():
|
86 |
+
raise OptionalDependencyNotAvailable()
|
87 |
+
except OptionalDependencyNotAvailable:
|
88 |
+
pass
|
89 |
+
else:
|
90 |
+
from .modeling_deberta import (
|
91 |
+
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
92 |
+
DebertaForMaskedLM,
|
93 |
+
DebertaForQuestionAnswering,
|
94 |
+
DebertaForSequenceClassification,
|
95 |
+
DebertaForTokenClassification,
|
96 |
+
DebertaModel,
|
97 |
+
DebertaPreTrainedModel,
|
98 |
+
)
|
99 |
+
|
100 |
+
try:
|
101 |
+
if not is_tf_available():
|
102 |
+
raise OptionalDependencyNotAvailable()
|
103 |
+
except OptionalDependencyNotAvailable:
|
104 |
+
pass
|
105 |
+
else:
|
106 |
+
from .modeling_tf_deberta import (
|
107 |
+
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
108 |
+
TFDebertaForMaskedLM,
|
109 |
+
TFDebertaForQuestionAnswering,
|
110 |
+
TFDebertaForSequenceClassification,
|
111 |
+
TFDebertaForTokenClassification,
|
112 |
+
TFDebertaModel,
|
113 |
+
TFDebertaPreTrainedModel,
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
else:
|
118 |
+
import sys
|
119 |
+
|
120 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.82 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/configuration_deberta.cpython-310.pyc
ADDED
Binary file (7.95 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/modeling_deberta.cpython-310.pyc
ADDED
Binary file (42.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/modeling_tf_deberta.cpython-310.pyc
ADDED
Binary file (51.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/tokenization_deberta.cpython-310.pyc
ADDED
Binary file (15.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/tokenization_deberta_fast.cpython-310.pyc
ADDED
Binary file (9.38 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/configuration_deberta.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020, Microsoft and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DeBERTa model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...onnx import OnnxConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
if TYPE_CHECKING:
|
25 |
+
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
from ..deprecated._archive_maps import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
32 |
+
|
33 |
+
|
34 |
+
class DebertaConfig(PretrainedConfig):
|
35 |
+
r"""
|
36 |
+
This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is
|
37 |
+
used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture.
|
38 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa
|
39 |
+
[microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture.
|
40 |
+
|
41 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
42 |
+
documentation from [`PretrainedConfig`] for more information.
|
43 |
+
|
44 |
+
Arguments:
|
45 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
46 |
+
Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the
|
47 |
+
`inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
|
48 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
49 |
+
Dimensionality of the encoder layers and the pooler layer.
|
50 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
51 |
+
Number of hidden layers in the Transformer encoder.
|
52 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
53 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
54 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
55 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
56 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
57 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
58 |
+
`"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"`
|
59 |
+
are supported.
|
60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
62 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout ratio for the attention probabilities.
|
64 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
65 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
66 |
+
just in case (e.g., 512 or 1024 or 2048).
|
67 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
68 |
+
The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
|
69 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
70 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
71 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
72 |
+
The epsilon used by the layer normalization layers.
|
73 |
+
relative_attention (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether use relative position encoding.
|
75 |
+
max_relative_positions (`int`, *optional*, defaults to 1):
|
76 |
+
The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value
|
77 |
+
as `max_position_embeddings`.
|
78 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
79 |
+
The value used to pad input_ids.
|
80 |
+
position_biased_input (`bool`, *optional*, defaults to `True`):
|
81 |
+
Whether add absolute position embedding to content embedding.
|
82 |
+
pos_att_type (`List[str]`, *optional*):
|
83 |
+
The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`,
|
84 |
+
`["p2c", "c2p"]`.
|
85 |
+
layer_norm_eps (`float`, optional, defaults to 1e-12):
|
86 |
+
The epsilon used by the layer normalization layers.
|
87 |
+
|
88 |
+
Example:
|
89 |
+
|
90 |
+
```python
|
91 |
+
>>> from transformers import DebertaConfig, DebertaModel
|
92 |
+
|
93 |
+
>>> # Initializing a DeBERTa microsoft/deberta-base style configuration
|
94 |
+
>>> configuration = DebertaConfig()
|
95 |
+
|
96 |
+
>>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration
|
97 |
+
>>> model = DebertaModel(configuration)
|
98 |
+
|
99 |
+
>>> # Accessing the model configuration
|
100 |
+
>>> configuration = model.config
|
101 |
+
```"""
|
102 |
+
|
103 |
+
model_type = "deberta"
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
vocab_size=50265,
|
108 |
+
hidden_size=768,
|
109 |
+
num_hidden_layers=12,
|
110 |
+
num_attention_heads=12,
|
111 |
+
intermediate_size=3072,
|
112 |
+
hidden_act="gelu",
|
113 |
+
hidden_dropout_prob=0.1,
|
114 |
+
attention_probs_dropout_prob=0.1,
|
115 |
+
max_position_embeddings=512,
|
116 |
+
type_vocab_size=0,
|
117 |
+
initializer_range=0.02,
|
118 |
+
layer_norm_eps=1e-7,
|
119 |
+
relative_attention=False,
|
120 |
+
max_relative_positions=-1,
|
121 |
+
pad_token_id=0,
|
122 |
+
position_biased_input=True,
|
123 |
+
pos_att_type=None,
|
124 |
+
pooler_dropout=0,
|
125 |
+
pooler_hidden_act="gelu",
|
126 |
+
**kwargs,
|
127 |
+
):
|
128 |
+
super().__init__(**kwargs)
|
129 |
+
|
130 |
+
self.hidden_size = hidden_size
|
131 |
+
self.num_hidden_layers = num_hidden_layers
|
132 |
+
self.num_attention_heads = num_attention_heads
|
133 |
+
self.intermediate_size = intermediate_size
|
134 |
+
self.hidden_act = hidden_act
|
135 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
136 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
137 |
+
self.max_position_embeddings = max_position_embeddings
|
138 |
+
self.type_vocab_size = type_vocab_size
|
139 |
+
self.initializer_range = initializer_range
|
140 |
+
self.relative_attention = relative_attention
|
141 |
+
self.max_relative_positions = max_relative_positions
|
142 |
+
self.pad_token_id = pad_token_id
|
143 |
+
self.position_biased_input = position_biased_input
|
144 |
+
|
145 |
+
# Backwards compatibility
|
146 |
+
if isinstance(pos_att_type, str):
|
147 |
+
pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")]
|
148 |
+
|
149 |
+
self.pos_att_type = pos_att_type
|
150 |
+
self.vocab_size = vocab_size
|
151 |
+
self.layer_norm_eps = layer_norm_eps
|
152 |
+
|
153 |
+
self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size)
|
154 |
+
self.pooler_dropout = pooler_dropout
|
155 |
+
self.pooler_hidden_act = pooler_hidden_act
|
156 |
+
|
157 |
+
|
158 |
+
# Copied from transformers.models.deberta_v2.configuration_deberta_v2.DebertaV2OnnxConfig
|
159 |
+
class DebertaOnnxConfig(OnnxConfig):
|
160 |
+
@property
|
161 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
162 |
+
if self.task == "multiple-choice":
|
163 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
164 |
+
else:
|
165 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
166 |
+
if self._config.type_vocab_size > 0:
|
167 |
+
return OrderedDict(
|
168 |
+
[("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)]
|
169 |
+
)
|
170 |
+
else:
|
171 |
+
return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)])
|
172 |
+
|
173 |
+
@property
|
174 |
+
def default_onnx_opset(self) -> int:
|
175 |
+
return 12
|
176 |
+
|
177 |
+
def generate_dummy_inputs(
|
178 |
+
self,
|
179 |
+
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
|
180 |
+
batch_size: int = -1,
|
181 |
+
seq_length: int = -1,
|
182 |
+
num_choices: int = -1,
|
183 |
+
is_pair: bool = False,
|
184 |
+
framework: Optional["TensorType"] = None,
|
185 |
+
num_channels: int = 3,
|
186 |
+
image_width: int = 40,
|
187 |
+
image_height: int = 40,
|
188 |
+
tokenizer: "PreTrainedTokenizerBase" = None,
|
189 |
+
) -> Mapping[str, Any]:
|
190 |
+
dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework)
|
191 |
+
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
|
192 |
+
del dummy_inputs["token_type_ids"]
|
193 |
+
return dummy_inputs
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/modeling_deberta.py
ADDED
@@ -0,0 +1,1426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch DeBERTa model."""
|
16 |
+
|
17 |
+
from collections.abc import Sequence
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BaseModelOutput,
|
28 |
+
MaskedLMOutput,
|
29 |
+
QuestionAnsweringModelOutput,
|
30 |
+
SequenceClassifierOutput,
|
31 |
+
TokenClassifierOutput,
|
32 |
+
)
|
33 |
+
from ...modeling_utils import PreTrainedModel
|
34 |
+
from ...pytorch_utils import softmax_backward_data
|
35 |
+
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
36 |
+
from .configuration_deberta import DebertaConfig
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
_CONFIG_FOR_DOC = "DebertaConfig"
|
41 |
+
_CHECKPOINT_FOR_DOC = "microsoft/deberta-base"
|
42 |
+
|
43 |
+
# Masked LM docstring
|
44 |
+
_CHECKPOINT_FOR_MASKED_LM = "lsanochkin/deberta-large-feedback"
|
45 |
+
_MASKED_LM_EXPECTED_OUTPUT = "' Paris'"
|
46 |
+
_MASKED_LM_EXPECTED_LOSS = "0.54"
|
47 |
+
|
48 |
+
# QuestionAnswering docstring
|
49 |
+
_CHECKPOINT_FOR_QA = "Palak/microsoft_deberta-large_squad"
|
50 |
+
_QA_EXPECTED_OUTPUT = "' a nice puppet'"
|
51 |
+
_QA_EXPECTED_LOSS = 0.14
|
52 |
+
_QA_TARGET_START_INDEX = 12
|
53 |
+
_QA_TARGET_END_INDEX = 14
|
54 |
+
|
55 |
+
|
56 |
+
from ..deprecated._archive_maps import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
57 |
+
|
58 |
+
|
59 |
+
class ContextPooler(nn.Module):
|
60 |
+
def __init__(self, config):
|
61 |
+
super().__init__()
|
62 |
+
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
|
63 |
+
self.dropout = StableDropout(config.pooler_dropout)
|
64 |
+
self.config = config
|
65 |
+
|
66 |
+
def forward(self, hidden_states):
|
67 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
68 |
+
# to the first token.
|
69 |
+
|
70 |
+
context_token = hidden_states[:, 0]
|
71 |
+
context_token = self.dropout(context_token)
|
72 |
+
pooled_output = self.dense(context_token)
|
73 |
+
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
|
74 |
+
return pooled_output
|
75 |
+
|
76 |
+
@property
|
77 |
+
def output_dim(self):
|
78 |
+
return self.config.hidden_size
|
79 |
+
|
80 |
+
|
81 |
+
class XSoftmax(torch.autograd.Function):
|
82 |
+
"""
|
83 |
+
Masked Softmax which is optimized for saving memory
|
84 |
+
|
85 |
+
Args:
|
86 |
+
input (`torch.tensor`): The input tensor that will apply softmax.
|
87 |
+
mask (`torch.IntTensor`):
|
88 |
+
The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
|
89 |
+
dim (int): The dimension that will apply softmax
|
90 |
+
|
91 |
+
Example:
|
92 |
+
|
93 |
+
```python
|
94 |
+
>>> import torch
|
95 |
+
>>> from transformers.models.deberta.modeling_deberta import XSoftmax
|
96 |
+
|
97 |
+
>>> # Make a tensor
|
98 |
+
>>> x = torch.randn([4, 20, 100])
|
99 |
+
|
100 |
+
>>> # Create a mask
|
101 |
+
>>> mask = (x > 0).int()
|
102 |
+
|
103 |
+
>>> # Specify the dimension to apply softmax
|
104 |
+
>>> dim = -1
|
105 |
+
|
106 |
+
>>> y = XSoftmax.apply(x, mask, dim)
|
107 |
+
```"""
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def forward(self, input, mask, dim):
|
111 |
+
self.dim = dim
|
112 |
+
rmask = ~(mask.to(torch.bool))
|
113 |
+
|
114 |
+
output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
|
115 |
+
output = torch.softmax(output, self.dim)
|
116 |
+
output.masked_fill_(rmask, 0)
|
117 |
+
self.save_for_backward(output)
|
118 |
+
return output
|
119 |
+
|
120 |
+
@staticmethod
|
121 |
+
def backward(self, grad_output):
|
122 |
+
(output,) = self.saved_tensors
|
123 |
+
inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
|
124 |
+
return inputGrad, None, None
|
125 |
+
|
126 |
+
@staticmethod
|
127 |
+
def symbolic(g, self, mask, dim):
|
128 |
+
import torch.onnx.symbolic_helper as sym_help
|
129 |
+
from torch.onnx.symbolic_opset9 import masked_fill, softmax
|
130 |
+
|
131 |
+
mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
|
132 |
+
r_mask = g.op(
|
133 |
+
"Cast",
|
134 |
+
g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
|
135 |
+
to_i=sym_help.cast_pytorch_to_onnx["Bool"],
|
136 |
+
)
|
137 |
+
output = masked_fill(
|
138 |
+
g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
|
139 |
+
)
|
140 |
+
output = softmax(g, output, dim)
|
141 |
+
return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
|
142 |
+
|
143 |
+
|
144 |
+
class DropoutContext(object):
|
145 |
+
def __init__(self):
|
146 |
+
self.dropout = 0
|
147 |
+
self.mask = None
|
148 |
+
self.scale = 1
|
149 |
+
self.reuse_mask = True
|
150 |
+
|
151 |
+
|
152 |
+
def get_mask(input, local_context):
|
153 |
+
if not isinstance(local_context, DropoutContext):
|
154 |
+
dropout = local_context
|
155 |
+
mask = None
|
156 |
+
else:
|
157 |
+
dropout = local_context.dropout
|
158 |
+
dropout *= local_context.scale
|
159 |
+
mask = local_context.mask if local_context.reuse_mask else None
|
160 |
+
|
161 |
+
if dropout > 0 and mask is None:
|
162 |
+
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
|
163 |
+
|
164 |
+
if isinstance(local_context, DropoutContext):
|
165 |
+
if local_context.mask is None:
|
166 |
+
local_context.mask = mask
|
167 |
+
|
168 |
+
return mask, dropout
|
169 |
+
|
170 |
+
|
171 |
+
class XDropout(torch.autograd.Function):
|
172 |
+
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
def forward(ctx, input, local_ctx):
|
176 |
+
mask, dropout = get_mask(input, local_ctx)
|
177 |
+
ctx.scale = 1.0 / (1 - dropout)
|
178 |
+
if dropout > 0:
|
179 |
+
ctx.save_for_backward(mask)
|
180 |
+
return input.masked_fill(mask, 0) * ctx.scale
|
181 |
+
else:
|
182 |
+
return input
|
183 |
+
|
184 |
+
@staticmethod
|
185 |
+
def backward(ctx, grad_output):
|
186 |
+
if ctx.scale > 1:
|
187 |
+
(mask,) = ctx.saved_tensors
|
188 |
+
return grad_output.masked_fill(mask, 0) * ctx.scale, None
|
189 |
+
else:
|
190 |
+
return grad_output, None
|
191 |
+
|
192 |
+
@staticmethod
|
193 |
+
def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
|
194 |
+
from torch.onnx import symbolic_opset12
|
195 |
+
|
196 |
+
dropout_p = local_ctx
|
197 |
+
if isinstance(local_ctx, DropoutContext):
|
198 |
+
dropout_p = local_ctx.dropout
|
199 |
+
# StableDropout only calls this function when training.
|
200 |
+
train = True
|
201 |
+
# TODO: We should check if the opset_version being used to export
|
202 |
+
# is > 12 here, but there's no good way to do that. As-is, if the
|
203 |
+
# opset_version < 12, export will fail with a CheckerError.
|
204 |
+
# Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
|
205 |
+
# if opset_version < 12:
|
206 |
+
# return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
|
207 |
+
return symbolic_opset12.dropout(g, input, dropout_p, train)
|
208 |
+
|
209 |
+
|
210 |
+
class StableDropout(nn.Module):
|
211 |
+
"""
|
212 |
+
Optimized dropout module for stabilizing the training
|
213 |
+
|
214 |
+
Args:
|
215 |
+
drop_prob (float): the dropout probabilities
|
216 |
+
"""
|
217 |
+
|
218 |
+
def __init__(self, drop_prob):
|
219 |
+
super().__init__()
|
220 |
+
self.drop_prob = drop_prob
|
221 |
+
self.count = 0
|
222 |
+
self.context_stack = None
|
223 |
+
|
224 |
+
def forward(self, x):
|
225 |
+
"""
|
226 |
+
Call the module
|
227 |
+
|
228 |
+
Args:
|
229 |
+
x (`torch.tensor`): The input tensor to apply dropout
|
230 |
+
"""
|
231 |
+
if self.training and self.drop_prob > 0:
|
232 |
+
return XDropout.apply(x, self.get_context())
|
233 |
+
return x
|
234 |
+
|
235 |
+
def clear_context(self):
|
236 |
+
self.count = 0
|
237 |
+
self.context_stack = None
|
238 |
+
|
239 |
+
def init_context(self, reuse_mask=True, scale=1):
|
240 |
+
if self.context_stack is None:
|
241 |
+
self.context_stack = []
|
242 |
+
self.count = 0
|
243 |
+
for c in self.context_stack:
|
244 |
+
c.reuse_mask = reuse_mask
|
245 |
+
c.scale = scale
|
246 |
+
|
247 |
+
def get_context(self):
|
248 |
+
if self.context_stack is not None:
|
249 |
+
if self.count >= len(self.context_stack):
|
250 |
+
self.context_stack.append(DropoutContext())
|
251 |
+
ctx = self.context_stack[self.count]
|
252 |
+
ctx.dropout = self.drop_prob
|
253 |
+
self.count += 1
|
254 |
+
return ctx
|
255 |
+
else:
|
256 |
+
return self.drop_prob
|
257 |
+
|
258 |
+
|
259 |
+
class DebertaLayerNorm(nn.Module):
|
260 |
+
"""LayerNorm module in the TF style (epsilon inside the square root)."""
|
261 |
+
|
262 |
+
def __init__(self, size, eps=1e-12):
|
263 |
+
super().__init__()
|
264 |
+
self.weight = nn.Parameter(torch.ones(size))
|
265 |
+
self.bias = nn.Parameter(torch.zeros(size))
|
266 |
+
self.variance_epsilon = eps
|
267 |
+
|
268 |
+
def forward(self, hidden_states):
|
269 |
+
input_type = hidden_states.dtype
|
270 |
+
hidden_states = hidden_states.float()
|
271 |
+
mean = hidden_states.mean(-1, keepdim=True)
|
272 |
+
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
|
273 |
+
hidden_states = (hidden_states - mean) / torch.sqrt(variance + self.variance_epsilon)
|
274 |
+
hidden_states = hidden_states.to(input_type)
|
275 |
+
y = self.weight * hidden_states + self.bias
|
276 |
+
return y
|
277 |
+
|
278 |
+
|
279 |
+
class DebertaSelfOutput(nn.Module):
|
280 |
+
def __init__(self, config):
|
281 |
+
super().__init__()
|
282 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
283 |
+
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
|
284 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
285 |
+
|
286 |
+
def forward(self, hidden_states, input_tensor):
|
287 |
+
hidden_states = self.dense(hidden_states)
|
288 |
+
hidden_states = self.dropout(hidden_states)
|
289 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
290 |
+
return hidden_states
|
291 |
+
|
292 |
+
|
293 |
+
class DebertaAttention(nn.Module):
|
294 |
+
def __init__(self, config):
|
295 |
+
super().__init__()
|
296 |
+
self.self = DisentangledSelfAttention(config)
|
297 |
+
self.output = DebertaSelfOutput(config)
|
298 |
+
self.config = config
|
299 |
+
|
300 |
+
def forward(
|
301 |
+
self,
|
302 |
+
hidden_states,
|
303 |
+
attention_mask,
|
304 |
+
output_attentions=False,
|
305 |
+
query_states=None,
|
306 |
+
relative_pos=None,
|
307 |
+
rel_embeddings=None,
|
308 |
+
):
|
309 |
+
self_output = self.self(
|
310 |
+
hidden_states,
|
311 |
+
attention_mask,
|
312 |
+
output_attentions,
|
313 |
+
query_states=query_states,
|
314 |
+
relative_pos=relative_pos,
|
315 |
+
rel_embeddings=rel_embeddings,
|
316 |
+
)
|
317 |
+
if output_attentions:
|
318 |
+
self_output, att_matrix = self_output
|
319 |
+
if query_states is None:
|
320 |
+
query_states = hidden_states
|
321 |
+
attention_output = self.output(self_output, query_states)
|
322 |
+
|
323 |
+
if output_attentions:
|
324 |
+
return (attention_output, att_matrix)
|
325 |
+
else:
|
326 |
+
return attention_output
|
327 |
+
|
328 |
+
|
329 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Deberta
|
330 |
+
class DebertaIntermediate(nn.Module):
|
331 |
+
def __init__(self, config):
|
332 |
+
super().__init__()
|
333 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
334 |
+
if isinstance(config.hidden_act, str):
|
335 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
336 |
+
else:
|
337 |
+
self.intermediate_act_fn = config.hidden_act
|
338 |
+
|
339 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
340 |
+
hidden_states = self.dense(hidden_states)
|
341 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
342 |
+
return hidden_states
|
343 |
+
|
344 |
+
|
345 |
+
class DebertaOutput(nn.Module):
|
346 |
+
def __init__(self, config):
|
347 |
+
super().__init__()
|
348 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
349 |
+
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
|
350 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
351 |
+
self.config = config
|
352 |
+
|
353 |
+
def forward(self, hidden_states, input_tensor):
|
354 |
+
hidden_states = self.dense(hidden_states)
|
355 |
+
hidden_states = self.dropout(hidden_states)
|
356 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
357 |
+
return hidden_states
|
358 |
+
|
359 |
+
|
360 |
+
class DebertaLayer(nn.Module):
|
361 |
+
def __init__(self, config):
|
362 |
+
super().__init__()
|
363 |
+
self.attention = DebertaAttention(config)
|
364 |
+
self.intermediate = DebertaIntermediate(config)
|
365 |
+
self.output = DebertaOutput(config)
|
366 |
+
|
367 |
+
def forward(
|
368 |
+
self,
|
369 |
+
hidden_states,
|
370 |
+
attention_mask,
|
371 |
+
query_states=None,
|
372 |
+
relative_pos=None,
|
373 |
+
rel_embeddings=None,
|
374 |
+
output_attentions=False,
|
375 |
+
):
|
376 |
+
attention_output = self.attention(
|
377 |
+
hidden_states,
|
378 |
+
attention_mask,
|
379 |
+
output_attentions=output_attentions,
|
380 |
+
query_states=query_states,
|
381 |
+
relative_pos=relative_pos,
|
382 |
+
rel_embeddings=rel_embeddings,
|
383 |
+
)
|
384 |
+
if output_attentions:
|
385 |
+
attention_output, att_matrix = attention_output
|
386 |
+
intermediate_output = self.intermediate(attention_output)
|
387 |
+
layer_output = self.output(intermediate_output, attention_output)
|
388 |
+
if output_attentions:
|
389 |
+
return (layer_output, att_matrix)
|
390 |
+
else:
|
391 |
+
return layer_output
|
392 |
+
|
393 |
+
|
394 |
+
class DebertaEncoder(nn.Module):
|
395 |
+
"""Modified BertEncoder with relative position bias support"""
|
396 |
+
|
397 |
+
def __init__(self, config):
|
398 |
+
super().__init__()
|
399 |
+
self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)])
|
400 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
401 |
+
if self.relative_attention:
|
402 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
403 |
+
if self.max_relative_positions < 1:
|
404 |
+
self.max_relative_positions = config.max_position_embeddings
|
405 |
+
self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size)
|
406 |
+
self.gradient_checkpointing = False
|
407 |
+
|
408 |
+
def get_rel_embedding(self):
|
409 |
+
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
|
410 |
+
return rel_embeddings
|
411 |
+
|
412 |
+
def get_attention_mask(self, attention_mask):
|
413 |
+
if attention_mask.dim() <= 2:
|
414 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
415 |
+
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
416 |
+
elif attention_mask.dim() == 3:
|
417 |
+
attention_mask = attention_mask.unsqueeze(1)
|
418 |
+
|
419 |
+
return attention_mask
|
420 |
+
|
421 |
+
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
|
422 |
+
if self.relative_attention and relative_pos is None:
|
423 |
+
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
|
424 |
+
relative_pos = build_relative_position(q, hidden_states.size(-2), hidden_states.device)
|
425 |
+
return relative_pos
|
426 |
+
|
427 |
+
def forward(
|
428 |
+
self,
|
429 |
+
hidden_states,
|
430 |
+
attention_mask,
|
431 |
+
output_hidden_states=True,
|
432 |
+
output_attentions=False,
|
433 |
+
query_states=None,
|
434 |
+
relative_pos=None,
|
435 |
+
return_dict=True,
|
436 |
+
):
|
437 |
+
attention_mask = self.get_attention_mask(attention_mask)
|
438 |
+
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
|
439 |
+
|
440 |
+
all_hidden_states = () if output_hidden_states else None
|
441 |
+
all_attentions = () if output_attentions else None
|
442 |
+
|
443 |
+
if isinstance(hidden_states, Sequence):
|
444 |
+
next_kv = hidden_states[0]
|
445 |
+
else:
|
446 |
+
next_kv = hidden_states
|
447 |
+
rel_embeddings = self.get_rel_embedding()
|
448 |
+
for i, layer_module in enumerate(self.layer):
|
449 |
+
if output_hidden_states:
|
450 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
451 |
+
|
452 |
+
if self.gradient_checkpointing and self.training:
|
453 |
+
hidden_states = self._gradient_checkpointing_func(
|
454 |
+
layer_module.__call__,
|
455 |
+
next_kv,
|
456 |
+
attention_mask,
|
457 |
+
query_states,
|
458 |
+
relative_pos,
|
459 |
+
rel_embeddings,
|
460 |
+
output_attentions,
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
hidden_states = layer_module(
|
464 |
+
next_kv,
|
465 |
+
attention_mask,
|
466 |
+
query_states=query_states,
|
467 |
+
relative_pos=relative_pos,
|
468 |
+
rel_embeddings=rel_embeddings,
|
469 |
+
output_attentions=output_attentions,
|
470 |
+
)
|
471 |
+
|
472 |
+
if output_attentions:
|
473 |
+
hidden_states, att_m = hidden_states
|
474 |
+
|
475 |
+
if query_states is not None:
|
476 |
+
query_states = hidden_states
|
477 |
+
if isinstance(hidden_states, Sequence):
|
478 |
+
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
|
479 |
+
else:
|
480 |
+
next_kv = hidden_states
|
481 |
+
|
482 |
+
if output_attentions:
|
483 |
+
all_attentions = all_attentions + (att_m,)
|
484 |
+
|
485 |
+
if output_hidden_states:
|
486 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
487 |
+
|
488 |
+
if not return_dict:
|
489 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
490 |
+
return BaseModelOutput(
|
491 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
492 |
+
)
|
493 |
+
|
494 |
+
|
495 |
+
def build_relative_position(query_size, key_size, device):
|
496 |
+
"""
|
497 |
+
Build relative position according to the query and key
|
498 |
+
|
499 |
+
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
|
500 |
+
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
|
501 |
+
P_k\\)
|
502 |
+
|
503 |
+
Args:
|
504 |
+
query_size (int): the length of query
|
505 |
+
key_size (int): the length of key
|
506 |
+
|
507 |
+
Return:
|
508 |
+
`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
|
509 |
+
|
510 |
+
"""
|
511 |
+
|
512 |
+
q_ids = torch.arange(query_size, dtype=torch.long, device=device)
|
513 |
+
k_ids = torch.arange(key_size, dtype=torch.long, device=device)
|
514 |
+
rel_pos_ids = q_ids[:, None] - k_ids.view(1, -1).repeat(query_size, 1)
|
515 |
+
rel_pos_ids = rel_pos_ids[:query_size, :]
|
516 |
+
rel_pos_ids = rel_pos_ids.unsqueeze(0)
|
517 |
+
return rel_pos_ids
|
518 |
+
|
519 |
+
|
520 |
+
@torch.jit.script
|
521 |
+
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
|
522 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
|
523 |
+
|
524 |
+
|
525 |
+
@torch.jit.script
|
526 |
+
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
|
527 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
|
528 |
+
|
529 |
+
|
530 |
+
@torch.jit.script
|
531 |
+
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
|
532 |
+
return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
|
533 |
+
|
534 |
+
|
535 |
+
class DisentangledSelfAttention(nn.Module):
|
536 |
+
"""
|
537 |
+
Disentangled self-attention module
|
538 |
+
|
539 |
+
Parameters:
|
540 |
+
config (`str`):
|
541 |
+
A model config class instance with the configuration to build a new model. The schema is similar to
|
542 |
+
*BertConfig*, for more details, please refer [`DebertaConfig`]
|
543 |
+
|
544 |
+
"""
|
545 |
+
|
546 |
+
def __init__(self, config):
|
547 |
+
super().__init__()
|
548 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
549 |
+
raise ValueError(
|
550 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
551 |
+
f"heads ({config.num_attention_heads})"
|
552 |
+
)
|
553 |
+
self.num_attention_heads = config.num_attention_heads
|
554 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
555 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
556 |
+
self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False)
|
557 |
+
self.q_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
|
558 |
+
self.v_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
|
559 |
+
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
|
560 |
+
|
561 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
562 |
+
self.talking_head = getattr(config, "talking_head", False)
|
563 |
+
|
564 |
+
if self.talking_head:
|
565 |
+
self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
|
566 |
+
self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
|
567 |
+
|
568 |
+
if self.relative_attention:
|
569 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
570 |
+
if self.max_relative_positions < 1:
|
571 |
+
self.max_relative_positions = config.max_position_embeddings
|
572 |
+
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
|
573 |
+
|
574 |
+
if "c2p" in self.pos_att_type:
|
575 |
+
self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
|
576 |
+
if "p2c" in self.pos_att_type:
|
577 |
+
self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size)
|
578 |
+
|
579 |
+
self.dropout = StableDropout(config.attention_probs_dropout_prob)
|
580 |
+
|
581 |
+
def transpose_for_scores(self, x):
|
582 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
|
583 |
+
x = x.view(new_x_shape)
|
584 |
+
return x.permute(0, 2, 1, 3)
|
585 |
+
|
586 |
+
def forward(
|
587 |
+
self,
|
588 |
+
hidden_states,
|
589 |
+
attention_mask,
|
590 |
+
output_attentions=False,
|
591 |
+
query_states=None,
|
592 |
+
relative_pos=None,
|
593 |
+
rel_embeddings=None,
|
594 |
+
):
|
595 |
+
"""
|
596 |
+
Call the module
|
597 |
+
|
598 |
+
Args:
|
599 |
+
hidden_states (`torch.FloatTensor`):
|
600 |
+
Input states to the module usually the output from previous layer, it will be the Q,K and V in
|
601 |
+
*Attention(Q,K,V)*
|
602 |
+
|
603 |
+
attention_mask (`torch.BoolTensor`):
|
604 |
+
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
|
605 |
+
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
|
606 |
+
th token.
|
607 |
+
|
608 |
+
output_attentions (`bool`, optional):
|
609 |
+
Whether return the attention matrix.
|
610 |
+
|
611 |
+
query_states (`torch.FloatTensor`, optional):
|
612 |
+
The *Q* state in *Attention(Q,K,V)*.
|
613 |
+
|
614 |
+
relative_pos (`torch.LongTensor`):
|
615 |
+
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
|
616 |
+
values ranging in [*-max_relative_positions*, *max_relative_positions*].
|
617 |
+
|
618 |
+
rel_embeddings (`torch.FloatTensor`):
|
619 |
+
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
|
620 |
+
\\text{max_relative_positions}\\), *hidden_size*].
|
621 |
+
|
622 |
+
|
623 |
+
"""
|
624 |
+
if query_states is None:
|
625 |
+
qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1)
|
626 |
+
query_layer, key_layer, value_layer = self.transpose_for_scores(qp).chunk(3, dim=-1)
|
627 |
+
else:
|
628 |
+
|
629 |
+
def linear(w, b, x):
|
630 |
+
if b is not None:
|
631 |
+
return torch.matmul(x, w.t()) + b.t()
|
632 |
+
else:
|
633 |
+
return torch.matmul(x, w.t()) # + b.t()
|
634 |
+
|
635 |
+
ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0)
|
636 |
+
qkvw = [torch.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], dim=0) for k in range(3)]
|
637 |
+
qkvb = [None] * 3
|
638 |
+
|
639 |
+
q = linear(qkvw[0], qkvb[0], query_states.to(dtype=qkvw[0].dtype))
|
640 |
+
k, v = [linear(qkvw[i], qkvb[i], hidden_states.to(dtype=qkvw[i].dtype)) for i in range(1, 3)]
|
641 |
+
query_layer, key_layer, value_layer = [self.transpose_for_scores(x) for x in [q, k, v]]
|
642 |
+
|
643 |
+
query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :])
|
644 |
+
value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :])
|
645 |
+
|
646 |
+
rel_att = None
|
647 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
648 |
+
scale_factor = 1 + len(self.pos_att_type)
|
649 |
+
scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
|
650 |
+
query_layer = query_layer / scale.to(dtype=query_layer.dtype)
|
651 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
652 |
+
if self.relative_attention:
|
653 |
+
rel_embeddings = self.pos_dropout(rel_embeddings)
|
654 |
+
rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
|
655 |
+
|
656 |
+
if rel_att is not None:
|
657 |
+
attention_scores = attention_scores + rel_att
|
658 |
+
|
659 |
+
# bxhxlxd
|
660 |
+
if self.talking_head:
|
661 |
+
attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
662 |
+
|
663 |
+
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
|
664 |
+
attention_probs = self.dropout(attention_probs)
|
665 |
+
if self.talking_head:
|
666 |
+
attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
667 |
+
|
668 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
669 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
670 |
+
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
|
671 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
672 |
+
if output_attentions:
|
673 |
+
return (context_layer, attention_probs)
|
674 |
+
else:
|
675 |
+
return context_layer
|
676 |
+
|
677 |
+
def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
|
678 |
+
if relative_pos is None:
|
679 |
+
q = query_layer.size(-2)
|
680 |
+
relative_pos = build_relative_position(q, key_layer.size(-2), query_layer.device)
|
681 |
+
if relative_pos.dim() == 2:
|
682 |
+
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
|
683 |
+
elif relative_pos.dim() == 3:
|
684 |
+
relative_pos = relative_pos.unsqueeze(1)
|
685 |
+
# bxhxqxk
|
686 |
+
elif relative_pos.dim() != 4:
|
687 |
+
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
|
688 |
+
|
689 |
+
att_span = min(max(query_layer.size(-2), key_layer.size(-2)), self.max_relative_positions)
|
690 |
+
relative_pos = relative_pos.long().to(query_layer.device)
|
691 |
+
rel_embeddings = rel_embeddings[
|
692 |
+
self.max_relative_positions - att_span : self.max_relative_positions + att_span, :
|
693 |
+
].unsqueeze(0)
|
694 |
+
|
695 |
+
score = 0
|
696 |
+
|
697 |
+
# content->position
|
698 |
+
if "c2p" in self.pos_att_type:
|
699 |
+
pos_key_layer = self.pos_proj(rel_embeddings)
|
700 |
+
pos_key_layer = self.transpose_for_scores(pos_key_layer)
|
701 |
+
c2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2))
|
702 |
+
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
|
703 |
+
c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos))
|
704 |
+
score += c2p_att
|
705 |
+
|
706 |
+
# position->content
|
707 |
+
if "p2c" in self.pos_att_type:
|
708 |
+
pos_query_layer = self.pos_q_proj(rel_embeddings)
|
709 |
+
pos_query_layer = self.transpose_for_scores(pos_query_layer)
|
710 |
+
pos_query_layer /= torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
|
711 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
712 |
+
r_pos = build_relative_position(key_layer.size(-2), key_layer.size(-2), query_layer.device)
|
713 |
+
else:
|
714 |
+
r_pos = relative_pos
|
715 |
+
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
|
716 |
+
p2c_att = torch.matmul(key_layer, pos_query_layer.transpose(-1, -2).to(dtype=key_layer.dtype))
|
717 |
+
p2c_att = torch.gather(
|
718 |
+
p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer)
|
719 |
+
).transpose(-1, -2)
|
720 |
+
|
721 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
722 |
+
pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
|
723 |
+
p2c_att = torch.gather(p2c_att, dim=-2, index=pos_dynamic_expand(pos_index, p2c_att, key_layer))
|
724 |
+
score += p2c_att
|
725 |
+
|
726 |
+
return score
|
727 |
+
|
728 |
+
|
729 |
+
class DebertaEmbeddings(nn.Module):
|
730 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
731 |
+
|
732 |
+
def __init__(self, config):
|
733 |
+
super().__init__()
|
734 |
+
pad_token_id = getattr(config, "pad_token_id", 0)
|
735 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
736 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
|
737 |
+
|
738 |
+
self.position_biased_input = getattr(config, "position_biased_input", True)
|
739 |
+
if not self.position_biased_input:
|
740 |
+
self.position_embeddings = None
|
741 |
+
else:
|
742 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
|
743 |
+
|
744 |
+
if config.type_vocab_size > 0:
|
745 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
|
746 |
+
|
747 |
+
if self.embedding_size != config.hidden_size:
|
748 |
+
self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
|
749 |
+
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
|
750 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
751 |
+
self.config = config
|
752 |
+
|
753 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
754 |
+
self.register_buffer(
|
755 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
756 |
+
)
|
757 |
+
|
758 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
|
759 |
+
if input_ids is not None:
|
760 |
+
input_shape = input_ids.size()
|
761 |
+
else:
|
762 |
+
input_shape = inputs_embeds.size()[:-1]
|
763 |
+
|
764 |
+
seq_length = input_shape[1]
|
765 |
+
|
766 |
+
if position_ids is None:
|
767 |
+
position_ids = self.position_ids[:, :seq_length]
|
768 |
+
|
769 |
+
if token_type_ids is None:
|
770 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
771 |
+
|
772 |
+
if inputs_embeds is None:
|
773 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
774 |
+
|
775 |
+
if self.position_embeddings is not None:
|
776 |
+
position_embeddings = self.position_embeddings(position_ids.long())
|
777 |
+
else:
|
778 |
+
position_embeddings = torch.zeros_like(inputs_embeds)
|
779 |
+
|
780 |
+
embeddings = inputs_embeds
|
781 |
+
if self.position_biased_input:
|
782 |
+
embeddings += position_embeddings
|
783 |
+
if self.config.type_vocab_size > 0:
|
784 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
785 |
+
embeddings += token_type_embeddings
|
786 |
+
|
787 |
+
if self.embedding_size != self.config.hidden_size:
|
788 |
+
embeddings = self.embed_proj(embeddings)
|
789 |
+
|
790 |
+
embeddings = self.LayerNorm(embeddings)
|
791 |
+
|
792 |
+
if mask is not None:
|
793 |
+
if mask.dim() != embeddings.dim():
|
794 |
+
if mask.dim() == 4:
|
795 |
+
mask = mask.squeeze(1).squeeze(1)
|
796 |
+
mask = mask.unsqueeze(2)
|
797 |
+
mask = mask.to(embeddings.dtype)
|
798 |
+
|
799 |
+
embeddings = embeddings * mask
|
800 |
+
|
801 |
+
embeddings = self.dropout(embeddings)
|
802 |
+
return embeddings
|
803 |
+
|
804 |
+
|
805 |
+
class DebertaPreTrainedModel(PreTrainedModel):
|
806 |
+
"""
|
807 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
808 |
+
models.
|
809 |
+
"""
|
810 |
+
|
811 |
+
config_class = DebertaConfig
|
812 |
+
base_model_prefix = "deberta"
|
813 |
+
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
|
814 |
+
supports_gradient_checkpointing = True
|
815 |
+
|
816 |
+
def _init_weights(self, module):
|
817 |
+
"""Initialize the weights."""
|
818 |
+
if isinstance(module, nn.Linear):
|
819 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
820 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
821 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
822 |
+
if module.bias is not None:
|
823 |
+
module.bias.data.zero_()
|
824 |
+
elif isinstance(module, nn.Embedding):
|
825 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
826 |
+
if module.padding_idx is not None:
|
827 |
+
module.weight.data[module.padding_idx].zero_()
|
828 |
+
|
829 |
+
|
830 |
+
DEBERTA_START_DOCSTRING = r"""
|
831 |
+
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
|
832 |
+
Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
|
833 |
+
on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
|
834 |
+
improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
|
835 |
+
|
836 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
837 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
838 |
+
and behavior.
|
839 |
+
|
840 |
+
|
841 |
+
Parameters:
|
842 |
+
config ([`DebertaConfig`]): Model configuration class with all the parameters of the model.
|
843 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
844 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
845 |
+
"""
|
846 |
+
|
847 |
+
DEBERTA_INPUTS_DOCSTRING = r"""
|
848 |
+
Args:
|
849 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
850 |
+
Indices of input sequence tokens in the vocabulary.
|
851 |
+
|
852 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
853 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
854 |
+
|
855 |
+
[What are input IDs?](../glossary#input-ids)
|
856 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
857 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
858 |
+
|
859 |
+
- 1 for tokens that are **not masked**,
|
860 |
+
- 0 for tokens that are **masked**.
|
861 |
+
|
862 |
+
[What are attention masks?](../glossary#attention-mask)
|
863 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
864 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
865 |
+
1]`:
|
866 |
+
|
867 |
+
- 0 corresponds to a *sentence A* token,
|
868 |
+
- 1 corresponds to a *sentence B* token.
|
869 |
+
|
870 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
871 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
872 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
873 |
+
config.max_position_embeddings - 1]`.
|
874 |
+
|
875 |
+
[What are position IDs?](../glossary#position-ids)
|
876 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
877 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
878 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
879 |
+
model's internal embedding lookup matrix.
|
880 |
+
output_attentions (`bool`, *optional*):
|
881 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
882 |
+
tensors for more detail.
|
883 |
+
output_hidden_states (`bool`, *optional*):
|
884 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
885 |
+
more detail.
|
886 |
+
return_dict (`bool`, *optional*):
|
887 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
888 |
+
"""
|
889 |
+
|
890 |
+
|
891 |
+
@add_start_docstrings(
|
892 |
+
"The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
893 |
+
DEBERTA_START_DOCSTRING,
|
894 |
+
)
|
895 |
+
class DebertaModel(DebertaPreTrainedModel):
|
896 |
+
def __init__(self, config):
|
897 |
+
super().__init__(config)
|
898 |
+
|
899 |
+
self.embeddings = DebertaEmbeddings(config)
|
900 |
+
self.encoder = DebertaEncoder(config)
|
901 |
+
self.z_steps = 0
|
902 |
+
self.config = config
|
903 |
+
# Initialize weights and apply final processing
|
904 |
+
self.post_init()
|
905 |
+
|
906 |
+
def get_input_embeddings(self):
|
907 |
+
return self.embeddings.word_embeddings
|
908 |
+
|
909 |
+
def set_input_embeddings(self, new_embeddings):
|
910 |
+
self.embeddings.word_embeddings = new_embeddings
|
911 |
+
|
912 |
+
def _prune_heads(self, heads_to_prune):
|
913 |
+
"""
|
914 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
915 |
+
class PreTrainedModel
|
916 |
+
"""
|
917 |
+
raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
|
918 |
+
|
919 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
920 |
+
@add_code_sample_docstrings(
|
921 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
922 |
+
output_type=BaseModelOutput,
|
923 |
+
config_class=_CONFIG_FOR_DOC,
|
924 |
+
)
|
925 |
+
def forward(
|
926 |
+
self,
|
927 |
+
input_ids: Optional[torch.Tensor] = None,
|
928 |
+
attention_mask: Optional[torch.Tensor] = None,
|
929 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
930 |
+
position_ids: Optional[torch.Tensor] = None,
|
931 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
932 |
+
output_attentions: Optional[bool] = None,
|
933 |
+
output_hidden_states: Optional[bool] = None,
|
934 |
+
return_dict: Optional[bool] = None,
|
935 |
+
) -> Union[Tuple, BaseModelOutput]:
|
936 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
937 |
+
output_hidden_states = (
|
938 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
939 |
+
)
|
940 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
941 |
+
|
942 |
+
if input_ids is not None and inputs_embeds is not None:
|
943 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
944 |
+
elif input_ids is not None:
|
945 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
946 |
+
input_shape = input_ids.size()
|
947 |
+
elif inputs_embeds is not None:
|
948 |
+
input_shape = inputs_embeds.size()[:-1]
|
949 |
+
else:
|
950 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
951 |
+
|
952 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
953 |
+
|
954 |
+
if attention_mask is None:
|
955 |
+
attention_mask = torch.ones(input_shape, device=device)
|
956 |
+
if token_type_ids is None:
|
957 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
958 |
+
|
959 |
+
embedding_output = self.embeddings(
|
960 |
+
input_ids=input_ids,
|
961 |
+
token_type_ids=token_type_ids,
|
962 |
+
position_ids=position_ids,
|
963 |
+
mask=attention_mask,
|
964 |
+
inputs_embeds=inputs_embeds,
|
965 |
+
)
|
966 |
+
|
967 |
+
encoder_outputs = self.encoder(
|
968 |
+
embedding_output,
|
969 |
+
attention_mask,
|
970 |
+
output_hidden_states=True,
|
971 |
+
output_attentions=output_attentions,
|
972 |
+
return_dict=return_dict,
|
973 |
+
)
|
974 |
+
encoded_layers = encoder_outputs[1]
|
975 |
+
|
976 |
+
if self.z_steps > 1:
|
977 |
+
hidden_states = encoded_layers[-2]
|
978 |
+
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
|
979 |
+
query_states = encoded_layers[-1]
|
980 |
+
rel_embeddings = self.encoder.get_rel_embedding()
|
981 |
+
attention_mask = self.encoder.get_attention_mask(attention_mask)
|
982 |
+
rel_pos = self.encoder.get_rel_pos(embedding_output)
|
983 |
+
for layer in layers[1:]:
|
984 |
+
query_states = layer(
|
985 |
+
hidden_states,
|
986 |
+
attention_mask,
|
987 |
+
output_attentions=False,
|
988 |
+
query_states=query_states,
|
989 |
+
relative_pos=rel_pos,
|
990 |
+
rel_embeddings=rel_embeddings,
|
991 |
+
)
|
992 |
+
encoded_layers.append(query_states)
|
993 |
+
|
994 |
+
sequence_output = encoded_layers[-1]
|
995 |
+
|
996 |
+
if not return_dict:
|
997 |
+
return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
|
998 |
+
|
999 |
+
return BaseModelOutput(
|
1000 |
+
last_hidden_state=sequence_output,
|
1001 |
+
hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
|
1002 |
+
attentions=encoder_outputs.attentions,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
|
1006 |
+
@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
|
1007 |
+
class DebertaForMaskedLM(DebertaPreTrainedModel):
|
1008 |
+
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
|
1009 |
+
|
1010 |
+
def __init__(self, config):
|
1011 |
+
super().__init__(config)
|
1012 |
+
|
1013 |
+
self.deberta = DebertaModel(config)
|
1014 |
+
self.cls = DebertaOnlyMLMHead(config)
|
1015 |
+
|
1016 |
+
# Initialize weights and apply final processing
|
1017 |
+
self.post_init()
|
1018 |
+
|
1019 |
+
def get_output_embeddings(self):
|
1020 |
+
return self.cls.predictions.decoder
|
1021 |
+
|
1022 |
+
def set_output_embeddings(self, new_embeddings):
|
1023 |
+
self.cls.predictions.decoder = new_embeddings
|
1024 |
+
|
1025 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1026 |
+
@add_code_sample_docstrings(
|
1027 |
+
checkpoint=_CHECKPOINT_FOR_MASKED_LM,
|
1028 |
+
output_type=MaskedLMOutput,
|
1029 |
+
config_class=_CONFIG_FOR_DOC,
|
1030 |
+
mask="[MASK]",
|
1031 |
+
expected_output=_MASKED_LM_EXPECTED_OUTPUT,
|
1032 |
+
expected_loss=_MASKED_LM_EXPECTED_LOSS,
|
1033 |
+
)
|
1034 |
+
def forward(
|
1035 |
+
self,
|
1036 |
+
input_ids: Optional[torch.Tensor] = None,
|
1037 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1038 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1039 |
+
position_ids: Optional[torch.Tensor] = None,
|
1040 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1041 |
+
labels: Optional[torch.Tensor] = None,
|
1042 |
+
output_attentions: Optional[bool] = None,
|
1043 |
+
output_hidden_states: Optional[bool] = None,
|
1044 |
+
return_dict: Optional[bool] = None,
|
1045 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1046 |
+
r"""
|
1047 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1048 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1049 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1050 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1051 |
+
"""
|
1052 |
+
|
1053 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1054 |
+
|
1055 |
+
outputs = self.deberta(
|
1056 |
+
input_ids,
|
1057 |
+
attention_mask=attention_mask,
|
1058 |
+
token_type_ids=token_type_ids,
|
1059 |
+
position_ids=position_ids,
|
1060 |
+
inputs_embeds=inputs_embeds,
|
1061 |
+
output_attentions=output_attentions,
|
1062 |
+
output_hidden_states=output_hidden_states,
|
1063 |
+
return_dict=return_dict,
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
sequence_output = outputs[0]
|
1067 |
+
prediction_scores = self.cls(sequence_output)
|
1068 |
+
|
1069 |
+
masked_lm_loss = None
|
1070 |
+
if labels is not None:
|
1071 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1072 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1073 |
+
|
1074 |
+
if not return_dict:
|
1075 |
+
output = (prediction_scores,) + outputs[1:]
|
1076 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1077 |
+
|
1078 |
+
return MaskedLMOutput(
|
1079 |
+
loss=masked_lm_loss,
|
1080 |
+
logits=prediction_scores,
|
1081 |
+
hidden_states=outputs.hidden_states,
|
1082 |
+
attentions=outputs.attentions,
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
|
1086 |
+
class DebertaPredictionHeadTransform(nn.Module):
|
1087 |
+
def __init__(self, config):
|
1088 |
+
super().__init__()
|
1089 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
1090 |
+
|
1091 |
+
self.dense = nn.Linear(config.hidden_size, self.embedding_size)
|
1092 |
+
if isinstance(config.hidden_act, str):
|
1093 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
1094 |
+
else:
|
1095 |
+
self.transform_act_fn = config.hidden_act
|
1096 |
+
self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps)
|
1097 |
+
|
1098 |
+
def forward(self, hidden_states):
|
1099 |
+
hidden_states = self.dense(hidden_states)
|
1100 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1101 |
+
hidden_states = self.LayerNorm(hidden_states)
|
1102 |
+
return hidden_states
|
1103 |
+
|
1104 |
+
|
1105 |
+
class DebertaLMPredictionHead(nn.Module):
|
1106 |
+
def __init__(self, config):
|
1107 |
+
super().__init__()
|
1108 |
+
self.transform = DebertaPredictionHeadTransform(config)
|
1109 |
+
|
1110 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
1111 |
+
# The output weights are the same as the input embeddings, but there is
|
1112 |
+
# an output-only bias for each token.
|
1113 |
+
self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False)
|
1114 |
+
|
1115 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1116 |
+
|
1117 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
1118 |
+
self.decoder.bias = self.bias
|
1119 |
+
|
1120 |
+
def forward(self, hidden_states):
|
1121 |
+
hidden_states = self.transform(hidden_states)
|
1122 |
+
hidden_states = self.decoder(hidden_states)
|
1123 |
+
return hidden_states
|
1124 |
+
|
1125 |
+
|
1126 |
+
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
|
1127 |
+
class DebertaOnlyMLMHead(nn.Module):
|
1128 |
+
def __init__(self, config):
|
1129 |
+
super().__init__()
|
1130 |
+
self.predictions = DebertaLMPredictionHead(config)
|
1131 |
+
|
1132 |
+
def forward(self, sequence_output):
|
1133 |
+
prediction_scores = self.predictions(sequence_output)
|
1134 |
+
return prediction_scores
|
1135 |
+
|
1136 |
+
|
1137 |
+
@add_start_docstrings(
|
1138 |
+
"""
|
1139 |
+
DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1140 |
+
pooled output) e.g. for GLUE tasks.
|
1141 |
+
""",
|
1142 |
+
DEBERTA_START_DOCSTRING,
|
1143 |
+
)
|
1144 |
+
class DebertaForSequenceClassification(DebertaPreTrainedModel):
|
1145 |
+
def __init__(self, config):
|
1146 |
+
super().__init__(config)
|
1147 |
+
|
1148 |
+
num_labels = getattr(config, "num_labels", 2)
|
1149 |
+
self.num_labels = num_labels
|
1150 |
+
|
1151 |
+
self.deberta = DebertaModel(config)
|
1152 |
+
self.pooler = ContextPooler(config)
|
1153 |
+
output_dim = self.pooler.output_dim
|
1154 |
+
|
1155 |
+
self.classifier = nn.Linear(output_dim, num_labels)
|
1156 |
+
drop_out = getattr(config, "cls_dropout", None)
|
1157 |
+
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
1158 |
+
self.dropout = StableDropout(drop_out)
|
1159 |
+
|
1160 |
+
# Initialize weights and apply final processing
|
1161 |
+
self.post_init()
|
1162 |
+
|
1163 |
+
def get_input_embeddings(self):
|
1164 |
+
return self.deberta.get_input_embeddings()
|
1165 |
+
|
1166 |
+
def set_input_embeddings(self, new_embeddings):
|
1167 |
+
self.deberta.set_input_embeddings(new_embeddings)
|
1168 |
+
|
1169 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1170 |
+
@add_code_sample_docstrings(
|
1171 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1172 |
+
output_type=SequenceClassifierOutput,
|
1173 |
+
config_class=_CONFIG_FOR_DOC,
|
1174 |
+
)
|
1175 |
+
def forward(
|
1176 |
+
self,
|
1177 |
+
input_ids: Optional[torch.Tensor] = None,
|
1178 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1179 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1180 |
+
position_ids: Optional[torch.Tensor] = None,
|
1181 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1182 |
+
labels: Optional[torch.Tensor] = None,
|
1183 |
+
output_attentions: Optional[bool] = None,
|
1184 |
+
output_hidden_states: Optional[bool] = None,
|
1185 |
+
return_dict: Optional[bool] = None,
|
1186 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1187 |
+
r"""
|
1188 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1189 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1190 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1191 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1192 |
+
"""
|
1193 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1194 |
+
|
1195 |
+
outputs = self.deberta(
|
1196 |
+
input_ids,
|
1197 |
+
token_type_ids=token_type_ids,
|
1198 |
+
attention_mask=attention_mask,
|
1199 |
+
position_ids=position_ids,
|
1200 |
+
inputs_embeds=inputs_embeds,
|
1201 |
+
output_attentions=output_attentions,
|
1202 |
+
output_hidden_states=output_hidden_states,
|
1203 |
+
return_dict=return_dict,
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
encoder_layer = outputs[0]
|
1207 |
+
pooled_output = self.pooler(encoder_layer)
|
1208 |
+
pooled_output = self.dropout(pooled_output)
|
1209 |
+
logits = self.classifier(pooled_output)
|
1210 |
+
|
1211 |
+
loss = None
|
1212 |
+
if labels is not None:
|
1213 |
+
if self.config.problem_type is None:
|
1214 |
+
if self.num_labels == 1:
|
1215 |
+
# regression task
|
1216 |
+
loss_fn = nn.MSELoss()
|
1217 |
+
logits = logits.view(-1).to(labels.dtype)
|
1218 |
+
loss = loss_fn(logits, labels.view(-1))
|
1219 |
+
elif labels.dim() == 1 or labels.size(-1) == 1:
|
1220 |
+
label_index = (labels >= 0).nonzero()
|
1221 |
+
labels = labels.long()
|
1222 |
+
if label_index.size(0) > 0:
|
1223 |
+
labeled_logits = torch.gather(
|
1224 |
+
logits, 0, label_index.expand(label_index.size(0), logits.size(1))
|
1225 |
+
)
|
1226 |
+
labels = torch.gather(labels, 0, label_index.view(-1))
|
1227 |
+
loss_fct = CrossEntropyLoss()
|
1228 |
+
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
|
1229 |
+
else:
|
1230 |
+
loss = torch.tensor(0).to(logits)
|
1231 |
+
else:
|
1232 |
+
log_softmax = nn.LogSoftmax(-1)
|
1233 |
+
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
|
1234 |
+
elif self.config.problem_type == "regression":
|
1235 |
+
loss_fct = MSELoss()
|
1236 |
+
if self.num_labels == 1:
|
1237 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1238 |
+
else:
|
1239 |
+
loss = loss_fct(logits, labels)
|
1240 |
+
elif self.config.problem_type == "single_label_classification":
|
1241 |
+
loss_fct = CrossEntropyLoss()
|
1242 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1243 |
+
elif self.config.problem_type == "multi_label_classification":
|
1244 |
+
loss_fct = BCEWithLogitsLoss()
|
1245 |
+
loss = loss_fct(logits, labels)
|
1246 |
+
if not return_dict:
|
1247 |
+
output = (logits,) + outputs[1:]
|
1248 |
+
return ((loss,) + output) if loss is not None else output
|
1249 |
+
|
1250 |
+
return SequenceClassifierOutput(
|
1251 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
1252 |
+
)
|
1253 |
+
|
1254 |
+
|
1255 |
+
@add_start_docstrings(
|
1256 |
+
"""
|
1257 |
+
DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1258 |
+
Named-Entity-Recognition (NER) tasks.
|
1259 |
+
""",
|
1260 |
+
DEBERTA_START_DOCSTRING,
|
1261 |
+
)
|
1262 |
+
class DebertaForTokenClassification(DebertaPreTrainedModel):
|
1263 |
+
def __init__(self, config):
|
1264 |
+
super().__init__(config)
|
1265 |
+
self.num_labels = config.num_labels
|
1266 |
+
|
1267 |
+
self.deberta = DebertaModel(config)
|
1268 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1269 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1270 |
+
|
1271 |
+
# Initialize weights and apply final processing
|
1272 |
+
self.post_init()
|
1273 |
+
|
1274 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1275 |
+
@add_code_sample_docstrings(
|
1276 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1277 |
+
output_type=TokenClassifierOutput,
|
1278 |
+
config_class=_CONFIG_FOR_DOC,
|
1279 |
+
)
|
1280 |
+
def forward(
|
1281 |
+
self,
|
1282 |
+
input_ids: Optional[torch.Tensor] = None,
|
1283 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1284 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1285 |
+
position_ids: Optional[torch.Tensor] = None,
|
1286 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1287 |
+
labels: Optional[torch.Tensor] = None,
|
1288 |
+
output_attentions: Optional[bool] = None,
|
1289 |
+
output_hidden_states: Optional[bool] = None,
|
1290 |
+
return_dict: Optional[bool] = None,
|
1291 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1292 |
+
r"""
|
1293 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1294 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1295 |
+
"""
|
1296 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1297 |
+
|
1298 |
+
outputs = self.deberta(
|
1299 |
+
input_ids,
|
1300 |
+
attention_mask=attention_mask,
|
1301 |
+
token_type_ids=token_type_ids,
|
1302 |
+
position_ids=position_ids,
|
1303 |
+
inputs_embeds=inputs_embeds,
|
1304 |
+
output_attentions=output_attentions,
|
1305 |
+
output_hidden_states=output_hidden_states,
|
1306 |
+
return_dict=return_dict,
|
1307 |
+
)
|
1308 |
+
|
1309 |
+
sequence_output = outputs[0]
|
1310 |
+
|
1311 |
+
sequence_output = self.dropout(sequence_output)
|
1312 |
+
logits = self.classifier(sequence_output)
|
1313 |
+
|
1314 |
+
loss = None
|
1315 |
+
if labels is not None:
|
1316 |
+
loss_fct = CrossEntropyLoss()
|
1317 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1318 |
+
|
1319 |
+
if not return_dict:
|
1320 |
+
output = (logits,) + outputs[1:]
|
1321 |
+
return ((loss,) + output) if loss is not None else output
|
1322 |
+
|
1323 |
+
return TokenClassifierOutput(
|
1324 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
1325 |
+
)
|
1326 |
+
|
1327 |
+
|
1328 |
+
@add_start_docstrings(
|
1329 |
+
"""
|
1330 |
+
DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1331 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1332 |
+
""",
|
1333 |
+
DEBERTA_START_DOCSTRING,
|
1334 |
+
)
|
1335 |
+
class DebertaForQuestionAnswering(DebertaPreTrainedModel):
|
1336 |
+
def __init__(self, config):
|
1337 |
+
super().__init__(config)
|
1338 |
+
self.num_labels = config.num_labels
|
1339 |
+
|
1340 |
+
self.deberta = DebertaModel(config)
|
1341 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1342 |
+
|
1343 |
+
# Initialize weights and apply final processing
|
1344 |
+
self.post_init()
|
1345 |
+
|
1346 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1347 |
+
@add_code_sample_docstrings(
|
1348 |
+
checkpoint=_CHECKPOINT_FOR_QA,
|
1349 |
+
output_type=QuestionAnsweringModelOutput,
|
1350 |
+
config_class=_CONFIG_FOR_DOC,
|
1351 |
+
expected_output=_QA_EXPECTED_OUTPUT,
|
1352 |
+
expected_loss=_QA_EXPECTED_LOSS,
|
1353 |
+
qa_target_start_index=_QA_TARGET_START_INDEX,
|
1354 |
+
qa_target_end_index=_QA_TARGET_END_INDEX,
|
1355 |
+
)
|
1356 |
+
def forward(
|
1357 |
+
self,
|
1358 |
+
input_ids: Optional[torch.Tensor] = None,
|
1359 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1360 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1361 |
+
position_ids: Optional[torch.Tensor] = None,
|
1362 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1363 |
+
start_positions: Optional[torch.Tensor] = None,
|
1364 |
+
end_positions: Optional[torch.Tensor] = None,
|
1365 |
+
output_attentions: Optional[bool] = None,
|
1366 |
+
output_hidden_states: Optional[bool] = None,
|
1367 |
+
return_dict: Optional[bool] = None,
|
1368 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1369 |
+
r"""
|
1370 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1371 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1372 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1373 |
+
are not taken into account for computing the loss.
|
1374 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1375 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1376 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1377 |
+
are not taken into account for computing the loss.
|
1378 |
+
"""
|
1379 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1380 |
+
|
1381 |
+
outputs = self.deberta(
|
1382 |
+
input_ids,
|
1383 |
+
attention_mask=attention_mask,
|
1384 |
+
token_type_ids=token_type_ids,
|
1385 |
+
position_ids=position_ids,
|
1386 |
+
inputs_embeds=inputs_embeds,
|
1387 |
+
output_attentions=output_attentions,
|
1388 |
+
output_hidden_states=output_hidden_states,
|
1389 |
+
return_dict=return_dict,
|
1390 |
+
)
|
1391 |
+
|
1392 |
+
sequence_output = outputs[0]
|
1393 |
+
|
1394 |
+
logits = self.qa_outputs(sequence_output)
|
1395 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1396 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1397 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1398 |
+
|
1399 |
+
total_loss = None
|
1400 |
+
if start_positions is not None and end_positions is not None:
|
1401 |
+
# If we are on multi-GPU, split add a dimension
|
1402 |
+
if len(start_positions.size()) > 1:
|
1403 |
+
start_positions = start_positions.squeeze(-1)
|
1404 |
+
if len(end_positions.size()) > 1:
|
1405 |
+
end_positions = end_positions.squeeze(-1)
|
1406 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1407 |
+
ignored_index = start_logits.size(1)
|
1408 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1409 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1410 |
+
|
1411 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1412 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1413 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1414 |
+
total_loss = (start_loss + end_loss) / 2
|
1415 |
+
|
1416 |
+
if not return_dict:
|
1417 |
+
output = (start_logits, end_logits) + outputs[1:]
|
1418 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1419 |
+
|
1420 |
+
return QuestionAnsweringModelOutput(
|
1421 |
+
loss=total_loss,
|
1422 |
+
start_logits=start_logits,
|
1423 |
+
end_logits=end_logits,
|
1424 |
+
hidden_states=outputs.hidden_states,
|
1425 |
+
attentions=outputs.attentions,
|
1426 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/modeling_tf_deberta.py
ADDED
@@ -0,0 +1,1644 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Microsoft and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 DeBERTa model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import math
|
21 |
+
from typing import Dict, Optional, Sequence, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
from ...activations_tf import get_tf_activation
|
27 |
+
from ...modeling_tf_outputs import (
|
28 |
+
TFBaseModelOutput,
|
29 |
+
TFMaskedLMOutput,
|
30 |
+
TFQuestionAnsweringModelOutput,
|
31 |
+
TFSequenceClassifierOutput,
|
32 |
+
TFTokenClassifierOutput,
|
33 |
+
)
|
34 |
+
from ...modeling_tf_utils import (
|
35 |
+
TFMaskedLanguageModelingLoss,
|
36 |
+
TFModelInputType,
|
37 |
+
TFPreTrainedModel,
|
38 |
+
TFQuestionAnsweringLoss,
|
39 |
+
TFSequenceClassificationLoss,
|
40 |
+
TFTokenClassificationLoss,
|
41 |
+
get_initializer,
|
42 |
+
keras,
|
43 |
+
unpack_inputs,
|
44 |
+
)
|
45 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
46 |
+
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
47 |
+
from .configuration_deberta import DebertaConfig
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
|
53 |
+
_CONFIG_FOR_DOC = "DebertaConfig"
|
54 |
+
_CHECKPOINT_FOR_DOC = "kamalkraj/deberta-base"
|
55 |
+
|
56 |
+
|
57 |
+
from ..deprecated._archive_maps import TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
58 |
+
|
59 |
+
|
60 |
+
class TFDebertaContextPooler(keras.layers.Layer):
|
61 |
+
def __init__(self, config: DebertaConfig, **kwargs):
|
62 |
+
super().__init__(**kwargs)
|
63 |
+
self.dense = keras.layers.Dense(config.pooler_hidden_size, name="dense")
|
64 |
+
self.dropout = TFDebertaStableDropout(config.pooler_dropout, name="dropout")
|
65 |
+
self.config = config
|
66 |
+
|
67 |
+
def call(self, hidden_states, training: bool = False):
|
68 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
69 |
+
# to the first token.
|
70 |
+
context_token = hidden_states[:, 0]
|
71 |
+
context_token = self.dropout(context_token, training=training)
|
72 |
+
pooled_output = self.dense(context_token)
|
73 |
+
pooled_output = get_tf_activation(self.config.pooler_hidden_act)(pooled_output)
|
74 |
+
return pooled_output
|
75 |
+
|
76 |
+
@property
|
77 |
+
def output_dim(self) -> int:
|
78 |
+
return self.config.hidden_size
|
79 |
+
|
80 |
+
def build(self, input_shape=None):
|
81 |
+
if self.built:
|
82 |
+
return
|
83 |
+
self.built = True
|
84 |
+
if getattr(self, "dense", None) is not None:
|
85 |
+
with tf.name_scope(self.dense.name):
|
86 |
+
self.dense.build([None, None, self.config.pooler_hidden_size])
|
87 |
+
if getattr(self, "dropout", None) is not None:
|
88 |
+
with tf.name_scope(self.dropout.name):
|
89 |
+
self.dropout.build(None)
|
90 |
+
|
91 |
+
|
92 |
+
class TFDebertaXSoftmax(keras.layers.Layer):
|
93 |
+
"""
|
94 |
+
Masked Softmax which is optimized for saving memory
|
95 |
+
|
96 |
+
Args:
|
97 |
+
input (`tf.Tensor`): The input tensor that will apply softmax.
|
98 |
+
mask (`tf.Tensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
|
99 |
+
dim (int): The dimension that will apply softmax
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, axis=-1, **kwargs):
|
103 |
+
super().__init__(**kwargs)
|
104 |
+
self.axis = axis
|
105 |
+
|
106 |
+
def call(self, inputs: tf.Tensor, mask: tf.Tensor):
|
107 |
+
rmask = tf.logical_not(tf.cast(mask, tf.bool))
|
108 |
+
output = tf.where(rmask, float("-inf"), inputs)
|
109 |
+
output = stable_softmax(output, self.axis)
|
110 |
+
output = tf.where(rmask, 0.0, output)
|
111 |
+
return output
|
112 |
+
|
113 |
+
|
114 |
+
class TFDebertaStableDropout(keras.layers.Layer):
|
115 |
+
"""
|
116 |
+
Optimized dropout module for stabilizing the training
|
117 |
+
|
118 |
+
Args:
|
119 |
+
drop_prob (float): the dropout probabilities
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(self, drop_prob, **kwargs):
|
123 |
+
super().__init__(**kwargs)
|
124 |
+
self.drop_prob = drop_prob
|
125 |
+
|
126 |
+
@tf.custom_gradient
|
127 |
+
def xdropout(self, inputs):
|
128 |
+
"""
|
129 |
+
Applies dropout to the inputs, as vanilla dropout, but also scales the remaining elements up by 1/drop_prob.
|
130 |
+
"""
|
131 |
+
mask = tf.cast(
|
132 |
+
1
|
133 |
+
- tf.compat.v1.distributions.Bernoulli(probs=1.0 - self.drop_prob).sample(sample_shape=shape_list(inputs)),
|
134 |
+
tf.bool,
|
135 |
+
)
|
136 |
+
scale = tf.convert_to_tensor(1.0 / (1 - self.drop_prob), dtype=tf.float32)
|
137 |
+
if self.drop_prob > 0:
|
138 |
+
inputs = tf.where(mask, 0.0, inputs) * scale
|
139 |
+
|
140 |
+
def grad(upstream):
|
141 |
+
if self.drop_prob > 0:
|
142 |
+
return tf.where(mask, 0.0, upstream) * scale
|
143 |
+
else:
|
144 |
+
return upstream
|
145 |
+
|
146 |
+
return inputs, grad
|
147 |
+
|
148 |
+
def call(self, inputs: tf.Tensor, training: tf.Tensor = False):
|
149 |
+
if training:
|
150 |
+
return self.xdropout(inputs)
|
151 |
+
return inputs
|
152 |
+
|
153 |
+
|
154 |
+
class TFDebertaLayerNorm(keras.layers.Layer):
|
155 |
+
"""LayerNorm module in the TF style (epsilon inside the square root)."""
|
156 |
+
|
157 |
+
def __init__(self, size, eps=1e-12, **kwargs):
|
158 |
+
super().__init__(**kwargs)
|
159 |
+
self.size = size
|
160 |
+
self.eps = eps
|
161 |
+
|
162 |
+
def build(self, input_shape):
|
163 |
+
self.gamma = self.add_weight(shape=[self.size], initializer=tf.ones_initializer(), name="weight")
|
164 |
+
self.beta = self.add_weight(shape=[self.size], initializer=tf.zeros_initializer(), name="bias")
|
165 |
+
return super().build(input_shape)
|
166 |
+
|
167 |
+
def call(self, x: tf.Tensor) -> tf.Tensor:
|
168 |
+
mean = tf.reduce_mean(x, axis=[-1], keepdims=True)
|
169 |
+
variance = tf.reduce_mean(tf.square(x - mean), axis=[-1], keepdims=True)
|
170 |
+
std = tf.math.sqrt(variance + self.eps)
|
171 |
+
return self.gamma * (x - mean) / std + self.beta
|
172 |
+
|
173 |
+
|
174 |
+
class TFDebertaSelfOutput(keras.layers.Layer):
|
175 |
+
def __init__(self, config: DebertaConfig, **kwargs):
|
176 |
+
super().__init__(**kwargs)
|
177 |
+
self.dense = keras.layers.Dense(config.hidden_size, name="dense")
|
178 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
179 |
+
self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout")
|
180 |
+
self.config = config
|
181 |
+
|
182 |
+
def call(self, hidden_states, input_tensor, training: bool = False):
|
183 |
+
hidden_states = self.dense(hidden_states)
|
184 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
185 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
186 |
+
return hidden_states
|
187 |
+
|
188 |
+
def build(self, input_shape=None):
|
189 |
+
if self.built:
|
190 |
+
return
|
191 |
+
self.built = True
|
192 |
+
if getattr(self, "dense", None) is not None:
|
193 |
+
with tf.name_scope(self.dense.name):
|
194 |
+
self.dense.build([None, None, self.config.hidden_size])
|
195 |
+
if getattr(self, "LayerNorm", None) is not None:
|
196 |
+
with tf.name_scope(self.LayerNorm.name):
|
197 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
198 |
+
if getattr(self, "dropout", None) is not None:
|
199 |
+
with tf.name_scope(self.dropout.name):
|
200 |
+
self.dropout.build(None)
|
201 |
+
|
202 |
+
|
203 |
+
class TFDebertaAttention(keras.layers.Layer):
|
204 |
+
def __init__(self, config: DebertaConfig, **kwargs):
|
205 |
+
super().__init__(**kwargs)
|
206 |
+
self.self = TFDebertaDisentangledSelfAttention(config, name="self")
|
207 |
+
self.dense_output = TFDebertaSelfOutput(config, name="output")
|
208 |
+
self.config = config
|
209 |
+
|
210 |
+
def call(
|
211 |
+
self,
|
212 |
+
input_tensor: tf.Tensor,
|
213 |
+
attention_mask: tf.Tensor,
|
214 |
+
query_states: tf.Tensor = None,
|
215 |
+
relative_pos: tf.Tensor = None,
|
216 |
+
rel_embeddings: tf.Tensor = None,
|
217 |
+
output_attentions: bool = False,
|
218 |
+
training: bool = False,
|
219 |
+
) -> Tuple[tf.Tensor]:
|
220 |
+
self_outputs = self.self(
|
221 |
+
hidden_states=input_tensor,
|
222 |
+
attention_mask=attention_mask,
|
223 |
+
query_states=query_states,
|
224 |
+
relative_pos=relative_pos,
|
225 |
+
rel_embeddings=rel_embeddings,
|
226 |
+
output_attentions=output_attentions,
|
227 |
+
training=training,
|
228 |
+
)
|
229 |
+
if query_states is None:
|
230 |
+
query_states = input_tensor
|
231 |
+
attention_output = self.dense_output(
|
232 |
+
hidden_states=self_outputs[0], input_tensor=query_states, training=training
|
233 |
+
)
|
234 |
+
|
235 |
+
output = (attention_output,) + self_outputs[1:]
|
236 |
+
|
237 |
+
return output
|
238 |
+
|
239 |
+
def build(self, input_shape=None):
|
240 |
+
if self.built:
|
241 |
+
return
|
242 |
+
self.built = True
|
243 |
+
if getattr(self, "self", None) is not None:
|
244 |
+
with tf.name_scope(self.self.name):
|
245 |
+
self.self.build(None)
|
246 |
+
if getattr(self, "dense_output", None) is not None:
|
247 |
+
with tf.name_scope(self.dense_output.name):
|
248 |
+
self.dense_output.build(None)
|
249 |
+
|
250 |
+
|
251 |
+
class TFDebertaIntermediate(keras.layers.Layer):
|
252 |
+
def __init__(self, config: DebertaConfig, **kwargs):
|
253 |
+
super().__init__(**kwargs)
|
254 |
+
|
255 |
+
self.dense = keras.layers.Dense(
|
256 |
+
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
257 |
+
)
|
258 |
+
|
259 |
+
if isinstance(config.hidden_act, str):
|
260 |
+
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
|
261 |
+
else:
|
262 |
+
self.intermediate_act_fn = config.hidden_act
|
263 |
+
self.config = config
|
264 |
+
|
265 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
266 |
+
hidden_states = self.dense(inputs=hidden_states)
|
267 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
268 |
+
|
269 |
+
return hidden_states
|
270 |
+
|
271 |
+
def build(self, input_shape=None):
|
272 |
+
if self.built:
|
273 |
+
return
|
274 |
+
self.built = True
|
275 |
+
if getattr(self, "dense", None) is not None:
|
276 |
+
with tf.name_scope(self.dense.name):
|
277 |
+
self.dense.build([None, None, self.config.hidden_size])
|
278 |
+
|
279 |
+
|
280 |
+
class TFDebertaOutput(keras.layers.Layer):
|
281 |
+
def __init__(self, config: DebertaConfig, **kwargs):
|
282 |
+
super().__init__(**kwargs)
|
283 |
+
|
284 |
+
self.dense = keras.layers.Dense(
|
285 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
286 |
+
)
|
287 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
288 |
+
self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout")
|
289 |
+
self.config = config
|
290 |
+
|
291 |
+
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
|
292 |
+
hidden_states = self.dense(inputs=hidden_states)
|
293 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
294 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
295 |
+
|
296 |
+
return hidden_states
|
297 |
+
|
298 |
+
def build(self, input_shape=None):
|
299 |
+
if self.built:
|
300 |
+
return
|
301 |
+
self.built = True
|
302 |
+
if getattr(self, "dense", None) is not None:
|
303 |
+
with tf.name_scope(self.dense.name):
|
304 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
305 |
+
if getattr(self, "LayerNorm", None) is not None:
|
306 |
+
with tf.name_scope(self.LayerNorm.name):
|
307 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
308 |
+
if getattr(self, "dropout", None) is not None:
|
309 |
+
with tf.name_scope(self.dropout.name):
|
310 |
+
self.dropout.build(None)
|
311 |
+
|
312 |
+
|
313 |
+
class TFDebertaLayer(keras.layers.Layer):
|
314 |
+
def __init__(self, config: DebertaConfig, **kwargs):
|
315 |
+
super().__init__(**kwargs)
|
316 |
+
|
317 |
+
self.attention = TFDebertaAttention(config, name="attention")
|
318 |
+
self.intermediate = TFDebertaIntermediate(config, name="intermediate")
|
319 |
+
self.bert_output = TFDebertaOutput(config, name="output")
|
320 |
+
|
321 |
+
def call(
|
322 |
+
self,
|
323 |
+
hidden_states: tf.Tensor,
|
324 |
+
attention_mask: tf.Tensor,
|
325 |
+
query_states: tf.Tensor = None,
|
326 |
+
relative_pos: tf.Tensor = None,
|
327 |
+
rel_embeddings: tf.Tensor = None,
|
328 |
+
output_attentions: bool = False,
|
329 |
+
training: bool = False,
|
330 |
+
) -> Tuple[tf.Tensor]:
|
331 |
+
attention_outputs = self.attention(
|
332 |
+
input_tensor=hidden_states,
|
333 |
+
attention_mask=attention_mask,
|
334 |
+
query_states=query_states,
|
335 |
+
relative_pos=relative_pos,
|
336 |
+
rel_embeddings=rel_embeddings,
|
337 |
+
output_attentions=output_attentions,
|
338 |
+
training=training,
|
339 |
+
)
|
340 |
+
attention_output = attention_outputs[0]
|
341 |
+
intermediate_output = self.intermediate(hidden_states=attention_output)
|
342 |
+
layer_output = self.bert_output(
|
343 |
+
hidden_states=intermediate_output, input_tensor=attention_output, training=training
|
344 |
+
)
|
345 |
+
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
|
346 |
+
|
347 |
+
return outputs
|
348 |
+
|
349 |
+
def build(self, input_shape=None):
|
350 |
+
if self.built:
|
351 |
+
return
|
352 |
+
self.built = True
|
353 |
+
if getattr(self, "attention", None) is not None:
|
354 |
+
with tf.name_scope(self.attention.name):
|
355 |
+
self.attention.build(None)
|
356 |
+
if getattr(self, "intermediate", None) is not None:
|
357 |
+
with tf.name_scope(self.intermediate.name):
|
358 |
+
self.intermediate.build(None)
|
359 |
+
if getattr(self, "bert_output", None) is not None:
|
360 |
+
with tf.name_scope(self.bert_output.name):
|
361 |
+
self.bert_output.build(None)
|
362 |
+
|
363 |
+
|
364 |
+
class TFDebertaEncoder(keras.layers.Layer):
|
365 |
+
def __init__(self, config: DebertaConfig, **kwargs):
|
366 |
+
super().__init__(**kwargs)
|
367 |
+
|
368 |
+
self.layer = [TFDebertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
|
369 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
370 |
+
self.config = config
|
371 |
+
if self.relative_attention:
|
372 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
373 |
+
if self.max_relative_positions < 1:
|
374 |
+
self.max_relative_positions = config.max_position_embeddings
|
375 |
+
|
376 |
+
def build(self, input_shape=None):
|
377 |
+
if self.built:
|
378 |
+
return
|
379 |
+
self.built = True
|
380 |
+
if self.relative_attention:
|
381 |
+
self.rel_embeddings = self.add_weight(
|
382 |
+
name="rel_embeddings.weight",
|
383 |
+
shape=[self.max_relative_positions * 2, self.config.hidden_size],
|
384 |
+
initializer=get_initializer(self.config.initializer_range),
|
385 |
+
)
|
386 |
+
if getattr(self, "layer", None) is not None:
|
387 |
+
for layer in self.layer:
|
388 |
+
with tf.name_scope(layer.name):
|
389 |
+
layer.build(None)
|
390 |
+
|
391 |
+
def get_rel_embedding(self):
|
392 |
+
rel_embeddings = self.rel_embeddings if self.relative_attention else None
|
393 |
+
return rel_embeddings
|
394 |
+
|
395 |
+
def get_attention_mask(self, attention_mask):
|
396 |
+
if len(shape_list(attention_mask)) <= 2:
|
397 |
+
extended_attention_mask = tf.expand_dims(tf.expand_dims(attention_mask, 1), 2)
|
398 |
+
attention_mask = extended_attention_mask * tf.expand_dims(tf.squeeze(extended_attention_mask, -2), -1)
|
399 |
+
attention_mask = tf.cast(attention_mask, tf.uint8)
|
400 |
+
elif len(shape_list(attention_mask)) == 3:
|
401 |
+
attention_mask = tf.expand_dims(attention_mask, 1)
|
402 |
+
|
403 |
+
return attention_mask
|
404 |
+
|
405 |
+
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
|
406 |
+
if self.relative_attention and relative_pos is None:
|
407 |
+
q = shape_list(query_states)[-2] if query_states is not None else shape_list(hidden_states)[-2]
|
408 |
+
relative_pos = build_relative_position(q, shape_list(hidden_states)[-2])
|
409 |
+
return relative_pos
|
410 |
+
|
411 |
+
def call(
|
412 |
+
self,
|
413 |
+
hidden_states: tf.Tensor,
|
414 |
+
attention_mask: tf.Tensor,
|
415 |
+
query_states: tf.Tensor = None,
|
416 |
+
relative_pos: tf.Tensor = None,
|
417 |
+
output_attentions: bool = False,
|
418 |
+
output_hidden_states: bool = False,
|
419 |
+
return_dict: bool = True,
|
420 |
+
training: bool = False,
|
421 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
|
422 |
+
all_hidden_states = () if output_hidden_states else None
|
423 |
+
all_attentions = () if output_attentions else None
|
424 |
+
|
425 |
+
attention_mask = self.get_attention_mask(attention_mask)
|
426 |
+
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
|
427 |
+
|
428 |
+
if isinstance(hidden_states, Sequence):
|
429 |
+
next_kv = hidden_states[0]
|
430 |
+
else:
|
431 |
+
next_kv = hidden_states
|
432 |
+
|
433 |
+
rel_embeddings = self.get_rel_embedding()
|
434 |
+
|
435 |
+
for i, layer_module in enumerate(self.layer):
|
436 |
+
if output_hidden_states:
|
437 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
438 |
+
|
439 |
+
layer_outputs = layer_module(
|
440 |
+
hidden_states=next_kv,
|
441 |
+
attention_mask=attention_mask,
|
442 |
+
query_states=query_states,
|
443 |
+
relative_pos=relative_pos,
|
444 |
+
rel_embeddings=rel_embeddings,
|
445 |
+
output_attentions=output_attentions,
|
446 |
+
training=training,
|
447 |
+
)
|
448 |
+
hidden_states = layer_outputs[0]
|
449 |
+
|
450 |
+
if query_states is not None:
|
451 |
+
query_states = hidden_states
|
452 |
+
if isinstance(hidden_states, Sequence):
|
453 |
+
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
|
454 |
+
else:
|
455 |
+
next_kv = hidden_states
|
456 |
+
|
457 |
+
if output_attentions:
|
458 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
459 |
+
|
460 |
+
# Add last layer
|
461 |
+
if output_hidden_states:
|
462 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
463 |
+
|
464 |
+
if not return_dict:
|
465 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
466 |
+
|
467 |
+
return TFBaseModelOutput(
|
468 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
469 |
+
)
|
470 |
+
|
471 |
+
|
472 |
+
def build_relative_position(query_size, key_size):
|
473 |
+
"""
|
474 |
+
Build relative position according to the query and key
|
475 |
+
|
476 |
+
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
|
477 |
+
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
|
478 |
+
P_k\\)
|
479 |
+
|
480 |
+
Args:
|
481 |
+
query_size (int): the length of query
|
482 |
+
key_size (int): the length of key
|
483 |
+
|
484 |
+
Return:
|
485 |
+
`tf.Tensor`: A tensor with shape [1, query_size, key_size]
|
486 |
+
|
487 |
+
"""
|
488 |
+
q_ids = tf.range(query_size, dtype=tf.int32)
|
489 |
+
k_ids = tf.range(key_size, dtype=tf.int32)
|
490 |
+
rel_pos_ids = q_ids[:, None] - tf.tile(tf.reshape(k_ids, [1, -1]), [query_size, 1])
|
491 |
+
rel_pos_ids = rel_pos_ids[:query_size, :]
|
492 |
+
rel_pos_ids = tf.expand_dims(rel_pos_ids, axis=0)
|
493 |
+
return tf.cast(rel_pos_ids, tf.int64)
|
494 |
+
|
495 |
+
|
496 |
+
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
|
497 |
+
shapes = [
|
498 |
+
shape_list(query_layer)[0],
|
499 |
+
shape_list(query_layer)[1],
|
500 |
+
shape_list(query_layer)[2],
|
501 |
+
shape_list(relative_pos)[-1],
|
502 |
+
]
|
503 |
+
return tf.broadcast_to(c2p_pos, shapes)
|
504 |
+
|
505 |
+
|
506 |
+
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
|
507 |
+
shapes = [
|
508 |
+
shape_list(query_layer)[0],
|
509 |
+
shape_list(query_layer)[1],
|
510 |
+
shape_list(key_layer)[-2],
|
511 |
+
shape_list(key_layer)[-2],
|
512 |
+
]
|
513 |
+
return tf.broadcast_to(c2p_pos, shapes)
|
514 |
+
|
515 |
+
|
516 |
+
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
|
517 |
+
shapes = shape_list(p2c_att)[:2] + [shape_list(pos_index)[-2], shape_list(key_layer)[-2]]
|
518 |
+
return tf.broadcast_to(pos_index, shapes)
|
519 |
+
|
520 |
+
|
521 |
+
def torch_gather(x, indices, gather_axis):
|
522 |
+
if gather_axis < 0:
|
523 |
+
gather_axis = tf.rank(x) + gather_axis
|
524 |
+
|
525 |
+
if gather_axis != tf.rank(x) - 1:
|
526 |
+
pre_roll = tf.rank(x) - 1 - gather_axis
|
527 |
+
permutation = tf.roll(tf.range(tf.rank(x)), pre_roll, axis=0)
|
528 |
+
x = tf.transpose(x, perm=permutation)
|
529 |
+
indices = tf.transpose(indices, perm=permutation)
|
530 |
+
else:
|
531 |
+
pre_roll = 0
|
532 |
+
|
533 |
+
flat_x = tf.reshape(x, (-1, tf.shape(x)[-1]))
|
534 |
+
flat_indices = tf.reshape(indices, (-1, tf.shape(indices)[-1]))
|
535 |
+
gathered = tf.gather(flat_x, flat_indices, batch_dims=1)
|
536 |
+
gathered = tf.reshape(gathered, tf.shape(indices))
|
537 |
+
|
538 |
+
if pre_roll != 0:
|
539 |
+
permutation = tf.roll(tf.range(tf.rank(x)), -pre_roll, axis=0)
|
540 |
+
gathered = tf.transpose(gathered, perm=permutation)
|
541 |
+
|
542 |
+
return gathered
|
543 |
+
|
544 |
+
|
545 |
+
class TFDebertaDisentangledSelfAttention(keras.layers.Layer):
|
546 |
+
"""
|
547 |
+
Disentangled self-attention module
|
548 |
+
|
549 |
+
Parameters:
|
550 |
+
config (`str`):
|
551 |
+
A model config class instance with the configuration to build a new model. The schema is similar to
|
552 |
+
*BertConfig*, for more details, please refer [`DebertaConfig`]
|
553 |
+
|
554 |
+
"""
|
555 |
+
|
556 |
+
def __init__(self, config: DebertaConfig, **kwargs):
|
557 |
+
super().__init__(**kwargs)
|
558 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
559 |
+
raise ValueError(
|
560 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
561 |
+
f"heads ({config.num_attention_heads})"
|
562 |
+
)
|
563 |
+
self.num_attention_heads = config.num_attention_heads
|
564 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
565 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
566 |
+
self.in_proj = keras.layers.Dense(
|
567 |
+
self.all_head_size * 3,
|
568 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
569 |
+
name="in_proj",
|
570 |
+
use_bias=False,
|
571 |
+
)
|
572 |
+
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
|
573 |
+
|
574 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
575 |
+
self.talking_head = getattr(config, "talking_head", False)
|
576 |
+
|
577 |
+
if self.talking_head:
|
578 |
+
self.head_logits_proj = keras.layers.Dense(
|
579 |
+
self.num_attention_heads,
|
580 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
581 |
+
name="head_logits_proj",
|
582 |
+
use_bias=False,
|
583 |
+
)
|
584 |
+
self.head_weights_proj = keras.layers.Dense(
|
585 |
+
self.num_attention_heads,
|
586 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
587 |
+
name="head_weights_proj",
|
588 |
+
use_bias=False,
|
589 |
+
)
|
590 |
+
|
591 |
+
self.softmax = TFDebertaXSoftmax(axis=-1)
|
592 |
+
|
593 |
+
if self.relative_attention:
|
594 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
595 |
+
if self.max_relative_positions < 1:
|
596 |
+
self.max_relative_positions = config.max_position_embeddings
|
597 |
+
self.pos_dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="pos_dropout")
|
598 |
+
if "c2p" in self.pos_att_type:
|
599 |
+
self.pos_proj = keras.layers.Dense(
|
600 |
+
self.all_head_size,
|
601 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
602 |
+
name="pos_proj",
|
603 |
+
use_bias=False,
|
604 |
+
)
|
605 |
+
if "p2c" in self.pos_att_type:
|
606 |
+
self.pos_q_proj = keras.layers.Dense(
|
607 |
+
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_q_proj"
|
608 |
+
)
|
609 |
+
|
610 |
+
self.dropout = TFDebertaStableDropout(config.attention_probs_dropout_prob, name="dropout")
|
611 |
+
self.config = config
|
612 |
+
|
613 |
+
def build(self, input_shape=None):
|
614 |
+
if self.built:
|
615 |
+
return
|
616 |
+
self.built = True
|
617 |
+
self.q_bias = self.add_weight(
|
618 |
+
name="q_bias", shape=(self.all_head_size), initializer=keras.initializers.Zeros()
|
619 |
+
)
|
620 |
+
self.v_bias = self.add_weight(
|
621 |
+
name="v_bias", shape=(self.all_head_size), initializer=keras.initializers.Zeros()
|
622 |
+
)
|
623 |
+
if getattr(self, "in_proj", None) is not None:
|
624 |
+
with tf.name_scope(self.in_proj.name):
|
625 |
+
self.in_proj.build([None, None, self.config.hidden_size])
|
626 |
+
if getattr(self, "dropout", None) is not None:
|
627 |
+
with tf.name_scope(self.dropout.name):
|
628 |
+
self.dropout.build(None)
|
629 |
+
if getattr(self, "head_logits_proj", None) is not None:
|
630 |
+
with tf.name_scope(self.head_logits_proj.name):
|
631 |
+
self.head_logits_proj.build(None)
|
632 |
+
if getattr(self, "head_weights_proj", None) is not None:
|
633 |
+
with tf.name_scope(self.head_weights_proj.name):
|
634 |
+
self.head_weights_proj.build(None)
|
635 |
+
if getattr(self, "pos_dropout", None) is not None:
|
636 |
+
with tf.name_scope(self.pos_dropout.name):
|
637 |
+
self.pos_dropout.build(None)
|
638 |
+
if getattr(self, "pos_proj", None) is not None:
|
639 |
+
with tf.name_scope(self.pos_proj.name):
|
640 |
+
self.pos_proj.build([self.config.hidden_size])
|
641 |
+
if getattr(self, "pos_q_proj", None) is not None:
|
642 |
+
with tf.name_scope(self.pos_q_proj.name):
|
643 |
+
self.pos_q_proj.build([self.config.hidden_size])
|
644 |
+
|
645 |
+
def transpose_for_scores(self, tensor: tf.Tensor) -> tf.Tensor:
|
646 |
+
shape = shape_list(tensor)[:-1] + [self.num_attention_heads, -1]
|
647 |
+
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
|
648 |
+
tensor = tf.reshape(tensor=tensor, shape=shape)
|
649 |
+
|
650 |
+
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
|
651 |
+
return tf.transpose(tensor, perm=[0, 2, 1, 3])
|
652 |
+
|
653 |
+
def call(
|
654 |
+
self,
|
655 |
+
hidden_states: tf.Tensor,
|
656 |
+
attention_mask: tf.Tensor,
|
657 |
+
query_states: tf.Tensor = None,
|
658 |
+
relative_pos: tf.Tensor = None,
|
659 |
+
rel_embeddings: tf.Tensor = None,
|
660 |
+
output_attentions: bool = False,
|
661 |
+
training: bool = False,
|
662 |
+
) -> Tuple[tf.Tensor]:
|
663 |
+
"""
|
664 |
+
Call the module
|
665 |
+
|
666 |
+
Args:
|
667 |
+
hidden_states (`tf.Tensor`):
|
668 |
+
Input states to the module usually the output from previous layer, it will be the Q,K and V in
|
669 |
+
*Attention(Q,K,V)*
|
670 |
+
|
671 |
+
attention_mask (`tf.Tensor`):
|
672 |
+
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
|
673 |
+
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
|
674 |
+
th token.
|
675 |
+
|
676 |
+
return_att (`bool`, optional):
|
677 |
+
Whether return the attention matrix.
|
678 |
+
|
679 |
+
query_states (`tf.Tensor`, optional):
|
680 |
+
The *Q* state in *Attention(Q,K,V)*.
|
681 |
+
|
682 |
+
relative_pos (`tf.Tensor`):
|
683 |
+
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
|
684 |
+
values ranging in [*-max_relative_positions*, *max_relative_positions*].
|
685 |
+
|
686 |
+
rel_embeddings (`tf.Tensor`):
|
687 |
+
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
|
688 |
+
\\text{max_relative_positions}\\), *hidden_size*].
|
689 |
+
|
690 |
+
|
691 |
+
"""
|
692 |
+
if query_states is None:
|
693 |
+
qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1)
|
694 |
+
query_layer, key_layer, value_layer = tf.split(
|
695 |
+
self.transpose_for_scores(qp), num_or_size_splits=3, axis=-1
|
696 |
+
)
|
697 |
+
else:
|
698 |
+
|
699 |
+
def linear(w, b, x):
|
700 |
+
out = tf.matmul(x, w, transpose_b=True)
|
701 |
+
if b is not None:
|
702 |
+
out += tf.transpose(b)
|
703 |
+
return out
|
704 |
+
|
705 |
+
ws = tf.split(
|
706 |
+
tf.transpose(self.in_proj.weight[0]), num_or_size_splits=self.num_attention_heads * 3, axis=0
|
707 |
+
)
|
708 |
+
qkvw = tf.TensorArray(dtype=tf.float32, size=3)
|
709 |
+
for k in tf.range(3):
|
710 |
+
qkvw_inside = tf.TensorArray(dtype=tf.float32, size=self.num_attention_heads)
|
711 |
+
for i in tf.range(self.num_attention_heads):
|
712 |
+
qkvw_inside = qkvw_inside.write(i, ws[i * 3 + k])
|
713 |
+
qkvw = qkvw.write(k, qkvw_inside.concat())
|
714 |
+
qkvb = [None] * 3
|
715 |
+
|
716 |
+
q = linear(qkvw[0], qkvb[0], query_states)
|
717 |
+
k = linear(qkvw[1], qkvb[1], hidden_states)
|
718 |
+
v = linear(qkvw[2], qkvb[2], hidden_states)
|
719 |
+
query_layer = self.transpose_for_scores(q)
|
720 |
+
key_layer = self.transpose_for_scores(k)
|
721 |
+
value_layer = self.transpose_for_scores(v)
|
722 |
+
|
723 |
+
query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :])
|
724 |
+
value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :])
|
725 |
+
|
726 |
+
rel_att = None
|
727 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
728 |
+
scale_factor = 1 + len(self.pos_att_type)
|
729 |
+
scale = math.sqrt(shape_list(query_layer)[-1] * scale_factor)
|
730 |
+
query_layer = query_layer / scale
|
731 |
+
|
732 |
+
attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, [0, 1, 3, 2]))
|
733 |
+
if self.relative_attention:
|
734 |
+
rel_embeddings = self.pos_dropout(rel_embeddings, training=training)
|
735 |
+
rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
|
736 |
+
|
737 |
+
if rel_att is not None:
|
738 |
+
attention_scores = attention_scores + rel_att
|
739 |
+
|
740 |
+
if self.talking_head:
|
741 |
+
attention_scores = tf.transpose(
|
742 |
+
self.head_logits_proj(tf.transpose(attention_scores, [0, 2, 3, 1])), [0, 3, 1, 2]
|
743 |
+
)
|
744 |
+
|
745 |
+
attention_probs = self.softmax(attention_scores, attention_mask)
|
746 |
+
attention_probs = self.dropout(attention_probs, training=training)
|
747 |
+
if self.talking_head:
|
748 |
+
attention_probs = tf.transpose(
|
749 |
+
self.head_weights_proj(tf.transpose(attention_probs, [0, 2, 3, 1])), [0, 3, 1, 2]
|
750 |
+
)
|
751 |
+
|
752 |
+
context_layer = tf.matmul(attention_probs, value_layer)
|
753 |
+
context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
|
754 |
+
context_layer_shape = shape_list(context_layer)
|
755 |
+
# Set the final dimension here explicitly.
|
756 |
+
# Calling tf.reshape(context_layer, (*context_layer_shape[:-2], -1)) raises an error when executing
|
757 |
+
# the model in graph mode as context_layer is reshaped to (None, 7, None) and Dense layer in TFDebertaV2SelfOutput
|
758 |
+
# requires final input dimension to be defined
|
759 |
+
new_context_layer_shape = context_layer_shape[:-2] + [context_layer_shape[-2] * context_layer_shape[-1]]
|
760 |
+
context_layer = tf.reshape(context_layer, new_context_layer_shape)
|
761 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
762 |
+
return outputs
|
763 |
+
|
764 |
+
def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
|
765 |
+
if relative_pos is None:
|
766 |
+
q = shape_list(query_layer)[-2]
|
767 |
+
relative_pos = build_relative_position(q, shape_list(key_layer)[-2])
|
768 |
+
shape_list_pos = shape_list(relative_pos)
|
769 |
+
if len(shape_list_pos) == 2:
|
770 |
+
relative_pos = tf.expand_dims(tf.expand_dims(relative_pos, 0), 0)
|
771 |
+
elif len(shape_list_pos) == 3:
|
772 |
+
relative_pos = tf.expand_dims(relative_pos, 1)
|
773 |
+
# bxhxqxk
|
774 |
+
elif len(shape_list_pos) != 4:
|
775 |
+
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {len(shape_list_pos)}")
|
776 |
+
|
777 |
+
att_span = tf.cast(
|
778 |
+
tf.minimum(
|
779 |
+
tf.maximum(shape_list(query_layer)[-2], shape_list(key_layer)[-2]), self.max_relative_positions
|
780 |
+
),
|
781 |
+
tf.int64,
|
782 |
+
)
|
783 |
+
rel_embeddings = tf.expand_dims(
|
784 |
+
rel_embeddings[self.max_relative_positions - att_span : self.max_relative_positions + att_span, :], 0
|
785 |
+
)
|
786 |
+
|
787 |
+
score = 0
|
788 |
+
|
789 |
+
# content->position
|
790 |
+
if "c2p" in self.pos_att_type:
|
791 |
+
pos_key_layer = self.pos_proj(rel_embeddings)
|
792 |
+
pos_key_layer = self.transpose_for_scores(pos_key_layer)
|
793 |
+
c2p_att = tf.matmul(query_layer, tf.transpose(pos_key_layer, [0, 1, 3, 2]))
|
794 |
+
c2p_pos = tf.clip_by_value(relative_pos + att_span, 0, att_span * 2 - 1)
|
795 |
+
c2p_att = torch_gather(c2p_att, c2p_dynamic_expand(c2p_pos, query_layer, relative_pos), -1)
|
796 |
+
score += c2p_att
|
797 |
+
|
798 |
+
# position->content
|
799 |
+
if "p2c" in self.pos_att_type:
|
800 |
+
pos_query_layer = self.pos_q_proj(rel_embeddings)
|
801 |
+
pos_query_layer = self.transpose_for_scores(pos_query_layer)
|
802 |
+
pos_query_layer /= tf.math.sqrt(tf.cast(shape_list(pos_query_layer)[-1] * scale_factor, dtype=tf.float32))
|
803 |
+
if shape_list(query_layer)[-2] != shape_list(key_layer)[-2]:
|
804 |
+
r_pos = build_relative_position(shape_list(key_layer)[-2], shape_list(key_layer)[-2])
|
805 |
+
else:
|
806 |
+
r_pos = relative_pos
|
807 |
+
p2c_pos = tf.clip_by_value(-r_pos + att_span, 0, att_span * 2 - 1)
|
808 |
+
p2c_att = tf.matmul(key_layer, tf.transpose(pos_query_layer, [0, 1, 3, 2]))
|
809 |
+
p2c_att = tf.transpose(
|
810 |
+
torch_gather(p2c_att, p2c_dynamic_expand(p2c_pos, query_layer, key_layer), -1), [0, 1, 3, 2]
|
811 |
+
)
|
812 |
+
if shape_list(query_layer)[-2] != shape_list(key_layer)[-2]:
|
813 |
+
pos_index = tf.expand_dims(relative_pos[:, :, :, 0], -1)
|
814 |
+
p2c_att = torch_gather(p2c_att, pos_dynamic_expand(pos_index, p2c_att, key_layer), -2)
|
815 |
+
score += p2c_att
|
816 |
+
|
817 |
+
return score
|
818 |
+
|
819 |
+
|
820 |
+
class TFDebertaEmbeddings(keras.layers.Layer):
|
821 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
822 |
+
|
823 |
+
def __init__(self, config, **kwargs):
|
824 |
+
super().__init__(**kwargs)
|
825 |
+
|
826 |
+
self.config = config
|
827 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
828 |
+
self.hidden_size = config.hidden_size
|
829 |
+
self.max_position_embeddings = config.max_position_embeddings
|
830 |
+
self.position_biased_input = getattr(config, "position_biased_input", True)
|
831 |
+
self.initializer_range = config.initializer_range
|
832 |
+
if self.embedding_size != config.hidden_size:
|
833 |
+
self.embed_proj = keras.layers.Dense(
|
834 |
+
config.hidden_size,
|
835 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
836 |
+
name="embed_proj",
|
837 |
+
use_bias=False,
|
838 |
+
)
|
839 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
840 |
+
self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout")
|
841 |
+
|
842 |
+
def build(self, input_shape=None):
|
843 |
+
with tf.name_scope("word_embeddings"):
|
844 |
+
self.weight = self.add_weight(
|
845 |
+
name="weight",
|
846 |
+
shape=[self.config.vocab_size, self.embedding_size],
|
847 |
+
initializer=get_initializer(self.initializer_range),
|
848 |
+
)
|
849 |
+
|
850 |
+
with tf.name_scope("token_type_embeddings"):
|
851 |
+
if self.config.type_vocab_size > 0:
|
852 |
+
self.token_type_embeddings = self.add_weight(
|
853 |
+
name="embeddings",
|
854 |
+
shape=[self.config.type_vocab_size, self.embedding_size],
|
855 |
+
initializer=get_initializer(self.initializer_range),
|
856 |
+
)
|
857 |
+
else:
|
858 |
+
self.token_type_embeddings = None
|
859 |
+
|
860 |
+
with tf.name_scope("position_embeddings"):
|
861 |
+
if self.position_biased_input:
|
862 |
+
self.position_embeddings = self.add_weight(
|
863 |
+
name="embeddings",
|
864 |
+
shape=[self.max_position_embeddings, self.hidden_size],
|
865 |
+
initializer=get_initializer(self.initializer_range),
|
866 |
+
)
|
867 |
+
else:
|
868 |
+
self.position_embeddings = None
|
869 |
+
|
870 |
+
if self.built:
|
871 |
+
return
|
872 |
+
self.built = True
|
873 |
+
if getattr(self, "LayerNorm", None) is not None:
|
874 |
+
with tf.name_scope(self.LayerNorm.name):
|
875 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
876 |
+
if getattr(self, "dropout", None) is not None:
|
877 |
+
with tf.name_scope(self.dropout.name):
|
878 |
+
self.dropout.build(None)
|
879 |
+
if getattr(self, "embed_proj", None) is not None:
|
880 |
+
with tf.name_scope(self.embed_proj.name):
|
881 |
+
self.embed_proj.build([None, None, self.embedding_size])
|
882 |
+
|
883 |
+
def call(
|
884 |
+
self,
|
885 |
+
input_ids: tf.Tensor = None,
|
886 |
+
position_ids: tf.Tensor = None,
|
887 |
+
token_type_ids: tf.Tensor = None,
|
888 |
+
inputs_embeds: tf.Tensor = None,
|
889 |
+
mask: tf.Tensor = None,
|
890 |
+
training: bool = False,
|
891 |
+
) -> tf.Tensor:
|
892 |
+
"""
|
893 |
+
Applies embedding based on inputs tensor.
|
894 |
+
|
895 |
+
Returns:
|
896 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
897 |
+
"""
|
898 |
+
if input_ids is None and inputs_embeds is None:
|
899 |
+
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
|
900 |
+
|
901 |
+
if input_ids is not None:
|
902 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
903 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
904 |
+
|
905 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
906 |
+
|
907 |
+
if token_type_ids is None:
|
908 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
909 |
+
|
910 |
+
if position_ids is None:
|
911 |
+
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
|
912 |
+
|
913 |
+
final_embeddings = inputs_embeds
|
914 |
+
if self.position_biased_input:
|
915 |
+
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
|
916 |
+
final_embeddings += position_embeds
|
917 |
+
if self.config.type_vocab_size > 0:
|
918 |
+
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
|
919 |
+
final_embeddings += token_type_embeds
|
920 |
+
|
921 |
+
if self.embedding_size != self.hidden_size:
|
922 |
+
final_embeddings = self.embed_proj(final_embeddings)
|
923 |
+
|
924 |
+
final_embeddings = self.LayerNorm(final_embeddings)
|
925 |
+
|
926 |
+
if mask is not None:
|
927 |
+
if len(shape_list(mask)) != len(shape_list(final_embeddings)):
|
928 |
+
if len(shape_list(mask)) == 4:
|
929 |
+
mask = tf.squeeze(tf.squeeze(mask, axis=1), axis=1)
|
930 |
+
mask = tf.cast(tf.expand_dims(mask, axis=2), tf.float32)
|
931 |
+
|
932 |
+
final_embeddings = final_embeddings * mask
|
933 |
+
|
934 |
+
final_embeddings = self.dropout(final_embeddings, training=training)
|
935 |
+
|
936 |
+
return final_embeddings
|
937 |
+
|
938 |
+
|
939 |
+
class TFDebertaPredictionHeadTransform(keras.layers.Layer):
|
940 |
+
def __init__(self, config: DebertaConfig, **kwargs):
|
941 |
+
super().__init__(**kwargs)
|
942 |
+
|
943 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
944 |
+
|
945 |
+
self.dense = keras.layers.Dense(
|
946 |
+
units=self.embedding_size,
|
947 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
948 |
+
name="dense",
|
949 |
+
)
|
950 |
+
|
951 |
+
if isinstance(config.hidden_act, str):
|
952 |
+
self.transform_act_fn = get_tf_activation(config.hidden_act)
|
953 |
+
else:
|
954 |
+
self.transform_act_fn = config.hidden_act
|
955 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
956 |
+
self.config = config
|
957 |
+
|
958 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
959 |
+
hidden_states = self.dense(inputs=hidden_states)
|
960 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
961 |
+
hidden_states = self.LayerNorm(hidden_states)
|
962 |
+
|
963 |
+
return hidden_states
|
964 |
+
|
965 |
+
def build(self, input_shape=None):
|
966 |
+
if self.built:
|
967 |
+
return
|
968 |
+
self.built = True
|
969 |
+
if getattr(self, "dense", None) is not None:
|
970 |
+
with tf.name_scope(self.dense.name):
|
971 |
+
self.dense.build([None, None, self.config.hidden_size])
|
972 |
+
if getattr(self, "LayerNorm", None) is not None:
|
973 |
+
with tf.name_scope(self.LayerNorm.name):
|
974 |
+
self.LayerNorm.build([None, None, self.embedding_size])
|
975 |
+
|
976 |
+
|
977 |
+
class TFDebertaLMPredictionHead(keras.layers.Layer):
|
978 |
+
def __init__(self, config: DebertaConfig, input_embeddings: keras.layers.Layer, **kwargs):
|
979 |
+
super().__init__(**kwargs)
|
980 |
+
|
981 |
+
self.config = config
|
982 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
983 |
+
|
984 |
+
self.transform = TFDebertaPredictionHeadTransform(config, name="transform")
|
985 |
+
|
986 |
+
# The output weights are the same as the input embeddings, but there is
|
987 |
+
# an output-only bias for each token.
|
988 |
+
self.input_embeddings = input_embeddings
|
989 |
+
|
990 |
+
def build(self, input_shape=None):
|
991 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
992 |
+
|
993 |
+
if self.built:
|
994 |
+
return
|
995 |
+
self.built = True
|
996 |
+
if getattr(self, "transform", None) is not None:
|
997 |
+
with tf.name_scope(self.transform.name):
|
998 |
+
self.transform.build(None)
|
999 |
+
|
1000 |
+
def get_output_embeddings(self) -> keras.layers.Layer:
|
1001 |
+
return self.input_embeddings
|
1002 |
+
|
1003 |
+
def set_output_embeddings(self, value: tf.Variable):
|
1004 |
+
self.input_embeddings.weight = value
|
1005 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
1006 |
+
|
1007 |
+
def get_bias(self) -> Dict[str, tf.Variable]:
|
1008 |
+
return {"bias": self.bias}
|
1009 |
+
|
1010 |
+
def set_bias(self, value: tf.Variable):
|
1011 |
+
self.bias = value["bias"]
|
1012 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
1013 |
+
|
1014 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
1015 |
+
hidden_states = self.transform(hidden_states=hidden_states)
|
1016 |
+
seq_length = shape_list(hidden_states)[1]
|
1017 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
|
1018 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
|
1019 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
1020 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
|
1021 |
+
|
1022 |
+
return hidden_states
|
1023 |
+
|
1024 |
+
|
1025 |
+
class TFDebertaOnlyMLMHead(keras.layers.Layer):
|
1026 |
+
def __init__(self, config: DebertaConfig, input_embeddings: keras.layers.Layer, **kwargs):
|
1027 |
+
super().__init__(**kwargs)
|
1028 |
+
self.predictions = TFDebertaLMPredictionHead(config, input_embeddings, name="predictions")
|
1029 |
+
|
1030 |
+
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
|
1031 |
+
prediction_scores = self.predictions(hidden_states=sequence_output)
|
1032 |
+
|
1033 |
+
return prediction_scores
|
1034 |
+
|
1035 |
+
def build(self, input_shape=None):
|
1036 |
+
if self.built:
|
1037 |
+
return
|
1038 |
+
self.built = True
|
1039 |
+
if getattr(self, "predictions", None) is not None:
|
1040 |
+
with tf.name_scope(self.predictions.name):
|
1041 |
+
self.predictions.build(None)
|
1042 |
+
|
1043 |
+
|
1044 |
+
# @keras_serializable
|
1045 |
+
class TFDebertaMainLayer(keras.layers.Layer):
|
1046 |
+
config_class = DebertaConfig
|
1047 |
+
|
1048 |
+
def __init__(self, config: DebertaConfig, **kwargs):
|
1049 |
+
super().__init__(**kwargs)
|
1050 |
+
|
1051 |
+
self.config = config
|
1052 |
+
|
1053 |
+
self.embeddings = TFDebertaEmbeddings(config, name="embeddings")
|
1054 |
+
self.encoder = TFDebertaEncoder(config, name="encoder")
|
1055 |
+
|
1056 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
1057 |
+
return self.embeddings
|
1058 |
+
|
1059 |
+
def set_input_embeddings(self, value: tf.Variable):
|
1060 |
+
self.embeddings.weight = value
|
1061 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
1062 |
+
|
1063 |
+
def _prune_heads(self, heads_to_prune):
|
1064 |
+
"""
|
1065 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1066 |
+
class PreTrainedModel
|
1067 |
+
"""
|
1068 |
+
raise NotImplementedError
|
1069 |
+
|
1070 |
+
@unpack_inputs
|
1071 |
+
def call(
|
1072 |
+
self,
|
1073 |
+
input_ids: TFModelInputType | None = None,
|
1074 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1075 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1076 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1077 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1078 |
+
output_attentions: Optional[bool] = None,
|
1079 |
+
output_hidden_states: Optional[bool] = None,
|
1080 |
+
return_dict: Optional[bool] = None,
|
1081 |
+
training: bool = False,
|
1082 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
|
1083 |
+
if input_ids is not None and inputs_embeds is not None:
|
1084 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1085 |
+
elif input_ids is not None:
|
1086 |
+
input_shape = shape_list(input_ids)
|
1087 |
+
elif inputs_embeds is not None:
|
1088 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
1089 |
+
else:
|
1090 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1091 |
+
|
1092 |
+
if attention_mask is None:
|
1093 |
+
attention_mask = tf.fill(dims=input_shape, value=1)
|
1094 |
+
|
1095 |
+
if token_type_ids is None:
|
1096 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
1097 |
+
|
1098 |
+
embedding_output = self.embeddings(
|
1099 |
+
input_ids=input_ids,
|
1100 |
+
position_ids=position_ids,
|
1101 |
+
token_type_ids=token_type_ids,
|
1102 |
+
inputs_embeds=inputs_embeds,
|
1103 |
+
mask=attention_mask,
|
1104 |
+
training=training,
|
1105 |
+
)
|
1106 |
+
|
1107 |
+
encoder_outputs = self.encoder(
|
1108 |
+
hidden_states=embedding_output,
|
1109 |
+
attention_mask=attention_mask,
|
1110 |
+
output_attentions=output_attentions,
|
1111 |
+
output_hidden_states=output_hidden_states,
|
1112 |
+
return_dict=return_dict,
|
1113 |
+
training=training,
|
1114 |
+
)
|
1115 |
+
|
1116 |
+
sequence_output = encoder_outputs[0]
|
1117 |
+
|
1118 |
+
if not return_dict:
|
1119 |
+
return (sequence_output,) + encoder_outputs[1:]
|
1120 |
+
|
1121 |
+
return TFBaseModelOutput(
|
1122 |
+
last_hidden_state=sequence_output,
|
1123 |
+
hidden_states=encoder_outputs.hidden_states,
|
1124 |
+
attentions=encoder_outputs.attentions,
|
1125 |
+
)
|
1126 |
+
|
1127 |
+
def build(self, input_shape=None):
|
1128 |
+
if self.built:
|
1129 |
+
return
|
1130 |
+
self.built = True
|
1131 |
+
if getattr(self, "embeddings", None) is not None:
|
1132 |
+
with tf.name_scope(self.embeddings.name):
|
1133 |
+
self.embeddings.build(None)
|
1134 |
+
if getattr(self, "encoder", None) is not None:
|
1135 |
+
with tf.name_scope(self.encoder.name):
|
1136 |
+
self.encoder.build(None)
|
1137 |
+
|
1138 |
+
|
1139 |
+
class TFDebertaPreTrainedModel(TFPreTrainedModel):
|
1140 |
+
"""
|
1141 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1142 |
+
models.
|
1143 |
+
"""
|
1144 |
+
|
1145 |
+
config_class = DebertaConfig
|
1146 |
+
base_model_prefix = "deberta"
|
1147 |
+
|
1148 |
+
|
1149 |
+
DEBERTA_START_DOCSTRING = r"""
|
1150 |
+
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
|
1151 |
+
Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
|
1152 |
+
on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
|
1153 |
+
improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
|
1154 |
+
|
1155 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
1156 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
1157 |
+
behavior.
|
1158 |
+
|
1159 |
+
<Tip>
|
1160 |
+
|
1161 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
1162 |
+
|
1163 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
1164 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
1165 |
+
|
1166 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
1167 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
1168 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
1169 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
1170 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
1171 |
+
positional argument:
|
1172 |
+
|
1173 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
1174 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
1175 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
1176 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
1177 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
1178 |
+
|
1179 |
+
Note that when creating models and layers with
|
1180 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
1181 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
1182 |
+
|
1183 |
+
</Tip>
|
1184 |
+
|
1185 |
+
Parameters:
|
1186 |
+
config ([`DebertaConfig`]): Model configuration class with all the parameters of the model.
|
1187 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1188 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1189 |
+
"""
|
1190 |
+
|
1191 |
+
DEBERTA_INPUTS_DOCSTRING = r"""
|
1192 |
+
Args:
|
1193 |
+
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
|
1194 |
+
Indices of input sequence tokens in the vocabulary.
|
1195 |
+
|
1196 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1197 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1198 |
+
|
1199 |
+
[What are input IDs?](../glossary#input-ids)
|
1200 |
+
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1201 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1202 |
+
|
1203 |
+
- 1 for tokens that are **not masked**,
|
1204 |
+
- 0 for tokens that are **masked**.
|
1205 |
+
|
1206 |
+
[What are attention masks?](../glossary#attention-mask)
|
1207 |
+
token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1208 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
1209 |
+
1]`:
|
1210 |
+
|
1211 |
+
- 0 corresponds to a *sentence A* token,
|
1212 |
+
- 1 corresponds to a *sentence B* token.
|
1213 |
+
|
1214 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
1215 |
+
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
|
1216 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1217 |
+
config.max_position_embeddings - 1]`.
|
1218 |
+
|
1219 |
+
[What are position IDs?](../glossary#position-ids)
|
1220 |
+
inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
1221 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1222 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
1223 |
+
model's internal embedding lookup matrix.
|
1224 |
+
output_attentions (`bool`, *optional*):
|
1225 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1226 |
+
tensors for more detail.
|
1227 |
+
output_hidden_states (`bool`, *optional*):
|
1228 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1229 |
+
more detail.
|
1230 |
+
return_dict (`bool`, *optional*):
|
1231 |
+
Whether or not to return a [`~utils.ModelOutput``] instead of a plain tuple.
|
1232 |
+
"""
|
1233 |
+
|
1234 |
+
|
1235 |
+
@add_start_docstrings(
|
1236 |
+
"The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
1237 |
+
DEBERTA_START_DOCSTRING,
|
1238 |
+
)
|
1239 |
+
class TFDebertaModel(TFDebertaPreTrainedModel):
|
1240 |
+
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
|
1241 |
+
super().__init__(config, *inputs, **kwargs)
|
1242 |
+
|
1243 |
+
self.deberta = TFDebertaMainLayer(config, name="deberta")
|
1244 |
+
|
1245 |
+
@unpack_inputs
|
1246 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1247 |
+
@add_code_sample_docstrings(
|
1248 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1249 |
+
output_type=TFBaseModelOutput,
|
1250 |
+
config_class=_CONFIG_FOR_DOC,
|
1251 |
+
)
|
1252 |
+
def call(
|
1253 |
+
self,
|
1254 |
+
input_ids: TFModelInputType | None = None,
|
1255 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1256 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1257 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1258 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1259 |
+
output_attentions: Optional[bool] = None,
|
1260 |
+
output_hidden_states: Optional[bool] = None,
|
1261 |
+
return_dict: Optional[bool] = None,
|
1262 |
+
training: Optional[bool] = False,
|
1263 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
|
1264 |
+
outputs = self.deberta(
|
1265 |
+
input_ids=input_ids,
|
1266 |
+
attention_mask=attention_mask,
|
1267 |
+
token_type_ids=token_type_ids,
|
1268 |
+
position_ids=position_ids,
|
1269 |
+
inputs_embeds=inputs_embeds,
|
1270 |
+
output_attentions=output_attentions,
|
1271 |
+
output_hidden_states=output_hidden_states,
|
1272 |
+
return_dict=return_dict,
|
1273 |
+
training=training,
|
1274 |
+
)
|
1275 |
+
|
1276 |
+
return outputs
|
1277 |
+
|
1278 |
+
def build(self, input_shape=None):
|
1279 |
+
if self.built:
|
1280 |
+
return
|
1281 |
+
self.built = True
|
1282 |
+
if getattr(self, "deberta", None) is not None:
|
1283 |
+
with tf.name_scope(self.deberta.name):
|
1284 |
+
self.deberta.build(None)
|
1285 |
+
|
1286 |
+
|
1287 |
+
@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
|
1288 |
+
class TFDebertaForMaskedLM(TFDebertaPreTrainedModel, TFMaskedLanguageModelingLoss):
|
1289 |
+
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
|
1290 |
+
super().__init__(config, *inputs, **kwargs)
|
1291 |
+
|
1292 |
+
if config.is_decoder:
|
1293 |
+
logger.warning(
|
1294 |
+
"If you want to use `TFDebertaForMaskedLM` make sure `config.is_decoder=False` for "
|
1295 |
+
"bi-directional self-attention."
|
1296 |
+
)
|
1297 |
+
|
1298 |
+
self.deberta = TFDebertaMainLayer(config, name="deberta")
|
1299 |
+
self.mlm = TFDebertaOnlyMLMHead(config, input_embeddings=self.deberta.embeddings, name="cls")
|
1300 |
+
|
1301 |
+
def get_lm_head(self) -> keras.layers.Layer:
|
1302 |
+
return self.mlm.predictions
|
1303 |
+
|
1304 |
+
@unpack_inputs
|
1305 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1306 |
+
@add_code_sample_docstrings(
|
1307 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1308 |
+
output_type=TFMaskedLMOutput,
|
1309 |
+
config_class=_CONFIG_FOR_DOC,
|
1310 |
+
)
|
1311 |
+
def call(
|
1312 |
+
self,
|
1313 |
+
input_ids: TFModelInputType | None = None,
|
1314 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1315 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1316 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1317 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1318 |
+
output_attentions: Optional[bool] = None,
|
1319 |
+
output_hidden_states: Optional[bool] = None,
|
1320 |
+
return_dict: Optional[bool] = None,
|
1321 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1322 |
+
training: Optional[bool] = False,
|
1323 |
+
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
|
1324 |
+
r"""
|
1325 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
1326 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1327 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1328 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1329 |
+
"""
|
1330 |
+
outputs = self.deberta(
|
1331 |
+
input_ids=input_ids,
|
1332 |
+
attention_mask=attention_mask,
|
1333 |
+
token_type_ids=token_type_ids,
|
1334 |
+
position_ids=position_ids,
|
1335 |
+
inputs_embeds=inputs_embeds,
|
1336 |
+
output_attentions=output_attentions,
|
1337 |
+
output_hidden_states=output_hidden_states,
|
1338 |
+
return_dict=return_dict,
|
1339 |
+
training=training,
|
1340 |
+
)
|
1341 |
+
sequence_output = outputs[0]
|
1342 |
+
prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
|
1343 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
|
1344 |
+
|
1345 |
+
if not return_dict:
|
1346 |
+
output = (prediction_scores,) + outputs[2:]
|
1347 |
+
return ((loss,) + output) if loss is not None else output
|
1348 |
+
|
1349 |
+
return TFMaskedLMOutput(
|
1350 |
+
loss=loss,
|
1351 |
+
logits=prediction_scores,
|
1352 |
+
hidden_states=outputs.hidden_states,
|
1353 |
+
attentions=outputs.attentions,
|
1354 |
+
)
|
1355 |
+
|
1356 |
+
def build(self, input_shape=None):
|
1357 |
+
if self.built:
|
1358 |
+
return
|
1359 |
+
self.built = True
|
1360 |
+
if getattr(self, "deberta", None) is not None:
|
1361 |
+
with tf.name_scope(self.deberta.name):
|
1362 |
+
self.deberta.build(None)
|
1363 |
+
if getattr(self, "mlm", None) is not None:
|
1364 |
+
with tf.name_scope(self.mlm.name):
|
1365 |
+
self.mlm.build(None)
|
1366 |
+
|
1367 |
+
|
1368 |
+
@add_start_docstrings(
|
1369 |
+
"""
|
1370 |
+
DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1371 |
+
pooled output) e.g. for GLUE tasks.
|
1372 |
+
""",
|
1373 |
+
DEBERTA_START_DOCSTRING,
|
1374 |
+
)
|
1375 |
+
class TFDebertaForSequenceClassification(TFDebertaPreTrainedModel, TFSequenceClassificationLoss):
|
1376 |
+
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
|
1377 |
+
super().__init__(config, *inputs, **kwargs)
|
1378 |
+
|
1379 |
+
self.num_labels = config.num_labels
|
1380 |
+
|
1381 |
+
self.deberta = TFDebertaMainLayer(config, name="deberta")
|
1382 |
+
self.pooler = TFDebertaContextPooler(config, name="pooler")
|
1383 |
+
|
1384 |
+
drop_out = getattr(config, "cls_dropout", None)
|
1385 |
+
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
1386 |
+
self.dropout = TFDebertaStableDropout(drop_out, name="cls_dropout")
|
1387 |
+
self.classifier = keras.layers.Dense(
|
1388 |
+
units=config.num_labels,
|
1389 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1390 |
+
name="classifier",
|
1391 |
+
)
|
1392 |
+
self.output_dim = self.pooler.output_dim
|
1393 |
+
|
1394 |
+
@unpack_inputs
|
1395 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1396 |
+
@add_code_sample_docstrings(
|
1397 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1398 |
+
output_type=TFSequenceClassifierOutput,
|
1399 |
+
config_class=_CONFIG_FOR_DOC,
|
1400 |
+
)
|
1401 |
+
def call(
|
1402 |
+
self,
|
1403 |
+
input_ids: TFModelInputType | None = None,
|
1404 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1405 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1406 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1407 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1408 |
+
output_attentions: Optional[bool] = None,
|
1409 |
+
output_hidden_states: Optional[bool] = None,
|
1410 |
+
return_dict: Optional[bool] = None,
|
1411 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1412 |
+
training: Optional[bool] = False,
|
1413 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
1414 |
+
r"""
|
1415 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1416 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1417 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1418 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1419 |
+
"""
|
1420 |
+
outputs = self.deberta(
|
1421 |
+
input_ids=input_ids,
|
1422 |
+
attention_mask=attention_mask,
|
1423 |
+
token_type_ids=token_type_ids,
|
1424 |
+
position_ids=position_ids,
|
1425 |
+
inputs_embeds=inputs_embeds,
|
1426 |
+
output_attentions=output_attentions,
|
1427 |
+
output_hidden_states=output_hidden_states,
|
1428 |
+
return_dict=return_dict,
|
1429 |
+
training=training,
|
1430 |
+
)
|
1431 |
+
sequence_output = outputs[0]
|
1432 |
+
pooled_output = self.pooler(sequence_output, training=training)
|
1433 |
+
pooled_output = self.dropout(pooled_output, training=training)
|
1434 |
+
logits = self.classifier(pooled_output)
|
1435 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1436 |
+
|
1437 |
+
if not return_dict:
|
1438 |
+
output = (logits,) + outputs[1:]
|
1439 |
+
|
1440 |
+
return ((loss,) + output) if loss is not None else output
|
1441 |
+
|
1442 |
+
return TFSequenceClassifierOutput(
|
1443 |
+
loss=loss,
|
1444 |
+
logits=logits,
|
1445 |
+
hidden_states=outputs.hidden_states,
|
1446 |
+
attentions=outputs.attentions,
|
1447 |
+
)
|
1448 |
+
|
1449 |
+
def build(self, input_shape=None):
|
1450 |
+
if self.built:
|
1451 |
+
return
|
1452 |
+
self.built = True
|
1453 |
+
if getattr(self, "deberta", None) is not None:
|
1454 |
+
with tf.name_scope(self.deberta.name):
|
1455 |
+
self.deberta.build(None)
|
1456 |
+
if getattr(self, "pooler", None) is not None:
|
1457 |
+
with tf.name_scope(self.pooler.name):
|
1458 |
+
self.pooler.build(None)
|
1459 |
+
if getattr(self, "dropout", None) is not None:
|
1460 |
+
with tf.name_scope(self.dropout.name):
|
1461 |
+
self.dropout.build(None)
|
1462 |
+
if getattr(self, "classifier", None) is not None:
|
1463 |
+
with tf.name_scope(self.classifier.name):
|
1464 |
+
self.classifier.build([None, None, self.output_dim])
|
1465 |
+
|
1466 |
+
|
1467 |
+
@add_start_docstrings(
|
1468 |
+
"""
|
1469 |
+
DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1470 |
+
Named-Entity-Recognition (NER) tasks.
|
1471 |
+
""",
|
1472 |
+
DEBERTA_START_DOCSTRING,
|
1473 |
+
)
|
1474 |
+
class TFDebertaForTokenClassification(TFDebertaPreTrainedModel, TFTokenClassificationLoss):
|
1475 |
+
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
|
1476 |
+
super().__init__(config, *inputs, **kwargs)
|
1477 |
+
|
1478 |
+
self.num_labels = config.num_labels
|
1479 |
+
|
1480 |
+
self.deberta = TFDebertaMainLayer(config, name="deberta")
|
1481 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
1482 |
+
self.classifier = keras.layers.Dense(
|
1483 |
+
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1484 |
+
)
|
1485 |
+
self.config = config
|
1486 |
+
|
1487 |
+
@unpack_inputs
|
1488 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1489 |
+
@add_code_sample_docstrings(
|
1490 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1491 |
+
output_type=TFTokenClassifierOutput,
|
1492 |
+
config_class=_CONFIG_FOR_DOC,
|
1493 |
+
)
|
1494 |
+
def call(
|
1495 |
+
self,
|
1496 |
+
input_ids: TFModelInputType | None = None,
|
1497 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1498 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1499 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1500 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1501 |
+
output_attentions: Optional[bool] = None,
|
1502 |
+
output_hidden_states: Optional[bool] = None,
|
1503 |
+
return_dict: Optional[bool] = None,
|
1504 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1505 |
+
training: Optional[bool] = False,
|
1506 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1507 |
+
r"""
|
1508 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
1509 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1510 |
+
"""
|
1511 |
+
outputs = self.deberta(
|
1512 |
+
input_ids=input_ids,
|
1513 |
+
attention_mask=attention_mask,
|
1514 |
+
token_type_ids=token_type_ids,
|
1515 |
+
position_ids=position_ids,
|
1516 |
+
inputs_embeds=inputs_embeds,
|
1517 |
+
output_attentions=output_attentions,
|
1518 |
+
output_hidden_states=output_hidden_states,
|
1519 |
+
return_dict=return_dict,
|
1520 |
+
training=training,
|
1521 |
+
)
|
1522 |
+
sequence_output = outputs[0]
|
1523 |
+
sequence_output = self.dropout(sequence_output, training=training)
|
1524 |
+
logits = self.classifier(inputs=sequence_output)
|
1525 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1526 |
+
|
1527 |
+
if not return_dict:
|
1528 |
+
output = (logits,) + outputs[1:]
|
1529 |
+
return ((loss,) + output) if loss is not None else output
|
1530 |
+
|
1531 |
+
return TFTokenClassifierOutput(
|
1532 |
+
loss=loss,
|
1533 |
+
logits=logits,
|
1534 |
+
hidden_states=outputs.hidden_states,
|
1535 |
+
attentions=outputs.attentions,
|
1536 |
+
)
|
1537 |
+
|
1538 |
+
def build(self, input_shape=None):
|
1539 |
+
if self.built:
|
1540 |
+
return
|
1541 |
+
self.built = True
|
1542 |
+
if getattr(self, "deberta", None) is not None:
|
1543 |
+
with tf.name_scope(self.deberta.name):
|
1544 |
+
self.deberta.build(None)
|
1545 |
+
if getattr(self, "classifier", None) is not None:
|
1546 |
+
with tf.name_scope(self.classifier.name):
|
1547 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1548 |
+
|
1549 |
+
|
1550 |
+
@add_start_docstrings(
|
1551 |
+
"""
|
1552 |
+
DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1553 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1554 |
+
""",
|
1555 |
+
DEBERTA_START_DOCSTRING,
|
1556 |
+
)
|
1557 |
+
class TFDebertaForQuestionAnswering(TFDebertaPreTrainedModel, TFQuestionAnsweringLoss):
|
1558 |
+
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
|
1559 |
+
super().__init__(config, *inputs, **kwargs)
|
1560 |
+
|
1561 |
+
self.num_labels = config.num_labels
|
1562 |
+
|
1563 |
+
self.deberta = TFDebertaMainLayer(config, name="deberta")
|
1564 |
+
self.qa_outputs = keras.layers.Dense(
|
1565 |
+
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
1566 |
+
)
|
1567 |
+
self.config = config
|
1568 |
+
|
1569 |
+
@unpack_inputs
|
1570 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1571 |
+
@add_code_sample_docstrings(
|
1572 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1573 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1574 |
+
config_class=_CONFIG_FOR_DOC,
|
1575 |
+
)
|
1576 |
+
def call(
|
1577 |
+
self,
|
1578 |
+
input_ids: TFModelInputType | None = None,
|
1579 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1580 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1581 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1582 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1583 |
+
output_attentions: Optional[bool] = None,
|
1584 |
+
output_hidden_states: Optional[bool] = None,
|
1585 |
+
return_dict: Optional[bool] = None,
|
1586 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1587 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1588 |
+
training: Optional[bool] = False,
|
1589 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1590 |
+
r"""
|
1591 |
+
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1592 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1593 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1594 |
+
are not taken into account for computing the loss.
|
1595 |
+
end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
1596 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1597 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1598 |
+
are not taken into account for computing the loss.
|
1599 |
+
"""
|
1600 |
+
outputs = self.deberta(
|
1601 |
+
input_ids=input_ids,
|
1602 |
+
attention_mask=attention_mask,
|
1603 |
+
token_type_ids=token_type_ids,
|
1604 |
+
position_ids=position_ids,
|
1605 |
+
inputs_embeds=inputs_embeds,
|
1606 |
+
output_attentions=output_attentions,
|
1607 |
+
output_hidden_states=output_hidden_states,
|
1608 |
+
return_dict=return_dict,
|
1609 |
+
training=training,
|
1610 |
+
)
|
1611 |
+
sequence_output = outputs[0]
|
1612 |
+
logits = self.qa_outputs(inputs=sequence_output)
|
1613 |
+
start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
|
1614 |
+
start_logits = tf.squeeze(input=start_logits, axis=-1)
|
1615 |
+
end_logits = tf.squeeze(input=end_logits, axis=-1)
|
1616 |
+
loss = None
|
1617 |
+
|
1618 |
+
if start_positions is not None and end_positions is not None:
|
1619 |
+
labels = {"start_position": start_positions}
|
1620 |
+
labels["end_position"] = end_positions
|
1621 |
+
loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
|
1622 |
+
|
1623 |
+
if not return_dict:
|
1624 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1625 |
+
return ((loss,) + output) if loss is not None else output
|
1626 |
+
|
1627 |
+
return TFQuestionAnsweringModelOutput(
|
1628 |
+
loss=loss,
|
1629 |
+
start_logits=start_logits,
|
1630 |
+
end_logits=end_logits,
|
1631 |
+
hidden_states=outputs.hidden_states,
|
1632 |
+
attentions=outputs.attentions,
|
1633 |
+
)
|
1634 |
+
|
1635 |
+
def build(self, input_shape=None):
|
1636 |
+
if self.built:
|
1637 |
+
return
|
1638 |
+
self.built = True
|
1639 |
+
if getattr(self, "deberta", None) is not None:
|
1640 |
+
with tf.name_scope(self.deberta.name):
|
1641 |
+
self.deberta.build(None)
|
1642 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1643 |
+
with tf.name_scope(self.qa_outputs.name):
|
1644 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/tokenization_deberta.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Microsoft and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for model DeBERTa."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
from typing import List, Optional, Tuple
|
20 |
+
|
21 |
+
import regex as re
|
22 |
+
|
23 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
|
30 |
+
|
31 |
+
|
32 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
|
33 |
+
def bytes_to_unicode():
|
34 |
+
"""
|
35 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
36 |
+
characters the bpe code barfs on.
|
37 |
+
|
38 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
39 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
40 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
41 |
+
tables between utf-8 bytes and unicode strings.
|
42 |
+
"""
|
43 |
+
bs = (
|
44 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
45 |
+
)
|
46 |
+
cs = bs[:]
|
47 |
+
n = 0
|
48 |
+
for b in range(2**8):
|
49 |
+
if b not in bs:
|
50 |
+
bs.append(b)
|
51 |
+
cs.append(2**8 + n)
|
52 |
+
n += 1
|
53 |
+
cs = [chr(n) for n in cs]
|
54 |
+
return dict(zip(bs, cs))
|
55 |
+
|
56 |
+
|
57 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
|
58 |
+
def get_pairs(word):
|
59 |
+
"""
|
60 |
+
Return set of symbol pairs in a word.
|
61 |
+
|
62 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
63 |
+
"""
|
64 |
+
pairs = set()
|
65 |
+
prev_char = word[0]
|
66 |
+
for char in word[1:]:
|
67 |
+
pairs.add((prev_char, char))
|
68 |
+
prev_char = char
|
69 |
+
return pairs
|
70 |
+
|
71 |
+
|
72 |
+
class DebertaTokenizer(PreTrainedTokenizer):
|
73 |
+
"""
|
74 |
+
Construct a DeBERTa tokenizer. Based on byte-level Byte-Pair-Encoding.
|
75 |
+
|
76 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
77 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
78 |
+
|
79 |
+
```python
|
80 |
+
>>> from transformers import DebertaTokenizer
|
81 |
+
|
82 |
+
>>> tokenizer = DebertaTokenizer.from_pretrained("microsoft/deberta-base")
|
83 |
+
>>> tokenizer("Hello world")["input_ids"]
|
84 |
+
[1, 31414, 232, 2]
|
85 |
+
|
86 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
87 |
+
[1, 20920, 232, 2]
|
88 |
+
```
|
89 |
+
|
90 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
|
91 |
+
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
92 |
+
|
93 |
+
<Tip>
|
94 |
+
|
95 |
+
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
|
96 |
+
|
97 |
+
</Tip>
|
98 |
+
|
99 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
100 |
+
this superclass for more information regarding those methods.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
vocab_file (`str`):
|
104 |
+
Path to the vocabulary file.
|
105 |
+
merges_file (`str`):
|
106 |
+
Path to the merges file.
|
107 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
108 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
109 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
110 |
+
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
|
111 |
+
The beginning of sequence token.
|
112 |
+
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
|
113 |
+
The end of sequence token.
|
114 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
115 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
116 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
117 |
+
token of a sequence built with special tokens.
|
118 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
119 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
120 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
121 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
122 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
123 |
+
token instead.
|
124 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
125 |
+
The token used for padding, for example when batching sequences of different lengths.
|
126 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
127 |
+
The token used for masking values. This is the token used when training this model with masked language
|
128 |
+
modeling. This is the token which the model will try to predict.
|
129 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
130 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
131 |
+
other word. (Deberta tokenizer detect beginning of words by the preceding space).
|
132 |
+
add_bos_token (`bool`, *optional*, defaults to `False`):
|
133 |
+
Whether or not to add an initial <|endoftext|> to the input. This allows to treat the leading word just as
|
134 |
+
any other word.
|
135 |
+
"""
|
136 |
+
|
137 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
138 |
+
model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
|
139 |
+
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
vocab_file,
|
143 |
+
merges_file,
|
144 |
+
errors="replace",
|
145 |
+
bos_token="[CLS]",
|
146 |
+
eos_token="[SEP]",
|
147 |
+
sep_token="[SEP]",
|
148 |
+
cls_token="[CLS]",
|
149 |
+
unk_token="[UNK]",
|
150 |
+
pad_token="[PAD]",
|
151 |
+
mask_token="[MASK]",
|
152 |
+
add_prefix_space=False,
|
153 |
+
add_bos_token=False,
|
154 |
+
**kwargs,
|
155 |
+
):
|
156 |
+
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
|
157 |
+
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
|
158 |
+
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
|
159 |
+
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
|
160 |
+
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
|
161 |
+
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
|
162 |
+
|
163 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
164 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
165 |
+
self.add_bos_token = add_bos_token
|
166 |
+
|
167 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
168 |
+
self.encoder = json.load(vocab_handle)
|
169 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
170 |
+
self.errors = errors # how to handle errors in decoding
|
171 |
+
self.byte_encoder = bytes_to_unicode()
|
172 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
173 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
174 |
+
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
175 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
176 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
177 |
+
self.cache = {}
|
178 |
+
self.add_prefix_space = add_prefix_space
|
179 |
+
|
180 |
+
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
181 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
182 |
+
|
183 |
+
super().__init__(
|
184 |
+
errors=errors,
|
185 |
+
bos_token=bos_token,
|
186 |
+
eos_token=eos_token,
|
187 |
+
unk_token=unk_token,
|
188 |
+
sep_token=sep_token,
|
189 |
+
cls_token=cls_token,
|
190 |
+
pad_token=pad_token,
|
191 |
+
mask_token=mask_token,
|
192 |
+
add_prefix_space=add_prefix_space,
|
193 |
+
add_bos_token=add_bos_token,
|
194 |
+
**kwargs,
|
195 |
+
)
|
196 |
+
|
197 |
+
@property
|
198 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.vocab_size
|
199 |
+
def vocab_size(self):
|
200 |
+
return len(self.encoder)
|
201 |
+
|
202 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
|
203 |
+
def get_vocab(self):
|
204 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
205 |
+
|
206 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
|
207 |
+
def bpe(self, token):
|
208 |
+
if token in self.cache:
|
209 |
+
return self.cache[token]
|
210 |
+
word = tuple(token)
|
211 |
+
pairs = get_pairs(word)
|
212 |
+
|
213 |
+
if not pairs:
|
214 |
+
return token
|
215 |
+
|
216 |
+
while True:
|
217 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
218 |
+
if bigram not in self.bpe_ranks:
|
219 |
+
break
|
220 |
+
first, second = bigram
|
221 |
+
new_word = []
|
222 |
+
i = 0
|
223 |
+
while i < len(word):
|
224 |
+
try:
|
225 |
+
j = word.index(first, i)
|
226 |
+
except ValueError:
|
227 |
+
new_word.extend(word[i:])
|
228 |
+
break
|
229 |
+
else:
|
230 |
+
new_word.extend(word[i:j])
|
231 |
+
i = j
|
232 |
+
|
233 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
234 |
+
new_word.append(first + second)
|
235 |
+
i += 2
|
236 |
+
else:
|
237 |
+
new_word.append(word[i])
|
238 |
+
i += 1
|
239 |
+
new_word = tuple(new_word)
|
240 |
+
word = new_word
|
241 |
+
if len(word) == 1:
|
242 |
+
break
|
243 |
+
else:
|
244 |
+
pairs = get_pairs(word)
|
245 |
+
word = " ".join(word)
|
246 |
+
self.cache[token] = word
|
247 |
+
return word
|
248 |
+
|
249 |
+
def build_inputs_with_special_tokens(
|
250 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
251 |
+
) -> List[int]:
|
252 |
+
"""
|
253 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
254 |
+
adding special tokens. A DeBERTa sequence has the following format:
|
255 |
+
|
256 |
+
- single sequence: [CLS] X [SEP]
|
257 |
+
- pair of sequences: [CLS] A [SEP] B [SEP]
|
258 |
+
|
259 |
+
Args:
|
260 |
+
token_ids_0 (`List[int]`):
|
261 |
+
List of IDs to which the special tokens will be added.
|
262 |
+
token_ids_1 (`List[int]`, *optional*):
|
263 |
+
Optional second list of IDs for sequence pairs.
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
267 |
+
"""
|
268 |
+
if token_ids_1 is None:
|
269 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
270 |
+
cls = [self.cls_token_id]
|
271 |
+
sep = [self.sep_token_id]
|
272 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
273 |
+
|
274 |
+
def get_special_tokens_mask(
|
275 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
276 |
+
) -> List[int]:
|
277 |
+
"""
|
278 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
279 |
+
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
token_ids_0 (`List[int]`):
|
283 |
+
List of IDs.
|
284 |
+
token_ids_1 (`List[int]`, *optional*):
|
285 |
+
Optional second list of IDs for sequence pairs.
|
286 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
287 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
288 |
+
|
289 |
+
Returns:
|
290 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
291 |
+
"""
|
292 |
+
if already_has_special_tokens:
|
293 |
+
return super().get_special_tokens_mask(
|
294 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
295 |
+
)
|
296 |
+
|
297 |
+
if token_ids_1 is None:
|
298 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
299 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
300 |
+
|
301 |
+
def create_token_type_ids_from_sequences(
|
302 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
303 |
+
) -> List[int]:
|
304 |
+
"""
|
305 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
|
306 |
+
sequence pair mask has the following format:
|
307 |
+
|
308 |
+
```
|
309 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
310 |
+
| first sequence | second sequence |
|
311 |
+
```
|
312 |
+
|
313 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
314 |
+
|
315 |
+
Args:
|
316 |
+
token_ids_0 (`List[int]`):
|
317 |
+
List of IDs.
|
318 |
+
token_ids_1 (`List[int]`, *optional*):
|
319 |
+
Optional second list of IDs for sequence pairs.
|
320 |
+
|
321 |
+
Returns:
|
322 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
323 |
+
"""
|
324 |
+
sep = [self.sep_token_id]
|
325 |
+
cls = [self.cls_token_id]
|
326 |
+
|
327 |
+
if token_ids_1 is None:
|
328 |
+
return len(cls + token_ids_0 + sep) * [0]
|
329 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
330 |
+
|
331 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
|
332 |
+
def _tokenize(self, text):
|
333 |
+
"""Tokenize a string."""
|
334 |
+
bpe_tokens = []
|
335 |
+
for token in re.findall(self.pat, text):
|
336 |
+
token = "".join(
|
337 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
338 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
339 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
340 |
+
return bpe_tokens
|
341 |
+
|
342 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
|
343 |
+
def _convert_token_to_id(self, token):
|
344 |
+
"""Converts a token (str) in an id using the vocab."""
|
345 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
346 |
+
|
347 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
|
348 |
+
def _convert_id_to_token(self, index):
|
349 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
350 |
+
return self.decoder.get(index)
|
351 |
+
|
352 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
|
353 |
+
def convert_tokens_to_string(self, tokens):
|
354 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
355 |
+
text = "".join(tokens)
|
356 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
357 |
+
return text
|
358 |
+
|
359 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
|
360 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
361 |
+
if not os.path.isdir(save_directory):
|
362 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
363 |
+
return
|
364 |
+
vocab_file = os.path.join(
|
365 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
366 |
+
)
|
367 |
+
merge_file = os.path.join(
|
368 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
369 |
+
)
|
370 |
+
|
371 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
372 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
373 |
+
|
374 |
+
index = 0
|
375 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
376 |
+
writer.write("#version: 0.2\n")
|
377 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
378 |
+
if index != token_index:
|
379 |
+
logger.warning(
|
380 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
381 |
+
" Please check that the tokenizer is not corrupted!"
|
382 |
+
)
|
383 |
+
index = token_index
|
384 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
385 |
+
index += 1
|
386 |
+
|
387 |
+
return vocab_file, merge_file
|
388 |
+
|
389 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
390 |
+
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
391 |
+
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
|
392 |
+
text = " " + text
|
393 |
+
return (text, kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/tokenization_deberta_fast.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Microsoft and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Fast Tokenization class for model DeBERTa."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from tokenizers import pre_tokenizers
|
21 |
+
|
22 |
+
from ...tokenization_utils_base import AddedToken, BatchEncoding
|
23 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
24 |
+
from ...utils import logging
|
25 |
+
from .tokenization_deberta import DebertaTokenizer
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
31 |
+
|
32 |
+
|
33 |
+
class DebertaTokenizerFast(PreTrainedTokenizerFast):
|
34 |
+
"""
|
35 |
+
Construct a "fast" DeBERTa tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
36 |
+
Byte-Pair-Encoding.
|
37 |
+
|
38 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
39 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
40 |
+
|
41 |
+
```python
|
42 |
+
>>> from transformers import DebertaTokenizerFast
|
43 |
+
|
44 |
+
>>> tokenizer = DebertaTokenizerFast.from_pretrained("microsoft/deberta-base")
|
45 |
+
>>> tokenizer("Hello world")["input_ids"]
|
46 |
+
[1, 31414, 232, 2]
|
47 |
+
|
48 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
49 |
+
[1, 20920, 232, 2]
|
50 |
+
```
|
51 |
+
|
52 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
|
53 |
+
the model was not pretrained this way, it might yield a decrease in performance.
|
54 |
+
|
55 |
+
<Tip>
|
56 |
+
|
57 |
+
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
|
58 |
+
|
59 |
+
</Tip>
|
60 |
+
|
61 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
62 |
+
refer to this superclass for more information regarding those methods.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
vocab_file (`str`, *optional*):
|
66 |
+
Path to the vocabulary file.
|
67 |
+
merges_file (`str`, *optional*):
|
68 |
+
Path to the merges file.
|
69 |
+
tokenizer_file (`str`, *optional*):
|
70 |
+
The path to a tokenizer file to use instead of the vocab file.
|
71 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
72 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
73 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
74 |
+
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
|
75 |
+
The beginning of sequence token.
|
76 |
+
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
|
77 |
+
The end of sequence token.
|
78 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
79 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
80 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
81 |
+
token of a sequence built with special tokens.
|
82 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
83 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
84 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
85 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
86 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
87 |
+
token instead.
|
88 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
89 |
+
The token used for padding, for example when batching sequences of different lengths.
|
90 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
91 |
+
The token used for masking values. This is the token used when training this model with masked language
|
92 |
+
modeling. This is the token which the model will try to predict.
|
93 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
94 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
95 |
+
other word. (Deberta tokenizer detect beginning of words by the preceding space).
|
96 |
+
"""
|
97 |
+
|
98 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
99 |
+
model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
|
100 |
+
slow_tokenizer_class = DebertaTokenizer
|
101 |
+
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
vocab_file=None,
|
105 |
+
merges_file=None,
|
106 |
+
tokenizer_file=None,
|
107 |
+
errors="replace",
|
108 |
+
bos_token="[CLS]",
|
109 |
+
eos_token="[SEP]",
|
110 |
+
sep_token="[SEP]",
|
111 |
+
cls_token="[CLS]",
|
112 |
+
unk_token="[UNK]",
|
113 |
+
pad_token="[PAD]",
|
114 |
+
mask_token="[MASK]",
|
115 |
+
add_prefix_space=False,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
+
super().__init__(
|
119 |
+
vocab_file,
|
120 |
+
merges_file,
|
121 |
+
tokenizer_file=tokenizer_file,
|
122 |
+
errors=errors,
|
123 |
+
bos_token=bos_token,
|
124 |
+
eos_token=eos_token,
|
125 |
+
unk_token=unk_token,
|
126 |
+
sep_token=sep_token,
|
127 |
+
cls_token=cls_token,
|
128 |
+
pad_token=pad_token,
|
129 |
+
mask_token=mask_token,
|
130 |
+
add_prefix_space=add_prefix_space,
|
131 |
+
**kwargs,
|
132 |
+
)
|
133 |
+
self.add_bos_token = kwargs.pop("add_bos_token", False)
|
134 |
+
|
135 |
+
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
|
136 |
+
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
137 |
+
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
|
138 |
+
pre_tok_state["add_prefix_space"] = add_prefix_space
|
139 |
+
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
|
140 |
+
|
141 |
+
self.add_prefix_space = add_prefix_space
|
142 |
+
|
143 |
+
@property
|
144 |
+
def mask_token(self) -> str:
|
145 |
+
"""
|
146 |
+
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
|
147 |
+
having been set.
|
148 |
+
|
149 |
+
Deberta tokenizer has a special mask token to be used in the fill-mask pipeline. The mask token will greedily
|
150 |
+
comprise the space before the *[MASK]*.
|
151 |
+
"""
|
152 |
+
if self._mask_token is None:
|
153 |
+
if self.verbose:
|
154 |
+
logger.error("Using mask_token, but it is not set yet.")
|
155 |
+
return None
|
156 |
+
return str(self._mask_token)
|
157 |
+
|
158 |
+
@mask_token.setter
|
159 |
+
def mask_token(self, value):
|
160 |
+
"""
|
161 |
+
Overriding the default behavior of the mask token to have it eat the space before it.
|
162 |
+
"""
|
163 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
164 |
+
# So we set lstrip to True
|
165 |
+
value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
|
166 |
+
self._mask_token = value
|
167 |
+
|
168 |
+
def build_inputs_with_special_tokens(
|
169 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
170 |
+
) -> List[int]:
|
171 |
+
"""
|
172 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
173 |
+
adding special tokens. A DeBERTa sequence has the following format:
|
174 |
+
|
175 |
+
- single sequence: [CLS] X [SEP]
|
176 |
+
- pair of sequences: [CLS] A [SEP] B [SEP]
|
177 |
+
|
178 |
+
Args:
|
179 |
+
token_ids_0 (`List[int]`):
|
180 |
+
List of IDs to which the special tokens will be added.
|
181 |
+
token_ids_1 (`List[int]`, *optional*):
|
182 |
+
Optional second list of IDs for sequence pairs.
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
186 |
+
"""
|
187 |
+
if token_ids_1 is None:
|
188 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
189 |
+
cls = [self.cls_token_id]
|
190 |
+
sep = [self.sep_token_id]
|
191 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
192 |
+
|
193 |
+
def create_token_type_ids_from_sequences(
|
194 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
195 |
+
) -> List[int]:
|
196 |
+
"""
|
197 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
|
198 |
+
sequence pair mask has the following format:
|
199 |
+
|
200 |
+
```
|
201 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
202 |
+
| first sequence | second sequence |
|
203 |
+
```
|
204 |
+
|
205 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
206 |
+
|
207 |
+
Args:
|
208 |
+
token_ids_0 (`List[int]`):
|
209 |
+
List of IDs.
|
210 |
+
token_ids_1 (`List[int]`, *optional*):
|
211 |
+
Optional second list of IDs for sequence pairs.
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
215 |
+
"""
|
216 |
+
sep = [self.sep_token_id]
|
217 |
+
cls = [self.cls_token_id]
|
218 |
+
|
219 |
+
if token_ids_1 is None:
|
220 |
+
return len(cls + token_ids_0 + sep) * [0]
|
221 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
222 |
+
|
223 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus
|
224 |
+
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
225 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
226 |
+
assert self.add_prefix_space or not is_split_into_words, (
|
227 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
228 |
+
"to use it with pretokenized inputs."
|
229 |
+
)
|
230 |
+
|
231 |
+
return super()._batch_encode_plus(*args, **kwargs)
|
232 |
+
|
233 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus
|
234 |
+
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
235 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
236 |
+
|
237 |
+
assert self.add_prefix_space or not is_split_into_words, (
|
238 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
239 |
+
"to use it with pretokenized inputs."
|
240 |
+
)
|
241 |
+
|
242 |
+
return super()._encode_plus(*args, **kwargs)
|
243 |
+
|
244 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary
|
245 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
246 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
247 |
+
return tuple(files)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__init__.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_mask2former": [
|
21 |
+
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"Mask2FormerConfig",
|
23 |
+
],
|
24 |
+
}
|
25 |
+
|
26 |
+
try:
|
27 |
+
if not is_vision_available():
|
28 |
+
raise OptionalDependencyNotAvailable()
|
29 |
+
except OptionalDependencyNotAvailable:
|
30 |
+
pass
|
31 |
+
else:
|
32 |
+
_import_structure["image_processing_mask2former"] = ["Mask2FormerImageProcessor"]
|
33 |
+
|
34 |
+
try:
|
35 |
+
if not is_torch_available():
|
36 |
+
raise OptionalDependencyNotAvailable()
|
37 |
+
except OptionalDependencyNotAvailable:
|
38 |
+
pass
|
39 |
+
else:
|
40 |
+
_import_structure["modeling_mask2former"] = [
|
41 |
+
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
42 |
+
"Mask2FormerForUniversalSegmentation",
|
43 |
+
"Mask2FormerModel",
|
44 |
+
"Mask2FormerPreTrainedModel",
|
45 |
+
]
|
46 |
+
|
47 |
+
if TYPE_CHECKING:
|
48 |
+
from .configuration_mask2former import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, Mask2FormerConfig
|
49 |
+
|
50 |
+
try:
|
51 |
+
if not is_vision_available():
|
52 |
+
raise OptionalDependencyNotAvailable()
|
53 |
+
except OptionalDependencyNotAvailable:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
from .image_processing_mask2former import Mask2FormerImageProcessor
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_torch_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
from .modeling_mask2former import (
|
65 |
+
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
66 |
+
Mask2FormerForUniversalSegmentation,
|
67 |
+
Mask2FormerModel,
|
68 |
+
Mask2FormerPreTrainedModel,
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
else:
|
73 |
+
import sys
|
74 |
+
|
75 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.18 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/configuration_mask2former.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/convert_mask2former_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (26.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/modeling_mask2former.cpython-310.pyc
ADDED
Binary file (88.7 kB). View file
|
|