Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/accelerate/__init__.py +48 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/accelerator.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/big_modeling.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/checkpointing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/data_loader.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/hooks.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/inference.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/launchers.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/local_sgd.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/logging.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/memory_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/optimizer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/scheduler.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/state.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/tracking.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/accelerator.py +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/big_modeling.py +627 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/checkpointing.py +273 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/__init__.py +13 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/accelerate_cli.py +50 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/config/sagemaker.py +267 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/env.py +109 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/estimate.py +309 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/launch.py +1092 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__init__.py +14 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/cursor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/helpers.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/input.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/keymap.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/selection_menu.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/cursor.py +65 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/helpers.py +59 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/input.py +86 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/keymap.py +133 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/selection_menu.py +144 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/test.py +65 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/tpu.py +157 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/commands/utils.py +120 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/data_loader.py +1149 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/hooks.py +709 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/inference.py +188 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/launchers.py +258 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/local_sgd.py +102 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/logging.py +123 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/memory_utils.py +22 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/optimizer.py +214 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/scheduler.py +98 -0
- llmeval-env/lib/python3.10/site-packages/accelerate/state.py +1208 -0
llmeval-env/lib/python3.10/site-packages/accelerate/__init__.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
__version__ = "0.30.0"
|
15 |
+
|
16 |
+
from .accelerator import Accelerator
|
17 |
+
from .big_modeling import (
|
18 |
+
cpu_offload,
|
19 |
+
cpu_offload_with_hook,
|
20 |
+
disk_offload,
|
21 |
+
dispatch_model,
|
22 |
+
init_empty_weights,
|
23 |
+
init_on_device,
|
24 |
+
load_checkpoint_and_dispatch,
|
25 |
+
)
|
26 |
+
from .data_loader import skip_first_batches
|
27 |
+
from .inference import prepare_pippy
|
28 |
+
from .launchers import debug_launcher, notebook_launcher
|
29 |
+
from .state import PartialState
|
30 |
+
from .utils import (
|
31 |
+
AutocastKwargs,
|
32 |
+
DataLoaderConfiguration,
|
33 |
+
DeepSpeedPlugin,
|
34 |
+
DistributedDataParallelKwargs,
|
35 |
+
DistributedType,
|
36 |
+
FullyShardedDataParallelPlugin,
|
37 |
+
GradScalerKwargs,
|
38 |
+
InitProcessGroupKwargs,
|
39 |
+
find_executable_batch_size,
|
40 |
+
infer_auto_device_map,
|
41 |
+
is_rich_available,
|
42 |
+
load_checkpoint_in_model,
|
43 |
+
synchronize_rng_states,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
if is_rich_available():
|
48 |
+
from .utils import rich
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.17 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/accelerator.cpython-310.pyc
ADDED
Binary file (111 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/big_modeling.cpython-310.pyc
ADDED
Binary file (23.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/checkpointing.cpython-310.pyc
ADDED
Binary file (8.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/data_loader.cpython-310.pyc
ADDED
Binary file (35 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/hooks.cpython-310.pyc
ADDED
Binary file (22.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/inference.cpython-310.pyc
ADDED
Binary file (6.09 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/launchers.cpython-310.pyc
ADDED
Binary file (8.06 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/local_sgd.cpython-310.pyc
ADDED
Binary file (3.62 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/logging.cpython-310.pyc
ADDED
Binary file (4.44 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/memory_utils.cpython-310.pyc
ADDED
Binary file (436 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/optimizer.cpython-310.pyc
ADDED
Binary file (7.48 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/scheduler.cpython-310.pyc
ADDED
Binary file (3.35 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/state.cpython-310.pyc
ADDED
Binary file (39.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/__pycache__/tracking.cpython-310.pyc
ADDED
Binary file (37.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/accelerator.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/big_modeling.py
ADDED
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import logging
|
16 |
+
import os
|
17 |
+
from contextlib import contextmanager
|
18 |
+
from functools import wraps
|
19 |
+
from typing import Dict, List, Optional, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
|
24 |
+
from .hooks import (
|
25 |
+
AlignDevicesHook,
|
26 |
+
CpuOffload,
|
27 |
+
UserCpuOffloadHook,
|
28 |
+
add_hook_to_module,
|
29 |
+
attach_align_device_hook,
|
30 |
+
attach_align_device_hook_on_blocks,
|
31 |
+
)
|
32 |
+
from .utils import (
|
33 |
+
OffloadedWeightsLoader,
|
34 |
+
check_cuda_p2p_ib_support,
|
35 |
+
check_device_map,
|
36 |
+
extract_submodules_state_dict,
|
37 |
+
find_tied_parameters,
|
38 |
+
get_balanced_memory,
|
39 |
+
infer_auto_device_map,
|
40 |
+
is_mlu_available,
|
41 |
+
is_npu_available,
|
42 |
+
is_torch_version,
|
43 |
+
is_xpu_available,
|
44 |
+
load_checkpoint_in_model,
|
45 |
+
offload_state_dict,
|
46 |
+
parse_flag_from_env,
|
47 |
+
retie_parameters,
|
48 |
+
)
|
49 |
+
from .utils.other import recursive_getattr
|
50 |
+
|
51 |
+
|
52 |
+
logger = logging.getLogger(__name__)
|
53 |
+
|
54 |
+
|
55 |
+
@contextmanager
|
56 |
+
def init_empty_weights(include_buffers: bool = None):
|
57 |
+
"""
|
58 |
+
A context manager under which models are initialized with all parameters on the meta device, therefore creating an
|
59 |
+
empty model. Useful when just initializing the model would blow the available RAM.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
include_buffers (`bool`, *optional*):
|
63 |
+
Whether or not to also put all buffers on the meta device while initializing.
|
64 |
+
|
65 |
+
Example:
|
66 |
+
|
67 |
+
```python
|
68 |
+
import torch.nn as nn
|
69 |
+
from accelerate import init_empty_weights
|
70 |
+
|
71 |
+
# Initialize a model with 100 billions parameters in no time and without using any RAM.
|
72 |
+
with init_empty_weights():
|
73 |
+
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
|
74 |
+
```
|
75 |
+
|
76 |
+
<Tip warning={true}>
|
77 |
+
|
78 |
+
Any model created under this context manager has no weights. As such you can't do something like
|
79 |
+
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
|
80 |
+
Make sure to overwrite the default device_map param for [`load_checkpoint_and_dispatch`], otherwise dispatch is not
|
81 |
+
called.
|
82 |
+
|
83 |
+
</Tip>
|
84 |
+
"""
|
85 |
+
if include_buffers is None:
|
86 |
+
include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False)
|
87 |
+
with init_on_device(torch.device("meta"), include_buffers=include_buffers) as f:
|
88 |
+
yield f
|
89 |
+
|
90 |
+
|
91 |
+
@contextmanager
|
92 |
+
def init_on_device(device: torch.device, include_buffers: bool = None):
|
93 |
+
"""
|
94 |
+
A context manager under which models are initialized with all parameters on the specified device.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
device (`torch.device`):
|
98 |
+
Device to initialize all parameters on.
|
99 |
+
include_buffers (`bool`, *optional*):
|
100 |
+
Whether or not to also put all buffers on the meta device while initializing.
|
101 |
+
|
102 |
+
Example:
|
103 |
+
|
104 |
+
```python
|
105 |
+
import torch.nn as nn
|
106 |
+
from accelerate import init_on_device
|
107 |
+
|
108 |
+
with init_on_device(device=torch.device("cuda")):
|
109 |
+
tst = nn.Liner(100, 100) # on `cuda` device
|
110 |
+
```
|
111 |
+
"""
|
112 |
+
if include_buffers is None:
|
113 |
+
include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False)
|
114 |
+
|
115 |
+
# TODO(shingjan): remove the torch version check once older versions are deprecated
|
116 |
+
if is_torch_version(">=", "2.0") and include_buffers:
|
117 |
+
with device:
|
118 |
+
yield
|
119 |
+
return
|
120 |
+
|
121 |
+
old_register_parameter = nn.Module.register_parameter
|
122 |
+
if include_buffers:
|
123 |
+
old_register_buffer = nn.Module.register_buffer
|
124 |
+
|
125 |
+
def register_empty_parameter(module, name, param):
|
126 |
+
old_register_parameter(module, name, param)
|
127 |
+
if param is not None:
|
128 |
+
param_cls = type(module._parameters[name])
|
129 |
+
kwargs = module._parameters[name].__dict__
|
130 |
+
kwargs["requires_grad"] = param.requires_grad
|
131 |
+
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
|
132 |
+
|
133 |
+
def register_empty_buffer(module, name, buffer, persistent=True):
|
134 |
+
old_register_buffer(module, name, buffer, persistent=persistent)
|
135 |
+
if buffer is not None:
|
136 |
+
module._buffers[name] = module._buffers[name].to(device)
|
137 |
+
|
138 |
+
# Patch tensor creation
|
139 |
+
if include_buffers:
|
140 |
+
tensor_constructors_to_patch = {
|
141 |
+
torch_function_name: getattr(torch, torch_function_name)
|
142 |
+
for torch_function_name in ["empty", "zeros", "ones", "full"]
|
143 |
+
}
|
144 |
+
else:
|
145 |
+
tensor_constructors_to_patch = {}
|
146 |
+
|
147 |
+
def patch_tensor_constructor(fn):
|
148 |
+
def wrapper(*args, **kwargs):
|
149 |
+
kwargs["device"] = device
|
150 |
+
return fn(*args, **kwargs)
|
151 |
+
|
152 |
+
return wrapper
|
153 |
+
|
154 |
+
try:
|
155 |
+
nn.Module.register_parameter = register_empty_parameter
|
156 |
+
if include_buffers:
|
157 |
+
nn.Module.register_buffer = register_empty_buffer
|
158 |
+
for torch_function_name in tensor_constructors_to_patch.keys():
|
159 |
+
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
|
160 |
+
yield
|
161 |
+
finally:
|
162 |
+
nn.Module.register_parameter = old_register_parameter
|
163 |
+
if include_buffers:
|
164 |
+
nn.Module.register_buffer = old_register_buffer
|
165 |
+
for torch_function_name, old_torch_function in tensor_constructors_to_patch.items():
|
166 |
+
setattr(torch, torch_function_name, old_torch_function)
|
167 |
+
|
168 |
+
|
169 |
+
def cpu_offload(
|
170 |
+
model: nn.Module,
|
171 |
+
execution_device: Optional[torch.device] = None,
|
172 |
+
offload_buffers: bool = False,
|
173 |
+
state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
174 |
+
preload_module_classes: Optional[List[str]] = None,
|
175 |
+
):
|
176 |
+
"""
|
177 |
+
Activates full CPU offload for a model. As a result, all parameters of the model will be offloaded and only one
|
178 |
+
copy of the state dict of the model will be kept. During the forward pass, parameters will be extracted from that
|
179 |
+
state dict and put on the execution device passed as they are needed, then offloaded again.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
model (`torch.nn.Module`):
|
183 |
+
The model to offload.
|
184 |
+
execution_device (`torch.device`, *optional*):
|
185 |
+
The device on which the forward pass of the model will be executed (should be a GPU). Will default to the
|
186 |
+
model first parameter device.
|
187 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
188 |
+
Whether or not to offload the buffers with the model parameters.
|
189 |
+
state_dict (`Dict[str, torch.Tensor]`, *optional*):
|
190 |
+
The state dict of the model that will be kept on CPU.
|
191 |
+
preload_module_classes (`List[str]`, *optional*):
|
192 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
193 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
194 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
195 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
196 |
+
"""
|
197 |
+
if execution_device is None:
|
198 |
+
execution_device = next(iter(model.parameters())).device
|
199 |
+
if state_dict is None:
|
200 |
+
state_dict = {n: p.to("cpu") for n, p in model.state_dict().items()}
|
201 |
+
|
202 |
+
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
|
203 |
+
attach_align_device_hook(
|
204 |
+
model,
|
205 |
+
execution_device=execution_device,
|
206 |
+
offload=True,
|
207 |
+
offload_buffers=offload_buffers,
|
208 |
+
weights_map=state_dict,
|
209 |
+
preload_module_classes=preload_module_classes,
|
210 |
+
)
|
211 |
+
|
212 |
+
return model
|
213 |
+
|
214 |
+
|
215 |
+
def cpu_offload_with_hook(
|
216 |
+
model: torch.nn.Module,
|
217 |
+
execution_device: Optional[Union[int, str, torch.device]] = None,
|
218 |
+
prev_module_hook: Optional[UserCpuOffloadHook] = None,
|
219 |
+
):
|
220 |
+
"""
|
221 |
+
Offloads a model on the CPU and puts it back to an execution device when executed. The difference with
|
222 |
+
[`cpu_offload`] is that the model stays on the execution device after the forward and is only offloaded again when
|
223 |
+
the `offload` method of the returned `hook` is called. Useful for pipelines running a model in a loop.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
model (`torch.nn.Module`):
|
227 |
+
The model to offload.
|
228 |
+
execution_device(`str`, `int` or `torch.device`, *optional*):
|
229 |
+
The device on which the model should be executed. Will default to the MPS device if it's available, then
|
230 |
+
GPU 0 if there is a GPU, and finally to the CPU.
|
231 |
+
prev_module_hook (`UserCpuOffloadHook`, *optional*):
|
232 |
+
The hook sent back by this function for a previous model in the pipeline you are running. If passed, its
|
233 |
+
offload method will be called just before the forward of the model to which this hook is attached.
|
234 |
+
|
235 |
+
Example:
|
236 |
+
|
237 |
+
```py
|
238 |
+
model_1, hook_1 = cpu_offload_with_hook(model_1, cuda_device)
|
239 |
+
model_2, hook_2 = cpu_offload_with_hook(model_2, cuda_device, prev_module_hook=hook_1)
|
240 |
+
model_3, hook_3 = cpu_offload_with_hook(model_3, cuda_device, prev_module_hook=hook_2)
|
241 |
+
|
242 |
+
hid_1 = model_1(input)
|
243 |
+
for i in range(50):
|
244 |
+
# model1 is offloaded on the CPU at the first iteration, model 2 stays on the GPU for this whole loop.
|
245 |
+
hid_2 = model_2(hid_1)
|
246 |
+
# model2 is offloaded to the CPU just before this forward.
|
247 |
+
hid_3 = model_3(hid_3)
|
248 |
+
|
249 |
+
# For model3, you need to manually call the hook offload method.
|
250 |
+
hook_3.offload()
|
251 |
+
```
|
252 |
+
"""
|
253 |
+
hook = CpuOffload(execution_device=execution_device, prev_module_hook=prev_module_hook)
|
254 |
+
add_hook_to_module(model, hook, append=True)
|
255 |
+
user_hook = UserCpuOffloadHook(model, hook)
|
256 |
+
return model, user_hook
|
257 |
+
|
258 |
+
|
259 |
+
def disk_offload(
|
260 |
+
model: nn.Module,
|
261 |
+
offload_dir: Union[str, os.PathLike],
|
262 |
+
execution_device: Optional[torch.device] = None,
|
263 |
+
offload_buffers: bool = False,
|
264 |
+
preload_module_classes: Optional[List[str]] = None,
|
265 |
+
):
|
266 |
+
"""
|
267 |
+
Activates full disk offload for a model. As a result, all parameters of the model will be offloaded as
|
268 |
+
memory-mapped array in a given folder. During the forward pass, parameters will be accessed from that folder and
|
269 |
+
put on the execution device passed as they are needed, then offloaded again.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
model (`torch.nn.Module`): The model to offload.
|
273 |
+
offload_dir (`str` or `os.PathLike`):
|
274 |
+
The folder in which to offload the model weights (or where the model weights are already offloaded).
|
275 |
+
execution_device (`torch.device`, *optional*):
|
276 |
+
The device on which the forward pass of the model will be executed (should be a GPU). Will default to the
|
277 |
+
model's first parameter device.
|
278 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
279 |
+
Whether or not to offload the buffers with the model parameters.
|
280 |
+
preload_module_classes (`List[str]`, *optional*):
|
281 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
282 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
283 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
284 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
285 |
+
"""
|
286 |
+
if not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")):
|
287 |
+
offload_state_dict(offload_dir, model.state_dict())
|
288 |
+
if execution_device is None:
|
289 |
+
execution_device = next(iter(model.parameters())).device
|
290 |
+
weights_map = OffloadedWeightsLoader(save_folder=offload_dir)
|
291 |
+
|
292 |
+
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
|
293 |
+
attach_align_device_hook(
|
294 |
+
model,
|
295 |
+
execution_device=execution_device,
|
296 |
+
offload=True,
|
297 |
+
offload_buffers=offload_buffers,
|
298 |
+
weights_map=weights_map,
|
299 |
+
preload_module_classes=preload_module_classes,
|
300 |
+
)
|
301 |
+
|
302 |
+
return model
|
303 |
+
|
304 |
+
|
305 |
+
def dispatch_model(
|
306 |
+
model: nn.Module,
|
307 |
+
device_map: Dict[str, Union[str, int, torch.device]],
|
308 |
+
main_device: Optional[torch.device] = None,
|
309 |
+
state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
310 |
+
offload_dir: Optional[Union[str, os.PathLike]] = None,
|
311 |
+
offload_index: Optional[Dict[str, str]] = None,
|
312 |
+
offload_buffers: bool = False,
|
313 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
314 |
+
preload_module_classes: Optional[List[str]] = None,
|
315 |
+
force_hooks: bool = False,
|
316 |
+
):
|
317 |
+
"""
|
318 |
+
Dispatches a model according to a given device map. Layers of the model might be spread across GPUs, offloaded on
|
319 |
+
the CPU or even the disk.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
model (`torch.nn.Module`):
|
323 |
+
The model to dispatch.
|
324 |
+
device_map (`Dict[str, Union[str, int, torch.device]]`):
|
325 |
+
A dictionary mapping module names in the models `state_dict` to the device they should go to. Note that
|
326 |
+
`"disk"` is accepted even if it's not a proper value for `torch.device`.
|
327 |
+
main_device (`str`, `int` or `torch.device`, *optional*):
|
328 |
+
The main execution device. Will default to the first device in the `device_map` different from `"cpu"` or
|
329 |
+
`"disk"`.
|
330 |
+
state_dict (`Dict[str, torch.Tensor]`, *optional*):
|
331 |
+
The state dict of the part of the model that will be kept on CPU.
|
332 |
+
offload_dir (`str` or `os.PathLike`):
|
333 |
+
The folder in which to offload the model weights (or where the model weights are already offloaded).
|
334 |
+
offload_index (`Dict`, *optional*):
|
335 |
+
A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default
|
336 |
+
to the index saved in `save_folder`.
|
337 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
338 |
+
Whether or not to offload the buffers with the model parameters.
|
339 |
+
skip_keys (`str` or `List[str]`, *optional*):
|
340 |
+
A list of keys to ignore when moving inputs or outputs between devices.
|
341 |
+
preload_module_classes (`List[str]`, *optional*):
|
342 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
343 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
344 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
345 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
346 |
+
force_hooks (`bool`, *optional*, defaults to `False`):
|
347 |
+
Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a
|
348 |
+
single device.
|
349 |
+
"""
|
350 |
+
# Error early if the device map is incomplete.
|
351 |
+
check_device_map(model, device_map)
|
352 |
+
|
353 |
+
# for backward compatibility
|
354 |
+
is_bnb_quantized = (
|
355 |
+
getattr(model, "is_quantized", False) or getattr(model, "is_loaded_in_8bit", False)
|
356 |
+
) and getattr(model, "quantization_method", "bitsandbytes") == "bitsandbytes"
|
357 |
+
|
358 |
+
# We attach hooks if the device_map has at least 2 different devices or if
|
359 |
+
# force_hooks is set to `True`. Otherwise, the model in already loaded
|
360 |
+
# in the unique device and the user can decide where to dispatch the model.
|
361 |
+
# If the model is quantized, we always force-dispatch the model
|
362 |
+
if (len(set(device_map.values())) > 1) or is_bnb_quantized or force_hooks:
|
363 |
+
if main_device is None:
|
364 |
+
if set(device_map.values()) == {"cpu"} or set(device_map.values()) == {"cpu", "disk"}:
|
365 |
+
main_device = "cpu"
|
366 |
+
else:
|
367 |
+
main_device = [d for d in device_map.values() if d not in ["cpu", "disk"]][0]
|
368 |
+
|
369 |
+
if main_device != "cpu":
|
370 |
+
cpu_modules = [name for name, device in device_map.items() if device == "cpu"]
|
371 |
+
if state_dict is None and len(cpu_modules) > 0:
|
372 |
+
state_dict = extract_submodules_state_dict(model.state_dict(), cpu_modules)
|
373 |
+
|
374 |
+
disk_modules = [name for name, device in device_map.items() if device == "disk"]
|
375 |
+
if offload_dir is None and offload_index is None and len(disk_modules) > 0:
|
376 |
+
raise ValueError(
|
377 |
+
"We need an `offload_dir` to dispatch this model according to this `device_map`, the following submodules "
|
378 |
+
f"need to be offloaded: {', '.join(disk_modules)}."
|
379 |
+
)
|
380 |
+
if (
|
381 |
+
len(disk_modules) > 0
|
382 |
+
and offload_index is None
|
383 |
+
and (not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")))
|
384 |
+
):
|
385 |
+
disk_state_dict = extract_submodules_state_dict(model.state_dict(), disk_modules)
|
386 |
+
offload_state_dict(offload_dir, disk_state_dict)
|
387 |
+
|
388 |
+
execution_device = {
|
389 |
+
name: main_device if device in ["cpu", "disk"] else device for name, device in device_map.items()
|
390 |
+
}
|
391 |
+
execution_device[""] = main_device
|
392 |
+
offloaded_devices = ["disk"] if main_device == "cpu" or main_device == "mps" else ["cpu", "disk"]
|
393 |
+
offload = {name: device in offloaded_devices for name, device in device_map.items()}
|
394 |
+
save_folder = offload_dir if len(disk_modules) > 0 else None
|
395 |
+
if state_dict is not None or save_folder is not None or offload_index is not None:
|
396 |
+
device = main_device if offload_index is not None else None
|
397 |
+
weights_map = OffloadedWeightsLoader(
|
398 |
+
state_dict=state_dict, save_folder=save_folder, index=offload_index, device=device
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
weights_map = None
|
402 |
+
|
403 |
+
# When dispatching the model's parameters to the devices specified in device_map, we want to avoid allocating memory several times for the
|
404 |
+
# tied parameters. The dictionary tied_params_map keeps track of the already allocated data for a given tied parameter (represented by its
|
405 |
+
# original pointer) on each devices.
|
406 |
+
tied_params = find_tied_parameters(model)
|
407 |
+
|
408 |
+
tied_params_map = {}
|
409 |
+
for group in tied_params:
|
410 |
+
for param_name in group:
|
411 |
+
# data_ptr() is enough here, as `find_tied_parameters` finds tied params simply by comparing `param1 is param2`, so we don't need
|
412 |
+
# to care about views of tensors through storage_offset.
|
413 |
+
data_ptr = recursive_getattr(model, param_name).data_ptr()
|
414 |
+
tied_params_map[data_ptr] = {}
|
415 |
+
|
416 |
+
# Note: To handle the disk offloading case, we can not simply use weights_map[param_name].data_ptr() as the reference pointer,
|
417 |
+
# as we have no guarantee that safetensors' `file.get_tensor()` will always give the same pointer.
|
418 |
+
|
419 |
+
attach_align_device_hook_on_blocks(
|
420 |
+
model,
|
421 |
+
execution_device=execution_device,
|
422 |
+
offload=offload,
|
423 |
+
offload_buffers=offload_buffers,
|
424 |
+
weights_map=weights_map,
|
425 |
+
skip_keys=skip_keys,
|
426 |
+
preload_module_classes=preload_module_classes,
|
427 |
+
tied_params_map=tied_params_map,
|
428 |
+
)
|
429 |
+
|
430 |
+
# warn if there is any params on the meta device
|
431 |
+
offloaded_devices_str = " and ".join(
|
432 |
+
[device for device in set(device_map.values()) if device in ("cpu", "disk")]
|
433 |
+
)
|
434 |
+
if len(offloaded_devices_str) > 0:
|
435 |
+
logging.warning(
|
436 |
+
f"Some parameters are on the meta device device because they were offloaded to the {offloaded_devices_str}."
|
437 |
+
)
|
438 |
+
|
439 |
+
# Attaching the hook may break tied weights, so we retie them
|
440 |
+
retie_parameters(model, tied_params)
|
441 |
+
|
442 |
+
# add warning to cuda and to method
|
443 |
+
def add_warning(fn, model):
|
444 |
+
@wraps(fn)
|
445 |
+
def wrapper(*args, **kwargs):
|
446 |
+
warning_msg = "You shouldn't move a model that is dispatched using accelerate hooks."
|
447 |
+
if str(fn.__name__) == "to":
|
448 |
+
to_device = torch._C._nn._parse_to(*args, **kwargs)[0]
|
449 |
+
if to_device is not None:
|
450 |
+
logger.warning(warning_msg)
|
451 |
+
else:
|
452 |
+
logger.warning(warning_msg)
|
453 |
+
for param in model.parameters():
|
454 |
+
if param.device == torch.device("meta"):
|
455 |
+
raise RuntimeError("You can't move a model that has some modules offloaded to cpu or disk.")
|
456 |
+
return fn(*args, **kwargs)
|
457 |
+
|
458 |
+
return wrapper
|
459 |
+
|
460 |
+
model.to = add_warning(model.to, model)
|
461 |
+
if is_npu_available():
|
462 |
+
model.npu = add_warning(model.npu, model)
|
463 |
+
elif is_mlu_available():
|
464 |
+
model.mlu = add_warning(model.mlu, model)
|
465 |
+
elif is_xpu_available():
|
466 |
+
model.xpu = add_warning(model.xpu, model)
|
467 |
+
else:
|
468 |
+
model.cuda = add_warning(model.cuda, model)
|
469 |
+
|
470 |
+
# Check if we are using multi-gpus with RTX 4000 series
|
471 |
+
use_multi_gpu = len([device for device in set(device_map.values()) if device not in ("cpu", "disk")]) > 1
|
472 |
+
if use_multi_gpu and not check_cuda_p2p_ib_support():
|
473 |
+
logger.warning(
|
474 |
+
"We've detected an older driver with an RTX 4000 series GPU. These drivers have issues with P2P. "
|
475 |
+
"This can affect the multi-gpu inference when using accelerate device_map."
|
476 |
+
"Please make sure to update your driver to the latest version which resolves this."
|
477 |
+
)
|
478 |
+
else:
|
479 |
+
device = list(device_map.values())[0]
|
480 |
+
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
|
481 |
+
if is_npu_available() and isinstance(device, int):
|
482 |
+
device = f"npu:{device}"
|
483 |
+
elif is_mlu_available() and isinstance(device, int):
|
484 |
+
device = f"mlu:{device}"
|
485 |
+
elif is_xpu_available() and isinstance(device, int):
|
486 |
+
device = f"xpu:{device}"
|
487 |
+
if device != "disk":
|
488 |
+
model.to(device)
|
489 |
+
else:
|
490 |
+
raise ValueError(
|
491 |
+
"You are trying to offload the whole model to the disk. Please use the `disk_offload` function instead."
|
492 |
+
)
|
493 |
+
# Convert OrderedDict back to dict for easier usage
|
494 |
+
model.hf_device_map = dict(device_map)
|
495 |
+
return model
|
496 |
+
|
497 |
+
|
498 |
+
def load_checkpoint_and_dispatch(
|
499 |
+
model: nn.Module,
|
500 |
+
checkpoint: Union[str, os.PathLike],
|
501 |
+
device_map: Optional[Union[str, Dict[str, Union[int, str, torch.device]]]] = None,
|
502 |
+
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
|
503 |
+
no_split_module_classes: Optional[List[str]] = None,
|
504 |
+
offload_folder: Optional[Union[str, os.PathLike]] = None,
|
505 |
+
offload_buffers: bool = False,
|
506 |
+
dtype: Optional[Union[str, torch.dtype]] = None,
|
507 |
+
offload_state_dict: Optional[bool] = None,
|
508 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
509 |
+
preload_module_classes: Optional[List[str]] = None,
|
510 |
+
force_hooks: bool = False,
|
511 |
+
strict: bool = False,
|
512 |
+
):
|
513 |
+
"""
|
514 |
+
Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are
|
515 |
+
loaded and adds the various hooks that will make this model run properly (even if split across devices).
|
516 |
+
|
517 |
+
Args:
|
518 |
+
model (`torch.nn.Module`): The model in which we want to load a checkpoint.
|
519 |
+
checkpoint (`str` or `os.PathLike`):
|
520 |
+
The folder checkpoint to load. It can be:
|
521 |
+
- a path to a file containing a whole model state dict
|
522 |
+
- a path to a `.json` file containing the index to a sharded checkpoint
|
523 |
+
- a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
|
524 |
+
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
|
525 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
|
526 |
+
name, once a given module name is inside, every submodule of it will be sent to the same device.
|
527 |
+
|
528 |
+
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more
|
529 |
+
information about each option see [here](../concept_guides/big_model_inference#designing-a-device-map).
|
530 |
+
Defaults to None, which means [`dispatch_model`] will not be called.
|
531 |
+
max_memory (`Dict`, *optional*):
|
532 |
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU
|
533 |
+
and the available CPU RAM if unset.
|
534 |
+
no_split_module_classes (`List[str]`, *optional*):
|
535 |
+
A list of layer class names that should never be split across device (for instance any layer that has a
|
536 |
+
residual connection).
|
537 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
538 |
+
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
|
539 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
540 |
+
In the layers that are offloaded on the CPU or the hard drive, whether or not to offload the buffers as
|
541 |
+
well as the parameters.
|
542 |
+
dtype (`str` or `torch.dtype`, *optional*):
|
543 |
+
If provided, the weights will be converted to that type when loaded.
|
544 |
+
offload_state_dict (`bool`, *optional*):
|
545 |
+
If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
|
546 |
+
the weight of the CPU state dict + the biggest shard does not fit. Will default to `True` if the device map
|
547 |
+
picked contains `"disk"` values.
|
548 |
+
skip_keys (`str` or `List[str]`, *optional*):
|
549 |
+
A list of keys to ignore when moving inputs or outputs between devices.
|
550 |
+
preload_module_classes (`List[str]`, *optional*):
|
551 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
552 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
553 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
554 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
555 |
+
force_hooks (`bool`, *optional*, defaults to `False`):
|
556 |
+
Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a
|
557 |
+
single device.
|
558 |
+
strict (`bool`, *optional*, defaults to `False`):
|
559 |
+
Whether to strictly enforce that the keys in the checkpoint state_dict match the keys of the model's
|
560 |
+
state_dict.
|
561 |
+
|
562 |
+
Example:
|
563 |
+
|
564 |
+
```python
|
565 |
+
>>> from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
566 |
+
>>> from huggingface_hub import hf_hub_download
|
567 |
+
>>> from transformers import AutoConfig, AutoModelForCausalLM
|
568 |
+
|
569 |
+
>>> # Download the Weights
|
570 |
+
>>> checkpoint = "EleutherAI/gpt-j-6B"
|
571 |
+
>>> weights_location = hf_hub_download(checkpoint, "pytorch_model.bin")
|
572 |
+
|
573 |
+
>>> # Create a model and initialize it with empty weights
|
574 |
+
>>> config = AutoConfig.from_pretrained(checkpoint)
|
575 |
+
>>> with init_empty_weights():
|
576 |
+
... model = AutoModelForCausalLM.from_config(config)
|
577 |
+
|
578 |
+
>>> # Load the checkpoint and dispatch it to the right devices
|
579 |
+
>>> model = load_checkpoint_and_dispatch(
|
580 |
+
... model, weights_location, device_map="auto", no_split_module_classes=["GPTJBlock"]
|
581 |
+
... )
|
582 |
+
```
|
583 |
+
"""
|
584 |
+
if isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
|
585 |
+
raise ValueError(
|
586 |
+
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
|
587 |
+
"'sequential'."
|
588 |
+
)
|
589 |
+
if isinstance(device_map, str):
|
590 |
+
if device_map != "sequential":
|
591 |
+
max_memory = get_balanced_memory(
|
592 |
+
model,
|
593 |
+
max_memory=max_memory,
|
594 |
+
no_split_module_classes=no_split_module_classes,
|
595 |
+
dtype=dtype,
|
596 |
+
low_zero=(device_map == "balanced_low_0"),
|
597 |
+
)
|
598 |
+
device_map = infer_auto_device_map(
|
599 |
+
model,
|
600 |
+
max_memory=max_memory,
|
601 |
+
no_split_module_classes=no_split_module_classes,
|
602 |
+
dtype=dtype,
|
603 |
+
offload_buffers=offload_buffers,
|
604 |
+
)
|
605 |
+
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
|
606 |
+
offload_state_dict = True
|
607 |
+
load_checkpoint_in_model(
|
608 |
+
model,
|
609 |
+
checkpoint,
|
610 |
+
device_map=device_map,
|
611 |
+
offload_folder=offload_folder,
|
612 |
+
dtype=dtype,
|
613 |
+
offload_state_dict=offload_state_dict,
|
614 |
+
offload_buffers=offload_buffers,
|
615 |
+
strict=strict,
|
616 |
+
)
|
617 |
+
if device_map is None:
|
618 |
+
return model
|
619 |
+
return dispatch_model(
|
620 |
+
model,
|
621 |
+
device_map=device_map,
|
622 |
+
offload_dir=offload_folder,
|
623 |
+
offload_buffers=offload_buffers,
|
624 |
+
skip_keys=skip_keys,
|
625 |
+
preload_module_classes=preload_module_classes,
|
626 |
+
force_hooks=force_hooks,
|
627 |
+
)
|
llmeval-env/lib/python3.10/site-packages/accelerate/checkpointing.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import random
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import List
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
from safetensors.torch import load_file
|
22 |
+
from torch.cuda.amp import GradScaler
|
23 |
+
|
24 |
+
from .utils import (
|
25 |
+
MODEL_NAME,
|
26 |
+
OPTIMIZER_NAME,
|
27 |
+
RNG_STATE_NAME,
|
28 |
+
SAFE_MODEL_NAME,
|
29 |
+
SAFE_WEIGHTS_NAME,
|
30 |
+
SAMPLER_NAME,
|
31 |
+
SCALER_NAME,
|
32 |
+
SCHEDULER_NAME,
|
33 |
+
WEIGHTS_NAME,
|
34 |
+
get_pretty_name,
|
35 |
+
is_torch_xla_available,
|
36 |
+
is_xpu_available,
|
37 |
+
save,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
if is_torch_xla_available():
|
42 |
+
import torch_xla.core.xla_model as xm
|
43 |
+
|
44 |
+
from .logging import get_logger
|
45 |
+
from .state import PartialState
|
46 |
+
|
47 |
+
|
48 |
+
logger = get_logger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
def save_accelerator_state(
|
52 |
+
output_dir: str,
|
53 |
+
model_states: List[dict],
|
54 |
+
optimizers: list,
|
55 |
+
schedulers: list,
|
56 |
+
dataloaders: list,
|
57 |
+
process_index: int,
|
58 |
+
scaler: GradScaler = None,
|
59 |
+
save_on_each_node: bool = False,
|
60 |
+
safe_serialization: bool = True,
|
61 |
+
):
|
62 |
+
"""
|
63 |
+
Saves the current states of the models, optimizers, scaler, and RNG generators to a given directory.
|
64 |
+
|
65 |
+
<Tip>
|
66 |
+
|
67 |
+
If `safe_serialization` is `True`, models will be saved with `safetensors` while the rest are saved using native
|
68 |
+
`pickle`.
|
69 |
+
|
70 |
+
</Tip>
|
71 |
+
|
72 |
+
Args:
|
73 |
+
output_dir (`str` or `os.PathLike`):
|
74 |
+
The name of the folder to save all relevant weights and states.
|
75 |
+
model_states (`List[torch.nn.Module]`):
|
76 |
+
A list of model states
|
77 |
+
optimizers (`List[torch.optim.Optimizer]`):
|
78 |
+
A list of optimizer instances
|
79 |
+
schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`):
|
80 |
+
A list of learning rate schedulers
|
81 |
+
dataloaders (`List[torch.utils.data.DataLoader]`):
|
82 |
+
A list of dataloader instances to save their sampler states
|
83 |
+
process_index (`int`):
|
84 |
+
The current process index in the Accelerator state
|
85 |
+
scaler (`torch.cuda.amp.GradScaler`, *optional*):
|
86 |
+
An optional gradient scaler instance to save
|
87 |
+
save_on_each_node (`bool`, *optional*):
|
88 |
+
Whether to save on every node, or only the main node.
|
89 |
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
90 |
+
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
91 |
+
"""
|
92 |
+
output_dir = Path(output_dir)
|
93 |
+
# Model states
|
94 |
+
for i, state in enumerate(model_states):
|
95 |
+
weights_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
|
96 |
+
if i > 0:
|
97 |
+
weights_name = weights_name.replace(".", f"_{i}.")
|
98 |
+
output_model_file = output_dir.joinpath(weights_name)
|
99 |
+
save(state, output_model_file, save_on_each_node=save_on_each_node, safe_serialization=safe_serialization)
|
100 |
+
logger.info(f"Model weights saved in {output_model_file}")
|
101 |
+
# Optimizer states
|
102 |
+
for i, opt in enumerate(optimizers):
|
103 |
+
state = opt.state_dict()
|
104 |
+
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
|
105 |
+
output_optimizer_file = output_dir.joinpath(optimizer_name)
|
106 |
+
save(state, output_optimizer_file, save_on_each_node=save_on_each_node, safe_serialization=False)
|
107 |
+
logger.info(f"Optimizer state saved in {output_optimizer_file}")
|
108 |
+
# Scheduler states
|
109 |
+
for i, scheduler in enumerate(schedulers):
|
110 |
+
state = scheduler.state_dict()
|
111 |
+
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
|
112 |
+
output_scheduler_file = output_dir.joinpath(scheduler_name)
|
113 |
+
save(state, output_scheduler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
|
114 |
+
logger.info(f"Scheduler state saved in {output_scheduler_file}")
|
115 |
+
# DataLoader states
|
116 |
+
for i, dataloader in enumerate(dataloaders):
|
117 |
+
sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
|
118 |
+
output_sampler_file = output_dir.joinpath(sampler_name)
|
119 |
+
# Only save if we have our custom sampler
|
120 |
+
from .data_loader import IterableDatasetShard, SeedableRandomSampler
|
121 |
+
|
122 |
+
if isinstance(dataloader.dataset, IterableDatasetShard):
|
123 |
+
sampler = dataloader.get_sampler()
|
124 |
+
if isinstance(sampler, SeedableRandomSampler):
|
125 |
+
save(sampler, output_sampler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
|
126 |
+
logger.info(f"Sampler state for dataloader {i} saved in {output_sampler_file}")
|
127 |
+
|
128 |
+
# GradScaler state
|
129 |
+
if scaler is not None:
|
130 |
+
state = scaler.state_dict()
|
131 |
+
output_scaler_file = output_dir.joinpath(SCALER_NAME)
|
132 |
+
torch.save(state, output_scaler_file)
|
133 |
+
logger.info(f"Gradient scaler state saved in {output_scaler_file}")
|
134 |
+
# Random number generator states
|
135 |
+
states = {}
|
136 |
+
states_name = f"{RNG_STATE_NAME}_{process_index}.pkl"
|
137 |
+
states["random_state"] = random.getstate()
|
138 |
+
states["numpy_random_seed"] = np.random.get_state()
|
139 |
+
states["torch_manual_seed"] = torch.get_rng_state()
|
140 |
+
if is_xpu_available():
|
141 |
+
states["torch_xpu_manual_seed"] = torch.xpu.get_rng_state_all()
|
142 |
+
else:
|
143 |
+
states["torch_cuda_manual_seed"] = torch.cuda.get_rng_state_all()
|
144 |
+
if is_torch_xla_available():
|
145 |
+
states["xm_seed"] = xm.get_rng_state()
|
146 |
+
output_states_file = output_dir.joinpath(states_name)
|
147 |
+
torch.save(states, output_states_file)
|
148 |
+
logger.info(f"Random states saved in {output_states_file}")
|
149 |
+
return output_dir
|
150 |
+
|
151 |
+
|
152 |
+
def load_accelerator_state(
|
153 |
+
input_dir,
|
154 |
+
models,
|
155 |
+
optimizers,
|
156 |
+
schedulers,
|
157 |
+
dataloaders,
|
158 |
+
process_index,
|
159 |
+
scaler=None,
|
160 |
+
map_location=None,
|
161 |
+
**load_model_func_kwargs,
|
162 |
+
):
|
163 |
+
"""
|
164 |
+
Loads states of the models, optimizers, scaler, and RNG generators from a given directory.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
input_dir (`str` or `os.PathLike`):
|
168 |
+
The name of the folder to load all relevant weights and states.
|
169 |
+
models (`List[torch.nn.Module]`):
|
170 |
+
A list of model instances
|
171 |
+
optimizers (`List[torch.optim.Optimizer]`):
|
172 |
+
A list of optimizer instances
|
173 |
+
schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`):
|
174 |
+
A list of learning rate schedulers
|
175 |
+
process_index (`int`):
|
176 |
+
The current process index in the Accelerator state
|
177 |
+
scaler (`torch.cuda.amp.GradScaler`, *optional*):
|
178 |
+
An optional *GradScaler* instance to load
|
179 |
+
map_location (`str`, *optional*):
|
180 |
+
What device to load the optimizer state onto. Should be one of either "cpu" or "on_device".
|
181 |
+
load_model_func_kwargs (`dict`, *optional*):
|
182 |
+
Additional arguments that can be passed to the model's `load_state_dict` method.
|
183 |
+
"""
|
184 |
+
if map_location not in [None, "cpu", "on_device"]:
|
185 |
+
raise TypeError(
|
186 |
+
"Unsupported optimizer map location passed, please choose one of `None`, `'cpu'`, or `'on_device'`"
|
187 |
+
)
|
188 |
+
if map_location is None:
|
189 |
+
map_location = "cpu"
|
190 |
+
elif map_location == "on_device":
|
191 |
+
map_location = PartialState().device
|
192 |
+
|
193 |
+
input_dir = Path(input_dir)
|
194 |
+
# Model states
|
195 |
+
for i, model in enumerate(models):
|
196 |
+
ending = f"_{i}" if i > 0 else ""
|
197 |
+
input_model_file = input_dir.joinpath(f"{SAFE_MODEL_NAME}{ending}.safetensors")
|
198 |
+
if input_model_file.exists():
|
199 |
+
state_dict = load_file(input_model_file, device=str(map_location))
|
200 |
+
else:
|
201 |
+
# Load with torch
|
202 |
+
input_model_file = input_dir.joinpath(f"{MODEL_NAME}{ending}.bin")
|
203 |
+
state_dict = torch.load(input_model_file, map_location=map_location)
|
204 |
+
models[i].load_state_dict(state_dict, **load_model_func_kwargs)
|
205 |
+
logger.info("All model weights loaded successfully")
|
206 |
+
|
207 |
+
# Optimizer states
|
208 |
+
for i, opt in enumerate(optimizers):
|
209 |
+
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
|
210 |
+
input_optimizer_file = input_dir.joinpath(optimizer_name)
|
211 |
+
optimizer_state = torch.load(input_optimizer_file, map_location=map_location)
|
212 |
+
optimizers[i].load_state_dict(optimizer_state)
|
213 |
+
logger.info("All optimizer states loaded successfully")
|
214 |
+
|
215 |
+
# Scheduler states
|
216 |
+
for i, scheduler in enumerate(schedulers):
|
217 |
+
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
|
218 |
+
input_scheduler_file = input_dir.joinpath(scheduler_name)
|
219 |
+
scheduler.load_state_dict(torch.load(input_scheduler_file))
|
220 |
+
logger.info("All scheduler states loaded successfully")
|
221 |
+
|
222 |
+
for i, dataloader in enumerate(dataloaders):
|
223 |
+
sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
|
224 |
+
input_sampler_file = input_dir.joinpath(sampler_name)
|
225 |
+
# Only load if we have our custom sampler
|
226 |
+
from .data_loader import IterableDatasetShard, SeedableRandomSampler
|
227 |
+
|
228 |
+
if isinstance(dataloader.dataset, IterableDatasetShard):
|
229 |
+
sampler = dataloader.get_sampler()
|
230 |
+
if isinstance(sampler, SeedableRandomSampler):
|
231 |
+
sampler = dataloader.set_sampler(torch.load(input_sampler_file))
|
232 |
+
logger.info("All dataloader sampler states loaded successfully")
|
233 |
+
|
234 |
+
# GradScaler state
|
235 |
+
if scaler is not None:
|
236 |
+
input_scaler_file = input_dir.joinpath(SCALER_NAME)
|
237 |
+
scaler.load_state_dict(torch.load(input_scaler_file))
|
238 |
+
logger.info("GradScaler state loaded successfully")
|
239 |
+
|
240 |
+
# Random states
|
241 |
+
try:
|
242 |
+
states = torch.load(input_dir.joinpath(f"{RNG_STATE_NAME}_{process_index}.pkl"))
|
243 |
+
random.setstate(states["random_state"])
|
244 |
+
np.random.set_state(states["numpy_random_seed"])
|
245 |
+
torch.set_rng_state(states["torch_manual_seed"])
|
246 |
+
if is_xpu_available():
|
247 |
+
torch.xpu.set_rng_state_all(states["torch_xpu_manual_seed"])
|
248 |
+
else:
|
249 |
+
torch.cuda.set_rng_state_all(states["torch_cuda_manual_seed"])
|
250 |
+
if is_torch_xla_available():
|
251 |
+
xm.set_rng_state(states["xm_seed"])
|
252 |
+
logger.info("All random states loaded successfully")
|
253 |
+
except Exception:
|
254 |
+
logger.info("Could not load random states")
|
255 |
+
|
256 |
+
|
257 |
+
def save_custom_state(obj, path, index: int = 0, save_on_each_node: bool = False):
|
258 |
+
"""
|
259 |
+
Saves the state of `obj` to `{path}/custom_checkpoint_{index}.pkl`
|
260 |
+
"""
|
261 |
+
# Should this be the right way to get a qual_name type value from `obj`?
|
262 |
+
save_location = Path(path) / f"custom_checkpoint_{index}.pkl"
|
263 |
+
logger.info(f"Saving the state of {get_pretty_name(obj)} to {save_location}")
|
264 |
+
save(obj.state_dict(), save_location, save_on_each_node=save_on_each_node)
|
265 |
+
|
266 |
+
|
267 |
+
def load_custom_state(obj, path, index: int = 0):
|
268 |
+
"""
|
269 |
+
Loads the state of `obj` at `{path}/custom_checkpoint_{index}.pkl`
|
270 |
+
"""
|
271 |
+
load_location = f"{path}/custom_checkpoint_{index}.pkl"
|
272 |
+
logger.info(f"Loading the state of {get_pretty_name(obj)} from {load_location}")
|
273 |
+
obj.load_state_dict(torch.load(load_location, map_location="cpu"))
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/accelerate_cli.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
from accelerate.commands.config import get_config_parser
|
18 |
+
from accelerate.commands.env import env_command_parser
|
19 |
+
from accelerate.commands.estimate import estimate_command_parser
|
20 |
+
from accelerate.commands.launch import launch_command_parser
|
21 |
+
from accelerate.commands.test import test_command_parser
|
22 |
+
from accelerate.commands.tpu import tpu_command_parser
|
23 |
+
from accelerate.commands.utils import CustomArgumentParser
|
24 |
+
|
25 |
+
|
26 |
+
def main():
|
27 |
+
parser = CustomArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=False)
|
28 |
+
subparsers = parser.add_subparsers(help="accelerate command helpers")
|
29 |
+
|
30 |
+
# Register commands
|
31 |
+
get_config_parser(subparsers=subparsers)
|
32 |
+
estimate_command_parser(subparsers=subparsers)
|
33 |
+
env_command_parser(subparsers=subparsers)
|
34 |
+
launch_command_parser(subparsers=subparsers)
|
35 |
+
tpu_command_parser(subparsers=subparsers)
|
36 |
+
test_command_parser(subparsers=subparsers)
|
37 |
+
|
38 |
+
# Let's go
|
39 |
+
args = parser.parse_args()
|
40 |
+
|
41 |
+
if not hasattr(args, "func"):
|
42 |
+
parser.print_help()
|
43 |
+
exit(1)
|
44 |
+
|
45 |
+
# Run
|
46 |
+
args.func(args)
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/config/sagemaker.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
|
19 |
+
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
|
20 |
+
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
|
21 |
+
from ...utils.imports import is_boto3_available
|
22 |
+
from .config_args import SageMakerConfig
|
23 |
+
from .config_utils import (
|
24 |
+
DYNAMO_BACKENDS,
|
25 |
+
_ask_field,
|
26 |
+
_ask_options,
|
27 |
+
_convert_dynamo_backend,
|
28 |
+
_convert_mixed_precision,
|
29 |
+
_convert_sagemaker_distributed_mode,
|
30 |
+
_convert_yes_no_to_bool,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
if is_boto3_available():
|
35 |
+
import boto3 # noqa: F401
|
36 |
+
|
37 |
+
|
38 |
+
def _create_iam_role_for_sagemaker(role_name):
|
39 |
+
iam_client = boto3.client("iam")
|
40 |
+
|
41 |
+
sagemaker_trust_policy = {
|
42 |
+
"Version": "2012-10-17",
|
43 |
+
"Statement": [
|
44 |
+
{"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"}
|
45 |
+
],
|
46 |
+
}
|
47 |
+
try:
|
48 |
+
# create the role, associated with the chosen trust policy
|
49 |
+
iam_client.create_role(
|
50 |
+
RoleName=role_name, AssumeRolePolicyDocument=json.dumps(sagemaker_trust_policy, indent=2)
|
51 |
+
)
|
52 |
+
policy_document = {
|
53 |
+
"Version": "2012-10-17",
|
54 |
+
"Statement": [
|
55 |
+
{
|
56 |
+
"Effect": "Allow",
|
57 |
+
"Action": [
|
58 |
+
"sagemaker:*",
|
59 |
+
"ecr:GetDownloadUrlForLayer",
|
60 |
+
"ecr:BatchGetImage",
|
61 |
+
"ecr:BatchCheckLayerAvailability",
|
62 |
+
"ecr:GetAuthorizationToken",
|
63 |
+
"cloudwatch:PutMetricData",
|
64 |
+
"cloudwatch:GetMetricData",
|
65 |
+
"cloudwatch:GetMetricStatistics",
|
66 |
+
"cloudwatch:ListMetrics",
|
67 |
+
"logs:CreateLogGroup",
|
68 |
+
"logs:CreateLogStream",
|
69 |
+
"logs:DescribeLogStreams",
|
70 |
+
"logs:PutLogEvents",
|
71 |
+
"logs:GetLogEvents",
|
72 |
+
"s3:CreateBucket",
|
73 |
+
"s3:ListBucket",
|
74 |
+
"s3:GetBucketLocation",
|
75 |
+
"s3:GetObject",
|
76 |
+
"s3:PutObject",
|
77 |
+
],
|
78 |
+
"Resource": "*",
|
79 |
+
}
|
80 |
+
],
|
81 |
+
}
|
82 |
+
# attach policy to role
|
83 |
+
iam_client.put_role_policy(
|
84 |
+
RoleName=role_name,
|
85 |
+
PolicyName=f"{role_name}_policy_permission",
|
86 |
+
PolicyDocument=json.dumps(policy_document, indent=2),
|
87 |
+
)
|
88 |
+
except iam_client.exceptions.EntityAlreadyExistsException:
|
89 |
+
print(f"role {role_name} already exists. Using existing one")
|
90 |
+
|
91 |
+
|
92 |
+
def _get_iam_role_arn(role_name):
|
93 |
+
iam_client = boto3.client("iam")
|
94 |
+
return iam_client.get_role(RoleName=role_name)["Role"]["Arn"]
|
95 |
+
|
96 |
+
|
97 |
+
def get_sagemaker_input():
|
98 |
+
credentials_configuration = _ask_options(
|
99 |
+
"How do you want to authorize?",
|
100 |
+
["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "],
|
101 |
+
int,
|
102 |
+
)
|
103 |
+
aws_profile = None
|
104 |
+
if credentials_configuration == 0:
|
105 |
+
aws_profile = _ask_field("Enter your AWS Profile name: [default] ", default="default")
|
106 |
+
os.environ["AWS_PROFILE"] = aws_profile
|
107 |
+
else:
|
108 |
+
print(
|
109 |
+
"Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"
|
110 |
+
"`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`"
|
111 |
+
)
|
112 |
+
aws_access_key_id = _ask_field("AWS Access Key ID: ")
|
113 |
+
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
|
114 |
+
|
115 |
+
aws_secret_access_key = _ask_field("AWS Secret Access Key: ")
|
116 |
+
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
|
117 |
+
|
118 |
+
aws_region = _ask_field("Enter your AWS Region: [us-east-1]", default="us-east-1")
|
119 |
+
os.environ["AWS_DEFAULT_REGION"] = aws_region
|
120 |
+
|
121 |
+
role_management = _ask_options(
|
122 |
+
"Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?",
|
123 |
+
["Provide IAM Role name", "Create new IAM role using credentials"],
|
124 |
+
int,
|
125 |
+
)
|
126 |
+
if role_management == 0:
|
127 |
+
iam_role_name = _ask_field("Enter your IAM role name: ")
|
128 |
+
else:
|
129 |
+
iam_role_name = "accelerate_sagemaker_execution_role"
|
130 |
+
print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials')
|
131 |
+
_create_iam_role_for_sagemaker(iam_role_name)
|
132 |
+
|
133 |
+
is_custom_docker_image = _ask_field(
|
134 |
+
"Do you want to use custom Docker image? [yes/NO]: ",
|
135 |
+
_convert_yes_no_to_bool,
|
136 |
+
default=False,
|
137 |
+
error_message="Please enter yes or no.",
|
138 |
+
)
|
139 |
+
docker_image = None
|
140 |
+
if is_custom_docker_image:
|
141 |
+
docker_image = _ask_field("Enter your Docker image: ", lambda x: str(x).lower())
|
142 |
+
|
143 |
+
is_sagemaker_inputs_enabled = _ask_field(
|
144 |
+
"Do you want to provide SageMaker input channels with data locations? [yes/NO]: ",
|
145 |
+
_convert_yes_no_to_bool,
|
146 |
+
default=False,
|
147 |
+
error_message="Please enter yes or no.",
|
148 |
+
)
|
149 |
+
sagemaker_inputs_file = None
|
150 |
+
if is_sagemaker_inputs_enabled:
|
151 |
+
sagemaker_inputs_file = _ask_field(
|
152 |
+
"Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ",
|
153 |
+
lambda x: str(x).lower(),
|
154 |
+
)
|
155 |
+
|
156 |
+
is_sagemaker_metrics_enabled = _ask_field(
|
157 |
+
"Do you want to enable SageMaker metrics? [yes/NO]: ",
|
158 |
+
_convert_yes_no_to_bool,
|
159 |
+
default=False,
|
160 |
+
error_message="Please enter yes or no.",
|
161 |
+
)
|
162 |
+
sagemaker_metrics_file = None
|
163 |
+
if is_sagemaker_metrics_enabled:
|
164 |
+
sagemaker_metrics_file = _ask_field(
|
165 |
+
"Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ",
|
166 |
+
lambda x: str(x).lower(),
|
167 |
+
)
|
168 |
+
|
169 |
+
distributed_type = _ask_options(
|
170 |
+
"What is the distributed mode?",
|
171 |
+
["No distributed training", "Data parallelism"],
|
172 |
+
_convert_sagemaker_distributed_mode,
|
173 |
+
)
|
174 |
+
dynamo_config = {}
|
175 |
+
use_dynamo = _ask_field(
|
176 |
+
"Do you wish to optimize your script with torch dynamo?[yes/NO]:",
|
177 |
+
_convert_yes_no_to_bool,
|
178 |
+
default=False,
|
179 |
+
error_message="Please enter yes or no.",
|
180 |
+
)
|
181 |
+
if use_dynamo:
|
182 |
+
prefix = "dynamo_"
|
183 |
+
dynamo_config[prefix + "backend"] = _ask_options(
|
184 |
+
"Which dynamo backend would you like to use?",
|
185 |
+
[x.lower() for x in DYNAMO_BACKENDS],
|
186 |
+
_convert_dynamo_backend,
|
187 |
+
default=2,
|
188 |
+
)
|
189 |
+
use_custom_options = _ask_field(
|
190 |
+
"Do you want to customize the defaults sent to torch.compile? [yes/NO]: ",
|
191 |
+
_convert_yes_no_to_bool,
|
192 |
+
default=False,
|
193 |
+
error_message="Please enter yes or no.",
|
194 |
+
)
|
195 |
+
|
196 |
+
if use_custom_options:
|
197 |
+
dynamo_config[prefix + "mode"] = _ask_options(
|
198 |
+
"Which mode do you want to use?",
|
199 |
+
TORCH_DYNAMO_MODES,
|
200 |
+
lambda x: TORCH_DYNAMO_MODES[int(x)],
|
201 |
+
default="default",
|
202 |
+
)
|
203 |
+
dynamo_config[prefix + "use_fullgraph"] = _ask_field(
|
204 |
+
"Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ",
|
205 |
+
_convert_yes_no_to_bool,
|
206 |
+
default=False,
|
207 |
+
error_message="Please enter yes or no.",
|
208 |
+
)
|
209 |
+
dynamo_config[prefix + "use_dynamic"] = _ask_field(
|
210 |
+
"Do you want to enable dynamic shape tracing? [yes/NO]: ",
|
211 |
+
_convert_yes_no_to_bool,
|
212 |
+
default=False,
|
213 |
+
error_message="Please enter yes or no.",
|
214 |
+
)
|
215 |
+
ec2_instance_query = "Which EC2 instance type you want to use for your training?"
|
216 |
+
if distributed_type != SageMakerDistributedType.NO:
|
217 |
+
ec2_instance_type = _ask_options(
|
218 |
+
ec2_instance_query, SAGEMAKER_PARALLEL_EC2_INSTANCES, lambda x: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(x)]
|
219 |
+
)
|
220 |
+
else:
|
221 |
+
ec2_instance_query += "? [ml.p3.2xlarge]:"
|
222 |
+
ec2_instance_type = _ask_field(ec2_instance_query, lambda x: str(x).lower(), default="ml.p3.2xlarge")
|
223 |
+
|
224 |
+
debug = False
|
225 |
+
if distributed_type != SageMakerDistributedType.NO:
|
226 |
+
debug = _ask_field(
|
227 |
+
"Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ",
|
228 |
+
_convert_yes_no_to_bool,
|
229 |
+
default=False,
|
230 |
+
error_message="Please enter yes or no.",
|
231 |
+
)
|
232 |
+
|
233 |
+
num_machines = 1
|
234 |
+
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
|
235 |
+
num_machines = _ask_field(
|
236 |
+
"How many machines do you want use? [1]: ",
|
237 |
+
int,
|
238 |
+
default=1,
|
239 |
+
)
|
240 |
+
|
241 |
+
mixed_precision = _ask_options(
|
242 |
+
"Do you wish to use FP16 or BF16 (mixed precision)?",
|
243 |
+
["no", "fp16", "bf16", "fp8"],
|
244 |
+
_convert_mixed_precision,
|
245 |
+
)
|
246 |
+
|
247 |
+
if use_dynamo and mixed_precision == "no":
|
248 |
+
print(
|
249 |
+
"Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts."
|
250 |
+
)
|
251 |
+
|
252 |
+
return SageMakerConfig(
|
253 |
+
image_uri=docker_image,
|
254 |
+
compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER,
|
255 |
+
distributed_type=distributed_type,
|
256 |
+
use_cpu=False,
|
257 |
+
dynamo_config=dynamo_config,
|
258 |
+
ec2_instance_type=ec2_instance_type,
|
259 |
+
profile=aws_profile,
|
260 |
+
region=aws_region,
|
261 |
+
iam_role_name=iam_role_name,
|
262 |
+
mixed_precision=mixed_precision,
|
263 |
+
num_machines=num_machines,
|
264 |
+
sagemaker_inputs_file=sagemaker_inputs_file,
|
265 |
+
sagemaker_metrics_file=sagemaker_metrics_file,
|
266 |
+
debug=debug,
|
267 |
+
)
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/env.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import os
|
19 |
+
import platform
|
20 |
+
import subprocess
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import psutil
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from accelerate import __version__ as version
|
27 |
+
from accelerate.commands.config import default_config_file, load_config_from_file
|
28 |
+
|
29 |
+
from ..utils import is_mlu_available, is_npu_available, is_xpu_available
|
30 |
+
|
31 |
+
|
32 |
+
def env_command_parser(subparsers=None):
|
33 |
+
if subparsers is not None:
|
34 |
+
parser = subparsers.add_parser("env")
|
35 |
+
else:
|
36 |
+
parser = argparse.ArgumentParser("Accelerate env command")
|
37 |
+
|
38 |
+
parser.add_argument(
|
39 |
+
"--config_file", default=None, help="The config file to use for the default values in the launching script."
|
40 |
+
)
|
41 |
+
|
42 |
+
if subparsers is not None:
|
43 |
+
parser.set_defaults(func=env_command)
|
44 |
+
return parser
|
45 |
+
|
46 |
+
|
47 |
+
def env_command(args):
|
48 |
+
pt_version = torch.__version__
|
49 |
+
pt_cuda_available = torch.cuda.is_available()
|
50 |
+
pt_xpu_available = is_xpu_available()
|
51 |
+
pt_mlu_available = is_mlu_available()
|
52 |
+
pt_npu_available = is_npu_available()
|
53 |
+
|
54 |
+
accelerate_config = "Not found"
|
55 |
+
# Get the default from the config file.
|
56 |
+
if args.config_file is not None or os.path.isfile(default_config_file):
|
57 |
+
accelerate_config = load_config_from_file(args.config_file).to_dict()
|
58 |
+
|
59 |
+
# if we can run which, get it
|
60 |
+
command = None
|
61 |
+
bash_location = "Not found"
|
62 |
+
if os.name == "nt":
|
63 |
+
command = ["where", "accelerate"]
|
64 |
+
elif os.name == "posix":
|
65 |
+
command = ["which", "accelerate"]
|
66 |
+
if command is not None:
|
67 |
+
bash_location = subprocess.check_output(command, text=True, stderr=subprocess.STDOUT).strip()
|
68 |
+
info = {
|
69 |
+
"`Accelerate` version": version,
|
70 |
+
"Platform": platform.platform(),
|
71 |
+
"`accelerate` bash location": bash_location,
|
72 |
+
"Python version": platform.python_version(),
|
73 |
+
"Numpy version": np.__version__,
|
74 |
+
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
|
75 |
+
"PyTorch XPU available": str(pt_xpu_available),
|
76 |
+
"PyTorch NPU available": str(pt_npu_available),
|
77 |
+
"PyTorch MLU available": str(pt_mlu_available),
|
78 |
+
"System RAM": f"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB",
|
79 |
+
}
|
80 |
+
if pt_cuda_available:
|
81 |
+
info["GPU type"] = torch.cuda.get_device_name()
|
82 |
+
if pt_npu_available:
|
83 |
+
info["CANN version"] = torch.version.cann
|
84 |
+
|
85 |
+
print("\nCopy-and-paste the text below in your GitHub issue\n")
|
86 |
+
print("\n".join([f"- {prop}: {val}" for prop, val in info.items()]))
|
87 |
+
|
88 |
+
print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:")
|
89 |
+
accelerate_config_str = (
|
90 |
+
"\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()])
|
91 |
+
if isinstance(accelerate_config, dict)
|
92 |
+
else f"\t{accelerate_config}"
|
93 |
+
)
|
94 |
+
print(accelerate_config_str)
|
95 |
+
|
96 |
+
info["`Accelerate` configs"] = accelerate_config
|
97 |
+
|
98 |
+
return info
|
99 |
+
|
100 |
+
|
101 |
+
def main() -> int:
|
102 |
+
parser = env_command_parser()
|
103 |
+
args = parser.parse_args()
|
104 |
+
env_command(args)
|
105 |
+
return 0
|
106 |
+
|
107 |
+
|
108 |
+
if __name__ == "__main__":
|
109 |
+
raise SystemExit(main())
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/estimate.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
from huggingface_hub import model_info
|
17 |
+
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
|
18 |
+
|
19 |
+
from accelerate import init_empty_weights
|
20 |
+
from accelerate.commands.utils import CustomArgumentParser
|
21 |
+
from accelerate.utils import (
|
22 |
+
calculate_maximum_sizes,
|
23 |
+
convert_bytes,
|
24 |
+
is_timm_available,
|
25 |
+
is_transformers_available,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
if is_transformers_available():
|
30 |
+
import transformers
|
31 |
+
from transformers import AutoConfig, AutoModel
|
32 |
+
|
33 |
+
if is_timm_available():
|
34 |
+
import timm
|
35 |
+
|
36 |
+
|
37 |
+
def verify_on_hub(repo: str, token: str = None):
|
38 |
+
"Verifies that the model is on the hub and returns the model info."
|
39 |
+
try:
|
40 |
+
return model_info(repo, token=token)
|
41 |
+
except GatedRepoError:
|
42 |
+
return "gated"
|
43 |
+
except RepositoryNotFoundError:
|
44 |
+
return "repo"
|
45 |
+
|
46 |
+
|
47 |
+
def check_has_model(error):
|
48 |
+
"""
|
49 |
+
Checks what library spawned `error` when a model is not found
|
50 |
+
"""
|
51 |
+
if is_timm_available() and isinstance(error, RuntimeError) and "Unknown model" in error.args[0]:
|
52 |
+
return "timm"
|
53 |
+
elif (
|
54 |
+
is_transformers_available()
|
55 |
+
and isinstance(error, OSError)
|
56 |
+
and "does not appear to have a file named" in error.args[0]
|
57 |
+
):
|
58 |
+
return "transformers"
|
59 |
+
else:
|
60 |
+
return "unknown"
|
61 |
+
|
62 |
+
|
63 |
+
def create_empty_model(model_name: str, library_name: str, trust_remote_code: bool = False, access_token: str = None):
|
64 |
+
"""
|
65 |
+
Creates an empty model from its parent library on the `Hub` to calculate the overall memory consumption.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
model_name (`str`):
|
69 |
+
The model name on the Hub
|
70 |
+
library_name (`str`):
|
71 |
+
The library the model has an integration with, such as `transformers`. Will be used if `model_name` has no
|
72 |
+
metadata on the Hub to determine the library.
|
73 |
+
trust_remote_code (`bool`, `optional`, defaults to `False`):
|
74 |
+
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
|
75 |
+
should only be set to `True` for repositories you trust and in which you have read the code, as it will
|
76 |
+
execute code present on the Hub on your local machine.
|
77 |
+
access_token (`str`, `optional`, defaults to `None`):
|
78 |
+
The access token to use to access private or gated models on the Hub. (for use on the Gradio app)
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
`torch.nn.Module`: The torch model that has been initialized on the `meta` device.
|
82 |
+
|
83 |
+
"""
|
84 |
+
model_info = verify_on_hub(model_name, access_token)
|
85 |
+
# Simplified errors
|
86 |
+
if model_info == "gated":
|
87 |
+
raise GatedRepoError(
|
88 |
+
f"Repo for model `{model_name}` is gated. You must be authenticated to access it. Please run `huggingface-cli login`."
|
89 |
+
)
|
90 |
+
elif model_info == "repo":
|
91 |
+
raise RepositoryNotFoundError(
|
92 |
+
f"Repo for model `{model_name}` does not exist on the Hub. If you are trying to access a private repo,"
|
93 |
+
" make sure you are authenticated via `huggingface-cli login` and have access."
|
94 |
+
)
|
95 |
+
if library_name is None:
|
96 |
+
library_name = getattr(model_info, "library_name", False)
|
97 |
+
if not library_name:
|
98 |
+
raise ValueError(
|
99 |
+
f"Model `{model_name}` does not have any library metadata on the Hub, please manually pass in a `--library_name` to use (such as `transformers`)"
|
100 |
+
)
|
101 |
+
if library_name == "transformers":
|
102 |
+
if not is_transformers_available():
|
103 |
+
raise ImportError(
|
104 |
+
f"To check `{model_name}`, `transformers` must be installed. Please install it via `pip install transformers`"
|
105 |
+
)
|
106 |
+
print(f"Loading pretrained config for `{model_name}` from `transformers`...")
|
107 |
+
if model_info.config is None:
|
108 |
+
raise RuntimeError(f"Tried to load `{model_name}` with `transformers` but it does not have any metadata.")
|
109 |
+
|
110 |
+
auto_map = model_info.config.get("auto_map", False)
|
111 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code, token=access_token)
|
112 |
+
with init_empty_weights():
|
113 |
+
# remote code could specify a specific `AutoModel` class in the `auto_map`
|
114 |
+
constructor = AutoModel
|
115 |
+
if isinstance(auto_map, dict):
|
116 |
+
value = None
|
117 |
+
for key in auto_map.keys():
|
118 |
+
if key.startswith("AutoModelFor"):
|
119 |
+
value = key
|
120 |
+
break
|
121 |
+
if value is not None:
|
122 |
+
constructor = getattr(transformers, value)
|
123 |
+
model = constructor.from_config(config, trust_remote_code=trust_remote_code)
|
124 |
+
elif library_name == "timm":
|
125 |
+
if not is_timm_available():
|
126 |
+
raise ImportError(
|
127 |
+
f"To check `{model_name}`, `timm` must be installed. Please install it via `pip install timm`"
|
128 |
+
)
|
129 |
+
print(f"Loading pretrained config for `{model_name}` from `timm`...")
|
130 |
+
with init_empty_weights():
|
131 |
+
model = timm.create_model(model_name, pretrained=False)
|
132 |
+
else:
|
133 |
+
raise ValueError(
|
134 |
+
f"Library `{library_name}` is not supported yet, please open an issue on GitHub for us to add support."
|
135 |
+
)
|
136 |
+
return model
|
137 |
+
|
138 |
+
|
139 |
+
def create_ascii_table(headers: list, rows: list, title: str):
|
140 |
+
"Creates a pretty table from a list of rows, minimal version of `tabulate`."
|
141 |
+
sep_char, in_between = "│", "─"
|
142 |
+
column_widths = []
|
143 |
+
for i in range(len(headers)):
|
144 |
+
column_values = [row[i] for row in rows] + [headers[i]]
|
145 |
+
max_column_width = max(len(value) for value in column_values)
|
146 |
+
column_widths.append(max_column_width)
|
147 |
+
|
148 |
+
formats = [f"%{column_widths[i]}s" for i in range(len(rows[0]))]
|
149 |
+
|
150 |
+
pattern = f"{sep_char}{sep_char.join(formats)}{sep_char}"
|
151 |
+
diff = 0
|
152 |
+
|
153 |
+
def make_row(left_char, middle_char, right_char):
|
154 |
+
return f"{left_char}{middle_char.join([in_between * n for n in column_widths])}{in_between * diff}{right_char}"
|
155 |
+
|
156 |
+
separator = make_row("├", "┼", "┤")
|
157 |
+
if len(title) > sum(column_widths):
|
158 |
+
diff = abs(len(title) - len(separator))
|
159 |
+
column_widths[-1] += diff
|
160 |
+
|
161 |
+
# Update with diff
|
162 |
+
separator = make_row("├", "┼", "┤")
|
163 |
+
initial_rows = [
|
164 |
+
make_row("┌", in_between, "┐"),
|
165 |
+
f"{sep_char}{title.center(len(separator) - 2)}{sep_char}",
|
166 |
+
make_row("├", "┬", "┤"),
|
167 |
+
]
|
168 |
+
table = "\n".join(initial_rows) + "\n"
|
169 |
+
column_widths[-1] += diff
|
170 |
+
centered_line = [text.center(column_widths[i]) for i, text in enumerate(headers)]
|
171 |
+
table += f"{pattern % tuple(centered_line)}\n{separator}\n"
|
172 |
+
for i, line in enumerate(rows):
|
173 |
+
centered_line = [t.center(column_widths[i]) for i, t in enumerate(line)]
|
174 |
+
table += f"{pattern % tuple(centered_line)}\n"
|
175 |
+
table += f'└{"┴".join([in_between * n for n in column_widths])}┘'
|
176 |
+
|
177 |
+
return table
|
178 |
+
|
179 |
+
|
180 |
+
def estimate_command_parser(subparsers=None):
|
181 |
+
if subparsers is not None:
|
182 |
+
parser = subparsers.add_parser("estimate-memory")
|
183 |
+
else:
|
184 |
+
parser = CustomArgumentParser(description="Model size estimator for fitting a model onto CUDA memory.")
|
185 |
+
|
186 |
+
parser.add_argument("model_name", type=str, help="The model name on the Hugging Face Hub.")
|
187 |
+
parser.add_argument(
|
188 |
+
"--library_name",
|
189 |
+
type=str,
|
190 |
+
help="The library the model has an integration with, such as `transformers`, needed only if this information is not stored on the Hub.",
|
191 |
+
choices=["timm", "transformers"],
|
192 |
+
)
|
193 |
+
parser.add_argument(
|
194 |
+
"--dtypes",
|
195 |
+
type=str,
|
196 |
+
nargs="+",
|
197 |
+
default=["float32", "float16", "int8", "int4"],
|
198 |
+
help="The dtypes to use for the model, must be one (or many) of `float32`, `float16`, `int8`, and `int4`",
|
199 |
+
choices=["float32", "float16", "int8", "int4"],
|
200 |
+
)
|
201 |
+
parser.add_argument(
|
202 |
+
"--trust_remote_code",
|
203 |
+
action="store_true",
|
204 |
+
help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. This flag
|
205 |
+
should only be used for repositories you trust and in which you have read the code, as it will execute
|
206 |
+
code present on the Hub on your local machine.""",
|
207 |
+
default=False,
|
208 |
+
)
|
209 |
+
|
210 |
+
if subparsers is not None:
|
211 |
+
parser.set_defaults(func=estimate_command)
|
212 |
+
return parser
|
213 |
+
|
214 |
+
|
215 |
+
def estimate_training_usage(bytes: int, mixed_precision: str, msamp_config: str = None) -> dict:
|
216 |
+
"""
|
217 |
+
Given an amount of `bytes` and `mixed_precision`, calculates how much training memory is needed for a batch size of
|
218 |
+
1.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
bytes (`int`):
|
222 |
+
The size of the model being trained.
|
223 |
+
mixed_precision (`str`):
|
224 |
+
The mixed precision that would be ran.
|
225 |
+
msamp_config (`str`):
|
226 |
+
The msamp config to estimate the training memory for if `mixed_precision` is set to `"fp8"`.
|
227 |
+
"""
|
228 |
+
memory_sizes = {"model": -1, "optimizer": -1, "gradients": -1, "step": -1}
|
229 |
+
fp32_size = bytes
|
230 |
+
fp16_size = bytes // 2
|
231 |
+
|
232 |
+
if mixed_precision == "float32":
|
233 |
+
memory_sizes["model"] = fp32_size
|
234 |
+
memory_sizes["gradients"] = fp32_size
|
235 |
+
memory_sizes["optimizer"] = fp32_size * 2
|
236 |
+
memory_sizes["step"] = fp32_size * 4
|
237 |
+
elif mixed_precision in ("float16", "bfloat16") or (mixed_precision == "fp8" and msamp_config is None):
|
238 |
+
# With native `TransformersEngine`, there is no memory savings with FP8
|
239 |
+
# With mixed precision training, the model has weights stored
|
240 |
+
# in FP16 and FP32
|
241 |
+
memory_sizes["model"] = fp32_size
|
242 |
+
# 1.5 from weight gradient + computation (GEMM)
|
243 |
+
memory_sizes["gradients"] = fp32_size + fp16_size
|
244 |
+
# 2x from optimizer states
|
245 |
+
memory_sizes["optimizer"] = fp32_size * 2 # Optimizer states
|
246 |
+
memory_sizes["step"] = memory_sizes["optimizer"]
|
247 |
+
return memory_sizes
|
248 |
+
|
249 |
+
|
250 |
+
def gather_data(args):
|
251 |
+
"Creates an empty model and gathers the data for the sizes"
|
252 |
+
try:
|
253 |
+
model = create_empty_model(
|
254 |
+
args.model_name, library_name=args.library_name, trust_remote_code=args.trust_remote_code
|
255 |
+
)
|
256 |
+
except (RuntimeError, OSError) as e:
|
257 |
+
library = check_has_model(e)
|
258 |
+
if library != "unknown":
|
259 |
+
raise RuntimeError(
|
260 |
+
f"Tried to load `{args.model_name}` with `{library}` but a possible model to load was not found inside the repo."
|
261 |
+
)
|
262 |
+
raise e
|
263 |
+
|
264 |
+
total_size, largest_layer = calculate_maximum_sizes(model)
|
265 |
+
|
266 |
+
data = []
|
267 |
+
|
268 |
+
for dtype in args.dtypes:
|
269 |
+
dtype_total_size = total_size
|
270 |
+
dtype_largest_layer = largest_layer[0]
|
271 |
+
dtype_training_size = estimate_training_usage(dtype_total_size, dtype)
|
272 |
+
if dtype == "float16":
|
273 |
+
dtype_total_size /= 2
|
274 |
+
dtype_largest_layer /= 2
|
275 |
+
elif dtype == "int8":
|
276 |
+
dtype_total_size /= 4
|
277 |
+
dtype_largest_layer /= 4
|
278 |
+
elif dtype == "int4":
|
279 |
+
dtype_total_size /= 8
|
280 |
+
dtype_largest_layer /= 8
|
281 |
+
data.append([dtype, dtype_largest_layer, dtype_total_size, dtype_training_size])
|
282 |
+
return data
|
283 |
+
|
284 |
+
|
285 |
+
def estimate_command(args):
|
286 |
+
data = gather_data(args)
|
287 |
+
for row in data:
|
288 |
+
for i, item in enumerate(row):
|
289 |
+
if isinstance(item, (int, float)):
|
290 |
+
row[i] = convert_bytes(item)
|
291 |
+
elif isinstance(item, dict):
|
292 |
+
training_usage = max(item.values())
|
293 |
+
row[i] = convert_bytes(training_usage) if training_usage != -1 else "N/A"
|
294 |
+
|
295 |
+
headers = ["dtype", "Largest Layer", "Total Size", "Training using Adam"]
|
296 |
+
|
297 |
+
title = f"Memory Usage for loading `{args.model_name}`"
|
298 |
+
table = create_ascii_table(headers, data, title)
|
299 |
+
print(table)
|
300 |
+
|
301 |
+
|
302 |
+
def main():
|
303 |
+
parser = estimate_command_parser()
|
304 |
+
args = parser.parse_args()
|
305 |
+
estimate_command(args)
|
306 |
+
|
307 |
+
|
308 |
+
if __name__ == "__main__":
|
309 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/launch.py
ADDED
@@ -0,0 +1,1092 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import importlib
|
19 |
+
import logging
|
20 |
+
import os
|
21 |
+
import subprocess
|
22 |
+
import sys
|
23 |
+
from pathlib import Path
|
24 |
+
|
25 |
+
import psutil
|
26 |
+
import torch
|
27 |
+
|
28 |
+
from accelerate.commands.config import default_config_file, load_config_from_file
|
29 |
+
from accelerate.commands.config.config_args import SageMakerConfig
|
30 |
+
from accelerate.commands.config.config_utils import DYNAMO_BACKENDS
|
31 |
+
from accelerate.commands.utils import CustomArgumentParser
|
32 |
+
from accelerate.state import get_int_from_env
|
33 |
+
from accelerate.utils import (
|
34 |
+
ComputeEnvironment,
|
35 |
+
DistributedType,
|
36 |
+
PrepareForLaunch,
|
37 |
+
_filter_args,
|
38 |
+
check_cuda_p2p_ib_support,
|
39 |
+
convert_dict_to_env_variables,
|
40 |
+
is_bf16_available,
|
41 |
+
is_deepspeed_available,
|
42 |
+
is_mlu_available,
|
43 |
+
is_npu_available,
|
44 |
+
is_rich_available,
|
45 |
+
is_sagemaker_available,
|
46 |
+
is_torch_version,
|
47 |
+
is_torch_xla_available,
|
48 |
+
is_xpu_available,
|
49 |
+
patch_environment,
|
50 |
+
prepare_deepspeed_cmd_env,
|
51 |
+
prepare_multi_gpu_env,
|
52 |
+
prepare_sagemager_args_inputs,
|
53 |
+
prepare_simple_launcher_cmd_env,
|
54 |
+
prepare_tpu,
|
55 |
+
)
|
56 |
+
from accelerate.utils.constants import DEEPSPEED_MULTINODE_LAUNCHERS, TORCH_DYNAMO_MODES
|
57 |
+
|
58 |
+
|
59 |
+
if is_rich_available():
|
60 |
+
from rich import get_console
|
61 |
+
from rich.logging import RichHandler
|
62 |
+
|
63 |
+
FORMAT = "%(message)s"
|
64 |
+
logging.basicConfig(format=FORMAT, datefmt="[%X]", handlers=[RichHandler()])
|
65 |
+
|
66 |
+
|
67 |
+
logger = logging.getLogger(__name__)
|
68 |
+
|
69 |
+
|
70 |
+
options_to_group = {
|
71 |
+
"multi_gpu": "Distributed GPUs",
|
72 |
+
"tpu": "TPU",
|
73 |
+
"use_deepspeed": "DeepSpeed Arguments",
|
74 |
+
"use_fsdp": "FSDP Arguments",
|
75 |
+
"use_megatron_lm": "Megatron-LM Arguments",
|
76 |
+
}
|
77 |
+
|
78 |
+
|
79 |
+
def clean_option(option):
|
80 |
+
"Finds all cases of - after the first two characters and changes them to _"
|
81 |
+
if option.startswith("--"):
|
82 |
+
return option[2:].replace("-", "_")
|
83 |
+
|
84 |
+
|
85 |
+
class CustomHelpFormatter(argparse.HelpFormatter):
|
86 |
+
"""
|
87 |
+
This is a custom help formatter that will hide all arguments that are not used in the command line when the help is
|
88 |
+
called. This is useful for the case where the user is using a specific platform and only wants to see the arguments
|
89 |
+
for that platform.
|
90 |
+
"""
|
91 |
+
|
92 |
+
def __init__(self, *args, **kwargs):
|
93 |
+
super().__init__(*args, **kwargs)
|
94 |
+
self.titles = [
|
95 |
+
"Hardware Selection Arguments",
|
96 |
+
"Resource Selection Arguments",
|
97 |
+
"Training Paradigm Arguments",
|
98 |
+
"positional arguments",
|
99 |
+
"optional arguments",
|
100 |
+
]
|
101 |
+
|
102 |
+
def add_argument(self, action: argparse.Action):
|
103 |
+
if "accelerate" in sys.argv[0] and "launch" in sys.argv[1:]:
|
104 |
+
args = sys.argv[2:]
|
105 |
+
else:
|
106 |
+
args = sys.argv[1:]
|
107 |
+
|
108 |
+
if len(args) > 1:
|
109 |
+
args = list(map(clean_option, args))
|
110 |
+
used_platforms = [arg for arg in args if arg in options_to_group.keys()]
|
111 |
+
used_titles = [options_to_group[o] for o in used_platforms]
|
112 |
+
if action.container.title not in self.titles + used_titles:
|
113 |
+
action.help = argparse.SUPPRESS
|
114 |
+
elif action.container.title == "Hardware Selection Arguments":
|
115 |
+
if set(action.option_strings).isdisjoint(set(args)):
|
116 |
+
action.help = argparse.SUPPRESS
|
117 |
+
else:
|
118 |
+
action.help = action.help + " (currently selected)"
|
119 |
+
elif action.container.title == "Training Paradigm Arguments":
|
120 |
+
if set(action.option_strings).isdisjoint(set(args)):
|
121 |
+
action.help = argparse.SUPPRESS
|
122 |
+
else:
|
123 |
+
action.help = action.help + " (currently selected)"
|
124 |
+
|
125 |
+
action.option_strings = [s for s in action.option_strings if "-" not in s[2:]]
|
126 |
+
super().add_argument(action)
|
127 |
+
|
128 |
+
def end_section(self):
|
129 |
+
if len(self._current_section.items) < 2:
|
130 |
+
self._current_section.items = []
|
131 |
+
self._current_section.heading = ""
|
132 |
+
super().end_section()
|
133 |
+
|
134 |
+
|
135 |
+
def launch_command_parser(subparsers=None):
|
136 |
+
description = "Launch a python script in a distributed scenario. Arguments can be passed in with either hyphens (`--num-processes=2`) or underscores (`--num_processes=2`)"
|
137 |
+
if subparsers is not None:
|
138 |
+
parser = subparsers.add_parser(
|
139 |
+
"launch", description=description, add_help=False, allow_abbrev=False, formatter_class=CustomHelpFormatter
|
140 |
+
)
|
141 |
+
else:
|
142 |
+
parser = CustomArgumentParser(
|
143 |
+
"Accelerate launch command",
|
144 |
+
description=description,
|
145 |
+
add_help=False,
|
146 |
+
allow_abbrev=False,
|
147 |
+
formatter_class=CustomHelpFormatter,
|
148 |
+
)
|
149 |
+
|
150 |
+
parser.add_argument("-h", "--help", action="help", help="Show this help message and exit.")
|
151 |
+
|
152 |
+
parser.add_argument(
|
153 |
+
"--config_file",
|
154 |
+
default=None,
|
155 |
+
help="The config file to use for the default values in the launching script.",
|
156 |
+
)
|
157 |
+
parser.add_argument(
|
158 |
+
"--quiet",
|
159 |
+
"-q",
|
160 |
+
action="store_true",
|
161 |
+
help="Silence subprocess errors from the launch stack trace and only show the relevant tracebacks. (Only applicable to DeepSpeed and single-process configurations)",
|
162 |
+
)
|
163 |
+
# Hardware selection arguments
|
164 |
+
hardware_args = parser.add_argument_group(
|
165 |
+
"Hardware Selection Arguments", "Arguments for selecting the hardware to be used."
|
166 |
+
)
|
167 |
+
hardware_args.add_argument(
|
168 |
+
"--cpu", default=False, action="store_true", help="Whether or not to force the training on the CPU."
|
169 |
+
)
|
170 |
+
hardware_args.add_argument(
|
171 |
+
"--multi_gpu",
|
172 |
+
default=False,
|
173 |
+
action="store_true",
|
174 |
+
help="Whether or not this should launch a distributed GPU training.",
|
175 |
+
)
|
176 |
+
hardware_args.add_argument(
|
177 |
+
"--tpu", default=False, action="store_true", help="Whether or not this should launch a TPU training."
|
178 |
+
)
|
179 |
+
hardware_args.add_argument(
|
180 |
+
"--ipex",
|
181 |
+
default=False,
|
182 |
+
action="store_true",
|
183 |
+
help="Whether or not this should launch a Intel PyTorch Extension (IPEX) training.",
|
184 |
+
)
|
185 |
+
|
186 |
+
# Resource selection arguments
|
187 |
+
resource_args = parser.add_argument_group(
|
188 |
+
"Resource Selection Arguments", "Arguments for fine-tuning how available hardware should be used."
|
189 |
+
)
|
190 |
+
resource_args.add_argument(
|
191 |
+
"--mixed_precision",
|
192 |
+
type=str,
|
193 |
+
choices=["no", "fp16", "bf16", "fp8"],
|
194 |
+
help="Whether or not to use mixed precision training. "
|
195 |
+
"Choose between FP16 and BF16 (bfloat16) training. "
|
196 |
+
"BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.",
|
197 |
+
)
|
198 |
+
resource_args.add_argument(
|
199 |
+
"--num_processes", type=int, default=None, help="The total number of processes to be launched in parallel."
|
200 |
+
)
|
201 |
+
resource_args.add_argument(
|
202 |
+
"--num_machines", type=int, default=None, help="The total number of machines used in this training."
|
203 |
+
)
|
204 |
+
resource_args.add_argument(
|
205 |
+
"--num_cpu_threads_per_process",
|
206 |
+
type=int,
|
207 |
+
default=None,
|
208 |
+
help="The number of CPU threads per process. Can be tuned for optimal performance.",
|
209 |
+
)
|
210 |
+
resource_args.add_argument(
|
211 |
+
"--enable_cpu_affinity",
|
212 |
+
default=False,
|
213 |
+
action="store_true",
|
214 |
+
help="Whether or not CPU affinity and balancing should be enabled. Currently only supported on NVIDIA hardware.",
|
215 |
+
)
|
216 |
+
|
217 |
+
# Dynamo arguments
|
218 |
+
resource_args.add_argument(
|
219 |
+
"--dynamo_backend",
|
220 |
+
type=str,
|
221 |
+
choices=["no"] + [b.lower() for b in DYNAMO_BACKENDS],
|
222 |
+
help="Choose a backend to optimize your training with dynamo, see more at "
|
223 |
+
"https://github.com/pytorch/torchdynamo.",
|
224 |
+
)
|
225 |
+
resource_args.add_argument(
|
226 |
+
"--dynamo_mode",
|
227 |
+
type=str,
|
228 |
+
default="default",
|
229 |
+
choices=TORCH_DYNAMO_MODES,
|
230 |
+
help="Choose a mode to optimize your training with dynamo.",
|
231 |
+
)
|
232 |
+
resource_args.add_argument(
|
233 |
+
"--dynamo_use_fullgraph",
|
234 |
+
default=False,
|
235 |
+
action="store_true",
|
236 |
+
help="Whether to use full graph mode for dynamo or it is ok to break model into several subgraphs",
|
237 |
+
)
|
238 |
+
resource_args.add_argument(
|
239 |
+
"--dynamo_use_dynamic",
|
240 |
+
default=False,
|
241 |
+
action="store_true",
|
242 |
+
help="Whether to enable dynamic shape tracing.",
|
243 |
+
)
|
244 |
+
|
245 |
+
# Training Paradigm arguments
|
246 |
+
paradigm_args = parser.add_argument_group(
|
247 |
+
"Training Paradigm Arguments", "Arguments for selecting which training paradigm to be used."
|
248 |
+
)
|
249 |
+
paradigm_args.add_argument(
|
250 |
+
"--use_deepspeed",
|
251 |
+
default=False,
|
252 |
+
action="store_true",
|
253 |
+
help="Whether to use deepspeed.",
|
254 |
+
)
|
255 |
+
paradigm_args.add_argument(
|
256 |
+
"--use_fsdp",
|
257 |
+
default=False,
|
258 |
+
action="store_true",
|
259 |
+
help="Whether to use fsdp.",
|
260 |
+
)
|
261 |
+
paradigm_args.add_argument(
|
262 |
+
"--use_megatron_lm",
|
263 |
+
default=False,
|
264 |
+
action="store_true",
|
265 |
+
help="Whether to use Megatron-LM.",
|
266 |
+
)
|
267 |
+
paradigm_args.add_argument(
|
268 |
+
"--use_xpu",
|
269 |
+
default=False,
|
270 |
+
action="store_true",
|
271 |
+
help="Whether to use IPEX plugin to speed up training on XPU specifically.",
|
272 |
+
)
|
273 |
+
|
274 |
+
# distributed GPU training arguments
|
275 |
+
distributed_args = parser.add_argument_group("Distributed GPUs", "Arguments related to distributed GPU training.")
|
276 |
+
distributed_args.add_argument(
|
277 |
+
"--gpu_ids",
|
278 |
+
default=None,
|
279 |
+
help="What GPUs (by id) should be used for training on this machine as a comma-seperated list",
|
280 |
+
)
|
281 |
+
distributed_args.add_argument(
|
282 |
+
"--same_network",
|
283 |
+
default=False,
|
284 |
+
action="store_true",
|
285 |
+
help="Whether all machines used for multinode training exist on the same local network.",
|
286 |
+
)
|
287 |
+
distributed_args.add_argument(
|
288 |
+
"--machine_rank", type=int, default=None, help="The rank of the machine on which this script is launched."
|
289 |
+
)
|
290 |
+
distributed_args.add_argument(
|
291 |
+
"--main_process_ip", type=str, default=None, help="The IP address of the machine of rank 0."
|
292 |
+
)
|
293 |
+
distributed_args.add_argument(
|
294 |
+
"--main_process_port",
|
295 |
+
type=int,
|
296 |
+
default=None,
|
297 |
+
help="The port to use to communicate with the machine of rank 0.",
|
298 |
+
)
|
299 |
+
distributed_args.add_argument(
|
300 |
+
"-t",
|
301 |
+
"--tee",
|
302 |
+
default="0",
|
303 |
+
type=str,
|
304 |
+
help="Tee std streams into a log file and also to console.",
|
305 |
+
)
|
306 |
+
distributed_args.add_argument(
|
307 |
+
"--role",
|
308 |
+
type=str,
|
309 |
+
default="default",
|
310 |
+
help="User-defined role for the workers.",
|
311 |
+
)
|
312 |
+
# Rendezvous related arguments
|
313 |
+
distributed_args.add_argument(
|
314 |
+
"--rdzv_backend",
|
315 |
+
type=str,
|
316 |
+
default="static",
|
317 |
+
help="The rendezvous method to use, such as 'static' (the default) or 'c10d'",
|
318 |
+
)
|
319 |
+
distributed_args.add_argument(
|
320 |
+
"--rdzv_conf",
|
321 |
+
type=str,
|
322 |
+
default="",
|
323 |
+
help="Additional rendezvous configuration (<key1>=<value1>,<key2>=<value2>,...).",
|
324 |
+
)
|
325 |
+
distributed_args.add_argument(
|
326 |
+
"--max_restarts",
|
327 |
+
type=int,
|
328 |
+
default=0,
|
329 |
+
help="Maximum number of worker group restarts before failing.",
|
330 |
+
)
|
331 |
+
distributed_args.add_argument(
|
332 |
+
"--monitor_interval",
|
333 |
+
type=float,
|
334 |
+
default=5,
|
335 |
+
help="Interval, in seconds, to monitor the state of workers.",
|
336 |
+
)
|
337 |
+
parser.add_argument(
|
338 |
+
"-m",
|
339 |
+
"--module",
|
340 |
+
action="store_true",
|
341 |
+
help="Change each process to interpret the launch script as a Python module, executing with the same behavior as 'python -m'.",
|
342 |
+
)
|
343 |
+
parser.add_argument(
|
344 |
+
"--no_python",
|
345 |
+
action="store_true",
|
346 |
+
help="Skip prepending the training script with 'python' - just execute it directly. Useful when the script is not a Python script.",
|
347 |
+
)
|
348 |
+
|
349 |
+
# TPU arguments
|
350 |
+
tpu_args = parser.add_argument_group("TPU", "Arguments related to TPU.")
|
351 |
+
tpu_args.add_argument(
|
352 |
+
"--tpu_cluster",
|
353 |
+
action="store_true",
|
354 |
+
dest="tpu_use_cluster",
|
355 |
+
help="Whether to use a GCP TPU pod for training.",
|
356 |
+
)
|
357 |
+
tpu_args.add_argument(
|
358 |
+
"--no_tpu_cluster",
|
359 |
+
action="store_false",
|
360 |
+
dest="tpu_use_cluster",
|
361 |
+
help="Should not be passed explicitly, this is for internal use only.",
|
362 |
+
)
|
363 |
+
tpu_args.add_argument(
|
364 |
+
"--tpu_use_sudo",
|
365 |
+
action="store_true",
|
366 |
+
help="Whether to use `sudo` when running the TPU training script in each pod.",
|
367 |
+
)
|
368 |
+
tpu_args.add_argument(
|
369 |
+
"--vm",
|
370 |
+
type=str,
|
371 |
+
action="append",
|
372 |
+
help=(
|
373 |
+
"List of single Compute VM instance names. "
|
374 |
+
"If not provided we assume usage of instance groups. For TPU pods."
|
375 |
+
),
|
376 |
+
)
|
377 |
+
tpu_args.add_argument(
|
378 |
+
"--env",
|
379 |
+
type=str,
|
380 |
+
action="append",
|
381 |
+
help="List of environment variables to set on the Compute VM instances. For TPU pods.",
|
382 |
+
)
|
383 |
+
tpu_args.add_argument(
|
384 |
+
"--main_training_function",
|
385 |
+
type=str,
|
386 |
+
default=None,
|
387 |
+
help="The name of the main function to be executed in your script (only for TPU training).",
|
388 |
+
)
|
389 |
+
tpu_args.add_argument(
|
390 |
+
"--downcast_bf16",
|
391 |
+
action="store_true",
|
392 |
+
help="Whether when using bf16 precision on TPUs if both float and double tensors are cast to bfloat16 or if double tensors remain as float32.",
|
393 |
+
)
|
394 |
+
|
395 |
+
# DeepSpeed arguments
|
396 |
+
deepspeed_args = parser.add_argument_group("DeepSpeed Arguments", "Arguments related to DeepSpeed.")
|
397 |
+
deepspeed_args.add_argument(
|
398 |
+
"--deepspeed_config_file",
|
399 |
+
default=None,
|
400 |
+
type=str,
|
401 |
+
help="DeepSpeed config file.",
|
402 |
+
)
|
403 |
+
deepspeed_args.add_argument(
|
404 |
+
"--zero_stage",
|
405 |
+
default=None,
|
406 |
+
type=int,
|
407 |
+
help="DeepSpeed's ZeRO optimization stage (useful only when `use_deepspeed` flag is passed). "
|
408 |
+
"If unspecified, will default to `2`.",
|
409 |
+
)
|
410 |
+
deepspeed_args.add_argument(
|
411 |
+
"--offload_optimizer_device",
|
412 |
+
default=None,
|
413 |
+
type=str,
|
414 |
+
help="Decides where (none|cpu|nvme) to offload optimizer states (useful only when `use_deepspeed` flag is passed). "
|
415 |
+
"If unspecified, will default to 'none'.",
|
416 |
+
)
|
417 |
+
deepspeed_args.add_argument(
|
418 |
+
"--offload_param_device",
|
419 |
+
default=None,
|
420 |
+
type=str,
|
421 |
+
help="Decides where (none|cpu|nvme) to offload parameters (useful only when `use_deepspeed` flag is passed). "
|
422 |
+
"If unspecified, will default to 'none'.",
|
423 |
+
)
|
424 |
+
deepspeed_args.add_argument(
|
425 |
+
"--offload_optimizer_nvme_path",
|
426 |
+
default=None,
|
427 |
+
type=str,
|
428 |
+
help="Decides Nvme Path to offload optimizer states (useful only when `use_deepspeed` flag is passed). "
|
429 |
+
"If unspecified, will default to 'none'.",
|
430 |
+
)
|
431 |
+
deepspeed_args.add_argument(
|
432 |
+
"--offload_param_nvme_path",
|
433 |
+
default=None,
|
434 |
+
type=str,
|
435 |
+
help="Decides Nvme Path to offload parameters (useful only when `use_deepspeed` flag is passed). "
|
436 |
+
"If unspecified, will default to 'none'.",
|
437 |
+
)
|
438 |
+
deepspeed_args.add_argument(
|
439 |
+
"--gradient_accumulation_steps",
|
440 |
+
default=None,
|
441 |
+
type=int,
|
442 |
+
help="No of gradient_accumulation_steps used in your training script (useful only when `use_deepspeed` flag is passed). "
|
443 |
+
"If unspecified, will default to `1`.",
|
444 |
+
)
|
445 |
+
deepspeed_args.add_argument(
|
446 |
+
"--gradient_clipping",
|
447 |
+
default=None,
|
448 |
+
type=float,
|
449 |
+
help="gradient clipping value used in your training script (useful only when `use_deepspeed` flag is passed). "
|
450 |
+
"If unspecified, will default to `1.0`.",
|
451 |
+
)
|
452 |
+
deepspeed_args.add_argument(
|
453 |
+
"--zero3_init_flag",
|
454 |
+
default=None,
|
455 |
+
type=str,
|
456 |
+
help="Decides Whether (true|false) to enable `deepspeed.zero.Init` for constructing massive models. "
|
457 |
+
"Only applicable with DeepSpeed ZeRO Stage-3. If unspecified, will default to `true`.",
|
458 |
+
)
|
459 |
+
deepspeed_args.add_argument(
|
460 |
+
"--zero3_save_16bit_model",
|
461 |
+
default=None,
|
462 |
+
type=str,
|
463 |
+
help="Decides Whether (true|false) to save 16-bit model weights when using ZeRO Stage-3. "
|
464 |
+
"Only applicable with DeepSpeed ZeRO Stage-3. If unspecified, will default to `false`.",
|
465 |
+
)
|
466 |
+
deepspeed_args.add_argument(
|
467 |
+
"--deepspeed_hostfile",
|
468 |
+
default=None,
|
469 |
+
type=str,
|
470 |
+
help="DeepSpeed hostfile for configuring multi-node compute resources.",
|
471 |
+
)
|
472 |
+
deepspeed_args.add_argument(
|
473 |
+
"--deepspeed_exclusion_filter",
|
474 |
+
default=None,
|
475 |
+
type=str,
|
476 |
+
help="DeepSpeed exclusion filter string when using mutli-node setup.",
|
477 |
+
)
|
478 |
+
deepspeed_args.add_argument(
|
479 |
+
"--deepspeed_inclusion_filter",
|
480 |
+
default=None,
|
481 |
+
type=str,
|
482 |
+
help="DeepSpeed inclusion filter string when using mutli-node setup.",
|
483 |
+
)
|
484 |
+
deepspeed_args.add_argument(
|
485 |
+
"--deepspeed_multinode_launcher",
|
486 |
+
default=None,
|
487 |
+
type=str,
|
488 |
+
help="DeepSpeed multi-node launcher to use. If unspecified, will default to `pdsh`.",
|
489 |
+
)
|
490 |
+
deepspeed_args.add_argument(
|
491 |
+
"--deepspeed_moe_layer_cls_names",
|
492 |
+
default=None,
|
493 |
+
type=str,
|
494 |
+
help="comma-separated list of transformer MoE layer class names (case-sensitive) to wrap ,e.g, `MixtralSparseMoeBlock`, `Qwen2MoeSparseMoeBlock`, `JetMoEAttention,JetMoEBlock` ..."
|
495 |
+
" (useful only when `use_deepspeed` flag is passed).",
|
496 |
+
)
|
497 |
+
|
498 |
+
# fsdp arguments
|
499 |
+
fsdp_args = parser.add_argument_group("FSDP Arguments", "Arguments related to Fully Shared Data Parallelism.")
|
500 |
+
fsdp_args.add_argument(
|
501 |
+
"--fsdp_offload_params",
|
502 |
+
default="false",
|
503 |
+
type=str,
|
504 |
+
help="Decides Whether (true|false) to offload parameters and gradients to CPU. (useful only when `use_fsdp` flag is passed).",
|
505 |
+
)
|
506 |
+
fsdp_args.add_argument(
|
507 |
+
"--fsdp_min_num_params",
|
508 |
+
type=int,
|
509 |
+
default=1e8,
|
510 |
+
help="FSDP's minimum number of parameters for Default Auto Wrapping. (useful only when `use_fsdp` flag is passed).",
|
511 |
+
)
|
512 |
+
fsdp_args.add_argument(
|
513 |
+
"--fsdp_sharding_strategy",
|
514 |
+
type=str,
|
515 |
+
default="FULL_SHARD",
|
516 |
+
help="FSDP's Sharding Strategy. (useful only when `use_fsdp` flag is passed).",
|
517 |
+
)
|
518 |
+
fsdp_args.add_argument(
|
519 |
+
"--fsdp_auto_wrap_policy",
|
520 |
+
type=str,
|
521 |
+
default=None,
|
522 |
+
help="FSDP's auto wrap policy. (useful only when `use_fsdp` flag is passed).",
|
523 |
+
)
|
524 |
+
fsdp_args.add_argument(
|
525 |
+
"--fsdp_transformer_layer_cls_to_wrap",
|
526 |
+
default=None,
|
527 |
+
type=str,
|
528 |
+
help="Transformer layer class name (case-sensitive) to wrap ,e.g, `BertLayer`, `GPTJBlock`, `T5Block` .... "
|
529 |
+
"(useful only when `use_fsdp` flag is passed).",
|
530 |
+
)
|
531 |
+
fsdp_args.add_argument(
|
532 |
+
"--fsdp_backward_prefetch_policy",
|
533 |
+
default=None,
|
534 |
+
type=str,
|
535 |
+
help="This argument is deprecated and will be removed in version 0.27.0 of 🤗 Accelerate. Use `fsdp_backward_prefetch` instead.",
|
536 |
+
)
|
537 |
+
fsdp_args.add_argument(
|
538 |
+
"--fsdp_backward_prefetch",
|
539 |
+
default=None,
|
540 |
+
type=str,
|
541 |
+
help="FSDP's backward prefetch policy. (useful only when `use_fsdp` flag is passed).",
|
542 |
+
)
|
543 |
+
fsdp_args.add_argument(
|
544 |
+
"--fsdp_state_dict_type",
|
545 |
+
default=None,
|
546 |
+
type=str,
|
547 |
+
help="FSDP's state dict type. (useful only when `use_fsdp` flag is passed).",
|
548 |
+
)
|
549 |
+
fsdp_args.add_argument(
|
550 |
+
"--fsdp_forward_prefetch",
|
551 |
+
default="false",
|
552 |
+
type=str,
|
553 |
+
help="If True, then FSDP explicitly prefetches the next upcoming "
|
554 |
+
"all-gather while executing in the forward pass (useful only when `use_fsdp` flag is passed).",
|
555 |
+
)
|
556 |
+
fsdp_args.add_argument(
|
557 |
+
"--fsdp_use_orig_params",
|
558 |
+
default="true",
|
559 |
+
type=str,
|
560 |
+
help="If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable paramteres."
|
561 |
+
" (useful only when `use_fsdp` flag is passed).",
|
562 |
+
)
|
563 |
+
fsdp_args.add_argument(
|
564 |
+
"--fsdp_cpu_ram_efficient_loading",
|
565 |
+
default="true",
|
566 |
+
type=str,
|
567 |
+
help="If True, only the first process loads the pretrained model checkoint while all other processes have empty weights. "
|
568 |
+
"Only applicable for 🤗 Transformers. When using this, `--fsdp_sync_module_states` needs to True. "
|
569 |
+
"(useful only when `use_fsdp` flag is passed).",
|
570 |
+
)
|
571 |
+
fsdp_args.add_argument(
|
572 |
+
"--fsdp_sync_module_states",
|
573 |
+
default="true",
|
574 |
+
type=str,
|
575 |
+
help="If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0."
|
576 |
+
" (useful only when `use_fsdp` flag is passed).",
|
577 |
+
)
|
578 |
+
|
579 |
+
# megatron_lm args
|
580 |
+
megatron_lm_args = parser.add_argument_group("Megatron-LM Arguments", "Arguments related to Megatron-LM.")
|
581 |
+
megatron_lm_args.add_argument(
|
582 |
+
"--megatron_lm_tp_degree",
|
583 |
+
type=int,
|
584 |
+
default=1,
|
585 |
+
help="Megatron-LM's Tensor Parallelism (TP) degree. (useful only when `use_megatron_lm` flag is passed).",
|
586 |
+
)
|
587 |
+
megatron_lm_args.add_argument(
|
588 |
+
"--megatron_lm_pp_degree",
|
589 |
+
type=int,
|
590 |
+
default=1,
|
591 |
+
help="Megatron-LM's Pipeline Parallelism (PP) degree. (useful only when `use_megatron_lm` flag is passed).",
|
592 |
+
)
|
593 |
+
megatron_lm_args.add_argument(
|
594 |
+
"--megatron_lm_num_micro_batches",
|
595 |
+
type=int,
|
596 |
+
default=None,
|
597 |
+
help="Megatron-LM's number of micro batches when PP degree > 1. (useful only when `use_megatron_lm` flag is passed).",
|
598 |
+
)
|
599 |
+
megatron_lm_args.add_argument(
|
600 |
+
"--megatron_lm_sequence_parallelism",
|
601 |
+
default=None,
|
602 |
+
type=str,
|
603 |
+
help="Decides Whether (true|false) to enable Sequence Parallelism when TP degree > 1. "
|
604 |
+
"(useful only when `use_megatron_lm` flag is passed).",
|
605 |
+
)
|
606 |
+
megatron_lm_args.add_argument(
|
607 |
+
"--megatron_lm_recompute_activations",
|
608 |
+
default=None,
|
609 |
+
type=str,
|
610 |
+
help="Decides Whether (true|false) to enable Selective Activation Recomputation. "
|
611 |
+
"(useful only when `use_megatron_lm` flag is passed).",
|
612 |
+
)
|
613 |
+
megatron_lm_args.add_argument(
|
614 |
+
"--megatron_lm_use_distributed_optimizer",
|
615 |
+
default=None,
|
616 |
+
type=str,
|
617 |
+
help="Decides Whether (true|false) to use distributed optimizer "
|
618 |
+
"which shards optimizer state and gradients across Data Pralellel (DP) ranks. "
|
619 |
+
"(useful only when `use_megatron_lm` flag is passed).",
|
620 |
+
)
|
621 |
+
megatron_lm_args.add_argument(
|
622 |
+
"--megatron_lm_gradient_clipping",
|
623 |
+
default=1.0,
|
624 |
+
type=float,
|
625 |
+
help="Megatron-LM's gradient clipping value based on global L2 Norm (0 to disable). "
|
626 |
+
"(useful only when `use_megatron_lm` flag is passed).",
|
627 |
+
)
|
628 |
+
|
629 |
+
# AWS arguments
|
630 |
+
aws_args = parser.add_argument_group("AWS Arguments", "Arguments related to AWS.")
|
631 |
+
aws_args.add_argument(
|
632 |
+
"--aws_access_key_id",
|
633 |
+
type=str,
|
634 |
+
default=None,
|
635 |
+
help="The AWS_ACCESS_KEY_ID used to launch the Amazon SageMaker training job",
|
636 |
+
)
|
637 |
+
aws_args.add_argument(
|
638 |
+
"--aws_secret_access_key",
|
639 |
+
type=str,
|
640 |
+
default=None,
|
641 |
+
help="The AWS_SECRET_ACCESS_KEY used to launch the Amazon SageMaker training job.",
|
642 |
+
)
|
643 |
+
parser.add_argument(
|
644 |
+
"--debug",
|
645 |
+
action="store_true",
|
646 |
+
help="Whether to print out the torch.distributed stack trace when something fails.",
|
647 |
+
)
|
648 |
+
parser.add_argument(
|
649 |
+
"training_script",
|
650 |
+
type=str,
|
651 |
+
help=(
|
652 |
+
"The full path to the script to be launched in parallel, followed by all the arguments for the training "
|
653 |
+
"script."
|
654 |
+
),
|
655 |
+
)
|
656 |
+
|
657 |
+
# MPI arguments
|
658 |
+
mpirun_args = parser.add_argument_group("MPI Arguments", "Arguments related to mpirun for Multi-CPU")
|
659 |
+
mpirun_args.add_argument(
|
660 |
+
"--mpirun_hostfile",
|
661 |
+
type=str,
|
662 |
+
default=None,
|
663 |
+
help="Location for a hostfile for using Accelerate to launch a multi-CPU training job with mpirun. This will "
|
664 |
+
"get passed to the MPI --hostfile or -f parameter, depending on which MPI program is installed.",
|
665 |
+
)
|
666 |
+
mpirun_args.add_argument(
|
667 |
+
"--mpirun_ccl",
|
668 |
+
type=int,
|
669 |
+
default=1,
|
670 |
+
help="The number of oneCCL worker threads when using Accelerate to launch multi-CPU training with mpirun.",
|
671 |
+
)
|
672 |
+
|
673 |
+
# Other arguments of the training scripts
|
674 |
+
parser.add_argument("training_script_args", nargs=argparse.REMAINDER, help="Arguments of the training script.")
|
675 |
+
|
676 |
+
if subparsers is not None:
|
677 |
+
parser.set_defaults(func=launch_command)
|
678 |
+
return parser
|
679 |
+
|
680 |
+
|
681 |
+
def simple_launcher(args):
|
682 |
+
cmd, current_env = prepare_simple_launcher_cmd_env(args)
|
683 |
+
|
684 |
+
process = subprocess.Popen(cmd, env=current_env)
|
685 |
+
process.wait()
|
686 |
+
if process.returncode != 0:
|
687 |
+
if not args.quiet:
|
688 |
+
raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
|
689 |
+
else:
|
690 |
+
sys.exit(1)
|
691 |
+
|
692 |
+
|
693 |
+
def multi_gpu_launcher(args):
|
694 |
+
import torch.distributed.run as distrib_run
|
695 |
+
|
696 |
+
current_env = prepare_multi_gpu_env(args)
|
697 |
+
if not check_cuda_p2p_ib_support():
|
698 |
+
message = "Using RTX 4000 series which doesn't support faster communication speedups. Ensuring P2P and IB communications are disabled."
|
699 |
+
warn = False
|
700 |
+
if "NCCL_P2P_DISABLE" not in current_env:
|
701 |
+
current_env["NCCL_P2P_DISABLE"] = "1"
|
702 |
+
warn = True
|
703 |
+
if "NCCL_IB_DISABLE" not in current_env:
|
704 |
+
current_env["NCCL_IB_DISABLE"] = "1"
|
705 |
+
warn = True
|
706 |
+
if warn:
|
707 |
+
logger.warning(message)
|
708 |
+
|
709 |
+
debug = getattr(args, "debug", False)
|
710 |
+
args = _filter_args(
|
711 |
+
args,
|
712 |
+
distrib_run.get_args_parser(),
|
713 |
+
["--training_script", args.training_script, "--training_script_args", args.training_script_args],
|
714 |
+
)
|
715 |
+
|
716 |
+
with patch_environment(**current_env):
|
717 |
+
try:
|
718 |
+
distrib_run.run(args)
|
719 |
+
except Exception:
|
720 |
+
if is_rich_available() and debug:
|
721 |
+
console = get_console()
|
722 |
+
console.print("\n[bold red]Using --debug, `torch.distributed` Stack Trace:[/bold red]")
|
723 |
+
console.print_exception(suppress=[__file__], show_locals=False)
|
724 |
+
else:
|
725 |
+
raise
|
726 |
+
|
727 |
+
|
728 |
+
def deepspeed_launcher(args):
|
729 |
+
import torch.distributed.run as distrib_run
|
730 |
+
|
731 |
+
if not is_deepspeed_available():
|
732 |
+
raise ImportError("DeepSpeed is not installed => run `pip3 install deepspeed` or build it from source.")
|
733 |
+
else:
|
734 |
+
from deepspeed.launcher.runner import DEEPSPEED_ENVIRONMENT_NAME
|
735 |
+
|
736 |
+
cmd, current_env = prepare_deepspeed_cmd_env(args)
|
737 |
+
if not check_cuda_p2p_ib_support():
|
738 |
+
message = "Using RTX 4000 series which doesn't support faster communication speedups. Ensuring P2P and IB communications are disabled."
|
739 |
+
warn = False
|
740 |
+
if "NCCL_P2P_DISABLE" not in current_env:
|
741 |
+
current_env["NCCL_P2P_DISABLE"] = "1"
|
742 |
+
warn = True
|
743 |
+
if "NCCL_IB_DISABLE" not in current_env:
|
744 |
+
current_env["NCCL_IB_DISABLE"] = "1"
|
745 |
+
warn = True
|
746 |
+
if warn:
|
747 |
+
logger.warning(message)
|
748 |
+
|
749 |
+
if args.num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
|
750 |
+
with open(DEEPSPEED_ENVIRONMENT_NAME, "a") as f:
|
751 |
+
valid_env_items = convert_dict_to_env_variables(current_env)
|
752 |
+
if len(valid_env_items) > 1:
|
753 |
+
f.writelines(valid_env_items)
|
754 |
+
|
755 |
+
process = subprocess.Popen(cmd, env=current_env)
|
756 |
+
process.wait()
|
757 |
+
if process.returncode != 0:
|
758 |
+
if not args.quiet:
|
759 |
+
raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
|
760 |
+
else:
|
761 |
+
sys.exit(1)
|
762 |
+
else:
|
763 |
+
debug = getattr(args, "debug", False)
|
764 |
+
args = _filter_args(
|
765 |
+
args,
|
766 |
+
distrib_run.get_args_parser(),
|
767 |
+
["--training_script", args.training_script, "--training_script_args", args.training_script_args],
|
768 |
+
)
|
769 |
+
with patch_environment(**current_env):
|
770 |
+
try:
|
771 |
+
distrib_run.run(args)
|
772 |
+
except Exception:
|
773 |
+
if is_rich_available() and debug:
|
774 |
+
console = get_console()
|
775 |
+
console.print("\n[bold red]Using --debug, `torch.distributed` Stack Trace:[/bold red]")
|
776 |
+
console.print_exception(suppress=[__file__], show_locals=False)
|
777 |
+
else:
|
778 |
+
raise
|
779 |
+
|
780 |
+
|
781 |
+
def tpu_launcher(args):
|
782 |
+
import torch_xla.distributed.xla_multiprocessing as xmp
|
783 |
+
|
784 |
+
if args.no_python:
|
785 |
+
raise ValueError("--no_python cannot be used with TPU launcher")
|
786 |
+
|
787 |
+
args, current_env = prepare_tpu(args, {})
|
788 |
+
|
789 |
+
if args.module:
|
790 |
+
mod_name = args.training_script
|
791 |
+
else:
|
792 |
+
# Import training_script as a module
|
793 |
+
script_path = Path(args.training_script)
|
794 |
+
sys.path.append(str(script_path.parent.resolve()))
|
795 |
+
mod_name = script_path.stem
|
796 |
+
|
797 |
+
mod = importlib.import_module(mod_name)
|
798 |
+
if not hasattr(mod, args.main_training_function):
|
799 |
+
raise ValueError(
|
800 |
+
f"Your training script should have a function named {args.main_training_function}, or you should pass a "
|
801 |
+
"different value to `--main_training_function`."
|
802 |
+
)
|
803 |
+
|
804 |
+
# Patch sys.argv
|
805 |
+
sys.argv = [mod.__file__] + args.training_script_args
|
806 |
+
|
807 |
+
main_function = getattr(mod, args.main_training_function)
|
808 |
+
with patch_environment(**current_env):
|
809 |
+
xmp.spawn(PrepareForLaunch(main_function), args=(), nprocs=args.num_processes)
|
810 |
+
|
811 |
+
|
812 |
+
def tpu_pod_launcher(args):
|
813 |
+
from torch_xla.distributed import xla_dist
|
814 |
+
|
815 |
+
current_env = {}
|
816 |
+
args, current_env = prepare_tpu(args, current_env, True)
|
817 |
+
debug = getattr(args, "debug", False)
|
818 |
+
|
819 |
+
training_script = args.training_script
|
820 |
+
training_script_args = args.training_script_args
|
821 |
+
new_args = _filter_args(
|
822 |
+
args, xla_dist.get_args_parser(), ["--tpu", args.tpu_name, "--positional", "", "--restart-tpuvm-pod-server"]
|
823 |
+
)
|
824 |
+
|
825 |
+
if args.tpu_use_sudo:
|
826 |
+
new_cmd = ["sudo"]
|
827 |
+
else:
|
828 |
+
new_cmd = []
|
829 |
+
|
830 |
+
new_cmd += [
|
831 |
+
"accelerate-launch",
|
832 |
+
"--tpu",
|
833 |
+
"--no_tpu_cluster",
|
834 |
+
"--num_machines",
|
835 |
+
"1",
|
836 |
+
"--mixed_precision",
|
837 |
+
"no",
|
838 |
+
"--dynamo_backend",
|
839 |
+
"no",
|
840 |
+
"--num_processes",
|
841 |
+
str(args.num_processes),
|
842 |
+
"--main_training_function",
|
843 |
+
str(args.main_training_function),
|
844 |
+
training_script,
|
845 |
+
] + training_script_args
|
846 |
+
|
847 |
+
new_args.positional = new_cmd
|
848 |
+
bad_flags = ""
|
849 |
+
for arg in vars(new_args):
|
850 |
+
if arg.startswith("docker_"):
|
851 |
+
value = getattr(new_args, arg)
|
852 |
+
if value != "" and value is not None:
|
853 |
+
bad_flags += f'{arg}="{value}"\n'
|
854 |
+
if bad_flags != "":
|
855 |
+
raise ValueError(
|
856 |
+
f"Docker containers are not supported for TPU pod launcher currently, please remove the following flags:\n{bad_flags}"
|
857 |
+
)
|
858 |
+
new_args.env = [f"{k}={v}" for k, v in current_env.items()]
|
859 |
+
new_args.env.append("ACCELERATE_IN_TPU_POD=1")
|
860 |
+
try:
|
861 |
+
xla_dist.resolve_and_execute(new_args)
|
862 |
+
except Exception:
|
863 |
+
if is_rich_available() and debug:
|
864 |
+
console = get_console()
|
865 |
+
console.print("\n[bold red]Using --debug, `torch_xla.xla_dist` Stack Trace:[/bold red]")
|
866 |
+
console.print_exception(suppress=[__file__], show_locals=False)
|
867 |
+
else:
|
868 |
+
raise
|
869 |
+
|
870 |
+
|
871 |
+
def sagemaker_launcher(sagemaker_config: SageMakerConfig, args):
|
872 |
+
if not is_sagemaker_available():
|
873 |
+
raise ImportError(
|
874 |
+
"Please install sagemaker to be able to launch training on Amazon SageMaker with `pip install accelerate[sagemaker]`"
|
875 |
+
)
|
876 |
+
if args.module or args.no_python:
|
877 |
+
raise ValueError(
|
878 |
+
"SageMaker requires a python training script file and cannot be used with --module or --no_python"
|
879 |
+
)
|
880 |
+
|
881 |
+
from sagemaker.huggingface import HuggingFace
|
882 |
+
|
883 |
+
args, sagemaker_inputs = prepare_sagemager_args_inputs(sagemaker_config, args)
|
884 |
+
|
885 |
+
huggingface_estimator = HuggingFace(**args)
|
886 |
+
|
887 |
+
huggingface_estimator.fit(inputs=sagemaker_inputs)
|
888 |
+
print(f"You can find your model data at: {huggingface_estimator.model_data}")
|
889 |
+
|
890 |
+
|
891 |
+
def _validate_launch_command(args):
|
892 |
+
# Sanity checks
|
893 |
+
if sum([args.multi_gpu, args.cpu, args.tpu, args.use_deepspeed, args.use_fsdp]) > 1:
|
894 |
+
raise ValueError(
|
895 |
+
"You can only use one of `--cpu`, `--multi_gpu`, `--tpu`, `--use_deepspeed`, `--use_fsdp` at a time."
|
896 |
+
)
|
897 |
+
if args.multi_gpu and (args.num_processes is not None) and (args.num_processes < 2):
|
898 |
+
raise ValueError("You need to use at least 2 processes to use `--multi_gpu`.")
|
899 |
+
|
900 |
+
defaults = None
|
901 |
+
warned = []
|
902 |
+
mp_from_config_flag = False
|
903 |
+
# Get the default from the config file.
|
904 |
+
if args.config_file is not None or os.path.isfile(default_config_file) and not args.cpu:
|
905 |
+
defaults = load_config_from_file(args.config_file)
|
906 |
+
if (
|
907 |
+
not args.multi_gpu
|
908 |
+
and not args.tpu
|
909 |
+
and not args.tpu_use_cluster
|
910 |
+
and not args.use_deepspeed
|
911 |
+
and not args.use_fsdp
|
912 |
+
and not args.use_megatron_lm
|
913 |
+
):
|
914 |
+
args.use_deepspeed = defaults.distributed_type == DistributedType.DEEPSPEED
|
915 |
+
args.multi_gpu = (
|
916 |
+
True
|
917 |
+
if defaults.distributed_type
|
918 |
+
in (
|
919 |
+
DistributedType.MULTI_GPU,
|
920 |
+
DistributedType.MULTI_NPU,
|
921 |
+
DistributedType.MULTI_MLU,
|
922 |
+
DistributedType.MULTI_XPU,
|
923 |
+
)
|
924 |
+
else False
|
925 |
+
)
|
926 |
+
args.tpu = defaults.distributed_type == DistributedType.XLA
|
927 |
+
args.use_fsdp = defaults.distributed_type == DistributedType.FSDP
|
928 |
+
args.use_megatron_lm = defaults.distributed_type == DistributedType.MEGATRON_LM
|
929 |
+
args.tpu_use_cluster = defaults.tpu_use_cluster if args.tpu else False
|
930 |
+
if args.gpu_ids is None:
|
931 |
+
if defaults.gpu_ids is not None:
|
932 |
+
args.gpu_ids = defaults.gpu_ids
|
933 |
+
else:
|
934 |
+
args.gpu_ids = "all"
|
935 |
+
|
936 |
+
if args.multi_gpu and args.num_machines is None:
|
937 |
+
args.num_machines = defaults.num_machines
|
938 |
+
|
939 |
+
if len(args.gpu_ids.split(",")) < 2 and (args.gpu_ids != "all") and args.multi_gpu and args.num_machines <= 1:
|
940 |
+
raise ValueError(
|
941 |
+
"Less than two GPU ids were configured and tried to run on on multiple GPUs. "
|
942 |
+
"Please ensure at least two are specified for `--gpu_ids`, or use `--gpu_ids='all'`."
|
943 |
+
)
|
944 |
+
if defaults.compute_environment == ComputeEnvironment.LOCAL_MACHINE:
|
945 |
+
# Update args with the defaults
|
946 |
+
for name, attr in defaults.__dict__.items():
|
947 |
+
if isinstance(attr, dict):
|
948 |
+
for k in defaults.deepspeed_config:
|
949 |
+
setattr(args, k, defaults.deepspeed_config[k])
|
950 |
+
for k in defaults.fsdp_config:
|
951 |
+
arg_to_set = k
|
952 |
+
if "fsdp" not in arg_to_set:
|
953 |
+
arg_to_set = "fsdp_" + arg_to_set
|
954 |
+
setattr(args, arg_to_set, defaults.fsdp_config[k])
|
955 |
+
for k in defaults.megatron_lm_config:
|
956 |
+
setattr(args, k, defaults.megatron_lm_config[k])
|
957 |
+
for k in defaults.dynamo_config:
|
958 |
+
setattr(args, k, defaults.dynamo_config[k])
|
959 |
+
for k in defaults.ipex_config:
|
960 |
+
setattr(args, k, defaults.ipex_config[k])
|
961 |
+
for k in defaults.mpirun_config:
|
962 |
+
setattr(args, k, defaults.mpirun_config[k])
|
963 |
+
continue
|
964 |
+
|
965 |
+
# Those args are handled separately
|
966 |
+
if (
|
967 |
+
name not in ["compute_environment", "mixed_precision", "distributed_type"]
|
968 |
+
and getattr(args, name, None) is None
|
969 |
+
):
|
970 |
+
setattr(args, name, attr)
|
971 |
+
if not args.debug:
|
972 |
+
args.debug = defaults.debug
|
973 |
+
|
974 |
+
if not args.mixed_precision:
|
975 |
+
if defaults.mixed_precision is None:
|
976 |
+
args.mixed_precision = "no"
|
977 |
+
else:
|
978 |
+
args.mixed_precision = defaults.mixed_precision
|
979 |
+
mp_from_config_flag = True
|
980 |
+
else:
|
981 |
+
if args.use_cpu or (args.use_xpu and torch.xpu.is_available()):
|
982 |
+
native_amp = is_torch_version(">=", "1.10")
|
983 |
+
else:
|
984 |
+
native_amp = is_bf16_available(True)
|
985 |
+
if (
|
986 |
+
args.mixed_precision == "bf16"
|
987 |
+
and not native_amp
|
988 |
+
and not (args.tpu and is_torch_xla_available(check_is_tpu=True))
|
989 |
+
):
|
990 |
+
raise ValueError("bf16 mixed precision requires PyTorch >= 1.10 and a supported device.")
|
991 |
+
|
992 |
+
# Silently set the default here
|
993 |
+
if args.dynamo_backend is None:
|
994 |
+
args.dynamo_backend = "no"
|
995 |
+
else:
|
996 |
+
if args.num_processes is None:
|
997 |
+
if args.use_xpu and is_xpu_available():
|
998 |
+
args.num_processes = torch.xpu.device_count()
|
999 |
+
elif is_mlu_available():
|
1000 |
+
args.num_processes = torch.mlu.device_count()
|
1001 |
+
elif is_npu_available():
|
1002 |
+
args.num_processes = torch.npu.device_count()
|
1003 |
+
else:
|
1004 |
+
args.num_processes = torch.cuda.device_count()
|
1005 |
+
warned.append(f"\t`--num_processes` was set to a value of `{args.num_processes}`")
|
1006 |
+
if args.debug is None:
|
1007 |
+
args.debug = False
|
1008 |
+
if not args.multi_gpu and (
|
1009 |
+
(args.use_xpu and is_xpu_available() and torch.xpu.device_count() > 1)
|
1010 |
+
or (is_mlu_available() and torch.mlu.device_count() > 1)
|
1011 |
+
or (is_npu_available() and torch.npu.device_count() > 1)
|
1012 |
+
or (torch.cuda.device_count() > 1)
|
1013 |
+
):
|
1014 |
+
warned.append(
|
1015 |
+
"\t\tMore than one GPU was found, enabling multi-GPU training.\n"
|
1016 |
+
"\t\tIf this was unintended please pass in `--num_processes=1`."
|
1017 |
+
)
|
1018 |
+
args.multi_gpu = True
|
1019 |
+
if args.num_machines is None:
|
1020 |
+
warned.append("\t`--num_machines` was set to a value of `1`")
|
1021 |
+
args.num_machines = 1
|
1022 |
+
if args.mixed_precision is None:
|
1023 |
+
warned.append("\t`--mixed_precision` was set to a value of `'no'`")
|
1024 |
+
args.mixed_precision = "no"
|
1025 |
+
if not hasattr(args, "use_cpu"):
|
1026 |
+
args.use_cpu = args.cpu
|
1027 |
+
if args.dynamo_backend is None:
|
1028 |
+
warned.append("\t`--dynamo_backend` was set to a value of `'no'`")
|
1029 |
+
args.dynamo_backend = "no"
|
1030 |
+
if args.debug:
|
1031 |
+
logger.debug("Running script in debug mode, expect distributed operations to be slightly slower.")
|
1032 |
+
|
1033 |
+
is_aws_env_disabled = defaults is None or (
|
1034 |
+
defaults is not None and defaults.compute_environment != ComputeEnvironment.AMAZON_SAGEMAKER
|
1035 |
+
)
|
1036 |
+
if is_aws_env_disabled and args.num_cpu_threads_per_process is None:
|
1037 |
+
args.num_cpu_threads_per_process = 1
|
1038 |
+
if args.use_cpu and args.num_processes >= 1:
|
1039 |
+
local_size = get_int_from_env(
|
1040 |
+
["MPI_LOCALNRANKS", "OMPI_COMM_WORLD_LOCAL_SIZE", "MV2_COMM_WORLD_LOCAL_SIZE"], 1
|
1041 |
+
)
|
1042 |
+
threads_per_process = int(psutil.cpu_count(logical=False) / local_size)
|
1043 |
+
if threads_per_process > 1:
|
1044 |
+
args.num_cpu_threads_per_process = threads_per_process
|
1045 |
+
warned.append(
|
1046 |
+
f"\t`--num_cpu_threads_per_process` was set to `{args.num_cpu_threads_per_process}` to improve out-of-box performance when training on CPUs"
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
if any(warned):
|
1050 |
+
message = "The following values were not passed to `accelerate launch` and had defaults used instead:\n"
|
1051 |
+
message += "\n".join(warned)
|
1052 |
+
message += (
|
1053 |
+
"\nTo avoid this warning pass in values for each of the problematic parameters or run `accelerate config`."
|
1054 |
+
)
|
1055 |
+
logger.warning(message)
|
1056 |
+
return args, defaults, mp_from_config_flag
|
1057 |
+
|
1058 |
+
|
1059 |
+
def launch_command(args):
|
1060 |
+
args, defaults, mp_from_config_flag = _validate_launch_command(args)
|
1061 |
+
# Use the proper launcher
|
1062 |
+
if args.use_deepspeed and not args.cpu:
|
1063 |
+
args.deepspeed_fields_from_accelerate_config = list(defaults.deepspeed_config.keys()) if defaults else []
|
1064 |
+
if mp_from_config_flag:
|
1065 |
+
args.deepspeed_fields_from_accelerate_config.append("mixed_precision")
|
1066 |
+
args.deepspeed_fields_from_accelerate_config = ",".join(args.deepspeed_fields_from_accelerate_config)
|
1067 |
+
deepspeed_launcher(args)
|
1068 |
+
elif args.use_fsdp and not args.cpu:
|
1069 |
+
multi_gpu_launcher(args)
|
1070 |
+
elif args.use_megatron_lm and not args.cpu:
|
1071 |
+
multi_gpu_launcher(args)
|
1072 |
+
elif args.multi_gpu and not args.cpu:
|
1073 |
+
multi_gpu_launcher(args)
|
1074 |
+
elif args.tpu and not args.cpu:
|
1075 |
+
if args.tpu_use_cluster:
|
1076 |
+
tpu_pod_launcher(args)
|
1077 |
+
else:
|
1078 |
+
tpu_launcher(args)
|
1079 |
+
elif defaults is not None and defaults.compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
|
1080 |
+
sagemaker_launcher(defaults, args)
|
1081 |
+
else:
|
1082 |
+
simple_launcher(args)
|
1083 |
+
|
1084 |
+
|
1085 |
+
def main():
|
1086 |
+
parser = launch_command_parser()
|
1087 |
+
args = parser.parse_args()
|
1088 |
+
launch_command(args)
|
1089 |
+
|
1090 |
+
|
1091 |
+
if __name__ == "__main__":
|
1092 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__init__.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from .selection_menu import BulletMenu
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (246 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/cursor.cpython-310.pyc
ADDED
Binary file (1.44 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/helpers.cpython-310.pyc
ADDED
Binary file (1.65 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/input.cpython-310.pyc
ADDED
Binary file (2.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/keymap.cpython-310.pyc
ADDED
Binary file (2.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/selection_menu.cpython-310.pyc
ADDED
Binary file (4.44 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/cursor.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
A utility for showing and hiding the terminal cursor on Windows and Linux, based on https://github.com/bchao1/bullet
|
17 |
+
"""
|
18 |
+
|
19 |
+
import os
|
20 |
+
import sys
|
21 |
+
from contextlib import contextmanager
|
22 |
+
|
23 |
+
|
24 |
+
# Windows only
|
25 |
+
if os.name == "nt":
|
26 |
+
import ctypes
|
27 |
+
import msvcrt # noqa
|
28 |
+
|
29 |
+
class CursorInfo(ctypes.Structure):
|
30 |
+
# _fields is a specific attr expected by ctypes
|
31 |
+
_fields_ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)]
|
32 |
+
|
33 |
+
|
34 |
+
def hide_cursor():
|
35 |
+
if os.name == "nt":
|
36 |
+
ci = CursorInfo()
|
37 |
+
handle = ctypes.windll.kernel32.GetStdHandle(-11)
|
38 |
+
ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
|
39 |
+
ci.visible = False
|
40 |
+
ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
|
41 |
+
elif os.name == "posix":
|
42 |
+
sys.stdout.write("\033[?25l")
|
43 |
+
sys.stdout.flush()
|
44 |
+
|
45 |
+
|
46 |
+
def show_cursor():
|
47 |
+
if os.name == "nt":
|
48 |
+
ci = CursorInfo()
|
49 |
+
handle = ctypes.windll.kernel32.GetStdHandle(-11)
|
50 |
+
ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
|
51 |
+
ci.visible = True
|
52 |
+
ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
|
53 |
+
elif os.name == "posix":
|
54 |
+
sys.stdout.write("\033[?25h")
|
55 |
+
sys.stdout.flush()
|
56 |
+
|
57 |
+
|
58 |
+
@contextmanager
|
59 |
+
def hide():
|
60 |
+
"Context manager to hide the terminal cursor"
|
61 |
+
try:
|
62 |
+
hide_cursor()
|
63 |
+
yield
|
64 |
+
finally:
|
65 |
+
show_cursor()
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/helpers.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
A variety of helper functions and constants when dealing with terminal menu choices, based on
|
17 |
+
https://github.com/bchao1/bullet
|
18 |
+
"""
|
19 |
+
|
20 |
+
import enum
|
21 |
+
import shutil
|
22 |
+
import sys
|
23 |
+
|
24 |
+
|
25 |
+
TERMINAL_WIDTH, _ = shutil.get_terminal_size()
|
26 |
+
|
27 |
+
CURSOR_TO_CHAR = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"}
|
28 |
+
|
29 |
+
|
30 |
+
class Direction(enum.Enum):
|
31 |
+
UP = 0
|
32 |
+
DOWN = 1
|
33 |
+
|
34 |
+
|
35 |
+
def forceWrite(content, end=""):
|
36 |
+
sys.stdout.write(str(content) + end)
|
37 |
+
sys.stdout.flush()
|
38 |
+
|
39 |
+
|
40 |
+
def writeColor(content, color, end=""):
|
41 |
+
forceWrite(f"\u001b[{color}m{content}\u001b[0m", end)
|
42 |
+
|
43 |
+
|
44 |
+
def reset_cursor():
|
45 |
+
forceWrite("\r")
|
46 |
+
|
47 |
+
|
48 |
+
def move_cursor(num_lines: int, direction: str):
|
49 |
+
forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}")
|
50 |
+
|
51 |
+
|
52 |
+
def clear_line():
|
53 |
+
forceWrite(" " * TERMINAL_WIDTH)
|
54 |
+
reset_cursor()
|
55 |
+
|
56 |
+
|
57 |
+
def linebreak():
|
58 |
+
reset_cursor()
|
59 |
+
forceWrite("-" * TERMINAL_WIDTH)
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/input.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
This file contains utilities for handling input from the user and registering specific keys to specific functions,
|
17 |
+
based on https://github.com/bchao1/bullet
|
18 |
+
"""
|
19 |
+
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
from .keymap import KEYMAP, get_character
|
23 |
+
|
24 |
+
|
25 |
+
def mark(key: str):
|
26 |
+
"""
|
27 |
+
Mark the function with the key code so it can be handled in the register
|
28 |
+
"""
|
29 |
+
|
30 |
+
def decorator(func):
|
31 |
+
handle = getattr(func, "handle_key", [])
|
32 |
+
handle += [key]
|
33 |
+
func.handle_key = handle
|
34 |
+
return func
|
35 |
+
|
36 |
+
return decorator
|
37 |
+
|
38 |
+
|
39 |
+
def mark_multiple(*keys: List[str]):
|
40 |
+
"""
|
41 |
+
Mark the function with the key codes so it can be handled in the register
|
42 |
+
"""
|
43 |
+
|
44 |
+
def decorator(func):
|
45 |
+
handle = getattr(func, "handle_key", [])
|
46 |
+
handle += keys
|
47 |
+
func.handle_key = handle
|
48 |
+
return func
|
49 |
+
|
50 |
+
return decorator
|
51 |
+
|
52 |
+
|
53 |
+
class KeyHandler(type):
|
54 |
+
"""
|
55 |
+
Metaclass that adds the key handlers to the class
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __new__(cls, name, bases, attrs):
|
59 |
+
new_cls = super().__new__(cls, name, bases, attrs)
|
60 |
+
if not hasattr(new_cls, "key_handler"):
|
61 |
+
new_cls.key_handler = {}
|
62 |
+
new_cls.handle_input = KeyHandler.handle_input
|
63 |
+
|
64 |
+
for value in attrs.values():
|
65 |
+
handled_keys = getattr(value, "handle_key", [])
|
66 |
+
for key in handled_keys:
|
67 |
+
new_cls.key_handler[key] = value
|
68 |
+
return new_cls
|
69 |
+
|
70 |
+
@staticmethod
|
71 |
+
def handle_input(cls):
|
72 |
+
"Finds and returns the selected character if it exists in the handler"
|
73 |
+
char = get_character()
|
74 |
+
if char != KEYMAP["undefined"]:
|
75 |
+
char = ord(char)
|
76 |
+
handler = cls.key_handler.get(char)
|
77 |
+
if handler:
|
78 |
+
cls.current_selection = char
|
79 |
+
return handler(cls)
|
80 |
+
else:
|
81 |
+
return None
|
82 |
+
|
83 |
+
|
84 |
+
def register(cls):
|
85 |
+
"""Adds KeyHandler metaclass to the class"""
|
86 |
+
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy())
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/keymap.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
Utilities relating to parsing raw characters from the keyboard, based on https://github.com/bchao1/bullet
|
17 |
+
"""
|
18 |
+
|
19 |
+
import os
|
20 |
+
import string
|
21 |
+
import sys
|
22 |
+
|
23 |
+
|
24 |
+
ARROW_KEY_FLAG = 1 << 8
|
25 |
+
|
26 |
+
KEYMAP = {
|
27 |
+
"tab": ord("\t"),
|
28 |
+
"newline": ord("\r"),
|
29 |
+
"esc": 27,
|
30 |
+
"up": 65 + ARROW_KEY_FLAG,
|
31 |
+
"down": 66 + ARROW_KEY_FLAG,
|
32 |
+
"right": 67 + ARROW_KEY_FLAG,
|
33 |
+
"left": 68 + ARROW_KEY_FLAG,
|
34 |
+
"mod_int": 91,
|
35 |
+
"undefined": sys.maxsize,
|
36 |
+
"interrupt": 3,
|
37 |
+
"insert": 50,
|
38 |
+
"delete": 51,
|
39 |
+
"pg_up": 53,
|
40 |
+
"pg_down": 54,
|
41 |
+
}
|
42 |
+
|
43 |
+
KEYMAP["arrow_begin"] = KEYMAP["up"]
|
44 |
+
KEYMAP["arrow_end"] = KEYMAP["left"]
|
45 |
+
|
46 |
+
if sys.platform == "win32":
|
47 |
+
WIN_CH_BUFFER = []
|
48 |
+
WIN_KEYMAP = {
|
49 |
+
b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
|
50 |
+
b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
|
51 |
+
b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
|
52 |
+
b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
|
53 |
+
b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
|
54 |
+
b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
|
55 |
+
b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
|
56 |
+
b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
|
57 |
+
}
|
58 |
+
|
59 |
+
for i in range(10):
|
60 |
+
KEYMAP[str(i)] = ord(str(i))
|
61 |
+
|
62 |
+
|
63 |
+
def get_raw_chars():
|
64 |
+
"Gets raw characters from inputs"
|
65 |
+
if os.name == "nt":
|
66 |
+
import msvcrt
|
67 |
+
|
68 |
+
encoding = "mbcs"
|
69 |
+
# Flush the keyboard buffer
|
70 |
+
while msvcrt.kbhit():
|
71 |
+
msvcrt.getch()
|
72 |
+
if len(WIN_CH_BUFFER) == 0:
|
73 |
+
# Read the keystroke
|
74 |
+
ch = msvcrt.getch()
|
75 |
+
|
76 |
+
# If it is a prefix char, get second part
|
77 |
+
if ch in (b"\x00", b"\xe0"):
|
78 |
+
ch2 = ch + msvcrt.getch()
|
79 |
+
# Translate actual Win chars to bullet char types
|
80 |
+
try:
|
81 |
+
chx = chr(WIN_KEYMAP[ch2])
|
82 |
+
WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"]))
|
83 |
+
WIN_CH_BUFFER.append(chx)
|
84 |
+
if ord(chx) in (
|
85 |
+
KEYMAP["insert"] - 1 << 9,
|
86 |
+
KEYMAP["delete"] - 1 << 9,
|
87 |
+
KEYMAP["pg_up"] - 1 << 9,
|
88 |
+
KEYMAP["pg_down"] - 1 << 9,
|
89 |
+
):
|
90 |
+
WIN_CH_BUFFER.append(chr(126))
|
91 |
+
ch = chr(KEYMAP["esc"])
|
92 |
+
except KeyError:
|
93 |
+
ch = ch2[1]
|
94 |
+
else:
|
95 |
+
ch = ch.decode(encoding)
|
96 |
+
else:
|
97 |
+
ch = WIN_CH_BUFFER.pop(0)
|
98 |
+
elif os.name == "posix":
|
99 |
+
import termios
|
100 |
+
import tty
|
101 |
+
|
102 |
+
fd = sys.stdin.fileno()
|
103 |
+
old_settings = termios.tcgetattr(fd)
|
104 |
+
try:
|
105 |
+
tty.setraw(fd)
|
106 |
+
ch = sys.stdin.read(1)
|
107 |
+
finally:
|
108 |
+
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
|
109 |
+
return ch
|
110 |
+
|
111 |
+
|
112 |
+
def get_character():
|
113 |
+
"Gets a character from the keyboard and returns the key code"
|
114 |
+
char = get_raw_chars()
|
115 |
+
if ord(char) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
|
116 |
+
return char
|
117 |
+
|
118 |
+
elif ord(char) == KEYMAP["esc"]:
|
119 |
+
combo = get_raw_chars()
|
120 |
+
if ord(combo) == KEYMAP["mod_int"]:
|
121 |
+
key = get_raw_chars()
|
122 |
+
if ord(key) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(key) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
|
123 |
+
return chr(ord(key) + ARROW_KEY_FLAG)
|
124 |
+
else:
|
125 |
+
return KEYMAP["undefined"]
|
126 |
+
else:
|
127 |
+
return get_raw_chars()
|
128 |
+
|
129 |
+
else:
|
130 |
+
if char in string.printable:
|
131 |
+
return char
|
132 |
+
else:
|
133 |
+
return KEYMAP["undefined"]
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/selection_menu.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
Main driver for the selection menu, based on https://github.com/bchao1/bullet
|
17 |
+
"""
|
18 |
+
|
19 |
+
import builtins
|
20 |
+
import sys
|
21 |
+
|
22 |
+
from ...utils.imports import _is_package_available
|
23 |
+
from . import cursor, input
|
24 |
+
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
|
25 |
+
from .keymap import KEYMAP
|
26 |
+
|
27 |
+
|
28 |
+
in_colab = False
|
29 |
+
try:
|
30 |
+
in_colab = _is_package_available("google.colab")
|
31 |
+
except ModuleNotFoundError:
|
32 |
+
pass
|
33 |
+
|
34 |
+
|
35 |
+
@input.register
|
36 |
+
class BulletMenu:
|
37 |
+
"""
|
38 |
+
A CLI menu to select a choice from a list of choices using the keyboard.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, prompt: str = None, choices: list = []):
|
42 |
+
self.position = 0
|
43 |
+
self.choices = choices
|
44 |
+
self.prompt = prompt
|
45 |
+
if sys.platform == "win32":
|
46 |
+
self.arrow_char = "*"
|
47 |
+
else:
|
48 |
+
self.arrow_char = "➔ "
|
49 |
+
|
50 |
+
def write_choice(self, index, end: str = ""):
|
51 |
+
if sys.platform != "win32":
|
52 |
+
writeColor(self.choices[index], 32, end)
|
53 |
+
else:
|
54 |
+
forceWrite(self.choices[index], end)
|
55 |
+
|
56 |
+
def print_choice(self, index: int):
|
57 |
+
"Prints the choice at the given index"
|
58 |
+
if index == self.position:
|
59 |
+
forceWrite(f" {self.arrow_char} ")
|
60 |
+
self.write_choice(index)
|
61 |
+
else:
|
62 |
+
forceWrite(f" {self.choices[index]}")
|
63 |
+
reset_cursor()
|
64 |
+
|
65 |
+
def move_direction(self, direction: Direction, num_spaces: int = 1):
|
66 |
+
"Should not be directly called, used to move a direction of either up or down"
|
67 |
+
old_position = self.position
|
68 |
+
if direction == Direction.DOWN:
|
69 |
+
if self.position + 1 >= len(self.choices):
|
70 |
+
return
|
71 |
+
self.position += num_spaces
|
72 |
+
else:
|
73 |
+
if self.position - 1 < 0:
|
74 |
+
return
|
75 |
+
self.position -= num_spaces
|
76 |
+
clear_line()
|
77 |
+
self.print_choice(old_position)
|
78 |
+
move_cursor(num_spaces, direction.name)
|
79 |
+
self.print_choice(self.position)
|
80 |
+
|
81 |
+
@input.mark(KEYMAP["up"])
|
82 |
+
def move_up(self):
|
83 |
+
self.move_direction(Direction.UP)
|
84 |
+
|
85 |
+
@input.mark(KEYMAP["down"])
|
86 |
+
def move_down(self):
|
87 |
+
self.move_direction(Direction.DOWN)
|
88 |
+
|
89 |
+
@input.mark(KEYMAP["newline"])
|
90 |
+
def select(self):
|
91 |
+
move_cursor(len(self.choices) - self.position, "DOWN")
|
92 |
+
return self.position
|
93 |
+
|
94 |
+
@input.mark(KEYMAP["interrupt"])
|
95 |
+
def interrupt(self):
|
96 |
+
move_cursor(len(self.choices) - self.position, "DOWN")
|
97 |
+
raise KeyboardInterrupt
|
98 |
+
|
99 |
+
@input.mark_multiple(*[KEYMAP[str(number)] for number in range(10)])
|
100 |
+
def select_row(self):
|
101 |
+
index = int(chr(self.current_selection))
|
102 |
+
movement = index - self.position
|
103 |
+
if index == self.position:
|
104 |
+
return
|
105 |
+
if index < len(self.choices):
|
106 |
+
if self.position > index:
|
107 |
+
self.move_direction(Direction.UP, -movement)
|
108 |
+
elif self.position < index:
|
109 |
+
self.move_direction(Direction.DOWN, movement)
|
110 |
+
else:
|
111 |
+
return
|
112 |
+
else:
|
113 |
+
return
|
114 |
+
|
115 |
+
def run(self, default_choice: int = 0):
|
116 |
+
"Start the menu and return the selected choice"
|
117 |
+
if self.prompt:
|
118 |
+
linebreak()
|
119 |
+
forceWrite(self.prompt, "\n")
|
120 |
+
if in_colab:
|
121 |
+
forceWrite("Please input a choice index (starting from 0), and press enter", "\n")
|
122 |
+
else:
|
123 |
+
forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n")
|
124 |
+
self.position = default_choice
|
125 |
+
for i in range(len(self.choices)):
|
126 |
+
self.print_choice(i)
|
127 |
+
forceWrite("\n")
|
128 |
+
move_cursor(len(self.choices) - self.position, "UP")
|
129 |
+
with cursor.hide():
|
130 |
+
while True:
|
131 |
+
if in_colab:
|
132 |
+
try:
|
133 |
+
choice = int(builtins.input())
|
134 |
+
except ValueError:
|
135 |
+
choice = default_choice
|
136 |
+
else:
|
137 |
+
choice = self.handle_input()
|
138 |
+
if choice is not None:
|
139 |
+
reset_cursor()
|
140 |
+
for _ in range(len(self.choices) + 1):
|
141 |
+
move_cursor(1, "UP")
|
142 |
+
clear_line()
|
143 |
+
self.write_choice(choice, "\n")
|
144 |
+
return choice
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/test.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
|
19 |
+
from accelerate.test_utils import execute_subprocess_async, path_in_accelerate_package
|
20 |
+
|
21 |
+
|
22 |
+
def test_command_parser(subparsers=None):
|
23 |
+
if subparsers is not None:
|
24 |
+
parser = subparsers.add_parser("test")
|
25 |
+
else:
|
26 |
+
parser = argparse.ArgumentParser("Accelerate test command")
|
27 |
+
|
28 |
+
parser.add_argument(
|
29 |
+
"--config_file",
|
30 |
+
default=None,
|
31 |
+
help=(
|
32 |
+
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
|
33 |
+
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
|
34 |
+
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
|
35 |
+
"with 'huggingface'."
|
36 |
+
),
|
37 |
+
)
|
38 |
+
|
39 |
+
if subparsers is not None:
|
40 |
+
parser.set_defaults(func=test_command)
|
41 |
+
return parser
|
42 |
+
|
43 |
+
|
44 |
+
def test_command(args):
|
45 |
+
script_name = path_in_accelerate_package("test_utils", "scripts", "test_script.py")
|
46 |
+
|
47 |
+
if args.config_file is None:
|
48 |
+
test_args = [script_name]
|
49 |
+
else:
|
50 |
+
test_args = f"--config_file={args.config_file} {script_name}".split()
|
51 |
+
|
52 |
+
cmd = ["accelerate-launch"] + test_args
|
53 |
+
result = execute_subprocess_async(cmd)
|
54 |
+
if result.returncode == 0:
|
55 |
+
print("Test is a success! You are ready for your distributed training!")
|
56 |
+
|
57 |
+
|
58 |
+
def main():
|
59 |
+
parser = test_command_parser()
|
60 |
+
args = parser.parse_args()
|
61 |
+
test_command(args)
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/tpu.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import os
|
19 |
+
import subprocess
|
20 |
+
|
21 |
+
from packaging.version import Version, parse
|
22 |
+
|
23 |
+
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
|
24 |
+
|
25 |
+
|
26 |
+
_description = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
|
27 |
+
|
28 |
+
|
29 |
+
def tpu_command_parser(subparsers=None):
|
30 |
+
if subparsers is not None:
|
31 |
+
parser = subparsers.add_parser("tpu-config", description=_description)
|
32 |
+
else:
|
33 |
+
parser = argparse.ArgumentParser("Accelerate tpu-config command", description=_description)
|
34 |
+
# Core arguments
|
35 |
+
config_args = parser.add_argument_group(
|
36 |
+
"Config Arguments", "Arguments that can be configured through `accelerate config`."
|
37 |
+
)
|
38 |
+
config_args.add_argument(
|
39 |
+
"--config_file",
|
40 |
+
type=str,
|
41 |
+
default=None,
|
42 |
+
help="Path to the config file to use for accelerate.",
|
43 |
+
)
|
44 |
+
config_args.add_argument(
|
45 |
+
"--tpu_name",
|
46 |
+
default=None,
|
47 |
+
help="The name of the TPU to use. If not specified, will use the TPU specified in the config file.",
|
48 |
+
)
|
49 |
+
config_args.add_argument(
|
50 |
+
"--tpu_zone",
|
51 |
+
default=None,
|
52 |
+
help="The zone of the TPU to use. If not specified, will use the zone specified in the config file.",
|
53 |
+
)
|
54 |
+
pod_args = parser.add_argument_group("TPU Arguments", "Arguments for options ran inside the TPU.")
|
55 |
+
pod_args.add_argument(
|
56 |
+
"--use_alpha",
|
57 |
+
action="store_true",
|
58 |
+
help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.",
|
59 |
+
)
|
60 |
+
pod_args.add_argument(
|
61 |
+
"--command_file",
|
62 |
+
default=None,
|
63 |
+
help="The path to the file containing the commands to run on the pod on startup.",
|
64 |
+
)
|
65 |
+
pod_args.add_argument(
|
66 |
+
"--command",
|
67 |
+
action="append",
|
68 |
+
nargs="+",
|
69 |
+
help="A command to run on the pod. Can be passed multiple times.",
|
70 |
+
)
|
71 |
+
pod_args.add_argument(
|
72 |
+
"--install_accelerate",
|
73 |
+
action="store_true",
|
74 |
+
help="Whether to install accelerate on the pod. Defaults to False.",
|
75 |
+
)
|
76 |
+
pod_args.add_argument(
|
77 |
+
"--accelerate_version",
|
78 |
+
default="latest",
|
79 |
+
help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.",
|
80 |
+
)
|
81 |
+
pod_args.add_argument(
|
82 |
+
"--debug", action="store_true", help="If set, will print the command that would be run instead of running it."
|
83 |
+
)
|
84 |
+
|
85 |
+
if subparsers is not None:
|
86 |
+
parser.set_defaults(func=tpu_command_launcher)
|
87 |
+
return parser
|
88 |
+
|
89 |
+
|
90 |
+
def tpu_command_launcher(args):
|
91 |
+
defaults = None
|
92 |
+
|
93 |
+
# Get the default from the config file if it exists.
|
94 |
+
if args.config_file is not None or os.path.isfile(default_config_file):
|
95 |
+
defaults = load_config_from_file(args.config_file)
|
96 |
+
if not args.command_file and defaults.command_file is not None and not args.command:
|
97 |
+
args.command_file = defaults.command_file
|
98 |
+
if not args.command and defaults.commands is not None:
|
99 |
+
args.command = defaults.commands
|
100 |
+
if not args.tpu_name:
|
101 |
+
args.tpu_name = defaults.tpu_name
|
102 |
+
if not args.tpu_zone:
|
103 |
+
args.tpu_zone = defaults.tpu_zone
|
104 |
+
if args.accelerate_version == "dev":
|
105 |
+
args.accelerate_version = "git+https://github.com/huggingface/accelerate.git"
|
106 |
+
elif args.accelerate_version == "latest":
|
107 |
+
args.accelerate_version = "accelerate -U"
|
108 |
+
elif isinstance(parse(args.accelerate_version), Version):
|
109 |
+
args.accelerate_version = f"accelerate=={args.accelerate_version}"
|
110 |
+
|
111 |
+
if not args.command_file and not args.command:
|
112 |
+
raise ValueError("You must specify either a command file or a command to run on the pod.")
|
113 |
+
|
114 |
+
if args.command_file:
|
115 |
+
with open(args.command_file) as f:
|
116 |
+
args.command = [f.read().splitlines()]
|
117 |
+
|
118 |
+
# To turn list of lists into list of strings
|
119 |
+
if isinstance(args.command[0], list):
|
120 |
+
args.command = [line for cmd in args.command for line in cmd]
|
121 |
+
# Default to the shared folder and install accelerate
|
122 |
+
new_cmd = ["cd /usr/share"]
|
123 |
+
if args.install_accelerate:
|
124 |
+
new_cmd += [f"pip install {args.accelerate_version}"]
|
125 |
+
new_cmd += args.command
|
126 |
+
args.command = "; ".join(new_cmd)
|
127 |
+
|
128 |
+
# Then send it to gcloud
|
129 |
+
# Eventually try to use google-api-core to do this instead of subprocess
|
130 |
+
cmd = ["gcloud"]
|
131 |
+
if args.use_alpha:
|
132 |
+
cmd += ["alpha"]
|
133 |
+
cmd += [
|
134 |
+
"compute",
|
135 |
+
"tpus",
|
136 |
+
"tpu-vm",
|
137 |
+
"ssh",
|
138 |
+
args.tpu_name,
|
139 |
+
"--zone",
|
140 |
+
args.tpu_zone,
|
141 |
+
"--command",
|
142 |
+
args.command,
|
143 |
+
"--worker",
|
144 |
+
"all",
|
145 |
+
]
|
146 |
+
if args.debug:
|
147 |
+
print(f"Running {' '.join(cmd)}")
|
148 |
+
return
|
149 |
+
subprocess.run(cmd)
|
150 |
+
print("Successfully setup pod.")
|
151 |
+
|
152 |
+
|
153 |
+
def main():
|
154 |
+
parser = tpu_command_parser()
|
155 |
+
args = parser.parse_args()
|
156 |
+
|
157 |
+
tpu_command_launcher(args)
|
llmeval-env/lib/python3.10/site-packages/accelerate/commands/utils.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
|
17 |
+
|
18 |
+
class _StoreAction(argparse.Action):
|
19 |
+
"""
|
20 |
+
Custom action that allows for `-` or `_` to be passed in for an argument.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, *args, **kwargs):
|
24 |
+
super().__init__(*args, **kwargs)
|
25 |
+
new_option_strings = []
|
26 |
+
for option_string in self.option_strings:
|
27 |
+
new_option_strings.append(option_string)
|
28 |
+
if "_" in option_string[2:]:
|
29 |
+
# Add `-` version to the option string
|
30 |
+
new_option_strings.append(option_string.replace("_", "-"))
|
31 |
+
self.option_strings = new_option_strings
|
32 |
+
|
33 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
34 |
+
setattr(namespace, self.dest, values)
|
35 |
+
|
36 |
+
|
37 |
+
class _StoreConstAction(_StoreAction):
|
38 |
+
"""
|
39 |
+
Same as `argparse._StoreConstAction` but uses the custom `_StoreAction`.
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, option_strings, dest, const, default=None, required=False, help=None):
|
43 |
+
super().__init__(
|
44 |
+
option_strings=option_strings,
|
45 |
+
dest=dest,
|
46 |
+
nargs=0,
|
47 |
+
const=const,
|
48 |
+
default=default,
|
49 |
+
required=required,
|
50 |
+
help=help,
|
51 |
+
)
|
52 |
+
|
53 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
54 |
+
setattr(namespace, self.dest, self.const)
|
55 |
+
|
56 |
+
|
57 |
+
class _StoreTrueAction(_StoreConstAction):
|
58 |
+
"""
|
59 |
+
Same as `argparse._StoreTrueAction` but uses the custom `_StoreConstAction`.
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
option_strings,
|
65 |
+
dest,
|
66 |
+
default=None,
|
67 |
+
required=False,
|
68 |
+
help=None,
|
69 |
+
):
|
70 |
+
super().__init__(
|
71 |
+
option_strings=option_strings, dest=dest, const=True, default=default, required=required, help=help
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
class CustomArgumentGroup(argparse._ArgumentGroup):
|
76 |
+
"""
|
77 |
+
Custom argument group that allows for the use of `-` or `_` in arguments passed and overrides the help for each
|
78 |
+
when applicable.
|
79 |
+
"""
|
80 |
+
|
81 |
+
def _add_action(self, action):
|
82 |
+
args = vars(action)
|
83 |
+
if isinstance(action, argparse._StoreTrueAction):
|
84 |
+
action = _StoreTrueAction(
|
85 |
+
args["option_strings"], args["dest"], args["default"], args["required"], args["help"]
|
86 |
+
)
|
87 |
+
elif isinstance(action, argparse._StoreConstAction):
|
88 |
+
action = _StoreConstAction(
|
89 |
+
args["option_strings"],
|
90 |
+
args["dest"],
|
91 |
+
args["const"],
|
92 |
+
args["default"],
|
93 |
+
args["required"],
|
94 |
+
args["help"],
|
95 |
+
)
|
96 |
+
elif isinstance(action, argparse._StoreAction):
|
97 |
+
action = _StoreAction(**args)
|
98 |
+
action = super()._add_action(action)
|
99 |
+
return action
|
100 |
+
|
101 |
+
|
102 |
+
class CustomArgumentParser(argparse.ArgumentParser):
|
103 |
+
"""
|
104 |
+
Custom argument parser that allows for the use of `-` or `_` in arguments passed and overrides the help for each
|
105 |
+
when applicable.
|
106 |
+
"""
|
107 |
+
|
108 |
+
def add_argument(self, *args, **kwargs):
|
109 |
+
if "action" in kwargs:
|
110 |
+
# Translate action -> class
|
111 |
+
if kwargs["action"] == "store_true":
|
112 |
+
kwargs["action"] = _StoreTrueAction
|
113 |
+
else:
|
114 |
+
kwargs["action"] = _StoreAction
|
115 |
+
super().add_argument(*args, **kwargs)
|
116 |
+
|
117 |
+
def add_argument_group(self, *args, **kwargs):
|
118 |
+
group = CustomArgumentGroup(self, *args, **kwargs)
|
119 |
+
self._action_groups.append(group)
|
120 |
+
return group
|
llmeval-env/lib/python3.10/site-packages/accelerate/data_loader.py
ADDED
@@ -0,0 +1,1149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from contextlib import suppress
|
17 |
+
from typing import Callable, List, Optional, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch.utils.data import BatchSampler, DataLoader, IterableDataset, RandomSampler
|
21 |
+
|
22 |
+
from .logging import get_logger
|
23 |
+
from .state import AcceleratorState, DistributedType, GradientState, is_torch_xla_available
|
24 |
+
from .utils import (
|
25 |
+
RNGType,
|
26 |
+
broadcast,
|
27 |
+
broadcast_object_list,
|
28 |
+
concatenate,
|
29 |
+
find_batch_size,
|
30 |
+
get_data_structure,
|
31 |
+
initialize_tensors,
|
32 |
+
is_torch_version,
|
33 |
+
send_to_device,
|
34 |
+
slice_tensors,
|
35 |
+
synchronize_rng_states,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
logger = get_logger(__name__)
|
40 |
+
|
41 |
+
# kwargs of the DataLoader in min version 1.4.0.
|
42 |
+
_PYTORCH_DATALOADER_KWARGS = {
|
43 |
+
"batch_size": 1,
|
44 |
+
"shuffle": False,
|
45 |
+
"sampler": None,
|
46 |
+
"batch_sampler": None,
|
47 |
+
"num_workers": 0,
|
48 |
+
"collate_fn": None,
|
49 |
+
"pin_memory": False,
|
50 |
+
"drop_last": False,
|
51 |
+
"timeout": 0,
|
52 |
+
"worker_init_fn": None,
|
53 |
+
"multiprocessing_context": None,
|
54 |
+
"generator": None,
|
55 |
+
"prefetch_factor": 2,
|
56 |
+
"persistent_workers": False,
|
57 |
+
}
|
58 |
+
|
59 |
+
# kwargs added after by version
|
60 |
+
_PYTORCH_DATALOADER_ADDITIONAL_KWARGS = {}
|
61 |
+
|
62 |
+
for v, additional_kwargs in _PYTORCH_DATALOADER_ADDITIONAL_KWARGS.items():
|
63 |
+
if is_torch_version(">=", v):
|
64 |
+
_PYTORCH_DATALOADER_KWARGS.update(additional_kwargs)
|
65 |
+
|
66 |
+
|
67 |
+
class SeedableRandomSampler(RandomSampler):
|
68 |
+
"""
|
69 |
+
Same as a random sampler, except that in `__iter__` a seed can be used.
|
70 |
+
|
71 |
+
Needed specifically in distributed cases, when the random generator for each GPU needs to start from the same seed
|
72 |
+
and be fully reproducable on multiple iterations.
|
73 |
+
|
74 |
+
If a custom `generator` is passed, it will rely on its initial seed as well as the current iteration it is on
|
75 |
+
(stored in `self.epoch`).
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self, *args, **kwargs):
|
79 |
+
super().__init__(*args, **kwargs)
|
80 |
+
self.epoch = 0
|
81 |
+
self.initial_seed = torch.random.initial_seed()
|
82 |
+
|
83 |
+
def __iter__(self):
|
84 |
+
if self.generator is None:
|
85 |
+
self.generator = torch.Generator()
|
86 |
+
self.generator.manual_seed(self.initial_seed)
|
87 |
+
|
88 |
+
# Allow `self.epoch` to modify the seed of the generator
|
89 |
+
seed = self.epoch + self.initial_seed
|
90 |
+
# print("Setting seed at epoch", self.epoch, seed)
|
91 |
+
self.generator.manual_seed(seed)
|
92 |
+
yield from super().__iter__()
|
93 |
+
self.set_epoch(self.epoch + 1)
|
94 |
+
|
95 |
+
def set_epoch(self, epoch: int):
|
96 |
+
"Sets the current iteration of the sampler."
|
97 |
+
self.epoch = epoch
|
98 |
+
|
99 |
+
|
100 |
+
class BatchSamplerShard(BatchSampler):
|
101 |
+
"""
|
102 |
+
Wraps a PyTorch `BatchSampler` to generate batches for one of the processes only. Instances of this class will
|
103 |
+
always yield a number of batches that is a round multiple of `num_processes` and that all have the same size.
|
104 |
+
Depending on the value of the `drop_last` attribute of the batch sampler passed, it will either stop the iteration
|
105 |
+
at the first batch that would be too small / not present on all processes or loop with indices from the beginning.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
batch_sampler (`torch.utils.data.sampler.BatchSampler`):
|
109 |
+
The batch sampler to split in several shards.
|
110 |
+
num_processes (`int`, *optional*, defaults to 1):
|
111 |
+
The number of processes running concurrently.
|
112 |
+
process_index (`int`, *optional*, defaults to 0):
|
113 |
+
The index of the current process.
|
114 |
+
split_batches (`bool`, *optional*, defaults to `False`):
|
115 |
+
Whether the shards should be created by splitting a batch to give a piece of it on each process, or by
|
116 |
+
yielding different full batches on each process.
|
117 |
+
|
118 |
+
On two processes with a sampler of `[[0, 1, 2, 3], [4, 5, 6, 7]]`, this will result in:
|
119 |
+
|
120 |
+
- the sampler on process 0 to yield `[0, 1, 2, 3]` and the sampler on process 1 to yield `[4, 5, 6, 7]` if
|
121 |
+
this argument is set to `False`.
|
122 |
+
- the sampler on process 0 to yield `[0, 1]` then `[4, 5]` and the sampler on process 1 to yield `[2, 3]`
|
123 |
+
then `[6, 7]` if this argument is set to `True`.
|
124 |
+
even_batches (`bool`, *optional*, defaults to `True`):
|
125 |
+
Whether or not to loop back at the beginning of the sampler when the number of samples is not a round
|
126 |
+
multiple of (original batch size / number of processes).
|
127 |
+
|
128 |
+
<Tip warning={true}>
|
129 |
+
|
130 |
+
`BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches`
|
131 |
+
equal to `False`
|
132 |
+
|
133 |
+
</Tip>"""
|
134 |
+
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
batch_sampler: BatchSampler,
|
138 |
+
num_processes: int = 1,
|
139 |
+
process_index: int = 0,
|
140 |
+
split_batches: bool = False,
|
141 |
+
even_batches: bool = True,
|
142 |
+
):
|
143 |
+
if split_batches and batch_sampler.batch_size % num_processes != 0:
|
144 |
+
raise ValueError(
|
145 |
+
f"To use `BatchSamplerShard` in `split_batches` mode, the batch size ({batch_sampler.batch_size}) "
|
146 |
+
f"needs to be a round multiple of the number of processes ({num_processes})."
|
147 |
+
)
|
148 |
+
self.batch_sampler = batch_sampler
|
149 |
+
self.num_processes = num_processes
|
150 |
+
self.process_index = process_index
|
151 |
+
self.split_batches = split_batches
|
152 |
+
self.even_batches = even_batches
|
153 |
+
self.batch_size = getattr(batch_sampler, "batch_size", None)
|
154 |
+
self.drop_last = getattr(batch_sampler, "drop_last", False)
|
155 |
+
if self.batch_size is None and self.even_batches:
|
156 |
+
raise ValueError(
|
157 |
+
"You need to use `even_batches=False` when the batch sampler has no batch size. If you "
|
158 |
+
"are not calling this method directly, set `accelerator.even_batches=False` instead."
|
159 |
+
)
|
160 |
+
|
161 |
+
@property
|
162 |
+
def total_length(self):
|
163 |
+
return len(self.batch_sampler)
|
164 |
+
|
165 |
+
def __len__(self):
|
166 |
+
if self.split_batches:
|
167 |
+
# Split batches does not change the length of the batch sampler
|
168 |
+
return len(self.batch_sampler)
|
169 |
+
if len(self.batch_sampler) % self.num_processes == 0:
|
170 |
+
# If the length is a round multiple of the number of processes, it's easy.
|
171 |
+
return len(self.batch_sampler) // self.num_processes
|
172 |
+
length = len(self.batch_sampler) // self.num_processes
|
173 |
+
if self.drop_last:
|
174 |
+
# Same if we drop the remainder.
|
175 |
+
return length
|
176 |
+
elif self.even_batches:
|
177 |
+
# When we even batches we always get +1
|
178 |
+
return length + 1
|
179 |
+
else:
|
180 |
+
# Otherwise it depends on the process index.
|
181 |
+
return length + 1 if self.process_index < len(self.batch_sampler) % self.num_processes else length
|
182 |
+
|
183 |
+
def __iter__(self):
|
184 |
+
return self._iter_with_split() if self.split_batches else self._iter_with_no_split()
|
185 |
+
|
186 |
+
def _iter_with_split(self):
|
187 |
+
initial_data = []
|
188 |
+
batch_length = self.batch_sampler.batch_size // self.num_processes
|
189 |
+
for idx, batch in enumerate(self.batch_sampler):
|
190 |
+
if idx == 0:
|
191 |
+
initial_data = batch
|
192 |
+
if len(batch) == self.batch_size:
|
193 |
+
# If the batch is full, we yield the part of it this process is responsible of.
|
194 |
+
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)]
|
195 |
+
|
196 |
+
# If drop_last is True of the last batch was full, iteration is over, otherwise...
|
197 |
+
if not self.drop_last and len(initial_data) > 0 and len(batch) < self.batch_size:
|
198 |
+
if not self.even_batches:
|
199 |
+
if len(batch) > batch_length * self.process_index:
|
200 |
+
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)]
|
201 |
+
else:
|
202 |
+
# For degenerate cases where the dataset has less than num_process * batch_size samples
|
203 |
+
while len(initial_data) < self.batch_size:
|
204 |
+
initial_data += initial_data
|
205 |
+
batch = batch + initial_data
|
206 |
+
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)]
|
207 |
+
|
208 |
+
def _iter_with_no_split(self):
|
209 |
+
initial_data = []
|
210 |
+
batch_to_yield = []
|
211 |
+
for idx, batch in enumerate(self.batch_sampler):
|
212 |
+
# We gather the initial indices in case we need to circle back at the end.
|
213 |
+
if not self.drop_last and idx < self.num_processes:
|
214 |
+
initial_data += batch
|
215 |
+
# We identify the batch to yield but wait until we ar sure every process gets a full batch before actually
|
216 |
+
# yielding it.
|
217 |
+
if idx % self.num_processes == self.process_index:
|
218 |
+
batch_to_yield = batch
|
219 |
+
if idx % self.num_processes == self.num_processes - 1 and (
|
220 |
+
self.batch_size is None or len(batch) == self.batch_size
|
221 |
+
):
|
222 |
+
yield batch_to_yield
|
223 |
+
batch_to_yield = []
|
224 |
+
|
225 |
+
# If drop_last is True, iteration is over, otherwise...
|
226 |
+
if not self.drop_last and len(initial_data) > 0:
|
227 |
+
if not self.even_batches:
|
228 |
+
if len(batch_to_yield) > 0:
|
229 |
+
yield batch_to_yield
|
230 |
+
else:
|
231 |
+
# ... we yield the complete batch we had saved before if it has the proper length
|
232 |
+
if len(batch_to_yield) == self.batch_size:
|
233 |
+
yield batch_to_yield
|
234 |
+
|
235 |
+
# For degenerate cases where the dataset has less than num_process * batch_size samples
|
236 |
+
while len(initial_data) < self.num_processes * self.batch_size:
|
237 |
+
initial_data += initial_data
|
238 |
+
|
239 |
+
# If the last batch seen was of the proper size, it has been yielded by its process so we move to the next
|
240 |
+
if len(batch) == self.batch_size:
|
241 |
+
batch = []
|
242 |
+
idx += 1
|
243 |
+
|
244 |
+
# Make sure we yield a multiple of self.num_processes batches
|
245 |
+
cycle_index = 0
|
246 |
+
while idx % self.num_processes != 0 or len(batch) > 0:
|
247 |
+
end_index = cycle_index + self.batch_size - len(batch)
|
248 |
+
batch += initial_data[cycle_index:end_index]
|
249 |
+
if idx % self.num_processes == self.process_index:
|
250 |
+
yield batch
|
251 |
+
cycle_index = end_index
|
252 |
+
batch = []
|
253 |
+
idx += 1
|
254 |
+
|
255 |
+
|
256 |
+
class IterableDatasetShard(IterableDataset):
|
257 |
+
"""
|
258 |
+
Wraps a PyTorch `IterableDataset` to generate samples for one of the processes only. Instances of this class will
|
259 |
+
always yield a number of samples that is a round multiple of the actual batch size (depending of the value of
|
260 |
+
`split_batches`, this is either `batch_size` or `batch_size x num_processes`). Depending on the value of the
|
261 |
+
`drop_last` attribute of the batch sampler passed, it will either stop the iteration at the first batch that would
|
262 |
+
be too small or loop with indices from the beginning.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
dataset (`torch.utils.data.dataset.IterableDataset`):
|
266 |
+
The batch sampler to split in several shards.
|
267 |
+
batch_size (`int`, *optional*, defaults to 1):
|
268 |
+
The size of the batches per shard (if `split_batches=False`) or the size of the batches (if
|
269 |
+
`split_batches=True`).
|
270 |
+
drop_last (`bool`, *optional*, defaults to `False`):
|
271 |
+
Whether or not to drop the last incomplete batch or complete the last batches by using the samples from the
|
272 |
+
beginning.
|
273 |
+
num_processes (`int`, *optional*, defaults to 1):
|
274 |
+
The number of processes running concurrently.
|
275 |
+
process_index (`int`, *optional*, defaults to 0):
|
276 |
+
The index of the current process.
|
277 |
+
split_batches (`bool`, *optional*, defaults to `False`):
|
278 |
+
Whether the shards should be created by splitting a batch to give a piece of it on each process, or by
|
279 |
+
yielding different full batches on each process.
|
280 |
+
|
281 |
+
On two processes with an iterable dataset yielding of `[0, 1, 2, 3, 4, 5, 6, 7]`, this will result in:
|
282 |
+
|
283 |
+
- the shard on process 0 to yield `[0, 1, 2, 3]` and the shard on process 1 to yield `[4, 5, 6, 7]` if this
|
284 |
+
argument is set to `False`.
|
285 |
+
- the shard on process 0 to yield `[0, 1, 4, 5]` and the sampler on process 1 to yield `[2, 3, 6, 7]` if
|
286 |
+
this argument is set to `True`.
|
287 |
+
"""
|
288 |
+
|
289 |
+
def __init__(
|
290 |
+
self,
|
291 |
+
dataset: IterableDataset,
|
292 |
+
batch_size: int = 1,
|
293 |
+
drop_last: bool = False,
|
294 |
+
num_processes: int = 1,
|
295 |
+
process_index: int = 0,
|
296 |
+
split_batches: bool = False,
|
297 |
+
):
|
298 |
+
if split_batches and batch_size > 1 and batch_size % num_processes != 0:
|
299 |
+
raise ValueError(
|
300 |
+
f"To use `IterableDatasetShard` in `split_batches` mode, the batch size ({batch_size}) "
|
301 |
+
f"needs to be a round multiple of the number of processes ({num_processes})."
|
302 |
+
)
|
303 |
+
self.dataset = dataset
|
304 |
+
self.batch_size = batch_size
|
305 |
+
self.drop_last = drop_last
|
306 |
+
self.num_processes = num_processes
|
307 |
+
self.process_index = process_index
|
308 |
+
self.split_batches = split_batches
|
309 |
+
|
310 |
+
def set_epoch(self, epoch):
|
311 |
+
self.epoch = epoch
|
312 |
+
if hasattr(self.dataset, "set_epoch"):
|
313 |
+
self.dataset.set_epoch(epoch)
|
314 |
+
|
315 |
+
def __len__(self):
|
316 |
+
# We will just raise the downstream error if the underlying dataset is not sized
|
317 |
+
if self.drop_last:
|
318 |
+
return (len(self.dataset) // (self.batch_size * self.num_processes)) * self.batch_size
|
319 |
+
else:
|
320 |
+
return math.ceil(len(self.dataset) / (self.batch_size * self.num_processes)) * self.batch_size
|
321 |
+
|
322 |
+
def __iter__(self):
|
323 |
+
if (
|
324 |
+
not hasattr(self.dataset, "set_epoch")
|
325 |
+
and hasattr(self.dataset, "generator")
|
326 |
+
and isinstance(self.dataset.generator, torch.Generator)
|
327 |
+
):
|
328 |
+
self.dataset.generator.manual_seed(self.epoch)
|
329 |
+
real_batch_size = self.batch_size if self.split_batches else (self.batch_size * self.num_processes)
|
330 |
+
process_batch_size = (self.batch_size // self.num_processes) if self.split_batches else self.batch_size
|
331 |
+
process_slice = range(self.process_index * process_batch_size, (self.process_index + 1) * process_batch_size)
|
332 |
+
|
333 |
+
first_batch = None
|
334 |
+
current_batch = []
|
335 |
+
for element in self.dataset:
|
336 |
+
current_batch.append(element)
|
337 |
+
# Wait to have a full batch before yielding elements.
|
338 |
+
if len(current_batch) == real_batch_size:
|
339 |
+
for i in process_slice:
|
340 |
+
yield current_batch[i]
|
341 |
+
if first_batch is None:
|
342 |
+
first_batch = current_batch.copy()
|
343 |
+
current_batch = []
|
344 |
+
|
345 |
+
# Finished if drop_last is True, otherwise complete the last batch with elements from the beginning.
|
346 |
+
if not self.drop_last and len(current_batch) > 0:
|
347 |
+
if first_batch is None:
|
348 |
+
first_batch = current_batch.copy()
|
349 |
+
while len(current_batch) < real_batch_size:
|
350 |
+
current_batch += first_batch
|
351 |
+
for i in process_slice:
|
352 |
+
yield current_batch[i]
|
353 |
+
|
354 |
+
|
355 |
+
class DataLoaderStateMixin:
|
356 |
+
"""
|
357 |
+
Mixin class that adds a state to a `DataLoader` to keep track of the status inside the dataloader such as at the
|
358 |
+
end of the iteration, the number of items in the dataset in the last batch relative to the batch size, and other
|
359 |
+
useful information that might be needed.
|
360 |
+
|
361 |
+
**Available attributes:**
|
362 |
+
|
363 |
+
- **end_of_dataloader** (`bool`) -- Whether at the last iteration or batch
|
364 |
+
- **remainder** (`int`) -- The number of items that are remaining in the last batch, relative to the total
|
365 |
+
batch size
|
366 |
+
|
367 |
+
"""
|
368 |
+
|
369 |
+
def __init_subclass__(cls, **kwargs):
|
370 |
+
cls.end_of_dataloader = False
|
371 |
+
cls.remainder = -1
|
372 |
+
|
373 |
+
def reset(self):
|
374 |
+
self.end_of_dataloader = False
|
375 |
+
self.remainder = -1
|
376 |
+
|
377 |
+
def begin(self):
|
378 |
+
"Prepares the gradient state for the current dataloader"
|
379 |
+
self.reset()
|
380 |
+
with suppress(Exception):
|
381 |
+
if not self._drop_last:
|
382 |
+
length = getattr(self.dataset, "total_dataset_length", len(self.dataset))
|
383 |
+
self.remainder = length % self.total_batch_size
|
384 |
+
self.gradient_state._add_dataloader(self)
|
385 |
+
|
386 |
+
def end(self):
|
387 |
+
"Cleans up the gradient state after exiting the dataloader"
|
388 |
+
self.gradient_state._remove_dataloader(self)
|
389 |
+
|
390 |
+
|
391 |
+
class DataLoaderShard(DataLoader, DataLoaderStateMixin):
|
392 |
+
"""
|
393 |
+
Subclass of a PyTorch `DataLoader` that will deal with device placement and current distributed setup.
|
394 |
+
|
395 |
+
Args:
|
396 |
+
dataset (`torch.utils.data.dataset.Dataset`):
|
397 |
+
The dataset to use to build this datalaoder.
|
398 |
+
device (`torch.device`, *optional*):
|
399 |
+
If passed, the device to put all batches on.
|
400 |
+
rng_types (list of `str` or [`~utils.RNGType`]):
|
401 |
+
The list of random number generators to synchronize at the beginning of each iteration. Should be one or
|
402 |
+
several of:
|
403 |
+
|
404 |
+
- `"torch"`: the base torch random number generator
|
405 |
+
- `"cuda"`: the CUDA random number generator (GPU only)
|
406 |
+
- `"xla"`: the XLA random number generator (TPU only)
|
407 |
+
- `"generator"`: an optional `torch.Generator`
|
408 |
+
synchronized_generator (`torch.Generator`, *optional*):
|
409 |
+
A random number generator to keep synchronized across processes.
|
410 |
+
skip_batches (`int`, *optional*, defaults to 0):
|
411 |
+
The number of batches to skip at the beginning.
|
412 |
+
**kwargs (additional keyword arguments, *optional*):
|
413 |
+
All other keyword arguments to pass to the regular `DataLoader` initialization.
|
414 |
+
|
415 |
+
**Available attributes:**
|
416 |
+
|
417 |
+
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
|
418 |
+
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
|
419 |
+
number of processes
|
420 |
+
|
421 |
+
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
|
422 |
+
"""
|
423 |
+
|
424 |
+
def __init__(
|
425 |
+
self,
|
426 |
+
dataset,
|
427 |
+
device=None,
|
428 |
+
rng_types=None,
|
429 |
+
synchronized_generator=None,
|
430 |
+
skip_batches=0,
|
431 |
+
_drop_last: bool = False,
|
432 |
+
_non_blocking: bool = False,
|
433 |
+
**kwargs,
|
434 |
+
):
|
435 |
+
super().__init__(dataset, **kwargs)
|
436 |
+
self.device = device
|
437 |
+
self.rng_types = rng_types
|
438 |
+
self.synchronized_generator = synchronized_generator
|
439 |
+
self.skip_batches = skip_batches
|
440 |
+
self.gradient_state = GradientState()
|
441 |
+
self._drop_last = _drop_last
|
442 |
+
self._non_blocking = _non_blocking
|
443 |
+
self.iteration = 0
|
444 |
+
|
445 |
+
def __iter__(self):
|
446 |
+
if self.rng_types is not None:
|
447 |
+
synchronize_rng_states(self.rng_types, self.synchronized_generator)
|
448 |
+
self.begin()
|
449 |
+
|
450 |
+
self.set_epoch(self.iteration)
|
451 |
+
dataloader_iter = super().__iter__()
|
452 |
+
# We iterate one batch ahead to check when we are at the end
|
453 |
+
try:
|
454 |
+
current_batch = next(dataloader_iter)
|
455 |
+
except StopIteration:
|
456 |
+
yield
|
457 |
+
|
458 |
+
batch_index = 0
|
459 |
+
while True:
|
460 |
+
try:
|
461 |
+
# But we still move it to the device so it is done before `StopIteration` is reached
|
462 |
+
if self.device is not None:
|
463 |
+
current_batch = send_to_device(current_batch, self.device, non_blocking=self._non_blocking)
|
464 |
+
next_batch = next(dataloader_iter)
|
465 |
+
if batch_index >= self.skip_batches:
|
466 |
+
yield current_batch
|
467 |
+
batch_index += 1
|
468 |
+
current_batch = next_batch
|
469 |
+
except StopIteration:
|
470 |
+
self.end_of_dataloader = True
|
471 |
+
if batch_index >= self.skip_batches:
|
472 |
+
yield current_batch
|
473 |
+
break
|
474 |
+
|
475 |
+
self.iteration += 1
|
476 |
+
self.end()
|
477 |
+
|
478 |
+
def set_epoch(self, epoch: int):
|
479 |
+
# In case it is manually passed in, the user can set it to what they like
|
480 |
+
if self.iteration != epoch:
|
481 |
+
self.iteration = epoch
|
482 |
+
if hasattr(self.batch_sampler, "sampler") and hasattr(self.batch_sampler.sampler, "set_epoch"):
|
483 |
+
self.batch_sampler.sampler.set_epoch(epoch)
|
484 |
+
# We support if a custom `Dataset` implementation has `set_epoch`
|
485 |
+
# or in general HF datasets `Datasets`
|
486 |
+
elif hasattr(self.dataset, "set_epoch"):
|
487 |
+
self.dataset.set_epoch(epoch)
|
488 |
+
|
489 |
+
@property
|
490 |
+
def total_batch_size(self):
|
491 |
+
batch_sampler = self.sampler if isinstance(self.sampler, BatchSampler) else self.batch_sampler
|
492 |
+
return (
|
493 |
+
batch_sampler.batch_size
|
494 |
+
if getattr(batch_sampler, "split_batches", False)
|
495 |
+
else (batch_sampler.batch_size * getattr(batch_sampler, "num_processes", 1))
|
496 |
+
)
|
497 |
+
|
498 |
+
@property
|
499 |
+
def total_dataset_length(self):
|
500 |
+
if hasattr(self.dataset, "total_length"):
|
501 |
+
return self.dataset.total_length
|
502 |
+
else:
|
503 |
+
return len(self.dataset)
|
504 |
+
|
505 |
+
def get_sampler(self):
|
506 |
+
return get_sampler(self)
|
507 |
+
|
508 |
+
def set_sampler(self, sampler):
|
509 |
+
sampler_is_batch_sampler = isinstance(self.sampler, BatchSampler)
|
510 |
+
if sampler_is_batch_sampler:
|
511 |
+
self.sampler.sampler = sampler
|
512 |
+
else:
|
513 |
+
self.batch_sampler.sampler = sampler
|
514 |
+
if hasattr(self.batch_sampler, "batch_sampler"):
|
515 |
+
self.batch_sampler.batch_sampler.sampler = sampler
|
516 |
+
|
517 |
+
|
518 |
+
if is_torch_xla_available():
|
519 |
+
import torch_xla.distributed.parallel_loader as xpl
|
520 |
+
|
521 |
+
class MpDeviceLoaderWrapper(xpl.MpDeviceLoader):
|
522 |
+
"""
|
523 |
+
Wrapper for the xpl.MpDeviceLoader class that knows the total batch size.
|
524 |
+
|
525 |
+
XLA preloading threads will all call DataLoaderShard's __iter__(). Remove rng_types from DataLoaderShard to
|
526 |
+
prevent it from using the XLA device in the preloading threads, and synchronize the RNG once from the main
|
527 |
+
thread only.
|
528 |
+
|
529 |
+
**Available attributes:**
|
530 |
+
|
531 |
+
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
|
532 |
+
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
|
533 |
+
number of processes
|
534 |
+
|
535 |
+
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
|
536 |
+
"""
|
537 |
+
|
538 |
+
def __init__(self, dataloader: DataLoaderShard, device: torch.device):
|
539 |
+
super().__init__(dataloader, device)
|
540 |
+
self._rng_types = self._loader.rng_types
|
541 |
+
self._loader.rng_types = None
|
542 |
+
|
543 |
+
def __iter__(self):
|
544 |
+
if self._rng_types is not None:
|
545 |
+
synchronize_rng_states(self._rng_types, self._loader.synchronized_generator)
|
546 |
+
|
547 |
+
return super().__iter__()
|
548 |
+
|
549 |
+
@property
|
550 |
+
def total_batch_size(self):
|
551 |
+
return self._loader.total_batch_size
|
552 |
+
|
553 |
+
@property
|
554 |
+
def total_dataset_length(self):
|
555 |
+
return self._loader.total_dataset_length
|
556 |
+
|
557 |
+
@property
|
558 |
+
def batch_sampler(self):
|
559 |
+
return self._loader.batch_sampler
|
560 |
+
|
561 |
+
|
562 |
+
class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
|
563 |
+
"""
|
564 |
+
Subclass of a PyTorch `DataLoader` that will iterate and preprocess on process 0 only, then dispatch on each
|
565 |
+
process their part of the batch.
|
566 |
+
|
567 |
+
Args:
|
568 |
+
split_batches (`bool`, *optional*, defaults to `False`):
|
569 |
+
Whether the resulting `DataLoader` should split the batches of the original data loader across devices or
|
570 |
+
yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of
|
571 |
+
`num_processes` batches at each iteration). Another way to see this is that the observed batch size will be
|
572 |
+
the same as the initial `dataloader` if this option is set to `True`, the batch size of the initial
|
573 |
+
`dataloader` multiplied by `num_processes` otherwise. Setting this option to `True` requires that the batch
|
574 |
+
size of the `dataloader` is a round multiple of `batch_size`.
|
575 |
+
skip_batches (`int`, *optional*, defaults to 0):
|
576 |
+
The number of batches to skip at the beginning of an iteration.
|
577 |
+
|
578 |
+
**Available attributes:**
|
579 |
+
|
580 |
+
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
|
581 |
+
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
|
582 |
+
number of processes
|
583 |
+
|
584 |
+
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
|
585 |
+
"""
|
586 |
+
|
587 |
+
def __init__(
|
588 |
+
self,
|
589 |
+
dataset,
|
590 |
+
split_batches: bool = False,
|
591 |
+
skip_batches=0,
|
592 |
+
_drop_last: bool = False,
|
593 |
+
_non_blocking: bool = False,
|
594 |
+
slice_fn=None,
|
595 |
+
**kwargs,
|
596 |
+
):
|
597 |
+
shuffle = False
|
598 |
+
if is_torch_version(">=", "1.11.0"):
|
599 |
+
from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe
|
600 |
+
|
601 |
+
# We need to save the shuffling state of the DataPipe
|
602 |
+
if isinstance(dataset, ShufflerIterDataPipe):
|
603 |
+
shuffle = dataset._shuffle_enabled
|
604 |
+
super().__init__(dataset, **kwargs)
|
605 |
+
self.split_batches = split_batches
|
606 |
+
if shuffle:
|
607 |
+
torch.utils.data.graph_settings.apply_shuffle_settings(dataset, shuffle=shuffle)
|
608 |
+
|
609 |
+
self.gradient_state = GradientState()
|
610 |
+
self.state = AcceleratorState()
|
611 |
+
self._drop_last = _drop_last
|
612 |
+
self._non_blocking = _non_blocking
|
613 |
+
self.skip_batches = skip_batches
|
614 |
+
|
615 |
+
self.slice_fn = slice_tensors if slice_fn is None else slice_fn
|
616 |
+
self.iteration = 0
|
617 |
+
|
618 |
+
def _fetch_batches(self, iterator):
|
619 |
+
batches, batch = None, None
|
620 |
+
# On process 0, we gather the batch to dispatch.
|
621 |
+
if self.state.process_index == 0:
|
622 |
+
try:
|
623 |
+
if self.split_batches:
|
624 |
+
# One batch of the main iterator is dispatched and split.
|
625 |
+
batch = next(iterator)
|
626 |
+
else:
|
627 |
+
# num_processes batches of the main iterator are concatenated then dispatched and split.
|
628 |
+
# We add the batches one by one so we have the remainder available when drop_last=False.
|
629 |
+
batches = []
|
630 |
+
for _ in range(self.state.num_processes):
|
631 |
+
batches.append(next(iterator))
|
632 |
+
try:
|
633 |
+
batch = concatenate(batches, dim=0)
|
634 |
+
except RuntimeError as e:
|
635 |
+
raise RuntimeError(
|
636 |
+
"You can't use batches of different size with `dispatch_batches=True` or when using an `IterableDataset`."
|
637 |
+
"either pass `dispatch_batches=False` and have each process fetch its own batch "
|
638 |
+
" or pass `split_batches=True`. By doing so, the main process will fetch a full batch and "
|
639 |
+
"slice it into `num_processes` batches for each process."
|
640 |
+
) from e
|
641 |
+
# In both cases, we need to get the structure of the batch that we will broadcast on other
|
642 |
+
# processes to initialize the tensors with the right shape.
|
643 |
+
# data_structure, stop_iteration
|
644 |
+
batch_info = [get_data_structure(batch), False]
|
645 |
+
except StopIteration:
|
646 |
+
batch_info = [None, True]
|
647 |
+
else:
|
648 |
+
batch_info = [None, self._stop_iteration]
|
649 |
+
# This is inplace, so after this instruction, every process has the same `batch_info` as process 0.
|
650 |
+
broadcast_object_list(batch_info)
|
651 |
+
self._stop_iteration = batch_info[1]
|
652 |
+
if self._stop_iteration:
|
653 |
+
# If drop_last is False and split_batches is False, we may have a remainder to take care of.
|
654 |
+
if not self.split_batches and not self._drop_last:
|
655 |
+
if self.state.process_index == 0 and len(batches) > 0:
|
656 |
+
batch = concatenate(batches, dim=0)
|
657 |
+
batch_info = [get_data_structure(batch), False]
|
658 |
+
else:
|
659 |
+
batch_info = [None, True]
|
660 |
+
broadcast_object_list(batch_info)
|
661 |
+
return batch, batch_info
|
662 |
+
|
663 |
+
def __iter__(self):
|
664 |
+
self.begin()
|
665 |
+
self.set_epoch(self.iteration)
|
666 |
+
main_iterator = None
|
667 |
+
if is_torch_version(">=", "2.0.1"):
|
668 |
+
# NOTE PyTorch DataLoader adds forward compatibilities for DataPipes, which broadcasts
|
669 |
+
# shared seed to all dist processes. Thus, we need to create iterator for all dist processes.
|
670 |
+
# But, we only iterate through the DataLoader on process 0.
|
671 |
+
main_iterator = super().__iter__()
|
672 |
+
elif self.state.process_index == 0:
|
673 |
+
main_iterator = super().__iter__()
|
674 |
+
stop_iteration = False
|
675 |
+
self._stop_iteration = False
|
676 |
+
first_batch = None
|
677 |
+
next_batch, next_batch_info = self._fetch_batches(main_iterator)
|
678 |
+
batch_index = 0
|
679 |
+
while not stop_iteration:
|
680 |
+
batch, batch_info = next_batch, next_batch_info
|
681 |
+
|
682 |
+
if self.state.process_index != 0:
|
683 |
+
# Initialize tensors on other processes than process 0.
|
684 |
+
batch = initialize_tensors(batch_info[0])
|
685 |
+
batch = send_to_device(batch, self.state.device, non_blocking=self._non_blocking)
|
686 |
+
# Broadcast the batch before splitting it.
|
687 |
+
batch = broadcast(batch, from_process=0)
|
688 |
+
|
689 |
+
if not self._drop_last and first_batch is None:
|
690 |
+
# We keep at least num processes elements of the first batch to be able to complete the last batch
|
691 |
+
first_batch = self.slice_fn(
|
692 |
+
batch,
|
693 |
+
slice(0, self.state.num_processes),
|
694 |
+
process_index=self.state.process_index,
|
695 |
+
num_processes=self.state.num_processes,
|
696 |
+
)
|
697 |
+
|
698 |
+
if batch is None:
|
699 |
+
raise ValueError(
|
700 |
+
f"Batch does not contain any data (`{batch}`). At the end of all iterable data available before expected stop iteration."
|
701 |
+
)
|
702 |
+
|
703 |
+
observed_batch_size = find_batch_size(batch)
|
704 |
+
batch_size = observed_batch_size // self.state.num_processes
|
705 |
+
|
706 |
+
stop_iteration = self._stop_iteration
|
707 |
+
if not stop_iteration:
|
708 |
+
# We may still be at the end of the dataloader without knowing it yet: if there is nothing left in
|
709 |
+
# the dataloader since the number of batches is a round multiple of the number of processes.
|
710 |
+
next_batch, next_batch_info = self._fetch_batches(main_iterator)
|
711 |
+
# next_batch_info[0] is None when there are no more batches, otherwise we still need to process them.
|
712 |
+
if self._stop_iteration and next_batch_info[0] is None:
|
713 |
+
stop_iteration = True
|
714 |
+
|
715 |
+
if not self._drop_last and stop_iteration and observed_batch_size % self.state.num_processes != 0:
|
716 |
+
# If the last batch is not complete, let's add the first batch to it.
|
717 |
+
batch = concatenate([batch, first_batch], dim=0)
|
718 |
+
# Batch size computation above is wrong, it's off by 1 so we fix it.
|
719 |
+
batch_size += 1
|
720 |
+
|
721 |
+
data_slice = slice(self.state.process_index * batch_size, (self.state.process_index + 1) * batch_size)
|
722 |
+
batch = self.slice_fn(
|
723 |
+
batch,
|
724 |
+
data_slice,
|
725 |
+
process_index=self.state.process_index,
|
726 |
+
num_processes=self.state.num_processes,
|
727 |
+
)
|
728 |
+
|
729 |
+
if stop_iteration:
|
730 |
+
self.end_of_dataloader = True
|
731 |
+
self.remainder = observed_batch_size
|
732 |
+
if batch_index >= self.skip_batches:
|
733 |
+
yield batch
|
734 |
+
batch_index += 1
|
735 |
+
self.iteration += 1
|
736 |
+
self.end()
|
737 |
+
|
738 |
+
def set_epoch(self, epoch: int):
|
739 |
+
# In case it is manually passed in, the user can set it to what they like
|
740 |
+
if self.iteration != epoch:
|
741 |
+
self.iteration = epoch
|
742 |
+
if hasattr(self.batch_sampler.sampler, "set_epoch"):
|
743 |
+
self.batch_sampler.sampler.set_epoch(epoch)
|
744 |
+
elif hasattr(self.dataset, "set_epoch"):
|
745 |
+
self.dataset.set_epoch(epoch)
|
746 |
+
|
747 |
+
def __len__(self):
|
748 |
+
whole_length = super().__len__()
|
749 |
+
if self.split_batches:
|
750 |
+
return whole_length
|
751 |
+
elif self._drop_last:
|
752 |
+
return whole_length // self.state.num_processes
|
753 |
+
else:
|
754 |
+
return math.ceil(whole_length / self.state.num_processes)
|
755 |
+
|
756 |
+
@property
|
757 |
+
def total_batch_size(self):
|
758 |
+
return (
|
759 |
+
self.dataset.batch_size if self.split_batches else (self.dataset.batch_size * self.dataset.num_processes)
|
760 |
+
)
|
761 |
+
|
762 |
+
@property
|
763 |
+
def total_dataset_length(self):
|
764 |
+
return len(self.dataset)
|
765 |
+
|
766 |
+
def get_sampler(self):
|
767 |
+
return get_sampler(self)
|
768 |
+
|
769 |
+
def set_sampler(self, sampler):
|
770 |
+
sampler_is_batch_sampler = isinstance(self.sampler, BatchSampler)
|
771 |
+
if sampler_is_batch_sampler:
|
772 |
+
self.sampler.sampler = sampler
|
773 |
+
else:
|
774 |
+
self.batch_sampler.sampler = sampler
|
775 |
+
if hasattr(self.batch_sampler, "batch_sampler"):
|
776 |
+
self.batch_sampler.batch_sampler.sampler = sampler
|
777 |
+
|
778 |
+
|
779 |
+
def get_sampler(dataloader):
|
780 |
+
"""
|
781 |
+
Get the sampler associated to the dataloader
|
782 |
+
|
783 |
+
Args:
|
784 |
+
dataloader (`torch.utils.data.dataloader.DataLoader`):
|
785 |
+
The data loader to split across several devices.
|
786 |
+
Returns:
|
787 |
+
`torch.utils.data.Sampler`: The sampler associated to the dataloader
|
788 |
+
"""
|
789 |
+
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
|
790 |
+
if sampler_is_batch_sampler:
|
791 |
+
sampler = getattr(dataloader.sampler, "sampler", None)
|
792 |
+
else:
|
793 |
+
sampler = getattr(dataloader.batch_sampler, "sampler", None)
|
794 |
+
return sampler
|
795 |
+
|
796 |
+
|
797 |
+
def prepare_data_loader(
|
798 |
+
dataloader: DataLoader,
|
799 |
+
device: Optional[torch.device] = None,
|
800 |
+
num_processes: Optional[int] = None,
|
801 |
+
process_index: Optional[int] = None,
|
802 |
+
split_batches: bool = False,
|
803 |
+
put_on_device: bool = False,
|
804 |
+
rng_types: Optional[List[Union[str, RNGType]]] = None,
|
805 |
+
dispatch_batches: Optional[bool] = None,
|
806 |
+
even_batches: bool = True,
|
807 |
+
slice_fn_for_dispatch: Optional[Callable] = None,
|
808 |
+
use_seedable_sampler: bool = False,
|
809 |
+
non_blocking: bool = False,
|
810 |
+
) -> DataLoader:
|
811 |
+
"""
|
812 |
+
Wraps a PyTorch `DataLoader` to generate batches for one of the processes only.
|
813 |
+
|
814 |
+
Depending on the value of the `drop_last` attribute of the `dataloader` passed, it will either stop the iteration
|
815 |
+
at the first batch that would be too small / not present on all processes or loop with indices from the beginning.
|
816 |
+
|
817 |
+
Args:
|
818 |
+
dataloader (`torch.utils.data.dataloader.DataLoader`):
|
819 |
+
The data loader to split across several devices.
|
820 |
+
device (`torch.device`):
|
821 |
+
The target device for the returned `DataLoader`.
|
822 |
+
num_processes (`int`, *optional*):
|
823 |
+
The number of processes running concurrently. Will default to the value given by
|
824 |
+
[`~state.AcceleratorState`].
|
825 |
+
process_index (`int`, *optional*):
|
826 |
+
The index of the current process. Will default to the value given by [`~state.AcceleratorState`].
|
827 |
+
split_batches (`bool`, *optional*, defaults to `False`):
|
828 |
+
Whether the resulting `DataLoader` should split the batches of the original data loader across devices or
|
829 |
+
yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of
|
830 |
+
`num_processes` batches at each iteration).
|
831 |
+
|
832 |
+
Another way to see this is that the observed batch size will be the same as the initial `dataloader` if
|
833 |
+
this option is set to `True`, the batch size of the initial `dataloader` multiplied by `num_processes`
|
834 |
+
otherwise.
|
835 |
+
|
836 |
+
Setting this option to `True` requires that the batch size of the `dataloader` is a round multiple of
|
837 |
+
`batch_size`.
|
838 |
+
put_on_device (`bool`, *optional*, defaults to `False`):
|
839 |
+
Whether or not to put the batches on `device` (only works if the batches are nested list, tuples or
|
840 |
+
dictionaries of tensors).
|
841 |
+
rng_types (list of `str` or [`~utils.RNGType`]):
|
842 |
+
The list of random number generators to synchronize at the beginning of each iteration. Should be one or
|
843 |
+
several of:
|
844 |
+
|
845 |
+
- `"torch"`: the base torch random number generator
|
846 |
+
- `"cuda"`: the CUDA random number generator (GPU only)
|
847 |
+
- `"xla"`: the XLA random number generator (TPU only)
|
848 |
+
- `"generator"`: the `torch.Generator` of the sampler (or batch sampler if there is no sampler in your
|
849 |
+
dataloader) or of the iterable dataset (if it exists) if the underlying dataset is of that type.
|
850 |
+
|
851 |
+
dispatch_batches (`bool`, *optional*):
|
852 |
+
If set to `True`, the datalaoder prepared is only iterated through on the main process and then the batches
|
853 |
+
are split and broadcast to each process. Will default to `True` when the underlying dataset is an
|
854 |
+
`IterableDataset`, `False` otherwise.
|
855 |
+
even_batches (`bool`, *optional*, defaults to `True`):
|
856 |
+
If set to `True`, in cases where the total batch size across all processes does not exactly divide the
|
857 |
+
dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among
|
858 |
+
all workers.
|
859 |
+
slice_fn_for_dispatch (`Callable`, *optional*`):
|
860 |
+
If passed, this function will be used to slice tensors across `num_processes`. Will default to
|
861 |
+
[`~utils.slice_tensors`]. This argument is used only when `dispatch_batches` is set to `True` and will be
|
862 |
+
ignored otherwise.
|
863 |
+
use_seedable_sampler (`bool`, *optional*, defaults to `False`):
|
864 |
+
Whether to use the [`~data_loader.SeedableRandomSampler`] instead of a `RandomSampler` for better
|
865 |
+
reproducability. Comes at a cost of potentially different performances due to different shuffling
|
866 |
+
algorithms but ensures results will be the *exact* same. Should be paired with `set_seed()` at every
|
867 |
+
`self.set_epoch`
|
868 |
+
non_blocking (`bool`, *optional*, defaults to `False`):
|
869 |
+
If set to `True`, dataloader will utilize non-blocking host-to-device transfers. If the dataloader has
|
870 |
+
`pin_memory` set to `True`, this will help to increase overlap between data transfer and computations.
|
871 |
+
|
872 |
+
|
873 |
+
Returns:
|
874 |
+
`torch.utils.data.dataloader.DataLoader`: A new data loader that will yield the portion of the batches
|
875 |
+
|
876 |
+
<Tip warning={true}>
|
877 |
+
|
878 |
+
`BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches`
|
879 |
+
equal to `False`
|
880 |
+
|
881 |
+
</Tip>
|
882 |
+
"""
|
883 |
+
if dispatch_batches is None:
|
884 |
+
if not put_on_device:
|
885 |
+
dispatch_batches = False
|
886 |
+
else:
|
887 |
+
dispatch_batches = isinstance(dataloader.dataset, IterableDataset)
|
888 |
+
|
889 |
+
if dispatch_batches and not put_on_device:
|
890 |
+
raise ValueError("Using `dispatch_batches=True` requires `put_on_device=True`.")
|
891 |
+
# Grab defaults from AcceleratorState
|
892 |
+
state = AcceleratorState()
|
893 |
+
if num_processes is None:
|
894 |
+
num_processes = state.num_processes
|
895 |
+
if process_index is None:
|
896 |
+
process_index = state.process_index
|
897 |
+
|
898 |
+
# Sanity check
|
899 |
+
if split_batches:
|
900 |
+
if dataloader.batch_size is not None:
|
901 |
+
batch_size_for_check = dataloader.batch_size
|
902 |
+
else:
|
903 |
+
# For custom batch_sampler
|
904 |
+
if hasattr(dataloader.batch_sampler, "batch_size"):
|
905 |
+
batch_size_for_check = dataloader.batch_sampler.batch_size
|
906 |
+
else:
|
907 |
+
raise ValueError(
|
908 |
+
"In order to use `split_batches==True` you must have a `batch_size` attribute either in the passed "
|
909 |
+
"`dataloader` or `dataloader.batch_sampler` objects, and it has to return a natural number. "
|
910 |
+
"Your `dataloader.batch_size` is None and `dataloader.batch_sampler` "
|
911 |
+
f"(`{type(dataloader.batch_sampler)}`) does not have the `batch_size` attribute set."
|
912 |
+
)
|
913 |
+
|
914 |
+
if batch_size_for_check > 1 and batch_size_for_check % num_processes != 0:
|
915 |
+
raise ValueError(
|
916 |
+
f"To use a `DataLoader` in `split_batches` mode, the batch size ({dataloader.batch_size}) "
|
917 |
+
f"needs to be a round multiple of the number of processes ({num_processes})."
|
918 |
+
)
|
919 |
+
|
920 |
+
new_dataset = dataloader.dataset
|
921 |
+
# Iterable dataset doesn't like batch_sampler, but data_loader creates a default one for it
|
922 |
+
new_batch_sampler = dataloader.batch_sampler if not isinstance(new_dataset, IterableDataset) else None
|
923 |
+
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
|
924 |
+
synchronized_generator = None
|
925 |
+
|
926 |
+
sampler = get_sampler(dataloader)
|
927 |
+
if isinstance(sampler, RandomSampler) and use_seedable_sampler:
|
928 |
+
# When iterating through the dataloader during distributed processes
|
929 |
+
# we want to ensure that on each process we are iterating through the same
|
930 |
+
# samples in the same order if a seed is set. This requires a tweak
|
931 |
+
# to the `torch.utils.data.RandomSampler` class (if used).
|
932 |
+
sampler = SeedableRandomSampler(
|
933 |
+
data_source=sampler.data_source,
|
934 |
+
replacement=sampler.replacement,
|
935 |
+
num_samples=sampler._num_samples,
|
936 |
+
generator=getattr(sampler, "generator", torch.Generator()),
|
937 |
+
)
|
938 |
+
|
939 |
+
if isinstance(dataloader.sampler, RandomSampler) and state.distributed_type == DistributedType.XLA:
|
940 |
+
# isinstance(dataloader.sampler, RandomSampler) indicates the original dataloader has `shuffle` enabled.
|
941 |
+
generator = torch.Generator().manual_seed(42)
|
942 |
+
dataloader.generator = generator
|
943 |
+
dataloader.sampler.generator = generator
|
944 |
+
# No change if no multiprocess
|
945 |
+
if (num_processes != 1 or state.distributed_type == DistributedType.MEGATRON_LM) and not dispatch_batches:
|
946 |
+
if isinstance(new_dataset, IterableDataset):
|
947 |
+
if getattr(dataloader.dataset, "generator", None) is not None:
|
948 |
+
synchronized_generator = dataloader.dataset.generator
|
949 |
+
new_dataset = IterableDatasetShard(
|
950 |
+
new_dataset,
|
951 |
+
batch_size=dataloader.batch_size,
|
952 |
+
drop_last=dataloader.drop_last,
|
953 |
+
num_processes=num_processes,
|
954 |
+
process_index=process_index,
|
955 |
+
split_batches=split_batches,
|
956 |
+
)
|
957 |
+
else:
|
958 |
+
if not use_seedable_sampler and hasattr(sampler, "generator"):
|
959 |
+
if sampler.generator is None:
|
960 |
+
sampler.generator = torch.Generator()
|
961 |
+
synchronized_generator = sampler.generator
|
962 |
+
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler
|
963 |
+
new_batch_sampler = BatchSamplerShard(
|
964 |
+
batch_sampler,
|
965 |
+
num_processes=num_processes,
|
966 |
+
process_index=process_index,
|
967 |
+
split_batches=split_batches,
|
968 |
+
even_batches=even_batches,
|
969 |
+
)
|
970 |
+
|
971 |
+
# We ignore all of those since they are all dealt with by our new_batch_sampler
|
972 |
+
ignore_kwargs = [
|
973 |
+
"batch_size",
|
974 |
+
"shuffle",
|
975 |
+
"sampler",
|
976 |
+
"batch_sampler",
|
977 |
+
"drop_last",
|
978 |
+
]
|
979 |
+
|
980 |
+
if rng_types is not None and synchronized_generator is None and "generator" in rng_types:
|
981 |
+
rng_types.remove("generator")
|
982 |
+
|
983 |
+
kwargs = {
|
984 |
+
k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k])
|
985 |
+
for k in _PYTORCH_DATALOADER_KWARGS
|
986 |
+
if k not in ignore_kwargs
|
987 |
+
}
|
988 |
+
|
989 |
+
# Need to provide batch_size as batch_sampler is None for Iterable dataset
|
990 |
+
if new_batch_sampler is None:
|
991 |
+
kwargs["drop_last"] = dataloader.drop_last
|
992 |
+
kwargs["batch_size"] = (
|
993 |
+
dataloader.batch_size // num_processes if split_batches and not dispatch_batches else dataloader.batch_size
|
994 |
+
)
|
995 |
+
if dispatch_batches:
|
996 |
+
kwargs.pop("generator")
|
997 |
+
dataloader = DataLoaderDispatcher(
|
998 |
+
new_dataset,
|
999 |
+
split_batches=split_batches,
|
1000 |
+
batch_sampler=new_batch_sampler,
|
1001 |
+
_drop_last=dataloader.drop_last,
|
1002 |
+
_non_blocking=non_blocking,
|
1003 |
+
slice_fn=slice_fn_for_dispatch,
|
1004 |
+
**kwargs,
|
1005 |
+
)
|
1006 |
+
elif sampler_is_batch_sampler:
|
1007 |
+
dataloader = DataLoaderShard(
|
1008 |
+
new_dataset,
|
1009 |
+
device=device if put_on_device and state.distributed_type != DistributedType.XLA else None,
|
1010 |
+
sampler=new_batch_sampler,
|
1011 |
+
batch_size=dataloader.batch_size,
|
1012 |
+
rng_types=rng_types,
|
1013 |
+
_drop_last=dataloader.drop_last,
|
1014 |
+
_non_blocking=non_blocking,
|
1015 |
+
synchronized_generator=synchronized_generator,
|
1016 |
+
**kwargs,
|
1017 |
+
)
|
1018 |
+
else:
|
1019 |
+
dataloader = DataLoaderShard(
|
1020 |
+
new_dataset,
|
1021 |
+
device=device if put_on_device and state.distributed_type != DistributedType.XLA else None,
|
1022 |
+
batch_sampler=new_batch_sampler,
|
1023 |
+
rng_types=rng_types,
|
1024 |
+
synchronized_generator=synchronized_generator,
|
1025 |
+
_drop_last=dataloader.drop_last,
|
1026 |
+
_non_blocking=non_blocking,
|
1027 |
+
**kwargs,
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
if isinstance(sampler, SeedableRandomSampler) and use_seedable_sampler:
|
1031 |
+
dataloader.set_sampler(sampler)
|
1032 |
+
if state.distributed_type == DistributedType.XLA:
|
1033 |
+
return MpDeviceLoaderWrapper(dataloader, device)
|
1034 |
+
return dataloader
|
1035 |
+
|
1036 |
+
|
1037 |
+
class SkipBatchSampler(BatchSampler):
|
1038 |
+
"""
|
1039 |
+
A `torch.utils.data.BatchSampler` that skips the first `n` batches of another `torch.utils.data.BatchSampler`.
|
1040 |
+
"""
|
1041 |
+
|
1042 |
+
def __init__(self, batch_sampler, skip_batches=0):
|
1043 |
+
self.batch_sampler = batch_sampler
|
1044 |
+
self.skip_batches = skip_batches
|
1045 |
+
|
1046 |
+
def __iter__(self):
|
1047 |
+
for index, samples in enumerate(self.batch_sampler):
|
1048 |
+
if index >= self.skip_batches:
|
1049 |
+
yield samples
|
1050 |
+
|
1051 |
+
@property
|
1052 |
+
def total_length(self):
|
1053 |
+
return len(self.batch_sampler)
|
1054 |
+
|
1055 |
+
def __len__(self):
|
1056 |
+
return len(self.batch_sampler) - self.skip_batches
|
1057 |
+
|
1058 |
+
|
1059 |
+
class SkipDataLoader(DataLoader):
|
1060 |
+
"""
|
1061 |
+
Subclass of a PyTorch `DataLoader` that will skip the first batches.
|
1062 |
+
|
1063 |
+
Args:
|
1064 |
+
dataset (`torch.utils.data.dataset.Dataset`):
|
1065 |
+
The dataset to use to build this datalaoder.
|
1066 |
+
skip_batches (`int`, *optional*, defaults to 0):
|
1067 |
+
The number of batches to skip at the beginning.
|
1068 |
+
kwargs:
|
1069 |
+
All other keyword arguments to pass to the regular `DataLoader` initialization.
|
1070 |
+
"""
|
1071 |
+
|
1072 |
+
def __init__(self, dataset, skip_batches=0, **kwargs):
|
1073 |
+
super().__init__(dataset, **kwargs)
|
1074 |
+
self.skip_batches = skip_batches
|
1075 |
+
|
1076 |
+
def __iter__(self):
|
1077 |
+
for index, batch in enumerate(super().__iter__()):
|
1078 |
+
if index >= self.skip_batches:
|
1079 |
+
yield batch
|
1080 |
+
|
1081 |
+
|
1082 |
+
def skip_first_batches(dataloader, num_batches=0):
|
1083 |
+
"""
|
1084 |
+
Creates a `torch.utils.data.DataLoader` that will efficiently skip the first `num_batches`.
|
1085 |
+
"""
|
1086 |
+
dataset = dataloader.dataset
|
1087 |
+
sampler_is_batch_sampler = False
|
1088 |
+
if isinstance(dataset, IterableDataset):
|
1089 |
+
new_batch_sampler = None
|
1090 |
+
else:
|
1091 |
+
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
|
1092 |
+
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler
|
1093 |
+
new_batch_sampler = SkipBatchSampler(batch_sampler, skip_batches=num_batches)
|
1094 |
+
|
1095 |
+
# We ignore all of those since they are all dealt with by our new_batch_sampler
|
1096 |
+
ignore_kwargs = [
|
1097 |
+
"batch_size",
|
1098 |
+
"shuffle",
|
1099 |
+
"sampler",
|
1100 |
+
"batch_sampler",
|
1101 |
+
"drop_last",
|
1102 |
+
]
|
1103 |
+
|
1104 |
+
kwargs = {
|
1105 |
+
k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k])
|
1106 |
+
for k in _PYTORCH_DATALOADER_KWARGS
|
1107 |
+
if k not in ignore_kwargs
|
1108 |
+
}
|
1109 |
+
|
1110 |
+
# Need to provide batch_size as batch_sampler is None for Iterable dataset
|
1111 |
+
if new_batch_sampler is None:
|
1112 |
+
kwargs["drop_last"] = dataloader.drop_last
|
1113 |
+
kwargs["batch_size"] = dataloader.batch_size
|
1114 |
+
|
1115 |
+
if isinstance(dataloader, DataLoaderDispatcher):
|
1116 |
+
if new_batch_sampler is None:
|
1117 |
+
# Need to manually skip batches in the dataloader
|
1118 |
+
kwargs["skip_batches"] = num_batches
|
1119 |
+
dataloader = DataLoaderDispatcher(
|
1120 |
+
dataset,
|
1121 |
+
split_batches=dataloader.split_batches,
|
1122 |
+
batch_sampler=new_batch_sampler,
|
1123 |
+
_drop_last=dataloader._drop_last,
|
1124 |
+
**kwargs,
|
1125 |
+
)
|
1126 |
+
elif isinstance(dataloader, DataLoaderShard):
|
1127 |
+
if new_batch_sampler is None:
|
1128 |
+
# Need to manually skip batches in the dataloader
|
1129 |
+
kwargs["skip_batches"] = num_batches
|
1130 |
+
elif sampler_is_batch_sampler:
|
1131 |
+
kwargs["sampler"] = new_batch_sampler
|
1132 |
+
kwargs["batch_size"] = dataloader.batch_size
|
1133 |
+
else:
|
1134 |
+
kwargs["batch_sampler"] = new_batch_sampler
|
1135 |
+
dataloader = DataLoaderShard(
|
1136 |
+
dataset,
|
1137 |
+
device=dataloader.device,
|
1138 |
+
rng_types=dataloader.rng_types,
|
1139 |
+
synchronized_generator=dataloader.synchronized_generator,
|
1140 |
+
**kwargs,
|
1141 |
+
)
|
1142 |
+
else:
|
1143 |
+
if new_batch_sampler is None:
|
1144 |
+
# Need to manually skip batches in the dataloader
|
1145 |
+
dataloader = SkipDataLoader(dataset, skip_batches=num_batches, **kwargs)
|
1146 |
+
else:
|
1147 |
+
dataloader = DataLoader(dataset, batch_sampler=new_batch_sampler, **kwargs)
|
1148 |
+
|
1149 |
+
return dataloader
|
llmeval-env/lib/python3.10/site-packages/accelerate/hooks.py
ADDED
@@ -0,0 +1,709 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import functools
|
16 |
+
from typing import Dict, List, Mapping, Optional, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
from .state import PartialState
|
22 |
+
from .utils import (
|
23 |
+
PrefixedDataset,
|
24 |
+
find_device,
|
25 |
+
named_module_tensors,
|
26 |
+
send_to_device,
|
27 |
+
set_module_tensor_to_device,
|
28 |
+
)
|
29 |
+
from .utils.modeling import get_non_persistent_buffers
|
30 |
+
from .utils.other import recursive_getattr
|
31 |
+
|
32 |
+
|
33 |
+
class ModelHook:
|
34 |
+
"""
|
35 |
+
A hook that contains callbacks to be executed just before and after the forward method of a model. The difference
|
36 |
+
with PyTorch existing hooks is that they get passed along the kwargs.
|
37 |
+
|
38 |
+
Class attribute:
|
39 |
+
- **no_grad** (`bool`, *optional*, defaults to `False`) -- Whether or not to execute the actual forward pass under
|
40 |
+
the `torch.no_grad()` context manager.
|
41 |
+
"""
|
42 |
+
|
43 |
+
no_grad = False
|
44 |
+
|
45 |
+
def init_hook(self, module):
|
46 |
+
"""
|
47 |
+
To be executed when the hook is attached to the module.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
module (`torch.nn.Module`): The module attached to this hook.
|
51 |
+
"""
|
52 |
+
return module
|
53 |
+
|
54 |
+
def pre_forward(self, module, *args, **kwargs):
|
55 |
+
"""
|
56 |
+
To be executed just before the forward method of the model.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
module (`torch.nn.Module`): The module whose forward pass will be executed just after this event.
|
60 |
+
args (`Tuple[Any]`): The positional arguments passed to the module.
|
61 |
+
kwargs (`Dict[Str, Any]`): The keyword arguments passed to the module.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
`Tuple[Tuple[Any], Dict[Str, Any]]`: A tuple with the treated `args` and `kwargs`.
|
65 |
+
"""
|
66 |
+
return args, kwargs
|
67 |
+
|
68 |
+
def post_forward(self, module, output):
|
69 |
+
"""
|
70 |
+
To be executed just after the forward method of the model.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
module (`torch.nn.Module`): The module whose forward pass been executed just before this event.
|
74 |
+
output (`Any`): The output of the module.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
`Any`: The processed `output`.
|
78 |
+
"""
|
79 |
+
return output
|
80 |
+
|
81 |
+
def detach_hook(self, module):
|
82 |
+
"""
|
83 |
+
To be executed when the hook is detached from a module.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
module (`torch.nn.Module`): The module detached from this hook.
|
87 |
+
"""
|
88 |
+
return module
|
89 |
+
|
90 |
+
|
91 |
+
class SequentialHook(ModelHook):
|
92 |
+
"""
|
93 |
+
A hook that can contain several hooks and iterates through them at each event.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, *hooks):
|
97 |
+
self.hooks = hooks
|
98 |
+
|
99 |
+
def init_hook(self, module):
|
100 |
+
for hook in self.hooks:
|
101 |
+
module = hook.init_hook(module)
|
102 |
+
return module
|
103 |
+
|
104 |
+
def pre_forward(self, module, *args, **kwargs):
|
105 |
+
for hook in self.hooks:
|
106 |
+
args, kwargs = hook.pre_forward(module, *args, **kwargs)
|
107 |
+
return args, kwargs
|
108 |
+
|
109 |
+
def post_forward(self, module, output):
|
110 |
+
for hook in self.hooks:
|
111 |
+
output = hook.post_forward(module, output)
|
112 |
+
return output
|
113 |
+
|
114 |
+
def detach_hook(self, module):
|
115 |
+
for hook in self.hooks:
|
116 |
+
module = hook.detach_hook(module)
|
117 |
+
return module
|
118 |
+
|
119 |
+
|
120 |
+
def add_hook_to_module(module: nn.Module, hook: ModelHook, append: bool = False):
|
121 |
+
"""
|
122 |
+
Adds a hook to a given module. This will rewrite the `forward` method of the module to include the hook, to remove
|
123 |
+
this behavior and restore the original `forward` method, use `remove_hook_from_module`.
|
124 |
+
|
125 |
+
<Tip warning={true}>
|
126 |
+
|
127 |
+
If the module already contains a hook, this will replace it with the new hook passed by default. To chain two hooks
|
128 |
+
together, pass `append=True`, so it chains the current and new hook into an instance of the `SequentialHook` class.
|
129 |
+
|
130 |
+
</Tip>
|
131 |
+
|
132 |
+
Args:
|
133 |
+
module (`torch.nn.Module`):
|
134 |
+
The module to attach a hook to.
|
135 |
+
hook (`ModelHook`):
|
136 |
+
The hook to attach.
|
137 |
+
append (`bool`, *optional*, defaults to `False`):
|
138 |
+
Whether the hook should be chained with an existing one (if module already contains a hook) or not.
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
`torch.nn.Module`: The same module, with the hook attached (the module is modified in place, so the result can
|
142 |
+
be discarded).
|
143 |
+
"""
|
144 |
+
|
145 |
+
if append and (getattr(module, "_hf_hook", None) is not None):
|
146 |
+
old_hook = module._hf_hook
|
147 |
+
remove_hook_from_module(module)
|
148 |
+
hook = SequentialHook(old_hook, hook)
|
149 |
+
|
150 |
+
if hasattr(module, "_hf_hook") and hasattr(module, "_old_forward"):
|
151 |
+
# If we already put some hook on this module, we replace it with the new one.
|
152 |
+
old_forward = module._old_forward
|
153 |
+
else:
|
154 |
+
old_forward = module.forward
|
155 |
+
module._old_forward = old_forward
|
156 |
+
|
157 |
+
module = hook.init_hook(module)
|
158 |
+
module._hf_hook = hook
|
159 |
+
|
160 |
+
def new_forward(module, *args, **kwargs):
|
161 |
+
args, kwargs = module._hf_hook.pre_forward(module, *args, **kwargs)
|
162 |
+
if module._hf_hook.no_grad:
|
163 |
+
with torch.no_grad():
|
164 |
+
output = module._old_forward(*args, **kwargs)
|
165 |
+
else:
|
166 |
+
output = module._old_forward(*args, **kwargs)
|
167 |
+
return module._hf_hook.post_forward(module, output)
|
168 |
+
|
169 |
+
# Overriding a GraphModuleImpl forward freezes the forward call and later modifications on the graph will fail.
|
170 |
+
# Reference: https://pytorch.slack.com/archives/C3PDTEV8E/p1705929610405409
|
171 |
+
if "GraphModuleImpl" in str(type(module)):
|
172 |
+
module.__class__.forward = functools.update_wrapper(functools.partial(new_forward, module), old_forward)
|
173 |
+
else:
|
174 |
+
module.forward = functools.update_wrapper(functools.partial(new_forward, module), old_forward)
|
175 |
+
|
176 |
+
return module
|
177 |
+
|
178 |
+
|
179 |
+
def remove_hook_from_module(module: nn.Module, recurse=False):
|
180 |
+
"""
|
181 |
+
Removes any hook attached to a module via `add_hook_to_module`.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
module (`torch.nn.Module`): The module to attach a hook to.
|
185 |
+
recurse (`bool`, **optional**): Whether to remove the hooks recursively
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
`torch.nn.Module`: The same module, with the hook detached (the module is modified in place, so the result can
|
189 |
+
be discarded).
|
190 |
+
"""
|
191 |
+
|
192 |
+
if hasattr(module, "_hf_hook"):
|
193 |
+
module._hf_hook.detach_hook(module)
|
194 |
+
delattr(module, "_hf_hook")
|
195 |
+
|
196 |
+
if hasattr(module, "_old_forward"):
|
197 |
+
# Overriding a GraphModuleImpl forward freezes the forward call and later modifications on the graph will fail.
|
198 |
+
# Reference: https://pytorch.slack.com/archives/C3PDTEV8E/p1705929610405409
|
199 |
+
if "GraphModuleImpl" in str(type(module)):
|
200 |
+
module.__class__.forward = module._old_forward
|
201 |
+
else:
|
202 |
+
module.forward = module._old_forward
|
203 |
+
delattr(module, "_old_forward")
|
204 |
+
|
205 |
+
if recurse:
|
206 |
+
for child in module.children():
|
207 |
+
remove_hook_from_module(child, recurse)
|
208 |
+
|
209 |
+
return module
|
210 |
+
|
211 |
+
|
212 |
+
class AlignDevicesHook(ModelHook):
|
213 |
+
"""
|
214 |
+
A generic `ModelHook` that ensures inputs and model weights are on the same device for the forward pass of the
|
215 |
+
associated module, potentially offloading the weights after the forward pass.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
execution_device (`torch.device`, *optional*):
|
219 |
+
The device on which inputs and model weights should be placed before the forward pass.
|
220 |
+
offload (`bool`, *optional*, defaults to `False`):
|
221 |
+
Whether or not the weights should be offloaded after the forward pass.
|
222 |
+
io_same_device (`bool`, *optional*, defaults to `False`):
|
223 |
+
Whether or not the output should be placed on the same device as the input was.
|
224 |
+
weights_map (`Mapping[str, torch.Tensor]`, *optional*):
|
225 |
+
When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values.
|
226 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
227 |
+
Whether or not to include the associated module's buffers when offloading.
|
228 |
+
place_submodules (`bool`, *optional*, defaults to `False`):
|
229 |
+
Whether to place the submodules on `execution_device` during the `init_hook` event.
|
230 |
+
"""
|
231 |
+
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
execution_device: Optional[Union[int, str, torch.device]] = None,
|
235 |
+
offload: bool = False,
|
236 |
+
io_same_device: bool = False,
|
237 |
+
weights_map: Optional[Mapping] = None,
|
238 |
+
offload_buffers: bool = False,
|
239 |
+
place_submodules: bool = False,
|
240 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
241 |
+
tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
|
242 |
+
):
|
243 |
+
self.execution_device = execution_device
|
244 |
+
self.offload = offload
|
245 |
+
self.io_same_device = io_same_device
|
246 |
+
self.weights_map = weights_map
|
247 |
+
self.offload_buffers = offload_buffers
|
248 |
+
self.place_submodules = place_submodules
|
249 |
+
self.skip_keys = skip_keys
|
250 |
+
|
251 |
+
# Will contain the input device when `io_same_device=True`.
|
252 |
+
self.input_device = None
|
253 |
+
self.param_original_devices = {}
|
254 |
+
self.buffer_original_devices = {}
|
255 |
+
self.tied_params_names = set()
|
256 |
+
|
257 |
+
# The hook pre_forward/post_forward need to have knowledge of this dictionary, as with offloading we want to avoid duplicating memory
|
258 |
+
# for tied weights already loaded on the target execution device.
|
259 |
+
self.tied_params_map = tied_params_map
|
260 |
+
|
261 |
+
def __repr__(self):
|
262 |
+
return (
|
263 |
+
f"AlignDevicesHook(execution_device={self.execution_device}, offload={self.offload}, "
|
264 |
+
f"io_same_device={self.io_same_device}, offload_buffers={self.offload_buffers}, "
|
265 |
+
f"place_submodules={self.place_submodules}, skip_keys={repr(self.skip_keys)})"
|
266 |
+
)
|
267 |
+
|
268 |
+
def init_hook(self, module):
|
269 |
+
# In case the AlignDevicesHook is on meta device, ignore tied weights as data_ptr() is then always zero.
|
270 |
+
if self.execution_device == "meta" or self.execution_device == torch.device("meta"):
|
271 |
+
self.tied_params_map = None
|
272 |
+
|
273 |
+
if not self.offload and self.execution_device is not None:
|
274 |
+
for name, _ in named_module_tensors(module, recurse=self.place_submodules):
|
275 |
+
set_module_tensor_to_device(module, name, self.execution_device, tied_params_map=self.tied_params_map)
|
276 |
+
elif self.offload:
|
277 |
+
self.original_devices = {
|
278 |
+
name: param.device for name, param in named_module_tensors(module, recurse=self.place_submodules)
|
279 |
+
}
|
280 |
+
if self.weights_map is None:
|
281 |
+
self.weights_map = {
|
282 |
+
name: param.to("cpu")
|
283 |
+
for name, param in named_module_tensors(
|
284 |
+
module, include_buffers=self.offload_buffers, recurse=self.place_submodules
|
285 |
+
)
|
286 |
+
}
|
287 |
+
for name, _ in named_module_tensors(
|
288 |
+
module, include_buffers=self.offload_buffers, recurse=self.place_submodules, remove_non_persistent=True
|
289 |
+
):
|
290 |
+
# When using disk offloading, we can not rely on `weights_map[name].data_ptr()` as the reference pointer,
|
291 |
+
# as we have no guarantee that safetensors' `file.get_tensor()` will always give the same pointer.
|
292 |
+
# As we have no reliable way to track the shared data pointer of tied weights in this case, we use tied_params_names: List[str]
|
293 |
+
# to add on the fly pointers to `tied_params_map` in the pre_forward call.
|
294 |
+
if (
|
295 |
+
self.tied_params_map is not None
|
296 |
+
and recursive_getattr(module, name).data_ptr() in self.tied_params_map
|
297 |
+
):
|
298 |
+
self.tied_params_names.add(name)
|
299 |
+
|
300 |
+
set_module_tensor_to_device(module, name, "meta")
|
301 |
+
|
302 |
+
if not self.offload_buffers and self.execution_device is not None:
|
303 |
+
for name, _ in module.named_buffers(recurse=self.place_submodules):
|
304 |
+
set_module_tensor_to_device(
|
305 |
+
module, name, self.execution_device, tied_params_map=self.tied_params_map
|
306 |
+
)
|
307 |
+
elif self.offload_buffers and self.execution_device is not None:
|
308 |
+
for name in get_non_persistent_buffers(module, recurse=self.place_submodules):
|
309 |
+
set_module_tensor_to_device(
|
310 |
+
module, name, self.execution_device, tied_params_map=self.tied_params_map
|
311 |
+
)
|
312 |
+
|
313 |
+
return module
|
314 |
+
|
315 |
+
def pre_forward(self, module, *args, **kwargs):
|
316 |
+
if self.io_same_device:
|
317 |
+
self.input_device = find_device([args, kwargs])
|
318 |
+
if self.offload:
|
319 |
+
self.tied_pointers_to_remove = set()
|
320 |
+
|
321 |
+
for name, _ in named_module_tensors(
|
322 |
+
module,
|
323 |
+
include_buffers=self.offload_buffers,
|
324 |
+
recurse=self.place_submodules,
|
325 |
+
remove_non_persistent=True,
|
326 |
+
):
|
327 |
+
fp16_statistics = None
|
328 |
+
value = self.weights_map[name]
|
329 |
+
if "weight" in name and name.replace("weight", "SCB") in self.weights_map.keys():
|
330 |
+
if value.dtype == torch.int8:
|
331 |
+
fp16_statistics = self.weights_map[name.replace("weight", "SCB")]
|
332 |
+
|
333 |
+
# In case we are using offloading with tied weights, we need to keep track of the offloaded weights
|
334 |
+
# that are loaded on device at this point, as we will need to remove them as well from the dictionary
|
335 |
+
# self.tied_params_map in order to allow to free memory.
|
336 |
+
if name in self.tied_params_names and value.data_ptr() not in self.tied_params_map:
|
337 |
+
self.tied_params_map[value.data_ptr()] = {}
|
338 |
+
|
339 |
+
if (
|
340 |
+
value is not None
|
341 |
+
and self.tied_params_map is not None
|
342 |
+
and value.data_ptr() in self.tied_params_map
|
343 |
+
and self.execution_device not in self.tied_params_map[value.data_ptr()]
|
344 |
+
):
|
345 |
+
self.tied_pointers_to_remove.add((value.data_ptr(), self.execution_device))
|
346 |
+
|
347 |
+
set_module_tensor_to_device(
|
348 |
+
module,
|
349 |
+
name,
|
350 |
+
self.execution_device,
|
351 |
+
value=value,
|
352 |
+
fp16_statistics=fp16_statistics,
|
353 |
+
tied_params_map=self.tied_params_map,
|
354 |
+
)
|
355 |
+
|
356 |
+
return send_to_device(args, self.execution_device), send_to_device(
|
357 |
+
kwargs, self.execution_device, skip_keys=self.skip_keys
|
358 |
+
)
|
359 |
+
|
360 |
+
def post_forward(self, module, output):
|
361 |
+
if self.offload:
|
362 |
+
for name, _ in named_module_tensors(
|
363 |
+
module,
|
364 |
+
include_buffers=self.offload_buffers,
|
365 |
+
recurse=self.place_submodules,
|
366 |
+
remove_non_persistent=True,
|
367 |
+
):
|
368 |
+
set_module_tensor_to_device(module, name, "meta")
|
369 |
+
if type(module).__name__ == "Linear8bitLt":
|
370 |
+
module.state.SCB = None
|
371 |
+
module.state.CxB = None
|
372 |
+
|
373 |
+
# We may have loaded tied weights into self.tied_params_map (avoiding to load them several times in e.g. submodules): remove them from
|
374 |
+
# this dictionary to allow the garbage collector to do its job.
|
375 |
+
for value_pointer, device in self.tied_pointers_to_remove:
|
376 |
+
del self.tied_params_map[value_pointer][device]
|
377 |
+
self.tied_pointers_to_remove = set()
|
378 |
+
|
379 |
+
if self.io_same_device and self.input_device is not None:
|
380 |
+
output = send_to_device(output, self.input_device, skip_keys=self.skip_keys)
|
381 |
+
|
382 |
+
return output
|
383 |
+
|
384 |
+
def detach_hook(self, module):
|
385 |
+
if self.offload:
|
386 |
+
for name, device in self.original_devices.items():
|
387 |
+
if device != torch.device("meta"):
|
388 |
+
set_module_tensor_to_device(module, name, device, value=self.weights_map.get(name, None))
|
389 |
+
return module
|
390 |
+
|
391 |
+
|
392 |
+
def attach_execution_device_hook(
|
393 |
+
module: torch.nn.Module,
|
394 |
+
execution_device: Union[int, str, torch.device],
|
395 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
396 |
+
preload_module_classes: Optional[List[str]] = None,
|
397 |
+
tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
|
398 |
+
):
|
399 |
+
"""
|
400 |
+
Recursively attaches `AlignDevicesHook` to all submodules of a given model to make sure they have the right
|
401 |
+
execution device
|
402 |
+
|
403 |
+
Args:
|
404 |
+
module (`torch.nn.Module`):
|
405 |
+
The module where we want to attach the hooks.
|
406 |
+
execution_device (`int`, `str` or `torch.device`):
|
407 |
+
The device on which inputs and model weights should be placed before the forward pass.
|
408 |
+
skip_keys (`str` or `List[str]`, *optional*):
|
409 |
+
A list of keys to ignore when moving inputs or outputs between devices.
|
410 |
+
preload_module_classes (`List[str]`, *optional*):
|
411 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
412 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
413 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
414 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
415 |
+
tied_params_map (Optional[Dict[int, Dict[torch.device, torch.Tensor]]], *optional*, defaults to `None`):
|
416 |
+
A map of data pointers to dictionaries of devices to already dispatched tied weights. For a given execution
|
417 |
+
device, this parameter is useful to reuse the first available pointer of a shared weight for all others,
|
418 |
+
instead of duplicating memory.
|
419 |
+
"""
|
420 |
+
if not hasattr(module, "_hf_hook") and len(module.state_dict()) > 0:
|
421 |
+
add_hook_to_module(
|
422 |
+
module,
|
423 |
+
AlignDevicesHook(execution_device, skip_keys=skip_keys, tied_params_map=tied_params_map),
|
424 |
+
)
|
425 |
+
|
426 |
+
# Break the recursion if we get to a preload module.
|
427 |
+
if preload_module_classes is not None and module.__class__.__name__ in preload_module_classes:
|
428 |
+
return
|
429 |
+
|
430 |
+
for child in module.children():
|
431 |
+
attach_execution_device_hook(child, execution_device, tied_params_map=tied_params_map)
|
432 |
+
|
433 |
+
|
434 |
+
def attach_align_device_hook(
|
435 |
+
module: torch.nn.Module,
|
436 |
+
execution_device: Optional[torch.device] = None,
|
437 |
+
offload: bool = False,
|
438 |
+
weights_map: Optional[Mapping] = None,
|
439 |
+
offload_buffers: bool = False,
|
440 |
+
module_name: str = "",
|
441 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
442 |
+
preload_module_classes: Optional[List[str]] = None,
|
443 |
+
tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
|
444 |
+
):
|
445 |
+
"""
|
446 |
+
Recursively attaches `AlignDevicesHook` to all submodules of a given model that have direct parameters and/or
|
447 |
+
buffers.
|
448 |
+
|
449 |
+
Args:
|
450 |
+
module (`torch.nn.Module`):
|
451 |
+
The module where we want to attach the hooks.
|
452 |
+
execution_device (`torch.device`, *optional*):
|
453 |
+
The device on which inputs and model weights should be placed before the forward pass.
|
454 |
+
offload (`bool`, *optional*, defaults to `False`):
|
455 |
+
Whether or not the weights should be offloaded after the forward pass.
|
456 |
+
weights_map (`Mapping[str, torch.Tensor]`, *optional*):
|
457 |
+
When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values.
|
458 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
459 |
+
Whether or not to include the associated module's buffers when offloading.
|
460 |
+
module_name (`str`, *optional*, defaults to `""`):
|
461 |
+
The name of the module.
|
462 |
+
skip_keys (`str` or `List[str]`, *optional*):
|
463 |
+
A list of keys to ignore when moving inputs or outputs between devices.
|
464 |
+
preload_module_classes (`List[str]`, *optional*):
|
465 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
466 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
467 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
468 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
469 |
+
tied_params_map (Optional[Dict[int, Dict[torch.device, torch.Tensor]]], *optional*, defaults to `None`):
|
470 |
+
A map of data pointers to dictionaries of devices to already dispatched tied weights. For a given execution
|
471 |
+
device, this parameter is useful to reuse the first available pointer of a shared weight for all others,
|
472 |
+
instead of duplicating memory.
|
473 |
+
"""
|
474 |
+
# Attach the hook on this module if it has any direct tensor.
|
475 |
+
directs = named_module_tensors(module)
|
476 |
+
full_offload = (
|
477 |
+
offload and preload_module_classes is not None and module.__class__.__name__ in preload_module_classes
|
478 |
+
)
|
479 |
+
|
480 |
+
if len(list(directs)) > 0 or full_offload:
|
481 |
+
if weights_map is not None:
|
482 |
+
prefix = f"{module_name}." if len(module_name) > 0 else ""
|
483 |
+
prefixed_weights_map = PrefixedDataset(weights_map, prefix)
|
484 |
+
else:
|
485 |
+
prefixed_weights_map = None
|
486 |
+
hook = AlignDevicesHook(
|
487 |
+
execution_device=execution_device,
|
488 |
+
offload=offload,
|
489 |
+
weights_map=prefixed_weights_map,
|
490 |
+
offload_buffers=offload_buffers,
|
491 |
+
place_submodules=full_offload,
|
492 |
+
skip_keys=skip_keys,
|
493 |
+
tied_params_map=tied_params_map,
|
494 |
+
)
|
495 |
+
add_hook_to_module(module, hook, append=True)
|
496 |
+
|
497 |
+
# We stop the recursion in case we hit the full offload.
|
498 |
+
if full_offload:
|
499 |
+
return
|
500 |
+
|
501 |
+
# Recurse on all children of the module.
|
502 |
+
for child_name, child in module.named_children():
|
503 |
+
child_name = f"{module_name}.{child_name}" if len(module_name) > 0 else child_name
|
504 |
+
attach_align_device_hook(
|
505 |
+
child,
|
506 |
+
execution_device=execution_device,
|
507 |
+
offload=offload,
|
508 |
+
weights_map=weights_map,
|
509 |
+
offload_buffers=offload_buffers,
|
510 |
+
module_name=child_name,
|
511 |
+
preload_module_classes=preload_module_classes,
|
512 |
+
skip_keys=skip_keys,
|
513 |
+
tied_params_map=tied_params_map,
|
514 |
+
)
|
515 |
+
|
516 |
+
|
517 |
+
def remove_hook_from_submodules(module: nn.Module):
|
518 |
+
"""
|
519 |
+
Recursively removes all hooks attached on the submodules of a given model.
|
520 |
+
|
521 |
+
Args:
|
522 |
+
module (`torch.nn.Module`): The module on which to remove all hooks.
|
523 |
+
"""
|
524 |
+
remove_hook_from_module(module)
|
525 |
+
for child in module.children():
|
526 |
+
remove_hook_from_submodules(child)
|
527 |
+
|
528 |
+
|
529 |
+
def attach_align_device_hook_on_blocks(
|
530 |
+
module: nn.Module,
|
531 |
+
execution_device: Optional[Union[torch.device, Dict[str, torch.device]]] = None,
|
532 |
+
offload: Union[bool, Dict[str, bool]] = False,
|
533 |
+
weights_map: Mapping = None,
|
534 |
+
offload_buffers: bool = False,
|
535 |
+
module_name: str = "",
|
536 |
+
skip_keys: Optional[Union[str, List[str]]] = None,
|
537 |
+
preload_module_classes: Optional[List[str]] = None,
|
538 |
+
tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
|
539 |
+
):
|
540 |
+
"""
|
541 |
+
Attaches `AlignDevicesHook` to all blocks of a given model as needed.
|
542 |
+
|
543 |
+
Args:
|
544 |
+
module (`torch.nn.Module`):
|
545 |
+
The module where we want to attach the hooks.
|
546 |
+
execution_device (`torch.device` or `Dict[str, torch.device]`, *optional*):
|
547 |
+
The device on which inputs and model weights should be placed before the forward pass. It can be one device
|
548 |
+
for the whole module, or a dictionary mapping module name to device.
|
549 |
+
offload (`bool`, *optional*, defaults to `False`):
|
550 |
+
Whether or not the weights should be offloaded after the forward pass. It can be one boolean for the whole
|
551 |
+
module, or a dictionary mapping module name to boolean.
|
552 |
+
weights_map (`Mapping[str, torch.Tensor]`, *optional*):
|
553 |
+
When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values.
|
554 |
+
offload_buffers (`bool`, *optional*, defaults to `False`):
|
555 |
+
Whether or not to include the associated module's buffers when offloading.
|
556 |
+
module_name (`str`, *optional*, defaults to `""`):
|
557 |
+
The name of the module.
|
558 |
+
skip_keys (`str` or `List[str]`, *optional*):
|
559 |
+
A list of keys to ignore when moving inputs or outputs between devices.
|
560 |
+
preload_module_classes (`List[str]`, *optional*):
|
561 |
+
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
|
562 |
+
of the forward. This should only be used for classes that have submodules which are registered but not
|
563 |
+
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
|
564 |
+
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
|
565 |
+
tied_params_map (Optional[Dict[int, Dict[torch.device, torch.Tensor]]], *optional*, defaults to `None`):
|
566 |
+
A map of data pointers to dictionaries of devices to already dispatched tied weights. For a given execution
|
567 |
+
device, this parameter is useful to reuse the first available pointer of a shared weight for all others,
|
568 |
+
instead of duplicating memory.
|
569 |
+
"""
|
570 |
+
# If one device and one offload, we've got one hook.
|
571 |
+
if not isinstance(execution_device, Mapping) and not isinstance(offload, dict):
|
572 |
+
if not offload:
|
573 |
+
hook = AlignDevicesHook(
|
574 |
+
execution_device=execution_device,
|
575 |
+
io_same_device=True,
|
576 |
+
skip_keys=skip_keys,
|
577 |
+
place_submodules=True,
|
578 |
+
tied_params_map=tied_params_map,
|
579 |
+
)
|
580 |
+
add_hook_to_module(module, hook)
|
581 |
+
else:
|
582 |
+
attach_align_device_hook(
|
583 |
+
module,
|
584 |
+
execution_device=execution_device,
|
585 |
+
offload=True,
|
586 |
+
weights_map=weights_map,
|
587 |
+
offload_buffers=offload_buffers,
|
588 |
+
module_name=module_name,
|
589 |
+
skip_keys=skip_keys,
|
590 |
+
tied_params_map=tied_params_map,
|
591 |
+
)
|
592 |
+
return
|
593 |
+
|
594 |
+
if not isinstance(execution_device, Mapping):
|
595 |
+
execution_device = {key: execution_device for key in offload.keys()}
|
596 |
+
if not isinstance(offload, Mapping):
|
597 |
+
offload = {key: offload for key in execution_device.keys()}
|
598 |
+
|
599 |
+
if module_name in execution_device and module_name in offload and not offload[module_name]:
|
600 |
+
hook = AlignDevicesHook(
|
601 |
+
execution_device=execution_device[module_name],
|
602 |
+
offload_buffers=offload_buffers,
|
603 |
+
io_same_device=(module_name == ""),
|
604 |
+
place_submodules=True,
|
605 |
+
skip_keys=skip_keys,
|
606 |
+
tied_params_map=tied_params_map,
|
607 |
+
)
|
608 |
+
add_hook_to_module(module, hook)
|
609 |
+
attach_execution_device_hook(module, execution_device[module_name], tied_params_map=tied_params_map)
|
610 |
+
elif module_name in execution_device and module_name in offload:
|
611 |
+
attach_align_device_hook(
|
612 |
+
module,
|
613 |
+
execution_device=execution_device[module_name],
|
614 |
+
offload=True,
|
615 |
+
weights_map=weights_map,
|
616 |
+
offload_buffers=offload_buffers,
|
617 |
+
module_name=module_name,
|
618 |
+
skip_keys=skip_keys,
|
619 |
+
preload_module_classes=preload_module_classes,
|
620 |
+
tied_params_map=tied_params_map,
|
621 |
+
)
|
622 |
+
if not hasattr(module, "_hf_hook"):
|
623 |
+
hook = AlignDevicesHook(
|
624 |
+
execution_device=execution_device[module_name],
|
625 |
+
io_same_device=(module_name == ""),
|
626 |
+
skip_keys=skip_keys,
|
627 |
+
tied_params_map=tied_params_map,
|
628 |
+
)
|
629 |
+
add_hook_to_module(module, hook)
|
630 |
+
attach_execution_device_hook(
|
631 |
+
module,
|
632 |
+
execution_device[module_name],
|
633 |
+
preload_module_classes=preload_module_classes,
|
634 |
+
skip_keys=skip_keys,
|
635 |
+
tied_params_map=tied_params_map,
|
636 |
+
)
|
637 |
+
elif module_name == "":
|
638 |
+
hook = AlignDevicesHook(
|
639 |
+
execution_device=execution_device.get(""),
|
640 |
+
io_same_device=True,
|
641 |
+
skip_keys=skip_keys,
|
642 |
+
tied_params_map=tied_params_map,
|
643 |
+
)
|
644 |
+
add_hook_to_module(module, hook)
|
645 |
+
|
646 |
+
for child_name, child in module.named_children():
|
647 |
+
child_name = f"{module_name}.{child_name}" if len(module_name) > 0 else child_name
|
648 |
+
attach_align_device_hook_on_blocks(
|
649 |
+
child,
|
650 |
+
execution_device=execution_device,
|
651 |
+
offload=offload,
|
652 |
+
weights_map=weights_map,
|
653 |
+
offload_buffers=offload_buffers,
|
654 |
+
module_name=child_name,
|
655 |
+
preload_module_classes=preload_module_classes,
|
656 |
+
skip_keys=skip_keys,
|
657 |
+
tied_params_map=tied_params_map,
|
658 |
+
)
|
659 |
+
|
660 |
+
|
661 |
+
class CpuOffload(ModelHook):
|
662 |
+
"""
|
663 |
+
Offloads a model on the CPU until its forward pass is called. The model will not be offloaded back to the CPU after
|
664 |
+
the forward, the user needs to call the `init_hook` method again for this.
|
665 |
+
|
666 |
+
Args:
|
667 |
+
execution_device(`str`, `int` or `torch.device`, *optional*):
|
668 |
+
The device on which the model should be executed. Will default to the MPS device if it's available, then
|
669 |
+
GPU 0 if there is a GPU, and finally to the CPU.
|
670 |
+
prev_module_hook (`UserCpuOffloadHook`, *optional*):
|
671 |
+
The hook sent back by [`cpu_offload_with_hook`] for a previous model in the pipeline you are running. If
|
672 |
+
passed, its offload method will be called just before the forward of the model to which this hook is
|
673 |
+
attached.
|
674 |
+
"""
|
675 |
+
|
676 |
+
def __init__(
|
677 |
+
self,
|
678 |
+
execution_device: Optional[Union[str, int, torch.device]] = None,
|
679 |
+
prev_module_hook: Optional["UserCpuOffloadHook"] = None,
|
680 |
+
):
|
681 |
+
self.prev_module_hook = prev_module_hook
|
682 |
+
|
683 |
+
self.execution_device = execution_device if execution_device is not None else PartialState().default_device
|
684 |
+
|
685 |
+
def init_hook(self, module):
|
686 |
+
return module.to("cpu")
|
687 |
+
|
688 |
+
def pre_forward(self, module, *args, **kwargs):
|
689 |
+
if self.prev_module_hook is not None:
|
690 |
+
self.prev_module_hook.offload()
|
691 |
+
module.to(self.execution_device)
|
692 |
+
return send_to_device(args, self.execution_device), send_to_device(kwargs, self.execution_device)
|
693 |
+
|
694 |
+
|
695 |
+
class UserCpuOffloadHook:
|
696 |
+
"""
|
697 |
+
A simple hook grouping a model and a `ModelHook`, which provides easy APIs for to call the init method of the hook
|
698 |
+
or remove it entirely.
|
699 |
+
"""
|
700 |
+
|
701 |
+
def __init__(self, model, hook):
|
702 |
+
self.model = model
|
703 |
+
self.hook = hook
|
704 |
+
|
705 |
+
def offload(self):
|
706 |
+
self.hook.init_hook(self.model)
|
707 |
+
|
708 |
+
def remove(self):
|
709 |
+
remove_hook_from_module(self.model)
|
llmeval-env/lib/python3.10/site-packages/accelerate/inference.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import math
|
15 |
+
from types import MethodType
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
from .state import PartialState
|
19 |
+
from .utils import (
|
20 |
+
calculate_maximum_sizes,
|
21 |
+
convert_bytes,
|
22 |
+
copy_tensor_to_devices,
|
23 |
+
ignorant_find_batch_size,
|
24 |
+
infer_auto_device_map,
|
25 |
+
is_pippy_available,
|
26 |
+
pad_input_tensors,
|
27 |
+
send_to_device,
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
if is_pippy_available():
|
32 |
+
from pippy.IR import Pipe, PipeSplitWrapper, annotate_split_points
|
33 |
+
from pippy.PipelineStage import PipelineStage
|
34 |
+
|
35 |
+
|
36 |
+
def generate_device_map(model, num_processes: int = 1, no_split_module_classes=None, max_memory: dict = None):
|
37 |
+
"""
|
38 |
+
Calculates the device map for `model` with an offset for PiPPy
|
39 |
+
"""
|
40 |
+
if num_processes == 1:
|
41 |
+
return infer_auto_device_map(model, no_split_module_classes=no_split_module_classes, clean_result=False)
|
42 |
+
if max_memory is None:
|
43 |
+
model_size, shared = calculate_maximum_sizes(model)
|
44 |
+
|
45 |
+
# Split into `n` chunks for each GPU
|
46 |
+
memory = (model_size + shared[0]) / num_processes
|
47 |
+
memory = convert_bytes(memory)
|
48 |
+
value, ending = memory.split(" ")
|
49 |
+
|
50 |
+
# Add a chunk to deal with potential extra shared memory instances
|
51 |
+
memory = math.ceil(float(value)) * 1.1
|
52 |
+
memory = f"{memory} {ending}"
|
53 |
+
max_memory = {i: memory for i in range(num_processes)}
|
54 |
+
device_map = infer_auto_device_map(
|
55 |
+
model,
|
56 |
+
max_memory=max_memory,
|
57 |
+
no_split_module_classes=no_split_module_classes,
|
58 |
+
clean_result=False,
|
59 |
+
)
|
60 |
+
return device_map
|
61 |
+
|
62 |
+
|
63 |
+
def find_pippy_batch_size(args, kwargs):
|
64 |
+
found_batch_size = None
|
65 |
+
if args is not None:
|
66 |
+
for arg in args:
|
67 |
+
found_batch_size = ignorant_find_batch_size(arg)
|
68 |
+
if found_batch_size is not None:
|
69 |
+
break
|
70 |
+
if kwargs is not None and found_batch_size is None:
|
71 |
+
for kwarg in kwargs.values():
|
72 |
+
found_batch_size = ignorant_find_batch_size(kwarg)
|
73 |
+
if found_batch_size is not None:
|
74 |
+
break
|
75 |
+
return found_batch_size
|
76 |
+
|
77 |
+
|
78 |
+
def build_pipeline(model, split_points, args, kwargs, num_chunks):
|
79 |
+
"""
|
80 |
+
Attaches the split points to the model based on `self.device_map` and generates a `PipelineStage`. Requires passing
|
81 |
+
in needed `args` and `kwargs` as the model needs on the CPU.
|
82 |
+
|
83 |
+
Users can pass in custom `num_chunks` as an optional hyper-parameter. By default will use
|
84 |
+
`AcceleratorState.num_processes`
|
85 |
+
"""
|
86 |
+
# We need to annotate the split points in the model for PiPPy
|
87 |
+
state = PartialState()
|
88 |
+
annotate_split_points(model, {split_point: PipeSplitWrapper.SplitPoint.BEGINNING for split_point in split_points})
|
89 |
+
found_batch_size = find_pippy_batch_size(args, kwargs)
|
90 |
+
if found_batch_size != num_chunks:
|
91 |
+
if args is not None:
|
92 |
+
args = pad_input_tensors(args, found_batch_size, num_chunks)
|
93 |
+
if kwargs is not None:
|
94 |
+
kwargs = pad_input_tensors(kwargs, found_batch_size, num_chunks)
|
95 |
+
pipe = Pipe.from_tracing(model, num_chunks=num_chunks, example_args=args, example_kwargs=kwargs)
|
96 |
+
stage = PipelineStage(pipe, state.local_process_index, device=state.device)
|
97 |
+
|
98 |
+
return stage
|
99 |
+
|
100 |
+
|
101 |
+
def pippy_forward(forward, num_chunks, gather_output, *args, **kwargs):
|
102 |
+
state = PartialState()
|
103 |
+
output = None
|
104 |
+
|
105 |
+
if state.num_processes == 1:
|
106 |
+
output = forward(*args, **kwargs)
|
107 |
+
elif state.is_local_main_process:
|
108 |
+
found_batch_size = find_pippy_batch_size(args, kwargs)
|
109 |
+
if found_batch_size is None:
|
110 |
+
raise ValueError("Could not find batch size from args or kwargs")
|
111 |
+
else:
|
112 |
+
if found_batch_size != num_chunks:
|
113 |
+
args = pad_input_tensors(args, found_batch_size, num_chunks)
|
114 |
+
kwargs = pad_input_tensors(kwargs, found_batch_size, num_chunks)
|
115 |
+
forward(*args, **kwargs)
|
116 |
+
elif state.is_last_process:
|
117 |
+
output = forward()
|
118 |
+
else:
|
119 |
+
forward()
|
120 |
+
if gather_output:
|
121 |
+
# Each node will get a copy of the full output which is only on the last GPU
|
122 |
+
output = copy_tensor_to_devices(output)
|
123 |
+
return output
|
124 |
+
|
125 |
+
|
126 |
+
def prepare_pippy(
|
127 |
+
model,
|
128 |
+
split_points: Optional[Union[str, List[str]]] = "auto",
|
129 |
+
no_split_module_classes: Optional[List[str]] = None,
|
130 |
+
example_args: Optional[Tuple[Any]] = (),
|
131 |
+
example_kwargs: Optional[Dict[str, Any]] = None,
|
132 |
+
num_chunks: Optional[int] = None,
|
133 |
+
gather_output: Optional[bool] = False,
|
134 |
+
):
|
135 |
+
"""
|
136 |
+
Wraps `model` for pipeline parallel inference.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
model (`torch.nn.Module`):
|
140 |
+
A model we want to split for pipeline-parallel inference
|
141 |
+
split_points (`str` or `List[str]`, defaults to 'auto'):
|
142 |
+
How to generate the split points and chunk the model across each GPU. 'auto' will find the best balanced
|
143 |
+
split given any model. Should be a list of layer names in the model to split by otherwise.
|
144 |
+
no_split_module_classes (`List[str]`):
|
145 |
+
A list of class names for layers we don't want to be split.
|
146 |
+
example_args (tuple of model inputs):
|
147 |
+
The expected inputs for the model that uses order-based inputs. Recommended to use this method if possible.
|
148 |
+
example_kwargs (dict of model inputs)
|
149 |
+
The expected inputs for the model that uses dictionary-based inputs. This is a *highly* limiting structure
|
150 |
+
that requires the same keys be present at *all* inference calls. Not recommended unless the prior condition
|
151 |
+
is true for all cases.
|
152 |
+
num_chunks (`int`, defaults to the number of available GPUs):
|
153 |
+
The number of different stages the Pipeline will have. By default it will assign one chunk per GPU, but
|
154 |
+
this can be tuned and played with. In general one should have num_chunks >= num_gpus.
|
155 |
+
gather_output (`bool`, defaults to `False`):
|
156 |
+
If `True`, the output from the last GPU (which holds the true outputs) is sent across to all GPUs.
|
157 |
+
"""
|
158 |
+
if not is_pippy_available():
|
159 |
+
raise ImportError(
|
160 |
+
"`pippy` was not found to be installed on your system. Please "
|
161 |
+
"install using `pip install torchpippy` or ensure you have at least version 0.2.0"
|
162 |
+
)
|
163 |
+
state = PartialState()
|
164 |
+
example_args = send_to_device(example_args, "cpu")
|
165 |
+
example_kwargs = send_to_device(example_kwargs, "cpu")
|
166 |
+
if num_chunks is None:
|
167 |
+
num_chunks = state.num_processes
|
168 |
+
if split_points == "auto":
|
169 |
+
device_map = generate_device_map(model, num_chunks, no_split_module_classes=no_split_module_classes)
|
170 |
+
split_points = []
|
171 |
+
for i in range(1, num_chunks):
|
172 |
+
split_points.append(next(k for k, v in device_map.items() if v == i))
|
173 |
+
model.hf_split_points = split_points
|
174 |
+
stage = build_pipeline(model, split_points, example_args, example_kwargs, num_chunks)
|
175 |
+
model._original_forward = model.forward
|
176 |
+
model._original_call = model.__call__
|
177 |
+
model.pippy_stage = stage
|
178 |
+
model.hf_split_points = split_points
|
179 |
+
|
180 |
+
def forward(*args, **kwargs):
|
181 |
+
return pippy_forward(stage.forward, num_chunks, gather_output, *args, **kwargs)
|
182 |
+
|
183 |
+
# To act like a decorator so that it can be popped when doing `extract_model_from_parallel`
|
184 |
+
# Note: creates an infinite recursion loop with `generate`
|
185 |
+
model_forward = MethodType(forward, model)
|
186 |
+
forward.__wrapped__ = model_forward
|
187 |
+
model.forward = forward
|
188 |
+
return model
|
llmeval-env/lib/python3.10/site-packages/accelerate/launchers.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import sys
|
17 |
+
import tempfile
|
18 |
+
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from .state import AcceleratorState, PartialState
|
22 |
+
from .utils import (
|
23 |
+
PrecisionType,
|
24 |
+
PrepareForLaunch,
|
25 |
+
are_libraries_initialized,
|
26 |
+
check_cuda_p2p_ib_support,
|
27 |
+
get_gpu_info,
|
28 |
+
is_mps_available,
|
29 |
+
patch_environment,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def test_launch():
|
34 |
+
"Verify a `PartialState` can be initialized."
|
35 |
+
_ = PartialState()
|
36 |
+
|
37 |
+
|
38 |
+
def notebook_launcher(
|
39 |
+
function,
|
40 |
+
args=(),
|
41 |
+
num_processes=None,
|
42 |
+
mixed_precision="no",
|
43 |
+
use_port="29500",
|
44 |
+
master_addr="127.0.0.1",
|
45 |
+
node_rank=0,
|
46 |
+
num_nodes=1,
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
Launches a training function, using several processes or multiple nodes if it's possible in the current environment
|
50 |
+
(TPU with multiple cores for instance).
|
51 |
+
|
52 |
+
<Tip warning={true}>
|
53 |
+
|
54 |
+
To use this function absolutely zero calls to a CUDA device must be made in the notebook session before calling. If
|
55 |
+
any have been made, you will need to restart the notebook and make sure no cells use any CUDA capability.
|
56 |
+
|
57 |
+
Setting `ACCELERATE_DEBUG_MODE="1"` in your environment will run a test before truly launching to ensure that none
|
58 |
+
of those calls have been made.
|
59 |
+
|
60 |
+
</Tip>
|
61 |
+
|
62 |
+
Args:
|
63 |
+
function (`Callable`):
|
64 |
+
The training function to execute. If it accepts arguments, the first argument should be the index of the
|
65 |
+
process run.
|
66 |
+
args (`Tuple`):
|
67 |
+
Tuple of arguments to pass to the function (it will receive `*args`).
|
68 |
+
num_processes (`int`, *optional*):
|
69 |
+
The number of processes to use for training. Will default to 8 in Colab/Kaggle if a TPU is available, to
|
70 |
+
the number of GPUs available otherwise.
|
71 |
+
mixed_precision (`str`, *optional*, defaults to `"no"`):
|
72 |
+
If `fp16` or `bf16`, will use mixed precision training on multi-GPU.
|
73 |
+
use_port (`str`, *optional*, defaults to `"29500"`):
|
74 |
+
The port to use to communicate between processes when launching a multi-GPU training.
|
75 |
+
master_addr (`str`, *optional*, defaults to `"127.0.0.1"`):
|
76 |
+
The address to use for communication between processes.
|
77 |
+
node_rank (`int`, *optional*, defaults to 0):
|
78 |
+
The rank of the current node.
|
79 |
+
num_nodes (`int`, *optional*, defaults to 1):
|
80 |
+
The number of nodes to use for training.
|
81 |
+
|
82 |
+
Example:
|
83 |
+
|
84 |
+
```python
|
85 |
+
# Assume this is defined in a Jupyter Notebook on an instance with two GPUs
|
86 |
+
from accelerate import notebook_launcher
|
87 |
+
|
88 |
+
|
89 |
+
def train(*args):
|
90 |
+
# Your training function here
|
91 |
+
...
|
92 |
+
|
93 |
+
|
94 |
+
notebook_launcher(train, args=(arg1, arg2), num_processes=2, mixed_precision="fp16")
|
95 |
+
```
|
96 |
+
"""
|
97 |
+
# Are we in a google colab or a Kaggle Kernel?
|
98 |
+
in_colab = False
|
99 |
+
in_kaggle = False
|
100 |
+
if any(key.startswith("KAGGLE") for key in os.environ.keys()):
|
101 |
+
in_kaggle = True
|
102 |
+
elif "IPython" in sys.modules:
|
103 |
+
in_colab = "google.colab" in str(sys.modules["IPython"].get_ipython())
|
104 |
+
|
105 |
+
try:
|
106 |
+
mixed_precision = PrecisionType(mixed_precision.lower())
|
107 |
+
except ValueError:
|
108 |
+
raise ValueError(
|
109 |
+
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
|
110 |
+
)
|
111 |
+
|
112 |
+
if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME", None) is not None):
|
113 |
+
# TPU launch
|
114 |
+
import torch_xla.distributed.xla_multiprocessing as xmp
|
115 |
+
|
116 |
+
if len(AcceleratorState._shared_state) > 0:
|
117 |
+
raise ValueError(
|
118 |
+
"To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside "
|
119 |
+
"your training function. Restart your notebook and make sure no cells initializes an "
|
120 |
+
"`Accelerator`."
|
121 |
+
)
|
122 |
+
if num_processes is None:
|
123 |
+
num_processes = 8
|
124 |
+
|
125 |
+
launcher = PrepareForLaunch(function, distributed_type="TPU")
|
126 |
+
print(f"Launching a training on {num_processes} TPU cores.")
|
127 |
+
xmp.spawn(launcher, args=args, nprocs=num_processes, start_method="fork")
|
128 |
+
elif in_colab and get_gpu_info()[1] < 2:
|
129 |
+
# No need for a distributed launch otherwise as it's either CPU or one GPU.
|
130 |
+
if torch.cuda.is_available():
|
131 |
+
print("Launching training on one GPU.")
|
132 |
+
else:
|
133 |
+
print("Launching training on one CPU.")
|
134 |
+
function(*args)
|
135 |
+
else:
|
136 |
+
if num_processes is None:
|
137 |
+
raise ValueError(
|
138 |
+
"You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call."
|
139 |
+
)
|
140 |
+
if node_rank >= num_nodes:
|
141 |
+
raise ValueError("The node_rank must be less than the number of nodes.")
|
142 |
+
if num_processes > 1:
|
143 |
+
# Multi-GPU launch
|
144 |
+
from torch.multiprocessing import start_processes
|
145 |
+
from torch.multiprocessing.spawn import ProcessRaisedException
|
146 |
+
|
147 |
+
if len(AcceleratorState._shared_state) > 0:
|
148 |
+
raise ValueError(
|
149 |
+
"To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized "
|
150 |
+
"inside your training function. Restart your notebook and make sure no cells initializes an "
|
151 |
+
"`Accelerator`."
|
152 |
+
)
|
153 |
+
# Check for specific libraries known to initialize CUDA that users constantly use
|
154 |
+
problematic_imports = are_libraries_initialized("bitsandbytes")
|
155 |
+
if len(problematic_imports) > 0:
|
156 |
+
err = (
|
157 |
+
"Could not start distributed process. Libraries known to initialize CUDA upon import have been "
|
158 |
+
"imported already. Please keep these imports inside your training function to try and help with this:"
|
159 |
+
)
|
160 |
+
for lib_name in problematic_imports:
|
161 |
+
err += f"\n\t* `{lib_name}`"
|
162 |
+
raise RuntimeError(err)
|
163 |
+
|
164 |
+
patched_env = dict(
|
165 |
+
nproc=num_processes,
|
166 |
+
node_rank=node_rank,
|
167 |
+
world_size=num_nodes * num_processes,
|
168 |
+
master_addr=master_addr,
|
169 |
+
master_port=use_port,
|
170 |
+
mixed_precision=mixed_precision,
|
171 |
+
)
|
172 |
+
|
173 |
+
# Check for CUDA P2P and IB issues
|
174 |
+
if not check_cuda_p2p_ib_support():
|
175 |
+
patched_env["nccl_p2p_disable"] = "1"
|
176 |
+
patched_env["nccl_ib_disable"] = "1"
|
177 |
+
|
178 |
+
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
|
179 |
+
# process here (the other ones will be set be the launcher).
|
180 |
+
with patch_environment(**patched_env):
|
181 |
+
# First dummy launch
|
182 |
+
if os.environ.get("ACCELERATE_DEBUG_MODE", "false").lower() == "true":
|
183 |
+
launcher = PrepareForLaunch(test_launch, distributed_type="MULTI_GPU")
|
184 |
+
try:
|
185 |
+
start_processes(launcher, args=(), nprocs=num_processes, start_method="fork")
|
186 |
+
except ProcessRaisedException as e:
|
187 |
+
err = "An issue was found when verifying a stable environment for the notebook launcher."
|
188 |
+
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
|
189 |
+
raise RuntimeError(
|
190 |
+
f"{err}"
|
191 |
+
"This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
|
192 |
+
"Please review your imports and test them when running the `notebook_launcher()` to identify "
|
193 |
+
"which one is problematic and causing CUDA to be initialized."
|
194 |
+
) from e
|
195 |
+
else:
|
196 |
+
raise RuntimeError(f"{err} The following error was raised: {e}") from e
|
197 |
+
# Now the actual launch
|
198 |
+
launcher = PrepareForLaunch(function, distributed_type="MULTI_GPU")
|
199 |
+
print(f"Launching training on {num_processes} GPUs.")
|
200 |
+
try:
|
201 |
+
start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")
|
202 |
+
except ProcessRaisedException as e:
|
203 |
+
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
|
204 |
+
raise RuntimeError(
|
205 |
+
"CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. "
|
206 |
+
"This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
|
207 |
+
"Please review your imports and test them when running the `notebook_launcher()` to identify "
|
208 |
+
"which one is problematic and causing CUDA to be initialized."
|
209 |
+
) from e
|
210 |
+
else:
|
211 |
+
raise RuntimeError(f"An issue was found when launching the training: {e}") from e
|
212 |
+
|
213 |
+
else:
|
214 |
+
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
|
215 |
+
if is_mps_available():
|
216 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
217 |
+
print("Launching training on MPS.")
|
218 |
+
elif torch.cuda.is_available():
|
219 |
+
print("Launching training on one GPU.")
|
220 |
+
else:
|
221 |
+
print("Launching training on CPU.")
|
222 |
+
function(*args)
|
223 |
+
|
224 |
+
|
225 |
+
def debug_launcher(function, args=(), num_processes=2):
|
226 |
+
"""
|
227 |
+
Launches a training function using several processes on CPU for debugging purposes.
|
228 |
+
|
229 |
+
<Tip warning={true}>
|
230 |
+
|
231 |
+
This function is provided for internal testing and debugging, but it's not intended for real trainings. It will
|
232 |
+
only use the CPU.
|
233 |
+
|
234 |
+
</Tip>
|
235 |
+
|
236 |
+
Args:
|
237 |
+
function (`Callable`):
|
238 |
+
The training function to execute.
|
239 |
+
args (`Tuple`):
|
240 |
+
Tuple of arguments to pass to the function (it will receive `*args`).
|
241 |
+
num_processes (`int`, *optional*, defaults to 2):
|
242 |
+
The number of processes to use for training.
|
243 |
+
"""
|
244 |
+
from torch.multiprocessing import start_processes
|
245 |
+
|
246 |
+
with tempfile.NamedTemporaryFile() as tmp_file:
|
247 |
+
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
|
248 |
+
# process here (the other ones will be set be the launcher).
|
249 |
+
with patch_environment(
|
250 |
+
world_size=num_processes,
|
251 |
+
master_addr="127.0.0.1",
|
252 |
+
master_port="29500",
|
253 |
+
accelerate_mixed_precision="no",
|
254 |
+
accelerate_debug_rdv_file=tmp_file.name,
|
255 |
+
accelerate_use_cpu="yes",
|
256 |
+
):
|
257 |
+
launcher = PrepareForLaunch(function, debug=True)
|
258 |
+
start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")
|
llmeval-env/lib/python3.10/site-packages/accelerate/local_sgd.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
|
16 |
+
from accelerate import Accelerator, DistributedType
|
17 |
+
|
18 |
+
|
19 |
+
class LocalSGD:
|
20 |
+
"""
|
21 |
+
A helper class to support local SGD on top of Accelerator. It simply runs a given number of updates independently
|
22 |
+
on each device, and averages model weights every K synchronization step.
|
23 |
+
|
24 |
+
It should be used only in the multi-GPU (or multi-CPU) setup without extensions such as DeepSpeed. In particular,
|
25 |
+
this is a simple implementation that cannot support scenarios such as model parallelism.
|
26 |
+
|
27 |
+
|
28 |
+
Although we are not aware of the true origins of this simple approach, the idea of local SGD is quite old and goes
|
29 |
+
back to at least:
|
30 |
+
|
31 |
+
Zhang, J., De Sa, C., Mitliagkas, I., & Ré, C. (2016). [Parallel SGD: When does averaging help?. arXiv preprint
|
32 |
+
arXiv:1606.07365.](https://arxiv.org/abs/1606.07365)
|
33 |
+
|
34 |
+
We credit the term Local SGD to the following paper (but there might be earlier references we are not aware of).
|
35 |
+
|
36 |
+
Stich, Sebastian Urban. ["Local SGD Converges Fast and Communicates Little." ICLR 2019-International Conference on
|
37 |
+
Learning Representations. No. CONF. 2019.](https://arxiv.org/abs/1805.09767)
|
38 |
+
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __enter__(self):
|
42 |
+
if self.enabled:
|
43 |
+
self.model_sync_obj = self.model.no_sync()
|
44 |
+
self.model_sync_obj.__enter__()
|
45 |
+
|
46 |
+
return self
|
47 |
+
|
48 |
+
def __exit__(self, type, value, tb):
|
49 |
+
if self.enabled:
|
50 |
+
# Average all models on exit
|
51 |
+
self._sync_and_avg_model_params()
|
52 |
+
self.model_sync_obj.__exit__(type, value, tb)
|
53 |
+
|
54 |
+
def __init__(self, accelerator: Accelerator, model: torch.nn.Module, local_sgd_steps: int, enabled: bool = True):
|
55 |
+
"""
|
56 |
+
Constructor.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
model (`torch.nn.Module):
|
60 |
+
The model whose parameters we need to average.
|
61 |
+
accelerator (`Accelerator`):
|
62 |
+
Accelerator object.
|
63 |
+
local_sgd_steps (`int`):
|
64 |
+
A number of local SGD steps (before model parameters are synchronized).
|
65 |
+
enabled (`bool):
|
66 |
+
Local SGD is disabled if this parameter set to `False`.
|
67 |
+
"""
|
68 |
+
if accelerator.distributed_type not in [
|
69 |
+
DistributedType.NO,
|
70 |
+
DistributedType.MULTI_CPU,
|
71 |
+
DistributedType.MULTI_GPU,
|
72 |
+
DistributedType.MULTI_MLU,
|
73 |
+
DistributedType.MULTI_NPU,
|
74 |
+
]:
|
75 |
+
raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)")
|
76 |
+
self.enabled = enabled and accelerator.distributed_type != DistributedType.NO
|
77 |
+
self.num_steps = 0
|
78 |
+
if self.enabled:
|
79 |
+
self.accelerator = accelerator
|
80 |
+
self.model = model
|
81 |
+
self.local_sgd_steps = local_sgd_steps
|
82 |
+
|
83 |
+
def step(self):
|
84 |
+
"""
|
85 |
+
This function makes a "step" and synchronizes model parameters if necessary.
|
86 |
+
"""
|
87 |
+
self.num_steps += 1
|
88 |
+
if not self.enabled:
|
89 |
+
return
|
90 |
+
|
91 |
+
if self.num_steps % self.local_sgd_steps == 0:
|
92 |
+
self._sync_and_avg_model_params()
|
93 |
+
|
94 |
+
def _sync_and_avg_model_params(self):
|
95 |
+
"""
|
96 |
+
Synchronize + Average model parameters across all GPUs
|
97 |
+
"""
|
98 |
+
|
99 |
+
self.accelerator.wait_for_everyone()
|
100 |
+
with self.accelerator.autocast():
|
101 |
+
for param in self.model.parameters():
|
102 |
+
param.data = self.accelerator.reduce(param.data, reduction="mean")
|
llmeval-env/lib/python3.10/site-packages/accelerate/logging.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import functools
|
16 |
+
import logging
|
17 |
+
import os
|
18 |
+
|
19 |
+
from .state import PartialState
|
20 |
+
|
21 |
+
|
22 |
+
class MultiProcessAdapter(logging.LoggerAdapter):
|
23 |
+
"""
|
24 |
+
An adapter to assist with logging in multiprocess.
|
25 |
+
|
26 |
+
`log` takes in an additional `main_process_only` kwarg, which dictates whether it should be called on all processes
|
27 |
+
or only the main executed one. Default is `main_process_only=True`.
|
28 |
+
|
29 |
+
Does not require an `Accelerator` object to be created first.
|
30 |
+
"""
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def _should_log(main_process_only):
|
34 |
+
"Check if log should be performed"
|
35 |
+
state = PartialState()
|
36 |
+
return not main_process_only or (main_process_only and state.is_main_process)
|
37 |
+
|
38 |
+
def log(self, level, msg, *args, **kwargs):
|
39 |
+
"""
|
40 |
+
Delegates logger call after checking if we should log.
|
41 |
+
|
42 |
+
Accepts a new kwarg of `main_process_only`, which will dictate whether it will be logged across all processes
|
43 |
+
or only the main executed one. Default is `True` if not passed
|
44 |
+
|
45 |
+
Also accepts "in_order", which if `True` makes the processes log one by one, in order. This is much easier to
|
46 |
+
read, but comes at the cost of sometimes needing to wait for the other processes. Default is `False` to not
|
47 |
+
break with the previous behavior.
|
48 |
+
|
49 |
+
`in_order` is ignored if `main_process_only` is passed.
|
50 |
+
"""
|
51 |
+
if PartialState._shared_state == {}:
|
52 |
+
raise RuntimeError(
|
53 |
+
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility."
|
54 |
+
)
|
55 |
+
main_process_only = kwargs.pop("main_process_only", True)
|
56 |
+
in_order = kwargs.pop("in_order", False)
|
57 |
+
|
58 |
+
if self.isEnabledFor(level):
|
59 |
+
if self._should_log(main_process_only):
|
60 |
+
msg, kwargs = self.process(msg, kwargs)
|
61 |
+
self.logger.log(level, msg, *args, **kwargs)
|
62 |
+
|
63 |
+
elif in_order:
|
64 |
+
state = PartialState()
|
65 |
+
for i in range(state.num_processes):
|
66 |
+
if i == state.process_index:
|
67 |
+
msg, kwargs = self.process(msg, kwargs)
|
68 |
+
self.logger.log(level, msg, *args, **kwargs)
|
69 |
+
state.wait_for_everyone()
|
70 |
+
|
71 |
+
@functools.lru_cache(None)
|
72 |
+
def warning_once(self, *args, **kwargs):
|
73 |
+
"""
|
74 |
+
This method is identical to `logger.warning()`, but will emit the warning with the same message only once
|
75 |
+
|
76 |
+
Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the
|
77 |
+
cache. The assumption here is that all warning messages are unique across the code. If they aren't then need to
|
78 |
+
switch to another type of cache that includes the caller frame information in the hashing function.
|
79 |
+
"""
|
80 |
+
self.warning(*args, **kwargs)
|
81 |
+
|
82 |
+
|
83 |
+
def get_logger(name: str, log_level: str = None):
|
84 |
+
"""
|
85 |
+
Returns a `logging.Logger` for `name` that can handle multiprocessing.
|
86 |
+
|
87 |
+
If a log should be called on all processes, pass `main_process_only=False` If a log should be called on all
|
88 |
+
processes and in order, also pass `in_order=True`
|
89 |
+
|
90 |
+
Args:
|
91 |
+
name (`str`):
|
92 |
+
The name for the logger, such as `__file__`
|
93 |
+
log_level (`str`, *optional*):
|
94 |
+
The log level to use. If not passed, will default to the `LOG_LEVEL` environment variable, or `INFO` if not
|
95 |
+
|
96 |
+
Example:
|
97 |
+
|
98 |
+
```python
|
99 |
+
>>> from accelerate.logging import get_logger
|
100 |
+
>>> from accelerate import Accelerator
|
101 |
+
|
102 |
+
>>> logger = get_logger(__name__)
|
103 |
+
|
104 |
+
>>> accelerator = Accelerator()
|
105 |
+
>>> logger.info("My log", main_process_only=False)
|
106 |
+
>>> logger.debug("My log", main_process_only=True)
|
107 |
+
|
108 |
+
>>> logger = get_logger(__name__, log_level="DEBUG")
|
109 |
+
>>> logger.info("My log")
|
110 |
+
>>> logger.debug("My second log")
|
111 |
+
|
112 |
+
>>> array = ["a", "b", "c", "d"]
|
113 |
+
>>> letter_at_rank = array[accelerator.process_index]
|
114 |
+
>>> logger.info(letter_at_rank, in_order=True)
|
115 |
+
```
|
116 |
+
"""
|
117 |
+
if log_level is None:
|
118 |
+
log_level = os.environ.get("ACCELERATE_LOG_LEVEL", None)
|
119 |
+
logger = logging.getLogger(name)
|
120 |
+
if log_level is not None:
|
121 |
+
logger.setLevel(log_level.upper())
|
122 |
+
logger.root.setLevel(log_level.upper())
|
123 |
+
return MultiProcessAdapter(logger, {})
|
llmeval-env/lib/python3.10/site-packages/accelerate/memory_utils.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import warnings
|
16 |
+
|
17 |
+
|
18 |
+
warnings.warn(
|
19 |
+
"memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: "
|
20 |
+
"`from accelerate import find_executable_batch_size` to avoid this warning.",
|
21 |
+
FutureWarning,
|
22 |
+
)
|
llmeval-env/lib/python3.10/site-packages/accelerate/optimizer.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from .state import AcceleratorState, GradientState
|
21 |
+
from .utils import DistributedType, honor_type, is_lomo_available, is_torch_xla_available
|
22 |
+
|
23 |
+
|
24 |
+
if is_torch_xla_available():
|
25 |
+
import torch_xla.core.xla_model as xm
|
26 |
+
|
27 |
+
|
28 |
+
def move_to_device(state, device):
|
29 |
+
if isinstance(state, (list, tuple)):
|
30 |
+
return honor_type(state, (move_to_device(t, device) for t in state))
|
31 |
+
elif isinstance(state, dict):
|
32 |
+
return type(state)({k: move_to_device(v, device) for k, v in state.items()})
|
33 |
+
elif isinstance(state, torch.Tensor):
|
34 |
+
return state.to(device)
|
35 |
+
return state
|
36 |
+
|
37 |
+
|
38 |
+
class AcceleratedOptimizer(torch.optim.Optimizer):
|
39 |
+
"""
|
40 |
+
Internal wrapper around a torch optimizer.
|
41 |
+
|
42 |
+
Conditionally will perform `step` and `zero_grad` if gradients should be synchronized when performing gradient
|
43 |
+
accumulation.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
optimizer (`torch.optim.optimizer.Optimizer`):
|
47 |
+
The optimizer to wrap.
|
48 |
+
device_placement (`bool`, *optional*, defaults to `True`):
|
49 |
+
Whether or not the optimizer should handle device placement. If so, it will place the state dictionary of
|
50 |
+
`optimizer` on the right device.
|
51 |
+
scaler (`torch.cuda.amp.grad_scaler.GradScaler`, *optional*):
|
52 |
+
The scaler to use in the step function if training with mixed precision.
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, optimizer, device_placement=True, scaler=None):
|
56 |
+
self.optimizer = optimizer
|
57 |
+
self.scaler = scaler
|
58 |
+
self.accelerator_state = AcceleratorState()
|
59 |
+
self.gradient_state = GradientState()
|
60 |
+
self.device_placement = device_placement
|
61 |
+
self._is_overflow = False
|
62 |
+
|
63 |
+
if self.scaler is not None:
|
64 |
+
self._accelerate_step_called = False
|
65 |
+
self._optimizer_original_step_method = self.optimizer.step
|
66 |
+
self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
|
67 |
+
|
68 |
+
# Handle device placement
|
69 |
+
if device_placement:
|
70 |
+
state_dict = self.optimizer.state_dict()
|
71 |
+
if self.accelerator_state.distributed_type == DistributedType.XLA:
|
72 |
+
xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
|
73 |
+
else:
|
74 |
+
state_dict = move_to_device(state_dict, self.accelerator_state.device)
|
75 |
+
self.optimizer.load_state_dict(state_dict)
|
76 |
+
|
77 |
+
@property
|
78 |
+
def state(self):
|
79 |
+
return self.optimizer.state
|
80 |
+
|
81 |
+
@state.setter
|
82 |
+
def state(self, state):
|
83 |
+
self.optimizer.state = state
|
84 |
+
|
85 |
+
@property
|
86 |
+
def param_groups(self):
|
87 |
+
return self.optimizer.param_groups
|
88 |
+
|
89 |
+
@param_groups.setter
|
90 |
+
def param_groups(self, param_groups):
|
91 |
+
self.optimizer.param_groups = param_groups
|
92 |
+
|
93 |
+
@property
|
94 |
+
def defaults(self):
|
95 |
+
return self.optimizer.defaults
|
96 |
+
|
97 |
+
@defaults.setter
|
98 |
+
def defaults(self, defaults):
|
99 |
+
self.optimizer.defaults = defaults
|
100 |
+
|
101 |
+
def add_param_group(self, param_group):
|
102 |
+
self.optimizer.add_param_group(param_group)
|
103 |
+
|
104 |
+
def load_state_dict(self, state_dict):
|
105 |
+
if self.accelerator_state.distributed_type == DistributedType.XLA and self.device_placement:
|
106 |
+
xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
|
107 |
+
self.optimizer.load_state_dict(state_dict)
|
108 |
+
|
109 |
+
def state_dict(self):
|
110 |
+
return self.optimizer.state_dict()
|
111 |
+
|
112 |
+
def zero_grad(self, set_to_none=None):
|
113 |
+
if self.gradient_state.sync_gradients:
|
114 |
+
accept_arg = "set_to_none" in inspect.signature(self.optimizer.zero_grad).parameters
|
115 |
+
if accept_arg:
|
116 |
+
if set_to_none is None:
|
117 |
+
set_to_none = True
|
118 |
+
self.optimizer.zero_grad(set_to_none=set_to_none)
|
119 |
+
else:
|
120 |
+
if set_to_none is not None:
|
121 |
+
raise ValueError("`set_to_none` for Optimizer.zero_grad` is not supported by this optimizer.")
|
122 |
+
self.optimizer.zero_grad()
|
123 |
+
|
124 |
+
def train(self):
|
125 |
+
"""
|
126 |
+
Sets the optimizer to "train" mode. Useful for optimizers like `schedule_free`
|
127 |
+
"""
|
128 |
+
return self.optimizer.train()
|
129 |
+
|
130 |
+
def eval(self):
|
131 |
+
"""
|
132 |
+
Sets the optimizer to "eval" mode. Useful for optimizers like `schedule_free`
|
133 |
+
"""
|
134 |
+
return self.optimizer.eval()
|
135 |
+
|
136 |
+
def step(self, closure=None):
|
137 |
+
if is_lomo_available():
|
138 |
+
from lomo_optim import AdaLomo, Lomo
|
139 |
+
|
140 |
+
if (
|
141 |
+
not self.gradient_state.is_xla_gradients_synced
|
142 |
+
and self.accelerator_state.distributed_type == DistributedType.XLA
|
143 |
+
):
|
144 |
+
gradients = xm._fetch_gradients(self.optimizer)
|
145 |
+
xm.all_reduce("sum", gradients, scale=1.0 / xm.xrt_world_size())
|
146 |
+
self.gradient_state.is_xla_gradients_synced = True
|
147 |
+
|
148 |
+
if is_lomo_available():
|
149 |
+
# `step` should be a no-op for LOMO optimizers.
|
150 |
+
if isinstance(self.optimizer, (Lomo, AdaLomo)):
|
151 |
+
return
|
152 |
+
|
153 |
+
if self.gradient_state.sync_gradients:
|
154 |
+
if self.scaler is not None:
|
155 |
+
self.optimizer.step = self._optimizer_patched_step_method
|
156 |
+
|
157 |
+
self.scaler.step(self.optimizer, closure)
|
158 |
+
self.scaler.update()
|
159 |
+
|
160 |
+
if not self._accelerate_step_called:
|
161 |
+
# If the optimizer step was skipped, gradient overflow was detected.
|
162 |
+
self._is_overflow = True
|
163 |
+
else:
|
164 |
+
self._is_overflow = False
|
165 |
+
# Reset the step method to the original one
|
166 |
+
self.optimizer.step = self._optimizer_original_step_method
|
167 |
+
# Reset the indicator
|
168 |
+
self._accelerate_step_called = False
|
169 |
+
else:
|
170 |
+
self.optimizer.step(closure)
|
171 |
+
if self.accelerator_state.distributed_type == DistributedType.XLA:
|
172 |
+
self.gradient_state.is_xla_gradients_synced = False
|
173 |
+
|
174 |
+
def _switch_parameters(self, parameters_map):
|
175 |
+
for param_group in self.optimizer.param_groups:
|
176 |
+
param_group["params"] = [parameters_map.get(p, p) for p in param_group["params"]]
|
177 |
+
|
178 |
+
@property
|
179 |
+
def is_overflow(self):
|
180 |
+
"""Whether or not the optimizer step was done, or skipped because of gradient overflow."""
|
181 |
+
warnings.warn(
|
182 |
+
"The `is_overflow` property is deprecated and will be removed in version 1.0 of Accelerate use "
|
183 |
+
"`optimizer.step_was_skipped` instead.",
|
184 |
+
FutureWarning,
|
185 |
+
)
|
186 |
+
return self._is_overflow
|
187 |
+
|
188 |
+
@property
|
189 |
+
def step_was_skipped(self):
|
190 |
+
"""Whether or not the optimizer step was skipped."""
|
191 |
+
return self._is_overflow
|
192 |
+
|
193 |
+
def __getstate__(self):
|
194 |
+
_ignored_keys = [
|
195 |
+
"_accelerate_step_called",
|
196 |
+
"_optimizer_original_step_method",
|
197 |
+
"_optimizer_patched_step_method",
|
198 |
+
]
|
199 |
+
return {k: v for k, v in self.__dict__.items() if k not in _ignored_keys}
|
200 |
+
|
201 |
+
def __setstate__(self, state):
|
202 |
+
self.__dict__.update(state)
|
203 |
+
if self.scaler is not None:
|
204 |
+
self._accelerate_step_called = False
|
205 |
+
self._optimizer_original_step_method = self.optimizer.step
|
206 |
+
self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
|
207 |
+
|
208 |
+
|
209 |
+
def patch_optimizer_step(accelerated_optimizer: AcceleratedOptimizer, method):
|
210 |
+
def patched_step(*args, **kwargs):
|
211 |
+
accelerated_optimizer._accelerate_step_called = True
|
212 |
+
return method(*args, **kwargs)
|
213 |
+
|
214 |
+
return patched_step
|
llmeval-env/lib/python3.10/site-packages/accelerate/scheduler.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from .state import AcceleratorState, GradientState
|
20 |
+
|
21 |
+
|
22 |
+
warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler")
|
23 |
+
|
24 |
+
|
25 |
+
class AcceleratedScheduler:
|
26 |
+
"""
|
27 |
+
A wrapper around a learning rate scheduler that will only step when the optimizer(s) have a training step. Useful
|
28 |
+
to avoid making a scheduler step too fast when gradients went overflow and there was no training step (in mixed
|
29 |
+
precision training)
|
30 |
+
|
31 |
+
When performing gradient accumulation scheduler lengths should not be changed accordingly, Accelerate will always
|
32 |
+
step the scheduler to account for it.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
scheduler (`torch.optim.lr_scheduler._LRScheduler`):
|
36 |
+
The scheduler to wrap.
|
37 |
+
optimizers (one or a list of `torch.optim.Optimizer`):
|
38 |
+
The optimizers used.
|
39 |
+
step_with_optimizer (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether or not the scheduler should be stepped at each optimizer step.
|
41 |
+
split_batches (`bool`, *optional*, defaults to `False`):
|
42 |
+
Whether or not the dataloaders split one batch across the different processes (so batch size is the same
|
43 |
+
regardless of the number of processes) or create batches on each process (so batch size is the original
|
44 |
+
batch size multiplied by the number of processes).
|
45 |
+
"""
|
46 |
+
|
47 |
+
def __init__(self, scheduler, optimizers, step_with_optimizer: bool = True, split_batches: bool = False):
|
48 |
+
self.scheduler = scheduler
|
49 |
+
self.optimizers = optimizers if isinstance(optimizers, (list, tuple)) else [optimizers]
|
50 |
+
self.split_batches = split_batches
|
51 |
+
self.step_with_optimizer = step_with_optimizer
|
52 |
+
self.gradient_state = GradientState()
|
53 |
+
|
54 |
+
def step(self, *args, **kwargs):
|
55 |
+
if not self.step_with_optimizer:
|
56 |
+
# No link between scheduler and optimizer -> just step
|
57 |
+
self.scheduler.step(*args, **kwargs)
|
58 |
+
return
|
59 |
+
|
60 |
+
# Otherwise, first make sure the optimizer was stepped.
|
61 |
+
if not self.gradient_state.sync_gradients:
|
62 |
+
if self.gradient_state.adjust_scheduler:
|
63 |
+
self.scheduler._step_count += 1
|
64 |
+
return
|
65 |
+
|
66 |
+
for opt in self.optimizers:
|
67 |
+
if opt.step_was_skipped:
|
68 |
+
return
|
69 |
+
if self.split_batches:
|
70 |
+
# Split batches -> the training dataloader batch size is not changed so one step per training step
|
71 |
+
self.scheduler.step(*args, **kwargs)
|
72 |
+
else:
|
73 |
+
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
|
74 |
+
# num_processes steps per training step
|
75 |
+
num_processes = AcceleratorState().num_processes
|
76 |
+
for _ in range(num_processes):
|
77 |
+
# Special case when using OneCycle and `drop_last` was not used
|
78 |
+
if hasattr(self.scheduler, "total_steps"):
|
79 |
+
if self.scheduler._step_count <= self.scheduler.total_steps:
|
80 |
+
self.scheduler.step(*args, **kwargs)
|
81 |
+
else:
|
82 |
+
self.scheduler.step(*args, **kwargs)
|
83 |
+
|
84 |
+
# Passthroughs
|
85 |
+
def get_last_lr(self):
|
86 |
+
return self.scheduler.get_last_lr()
|
87 |
+
|
88 |
+
def state_dict(self):
|
89 |
+
return self.scheduler.state_dict()
|
90 |
+
|
91 |
+
def load_state_dict(self, state_dict):
|
92 |
+
self.scheduler.load_state_dict(state_dict)
|
93 |
+
|
94 |
+
def get_lr(self):
|
95 |
+
return self.scheduler.get_lr()
|
96 |
+
|
97 |
+
def print_lr(self, *args, **kwargs):
|
98 |
+
return self.scheduler.print_lr(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/accelerate/state.py
ADDED
@@ -0,0 +1,1208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import annotations
|
16 |
+
|
17 |
+
import logging
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import threading
|
21 |
+
import warnings
|
22 |
+
from contextlib import contextmanager
|
23 |
+
from functools import partial
|
24 |
+
from typing import Any, Callable, Optional
|
25 |
+
|
26 |
+
import torch
|
27 |
+
|
28 |
+
from .utils import (
|
29 |
+
DistributedType,
|
30 |
+
DynamoBackend,
|
31 |
+
GradientAccumulationPlugin,
|
32 |
+
check_cuda_p2p_ib_support,
|
33 |
+
check_fp8_capability,
|
34 |
+
get_ccl_version,
|
35 |
+
get_cpu_distributed_information,
|
36 |
+
get_int_from_env,
|
37 |
+
is_ccl_available,
|
38 |
+
is_datasets_available,
|
39 |
+
is_deepspeed_available,
|
40 |
+
is_fp8_available,
|
41 |
+
is_ipex_available,
|
42 |
+
is_mlu_available,
|
43 |
+
is_mps_available,
|
44 |
+
is_npu_available,
|
45 |
+
is_torch_xla_available,
|
46 |
+
is_xpu_available,
|
47 |
+
parse_choice_from_env,
|
48 |
+
parse_flag_from_env,
|
49 |
+
set_numa_affinity,
|
50 |
+
)
|
51 |
+
from .utils.dataclasses import SageMakerDistributedType
|
52 |
+
|
53 |
+
|
54 |
+
if is_torch_xla_available():
|
55 |
+
import torch_xla.core.xla_model as xm
|
56 |
+
|
57 |
+
if is_mlu_available(check_device=False):
|
58 |
+
import torch_mlu # noqa: F401
|
59 |
+
|
60 |
+
if is_npu_available(check_device=False):
|
61 |
+
import torch_npu # noqa: F401
|
62 |
+
|
63 |
+
logger = logging.getLogger(__name__)
|
64 |
+
|
65 |
+
|
66 |
+
def is_initialized() -> bool:
|
67 |
+
"""
|
68 |
+
Checks if the `AcceleratorState` has been initialized from `Accelerator`. Same as `AcceleratorState.initialized`,
|
69 |
+
but works as a module method.
|
70 |
+
"""
|
71 |
+
return AcceleratorState._shared_state != {}
|
72 |
+
|
73 |
+
|
74 |
+
# Lambda function that does nothing
|
75 |
+
def do_nothing(*args, **kwargs):
|
76 |
+
return None
|
77 |
+
|
78 |
+
|
79 |
+
class ThreadLocalSharedDict(threading.local):
|
80 |
+
"""
|
81 |
+
Descriptor that holds a dict shared between instances of a class in the same thread.
|
82 |
+
|
83 |
+
Note: Descriptors have slightly different semantics than just a dict field on its own.
|
84 |
+
`PartialState(...)._shared_state` and `PartialState._shared_state` (instance vs class) give the same value: the
|
85 |
+
underlying _storage dict. Likewise, `PartialState(...)._shared_state = {...}` overrides the _storage dict inside
|
86 |
+
the descriptor as you would expect. However, `PartialState._shared_state = {}` actually replaces the descriptor
|
87 |
+
object with a dict instead Thus, you should modify the _storage dict in-place (e.g. `_shared_state.clear()`).
|
88 |
+
|
89 |
+
See Python documentation for an explanation of descriptors: https://docs.python.org/3/howto/descriptor.html
|
90 |
+
|
91 |
+
This is required for using PyTorch/XLA with PJRT in multithreaded mode (required for TPU v2 and v3).
|
92 |
+
|
93 |
+
See https://github.com/pytorch/xla/blob/r2.0/docs/pjrt.md#multithreading-on-tpu-v2v3
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, thread_local: bool = False):
|
97 |
+
self._storage = {}
|
98 |
+
|
99 |
+
def __get__(self, obj, objtype=None):
|
100 |
+
return self._storage
|
101 |
+
|
102 |
+
def __set__(self, obj, value):
|
103 |
+
self._storage = value
|
104 |
+
|
105 |
+
|
106 |
+
# Prefer global shared dictionary, except when using TPU.
|
107 |
+
SharedDict = dict if not is_torch_xla_available() else ThreadLocalSharedDict
|
108 |
+
|
109 |
+
|
110 |
+
# Inspired by Alex Martelli's 'Borg'.
|
111 |
+
class PartialState:
|
112 |
+
"""
|
113 |
+
Singleton class that has information about the current training environment and functions to help with process
|
114 |
+
control. Designed to be used when only process control and device execution states are needed. Does *not* need to
|
115 |
+
be initialized from `Accelerator`.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
cpu (`bool`, *optional*):
|
119 |
+
Whether or not to force the script to execute on CPU. Will ignore any accelerators available if set to
|
120 |
+
`True` and force the execution on the CPU.
|
121 |
+
kwargs (additional keyword arguments, *optional*):
|
122 |
+
Additional keyword arguments to pass to the relevent `init_process_group` function. Valid `kwargs` can be
|
123 |
+
found in [`utils.InitProcessGroupKwargs`]. See the example section for detailed usage.
|
124 |
+
|
125 |
+
**Available attributes:**
|
126 |
+
|
127 |
+
- **device** (`torch.device`) -- The device to use.
|
128 |
+
- **distributed_type** ([`~accelerate.state.DistributedType`]) -- The type of distributed environment currently
|
129 |
+
in use.
|
130 |
+
- **local_process_index** (`int`) -- The index of the current process on the current server.
|
131 |
+
- **mixed_precision** (`str`) -- Whether or not the current script will use mixed precision, and if so the type
|
132 |
+
of mixed precision being performed. (Choose from 'no','fp16','bf16 or 'fp8').
|
133 |
+
- **num_processes** (`int`) -- The number of processes currently launched in parallel.
|
134 |
+
- **process_index** (`int`) -- The index of the current process.
|
135 |
+
- **is_last_process** (`bool`) -- Whether or not the current process is the last one.
|
136 |
+
- **is_main_process** (`bool`) -- Whether or not the current process is the main one.
|
137 |
+
- **is_local_main_process** (`bool`) -- Whether or not the current process is the main one on the local node.
|
138 |
+
- **debug** (`bool`) -- Whether or not the current script is being run in debug mode.
|
139 |
+
|
140 |
+
Example:
|
141 |
+
```python
|
142 |
+
from accelerate.utils import InitProcessGroupKwargs
|
143 |
+
|
144 |
+
# To include `InitProcessGroupKwargs`, init then call `.to_kwargs()`
|
145 |
+
kwargs = InitProcessGroupKwargs(...).to_kwargs()
|
146 |
+
state = PartialState(**kwargs)
|
147 |
+
```
|
148 |
+
"""
|
149 |
+
|
150 |
+
_shared_state = SharedDict()
|
151 |
+
_known_attrs = [
|
152 |
+
"_cpu",
|
153 |
+
"_mixed_precision",
|
154 |
+
"_shared_state",
|
155 |
+
"backend",
|
156 |
+
"debug",
|
157 |
+
"device",
|
158 |
+
"distributed_type",
|
159 |
+
"fork_launched",
|
160 |
+
"local_process_index",
|
161 |
+
"num_processes",
|
162 |
+
"process_index",
|
163 |
+
]
|
164 |
+
|
165 |
+
def __init__(self, cpu: bool = False, **kwargs):
|
166 |
+
self.__dict__ = self._shared_state
|
167 |
+
if not self.initialized:
|
168 |
+
self._cpu = cpu
|
169 |
+
self.backend = None
|
170 |
+
env_device = os.environ.get("ACCELERATE_TORCH_DEVICE", None)
|
171 |
+
self.device = torch.device(env_device) if env_device is not None else None
|
172 |
+
self.debug = parse_flag_from_env("ACCELERATE_DEBUG_MODE")
|
173 |
+
use_sagemaker_dp = kwargs.pop("_use_sagemaker_dp", None)
|
174 |
+
dist_information = None
|
175 |
+
if use_sagemaker_dp is None:
|
176 |
+
use_sagemaker_dp = (
|
177 |
+
os.environ.get("ACCELERATE_USE_SAGEMAKER", "false") == "true"
|
178 |
+
and os.environ.get("ACCELERATE_SAGEMAKER_DISTRIBUTED_TYPE") != SageMakerDistributedType.NO
|
179 |
+
)
|
180 |
+
|
181 |
+
# Sets up self.backend + imports
|
182 |
+
original_backend = kwargs.pop("backend", None)
|
183 |
+
backend, distributed_type = self._prepare_backend(cpu, use_sagemaker_dp, original_backend)
|
184 |
+
if original_backend is not None and backend != original_backend:
|
185 |
+
raise ValueError("Your assigned backend {original_backend} is not avaliable, please use {backend}")
|
186 |
+
self.backend = backend
|
187 |
+
self.distributed_type = distributed_type
|
188 |
+
use_deepspeed = False
|
189 |
+
if not cpu and self.backend != "xla":
|
190 |
+
if int(os.environ.get("LOCAL_RANK", -1)) != -1:
|
191 |
+
# Deal with spawning deepspeed
|
192 |
+
if os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true":
|
193 |
+
if not is_deepspeed_available():
|
194 |
+
raise ImportError(
|
195 |
+
"DeepSpeed is not available => install it using `pip3 install deepspeed` or build it from source"
|
196 |
+
)
|
197 |
+
from deepspeed import comm as dist
|
198 |
+
|
199 |
+
if is_xpu_available() and is_ccl_available():
|
200 |
+
os.environ["CCL_PROCESS_LAUNCHER"] = "none"
|
201 |
+
os.environ["CCL_LOCAL_SIZE"] = os.environ.get("LOCAL_WORLD_SIZE", "1")
|
202 |
+
os.environ["CCL_LOCAL_RANK"] = os.environ.get("LOCAL_RANK", "0")
|
203 |
+
|
204 |
+
if not dist.is_initialized():
|
205 |
+
dist.init_distributed(dist_backend=self.backend, auto_mpi_discovery=False, **kwargs)
|
206 |
+
# We need to flag to `use_deepspeed` to be True to override `distributed_type` later
|
207 |
+
use_deepspeed = True
|
208 |
+
# Deal with all other backends but XPU and CPU, that gets handled special later
|
209 |
+
elif (
|
210 |
+
self.distributed_type not in (DistributedType.MULTI_XPU, DistributedType.MULTI_CPU)
|
211 |
+
and not torch.distributed.is_initialized()
|
212 |
+
):
|
213 |
+
torch.distributed.init_process_group(backend=self.backend, **kwargs)
|
214 |
+
# XPU and CPU require special env configs to be set
|
215 |
+
if self.distributed_type in (DistributedType.MULTI_XPU, DistributedType.MULTI_CPU):
|
216 |
+
dist_information = get_cpu_distributed_information()
|
217 |
+
os.environ["RANK"] = str(dist_information.rank)
|
218 |
+
os.environ["WORLD_SIZE"] = str(dist_information.world_size)
|
219 |
+
os.environ["LOCAL_RANK"] = str(dist_information.local_rank)
|
220 |
+
os.environ["LOCAL_WORLD_SIZE"] = str(dist_information.local_world_size)
|
221 |
+
if self.backend == "ccl" and self.distributed_type == DistributedType.MULTI_XPU:
|
222 |
+
os.environ["CCL_PROCESS_LAUNCHER"] = "none"
|
223 |
+
os.environ["CCL_LOCAL_SIZE"] = os.environ["LOCAL_WORLD_SIZE"]
|
224 |
+
os.environ["CCL_LOCAL_RANK"] = os.environ["LOCAL_RANK"]
|
225 |
+
if not os.environ.get("MASTER_PORT", None):
|
226 |
+
os.environ["MASTER_PORT"] = "29500"
|
227 |
+
if (
|
228 |
+
not os.environ.get("MASTER_ADDR", None)
|
229 |
+
and dist_information.local_world_size != dist_information.world_size
|
230 |
+
and self.backend != "mpi"
|
231 |
+
):
|
232 |
+
raise ValueError(
|
233 |
+
"Tried to launch on distributed with multinode, but `MASTER_ADDR` env was not set, "
|
234 |
+
"please try exporting rank 0's hostname as `MASTER_ADDR`"
|
235 |
+
)
|
236 |
+
kwargs["rank"] = dist_information.rank
|
237 |
+
kwargs["world_size"] = dist_information.world_size
|
238 |
+
|
239 |
+
if (
|
240 |
+
self.distributed_type == DistributedType.MULTI_CPU
|
241 |
+
and get_int_from_env(["OMP_NUM_THREADS", "OMP_NUM_THREADS"], 0) > 0
|
242 |
+
):
|
243 |
+
import psutil
|
244 |
+
|
245 |
+
num_cpu_threads_per_process = int(
|
246 |
+
psutil.cpu_count(logical=False) / dist_information.local_world_size
|
247 |
+
)
|
248 |
+
if num_cpu_threads_per_process == 0:
|
249 |
+
num_cpu_threads_per_process = 1
|
250 |
+
torch.set_num_threads(num_cpu_threads_per_process)
|
251 |
+
warnings.warn(
|
252 |
+
f"OMP_NUM_THREADS/MKL_NUM_THREADS unset, we set it at {num_cpu_threads_per_process} to improve oob"
|
253 |
+
" performance."
|
254 |
+
)
|
255 |
+
|
256 |
+
if not torch.distributed.is_initialized():
|
257 |
+
torch.distributed.init_process_group(backend=self.backend, **kwargs)
|
258 |
+
|
259 |
+
# No backend == no distributed training
|
260 |
+
if self.backend is None:
|
261 |
+
self.distributed_type = DistributedType.NO
|
262 |
+
self.num_processes = 1
|
263 |
+
self.process_index = 0
|
264 |
+
self.local_process_index = 0
|
265 |
+
elif self.backend == "xla":
|
266 |
+
# XLA needs device setting first for `set_replication`
|
267 |
+
self.set_device()
|
268 |
+
xm.set_replication(self.device, xm.get_xla_supported_devices())
|
269 |
+
self.num_processes = xm.xrt_world_size()
|
270 |
+
self.process_index = xm.get_ordinal()
|
271 |
+
if is_torch_xla_available(check_is_tpu=True):
|
272 |
+
self.local_process_index = xm.get_local_ordinal()
|
273 |
+
else:
|
274 |
+
self.local_process_index = int(os.environ.get("LOCAL_RANK", -1))
|
275 |
+
else:
|
276 |
+
self.num_processes = torch.distributed.get_world_size()
|
277 |
+
self.process_index = torch.distributed.get_rank()
|
278 |
+
self.local_process_index = (
|
279 |
+
int(os.environ.get("LOCAL_RANK", -1)) if dist_information is None else dist_information.local_rank
|
280 |
+
)
|
281 |
+
self.set_device()
|
282 |
+
# Now we can change to deepseed
|
283 |
+
if use_deepspeed:
|
284 |
+
self.distributed_type = DistributedType.DEEPSPEED
|
285 |
+
|
286 |
+
# Set CPU affinity if enabled
|
287 |
+
if parse_flag_from_env("ACCELERATE_CPU_AFFINITY", False):
|
288 |
+
set_numa_affinity(self.local_process_index)
|
289 |
+
|
290 |
+
# Check for old RTX 4000's that can't use P2P or IB and are on old drivers
|
291 |
+
if self.device.type == "cuda" and not check_cuda_p2p_ib_support():
|
292 |
+
if "NCCL_P2P_DISABLE" not in os.environ or "NCCL_IB_DISABLE" not in os.environ:
|
293 |
+
raise NotImplementedError(
|
294 |
+
"Using RTX 4000 series doesn't support faster communication broadband via P2P or IB. "
|
295 |
+
'Please set `NCCL_P2P_DISABLE="1"` and `NCCL_IB_DISABLE="1" or use `accelerate launch` which '
|
296 |
+
"will do this automatically."
|
297 |
+
)
|
298 |
+
# Important: This should be the *only* code outside of `self.initialized!`
|
299 |
+
self.fork_launched = parse_flag_from_env("FORK_LAUNCHED", 0)
|
300 |
+
|
301 |
+
def __repr__(self) -> str:
|
302 |
+
return (
|
303 |
+
f"Distributed environment: {self.distributed_type}{(' Backend: ' + self.backend) if self.backend else ''}\n"
|
304 |
+
f"Num processes: {self.num_processes}\n"
|
305 |
+
f"Process index: {self.process_index}\n"
|
306 |
+
f"Local process index: {self.local_process_index}\n"
|
307 |
+
f"Device: {self.device}\n"
|
308 |
+
)
|
309 |
+
|
310 |
+
@staticmethod
|
311 |
+
def _reset_state():
|
312 |
+
"Resets `_shared_state`, is used internally and should not be called"
|
313 |
+
PartialState._shared_state.clear()
|
314 |
+
|
315 |
+
@property
|
316 |
+
def initialized(self) -> bool:
|
317 |
+
"Returns whether the `PartialState` has been initialized"
|
318 |
+
return self._shared_state != {}
|
319 |
+
|
320 |
+
@property
|
321 |
+
def use_distributed(self):
|
322 |
+
"""
|
323 |
+
Whether the Accelerator is configured for distributed training
|
324 |
+
"""
|
325 |
+
return self.distributed_type != DistributedType.NO and self.num_processes > 1
|
326 |
+
|
327 |
+
@property
|
328 |
+
def is_last_process(self) -> bool:
|
329 |
+
"Returns whether the current process is the last one"
|
330 |
+
return self.process_index == self.num_processes - 1
|
331 |
+
|
332 |
+
@property
|
333 |
+
def is_main_process(self) -> bool:
|
334 |
+
"Returns whether the current process is the main process"
|
335 |
+
return (
|
336 |
+
self.process_index == 0 if self.distributed_type != DistributedType.MEGATRON_LM else self.is_last_process
|
337 |
+
)
|
338 |
+
|
339 |
+
@property
|
340 |
+
def is_local_main_process(self) -> bool:
|
341 |
+
"Returns whether the current process is the main process on the local node"
|
342 |
+
return (
|
343 |
+
self.local_process_index == 0
|
344 |
+
if self.distributed_type != DistributedType.MEGATRON_LM
|
345 |
+
else self.is_last_process
|
346 |
+
)
|
347 |
+
|
348 |
+
def wait_for_everyone(self):
|
349 |
+
"""
|
350 |
+
Will stop the execution of the current process until every other process has reached that point (so this does
|
351 |
+
nothing when the script is only run in one process). Useful to do before saving a model.
|
352 |
+
|
353 |
+
Example:
|
354 |
+
|
355 |
+
```python
|
356 |
+
>>> # Assuming two GPU processes
|
357 |
+
>>> import time
|
358 |
+
>>> from accelerate.state import PartialState
|
359 |
+
|
360 |
+
>>> state = PartialState()
|
361 |
+
>>> if state.is_main_process:
|
362 |
+
... time.sleep(2)
|
363 |
+
>>> else:
|
364 |
+
... print("I'm waiting for the main process to finish its sleep...")
|
365 |
+
>>> state.wait_for_everyone()
|
366 |
+
>>> # Should print on every process at the same time
|
367 |
+
>>> print("Everyone is here")
|
368 |
+
```
|
369 |
+
"""
|
370 |
+
if self.distributed_type in (
|
371 |
+
DistributedType.MULTI_GPU,
|
372 |
+
DistributedType.MULTI_MLU,
|
373 |
+
DistributedType.MULTI_NPU,
|
374 |
+
DistributedType.MULTI_XPU,
|
375 |
+
DistributedType.MULTI_CPU,
|
376 |
+
DistributedType.DEEPSPEED,
|
377 |
+
DistributedType.FSDP,
|
378 |
+
):
|
379 |
+
torch.distributed.barrier()
|
380 |
+
elif self.distributed_type == DistributedType.XLA:
|
381 |
+
xm.rendezvous("accelerate.utils.wait_for_everyone")
|
382 |
+
|
383 |
+
def _goes_first(self, is_main: bool):
|
384 |
+
if not is_main:
|
385 |
+
self.wait_for_everyone()
|
386 |
+
|
387 |
+
yield
|
388 |
+
|
389 |
+
if is_main:
|
390 |
+
self.wait_for_everyone()
|
391 |
+
|
392 |
+
@contextmanager
|
393 |
+
def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool = False):
|
394 |
+
"""
|
395 |
+
Splits `input` between `self.num_processes` quickly and can be then used on that process. Useful when doing
|
396 |
+
distributed inference, such as with different prompts.
|
397 |
+
|
398 |
+
Note that when using a `dict`, all keys need to have the same number of elements.
|
399 |
+
|
400 |
+
Args:
|
401 |
+
inputs (`list`, `tuple`, `torch.Tensor`, `dict` of `list`/`tuple`/`torch.Tensor`, or `datasets.Dataset`):
|
402 |
+
The input to split between processes.
|
403 |
+
apply_padding (`bool`, `optional`, defaults to `False`):
|
404 |
+
Whether to apply padding by repeating the last element of the input so that all processes have the same
|
405 |
+
number of elements. Useful when trying to perform actions such as `gather()` on the outputs or passing
|
406 |
+
in less inputs than there are processes. If so, just remember to drop the padded elements afterwards.
|
407 |
+
|
408 |
+
|
409 |
+
Example:
|
410 |
+
|
411 |
+
```python
|
412 |
+
# Assume there are two processes
|
413 |
+
from accelerate import PartialState
|
414 |
+
|
415 |
+
state = PartialState()
|
416 |
+
with state.split_between_processes(["A", "B", "C"]) as inputs:
|
417 |
+
print(inputs)
|
418 |
+
# Process 0
|
419 |
+
["A", "B"]
|
420 |
+
# Process 1
|
421 |
+
["C"]
|
422 |
+
|
423 |
+
with state.split_between_processes(["A", "B", "C"], apply_padding=True) as inputs:
|
424 |
+
print(inputs)
|
425 |
+
# Process 0
|
426 |
+
["A", "B"]
|
427 |
+
# Process 1
|
428 |
+
["C", "C"]
|
429 |
+
```
|
430 |
+
"""
|
431 |
+
if self.num_processes == 1:
|
432 |
+
yield inputs
|
433 |
+
return
|
434 |
+
length = len(inputs)
|
435 |
+
# Nested dictionary of any types
|
436 |
+
if isinstance(inputs, dict):
|
437 |
+
length = len(inputs[list(inputs.keys())[0]])
|
438 |
+
if not all(len(v) == length for v in inputs.values()):
|
439 |
+
raise ValueError("All values in the dictionary must have the same length")
|
440 |
+
num_samples_per_process = math.ceil(length / self.num_processes)
|
441 |
+
start_index = self.process_index * num_samples_per_process
|
442 |
+
end_index = start_index + num_samples_per_process
|
443 |
+
if (len(inputs) % self.num_processes != 0) and (self.process_index == self.num_processes - 1):
|
444 |
+
end_index = length
|
445 |
+
|
446 |
+
def _split_values(inputs, start_index, end_index):
|
447 |
+
if isinstance(inputs, (list, tuple, torch.Tensor)):
|
448 |
+
if start_index >= len(inputs):
|
449 |
+
result = inputs[-1:]
|
450 |
+
else:
|
451 |
+
result = inputs[start_index:end_index]
|
452 |
+
if apply_padding:
|
453 |
+
if isinstance(result, torch.Tensor):
|
454 |
+
from accelerate.utils import pad_across_processes, send_to_device
|
455 |
+
|
456 |
+
# The tensor needs to be on the device before we can pad it
|
457 |
+
tensorized_result = send_to_device(result, self.device)
|
458 |
+
result = pad_across_processes(tensorized_result, pad_index=inputs[-1])
|
459 |
+
else:
|
460 |
+
result += [result[-1]] * (num_samples_per_process - len(result))
|
461 |
+
return result
|
462 |
+
elif isinstance(inputs, dict):
|
463 |
+
for key in inputs.keys():
|
464 |
+
inputs[key] = _split_values(inputs[key], start_index, end_index)
|
465 |
+
return inputs
|
466 |
+
else:
|
467 |
+
if is_datasets_available():
|
468 |
+
from datasets import Dataset
|
469 |
+
|
470 |
+
if isinstance(inputs, Dataset):
|
471 |
+
if start_index >= len(inputs):
|
472 |
+
start_index = len(inputs) - 1
|
473 |
+
if end_index > len(inputs):
|
474 |
+
end_index = len(inputs)
|
475 |
+
result_idcs = list(range(start_index, end_index))
|
476 |
+
if apply_padding:
|
477 |
+
result_idcs += [end_index - 1] * (num_samples_per_process - len(result_idcs))
|
478 |
+
return inputs.select(result_idcs)
|
479 |
+
return inputs
|
480 |
+
|
481 |
+
yield _split_values(inputs, start_index, end_index)
|
482 |
+
|
483 |
+
@contextmanager
|
484 |
+
def main_process_first(self):
|
485 |
+
"""
|
486 |
+
Lets the main process go first inside a with block.
|
487 |
+
|
488 |
+
The other processes will enter the with block after the main process exits.
|
489 |
+
|
490 |
+
Example:
|
491 |
+
|
492 |
+
```python
|
493 |
+
>>> from accelerate import Accelerator
|
494 |
+
|
495 |
+
>>> accelerator = Accelerator()
|
496 |
+
>>> with accelerator.main_process_first():
|
497 |
+
... # This will be printed first by process 0 then in a seemingly
|
498 |
+
... # random order by the other processes.
|
499 |
+
... print(f"This will be printed by process {accelerator.process_index}")
|
500 |
+
```
|
501 |
+
"""
|
502 |
+
yield from self._goes_first(self.is_main_process)
|
503 |
+
|
504 |
+
@contextmanager
|
505 |
+
def local_main_process_first(self):
|
506 |
+
"""
|
507 |
+
Lets the local main process go inside a with block.
|
508 |
+
|
509 |
+
The other processes will enter the with block after the main process exits.
|
510 |
+
|
511 |
+
Example:
|
512 |
+
|
513 |
+
```python
|
514 |
+
>>> from accelerate.state import PartialState
|
515 |
+
|
516 |
+
>>> state = PartialState()
|
517 |
+
>>> with state.local_main_process_first():
|
518 |
+
... # This will be printed first by local process 0 then in a seemingly
|
519 |
+
... # random order by the other processes.
|
520 |
+
... print(f"This will be printed by process {state.local_process_index}")
|
521 |
+
```
|
522 |
+
"""
|
523 |
+
yield from self._goes_first(self.is_local_main_process)
|
524 |
+
|
525 |
+
def on_main_process(self, function: Callable[..., Any] = None):
|
526 |
+
"""
|
527 |
+
Decorator that only runs the decorated function on the main process.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
function (`Callable`): The function to decorate.
|
531 |
+
|
532 |
+
Example:
|
533 |
+
|
534 |
+
```python
|
535 |
+
>>> from accelerate.state import PartialState
|
536 |
+
|
537 |
+
>>> state = PartialState()
|
538 |
+
|
539 |
+
|
540 |
+
>>> @state.on_main_process
|
541 |
+
... def print_something():
|
542 |
+
... print("This will be printed by process 0 only.")
|
543 |
+
|
544 |
+
|
545 |
+
>>> print_something()
|
546 |
+
"This will be printed by process 0 only"
|
547 |
+
```
|
548 |
+
"""
|
549 |
+
if not self.initialized:
|
550 |
+
raise ValueError("The `PartialState` or `Accelerator` must be initialized before calling this function.")
|
551 |
+
if self.is_main_process or not self.use_distributed:
|
552 |
+
return function
|
553 |
+
return do_nothing
|
554 |
+
|
555 |
+
def on_local_main_process(self, function: Callable[..., Any] = None):
|
556 |
+
"""
|
557 |
+
Decorator that only runs the decorated function on the local main process.
|
558 |
+
|
559 |
+
Args:
|
560 |
+
function (`Callable`): The function to decorate.
|
561 |
+
|
562 |
+
Example:
|
563 |
+
```python
|
564 |
+
# Assume we have 2 servers with 4 processes each.
|
565 |
+
from accelerate.state import PartialState
|
566 |
+
|
567 |
+
state = PartialState()
|
568 |
+
|
569 |
+
|
570 |
+
@state.on_local_main_process
|
571 |
+
def print_something():
|
572 |
+
print("This will be printed by process 0 only on each server.")
|
573 |
+
|
574 |
+
|
575 |
+
print_something()
|
576 |
+
# On server 1:
|
577 |
+
"This will be printed by process 0 only"
|
578 |
+
# On server 2:
|
579 |
+
"This will be printed by process 0 only"
|
580 |
+
```
|
581 |
+
"""
|
582 |
+
if self.is_local_main_process or not self.use_distributed:
|
583 |
+
return function
|
584 |
+
return do_nothing
|
585 |
+
|
586 |
+
def on_last_process(self, function: Callable[..., Any]):
|
587 |
+
"""
|
588 |
+
Decorator that only runs the decorated function on the last process.
|
589 |
+
|
590 |
+
Args:
|
591 |
+
function (`Callable`): The function to decorate.
|
592 |
+
|
593 |
+
Example:
|
594 |
+
```python
|
595 |
+
# Assume we have 4 processes.
|
596 |
+
from accelerate.state import PartialState
|
597 |
+
|
598 |
+
state = PartialState()
|
599 |
+
|
600 |
+
|
601 |
+
@state.on_last_process
|
602 |
+
def print_something():
|
603 |
+
print(f"Printed on process {state.process_index}")
|
604 |
+
|
605 |
+
|
606 |
+
print_something()
|
607 |
+
"Printed on process 3"
|
608 |
+
```
|
609 |
+
"""
|
610 |
+
if self.is_last_process or not self.use_distributed:
|
611 |
+
return function
|
612 |
+
return do_nothing
|
613 |
+
|
614 |
+
def on_process(self, function: Callable[..., Any] = None, process_index: int = None):
|
615 |
+
"""
|
616 |
+
Decorator that only runs the decorated function on the process with the given index.
|
617 |
+
|
618 |
+
Args:
|
619 |
+
function (`Callable`, `optional`):
|
620 |
+
The function to decorate.
|
621 |
+
process_index (`int`, `optional`):
|
622 |
+
The index of the process on which to run the function.
|
623 |
+
|
624 |
+
Example:
|
625 |
+
```python
|
626 |
+
# Assume we have 4 processes.
|
627 |
+
from accelerate.state import PartialState
|
628 |
+
|
629 |
+
state = PartialState()
|
630 |
+
|
631 |
+
|
632 |
+
@state.on_process(process_index=2)
|
633 |
+
def print_something():
|
634 |
+
print(f"Printed on process {state.process_index}")
|
635 |
+
|
636 |
+
|
637 |
+
print_something()
|
638 |
+
"Printed on process 2"
|
639 |
+
```
|
640 |
+
"""
|
641 |
+
if function is None:
|
642 |
+
return partial(self.on_process, process_index=process_index)
|
643 |
+
if (self.process_index == process_index) or (not self.use_distributed):
|
644 |
+
return function
|
645 |
+
return do_nothing
|
646 |
+
|
647 |
+
def on_local_process(self, function: Callable[..., Any] = None, local_process_index: int = None):
|
648 |
+
"""
|
649 |
+
Decorator that only runs the decorated function on the process with the given index on the current node.
|
650 |
+
|
651 |
+
Args:
|
652 |
+
function (`Callable`, *optional*):
|
653 |
+
The function to decorate.
|
654 |
+
local_process_index (`int`, *optional*):
|
655 |
+
The index of the local process on which to run the function.
|
656 |
+
|
657 |
+
Example:
|
658 |
+
```python
|
659 |
+
# Assume we have 2 servers with 4 processes each.
|
660 |
+
from accelerate import Accelerator
|
661 |
+
|
662 |
+
accelerator = Accelerator()
|
663 |
+
|
664 |
+
|
665 |
+
@accelerator.on_local_process(local_process_index=2)
|
666 |
+
def print_something():
|
667 |
+
print(f"Printed on process {accelerator.local_process_index}")
|
668 |
+
|
669 |
+
|
670 |
+
print_something()
|
671 |
+
# On server 1:
|
672 |
+
"Printed on process 2"
|
673 |
+
# On server 2:
|
674 |
+
"Printed on process 2"
|
675 |
+
```
|
676 |
+
"""
|
677 |
+
if function is None:
|
678 |
+
return partial(self.on_local_process, local_process_index=local_process_index)
|
679 |
+
if (self.local_process_index == local_process_index) or (not self.use_distributed):
|
680 |
+
return function
|
681 |
+
return do_nothing
|
682 |
+
|
683 |
+
def print(self, *args, **kwargs):
|
684 |
+
if self.is_local_main_process:
|
685 |
+
print(*args, **kwargs)
|
686 |
+
|
687 |
+
@property
|
688 |
+
def default_device(self) -> torch.device:
|
689 |
+
"""
|
690 |
+
Returns the default device which is:
|
691 |
+
- MPS if `torch.backends.mps.is_available()` and `torch.backends.mps.is_built()` both return True.
|
692 |
+
- CUDA if `torch.cuda.is_available()`
|
693 |
+
- MLU if `is_mlu_available()`
|
694 |
+
- NPU if `is_npu_available()`
|
695 |
+
- CPU otherwise
|
696 |
+
"""
|
697 |
+
if is_mps_available():
|
698 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
699 |
+
return torch.device("mps")
|
700 |
+
elif is_mlu_available():
|
701 |
+
return torch.device("mlu")
|
702 |
+
elif torch.cuda.is_available():
|
703 |
+
return torch.device("cuda")
|
704 |
+
elif is_xpu_available():
|
705 |
+
return torch.device("xpu:0")
|
706 |
+
elif is_npu_available():
|
707 |
+
return torch.device("npu")
|
708 |
+
else:
|
709 |
+
return torch.device("cpu")
|
710 |
+
|
711 |
+
def _prepare_backend(
|
712 |
+
self, cpu: bool = False, sagemaker_dp=False, backend: str = None
|
713 |
+
) -> tuple[str, DistributedType]:
|
714 |
+
"Prepares any imports needed before initializing the distributed backend and sets `self.backend` properly"
|
715 |
+
distributed_type = None
|
716 |
+
if sagemaker_dp:
|
717 |
+
import smdistributed.dataparallel.torch.torch_smddp # noqa
|
718 |
+
|
719 |
+
backend = "smddp"
|
720 |
+
distributed_type = DistributedType.MULTI_GPU
|
721 |
+
elif is_torch_xla_available():
|
722 |
+
backend = "xla"
|
723 |
+
distributed_type = DistributedType.XLA
|
724 |
+
elif int(os.environ.get("LOCAL_RANK", -1)) != -1 and not cpu:
|
725 |
+
if is_mlu_available():
|
726 |
+
backend = "cncl"
|
727 |
+
distributed_type = DistributedType.MULTI_MLU
|
728 |
+
elif torch.cuda.is_available():
|
729 |
+
if backend is None:
|
730 |
+
backend = "nccl"
|
731 |
+
distributed_type = DistributedType.MULTI_GPU
|
732 |
+
elif is_npu_available():
|
733 |
+
backend = "hccl"
|
734 |
+
distributed_type = DistributedType.MULTI_NPU
|
735 |
+
|
736 |
+
if distributed_type is None and (
|
737 |
+
int(os.environ.get("LOCAL_RANK", -1)) != -1
|
738 |
+
or get_int_from_env(["PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "MV2_COMM_WORLD_SIZE", "WORLD_SIZE"], 1) > 1
|
739 |
+
):
|
740 |
+
if not cpu and is_xpu_available():
|
741 |
+
distributed_type = DistributedType.MULTI_XPU
|
742 |
+
else:
|
743 |
+
distributed_type = DistributedType.MULTI_CPU
|
744 |
+
|
745 |
+
if (
|
746 |
+
backend in (None, "ccl")
|
747 |
+
and is_ccl_available()
|
748 |
+
and (get_int_from_env(["CCL_WORKER_COUNT"], 0) > 0 or distributed_type == DistributedType.MULTI_XPU)
|
749 |
+
):
|
750 |
+
if get_ccl_version() >= "1.12":
|
751 |
+
import oneccl_bindings_for_pytorch # noqa: F401
|
752 |
+
else:
|
753 |
+
import torch_ccl # noqa: F401
|
754 |
+
|
755 |
+
backend = "ccl"
|
756 |
+
elif backend in (None, "mpi") and torch.distributed.is_mpi_available():
|
757 |
+
backend = "mpi"
|
758 |
+
else:
|
759 |
+
backend = "gloo"
|
760 |
+
if distributed_type is None:
|
761 |
+
distributed_type = DistributedType.NO
|
762 |
+
|
763 |
+
return backend, distributed_type
|
764 |
+
|
765 |
+
def set_device(self):
|
766 |
+
"""
|
767 |
+
Sets the device in `self.device` to the current distributed environment.
|
768 |
+
"""
|
769 |
+
if self.device is not None:
|
770 |
+
return
|
771 |
+
if self.distributed_type == DistributedType.NO:
|
772 |
+
self.device = torch.device("cpu") if self._cpu else self.default_device
|
773 |
+
return
|
774 |
+
device = str(self.distributed_type).split(".")[-1].replace("MULTI_", "").lower()
|
775 |
+
if device not in ("cpu", "gpu", "mlu", "npu", "xpu", "xla"):
|
776 |
+
raise ValueError(
|
777 |
+
f"Can't set device for {self.distributed_type} ({device}), verify we should be calling `_set_device()` for it!"
|
778 |
+
)
|
779 |
+
if device == "xla":
|
780 |
+
self.device = xm.xla_device()
|
781 |
+
else:
|
782 |
+
if device == "gpu":
|
783 |
+
device = "cuda"
|
784 |
+
self.device = torch.device(device, self.local_process_index)
|
785 |
+
if self.device is not None:
|
786 |
+
if device == "xpu":
|
787 |
+
torch.xpu.set_device(self.device)
|
788 |
+
elif device == "mlu":
|
789 |
+
torch.mlu.set_device(self.device)
|
790 |
+
elif device == "npu":
|
791 |
+
torch.npu.set_device(self.device)
|
792 |
+
elif device == "cuda":
|
793 |
+
torch.cuda.set_device(self.device)
|
794 |
+
|
795 |
+
def __getattr__(self, name: str):
|
796 |
+
# By this point we know that no attributes of `self` contain `name`,
|
797 |
+
# so we just modify the error message
|
798 |
+
if name in self._known_attrs:
|
799 |
+
raise AttributeError(
|
800 |
+
f"`PartialState` object has no attribute `{name}`. "
|
801 |
+
"This happens if `PartialState._reset_state()` was called and "
|
802 |
+
"an `Accelerator` or `PartialState` was not reinitialized."
|
803 |
+
)
|
804 |
+
# Raise a typical AttributeError
|
805 |
+
raise AttributeError(f"'PartialState' object has no attribute '{name}'")
|
806 |
+
|
807 |
+
|
808 |
+
class AcceleratorState:
|
809 |
+
"""
|
810 |
+
Singleton class that has information about the current training environment.
|
811 |
+
|
812 |
+
**Available attributes:**
|
813 |
+
|
814 |
+
- **device** (`torch.device`) -- The device to use.
|
815 |
+
- **distributed_type** ([`~accelerate.state.DistributedType`]) -- The type of distributed environment currently
|
816 |
+
in use.
|
817 |
+
- **initialized** (`bool`) -- Whether or not the `AcceleratorState` has been initialized from `Accelerator`.
|
818 |
+
- **local_process_index** (`int`) -- The index of the current process on the current server.
|
819 |
+
- **mixed_precision** (`str`) -- Whether or not the current script will use mixed precision, and if so the type
|
820 |
+
of mixed precision being performed. (Choose from 'no','fp16','bf16 or 'fp8').
|
821 |
+
- **num_processes** (`int`) -- The number of processes currently launched in parallel.
|
822 |
+
- **process_index** (`int`) -- The index of the current process.
|
823 |
+
- **is_last_process** (`bool`) -- Whether or not the current process is the last one.
|
824 |
+
- **is_main_process** (`bool`) -- Whether or not the current process is the main one.
|
825 |
+
- **is_local_main_process** (`bool`) -- Whether or not the current process is the main one on the local node.
|
826 |
+
- **debug** (`bool`) -- Whether or not the current script is being run in debug mode.
|
827 |
+
"""
|
828 |
+
|
829 |
+
_shared_state = SharedDict()
|
830 |
+
_known_attrs = PartialState._known_attrs + [
|
831 |
+
"deepspeed_plugin",
|
832 |
+
"use_ipex",
|
833 |
+
"fsdp_plugin",
|
834 |
+
"megatron_lm_plugin",
|
835 |
+
"dynamo_plugin",
|
836 |
+
]
|
837 |
+
|
838 |
+
def __init__(
|
839 |
+
self,
|
840 |
+
mixed_precision: str = None,
|
841 |
+
cpu: bool = False,
|
842 |
+
dynamo_plugin=None,
|
843 |
+
deepspeed_plugin=None,
|
844 |
+
fsdp_plugin=None,
|
845 |
+
megatron_lm_plugin=None,
|
846 |
+
_from_accelerator: bool = False,
|
847 |
+
**kwargs,
|
848 |
+
):
|
849 |
+
self.__dict__ = self._shared_state
|
850 |
+
if parse_flag_from_env("ACCELERATE_USE_CPU"):
|
851 |
+
cpu = True
|
852 |
+
if PartialState._shared_state == {}:
|
853 |
+
PartialState(cpu, **kwargs)
|
854 |
+
self.__dict__.update(PartialState._shared_state)
|
855 |
+
self._check_initialized(mixed_precision, cpu)
|
856 |
+
if not self.initialized:
|
857 |
+
self.deepspeed_plugin = None
|
858 |
+
self.use_ipex = None
|
859 |
+
mixed_precision = (
|
860 |
+
parse_choice_from_env("ACCELERATE_MIXED_PRECISION", "no")
|
861 |
+
if mixed_precision is None
|
862 |
+
else mixed_precision.lower()
|
863 |
+
)
|
864 |
+
if mixed_precision == "fp8":
|
865 |
+
if not is_fp8_available():
|
866 |
+
raise ValueError(
|
867 |
+
"Using `fp8` precision requires `transformer_engine` or `MS-AMP` to be installed."
|
868 |
+
)
|
869 |
+
elif not check_fp8_capability():
|
870 |
+
logger.warning(
|
871 |
+
f"The current device has compute capability of {torch.cuda.get_device_capability()} which is "
|
872 |
+
"insufficient for FP8 mixed precision training (requires a GPU Hopper/Ada Lovelace "
|
873 |
+
"or higher, compute capability of 8.9 or higher). Will use FP16 instead."
|
874 |
+
)
|
875 |
+
mixed_precision = "fp16"
|
876 |
+
|
877 |
+
self.dynamo_plugin = dynamo_plugin
|
878 |
+
if not _from_accelerator:
|
879 |
+
raise ValueError(
|
880 |
+
"Please make sure to properly initialize your accelerator via `accelerator = Accelerator()` "
|
881 |
+
"before using any functionality from the `accelerate` library."
|
882 |
+
)
|
883 |
+
# deepspeed handles mixed_precision using deepspeed_config
|
884 |
+
self._mixed_precision = "no" if self.distributed_type == DistributedType.DEEPSPEED else mixed_precision
|
885 |
+
if self.distributed_type == DistributedType.XLA and is_torch_xla_available(check_is_tpu=True):
|
886 |
+
if mixed_precision == "bf16":
|
887 |
+
if os.environ.get("ACCELERATE_DOWNCAST_BF16"):
|
888 |
+
os.environ["XLA_USE_BF16"] = str(0)
|
889 |
+
os.environ["XLA_DOWNCAST_BF16"] = str(1)
|
890 |
+
self.downcast_bfloat = True
|
891 |
+
else:
|
892 |
+
os.environ["XLA_USE_BF16"] = str(1)
|
893 |
+
os.environ["XLA_DOWNCAST_BF16"] = str(0)
|
894 |
+
self.downcast_bfloat = False
|
895 |
+
elif os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true" and not cpu:
|
896 |
+
self.deepspeed_plugin = deepspeed_plugin
|
897 |
+
elif self.distributed_type in [
|
898 |
+
DistributedType.MULTI_GPU,
|
899 |
+
DistributedType.MULTI_MLU,
|
900 |
+
DistributedType.MULTI_NPU,
|
901 |
+
DistributedType.MULTI_XPU,
|
902 |
+
]:
|
903 |
+
if os.environ.get("ACCELERATE_USE_FSDP", "false") == "true":
|
904 |
+
self.distributed_type = DistributedType.FSDP
|
905 |
+
if self._mixed_precision != "no":
|
906 |
+
fsdp_plugin.set_mixed_precision(self._mixed_precision)
|
907 |
+
self.fsdp_plugin = fsdp_plugin
|
908 |
+
if os.environ.get("ACCELERATE_USE_MEGATRON_LM", "false") == "true" and self.distributed_type not in [
|
909 |
+
DistributedType.MULTI_XPU,
|
910 |
+
]:
|
911 |
+
self.distributed_type = DistributedType.MEGATRON_LM
|
912 |
+
megatron_lm_plugin.set_mixed_precision(self._mixed_precision)
|
913 |
+
self.megatron_lm_plugin = megatron_lm_plugin
|
914 |
+
elif self.distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_XPU, DistributedType.NO]:
|
915 |
+
if is_ipex_available():
|
916 |
+
# check if user disables it explicitly
|
917 |
+
self.use_ipex = parse_flag_from_env("ACCELERATE_USE_IPEX", default=True)
|
918 |
+
else:
|
919 |
+
self.use_ipex = False
|
920 |
+
if (
|
921 |
+
self.dynamo_plugin.backend != DynamoBackend.NO
|
922 |
+
and self._mixed_precision == "no"
|
923 |
+
and self.device.type == "cuda"
|
924 |
+
):
|
925 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
926 |
+
PartialState._shared_state["distributed_type"] = self.distributed_type
|
927 |
+
|
928 |
+
@property
|
929 |
+
def initialized(self) -> bool:
|
930 |
+
return self._shared_state != PartialState._shared_state
|
931 |
+
|
932 |
+
def __repr__(self):
|
933 |
+
repr = PartialState().__repr__() + f"\nMixed precision type: {self.mixed_precision}\n"
|
934 |
+
if self.distributed_type == DistributedType.DEEPSPEED:
|
935 |
+
repr += f"ds_config: {self.deepspeed_plugin.deepspeed_config}\n"
|
936 |
+
return repr
|
937 |
+
|
938 |
+
def _check_initialized(self, mixed_precision=None, cpu=None):
|
939 |
+
"Checks if a modification is trying to be made and the `AcceleratorState` has already been initialized"
|
940 |
+
if self.initialized:
|
941 |
+
err = "AcceleratorState has already been initialized and cannot be changed, restart your runtime completely and pass `{flag}` to `Accelerator()`."
|
942 |
+
if cpu and self.device.type != "cpu":
|
943 |
+
raise ValueError(err.format(flag="cpu=True"))
|
944 |
+
if (
|
945 |
+
mixed_precision is not None
|
946 |
+
and mixed_precision != self._mixed_precision
|
947 |
+
and self.distributed_type != DistributedType.DEEPSPEED
|
948 |
+
):
|
949 |
+
raise ValueError(err.format(flag=f"mixed_precision='{mixed_precision}'"))
|
950 |
+
|
951 |
+
# For backward compatibility
|
952 |
+
@property
|
953 |
+
def use_fp16(self):
|
954 |
+
warnings.warn(
|
955 |
+
"The `use_fp16` property is deprecated and will be removed in version 1.0 of Accelerate use "
|
956 |
+
"`AcceleratorState.mixed_precision == 'fp16'` instead.",
|
957 |
+
FutureWarning,
|
958 |
+
)
|
959 |
+
return self._mixed_precision != "no"
|
960 |
+
|
961 |
+
@property
|
962 |
+
def mixed_precision(self):
|
963 |
+
if self.distributed_type == DistributedType.DEEPSPEED:
|
964 |
+
config = self.deepspeed_plugin.deepspeed_config
|
965 |
+
if config.get("fp16", {}).get("enabled", False):
|
966 |
+
mixed_precision = "fp16"
|
967 |
+
elif config.get("bf16", {}).get("enabled", False):
|
968 |
+
mixed_precision = "bf16"
|
969 |
+
else:
|
970 |
+
mixed_precision = "no"
|
971 |
+
else:
|
972 |
+
mixed_precision = self._mixed_precision
|
973 |
+
return mixed_precision
|
974 |
+
|
975 |
+
@staticmethod
|
976 |
+
def _reset_state(reset_partial_state: bool = False):
|
977 |
+
"Resets `_shared_state`, is used internally and should not be called"
|
978 |
+
AcceleratorState._shared_state.clear()
|
979 |
+
if reset_partial_state:
|
980 |
+
PartialState._reset_state()
|
981 |
+
|
982 |
+
@property
|
983 |
+
def use_distributed(self):
|
984 |
+
"""
|
985 |
+
Whether the Accelerator is configured for distributed training
|
986 |
+
"""
|
987 |
+
return PartialState().use_distributed
|
988 |
+
|
989 |
+
@property
|
990 |
+
def is_last_process(self) -> bool:
|
991 |
+
"Returns whether the current process is the last one"
|
992 |
+
return PartialState().is_last_process
|
993 |
+
|
994 |
+
@property
|
995 |
+
def is_main_process(self) -> bool:
|
996 |
+
"Returns whether the current process is the main process"
|
997 |
+
return PartialState().is_main_process
|
998 |
+
|
999 |
+
@property
|
1000 |
+
def is_local_main_process(self) -> bool:
|
1001 |
+
"Returns whether the current process is the main process on the local node"
|
1002 |
+
return PartialState().is_local_main_process
|
1003 |
+
|
1004 |
+
def wait_for_everyone(self):
|
1005 |
+
PartialState().wait_for_everyone()
|
1006 |
+
|
1007 |
+
@contextmanager
|
1008 |
+
def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool = False):
|
1009 |
+
"""
|
1010 |
+
Splits `input` between `self.num_processes` quickly and can be then used on that process. Useful when doing
|
1011 |
+
distributed inference, such as with different prompts.
|
1012 |
+
|
1013 |
+
Note that when using a `dict`, all keys need to have the same number of elements.
|
1014 |
+
|
1015 |
+
Args:
|
1016 |
+
inputs (`list`, `tuple`, `torch.Tensor`, or `dict` of `list`/`tuple`/`torch.Tensor`):
|
1017 |
+
The input to split between processes.
|
1018 |
+
apply_padding (`bool`, `optional`, defaults to `False`):
|
1019 |
+
Whether to apply padding by repeating the last element of the input so that all processes have the same
|
1020 |
+
number of elements. Useful when trying to perform actions such as `gather()` on the outputs or passing
|
1021 |
+
in less inputs than there are processes. If so, just remember to drop the padded elements afterwards.
|
1022 |
+
|
1023 |
+
|
1024 |
+
Example:
|
1025 |
+
|
1026 |
+
```python
|
1027 |
+
# Assume there are two processes
|
1028 |
+
from accelerate.state import AcceleratorState
|
1029 |
+
|
1030 |
+
state = AcceleratorState()
|
1031 |
+
with state.split_between_processes(["A", "B", "C"]) as inputs:
|
1032 |
+
print(inputs)
|
1033 |
+
# Process 0
|
1034 |
+
["A", "B"]
|
1035 |
+
# Process 1
|
1036 |
+
["C"]
|
1037 |
+
|
1038 |
+
with state.split_between_processes(["A", "B", "C"], apply_padding=True) as inputs:
|
1039 |
+
print(inputs)
|
1040 |
+
# Process 0
|
1041 |
+
["A", "B"]
|
1042 |
+
# Process 1
|
1043 |
+
["C", "C"]
|
1044 |
+
```
|
1045 |
+
"""
|
1046 |
+
with PartialState().split_between_processes(inputs, apply_padding=apply_padding) as inputs:
|
1047 |
+
yield inputs
|
1048 |
+
|
1049 |
+
@contextmanager
|
1050 |
+
def main_process_first(self):
|
1051 |
+
"""
|
1052 |
+
Lets the main process go first inside a with block.
|
1053 |
+
|
1054 |
+
The other processes will enter the with block after the main process exits.
|
1055 |
+
"""
|
1056 |
+
with PartialState().main_process_first():
|
1057 |
+
yield
|
1058 |
+
|
1059 |
+
@contextmanager
|
1060 |
+
def local_main_process_first(self):
|
1061 |
+
"""
|
1062 |
+
Lets the local main process go inside a with block.
|
1063 |
+
|
1064 |
+
The other processes will enter the with block after the main process exits.
|
1065 |
+
"""
|
1066 |
+
with PartialState().local_main_process_first():
|
1067 |
+
yield
|
1068 |
+
|
1069 |
+
def print(self, *args, **kwargs):
|
1070 |
+
PartialState().print(*args, **kwargs)
|
1071 |
+
|
1072 |
+
def __getattr__(self, name: str):
|
1073 |
+
# By this point we know that no attributes of `self` contain `name`,
|
1074 |
+
# so we just modify the error message
|
1075 |
+
if name in self._known_attrs:
|
1076 |
+
raise AttributeError(
|
1077 |
+
f"`AcceleratorState` object has no attribute `{name}`. "
|
1078 |
+
"This happens if `AcceleratorState._reset_state()` was called and "
|
1079 |
+
"an `Accelerator` or `PartialState` was not reinitialized."
|
1080 |
+
)
|
1081 |
+
# Raise a typical AttributeError
|
1082 |
+
raise AttributeError(f"'AcceleratorState' object has no attribute '{name}'")
|
1083 |
+
|
1084 |
+
|
1085 |
+
class GradientState:
|
1086 |
+
"""
|
1087 |
+
Singleton class that has information related to gradient synchronization for gradient accumulation
|
1088 |
+
|
1089 |
+
**Available attributes:**
|
1090 |
+
|
1091 |
+
- **end_of_dataloader** (`bool`) -- Whether we have reached the end the current dataloader
|
1092 |
+
- **remainder** (`int`) -- The number of extra samples that were added from padding the dataloader
|
1093 |
+
- **sync_gradients** (`bool`) -- Whether the gradients should be synced across all devices
|
1094 |
+
- **active_dataloader** (`Optional[DataLoader]`) -- The dataloader that is currently being iterated over
|
1095 |
+
- **dataloader_references** (`List[Optional[DataLoader]]`) -- A list of references to the dataloaders that are
|
1096 |
+
being iterated over
|
1097 |
+
- **num_steps** (`int`) -- The number of steps to accumulate over
|
1098 |
+
- **adjust_scheduler** (`bool`) -- Whether the scheduler should be adjusted to account for the gradient
|
1099 |
+
accumulation
|
1100 |
+
- **sync_with_dataloader** (`bool`) -- Whether the gradients should be synced at the end of the dataloader
|
1101 |
+
iteration and the number of total steps reset
|
1102 |
+
- **is_xla_gradients_synced** (`bool`) -- Whether the XLA gradients have been synchronized. It is initialized
|
1103 |
+
as false. Once gradients have been reduced before the optimizer step, this flag is set to true. Subsequently,
|
1104 |
+
after each step, the flag is reset to false. FSDP will always synchronize the gradients, hence
|
1105 |
+
is_xla_gradients_synced is always true.
|
1106 |
+
"""
|
1107 |
+
|
1108 |
+
_shared_state = SharedDict()
|
1109 |
+
|
1110 |
+
def __init__(self, gradient_accumulation_plugin: Optional[GradientAccumulationPlugin] = None):
|
1111 |
+
self.__dict__ = self._shared_state
|
1112 |
+
if not self.initialized:
|
1113 |
+
self.sync_gradients = True
|
1114 |
+
self.active_dataloader = None
|
1115 |
+
self.dataloader_references = [None]
|
1116 |
+
self.plugin_kwargs = (
|
1117 |
+
gradient_accumulation_plugin.to_kwargs() if gradient_accumulation_plugin is not None else {}
|
1118 |
+
)
|
1119 |
+
self._is_xla_gradients_synced = False
|
1120 |
+
|
1121 |
+
# Plugin args are different and can be updated
|
1122 |
+
if gradient_accumulation_plugin is not None and self.plugin_kwargs != gradient_accumulation_plugin.to_kwargs():
|
1123 |
+
self.plugin_kwargs = gradient_accumulation_plugin.to_kwargs()
|
1124 |
+
|
1125 |
+
@property
|
1126 |
+
def num_steps(self) -> int:
|
1127 |
+
"Returns the number of steps to accumulate over"
|
1128 |
+
return self.plugin_kwargs.get("num_steps", 1)
|
1129 |
+
|
1130 |
+
@property
|
1131 |
+
def adjust_scheduler(self) -> bool:
|
1132 |
+
"Returns whether the scheduler should be adjusted"
|
1133 |
+
return self.plugin_kwargs.get("adjust_scheduler", False)
|
1134 |
+
|
1135 |
+
@property
|
1136 |
+
def sync_with_dataloader(self) -> bool:
|
1137 |
+
"Returns whether the gradients should be synced at the end of the dataloader iteration and the number of total steps reset"
|
1138 |
+
return self.plugin_kwargs.get("sync_with_dataloader", True)
|
1139 |
+
|
1140 |
+
@property
|
1141 |
+
def initialized(self) -> bool:
|
1142 |
+
"Returns whether the `GradientState` has been initialized"
|
1143 |
+
return GradientState._shared_state != {}
|
1144 |
+
|
1145 |
+
@property
|
1146 |
+
def end_of_dataloader(self) -> bool:
|
1147 |
+
"Returns whether we have reached the end of the current dataloader"
|
1148 |
+
if not self.in_dataloader:
|
1149 |
+
return False
|
1150 |
+
return self.active_dataloader.end_of_dataloader
|
1151 |
+
|
1152 |
+
@property
|
1153 |
+
def remainder(self) -> int:
|
1154 |
+
"Returns the number of extra samples that were added from padding the dataloader"
|
1155 |
+
if not self.in_dataloader:
|
1156 |
+
return -1
|
1157 |
+
return self.active_dataloader.remainder
|
1158 |
+
|
1159 |
+
def __repr__(self):
|
1160 |
+
return (
|
1161 |
+
f"Sync Gradients: {self.sync_gradients}\n"
|
1162 |
+
f"At end of current dataloader: {self.end_of_dataloader}\n"
|
1163 |
+
f"Extra samples added: {self.remainder}\n"
|
1164 |
+
f"Gradient accumulation plugin: {self.plugin_kwargs}\n"
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
@property
|
1168 |
+
def is_xla_gradients_synced(self):
|
1169 |
+
"Returns the value of is_xla_gradients_synced. FSDP will always synchronize the gradients, hence is_xla_gradients_synced is always true."
|
1170 |
+
if parse_flag_from_env("ACCELERATE_USE_FSDP", default=False):
|
1171 |
+
return True
|
1172 |
+
return self._is_xla_gradients_synced
|
1173 |
+
|
1174 |
+
@is_xla_gradients_synced.setter
|
1175 |
+
def is_xla_gradients_synced(self, is_synced):
|
1176 |
+
"Set the _is_xla_gradients_synced attribute."
|
1177 |
+
self._is_xla_gradients_synced = is_synced
|
1178 |
+
|
1179 |
+
def _set_sync_gradients(self, sync_gradients):
|
1180 |
+
"Private function that sets whether gradients should be synchronized. Users should not have to call this."
|
1181 |
+
self.sync_gradients = sync_gradients
|
1182 |
+
# Allow grad-sync to automatically work on TPUs
|
1183 |
+
if (
|
1184 |
+
self.sync_gradients
|
1185 |
+
and is_torch_xla_available(check_is_tpu=True)
|
1186 |
+
and PartialState().distributed_type == DistributedType.XLA
|
1187 |
+
):
|
1188 |
+
xm.mark_step()
|
1189 |
+
|
1190 |
+
def _add_dataloader(self, dataloader):
|
1191 |
+
"Private function that adds a dataloader to `self.dataloader_references` and sets `in_dataloader` to `True`. Users should not have to call this."
|
1192 |
+
self.active_dataloader = dataloader
|
1193 |
+
self.dataloader_references.append(self.active_dataloader)
|
1194 |
+
|
1195 |
+
def _remove_dataloader(self, dataloader):
|
1196 |
+
"Private function that removes a dataloader from `self.dataloader_references` and sets `in_dataloader` to `False` if there are no more dataloaders. Users should not have to call this."
|
1197 |
+
self.dataloader_references.remove(dataloader)
|
1198 |
+
self.active_dataloader = self.dataloader_references[-1]
|
1199 |
+
|
1200 |
+
@property
|
1201 |
+
def in_dataloader(self) -> bool:
|
1202 |
+
"Returns whether the current process is in a dataloader"
|
1203 |
+
return self.active_dataloader is not None
|
1204 |
+
|
1205 |
+
@staticmethod
|
1206 |
+
def _reset_state():
|
1207 |
+
"Resets `_shared_state`, is used internally and should not be called"
|
1208 |
+
GradientState._shared_state.clear()
|