Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/cache_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/configuration_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/convert_pytorch_checkpoint_to_tf2.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/debug_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/feature_extraction_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/generation_tf_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/hyperparameter_search.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/image_processing_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/keras_callbacks.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_attn_mask_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_flax_outputs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_flax_pytorch_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_flax_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_outputs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_tf_pytorch_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_tf_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/optimization.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/processing_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/safetensors_conversion.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/testing_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/trainer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/trainer_seq2seq.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/trainer_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/training_args_tf.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__init__.py +306 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/beam_constraints.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/beam_search.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/candidate_generator.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/configuration_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/flax_logits_process.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/flax_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/logits_process.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/stopping_criteria.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/streamers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/tf_logits_process.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/tf_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/beam_constraints.py +521 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/beam_search.py +1005 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/candidate_generator.py +410 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/configuration_utils.py +1092 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/flax_logits_process.py +457 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/flax_utils.py +1019 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/logits_process.py +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/stopping_criteria.py +157 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/streamers.py +227 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation/tf_logits_process.py +591 -0
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/cache_utils.cpython-310.pyc
ADDED
Binary file (15.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/configuration_utils.cpython-310.pyc
ADDED
Binary file (44.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/convert_pytorch_checkpoint_to_tf2.cpython-310.pyc
ADDED
Binary file (9.84 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/debug_utils.cpython-310.pyc
ADDED
Binary file (11.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/feature_extraction_utils.cpython-310.pyc
ADDED
Binary file (23.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/generation_tf_utils.cpython-310.pyc
ADDED
Binary file (657 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/hyperparameter_search.cpython-310.pyc
ADDED
Binary file (5.05 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/image_processing_utils.cpython-310.pyc
ADDED
Binary file (29 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/keras_callbacks.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_attn_mask_utils.cpython-310.pyc
ADDED
Binary file (12.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_flax_outputs.cpython-310.pyc
ADDED
Binary file (41.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_flax_pytorch_utils.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_flax_utils.cpython-310.pyc
ADDED
Binary file (40.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_outputs.cpython-310.pyc
ADDED
Binary file (110 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_tf_pytorch_utils.cpython-310.pyc
ADDED
Binary file (15.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_tf_utils.cpython-310.pyc
ADDED
Binary file (105 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/modeling_utils.cpython-310.pyc
ADDED
Binary file (146 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/optimization.cpython-310.pyc
ADDED
Binary file (25.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/processing_utils.cpython-310.pyc
ADDED
Binary file (15.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/safetensors_conversion.cpython-310.pyc
ADDED
Binary file (3.41 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/testing_utils.cpython-310.pyc
ADDED
Binary file (74.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/trainer.cpython-310.pyc
ADDED
Binary file (116 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/trainer_seq2seq.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/trainer_utils.cpython-310.pyc
ADDED
Binary file (24.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/__pycache__/training_args_tf.cpython-310.pyc
ADDED
Binary file (13.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/data/processors/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (748 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__init__.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ..utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_utils": ["GenerationConfig", "GenerationMode"],
|
22 |
+
"streamers": ["TextIteratorStreamer", "TextStreamer"],
|
23 |
+
}
|
24 |
+
|
25 |
+
try:
|
26 |
+
if not is_torch_available():
|
27 |
+
raise OptionalDependencyNotAvailable()
|
28 |
+
except OptionalDependencyNotAvailable:
|
29 |
+
pass
|
30 |
+
else:
|
31 |
+
_import_structure["beam_constraints"] = [
|
32 |
+
"Constraint",
|
33 |
+
"ConstraintListState",
|
34 |
+
"DisjunctiveConstraint",
|
35 |
+
"PhrasalConstraint",
|
36 |
+
]
|
37 |
+
_import_structure["beam_search"] = [
|
38 |
+
"BeamHypotheses",
|
39 |
+
"BeamScorer",
|
40 |
+
"BeamSearchScorer",
|
41 |
+
"ConstrainedBeamSearchScorer",
|
42 |
+
]
|
43 |
+
_import_structure["candidate_generator"] = [
|
44 |
+
"AssistedCandidateGenerator",
|
45 |
+
"CandidateGenerator",
|
46 |
+
"PromptLookupCandidateGenerator",
|
47 |
+
]
|
48 |
+
_import_structure["logits_process"] = [
|
49 |
+
"AlternatingCodebooksLogitsProcessor",
|
50 |
+
"ClassifierFreeGuidanceLogitsProcessor",
|
51 |
+
"EncoderNoRepeatNGramLogitsProcessor",
|
52 |
+
"EncoderRepetitionPenaltyLogitsProcessor",
|
53 |
+
"EpsilonLogitsWarper",
|
54 |
+
"EtaLogitsWarper",
|
55 |
+
"ExponentialDecayLengthPenalty",
|
56 |
+
"ForcedBOSTokenLogitsProcessor",
|
57 |
+
"ForcedEOSTokenLogitsProcessor",
|
58 |
+
"ForceTokensLogitsProcessor",
|
59 |
+
"HammingDiversityLogitsProcessor",
|
60 |
+
"InfNanRemoveLogitsProcessor",
|
61 |
+
"LogitNormalization",
|
62 |
+
"LogitsProcessor",
|
63 |
+
"LogitsProcessorList",
|
64 |
+
"LogitsWarper",
|
65 |
+
"MinLengthLogitsProcessor",
|
66 |
+
"MinNewTokensLengthLogitsProcessor",
|
67 |
+
"NoBadWordsLogitsProcessor",
|
68 |
+
"NoRepeatNGramLogitsProcessor",
|
69 |
+
"PrefixConstrainedLogitsProcessor",
|
70 |
+
"RepetitionPenaltyLogitsProcessor",
|
71 |
+
"SequenceBiasLogitsProcessor",
|
72 |
+
"SuppressTokensLogitsProcessor",
|
73 |
+
"SuppressTokensAtBeginLogitsProcessor",
|
74 |
+
"TemperatureLogitsWarper",
|
75 |
+
"TopKLogitsWarper",
|
76 |
+
"TopPLogitsWarper",
|
77 |
+
"TypicalLogitsWarper",
|
78 |
+
"UnbatchedClassifierFreeGuidanceLogitsProcessor",
|
79 |
+
"WhisperTimeStampLogitsProcessor",
|
80 |
+
]
|
81 |
+
_import_structure["stopping_criteria"] = [
|
82 |
+
"MaxNewTokensCriteria",
|
83 |
+
"MaxLengthCriteria",
|
84 |
+
"MaxTimeCriteria",
|
85 |
+
"StoppingCriteria",
|
86 |
+
"StoppingCriteriaList",
|
87 |
+
"validate_stopping_criteria",
|
88 |
+
]
|
89 |
+
_import_structure["utils"] = [
|
90 |
+
"GenerationMixin",
|
91 |
+
"GreedySearchEncoderDecoderOutput",
|
92 |
+
"GreedySearchDecoderOnlyOutput",
|
93 |
+
"SampleEncoderDecoderOutput",
|
94 |
+
"SampleDecoderOnlyOutput",
|
95 |
+
"BeamSearchEncoderDecoderOutput",
|
96 |
+
"BeamSearchDecoderOnlyOutput",
|
97 |
+
"BeamSampleEncoderDecoderOutput",
|
98 |
+
"BeamSampleDecoderOnlyOutput",
|
99 |
+
"ContrastiveSearchEncoderDecoderOutput",
|
100 |
+
"ContrastiveSearchDecoderOnlyOutput",
|
101 |
+
"GenerateBeamDecoderOnlyOutput",
|
102 |
+
"GenerateBeamEncoderDecoderOutput",
|
103 |
+
"GenerateDecoderOnlyOutput",
|
104 |
+
"GenerateEncoderDecoderOutput",
|
105 |
+
]
|
106 |
+
|
107 |
+
try:
|
108 |
+
if not is_tf_available():
|
109 |
+
raise OptionalDependencyNotAvailable()
|
110 |
+
except OptionalDependencyNotAvailable:
|
111 |
+
pass
|
112 |
+
else:
|
113 |
+
_import_structure["tf_logits_process"] = [
|
114 |
+
"TFForcedBOSTokenLogitsProcessor",
|
115 |
+
"TFForcedEOSTokenLogitsProcessor",
|
116 |
+
"TFForceTokensLogitsProcessor",
|
117 |
+
"TFLogitsProcessor",
|
118 |
+
"TFLogitsProcessorList",
|
119 |
+
"TFLogitsWarper",
|
120 |
+
"TFMinLengthLogitsProcessor",
|
121 |
+
"TFNoBadWordsLogitsProcessor",
|
122 |
+
"TFNoRepeatNGramLogitsProcessor",
|
123 |
+
"TFRepetitionPenaltyLogitsProcessor",
|
124 |
+
"TFSuppressTokensAtBeginLogitsProcessor",
|
125 |
+
"TFSuppressTokensLogitsProcessor",
|
126 |
+
"TFTemperatureLogitsWarper",
|
127 |
+
"TFTopKLogitsWarper",
|
128 |
+
"TFTopPLogitsWarper",
|
129 |
+
]
|
130 |
+
_import_structure["tf_utils"] = [
|
131 |
+
"TFGenerationMixin",
|
132 |
+
"TFGreedySearchDecoderOnlyOutput",
|
133 |
+
"TFGreedySearchEncoderDecoderOutput",
|
134 |
+
"TFSampleEncoderDecoderOutput",
|
135 |
+
"TFSampleDecoderOnlyOutput",
|
136 |
+
"TFBeamSearchEncoderDecoderOutput",
|
137 |
+
"TFBeamSearchDecoderOnlyOutput",
|
138 |
+
"TFBeamSampleEncoderDecoderOutput",
|
139 |
+
"TFBeamSampleDecoderOnlyOutput",
|
140 |
+
"TFContrastiveSearchEncoderDecoderOutput",
|
141 |
+
"TFContrastiveSearchDecoderOnlyOutput",
|
142 |
+
]
|
143 |
+
|
144 |
+
try:
|
145 |
+
if not is_flax_available():
|
146 |
+
raise OptionalDependencyNotAvailable()
|
147 |
+
except OptionalDependencyNotAvailable:
|
148 |
+
pass
|
149 |
+
else:
|
150 |
+
_import_structure["flax_logits_process"] = [
|
151 |
+
"FlaxForcedBOSTokenLogitsProcessor",
|
152 |
+
"FlaxForcedEOSTokenLogitsProcessor",
|
153 |
+
"FlaxForceTokensLogitsProcessor",
|
154 |
+
"FlaxLogitsProcessor",
|
155 |
+
"FlaxLogitsProcessorList",
|
156 |
+
"FlaxLogitsWarper",
|
157 |
+
"FlaxMinLengthLogitsProcessor",
|
158 |
+
"FlaxSuppressTokensAtBeginLogitsProcessor",
|
159 |
+
"FlaxSuppressTokensLogitsProcessor",
|
160 |
+
"FlaxTemperatureLogitsWarper",
|
161 |
+
"FlaxTopKLogitsWarper",
|
162 |
+
"FlaxTopPLogitsWarper",
|
163 |
+
"FlaxWhisperTimeStampLogitsProcessor",
|
164 |
+
]
|
165 |
+
_import_structure["flax_utils"] = [
|
166 |
+
"FlaxGenerationMixin",
|
167 |
+
"FlaxGreedySearchOutput",
|
168 |
+
"FlaxSampleOutput",
|
169 |
+
"FlaxBeamSearchOutput",
|
170 |
+
]
|
171 |
+
|
172 |
+
if TYPE_CHECKING:
|
173 |
+
from .configuration_utils import GenerationConfig, GenerationMode
|
174 |
+
from .streamers import TextIteratorStreamer, TextStreamer
|
175 |
+
|
176 |
+
try:
|
177 |
+
if not is_torch_available():
|
178 |
+
raise OptionalDependencyNotAvailable()
|
179 |
+
except OptionalDependencyNotAvailable:
|
180 |
+
pass
|
181 |
+
else:
|
182 |
+
from .beam_constraints import Constraint, ConstraintListState, DisjunctiveConstraint, PhrasalConstraint
|
183 |
+
from .beam_search import BeamHypotheses, BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer
|
184 |
+
from .candidate_generator import AssistedCandidateGenerator, CandidateGenerator, PromptLookupCandidateGenerator
|
185 |
+
from .logits_process import (
|
186 |
+
AlternatingCodebooksLogitsProcessor,
|
187 |
+
ClassifierFreeGuidanceLogitsProcessor,
|
188 |
+
EncoderNoRepeatNGramLogitsProcessor,
|
189 |
+
EncoderRepetitionPenaltyLogitsProcessor,
|
190 |
+
EpsilonLogitsWarper,
|
191 |
+
EtaLogitsWarper,
|
192 |
+
ExponentialDecayLengthPenalty,
|
193 |
+
ForcedBOSTokenLogitsProcessor,
|
194 |
+
ForcedEOSTokenLogitsProcessor,
|
195 |
+
ForceTokensLogitsProcessor,
|
196 |
+
HammingDiversityLogitsProcessor,
|
197 |
+
InfNanRemoveLogitsProcessor,
|
198 |
+
LogitNormalization,
|
199 |
+
LogitsProcessor,
|
200 |
+
LogitsProcessorList,
|
201 |
+
LogitsWarper,
|
202 |
+
MinLengthLogitsProcessor,
|
203 |
+
MinNewTokensLengthLogitsProcessor,
|
204 |
+
NoBadWordsLogitsProcessor,
|
205 |
+
NoRepeatNGramLogitsProcessor,
|
206 |
+
PrefixConstrainedLogitsProcessor,
|
207 |
+
RepetitionPenaltyLogitsProcessor,
|
208 |
+
SequenceBiasLogitsProcessor,
|
209 |
+
SuppressTokensAtBeginLogitsProcessor,
|
210 |
+
SuppressTokensLogitsProcessor,
|
211 |
+
TemperatureLogitsWarper,
|
212 |
+
TopKLogitsWarper,
|
213 |
+
TopPLogitsWarper,
|
214 |
+
TypicalLogitsWarper,
|
215 |
+
UnbatchedClassifierFreeGuidanceLogitsProcessor,
|
216 |
+
WhisperTimeStampLogitsProcessor,
|
217 |
+
)
|
218 |
+
from .stopping_criteria import (
|
219 |
+
MaxLengthCriteria,
|
220 |
+
MaxNewTokensCriteria,
|
221 |
+
MaxTimeCriteria,
|
222 |
+
StoppingCriteria,
|
223 |
+
StoppingCriteriaList,
|
224 |
+
validate_stopping_criteria,
|
225 |
+
)
|
226 |
+
from .utils import (
|
227 |
+
BeamSampleDecoderOnlyOutput,
|
228 |
+
BeamSampleEncoderDecoderOutput,
|
229 |
+
BeamSearchDecoderOnlyOutput,
|
230 |
+
BeamSearchEncoderDecoderOutput,
|
231 |
+
ContrastiveSearchDecoderOnlyOutput,
|
232 |
+
ContrastiveSearchEncoderDecoderOutput,
|
233 |
+
GenerateBeamDecoderOnlyOutput,
|
234 |
+
GenerateBeamEncoderDecoderOutput,
|
235 |
+
GenerateDecoderOnlyOutput,
|
236 |
+
GenerateEncoderDecoderOutput,
|
237 |
+
GenerationMixin,
|
238 |
+
GreedySearchDecoderOnlyOutput,
|
239 |
+
GreedySearchEncoderDecoderOutput,
|
240 |
+
SampleDecoderOnlyOutput,
|
241 |
+
SampleEncoderDecoderOutput,
|
242 |
+
)
|
243 |
+
|
244 |
+
try:
|
245 |
+
if not is_tf_available():
|
246 |
+
raise OptionalDependencyNotAvailable()
|
247 |
+
except OptionalDependencyNotAvailable:
|
248 |
+
pass
|
249 |
+
else:
|
250 |
+
from .tf_logits_process import (
|
251 |
+
TFForcedBOSTokenLogitsProcessor,
|
252 |
+
TFForcedEOSTokenLogitsProcessor,
|
253 |
+
TFForceTokensLogitsProcessor,
|
254 |
+
TFLogitsProcessor,
|
255 |
+
TFLogitsProcessorList,
|
256 |
+
TFLogitsWarper,
|
257 |
+
TFMinLengthLogitsProcessor,
|
258 |
+
TFNoBadWordsLogitsProcessor,
|
259 |
+
TFNoRepeatNGramLogitsProcessor,
|
260 |
+
TFRepetitionPenaltyLogitsProcessor,
|
261 |
+
TFSuppressTokensAtBeginLogitsProcessor,
|
262 |
+
TFSuppressTokensLogitsProcessor,
|
263 |
+
TFTemperatureLogitsWarper,
|
264 |
+
TFTopKLogitsWarper,
|
265 |
+
TFTopPLogitsWarper,
|
266 |
+
)
|
267 |
+
from .tf_utils import (
|
268 |
+
TFBeamSampleDecoderOnlyOutput,
|
269 |
+
TFBeamSampleEncoderDecoderOutput,
|
270 |
+
TFBeamSearchDecoderOnlyOutput,
|
271 |
+
TFBeamSearchEncoderDecoderOutput,
|
272 |
+
TFContrastiveSearchDecoderOnlyOutput,
|
273 |
+
TFContrastiveSearchEncoderDecoderOutput,
|
274 |
+
TFGenerationMixin,
|
275 |
+
TFGreedySearchDecoderOnlyOutput,
|
276 |
+
TFGreedySearchEncoderDecoderOutput,
|
277 |
+
TFSampleDecoderOnlyOutput,
|
278 |
+
TFSampleEncoderDecoderOutput,
|
279 |
+
)
|
280 |
+
|
281 |
+
try:
|
282 |
+
if not is_flax_available():
|
283 |
+
raise OptionalDependencyNotAvailable()
|
284 |
+
except OptionalDependencyNotAvailable:
|
285 |
+
pass
|
286 |
+
else:
|
287 |
+
from .flax_logits_process import (
|
288 |
+
FlaxForcedBOSTokenLogitsProcessor,
|
289 |
+
FlaxForcedEOSTokenLogitsProcessor,
|
290 |
+
FlaxForceTokensLogitsProcessor,
|
291 |
+
FlaxLogitsProcessor,
|
292 |
+
FlaxLogitsProcessorList,
|
293 |
+
FlaxLogitsWarper,
|
294 |
+
FlaxMinLengthLogitsProcessor,
|
295 |
+
FlaxSuppressTokensAtBeginLogitsProcessor,
|
296 |
+
FlaxSuppressTokensLogitsProcessor,
|
297 |
+
FlaxTemperatureLogitsWarper,
|
298 |
+
FlaxTopKLogitsWarper,
|
299 |
+
FlaxTopPLogitsWarper,
|
300 |
+
FlaxWhisperTimeStampLogitsProcessor,
|
301 |
+
)
|
302 |
+
from .flax_utils import FlaxBeamSearchOutput, FlaxGenerationMixin, FlaxGreedySearchOutput, FlaxSampleOutput
|
303 |
+
else:
|
304 |
+
import sys
|
305 |
+
|
306 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (5.78 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/beam_constraints.cpython-310.pyc
ADDED
Binary file (15.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/beam_search.cpython-310.pyc
ADDED
Binary file (28.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/candidate_generator.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/configuration_utils.cpython-310.pyc
ADDED
Binary file (44.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/flax_logits_process.cpython-310.pyc
ADDED
Binary file (18 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/flax_utils.cpython-310.pyc
ADDED
Binary file (27.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/logits_process.cpython-310.pyc
ADDED
Binary file (97.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/stopping_criteria.cpython-310.pyc
ADDED
Binary file (7.56 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/streamers.cpython-310.pyc
ADDED
Binary file (7.78 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/tf_logits_process.cpython-310.pyc
ADDED
Binary file (26.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/tf_utils.cpython-310.pyc
ADDED
Binary file (104 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (153 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/beam_constraints.py
ADDED
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import List, Optional
|
3 |
+
|
4 |
+
|
5 |
+
class Constraint(ABC):
|
6 |
+
r"""Abstract base class for all constraints that can be applied during generation.
|
7 |
+
It must define how the constraint can be satisfied.
|
8 |
+
|
9 |
+
All classes that inherit Constraint must follow the requirement that
|
10 |
+
|
11 |
+
```py
|
12 |
+
completed = False
|
13 |
+
while not completed:
|
14 |
+
_, completed = constraint.update(constraint.advance())
|
15 |
+
```
|
16 |
+
|
17 |
+
will always terminate (halt).
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self):
|
21 |
+
# test for the above condition
|
22 |
+
self.test()
|
23 |
+
|
24 |
+
def test(self):
|
25 |
+
"""
|
26 |
+
Tests whether this constraint has been properly defined.
|
27 |
+
"""
|
28 |
+
counter = 0
|
29 |
+
completed = False
|
30 |
+
while not completed:
|
31 |
+
if counter == 1:
|
32 |
+
self.reset()
|
33 |
+
advance = self.advance()
|
34 |
+
if not self.does_advance(advance):
|
35 |
+
raise Exception(
|
36 |
+
"Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true."
|
37 |
+
)
|
38 |
+
|
39 |
+
stepped, completed, reset = self.update(advance)
|
40 |
+
counter += 1
|
41 |
+
|
42 |
+
if counter > 10000:
|
43 |
+
raise Exception("update() does not fulfill the constraint.")
|
44 |
+
|
45 |
+
if self.remaining() != 0:
|
46 |
+
raise Exception("Custom Constraint is not defined correctly.")
|
47 |
+
|
48 |
+
@abstractmethod
|
49 |
+
def advance(self):
|
50 |
+
"""
|
51 |
+
When called, returns the token that would take this constraint one step closer to being fulfilled.
|
52 |
+
|
53 |
+
Return:
|
54 |
+
token_ids(`torch.tensor`): Must be a tensor of a list of indexable tokens, not some integer.
|
55 |
+
"""
|
56 |
+
raise NotImplementedError(
|
57 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
58 |
+
)
|
59 |
+
|
60 |
+
@abstractmethod
|
61 |
+
def does_advance(self, token_id: int):
|
62 |
+
"""
|
63 |
+
Reads in a token and returns whether it creates progress.
|
64 |
+
"""
|
65 |
+
raise NotImplementedError(
|
66 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
67 |
+
)
|
68 |
+
|
69 |
+
@abstractmethod
|
70 |
+
def update(self, token_id: int):
|
71 |
+
"""
|
72 |
+
Reads in a token and returns booleans that indicate the progress made by it. This function will update the
|
73 |
+
state of this object unlikes `does_advance(self, token_id: int)`.
|
74 |
+
|
75 |
+
This isn't to test whether a certain token will advance the progress; it's to update its state as if it has
|
76 |
+
been generated. This becomes important if token_id != desired token (refer to else statement in
|
77 |
+
PhrasalConstraint)
|
78 |
+
|
79 |
+
Args:
|
80 |
+
token_id(`int`):
|
81 |
+
The id of a newly generated token in the beam search.
|
82 |
+
Return:
|
83 |
+
stepped(`bool`):
|
84 |
+
Whether this constraint has become one step closer to being fulfuilled.
|
85 |
+
completed(`bool`):
|
86 |
+
Whether this constraint has been completely fulfilled by this token being generated.
|
87 |
+
reset (`bool`):
|
88 |
+
Whether this constraint has reset its progress by this token being generated.
|
89 |
+
"""
|
90 |
+
raise NotImplementedError(
|
91 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
92 |
+
)
|
93 |
+
|
94 |
+
@abstractmethod
|
95 |
+
def reset(self):
|
96 |
+
"""
|
97 |
+
Resets the state of this constraint to its initialization. We would call this in cases where the fulfillment of
|
98 |
+
a constraint is abrupted by an unwanted token.
|
99 |
+
"""
|
100 |
+
raise NotImplementedError(
|
101 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
102 |
+
)
|
103 |
+
|
104 |
+
@abstractmethod
|
105 |
+
def remaining(self):
|
106 |
+
"""
|
107 |
+
Returns the number of remaining steps of `advance()` in order to complete this constraint.
|
108 |
+
"""
|
109 |
+
raise NotImplementedError(
|
110 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
111 |
+
)
|
112 |
+
|
113 |
+
@abstractmethod
|
114 |
+
def copy(self, stateful=False):
|
115 |
+
"""
|
116 |
+
Creates a new instance of this constraint.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
stateful(`bool`): Whether to not only copy the constraint for new instance, but also its state.
|
120 |
+
|
121 |
+
Return:
|
122 |
+
constraint(`Constraint`): The same constraint as the one being called from.
|
123 |
+
"""
|
124 |
+
raise NotImplementedError(
|
125 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
class PhrasalConstraint(Constraint):
|
130 |
+
r"""
|
131 |
+
[`Constraint`] enforcing that an ordered sequence of tokens is included in the output.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
token_ids (`List[int]`):
|
135 |
+
The id of the token that must be generated by the output.
|
136 |
+
"""
|
137 |
+
|
138 |
+
def __init__(self, token_ids: List[int]):
|
139 |
+
super(Constraint, self).__init__()
|
140 |
+
|
141 |
+
if not isinstance(token_ids, list) or len(token_ids) == 0:
|
142 |
+
raise ValueError(f"`token_ids` has to be a non-empty list, but is {token_ids}.")
|
143 |
+
if any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids):
|
144 |
+
raise ValueError(f"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.")
|
145 |
+
|
146 |
+
self.token_ids = token_ids
|
147 |
+
|
148 |
+
self.seqlen = len(self.token_ids)
|
149 |
+
self.fulfilled_idx = -1 # the index of the currently fulfilled step
|
150 |
+
self.completed = False
|
151 |
+
|
152 |
+
def advance(self):
|
153 |
+
if self.completed:
|
154 |
+
return None
|
155 |
+
return self.token_ids[self.fulfilled_idx + 1]
|
156 |
+
|
157 |
+
def does_advance(self, token_id: int):
|
158 |
+
if not isinstance(token_id, int):
|
159 |
+
raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
|
160 |
+
|
161 |
+
if self.completed:
|
162 |
+
return False
|
163 |
+
|
164 |
+
return token_id == self.token_ids[self.fulfilled_idx + 1]
|
165 |
+
|
166 |
+
def update(self, token_id: int):
|
167 |
+
if not isinstance(token_id, int):
|
168 |
+
raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
|
169 |
+
|
170 |
+
stepped = False
|
171 |
+
completed = False
|
172 |
+
reset = False
|
173 |
+
|
174 |
+
if self.does_advance(token_id):
|
175 |
+
self.fulfilled_idx += 1
|
176 |
+
stepped = True
|
177 |
+
if self.fulfilled_idx == (self.seqlen - 1):
|
178 |
+
completed = True
|
179 |
+
self.completed = completed
|
180 |
+
else:
|
181 |
+
# failed to make progress.
|
182 |
+
reset = True
|
183 |
+
self.reset()
|
184 |
+
return stepped, completed, reset
|
185 |
+
|
186 |
+
def reset(self):
|
187 |
+
self.completed = False
|
188 |
+
self.fulfilled_idx = 0
|
189 |
+
|
190 |
+
def remaining(self):
|
191 |
+
return self.seqlen - (self.fulfilled_idx + 1)
|
192 |
+
|
193 |
+
def copy(self, stateful=False):
|
194 |
+
new_constraint = PhrasalConstraint(self.token_ids)
|
195 |
+
|
196 |
+
if stateful:
|
197 |
+
new_constraint.seq_len = self.seqlen
|
198 |
+
new_constraint.fulfilled_idx = self.fulfilled_idx
|
199 |
+
new_constraint.completed = self.completed
|
200 |
+
|
201 |
+
return new_constraint
|
202 |
+
|
203 |
+
|
204 |
+
class DisjunctiveTrie:
|
205 |
+
def __init__(self, nested_token_ids: List[List[int]], no_subsets=True):
|
206 |
+
r"""
|
207 |
+
A helper class that builds a trie with the words represented in `nested_token_ids`.
|
208 |
+
"""
|
209 |
+
self.max_height = max([len(one) for one in nested_token_ids])
|
210 |
+
|
211 |
+
root = {}
|
212 |
+
for token_ids in nested_token_ids:
|
213 |
+
level = root
|
214 |
+
for tidx, token_id in enumerate(token_ids):
|
215 |
+
if token_id not in level:
|
216 |
+
level[token_id] = {}
|
217 |
+
|
218 |
+
level = level[token_id]
|
219 |
+
|
220 |
+
if no_subsets and self.has_subsets(root, nested_token_ids):
|
221 |
+
raise ValueError(
|
222 |
+
"Each list in `nested_token_ids` can't be a complete subset of another list, but is"
|
223 |
+
f" {nested_token_ids}."
|
224 |
+
)
|
225 |
+
|
226 |
+
self.trie = root
|
227 |
+
|
228 |
+
def next_tokens(self, current_seq):
|
229 |
+
"""
|
230 |
+
The next possible tokens that will progress the trie, given the current sequence of tokens in `current_seq`.
|
231 |
+
"""
|
232 |
+
start = self.trie
|
233 |
+
|
234 |
+
for current_token in current_seq:
|
235 |
+
start = start[current_token]
|
236 |
+
|
237 |
+
next_tokens = list(start.keys())
|
238 |
+
|
239 |
+
return next_tokens
|
240 |
+
|
241 |
+
def reached_leaf(self, current_seq):
|
242 |
+
next_tokens = self.next_tokens(current_seq)
|
243 |
+
|
244 |
+
return len(next_tokens) == 0
|
245 |
+
|
246 |
+
def count_leaves(self, root):
|
247 |
+
next_nodes = list(root.values())
|
248 |
+
if len(next_nodes) == 0:
|
249 |
+
return 1
|
250 |
+
else:
|
251 |
+
return sum([self.count_leaves(nn) for nn in next_nodes])
|
252 |
+
|
253 |
+
def has_subsets(self, trie, nested_token_ids):
|
254 |
+
"""
|
255 |
+
Returns whether # of leaves == # of words. Otherwise some word is a subset of another.
|
256 |
+
"""
|
257 |
+
leaf_count = self.count_leaves(trie)
|
258 |
+
return len(nested_token_ids) != leaf_count
|
259 |
+
|
260 |
+
|
261 |
+
class DisjunctiveConstraint(Constraint):
|
262 |
+
r"""
|
263 |
+
A special [`Constraint`] that is fulfilled by fulfilling just one of several constraints.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
nested_token_ids (`List[List[int]]`):
|
267 |
+
A list of words, where each word is a list of ids. This constraint is fulfilled by generating just one from
|
268 |
+
the list of words.
|
269 |
+
"""
|
270 |
+
|
271 |
+
def __init__(self, nested_token_ids: List[List[int]]):
|
272 |
+
super(Constraint, self).__init__()
|
273 |
+
|
274 |
+
if not isinstance(nested_token_ids, list) or len(nested_token_ids) == 0:
|
275 |
+
raise ValueError(f"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.")
|
276 |
+
if any(not isinstance(token_ids, list) for token_ids in nested_token_ids):
|
277 |
+
raise ValueError(f"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.")
|
278 |
+
if any(
|
279 |
+
any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids)
|
280 |
+
for token_ids in nested_token_ids
|
281 |
+
):
|
282 |
+
raise ValueError(
|
283 |
+
f"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}."
|
284 |
+
)
|
285 |
+
|
286 |
+
self.trie = DisjunctiveTrie(nested_token_ids)
|
287 |
+
self.token_ids = nested_token_ids
|
288 |
+
|
289 |
+
self.seqlen = self.trie.max_height
|
290 |
+
self.current_seq = []
|
291 |
+
self.completed = False
|
292 |
+
|
293 |
+
def advance(self):
|
294 |
+
token_list = self.trie.next_tokens(self.current_seq)
|
295 |
+
|
296 |
+
if len(token_list) == 0:
|
297 |
+
return None
|
298 |
+
else:
|
299 |
+
return token_list
|
300 |
+
|
301 |
+
def does_advance(self, token_id: int):
|
302 |
+
if not isinstance(token_id, int):
|
303 |
+
raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
|
304 |
+
|
305 |
+
next_tokens = self.trie.next_tokens(self.current_seq)
|
306 |
+
|
307 |
+
return token_id in next_tokens
|
308 |
+
|
309 |
+
def update(self, token_id: int):
|
310 |
+
if not isinstance(token_id, int):
|
311 |
+
raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
|
312 |
+
|
313 |
+
stepped = False
|
314 |
+
completed = False
|
315 |
+
reset = False
|
316 |
+
|
317 |
+
if self.does_advance(token_id):
|
318 |
+
self.current_seq.append(token_id)
|
319 |
+
stepped = True
|
320 |
+
else:
|
321 |
+
reset = True
|
322 |
+
self.reset()
|
323 |
+
|
324 |
+
completed = self.trie.reached_leaf(self.current_seq)
|
325 |
+
self.completed = completed
|
326 |
+
|
327 |
+
return stepped, completed, reset
|
328 |
+
|
329 |
+
def reset(self):
|
330 |
+
self.completed = False
|
331 |
+
self.current_seq = []
|
332 |
+
|
333 |
+
def remaining(self):
|
334 |
+
if self.completed:
|
335 |
+
# since this can be completed without reaching max height
|
336 |
+
return 0
|
337 |
+
else:
|
338 |
+
return self.seqlen - len(self.current_seq)
|
339 |
+
|
340 |
+
def copy(self, stateful=False):
|
341 |
+
new_constraint = DisjunctiveConstraint(self.token_ids)
|
342 |
+
|
343 |
+
if stateful:
|
344 |
+
new_constraint.seq_len = self.seqlen
|
345 |
+
new_constraint.current_seq = self.current_seq
|
346 |
+
new_constraint.completed = self.completed
|
347 |
+
|
348 |
+
return new_constraint
|
349 |
+
|
350 |
+
|
351 |
+
class ConstraintListState:
|
352 |
+
r"""
|
353 |
+
A class for beam scorers to track its progress through a list of constraints.
|
354 |
+
|
355 |
+
Args:
|
356 |
+
constraints (`List[Constraint]`):
|
357 |
+
A list of [`Constraint`] objects that must be fulfilled by the beam scorer.
|
358 |
+
"""
|
359 |
+
|
360 |
+
def __init__(self, constraints: List[Constraint]):
|
361 |
+
self.constraints = constraints
|
362 |
+
|
363 |
+
# max # of steps required to fulfill a given constraint
|
364 |
+
self.max_seqlen = max([c.seqlen for c in constraints])
|
365 |
+
self.n_constraints = len(constraints)
|
366 |
+
self.completed = False
|
367 |
+
|
368 |
+
self.init_state()
|
369 |
+
|
370 |
+
def init_state(self):
|
371 |
+
self.complete_constraints = []
|
372 |
+
self.inprogress_constraint = None
|
373 |
+
self.pending_constraints = [constraint.copy(stateful=False) for constraint in self.constraints]
|
374 |
+
|
375 |
+
def get_bank(self):
|
376 |
+
add = 0
|
377 |
+
if self.inprogress_constraint:
|
378 |
+
# extra points for having a constraint mid-fulfilled
|
379 |
+
add += self.max_seqlen - self.inprogress_constraint.remaining()
|
380 |
+
|
381 |
+
return (len(self.complete_constraints) * self.max_seqlen) + add
|
382 |
+
|
383 |
+
def advance(self):
|
384 |
+
"""The list of tokens to generate such that we can make progress.
|
385 |
+
By "list" we don't mean the list of token that will fully fulfill a constraint.
|
386 |
+
|
387 |
+
Given constraints `c_i = {t_ij | j == # of tokens}`, If we're not in the middle of progressing through a
|
388 |
+
specific constraint `c_i`, we return:
|
389 |
+
|
390 |
+
`[t_k1 for k in indices of unfulfilled constraints]`
|
391 |
+
|
392 |
+
If we are in the middle of a constraint, then we return:
|
393 |
+
`[t_ij]`, where `i` is the index of the inprogress constraint, `j` is the next step for the constraint.
|
394 |
+
|
395 |
+
Though we don't care which constraint is fulfilled first, if we are in the progress of fulfilling a constraint,
|
396 |
+
that's the only one we'll return.
|
397 |
+
"""
|
398 |
+
token_list = []
|
399 |
+
if self.inprogress_constraint is None:
|
400 |
+
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
|
401 |
+
advance = constraint.advance()
|
402 |
+
if isinstance(advance, int):
|
403 |
+
token_list.append(advance)
|
404 |
+
elif isinstance(advance, list):
|
405 |
+
token_list.extend(advance)
|
406 |
+
else:
|
407 |
+
advance = self.inprogress_constraint.advance()
|
408 |
+
if isinstance(advance, int):
|
409 |
+
token_list.append(advance)
|
410 |
+
elif isinstance(advance, list):
|
411 |
+
token_list.extend(advance)
|
412 |
+
|
413 |
+
if len(token_list) == 0:
|
414 |
+
return None
|
415 |
+
else:
|
416 |
+
return token_list
|
417 |
+
|
418 |
+
def reset(self, token_ids: Optional[List[int]]):
|
419 |
+
"""
|
420 |
+
token_ids: the tokens generated thus far to reset the state of the progress through constraints.
|
421 |
+
"""
|
422 |
+
self.init_state()
|
423 |
+
|
424 |
+
if token_ids is not None:
|
425 |
+
for token in token_ids:
|
426 |
+
# completes or steps **one** constraint
|
427 |
+
complete, stepped = self.add(token)
|
428 |
+
|
429 |
+
# the entire list of constraints are fulfilled
|
430 |
+
if self.completed:
|
431 |
+
break
|
432 |
+
|
433 |
+
def add(self, token_id: int):
|
434 |
+
if not isinstance(token_id, int):
|
435 |
+
raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`.")
|
436 |
+
|
437 |
+
complete, stepped = False, False
|
438 |
+
|
439 |
+
if self.completed:
|
440 |
+
complete = True
|
441 |
+
stepped = False
|
442 |
+
return complete, stepped
|
443 |
+
|
444 |
+
if self.inprogress_constraint is not None:
|
445 |
+
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
|
446 |
+
# job, simply update the state
|
447 |
+
|
448 |
+
stepped, complete, reset = self.inprogress_constraint.update(token_id)
|
449 |
+
if reset:
|
450 |
+
# 1. If the next token breaks the progress, then we must restart.
|
451 |
+
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
|
452 |
+
|
453 |
+
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
|
454 |
+
# constraint, not the full list of constraints.
|
455 |
+
|
456 |
+
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=False))
|
457 |
+
self.inprogress_constraint = None
|
458 |
+
|
459 |
+
if complete:
|
460 |
+
# 2. If the next token completes the constraint, move it to completed list, set
|
461 |
+
# inprogress to None. If there are no pending constraints either, then this full list of constraints
|
462 |
+
# is complete.
|
463 |
+
|
464 |
+
self.complete_constraints.append(self.inprogress_constraint)
|
465 |
+
self.inprogress_constraint = None
|
466 |
+
|
467 |
+
if len(self.pending_constraints) == 0:
|
468 |
+
# we're done!
|
469 |
+
self.completed = True
|
470 |
+
|
471 |
+
else:
|
472 |
+
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
|
473 |
+
# of constraints?
|
474 |
+
|
475 |
+
for cidx, pending_constraint in enumerate(self.pending_constraints):
|
476 |
+
if pending_constraint.does_advance(token_id):
|
477 |
+
stepped, complete, reset = pending_constraint.update(token_id)
|
478 |
+
|
479 |
+
if not stepped:
|
480 |
+
raise Exception(
|
481 |
+
"`constraint.update(token_id)` is not yielding incremental progress, "
|
482 |
+
"even though `constraint.does_advance(token_id)` is true."
|
483 |
+
)
|
484 |
+
|
485 |
+
if complete:
|
486 |
+
self.complete_constraints.append(pending_constraint)
|
487 |
+
self.inprogress_constraint = None
|
488 |
+
|
489 |
+
if not complete and stepped:
|
490 |
+
self.inprogress_constraint = pending_constraint
|
491 |
+
|
492 |
+
if complete or stepped:
|
493 |
+
# If we made any progress at all, then it's at least not a "pending constraint".
|
494 |
+
|
495 |
+
self.pending_constraints = (
|
496 |
+
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
|
497 |
+
)
|
498 |
+
|
499 |
+
if len(self.pending_constraints) == 0 and self.inprogress_constraint is None:
|
500 |
+
# If there's no longer any pending after this and no inprogress either, then we must be
|
501 |
+
# complete.
|
502 |
+
|
503 |
+
self.completed = True
|
504 |
+
|
505 |
+
break # prevent accidentally stepping through multiple constraints with just one token.
|
506 |
+
|
507 |
+
return complete, stepped
|
508 |
+
|
509 |
+
def copy(self, stateful=True):
|
510 |
+
new_state = ConstraintListState(self.constraints) # we actually never though self.constraints objects
|
511 |
+
# throughout this process. So it's at initialization state.
|
512 |
+
|
513 |
+
if stateful:
|
514 |
+
new_state.complete_constraints = [
|
515 |
+
constraint.copy(stateful=True) for constraint in self.complete_constraints
|
516 |
+
]
|
517 |
+
if self.inprogress_constraint is not None:
|
518 |
+
new_state.inprogress_constraint = self.inprogress_constraint.copy(stateful=True)
|
519 |
+
new_state.pending_constraints = [constraint.copy() for constraint in self.pending_constraints]
|
520 |
+
|
521 |
+
return new_state
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/beam_search.py
ADDED
@@ -0,0 +1,1005 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from abc import ABC, abstractmethod
|
17 |
+
from collections import UserDict
|
18 |
+
from typing import Dict, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
|
23 |
+
from ..utils import add_start_docstrings
|
24 |
+
from .beam_constraints import Constraint, ConstraintListState
|
25 |
+
|
26 |
+
|
27 |
+
PROCESS_INPUTS_DOCSTRING = r"""
|
28 |
+
Args:
|
29 |
+
input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
|
30 |
+
Indices of input sequence tokens in the vocabulary.
|
31 |
+
|
32 |
+
Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
|
33 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
|
34 |
+
|
35 |
+
[What are input IDs?](../glossary#input-ids)
|
36 |
+
next_scores (`torch.FloatTensor` of shape `(batch_size, 2 * num_beams)`):
|
37 |
+
Current scores of the top `2 * num_beams` non-finished beam hypotheses.
|
38 |
+
next_tokens (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
|
39 |
+
`input_ids` of the tokens corresponding to the top `2 * num_beams` non-finished beam hypotheses.
|
40 |
+
next_indices (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
|
41 |
+
Beam indices indicating to which beam hypothesis the `next_tokens` correspond.
|
42 |
+
pad_token_id (`int`, *optional*):
|
43 |
+
The id of the *padding* token.
|
44 |
+
eos_token_id (`Union[int, List[int]]`, *optional*):
|
45 |
+
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
|
46 |
+
beam_indices (`torch.LongTensor`, *optional*):
|
47 |
+
Beam indices indicating to which beam hypothesis each token correspond.
|
48 |
+
group_index (`int`, *optional*):
|
49 |
+
The index of the group of beams. Used with [`~PreTrainedModel.group_beam_search`].
|
50 |
+
|
51 |
+
Return:
|
52 |
+
`UserDict`: A dictionary composed of the fields as defined above:
|
53 |
+
|
54 |
+
- **next_beam_scores** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Updated scores of all
|
55 |
+
non-finished beams.
|
56 |
+
- **next_beam_tokens** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Next tokens to be added
|
57 |
+
to the non-finished beam_hypotheses.
|
58 |
+
- **next_beam_indices** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Beam indices
|
59 |
+
indicating to which beam the next tokens shall be added.
|
60 |
+
|
61 |
+
"""
|
62 |
+
|
63 |
+
FINALIZE_INPUTS_DOCSTRING = r"""
|
64 |
+
Args:
|
65 |
+
input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
|
66 |
+
Indices of input sequence tokens in the vocabulary.
|
67 |
+
|
68 |
+
Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
|
69 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
|
70 |
+
|
71 |
+
[What are input IDs?](../glossary#input-ids)
|
72 |
+
final_beam_scores (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
|
73 |
+
The final scores of all non-finished beams.
|
74 |
+
final_beam_tokens (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
|
75 |
+
The last tokens to be added to the non-finished beam_hypotheses.
|
76 |
+
final_beam_indices (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
|
77 |
+
The beam indices indicating to which beam the `final_beam_tokens` shall be added.
|
78 |
+
pad_token_id (`int`, *optional*):
|
79 |
+
The id of the *padding* token.
|
80 |
+
eos_token_id (`Union[int, List[int]]`, *optional*):
|
81 |
+
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
|
82 |
+
|
83 |
+
Return:
|
84 |
+
`torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences.
|
85 |
+
The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early
|
86 |
+
due to the `eos_token_id`.
|
87 |
+
|
88 |
+
"""
|
89 |
+
|
90 |
+
|
91 |
+
class BeamScorer(ABC):
|
92 |
+
"""
|
93 |
+
Abstract base class for all beam scorers that are used for [`~PreTrainedModel.beam_search`] and
|
94 |
+
[`~PreTrainedModel.beam_sample`].
|
95 |
+
"""
|
96 |
+
|
97 |
+
@abstractmethod
|
98 |
+
@add_start_docstrings(PROCESS_INPUTS_DOCSTRING)
|
99 |
+
def process(
|
100 |
+
self,
|
101 |
+
input_ids: torch.LongTensor,
|
102 |
+
next_scores: torch.FloatTensor,
|
103 |
+
next_tokens: torch.LongTensor,
|
104 |
+
next_indices: torch.LongTensor,
|
105 |
+
**kwargs,
|
106 |
+
) -> Tuple[torch.Tensor]:
|
107 |
+
raise NotImplementedError("This is an abstract method.")
|
108 |
+
|
109 |
+
@abstractmethod
|
110 |
+
@add_start_docstrings(FINALIZE_INPUTS_DOCSTRING)
|
111 |
+
def finalize(
|
112 |
+
self,
|
113 |
+
input_ids: torch.LongTensor,
|
114 |
+
next_scores: torch.FloatTensor,
|
115 |
+
next_tokens: torch.LongTensor,
|
116 |
+
next_indices: torch.LongTensor,
|
117 |
+
max_length: int,
|
118 |
+
**kwargs,
|
119 |
+
) -> torch.LongTensor:
|
120 |
+
raise NotImplementedError("This is an abstract method.")
|
121 |
+
|
122 |
+
|
123 |
+
class BeamSearchScorer(BeamScorer):
|
124 |
+
r"""
|
125 |
+
[`BeamScorer`] implementing standard beam search decoding.
|
126 |
+
|
127 |
+
Adapted in part from [Facebook's XLM beam search
|
128 |
+
code](https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529).
|
129 |
+
|
130 |
+
Reference for the diverse beam search algorithm and implementation [Ashwin Kalyan's DBS
|
131 |
+
implementation](https://github.com/ashwinkalyan/dbs/blob/master/dbs/beam_utils.lua)
|
132 |
+
|
133 |
+
Args:
|
134 |
+
batch_size (`int`):
|
135 |
+
Batch Size of `input_ids` for which standard beam search decoding is run in parallel.
|
136 |
+
num_beams (`int`):
|
137 |
+
Number of beams for beam search.
|
138 |
+
device (`torch.device`):
|
139 |
+
Defines the device type (*e.g.*, `"cpu"` or `"cuda"`) on which this instance of `BeamSearchScorer` will be
|
140 |
+
allocated.
|
141 |
+
length_penalty (`float`, *optional*, defaults to 1.0):
|
142 |
+
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
143 |
+
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
144 |
+
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
|
145 |
+
`length_penalty` < 0.0 encourages shorter sequences.
|
146 |
+
do_early_stopping (`bool` or `str`, *optional*, defaults to `False`):
|
147 |
+
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
|
148 |
+
`True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an
|
149 |
+
heuristic is applied and the generation stops when is it very unlikely to find better candidates;
|
150 |
+
`"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical
|
151 |
+
beam search algorithm).
|
152 |
+
num_beam_hyps_to_keep (`int`, *optional*, defaults to 1):
|
153 |
+
The number of beam hypotheses that shall be returned upon calling
|
154 |
+
[`~transformers.BeamSearchScorer.finalize`].
|
155 |
+
num_beam_groups (`int`, *optional*, defaults to 1):
|
156 |
+
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
|
157 |
+
See [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
|
158 |
+
max_length (`int`, *optional*):
|
159 |
+
The maximum length of the sequence to be generated.
|
160 |
+
"""
|
161 |
+
|
162 |
+
def __init__(
|
163 |
+
self,
|
164 |
+
batch_size: int,
|
165 |
+
num_beams: int,
|
166 |
+
device: torch.device,
|
167 |
+
length_penalty: Optional[float] = 1.0,
|
168 |
+
do_early_stopping: Optional[Union[bool, str]] = False,
|
169 |
+
num_beam_hyps_to_keep: Optional[int] = 1,
|
170 |
+
num_beam_groups: Optional[int] = 1,
|
171 |
+
max_length: Optional[int] = None,
|
172 |
+
):
|
173 |
+
self.num_beams = num_beams
|
174 |
+
self.device = device
|
175 |
+
self.length_penalty = length_penalty
|
176 |
+
self.do_early_stopping = do_early_stopping
|
177 |
+
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
|
178 |
+
self.num_beam_groups = num_beam_groups
|
179 |
+
self.group_size = self.num_beams // self.num_beam_groups
|
180 |
+
|
181 |
+
self._is_init = False
|
182 |
+
# self._beam_hyps[i*self.num_beam_groups+j] is the beam_hyps of the j-th group in the i-th mini-batch.
|
183 |
+
# If group_beam_search is not used, the list consists of `batch_size` beam_hyps.
|
184 |
+
self._beam_hyps = [
|
185 |
+
BeamHypotheses(
|
186 |
+
num_beams=self.group_size,
|
187 |
+
length_penalty=self.length_penalty,
|
188 |
+
early_stopping=self.do_early_stopping,
|
189 |
+
max_length=max_length,
|
190 |
+
)
|
191 |
+
for _ in range(batch_size * self.num_beam_groups)
|
192 |
+
]
|
193 |
+
# self._done[i*self.num_beam_groups+j] indicates whether the generation of the beam_hyps of the j-th group
|
194 |
+
# in the i-th mini-batch is complete.
|
195 |
+
self._done = torch.tensor(
|
196 |
+
[False for _ in range(batch_size * self.num_beam_groups)], dtype=torch.bool, device=self.device
|
197 |
+
)
|
198 |
+
|
199 |
+
if not isinstance(num_beams, int) or num_beams <= 1:
|
200 |
+
raise ValueError(
|
201 |
+
f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
|
202 |
+
" one should make use of `greedy_search` instead."
|
203 |
+
)
|
204 |
+
|
205 |
+
if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
|
206 |
+
raise ValueError(
|
207 |
+
"`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
|
208 |
+
f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
|
209 |
+
)
|
210 |
+
|
211 |
+
@property
|
212 |
+
def is_done(self) -> bool:
|
213 |
+
return self._done.all()
|
214 |
+
|
215 |
+
def process(
|
216 |
+
self,
|
217 |
+
input_ids: torch.LongTensor,
|
218 |
+
next_scores: torch.FloatTensor,
|
219 |
+
next_tokens: torch.LongTensor,
|
220 |
+
next_indices: torch.LongTensor,
|
221 |
+
pad_token_id: Optional[int] = None,
|
222 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
223 |
+
beam_indices: Optional[torch.LongTensor] = None,
|
224 |
+
group_index: Optional[int] = 0,
|
225 |
+
decoder_prompt_len: Optional[int] = 0,
|
226 |
+
) -> Dict[str, torch.Tensor]:
|
227 |
+
# add up to the length which the next_scores is calculated on (including decoder prompt)
|
228 |
+
cur_len = input_ids.shape[-1] + 1
|
229 |
+
batch_size = len(self._beam_hyps) // self.num_beam_groups
|
230 |
+
|
231 |
+
if not (batch_size == (input_ids.shape[0] // self.group_size)):
|
232 |
+
if self.num_beam_groups > 1:
|
233 |
+
raise ValueError(
|
234 |
+
f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam "
|
235 |
+
f"size of {self.group_size} is expected by the beam scorer."
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
raise ValueError(
|
239 |
+
f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of "
|
240 |
+
f"{self.group_size} is expected by the beam scorer."
|
241 |
+
)
|
242 |
+
|
243 |
+
device = input_ids.device
|
244 |
+
next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device)
|
245 |
+
next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
|
246 |
+
next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)
|
247 |
+
|
248 |
+
if isinstance(eos_token_id, int):
|
249 |
+
eos_token_id = [eos_token_id]
|
250 |
+
|
251 |
+
for batch_idx in range(batch_size):
|
252 |
+
batch_group_idx = batch_idx * self.num_beam_groups + group_index
|
253 |
+
if self._done[batch_group_idx]:
|
254 |
+
if self.num_beams < len(self._beam_hyps[batch_group_idx]):
|
255 |
+
raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated")
|
256 |
+
if eos_token_id is None or pad_token_id is None:
|
257 |
+
raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined")
|
258 |
+
# pad the batch
|
259 |
+
next_beam_scores[batch_idx, :] = 0
|
260 |
+
next_beam_tokens[batch_idx, :] = pad_token_id
|
261 |
+
next_beam_indices[batch_idx, :] = 0
|
262 |
+
continue
|
263 |
+
|
264 |
+
# next tokens for this sentence
|
265 |
+
beam_idx = 0
|
266 |
+
for beam_token_rank, (next_token, next_score, next_index) in enumerate(
|
267 |
+
zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
|
268 |
+
):
|
269 |
+
batch_beam_idx = batch_idx * self.group_size + next_index
|
270 |
+
# add to generated hypotheses if end of sentence
|
271 |
+
if (eos_token_id is not None) and (next_token.item() in eos_token_id):
|
272 |
+
# if beam_token does not belong to top num_beams tokens, it should not be added
|
273 |
+
is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
|
274 |
+
if is_beam_token_worse_than_top_num_beams:
|
275 |
+
continue
|
276 |
+
if beam_indices is not None:
|
277 |
+
beam_index = beam_indices[batch_beam_idx]
|
278 |
+
beam_index = beam_index + (batch_beam_idx,)
|
279 |
+
else:
|
280 |
+
beam_index = None
|
281 |
+
|
282 |
+
self._beam_hyps[batch_group_idx].add(
|
283 |
+
input_ids[batch_beam_idx].clone(),
|
284 |
+
next_score.item(),
|
285 |
+
beam_indices=beam_index,
|
286 |
+
generated_len=cur_len - decoder_prompt_len,
|
287 |
+
)
|
288 |
+
else:
|
289 |
+
# add next predicted token since it is not eos_token
|
290 |
+
next_beam_scores[batch_idx, beam_idx] = next_score
|
291 |
+
next_beam_tokens[batch_idx, beam_idx] = next_token
|
292 |
+
next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
|
293 |
+
beam_idx += 1
|
294 |
+
|
295 |
+
# once the beam for next step is full, don't add more tokens to it.
|
296 |
+
if beam_idx == self.group_size:
|
297 |
+
break
|
298 |
+
|
299 |
+
if beam_idx < self.group_size:
|
300 |
+
raise ValueError(
|
301 |
+
f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
|
302 |
+
f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
|
303 |
+
)
|
304 |
+
|
305 |
+
# Check if we are done so that we can save a pad step if all(done)
|
306 |
+
self._done[batch_group_idx] = self._done[batch_group_idx] or self._beam_hyps[batch_group_idx].is_done(
|
307 |
+
next_scores[batch_idx].max().item(), cur_len, decoder_prompt_len
|
308 |
+
)
|
309 |
+
|
310 |
+
return UserDict(
|
311 |
+
{
|
312 |
+
"next_beam_scores": next_beam_scores.view(-1),
|
313 |
+
"next_beam_tokens": next_beam_tokens.view(-1),
|
314 |
+
"next_beam_indices": next_beam_indices.view(-1),
|
315 |
+
}
|
316 |
+
)
|
317 |
+
|
318 |
+
def finalize(
|
319 |
+
self,
|
320 |
+
input_ids: torch.LongTensor,
|
321 |
+
final_beam_scores: torch.FloatTensor,
|
322 |
+
final_beam_tokens: torch.LongTensor,
|
323 |
+
final_beam_indices: torch.LongTensor,
|
324 |
+
max_length: int,
|
325 |
+
pad_token_id: Optional[int] = None,
|
326 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
327 |
+
beam_indices: Optional[torch.LongTensor] = None,
|
328 |
+
decoder_prompt_len: Optional[int] = 0,
|
329 |
+
) -> Tuple[torch.LongTensor]:
|
330 |
+
batch_size = len(self._beam_hyps) // self.num_beam_groups
|
331 |
+
|
332 |
+
if isinstance(eos_token_id, int):
|
333 |
+
eos_token_id = [eos_token_id]
|
334 |
+
|
335 |
+
# finalize all open beam hypotheses and add to generated hypotheses
|
336 |
+
for batch_group_idx, beam_hyp in enumerate(self._beam_hyps):
|
337 |
+
if self._done[batch_group_idx]:
|
338 |
+
continue
|
339 |
+
|
340 |
+
# all open beam hypotheses are added to the beam hypothesis
|
341 |
+
# beam hypothesis class automatically keeps the best beams
|
342 |
+
for index_per_group in range(self.group_size):
|
343 |
+
batch_beam_idx = batch_group_idx * self.group_size + index_per_group
|
344 |
+
final_score = final_beam_scores[batch_beam_idx].item()
|
345 |
+
final_tokens = input_ids[batch_beam_idx]
|
346 |
+
beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None
|
347 |
+
generated_len = final_tokens.shape[-1] - decoder_prompt_len
|
348 |
+
beam_hyp.add(final_tokens, final_score, beam_indices=beam_index, generated_len=generated_len)
|
349 |
+
|
350 |
+
# select the best hypotheses
|
351 |
+
sent_lengths = input_ids.new(batch_size * self.num_beam_hyps_to_keep)
|
352 |
+
best = []
|
353 |
+
best_indices = []
|
354 |
+
best_scores = torch.zeros(batch_size * self.num_beam_hyps_to_keep, device=self.device, dtype=torch.float32)
|
355 |
+
|
356 |
+
# retrieve best hypotheses
|
357 |
+
for i in range(batch_size):
|
358 |
+
beam_hyps_in_batch = self._beam_hyps[i * self.num_beam_groups : (i + 1) * self.num_beam_groups]
|
359 |
+
candidate_beams = [beam for beam_hyp in beam_hyps_in_batch for beam in beam_hyp.beams]
|
360 |
+
sorted_hyps = sorted(candidate_beams, key=lambda x: x[0])
|
361 |
+
for j in range(self.num_beam_hyps_to_keep):
|
362 |
+
best_hyp_tuple = sorted_hyps.pop()
|
363 |
+
best_score = best_hyp_tuple[0]
|
364 |
+
best_hyp = best_hyp_tuple[1]
|
365 |
+
best_index = best_hyp_tuple[2]
|
366 |
+
sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)
|
367 |
+
|
368 |
+
# append hyp to lists
|
369 |
+
best.append(best_hyp)
|
370 |
+
|
371 |
+
# append indices to list
|
372 |
+
best_indices.append(best_index)
|
373 |
+
|
374 |
+
best_scores[i * self.num_beam_hyps_to_keep + j] = best_score
|
375 |
+
|
376 |
+
# prepare for adding eos
|
377 |
+
sent_lengths_max = sent_lengths.max().item() + 1
|
378 |
+
sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max
|
379 |
+
decoded: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
|
380 |
+
|
381 |
+
if len(best_indices) > 0 and best_indices[0] is not None:
|
382 |
+
indices: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
|
383 |
+
else:
|
384 |
+
indices = None
|
385 |
+
|
386 |
+
# shorter batches are padded if needed
|
387 |
+
if sent_lengths.min().item() != sent_lengths.max().item():
|
388 |
+
if pad_token_id is None:
|
389 |
+
raise ValueError("`pad_token_id` has to be defined")
|
390 |
+
decoded.fill_(pad_token_id)
|
391 |
+
|
392 |
+
if indices is not None:
|
393 |
+
indices.fill_(-1)
|
394 |
+
|
395 |
+
# fill with hypotheses and eos_token_id if the latter fits in
|
396 |
+
for i, (hypo, best_idx) in enumerate(zip(best, best_indices)):
|
397 |
+
decoded[i, : sent_lengths[i]] = hypo
|
398 |
+
|
399 |
+
if indices is not None:
|
400 |
+
indices[i, : len(best_idx)] = torch.tensor(best_idx)
|
401 |
+
|
402 |
+
if sent_lengths[i] < sent_max_len:
|
403 |
+
# inserting only the first eos_token_id
|
404 |
+
decoded[i, sent_lengths[i]] = eos_token_id[0]
|
405 |
+
|
406 |
+
return UserDict(
|
407 |
+
{
|
408 |
+
"sequences": decoded,
|
409 |
+
"sequence_scores": best_scores,
|
410 |
+
"beam_indices": indices,
|
411 |
+
}
|
412 |
+
)
|
413 |
+
|
414 |
+
|
415 |
+
class ConstrainedBeamSearchScorer(BeamScorer):
|
416 |
+
r"""
|
417 |
+
[`BeamScorer`] implementing constrained beam search decoding.
|
418 |
+
|
419 |
+
|
420 |
+
Args:
|
421 |
+
batch_size (`int`):
|
422 |
+
Batch Size of `input_ids` for which standard beam search decoding is run in parallel.
|
423 |
+
num_beams (`int`):
|
424 |
+
Number of beams for beam search.
|
425 |
+
constraints (`List[Constraint]`):
|
426 |
+
A list of positive constraints represented as `Constraint` objects that must be fulfilled in the generation
|
427 |
+
output. For more information, the documentation of [`Constraint`] should be read.
|
428 |
+
device (`torch.device`):
|
429 |
+
Defines the device type (*e.g.*, `"cpu"` or `"cuda"`) on which this instance of `BeamSearchScorer` will be
|
430 |
+
allocated.
|
431 |
+
length_penalty (`float`, *optional*, defaults to 1.0):
|
432 |
+
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
433 |
+
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
434 |
+
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
|
435 |
+
`length_penalty` < 0.0 encourages shorter sequences.
|
436 |
+
do_early_stopping (`bool` or `str`, *optional*, defaults to `False`):
|
437 |
+
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
|
438 |
+
`True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an
|
439 |
+
heuristic is applied and the generation stops when is it very unlikely to find better candidates;
|
440 |
+
`"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical
|
441 |
+
beam search algorithm).
|
442 |
+
num_beam_hyps_to_keep (`int`, *optional*, defaults to 1):
|
443 |
+
The number of beam hypotheses that shall be returned upon calling
|
444 |
+
[`~transformers.BeamSearchScorer.finalize`].
|
445 |
+
num_beam_groups (`int`, *optional*, defaults to 1):
|
446 |
+
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
|
447 |
+
See [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
|
448 |
+
max_length (`int`, *optional*):
|
449 |
+
The maximum length of the sequence to be generated.
|
450 |
+
"""
|
451 |
+
|
452 |
+
def __init__(
|
453 |
+
self,
|
454 |
+
batch_size: int,
|
455 |
+
num_beams: int,
|
456 |
+
constraints: List[Constraint],
|
457 |
+
device: torch.device,
|
458 |
+
length_penalty: Optional[float] = 1.0,
|
459 |
+
do_early_stopping: Optional[Union[bool, str]] = False,
|
460 |
+
num_beam_hyps_to_keep: Optional[int] = 1,
|
461 |
+
num_beam_groups: Optional[int] = 1,
|
462 |
+
max_length: Optional[int] = None,
|
463 |
+
):
|
464 |
+
self.num_beams = num_beams
|
465 |
+
self.device = device
|
466 |
+
self.length_penalty = length_penalty
|
467 |
+
self.do_early_stopping = do_early_stopping
|
468 |
+
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
|
469 |
+
self.num_beam_groups = num_beam_groups
|
470 |
+
self.group_size = self.num_beams // self.num_beam_groups
|
471 |
+
self.constraints = constraints
|
472 |
+
|
473 |
+
self._is_init = False
|
474 |
+
self._beam_hyps = [
|
475 |
+
BeamHypotheses(
|
476 |
+
num_beams=self.num_beams,
|
477 |
+
length_penalty=self.length_penalty,
|
478 |
+
early_stopping=self.do_early_stopping,
|
479 |
+
max_length=max_length,
|
480 |
+
)
|
481 |
+
for _ in range(batch_size)
|
482 |
+
]
|
483 |
+
self._done = torch.tensor([False for _ in range(batch_size)], dtype=torch.bool, device=self.device)
|
484 |
+
|
485 |
+
if not isinstance(num_beams, int) or num_beams <= 1:
|
486 |
+
raise ValueError(
|
487 |
+
f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
|
488 |
+
" one should make use of `greedy_search` instead."
|
489 |
+
)
|
490 |
+
|
491 |
+
if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
|
492 |
+
raise ValueError(
|
493 |
+
"`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
|
494 |
+
f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
|
495 |
+
)
|
496 |
+
|
497 |
+
@property
|
498 |
+
def is_done(self) -> bool:
|
499 |
+
return self._done.all()
|
500 |
+
|
501 |
+
def make_constraint_states(self, n):
|
502 |
+
return [ConstraintListState([constraint.copy() for constraint in self.constraints]) for _ in range(n)]
|
503 |
+
|
504 |
+
def check_completes_constraints(self, sequence):
|
505 |
+
new_state = self.make_constraint_states(1)[0]
|
506 |
+
new_state.reset(sequence)
|
507 |
+
return new_state.completed
|
508 |
+
|
509 |
+
def process(
|
510 |
+
self,
|
511 |
+
input_ids: torch.LongTensor,
|
512 |
+
next_scores: torch.FloatTensor,
|
513 |
+
next_tokens: torch.LongTensor,
|
514 |
+
next_indices: torch.LongTensor,
|
515 |
+
scores_for_all_vocab: torch.FloatTensor,
|
516 |
+
pad_token_id: Optional[int] = None,
|
517 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
518 |
+
beam_indices: Optional[torch.LongTensor] = None,
|
519 |
+
decoder_prompt_len: Optional[int] = 0,
|
520 |
+
) -> Tuple[torch.Tensor]:
|
521 |
+
r"""
|
522 |
+
Args:
|
523 |
+
input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
|
524 |
+
Indices of input sequence tokens in the vocabulary.
|
525 |
+
|
526 |
+
Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
|
527 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
|
528 |
+
|
529 |
+
[What are input IDs?](../glossary#input-ids)
|
530 |
+
next_scores (`torch.FloatTensor` of shape `(batch_size, 2 * num_beams)`):
|
531 |
+
Current scores of the top `2 * num_beams` non-finished beam hypotheses.
|
532 |
+
next_tokens (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
|
533 |
+
`input_ids` of the tokens corresponding to the top `2 * num_beams` non-finished beam hypotheses.
|
534 |
+
next_indices (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
|
535 |
+
Beam indices indicating to which beam hypothesis the `next_tokens` correspond.
|
536 |
+
scores_for_all_vocab (`torch.FloatTensor` of shape `(batch_size * num_beams, sequence_length)`):
|
537 |
+
The scores of all tokens in the vocabulary for each of the beam hypotheses.
|
538 |
+
pad_token_id (`int`, *optional*):
|
539 |
+
The id of the *padding* token.
|
540 |
+
eos_token_id (`Union[int, List[int]]`, *optional*):
|
541 |
+
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
|
542 |
+
beam_indices (`torch.LongTensor`, *optional*):
|
543 |
+
Beam indices indicating to which beam hypothesis each token correspond.
|
544 |
+
decoder_prompt_len (`int`, *optional*):
|
545 |
+
The length of prompt that is included in the input to decoder.
|
546 |
+
Return:
|
547 |
+
`UserDict`: A dictionary composed of the fields as defined above:
|
548 |
+
|
549 |
+
- **next_beam_scores** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Updated scores of
|
550 |
+
all
|
551 |
+
non-finished beams.
|
552 |
+
|
553 |
+
- **next_beam_tokens** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Next tokens to be
|
554 |
+
added
|
555 |
+
to the non-finished beam_hypotheses.
|
556 |
+
- **next_beam_indices** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Beam indices
|
557 |
+
indicating to which beam the next tokens shall be added.
|
558 |
+
"""
|
559 |
+
|
560 |
+
# add up to the length which the next_scores is calculated on (including decoder prompt)
|
561 |
+
cur_len = input_ids.shape[-1] + 1
|
562 |
+
batch_size = len(self._beam_hyps)
|
563 |
+
if not (batch_size == (input_ids.shape[0] // self.group_size)):
|
564 |
+
if self.num_beam_groups > 1:
|
565 |
+
raise ValueError(
|
566 |
+
f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam "
|
567 |
+
f"size of {self.group_size} is expected by the beam scorer."
|
568 |
+
)
|
569 |
+
else:
|
570 |
+
raise ValueError(
|
571 |
+
f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of "
|
572 |
+
f"{self.group_size} is expected by the beam scorer."
|
573 |
+
)
|
574 |
+
|
575 |
+
device = input_ids.device
|
576 |
+
|
577 |
+
next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device)
|
578 |
+
next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
|
579 |
+
next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)
|
580 |
+
|
581 |
+
if isinstance(eos_token_id, int):
|
582 |
+
eos_token_id = [eos_token_id]
|
583 |
+
|
584 |
+
for batch_idx, beam_hyp in enumerate(self._beam_hyps):
|
585 |
+
if self._done[batch_idx]:
|
586 |
+
if self.num_beams < len(beam_hyp):
|
587 |
+
raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated")
|
588 |
+
if eos_token_id is None or pad_token_id is None:
|
589 |
+
raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined")
|
590 |
+
# pad the batch
|
591 |
+
next_beam_scores[batch_idx, :] = 0
|
592 |
+
next_beam_tokens[batch_idx, :] = pad_token_id
|
593 |
+
next_beam_indices[batch_idx, :] = 0
|
594 |
+
continue
|
595 |
+
|
596 |
+
# next tokens for this sentence.
|
597 |
+
beam_idx = 0
|
598 |
+
for beam_token_rank, (next_token, next_score, next_index) in enumerate(
|
599 |
+
zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
|
600 |
+
):
|
601 |
+
batch_beam_idx = batch_idx * self.group_size + next_index
|
602 |
+
# add to generated hypotheses if end of sentence
|
603 |
+
if (eos_token_id is not None) and (next_token.item() in eos_token_id):
|
604 |
+
# if beam_token does not belong to top num_beams tokens, it should not be added
|
605 |
+
is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
|
606 |
+
if is_beam_token_worse_than_top_num_beams:
|
607 |
+
continue
|
608 |
+
|
609 |
+
completes_constraint = self.check_completes_constraints(input_ids[batch_beam_idx].cpu().tolist())
|
610 |
+
if completes_constraint:
|
611 |
+
if beam_indices is not None:
|
612 |
+
beam_index = beam_indices[batch_beam_idx]
|
613 |
+
beam_index = beam_index + (batch_beam_idx,)
|
614 |
+
else:
|
615 |
+
beam_index = None
|
616 |
+
|
617 |
+
beam_hyp.add(
|
618 |
+
input_ids[batch_beam_idx].clone(),
|
619 |
+
next_score.item(),
|
620 |
+
beam_indices=beam_index,
|
621 |
+
generated_len=cur_len - decoder_prompt_len,
|
622 |
+
)
|
623 |
+
else:
|
624 |
+
# add next predicted token since it is not eos_token
|
625 |
+
next_beam_scores[batch_idx, beam_idx] = next_score
|
626 |
+
next_beam_tokens[batch_idx, beam_idx] = next_token
|
627 |
+
next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
|
628 |
+
beam_idx += 1
|
629 |
+
|
630 |
+
# once the beam for next step is full, don't add more tokens to it.
|
631 |
+
if beam_idx == self.group_size:
|
632 |
+
break
|
633 |
+
|
634 |
+
new_scores, new_tokens, new_indices = self.step_sentence_constraint(
|
635 |
+
batch_idx,
|
636 |
+
input_ids,
|
637 |
+
scores_for_all_vocab,
|
638 |
+
next_beam_scores[batch_idx],
|
639 |
+
next_beam_tokens[batch_idx],
|
640 |
+
next_beam_indices[batch_idx],
|
641 |
+
)
|
642 |
+
|
643 |
+
next_beam_scores[batch_idx] = new_scores
|
644 |
+
next_beam_tokens[batch_idx] = new_tokens
|
645 |
+
next_beam_indices[batch_idx] = new_indices
|
646 |
+
|
647 |
+
if beam_idx < self.group_size:
|
648 |
+
raise ValueError(
|
649 |
+
f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
|
650 |
+
f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
|
651 |
+
)
|
652 |
+
|
653 |
+
# Check if we are done so that we can save a pad step if all(done)
|
654 |
+
self._done[batch_idx] = self._done[batch_idx] or beam_hyp.is_done(
|
655 |
+
next_scores[batch_idx].max().item(), cur_len, decoder_prompt_len
|
656 |
+
)
|
657 |
+
|
658 |
+
return UserDict(
|
659 |
+
{
|
660 |
+
"next_beam_scores": next_beam_scores.view(-1),
|
661 |
+
"next_beam_tokens": next_beam_tokens.view(-1),
|
662 |
+
"next_beam_indices": next_beam_indices.view(-1),
|
663 |
+
}
|
664 |
+
)
|
665 |
+
|
666 |
+
def step_sentence_constraint(
|
667 |
+
self,
|
668 |
+
batch_idx: int,
|
669 |
+
input_ids: torch.LongTensor,
|
670 |
+
vocab_scores: torch.FloatTensor,
|
671 |
+
sent_beam_scores: torch.FloatTensor,
|
672 |
+
sent_beam_tokens: torch.LongTensor,
|
673 |
+
sent_beam_indices: torch.LongTensor,
|
674 |
+
push_progress: bool = False,
|
675 |
+
):
|
676 |
+
# sent_beam_tokens are the next {num_beams} number of tokens that are under consideration for this beam
|
677 |
+
# (candidate next tokens)
|
678 |
+
|
679 |
+
# 1. Adding "advance_tokens"
|
680 |
+
# using ConstraintStateList.advance(), we propose new tokens to be added into this "candidate list" that will
|
681 |
+
# advance us in fulfilling the constraints.
|
682 |
+
|
683 |
+
# 2. Selecting best candidates such that we end up with highest probable candidates
|
684 |
+
# that fulfill our constraints.
|
685 |
+
|
686 |
+
orig_len = sent_beam_indices.size(0)
|
687 |
+
device = sent_beam_indices.device
|
688 |
+
|
689 |
+
# initialize states
|
690 |
+
topk_contraint_states = self.make_constraint_states(orig_len)
|
691 |
+
advance_constraint_states = self.make_constraint_states(orig_len)
|
692 |
+
|
693 |
+
sidx, eidx = batch_idx * orig_len, (batch_idx + 1) * orig_len
|
694 |
+
this_batch_input_ids = input_ids[sidx:eidx]
|
695 |
+
this_batch_token_scores = vocab_scores[sidx:eidx]
|
696 |
+
full_hypotheses = torch.cat((input_ids[sent_beam_indices], sent_beam_tokens.unsqueeze(-1)), dim=-1)
|
697 |
+
|
698 |
+
# need to make new hypothesis that advance the constraints
|
699 |
+
track_new = {
|
700 |
+
"new_seqs": full_hypotheses.tolist(),
|
701 |
+
"new_states": [],
|
702 |
+
"new_indices": [],
|
703 |
+
"new_tokens": [],
|
704 |
+
"new_scores": [],
|
705 |
+
}
|
706 |
+
for seq_idx, pre_seq in enumerate(this_batch_input_ids):
|
707 |
+
# pre_seq = ith sequence generated before this step.
|
708 |
+
|
709 |
+
# input_ids -> (topk) generic beam search best model next tokens
|
710 |
+
# -> (advance) constraints forcing the next token
|
711 |
+
# either way, we need to sort them into "banks" later, so store a "ConstraintListState" for all types of
|
712 |
+
# hypotheses.
|
713 |
+
|
714 |
+
topk_state = topk_contraint_states[seq_idx]
|
715 |
+
topk_state.reset(full_hypotheses[seq_idx].cpu().tolist())
|
716 |
+
|
717 |
+
advance_state = advance_constraint_states[seq_idx]
|
718 |
+
advance_state.reset(pre_seq.cpu().tolist())
|
719 |
+
|
720 |
+
if not advance_state.completed:
|
721 |
+
advance_tokens = torch.LongTensor(advance_state.advance()).to(device)
|
722 |
+
for advance_token in advance_tokens:
|
723 |
+
# since adding each `advance_token` leads to a different hypothesis, create new state instance.
|
724 |
+
new_state = advance_state.copy(stateful=True)
|
725 |
+
new_state.add(advance_token.cpu().tolist())
|
726 |
+
|
727 |
+
advance_seq = torch.cat((pre_seq, advance_token.unsqueeze(0)), -1).cpu().tolist()
|
728 |
+
if advance_seq not in track_new["new_seqs"]:
|
729 |
+
# prevent duplicates, which are basically bound to happen in this process.
|
730 |
+
track_new["new_seqs"].append(advance_seq)
|
731 |
+
track_new["new_indices"].append(sidx + seq_idx) # idx -> global idx across all the batches
|
732 |
+
track_new["new_tokens"].append(advance_token)
|
733 |
+
track_new["new_scores"].append(this_batch_token_scores[seq_idx].take(advance_token))
|
734 |
+
track_new["new_states"].append(new_state)
|
735 |
+
elif push_progress:
|
736 |
+
# Basically, `sent_beam_indices` often chooses very little among `input_ids` the generated sequences that
|
737 |
+
# actually fulfill our constraints. For example, let constraints == ["loves pies"] and
|
738 |
+
|
739 |
+
# pre_seq_1 = "The child loves pies and" pre_seq_2 = "The child plays in the playground and"
|
740 |
+
|
741 |
+
# Without this step, if `sent_beam_indices` is something like [1,1], then
|
742 |
+
# 1. `pre_seq_1` won't be added to the list of (topk) hypothesis since it's not in the indices and
|
743 |
+
# 2. it won't be added to the list of (advance) hypothesis since it's completed already. (this is
|
744 |
+
# the else part of `if constraints_completed[seq_idx]`)
|
745 |
+
# 3. it ends up simply getting removed from consideration.
|
746 |
+
|
747 |
+
# #3 might be fine and actually desired, since it's likely that it's a low-probability output anyways,
|
748 |
+
# especially if it's not in the list of `sent_beam_indices`. But this often leads to lengthened beam
|
749 |
+
# search times, since completed sequences keep getting removed after all this effort for constrained
|
750 |
+
# generation.
|
751 |
+
|
752 |
+
# Here, we basically take `pre_seq_1` and to "push" it into the considered list of hypotheses, by simply
|
753 |
+
# appending the next likely token in the vocabulary and adding it to the list of hypotheses.
|
754 |
+
|
755 |
+
new_score, new_token = torch.max(this_batch_token_scores[seq_idx], 0) # some next probable token
|
756 |
+
advance_seq = torch.cat((pre_seq, new_token.unsqueeze(0)), -1)
|
757 |
+
|
758 |
+
advance_state = advance_constraint_states[seq_idx]
|
759 |
+
|
760 |
+
advance_seq = advance_seq.cpu().tolist()
|
761 |
+
|
762 |
+
advance_state.reset(advance_seq)
|
763 |
+
if advance_seq not in track_new["new_seqs"]:
|
764 |
+
# but still don't want to have duplicates
|
765 |
+
track_new["new_seqs"].append(advance_seq)
|
766 |
+
track_new["new_indices"].append(seq_idx)
|
767 |
+
track_new["new_tokens"].append(new_token)
|
768 |
+
track_new["new_scores"].append(new_score)
|
769 |
+
track_new["new_states"].append(advance_state)
|
770 |
+
|
771 |
+
if len(track_new["new_indices"]) > 0:
|
772 |
+
new_indices = torch.tensor(track_new["new_indices"]).to(device)
|
773 |
+
new_tokens = torch.stack(track_new["new_tokens"]).to(device)
|
774 |
+
new_scores = torch.stack(track_new["new_scores"]).to(device)
|
775 |
+
|
776 |
+
all_states = topk_contraint_states + track_new["new_states"]
|
777 |
+
all_tokens = torch.cat((sent_beam_tokens, new_tokens), -1)
|
778 |
+
all_scores = torch.cat((sent_beam_scores, new_scores), -1)
|
779 |
+
all_banks = torch.tensor([one.get_bank() for one in all_states]).to(device)
|
780 |
+
|
781 |
+
zipped = all_banks * 100 + all_scores
|
782 |
+
indices = zipped.sort(descending=True).indices
|
783 |
+
sorted_banks = all_banks[indices]
|
784 |
+
|
785 |
+
# Then we end up with {sorted among bank C}, {sorted among bank C-1}, ..., {sorted among bank 0}
|
786 |
+
|
787 |
+
counter = -1
|
788 |
+
cur_bank = sorted_banks[0]
|
789 |
+
increments = []
|
790 |
+
for bank in sorted_banks:
|
791 |
+
if bank == cur_bank:
|
792 |
+
counter += 1
|
793 |
+
else:
|
794 |
+
counter = 0
|
795 |
+
cur_bank = bank
|
796 |
+
increments.append(counter)
|
797 |
+
rearrangers = torch.tensor(np.argsort(increments, kind="mergesort"))
|
798 |
+
|
799 |
+
indices = indices[rearrangers][:orig_len]
|
800 |
+
|
801 |
+
sent_beam_scores = all_scores[indices]
|
802 |
+
sent_beam_tokens = all_tokens[indices]
|
803 |
+
sent_beam_indices = torch.cat((sent_beam_indices, new_indices))[indices]
|
804 |
+
|
805 |
+
return sent_beam_scores, sent_beam_tokens, sent_beam_indices
|
806 |
+
|
807 |
+
def finalize(
|
808 |
+
self,
|
809 |
+
input_ids: torch.LongTensor,
|
810 |
+
final_beam_scores: torch.FloatTensor,
|
811 |
+
final_beam_tokens: torch.LongTensor,
|
812 |
+
final_beam_indices: torch.LongTensor,
|
813 |
+
max_length: int,
|
814 |
+
pad_token_id: Optional[int] = None,
|
815 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
816 |
+
beam_indices: Optional[torch.LongTensor] = None,
|
817 |
+
decoder_prompt_len: Optional[int] = 0,
|
818 |
+
) -> Tuple[torch.LongTensor]:
|
819 |
+
batch_size = len(self._beam_hyps)
|
820 |
+
|
821 |
+
if isinstance(eos_token_id, int):
|
822 |
+
eos_token_id = [eos_token_id]
|
823 |
+
|
824 |
+
# finalize all open beam hypotheses and add to generated hypotheses
|
825 |
+
for batch_idx, beam_hyp in enumerate(self._beam_hyps):
|
826 |
+
if self._done[batch_idx]:
|
827 |
+
continue
|
828 |
+
|
829 |
+
# all open beam hypotheses are added to the beam hypothesis
|
830 |
+
# beam hypothesis class automatically keeps the best beams
|
831 |
+
|
832 |
+
ids_collect = []
|
833 |
+
for beam_id in range(self.num_beams):
|
834 |
+
batch_beam_idx = batch_idx * self.num_beams + beam_id
|
835 |
+
final_score = final_beam_scores[batch_beam_idx].item()
|
836 |
+
final_tokens = input_ids[batch_beam_idx]
|
837 |
+
|
838 |
+
completes_constraint = self.check_completes_constraints(final_tokens.cpu().tolist())
|
839 |
+
if completes_constraint:
|
840 |
+
beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None
|
841 |
+
generated_len = final_tokens.shape[-1] - decoder_prompt_len
|
842 |
+
beam_hyp.add(final_tokens, final_score, beam_indices=beam_index, generated_len=generated_len)
|
843 |
+
ids_collect.append(beam_id)
|
844 |
+
|
845 |
+
# due to overly complex constraints or other factors, sometimes we can't gaurantee a successful
|
846 |
+
# generation. In these cases we simply return the highest scoring outputs.
|
847 |
+
if len(ids_collect) < self.num_beam_hyps_to_keep:
|
848 |
+
for beam_id in range(self.num_beams):
|
849 |
+
if beam_id not in ids_collect:
|
850 |
+
batch_beam_idx = batch_idx * self.num_beams + beam_id
|
851 |
+
final_score = final_beam_scores[batch_beam_idx].item()
|
852 |
+
final_tokens = input_ids[batch_beam_idx]
|
853 |
+
generated_len = final_tokens.shape[-1] - decoder_prompt_len
|
854 |
+
beam_hyp.add(final_tokens, final_score, generated_len=generated_len)
|
855 |
+
if len(ids_collect) >= self.num_beam_hyps_to_keep:
|
856 |
+
break
|
857 |
+
|
858 |
+
# select the best hypotheses
|
859 |
+
sent_lengths = input_ids.new(batch_size * self.num_beam_hyps_to_keep)
|
860 |
+
best = []
|
861 |
+
best_indices = []
|
862 |
+
best_scores = torch.zeros(batch_size * self.num_beam_hyps_to_keep, device=self.device, dtype=torch.float32)
|
863 |
+
|
864 |
+
# retrieve best hypotheses
|
865 |
+
for i, beam_hyp in enumerate(self._beam_hyps):
|
866 |
+
sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0])
|
867 |
+
for j in range(self.num_beam_hyps_to_keep):
|
868 |
+
best_hyp_tuple = sorted_hyps.pop()
|
869 |
+
best_score = best_hyp_tuple[0]
|
870 |
+
best_hyp = best_hyp_tuple[1]
|
871 |
+
best_index = best_hyp_tuple[2]
|
872 |
+
sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)
|
873 |
+
|
874 |
+
# append to lists
|
875 |
+
best.append(best_hyp)
|
876 |
+
|
877 |
+
# append indices to list
|
878 |
+
best_indices.append(best_index)
|
879 |
+
|
880 |
+
best_scores[i * self.num_beam_hyps_to_keep + j] = best_score
|
881 |
+
|
882 |
+
# prepare for adding eos
|
883 |
+
sent_lengths_max = sent_lengths.max().item() + 1
|
884 |
+
|
885 |
+
sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max
|
886 |
+
decoded: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
|
887 |
+
|
888 |
+
if len(best_indices) > 0 and best_indices[0] is not None:
|
889 |
+
indices: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
|
890 |
+
else:
|
891 |
+
indices = None
|
892 |
+
|
893 |
+
# shorter batches are padded if needed
|
894 |
+
if sent_lengths.min().item() != sent_lengths.max().item():
|
895 |
+
if pad_token_id is None:
|
896 |
+
raise ValueError("`pad_token_id` has to be defined")
|
897 |
+
decoded.fill_(pad_token_id)
|
898 |
+
|
899 |
+
if indices is not None:
|
900 |
+
indices.fill_(-1)
|
901 |
+
|
902 |
+
# fill with hypotheses and eos_token_id if the latter fits in
|
903 |
+
for i, (hypo, best_idx) in enumerate(zip(best, best_indices)):
|
904 |
+
decoded[i, : sent_lengths[i]] = hypo
|
905 |
+
|
906 |
+
if indices is not None:
|
907 |
+
indices[i, : len(best_idx)] = torch.tensor(best_idx)
|
908 |
+
|
909 |
+
if sent_lengths[i] < sent_max_len:
|
910 |
+
# inserting only the first eos_token_id
|
911 |
+
decoded[i, sent_lengths[i]] = eos_token_id[0]
|
912 |
+
|
913 |
+
return UserDict(
|
914 |
+
{
|
915 |
+
"sequences": decoded,
|
916 |
+
"sequence_scores": best_scores,
|
917 |
+
"beam_indices": indices,
|
918 |
+
}
|
919 |
+
)
|
920 |
+
|
921 |
+
|
922 |
+
class BeamHypotheses:
|
923 |
+
def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool, max_length: Optional[int] = None):
|
924 |
+
"""
|
925 |
+
Initialize n-best list of hypotheses.
|
926 |
+
"""
|
927 |
+
self.length_penalty = length_penalty
|
928 |
+
self.early_stopping = early_stopping
|
929 |
+
self.max_length = max_length
|
930 |
+
self.num_beams = num_beams
|
931 |
+
self.beams = []
|
932 |
+
self.worst_score = 1e9
|
933 |
+
|
934 |
+
if not isinstance(self.early_stopping, bool) and self.max_length is None:
|
935 |
+
raise ValueError(
|
936 |
+
"When `do_early_stopping` is set to a string, `max_length` must be defined. Ensure it is passed to the"
|
937 |
+
" BeamScorer class instance at initialization time."
|
938 |
+
)
|
939 |
+
|
940 |
+
def __len__(self):
|
941 |
+
"""
|
942 |
+
Number of hypotheses in the list.
|
943 |
+
"""
|
944 |
+
return len(self.beams)
|
945 |
+
|
946 |
+
def add(
|
947 |
+
self,
|
948 |
+
hyp: torch.LongTensor,
|
949 |
+
sum_logprobs: float,
|
950 |
+
beam_indices: Optional[torch.LongTensor] = None,
|
951 |
+
generated_len: Optional[int] = None,
|
952 |
+
):
|
953 |
+
"""
|
954 |
+
Add a new hypothesis to the list.
|
955 |
+
"""
|
956 |
+
if generated_len is not None:
|
957 |
+
score = sum_logprobs / (generated_len**self.length_penalty)
|
958 |
+
# This 'else' case exists for retrocompatibility
|
959 |
+
else:
|
960 |
+
score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty)
|
961 |
+
|
962 |
+
if len(self) < self.num_beams or score > self.worst_score:
|
963 |
+
self.beams.append((score, hyp, beam_indices))
|
964 |
+
if len(self) > self.num_beams:
|
965 |
+
sorted_next_scores = sorted([(s, idx) for idx, (s, _, _) in enumerate(self.beams)])
|
966 |
+
del self.beams[sorted_next_scores[0][1]]
|
967 |
+
self.worst_score = sorted_next_scores[1][0]
|
968 |
+
else:
|
969 |
+
self.worst_score = min(score, self.worst_score)
|
970 |
+
|
971 |
+
def is_done(self, best_sum_logprobs: float, cur_len: int, decoder_prompt_len: Optional[int] = 0) -> bool:
|
972 |
+
"""
|
973 |
+
If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst
|
974 |
+
one in the heap, then we are done with this sentence.
|
975 |
+
"""
|
976 |
+
|
977 |
+
if len(self) < self.num_beams:
|
978 |
+
return False
|
979 |
+
|
980 |
+
# `True`: stop as soon as at least `num_beams` hypotheses are finished
|
981 |
+
if self.early_stopping is True:
|
982 |
+
return True
|
983 |
+
# `False`: heuristic -- compute best possible score from `cur_len`, even though it is not entirely accurate
|
984 |
+
# when `length_penalty` is positive. See the discussion below for more details.
|
985 |
+
# https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
|
986 |
+
elif self.early_stopping is False:
|
987 |
+
highest_attainable_score = best_sum_logprobs / (cur_len - decoder_prompt_len) ** self.length_penalty
|
988 |
+
ret = self.worst_score >= highest_attainable_score
|
989 |
+
return ret
|
990 |
+
# `"never"`: compute the best possible score, depending on the signal of `length_penalty`
|
991 |
+
else:
|
992 |
+
# `length_penalty` > 0.0 -> max denominator is obtaned from `max_length`, not from `cur_len` -> min
|
993 |
+
# abs(`highest_attainable_score`) is obtained -> `highest_attainable_score` is negative, hence we obtain
|
994 |
+
# its max this way
|
995 |
+
if self.length_penalty > 0.0:
|
996 |
+
if self.max_length <= decoder_prompt_len:
|
997 |
+
raise ValueError("max_length is not larger than decoder prompt length")
|
998 |
+
highest_attainable_score = (
|
999 |
+
best_sum_logprobs / (self.max_length - decoder_prompt_len) ** self.length_penalty
|
1000 |
+
)
|
1001 |
+
# the opposite logic applies here (max `highest_attainable_score` from `cur_len`)
|
1002 |
+
else:
|
1003 |
+
highest_attainable_score = best_sum_logprobs / (cur_len - decoder_prompt_len) ** self.length_penalty
|
1004 |
+
ret = self.worst_score >= highest_attainable_score
|
1005 |
+
return ret
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/candidate_generator.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import copy
|
17 |
+
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
|
18 |
+
|
19 |
+
import torch
|
20 |
+
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
from ..modeling_utils import PreTrainedModel
|
24 |
+
from .configuration_utils import GenerationConfig
|
25 |
+
from .logits_process import LogitsProcessorList
|
26 |
+
|
27 |
+
|
28 |
+
class CandidateGenerator:
|
29 |
+
"""Abstract base class for all candidate generators that can be applied during assisted generation."""
|
30 |
+
|
31 |
+
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
|
32 |
+
"""
|
33 |
+
Fetches the candidates to be tried for the current input.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
37 |
+
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
|
38 |
+
|
39 |
+
Return:
|
40 |
+
`torch.LongTensor` of shape `(batch_size, candidate_length)` containing the candidate sequences to be
|
41 |
+
assessed by the model and, optionally, a `torch.FloatTensor` of shape `(batch_size, candidate_length,
|
42 |
+
vocabulary_size)` containing the logits associated to each candidate.
|
43 |
+
"""
|
44 |
+
raise NotImplementedError(
|
45 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can call `get_candidates`."
|
46 |
+
)
|
47 |
+
|
48 |
+
def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int):
|
49 |
+
"""
|
50 |
+
Updates the candidate generation strategy based on the outcomes.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
54 |
+
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
|
55 |
+
scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`):
|
56 |
+
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
|
57 |
+
beam search or log softmax for each vocabulary token when using beam search
|
58 |
+
num_matches (`int`):
|
59 |
+
The number of matches between the candidate sequences and the model predictions.
|
60 |
+
"""
|
61 |
+
raise NotImplementedError(
|
62 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can call "
|
63 |
+
"`update_candidate_strategy`."
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
class AssistedCandidateGenerator(CandidateGenerator):
|
68 |
+
"""
|
69 |
+
`CandidateGenerator` class to be used for assisted generation and speculative decoding. This class generates
|
70 |
+
candidates through the use of a smaller model. Read the following blog post for more information:
|
71 |
+
https://huggingface.co/blog/assisted-generation
|
72 |
+
|
73 |
+
Args:
|
74 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
75 |
+
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
|
76 |
+
assistant_model (`PreTrainedModel`):
|
77 |
+
The model to be used for generating candidates. This model should be smaller than the main model.
|
78 |
+
generation_config (`~generation.GenerationConfig`, *optional*):
|
79 |
+
The generation configuration to be used as base parametrization for the generation call.
|
80 |
+
logits_processor (`LogitsProcessorList`):
|
81 |
+
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
|
82 |
+
used to modify the prediction scores of the language modeling head applied at each generation step.
|
83 |
+
model_kwargs (`Dict`):
|
84 |
+
The keyword arguments that will be passed to the main model, and are used as base inputs for the assistant
|
85 |
+
model as well.
|
86 |
+
inputs_tensor (`torch.Tensor`, *optional*):
|
87 |
+
The model input tensor. In encoder-decoder models, this is the encoder input.
|
88 |
+
"""
|
89 |
+
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
input_ids: torch.LongTensor,
|
93 |
+
assistant_model: "PreTrainedModel",
|
94 |
+
generation_config: "GenerationConfig",
|
95 |
+
logits_processor: "LogitsProcessorList",
|
96 |
+
model_kwargs: Dict,
|
97 |
+
inputs_tensor: Optional[torch.Tensor] = None,
|
98 |
+
):
|
99 |
+
# Make sure all data at the same device as assistant model
|
100 |
+
device = assistant_model.device
|
101 |
+
input_ids = input_ids.to(device)
|
102 |
+
if inputs_tensor is not None:
|
103 |
+
inputs_tensor = inputs_tensor.to(device)
|
104 |
+
|
105 |
+
# Prepare the assistant and the starting number of candidate tokens
|
106 |
+
self.assistant_model = assistant_model
|
107 |
+
self.num_assistant_tokens = assistant_model.generation_config.num_assistant_tokens
|
108 |
+
|
109 |
+
# Prepare the kwargs for the assistant model
|
110 |
+
assistant_kwargs = {}
|
111 |
+
for key, value in model_kwargs.items(): # deepcopy crashes if we attempt to copy encoder outputs with grads
|
112 |
+
if key not in ("encoder_outputs", "assistant_encoder_outputs"):
|
113 |
+
assistant_kwargs[key] = (
|
114 |
+
value.detach().to(device) if isinstance(value, torch.Tensor) else copy.deepcopy(value)
|
115 |
+
)
|
116 |
+
|
117 |
+
if "assistant_encoder_outputs" in model_kwargs:
|
118 |
+
assistant_kwargs["encoder_outputs"] = model_kwargs["assistant_encoder_outputs"]
|
119 |
+
elif assistant_model.config.is_encoder_decoder:
|
120 |
+
inputs_tensor, model_input_name, assistant_kwargs = assistant_model._prepare_model_inputs(
|
121 |
+
inputs_tensor, assistant_model.generation_config.bos_token_id, assistant_kwargs
|
122 |
+
)
|
123 |
+
assistant_kwargs = assistant_model._prepare_encoder_decoder_kwargs_for_generation(
|
124 |
+
inputs_tensor, assistant_kwargs, model_input_name
|
125 |
+
)
|
126 |
+
elif "encoder_outputs" in model_kwargs:
|
127 |
+
assistant_kwargs["encoder_outputs"] = model_kwargs["encoder_outputs"]
|
128 |
+
self.assistant_kwargs = assistant_kwargs
|
129 |
+
|
130 |
+
# Prepare assistant model's keys of inputs
|
131 |
+
if assistant_model.config.is_encoder_decoder:
|
132 |
+
# both are encoder-decoder
|
133 |
+
self.input_ids_key = "decoder_input_ids"
|
134 |
+
self.attention_key = "decoder_attention_mask"
|
135 |
+
elif "encoder_outputs" in assistant_kwargs:
|
136 |
+
# special case for encoder-decoder with decoder-only assistant (like DistilWhisper)
|
137 |
+
self.input_ids_key = "input_ids"
|
138 |
+
self.attention_key = "attention_mask"
|
139 |
+
self.assistant_kwargs["attention_mask"] = self.assistant_kwargs.get(
|
140 |
+
"decoder_attention_mask",
|
141 |
+
torch.ones((input_ids.shape[0], 1), device=input_ids.device, dtype=torch.long),
|
142 |
+
)
|
143 |
+
else:
|
144 |
+
# both are decoder-only
|
145 |
+
self.input_ids_key = "input_ids"
|
146 |
+
self.attention_key = "attention_mask"
|
147 |
+
|
148 |
+
# Prepare generation-related options.
|
149 |
+
eos_token_id = generation_config.eos_token_id
|
150 |
+
if isinstance(eos_token_id, int):
|
151 |
+
eos_token_id = [eos_token_id]
|
152 |
+
self.eos_token_id_tensor = (
|
153 |
+
torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
154 |
+
)
|
155 |
+
self.logits_processor = logits_processor
|
156 |
+
self.generation_config = copy.deepcopy(generation_config)
|
157 |
+
self.generation_config.return_dict_in_generate = True
|
158 |
+
self.generation_config.output_scores = True
|
159 |
+
|
160 |
+
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
|
161 |
+
"""
|
162 |
+
Fetches the candidates to be tried for the current input.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
166 |
+
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
|
167 |
+
|
168 |
+
Return:
|
169 |
+
`torch.LongTensor` of shape `(batch_size, candidate_length)` containing the candidate sequences to be
|
170 |
+
assessed by the model and a `torch.FloatTensor` of shape `(batch_size, candidate_length,
|
171 |
+
vocabulary_size)` containing the logits associated to each candidate.
|
172 |
+
"""
|
173 |
+
input_ids = input_ids.to(self.assistant_model.device)
|
174 |
+
|
175 |
+
# Don't generate more than `max_length - 1` candidates since the target model generates one extra token.
|
176 |
+
new_cur_len = input_ids.shape[-1]
|
177 |
+
max_new_tokens = min(int(self.num_assistant_tokens), self.generation_config.max_length - new_cur_len - 1)
|
178 |
+
if max_new_tokens == 0:
|
179 |
+
return input_ids, None
|
180 |
+
|
181 |
+
# 1. If it is not the first round of candidate generation, prepare the inputs based on the input_ids length
|
182 |
+
# (which implicitly contains the number of accepted candidates from the previous round)
|
183 |
+
has_past_key_values = self.assistant_kwargs.get("past_key_values", None) is not None
|
184 |
+
if has_past_key_values:
|
185 |
+
new_cache_size = new_cur_len - 1
|
186 |
+
self.assistant_kwargs["past_key_values"] = _crop_past_key_values(
|
187 |
+
self.assistant_model, self.assistant_kwargs["past_key_values"], new_cache_size - 1
|
188 |
+
) # the assistant does not have the token after the last match, hence the -1
|
189 |
+
|
190 |
+
self.assistant_kwargs = _prepare_attention_mask(
|
191 |
+
self.assistant_kwargs, new_cur_len, self.assistant_model.config.is_encoder_decoder
|
192 |
+
)
|
193 |
+
self.assistant_kwargs = _prepare_token_type_ids(self.assistant_kwargs, new_cur_len)
|
194 |
+
|
195 |
+
# 2. Forecast next N tokens using the assistant model.
|
196 |
+
assistant_generation_kwargs = {
|
197 |
+
self.input_ids_key: input_ids,
|
198 |
+
"max_new_tokens": max_new_tokens,
|
199 |
+
"generation_config": self.generation_config,
|
200 |
+
"logits_processor": self.logits_processor,
|
201 |
+
}
|
202 |
+
|
203 |
+
assistant_output = self.assistant_model.generate(**assistant_generation_kwargs, **self.assistant_kwargs)
|
204 |
+
|
205 |
+
# 3. Update variables for the next round of candidate generation
|
206 |
+
self.assistant_kwargs["past_key_values"] = assistant_output.past_key_values
|
207 |
+
|
208 |
+
# 4. Prepare variables for output
|
209 |
+
candidate_logits = torch.stack(assistant_output.scores, dim=1)
|
210 |
+
candidate_ids = assistant_output.sequences
|
211 |
+
return candidate_ids, candidate_logits
|
212 |
+
|
213 |
+
def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int):
|
214 |
+
"""
|
215 |
+
Updates the candidate generation strategy based on the outcomes.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
219 |
+
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
|
220 |
+
scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`):
|
221 |
+
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
|
222 |
+
beam search or log softmax for each vocabulary token when using beam search
|
223 |
+
num_matches (`int`):
|
224 |
+
The number of matches between the candidate sequences and the model predictions.
|
225 |
+
"""
|
226 |
+
# Adjust the max number of assistant tokens to use in the next iteration. This is a simple heuristic,
|
227 |
+
# probably can be improved -- we want to balance the benefits of getting assistant tokens correct with the
|
228 |
+
# cost of forecasting incorrect assistant tokens.
|
229 |
+
if self.assistant_model.generation_config.num_assistant_tokens_schedule in {
|
230 |
+
"heuristic",
|
231 |
+
"heuristic_transient",
|
232 |
+
}:
|
233 |
+
if num_matches == int(self.num_assistant_tokens):
|
234 |
+
self.num_assistant_tokens += 2.0
|
235 |
+
else:
|
236 |
+
self.num_assistant_tokens = max(1.0, self.num_assistant_tokens - 1.0)
|
237 |
+
|
238 |
+
|
239 |
+
class PromptLookupCandidateGenerator(CandidateGenerator):
|
240 |
+
"""
|
241 |
+
`CandidateGenerator` class to be used for prompt lookup generation. This class generates candidates by looking up
|
242 |
+
likely continuations in the provided prompt (input_ids) itself.
|
243 |
+
Read the following blog post for more information: https://github.com/apoorvumang/prompt-lookup-decoding
|
244 |
+
|
245 |
+
Args:
|
246 |
+
max_matching_ngram_size (`int`):
|
247 |
+
The maximum ngram size to be considered for matching in the prompt
|
248 |
+
num_output_tokens (`int`):
|
249 |
+
The number of tokens to be output as candidate tokens.
|
250 |
+
"""
|
251 |
+
|
252 |
+
def __init__(
|
253 |
+
self,
|
254 |
+
num_output_tokens: int = 10,
|
255 |
+
max_matching_ngram_size: int = None,
|
256 |
+
):
|
257 |
+
self.num_output_tokens = num_output_tokens
|
258 |
+
self.max_matching_ngram_size = max_matching_ngram_size if max_matching_ngram_size else 2
|
259 |
+
|
260 |
+
if self.max_matching_ngram_size <= 0 or self.num_output_tokens <= 0:
|
261 |
+
raise ValueError("Invalid max_matching_ngram_size or num_output_tokens")
|
262 |
+
|
263 |
+
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
|
264 |
+
"""
|
265 |
+
Fetches the candidates to be tried for the current input.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
269 |
+
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
|
270 |
+
|
271 |
+
Return:
|
272 |
+
`torch.LongTensor` of shape `(num_candidates, candidate_length)`: The candidate sequences to be tried.
|
273 |
+
"""
|
274 |
+
input_length = input_ids.size(1)
|
275 |
+
|
276 |
+
chosen_ids = None
|
277 |
+
match_found = False
|
278 |
+
for ngram_size in range(min(self.max_matching_ngram_size, input_length - 1), 0, -1):
|
279 |
+
# Create sliding windows of size ngram_size
|
280 |
+
windows = input_ids.unfold(dimension=1, size=ngram_size, step=1)
|
281 |
+
|
282 |
+
# Convert ngram to a tensor for comparison
|
283 |
+
ngram_tensor = input_ids[0, -ngram_size:]
|
284 |
+
|
285 |
+
# Find where the windows match the ngram
|
286 |
+
matches = (windows == ngram_tensor).all(dim=2)
|
287 |
+
|
288 |
+
# Get the indices of matches
|
289 |
+
match_indices = matches.nonzero(as_tuple=True)[1]
|
290 |
+
|
291 |
+
# Iterate through match indices to find a valid continuation
|
292 |
+
for idx in match_indices:
|
293 |
+
start_idx = idx + ngram_size
|
294 |
+
end_idx = start_idx + self.num_output_tokens
|
295 |
+
end_idx = min(end_idx, input_length)
|
296 |
+
|
297 |
+
if start_idx < end_idx:
|
298 |
+
chosen_ids = input_ids[0, start_idx:end_idx]
|
299 |
+
match_found = True
|
300 |
+
break
|
301 |
+
if match_found:
|
302 |
+
break
|
303 |
+
|
304 |
+
if chosen_ids is None or len(chosen_ids) == 0:
|
305 |
+
# In case we didn't find a match return the input sequence unchanged, reverts back to autoregressive decoding
|
306 |
+
return input_ids, None
|
307 |
+
|
308 |
+
# Now need extend input_ids with chosen_ids
|
309 |
+
chosen_ids = chosen_ids.unsqueeze(0)
|
310 |
+
candidate_input_ids = torch.cat((input_ids, chosen_ids), dim=1)
|
311 |
+
# assisted_generation expects logits as well, but we don't have those here, so returning None
|
312 |
+
return candidate_input_ids, None
|
313 |
+
|
314 |
+
def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int):
|
315 |
+
"""
|
316 |
+
Updates the candidate generation strategy based on the outcomes.
|
317 |
+
|
318 |
+
Args:
|
319 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
320 |
+
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
|
321 |
+
scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`):
|
322 |
+
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
|
323 |
+
beam search or log softmax for each vocabulary token when using beam search
|
324 |
+
num_matches (`int`):
|
325 |
+
The number of matches between the candidate sequences and the model predictions.
|
326 |
+
"""
|
327 |
+
# Currently does nothing
|
328 |
+
return
|
329 |
+
|
330 |
+
|
331 |
+
def _crop_past_key_values(model, past_key_values, maximum_length):
|
332 |
+
"""Crops the past key values up to a certain maximum length."""
|
333 |
+
new_past = []
|
334 |
+
if model.config.is_encoder_decoder:
|
335 |
+
for idx in range(len(past_key_values)):
|
336 |
+
new_past.append(
|
337 |
+
(
|
338 |
+
past_key_values[idx][0][:, :, :maximum_length, :],
|
339 |
+
past_key_values[idx][1][:, :, :maximum_length, :],
|
340 |
+
past_key_values[idx][2],
|
341 |
+
past_key_values[idx][3],
|
342 |
+
)
|
343 |
+
)
|
344 |
+
past_key_values = tuple(new_past)
|
345 |
+
# bloom is special
|
346 |
+
elif "bloom" in model.__class__.__name__.lower() or (
|
347 |
+
model.config.architectures is not None and "bloom" in model.config.architectures[0].lower()
|
348 |
+
):
|
349 |
+
for idx in range(len(past_key_values)):
|
350 |
+
new_past.append(
|
351 |
+
(
|
352 |
+
past_key_values[idx][0][:, :, :maximum_length],
|
353 |
+
past_key_values[idx][1][:, :maximum_length, :],
|
354 |
+
)
|
355 |
+
)
|
356 |
+
past_key_values = tuple(new_past)
|
357 |
+
# gptbigcode is too
|
358 |
+
elif "gptbigcode" in model.__class__.__name__.lower() or (
|
359 |
+
model.config.architectures is not None and "gptbigcode" in model.config.architectures[0].lower()
|
360 |
+
):
|
361 |
+
if model.config.multi_query:
|
362 |
+
for idx in range(len(past_key_values)):
|
363 |
+
past_key_values[idx] = past_key_values[idx][:, :maximum_length, :]
|
364 |
+
else:
|
365 |
+
for idx in range(len(past_key_values)):
|
366 |
+
past_key_values[idx] = past_key_values[idx][:, :, :maximum_length, :]
|
367 |
+
else:
|
368 |
+
for idx in range(len(past_key_values)):
|
369 |
+
new_past.append(
|
370 |
+
(
|
371 |
+
past_key_values[idx][0][:, :, :maximum_length, :],
|
372 |
+
past_key_values[idx][1][:, :, :maximum_length, :],
|
373 |
+
)
|
374 |
+
)
|
375 |
+
past_key_values = tuple(new_past)
|
376 |
+
return past_key_values
|
377 |
+
|
378 |
+
|
379 |
+
def _prepare_attention_mask(model_kwargs: Dict[str, Any], new_length: int, is_encoder_decoder: bool) -> Dict[str, Any]:
|
380 |
+
"""Expands or crops the model's mask for decoding purposes, to the defined length"""
|
381 |
+
|
382 |
+
mask_key = "decoder_attention_mask" if is_encoder_decoder else "attention_mask"
|
383 |
+
if mask_key not in model_kwargs:
|
384 |
+
return model_kwargs
|
385 |
+
|
386 |
+
mask = model_kwargs[mask_key]
|
387 |
+
mask_length_diff = new_length - mask.shape[1]
|
388 |
+
|
389 |
+
if mask_length_diff < 0:
|
390 |
+
model_kwargs[mask_key] = mask[:, :mask_length_diff]
|
391 |
+
elif mask_length_diff > 0:
|
392 |
+
model_kwargs[mask_key] = torch.cat([mask, mask.new_ones((mask.shape[0], mask_length_diff))], dim=-1)
|
393 |
+
return model_kwargs
|
394 |
+
|
395 |
+
|
396 |
+
def _prepare_token_type_ids(model_kwargs: Dict[str, Any], new_length: int) -> Dict[str, Any]:
|
397 |
+
"""Expands or crops the model's token_type_ids for decoding purposes, to the defined length"""
|
398 |
+
if "token_type_ids" not in model_kwargs or model_kwargs["token_type_ids"] is None:
|
399 |
+
return model_kwargs
|
400 |
+
|
401 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
402 |
+
final_token_type = token_type_ids[:, -1].unsqueeze(-1)
|
403 |
+
type_length_diff = new_length - token_type_ids.shape[1]
|
404 |
+
|
405 |
+
if type_length_diff < 0:
|
406 |
+
token_type_ids = token_type_ids[:, :type_length_diff]
|
407 |
+
elif type_length_diff > 0:
|
408 |
+
token_type_copies = final_token_type.repeat(1, type_length_diff)
|
409 |
+
model_kwargs["token_type_ids"] = torch.cat([model_kwargs["token_type_ids"], token_type_copies], dim=-1)
|
410 |
+
return model_kwargs
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/configuration_utils.py
ADDED
@@ -0,0 +1,1092 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Generation configuration class and utilities."""
|
16 |
+
|
17 |
+
import copy
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
import warnings
|
21 |
+
from typing import TYPE_CHECKING, Any, Dict, Optional, Union
|
22 |
+
|
23 |
+
from .. import __version__
|
24 |
+
from ..configuration_utils import PretrainedConfig
|
25 |
+
from ..utils import (
|
26 |
+
GENERATION_CONFIG_NAME,
|
27 |
+
ExplicitEnum,
|
28 |
+
PushToHubMixin,
|
29 |
+
cached_file,
|
30 |
+
download_url,
|
31 |
+
extract_commit_hash,
|
32 |
+
is_remote_url,
|
33 |
+
logging,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
if TYPE_CHECKING:
|
38 |
+
from ..modeling_utils import PreTrainedModel
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
METADATA_FIELDS = ("_from_model_config", "_commit_hash", "_original_object_hash", "transformers_version")
|
43 |
+
|
44 |
+
|
45 |
+
class GenerationMode(ExplicitEnum):
|
46 |
+
"""
|
47 |
+
Possible generation modes, downstream of the [`~generation.GenerationMixin.generate`] method.
|
48 |
+
"""
|
49 |
+
|
50 |
+
# Non-beam methods
|
51 |
+
CONTRASTIVE_SEARCH = "contrastive_search"
|
52 |
+
GREEDY_SEARCH = "greedy_search"
|
53 |
+
SAMPLE = "sample"
|
54 |
+
ASSISTED_GENERATION = "assisted_generation"
|
55 |
+
# Beam methods
|
56 |
+
BEAM_SEARCH = "beam_search"
|
57 |
+
BEAM_SAMPLE = "beam_sample"
|
58 |
+
CONSTRAINED_BEAM_SEARCH = "constrained_beam_search"
|
59 |
+
GROUP_BEAM_SEARCH = "group_beam_search"
|
60 |
+
|
61 |
+
|
62 |
+
class GenerationConfig(PushToHubMixin):
|
63 |
+
# no-format
|
64 |
+
r"""
|
65 |
+
Class that holds a configuration for a generation task. A `generate` call supports the following generation methods
|
66 |
+
for text-decoder, text-to-text, speech-to-text, and vision-to-text models:
|
67 |
+
|
68 |
+
- *greedy decoding* by calling [`~generation.GenerationMixin._greedy_search`] if `num_beams=1` and
|
69 |
+
`do_sample=False`
|
70 |
+
- *contrastive search* by calling [`~generation.GenerationMixin._contrastive_search`] if `penalty_alpha>0.`
|
71 |
+
and `top_k>1`
|
72 |
+
- *multinomial sampling* by calling [`~generation.GenerationMixin._sample`] if `num_beams=1` and
|
73 |
+
`do_sample=True`
|
74 |
+
- *beam-search decoding* by calling [`~generation.GenerationMixin._beam_search`] if `num_beams>1` and
|
75 |
+
`do_sample=False`
|
76 |
+
- *beam-search multinomial sampling* by calling [`~generation.GenerationMixin._beam_sample`] if
|
77 |
+
`num_beams>1` and `do_sample=True`
|
78 |
+
- *diverse beam-search decoding* by calling [`~generation.GenerationMixin._group_beam_search`], if
|
79 |
+
`num_beams>1` and `num_beam_groups>1`
|
80 |
+
- *constrained beam-search decoding* by calling [`~generation.GenerationMixin._constrained_beam_search`], if
|
81 |
+
`constraints!=None` or `force_words_ids!=None`
|
82 |
+
- *assisted decoding* by calling [`~generation.GenerationMixin._assisted_decoding`], if
|
83 |
+
`assistant_model` or `prompt_lookup_num_tokens` is passed to `.generate()`
|
84 |
+
|
85 |
+
You do not need to call any of the above methods directly. Pass custom parameter values to '.generate()'. To learn
|
86 |
+
more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
|
87 |
+
|
88 |
+
<Tip>
|
89 |
+
|
90 |
+
A large number of these flags control the logits or the stopping criteria of the generation. Make sure you check
|
91 |
+
the [generate-related classes](https://huggingface.co/docs/transformers/internal/generation_utils) for a full
|
92 |
+
description of the possible manipulations, as well as examples of their usage.
|
93 |
+
|
94 |
+
</Tip>
|
95 |
+
|
96 |
+
Arg:
|
97 |
+
> Parameters that control the length of the output
|
98 |
+
|
99 |
+
max_length (`int`, *optional*, defaults to 20):
|
100 |
+
The maximum length the generated tokens can have. Corresponds to the length of the input prompt +
|
101 |
+
`max_new_tokens`. Its effect is overridden by `max_new_tokens`, if also set.
|
102 |
+
max_new_tokens (`int`, *optional*):
|
103 |
+
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
|
104 |
+
min_length (`int`, *optional*, defaults to 0):
|
105 |
+
The minimum length of the sequence to be generated. Corresponds to the length of the input prompt +
|
106 |
+
`min_new_tokens`. Its effect is overridden by `min_new_tokens`, if also set.
|
107 |
+
min_new_tokens (`int`, *optional*):
|
108 |
+
The minimum numbers of tokens to generate, ignoring the number of tokens in the prompt.
|
109 |
+
early_stopping (`bool` or `str`, *optional*, defaults to `False`):
|
110 |
+
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
|
111 |
+
`True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an
|
112 |
+
heuristic is applied and the generation stops when is it very unlikely to find better candidates;
|
113 |
+
`"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical
|
114 |
+
beam search algorithm).
|
115 |
+
max_time(`float`, *optional*):
|
116 |
+
The maximum amount of time you allow the computation to run for in seconds. generation will still finish
|
117 |
+
the current pass after allocated time has been passed.
|
118 |
+
|
119 |
+
> Parameters that control the generation strategy used
|
120 |
+
|
121 |
+
do_sample (`bool`, *optional*, defaults to `False`):
|
122 |
+
Whether or not to use sampling ; use greedy decoding otherwise.
|
123 |
+
num_beams (`int`, *optional*, defaults to 1):
|
124 |
+
Number of beams for beam search. 1 means no beam search.
|
125 |
+
num_beam_groups (`int`, *optional*, defaults to 1):
|
126 |
+
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
|
127 |
+
[this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
|
128 |
+
penalty_alpha (`float`, *optional*):
|
129 |
+
The values balance the model confidence and the degeneration penalty in contrastive search decoding.
|
130 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
131 |
+
Whether or not the model should use the past last key/values attentions (if applicable to the model) to
|
132 |
+
speed up decoding.
|
133 |
+
|
134 |
+
> Parameters for manipulation of the model output logits
|
135 |
+
|
136 |
+
temperature (`float`, *optional*, defaults to 1.0):
|
137 |
+
The value used to modulate the next token probabilities.
|
138 |
+
top_k (`int`, *optional*, defaults to 50):
|
139 |
+
The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
140 |
+
top_p (`float`, *optional*, defaults to 1.0):
|
141 |
+
If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to
|
142 |
+
`top_p` or higher are kept for generation.
|
143 |
+
typical_p (`float`, *optional*, defaults to 1.0):
|
144 |
+
Local typicality measures how similar the conditional probability of predicting a target token next is to
|
145 |
+
the expected conditional probability of predicting a random token next, given the partial text already
|
146 |
+
generated. If set to float < 1, the smallest set of the most locally typical tokens with probabilities that
|
147 |
+
add up to `typical_p` or higher are kept for generation. See [this
|
148 |
+
paper](https://arxiv.org/pdf/2202.00666.pdf) for more details.
|
149 |
+
epsilon_cutoff (`float`, *optional*, defaults to 0.0):
|
150 |
+
If set to float strictly between 0 and 1, only tokens with a conditional probability greater than
|
151 |
+
`epsilon_cutoff` will be sampled. In the paper, suggested values range from 3e-4 to 9e-4, depending on the
|
152 |
+
size of the model. See [Truncation Sampling as Language Model
|
153 |
+
Desmoothing](https://arxiv.org/abs/2210.15191) for more details.
|
154 |
+
eta_cutoff (`float`, *optional*, defaults to 0.0):
|
155 |
+
Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to float strictly between
|
156 |
+
0 and 1, a token is only considered if it is greater than either `eta_cutoff` or `sqrt(eta_cutoff) *
|
157 |
+
exp(-entropy(softmax(next_token_logits)))`. The latter term is intuitively the expected next token
|
158 |
+
probability, scaled by `sqrt(eta_cutoff)`. In the paper, suggested values range from 3e-4 to 2e-3,
|
159 |
+
depending on the size of the model. See [Truncation Sampling as Language Model
|
160 |
+
Desmoothing](https://arxiv.org/abs/2210.15191) for more details.
|
161 |
+
diversity_penalty (`float`, *optional*, defaults to 0.0):
|
162 |
+
This value is subtracted from a beam's score if it generates a token same as any beam from other group at a
|
163 |
+
particular time. Note that `diversity_penalty` is only effective if `group beam search` is enabled.
|
164 |
+
repetition_penalty (`float`, *optional*, defaults to 1.0):
|
165 |
+
The parameter for repetition penalty. 1.0 means no penalty. See [this
|
166 |
+
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
|
167 |
+
encoder_repetition_penalty (`float`, *optional*, defaults to 1.0):
|
168 |
+
The paramater for encoder_repetition_penalty. An exponential penalty on sequences that are not in the
|
169 |
+
original input. 1.0 means no penalty.
|
170 |
+
length_penalty (`float`, *optional*, defaults to 1.0):
|
171 |
+
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
172 |
+
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
173 |
+
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
|
174 |
+
`length_penalty` < 0.0 encourages shorter sequences.
|
175 |
+
no_repeat_ngram_size (`int`, *optional*, defaults to 0):
|
176 |
+
If set to int > 0, all ngrams of that size can only occur once.
|
177 |
+
bad_words_ids(`List[List[int]]`, *optional*):
|
178 |
+
List of list of token ids that are not allowed to be generated. Check
|
179 |
+
[`~generation.NoBadWordsLogitsProcessor`] for further documentation and examples.
|
180 |
+
force_words_ids(`List[List[int]]` or `List[List[List[int]]]`, *optional*):
|
181 |
+
List of token ids that must be generated. If given a `List[List[int]]`, this is treated as a simple list of
|
182 |
+
words that must be included, the opposite to `bad_words_ids`. If given `List[List[List[int]]]`, this
|
183 |
+
triggers a [disjunctive constraint](https://github.com/huggingface/transformers/issues/14081), where one
|
184 |
+
can allow different forms of each word.
|
185 |
+
renormalize_logits (`bool`, *optional*, defaults to `False`):
|
186 |
+
Whether to renormalize the logits after applying all the logits processors or warpers (including the custom
|
187 |
+
ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the score logits
|
188 |
+
are normalized but some logit processors or warpers break the normalization.
|
189 |
+
constraints (`List[Constraint]`, *optional*):
|
190 |
+
Custom constraints that can be added to the generation to ensure that the output will contain the use of
|
191 |
+
certain tokens as defined by `Constraint` objects, in the most sensible way possible.
|
192 |
+
forced_bos_token_id (`int`, *optional*, defaults to `model.config.forced_bos_token_id`):
|
193 |
+
The id of the token to force as the first generated token after the `decoder_start_token_id`. Useful for
|
194 |
+
multilingual models like [mBART](../model_doc/mbart) where the first generated token needs to be the target
|
195 |
+
language token.
|
196 |
+
forced_eos_token_id (`Union[int, List[int]]`, *optional*, defaults to `model.config.forced_eos_token_id`):
|
197 |
+
The id of the token to force as the last generated token when `max_length` is reached. Optionally, use a
|
198 |
+
list to set multiple *end-of-sequence* tokens.
|
199 |
+
remove_invalid_values (`bool`, *optional*, defaults to `model.config.remove_invalid_values`):
|
200 |
+
Whether to remove possible *nan* and *inf* outputs of the model to prevent the generation method to crash.
|
201 |
+
Note that using `remove_invalid_values` can slow down generation.
|
202 |
+
exponential_decay_length_penalty (`tuple(int, float)`, *optional*):
|
203 |
+
This Tuple adds an exponentially increasing length penalty, after a certain amount of tokens have been
|
204 |
+
generated. The tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where
|
205 |
+
penalty starts and `decay_factor` represents the factor of exponential decay
|
206 |
+
suppress_tokens (`List[int]`, *optional*):
|
207 |
+
A list of tokens that will be suppressed at generation. The `SupressTokens` logit processor will set their
|
208 |
+
log probs to `-inf` so that they are not sampled.
|
209 |
+
begin_suppress_tokens (`List[int]`, *optional*):
|
210 |
+
A list of tokens that will be suppressed at the beginning of the generation. The `SupressBeginTokens` logit
|
211 |
+
processor will set their log probs to `-inf` so that they are not sampled.
|
212 |
+
forced_decoder_ids (`List[List[int]]`, *optional*):
|
213 |
+
A list of pairs of integers which indicates a mapping from generation indices to token indices that will be
|
214 |
+
forced before sampling. For example, `[[1, 123]]` means the second generated token will always be a token
|
215 |
+
of index 123.
|
216 |
+
sequence_bias (`Dict[Tuple[int], float]`, *optional*)):
|
217 |
+
Dictionary that maps a sequence of tokens to its bias term. Positive biases increase the odds of the
|
218 |
+
sequence being selected, while negative biases do the opposite. Check
|
219 |
+
[`~generation.SequenceBiasLogitsProcessor`] for further documentation and examples.
|
220 |
+
guidance_scale (`float`, *optional*):
|
221 |
+
The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale > 1`.
|
222 |
+
Higher guidance scale encourages the model to generate samples that are more closely linked to the input
|
223 |
+
prompt, usually at the expense of poorer quality.
|
224 |
+
low_memory (`bool`, *optional*):
|
225 |
+
Switch to sequential beam search and sequential topk for contrastive search to reduce peak memory.
|
226 |
+
Used with beam search and contrastive search.
|
227 |
+
|
228 |
+
|
229 |
+
> Parameters that define the output variables of `generate`
|
230 |
+
|
231 |
+
num_return_sequences(`int`, *optional*, defaults to 1):
|
232 |
+
The number of independently computed returned sequences for each element in the batch.
|
233 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
234 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
235 |
+
tensors for more details.
|
236 |
+
output_hidden_states (`bool`, *optional*, defaults to `False`):
|
237 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
238 |
+
more details.
|
239 |
+
output_scores (`bool`, *optional*, defaults to `False`):
|
240 |
+
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
|
241 |
+
output_logits (`bool`, *optional*):
|
242 |
+
Whether or not to return the unprocessed prediction logit scores. See `logits` under returned tensors for
|
243 |
+
more details.
|
244 |
+
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
|
245 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
246 |
+
|
247 |
+
> Special tokens that can be used at generation time
|
248 |
+
|
249 |
+
pad_token_id (`int`, *optional*):
|
250 |
+
The id of the *padding* token.
|
251 |
+
bos_token_id (`int`, *optional*):
|
252 |
+
The id of the *beginning-of-sequence* token.
|
253 |
+
eos_token_id (`Union[int, List[int]]`, *optional*):
|
254 |
+
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
|
255 |
+
|
256 |
+
> Generation parameters exclusive to encoder-decoder models
|
257 |
+
|
258 |
+
encoder_no_repeat_ngram_size (`int`, *optional*, defaults to 0):
|
259 |
+
If set to int > 0, all ngrams of that size that occur in the `encoder_input_ids` cannot occur in the
|
260 |
+
`decoder_input_ids`.
|
261 |
+
decoder_start_token_id (`Union[int, List[int]]`, *optional*):
|
262 |
+
If an encoder-decoder model starts decoding with a different token than *bos*, the id of that token or a list of length
|
263 |
+
`batch_size`. Indicating a list enables different start ids for each element in the batch
|
264 |
+
(e.g. multilingual models with different target languages in one batch)
|
265 |
+
|
266 |
+
|
267 |
+
> Generation parameters exclusive to [assistant generation](https://arxiv.org/abs/2211.17192)
|
268 |
+
|
269 |
+
num_assistant_tokens (`int`, *optional*, defaults to 5):
|
270 |
+
Defines the number of _speculative tokens_ that shall be generated by the assistant model before being
|
271 |
+
checked by the target model at each iteration. Higher values for `num_assistant_tokens` make the generation
|
272 |
+
more _speculative_ : If the assistant model is performant larger speed-ups can be reached, if the assistant
|
273 |
+
model requires lots of corrections, lower speed-ups are reached.
|
274 |
+
|
275 |
+
num_assistant_tokens_schedule (`str`, *optional*, defaults to `"heuristic"`):
|
276 |
+
Defines the schedule at which max assistant tokens shall be changed during inference.
|
277 |
+
- `"heuristic"`: When all speculative tokens are correct, increase `num_assistant_tokens` by 2 else
|
278 |
+
reduce by 1. `num_assistant_tokens` value is persistent over multiple generation calls with the same assistant model.
|
279 |
+
- `"heuristic_transient"`: Same as `"heuristic"` but `num_assistant_tokens` is reset to its initial value after each generation call.
|
280 |
+
- `"constant"`: `num_assistant_tokens` stays unchanged during generation
|
281 |
+
|
282 |
+
prompt_lookup_num_tokens (`int`, *optional*, default to `None`):
|
283 |
+
The number of tokens to be output as candidate tokens.
|
284 |
+
|
285 |
+
max_matching_ngram_size (`int`, *optional*, default to `None`):
|
286 |
+
The maximum ngram size to be considered for matching in the prompt. Default to 2 if not provided.
|
287 |
+
|
288 |
+
> Parameters specific to the caching mechanism:
|
289 |
+
|
290 |
+
cache_implementation (`str`, *optional*, default to `None`):
|
291 |
+
Cache class that should be used when generating.
|
292 |
+
|
293 |
+
|
294 |
+
> Wild card
|
295 |
+
|
296 |
+
generation_kwargs:
|
297 |
+
Additional generation kwargs will be forwarded to the `generate` function of the model. Kwargs that are not
|
298 |
+
present in `generate`'s signature will be used in the model forward pass.
|
299 |
+
"""
|
300 |
+
|
301 |
+
def __init__(self, **kwargs):
|
302 |
+
# Parameters that control the length of the output
|
303 |
+
self.max_length = kwargs.pop("max_length", 20)
|
304 |
+
self.max_new_tokens = kwargs.pop("max_new_tokens", None)
|
305 |
+
self.min_length = kwargs.pop("min_length", 0)
|
306 |
+
self.min_new_tokens = kwargs.pop("min_new_tokens", None)
|
307 |
+
self.early_stopping = kwargs.pop("early_stopping", False)
|
308 |
+
self.max_time = kwargs.pop("max_time", None)
|
309 |
+
|
310 |
+
# Parameters that control the generation strategy used
|
311 |
+
self.do_sample = kwargs.pop("do_sample", False)
|
312 |
+
self.num_beams = kwargs.pop("num_beams", 1)
|
313 |
+
self.num_beam_groups = kwargs.pop("num_beam_groups", 1)
|
314 |
+
self.penalty_alpha = kwargs.pop("penalty_alpha", None)
|
315 |
+
self.use_cache = kwargs.pop("use_cache", True)
|
316 |
+
|
317 |
+
# Parameters for manipulation of the model output logits
|
318 |
+
self.temperature = kwargs.pop("temperature", 1.0)
|
319 |
+
self.top_k = kwargs.pop("top_k", 50)
|
320 |
+
self.top_p = kwargs.pop("top_p", 1.0)
|
321 |
+
self.typical_p = kwargs.pop("typical_p", 1.0)
|
322 |
+
self.epsilon_cutoff = kwargs.pop("epsilon_cutoff", 0.0)
|
323 |
+
self.eta_cutoff = kwargs.pop("eta_cutoff", 0.0)
|
324 |
+
self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0)
|
325 |
+
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
|
326 |
+
self.encoder_repetition_penalty = kwargs.pop("encoder_repetition_penalty", 1.0)
|
327 |
+
self.length_penalty = kwargs.pop("length_penalty", 1.0)
|
328 |
+
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
|
329 |
+
self.bad_words_ids = kwargs.pop("bad_words_ids", None)
|
330 |
+
self.force_words_ids = kwargs.pop("force_words_ids", None)
|
331 |
+
self.renormalize_logits = kwargs.pop("renormalize_logits", False)
|
332 |
+
self.constraints = kwargs.pop("constraints", None)
|
333 |
+
self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None)
|
334 |
+
self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None)
|
335 |
+
self.remove_invalid_values = kwargs.pop("remove_invalid_values", False)
|
336 |
+
self.exponential_decay_length_penalty = kwargs.pop("exponential_decay_length_penalty", None)
|
337 |
+
self.suppress_tokens = kwargs.pop("suppress_tokens", None)
|
338 |
+
self.begin_suppress_tokens = kwargs.pop("begin_suppress_tokens", None)
|
339 |
+
self.forced_decoder_ids = kwargs.pop("forced_decoder_ids", None)
|
340 |
+
self.sequence_bias = kwargs.pop("sequence_bias", None)
|
341 |
+
self.guidance_scale = kwargs.pop("guidance_scale", None)
|
342 |
+
self.low_memory = kwargs.pop("low_memory", None)
|
343 |
+
|
344 |
+
# Parameters that define the output variables of `generate`
|
345 |
+
self.num_return_sequences = kwargs.pop("num_return_sequences", 1)
|
346 |
+
self.output_attentions = kwargs.pop("output_attentions", False)
|
347 |
+
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
|
348 |
+
self.output_scores = kwargs.pop("output_scores", False)
|
349 |
+
self.output_logits = kwargs.pop("output_logits", None)
|
350 |
+
self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False)
|
351 |
+
|
352 |
+
# Special tokens that can be used at generation time
|
353 |
+
self.pad_token_id = kwargs.pop("pad_token_id", None)
|
354 |
+
self.bos_token_id = kwargs.pop("bos_token_id", None)
|
355 |
+
self.eos_token_id = kwargs.pop("eos_token_id", None)
|
356 |
+
|
357 |
+
# Generation parameters exclusive to encoder-decoder models
|
358 |
+
self.encoder_no_repeat_ngram_size = kwargs.pop("encoder_no_repeat_ngram_size", 0)
|
359 |
+
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
|
360 |
+
|
361 |
+
# Assistant generation
|
362 |
+
self.num_assistant_tokens = kwargs.pop("num_assistant_tokens", 5)
|
363 |
+
self.num_assistant_tokens_schedule = kwargs.pop("num_assistant_tokens_schedule", "heuristic")
|
364 |
+
|
365 |
+
# Cache implementation
|
366 |
+
self.cache_implementation = kwargs.pop("cache_implementation", None)
|
367 |
+
|
368 |
+
# Prompt lookup decoding
|
369 |
+
self.prompt_lookup_num_tokens = kwargs.pop("prompt_lookup_num_tokens", None)
|
370 |
+
self.max_matching_ngram_size = kwargs.pop("max_matching_ngram_size", None)
|
371 |
+
|
372 |
+
# Wild card
|
373 |
+
self.generation_kwargs = kwargs.pop("generation_kwargs", {})
|
374 |
+
|
375 |
+
# The remaining attributes do not parametrize `.generate()`, but are informative and/or used by the hub
|
376 |
+
# interface.
|
377 |
+
self._from_model_config = kwargs.pop("_from_model_config", False)
|
378 |
+
self._commit_hash = kwargs.pop("_commit_hash", None)
|
379 |
+
self.transformers_version = kwargs.pop("transformers_version", __version__)
|
380 |
+
|
381 |
+
# Additional attributes without default values
|
382 |
+
if not self._from_model_config:
|
383 |
+
# we don't want to copy values from the model config if we're initializing a `GenerationConfig` from a
|
384 |
+
# model's default configuration file
|
385 |
+
for key, value in kwargs.items():
|
386 |
+
try:
|
387 |
+
setattr(self, key, value)
|
388 |
+
except AttributeError as err:
|
389 |
+
logger.error(f"Can't set {key} with value {value} for {self}")
|
390 |
+
raise err
|
391 |
+
|
392 |
+
# Validate the values of the attributes
|
393 |
+
self.validate(is_init=True)
|
394 |
+
|
395 |
+
def __hash__(self):
|
396 |
+
return hash(self.to_json_string(ignore_metadata=True))
|
397 |
+
|
398 |
+
def __eq__(self, other):
|
399 |
+
if not isinstance(other, GenerationConfig):
|
400 |
+
return False
|
401 |
+
|
402 |
+
self_without_metadata = self.to_json_string(use_diff=False, ignore_metadata=True)
|
403 |
+
other_without_metadata = other.to_json_string(use_diff=False, ignore_metadata=True)
|
404 |
+
return self_without_metadata == other_without_metadata
|
405 |
+
|
406 |
+
def __repr__(self):
|
407 |
+
return f"{self.__class__.__name__} {self.to_json_string(ignore_metadata=True)}"
|
408 |
+
|
409 |
+
def get_generation_mode(self, assistant_model: Optional["PreTrainedModel"] = None) -> GenerationMode:
|
410 |
+
"""
|
411 |
+
Returns the generation mode triggered by the [`GenerationConfig`] instance.
|
412 |
+
|
413 |
+
Arg:
|
414 |
+
assistant_model (`PreTrainedModel`, *optional*):
|
415 |
+
The assistant model to be used for assisted generation. If set, the generation mode will be
|
416 |
+
assisted generation.
|
417 |
+
|
418 |
+
Returns:
|
419 |
+
`GenerationMode`: The generation mode triggered by the instance.
|
420 |
+
"""
|
421 |
+
# TODO joao: find out a way of not depending on external fields (e.g. `assistant_model`), then make this a
|
422 |
+
# property and part of the `__repr__`
|
423 |
+
if self.constraints is not None or self.force_words_ids is not None:
|
424 |
+
generation_mode = GenerationMode.CONSTRAINED_BEAM_SEARCH
|
425 |
+
elif self.num_beams == 1:
|
426 |
+
if self.do_sample is False:
|
427 |
+
if (
|
428 |
+
self.top_k is not None
|
429 |
+
and self.top_k > 1
|
430 |
+
and self.penalty_alpha is not None
|
431 |
+
and self.penalty_alpha > 0
|
432 |
+
):
|
433 |
+
generation_mode = GenerationMode.CONTRASTIVE_SEARCH
|
434 |
+
else:
|
435 |
+
generation_mode = GenerationMode.GREEDY_SEARCH
|
436 |
+
else:
|
437 |
+
generation_mode = GenerationMode.SAMPLE
|
438 |
+
else:
|
439 |
+
if self.num_beam_groups > 1:
|
440 |
+
generation_mode = GenerationMode.GROUP_BEAM_SEARCH
|
441 |
+
elif self.do_sample is True:
|
442 |
+
generation_mode = GenerationMode.BEAM_SAMPLE
|
443 |
+
else:
|
444 |
+
generation_mode = GenerationMode.BEAM_SEARCH
|
445 |
+
|
446 |
+
# Assisted generation may extend some generation modes
|
447 |
+
if assistant_model is not None or self.prompt_lookup_num_tokens is not None:
|
448 |
+
if generation_mode in ("greedy_search", "sample"):
|
449 |
+
generation_mode = GenerationMode.ASSISTED_GENERATION
|
450 |
+
else:
|
451 |
+
raise ValueError(
|
452 |
+
"You've set `assistant_model`, which triggers assisted generate. Currently, assisted generate "
|
453 |
+
"is only supported with Greedy Search and Sample."
|
454 |
+
)
|
455 |
+
return generation_mode
|
456 |
+
|
457 |
+
def validate(self, is_init=False):
|
458 |
+
"""
|
459 |
+
Validates the values of the attributes of the [`GenerationConfig`] instance. Raises exceptions in the presence
|
460 |
+
of parameterization that can be detected as incorrect from the configuration instance alone.
|
461 |
+
|
462 |
+
Note that some parameters not validated here are best validated at generate runtime, as they may depend on
|
463 |
+
other inputs and/or the model, such as parameters related to the generation length.
|
464 |
+
|
465 |
+
Arg:
|
466 |
+
is_init (`bool`, *optional*, defaults to `False`):
|
467 |
+
Whether the validation is performed during the initialization of the instance.
|
468 |
+
"""
|
469 |
+
|
470 |
+
# Validation of individual attributes
|
471 |
+
if self.early_stopping not in {True, False, "never"}:
|
472 |
+
raise ValueError(f"`early_stopping` must be a boolean or 'never', but is {self.early_stopping}.")
|
473 |
+
if self.max_new_tokens is not None and self.max_new_tokens <= 0:
|
474 |
+
raise ValueError(f"`max_new_tokens` must be greater than 0, but is {self.max_new_tokens}.")
|
475 |
+
|
476 |
+
# Validation of attribute relations:
|
477 |
+
fix_location = ""
|
478 |
+
if is_init:
|
479 |
+
fix_location = (
|
480 |
+
" This was detected when initializing the generation config instance, which means the corresponding "
|
481 |
+
"file may hold incorrect parameterization and should be fixed."
|
482 |
+
)
|
483 |
+
|
484 |
+
# 1. detect sampling-only parameterization when not in sampling mode
|
485 |
+
if self.do_sample is False:
|
486 |
+
greedy_wrong_parameter_msg = (
|
487 |
+
"`do_sample` is set to `False`. However, `{flag_name}` is set to `{flag_value}` -- this flag is only "
|
488 |
+
"used in sample-based generation modes. You should set `do_sample=True` or unset `{flag_name}`."
|
489 |
+
+ fix_location
|
490 |
+
)
|
491 |
+
if self.temperature is not None and self.temperature != 1.0:
|
492 |
+
warnings.warn(
|
493 |
+
greedy_wrong_parameter_msg.format(flag_name="temperature", flag_value=self.temperature),
|
494 |
+
UserWarning,
|
495 |
+
)
|
496 |
+
if self.top_p is not None and self.top_p != 1.0:
|
497 |
+
warnings.warn(
|
498 |
+
greedy_wrong_parameter_msg.format(flag_name="top_p", flag_value=self.top_p),
|
499 |
+
UserWarning,
|
500 |
+
)
|
501 |
+
if self.typical_p is not None and self.typical_p != 1.0:
|
502 |
+
warnings.warn(
|
503 |
+
greedy_wrong_parameter_msg.format(flag_name="typical_p", flag_value=self.typical_p),
|
504 |
+
UserWarning,
|
505 |
+
)
|
506 |
+
if (
|
507 |
+
self.top_k is not None and self.top_k != 50 and self.penalty_alpha is None
|
508 |
+
): # contrastive search uses top_k
|
509 |
+
warnings.warn(
|
510 |
+
greedy_wrong_parameter_msg.format(flag_name="top_k", flag_value=self.top_k),
|
511 |
+
UserWarning,
|
512 |
+
)
|
513 |
+
if self.epsilon_cutoff is not None and self.epsilon_cutoff != 0.0:
|
514 |
+
warnings.warn(
|
515 |
+
greedy_wrong_parameter_msg.format(flag_name="epsilon_cutoff", flag_value=self.epsilon_cutoff),
|
516 |
+
UserWarning,
|
517 |
+
)
|
518 |
+
if self.eta_cutoff is not None and self.eta_cutoff != 0.0:
|
519 |
+
warnings.warn(
|
520 |
+
greedy_wrong_parameter_msg.format(flag_name="eta_cutoff", flag_value=self.eta_cutoff),
|
521 |
+
UserWarning,
|
522 |
+
)
|
523 |
+
|
524 |
+
# 2. detect beam-only parameterization when not in beam mode
|
525 |
+
if self.num_beams is None:
|
526 |
+
warnings.warn("`num_beams` is set to None - defaulting to 1.", UserWarning)
|
527 |
+
self.num_beams = 1
|
528 |
+
|
529 |
+
if self.num_beams == 1:
|
530 |
+
single_beam_wrong_parameter_msg = (
|
531 |
+
"`num_beams` is set to 1. However, `{flag_name}` is set to `{flag_value}` -- this flag is only used "
|
532 |
+
"in beam-based generation modes. You should set `num_beams>1` or unset `{flag_name}`." + fix_location
|
533 |
+
)
|
534 |
+
if self.early_stopping is not False:
|
535 |
+
warnings.warn(
|
536 |
+
single_beam_wrong_parameter_msg.format(flag_name="early_stopping", flag_value=self.early_stopping),
|
537 |
+
UserWarning,
|
538 |
+
)
|
539 |
+
if self.num_beam_groups is not None and self.num_beam_groups != 1:
|
540 |
+
warnings.warn(
|
541 |
+
single_beam_wrong_parameter_msg.format(
|
542 |
+
flag_name="num_beam_groups", flag_value=self.num_beam_groups
|
543 |
+
),
|
544 |
+
UserWarning,
|
545 |
+
)
|
546 |
+
if self.diversity_penalty is not None and self.diversity_penalty != 0.0:
|
547 |
+
warnings.warn(
|
548 |
+
single_beam_wrong_parameter_msg.format(
|
549 |
+
flag_name="diversity_penalty", flag_value=self.diversity_penalty
|
550 |
+
),
|
551 |
+
UserWarning,
|
552 |
+
)
|
553 |
+
if self.length_penalty is not None and self.length_penalty != 1.0:
|
554 |
+
warnings.warn(
|
555 |
+
single_beam_wrong_parameter_msg.format(flag_name="length_penalty", flag_value=self.length_penalty),
|
556 |
+
UserWarning,
|
557 |
+
)
|
558 |
+
if self.constraints is not None:
|
559 |
+
warnings.warn(
|
560 |
+
single_beam_wrong_parameter_msg.format(flag_name="constraints", flag_value=self.constraints),
|
561 |
+
UserWarning,
|
562 |
+
)
|
563 |
+
|
564 |
+
# 3. detect incorrect paramaterization specific to advanced beam modes
|
565 |
+
else:
|
566 |
+
# constrained beam search
|
567 |
+
if self.constraints is not None or self.force_words_ids is not None:
|
568 |
+
constrained_wrong_parameter_msg = (
|
569 |
+
"one of `constraints`, `force_words_ids` is not `None`, triggering constrained beam search. However, "
|
570 |
+
"`{flag_name}` is set to `{flag_value}`, which is incompatible with this generation mode. Set "
|
571 |
+
"`constraints` and `force_words_ids` to `None` or unset `{flag_name}` to continue." + fix_location
|
572 |
+
)
|
573 |
+
if self.do_sample is True:
|
574 |
+
raise ValueError(
|
575 |
+
constrained_wrong_parameter_msg.format(flag_name="do_sample", flag_value=self.do_sample)
|
576 |
+
)
|
577 |
+
if self.num_beam_groups is not None and self.num_beam_groups != 1:
|
578 |
+
raise ValueError(
|
579 |
+
constrained_wrong_parameter_msg.format(
|
580 |
+
flag_name="num_beam_groups", flag_value=self.num_beam_groups
|
581 |
+
)
|
582 |
+
)
|
583 |
+
# group beam search
|
584 |
+
if self.diversity_penalty != 0.0 or self.num_beam_groups != 1:
|
585 |
+
group_error_prefix = (
|
586 |
+
"`diversity_penalty` is not 0.0 or `num_beam_groups` is not 1, triggering group beam search. In "
|
587 |
+
"this generation mode, "
|
588 |
+
)
|
589 |
+
if self.do_sample is True:
|
590 |
+
raise ValueError(group_error_prefix + "`do_sample` must be set to `False`")
|
591 |
+
if self.num_beams % self.num_beam_groups != 0:
|
592 |
+
raise ValueError(group_error_prefix + "`num_beams` should be divisible by `num_beam_groups`")
|
593 |
+
if self.diversity_penalty == 0.0:
|
594 |
+
raise ValueError(
|
595 |
+
group_error_prefix
|
596 |
+
+ "`diversity_penalty` should be greater than `0.0`, otherwise your groups will be identical."
|
597 |
+
)
|
598 |
+
|
599 |
+
# 4. check `num_return_sequences`
|
600 |
+
if self.num_return_sequences != 1:
|
601 |
+
if self.num_beams == 1:
|
602 |
+
if self.do_sample is False:
|
603 |
+
raise ValueError(
|
604 |
+
"Greedy methods without beam search do not support `num_return_sequences` different than 1 "
|
605 |
+
f"(got {self.num_return_sequences})."
|
606 |
+
)
|
607 |
+
elif self.num_return_sequences > self.num_beams:
|
608 |
+
raise ValueError(
|
609 |
+
f"`num_return_sequences` ({self.num_return_sequences}) has to be smaller or equal to `num_beams` "
|
610 |
+
f"({self.num_beams})."
|
611 |
+
)
|
612 |
+
|
613 |
+
# 5. check common issue: passing `generate` arguments inside the generation config
|
614 |
+
generate_arguments = (
|
615 |
+
"logits_processor",
|
616 |
+
"stopping_criteria",
|
617 |
+
"prefix_allowed_tokens_fn",
|
618 |
+
"synced_gpus",
|
619 |
+
"assistant_model",
|
620 |
+
"streamer",
|
621 |
+
"negative_prompt_ids",
|
622 |
+
"negative_prompt_attention_mask",
|
623 |
+
)
|
624 |
+
for arg in generate_arguments:
|
625 |
+
if hasattr(self, arg):
|
626 |
+
raise ValueError(
|
627 |
+
f"Argument `{arg}` is not a valid argument of `GenerationConfig`. It should be passed to "
|
628 |
+
"`generate()` (or a pipeline) directly."
|
629 |
+
)
|
630 |
+
|
631 |
+
def save_pretrained(
|
632 |
+
self,
|
633 |
+
save_directory: Union[str, os.PathLike],
|
634 |
+
config_file_name: Optional[Union[str, os.PathLike]] = None,
|
635 |
+
push_to_hub: bool = False,
|
636 |
+
**kwargs,
|
637 |
+
):
|
638 |
+
r"""
|
639 |
+
Save a generation configuration object to the directory `save_directory`, so that it can be re-loaded using the
|
640 |
+
[`~GenerationConfig.from_pretrained`] class method.
|
641 |
+
|
642 |
+
Args:
|
643 |
+
save_directory (`str` or `os.PathLike`):
|
644 |
+
Directory where the configuration JSON file will be saved (will be created if it does not exist).
|
645 |
+
config_file_name (`str` or `os.PathLike`, *optional*, defaults to `"generation_config.json"`):
|
646 |
+
Name of the generation configuration JSON file to be saved in `save_directory`.
|
647 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
648 |
+
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
649 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
650 |
+
namespace).
|
651 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
652 |
+
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
653 |
+
"""
|
654 |
+
|
655 |
+
# At save time, validate the instance -- if any warning/exception is thrown, we refuse to save the instance.
|
656 |
+
# This strictness is enforced to prevent bad configurations from being saved and re-used.
|
657 |
+
try:
|
658 |
+
with warnings.catch_warnings(record=True) as caught_warnings:
|
659 |
+
self.validate()
|
660 |
+
if len(caught_warnings) > 0:
|
661 |
+
raise ValueError(str([w.message for w in caught_warnings]))
|
662 |
+
except ValueError as exc:
|
663 |
+
raise ValueError(
|
664 |
+
"The generation config instance is invalid -- `.validate()` throws warnings and/or exceptions. "
|
665 |
+
"Fix these issues to save the configuration.\n\nThrown during validation:\n" + str(exc)
|
666 |
+
)
|
667 |
+
|
668 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
669 |
+
|
670 |
+
if use_auth_token is not None:
|
671 |
+
warnings.warn(
|
672 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
673 |
+
FutureWarning,
|
674 |
+
)
|
675 |
+
if kwargs.get("token", None) is not None:
|
676 |
+
raise ValueError(
|
677 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
678 |
+
)
|
679 |
+
kwargs["token"] = use_auth_token
|
680 |
+
|
681 |
+
config_file_name = config_file_name if config_file_name is not None else GENERATION_CONFIG_NAME
|
682 |
+
|
683 |
+
if os.path.isfile(save_directory):
|
684 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
685 |
+
|
686 |
+
os.makedirs(save_directory, exist_ok=True)
|
687 |
+
|
688 |
+
if push_to_hub:
|
689 |
+
commit_message = kwargs.pop("commit_message", None)
|
690 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
691 |
+
repo_id = self._create_repo(repo_id, **kwargs)
|
692 |
+
files_timestamps = self._get_files_timestamps(save_directory)
|
693 |
+
|
694 |
+
output_config_file = os.path.join(save_directory, config_file_name)
|
695 |
+
|
696 |
+
self.to_json_file(output_config_file, use_diff=True)
|
697 |
+
logger.info(f"Configuration saved in {output_config_file}")
|
698 |
+
|
699 |
+
if push_to_hub:
|
700 |
+
self._upload_modified_files(
|
701 |
+
save_directory,
|
702 |
+
repo_id,
|
703 |
+
files_timestamps,
|
704 |
+
commit_message=commit_message,
|
705 |
+
token=kwargs.get("token"),
|
706 |
+
)
|
707 |
+
|
708 |
+
@classmethod
|
709 |
+
def from_pretrained(
|
710 |
+
cls,
|
711 |
+
pretrained_model_name: Union[str, os.PathLike],
|
712 |
+
config_file_name: Optional[Union[str, os.PathLike]] = None,
|
713 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
714 |
+
force_download: bool = False,
|
715 |
+
local_files_only: bool = False,
|
716 |
+
token: Optional[Union[str, bool]] = None,
|
717 |
+
revision: str = "main",
|
718 |
+
**kwargs,
|
719 |
+
) -> "GenerationConfig":
|
720 |
+
r"""
|
721 |
+
Instantiate a [`GenerationConfig`] from a generation configuration file.
|
722 |
+
|
723 |
+
Args:
|
724 |
+
pretrained_model_name (`str` or `os.PathLike`):
|
725 |
+
This can be either:
|
726 |
+
|
727 |
+
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
728 |
+
huggingface.co.
|
729 |
+
- a path to a *directory* containing a configuration file saved using the
|
730 |
+
[`~GenerationConfig.save_pretrained`] method, e.g., `./my_model_directory/`.
|
731 |
+
config_file_name (`str` or `os.PathLike`, *optional*, defaults to `"generation_config.json"`):
|
732 |
+
Name of the generation configuration JSON file to be loaded from `pretrained_model_name`.
|
733 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
734 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
735 |
+
standard cache should not be used.
|
736 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
737 |
+
Whether or not to force to (re-)download the configuration files and override the cached versions if
|
738 |
+
they exist.
|
739 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
740 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
|
741 |
+
exists.
|
742 |
+
proxies (`Dict[str, str]`, *optional*):
|
743 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
744 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
745 |
+
token (`str` or `bool`, *optional*):
|
746 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
747 |
+
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
748 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
749 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
750 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
751 |
+
identifier allowed by git.
|
752 |
+
|
753 |
+
<Tip>
|
754 |
+
|
755 |
+
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
756 |
+
|
757 |
+
</Tip>
|
758 |
+
|
759 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
760 |
+
If `False`, then this function returns just the final configuration object.
|
761 |
+
|
762 |
+
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
|
763 |
+
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
|
764 |
+
part of `kwargs` which has not been used to update `config` and is otherwise ignored.
|
765 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
766 |
+
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
767 |
+
specify the folder name here.
|
768 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
769 |
+
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
|
770 |
+
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
|
771 |
+
by the `return_unused_kwargs` keyword parameter.
|
772 |
+
|
773 |
+
Returns:
|
774 |
+
[`GenerationConfig`]: The configuration object instantiated from this pretrained model.
|
775 |
+
|
776 |
+
Examples:
|
777 |
+
|
778 |
+
```python
|
779 |
+
>>> from transformers import GenerationConfig
|
780 |
+
|
781 |
+
>>> # Download configuration from huggingface.co and cache.
|
782 |
+
>>> generation_config = GenerationConfig.from_pretrained("openai-community/gpt2")
|
783 |
+
|
784 |
+
>>> # E.g. config was saved using *save_pretrained('./test/saved_model/')*
|
785 |
+
>>> generation_config.save_pretrained("./test/saved_model/")
|
786 |
+
>>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/")
|
787 |
+
|
788 |
+
>>> # You can also specify configuration names to your generation configuration file
|
789 |
+
>>> generation_config.save_pretrained("./test/saved_model/", config_file_name="my_configuration.json")
|
790 |
+
>>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/", "my_configuration.json")
|
791 |
+
|
792 |
+
>>> # If you'd like to try a minor variation to an existing configuration, you can also pass generation
|
793 |
+
>>> # arguments to `.from_pretrained()`. Be mindful that typos and unused arguments will be ignored
|
794 |
+
>>> generation_config, unused_kwargs = GenerationConfig.from_pretrained(
|
795 |
+
... "openai-community/gpt2", top_k=1, foo=False, do_sample=True, return_unused_kwargs=True
|
796 |
+
... )
|
797 |
+
>>> generation_config.top_k
|
798 |
+
1
|
799 |
+
|
800 |
+
>>> unused_kwargs
|
801 |
+
{'foo': False}
|
802 |
+
```"""
|
803 |
+
config_file_name = config_file_name if config_file_name is not None else GENERATION_CONFIG_NAME
|
804 |
+
|
805 |
+
resume_download = kwargs.pop("resume_download", False)
|
806 |
+
proxies = kwargs.pop("proxies", None)
|
807 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
808 |
+
subfolder = kwargs.pop("subfolder", "")
|
809 |
+
from_pipeline = kwargs.pop("_from_pipeline", None)
|
810 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
811 |
+
commit_hash = kwargs.pop("_commit_hash", None)
|
812 |
+
|
813 |
+
if use_auth_token is not None:
|
814 |
+
warnings.warn(
|
815 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
816 |
+
FutureWarning,
|
817 |
+
)
|
818 |
+
if token is not None:
|
819 |
+
raise ValueError(
|
820 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
821 |
+
)
|
822 |
+
token = use_auth_token
|
823 |
+
|
824 |
+
user_agent = {"file_type": "config", "from_auto_class": from_auto_class}
|
825 |
+
if from_pipeline is not None:
|
826 |
+
user_agent["using_pipeline"] = from_pipeline
|
827 |
+
|
828 |
+
config_path = os.path.join(pretrained_model_name, config_file_name)
|
829 |
+
config_path = str(config_path)
|
830 |
+
|
831 |
+
is_local = os.path.exists(config_path)
|
832 |
+
if os.path.isfile(os.path.join(subfolder, config_path)):
|
833 |
+
# Special case when config_path is a local file
|
834 |
+
resolved_config_file = config_path
|
835 |
+
is_local = True
|
836 |
+
elif is_remote_url(config_path):
|
837 |
+
configuration_file = config_path
|
838 |
+
resolved_config_file = download_url(config_path)
|
839 |
+
else:
|
840 |
+
configuration_file = config_file_name
|
841 |
+
try:
|
842 |
+
# Load from local folder or from cache or download from model Hub and cache
|
843 |
+
resolved_config_file = cached_file(
|
844 |
+
pretrained_model_name,
|
845 |
+
configuration_file,
|
846 |
+
cache_dir=cache_dir,
|
847 |
+
force_download=force_download,
|
848 |
+
proxies=proxies,
|
849 |
+
resume_download=resume_download,
|
850 |
+
local_files_only=local_files_only,
|
851 |
+
token=token,
|
852 |
+
user_agent=user_agent,
|
853 |
+
revision=revision,
|
854 |
+
subfolder=subfolder,
|
855 |
+
_commit_hash=commit_hash,
|
856 |
+
)
|
857 |
+
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
|
858 |
+
except EnvironmentError:
|
859 |
+
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
|
860 |
+
# the original exception.
|
861 |
+
raise
|
862 |
+
except Exception:
|
863 |
+
# For any other exception, we throw a generic error.
|
864 |
+
raise EnvironmentError(
|
865 |
+
f"Can't load the configuration of '{pretrained_model_name}'. If you were trying to load it"
|
866 |
+
" from 'https://huggingface.co/models', make sure you don't have a local directory with the same"
|
867 |
+
f" name. Otherwise, make sure '{pretrained_model_name}' is the correct path to a directory"
|
868 |
+
f" containing a {configuration_file} file"
|
869 |
+
)
|
870 |
+
|
871 |
+
try:
|
872 |
+
# Load config dict
|
873 |
+
config_dict = cls._dict_from_json_file(resolved_config_file)
|
874 |
+
config_dict["_commit_hash"] = commit_hash
|
875 |
+
except (json.JSONDecodeError, UnicodeDecodeError):
|
876 |
+
raise EnvironmentError(
|
877 |
+
f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file."
|
878 |
+
)
|
879 |
+
|
880 |
+
if is_local:
|
881 |
+
logger.info(f"loading configuration file {resolved_config_file}")
|
882 |
+
else:
|
883 |
+
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}")
|
884 |
+
|
885 |
+
if kwargs.get("return_unused_kwargs") is True:
|
886 |
+
config, unused_kwargs = cls.from_dict(config_dict, **kwargs)
|
887 |
+
config._original_object_hash = hash(config) # Hash to detect whether the instance was modified
|
888 |
+
return config, unused_kwargs
|
889 |
+
else:
|
890 |
+
config = cls.from_dict(config_dict, **kwargs)
|
891 |
+
config._original_object_hash = hash(config) # Hash to detect whether the instance was modified
|
892 |
+
return config
|
893 |
+
|
894 |
+
@classmethod
|
895 |
+
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
|
896 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
897 |
+
text = reader.read()
|
898 |
+
return json.loads(text)
|
899 |
+
|
900 |
+
@classmethod
|
901 |
+
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "GenerationConfig":
|
902 |
+
"""
|
903 |
+
Instantiates a [`GenerationConfig`] from a Python dictionary of parameters.
|
904 |
+
|
905 |
+
Args:
|
906 |
+
config_dict (`Dict[str, Any]`):
|
907 |
+
Dictionary that will be used to instantiate the configuration object.
|
908 |
+
kwargs (`Dict[str, Any]`):
|
909 |
+
Additional parameters from which to initialize the configuration object.
|
910 |
+
|
911 |
+
Returns:
|
912 |
+
[`GenerationConfig`]: The configuration object instantiated from those parameters.
|
913 |
+
"""
|
914 |
+
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
915 |
+
# Those arguments may be passed along for our internal telemetry.
|
916 |
+
# We remove them so they don't appear in `return_unused_kwargs`.
|
917 |
+
kwargs.pop("_from_auto", None)
|
918 |
+
kwargs.pop("_from_pipeline", None)
|
919 |
+
# The commit hash might have been updated in the `config_dict`, we don't want the kwargs to erase that update.
|
920 |
+
if "_commit_hash" in kwargs and "_commit_hash" in config_dict:
|
921 |
+
kwargs["_commit_hash"] = config_dict["_commit_hash"]
|
922 |
+
|
923 |
+
# The line below allows model-specific config to be loaded as well through kwargs, with safety checks.
|
924 |
+
# See https://github.com/huggingface/transformers/pull/21269
|
925 |
+
config = cls(**{**config_dict, **kwargs})
|
926 |
+
unused_kwargs = config.update(**kwargs)
|
927 |
+
|
928 |
+
logger.info(f"Generate config {config}")
|
929 |
+
if return_unused_kwargs:
|
930 |
+
return config, unused_kwargs
|
931 |
+
else:
|
932 |
+
return config
|
933 |
+
|
934 |
+
def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None:
|
935 |
+
"""
|
936 |
+
Checks whether the passed dictionary and its nested dicts have a *torch_dtype* key and if it's not None,
|
937 |
+
converts torch.dtype to a string of just the type. For example, `torch.float32` get converted into *"float32"*
|
938 |
+
string, which can then be stored in the json format.
|
939 |
+
"""
|
940 |
+
if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str):
|
941 |
+
d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1]
|
942 |
+
for value in d.values():
|
943 |
+
if isinstance(value, dict):
|
944 |
+
self.dict_torch_dtype_to_str(value)
|
945 |
+
|
946 |
+
def to_diff_dict(self) -> Dict[str, Any]:
|
947 |
+
"""
|
948 |
+
Removes all attributes from config which correspond to the default config attributes for better readability and
|
949 |
+
serializes to a Python dictionary.
|
950 |
+
|
951 |
+
Returns:
|
952 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
|
953 |
+
"""
|
954 |
+
config_dict = self.to_dict()
|
955 |
+
|
956 |
+
# get the default config dict
|
957 |
+
default_config_dict = GenerationConfig().to_dict()
|
958 |
+
|
959 |
+
serializable_config_dict = {}
|
960 |
+
|
961 |
+
# only serialize values that differ from the default config
|
962 |
+
for key, value in config_dict.items():
|
963 |
+
if key not in default_config_dict or key == "transformers_version" or value != default_config_dict[key]:
|
964 |
+
serializable_config_dict[key] = value
|
965 |
+
|
966 |
+
self.dict_torch_dtype_to_str(serializable_config_dict)
|
967 |
+
return serializable_config_dict
|
968 |
+
|
969 |
+
def to_dict(self) -> Dict[str, Any]:
|
970 |
+
"""
|
971 |
+
Serializes this instance to a Python dictionary.
|
972 |
+
|
973 |
+
Returns:
|
974 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
975 |
+
"""
|
976 |
+
output = copy.deepcopy(self.__dict__)
|
977 |
+
|
978 |
+
# Fields to ignore at serialization time
|
979 |
+
if "_commit_hash" in output:
|
980 |
+
del output["_commit_hash"]
|
981 |
+
if "_original_object_hash" in output:
|
982 |
+
del output["_original_object_hash"]
|
983 |
+
|
984 |
+
# Transformers version when serializing this file
|
985 |
+
output["transformers_version"] = __version__
|
986 |
+
|
987 |
+
self.dict_torch_dtype_to_str(output)
|
988 |
+
return output
|
989 |
+
|
990 |
+
def to_json_string(self, use_diff: bool = True, ignore_metadata: bool = False) -> str:
|
991 |
+
"""
|
992 |
+
Serializes this instance to a JSON string.
|
993 |
+
|
994 |
+
Args:
|
995 |
+
use_diff (`bool`, *optional*, defaults to `True`):
|
996 |
+
If set to `True`, only the difference between the config instance and the default `GenerationConfig()`
|
997 |
+
is serialized to JSON string.
|
998 |
+
ignore_metadata (`bool`, *optional*, defaults to `False`):
|
999 |
+
Whether to ignore the metadata fields present in the instance
|
1000 |
+
|
1001 |
+
Returns:
|
1002 |
+
`str`: String containing all the attributes that make up this configuration instance in JSON format.
|
1003 |
+
"""
|
1004 |
+
if use_diff is True:
|
1005 |
+
config_dict = self.to_diff_dict()
|
1006 |
+
else:
|
1007 |
+
config_dict = self.to_dict()
|
1008 |
+
|
1009 |
+
if ignore_metadata:
|
1010 |
+
for metadata_field in METADATA_FIELDS:
|
1011 |
+
config_dict.pop(metadata_field, None)
|
1012 |
+
|
1013 |
+
def convert_keys_to_string(obj):
|
1014 |
+
if isinstance(obj, dict):
|
1015 |
+
return {str(key): convert_keys_to_string(value) for key, value in obj.items()}
|
1016 |
+
elif isinstance(obj, list):
|
1017 |
+
return [convert_keys_to_string(item) for item in obj]
|
1018 |
+
else:
|
1019 |
+
return obj
|
1020 |
+
|
1021 |
+
config_dict = convert_keys_to_string(config_dict)
|
1022 |
+
|
1023 |
+
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
1024 |
+
|
1025 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True):
|
1026 |
+
"""
|
1027 |
+
Save this instance to a JSON file.
|
1028 |
+
|
1029 |
+
Args:
|
1030 |
+
json_file_path (`str` or `os.PathLike`):
|
1031 |
+
Path to the JSON file in which this configuration instance's parameters will be saved.
|
1032 |
+
use_diff (`bool`, *optional*, defaults to `True`):
|
1033 |
+
If set to `True`, only the difference between the config instance and the default `GenerationConfig()`
|
1034 |
+
is serialized to JSON file.
|
1035 |
+
"""
|
1036 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
1037 |
+
writer.write(self.to_json_string(use_diff=use_diff))
|
1038 |
+
|
1039 |
+
@classmethod
|
1040 |
+
def from_model_config(cls, model_config: PretrainedConfig) -> "GenerationConfig":
|
1041 |
+
"""
|
1042 |
+
Instantiates a [`GenerationConfig`] from a [`PretrainedConfig`]. This function is useful to convert legacy
|
1043 |
+
[`PretrainedConfig`] objects, which may contain generation parameters, into a stand-alone [`GenerationConfig`].
|
1044 |
+
|
1045 |
+
Args:
|
1046 |
+
model_config (`PretrainedConfig`):
|
1047 |
+
The model config that will be used to instantiate the generation config.
|
1048 |
+
|
1049 |
+
Returns:
|
1050 |
+
[`GenerationConfig`]: The configuration object instantiated from those parameters.
|
1051 |
+
"""
|
1052 |
+
config_dict = model_config.to_dict()
|
1053 |
+
config_dict.pop("_from_model_config", None)
|
1054 |
+
config = cls.from_dict(config_dict, return_unused_kwargs=False, _from_model_config=True)
|
1055 |
+
|
1056 |
+
# Special case: some models have generation attributes set in the decoder. Use them if still unset in the
|
1057 |
+
# generation config.
|
1058 |
+
for decoder_name in ("decoder", "generator", "text_config"):
|
1059 |
+
if decoder_name in config_dict:
|
1060 |
+
default_generation_config = GenerationConfig()
|
1061 |
+
decoder_config = config_dict[decoder_name]
|
1062 |
+
for attr in config.to_dict().keys():
|
1063 |
+
if attr in decoder_config and getattr(config, attr) == getattr(default_generation_config, attr):
|
1064 |
+
setattr(config, attr, decoder_config[attr])
|
1065 |
+
|
1066 |
+
config._original_object_hash = hash(config) # Hash to detect whether the instance was modified
|
1067 |
+
return config
|
1068 |
+
|
1069 |
+
def update(self, **kwargs):
|
1070 |
+
"""
|
1071 |
+
Updates attributes of this class instance with attributes from `kwargs` if they match existing atributtes,
|
1072 |
+
returning all the unused kwargs.
|
1073 |
+
|
1074 |
+
Args:
|
1075 |
+
kwargs (`Dict[str, Any]`):
|
1076 |
+
Dictionary of attributes to tentatively update this class.
|
1077 |
+
|
1078 |
+
Returns:
|
1079 |
+
`Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
|
1080 |
+
"""
|
1081 |
+
to_remove = []
|
1082 |
+
for key, value in kwargs.items():
|
1083 |
+
if hasattr(self, key):
|
1084 |
+
setattr(self, key, value)
|
1085 |
+
to_remove.append(key)
|
1086 |
+
|
1087 |
+
# Confirm that the updated instance is still valid
|
1088 |
+
self.validate()
|
1089 |
+
|
1090 |
+
# Remove all the attributes that were updated, without modifying the input dict
|
1091 |
+
unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
|
1092 |
+
return unused_kwargs
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/flax_logits_process.py
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
|
18 |
+
import jax
|
19 |
+
import jax.lax as lax
|
20 |
+
import jax.numpy as jnp
|
21 |
+
|
22 |
+
from ..utils import add_start_docstrings
|
23 |
+
from ..utils.logging import get_logger
|
24 |
+
|
25 |
+
|
26 |
+
logger = get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
|
30 |
+
Args:
|
31 |
+
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
|
32 |
+
Indices of input sequence tokens in the vocabulary.
|
33 |
+
|
34 |
+
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
35 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
36 |
+
|
37 |
+
[What are input IDs?](../glossary#input-ids)
|
38 |
+
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
|
39 |
+
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
|
40 |
+
search or log softmax for each vocabulary token when using beam search
|
41 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
42 |
+
Additional logits processor specific kwargs.
|
43 |
+
|
44 |
+
Return:
|
45 |
+
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
|
46 |
+
|
47 |
+
"""
|
48 |
+
|
49 |
+
|
50 |
+
class FlaxLogitsProcessor:
|
51 |
+
"""Abstract base class for all logit processors that can be applied during generation."""
|
52 |
+
|
53 |
+
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
|
54 |
+
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray) -> jnp.ndarray:
|
55 |
+
"""Flax method for processing logits."""
|
56 |
+
raise NotImplementedError(
|
57 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
class FlaxLogitsWarper:
|
62 |
+
"""Abstract base class for all logit warpers that can be applied during generation with multinomial sampling."""
|
63 |
+
|
64 |
+
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
|
65 |
+
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray) -> jnp.ndarray:
|
66 |
+
"""Flax method for warping logits."""
|
67 |
+
raise NotImplementedError(
|
68 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
class FlaxLogitsProcessorList(list):
|
73 |
+
"""
|
74 |
+
This class can be used to create a list of [`FlaxLogitsProcessor`] or [`FlaxLogitsWarper`] to subsequently process
|
75 |
+
a `scores` input tensor. This class inherits from list and adds a specific *__call__* method to apply each
|
76 |
+
[`FlaxLogitsProcessor`] or [`FlaxLogitsWarper`] to the inputs.
|
77 |
+
"""
|
78 |
+
|
79 |
+
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
|
80 |
+
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int, **kwargs) -> jnp.ndarray:
|
81 |
+
for processor in self:
|
82 |
+
function_args = inspect.signature(processor.__call__).parameters
|
83 |
+
if len(function_args) > 3:
|
84 |
+
if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
|
85 |
+
raise ValueError(
|
86 |
+
f"Make sure that all the required parameters: {list(function_args.keys())} for "
|
87 |
+
f"{processor.__class__} are passed to the logits processor."
|
88 |
+
)
|
89 |
+
scores = processor(input_ids, scores, cur_len, **kwargs)
|
90 |
+
else:
|
91 |
+
scores = processor(input_ids, scores, cur_len)
|
92 |
+
return scores
|
93 |
+
|
94 |
+
|
95 |
+
class FlaxTemperatureLogitsWarper(FlaxLogitsWarper):
|
96 |
+
r"""
|
97 |
+
[`FlaxLogitsWarper`] for temperature (exponential scaling output probability distribution).
|
98 |
+
|
99 |
+
Args:
|
100 |
+
temperature (`float`):
|
101 |
+
The value used to module the logits distribution.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, temperature: float):
|
105 |
+
if not isinstance(temperature, float) or not (temperature > 0):
|
106 |
+
raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}")
|
107 |
+
|
108 |
+
self.temperature = temperature
|
109 |
+
|
110 |
+
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
111 |
+
scores = scores / self.temperature
|
112 |
+
return scores
|
113 |
+
|
114 |
+
|
115 |
+
class FlaxTopPLogitsWarper(FlaxLogitsWarper):
|
116 |
+
"""
|
117 |
+
[`FlaxLogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
top_p (`float`):
|
121 |
+
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
|
122 |
+
higher are kept for generation.
|
123 |
+
filter_value (`float`, *optional*, defaults to -inf):
|
124 |
+
All filtered values will be set to this float value.
|
125 |
+
min_tokens_to_keep (`int`, *optional*, defaults to 1):
|
126 |
+
Minimum number of tokens that cannot be filtered.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
|
130 |
+
if not isinstance(top_p, float) or (top_p < 0 or top_p > 1.0):
|
131 |
+
raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}")
|
132 |
+
if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
|
133 |
+
raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")
|
134 |
+
|
135 |
+
self.top_p = top_p
|
136 |
+
self.filter_value = filter_value
|
137 |
+
self.min_tokens_to_keep = min_tokens_to_keep
|
138 |
+
|
139 |
+
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
140 |
+
topk_scores, topk_indices = lax.top_k(scores, scores.shape[-1])
|
141 |
+
|
142 |
+
mask_scores = jnp.full_like(scores, self.filter_value)
|
143 |
+
cumulative_probs = jax.nn.softmax(topk_scores, axis=-1).cumsum(axis=-1)
|
144 |
+
score_mask = cumulative_probs < self.top_p
|
145 |
+
|
146 |
+
# include the token that is higher than top_p as well
|
147 |
+
score_mask = jnp.roll(score_mask, 1)
|
148 |
+
score_mask |= score_mask.at[:, 0].set(True)
|
149 |
+
|
150 |
+
# min tokens to keep
|
151 |
+
score_mask = score_mask.at[:, : self.min_tokens_to_keep].set(True)
|
152 |
+
|
153 |
+
topk_next_scores = jnp.where(score_mask, topk_scores, mask_scores)
|
154 |
+
next_scores = jax.lax.sort_key_val(topk_indices, topk_next_scores)[-1]
|
155 |
+
|
156 |
+
return next_scores
|
157 |
+
|
158 |
+
|
159 |
+
class FlaxTopKLogitsWarper(FlaxLogitsWarper):
|
160 |
+
r"""
|
161 |
+
[`FlaxLogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
top_k (`int`):
|
165 |
+
The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
166 |
+
filter_value (`float`, *optional*, defaults to -inf):
|
167 |
+
All filtered values will be set to this float value.
|
168 |
+
min_tokens_to_keep (`int`, *optional*, defaults to 1):
|
169 |
+
Minimum number of tokens that cannot be filtered.
|
170 |
+
"""
|
171 |
+
|
172 |
+
def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
|
173 |
+
if not isinstance(top_k, int) or top_k <= 0:
|
174 |
+
raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}")
|
175 |
+
|
176 |
+
self.top_k = max(top_k, min_tokens_to_keep)
|
177 |
+
self.filter_value = filter_value
|
178 |
+
|
179 |
+
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
180 |
+
batch_size, vocab_size = scores.shape
|
181 |
+
next_scores_flat = jnp.full(batch_size * vocab_size, self.filter_value)
|
182 |
+
|
183 |
+
topk = min(self.top_k, scores.shape[-1]) # Safety check
|
184 |
+
topk_scores, topk_indices = lax.top_k(scores, topk)
|
185 |
+
shift = jnp.broadcast_to((jnp.arange(batch_size) * vocab_size)[:, None], (batch_size, topk)).flatten()
|
186 |
+
topk_scores_flat = topk_scores.flatten()
|
187 |
+
topk_indices_flat = topk_indices.flatten() + shift
|
188 |
+
|
189 |
+
next_scores_flat = next_scores_flat.at[topk_indices_flat].set(topk_scores_flat)
|
190 |
+
next_scores = next_scores_flat.reshape(batch_size, vocab_size)
|
191 |
+
return next_scores
|
192 |
+
|
193 |
+
|
194 |
+
class FlaxForcedBOSTokenLogitsProcessor(FlaxLogitsProcessor):
|
195 |
+
r"""
|
196 |
+
[`FlaxLogitsProcessor`] that enforces the specified token as the first generated token.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
bos_token_id (`int`):
|
200 |
+
The id of the token to force as the first generated token.
|
201 |
+
"""
|
202 |
+
|
203 |
+
def __init__(self, bos_token_id: int):
|
204 |
+
self.bos_token_id = bos_token_id
|
205 |
+
|
206 |
+
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
207 |
+
new_scores = jnp.full(scores.shape, -float("inf"))
|
208 |
+
|
209 |
+
apply_penalty = 1 - jnp.bool_(cur_len - 1)
|
210 |
+
|
211 |
+
scores = jnp.where(apply_penalty, new_scores.at[:, self.bos_token_id].set(0), scores)
|
212 |
+
|
213 |
+
return scores
|
214 |
+
|
215 |
+
|
216 |
+
class FlaxForcedEOSTokenLogitsProcessor(FlaxLogitsProcessor):
|
217 |
+
r"""
|
218 |
+
[`FlaxLogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
max_length (`int`):
|
222 |
+
The maximum length of the sequence to be generated.
|
223 |
+
eos_token_id (`int`):
|
224 |
+
The id of the token to force as the last generated token when `max_length` is reached.
|
225 |
+
"""
|
226 |
+
|
227 |
+
def __init__(self, max_length: int, eos_token_id: int):
|
228 |
+
self.max_length = max_length
|
229 |
+
self.eos_token_id = eos_token_id
|
230 |
+
|
231 |
+
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
232 |
+
new_scores = jnp.full(scores.shape, -float("inf"))
|
233 |
+
|
234 |
+
apply_penalty = 1 - jnp.bool_(cur_len - self.max_length + 1)
|
235 |
+
|
236 |
+
scores = jnp.where(apply_penalty, new_scores.at[:, self.eos_token_id].set(0), scores)
|
237 |
+
|
238 |
+
return scores
|
239 |
+
|
240 |
+
|
241 |
+
class FlaxMinLengthLogitsProcessor(FlaxLogitsProcessor):
|
242 |
+
r"""
|
243 |
+
[`FlaxLogitsProcessor`] enforcing a min-length by setting EOS probability to 0.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
min_length (`int`):
|
247 |
+
The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`.
|
248 |
+
eos_token_id (`int`):
|
249 |
+
The id of the *end-of-sequence* token.
|
250 |
+
"""
|
251 |
+
|
252 |
+
def __init__(self, min_length: int, eos_token_id: int):
|
253 |
+
if not isinstance(min_length, int) or min_length < 0:
|
254 |
+
raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}")
|
255 |
+
|
256 |
+
if not isinstance(eos_token_id, int) or eos_token_id < 0:
|
257 |
+
raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}")
|
258 |
+
|
259 |
+
self.min_length = min_length
|
260 |
+
self.eos_token_id = eos_token_id
|
261 |
+
|
262 |
+
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
263 |
+
# create boolean flag to decide if min length penalty should be applied
|
264 |
+
apply_penalty = 1 - jnp.clip(cur_len - self.min_length, 0, 1)
|
265 |
+
|
266 |
+
scores = jnp.where(apply_penalty, scores.at[:, self.eos_token_id].set(-float("inf")), scores)
|
267 |
+
|
268 |
+
return scores
|
269 |
+
|
270 |
+
|
271 |
+
class FlaxSuppressTokensAtBeginLogitsProcessor(FlaxLogitsProcessor):
|
272 |
+
r"""
|
273 |
+
[`FlaxLogitsProcessor`] supressing a list of tokens as soon as the `generate` function starts generating using
|
274 |
+
`begin_index` tokens. This should ensure that the tokens defined by `begin_suppress_tokens` are not sampled at the
|
275 |
+
begining of the generation.
|
276 |
+
|
277 |
+
Args:
|
278 |
+
begin_suppress_tokens (`List[int]`):
|
279 |
+
Tokens to not sample.
|
280 |
+
begin_index (`int`):
|
281 |
+
Index where the tokens are suppressed.
|
282 |
+
"""
|
283 |
+
|
284 |
+
def __init__(self, begin_suppress_tokens, begin_index):
|
285 |
+
self.begin_suppress_tokens = list(begin_suppress_tokens)
|
286 |
+
self.begin_index = begin_index
|
287 |
+
|
288 |
+
def __call__(self, input_ids, scores, cur_len: int):
|
289 |
+
apply_penalty = 1 - jnp.bool_(cur_len - self.begin_index)
|
290 |
+
|
291 |
+
scores = jnp.where(apply_penalty, scores.at[:, self.begin_suppress_tokens].set(-float("inf")), scores)
|
292 |
+
|
293 |
+
return scores
|
294 |
+
|
295 |
+
|
296 |
+
class FlaxSuppressTokensLogitsProcessor(FlaxLogitsProcessor):
|
297 |
+
r"""
|
298 |
+
[`FlaxLogitsProcessor`] suppressing a list of tokens at each decoding step. The processor will set their log probs
|
299 |
+
to be `-inf` so they are not sampled.
|
300 |
+
|
301 |
+
Args:
|
302 |
+
suppress_tokens (`list`):
|
303 |
+
Tokens to not sample.
|
304 |
+
"""
|
305 |
+
|
306 |
+
def __init__(self, suppress_tokens: list):
|
307 |
+
self.suppress_tokens = list(suppress_tokens)
|
308 |
+
|
309 |
+
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
310 |
+
scores = scores.at[..., self.suppress_tokens].set(-float("inf"))
|
311 |
+
|
312 |
+
return scores
|
313 |
+
|
314 |
+
|
315 |
+
class FlaxForceTokensLogitsProcessor(FlaxLogitsProcessor):
|
316 |
+
r"""
|
317 |
+
[`FlaxLogitsProcessor`] that takes a list of pairs of integers which indicates a mapping from generation indices to
|
318 |
+
token indices that will be forced before sampling. The processor will set their log probs to 0 and all other tokens
|
319 |
+
to `-inf` so that they are sampled at their corresponding index.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
force_token_map (`list`):
|
323 |
+
Map giving token ids and indices where they will be forced to be sampled.
|
324 |
+
"""
|
325 |
+
|
326 |
+
def __init__(self, force_token_map):
|
327 |
+
force_token_map = dict(force_token_map)
|
328 |
+
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
|
329 |
+
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
|
330 |
+
# Indexes without forced tokens will have a negative value.
|
331 |
+
force_token_array = jnp.ones((max(force_token_map.keys()) + 1), dtype=jnp.int32) * -1
|
332 |
+
for index, token in force_token_map.items():
|
333 |
+
if token is not None:
|
334 |
+
force_token_array = force_token_array.at[index].set(token)
|
335 |
+
self.force_token_array = jnp.int32(force_token_array)
|
336 |
+
|
337 |
+
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
338 |
+
def _force_token(generation_idx):
|
339 |
+
batch_size = scores.shape[0]
|
340 |
+
current_token = self.force_token_array[generation_idx]
|
341 |
+
|
342 |
+
new_scores = jnp.ones_like(scores, dtype=scores.dtype) * -float("inf")
|
343 |
+
updates = jnp.zeros((batch_size, 1), dtype=scores.dtype)
|
344 |
+
new_scores = lax.dynamic_update_slice(new_scores, updates, (0, current_token))
|
345 |
+
return new_scores
|
346 |
+
|
347 |
+
scores = lax.cond(
|
348 |
+
cur_len >= self.force_token_array.shape[0],
|
349 |
+
# If the current length is geq than the length of force_token_array, the processor does nothing.
|
350 |
+
lambda: scores,
|
351 |
+
# Otherwise, it may force a certain token.
|
352 |
+
lambda: lax.cond(
|
353 |
+
self.force_token_array[cur_len] >= 0,
|
354 |
+
# Only valid (positive) tokens are forced
|
355 |
+
lambda: _force_token(cur_len),
|
356 |
+
# Otherwise, the processor does nothing.
|
357 |
+
lambda: scores,
|
358 |
+
),
|
359 |
+
)
|
360 |
+
return scores
|
361 |
+
|
362 |
+
|
363 |
+
class FlaxWhisperTimeStampLogitsProcessor(FlaxLogitsProcessor):
|
364 |
+
r"""
|
365 |
+
Whisper specific Processor. This processor can be used to force a list of tokens. The processor will set their log
|
366 |
+
probs to `inf` so that they are sampled at their corresponding index.
|
367 |
+
|
368 |
+
Args:
|
369 |
+
generate_config (`GenerateConfig`):
|
370 |
+
The generate config used to generate the output. The following parameters are required:
|
371 |
+
eos_token_id (`int`, *optional*, defaults to 50257):
|
372 |
+
The id of the *end-of-sequence* token.
|
373 |
+
no_timestamps_token_id (`int`, *optional*, defaults to 50363):
|
374 |
+
The id of the `"<|notimestamps|>"` token.
|
375 |
+
max_initial_timestamp_index (`int`, *optional*, defaults to 1):
|
376 |
+
Used to set the maximum value of the initial timestamp. This is used to prevent the model from
|
377 |
+
predicting timestamps that are too far in the future.
|
378 |
+
"""
|
379 |
+
|
380 |
+
def __init__(self, generate_config, model_config, decoder_input_length):
|
381 |
+
self.eos_token_id = generate_config.eos_token_id
|
382 |
+
self.no_timestamps_token_id = generate_config.no_timestamps_token_id
|
383 |
+
self.timestamp_begin = generate_config.no_timestamps_token_id + 1
|
384 |
+
|
385 |
+
self.begin_index = decoder_input_length + 1
|
386 |
+
|
387 |
+
if generate_config.is_multilingual:
|
388 |
+
# room for language token and task token
|
389 |
+
self.begin_index += 2
|
390 |
+
if hasattr(generate_config, "max_initial_timestamp_index"):
|
391 |
+
self.max_initial_timestamp_index = generate_config.max_initial_timestamp_index
|
392 |
+
else:
|
393 |
+
self.max_initial_timestamp_index = model_config.vocab_size
|
394 |
+
if self.max_initial_timestamp_index is None:
|
395 |
+
self.max_initial_timestamp_index = model_config.vocab_size
|
396 |
+
|
397 |
+
def __call__(self, input_ids, scores, cur_len):
|
398 |
+
# suppress <|notimestamps|> which is handled by without_timestamps
|
399 |
+
scores = scores.at[:, self.no_timestamps_token_id].set(-float("inf"))
|
400 |
+
|
401 |
+
def handle_pairs(input_ids_k, scores_k):
|
402 |
+
last_was_timestamp = jnp.where((cur_len - self.begin_index) >= 1, True, False)
|
403 |
+
last_was_timestamp = jnp.where(
|
404 |
+
input_ids_k[cur_len - 1] >= self.timestamp_begin,
|
405 |
+
True and last_was_timestamp,
|
406 |
+
False,
|
407 |
+
)
|
408 |
+
|
409 |
+
penultimate_was_timestamp = jnp.where((cur_len - self.begin_index) < 2, True, False)
|
410 |
+
penultimate_was_timestamp = jnp.where(
|
411 |
+
input_ids_k[cur_len - 2] >= self.timestamp_begin,
|
412 |
+
True,
|
413 |
+
penultimate_was_timestamp,
|
414 |
+
)
|
415 |
+
|
416 |
+
return jnp.where(
|
417 |
+
last_was_timestamp,
|
418 |
+
jnp.where(
|
419 |
+
penultimate_was_timestamp > 0,
|
420 |
+
scores_k.at[self.timestamp_begin :].set(-float("inf")),
|
421 |
+
scores_k.at[: self.eos_token_id].set(-float("inf")),
|
422 |
+
),
|
423 |
+
scores_k,
|
424 |
+
)
|
425 |
+
|
426 |
+
scores = jax.vmap(handle_pairs)(input_ids, scores)
|
427 |
+
|
428 |
+
apply_max_initial_timestamp = jnp.where(cur_len == self.begin_index, True, False)
|
429 |
+
apply_max_initial_timestamp = jnp.where(
|
430 |
+
self.max_initial_timestamp_index is not None,
|
431 |
+
True and apply_max_initial_timestamp,
|
432 |
+
False,
|
433 |
+
)
|
434 |
+
|
435 |
+
last_allowed = self.timestamp_begin + self.max_initial_timestamp_index
|
436 |
+
|
437 |
+
scores = jnp.where(
|
438 |
+
apply_max_initial_timestamp,
|
439 |
+
scores.at[:, last_allowed + 1 :].set(-float("inf")),
|
440 |
+
scores,
|
441 |
+
)
|
442 |
+
|
443 |
+
# if sum of probability over timestamps is above any other token, sample timestamp
|
444 |
+
logprobs = jax.nn.log_softmax(scores, axis=-1)
|
445 |
+
|
446 |
+
def handle_cumulative_probs(logprobs_k, scores_k):
|
447 |
+
timestamp_logprob = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :], axis=-1)
|
448 |
+
max_text_token_logprob = jnp.max(logprobs_k[: self.timestamp_begin])
|
449 |
+
return jnp.where(
|
450 |
+
timestamp_logprob > max_text_token_logprob,
|
451 |
+
scores_k.at[: self.timestamp_begin].set(-float("inf")),
|
452 |
+
scores_k,
|
453 |
+
)
|
454 |
+
|
455 |
+
scores = jax.vmap(handle_cumulative_probs)(logprobs, scores)
|
456 |
+
|
457 |
+
return scores
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/flax_utils.py
ADDED
@@ -0,0 +1,1019 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Google AI Flax Team Authors, and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
|
18 |
+
import copy
|
19 |
+
import inspect
|
20 |
+
import warnings
|
21 |
+
from functools import partial
|
22 |
+
from typing import Any, Dict, Optional, Union
|
23 |
+
|
24 |
+
import flax
|
25 |
+
import jax
|
26 |
+
import jax.numpy as jnp
|
27 |
+
import numpy as np
|
28 |
+
from jax import lax
|
29 |
+
|
30 |
+
from ..models.auto import (
|
31 |
+
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
|
32 |
+
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
|
33 |
+
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING,
|
34 |
+
)
|
35 |
+
from ..utils import ModelOutput, logging
|
36 |
+
from .configuration_utils import GenerationConfig
|
37 |
+
from .flax_logits_process import (
|
38 |
+
FlaxForcedBOSTokenLogitsProcessor,
|
39 |
+
FlaxForcedEOSTokenLogitsProcessor,
|
40 |
+
FlaxForceTokensLogitsProcessor,
|
41 |
+
FlaxLogitsProcessorList,
|
42 |
+
FlaxMinLengthLogitsProcessor,
|
43 |
+
FlaxSuppressTokensAtBeginLogitsProcessor,
|
44 |
+
FlaxSuppressTokensLogitsProcessor,
|
45 |
+
FlaxTemperatureLogitsWarper,
|
46 |
+
FlaxTopKLogitsWarper,
|
47 |
+
FlaxTopPLogitsWarper,
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
|
54 |
+
@flax.struct.dataclass
|
55 |
+
class FlaxGreedySearchOutput(ModelOutput):
|
56 |
+
"""
|
57 |
+
Flax Base class for outputs of decoder-only generation models using greedy search.
|
58 |
+
|
59 |
+
|
60 |
+
Args:
|
61 |
+
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
|
62 |
+
The generated sequences.
|
63 |
+
"""
|
64 |
+
|
65 |
+
sequences: jnp.ndarray = None
|
66 |
+
|
67 |
+
|
68 |
+
@flax.struct.dataclass
|
69 |
+
class FlaxSampleOutput(ModelOutput):
|
70 |
+
"""
|
71 |
+
Flax Base class for outputs of decoder-only generation models using sampling.
|
72 |
+
|
73 |
+
|
74 |
+
Args:
|
75 |
+
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
|
76 |
+
The generated sequences.
|
77 |
+
"""
|
78 |
+
|
79 |
+
sequences: jnp.ndarray = None
|
80 |
+
|
81 |
+
|
82 |
+
@flax.struct.dataclass
|
83 |
+
class FlaxBeamSearchOutput(ModelOutput):
|
84 |
+
"""
|
85 |
+
Flax Base class for outputs of decoder-only generation models using greedy search.
|
86 |
+
|
87 |
+
|
88 |
+
Args:
|
89 |
+
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
|
90 |
+
The generated sequences.
|
91 |
+
scores (`jnp.ndarray` of shape `(batch_size,)`):
|
92 |
+
The scores (log probabilities) of the generated sequences.
|
93 |
+
"""
|
94 |
+
|
95 |
+
sequences: jnp.ndarray = None
|
96 |
+
scores: jnp.ndarray = None
|
97 |
+
|
98 |
+
|
99 |
+
@flax.struct.dataclass
|
100 |
+
class GreedyState:
|
101 |
+
cur_len: jnp.ndarray
|
102 |
+
sequences: jnp.ndarray
|
103 |
+
running_token: jnp.ndarray
|
104 |
+
is_sent_finished: jnp.ndarray
|
105 |
+
model_kwargs: Dict[str, jnp.ndarray]
|
106 |
+
|
107 |
+
|
108 |
+
@flax.struct.dataclass
|
109 |
+
class SampleState:
|
110 |
+
cur_len: jnp.ndarray
|
111 |
+
sequences: jnp.ndarray
|
112 |
+
running_token: jnp.ndarray
|
113 |
+
is_sent_finished: jnp.ndarray
|
114 |
+
prng_key: jnp.ndarray
|
115 |
+
model_kwargs: Dict[str, jnp.ndarray]
|
116 |
+
|
117 |
+
|
118 |
+
@flax.struct.dataclass
|
119 |
+
class BeamSearchState:
|
120 |
+
cur_len: jnp.ndarray
|
121 |
+
running_sequences: jnp.ndarray
|
122 |
+
running_scores: jnp.ndarray
|
123 |
+
sequences: jnp.ndarray
|
124 |
+
scores: jnp.ndarray
|
125 |
+
is_sent_finished: jnp.ndarray
|
126 |
+
model_kwargs: Dict[str, jnp.ndarray]
|
127 |
+
|
128 |
+
|
129 |
+
class FlaxGenerationMixin:
|
130 |
+
"""
|
131 |
+
A class containing all functions for auto-regressive text generation, to be used as a mixin in
|
132 |
+
[`FlaxPreTrainedModel`].
|
133 |
+
|
134 |
+
The class exposes [`~generation.FlaxGenerationMixin.generate`], which can be used for:
|
135 |
+
- *greedy decoding* by calling [`~generation.FlaxGenerationMixin._greedy_search`] if `num_beams=1` and
|
136 |
+
`do_sample=False`
|
137 |
+
- *multinomial sampling* by calling [`~generation.FlaxGenerationMixin._sample`] if `num_beams=1` and
|
138 |
+
`do_sample=True`
|
139 |
+
- *beam-search decoding* by calling [`~generation.FlaxGenerationMixin._beam_search`] if `num_beams>1` and
|
140 |
+
`do_sample=False`
|
141 |
+
|
142 |
+
You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To
|
143 |
+
learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
|
144 |
+
"""
|
145 |
+
|
146 |
+
def prepare_inputs_for_generation(self, *args, **kwargs):
|
147 |
+
raise NotImplementedError(
|
148 |
+
"A model class needs to define a `prepare_inputs_for_generation` method in order to use `generate`."
|
149 |
+
)
|
150 |
+
|
151 |
+
@staticmethod
|
152 |
+
def _run_loop_in_debug(cond_fn, body_fn, init_state):
|
153 |
+
"""
|
154 |
+
Run generation in untraced mode. This should only be used for debugging purposes.
|
155 |
+
"""
|
156 |
+
state = init_state
|
157 |
+
while cond_fn(state):
|
158 |
+
state = body_fn(state)
|
159 |
+
return state
|
160 |
+
|
161 |
+
def _prepare_encoder_decoder_kwargs_for_generation(self, input_ids, params, model_kwargs):
|
162 |
+
encoder_kwargs = {
|
163 |
+
argument: value
|
164 |
+
for argument, value in model_kwargs.items()
|
165 |
+
if not (argument.startswith("decoder_") or argument.startswith("cross_attn"))
|
166 |
+
}
|
167 |
+
model_kwargs["encoder_outputs"] = self.encode(input_ids, params=params, return_dict=True, **encoder_kwargs)
|
168 |
+
return model_kwargs
|
169 |
+
|
170 |
+
def _prepare_decoder_input_ids_for_generation(
|
171 |
+
self,
|
172 |
+
batch_size: int,
|
173 |
+
decoder_start_token_id: int = None,
|
174 |
+
bos_token_id: int = None,
|
175 |
+
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
|
176 |
+
) -> jnp.ndarray:
|
177 |
+
if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
|
178 |
+
# Only use this arg if not None, otherwise just remove from model_kwargs
|
179 |
+
decoder_input_ids = model_kwargs.pop("decoder_input_ids")
|
180 |
+
if decoder_input_ids is not None:
|
181 |
+
return decoder_input_ids
|
182 |
+
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
|
183 |
+
return jnp.array(decoder_start_token_id, dtype="i4").reshape(1, -1).repeat(batch_size, axis=0)
|
184 |
+
|
185 |
+
def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int:
|
186 |
+
# retrieve decoder_start_token_id for encoder-decoder models
|
187 |
+
# fall back to bos_token_id if necessary
|
188 |
+
decoder_start_token_id = (
|
189 |
+
decoder_start_token_id
|
190 |
+
if decoder_start_token_id is not None
|
191 |
+
else self.generation_config.decoder_start_token_id
|
192 |
+
)
|
193 |
+
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
|
194 |
+
if decoder_start_token_id is not None:
|
195 |
+
return decoder_start_token_id
|
196 |
+
elif (
|
197 |
+
hasattr(self.config, "decoder")
|
198 |
+
and hasattr(self.config.decoder, "decoder_start_token_id")
|
199 |
+
and self.config.decoder.decoder_start_token_id is not None
|
200 |
+
):
|
201 |
+
return self.config.decoder.decoder_start_token_id
|
202 |
+
elif bos_token_id is not None:
|
203 |
+
return bos_token_id
|
204 |
+
elif (
|
205 |
+
hasattr(self.config, "decoder")
|
206 |
+
and hasattr(self.config.decoder, "bos_token_id")
|
207 |
+
and self.config.decoder.bos_token_id is not None
|
208 |
+
):
|
209 |
+
return self.config.decoder.bos_token_id
|
210 |
+
raise ValueError(
|
211 |
+
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
|
212 |
+
)
|
213 |
+
|
214 |
+
@staticmethod
|
215 |
+
def _expand_to_num_beams(tensor, num_beams):
|
216 |
+
return jnp.broadcast_to(tensor[:, None], (tensor.shape[0], num_beams) + tensor.shape[1:])
|
217 |
+
|
218 |
+
def _adapt_logits_for_beam_search(self, logits):
|
219 |
+
"""
|
220 |
+
This function can be overwritten in the specific modeling_flax_<model-name>.py classes to allow for custom beam
|
221 |
+
search behavior. Note that the only model that overwrites this method is [`~transformes.FlaxMarianMTModel`].
|
222 |
+
"""
|
223 |
+
return logits
|
224 |
+
|
225 |
+
def _validate_model_class(self):
|
226 |
+
"""
|
227 |
+
Confirms that the model class is compatible with generation. If not, raises an exception that points to the
|
228 |
+
right class to use.
|
229 |
+
"""
|
230 |
+
if not self.can_generate():
|
231 |
+
generate_compatible_mappings = [
|
232 |
+
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
|
233 |
+
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING,
|
234 |
+
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
|
235 |
+
]
|
236 |
+
generate_compatible_classes = set()
|
237 |
+
for model_mapping in generate_compatible_mappings:
|
238 |
+
supported_models = model_mapping.get(type(self.config), default=None)
|
239 |
+
if supported_models is not None:
|
240 |
+
generate_compatible_classes.add(supported_models.__name__)
|
241 |
+
exception_message = (
|
242 |
+
f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
|
243 |
+
"it doesn't have a language model head."
|
244 |
+
)
|
245 |
+
if generate_compatible_classes:
|
246 |
+
exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
|
247 |
+
raise TypeError(exception_message)
|
248 |
+
|
249 |
+
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
|
250 |
+
"""Validates model kwargs for generation. Generate argument typos will also be caught here."""
|
251 |
+
unused_model_args = []
|
252 |
+
model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
|
253 |
+
# `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
|
254 |
+
# `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
|
255 |
+
if "kwargs" in model_args or "model_kwargs" in model_args:
|
256 |
+
model_args |= set(inspect.signature(self.__call__).parameters)
|
257 |
+
for key, value in model_kwargs.items():
|
258 |
+
if value is not None and key not in model_args:
|
259 |
+
unused_model_args.append(key)
|
260 |
+
|
261 |
+
if unused_model_args:
|
262 |
+
raise ValueError(
|
263 |
+
f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
|
264 |
+
" generate arguments will also show up in this list)"
|
265 |
+
)
|
266 |
+
|
267 |
+
def generate(
|
268 |
+
self,
|
269 |
+
input_ids: jnp.ndarray,
|
270 |
+
generation_config: Optional[GenerationConfig] = None,
|
271 |
+
prng_key: Optional[jnp.ndarray] = None,
|
272 |
+
trace: bool = True,
|
273 |
+
params: Optional[Dict[str, jnp.ndarray]] = None,
|
274 |
+
logits_processor: Optional[FlaxLogitsProcessorList] = None,
|
275 |
+
**kwargs,
|
276 |
+
):
|
277 |
+
r"""
|
278 |
+
Generates sequences of token ids for models with a language modeling head.
|
279 |
+
|
280 |
+
Parameters:
|
281 |
+
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
|
282 |
+
The sequence used as a prompt for the generation.
|
283 |
+
generation_config (`~generation.GenerationConfig`, *optional*):
|
284 |
+
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
|
285 |
+
passed to generate matching the attributes of `generation_config` will override them. If
|
286 |
+
`generation_config` is not provided, the default will be used, which had the following loading
|
287 |
+
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
|
288 |
+
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
|
289 |
+
default values, whose documentation should be checked to parameterize generation.
|
290 |
+
trace (`bool`, *optional*, defaults to `True`):
|
291 |
+
Whether to trace generation. Setting `trace=False` should only be used for debugging and will lead to a
|
292 |
+
considerably slower runtime.
|
293 |
+
params (`Dict[str, jnp.ndarray]`, *optional*):
|
294 |
+
Optionally the model parameters can be passed. Can be useful for parallelized generation.
|
295 |
+
logits_processor (`FlaxLogitsProcessorList `, *optional*):
|
296 |
+
Custom logits processors that complement the default logits processors built from arguments and
|
297 |
+
generation config. If a logit processor is passed that is already created with the arguments or a
|
298 |
+
generation config an error is thrown. This feature is intended for advanced users.
|
299 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
300 |
+
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
|
301 |
+
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
|
302 |
+
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
|
303 |
+
|
304 |
+
Return:
|
305 |
+
[`~utils.ModelOutput`].
|
306 |
+
|
307 |
+
"""
|
308 |
+
# Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
309 |
+
self._validate_model_class()
|
310 |
+
|
311 |
+
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
|
312 |
+
if generation_config is None:
|
313 |
+
# legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
|
314 |
+
# two conditions must be met
|
315 |
+
# 1) the generation config must have been created from the model config (`_from_model_config` field);
|
316 |
+
# 2) the generation config must have seen no modification since its creation (the hash is the same).
|
317 |
+
if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash(
|
318 |
+
self.generation_config
|
319 |
+
):
|
320 |
+
new_generation_config = GenerationConfig.from_model_config(self.config)
|
321 |
+
if new_generation_config != self.generation_config:
|
322 |
+
warnings.warn(
|
323 |
+
"You have modified the pretrained model configuration to control generation. This is a"
|
324 |
+
" deprecated strategy to control generation and will be removed soon, in a future version."
|
325 |
+
" Please use and modify the model generation configuration (see"
|
326 |
+
" https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )"
|
327 |
+
)
|
328 |
+
self.generation_config = new_generation_config
|
329 |
+
generation_config = self.generation_config
|
330 |
+
|
331 |
+
generation_config = copy.deepcopy(generation_config)
|
332 |
+
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
|
333 |
+
self._validate_model_kwargs(model_kwargs.copy())
|
334 |
+
|
335 |
+
logits_processor = logits_processor if logits_processor is not None else FlaxLogitsProcessorList()
|
336 |
+
|
337 |
+
# set init values
|
338 |
+
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
|
339 |
+
|
340 |
+
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
|
341 |
+
if model_kwargs.get("attention_mask") is None:
|
342 |
+
logger.warning(
|
343 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe "
|
344 |
+
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
|
345 |
+
)
|
346 |
+
eos_token_id = generation_config.eos_token_id
|
347 |
+
if isinstance(eos_token_id, list):
|
348 |
+
eos_token_id = eos_token_id[0]
|
349 |
+
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
|
350 |
+
generation_config.pad_token_id = eos_token_id
|
351 |
+
|
352 |
+
if generation_config.decoder_start_token_id is None and self.config.is_encoder_decoder:
|
353 |
+
raise ValueError("`decoder_start_token_id` has to be defined for encoder-decoder generation.")
|
354 |
+
|
355 |
+
# decoder-only models should use left-padding for generation (can't be checked with `trace=True`)
|
356 |
+
if not self.config.is_encoder_decoder and not trace:
|
357 |
+
if (
|
358 |
+
generation_config.pad_token_id is not None
|
359 |
+
and jnp.sum(input_ids[:, -1] == generation_config.pad_token_id) > 0
|
360 |
+
):
|
361 |
+
logger.warning(
|
362 |
+
"A decoder-only architecture is being used, but right-padding was detected! For correct "
|
363 |
+
"generation results, please set `padding_side='left'` when initializing the tokenizer."
|
364 |
+
)
|
365 |
+
|
366 |
+
batch_size = input_ids.shape[0]
|
367 |
+
|
368 |
+
if self.config.is_encoder_decoder:
|
369 |
+
# add encoder_outputs to model_kwargs
|
370 |
+
if model_kwargs.get("encoder_outputs") is None:
|
371 |
+
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(input_ids, params, model_kwargs)
|
372 |
+
# prepare decoder_input_ids for generation
|
373 |
+
input_ids = self._prepare_decoder_input_ids_for_generation(
|
374 |
+
batch_size,
|
375 |
+
decoder_start_token_id=generation_config.decoder_start_token_id,
|
376 |
+
bos_token_id=generation_config.bos_token_id,
|
377 |
+
model_kwargs=model_kwargs,
|
378 |
+
)
|
379 |
+
|
380 |
+
# Prepare `max_length` depending on other stopping criteria.
|
381 |
+
input_ids_seq_length = input_ids.shape[-1]
|
382 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
383 |
+
if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
|
384 |
+
# 20 is the default max_length of the generation config
|
385 |
+
warnings.warn(
|
386 |
+
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) "
|
387 |
+
"to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation.",
|
388 |
+
UserWarning,
|
389 |
+
)
|
390 |
+
elif generation_config.max_new_tokens is not None:
|
391 |
+
if not has_default_max_length and generation_config.max_length is not None:
|
392 |
+
logger.warning(
|
393 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
394 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
395 |
+
"Please refer to the documentation for more information. "
|
396 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
|
397 |
+
)
|
398 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
399 |
+
|
400 |
+
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
|
401 |
+
raise ValueError(
|
402 |
+
f"Unfeasable length constraints: the minimum length ({generation_config.min_length}) is larger than"
|
403 |
+
f" the maximum length ({generation_config.max_length})"
|
404 |
+
)
|
405 |
+
if input_ids_seq_length >= generation_config.max_length:
|
406 |
+
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
407 |
+
logger.warning(
|
408 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
409 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
410 |
+
" increasing`max_new_tokens`."
|
411 |
+
)
|
412 |
+
|
413 |
+
logits_processor = self._get_logits_processor(
|
414 |
+
generation_config=generation_config,
|
415 |
+
input_ids_seq_length=input_ids_seq_length,
|
416 |
+
logits_processor=logits_processor,
|
417 |
+
)
|
418 |
+
|
419 |
+
if not generation_config.do_sample and generation_config.num_beams == 1:
|
420 |
+
return self._greedy_search(
|
421 |
+
input_ids,
|
422 |
+
generation_config.max_length,
|
423 |
+
generation_config.pad_token_id,
|
424 |
+
generation_config.eos_token_id,
|
425 |
+
logits_processor=logits_processor,
|
426 |
+
trace=trace,
|
427 |
+
params=params,
|
428 |
+
model_kwargs=model_kwargs,
|
429 |
+
)
|
430 |
+
elif generation_config.do_sample and generation_config.num_beams == 1:
|
431 |
+
logits_warper = self._get_logits_warper(generation_config=generation_config)
|
432 |
+
return self._sample(
|
433 |
+
input_ids,
|
434 |
+
generation_config.max_length,
|
435 |
+
generation_config.pad_token_id,
|
436 |
+
generation_config.eos_token_id,
|
437 |
+
prng_key,
|
438 |
+
logits_warper=logits_warper,
|
439 |
+
logits_processor=logits_processor,
|
440 |
+
trace=trace,
|
441 |
+
params=params,
|
442 |
+
model_kwargs=model_kwargs,
|
443 |
+
)
|
444 |
+
elif not generation_config.do_sample and generation_config.num_beams > 1:
|
445 |
+
# broadcast input_ids & encoder_outputs
|
446 |
+
input_ids = self._expand_to_num_beams(input_ids, num_beams=generation_config.num_beams)
|
447 |
+
|
448 |
+
if "encoder_outputs" in model_kwargs:
|
449 |
+
model_kwargs["encoder_outputs"]["last_hidden_state"] = self._expand_to_num_beams(
|
450 |
+
model_kwargs["encoder_outputs"]["last_hidden_state"], num_beams=generation_config.num_beams
|
451 |
+
)
|
452 |
+
|
453 |
+
for kwarg in ["attention_mask", "decoder_attention_mask"]:
|
454 |
+
if kwarg in model_kwargs:
|
455 |
+
model_kwargs[kwarg] = self._expand_to_num_beams(
|
456 |
+
model_kwargs[kwarg], num_beams=generation_config.num_beams
|
457 |
+
)
|
458 |
+
|
459 |
+
return self._beam_search(
|
460 |
+
input_ids,
|
461 |
+
generation_config.max_length,
|
462 |
+
generation_config.pad_token_id,
|
463 |
+
generation_config.eos_token_id,
|
464 |
+
length_penalty=generation_config.length_penalty,
|
465 |
+
early_stopping=generation_config.early_stopping,
|
466 |
+
logits_processor=logits_processor,
|
467 |
+
trace=trace,
|
468 |
+
params=params,
|
469 |
+
num_return_sequences=generation_config.num_return_sequences,
|
470 |
+
model_kwargs=model_kwargs,
|
471 |
+
)
|
472 |
+
else:
|
473 |
+
raise NotImplementedError("`Beam sampling is currently not implemented.")
|
474 |
+
|
475 |
+
def _get_logits_warper(self, generation_config: GenerationConfig) -> FlaxLogitsProcessorList:
|
476 |
+
"""
|
477 |
+
This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsWarper`]
|
478 |
+
instances used for multinomial sampling.
|
479 |
+
"""
|
480 |
+
warpers = FlaxLogitsProcessorList()
|
481 |
+
|
482 |
+
if generation_config.temperature is not None and generation_config.temperature != 1.0:
|
483 |
+
warpers.append(FlaxTemperatureLogitsWarper(generation_config.temperature))
|
484 |
+
if generation_config.top_k is not None and generation_config.top_k != 0:
|
485 |
+
warpers.append(FlaxTopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=1))
|
486 |
+
if generation_config.top_p is not None and generation_config.top_p < 1.0:
|
487 |
+
warpers.append(FlaxTopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=1))
|
488 |
+
|
489 |
+
return warpers
|
490 |
+
|
491 |
+
def _get_logits_processor(
|
492 |
+
self,
|
493 |
+
generation_config: GenerationConfig,
|
494 |
+
input_ids_seq_length: int,
|
495 |
+
logits_processor: Optional[FlaxLogitsProcessorList],
|
496 |
+
) -> FlaxLogitsProcessorList:
|
497 |
+
"""
|
498 |
+
This class returns a [`FlaxLogitsProcessorList`] list object that contains all relevant [`FlaxLogitsProcessor`]
|
499 |
+
instances used to modify the scores of the language model head.
|
500 |
+
"""
|
501 |
+
processors = FlaxLogitsProcessorList()
|
502 |
+
|
503 |
+
if (
|
504 |
+
generation_config.min_length is not None
|
505 |
+
and generation_config.eos_token_id is not None
|
506 |
+
and generation_config.min_length > -1
|
507 |
+
):
|
508 |
+
processors.append(
|
509 |
+
FlaxMinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id)
|
510 |
+
)
|
511 |
+
if generation_config.forced_bos_token_id is not None:
|
512 |
+
processors.append(FlaxForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id))
|
513 |
+
if generation_config.forced_eos_token_id is not None:
|
514 |
+
processors.append(
|
515 |
+
FlaxForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id)
|
516 |
+
)
|
517 |
+
if generation_config.suppress_tokens is not None:
|
518 |
+
processors.append(FlaxSuppressTokensLogitsProcessor(generation_config.suppress_tokens))
|
519 |
+
if generation_config.begin_suppress_tokens is not None:
|
520 |
+
begin_index = input_ids_seq_length
|
521 |
+
begin_index = (
|
522 |
+
begin_index
|
523 |
+
if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
|
524 |
+
else begin_index + 1
|
525 |
+
)
|
526 |
+
if generation_config.forced_decoder_ids is not None and len(generation_config.forced_decoder_ids) > 0:
|
527 |
+
# generation starts after the last token that is forced
|
528 |
+
begin_index += generation_config.forced_decoder_ids[-1][0]
|
529 |
+
processors.append(
|
530 |
+
FlaxSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
|
531 |
+
)
|
532 |
+
if generation_config.forced_decoder_ids is not None:
|
533 |
+
forced_decoder_ids = [
|
534 |
+
[input_ids_seq_length + i[0] - 1, i[1]] for i in generation_config.forced_decoder_ids
|
535 |
+
]
|
536 |
+
processors.append(FlaxForceTokensLogitsProcessor(forced_decoder_ids))
|
537 |
+
processors = self._merge_criteria_processor_list(processors, logits_processor)
|
538 |
+
|
539 |
+
return processors
|
540 |
+
|
541 |
+
def _merge_criteria_processor_list(
|
542 |
+
self,
|
543 |
+
default_list: FlaxLogitsProcessorList,
|
544 |
+
custom_list: FlaxLogitsProcessorList,
|
545 |
+
) -> FlaxLogitsProcessorList:
|
546 |
+
if len(custom_list) == 0:
|
547 |
+
return default_list
|
548 |
+
for default in default_list:
|
549 |
+
for custom in custom_list:
|
550 |
+
if type(custom) is type(default):
|
551 |
+
object_type = "logits processor"
|
552 |
+
raise ValueError(
|
553 |
+
f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
|
554 |
+
f" `generate`, but it has already been created with the values {default}. {default} has been"
|
555 |
+
" created by passing the corresponding arguments to generate or by the model's config default"
|
556 |
+
f" values. If you just want to change the default values of {object_type} consider passing"
|
557 |
+
f" them as arguments to `generate` instead of using a custom {object_type}."
|
558 |
+
)
|
559 |
+
default_list.extend(custom_list)
|
560 |
+
return default_list
|
561 |
+
|
562 |
+
def _greedy_search(
|
563 |
+
self,
|
564 |
+
input_ids: None,
|
565 |
+
max_length: Optional[int] = None,
|
566 |
+
pad_token_id: Optional[int] = None,
|
567 |
+
eos_token_id: Optional[int] = None,
|
568 |
+
logits_processor: Optional[FlaxLogitsProcessorList] = None,
|
569 |
+
trace: bool = True,
|
570 |
+
params: Optional[Dict[str, jnp.ndarray]] = None,
|
571 |
+
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
|
572 |
+
):
|
573 |
+
# init values
|
574 |
+
max_length = max_length if max_length is not None else self.generation_config.max_length
|
575 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
576 |
+
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
|
577 |
+
|
578 |
+
batch_size, cur_len = input_ids.shape
|
579 |
+
|
580 |
+
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
|
581 |
+
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
|
582 |
+
cur_len = jnp.array(cur_len)
|
583 |
+
|
584 |
+
# per batch-item holding current token in loop.
|
585 |
+
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
|
586 |
+
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
|
587 |
+
|
588 |
+
# per batch-item state bit indicating if sentence has finished.
|
589 |
+
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
|
590 |
+
|
591 |
+
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
|
592 |
+
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
|
593 |
+
model = self.decode if self.config.is_encoder_decoder else self
|
594 |
+
# initialize model specific kwargs
|
595 |
+
model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs)
|
596 |
+
|
597 |
+
# initialize state
|
598 |
+
state = GreedyState(
|
599 |
+
cur_len=cur_len,
|
600 |
+
sequences=sequences,
|
601 |
+
running_token=input_ids,
|
602 |
+
is_sent_finished=is_sent_finished,
|
603 |
+
model_kwargs=model_kwargs,
|
604 |
+
)
|
605 |
+
|
606 |
+
def greedy_search_cond_fn(state):
|
607 |
+
"""state termination condition fn."""
|
608 |
+
has_reached_max_length = state.cur_len == max_length
|
609 |
+
all_sequence_finished = jnp.all(state.is_sent_finished)
|
610 |
+
finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished)
|
611 |
+
return ~finish_generation
|
612 |
+
|
613 |
+
def greedy_search_body_fn(state):
|
614 |
+
"""state update fn."""
|
615 |
+
model_outputs = model(state.running_token, params=params, **state.model_kwargs)
|
616 |
+
logits = model_outputs.logits[:, -1]
|
617 |
+
|
618 |
+
# apply min_length, ...
|
619 |
+
logits = logits_processor(state.sequences, logits, state.cur_len)
|
620 |
+
|
621 |
+
next_token = jnp.argmax(logits, axis=-1)
|
622 |
+
|
623 |
+
next_token = next_token * ~state.is_sent_finished + pad_token_id * state.is_sent_finished
|
624 |
+
next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id)
|
625 |
+
next_token = next_token[:, None]
|
626 |
+
|
627 |
+
next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len))
|
628 |
+
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)
|
629 |
+
return GreedyState(
|
630 |
+
cur_len=state.cur_len + 1,
|
631 |
+
sequences=next_sequences,
|
632 |
+
running_token=next_token,
|
633 |
+
is_sent_finished=next_is_sent_finished,
|
634 |
+
model_kwargs=next_model_kwargs,
|
635 |
+
)
|
636 |
+
|
637 |
+
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
|
638 |
+
if input_ids.shape[1] > 1:
|
639 |
+
state = greedy_search_body_fn(state)
|
640 |
+
|
641 |
+
if not trace:
|
642 |
+
state = self._run_loop_in_debug(greedy_search_cond_fn, greedy_search_body_fn, state)
|
643 |
+
else:
|
644 |
+
state = lax.while_loop(greedy_search_cond_fn, greedy_search_body_fn, state)
|
645 |
+
|
646 |
+
return FlaxGreedySearchOutput(sequences=state.sequences)
|
647 |
+
|
648 |
+
def _sample(
|
649 |
+
self,
|
650 |
+
input_ids: None,
|
651 |
+
max_length: Optional[int] = None,
|
652 |
+
pad_token_id: Optional[int] = None,
|
653 |
+
eos_token_id: Optional[int] = None,
|
654 |
+
prng_key: Optional[jnp.ndarray] = None,
|
655 |
+
logits_processor: Optional[FlaxLogitsProcessorList] = None,
|
656 |
+
logits_warper: Optional[FlaxLogitsProcessorList] = None,
|
657 |
+
trace: bool = True,
|
658 |
+
params: Optional[Dict[str, jnp.ndarray]] = None,
|
659 |
+
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
|
660 |
+
):
|
661 |
+
# init values
|
662 |
+
max_length = max_length if max_length is not None else self.generation_config.max_length
|
663 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
664 |
+
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
|
665 |
+
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
|
666 |
+
|
667 |
+
batch_size, cur_len = input_ids.shape
|
668 |
+
|
669 |
+
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
|
670 |
+
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
|
671 |
+
cur_len = jnp.array(cur_len)
|
672 |
+
|
673 |
+
# per batch-item holding current token in loop.
|
674 |
+
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
|
675 |
+
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
|
676 |
+
|
677 |
+
# per batch-item state bit indicating if sentence has finished.
|
678 |
+
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
|
679 |
+
|
680 |
+
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
|
681 |
+
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
|
682 |
+
model = self.decode if self.config.is_encoder_decoder else self
|
683 |
+
|
684 |
+
# initialize model specific kwargs
|
685 |
+
model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs)
|
686 |
+
|
687 |
+
# initialize state
|
688 |
+
state = SampleState(
|
689 |
+
cur_len=cur_len,
|
690 |
+
sequences=sequences,
|
691 |
+
running_token=input_ids,
|
692 |
+
is_sent_finished=is_sent_finished,
|
693 |
+
prng_key=prng_key,
|
694 |
+
model_kwargs=model_kwargs,
|
695 |
+
)
|
696 |
+
|
697 |
+
def sample_search_cond_fn(state):
|
698 |
+
"""state termination condition fn."""
|
699 |
+
has_reached_max_length = state.cur_len == max_length
|
700 |
+
all_sequence_finished = jnp.all(state.is_sent_finished)
|
701 |
+
finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished)
|
702 |
+
return ~finish_generation
|
703 |
+
|
704 |
+
def sample_search_body_fn(state):
|
705 |
+
"""state update fn."""
|
706 |
+
prng_key, prng_key_next = jax.random.split(state.prng_key)
|
707 |
+
model_outputs = model(state.running_token, params=params, **state.model_kwargs)
|
708 |
+
|
709 |
+
logits = model_outputs.logits[:, -1]
|
710 |
+
|
711 |
+
# apply min_length, ...
|
712 |
+
logits = logits_processor(state.sequences, logits, state.cur_len)
|
713 |
+
# apply top_p, top_k, temperature
|
714 |
+
logits = logits_warper(logits, logits, state.cur_len)
|
715 |
+
|
716 |
+
next_token = jax.random.categorical(prng_key, logits, axis=-1)
|
717 |
+
|
718 |
+
next_token = next_token * ~state.is_sent_finished + pad_token_id * state.is_sent_finished
|
719 |
+
next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id)
|
720 |
+
next_token = next_token[:, None]
|
721 |
+
|
722 |
+
next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len))
|
723 |
+
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)
|
724 |
+
|
725 |
+
return SampleState(
|
726 |
+
cur_len=state.cur_len + 1,
|
727 |
+
sequences=next_sequences,
|
728 |
+
running_token=next_token,
|
729 |
+
is_sent_finished=next_is_sent_finished,
|
730 |
+
model_kwargs=next_model_kwargs,
|
731 |
+
prng_key=prng_key_next,
|
732 |
+
)
|
733 |
+
|
734 |
+
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
|
735 |
+
if input_ids.shape[1] > 1:
|
736 |
+
state = sample_search_body_fn(state)
|
737 |
+
|
738 |
+
if not trace:
|
739 |
+
state = self._run_loop_in_debug(sample_search_cond_fn, sample_search_body_fn, state)
|
740 |
+
else:
|
741 |
+
state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state)
|
742 |
+
|
743 |
+
return FlaxSampleOutput(sequences=state.sequences)
|
744 |
+
|
745 |
+
def _beam_search(
|
746 |
+
self,
|
747 |
+
input_ids: None,
|
748 |
+
max_length: Optional[int] = None,
|
749 |
+
pad_token_id: Optional[int] = None,
|
750 |
+
eos_token_id: Optional[int] = None,
|
751 |
+
length_penalty: Optional[float] = None,
|
752 |
+
early_stopping: Optional[Union[bool, str]] = None,
|
753 |
+
logits_processor: Optional[FlaxLogitsProcessorList] = None,
|
754 |
+
trace: bool = True,
|
755 |
+
params: Optional[Dict[str, jnp.ndarray]] = None,
|
756 |
+
num_return_sequences: Optional[int] = None,
|
757 |
+
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
|
758 |
+
):
|
759 |
+
"""
|
760 |
+
This beam search function is heavily inspired by Flax's official example:
|
761 |
+
https://github.com/google/flax/blob/main/examples/wmt/decode.py
|
762 |
+
"""
|
763 |
+
|
764 |
+
def flatten_beam_dim(tensor):
|
765 |
+
"""Flattens the first two dimensions of a non-scalar array."""
|
766 |
+
# ignore scalars (e.g. cache index)
|
767 |
+
if tensor.ndim == 0:
|
768 |
+
return tensor
|
769 |
+
return tensor.reshape((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])
|
770 |
+
|
771 |
+
def unflatten_beam_dim(tensor, batch_size, num_beams):
|
772 |
+
"""Unflattens the first, flat batch*beam dimension of a non-scalar array."""
|
773 |
+
# ignore scalars (e.g. cache index)
|
774 |
+
if tensor.ndim == 0:
|
775 |
+
return tensor
|
776 |
+
return tensor.reshape((batch_size, num_beams) + tensor.shape[1:])
|
777 |
+
|
778 |
+
def gather_beams(nested, beam_indices, batch_size, new_num_beams):
|
779 |
+
"""
|
780 |
+
Gathers the beam slices indexed by beam_indices into new beam array.
|
781 |
+
"""
|
782 |
+
batch_indices = jnp.reshape(
|
783 |
+
jnp.arange(batch_size * new_num_beams) // new_num_beams, (batch_size, new_num_beams)
|
784 |
+
)
|
785 |
+
|
786 |
+
def gather_fn(tensor):
|
787 |
+
# ignore scalars (e.g. cache index)
|
788 |
+
if tensor.ndim == 0:
|
789 |
+
return tensor
|
790 |
+
else:
|
791 |
+
return tensor[batch_indices, beam_indices]
|
792 |
+
|
793 |
+
return jax.tree_util.tree_map(gather_fn, nested)
|
794 |
+
|
795 |
+
# init values
|
796 |
+
max_length = max_length if max_length is not None else self.generation_config.max_length
|
797 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
798 |
+
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
|
799 |
+
length_penalty = length_penalty if length_penalty is not None else self.generation_config.length_penalty
|
800 |
+
early_stopping = early_stopping if early_stopping is not None else self.generation_config.early_stopping
|
801 |
+
num_return_sequences = (
|
802 |
+
num_return_sequences if num_return_sequences is not None else self.generation_config.num_return_sequences
|
803 |
+
)
|
804 |
+
|
805 |
+
batch_size, num_beams, cur_len = input_ids.shape
|
806 |
+
|
807 |
+
eos_token_id = jnp.array(eos_token_id, dtype=jnp.int32 if eos_token_id is not None else None)
|
808 |
+
pad_token_id = jnp.array(pad_token_id, dtype=jnp.int32)
|
809 |
+
cur_len = jnp.array(cur_len)
|
810 |
+
|
811 |
+
# record the prompt length of decoder
|
812 |
+
decoder_prompt_len = input_ids.shape[-1]
|
813 |
+
|
814 |
+
# per batch,beam-item holding current token in loop.
|
815 |
+
sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32)
|
816 |
+
running_sequences = jnp.full((batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32)
|
817 |
+
running_sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0, 0))
|
818 |
+
|
819 |
+
# per batch,beam-item state bit indicating if sentence has finished.
|
820 |
+
is_sent_finished = jnp.zeros((batch_size, num_beams), dtype=jnp.bool_)
|
821 |
+
|
822 |
+
# per batch,beam-item score, logprobs
|
823 |
+
running_scores = jnp.tile(jnp.array([0.0] + [np.array(-1.0e7)] * (num_beams - 1)), [batch_size, 1])
|
824 |
+
scores = jnp.ones((batch_size, num_beams)) * np.array(-1.0e7)
|
825 |
+
|
826 |
+
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
|
827 |
+
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
|
828 |
+
model = self.decode if self.config.is_encoder_decoder else self
|
829 |
+
|
830 |
+
# flatten beam dim
|
831 |
+
if "encoder_outputs" in model_kwargs:
|
832 |
+
model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim(
|
833 |
+
model_kwargs["encoder_outputs"]["last_hidden_state"]
|
834 |
+
)
|
835 |
+
for kwarg in ["attention_mask", "decoder_attention_mask"]:
|
836 |
+
if kwarg in model_kwargs:
|
837 |
+
model_kwargs[kwarg] = flatten_beam_dim(model_kwargs[kwarg])
|
838 |
+
|
839 |
+
# initialize model specific kwargs
|
840 |
+
model_kwargs = self.prepare_inputs_for_generation(flatten_beam_dim(input_ids), max_length, **model_kwargs)
|
841 |
+
|
842 |
+
# initialize state
|
843 |
+
state = BeamSearchState(
|
844 |
+
cur_len=cur_len,
|
845 |
+
running_sequences=running_sequences,
|
846 |
+
running_scores=running_scores,
|
847 |
+
sequences=sequences,
|
848 |
+
scores=scores,
|
849 |
+
is_sent_finished=is_sent_finished,
|
850 |
+
model_kwargs=model_kwargs,
|
851 |
+
)
|
852 |
+
|
853 |
+
def beam_search_cond_fn(state):
|
854 |
+
"""beam search state termination condition fn."""
|
855 |
+
|
856 |
+
# 1. is less than max length?
|
857 |
+
not_max_length_yet = state.cur_len < max_length
|
858 |
+
|
859 |
+
# 2. can the new beams still improve?
|
860 |
+
# early_stopping == False -> apply heuristic = always get the best score from `cur_len`. See the discussion
|
861 |
+
# below for more details.
|
862 |
+
# https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
|
863 |
+
# early_stopping == "never" -> compute the best score from max_length or cur_len, depending on the sign of
|
864 |
+
# length_penalty. Positive length_penalty favors longer sequences, thus we use max_length there.
|
865 |
+
if early_stopping == "never" and length_penalty > 0.0:
|
866 |
+
best_running_score = state.running_scores[:, :1] / (
|
867 |
+
(max_length - decoder_prompt_len) ** length_penalty
|
868 |
+
)
|
869 |
+
else:
|
870 |
+
best_running_score = state.running_scores[:, :1] / (
|
871 |
+
(state.cur_len - decoder_prompt_len) ** length_penalty
|
872 |
+
)
|
873 |
+
worst_finished_score = jnp.where(
|
874 |
+
state.is_sent_finished, jnp.min(state.scores, axis=1, keepdims=True), np.array(-1.0e7)
|
875 |
+
)
|
876 |
+
improvement_still_possible = jnp.any(best_running_score > worst_finished_score)
|
877 |
+
|
878 |
+
# 3. is there still a beam that has not finished?
|
879 |
+
still_open_beam = ~(jnp.all(state.is_sent_finished) & (early_stopping is True))
|
880 |
+
|
881 |
+
return not_max_length_yet & still_open_beam & improvement_still_possible
|
882 |
+
|
883 |
+
def beam_search_body_fn(state, input_ids_length=1):
|
884 |
+
"""beam search state update fn."""
|
885 |
+
# 1. Forward current tokens
|
886 |
+
# Collect the current position slice along length to feed the fast
|
887 |
+
# autoregressive decoder model. Flatten the beam dimension into batch
|
888 |
+
# dimension for feeding into the model.
|
889 |
+
# unflatten beam dimension
|
890 |
+
# Unflatten beam dimension in attention cache arrays
|
891 |
+
input_token = flatten_beam_dim(
|
892 |
+
lax.dynamic_slice(
|
893 |
+
state.running_sequences,
|
894 |
+
(0, 0, state.cur_len - input_ids_length),
|
895 |
+
(batch_size, num_beams, input_ids_length),
|
896 |
+
)
|
897 |
+
)
|
898 |
+
model_outputs = model(input_token, params=params, **state.model_kwargs)
|
899 |
+
|
900 |
+
logits = unflatten_beam_dim(model_outputs.logits[:, -1], batch_size, num_beams)
|
901 |
+
cache = jax.tree_util.tree_map(
|
902 |
+
lambda tensor: unflatten_beam_dim(tensor, batch_size, num_beams), model_outputs.past_key_values
|
903 |
+
)
|
904 |
+
|
905 |
+
# adapt logits for FlaxMarianMTModel
|
906 |
+
logits = self._adapt_logits_for_beam_search(logits)
|
907 |
+
|
908 |
+
# 2. Compute log probs
|
909 |
+
# get log probabilities from logits,
|
910 |
+
# process logits with processors (*e.g.* min_length, ...), and
|
911 |
+
# add new logprobs to existing running logprobs scores.
|
912 |
+
log_probs = jax.nn.log_softmax(logits)
|
913 |
+
log_probs = logits_processor(
|
914 |
+
flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), state.cur_len
|
915 |
+
)
|
916 |
+
log_probs = unflatten_beam_dim(log_probs, batch_size, num_beams)
|
917 |
+
log_probs = log_probs + jnp.expand_dims(state.running_scores, axis=2)
|
918 |
+
vocab_size = log_probs.shape[2]
|
919 |
+
log_probs = log_probs.reshape((batch_size, num_beams * vocab_size))
|
920 |
+
|
921 |
+
# 3. Retrieve top-K
|
922 |
+
# Each item in batch has num_beams * vocab_size candidate sequences.
|
923 |
+
# For each item, get the top 2*k candidates with the highest log-
|
924 |
+
# probabilities. We gather the top 2*K beams here so that even if the best
|
925 |
+
# K sequences reach EOS simultaneously, we have another K sequences
|
926 |
+
# remaining to continue the live beam search.
|
927 |
+
# Gather the top 2*K scores from _all_ beams.
|
928 |
+
# Gather 2*k top beams.
|
929 |
+
# Recover the beam index by floor division.
|
930 |
+
# Recover token id by modulo division and expand Id array for broadcasting.
|
931 |
+
# Update sequences for the 2*K top-k new sequences.
|
932 |
+
beams_to_keep = 2 * num_beams
|
933 |
+
topk_log_probs, topk_indices = lax.top_k(log_probs, k=beams_to_keep)
|
934 |
+
topk_beam_indices = topk_indices // vocab_size
|
935 |
+
topk_running_sequences = gather_beams(
|
936 |
+
state.running_sequences, topk_beam_indices, batch_size, beams_to_keep
|
937 |
+
)
|
938 |
+
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2)
|
939 |
+
topk_sequences = lax.dynamic_update_slice(topk_running_sequences, topk_ids, (0, 0, state.cur_len))
|
940 |
+
|
941 |
+
# 4. Check which sequences have ended
|
942 |
+
# Update current sequences:
|
943 |
+
# Did any of these sequences reach an end marker?
|
944 |
+
# To prevent these just finished sequences from being added to the current sequences
|
945 |
+
# set of active beam search sequences, set their log probs to a very large
|
946 |
+
# negative value.
|
947 |
+
did_topk_just_finished = topk_sequences[:, :, state.cur_len] == eos_token_id
|
948 |
+
running_topk_log_probs = topk_log_probs + did_topk_just_finished * np.array(-1.0e7)
|
949 |
+
# 5. Get running sequences scores for next
|
950 |
+
# Determine the top k beam indices (from top 2*k beams) from log probs
|
951 |
+
# and gather top k beams (from top 2*k beams).
|
952 |
+
next_topk_indices = lax.top_k(running_topk_log_probs, k=num_beams)[1]
|
953 |
+
next_running_sequences, next_running_scores = gather_beams(
|
954 |
+
[topk_sequences, running_topk_log_probs], next_topk_indices, batch_size, num_beams
|
955 |
+
)
|
956 |
+
|
957 |
+
# 6. Process topk logits
|
958 |
+
# Further process log probs:
|
959 |
+
# - add length penalty
|
960 |
+
# - make sure no scores can be added anymore if beam is full
|
961 |
+
# - make sure still running sequences cannot be chosen as finalized beam
|
962 |
+
topk_log_probs = topk_log_probs / ((state.cur_len + 1 - decoder_prompt_len) ** length_penalty)
|
963 |
+
beams_in_batch_are_full = jnp.broadcast_to(
|
964 |
+
state.is_sent_finished.all(axis=-1, keepdims=True), did_topk_just_finished.shape
|
965 |
+
) & (early_stopping is True)
|
966 |
+
add_penalty = ~did_topk_just_finished | beams_in_batch_are_full
|
967 |
+
topk_log_probs += add_penalty * np.array(-1.0e7)
|
968 |
+
|
969 |
+
# 7. Get scores, sequences, is sentence finished for next.
|
970 |
+
# Combine sequences, scores, and flags along the beam dimension and compare
|
971 |
+
# new finished sequence scores to existing finished scores and select the
|
972 |
+
# best from the new set of beams
|
973 |
+
merged_sequences = jnp.concatenate([state.sequences, topk_sequences], axis=1)
|
974 |
+
merged_scores = jnp.concatenate([state.scores, topk_log_probs], axis=1)
|
975 |
+
merged_is_sent_finished = jnp.concatenate([state.is_sent_finished, did_topk_just_finished], axis=1)
|
976 |
+
topk_merged_indices = lax.top_k(merged_scores, k=num_beams)[1]
|
977 |
+
next_sequences, next_scores, next_is_sent_finished = gather_beams(
|
978 |
+
[merged_sequences, merged_scores, merged_is_sent_finished], topk_merged_indices, batch_size, num_beams
|
979 |
+
)
|
980 |
+
|
981 |
+
# 8. Update model kwargs.
|
982 |
+
# Determine the top k beam indices from the original set of all beams.
|
983 |
+
# With these, gather the top k beam-associated caches.
|
984 |
+
next_running_indices = gather_beams(topk_beam_indices, next_topk_indices, batch_size, num_beams)
|
985 |
+
next_cache = gather_beams(cache, next_running_indices, batch_size, num_beams)
|
986 |
+
model_outputs["past_key_values"] = jax.tree_util.tree_map(lambda x: flatten_beam_dim(x), next_cache)
|
987 |
+
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)
|
988 |
+
|
989 |
+
return BeamSearchState(
|
990 |
+
cur_len=state.cur_len + 1,
|
991 |
+
running_scores=next_running_scores,
|
992 |
+
running_sequences=next_running_sequences,
|
993 |
+
scores=next_scores,
|
994 |
+
sequences=next_sequences,
|
995 |
+
is_sent_finished=next_is_sent_finished,
|
996 |
+
model_kwargs=next_model_kwargs,
|
997 |
+
)
|
998 |
+
|
999 |
+
# Always run first iteration outside of `lax.while_loop` to avoid calling `beam_search_cond_fn`
|
1000 |
+
# when `state.cur_len` equals `decoder_prompt_len`. This also helps to comply with TPU when
|
1001 |
+
# the very first prompt has sequence length > 1.
|
1002 |
+
state = partial(beam_search_body_fn, input_ids_length=input_ids.shape[-1])(state)
|
1003 |
+
|
1004 |
+
if not trace:
|
1005 |
+
state = self._run_loop_in_debug(beam_search_cond_fn, beam_search_body_fn, state)
|
1006 |
+
else:
|
1007 |
+
state = lax.while_loop(beam_search_cond_fn, beam_search_body_fn, state)
|
1008 |
+
|
1009 |
+
# Account for the edge-case where there are no finished sequences for a
|
1010 |
+
# particular batch item. If so, return running sequences for that batch item.
|
1011 |
+
none_finished = jnp.any(state.is_sent_finished, axis=1)
|
1012 |
+
sequences = jnp.where(none_finished[:, None, None], state.sequences, state.running_sequences)
|
1013 |
+
scores = jnp.where(none_finished[:, None], state.scores, state.running_scores)
|
1014 |
+
|
1015 |
+
# Take best beams for each batch (the score is sorted in descending order)
|
1016 |
+
sequences = flatten_beam_dim(sequences[:, :num_return_sequences, :])
|
1017 |
+
scores = flatten_beam_dim(scores[:, :num_return_sequences])
|
1018 |
+
|
1019 |
+
return FlaxBeamSearchOutput(sequences=sequences, scores=scores)
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/logits_process.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/stopping_criteria.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import warnings
|
3 |
+
from abc import ABC
|
4 |
+
from copy import deepcopy
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from ..utils import add_start_docstrings, logging
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
STOPPING_CRITERIA_INPUTS_DOCSTRING = r"""
|
16 |
+
Args:
|
17 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
18 |
+
Indices of input sequence tokens in the vocabulary.
|
19 |
+
|
20 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
21 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
22 |
+
|
23 |
+
[What are input IDs?](../glossary#input-ids)
|
24 |
+
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
|
25 |
+
Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax
|
26 |
+
or scores for each vocabulary token after SoftMax. If this stopping criteria depends on the `scores` input,
|
27 |
+
make sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`.
|
28 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
29 |
+
Additional stopping criteria specific kwargs.
|
30 |
+
|
31 |
+
Return:
|
32 |
+
`torch.BoolTensor`. (`torch.BoolTensor` of shape `(batch_size, 1)`), where `True` indicates we stop generation
|
33 |
+
for a particular row, `True` indicates we should continue.
|
34 |
+
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
class StoppingCriteria(ABC):
|
39 |
+
"""Abstract base class for all stopping criteria that can be applied during generation.
|
40 |
+
|
41 |
+
If your stopping criteria depends on the `scores` input, make sure you pass `return_dict_in_generate=True,
|
42 |
+
output_scores=True` to `generate`.
|
43 |
+
"""
|
44 |
+
|
45 |
+
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
|
46 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
|
47 |
+
raise NotImplementedError("StoppingCriteria needs to be subclassed")
|
48 |
+
|
49 |
+
|
50 |
+
class MaxLengthCriteria(StoppingCriteria):
|
51 |
+
"""
|
52 |
+
This class can be used to stop generation whenever the full generated number of tokens exceeds `max_length`. Keep
|
53 |
+
in mind for decoder-only type of transformers, this will include the initial prompted tokens.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
max_length (`int`):
|
57 |
+
The maximum length that the output sequence can have in number of tokens.
|
58 |
+
max_position_embeddings (`int`, *optional*):
|
59 |
+
The maximum model length, as defined by the model's `config.max_position_embeddings` attribute.
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(self, max_length: int, max_position_embeddings: Optional[int] = None):
|
63 |
+
self.max_length = max_length
|
64 |
+
self.max_position_embeddings = max_position_embeddings
|
65 |
+
|
66 |
+
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
|
67 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
|
68 |
+
cur_len = input_ids.shape[-1]
|
69 |
+
is_done = cur_len >= self.max_length
|
70 |
+
if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings:
|
71 |
+
logger.warning_once(
|
72 |
+
"This is a friendly reminder - the current text generation call will exceed the model's predefined "
|
73 |
+
f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe "
|
74 |
+
"exceptions, performance degradation, or nothing at all."
|
75 |
+
)
|
76 |
+
return torch.full((input_ids.shape[0],), is_done, device=input_ids.device, dtype=torch.bool)
|
77 |
+
|
78 |
+
|
79 |
+
class MaxNewTokensCriteria(StoppingCriteria):
|
80 |
+
"""
|
81 |
+
This class can be used to stop generation whenever the generated number of tokens exceeds `max_new_tokens`. Keep in
|
82 |
+
mind for decoder-only type of transformers, this will **not** include the initial prompted tokens. This is very
|
83 |
+
close to `MaxLengthCriteria` but ignores the number of initial tokens.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
start_length (`int`):
|
87 |
+
The number of initial tokens.
|
88 |
+
max_new_tokens (`int`):
|
89 |
+
The maximum number of tokens to generate.
|
90 |
+
"""
|
91 |
+
|
92 |
+
def __init__(self, start_length: int, max_new_tokens: int):
|
93 |
+
warnings.warn(
|
94 |
+
"The class `MaxNewTokensCriteria` is deprecated. "
|
95 |
+
f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` "
|
96 |
+
"with `max_length = start_length + max_new_tokens` instead.",
|
97 |
+
FutureWarning,
|
98 |
+
)
|
99 |
+
self.start_length = start_length
|
100 |
+
self.max_new_tokens = max_new_tokens
|
101 |
+
self.max_length = start_length + max_new_tokens
|
102 |
+
|
103 |
+
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
|
104 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
|
105 |
+
is_done = input_ids.shape[-1] >= self.max_length
|
106 |
+
return torch.full((input_ids.shape[0],), is_done, device=input_ids.device, dtype=torch.bool)
|
107 |
+
|
108 |
+
|
109 |
+
class MaxTimeCriteria(StoppingCriteria):
|
110 |
+
"""
|
111 |
+
This class can be used to stop generation whenever the full generation exceeds some amount of time. By default, the
|
112 |
+
time will start being counted when you initialize this function. You can override this by passing an
|
113 |
+
`initial_time`.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
max_time (`float`):
|
117 |
+
The maximum allowed time in seconds for the generation.
|
118 |
+
initial_time (`float`, *optional*, defaults to `time.time()`):
|
119 |
+
The start of the generation allowed time.
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(self, max_time: float, initial_timestamp: Optional[float] = None):
|
123 |
+
self.max_time = max_time
|
124 |
+
self.initial_timestamp = time.time() if initial_timestamp is None else initial_timestamp
|
125 |
+
|
126 |
+
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
|
127 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
|
128 |
+
is_done = time.time() - self.initial_timestamp > self.max_time
|
129 |
+
return torch.full((input_ids.shape[0],), is_done, device=input_ids.device, dtype=torch.bool)
|
130 |
+
|
131 |
+
|
132 |
+
class StoppingCriteriaList(list):
|
133 |
+
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
|
134 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
|
135 |
+
is_done = torch.full((input_ids.shape[0],), False, device=input_ids.device)
|
136 |
+
for criteria in self:
|
137 |
+
is_done = is_done | criteria(input_ids, scores, **kwargs)
|
138 |
+
return is_done
|
139 |
+
|
140 |
+
@property
|
141 |
+
def max_length(self) -> Optional[int]:
|
142 |
+
for stopping_criterium in self:
|
143 |
+
if isinstance(stopping_criterium, MaxLengthCriteria):
|
144 |
+
return stopping_criterium.max_length
|
145 |
+
elif isinstance(stopping_criterium, MaxNewTokensCriteria):
|
146 |
+
return stopping_criterium.max_length
|
147 |
+
return None
|
148 |
+
|
149 |
+
|
150 |
+
def validate_stopping_criteria(stopping_criteria: StoppingCriteriaList, max_length: int) -> StoppingCriteriaList:
|
151 |
+
stopping_max_length = stopping_criteria.max_length
|
152 |
+
new_stopping_criteria = deepcopy(stopping_criteria)
|
153 |
+
if stopping_max_length is not None and stopping_max_length != max_length:
|
154 |
+
warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter", UserWarning)
|
155 |
+
elif stopping_max_length is None:
|
156 |
+
new_stopping_criteria.append(MaxLengthCriteria(max_length=max_length))
|
157 |
+
return new_stopping_criteria
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/streamers.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from queue import Queue
|
17 |
+
from typing import TYPE_CHECKING, Optional
|
18 |
+
|
19 |
+
|
20 |
+
if TYPE_CHECKING:
|
21 |
+
from ..models.auto import AutoTokenizer
|
22 |
+
|
23 |
+
|
24 |
+
class BaseStreamer:
|
25 |
+
"""
|
26 |
+
Base class from which `.generate()` streamers should inherit.
|
27 |
+
"""
|
28 |
+
|
29 |
+
def put(self, value):
|
30 |
+
"""Function that is called by `.generate()` to push new tokens"""
|
31 |
+
raise NotImplementedError()
|
32 |
+
|
33 |
+
def end(self):
|
34 |
+
"""Function that is called by `.generate()` to signal the end of generation"""
|
35 |
+
raise NotImplementedError()
|
36 |
+
|
37 |
+
|
38 |
+
class TextStreamer(BaseStreamer):
|
39 |
+
"""
|
40 |
+
Simple text streamer that prints the token(s) to stdout as soon as entire words are formed.
|
41 |
+
|
42 |
+
<Tip warning={true}>
|
43 |
+
|
44 |
+
The API for the streamer classes is still under development and may change in the future.
|
45 |
+
|
46 |
+
</Tip>
|
47 |
+
|
48 |
+
Parameters:
|
49 |
+
tokenizer (`AutoTokenizer`):
|
50 |
+
The tokenized used to decode the tokens.
|
51 |
+
skip_prompt (`bool`, *optional*, defaults to `False`):
|
52 |
+
Whether to skip the prompt to `.generate()` or not. Useful e.g. for chatbots.
|
53 |
+
decode_kwargs (`dict`, *optional*):
|
54 |
+
Additional keyword arguments to pass to the tokenizer's `decode` method.
|
55 |
+
|
56 |
+
Examples:
|
57 |
+
|
58 |
+
```python
|
59 |
+
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
60 |
+
|
61 |
+
>>> tok = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
62 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
63 |
+
>>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt")
|
64 |
+
>>> streamer = TextStreamer(tok)
|
65 |
+
|
66 |
+
>>> # Despite returning the usual output, the streamer will also print the generated text to stdout.
|
67 |
+
>>> _ = model.generate(**inputs, streamer=streamer, max_new_tokens=20)
|
68 |
+
An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,
|
69 |
+
```
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(self, tokenizer: "AutoTokenizer", skip_prompt: bool = False, **decode_kwargs):
|
73 |
+
self.tokenizer = tokenizer
|
74 |
+
self.skip_prompt = skip_prompt
|
75 |
+
self.decode_kwargs = decode_kwargs
|
76 |
+
|
77 |
+
# variables used in the streaming process
|
78 |
+
self.token_cache = []
|
79 |
+
self.print_len = 0
|
80 |
+
self.next_tokens_are_prompt = True
|
81 |
+
|
82 |
+
def put(self, value):
|
83 |
+
"""
|
84 |
+
Receives tokens, decodes them, and prints them to stdout as soon as they form entire words.
|
85 |
+
"""
|
86 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
87 |
+
raise ValueError("TextStreamer only supports batch size 1")
|
88 |
+
elif len(value.shape) > 1:
|
89 |
+
value = value[0]
|
90 |
+
|
91 |
+
if self.skip_prompt and self.next_tokens_are_prompt:
|
92 |
+
self.next_tokens_are_prompt = False
|
93 |
+
return
|
94 |
+
|
95 |
+
# Add the new token to the cache and decodes the entire thing.
|
96 |
+
self.token_cache.extend(value.tolist())
|
97 |
+
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
|
98 |
+
|
99 |
+
# After the symbol for a new line, we flush the cache.
|
100 |
+
if text.endswith("\n"):
|
101 |
+
printable_text = text[self.print_len :]
|
102 |
+
self.token_cache = []
|
103 |
+
self.print_len = 0
|
104 |
+
# If the last token is a CJK character, we print the characters.
|
105 |
+
elif len(text) > 0 and self._is_chinese_char(ord(text[-1])):
|
106 |
+
printable_text = text[self.print_len :]
|
107 |
+
self.print_len += len(printable_text)
|
108 |
+
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
|
109 |
+
# which may change with the subsequent token -- there are probably smarter ways to do this!)
|
110 |
+
else:
|
111 |
+
printable_text = text[self.print_len : text.rfind(" ") + 1]
|
112 |
+
self.print_len += len(printable_text)
|
113 |
+
|
114 |
+
self.on_finalized_text(printable_text)
|
115 |
+
|
116 |
+
def end(self):
|
117 |
+
"""Flushes any remaining cache and prints a newline to stdout."""
|
118 |
+
# Flush the cache, if it exists
|
119 |
+
if len(self.token_cache) > 0:
|
120 |
+
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
|
121 |
+
printable_text = text[self.print_len :]
|
122 |
+
self.token_cache = []
|
123 |
+
self.print_len = 0
|
124 |
+
else:
|
125 |
+
printable_text = ""
|
126 |
+
|
127 |
+
self.next_tokens_are_prompt = True
|
128 |
+
self.on_finalized_text(printable_text, stream_end=True)
|
129 |
+
|
130 |
+
def on_finalized_text(self, text: str, stream_end: bool = False):
|
131 |
+
"""Prints the new text to stdout. If the stream is ending, also prints a newline."""
|
132 |
+
print(text, flush=True, end="" if not stream_end else None)
|
133 |
+
|
134 |
+
def _is_chinese_char(self, cp):
|
135 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
136 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
137 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
138 |
+
#
|
139 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
140 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
141 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
142 |
+
# space-separated words, so they are not treated specially and handled
|
143 |
+
# like the all of the other languages.
|
144 |
+
if (
|
145 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
146 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
147 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
148 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
149 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
150 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
151 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
152 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
153 |
+
): #
|
154 |
+
return True
|
155 |
+
|
156 |
+
return False
|
157 |
+
|
158 |
+
|
159 |
+
class TextIteratorStreamer(TextStreamer):
|
160 |
+
"""
|
161 |
+
Streamer that stores print-ready text in a queue, to be used by a downstream application as an iterator. This is
|
162 |
+
useful for applications that benefit from acessing the generated text in a non-blocking way (e.g. in an interactive
|
163 |
+
Gradio demo).
|
164 |
+
|
165 |
+
<Tip warning={true}>
|
166 |
+
|
167 |
+
The API for the streamer classes is still under development and may change in the future.
|
168 |
+
|
169 |
+
</Tip>
|
170 |
+
|
171 |
+
Parameters:
|
172 |
+
tokenizer (`AutoTokenizer`):
|
173 |
+
The tokenized used to decode the tokens.
|
174 |
+
skip_prompt (`bool`, *optional*, defaults to `False`):
|
175 |
+
Whether to skip the prompt to `.generate()` or not. Useful e.g. for chatbots.
|
176 |
+
timeout (`float`, *optional*):
|
177 |
+
The timeout for the text queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
|
178 |
+
in `.generate()`, when it is called in a separate thread.
|
179 |
+
decode_kwargs (`dict`, *optional*):
|
180 |
+
Additional keyword arguments to pass to the tokenizer's `decode` method.
|
181 |
+
|
182 |
+
Examples:
|
183 |
+
|
184 |
+
```python
|
185 |
+
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
186 |
+
>>> from threading import Thread
|
187 |
+
|
188 |
+
>>> tok = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
189 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
190 |
+
>>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt")
|
191 |
+
>>> streamer = TextIteratorStreamer(tok)
|
192 |
+
|
193 |
+
>>> # Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
|
194 |
+
>>> generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=20)
|
195 |
+
>>> thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
196 |
+
>>> thread.start()
|
197 |
+
>>> generated_text = ""
|
198 |
+
>>> for new_text in streamer:
|
199 |
+
... generated_text += new_text
|
200 |
+
>>> generated_text
|
201 |
+
'An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,'
|
202 |
+
```
|
203 |
+
"""
|
204 |
+
|
205 |
+
def __init__(
|
206 |
+
self, tokenizer: "AutoTokenizer", skip_prompt: bool = False, timeout: Optional[float] = None, **decode_kwargs
|
207 |
+
):
|
208 |
+
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
|
209 |
+
self.text_queue = Queue()
|
210 |
+
self.stop_signal = None
|
211 |
+
self.timeout = timeout
|
212 |
+
|
213 |
+
def on_finalized_text(self, text: str, stream_end: bool = False):
|
214 |
+
"""Put the new text in the queue. If the stream is ending, also put a stop signal in the queue."""
|
215 |
+
self.text_queue.put(text, timeout=self.timeout)
|
216 |
+
if stream_end:
|
217 |
+
self.text_queue.put(self.stop_signal, timeout=self.timeout)
|
218 |
+
|
219 |
+
def __iter__(self):
|
220 |
+
return self
|
221 |
+
|
222 |
+
def __next__(self):
|
223 |
+
value = self.text_queue.get(timeout=self.timeout)
|
224 |
+
if value == self.stop_signal:
|
225 |
+
raise StopIteration()
|
226 |
+
else:
|
227 |
+
return value
|
env-llmeval/lib/python3.10/site-packages/transformers/generation/tf_logits_process.py
ADDED
@@ -0,0 +1,591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
from typing import List, Tuple
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import tensorflow as tf
|
21 |
+
|
22 |
+
from ..tf_utils import stable_softmax
|
23 |
+
from ..utils import add_start_docstrings
|
24 |
+
from ..utils.logging import get_logger
|
25 |
+
|
26 |
+
|
27 |
+
logger = get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
TF_LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
|
31 |
+
Args:
|
32 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
33 |
+
Indices of input sequence tokens in the vocabulary.
|
34 |
+
|
35 |
+
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
36 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
37 |
+
|
38 |
+
[What are input IDs?](../glossary#input-ids)
|
39 |
+
scores (`tf.Tensor` of shape `(batch_size, config.vocab_size)`):
|
40 |
+
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
|
41 |
+
search or log softmax for each vocabulary token when using beam search.
|
42 |
+
cur_len (`int`):
|
43 |
+
The current length of valid input sequence tokens. In the TF implementation, the input_ids' sequence length
|
44 |
+
is the maximum length generate can produce, and we need to know which of its tokens are valid.
|
45 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
46 |
+
Additional logits processor specific kwargs.
|
47 |
+
|
48 |
+
Return:
|
49 |
+
`tf.Tensor` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
|
50 |
+
"""
|
51 |
+
|
52 |
+
|
53 |
+
class TFLogitsProcessor:
|
54 |
+
"""Abstract base class for all logit processors that can be applied during generation."""
|
55 |
+
|
56 |
+
@add_start_docstrings(TF_LOGITS_PROCESSOR_INPUTS_DOCSTRING)
|
57 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
58 |
+
"""TF method for processing logits."""
|
59 |
+
raise NotImplementedError(
|
60 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
class TFLogitsWarper:
|
65 |
+
"""Abstract base class for all logit warpers that can be applied during generation with multinomial sampling."""
|
66 |
+
|
67 |
+
@add_start_docstrings(TF_LOGITS_PROCESSOR_INPUTS_DOCSTRING)
|
68 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
69 |
+
"""TF method for warping logits."""
|
70 |
+
raise NotImplementedError(
|
71 |
+
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
class TFLogitsProcessorList(list):
|
76 |
+
"""
|
77 |
+
This class can be used to create a list of [`TFLogitsProcessor`] to subsequently process a `scores` input tensor.
|
78 |
+
This class inherits from list and adds a specific *__call__* method to apply each [`TFLogitsProcessor`] to the
|
79 |
+
inputs.
|
80 |
+
"""
|
81 |
+
|
82 |
+
@add_start_docstrings(TF_LOGITS_PROCESSOR_INPUTS_DOCSTRING)
|
83 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int, **kwargs) -> tf.Tensor:
|
84 |
+
for processor in self:
|
85 |
+
function_args = inspect.signature(processor.__call__).parameters
|
86 |
+
if len(function_args) > 3:
|
87 |
+
if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
|
88 |
+
raise ValueError(
|
89 |
+
f"Make sure that all the required parameters: {list(function_args.keys())} for "
|
90 |
+
f"{processor.__class__} are passed to the logits processor."
|
91 |
+
)
|
92 |
+
scores = processor(input_ids, scores, cur_len, **kwargs)
|
93 |
+
else:
|
94 |
+
scores = processor(input_ids, scores, cur_len)
|
95 |
+
return scores
|
96 |
+
|
97 |
+
|
98 |
+
class TFTemperatureLogitsWarper(TFLogitsWarper):
|
99 |
+
r"""
|
100 |
+
[`TFLogitsWarper`] for temperature (exponential scaling output probability distribution).
|
101 |
+
|
102 |
+
Args:
|
103 |
+
temperature (`float`):
|
104 |
+
The value used to module the logits distribution.
|
105 |
+
"""
|
106 |
+
|
107 |
+
def __init__(self, temperature: float):
|
108 |
+
if not isinstance(temperature, float) or not (temperature > 0):
|
109 |
+
raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}")
|
110 |
+
|
111 |
+
self.temperature = temperature
|
112 |
+
|
113 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
114 |
+
scores = scores / self.temperature
|
115 |
+
return scores
|
116 |
+
|
117 |
+
|
118 |
+
class TFTopKLogitsWarper(TFLogitsWarper):
|
119 |
+
r"""
|
120 |
+
[`TFLogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
top_k (`int`):
|
124 |
+
The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
125 |
+
filter_value (`float`, *optional*, defaults to -inf):
|
126 |
+
All filtered values will be set to this float value.
|
127 |
+
min_tokens_to_keep (`int`, *optional*, defaults to 1):
|
128 |
+
Minimum number of tokens that cannot be filtered.
|
129 |
+
"""
|
130 |
+
|
131 |
+
def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
|
132 |
+
if not isinstance(top_k, int) or top_k <= 0:
|
133 |
+
raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}")
|
134 |
+
|
135 |
+
self.top_k = max(top_k, min_tokens_to_keep)
|
136 |
+
self.filter_value = filter_value
|
137 |
+
|
138 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
139 |
+
top_k = min(self.top_k, scores.shape[-1]) # Safety check
|
140 |
+
# Boolean mask containing all tokens with a probability less than the last token of the top-k
|
141 |
+
indices_to_remove = scores < tf.math.top_k(scores, k=top_k)[0][..., -1:]
|
142 |
+
next_scores = tf.where(indices_to_remove, self.filter_value, scores)
|
143 |
+
return next_scores
|
144 |
+
|
145 |
+
|
146 |
+
class TFTopPLogitsWarper(TFLogitsWarper):
|
147 |
+
"""
|
148 |
+
[`TFLogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to <= prob_cut_off.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
top_p (`float`):
|
152 |
+
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
|
153 |
+
higher are kept for generation.
|
154 |
+
filter_value (`float`, *optional*, defaults to -inf):
|
155 |
+
All filtered values will be set to this float value.
|
156 |
+
min_tokens_to_keep (`int`, *optional*, defaults to 1):
|
157 |
+
Minimum number of tokens that cannot be filtered.
|
158 |
+
"""
|
159 |
+
|
160 |
+
def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
|
161 |
+
if not isinstance(top_p, float) or (top_p < 0 or top_p > 1.0):
|
162 |
+
raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}")
|
163 |
+
if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
|
164 |
+
raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")
|
165 |
+
|
166 |
+
self.top_p = top_p
|
167 |
+
self.filter_value = filter_value
|
168 |
+
self.min_tokens_to_keep = min_tokens_to_keep
|
169 |
+
|
170 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
171 |
+
topk_scores, topk_indices = tf.math.top_k(scores, scores.shape[-1])
|
172 |
+
|
173 |
+
mask_scores = tf.fill(scores.shape, self.filter_value)
|
174 |
+
cumulative_probs = tf.math.cumsum(stable_softmax(topk_scores, axis=-1), axis=-1)
|
175 |
+
score_mask = cumulative_probs < self.top_p
|
176 |
+
|
177 |
+
# Also include the token that is higher than top_p (the first false = shift and insert a True on the left)
|
178 |
+
score_mask = tf.concat((tf.ones([score_mask.shape[0], 1], dtype=tf.bool), score_mask[:, :-1]), axis=-1)
|
179 |
+
|
180 |
+
# Ensure min tokens to keep
|
181 |
+
score_mask = tf.concat(
|
182 |
+
(
|
183 |
+
tf.ones([score_mask.shape[0], self.min_tokens_to_keep], dtype=tf.bool),
|
184 |
+
score_mask[:, self.min_tokens_to_keep :],
|
185 |
+
),
|
186 |
+
axis=-1,
|
187 |
+
)
|
188 |
+
|
189 |
+
# Mask the values that do not fit the criteria
|
190 |
+
topk_next_scores = tf.where(score_mask, topk_scores, mask_scores)
|
191 |
+
|
192 |
+
# Undo the topk sorting: converts the 2D matrix of per-row original indices of shape (batch_size, vocab_size)
|
193 |
+
# to a 3D tensor of shape (batch_size, vocab_size, 2) containing the original score coordinate, from which we
|
194 |
+
# can scatter (i.e. `scatter_indices[row, col, :]` is a tensor containing `[row, topk_indices[row, col]]`)
|
195 |
+
scatter_rows = tf.tile(tf.expand_dims(tf.range(topk_indices.shape[0]), axis=-1), [1, topk_indices.shape[-1]])
|
196 |
+
scatter_indices = tf.stack((scatter_rows, topk_indices), axis=-1)
|
197 |
+
next_scores = tf.scatter_nd(scatter_indices, topk_next_scores, shape=topk_next_scores.shape)
|
198 |
+
|
199 |
+
return next_scores
|
200 |
+
|
201 |
+
|
202 |
+
class TFMinLengthLogitsProcessor(TFLogitsProcessor):
|
203 |
+
r"""
|
204 |
+
[`TFLogitsProcessor`] enforcing a min-length by setting EOS probability to 0.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
min_length (`int`):
|
208 |
+
The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`.
|
209 |
+
eos_token_id (`int`):
|
210 |
+
The id of the *end-of-sequence* token.
|
211 |
+
"""
|
212 |
+
|
213 |
+
def __init__(self, min_length: int, eos_token_id: int):
|
214 |
+
if not isinstance(min_length, int) or min_length < 0:
|
215 |
+
raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}")
|
216 |
+
|
217 |
+
if not isinstance(eos_token_id, int) or eos_token_id < 0:
|
218 |
+
raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}")
|
219 |
+
|
220 |
+
self.min_length = min_length
|
221 |
+
self.eos_token_id = eos_token_id
|
222 |
+
|
223 |
+
def _apply_eos_token_mask(self, scores: tf.Tensor) -> tf.Tensor:
|
224 |
+
eos_token_id_mask = tf.range(scores.shape[-1]) == self.eos_token_id
|
225 |
+
scores = tf.where(eos_token_id_mask, float("-inf"), scores)
|
226 |
+
return scores
|
227 |
+
|
228 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
229 |
+
# applies eos token masking if the first argument is true
|
230 |
+
scores = tf.cond(
|
231 |
+
tf.less(cur_len, self.min_length),
|
232 |
+
lambda: self._apply_eos_token_mask(scores),
|
233 |
+
lambda: tf.identity(scores),
|
234 |
+
)
|
235 |
+
return scores
|
236 |
+
|
237 |
+
|
238 |
+
class TFRepetitionPenaltyLogitsProcessor(TFLogitsProcessor):
|
239 |
+
r"""
|
240 |
+
[`TFLogitsProcessor`] enforcing an exponential penalty on repeated sequences.
|
241 |
+
|
242 |
+
Args:
|
243 |
+
repetition_penalty (`float`):
|
244 |
+
The parameter for repetition penalty. 1.0 means no penalty. See [this
|
245 |
+
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
|
246 |
+
"""
|
247 |
+
|
248 |
+
def __init__(self, penalty: float):
|
249 |
+
if not isinstance(penalty, float) or not (penalty > 0):
|
250 |
+
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
|
251 |
+
|
252 |
+
self.penalty = penalty
|
253 |
+
|
254 |
+
def _create_score_penalties(self, input_ids: tf.Tensor, logits: tf.Tensor) -> tf.Tensor:
|
255 |
+
# We want to populate the penalties in the positions of `input_ids`. Since XLA can't handle shapes unknown
|
256 |
+
# before runtime, `tf.unique` can't be used. Therefore, we may have redundant updates, when a given row has
|
257 |
+
# the same token multiple times.
|
258 |
+
|
259 |
+
# Gathers the penalties to apply
|
260 |
+
logit_penalties = tf.gather(logits, input_ids, axis=1, batch_dims=1)
|
261 |
+
logit_penalties = tf.where(logit_penalties > 0, 1 / self.penalty, logit_penalties)
|
262 |
+
logit_penalties = tf.where(logit_penalties < 0, self.penalty, logit_penalties)
|
263 |
+
|
264 |
+
# Scatters the penalties
|
265 |
+
token_penalties = tf.ones(logits.shape)
|
266 |
+
batch_size = input_ids.shape[0]
|
267 |
+
seq_len = tf.shape(input_ids)[1] # the sequence length has dynamic size, hence the dynamic shape
|
268 |
+
indexable_prev_input_ids = tf.concat(
|
269 |
+
(
|
270 |
+
tf.expand_dims(tf.repeat(tf.range(batch_size), seq_len), axis=-1),
|
271 |
+
tf.expand_dims(tf.reshape(input_ids, [-1]), axis=-1),
|
272 |
+
),
|
273 |
+
axis=1,
|
274 |
+
)
|
275 |
+
token_penalties = tf.tensor_scatter_nd_update(
|
276 |
+
token_penalties, indices=indexable_prev_input_ids, updates=tf.reshape(logit_penalties, [-1])
|
277 |
+
)
|
278 |
+
return token_penalties
|
279 |
+
|
280 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
281 |
+
score_penalties = self._create_score_penalties(input_ids[:, :cur_len], scores)
|
282 |
+
|
283 |
+
scores = tf.math.multiply(scores, score_penalties)
|
284 |
+
|
285 |
+
return scores
|
286 |
+
|
287 |
+
|
288 |
+
class TFNoBadWordsLogitsProcessor(TFLogitsProcessor):
|
289 |
+
"""
|
290 |
+
[`TFLogitsProcessor`] that enforces that specified sequences will never be sampled.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
bad_words_ids (`List[List[int]]`):
|
294 |
+
List of list of token ids that are not allowed to be generated. In order to get the tokens of the words
|
295 |
+
that should not appear in the generated text, make sure to set `add_prefix_space=True` when initializing
|
296 |
+
the tokenizer, and use `tokenizer(bad_words, add_special_tokens=False).input_ids`. The `add_prefix_space`
|
297 |
+
argument is only supported for some slow tokenizers, as fast tokenizers' prefixing behaviours come from
|
298 |
+
`pre tokenizers`. Read more [here](https://huggingface.co/docs/tokenizers/api/pre-tokenizers).
|
299 |
+
eos_token_id (`int`):
|
300 |
+
The id of the *end-of-sequence* token.
|
301 |
+
"""
|
302 |
+
|
303 |
+
def __init__(self, bad_words_ids: List[List[int]], eos_token_id: int):
|
304 |
+
if not isinstance(bad_words_ids, List) or len(bad_words_ids) == 0:
|
305 |
+
raise ValueError(f"`bad_words_ids` has to be a non-empty list, but is {bad_words_ids}.")
|
306 |
+
if any(not isinstance(bad_word_ids, list) for bad_word_ids in bad_words_ids):
|
307 |
+
raise ValueError(f"`bad_words_ids` has to be a list of lists, but is {bad_words_ids}.")
|
308 |
+
if any(
|
309 |
+
any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in bad_word_ids)
|
310 |
+
for bad_word_ids in bad_words_ids
|
311 |
+
):
|
312 |
+
raise ValueError(
|
313 |
+
f"Each list in `bad_words_ids` has to be a list of positive integers, but is {bad_words_ids}."
|
314 |
+
)
|
315 |
+
|
316 |
+
# stores the information about bad words in three tensors:
|
317 |
+
# 1. a rectangular tensor with the forbidden sequences (padded with `-1`), for full data comparisons
|
318 |
+
self.bad_word_seqs_ids = tf.ragged.constant(bad_words_ids).to_tensor(default_value=-1)
|
319 |
+
# 2. a tensor with the unpadded length of each forbidden sequence, for quick length comparisons
|
320 |
+
bad_word_seqs_len = [len(bad_words) for bad_words in bad_words_ids]
|
321 |
+
if any(word_len == 0 for word_len in bad_word_seqs_len):
|
322 |
+
raise ValueError(f"Banned words token sequences {bad_words_ids} cannot have an empty list")
|
323 |
+
self.bad_word_seqs_len = tf.convert_to_tensor(bad_word_seqs_len, dtype=tf.int32)
|
324 |
+
# 3. a tensor containing the last token for each sequence, for easy access to the tokens that may be banned
|
325 |
+
self.seq_forbidden_tokens = tf.convert_to_tensor([bad_words[-1] for bad_words in bad_words_ids])
|
326 |
+
|
327 |
+
def _calc_row_banned_bad_tokens(self, row_input_ids: tf.Tensor) -> tf.Tensor:
|
328 |
+
def _tokens_match(bad_word_seq_number):
|
329 |
+
def _len_one():
|
330 |
+
# If the bad sequence only has one token, always mask it
|
331 |
+
return tf.cond(
|
332 |
+
tf.math.equal(self.bad_word_seqs_len[bad_word_seq_number], 1),
|
333 |
+
lambda: tf.ones((), dtype=tf.bool),
|
334 |
+
_len_greater_than_cur_len,
|
335 |
+
)
|
336 |
+
|
337 |
+
def _len_greater_than_cur_len():
|
338 |
+
# Otherwise, if the bad sequence is longer than the current length they can't ever match
|
339 |
+
return tf.cond(
|
340 |
+
tf.math.greater(self.bad_word_seqs_len[bad_word_seq_number], tf.shape(row_input_ids)[0]),
|
341 |
+
lambda: tf.zeros((), dtype=tf.bool),
|
342 |
+
_match_found,
|
343 |
+
)
|
344 |
+
|
345 |
+
def _match_found():
|
346 |
+
# Finaly, runs the actual comparison. Can only be called if the previous comparisons do not yield
|
347 |
+
# an answer (otherwise we get indexing exceptions)
|
348 |
+
compare_len = self.bad_word_seqs_len[bad_word_seq_number] - 1
|
349 |
+
return tf.cond(
|
350 |
+
tf.math.reduce_all(
|
351 |
+
tf.math.equal(
|
352 |
+
row_input_ids[-compare_len:], self.bad_word_seqs_ids[bad_word_seq_number, :compare_len]
|
353 |
+
)
|
354 |
+
),
|
355 |
+
lambda: tf.ones((), dtype=tf.bool),
|
356 |
+
lambda: tf.zeros((), dtype=tf.bool),
|
357 |
+
)
|
358 |
+
|
359 |
+
match = _len_one()
|
360 |
+
return match
|
361 |
+
|
362 |
+
# Compares the current row against all bad word sequences, obtaining a mask with the matches.
|
363 |
+
match_mask = tf.map_fn(_tokens_match, tf.range(self.bad_word_seqs_ids.shape[0]), fn_output_signature=tf.bool)
|
364 |
+
row_banned_tokens = self.seq_forbidden_tokens[match_mask]
|
365 |
+
return row_banned_tokens
|
366 |
+
|
367 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
368 |
+
# We want to mask some banned tokens, at a score level. Since the banned tokens depend on the previous
|
369 |
+
# `input_ids`, they may have a different length for each row, and they may even be empty for some rows.
|
370 |
+
# To remain simple and XLA-compatible, we work on a per-row fashion.
|
371 |
+
# TODO (Joao): this function might trigger XLA retracing as `cur_len` increases. Fix it if it becomes
|
372 |
+
# a frequent choke point. (make `cur_len` a tensor?)
|
373 |
+
def _get_row_updated_score(row_inputs: Tuple[tf.Tensor]) -> tf.Tensor:
|
374 |
+
row_input_ids, row_score = row_inputs
|
375 |
+
banned_tokens = self._calc_row_banned_bad_tokens(row_input_ids[:cur_len])
|
376 |
+
banned_tokens_mask = tf.scatter_nd(
|
377 |
+
indices=tf.expand_dims(banned_tokens, axis=-1),
|
378 |
+
updates=tf.ones_like(banned_tokens, dtype=tf.bool),
|
379 |
+
shape=row_score.shape,
|
380 |
+
)
|
381 |
+
row_score = tf.where(banned_tokens_mask, -float("inf"), row_score)
|
382 |
+
return row_score
|
383 |
+
|
384 |
+
scores = tf.map_fn(_get_row_updated_score, (input_ids, scores), fn_output_signature=tf.float32)
|
385 |
+
return scores
|
386 |
+
|
387 |
+
|
388 |
+
class TFNoRepeatNGramLogitsProcessor(TFLogitsProcessor):
|
389 |
+
r"""
|
390 |
+
[`TFLogitsProcessor`] that enforces no repetition of n-grams. See
|
391 |
+
[Fairseq](https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345).
|
392 |
+
|
393 |
+
Args:
|
394 |
+
ngram_size (`int`):
|
395 |
+
All ngrams of size `ngram_size` can only occur once.
|
396 |
+
"""
|
397 |
+
|
398 |
+
def __init__(self, ngram_size: int):
|
399 |
+
if not isinstance(ngram_size, int) or ngram_size <= 0:
|
400 |
+
raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}")
|
401 |
+
self.ngram_size = ngram_size
|
402 |
+
|
403 |
+
def calc_banned_ngram_tokens(self, input_ids, num_hypos, cur_len):
|
404 |
+
# Copied from fairseq for no_repeat_ngram in beam_search
|
405 |
+
if cur_len + 1 < self.ngram_size:
|
406 |
+
# return no banned tokens if we haven't generated ngram_size tokens yet
|
407 |
+
return [[] for _ in range(num_hypos)]
|
408 |
+
generated_ngrams = [{} for _ in range(num_hypos)]
|
409 |
+
prev_input_ids = input_ids[:, :cur_len]
|
410 |
+
for idx in range(num_hypos):
|
411 |
+
gen_tokens = prev_input_ids[idx].numpy().tolist()
|
412 |
+
generated_ngram = generated_ngrams[idx]
|
413 |
+
for ngram in zip(*[gen_tokens[i:] for i in range(self.ngram_size)]):
|
414 |
+
prev_ngram_tuple = tuple(ngram[:-1])
|
415 |
+
generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
|
416 |
+
|
417 |
+
def _get_generated_ngrams(hypo_idx):
|
418 |
+
# Before decoding the next token, prevent decoding of ngrams that have already appeared
|
419 |
+
start_idx = cur_len + 1 - self.ngram_size
|
420 |
+
ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].numpy().tolist())
|
421 |
+
return generated_ngrams[hypo_idx].get(ngram_idx, [])
|
422 |
+
|
423 |
+
banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)]
|
424 |
+
|
425 |
+
return banned_tokens
|
426 |
+
|
427 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
428 |
+
# TODO (joao): enable XLA on this logits processor. See discussion and attempts in
|
429 |
+
# https://github.com/huggingface/transformers/pull/16974
|
430 |
+
if not tf.executing_eagerly():
|
431 |
+
raise NotImplementedError("TFNoRepeatNGramLogitsProcessor is only implemented for eager execution.")
|
432 |
+
|
433 |
+
batch_size, vocab_size = scores.shape
|
434 |
+
banned_tokens = self.calc_banned_ngram_tokens(input_ids, batch_size, cur_len)
|
435 |
+
|
436 |
+
# create banned_tokens boolean mask
|
437 |
+
banned_tokens_indices_mask = []
|
438 |
+
for banned_tokens_slice in banned_tokens:
|
439 |
+
banned_tokens_indices_mask.append(
|
440 |
+
[True if token in banned_tokens_slice else False for token in range(vocab_size)]
|
441 |
+
)
|
442 |
+
|
443 |
+
scores = tf.where(tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf"), scores)
|
444 |
+
|
445 |
+
return scores
|
446 |
+
|
447 |
+
|
448 |
+
class TFForcedBOSTokenLogitsProcessor(TFLogitsProcessor):
|
449 |
+
r"""
|
450 |
+
[`TFLogitsProcessor`] that enforces the specified token as the first generated token.
|
451 |
+
|
452 |
+
Args:
|
453 |
+
bos_token_id (`int`):
|
454 |
+
The id of the token to force as the first generated token.
|
455 |
+
"""
|
456 |
+
|
457 |
+
def __init__(self, bos_token_id: int):
|
458 |
+
if bos_token_id < 0:
|
459 |
+
raise ValueError(f"The forced bos token id must be a non-negative integer, got {bos_token_id}")
|
460 |
+
self.bos_token_id = bos_token_id
|
461 |
+
|
462 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
463 |
+
if cur_len == 1:
|
464 |
+
batch_size, num_tokens = scores.shape
|
465 |
+
# sets the score to 0 in the bos_token_id column
|
466 |
+
scores = tf.zeros((batch_size, 1))
|
467 |
+
# sets the score to -inf everywhere else
|
468 |
+
if self.bos_token_id > 0:
|
469 |
+
scores = tf.concat((tf.broadcast_to(-float("inf"), (batch_size, self.bos_token_id)), scores), axis=-1)
|
470 |
+
if self.bos_token_id < (num_tokens - 1):
|
471 |
+
scores = tf.concat(
|
472 |
+
(scores, tf.broadcast_to(-float("inf"), (batch_size, (num_tokens - 1) - self.bos_token_id))),
|
473 |
+
axis=-1,
|
474 |
+
)
|
475 |
+
return scores
|
476 |
+
|
477 |
+
|
478 |
+
class TFForcedEOSTokenLogitsProcessor(TFLogitsProcessor):
|
479 |
+
r"""
|
480 |
+
[`TFLogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
max_length (`int`):
|
484 |
+
The maximum length of the sequence to be generated.
|
485 |
+
eos_token_id (`int`):
|
486 |
+
The id of the token to force as the last generated token when `max_length` is reached.
|
487 |
+
"""
|
488 |
+
|
489 |
+
def __init__(self, max_length: int, eos_token_id: int):
|
490 |
+
self.max_length = max_length
|
491 |
+
if eos_token_id < 0:
|
492 |
+
raise ValueError(f"The forced eos token id must be a non-negative integer, got {eos_token_id}")
|
493 |
+
self.eos_token_id = eos_token_id
|
494 |
+
|
495 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
496 |
+
if cur_len == self.max_length - 1:
|
497 |
+
batch_size, num_tokens = scores.shape
|
498 |
+
# sets the score to 0 in the eos_token_id column
|
499 |
+
scores = tf.zeros((batch_size, 1))
|
500 |
+
# sets the score to -inf everywhere else
|
501 |
+
if self.eos_token_id > 0:
|
502 |
+
scores = tf.concat((tf.broadcast_to(-float("inf"), (batch_size, self.eos_token_id)), scores), axis=-1)
|
503 |
+
if self.eos_token_id < (num_tokens - 1):
|
504 |
+
scores = tf.concat(
|
505 |
+
(scores, tf.broadcast_to(-float("inf"), (batch_size, (num_tokens - 1) - self.eos_token_id))),
|
506 |
+
axis=-1,
|
507 |
+
)
|
508 |
+
return scores
|
509 |
+
|
510 |
+
|
511 |
+
class TFSuppressTokensAtBeginLogitsProcessor(TFLogitsProcessor):
|
512 |
+
r"""
|
513 |
+
[`TFSuppressTokensAtBeginLogitsProcessor`] suppresses a list of tokens as soon as the `generate` function starts
|
514 |
+
generating using `begin_index` tokens. This should ensure that the tokens defined by `begin_suppress_tokens` at not
|
515 |
+
sampled at the begining of the generation.
|
516 |
+
"""
|
517 |
+
|
518 |
+
def __init__(self, begin_suppress_tokens, begin_index):
|
519 |
+
self.begin_suppress_tokens = list(begin_suppress_tokens)
|
520 |
+
self.begin_index = begin_index
|
521 |
+
|
522 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
523 |
+
scores = tf.cond(
|
524 |
+
tf.equal(cur_len, self.begin_index),
|
525 |
+
lambda: tf.tensor_scatter_nd_update(
|
526 |
+
scores,
|
527 |
+
indices=[[i, token] for i in range(scores.shape[0]) for token in self.begin_suppress_tokens],
|
528 |
+
updates=[-float("inf") for _ in range(scores.shape[0] * len(self.begin_suppress_tokens))],
|
529 |
+
),
|
530 |
+
lambda: scores,
|
531 |
+
)
|
532 |
+
return scores
|
533 |
+
|
534 |
+
|
535 |
+
class TFSuppressTokensLogitsProcessor(TFLogitsProcessor):
|
536 |
+
r"""This processor can be used to suppress a list of tokens. The processor will set their log probs to `-inf` so that they
|
537 |
+
are not sampled."""
|
538 |
+
|
539 |
+
def __init__(self, suppress_tokens):
|
540 |
+
self.suppress_tokens = list(suppress_tokens)
|
541 |
+
|
542 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
543 |
+
scores = tf.tensor_scatter_nd_update(
|
544 |
+
scores,
|
545 |
+
indices=[[i, token] for i in range(scores.shape[0]) for token in self.suppress_tokens],
|
546 |
+
updates=[-float("inf") for _ in range(scores.shape[0] * len(self.suppress_tokens))],
|
547 |
+
)
|
548 |
+
return scores
|
549 |
+
|
550 |
+
|
551 |
+
class TFForceTokensLogitsProcessor(TFLogitsProcessor):
|
552 |
+
r"""This processor takes a list of pairs of integers which indicates a mapping from generation indices to token
|
553 |
+
indices that will be forced before sampling. The processor will set their log probs to `0` and all other tokens to
|
554 |
+
`-inf` so that they are sampled at their corresponding index."""
|
555 |
+
|
556 |
+
def __init__(self, force_token_map: List[List[int]]):
|
557 |
+
force_token_map = dict(force_token_map)
|
558 |
+
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
|
559 |
+
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
|
560 |
+
# Indexes without forced tokens will have an negative value.
|
561 |
+
force_token_array = np.ones((max(force_token_map.keys()) + 1), dtype=np.int32) * -1
|
562 |
+
for index, token in force_token_map.items():
|
563 |
+
if token is not None:
|
564 |
+
force_token_array[index] = token
|
565 |
+
self.force_token_array = tf.convert_to_tensor(force_token_array, dtype=tf.int32)
|
566 |
+
|
567 |
+
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
|
568 |
+
def _force_token(generation_idx):
|
569 |
+
batch_size = scores.shape[0]
|
570 |
+
current_token = self.force_token_array[generation_idx]
|
571 |
+
|
572 |
+
new_scores = tf.ones_like(scores, dtype=scores.dtype) * -float("inf")
|
573 |
+
indices = tf.stack((tf.range(batch_size), tf.tile([current_token], [batch_size])), axis=1)
|
574 |
+
updates = tf.zeros((batch_size,), dtype=scores.dtype)
|
575 |
+
new_scores = tf.tensor_scatter_nd_update(new_scores, indices, updates)
|
576 |
+
return new_scores
|
577 |
+
|
578 |
+
scores = tf.cond(
|
579 |
+
tf.greater_equal(cur_len, tf.shape(self.force_token_array)[0]),
|
580 |
+
# If the current length is geq than the length of force_token_array, the processor does nothing.
|
581 |
+
lambda: tf.identity(scores),
|
582 |
+
# Otherwise, it may force a certain token.
|
583 |
+
lambda: tf.cond(
|
584 |
+
tf.greater_equal(self.force_token_array[cur_len], 0),
|
585 |
+
# Only valid (positive) tokens are forced
|
586 |
+
lambda: _force_token(cur_len),
|
587 |
+
# Otherwise, the processor does nothing.
|
588 |
+
lambda: scores,
|
589 |
+
),
|
590 |
+
)
|
591 |
+
return scores
|