Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/array_comprehension.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/array_derivatives.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/arrayop.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/dense_ndim_array.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/mutable_ndim_array.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/ndim_array.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/sparse_ndim_array.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__init__.py +178 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/array_expressions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/arrayexpr_derivatives.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_array_to_indexed.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_array_to_matrix.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_indexed_to_array.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_matrix_to_array.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_array_to_indexed.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_array_to_matrix.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_indexed_to_array.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_matrix_to_array.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/array_expressions.py +1967 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/arrayexpr_derivatives.py +194 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_array_to_indexed.py +12 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_array_to_matrix.py +6 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_indexed_to_array.py +4 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_matrix_to_array.py +4 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_array_to_indexed.py +84 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_array_to_matrix.py +1003 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_indexed_to_array.py +257 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_matrix_to_array.py +87 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/__pycache__/test_arrayexpr_derivatives.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/__pycache__/test_convert_array_to_indexed.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/__pycache__/test_deprecated_conv_modules.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_array_expressions.py +808 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_arrayexpr_derivatives.py +78 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_as_explicit.py +63 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_convert_array_to_indexed.py +61 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_convert_array_to_matrix.py +689 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_convert_indexed_to_array.py +205 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_convert_matrix_to_array.py +128 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_deprecated_conv_modules.py +22 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/utils.py +123 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__pycache__/test_array_comprehension.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__pycache__/test_array_derivatives.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__pycache__/test_arrayop.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__pycache__/test_immutable_ndim_array.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (8.31 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/array_comprehension.cpython-310.pyc
ADDED
Binary file (14.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/array_derivatives.cpython-310.pyc
ADDED
Binary file (4.76 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/arrayop.cpython-310.pyc
ADDED
Binary file (16.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/dense_ndim_array.cpython-310.pyc
ADDED
Binary file (8.47 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/mutable_ndim_array.cpython-310.pyc
ADDED
Binary file (862 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/ndim_array.cpython-310.pyc
ADDED
Binary file (21.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__pycache__/sparse_ndim_array.cpython-310.pyc
ADDED
Binary file (7.52 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__init__.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
Array expressions are expressions representing N-dimensional arrays, without
|
3 |
+
evaluating them. These expressions represent in a certain way abstract syntax
|
4 |
+
trees of operations on N-dimensional arrays.
|
5 |
+
|
6 |
+
Every N-dimensional array operator has a corresponding array expression object.
|
7 |
+
|
8 |
+
Table of correspondences:
|
9 |
+
|
10 |
+
=============================== =============================
|
11 |
+
Array operator Array expression operator
|
12 |
+
=============================== =============================
|
13 |
+
tensorproduct ArrayTensorProduct
|
14 |
+
tensorcontraction ArrayContraction
|
15 |
+
tensordiagonal ArrayDiagonal
|
16 |
+
permutedims PermuteDims
|
17 |
+
=============================== =============================
|
18 |
+
|
19 |
+
Examples
|
20 |
+
========
|
21 |
+
|
22 |
+
``ArraySymbol`` objects are the N-dimensional equivalent of ``MatrixSymbol``
|
23 |
+
objects in the matrix module:
|
24 |
+
|
25 |
+
>>> from sympy.tensor.array.expressions import ArraySymbol
|
26 |
+
>>> from sympy.abc import i, j, k
|
27 |
+
>>> A = ArraySymbol("A", (3, 2, 4))
|
28 |
+
>>> A.shape
|
29 |
+
(3, 2, 4)
|
30 |
+
>>> A[i, j, k]
|
31 |
+
A[i, j, k]
|
32 |
+
>>> A.as_explicit()
|
33 |
+
[[[A[0, 0, 0], A[0, 0, 1], A[0, 0, 2], A[0, 0, 3]],
|
34 |
+
[A[0, 1, 0], A[0, 1, 1], A[0, 1, 2], A[0, 1, 3]]],
|
35 |
+
[[A[1, 0, 0], A[1, 0, 1], A[1, 0, 2], A[1, 0, 3]],
|
36 |
+
[A[1, 1, 0], A[1, 1, 1], A[1, 1, 2], A[1, 1, 3]]],
|
37 |
+
[[A[2, 0, 0], A[2, 0, 1], A[2, 0, 2], A[2, 0, 3]],
|
38 |
+
[A[2, 1, 0], A[2, 1, 1], A[2, 1, 2], A[2, 1, 3]]]]
|
39 |
+
|
40 |
+
Component-explicit arrays can be added inside array expressions:
|
41 |
+
|
42 |
+
>>> from sympy import Array
|
43 |
+
>>> from sympy import tensorproduct
|
44 |
+
>>> from sympy.tensor.array.expressions import ArrayTensorProduct
|
45 |
+
>>> a = Array([1, 2, 3])
|
46 |
+
>>> b = Array([i, j, k])
|
47 |
+
>>> expr = ArrayTensorProduct(a, b, b)
|
48 |
+
>>> expr
|
49 |
+
ArrayTensorProduct([1, 2, 3], [i, j, k], [i, j, k])
|
50 |
+
>>> expr.as_explicit() == tensorproduct(a, b, b)
|
51 |
+
True
|
52 |
+
|
53 |
+
Constructing array expressions from index-explicit forms
|
54 |
+
--------------------------------------------------------
|
55 |
+
|
56 |
+
Array expressions are index-implicit. This means they do not use any indices to
|
57 |
+
represent array operations. The function ``convert_indexed_to_array( ... )``
|
58 |
+
may be used to convert index-explicit expressions to array expressions.
|
59 |
+
It takes as input two parameters: the index-explicit expression and the order
|
60 |
+
of the indices:
|
61 |
+
|
62 |
+
>>> from sympy.tensor.array.expressions import convert_indexed_to_array
|
63 |
+
>>> from sympy import Sum
|
64 |
+
>>> A = ArraySymbol("A", (3, 3))
|
65 |
+
>>> B = ArraySymbol("B", (3, 3))
|
66 |
+
>>> convert_indexed_to_array(A[i, j], [i, j])
|
67 |
+
A
|
68 |
+
>>> convert_indexed_to_array(A[i, j], [j, i])
|
69 |
+
PermuteDims(A, (0 1))
|
70 |
+
>>> convert_indexed_to_array(A[i, j] + B[j, i], [i, j])
|
71 |
+
ArrayAdd(A, PermuteDims(B, (0 1)))
|
72 |
+
>>> convert_indexed_to_array(Sum(A[i, j]*B[j, k], (j, 0, 2)), [i, k])
|
73 |
+
ArrayContraction(ArrayTensorProduct(A, B), (1, 2))
|
74 |
+
|
75 |
+
The diagonal of a matrix in the array expression form:
|
76 |
+
|
77 |
+
>>> convert_indexed_to_array(A[i, i], [i])
|
78 |
+
ArrayDiagonal(A, (0, 1))
|
79 |
+
|
80 |
+
The trace of a matrix in the array expression form:
|
81 |
+
|
82 |
+
>>> convert_indexed_to_array(Sum(A[i, i], (i, 0, 2)), [i])
|
83 |
+
ArrayContraction(A, (0, 1))
|
84 |
+
|
85 |
+
Compatibility with matrices
|
86 |
+
---------------------------
|
87 |
+
|
88 |
+
Array expressions can be mixed with objects from the matrix module:
|
89 |
+
|
90 |
+
>>> from sympy import MatrixSymbol
|
91 |
+
>>> from sympy.tensor.array.expressions import ArrayContraction
|
92 |
+
>>> M = MatrixSymbol("M", 3, 3)
|
93 |
+
>>> N = MatrixSymbol("N", 3, 3)
|
94 |
+
|
95 |
+
Express the matrix product in the array expression form:
|
96 |
+
|
97 |
+
>>> from sympy.tensor.array.expressions import convert_matrix_to_array
|
98 |
+
>>> expr = convert_matrix_to_array(M*N)
|
99 |
+
>>> expr
|
100 |
+
ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
|
101 |
+
|
102 |
+
The expression can be converted back to matrix form:
|
103 |
+
|
104 |
+
>>> from sympy.tensor.array.expressions import convert_array_to_matrix
|
105 |
+
>>> convert_array_to_matrix(expr)
|
106 |
+
M*N
|
107 |
+
|
108 |
+
Add a second contraction on the remaining axes in order to get the trace of `M \cdot N`:
|
109 |
+
|
110 |
+
>>> expr_tr = ArrayContraction(expr, (0, 1))
|
111 |
+
>>> expr_tr
|
112 |
+
ArrayContraction(ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), (0, 1))
|
113 |
+
|
114 |
+
Flatten the expression by calling ``.doit()`` and remove the nested array contraction operations:
|
115 |
+
|
116 |
+
>>> expr_tr.doit()
|
117 |
+
ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
|
118 |
+
|
119 |
+
Get the explicit form of the array expression:
|
120 |
+
|
121 |
+
>>> expr.as_explicit()
|
122 |
+
[[M[0, 0]*N[0, 0] + M[0, 1]*N[1, 0] + M[0, 2]*N[2, 0], M[0, 0]*N[0, 1] + M[0, 1]*N[1, 1] + M[0, 2]*N[2, 1], M[0, 0]*N[0, 2] + M[0, 1]*N[1, 2] + M[0, 2]*N[2, 2]],
|
123 |
+
[M[1, 0]*N[0, 0] + M[1, 1]*N[1, 0] + M[1, 2]*N[2, 0], M[1, 0]*N[0, 1] + M[1, 1]*N[1, 1] + M[1, 2]*N[2, 1], M[1, 0]*N[0, 2] + M[1, 1]*N[1, 2] + M[1, 2]*N[2, 2]],
|
124 |
+
[M[2, 0]*N[0, 0] + M[2, 1]*N[1, 0] + M[2, 2]*N[2, 0], M[2, 0]*N[0, 1] + M[2, 1]*N[1, 1] + M[2, 2]*N[2, 1], M[2, 0]*N[0, 2] + M[2, 1]*N[1, 2] + M[2, 2]*N[2, 2]]]
|
125 |
+
|
126 |
+
Express the trace of a matrix:
|
127 |
+
|
128 |
+
>>> from sympy import Trace
|
129 |
+
>>> convert_matrix_to_array(Trace(M))
|
130 |
+
ArrayContraction(M, (0, 1))
|
131 |
+
>>> convert_matrix_to_array(Trace(M*N))
|
132 |
+
ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
|
133 |
+
|
134 |
+
Express the transposition of a matrix (will be expressed as a permutation of the axes:
|
135 |
+
|
136 |
+
>>> convert_matrix_to_array(M.T)
|
137 |
+
PermuteDims(M, (0 1))
|
138 |
+
|
139 |
+
Compute the derivative array expressions:
|
140 |
+
|
141 |
+
>>> from sympy.tensor.array.expressions import array_derive
|
142 |
+
>>> d = array_derive(M, M)
|
143 |
+
>>> d
|
144 |
+
PermuteDims(ArrayTensorProduct(I, I), (3)(1 2))
|
145 |
+
|
146 |
+
Verify that the derivative corresponds to the form computed with explicit matrices:
|
147 |
+
|
148 |
+
>>> d.as_explicit()
|
149 |
+
[[[[1, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0], [0, 0, 0]]], [[[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]]], [[[0, 0, 0], [0, 0, 0], [1, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 1]]]]
|
150 |
+
>>> Me = M.as_explicit()
|
151 |
+
>>> Me.diff(Me)
|
152 |
+
[[[[1, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0], [0, 0, 0]]], [[[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]]], [[[0, 0, 0], [0, 0, 0], [1, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 1]]]]
|
153 |
+
|
154 |
+
"""
|
155 |
+
|
156 |
+
__all__ = [
|
157 |
+
"ArraySymbol", "ArrayElement", "ZeroArray", "OneArray",
|
158 |
+
"ArrayTensorProduct",
|
159 |
+
"ArrayContraction",
|
160 |
+
"ArrayDiagonal",
|
161 |
+
"PermuteDims",
|
162 |
+
"ArrayAdd",
|
163 |
+
"ArrayElementwiseApplyFunc",
|
164 |
+
"Reshape",
|
165 |
+
"convert_array_to_matrix",
|
166 |
+
"convert_matrix_to_array",
|
167 |
+
"convert_array_to_indexed",
|
168 |
+
"convert_indexed_to_array",
|
169 |
+
"array_derive",
|
170 |
+
]
|
171 |
+
|
172 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, PermuteDims, ArrayDiagonal, \
|
173 |
+
ArrayContraction, Reshape, ArraySymbol, ArrayElement, ZeroArray, OneArray, ArrayElementwiseApplyFunc
|
174 |
+
from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive
|
175 |
+
from sympy.tensor.array.expressions.from_array_to_indexed import convert_array_to_indexed
|
176 |
+
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
|
177 |
+
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
|
178 |
+
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (7.14 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/array_expressions.cpython-310.pyc
ADDED
Binary file (80.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/arrayexpr_derivatives.cpython-310.pyc
ADDED
Binary file (7.17 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_array_to_indexed.cpython-310.pyc
ADDED
Binary file (613 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_array_to_matrix.cpython-310.pyc
ADDED
Binary file (488 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_indexed_to_array.cpython-310.pyc
ADDED
Binary file (430 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/conv_matrix_to_array.cpython-310.pyc
ADDED
Binary file (427 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_array_to_indexed.cpython-310.pyc
ADDED
Binary file (3.96 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_array_to_matrix.cpython-310.pyc
ADDED
Binary file (32.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_indexed_to_array.cpython-310.pyc
ADDED
Binary file (9.83 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/from_matrix_to_array.cpython-310.pyc
ADDED
Binary file (4.06 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (5.44 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/array_expressions.py
ADDED
@@ -0,0 +1,1967 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections.abc
|
2 |
+
import operator
|
3 |
+
from collections import defaultdict, Counter
|
4 |
+
from functools import reduce
|
5 |
+
import itertools
|
6 |
+
from itertools import accumulate
|
7 |
+
from typing import Optional, List, Tuple as tTuple
|
8 |
+
|
9 |
+
import typing
|
10 |
+
|
11 |
+
from sympy.core.numbers import Integer
|
12 |
+
from sympy.core.relational import Equality
|
13 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
14 |
+
from sympy.core.basic import Basic
|
15 |
+
from sympy.core.containers import Tuple
|
16 |
+
from sympy.core.expr import Expr
|
17 |
+
from sympy.core.function import (Function, Lambda)
|
18 |
+
from sympy.core.mul import Mul
|
19 |
+
from sympy.core.singleton import S
|
20 |
+
from sympy.core.sorting import default_sort_key
|
21 |
+
from sympy.core.symbol import (Dummy, Symbol)
|
22 |
+
from sympy.matrices.common import MatrixCommon
|
23 |
+
from sympy.matrices.expressions.diagonal import diagonalize_vector
|
24 |
+
from sympy.matrices.expressions.matexpr import MatrixExpr
|
25 |
+
from sympy.matrices.expressions.special import ZeroMatrix
|
26 |
+
from sympy.tensor.array.arrayop import (permutedims, tensorcontraction, tensordiagonal, tensorproduct)
|
27 |
+
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
|
28 |
+
from sympy.tensor.array.ndim_array import NDimArray
|
29 |
+
from sympy.tensor.indexed import (Indexed, IndexedBase)
|
30 |
+
from sympy.matrices.expressions.matexpr import MatrixElement
|
31 |
+
from sympy.tensor.array.expressions.utils import _apply_recursively_over_nested_lists, _sort_contraction_indices, \
|
32 |
+
_get_mapping_from_subranks, _build_push_indices_up_func_transformation, _get_contraction_links, \
|
33 |
+
_build_push_indices_down_func_transformation
|
34 |
+
from sympy.combinatorics import Permutation
|
35 |
+
from sympy.combinatorics.permutations import _af_invert
|
36 |
+
from sympy.core.sympify import _sympify
|
37 |
+
|
38 |
+
|
39 |
+
class _ArrayExpr(Expr):
|
40 |
+
shape: tTuple[Expr, ...]
|
41 |
+
|
42 |
+
def __getitem__(self, item):
|
43 |
+
if not isinstance(item, collections.abc.Iterable):
|
44 |
+
item = (item,)
|
45 |
+
ArrayElement._check_shape(self, item)
|
46 |
+
return self._get(item)
|
47 |
+
|
48 |
+
def _get(self, item):
|
49 |
+
return _get_array_element_or_slice(self, item)
|
50 |
+
|
51 |
+
|
52 |
+
class ArraySymbol(_ArrayExpr):
|
53 |
+
"""
|
54 |
+
Symbol representing an array expression
|
55 |
+
"""
|
56 |
+
|
57 |
+
def __new__(cls, symbol, shape: typing.Iterable) -> "ArraySymbol":
|
58 |
+
if isinstance(symbol, str):
|
59 |
+
symbol = Symbol(symbol)
|
60 |
+
# symbol = _sympify(symbol)
|
61 |
+
shape = Tuple(*map(_sympify, shape))
|
62 |
+
obj = Expr.__new__(cls, symbol, shape)
|
63 |
+
return obj
|
64 |
+
|
65 |
+
@property
|
66 |
+
def name(self):
|
67 |
+
return self._args[0]
|
68 |
+
|
69 |
+
@property
|
70 |
+
def shape(self):
|
71 |
+
return self._args[1]
|
72 |
+
|
73 |
+
def as_explicit(self):
|
74 |
+
if not all(i.is_Integer for i in self.shape):
|
75 |
+
raise ValueError("cannot express explicit array with symbolic shape")
|
76 |
+
data = [self[i] for i in itertools.product(*[range(j) for j in self.shape])]
|
77 |
+
return ImmutableDenseNDimArray(data).reshape(*self.shape)
|
78 |
+
|
79 |
+
|
80 |
+
class ArrayElement(Expr):
|
81 |
+
"""
|
82 |
+
An element of an array.
|
83 |
+
"""
|
84 |
+
|
85 |
+
_diff_wrt = True
|
86 |
+
is_symbol = True
|
87 |
+
is_commutative = True
|
88 |
+
|
89 |
+
def __new__(cls, name, indices):
|
90 |
+
if isinstance(name, str):
|
91 |
+
name = Symbol(name)
|
92 |
+
name = _sympify(name)
|
93 |
+
if not isinstance(indices, collections.abc.Iterable):
|
94 |
+
indices = (indices,)
|
95 |
+
indices = _sympify(tuple(indices))
|
96 |
+
cls._check_shape(name, indices)
|
97 |
+
obj = Expr.__new__(cls, name, indices)
|
98 |
+
return obj
|
99 |
+
|
100 |
+
@classmethod
|
101 |
+
def _check_shape(cls, name, indices):
|
102 |
+
indices = tuple(indices)
|
103 |
+
if hasattr(name, "shape"):
|
104 |
+
index_error = IndexError("number of indices does not match shape of the array")
|
105 |
+
if len(indices) != len(name.shape):
|
106 |
+
raise index_error
|
107 |
+
if any((i >= s) == True for i, s in zip(indices, name.shape)):
|
108 |
+
raise ValueError("shape is out of bounds")
|
109 |
+
if any((i < 0) == True for i in indices):
|
110 |
+
raise ValueError("shape contains negative values")
|
111 |
+
|
112 |
+
@property
|
113 |
+
def name(self):
|
114 |
+
return self._args[0]
|
115 |
+
|
116 |
+
@property
|
117 |
+
def indices(self):
|
118 |
+
return self._args[1]
|
119 |
+
|
120 |
+
def _eval_derivative(self, s):
|
121 |
+
if not isinstance(s, ArrayElement):
|
122 |
+
return S.Zero
|
123 |
+
|
124 |
+
if s == self:
|
125 |
+
return S.One
|
126 |
+
|
127 |
+
if s.name != self.name:
|
128 |
+
return S.Zero
|
129 |
+
|
130 |
+
return Mul.fromiter(KroneckerDelta(i, j) for i, j in zip(self.indices, s.indices))
|
131 |
+
|
132 |
+
|
133 |
+
class ZeroArray(_ArrayExpr):
|
134 |
+
"""
|
135 |
+
Symbolic array of zeros. Equivalent to ``ZeroMatrix`` for matrices.
|
136 |
+
"""
|
137 |
+
|
138 |
+
def __new__(cls, *shape):
|
139 |
+
if len(shape) == 0:
|
140 |
+
return S.Zero
|
141 |
+
shape = map(_sympify, shape)
|
142 |
+
obj = Expr.__new__(cls, *shape)
|
143 |
+
return obj
|
144 |
+
|
145 |
+
@property
|
146 |
+
def shape(self):
|
147 |
+
return self._args
|
148 |
+
|
149 |
+
def as_explicit(self):
|
150 |
+
if not all(i.is_Integer for i in self.shape):
|
151 |
+
raise ValueError("Cannot return explicit form for symbolic shape.")
|
152 |
+
return ImmutableDenseNDimArray.zeros(*self.shape)
|
153 |
+
|
154 |
+
def _get(self, item):
|
155 |
+
return S.Zero
|
156 |
+
|
157 |
+
|
158 |
+
class OneArray(_ArrayExpr):
|
159 |
+
"""
|
160 |
+
Symbolic array of ones.
|
161 |
+
"""
|
162 |
+
|
163 |
+
def __new__(cls, *shape):
|
164 |
+
if len(shape) == 0:
|
165 |
+
return S.One
|
166 |
+
shape = map(_sympify, shape)
|
167 |
+
obj = Expr.__new__(cls, *shape)
|
168 |
+
return obj
|
169 |
+
|
170 |
+
@property
|
171 |
+
def shape(self):
|
172 |
+
return self._args
|
173 |
+
|
174 |
+
def as_explicit(self):
|
175 |
+
if not all(i.is_Integer for i in self.shape):
|
176 |
+
raise ValueError("Cannot return explicit form for symbolic shape.")
|
177 |
+
return ImmutableDenseNDimArray([S.One for i in range(reduce(operator.mul, self.shape))]).reshape(*self.shape)
|
178 |
+
|
179 |
+
def _get(self, item):
|
180 |
+
return S.One
|
181 |
+
|
182 |
+
|
183 |
+
class _CodegenArrayAbstract(Basic):
|
184 |
+
|
185 |
+
@property
|
186 |
+
def subranks(self):
|
187 |
+
"""
|
188 |
+
Returns the ranks of the objects in the uppermost tensor product inside
|
189 |
+
the current object. In case no tensor products are contained, return
|
190 |
+
the atomic ranks.
|
191 |
+
|
192 |
+
Examples
|
193 |
+
========
|
194 |
+
|
195 |
+
>>> from sympy.tensor.array import tensorproduct, tensorcontraction
|
196 |
+
>>> from sympy import MatrixSymbol
|
197 |
+
>>> M = MatrixSymbol("M", 3, 3)
|
198 |
+
>>> N = MatrixSymbol("N", 3, 3)
|
199 |
+
>>> P = MatrixSymbol("P", 3, 3)
|
200 |
+
|
201 |
+
Important: do not confuse the rank of the matrix with the rank of an array.
|
202 |
+
|
203 |
+
>>> tp = tensorproduct(M, N, P)
|
204 |
+
>>> tp.subranks
|
205 |
+
[2, 2, 2]
|
206 |
+
|
207 |
+
>>> co = tensorcontraction(tp, (1, 2), (3, 4))
|
208 |
+
>>> co.subranks
|
209 |
+
[2, 2, 2]
|
210 |
+
"""
|
211 |
+
return self._subranks[:]
|
212 |
+
|
213 |
+
def subrank(self):
|
214 |
+
"""
|
215 |
+
The sum of ``subranks``.
|
216 |
+
"""
|
217 |
+
return sum(self.subranks)
|
218 |
+
|
219 |
+
@property
|
220 |
+
def shape(self):
|
221 |
+
return self._shape
|
222 |
+
|
223 |
+
def doit(self, **hints):
|
224 |
+
deep = hints.get("deep", True)
|
225 |
+
if deep:
|
226 |
+
return self.func(*[arg.doit(**hints) for arg in self.args])._canonicalize()
|
227 |
+
else:
|
228 |
+
return self._canonicalize()
|
229 |
+
|
230 |
+
class ArrayTensorProduct(_CodegenArrayAbstract):
|
231 |
+
r"""
|
232 |
+
Class to represent the tensor product of array-like objects.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __new__(cls, *args, **kwargs):
|
236 |
+
args = [_sympify(arg) for arg in args]
|
237 |
+
|
238 |
+
canonicalize = kwargs.pop("canonicalize", False)
|
239 |
+
|
240 |
+
ranks = [get_rank(arg) for arg in args]
|
241 |
+
|
242 |
+
obj = Basic.__new__(cls, *args)
|
243 |
+
obj._subranks = ranks
|
244 |
+
shapes = [get_shape(i) for i in args]
|
245 |
+
|
246 |
+
if any(i is None for i in shapes):
|
247 |
+
obj._shape = None
|
248 |
+
else:
|
249 |
+
obj._shape = tuple(j for i in shapes for j in i)
|
250 |
+
if canonicalize:
|
251 |
+
return obj._canonicalize()
|
252 |
+
return obj
|
253 |
+
|
254 |
+
def _canonicalize(self):
|
255 |
+
args = self.args
|
256 |
+
args = self._flatten(args)
|
257 |
+
|
258 |
+
ranks = [get_rank(arg) for arg in args]
|
259 |
+
|
260 |
+
# Check if there are nested permutation and lift them up:
|
261 |
+
permutation_cycles = []
|
262 |
+
for i, arg in enumerate(args):
|
263 |
+
if not isinstance(arg, PermuteDims):
|
264 |
+
continue
|
265 |
+
permutation_cycles.extend([[k + sum(ranks[:i]) for k in j] for j in arg.permutation.cyclic_form])
|
266 |
+
args[i] = arg.expr
|
267 |
+
if permutation_cycles:
|
268 |
+
return _permute_dims(_array_tensor_product(*args), Permutation(sum(ranks)-1)*Permutation(permutation_cycles))
|
269 |
+
|
270 |
+
if len(args) == 1:
|
271 |
+
return args[0]
|
272 |
+
|
273 |
+
# If any object is a ZeroArray, return a ZeroArray:
|
274 |
+
if any(isinstance(arg, (ZeroArray, ZeroMatrix)) for arg in args):
|
275 |
+
shapes = reduce(operator.add, [get_shape(i) for i in args], ())
|
276 |
+
return ZeroArray(*shapes)
|
277 |
+
|
278 |
+
# If there are contraction objects inside, transform the whole
|
279 |
+
# expression into `ArrayContraction`:
|
280 |
+
contractions = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayContraction)}
|
281 |
+
if contractions:
|
282 |
+
ranks = [_get_subrank(arg) if isinstance(arg, ArrayContraction) else get_rank(arg) for arg in args]
|
283 |
+
cumulative_ranks = list(accumulate([0] + ranks))[:-1]
|
284 |
+
tp = _array_tensor_product(*[arg.expr if isinstance(arg, ArrayContraction) else arg for arg in args])
|
285 |
+
contraction_indices = [tuple(cumulative_ranks[i] + k for k in j) for i, arg in contractions.items() for j in arg.contraction_indices]
|
286 |
+
return _array_contraction(tp, *contraction_indices)
|
287 |
+
|
288 |
+
diagonals = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayDiagonal)}
|
289 |
+
if diagonals:
|
290 |
+
inverse_permutation = []
|
291 |
+
last_perm = []
|
292 |
+
ranks = [get_rank(arg) for arg in args]
|
293 |
+
cumulative_ranks = list(accumulate([0] + ranks))[:-1]
|
294 |
+
for i, arg in enumerate(args):
|
295 |
+
if isinstance(arg, ArrayDiagonal):
|
296 |
+
i1 = get_rank(arg) - len(arg.diagonal_indices)
|
297 |
+
i2 = len(arg.diagonal_indices)
|
298 |
+
inverse_permutation.extend([cumulative_ranks[i] + j for j in range(i1)])
|
299 |
+
last_perm.extend([cumulative_ranks[i] + j for j in range(i1, i1 + i2)])
|
300 |
+
else:
|
301 |
+
inverse_permutation.extend([cumulative_ranks[i] + j for j in range(get_rank(arg))])
|
302 |
+
inverse_permutation.extend(last_perm)
|
303 |
+
tp = _array_tensor_product(*[arg.expr if isinstance(arg, ArrayDiagonal) else arg for arg in args])
|
304 |
+
ranks2 = [_get_subrank(arg) if isinstance(arg, ArrayDiagonal) else get_rank(arg) for arg in args]
|
305 |
+
cumulative_ranks2 = list(accumulate([0] + ranks2))[:-1]
|
306 |
+
diagonal_indices = [tuple(cumulative_ranks2[i] + k for k in j) for i, arg in diagonals.items() for j in arg.diagonal_indices]
|
307 |
+
return _permute_dims(_array_diagonal(tp, *diagonal_indices), _af_invert(inverse_permutation))
|
308 |
+
|
309 |
+
return self.func(*args, canonicalize=False)
|
310 |
+
|
311 |
+
@classmethod
|
312 |
+
def _flatten(cls, args):
|
313 |
+
args = [i for arg in args for i in (arg.args if isinstance(arg, cls) else [arg])]
|
314 |
+
return args
|
315 |
+
|
316 |
+
def as_explicit(self):
|
317 |
+
return tensorproduct(*[arg.as_explicit() if hasattr(arg, "as_explicit") else arg for arg in self.args])
|
318 |
+
|
319 |
+
|
320 |
+
class ArrayAdd(_CodegenArrayAbstract):
|
321 |
+
r"""
|
322 |
+
Class for elementwise array additions.
|
323 |
+
"""
|
324 |
+
|
325 |
+
def __new__(cls, *args, **kwargs):
|
326 |
+
args = [_sympify(arg) for arg in args]
|
327 |
+
ranks = [get_rank(arg) for arg in args]
|
328 |
+
ranks = list(set(ranks))
|
329 |
+
if len(ranks) != 1:
|
330 |
+
raise ValueError("summing arrays of different ranks")
|
331 |
+
shapes = [arg.shape for arg in args]
|
332 |
+
if len({i for i in shapes if i is not None}) > 1:
|
333 |
+
raise ValueError("mismatching shapes in addition")
|
334 |
+
|
335 |
+
canonicalize = kwargs.pop("canonicalize", False)
|
336 |
+
|
337 |
+
obj = Basic.__new__(cls, *args)
|
338 |
+
obj._subranks = ranks
|
339 |
+
if any(i is None for i in shapes):
|
340 |
+
obj._shape = None
|
341 |
+
else:
|
342 |
+
obj._shape = shapes[0]
|
343 |
+
if canonicalize:
|
344 |
+
return obj._canonicalize()
|
345 |
+
return obj
|
346 |
+
|
347 |
+
def _canonicalize(self):
|
348 |
+
args = self.args
|
349 |
+
|
350 |
+
# Flatten:
|
351 |
+
args = self._flatten_args(args)
|
352 |
+
|
353 |
+
shapes = [get_shape(arg) for arg in args]
|
354 |
+
args = [arg for arg in args if not isinstance(arg, (ZeroArray, ZeroMatrix))]
|
355 |
+
if len(args) == 0:
|
356 |
+
if any(i for i in shapes if i is None):
|
357 |
+
raise NotImplementedError("cannot handle addition of ZeroMatrix/ZeroArray and undefined shape object")
|
358 |
+
return ZeroArray(*shapes[0])
|
359 |
+
elif len(args) == 1:
|
360 |
+
return args[0]
|
361 |
+
return self.func(*args, canonicalize=False)
|
362 |
+
|
363 |
+
@classmethod
|
364 |
+
def _flatten_args(cls, args):
|
365 |
+
new_args = []
|
366 |
+
for arg in args:
|
367 |
+
if isinstance(arg, ArrayAdd):
|
368 |
+
new_args.extend(arg.args)
|
369 |
+
else:
|
370 |
+
new_args.append(arg)
|
371 |
+
return new_args
|
372 |
+
|
373 |
+
def as_explicit(self):
|
374 |
+
return reduce(
|
375 |
+
operator.add,
|
376 |
+
[arg.as_explicit() if hasattr(arg, "as_explicit") else arg for arg in self.args])
|
377 |
+
|
378 |
+
|
379 |
+
class PermuteDims(_CodegenArrayAbstract):
|
380 |
+
r"""
|
381 |
+
Class to represent permutation of axes of arrays.
|
382 |
+
|
383 |
+
Examples
|
384 |
+
========
|
385 |
+
|
386 |
+
>>> from sympy.tensor.array import permutedims
|
387 |
+
>>> from sympy import MatrixSymbol
|
388 |
+
>>> M = MatrixSymbol("M", 3, 3)
|
389 |
+
>>> cg = permutedims(M, [1, 0])
|
390 |
+
|
391 |
+
The object ``cg`` represents the transposition of ``M``, as the permutation
|
392 |
+
``[1, 0]`` will act on its indices by switching them:
|
393 |
+
|
394 |
+
`M_{ij} \Rightarrow M_{ji}`
|
395 |
+
|
396 |
+
This is evident when transforming back to matrix form:
|
397 |
+
|
398 |
+
>>> from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
|
399 |
+
>>> convert_array_to_matrix(cg)
|
400 |
+
M.T
|
401 |
+
|
402 |
+
>>> N = MatrixSymbol("N", 3, 2)
|
403 |
+
>>> cg = permutedims(N, [1, 0])
|
404 |
+
>>> cg.shape
|
405 |
+
(2, 3)
|
406 |
+
|
407 |
+
There are optional parameters that can be used as alternative to the permutation:
|
408 |
+
|
409 |
+
>>> from sympy.tensor.array.expressions import ArraySymbol, PermuteDims
|
410 |
+
>>> M = ArraySymbol("M", (1, 2, 3, 4, 5))
|
411 |
+
>>> expr = PermuteDims(M, index_order_old="ijklm", index_order_new="kijml")
|
412 |
+
>>> expr
|
413 |
+
PermuteDims(M, (0 2 1)(3 4))
|
414 |
+
>>> expr.shape
|
415 |
+
(3, 1, 2, 5, 4)
|
416 |
+
|
417 |
+
Permutations of tensor products are simplified in order to achieve a
|
418 |
+
standard form:
|
419 |
+
|
420 |
+
>>> from sympy.tensor.array import tensorproduct
|
421 |
+
>>> M = MatrixSymbol("M", 4, 5)
|
422 |
+
>>> tp = tensorproduct(M, N)
|
423 |
+
>>> tp.shape
|
424 |
+
(4, 5, 3, 2)
|
425 |
+
>>> perm1 = permutedims(tp, [2, 3, 1, 0])
|
426 |
+
|
427 |
+
The args ``(M, N)`` have been sorted and the permutation has been
|
428 |
+
simplified, the expression is equivalent:
|
429 |
+
|
430 |
+
>>> perm1.expr.args
|
431 |
+
(N, M)
|
432 |
+
>>> perm1.shape
|
433 |
+
(3, 2, 5, 4)
|
434 |
+
>>> perm1.permutation
|
435 |
+
(2 3)
|
436 |
+
|
437 |
+
The permutation in its array form has been simplified from
|
438 |
+
``[2, 3, 1, 0]`` to ``[0, 1, 3, 2]``, as the arguments of the tensor
|
439 |
+
product `M` and `N` have been switched:
|
440 |
+
|
441 |
+
>>> perm1.permutation.array_form
|
442 |
+
[0, 1, 3, 2]
|
443 |
+
|
444 |
+
We can nest a second permutation:
|
445 |
+
|
446 |
+
>>> perm2 = permutedims(perm1, [1, 0, 2, 3])
|
447 |
+
>>> perm2.shape
|
448 |
+
(2, 3, 5, 4)
|
449 |
+
>>> perm2.permutation.array_form
|
450 |
+
[1, 0, 3, 2]
|
451 |
+
"""
|
452 |
+
|
453 |
+
def __new__(cls, expr, permutation=None, index_order_old=None, index_order_new=None, **kwargs):
|
454 |
+
from sympy.combinatorics import Permutation
|
455 |
+
expr = _sympify(expr)
|
456 |
+
expr_rank = get_rank(expr)
|
457 |
+
permutation = cls._get_permutation_from_arguments(permutation, index_order_old, index_order_new, expr_rank)
|
458 |
+
permutation = Permutation(permutation)
|
459 |
+
permutation_size = permutation.size
|
460 |
+
if permutation_size != expr_rank:
|
461 |
+
raise ValueError("Permutation size must be the length of the shape of expr")
|
462 |
+
|
463 |
+
canonicalize = kwargs.pop("canonicalize", False)
|
464 |
+
|
465 |
+
obj = Basic.__new__(cls, expr, permutation)
|
466 |
+
obj._subranks = [get_rank(expr)]
|
467 |
+
shape = get_shape(expr)
|
468 |
+
if shape is None:
|
469 |
+
obj._shape = None
|
470 |
+
else:
|
471 |
+
obj._shape = tuple(shape[permutation(i)] for i in range(len(shape)))
|
472 |
+
if canonicalize:
|
473 |
+
return obj._canonicalize()
|
474 |
+
return obj
|
475 |
+
|
476 |
+
def _canonicalize(self):
|
477 |
+
expr = self.expr
|
478 |
+
permutation = self.permutation
|
479 |
+
if isinstance(expr, PermuteDims):
|
480 |
+
subexpr = expr.expr
|
481 |
+
subperm = expr.permutation
|
482 |
+
permutation = permutation * subperm
|
483 |
+
expr = subexpr
|
484 |
+
if isinstance(expr, ArrayContraction):
|
485 |
+
expr, permutation = self._PermuteDims_denestarg_ArrayContraction(expr, permutation)
|
486 |
+
if isinstance(expr, ArrayTensorProduct):
|
487 |
+
expr, permutation = self._PermuteDims_denestarg_ArrayTensorProduct(expr, permutation)
|
488 |
+
if isinstance(expr, (ZeroArray, ZeroMatrix)):
|
489 |
+
return ZeroArray(*[expr.shape[i] for i in permutation.array_form])
|
490 |
+
plist = permutation.array_form
|
491 |
+
if plist == sorted(plist):
|
492 |
+
return expr
|
493 |
+
return self.func(expr, permutation, canonicalize=False)
|
494 |
+
|
495 |
+
@property
|
496 |
+
def expr(self):
|
497 |
+
return self.args[0]
|
498 |
+
|
499 |
+
@property
|
500 |
+
def permutation(self):
|
501 |
+
return self.args[1]
|
502 |
+
|
503 |
+
@classmethod
|
504 |
+
def _PermuteDims_denestarg_ArrayTensorProduct(cls, expr, permutation):
|
505 |
+
# Get the permutation in its image-form:
|
506 |
+
perm_image_form = _af_invert(permutation.array_form)
|
507 |
+
args = list(expr.args)
|
508 |
+
# Starting index global position for every arg:
|
509 |
+
cumul = list(accumulate([0] + expr.subranks))
|
510 |
+
# Split `perm_image_form` into a list of list corresponding to the indices
|
511 |
+
# of every argument:
|
512 |
+
perm_image_form_in_components = [perm_image_form[cumul[i]:cumul[i+1]] for i in range(len(args))]
|
513 |
+
# Create an index, target-position-key array:
|
514 |
+
ps = [(i, sorted(comp)) for i, comp in enumerate(perm_image_form_in_components)]
|
515 |
+
# Sort the array according to the target-position-key:
|
516 |
+
# In this way, we define a canonical way to sort the arguments according
|
517 |
+
# to the permutation.
|
518 |
+
ps.sort(key=lambda x: x[1])
|
519 |
+
# Read the inverse-permutation (i.e. image-form) of the args:
|
520 |
+
perm_args_image_form = [i[0] for i in ps]
|
521 |
+
# Apply the args-permutation to the `args`:
|
522 |
+
args_sorted = [args[i] for i in perm_args_image_form]
|
523 |
+
# Apply the args-permutation to the array-form of the permutation of the axes (of `expr`):
|
524 |
+
perm_image_form_sorted_args = [perm_image_form_in_components[i] for i in perm_args_image_form]
|
525 |
+
new_permutation = Permutation(_af_invert([j for i in perm_image_form_sorted_args for j in i]))
|
526 |
+
return _array_tensor_product(*args_sorted), new_permutation
|
527 |
+
|
528 |
+
@classmethod
|
529 |
+
def _PermuteDims_denestarg_ArrayContraction(cls, expr, permutation):
|
530 |
+
if not isinstance(expr, ArrayContraction):
|
531 |
+
return expr, permutation
|
532 |
+
if not isinstance(expr.expr, ArrayTensorProduct):
|
533 |
+
return expr, permutation
|
534 |
+
args = expr.expr.args
|
535 |
+
subranks = [get_rank(arg) for arg in expr.expr.args]
|
536 |
+
|
537 |
+
contraction_indices = expr.contraction_indices
|
538 |
+
contraction_indices_flat = [j for i in contraction_indices for j in i]
|
539 |
+
cumul = list(accumulate([0] + subranks))
|
540 |
+
|
541 |
+
# Spread the permutation in its array form across the args in the corresponding
|
542 |
+
# tensor-product arguments with free indices:
|
543 |
+
permutation_array_blocks_up = []
|
544 |
+
image_form = _af_invert(permutation.array_form)
|
545 |
+
counter = 0
|
546 |
+
for i, e in enumerate(subranks):
|
547 |
+
current = []
|
548 |
+
for j in range(cumul[i], cumul[i+1]):
|
549 |
+
if j in contraction_indices_flat:
|
550 |
+
continue
|
551 |
+
current.append(image_form[counter])
|
552 |
+
counter += 1
|
553 |
+
permutation_array_blocks_up.append(current)
|
554 |
+
|
555 |
+
# Get the map of axis repositioning for every argument of tensor-product:
|
556 |
+
index_blocks = [list(range(cumul[i], cumul[i+1])) for i, e in enumerate(expr.subranks)]
|
557 |
+
index_blocks_up = expr._push_indices_up(expr.contraction_indices, index_blocks)
|
558 |
+
inverse_permutation = permutation**(-1)
|
559 |
+
index_blocks_up_permuted = [[inverse_permutation(j) for j in i if j is not None] for i in index_blocks_up]
|
560 |
+
|
561 |
+
# Sorting key is a list of tuple, first element is the index of `args`, second element of
|
562 |
+
# the tuple is the sorting key to sort `args` of the tensor product:
|
563 |
+
sorting_keys = list(enumerate(index_blocks_up_permuted))
|
564 |
+
sorting_keys.sort(key=lambda x: x[1])
|
565 |
+
|
566 |
+
# Now we can get the permutation acting on the args in its image-form:
|
567 |
+
new_perm_image_form = [i[0] for i in sorting_keys]
|
568 |
+
# Apply the args-level permutation to various elements:
|
569 |
+
new_index_blocks = [index_blocks[i] for i in new_perm_image_form]
|
570 |
+
new_index_perm_array_form = _af_invert([j for i in new_index_blocks for j in i])
|
571 |
+
new_args = [args[i] for i in new_perm_image_form]
|
572 |
+
new_contraction_indices = [tuple(new_index_perm_array_form[j] for j in i) for i in contraction_indices]
|
573 |
+
new_expr = _array_contraction(_array_tensor_product(*new_args), *new_contraction_indices)
|
574 |
+
new_permutation = Permutation(_af_invert([j for i in [permutation_array_blocks_up[k] for k in new_perm_image_form] for j in i]))
|
575 |
+
return new_expr, new_permutation
|
576 |
+
|
577 |
+
@classmethod
|
578 |
+
def _check_permutation_mapping(cls, expr, permutation):
|
579 |
+
subranks = expr.subranks
|
580 |
+
index2arg = [i for i, arg in enumerate(expr.args) for j in range(expr.subranks[i])]
|
581 |
+
permuted_indices = [permutation(i) for i in range(expr.subrank())]
|
582 |
+
new_args = list(expr.args)
|
583 |
+
arg_candidate_index = index2arg[permuted_indices[0]]
|
584 |
+
current_indices = []
|
585 |
+
new_permutation = []
|
586 |
+
inserted_arg_cand_indices = set()
|
587 |
+
for i, idx in enumerate(permuted_indices):
|
588 |
+
if index2arg[idx] != arg_candidate_index:
|
589 |
+
new_permutation.extend(current_indices)
|
590 |
+
current_indices = []
|
591 |
+
arg_candidate_index = index2arg[idx]
|
592 |
+
current_indices.append(idx)
|
593 |
+
arg_candidate_rank = subranks[arg_candidate_index]
|
594 |
+
if len(current_indices) == arg_candidate_rank:
|
595 |
+
new_permutation.extend(sorted(current_indices))
|
596 |
+
local_current_indices = [j - min(current_indices) for j in current_indices]
|
597 |
+
i1 = index2arg[i]
|
598 |
+
new_args[i1] = _permute_dims(new_args[i1], Permutation(local_current_indices))
|
599 |
+
inserted_arg_cand_indices.add(arg_candidate_index)
|
600 |
+
current_indices = []
|
601 |
+
new_permutation.extend(current_indices)
|
602 |
+
|
603 |
+
# TODO: swap args positions in order to simplify the expression:
|
604 |
+
# TODO: this should be in a function
|
605 |
+
args_positions = list(range(len(new_args)))
|
606 |
+
# Get possible shifts:
|
607 |
+
maps = {}
|
608 |
+
cumulative_subranks = [0] + list(accumulate(subranks))
|
609 |
+
for i in range(len(subranks)):
|
610 |
+
s = {index2arg[new_permutation[j]] for j in range(cumulative_subranks[i], cumulative_subranks[i+1])}
|
611 |
+
if len(s) != 1:
|
612 |
+
continue
|
613 |
+
elem = next(iter(s))
|
614 |
+
if i != elem:
|
615 |
+
maps[i] = elem
|
616 |
+
|
617 |
+
# Find cycles in the map:
|
618 |
+
lines = []
|
619 |
+
current_line = []
|
620 |
+
while maps:
|
621 |
+
if len(current_line) == 0:
|
622 |
+
k, v = maps.popitem()
|
623 |
+
current_line.append(k)
|
624 |
+
else:
|
625 |
+
k = current_line[-1]
|
626 |
+
if k not in maps:
|
627 |
+
current_line = []
|
628 |
+
continue
|
629 |
+
v = maps.pop(k)
|
630 |
+
if v in current_line:
|
631 |
+
lines.append(current_line)
|
632 |
+
current_line = []
|
633 |
+
continue
|
634 |
+
current_line.append(v)
|
635 |
+
for line in lines:
|
636 |
+
for i, e in enumerate(line):
|
637 |
+
args_positions[line[(i + 1) % len(line)]] = e
|
638 |
+
|
639 |
+
# TODO: function in order to permute the args:
|
640 |
+
permutation_blocks = [[new_permutation[cumulative_subranks[i] + j] for j in range(e)] for i, e in enumerate(subranks)]
|
641 |
+
new_args = [new_args[i] for i in args_positions]
|
642 |
+
new_permutation_blocks = [permutation_blocks[i] for i in args_positions]
|
643 |
+
new_permutation2 = [j for i in new_permutation_blocks for j in i]
|
644 |
+
return _array_tensor_product(*new_args), Permutation(new_permutation2) # **(-1)
|
645 |
+
|
646 |
+
@classmethod
|
647 |
+
def _check_if_there_are_closed_cycles(cls, expr, permutation):
|
648 |
+
args = list(expr.args)
|
649 |
+
subranks = expr.subranks
|
650 |
+
cyclic_form = permutation.cyclic_form
|
651 |
+
cumulative_subranks = [0] + list(accumulate(subranks))
|
652 |
+
cyclic_min = [min(i) for i in cyclic_form]
|
653 |
+
cyclic_max = [max(i) for i in cyclic_form]
|
654 |
+
cyclic_keep = []
|
655 |
+
for i, cycle in enumerate(cyclic_form):
|
656 |
+
flag = True
|
657 |
+
for j in range(len(cumulative_subranks) - 1):
|
658 |
+
if cyclic_min[i] >= cumulative_subranks[j] and cyclic_max[i] < cumulative_subranks[j+1]:
|
659 |
+
# Found a sinkable cycle.
|
660 |
+
args[j] = _permute_dims(args[j], Permutation([[k - cumulative_subranks[j] for k in cyclic_form[i]]]))
|
661 |
+
flag = False
|
662 |
+
break
|
663 |
+
if flag:
|
664 |
+
cyclic_keep.append(cyclic_form[i])
|
665 |
+
return _array_tensor_product(*args), Permutation(cyclic_keep, size=permutation.size)
|
666 |
+
|
667 |
+
def nest_permutation(self):
|
668 |
+
r"""
|
669 |
+
DEPRECATED.
|
670 |
+
"""
|
671 |
+
ret = self._nest_permutation(self.expr, self.permutation)
|
672 |
+
if ret is None:
|
673 |
+
return self
|
674 |
+
return ret
|
675 |
+
|
676 |
+
@classmethod
|
677 |
+
def _nest_permutation(cls, expr, permutation):
|
678 |
+
if isinstance(expr, ArrayTensorProduct):
|
679 |
+
return _permute_dims(*cls._check_if_there_are_closed_cycles(expr, permutation))
|
680 |
+
elif isinstance(expr, ArrayContraction):
|
681 |
+
# Invert tree hierarchy: put the contraction above.
|
682 |
+
cycles = permutation.cyclic_form
|
683 |
+
newcycles = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *cycles)
|
684 |
+
newpermutation = Permutation(newcycles)
|
685 |
+
new_contr_indices = [tuple(newpermutation(j) for j in i) for i in expr.contraction_indices]
|
686 |
+
return _array_contraction(PermuteDims(expr.expr, newpermutation), *new_contr_indices)
|
687 |
+
elif isinstance(expr, ArrayAdd):
|
688 |
+
return _array_add(*[PermuteDims(arg, permutation) for arg in expr.args])
|
689 |
+
return None
|
690 |
+
|
691 |
+
def as_explicit(self):
|
692 |
+
expr = self.expr
|
693 |
+
if hasattr(expr, "as_explicit"):
|
694 |
+
expr = expr.as_explicit()
|
695 |
+
return permutedims(expr, self.permutation)
|
696 |
+
|
697 |
+
@classmethod
|
698 |
+
def _get_permutation_from_arguments(cls, permutation, index_order_old, index_order_new, dim):
|
699 |
+
if permutation is None:
|
700 |
+
if index_order_new is None or index_order_old is None:
|
701 |
+
raise ValueError("Permutation not defined")
|
702 |
+
return PermuteDims._get_permutation_from_index_orders(index_order_old, index_order_new, dim)
|
703 |
+
else:
|
704 |
+
if index_order_new is not None:
|
705 |
+
raise ValueError("index_order_new cannot be defined with permutation")
|
706 |
+
if index_order_old is not None:
|
707 |
+
raise ValueError("index_order_old cannot be defined with permutation")
|
708 |
+
return permutation
|
709 |
+
|
710 |
+
@classmethod
|
711 |
+
def _get_permutation_from_index_orders(cls, index_order_old, index_order_new, dim):
|
712 |
+
if len(set(index_order_new)) != dim:
|
713 |
+
raise ValueError("wrong number of indices in index_order_new")
|
714 |
+
if len(set(index_order_old)) != dim:
|
715 |
+
raise ValueError("wrong number of indices in index_order_old")
|
716 |
+
if len(set.symmetric_difference(set(index_order_new), set(index_order_old))) > 0:
|
717 |
+
raise ValueError("index_order_new and index_order_old must have the same indices")
|
718 |
+
permutation = [index_order_old.index(i) for i in index_order_new]
|
719 |
+
return permutation
|
720 |
+
|
721 |
+
|
722 |
+
class ArrayDiagonal(_CodegenArrayAbstract):
|
723 |
+
r"""
|
724 |
+
Class to represent the diagonal operator.
|
725 |
+
|
726 |
+
Explanation
|
727 |
+
===========
|
728 |
+
|
729 |
+
In a 2-dimensional array it returns the diagonal, this looks like the
|
730 |
+
operation:
|
731 |
+
|
732 |
+
`A_{ij} \rightarrow A_{ii}`
|
733 |
+
|
734 |
+
The diagonal over axes 1 and 2 (the second and third) of the tensor product
|
735 |
+
of two 2-dimensional arrays `A \otimes B` is
|
736 |
+
|
737 |
+
`\Big[ A_{ab} B_{cd} \Big]_{abcd} \rightarrow \Big[ A_{ai} B_{id} \Big]_{adi}`
|
738 |
+
|
739 |
+
In this last example the array expression has been reduced from
|
740 |
+
4-dimensional to 3-dimensional. Notice that no contraction has occurred,
|
741 |
+
rather there is a new index `i` for the diagonal, contraction would have
|
742 |
+
reduced the array to 2 dimensions.
|
743 |
+
|
744 |
+
Notice that the diagonalized out dimensions are added as new dimensions at
|
745 |
+
the end of the indices.
|
746 |
+
"""
|
747 |
+
|
748 |
+
def __new__(cls, expr, *diagonal_indices, **kwargs):
|
749 |
+
expr = _sympify(expr)
|
750 |
+
diagonal_indices = [Tuple(*sorted(i)) for i in diagonal_indices]
|
751 |
+
canonicalize = kwargs.get("canonicalize", False)
|
752 |
+
|
753 |
+
shape = get_shape(expr)
|
754 |
+
if shape is not None:
|
755 |
+
cls._validate(expr, *diagonal_indices, **kwargs)
|
756 |
+
# Get new shape:
|
757 |
+
positions, shape = cls._get_positions_shape(shape, diagonal_indices)
|
758 |
+
else:
|
759 |
+
positions = None
|
760 |
+
if len(diagonal_indices) == 0:
|
761 |
+
return expr
|
762 |
+
obj = Basic.__new__(cls, expr, *diagonal_indices)
|
763 |
+
obj._positions = positions
|
764 |
+
obj._subranks = _get_subranks(expr)
|
765 |
+
obj._shape = shape
|
766 |
+
if canonicalize:
|
767 |
+
return obj._canonicalize()
|
768 |
+
return obj
|
769 |
+
|
770 |
+
def _canonicalize(self):
|
771 |
+
expr = self.expr
|
772 |
+
diagonal_indices = self.diagonal_indices
|
773 |
+
trivial_diags = [i for i in diagonal_indices if len(i) == 1]
|
774 |
+
if len(trivial_diags) > 0:
|
775 |
+
trivial_pos = {e[0]: i for i, e in enumerate(diagonal_indices) if len(e) == 1}
|
776 |
+
diag_pos = {e: i for i, e in enumerate(diagonal_indices) if len(e) > 1}
|
777 |
+
diagonal_indices_short = [i for i in diagonal_indices if len(i) > 1]
|
778 |
+
rank1 = get_rank(self)
|
779 |
+
rank2 = len(diagonal_indices)
|
780 |
+
rank3 = rank1 - rank2
|
781 |
+
inv_permutation = []
|
782 |
+
counter1 = 0
|
783 |
+
indices_down = ArrayDiagonal._push_indices_down(diagonal_indices_short, list(range(rank1)), get_rank(expr))
|
784 |
+
for i in indices_down:
|
785 |
+
if i in trivial_pos:
|
786 |
+
inv_permutation.append(rank3 + trivial_pos[i])
|
787 |
+
elif isinstance(i, (Integer, int)):
|
788 |
+
inv_permutation.append(counter1)
|
789 |
+
counter1 += 1
|
790 |
+
else:
|
791 |
+
inv_permutation.append(rank3 + diag_pos[i])
|
792 |
+
permutation = _af_invert(inv_permutation)
|
793 |
+
if len(diagonal_indices_short) > 0:
|
794 |
+
return _permute_dims(_array_diagonal(expr, *diagonal_indices_short), permutation)
|
795 |
+
else:
|
796 |
+
return _permute_dims(expr, permutation)
|
797 |
+
if isinstance(expr, ArrayAdd):
|
798 |
+
return self._ArrayDiagonal_denest_ArrayAdd(expr, *diagonal_indices)
|
799 |
+
if isinstance(expr, ArrayDiagonal):
|
800 |
+
return self._ArrayDiagonal_denest_ArrayDiagonal(expr, *diagonal_indices)
|
801 |
+
if isinstance(expr, PermuteDims):
|
802 |
+
return self._ArrayDiagonal_denest_PermuteDims(expr, *diagonal_indices)
|
803 |
+
if isinstance(expr, (ZeroArray, ZeroMatrix)):
|
804 |
+
positions, shape = self._get_positions_shape(expr.shape, diagonal_indices)
|
805 |
+
return ZeroArray(*shape)
|
806 |
+
return self.func(expr, *diagonal_indices, canonicalize=False)
|
807 |
+
|
808 |
+
@staticmethod
|
809 |
+
def _validate(expr, *diagonal_indices, **kwargs):
|
810 |
+
# Check that no diagonalization happens on indices with mismatched
|
811 |
+
# dimensions:
|
812 |
+
shape = get_shape(expr)
|
813 |
+
for i in diagonal_indices:
|
814 |
+
if any(j >= len(shape) for j in i):
|
815 |
+
raise ValueError("index is larger than expression shape")
|
816 |
+
if len({shape[j] for j in i}) != 1:
|
817 |
+
raise ValueError("diagonalizing indices of different dimensions")
|
818 |
+
if not kwargs.get("allow_trivial_diags", False) and len(i) <= 1:
|
819 |
+
raise ValueError("need at least two axes to diagonalize")
|
820 |
+
if len(set(i)) != len(i):
|
821 |
+
raise ValueError("axis index cannot be repeated")
|
822 |
+
|
823 |
+
@staticmethod
|
824 |
+
def _remove_trivial_dimensions(shape, *diagonal_indices):
|
825 |
+
return [tuple(j for j in i) for i in diagonal_indices if shape[i[0]] != 1]
|
826 |
+
|
827 |
+
@property
|
828 |
+
def expr(self):
|
829 |
+
return self.args[0]
|
830 |
+
|
831 |
+
@property
|
832 |
+
def diagonal_indices(self):
|
833 |
+
return self.args[1:]
|
834 |
+
|
835 |
+
@staticmethod
|
836 |
+
def _flatten(expr, *outer_diagonal_indices):
|
837 |
+
inner_diagonal_indices = expr.diagonal_indices
|
838 |
+
all_inner = [j for i in inner_diagonal_indices for j in i]
|
839 |
+
all_inner.sort()
|
840 |
+
# TODO: add API for total rank and cumulative rank:
|
841 |
+
total_rank = _get_subrank(expr)
|
842 |
+
inner_rank = len(all_inner)
|
843 |
+
outer_rank = total_rank - inner_rank
|
844 |
+
shifts = [0 for i in range(outer_rank)]
|
845 |
+
counter = 0
|
846 |
+
pointer = 0
|
847 |
+
for i in range(outer_rank):
|
848 |
+
while pointer < inner_rank and counter >= all_inner[pointer]:
|
849 |
+
counter += 1
|
850 |
+
pointer += 1
|
851 |
+
shifts[i] += pointer
|
852 |
+
counter += 1
|
853 |
+
outer_diagonal_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_diagonal_indices)
|
854 |
+
diagonal_indices = inner_diagonal_indices + outer_diagonal_indices
|
855 |
+
return _array_diagonal(expr.expr, *diagonal_indices)
|
856 |
+
|
857 |
+
@classmethod
|
858 |
+
def _ArrayDiagonal_denest_ArrayAdd(cls, expr, *diagonal_indices):
|
859 |
+
return _array_add(*[_array_diagonal(arg, *diagonal_indices) for arg in expr.args])
|
860 |
+
|
861 |
+
@classmethod
|
862 |
+
def _ArrayDiagonal_denest_ArrayDiagonal(cls, expr, *diagonal_indices):
|
863 |
+
return cls._flatten(expr, *diagonal_indices)
|
864 |
+
|
865 |
+
@classmethod
|
866 |
+
def _ArrayDiagonal_denest_PermuteDims(cls, expr: PermuteDims, *diagonal_indices):
|
867 |
+
back_diagonal_indices = [[expr.permutation(j) for j in i] for i in diagonal_indices]
|
868 |
+
nondiag = [i for i in range(get_rank(expr)) if not any(i in j for j in diagonal_indices)]
|
869 |
+
back_nondiag = [expr.permutation(i) for i in nondiag]
|
870 |
+
remap = {e: i for i, e in enumerate(sorted(back_nondiag))}
|
871 |
+
new_permutation1 = [remap[i] for i in back_nondiag]
|
872 |
+
shift = len(new_permutation1)
|
873 |
+
diag_block_perm = [i + shift for i in range(len(back_diagonal_indices))]
|
874 |
+
new_permutation = new_permutation1 + diag_block_perm
|
875 |
+
return _permute_dims(
|
876 |
+
_array_diagonal(
|
877 |
+
expr.expr,
|
878 |
+
*back_diagonal_indices
|
879 |
+
),
|
880 |
+
new_permutation
|
881 |
+
)
|
882 |
+
|
883 |
+
def _push_indices_down_nonstatic(self, indices):
|
884 |
+
transform = lambda x: self._positions[x] if x < len(self._positions) else None
|
885 |
+
return _apply_recursively_over_nested_lists(transform, indices)
|
886 |
+
|
887 |
+
def _push_indices_up_nonstatic(self, indices):
|
888 |
+
|
889 |
+
def transform(x):
|
890 |
+
for i, e in enumerate(self._positions):
|
891 |
+
if (isinstance(e, int) and x == e) or (isinstance(e, tuple) and x in e):
|
892 |
+
return i
|
893 |
+
|
894 |
+
return _apply_recursively_over_nested_lists(transform, indices)
|
895 |
+
|
896 |
+
@classmethod
|
897 |
+
def _push_indices_down(cls, diagonal_indices, indices, rank):
|
898 |
+
positions, shape = cls._get_positions_shape(range(rank), diagonal_indices)
|
899 |
+
transform = lambda x: positions[x] if x < len(positions) else None
|
900 |
+
return _apply_recursively_over_nested_lists(transform, indices)
|
901 |
+
|
902 |
+
@classmethod
|
903 |
+
def _push_indices_up(cls, diagonal_indices, indices, rank):
|
904 |
+
positions, shape = cls._get_positions_shape(range(rank), diagonal_indices)
|
905 |
+
|
906 |
+
def transform(x):
|
907 |
+
for i, e in enumerate(positions):
|
908 |
+
if (isinstance(e, int) and x == e) or (isinstance(e, (tuple, Tuple)) and (x in e)):
|
909 |
+
return i
|
910 |
+
|
911 |
+
return _apply_recursively_over_nested_lists(transform, indices)
|
912 |
+
|
913 |
+
@classmethod
|
914 |
+
def _get_positions_shape(cls, shape, diagonal_indices):
|
915 |
+
data1 = tuple((i, shp) for i, shp in enumerate(shape) if not any(i in j for j in diagonal_indices))
|
916 |
+
pos1, shp1 = zip(*data1) if data1 else ((), ())
|
917 |
+
data2 = tuple((i, shape[i[0]]) for i in diagonal_indices)
|
918 |
+
pos2, shp2 = zip(*data2) if data2 else ((), ())
|
919 |
+
positions = pos1 + pos2
|
920 |
+
shape = shp1 + shp2
|
921 |
+
return positions, shape
|
922 |
+
|
923 |
+
def as_explicit(self):
|
924 |
+
expr = self.expr
|
925 |
+
if hasattr(expr, "as_explicit"):
|
926 |
+
expr = expr.as_explicit()
|
927 |
+
return tensordiagonal(expr, *self.diagonal_indices)
|
928 |
+
|
929 |
+
|
930 |
+
class ArrayElementwiseApplyFunc(_CodegenArrayAbstract):
|
931 |
+
|
932 |
+
def __new__(cls, function, element):
|
933 |
+
|
934 |
+
if not isinstance(function, Lambda):
|
935 |
+
d = Dummy('d')
|
936 |
+
function = Lambda(d, function(d))
|
937 |
+
|
938 |
+
obj = _CodegenArrayAbstract.__new__(cls, function, element)
|
939 |
+
obj._subranks = _get_subranks(element)
|
940 |
+
return obj
|
941 |
+
|
942 |
+
@property
|
943 |
+
def function(self):
|
944 |
+
return self.args[0]
|
945 |
+
|
946 |
+
@property
|
947 |
+
def expr(self):
|
948 |
+
return self.args[1]
|
949 |
+
|
950 |
+
@property
|
951 |
+
def shape(self):
|
952 |
+
return self.expr.shape
|
953 |
+
|
954 |
+
def _get_function_fdiff(self):
|
955 |
+
d = Dummy("d")
|
956 |
+
function = self.function(d)
|
957 |
+
fdiff = function.diff(d)
|
958 |
+
if isinstance(fdiff, Function):
|
959 |
+
fdiff = type(fdiff)
|
960 |
+
else:
|
961 |
+
fdiff = Lambda(d, fdiff)
|
962 |
+
return fdiff
|
963 |
+
|
964 |
+
def as_explicit(self):
|
965 |
+
expr = self.expr
|
966 |
+
if hasattr(expr, "as_explicit"):
|
967 |
+
expr = expr.as_explicit()
|
968 |
+
return expr.applyfunc(self.function)
|
969 |
+
|
970 |
+
|
971 |
+
class ArrayContraction(_CodegenArrayAbstract):
|
972 |
+
r"""
|
973 |
+
This class is meant to represent contractions of arrays in a form easily
|
974 |
+
processable by the code printers.
|
975 |
+
"""
|
976 |
+
|
977 |
+
def __new__(cls, expr, *contraction_indices, **kwargs):
|
978 |
+
contraction_indices = _sort_contraction_indices(contraction_indices)
|
979 |
+
expr = _sympify(expr)
|
980 |
+
|
981 |
+
canonicalize = kwargs.get("canonicalize", False)
|
982 |
+
|
983 |
+
obj = Basic.__new__(cls, expr, *contraction_indices)
|
984 |
+
obj._subranks = _get_subranks(expr)
|
985 |
+
obj._mapping = _get_mapping_from_subranks(obj._subranks)
|
986 |
+
|
987 |
+
free_indices_to_position = {i: i for i in range(sum(obj._subranks)) if all(i not in cind for cind in contraction_indices)}
|
988 |
+
obj._free_indices_to_position = free_indices_to_position
|
989 |
+
|
990 |
+
shape = get_shape(expr)
|
991 |
+
cls._validate(expr, *contraction_indices)
|
992 |
+
if shape:
|
993 |
+
shape = tuple(shp for i, shp in enumerate(shape) if not any(i in j for j in contraction_indices))
|
994 |
+
obj._shape = shape
|
995 |
+
if canonicalize:
|
996 |
+
return obj._canonicalize()
|
997 |
+
return obj
|
998 |
+
|
999 |
+
def _canonicalize(self):
|
1000 |
+
expr = self.expr
|
1001 |
+
contraction_indices = self.contraction_indices
|
1002 |
+
|
1003 |
+
if len(contraction_indices) == 0:
|
1004 |
+
return expr
|
1005 |
+
|
1006 |
+
if isinstance(expr, ArrayContraction):
|
1007 |
+
return self._ArrayContraction_denest_ArrayContraction(expr, *contraction_indices)
|
1008 |
+
|
1009 |
+
if isinstance(expr, (ZeroArray, ZeroMatrix)):
|
1010 |
+
return self._ArrayContraction_denest_ZeroArray(expr, *contraction_indices)
|
1011 |
+
|
1012 |
+
if isinstance(expr, PermuteDims):
|
1013 |
+
return self._ArrayContraction_denest_PermuteDims(expr, *contraction_indices)
|
1014 |
+
|
1015 |
+
if isinstance(expr, ArrayTensorProduct):
|
1016 |
+
expr, contraction_indices = self._sort_fully_contracted_args(expr, contraction_indices)
|
1017 |
+
expr, contraction_indices = self._lower_contraction_to_addends(expr, contraction_indices)
|
1018 |
+
if len(contraction_indices) == 0:
|
1019 |
+
return expr
|
1020 |
+
|
1021 |
+
if isinstance(expr, ArrayDiagonal):
|
1022 |
+
return self._ArrayContraction_denest_ArrayDiagonal(expr, *contraction_indices)
|
1023 |
+
|
1024 |
+
if isinstance(expr, ArrayAdd):
|
1025 |
+
return self._ArrayContraction_denest_ArrayAdd(expr, *contraction_indices)
|
1026 |
+
|
1027 |
+
# Check single index contractions on 1-dimensional axes:
|
1028 |
+
contraction_indices = [i for i in contraction_indices if len(i) > 1 or get_shape(expr)[i[0]] != 1]
|
1029 |
+
if len(contraction_indices) == 0:
|
1030 |
+
return expr
|
1031 |
+
|
1032 |
+
return self.func(expr, *contraction_indices, canonicalize=False)
|
1033 |
+
|
1034 |
+
def __mul__(self, other):
|
1035 |
+
if other == 1:
|
1036 |
+
return self
|
1037 |
+
else:
|
1038 |
+
raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.")
|
1039 |
+
|
1040 |
+
def __rmul__(self, other):
|
1041 |
+
if other == 1:
|
1042 |
+
return self
|
1043 |
+
else:
|
1044 |
+
raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.")
|
1045 |
+
|
1046 |
+
@staticmethod
|
1047 |
+
def _validate(expr, *contraction_indices):
|
1048 |
+
shape = get_shape(expr)
|
1049 |
+
if shape is None:
|
1050 |
+
return
|
1051 |
+
|
1052 |
+
# Check that no contraction happens when the shape is mismatched:
|
1053 |
+
for i in contraction_indices:
|
1054 |
+
if len({shape[j] for j in i if shape[j] != -1}) != 1:
|
1055 |
+
raise ValueError("contracting indices of different dimensions")
|
1056 |
+
|
1057 |
+
@classmethod
|
1058 |
+
def _push_indices_down(cls, contraction_indices, indices):
|
1059 |
+
flattened_contraction_indices = [j for i in contraction_indices for j in i]
|
1060 |
+
flattened_contraction_indices.sort()
|
1061 |
+
transform = _build_push_indices_down_func_transformation(flattened_contraction_indices)
|
1062 |
+
return _apply_recursively_over_nested_lists(transform, indices)
|
1063 |
+
|
1064 |
+
@classmethod
|
1065 |
+
def _push_indices_up(cls, contraction_indices, indices):
|
1066 |
+
flattened_contraction_indices = [j for i in contraction_indices for j in i]
|
1067 |
+
flattened_contraction_indices.sort()
|
1068 |
+
transform = _build_push_indices_up_func_transformation(flattened_contraction_indices)
|
1069 |
+
return _apply_recursively_over_nested_lists(transform, indices)
|
1070 |
+
|
1071 |
+
@classmethod
|
1072 |
+
def _lower_contraction_to_addends(cls, expr, contraction_indices):
|
1073 |
+
if isinstance(expr, ArrayAdd):
|
1074 |
+
raise NotImplementedError()
|
1075 |
+
if not isinstance(expr, ArrayTensorProduct):
|
1076 |
+
return expr, contraction_indices
|
1077 |
+
subranks = expr.subranks
|
1078 |
+
cumranks = list(accumulate([0] + subranks))
|
1079 |
+
contraction_indices_remaining = []
|
1080 |
+
contraction_indices_args = [[] for i in expr.args]
|
1081 |
+
backshift = set()
|
1082 |
+
for i, contraction_group in enumerate(contraction_indices):
|
1083 |
+
for j in range(len(expr.args)):
|
1084 |
+
if not isinstance(expr.args[j], ArrayAdd):
|
1085 |
+
continue
|
1086 |
+
if all(cumranks[j] <= k < cumranks[j+1] for k in contraction_group):
|
1087 |
+
contraction_indices_args[j].append([k - cumranks[j] for k in contraction_group])
|
1088 |
+
backshift.update(contraction_group)
|
1089 |
+
break
|
1090 |
+
else:
|
1091 |
+
contraction_indices_remaining.append(contraction_group)
|
1092 |
+
if len(contraction_indices_remaining) == len(contraction_indices):
|
1093 |
+
return expr, contraction_indices
|
1094 |
+
total_rank = get_rank(expr)
|
1095 |
+
shifts = list(accumulate([1 if i in backshift else 0 for i in range(total_rank)]))
|
1096 |
+
contraction_indices_remaining = [Tuple.fromiter(j - shifts[j] for j in i) for i in contraction_indices_remaining]
|
1097 |
+
ret = _array_tensor_product(*[
|
1098 |
+
_array_contraction(arg, *contr) for arg, contr in zip(expr.args, contraction_indices_args)
|
1099 |
+
])
|
1100 |
+
return ret, contraction_indices_remaining
|
1101 |
+
|
1102 |
+
def split_multiple_contractions(self):
|
1103 |
+
"""
|
1104 |
+
Recognize multiple contractions and attempt at rewriting them as paired-contractions.
|
1105 |
+
|
1106 |
+
This allows some contractions involving more than two indices to be
|
1107 |
+
rewritten as multiple contractions involving two indices, thus allowing
|
1108 |
+
the expression to be rewritten as a matrix multiplication line.
|
1109 |
+
|
1110 |
+
Examples:
|
1111 |
+
|
1112 |
+
* `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C`
|
1113 |
+
|
1114 |
+
Care for:
|
1115 |
+
- matrix being diagonalized (i.e. `A_ii`)
|
1116 |
+
- vectors being diagonalized (i.e. `a_i0`)
|
1117 |
+
|
1118 |
+
Multiple contractions can be split into matrix multiplications if
|
1119 |
+
not more than two arguments are non-diagonals or non-vectors.
|
1120 |
+
Vectors get diagonalized while diagonal matrices remain diagonal.
|
1121 |
+
The non-diagonal matrices can be at the beginning or at the end
|
1122 |
+
of the final matrix multiplication line.
|
1123 |
+
"""
|
1124 |
+
|
1125 |
+
editor = _EditArrayContraction(self)
|
1126 |
+
|
1127 |
+
contraction_indices = self.contraction_indices
|
1128 |
+
|
1129 |
+
onearray_insert = []
|
1130 |
+
|
1131 |
+
for indl, links in enumerate(contraction_indices):
|
1132 |
+
if len(links) <= 2:
|
1133 |
+
continue
|
1134 |
+
|
1135 |
+
# Check multiple contractions:
|
1136 |
+
#
|
1137 |
+
# Examples:
|
1138 |
+
#
|
1139 |
+
# * `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C \otimes OneArray(1)` with permutation (1 2)
|
1140 |
+
#
|
1141 |
+
# Care for:
|
1142 |
+
# - matrix being diagonalized (i.e. `A_ii`)
|
1143 |
+
# - vectors being diagonalized (i.e. `a_i0`)
|
1144 |
+
|
1145 |
+
# Multiple contractions can be split into matrix multiplications if
|
1146 |
+
# not more than three arguments are non-diagonals or non-vectors.
|
1147 |
+
#
|
1148 |
+
# Vectors get diagonalized while diagonal matrices remain diagonal.
|
1149 |
+
# The non-diagonal matrices can be at the beginning or at the end
|
1150 |
+
# of the final matrix multiplication line.
|
1151 |
+
|
1152 |
+
positions = editor.get_mapping_for_index(indl)
|
1153 |
+
|
1154 |
+
# Also consider the case of diagonal matrices being contracted:
|
1155 |
+
current_dimension = self.expr.shape[links[0]]
|
1156 |
+
|
1157 |
+
not_vectors = []
|
1158 |
+
vectors = []
|
1159 |
+
for arg_ind, rel_ind in positions:
|
1160 |
+
arg = editor.args_with_ind[arg_ind]
|
1161 |
+
mat = arg.element
|
1162 |
+
abs_arg_start, abs_arg_end = editor.get_absolute_range(arg)
|
1163 |
+
other_arg_pos = 1-rel_ind
|
1164 |
+
other_arg_abs = abs_arg_start + other_arg_pos
|
1165 |
+
if ((1 not in mat.shape) or
|
1166 |
+
((current_dimension == 1) is True and mat.shape != (1, 1)) or
|
1167 |
+
any(other_arg_abs in l for li, l in enumerate(contraction_indices) if li != indl)
|
1168 |
+
):
|
1169 |
+
not_vectors.append((arg, rel_ind))
|
1170 |
+
else:
|
1171 |
+
vectors.append((arg, rel_ind))
|
1172 |
+
if len(not_vectors) > 2:
|
1173 |
+
# If more than two arguments in the multiple contraction are
|
1174 |
+
# non-vectors and non-diagonal matrices, we cannot find a way
|
1175 |
+
# to split this contraction into a matrix multiplication line:
|
1176 |
+
continue
|
1177 |
+
# Three cases to handle:
|
1178 |
+
# - zero non-vectors
|
1179 |
+
# - one non-vector
|
1180 |
+
# - two non-vectors
|
1181 |
+
for v, rel_ind in vectors:
|
1182 |
+
v.element = diagonalize_vector(v.element)
|
1183 |
+
vectors_to_loop = not_vectors[:1] + vectors + not_vectors[1:]
|
1184 |
+
first_not_vector, rel_ind = vectors_to_loop[0]
|
1185 |
+
new_index = first_not_vector.indices[rel_ind]
|
1186 |
+
|
1187 |
+
for v, rel_ind in vectors_to_loop[1:-1]:
|
1188 |
+
v.indices[rel_ind] = new_index
|
1189 |
+
new_index = editor.get_new_contraction_index()
|
1190 |
+
assert v.indices.index(None) == 1 - rel_ind
|
1191 |
+
v.indices[v.indices.index(None)] = new_index
|
1192 |
+
onearray_insert.append(v)
|
1193 |
+
|
1194 |
+
last_vec, rel_ind = vectors_to_loop[-1]
|
1195 |
+
last_vec.indices[rel_ind] = new_index
|
1196 |
+
|
1197 |
+
for v in onearray_insert:
|
1198 |
+
editor.insert_after(v, _ArgE(OneArray(1), [None]))
|
1199 |
+
|
1200 |
+
return editor.to_array_contraction()
|
1201 |
+
|
1202 |
+
def flatten_contraction_of_diagonal(self):
|
1203 |
+
if not isinstance(self.expr, ArrayDiagonal):
|
1204 |
+
return self
|
1205 |
+
contraction_down = self.expr._push_indices_down(self.expr.diagonal_indices, self.contraction_indices)
|
1206 |
+
new_contraction_indices = []
|
1207 |
+
diagonal_indices = self.expr.diagonal_indices[:]
|
1208 |
+
for i in contraction_down:
|
1209 |
+
contraction_group = list(i)
|
1210 |
+
for j in i:
|
1211 |
+
diagonal_with = [k for k in diagonal_indices if j in k]
|
1212 |
+
contraction_group.extend([l for k in diagonal_with for l in k])
|
1213 |
+
diagonal_indices = [k for k in diagonal_indices if k not in diagonal_with]
|
1214 |
+
new_contraction_indices.append(sorted(set(contraction_group)))
|
1215 |
+
|
1216 |
+
new_contraction_indices = ArrayDiagonal._push_indices_up(diagonal_indices, new_contraction_indices)
|
1217 |
+
return _array_contraction(
|
1218 |
+
_array_diagonal(
|
1219 |
+
self.expr.expr,
|
1220 |
+
*diagonal_indices
|
1221 |
+
),
|
1222 |
+
*new_contraction_indices
|
1223 |
+
)
|
1224 |
+
|
1225 |
+
@staticmethod
|
1226 |
+
def _get_free_indices_to_position_map(free_indices, contraction_indices):
|
1227 |
+
free_indices_to_position = {}
|
1228 |
+
flattened_contraction_indices = [j for i in contraction_indices for j in i]
|
1229 |
+
counter = 0
|
1230 |
+
for ind in free_indices:
|
1231 |
+
while counter in flattened_contraction_indices:
|
1232 |
+
counter += 1
|
1233 |
+
free_indices_to_position[ind] = counter
|
1234 |
+
counter += 1
|
1235 |
+
return free_indices_to_position
|
1236 |
+
|
1237 |
+
@staticmethod
|
1238 |
+
def _get_index_shifts(expr):
|
1239 |
+
"""
|
1240 |
+
Get the mapping of indices at the positions before the contraction
|
1241 |
+
occurs.
|
1242 |
+
|
1243 |
+
Examples
|
1244 |
+
========
|
1245 |
+
|
1246 |
+
>>> from sympy.tensor.array import tensorproduct, tensorcontraction
|
1247 |
+
>>> from sympy import MatrixSymbol
|
1248 |
+
>>> M = MatrixSymbol("M", 3, 3)
|
1249 |
+
>>> N = MatrixSymbol("N", 3, 3)
|
1250 |
+
>>> cg = tensorcontraction(tensorproduct(M, N), [1, 2])
|
1251 |
+
>>> cg._get_index_shifts(cg)
|
1252 |
+
[0, 2]
|
1253 |
+
|
1254 |
+
Indeed, ``cg`` after the contraction has two dimensions, 0 and 1. They
|
1255 |
+
need to be shifted by 0 and 2 to get the corresponding positions before
|
1256 |
+
the contraction (that is, 0 and 3).
|
1257 |
+
"""
|
1258 |
+
inner_contraction_indices = expr.contraction_indices
|
1259 |
+
all_inner = [j for i in inner_contraction_indices for j in i]
|
1260 |
+
all_inner.sort()
|
1261 |
+
# TODO: add API for total rank and cumulative rank:
|
1262 |
+
total_rank = _get_subrank(expr)
|
1263 |
+
inner_rank = len(all_inner)
|
1264 |
+
outer_rank = total_rank - inner_rank
|
1265 |
+
shifts = [0 for i in range(outer_rank)]
|
1266 |
+
counter = 0
|
1267 |
+
pointer = 0
|
1268 |
+
for i in range(outer_rank):
|
1269 |
+
while pointer < inner_rank and counter >= all_inner[pointer]:
|
1270 |
+
counter += 1
|
1271 |
+
pointer += 1
|
1272 |
+
shifts[i] += pointer
|
1273 |
+
counter += 1
|
1274 |
+
return shifts
|
1275 |
+
|
1276 |
+
@staticmethod
|
1277 |
+
def _convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices):
|
1278 |
+
shifts = ArrayContraction._get_index_shifts(expr)
|
1279 |
+
outer_contraction_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_contraction_indices)
|
1280 |
+
return outer_contraction_indices
|
1281 |
+
|
1282 |
+
@staticmethod
|
1283 |
+
def _flatten(expr, *outer_contraction_indices):
|
1284 |
+
inner_contraction_indices = expr.contraction_indices
|
1285 |
+
outer_contraction_indices = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices)
|
1286 |
+
contraction_indices = inner_contraction_indices + outer_contraction_indices
|
1287 |
+
return _array_contraction(expr.expr, *contraction_indices)
|
1288 |
+
|
1289 |
+
@classmethod
|
1290 |
+
def _ArrayContraction_denest_ArrayContraction(cls, expr, *contraction_indices):
|
1291 |
+
return cls._flatten(expr, *contraction_indices)
|
1292 |
+
|
1293 |
+
@classmethod
|
1294 |
+
def _ArrayContraction_denest_ZeroArray(cls, expr, *contraction_indices):
|
1295 |
+
contraction_indices_flat = [j for i in contraction_indices for j in i]
|
1296 |
+
shape = [e for i, e in enumerate(expr.shape) if i not in contraction_indices_flat]
|
1297 |
+
return ZeroArray(*shape)
|
1298 |
+
|
1299 |
+
@classmethod
|
1300 |
+
def _ArrayContraction_denest_ArrayAdd(cls, expr, *contraction_indices):
|
1301 |
+
return _array_add(*[_array_contraction(i, *contraction_indices) for i in expr.args])
|
1302 |
+
|
1303 |
+
@classmethod
|
1304 |
+
def _ArrayContraction_denest_PermuteDims(cls, expr, *contraction_indices):
|
1305 |
+
permutation = expr.permutation
|
1306 |
+
plist = permutation.array_form
|
1307 |
+
new_contraction_indices = [tuple(permutation(j) for j in i) for i in contraction_indices]
|
1308 |
+
new_plist = [i for i in plist if not any(i in j for j in new_contraction_indices)]
|
1309 |
+
new_plist = cls._push_indices_up(new_contraction_indices, new_plist)
|
1310 |
+
return _permute_dims(
|
1311 |
+
_array_contraction(expr.expr, *new_contraction_indices),
|
1312 |
+
Permutation(new_plist)
|
1313 |
+
)
|
1314 |
+
|
1315 |
+
@classmethod
|
1316 |
+
def _ArrayContraction_denest_ArrayDiagonal(cls, expr: 'ArrayDiagonal', *contraction_indices):
|
1317 |
+
diagonal_indices = list(expr.diagonal_indices)
|
1318 |
+
down_contraction_indices = expr._push_indices_down(expr.diagonal_indices, contraction_indices, get_rank(expr.expr))
|
1319 |
+
# Flatten diagonally contracted indices:
|
1320 |
+
down_contraction_indices = [[k for j in i for k in (j if isinstance(j, (tuple, Tuple)) else [j])] for i in down_contraction_indices]
|
1321 |
+
new_contraction_indices = []
|
1322 |
+
for contr_indgrp in down_contraction_indices:
|
1323 |
+
ind = contr_indgrp[:]
|
1324 |
+
for j, diag_indgrp in enumerate(diagonal_indices):
|
1325 |
+
if diag_indgrp is None:
|
1326 |
+
continue
|
1327 |
+
if any(i in diag_indgrp for i in contr_indgrp):
|
1328 |
+
ind.extend(diag_indgrp)
|
1329 |
+
diagonal_indices[j] = None
|
1330 |
+
new_contraction_indices.append(sorted(set(ind)))
|
1331 |
+
|
1332 |
+
new_diagonal_indices_down = [i for i in diagonal_indices if i is not None]
|
1333 |
+
new_diagonal_indices = ArrayContraction._push_indices_up(new_contraction_indices, new_diagonal_indices_down)
|
1334 |
+
return _array_diagonal(
|
1335 |
+
_array_contraction(expr.expr, *new_contraction_indices),
|
1336 |
+
*new_diagonal_indices
|
1337 |
+
)
|
1338 |
+
|
1339 |
+
@classmethod
|
1340 |
+
def _sort_fully_contracted_args(cls, expr, contraction_indices):
|
1341 |
+
if expr.shape is None:
|
1342 |
+
return expr, contraction_indices
|
1343 |
+
cumul = list(accumulate([0] + expr.subranks))
|
1344 |
+
index_blocks = [list(range(cumul[i], cumul[i+1])) for i in range(len(expr.args))]
|
1345 |
+
contraction_indices_flat = {j for i in contraction_indices for j in i}
|
1346 |
+
fully_contracted = [all(j in contraction_indices_flat for j in range(cumul[i], cumul[i+1])) for i, arg in enumerate(expr.args)]
|
1347 |
+
new_pos = sorted(range(len(expr.args)), key=lambda x: (0, default_sort_key(expr.args[x])) if fully_contracted[x] else (1,))
|
1348 |
+
new_args = [expr.args[i] for i in new_pos]
|
1349 |
+
new_index_blocks_flat = [j for i in new_pos for j in index_blocks[i]]
|
1350 |
+
index_permutation_array_form = _af_invert(new_index_blocks_flat)
|
1351 |
+
new_contraction_indices = [tuple(index_permutation_array_form[j] for j in i) for i in contraction_indices]
|
1352 |
+
new_contraction_indices = _sort_contraction_indices(new_contraction_indices)
|
1353 |
+
return _array_tensor_product(*new_args), new_contraction_indices
|
1354 |
+
|
1355 |
+
def _get_contraction_tuples(self):
|
1356 |
+
r"""
|
1357 |
+
Return tuples containing the argument index and position within the
|
1358 |
+
argument of the index position.
|
1359 |
+
|
1360 |
+
Examples
|
1361 |
+
========
|
1362 |
+
|
1363 |
+
>>> from sympy import MatrixSymbol
|
1364 |
+
>>> from sympy.abc import N
|
1365 |
+
>>> from sympy.tensor.array import tensorproduct, tensorcontraction
|
1366 |
+
>>> A = MatrixSymbol("A", N, N)
|
1367 |
+
>>> B = MatrixSymbol("B", N, N)
|
1368 |
+
|
1369 |
+
>>> cg = tensorcontraction(tensorproduct(A, B), (1, 2))
|
1370 |
+
>>> cg._get_contraction_tuples()
|
1371 |
+
[[(0, 1), (1, 0)]]
|
1372 |
+
|
1373 |
+
Notes
|
1374 |
+
=====
|
1375 |
+
|
1376 |
+
Here the contraction pair `(1, 2)` meaning that the 2nd and 3rd indices
|
1377 |
+
of the tensor product `A\otimes B` are contracted, has been transformed
|
1378 |
+
into `(0, 1)` and `(1, 0)`, identifying the same indices in a different
|
1379 |
+
notation. `(0, 1)` is the second index (1) of the first argument (i.e.
|
1380 |
+
0 or `A`). `(1, 0)` is the first index (i.e. 0) of the second
|
1381 |
+
argument (i.e. 1 or `B`).
|
1382 |
+
"""
|
1383 |
+
mapping = self._mapping
|
1384 |
+
return [[mapping[j] for j in i] for i in self.contraction_indices]
|
1385 |
+
|
1386 |
+
@staticmethod
|
1387 |
+
def _contraction_tuples_to_contraction_indices(expr, contraction_tuples):
|
1388 |
+
# TODO: check that `expr` has `.subranks`:
|
1389 |
+
ranks = expr.subranks
|
1390 |
+
cumulative_ranks = [0] + list(accumulate(ranks))
|
1391 |
+
return [tuple(cumulative_ranks[j]+k for j, k in i) for i in contraction_tuples]
|
1392 |
+
|
1393 |
+
@property
|
1394 |
+
def free_indices(self):
|
1395 |
+
return self._free_indices[:]
|
1396 |
+
|
1397 |
+
@property
|
1398 |
+
def free_indices_to_position(self):
|
1399 |
+
return dict(self._free_indices_to_position)
|
1400 |
+
|
1401 |
+
@property
|
1402 |
+
def expr(self):
|
1403 |
+
return self.args[0]
|
1404 |
+
|
1405 |
+
@property
|
1406 |
+
def contraction_indices(self):
|
1407 |
+
return self.args[1:]
|
1408 |
+
|
1409 |
+
def _contraction_indices_to_components(self):
|
1410 |
+
expr = self.expr
|
1411 |
+
if not isinstance(expr, ArrayTensorProduct):
|
1412 |
+
raise NotImplementedError("only for contractions of tensor products")
|
1413 |
+
ranks = expr.subranks
|
1414 |
+
mapping = {}
|
1415 |
+
counter = 0
|
1416 |
+
for i, rank in enumerate(ranks):
|
1417 |
+
for j in range(rank):
|
1418 |
+
mapping[counter] = (i, j)
|
1419 |
+
counter += 1
|
1420 |
+
return mapping
|
1421 |
+
|
1422 |
+
def sort_args_by_name(self):
|
1423 |
+
"""
|
1424 |
+
Sort arguments in the tensor product so that their order is lexicographical.
|
1425 |
+
|
1426 |
+
Examples
|
1427 |
+
========
|
1428 |
+
|
1429 |
+
>>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
1430 |
+
>>> from sympy import MatrixSymbol
|
1431 |
+
>>> from sympy.abc import N
|
1432 |
+
>>> A = MatrixSymbol("A", N, N)
|
1433 |
+
>>> B = MatrixSymbol("B", N, N)
|
1434 |
+
>>> C = MatrixSymbol("C", N, N)
|
1435 |
+
>>> D = MatrixSymbol("D", N, N)
|
1436 |
+
|
1437 |
+
>>> cg = convert_matrix_to_array(C*D*A*B)
|
1438 |
+
>>> cg
|
1439 |
+
ArrayContraction(ArrayTensorProduct(A, D, C, B), (0, 3), (1, 6), (2, 5))
|
1440 |
+
>>> cg.sort_args_by_name()
|
1441 |
+
ArrayContraction(ArrayTensorProduct(A, D, B, C), (0, 3), (1, 4), (2, 7))
|
1442 |
+
"""
|
1443 |
+
expr = self.expr
|
1444 |
+
if not isinstance(expr, ArrayTensorProduct):
|
1445 |
+
return self
|
1446 |
+
args = expr.args
|
1447 |
+
sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1]))
|
1448 |
+
pos_sorted, args_sorted = zip(*sorted_data)
|
1449 |
+
reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)}
|
1450 |
+
contraction_tuples = self._get_contraction_tuples()
|
1451 |
+
contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples]
|
1452 |
+
c_tp = _array_tensor_product(*args_sorted)
|
1453 |
+
new_contr_indices = self._contraction_tuples_to_contraction_indices(
|
1454 |
+
c_tp,
|
1455 |
+
contraction_tuples
|
1456 |
+
)
|
1457 |
+
return _array_contraction(c_tp, *new_contr_indices)
|
1458 |
+
|
1459 |
+
def _get_contraction_links(self):
|
1460 |
+
r"""
|
1461 |
+
Returns a dictionary of links between arguments in the tensor product
|
1462 |
+
being contracted.
|
1463 |
+
|
1464 |
+
See the example for an explanation of the values.
|
1465 |
+
|
1466 |
+
Examples
|
1467 |
+
========
|
1468 |
+
|
1469 |
+
>>> from sympy import MatrixSymbol
|
1470 |
+
>>> from sympy.abc import N
|
1471 |
+
>>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
1472 |
+
>>> A = MatrixSymbol("A", N, N)
|
1473 |
+
>>> B = MatrixSymbol("B", N, N)
|
1474 |
+
>>> C = MatrixSymbol("C", N, N)
|
1475 |
+
>>> D = MatrixSymbol("D", N, N)
|
1476 |
+
|
1477 |
+
Matrix multiplications are pairwise contractions between neighboring
|
1478 |
+
matrices:
|
1479 |
+
|
1480 |
+
`A_{ij} B_{jk} C_{kl} D_{lm}`
|
1481 |
+
|
1482 |
+
>>> cg = convert_matrix_to_array(A*B*C*D)
|
1483 |
+
>>> cg
|
1484 |
+
ArrayContraction(ArrayTensorProduct(B, C, A, D), (0, 5), (1, 2), (3, 6))
|
1485 |
+
|
1486 |
+
>>> cg._get_contraction_links()
|
1487 |
+
{0: {0: (2, 1), 1: (1, 0)}, 1: {0: (0, 1), 1: (3, 0)}, 2: {1: (0, 0)}, 3: {0: (1, 1)}}
|
1488 |
+
|
1489 |
+
This dictionary is interpreted as follows: argument in position 0 (i.e.
|
1490 |
+
matrix `A`) has its second index (i.e. 1) contracted to `(1, 0)`, that
|
1491 |
+
is argument in position 1 (matrix `B`) on the first index slot of `B`,
|
1492 |
+
this is the contraction provided by the index `j` from `A`.
|
1493 |
+
|
1494 |
+
The argument in position 1 (that is, matrix `B`) has two contractions,
|
1495 |
+
the ones provided by the indices `j` and `k`, respectively the first
|
1496 |
+
and second indices (0 and 1 in the sub-dict). The link `(0, 1)` and
|
1497 |
+
`(2, 0)` respectively. `(0, 1)` is the index slot 1 (the 2nd) of
|
1498 |
+
argument in position 0 (that is, `A_{\ldot j}`), and so on.
|
1499 |
+
"""
|
1500 |
+
args, dlinks = _get_contraction_links([self], self.subranks, *self.contraction_indices)
|
1501 |
+
return dlinks
|
1502 |
+
|
1503 |
+
def as_explicit(self):
|
1504 |
+
expr = self.expr
|
1505 |
+
if hasattr(expr, "as_explicit"):
|
1506 |
+
expr = expr.as_explicit()
|
1507 |
+
return tensorcontraction(expr, *self.contraction_indices)
|
1508 |
+
|
1509 |
+
|
1510 |
+
class Reshape(_CodegenArrayAbstract):
|
1511 |
+
"""
|
1512 |
+
Reshape the dimensions of an array expression.
|
1513 |
+
|
1514 |
+
Examples
|
1515 |
+
========
|
1516 |
+
|
1517 |
+
>>> from sympy.tensor.array.expressions import ArraySymbol, Reshape
|
1518 |
+
>>> A = ArraySymbol("A", (6,))
|
1519 |
+
>>> A.shape
|
1520 |
+
(6,)
|
1521 |
+
>>> Reshape(A, (3, 2)).shape
|
1522 |
+
(3, 2)
|
1523 |
+
|
1524 |
+
Check the component-explicit forms:
|
1525 |
+
|
1526 |
+
>>> A.as_explicit()
|
1527 |
+
[A[0], A[1], A[2], A[3], A[4], A[5]]
|
1528 |
+
>>> Reshape(A, (3, 2)).as_explicit()
|
1529 |
+
[[A[0], A[1]], [A[2], A[3]], [A[4], A[5]]]
|
1530 |
+
|
1531 |
+
"""
|
1532 |
+
|
1533 |
+
def __new__(cls, expr, shape):
|
1534 |
+
expr = _sympify(expr)
|
1535 |
+
if not isinstance(shape, Tuple):
|
1536 |
+
shape = Tuple(*shape)
|
1537 |
+
if Equality(Mul.fromiter(expr.shape), Mul.fromiter(shape)) == False:
|
1538 |
+
raise ValueError("shape mismatch")
|
1539 |
+
obj = Expr.__new__(cls, expr, shape)
|
1540 |
+
obj._shape = tuple(shape)
|
1541 |
+
obj._expr = expr
|
1542 |
+
return obj
|
1543 |
+
|
1544 |
+
@property
|
1545 |
+
def shape(self):
|
1546 |
+
return self._shape
|
1547 |
+
|
1548 |
+
@property
|
1549 |
+
def expr(self):
|
1550 |
+
return self._expr
|
1551 |
+
|
1552 |
+
def doit(self, *args, **kwargs):
|
1553 |
+
if kwargs.get("deep", True):
|
1554 |
+
expr = self.expr.doit(*args, **kwargs)
|
1555 |
+
else:
|
1556 |
+
expr = self.expr
|
1557 |
+
if isinstance(expr, (MatrixCommon, NDimArray)):
|
1558 |
+
return expr.reshape(*self.shape)
|
1559 |
+
return Reshape(expr, self.shape)
|
1560 |
+
|
1561 |
+
def as_explicit(self):
|
1562 |
+
ee = self.expr
|
1563 |
+
if hasattr(ee, "as_explicit"):
|
1564 |
+
ee = ee.as_explicit()
|
1565 |
+
if isinstance(ee, MatrixCommon):
|
1566 |
+
from sympy import Array
|
1567 |
+
ee = Array(ee)
|
1568 |
+
elif isinstance(ee, MatrixExpr):
|
1569 |
+
return self
|
1570 |
+
return ee.reshape(*self.shape)
|
1571 |
+
|
1572 |
+
|
1573 |
+
class _ArgE:
|
1574 |
+
"""
|
1575 |
+
The ``_ArgE`` object contains references to the array expression
|
1576 |
+
(``.element``) and a list containing the information about index
|
1577 |
+
contractions (``.indices``).
|
1578 |
+
|
1579 |
+
Index contractions are numbered and contracted indices show the number of
|
1580 |
+
the contraction. Uncontracted indices have ``None`` value.
|
1581 |
+
|
1582 |
+
For example:
|
1583 |
+
``_ArgE(M, [None, 3])``
|
1584 |
+
This object means that expression ``M`` is part of an array contraction
|
1585 |
+
and has two indices, the first is not contracted (value ``None``),
|
1586 |
+
the second index is contracted to the 4th (i.e. number ``3``) group of the
|
1587 |
+
array contraction object.
|
1588 |
+
"""
|
1589 |
+
indices: List[Optional[int]]
|
1590 |
+
|
1591 |
+
def __init__(self, element, indices: Optional[List[Optional[int]]] = None):
|
1592 |
+
self.element = element
|
1593 |
+
if indices is None:
|
1594 |
+
self.indices = [None for i in range(get_rank(element))]
|
1595 |
+
else:
|
1596 |
+
self.indices = indices
|
1597 |
+
|
1598 |
+
def __str__(self):
|
1599 |
+
return "_ArgE(%s, %s)" % (self.element, self.indices)
|
1600 |
+
|
1601 |
+
__repr__ = __str__
|
1602 |
+
|
1603 |
+
|
1604 |
+
class _IndPos:
|
1605 |
+
"""
|
1606 |
+
Index position, requiring two integers in the constructor:
|
1607 |
+
|
1608 |
+
- arg: the position of the argument in the tensor product,
|
1609 |
+
- rel: the relative position of the index inside the argument.
|
1610 |
+
"""
|
1611 |
+
def __init__(self, arg: int, rel: int):
|
1612 |
+
self.arg = arg
|
1613 |
+
self.rel = rel
|
1614 |
+
|
1615 |
+
def __str__(self):
|
1616 |
+
return "_IndPos(%i, %i)" % (self.arg, self.rel)
|
1617 |
+
|
1618 |
+
__repr__ = __str__
|
1619 |
+
|
1620 |
+
def __iter__(self):
|
1621 |
+
yield from [self.arg, self.rel]
|
1622 |
+
|
1623 |
+
|
1624 |
+
class _EditArrayContraction:
|
1625 |
+
"""
|
1626 |
+
Utility class to help manipulate array contraction objects.
|
1627 |
+
|
1628 |
+
This class takes as input an ``ArrayContraction`` object and turns it into
|
1629 |
+
an editable object.
|
1630 |
+
|
1631 |
+
The field ``args_with_ind`` of this class is a list of ``_ArgE`` objects
|
1632 |
+
which can be used to easily edit the contraction structure of the
|
1633 |
+
expression.
|
1634 |
+
|
1635 |
+
Once editing is finished, the ``ArrayContraction`` object may be recreated
|
1636 |
+
by calling the ``.to_array_contraction()`` method.
|
1637 |
+
"""
|
1638 |
+
|
1639 |
+
def __init__(self, base_array: typing.Union[ArrayContraction, ArrayDiagonal, ArrayTensorProduct]):
|
1640 |
+
|
1641 |
+
expr: Basic
|
1642 |
+
diagonalized: tTuple[tTuple[int, ...], ...]
|
1643 |
+
contraction_indices: List[tTuple[int]]
|
1644 |
+
if isinstance(base_array, ArrayContraction):
|
1645 |
+
mapping = _get_mapping_from_subranks(base_array.subranks)
|
1646 |
+
expr = base_array.expr
|
1647 |
+
contraction_indices = base_array.contraction_indices
|
1648 |
+
diagonalized = ()
|
1649 |
+
elif isinstance(base_array, ArrayDiagonal):
|
1650 |
+
|
1651 |
+
if isinstance(base_array.expr, ArrayContraction):
|
1652 |
+
mapping = _get_mapping_from_subranks(base_array.expr.subranks)
|
1653 |
+
expr = base_array.expr.expr
|
1654 |
+
diagonalized = ArrayContraction._push_indices_down(base_array.expr.contraction_indices, base_array.diagonal_indices)
|
1655 |
+
contraction_indices = base_array.expr.contraction_indices
|
1656 |
+
elif isinstance(base_array.expr, ArrayTensorProduct):
|
1657 |
+
mapping = {}
|
1658 |
+
expr = base_array.expr
|
1659 |
+
diagonalized = base_array.diagonal_indices
|
1660 |
+
contraction_indices = []
|
1661 |
+
else:
|
1662 |
+
mapping = {}
|
1663 |
+
expr = base_array.expr
|
1664 |
+
diagonalized = base_array.diagonal_indices
|
1665 |
+
contraction_indices = []
|
1666 |
+
|
1667 |
+
elif isinstance(base_array, ArrayTensorProduct):
|
1668 |
+
expr = base_array
|
1669 |
+
contraction_indices = []
|
1670 |
+
diagonalized = ()
|
1671 |
+
else:
|
1672 |
+
raise NotImplementedError()
|
1673 |
+
|
1674 |
+
if isinstance(expr, ArrayTensorProduct):
|
1675 |
+
args = list(expr.args)
|
1676 |
+
else:
|
1677 |
+
args = [expr]
|
1678 |
+
|
1679 |
+
args_with_ind: List[_ArgE] = [_ArgE(arg) for arg in args]
|
1680 |
+
for i, contraction_tuple in enumerate(contraction_indices):
|
1681 |
+
for j in contraction_tuple:
|
1682 |
+
arg_pos, rel_pos = mapping[j]
|
1683 |
+
args_with_ind[arg_pos].indices[rel_pos] = i
|
1684 |
+
self.args_with_ind: List[_ArgE] = args_with_ind
|
1685 |
+
self.number_of_contraction_indices: int = len(contraction_indices)
|
1686 |
+
self._track_permutation: Optional[List[List[int]]] = None
|
1687 |
+
|
1688 |
+
mapping = _get_mapping_from_subranks(base_array.subranks)
|
1689 |
+
|
1690 |
+
# Trick: add diagonalized indices as negative indices into the editor object:
|
1691 |
+
for i, e in enumerate(diagonalized):
|
1692 |
+
for j in e:
|
1693 |
+
arg_pos, rel_pos = mapping[j]
|
1694 |
+
self.args_with_ind[arg_pos].indices[rel_pos] = -1 - i
|
1695 |
+
|
1696 |
+
def insert_after(self, arg: _ArgE, new_arg: _ArgE):
|
1697 |
+
pos = self.args_with_ind.index(arg)
|
1698 |
+
self.args_with_ind.insert(pos + 1, new_arg)
|
1699 |
+
|
1700 |
+
def get_new_contraction_index(self):
|
1701 |
+
self.number_of_contraction_indices += 1
|
1702 |
+
return self.number_of_contraction_indices - 1
|
1703 |
+
|
1704 |
+
def refresh_indices(self):
|
1705 |
+
updates = {}
|
1706 |
+
for arg_with_ind in self.args_with_ind:
|
1707 |
+
updates.update({i: -1 for i in arg_with_ind.indices if i is not None})
|
1708 |
+
for i, e in enumerate(sorted(updates)):
|
1709 |
+
updates[e] = i
|
1710 |
+
self.number_of_contraction_indices = len(updates)
|
1711 |
+
for arg_with_ind in self.args_with_ind:
|
1712 |
+
arg_with_ind.indices = [updates.get(i, None) for i in arg_with_ind.indices]
|
1713 |
+
|
1714 |
+
def merge_scalars(self):
|
1715 |
+
scalars = []
|
1716 |
+
for arg_with_ind in self.args_with_ind:
|
1717 |
+
if len(arg_with_ind.indices) == 0:
|
1718 |
+
scalars.append(arg_with_ind)
|
1719 |
+
for i in scalars:
|
1720 |
+
self.args_with_ind.remove(i)
|
1721 |
+
scalar = Mul.fromiter([i.element for i in scalars])
|
1722 |
+
if len(self.args_with_ind) == 0:
|
1723 |
+
self.args_with_ind.append(_ArgE(scalar))
|
1724 |
+
else:
|
1725 |
+
from sympy.tensor.array.expressions.from_array_to_matrix import _a2m_tensor_product
|
1726 |
+
self.args_with_ind[0].element = _a2m_tensor_product(scalar, self.args_with_ind[0].element)
|
1727 |
+
|
1728 |
+
def to_array_contraction(self):
|
1729 |
+
|
1730 |
+
# Count the ranks of the arguments:
|
1731 |
+
counter = 0
|
1732 |
+
# Create a collector for the new diagonal indices:
|
1733 |
+
diag_indices = defaultdict(list)
|
1734 |
+
|
1735 |
+
count_index_freq = Counter()
|
1736 |
+
for arg_with_ind in self.args_with_ind:
|
1737 |
+
count_index_freq.update(Counter(arg_with_ind.indices))
|
1738 |
+
|
1739 |
+
free_index_count = count_index_freq[None]
|
1740 |
+
|
1741 |
+
# Construct the inverse permutation:
|
1742 |
+
inv_perm1 = []
|
1743 |
+
inv_perm2 = []
|
1744 |
+
# Keep track of which diagonal indices have already been processed:
|
1745 |
+
done = set()
|
1746 |
+
|
1747 |
+
# Counter for the diagonal indices:
|
1748 |
+
counter4 = 0
|
1749 |
+
|
1750 |
+
for arg_with_ind in self.args_with_ind:
|
1751 |
+
# If some diagonalization axes have been removed, they should be
|
1752 |
+
# permuted in order to keep the permutation.
|
1753 |
+
# Add permutation here
|
1754 |
+
counter2 = 0 # counter for the indices
|
1755 |
+
for i in arg_with_ind.indices:
|
1756 |
+
if i is None:
|
1757 |
+
inv_perm1.append(counter4)
|
1758 |
+
counter2 += 1
|
1759 |
+
counter4 += 1
|
1760 |
+
continue
|
1761 |
+
if i >= 0:
|
1762 |
+
continue
|
1763 |
+
# Reconstruct the diagonal indices:
|
1764 |
+
diag_indices[-1 - i].append(counter + counter2)
|
1765 |
+
if count_index_freq[i] == 1 and i not in done:
|
1766 |
+
inv_perm1.append(free_index_count - 1 - i)
|
1767 |
+
done.add(i)
|
1768 |
+
elif i not in done:
|
1769 |
+
inv_perm2.append(free_index_count - 1 - i)
|
1770 |
+
done.add(i)
|
1771 |
+
counter2 += 1
|
1772 |
+
# Remove negative indices to restore a proper editor object:
|
1773 |
+
arg_with_ind.indices = [i if i is not None and i >= 0 else None for i in arg_with_ind.indices]
|
1774 |
+
counter += len([i for i in arg_with_ind.indices if i is None or i < 0])
|
1775 |
+
|
1776 |
+
inverse_permutation = inv_perm1 + inv_perm2
|
1777 |
+
permutation = _af_invert(inverse_permutation)
|
1778 |
+
|
1779 |
+
# Get the diagonal indices after the detection of HadamardProduct in the expression:
|
1780 |
+
diag_indices_filtered = [tuple(v) for v in diag_indices.values() if len(v) > 1]
|
1781 |
+
|
1782 |
+
self.merge_scalars()
|
1783 |
+
self.refresh_indices()
|
1784 |
+
args = [arg.element for arg in self.args_with_ind]
|
1785 |
+
contraction_indices = self.get_contraction_indices()
|
1786 |
+
expr = _array_contraction(_array_tensor_product(*args), *contraction_indices)
|
1787 |
+
expr2 = _array_diagonal(expr, *diag_indices_filtered)
|
1788 |
+
if self._track_permutation is not None:
|
1789 |
+
permutation2 = _af_invert([j for i in self._track_permutation for j in i])
|
1790 |
+
expr2 = _permute_dims(expr2, permutation2)
|
1791 |
+
|
1792 |
+
expr3 = _permute_dims(expr2, permutation)
|
1793 |
+
return expr3
|
1794 |
+
|
1795 |
+
def get_contraction_indices(self) -> List[List[int]]:
|
1796 |
+
contraction_indices: List[List[int]] = [[] for i in range(self.number_of_contraction_indices)]
|
1797 |
+
current_position: int = 0
|
1798 |
+
for i, arg_with_ind in enumerate(self.args_with_ind):
|
1799 |
+
for j in arg_with_ind.indices:
|
1800 |
+
if j is not None:
|
1801 |
+
contraction_indices[j].append(current_position)
|
1802 |
+
current_position += 1
|
1803 |
+
return contraction_indices
|
1804 |
+
|
1805 |
+
def get_mapping_for_index(self, ind) -> List[_IndPos]:
|
1806 |
+
if ind >= self.number_of_contraction_indices:
|
1807 |
+
raise ValueError("index value exceeding the index range")
|
1808 |
+
positions: List[_IndPos] = []
|
1809 |
+
for i, arg_with_ind in enumerate(self.args_with_ind):
|
1810 |
+
for j, arg_ind in enumerate(arg_with_ind.indices):
|
1811 |
+
if ind == arg_ind:
|
1812 |
+
positions.append(_IndPos(i, j))
|
1813 |
+
return positions
|
1814 |
+
|
1815 |
+
def get_contraction_indices_to_ind_rel_pos(self) -> List[List[_IndPos]]:
|
1816 |
+
contraction_indices: List[List[_IndPos]] = [[] for i in range(self.number_of_contraction_indices)]
|
1817 |
+
for i, arg_with_ind in enumerate(self.args_with_ind):
|
1818 |
+
for j, ind in enumerate(arg_with_ind.indices):
|
1819 |
+
if ind is not None:
|
1820 |
+
contraction_indices[ind].append(_IndPos(i, j))
|
1821 |
+
return contraction_indices
|
1822 |
+
|
1823 |
+
def count_args_with_index(self, index: int) -> int:
|
1824 |
+
"""
|
1825 |
+
Count the number of arguments that have the given index.
|
1826 |
+
"""
|
1827 |
+
counter: int = 0
|
1828 |
+
for arg_with_ind in self.args_with_ind:
|
1829 |
+
if index in arg_with_ind.indices:
|
1830 |
+
counter += 1
|
1831 |
+
return counter
|
1832 |
+
|
1833 |
+
def get_args_with_index(self, index: int) -> List[_ArgE]:
|
1834 |
+
"""
|
1835 |
+
Get a list of arguments having the given index.
|
1836 |
+
"""
|
1837 |
+
ret: List[_ArgE] = [i for i in self.args_with_ind if index in i.indices]
|
1838 |
+
return ret
|
1839 |
+
|
1840 |
+
@property
|
1841 |
+
def number_of_diagonal_indices(self):
|
1842 |
+
data = set()
|
1843 |
+
for arg in self.args_with_ind:
|
1844 |
+
data.update({i for i in arg.indices if i is not None and i < 0})
|
1845 |
+
return len(data)
|
1846 |
+
|
1847 |
+
def track_permutation_start(self):
|
1848 |
+
permutation = []
|
1849 |
+
perm_diag = []
|
1850 |
+
counter = 0
|
1851 |
+
counter2 = -1
|
1852 |
+
for arg_with_ind in self.args_with_ind:
|
1853 |
+
perm = []
|
1854 |
+
for i in arg_with_ind.indices:
|
1855 |
+
if i is not None:
|
1856 |
+
if i < 0:
|
1857 |
+
perm_diag.append(counter2)
|
1858 |
+
counter2 -= 1
|
1859 |
+
continue
|
1860 |
+
perm.append(counter)
|
1861 |
+
counter += 1
|
1862 |
+
permutation.append(perm)
|
1863 |
+
max_ind = max([max(i) if i else -1 for i in permutation]) if permutation else -1
|
1864 |
+
perm_diag = [max_ind - i for i in perm_diag]
|
1865 |
+
self._track_permutation = permutation + [perm_diag]
|
1866 |
+
|
1867 |
+
def track_permutation_merge(self, destination: _ArgE, from_element: _ArgE):
|
1868 |
+
index_destination = self.args_with_ind.index(destination)
|
1869 |
+
index_element = self.args_with_ind.index(from_element)
|
1870 |
+
self._track_permutation[index_destination].extend(self._track_permutation[index_element]) # type: ignore
|
1871 |
+
self._track_permutation.pop(index_element) # type: ignore
|
1872 |
+
|
1873 |
+
def get_absolute_free_range(self, arg: _ArgE) -> typing.Tuple[int, int]:
|
1874 |
+
"""
|
1875 |
+
Return the range of the free indices of the arg as absolute positions
|
1876 |
+
among all free indices.
|
1877 |
+
"""
|
1878 |
+
counter = 0
|
1879 |
+
for arg_with_ind in self.args_with_ind:
|
1880 |
+
number_free_indices = len([i for i in arg_with_ind.indices if i is None])
|
1881 |
+
if arg_with_ind == arg:
|
1882 |
+
return counter, counter + number_free_indices
|
1883 |
+
counter += number_free_indices
|
1884 |
+
raise IndexError("argument not found")
|
1885 |
+
|
1886 |
+
def get_absolute_range(self, arg: _ArgE) -> typing.Tuple[int, int]:
|
1887 |
+
"""
|
1888 |
+
Return the absolute range of indices for arg, disregarding dummy
|
1889 |
+
indices.
|
1890 |
+
"""
|
1891 |
+
counter = 0
|
1892 |
+
for arg_with_ind in self.args_with_ind:
|
1893 |
+
number_indices = len(arg_with_ind.indices)
|
1894 |
+
if arg_with_ind == arg:
|
1895 |
+
return counter, counter + number_indices
|
1896 |
+
counter += number_indices
|
1897 |
+
raise IndexError("argument not found")
|
1898 |
+
|
1899 |
+
|
1900 |
+
def get_rank(expr):
|
1901 |
+
if isinstance(expr, (MatrixExpr, MatrixElement)):
|
1902 |
+
return 2
|
1903 |
+
if isinstance(expr, _CodegenArrayAbstract):
|
1904 |
+
return len(expr.shape)
|
1905 |
+
if isinstance(expr, NDimArray):
|
1906 |
+
return expr.rank()
|
1907 |
+
if isinstance(expr, Indexed):
|
1908 |
+
return expr.rank
|
1909 |
+
if isinstance(expr, IndexedBase):
|
1910 |
+
shape = expr.shape
|
1911 |
+
if shape is None:
|
1912 |
+
return -1
|
1913 |
+
else:
|
1914 |
+
return len(shape)
|
1915 |
+
if hasattr(expr, "shape"):
|
1916 |
+
return len(expr.shape)
|
1917 |
+
return 0
|
1918 |
+
|
1919 |
+
|
1920 |
+
def _get_subrank(expr):
|
1921 |
+
if isinstance(expr, _CodegenArrayAbstract):
|
1922 |
+
return expr.subrank()
|
1923 |
+
return get_rank(expr)
|
1924 |
+
|
1925 |
+
|
1926 |
+
def _get_subranks(expr):
|
1927 |
+
if isinstance(expr, _CodegenArrayAbstract):
|
1928 |
+
return expr.subranks
|
1929 |
+
else:
|
1930 |
+
return [get_rank(expr)]
|
1931 |
+
|
1932 |
+
|
1933 |
+
def get_shape(expr):
|
1934 |
+
if hasattr(expr, "shape"):
|
1935 |
+
return expr.shape
|
1936 |
+
return ()
|
1937 |
+
|
1938 |
+
|
1939 |
+
def nest_permutation(expr):
|
1940 |
+
if isinstance(expr, PermuteDims):
|
1941 |
+
return expr.nest_permutation()
|
1942 |
+
else:
|
1943 |
+
return expr
|
1944 |
+
|
1945 |
+
|
1946 |
+
def _array_tensor_product(*args, **kwargs):
|
1947 |
+
return ArrayTensorProduct(*args, canonicalize=True, **kwargs)
|
1948 |
+
|
1949 |
+
|
1950 |
+
def _array_contraction(expr, *contraction_indices, **kwargs):
|
1951 |
+
return ArrayContraction(expr, *contraction_indices, canonicalize=True, **kwargs)
|
1952 |
+
|
1953 |
+
|
1954 |
+
def _array_diagonal(expr, *diagonal_indices, **kwargs):
|
1955 |
+
return ArrayDiagonal(expr, *diagonal_indices, canonicalize=True, **kwargs)
|
1956 |
+
|
1957 |
+
|
1958 |
+
def _permute_dims(expr, permutation, **kwargs):
|
1959 |
+
return PermuteDims(expr, permutation, canonicalize=True, **kwargs)
|
1960 |
+
|
1961 |
+
|
1962 |
+
def _array_add(*args, **kwargs):
|
1963 |
+
return ArrayAdd(*args, canonicalize=True, **kwargs)
|
1964 |
+
|
1965 |
+
|
1966 |
+
def _get_array_element_or_slice(expr, indices):
|
1967 |
+
return ArrayElement(expr, indices)
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/arrayexpr_derivatives.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
from functools import reduce, singledispatch
|
3 |
+
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.matrices.expressions.hadamard import HadamardProduct
|
7 |
+
from sympy.matrices.expressions.inverse import Inverse
|
8 |
+
from sympy.matrices.expressions.matexpr import (MatrixExpr, MatrixSymbol)
|
9 |
+
from sympy.matrices.expressions.special import Identity, OneMatrix
|
10 |
+
from sympy.matrices.expressions.transpose import Transpose
|
11 |
+
from sympy.combinatorics.permutations import _af_invert
|
12 |
+
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
|
13 |
+
from sympy.tensor.array.expressions.array_expressions import (
|
14 |
+
_ArrayExpr, ZeroArray, ArraySymbol, ArrayTensorProduct, ArrayAdd,
|
15 |
+
PermuteDims, ArrayDiagonal, ArrayElementwiseApplyFunc, get_rank,
|
16 |
+
get_shape, ArrayContraction, _array_tensor_product, _array_contraction,
|
17 |
+
_array_diagonal, _array_add, _permute_dims, Reshape)
|
18 |
+
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
19 |
+
|
20 |
+
|
21 |
+
@singledispatch
|
22 |
+
def array_derive(expr, x):
|
23 |
+
"""
|
24 |
+
Derivatives (gradients) for array expressions.
|
25 |
+
"""
|
26 |
+
raise NotImplementedError(f"not implemented for type {type(expr)}")
|
27 |
+
|
28 |
+
|
29 |
+
@array_derive.register(Expr)
|
30 |
+
def _(expr: Expr, x: _ArrayExpr):
|
31 |
+
return ZeroArray(*x.shape)
|
32 |
+
|
33 |
+
|
34 |
+
@array_derive.register(ArrayTensorProduct)
|
35 |
+
def _(expr: ArrayTensorProduct, x: Expr):
|
36 |
+
args = expr.args
|
37 |
+
addend_list = []
|
38 |
+
for i, arg in enumerate(expr.args):
|
39 |
+
darg = array_derive(arg, x)
|
40 |
+
if darg == 0:
|
41 |
+
continue
|
42 |
+
args_prev = args[:i]
|
43 |
+
args_succ = args[i+1:]
|
44 |
+
shape_prev = reduce(operator.add, map(get_shape, args_prev), ())
|
45 |
+
shape_succ = reduce(operator.add, map(get_shape, args_succ), ())
|
46 |
+
addend = _array_tensor_product(*args_prev, darg, *args_succ)
|
47 |
+
tot1 = len(get_shape(x))
|
48 |
+
tot2 = tot1 + len(shape_prev)
|
49 |
+
tot3 = tot2 + len(get_shape(arg))
|
50 |
+
tot4 = tot3 + len(shape_succ)
|
51 |
+
perm = list(range(tot1, tot2)) + \
|
52 |
+
list(range(tot1)) + list(range(tot2, tot3)) + \
|
53 |
+
list(range(tot3, tot4))
|
54 |
+
addend = _permute_dims(addend, _af_invert(perm))
|
55 |
+
addend_list.append(addend)
|
56 |
+
if len(addend_list) == 1:
|
57 |
+
return addend_list[0]
|
58 |
+
elif len(addend_list) == 0:
|
59 |
+
return S.Zero
|
60 |
+
else:
|
61 |
+
return _array_add(*addend_list)
|
62 |
+
|
63 |
+
|
64 |
+
@array_derive.register(ArraySymbol)
|
65 |
+
def _(expr: ArraySymbol, x: _ArrayExpr):
|
66 |
+
if expr == x:
|
67 |
+
return _permute_dims(
|
68 |
+
ArrayTensorProduct.fromiter(Identity(i) for i in expr.shape),
|
69 |
+
[2*i for i in range(len(expr.shape))] + [2*i+1 for i in range(len(expr.shape))]
|
70 |
+
)
|
71 |
+
return ZeroArray(*(x.shape + expr.shape))
|
72 |
+
|
73 |
+
|
74 |
+
@array_derive.register(MatrixSymbol)
|
75 |
+
def _(expr: MatrixSymbol, x: _ArrayExpr):
|
76 |
+
m, n = expr.shape
|
77 |
+
if expr == x:
|
78 |
+
return _permute_dims(
|
79 |
+
_array_tensor_product(Identity(m), Identity(n)),
|
80 |
+
[0, 2, 1, 3]
|
81 |
+
)
|
82 |
+
return ZeroArray(*(x.shape + expr.shape))
|
83 |
+
|
84 |
+
|
85 |
+
@array_derive.register(Identity)
|
86 |
+
def _(expr: Identity, x: _ArrayExpr):
|
87 |
+
return ZeroArray(*(x.shape + expr.shape))
|
88 |
+
|
89 |
+
|
90 |
+
@array_derive.register(OneMatrix)
|
91 |
+
def _(expr: OneMatrix, x: _ArrayExpr):
|
92 |
+
return ZeroArray(*(x.shape + expr.shape))
|
93 |
+
|
94 |
+
|
95 |
+
@array_derive.register(Transpose)
|
96 |
+
def _(expr: Transpose, x: Expr):
|
97 |
+
# D(A.T, A) ==> (m,n,i,j) ==> D(A_ji, A_mn) = d_mj d_ni
|
98 |
+
# D(B.T, A) ==> (m,n,i,j) ==> D(B_ji, A_mn)
|
99 |
+
fd = array_derive(expr.arg, x)
|
100 |
+
return _permute_dims(fd, [0, 1, 3, 2])
|
101 |
+
|
102 |
+
|
103 |
+
@array_derive.register(Inverse)
|
104 |
+
def _(expr: Inverse, x: Expr):
|
105 |
+
mat = expr.I
|
106 |
+
dexpr = array_derive(mat, x)
|
107 |
+
tp = _array_tensor_product(-expr, dexpr, expr)
|
108 |
+
mp = _array_contraction(tp, (1, 4), (5, 6))
|
109 |
+
pp = _permute_dims(mp, [1, 2, 0, 3])
|
110 |
+
return pp
|
111 |
+
|
112 |
+
|
113 |
+
@array_derive.register(ElementwiseApplyFunction)
|
114 |
+
def _(expr: ElementwiseApplyFunction, x: Expr):
|
115 |
+
assert get_rank(expr) == 2
|
116 |
+
assert get_rank(x) == 2
|
117 |
+
fdiff = expr._get_function_fdiff()
|
118 |
+
dexpr = array_derive(expr.expr, x)
|
119 |
+
tp = _array_tensor_product(
|
120 |
+
ElementwiseApplyFunction(fdiff, expr.expr),
|
121 |
+
dexpr
|
122 |
+
)
|
123 |
+
td = _array_diagonal(
|
124 |
+
tp, (0, 4), (1, 5)
|
125 |
+
)
|
126 |
+
return td
|
127 |
+
|
128 |
+
|
129 |
+
@array_derive.register(ArrayElementwiseApplyFunc)
|
130 |
+
def _(expr: ArrayElementwiseApplyFunc, x: Expr):
|
131 |
+
fdiff = expr._get_function_fdiff()
|
132 |
+
subexpr = expr.expr
|
133 |
+
dsubexpr = array_derive(subexpr, x)
|
134 |
+
tp = _array_tensor_product(
|
135 |
+
dsubexpr,
|
136 |
+
ArrayElementwiseApplyFunc(fdiff, subexpr)
|
137 |
+
)
|
138 |
+
b = get_rank(x)
|
139 |
+
c = get_rank(expr)
|
140 |
+
diag_indices = [(b + i, b + c + i) for i in range(c)]
|
141 |
+
return _array_diagonal(tp, *diag_indices)
|
142 |
+
|
143 |
+
|
144 |
+
@array_derive.register(MatrixExpr)
|
145 |
+
def _(expr: MatrixExpr, x: Expr):
|
146 |
+
cg = convert_matrix_to_array(expr)
|
147 |
+
return array_derive(cg, x)
|
148 |
+
|
149 |
+
|
150 |
+
@array_derive.register(HadamardProduct)
|
151 |
+
def _(expr: HadamardProduct, x: Expr):
|
152 |
+
raise NotImplementedError()
|
153 |
+
|
154 |
+
|
155 |
+
@array_derive.register(ArrayContraction)
|
156 |
+
def _(expr: ArrayContraction, x: Expr):
|
157 |
+
fd = array_derive(expr.expr, x)
|
158 |
+
rank_x = len(get_shape(x))
|
159 |
+
contraction_indices = expr.contraction_indices
|
160 |
+
new_contraction_indices = [tuple(j + rank_x for j in i) for i in contraction_indices]
|
161 |
+
return _array_contraction(fd, *new_contraction_indices)
|
162 |
+
|
163 |
+
|
164 |
+
@array_derive.register(ArrayDiagonal)
|
165 |
+
def _(expr: ArrayDiagonal, x: Expr):
|
166 |
+
dsubexpr = array_derive(expr.expr, x)
|
167 |
+
rank_x = len(get_shape(x))
|
168 |
+
diag_indices = [[j + rank_x for j in i] for i in expr.diagonal_indices]
|
169 |
+
return _array_diagonal(dsubexpr, *diag_indices)
|
170 |
+
|
171 |
+
|
172 |
+
@array_derive.register(ArrayAdd)
|
173 |
+
def _(expr: ArrayAdd, x: Expr):
|
174 |
+
return _array_add(*[array_derive(arg, x) for arg in expr.args])
|
175 |
+
|
176 |
+
|
177 |
+
@array_derive.register(PermuteDims)
|
178 |
+
def _(expr: PermuteDims, x: Expr):
|
179 |
+
de = array_derive(expr.expr, x)
|
180 |
+
perm = [0, 1] + [i + 2 for i in expr.permutation.array_form]
|
181 |
+
return _permute_dims(de, perm)
|
182 |
+
|
183 |
+
|
184 |
+
@array_derive.register(Reshape)
|
185 |
+
def _(expr: Reshape, x: Expr):
|
186 |
+
de = array_derive(expr.expr, x)
|
187 |
+
return Reshape(de, get_shape(x) + expr.shape)
|
188 |
+
|
189 |
+
|
190 |
+
def matrix_derive(expr, x):
|
191 |
+
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
|
192 |
+
ce = convert_matrix_to_array(expr)
|
193 |
+
dce = array_derive(ce, x)
|
194 |
+
return convert_array_to_matrix(dce).doit()
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_array_to_indexed.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.tensor.array.expressions import from_array_to_indexed
|
2 |
+
from sympy.utilities.decorator import deprecated
|
3 |
+
|
4 |
+
|
5 |
+
_conv_to_from_decorator = deprecated(
|
6 |
+
"module has been renamed by replacing 'conv_' with 'from_' in its name",
|
7 |
+
deprecated_since_version="1.11",
|
8 |
+
active_deprecations_target="deprecated-conv-array-expr-module-names",
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
convert_array_to_indexed = _conv_to_from_decorator(from_array_to_indexed.convert_array_to_indexed)
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_array_to_matrix.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.tensor.array.expressions import from_array_to_matrix
|
2 |
+
from sympy.tensor.array.expressions.conv_array_to_indexed import _conv_to_from_decorator
|
3 |
+
|
4 |
+
convert_array_to_matrix = _conv_to_from_decorator(from_array_to_matrix.convert_array_to_matrix)
|
5 |
+
_array2matrix = _conv_to_from_decorator(from_array_to_matrix._array2matrix)
|
6 |
+
_remove_trivial_dims = _conv_to_from_decorator(from_array_to_matrix._remove_trivial_dims)
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_indexed_to_array.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.tensor.array.expressions import from_indexed_to_array
|
2 |
+
from sympy.tensor.array.expressions.conv_array_to_indexed import _conv_to_from_decorator
|
3 |
+
|
4 |
+
convert_indexed_to_array = _conv_to_from_decorator(from_indexed_to_array.convert_indexed_to_array)
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/conv_matrix_to_array.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.tensor.array.expressions import from_matrix_to_array
|
2 |
+
from sympy.tensor.array.expressions.conv_array_to_indexed import _conv_to_from_decorator
|
3 |
+
|
4 |
+
convert_matrix_to_array = _conv_to_from_decorator(from_matrix_to_array.convert_matrix_to_array)
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_array_to_indexed.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections.abc
|
2 |
+
import operator
|
3 |
+
from itertools import accumulate
|
4 |
+
|
5 |
+
from sympy import Mul, Sum, Dummy, Add
|
6 |
+
from sympy.tensor.array.expressions import PermuteDims, ArrayAdd, ArrayElementwiseApplyFunc, Reshape
|
7 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, get_rank, ArrayContraction, \
|
8 |
+
ArrayDiagonal, get_shape, _get_array_element_or_slice, _ArrayExpr
|
9 |
+
from sympy.tensor.array.expressions.utils import _apply_permutation_to_list
|
10 |
+
|
11 |
+
|
12 |
+
def convert_array_to_indexed(expr, indices):
|
13 |
+
return _ConvertArrayToIndexed().do_convert(expr, indices)
|
14 |
+
|
15 |
+
|
16 |
+
class _ConvertArrayToIndexed:
|
17 |
+
|
18 |
+
def __init__(self):
|
19 |
+
self.count_dummies = 0
|
20 |
+
|
21 |
+
def do_convert(self, expr, indices):
|
22 |
+
if isinstance(expr, ArrayTensorProduct):
|
23 |
+
cumul = list(accumulate([0] + [get_rank(arg) for arg in expr.args]))
|
24 |
+
indices_grp = [indices[cumul[i]:cumul[i+1]] for i in range(len(expr.args))]
|
25 |
+
return Mul.fromiter(self.do_convert(arg, ind) for arg, ind in zip(expr.args, indices_grp))
|
26 |
+
if isinstance(expr, ArrayContraction):
|
27 |
+
new_indices = [None for i in range(get_rank(expr.expr))]
|
28 |
+
limits = []
|
29 |
+
bottom_shape = get_shape(expr.expr)
|
30 |
+
for contraction_index_grp in expr.contraction_indices:
|
31 |
+
d = Dummy(f"d{self.count_dummies}")
|
32 |
+
self.count_dummies += 1
|
33 |
+
dim = bottom_shape[contraction_index_grp[0]]
|
34 |
+
limits.append((d, 0, dim-1))
|
35 |
+
for i in contraction_index_grp:
|
36 |
+
new_indices[i] = d
|
37 |
+
j = 0
|
38 |
+
for i in range(len(new_indices)):
|
39 |
+
if new_indices[i] is None:
|
40 |
+
new_indices[i] = indices[j]
|
41 |
+
j += 1
|
42 |
+
newexpr = self.do_convert(expr.expr, new_indices)
|
43 |
+
return Sum(newexpr, *limits)
|
44 |
+
if isinstance(expr, ArrayDiagonal):
|
45 |
+
new_indices = [None for i in range(get_rank(expr.expr))]
|
46 |
+
ind_pos = expr._push_indices_down(expr.diagonal_indices, list(range(len(indices))), get_rank(expr))
|
47 |
+
for i, index in zip(ind_pos, indices):
|
48 |
+
if isinstance(i, collections.abc.Iterable):
|
49 |
+
for j in i:
|
50 |
+
new_indices[j] = index
|
51 |
+
else:
|
52 |
+
new_indices[i] = index
|
53 |
+
newexpr = self.do_convert(expr.expr, new_indices)
|
54 |
+
return newexpr
|
55 |
+
if isinstance(expr, PermuteDims):
|
56 |
+
permuted_indices = _apply_permutation_to_list(expr.permutation, indices)
|
57 |
+
return self.do_convert(expr.expr, permuted_indices)
|
58 |
+
if isinstance(expr, ArrayAdd):
|
59 |
+
return Add.fromiter(self.do_convert(arg, indices) for arg in expr.args)
|
60 |
+
if isinstance(expr, _ArrayExpr):
|
61 |
+
return expr.__getitem__(tuple(indices))
|
62 |
+
if isinstance(expr, ArrayElementwiseApplyFunc):
|
63 |
+
return expr.function(self.do_convert(expr.expr, indices))
|
64 |
+
if isinstance(expr, Reshape):
|
65 |
+
shape_up = expr.shape
|
66 |
+
shape_down = get_shape(expr.expr)
|
67 |
+
cumul = list(accumulate([1] + list(reversed(shape_up)), operator.mul))
|
68 |
+
one_index = Add.fromiter(i*s for i, s in zip(reversed(indices), cumul))
|
69 |
+
dest_indices = [None for _ in shape_down]
|
70 |
+
c = 1
|
71 |
+
for i, e in enumerate(reversed(shape_down)):
|
72 |
+
if c == 1:
|
73 |
+
if i == len(shape_down) - 1:
|
74 |
+
dest_indices[i] = one_index
|
75 |
+
else:
|
76 |
+
dest_indices[i] = one_index % e
|
77 |
+
elif i == len(shape_down) - 1:
|
78 |
+
dest_indices[i] = one_index // c
|
79 |
+
else:
|
80 |
+
dest_indices[i] = one_index // c % e
|
81 |
+
c *= e
|
82 |
+
dest_indices.reverse()
|
83 |
+
return self.do_convert(expr.expr, dest_indices)
|
84 |
+
return _get_array_element_or_slice(expr, indices)
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_array_to_matrix.py
ADDED
@@ -0,0 +1,1003 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from collections import defaultdict
|
3 |
+
from typing import Tuple as tTuple, Union as tUnion, FrozenSet, Dict as tDict, List, Optional
|
4 |
+
from functools import singledispatch
|
5 |
+
from itertools import accumulate
|
6 |
+
|
7 |
+
from sympy import MatMul, Basic, Wild, KroneckerProduct
|
8 |
+
from sympy.assumptions.ask import (Q, ask)
|
9 |
+
from sympy.core.mul import Mul
|
10 |
+
from sympy.core.singleton import S
|
11 |
+
from sympy.matrices.expressions.diagonal import DiagMatrix
|
12 |
+
from sympy.matrices.expressions.hadamard import hadamard_product, HadamardPower
|
13 |
+
from sympy.matrices.expressions.matexpr import MatrixExpr
|
14 |
+
from sympy.matrices.expressions.special import (Identity, ZeroMatrix, OneMatrix)
|
15 |
+
from sympy.matrices.expressions.trace import Trace
|
16 |
+
from sympy.matrices.expressions.transpose import Transpose
|
17 |
+
from sympy.combinatorics.permutations import _af_invert, Permutation
|
18 |
+
from sympy.matrices.common import MatrixCommon
|
19 |
+
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
|
20 |
+
from sympy.matrices.expressions.matexpr import MatrixElement
|
21 |
+
from sympy.tensor.array.expressions.array_expressions import PermuteDims, ArrayDiagonal, \
|
22 |
+
ArrayTensorProduct, OneArray, get_rank, _get_subrank, ZeroArray, ArrayContraction, \
|
23 |
+
ArrayAdd, _CodegenArrayAbstract, get_shape, ArrayElementwiseApplyFunc, _ArrayExpr, _EditArrayContraction, _ArgE, \
|
24 |
+
ArrayElement, _array_tensor_product, _array_contraction, _array_diagonal, _array_add, _permute_dims
|
25 |
+
from sympy.tensor.array.expressions.utils import _get_mapping_from_subranks
|
26 |
+
|
27 |
+
|
28 |
+
def _get_candidate_for_matmul_from_contraction(scan_indices: List[Optional[int]], remaining_args: List[_ArgE]) -> tTuple[Optional[_ArgE], bool, int]:
|
29 |
+
|
30 |
+
scan_indices_int: List[int] = [i for i in scan_indices if i is not None]
|
31 |
+
if len(scan_indices_int) == 0:
|
32 |
+
return None, False, -1
|
33 |
+
|
34 |
+
transpose: bool = False
|
35 |
+
candidate: Optional[_ArgE] = None
|
36 |
+
candidate_index: int = -1
|
37 |
+
for arg_with_ind2 in remaining_args:
|
38 |
+
if not isinstance(arg_with_ind2.element, MatrixExpr):
|
39 |
+
continue
|
40 |
+
for index in scan_indices_int:
|
41 |
+
if candidate_index != -1 and candidate_index != index:
|
42 |
+
# A candidate index has already been selected, check
|
43 |
+
# repetitions only for that index:
|
44 |
+
continue
|
45 |
+
if index in arg_with_ind2.indices:
|
46 |
+
if set(arg_with_ind2.indices) == {index}:
|
47 |
+
# Index repeated twice in arg_with_ind2
|
48 |
+
candidate = None
|
49 |
+
break
|
50 |
+
if candidate is None:
|
51 |
+
candidate = arg_with_ind2
|
52 |
+
candidate_index = index
|
53 |
+
transpose = (index == arg_with_ind2.indices[1])
|
54 |
+
else:
|
55 |
+
# Index repeated more than twice, break
|
56 |
+
candidate = None
|
57 |
+
break
|
58 |
+
return candidate, transpose, candidate_index
|
59 |
+
|
60 |
+
|
61 |
+
def _insert_candidate_into_editor(editor: _EditArrayContraction, arg_with_ind: _ArgE, candidate: _ArgE, transpose1: bool, transpose2: bool):
|
62 |
+
other = candidate.element
|
63 |
+
other_index: Optional[int]
|
64 |
+
if transpose2:
|
65 |
+
other = Transpose(other)
|
66 |
+
other_index = candidate.indices[0]
|
67 |
+
else:
|
68 |
+
other_index = candidate.indices[1]
|
69 |
+
new_element = (Transpose(arg_with_ind.element) if transpose1 else arg_with_ind.element) * other
|
70 |
+
editor.args_with_ind.remove(candidate)
|
71 |
+
new_arge = _ArgE(new_element)
|
72 |
+
return new_arge, other_index
|
73 |
+
|
74 |
+
|
75 |
+
def _support_function_tp1_recognize(contraction_indices, args):
|
76 |
+
if len(contraction_indices) == 0:
|
77 |
+
return _a2m_tensor_product(*args)
|
78 |
+
|
79 |
+
ac = _array_contraction(_array_tensor_product(*args), *contraction_indices)
|
80 |
+
editor = _EditArrayContraction(ac)
|
81 |
+
editor.track_permutation_start()
|
82 |
+
|
83 |
+
while True:
|
84 |
+
flag_stop = True
|
85 |
+
for i, arg_with_ind in enumerate(editor.args_with_ind):
|
86 |
+
if not isinstance(arg_with_ind.element, MatrixExpr):
|
87 |
+
continue
|
88 |
+
|
89 |
+
first_index = arg_with_ind.indices[0]
|
90 |
+
second_index = arg_with_ind.indices[1]
|
91 |
+
|
92 |
+
first_frequency = editor.count_args_with_index(first_index)
|
93 |
+
second_frequency = editor.count_args_with_index(second_index)
|
94 |
+
|
95 |
+
if first_index is not None and first_frequency == 1 and first_index == second_index:
|
96 |
+
flag_stop = False
|
97 |
+
arg_with_ind.element = Trace(arg_with_ind.element)._normalize()
|
98 |
+
arg_with_ind.indices = []
|
99 |
+
break
|
100 |
+
|
101 |
+
scan_indices = []
|
102 |
+
if first_frequency == 2:
|
103 |
+
scan_indices.append(first_index)
|
104 |
+
if second_frequency == 2:
|
105 |
+
scan_indices.append(second_index)
|
106 |
+
|
107 |
+
candidate, transpose, found_index = _get_candidate_for_matmul_from_contraction(scan_indices, editor.args_with_ind[i+1:])
|
108 |
+
if candidate is not None:
|
109 |
+
flag_stop = False
|
110 |
+
editor.track_permutation_merge(arg_with_ind, candidate)
|
111 |
+
transpose1 = found_index == first_index
|
112 |
+
new_arge, other_index = _insert_candidate_into_editor(editor, arg_with_ind, candidate, transpose1, transpose)
|
113 |
+
if found_index == first_index:
|
114 |
+
new_arge.indices = [second_index, other_index]
|
115 |
+
else:
|
116 |
+
new_arge.indices = [first_index, other_index]
|
117 |
+
set_indices = set(new_arge.indices)
|
118 |
+
if len(set_indices) == 1 and set_indices != {None}:
|
119 |
+
# This is a trace:
|
120 |
+
new_arge.element = Trace(new_arge.element)._normalize()
|
121 |
+
new_arge.indices = []
|
122 |
+
editor.args_with_ind[i] = new_arge
|
123 |
+
# TODO: is this break necessary?
|
124 |
+
break
|
125 |
+
|
126 |
+
if flag_stop:
|
127 |
+
break
|
128 |
+
|
129 |
+
editor.refresh_indices()
|
130 |
+
return editor.to_array_contraction()
|
131 |
+
|
132 |
+
|
133 |
+
def _find_trivial_matrices_rewrite(expr: ArrayTensorProduct):
|
134 |
+
# If there are matrices of trivial shape in the tensor product (i.e. shape
|
135 |
+
# (1, 1)), try to check if there is a suitable non-trivial MatMul where the
|
136 |
+
# expression can be inserted.
|
137 |
+
|
138 |
+
# For example, if "a" has shape (1, 1) and "b" has shape (k, 1), the
|
139 |
+
# expressions "_array_tensor_product(a, b*b.T)" can be rewritten as
|
140 |
+
# "b*a*b.T"
|
141 |
+
|
142 |
+
trivial_matrices = []
|
143 |
+
pos: Optional[int] = None
|
144 |
+
first: Optional[MatrixExpr] = None
|
145 |
+
second: Optional[MatrixExpr] = None
|
146 |
+
removed: List[int] = []
|
147 |
+
counter: int = 0
|
148 |
+
args: List[Optional[Basic]] = list(expr.args)
|
149 |
+
for i, arg in enumerate(expr.args):
|
150 |
+
if isinstance(arg, MatrixExpr):
|
151 |
+
if arg.shape == (1, 1):
|
152 |
+
trivial_matrices.append(arg)
|
153 |
+
args[i] = None
|
154 |
+
removed.extend([counter, counter+1])
|
155 |
+
elif pos is None and isinstance(arg, MatMul):
|
156 |
+
margs = arg.args
|
157 |
+
for j, e in enumerate(margs):
|
158 |
+
if isinstance(e, MatrixExpr) and e.shape[1] == 1:
|
159 |
+
pos = i
|
160 |
+
first = MatMul.fromiter(margs[:j+1])
|
161 |
+
second = MatMul.fromiter(margs[j+1:])
|
162 |
+
break
|
163 |
+
counter += get_rank(arg)
|
164 |
+
if pos is None:
|
165 |
+
return expr, []
|
166 |
+
args[pos] = (first*MatMul.fromiter(i for i in trivial_matrices)*second).doit()
|
167 |
+
return _array_tensor_product(*[i for i in args if i is not None]), removed
|
168 |
+
|
169 |
+
|
170 |
+
def _find_trivial_kronecker_products_broadcast(expr: ArrayTensorProduct):
|
171 |
+
newargs: List[Basic] = []
|
172 |
+
removed = []
|
173 |
+
count_dims = 0
|
174 |
+
for i, arg in enumerate(expr.args):
|
175 |
+
count_dims += get_rank(arg)
|
176 |
+
shape = get_shape(arg)
|
177 |
+
current_range = [count_dims-i for i in range(len(shape), 0, -1)]
|
178 |
+
if (shape == (1, 1) and len(newargs) > 0 and 1 not in get_shape(newargs[-1]) and
|
179 |
+
isinstance(newargs[-1], MatrixExpr) and isinstance(arg, MatrixExpr)):
|
180 |
+
# KroneckerProduct object allows the trick of broadcasting:
|
181 |
+
newargs[-1] = KroneckerProduct(newargs[-1], arg)
|
182 |
+
removed.extend(current_range)
|
183 |
+
elif 1 not in shape and len(newargs) > 0 and get_shape(newargs[-1]) == (1, 1):
|
184 |
+
# Broadcast:
|
185 |
+
newargs[-1] = KroneckerProduct(newargs[-1], arg)
|
186 |
+
prev_range = [i for i in range(min(current_range)) if i not in removed]
|
187 |
+
removed.extend(prev_range[-2:])
|
188 |
+
else:
|
189 |
+
newargs.append(arg)
|
190 |
+
return _array_tensor_product(*newargs), removed
|
191 |
+
|
192 |
+
|
193 |
+
@singledispatch
|
194 |
+
def _array2matrix(expr):
|
195 |
+
return expr
|
196 |
+
|
197 |
+
|
198 |
+
@_array2matrix.register(ZeroArray)
|
199 |
+
def _(expr: ZeroArray):
|
200 |
+
if get_rank(expr) == 2:
|
201 |
+
return ZeroMatrix(*expr.shape)
|
202 |
+
else:
|
203 |
+
return expr
|
204 |
+
|
205 |
+
|
206 |
+
@_array2matrix.register(ArrayTensorProduct)
|
207 |
+
def _(expr: ArrayTensorProduct):
|
208 |
+
return _a2m_tensor_product(*[_array2matrix(arg) for arg in expr.args])
|
209 |
+
|
210 |
+
|
211 |
+
@_array2matrix.register(ArrayContraction)
|
212 |
+
def _(expr: ArrayContraction):
|
213 |
+
expr = expr.flatten_contraction_of_diagonal()
|
214 |
+
expr = identify_removable_identity_matrices(expr)
|
215 |
+
expr = expr.split_multiple_contractions()
|
216 |
+
expr = identify_hadamard_products(expr)
|
217 |
+
if not isinstance(expr, ArrayContraction):
|
218 |
+
return _array2matrix(expr)
|
219 |
+
subexpr = expr.expr
|
220 |
+
contraction_indices: tTuple[tTuple[int]] = expr.contraction_indices
|
221 |
+
if contraction_indices == ((0,), (1,)) or (
|
222 |
+
contraction_indices == ((0,),) and subexpr.shape[1] == 1
|
223 |
+
) or (
|
224 |
+
contraction_indices == ((1,),) and subexpr.shape[0] == 1
|
225 |
+
):
|
226 |
+
shape = subexpr.shape
|
227 |
+
subexpr = _array2matrix(subexpr)
|
228 |
+
if isinstance(subexpr, MatrixExpr):
|
229 |
+
return OneMatrix(1, shape[0])*subexpr*OneMatrix(shape[1], 1)
|
230 |
+
if isinstance(subexpr, ArrayTensorProduct):
|
231 |
+
newexpr = _array_contraction(_array2matrix(subexpr), *contraction_indices)
|
232 |
+
contraction_indices = newexpr.contraction_indices
|
233 |
+
if any(i > 2 for i in newexpr.subranks):
|
234 |
+
addends = _array_add(*[_a2m_tensor_product(*j) for j in itertools.product(*[i.args if isinstance(i,
|
235 |
+
ArrayAdd) else [i] for i in expr.expr.args])])
|
236 |
+
newexpr = _array_contraction(addends, *contraction_indices)
|
237 |
+
if isinstance(newexpr, ArrayAdd):
|
238 |
+
ret = _array2matrix(newexpr)
|
239 |
+
return ret
|
240 |
+
assert isinstance(newexpr, ArrayContraction)
|
241 |
+
ret = _support_function_tp1_recognize(contraction_indices, list(newexpr.expr.args))
|
242 |
+
return ret
|
243 |
+
elif not isinstance(subexpr, _CodegenArrayAbstract):
|
244 |
+
ret = _array2matrix(subexpr)
|
245 |
+
if isinstance(ret, MatrixExpr):
|
246 |
+
assert expr.contraction_indices == ((0, 1),)
|
247 |
+
return _a2m_trace(ret)
|
248 |
+
else:
|
249 |
+
return _array_contraction(ret, *expr.contraction_indices)
|
250 |
+
|
251 |
+
|
252 |
+
@_array2matrix.register(ArrayDiagonal)
|
253 |
+
def _(expr: ArrayDiagonal):
|
254 |
+
pexpr = _array_diagonal(_array2matrix(expr.expr), *expr.diagonal_indices)
|
255 |
+
pexpr = identify_hadamard_products(pexpr)
|
256 |
+
if isinstance(pexpr, ArrayDiagonal):
|
257 |
+
pexpr = _array_diag2contr_diagmatrix(pexpr)
|
258 |
+
if expr == pexpr:
|
259 |
+
return expr
|
260 |
+
return _array2matrix(pexpr)
|
261 |
+
|
262 |
+
|
263 |
+
@_array2matrix.register(PermuteDims)
|
264 |
+
def _(expr: PermuteDims):
|
265 |
+
if expr.permutation.array_form == [1, 0]:
|
266 |
+
return _a2m_transpose(_array2matrix(expr.expr))
|
267 |
+
elif isinstance(expr.expr, ArrayTensorProduct):
|
268 |
+
ranks = expr.expr.subranks
|
269 |
+
inv_permutation = expr.permutation**(-1)
|
270 |
+
newrange = [inv_permutation(i) for i in range(sum(ranks))]
|
271 |
+
newpos = []
|
272 |
+
counter = 0
|
273 |
+
for rank in ranks:
|
274 |
+
newpos.append(newrange[counter:counter+rank])
|
275 |
+
counter += rank
|
276 |
+
newargs = []
|
277 |
+
newperm = []
|
278 |
+
scalars = []
|
279 |
+
for pos, arg in zip(newpos, expr.expr.args):
|
280 |
+
if len(pos) == 0:
|
281 |
+
scalars.append(_array2matrix(arg))
|
282 |
+
elif pos == sorted(pos):
|
283 |
+
newargs.append((_array2matrix(arg), pos[0]))
|
284 |
+
newperm.extend(pos)
|
285 |
+
elif len(pos) == 2:
|
286 |
+
newargs.append((_a2m_transpose(_array2matrix(arg)), pos[0]))
|
287 |
+
newperm.extend(reversed(pos))
|
288 |
+
else:
|
289 |
+
raise NotImplementedError()
|
290 |
+
newargs = [i[0] for i in newargs]
|
291 |
+
return _permute_dims(_a2m_tensor_product(*scalars, *newargs), _af_invert(newperm))
|
292 |
+
elif isinstance(expr.expr, ArrayContraction):
|
293 |
+
mat_mul_lines = _array2matrix(expr.expr)
|
294 |
+
if not isinstance(mat_mul_lines, ArrayTensorProduct):
|
295 |
+
return _permute_dims(mat_mul_lines, expr.permutation)
|
296 |
+
# TODO: this assumes that all arguments are matrices, it may not be the case:
|
297 |
+
permutation = Permutation(2*len(mat_mul_lines.args)-1)*expr.permutation
|
298 |
+
permuted = [permutation(i) for i in range(2*len(mat_mul_lines.args))]
|
299 |
+
args_array = [None for i in mat_mul_lines.args]
|
300 |
+
for i in range(len(mat_mul_lines.args)):
|
301 |
+
p1 = permuted[2*i]
|
302 |
+
p2 = permuted[2*i+1]
|
303 |
+
if p1 // 2 != p2 // 2:
|
304 |
+
return _permute_dims(mat_mul_lines, permutation)
|
305 |
+
if p1 > p2:
|
306 |
+
args_array[i] = _a2m_transpose(mat_mul_lines.args[p1 // 2])
|
307 |
+
else:
|
308 |
+
args_array[i] = mat_mul_lines.args[p1 // 2]
|
309 |
+
return _a2m_tensor_product(*args_array)
|
310 |
+
else:
|
311 |
+
return expr
|
312 |
+
|
313 |
+
|
314 |
+
@_array2matrix.register(ArrayAdd)
|
315 |
+
def _(expr: ArrayAdd):
|
316 |
+
addends = [_array2matrix(arg) for arg in expr.args]
|
317 |
+
return _a2m_add(*addends)
|
318 |
+
|
319 |
+
|
320 |
+
@_array2matrix.register(ArrayElementwiseApplyFunc)
|
321 |
+
def _(expr: ArrayElementwiseApplyFunc):
|
322 |
+
subexpr = _array2matrix(expr.expr)
|
323 |
+
if isinstance(subexpr, MatrixExpr):
|
324 |
+
if subexpr.shape != (1, 1):
|
325 |
+
d = expr.function.bound_symbols[0]
|
326 |
+
w = Wild("w", exclude=[d])
|
327 |
+
p = Wild("p", exclude=[d])
|
328 |
+
m = expr.function.expr.match(w*d**p)
|
329 |
+
if m is not None:
|
330 |
+
return m[w]*HadamardPower(subexpr, m[p])
|
331 |
+
return ElementwiseApplyFunction(expr.function, subexpr)
|
332 |
+
else:
|
333 |
+
return ArrayElementwiseApplyFunc(expr.function, subexpr)
|
334 |
+
|
335 |
+
|
336 |
+
@_array2matrix.register(ArrayElement)
|
337 |
+
def _(expr: ArrayElement):
|
338 |
+
ret = _array2matrix(expr.name)
|
339 |
+
if isinstance(ret, MatrixExpr):
|
340 |
+
return MatrixElement(ret, *expr.indices)
|
341 |
+
return ArrayElement(ret, expr.indices)
|
342 |
+
|
343 |
+
|
344 |
+
@singledispatch
|
345 |
+
def _remove_trivial_dims(expr):
|
346 |
+
return expr, []
|
347 |
+
|
348 |
+
|
349 |
+
@_remove_trivial_dims.register(ArrayTensorProduct)
|
350 |
+
def _(expr: ArrayTensorProduct):
|
351 |
+
# Recognize expressions like [x, y] with shape (k, 1, k, 1) as `x*y.T`.
|
352 |
+
# The matrix expression has to be equivalent to the tensor product of the
|
353 |
+
# matrices, with trivial dimensions (i.e. dim=1) dropped.
|
354 |
+
# That is, add contractions over trivial dimensions:
|
355 |
+
|
356 |
+
removed = []
|
357 |
+
newargs = []
|
358 |
+
cumul = list(accumulate([0] + [get_rank(arg) for arg in expr.args]))
|
359 |
+
pending = None
|
360 |
+
prev_i = None
|
361 |
+
for i, arg in enumerate(expr.args):
|
362 |
+
current_range = list(range(cumul[i], cumul[i+1]))
|
363 |
+
if isinstance(arg, OneArray):
|
364 |
+
removed.extend(current_range)
|
365 |
+
continue
|
366 |
+
if not isinstance(arg, (MatrixExpr, MatrixCommon)):
|
367 |
+
rarg, rem = _remove_trivial_dims(arg)
|
368 |
+
removed.extend(rem)
|
369 |
+
newargs.append(rarg)
|
370 |
+
continue
|
371 |
+
elif getattr(arg, "is_Identity", False) and arg.shape == (1, 1):
|
372 |
+
if arg.shape == (1, 1):
|
373 |
+
# Ignore identity matrices of shape (1, 1) - they are equivalent to scalar 1.
|
374 |
+
removed.extend(current_range)
|
375 |
+
continue
|
376 |
+
elif arg.shape == (1, 1):
|
377 |
+
arg, _ = _remove_trivial_dims(arg)
|
378 |
+
# Matrix is equivalent to scalar:
|
379 |
+
if len(newargs) == 0:
|
380 |
+
newargs.append(arg)
|
381 |
+
elif 1 in get_shape(newargs[-1]):
|
382 |
+
if newargs[-1].shape[1] == 1:
|
383 |
+
newargs[-1] = newargs[-1]*arg
|
384 |
+
else:
|
385 |
+
newargs[-1] = arg*newargs[-1]
|
386 |
+
removed.extend(current_range)
|
387 |
+
else:
|
388 |
+
newargs.append(arg)
|
389 |
+
elif 1 in arg.shape:
|
390 |
+
k = [i for i in arg.shape if i != 1][0]
|
391 |
+
if pending is None:
|
392 |
+
pending = k
|
393 |
+
prev_i = i
|
394 |
+
newargs.append(arg)
|
395 |
+
elif pending == k:
|
396 |
+
prev = newargs[-1]
|
397 |
+
if prev.shape[0] == 1:
|
398 |
+
d1 = cumul[prev_i]
|
399 |
+
prev = _a2m_transpose(prev)
|
400 |
+
else:
|
401 |
+
d1 = cumul[prev_i] + 1
|
402 |
+
if arg.shape[1] == 1:
|
403 |
+
d2 = cumul[i] + 1
|
404 |
+
arg = _a2m_transpose(arg)
|
405 |
+
else:
|
406 |
+
d2 = cumul[i]
|
407 |
+
newargs[-1] = prev*arg
|
408 |
+
pending = None
|
409 |
+
removed.extend([d1, d2])
|
410 |
+
else:
|
411 |
+
newargs.append(arg)
|
412 |
+
pending = k
|
413 |
+
prev_i = i
|
414 |
+
else:
|
415 |
+
newargs.append(arg)
|
416 |
+
pending = None
|
417 |
+
newexpr, newremoved = _a2m_tensor_product(*newargs), sorted(removed)
|
418 |
+
if isinstance(newexpr, ArrayTensorProduct):
|
419 |
+
newexpr, newremoved2 = _find_trivial_matrices_rewrite(newexpr)
|
420 |
+
newremoved = _combine_removed(-1, newremoved, newremoved2)
|
421 |
+
if isinstance(newexpr, ArrayTensorProduct):
|
422 |
+
newexpr, newremoved2 = _find_trivial_kronecker_products_broadcast(newexpr)
|
423 |
+
newremoved = _combine_removed(-1, newremoved, newremoved2)
|
424 |
+
return newexpr, newremoved
|
425 |
+
|
426 |
+
|
427 |
+
@_remove_trivial_dims.register(ArrayAdd)
|
428 |
+
def _(expr: ArrayAdd):
|
429 |
+
rec = [_remove_trivial_dims(arg) for arg in expr.args]
|
430 |
+
newargs, removed = zip(*rec)
|
431 |
+
if len({get_shape(i) for i in newargs}) > 1:
|
432 |
+
return expr, []
|
433 |
+
if len(removed) == 0:
|
434 |
+
return expr, removed
|
435 |
+
removed1 = removed[0]
|
436 |
+
return _a2m_add(*newargs), removed1
|
437 |
+
|
438 |
+
|
439 |
+
@_remove_trivial_dims.register(PermuteDims)
|
440 |
+
def _(expr: PermuteDims):
|
441 |
+
subexpr, subremoved = _remove_trivial_dims(expr.expr)
|
442 |
+
p = expr.permutation.array_form
|
443 |
+
pinv = _af_invert(expr.permutation.array_form)
|
444 |
+
shift = list(accumulate([1 if i in subremoved else 0 for i in range(len(p))]))
|
445 |
+
premoved = [pinv[i] for i in subremoved]
|
446 |
+
p2 = [e - shift[e] for i, e in enumerate(p) if e not in subremoved]
|
447 |
+
# TODO: check if subremoved should be permuted as well...
|
448 |
+
newexpr = _permute_dims(subexpr, p2)
|
449 |
+
premoved = sorted(premoved)
|
450 |
+
if newexpr != expr:
|
451 |
+
newexpr, removed2 = _remove_trivial_dims(_array2matrix(newexpr))
|
452 |
+
premoved = _combine_removed(-1, premoved, removed2)
|
453 |
+
return newexpr, premoved
|
454 |
+
|
455 |
+
|
456 |
+
@_remove_trivial_dims.register(ArrayContraction)
|
457 |
+
def _(expr: ArrayContraction):
|
458 |
+
new_expr, removed0 = _array_contraction_to_diagonal_multiple_identity(expr)
|
459 |
+
if new_expr != expr:
|
460 |
+
new_expr2, removed1 = _remove_trivial_dims(_array2matrix(new_expr))
|
461 |
+
removed = _combine_removed(-1, removed0, removed1)
|
462 |
+
return new_expr2, removed
|
463 |
+
rank1 = get_rank(expr)
|
464 |
+
expr, removed1 = remove_identity_matrices(expr)
|
465 |
+
if not isinstance(expr, ArrayContraction):
|
466 |
+
expr2, removed2 = _remove_trivial_dims(expr)
|
467 |
+
return expr2, _combine_removed(rank1, removed1, removed2)
|
468 |
+
newexpr, removed2 = _remove_trivial_dims(expr.expr)
|
469 |
+
shifts = list(accumulate([1 if i in removed2 else 0 for i in range(get_rank(expr.expr))]))
|
470 |
+
new_contraction_indices = [tuple(j for j in i if j not in removed2) for i in expr.contraction_indices]
|
471 |
+
# Remove possible empty tuples "()":
|
472 |
+
new_contraction_indices = [i for i in new_contraction_indices if len(i) > 0]
|
473 |
+
contraction_indices_flat = [j for i in expr.contraction_indices for j in i]
|
474 |
+
removed2 = [i for i in removed2 if i not in contraction_indices_flat]
|
475 |
+
new_contraction_indices = [tuple(j - shifts[j] for j in i) for i in new_contraction_indices]
|
476 |
+
# Shift removed2:
|
477 |
+
removed2 = ArrayContraction._push_indices_up(expr.contraction_indices, removed2)
|
478 |
+
removed = _combine_removed(rank1, removed1, removed2)
|
479 |
+
return _array_contraction(newexpr, *new_contraction_indices), list(removed)
|
480 |
+
|
481 |
+
|
482 |
+
def _remove_diagonalized_identity_matrices(expr: ArrayDiagonal):
|
483 |
+
assert isinstance(expr, ArrayDiagonal)
|
484 |
+
editor = _EditArrayContraction(expr)
|
485 |
+
mapping = {i: {j for j in editor.args_with_ind if i in j.indices} for i in range(-1, -1-editor.number_of_diagonal_indices, -1)}
|
486 |
+
removed = []
|
487 |
+
counter: int = 0
|
488 |
+
for i, arg_with_ind in enumerate(editor.args_with_ind):
|
489 |
+
counter += len(arg_with_ind.indices)
|
490 |
+
if isinstance(arg_with_ind.element, Identity):
|
491 |
+
if None in arg_with_ind.indices and any(i is not None and (i < 0) == True for i in arg_with_ind.indices):
|
492 |
+
diag_ind = [j for j in arg_with_ind.indices if j is not None][0]
|
493 |
+
other = [j for j in mapping[diag_ind] if j != arg_with_ind][0]
|
494 |
+
if not isinstance(other.element, MatrixExpr):
|
495 |
+
continue
|
496 |
+
if 1 not in other.element.shape:
|
497 |
+
continue
|
498 |
+
if None not in other.indices:
|
499 |
+
continue
|
500 |
+
editor.args_with_ind[i].element = None
|
501 |
+
none_index = other.indices.index(None)
|
502 |
+
other.element = DiagMatrix(other.element)
|
503 |
+
other_range = editor.get_absolute_range(other)
|
504 |
+
removed.extend([other_range[0] + none_index])
|
505 |
+
editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
|
506 |
+
removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, get_rank(expr.expr))
|
507 |
+
return editor.to_array_contraction(), removed
|
508 |
+
|
509 |
+
|
510 |
+
@_remove_trivial_dims.register(ArrayDiagonal)
|
511 |
+
def _(expr: ArrayDiagonal):
|
512 |
+
newexpr, removed = _remove_trivial_dims(expr.expr)
|
513 |
+
shifts = list(accumulate([0] + [1 if i in removed else 0 for i in range(get_rank(expr.expr))]))
|
514 |
+
new_diag_indices_map = {i: tuple(j for j in i if j not in removed) for i in expr.diagonal_indices}
|
515 |
+
for old_diag_tuple, new_diag_tuple in new_diag_indices_map.items():
|
516 |
+
if len(new_diag_tuple) == 1:
|
517 |
+
removed = [i for i in removed if i not in old_diag_tuple]
|
518 |
+
new_diag_indices = [tuple(j - shifts[j] for j in i) for i in new_diag_indices_map.values()]
|
519 |
+
rank = get_rank(expr.expr)
|
520 |
+
removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, rank)
|
521 |
+
removed = sorted(set(removed))
|
522 |
+
# If there are single axes to diagonalize remaining, it means that their
|
523 |
+
# corresponding dimension has been removed, they no longer need diagonalization:
|
524 |
+
new_diag_indices = [i for i in new_diag_indices if len(i) > 0]
|
525 |
+
if len(new_diag_indices) > 0:
|
526 |
+
newexpr2 = _array_diagonal(newexpr, *new_diag_indices, allow_trivial_diags=True)
|
527 |
+
else:
|
528 |
+
newexpr2 = newexpr
|
529 |
+
if isinstance(newexpr2, ArrayDiagonal):
|
530 |
+
newexpr3, removed2 = _remove_diagonalized_identity_matrices(newexpr2)
|
531 |
+
removed = _combine_removed(-1, removed, removed2)
|
532 |
+
return newexpr3, removed
|
533 |
+
else:
|
534 |
+
return newexpr2, removed
|
535 |
+
|
536 |
+
|
537 |
+
@_remove_trivial_dims.register(ElementwiseApplyFunction)
|
538 |
+
def _(expr: ElementwiseApplyFunction):
|
539 |
+
subexpr, removed = _remove_trivial_dims(expr.expr)
|
540 |
+
if subexpr.shape == (1, 1):
|
541 |
+
# TODO: move this to ElementwiseApplyFunction
|
542 |
+
return expr.function(subexpr), removed + [0, 1]
|
543 |
+
return ElementwiseApplyFunction(expr.function, subexpr), []
|
544 |
+
|
545 |
+
|
546 |
+
@_remove_trivial_dims.register(ArrayElementwiseApplyFunc)
|
547 |
+
def _(expr: ArrayElementwiseApplyFunc):
|
548 |
+
subexpr, removed = _remove_trivial_dims(expr.expr)
|
549 |
+
return ArrayElementwiseApplyFunc(expr.function, subexpr), removed
|
550 |
+
|
551 |
+
|
552 |
+
def convert_array_to_matrix(expr):
|
553 |
+
r"""
|
554 |
+
Recognize matrix expressions in codegen objects.
|
555 |
+
|
556 |
+
If more than one matrix multiplication line have been detected, return a
|
557 |
+
list with the matrix expressions.
|
558 |
+
|
559 |
+
Examples
|
560 |
+
========
|
561 |
+
|
562 |
+
>>> from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
|
563 |
+
>>> from sympy.tensor.array import tensorcontraction, tensorproduct
|
564 |
+
>>> from sympy import MatrixSymbol, Sum
|
565 |
+
>>> from sympy.abc import i, j, k, l, N
|
566 |
+
>>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
567 |
+
>>> from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
|
568 |
+
>>> A = MatrixSymbol("A", N, N)
|
569 |
+
>>> B = MatrixSymbol("B", N, N)
|
570 |
+
>>> C = MatrixSymbol("C", N, N)
|
571 |
+
>>> D = MatrixSymbol("D", N, N)
|
572 |
+
|
573 |
+
>>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
|
574 |
+
>>> cg = convert_indexed_to_array(expr)
|
575 |
+
>>> convert_array_to_matrix(cg)
|
576 |
+
A*B
|
577 |
+
>>> cg = convert_indexed_to_array(expr, first_indices=[k])
|
578 |
+
>>> convert_array_to_matrix(cg)
|
579 |
+
B.T*A.T
|
580 |
+
|
581 |
+
Transposition is detected:
|
582 |
+
|
583 |
+
>>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
|
584 |
+
>>> cg = convert_indexed_to_array(expr)
|
585 |
+
>>> convert_array_to_matrix(cg)
|
586 |
+
A.T*B
|
587 |
+
>>> cg = convert_indexed_to_array(expr, first_indices=[k])
|
588 |
+
>>> convert_array_to_matrix(cg)
|
589 |
+
B.T*A
|
590 |
+
|
591 |
+
Detect the trace:
|
592 |
+
|
593 |
+
>>> expr = Sum(A[i, i], (i, 0, N-1))
|
594 |
+
>>> cg = convert_indexed_to_array(expr)
|
595 |
+
>>> convert_array_to_matrix(cg)
|
596 |
+
Trace(A)
|
597 |
+
|
598 |
+
Recognize some more complex traces:
|
599 |
+
|
600 |
+
>>> expr = Sum(A[i, j]*B[j, i], (i, 0, N-1), (j, 0, N-1))
|
601 |
+
>>> cg = convert_indexed_to_array(expr)
|
602 |
+
>>> convert_array_to_matrix(cg)
|
603 |
+
Trace(A*B)
|
604 |
+
|
605 |
+
More complicated expressions:
|
606 |
+
|
607 |
+
>>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
|
608 |
+
>>> cg = convert_indexed_to_array(expr)
|
609 |
+
>>> convert_array_to_matrix(cg)
|
610 |
+
A*B.T*A.T
|
611 |
+
|
612 |
+
Expressions constructed from matrix expressions do not contain literal
|
613 |
+
indices, the positions of free indices are returned instead:
|
614 |
+
|
615 |
+
>>> expr = A*B
|
616 |
+
>>> cg = convert_matrix_to_array(expr)
|
617 |
+
>>> convert_array_to_matrix(cg)
|
618 |
+
A*B
|
619 |
+
|
620 |
+
If more than one line of matrix multiplications is detected, return
|
621 |
+
separate matrix multiplication factors embedded in a tensor product object:
|
622 |
+
|
623 |
+
>>> cg = tensorcontraction(tensorproduct(A, B, C, D), (1, 2), (5, 6))
|
624 |
+
>>> convert_array_to_matrix(cg)
|
625 |
+
ArrayTensorProduct(A*B, C*D)
|
626 |
+
|
627 |
+
The two lines have free indices at axes 0, 3 and 4, 7, respectively.
|
628 |
+
"""
|
629 |
+
rec = _array2matrix(expr)
|
630 |
+
rec, removed = _remove_trivial_dims(rec)
|
631 |
+
return rec
|
632 |
+
|
633 |
+
|
634 |
+
def _array_diag2contr_diagmatrix(expr: ArrayDiagonal):
|
635 |
+
if isinstance(expr.expr, ArrayTensorProduct):
|
636 |
+
args = list(expr.expr.args)
|
637 |
+
diag_indices = list(expr.diagonal_indices)
|
638 |
+
mapping = _get_mapping_from_subranks([_get_subrank(arg) for arg in args])
|
639 |
+
tuple_links = [[mapping[j] for j in i] for i in diag_indices]
|
640 |
+
contr_indices = []
|
641 |
+
total_rank = get_rank(expr)
|
642 |
+
replaced = [False for arg in args]
|
643 |
+
for i, (abs_pos, rel_pos) in enumerate(zip(diag_indices, tuple_links)):
|
644 |
+
if len(abs_pos) != 2:
|
645 |
+
continue
|
646 |
+
(pos1_outer, pos1_inner), (pos2_outer, pos2_inner) = rel_pos
|
647 |
+
arg1 = args[pos1_outer]
|
648 |
+
arg2 = args[pos2_outer]
|
649 |
+
if get_rank(arg1) != 2 or get_rank(arg2) != 2:
|
650 |
+
if replaced[pos1_outer]:
|
651 |
+
diag_indices[i] = None
|
652 |
+
if replaced[pos2_outer]:
|
653 |
+
diag_indices[i] = None
|
654 |
+
continue
|
655 |
+
pos1_in2 = 1 - pos1_inner
|
656 |
+
pos2_in2 = 1 - pos2_inner
|
657 |
+
if arg1.shape[pos1_in2] == 1:
|
658 |
+
if arg1.shape[pos1_inner] != 1:
|
659 |
+
darg1 = DiagMatrix(arg1)
|
660 |
+
else:
|
661 |
+
darg1 = arg1
|
662 |
+
args.append(darg1)
|
663 |
+
contr_indices.append(((pos2_outer, pos2_inner), (len(args)-1, pos1_inner)))
|
664 |
+
total_rank += 1
|
665 |
+
diag_indices[i] = None
|
666 |
+
args[pos1_outer] = OneArray(arg1.shape[pos1_in2])
|
667 |
+
replaced[pos1_outer] = True
|
668 |
+
elif arg2.shape[pos2_in2] == 1:
|
669 |
+
if arg2.shape[pos2_inner] != 1:
|
670 |
+
darg2 = DiagMatrix(arg2)
|
671 |
+
else:
|
672 |
+
darg2 = arg2
|
673 |
+
args.append(darg2)
|
674 |
+
contr_indices.append(((pos1_outer, pos1_inner), (len(args)-1, pos2_inner)))
|
675 |
+
total_rank += 1
|
676 |
+
diag_indices[i] = None
|
677 |
+
args[pos2_outer] = OneArray(arg2.shape[pos2_in2])
|
678 |
+
replaced[pos2_outer] = True
|
679 |
+
diag_indices_new = [i for i in diag_indices if i is not None]
|
680 |
+
cumul = list(accumulate([0] + [get_rank(arg) for arg in args]))
|
681 |
+
contr_indices2 = [tuple(cumul[a] + b for a, b in i) for i in contr_indices]
|
682 |
+
tc = _array_contraction(
|
683 |
+
_array_tensor_product(*args), *contr_indices2
|
684 |
+
)
|
685 |
+
td = _array_diagonal(tc, *diag_indices_new)
|
686 |
+
return td
|
687 |
+
return expr
|
688 |
+
|
689 |
+
|
690 |
+
def _a2m_mul(*args):
|
691 |
+
if not any(isinstance(i, _CodegenArrayAbstract) for i in args):
|
692 |
+
from sympy.matrices.expressions.matmul import MatMul
|
693 |
+
return MatMul(*args).doit()
|
694 |
+
else:
|
695 |
+
return _array_contraction(
|
696 |
+
_array_tensor_product(*args),
|
697 |
+
*[(2*i-1, 2*i) for i in range(1, len(args))]
|
698 |
+
)
|
699 |
+
|
700 |
+
|
701 |
+
def _a2m_tensor_product(*args):
|
702 |
+
scalars = []
|
703 |
+
arrays = []
|
704 |
+
for arg in args:
|
705 |
+
if isinstance(arg, (MatrixExpr, _ArrayExpr, _CodegenArrayAbstract)):
|
706 |
+
arrays.append(arg)
|
707 |
+
else:
|
708 |
+
scalars.append(arg)
|
709 |
+
scalar = Mul.fromiter(scalars)
|
710 |
+
if len(arrays) == 0:
|
711 |
+
return scalar
|
712 |
+
if scalar != 1:
|
713 |
+
if isinstance(arrays[0], _CodegenArrayAbstract):
|
714 |
+
arrays = [scalar] + arrays
|
715 |
+
else:
|
716 |
+
arrays[0] *= scalar
|
717 |
+
return _array_tensor_product(*arrays)
|
718 |
+
|
719 |
+
|
720 |
+
def _a2m_add(*args):
|
721 |
+
if not any(isinstance(i, _CodegenArrayAbstract) for i in args):
|
722 |
+
from sympy.matrices.expressions.matadd import MatAdd
|
723 |
+
return MatAdd(*args).doit()
|
724 |
+
else:
|
725 |
+
return _array_add(*args)
|
726 |
+
|
727 |
+
|
728 |
+
def _a2m_trace(arg):
|
729 |
+
if isinstance(arg, _CodegenArrayAbstract):
|
730 |
+
return _array_contraction(arg, (0, 1))
|
731 |
+
else:
|
732 |
+
from sympy.matrices.expressions.trace import Trace
|
733 |
+
return Trace(arg)
|
734 |
+
|
735 |
+
|
736 |
+
def _a2m_transpose(arg):
|
737 |
+
if isinstance(arg, _CodegenArrayAbstract):
|
738 |
+
return _permute_dims(arg, [1, 0])
|
739 |
+
else:
|
740 |
+
from sympy.matrices.expressions.transpose import Transpose
|
741 |
+
return Transpose(arg).doit()
|
742 |
+
|
743 |
+
|
744 |
+
def identify_hadamard_products(expr: tUnion[ArrayContraction, ArrayDiagonal]):
|
745 |
+
|
746 |
+
editor: _EditArrayContraction = _EditArrayContraction(expr)
|
747 |
+
|
748 |
+
map_contr_to_args: tDict[FrozenSet, List[_ArgE]] = defaultdict(list)
|
749 |
+
map_ind_to_inds: tDict[Optional[int], int] = defaultdict(int)
|
750 |
+
for arg_with_ind in editor.args_with_ind:
|
751 |
+
for ind in arg_with_ind.indices:
|
752 |
+
map_ind_to_inds[ind] += 1
|
753 |
+
if None in arg_with_ind.indices:
|
754 |
+
continue
|
755 |
+
map_contr_to_args[frozenset(arg_with_ind.indices)].append(arg_with_ind)
|
756 |
+
|
757 |
+
k: FrozenSet[int]
|
758 |
+
v: List[_ArgE]
|
759 |
+
for k, v in map_contr_to_args.items():
|
760 |
+
make_trace: bool = False
|
761 |
+
if len(k) == 1 and next(iter(k)) >= 0 and sum([next(iter(k)) in i for i in map_contr_to_args]) == 1:
|
762 |
+
# This is a trace: the arguments are fully contracted with only one
|
763 |
+
# index, and the index isn't used anywhere else:
|
764 |
+
make_trace = True
|
765 |
+
first_element = S.One
|
766 |
+
elif len(k) != 2:
|
767 |
+
# Hadamard product only defined for matrices:
|
768 |
+
continue
|
769 |
+
if len(v) == 1:
|
770 |
+
# Hadamard product with a single argument makes no sense:
|
771 |
+
continue
|
772 |
+
for ind in k:
|
773 |
+
if map_ind_to_inds[ind] <= 2:
|
774 |
+
# There is no other contraction, skip:
|
775 |
+
continue
|
776 |
+
|
777 |
+
def check_transpose(x):
|
778 |
+
x = [i if i >= 0 else -1-i for i in x]
|
779 |
+
return x == sorted(x)
|
780 |
+
|
781 |
+
# Check if expression is a trace:
|
782 |
+
if all([map_ind_to_inds[j] == len(v) and j >= 0 for j in k]) and all([j >= 0 for j in k]):
|
783 |
+
# This is a trace
|
784 |
+
make_trace = True
|
785 |
+
first_element = v[0].element
|
786 |
+
if not check_transpose(v[0].indices):
|
787 |
+
first_element = first_element.T
|
788 |
+
hadamard_factors = v[1:]
|
789 |
+
else:
|
790 |
+
hadamard_factors = v
|
791 |
+
|
792 |
+
# This is a Hadamard product:
|
793 |
+
|
794 |
+
hp = hadamard_product(*[i.element if check_transpose(i.indices) else Transpose(i.element) for i in hadamard_factors])
|
795 |
+
hp_indices = v[0].indices
|
796 |
+
if not check_transpose(hadamard_factors[0].indices):
|
797 |
+
hp_indices = list(reversed(hp_indices))
|
798 |
+
if make_trace:
|
799 |
+
hp = Trace(first_element*hp.T)._normalize()
|
800 |
+
hp_indices = []
|
801 |
+
editor.insert_after(v[0], _ArgE(hp, hp_indices))
|
802 |
+
for i in v:
|
803 |
+
editor.args_with_ind.remove(i)
|
804 |
+
|
805 |
+
return editor.to_array_contraction()
|
806 |
+
|
807 |
+
|
808 |
+
def identify_removable_identity_matrices(expr):
|
809 |
+
editor = _EditArrayContraction(expr)
|
810 |
+
|
811 |
+
flag = True
|
812 |
+
while flag:
|
813 |
+
flag = False
|
814 |
+
for arg_with_ind in editor.args_with_ind:
|
815 |
+
if isinstance(arg_with_ind.element, Identity):
|
816 |
+
k = arg_with_ind.element.shape[0]
|
817 |
+
# Candidate for removal:
|
818 |
+
if arg_with_ind.indices == [None, None]:
|
819 |
+
# Free identity matrix, will be cleared by _remove_trivial_dims:
|
820 |
+
continue
|
821 |
+
elif None in arg_with_ind.indices:
|
822 |
+
ind = [j for j in arg_with_ind.indices if j is not None][0]
|
823 |
+
counted = editor.count_args_with_index(ind)
|
824 |
+
if counted == 1:
|
825 |
+
# Identity matrix contracted only on one index with itself,
|
826 |
+
# transform to a OneArray(k) element:
|
827 |
+
editor.insert_after(arg_with_ind, OneArray(k))
|
828 |
+
editor.args_with_ind.remove(arg_with_ind)
|
829 |
+
flag = True
|
830 |
+
break
|
831 |
+
elif counted > 2:
|
832 |
+
# Case counted = 2 is a matrix multiplication by identity matrix, skip it.
|
833 |
+
# Case counted > 2 is a multiple contraction,
|
834 |
+
# this is a case where the contraction becomes a diagonalization if the
|
835 |
+
# identity matrix is dropped.
|
836 |
+
continue
|
837 |
+
elif arg_with_ind.indices[0] == arg_with_ind.indices[1]:
|
838 |
+
ind = arg_with_ind.indices[0]
|
839 |
+
counted = editor.count_args_with_index(ind)
|
840 |
+
if counted > 1:
|
841 |
+
editor.args_with_ind.remove(arg_with_ind)
|
842 |
+
flag = True
|
843 |
+
break
|
844 |
+
else:
|
845 |
+
# This is a trace, skip it as it will be recognized somewhere else:
|
846 |
+
pass
|
847 |
+
elif ask(Q.diagonal(arg_with_ind.element)):
|
848 |
+
if arg_with_ind.indices == [None, None]:
|
849 |
+
continue
|
850 |
+
elif None in arg_with_ind.indices:
|
851 |
+
pass
|
852 |
+
elif arg_with_ind.indices[0] == arg_with_ind.indices[1]:
|
853 |
+
ind = arg_with_ind.indices[0]
|
854 |
+
counted = editor.count_args_with_index(ind)
|
855 |
+
if counted == 3:
|
856 |
+
# A_ai B_bi D_ii ==> A_ai D_ij B_bj
|
857 |
+
ind_new = editor.get_new_contraction_index()
|
858 |
+
other_args = [j for j in editor.args_with_ind if j != arg_with_ind]
|
859 |
+
other_args[1].indices = [ind_new if j == ind else j for j in other_args[1].indices]
|
860 |
+
arg_with_ind.indices = [ind, ind_new]
|
861 |
+
flag = True
|
862 |
+
break
|
863 |
+
|
864 |
+
return editor.to_array_contraction()
|
865 |
+
|
866 |
+
|
867 |
+
def remove_identity_matrices(expr: ArrayContraction):
|
868 |
+
editor = _EditArrayContraction(expr)
|
869 |
+
removed: List[int] = []
|
870 |
+
|
871 |
+
permutation_map = {}
|
872 |
+
|
873 |
+
free_indices = list(accumulate([0] + [sum([i is None for i in arg.indices]) for arg in editor.args_with_ind]))
|
874 |
+
free_map = {k: v for k, v in zip(editor.args_with_ind, free_indices[:-1])}
|
875 |
+
|
876 |
+
update_pairs = {}
|
877 |
+
|
878 |
+
for ind in range(editor.number_of_contraction_indices):
|
879 |
+
args = editor.get_args_with_index(ind)
|
880 |
+
identity_matrices = [i for i in args if isinstance(i.element, Identity)]
|
881 |
+
number_identity_matrices = len(identity_matrices)
|
882 |
+
# If the contraction involves a non-identity matrix and multiple identity matrices:
|
883 |
+
if number_identity_matrices != len(args) - 1 or number_identity_matrices == 0:
|
884 |
+
continue
|
885 |
+
# Get the non-identity element:
|
886 |
+
non_identity = [i for i in args if not isinstance(i.element, Identity)][0]
|
887 |
+
# Check that all identity matrices have at least one free index
|
888 |
+
# (otherwise they would be contractions to some other elements)
|
889 |
+
if any([None not in i.indices for i in identity_matrices]):
|
890 |
+
continue
|
891 |
+
# Mark the identity matrices for removal:
|
892 |
+
for i in identity_matrices:
|
893 |
+
i.element = None
|
894 |
+
removed.extend(range(free_map[i], free_map[i] + len([j for j in i.indices if j is None])))
|
895 |
+
last_removed = removed.pop(-1)
|
896 |
+
update_pairs[last_removed, ind] = non_identity.indices[:]
|
897 |
+
# Remove the indices from the non-identity matrix, as the contraction
|
898 |
+
# no longer exists:
|
899 |
+
non_identity.indices = [None if i == ind else i for i in non_identity.indices]
|
900 |
+
|
901 |
+
removed.sort()
|
902 |
+
|
903 |
+
shifts = list(accumulate([1 if i in removed else 0 for i in range(get_rank(expr))]))
|
904 |
+
for (last_removed, ind), non_identity_indices in update_pairs.items():
|
905 |
+
pos = [free_map[non_identity] + i for i, e in enumerate(non_identity_indices) if e == ind]
|
906 |
+
assert len(pos) == 1
|
907 |
+
for j in pos:
|
908 |
+
permutation_map[j] = last_removed
|
909 |
+
|
910 |
+
editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
|
911 |
+
ret_expr = editor.to_array_contraction()
|
912 |
+
permutation = []
|
913 |
+
counter = 0
|
914 |
+
counter2 = 0
|
915 |
+
for j in range(get_rank(expr)):
|
916 |
+
if j in removed:
|
917 |
+
continue
|
918 |
+
if counter2 in permutation_map:
|
919 |
+
target = permutation_map[counter2]
|
920 |
+
permutation.append(target - shifts[target])
|
921 |
+
counter2 += 1
|
922 |
+
else:
|
923 |
+
while counter in permutation_map.values():
|
924 |
+
counter += 1
|
925 |
+
permutation.append(counter)
|
926 |
+
counter += 1
|
927 |
+
counter2 += 1
|
928 |
+
ret_expr2 = _permute_dims(ret_expr, _af_invert(permutation))
|
929 |
+
return ret_expr2, removed
|
930 |
+
|
931 |
+
|
932 |
+
def _combine_removed(dim: int, removed1: List[int], removed2: List[int]) -> List[int]:
|
933 |
+
# Concatenate two axis removal operations as performed by
|
934 |
+
# _remove_trivial_dims,
|
935 |
+
removed1 = sorted(removed1)
|
936 |
+
removed2 = sorted(removed2)
|
937 |
+
i = 0
|
938 |
+
j = 0
|
939 |
+
removed = []
|
940 |
+
while True:
|
941 |
+
if j >= len(removed2):
|
942 |
+
while i < len(removed1):
|
943 |
+
removed.append(removed1[i])
|
944 |
+
i += 1
|
945 |
+
break
|
946 |
+
elif i < len(removed1) and removed1[i] <= i + removed2[j]:
|
947 |
+
removed.append(removed1[i])
|
948 |
+
i += 1
|
949 |
+
else:
|
950 |
+
removed.append(i + removed2[j])
|
951 |
+
j += 1
|
952 |
+
return removed
|
953 |
+
|
954 |
+
|
955 |
+
def _array_contraction_to_diagonal_multiple_identity(expr: ArrayContraction):
|
956 |
+
editor = _EditArrayContraction(expr)
|
957 |
+
editor.track_permutation_start()
|
958 |
+
removed: List[int] = []
|
959 |
+
diag_index_counter: int = 0
|
960 |
+
for i in range(editor.number_of_contraction_indices):
|
961 |
+
identities = []
|
962 |
+
args = []
|
963 |
+
for j, arg in enumerate(editor.args_with_ind):
|
964 |
+
if i not in arg.indices:
|
965 |
+
continue
|
966 |
+
if isinstance(arg.element, Identity):
|
967 |
+
identities.append(arg)
|
968 |
+
else:
|
969 |
+
args.append(arg)
|
970 |
+
if len(identities) == 0:
|
971 |
+
continue
|
972 |
+
if len(args) + len(identities) < 3:
|
973 |
+
continue
|
974 |
+
new_diag_ind = -1 - diag_index_counter
|
975 |
+
diag_index_counter += 1
|
976 |
+
# Variable "flag" to control whether to skip this contraction set:
|
977 |
+
flag: bool = True
|
978 |
+
for i1, id1 in enumerate(identities):
|
979 |
+
if None not in id1.indices:
|
980 |
+
flag = True
|
981 |
+
break
|
982 |
+
free_pos = list(range(*editor.get_absolute_free_range(id1)))[0]
|
983 |
+
editor._track_permutation[-1].append(free_pos) # type: ignore
|
984 |
+
id1.element = None
|
985 |
+
flag = False
|
986 |
+
break
|
987 |
+
if flag:
|
988 |
+
continue
|
989 |
+
for arg in identities[:i1] + identities[i1+1:]:
|
990 |
+
arg.element = None
|
991 |
+
removed.extend(range(*editor.get_absolute_free_range(arg)))
|
992 |
+
for arg in args:
|
993 |
+
arg.indices = [new_diag_ind if j == i else j for j in arg.indices]
|
994 |
+
for j, e in enumerate(editor.args_with_ind):
|
995 |
+
if e.element is None:
|
996 |
+
editor._track_permutation[j] = None # type: ignore
|
997 |
+
editor._track_permutation = [i for i in editor._track_permutation if i is not None] # type: ignore
|
998 |
+
# Renumber permutation array form in order to deal with deleted positions:
|
999 |
+
remap = {e: i for i, e in enumerate(sorted({k for j in editor._track_permutation for k in j}))}
|
1000 |
+
editor._track_permutation = [[remap[j] for j in i] for i in editor._track_permutation]
|
1001 |
+
editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
|
1002 |
+
new_expr = editor.to_array_contraction()
|
1003 |
+
return new_expr, removed
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_indexed_to_array.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
from sympy import Function
|
4 |
+
from sympy.combinatorics.permutations import _af_invert
|
5 |
+
from sympy.concrete.summations import Sum
|
6 |
+
from sympy.core.add import Add
|
7 |
+
from sympy.core.mul import Mul
|
8 |
+
from sympy.core.numbers import Integer
|
9 |
+
from sympy.core.power import Pow
|
10 |
+
from sympy.core.sorting import default_sort_key
|
11 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
12 |
+
from sympy.tensor.array.expressions import ArrayElementwiseApplyFunc
|
13 |
+
from sympy.tensor.indexed import (Indexed, IndexedBase)
|
14 |
+
from sympy.combinatorics import Permutation
|
15 |
+
from sympy.matrices.expressions.matexpr import MatrixElement
|
16 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal, \
|
17 |
+
get_shape, ArrayElement, _array_tensor_product, _array_diagonal, _array_contraction, _array_add, \
|
18 |
+
_permute_dims, OneArray, ArrayAdd
|
19 |
+
from sympy.tensor.array.expressions.utils import _get_argindex, _get_diagonal_indices
|
20 |
+
|
21 |
+
|
22 |
+
def convert_indexed_to_array(expr, first_indices=None):
|
23 |
+
r"""
|
24 |
+
Parse indexed expression into a form useful for code generation.
|
25 |
+
|
26 |
+
Examples
|
27 |
+
========
|
28 |
+
|
29 |
+
>>> from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
|
30 |
+
>>> from sympy import MatrixSymbol, Sum, symbols
|
31 |
+
|
32 |
+
>>> i, j, k, d = symbols("i j k d")
|
33 |
+
>>> M = MatrixSymbol("M", d, d)
|
34 |
+
>>> N = MatrixSymbol("N", d, d)
|
35 |
+
|
36 |
+
Recognize the trace in summation form:
|
37 |
+
|
38 |
+
>>> expr = Sum(M[i, i], (i, 0, d-1))
|
39 |
+
>>> convert_indexed_to_array(expr)
|
40 |
+
ArrayContraction(M, (0, 1))
|
41 |
+
|
42 |
+
Recognize the extraction of the diagonal by using the same index `i` on
|
43 |
+
both axes of the matrix:
|
44 |
+
|
45 |
+
>>> expr = M[i, i]
|
46 |
+
>>> convert_indexed_to_array(expr)
|
47 |
+
ArrayDiagonal(M, (0, 1))
|
48 |
+
|
49 |
+
This function can help perform the transformation expressed in two
|
50 |
+
different mathematical notations as:
|
51 |
+
|
52 |
+
`\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}`
|
53 |
+
|
54 |
+
Recognize the matrix multiplication in summation form:
|
55 |
+
|
56 |
+
>>> expr = Sum(M[i, j]*N[j, k], (j, 0, d-1))
|
57 |
+
>>> convert_indexed_to_array(expr)
|
58 |
+
ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
|
59 |
+
|
60 |
+
Specify that ``k`` has to be the starting index:
|
61 |
+
|
62 |
+
>>> convert_indexed_to_array(expr, first_indices=[k])
|
63 |
+
ArrayContraction(ArrayTensorProduct(N, M), (0, 3))
|
64 |
+
"""
|
65 |
+
|
66 |
+
result, indices = _convert_indexed_to_array(expr)
|
67 |
+
|
68 |
+
if any(isinstance(i, (int, Integer)) for i in indices):
|
69 |
+
result = ArrayElement(result, indices)
|
70 |
+
indices = []
|
71 |
+
|
72 |
+
if not first_indices:
|
73 |
+
return result
|
74 |
+
|
75 |
+
def _check_is_in(elem, indices):
|
76 |
+
if elem in indices:
|
77 |
+
return True
|
78 |
+
if any(elem in i for i in indices if isinstance(i, frozenset)):
|
79 |
+
return True
|
80 |
+
return False
|
81 |
+
|
82 |
+
repl = {j: i for i in indices if isinstance(i, frozenset) for j in i}
|
83 |
+
first_indices = [repl.get(i, i) for i in first_indices]
|
84 |
+
for i in first_indices:
|
85 |
+
if not _check_is_in(i, indices):
|
86 |
+
first_indices.remove(i)
|
87 |
+
first_indices.extend([i for i in indices if not _check_is_in(i, first_indices)])
|
88 |
+
|
89 |
+
def _get_pos(elem, indices):
|
90 |
+
if elem in indices:
|
91 |
+
return indices.index(elem)
|
92 |
+
for i, e in enumerate(indices):
|
93 |
+
if not isinstance(e, frozenset):
|
94 |
+
continue
|
95 |
+
if elem in e:
|
96 |
+
return i
|
97 |
+
raise ValueError("not found")
|
98 |
+
|
99 |
+
permutation = _af_invert([_get_pos(i, first_indices) for i in indices])
|
100 |
+
if isinstance(result, ArrayAdd):
|
101 |
+
return _array_add(*[_permute_dims(arg, permutation) for arg in result.args])
|
102 |
+
else:
|
103 |
+
return _permute_dims(result, permutation)
|
104 |
+
|
105 |
+
|
106 |
+
def _convert_indexed_to_array(expr):
|
107 |
+
if isinstance(expr, Sum):
|
108 |
+
function = expr.function
|
109 |
+
summation_indices = expr.variables
|
110 |
+
subexpr, subindices = _convert_indexed_to_array(function)
|
111 |
+
subindicessets = {j: i for i in subindices if isinstance(i, frozenset) for j in i}
|
112 |
+
summation_indices = sorted({subindicessets.get(i, i) for i in summation_indices}, key=default_sort_key)
|
113 |
+
# TODO: check that Kronecker delta is only contracted to one other element:
|
114 |
+
kronecker_indices = set()
|
115 |
+
if isinstance(function, Mul):
|
116 |
+
for arg in function.args:
|
117 |
+
if not isinstance(arg, KroneckerDelta):
|
118 |
+
continue
|
119 |
+
arg_indices = sorted(set(arg.indices), key=default_sort_key)
|
120 |
+
if len(arg_indices) == 2:
|
121 |
+
kronecker_indices.update(arg_indices)
|
122 |
+
kronecker_indices = sorted(kronecker_indices, key=default_sort_key)
|
123 |
+
# Check dimensional consistency:
|
124 |
+
shape = get_shape(subexpr)
|
125 |
+
if shape:
|
126 |
+
for ind, istart, iend in expr.limits:
|
127 |
+
i = _get_argindex(subindices, ind)
|
128 |
+
if istart != 0 or iend+1 != shape[i]:
|
129 |
+
raise ValueError("summation index and array dimension mismatch: %s" % ind)
|
130 |
+
contraction_indices = []
|
131 |
+
subindices = list(subindices)
|
132 |
+
if isinstance(subexpr, ArrayDiagonal):
|
133 |
+
diagonal_indices = list(subexpr.diagonal_indices)
|
134 |
+
dindices = subindices[-len(diagonal_indices):]
|
135 |
+
subindices = subindices[:-len(diagonal_indices)]
|
136 |
+
for index in summation_indices:
|
137 |
+
if index in dindices:
|
138 |
+
position = dindices.index(index)
|
139 |
+
contraction_indices.append(diagonal_indices[position])
|
140 |
+
diagonal_indices[position] = None
|
141 |
+
diagonal_indices = [i for i in diagonal_indices if i is not None]
|
142 |
+
for i, ind in enumerate(subindices):
|
143 |
+
if ind in summation_indices:
|
144 |
+
pass
|
145 |
+
if diagonal_indices:
|
146 |
+
subexpr = _array_diagonal(subexpr.expr, *diagonal_indices)
|
147 |
+
else:
|
148 |
+
subexpr = subexpr.expr
|
149 |
+
|
150 |
+
axes_contraction = defaultdict(list)
|
151 |
+
for i, ind in enumerate(subindices):
|
152 |
+
include = all(j not in kronecker_indices for j in ind) if isinstance(ind, frozenset) else ind not in kronecker_indices
|
153 |
+
if ind in summation_indices and include:
|
154 |
+
axes_contraction[ind].append(i)
|
155 |
+
subindices[i] = None
|
156 |
+
for k, v in axes_contraction.items():
|
157 |
+
if any(i in kronecker_indices for i in k) if isinstance(k, frozenset) else k in kronecker_indices:
|
158 |
+
continue
|
159 |
+
contraction_indices.append(tuple(v))
|
160 |
+
free_indices = [i for i in subindices if i is not None]
|
161 |
+
indices_ret = list(free_indices)
|
162 |
+
indices_ret.sort(key=lambda x: free_indices.index(x))
|
163 |
+
return _array_contraction(
|
164 |
+
subexpr,
|
165 |
+
*contraction_indices,
|
166 |
+
free_indices=free_indices
|
167 |
+
), tuple(indices_ret)
|
168 |
+
if isinstance(expr, Mul):
|
169 |
+
args, indices = zip(*[_convert_indexed_to_array(arg) for arg in expr.args])
|
170 |
+
# Check if there are KroneckerDelta objects:
|
171 |
+
kronecker_delta_repl = {}
|
172 |
+
for arg in args:
|
173 |
+
if not isinstance(arg, KroneckerDelta):
|
174 |
+
continue
|
175 |
+
# Diagonalize two indices:
|
176 |
+
i, j = arg.indices
|
177 |
+
kindices = set(arg.indices)
|
178 |
+
if i in kronecker_delta_repl:
|
179 |
+
kindices.update(kronecker_delta_repl[i])
|
180 |
+
if j in kronecker_delta_repl:
|
181 |
+
kindices.update(kronecker_delta_repl[j])
|
182 |
+
kindices = frozenset(kindices)
|
183 |
+
for index in kindices:
|
184 |
+
kronecker_delta_repl[index] = kindices
|
185 |
+
# Remove KroneckerDelta objects, their relations should be handled by
|
186 |
+
# ArrayDiagonal:
|
187 |
+
newargs = []
|
188 |
+
newindices = []
|
189 |
+
for arg, loc_indices in zip(args, indices):
|
190 |
+
if isinstance(arg, KroneckerDelta):
|
191 |
+
continue
|
192 |
+
newargs.append(arg)
|
193 |
+
newindices.append(loc_indices)
|
194 |
+
flattened_indices = [kronecker_delta_repl.get(j, j) for i in newindices for j in i]
|
195 |
+
diagonal_indices, ret_indices = _get_diagonal_indices(flattened_indices)
|
196 |
+
tp = _array_tensor_product(*newargs)
|
197 |
+
if diagonal_indices:
|
198 |
+
return _array_diagonal(tp, *diagonal_indices), ret_indices
|
199 |
+
else:
|
200 |
+
return tp, ret_indices
|
201 |
+
if isinstance(expr, MatrixElement):
|
202 |
+
indices = expr.args[1:]
|
203 |
+
diagonal_indices, ret_indices = _get_diagonal_indices(indices)
|
204 |
+
if diagonal_indices:
|
205 |
+
return _array_diagonal(expr.args[0], *diagonal_indices), ret_indices
|
206 |
+
else:
|
207 |
+
return expr.args[0], ret_indices
|
208 |
+
if isinstance(expr, ArrayElement):
|
209 |
+
indices = expr.indices
|
210 |
+
diagonal_indices, ret_indices = _get_diagonal_indices(indices)
|
211 |
+
if diagonal_indices:
|
212 |
+
return _array_diagonal(expr.name, *diagonal_indices), ret_indices
|
213 |
+
else:
|
214 |
+
return expr.name, ret_indices
|
215 |
+
if isinstance(expr, Indexed):
|
216 |
+
indices = expr.indices
|
217 |
+
diagonal_indices, ret_indices = _get_diagonal_indices(indices)
|
218 |
+
if diagonal_indices:
|
219 |
+
return _array_diagonal(expr.base, *diagonal_indices), ret_indices
|
220 |
+
else:
|
221 |
+
return expr.args[0], ret_indices
|
222 |
+
if isinstance(expr, IndexedBase):
|
223 |
+
raise NotImplementedError
|
224 |
+
if isinstance(expr, KroneckerDelta):
|
225 |
+
return expr, expr.indices
|
226 |
+
if isinstance(expr, Add):
|
227 |
+
args, indices = zip(*[_convert_indexed_to_array(arg) for arg in expr.args])
|
228 |
+
args = list(args)
|
229 |
+
# Check if all indices are compatible. Otherwise expand the dimensions:
|
230 |
+
index0 = []
|
231 |
+
shape0 = []
|
232 |
+
for arg, arg_indices in zip(args, indices):
|
233 |
+
arg_indices_set = set(arg_indices)
|
234 |
+
arg_indices_missing = arg_indices_set.difference(index0)
|
235 |
+
index0.extend([i for i in arg_indices if i in arg_indices_missing])
|
236 |
+
arg_shape = get_shape(arg)
|
237 |
+
shape0.extend([arg_shape[i] for i, e in enumerate(arg_indices) if e in arg_indices_missing])
|
238 |
+
for i, (arg, arg_indices) in enumerate(zip(args, indices)):
|
239 |
+
if len(arg_indices) < len(index0):
|
240 |
+
missing_indices_pos = [i for i, e in enumerate(index0) if e not in arg_indices]
|
241 |
+
missing_shape = [shape0[i] for i in missing_indices_pos]
|
242 |
+
arg_indices = tuple(index0[j] for j in missing_indices_pos) + arg_indices
|
243 |
+
args[i] = _array_tensor_product(OneArray(*missing_shape), args[i])
|
244 |
+
permutation = Permutation([arg_indices.index(j) for j in index0])
|
245 |
+
# Perform index permutations:
|
246 |
+
args[i] = _permute_dims(args[i], permutation)
|
247 |
+
return _array_add(*args), tuple(index0)
|
248 |
+
if isinstance(expr, Pow):
|
249 |
+
subexpr, subindices = _convert_indexed_to_array(expr.base)
|
250 |
+
if isinstance(expr.exp, (int, Integer)):
|
251 |
+
diags = zip(*[(2*i, 2*i + 1) for i in range(expr.exp)])
|
252 |
+
arr = _array_diagonal(_array_tensor_product(*[subexpr for i in range(expr.exp)]), *diags)
|
253 |
+
return arr, subindices
|
254 |
+
if isinstance(expr, Function):
|
255 |
+
subexpr, subindices = _convert_indexed_to_array(expr.args[0])
|
256 |
+
return ArrayElementwiseApplyFunc(type(expr), subexpr), subindices
|
257 |
+
return expr, ()
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/from_matrix_to_array.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy import KroneckerProduct
|
2 |
+
from sympy.core.basic import Basic
|
3 |
+
from sympy.core.function import Lambda
|
4 |
+
from sympy.core.mul import Mul
|
5 |
+
from sympy.core.numbers import Integer
|
6 |
+
from sympy.core.power import Pow
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.core.symbol import (Dummy, symbols)
|
9 |
+
from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct)
|
10 |
+
from sympy.matrices.expressions.matadd import MatAdd
|
11 |
+
from sympy.matrices.expressions.matmul import MatMul
|
12 |
+
from sympy.matrices.expressions.matpow import MatPow
|
13 |
+
from sympy.matrices.expressions.trace import Trace
|
14 |
+
from sympy.matrices.expressions.transpose import Transpose
|
15 |
+
from sympy.matrices.expressions.matexpr import MatrixExpr
|
16 |
+
from sympy.tensor.array.expressions.array_expressions import \
|
17 |
+
ArrayElementwiseApplyFunc, _array_tensor_product, _array_contraction, \
|
18 |
+
_array_diagonal, _array_add, _permute_dims, Reshape
|
19 |
+
|
20 |
+
|
21 |
+
def convert_matrix_to_array(expr: Basic) -> Basic:
|
22 |
+
if isinstance(expr, MatMul):
|
23 |
+
args_nonmat = []
|
24 |
+
args = []
|
25 |
+
for arg in expr.args:
|
26 |
+
if isinstance(arg, MatrixExpr):
|
27 |
+
args.append(arg)
|
28 |
+
else:
|
29 |
+
args_nonmat.append(convert_matrix_to_array(arg))
|
30 |
+
contractions = [(2*i+1, 2*i+2) for i in range(len(args)-1)]
|
31 |
+
scalar = _array_tensor_product(*args_nonmat) if args_nonmat else S.One
|
32 |
+
if scalar == 1:
|
33 |
+
tprod = _array_tensor_product(
|
34 |
+
*[convert_matrix_to_array(arg) for arg in args])
|
35 |
+
else:
|
36 |
+
tprod = _array_tensor_product(
|
37 |
+
scalar,
|
38 |
+
*[convert_matrix_to_array(arg) for arg in args])
|
39 |
+
return _array_contraction(
|
40 |
+
tprod,
|
41 |
+
*contractions
|
42 |
+
)
|
43 |
+
elif isinstance(expr, MatAdd):
|
44 |
+
return _array_add(
|
45 |
+
*[convert_matrix_to_array(arg) for arg in expr.args]
|
46 |
+
)
|
47 |
+
elif isinstance(expr, Transpose):
|
48 |
+
return _permute_dims(
|
49 |
+
convert_matrix_to_array(expr.args[0]), [1, 0]
|
50 |
+
)
|
51 |
+
elif isinstance(expr, Trace):
|
52 |
+
inner_expr: MatrixExpr = convert_matrix_to_array(expr.arg) # type: ignore
|
53 |
+
return _array_contraction(inner_expr, (0, len(inner_expr.shape) - 1))
|
54 |
+
elif isinstance(expr, Mul):
|
55 |
+
return _array_tensor_product(*[convert_matrix_to_array(i) for i in expr.args])
|
56 |
+
elif isinstance(expr, Pow):
|
57 |
+
base = convert_matrix_to_array(expr.base)
|
58 |
+
if (expr.exp > 0) == True:
|
59 |
+
return _array_tensor_product(*[base for i in range(expr.exp)])
|
60 |
+
else:
|
61 |
+
return expr
|
62 |
+
elif isinstance(expr, MatPow):
|
63 |
+
base = convert_matrix_to_array(expr.base)
|
64 |
+
if expr.exp.is_Integer != True:
|
65 |
+
b = symbols("b", cls=Dummy)
|
66 |
+
return ArrayElementwiseApplyFunc(Lambda(b, b**expr.exp), convert_matrix_to_array(base))
|
67 |
+
elif (expr.exp > 0) == True:
|
68 |
+
return convert_matrix_to_array(MatMul.fromiter(base for i in range(expr.exp)))
|
69 |
+
else:
|
70 |
+
return expr
|
71 |
+
elif isinstance(expr, HadamardProduct):
|
72 |
+
tp = _array_tensor_product(*[convert_matrix_to_array(arg) for arg in expr.args])
|
73 |
+
diag = [[2*i for i in range(len(expr.args))], [2*i+1 for i in range(len(expr.args))]]
|
74 |
+
return _array_diagonal(tp, *diag)
|
75 |
+
elif isinstance(expr, HadamardPower):
|
76 |
+
base, exp = expr.args
|
77 |
+
if isinstance(exp, Integer) and exp > 0:
|
78 |
+
return convert_matrix_to_array(HadamardProduct.fromiter(base for i in range(exp)))
|
79 |
+
else:
|
80 |
+
d = Dummy("d")
|
81 |
+
return ArrayElementwiseApplyFunc(Lambda(d, d**exp), base)
|
82 |
+
elif isinstance(expr, KroneckerProduct):
|
83 |
+
kp_args = [convert_matrix_to_array(arg) for arg in expr.args]
|
84 |
+
permutation = [2*i for i in range(len(kp_args))] + [2*i + 1 for i in range(len(kp_args))]
|
85 |
+
return Reshape(_permute_dims(_array_tensor_product(*kp_args), permutation), expr.shape)
|
86 |
+
else:
|
87 |
+
return expr
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/__pycache__/test_arrayexpr_derivatives.cpython-310.pyc
ADDED
Binary file (2.16 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/__pycache__/test_convert_array_to_indexed.cpython-310.pyc
ADDED
Binary file (2.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/__pycache__/test_deprecated_conv_modules.cpython-310.pyc
ADDED
Binary file (1.45 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_array_expressions.py
ADDED
@@ -0,0 +1,808 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
from sympy import tensordiagonal, eye, KroneckerDelta, Array
|
4 |
+
from sympy.core.symbol import symbols
|
5 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
6 |
+
from sympy.matrices.expressions.diagonal import DiagMatrix
|
7 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
8 |
+
from sympy.matrices.expressions.special import ZeroMatrix
|
9 |
+
from sympy.tensor.array.arrayop import (permutedims, tensorcontraction, tensorproduct)
|
10 |
+
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
|
11 |
+
from sympy.combinatorics import Permutation
|
12 |
+
from sympy.tensor.array.expressions.array_expressions import ZeroArray, OneArray, ArraySymbol, ArrayElement, \
|
13 |
+
PermuteDims, ArrayContraction, ArrayTensorProduct, ArrayDiagonal, \
|
14 |
+
ArrayAdd, nest_permutation, ArrayElementwiseApplyFunc, _EditArrayContraction, _ArgE, _array_tensor_product, \
|
15 |
+
_array_contraction, _array_diagonal, _array_add, _permute_dims, Reshape
|
16 |
+
from sympy.testing.pytest import raises
|
17 |
+
|
18 |
+
i, j, k, l, m, n = symbols("i j k l m n")
|
19 |
+
|
20 |
+
|
21 |
+
M = ArraySymbol("M", (k, k))
|
22 |
+
N = ArraySymbol("N", (k, k))
|
23 |
+
P = ArraySymbol("P", (k, k))
|
24 |
+
Q = ArraySymbol("Q", (k, k))
|
25 |
+
|
26 |
+
A = ArraySymbol("A", (k, k))
|
27 |
+
B = ArraySymbol("B", (k, k))
|
28 |
+
C = ArraySymbol("C", (k, k))
|
29 |
+
D = ArraySymbol("D", (k, k))
|
30 |
+
|
31 |
+
X = ArraySymbol("X", (k, k))
|
32 |
+
Y = ArraySymbol("Y", (k, k))
|
33 |
+
|
34 |
+
a = ArraySymbol("a", (k, 1))
|
35 |
+
b = ArraySymbol("b", (k, 1))
|
36 |
+
c = ArraySymbol("c", (k, 1))
|
37 |
+
d = ArraySymbol("d", (k, 1))
|
38 |
+
|
39 |
+
|
40 |
+
def test_array_symbol_and_element():
|
41 |
+
A = ArraySymbol("A", (2,))
|
42 |
+
A0 = ArrayElement(A, (0,))
|
43 |
+
A1 = ArrayElement(A, (1,))
|
44 |
+
assert A[0] == A0
|
45 |
+
assert A[1] != A0
|
46 |
+
assert A.as_explicit() == ImmutableDenseNDimArray([A0, A1])
|
47 |
+
|
48 |
+
A2 = tensorproduct(A, A)
|
49 |
+
assert A2.shape == (2, 2)
|
50 |
+
# TODO: not yet supported:
|
51 |
+
# assert A2.as_explicit() == Array([[A[0]*A[0], A[1]*A[0]], [A[0]*A[1], A[1]*A[1]]])
|
52 |
+
A3 = tensorcontraction(A2, (0, 1))
|
53 |
+
assert A3.shape == ()
|
54 |
+
# TODO: not yet supported:
|
55 |
+
# assert A3.as_explicit() == Array([])
|
56 |
+
|
57 |
+
A = ArraySymbol("A", (2, 3, 4))
|
58 |
+
Ae = A.as_explicit()
|
59 |
+
assert Ae == ImmutableDenseNDimArray(
|
60 |
+
[[[ArrayElement(A, (i, j, k)) for k in range(4)] for j in range(3)] for i in range(2)])
|
61 |
+
|
62 |
+
p = _permute_dims(A, Permutation(0, 2, 1))
|
63 |
+
assert isinstance(p, PermuteDims)
|
64 |
+
|
65 |
+
A = ArraySymbol("A", (2,))
|
66 |
+
raises(IndexError, lambda: A[()])
|
67 |
+
raises(IndexError, lambda: A[0, 1])
|
68 |
+
raises(ValueError, lambda: A[-1])
|
69 |
+
raises(ValueError, lambda: A[2])
|
70 |
+
|
71 |
+
O = OneArray(3, 4)
|
72 |
+
Z = ZeroArray(m, n)
|
73 |
+
|
74 |
+
raises(IndexError, lambda: O[()])
|
75 |
+
raises(IndexError, lambda: O[1, 2, 3])
|
76 |
+
raises(ValueError, lambda: O[3, 0])
|
77 |
+
raises(ValueError, lambda: O[0, 4])
|
78 |
+
|
79 |
+
assert O[1, 2] == 1
|
80 |
+
assert Z[1, 2] == 0
|
81 |
+
|
82 |
+
|
83 |
+
def test_zero_array():
|
84 |
+
assert ZeroArray() == 0
|
85 |
+
assert ZeroArray().is_Integer
|
86 |
+
|
87 |
+
za = ZeroArray(3, 2, 4)
|
88 |
+
assert za.shape == (3, 2, 4)
|
89 |
+
za_e = za.as_explicit()
|
90 |
+
assert za_e.shape == (3, 2, 4)
|
91 |
+
|
92 |
+
m, n, k = symbols("m n k")
|
93 |
+
za = ZeroArray(m, n, k, 2)
|
94 |
+
assert za.shape == (m, n, k, 2)
|
95 |
+
raises(ValueError, lambda: za.as_explicit())
|
96 |
+
|
97 |
+
|
98 |
+
def test_one_array():
|
99 |
+
assert OneArray() == 1
|
100 |
+
assert OneArray().is_Integer
|
101 |
+
|
102 |
+
oa = OneArray(3, 2, 4)
|
103 |
+
assert oa.shape == (3, 2, 4)
|
104 |
+
oa_e = oa.as_explicit()
|
105 |
+
assert oa_e.shape == (3, 2, 4)
|
106 |
+
|
107 |
+
m, n, k = symbols("m n k")
|
108 |
+
oa = OneArray(m, n, k, 2)
|
109 |
+
assert oa.shape == (m, n, k, 2)
|
110 |
+
raises(ValueError, lambda: oa.as_explicit())
|
111 |
+
|
112 |
+
|
113 |
+
def test_arrayexpr_contraction_construction():
|
114 |
+
|
115 |
+
cg = _array_contraction(A)
|
116 |
+
assert cg == A
|
117 |
+
|
118 |
+
cg = _array_contraction(_array_tensor_product(A, B), (1, 0))
|
119 |
+
assert cg == _array_contraction(_array_tensor_product(A, B), (0, 1))
|
120 |
+
|
121 |
+
cg = _array_contraction(_array_tensor_product(M, N), (0, 1))
|
122 |
+
indtup = cg._get_contraction_tuples()
|
123 |
+
assert indtup == [[(0, 0), (0, 1)]]
|
124 |
+
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 1)]
|
125 |
+
|
126 |
+
cg = _array_contraction(_array_tensor_product(M, N), (1, 2))
|
127 |
+
indtup = cg._get_contraction_tuples()
|
128 |
+
assert indtup == [[(0, 1), (1, 0)]]
|
129 |
+
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 2)]
|
130 |
+
|
131 |
+
cg = _array_contraction(_array_tensor_product(M, M, N), (1, 4), (2, 5))
|
132 |
+
indtup = cg._get_contraction_tuples()
|
133 |
+
assert indtup == [[(0, 0), (1, 1)], [(0, 1), (2, 0)]]
|
134 |
+
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 3), (1, 4)]
|
135 |
+
|
136 |
+
# Test removal of trivial contraction:
|
137 |
+
assert _array_contraction(a, (1,)) == a
|
138 |
+
assert _array_contraction(
|
139 |
+
_array_tensor_product(a, b), (0, 2), (1,), (3,)) == _array_contraction(
|
140 |
+
_array_tensor_product(a, b), (0, 2))
|
141 |
+
|
142 |
+
|
143 |
+
def test_arrayexpr_array_flatten():
|
144 |
+
|
145 |
+
# Flatten nested ArrayTensorProduct objects:
|
146 |
+
expr1 = _array_tensor_product(M, N)
|
147 |
+
expr2 = _array_tensor_product(P, Q)
|
148 |
+
expr = _array_tensor_product(expr1, expr2)
|
149 |
+
assert expr == _array_tensor_product(M, N, P, Q)
|
150 |
+
assert expr.args == (M, N, P, Q)
|
151 |
+
|
152 |
+
# Flatten mixed ArrayTensorProduct and ArrayContraction objects:
|
153 |
+
cg1 = _array_contraction(expr1, (1, 2))
|
154 |
+
cg2 = _array_contraction(expr2, (0, 3))
|
155 |
+
|
156 |
+
expr = _array_tensor_product(cg1, cg2)
|
157 |
+
assert expr == _array_contraction(_array_tensor_product(M, N, P, Q), (1, 2), (4, 7))
|
158 |
+
|
159 |
+
expr = _array_tensor_product(M, cg1)
|
160 |
+
assert expr == _array_contraction(_array_tensor_product(M, M, N), (3, 4))
|
161 |
+
|
162 |
+
# Flatten nested ArrayContraction objects:
|
163 |
+
cgnested = _array_contraction(cg1, (0, 1))
|
164 |
+
assert cgnested == _array_contraction(_array_tensor_product(M, N), (0, 3), (1, 2))
|
165 |
+
|
166 |
+
cgnested = _array_contraction(_array_tensor_product(cg1, cg2), (0, 3))
|
167 |
+
assert cgnested == _array_contraction(_array_tensor_product(M, N, P, Q), (0, 6), (1, 2), (4, 7))
|
168 |
+
|
169 |
+
cg3 = _array_contraction(_array_tensor_product(M, N, P, Q), (1, 3), (2, 4))
|
170 |
+
cgnested = _array_contraction(cg3, (0, 1))
|
171 |
+
assert cgnested == _array_contraction(_array_tensor_product(M, N, P, Q), (0, 5), (1, 3), (2, 4))
|
172 |
+
|
173 |
+
cgnested = _array_contraction(cg3, (0, 3), (1, 2))
|
174 |
+
assert cgnested == _array_contraction(_array_tensor_product(M, N, P, Q), (0, 7), (1, 3), (2, 4), (5, 6))
|
175 |
+
|
176 |
+
cg4 = _array_contraction(_array_tensor_product(M, N, P, Q), (1, 5), (3, 7))
|
177 |
+
cgnested = _array_contraction(cg4, (0, 1))
|
178 |
+
assert cgnested == _array_contraction(_array_tensor_product(M, N, P, Q), (0, 2), (1, 5), (3, 7))
|
179 |
+
|
180 |
+
cgnested = _array_contraction(cg4, (0, 1), (2, 3))
|
181 |
+
assert cgnested == _array_contraction(_array_tensor_product(M, N, P, Q), (0, 2), (1, 5), (3, 7), (4, 6))
|
182 |
+
|
183 |
+
cg = _array_diagonal(cg4)
|
184 |
+
assert cg == cg4
|
185 |
+
assert isinstance(cg, type(cg4))
|
186 |
+
|
187 |
+
# Flatten nested ArrayDiagonal objects:
|
188 |
+
cg1 = _array_diagonal(expr1, (1, 2))
|
189 |
+
cg2 = _array_diagonal(expr2, (0, 3))
|
190 |
+
cg3 = _array_diagonal(_array_tensor_product(M, N, P, Q), (1, 3), (2, 4))
|
191 |
+
cg4 = _array_diagonal(_array_tensor_product(M, N, P, Q), (1, 5), (3, 7))
|
192 |
+
|
193 |
+
cgnested = _array_diagonal(cg1, (0, 1))
|
194 |
+
assert cgnested == _array_diagonal(_array_tensor_product(M, N), (1, 2), (0, 3))
|
195 |
+
|
196 |
+
cgnested = _array_diagonal(cg3, (1, 2))
|
197 |
+
assert cgnested == _array_diagonal(_array_tensor_product(M, N, P, Q), (1, 3), (2, 4), (5, 6))
|
198 |
+
|
199 |
+
cgnested = _array_diagonal(cg4, (1, 2))
|
200 |
+
assert cgnested == _array_diagonal(_array_tensor_product(M, N, P, Q), (1, 5), (3, 7), (2, 4))
|
201 |
+
|
202 |
+
cg = _array_add(M, N)
|
203 |
+
cg2 = _array_add(cg, P)
|
204 |
+
assert isinstance(cg2, ArrayAdd)
|
205 |
+
assert cg2.args == (M, N, P)
|
206 |
+
assert cg2.shape == (k, k)
|
207 |
+
|
208 |
+
expr = _array_tensor_product(_array_diagonal(X, (0, 1)), _array_diagonal(A, (0, 1)))
|
209 |
+
assert expr == _array_diagonal(_array_tensor_product(X, A), (0, 1), (2, 3))
|
210 |
+
|
211 |
+
expr1 = _array_diagonal(_array_tensor_product(X, A), (1, 2))
|
212 |
+
expr2 = _array_tensor_product(expr1, a)
|
213 |
+
assert expr2 == _permute_dims(_array_diagonal(_array_tensor_product(X, A, a), (1, 2)), [0, 1, 4, 2, 3])
|
214 |
+
|
215 |
+
expr1 = _array_contraction(_array_tensor_product(X, A), (1, 2))
|
216 |
+
expr2 = _array_tensor_product(expr1, a)
|
217 |
+
assert isinstance(expr2, ArrayContraction)
|
218 |
+
assert isinstance(expr2.expr, ArrayTensorProduct)
|
219 |
+
|
220 |
+
cg = _array_tensor_product(_array_diagonal(_array_tensor_product(A, X, Y), (0, 3), (1, 5)), a, b)
|
221 |
+
assert cg == _permute_dims(_array_diagonal(_array_tensor_product(A, X, Y, a, b), (0, 3), (1, 5)), [0, 1, 6, 7, 2, 3, 4, 5])
|
222 |
+
|
223 |
+
|
224 |
+
def test_arrayexpr_array_diagonal():
|
225 |
+
cg = _array_diagonal(M, (1, 0))
|
226 |
+
assert cg == _array_diagonal(M, (0, 1))
|
227 |
+
|
228 |
+
cg = _array_diagonal(_array_tensor_product(M, N, P), (4, 1), (2, 0))
|
229 |
+
assert cg == _array_diagonal(_array_tensor_product(M, N, P), (1, 4), (0, 2))
|
230 |
+
|
231 |
+
cg = _array_diagonal(_array_tensor_product(M, N), (1, 2), (3,), allow_trivial_diags=True)
|
232 |
+
assert cg == _permute_dims(_array_diagonal(_array_tensor_product(M, N), (1, 2)), [0, 2, 1])
|
233 |
+
|
234 |
+
Ax = ArraySymbol("Ax", shape=(1, 2, 3, 4, 3, 5, 6, 2, 7))
|
235 |
+
cg = _array_diagonal(Ax, (1, 7), (3,), (2, 4), (6,), allow_trivial_diags=True)
|
236 |
+
assert cg == _permute_dims(_array_diagonal(Ax, (1, 7), (2, 4)), [0, 2, 4, 5, 1, 6, 3])
|
237 |
+
|
238 |
+
cg = _array_diagonal(M, (0,), allow_trivial_diags=True)
|
239 |
+
assert cg == _permute_dims(M, [1, 0])
|
240 |
+
|
241 |
+
raises(ValueError, lambda: _array_diagonal(M, (0, 0)))
|
242 |
+
|
243 |
+
|
244 |
+
def test_arrayexpr_array_shape():
|
245 |
+
expr = _array_tensor_product(M, N, P, Q)
|
246 |
+
assert expr.shape == (k, k, k, k, k, k, k, k)
|
247 |
+
Z = MatrixSymbol("Z", m, n)
|
248 |
+
expr = _array_tensor_product(M, Z)
|
249 |
+
assert expr.shape == (k, k, m, n)
|
250 |
+
expr2 = _array_contraction(expr, (0, 1))
|
251 |
+
assert expr2.shape == (m, n)
|
252 |
+
expr2 = _array_diagonal(expr, (0, 1))
|
253 |
+
assert expr2.shape == (m, n, k)
|
254 |
+
exprp = _permute_dims(expr, [2, 1, 3, 0])
|
255 |
+
assert exprp.shape == (m, k, n, k)
|
256 |
+
expr3 = _array_tensor_product(N, Z)
|
257 |
+
expr2 = _array_add(expr, expr3)
|
258 |
+
assert expr2.shape == (k, k, m, n)
|
259 |
+
|
260 |
+
# Contraction along axes with discordant dimensions:
|
261 |
+
raises(ValueError, lambda: _array_contraction(expr, (1, 2)))
|
262 |
+
# Also diagonal needs the same dimensions:
|
263 |
+
raises(ValueError, lambda: _array_diagonal(expr, (1, 2)))
|
264 |
+
# Diagonal requires at least to axes to compute the diagonal:
|
265 |
+
raises(ValueError, lambda: _array_diagonal(expr, (1,)))
|
266 |
+
|
267 |
+
|
268 |
+
def test_arrayexpr_permutedims_sink():
|
269 |
+
|
270 |
+
cg = _permute_dims(_array_tensor_product(M, N), [0, 1, 3, 2], nest_permutation=False)
|
271 |
+
sunk = nest_permutation(cg)
|
272 |
+
assert sunk == _array_tensor_product(M, _permute_dims(N, [1, 0]))
|
273 |
+
|
274 |
+
cg = _permute_dims(_array_tensor_product(M, N), [1, 0, 3, 2], nest_permutation=False)
|
275 |
+
sunk = nest_permutation(cg)
|
276 |
+
assert sunk == _array_tensor_product(_permute_dims(M, [1, 0]), _permute_dims(N, [1, 0]))
|
277 |
+
|
278 |
+
cg = _permute_dims(_array_tensor_product(M, N), [3, 2, 1, 0], nest_permutation=False)
|
279 |
+
sunk = nest_permutation(cg)
|
280 |
+
assert sunk == _array_tensor_product(_permute_dims(N, [1, 0]), _permute_dims(M, [1, 0]))
|
281 |
+
|
282 |
+
cg = _permute_dims(_array_contraction(_array_tensor_product(M, N), (1, 2)), [1, 0], nest_permutation=False)
|
283 |
+
sunk = nest_permutation(cg)
|
284 |
+
assert sunk == _array_contraction(_permute_dims(_array_tensor_product(M, N), [[0, 3]]), (1, 2))
|
285 |
+
|
286 |
+
cg = _permute_dims(_array_tensor_product(M, N), [1, 0, 3, 2], nest_permutation=False)
|
287 |
+
sunk = nest_permutation(cg)
|
288 |
+
assert sunk == _array_tensor_product(_permute_dims(M, [1, 0]), _permute_dims(N, [1, 0]))
|
289 |
+
|
290 |
+
cg = _permute_dims(_array_contraction(_array_tensor_product(M, N, P), (1, 2), (3, 4)), [1, 0], nest_permutation=False)
|
291 |
+
sunk = nest_permutation(cg)
|
292 |
+
assert sunk == _array_contraction(_permute_dims(_array_tensor_product(M, N, P), [[0, 5]]), (1, 2), (3, 4))
|
293 |
+
|
294 |
+
|
295 |
+
def test_arrayexpr_push_indices_up_and_down():
|
296 |
+
|
297 |
+
indices = list(range(12))
|
298 |
+
|
299 |
+
contr_diag_indices = [(0, 6), (2, 8)]
|
300 |
+
assert ArrayContraction._push_indices_down(contr_diag_indices, indices) == (1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15)
|
301 |
+
assert ArrayContraction._push_indices_up(contr_diag_indices, indices) == (None, 0, None, 1, 2, 3, None, 4, None, 5, 6, 7)
|
302 |
+
|
303 |
+
assert ArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (1, 3, 4, 5, 7, 9, (0, 6), (2, 8), None, None, None, None)
|
304 |
+
assert ArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (6, 0, 7, 1, 2, 3, 6, 4, 7, 5, None, None)
|
305 |
+
|
306 |
+
contr_diag_indices = [(1, 2), (7, 8)]
|
307 |
+
assert ArrayContraction._push_indices_down(contr_diag_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15)
|
308 |
+
assert ArrayContraction._push_indices_up(contr_diag_indices, indices) == (0, None, None, 1, 2, 3, 4, None, None, 5, 6, 7)
|
309 |
+
|
310 |
+
assert ArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (0, 3, 4, 5, 6, 9, (1, 2), (7, 8), None, None, None, None)
|
311 |
+
assert ArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (0, 6, 6, 1, 2, 3, 4, 7, 7, 5, None, None)
|
312 |
+
|
313 |
+
|
314 |
+
def test_arrayexpr_split_multiple_contractions():
|
315 |
+
a = MatrixSymbol("a", k, 1)
|
316 |
+
b = MatrixSymbol("b", k, 1)
|
317 |
+
A = MatrixSymbol("A", k, k)
|
318 |
+
B = MatrixSymbol("B", k, k)
|
319 |
+
C = MatrixSymbol("C", k, k)
|
320 |
+
X = MatrixSymbol("X", k, k)
|
321 |
+
|
322 |
+
cg = _array_contraction(_array_tensor_product(A.T, a, b, b.T, (A*X*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9))
|
323 |
+
expected = _array_contraction(_array_tensor_product(A.T, DiagMatrix(a), OneArray(1), b, b.T, (A*X*b).applyfunc(cos)), (1, 3), (2, 9), (6, 7, 10))
|
324 |
+
assert cg.split_multiple_contractions().dummy_eq(expected)
|
325 |
+
|
326 |
+
# Check no overlap of lines:
|
327 |
+
|
328 |
+
cg = _array_contraction(_array_tensor_product(A, a, C, a, B), (1, 2, 4), (5, 6, 8), (3, 7))
|
329 |
+
assert cg.split_multiple_contractions() == cg
|
330 |
+
|
331 |
+
cg = _array_contraction(_array_tensor_product(a, b, A), (0, 2, 4), (1, 3))
|
332 |
+
assert cg.split_multiple_contractions() == cg
|
333 |
+
|
334 |
+
|
335 |
+
def test_arrayexpr_nested_permutations():
|
336 |
+
|
337 |
+
cg = _permute_dims(_permute_dims(M, (1, 0)), (1, 0))
|
338 |
+
assert cg == M
|
339 |
+
|
340 |
+
times = 3
|
341 |
+
plist1 = [list(range(6)) for i in range(times)]
|
342 |
+
plist2 = [list(range(6)) for i in range(times)]
|
343 |
+
|
344 |
+
for i in range(times):
|
345 |
+
random.shuffle(plist1[i])
|
346 |
+
random.shuffle(plist2[i])
|
347 |
+
|
348 |
+
plist1.append([2, 5, 4, 1, 0, 3])
|
349 |
+
plist2.append([3, 5, 0, 4, 1, 2])
|
350 |
+
|
351 |
+
plist1.append([2, 5, 4, 0, 3, 1])
|
352 |
+
plist2.append([3, 0, 5, 1, 2, 4])
|
353 |
+
|
354 |
+
plist1.append([5, 4, 2, 0, 3, 1])
|
355 |
+
plist2.append([4, 5, 0, 2, 3, 1])
|
356 |
+
|
357 |
+
Me = M.subs(k, 3).as_explicit()
|
358 |
+
Ne = N.subs(k, 3).as_explicit()
|
359 |
+
Pe = P.subs(k, 3).as_explicit()
|
360 |
+
cge = tensorproduct(Me, Ne, Pe)
|
361 |
+
|
362 |
+
for permutation_array1, permutation_array2 in zip(plist1, plist2):
|
363 |
+
p1 = Permutation(permutation_array1)
|
364 |
+
p2 = Permutation(permutation_array2)
|
365 |
+
|
366 |
+
cg = _permute_dims(
|
367 |
+
_permute_dims(
|
368 |
+
_array_tensor_product(M, N, P),
|
369 |
+
p1),
|
370 |
+
p2
|
371 |
+
)
|
372 |
+
result = _permute_dims(
|
373 |
+
_array_tensor_product(M, N, P),
|
374 |
+
p2*p1
|
375 |
+
)
|
376 |
+
assert cg == result
|
377 |
+
|
378 |
+
# Check that `permutedims` behaves the same way with explicit-component arrays:
|
379 |
+
result1 = _permute_dims(_permute_dims(cge, p1), p2)
|
380 |
+
result2 = _permute_dims(cge, p2*p1)
|
381 |
+
assert result1 == result2
|
382 |
+
|
383 |
+
|
384 |
+
def test_arrayexpr_contraction_permutation_mix():
|
385 |
+
|
386 |
+
Me = M.subs(k, 3).as_explicit()
|
387 |
+
Ne = N.subs(k, 3).as_explicit()
|
388 |
+
|
389 |
+
cg1 = _array_contraction(PermuteDims(_array_tensor_product(M, N), Permutation([0, 2, 1, 3])), (2, 3))
|
390 |
+
cg2 = _array_contraction(_array_tensor_product(M, N), (1, 3))
|
391 |
+
assert cg1 == cg2
|
392 |
+
cge1 = tensorcontraction(permutedims(tensorproduct(Me, Ne), Permutation([0, 2, 1, 3])), (2, 3))
|
393 |
+
cge2 = tensorcontraction(tensorproduct(Me, Ne), (1, 3))
|
394 |
+
assert cge1 == cge2
|
395 |
+
|
396 |
+
cg1 = _permute_dims(_array_tensor_product(M, N), Permutation([0, 1, 3, 2]))
|
397 |
+
cg2 = _array_tensor_product(M, _permute_dims(N, Permutation([1, 0])))
|
398 |
+
assert cg1 == cg2
|
399 |
+
|
400 |
+
cg1 = _array_contraction(
|
401 |
+
_permute_dims(
|
402 |
+
_array_tensor_product(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])),
|
403 |
+
(1, 2), (3, 5)
|
404 |
+
)
|
405 |
+
cg2 = _array_contraction(
|
406 |
+
_array_tensor_product(M, N, P, _permute_dims(Q, Permutation([1, 0]))),
|
407 |
+
(1, 5), (2, 3)
|
408 |
+
)
|
409 |
+
assert cg1 == cg2
|
410 |
+
|
411 |
+
cg1 = _array_contraction(
|
412 |
+
_permute_dims(
|
413 |
+
_array_tensor_product(M, N, P, Q), Permutation([1, 0, 4, 6, 2, 7, 5, 3])),
|
414 |
+
(0, 1), (2, 6), (3, 7)
|
415 |
+
)
|
416 |
+
cg2 = _permute_dims(
|
417 |
+
_array_contraction(
|
418 |
+
_array_tensor_product(M, P, Q, N),
|
419 |
+
(0, 1), (2, 3), (4, 7)),
|
420 |
+
[1, 0]
|
421 |
+
)
|
422 |
+
assert cg1 == cg2
|
423 |
+
|
424 |
+
cg1 = _array_contraction(
|
425 |
+
_permute_dims(
|
426 |
+
_array_tensor_product(M, N, P, Q), Permutation([1, 0, 4, 6, 7, 2, 5, 3])),
|
427 |
+
(0, 1), (2, 6), (3, 7)
|
428 |
+
)
|
429 |
+
cg2 = _permute_dims(
|
430 |
+
_array_contraction(
|
431 |
+
_array_tensor_product(_permute_dims(M, [1, 0]), N, P, Q),
|
432 |
+
(0, 1), (3, 6), (4, 5)
|
433 |
+
),
|
434 |
+
Permutation([1, 0])
|
435 |
+
)
|
436 |
+
assert cg1 == cg2
|
437 |
+
|
438 |
+
|
439 |
+
def test_arrayexpr_permute_tensor_product():
|
440 |
+
cg1 = _permute_dims(_array_tensor_product(M, N, P, Q), Permutation([2, 3, 1, 0, 5, 4, 6, 7]))
|
441 |
+
cg2 = _array_tensor_product(N, _permute_dims(M, [1, 0]),
|
442 |
+
_permute_dims(P, [1, 0]), Q)
|
443 |
+
assert cg1 == cg2
|
444 |
+
|
445 |
+
# TODO: reverse operation starting with `PermuteDims` and getting down to `bb`...
|
446 |
+
cg1 = _permute_dims(_array_tensor_product(M, N, P, Q), Permutation([2, 3, 4, 5, 0, 1, 6, 7]))
|
447 |
+
cg2 = _array_tensor_product(N, P, M, Q)
|
448 |
+
assert cg1 == cg2
|
449 |
+
|
450 |
+
cg1 = _permute_dims(_array_tensor_product(M, N, P, Q), Permutation([2, 3, 4, 6, 5, 7, 0, 1]))
|
451 |
+
assert cg1.expr == _array_tensor_product(N, P, Q, M)
|
452 |
+
assert cg1.permutation == Permutation([0, 1, 2, 4, 3, 5, 6, 7])
|
453 |
+
|
454 |
+
cg1 = _array_contraction(
|
455 |
+
_permute_dims(
|
456 |
+
_array_tensor_product(N, Q, Q, M),
|
457 |
+
[2, 1, 5, 4, 0, 3, 6, 7]),
|
458 |
+
[1, 2, 6])
|
459 |
+
cg2 = _permute_dims(_array_contraction(_array_tensor_product(Q, Q, N, M), (3, 5, 6)), [0, 2, 3, 1, 4])
|
460 |
+
assert cg1 == cg2
|
461 |
+
|
462 |
+
cg1 = _array_contraction(
|
463 |
+
_array_contraction(
|
464 |
+
_array_contraction(
|
465 |
+
_array_contraction(
|
466 |
+
_permute_dims(
|
467 |
+
_array_tensor_product(N, Q, Q, M),
|
468 |
+
[2, 1, 5, 4, 0, 3, 6, 7]),
|
469 |
+
[1, 2, 6]),
|
470 |
+
[1, 3, 4]),
|
471 |
+
[1]),
|
472 |
+
[0])
|
473 |
+
cg2 = _array_contraction(_array_tensor_product(M, N, Q, Q), (0, 3, 5), (1, 4, 7), (2,), (6,))
|
474 |
+
assert cg1 == cg2
|
475 |
+
|
476 |
+
|
477 |
+
def test_arrayexpr_canonicalize_diagonal__permute_dims():
|
478 |
+
tp = _array_tensor_product(M, Q, N, P)
|
479 |
+
expr = _array_diagonal(
|
480 |
+
_permute_dims(tp, [0, 1, 2, 4, 7, 6, 3, 5]), (2, 4, 5), (6, 7),
|
481 |
+
(0, 3))
|
482 |
+
result = _array_diagonal(tp, (2, 6, 7), (3, 5), (0, 4))
|
483 |
+
assert expr == result
|
484 |
+
|
485 |
+
tp = _array_tensor_product(M, N, P, Q)
|
486 |
+
expr = _array_diagonal(_permute_dims(tp, [0, 5, 2, 4, 1, 6, 3, 7]), (1, 2, 6), (3, 4))
|
487 |
+
result = _array_diagonal(_array_tensor_product(M, P, N, Q), (3, 4, 5), (1, 2))
|
488 |
+
assert expr == result
|
489 |
+
|
490 |
+
|
491 |
+
def test_arrayexpr_canonicalize_diagonal_contraction():
|
492 |
+
tp = _array_tensor_product(M, N, P, Q)
|
493 |
+
expr = _array_contraction(_array_diagonal(tp, (1, 3, 4)), (0, 3))
|
494 |
+
result = _array_diagonal(_array_contraction(_array_tensor_product(M, N, P, Q), (0, 6)), (0, 2, 3))
|
495 |
+
assert expr == result
|
496 |
+
|
497 |
+
expr = _array_contraction(_array_diagonal(tp, (0, 1, 2, 3, 7)), (1, 2, 3))
|
498 |
+
result = _array_contraction(_array_tensor_product(M, N, P, Q), (0, 1, 2, 3, 5, 6, 7))
|
499 |
+
assert expr == result
|
500 |
+
|
501 |
+
expr = _array_contraction(_array_diagonal(tp, (0, 2, 6, 7)), (1, 2, 3))
|
502 |
+
result = _array_diagonal(_array_contraction(tp, (3, 4, 5)), (0, 2, 3, 4))
|
503 |
+
assert expr == result
|
504 |
+
|
505 |
+
td = _array_diagonal(_array_tensor_product(M, N, P, Q), (0, 3))
|
506 |
+
expr = _array_contraction(td, (2, 1), (0, 4, 6, 5, 3))
|
507 |
+
result = _array_contraction(_array_tensor_product(M, N, P, Q), (0, 1, 3, 5, 6, 7), (2, 4))
|
508 |
+
assert expr == result
|
509 |
+
|
510 |
+
|
511 |
+
def test_arrayexpr_array_wrong_permutation_size():
|
512 |
+
cg = _array_tensor_product(M, N)
|
513 |
+
raises(ValueError, lambda: _permute_dims(cg, [1, 0]))
|
514 |
+
raises(ValueError, lambda: _permute_dims(cg, [1, 0, 2, 3, 5, 4]))
|
515 |
+
|
516 |
+
|
517 |
+
def test_arrayexpr_nested_array_elementwise_add():
|
518 |
+
cg = _array_contraction(_array_add(
|
519 |
+
_array_tensor_product(M, N),
|
520 |
+
_array_tensor_product(N, M)
|
521 |
+
), (1, 2))
|
522 |
+
result = _array_add(
|
523 |
+
_array_contraction(_array_tensor_product(M, N), (1, 2)),
|
524 |
+
_array_contraction(_array_tensor_product(N, M), (1, 2))
|
525 |
+
)
|
526 |
+
assert cg == result
|
527 |
+
|
528 |
+
cg = _array_diagonal(_array_add(
|
529 |
+
_array_tensor_product(M, N),
|
530 |
+
_array_tensor_product(N, M)
|
531 |
+
), (1, 2))
|
532 |
+
result = _array_add(
|
533 |
+
_array_diagonal(_array_tensor_product(M, N), (1, 2)),
|
534 |
+
_array_diagonal(_array_tensor_product(N, M), (1, 2))
|
535 |
+
)
|
536 |
+
assert cg == result
|
537 |
+
|
538 |
+
|
539 |
+
def test_arrayexpr_array_expr_zero_array():
|
540 |
+
za1 = ZeroArray(k, l, m, n)
|
541 |
+
zm1 = ZeroMatrix(m, n)
|
542 |
+
|
543 |
+
za2 = ZeroArray(k, m, m, n)
|
544 |
+
zm2 = ZeroMatrix(m, m)
|
545 |
+
zm3 = ZeroMatrix(k, k)
|
546 |
+
|
547 |
+
assert _array_tensor_product(M, N, za1) == ZeroArray(k, k, k, k, k, l, m, n)
|
548 |
+
assert _array_tensor_product(M, N, zm1) == ZeroArray(k, k, k, k, m, n)
|
549 |
+
|
550 |
+
assert _array_contraction(za1, (3,)) == ZeroArray(k, l, m)
|
551 |
+
assert _array_contraction(zm1, (1,)) == ZeroArray(m)
|
552 |
+
assert _array_contraction(za2, (1, 2)) == ZeroArray(k, n)
|
553 |
+
assert _array_contraction(zm2, (0, 1)) == 0
|
554 |
+
|
555 |
+
assert _array_diagonal(za2, (1, 2)) == ZeroArray(k, n, m)
|
556 |
+
assert _array_diagonal(zm2, (0, 1)) == ZeroArray(m)
|
557 |
+
|
558 |
+
assert _permute_dims(za1, [2, 1, 3, 0]) == ZeroArray(m, l, n, k)
|
559 |
+
assert _permute_dims(zm1, [1, 0]) == ZeroArray(n, m)
|
560 |
+
|
561 |
+
assert _array_add(za1) == za1
|
562 |
+
assert _array_add(zm1) == ZeroArray(m, n)
|
563 |
+
tp1 = _array_tensor_product(MatrixSymbol("A", k, l), MatrixSymbol("B", m, n))
|
564 |
+
assert _array_add(tp1, za1) == tp1
|
565 |
+
tp2 = _array_tensor_product(MatrixSymbol("C", k, l), MatrixSymbol("D", m, n))
|
566 |
+
assert _array_add(tp1, za1, tp2) == _array_add(tp1, tp2)
|
567 |
+
assert _array_add(M, zm3) == M
|
568 |
+
assert _array_add(M, N, zm3) == _array_add(M, N)
|
569 |
+
|
570 |
+
|
571 |
+
def test_arrayexpr_array_expr_applyfunc():
|
572 |
+
|
573 |
+
A = ArraySymbol("A", (3, k, 2))
|
574 |
+
aaf = ArrayElementwiseApplyFunc(sin, A)
|
575 |
+
assert aaf.shape == (3, k, 2)
|
576 |
+
|
577 |
+
|
578 |
+
def test_edit_array_contraction():
|
579 |
+
cg = _array_contraction(_array_tensor_product(A, B, C, D), (1, 2, 5))
|
580 |
+
ecg = _EditArrayContraction(cg)
|
581 |
+
assert ecg.to_array_contraction() == cg
|
582 |
+
|
583 |
+
ecg.args_with_ind[1], ecg.args_with_ind[2] = ecg.args_with_ind[2], ecg.args_with_ind[1]
|
584 |
+
assert ecg.to_array_contraction() == _array_contraction(_array_tensor_product(A, C, B, D), (1, 3, 4))
|
585 |
+
|
586 |
+
ci = ecg.get_new_contraction_index()
|
587 |
+
new_arg = _ArgE(X)
|
588 |
+
new_arg.indices = [ci, ci]
|
589 |
+
ecg.args_with_ind.insert(2, new_arg)
|
590 |
+
assert ecg.to_array_contraction() == _array_contraction(_array_tensor_product(A, C, X, B, D), (1, 3, 6), (4, 5))
|
591 |
+
|
592 |
+
assert ecg.get_contraction_indices() == [[1, 3, 6], [4, 5]]
|
593 |
+
assert [[tuple(j) for j in i] for i in ecg.get_contraction_indices_to_ind_rel_pos()] == [[(0, 1), (1, 1), (3, 0)], [(2, 0), (2, 1)]]
|
594 |
+
assert [list(i) for i in ecg.get_mapping_for_index(0)] == [[0, 1], [1, 1], [3, 0]]
|
595 |
+
assert [list(i) for i in ecg.get_mapping_for_index(1)] == [[2, 0], [2, 1]]
|
596 |
+
raises(ValueError, lambda: ecg.get_mapping_for_index(2))
|
597 |
+
|
598 |
+
ecg.args_with_ind.pop(1)
|
599 |
+
assert ecg.to_array_contraction() == _array_contraction(_array_tensor_product(A, X, B, D), (1, 4), (2, 3))
|
600 |
+
|
601 |
+
ecg.args_with_ind[0].indices[1] = ecg.args_with_ind[1].indices[0]
|
602 |
+
ecg.args_with_ind[1].indices[1] = ecg.args_with_ind[2].indices[0]
|
603 |
+
assert ecg.to_array_contraction() == _array_contraction(_array_tensor_product(A, X, B, D), (1, 2), (3, 4))
|
604 |
+
|
605 |
+
ecg.insert_after(ecg.args_with_ind[1], _ArgE(C))
|
606 |
+
assert ecg.to_array_contraction() == _array_contraction(_array_tensor_product(A, X, C, B, D), (1, 2), (3, 6))
|
607 |
+
|
608 |
+
|
609 |
+
def test_array_expressions_no_canonicalization():
|
610 |
+
|
611 |
+
tp = _array_tensor_product(M, N, P)
|
612 |
+
|
613 |
+
# ArrayTensorProduct:
|
614 |
+
|
615 |
+
expr = ArrayTensorProduct(tp, N)
|
616 |
+
assert str(expr) == "ArrayTensorProduct(ArrayTensorProduct(M, N, P), N)"
|
617 |
+
assert expr.doit() == ArrayTensorProduct(M, N, P, N)
|
618 |
+
|
619 |
+
expr = ArrayTensorProduct(ArrayContraction(M, (0, 1)), N)
|
620 |
+
assert str(expr) == "ArrayTensorProduct(ArrayContraction(M, (0, 1)), N)"
|
621 |
+
assert expr.doit() == ArrayContraction(ArrayTensorProduct(M, N), (0, 1))
|
622 |
+
|
623 |
+
expr = ArrayTensorProduct(ArrayDiagonal(M, (0, 1)), N)
|
624 |
+
assert str(expr) == "ArrayTensorProduct(ArrayDiagonal(M, (0, 1)), N)"
|
625 |
+
assert expr.doit() == PermuteDims(ArrayDiagonal(ArrayTensorProduct(M, N), (0, 1)), [2, 0, 1])
|
626 |
+
|
627 |
+
expr = ArrayTensorProduct(PermuteDims(M, [1, 0]), N)
|
628 |
+
assert str(expr) == "ArrayTensorProduct(PermuteDims(M, (0 1)), N)"
|
629 |
+
assert expr.doit() == PermuteDims(ArrayTensorProduct(M, N), [1, 0, 2, 3])
|
630 |
+
|
631 |
+
# ArrayContraction:
|
632 |
+
|
633 |
+
expr = ArrayContraction(_array_contraction(tp, (0, 2)), (0, 1))
|
634 |
+
assert isinstance(expr, ArrayContraction)
|
635 |
+
assert isinstance(expr.expr, ArrayContraction)
|
636 |
+
assert str(expr) == "ArrayContraction(ArrayContraction(ArrayTensorProduct(M, N, P), (0, 2)), (0, 1))"
|
637 |
+
assert expr.doit() == ArrayContraction(tp, (0, 2), (1, 3))
|
638 |
+
|
639 |
+
expr = ArrayContraction(ArrayContraction(ArrayContraction(tp, (0, 1)), (0, 1)), (0, 1))
|
640 |
+
assert expr.doit() == ArrayContraction(tp, (0, 1), (2, 3), (4, 5))
|
641 |
+
# assert expr._canonicalize() == ArrayContraction(ArrayContraction(tp, (0, 1)), (0, 1), (2, 3))
|
642 |
+
|
643 |
+
expr = ArrayContraction(ArrayDiagonal(tp, (0, 1)), (0, 1))
|
644 |
+
assert str(expr) == "ArrayContraction(ArrayDiagonal(ArrayTensorProduct(M, N, P), (0, 1)), (0, 1))"
|
645 |
+
assert expr.doit() == ArrayDiagonal(ArrayContraction(ArrayTensorProduct(N, M, P), (0, 1)), (0, 1))
|
646 |
+
|
647 |
+
expr = ArrayContraction(PermuteDims(M, [1, 0]), (0, 1))
|
648 |
+
assert str(expr) == "ArrayContraction(PermuteDims(M, (0 1)), (0, 1))"
|
649 |
+
assert expr.doit() == ArrayContraction(M, (0, 1))
|
650 |
+
|
651 |
+
# ArrayDiagonal:
|
652 |
+
|
653 |
+
expr = ArrayDiagonal(ArrayDiagonal(tp, (0, 2)), (0, 1))
|
654 |
+
assert str(expr) == "ArrayDiagonal(ArrayDiagonal(ArrayTensorProduct(M, N, P), (0, 2)), (0, 1))"
|
655 |
+
assert expr.doit() == ArrayDiagonal(tp, (0, 2), (1, 3))
|
656 |
+
|
657 |
+
expr = ArrayDiagonal(ArrayDiagonal(ArrayDiagonal(tp, (0, 1)), (0, 1)), (0, 1))
|
658 |
+
assert expr.doit() == ArrayDiagonal(tp, (0, 1), (2, 3), (4, 5))
|
659 |
+
assert expr._canonicalize() == expr.doit()
|
660 |
+
|
661 |
+
expr = ArrayDiagonal(ArrayContraction(tp, (0, 1)), (0, 1))
|
662 |
+
assert str(expr) == "ArrayDiagonal(ArrayContraction(ArrayTensorProduct(M, N, P), (0, 1)), (0, 1))"
|
663 |
+
assert expr.doit() == expr
|
664 |
+
|
665 |
+
expr = ArrayDiagonal(PermuteDims(M, [1, 0]), (0, 1))
|
666 |
+
assert str(expr) == "ArrayDiagonal(PermuteDims(M, (0 1)), (0, 1))"
|
667 |
+
assert expr.doit() == ArrayDiagonal(M, (0, 1))
|
668 |
+
|
669 |
+
# ArrayAdd:
|
670 |
+
|
671 |
+
expr = ArrayAdd(M)
|
672 |
+
assert isinstance(expr, ArrayAdd)
|
673 |
+
assert expr.doit() == M
|
674 |
+
|
675 |
+
expr = ArrayAdd(ArrayAdd(M, N), P)
|
676 |
+
assert str(expr) == "ArrayAdd(ArrayAdd(M, N), P)"
|
677 |
+
assert expr.doit() == ArrayAdd(M, N, P)
|
678 |
+
|
679 |
+
expr = ArrayAdd(M, ArrayAdd(N, ArrayAdd(P, M)))
|
680 |
+
assert expr.doit() == ArrayAdd(M, N, P, M)
|
681 |
+
assert expr._canonicalize() == ArrayAdd(M, N, ArrayAdd(P, M))
|
682 |
+
|
683 |
+
expr = ArrayAdd(M, ZeroArray(k, k), N)
|
684 |
+
assert str(expr) == "ArrayAdd(M, ZeroArray(k, k), N)"
|
685 |
+
assert expr.doit() == ArrayAdd(M, N)
|
686 |
+
|
687 |
+
# PermuteDims:
|
688 |
+
|
689 |
+
expr = PermuteDims(PermuteDims(M, [1, 0]), [1, 0])
|
690 |
+
assert str(expr) == "PermuteDims(PermuteDims(M, (0 1)), (0 1))"
|
691 |
+
assert expr.doit() == M
|
692 |
+
|
693 |
+
expr = PermuteDims(PermuteDims(PermuteDims(M, [1, 0]), [1, 0]), [1, 0])
|
694 |
+
assert expr.doit() == PermuteDims(M, [1, 0])
|
695 |
+
assert expr._canonicalize() == expr.doit()
|
696 |
+
|
697 |
+
# Reshape
|
698 |
+
|
699 |
+
expr = Reshape(A, (k**2,))
|
700 |
+
assert expr.shape == (k**2,)
|
701 |
+
assert isinstance(expr, Reshape)
|
702 |
+
|
703 |
+
|
704 |
+
def test_array_expr_construction_with_functions():
|
705 |
+
|
706 |
+
tp = tensorproduct(M, N)
|
707 |
+
assert tp == ArrayTensorProduct(M, N)
|
708 |
+
|
709 |
+
expr = tensorproduct(A, eye(2))
|
710 |
+
assert expr == ArrayTensorProduct(A, eye(2))
|
711 |
+
|
712 |
+
# Contraction:
|
713 |
+
|
714 |
+
expr = tensorcontraction(M, (0, 1))
|
715 |
+
assert expr == ArrayContraction(M, (0, 1))
|
716 |
+
|
717 |
+
expr = tensorcontraction(tp, (1, 2))
|
718 |
+
assert expr == ArrayContraction(tp, (1, 2))
|
719 |
+
|
720 |
+
expr = tensorcontraction(tensorcontraction(tp, (1, 2)), (0, 1))
|
721 |
+
assert expr == ArrayContraction(tp, (0, 3), (1, 2))
|
722 |
+
|
723 |
+
# Diagonalization:
|
724 |
+
|
725 |
+
expr = tensordiagonal(M, (0, 1))
|
726 |
+
assert expr == ArrayDiagonal(M, (0, 1))
|
727 |
+
|
728 |
+
expr = tensordiagonal(tensordiagonal(tp, (0, 1)), (0, 1))
|
729 |
+
assert expr == ArrayDiagonal(tp, (0, 1), (2, 3))
|
730 |
+
|
731 |
+
# Permutation of dimensions:
|
732 |
+
|
733 |
+
expr = permutedims(M, [1, 0])
|
734 |
+
assert expr == PermuteDims(M, [1, 0])
|
735 |
+
|
736 |
+
expr = permutedims(PermuteDims(tp, [1, 0, 2, 3]), [0, 1, 3, 2])
|
737 |
+
assert expr == PermuteDims(tp, [1, 0, 3, 2])
|
738 |
+
|
739 |
+
expr = PermuteDims(tp, index_order_new=["a", "b", "c", "d"], index_order_old=["d", "c", "b", "a"])
|
740 |
+
assert expr == PermuteDims(tp, [3, 2, 1, 0])
|
741 |
+
|
742 |
+
arr = Array(range(32)).reshape(2, 2, 2, 2, 2)
|
743 |
+
expr = PermuteDims(arr, index_order_new=["a", "b", "c", "d", "e"], index_order_old=['b', 'e', 'a', 'd', 'c'])
|
744 |
+
assert expr == PermuteDims(arr, [2, 0, 4, 3, 1])
|
745 |
+
assert expr.as_explicit() == permutedims(arr, index_order_new=["a", "b", "c", "d", "e"], index_order_old=['b', 'e', 'a', 'd', 'c'])
|
746 |
+
|
747 |
+
|
748 |
+
def test_array_element_expressions():
|
749 |
+
# Check commutative property:
|
750 |
+
assert M[0, 0]*N[0, 0] == N[0, 0]*M[0, 0]
|
751 |
+
|
752 |
+
# Check derivatives:
|
753 |
+
assert M[0, 0].diff(M[0, 0]) == 1
|
754 |
+
assert M[0, 0].diff(M[1, 0]) == 0
|
755 |
+
assert M[0, 0].diff(N[0, 0]) == 0
|
756 |
+
assert M[0, 1].diff(M[i, j]) == KroneckerDelta(i, 0)*KroneckerDelta(j, 1)
|
757 |
+
assert M[0, 1].diff(N[i, j]) == 0
|
758 |
+
|
759 |
+
K4 = ArraySymbol("K4", shape=(k, k, k, k))
|
760 |
+
|
761 |
+
assert K4[i, j, k, l].diff(K4[1, 2, 3, 4]) == (
|
762 |
+
KroneckerDelta(i, 1)*KroneckerDelta(j, 2)*KroneckerDelta(k, 3)*KroneckerDelta(l, 4)
|
763 |
+
)
|
764 |
+
|
765 |
+
|
766 |
+
def test_array_expr_reshape():
|
767 |
+
|
768 |
+
A = MatrixSymbol("A", 2, 2)
|
769 |
+
B = ArraySymbol("B", (2, 2, 2))
|
770 |
+
C = Array([1, 2, 3, 4])
|
771 |
+
|
772 |
+
expr = Reshape(A, (4,))
|
773 |
+
assert expr.expr == A
|
774 |
+
assert expr.shape == (4,)
|
775 |
+
assert expr.as_explicit() == Array([A[0, 0], A[0, 1], A[1, 0], A[1, 1]])
|
776 |
+
|
777 |
+
expr = Reshape(B, (2, 4))
|
778 |
+
assert expr.expr == B
|
779 |
+
assert expr.shape == (2, 4)
|
780 |
+
ee = expr.as_explicit()
|
781 |
+
assert isinstance(ee, ImmutableDenseNDimArray)
|
782 |
+
assert ee.shape == (2, 4)
|
783 |
+
assert ee == Array([[B[0, 0, 0], B[0, 0, 1], B[0, 1, 0], B[0, 1, 1]], [B[1, 0, 0], B[1, 0, 1], B[1, 1, 0], B[1, 1, 1]]])
|
784 |
+
|
785 |
+
expr = Reshape(A, (k, 2))
|
786 |
+
assert expr.shape == (k, 2)
|
787 |
+
|
788 |
+
raises(ValueError, lambda: Reshape(A, (2, 3)))
|
789 |
+
raises(ValueError, lambda: Reshape(A, (3,)))
|
790 |
+
|
791 |
+
expr = Reshape(C, (2, 2))
|
792 |
+
assert expr.expr == C
|
793 |
+
assert expr.shape == (2, 2)
|
794 |
+
assert expr.doit() == Array([[1, 2], [3, 4]])
|
795 |
+
|
796 |
+
|
797 |
+
def test_array_expr_as_explicit_with_explicit_component_arrays():
|
798 |
+
# Test if .as_explicit() works with explicit-component arrays
|
799 |
+
# nested in array expressions:
|
800 |
+
from sympy.abc import x, y, z, t
|
801 |
+
A = Array([[x, y], [z, t]])
|
802 |
+
assert ArrayTensorProduct(A, A).as_explicit() == tensorproduct(A, A)
|
803 |
+
assert ArrayDiagonal(A, (0, 1)).as_explicit() == tensordiagonal(A, (0, 1))
|
804 |
+
assert ArrayContraction(A, (0, 1)).as_explicit() == tensorcontraction(A, (0, 1))
|
805 |
+
assert ArrayAdd(A, A).as_explicit() == A + A
|
806 |
+
assert ArrayElementwiseApplyFunc(sin, A).as_explicit() == A.applyfunc(sin)
|
807 |
+
assert PermuteDims(A, [1, 0]).as_explicit() == permutedims(A, [1, 0])
|
808 |
+
assert Reshape(A, [4]).as_explicit() == A.reshape(4)
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_arrayexpr_derivatives.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.symbol import symbols
|
2 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
3 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
4 |
+
from sympy.matrices.expressions.special import Identity
|
5 |
+
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
|
6 |
+
from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayTensorProduct, \
|
7 |
+
PermuteDims, ArrayDiagonal, ArrayElementwiseApplyFunc, ArrayContraction, _permute_dims, Reshape
|
8 |
+
from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive
|
9 |
+
|
10 |
+
k = symbols("k")
|
11 |
+
|
12 |
+
I = Identity(k)
|
13 |
+
X = MatrixSymbol("X", k, k)
|
14 |
+
x = MatrixSymbol("x", k, 1)
|
15 |
+
|
16 |
+
A = MatrixSymbol("A", k, k)
|
17 |
+
B = MatrixSymbol("B", k, k)
|
18 |
+
C = MatrixSymbol("C", k, k)
|
19 |
+
D = MatrixSymbol("D", k, k)
|
20 |
+
|
21 |
+
A1 = ArraySymbol("A", (3, 2, k))
|
22 |
+
|
23 |
+
|
24 |
+
def test_arrayexpr_derivatives1():
|
25 |
+
|
26 |
+
res = array_derive(X, X)
|
27 |
+
assert res == PermuteDims(ArrayTensorProduct(I, I), [0, 2, 1, 3])
|
28 |
+
|
29 |
+
cg = ArrayTensorProduct(A, X, B)
|
30 |
+
res = array_derive(cg, X)
|
31 |
+
assert res == _permute_dims(
|
32 |
+
ArrayTensorProduct(I, A, I, B),
|
33 |
+
[0, 4, 2, 3, 1, 5, 6, 7])
|
34 |
+
|
35 |
+
cg = ArrayContraction(X, (0, 1))
|
36 |
+
res = array_derive(cg, X)
|
37 |
+
assert res == ArrayContraction(ArrayTensorProduct(I, I), (1, 3))
|
38 |
+
|
39 |
+
cg = ArrayDiagonal(X, (0, 1))
|
40 |
+
res = array_derive(cg, X)
|
41 |
+
assert res == ArrayDiagonal(ArrayTensorProduct(I, I), (1, 3))
|
42 |
+
|
43 |
+
cg = ElementwiseApplyFunction(sin, X)
|
44 |
+
res = array_derive(cg, X)
|
45 |
+
assert res.dummy_eq(ArrayDiagonal(
|
46 |
+
ArrayTensorProduct(
|
47 |
+
ElementwiseApplyFunction(cos, X),
|
48 |
+
I,
|
49 |
+
I
|
50 |
+
), (0, 3), (1, 5)))
|
51 |
+
|
52 |
+
cg = ArrayElementwiseApplyFunc(sin, X)
|
53 |
+
res = array_derive(cg, X)
|
54 |
+
assert res.dummy_eq(ArrayDiagonal(
|
55 |
+
ArrayTensorProduct(
|
56 |
+
I,
|
57 |
+
I,
|
58 |
+
ArrayElementwiseApplyFunc(cos, X)
|
59 |
+
), (1, 4), (3, 5)))
|
60 |
+
|
61 |
+
res = array_derive(A1, A1)
|
62 |
+
assert res == PermuteDims(
|
63 |
+
ArrayTensorProduct(Identity(3), Identity(2), Identity(k)),
|
64 |
+
[0, 2, 4, 1, 3, 5]
|
65 |
+
)
|
66 |
+
|
67 |
+
cg = ArrayElementwiseApplyFunc(sin, A1)
|
68 |
+
res = array_derive(cg, A1)
|
69 |
+
assert res.dummy_eq(ArrayDiagonal(
|
70 |
+
ArrayTensorProduct(
|
71 |
+
Identity(3), Identity(2), Identity(k),
|
72 |
+
ArrayElementwiseApplyFunc(cos, A1)
|
73 |
+
), (1, 6), (3, 7), (5, 8)
|
74 |
+
))
|
75 |
+
|
76 |
+
cg = Reshape(A, (k**2,))
|
77 |
+
res = array_derive(cg, A)
|
78 |
+
assert res == Reshape(PermuteDims(ArrayTensorProduct(I, I), [0, 2, 1, 3]), (k, k, k**2))
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_as_explicit.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.symbol import Symbol
|
2 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
3 |
+
from sympy.tensor.array.arrayop import (permutedims, tensorcontraction, tensordiagonal, tensorproduct)
|
4 |
+
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
|
5 |
+
from sympy.tensor.array.expressions.array_expressions import ZeroArray, OneArray, ArraySymbol, \
|
6 |
+
ArrayTensorProduct, PermuteDims, ArrayDiagonal, ArrayContraction, ArrayAdd
|
7 |
+
from sympy.testing.pytest import raises
|
8 |
+
|
9 |
+
|
10 |
+
def test_array_as_explicit_call():
|
11 |
+
|
12 |
+
assert ZeroArray(3, 2, 4).as_explicit() == ImmutableDenseNDimArray.zeros(3, 2, 4)
|
13 |
+
assert OneArray(3, 2, 4).as_explicit() == ImmutableDenseNDimArray([1 for i in range(3*2*4)]).reshape(3, 2, 4)
|
14 |
+
|
15 |
+
k = Symbol("k")
|
16 |
+
X = ArraySymbol("X", (k, 3, 2))
|
17 |
+
raises(ValueError, lambda: X.as_explicit())
|
18 |
+
raises(ValueError, lambda: ZeroArray(k, 2, 3).as_explicit())
|
19 |
+
raises(ValueError, lambda: OneArray(2, k, 2).as_explicit())
|
20 |
+
|
21 |
+
A = ArraySymbol("A", (3, 3))
|
22 |
+
B = ArraySymbol("B", (3, 3))
|
23 |
+
|
24 |
+
texpr = tensorproduct(A, B)
|
25 |
+
assert isinstance(texpr, ArrayTensorProduct)
|
26 |
+
assert texpr.as_explicit() == tensorproduct(A.as_explicit(), B.as_explicit())
|
27 |
+
|
28 |
+
texpr = tensorcontraction(A, (0, 1))
|
29 |
+
assert isinstance(texpr, ArrayContraction)
|
30 |
+
assert texpr.as_explicit() == A[0, 0] + A[1, 1] + A[2, 2]
|
31 |
+
|
32 |
+
texpr = tensordiagonal(A, (0, 1))
|
33 |
+
assert isinstance(texpr, ArrayDiagonal)
|
34 |
+
assert texpr.as_explicit() == ImmutableDenseNDimArray([A[0, 0], A[1, 1], A[2, 2]])
|
35 |
+
|
36 |
+
texpr = permutedims(A, [1, 0])
|
37 |
+
assert isinstance(texpr, PermuteDims)
|
38 |
+
assert texpr.as_explicit() == permutedims(A.as_explicit(), [1, 0])
|
39 |
+
|
40 |
+
|
41 |
+
def test_array_as_explicit_matrix_symbol():
|
42 |
+
|
43 |
+
A = MatrixSymbol("A", 3, 3)
|
44 |
+
B = MatrixSymbol("B", 3, 3)
|
45 |
+
|
46 |
+
texpr = tensorproduct(A, B)
|
47 |
+
assert isinstance(texpr, ArrayTensorProduct)
|
48 |
+
assert texpr.as_explicit() == tensorproduct(A.as_explicit(), B.as_explicit())
|
49 |
+
|
50 |
+
texpr = tensorcontraction(A, (0, 1))
|
51 |
+
assert isinstance(texpr, ArrayContraction)
|
52 |
+
assert texpr.as_explicit() == A[0, 0] + A[1, 1] + A[2, 2]
|
53 |
+
|
54 |
+
texpr = tensordiagonal(A, (0, 1))
|
55 |
+
assert isinstance(texpr, ArrayDiagonal)
|
56 |
+
assert texpr.as_explicit() == ImmutableDenseNDimArray([A[0, 0], A[1, 1], A[2, 2]])
|
57 |
+
|
58 |
+
texpr = permutedims(A, [1, 0])
|
59 |
+
assert isinstance(texpr, PermuteDims)
|
60 |
+
assert texpr.as_explicit() == permutedims(A.as_explicit(), [1, 0])
|
61 |
+
|
62 |
+
expr = ArrayAdd(ArrayTensorProduct(A, B), ArrayTensorProduct(B, A))
|
63 |
+
assert expr.as_explicit() == expr.args[0].as_explicit() + expr.args[1].as_explicit()
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_convert_array_to_indexed.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy import Sum, Dummy, sin
|
2 |
+
from sympy.tensor.array.expressions import ArraySymbol, ArrayTensorProduct, ArrayContraction, PermuteDims, \
|
3 |
+
ArrayDiagonal, ArrayAdd, OneArray, ZeroArray, convert_indexed_to_array, ArrayElementwiseApplyFunc, Reshape
|
4 |
+
from sympy.tensor.array.expressions.from_array_to_indexed import convert_array_to_indexed
|
5 |
+
|
6 |
+
from sympy.abc import i, j, k, l, m, n, o
|
7 |
+
|
8 |
+
|
9 |
+
def test_convert_array_to_indexed_main():
|
10 |
+
A = ArraySymbol("A", (3, 3, 3))
|
11 |
+
B = ArraySymbol("B", (3, 3))
|
12 |
+
C = ArraySymbol("C", (3, 3))
|
13 |
+
|
14 |
+
d_ = Dummy("d_")
|
15 |
+
|
16 |
+
assert convert_array_to_indexed(A, [i, j, k]) == A[i, j, k]
|
17 |
+
|
18 |
+
expr = ArrayTensorProduct(A, B, C)
|
19 |
+
conv = convert_array_to_indexed(expr, [i,j,k,l,m,n,o])
|
20 |
+
assert conv == A[i,j,k]*B[l,m]*C[n,o]
|
21 |
+
assert convert_indexed_to_array(conv, [i,j,k,l,m,n,o]) == expr
|
22 |
+
|
23 |
+
expr = ArrayContraction(A, (0, 2))
|
24 |
+
assert convert_array_to_indexed(expr, [i]).dummy_eq(Sum(A[d_, i, d_], (d_, 0, 2)))
|
25 |
+
|
26 |
+
expr = ArrayDiagonal(A, (0, 2))
|
27 |
+
assert convert_array_to_indexed(expr, [i, j]) == A[j, i, j]
|
28 |
+
|
29 |
+
expr = PermuteDims(A, [1, 2, 0])
|
30 |
+
conv = convert_array_to_indexed(expr, [i, j, k])
|
31 |
+
assert conv == A[k, i, j]
|
32 |
+
assert convert_indexed_to_array(conv, [i, j, k]) == expr
|
33 |
+
|
34 |
+
expr = ArrayAdd(B, C, PermuteDims(C, [1, 0]))
|
35 |
+
conv = convert_array_to_indexed(expr, [i, j])
|
36 |
+
assert conv == B[i, j] + C[i, j] + C[j, i]
|
37 |
+
assert convert_indexed_to_array(conv, [i, j]) == expr
|
38 |
+
|
39 |
+
expr = ArrayElementwiseApplyFunc(sin, A)
|
40 |
+
conv = convert_array_to_indexed(expr, [i, j, k])
|
41 |
+
assert conv == sin(A[i, j, k])
|
42 |
+
assert convert_indexed_to_array(conv, [i, j, k]).dummy_eq(expr)
|
43 |
+
|
44 |
+
assert convert_array_to_indexed(OneArray(3, 3), [i, j]) == 1
|
45 |
+
assert convert_array_to_indexed(ZeroArray(3, 3), [i, j]) == 0
|
46 |
+
|
47 |
+
expr = Reshape(A, (27,))
|
48 |
+
assert convert_array_to_indexed(expr, [i]) == A[i // 9, i // 3 % 3, i % 3]
|
49 |
+
|
50 |
+
X = ArraySymbol("X", (2, 3, 4, 5, 6))
|
51 |
+
expr = Reshape(X, (2*3*4*5*6,))
|
52 |
+
assert convert_array_to_indexed(expr, [i]) == X[i // 360, i // 120 % 3, i // 30 % 4, i // 6 % 5, i % 6]
|
53 |
+
|
54 |
+
expr = Reshape(X, (4, 9, 2, 2, 5))
|
55 |
+
one_index = 180*i + 20*j + 10*k + 5*l + m
|
56 |
+
expected = X[one_index // (3*4*5*6), one_index // (4*5*6) % 3, one_index // (5*6) % 4, one_index // 6 % 5, one_index % 6]
|
57 |
+
assert convert_array_to_indexed(expr, [i, j, k, l, m]) == expected
|
58 |
+
|
59 |
+
X = ArraySymbol("X", (2*3*5,))
|
60 |
+
expr = Reshape(X, (2, 3, 5))
|
61 |
+
assert convert_array_to_indexed(expr, [i, j, k]) == X[15*i + 5*j + k]
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_convert_array_to_matrix.py
ADDED
@@ -0,0 +1,689 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy import Lambda, S, Dummy, KroneckerProduct
|
2 |
+
from sympy.core.symbol import symbols
|
3 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
4 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
5 |
+
from sympy.matrices.expressions.hadamard import HadamardProduct, HadamardPower
|
6 |
+
from sympy.matrices.expressions.special import (Identity, OneMatrix, ZeroMatrix)
|
7 |
+
from sympy.matrices.expressions.matexpr import MatrixElement
|
8 |
+
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
9 |
+
from sympy.tensor.array.expressions.from_array_to_matrix import _support_function_tp1_recognize, \
|
10 |
+
_array_diag2contr_diagmatrix, convert_array_to_matrix, _remove_trivial_dims, _array2matrix, \
|
11 |
+
_combine_removed, identify_removable_identity_matrices, _array_contraction_to_diagonal_multiple_identity
|
12 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
13 |
+
from sympy.combinatorics import Permutation
|
14 |
+
from sympy.matrices.expressions.diagonal import DiagMatrix, DiagonalMatrix
|
15 |
+
from sympy.matrices import Trace, MatMul, Transpose
|
16 |
+
from sympy.tensor.array.expressions.array_expressions import ZeroArray, OneArray, \
|
17 |
+
ArrayElement, ArraySymbol, ArrayElementwiseApplyFunc, _array_tensor_product, _array_contraction, \
|
18 |
+
_array_diagonal, _permute_dims, PermuteDims, ArrayAdd, ArrayDiagonal, ArrayContraction, ArrayTensorProduct
|
19 |
+
from sympy.testing.pytest import raises
|
20 |
+
|
21 |
+
|
22 |
+
i, j, k, l, m, n = symbols("i j k l m n")
|
23 |
+
|
24 |
+
I = Identity(k)
|
25 |
+
I1 = Identity(1)
|
26 |
+
|
27 |
+
M = MatrixSymbol("M", k, k)
|
28 |
+
N = MatrixSymbol("N", k, k)
|
29 |
+
P = MatrixSymbol("P", k, k)
|
30 |
+
Q = MatrixSymbol("Q", k, k)
|
31 |
+
|
32 |
+
A = MatrixSymbol("A", k, k)
|
33 |
+
B = MatrixSymbol("B", k, k)
|
34 |
+
C = MatrixSymbol("C", k, k)
|
35 |
+
D = MatrixSymbol("D", k, k)
|
36 |
+
|
37 |
+
X = MatrixSymbol("X", k, k)
|
38 |
+
Y = MatrixSymbol("Y", k, k)
|
39 |
+
|
40 |
+
a = MatrixSymbol("a", k, 1)
|
41 |
+
b = MatrixSymbol("b", k, 1)
|
42 |
+
c = MatrixSymbol("c", k, 1)
|
43 |
+
d = MatrixSymbol("d", k, 1)
|
44 |
+
|
45 |
+
x = MatrixSymbol("x", k, 1)
|
46 |
+
y = MatrixSymbol("y", k, 1)
|
47 |
+
|
48 |
+
|
49 |
+
def test_arrayexpr_convert_array_to_matrix():
|
50 |
+
|
51 |
+
cg = _array_contraction(_array_tensor_product(M), (0, 1))
|
52 |
+
assert convert_array_to_matrix(cg) == Trace(M)
|
53 |
+
|
54 |
+
cg = _array_contraction(_array_tensor_product(M, N), (0, 1), (2, 3))
|
55 |
+
assert convert_array_to_matrix(cg) == Trace(M) * Trace(N)
|
56 |
+
|
57 |
+
cg = _array_contraction(_array_tensor_product(M, N), (0, 3), (1, 2))
|
58 |
+
assert convert_array_to_matrix(cg) == Trace(M * N)
|
59 |
+
|
60 |
+
cg = _array_contraction(_array_tensor_product(M, N), (0, 2), (1, 3))
|
61 |
+
assert convert_array_to_matrix(cg) == Trace(M * N.T)
|
62 |
+
|
63 |
+
cg = convert_matrix_to_array(M * N * P)
|
64 |
+
assert convert_array_to_matrix(cg) == M * N * P
|
65 |
+
|
66 |
+
cg = convert_matrix_to_array(M * N.T * P)
|
67 |
+
assert convert_array_to_matrix(cg) == M * N.T * P
|
68 |
+
|
69 |
+
cg = _array_contraction(_array_tensor_product(M,N,P,Q), (1, 2), (5, 6))
|
70 |
+
assert convert_array_to_matrix(cg) == _array_tensor_product(M * N, P * Q)
|
71 |
+
|
72 |
+
cg = _array_contraction(_array_tensor_product(-2, M, N), (1, 2))
|
73 |
+
assert convert_array_to_matrix(cg) == -2 * M * N
|
74 |
+
|
75 |
+
a = MatrixSymbol("a", k, 1)
|
76 |
+
b = MatrixSymbol("b", k, 1)
|
77 |
+
c = MatrixSymbol("c", k, 1)
|
78 |
+
cg = PermuteDims(
|
79 |
+
_array_contraction(
|
80 |
+
_array_tensor_product(
|
81 |
+
a,
|
82 |
+
ArrayAdd(
|
83 |
+
_array_tensor_product(b, c),
|
84 |
+
_array_tensor_product(c, b),
|
85 |
+
)
|
86 |
+
), (2, 4)), [0, 1, 3, 2])
|
87 |
+
assert convert_array_to_matrix(cg) == a * (b.T * c + c.T * b)
|
88 |
+
|
89 |
+
za = ZeroArray(m, n)
|
90 |
+
assert convert_array_to_matrix(za) == ZeroMatrix(m, n)
|
91 |
+
|
92 |
+
cg = _array_tensor_product(3, M)
|
93 |
+
assert convert_array_to_matrix(cg) == 3 * M
|
94 |
+
|
95 |
+
# Partial conversion to matrix multiplication:
|
96 |
+
expr = _array_contraction(_array_tensor_product(M, N, P, Q), (0, 2), (1, 4, 6))
|
97 |
+
assert convert_array_to_matrix(expr) == _array_contraction(_array_tensor_product(M.T*N, P, Q), (0, 2, 4))
|
98 |
+
|
99 |
+
x = MatrixSymbol("x", k, 1)
|
100 |
+
cg = PermuteDims(
|
101 |
+
_array_contraction(_array_tensor_product(OneArray(1), x, OneArray(1), DiagMatrix(Identity(1))),
|
102 |
+
(0, 5)), Permutation(1, 2, 3))
|
103 |
+
assert convert_array_to_matrix(cg) == x
|
104 |
+
|
105 |
+
expr = ArrayAdd(M, PermuteDims(M, [1, 0]))
|
106 |
+
assert convert_array_to_matrix(expr) == M + Transpose(M)
|
107 |
+
|
108 |
+
|
109 |
+
def test_arrayexpr_convert_array_to_matrix2():
|
110 |
+
cg = _array_contraction(_array_tensor_product(M, N), (1, 3))
|
111 |
+
assert convert_array_to_matrix(cg) == M * N.T
|
112 |
+
|
113 |
+
cg = PermuteDims(_array_tensor_product(M, N), Permutation([0, 1, 3, 2]))
|
114 |
+
assert convert_array_to_matrix(cg) == _array_tensor_product(M, N.T)
|
115 |
+
|
116 |
+
cg = _array_tensor_product(M, PermuteDims(N, Permutation([1, 0])))
|
117 |
+
assert convert_array_to_matrix(cg) == _array_tensor_product(M, N.T)
|
118 |
+
|
119 |
+
cg = _array_contraction(
|
120 |
+
PermuteDims(
|
121 |
+
_array_tensor_product(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])),
|
122 |
+
(1, 2), (3, 5)
|
123 |
+
)
|
124 |
+
assert convert_array_to_matrix(cg) == _array_tensor_product(M * P.T * Trace(N), Q.T)
|
125 |
+
|
126 |
+
cg = _array_contraction(
|
127 |
+
_array_tensor_product(M, N, P, PermuteDims(Q, Permutation([1, 0]))),
|
128 |
+
(1, 5), (2, 3)
|
129 |
+
)
|
130 |
+
assert convert_array_to_matrix(cg) == _array_tensor_product(M * P.T * Trace(N), Q.T)
|
131 |
+
|
132 |
+
cg = _array_tensor_product(M, PermuteDims(N, [1, 0]))
|
133 |
+
assert convert_array_to_matrix(cg) == _array_tensor_product(M, N.T)
|
134 |
+
|
135 |
+
cg = _array_tensor_product(PermuteDims(M, [1, 0]), PermuteDims(N, [1, 0]))
|
136 |
+
assert convert_array_to_matrix(cg) == _array_tensor_product(M.T, N.T)
|
137 |
+
|
138 |
+
cg = _array_tensor_product(PermuteDims(N, [1, 0]), PermuteDims(M, [1, 0]))
|
139 |
+
assert convert_array_to_matrix(cg) == _array_tensor_product(N.T, M.T)
|
140 |
+
|
141 |
+
cg = _array_contraction(M, (0,), (1,))
|
142 |
+
assert convert_array_to_matrix(cg) == OneMatrix(1, k)*M*OneMatrix(k, 1)
|
143 |
+
|
144 |
+
cg = _array_contraction(x, (0,), (1,))
|
145 |
+
assert convert_array_to_matrix(cg) == OneMatrix(1, k)*x
|
146 |
+
|
147 |
+
Xm = MatrixSymbol("Xm", m, n)
|
148 |
+
cg = _array_contraction(Xm, (0,), (1,))
|
149 |
+
assert convert_array_to_matrix(cg) == OneMatrix(1, m)*Xm*OneMatrix(n, 1)
|
150 |
+
|
151 |
+
|
152 |
+
def test_arrayexpr_convert_array_to_diagonalized_vector():
|
153 |
+
|
154 |
+
# Check matrix recognition over trivial dimensions:
|
155 |
+
|
156 |
+
cg = _array_tensor_product(a, b)
|
157 |
+
assert convert_array_to_matrix(cg) == a * b.T
|
158 |
+
|
159 |
+
cg = _array_tensor_product(I1, a, b)
|
160 |
+
assert convert_array_to_matrix(cg) == a * b.T
|
161 |
+
|
162 |
+
# Recognize trace inside a tensor product:
|
163 |
+
|
164 |
+
cg = _array_contraction(_array_tensor_product(A, B, C), (0, 3), (1, 2))
|
165 |
+
assert convert_array_to_matrix(cg) == Trace(A * B) * C
|
166 |
+
|
167 |
+
# Transform diagonal operator to contraction:
|
168 |
+
|
169 |
+
cg = _array_diagonal(_array_tensor_product(A, a), (1, 2))
|
170 |
+
assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(A, OneArray(1), DiagMatrix(a)), (1, 3))
|
171 |
+
assert convert_array_to_matrix(cg) == A * DiagMatrix(a)
|
172 |
+
|
173 |
+
cg = _array_diagonal(_array_tensor_product(a, b), (0, 2))
|
174 |
+
assert _array_diag2contr_diagmatrix(cg) == _permute_dims(
|
175 |
+
_array_contraction(_array_tensor_product(DiagMatrix(a), OneArray(1), b), (0, 3)), [1, 2, 0]
|
176 |
+
)
|
177 |
+
assert convert_array_to_matrix(cg) == b.T * DiagMatrix(a)
|
178 |
+
|
179 |
+
cg = _array_diagonal(_array_tensor_product(A, a), (0, 2))
|
180 |
+
assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(A, OneArray(1), DiagMatrix(a)), (0, 3))
|
181 |
+
assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a)
|
182 |
+
|
183 |
+
cg = _array_diagonal(_array_tensor_product(I, x, I1), (0, 2), (3, 5))
|
184 |
+
assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(I, OneArray(1), I1, DiagMatrix(x)), (0, 5))
|
185 |
+
assert convert_array_to_matrix(cg) == DiagMatrix(x)
|
186 |
+
|
187 |
+
cg = _array_diagonal(_array_tensor_product(I, x, A, B), (1, 2), (5, 6))
|
188 |
+
assert _array_diag2contr_diagmatrix(cg) == _array_diagonal(_array_contraction(_array_tensor_product(I, OneArray(1), A, B, DiagMatrix(x)), (1, 7)), (5, 6))
|
189 |
+
# TODO: this is returning a wrong result:
|
190 |
+
# convert_array_to_matrix(cg)
|
191 |
+
|
192 |
+
cg = _array_diagonal(_array_tensor_product(I1, a, b), (1, 3, 5))
|
193 |
+
assert convert_array_to_matrix(cg) == a*b.T
|
194 |
+
|
195 |
+
cg = _array_diagonal(_array_tensor_product(I1, a, b), (1, 3))
|
196 |
+
assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(OneArray(1), a, b, I1), (2, 6))
|
197 |
+
assert convert_array_to_matrix(cg) == a*b.T
|
198 |
+
|
199 |
+
cg = _array_diagonal(_array_tensor_product(x, I1), (1, 2))
|
200 |
+
assert isinstance(cg, ArrayDiagonal)
|
201 |
+
assert cg.diagonal_indices == ((1, 2),)
|
202 |
+
assert convert_array_to_matrix(cg) == x
|
203 |
+
|
204 |
+
cg = _array_diagonal(_array_tensor_product(x, I), (0, 2))
|
205 |
+
assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(OneArray(1), I, DiagMatrix(x)), (1, 3))
|
206 |
+
assert convert_array_to_matrix(cg).doit() == DiagMatrix(x)
|
207 |
+
|
208 |
+
raises(ValueError, lambda: _array_diagonal(x, (1,)))
|
209 |
+
|
210 |
+
# Ignore identity matrices with contractions:
|
211 |
+
|
212 |
+
cg = _array_contraction(_array_tensor_product(I, A, I, I), (0, 2), (1, 3), (5, 7))
|
213 |
+
assert cg.split_multiple_contractions() == cg
|
214 |
+
assert convert_array_to_matrix(cg) == Trace(A) * I
|
215 |
+
|
216 |
+
cg = _array_contraction(_array_tensor_product(Trace(A) * I, I, I), (1, 5), (3, 4))
|
217 |
+
assert cg.split_multiple_contractions() == cg
|
218 |
+
assert convert_array_to_matrix(cg).doit() == Trace(A) * I
|
219 |
+
|
220 |
+
# Add DiagMatrix when required:
|
221 |
+
|
222 |
+
cg = _array_contraction(_array_tensor_product(A, a), (1, 2))
|
223 |
+
assert cg.split_multiple_contractions() == cg
|
224 |
+
assert convert_array_to_matrix(cg) == A * a
|
225 |
+
|
226 |
+
cg = _array_contraction(_array_tensor_product(A, a, B), (1, 2, 4))
|
227 |
+
assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1), B), (1, 2), (3, 5))
|
228 |
+
assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * B
|
229 |
+
|
230 |
+
cg = _array_contraction(_array_tensor_product(A, a, B), (0, 2, 4))
|
231 |
+
assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1), B), (0, 2), (3, 5))
|
232 |
+
assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) * B
|
233 |
+
|
234 |
+
cg = _array_contraction(_array_tensor_product(A, a, b, a.T, B), (0, 2, 4, 7, 9))
|
235 |
+
assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1),
|
236 |
+
DiagMatrix(b), OneArray(1), DiagMatrix(a), OneArray(1), B),
|
237 |
+
(0, 2), (3, 5), (6, 9), (8, 12))
|
238 |
+
assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) * DiagMatrix(b) * DiagMatrix(a) * B.T
|
239 |
+
|
240 |
+
cg = _array_contraction(_array_tensor_product(I1, I1, I1), (1, 2, 4))
|
241 |
+
assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(I1, I1, OneArray(1), I1), (1, 2), (3, 5))
|
242 |
+
assert convert_array_to_matrix(cg) == 1
|
243 |
+
|
244 |
+
cg = _array_contraction(_array_tensor_product(I, I, I, I, A), (1, 2, 8), (5, 6, 9))
|
245 |
+
assert convert_array_to_matrix(cg.split_multiple_contractions()).doit() == A
|
246 |
+
|
247 |
+
cg = _array_contraction(_array_tensor_product(A, a, C, a, B), (1, 2, 4), (5, 6, 8))
|
248 |
+
expected = _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1), C, DiagMatrix(a), OneArray(1), B), (1, 3), (2, 5), (6, 7), (8, 10))
|
249 |
+
assert cg.split_multiple_contractions() == expected
|
250 |
+
assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * C * DiagMatrix(a) * B
|
251 |
+
|
252 |
+
cg = _array_contraction(_array_tensor_product(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9))
|
253 |
+
expected = _array_contraction(_array_tensor_product(a, I1, OneArray(1), b, I1, OneArray(1), (a.T*b).applyfunc(cos)),
|
254 |
+
(1, 3), (2, 10), (6, 8), (7, 11))
|
255 |
+
assert cg.split_multiple_contractions().dummy_eq(expected)
|
256 |
+
assert convert_array_to_matrix(cg).doit().dummy_eq(MatMul(a, (a.T * b).applyfunc(cos), b.T))
|
257 |
+
|
258 |
+
|
259 |
+
def test_arrayexpr_convert_array_contraction_tp_additions():
|
260 |
+
a = ArrayAdd(
|
261 |
+
_array_tensor_product(M, N),
|
262 |
+
_array_tensor_product(N, M)
|
263 |
+
)
|
264 |
+
tp = _array_tensor_product(P, a, Q)
|
265 |
+
expr = _array_contraction(tp, (3, 4))
|
266 |
+
expected = _array_tensor_product(
|
267 |
+
P,
|
268 |
+
ArrayAdd(
|
269 |
+
_array_contraction(_array_tensor_product(M, N), (1, 2)),
|
270 |
+
_array_contraction(_array_tensor_product(N, M), (1, 2)),
|
271 |
+
),
|
272 |
+
Q
|
273 |
+
)
|
274 |
+
assert expr == expected
|
275 |
+
assert convert_array_to_matrix(expr) == _array_tensor_product(P, M * N + N * M, Q)
|
276 |
+
|
277 |
+
expr = _array_contraction(tp, (1, 2), (3, 4), (5, 6))
|
278 |
+
result = _array_contraction(
|
279 |
+
_array_tensor_product(
|
280 |
+
P,
|
281 |
+
ArrayAdd(
|
282 |
+
_array_contraction(_array_tensor_product(M, N), (1, 2)),
|
283 |
+
_array_contraction(_array_tensor_product(N, M), (1, 2)),
|
284 |
+
),
|
285 |
+
Q
|
286 |
+
), (1, 2), (3, 4))
|
287 |
+
assert expr == result
|
288 |
+
assert convert_array_to_matrix(expr) == P * (M * N + N * M) * Q
|
289 |
+
|
290 |
+
|
291 |
+
def test_arrayexpr_convert_array_to_implicit_matmul():
|
292 |
+
# Trivial dimensions are suppressed, so the result can be expressed in matrix form:
|
293 |
+
|
294 |
+
cg = _array_tensor_product(a, b)
|
295 |
+
assert convert_array_to_matrix(cg) == a * b.T
|
296 |
+
|
297 |
+
cg = _array_tensor_product(a, b, I)
|
298 |
+
assert convert_array_to_matrix(cg) == _array_tensor_product(a*b.T, I)
|
299 |
+
|
300 |
+
cg = _array_tensor_product(I, a, b)
|
301 |
+
assert convert_array_to_matrix(cg) == _array_tensor_product(I, a*b.T)
|
302 |
+
|
303 |
+
cg = _array_tensor_product(a, I, b)
|
304 |
+
assert convert_array_to_matrix(cg) == _array_tensor_product(a, I, b)
|
305 |
+
|
306 |
+
cg = _array_contraction(_array_tensor_product(I, I), (1, 2))
|
307 |
+
assert convert_array_to_matrix(cg) == I
|
308 |
+
|
309 |
+
cg = PermuteDims(_array_tensor_product(I, Identity(1)), [0, 2, 1, 3])
|
310 |
+
assert convert_array_to_matrix(cg) == I
|
311 |
+
|
312 |
+
|
313 |
+
def test_arrayexpr_convert_array_to_matrix_remove_trivial_dims():
|
314 |
+
|
315 |
+
# Tensor Product:
|
316 |
+
assert _remove_trivial_dims(_array_tensor_product(a, b)) == (a * b.T, [1, 3])
|
317 |
+
assert _remove_trivial_dims(_array_tensor_product(a.T, b)) == (a * b.T, [0, 3])
|
318 |
+
assert _remove_trivial_dims(_array_tensor_product(a, b.T)) == (a * b.T, [1, 2])
|
319 |
+
assert _remove_trivial_dims(_array_tensor_product(a.T, b.T)) == (a * b.T, [0, 2])
|
320 |
+
|
321 |
+
assert _remove_trivial_dims(_array_tensor_product(I, a.T, b.T)) == (_array_tensor_product(I, a * b.T), [2, 4])
|
322 |
+
assert _remove_trivial_dims(_array_tensor_product(a.T, I, b.T)) == (_array_tensor_product(a.T, I, b.T), [])
|
323 |
+
|
324 |
+
assert _remove_trivial_dims(_array_tensor_product(a, I)) == (_array_tensor_product(a, I), [])
|
325 |
+
assert _remove_trivial_dims(_array_tensor_product(I, a)) == (_array_tensor_product(I, a), [])
|
326 |
+
|
327 |
+
assert _remove_trivial_dims(_array_tensor_product(a.T, b.T, c, d)) == (
|
328 |
+
_array_tensor_product(a * b.T, c * d.T), [0, 2, 5, 7])
|
329 |
+
assert _remove_trivial_dims(_array_tensor_product(a.T, I, b.T, c, d, I)) == (
|
330 |
+
_array_tensor_product(a.T, I, b*c.T, d, I), [4, 7])
|
331 |
+
|
332 |
+
# Addition:
|
333 |
+
|
334 |
+
cg = ArrayAdd(_array_tensor_product(a, b), _array_tensor_product(c, d))
|
335 |
+
assert _remove_trivial_dims(cg) == (a * b.T + c * d.T, [1, 3])
|
336 |
+
|
337 |
+
# Permute Dims:
|
338 |
+
|
339 |
+
cg = PermuteDims(_array_tensor_product(a, b), Permutation(3)(1, 2))
|
340 |
+
assert _remove_trivial_dims(cg) == (a * b.T, [2, 3])
|
341 |
+
|
342 |
+
cg = PermuteDims(_array_tensor_product(a, I, b), Permutation(5)(1, 2, 3, 4))
|
343 |
+
assert _remove_trivial_dims(cg) == (cg, [])
|
344 |
+
|
345 |
+
cg = PermuteDims(_array_tensor_product(I, b, a), Permutation(5)(1, 2, 4, 5, 3))
|
346 |
+
assert _remove_trivial_dims(cg) == (PermuteDims(_array_tensor_product(I, b * a.T), [0, 2, 3, 1]), [4, 5])
|
347 |
+
|
348 |
+
# Diagonal:
|
349 |
+
|
350 |
+
cg = _array_diagonal(_array_tensor_product(M, a), (1, 2))
|
351 |
+
assert _remove_trivial_dims(cg) == (cg, [])
|
352 |
+
|
353 |
+
# Contraction:
|
354 |
+
|
355 |
+
cg = _array_contraction(_array_tensor_product(M, a), (1, 2))
|
356 |
+
assert _remove_trivial_dims(cg) == (cg, [])
|
357 |
+
|
358 |
+
# A few more cases to test the removal and shift of nested removed axes
|
359 |
+
# with array contractions and array diagonals:
|
360 |
+
tp = _array_tensor_product(
|
361 |
+
OneMatrix(1, 1),
|
362 |
+
M,
|
363 |
+
x,
|
364 |
+
OneMatrix(1, 1),
|
365 |
+
Identity(1),
|
366 |
+
)
|
367 |
+
|
368 |
+
expr = _array_contraction(tp, (1, 8))
|
369 |
+
rexpr, removed = _remove_trivial_dims(expr)
|
370 |
+
assert removed == [0, 5, 6, 7]
|
371 |
+
|
372 |
+
expr = _array_contraction(tp, (1, 8), (3, 4))
|
373 |
+
rexpr, removed = _remove_trivial_dims(expr)
|
374 |
+
assert removed == [0, 3, 4, 5]
|
375 |
+
|
376 |
+
expr = _array_diagonal(tp, (1, 8))
|
377 |
+
rexpr, removed = _remove_trivial_dims(expr)
|
378 |
+
assert removed == [0, 5, 6, 7, 8]
|
379 |
+
|
380 |
+
expr = _array_diagonal(tp, (1, 8), (3, 4))
|
381 |
+
rexpr, removed = _remove_trivial_dims(expr)
|
382 |
+
assert removed == [0, 3, 4, 5, 6]
|
383 |
+
|
384 |
+
expr = _array_diagonal(_array_contraction(_array_tensor_product(A, x, I, I1), (1, 2, 5)), (1, 4))
|
385 |
+
rexpr, removed = _remove_trivial_dims(expr)
|
386 |
+
assert removed == [2, 3]
|
387 |
+
|
388 |
+
cg = _array_diagonal(_array_tensor_product(PermuteDims(_array_tensor_product(x, I1), Permutation(1, 2, 3)), (x.T*x).applyfunc(sqrt)), (2, 4), (3, 5))
|
389 |
+
rexpr, removed = _remove_trivial_dims(cg)
|
390 |
+
assert removed == [1, 2]
|
391 |
+
|
392 |
+
# Contractions with identity matrices need to be followed by a permutation
|
393 |
+
# in order
|
394 |
+
cg = _array_contraction(_array_tensor_product(A, B, C, M, I), (1, 8))
|
395 |
+
ret, removed = _remove_trivial_dims(cg)
|
396 |
+
assert ret == PermuteDims(_array_tensor_product(A, B, C, M), [0, 2, 3, 4, 5, 6, 7, 1])
|
397 |
+
assert removed == []
|
398 |
+
|
399 |
+
cg = _array_contraction(_array_tensor_product(A, B, C, M, I), (1, 8), (3, 4))
|
400 |
+
ret, removed = _remove_trivial_dims(cg)
|
401 |
+
assert ret == PermuteDims(_array_contraction(_array_tensor_product(A, B, C, M), (3, 4)), [0, 2, 3, 4, 5, 1])
|
402 |
+
assert removed == []
|
403 |
+
|
404 |
+
# Trivial matrices are sometimes inserted into MatMul expressions:
|
405 |
+
|
406 |
+
cg = _array_tensor_product(b*b.T, a.T*a)
|
407 |
+
ret, removed = _remove_trivial_dims(cg)
|
408 |
+
assert ret == b*a.T*a*b.T
|
409 |
+
assert removed == [2, 3]
|
410 |
+
|
411 |
+
Xs = ArraySymbol("X", (3, 2, k))
|
412 |
+
cg = _array_tensor_product(M, Xs, b.T*c, a*a.T, b*b.T, c.T*d)
|
413 |
+
ret, removed = _remove_trivial_dims(cg)
|
414 |
+
assert ret == _array_tensor_product(M, Xs, a*b.T*c*c.T*d*a.T, b*b.T)
|
415 |
+
assert removed == [5, 6, 11, 12]
|
416 |
+
|
417 |
+
cg = _array_diagonal(_array_tensor_product(I, I1, x), (1, 4), (3, 5))
|
418 |
+
assert _remove_trivial_dims(cg) == (PermuteDims(_array_diagonal(_array_tensor_product(I, x), (1, 2)), Permutation(1, 2)), [1])
|
419 |
+
|
420 |
+
expr = _array_diagonal(_array_tensor_product(x, I, y), (0, 2))
|
421 |
+
assert _remove_trivial_dims(expr) == (PermuteDims(_array_tensor_product(DiagMatrix(x), y), [1, 2, 3, 0]), [0])
|
422 |
+
|
423 |
+
expr = _array_diagonal(_array_tensor_product(x, I, y), (0, 2), (3, 4))
|
424 |
+
assert _remove_trivial_dims(expr) == (expr, [])
|
425 |
+
|
426 |
+
|
427 |
+
def test_arrayexpr_convert_array_to_matrix_diag2contraction_diagmatrix():
|
428 |
+
cg = _array_diagonal(_array_tensor_product(M, a), (1, 2))
|
429 |
+
res = _array_diag2contr_diagmatrix(cg)
|
430 |
+
assert res.shape == cg.shape
|
431 |
+
assert res == _array_contraction(_array_tensor_product(M, OneArray(1), DiagMatrix(a)), (1, 3))
|
432 |
+
|
433 |
+
raises(ValueError, lambda: _array_diagonal(_array_tensor_product(a, M), (1, 2)))
|
434 |
+
|
435 |
+
cg = _array_diagonal(_array_tensor_product(a.T, M), (1, 2))
|
436 |
+
res = _array_diag2contr_diagmatrix(cg)
|
437 |
+
assert res.shape == cg.shape
|
438 |
+
assert res == _array_contraction(_array_tensor_product(OneArray(1), M, DiagMatrix(a.T)), (1, 4))
|
439 |
+
|
440 |
+
cg = _array_diagonal(_array_tensor_product(a.T, M, N, b.T), (1, 2), (4, 7))
|
441 |
+
res = _array_diag2contr_diagmatrix(cg)
|
442 |
+
assert res.shape == cg.shape
|
443 |
+
assert res == _array_contraction(
|
444 |
+
_array_tensor_product(OneArray(1), M, N, OneArray(1), DiagMatrix(a.T), DiagMatrix(b.T)), (1, 7), (3, 9))
|
445 |
+
|
446 |
+
cg = _array_diagonal(_array_tensor_product(a, M, N, b.T), (0, 2), (4, 7))
|
447 |
+
res = _array_diag2contr_diagmatrix(cg)
|
448 |
+
assert res.shape == cg.shape
|
449 |
+
assert res == _array_contraction(
|
450 |
+
_array_tensor_product(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (1, 6), (3, 9))
|
451 |
+
|
452 |
+
cg = _array_diagonal(_array_tensor_product(a, M, N, b.T), (0, 4), (3, 7))
|
453 |
+
res = _array_diag2contr_diagmatrix(cg)
|
454 |
+
assert res.shape == cg.shape
|
455 |
+
assert res == _array_contraction(
|
456 |
+
_array_tensor_product(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (3, 6), (2, 9))
|
457 |
+
|
458 |
+
I1 = Identity(1)
|
459 |
+
x = MatrixSymbol("x", k, 1)
|
460 |
+
A = MatrixSymbol("A", k, k)
|
461 |
+
cg = _array_diagonal(_array_tensor_product(x, A.T, I1), (0, 2))
|
462 |
+
assert _array_diag2contr_diagmatrix(cg).shape == cg.shape
|
463 |
+
assert _array2matrix(cg).shape == cg.shape
|
464 |
+
|
465 |
+
|
466 |
+
def test_arrayexpr_convert_array_to_matrix_support_function():
|
467 |
+
|
468 |
+
assert _support_function_tp1_recognize([], [2 * k]) == 2 * k
|
469 |
+
|
470 |
+
assert _support_function_tp1_recognize([(1, 2)], [A, 2 * k, B, 3]) == 6 * k * A * B
|
471 |
+
|
472 |
+
assert _support_function_tp1_recognize([(0, 3), (1, 2)], [A, B]) == Trace(A * B)
|
473 |
+
|
474 |
+
assert _support_function_tp1_recognize([(1, 2)], [A, B]) == A * B
|
475 |
+
assert _support_function_tp1_recognize([(0, 2)], [A, B]) == A.T * B
|
476 |
+
assert _support_function_tp1_recognize([(1, 3)], [A, B]) == A * B.T
|
477 |
+
assert _support_function_tp1_recognize([(0, 3)], [A, B]) == A.T * B.T
|
478 |
+
|
479 |
+
assert _support_function_tp1_recognize([(1, 2), (5, 6)], [A, B, C, D]) == _array_tensor_product(A * B, C * D)
|
480 |
+
assert _support_function_tp1_recognize([(1, 4), (3, 6)], [A, B, C, D]) == PermuteDims(
|
481 |
+
_array_tensor_product(A * C, B * D), [0, 2, 1, 3])
|
482 |
+
|
483 |
+
assert _support_function_tp1_recognize([(0, 3), (1, 4)], [A, B, C]) == B * A * C
|
484 |
+
|
485 |
+
assert _support_function_tp1_recognize([(9, 10), (1, 2), (5, 6), (3, 4), (7, 8)],
|
486 |
+
[X, Y, A, B, C, D]) == X * Y * A * B * C * D
|
487 |
+
|
488 |
+
assert _support_function_tp1_recognize([(9, 10), (1, 2), (5, 6), (3, 4)],
|
489 |
+
[X, Y, A, B, C, D]) == _array_tensor_product(X * Y * A * B, C * D)
|
490 |
+
|
491 |
+
assert _support_function_tp1_recognize([(1, 7), (3, 8), (4, 11)], [X, Y, A, B, C, D]) == PermuteDims(
|
492 |
+
_array_tensor_product(X * B.T, Y * C, A.T * D.T), [0, 2, 4, 1, 3, 5]
|
493 |
+
)
|
494 |
+
|
495 |
+
assert _support_function_tp1_recognize([(0, 1), (3, 6), (5, 8)], [X, A, B, C, D]) == PermuteDims(
|
496 |
+
_array_tensor_product(Trace(X) * A * C, B * D), [0, 2, 1, 3])
|
497 |
+
|
498 |
+
assert _support_function_tp1_recognize([(1, 2), (3, 4), (5, 6), (7, 8)], [A, A, B, C, D]) == A ** 2 * B * C * D
|
499 |
+
assert _support_function_tp1_recognize([(1, 2), (3, 4), (5, 6), (7, 8)], [X, A, B, C, D]) == X * A * B * C * D
|
500 |
+
|
501 |
+
assert _support_function_tp1_recognize([(1, 6), (3, 8), (5, 10)], [X, Y, A, B, C, D]) == PermuteDims(
|
502 |
+
_array_tensor_product(X * B, Y * C, A * D), [0, 2, 4, 1, 3, 5]
|
503 |
+
)
|
504 |
+
|
505 |
+
assert _support_function_tp1_recognize([(1, 4), (3, 6)], [A, B, C, D]) == PermuteDims(
|
506 |
+
_array_tensor_product(A * C, B * D), [0, 2, 1, 3])
|
507 |
+
|
508 |
+
assert _support_function_tp1_recognize([(0, 4), (1, 7), (2, 5), (3, 8)], [X, A, B, C, D]) == C*X.T*B*A*D
|
509 |
+
|
510 |
+
assert _support_function_tp1_recognize([(0, 4), (1, 7), (2, 5), (3, 8)], [X, A, B, C, D]) == C*X.T*B*A*D
|
511 |
+
|
512 |
+
|
513 |
+
def test_convert_array_to_hadamard_products():
|
514 |
+
|
515 |
+
expr = HadamardProduct(M, N)
|
516 |
+
cg = convert_matrix_to_array(expr)
|
517 |
+
ret = convert_array_to_matrix(cg)
|
518 |
+
assert ret == expr
|
519 |
+
|
520 |
+
expr = HadamardProduct(M, N)*P
|
521 |
+
cg = convert_matrix_to_array(expr)
|
522 |
+
ret = convert_array_to_matrix(cg)
|
523 |
+
assert ret == expr
|
524 |
+
|
525 |
+
expr = Q*HadamardProduct(M, N)*P
|
526 |
+
cg = convert_matrix_to_array(expr)
|
527 |
+
ret = convert_array_to_matrix(cg)
|
528 |
+
assert ret == expr
|
529 |
+
|
530 |
+
expr = Q*HadamardProduct(M, N.T)*P
|
531 |
+
cg = convert_matrix_to_array(expr)
|
532 |
+
ret = convert_array_to_matrix(cg)
|
533 |
+
assert ret == expr
|
534 |
+
|
535 |
+
expr = HadamardProduct(M, N)*HadamardProduct(Q, P)
|
536 |
+
cg = convert_matrix_to_array(expr)
|
537 |
+
ret = convert_array_to_matrix(cg)
|
538 |
+
assert expr == ret
|
539 |
+
|
540 |
+
expr = P.T*HadamardProduct(M, N)*HadamardProduct(Q, P)
|
541 |
+
cg = convert_matrix_to_array(expr)
|
542 |
+
ret = convert_array_to_matrix(cg)
|
543 |
+
assert expr == ret
|
544 |
+
|
545 |
+
# ArrayDiagonal should be converted
|
546 |
+
cg = _array_diagonal(_array_tensor_product(M, N, Q), (1, 3), (0, 2, 4))
|
547 |
+
ret = convert_array_to_matrix(cg)
|
548 |
+
expected = PermuteDims(_array_diagonal(_array_tensor_product(HadamardProduct(M.T, N.T), Q), (1, 2)), [1, 0, 2])
|
549 |
+
assert expected == ret
|
550 |
+
|
551 |
+
# Special case that should return the same expression:
|
552 |
+
cg = _array_diagonal(_array_tensor_product(HadamardProduct(M, N), Q), (0, 2))
|
553 |
+
ret = convert_array_to_matrix(cg)
|
554 |
+
assert ret == cg
|
555 |
+
|
556 |
+
# Hadamard products with traces:
|
557 |
+
|
558 |
+
expr = Trace(HadamardProduct(M, N))
|
559 |
+
cg = convert_matrix_to_array(expr)
|
560 |
+
ret = convert_array_to_matrix(cg)
|
561 |
+
assert ret == Trace(HadamardProduct(M.T, N.T))
|
562 |
+
|
563 |
+
expr = Trace(A*HadamardProduct(M, N))
|
564 |
+
cg = convert_matrix_to_array(expr)
|
565 |
+
ret = convert_array_to_matrix(cg)
|
566 |
+
assert ret == Trace(HadamardProduct(M, N)*A)
|
567 |
+
|
568 |
+
expr = Trace(HadamardProduct(A, M)*N)
|
569 |
+
cg = convert_matrix_to_array(expr)
|
570 |
+
ret = convert_array_to_matrix(cg)
|
571 |
+
assert ret == Trace(HadamardProduct(M.T, N)*A)
|
572 |
+
|
573 |
+
# These should not be converted into Hadamard products:
|
574 |
+
|
575 |
+
cg = _array_diagonal(_array_tensor_product(M, N), (0, 1, 2, 3))
|
576 |
+
ret = convert_array_to_matrix(cg)
|
577 |
+
assert ret == cg
|
578 |
+
|
579 |
+
cg = _array_diagonal(_array_tensor_product(A), (0, 1))
|
580 |
+
ret = convert_array_to_matrix(cg)
|
581 |
+
assert ret == cg
|
582 |
+
|
583 |
+
cg = _array_diagonal(_array_tensor_product(M, N, P), (0, 2, 4), (1, 3, 5))
|
584 |
+
assert convert_array_to_matrix(cg) == HadamardProduct(M, N, P)
|
585 |
+
|
586 |
+
cg = _array_diagonal(_array_tensor_product(M, N, P), (0, 3, 4), (1, 2, 5))
|
587 |
+
assert convert_array_to_matrix(cg) == HadamardProduct(M, P, N.T)
|
588 |
+
|
589 |
+
cg = _array_diagonal(_array_tensor_product(I, I1, x), (1, 4), (3, 5))
|
590 |
+
assert convert_array_to_matrix(cg) == DiagMatrix(x)
|
591 |
+
|
592 |
+
|
593 |
+
def test_identify_removable_identity_matrices():
|
594 |
+
|
595 |
+
D = DiagonalMatrix(MatrixSymbol("D", k, k))
|
596 |
+
|
597 |
+
cg = _array_contraction(_array_tensor_product(A, B, I), (1, 2, 4, 5))
|
598 |
+
expected = _array_contraction(_array_tensor_product(A, B), (1, 2))
|
599 |
+
assert identify_removable_identity_matrices(cg) == expected
|
600 |
+
|
601 |
+
cg = _array_contraction(_array_tensor_product(A, B, C, I), (1, 3, 5, 6, 7))
|
602 |
+
expected = _array_contraction(_array_tensor_product(A, B, C), (1, 3, 5))
|
603 |
+
assert identify_removable_identity_matrices(cg) == expected
|
604 |
+
|
605 |
+
# Tests with diagonal matrices:
|
606 |
+
|
607 |
+
cg = _array_contraction(_array_tensor_product(A, B, D), (1, 2, 4, 5))
|
608 |
+
ret = identify_removable_identity_matrices(cg)
|
609 |
+
expected = _array_contraction(_array_tensor_product(A, B, D), (1, 4), (2, 5))
|
610 |
+
assert ret == expected
|
611 |
+
|
612 |
+
cg = _array_contraction(_array_tensor_product(A, B, D, M, N), (1, 2, 4, 5, 6, 8))
|
613 |
+
ret = identify_removable_identity_matrices(cg)
|
614 |
+
assert ret == cg
|
615 |
+
|
616 |
+
|
617 |
+
def test_combine_removed():
|
618 |
+
|
619 |
+
assert _combine_removed(6, [0, 1, 2], [0, 1, 2]) == [0, 1, 2, 3, 4, 5]
|
620 |
+
assert _combine_removed(8, [2, 5], [1, 3, 4]) == [1, 2, 4, 5, 6]
|
621 |
+
assert _combine_removed(8, [7], []) == [7]
|
622 |
+
|
623 |
+
|
624 |
+
def test_array_contraction_to_diagonal_multiple_identities():
|
625 |
+
|
626 |
+
expr = _array_contraction(_array_tensor_product(A, B, I, C), (1, 2, 4), (5, 6))
|
627 |
+
assert _array_contraction_to_diagonal_multiple_identity(expr) == (expr, [])
|
628 |
+
assert convert_array_to_matrix(expr) == _array_contraction(_array_tensor_product(A, B, C), (1, 2, 4))
|
629 |
+
|
630 |
+
expr = _array_contraction(_array_tensor_product(A, I, I), (1, 2, 4))
|
631 |
+
assert _array_contraction_to_diagonal_multiple_identity(expr) == (A, [2])
|
632 |
+
assert convert_array_to_matrix(expr) == A
|
633 |
+
|
634 |
+
expr = _array_contraction(_array_tensor_product(A, I, I, B), (1, 2, 4), (3, 6))
|
635 |
+
assert _array_contraction_to_diagonal_multiple_identity(expr) == (expr, [])
|
636 |
+
|
637 |
+
expr = _array_contraction(_array_tensor_product(A, I, I, B), (1, 2, 3, 4, 6))
|
638 |
+
assert _array_contraction_to_diagonal_multiple_identity(expr) == (expr, [])
|
639 |
+
|
640 |
+
|
641 |
+
def test_convert_array_element_to_matrix():
|
642 |
+
|
643 |
+
expr = ArrayElement(M, (i, j))
|
644 |
+
assert convert_array_to_matrix(expr) == MatrixElement(M, i, j)
|
645 |
+
|
646 |
+
expr = ArrayElement(_array_contraction(_array_tensor_product(M, N), (1, 3)), (i, j))
|
647 |
+
assert convert_array_to_matrix(expr) == MatrixElement(M*N.T, i, j)
|
648 |
+
|
649 |
+
expr = ArrayElement(_array_tensor_product(M, N), (i, j, m, n))
|
650 |
+
assert convert_array_to_matrix(expr) == expr
|
651 |
+
|
652 |
+
|
653 |
+
def test_convert_array_elementwise_function_to_matrix():
|
654 |
+
|
655 |
+
d = Dummy("d")
|
656 |
+
|
657 |
+
expr = ArrayElementwiseApplyFunc(Lambda(d, sin(d)), x.T*y)
|
658 |
+
assert convert_array_to_matrix(expr) == sin(x.T*y)
|
659 |
+
|
660 |
+
expr = ArrayElementwiseApplyFunc(Lambda(d, d**2), x.T*y)
|
661 |
+
assert convert_array_to_matrix(expr) == (x.T*y)**2
|
662 |
+
|
663 |
+
expr = ArrayElementwiseApplyFunc(Lambda(d, sin(d)), x)
|
664 |
+
assert convert_array_to_matrix(expr).dummy_eq(x.applyfunc(sin))
|
665 |
+
|
666 |
+
expr = ArrayElementwiseApplyFunc(Lambda(d, 1 / (2 * sqrt(d))), x)
|
667 |
+
assert convert_array_to_matrix(expr) == S.Half * HadamardPower(x, -S.Half)
|
668 |
+
|
669 |
+
|
670 |
+
def test_array2matrix():
|
671 |
+
# See issue https://github.com/sympy/sympy/pull/22877
|
672 |
+
expr = PermuteDims(ArrayContraction(ArrayTensorProduct(x, I, I1, x), (0, 3), (1, 7)), Permutation(2, 3))
|
673 |
+
expected = PermuteDims(ArrayTensorProduct(x*x.T, I1), Permutation(3)(1, 2))
|
674 |
+
assert _array2matrix(expr) == expected
|
675 |
+
|
676 |
+
|
677 |
+
def test_recognize_broadcasting():
|
678 |
+
expr = ArrayTensorProduct(x.T*x, A)
|
679 |
+
assert _remove_trivial_dims(expr) == (KroneckerProduct(x.T*x, A), [0, 1])
|
680 |
+
|
681 |
+
expr = ArrayTensorProduct(A, x.T*x)
|
682 |
+
assert _remove_trivial_dims(expr) == (KroneckerProduct(A, x.T*x), [2, 3])
|
683 |
+
|
684 |
+
expr = ArrayTensorProduct(A, B, x.T*x, C)
|
685 |
+
assert _remove_trivial_dims(expr) == (ArrayTensorProduct(A, KroneckerProduct(B, x.T*x), C), [4, 5])
|
686 |
+
|
687 |
+
# Always prefer matrix multiplication to Kronecker product, if possible:
|
688 |
+
expr = ArrayTensorProduct(a, b, x.T*x)
|
689 |
+
assert _remove_trivial_dims(expr) == (a*x.T*x*b.T, [1, 3, 4, 5])
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_convert_indexed_to_array.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy import tanh
|
2 |
+
from sympy.concrete.summations import Sum
|
3 |
+
from sympy.core.symbol import symbols
|
4 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
5 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
6 |
+
from sympy.matrices.expressions.special import Identity
|
7 |
+
from sympy.tensor.array.expressions import ArrayElementwiseApplyFunc
|
8 |
+
from sympy.tensor.indexed import IndexedBase
|
9 |
+
from sympy.combinatorics import Permutation
|
10 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayContraction, ArrayTensorProduct, \
|
11 |
+
ArrayDiagonal, ArrayAdd, PermuteDims, ArrayElement, _array_tensor_product, _array_contraction, _array_diagonal, \
|
12 |
+
_array_add, _permute_dims, ArraySymbol, OneArray
|
13 |
+
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
|
14 |
+
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array, _convert_indexed_to_array
|
15 |
+
from sympy.testing.pytest import raises
|
16 |
+
|
17 |
+
|
18 |
+
A, B = symbols("A B", cls=IndexedBase)
|
19 |
+
i, j, k, l, m, n = symbols("i j k l m n")
|
20 |
+
d0, d1, d2, d3 = symbols("d0:4")
|
21 |
+
|
22 |
+
I = Identity(k)
|
23 |
+
|
24 |
+
M = MatrixSymbol("M", k, k)
|
25 |
+
N = MatrixSymbol("N", k, k)
|
26 |
+
P = MatrixSymbol("P", k, k)
|
27 |
+
Q = MatrixSymbol("Q", k, k)
|
28 |
+
|
29 |
+
a = MatrixSymbol("a", k, 1)
|
30 |
+
b = MatrixSymbol("b", k, 1)
|
31 |
+
c = MatrixSymbol("c", k, 1)
|
32 |
+
d = MatrixSymbol("d", k, 1)
|
33 |
+
|
34 |
+
|
35 |
+
def test_arrayexpr_convert_index_to_array_support_function():
|
36 |
+
expr = M[i, j]
|
37 |
+
assert _convert_indexed_to_array(expr) == (M, (i, j))
|
38 |
+
expr = M[i, j]*N[k, l]
|
39 |
+
assert _convert_indexed_to_array(expr) == (ArrayTensorProduct(M, N), (i, j, k, l))
|
40 |
+
expr = M[i, j]*N[j, k]
|
41 |
+
assert _convert_indexed_to_array(expr) == (ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)), (i, k, j))
|
42 |
+
expr = Sum(M[i, j]*N[j, k], (j, 0, k-1))
|
43 |
+
assert _convert_indexed_to_array(expr) == (ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), (i, k))
|
44 |
+
expr = M[i, j] + N[i, j]
|
45 |
+
assert _convert_indexed_to_array(expr) == (ArrayAdd(M, N), (i, j))
|
46 |
+
expr = M[i, j] + N[j, i]
|
47 |
+
assert _convert_indexed_to_array(expr) == (ArrayAdd(M, PermuteDims(N, Permutation([1, 0]))), (i, j))
|
48 |
+
expr = M[i, j] + M[j, i]
|
49 |
+
assert _convert_indexed_to_array(expr) == (ArrayAdd(M, PermuteDims(M, Permutation([1, 0]))), (i, j))
|
50 |
+
expr = (M*N*P)[i, j]
|
51 |
+
assert _convert_indexed_to_array(expr) == (_array_contraction(ArrayTensorProduct(M, N, P), (1, 2), (3, 4)), (i, j))
|
52 |
+
expr = expr.function # Disregard summation in previous expression
|
53 |
+
ret1, ret2 = _convert_indexed_to_array(expr)
|
54 |
+
assert ret1 == ArrayDiagonal(ArrayTensorProduct(M, N, P), (1, 2), (3, 4))
|
55 |
+
assert str(ret2) == "(i, j, _i_1, _i_2)"
|
56 |
+
expr = KroneckerDelta(i, j)*M[i, k]
|
57 |
+
assert _convert_indexed_to_array(expr) == (M, ({i, j}, k))
|
58 |
+
expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*M[i, l]
|
59 |
+
assert _convert_indexed_to_array(expr) == (M, ({i, j, k}, l))
|
60 |
+
expr = KroneckerDelta(j, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l])
|
61 |
+
assert _convert_indexed_to_array(expr) == (_array_diagonal(_array_add(
|
62 |
+
ArrayTensorProduct(M, N),
|
63 |
+
_permute_dims(ArrayTensorProduct(M, N), Permutation(0, 2)(1, 3))
|
64 |
+
), (1, 2)), (i, l, frozenset({j, k})))
|
65 |
+
expr = KroneckerDelta(j, m)*KroneckerDelta(m, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l])
|
66 |
+
assert _convert_indexed_to_array(expr) == (_array_diagonal(_array_add(
|
67 |
+
ArrayTensorProduct(M, N),
|
68 |
+
_permute_dims(ArrayTensorProduct(M, N), Permutation(0, 2)(1, 3))
|
69 |
+
), (1, 2)), (i, l, frozenset({j, m, k})))
|
70 |
+
expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*KroneckerDelta(k,m)*M[i, 0]*KroneckerDelta(m, n)
|
71 |
+
assert _convert_indexed_to_array(expr) == (M, ({i, j, k, m, n}, 0))
|
72 |
+
expr = M[i, i]
|
73 |
+
assert _convert_indexed_to_array(expr) == (ArrayDiagonal(M, (0, 1)), (i,))
|
74 |
+
|
75 |
+
|
76 |
+
def test_arrayexpr_convert_indexed_to_array_expression():
|
77 |
+
|
78 |
+
s = Sum(A[i]*B[i], (i, 0, 3))
|
79 |
+
cg = convert_indexed_to_array(s)
|
80 |
+
assert cg == ArrayContraction(ArrayTensorProduct(A, B), (0, 1))
|
81 |
+
|
82 |
+
expr = M*N
|
83 |
+
result = ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
|
84 |
+
elem = expr[i, j]
|
85 |
+
assert convert_indexed_to_array(elem) == result
|
86 |
+
|
87 |
+
expr = M*N*M
|
88 |
+
elem = expr[i, j]
|
89 |
+
result = _array_contraction(_array_tensor_product(M, M, N), (1, 4), (2, 5))
|
90 |
+
cg = convert_indexed_to_array(elem)
|
91 |
+
assert cg == result
|
92 |
+
|
93 |
+
cg = convert_indexed_to_array((M * N * P)[i, j])
|
94 |
+
assert cg == _array_contraction(ArrayTensorProduct(M, N, P), (1, 2), (3, 4))
|
95 |
+
|
96 |
+
cg = convert_indexed_to_array((M * N.T * P)[i, j])
|
97 |
+
assert cg == _array_contraction(ArrayTensorProduct(M, N, P), (1, 3), (2, 4))
|
98 |
+
|
99 |
+
expr = -2*M*N
|
100 |
+
elem = expr[i, j]
|
101 |
+
cg = convert_indexed_to_array(elem)
|
102 |
+
assert cg == ArrayContraction(ArrayTensorProduct(-2, M, N), (1, 2))
|
103 |
+
|
104 |
+
|
105 |
+
def test_arrayexpr_convert_array_element_to_array_expression():
|
106 |
+
A = ArraySymbol("A", (k,))
|
107 |
+
B = ArraySymbol("B", (k,))
|
108 |
+
|
109 |
+
s = Sum(A[i]*B[i], (i, 0, k-1))
|
110 |
+
cg = convert_indexed_to_array(s)
|
111 |
+
assert cg == ArrayContraction(ArrayTensorProduct(A, B), (0, 1))
|
112 |
+
|
113 |
+
s = A[i]*B[i]
|
114 |
+
cg = convert_indexed_to_array(s)
|
115 |
+
assert cg == ArrayDiagonal(ArrayTensorProduct(A, B), (0, 1))
|
116 |
+
|
117 |
+
s = A[i]*B[j]
|
118 |
+
cg = convert_indexed_to_array(s, [i, j])
|
119 |
+
assert cg == ArrayTensorProduct(A, B)
|
120 |
+
cg = convert_indexed_to_array(s, [j, i])
|
121 |
+
assert cg == ArrayTensorProduct(B, A)
|
122 |
+
|
123 |
+
s = tanh(A[i]*B[j])
|
124 |
+
cg = convert_indexed_to_array(s, [i, j])
|
125 |
+
assert cg.dummy_eq(ArrayElementwiseApplyFunc(tanh, ArrayTensorProduct(A, B)))
|
126 |
+
|
127 |
+
|
128 |
+
def test_arrayexpr_convert_indexed_to_array_and_back_to_matrix():
|
129 |
+
|
130 |
+
expr = a.T*b
|
131 |
+
elem = expr[0, 0]
|
132 |
+
cg = convert_indexed_to_array(elem)
|
133 |
+
assert cg == ArrayElement(ArrayContraction(ArrayTensorProduct(a, b), (0, 2)), [0, 0])
|
134 |
+
|
135 |
+
expr = M[i,j] + N[i,j]
|
136 |
+
p1, p2 = _convert_indexed_to_array(expr)
|
137 |
+
assert convert_array_to_matrix(p1) == M + N
|
138 |
+
|
139 |
+
expr = M[i,j] + N[j,i]
|
140 |
+
p1, p2 = _convert_indexed_to_array(expr)
|
141 |
+
assert convert_array_to_matrix(p1) == M + N.T
|
142 |
+
|
143 |
+
expr = M[i,j]*N[k,l] + N[i,j]*M[k,l]
|
144 |
+
p1, p2 = _convert_indexed_to_array(expr)
|
145 |
+
assert convert_array_to_matrix(p1) == ArrayAdd(
|
146 |
+
ArrayTensorProduct(M, N),
|
147 |
+
ArrayTensorProduct(N, M))
|
148 |
+
|
149 |
+
expr = (M*N*P)[i, j]
|
150 |
+
p1, p2 = _convert_indexed_to_array(expr)
|
151 |
+
assert convert_array_to_matrix(p1) == M * N * P
|
152 |
+
|
153 |
+
expr = Sum(M[i,j]*(N*P)[j,m], (j, 0, k-1))
|
154 |
+
p1, p2 = _convert_indexed_to_array(expr)
|
155 |
+
assert convert_array_to_matrix(p1) == M * N * P
|
156 |
+
|
157 |
+
expr = Sum((P[j, m] + P[m, j])*(M[i,j]*N[m,n] + N[i,j]*M[m,n]), (j, 0, k-1), (m, 0, k-1))
|
158 |
+
p1, p2 = _convert_indexed_to_array(expr)
|
159 |
+
assert convert_array_to_matrix(p1) == M * P * N + M * P.T * N + N * P * M + N * P.T * M
|
160 |
+
|
161 |
+
|
162 |
+
def test_arrayexpr_convert_indexed_to_array_out_of_bounds():
|
163 |
+
|
164 |
+
expr = Sum(M[i, i], (i, 0, 4))
|
165 |
+
raises(ValueError, lambda: convert_indexed_to_array(expr))
|
166 |
+
expr = Sum(M[i, i], (i, 0, k))
|
167 |
+
raises(ValueError, lambda: convert_indexed_to_array(expr))
|
168 |
+
expr = Sum(M[i, i], (i, 1, k-1))
|
169 |
+
raises(ValueError, lambda: convert_indexed_to_array(expr))
|
170 |
+
|
171 |
+
expr = Sum(M[i, j]*N[j,m], (j, 0, 4))
|
172 |
+
raises(ValueError, lambda: convert_indexed_to_array(expr))
|
173 |
+
expr = Sum(M[i, j]*N[j,m], (j, 0, k))
|
174 |
+
raises(ValueError, lambda: convert_indexed_to_array(expr))
|
175 |
+
expr = Sum(M[i, j]*N[j,m], (j, 1, k-1))
|
176 |
+
raises(ValueError, lambda: convert_indexed_to_array(expr))
|
177 |
+
|
178 |
+
|
179 |
+
def test_arrayexpr_convert_indexed_to_array_broadcast():
|
180 |
+
A = ArraySymbol("A", (3, 3))
|
181 |
+
B = ArraySymbol("B", (3, 3))
|
182 |
+
|
183 |
+
expr = A[i, j] + B[k, l]
|
184 |
+
O2 = OneArray(3, 3)
|
185 |
+
expected = ArrayAdd(ArrayTensorProduct(A, O2), ArrayTensorProduct(O2, B))
|
186 |
+
assert convert_indexed_to_array(expr) == expected
|
187 |
+
assert convert_indexed_to_array(expr, [i, j, k, l]) == expected
|
188 |
+
assert convert_indexed_to_array(expr, [l, k, i, j]) == ArrayAdd(PermuteDims(ArrayTensorProduct(O2, A), [1, 0, 2, 3]), PermuteDims(ArrayTensorProduct(B, O2), [1, 0, 2, 3]))
|
189 |
+
|
190 |
+
expr = A[i, j] + B[j, k]
|
191 |
+
O1 = OneArray(3)
|
192 |
+
assert convert_indexed_to_array(expr, [i, j, k]) == ArrayAdd(ArrayTensorProduct(A, O1), ArrayTensorProduct(O1, B))
|
193 |
+
|
194 |
+
C = ArraySymbol("C", (d0, d1))
|
195 |
+
D = ArraySymbol("D", (d3, d1))
|
196 |
+
|
197 |
+
expr = C[i, j] + D[k, j]
|
198 |
+
assert convert_indexed_to_array(expr, [i, j, k]) == ArrayAdd(ArrayTensorProduct(C, OneArray(d3)), PermuteDims(ArrayTensorProduct(OneArray(d0), D), [0, 2, 1]))
|
199 |
+
|
200 |
+
X = ArraySymbol("X", (5, 3))
|
201 |
+
|
202 |
+
expr = X[i, n] - X[j, n]
|
203 |
+
assert convert_indexed_to_array(expr, [i, j, n]) == ArrayAdd(ArrayTensorProduct(-1, OneArray(5), X), PermuteDims(ArrayTensorProduct(X, OneArray(5)), [0, 2, 1]))
|
204 |
+
|
205 |
+
raises(ValueError, lambda: convert_indexed_to_array(C[i, j] + D[i, j]))
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_convert_matrix_to_array.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy import Lambda, KroneckerProduct
|
2 |
+
from sympy.core.symbol import symbols, Dummy
|
3 |
+
from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct)
|
4 |
+
from sympy.matrices.expressions.inverse import Inverse
|
5 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
6 |
+
from sympy.matrices.expressions.matpow import MatPow
|
7 |
+
from sympy.matrices.expressions.special import Identity
|
8 |
+
from sympy.matrices.expressions.trace import Trace
|
9 |
+
from sympy.matrices.expressions.transpose import Transpose
|
10 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayContraction, \
|
11 |
+
PermuteDims, ArrayDiagonal, ArrayElementwiseApplyFunc, _array_contraction, _array_tensor_product, Reshape
|
12 |
+
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
|
13 |
+
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
14 |
+
|
15 |
+
i, j, k, l, m, n = symbols("i j k l m n")
|
16 |
+
|
17 |
+
I = Identity(k)
|
18 |
+
|
19 |
+
M = MatrixSymbol("M", k, k)
|
20 |
+
N = MatrixSymbol("N", k, k)
|
21 |
+
P = MatrixSymbol("P", k, k)
|
22 |
+
Q = MatrixSymbol("Q", k, k)
|
23 |
+
|
24 |
+
A = MatrixSymbol("A", k, k)
|
25 |
+
B = MatrixSymbol("B", k, k)
|
26 |
+
C = MatrixSymbol("C", k, k)
|
27 |
+
D = MatrixSymbol("D", k, k)
|
28 |
+
|
29 |
+
X = MatrixSymbol("X", k, k)
|
30 |
+
Y = MatrixSymbol("Y", k, k)
|
31 |
+
|
32 |
+
a = MatrixSymbol("a", k, 1)
|
33 |
+
b = MatrixSymbol("b", k, 1)
|
34 |
+
c = MatrixSymbol("c", k, 1)
|
35 |
+
d = MatrixSymbol("d", k, 1)
|
36 |
+
|
37 |
+
|
38 |
+
def test_arrayexpr_convert_matrix_to_array():
|
39 |
+
|
40 |
+
expr = M*N
|
41 |
+
result = ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
|
42 |
+
assert convert_matrix_to_array(expr) == result
|
43 |
+
|
44 |
+
expr = M*N*M
|
45 |
+
result = _array_contraction(ArrayTensorProduct(M, N, M), (1, 2), (3, 4))
|
46 |
+
assert convert_matrix_to_array(expr) == result
|
47 |
+
|
48 |
+
expr = Transpose(M)
|
49 |
+
assert convert_matrix_to_array(expr) == PermuteDims(M, [1, 0])
|
50 |
+
|
51 |
+
expr = M*Transpose(N)
|
52 |
+
assert convert_matrix_to_array(expr) == _array_contraction(_array_tensor_product(M, PermuteDims(N, [1, 0])), (1, 2))
|
53 |
+
|
54 |
+
expr = 3*M*N
|
55 |
+
res = convert_matrix_to_array(expr)
|
56 |
+
rexpr = convert_array_to_matrix(res)
|
57 |
+
assert expr == rexpr
|
58 |
+
|
59 |
+
expr = 3*M + N*M.T*M + 4*k*N
|
60 |
+
res = convert_matrix_to_array(expr)
|
61 |
+
rexpr = convert_array_to_matrix(res)
|
62 |
+
assert expr == rexpr
|
63 |
+
|
64 |
+
expr = Inverse(M)*N
|
65 |
+
rexpr = convert_array_to_matrix(convert_matrix_to_array(expr))
|
66 |
+
assert expr == rexpr
|
67 |
+
|
68 |
+
expr = M**2
|
69 |
+
rexpr = convert_array_to_matrix(convert_matrix_to_array(expr))
|
70 |
+
assert expr == rexpr
|
71 |
+
|
72 |
+
expr = M*(2*N + 3*M)
|
73 |
+
res = convert_matrix_to_array(expr)
|
74 |
+
rexpr = convert_array_to_matrix(res)
|
75 |
+
assert expr == rexpr
|
76 |
+
|
77 |
+
expr = Trace(M)
|
78 |
+
result = ArrayContraction(M, (0, 1))
|
79 |
+
assert convert_matrix_to_array(expr) == result
|
80 |
+
|
81 |
+
expr = 3*Trace(M)
|
82 |
+
result = ArrayContraction(ArrayTensorProduct(3, M), (0, 1))
|
83 |
+
assert convert_matrix_to_array(expr) == result
|
84 |
+
|
85 |
+
expr = 3*Trace(Trace(M) * M)
|
86 |
+
result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3))
|
87 |
+
assert convert_matrix_to_array(expr) == result
|
88 |
+
|
89 |
+
expr = 3*Trace(M)**2
|
90 |
+
result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3))
|
91 |
+
assert convert_matrix_to_array(expr) == result
|
92 |
+
|
93 |
+
expr = HadamardProduct(M, N)
|
94 |
+
result = ArrayDiagonal(ArrayTensorProduct(M, N), (0, 2), (1, 3))
|
95 |
+
assert convert_matrix_to_array(expr) == result
|
96 |
+
|
97 |
+
expr = HadamardProduct(M*N, N*M)
|
98 |
+
result = ArrayDiagonal(ArrayContraction(ArrayTensorProduct(M, N, N, M), (1, 2), (5, 6)), (0, 2), (1, 3))
|
99 |
+
assert convert_matrix_to_array(expr) == result
|
100 |
+
|
101 |
+
expr = HadamardPower(M, 2)
|
102 |
+
result = ArrayDiagonal(ArrayTensorProduct(M, M), (0, 2), (1, 3))
|
103 |
+
assert convert_matrix_to_array(expr) == result
|
104 |
+
|
105 |
+
expr = HadamardPower(M*N, 2)
|
106 |
+
result = ArrayDiagonal(ArrayContraction(ArrayTensorProduct(M, N, M, N), (1, 2), (5, 6)), (0, 2), (1, 3))
|
107 |
+
assert convert_matrix_to_array(expr) == result
|
108 |
+
|
109 |
+
expr = HadamardPower(M, n)
|
110 |
+
d0 = Dummy("d0")
|
111 |
+
result = ArrayElementwiseApplyFunc(Lambda(d0, d0**n), M)
|
112 |
+
assert convert_matrix_to_array(expr).dummy_eq(result)
|
113 |
+
|
114 |
+
expr = M**2
|
115 |
+
assert isinstance(expr, MatPow)
|
116 |
+
assert convert_matrix_to_array(expr) == ArrayContraction(ArrayTensorProduct(M, M), (1, 2))
|
117 |
+
|
118 |
+
expr = a.T*b
|
119 |
+
cg = convert_matrix_to_array(expr)
|
120 |
+
assert cg == ArrayContraction(ArrayTensorProduct(a, b), (0, 2))
|
121 |
+
|
122 |
+
expr = KroneckerProduct(A, B)
|
123 |
+
cg = convert_matrix_to_array(expr)
|
124 |
+
assert cg == Reshape(PermuteDims(ArrayTensorProduct(A, B), [0, 2, 1, 3]), (k**2, k**2))
|
125 |
+
|
126 |
+
expr = KroneckerProduct(A, B, C, D)
|
127 |
+
cg = convert_matrix_to_array(expr)
|
128 |
+
assert cg == Reshape(PermuteDims(ArrayTensorProduct(A, B, C, D), [0, 2, 4, 6, 1, 3, 5, 7]), (k**4, k**4))
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/tests/test_deprecated_conv_modules.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy import MatrixSymbol, symbols, Sum
|
2 |
+
from sympy.tensor.array.expressions import conv_array_to_indexed, from_array_to_indexed, ArrayTensorProduct, \
|
3 |
+
ArrayContraction, conv_array_to_matrix, from_array_to_matrix, conv_matrix_to_array, from_matrix_to_array, \
|
4 |
+
conv_indexed_to_array, from_indexed_to_array
|
5 |
+
from sympy.testing.pytest import warns
|
6 |
+
from sympy.utilities.exceptions import SymPyDeprecationWarning
|
7 |
+
|
8 |
+
|
9 |
+
def test_deprecated_conv_module_results():
|
10 |
+
|
11 |
+
M = MatrixSymbol("M", 3, 3)
|
12 |
+
N = MatrixSymbol("N", 3, 3)
|
13 |
+
i, j, d = symbols("i j d")
|
14 |
+
|
15 |
+
x = ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
|
16 |
+
y = Sum(M[i, d]*N[d, j], (d, 0, 2))
|
17 |
+
|
18 |
+
with warns(SymPyDeprecationWarning, test_stacklevel=False):
|
19 |
+
assert conv_array_to_indexed.convert_array_to_indexed(x, [i, j]).dummy_eq(from_array_to_indexed.convert_array_to_indexed(x, [i, j]))
|
20 |
+
assert conv_array_to_matrix.convert_array_to_matrix(x) == from_array_to_matrix.convert_array_to_matrix(x)
|
21 |
+
assert conv_matrix_to_array.convert_matrix_to_array(M*N) == from_matrix_to_array.convert_matrix_to_array(M*N)
|
22 |
+
assert conv_indexed_to_array.convert_indexed_to_array(y) == from_indexed_to_array.convert_indexed_to_array(y)
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/expressions/utils.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import bisect
|
2 |
+
from collections import defaultdict
|
3 |
+
|
4 |
+
from sympy.combinatorics import Permutation
|
5 |
+
from sympy.core.containers import Tuple
|
6 |
+
from sympy.core.numbers import Integer
|
7 |
+
|
8 |
+
|
9 |
+
def _get_mapping_from_subranks(subranks):
|
10 |
+
mapping = {}
|
11 |
+
counter = 0
|
12 |
+
for i, rank in enumerate(subranks):
|
13 |
+
for j in range(rank):
|
14 |
+
mapping[counter] = (i, j)
|
15 |
+
counter += 1
|
16 |
+
return mapping
|
17 |
+
|
18 |
+
|
19 |
+
def _get_contraction_links(args, subranks, *contraction_indices):
|
20 |
+
mapping = _get_mapping_from_subranks(subranks)
|
21 |
+
contraction_tuples = [[mapping[j] for j in i] for i in contraction_indices]
|
22 |
+
dlinks = defaultdict(dict)
|
23 |
+
for links in contraction_tuples:
|
24 |
+
if len(links) == 2:
|
25 |
+
(arg1, pos1), (arg2, pos2) = links
|
26 |
+
dlinks[arg1][pos1] = (arg2, pos2)
|
27 |
+
dlinks[arg2][pos2] = (arg1, pos1)
|
28 |
+
continue
|
29 |
+
|
30 |
+
return args, dict(dlinks)
|
31 |
+
|
32 |
+
|
33 |
+
def _sort_contraction_indices(pairing_indices):
|
34 |
+
pairing_indices = [Tuple(*sorted(i)) for i in pairing_indices]
|
35 |
+
pairing_indices.sort(key=lambda x: min(x))
|
36 |
+
return pairing_indices
|
37 |
+
|
38 |
+
|
39 |
+
def _get_diagonal_indices(flattened_indices):
|
40 |
+
axes_contraction = defaultdict(list)
|
41 |
+
for i, ind in enumerate(flattened_indices):
|
42 |
+
if isinstance(ind, (int, Integer)):
|
43 |
+
# If the indices is a number, there can be no diagonal operation:
|
44 |
+
continue
|
45 |
+
axes_contraction[ind].append(i)
|
46 |
+
axes_contraction = {k: v for k, v in axes_contraction.items() if len(v) > 1}
|
47 |
+
# Put the diagonalized indices at the end:
|
48 |
+
ret_indices = [i for i in flattened_indices if i not in axes_contraction]
|
49 |
+
diag_indices = list(axes_contraction)
|
50 |
+
diag_indices.sort(key=lambda x: flattened_indices.index(x))
|
51 |
+
diagonal_indices = [tuple(axes_contraction[i]) for i in diag_indices]
|
52 |
+
ret_indices += diag_indices
|
53 |
+
ret_indices = tuple(ret_indices)
|
54 |
+
return diagonal_indices, ret_indices
|
55 |
+
|
56 |
+
|
57 |
+
def _get_argindex(subindices, ind):
|
58 |
+
for i, sind in enumerate(subindices):
|
59 |
+
if ind == sind:
|
60 |
+
return i
|
61 |
+
if isinstance(sind, (set, frozenset)) and ind in sind:
|
62 |
+
return i
|
63 |
+
raise IndexError("%s not found in %s" % (ind, subindices))
|
64 |
+
|
65 |
+
|
66 |
+
def _apply_recursively_over_nested_lists(func, arr):
|
67 |
+
if isinstance(arr, (tuple, list, Tuple)):
|
68 |
+
return tuple(_apply_recursively_over_nested_lists(func, i) for i in arr)
|
69 |
+
elif isinstance(arr, Tuple):
|
70 |
+
return Tuple.fromiter(_apply_recursively_over_nested_lists(func, i) for i in arr)
|
71 |
+
else:
|
72 |
+
return func(arr)
|
73 |
+
|
74 |
+
|
75 |
+
def _build_push_indices_up_func_transformation(flattened_contraction_indices):
|
76 |
+
shifts = {0: 0}
|
77 |
+
i = 0
|
78 |
+
cumulative = 0
|
79 |
+
while i < len(flattened_contraction_indices):
|
80 |
+
j = 1
|
81 |
+
while i+j < len(flattened_contraction_indices):
|
82 |
+
if flattened_contraction_indices[i] + j != flattened_contraction_indices[i+j]:
|
83 |
+
break
|
84 |
+
j += 1
|
85 |
+
cumulative += j
|
86 |
+
shifts[flattened_contraction_indices[i]] = cumulative
|
87 |
+
i += j
|
88 |
+
shift_keys = sorted(shifts.keys())
|
89 |
+
|
90 |
+
def func(idx):
|
91 |
+
return shifts[shift_keys[bisect.bisect_right(shift_keys, idx)-1]]
|
92 |
+
|
93 |
+
def transform(j):
|
94 |
+
if j in flattened_contraction_indices:
|
95 |
+
return None
|
96 |
+
else:
|
97 |
+
return j - func(j)
|
98 |
+
|
99 |
+
return transform
|
100 |
+
|
101 |
+
|
102 |
+
def _build_push_indices_down_func_transformation(flattened_contraction_indices):
|
103 |
+
N = flattened_contraction_indices[-1]+2
|
104 |
+
|
105 |
+
shifts = [i for i in range(N) if i not in flattened_contraction_indices]
|
106 |
+
|
107 |
+
def transform(j):
|
108 |
+
if j < len(shifts):
|
109 |
+
return shifts[j]
|
110 |
+
else:
|
111 |
+
return j + shifts[-1] - len(shifts) + 1
|
112 |
+
|
113 |
+
return transform
|
114 |
+
|
115 |
+
|
116 |
+
def _apply_permutation_to_list(perm: Permutation, target_list: list):
|
117 |
+
"""
|
118 |
+
Permute a list according to the given permutation.
|
119 |
+
"""
|
120 |
+
new_list = [None for i in range(perm.size)]
|
121 |
+
for i, e in enumerate(target_list):
|
122 |
+
new_list[perm(i)] = e
|
123 |
+
return new_list
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (197 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__pycache__/test_array_comprehension.cpython-310.pyc
ADDED
Binary file (5.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__pycache__/test_array_derivatives.cpython-310.pyc
ADDED
Binary file (1.48 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__pycache__/test_arrayop.cpython-310.pyc
ADDED
Binary file (19.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/tests/__pycache__/test_immutable_ndim_array.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|