Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/common.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/cpp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/triton.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/triton_foreach.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_cpp_scheduling.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_env.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cuda_cpp_scheduling.py +212 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cuda_env.py +45 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cuda_kernel.py +336 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cuda_template.py +241 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/binary_folding.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/efficient_conv_bn_eval.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/freezing_patterns.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/fuse_attention.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/group_batch_fusion.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/joint_graph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/misc_patterns.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/mkldnn_fusion.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/pad_mm.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/post_grad.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/pre_grad.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/quantization.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/replace_random.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/split_cat.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/binary_folding.py +277 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/efficient_conv_bn_eval.py +157 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/freezing_patterns.py +212 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/fuse_attention.py +564 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/group_batch_fusion.py +791 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/joint_graph.py +323 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/misc_patterns.py +130 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/mkldnn_fusion.py +1085 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/pad_mm.py +469 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/post_grad.py +1188 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/pre_grad.py +477 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/quantization.py +1500 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/replace_random.py +137 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_1.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_11.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_12.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_13.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_2.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_3.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_4.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/common.cpython-310.pyc
ADDED
Binary file (39.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/cpp.cpython-310.pyc
ADDED
Binary file (98.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/triton.cpython-310.pyc
ADDED
Binary file (86.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/triton_foreach.cpython-310.pyc
ADDED
Binary file (8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_cpp_scheduling.cpython-310.pyc
ADDED
Binary file (7.49 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_env.cpython-310.pyc
ADDED
Binary file (1.35 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cuda_cpp_scheduling.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import cast, List
|
3 |
+
|
4 |
+
from ...._dynamo.utils import counters
|
5 |
+
|
6 |
+
from ... import config, ir
|
7 |
+
from ...codecache import code_hash, get_path
|
8 |
+
from ...ir import ComputedBuffer, CUDATemplateBuffer, Pointwise
|
9 |
+
from ...scheduler import (
|
10 |
+
BaseSchedulerNode,
|
11 |
+
BaseScheduling,
|
12 |
+
FusedSchedulerNode,
|
13 |
+
Scheduler,
|
14 |
+
SchedulerNode,
|
15 |
+
)
|
16 |
+
from ...utils import get_fused_kernel_name, get_kernel_metadata, sympy_product
|
17 |
+
from ...virtualized import V
|
18 |
+
from ..common import IndentedBuffer
|
19 |
+
|
20 |
+
from .cutlass_epilogue_gen import CUTLASSEVTOpNotImplementedError
|
21 |
+
|
22 |
+
log = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class CUDACPPScheduling(BaseScheduling):
|
26 |
+
"""
|
27 |
+
Partial Scheduling implementation for CUDA C++ Kernels.
|
28 |
+
This class is intended to be used in combination with TritonScheduling,
|
29 |
+
and delegated to by CUDACombinedScheduling.
|
30 |
+
|
31 |
+
It handles fusion decisions and CUDA C++ specific template code generation.
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self, scheduler: Scheduler):
|
35 |
+
super().__init__()
|
36 |
+
self.scheduler = scheduler
|
37 |
+
|
38 |
+
def group_fn(self, sizes):
|
39 |
+
return tuple(V.graph.sizevars.simplify(sympy_product(s)) for s in sizes)
|
40 |
+
|
41 |
+
def is_cuda_cpp_template(self, node: BaseSchedulerNode) -> bool:
|
42 |
+
return isinstance(node, SchedulerNode) and isinstance(
|
43 |
+
node.node, CUDATemplateBuffer
|
44 |
+
)
|
45 |
+
|
46 |
+
def is_cuda_cpp_fused_template(self, node: BaseSchedulerNode) -> bool:
|
47 |
+
return isinstance(node, FusedSchedulerNode) and self.is_cuda_cpp_template(
|
48 |
+
node.get_template_node()
|
49 |
+
)
|
50 |
+
|
51 |
+
def _can_fuse_epilogue_impl(
|
52 |
+
self,
|
53 |
+
cuda_template_buffer: CUDATemplateBuffer,
|
54 |
+
epilogue_nodes: List[ir.IRNode],
|
55 |
+
additional_node: ir.IRNode,
|
56 |
+
) -> bool:
|
57 |
+
"""
|
58 |
+
Check if the given node can be fused with the epilogue. At the moment, Kernels
|
59 |
+
support fusion with Pointwise operations, wrapped in (named) ComputedBuffer nodes.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
cuda_template_buffer : A CUDATemplateBuffer object representing the CUDA template and it's result buffer
|
63 |
+
epilogue_nodes : List[ir.Buffer]: The list of already fused epilogue nodes.
|
64 |
+
additional_node: The ir.Buffer node to be checked if it can be fused with the epilogue.
|
65 |
+
Returns:
|
66 |
+
- bool: True if the given node can be fused with the epilogue, False otherwise.
|
67 |
+
|
68 |
+
"""
|
69 |
+
if not isinstance(cuda_template_buffer, CUDATemplateBuffer):
|
70 |
+
return False
|
71 |
+
if not cuda_template_buffer.template.can_fuse_epilogue:
|
72 |
+
# The used GEMM op does not support fusing epilogues
|
73 |
+
return False
|
74 |
+
if not isinstance(additional_node, ComputedBuffer):
|
75 |
+
return False
|
76 |
+
if not isinstance(additional_node.data, Pointwise):
|
77 |
+
return False
|
78 |
+
# We can fuse a Pointwise op that depends on the last fused epilogue node
|
79 |
+
# if any. If there is no epilogue node yet, it needs to depend on the template
|
80 |
+
# node
|
81 |
+
node_name = additional_node.get_computed_buffer_name()
|
82 |
+
if node_name is None:
|
83 |
+
return False
|
84 |
+
|
85 |
+
if len(epilogue_nodes) == 0:
|
86 |
+
if cuda_template_buffer.name not in additional_node.get_read_names():
|
87 |
+
return False
|
88 |
+
else:
|
89 |
+
last_epilogue_node = epilogue_nodes[-1]
|
90 |
+
assert isinstance(last_epilogue_node, ir.ComputedBuffer) # for mypy
|
91 |
+
last_epilogue_name = (
|
92 |
+
last_epilogue_node.name
|
93 |
+
if last_epilogue_node.name is not None
|
94 |
+
else last_epilogue_node.data.name # type: ignore[attr-defined]
|
95 |
+
)
|
96 |
+
if last_epilogue_name not in additional_node.get_read_names():
|
97 |
+
return False
|
98 |
+
if additional_node.layout != cuda_template_buffer.layout:
|
99 |
+
return False
|
100 |
+
try:
|
101 |
+
from torch._inductor.codegen.cuda.cutlass_epilogue_gen import (
|
102 |
+
CutlassEVTEpilogueArgumentFormatter,
|
103 |
+
CutlassEVTEpilogueTypeFormatter,
|
104 |
+
)
|
105 |
+
|
106 |
+
CutlassEVTEpilogueTypeFormatter.ir_to_evt_string(
|
107 |
+
cast(str, cuda_template_buffer.name), "anything", [additional_node]
|
108 |
+
)
|
109 |
+
CutlassEVTEpilogueArgumentFormatter.ir_to_evt_argument_string(
|
110 |
+
cast(str, cuda_template_buffer.name), [additional_node]
|
111 |
+
)
|
112 |
+
except CUTLASSEVTOpNotImplementedError as e:
|
113 |
+
not_implemented_op = str(e)
|
114 |
+
if not_implemented_op.startswith("_op_"):
|
115 |
+
not_implemented_op = not_implemented_op[4:]
|
116 |
+
log.warning(
|
117 |
+
f"Cannot fuse epilogue node {additional_node} into {cuda_template_buffer.name}, likely due to unsupported operation: {not_implemented_op}" # noqa: G004, B950
|
118 |
+
)
|
119 |
+
return False
|
120 |
+
else:
|
121 |
+
# Likely due to unsupported dtype.
|
122 |
+
log.warning(
|
123 |
+
f"Cannot fuse epilogue node {additional_node} into {cuda_template_buffer.name}. Reason: {not_implemented_op}" # noqa: G004, B950
|
124 |
+
)
|
125 |
+
return False
|
126 |
+
return True
|
127 |
+
|
128 |
+
@staticmethod
|
129 |
+
def _unwrap_epilogue_nodes(fused_node: FusedSchedulerNode) -> List[ir.IRNode]:
|
130 |
+
nodes = fused_node.get_nodes()
|
131 |
+
template_node = fused_node.get_template_node()
|
132 |
+
nodes.remove(template_node)
|
133 |
+
return [n.node for n in nodes]
|
134 |
+
|
135 |
+
def can_fuse_vertical(
|
136 |
+
self, node1: BaseSchedulerNode, node2: BaseSchedulerNode
|
137 |
+
) -> bool:
|
138 |
+
if self.is_cuda_cpp_template(node1) and isinstance(node2, SchedulerNode):
|
139 |
+
return self._can_fuse_epilogue_impl(
|
140 |
+
cast(CUDATemplateBuffer, node1.node), [], node2.node
|
141 |
+
)
|
142 |
+
elif self.is_cuda_cpp_fused_template(node1) and isinstance(
|
143 |
+
node2, SchedulerNode
|
144 |
+
):
|
145 |
+
fnode1 = cast(FusedSchedulerNode, node1)
|
146 |
+
return self._can_fuse_epilogue_impl(
|
147 |
+
fnode1.get_template_node().node,
|
148 |
+
self._unwrap_epilogue_nodes(fnode1),
|
149 |
+
node2.node,
|
150 |
+
)
|
151 |
+
return False
|
152 |
+
|
153 |
+
def define_kernel(self, src_code: str, node_schedule) -> str:
|
154 |
+
wrapper = V.graph.wrapper_code
|
155 |
+
if src_code in wrapper.src_to_kernel:
|
156 |
+
kernel_name = wrapper.src_to_kernel[src_code]
|
157 |
+
else:
|
158 |
+
fused_name = (
|
159 |
+
get_fused_kernel_name(node_schedule, config.triton.descriptive_names)
|
160 |
+
if config.triton.descriptive_names
|
161 |
+
else ""
|
162 |
+
)
|
163 |
+
kernel_name = "_".join(["cuda", fused_name, wrapper.next_kernel_suffix()])
|
164 |
+
# use the original src_code as the key
|
165 |
+
wrapper.src_to_kernel[src_code] = kernel_name
|
166 |
+
src_code = src_code.replace("KERNEL_NAME", kernel_name)
|
167 |
+
|
168 |
+
_, _, kernel_path = get_path(code_hash(src_code), "py")
|
169 |
+
|
170 |
+
compile_wrapper = IndentedBuffer()
|
171 |
+
compile_wrapper.writeline("async_compile.cuda(r'''")
|
172 |
+
compile_wrapper.splice(src_code, strip=True)
|
173 |
+
compile_wrapper.writeline("''', 'so')")
|
174 |
+
|
175 |
+
metadata_comment = f"# kernel path: {kernel_path}"
|
176 |
+
origins, detailed_origins = get_kernel_metadata(node_schedule, wrapper)
|
177 |
+
metadata_comment += "\n" + origins + "\n" + detailed_origins
|
178 |
+
wrapper.define_kernel(
|
179 |
+
kernel_name, compile_wrapper.getvalue(), metadata_comment
|
180 |
+
)
|
181 |
+
return kernel_name
|
182 |
+
|
183 |
+
def codegen_template(
|
184 |
+
self, template_node: BaseSchedulerNode, epilogue_nodes: List[SchedulerNode]
|
185 |
+
):
|
186 |
+
"""
|
187 |
+
Codegen a CUDA template, possibly with fused epilogues
|
188 |
+
"""
|
189 |
+
counters["inductor"]["cuda_epilogue_fusion_counter"] += len(epilogue_nodes)
|
190 |
+
assert self.is_cuda_cpp_template(
|
191 |
+
template_node
|
192 |
+
), "Template node passed to CUDAScheduler.codegen_template must be a SchedulerNode that wraps a CUDATemplateBuffer"
|
193 |
+
template_node = cast(SchedulerNode, template_node)
|
194 |
+
_, (numel, rnumel) = template_node.group
|
195 |
+
assert rnumel == 1
|
196 |
+
ctb: CUDATemplateBuffer = cast(CUDATemplateBuffer, template_node.node)
|
197 |
+
epilogue_ir_nodes: List[ir.Buffer] = [n.node for n in epilogue_nodes]
|
198 |
+
assert all(
|
199 |
+
isinstance(n, ir.ComputedBuffer) for n in epilogue_ir_nodes
|
200 |
+
), "Epilogue nodes must all be instances of ir.ComputedBuffer"
|
201 |
+
kernel, render = ctb.make_kernel_render(ctb, epilogue_nodes=epilogue_ir_nodes)
|
202 |
+
with kernel:
|
203 |
+
for node in [template_node, *epilogue_nodes]:
|
204 |
+
node.mark_run()
|
205 |
+
src_code = render()
|
206 |
+
|
207 |
+
with V.set_kernel_handler(kernel):
|
208 |
+
node_schedule = [template_node, *epilogue_nodes]
|
209 |
+
kernel_name = self.define_kernel(src_code, node_schedule)
|
210 |
+
kernel.call_kernel(kernel_name, ctb, epilogue_ir_nodes)
|
211 |
+
V.graph.removed_buffers |= kernel.removed_buffers
|
212 |
+
self.scheduler.free_buffers()
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cuda_env.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import logging
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from ... import config
|
8 |
+
|
9 |
+
log = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
def get_cuda_arch() -> Optional[str]:
|
13 |
+
try:
|
14 |
+
cuda_arch = config.cuda.arch
|
15 |
+
if cuda_arch is None:
|
16 |
+
# Get Compute Capability of the first Visible device
|
17 |
+
major, minor = torch.cuda.get_device_capability(0)
|
18 |
+
cuda_arch = major * 10 + minor
|
19 |
+
return str(cuda_arch)
|
20 |
+
except Exception as e:
|
21 |
+
log.error("Error getting cuda arch: %s", e)
|
22 |
+
return None
|
23 |
+
|
24 |
+
|
25 |
+
def get_cuda_version() -> Optional[str]:
|
26 |
+
try:
|
27 |
+
cuda_version = config.cuda.version
|
28 |
+
if cuda_version is None:
|
29 |
+
cuda_version = torch.version.cuda
|
30 |
+
return cuda_version
|
31 |
+
except Exception as e:
|
32 |
+
log.error("Error getting cuda version: %s", e)
|
33 |
+
return None
|
34 |
+
|
35 |
+
|
36 |
+
@functools.lru_cache(None)
|
37 |
+
def nvcc_exist(nvcc_path: str = "nvcc") -> bool:
|
38 |
+
if nvcc_path is None:
|
39 |
+
return False
|
40 |
+
import subprocess
|
41 |
+
|
42 |
+
res = subprocess.call(
|
43 |
+
["which", nvcc_path], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL
|
44 |
+
)
|
45 |
+
return res == 0
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cuda_kernel.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Callable, Dict, List, Optional, TYPE_CHECKING
|
3 |
+
|
4 |
+
from ... import ir
|
5 |
+
from ...autotune_process import CUDABenchmarkRequest
|
6 |
+
from ...ir import Buffer, CUDATemplateBuffer, IRNode, Layout, TensorBox
|
7 |
+
from ...select_algorithm import ChoiceCaller
|
8 |
+
from ...utils import sympy_product
|
9 |
+
from ...virtualized import V
|
10 |
+
|
11 |
+
from ..common import IndentedBuffer, Kernel, OpOverrides
|
12 |
+
from ..cpp import CppPrinter, DTYPE_TO_CPP
|
13 |
+
|
14 |
+
if TYPE_CHECKING:
|
15 |
+
from torch._inductor.codegen.cuda.cuda_template import CUDATemplate
|
16 |
+
|
17 |
+
log = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
cexpr = CppPrinter().doprint
|
20 |
+
|
21 |
+
|
22 |
+
def _normalize_idx(index: int, total_length: int) -> int:
|
23 |
+
return index if index >= 0 else index + total_length
|
24 |
+
|
25 |
+
|
26 |
+
class CUDAKernel(Kernel):
|
27 |
+
"""
|
28 |
+
Baseclass for CUDA / Cutlass based Kernels
|
29 |
+
"""
|
30 |
+
|
31 |
+
overrides = OpOverrides # type: ignore[assignment]
|
32 |
+
|
33 |
+
|
34 |
+
class CUDATemplateKernel(CUDAKernel):
|
35 |
+
"""
|
36 |
+
Template kernels defined by CUDA / Cutlass in C++.
|
37 |
+
"""
|
38 |
+
|
39 |
+
_EXTRA_CPP_ARGS = "size_t* workspace_size, uint8_t* workspace, cudaStream_t stream"
|
40 |
+
|
41 |
+
def __init__(self, kernel_name):
|
42 |
+
"""
|
43 |
+
Initializes a new instance of the CUDATemplateKernel class.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
kernel_name (str): The name of the kernel.
|
47 |
+
"""
|
48 |
+
super().__init__()
|
49 |
+
self.kernel_name = kernel_name
|
50 |
+
# Mapping from arg name to IRNode.
|
51 |
+
self.named_nodes: Dict[str, IRNode] = {}
|
52 |
+
|
53 |
+
def arg_name(self, node: IRNode) -> Optional[str]:
|
54 |
+
"""
|
55 |
+
Returns arg name of a given input or output node.
|
56 |
+
"""
|
57 |
+
if node is None:
|
58 |
+
return None
|
59 |
+
return {**self.args.input_buffers, **self.args.output_buffers}.get(
|
60 |
+
node.get_name(), None
|
61 |
+
)
|
62 |
+
|
63 |
+
def check_not_null(self, node: IRNode) -> str:
|
64 |
+
"""
|
65 |
+
Generates code to check that a node is not null.
|
66 |
+
"""
|
67 |
+
|
68 |
+
if node is None:
|
69 |
+
return ""
|
70 |
+
|
71 |
+
size_str = self.size(node, 0, -1)
|
72 |
+
name_str = self.arg_name(node)
|
73 |
+
if name_str is None:
|
74 |
+
return ""
|
75 |
+
|
76 |
+
res = IndentedBuffer(initial_indent=2)
|
77 |
+
res.tabwidth = 1
|
78 |
+
res.splice(
|
79 |
+
f"""
|
80 |
+
{{
|
81 |
+
if (!{name_str}) {{
|
82 |
+
int64_t {name_str}_size = {size_str};
|
83 |
+
if ({name_str}_size > 0) {{
|
84 |
+
throw std::runtime_error("input {name_str} is null but size is not 0!");
|
85 |
+
}}
|
86 |
+
}}
|
87 |
+
}}
|
88 |
+
"""
|
89 |
+
)
|
90 |
+
return res.getvalue()
|
91 |
+
|
92 |
+
def def_kernel(
|
93 |
+
self,
|
94 |
+
inputs: List[IRNode],
|
95 |
+
outputs: List[IRNode],
|
96 |
+
names_str: str = "",
|
97 |
+
input_reorder: Optional[List[int]] = None,
|
98 |
+
) -> str:
|
99 |
+
"""
|
100 |
+
Hook called from template code to generate function definition and
|
101 |
+
needed args.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
inputs: List of input IRNodes
|
105 |
+
outputs: List of output IRNodes
|
106 |
+
names_str: Comma separated list of input + output argument names.
|
107 |
+
input_reorder: The actual order of input nodes.
|
108 |
+
e.g. The template might have input argument defined as [X, W, Bias],
|
109 |
+
and the actual input passed into this template could be [Bias, X, W].
|
110 |
+
In this case, the `input_reorder` would be [2, 0, 1].
|
111 |
+
"""
|
112 |
+
|
113 |
+
names = [x.strip() for x in names_str.strip().split(",")]
|
114 |
+
if len(inputs) + len(outputs) != len(names):
|
115 |
+
raise RuntimeError(
|
116 |
+
f"{len(inputs) + len(outputs)=} != {len(names)=}, {inputs=}, {outputs=}, {names=}"
|
117 |
+
)
|
118 |
+
|
119 |
+
if input_reorder is not None:
|
120 |
+
assert len(inputs) == len(input_reorder)
|
121 |
+
else:
|
122 |
+
input_reorder = list(range(len(inputs)))
|
123 |
+
|
124 |
+
for idx in input_reorder:
|
125 |
+
name = names[idx]
|
126 |
+
node = inputs[idx]
|
127 |
+
if node is not None:
|
128 |
+
self.named_nodes[name] = node
|
129 |
+
self.args.input_buffers[node.get_name()] = name
|
130 |
+
|
131 |
+
for name, node in zip(names[len(inputs) : len(inputs) + len(outputs)], outputs):
|
132 |
+
if node is not None:
|
133 |
+
self.named_nodes[name] = node
|
134 |
+
self.args.output_buffers[node.get_name()] = name
|
135 |
+
|
136 |
+
arg_defs, *_ = self.args.cpp_argdefs()
|
137 |
+
return f"PT_EXPORT int {self.kernel_name}({', '.join(arg_defs)}, {self._EXTRA_CPP_ARGS})"
|
138 |
+
|
139 |
+
def call_kernel(
|
140 |
+
self, name: str, node: "CUDATemplateBuffer", epilogue_nodes: List[ir.Buffer]
|
141 |
+
) -> None:
|
142 |
+
"""
|
143 |
+
Generates code to call the kernel through V.graph.wrapper_code.
|
144 |
+
used from within torch._inductor.wrapper.WrapperCodeGen
|
145 |
+
|
146 |
+
name: Name of kernel function.
|
147 |
+
node: The CUDATemplateBuffer node which contains information about the kernel, it's fused epilogue nodes
|
148 |
+
as well as all required inputs and outputs.
|
149 |
+
"""
|
150 |
+
wrapper = V.graph.wrapper_code
|
151 |
+
_, call_args, _ = self.args.python_argdefs()
|
152 |
+
# dynamo wraps unspec variable as 0d CPU tensor, need convert to scalar
|
153 |
+
for i in range(len(call_args)):
|
154 |
+
if V.graph.is_unspec_arg(call_args[i]):
|
155 |
+
call_args[i] = call_args[i] + ".item()"
|
156 |
+
else:
|
157 |
+
call_args[i] = f"c_void_p({call_args[i]}.data_ptr())"
|
158 |
+
|
159 |
+
# workspace_size ptr is NULL to mark this call is not intended for retrieving workspace_size.
|
160 |
+
# workspace_size should have already been retrieved prior to this call.
|
161 |
+
call_args.append("None")
|
162 |
+
|
163 |
+
if node.get_workspace_size() > 0:
|
164 |
+
call_args.append(f"c_void_p({node.get_name()}_workspace.data_ptr())")
|
165 |
+
else:
|
166 |
+
call_args.append("None")
|
167 |
+
|
168 |
+
wrapper.generate_kernel_call(
|
169 |
+
name,
|
170 |
+
call_args,
|
171 |
+
device_index=V.graph.scheduler.current_device.index,
|
172 |
+
cuda=True,
|
173 |
+
triton=False,
|
174 |
+
)
|
175 |
+
|
176 |
+
def dtype(self, node: IRNode) -> Optional[str]:
|
177 |
+
"""
|
178 |
+
Generates code which represents dtype of a given node.
|
179 |
+
"""
|
180 |
+
|
181 |
+
if node is None:
|
182 |
+
return "void"
|
183 |
+
return DTYPE_TO_CPP.get(node.get_layout().dtype)
|
184 |
+
|
185 |
+
def offset(self, node: IRNode) -> str:
|
186 |
+
"""
|
187 |
+
Generates code which represents offset of a given node.
|
188 |
+
"""
|
189 |
+
|
190 |
+
if node is None:
|
191 |
+
return "0"
|
192 |
+
return str(node.get_layout().offset)
|
193 |
+
|
194 |
+
def ptr(self, node: IRNode) -> str:
|
195 |
+
"""
|
196 |
+
Generates code which represents pointer of a given node.
|
197 |
+
"""
|
198 |
+
|
199 |
+
if node is None:
|
200 |
+
return "nullptr"
|
201 |
+
arg_name = self.arg_name(node)
|
202 |
+
if arg_name is None:
|
203 |
+
return "nullptr"
|
204 |
+
offset = self.offset(node)
|
205 |
+
return arg_name if offset == "0" else f"{arg_name} + {offset}"
|
206 |
+
|
207 |
+
def size(
|
208 |
+
self,
|
209 |
+
node: IRNode,
|
210 |
+
start_index: int,
|
211 |
+
end_index: Optional[int] = None,
|
212 |
+
default_value: int = 0,
|
213 |
+
) -> str:
|
214 |
+
"""
|
215 |
+
Hook called from template code to get the size of an arg.
|
216 |
+
Generates code which represents size of a given node in [start_index, end_index).
|
217 |
+
If node is None, returns default_value.
|
218 |
+
|
219 |
+
TODO: Will add needed args to pass it in if it is dynamic.
|
220 |
+
"""
|
221 |
+
|
222 |
+
if node is None:
|
223 |
+
return str(default_value)
|
224 |
+
|
225 |
+
start_index = _normalize_idx(start_index, len(node.get_size()))
|
226 |
+
if end_index is None:
|
227 |
+
end_index = start_index
|
228 |
+
end_index = _normalize_idx(end_index, len(node.get_size()))
|
229 |
+
|
230 |
+
sizes = node.get_size()[start_index : end_index + 1]
|
231 |
+
if len(sizes) == 0:
|
232 |
+
return str(default_value)
|
233 |
+
|
234 |
+
val = sympy_product(sizes)
|
235 |
+
return cexpr(self.rename_indexing(val))
|
236 |
+
|
237 |
+
def stride(self, node: IRNode, index: int, default_value: int = 0) -> str:
|
238 |
+
"""
|
239 |
+
Hook called from template code to get the stride of an arg.
|
240 |
+
Generates code which represents stride of a given node at index.
|
241 |
+
If node is None, returns default_value.
|
242 |
+
|
243 |
+
TODO: Will add needed args to pass it in if it is dynamic.
|
244 |
+
"""
|
245 |
+
|
246 |
+
if node is None:
|
247 |
+
return str(default_value)
|
248 |
+
|
249 |
+
index = _normalize_idx(index, len(node.get_size()))
|
250 |
+
if index < 0:
|
251 |
+
return str(default_value)
|
252 |
+
|
253 |
+
stride = node.get_stride()[index]
|
254 |
+
return cexpr(self.rename_indexing(stride))
|
255 |
+
|
256 |
+
def row_or_column_stride(self, node: IRNode, default_value: int = 0) -> str:
|
257 |
+
"""
|
258 |
+
Hook called from template code to get the row or column stride of an arg.
|
259 |
+
This is required by some CUTLASS 2.X APIs.
|
260 |
+
If the node is in row_major, it returns stride[-2].
|
261 |
+
If the node is in column_major, it returns stride[-1].
|
262 |
+
|
263 |
+
TODO: Will add needed args to pass it in if it is dynamic.
|
264 |
+
"""
|
265 |
+
|
266 |
+
if node is None or len(node.get_stride()) < 2:
|
267 |
+
return str(default_value)
|
268 |
+
|
269 |
+
stride0 = node.get_stride()[-1]
|
270 |
+
stride1 = node.get_stride()[-2]
|
271 |
+
if stride0 == 1:
|
272 |
+
return cexpr(self.rename_indexing(stride1))
|
273 |
+
elif stride1 == 1:
|
274 |
+
return cexpr(self.rename_indexing(stride0))
|
275 |
+
else:
|
276 |
+
raise RuntimeError(
|
277 |
+
f"At least 1 stride should be 1. Strides: {node.get_stride()=}"
|
278 |
+
)
|
279 |
+
|
280 |
+
|
281 |
+
class CUDATemplateCaller(ChoiceCaller):
|
282 |
+
"""
|
283 |
+
CUDATemplateCaller
|
284 |
+
|
285 |
+
This class represents a caller for CUDA template kernels. It is a subclass of ChoiceCaller.
|
286 |
+
Attributes:
|
287 |
+
name (str): The name of the caller.
|
288 |
+
category (str): The category of the caller.
|
289 |
+
bmreq (CUDABenchmarkRequest): The benchmark request for the caller.
|
290 |
+
template_buffer (CUDATemplateBuffer): The template buffer for the caller.
|
291 |
+
"""
|
292 |
+
|
293 |
+
def __init__(
|
294 |
+
self,
|
295 |
+
name: str,
|
296 |
+
category: str,
|
297 |
+
input_nodes: List[Buffer],
|
298 |
+
layout: Layout,
|
299 |
+
make_kernel_render: Callable[[CUDATemplateBuffer, Optional[List[IRNode]]], str],
|
300 |
+
bmreq: CUDABenchmarkRequest,
|
301 |
+
template: "CUDATemplate",
|
302 |
+
):
|
303 |
+
super().__init__(name, input_nodes, layout)
|
304 |
+
self.category = category
|
305 |
+
self.make_kernel_render = make_kernel_render
|
306 |
+
self.bmreq = bmreq
|
307 |
+
self.template = template
|
308 |
+
|
309 |
+
def benchmark(self, *args, out) -> float:
|
310 |
+
assert self.bmreq is not None
|
311 |
+
return self.bmreq.benchmark(*args, output_tensor=out)
|
312 |
+
|
313 |
+
def __str__(self):
|
314 |
+
return f"CUDATemplateCaller(source_file={self.bmreq.source_file})"
|
315 |
+
|
316 |
+
def call_name(self) -> str:
|
317 |
+
return f"cuda_template_kernels.{self.name}"
|
318 |
+
|
319 |
+
def hash_key(self) -> str:
|
320 |
+
return "-".join(
|
321 |
+
[
|
322 |
+
self.category,
|
323 |
+
self.bmreq.hash_key,
|
324 |
+
]
|
325 |
+
)
|
326 |
+
|
327 |
+
def output_node(self) -> TensorBox:
|
328 |
+
return TensorBox.create(
|
329 |
+
CUDATemplateBuffer(
|
330 |
+
layout=self.layout,
|
331 |
+
inputs=self.input_nodes,
|
332 |
+
make_kernel_render=self.make_kernel_render,
|
333 |
+
workspace_size=self.bmreq.workspace_size,
|
334 |
+
template=self.template,
|
335 |
+
)
|
336 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cuda_template.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import itertools
|
3 |
+
import logging
|
4 |
+
from typing import List, Optional
|
5 |
+
from unittest.mock import patch
|
6 |
+
|
7 |
+
import sympy
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from ...autotune_process import CUDABenchmarkRequest, TensorMeta
|
11 |
+
from ...ir import Buffer, CUDATemplateBuffer, IRNode, Layout
|
12 |
+
|
13 |
+
from ...utils import IndentedBuffer, unique
|
14 |
+
from ...virtualized import V
|
15 |
+
from ..common import KernelTemplate
|
16 |
+
from .cuda_kernel import CUDATemplateCaller, CUDATemplateKernel
|
17 |
+
|
18 |
+
log = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
class CUDATemplate(KernelTemplate):
|
22 |
+
index_counter = itertools.count()
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
name: str,
|
27 |
+
input_nodes: List[Buffer],
|
28 |
+
layout: Layout,
|
29 |
+
input_reorder: Optional[List[int]] = None,
|
30 |
+
):
|
31 |
+
"""
|
32 |
+
|
33 |
+
Baseclass for CUDA C++ Templates, derived from KernelTemplate. Not to be instantiated directly.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
name (str): The name of the CUDATemplate object.
|
37 |
+
input_nodes (List[IRNode]): A list of input IRNodes.
|
38 |
+
layout (Layout): The layout of the output buffer / tensor.
|
39 |
+
input_reorder (Optional[List[int]]): An optional list that specifies the order of the input nodes.
|
40 |
+
|
41 |
+
"""
|
42 |
+
super().__init__(name)
|
43 |
+
self.input_nodes = input_nodes
|
44 |
+
self.output_node: Buffer = Buffer("buf_out", layout)
|
45 |
+
self.input_reorder = input_reorder
|
46 |
+
self.layout = layout
|
47 |
+
|
48 |
+
def generate( # type: ignore[override]
|
49 |
+
self,
|
50 |
+
**kwargs,
|
51 |
+
) -> CUDATemplateCaller:
|
52 |
+
"""
|
53 |
+
Generates the CUDA template caller object for the given GEMM template and operation. This CUDATemplateCaller
|
54 |
+
may be used to call and benchmark the generated CUDA kernel in a standalone manner to enable Autotuning.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
kwargs: Additional keyword arguments.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
A CUDATemplateCaller object representing the generated CUDA template caller.
|
61 |
+
"""
|
62 |
+
kernel_name = f"cuda_{self.name}"
|
63 |
+
with patch.object(
|
64 |
+
V.graph, "get_dtype", self._fake_get_dtype(self.output_node)
|
65 |
+
), CUDATemplateKernel(
|
66 |
+
kernel_name=kernel_name,
|
67 |
+
) as kernel:
|
68 |
+
code = self.render(kernel=kernel, **kwargs)
|
69 |
+
_, call_args, _ = kernel.args.python_argdefs()
|
70 |
+
log.debug("Generated Code:\n%s", code)
|
71 |
+
log.debug(
|
72 |
+
"Args: cpp_argdefs: %s, python_argdefs: %s",
|
73 |
+
kernel.args.cpp_argdefs(),
|
74 |
+
kernel.args.python_argdefs(),
|
75 |
+
)
|
76 |
+
|
77 |
+
input_reorder = (
|
78 |
+
self.input_reorder
|
79 |
+
if self.input_reorder is not None
|
80 |
+
else list(range(len(self.input_nodes)))
|
81 |
+
)
|
82 |
+
expected_args = list(
|
83 |
+
unique(self.input_nodes[idx].get_name() for idx in input_reorder)
|
84 |
+
)
|
85 |
+
expected_args.extend([self.output_node.get_name()])
|
86 |
+
assert list(call_args)[: len(expected_args)] == expected_args, (
|
87 |
+
call_args,
|
88 |
+
expected_args,
|
89 |
+
)
|
90 |
+
extra_args = V.graph.sizevars.size_hints(
|
91 |
+
map(sympy.expand, call_args[len(expected_args) :])
|
92 |
+
)
|
93 |
+
|
94 |
+
kernel_hash_name = f"cuda_{self.name}_{next(self.index_counter)}"
|
95 |
+
|
96 |
+
# create the BenchmarkRequest
|
97 |
+
bmreq = CUDABenchmarkRequest(
|
98 |
+
kernel_name=kernel_name,
|
99 |
+
input_tensor_meta=TensorMeta.from_irnodes(self.input_nodes),
|
100 |
+
output_tensor_meta=TensorMeta.from_irnodes(self.output_node),
|
101 |
+
extra_args=extra_args,
|
102 |
+
source_code=code,
|
103 |
+
)
|
104 |
+
|
105 |
+
def make_kernel_render(
|
106 |
+
template_node: CUDATemplateBuffer,
|
107 |
+
epilogue_nodes: Optional[List[IRNode]] = None,
|
108 |
+
):
|
109 |
+
kernel = CUDATemplateKernel(
|
110 |
+
kernel_name="KERNEL_NAME",
|
111 |
+
)
|
112 |
+
render = functools.partial(
|
113 |
+
self.render,
|
114 |
+
kernel=kernel,
|
115 |
+
template_buffer_node=template_node,
|
116 |
+
epilogue_nodes=epilogue_nodes,
|
117 |
+
**kwargs, # includes "op" argument in case of CUTLASSGemmTemplate
|
118 |
+
)
|
119 |
+
return kernel, render
|
120 |
+
|
121 |
+
return CUDATemplateCaller(
|
122 |
+
kernel_hash_name,
|
123 |
+
self.name,
|
124 |
+
self.input_nodes,
|
125 |
+
self.output_node.get_layout(),
|
126 |
+
make_kernel_render,
|
127 |
+
bmreq,
|
128 |
+
self,
|
129 |
+
)
|
130 |
+
|
131 |
+
def header(self) -> IndentedBuffer:
|
132 |
+
res = IndentedBuffer()
|
133 |
+
res.splice(
|
134 |
+
"""
|
135 |
+
#include <exception>
|
136 |
+
#include <iostream>
|
137 |
+
#include <memory>
|
138 |
+
#include <random>
|
139 |
+
#include <vector>
|
140 |
+
"""
|
141 |
+
)
|
142 |
+
return res
|
143 |
+
|
144 |
+
def globals(self) -> IndentedBuffer:
|
145 |
+
res = IndentedBuffer()
|
146 |
+
res.splice(
|
147 |
+
"""
|
148 |
+
// We compile all models with -fvisibility=hidden. Any symbols that need to be
|
149 |
+
// exposed in the final shared library must be declared with PT_EXPORT to make
|
150 |
+
// them visible.
|
151 |
+
#ifdef __GNUC__ // Applies to any compiler with GNU extensions (clang and g++)
|
152 |
+
#define PT_EXPORT __attribute__((__visibility__("default")))
|
153 |
+
#else
|
154 |
+
#ifdef _WIN32
|
155 |
+
#define PT_EXPORT __declspec(dllexport)
|
156 |
+
#else
|
157 |
+
#define PT_EXPORT
|
158 |
+
#endif
|
159 |
+
#endif
|
160 |
+
using bfloat16 = nv_bfloat16;
|
161 |
+
"""
|
162 |
+
)
|
163 |
+
return res
|
164 |
+
|
165 |
+
def render(self, **kwargs) -> str:
|
166 |
+
raise NotImplementedError
|
167 |
+
|
168 |
+
|
169 |
+
class CUTLASSTemplate(CUDATemplate):
|
170 |
+
"""
|
171 |
+
CUTLASSTemplate is a class that provides a template for generating CUTLASS Templates. Used as a baseclass for the
|
172 |
+
CUTLASSGemmTemplate, providing functionality that might also be relevant for non-GEMM CUTLASS Kernels.
|
173 |
+
"""
|
174 |
+
|
175 |
+
def header(self) -> IndentedBuffer:
|
176 |
+
res = super().header()
|
177 |
+
res.splice(
|
178 |
+
"""
|
179 |
+
#include "cute/tensor.hpp"
|
180 |
+
#include "cutlass/cutlass.h"
|
181 |
+
#include "cutlass/numeric_types.h"
|
182 |
+
#include "cutlass/tensor_ref.h"
|
183 |
+
#include "cutlass/util/host_tensor.h"
|
184 |
+
#include "cutlass/util/reference/host/tensor_fill.h"
|
185 |
+
#include "cutlass/util/reference/device/tensor_fill.h"
|
186 |
+
#include "cutlass/util/device_memory.h"
|
187 |
+
"""
|
188 |
+
)
|
189 |
+
return res
|
190 |
+
|
191 |
+
def globals(self) -> IndentedBuffer:
|
192 |
+
res = super().globals()
|
193 |
+
res.splice(
|
194 |
+
"""
|
195 |
+
using namespace cute;
|
196 |
+
#define CUTLASS_CHECK(status) \\
|
197 |
+
{ \\
|
198 |
+
cutlass::Status error = status; \\
|
199 |
+
if (error != cutlass::Status::kSuccess) { \\
|
200 |
+
auto msg = std::string("[") + __FILE__ + "] Got cutlass error: " + \\
|
201 |
+
cutlassGetStatusString(error) + " at: " + std::to_string(__LINE__); \\
|
202 |
+
throw std::runtime_error(msg); \\
|
203 |
+
} \\
|
204 |
+
}
|
205 |
+
|
206 |
+
// Used as pass-through functor in EVT just for type casting / rounding
|
207 |
+
template <typename T>
|
208 |
+
struct identity_op {
|
209 |
+
CUTLASS_HOST_DEVICE
|
210 |
+
T operator()(T val) const { return val; }
|
211 |
+
};
|
212 |
+
|
213 |
+
"""
|
214 |
+
)
|
215 |
+
return res
|
216 |
+
|
217 |
+
def cute_int(self, int_str: str, var_name: str) -> str:
|
218 |
+
res = ""
|
219 |
+
if int_str in {"1", "1L"}:
|
220 |
+
res = "cute::Int<1>{}"
|
221 |
+
else:
|
222 |
+
res = int_str
|
223 |
+
|
224 |
+
return f"{res} /* {var_name} */"
|
225 |
+
|
226 |
+
_DTYPE_TO_CUTLASS = {
|
227 |
+
torch.float32: "float",
|
228 |
+
torch.float64: "double",
|
229 |
+
torch.float16: "cutlass::half_t",
|
230 |
+
torch.int32: "int",
|
231 |
+
torch.int8: "int8_t",
|
232 |
+
torch.uint8: "uint8_t",
|
233 |
+
torch.bool: "bool",
|
234 |
+
torch.bfloat16: "cutlass::bfloat16_t",
|
235 |
+
}
|
236 |
+
|
237 |
+
def cutlass_type_cast(self, node: IRNode, ptr: str) -> str:
|
238 |
+
if node is None:
|
239 |
+
return ptr
|
240 |
+
else:
|
241 |
+
return f"({self._DTYPE_TO_CUTLASS.get(node.get_dtype())}*)({ptr})"
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (190 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/binary_folding.cpython-310.pyc
ADDED
Binary file (6.55 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/efficient_conv_bn_eval.cpython-310.pyc
ADDED
Binary file (3.83 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/freezing_patterns.cpython-310.pyc
ADDED
Binary file (5.72 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/fuse_attention.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/group_batch_fusion.cpython-310.pyc
ADDED
Binary file (22.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/joint_graph.cpython-310.pyc
ADDED
Binary file (8.09 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/misc_patterns.cpython-310.pyc
ADDED
Binary file (3.83 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/mkldnn_fusion.cpython-310.pyc
ADDED
Binary file (26.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/pad_mm.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/post_grad.cpython-310.pyc
ADDED
Binary file (27.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/pre_grad.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/quantization.cpython-310.pyc
ADDED
Binary file (26.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/replace_random.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/__pycache__/split_cat.cpython-310.pyc
ADDED
Binary file (29.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/binary_folding.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import itertools
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from ..._dynamo.utils import counters
|
6 |
+
|
7 |
+
from ..pattern_matcher import Arg, CallFunction, KeywordArg
|
8 |
+
from .freezing_patterns import register_binary_folding_pattern
|
9 |
+
|
10 |
+
aten = torch.ops.aten
|
11 |
+
prims = torch.ops.prims
|
12 |
+
|
13 |
+
|
14 |
+
def mark_mixed_dtype_conv(conv):
|
15 |
+
conv_dtype = conv.meta["val"].dtype
|
16 |
+
if conv_dtype not in (torch.float16, torch.bfloat16):
|
17 |
+
return
|
18 |
+
|
19 |
+
if not len(conv.users) == 1:
|
20 |
+
return
|
21 |
+
|
22 |
+
conv_user = next(iter(conv.users.keys()))
|
23 |
+
if not isinstance(conv_user.meta["val"], torch.Tensor):
|
24 |
+
return
|
25 |
+
|
26 |
+
if not conv_user.meta["val"].dtype == torch.float32:
|
27 |
+
return
|
28 |
+
|
29 |
+
while conv_user.target in _binary_ops:
|
30 |
+
if not len(conv_user.users) == 1:
|
31 |
+
return
|
32 |
+
|
33 |
+
conv_user = next(iter(conv_user.users.keys()))
|
34 |
+
|
35 |
+
if not (
|
36 |
+
conv_user.target == prims.convert_element_type.default
|
37 |
+
and conv_user.args[1] == conv_dtype
|
38 |
+
):
|
39 |
+
return
|
40 |
+
|
41 |
+
conv.meta["_allow_conv_mixed_dtype_folding"] = conv_dtype
|
42 |
+
|
43 |
+
|
44 |
+
def mark_mixed_dtype_allowed_convs(gm):
|
45 |
+
"""
|
46 |
+
Mark convolutions which we will binary fold even with mixed precision constants. We constant fold in the higher precision
|
47 |
+
for better accuracy and then recover the original precision after.
|
48 |
+
"""
|
49 |
+
for node in gm.graph.nodes:
|
50 |
+
if node.target is aten.convolution.default:
|
51 |
+
mark_mixed_dtype_conv(node)
|
52 |
+
|
53 |
+
|
54 |
+
def recover_original_precision_folded_convs(gm):
|
55 |
+
"""
|
56 |
+
After binary folding conv weights and biases to a higher dtype, recover the original precision they were in.
|
57 |
+
"""
|
58 |
+
graph = gm.graph
|
59 |
+
convs = [node for node in graph.nodes if node.target is aten.convolution.default]
|
60 |
+
for node in convs:
|
61 |
+
orig_dtype = node.meta.get("_allow_conv_mixed_dtype_folding", None)
|
62 |
+
if orig_dtype is None:
|
63 |
+
continue
|
64 |
+
|
65 |
+
with graph.inserting_before(node):
|
66 |
+
for idx in [1, 2]:
|
67 |
+
old_input = node.args[idx]
|
68 |
+
if old_input is None:
|
69 |
+
continue
|
70 |
+
|
71 |
+
new_input = graph.create_node(
|
72 |
+
"call_function",
|
73 |
+
prims.convert_element_type.default,
|
74 |
+
(old_input, orig_dtype),
|
75 |
+
)
|
76 |
+
node.replace_input_with(old_input, new_input)
|
77 |
+
|
78 |
+
|
79 |
+
_binary_ops = [aten.add.Tensor, aten.sub.Tensor, aten.mul.Tensor, aten.div.Tensor]
|
80 |
+
|
81 |
+
|
82 |
+
@functools.lru_cache(None)
|
83 |
+
def binary_folding_init():
|
84 |
+
_conv_args = [Arg() for _ in range(9)]
|
85 |
+
_computation_ops = [aten.convolution.default]
|
86 |
+
_computation_calls = [CallFunction(aten.convolution.default, *_conv_args, _users=1)]
|
87 |
+
|
88 |
+
"""
|
89 |
+
In order to fuse add/sub/mul/div with conv, the dimensions of its
|
90 |
+
constant tensor must satisfy the following:
|
91 |
+
- with resizing, broadcast to w/ weight/bias tensor shape
|
92 |
+
- broadcast to the conv output shape
|
93 |
+
It needs to have a shape that can resize to weight/bias
|
94 |
+
tensor shape because we need to run the op with the conv
|
95 |
+
weights/bias without changing their sizes.
|
96 |
+
It needs to broadcast to the conv output shape so that we do
|
97 |
+
accidentally change the shape of op output by pre-fusing it
|
98 |
+
compared to eager.
|
99 |
+
The only dimension value shared by weight/bias/conv output
|
100 |
+
is they all contain a dim with value = channels-out. In the
|
101 |
+
conv output tensor, this is in the second dimension,
|
102 |
+
so the pointwise op tensor may have a second dimension of
|
103 |
+
value == channels-out, but all the other dimensions have to be 1
|
104 |
+
"""
|
105 |
+
|
106 |
+
def _op_not_broadcasting_with_conv(weight_tensor, other_tensor):
|
107 |
+
# According to opDoesNotBroadCastWithConv of frozen_conv_folding.cpp
|
108 |
+
weight_shape = weight_tensor.shape
|
109 |
+
other_shape = other_tensor.shape
|
110 |
+
if len(weight_shape) < len(other_shape):
|
111 |
+
return False
|
112 |
+
if len(weight_shape) == len(other_shape) + 1:
|
113 |
+
# weight shape is [o, i, *], other_shape is [o, 1...].
|
114 |
+
for i in reversed(range(len(other_shape))):
|
115 |
+
if i == 0 and weight_shape[0] == other_shape[i]:
|
116 |
+
continue
|
117 |
+
if other_shape[i] != 1:
|
118 |
+
return False
|
119 |
+
else:
|
120 |
+
# weight shape is [o, i, *], other_shape is [1, i, *]
|
121 |
+
for i in reversed(range(len(other_shape))):
|
122 |
+
if i == 1 and weight_shape[0] == other_shape[i]:
|
123 |
+
continue
|
124 |
+
if other_shape[i] != 1:
|
125 |
+
return False
|
126 |
+
return True
|
127 |
+
|
128 |
+
def _check_conv_and_broadcast_op(conv_node, other):
|
129 |
+
# According to checkConvAndBroadcastingOpPreConditions of frozen_conv_folding.cpp.
|
130 |
+
# conv.weight
|
131 |
+
if conv_node.args[1].op != "get_attr":
|
132 |
+
return False
|
133 |
+
# conv.bias
|
134 |
+
if conv_node.args[1] is not None and conv_node.args[1].op != "get_attr":
|
135 |
+
return False
|
136 |
+
if (
|
137 |
+
not isinstance(other, int)
|
138 |
+
and not isinstance(other, float)
|
139 |
+
and other.op != "get_attr"
|
140 |
+
):
|
141 |
+
return False
|
142 |
+
|
143 |
+
if not len(conv_node.args[1].users) == 1:
|
144 |
+
return False
|
145 |
+
|
146 |
+
weight_meta_value = conv_node.args[1].meta.get("val")
|
147 |
+
if weight_meta_value is None:
|
148 |
+
return False
|
149 |
+
# Avoid fusing op that causes type promotion
|
150 |
+
# restricting to float avoids int/float difficulties with scalar overload
|
151 |
+
if not weight_meta_value.is_floating_point():
|
152 |
+
return False
|
153 |
+
if isinstance(other, torch.fx.Node) and other.op == "get_attr":
|
154 |
+
other_meta_value = other.meta.get("val")
|
155 |
+
if not other_meta_value.is_floating_point():
|
156 |
+
return False
|
157 |
+
if (
|
158 |
+
torch.promote_types(other_meta_value.dtype, weight_meta_value.dtype)
|
159 |
+
!= weight_meta_value.dtype
|
160 |
+
):
|
161 |
+
if not conv_node.meta.get("_allow_conv_mixed_dtype_folding", False):
|
162 |
+
return False
|
163 |
+
|
164 |
+
if (
|
165 |
+
other_meta_value.dtype != torch.float
|
166 |
+
and weight_meta_value.dtype not in (torch.float16, torch.bfloat16)
|
167 |
+
):
|
168 |
+
return False
|
169 |
+
|
170 |
+
if not _op_not_broadcasting_with_conv(weight_meta_value, other_meta_value):
|
171 |
+
return False
|
172 |
+
else:
|
173 |
+
# TODO: support scalar case
|
174 |
+
return False
|
175 |
+
|
176 |
+
return True
|
177 |
+
|
178 |
+
def _is_foldable_pattern(match):
|
179 |
+
binary_node = match.output_node()
|
180 |
+
computation_node = binary_node.args[0]
|
181 |
+
other = binary_node.args[1]
|
182 |
+
if binary_node.args[0].target not in _computation_ops:
|
183 |
+
computation_node = binary_node.args[1]
|
184 |
+
other = binary_node.args[0]
|
185 |
+
if binary_node.args[0].target == aten.convolution.default:
|
186 |
+
return _check_conv_and_broadcast_op(computation_node, other)
|
187 |
+
|
188 |
+
return False
|
189 |
+
|
190 |
+
def resize_scalar_or_tensor_to_shape(graph, other, shape):
|
191 |
+
# TODO: support scalar case
|
192 |
+
if other.meta.get("val").numel() == 1:
|
193 |
+
# expand errors if the shape input has less # dims than the tensor input
|
194 |
+
res = graph.create_node(
|
195 |
+
"call_function",
|
196 |
+
aten.reshape.default,
|
197 |
+
(other, (1,)),
|
198 |
+
)
|
199 |
+
res = graph.create_node(
|
200 |
+
"call_function",
|
201 |
+
aten.expand.default,
|
202 |
+
(res, shape),
|
203 |
+
)
|
204 |
+
else:
|
205 |
+
res = graph.create_node(
|
206 |
+
"call_function",
|
207 |
+
aten.reshape.default,
|
208 |
+
(other, shape),
|
209 |
+
)
|
210 |
+
return res
|
211 |
+
|
212 |
+
def _create_new_conv_node(graph, conv_node, binary_node, other):
|
213 |
+
assert conv_node.target == aten.convolution.default
|
214 |
+
conv_args = list(conv_node.args)
|
215 |
+
weight_meta_value = conv_node.args[1].meta.get("val")
|
216 |
+
bias = conv_args[2]
|
217 |
+
if binary_node.target in [aten.add.Tensor, aten.sub.Tensor]:
|
218 |
+
other_reshape = resize_scalar_or_tensor_to_shape(
|
219 |
+
graph, other, (weight_meta_value.size(0),)
|
220 |
+
)
|
221 |
+
new_bias = graph.create_node(
|
222 |
+
"call_function",
|
223 |
+
binary_node.target,
|
224 |
+
(0 if bias is None else bias, other_reshape),
|
225 |
+
)
|
226 |
+
conv_args[2] = new_bias
|
227 |
+
else:
|
228 |
+
assert binary_node.target in [aten.mul.Tensor, aten.div.Tensor]
|
229 |
+
weight_broadcast_shape = [1 for _ in range(len(weight_meta_value.shape))]
|
230 |
+
weight_broadcast_shape[0] = weight_meta_value.size(0)
|
231 |
+
other_reshape1 = resize_scalar_or_tensor_to_shape(
|
232 |
+
graph, other, tuple(weight_broadcast_shape)
|
233 |
+
)
|
234 |
+
new_weight = graph.create_node(
|
235 |
+
"call_function", binary_node.target, (conv_args[1], other_reshape1)
|
236 |
+
)
|
237 |
+
new_weight.meta.update(conv_args[1].meta)
|
238 |
+
conv_args[1] = new_weight
|
239 |
+
if bias is not None:
|
240 |
+
other_reshape = resize_scalar_or_tensor_to_shape(
|
241 |
+
graph, other, (weight_meta_value.size(0),)
|
242 |
+
)
|
243 |
+
new_bias = graph.create_node(
|
244 |
+
"call_function", binary_node.target, (bias, other_reshape)
|
245 |
+
)
|
246 |
+
new_bias.meta.update(bias.meta)
|
247 |
+
conv_args[2] = new_bias
|
248 |
+
return graph.create_node("call_function", conv_node.target, tuple(conv_args))
|
249 |
+
|
250 |
+
for _computation_call, binary_op in itertools.product(
|
251 |
+
_computation_calls, _binary_ops
|
252 |
+
):
|
253 |
+
|
254 |
+
@register_binary_folding_pattern(
|
255 |
+
CallFunction(binary_op, _computation_call, KeywordArg("other")),
|
256 |
+
extra_check=_is_foldable_pattern,
|
257 |
+
)
|
258 |
+
def folded_op(match, *args, **kwargs):
|
259 |
+
counters["inductor"]["binary_folding"] += 1
|
260 |
+
other = kwargs.get("other")
|
261 |
+
binary_node = match.output_node()
|
262 |
+
computation_node = (
|
263 |
+
binary_node.args[0]
|
264 |
+
if binary_node.args[0].target in _computation_ops
|
265 |
+
else binary_node.args[1]
|
266 |
+
)
|
267 |
+
graph = match.graph
|
268 |
+
with graph.inserting_before(binary_node):
|
269 |
+
# TODO: support linear?
|
270 |
+
assert computation_node.target == aten.convolution.default
|
271 |
+
new_computation_node = _create_new_conv_node(
|
272 |
+
graph, computation_node, binary_node, other
|
273 |
+
)
|
274 |
+
binary_node.replace_all_uses_with(new_computation_node)
|
275 |
+
new_computation_node.meta.update(computation_node.meta)
|
276 |
+
graph.erase_node(binary_node)
|
277 |
+
graph.erase_node(computation_node)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/efficient_conv_bn_eval.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from torch._dynamo.utils import counters
|
5 |
+
from torch._inductor import config as inductor_config
|
6 |
+
from torch.func import functional_call
|
7 |
+
|
8 |
+
from ..pattern_matcher import CallModuleVarArgs, Match, register_graph_pattern
|
9 |
+
|
10 |
+
from .pre_grad import efficient_conv_bn_eval_pass
|
11 |
+
|
12 |
+
|
13 |
+
def efficient_conv_bn_eval(
|
14 |
+
bn: nn.modules.batchnorm._BatchNorm, conv: nn.modules.conv._ConvNd, x: torch.Tensor
|
15 |
+
):
|
16 |
+
"""
|
17 |
+
Implementation based on https://arxiv.org/abs/2305.11624
|
18 |
+
"Tune-Mode ConvBN Blocks For Efficient Transfer Learning"
|
19 |
+
It leverages the associative law between convolution and affine transform,
|
20 |
+
i.e., normalize (weight conv feature) = (normalize weight) conv feature.
|
21 |
+
It works for Eval mode of ConvBN blocks during validation, and can be used
|
22 |
+
for **training** as well, but only if one sets `bn.training=False`. It
|
23 |
+
reduces memory footprint and computation cost, at the cost of slightly
|
24 |
+
reduced numerical stability.
|
25 |
+
Args:
|
26 |
+
bn (nn.modules.batchnorm._BatchNorm): a BatchNorm module.
|
27 |
+
conv (nn.modules.conv._ConvNd): a conv module
|
28 |
+
x (torch.Tensor): Input feature map.
|
29 |
+
"""
|
30 |
+
|
31 |
+
assert bn.running_var is not None
|
32 |
+
|
33 |
+
# These lines of code are designed to deal with various cases
|
34 |
+
# like bn without affine transform, and conv without bias
|
35 |
+
weight_on_the_fly = conv.weight
|
36 |
+
if conv.bias is not None:
|
37 |
+
bias_on_the_fly = conv.bias
|
38 |
+
else:
|
39 |
+
bias_on_the_fly = torch.zeros_like(bn.running_var)
|
40 |
+
|
41 |
+
if bn.weight is not None:
|
42 |
+
bn_weight = bn.weight
|
43 |
+
else:
|
44 |
+
bn_weight = torch.ones_like(bn.running_var)
|
45 |
+
|
46 |
+
if bn.bias is not None:
|
47 |
+
bn_bias = bn.bias
|
48 |
+
else:
|
49 |
+
bn_bias = torch.zeros_like(bn.running_var)
|
50 |
+
|
51 |
+
# shape of [C_out, 1, 1, 1] in Conv2d
|
52 |
+
target_shape = [-1] + [1] * (conv.weight.ndim - 1)
|
53 |
+
if isinstance(conv, nn.modules.conv._ConvTransposeNd):
|
54 |
+
# for transposed conv, the C_out dimension should at index 1.
|
55 |
+
target_shape[:2] = [target_shape[1], target_shape[0]]
|
56 |
+
weight_coeff = torch.rsqrt(bn.running_var + bn.eps).reshape(target_shape)
|
57 |
+
# shape of [C_out, 1, 1, 1] in Conv2d
|
58 |
+
coefff_on_the_fly = bn_weight.view_as(weight_coeff) * weight_coeff
|
59 |
+
|
60 |
+
# shape of [C_out, C_in, k, k] in Conv2d
|
61 |
+
weight_on_the_fly = weight_on_the_fly * coefff_on_the_fly
|
62 |
+
# shape of [C_out] in Conv2d
|
63 |
+
bias_on_the_fly = bn_bias + coefff_on_the_fly.flatten() * (
|
64 |
+
bias_on_the_fly - bn.running_mean
|
65 |
+
)
|
66 |
+
|
67 |
+
input = x
|
68 |
+
params = {"weight": weight_on_the_fly, "bias": bias_on_the_fly}
|
69 |
+
output = functional_call(conv, params, input)
|
70 |
+
return output
|
71 |
+
|
72 |
+
|
73 |
+
@register_graph_pattern(
|
74 |
+
CallModuleVarArgs(
|
75 |
+
[
|
76 |
+
nn.modules.batchnorm._BatchNorm,
|
77 |
+
nn.BatchNorm1d,
|
78 |
+
nn.BatchNorm2d,
|
79 |
+
nn.BatchNorm3d,
|
80 |
+
nn.SyncBatchNorm,
|
81 |
+
],
|
82 |
+
),
|
83 |
+
pass_dict=efficient_conv_bn_eval_pass,
|
84 |
+
extra_check=lambda match: not inductor_config.freezing
|
85 |
+
and inductor_config.efficient_conv_bn_eval_fx_passes,
|
86 |
+
)
|
87 |
+
def efficient_conv_bn_eval_graph_transform(match: Match, *args, **kwargs):
|
88 |
+
# We matched a BN node
|
89 |
+
bn_node = match.nodes[0]
|
90 |
+
graph = match.graph
|
91 |
+
gm = graph.owning_module
|
92 |
+
bn_mod = getattr(gm, bn_node.target)
|
93 |
+
|
94 |
+
# We can only use efficient conv-bn for eval mode with track_running_stats
|
95 |
+
if not bn_mod.track_running_stats or bn_mod.training:
|
96 |
+
return
|
97 |
+
|
98 |
+
# Check if the input is Conv
|
99 |
+
if bn_node.args:
|
100 |
+
input_node = bn_node.args[0]
|
101 |
+
else:
|
102 |
+
input_node = bn_node.kwargs["input"]
|
103 |
+
if input_node.op != "call_module":
|
104 |
+
return
|
105 |
+
if not hasattr(gm, input_node.target):
|
106 |
+
return
|
107 |
+
input_mod = getattr(gm, input_node.target)
|
108 |
+
supported_convs = [
|
109 |
+
nn.Linear,
|
110 |
+
nn.Conv1d,
|
111 |
+
nn.Conv2d,
|
112 |
+
nn.Conv3d,
|
113 |
+
nn.ConvTranspose1d,
|
114 |
+
nn.ConvTranspose2d,
|
115 |
+
nn.ConvTranspose3d,
|
116 |
+
]
|
117 |
+
if not any(isinstance(input_mod, cls) for cls in supported_convs):
|
118 |
+
return
|
119 |
+
conv_node = input_node
|
120 |
+
# Output of conv is used by other nodes, cannot optimize
|
121 |
+
if len(conv_node.users) > 1:
|
122 |
+
return
|
123 |
+
|
124 |
+
# Find a pair of conv and bn computation nodes to optimize.
|
125 |
+
counters["inductor"]["efficient_conv_bn_eval"] += 1
|
126 |
+
|
127 |
+
with graph.inserting_before(conv_node):
|
128 |
+
# create `get_attr` node to access modules
|
129 |
+
# note that we directly call `create_node` to fill the `name`
|
130 |
+
# argument. `graph.get_attr` and
|
131 |
+
# `graph.call_function` does not allow the `name` argument.
|
132 |
+
conv_get_node = graph.create_node(
|
133 |
+
op="get_attr", target=conv_node.target, name="get_conv"
|
134 |
+
)
|
135 |
+
bn_get_node = graph.create_node(
|
136 |
+
op="get_attr", target=bn_node.target, name="get_bn"
|
137 |
+
)
|
138 |
+
if conv_node.args:
|
139 |
+
conv_input = conv_node.args[0]
|
140 |
+
else:
|
141 |
+
conv_input = conv_node.kwargs["input"]
|
142 |
+
# prepare args for the fused function
|
143 |
+
args = (bn_get_node, conv_get_node, conv_input)
|
144 |
+
# create a new node
|
145 |
+
new_node = graph.create_node(
|
146 |
+
op="call_function",
|
147 |
+
target=efficient_conv_bn_eval,
|
148 |
+
args=args,
|
149 |
+
name="efficient_conv_bn_eval",
|
150 |
+
)
|
151 |
+
# this node replaces the original conv + bn, and therefore
|
152 |
+
# should replace the uses of bn_node
|
153 |
+
bn_node.replace_all_uses_with(new_node)
|
154 |
+
# take care of the deletion order:
|
155 |
+
# delete bn_node first, and then conv_node
|
156 |
+
graph.erase_node(bn_node)
|
157 |
+
graph.erase_node(conv_node)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/freezing_patterns.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch._inductor.compile_fx import fake_tensor_prop
|
5 |
+
from ..._dynamo.utils import counters
|
6 |
+
|
7 |
+
from .. import config
|
8 |
+
from ..pattern_matcher import (
|
9 |
+
_return_true,
|
10 |
+
CallFunction,
|
11 |
+
fwd_only,
|
12 |
+
Ignored,
|
13 |
+
init_once_fakemode,
|
14 |
+
KeywordArg,
|
15 |
+
Match,
|
16 |
+
PatternMatcherPass,
|
17 |
+
register_graph_pattern,
|
18 |
+
register_replacement,
|
19 |
+
stable_topological_sort,
|
20 |
+
)
|
21 |
+
|
22 |
+
aten = torch.ops.aten
|
23 |
+
|
24 |
+
# First pass_patterns[0] are applied, then [1], then [2]
|
25 |
+
pass_patterns = [
|
26 |
+
PatternMatcherPass(),
|
27 |
+
PatternMatcherPass(),
|
28 |
+
PatternMatcherPass(),
|
29 |
+
]
|
30 |
+
|
31 |
+
binary_folding_pass = PatternMatcherPass()
|
32 |
+
|
33 |
+
|
34 |
+
def freezing_passes(gm: torch.fx.GraphModule, aot_example_inputs):
|
35 |
+
"""
|
36 |
+
Passes that are applied to the graph to freeze pass.
|
37 |
+
"""
|
38 |
+
|
39 |
+
from ..freezing import constant_fold
|
40 |
+
|
41 |
+
lazy_init()
|
42 |
+
# We need a few rounds of binary folding to get rid of all the
|
43 |
+
# unnecessary nodes, but may need a good method to chose the rounds number.
|
44 |
+
# works like: conv+binary+binary.
|
45 |
+
binary_folding = counters["inductor"]["binary_folding"]
|
46 |
+
fake_tensor_prop(gm, aot_example_inputs, True)
|
47 |
+
|
48 |
+
torch._inductor.fx_passes.binary_folding.mark_mixed_dtype_allowed_convs(gm)
|
49 |
+
for _ in range(4):
|
50 |
+
constant_fold(gm)
|
51 |
+
# Make sure meta['val'] is properly set for all nodes
|
52 |
+
fake_tensor_prop(gm, aot_example_inputs, True)
|
53 |
+
binary_folding_pass.apply(gm.graph)
|
54 |
+
# If we don't have binary folding, we don't need to run the pass again.
|
55 |
+
# TODO: remove the need to run fake_tensor_prop on the whole model.
|
56 |
+
if counters["inductor"]["binary_folding"] == binary_folding:
|
57 |
+
break
|
58 |
+
binary_folding = counters["inductor"]["binary_folding"]
|
59 |
+
|
60 |
+
torch._inductor.fx_passes.binary_folding.recover_original_precision_folded_convs(gm)
|
61 |
+
|
62 |
+
constant_fold(gm)
|
63 |
+
fake_tensor_prop(gm, aot_example_inputs, True)
|
64 |
+
|
65 |
+
for pattern in pass_patterns:
|
66 |
+
pattern.apply(gm.graph)
|
67 |
+
|
68 |
+
# The CPU weight packing always assume the conv's weight is channels last,
|
69 |
+
# So make sure the layout_optimization is on when doing it.
|
70 |
+
if (
|
71 |
+
torch._C._has_mkldnn
|
72 |
+
and config.cpp.weight_prepack
|
73 |
+
and config.layout_optimization
|
74 |
+
):
|
75 |
+
from .mkldnn_fusion import _eliminate_duplicate_packed_nodes
|
76 |
+
|
77 |
+
_eliminate_duplicate_packed_nodes(gm)
|
78 |
+
|
79 |
+
stable_topological_sort(gm.graph)
|
80 |
+
gm.recompile()
|
81 |
+
gm.graph.lint()
|
82 |
+
|
83 |
+
|
84 |
+
@init_once_fakemode
|
85 |
+
def lazy_init():
|
86 |
+
if torch._C._has_mkldnn and config.cpp.weight_prepack:
|
87 |
+
from .mkldnn_fusion import _mkldnn_weight_pack_init
|
88 |
+
|
89 |
+
_mkldnn_weight_pack_init()
|
90 |
+
|
91 |
+
from .binary_folding import binary_folding_init
|
92 |
+
|
93 |
+
addmm_patterns_init()
|
94 |
+
binary_folding_init()
|
95 |
+
|
96 |
+
|
97 |
+
def register_freezing_graph_pattern(pattern, extra_check=_return_true, pass_number=0):
|
98 |
+
return register_graph_pattern(
|
99 |
+
pattern,
|
100 |
+
extra_check=extra_check,
|
101 |
+
pass_dict=pass_patterns[pass_number],
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
def register_binary_folding_pattern(pattern, extra_check=_return_true):
|
106 |
+
return register_graph_pattern(
|
107 |
+
pattern,
|
108 |
+
extra_check=extra_check,
|
109 |
+
pass_dict=binary_folding_pass,
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
@functools.lru_cache(None)
|
114 |
+
def addmm_patterns_init():
|
115 |
+
if torch.cuda.is_available():
|
116 |
+
# workaround https://github.com/pytorch/pytorch/issues/97894
|
117 |
+
device = "cuda"
|
118 |
+
else:
|
119 |
+
device = "cpu"
|
120 |
+
val = functools.partial(torch.empty, (10, 10), device=device, requires_grad=False)
|
121 |
+
|
122 |
+
def check_concat_weights(match):
|
123 |
+
weights = [
|
124 |
+
match.kwargs["w1"],
|
125 |
+
match.kwargs["w2"],
|
126 |
+
]
|
127 |
+
if "w3" in match.kwargs:
|
128 |
+
weights.append(match.kwargs["w3"])
|
129 |
+
|
130 |
+
return all(
|
131 |
+
w.op == "get_attr" and w.meta["val"].shape == weights[0].meta["val"].shape
|
132 |
+
for w in weights
|
133 |
+
)
|
134 |
+
|
135 |
+
def matmul_fuse_pattern(inp, w1, w2, w3):
|
136 |
+
return (inp @ w1, inp @ w2, inp @ w3)
|
137 |
+
|
138 |
+
def matmul_replacement(inp, w1, w2, w3):
|
139 |
+
cat_t = torch.cat((w1, w2, w3), dim=1)
|
140 |
+
mm = inp @ cat_t
|
141 |
+
return mm.chunk(3, dim=1)
|
142 |
+
|
143 |
+
register_replacement(
|
144 |
+
matmul_fuse_pattern,
|
145 |
+
matmul_replacement,
|
146 |
+
[val(), val(), val(), val()],
|
147 |
+
fwd_only,
|
148 |
+
pass_patterns[0],
|
149 |
+
extra_check=check_concat_weights,
|
150 |
+
exclusive_arg_names=("w1", "w2", "w3"),
|
151 |
+
)
|
152 |
+
|
153 |
+
def matmul_fuse_pattern_two(inp, w1, w2):
|
154 |
+
return (inp @ w1, inp @ w2)
|
155 |
+
|
156 |
+
def matmul_replacement_two(inp, w1, w2):
|
157 |
+
cat_t = torch.cat((w1, w2), dim=1)
|
158 |
+
mm = inp @ cat_t
|
159 |
+
return mm.chunk(2, dim=1)
|
160 |
+
|
161 |
+
register_replacement(
|
162 |
+
matmul_fuse_pattern_two,
|
163 |
+
matmul_replacement_two,
|
164 |
+
[val(), val(), val()],
|
165 |
+
fwd_only,
|
166 |
+
pass_patterns[0],
|
167 |
+
extra_check=check_concat_weights,
|
168 |
+
exclusive_arg_names=("w1", "w2"),
|
169 |
+
)
|
170 |
+
|
171 |
+
def addmm_fuse_pattern_second(inp, w1, w2, w3, b1, b2, b3):
|
172 |
+
return (
|
173 |
+
aten.addmm(b1, inp, w1),
|
174 |
+
aten.addmm(b2, inp, w2),
|
175 |
+
aten.addmm(b3, inp, w3),
|
176 |
+
)
|
177 |
+
|
178 |
+
def addmm_fuse_replacement_second(inp, w1, w2, w3, b1, b2, b3):
|
179 |
+
cat_w = torch.cat((w1, w2, w3), dim=1)
|
180 |
+
cat_b = torch.cat((b1, b2, b3))
|
181 |
+
return aten.addmm(cat_b, inp, cat_w).chunk(3, dim=1)
|
182 |
+
|
183 |
+
register_replacement(
|
184 |
+
addmm_fuse_pattern_second,
|
185 |
+
addmm_fuse_replacement_second,
|
186 |
+
[val() for _ in range(7)],
|
187 |
+
fwd_only,
|
188 |
+
pass_patterns[0],
|
189 |
+
extra_check=check_concat_weights,
|
190 |
+
exclusive_arg_names=("w1", "w2", "w3", "b1", "b2", "b3"),
|
191 |
+
)
|
192 |
+
|
193 |
+
|
194 |
+
def same_dtype(match):
|
195 |
+
return match.output_node().args[0].meta["val"].dtype == match.kwargs["dtype"]
|
196 |
+
|
197 |
+
|
198 |
+
@register_graph_pattern(
|
199 |
+
CallFunction(
|
200 |
+
torch.ops.prims.convert_element_type.default,
|
201 |
+
Ignored(),
|
202 |
+
KeywordArg("dtype"),
|
203 |
+
),
|
204 |
+
pass_dict=pass_patterns[0],
|
205 |
+
extra_check=same_dtype,
|
206 |
+
)
|
207 |
+
def unnecessary_dtype_convert(match: Match, **kwargs):
|
208 |
+
"""Remove unnecessary dtype conversion op, probably left as a result of Conv-Bn folding"""
|
209 |
+
graph = match.graph
|
210 |
+
node = match.output_node()
|
211 |
+
node.replace_all_uses_with(node.args[0])
|
212 |
+
graph.erase_node(node)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/fuse_attention.py
ADDED
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import inspect
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from ..._dynamo.utils import counters
|
8 |
+
from ..pattern_matcher import (
|
9 |
+
filter_nodes,
|
10 |
+
fwd_only,
|
11 |
+
joint_fwd_bwd,
|
12 |
+
register_replacement,
|
13 |
+
)
|
14 |
+
|
15 |
+
log = logging.getLogger(__name__)
|
16 |
+
aten = torch.ops.aten
|
17 |
+
|
18 |
+
|
19 |
+
def _sfdp_pattern_1(query, key, value, inv_scale):
|
20 |
+
return (
|
21 |
+
torch.matmul(query, key.transpose(-2, -1))
|
22 |
+
.div(inv_scale)
|
23 |
+
.softmax(dim=-1)
|
24 |
+
.matmul(value)
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def _sfdp_replacement_1(query, key, value, inv_scale):
|
29 |
+
counters["inductor"]["fuse_attention"] += 1
|
30 |
+
return aten.scaled_dot_product_attention(
|
31 |
+
query.contiguous(),
|
32 |
+
key.contiguous(),
|
33 |
+
value.contiguous(),
|
34 |
+
attn_mask=None,
|
35 |
+
dropout_p=0.0,
|
36 |
+
is_causal=False,
|
37 |
+
scale=1.0 / inv_scale,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
def _sfdp_pattern_2(query, key, value, scale_factor):
|
42 |
+
return (
|
43 |
+
torch.matmul(query, key.transpose(-2, -1))
|
44 |
+
.mul(scale_factor)
|
45 |
+
.softmax(dim=-1)
|
46 |
+
.matmul(value)
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
def _sfdp_replacement_2(query, key, value, scale_factor):
|
51 |
+
counters["inductor"]["fuse_attention"] += 1
|
52 |
+
return aten.scaled_dot_product_attention(
|
53 |
+
query.contiguous(),
|
54 |
+
key.contiguous(),
|
55 |
+
value.contiguous(),
|
56 |
+
attn_mask=None,
|
57 |
+
dropout_p=0.0,
|
58 |
+
is_causal=False,
|
59 |
+
scale=scale_factor,
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
def _sfdp_pattern_3(query, key, value, inv_scale_factor, dropout_p):
|
64 |
+
return torch.nn.functional.dropout(
|
65 |
+
torch.matmul(query, key.transpose(-2, -1))
|
66 |
+
.div(inv_scale_factor)
|
67 |
+
.softmax(dim=-1),
|
68 |
+
p=dropout_p,
|
69 |
+
).matmul(value)
|
70 |
+
|
71 |
+
|
72 |
+
def _sfdp_replacement_3(query, key, value, inv_scale_factor, dropout_p):
|
73 |
+
counters["inductor"]["fuse_attention"] += 1
|
74 |
+
return aten.scaled_dot_product_attention(
|
75 |
+
query.contiguous(),
|
76 |
+
key.contiguous(),
|
77 |
+
value.contiguous(),
|
78 |
+
attn_mask=None,
|
79 |
+
dropout_p=dropout_p,
|
80 |
+
is_causal=False,
|
81 |
+
scale=1.0 / inv_scale_factor,
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
def _sfdp_pattern_4(query, key, value, scale_factor, dropout_p):
|
86 |
+
return torch.nn.functional.dropout(
|
87 |
+
torch.matmul(query, key.transpose(-2, -1)).mul(scale_factor).softmax(dim=-1),
|
88 |
+
p=dropout_p,
|
89 |
+
).matmul(value)
|
90 |
+
|
91 |
+
|
92 |
+
def _sfdp_replacement_4(query, key, value, scale_factor, dropout_p):
|
93 |
+
counters["inductor"]["fuse_attention"] += 1
|
94 |
+
return aten.scaled_dot_product_attention(
|
95 |
+
query.contiguous(),
|
96 |
+
key.contiguous(),
|
97 |
+
value.contiguous(),
|
98 |
+
attn_mask=None,
|
99 |
+
dropout_p=dropout_p,
|
100 |
+
is_causal=False,
|
101 |
+
scale=scale_factor,
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
def _sfdp_pattern_5(query, key, value, attn_mask):
|
106 |
+
attn_weight = torch.softmax(
|
107 |
+
(query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))) + attn_mask, dim=-1
|
108 |
+
)
|
109 |
+
# attn_weight = torch.dropout(attn_weight, dropout_p)
|
110 |
+
return attn_weight @ value
|
111 |
+
|
112 |
+
|
113 |
+
def _sfdp_replacement_5(query, key, value, attn_mask):
|
114 |
+
counters["inductor"]["fuse_attention"] += 1
|
115 |
+
return aten.scaled_dot_product_attention(
|
116 |
+
query.contiguous(),
|
117 |
+
key.contiguous(),
|
118 |
+
value.contiguous(),
|
119 |
+
attn_mask=attn_mask.to(dtype=query.dtype),
|
120 |
+
dropout_p=0.0,
|
121 |
+
is_causal=False,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
def _sfdp_pattern_6(query, key, value, attn_mask, dropout_p):
|
126 |
+
attn_weight = torch.softmax(
|
127 |
+
(query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))) + attn_mask, dim=-1
|
128 |
+
)
|
129 |
+
attn_weight = torch.dropout(attn_weight, dropout_p, True)
|
130 |
+
return attn_weight @ value
|
131 |
+
|
132 |
+
|
133 |
+
def _sfdp_replacement_6(query, key, value, attn_mask, dropout_p):
|
134 |
+
counters["inductor"]["fuse_attention"] += 1
|
135 |
+
return aten.scaled_dot_product_attention(
|
136 |
+
query.contiguous(),
|
137 |
+
key.contiguous(),
|
138 |
+
value.contiguous(),
|
139 |
+
attn_mask=attn_mask.to(dtype=query.dtype),
|
140 |
+
dropout_p=dropout_p,
|
141 |
+
is_causal=False,
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
def _sfdp_pattern_7(query, key, value, dropout_p):
|
146 |
+
# in real workloads inputs to matmul are permuted
|
147 |
+
# causing matmul to expand to a series of expand and clone calls
|
148 |
+
# we want the same to happen during pattern tracing
|
149 |
+
q = query.permute(0, 2, 1, 3)
|
150 |
+
k = key.permute(0, 2, 1, 3)
|
151 |
+
v = value.permute(0, 2, 1, 3)
|
152 |
+
div = q @ k.transpose(-2, -1) / math.sqrt(q.size(-1))
|
153 |
+
div = div.to(torch.float32)
|
154 |
+
attn_weight = torch.softmax(div, dim=-1)
|
155 |
+
attn_weight = torch.dropout(attn_weight, dropout_p, True)
|
156 |
+
attn_weight = attn_weight.to(torch.float16)
|
157 |
+
return attn_weight @ v
|
158 |
+
|
159 |
+
|
160 |
+
def _sfdp_replacement_7(query, key, value, dropout_p):
|
161 |
+
# sdpa prefers inputs in permuted format
|
162 |
+
# it makes a copy to put them in this format
|
163 |
+
# if they aren't already
|
164 |
+
# to make replacement efficient ensure that inputs to sdpa
|
165 |
+
# are in required order
|
166 |
+
counters["inductor"]["fuse_attention"] += 1
|
167 |
+
q = query.permute(0, 2, 1, 3)
|
168 |
+
k = key.permute(0, 2, 1, 3)
|
169 |
+
v = value.permute(0, 2, 1, 3)
|
170 |
+
return aten.scaled_dot_product_attention(
|
171 |
+
q,
|
172 |
+
k,
|
173 |
+
v,
|
174 |
+
attn_mask=None, # attn_mask,
|
175 |
+
dropout_p=dropout_p,
|
176 |
+
is_causal=False,
|
177 |
+
)
|
178 |
+
|
179 |
+
|
180 |
+
def _sfdp_pattern_8(query, key, value):
|
181 |
+
# no dropout version of pattern 7
|
182 |
+
q = query.permute(0, 2, 1, 3)
|
183 |
+
k = key.permute(0, 2, 1, 3)
|
184 |
+
v = value.permute(0, 2, 1, 3)
|
185 |
+
div = q @ k.transpose(-2, -1) / math.sqrt(q.size(-1))
|
186 |
+
div = div.to(torch.float32)
|
187 |
+
attn_weight = torch.softmax(div, dim=-1)
|
188 |
+
attn_weight = attn_weight.to(torch.float16)
|
189 |
+
return attn_weight @ v
|
190 |
+
|
191 |
+
|
192 |
+
def _sfdp_replacement_8(query, key, value):
|
193 |
+
counters["inductor"]["fuse_attention"] += 1
|
194 |
+
q = query.permute(0, 2, 1, 3)
|
195 |
+
k = key.permute(0, 2, 1, 3)
|
196 |
+
v = value.permute(0, 2, 1, 3)
|
197 |
+
return aten.scaled_dot_product_attention(
|
198 |
+
q,
|
199 |
+
k,
|
200 |
+
v,
|
201 |
+
attn_mask=None, # attn_mask,
|
202 |
+
dropout_p=0.0,
|
203 |
+
is_causal=False,
|
204 |
+
)
|
205 |
+
|
206 |
+
|
207 |
+
def _sfdp_pattern_9(query, key, value, dropout_p):
|
208 |
+
q = query.permute(0, 2, 1, 3)
|
209 |
+
k = key.permute(0, 2, 1, 3)
|
210 |
+
v = value.permute(0, 2, 1, 3)
|
211 |
+
q = q / math.sqrt(q.size(-1))
|
212 |
+
div = q @ k.transpose(-2, -1)
|
213 |
+
div = div.to(torch.float32)
|
214 |
+
attn_weight = torch.softmax(div, dim=-1)
|
215 |
+
attn_weight = torch.dropout(attn_weight, dropout_p, True)
|
216 |
+
attn_weight = attn_weight.to(torch.float16)
|
217 |
+
return attn_weight @ v
|
218 |
+
|
219 |
+
|
220 |
+
def _sfdp_replacement_9(query, key, value, dropout_p):
|
221 |
+
counters["inductor"]["fuse_attention"] += 1
|
222 |
+
q = query.permute(0, 2, 1, 3)
|
223 |
+
k = key.permute(0, 2, 1, 3)
|
224 |
+
v = value.permute(0, 2, 1, 3)
|
225 |
+
return aten.scaled_dot_product_attention(
|
226 |
+
q,
|
227 |
+
k,
|
228 |
+
v,
|
229 |
+
attn_mask=None, # attn_mask,
|
230 |
+
dropout_p=dropout_p,
|
231 |
+
is_causal=False,
|
232 |
+
)
|
233 |
+
|
234 |
+
|
235 |
+
def _sfdp_pattern_10(query, key, value):
|
236 |
+
# no dropout version of 9
|
237 |
+
q = query.permute(0, 2, 1, 3)
|
238 |
+
k = key.permute(0, 2, 1, 3)
|
239 |
+
v = value.permute(0, 2, 1, 3)
|
240 |
+
q = q / math.sqrt(q.size(-1))
|
241 |
+
div = q @ k.transpose(-2, -1)
|
242 |
+
div = div.to(torch.float32)
|
243 |
+
attn_weight = torch.softmax(div, dim=-1)
|
244 |
+
attn_weight = attn_weight.to(torch.float16)
|
245 |
+
return attn_weight @ v
|
246 |
+
|
247 |
+
|
248 |
+
def _sfdp_replacement_10(query, key, value):
|
249 |
+
counters["inductor"]["fuse_attention"] += 1
|
250 |
+
q = query.permute(0, 2, 1, 3)
|
251 |
+
k = key.permute(0, 2, 1, 3)
|
252 |
+
v = value.permute(0, 2, 1, 3)
|
253 |
+
return aten.scaled_dot_product_attention(
|
254 |
+
q,
|
255 |
+
k,
|
256 |
+
v,
|
257 |
+
attn_mask=None, # attn_mask,
|
258 |
+
dropout_p=0.0,
|
259 |
+
is_causal=False,
|
260 |
+
)
|
261 |
+
|
262 |
+
|
263 |
+
def _sfdp_pattern_11(query, key, value, inv_scale):
|
264 |
+
# Mainly for huggingface models
|
265 |
+
q = query.permute(0, 2, 1, 3)
|
266 |
+
k = key.permute(0, 2, 1, 3)
|
267 |
+
v = value.permute(0, 2, 1, 3)
|
268 |
+
return torch.matmul(q, k.transpose(-2, -1)).div(inv_scale).softmax(dim=-1).matmul(v)
|
269 |
+
|
270 |
+
|
271 |
+
def _sfdp_replacement_11(query, key, value, inv_scale):
|
272 |
+
counters["inductor"]["fuse_attention"] += 1
|
273 |
+
return aten.scaled_dot_product_attention(
|
274 |
+
query.transpose(1, 2),
|
275 |
+
key.transpose(1, 2),
|
276 |
+
value.transpose(1, 2),
|
277 |
+
attn_mask=None,
|
278 |
+
dropout_p=0.0,
|
279 |
+
is_causal=False,
|
280 |
+
scale=1.0 / inv_scale,
|
281 |
+
)
|
282 |
+
|
283 |
+
|
284 |
+
def _sfdp_pattern_12(query, key, value, inv_scale_factor, dropout_p):
|
285 |
+
q = query.permute(0, 2, 1, 3)
|
286 |
+
k = key.permute(0, 2, 1, 3)
|
287 |
+
v = value.permute(0, 2, 1, 3)
|
288 |
+
return torch.nn.functional.dropout(
|
289 |
+
torch.matmul(q, k.transpose(-2, -1)).div(inv_scale_factor).softmax(dim=-1),
|
290 |
+
p=dropout_p,
|
291 |
+
).matmul(v)
|
292 |
+
|
293 |
+
|
294 |
+
def _sfdp_replacement_12(query, key, value, inv_scale_factor, dropout_p):
|
295 |
+
counters["inductor"]["fuse_attention"] += 1
|
296 |
+
return aten.scaled_dot_product_attention(
|
297 |
+
query.transpose(1, 2),
|
298 |
+
key.transpose(1, 2),
|
299 |
+
value.transpose(1, 2),
|
300 |
+
attn_mask=None,
|
301 |
+
dropout_p=dropout_p,
|
302 |
+
is_causal=False,
|
303 |
+
scale=1.0 / inv_scale_factor,
|
304 |
+
)
|
305 |
+
|
306 |
+
|
307 |
+
def _sfdp_pattern_13(query, key, value, dropout_p):
|
308 |
+
attn_weight = torch.bmm(query, key.transpose(1, 2)).softmax(dim=-1)
|
309 |
+
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p)
|
310 |
+
return torch.bmm(attn_weight, value)
|
311 |
+
|
312 |
+
|
313 |
+
def _sfdp_replacement_13(query, key, value, dropout_p):
|
314 |
+
counters["inductor"]["fuse_attention"] += 1
|
315 |
+
return aten.scaled_dot_product_attention(
|
316 |
+
query.unsqueeze(0),
|
317 |
+
key.unsqueeze(0),
|
318 |
+
value.unsqueeze(0),
|
319 |
+
dropout_p=dropout_p,
|
320 |
+
scale=1.0,
|
321 |
+
).squeeze(0)
|
322 |
+
|
323 |
+
|
324 |
+
def _sfdp_params_check(match):
|
325 |
+
assert all(k in match.kwargs for k in ("query", "key", "value"))
|
326 |
+
query = match.kwargs["query"].meta["val"]
|
327 |
+
key = match.kwargs["key"].meta["val"]
|
328 |
+
value = match.kwargs["value"].meta["val"]
|
329 |
+
if not (query.dtype == key.dtype == value.dtype) or not (
|
330 |
+
query.device == key.device == value.device
|
331 |
+
):
|
332 |
+
return False
|
333 |
+
add_mask_node = filter_nodes(match.nodes, aten.add.Tensor)
|
334 |
+
# Has attn_mask add.
|
335 |
+
if len(add_mask_node) > 0:
|
336 |
+
attn_mask_node = add_mask_node[0].args[1]
|
337 |
+
# attn_mask_node may be a float/int number.
|
338 |
+
if not hasattr(attn_mask_node, "meta"):
|
339 |
+
return False
|
340 |
+
attn_mask = attn_mask_node.meta["val"]
|
341 |
+
# Make sure attn_mask.dtype == query.dtype or attn_mask.dtype == torch.bool
|
342 |
+
if (
|
343 |
+
not isinstance(attn_mask, torch.Tensor)
|
344 |
+
or not (attn_mask.dtype == query.dtype or attn_mask.dtype == torch.bool)
|
345 |
+
or query.device != attn_mask.device
|
346 |
+
):
|
347 |
+
return False
|
348 |
+
return True
|
349 |
+
|
350 |
+
|
351 |
+
def _sfdp_scale_factor_check(scale_factor_op):
|
352 |
+
def fn(match):
|
353 |
+
scale_factor_node = filter_nodes(match.nodes, scale_factor_op)[0]
|
354 |
+
# Note: args[1] of the scale_factor_node is always the scale_factor for the current patterns.
|
355 |
+
scale_factor = scale_factor_node.args[1]
|
356 |
+
# make sure the scale_factor a float/int. SymInt?
|
357 |
+
if not isinstance(scale_factor, (float, int)):
|
358 |
+
return False
|
359 |
+
return _sfdp_params_check(match)
|
360 |
+
|
361 |
+
return fn
|
362 |
+
|
363 |
+
|
364 |
+
def partialize_and_update_signature(func, **kwargs):
|
365 |
+
"""
|
366 |
+
Equivalent to functools.partial but also updates the signature on returned function
|
367 |
+
"""
|
368 |
+
original_sig = inspect.signature(func)
|
369 |
+
parameters = original_sig.parameters
|
370 |
+
|
371 |
+
new_parameters = {
|
372 |
+
key: value for key, value in parameters.items() if key not in kwargs
|
373 |
+
}
|
374 |
+
new_sig = inspect.Signature(parameters=list(new_parameters.values()))
|
375 |
+
|
376 |
+
partial_func = functools.partial(func, **kwargs)
|
377 |
+
|
378 |
+
def wrapper(*args, **kwargs):
|
379 |
+
return partial_func(*args, **kwargs)
|
380 |
+
|
381 |
+
wrapper.__signature__ = new_sig # type: ignore[attr-defined]
|
382 |
+
wrapper.__name__ = func.__name__
|
383 |
+
|
384 |
+
return wrapper
|
385 |
+
|
386 |
+
|
387 |
+
def _get_sfdp_patterns():
|
388 |
+
from .joint_graph import patterns
|
389 |
+
|
390 |
+
if torch.cuda.is_available():
|
391 |
+
# workaround https://github.com/pytorch/pytorch/issues/97894
|
392 |
+
device = "cuda"
|
393 |
+
else:
|
394 |
+
device = "cpu"
|
395 |
+
|
396 |
+
# sizes/values don't actually matter for initial trace
|
397 |
+
# once we get a possible match we re-trace with the actual values and verify the match still holds
|
398 |
+
g_inp = functools.partial(
|
399 |
+
torch.empty, (2, 4, 8, 16), device=device, requires_grad=True
|
400 |
+
)
|
401 |
+
b_inp = functools.partial(torch.empty, (1, 1, 8, 8), device=device)
|
402 |
+
c_inp = functools.partial(torch.tensor, 2.0, device=device)
|
403 |
+
# workaround https://github.com/pytorch/pytorch/issues/97894
|
404 |
+
# 0.113377 is a "magic" value that lets us recover the lost input arg relationship
|
405 |
+
d = {"dropout_p": 0.113377}
|
406 |
+
|
407 |
+
# we could also generate all these patterns in 3d.. TODO
|
408 |
+
g_3d_inp = functools.partial(
|
409 |
+
torch.empty, (1024, 128, 128), device=device, requires_grad=True
|
410 |
+
)
|
411 |
+
|
412 |
+
# softmax will generate a dtype conversion on inputs if they are in half,
|
413 |
+
# but will not in float, so we generate a pattern for both
|
414 |
+
for dtype in [torch.float, torch.half]:
|
415 |
+
g = functools.partial(g_inp, dtype=dtype)
|
416 |
+
b = functools.partial(b_inp, dtype=dtype)
|
417 |
+
c = functools.partial(c_inp, dtype=dtype)
|
418 |
+
g_3d = functools.partial(g_3d_inp, dtype=dtype)
|
419 |
+
|
420 |
+
for pattern, replacement, args, workaround, extra_check in [
|
421 |
+
(
|
422 |
+
_sfdp_pattern_1,
|
423 |
+
_sfdp_replacement_1,
|
424 |
+
[g(), g(), g(), c()],
|
425 |
+
{},
|
426 |
+
_sfdp_scale_factor_check(aten.div.Tensor),
|
427 |
+
),
|
428 |
+
(
|
429 |
+
_sfdp_pattern_2,
|
430 |
+
_sfdp_replacement_2,
|
431 |
+
[g(), g(), g(), c()],
|
432 |
+
{},
|
433 |
+
_sfdp_scale_factor_check(aten.mul.Tensor),
|
434 |
+
),
|
435 |
+
(
|
436 |
+
_sfdp_pattern_3,
|
437 |
+
_sfdp_replacement_3,
|
438 |
+
[g(), g(), g(), c()],
|
439 |
+
d,
|
440 |
+
_sfdp_scale_factor_check(aten.div.Tensor),
|
441 |
+
),
|
442 |
+
(
|
443 |
+
_sfdp_pattern_4,
|
444 |
+
_sfdp_replacement_4,
|
445 |
+
[g(), g(), g(), c()],
|
446 |
+
d,
|
447 |
+
_sfdp_scale_factor_check(aten.mul.Tensor),
|
448 |
+
),
|
449 |
+
(
|
450 |
+
_sfdp_pattern_5,
|
451 |
+
_sfdp_replacement_5,
|
452 |
+
[g(), g(), g(), b()],
|
453 |
+
{},
|
454 |
+
_sfdp_params_check,
|
455 |
+
),
|
456 |
+
(
|
457 |
+
_sfdp_pattern_6,
|
458 |
+
_sfdp_replacement_6,
|
459 |
+
[g(), g(), g(), b()],
|
460 |
+
d,
|
461 |
+
_sfdp_params_check,
|
462 |
+
),
|
463 |
+
(
|
464 |
+
_sfdp_pattern_7,
|
465 |
+
_sfdp_replacement_7,
|
466 |
+
[g(), g(), g()],
|
467 |
+
d,
|
468 |
+
_sfdp_params_check,
|
469 |
+
),
|
470 |
+
(
|
471 |
+
_sfdp_pattern_8,
|
472 |
+
_sfdp_replacement_8,
|
473 |
+
[g(), g(), g()],
|
474 |
+
{},
|
475 |
+
_sfdp_params_check,
|
476 |
+
),
|
477 |
+
(
|
478 |
+
_sfdp_pattern_9,
|
479 |
+
_sfdp_replacement_9,
|
480 |
+
[g(), g(), g()],
|
481 |
+
d,
|
482 |
+
_sfdp_params_check,
|
483 |
+
),
|
484 |
+
(
|
485 |
+
_sfdp_pattern_10,
|
486 |
+
_sfdp_replacement_10,
|
487 |
+
[g(), g(), g()],
|
488 |
+
{},
|
489 |
+
_sfdp_params_check,
|
490 |
+
),
|
491 |
+
(
|
492 |
+
_sfdp_pattern_11,
|
493 |
+
_sfdp_replacement_11,
|
494 |
+
[g(), g(), g(), c()],
|
495 |
+
{},
|
496 |
+
_sfdp_scale_factor_check(aten.div.Tensor),
|
497 |
+
),
|
498 |
+
(
|
499 |
+
_sfdp_pattern_12,
|
500 |
+
_sfdp_replacement_12,
|
501 |
+
[g(), g(), g(), c()],
|
502 |
+
d,
|
503 |
+
_sfdp_scale_factor_check(aten.div.Tensor),
|
504 |
+
),
|
505 |
+
(
|
506 |
+
_sfdp_pattern_13,
|
507 |
+
_sfdp_replacement_13,
|
508 |
+
[g_3d(), g_3d(), g_3d()],
|
509 |
+
d,
|
510 |
+
_sfdp_params_check,
|
511 |
+
),
|
512 |
+
]:
|
513 |
+
# XXX: when adding a new pattern, re-run `gen_attention_patterns` so the pattern
|
514 |
+
# gets serialized to a python file and does not require tracing at runtime.
|
515 |
+
assert isinstance(workaround, dict)
|
516 |
+
name = pattern.__name__
|
517 |
+
|
518 |
+
training_name = (
|
519 |
+
f"{name}_training" if dtype == torch.float else f"{name}_training_half"
|
520 |
+
)
|
521 |
+
yield training_name, {
|
522 |
+
"search_fn": pattern,
|
523 |
+
"replace_fn": replacement,
|
524 |
+
"example_inputs": args,
|
525 |
+
"trace_fn": joint_fwd_bwd,
|
526 |
+
"pass_dicts": patterns,
|
527 |
+
"extra_check": extra_check,
|
528 |
+
"scalar_workaround": workaround,
|
529 |
+
}
|
530 |
+
|
531 |
+
if workaround:
|
532 |
+
assert len(workaround) == 1 and "dropout_p" in workaround
|
533 |
+
# functools.partial insufficient because we look at signature downstream
|
534 |
+
pattern = partialize_and_update_signature(pattern, dropout_p=0.0)
|
535 |
+
replacement = partialize_and_update_signature(
|
536 |
+
replacement, dropout_p=0.0
|
537 |
+
)
|
538 |
+
workaround = {}
|
539 |
+
|
540 |
+
inference_name = (
|
541 |
+
f"{name}_inference"
|
542 |
+
if dtype == torch.float
|
543 |
+
else f"{name}_inference_half"
|
544 |
+
)
|
545 |
+
yield inference_name, {
|
546 |
+
"search_fn": pattern,
|
547 |
+
"replace_fn": replacement,
|
548 |
+
"example_inputs": args,
|
549 |
+
"trace_fn": fwd_only,
|
550 |
+
"pass_dicts": patterns,
|
551 |
+
"extra_check": extra_check,
|
552 |
+
"scalar_workaround": workaround,
|
553 |
+
}
|
554 |
+
|
555 |
+
|
556 |
+
@functools.lru_cache(None)
|
557 |
+
def _sfdp_init():
|
558 |
+
from .serialized_patterns.central_index import get_serialized_pattern
|
559 |
+
|
560 |
+
for key, register_replacement_kwargs in _get_sfdp_patterns():
|
561 |
+
search_fn_pattern = get_serialized_pattern(key)
|
562 |
+
register_replacement(
|
563 |
+
**register_replacement_kwargs, search_fn_pattern=search_fn_pattern
|
564 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/group_batch_fusion.py
ADDED
@@ -0,0 +1,791 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import logging
|
3 |
+
import operator
|
4 |
+
from typing import Any, DefaultDict, Deque, Dict, Iterator, List, Optional, Set, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch._dynamo.utils import counters
|
8 |
+
from torch._utils_internal import print_graph
|
9 |
+
|
10 |
+
from .. import config
|
11 |
+
from ..pattern_matcher import (
|
12 |
+
CallFunctionVarArgs,
|
13 |
+
get_arg_value,
|
14 |
+
stable_topological_sort,
|
15 |
+
)
|
16 |
+
|
17 |
+
try:
|
18 |
+
# importing this will register fbgemm lowerings for inductor
|
19 |
+
import deeplearning.fbgemm.fbgemm_gpu.fb.inductor_lowerings # noqa: F401
|
20 |
+
|
21 |
+
has_fbgemm = True
|
22 |
+
except Exception:
|
23 |
+
has_fbgemm = False
|
24 |
+
pass
|
25 |
+
|
26 |
+
aten = torch.ops.aten
|
27 |
+
|
28 |
+
log = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
MIN_FUSE_SET_SIZE = 5
|
31 |
+
MAX_FUSE_SET_SIZE = 300
|
32 |
+
MAX_FUSE_SEARCH_DEPTH = 5
|
33 |
+
# The maximum tensor size that can go into the fusion group
|
34 |
+
MAX_FUSE_TENSOR_SIZE_GROUP_LINEAR = 4096
|
35 |
+
|
36 |
+
# exclude these nodes from BFS
|
37 |
+
# excluding get item improves optimizer compilation time by 60s
|
38 |
+
SEARCH_EXCLUSIONS = {operator.getitem}
|
39 |
+
|
40 |
+
|
41 |
+
default_graph_search_options = {
|
42 |
+
"min_fuse_set_size": MIN_FUSE_SET_SIZE,
|
43 |
+
"max_fuse_set_size": MAX_FUSE_SET_SIZE,
|
44 |
+
"max_fuse_search_depth": MAX_FUSE_SEARCH_DEPTH,
|
45 |
+
"max_fuse_tensor_size_group_linear": MAX_FUSE_TENSOR_SIZE_GROUP_LINEAR,
|
46 |
+
}
|
47 |
+
|
48 |
+
graph_search_options = default_graph_search_options
|
49 |
+
|
50 |
+
|
51 |
+
class GroupBatchFusionBase:
|
52 |
+
def __init__(self, **kwargs):
|
53 |
+
self.graph_search_options = kwargs.pop(
|
54 |
+
"graph_search_options", default_graph_search_options
|
55 |
+
)
|
56 |
+
|
57 |
+
def match(self, node):
|
58 |
+
raise NotImplementedError("match called on base")
|
59 |
+
|
60 |
+
def fuse(self, graph, subset):
|
61 |
+
raise NotImplementedError("fuse called on base")
|
62 |
+
|
63 |
+
|
64 |
+
PRE_GRAD_FUSIONS: Dict[str, GroupBatchFusionBase] = dict()
|
65 |
+
POST_GRAD_FUSIONS: Dict[str, GroupBatchFusionBase] = dict()
|
66 |
+
|
67 |
+
|
68 |
+
def register_fusion(name: str, pre_grad=True):
|
69 |
+
def decorator(fusion_cls: GroupBatchFusionBase):
|
70 |
+
if pre_grad:
|
71 |
+
PRE_GRAD_FUSIONS[name] = fusion_cls
|
72 |
+
else:
|
73 |
+
POST_GRAD_FUSIONS[name] = fusion_cls
|
74 |
+
return fusion_cls
|
75 |
+
|
76 |
+
return decorator
|
77 |
+
|
78 |
+
|
79 |
+
def list_group_batch_fusions(pre_grad=True) -> List[str]:
|
80 |
+
if pre_grad:
|
81 |
+
return list(PRE_GRAD_FUSIONS.keys())
|
82 |
+
else:
|
83 |
+
return list(POST_GRAD_FUSIONS.keys())
|
84 |
+
|
85 |
+
|
86 |
+
def decompose_stack(graph: torch.fx.GraphModule, input_tensors: List[Any]) -> Any:
|
87 |
+
unsqueezed_inputs = []
|
88 |
+
for input_tensor in input_tensors:
|
89 |
+
unsqueezed_input = graph.call_function(aten.unsqueeze, args=(input_tensor, 0))
|
90 |
+
unsqueezed_inputs.append(unsqueezed_input)
|
91 |
+
stacked_inputs = graph.call_function(
|
92 |
+
aten.cat,
|
93 |
+
args=(unsqueezed_inputs, 0),
|
94 |
+
)
|
95 |
+
return stacked_inputs
|
96 |
+
|
97 |
+
|
98 |
+
class GroupFusion(GroupBatchFusionBase):
|
99 |
+
"""
|
100 |
+
Fuse ops in a group way, e.g, fuse mm/addmm of arbitrary input shapes with fbgemm.gmm.
|
101 |
+
"""
|
102 |
+
|
103 |
+
pass
|
104 |
+
|
105 |
+
|
106 |
+
class BatchFusion(GroupBatchFusionBase):
|
107 |
+
"""
|
108 |
+
Fuse ops in a batch way, e.g, fuse mm/addmm of same input shapes with bmm.
|
109 |
+
"""
|
110 |
+
|
111 |
+
pass
|
112 |
+
|
113 |
+
|
114 |
+
class BatchPointwiseOpsFusionFactory(BatchFusion):
|
115 |
+
def __init__(self, op, **kwargs):
|
116 |
+
super().__init__(**kwargs)
|
117 |
+
self.op = op
|
118 |
+
|
119 |
+
|
120 |
+
@register_fusion("batch_linear_post_grad", pre_grad=False)
|
121 |
+
class PostGradBatchLinearFusion(BatchFusion):
|
122 |
+
"""
|
123 |
+
Fuse ops in a batch way in post grad (aten level).
|
124 |
+
"""
|
125 |
+
|
126 |
+
def _addmm_node_can_be_fused(self, node: torch.fx.Node) -> bool:
|
127 |
+
return (
|
128 |
+
node.kwargs.get("beta", 1.0) == 1.0 and node.kwargs.get("alpha", 1.0) == 1.0
|
129 |
+
)
|
130 |
+
|
131 |
+
def _is_input_2d(self, input: torch.fx.Node) -> bool:
|
132 |
+
return len(input.meta["tensor_meta"].shape) == 2
|
133 |
+
|
134 |
+
def match(self, node: torch.fx.Node) -> Optional[Tuple[str, int, int, int, bool]]:
|
135 |
+
if CallFunctionVarArgs(aten.mm).match(node):
|
136 |
+
input_m, weight_m = node.args
|
137 |
+
bias_m = None
|
138 |
+
|
139 |
+
elif CallFunctionVarArgs(aten.addmm.default).match(
|
140 |
+
node
|
141 |
+
) and self._addmm_node_can_be_fused(node):
|
142 |
+
bias_m, input_m, weight_m = node.args
|
143 |
+
else:
|
144 |
+
return None
|
145 |
+
|
146 |
+
# only handle the cases where inputs are 2D tensors
|
147 |
+
if not self._is_input_2d(input_m) or not self._is_input_2d(weight_m):
|
148 |
+
return None
|
149 |
+
m, k = input_m.meta["tensor_meta"].shape
|
150 |
+
n = weight_m.meta["tensor_meta"].shape[1]
|
151 |
+
batch_key = ("batch_linear", m, k, n, bias_m is not None)
|
152 |
+
return batch_key
|
153 |
+
|
154 |
+
def fuse(self, graph: torch.fx.GraphModule, subset: List[torch.fx.Node]):
|
155 |
+
batch_inputs = []
|
156 |
+
batch_weights = []
|
157 |
+
batch_biases = []
|
158 |
+
batch_nodes = []
|
159 |
+
|
160 |
+
for node in subset:
|
161 |
+
if CallFunctionVarArgs(aten.addmm.default).match(node):
|
162 |
+
bias, input, weight = node.args
|
163 |
+
elif CallFunctionVarArgs(aten.mm.default).match(node):
|
164 |
+
input, weight = node.args
|
165 |
+
bias = None
|
166 |
+
batch_nodes.append(node)
|
167 |
+
batch_inputs.append(input)
|
168 |
+
batch_weights.append(weight)
|
169 |
+
batch_biases.append(bias)
|
170 |
+
|
171 |
+
with graph.inserting_before(subset[-1]):
|
172 |
+
fused_inputs = decompose_stack(graph, batch_inputs)
|
173 |
+
fused_weights = decompose_stack(graph, batch_weights)
|
174 |
+
fused_bmm = graph.call_function(
|
175 |
+
aten.bmm,
|
176 |
+
args=(fused_inputs, fused_weights),
|
177 |
+
)
|
178 |
+
|
179 |
+
for i, original_mm in enumerate(batch_nodes):
|
180 |
+
has_bias = False
|
181 |
+
with graph.inserting_after(fused_bmm):
|
182 |
+
new_mm = graph.call_function(aten.select, args=((fused_bmm, 0, i)))
|
183 |
+
if batch_biases[i]:
|
184 |
+
has_bias = True
|
185 |
+
new_bias_add = graph.call_function(
|
186 |
+
aten.add, args=((batch_biases[i], new_mm))
|
187 |
+
)
|
188 |
+
new_mm_cont = new_bias_add if has_bias else new_mm
|
189 |
+
original_mm.replace_all_uses_with(new_mm_cont)
|
190 |
+
new_mm_cont.meta.update(original_mm.meta)
|
191 |
+
graph.erase_node(original_mm)
|
192 |
+
|
193 |
+
|
194 |
+
@register_fusion("group_linear", pre_grad=False)
|
195 |
+
class GroupLinearFusion(GroupFusion):
|
196 |
+
def _addmm_node_can_be_fused(self, node: torch.fx.Node):
|
197 |
+
input_shape = node.args[1].meta["tensor_meta"].shape
|
198 |
+
weight_shape = node.args[2].meta["tensor_meta"].shape
|
199 |
+
return (
|
200 |
+
node.kwargs.get("beta", 1.0) == 1.0
|
201 |
+
and node.kwargs.get("alpha", 1.0) == 1.0
|
202 |
+
and len(input_shape) == 2
|
203 |
+
and len(weight_shape) == 2
|
204 |
+
and all(x % 2 == 0 for x in input_shape + weight_shape)
|
205 |
+
and all(
|
206 |
+
shape <= self.graph_search_options["max_fuse_tensor_size_group_linear"]
|
207 |
+
for shape in input_shape + weight_shape
|
208 |
+
)
|
209 |
+
)
|
210 |
+
|
211 |
+
def _mm_node_can_be_fused(self, node: torch.fx.Node):
|
212 |
+
input_shape = node.args[0].meta["tensor_meta"].shape
|
213 |
+
weight_shape = node.args[1].meta["tensor_meta"].shape
|
214 |
+
return (
|
215 |
+
len(input_shape) == 2
|
216 |
+
and len(weight_shape) == 2
|
217 |
+
and all(x % 2 == 0 for x in input_shape + weight_shape)
|
218 |
+
and all(
|
219 |
+
shape <= self.graph_search_options["max_fuse_tensor_size_group_linear"]
|
220 |
+
for shape in input_shape + weight_shape
|
221 |
+
)
|
222 |
+
)
|
223 |
+
|
224 |
+
def match(self, node: torch.fx.Node) -> Optional[Tuple[str, bool]]:
|
225 |
+
if CallFunctionVarArgs(aten.mm.default).match(
|
226 |
+
node
|
227 |
+
) and self._mm_node_can_be_fused(node):
|
228 |
+
group_key = ("group_linear", True)
|
229 |
+
elif CallFunctionVarArgs(aten.addmm.default).match(
|
230 |
+
node
|
231 |
+
) and self._addmm_node_can_be_fused(node):
|
232 |
+
bias = node.args[0]
|
233 |
+
group_key = ("group_linear", bias is None)
|
234 |
+
else:
|
235 |
+
group_key = None
|
236 |
+
return group_key
|
237 |
+
|
238 |
+
def fuse(self, graph: torch.fx.GraphModule, subset: List[torch.fx.Node]):
|
239 |
+
group_inputs = []
|
240 |
+
group_weights = []
|
241 |
+
group_biases = []
|
242 |
+
group_nodes = []
|
243 |
+
for node in subset:
|
244 |
+
if CallFunctionVarArgs(aten.addmm.default).match(node):
|
245 |
+
bias, input, weight = node.args
|
246 |
+
else:
|
247 |
+
assert CallFunctionVarArgs(aten.mm.default).match(node)
|
248 |
+
input, weight = node.args
|
249 |
+
bias = None
|
250 |
+
|
251 |
+
group_nodes.append(node)
|
252 |
+
group_inputs.append(input)
|
253 |
+
group_weights.append(weight)
|
254 |
+
group_biases.append(bias)
|
255 |
+
|
256 |
+
if all(bias is None for bias in group_biases):
|
257 |
+
group_biases = None # type: ignore[assignment]
|
258 |
+
group_biases: Optional[List[Any]]
|
259 |
+
|
260 |
+
with graph.inserting_before(subset[0]):
|
261 |
+
fused_mm = graph.call_function(
|
262 |
+
torch.ops.fbgemm.gmm.default,
|
263 |
+
args=(group_inputs, group_weights, group_biases),
|
264 |
+
)
|
265 |
+
|
266 |
+
for i, original_mm in enumerate(group_nodes):
|
267 |
+
with graph.inserting_after(fused_mm):
|
268 |
+
new_mm = graph.call_function(operator.getitem, args=(fused_mm, i))
|
269 |
+
original_mm.replace_all_uses_with(new_mm)
|
270 |
+
new_mm.meta.update(original_mm.meta)
|
271 |
+
graph.erase_node(original_mm)
|
272 |
+
|
273 |
+
|
274 |
+
@register_fusion("batch_linear_lhs")
|
275 |
+
class BatchLinearLHSFusion(BatchFusion):
|
276 |
+
"""
|
277 |
+
Batch linear left-hand side fusion. This pass tries to fuse the following patterns:
|
278 |
+
|
279 |
+
torch.nn.functional.linear(x, w1), linear(x, w2),... * linear(x, wn)
|
280 |
+
-> torch.mm(x, torch.cat([w1, w2,... * wn]).transpose(0, 1))
|
281 |
+
|
282 |
+
We have a separate pass to eliminate contiguous transpose in a generic way.
|
283 |
+
"""
|
284 |
+
|
285 |
+
def match(self, node: torch.fx.Node) -> Optional[Tuple[str, bool, Any]]:
|
286 |
+
if CallFunctionVarArgs(torch.nn.functional.linear).match(
|
287 |
+
node
|
288 |
+
) and is_linear_node_can_be_fused(node):
|
289 |
+
input = get_arg_value(node, 0, "input")
|
290 |
+
bias = get_arg_value(node, 2, "bias")
|
291 |
+
group_key = ("batch_linear_lhs", bias is None, input)
|
292 |
+
else:
|
293 |
+
group_key = None
|
294 |
+
return group_key
|
295 |
+
|
296 |
+
def fuse(self, graph: torch.fx.GraphModule, subset: List[torch.fx.Node]):
|
297 |
+
batch_nodes = []
|
298 |
+
batch_input = None
|
299 |
+
batch_weights = []
|
300 |
+
batch_biases = []
|
301 |
+
split_sections = []
|
302 |
+
for node in subset:
|
303 |
+
input = get_arg_value(node, 0, "input")
|
304 |
+
weight = get_arg_value(node, 1, "weight")
|
305 |
+
bias = get_arg_value(node, 2, "bias")
|
306 |
+
batch_nodes.append(node)
|
307 |
+
if batch_input is None:
|
308 |
+
batch_input = input
|
309 |
+
else:
|
310 |
+
assert batch_input is input
|
311 |
+
batch_weights.append(weight)
|
312 |
+
if bias:
|
313 |
+
batch_biases.append(bias)
|
314 |
+
split_sections.append(weight.meta["example_value"].shape[0])
|
315 |
+
|
316 |
+
with graph.inserting_before(subset[0]):
|
317 |
+
cat_weights = graph.call_function(
|
318 |
+
torch.cat, args=(batch_weights,), kwargs={"dim": 0}
|
319 |
+
)
|
320 |
+
transposed_weights = graph.call_function(
|
321 |
+
torch.transpose, args=(cat_weights, 0, 1)
|
322 |
+
)
|
323 |
+
if len(batch_biases) > 0:
|
324 |
+
cat_biases = graph.call_function(
|
325 |
+
torch.cat, args=(batch_biases,), kwargs={"dim": 0}
|
326 |
+
)
|
327 |
+
fused_lhs = graph.call_function(
|
328 |
+
torch.addmm,
|
329 |
+
args=(cat_biases, batch_input, transposed_weights),
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
fused_lhs = graph.call_function(
|
333 |
+
torch.mm,
|
334 |
+
args=(batch_input, transposed_weights),
|
335 |
+
)
|
336 |
+
fused_lhs_list = graph.call_function(
|
337 |
+
torch.split, args=(fused_lhs, split_sections), kwargs={"dim": 1}
|
338 |
+
)
|
339 |
+
|
340 |
+
for i, node in enumerate(batch_nodes):
|
341 |
+
with graph.inserting_after(fused_lhs_list):
|
342 |
+
new_node = graph.call_function(
|
343 |
+
operator.getitem, args=(fused_lhs_list, i)
|
344 |
+
)
|
345 |
+
node.replace_all_uses_with(new_node)
|
346 |
+
new_node.meta.update(node.meta)
|
347 |
+
graph.erase_node(node)
|
348 |
+
|
349 |
+
|
350 |
+
def is_node_meta_valid(node: Optional[torch.fx.Node]):
|
351 |
+
if node is None:
|
352 |
+
return True
|
353 |
+
if "example_value" not in node.meta:
|
354 |
+
return False
|
355 |
+
return True
|
356 |
+
|
357 |
+
|
358 |
+
def is_linear_node_can_be_fused(node: torch.fx.Node):
|
359 |
+
input = get_arg_value(node, 0, "input")
|
360 |
+
weight = get_arg_value(node, 1, "weight")
|
361 |
+
return (
|
362 |
+
is_node_meta_valid(node)
|
363 |
+
and is_node_meta_valid(input)
|
364 |
+
and is_node_meta_valid(weight)
|
365 |
+
and len(input.meta["example_value"].shape) == 2
|
366 |
+
and len(weight.meta["example_value"].shape) == 2
|
367 |
+
)
|
368 |
+
|
369 |
+
|
370 |
+
@register_fusion("batch_linear")
|
371 |
+
class PreGradBatchLinearFusion(BatchFusion):
|
372 |
+
"""
|
373 |
+
Batch linear fusion in pre grad pass.
|
374 |
+
Fuse linear with same size with torch.baddmm
|
375 |
+
"""
|
376 |
+
|
377 |
+
def _getitem_args(self, getitem_node: torch.fx.Node):
|
378 |
+
if getitem_node.target != operator.__getitem__ or (
|
379 |
+
getitem_node.op != "call_function"
|
380 |
+
):
|
381 |
+
return None
|
382 |
+
return getitem_node.args[0]
|
383 |
+
|
384 |
+
def match(self, node: torch.fx.Node):
|
385 |
+
if CallFunctionVarArgs(torch.nn.functional.linear).match(
|
386 |
+
node
|
387 |
+
) and is_linear_node_can_be_fused(node):
|
388 |
+
input = get_arg_value(node, 0, "input")
|
389 |
+
weight = get_arg_value(node, 1, "weight")
|
390 |
+
bias = get_arg_value(node, 2, "bias")
|
391 |
+
group_key = (
|
392 |
+
"batch_linear_pre_grad",
|
393 |
+
self._getitem_args(input),
|
394 |
+
str(input.meta["example_value"].shape),
|
395 |
+
str(weight.meta["example_value"].shape),
|
396 |
+
bias is None,
|
397 |
+
)
|
398 |
+
else:
|
399 |
+
group_key = None
|
400 |
+
return group_key
|
401 |
+
|
402 |
+
def fuse(self, graph: torch.fx.GraphModule, subset: List[torch.fx.Node]):
|
403 |
+
batch_nodes = []
|
404 |
+
batch_inputs = []
|
405 |
+
batch_weights = []
|
406 |
+
batch_biases = []
|
407 |
+
for node in subset:
|
408 |
+
batch_nodes.append(node)
|
409 |
+
batch_inputs.append(get_arg_value(node, 0, "input"))
|
410 |
+
batch_weights.append(get_arg_value(node, 1, "weight"))
|
411 |
+
batch_biases.append(get_arg_value(node, 2, "bias"))
|
412 |
+
|
413 |
+
with graph.inserting_before(subset[0]):
|
414 |
+
stack_inputs = graph.call_function(
|
415 |
+
torch.stack, args=(batch_inputs,), kwargs={"dim": 0}
|
416 |
+
)
|
417 |
+
stack_weights = graph.call_function(
|
418 |
+
torch.stack, args=(batch_weights,), kwargs={"dim": 0}
|
419 |
+
)
|
420 |
+
transpose_weight = graph.call_function(
|
421 |
+
torch.transpose, args=(stack_weights, 1, 2)
|
422 |
+
)
|
423 |
+
if all(bias is None for bias in batch_biases):
|
424 |
+
bmm = graph.call_function(
|
425 |
+
torch.bmm,
|
426 |
+
args=(stack_inputs, transpose_weight),
|
427 |
+
)
|
428 |
+
else:
|
429 |
+
stack_biases = graph.call_function(
|
430 |
+
torch.stack, args=(batch_biases,), kwargs={"dim": 0}
|
431 |
+
)
|
432 |
+
unsqueeze_biases = graph.call_function(
|
433 |
+
torch.unsqueeze, args=(stack_biases, 1)
|
434 |
+
)
|
435 |
+
bmm = graph.call_function(
|
436 |
+
torch.baddbmm,
|
437 |
+
args=(unsqueeze_biases, stack_inputs, transpose_weight),
|
438 |
+
)
|
439 |
+
|
440 |
+
bmm = graph.call_function(torch.unbind, args=(bmm,), kwargs={"dim": 0})
|
441 |
+
for i, linear in enumerate(batch_nodes):
|
442 |
+
with graph.inserting_after(bmm):
|
443 |
+
getitem = graph.call_function(operator.getitem, args=(bmm, i))
|
444 |
+
linear.replace_all_uses_with(getitem)
|
445 |
+
getitem.meta.update(linear.meta)
|
446 |
+
graph.erase_node(linear)
|
447 |
+
|
448 |
+
|
449 |
+
@register_fusion("batch_layernorm")
|
450 |
+
class BatchLayernormFusion(BatchFusion):
|
451 |
+
"""
|
452 |
+
Batch layer norm fusion in pre grad pass
|
453 |
+
"""
|
454 |
+
|
455 |
+
def match(self, node: torch.fx.Node):
|
456 |
+
if CallFunctionVarArgs(torch.nn.functional.layer_norm).match(node):
|
457 |
+
input = get_arg_value(node, 0, "input")
|
458 |
+
weight = get_arg_value(node, 2, "weight")
|
459 |
+
bias = get_arg_value(node, 3, "bias")
|
460 |
+
group_key = (
|
461 |
+
(
|
462 |
+
"batch_layernorm",
|
463 |
+
str(input.meta["example_value"].shape),
|
464 |
+
str(weight.meta["example_value"].shape)
|
465 |
+
if weight is not None
|
466 |
+
else "",
|
467 |
+
str(bias.meta["example_value"].shape) if bias is not None else "",
|
468 |
+
str(get_arg_value(node, 1, "normalized_shape")),
|
469 |
+
str(get_arg_value(node, 4, "eps")),
|
470 |
+
)
|
471 |
+
if "example_value" in input.meta
|
472 |
+
and is_node_meta_valid(weight)
|
473 |
+
and is_node_meta_valid(bias)
|
474 |
+
else None
|
475 |
+
)
|
476 |
+
else:
|
477 |
+
group_key = None
|
478 |
+
return group_key
|
479 |
+
|
480 |
+
def fuse(self, graph: torch.fx.GraphModule, subset: List[torch.fx.Node]):
|
481 |
+
group_inputs = []
|
482 |
+
group_shapes = []
|
483 |
+
group_weights = []
|
484 |
+
group_biases = []
|
485 |
+
group_epss = []
|
486 |
+
group_nodes = []
|
487 |
+
for node in subset:
|
488 |
+
group_nodes.append(node)
|
489 |
+
group_inputs.append(get_arg_value(node, 0, "input"))
|
490 |
+
group_shapes.append(get_arg_value(node, 1, "normalized_shape"))
|
491 |
+
group_weights.append(get_arg_value(node, 2, "weight"))
|
492 |
+
group_biases.append(get_arg_value(node, 3, "bias"))
|
493 |
+
eps = get_arg_value(node, 4, "eps")
|
494 |
+
if eps is None:
|
495 |
+
eps = 1e-5
|
496 |
+
group_epss.append(eps)
|
497 |
+
stack_dim = -1 - len(group_shapes[-1])
|
498 |
+
|
499 |
+
if all(bias is None for bias in group_biases):
|
500 |
+
group_biases = None # type: ignore[assignment]
|
501 |
+
group_biases: Optional[List[Any]]
|
502 |
+
if all(weight is None for weight in group_weights):
|
503 |
+
group_weights = None # type: ignore[assignment]
|
504 |
+
group_weights: Optional[List[Any]]
|
505 |
+
assert all(
|
506 |
+
eps == group_epss[0] for eps in group_epss
|
507 |
+
), "all epsilon values must be equal"
|
508 |
+
|
509 |
+
with graph.inserting_before(subset[0]):
|
510 |
+
stack_input = graph.call_function(
|
511 |
+
torch.stack, args=(group_inputs,), kwargs={"dim": stack_dim}
|
512 |
+
)
|
513 |
+
if group_weights is not None:
|
514 |
+
stack_weight = graph.call_function(
|
515 |
+
torch.stack, args=(group_weights,), kwargs={"dim": 0}
|
516 |
+
)
|
517 |
+
else:
|
518 |
+
stack_weight = None
|
519 |
+
if group_biases is not None:
|
520 |
+
stack_bias = graph.call_function(
|
521 |
+
torch.stack, args=(group_biases,), kwargs={"dim": 0}
|
522 |
+
)
|
523 |
+
else:
|
524 |
+
stack_bias = None
|
525 |
+
|
526 |
+
batch_layer_norm = graph.call_function(
|
527 |
+
torch.nn.functional.layer_norm,
|
528 |
+
args=(stack_input, group_shapes[-1]),
|
529 |
+
kwargs={"eps": group_epss[-1]},
|
530 |
+
)
|
531 |
+
|
532 |
+
if group_weights is not None and group_biases is not None:
|
533 |
+
batch_layer_norm = graph.call_function(
|
534 |
+
torch.addcmul, args=(stack_bias, stack_weight, batch_layer_norm)
|
535 |
+
)
|
536 |
+
elif group_weights is not None and group_biases is None:
|
537 |
+
batch_layer_norm = graph.call_function(
|
538 |
+
torch.mul, args=(stack_weight, batch_layer_norm)
|
539 |
+
)
|
540 |
+
elif group_weights is None and group_biases is not None:
|
541 |
+
batch_layer_norm = graph.call_function(
|
542 |
+
torch.add, args=(stack_bias, batch_layer_norm)
|
543 |
+
)
|
544 |
+
|
545 |
+
batch_layer_norm_unbind = graph.call_function(
|
546 |
+
torch.unbind,
|
547 |
+
args=(batch_layer_norm,),
|
548 |
+
kwargs={"dim": stack_dim},
|
549 |
+
)
|
550 |
+
|
551 |
+
for i, node in enumerate(group_nodes):
|
552 |
+
with graph.inserting_after(batch_layer_norm_unbind):
|
553 |
+
new_node = graph.call_function(
|
554 |
+
operator.getitem, args=(batch_layer_norm_unbind, i)
|
555 |
+
)
|
556 |
+
node.replace_all_uses_with(new_node)
|
557 |
+
new_node.meta.update(node.meta)
|
558 |
+
graph.erase_node(node)
|
559 |
+
|
560 |
+
|
561 |
+
class BatchPointwiseOpsPreGradFusion(BatchPointwiseOpsFusionFactory):
|
562 |
+
"""
|
563 |
+
Batch poinwise ops (e.g., sigmoid, relu, tanh) fusion in pre grad pass.
|
564 |
+
We fuse it in random place, and the introduced stack node may be merged in split cat.
|
565 |
+
"""
|
566 |
+
|
567 |
+
def __init__(self, op, **kwargs):
|
568 |
+
super().__init__(op, **kwargs)
|
569 |
+
self.op = op
|
570 |
+
|
571 |
+
def match(self, node: torch.fx.Node):
|
572 |
+
input = get_arg_value(node, 0, "input")
|
573 |
+
if CallFunctionVarArgs(self.op).match(node) and is_node_meta_valid(node):
|
574 |
+
# for relu op, we also use the inplace to construct the key
|
575 |
+
group_key = (
|
576 |
+
"batch_" + self.op.__name__.lower() + "_pre_grad",
|
577 |
+
str(input.meta["example_value"].shape),
|
578 |
+
str(node.kwargs.get("inplace", False)),
|
579 |
+
)
|
580 |
+
else:
|
581 |
+
group_key = None
|
582 |
+
return group_key
|
583 |
+
|
584 |
+
def fuse(self, graph: torch.fx.GraphModule, subset: List[torch.fx.Node]):
|
585 |
+
batch_nodes = []
|
586 |
+
batch_inputs = []
|
587 |
+
|
588 |
+
for node in subset:
|
589 |
+
batch_nodes.append(node)
|
590 |
+
batch_inputs.append(get_arg_value(node, 0, "input"))
|
591 |
+
|
592 |
+
with graph.inserting_before(subset[0]):
|
593 |
+
stack_inputs = graph.call_function(
|
594 |
+
torch.stack, args=(batch_inputs,), kwargs={"dim": 0}
|
595 |
+
)
|
596 |
+
if self.op == torch.nn.functional.relu:
|
597 |
+
batch_op = graph.call_function(
|
598 |
+
self.op,
|
599 |
+
args=(stack_inputs,),
|
600 |
+
kwargs={"inplace": subset[0].kwargs.get("inplace", False)},
|
601 |
+
)
|
602 |
+
else:
|
603 |
+
batch_op = graph.call_function(
|
604 |
+
self.op,
|
605 |
+
args=(stack_inputs,),
|
606 |
+
)
|
607 |
+
unbind_op = graph.call_function(
|
608 |
+
torch.unbind, args=(batch_op,), kwargs={"dim": 0}
|
609 |
+
)
|
610 |
+
for i, node in enumerate(batch_nodes):
|
611 |
+
with graph.inserting_after(unbind_op):
|
612 |
+
getitem = graph.call_function(operator.getitem, args=(unbind_op, i))
|
613 |
+
node.replace_all_uses_with(getitem)
|
614 |
+
getitem.meta.update(node.meta)
|
615 |
+
graph.erase_node(node)
|
616 |
+
|
617 |
+
|
618 |
+
@register_fusion("batch_tanh")
|
619 |
+
class BatchTanhPreGradFusion(BatchPointwiseOpsPreGradFusion):
|
620 |
+
def __init__(self, **kwargs):
|
621 |
+
super().__init__(torch.tanh, **kwargs)
|
622 |
+
|
623 |
+
|
624 |
+
@register_fusion("batch_sigmoid")
|
625 |
+
class BatchSigmoidPreGradFusion(BatchPointwiseOpsPreGradFusion):
|
626 |
+
def __init__(self, **kwargs):
|
627 |
+
super().__init__(torch.sigmoid, **kwargs)
|
628 |
+
|
629 |
+
|
630 |
+
@register_fusion("batch_relu")
|
631 |
+
class BatchReLuPreGradFusion(BatchPointwiseOpsPreGradFusion):
|
632 |
+
def __init__(self, **kwargs):
|
633 |
+
super().__init__(torch.nn.functional.relu, **kwargs)
|
634 |
+
|
635 |
+
|
636 |
+
def find_independent_subset_greedy(
|
637 |
+
node_list: List[torch.fx.Node],
|
638 |
+
graph_search_options: Dict[str, Any],
|
639 |
+
) -> Iterator[List[torch.fx.Node]]:
|
640 |
+
"""
|
641 |
+
Return a list of subset from node_list, all nodes in each subset are independent with each other and can be fused together.
|
642 |
+
The type of subset is list, so we can preserve node's order and benefit from split-cat elimination in later pass.
|
643 |
+
"""
|
644 |
+
visited_node_set: Set[torch.fx.Node] = set()
|
645 |
+
dep_set: Set[torch.fx.Node] = set()
|
646 |
+
|
647 |
+
def find_dependent_nodes(src_node, cur_node):
|
648 |
+
for input_node in cur_node.all_input_nodes:
|
649 |
+
if input_node in node_list:
|
650 |
+
dep_set.add(input_node)
|
651 |
+
|
652 |
+
if input_node not in visited_node_set:
|
653 |
+
visited_node_set.add(input_node)
|
654 |
+
find_dependent_nodes(src_node, input_node)
|
655 |
+
|
656 |
+
while len(node_list) > 0:
|
657 |
+
subset: List[torch.fx.Node] = []
|
658 |
+
subset_deps: Set[torch.fx.Node] = set()
|
659 |
+
|
660 |
+
for node in node_list:
|
661 |
+
if len(subset) >= graph_search_options["max_fuse_set_size"]:
|
662 |
+
break
|
663 |
+
|
664 |
+
visited_node_set.clear()
|
665 |
+
dep_set.clear()
|
666 |
+
|
667 |
+
find_dependent_nodes(node, node)
|
668 |
+
if not dep_set.intersection(subset) and node not in subset_deps:
|
669 |
+
subset.append(node)
|
670 |
+
subset_deps.update(dep_set)
|
671 |
+
|
672 |
+
if len(subset) >= graph_search_options["min_fuse_set_size"]:
|
673 |
+
yield subset
|
674 |
+
|
675 |
+
next_round_node_list = [node for node in node_list if node not in subset]
|
676 |
+
node_list = next_round_node_list
|
677 |
+
|
678 |
+
|
679 |
+
def get_fusion_candidates(
|
680 |
+
rule: GroupBatchFusionBase, root_node: torch.fx.Node, fused_set: Set[torch.fx.Node]
|
681 |
+
) -> DefaultDict[Any, List[torch.fx.Node]]:
|
682 |
+
"""
|
683 |
+
Search fusion candidates for a specific rule using BFS starting from the root node.
|
684 |
+
We only search the subgraph within graph_search_options["max_fuse_search_depth"].
|
685 |
+
"""
|
686 |
+
q: Deque[Tuple[int, torch.fx.Node]] = collections.deque()
|
687 |
+
|
688 |
+
candidate_dict: DefaultDict[Any, List[torch.fx.Node]] = collections.defaultdict(
|
689 |
+
list
|
690 |
+
)
|
691 |
+
|
692 |
+
if root_node.target in SEARCH_EXCLUSIONS:
|
693 |
+
return candidate_dict
|
694 |
+
|
695 |
+
visited_set: Set[torch.fx.Node] = set()
|
696 |
+
|
697 |
+
for next_node in root_node.all_input_nodes:
|
698 |
+
q.append((1, next_node))
|
699 |
+
visited_set.add(next_node)
|
700 |
+
|
701 |
+
while len(q) > 0:
|
702 |
+
depth, node = q.popleft()
|
703 |
+
|
704 |
+
if node in fused_set:
|
705 |
+
continue
|
706 |
+
|
707 |
+
key = rule.match(node)
|
708 |
+
# SymInt is not hashable, so we need to skip it
|
709 |
+
if key is not None and not isinstance(key, torch.SymInt):
|
710 |
+
candidate_nodes = candidate_dict[key]
|
711 |
+
if node not in candidate_nodes:
|
712 |
+
candidate_nodes.append(node)
|
713 |
+
else:
|
714 |
+
if depth < rule.graph_search_options["max_fuse_search_depth"]:
|
715 |
+
for next_node in node.all_input_nodes:
|
716 |
+
if next_node not in visited_set:
|
717 |
+
visited_set.add(next_node)
|
718 |
+
q.append((depth + 1, next_node))
|
719 |
+
|
720 |
+
return candidate_dict
|
721 |
+
|
722 |
+
|
723 |
+
def apply_group_batch_fusion(graph: torch.fx.GraphModule, rule: GroupBatchFusionBase):
|
724 |
+
stable_topological_sort(graph)
|
725 |
+
fused_set: Set[torch.fx.Node] = set()
|
726 |
+
|
727 |
+
for node in reversed(graph.nodes):
|
728 |
+
candidates = get_fusion_candidates(rule, node, fused_set)
|
729 |
+
|
730 |
+
for key, candidate_nodes in candidates.items():
|
731 |
+
if len(candidate_nodes) < MIN_FUSE_SET_SIZE:
|
732 |
+
continue
|
733 |
+
|
734 |
+
for subset in find_independent_subset_greedy(
|
735 |
+
candidate_nodes, rule.graph_search_options
|
736 |
+
):
|
737 |
+
rule.fuse(graph, subset)
|
738 |
+
fused_set.update(subset)
|
739 |
+
if isinstance(rule, GroupFusion):
|
740 |
+
counters["inductor"]["group_fusion"] += 1
|
741 |
+
elif isinstance(rule, BatchFusion):
|
742 |
+
counters["inductor"]["batch_fusion"] += 1
|
743 |
+
else:
|
744 |
+
counters["inductor"]["unknown_group_batch_fusion"] += 1
|
745 |
+
|
746 |
+
log.info(
|
747 |
+
f"{rule.__class__.__name__}: key = {key}; subset size = {len(subset)}" # noqa: G004
|
748 |
+
)
|
749 |
+
|
750 |
+
|
751 |
+
def generate_fusion_from_config(config_options: Dict[str, Any], pre_grad=True):
|
752 |
+
fusions: List[GroupBatchFusionBase] = []
|
753 |
+
for name, options in config_options.items():
|
754 |
+
fusion_cls = PRE_GRAD_FUSIONS[name] if pre_grad else POST_GRAD_FUSIONS[name]
|
755 |
+
_options = graph_search_options.copy()
|
756 |
+
_options.update(options)
|
757 |
+
fusions.append(fusion_cls(graph_search_options=_options)) # type: ignore[operator]
|
758 |
+
return fusions
|
759 |
+
|
760 |
+
|
761 |
+
def group_batch_fusion_passes(graph: torch.fx.Graph, pre_grad=True):
|
762 |
+
print_graph(graph, "Before group_batch fusion in pre grad pass.")
|
763 |
+
fusions: List[GroupBatchFusionBase] = []
|
764 |
+
# we keep all current pre grad fusions to keep
|
765 |
+
# current implementation, will remove this later
|
766 |
+
if pre_grad:
|
767 |
+
fusions += generate_fusion_from_config(
|
768 |
+
config.pre_grad_fusion_options, pre_grad=True
|
769 |
+
)
|
770 |
+
else:
|
771 |
+
fbgemm_fusion_keys = [
|
772 |
+
x
|
773 |
+
for x in config.post_grad_fusion_options
|
774 |
+
if config.post_grad_fusion_options[x].get("require_fbgemm", False)
|
775 |
+
]
|
776 |
+
fbgemm_fusions = {
|
777 |
+
fusion: config.post_grad_fusion_options[fusion]
|
778 |
+
for fusion in fbgemm_fusion_keys
|
779 |
+
}
|
780 |
+
non_fbgemm_fusions = {
|
781 |
+
fusion: config.post_grad_fusion_options[fusion]
|
782 |
+
for fusion in config.post_grad_fusion_options.keys()
|
783 |
+
if fusion not in fbgemm_fusion_keys
|
784 |
+
}
|
785 |
+
fusions += generate_fusion_from_config(non_fbgemm_fusions, pre_grad=False)
|
786 |
+
if has_fbgemm:
|
787 |
+
fusions += generate_fusion_from_config(fbgemm_fusions, pre_grad=False)
|
788 |
+
|
789 |
+
for rule in fusions:
|
790 |
+
apply_group_batch_fusion(graph, rule)
|
791 |
+
print_graph(graph, f"Apply fusion {rule.__class__.__name__}.")
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/joint_graph.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import typing
|
3 |
+
from collections import Counter
|
4 |
+
from typing import Dict, Set
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch._guards
|
8 |
+
from torch._inductor.constant_folding import ConstantFolder
|
9 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
10 |
+
|
11 |
+
from .. import config
|
12 |
+
from ..pattern_matcher import (
|
13 |
+
CallFunction,
|
14 |
+
init_once_fakemode,
|
15 |
+
KeywordArg,
|
16 |
+
Match,
|
17 |
+
PatternMatcherPass,
|
18 |
+
register_graph_pattern,
|
19 |
+
stable_topological_sort,
|
20 |
+
)
|
21 |
+
from .replace_random import replace_random_passes
|
22 |
+
|
23 |
+
log = logging.getLogger(__name__)
|
24 |
+
patterns = PatternMatcherPass()
|
25 |
+
|
26 |
+
|
27 |
+
@init_once_fakemode
|
28 |
+
def lazy_init():
|
29 |
+
from .fuse_attention import _sfdp_init
|
30 |
+
from .misc_patterns import _misc_patterns_init
|
31 |
+
from .pad_mm import _pad_mm_init
|
32 |
+
|
33 |
+
_pad_mm_init()
|
34 |
+
_sfdp_init()
|
35 |
+
_misc_patterns_init()
|
36 |
+
|
37 |
+
|
38 |
+
@torch.utils._python_dispatch._disable_current_modes()
|
39 |
+
def remove_no_ops(
|
40 |
+
gm: torch.fx.GraphModule, zeros: Set[torch.fx.Node], ones: Set[torch.fx.Node]
|
41 |
+
):
|
42 |
+
"Removes no-ops: (+ 0, - 0, * 1, / 1)"
|
43 |
+
aten = torch.ops.aten
|
44 |
+
graph = gm.graph
|
45 |
+
|
46 |
+
def fake_tensors_eq(t1, t2, fields=("shape", "dtype", "device")):
|
47 |
+
if any(not isinstance(t, torch.Tensor) for t in (t1, t2)):
|
48 |
+
return False
|
49 |
+
for field in fields:
|
50 |
+
if getattr(t1, field) != getattr(t2, field):
|
51 |
+
return False
|
52 |
+
return True
|
53 |
+
|
54 |
+
def replace_no_op(node, replace_input_index):
|
55 |
+
replacement = node.args[replace_input_index]
|
56 |
+
|
57 |
+
# https://github.com/pytorch/pytorch/issues/86128 causes
|
58 |
+
# non-Tensor inputs even for ops with only Tensor inputs.
|
59 |
+
# TODO - decompose/type promote to avoid this
|
60 |
+
if not all(isinstance(arg, torch.fx.Node) for arg in node.args):
|
61 |
+
return
|
62 |
+
|
63 |
+
if not fake_tensors_eq(node.meta["val"], replacement.meta["val"]):
|
64 |
+
if fake_tensors_eq(
|
65 |
+
node.meta["val"],
|
66 |
+
replacement.meta["val"],
|
67 |
+
("shape", "device"),
|
68 |
+
):
|
69 |
+
with graph.inserting_after(node):
|
70 |
+
replacement = graph.call_function(
|
71 |
+
torch.ops.prims.convert_element_type.default,
|
72 |
+
args=(replacement, node.meta["val"].dtype),
|
73 |
+
)
|
74 |
+
else:
|
75 |
+
return
|
76 |
+
|
77 |
+
node.replace_all_uses_with(replacement)
|
78 |
+
replacement.meta.update(node.meta)
|
79 |
+
graph.erase_node(node)
|
80 |
+
|
81 |
+
for node in graph.nodes:
|
82 |
+
if node.op != "call_function":
|
83 |
+
continue
|
84 |
+
|
85 |
+
# TODO handle Tensor-Scalar adds, it's a different schema
|
86 |
+
if node.target == aten.add.Tensor and len(node.args) == 2:
|
87 |
+
if (
|
88 |
+
not any(e in zeros for e in node.args)
|
89 |
+
or node.kwargs.get("alpha", 1) != 1
|
90 |
+
):
|
91 |
+
continue
|
92 |
+
|
93 |
+
replace_index = 1 if node.args[0] in zeros else 0
|
94 |
+
replace_no_op(node, replace_index)
|
95 |
+
|
96 |
+
elif node.target == aten.sub.Tensor and len(node.args) == 2:
|
97 |
+
if node.args[1] not in zeros or node.kwargs.get("alpha", 1) != 1:
|
98 |
+
continue
|
99 |
+
|
100 |
+
replace_no_op(node, 0)
|
101 |
+
|
102 |
+
elif node.target == aten.mul.Tensor and len(node.args) == 2:
|
103 |
+
if not any(e in ones for e in node.args):
|
104 |
+
continue
|
105 |
+
|
106 |
+
replace_input_index = 1 if node.args[0] in ones else 0
|
107 |
+
replace_no_op(node, replace_input_index)
|
108 |
+
|
109 |
+
elif (
|
110 |
+
node.target == aten.div.Tensor
|
111 |
+
and len(node.args) == 2
|
112 |
+
and node.args[1] in ones
|
113 |
+
):
|
114 |
+
replace_no_op(node, 0)
|
115 |
+
|
116 |
+
|
117 |
+
@torch.utils._python_dispatch._disable_current_modes()
|
118 |
+
def remove_redundant_views(gm: torch.fx.GraphModule):
|
119 |
+
"""
|
120 |
+
Removes redundant views by reusing existing ones.
|
121 |
+
"""
|
122 |
+
|
123 |
+
# A dictionary mapping a tensor to all aliased views.
|
124 |
+
views: Dict[torch.fx.Node, Dict[torch.dtype, torch.fx.Node]] = {}
|
125 |
+
graph = gm.graph
|
126 |
+
|
127 |
+
for node in graph.nodes:
|
128 |
+
if node.op != "call_function":
|
129 |
+
continue
|
130 |
+
|
131 |
+
if node.target != torch.ops.aten.view.dtype:
|
132 |
+
continue
|
133 |
+
|
134 |
+
src = node.args[0]
|
135 |
+
to_type = node.args[1]
|
136 |
+
existing_views = views.get(src)
|
137 |
+
is_needed = True
|
138 |
+
|
139 |
+
if existing_views:
|
140 |
+
# Replace the view with the an existing view if available.
|
141 |
+
alias = existing_views.get(to_type)
|
142 |
+
if alias:
|
143 |
+
is_needed = False
|
144 |
+
node.replace_all_uses_with(alias)
|
145 |
+
alias.meta.update(node.meta)
|
146 |
+
graph.erase_node(node)
|
147 |
+
else:
|
148 |
+
from_type = src.meta["val"].dtype
|
149 |
+
existing_views = {from_type: src}
|
150 |
+
views[src] = existing_views
|
151 |
+
|
152 |
+
if is_needed:
|
153 |
+
# Save the new alias but do not replace existing one.
|
154 |
+
existing_views.setdefault(to_type, node)
|
155 |
+
views[node] = existing_views
|
156 |
+
|
157 |
+
# Clean up unused views.
|
158 |
+
while True:
|
159 |
+
unused_views = []
|
160 |
+
for alias in views:
|
161 |
+
if not alias.users:
|
162 |
+
unused_views.append(alias)
|
163 |
+
if len(unused_views) == 0:
|
164 |
+
break
|
165 |
+
for unused in unused_views:
|
166 |
+
views.pop(unused)
|
167 |
+
graph.erase_node(unused)
|
168 |
+
|
169 |
+
|
170 |
+
class UniformValueConstantFolder(ConstantFolder):
|
171 |
+
"""
|
172 |
+
Runs constant folding and replaces tensors that have a unifrom value
|
173 |
+
with a tensor constructor call: aten.full([shape], value, ...)
|
174 |
+
"""
|
175 |
+
|
176 |
+
def __init__(self, gm, skip_constructors=False):
|
177 |
+
super().__init__(gm, skip_constructors)
|
178 |
+
self.node_storages_ptrs: Dict[torch.fx.Node, int] = {}
|
179 |
+
self.constant_data_ptrs: Dict[torch.fx.Node, StorageWeakRef] = {}
|
180 |
+
|
181 |
+
def insertable_tensor_check(self, t: torch.Tensor) -> bool:
|
182 |
+
# TODO - we could also Tensors which get replaced with arange here
|
183 |
+
return (
|
184 |
+
t.numel() != 0
|
185 |
+
and bool((t == t.flatten()[0]).all())
|
186 |
+
and torch._C._has_storage(t)
|
187 |
+
and t.layout == torch.strided
|
188 |
+
)
|
189 |
+
|
190 |
+
def add_node_replacement(self, node: torch.fx.Node, tensor: torch.Tensor) -> None:
|
191 |
+
self.node_replacements[node] = tensor.flatten()[0].item()
|
192 |
+
self.constant_data_ptrs[node] = StorageWeakRef(tensor.untyped_storage())
|
193 |
+
|
194 |
+
|
195 |
+
@torch.utils._python_dispatch._disable_current_modes()
|
196 |
+
def constant_fold_uniform_value(gm: torch.fx.GraphModule):
|
197 |
+
"Runs constant folding and replaces constants which can be constructed with a single `full` call. Calls into remove_no_ops."
|
198 |
+
aten = torch.ops.aten
|
199 |
+
|
200 |
+
# Constant folding can leak memory, especially with repeated compilation, so we are only going to
|
201 |
+
# remove constants which can be replaced with a constructor.
|
202 |
+
cf = UniformValueConstantFolder(gm)
|
203 |
+
cf.run()
|
204 |
+
|
205 |
+
node_replacements = cf.node_replacements
|
206 |
+
|
207 |
+
graph = gm.graph
|
208 |
+
|
209 |
+
zeros = set()
|
210 |
+
ones = set()
|
211 |
+
|
212 |
+
# Got failures in `test_is_set_to_cuda` if we change aliasing on constants,
|
213 |
+
# so just constant-ify if a Tensor is unaliased
|
214 |
+
constant_data_ptr_count: typing.Counter[StorageWeakRef] = Counter()
|
215 |
+
|
216 |
+
for node in cf.node_replacements:
|
217 |
+
constant_data_ptr_count[cf.constant_data_ptrs[node]] += 1
|
218 |
+
|
219 |
+
for node, value in node_replacements.items():
|
220 |
+
# we dont have a functional way right now of instantiating a non-contiguous tensor with full/zeros/ones right now
|
221 |
+
# hasn't shown up to be important yet
|
222 |
+
fake_tensor = node.meta["val"]
|
223 |
+
if not fake_tensor.is_contiguous(memory_format=torch.contiguous_format):
|
224 |
+
continue
|
225 |
+
|
226 |
+
if constant_data_ptr_count[cf.constant_data_ptrs[node]] > 1:
|
227 |
+
continue
|
228 |
+
|
229 |
+
with graph.inserting_after(node):
|
230 |
+
# the conversion from tensor and back to value can be lossy, just use the original full ctor value
|
231 |
+
if (
|
232 |
+
node.op == "call_function"
|
233 |
+
and node.target == aten.full.default
|
234 |
+
and len(node.args) == 2
|
235 |
+
):
|
236 |
+
value = node.args[1]
|
237 |
+
|
238 |
+
# zeros, and ones just get traced into full, so we insert those
|
239 |
+
new_node = graph.call_function(
|
240 |
+
aten.full.default,
|
241 |
+
args=(list(fake_tensor.shape), value),
|
242 |
+
kwargs={
|
243 |
+
"dtype": fake_tensor.dtype,
|
244 |
+
"layout": torch.strided,
|
245 |
+
"device": fake_tensor.device,
|
246 |
+
"pin_memory": False,
|
247 |
+
},
|
248 |
+
)
|
249 |
+
|
250 |
+
new_node.meta.update(node.meta)
|
251 |
+
node.replace_all_uses_with(new_node)
|
252 |
+
graph.erase_node(node)
|
253 |
+
|
254 |
+
if value == 0:
|
255 |
+
zeros.add(new_node)
|
256 |
+
elif value == 1:
|
257 |
+
ones.add(new_node)
|
258 |
+
|
259 |
+
remove_no_ops(gm, zeros, ones)
|
260 |
+
remove_redundant_views(gm)
|
261 |
+
|
262 |
+
|
263 |
+
def joint_graph_passes(graph: torch.fx.GraphModule):
|
264 |
+
"""
|
265 |
+
Run FX transformations on the joint forwards+backwards graph.
|
266 |
+
"""
|
267 |
+
lazy_init()
|
268 |
+
count = 0
|
269 |
+
|
270 |
+
if config.joint_graph_constant_folding:
|
271 |
+
constant_fold_uniform_value(graph)
|
272 |
+
|
273 |
+
if config.pattern_matcher:
|
274 |
+
count += patterns.apply(graph.graph)
|
275 |
+
|
276 |
+
if not config.fallback_random:
|
277 |
+
count += replace_random_passes(graph)
|
278 |
+
|
279 |
+
if count:
|
280 |
+
stable_topological_sort(graph.graph)
|
281 |
+
graph.graph.lint()
|
282 |
+
graph.recompile()
|
283 |
+
return graph
|
284 |
+
|
285 |
+
|
286 |
+
@register_graph_pattern(
|
287 |
+
CallFunction(
|
288 |
+
torch.ops.prims.convert_element_type.default,
|
289 |
+
CallFunction(
|
290 |
+
torch.ops.prims.convert_element_type.default,
|
291 |
+
KeywordArg("arg"),
|
292 |
+
KeywordArg("dtype1"),
|
293 |
+
),
|
294 |
+
KeywordArg("dtype2"),
|
295 |
+
),
|
296 |
+
pass_dict=patterns,
|
297 |
+
)
|
298 |
+
def pointless_convert(match: Match, arg, dtype1: torch.dtype, dtype2: torch.dtype):
|
299 |
+
"""Remove chain of dtype conversions often created by AMP"""
|
300 |
+
graph = match.graph
|
301 |
+
node = match.output_node()
|
302 |
+
allowed = {torch.float16, torch.bfloat16, torch.float32, torch.float64}
|
303 |
+
if dtype1 in allowed and dtype2 in allowed:
|
304 |
+
repl = graph.call_function(
|
305 |
+
torch.ops.prims.convert_element_type.default, (arg, dtype2)
|
306 |
+
)
|
307 |
+
repl.meta.update(node.meta)
|
308 |
+
node.replace_all_uses_with(repl)
|
309 |
+
match.erase_nodes(graph)
|
310 |
+
|
311 |
+
|
312 |
+
@register_graph_pattern(
|
313 |
+
CallFunction(torch.ops.aten.view.default, KeywordArg("arg"), KeywordArg("size")),
|
314 |
+
pass_dict=patterns,
|
315 |
+
)
|
316 |
+
def pointless_view(match: Match, arg, size):
|
317 |
+
"""Remove no-op view"""
|
318 |
+
graph = match.graph
|
319 |
+
node = match.output_node()
|
320 |
+
arg_size = list(node.args[0].meta["val"].shape)
|
321 |
+
if size == arg_size:
|
322 |
+
node.replace_all_uses_with(node.args[0])
|
323 |
+
match.erase_nodes(graph)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/misc_patterns.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
|
3 |
+
from typing import Dict, Set, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch._dynamo.utils import counters
|
7 |
+
|
8 |
+
from torch._ops import OpOverload, OpOverloadPacket
|
9 |
+
from ..pattern_matcher import fwd_only, register_replacement
|
10 |
+
|
11 |
+
aten = torch.ops.aten
|
12 |
+
|
13 |
+
|
14 |
+
@functools.lru_cache(None)
|
15 |
+
def _misc_patterns_init():
|
16 |
+
from .joint_graph import patterns as joint_graph_patterns
|
17 |
+
from .post_grad import pass_patterns as post_grad_patterns_all
|
18 |
+
|
19 |
+
post_grad_patterns = post_grad_patterns_all[1] # medium priority
|
20 |
+
|
21 |
+
if torch.cuda.is_available():
|
22 |
+
# workaround https://github.com/pytorch/pytorch/issues/97894
|
23 |
+
device = "cuda"
|
24 |
+
else:
|
25 |
+
device = "cpu"
|
26 |
+
|
27 |
+
# These patterns do 2 things
|
28 |
+
# 1. Since we know that index is completely unique, we can codegen it using
|
29 |
+
# stores instead of atomic adds, which is quite a bit faster.
|
30 |
+
# 2. Also, since we are guaranteed that they are completely within bounds,
|
31 |
+
# we can use unsafe indexing and skip debug asserts
|
32 |
+
def randperm_index_add_pattern(x, y):
|
33 |
+
index = torch.randperm(x.shape[0], device=x.device)[: y.shape[0]]
|
34 |
+
return torch.index_add(x, dim=0, source=y, index=index), index
|
35 |
+
|
36 |
+
def randperm_index_add_replacement(x, y):
|
37 |
+
index = torch.randperm(x.shape[0], device=x.device)[: y.shape[0]]
|
38 |
+
return (
|
39 |
+
torch.ops.aten._unsafe_index_put(
|
40 |
+
x, (index,), aten._unsafe_index(x, (index,)) + y, accumulate=False
|
41 |
+
),
|
42 |
+
index,
|
43 |
+
)
|
44 |
+
|
45 |
+
register_replacement(
|
46 |
+
randperm_index_add_pattern,
|
47 |
+
randperm_index_add_replacement,
|
48 |
+
[torch.empty(4, 8, device=device), torch.empty(2, 8, device=device)],
|
49 |
+
fwd_only,
|
50 |
+
[post_grad_patterns, joint_graph_patterns],
|
51 |
+
)
|
52 |
+
|
53 |
+
def randperm_index_pattern(x, slice_shape):
|
54 |
+
index = torch.randperm(x.shape[0], device=x.device)[:slice_shape]
|
55 |
+
return torch.ops.aten.index(x, (index,)), index
|
56 |
+
|
57 |
+
def randperm_index_replacement(x, slice_shape):
|
58 |
+
index = torch.randperm(x.shape[0], device=x.device)[:slice_shape]
|
59 |
+
return torch.ops.aten._unsafe_index(x, (index,)), index
|
60 |
+
|
61 |
+
pattern = register_replacement(
|
62 |
+
randperm_index_pattern,
|
63 |
+
randperm_index_replacement,
|
64 |
+
[torch.empty(4, 8, device=device)],
|
65 |
+
fwd_only,
|
66 |
+
[post_grad_patterns, joint_graph_patterns],
|
67 |
+
scalar_workaround={"slice_shape": 42},
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
class NumpyCompatNormalization:
|
72 |
+
numpy_compat: Dict[str, Tuple[str, ...]] = {
|
73 |
+
"dim": ("axis",),
|
74 |
+
"keepdim": ("keepdims",),
|
75 |
+
"input": ("x", "a", "x1"),
|
76 |
+
"other": ("x2",),
|
77 |
+
}
|
78 |
+
inverse_mapping: Dict[str, str]
|
79 |
+
cache: Dict["torch.fx.graph.Target", Set[str]]
|
80 |
+
|
81 |
+
def __init__(self):
|
82 |
+
self.cache = {} # callable -> tuple of replaceable args e.g. ["axis"]
|
83 |
+
self.inverse_mapping = {}
|
84 |
+
for actual_kwarg, numpy_kwargs in self.numpy_compat.items():
|
85 |
+
for numpy_kwarg in numpy_kwargs:
|
86 |
+
assert numpy_kwarg not in self.inverse_mapping
|
87 |
+
self.inverse_mapping[numpy_kwarg] = actual_kwarg
|
88 |
+
|
89 |
+
def __call__(self, graph: torch.fx.Graph):
|
90 |
+
for node in graph.nodes:
|
91 |
+
if node.op != "call_function":
|
92 |
+
continue
|
93 |
+
if isinstance(node.target, (OpOverload, OpOverloadPacket)):
|
94 |
+
# only applies to torch ops; e.g. torch.stack(axis=1) works, torch.ops.aten.stack(axis=1) doesn't.
|
95 |
+
continue
|
96 |
+
kwargs = node.kwargs
|
97 |
+
|
98 |
+
if node.target in self.cache:
|
99 |
+
replaceable_kwargs = self.cache[node.target]
|
100 |
+
else:
|
101 |
+
signatures = torch.fx.operator_schemas.get_signature_for_torch_op(
|
102 |
+
node.target
|
103 |
+
)
|
104 |
+
signatures = () if signatures is None else signatures
|
105 |
+
replaceable_kwargs = set()
|
106 |
+
for sig in signatures:
|
107 |
+
for param_name in sig.parameters.keys():
|
108 |
+
if param_name in self.numpy_compat:
|
109 |
+
replaceable_kwargs.update(self.numpy_compat[param_name])
|
110 |
+
|
111 |
+
self.cache[node.target] = replaceable_kwargs
|
112 |
+
|
113 |
+
if not replaceable_kwargs:
|
114 |
+
continue
|
115 |
+
|
116 |
+
new_kwargs = {}
|
117 |
+
kwargs_changed = False
|
118 |
+
for k, v in kwargs.items():
|
119 |
+
if k in replaceable_kwargs:
|
120 |
+
kwargs_changed = True
|
121 |
+
new_kwargs[self.inverse_mapping[k]] = v
|
122 |
+
else:
|
123 |
+
new_kwargs[k] = v
|
124 |
+
|
125 |
+
if kwargs_changed:
|
126 |
+
node.kwargs = torch.fx.immutable_collections.immutable_dict(new_kwargs)
|
127 |
+
counters["inductor"]["numpy_compat_normalization"] += 1
|
128 |
+
|
129 |
+
|
130 |
+
numpy_compat_normalization = NumpyCompatNormalization()
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/mkldnn_fusion.py
ADDED
@@ -0,0 +1,1085 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import operator
|
3 |
+
from functools import reduce
|
4 |
+
from typing import Any, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from torch.fx.experimental.symbolic_shapes import has_free_symbols
|
9 |
+
|
10 |
+
from .. import ir
|
11 |
+
|
12 |
+
from ..lowering import lowerings as L
|
13 |
+
from ..pattern_matcher import (
|
14 |
+
Arg,
|
15 |
+
CallFunction,
|
16 |
+
filter_nodes,
|
17 |
+
get_arg_value,
|
18 |
+
KeywordArg,
|
19 |
+
MULTIPLE,
|
20 |
+
)
|
21 |
+
from ..virtualized import ops
|
22 |
+
from .freezing_patterns import register_freezing_graph_pattern
|
23 |
+
from .post_grad import register_lowering_pattern
|
24 |
+
from .quantization import (
|
25 |
+
_register_quantization_lowerings,
|
26 |
+
_register_quantization_weight_pack_pass,
|
27 |
+
)
|
28 |
+
|
29 |
+
if torch._C._has_mkldnn:
|
30 |
+
aten = torch.ops.aten
|
31 |
+
mkldnn = torch.ops.mkldnn
|
32 |
+
prims = torch.ops.prims
|
33 |
+
|
34 |
+
_conv_args = [Arg() for _ in range(10)]
|
35 |
+
_linear_args = [Arg() for _ in range(6)]
|
36 |
+
_conv_transpose_args = [Arg() for _ in range(11)]
|
37 |
+
|
38 |
+
def _conv_call(users=1):
|
39 |
+
return CallFunction(
|
40 |
+
mkldnn._convolution_pointwise.default, *_conv_args, _users=users
|
41 |
+
)
|
42 |
+
|
43 |
+
def _linear_call(users=1):
|
44 |
+
return CallFunction(
|
45 |
+
mkldnn._linear_pointwise.default, *_linear_args, _users=users
|
46 |
+
)
|
47 |
+
|
48 |
+
def _conv_transpose_call(users=1):
|
49 |
+
return CallFunction(
|
50 |
+
mkldnn._convolution_transpose_pointwise.default,
|
51 |
+
*_conv_transpose_args,
|
52 |
+
_users=users,
|
53 |
+
)
|
54 |
+
|
55 |
+
def _to_float(input_call, users=1):
|
56 |
+
return CallFunction(
|
57 |
+
prims.convert_element_type.default,
|
58 |
+
input_call,
|
59 |
+
KeywordArg("to_float"),
|
60 |
+
_users=users,
|
61 |
+
)
|
62 |
+
|
63 |
+
def _to_bf16(input_call):
|
64 |
+
return CallFunction(
|
65 |
+
prims.convert_element_type.default,
|
66 |
+
input_call,
|
67 |
+
KeywordArg("to_bf16"),
|
68 |
+
_users=1,
|
69 |
+
)
|
70 |
+
|
71 |
+
def _unary_fusion_pattern(unary_fusion, call_fn, users, is_bf16):
|
72 |
+
# only insert to_dtype if is_bf16 is True
|
73 |
+
computation_call = (
|
74 |
+
_to_float(call_fn(), users=users) if is_bf16 else call_fn(users=users)
|
75 |
+
)
|
76 |
+
out = unary_fusion(computation_call)
|
77 |
+
return _to_bf16(out) if is_bf16 else out
|
78 |
+
|
79 |
+
def _gelu_fusion_1(computation_call):
|
80 |
+
return CallFunction(
|
81 |
+
aten.mul,
|
82 |
+
CallFunction(aten.mul, computation_call, 0.5),
|
83 |
+
CallFunction(
|
84 |
+
aten.add,
|
85 |
+
CallFunction(
|
86 |
+
aten.erf,
|
87 |
+
CallFunction(aten.mul, computation_call, 0.7071067811865476),
|
88 |
+
),
|
89 |
+
1,
|
90 |
+
),
|
91 |
+
)
|
92 |
+
|
93 |
+
def _gelu_fusion_2(computation_call):
|
94 |
+
return CallFunction(
|
95 |
+
aten.mul,
|
96 |
+
CallFunction(aten.mul, computation_call, 0.5),
|
97 |
+
CallFunction(
|
98 |
+
aten.add,
|
99 |
+
CallFunction(
|
100 |
+
aten.tanh,
|
101 |
+
CallFunction(
|
102 |
+
aten.mul,
|
103 |
+
CallFunction(
|
104 |
+
aten.add,
|
105 |
+
computation_call,
|
106 |
+
CallFunction(
|
107 |
+
aten.mul,
|
108 |
+
CallFunction(
|
109 |
+
aten.mul,
|
110 |
+
CallFunction(
|
111 |
+
aten.mul, computation_call, computation_call
|
112 |
+
),
|
113 |
+
computation_call,
|
114 |
+
),
|
115 |
+
0.044715,
|
116 |
+
),
|
117 |
+
),
|
118 |
+
0.7978845608028654,
|
119 |
+
),
|
120 |
+
),
|
121 |
+
1,
|
122 |
+
),
|
123 |
+
)
|
124 |
+
|
125 |
+
def _hardswish_fusion(computation_call):
|
126 |
+
return CallFunction(
|
127 |
+
aten.div,
|
128 |
+
CallFunction(
|
129 |
+
aten.mul,
|
130 |
+
computation_call,
|
131 |
+
CallFunction(
|
132 |
+
aten.clamp_max,
|
133 |
+
CallFunction(
|
134 |
+
aten.clamp_min, CallFunction(aten.add, computation_call, 3), 0
|
135 |
+
),
|
136 |
+
6,
|
137 |
+
),
|
138 |
+
),
|
139 |
+
6,
|
140 |
+
)
|
141 |
+
|
142 |
+
def _silu_fusion(computation_call):
|
143 |
+
return CallFunction(
|
144 |
+
aten.mul, computation_call, CallFunction(aten.sigmoid, computation_call)
|
145 |
+
)
|
146 |
+
|
147 |
+
def _hardsigmoid_fusion(computation_call):
|
148 |
+
return CallFunction(
|
149 |
+
aten.div,
|
150 |
+
CallFunction(
|
151 |
+
aten.clamp_max,
|
152 |
+
CallFunction(
|
153 |
+
aten.clamp_min, CallFunction(aten.add, computation_call, 3), 0
|
154 |
+
),
|
155 |
+
6,
|
156 |
+
),
|
157 |
+
6,
|
158 |
+
)
|
159 |
+
|
160 |
+
def _leaky_relu_fusion(computation_call):
|
161 |
+
return CallFunction(
|
162 |
+
aten.where,
|
163 |
+
CallFunction(aten.gt, computation_call, 0),
|
164 |
+
computation_call,
|
165 |
+
CallFunction(aten.mul, computation_call, KeywordArg("negative_slope")),
|
166 |
+
)
|
167 |
+
|
168 |
+
def _hardtanh_fusion(computation_call):
|
169 |
+
return CallFunction(
|
170 |
+
aten.clamp_max,
|
171 |
+
CallFunction(aten.clamp_min, computation_call, KeywordArg("min_value")),
|
172 |
+
KeywordArg("max_value"),
|
173 |
+
)
|
174 |
+
|
175 |
+
def _combined_fusion(computation_call, elementwise_op):
|
176 |
+
return CallFunction(elementwise_op, computation_call)
|
177 |
+
|
178 |
+
# binary_op(other, computation_op)
|
179 |
+
def _binary_fusion_v1(computation_call, binary_fn):
|
180 |
+
return CallFunction(binary_fn, KeywordArg("other"), computation_call)
|
181 |
+
|
182 |
+
# binary_op(computation_op, other)
|
183 |
+
def _binary_fusion_v2(computation_call, binary_fn):
|
184 |
+
return CallFunction(binary_fn, computation_call, KeywordArg("other"))
|
185 |
+
|
186 |
+
def _is_single_computation_op(computation_op):
|
187 |
+
def fn(match):
|
188 |
+
computation_nodes = filter_nodes(match.nodes, computation_op)
|
189 |
+
if len(computation_nodes) < 1:
|
190 |
+
return False
|
191 |
+
if any(n.args[-3] != "none" for n in computation_nodes):
|
192 |
+
return False
|
193 |
+
return True
|
194 |
+
|
195 |
+
return fn
|
196 |
+
|
197 |
+
def _is_valid_computation_unary_fusion(computation_op, is_bf16=False):
|
198 |
+
def fn(match):
|
199 |
+
matched = _is_single_computation_op(computation_op)(match)
|
200 |
+
computation_node = filter_nodes(match.nodes, computation_op)[0]
|
201 |
+
if is_bf16:
|
202 |
+
conversion_dtype_nodes = filter_nodes(
|
203 |
+
match.nodes, prims.convert_element_type.default
|
204 |
+
)
|
205 |
+
if len(conversion_dtype_nodes) != 2:
|
206 |
+
return False
|
207 |
+
# fusion pattern is always in the form of computation_op + to_float32 + unary_op + to_bfloat16
|
208 |
+
if computation_node == conversion_dtype_nodes[0].args[0]:
|
209 |
+
to_float = conversion_dtype_nodes[0].args[1]
|
210 |
+
to_bf16 = conversion_dtype_nodes[1].args[1]
|
211 |
+
else:
|
212 |
+
to_float = conversion_dtype_nodes[1].args[1]
|
213 |
+
to_bf16 = conversion_dtype_nodes[0].args[1]
|
214 |
+
matched = (
|
215 |
+
matched and to_float == torch.float and to_bf16 == torch.bfloat16
|
216 |
+
)
|
217 |
+
return matched
|
218 |
+
|
219 |
+
return fn
|
220 |
+
|
221 |
+
def _register_unary_fusion_lowering(
|
222 |
+
pattern, unary_attr, computation_op, is_bf16=False
|
223 |
+
):
|
224 |
+
@register_lowering_pattern(
|
225 |
+
pattern,
|
226 |
+
extra_check=_is_valid_computation_unary_fusion(computation_op, is_bf16),
|
227 |
+
)
|
228 |
+
def fn(match, *args, **kwargs):
|
229 |
+
computation_args = list(args)[:-3] + [
|
230 |
+
unary_attr.op_name,
|
231 |
+
unary_attr.scalars_attr,
|
232 |
+
unary_attr.algorithm_attr,
|
233 |
+
]
|
234 |
+
return L[computation_op](*computation_args)
|
235 |
+
|
236 |
+
return fn
|
237 |
+
|
238 |
+
def _register_leaky_relu_fusion_lowering(pattern, computation_op, is_bf16=False):
|
239 |
+
@register_lowering_pattern(
|
240 |
+
pattern, extra_check=_is_single_computation_op(computation_op)
|
241 |
+
)
|
242 |
+
def fn(match, *args, **kwargs):
|
243 |
+
negative_slope = kwargs.get("negative_slope")
|
244 |
+
if isinstance(negative_slope, ir.TensorBox):
|
245 |
+
matched = False
|
246 |
+
else: # inp is a Number
|
247 |
+
matched = True
|
248 |
+
if is_bf16:
|
249 |
+
dtype1 = kwargs.get("to_float")
|
250 |
+
dtype2 = kwargs.get("to_bf16")
|
251 |
+
matched = matched and dtype1 == torch.float and dtype2 == torch.bfloat16
|
252 |
+
computation_args = list(args)
|
253 |
+
if matched:
|
254 |
+
computation_args = computation_args[:-3] + [
|
255 |
+
"leaky_relu",
|
256 |
+
[negative_slope],
|
257 |
+
"",
|
258 |
+
]
|
259 |
+
return L[computation_op](*computation_args)
|
260 |
+
else:
|
261 |
+
# computation_args += ["none", [], ""]
|
262 |
+
out = L[computation_op](*computation_args)
|
263 |
+
if is_bf16:
|
264 |
+
out = L[prims.convert_element_type.default](out, dtype=torch.float)
|
265 |
+
out = L[aten.where](
|
266 |
+
L[aten.gt](out, 0),
|
267 |
+
out,
|
268 |
+
L[aten.mul](out, negative_slope),
|
269 |
+
)
|
270 |
+
if is_bf16:
|
271 |
+
out = L[prims.convert_element_type.default](
|
272 |
+
out, dtype=torch.bfloat16
|
273 |
+
)
|
274 |
+
return out
|
275 |
+
|
276 |
+
return fn
|
277 |
+
|
278 |
+
def _register_hardtanh_fusion_lowering(pattern, computation_op, is_bf16=False):
|
279 |
+
@register_lowering_pattern(
|
280 |
+
pattern, extra_check=_is_single_computation_op(computation_op)
|
281 |
+
)
|
282 |
+
def fn(match, *args, **kwargs):
|
283 |
+
min_value = kwargs.get("min_value")
|
284 |
+
max_value = kwargs.get("max_value")
|
285 |
+
if isinstance(min_value, ir.TensorBox) or isinstance(
|
286 |
+
max_value, ir.TensorBox
|
287 |
+
):
|
288 |
+
matched = False
|
289 |
+
else: # inp is a Number
|
290 |
+
assert max_value is not None
|
291 |
+
matched = min_value <= max_value
|
292 |
+
if is_bf16:
|
293 |
+
dtype1 = kwargs.get("to_float")
|
294 |
+
dtype2 = kwargs.get("to_bf16")
|
295 |
+
matched = matched and dtype1 == torch.float and dtype2 == torch.bfloat16
|
296 |
+
computation_args = list(args)
|
297 |
+
if matched:
|
298 |
+
computation_args = computation_args[:-3] + [
|
299 |
+
"hardtanh",
|
300 |
+
[min_value, max_value],
|
301 |
+
"",
|
302 |
+
]
|
303 |
+
return L[computation_op](*computation_args)
|
304 |
+
else:
|
305 |
+
out = L[computation_op](*computation_args)
|
306 |
+
if is_bf16:
|
307 |
+
out = L[prims.convert_element_type.default](out, dtype=torch.float)
|
308 |
+
out = L[aten.clamp_max](L[aten.clamp_min](out, min_value), max_value)
|
309 |
+
if is_bf16:
|
310 |
+
out = L[prims.convert_element_type.default](
|
311 |
+
out, dtype=torch.bfloat16
|
312 |
+
)
|
313 |
+
return out
|
314 |
+
|
315 |
+
return fn
|
316 |
+
|
317 |
+
_binary_attr = {
|
318 |
+
aten.add: "add",
|
319 |
+
ops.add: "add",
|
320 |
+
aten.sub: "sub",
|
321 |
+
ops.sub: "sub",
|
322 |
+
}
|
323 |
+
|
324 |
+
def _is_valid_binary(match, fn):
|
325 |
+
binary_nodes = filter_nodes(match.nodes, fn)
|
326 |
+
if len(binary_nodes) < 1:
|
327 |
+
return False
|
328 |
+
if any(
|
329 |
+
not (
|
330 |
+
hasattr(n.args[0], "meta")
|
331 |
+
and isinstance(n.args[0].meta.get("val", None), torch.Tensor)
|
332 |
+
)
|
333 |
+
or not (
|
334 |
+
hasattr(n.args[1], "meta")
|
335 |
+
and isinstance(n.args[1].meta.get("val", None), torch.Tensor)
|
336 |
+
)
|
337 |
+
for n in binary_nodes
|
338 |
+
):
|
339 |
+
return False
|
340 |
+
# check alpha is one.
|
341 |
+
if any(
|
342 |
+
get_arg_value(n, 2, kwarg_name="alpha") != 1.0
|
343 |
+
and get_arg_value(n, 2, kwarg_name="alpha") is not None
|
344 |
+
for n in binary_nodes
|
345 |
+
):
|
346 |
+
return False
|
347 |
+
if any(
|
348 |
+
n.args[0].meta["val"].size() != n.args[1].meta["val"].size()
|
349 |
+
or n.args[0].meta["val"].device != n.args[1].meta["val"].device
|
350 |
+
or n.args[0].meta["val"].dtype != n.args[1].meta["val"].dtype
|
351 |
+
for n in binary_nodes
|
352 |
+
):
|
353 |
+
return False
|
354 |
+
# check args[0] and args[1] is not same
|
355 |
+
if any(n.args[0] == n.args[1] for n in binary_nodes):
|
356 |
+
return False
|
357 |
+
return True
|
358 |
+
|
359 |
+
def _is_valid_computation_binary(computation_op, binary_op, other_index=None):
|
360 |
+
def fn(match):
|
361 |
+
if not _is_single_computation_op(computation_op)(match):
|
362 |
+
return False
|
363 |
+
if not _is_valid_binary(match, binary_op):
|
364 |
+
return False
|
365 |
+
return True
|
366 |
+
|
367 |
+
return fn
|
368 |
+
|
369 |
+
def _is_valid_computation_binary_inplace(computation_op, binary_op, other_index):
|
370 |
+
def fn(match):
|
371 |
+
if not _is_valid_computation_binary(computation_op, binary_op)(match):
|
372 |
+
return False
|
373 |
+
binary_nodes = filter_nodes(match.nodes, binary_op)
|
374 |
+
if any(len(n.args[other_index].users) > 1 for n in binary_nodes):
|
375 |
+
return False
|
376 |
+
if any(
|
377 |
+
n.args[other_index].op in ["placeholder", "output"]
|
378 |
+
for n in binary_nodes
|
379 |
+
):
|
380 |
+
return False
|
381 |
+
return True
|
382 |
+
|
383 |
+
return fn
|
384 |
+
|
385 |
+
def _register_binary_unary_fusion_lowering(
|
386 |
+
pattern,
|
387 |
+
computation_op,
|
388 |
+
binary_op,
|
389 |
+
fusion_op,
|
390 |
+
unary_attr=None,
|
391 |
+
):
|
392 |
+
@register_lowering_pattern(
|
393 |
+
pattern, extra_check=_is_valid_computation_binary(computation_op, binary_op)
|
394 |
+
)
|
395 |
+
def fn(match, *args, **kwargs):
|
396 |
+
other = kwargs.get("other")
|
397 |
+
assert isinstance(other, ir.TensorBox)
|
398 |
+
binary_attr = _binary_attr[binary_op]
|
399 |
+
args_list = list(args)
|
400 |
+
computation_args = [args_list[0], other] + args_list[1:-3] + [binary_attr]
|
401 |
+
if len(args_list) > 6:
|
402 |
+
if unary_attr is not None:
|
403 |
+
computation_args += [
|
404 |
+
1.0,
|
405 |
+
unary_attr.op_name,
|
406 |
+
unary_attr.scalars_attr,
|
407 |
+
unary_attr.algorithm_attr,
|
408 |
+
]
|
409 |
+
else:
|
410 |
+
computation_args += [1.0, None, [], None]
|
411 |
+
return L[fusion_op](*computation_args)
|
412 |
+
|
413 |
+
return fn
|
414 |
+
|
415 |
+
def _register_binary_unary_maybe_inplace_fusion_lowering(
|
416 |
+
pattern,
|
417 |
+
computation_op,
|
418 |
+
binary_op,
|
419 |
+
inplace_fusion_op,
|
420 |
+
outplace_fusion_op,
|
421 |
+
unary_attr=None,
|
422 |
+
other_index=None,
|
423 |
+
):
|
424 |
+
@register_lowering_pattern(
|
425 |
+
pattern,
|
426 |
+
extra_check=_is_valid_computation_binary_inplace(
|
427 |
+
computation_op, binary_op, other_index
|
428 |
+
),
|
429 |
+
)
|
430 |
+
def fn(match, *args, **kwargs):
|
431 |
+
other = kwargs.get("other")
|
432 |
+
assert isinstance(other, ir.TensorBox)
|
433 |
+
binary_attr = _binary_attr[binary_op]
|
434 |
+
args_list = list(args)
|
435 |
+
computation_args = [args_list[0], other] + args_list[1:-3] + [binary_attr]
|
436 |
+
if len(args_list) > 6:
|
437 |
+
if unary_attr is not None:
|
438 |
+
computation_args += [
|
439 |
+
1.0,
|
440 |
+
unary_attr.op_name,
|
441 |
+
unary_attr.scalars_attr,
|
442 |
+
unary_attr.algorithm_attr,
|
443 |
+
]
|
444 |
+
else:
|
445 |
+
computation_args += [1.0, None, [], None]
|
446 |
+
# Make sure the other is not an alias or mutation(fx side doesn't has such info).
|
447 |
+
other.realize()
|
448 |
+
can_be_inplace = not (
|
449 |
+
isinstance(other.data, ir.ReinterpretView)
|
450 |
+
or isinstance(other.get_layout(), (ir.MutationLayout, ir.AliasedLayout))
|
451 |
+
)
|
452 |
+
if not can_be_inplace:
|
453 |
+
return L[outplace_fusion_op](*computation_args)
|
454 |
+
return L[inplace_fusion_op](*computation_args)
|
455 |
+
|
456 |
+
return fn
|
457 |
+
|
458 |
+
computation_ops = [
|
459 |
+
mkldnn._convolution_pointwise.default,
|
460 |
+
mkldnn._linear_pointwise.default,
|
461 |
+
mkldnn._convolution_transpose_pointwise.default,
|
462 |
+
]
|
463 |
+
|
464 |
+
class UnaryAttr:
|
465 |
+
def __init__(self, op_name: str, scalars_attr=None, algorithm_attr=None):
|
466 |
+
self.op_name = op_name
|
467 |
+
self.scalars_attr = scalars_attr if scalars_attr else []
|
468 |
+
self.algorithm_attr = algorithm_attr if algorithm_attr else ""
|
469 |
+
|
470 |
+
def _register_unary_fusion():
|
471 |
+
computation_call_fns = [_conv_call, _linear_call, _conv_transpose_call]
|
472 |
+
|
473 |
+
def _unary_fusion_patterns(is_bf16):
|
474 |
+
replacement_unary_fusion_patterns = {
|
475 |
+
UnaryAttr("gelu", algorithm_attr="tanh"): [
|
476 |
+
_unary_fusion_pattern(_gelu_fusion_2, call_fn, 4, is_bf16)
|
477 |
+
for call_fn in computation_call_fns
|
478 |
+
],
|
479 |
+
UnaryAttr("gelu", algorithm_attr="none"): [
|
480 |
+
_unary_fusion_pattern(_gelu_fusion_1, call_fn, 2, is_bf16)
|
481 |
+
for call_fn in computation_call_fns
|
482 |
+
],
|
483 |
+
UnaryAttr("hardswish"): [
|
484 |
+
_unary_fusion_pattern(_hardswish_fusion, call_fn, 2, is_bf16)
|
485 |
+
for call_fn in computation_call_fns
|
486 |
+
],
|
487 |
+
UnaryAttr("hardsigmoid"): [
|
488 |
+
_unary_fusion_pattern(_hardsigmoid_fusion, call_fn, 1, is_bf16)
|
489 |
+
for call_fn in computation_call_fns
|
490 |
+
],
|
491 |
+
UnaryAttr("swish"): [
|
492 |
+
_unary_fusion_pattern(_silu_fusion, call_fn, 2, is_bf16)
|
493 |
+
for call_fn in computation_call_fns
|
494 |
+
],
|
495 |
+
}
|
496 |
+
if not is_bf16:
|
497 |
+
call_user1 = [call_fn(users=1) for call_fn in computation_call_fns]
|
498 |
+
replacement_unary_fusion_patterns.update(
|
499 |
+
{
|
500 |
+
UnaryAttr("relu"): [
|
501 |
+
_combined_fusion(u, aten.relu) for u in call_user1
|
502 |
+
],
|
503 |
+
UnaryAttr("sigmoid"): [
|
504 |
+
_combined_fusion(u, aten.sigmoid) for u in call_user1
|
505 |
+
],
|
506 |
+
UnaryAttr("tanh"): [
|
507 |
+
_combined_fusion(u, aten.tanh) for u in call_user1
|
508 |
+
],
|
509 |
+
}
|
510 |
+
)
|
511 |
+
|
512 |
+
return replacement_unary_fusion_patterns
|
513 |
+
|
514 |
+
for is_bf16 in [True, False]:
|
515 |
+
replace_patterns = _unary_fusion_patterns(is_bf16)
|
516 |
+
for unary_attr, patterns in replace_patterns.items():
|
517 |
+
_register_unary_fusion_lowering(
|
518 |
+
patterns[0], unary_attr, computation_ops[0], is_bf16
|
519 |
+
)
|
520 |
+
_register_unary_fusion_lowering(
|
521 |
+
patterns[1], unary_attr, computation_ops[1], is_bf16
|
522 |
+
)
|
523 |
+
_register_unary_fusion_lowering(
|
524 |
+
patterns[2], unary_attr, computation_ops[2], is_bf16
|
525 |
+
)
|
526 |
+
_leaky_relu_patterns = [
|
527 |
+
_unary_fusion_pattern(_leaky_relu_fusion, call_fn, 3, is_bf16)
|
528 |
+
for call_fn in computation_call_fns
|
529 |
+
]
|
530 |
+
for pattern, computation_op in zip(_leaky_relu_patterns, computation_ops):
|
531 |
+
_register_leaky_relu_fusion_lowering(pattern, computation_op, is_bf16)
|
532 |
+
hardtanh_patterns = [
|
533 |
+
_unary_fusion_pattern(_hardtanh_fusion, call_fn, 1, is_bf16)
|
534 |
+
for call_fn in computation_call_fns
|
535 |
+
]
|
536 |
+
for pattern, computation_op in zip(hardtanh_patterns, computation_ops):
|
537 |
+
_register_hardtanh_fusion_lowering(pattern, computation_op, is_bf16)
|
538 |
+
|
539 |
+
def _register_inplace_fusion():
|
540 |
+
binary_ops = [aten.add, ops.add]
|
541 |
+
inplace_fusion_op = mkldnn._convolution_pointwise_.binary
|
542 |
+
outplace_fusion_op = mkldnn._convolution_pointwise.binary
|
543 |
+
conv_call = _conv_call(users=1)
|
544 |
+
conv_op = computation_ops[0]
|
545 |
+
for binary_op in binary_ops:
|
546 |
+
binary_v1 = _binary_fusion_v1(conv_call, binary_op)
|
547 |
+
binary_unary_v1 = _combined_fusion(binary_v1, aten.relu)
|
548 |
+
_register_binary_unary_maybe_inplace_fusion_lowering(
|
549 |
+
binary_unary_v1,
|
550 |
+
conv_op,
|
551 |
+
binary_op,
|
552 |
+
inplace_fusion_op,
|
553 |
+
outplace_fusion_op,
|
554 |
+
other_index=0,
|
555 |
+
unary_attr=UnaryAttr("relu"),
|
556 |
+
)
|
557 |
+
_register_binary_unary_maybe_inplace_fusion_lowering(
|
558 |
+
binary_v1,
|
559 |
+
conv_op,
|
560 |
+
binary_op,
|
561 |
+
inplace_fusion_op,
|
562 |
+
outplace_fusion_op,
|
563 |
+
other_index=0,
|
564 |
+
)
|
565 |
+
binary_v2 = _binary_fusion_v2(conv_call, binary_op)
|
566 |
+
binary_unary_v2 = _combined_fusion(binary_v2, aten.relu)
|
567 |
+
_register_binary_unary_maybe_inplace_fusion_lowering(
|
568 |
+
binary_unary_v2,
|
569 |
+
conv_op,
|
570 |
+
binary_op,
|
571 |
+
inplace_fusion_op,
|
572 |
+
outplace_fusion_op,
|
573 |
+
other_index=1,
|
574 |
+
unary_attr=UnaryAttr("relu"),
|
575 |
+
)
|
576 |
+
_register_binary_unary_maybe_inplace_fusion_lowering(
|
577 |
+
binary_v2,
|
578 |
+
conv_op,
|
579 |
+
binary_op,
|
580 |
+
inplace_fusion_op,
|
581 |
+
outplace_fusion_op,
|
582 |
+
other_index=1,
|
583 |
+
)
|
584 |
+
|
585 |
+
def _register_binary_fusion():
|
586 |
+
binary_ops = [aten.add, ops.add, aten.sub, ops.sub]
|
587 |
+
fusion_ops = [
|
588 |
+
mkldnn._convolution_pointwise.binary,
|
589 |
+
mkldnn._linear_pointwise.binary,
|
590 |
+
]
|
591 |
+
_computation_user_1 = [_conv_call(users=1), _linear_call(users=1)]
|
592 |
+
for computation_call, computation_op, fusion_op in zip(
|
593 |
+
_computation_user_1, computation_ops[:-1], fusion_ops
|
594 |
+
):
|
595 |
+
for binary_op in binary_ops:
|
596 |
+
pattern = _binary_fusion_v2(computation_call, binary_op)
|
597 |
+
_register_binary_unary_fusion_lowering(
|
598 |
+
pattern, computation_op, binary_op, fusion_op
|
599 |
+
)
|
600 |
+
|
601 |
+
for binary_op in [aten.add, ops.add]:
|
602 |
+
pattern = _binary_fusion_v1(computation_call, binary_op)
|
603 |
+
_register_binary_unary_fusion_lowering(
|
604 |
+
pattern, computation_op, binary_op, fusion_op
|
605 |
+
)
|
606 |
+
|
607 |
+
def _register_binary_unary_fusion():
|
608 |
+
binary_ops = [aten.add, ops.add, aten.sub, ops.sub]
|
609 |
+
fusion_ops = [mkldnn._convolution_pointwise.binary]
|
610 |
+
_computation_user_1 = [_conv_call(users=1)]
|
611 |
+
for computation_call, computation_op, fusion_op in zip(
|
612 |
+
_computation_user_1, computation_ops[:-1], fusion_ops
|
613 |
+
):
|
614 |
+
for binary_op in binary_ops:
|
615 |
+
pattern_v1 = _combined_fusion(
|
616 |
+
_binary_fusion_v2(computation_call, binary_op), aten.relu
|
617 |
+
)
|
618 |
+
_register_binary_unary_fusion_lowering(
|
619 |
+
pattern_v1,
|
620 |
+
computation_op,
|
621 |
+
binary_op,
|
622 |
+
fusion_op,
|
623 |
+
unary_attr=UnaryAttr("relu"),
|
624 |
+
)
|
625 |
+
for binary_op in [aten.add, ops.add]:
|
626 |
+
pattern_v2 = _combined_fusion(
|
627 |
+
_binary_fusion_v1(computation_call, binary_op), aten.relu
|
628 |
+
)
|
629 |
+
_register_binary_unary_fusion_lowering(
|
630 |
+
pattern_v2,
|
631 |
+
computation_op,
|
632 |
+
binary_op,
|
633 |
+
fusion_op,
|
634 |
+
unary_attr=UnaryAttr("relu"),
|
635 |
+
)
|
636 |
+
|
637 |
+
def _recover_linear():
|
638 |
+
# convert reshape+linear+reshape to a single linear for applying fusion path.
|
639 |
+
@register_freezing_graph_pattern(
|
640 |
+
CallFunction(
|
641 |
+
aten.reshape.default,
|
642 |
+
CallFunction(
|
643 |
+
mkldnn._linear_pointwise.default,
|
644 |
+
CallFunction(
|
645 |
+
aten.reshape.default,
|
646 |
+
Arg(),
|
647 |
+
KeywordArg("reshape_1"),
|
648 |
+
_users=MULTIPLE,
|
649 |
+
),
|
650 |
+
Arg(),
|
651 |
+
Arg(),
|
652 |
+
Arg(),
|
653 |
+
Arg(),
|
654 |
+
Arg(),
|
655 |
+
),
|
656 |
+
KeywordArg("reshape_2"),
|
657 |
+
),
|
658 |
+
pass_number=1,
|
659 |
+
)
|
660 |
+
def reshape_linear_reshape_pattern(match, *args, **kwargs):
|
661 |
+
reshape_1 = kwargs.get("reshape_1")
|
662 |
+
reshape_2 = kwargs.get("reshape_2")
|
663 |
+
assert isinstance(reshape_1, list)
|
664 |
+
assert isinstance(reshape_2, list)
|
665 |
+
assert len(reshape_1) == 2
|
666 |
+
dynamic_shapes = not all(
|
667 |
+
isinstance(x, int) for x in ([reshape_1[0]] + reshape_2[:-1])
|
668 |
+
)
|
669 |
+
|
670 |
+
graph = match.graph
|
671 |
+
reshape_2_node = match.output_node()
|
672 |
+
linear_input_node = reshape_2_node.args[0].args[0].args[0]
|
673 |
+
# check linear's input's shape[:-1] == reshape_2[:-1]
|
674 |
+
# and check product(reshape_2[:-1]) == reshape_1[0]
|
675 |
+
if dynamic_shapes:
|
676 |
+
# TODO: Haozhe investigate how add guard here
|
677 |
+
return
|
678 |
+
else:
|
679 |
+
can_remove_reshape = linear_input_node.meta.get("val").shape[
|
680 |
+
:-1
|
681 |
+
] == torch.Size(reshape_2[:-1])
|
682 |
+
can_remove_reshape = can_remove_reshape and (
|
683 |
+
reduce(lambda x, y: x * y, reshape_2[:-1]) == reshape_1[0]
|
684 |
+
)
|
685 |
+
|
686 |
+
if can_remove_reshape:
|
687 |
+
repl = graph.call_function(mkldnn._linear_pointwise.default, args)
|
688 |
+
repl.meta.update(reshape_2_node.meta)
|
689 |
+
reshape_2_node.replace_all_uses_with(repl)
|
690 |
+
old_linear_node = reshape_2_node.args[0]
|
691 |
+
reshape_1_node = old_linear_node.args[0]
|
692 |
+
graph.erase_node(reshape_2_node)
|
693 |
+
graph.erase_node(old_linear_node)
|
694 |
+
if len(reshape_1_node.users) == 0:
|
695 |
+
graph.erase_node(reshape_1_node)
|
696 |
+
|
697 |
+
def is_linear_add_bias(match):
|
698 |
+
add_node = match.output_node()
|
699 |
+
linear_node = add_node.args[0]
|
700 |
+
weight_meta = linear_node.args[1].meta.get("val")
|
701 |
+
bias_meta = add_node.args[1].meta.get("val")
|
702 |
+
if weight_meta is None or bias_meta is None:
|
703 |
+
return False
|
704 |
+
return (
|
705 |
+
linear_node.args[2] is None
|
706 |
+
and bias_meta.dim() == 1
|
707 |
+
and bias_meta.size(0) == weight_meta.size(0)
|
708 |
+
)
|
709 |
+
|
710 |
+
# convert linear+bias to a single linear for applying fusion path.
|
711 |
+
@register_freezing_graph_pattern(
|
712 |
+
CallFunction(
|
713 |
+
aten.add.Tensor,
|
714 |
+
CallFunction(mkldnn._linear_pointwise.default, *_linear_args),
|
715 |
+
Arg(),
|
716 |
+
),
|
717 |
+
pass_number=1,
|
718 |
+
extra_check=is_linear_add_bias,
|
719 |
+
)
|
720 |
+
def linear_bias_pattern(match, *args):
|
721 |
+
graph = match.graph
|
722 |
+
add_node = match.output_node()
|
723 |
+
linear_node = add_node.args[0]
|
724 |
+
new_args = list(linear_node.args)
|
725 |
+
new_args[2] = add_node.args[1]
|
726 |
+
repl = graph.call_function(
|
727 |
+
mkldnn._linear_pointwise.default, tuple(new_args)
|
728 |
+
)
|
729 |
+
repl.meta.update(add_node.meta)
|
730 |
+
add_node.replace_all_uses_with(repl)
|
731 |
+
match.erase_nodes(graph)
|
732 |
+
|
733 |
+
def _is_packable_mkldnn_rnn_layer(match):
|
734 |
+
lstm_node = match.output_node()
|
735 |
+
POS_WEIGHTS = [1, 2]
|
736 |
+
POS_INPUTS = [0, 5, 6]
|
737 |
+
POS_ARGS = POS_WEIGHTS + POS_INPUTS
|
738 |
+
# Weights should be Constant
|
739 |
+
if any(
|
740 |
+
lstm_node.args[POS_WEIGHT].op != "get_attr" for POS_WEIGHT in POS_WEIGHTS
|
741 |
+
):
|
742 |
+
return False
|
743 |
+
|
744 |
+
# Meta info for weights and inputs should be available
|
745 |
+
if any(lstm_node.args[POS_ARG].meta.get("val") is None for POS_ARG in POS_ARGS):
|
746 |
+
return False
|
747 |
+
|
748 |
+
# Check device
|
749 |
+
if any(
|
750 |
+
lstm_node.args[POS_ARG].meta.get("val").device.type != "cpu"
|
751 |
+
for POS_ARG in POS_ARGS
|
752 |
+
):
|
753 |
+
return False
|
754 |
+
|
755 |
+
# Check dtype
|
756 |
+
if any(
|
757 |
+
lstm_node.args[POS_ARG].meta.get("val").dtype == torch.bfloat16
|
758 |
+
and not mkldnn._is_mkldnn_bf16_supported()
|
759 |
+
for POS_ARG in POS_ARGS
|
760 |
+
):
|
761 |
+
return False
|
762 |
+
|
763 |
+
return True
|
764 |
+
|
765 |
+
def _is_packable_convolution(match):
|
766 |
+
"""
|
767 |
+
Check if the node is supported for MKLDNN convolution.
|
768 |
+
"""
|
769 |
+
conv_node = match.output_node()
|
770 |
+
input_meta_value = conv_node.args[0].meta.get("val")
|
771 |
+
weight_meta_value = conv_node.args[1].meta.get("val")
|
772 |
+
if input_meta_value is None or weight_meta_value is None:
|
773 |
+
return False
|
774 |
+
input_size = input_meta_value.shape
|
775 |
+
if conv_node.args[1].op != "get_attr":
|
776 |
+
return False
|
777 |
+
for meta_value in [input_meta_value, weight_meta_value]:
|
778 |
+
if (
|
779 |
+
meta_value is None
|
780 |
+
or meta_value.device.type != "cpu"
|
781 |
+
or meta_value.dim() != 4
|
782 |
+
):
|
783 |
+
return False
|
784 |
+
if (
|
785 |
+
input_meta_value.dtype == torch.bfloat16
|
786 |
+
or weight_meta_value.dtype == torch.bfloat16
|
787 |
+
):
|
788 |
+
if not mkldnn._is_mkldnn_bf16_supported():
|
789 |
+
return False
|
790 |
+
is_transposed = conv_node.args[-3]
|
791 |
+
if is_transposed:
|
792 |
+
# TODO: Support dynamic shape case for MKLDNN conv transpose.
|
793 |
+
if has_free_symbols(input_size):
|
794 |
+
return False
|
795 |
+
groups = conv_node.args[-1]
|
796 |
+
in_channels = weight_meta_value.size(0)
|
797 |
+
# doesn't support group_depthwise_conv_transpose.
|
798 |
+
if groups > 1 and groups == in_channels:
|
799 |
+
return False
|
800 |
+
# Port from: aten/src/ATen/native/Convolution.cpp:is_output_padding_big
|
801 |
+
output_paddings = conv_node.args[-2]
|
802 |
+
strides = conv_node.args[3]
|
803 |
+
if any(
|
804 |
+
output_padding >= stride
|
805 |
+
for output_padding, stride in zip(output_paddings, strides)
|
806 |
+
):
|
807 |
+
return False
|
808 |
+
return True
|
809 |
+
|
810 |
+
def _is_packable_linear(match):
|
811 |
+
"""
|
812 |
+
Check if the node is supported for MKLDNN linear.
|
813 |
+
"""
|
814 |
+
linear_node = match.output_node()
|
815 |
+
# weight_idx is 1 for aten.mm and is 2 for aten.addmm
|
816 |
+
weight_idx = 2 if linear_node.target == aten.addmm.default else 1
|
817 |
+
if linear_node.args[weight_idx].op != "get_attr":
|
818 |
+
return False
|
819 |
+
input_meta_value = linear_node.args[weight_idx - 1].meta.get("val")
|
820 |
+
weight_meta_value = linear_node.args[weight_idx].meta.get("val")
|
821 |
+
if input_meta_value is None or weight_meta_value is None:
|
822 |
+
return False
|
823 |
+
batch_size = input_meta_value.shape[0]
|
824 |
+
is_bf16_weight = weight_meta_value.dtype == torch.bfloat16
|
825 |
+
# for fp32, mkl should be enabled and batch_size should not be a free symbol.
|
826 |
+
if not is_bf16_weight and (
|
827 |
+
(not torch._C.has_mkl) or has_free_symbols(batch_size)
|
828 |
+
):
|
829 |
+
return False
|
830 |
+
for meta_value in [input_meta_value, weight_meta_value]:
|
831 |
+
if (
|
832 |
+
meta_value is None
|
833 |
+
or meta_value.device.type != "cpu"
|
834 |
+
or meta_value.dim() != 2
|
835 |
+
):
|
836 |
+
return False
|
837 |
+
if weight_idx == 2:
|
838 |
+
bias_meta_value = linear_node.args[0].meta.get("val")
|
839 |
+
if (
|
840 |
+
bias_meta_value is None
|
841 |
+
or meta_value.device.type != "cpu"
|
842 |
+
or bias_meta_value.dim() != 1
|
843 |
+
or bias_meta_value.size(0) != weight_meta_value.size(1)
|
844 |
+
):
|
845 |
+
return False
|
846 |
+
|
847 |
+
if (
|
848 |
+
input_meta_value.dtype == torch.bfloat16
|
849 |
+
or weight_meta_value.dtype == torch.bfloat16
|
850 |
+
):
|
851 |
+
if not mkldnn._is_mkldnn_bf16_supported():
|
852 |
+
return False
|
853 |
+
return True
|
854 |
+
|
855 |
+
_aten_conv_args = (
|
856 |
+
Arg(),
|
857 |
+
Arg(),
|
858 |
+
Arg(),
|
859 |
+
Arg(),
|
860 |
+
Arg(),
|
861 |
+
Arg(),
|
862 |
+
KeywordArg("is_transposed"),
|
863 |
+
Arg(),
|
864 |
+
Arg(),
|
865 |
+
)
|
866 |
+
|
867 |
+
_aten_mkldnn_rnn_layer_args = (
|
868 |
+
Arg(), # input
|
869 |
+
Arg(), # weight0
|
870 |
+
Arg(), # weight1
|
871 |
+
Arg(), # weight2
|
872 |
+
Arg(), # weight3
|
873 |
+
Arg(), # hx_
|
874 |
+
Arg(), # cx_
|
875 |
+
KeywordArg("reverse"), # reverse
|
876 |
+
Arg(), # batch_sizes
|
877 |
+
Arg(), # mode
|
878 |
+
Arg(), # hidden_size
|
879 |
+
Arg(), # num_layers
|
880 |
+
Arg(), # has_biases
|
881 |
+
Arg(), # bidirectional
|
882 |
+
Arg(), # batch_first
|
883 |
+
Arg(), # train
|
884 |
+
)
|
885 |
+
|
886 |
+
def _register_weight_pack_pass():
|
887 |
+
@register_freezing_graph_pattern(
|
888 |
+
CallFunction(aten.convolution.default, *_aten_conv_args),
|
889 |
+
extra_check=_is_packable_convolution,
|
890 |
+
)
|
891 |
+
def convolution(match, *args, **kwargs):
|
892 |
+
is_transposed = kwargs.get("is_transposed")
|
893 |
+
assert isinstance(is_transposed, bool)
|
894 |
+
graph = match.graph
|
895 |
+
conv_node = match.output_node()
|
896 |
+
input_size = conv_node.args[0].meta.get("val").shape
|
897 |
+
with graph.inserting_before(conv_node):
|
898 |
+
constant_args = [args[4], args[3], args[5], args[-1]]
|
899 |
+
packed_weight_op = mkldnn._reorder_convolution_weight
|
900 |
+
packed_conv_op = mkldnn._convolution_pointwise.default
|
901 |
+
if is_transposed:
|
902 |
+
constant_args.insert(1, args[-2]) # output_padding
|
903 |
+
packed_weight_op = mkldnn._reorder_convolution_transpose_weight
|
904 |
+
packed_conv_op = mkldnn._convolution_transpose_pointwise.default
|
905 |
+
if not has_free_symbols(input_size):
|
906 |
+
packed_weight_inputs = (
|
907 |
+
(args[1],) + tuple(constant_args) + (input_size,)
|
908 |
+
)
|
909 |
+
packed_weight_node = graph.create_node(
|
910 |
+
"call_function", packed_weight_op, args=packed_weight_inputs
|
911 |
+
)
|
912 |
+
else:
|
913 |
+
assert not is_transposed
|
914 |
+
# For dynamic shape case, we need to pack weight in runtime.
|
915 |
+
packed_weight_node = args[1]
|
916 |
+
packed_conv_inputs = (
|
917 |
+
(args[0], packed_weight_node, args[2])
|
918 |
+
+ tuple(constant_args)
|
919 |
+
+ ("none", [], "")
|
920 |
+
)
|
921 |
+
packed_conv_node = graph.create_node(
|
922 |
+
"call_function", packed_conv_op, tuple(packed_conv_inputs)
|
923 |
+
)
|
924 |
+
conv_node.replace_all_uses_with(packed_conv_node)
|
925 |
+
packed_conv_node.meta.update(conv_node.meta)
|
926 |
+
graph.erase_node(conv_node)
|
927 |
+
|
928 |
+
@register_freezing_graph_pattern(
|
929 |
+
CallFunction(aten.mkldnn_rnn_layer.default, *_aten_mkldnn_rnn_layer_args),
|
930 |
+
extra_check=_is_packable_mkldnn_rnn_layer,
|
931 |
+
)
|
932 |
+
def mkldnn_rnn_layer(match, *args, **kwargs):
|
933 |
+
def get_item(graph, node, index):
|
934 |
+
return graph.call_function(operator.getitem, (node, index))
|
935 |
+
|
936 |
+
graph = match.graph
|
937 |
+
lstm_node = match.output_node()
|
938 |
+
input = args[0]
|
939 |
+
weight0, weight1 = args[1:3]
|
940 |
+
reverse = kwargs.get("reverse")
|
941 |
+
packed_lstm_op = aten.mkldnn_rnn_layer.default
|
942 |
+
hidden_size = args[9]
|
943 |
+
has_biases = args[11]
|
944 |
+
batch_first = args[13]
|
945 |
+
with graph.inserting_before(lstm_node):
|
946 |
+
packed_weight_op = mkldnn._reorder_mkldnn_rnn_layer_weight.default
|
947 |
+
packed_weight_inputs = (
|
948 |
+
weight0,
|
949 |
+
weight1,
|
950 |
+
hidden_size,
|
951 |
+
reverse,
|
952 |
+
has_biases,
|
953 |
+
batch_first,
|
954 |
+
)
|
955 |
+
packed_weight_node = graph.create_node(
|
956 |
+
"call_function", packed_weight_op, packed_weight_inputs, {}, "name"
|
957 |
+
)
|
958 |
+
packed_weight_items = [
|
959 |
+
get_item(graph, packed_weight_node, i) for i in range(2)
|
960 |
+
]
|
961 |
+
pack_lstm_inputs = (
|
962 |
+
args[0],
|
963 |
+
*packed_weight_items,
|
964 |
+
args[3],
|
965 |
+
args[4],
|
966 |
+
args[5],
|
967 |
+
args[6],
|
968 |
+
reverse,
|
969 |
+
*args[7:],
|
970 |
+
)
|
971 |
+
|
972 |
+
packed_lstm_node = graph.create_node(
|
973 |
+
"call_function", packed_lstm_op, args=pack_lstm_inputs
|
974 |
+
)
|
975 |
+
lstm_node.replace_all_uses_with(packed_lstm_node)
|
976 |
+
packed_lstm_node.meta.update(lstm_node.meta)
|
977 |
+
graph.erase_node(lstm_node)
|
978 |
+
|
979 |
+
@register_freezing_graph_pattern(
|
980 |
+
CallFunction(aten.addmm.default, Arg(), Arg(), Arg()),
|
981 |
+
extra_check=_is_packable_linear,
|
982 |
+
)
|
983 |
+
@register_freezing_graph_pattern(
|
984 |
+
CallFunction(aten.mm.default, Arg(), Arg()),
|
985 |
+
extra_check=_is_packable_linear,
|
986 |
+
)
|
987 |
+
def linear(match, *args, **kwargs):
|
988 |
+
graph = match.graph
|
989 |
+
linear_node = match.output_node()
|
990 |
+
input = args[0] if linear_node.target == aten.mm.default else args[1]
|
991 |
+
bias = None if linear_node.target == aten.mm.default else args[0]
|
992 |
+
weight = args[1] if linear_node.target == aten.mm.default else args[2]
|
993 |
+
with graph.inserting_before(linear_node):
|
994 |
+
transpose_weight_node = graph.create_node(
|
995 |
+
"call_function", aten.permute.default, (weight, (1, 0))
|
996 |
+
)
|
997 |
+
weight_dtype = weight.meta.get("val").dtype
|
998 |
+
is_bf16_weight = weight_dtype == torch.bfloat16
|
999 |
+
batch_size = input.meta.get("val").shape[0]
|
1000 |
+
if has_free_symbols(batch_size):
|
1001 |
+
assert (
|
1002 |
+
is_bf16_weight
|
1003 |
+
), f"only bf16 weight prepacking supports dynamic shape inputs but got {weight_dtype}"
|
1004 |
+
# For bfloat16 dynamic shape path, using input size hint to pack weight for a better performance.
|
1005 |
+
packed_weight_inputs = (
|
1006 |
+
transpose_weight_node,
|
1007 |
+
batch_size.node.shape_env.size_hint(batch_size.node.expr)
|
1008 |
+
if has_free_symbols(batch_size)
|
1009 |
+
else batch_size,
|
1010 |
+
)
|
1011 |
+
packed_weight_op = (
|
1012 |
+
mkldnn._reorder_linear_weight
|
1013 |
+
if is_bf16_weight
|
1014 |
+
else torch.ops.mkl._mkl_reorder_linear_weight
|
1015 |
+
)
|
1016 |
+
packed_weight_node = graph.create_node(
|
1017 |
+
"call_function", packed_weight_op, args=packed_weight_inputs
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
packed_linear_inputs: Tuple[Any, ...] = (input, packed_weight_node)
|
1021 |
+
if is_bf16_weight:
|
1022 |
+
packed_linear_inputs += (bias, "none", [], "")
|
1023 |
+
packed_linear_op = mkldnn._linear_pointwise.default
|
1024 |
+
else:
|
1025 |
+
packed_linear_inputs += (transpose_weight_node, bias, batch_size)
|
1026 |
+
packed_linear_op = torch.ops.mkl._mkl_linear
|
1027 |
+
packed_linear_node = graph.create_node(
|
1028 |
+
"call_function", packed_linear_op, packed_linear_inputs
|
1029 |
+
)
|
1030 |
+
linear_node.replace_all_uses_with(packed_linear_node)
|
1031 |
+
packed_linear_node.meta.update(linear_node.meta)
|
1032 |
+
graph.erase_node(linear_node)
|
1033 |
+
|
1034 |
+
def _eliminate_duplicate_packed_nodes(gm):
|
1035 |
+
"""
|
1036 |
+
Combine packed weight nodes with the same inputs to reduce memory usage.
|
1037 |
+
for example:
|
1038 |
+
class Model(nn.Module):
|
1039 |
+
def __init__(self):
|
1040 |
+
super().__init__()
|
1041 |
+
self.linear = nn.Linear(32, 32, bias=True)
|
1042 |
+
|
1043 |
+
def forward(self, x):
|
1044 |
+
return self.linear(self.linear(x))
|
1045 |
+
|
1046 |
+
the above's packed weight nodes are duplicate if two linear calls have same input size.
|
1047 |
+
"""
|
1048 |
+
if not (torch.backends.mkldnn.enabled and torch.backends.mkldnn.is_available()):
|
1049 |
+
return gm
|
1050 |
+
|
1051 |
+
packed_weight_ops = [
|
1052 |
+
torch._C._nn.mkldnn_reorder_conv2d_weight,
|
1053 |
+
mkldnn._reorder_convolution_transpose_weight,
|
1054 |
+
mkldnn._reorder_linear_weight,
|
1055 |
+
mkldnn._reorder_mkldnn_rnn_layer_weight,
|
1056 |
+
]
|
1057 |
+
if torch._C.has_mkl:
|
1058 |
+
packed_weight_ops.append(torch.ops.mkl._mkl_reorder_linear_weight)
|
1059 |
+
|
1060 |
+
for node in gm.graph.nodes:
|
1061 |
+
if node.target in packed_weight_ops and len(node.args[0].users) > 1:
|
1062 |
+
for user_node in list(node.args[0].users.keys()):
|
1063 |
+
if (
|
1064 |
+
user_node.target == node.target
|
1065 |
+
and user_node != node
|
1066 |
+
and user_node.args == node.args
|
1067 |
+
):
|
1068 |
+
user_node.replace_all_uses_with(node)
|
1069 |
+
gm.graph.erase_node(user_node)
|
1070 |
+
|
1071 |
+
@functools.lru_cache(None)
|
1072 |
+
def _mkldnn_fusion_init():
|
1073 |
+
if torch.backends.mkldnn.enabled and torch.backends.mkldnn.is_available():
|
1074 |
+
_register_unary_fusion()
|
1075 |
+
_register_inplace_fusion()
|
1076 |
+
_register_binary_unary_fusion()
|
1077 |
+
_register_binary_fusion()
|
1078 |
+
_register_quantization_lowerings()
|
1079 |
+
|
1080 |
+
@functools.lru_cache(None)
|
1081 |
+
def _mkldnn_weight_pack_init():
|
1082 |
+
if torch.backends.mkldnn.enabled and torch.backends.mkldnn.is_available():
|
1083 |
+
_register_weight_pack_pass()
|
1084 |
+
_recover_linear()
|
1085 |
+
_register_quantization_weight_pack_pass()
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/pad_mm.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from itertools import chain
|
3 |
+
from typing import List, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import Tensor
|
7 |
+
from torch._inductor import utils
|
8 |
+
from torch.utils._mode_utils import no_dispatch
|
9 |
+
from torch.utils._triton import has_triton
|
10 |
+
|
11 |
+
from ..pattern_matcher import fwd_only, joint_fwd_bwd, Match, register_replacement
|
12 |
+
|
13 |
+
aten = torch.ops.aten
|
14 |
+
|
15 |
+
|
16 |
+
def fetch_fake_tensors(match, kwarg_names) -> List[Tensor]:
|
17 |
+
kwargs = match.kwargs
|
18 |
+
return [kwargs[name].meta["val"] for name in kwarg_names]
|
19 |
+
|
20 |
+
|
21 |
+
def unwrap_fake_args(*arg_names):
|
22 |
+
def decorator(func):
|
23 |
+
def wrapper(match):
|
24 |
+
fake_tensors = fetch_fake_tensors(match, arg_names)
|
25 |
+
return func(*fake_tensors)
|
26 |
+
|
27 |
+
return wrapper
|
28 |
+
|
29 |
+
return decorator
|
30 |
+
|
31 |
+
|
32 |
+
def get_alignment_size(x: Tensor) -> int:
|
33 |
+
if x.dtype == torch.float16 or x.dtype == torch.half or x.dtype == torch.bfloat16:
|
34 |
+
return 8
|
35 |
+
elif x.dtype == torch.float32 or x.dtype == torch.float:
|
36 |
+
return 4
|
37 |
+
else:
|
38 |
+
return 0
|
39 |
+
|
40 |
+
|
41 |
+
def check_device(a: Tensor, b: Tensor) -> bool:
|
42 |
+
return a.is_cuda and b.is_cuda
|
43 |
+
|
44 |
+
|
45 |
+
def check_dtype(a: Tensor, b: Tensor) -> bool:
|
46 |
+
return a.is_floating_point() and b.is_floating_point()
|
47 |
+
|
48 |
+
|
49 |
+
def is_symbolic(a: Optional[Tensor]) -> bool:
|
50 |
+
return a is not None and any(
|
51 |
+
isinstance(x, torch.SymInt) for x in chain(a.size(), a.stride())
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
def any_is_symbolic(*args: Optional[Tensor]) -> bool:
|
56 |
+
return any(is_symbolic(a) for a in args)
|
57 |
+
|
58 |
+
|
59 |
+
def should_pad_common(
|
60 |
+
mat1: Tensor, mat2: Tensor, input: Optional[Tensor] = None
|
61 |
+
) -> bool:
|
62 |
+
return (
|
63 |
+
torch._inductor.config.shape_padding
|
64 |
+
and check_device(mat1, mat2)
|
65 |
+
and check_dtype(mat1, mat2)
|
66 |
+
and not any_is_symbolic(mat1, mat2, input)
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
def get_padded_length(x: int, alignment_size) -> int:
|
71 |
+
if alignment_size == 0 or x % alignment_size == 0:
|
72 |
+
return 0
|
73 |
+
return int((x // alignment_size + 1) * alignment_size) - x
|
74 |
+
|
75 |
+
|
76 |
+
def pad_dim(x: Tensor, padded_length: int, dim: int) -> Tensor:
|
77 |
+
if padded_length == 0:
|
78 |
+
return x
|
79 |
+
pad = x.new_zeros(*x.shape[:dim], padded_length, *x.shape[dim + 1 :])
|
80 |
+
return torch.cat([x, pad], dim=dim)
|
81 |
+
|
82 |
+
|
83 |
+
def addmm_pattern(
|
84 |
+
input: Tensor, mat1: Tensor, mat2: Tensor, beta: float, alpha: float
|
85 |
+
) -> Tensor:
|
86 |
+
return aten.addmm(input, mat1, mat2, beta=beta, alpha=alpha)
|
87 |
+
|
88 |
+
|
89 |
+
def should_pad_addmm(match: Match) -> bool:
|
90 |
+
mat1, mat2, input = fetch_fake_tensors(match, ("mat1", "mat2", "input"))
|
91 |
+
return should_pad_common(mat1, mat2, input) and should_pad_bench(
|
92 |
+
mat1, mat2, torch.ops.aten.addmm, input=input
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
def addmm_replace(
|
97 |
+
input: Optional[Tensor], mat1: Tensor, mat2: Tensor, beta=1.0, alpha=1.0
|
98 |
+
) -> Tensor:
|
99 |
+
m_padded_length = get_padded_length(mat1.shape[0], get_alignment_size(mat1))
|
100 |
+
k_padded_length = get_padded_length(mat1.shape[1], get_alignment_size(mat1))
|
101 |
+
n_padded_length = get_padded_length(mat2.shape[1], get_alignment_size(mat2))
|
102 |
+
|
103 |
+
if m_padded_length != 0 or k_padded_length != 0 or n_padded_length != 0:
|
104 |
+
return pad_addmm(
|
105 |
+
input,
|
106 |
+
mat1,
|
107 |
+
mat2,
|
108 |
+
m_padded_length,
|
109 |
+
k_padded_length,
|
110 |
+
n_padded_length,
|
111 |
+
beta,
|
112 |
+
alpha,
|
113 |
+
)
|
114 |
+
|
115 |
+
return aten.addmm(input, mat1, mat2, beta=beta, alpha=alpha)
|
116 |
+
|
117 |
+
|
118 |
+
def pad_addmm(
|
119 |
+
input: Optional[Tensor],
|
120 |
+
mat1: Tensor,
|
121 |
+
mat2: Tensor,
|
122 |
+
m_padded_length: int,
|
123 |
+
k_padded_length: int,
|
124 |
+
n_padded_length: int,
|
125 |
+
beta=1.0,
|
126 |
+
alpha=1.0,
|
127 |
+
):
|
128 |
+
# addmm decomp with padding will go through pad_addmm multiple times if multiple dimensions are needed to be padded
|
129 |
+
if k_padded_length != 0:
|
130 |
+
mat1 = pad_dim(mat1, k_padded_length, 1)
|
131 |
+
mat2 = pad_dim(mat2, k_padded_length, 0)
|
132 |
+
elif n_padded_length != 0:
|
133 |
+
mat2 = pad_dim(mat2, n_padded_length, 1)
|
134 |
+
elif m_padded_length != 0:
|
135 |
+
mat1 = pad_dim(mat1, m_padded_length, 0)
|
136 |
+
|
137 |
+
# the add broadcasts, so we only pad if the dimension != 1
|
138 |
+
if input is not None and k_padded_length == 0:
|
139 |
+
if n_padded_length != 0:
|
140 |
+
if input.dim() == 2 and input.shape[1] != 1:
|
141 |
+
input = pad_dim(input, n_padded_length, 1)
|
142 |
+
elif input.dim() == 1 and input.shape[0] != 1:
|
143 |
+
input = pad_dim(input, n_padded_length, 0)
|
144 |
+
elif m_padded_length != 0 and input.dim() == 2 and input.shape[0] != 1:
|
145 |
+
input = pad_dim(input, m_padded_length, 0)
|
146 |
+
|
147 |
+
if k_padded_length != 0:
|
148 |
+
return addmm_replace(input, mat1, mat2, beta=beta, alpha=alpha)
|
149 |
+
elif n_padded_length != 0:
|
150 |
+
return addmm_replace(input, mat1, mat2, beta=beta, alpha=alpha)[
|
151 |
+
:, :-n_padded_length
|
152 |
+
]
|
153 |
+
else:
|
154 |
+
return addmm_replace(input, mat1, mat2, beta=beta, alpha=alpha)[
|
155 |
+
:-m_padded_length, :
|
156 |
+
]
|
157 |
+
|
158 |
+
|
159 |
+
def is_mm_compute_bound(M: int, K: int, N: int, dtype: torch.dtype) -> bool:
|
160 |
+
denominator = M * K + N * K + M * N
|
161 |
+
if denominator == 0:
|
162 |
+
return False
|
163 |
+
arithmetic_intensity = (M * N * K) / denominator
|
164 |
+
|
165 |
+
# Fails with AMD
|
166 |
+
try:
|
167 |
+
machine_balance = (
|
168 |
+
1000 * utils.get_device_tflops(dtype)
|
169 |
+
) / utils.get_gpu_dram_gbps()
|
170 |
+
except Exception:
|
171 |
+
return True
|
172 |
+
|
173 |
+
# dram_gbps might be underestimating bandwidth because of cache.
|
174 |
+
# if we estimate machine balance too low we might miss some speedups,
|
175 |
+
# if we extimate too high there will be unnecessary compilation time increase.
|
176 |
+
# TODO - finetune coefficient here. As a reference point, Triton mm model assumes
|
177 |
+
# 80% of reads are in cache and cache is 4x faster than dram_gbps
|
178 |
+
machine_balance = machine_balance * 0.5
|
179 |
+
|
180 |
+
return arithmetic_intensity > machine_balance
|
181 |
+
|
182 |
+
|
183 |
+
@functools.lru_cache(None)
|
184 |
+
def get_pad_cache():
|
185 |
+
return torch._inductor.codecache.LocalCache()
|
186 |
+
|
187 |
+
|
188 |
+
def get_cached_should_pad(key):
|
189 |
+
return get_pad_cache().lookup(key)
|
190 |
+
|
191 |
+
|
192 |
+
def set_cached_should_pad(key, value):
|
193 |
+
return get_pad_cache().set_value(key, value=value)
|
194 |
+
|
195 |
+
|
196 |
+
def should_pad_bench_key(
|
197 |
+
mat1: Tensor, mat2: Tensor, op, input: Optional[Tensor] = None
|
198 |
+
) -> str:
|
199 |
+
def tensor_key(t):
|
200 |
+
return (t.shape, t.stride(), t.dtype)
|
201 |
+
|
202 |
+
tf32_key = (
|
203 |
+
None if mat1.dtype != torch.float32 else torch.backends.cuda.matmul.allow_tf32
|
204 |
+
)
|
205 |
+
key = (
|
206 |
+
tensor_key(mat1),
|
207 |
+
tensor_key(mat2),
|
208 |
+
op,
|
209 |
+
input if input is None else tensor_key(input),
|
210 |
+
tf32_key,
|
211 |
+
)
|
212 |
+
|
213 |
+
return str(key)
|
214 |
+
|
215 |
+
|
216 |
+
def should_pad_bench(
|
217 |
+
mat1: Tensor, mat2: Tensor, op, input: Optional[Tensor] = None
|
218 |
+
) -> bool:
|
219 |
+
if not has_triton():
|
220 |
+
return False
|
221 |
+
|
222 |
+
do_bench = functools.partial(
|
223 |
+
utils.do_bench,
|
224 |
+
warmup=5,
|
225 |
+
)
|
226 |
+
|
227 |
+
with no_dispatch():
|
228 |
+
if op is torch.ops.aten.mm or op is torch.ops.aten.addmm:
|
229 |
+
m = mat1.shape[0]
|
230 |
+
k = mat1.shape[1]
|
231 |
+
n = mat2.shape[1]
|
232 |
+
|
233 |
+
m_padded_length = get_padded_length(m, get_alignment_size(mat1))
|
234 |
+
k_padded_length = get_padded_length(k, get_alignment_size(mat1))
|
235 |
+
n_padded_length = get_padded_length(n, get_alignment_size(mat2))
|
236 |
+
elif op is torch.ops.aten.bmm:
|
237 |
+
m = mat1.shape[1]
|
238 |
+
k = mat2.shape[2]
|
239 |
+
n = mat2.shape[2]
|
240 |
+
|
241 |
+
m_padded_length = get_padded_length(m, get_alignment_size(mat1))
|
242 |
+
k_padded_length = get_padded_length(k, get_alignment_size(mat1))
|
243 |
+
n_padded_length = get_padded_length(n, get_alignment_size(mat2))
|
244 |
+
else:
|
245 |
+
return False
|
246 |
+
|
247 |
+
if m_padded_length == k_padded_length == n_padded_length == 0:
|
248 |
+
return False
|
249 |
+
|
250 |
+
if not is_mm_compute_bound(m, k, n, mat1.dtype):
|
251 |
+
return False
|
252 |
+
|
253 |
+
# We don't want to look up the cache for cases that are trivially false
|
254 |
+
# since it does file io
|
255 |
+
key = should_pad_bench_key(mat1, mat2, op, input)
|
256 |
+
|
257 |
+
cached_pad = get_cached_should_pad(key)
|
258 |
+
if cached_pad is not None:
|
259 |
+
return cached_pad
|
260 |
+
|
261 |
+
mat1 = torch.randn_like(mat1)
|
262 |
+
mat2 = torch.randn_like(mat2)
|
263 |
+
if op is torch.ops.aten.bmm or op is torch.ops.aten.mm:
|
264 |
+
ori_time = do_bench(
|
265 |
+
lambda: op(mat1, mat2),
|
266 |
+
)
|
267 |
+
else:
|
268 |
+
if input is not None:
|
269 |
+
input = torch.randn_like(input)
|
270 |
+
ori_time = do_bench(
|
271 |
+
lambda: op(input, mat1, mat2),
|
272 |
+
)
|
273 |
+
|
274 |
+
mat1_pad = torch.randn_like(mat1)
|
275 |
+
mat2_pad = torch.randn_like(mat2)
|
276 |
+
|
277 |
+
if op is torch.ops.aten.addmm:
|
278 |
+
input_pad = None
|
279 |
+
if input is not None and input.is_cuda:
|
280 |
+
input_pad = torch.randn_like(input)
|
281 |
+
pad_time = do_bench(
|
282 |
+
lambda: pad_addmm(
|
283 |
+
input_pad,
|
284 |
+
mat1_pad,
|
285 |
+
mat2_pad,
|
286 |
+
m_padded_length,
|
287 |
+
k_padded_length,
|
288 |
+
n_padded_length,
|
289 |
+
),
|
290 |
+
)
|
291 |
+
elif op is torch.ops.aten.mm:
|
292 |
+
pad_time = do_bench(
|
293 |
+
lambda: pad_mm(
|
294 |
+
mat1_pad,
|
295 |
+
mat2_pad,
|
296 |
+
m_padded_length,
|
297 |
+
k_padded_length,
|
298 |
+
n_padded_length,
|
299 |
+
),
|
300 |
+
)
|
301 |
+
else:
|
302 |
+
pad_time = do_bench(
|
303 |
+
lambda: pad_bmm(
|
304 |
+
mat1_pad,
|
305 |
+
mat2_pad,
|
306 |
+
m_padded_length,
|
307 |
+
k_padded_length,
|
308 |
+
n_padded_length,
|
309 |
+
),
|
310 |
+
)
|
311 |
+
|
312 |
+
# Shape padding introduces additional memory ops. Based on microbenchmarks, 1.1x represents a reasonable
|
313 |
+
# tradeoff between performance improvement from shape padding and overhead from additional memory ops
|
314 |
+
# TODO: Build a learned model which would be better than this heuristic
|
315 |
+
should_pad = ori_time > pad_time * 1.1
|
316 |
+
set_cached_should_pad(key, should_pad)
|
317 |
+
|
318 |
+
return should_pad
|
319 |
+
|
320 |
+
|
321 |
+
def mm_pattern(mat1: Tensor, mat2: Tensor) -> Tensor:
|
322 |
+
return aten.mm(mat1, mat2)
|
323 |
+
|
324 |
+
|
325 |
+
def should_pad_mm(match: Match) -> bool:
|
326 |
+
mat1, mat2 = fetch_fake_tensors(match, ("mat1", "mat2"))
|
327 |
+
return should_pad_common(mat1, mat2) and should_pad_bench(
|
328 |
+
mat1, mat2, torch.ops.aten.mm
|
329 |
+
)
|
330 |
+
|
331 |
+
|
332 |
+
def mm_replace(mat1: Tensor, mat2: Tensor) -> Tensor:
|
333 |
+
m_padded_length = get_padded_length(mat1.shape[0], get_alignment_size(mat1))
|
334 |
+
k_padded_length = get_padded_length(mat1.shape[1], get_alignment_size(mat1))
|
335 |
+
n_padded_length = get_padded_length(mat2.shape[1], get_alignment_size(mat2))
|
336 |
+
|
337 |
+
return pad_mm(mat1, mat2, m_padded_length, k_padded_length, n_padded_length)
|
338 |
+
|
339 |
+
|
340 |
+
def pad_mm(
|
341 |
+
mat1: Tensor,
|
342 |
+
mat2: Tensor,
|
343 |
+
m_padded_length: int,
|
344 |
+
k_padded_length: int,
|
345 |
+
n_padded_length: int,
|
346 |
+
) -> Tensor:
|
347 |
+
# mm_replace will go through pad_mm multiple times if multiple dimensions are needed to be padded
|
348 |
+
if k_padded_length != 0:
|
349 |
+
mat1 = pad_dim(mat1, k_padded_length, 1)
|
350 |
+
mat2 = pad_dim(mat2, k_padded_length, 0)
|
351 |
+
return torch.ops.aten.mm(mat1, mat2)
|
352 |
+
elif n_padded_length != 0:
|
353 |
+
mat2 = pad_dim(mat2, n_padded_length, 1)
|
354 |
+
return torch.ops.aten.mm(mat1, mat2)[:, :-n_padded_length]
|
355 |
+
else:
|
356 |
+
mat1 = pad_dim(mat1, m_padded_length, 0)
|
357 |
+
return torch.ops.aten.mm(mat1, mat2)[:-m_padded_length, :]
|
358 |
+
|
359 |
+
|
360 |
+
def bmm_pattern(mat1: Tensor, mat2: Tensor) -> Tensor:
|
361 |
+
return aten.bmm(mat1, mat2)
|
362 |
+
|
363 |
+
|
364 |
+
def should_pad_bmm(match: Match) -> bool:
|
365 |
+
mat1, mat2 = fetch_fake_tensors(match, ("mat1", "mat2"))
|
366 |
+
return should_pad_common(mat1, mat2) and should_pad_bench(
|
367 |
+
mat1, mat2, torch.ops.aten.bmm
|
368 |
+
)
|
369 |
+
|
370 |
+
|
371 |
+
def bmm_replace(mat1: Tensor, mat2: Tensor) -> Tensor:
|
372 |
+
m_padded_length = get_padded_length(mat1.shape[1], get_alignment_size(mat1))
|
373 |
+
k_padded_length = get_padded_length(mat1.shape[2], get_alignment_size(mat1))
|
374 |
+
n_padded_length = get_padded_length(mat2.shape[2], get_alignment_size(mat2))
|
375 |
+
|
376 |
+
if m_padded_length != 0 or k_padded_length != 0 or n_padded_length != 0:
|
377 |
+
return pad_bmm(mat1, mat2, m_padded_length, k_padded_length, n_padded_length)
|
378 |
+
|
379 |
+
return aten.bmm(mat1, mat2)
|
380 |
+
|
381 |
+
|
382 |
+
def pad_bmm(
|
383 |
+
mat1: Tensor,
|
384 |
+
mat2: Tensor,
|
385 |
+
m_padded_length: int,
|
386 |
+
k_padded_length: int,
|
387 |
+
n_padded_length: int,
|
388 |
+
) -> Tensor:
|
389 |
+
# bmm_replace will go through pad_bmm multiple times if multiple dimensions are needed to be padded
|
390 |
+
if k_padded_length != 0:
|
391 |
+
mat1 = pad_dim(mat1, k_padded_length, 2)
|
392 |
+
mat2 = pad_dim(mat2, k_padded_length, 1)
|
393 |
+
|
394 |
+
return aten.bmm(mat1, mat2)
|
395 |
+
elif n_padded_length != 0:
|
396 |
+
mat2 = pad_dim(mat2, n_padded_length, 2)
|
397 |
+
return aten.bmm(mat1, mat2)[:, :, :-n_padded_length].contiguous()
|
398 |
+
else:
|
399 |
+
mat1 = pad_dim(mat1, m_padded_length, 1)
|
400 |
+
return aten.bmm(mat1, mat2)[:, :-m_padded_length, :].contiguous()
|
401 |
+
|
402 |
+
|
403 |
+
@functools.lru_cache(None)
|
404 |
+
def _pad_mm_init():
|
405 |
+
from .joint_graph import patterns
|
406 |
+
|
407 |
+
if torch.cuda.is_available():
|
408 |
+
# workaround https://github.com/pytorch/pytorch/issues/97894
|
409 |
+
device = "cuda"
|
410 |
+
else:
|
411 |
+
device = "cpu"
|
412 |
+
|
413 |
+
# sizes/values dont actually matter for initial trace
|
414 |
+
# once we get a possible match we re-trace with the actual values and verify the match still holds
|
415 |
+
|
416 |
+
dim2a = functools.partial(torch.empty, (4, 4), device=device, requires_grad=True)
|
417 |
+
dim2b = functools.partial(torch.empty, (4, 4), device=device, requires_grad=True)
|
418 |
+
|
419 |
+
dim3a = functools.partial(torch.empty, (4, 4, 4), device=device, requires_grad=True)
|
420 |
+
dim3b = functools.partial(torch.empty, (4, 4, 4), device=device, requires_grad=True)
|
421 |
+
|
422 |
+
dim1a = functools.partial(torch.empty, (4), device=device, requires_grad=True)
|
423 |
+
|
424 |
+
# workaround https://github.com/pytorch/pytorch/issues/97894
|
425 |
+
# 0.113377 is a "magic" value that lets us recover the lost input arg relationship
|
426 |
+
rep = {"beta": 0.213377, "alpha": 0.113377}
|
427 |
+
|
428 |
+
for pattern, replacement, args, workaround, extra_check in [
|
429 |
+
(
|
430 |
+
mm_pattern,
|
431 |
+
mm_replace,
|
432 |
+
[dim2a(), dim2b()],
|
433 |
+
{},
|
434 |
+
should_pad_mm,
|
435 |
+
),
|
436 |
+
(
|
437 |
+
bmm_pattern,
|
438 |
+
bmm_replace,
|
439 |
+
[dim3a(), dim3b()],
|
440 |
+
{},
|
441 |
+
should_pad_bmm,
|
442 |
+
),
|
443 |
+
(
|
444 |
+
addmm_pattern,
|
445 |
+
addmm_replace,
|
446 |
+
[dim1a(), dim2a(), dim2b()],
|
447 |
+
rep,
|
448 |
+
should_pad_addmm,
|
449 |
+
),
|
450 |
+
]:
|
451 |
+
assert isinstance(workaround, dict) # mypy is unable to infer the type properly
|
452 |
+
register_replacement(
|
453 |
+
pattern,
|
454 |
+
replacement,
|
455 |
+
args,
|
456 |
+
joint_fwd_bwd,
|
457 |
+
patterns,
|
458 |
+
extra_check=extra_check,
|
459 |
+
scalar_workaround=workaround,
|
460 |
+
)
|
461 |
+
register_replacement(
|
462 |
+
pattern,
|
463 |
+
replacement,
|
464 |
+
args,
|
465 |
+
fwd_only,
|
466 |
+
patterns,
|
467 |
+
extra_check=extra_check,
|
468 |
+
scalar_workaround=workaround,
|
469 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/post_grad.py
ADDED
@@ -0,0 +1,1188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import itertools
|
3 |
+
import logging
|
4 |
+
import operator
|
5 |
+
from collections import Counter, defaultdict, namedtuple
|
6 |
+
from typing import Any, Dict, List, Optional, Set, Union
|
7 |
+
|
8 |
+
from sympy import Expr
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch._inductor as inductor
|
12 |
+
import torch.utils._pytree as pytree
|
13 |
+
from torch import fx
|
14 |
+
from torch._decomp import register_decomposition
|
15 |
+
|
16 |
+
from torch._higher_order_ops.triton_kernel_wrap import triton_kernel_wrapper_functional
|
17 |
+
from torch._prims_common import is_boolean_dtype, is_expandable_to, is_integer_dtype
|
18 |
+
|
19 |
+
from torch._utils_internal import print_graph
|
20 |
+
from torch.fx.experimental.symbolic_shapes import definitely_true, sym_eq
|
21 |
+
from torch.fx.immutable_collections import immutable_dict
|
22 |
+
|
23 |
+
from .. import config, inductor_prims, ir, pattern_matcher
|
24 |
+
from ..fx_utils import FakeTensorUpdater, get_fake_args_kwargs, get_node_storage
|
25 |
+
|
26 |
+
from ..lowering import (
|
27 |
+
inplaceable_foreach_ops as inplaceable_foreach_ops_lowerings,
|
28 |
+
lowerings as L,
|
29 |
+
)
|
30 |
+
from ..pattern_matcher import (
|
31 |
+
_return_true,
|
32 |
+
Arg,
|
33 |
+
CallFunction,
|
34 |
+
filter_nodes,
|
35 |
+
get_arg_value,
|
36 |
+
Ignored,
|
37 |
+
init_once_fakemode,
|
38 |
+
KeywordArg,
|
39 |
+
ListOf,
|
40 |
+
Match,
|
41 |
+
MULTIPLE,
|
42 |
+
PatternMatcherPass,
|
43 |
+
register_graph_pattern,
|
44 |
+
stable_topological_sort,
|
45 |
+
)
|
46 |
+
from ..utils import decode_device, is_pointwise_use
|
47 |
+
from ..virtualized import V
|
48 |
+
from .group_batch_fusion import group_batch_fusion_passes
|
49 |
+
|
50 |
+
log = logging.getLogger(__name__)
|
51 |
+
aten = torch.ops.aten
|
52 |
+
prims = torch.ops.prims
|
53 |
+
|
54 |
+
# First pass_patterns[0] are applied, then [1], then [2]
|
55 |
+
pass_patterns = [
|
56 |
+
PatternMatcherPass(),
|
57 |
+
PatternMatcherPass(),
|
58 |
+
PatternMatcherPass(),
|
59 |
+
]
|
60 |
+
# patterns applied only in inference
|
61 |
+
inference_patterns = PatternMatcherPass()
|
62 |
+
|
63 |
+
|
64 |
+
def post_grad_passes(gm: torch.fx.GraphModule, is_inference: bool):
|
65 |
+
"""
|
66 |
+
Passes that run on after grad. This is called once on the forwards
|
67 |
+
graph and once on the backwards graph.
|
68 |
+
|
69 |
+
The IR here has been normalized and functionalized.
|
70 |
+
"""
|
71 |
+
if config.dce:
|
72 |
+
# has some issues with mutation in inference mode
|
73 |
+
gm.graph.eliminate_dead_code()
|
74 |
+
|
75 |
+
if is_inference and config.reorder_for_locality:
|
76 |
+
reorder_for_locality(gm.graph)
|
77 |
+
|
78 |
+
fake_tensor_updater = FakeTensorUpdater(gm.graph)
|
79 |
+
|
80 |
+
if config.post_grad_custom_pre_pass is not None:
|
81 |
+
config.post_grad_custom_pre_pass(gm.graph)
|
82 |
+
|
83 |
+
if config.pattern_matcher:
|
84 |
+
lazy_init()
|
85 |
+
|
86 |
+
group_batch_fusion_passes(gm.graph, pre_grad=False)
|
87 |
+
remove_noop_ops(gm.graph)
|
88 |
+
print_graph(gm.graph, "Before split cat in post grad pass.")
|
89 |
+
for patterns in pass_patterns:
|
90 |
+
patterns.apply(gm.graph)
|
91 |
+
print_graph(
|
92 |
+
gm.graph,
|
93 |
+
f"Apply split cat pattern matcher {patterns.__class__.__name__} in post grad.",
|
94 |
+
)
|
95 |
+
if is_inference:
|
96 |
+
inference_patterns.apply(gm.graph)
|
97 |
+
|
98 |
+
if config.post_grad_custom_post_pass is not None:
|
99 |
+
config.post_grad_custom_post_pass(gm.graph)
|
100 |
+
|
101 |
+
stable_topological_sort(gm.graph)
|
102 |
+
|
103 |
+
move_constructors_to_cuda(gm.graph)
|
104 |
+
|
105 |
+
fake_tensor_updater.incremental_update()
|
106 |
+
|
107 |
+
# Keep this last, since it introduces mutation. Look at
|
108 |
+
# ./fx_passes/README.md for a discussion of mutation invariants.
|
109 |
+
reinplace_inplaceable_ops(gm.graph)
|
110 |
+
gm.recompile()
|
111 |
+
gm.graph.lint()
|
112 |
+
|
113 |
+
print_graph(gm.graph, "Aftre recompile in post grad pass.")
|
114 |
+
|
115 |
+
|
116 |
+
@init_once_fakemode
|
117 |
+
def lazy_init():
|
118 |
+
if torch._C._has_mkldnn:
|
119 |
+
from .mkldnn_fusion import _mkldnn_fusion_init
|
120 |
+
|
121 |
+
_mkldnn_fusion_init()
|
122 |
+
|
123 |
+
|
124 |
+
def reorder_for_locality(graph: torch.fx.Graph):
|
125 |
+
def visit(other_node):
|
126 |
+
if (
|
127 |
+
other_node.op == "call_function"
|
128 |
+
and other_node.target != operator.getitem
|
129 |
+
and all((n in seen_nodes) for n in other_node.users)
|
130 |
+
):
|
131 |
+
# move node's producers right before it
|
132 |
+
node.prepend(other_node)
|
133 |
+
|
134 |
+
seen_nodes = set()
|
135 |
+
|
136 |
+
# only reorder nodes before the first copy_ in the graph.
|
137 |
+
# copy_ will appear at the end of functionalized graphs when there is mutation on inputs,
|
138 |
+
# and this reordering doesnt work well with mutation
|
139 |
+
first_copy = next(
|
140 |
+
(
|
141 |
+
node
|
142 |
+
for node in graph.nodes
|
143 |
+
if node.op == "call_function"
|
144 |
+
and node.target == torch.ops.aten.copy_.default
|
145 |
+
),
|
146 |
+
None,
|
147 |
+
)
|
148 |
+
past_mutating_epilogue = True if first_copy is None else False
|
149 |
+
|
150 |
+
for node in reversed(graph.nodes):
|
151 |
+
seen_nodes.add(node)
|
152 |
+
if not past_mutating_epilogue:
|
153 |
+
past_mutating_epilogue = node is first_copy
|
154 |
+
continue
|
155 |
+
|
156 |
+
torch.fx.map_arg((node.args, node.kwargs), visit)
|
157 |
+
|
158 |
+
|
159 |
+
def register_lowering_pattern(pattern, extra_check=_return_true, pass_number=1):
|
160 |
+
"""
|
161 |
+
Register an aten to inductor IR replacement pattern
|
162 |
+
"""
|
163 |
+
return pattern_matcher.register_lowering_pattern(
|
164 |
+
pattern, extra_check, pass_dict=pass_patterns[pass_number]
|
165 |
+
)
|
166 |
+
|
167 |
+
|
168 |
+
################################################################################
|
169 |
+
# Actual patterns below this point.
|
170 |
+
# Priority of patterns is:
|
171 |
+
# - later output nodes first
|
172 |
+
# - order patterns are defined in
|
173 |
+
################################################################################
|
174 |
+
|
175 |
+
|
176 |
+
@register_lowering_pattern(
|
177 |
+
CallFunction(
|
178 |
+
aten.add,
|
179 |
+
CallFunction(aten.mm, Arg(), Arg()),
|
180 |
+
CallFunction(aten.mm, Arg(), Arg()),
|
181 |
+
)
|
182 |
+
)
|
183 |
+
def mm_plus_mm(match: Match, mat1, mat2, mat3, mat4):
|
184 |
+
return inductor.kernel.mm_plus_mm.tuned_mm_plus_mm(mat1, mat2, mat3, mat4)
|
185 |
+
|
186 |
+
|
187 |
+
def cuda_and_enabled_mixed_mm(match):
|
188 |
+
return (config.use_mixed_mm or config.force_mixed_mm) and getattr(
|
189 |
+
match.kwargs["mat1"].meta.get("val"), "is_cuda", False
|
190 |
+
)
|
191 |
+
|
192 |
+
|
193 |
+
def cuda_and_enabled_mixed_mm_and_not_int8(match):
|
194 |
+
return (
|
195 |
+
cuda_and_enabled_mixed_mm(match)
|
196 |
+
and getattr(match.kwargs["mat1"].meta.get("val"), "is_cuda", False)
|
197 |
+
and getattr(match.kwargs["mat2"].meta.get("val"), "dtype", torch.int8)
|
198 |
+
!= torch.int8
|
199 |
+
) # bitshift numerics in triton and pytorch don't match for torch.int8
|
200 |
+
|
201 |
+
|
202 |
+
"""
|
203 |
+
this is intended to be used to unpack a [K,N] int4 tensor from a [K/2, N] uint4x2 tensor
|
204 |
+
(where the int4 and uint4x2 are represented with int8 and uint8 respectively)
|
205 |
+
where every other row of the int4 is packed with the row above it as:
|
206 |
+
uint4x2[k,n] = (8+int4[2*k,n])+(8+int4[2*k+1,n])<<4
|
207 |
+
|
208 |
+
unpack formulas:
|
209 |
+
int4[2*k,n]=(uint4x2[k,n] & 0xF) - 8
|
210 |
+
int4[2*k+1,n]=(uint4x2[k,n] >> 4) - 8
|
211 |
+
|
212 |
+
thus matching on unpack formula:
|
213 |
+
torch.mm(mat1, torch.cat((mat2 & 0xF, mat2>>4),1).reshape(mat2_mm_shape).to(mat2_dtype).sub(8))
|
214 |
+
|
215 |
+
note: although the unpack formula in pytorch and the triton kernel is designed for a uint8 mat2, the behavior
|
216 |
+
of the kernel matches the pytorch formula for all dtypes except torch.int8
|
217 |
+
where the bitwise numerics in triton do not match those in pytorch.
|
218 |
+
"""
|
219 |
+
|
220 |
+
|
221 |
+
@register_lowering_pattern(
|
222 |
+
CallFunction(
|
223 |
+
aten.mm.default,
|
224 |
+
KeywordArg("mat1"),
|
225 |
+
CallFunction(
|
226 |
+
aten.sub.Tensor,
|
227 |
+
CallFunction(
|
228 |
+
prims.convert_element_type.default,
|
229 |
+
CallFunction(
|
230 |
+
aten.reshape.default,
|
231 |
+
CallFunction(
|
232 |
+
aten.cat.default,
|
233 |
+
ListOf(
|
234 |
+
CallFunction(
|
235 |
+
aten.bitwise_and.Scalar,
|
236 |
+
KeywordArg("mat2"),
|
237 |
+
0xF,
|
238 |
+
),
|
239 |
+
CallFunction(
|
240 |
+
aten.__rshift__.Scalar,
|
241 |
+
KeywordArg("mat2"),
|
242 |
+
4,
|
243 |
+
),
|
244 |
+
),
|
245 |
+
1,
|
246 |
+
),
|
247 |
+
KeywordArg("mat2_mm_shape"),
|
248 |
+
),
|
249 |
+
KeywordArg("mat2_dtype"),
|
250 |
+
),
|
251 |
+
8,
|
252 |
+
),
|
253 |
+
),
|
254 |
+
extra_check=cuda_and_enabled_mixed_mm_and_not_int8,
|
255 |
+
)
|
256 |
+
def uint4x2_mixed_mm(match: Match, mat1, mat2, mat2_mm_shape, mat2_dtype):
|
257 |
+
return inductor.kernel.unpack_mixed_mm.tuned_uint4x2_mixed_mm(
|
258 |
+
mat1, mat2, mat2_mm_shape, mat2_dtype
|
259 |
+
)
|
260 |
+
|
261 |
+
|
262 |
+
"""
|
263 |
+
torch.mm(mat1, mat2.to(mat2_dtype))
|
264 |
+
"""
|
265 |
+
|
266 |
+
|
267 |
+
@register_lowering_pattern(
|
268 |
+
CallFunction(
|
269 |
+
aten.mm,
|
270 |
+
KeywordArg("mat1"),
|
271 |
+
CallFunction(
|
272 |
+
prims.convert_element_type.default,
|
273 |
+
KeywordArg("mat2"),
|
274 |
+
KeywordArg("mat2_dtype"),
|
275 |
+
),
|
276 |
+
),
|
277 |
+
extra_check=cuda_and_enabled_mixed_mm,
|
278 |
+
)
|
279 |
+
def mixed_mm(match: Match, mat1, mat2, mat2_dtype):
|
280 |
+
return inductor.kernel.mm.tuned_mixed_mm(mat1, mat2, mat2_dtype)
|
281 |
+
|
282 |
+
|
283 |
+
@register_graph_pattern(
|
284 |
+
CallFunction(
|
285 |
+
aten.cumsum.default,
|
286 |
+
CallFunction(
|
287 |
+
torch.ops.aten.full.default,
|
288 |
+
KeywordArg("shape"),
|
289 |
+
KeywordArg("fill_value"),
|
290 |
+
dtype=KeywordArg("dtype"),
|
291 |
+
layout=Ignored(),
|
292 |
+
device=KeywordArg("device"),
|
293 |
+
pin_memory=False,
|
294 |
+
_users=MULTIPLE,
|
295 |
+
),
|
296 |
+
KeywordArg("dim"),
|
297 |
+
_users=MULTIPLE,
|
298 |
+
),
|
299 |
+
pass_dict=pass_patterns[1],
|
300 |
+
)
|
301 |
+
def pointless_cumsum_replacement(match: Match, shape, fill_value, device, dtype, dim):
|
302 |
+
"""Based on a pattern in OPTForCausalLM"""
|
303 |
+
|
304 |
+
if is_integer_dtype(dtype) or is_boolean_dtype(dtype):
|
305 |
+
# cumsum promotes all integral types to int64
|
306 |
+
dtype = torch.int64
|
307 |
+
|
308 |
+
def repl(*shape):
|
309 |
+
dim_size = shape[dim]
|
310 |
+
idx = torch.arange(1, dim_size + 1, device=device, dtype=dtype)
|
311 |
+
|
312 |
+
inter_shape = [1] * len(shape)
|
313 |
+
inter_shape[dim] = dim_size
|
314 |
+
return (idx * fill_value).view(inter_shape).expand(shape)
|
315 |
+
|
316 |
+
# only replace the output node, not all nodes
|
317 |
+
match.nodes = [match.output_node()]
|
318 |
+
with V.fake_mode:
|
319 |
+
match.replace_by_example(repl, list(shape))
|
320 |
+
|
321 |
+
|
322 |
+
def shape_of_mm(a, b):
|
323 |
+
m, _ = a.get_size()
|
324 |
+
_, n = b.get_size()
|
325 |
+
return [m, n]
|
326 |
+
|
327 |
+
|
328 |
+
@register_lowering_pattern(
|
329 |
+
CallFunction(aten.cat, ListOf(CallFunction(aten.mm, Arg(), Arg())), Arg()),
|
330 |
+
)
|
331 |
+
def cat_mm(match, inputs, dim):
|
332 |
+
return cat_tuned_op(match, inputs, dim, op=L[aten.mm], shape_of=shape_of_mm)
|
333 |
+
|
334 |
+
|
335 |
+
@register_lowering_pattern(
|
336 |
+
CallFunction(
|
337 |
+
aten.cat, ListOf(CallFunction(aten.addmm, Arg(), Arg(), Arg())), Arg()
|
338 |
+
),
|
339 |
+
)
|
340 |
+
def cat_addmm(match, inputs, dim):
|
341 |
+
def shape_of(bias, a, b):
|
342 |
+
m, _ = a.get_size()
|
343 |
+
_, n = b.get_size()
|
344 |
+
return [m, n]
|
345 |
+
|
346 |
+
return cat_tuned_op(match, inputs, dim, op=L[aten.addmm], shape_of=shape_of)
|
347 |
+
|
348 |
+
|
349 |
+
def cat_tuned_op(match, inputs, dim, *, op, shape_of):
|
350 |
+
"""
|
351 |
+
Memory planning to remove cat. We can't use the stock memory
|
352 |
+
planner since autotuning matmuls needs to know the output layout.
|
353 |
+
"""
|
354 |
+
if len(inputs) == 1:
|
355 |
+
return op(*inputs[0])
|
356 |
+
|
357 |
+
# TODO(jansel): rewrite this as a bmm?
|
358 |
+
if dim < 0:
|
359 |
+
dim += len(shape_of(*inputs[0]))
|
360 |
+
assert dim in (0, 1)
|
361 |
+
notdim = 1 - dim
|
362 |
+
|
363 |
+
new_size: Optional[Union[List[Expr], List[int]]] = None
|
364 |
+
offsets_start = []
|
365 |
+
offsets_end = []
|
366 |
+
|
367 |
+
# compute output sizes
|
368 |
+
for i in range(len(inputs)):
|
369 |
+
shape = shape_of(*inputs[i])
|
370 |
+
if new_size is None:
|
371 |
+
new_size = shape
|
372 |
+
else:
|
373 |
+
new_size[notdim] = V.graph.sizevars.guard_equals(
|
374 |
+
shape[notdim], new_size[notdim]
|
375 |
+
)
|
376 |
+
new_size[dim] += shape[dim]
|
377 |
+
offsets_start.append(new_size[dim] - shape[dim])
|
378 |
+
offsets_end.append(new_size[dim])
|
379 |
+
|
380 |
+
assert new_size is not None
|
381 |
+
dtype = functools.reduce(
|
382 |
+
torch.promote_types, [x.get_dtype() for x in itertools.chain(*inputs)]
|
383 |
+
)
|
384 |
+
device = inputs[0][0].get_device()
|
385 |
+
kernel = ir.ConcatKernel(
|
386 |
+
name=None,
|
387 |
+
layout=ir.FixedLayout(device, dtype, new_size),
|
388 |
+
inputs=[],
|
389 |
+
)
|
390 |
+
kernel_tensor = ir.TensorBox.create(kernel)
|
391 |
+
|
392 |
+
for i in range(len(inputs)):
|
393 |
+
dst = ir.SliceView.create(kernel_tensor, dim, offsets_start[i], offsets_end[i])
|
394 |
+
src = op(*inputs[i], layout=dst.get_layout()).data.data
|
395 |
+
assert isinstance(src, (ir.ExternKernelOut, ir.TemplateBuffer))
|
396 |
+
src.layout = ir.AliasedLayout(dst)
|
397 |
+
kernel.inputs.append(src)
|
398 |
+
|
399 |
+
kernel.name = V.graph.register_buffer(kernel)
|
400 |
+
kernel.inputs = ir.ConcatKernel.unwrap_storage(kernel.inputs)
|
401 |
+
return kernel_tensor
|
402 |
+
|
403 |
+
|
404 |
+
_cat_1 = CallFunction(aten.cat, Arg(), 1, _users=2)
|
405 |
+
|
406 |
+
|
407 |
+
@register_lowering_pattern(
|
408 |
+
CallFunction(
|
409 |
+
aten.cat,
|
410 |
+
[
|
411 |
+
_cat_1,
|
412 |
+
CallFunction(
|
413 |
+
aten.slice,
|
414 |
+
_cat_1,
|
415 |
+
1,
|
416 |
+
0,
|
417 |
+
KeywordArg("size"),
|
418 |
+
),
|
419 |
+
],
|
420 |
+
1,
|
421 |
+
)
|
422 |
+
)
|
423 |
+
def cat_slice_cat(match, cat_input, size, dim=1):
|
424 |
+
"""
|
425 |
+
This is an example of a more complex pattern where cat_1 is used
|
426 |
+
multiple times inside the pattern. We fold 2 calls to cat into one.
|
427 |
+
|
428 |
+
Matches:
|
429 |
+
cat_1: f32[1024, 4077] = torch.ops.aten.cat.default([add_26, primals_217], 1)
|
430 |
+
slice_1: f32[1024, 4077] = torch.ops.aten.slice.Tensor(cat_1, 0, 0, 9223372036854775807)
|
431 |
+
slice_2: f32[1024, 19] = torch.ops.aten.slice.Tensor(slice_1, 1, 0, 19)
|
432 |
+
cat_2: f32[1024, 4096] = torch.ops.aten.cat.default([cat_1, slice_2], 1)
|
433 |
+
|
434 |
+
|
435 |
+
Rewrite to:
|
436 |
+
slice_2 = torch.ops.aten.slice.Tensor(add_26, 1, 0, 19)
|
437 |
+
cat_2 = torch.ops.aten.cat.default([add_26, primals_217, slice2], 1)
|
438 |
+
"""
|
439 |
+
first, *rest = cat_input
|
440 |
+
# Optimization is optional, because we can just not fold the cat
|
441 |
+
# size should be within first.get_size()[dim] such that the optimization is valid.
|
442 |
+
# For negative `end`, we currently fallback to not optimizing.
|
443 |
+
if size >= 0 and V.graph.sizevars.statically_known_leq(size, first.get_size()[dim]):
|
444 |
+
# fold 2 cats into 1 cat
|
445 |
+
return L[aten.cat](
|
446 |
+
[
|
447 |
+
first,
|
448 |
+
*rest,
|
449 |
+
L[aten.slice](first, dim, 0, size),
|
450 |
+
],
|
451 |
+
dim,
|
452 |
+
)
|
453 |
+
else:
|
454 |
+
# don't expect to hit this case, just fall back
|
455 |
+
tmp = L[aten.cat](cat_input, dim)
|
456 |
+
return L[aten.cat](
|
457 |
+
[
|
458 |
+
tmp,
|
459 |
+
L[aten.slice](tmp, dim, 0, size),
|
460 |
+
],
|
461 |
+
dim,
|
462 |
+
)
|
463 |
+
|
464 |
+
|
465 |
+
def is_valid_splitwithsizes_cat(match):
|
466 |
+
split_nodes = filter_nodes(match.nodes, aten.split_with_sizes)
|
467 |
+
cat_nodes = filter_nodes(match.nodes, aten.cat)
|
468 |
+
get_item_nodes = filter_nodes(match.nodes, operator.getitem)
|
469 |
+
if len(split_nodes) != 1 or len(cat_nodes) != 1:
|
470 |
+
return False
|
471 |
+
split_node, cat_node = split_nodes[0], cat_nodes[0]
|
472 |
+
# The dim of split and cat should match for passthrough
|
473 |
+
if get_arg_value(split_node, 2, "dim") != get_arg_value(cat_node, 1, "dim"):
|
474 |
+
return False
|
475 |
+
get_item_args = {
|
476 |
+
get_arg_value(get_item_node, 1) for get_item_node in get_item_nodes
|
477 |
+
}
|
478 |
+
assert None not in get_item_args
|
479 |
+
split_sizes = get_arg_value(split_node, 1, "split_sizes")
|
480 |
+
# All parts of split should be included in the cat
|
481 |
+
if get_item_args != set(range(len(split_sizes))):
|
482 |
+
return False
|
483 |
+
# The order of get_item_args should same with cat_node used.
|
484 |
+
# For example, if the split_node like split_with_sizes(input, [2, 2, 3], 1),
|
485 |
+
# the cat node should be like cat([get_item(0), get_item(1), get_item(2)], 1).
|
486 |
+
cat_items_args_order = [
|
487 |
+
get_arg_value(item_node, 1) for item_node in get_arg_value(cat_node, 0)
|
488 |
+
]
|
489 |
+
if cat_items_args_order != list(range(len(split_sizes))):
|
490 |
+
return False
|
491 |
+
|
492 |
+
return True
|
493 |
+
|
494 |
+
|
495 |
+
def same_meta(node1: torch.fx.Node, node2: torch.fx.Node):
|
496 |
+
"""True if two nodes have the same metadata"""
|
497 |
+
val1 = node1.meta.get("val")
|
498 |
+
val2 = node2.meta.get("val")
|
499 |
+
return (
|
500 |
+
val1 is not None
|
501 |
+
and val2 is not None
|
502 |
+
and definitely_true(sym_eq(val1.size(), val2.size()))
|
503 |
+
and val1.layout == val2.layout
|
504 |
+
and val1.dtype == val2.dtype
|
505 |
+
and val1.device == val2.device
|
506 |
+
and (
|
507 |
+
val1.layout != torch.strided
|
508 |
+
or definitely_true(sym_eq(val1.stride(), val2.stride()))
|
509 |
+
)
|
510 |
+
)
|
511 |
+
|
512 |
+
|
513 |
+
noop_registry: Dict[Any, Any] = {}
|
514 |
+
|
515 |
+
|
516 |
+
def register_noop_decomp(targets, nop_arg=0):
|
517 |
+
def register_fun(cond):
|
518 |
+
register_decomposition(targets, registry=noop_registry, unsafe=True)(
|
519 |
+
(cond, nop_arg)
|
520 |
+
)
|
521 |
+
return cond
|
522 |
+
|
523 |
+
return register_fun
|
524 |
+
|
525 |
+
|
526 |
+
@register_noop_decomp(aten.slice)
|
527 |
+
def slice_noop(self, dim=0, start=None, end=None, step=1):
|
528 |
+
if start is None or end is None:
|
529 |
+
return False
|
530 |
+
if start == 0 and end >= 2**63 - 1 and step == 1:
|
531 |
+
return True
|
532 |
+
return False
|
533 |
+
|
534 |
+
|
535 |
+
@register_noop_decomp(aten.slice_scatter, 1)
|
536 |
+
def slice_scatter_noop(self, src, dim=0, start=None, end=None, step=1):
|
537 |
+
if start is None:
|
538 |
+
start = 0
|
539 |
+
if end is None:
|
540 |
+
end = 2**63 - 1
|
541 |
+
if start == 0 and end >= 2**63 - 1 and step == 1:
|
542 |
+
return True
|
543 |
+
return False
|
544 |
+
|
545 |
+
|
546 |
+
@register_noop_decomp(aten.repeat)
|
547 |
+
def repeat_noop(self, repeats):
|
548 |
+
return all(r == 1 for r in repeats)
|
549 |
+
|
550 |
+
|
551 |
+
@register_noop_decomp(aten.constant_pad_nd)
|
552 |
+
def constant_pad_nd(x, padding, fill_value=0):
|
553 |
+
return all(p == 0 for p in padding)
|
554 |
+
|
555 |
+
|
556 |
+
@register_noop_decomp(torch.ops.prims.convert_element_type)
|
557 |
+
def convert_element_type_noop(x, dtype: torch.dtype):
|
558 |
+
return x.dtype == dtype
|
559 |
+
|
560 |
+
|
561 |
+
@register_noop_decomp(torch.ops.prims.device_put)
|
562 |
+
def device_put_noop(x, device):
|
563 |
+
return x.device == decode_device(device)
|
564 |
+
|
565 |
+
|
566 |
+
@register_noop_decomp([aten.ceil, aten.floor, aten.round, aten.trunc])
|
567 |
+
def int_noop(x):
|
568 |
+
return is_integer_dtype(x.dtype)
|
569 |
+
|
570 |
+
|
571 |
+
@register_noop_decomp([aten.pow])
|
572 |
+
def pow_noop(a, b):
|
573 |
+
return isinstance(b, int) and b == 1
|
574 |
+
|
575 |
+
|
576 |
+
@register_noop_decomp([aten.cat], lambda args: args[0][0])
|
577 |
+
def cat_noop(inputs, dim=0):
|
578 |
+
return len(inputs) == 1
|
579 |
+
|
580 |
+
|
581 |
+
@register_noop_decomp(aten.view)
|
582 |
+
def view_noop(arg, size):
|
583 |
+
return arg.shape == size
|
584 |
+
|
585 |
+
|
586 |
+
# Note, we also always have a check for identical metadata, which is why these
|
587 |
+
# are safe
|
588 |
+
@register_noop_decomp([aten.copy], nop_arg=1)
|
589 |
+
@register_noop_decomp([aten.alias, aten.clone])
|
590 |
+
def true_noop(*args, **kwargs):
|
591 |
+
return True
|
592 |
+
|
593 |
+
|
594 |
+
def remove_noop_ops(graph: torch.fx.Graph):
|
595 |
+
"""
|
596 |
+
Removes both operations that are essentially aten.clone and operations that are essentially aten.alias from the graph.
|
597 |
+
"""
|
598 |
+
input_storages = set()
|
599 |
+
output_storages = set()
|
600 |
+
|
601 |
+
for node in graph.nodes:
|
602 |
+
if node.op == "placeholder":
|
603 |
+
input_storages.add(get_node_storage(node))
|
604 |
+
else:
|
605 |
+
break
|
606 |
+
|
607 |
+
for out in next(iter(reversed(graph.nodes))).args[0]:
|
608 |
+
if isinstance(out, torch.fx.Node):
|
609 |
+
output_storages.add(get_node_storage(out))
|
610 |
+
|
611 |
+
for node in graph.nodes:
|
612 |
+
if node.target in noop_registry:
|
613 |
+
cond, src_index = noop_registry[node.target]
|
614 |
+
if isinstance(src_index, int):
|
615 |
+
src = node.args[src_index]
|
616 |
+
else:
|
617 |
+
src = src_index(node.args)
|
618 |
+
if not isinstance(src, torch.fx.Node):
|
619 |
+
continue
|
620 |
+
# See fx_passes/README.md for a discussion of why this is
|
621 |
+
# necessary.
|
622 |
+
if get_node_storage(node) in output_storages and (
|
623 |
+
get_node_storage(src) in input_storages
|
624 |
+
or get_node_storage(src) in output_storages
|
625 |
+
):
|
626 |
+
continue
|
627 |
+
is_valid, args, kwargs = get_fake_args_kwargs(node)
|
628 |
+
if not is_valid:
|
629 |
+
continue
|
630 |
+
if same_meta(node, src) and cond(*args, **kwargs):
|
631 |
+
node.replace_all_uses_with(src)
|
632 |
+
graph.erase_node(node)
|
633 |
+
|
634 |
+
|
635 |
+
InplaceableOp = namedtuple("InplaceableOp", ["inplace_op", "mutated_arg"])
|
636 |
+
|
637 |
+
inplaceable_ops = {
|
638 |
+
aten.index_put.default: InplaceableOp(aten.index_put_.default, 0),
|
639 |
+
aten._unsafe_index_put.default: InplaceableOp(inductor_prims._unsafe_index_put_, 0),
|
640 |
+
}
|
641 |
+
|
642 |
+
try:
|
643 |
+
c10d_functional = torch.ops._c10d_functional
|
644 |
+
inplaceable_collective_ops = {
|
645 |
+
c10d_functional.all_reduce.default: InplaceableOp(
|
646 |
+
c10d_functional.all_reduce_.default, 0
|
647 |
+
),
|
648 |
+
c10d_functional.all_reduce_coalesced.default: InplaceableOp(
|
649 |
+
c10d_functional.all_reduce_coalesced_.default, 0
|
650 |
+
),
|
651 |
+
}
|
652 |
+
inplaceable_ops.update(inplaceable_collective_ops)
|
653 |
+
except AttributeError:
|
654 |
+
# _c10d_functional ops are only available when torch
|
655 |
+
# is built with USE_DISTRIBUTED=1.
|
656 |
+
pass
|
657 |
+
|
658 |
+
inplaceable_foreach_ops = {}
|
659 |
+
for outplace_op, inplace_op in inplaceable_foreach_ops_lowerings.items():
|
660 |
+
inplaceable_foreach_ops[outplace_op] = InplaceableOp(inplace_op, 0)
|
661 |
+
|
662 |
+
|
663 |
+
inplaceable_triton_ops = {triton_kernel_wrapper_functional}
|
664 |
+
|
665 |
+
|
666 |
+
def reinplace_inplaceable_ops(graph):
|
667 |
+
"""
|
668 |
+
Reinplaces in-placeable operations.
|
669 |
+
If there are no uses of a view of the mutated arg after the current node,
|
670 |
+
it is possible to inplace the op.
|
671 |
+
This above algorithm could be justified by observing side effects. While
|
672 |
+
we traverse the graph in forwards direction, only latter nodes could view
|
673 |
+
side effects of the current node. If the current node is not used later as
|
674 |
+
well as no view of this node is used later in the graph, then it is safe to
|
675 |
+
inplace as there would be no way to observe the side effects.
|
676 |
+
This condition is slightly different for graph inputs where they can only
|
677 |
+
be inplaced if the above condition is true and there's a copy_ in the
|
678 |
+
epilogue that signals that the caller wants to observe the mutation.
|
679 |
+
"""
|
680 |
+
|
681 |
+
copy_args_to_copy_nodes = {}
|
682 |
+
foreach_node_to_copy_nodes = defaultdict(list)
|
683 |
+
mutated_inputs = set()
|
684 |
+
storage_to_nodes = defaultdict(list)
|
685 |
+
node_order: Dict[Any, int] = {}
|
686 |
+
for i, node in enumerate(reversed(graph.nodes)):
|
687 |
+
node_order[node] = len(graph.nodes) - i - 1
|
688 |
+
storage_to_nodes[get_node_storage(node)].append(node)
|
689 |
+
if node.target == aten.copy_.default:
|
690 |
+
dst = node.args[0]
|
691 |
+
src = node.args[1]
|
692 |
+
# If the target is a getitem and it indexes a possible clone,
|
693 |
+
# then skip over it
|
694 |
+
if src.target == operator.getitem and (
|
695 |
+
(
|
696 |
+
src.args[0].target == triton_kernel_wrapper_functional
|
697 |
+
and src.args[0].kwargs["kwargs"][src.args[1]] == node.args[0]
|
698 |
+
)
|
699 |
+
or (src.args[0].target in inplaceable_foreach_ops)
|
700 |
+
):
|
701 |
+
src = src.args[0]
|
702 |
+
|
703 |
+
copy_args_to_copy_nodes[(dst, src)] = node
|
704 |
+
|
705 |
+
assert node.args[0].op == "placeholder"
|
706 |
+
mutated_inputs.add(node.args[0])
|
707 |
+
|
708 |
+
def any_use_of_views_after_node(node, shared_view_nodes, *, copy_node):
|
709 |
+
node_loc = node_order[node]
|
710 |
+
for view in shared_view_nodes:
|
711 |
+
for user in view.users:
|
712 |
+
# Skip all users before node
|
713 |
+
if node_order[user] <= node_loc:
|
714 |
+
continue
|
715 |
+
# Skip over the copy_ epilogue node that could get reinplaced
|
716 |
+
if copy_node == user:
|
717 |
+
continue
|
718 |
+
return True
|
719 |
+
return False
|
720 |
+
|
721 |
+
def can_inplace(node, mutated_arg):
|
722 |
+
if isinstance(mutated_arg, (list, tuple)):
|
723 |
+
return all(can_inplace(node, arg) for arg in mutated_arg)
|
724 |
+
|
725 |
+
if get_node_storage(mutated_arg) is None:
|
726 |
+
return False
|
727 |
+
shared_view_nodes = storage_to_nodes[get_node_storage(mutated_arg)]
|
728 |
+
if mutated_arg.op == "placeholder":
|
729 |
+
if not (
|
730 |
+
copy_node := copy_args_to_copy_nodes.get((mutated_arg, node), False)
|
731 |
+
):
|
732 |
+
return False
|
733 |
+
|
734 |
+
if any_use_of_views_after_node(
|
735 |
+
node, shared_view_nodes, copy_node=copy_node
|
736 |
+
):
|
737 |
+
return False
|
738 |
+
|
739 |
+
return True
|
740 |
+
elif any(view.op == "placeholder" for view in shared_view_nodes):
|
741 |
+
# If mutated arg is view of any of the inputs of the graph,
|
742 |
+
# do not allow for inplacing.
|
743 |
+
# This would require more sophisticated algorithm to handle
|
744 |
+
return False
|
745 |
+
else:
|
746 |
+
return not any_use_of_views_after_node(
|
747 |
+
node, shared_view_nodes, copy_node=None
|
748 |
+
)
|
749 |
+
|
750 |
+
for node in graph.nodes:
|
751 |
+
if (inplaceable_op := inplaceable_ops.get(node.target, None)) is not None:
|
752 |
+
mutated_arg = node.args[inplaceable_op.mutated_arg]
|
753 |
+
if can_inplace(node, mutated_arg):
|
754 |
+
# TODO(yifu): this doesn't properly remove copy epilogues for
|
755 |
+
# ops that mutate multiple inputs. Need to revise the copy
|
756 |
+
# node tracking logic to support the case.
|
757 |
+
copy_node = copy_args_to_copy_nodes.get((mutated_arg, node))
|
758 |
+
if copy_node is not None:
|
759 |
+
graph.erase_node(copy_node)
|
760 |
+
node.target = inplaceable_op.inplace_op
|
761 |
+
elif node.target in inplaceable_triton_ops:
|
762 |
+
# inplaceable_triton_ops take an additional argument called
|
763 |
+
# tensors_to_clone which contain a list of tensors to clone
|
764 |
+
# This pass iterates over them and sees which ones are safe
|
765 |
+
# to eliminate (i.e. no longer need the clones)
|
766 |
+
tensors_to_clone = []
|
767 |
+
for arg in node.kwargs["tensors_to_clone"]:
|
768 |
+
assert arg in node.kwargs["kwargs"]
|
769 |
+
mutated_arg = node.kwargs["kwargs"][arg]
|
770 |
+
if can_inplace(node, mutated_arg):
|
771 |
+
copy_node = copy_args_to_copy_nodes.get((mutated_arg, node))
|
772 |
+
if copy_node is not None:
|
773 |
+
graph.erase_node(copy_node)
|
774 |
+
else:
|
775 |
+
tensors_to_clone.append(arg)
|
776 |
+
kwargs = dict(node.kwargs)
|
777 |
+
kwargs["tensors_to_clone"] = tensors_to_clone
|
778 |
+
node.kwargs = immutable_dict(kwargs)
|
779 |
+
elif (
|
780 |
+
inplaceable_op := inplaceable_foreach_ops.get(node.target, None)
|
781 |
+
) is not None:
|
782 |
+
mutated_args = node.args[inplaceable_op.mutated_arg]
|
783 |
+
|
784 |
+
if not all((arg, node) in copy_args_to_copy_nodes for arg in mutated_args):
|
785 |
+
continue
|
786 |
+
|
787 |
+
if can_inplace(node, mutated_args):
|
788 |
+
for arg in mutated_args:
|
789 |
+
copy_node = copy_args_to_copy_nodes[(arg, node)]
|
790 |
+
graph.erase_node(copy_node)
|
791 |
+
|
792 |
+
node.target = inplaceable_op.inplace_op
|
793 |
+
|
794 |
+
|
795 |
+
@register_lowering_pattern(
|
796 |
+
CallFunction(
|
797 |
+
aten.cat,
|
798 |
+
ListOf(
|
799 |
+
CallFunction(
|
800 |
+
operator.getitem,
|
801 |
+
CallFunction(
|
802 |
+
aten.split_with_sizes,
|
803 |
+
KeywordArg("input_"),
|
804 |
+
Ignored(),
|
805 |
+
Ignored(),
|
806 |
+
_users=MULTIPLE,
|
807 |
+
),
|
808 |
+
Ignored(),
|
809 |
+
),
|
810 |
+
),
|
811 |
+
Ignored(),
|
812 |
+
),
|
813 |
+
pass_number=2,
|
814 |
+
extra_check=is_valid_splitwithsizes_cat,
|
815 |
+
)
|
816 |
+
def splitwithsizes_cat_replace(match, input_):
|
817 |
+
return input_
|
818 |
+
|
819 |
+
|
820 |
+
def is_valid_cat_splitwithsizes(match):
|
821 |
+
cat_nodes = filter_nodes(match.nodes, aten.cat)
|
822 |
+
split_nodes = filter_nodes(match.nodes, aten.split_with_sizes)
|
823 |
+
if len(split_nodes) != 1 or len(cat_nodes) != 1:
|
824 |
+
return False
|
825 |
+
split_node, cat_node = split_nodes[0], cat_nodes[0]
|
826 |
+
|
827 |
+
# the cat node has other users: can't eliminate
|
828 |
+
if len(cat_node.users) > 1:
|
829 |
+
return False
|
830 |
+
|
831 |
+
# the dim of the cat and split should match
|
832 |
+
dim = get_arg_value(split_node, 2, "dim")
|
833 |
+
if dim != get_arg_value(cat_node, 1, "dim"):
|
834 |
+
return False
|
835 |
+
|
836 |
+
cat_inputs = list(get_arg_value(cat_node, 0))
|
837 |
+
split_sizes = get_arg_value(split_node, 1, "split_sizes")
|
838 |
+
# the number of input tensors in cat and the
|
839 |
+
# length of the split sizes should match
|
840 |
+
if len(cat_inputs) != len(split_sizes):
|
841 |
+
return False
|
842 |
+
|
843 |
+
for cat_input, split_size in zip(cat_inputs, split_sizes):
|
844 |
+
# each cat input tensor's size along dim
|
845 |
+
# should match the corresponding split size
|
846 |
+
if "val" not in cat_input.meta:
|
847 |
+
return False
|
848 |
+
cat_input_size = cat_input.meta["val"].size(dim)
|
849 |
+
if cat_input_size != split_size:
|
850 |
+
return False
|
851 |
+
|
852 |
+
return True
|
853 |
+
|
854 |
+
|
855 |
+
@register_lowering_pattern(
|
856 |
+
CallFunction(
|
857 |
+
aten.split_with_sizes,
|
858 |
+
CallFunction(
|
859 |
+
aten.cat,
|
860 |
+
KeywordArg("input_"),
|
861 |
+
Ignored(),
|
862 |
+
_users=MULTIPLE,
|
863 |
+
),
|
864 |
+
Ignored(),
|
865 |
+
Ignored(),
|
866 |
+
),
|
867 |
+
pass_number=2,
|
868 |
+
extra_check=is_valid_cat_splitwithsizes,
|
869 |
+
)
|
870 |
+
def cat_splitwithsizes_replace(match, input_):
|
871 |
+
return input_
|
872 |
+
|
873 |
+
|
874 |
+
def view_to_reshape(gm):
|
875 |
+
"""
|
876 |
+
Replace view ops in the GraphModule to reshape ops.
|
877 |
+
"""
|
878 |
+
for nd in gm.graph.nodes:
|
879 |
+
if nd.target == torch.ops.aten.view.default:
|
880 |
+
nd.target = torch.ops.aten.reshape.default
|
881 |
+
|
882 |
+
|
883 |
+
def should_prefer_unfused_addmm(match):
|
884 |
+
inp = match.kwargs["inp"]
|
885 |
+
if not inp.meta["val"].is_cuda:
|
886 |
+
return False
|
887 |
+
|
888 |
+
output = match.output_node()
|
889 |
+
return all(is_pointwise_use(use) for use in output.users)
|
890 |
+
|
891 |
+
|
892 |
+
@register_graph_pattern(
|
893 |
+
CallFunction(aten.addmm, KeywordArg("inp"), Arg(), Arg()),
|
894 |
+
pass_dict=pass_patterns[2],
|
895 |
+
extra_check=should_prefer_unfused_addmm,
|
896 |
+
)
|
897 |
+
def unfuse_bias_add_to_pointwise(match: Match, mat1, mat2, *, inp):
|
898 |
+
def repl(inp, x1, x2):
|
899 |
+
return x1 @ x2 + inp
|
900 |
+
|
901 |
+
with V.fake_mode:
|
902 |
+
match.replace_by_example(repl, [inp, mat1, mat2])
|
903 |
+
|
904 |
+
|
905 |
+
def is_valid_addmm_fusion(match):
|
906 |
+
mat1, mat2 = match.args
|
907 |
+
inp = match.kwargs["inp"]
|
908 |
+
|
909 |
+
if not (
|
910 |
+
isinstance(inp, torch.fx.Node) and isinstance(inp.meta["val"], torch.Tensor)
|
911 |
+
):
|
912 |
+
return False # Input is a number
|
913 |
+
|
914 |
+
in_shape = inp.meta["val"].shape
|
915 |
+
mm_shape = mat1.meta["val"].shape[0], mat2.meta["val"].shape[1]
|
916 |
+
matched = is_expandable_to(in_shape, mm_shape)
|
917 |
+
if not matched:
|
918 |
+
return False # Shape mismatch
|
919 |
+
|
920 |
+
return not should_prefer_unfused_addmm(match)
|
921 |
+
|
922 |
+
|
923 |
+
@register_graph_pattern(
|
924 |
+
CallFunction(
|
925 |
+
aten.add,
|
926 |
+
CallFunction(aten.mm, Arg(), Arg()),
|
927 |
+
KeywordArg("inp"),
|
928 |
+
),
|
929 |
+
pass_dict=pass_patterns[2],
|
930 |
+
extra_check=is_valid_addmm_fusion,
|
931 |
+
)
|
932 |
+
@register_graph_pattern(
|
933 |
+
CallFunction(
|
934 |
+
aten.add,
|
935 |
+
KeywordArg("inp"),
|
936 |
+
CallFunction(aten.mm, Arg(), Arg()),
|
937 |
+
),
|
938 |
+
pass_dict=pass_patterns[2],
|
939 |
+
extra_check=is_valid_addmm_fusion,
|
940 |
+
)
|
941 |
+
def addmm(match, mat1, mat2, *, inp):
|
942 |
+
def repl(inp, mat1, mat2):
|
943 |
+
return aten.addmm(inp, mat1, mat2)
|
944 |
+
|
945 |
+
with V.fake_mode:
|
946 |
+
match.replace_by_example(repl, [inp, mat1, mat2])
|
947 |
+
|
948 |
+
|
949 |
+
def check_shape_cuda_and_fused_int_mm_mul_enabled(match):
|
950 |
+
return (
|
951 |
+
config.force_fuse_int_mm_with_mul
|
952 |
+
and len(getattr(match.args[2].meta.get("val"), "shape", [])) == 2
|
953 |
+
and getattr(match.args[2].meta.get("val"), "is_cuda", False)
|
954 |
+
)
|
955 |
+
|
956 |
+
|
957 |
+
@register_lowering_pattern(
|
958 |
+
CallFunction(
|
959 |
+
prims.convert_element_type.default,
|
960 |
+
CallFunction(
|
961 |
+
aten.mul,
|
962 |
+
CallFunction(
|
963 |
+
aten._int_mm,
|
964 |
+
Arg(),
|
965 |
+
Arg(),
|
966 |
+
),
|
967 |
+
Arg(),
|
968 |
+
),
|
969 |
+
Arg(),
|
970 |
+
),
|
971 |
+
check_shape_cuda_and_fused_int_mm_mul_enabled,
|
972 |
+
)
|
973 |
+
@register_lowering_pattern(
|
974 |
+
CallFunction(
|
975 |
+
aten.mul,
|
976 |
+
CallFunction(
|
977 |
+
aten._int_mm,
|
978 |
+
Arg(),
|
979 |
+
Arg(),
|
980 |
+
),
|
981 |
+
Arg(),
|
982 |
+
),
|
983 |
+
check_shape_cuda_and_fused_int_mm_mul_enabled,
|
984 |
+
)
|
985 |
+
def fused_int_mm_mul(match: Match, mat1, mat2, mat3, out_dtype=None):
|
986 |
+
return inductor.kernel.mm.tuned_fused_int_mm_mul(mat1, mat2, mat3, out_dtype)
|
987 |
+
|
988 |
+
|
989 |
+
class ConstructorMoverPass:
|
990 |
+
def __init__(self, target: str, allow_outputs: bool = False) -> None:
|
991 |
+
"""
|
992 |
+
Move constructors from cpu to the target_device.
|
993 |
+
|
994 |
+
Sweeps through the module, looking for constructor nodes that can be moved
|
995 |
+
to the target_device.
|
996 |
+
|
997 |
+
A constructor node can be moved to the target_device iff all of its users
|
998 |
+
can also be moved (tested by cannot_be_moved). Otherwise, all dependent
|
999 |
+
constructor nodes won't be moved.
|
1000 |
+
|
1001 |
+
- target: target device type
|
1002 |
+
- allow_outputs: allow outputs to be moved
|
1003 |
+
"""
|
1004 |
+
|
1005 |
+
self.target = target
|
1006 |
+
self.allow_outputs = allow_outputs
|
1007 |
+
|
1008 |
+
assert isinstance(target, str), (
|
1009 |
+
"target should be a string representing the device type. "
|
1010 |
+
f"Got: {type(target).__name__}"
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
def allow_cpu_device(self, node: fx.Node) -> bool:
|
1014 |
+
"""
|
1015 |
+
Returns whether a node that returns a tensor on the target device may have
|
1016 |
+
cpu tensors as input.
|
1017 |
+
"""
|
1018 |
+
return node.target in (
|
1019 |
+
torch.ops.aten.index.Tensor,
|
1020 |
+
torch.ops.aten.index_put.default,
|
1021 |
+
torch.ops.aten.index_put_.default,
|
1022 |
+
torch.ops.aten.copy.default,
|
1023 |
+
torch.ops.aten.copy_.default,
|
1024 |
+
torch.ops.aten.slice_scatter.default,
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
def cannot_be_moved(self, node: fx.Node) -> bool:
|
1028 |
+
"""
|
1029 |
+
Returns whether a node can be moved to the target device.
|
1030 |
+
|
1031 |
+
If this function returns False, it means that this node and all of its users
|
1032 |
+
won't be moved into the target device.
|
1033 |
+
"""
|
1034 |
+
if node.target == "output":
|
1035 |
+
return not self.allow_outputs
|
1036 |
+
|
1037 |
+
if not (
|
1038 |
+
isinstance(node.target, torch._ops.OpOverload)
|
1039 |
+
and node.target.namespace in ("prims", "aten")
|
1040 |
+
):
|
1041 |
+
return True
|
1042 |
+
|
1043 |
+
return False
|
1044 |
+
|
1045 |
+
def get_node_device(self, node: fx.Node) -> Optional[torch.device]:
|
1046 |
+
"""
|
1047 |
+
Get the device of a node.
|
1048 |
+
"""
|
1049 |
+
ten = node.meta.get("val")
|
1050 |
+
return None if not isinstance(ten, torch.Tensor) else ten.device
|
1051 |
+
|
1052 |
+
def get_cpu_indeg_count(self, graph: fx.Graph) -> Dict[fx.Node, int]:
|
1053 |
+
"""
|
1054 |
+
Get the number of cpu inputs to a node
|
1055 |
+
"""
|
1056 |
+
cpu_indeg: Dict[fx.Node, int] = Counter()
|
1057 |
+
|
1058 |
+
for node in graph.nodes:
|
1059 |
+
cpu_count = 0
|
1060 |
+
|
1061 |
+
def add_cpu_inp(node):
|
1062 |
+
nonlocal cpu_count
|
1063 |
+
device = self.get_node_device(node)
|
1064 |
+
cpu_count += device is not None and device.type == "cpu"
|
1065 |
+
|
1066 |
+
pytree.tree_map_only(fx.Node, add_cpu_inp, (node.args, node.kwargs))
|
1067 |
+
|
1068 |
+
if cpu_count:
|
1069 |
+
cpu_indeg[node] = cpu_count
|
1070 |
+
|
1071 |
+
return cpu_indeg
|
1072 |
+
|
1073 |
+
def __call__(self, graph: fx.Graph) -> None:
|
1074 |
+
target_devices = set()
|
1075 |
+
constructors = []
|
1076 |
+
|
1077 |
+
for node in graph.nodes:
|
1078 |
+
device = self.get_node_device(node)
|
1079 |
+
if device and device.type == self.target:
|
1080 |
+
target_devices.add(device)
|
1081 |
+
|
1082 |
+
if not (
|
1083 |
+
isinstance(node.target, torch._ops.OpOverload)
|
1084 |
+
and node.target.namespace in ("prims", "aten")
|
1085 |
+
):
|
1086 |
+
continue
|
1087 |
+
|
1088 |
+
if not torch._subclasses.fake_tensor._is_tensor_constructor(node.target):
|
1089 |
+
continue
|
1090 |
+
|
1091 |
+
if not node.kwargs.get("device") == torch.device("cpu"):
|
1092 |
+
continue
|
1093 |
+
|
1094 |
+
constructors.append(node)
|
1095 |
+
|
1096 |
+
# not handling multiple target devices initially
|
1097 |
+
if not constructors or len(target_devices) != 1:
|
1098 |
+
return
|
1099 |
+
|
1100 |
+
movable_constructors = self.find_movable_constructors(graph, constructors)
|
1101 |
+
|
1102 |
+
for node in movable_constructors:
|
1103 |
+
kwargs = node.kwargs.copy()
|
1104 |
+
kwargs["device"] = next(iter(target_devices))
|
1105 |
+
node.kwargs = kwargs
|
1106 |
+
|
1107 |
+
def find_movable_constructors(
|
1108 |
+
self, graph: fx.Graph, constructors: List[fx.Node]
|
1109 |
+
) -> Set[fx.Node]:
|
1110 |
+
"""
|
1111 |
+
Starting from the cpu constructors, iterate through the graph and test that all of their
|
1112 |
+
downstream uses can safely be moved to cpu.
|
1113 |
+
"""
|
1114 |
+
cpu_indeg: Dict[fx.Node, int] = self.get_cpu_indeg_count(graph)
|
1115 |
+
|
1116 |
+
# which constructors cannot be moved to cuda
|
1117 |
+
cannot_move_to_cuda: Set[fx.Node] = set()
|
1118 |
+
|
1119 |
+
# For any node in the graph, which constructors does it have a dependency on
|
1120 |
+
constructor_dependencies: Dict[fx.Node, Set[fx.Node]] = defaultdict(set)
|
1121 |
+
|
1122 |
+
# if a cpu node has a dependency on two different cpu constructors,
|
1123 |
+
# then if either constructor cannot be moved to cuda, the other cannot as well.
|
1124 |
+
# In this case any node with a dependency on one will have a dependency on the other
|
1125 |
+
equal_constructor_sets: Dict[fx.Node, Set[fx.Node]] = {
|
1126 |
+
c: {c} for c in constructors
|
1127 |
+
}
|
1128 |
+
|
1129 |
+
def make_dependencies_equivalent(
|
1130 |
+
set1: Set[fx.Node], set2: Set[fx.Node]
|
1131 |
+
) -> Set[fx.Node]:
|
1132 |
+
# could use union find but not worth complexity here
|
1133 |
+
set1.update(set2)
|
1134 |
+
for obj in set1:
|
1135 |
+
equal_constructor_sets[obj] = set1
|
1136 |
+
return set1
|
1137 |
+
|
1138 |
+
queue: List[fx.Node] = list(constructors)
|
1139 |
+
|
1140 |
+
for c in queue:
|
1141 |
+
constructor_dependencies[c].add(c)
|
1142 |
+
|
1143 |
+
while queue:
|
1144 |
+
node = queue.pop()
|
1145 |
+
dependencies = constructor_dependencies[node]
|
1146 |
+
|
1147 |
+
for user in node.users:
|
1148 |
+
if self.cannot_be_moved(user):
|
1149 |
+
cannot_move_to_cuda.update(dependencies)
|
1150 |
+
break
|
1151 |
+
|
1152 |
+
# this node was used on a op which takes in multiple devices and output a cuda
|
1153 |
+
# tensor. we can convert its cpu input to cuda without making further changes
|
1154 |
+
node_device = self.get_node_device(user)
|
1155 |
+
if (
|
1156 |
+
self.allow_cpu_device(user)
|
1157 |
+
and node_device
|
1158 |
+
and node_device.type == self.target
|
1159 |
+
):
|
1160 |
+
del cpu_indeg[user]
|
1161 |
+
else:
|
1162 |
+
# otherwise, we should continue look at its downstream uses
|
1163 |
+
cpu_indeg[user] -= 1
|
1164 |
+
if cpu_indeg[user] == 0:
|
1165 |
+
del cpu_indeg[user]
|
1166 |
+
queue.append(user)
|
1167 |
+
|
1168 |
+
unioned_set = make_dependencies_equivalent(
|
1169 |
+
dependencies, constructor_dependencies[user]
|
1170 |
+
)
|
1171 |
+
constructor_dependencies[user] = unioned_set
|
1172 |
+
|
1173 |
+
for node in cpu_indeg:
|
1174 |
+
if constructor_dependencies[node]:
|
1175 |
+
cannot_move_to_cuda.update(constructor_dependencies[node])
|
1176 |
+
|
1177 |
+
all_cannot_move_to_cuda = cannot_move_to_cuda.copy()
|
1178 |
+
for constructor in cannot_move_to_cuda:
|
1179 |
+
all_cannot_move_to_cuda.update(equal_constructor_sets[constructor])
|
1180 |
+
|
1181 |
+
return set(constructors) - all_cannot_move_to_cuda
|
1182 |
+
|
1183 |
+
|
1184 |
+
def move_constructors_to_cuda(graph: fx.Graph) -> None:
|
1185 |
+
"""
|
1186 |
+
Moves intermediary tensors which are constructed on the cpu to cuda when safe
|
1187 |
+
"""
|
1188 |
+
ConstructorMoverPass("cuda")(graph)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/pre_grad.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import logging
|
3 |
+
from typing import List, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch._dynamo.utils import detect_fake_mode
|
8 |
+
from torch._utils_internal import print_graph
|
9 |
+
from torch.fx.experimental.optimization import (
|
10 |
+
matches_module_pattern,
|
11 |
+
replace_node_module,
|
12 |
+
)
|
13 |
+
from torch.fx.passes.shape_prop import ShapeProp
|
14 |
+
from torch.nn import functional as F
|
15 |
+
from torch.nn.utils.fusion import fuse_conv_bn_eval, fuse_conv_bn_weights
|
16 |
+
|
17 |
+
from .. import config
|
18 |
+
|
19 |
+
from ..fx_utils import matches_module_function_pattern
|
20 |
+
from ..pattern_matcher import (
|
21 |
+
init_once_fakemode,
|
22 |
+
PatternMatcherPass,
|
23 |
+
stable_topological_sort,
|
24 |
+
)
|
25 |
+
from ..utils import is_cpu_device
|
26 |
+
from .group_batch_fusion import group_batch_fusion_passes
|
27 |
+
from .misc_patterns import numpy_compat_normalization
|
28 |
+
|
29 |
+
log = logging.getLogger(__name__)
|
30 |
+
|
31 |
+
normalization_pass = PatternMatcherPass(prevent_match_across_mutations=True)
|
32 |
+
merge_splits_pass = PatternMatcherPass(prevent_match_across_mutations=True)
|
33 |
+
split_cat_pass = PatternMatcherPass(prevent_match_across_mutations=True)
|
34 |
+
unbind_stack_pass = PatternMatcherPass(prevent_match_across_mutations=True)
|
35 |
+
efficient_conv_bn_eval_pass = PatternMatcherPass(prevent_match_across_mutations=True)
|
36 |
+
merge_getitem_cat_pass = PatternMatcherPass(prevent_match_across_mutations=True)
|
37 |
+
|
38 |
+
pattern_matcher_passes: List[PatternMatcherPass] = [
|
39 |
+
normalization_pass,
|
40 |
+
merge_getitem_cat_pass,
|
41 |
+
merge_splits_pass,
|
42 |
+
split_cat_pass,
|
43 |
+
unbind_stack_pass,
|
44 |
+
efficient_conv_bn_eval_pass,
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
@init_once_fakemode
|
49 |
+
def lazy_init():
|
50 |
+
from . import efficient_conv_bn_eval, split_cat # noqa: F401 # noqa: F401
|
51 |
+
|
52 |
+
if config.is_fbcode():
|
53 |
+
from . import fb # type: ignore[attr-defined] # noqa: F401
|
54 |
+
|
55 |
+
|
56 |
+
def pre_grad_passes(gm: torch.fx.GraphModule, example_inputs):
|
57 |
+
"""
|
58 |
+
Apply passes on the input FX graph using Torch IR.
|
59 |
+
|
60 |
+
WARNING:
|
61 |
+
The IR before grad is not functional or normalized, so it is harder
|
62 |
+
to write passes on this IR. Passes must be safe with respect to
|
63 |
+
aliasing and mutation and need to handle all possible arg schemas.
|
64 |
+
|
65 |
+
Consider adding a new pass to post_grad.py or joint_graph.py which
|
66 |
+
are after functionalization and normalization.
|
67 |
+
"""
|
68 |
+
|
69 |
+
if config.pattern_matcher:
|
70 |
+
lazy_init()
|
71 |
+
gm = fuse_fx(gm, example_inputs)
|
72 |
+
numpy_compat_normalization(gm.graph)
|
73 |
+
group_batch_fusion_passes(gm.graph, pre_grad=True)
|
74 |
+
print_graph(gm.graph, "Before split cat in pre grad pass.")
|
75 |
+
for pattern_matcher_pass in pattern_matcher_passes:
|
76 |
+
pattern_matcher_pass.apply(gm.graph)
|
77 |
+
print_graph(
|
78 |
+
gm.graph,
|
79 |
+
f"Apply split cat pattern matcher {pattern_matcher_pass.__class__.__name__} in pre grad.",
|
80 |
+
)
|
81 |
+
|
82 |
+
if config.pre_grad_custom_pass is not None:
|
83 |
+
config.pre_grad_custom_pass(gm.graph)
|
84 |
+
stable_topological_sort(gm.graph)
|
85 |
+
gm.graph.lint()
|
86 |
+
gm.recompile()
|
87 |
+
|
88 |
+
print_graph(gm.graph, "Aftre recompile in pre grad pass.")
|
89 |
+
|
90 |
+
return gm
|
91 |
+
|
92 |
+
|
93 |
+
def fuse_fx(gm: torch.fx.GraphModule, example_inputs) -> torch.fx.GraphModule:
|
94 |
+
is_cpu = is_cpu_device(example_inputs)
|
95 |
+
|
96 |
+
fake_mode = detect_fake_mode(example_inputs)
|
97 |
+
|
98 |
+
gm = sink_cat_after_pointwise(gm)
|
99 |
+
if config.permute_fusion and not is_cpu:
|
100 |
+
# For linear permute fusion, we need to check input info to identify
|
101 |
+
# and perform proper permutation/transpose
|
102 |
+
ShapeProp(gm, fake_mode=fake_mode).propagate(*example_inputs)
|
103 |
+
gm = linear_permute_fusion(gm)
|
104 |
+
gm = permute_linear_fusion(gm)
|
105 |
+
gm = permute_matmul_fusion(gm)
|
106 |
+
|
107 |
+
# make sure the autograd is disabled.
|
108 |
+
if torch.is_grad_enabled() or not is_cpu:
|
109 |
+
return gm
|
110 |
+
if config.freezing:
|
111 |
+
gm = remove_identity(gm)
|
112 |
+
gm = fuse_conv_bn(gm)
|
113 |
+
return gm
|
114 |
+
|
115 |
+
|
116 |
+
def fetch_attr(target: str, mod):
|
117 |
+
target_atoms = target.split(".")
|
118 |
+
attr_itr = mod
|
119 |
+
for i, atom in enumerate(target_atoms):
|
120 |
+
if not hasattr(attr_itr, atom):
|
121 |
+
raise RuntimeError(
|
122 |
+
f"Node referenced nonexistant target {'.'.join(target_atoms[:i])}"
|
123 |
+
)
|
124 |
+
attr_itr = getattr(attr_itr, atom)
|
125 |
+
return attr_itr
|
126 |
+
|
127 |
+
|
128 |
+
def remove_identity(gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
129 |
+
"""
|
130 |
+
Removes all identity layers from the module.
|
131 |
+
"""
|
132 |
+
|
133 |
+
class IdentityRemover(torch.fx.Transformer):
|
134 |
+
def call_module(self, target, args, kwargs):
|
135 |
+
if isinstance(self.submodules[target], nn.Identity):
|
136 |
+
assert len(args) == 1
|
137 |
+
return args[0]
|
138 |
+
else:
|
139 |
+
return super().call_module(target, args, kwargs)
|
140 |
+
|
141 |
+
return IdentityRemover(gm).transform()
|
142 |
+
|
143 |
+
|
144 |
+
def fuse_conv_bn(gm: torch.fx.GraphModule, inplace=False) -> torch.fx.GraphModule:
|
145 |
+
"""
|
146 |
+
Fuses Convolution/BN layers for inference purposes.
|
147 |
+
"""
|
148 |
+
modules_patterns = [
|
149 |
+
(torch.nn.Conv1d, torch.nn.BatchNorm1d),
|
150 |
+
(torch.nn.Conv2d, torch.nn.BatchNorm2d),
|
151 |
+
(torch.nn.Conv3d, torch.nn.BatchNorm3d),
|
152 |
+
]
|
153 |
+
module_function_patterns = [
|
154 |
+
(torch.nn.Conv1d, F.batch_norm),
|
155 |
+
(torch.nn.Conv2d, F.batch_norm),
|
156 |
+
(torch.nn.Conv3d, F.batch_norm),
|
157 |
+
]
|
158 |
+
modules = dict(gm.named_modules())
|
159 |
+
for pattern in modules_patterns:
|
160 |
+
for node in gm.graph.nodes:
|
161 |
+
if matches_module_pattern(pattern, node, modules):
|
162 |
+
if len(node.args[0].users) > 1: # Output of conv is used by other nodes
|
163 |
+
continue
|
164 |
+
conv = modules[node.args[0].target]
|
165 |
+
bn = modules[node.target]
|
166 |
+
eval_mode = all(not n.training for n in [conv, bn])
|
167 |
+
if not eval_mode:
|
168 |
+
continue
|
169 |
+
if not bn.track_running_stats:
|
170 |
+
continue
|
171 |
+
fused_conv = fuse_conv_bn_eval(conv, bn)
|
172 |
+
replace_node_module(node.args[0], modules, fused_conv)
|
173 |
+
node.replace_all_uses_with(node.args[0])
|
174 |
+
gm.graph.erase_node(node)
|
175 |
+
gm.graph.lint()
|
176 |
+
for pattern in module_function_patterns:
|
177 |
+
for node in gm.graph.nodes:
|
178 |
+
if matches_module_function_pattern(pattern, node, modules):
|
179 |
+
# TODO: support kwargs.
|
180 |
+
if len(node.args) != 8:
|
181 |
+
continue
|
182 |
+
conv = modules[node.args[0].target]
|
183 |
+
bn_training = node.args[5]
|
184 |
+
bn_eps = node.args[7]
|
185 |
+
if conv.training or bn_training:
|
186 |
+
continue
|
187 |
+
if type(bn_eps) is not float:
|
188 |
+
continue
|
189 |
+
bn_args_is_constant = all(
|
190 |
+
n.op == "get_attr" and len(n.users) == 1 for n in node.args[1:5]
|
191 |
+
)
|
192 |
+
if not bn_args_is_constant:
|
193 |
+
continue
|
194 |
+
bn_running_mean = fetch_attr(node.args[1].target, gm)
|
195 |
+
bn_running_var = fetch_attr(node.args[2].target, gm)
|
196 |
+
bn_weight = fetch_attr(node.args[3].target, gm)
|
197 |
+
bn_bias = fetch_attr(node.args[4].target, gm)
|
198 |
+
if bn_running_mean is None or bn_running_var is None:
|
199 |
+
continue
|
200 |
+
fused_conv = copy.deepcopy(conv)
|
201 |
+
fused_conv.weight, fused_conv.bias = fuse_conv_bn_weights(
|
202 |
+
fused_conv.weight,
|
203 |
+
fused_conv.bias,
|
204 |
+
bn_running_mean,
|
205 |
+
bn_running_var,
|
206 |
+
bn_eps,
|
207 |
+
bn_weight,
|
208 |
+
bn_bias,
|
209 |
+
)
|
210 |
+
replace_node_module(node.args[0], modules, fused_conv)
|
211 |
+
node.replace_all_uses_with(node.args[0])
|
212 |
+
gm.graph.erase_node(node)
|
213 |
+
gm.graph.lint()
|
214 |
+
gm.recompile()
|
215 |
+
|
216 |
+
return gm
|
217 |
+
|
218 |
+
|
219 |
+
class NormalizedLinearNode:
|
220 |
+
def __init__(self, node: torch.fx.Node) -> None:
|
221 |
+
assert node.op == "call_function"
|
222 |
+
assert node.target in [torch.nn.functional.linear]
|
223 |
+
self.node: torch.fx.Node = node
|
224 |
+
|
225 |
+
def get_input(self) -> torch.fx.Node:
|
226 |
+
if len(self.node.args) > 0:
|
227 |
+
return self.node.args[0]
|
228 |
+
else:
|
229 |
+
return self.node.kwargs["input"]
|
230 |
+
|
231 |
+
def get_weight(self) -> torch.fx.Node:
|
232 |
+
if len(self.node.args) > 1:
|
233 |
+
return self.node.args[1]
|
234 |
+
else:
|
235 |
+
return self.node.kwargs["weight"]
|
236 |
+
|
237 |
+
def get_bias(self) -> torch.fx.Node:
|
238 |
+
if len(self.node.args) > 2:
|
239 |
+
return self.node.args[2]
|
240 |
+
else:
|
241 |
+
return self.node.kwargs["bias"] if "bias" in self.node.kwargs else None
|
242 |
+
|
243 |
+
|
244 |
+
class NormalizedMatmulNode:
|
245 |
+
def __init__(self, node: torch.fx.Node) -> None:
|
246 |
+
assert node.op == "call_function"
|
247 |
+
assert node.target in [torch.bmm, torch.matmul]
|
248 |
+
self.node: torch.fx.Node = node
|
249 |
+
|
250 |
+
def get_input(self) -> torch.fx.Node:
|
251 |
+
if len(self.node.args) > 0:
|
252 |
+
return self.node.args[0]
|
253 |
+
else:
|
254 |
+
return self.node.kwargs["input"]
|
255 |
+
|
256 |
+
def get_other(self) -> torch.fx.Node:
|
257 |
+
if len(self.node.args) > 1:
|
258 |
+
return self.node.args[1]
|
259 |
+
else:
|
260 |
+
return self.node.kwargs["other"]
|
261 |
+
|
262 |
+
|
263 |
+
def check_permute(node: torch.fx.Node) -> bool:
|
264 |
+
ranks = len(node.meta["tensor_meta"].shape)
|
265 |
+
if len(node.args) > 3:
|
266 |
+
permutation = [node.args[i] % ranks for i in range(1, ranks + 1)]
|
267 |
+
elif (
|
268 |
+
"permutation" in node.kwargs
|
269 |
+
and node.kwargs["permutation"] is not None
|
270 |
+
and len(node.kwargs["permutation"]) > 2
|
271 |
+
):
|
272 |
+
permutation = [i % ranks for i in node.kwargs["permutation"]]
|
273 |
+
else:
|
274 |
+
return False
|
275 |
+
allowed_permutation = list(range(ranks))
|
276 |
+
allowed_permutation[-1] = ranks - 2
|
277 |
+
allowed_permutation[-2] = ranks - 1
|
278 |
+
return permutation == allowed_permutation
|
279 |
+
|
280 |
+
|
281 |
+
def sink_cat_after_pointwise(module: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
282 |
+
def one_user(node):
|
283 |
+
users = list(node.users)
|
284 |
+
return users[0] if len(users) == 1 else None
|
285 |
+
|
286 |
+
def is_view(node):
|
287 |
+
view = {"view"}
|
288 |
+
return node.op == "call_method" and node.target in view
|
289 |
+
|
290 |
+
def is_pointwise_unary(node):
|
291 |
+
pointwise = {torch.relu, torch.tanh, "relu", "tanh"}
|
292 |
+
return node.op in {"call_function", "call_method"} and node.target in pointwise
|
293 |
+
|
294 |
+
g = module.graph
|
295 |
+
for node in g.nodes:
|
296 |
+
if node.op != "call_function" or node.target != torch.cat:
|
297 |
+
continue
|
298 |
+
|
299 |
+
cat_or_view = node
|
300 |
+
while True:
|
301 |
+
user = one_user(cat_or_view)
|
302 |
+
if not user or not is_view(user):
|
303 |
+
break
|
304 |
+
cat_or_view = user
|
305 |
+
|
306 |
+
if user and is_pointwise_unary(user):
|
307 |
+
with g.inserting_before(node):
|
308 |
+
|
309 |
+
def cat_args(tensors, dim=0):
|
310 |
+
return tensors, dim
|
311 |
+
|
312 |
+
tensors, dim = cat_args(*node.args, **node.kwargs)
|
313 |
+
new_tensors = [
|
314 |
+
g.create_node(user.op, user.target, args=(arg,), kwargs=user.kwargs)
|
315 |
+
for arg in tensors
|
316 |
+
]
|
317 |
+
new_cat = g.create_node(
|
318 |
+
"call_function", torch.cat, args=(new_tensors, dim)
|
319 |
+
)
|
320 |
+
user.replace_all_uses_with(cat_or_view)
|
321 |
+
node.replace_all_uses_with(new_cat)
|
322 |
+
g.erase_node(user)
|
323 |
+
g.erase_node(node)
|
324 |
+
g.lint()
|
325 |
+
module.recompile()
|
326 |
+
return module
|
327 |
+
|
328 |
+
|
329 |
+
def linear_permute_fusion(module: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
330 |
+
for node in module.graph.nodes:
|
331 |
+
if (
|
332 |
+
node.op == "call_method"
|
333 |
+
and node.target == "permute"
|
334 |
+
and check_permute(node)
|
335 |
+
):
|
336 |
+
if len(node.args) > 0:
|
337 |
+
input_node = node.args[0]
|
338 |
+
else:
|
339 |
+
input_node = node.kwargs["input"]
|
340 |
+
if (
|
341 |
+
input_node.op == "call_function"
|
342 |
+
and input_node.target == torch.nn.functional.linear
|
343 |
+
):
|
344 |
+
normalized = NormalizedLinearNode(input_node)
|
345 |
+
input = normalized.get_input()
|
346 |
+
weight = normalized.get_weight()
|
347 |
+
bias = normalized.get_bias()
|
348 |
+
with module.graph.inserting_before(node):
|
349 |
+
fused_node = module.graph.call_function(
|
350 |
+
linear_transpose, args=(input, weight, bias)
|
351 |
+
)
|
352 |
+
node.replace_all_uses_with(fused_node)
|
353 |
+
module.graph.erase_node(node)
|
354 |
+
if len(input_node.users) == 0:
|
355 |
+
module.graph.erase_node(input_node)
|
356 |
+
|
357 |
+
module.graph.lint()
|
358 |
+
module.recompile()
|
359 |
+
return module
|
360 |
+
|
361 |
+
|
362 |
+
# Y1 = X * W^T + bias
|
363 |
+
# Y2 = Y1.permute(0, 2, 1)
|
364 |
+
# ---->
|
365 |
+
# Y2 = (W * X^T + bias.unsqueeze(-1))^T
|
366 |
+
def linear_transpose(
|
367 |
+
input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor]
|
368 |
+
) -> torch.Tensor:
|
369 |
+
if bias is None:
|
370 |
+
return torch.matmul(weight, input.transpose(-1, -2))
|
371 |
+
return torch.matmul(weight, input.transpose(-1, -2)) + bias.unsqueeze(-1)
|
372 |
+
|
373 |
+
|
374 |
+
def permute_linear_fusion(module: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
375 |
+
for node in module.graph.nodes:
|
376 |
+
if node.op == "call_function" and node.target == torch.nn.functional.linear:
|
377 |
+
if len(node.args) > 0:
|
378 |
+
input_node = node.args[0]
|
379 |
+
else:
|
380 |
+
input_node = node.kwargs["input"]
|
381 |
+
if (
|
382 |
+
input_node.op == "call_method"
|
383 |
+
and input_node.target == "permute"
|
384 |
+
and check_permute(input_node)
|
385 |
+
):
|
386 |
+
normalized = NormalizedLinearNode(node)
|
387 |
+
if len(input_node.args) > 0:
|
388 |
+
input = input_node.args[0]
|
389 |
+
else:
|
390 |
+
input = input_node.kwargs["input"]
|
391 |
+
weight = normalized.get_weight()
|
392 |
+
bias = normalized.get_bias()
|
393 |
+
with module.graph.inserting_before(node):
|
394 |
+
fused_node = module.graph.call_function(
|
395 |
+
transpose_linear, args=(input, weight, bias)
|
396 |
+
)
|
397 |
+
node.replace_all_uses_with(fused_node)
|
398 |
+
module.graph.erase_node(node)
|
399 |
+
if len(input_node.users) == 0:
|
400 |
+
module.graph.erase_node(input_node)
|
401 |
+
|
402 |
+
module.graph.lint()
|
403 |
+
module.recompile()
|
404 |
+
return module
|
405 |
+
|
406 |
+
|
407 |
+
def permute_matmul_fusion(module: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
408 |
+
for node in module.graph.nodes:
|
409 |
+
if node.op == "call_function" and (
|
410 |
+
node.target == torch.bmm or node.target == torch.matmul
|
411 |
+
):
|
412 |
+
normalized = NormalizedMatmulNode(node)
|
413 |
+
input_A_node = normalized.get_input()
|
414 |
+
input_B_node = normalized.get_other()
|
415 |
+
input_A = input_A_node
|
416 |
+
input_B = input_B_node
|
417 |
+
Atrans = Btrans = False
|
418 |
+
if (
|
419 |
+
input_A_node.op == "call_method"
|
420 |
+
and input_A_node.target == "permute"
|
421 |
+
and check_permute(input_A_node)
|
422 |
+
):
|
423 |
+
Atrans = True
|
424 |
+
if len(input_A_node.args) > 0:
|
425 |
+
input_A = input_A_node.args[0]
|
426 |
+
else:
|
427 |
+
input_A = input_A_node.kwargs["input"]
|
428 |
+
|
429 |
+
if (
|
430 |
+
input_B_node.op == "call_method"
|
431 |
+
and input_B_node.target == "permute"
|
432 |
+
and check_permute(input_B_node)
|
433 |
+
):
|
434 |
+
Btrans = True
|
435 |
+
if len(input_B_node.args) > 0:
|
436 |
+
input_B = input_B_node.args[0]
|
437 |
+
else:
|
438 |
+
input_B = input_B_node.kwargs["input"]
|
439 |
+
|
440 |
+
if Atrans or Btrans:
|
441 |
+
with module.graph.inserting_before(node):
|
442 |
+
fused_node = module.graph.call_function(
|
443 |
+
transpose_matmul,
|
444 |
+
args=(input_A, input_B, Atrans, Btrans),
|
445 |
+
)
|
446 |
+
node.replace_all_uses_with(fused_node)
|
447 |
+
module.graph.erase_node(node)
|
448 |
+
if Atrans and len(input_A_node.users) == 0:
|
449 |
+
module.graph.erase_node(input_A_node)
|
450 |
+
if Btrans and len(input_B_node.users) == 0:
|
451 |
+
module.graph.erase_node(input_B_node)
|
452 |
+
|
453 |
+
module.graph.lint()
|
454 |
+
module.recompile()
|
455 |
+
return module
|
456 |
+
|
457 |
+
|
458 |
+
# X1 = X.permute(0, 2, 1)
|
459 |
+
# Y1 = X1 * W1^T + bias1
|
460 |
+
# ---->
|
461 |
+
# Y2 = X1.transpose(-1, -2) * W1^T + bias1
|
462 |
+
def transpose_linear(
|
463 |
+
input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor]
|
464 |
+
) -> torch.Tensor:
|
465 |
+
if bias is None:
|
466 |
+
return torch.matmul(input.transpose(-1, -2), weight.t())
|
467 |
+
return torch.matmul(input.transpose(-1, -2), weight.t()) + bias
|
468 |
+
|
469 |
+
|
470 |
+
def transpose_matmul(
|
471 |
+
A: torch.Tensor, B: torch.Tensor, Atrans: bool, Btrans: bool
|
472 |
+
) -> torch.Tensor:
|
473 |
+
if Atrans:
|
474 |
+
A = A.transpose(-1, -2)
|
475 |
+
if Btrans:
|
476 |
+
B = B.transpose(-1, -2)
|
477 |
+
return torch.matmul(A, B)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/quantization.py
ADDED
@@ -0,0 +1,1500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import functools
|
3 |
+
import math
|
4 |
+
import operator
|
5 |
+
from typing import Any, Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch._dynamo.utils import counters
|
9 |
+
from torch.fx.experimental.symbolic_shapes import has_free_symbols
|
10 |
+
from ..lowering import lowerings as L, require_channels_last
|
11 |
+
from ..pattern_matcher import Arg, CallFunction, filter_nodes, KeywordArg, ListOf, Match
|
12 |
+
from ..utils import pad_listlike
|
13 |
+
from .freezing_patterns import register_freezing_graph_pattern
|
14 |
+
from .post_grad import register_lowering_pattern
|
15 |
+
|
16 |
+
aten = torch.ops.aten
|
17 |
+
prims = torch.ops.prims
|
18 |
+
quantized_decomposed = torch.ops.quantized_decomposed
|
19 |
+
quantized = torch.ops.quantized
|
20 |
+
|
21 |
+
"""
|
22 |
+
The quantization.py file primarily incorporates passes related to quantization fusion
|
23 |
+
in inductor, includes:
|
24 |
+
1. Dequant Promotion;
|
25 |
+
2. Conv/GEMM weight prepack with oneDNN Library;
|
26 |
+
3. Conv/GEMM quantization fusion with output quant node (if have);
|
27 |
+
4. Other pointwise operators' quantization fusion like: qmaxpool2d, qcat and more;
|
28 |
+
|
29 |
+
It also involves int8-mixed-fp32 and int8-mixed-bf16 quantization. The main difference
|
30 |
+
of patterns for int8-mixed-bf16, comparing with int8-mixed-fp32, is
|
31 |
+
1. There is to(dtype=torch.bfloat16) node at the inputs of activation and weight for Conv/GEMM.
|
32 |
+
2. There is to(dtype=torch.float32) node at the outputs of Conv/GEMM before inputs to next quant node.
|
33 |
+
Refer to: https://github.com/pytorch/pytorch/issues/111640 for detail design of int8-mixed-bf16
|
34 |
+
quantization.
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
def _may_generate_pattern_with_dtype_convert(pattern, dtype=Arg(), dtype_convert=True):
|
39 |
+
if dtype_convert:
|
40 |
+
return CallFunction(
|
41 |
+
prims.convert_element_type.default,
|
42 |
+
pattern,
|
43 |
+
dtype,
|
44 |
+
)
|
45 |
+
else:
|
46 |
+
return pattern
|
47 |
+
|
48 |
+
|
49 |
+
"""
|
50 |
+
dequantize activation:
|
51 |
+
x = x.to(fp32)
|
52 |
+
x = x - zero_point
|
53 |
+
x = x * scale
|
54 |
+
"""
|
55 |
+
dequantize_per_tensor_activation_pattern = CallFunction(
|
56 |
+
aten.mul.Tensor,
|
57 |
+
CallFunction(
|
58 |
+
aten.sub.Tensor,
|
59 |
+
CallFunction(
|
60 |
+
prims.convert_element_type.default,
|
61 |
+
KeywordArg("x"),
|
62 |
+
KeywordArg("x_dq_dtype"),
|
63 |
+
),
|
64 |
+
KeywordArg("x_zp"),
|
65 |
+
),
|
66 |
+
KeywordArg("x_scale"),
|
67 |
+
)
|
68 |
+
|
69 |
+
dequantize_per_channel_weight_pattern = CallFunction(
|
70 |
+
quantized_decomposed.dequantize_per_channel.default,
|
71 |
+
KeywordArg("q_weight"),
|
72 |
+
KeywordArg("w_scale"),
|
73 |
+
KeywordArg("w_zp"),
|
74 |
+
KeywordArg("w_axis"),
|
75 |
+
KeywordArg("w_quant_min"),
|
76 |
+
KeywordArg("w_quant_max"),
|
77 |
+
KeywordArg("w_dtype"),
|
78 |
+
)
|
79 |
+
|
80 |
+
dequantize_per_channel_to_bf16_weight_pattern = (
|
81 |
+
_may_generate_pattern_with_dtype_convert(
|
82 |
+
dequantize_per_channel_weight_pattern,
|
83 |
+
KeywordArg("autocast_wgt_dtype"),
|
84 |
+
)
|
85 |
+
)
|
86 |
+
|
87 |
+
dequantize_per_channel_clone_weight_pattern = CallFunction(
|
88 |
+
aten.clone.default,
|
89 |
+
dequantize_per_channel_weight_pattern,
|
90 |
+
memory_format=KeywordArg("memory_format"),
|
91 |
+
)
|
92 |
+
|
93 |
+
dequantize_per_channel_to_bf16_clone_weight_pattern = CallFunction(
|
94 |
+
aten.clone.default,
|
95 |
+
dequantize_per_channel_to_bf16_weight_pattern,
|
96 |
+
memory_format=KeywordArg("memory_format"),
|
97 |
+
)
|
98 |
+
|
99 |
+
dequantize_qconv_pt2e_pattern = CallFunction(
|
100 |
+
torch.ops.onednn.qconv2d_pointwise.default,
|
101 |
+
KeywordArg("x"),
|
102 |
+
KeywordArg("x_scale"), # x_scale
|
103 |
+
KeywordArg("x_zp"), # x_zp
|
104 |
+
KeywordArg("packed_weight"), # packed_weight
|
105 |
+
KeywordArg("w_scale"), # w_scale
|
106 |
+
KeywordArg("w_zp"), # w_zp
|
107 |
+
KeywordArg("b"), # bias
|
108 |
+
KeywordArg("stride"),
|
109 |
+
KeywordArg("padding"),
|
110 |
+
KeywordArg("dilation"),
|
111 |
+
KeywordArg("groups"),
|
112 |
+
KeywordArg("inv_output_scale"), # inv_output_scale = 1.0
|
113 |
+
KeywordArg("output_zero_point"), # output_zero_point = 0
|
114 |
+
KeywordArg("output_dtype"), # output_dtype = None
|
115 |
+
KeywordArg("attr"), # attr = "none"
|
116 |
+
Arg(), # scalars
|
117 |
+
Arg(), # algorithm
|
118 |
+
)
|
119 |
+
|
120 |
+
qlinear_pt2e_pattern = CallFunction(
|
121 |
+
torch.ops.onednn.qlinear_pointwise.default,
|
122 |
+
KeywordArg("x"),
|
123 |
+
KeywordArg("x_scale"),
|
124 |
+
KeywordArg("x_zp"),
|
125 |
+
KeywordArg("packed_weight"),
|
126 |
+
KeywordArg("w_scale"),
|
127 |
+
KeywordArg("w_zp"),
|
128 |
+
KeywordArg("b"),
|
129 |
+
KeywordArg("output_scale"),
|
130 |
+
KeywordArg("output_zero_point"),
|
131 |
+
KeywordArg("output_dtype"),
|
132 |
+
KeywordArg("postop_name"),
|
133 |
+
KeywordArg("postop_args"),
|
134 |
+
KeywordArg("postop_algorithm"),
|
135 |
+
)
|
136 |
+
|
137 |
+
dequantize_accum_pattern = CallFunction(
|
138 |
+
aten.mul.Tensor,
|
139 |
+
CallFunction(
|
140 |
+
aten.sub.Tensor,
|
141 |
+
CallFunction(
|
142 |
+
prims.convert_element_type.default,
|
143 |
+
KeywordArg("accum"),
|
144 |
+
KeywordArg("accum_dq_dtype"),
|
145 |
+
),
|
146 |
+
KeywordArg("accum_zp"),
|
147 |
+
),
|
148 |
+
KeywordArg("accum_scale"),
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
def generate_pattern_with_binary(
|
153 |
+
binary_post_op,
|
154 |
+
computation_call,
|
155 |
+
extra_input_pattern,
|
156 |
+
int8_mixed_bf16_with_inplace_add=False,
|
157 |
+
):
|
158 |
+
binary_pattern = CallFunction(
|
159 |
+
binary_post_op,
|
160 |
+
computation_call,
|
161 |
+
extra_input_pattern,
|
162 |
+
)
|
163 |
+
return _may_generate_pattern_with_dtype_convert(
|
164 |
+
binary_pattern,
|
165 |
+
KeywordArg("convert_dtype_after_inplace_add"),
|
166 |
+
int8_mixed_bf16_with_inplace_add,
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
def generate_pattern_with_unary(computation_call, unary_post_op):
|
171 |
+
if unary_post_op is not None:
|
172 |
+
if unary_post_op == aten.hardtanh.default:
|
173 |
+
return CallFunction(
|
174 |
+
aten.clamp_max,
|
175 |
+
CallFunction(aten.clamp_min, computation_call, KeywordArg("min_value")),
|
176 |
+
KeywordArg("max_value"),
|
177 |
+
)
|
178 |
+
else:
|
179 |
+
return CallFunction(
|
180 |
+
unary_post_op,
|
181 |
+
computation_call,
|
182 |
+
)
|
183 |
+
return computation_call
|
184 |
+
|
185 |
+
|
186 |
+
def generate_pattern_with_output_quant(computation_call, dtype=torch.float32):
|
187 |
+
"""
|
188 |
+
quantize output:
|
189 |
+
output = round(output * o_inv_scale)
|
190 |
+
output = output + zero_point
|
191 |
+
output = clamp_min(output, 0)
|
192 |
+
output = clamp_max(output, 127)
|
193 |
+
output = output.to(uint8)
|
194 |
+
"""
|
195 |
+
assert dtype in [torch.float32, torch.bfloat16]
|
196 |
+
quantized_op_output_pattern_pt2e = CallFunction(
|
197 |
+
prims.convert_element_type.default,
|
198 |
+
CallFunction(
|
199 |
+
aten.clamp_max.default,
|
200 |
+
CallFunction(
|
201 |
+
aten.clamp_min.default,
|
202 |
+
CallFunction(
|
203 |
+
aten.add.Tensor,
|
204 |
+
CallFunction(
|
205 |
+
aten.round.default,
|
206 |
+
CallFunction(
|
207 |
+
aten.mul.Tensor,
|
208 |
+
_may_generate_pattern_with_dtype_convert(
|
209 |
+
computation_call,
|
210 |
+
KeywordArg("autocast_output_quant_dtype"),
|
211 |
+
dtype != torch.float32,
|
212 |
+
),
|
213 |
+
KeywordArg("o_inv_scale"),
|
214 |
+
),
|
215 |
+
),
|
216 |
+
KeywordArg("o_zp"),
|
217 |
+
),
|
218 |
+
KeywordArg("o_qmin"),
|
219 |
+
),
|
220 |
+
KeywordArg("o_qmax"),
|
221 |
+
),
|
222 |
+
KeywordArg("o_dtype"),
|
223 |
+
)
|
224 |
+
return quantized_op_output_pattern_pt2e
|
225 |
+
|
226 |
+
|
227 |
+
def _check_node_kwarg_arg_value(check_node, kwarg_name, args_index, expected_value):
|
228 |
+
if kwarg_name in check_node.kwargs:
|
229 |
+
actual_value = check_node.kwargs[kwarg_name]
|
230 |
+
return actual_value == expected_value
|
231 |
+
else:
|
232 |
+
assert len(check_node.args) >= (args_index + 1)
|
233 |
+
actual_value = check_node.args[args_index]
|
234 |
+
return actual_value == expected_value
|
235 |
+
|
236 |
+
|
237 |
+
def _is_valid_quantized_conv2d_optimization_pattern(output_dtype):
|
238 |
+
def fn(match):
|
239 |
+
if output_dtype is not None:
|
240 |
+
# Only keep matched pattern with same output_dtype
|
241 |
+
qconv_node_after_weight_prepack = filter_nodes(
|
242 |
+
match.nodes, torch.ops.onednn.qconv2d_pointwise
|
243 |
+
)[0]
|
244 |
+
return _check_node_kwarg_arg_value(
|
245 |
+
qconv_node_after_weight_prepack, "output_dtype", 13, output_dtype
|
246 |
+
)
|
247 |
+
return True
|
248 |
+
|
249 |
+
return fn
|
250 |
+
|
251 |
+
|
252 |
+
def _register_quantized_conv_lowering(
|
253 |
+
pattern,
|
254 |
+
pass_number,
|
255 |
+
computation_op,
|
256 |
+
output_dtype,
|
257 |
+
unary_attr,
|
258 |
+
original_pattern_output_dtype=torch.float32,
|
259 |
+
):
|
260 |
+
@register_lowering_pattern(
|
261 |
+
pattern,
|
262 |
+
extra_check=_is_valid_quantized_conv2d_optimization_pattern(output_dtype),
|
263 |
+
pass_number=pass_number,
|
264 |
+
)
|
265 |
+
def qconv(match: Match, *args, **kwargs):
|
266 |
+
# Activation QParams
|
267 |
+
x, x_scale, x_zp = (
|
268 |
+
kwargs["x"],
|
269 |
+
kwargs["x_scale"],
|
270 |
+
kwargs["x_zp"],
|
271 |
+
)
|
272 |
+
# Weight QParams
|
273 |
+
packed_weight, w_scale, w_zp = (
|
274 |
+
kwargs["packed_weight"],
|
275 |
+
kwargs["w_scale"],
|
276 |
+
kwargs["w_zp"],
|
277 |
+
)
|
278 |
+
# Conv Params
|
279 |
+
b, stride, padding, dilation, groups = (
|
280 |
+
kwargs["b"],
|
281 |
+
kwargs["stride"],
|
282 |
+
kwargs["padding"],
|
283 |
+
kwargs["dilation"],
|
284 |
+
kwargs["groups"],
|
285 |
+
)
|
286 |
+
assert output_dtype in [None, torch.float32, torch.bfloat16]
|
287 |
+
# Output QParams
|
288 |
+
o_inv_scale = kwargs["o_inv_scale"] if output_dtype is None else 1.0
|
289 |
+
o_zero_point = kwargs["o_zp"] if output_dtype is None else 0
|
290 |
+
assert (
|
291 |
+
kwargs["output_dtype"] is original_pattern_output_dtype
|
292 |
+
) # Expected int8-in fp32-out qconv in weight prepack phase
|
293 |
+
assert (
|
294 |
+
kwargs["attr"] == "none"
|
295 |
+
) # Expected no post op fused in weight prepack phase
|
296 |
+
if unary_attr.op_name == "hardtanh":
|
297 |
+
min_value = kwargs.get("min_value")
|
298 |
+
max_value = kwargs.get("max_value")
|
299 |
+
unary_attr.scalars_attr = [min_value, max_value]
|
300 |
+
|
301 |
+
computation_args = (
|
302 |
+
x,
|
303 |
+
x_scale,
|
304 |
+
x_zp,
|
305 |
+
packed_weight,
|
306 |
+
w_scale,
|
307 |
+
w_zp,
|
308 |
+
b,
|
309 |
+
stride,
|
310 |
+
padding,
|
311 |
+
dilation,
|
312 |
+
groups,
|
313 |
+
o_inv_scale,
|
314 |
+
o_zero_point,
|
315 |
+
output_dtype,
|
316 |
+
unary_attr.op_name,
|
317 |
+
unary_attr.scalars_attr,
|
318 |
+
unary_attr.algorithm_attr,
|
319 |
+
)
|
320 |
+
counters["inductor"]["qconv2d_unary_matcher_count"] += 1
|
321 |
+
counters["inductor"]["qconv2d_unary_matcher_nodes"] += len(match.nodes)
|
322 |
+
return L[computation_op](*computation_args)
|
323 |
+
|
324 |
+
return qconv
|
325 |
+
|
326 |
+
|
327 |
+
def _is_valid_quantized_linear_optimization_pattern(output_dtype):
|
328 |
+
def fn(match):
|
329 |
+
if output_dtype is not None:
|
330 |
+
# Only keep matched pattern with same output_dtype
|
331 |
+
qlinear_node_after_weight_prepack = filter_nodes(
|
332 |
+
match.nodes, torch.ops.onednn.qlinear_pointwise
|
333 |
+
)[0]
|
334 |
+
return _check_node_kwarg_arg_value(
|
335 |
+
qlinear_node_after_weight_prepack, "output_dtype", 9, output_dtype
|
336 |
+
)
|
337 |
+
return True
|
338 |
+
|
339 |
+
return fn
|
340 |
+
|
341 |
+
|
342 |
+
def _register_quantized_linear_lowering(
|
343 |
+
pattern,
|
344 |
+
pass_number,
|
345 |
+
computation_op,
|
346 |
+
output_dtype,
|
347 |
+
unary_attr,
|
348 |
+
original_pattern_output_dtype=torch.float32,
|
349 |
+
):
|
350 |
+
@register_lowering_pattern(
|
351 |
+
pattern,
|
352 |
+
extra_check=_is_valid_quantized_linear_optimization_pattern(output_dtype),
|
353 |
+
pass_number=pass_number,
|
354 |
+
)
|
355 |
+
def qlinear(match: Match, *args, **kwargs):
|
356 |
+
# Activation QParams
|
357 |
+
x, x_scale, x_zp = (
|
358 |
+
kwargs["x"],
|
359 |
+
kwargs["x_scale"],
|
360 |
+
kwargs["x_zp"],
|
361 |
+
)
|
362 |
+
# Weight QParams
|
363 |
+
packed_weight, w_scale, w_zp = (
|
364 |
+
kwargs["packed_weight"],
|
365 |
+
kwargs["w_scale"],
|
366 |
+
kwargs["w_zp"],
|
367 |
+
)
|
368 |
+
|
369 |
+
# bias
|
370 |
+
b = kwargs["b"] if "b" in kwargs else None
|
371 |
+
|
372 |
+
# Output QParams
|
373 |
+
o_inv_scale = kwargs["o_inv_scale"] if output_dtype is None else 1.0
|
374 |
+
o_zero_point = kwargs["o_zp"] if output_dtype is None else 0
|
375 |
+
assert (
|
376 |
+
kwargs["output_dtype"] is original_pattern_output_dtype
|
377 |
+
) # Expected int8-in fp32/bf16-out qlinear in weight prepack phase
|
378 |
+
assert (
|
379 |
+
kwargs["postop_name"] == "none"
|
380 |
+
) # Expected no post op fused in weight prepack phase
|
381 |
+
|
382 |
+
computation_args = (
|
383 |
+
x,
|
384 |
+
x_scale,
|
385 |
+
x_zp,
|
386 |
+
packed_weight,
|
387 |
+
w_scale,
|
388 |
+
w_zp,
|
389 |
+
b,
|
390 |
+
o_inv_scale,
|
391 |
+
o_zero_point,
|
392 |
+
output_dtype,
|
393 |
+
unary_attr.op_name,
|
394 |
+
unary_attr.scalars_attr,
|
395 |
+
unary_attr.algorithm_attr,
|
396 |
+
)
|
397 |
+
counters["inductor"]["qlinear_unary_matcher_count"] += 1
|
398 |
+
counters["inductor"]["qlinear_unary_matcher_nodes"] += len(match.nodes)
|
399 |
+
return L[computation_op](*computation_args)
|
400 |
+
|
401 |
+
return qlinear
|
402 |
+
|
403 |
+
|
404 |
+
def _is_valid_quantized_conv_binary_optimization_pattern(output_dtype):
|
405 |
+
# Check if it's a valid Conv Binary Pattern:
|
406 |
+
# * qconv2d_pointwise should only has one users
|
407 |
+
# * Extra input of binary node comes from dequant pattern
|
408 |
+
def fn(match):
|
409 |
+
qconv2d_node_after_weight_prepack = filter_nodes(
|
410 |
+
match.nodes, torch.ops.onednn.qconv2d_pointwise
|
411 |
+
)[0]
|
412 |
+
if len(qconv2d_node_after_weight_prepack.users) != 1:
|
413 |
+
return False
|
414 |
+
if output_dtype is not None:
|
415 |
+
binary_node_inputs = list(qconv2d_node_after_weight_prepack.users)[0].args
|
416 |
+
assert len(binary_node_inputs) == 2, "Expects binary node with 2 inputs"
|
417 |
+
extra_input_node = None
|
418 |
+
for arg in binary_node_inputs:
|
419 |
+
if arg != qconv2d_node_after_weight_prepack:
|
420 |
+
extra_input_node = arg
|
421 |
+
break
|
422 |
+
assert extra_input_node is not None
|
423 |
+
if (not isinstance(extra_input_node, torch.fx.Node)) or (
|
424 |
+
extra_input_node.target != aten.mul.Tensor
|
425 |
+
):
|
426 |
+
return False
|
427 |
+
return True
|
428 |
+
|
429 |
+
return fn
|
430 |
+
|
431 |
+
|
432 |
+
def _register_quantized_conv_binary_lowering(
|
433 |
+
pattern,
|
434 |
+
pass_number,
|
435 |
+
computation_op,
|
436 |
+
output_dtype,
|
437 |
+
binary_unary_attr,
|
438 |
+
):
|
439 |
+
@register_lowering_pattern(
|
440 |
+
pattern,
|
441 |
+
extra_check=_is_valid_quantized_conv_binary_optimization_pattern(output_dtype),
|
442 |
+
pass_number=pass_number,
|
443 |
+
)
|
444 |
+
def qconv_binary(match: Match, *args, **kwargs):
|
445 |
+
x, x_scale, x_zp = kwargs["x"], kwargs["x_scale"], kwargs["x_zp"]
|
446 |
+
accum = (
|
447 |
+
kwargs["accum"] if output_dtype is None else kwargs["accum_after_dequant"]
|
448 |
+
)
|
449 |
+
accum_scale = kwargs["accum_scale"] if output_dtype is None else 1.0
|
450 |
+
accum_zp = kwargs["accum_zp"] if output_dtype is None else 0
|
451 |
+
packed_weight, w_scale, w_zp = (
|
452 |
+
kwargs["packed_weight"],
|
453 |
+
kwargs["w_scale"],
|
454 |
+
kwargs["w_zp"],
|
455 |
+
)
|
456 |
+
b, stride, padding, dilation, groups = (
|
457 |
+
kwargs["b"],
|
458 |
+
kwargs["stride"],
|
459 |
+
kwargs["padding"],
|
460 |
+
kwargs["dilation"],
|
461 |
+
kwargs["groups"],
|
462 |
+
)
|
463 |
+
# Output QParams
|
464 |
+
o_inv_scale = kwargs["o_inv_scale"] if output_dtype is None else 1.0
|
465 |
+
o_zero_point = kwargs["o_zp"] if output_dtype is None else 0
|
466 |
+
|
467 |
+
computation_args = (
|
468 |
+
x,
|
469 |
+
x_scale,
|
470 |
+
x_zp,
|
471 |
+
accum,
|
472 |
+
accum_scale,
|
473 |
+
accum_zp,
|
474 |
+
packed_weight,
|
475 |
+
w_scale,
|
476 |
+
w_zp,
|
477 |
+
b,
|
478 |
+
stride,
|
479 |
+
padding,
|
480 |
+
dilation,
|
481 |
+
groups,
|
482 |
+
o_inv_scale,
|
483 |
+
o_zero_point,
|
484 |
+
output_dtype,
|
485 |
+
binary_unary_attr.binary_op_name,
|
486 |
+
binary_unary_attr.alpha,
|
487 |
+
binary_unary_attr.unary_op_name,
|
488 |
+
binary_unary_attr.scalars_attr,
|
489 |
+
binary_unary_attr.algorithm_attr,
|
490 |
+
)
|
491 |
+
counters["inductor"]["qconv2d_binary_matcher_count"] += 1
|
492 |
+
counters["inductor"]["qconv2d_binary_matcher_nodes"] += len(match.nodes)
|
493 |
+
return L[computation_op](*computation_args)
|
494 |
+
|
495 |
+
return qconv_binary
|
496 |
+
|
497 |
+
|
498 |
+
def _register_quantization_unary_fusion():
|
499 |
+
class UnaryAttr:
|
500 |
+
def __init__(self, op_name: str, scalars_attr=None, algorithm_attr=None):
|
501 |
+
self.op_name = op_name
|
502 |
+
self.scalars_attr = scalars_attr if scalars_attr else []
|
503 |
+
self.algorithm_attr = algorithm_attr if algorithm_attr else ""
|
504 |
+
|
505 |
+
for original_pattern_output_dtype in [torch.float32, torch.bfloat16]:
|
506 |
+
# QConv2d
|
507 |
+
# Priority 1 to match: QConv2d Unary pattern with int8 output
|
508 |
+
# If a pattern1 is a sub-set of pattern2, we should try to match pattern2 firstly.
|
509 |
+
# For example: pattern1 is qconv_fp32 -> relu, pattern2 is qconv_fp32 -> relu -> quant
|
510 |
+
conv_unary_replace_patterns = {
|
511 |
+
UnaryAttr("none", [], ""): generate_pattern_with_output_quant(
|
512 |
+
dequantize_qconv_pt2e_pattern,
|
513 |
+
dtype=original_pattern_output_dtype,
|
514 |
+
),
|
515 |
+
UnaryAttr("relu", [], ""): generate_pattern_with_output_quant(
|
516 |
+
generate_pattern_with_unary(
|
517 |
+
dequantize_qconv_pt2e_pattern, aten.relu.default
|
518 |
+
),
|
519 |
+
dtype=original_pattern_output_dtype,
|
520 |
+
),
|
521 |
+
UnaryAttr("hardtanh", [], ""): generate_pattern_with_output_quant(
|
522 |
+
generate_pattern_with_unary(
|
523 |
+
dequantize_qconv_pt2e_pattern, aten.hardtanh.default
|
524 |
+
),
|
525 |
+
dtype=original_pattern_output_dtype,
|
526 |
+
),
|
527 |
+
}
|
528 |
+
|
529 |
+
for unary_attr, patterns in conv_unary_replace_patterns.items():
|
530 |
+
# Register qconv2d pattern for ExternKernel Lowering
|
531 |
+
_register_quantized_conv_lowering(
|
532 |
+
patterns,
|
533 |
+
1, # pass_number
|
534 |
+
torch.ops.onednn.qconv2d_pointwise, # computation_op
|
535 |
+
None, # output_dtype, None is the default value for int8 output
|
536 |
+
unary_attr, # unary_attr
|
537 |
+
original_pattern_output_dtype=original_pattern_output_dtype,
|
538 |
+
)
|
539 |
+
|
540 |
+
# Priority 2 to match: QConv2d Unary pattern with fp32/bfloat16 output
|
541 |
+
conv_unary_replace_float_out_patterns = {
|
542 |
+
UnaryAttr("relu", [], ""): generate_pattern_with_unary(
|
543 |
+
dequantize_qconv_pt2e_pattern, aten.relu.default
|
544 |
+
),
|
545 |
+
UnaryAttr("hardtanh", [], ""): generate_pattern_with_unary(
|
546 |
+
dequantize_qconv_pt2e_pattern, aten.hardtanh.default
|
547 |
+
),
|
548 |
+
}
|
549 |
+
|
550 |
+
for unary_attr, patterns in conv_unary_replace_float_out_patterns.items():
|
551 |
+
# Register qconv2d pattern for ExternKernel Lowering
|
552 |
+
_register_quantized_conv_lowering(
|
553 |
+
patterns,
|
554 |
+
2, # pass_number
|
555 |
+
torch.ops.onednn.qconv2d_pointwise, # computation_op
|
556 |
+
original_pattern_output_dtype, # output_dtype
|
557 |
+
unary_attr, # unary_attr
|
558 |
+
original_pattern_output_dtype=original_pattern_output_dtype,
|
559 |
+
)
|
560 |
+
|
561 |
+
# QLinear
|
562 |
+
# Priority 1 to match: QLinear Unary pattern with int8 output
|
563 |
+
linear_unary_replace_patterns = {
|
564 |
+
UnaryAttr("none", [], ""): generate_pattern_with_output_quant(
|
565 |
+
qlinear_pt2e_pattern,
|
566 |
+
dtype=original_pattern_output_dtype,
|
567 |
+
),
|
568 |
+
UnaryAttr("relu", [], ""): generate_pattern_with_output_quant(
|
569 |
+
generate_pattern_with_unary(qlinear_pt2e_pattern, aten.relu.default),
|
570 |
+
dtype=original_pattern_output_dtype,
|
571 |
+
),
|
572 |
+
}
|
573 |
+
|
574 |
+
for unary_attr, patterns in linear_unary_replace_patterns.items():
|
575 |
+
_register_quantized_linear_lowering(
|
576 |
+
patterns,
|
577 |
+
1, # pass_number
|
578 |
+
torch.ops.onednn.qlinear_pointwise, # computation_op
|
579 |
+
None, # output_dtype
|
580 |
+
unary_attr, # unary_attr
|
581 |
+
original_pattern_output_dtype=original_pattern_output_dtype,
|
582 |
+
)
|
583 |
+
|
584 |
+
# Priority 2 to match: QLinear Unary pattern with FP32/BF16 output
|
585 |
+
linear_unary_replace_float_out_patterns = {
|
586 |
+
UnaryAttr("relu", [], ""): generate_pattern_with_unary(
|
587 |
+
qlinear_pt2e_pattern, aten.relu.default
|
588 |
+
),
|
589 |
+
}
|
590 |
+
|
591 |
+
for unary_attr, patterns in linear_unary_replace_float_out_patterns.items():
|
592 |
+
_register_quantized_linear_lowering(
|
593 |
+
patterns,
|
594 |
+
2, # pass_number
|
595 |
+
torch.ops.onednn.qlinear_pointwise, # computation_op
|
596 |
+
original_pattern_output_dtype, # output_dtype
|
597 |
+
unary_attr, # unary_attr
|
598 |
+
original_pattern_output_dtype=original_pattern_output_dtype,
|
599 |
+
)
|
600 |
+
|
601 |
+
|
602 |
+
def _register_quantization_binary_fusion():
|
603 |
+
class BinaryUnaryAttr:
|
604 |
+
def __init__(
|
605 |
+
self,
|
606 |
+
binary_op_name: str,
|
607 |
+
alpha=None,
|
608 |
+
unary_op_name: str = "none",
|
609 |
+
scalars_attr=None,
|
610 |
+
algorithm_attr=None,
|
611 |
+
):
|
612 |
+
self.binary_op_name = binary_op_name
|
613 |
+
self.alpha = alpha if alpha else 1.0
|
614 |
+
self.unary_op_name = unary_op_name
|
615 |
+
self.scalars_attr = scalars_attr if scalars_attr else []
|
616 |
+
self.algorithm_attr = algorithm_attr if algorithm_attr else ""
|
617 |
+
|
618 |
+
for int8_mixed_bf16_with_inplace_add in [False, True]:
|
619 |
+
# Priority 1 to match: QConv2d Binary or Binary-Unary pattern with int8 output
|
620 |
+
binary_replace_patterns = {
|
621 |
+
BinaryUnaryAttr(
|
622 |
+
"add", 1.0, "none", [], ""
|
623 |
+
): generate_pattern_with_output_quant(
|
624 |
+
generate_pattern_with_binary(
|
625 |
+
aten.add.Tensor,
|
626 |
+
dequantize_qconv_pt2e_pattern,
|
627 |
+
dequantize_accum_pattern,
|
628 |
+
int8_mixed_bf16_with_inplace_add,
|
629 |
+
),
|
630 |
+
dtype=torch.bfloat16
|
631 |
+
if int8_mixed_bf16_with_inplace_add
|
632 |
+
else torch.float32,
|
633 |
+
),
|
634 |
+
BinaryUnaryAttr(
|
635 |
+
"add", 1.0, "relu", [], ""
|
636 |
+
): generate_pattern_with_output_quant(
|
637 |
+
generate_pattern_with_unary(
|
638 |
+
generate_pattern_with_binary(
|
639 |
+
aten.add.Tensor,
|
640 |
+
dequantize_qconv_pt2e_pattern,
|
641 |
+
dequantize_accum_pattern,
|
642 |
+
int8_mixed_bf16_with_inplace_add,
|
643 |
+
),
|
644 |
+
aten.relu.default,
|
645 |
+
),
|
646 |
+
dtype=torch.bfloat16
|
647 |
+
if int8_mixed_bf16_with_inplace_add
|
648 |
+
else torch.float32,
|
649 |
+
),
|
650 |
+
}
|
651 |
+
|
652 |
+
for binary_unary_attr, patterns in binary_replace_patterns.items():
|
653 |
+
_register_quantized_conv_binary_lowering(
|
654 |
+
patterns,
|
655 |
+
0, # pass_number
|
656 |
+
torch.ops.onednn.qconv2d_pointwise.binary, # computation_op
|
657 |
+
None, # output_dtype
|
658 |
+
binary_unary_attr, # binary_unary_attr
|
659 |
+
)
|
660 |
+
|
661 |
+
# Priority 2 to match: QConv2d Binary-Unary pattern with fp32/bfloat16 output
|
662 |
+
binary_replace_float_out_patterns = {
|
663 |
+
BinaryUnaryAttr("add", 1.0, "relu", [], ""): generate_pattern_with_unary(
|
664 |
+
generate_pattern_with_binary(
|
665 |
+
aten.add.Tensor,
|
666 |
+
dequantize_qconv_pt2e_pattern,
|
667 |
+
KeywordArg("accum_after_dequant"),
|
668 |
+
int8_mixed_bf16_with_inplace_add,
|
669 |
+
),
|
670 |
+
aten.relu.default,
|
671 |
+
),
|
672 |
+
}
|
673 |
+
|
674 |
+
for (
|
675 |
+
binary_unary_attr,
|
676 |
+
patterns,
|
677 |
+
) in binary_replace_float_out_patterns.items():
|
678 |
+
if int8_mixed_bf16_with_inplace_add:
|
679 |
+
_register_quantized_conv_binary_lowering(
|
680 |
+
patterns,
|
681 |
+
0, # pass_number
|
682 |
+
torch.ops.onednn.qconv2d_pointwise.binary, # computation_op
|
683 |
+
# Note that for int8-mixed-bf16 and non-inplace add, because we have
|
684 |
+
# q-dq inserted at extra input of add, so the non-inplace add has bf16 and fp32 inputs,
|
685 |
+
# the output dtype will be float32.
|
686 |
+
# For inplace add, there is a extra to_bf16 node at add output, so the fusion pattern has bfloat16 output.
|
687 |
+
torch.bfloat16,
|
688 |
+
binary_unary_attr, # binary_unary_attr
|
689 |
+
)
|
690 |
+
else:
|
691 |
+
_register_quantized_conv_binary_lowering(
|
692 |
+
patterns,
|
693 |
+
1, # pass_number
|
694 |
+
torch.ops.onednn.qconv2d_pointwise.binary, # computation_op
|
695 |
+
torch.float32,
|
696 |
+
binary_unary_attr, # binary_unary_attr
|
697 |
+
)
|
698 |
+
|
699 |
+
# Priority 3: QConv2d Binary pattern with fp32/bfloat16 output
|
700 |
+
binary_replace_float_out_patterns = {
|
701 |
+
BinaryUnaryAttr("add", 1.0, "none", [], ""): generate_pattern_with_binary(
|
702 |
+
aten.add.Tensor,
|
703 |
+
dequantize_qconv_pt2e_pattern,
|
704 |
+
KeywordArg("accum_after_dequant"),
|
705 |
+
int8_mixed_bf16_with_inplace_add,
|
706 |
+
),
|
707 |
+
}
|
708 |
+
|
709 |
+
for (
|
710 |
+
binary_unary_attr,
|
711 |
+
patterns,
|
712 |
+
) in binary_replace_float_out_patterns.items():
|
713 |
+
_register_quantized_conv_binary_lowering(
|
714 |
+
patterns,
|
715 |
+
1 if int8_mixed_bf16_with_inplace_add else 2, # pass_number
|
716 |
+
torch.ops.onednn.qconv2d_pointwise.binary, # computation_op
|
717 |
+
# Same output dtype setting as conv-add-relu pattern
|
718 |
+
torch.bfloat16 if int8_mixed_bf16_with_inplace_add else torch.float32,
|
719 |
+
binary_unary_attr, # binary_unary_attr
|
720 |
+
)
|
721 |
+
|
722 |
+
|
723 |
+
def _is_valid_quantized_maxpool2d_optimization_pattern():
|
724 |
+
def fn(match):
|
725 |
+
# Only match the pattern which max_pool2d_with_indices returns value
|
726 |
+
# instead of indices.
|
727 |
+
get_item_node = filter_nodes(match.nodes, operator.getitem)[0]
|
728 |
+
return get_item_node.args[1] == 0
|
729 |
+
|
730 |
+
return fn
|
731 |
+
|
732 |
+
|
733 |
+
def _register_quantized_maxpool2d_lowering(
|
734 |
+
pattern,
|
735 |
+
computation_op,
|
736 |
+
):
|
737 |
+
@register_lowering_pattern(
|
738 |
+
pattern,
|
739 |
+
extra_check=_is_valid_quantized_maxpool2d_optimization_pattern(),
|
740 |
+
)
|
741 |
+
def qmaxpool2d(match: Match, *args, **kwargs):
|
742 |
+
x = kwargs["x"]
|
743 |
+
kernel_size = kwargs["kernel_size"]
|
744 |
+
stride = kwargs["stride"] if ("stride" in kwargs) else None
|
745 |
+
padding = kwargs["padding"] if ("padding" in kwargs) else 0
|
746 |
+
dilation = kwargs["dilation"] if ("dilation" in kwargs) else 1
|
747 |
+
ceil_mode = kwargs["ceil_mode"] if ("ceil_mode" in kwargs) else False
|
748 |
+
|
749 |
+
if padding == 0:
|
750 |
+
padding = [0, 0]
|
751 |
+
if dilation == 1:
|
752 |
+
dilation = [1, 1]
|
753 |
+
if not stride:
|
754 |
+
stride = kernel_size
|
755 |
+
kernel_size = pad_listlike(kernel_size, 2)
|
756 |
+
stride = pad_listlike(stride, 2)
|
757 |
+
padding = pad_listlike(padding, 2)
|
758 |
+
dilation = pad_listlike(dilation, 2)
|
759 |
+
|
760 |
+
assert len(kernel_size) == 2
|
761 |
+
assert len(stride) == 2
|
762 |
+
assert len(padding) == 2
|
763 |
+
assert len(dilation) == 2
|
764 |
+
|
765 |
+
computation_args = (
|
766 |
+
x,
|
767 |
+
kernel_size,
|
768 |
+
stride,
|
769 |
+
padding,
|
770 |
+
dilation,
|
771 |
+
ceil_mode,
|
772 |
+
)
|
773 |
+
computation_args, _ = require_channels_last(computation_op, *computation_args)
|
774 |
+
return L[computation_op](*computation_args)
|
775 |
+
|
776 |
+
return qmaxpool2d
|
777 |
+
|
778 |
+
|
779 |
+
def _register_quantization_maxpool2d():
|
780 |
+
# Currently, the default parameters are not in FX Graph generated by Dynamo export.
|
781 |
+
# So, if user defines nn.MaxPool2d with different assignment of default parameter,
|
782 |
+
# it will generate graph with different number of input nodes and hence
|
783 |
+
# different pattern to be matched.
|
784 |
+
# Refer to the issue: https://github.com/pytorch/pytorch/issues/105901
|
785 |
+
max_pool2d_args_list = [
|
786 |
+
[
|
787 |
+
KeywordArg("stride"),
|
788 |
+
],
|
789 |
+
[
|
790 |
+
KeywordArg("stride"),
|
791 |
+
KeywordArg("padding"),
|
792 |
+
],
|
793 |
+
[
|
794 |
+
KeywordArg("stride"),
|
795 |
+
KeywordArg("padding"),
|
796 |
+
KeywordArg("dilation"),
|
797 |
+
],
|
798 |
+
[
|
799 |
+
KeywordArg("stride"),
|
800 |
+
KeywordArg("padding"),
|
801 |
+
KeywordArg("dilation"),
|
802 |
+
KeywordArg("ceil_mode"),
|
803 |
+
],
|
804 |
+
]
|
805 |
+
|
806 |
+
for max_pool2d_args in max_pool2d_args_list:
|
807 |
+
dequantize_maxpool2d_pattern = CallFunction(
|
808 |
+
aten.max_pool2d_with_indices.default,
|
809 |
+
dequantize_per_tensor_activation_pattern,
|
810 |
+
KeywordArg("kernel_size"),
|
811 |
+
*max_pool2d_args,
|
812 |
+
)
|
813 |
+
dequantize_maxpool2d_get_item_pattern = CallFunction(
|
814 |
+
operator.getitem,
|
815 |
+
dequantize_maxpool2d_pattern,
|
816 |
+
Arg(),
|
817 |
+
)
|
818 |
+
_register_quantized_maxpool2d_lowering(
|
819 |
+
generate_pattern_with_output_quant(dequantize_maxpool2d_get_item_pattern),
|
820 |
+
quantized.max_pool2d.default,
|
821 |
+
)
|
822 |
+
|
823 |
+
|
824 |
+
def _is_input_output_same_scale_zp(check_node):
|
825 |
+
def fn(match):
|
826 |
+
# Ensure all the inputs and output has same scale and zero point
|
827 |
+
# Step 1: Check inputs/output zero point
|
828 |
+
sub_nodes = filter_nodes(match.nodes, aten.sub.Tensor)
|
829 |
+
zero_points = [node.args[1] for node in sub_nodes]
|
830 |
+
add_nodes = filter_nodes(match.nodes, aten.add.Tensor)
|
831 |
+
assert len(add_nodes) == 1, "expect only 1 add node at output quant pattern"
|
832 |
+
zero_points.append(add_nodes[0].args[1])
|
833 |
+
if not all(zero_point == zero_points[0] for zero_point in zero_points):
|
834 |
+
return False
|
835 |
+
|
836 |
+
# Step 2: Check inputs/output scale
|
837 |
+
mul_nodes = filter_nodes(match.nodes, aten.mul.Tensor)
|
838 |
+
# We need to find mul node at output since the scale value is reciprocal to input scale.
|
839 |
+
# Mul node at output should connect to cat node directly.
|
840 |
+
scales = [
|
841 |
+
(
|
842 |
+
mul_node.args[1]
|
843 |
+
if mul_node.args[0].target is check_node
|
844 |
+
else 1.0 / mul_node.args[1]
|
845 |
+
)
|
846 |
+
for mul_node in mul_nodes
|
847 |
+
]
|
848 |
+
if not all(math.isclose(scale, scales[0], rel_tol=1e-5) for scale in scales):
|
849 |
+
return False
|
850 |
+
|
851 |
+
return True
|
852 |
+
|
853 |
+
return fn
|
854 |
+
|
855 |
+
|
856 |
+
def _register_quantized_cat_lowering(
|
857 |
+
pattern,
|
858 |
+
computation_op,
|
859 |
+
):
|
860 |
+
@register_lowering_pattern(
|
861 |
+
pattern,
|
862 |
+
extra_check=_is_input_output_same_scale_zp(aten.cat.default),
|
863 |
+
)
|
864 |
+
def qcat(match: Match, inputs, dim, **kwargs):
|
865 |
+
# inputs is with format: [[x1, x1_dq_dtype, x1_zp, x1_scale], ...]
|
866 |
+
uint8_inputs = [input[0] for input in inputs]
|
867 |
+
return L[computation_op](uint8_inputs, dim)
|
868 |
+
|
869 |
+
return qcat
|
870 |
+
|
871 |
+
|
872 |
+
_raw_dequantize_per_tensor_activation_pattern = CallFunction(
|
873 |
+
aten.mul.Tensor,
|
874 |
+
CallFunction(
|
875 |
+
aten.sub.Tensor,
|
876 |
+
CallFunction(
|
877 |
+
prims.convert_element_type.default,
|
878 |
+
Arg(),
|
879 |
+
Arg(),
|
880 |
+
),
|
881 |
+
Arg(),
|
882 |
+
),
|
883 |
+
Arg(),
|
884 |
+
)
|
885 |
+
|
886 |
+
|
887 |
+
def _register_quantization_cat():
|
888 |
+
dequantize_cat_pattern = CallFunction(
|
889 |
+
aten.cat.default,
|
890 |
+
ListOf(_raw_dequantize_per_tensor_activation_pattern),
|
891 |
+
KeywordArg("dim"),
|
892 |
+
)
|
893 |
+
_register_quantized_cat_lowering(
|
894 |
+
generate_pattern_with_output_quant(dequantize_cat_pattern),
|
895 |
+
aten.cat,
|
896 |
+
)
|
897 |
+
|
898 |
+
|
899 |
+
def _register_quantized_reshape_lowering(
|
900 |
+
pattern,
|
901 |
+
computation_op,
|
902 |
+
):
|
903 |
+
@register_lowering_pattern(
|
904 |
+
pattern,
|
905 |
+
extra_check=_is_input_output_same_scale_zp(aten.reshape.default),
|
906 |
+
)
|
907 |
+
def qreshape(match: Match, *args, **kwargs):
|
908 |
+
qx = kwargs["x"]
|
909 |
+
shape = kwargs["shape"]
|
910 |
+
counters["inductor"]["qreshape_matcher_count"] += 1
|
911 |
+
counters["inductor"]["qreshape_matcher_nodes"] += len(match.nodes)
|
912 |
+
return L[computation_op](qx, shape)
|
913 |
+
|
914 |
+
return qreshape
|
915 |
+
|
916 |
+
|
917 |
+
def _register_quantization_reshape():
|
918 |
+
dequantize_reshape_pattern = CallFunction(
|
919 |
+
torch.ops.aten.reshape.default,
|
920 |
+
dequantize_per_tensor_activation_pattern,
|
921 |
+
KeywordArg("shape"),
|
922 |
+
)
|
923 |
+
_register_quantized_reshape_lowering(
|
924 |
+
generate_pattern_with_output_quant(dequantize_reshape_pattern),
|
925 |
+
aten.reshape,
|
926 |
+
)
|
927 |
+
|
928 |
+
|
929 |
+
def _register_quantization_lowerings():
|
930 |
+
_register_quantization_unary_fusion()
|
931 |
+
_register_quantization_binary_fusion()
|
932 |
+
_register_quantization_maxpool2d()
|
933 |
+
_register_quantization_cat()
|
934 |
+
_register_quantization_reshape()
|
935 |
+
|
936 |
+
|
937 |
+
def _is_valid_dequant_promotion_pattern(dtype=torch.float32):
|
938 |
+
def _inner(match):
|
939 |
+
assert dtype in [torch.float32, torch.bfloat16]
|
940 |
+
if dtype == torch.float32:
|
941 |
+
mul_node = match.output_node()
|
942 |
+
else:
|
943 |
+
convert_to_bf16_node = match.output_node()
|
944 |
+
mul_node = convert_to_bf16_node.args[0]
|
945 |
+
sub_node = mul_node.args[0]
|
946 |
+
to_fp32_node = sub_node.args[0]
|
947 |
+
if (
|
948 |
+
mul_node.target is aten.mul.Tensor
|
949 |
+
and sub_node.target is aten.sub.Tensor
|
950 |
+
and to_fp32_node.target is prims.convert_element_type.default
|
951 |
+
and len(list(mul_node.users)) > 1
|
952 |
+
if dtype == torch.float32
|
953 |
+
else len(list(convert_to_bf16_node.users)) > 1
|
954 |
+
):
|
955 |
+
# dequant pattern has more than 1 users to be promoted
|
956 |
+
return True
|
957 |
+
return False
|
958 |
+
|
959 |
+
return _inner
|
960 |
+
|
961 |
+
|
962 |
+
def _register_dequant_promotion_pass(pattern, pass_number, dtype=torch.float32):
|
963 |
+
@register_freezing_graph_pattern(
|
964 |
+
pattern,
|
965 |
+
extra_check=_is_valid_dequant_promotion_pattern(dtype),
|
966 |
+
pass_number=pass_number,
|
967 |
+
)
|
968 |
+
def dequant_promotion(match: Match, *args, **kwargs):
|
969 |
+
# If dequant pattern used by multiply nodes,
|
970 |
+
# we will do dequant promotion. So each user node has a separate dequant pattern connected.
|
971 |
+
assert dtype in [torch.float32, torch.bfloat16]
|
972 |
+
|
973 |
+
def clone_to_new_node(graph, source_node, user_node):
|
974 |
+
assert (
|
975 |
+
source_node.op == "call_function"
|
976 |
+
), "clone_to_new_node only support node.op call_function"
|
977 |
+
with graph.inserting_before(user_node):
|
978 |
+
new_node = graph.call_function(
|
979 |
+
source_node.target,
|
980 |
+
args=source_node.args,
|
981 |
+
kwargs=source_node.kwargs,
|
982 |
+
)
|
983 |
+
new_node.meta = copy.copy(source_node.meta)
|
984 |
+
user_node.replace_input_with(source_node, new_node)
|
985 |
+
return new_node
|
986 |
+
|
987 |
+
if dtype == torch.float32:
|
988 |
+
mul_node = match.output_node()
|
989 |
+
else:
|
990 |
+
convert_to_bf16_node = match.output_node()
|
991 |
+
mul_node = convert_to_bf16_node.args[0]
|
992 |
+
sub_node = mul_node.args[0]
|
993 |
+
to_fp32_node = sub_node.args[0]
|
994 |
+
assert mul_node.target is aten.mul.Tensor
|
995 |
+
assert sub_node.target is aten.sub.Tensor
|
996 |
+
assert to_fp32_node.target is prims.convert_element_type.default
|
997 |
+
|
998 |
+
graph = match.graph
|
999 |
+
user_node_list = (
|
1000 |
+
list(mul_node.users)
|
1001 |
+
if dtype == torch.float32
|
1002 |
+
else list(convert_to_bf16_node.users)
|
1003 |
+
)
|
1004 |
+
for user_node in user_node_list:
|
1005 |
+
# Step1: Duplicate the mul node
|
1006 |
+
if dtype == torch.float32:
|
1007 |
+
new_mul_node = clone_to_new_node(graph, mul_node, user_node)
|
1008 |
+
else:
|
1009 |
+
new_convert_to_bf16_node_node = clone_to_new_node(
|
1010 |
+
graph, convert_to_bf16_node, user_node
|
1011 |
+
)
|
1012 |
+
new_mul_node = clone_to_new_node(
|
1013 |
+
graph, mul_node, new_convert_to_bf16_node_node
|
1014 |
+
)
|
1015 |
+
# Step2: Duplicate the sub node
|
1016 |
+
new_sub_node = clone_to_new_node(graph, sub_node, new_mul_node)
|
1017 |
+
# Step3: Duplicate the to_fp32 node
|
1018 |
+
_ = clone_to_new_node(graph, to_fp32_node, new_sub_node)
|
1019 |
+
counters["inductor"]["dequant_promotion_matcher_count"] += 1
|
1020 |
+
counters["inductor"]["dequant_promotion_matcher_nodes"] += len(match.nodes)
|
1021 |
+
|
1022 |
+
|
1023 |
+
def _is_valid_dequant_conv2d_pattern(dtype):
|
1024 |
+
def _inner(match):
|
1025 |
+
# Here we do some further check to ensure:
|
1026 |
+
# 1. It's a conv2d node with dim of 4, since we only support lowering of conv2d now.
|
1027 |
+
# 2. The dequant pattern has only 1 user of conv2d node.
|
1028 |
+
# If these conditions don't meet, we will not
|
1029 |
+
# insert weight prepack node into the matched pattern.
|
1030 |
+
conv_node = match.output_node()
|
1031 |
+
assert conv_node.target is aten.convolution.default
|
1032 |
+
input_meta_value = conv_node.args[0].meta.get("val")
|
1033 |
+
weight_meta_value = conv_node.args[1].meta.get("val")
|
1034 |
+
for meta_value in [input_meta_value, weight_meta_value]:
|
1035 |
+
if (
|
1036 |
+
meta_value is None
|
1037 |
+
or meta_value.device.type != "cpu"
|
1038 |
+
or meta_value.dim() != 4
|
1039 |
+
):
|
1040 |
+
# Only support conv2d now
|
1041 |
+
return False
|
1042 |
+
|
1043 |
+
assert dtype in [torch.float32, torch.bfloat16]
|
1044 |
+
if dtype == torch.float32:
|
1045 |
+
mul_node = conv_node.args[0]
|
1046 |
+
else:
|
1047 |
+
convert_to_bf16 = conv_node.args[0]
|
1048 |
+
mul_node = convert_to_bf16.args[0]
|
1049 |
+
sub_node = mul_node.args[0]
|
1050 |
+
to_fp32_node = sub_node.args[0]
|
1051 |
+
|
1052 |
+
assert to_fp32_node.target is prims.convert_element_type.default
|
1053 |
+
assert sub_node.target is aten.sub.Tensor
|
1054 |
+
assert mul_node.target is aten.mul.Tensor
|
1055 |
+
if (
|
1056 |
+
len(list(to_fp32_node.users)) != 1
|
1057 |
+
or len(list(sub_node.users)) != 1
|
1058 |
+
or len(list(mul_node.users)) != 1
|
1059 |
+
):
|
1060 |
+
# Ensure the dequant pattern only has 1 user
|
1061 |
+
# since we will delete the dequant pattern here
|
1062 |
+
return False
|
1063 |
+
return True
|
1064 |
+
|
1065 |
+
return _inner
|
1066 |
+
|
1067 |
+
|
1068 |
+
def _register_qconv_weight_prepack_pass(pattern, pass_number, dtype=torch.float32):
|
1069 |
+
@register_freezing_graph_pattern(
|
1070 |
+
pattern,
|
1071 |
+
extra_check=_is_valid_dequant_conv2d_pattern(dtype),
|
1072 |
+
pass_number=pass_number,
|
1073 |
+
)
|
1074 |
+
def qconv_weight_prepack(match: Match, *args, **kwargs):
|
1075 |
+
"""
|
1076 |
+
Match the pattern:
|
1077 |
+
int8 activation
|
1078 |
+
|
|
1079 |
+
dequant_per_tensor
|
1080 |
+
|
|
1081 |
+
Conv2d <- optional(aten.clone.default) <- dequant_per_channel <- int8_weight
|
1082 |
+
|
1083 |
+
Insert weight prepack node and change the pattern to:
|
1084 |
+
int8 activation
|
1085 |
+
|
|
1086 |
+
onednn.qconv2d_pointwise <- onednn.qconv_prepack <- int8_weight
|
1087 |
+
"""
|
1088 |
+
assert dtype in [torch.float32, torch.bfloat16]
|
1089 |
+
conv_node = match.output_node()
|
1090 |
+
assert conv_node.target is aten.convolution.default
|
1091 |
+
if dtype == torch.float32:
|
1092 |
+
mul_node = conv_node.args[0]
|
1093 |
+
else:
|
1094 |
+
convert_to_bf16 = conv_node.args[0]
|
1095 |
+
mul_node = convert_to_bf16.args[0]
|
1096 |
+
sub_node = mul_node.args[0]
|
1097 |
+
to_fp32_node = sub_node.args[0]
|
1098 |
+
has_clone_to_channel_last_node_in_pattern = (
|
1099 |
+
conv_node.args[1].target is aten.clone.default
|
1100 |
+
)
|
1101 |
+
clone_node = (
|
1102 |
+
conv_node.args[1] if has_clone_to_channel_last_node_in_pattern else None
|
1103 |
+
)
|
1104 |
+
|
1105 |
+
if dtype == torch.float32:
|
1106 |
+
dequant_per_channel = (
|
1107 |
+
clone_node.args[0]
|
1108 |
+
if has_clone_to_channel_last_node_in_pattern
|
1109 |
+
else conv_node.args[1]
|
1110 |
+
)
|
1111 |
+
else:
|
1112 |
+
weight_to_bf16_node = (
|
1113 |
+
clone_node.args[0]
|
1114 |
+
if has_clone_to_channel_last_node_in_pattern
|
1115 |
+
else conv_node.args[1]
|
1116 |
+
)
|
1117 |
+
dequant_per_channel = weight_to_bf16_node.args[0]
|
1118 |
+
|
1119 |
+
assert (
|
1120 |
+
dequant_per_channel.target
|
1121 |
+
is quantized_decomposed.dequantize_per_channel.default
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
# Activation QParams
|
1125 |
+
qx, x_zp, x_scale = (
|
1126 |
+
kwargs["x"],
|
1127 |
+
kwargs["x_zp"],
|
1128 |
+
kwargs["x_scale"],
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
# Weight QParams
|
1132 |
+
qw, w_scale, w_zp = (
|
1133 |
+
kwargs["q_weight"],
|
1134 |
+
kwargs["w_scale"],
|
1135 |
+
kwargs["w_zp"],
|
1136 |
+
)
|
1137 |
+
|
1138 |
+
# Conv Params
|
1139 |
+
bias, stride, padding, dilation, groups = (
|
1140 |
+
kwargs["b"],
|
1141 |
+
kwargs["stride"],
|
1142 |
+
kwargs["padding"],
|
1143 |
+
kwargs["dilation"],
|
1144 |
+
kwargs["groups"],
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
x_shape = qx.meta.get("tensor_meta").shape
|
1148 |
+
if has_free_symbols(x_shape):
|
1149 |
+
# For dynamic shape case, we can't get activation shape ahead of runtime.
|
1150 |
+
x_shape = None
|
1151 |
+
graph = match.graph
|
1152 |
+
with graph.inserting_before(conv_node):
|
1153 |
+
# Insert weight prepack node and the QConv node
|
1154 |
+
packed_weight_inputs = (
|
1155 |
+
qw,
|
1156 |
+
w_scale,
|
1157 |
+
x_scale,
|
1158 |
+
x_zp,
|
1159 |
+
stride,
|
1160 |
+
padding,
|
1161 |
+
dilation,
|
1162 |
+
groups,
|
1163 |
+
x_shape,
|
1164 |
+
)
|
1165 |
+
packed_weight_op = torch.ops.onednn.qconv_prepack
|
1166 |
+
prepack_weight_node = graph.call_function(
|
1167 |
+
packed_weight_op, args=packed_weight_inputs
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
new_args: Tuple[Any, ...] = (
|
1171 |
+
qx,
|
1172 |
+
x_scale,
|
1173 |
+
x_zp,
|
1174 |
+
prepack_weight_node,
|
1175 |
+
w_scale,
|
1176 |
+
w_zp,
|
1177 |
+
bias,
|
1178 |
+
stride,
|
1179 |
+
padding,
|
1180 |
+
dilation,
|
1181 |
+
groups,
|
1182 |
+
1.0, # inv_output_scale
|
1183 |
+
0, # output_zero_point
|
1184 |
+
dtype, # output_dtype
|
1185 |
+
"none", # attr
|
1186 |
+
[], # scalars
|
1187 |
+
"", # algorithm
|
1188 |
+
)
|
1189 |
+
new_conv_node = graph.call_function(
|
1190 |
+
torch.ops.onednn.qconv2d_pointwise.default, args=new_args
|
1191 |
+
)
|
1192 |
+
conv_node.replace_all_uses_with(new_conv_node)
|
1193 |
+
new_conv_node.meta.update(conv_node.meta)
|
1194 |
+
|
1195 |
+
# Erase the original conv node
|
1196 |
+
graph.erase_node(conv_node)
|
1197 |
+
# Erase the dequant pattern
|
1198 |
+
if dtype == torch.bfloat16:
|
1199 |
+
graph.erase_node(convert_to_bf16)
|
1200 |
+
# Erase the dequant pattern
|
1201 |
+
graph.erase_node(mul_node)
|
1202 |
+
graph.erase_node(sub_node)
|
1203 |
+
graph.erase_node(to_fp32_node)
|
1204 |
+
# Erase the dequant per channel pattern
|
1205 |
+
if clone_node is not None:
|
1206 |
+
graph.erase_node(clone_node)
|
1207 |
+
if dtype == torch.bfloat16:
|
1208 |
+
graph.erase_node(weight_to_bf16_node)
|
1209 |
+
graph.erase_node(dequant_per_channel)
|
1210 |
+
counters["inductor"]["qconv2d_weight_prepack_matcher_count"] += 1
|
1211 |
+
counters["inductor"]["qconv2d_weight_prepack_matcher_nodes"] += len(
|
1212 |
+
match.nodes
|
1213 |
+
)
|
1214 |
+
|
1215 |
+
|
1216 |
+
def _generate_dequant_convolution_node_pattern(
|
1217 |
+
_dequant_per_channel_pattern, dtype=torch.float32
|
1218 |
+
):
|
1219 |
+
assert dtype in [torch.float32, torch.bfloat16]
|
1220 |
+
dequant_convolution_node_pattern = CallFunction(
|
1221 |
+
aten.convolution.default,
|
1222 |
+
_may_generate_pattern_with_dtype_convert(
|
1223 |
+
dequantize_per_tensor_activation_pattern,
|
1224 |
+
KeywordArg("autocast_act_dtype"),
|
1225 |
+
dtype != torch.float32,
|
1226 |
+
),
|
1227 |
+
_dequant_per_channel_pattern,
|
1228 |
+
KeywordArg("b"),
|
1229 |
+
KeywordArg("stride"),
|
1230 |
+
KeywordArg("padding"),
|
1231 |
+
KeywordArg("dilation"),
|
1232 |
+
KeywordArg("is_transposed"),
|
1233 |
+
KeywordArg("out_padding"),
|
1234 |
+
KeywordArg("groups"),
|
1235 |
+
)
|
1236 |
+
return dequant_convolution_node_pattern
|
1237 |
+
|
1238 |
+
|
1239 |
+
def _generate_qconv_weight_prepack_patterns(dtype=torch.float32):
|
1240 |
+
assert dtype in [torch.float32, torch.bfloat16]
|
1241 |
+
return (
|
1242 |
+
_generate_dequant_convolution_node_pattern(
|
1243 |
+
dequantize_per_channel_weight_pattern
|
1244 |
+
if dtype == torch.float32
|
1245 |
+
else dequantize_per_channel_to_bf16_weight_pattern,
|
1246 |
+
dtype,
|
1247 |
+
),
|
1248 |
+
# There is another pattern due to the pass of convert_conv_weights_to_channels_last
|
1249 |
+
# https://github.com/pytorch/pytorch/blob/07107919297db3f8ab37f11c12666b6d6d5f692e/torch/_inductor/freezing.py#L338-L362.
|
1250 |
+
# Depend on some heuristics, it may or may not insert to(channel_last) node
|
1251 |
+
# between convolution and dequant_per_channel node
|
1252 |
+
_generate_dequant_convolution_node_pattern(
|
1253 |
+
dequantize_per_channel_clone_weight_pattern
|
1254 |
+
if dtype == torch.float32
|
1255 |
+
else dequantize_per_channel_to_bf16_clone_weight_pattern,
|
1256 |
+
dtype,
|
1257 |
+
),
|
1258 |
+
)
|
1259 |
+
|
1260 |
+
|
1261 |
+
def _is_valid_dequant_linear_pattern(dtype):
|
1262 |
+
def _inner(match):
|
1263 |
+
# Check dequant pattern has only 1 user.
|
1264 |
+
linear_node = match.output_node()
|
1265 |
+
assert linear_node.target in (aten.addmm.default, aten.mm.default)
|
1266 |
+
input_index = 0 if linear_node.target is aten.mm.default else 1
|
1267 |
+
assert dtype in [torch.float32, torch.bfloat16]
|
1268 |
+
if dtype == torch.float32:
|
1269 |
+
mul_node = linear_node.args[input_index]
|
1270 |
+
else:
|
1271 |
+
convert_to_bf16 = linear_node.args[input_index]
|
1272 |
+
mul_node = convert_to_bf16.args[0]
|
1273 |
+
sub_node = mul_node.args[0]
|
1274 |
+
to_fp32_node = sub_node.args[0]
|
1275 |
+
|
1276 |
+
assert to_fp32_node.target is prims.convert_element_type.default
|
1277 |
+
assert sub_node.target is aten.sub.Tensor
|
1278 |
+
assert mul_node.target is aten.mul.Tensor
|
1279 |
+
if (
|
1280 |
+
len(list(to_fp32_node.users)) != 1
|
1281 |
+
or len(list(sub_node.users)) != 1
|
1282 |
+
or len(list(mul_node.users)) != 1
|
1283 |
+
):
|
1284 |
+
# Ensure the dequant pattern only has 1 user
|
1285 |
+
# since we will delete the dequant pattern here
|
1286 |
+
return False
|
1287 |
+
return True
|
1288 |
+
|
1289 |
+
return _inner
|
1290 |
+
|
1291 |
+
|
1292 |
+
def _register_qlinear_weight_prepack_pass(pattern, pass_number, dtype=torch.float32):
|
1293 |
+
@register_freezing_graph_pattern(
|
1294 |
+
pattern,
|
1295 |
+
extra_check=_is_valid_dequant_linear_pattern(dtype),
|
1296 |
+
pass_number=pass_number,
|
1297 |
+
)
|
1298 |
+
def qlinear_weight_prepack(match: Match, *args, **kwargs):
|
1299 |
+
"""
|
1300 |
+
Match the pattern:
|
1301 |
+
int8 activation
|
1302 |
+
|
|
1303 |
+
dequant_per_tensor
|
1304 |
+
|
|
1305 |
+
mm/addmm <- t <- dequant_per_channel <- int8_weight
|
1306 |
+
|
1307 |
+
Insert weight prepack node and change the pattern to:
|
1308 |
+
int8 activation
|
1309 |
+
|
|
1310 |
+
onednn.qlinear_pointwise <- onednn.qlinear_prepack <- int8_weight
|
1311 |
+
"""
|
1312 |
+
assert dtype in [torch.float32, torch.bfloat16]
|
1313 |
+
linear_node = match.output_node()
|
1314 |
+
assert linear_node.target in (aten.addmm.default, aten.mm.default)
|
1315 |
+
input_index = 0 if linear_node.target is aten.mm.default else 1
|
1316 |
+
weight_index = input_index + 1
|
1317 |
+
if dtype == torch.float32:
|
1318 |
+
mul_node = linear_node.args[input_index]
|
1319 |
+
else:
|
1320 |
+
activation_to_bf16_node = linear_node.args[input_index]
|
1321 |
+
mul_node = activation_to_bf16_node.args[0]
|
1322 |
+
sub_node = mul_node.args[0]
|
1323 |
+
to_fp32_node = sub_node.args[0]
|
1324 |
+
t_node = linear_node.args[weight_index]
|
1325 |
+
if dtype == torch.float32:
|
1326 |
+
dequant_per_channel = t_node.args[0]
|
1327 |
+
else:
|
1328 |
+
weight_to_bf16_node = t_node.args[0]
|
1329 |
+
dequant_per_channel = weight_to_bf16_node.args[0]
|
1330 |
+
assert (
|
1331 |
+
dequant_per_channel.target
|
1332 |
+
is quantized_decomposed.dequantize_per_channel.default
|
1333 |
+
)
|
1334 |
+
|
1335 |
+
# Activation QParams
|
1336 |
+
qx, x_zp, x_scale = (
|
1337 |
+
kwargs["x"],
|
1338 |
+
kwargs["x_zp"],
|
1339 |
+
kwargs["x_scale"],
|
1340 |
+
)
|
1341 |
+
|
1342 |
+
# Weight QParams
|
1343 |
+
qw, w_scale, w_zp = (
|
1344 |
+
kwargs["q_weight"],
|
1345 |
+
kwargs["w_scale"],
|
1346 |
+
kwargs["w_zp"],
|
1347 |
+
)
|
1348 |
+
|
1349 |
+
# Params
|
1350 |
+
bias = kwargs["b"] if "b" in kwargs else None
|
1351 |
+
|
1352 |
+
x_shape = qx.meta.get("tensor_meta").shape
|
1353 |
+
if has_free_symbols(x_shape):
|
1354 |
+
# For dynamic shape case, we can't get activation shape ahead of runtime.
|
1355 |
+
x_shape = None
|
1356 |
+
graph = match.graph
|
1357 |
+
with graph.inserting_before(linear_node):
|
1358 |
+
# Insert weight prepack node and the qlinear node
|
1359 |
+
packed_weight_inputs = (
|
1360 |
+
qw,
|
1361 |
+
x_shape,
|
1362 |
+
)
|
1363 |
+
packed_weight_op = torch.ops.onednn.qlinear_prepack
|
1364 |
+
prepack_weight_node = graph.call_function(
|
1365 |
+
packed_weight_op, args=packed_weight_inputs
|
1366 |
+
)
|
1367 |
+
|
1368 |
+
new_args: Tuple[Any, ...] = (
|
1369 |
+
qx,
|
1370 |
+
x_scale,
|
1371 |
+
x_zp,
|
1372 |
+
prepack_weight_node,
|
1373 |
+
w_scale,
|
1374 |
+
w_zp,
|
1375 |
+
bias,
|
1376 |
+
1.0, # output_scale
|
1377 |
+
0, # output_zero_point
|
1378 |
+
dtype, # output_dtype
|
1379 |
+
"none", # post op name
|
1380 |
+
[], # post op args
|
1381 |
+
"", # post op algorithm
|
1382 |
+
)
|
1383 |
+
new_linear_node = graph.call_function(
|
1384 |
+
torch.ops.onednn.qlinear_pointwise.default, args=new_args
|
1385 |
+
)
|
1386 |
+
linear_node.replace_all_uses_with(new_linear_node)
|
1387 |
+
new_linear_node.meta.update(linear_node.meta)
|
1388 |
+
|
1389 |
+
# Erase the original linear node
|
1390 |
+
graph.erase_node(linear_node)
|
1391 |
+
if dtype == torch.bfloat16:
|
1392 |
+
graph.erase_node(activation_to_bf16_node)
|
1393 |
+
# Erase the dequant pattern
|
1394 |
+
graph.erase_node(mul_node)
|
1395 |
+
graph.erase_node(sub_node)
|
1396 |
+
graph.erase_node(to_fp32_node)
|
1397 |
+
# Erase the dequant per channel pattern
|
1398 |
+
graph.erase_node(t_node)
|
1399 |
+
if dtype == torch.bfloat16:
|
1400 |
+
graph.erase_node(weight_to_bf16_node)
|
1401 |
+
graph.erase_node(dequant_per_channel)
|
1402 |
+
counters["inductor"]["qlinear_weight_prepack_matcher_count"] += 1
|
1403 |
+
counters["inductor"]["qlinear_weight_prepack_matcher_nodes"] += len(
|
1404 |
+
match.nodes
|
1405 |
+
)
|
1406 |
+
|
1407 |
+
|
1408 |
+
def _generate_dequant_linear_node_pattern(
|
1409 |
+
_dequant_per_channel_pattern, dtype=torch.float32
|
1410 |
+
):
|
1411 |
+
t_pattern = CallFunction(
|
1412 |
+
aten.permute.default,
|
1413 |
+
_may_generate_pattern_with_dtype_convert(
|
1414 |
+
_dequant_per_channel_pattern,
|
1415 |
+
KeywordArg("autocast_wgt_dtype"),
|
1416 |
+
dtype != torch.float32,
|
1417 |
+
),
|
1418 |
+
KeywordArg("permute_axes"),
|
1419 |
+
)
|
1420 |
+
dequant_linear_bias_pattern = CallFunction(
|
1421 |
+
aten.addmm.default,
|
1422 |
+
KeywordArg("b"),
|
1423 |
+
_may_generate_pattern_with_dtype_convert(
|
1424 |
+
dequantize_per_tensor_activation_pattern,
|
1425 |
+
KeywordArg("autocast_act_dtype"),
|
1426 |
+
dtype != torch.float32,
|
1427 |
+
),
|
1428 |
+
t_pattern,
|
1429 |
+
)
|
1430 |
+
dequant_linear_no_bias_pattern = CallFunction(
|
1431 |
+
aten.mm.default,
|
1432 |
+
_may_generate_pattern_with_dtype_convert(
|
1433 |
+
dequantize_per_tensor_activation_pattern,
|
1434 |
+
KeywordArg("autocast_act_dtype"),
|
1435 |
+
dtype != torch.float32,
|
1436 |
+
),
|
1437 |
+
t_pattern,
|
1438 |
+
)
|
1439 |
+
return dequant_linear_bias_pattern, dequant_linear_no_bias_pattern
|
1440 |
+
|
1441 |
+
|
1442 |
+
def _generate_qlinear_weight_prepack_patterns(dtype=torch.float32):
|
1443 |
+
return _generate_dequant_linear_node_pattern(
|
1444 |
+
dequantize_per_channel_weight_pattern, dtype
|
1445 |
+
)
|
1446 |
+
|
1447 |
+
|
1448 |
+
@functools.lru_cache(None)
|
1449 |
+
def _register_quantization_weight_pack_pass():
|
1450 |
+
for dtype in [torch.float32, torch.bfloat16]:
|
1451 |
+
# Step 1: Dequant promotion for int8-mixed-fp32/bf16
|
1452 |
+
# Transform
|
1453 |
+
# graph 1:
|
1454 |
+
# quant
|
1455 |
+
# + - - - | - - - +
|
1456 |
+
# | dequant |
|
1457 |
+
# | / \ |
|
1458 |
+
# | node1 node2 |
|
1459 |
+
# + - | - - - | - +
|
1460 |
+
# quant quant
|
1461 |
+
# into:
|
1462 |
+
# graph 2:
|
1463 |
+
# quant
|
1464 |
+
# + - - / - \ - - +
|
1465 |
+
# |dequant dequant|
|
1466 |
+
# | | | |
|
1467 |
+
# | node1 node2 |
|
1468 |
+
# + - | - - - | - +
|
1469 |
+
# quant quant
|
1470 |
+
# In graph 1, the dequant node is shared by node1 and node2,
|
1471 |
+
# as a result, neither node1 nor node2 could form an int8
|
1472 |
+
# fusion pattern.
|
1473 |
+
# After this transformation, the graph 2 could hit the int8
|
1474 |
+
# fusion pattern: dequant-node-quant, respectively for
|
1475 |
+
# node1 and node2.
|
1476 |
+
_register_dequant_promotion_pass(
|
1477 |
+
_may_generate_pattern_with_dtype_convert(
|
1478 |
+
dequantize_per_tensor_activation_pattern,
|
1479 |
+
KeywordArg("autocast_act_dtype"),
|
1480 |
+
dtype != torch.float32,
|
1481 |
+
),
|
1482 |
+
pass_number=0,
|
1483 |
+
dtype=dtype,
|
1484 |
+
) # pass_number=0 to run before weight prepack
|
1485 |
+
|
1486 |
+
# Step 2: QConv weight prepack
|
1487 |
+
weight_prepack_patterns = _generate_qconv_weight_prepack_patterns(dtype)
|
1488 |
+
for weight_prepack_pattern in weight_prepack_patterns:
|
1489 |
+
# Register to pass_number 1, so we can do dequant promotion in pass_number 0.
|
1490 |
+
_register_qconv_weight_prepack_pass(
|
1491 |
+
weight_prepack_pattern, pass_number=1, dtype=dtype
|
1492 |
+
)
|
1493 |
+
|
1494 |
+
# Step 3: QLinear weight prepack
|
1495 |
+
weight_prepack_patterns = _generate_qlinear_weight_prepack_patterns(dtype)
|
1496 |
+
for weight_prepack_pattern in weight_prepack_patterns:
|
1497 |
+
# Register to pass_number 1, so we can do dequant promotion in pass_number 0.
|
1498 |
+
_register_qlinear_weight_prepack_pass(
|
1499 |
+
weight_prepack_pattern, pass_number=1, dtype=dtype
|
1500 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/replace_random.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from torch.fx.passes.shape_prop import _extract_tensor_metadata
|
7 |
+
from .. import config, inductor_prims
|
8 |
+
from ..pattern_matcher import (
|
9 |
+
CallFunctionVarArgs,
|
10 |
+
Match,
|
11 |
+
PatternMatcherPass,
|
12 |
+
register_graph_pattern,
|
13 |
+
)
|
14 |
+
from ..virtualized import V
|
15 |
+
|
16 |
+
log = logging.getLogger(__name__)
|
17 |
+
patterns = PatternMatcherPass()
|
18 |
+
aten = torch.ops.aten
|
19 |
+
|
20 |
+
|
21 |
+
def replace_random_passes(gm: torch.fx.GraphModule):
|
22 |
+
"""Modify the given FX graph to use backend-native random ops"""
|
23 |
+
if config.fallback_random:
|
24 |
+
return 0
|
25 |
+
|
26 |
+
count = patterns.apply(gm)
|
27 |
+
count += fuse_seed_creation_pass(gm.graph)
|
28 |
+
|
29 |
+
return count
|
30 |
+
|
31 |
+
|
32 |
+
def fuse_seed_creation_pass(graph: torch.fx.Graph):
|
33 |
+
"""
|
34 |
+
Horizontally fuse all the seed generation on each device
|
35 |
+
|
36 |
+
a = inductor_seed(dev)
|
37 |
+
b = inductor_seed(dev)
|
38 |
+
|
39 |
+
Becomes:
|
40 |
+
seeds = inductor_seeds(2, dev)
|
41 |
+
a = inductor_lookup_seed(seeds, 0)
|
42 |
+
b = inductor_lookup_seed(seeds, 1)
|
43 |
+
|
44 |
+
We do this because seed creation is entirely launch overhead bound.
|
45 |
+
"""
|
46 |
+
device_seeds = collections.defaultdict(list)
|
47 |
+
for node in graph.nodes:
|
48 |
+
if CallFunctionVarArgs(inductor_prims.seed).match(node):
|
49 |
+
device_seeds[node.args[0]].append(node)
|
50 |
+
|
51 |
+
if not device_seeds:
|
52 |
+
return 0
|
53 |
+
|
54 |
+
for device, seeds in device_seeds.items():
|
55 |
+
with graph.inserting_before(seeds[0]):
|
56 |
+
combined = graph.call_function(inductor_prims.seeds, (len(seeds), device))
|
57 |
+
with V.fake_mode:
|
58 |
+
combined.meta["val"] = torch.empty(
|
59 |
+
[len(seeds)], device=device, dtype=torch.int64
|
60 |
+
)
|
61 |
+
combined.meta["tensor_meta"] = _extract_tensor_metadata(
|
62 |
+
combined.meta["val"]
|
63 |
+
)
|
64 |
+
|
65 |
+
for idx, seed in enumerate(seeds):
|
66 |
+
with graph.inserting_before(seed):
|
67 |
+
new_seed = graph.call_function(
|
68 |
+
inductor_prims.lookup_seed, (combined, idx)
|
69 |
+
)
|
70 |
+
seed.replace_all_uses_with(new_seed)
|
71 |
+
new_seed.meta.update(seed.meta)
|
72 |
+
graph.erase_node(seed)
|
73 |
+
|
74 |
+
return len(device_seeds)
|
75 |
+
|
76 |
+
|
77 |
+
def default_kwargs(device):
|
78 |
+
return {}
|
79 |
+
|
80 |
+
|
81 |
+
def get_device(device):
|
82 |
+
if device is not None:
|
83 |
+
return device
|
84 |
+
return torch.empty([]).device # default device
|
85 |
+
|
86 |
+
|
87 |
+
@register_graph_pattern(CallFunctionVarArgs(aten.rand.default), pass_dict=patterns)
|
88 |
+
@register_graph_pattern(CallFunctionVarArgs(aten.rand.generator), pass_dict=patterns)
|
89 |
+
@register_graph_pattern(CallFunctionVarArgs(aten.randn.default), pass_dict=patterns)
|
90 |
+
@register_graph_pattern(CallFunctionVarArgs(aten.randn.generator), pass_dict=patterns)
|
91 |
+
def replace_random(
|
92 |
+
match: Match,
|
93 |
+
size,
|
94 |
+
*,
|
95 |
+
generator=None,
|
96 |
+
dtype=None,
|
97 |
+
device=None,
|
98 |
+
layout=None,
|
99 |
+
pin_memory=None,
|
100 |
+
):
|
101 |
+
if generator is not None:
|
102 |
+
return
|
103 |
+
|
104 |
+
def replacement(size):
|
105 |
+
result = inductor_prims.random(
|
106 |
+
size, inductor_prims.seed(device), mode, **default_kwargs(device)
|
107 |
+
)
|
108 |
+
if dtype is not None:
|
109 |
+
result = result.to(dtype)
|
110 |
+
return result
|
111 |
+
|
112 |
+
mode = {
|
113 |
+
aten.rand: "rand",
|
114 |
+
aten.randn: "randn",
|
115 |
+
}[match.output_node().target.overloadpacket]
|
116 |
+
device = get_device(device)
|
117 |
+
match.replace_by_example(replacement, [size])
|
118 |
+
|
119 |
+
|
120 |
+
@register_graph_pattern(CallFunctionVarArgs(aten.randint.low), pass_dict=patterns)
|
121 |
+
def replace_randint(
|
122 |
+
match: Match,
|
123 |
+
low,
|
124 |
+
high,
|
125 |
+
size,
|
126 |
+
*,
|
127 |
+
dtype=torch.int64,
|
128 |
+
device=None,
|
129 |
+
layout=None,
|
130 |
+
pin_memory=None,
|
131 |
+
):
|
132 |
+
def replacement(size):
|
133 |
+
result = inductor_prims.randint(low, high, size, inductor_prims.seed(device))
|
134 |
+
return result.to(dtype)
|
135 |
+
|
136 |
+
device = get_device(device)
|
137 |
+
match.replace_by_example(replacement, [size])
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (210 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_1.cpython-310.pyc
ADDED
Binary file (4.55 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_11.cpython-310.pyc
ADDED
Binary file (5.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_12.cpython-310.pyc
ADDED
Binary file (5.97 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_13.cpython-310.pyc
ADDED
Binary file (3.67 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_2.cpython-310.pyc
ADDED
Binary file (4.55 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_3.cpython-310.pyc
ADDED
Binary file (5.17 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_passes/serialized_patterns/__pycache__/_sfdp_pattern_4.cpython-310.pyc
ADDED
Binary file (5.17 kB). View file
|
|