applied-ai-018 commited on
Commit
1f35dc0
·
verified ·
1 Parent(s): a980632

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/graph.cpython-310.pyc +0 -0
  2. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__init__.py +0 -0
  3. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/dispatch_interface.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/historical_tests.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_digraph_historical.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_filters.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_function.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_graph_historical.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_graphviews.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_multidigraph.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_multigraph.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_subgraphviews.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/historical_tests.py +474 -0
  15. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_coreviews.py +362 -0
  16. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_graph.py +920 -0
  17. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_graph_historical.py +12 -0
  18. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_graphviews.py +350 -0
  19. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_multidigraph.py +459 -0
  20. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_special.py +131 -0
  21. env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_subgraphviews.py +362 -0
  22. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__init__.py +18 -0
  23. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/__init__.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/adjlist.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/edgelist.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/gexf.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/gml.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/graph6.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/graphml.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/leda.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/multiline_adjlist.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/p2g.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/pajek.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/sparse6.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/text.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/gexf.py +1065 -0
  37. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/graphml.py +1052 -0
  38. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/__init__.py +18 -0
  39. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/adjacency.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/cytoscape.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/adjacency.py +156 -0
  42. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/cytoscape.py +178 -0
  43. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/node_link.py +244 -0
  44. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/tree.py +137 -0
  45. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/multiline_adjlist.py +393 -0
  46. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/pajek.py +286 -0
  47. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/sparse6.py +376 -0
  48. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/tests/__init__.py +0 -0
  49. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/networkx/readwrite/tests/__pycache__/test_adjlist.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/graph.cpython-310.pyc ADDED
Binary file (69.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (187 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/dispatch_interface.cpython-310.pyc ADDED
Binary file (4.97 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/historical_tests.cpython-310.pyc ADDED
Binary file (14 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_digraph_historical.cpython-310.pyc ADDED
Binary file (4.89 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_filters.cpython-310.pyc ADDED
Binary file (5.04 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_function.cpython-310.pyc ADDED
Binary file (22.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_graph_historical.cpython-310.pyc ADDED
Binary file (704 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_graphviews.cpython-310.pyc ADDED
Binary file (13.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_multidigraph.cpython-310.pyc ADDED
Binary file (14.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_multigraph.cpython-310.pyc ADDED
Binary file (17.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_subgraphviews.cpython-310.pyc ADDED
Binary file (12.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/historical_tests.py ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Original NetworkX graph tests"""
2
+ import pytest
3
+
4
+ import networkx as nx
5
+ from networkx import convert_node_labels_to_integers as cnlti
6
+ from networkx.utils import edges_equal, nodes_equal
7
+
8
+
9
+ class HistoricalTests:
10
+ @classmethod
11
+ def setup_class(cls):
12
+ cls.null = nx.null_graph()
13
+ cls.P1 = cnlti(nx.path_graph(1), first_label=1)
14
+ cls.P3 = cnlti(nx.path_graph(3), first_label=1)
15
+ cls.P10 = cnlti(nx.path_graph(10), first_label=1)
16
+ cls.K1 = cnlti(nx.complete_graph(1), first_label=1)
17
+ cls.K3 = cnlti(nx.complete_graph(3), first_label=1)
18
+ cls.K4 = cnlti(nx.complete_graph(4), first_label=1)
19
+ cls.K5 = cnlti(nx.complete_graph(5), first_label=1)
20
+ cls.K10 = cnlti(nx.complete_graph(10), first_label=1)
21
+ cls.G = nx.Graph
22
+
23
+ def test_name(self):
24
+ G = self.G(name="test")
25
+ assert G.name == "test"
26
+ H = self.G()
27
+ assert H.name == ""
28
+
29
+ # Nodes
30
+
31
+ def test_add_remove_node(self):
32
+ G = self.G()
33
+ G.add_node("A")
34
+ assert G.has_node("A")
35
+ G.remove_node("A")
36
+ assert not G.has_node("A")
37
+
38
+ def test_nonhashable_node(self):
39
+ # Test if a non-hashable object is in the Graph. A python dict will
40
+ # raise a TypeError, but for a Graph class a simple False should be
41
+ # returned (see Graph __contains__). If it cannot be a node then it is
42
+ # not a node.
43
+ G = self.G()
44
+ assert not G.has_node(["A"])
45
+ assert not G.has_node({"A": 1})
46
+
47
+ def test_add_nodes_from(self):
48
+ G = self.G()
49
+ G.add_nodes_from(list("ABCDEFGHIJKL"))
50
+ assert G.has_node("L")
51
+ G.remove_nodes_from(["H", "I", "J", "K", "L"])
52
+ G.add_nodes_from([1, 2, 3, 4])
53
+ assert sorted(G.nodes(), key=str) == [
54
+ 1,
55
+ 2,
56
+ 3,
57
+ 4,
58
+ "A",
59
+ "B",
60
+ "C",
61
+ "D",
62
+ "E",
63
+ "F",
64
+ "G",
65
+ ]
66
+ # test __iter__
67
+ assert sorted(G, key=str) == [1, 2, 3, 4, "A", "B", "C", "D", "E", "F", "G"]
68
+
69
+ def test_contains(self):
70
+ G = self.G()
71
+ G.add_node("A")
72
+ assert "A" in G
73
+ assert [] not in G # never raise a Key or TypeError in this test
74
+ assert {1: 1} not in G
75
+
76
+ def test_add_remove(self):
77
+ # Test add_node and remove_node acting for various nbunch
78
+ G = self.G()
79
+ G.add_node("m")
80
+ assert G.has_node("m")
81
+ G.add_node("m") # no complaints
82
+ pytest.raises(nx.NetworkXError, G.remove_node, "j")
83
+ G.remove_node("m")
84
+ assert list(G) == []
85
+
86
+ def test_nbunch_is_list(self):
87
+ G = self.G()
88
+ G.add_nodes_from(list("ABCD"))
89
+ G.add_nodes_from(self.P3) # add nbunch of nodes (nbunch=Graph)
90
+ assert sorted(G.nodes(), key=str) == [1, 2, 3, "A", "B", "C", "D"]
91
+ G.remove_nodes_from(self.P3) # remove nbunch of nodes (nbunch=Graph)
92
+ assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D"]
93
+
94
+ def test_nbunch_is_set(self):
95
+ G = self.G()
96
+ nbunch = set("ABCDEFGHIJKL")
97
+ G.add_nodes_from(nbunch)
98
+ assert G.has_node("L")
99
+
100
+ def test_nbunch_dict(self):
101
+ # nbunch is a dict with nodes as keys
102
+ G = self.G()
103
+ nbunch = set("ABCDEFGHIJKL")
104
+ G.add_nodes_from(nbunch)
105
+ nbunch = {"I": "foo", "J": 2, "K": True, "L": "spam"}
106
+ G.remove_nodes_from(nbunch)
107
+ assert sorted(G.nodes(), key=str), ["A", "B", "C", "D", "E", "F", "G", "H"]
108
+
109
+ def test_nbunch_iterator(self):
110
+ G = self.G()
111
+ G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"])
112
+ n_iter = self.P3.nodes()
113
+ G.add_nodes_from(n_iter)
114
+ assert sorted(G.nodes(), key=str) == [
115
+ 1,
116
+ 2,
117
+ 3,
118
+ "A",
119
+ "B",
120
+ "C",
121
+ "D",
122
+ "E",
123
+ "F",
124
+ "G",
125
+ "H",
126
+ ]
127
+ n_iter = self.P3.nodes() # rebuild same iterator
128
+ G.remove_nodes_from(n_iter) # remove nbunch of nodes (nbunch=iterator)
129
+ assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D", "E", "F", "G", "H"]
130
+
131
+ def test_nbunch_graph(self):
132
+ G = self.G()
133
+ G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"])
134
+ nbunch = self.K3
135
+ G.add_nodes_from(nbunch)
136
+ assert sorted(G.nodes(), key=str), [
137
+ 1,
138
+ 2,
139
+ 3,
140
+ "A",
141
+ "B",
142
+ "C",
143
+ "D",
144
+ "E",
145
+ "F",
146
+ "G",
147
+ "H",
148
+ ]
149
+
150
+ # Edges
151
+
152
+ def test_add_edge(self):
153
+ G = self.G()
154
+ pytest.raises(TypeError, G.add_edge, "A")
155
+
156
+ G.add_edge("A", "B") # testing add_edge()
157
+ G.add_edge("A", "B") # should fail silently
158
+ assert G.has_edge("A", "B")
159
+ assert not G.has_edge("A", "C")
160
+ assert G.has_edge(*("A", "B"))
161
+ if G.is_directed():
162
+ assert not G.has_edge("B", "A")
163
+ else:
164
+ # G is undirected, so B->A is an edge
165
+ assert G.has_edge("B", "A")
166
+
167
+ G.add_edge("A", "C") # test directedness
168
+ G.add_edge("C", "A")
169
+ G.remove_edge("C", "A")
170
+ if G.is_directed():
171
+ assert G.has_edge("A", "C")
172
+ else:
173
+ assert not G.has_edge("A", "C")
174
+ assert not G.has_edge("C", "A")
175
+
176
+ def test_self_loop(self):
177
+ G = self.G()
178
+ G.add_edge("A", "A") # test self loops
179
+ assert G.has_edge("A", "A")
180
+ G.remove_edge("A", "A")
181
+ G.add_edge("X", "X")
182
+ assert G.has_node("X")
183
+ G.remove_node("X")
184
+ G.add_edge("A", "Z") # should add the node silently
185
+ assert G.has_node("Z")
186
+
187
+ def test_add_edges_from(self):
188
+ G = self.G()
189
+ G.add_edges_from([("B", "C")]) # test add_edges_from()
190
+ assert G.has_edge("B", "C")
191
+ if G.is_directed():
192
+ assert not G.has_edge("C", "B")
193
+ else:
194
+ assert G.has_edge("C", "B") # undirected
195
+
196
+ G.add_edges_from([("D", "F"), ("B", "D")])
197
+ assert G.has_edge("D", "F")
198
+ assert G.has_edge("B", "D")
199
+
200
+ if G.is_directed():
201
+ assert not G.has_edge("D", "B")
202
+ else:
203
+ assert G.has_edge("D", "B") # undirected
204
+
205
+ def test_add_edges_from2(self):
206
+ G = self.G()
207
+ # after failing silently, should add 2nd edge
208
+ G.add_edges_from([tuple("IJ"), list("KK"), tuple("JK")])
209
+ assert G.has_edge(*("I", "J"))
210
+ assert G.has_edge(*("K", "K"))
211
+ assert G.has_edge(*("J", "K"))
212
+ if G.is_directed():
213
+ assert not G.has_edge(*("K", "J"))
214
+ else:
215
+ assert G.has_edge(*("K", "J"))
216
+
217
+ def test_add_edges_from3(self):
218
+ G = self.G()
219
+ G.add_edges_from(zip(list("ACD"), list("CDE")))
220
+ assert G.has_edge("D", "E")
221
+ assert not G.has_edge("E", "C")
222
+
223
+ def test_remove_edge(self):
224
+ G = self.G()
225
+ G.add_nodes_from([1, 2, 3, "A", "B", "C", "D", "E", "F", "G", "H"])
226
+
227
+ G.add_edges_from(zip(list("MNOP"), list("NOPM")))
228
+ assert G.has_edge("O", "P")
229
+ assert G.has_edge("P", "M")
230
+ G.remove_node("P") # tests remove_node()'s handling of edges.
231
+ assert not G.has_edge("P", "M")
232
+ pytest.raises(TypeError, G.remove_edge, "M")
233
+
234
+ G.add_edge("N", "M")
235
+ assert G.has_edge("M", "N")
236
+ G.remove_edge("M", "N")
237
+ assert not G.has_edge("M", "N")
238
+
239
+ # self loop fails silently
240
+ G.remove_edges_from([list("HI"), list("DF"), tuple("KK"), tuple("JK")])
241
+ assert not G.has_edge("H", "I")
242
+ assert not G.has_edge("J", "K")
243
+ G.remove_edges_from([list("IJ"), list("KK"), list("JK")])
244
+ assert not G.has_edge("I", "J")
245
+ G.remove_nodes_from(set("ZEFHIMNO"))
246
+ G.add_edge("J", "K")
247
+
248
+ def test_edges_nbunch(self):
249
+ # Test G.edges(nbunch) with various forms of nbunch
250
+ G = self.G()
251
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
252
+ # node not in nbunch should be quietly ignored
253
+ pytest.raises(nx.NetworkXError, G.edges, 6)
254
+ assert list(G.edges("Z")) == [] # iterable non-node
255
+ # nbunch can be an empty list
256
+ assert list(G.edges([])) == []
257
+ if G.is_directed():
258
+ elist = [("A", "B"), ("A", "C"), ("B", "D")]
259
+ else:
260
+ elist = [("A", "B"), ("A", "C"), ("B", "C"), ("B", "D")]
261
+ # nbunch can be a list
262
+ assert edges_equal(list(G.edges(["A", "B"])), elist)
263
+ # nbunch can be a set
264
+ assert edges_equal(G.edges({"A", "B"}), elist)
265
+ # nbunch can be a graph
266
+ G1 = self.G()
267
+ G1.add_nodes_from("AB")
268
+ assert edges_equal(G.edges(G1), elist)
269
+ # nbunch can be a dict with nodes as keys
270
+ ndict = {"A": "thing1", "B": "thing2"}
271
+ assert edges_equal(G.edges(ndict), elist)
272
+ # nbunch can be a single node
273
+ assert edges_equal(list(G.edges("A")), [("A", "B"), ("A", "C")])
274
+ assert nodes_equal(sorted(G), ["A", "B", "C", "D"])
275
+
276
+ # nbunch can be nothing (whole graph)
277
+ assert edges_equal(
278
+ list(G.edges()),
279
+ [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")],
280
+ )
281
+
282
+ def test_degree(self):
283
+ G = self.G()
284
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
285
+ assert G.degree("A") == 2
286
+
287
+ # degree of single node in iterable container must return dict
288
+ assert list(G.degree(["A"])) == [("A", 2)]
289
+ assert sorted(d for n, d in G.degree(["A", "B"])) == [2, 3]
290
+ assert sorted(d for n, d in G.degree()) == [2, 2, 3, 3]
291
+
292
+ def test_degree2(self):
293
+ H = self.G()
294
+ H.add_edges_from([(1, 24), (1, 2)])
295
+ assert sorted(d for n, d in H.degree([1, 24])) == [1, 2]
296
+
297
+ def test_degree_graph(self):
298
+ P3 = nx.path_graph(3)
299
+ P5 = nx.path_graph(5)
300
+ # silently ignore nodes not in P3
301
+ assert dict(d for n, d in P3.degree(["A", "B"])) == {}
302
+ # nbunch can be a graph
303
+ assert sorted(d for n, d in P5.degree(P3)) == [1, 2, 2]
304
+ # nbunch can be a graph that's way too big
305
+ assert sorted(d for n, d in P3.degree(P5)) == [1, 1, 2]
306
+ assert list(P5.degree([])) == []
307
+ assert dict(P5.degree([])) == {}
308
+
309
+ def test_null(self):
310
+ null = nx.null_graph()
311
+ assert list(null.degree()) == []
312
+ assert dict(null.degree()) == {}
313
+
314
+ def test_order_size(self):
315
+ G = self.G()
316
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
317
+ assert G.order() == 4
318
+ assert G.size() == 5
319
+ assert G.number_of_edges() == 5
320
+ assert G.number_of_edges("A", "B") == 1
321
+ assert G.number_of_edges("A", "D") == 0
322
+
323
+ def test_copy(self):
324
+ G = self.G()
325
+ H = G.copy() # copy
326
+ assert H.adj == G.adj
327
+ assert H.name == G.name
328
+ assert H is not G
329
+
330
+ def test_subgraph(self):
331
+ G = self.G()
332
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
333
+ SG = G.subgraph(["A", "B", "D"])
334
+ assert nodes_equal(list(SG), ["A", "B", "D"])
335
+ assert edges_equal(list(SG.edges()), [("A", "B"), ("B", "D")])
336
+
337
+ def test_to_directed(self):
338
+ G = self.G()
339
+ if not G.is_directed():
340
+ G.add_edges_from(
341
+ [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
342
+ )
343
+
344
+ DG = G.to_directed()
345
+ assert DG is not G # directed copy or copy
346
+
347
+ assert DG.is_directed()
348
+ assert DG.name == G.name
349
+ assert DG.adj == G.adj
350
+ assert sorted(DG.out_edges(list("AB"))) == [
351
+ ("A", "B"),
352
+ ("A", "C"),
353
+ ("B", "A"),
354
+ ("B", "C"),
355
+ ("B", "D"),
356
+ ]
357
+ DG.remove_edge("A", "B")
358
+ assert DG.has_edge("B", "A") # this removes B-A but not A-B
359
+ assert not DG.has_edge("A", "B")
360
+
361
+ def test_to_undirected(self):
362
+ G = self.G()
363
+ if G.is_directed():
364
+ G.add_edges_from(
365
+ [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
366
+ )
367
+ UG = G.to_undirected() # to_undirected
368
+ assert UG is not G
369
+ assert not UG.is_directed()
370
+ assert G.is_directed()
371
+ assert UG.name == G.name
372
+ assert UG.adj != G.adj
373
+ assert sorted(UG.edges(list("AB"))) == [
374
+ ("A", "B"),
375
+ ("A", "C"),
376
+ ("B", "C"),
377
+ ("B", "D"),
378
+ ]
379
+ assert sorted(UG.edges(["A", "B"])) == [
380
+ ("A", "B"),
381
+ ("A", "C"),
382
+ ("B", "C"),
383
+ ("B", "D"),
384
+ ]
385
+ UG.remove_edge("A", "B")
386
+ assert not UG.has_edge("B", "A")
387
+ assert not UG.has_edge("A", "B")
388
+
389
+ def test_neighbors(self):
390
+ G = self.G()
391
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
392
+ G.add_nodes_from("GJK")
393
+ assert sorted(G["A"]) == ["B", "C"]
394
+ assert sorted(G.neighbors("A")) == ["B", "C"]
395
+ assert sorted(G.neighbors("A")) == ["B", "C"]
396
+ assert sorted(G.neighbors("G")) == []
397
+ pytest.raises(nx.NetworkXError, G.neighbors, "j")
398
+
399
+ def test_iterators(self):
400
+ G = self.G()
401
+ G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
402
+ G.add_nodes_from("GJK")
403
+ assert sorted(G.nodes()) == ["A", "B", "C", "D", "G", "J", "K"]
404
+ assert edges_equal(
405
+ G.edges(), [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
406
+ )
407
+
408
+ assert sorted(v for k, v in G.degree()) == [0, 0, 0, 2, 2, 3, 3]
409
+ assert sorted(G.degree(), key=str) == [
410
+ ("A", 2),
411
+ ("B", 3),
412
+ ("C", 3),
413
+ ("D", 2),
414
+ ("G", 0),
415
+ ("J", 0),
416
+ ("K", 0),
417
+ ]
418
+ assert sorted(G.neighbors("A")) == ["B", "C"]
419
+ pytest.raises(nx.NetworkXError, G.neighbors, "X")
420
+ G.clear()
421
+ assert nx.number_of_nodes(G) == 0
422
+ assert nx.number_of_edges(G) == 0
423
+
424
+ def test_null_subgraph(self):
425
+ # Subgraph of a null graph is a null graph
426
+ nullgraph = nx.null_graph()
427
+ G = nx.null_graph()
428
+ H = G.subgraph([])
429
+ assert nx.is_isomorphic(H, nullgraph)
430
+
431
+ def test_empty_subgraph(self):
432
+ # Subgraph of an empty graph is an empty graph. test 1
433
+ nullgraph = nx.null_graph()
434
+ E5 = nx.empty_graph(5)
435
+ E10 = nx.empty_graph(10)
436
+ H = E10.subgraph([])
437
+ assert nx.is_isomorphic(H, nullgraph)
438
+ H = E10.subgraph([1, 2, 3, 4, 5])
439
+ assert nx.is_isomorphic(H, E5)
440
+
441
+ def test_complete_subgraph(self):
442
+ # Subgraph of a complete graph is a complete graph
443
+ K1 = nx.complete_graph(1)
444
+ K3 = nx.complete_graph(3)
445
+ K5 = nx.complete_graph(5)
446
+ H = K5.subgraph([1, 2, 3])
447
+ assert nx.is_isomorphic(H, K3)
448
+
449
+ def test_subgraph_nbunch(self):
450
+ nullgraph = nx.null_graph()
451
+ K1 = nx.complete_graph(1)
452
+ K3 = nx.complete_graph(3)
453
+ K5 = nx.complete_graph(5)
454
+ # Test G.subgraph(nbunch), where nbunch is a single node
455
+ H = K5.subgraph(1)
456
+ assert nx.is_isomorphic(H, K1)
457
+ # Test G.subgraph(nbunch), where nbunch is a set
458
+ H = K5.subgraph({1})
459
+ assert nx.is_isomorphic(H, K1)
460
+ # Test G.subgraph(nbunch), where nbunch is an iterator
461
+ H = K5.subgraph(iter(K3))
462
+ assert nx.is_isomorphic(H, K3)
463
+ # Test G.subgraph(nbunch), where nbunch is another graph
464
+ H = K5.subgraph(K3)
465
+ assert nx.is_isomorphic(H, K3)
466
+ H = K5.subgraph([9])
467
+ assert nx.is_isomorphic(H, nullgraph)
468
+
469
+ def test_node_tuple_issue(self):
470
+ H = self.G()
471
+ # Test error handling of tuple as a node
472
+ pytest.raises(nx.NetworkXError, H.remove_node, (1, 2))
473
+ H.remove_nodes_from([(1, 2)]) # no error
474
+ pytest.raises(nx.NetworkXError, H.neighbors, (1, 2))
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_coreviews.py ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+
8
+ class TestAtlasView:
9
+ # node->data
10
+ def setup_method(self):
11
+ self.d = {0: {"color": "blue", "weight": 1.2}, 1: {}, 2: {"color": 1}}
12
+ self.av = nx.classes.coreviews.AtlasView(self.d)
13
+
14
+ def test_pickle(self):
15
+ view = self.av
16
+ pview = pickle.loads(pickle.dumps(view, -1))
17
+ assert view == pview
18
+ assert view.__slots__ == pview.__slots__
19
+ pview = pickle.loads(pickle.dumps(view))
20
+ assert view == pview
21
+ assert view.__slots__ == pview.__slots__
22
+
23
+ def test_len(self):
24
+ assert len(self.av) == len(self.d)
25
+
26
+ def test_iter(self):
27
+ assert list(self.av) == list(self.d)
28
+
29
+ def test_getitem(self):
30
+ assert self.av[1] is self.d[1]
31
+ assert self.av[2]["color"] == 1
32
+ pytest.raises(KeyError, self.av.__getitem__, 3)
33
+
34
+ def test_copy(self):
35
+ avcopy = self.av.copy()
36
+ assert avcopy[0] == self.av[0]
37
+ assert avcopy == self.av
38
+ assert avcopy[0] is not self.av[0]
39
+ assert avcopy is not self.av
40
+ avcopy[5] = {}
41
+ assert avcopy != self.av
42
+
43
+ avcopy[0]["ht"] = 4
44
+ assert avcopy[0] != self.av[0]
45
+ self.av[0]["ht"] = 4
46
+ assert avcopy[0] == self.av[0]
47
+ del self.av[0]["ht"]
48
+
49
+ assert not hasattr(self.av, "__setitem__")
50
+
51
+ def test_items(self):
52
+ assert sorted(self.av.items()) == sorted(self.d.items())
53
+
54
+ def test_str(self):
55
+ out = str(self.d)
56
+ assert str(self.av) == out
57
+
58
+ def test_repr(self):
59
+ out = "AtlasView(" + str(self.d) + ")"
60
+ assert repr(self.av) == out
61
+
62
+
63
+ class TestAdjacencyView:
64
+ # node->nbr->data
65
+ def setup_method(self):
66
+ dd = {"color": "blue", "weight": 1.2}
67
+ self.nd = {0: dd, 1: {}, 2: {"color": 1}}
68
+ self.adj = {3: self.nd, 0: {3: dd}, 1: {}, 2: {3: {"color": 1}}}
69
+ self.adjview = nx.classes.coreviews.AdjacencyView(self.adj)
70
+
71
+ def test_pickle(self):
72
+ view = self.adjview
73
+ pview = pickle.loads(pickle.dumps(view, -1))
74
+ assert view == pview
75
+ assert view.__slots__ == pview.__slots__
76
+
77
+ def test_len(self):
78
+ assert len(self.adjview) == len(self.adj)
79
+
80
+ def test_iter(self):
81
+ assert list(self.adjview) == list(self.adj)
82
+
83
+ def test_getitem(self):
84
+ assert self.adjview[1] is not self.adj[1]
85
+ assert self.adjview[3][0] is self.adjview[0][3]
86
+ assert self.adjview[2][3]["color"] == 1
87
+ pytest.raises(KeyError, self.adjview.__getitem__, 4)
88
+
89
+ def test_copy(self):
90
+ avcopy = self.adjview.copy()
91
+ assert avcopy[0] == self.adjview[0]
92
+ assert avcopy[0] is not self.adjview[0]
93
+
94
+ avcopy[2][3]["ht"] = 4
95
+ assert avcopy[2] != self.adjview[2]
96
+ self.adjview[2][3]["ht"] = 4
97
+ assert avcopy[2] == self.adjview[2]
98
+ del self.adjview[2][3]["ht"]
99
+
100
+ assert not hasattr(self.adjview, "__setitem__")
101
+
102
+ def test_items(self):
103
+ view_items = sorted((n, dict(d)) for n, d in self.adjview.items())
104
+ assert view_items == sorted(self.adj.items())
105
+
106
+ def test_str(self):
107
+ out = str(dict(self.adj))
108
+ assert str(self.adjview) == out
109
+
110
+ def test_repr(self):
111
+ out = self.adjview.__class__.__name__ + "(" + str(self.adj) + ")"
112
+ assert repr(self.adjview) == out
113
+
114
+
115
+ class TestMultiAdjacencyView(TestAdjacencyView):
116
+ # node->nbr->key->data
117
+ def setup_method(self):
118
+ dd = {"color": "blue", "weight": 1.2}
119
+ self.kd = {0: dd, 1: {}, 2: {"color": 1}}
120
+ self.nd = {3: self.kd, 0: {3: dd}, 1: {0: {}}, 2: {3: {"color": 1}}}
121
+ self.adj = {3: self.nd, 0: {3: {3: dd}}, 1: {}, 2: {3: {8: {}}}}
122
+ self.adjview = nx.classes.coreviews.MultiAdjacencyView(self.adj)
123
+
124
+ def test_getitem(self):
125
+ assert self.adjview[1] is not self.adj[1]
126
+ assert self.adjview[3][0][3] is self.adjview[0][3][3]
127
+ assert self.adjview[3][2][3]["color"] == 1
128
+ pytest.raises(KeyError, self.adjview.__getitem__, 4)
129
+
130
+ def test_copy(self):
131
+ avcopy = self.adjview.copy()
132
+ assert avcopy[0] == self.adjview[0]
133
+ assert avcopy[0] is not self.adjview[0]
134
+
135
+ avcopy[2][3][8]["ht"] = 4
136
+ assert avcopy[2] != self.adjview[2]
137
+ self.adjview[2][3][8]["ht"] = 4
138
+ assert avcopy[2] == self.adjview[2]
139
+ del self.adjview[2][3][8]["ht"]
140
+
141
+ assert not hasattr(self.adjview, "__setitem__")
142
+
143
+
144
+ class TestUnionAtlas:
145
+ # node->data
146
+ def setup_method(self):
147
+ self.s = {0: {"color": "blue", "weight": 1.2}, 1: {}, 2: {"color": 1}}
148
+ self.p = {3: {"color": "blue", "weight": 1.2}, 4: {}, 2: {"watch": 2}}
149
+ self.av = nx.classes.coreviews.UnionAtlas(self.s, self.p)
150
+
151
+ def test_pickle(self):
152
+ view = self.av
153
+ pview = pickle.loads(pickle.dumps(view, -1))
154
+ assert view == pview
155
+ assert view.__slots__ == pview.__slots__
156
+
157
+ def test_len(self):
158
+ assert len(self.av) == len(self.s.keys() | self.p.keys()) == 5
159
+
160
+ def test_iter(self):
161
+ assert set(self.av) == set(self.s) | set(self.p)
162
+
163
+ def test_getitem(self):
164
+ assert self.av[0] is self.s[0]
165
+ assert self.av[4] is self.p[4]
166
+ assert self.av[2]["color"] == 1
167
+ pytest.raises(KeyError, self.av[2].__getitem__, "watch")
168
+ pytest.raises(KeyError, self.av.__getitem__, 8)
169
+
170
+ def test_copy(self):
171
+ avcopy = self.av.copy()
172
+ assert avcopy[0] == self.av[0]
173
+ assert avcopy[0] is not self.av[0]
174
+ assert avcopy is not self.av
175
+ avcopy[5] = {}
176
+ assert avcopy != self.av
177
+
178
+ avcopy[0]["ht"] = 4
179
+ assert avcopy[0] != self.av[0]
180
+ self.av[0]["ht"] = 4
181
+ assert avcopy[0] == self.av[0]
182
+ del self.av[0]["ht"]
183
+
184
+ assert not hasattr(self.av, "__setitem__")
185
+
186
+ def test_items(self):
187
+ expected = dict(self.p.items())
188
+ expected.update(self.s)
189
+ assert sorted(self.av.items()) == sorted(expected.items())
190
+
191
+ def test_str(self):
192
+ out = str(dict(self.av))
193
+ assert str(self.av) == out
194
+
195
+ def test_repr(self):
196
+ out = f"{self.av.__class__.__name__}({self.s}, {self.p})"
197
+ assert repr(self.av) == out
198
+
199
+
200
+ class TestUnionAdjacency:
201
+ # node->nbr->data
202
+ def setup_method(self):
203
+ dd = {"color": "blue", "weight": 1.2}
204
+ self.nd = {0: dd, 1: {}, 2: {"color": 1}}
205
+ self.s = {3: self.nd, 0: {}, 1: {}, 2: {3: {"color": 1}}}
206
+ self.p = {3: {}, 0: {3: dd}, 1: {0: {}}, 2: {1: {"color": 1}}}
207
+ self.adjview = nx.classes.coreviews.UnionAdjacency(self.s, self.p)
208
+
209
+ def test_pickle(self):
210
+ view = self.adjview
211
+ pview = pickle.loads(pickle.dumps(view, -1))
212
+ assert view == pview
213
+ assert view.__slots__ == pview.__slots__
214
+
215
+ def test_len(self):
216
+ assert len(self.adjview) == len(self.s)
217
+
218
+ def test_iter(self):
219
+ assert sorted(self.adjview) == sorted(self.s)
220
+
221
+ def test_getitem(self):
222
+ assert self.adjview[1] is not self.s[1]
223
+ assert self.adjview[3][0] is self.adjview[0][3]
224
+ assert self.adjview[2][3]["color"] == 1
225
+ pytest.raises(KeyError, self.adjview.__getitem__, 4)
226
+
227
+ def test_copy(self):
228
+ avcopy = self.adjview.copy()
229
+ assert avcopy[0] == self.adjview[0]
230
+ assert avcopy[0] is not self.adjview[0]
231
+
232
+ avcopy[2][3]["ht"] = 4
233
+ assert avcopy[2] != self.adjview[2]
234
+ self.adjview[2][3]["ht"] = 4
235
+ assert avcopy[2] == self.adjview[2]
236
+ del self.adjview[2][3]["ht"]
237
+
238
+ assert not hasattr(self.adjview, "__setitem__")
239
+
240
+ def test_str(self):
241
+ out = str(dict(self.adjview))
242
+ assert str(self.adjview) == out
243
+
244
+ def test_repr(self):
245
+ clsname = self.adjview.__class__.__name__
246
+ out = f"{clsname}({self.s}, {self.p})"
247
+ assert repr(self.adjview) == out
248
+
249
+
250
+ class TestUnionMultiInner(TestUnionAdjacency):
251
+ # nbr->key->data
252
+ def setup_method(self):
253
+ dd = {"color": "blue", "weight": 1.2}
254
+ self.kd = {7: {}, "ekey": {}, 9: {"color": 1}}
255
+ self.s = {3: self.kd, 0: {7: dd}, 1: {}, 2: {"key": {"color": 1}}}
256
+ self.p = {3: {}, 0: {3: dd}, 1: {}, 2: {1: {"span": 2}}}
257
+ self.adjview = nx.classes.coreviews.UnionMultiInner(self.s, self.p)
258
+
259
+ def test_len(self):
260
+ assert len(self.adjview) == len(self.s.keys() | self.p.keys()) == 4
261
+
262
+ def test_getitem(self):
263
+ assert self.adjview[1] is not self.s[1]
264
+ assert self.adjview[0][7] is self.adjview[0][3]
265
+ assert self.adjview[2]["key"]["color"] == 1
266
+ assert self.adjview[2][1]["span"] == 2
267
+ pytest.raises(KeyError, self.adjview.__getitem__, 4)
268
+ pytest.raises(KeyError, self.adjview[1].__getitem__, "key")
269
+
270
+ def test_copy(self):
271
+ avcopy = self.adjview.copy()
272
+ assert avcopy[0] == self.adjview[0]
273
+ assert avcopy[0] is not self.adjview[0]
274
+
275
+ avcopy[2][1]["width"] = 8
276
+ assert avcopy[2] != self.adjview[2]
277
+ self.adjview[2][1]["width"] = 8
278
+ assert avcopy[2] == self.adjview[2]
279
+ del self.adjview[2][1]["width"]
280
+
281
+ assert not hasattr(self.adjview, "__setitem__")
282
+ assert hasattr(avcopy, "__setitem__")
283
+
284
+
285
+ class TestUnionMultiAdjacency(TestUnionAdjacency):
286
+ # node->nbr->key->data
287
+ def setup_method(self):
288
+ dd = {"color": "blue", "weight": 1.2}
289
+ self.kd = {7: {}, 8: {}, 9: {"color": 1}}
290
+ self.nd = {3: self.kd, 0: {9: dd}, 1: {8: {}}, 2: {9: {"color": 1}}}
291
+ self.s = {3: self.nd, 0: {3: {7: dd}}, 1: {}, 2: {3: {8: {}}}}
292
+ self.p = {3: {}, 0: {3: {9: dd}}, 1: {}, 2: {1: {8: {}}}}
293
+ self.adjview = nx.classes.coreviews.UnionMultiAdjacency(self.s, self.p)
294
+
295
+ def test_getitem(self):
296
+ assert self.adjview[1] is not self.s[1]
297
+ assert self.adjview[3][0][9] is self.adjview[0][3][9]
298
+ assert self.adjview[3][2][9]["color"] == 1
299
+ pytest.raises(KeyError, self.adjview.__getitem__, 4)
300
+
301
+ def test_copy(self):
302
+ avcopy = self.adjview.copy()
303
+ assert avcopy[0] == self.adjview[0]
304
+ assert avcopy[0] is not self.adjview[0]
305
+
306
+ avcopy[2][3][8]["ht"] = 4
307
+ assert avcopy[2] != self.adjview[2]
308
+ self.adjview[2][3][8]["ht"] = 4
309
+ assert avcopy[2] == self.adjview[2]
310
+ del self.adjview[2][3][8]["ht"]
311
+
312
+ assert not hasattr(self.adjview, "__setitem__")
313
+ assert hasattr(avcopy, "__setitem__")
314
+
315
+
316
+ class TestFilteredGraphs:
317
+ def setup_method(self):
318
+ self.Graphs = [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph]
319
+
320
+ def test_hide_show_nodes(self):
321
+ SubGraph = nx.subgraph_view
322
+ for Graph in self.Graphs:
323
+ G = nx.path_graph(4, Graph)
324
+ SG = G.subgraph([2, 3])
325
+ RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1]))
326
+ assert SG.nodes == RG.nodes
327
+ assert SG.edges == RG.edges
328
+ SGC = SG.copy()
329
+ RGC = RG.copy()
330
+ assert SGC.nodes == RGC.nodes
331
+ assert SGC.edges == RGC.edges
332
+
333
+ def test_str_repr(self):
334
+ SubGraph = nx.subgraph_view
335
+ for Graph in self.Graphs:
336
+ G = nx.path_graph(4, Graph)
337
+ SG = G.subgraph([2, 3])
338
+ RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1]))
339
+ str(SG.adj)
340
+ str(RG.adj)
341
+ repr(SG.adj)
342
+ repr(RG.adj)
343
+ str(SG.adj[2])
344
+ str(RG.adj[2])
345
+ repr(SG.adj[2])
346
+ repr(RG.adj[2])
347
+
348
+ def test_copy(self):
349
+ SubGraph = nx.subgraph_view
350
+ for Graph in self.Graphs:
351
+ G = nx.path_graph(4, Graph)
352
+ SG = G.subgraph([2, 3])
353
+ RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1]))
354
+ RsG = SubGraph(G, filter_node=nx.filters.show_nodes([2, 3]))
355
+ assert G.adj.copy() == G.adj
356
+ assert G.adj[2].copy() == G.adj[2]
357
+ assert SG.adj.copy() == SG.adj
358
+ assert SG.adj[2].copy() == SG.adj[2]
359
+ assert RG.adj.copy() == RG.adj
360
+ assert RG.adj[2].copy() == RG.adj[2]
361
+ assert RsG.adj.copy() == RsG.adj
362
+ assert RsG.adj[2].copy() == RsG.adj[2]
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_graph.py ADDED
@@ -0,0 +1,920 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import pickle
3
+ import platform
4
+ import weakref
5
+
6
+ import pytest
7
+
8
+ import networkx as nx
9
+ from networkx.utils import edges_equal, graphs_equal, nodes_equal
10
+
11
+
12
+ class BaseGraphTester:
13
+ """Tests for data-structure independent graph class features."""
14
+
15
+ def test_contains(self):
16
+ G = self.K3
17
+ assert 1 in G
18
+ assert 4 not in G
19
+ assert "b" not in G
20
+ assert [] not in G # no exception for nonhashable
21
+ assert {1: 1} not in G # no exception for nonhashable
22
+
23
+ def test_order(self):
24
+ G = self.K3
25
+ assert len(G) == 3
26
+ assert G.order() == 3
27
+ assert G.number_of_nodes() == 3
28
+
29
+ def test_nodes(self):
30
+ G = self.K3
31
+ assert isinstance(G._node, G.node_dict_factory)
32
+ assert isinstance(G._adj, G.adjlist_outer_dict_factory)
33
+ assert all(
34
+ isinstance(adj, G.adjlist_inner_dict_factory) for adj in G._adj.values()
35
+ )
36
+ assert sorted(G.nodes()) == self.k3nodes
37
+ assert sorted(G.nodes(data=True)) == [(0, {}), (1, {}), (2, {})]
38
+
39
+ def test_none_node(self):
40
+ G = self.Graph()
41
+ with pytest.raises(ValueError):
42
+ G.add_node(None)
43
+ with pytest.raises(ValueError):
44
+ G.add_nodes_from([None])
45
+ with pytest.raises(ValueError):
46
+ G.add_edge(0, None)
47
+ with pytest.raises(ValueError):
48
+ G.add_edges_from([(0, None)])
49
+
50
+ def test_has_node(self):
51
+ G = self.K3
52
+ assert G.has_node(1)
53
+ assert not G.has_node(4)
54
+ assert not G.has_node([]) # no exception for nonhashable
55
+ assert not G.has_node({1: 1}) # no exception for nonhashable
56
+
57
+ def test_has_edge(self):
58
+ G = self.K3
59
+ assert G.has_edge(0, 1)
60
+ assert not G.has_edge(0, -1)
61
+
62
+ def test_neighbors(self):
63
+ G = self.K3
64
+ assert sorted(G.neighbors(0)) == [1, 2]
65
+ with pytest.raises(nx.NetworkXError):
66
+ G.neighbors(-1)
67
+
68
+ @pytest.mark.skipif(
69
+ platform.python_implementation() == "PyPy", reason="PyPy gc is different"
70
+ )
71
+ def test_memory_leak(self):
72
+ G = self.Graph()
73
+
74
+ def count_objects_of_type(_type):
75
+ # Iterating over all objects tracked by gc can include weak references
76
+ # whose weakly-referenced objects may no longer exist. Calling `isinstance`
77
+ # on such a weak reference will raise ReferenceError. There are at least
78
+ # three workarounds for this: one is to compare type names instead of using
79
+ # `isinstance` such as `type(obj).__name__ == typename`, another is to use
80
+ # `type(obj) == _type`, and the last is to ignore ProxyTypes as we do below.
81
+ # NOTE: even if this safeguard is deemed unnecessary to pass NetworkX tests,
82
+ # we should still keep it for maximum safety for other NetworkX backends.
83
+ return sum(
84
+ 1
85
+ for obj in gc.get_objects()
86
+ if not isinstance(obj, weakref.ProxyTypes) and isinstance(obj, _type)
87
+ )
88
+
89
+ gc.collect()
90
+ before = count_objects_of_type(self.Graph)
91
+ G.copy()
92
+ gc.collect()
93
+ after = count_objects_of_type(self.Graph)
94
+ assert before == after
95
+
96
+ # test a subgraph of the base class
97
+ class MyGraph(self.Graph):
98
+ pass
99
+
100
+ gc.collect()
101
+ G = MyGraph()
102
+ before = count_objects_of_type(MyGraph)
103
+ G.copy()
104
+ gc.collect()
105
+ after = count_objects_of_type(MyGraph)
106
+ assert before == after
107
+
108
+ def test_edges(self):
109
+ G = self.K3
110
+ assert isinstance(G._adj, G.adjlist_outer_dict_factory)
111
+ assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
112
+ assert edges_equal(G.edges(0), [(0, 1), (0, 2)])
113
+ assert edges_equal(G.edges([0, 1]), [(0, 1), (0, 2), (1, 2)])
114
+ with pytest.raises(nx.NetworkXError):
115
+ G.edges(-1)
116
+
117
+ def test_degree(self):
118
+ G = self.K3
119
+ assert sorted(G.degree()) == [(0, 2), (1, 2), (2, 2)]
120
+ assert dict(G.degree()) == {0: 2, 1: 2, 2: 2}
121
+ assert G.degree(0) == 2
122
+ with pytest.raises(nx.NetworkXError):
123
+ G.degree(-1) # node not in graph
124
+
125
+ def test_size(self):
126
+ G = self.K3
127
+ assert G.size() == 3
128
+ assert G.number_of_edges() == 3
129
+
130
+ def test_nbunch_iter(self):
131
+ G = self.K3
132
+ assert nodes_equal(G.nbunch_iter(), self.k3nodes) # all nodes
133
+ assert nodes_equal(G.nbunch_iter(0), [0]) # single node
134
+ assert nodes_equal(G.nbunch_iter([0, 1]), [0, 1]) # sequence
135
+ # sequence with none in graph
136
+ assert nodes_equal(G.nbunch_iter([-1]), [])
137
+ # string sequence with none in graph
138
+ assert nodes_equal(G.nbunch_iter("foo"), [])
139
+ # node not in graph doesn't get caught upon creation of iterator
140
+ bunch = G.nbunch_iter(-1)
141
+ # but gets caught when iterator used
142
+ with pytest.raises(nx.NetworkXError, match="is not a node or a sequence"):
143
+ list(bunch)
144
+ # unhashable doesn't get caught upon creation of iterator
145
+ bunch = G.nbunch_iter([0, 1, 2, {}])
146
+ # but gets caught when iterator hits the unhashable
147
+ with pytest.raises(
148
+ nx.NetworkXError, match="in sequence nbunch is not a valid node"
149
+ ):
150
+ list(bunch)
151
+
152
+ def test_nbunch_iter_node_format_raise(self):
153
+ # Tests that a node that would have failed string formatting
154
+ # doesn't cause an error when attempting to raise a
155
+ # :exc:`nx.NetworkXError`.
156
+
157
+ # For more information, see pull request #1813.
158
+ G = self.Graph()
159
+ nbunch = [("x", set())]
160
+ with pytest.raises(nx.NetworkXError):
161
+ list(G.nbunch_iter(nbunch))
162
+
163
+ def test_selfloop_degree(self):
164
+ G = self.Graph()
165
+ G.add_edge(1, 1)
166
+ assert sorted(G.degree()) == [(1, 2)]
167
+ assert dict(G.degree()) == {1: 2}
168
+ assert G.degree(1) == 2
169
+ assert sorted(G.degree([1])) == [(1, 2)]
170
+ assert G.degree(1, weight="weight") == 2
171
+
172
+ def test_selfloops(self):
173
+ G = self.K3.copy()
174
+ G.add_edge(0, 0)
175
+ assert nodes_equal(nx.nodes_with_selfloops(G), [0])
176
+ assert edges_equal(nx.selfloop_edges(G), [(0, 0)])
177
+ assert nx.number_of_selfloops(G) == 1
178
+ G.remove_edge(0, 0)
179
+ G.add_edge(0, 0)
180
+ G.remove_edges_from([(0, 0)])
181
+ G.add_edge(1, 1)
182
+ G.remove_node(1)
183
+ G.add_edge(0, 0)
184
+ G.add_edge(1, 1)
185
+ G.remove_nodes_from([0, 1])
186
+
187
+ def test_cache_reset(self):
188
+ G = self.K3.copy()
189
+ old_adj = G.adj
190
+ assert id(G.adj) == id(old_adj)
191
+ G._adj = {}
192
+ assert id(G.adj) != id(old_adj)
193
+
194
+ old_nodes = G.nodes
195
+ assert id(G.nodes) == id(old_nodes)
196
+ G._node = {}
197
+ assert id(G.nodes) != id(old_nodes)
198
+
199
+ def test_attributes_cached(self):
200
+ G = self.K3.copy()
201
+ assert id(G.nodes) == id(G.nodes)
202
+ assert id(G.edges) == id(G.edges)
203
+ assert id(G.degree) == id(G.degree)
204
+ assert id(G.adj) == id(G.adj)
205
+
206
+
207
+ class BaseAttrGraphTester(BaseGraphTester):
208
+ """Tests of graph class attribute features."""
209
+
210
+ def test_weighted_degree(self):
211
+ G = self.Graph()
212
+ G.add_edge(1, 2, weight=2, other=3)
213
+ G.add_edge(2, 3, weight=3, other=4)
214
+ assert sorted(d for n, d in G.degree(weight="weight")) == [2, 3, 5]
215
+ assert dict(G.degree(weight="weight")) == {1: 2, 2: 5, 3: 3}
216
+ assert G.degree(1, weight="weight") == 2
217
+ assert nodes_equal((G.degree([1], weight="weight")), [(1, 2)])
218
+
219
+ assert nodes_equal((d for n, d in G.degree(weight="other")), [3, 7, 4])
220
+ assert dict(G.degree(weight="other")) == {1: 3, 2: 7, 3: 4}
221
+ assert G.degree(1, weight="other") == 3
222
+ assert edges_equal((G.degree([1], weight="other")), [(1, 3)])
223
+
224
+ def add_attributes(self, G):
225
+ G.graph["foo"] = []
226
+ G.nodes[0]["foo"] = []
227
+ G.remove_edge(1, 2)
228
+ ll = []
229
+ G.add_edge(1, 2, foo=ll)
230
+ G.add_edge(2, 1, foo=ll)
231
+
232
+ def test_name(self):
233
+ G = self.Graph(name="")
234
+ assert G.name == ""
235
+ G = self.Graph(name="test")
236
+ assert G.name == "test"
237
+
238
+ def test_str_unnamed(self):
239
+ G = self.Graph()
240
+ G.add_edges_from([(1, 2), (2, 3)])
241
+ assert str(G) == f"{type(G).__name__} with 3 nodes and 2 edges"
242
+
243
+ def test_str_named(self):
244
+ G = self.Graph(name="foo")
245
+ G.add_edges_from([(1, 2), (2, 3)])
246
+ assert str(G) == f"{type(G).__name__} named 'foo' with 3 nodes and 2 edges"
247
+
248
+ def test_graph_chain(self):
249
+ G = self.Graph([(0, 1), (1, 2)])
250
+ DG = G.to_directed(as_view=True)
251
+ SDG = DG.subgraph([0, 1])
252
+ RSDG = SDG.reverse(copy=False)
253
+ assert G is DG._graph
254
+ assert DG is SDG._graph
255
+ assert SDG is RSDG._graph
256
+
257
+ def test_copy(self):
258
+ G = self.Graph()
259
+ G.add_node(0)
260
+ G.add_edge(1, 2)
261
+ self.add_attributes(G)
262
+ # copy edge datadict but any container attr are same
263
+ H = G.copy()
264
+ self.graphs_equal(H, G)
265
+ self.different_attrdict(H, G)
266
+ self.shallow_copy_attrdict(H, G)
267
+
268
+ def test_class_copy(self):
269
+ G = self.Graph()
270
+ G.add_node(0)
271
+ G.add_edge(1, 2)
272
+ self.add_attributes(G)
273
+ # copy edge datadict but any container attr are same
274
+ H = G.__class__(G)
275
+ self.graphs_equal(H, G)
276
+ self.different_attrdict(H, G)
277
+ self.shallow_copy_attrdict(H, G)
278
+
279
+ def test_fresh_copy(self):
280
+ G = self.Graph()
281
+ G.add_node(0)
282
+ G.add_edge(1, 2)
283
+ self.add_attributes(G)
284
+ # copy graph structure but use fresh datadict
285
+ H = G.__class__()
286
+ H.add_nodes_from(G)
287
+ H.add_edges_from(G.edges())
288
+ assert len(G.nodes[0]) == 1
289
+ ddict = G.adj[1][2][0] if G.is_multigraph() else G.adj[1][2]
290
+ assert len(ddict) == 1
291
+ assert len(H.nodes[0]) == 0
292
+ ddict = H.adj[1][2][0] if H.is_multigraph() else H.adj[1][2]
293
+ assert len(ddict) == 0
294
+
295
+ def is_deepcopy(self, H, G):
296
+ self.graphs_equal(H, G)
297
+ self.different_attrdict(H, G)
298
+ self.deep_copy_attrdict(H, G)
299
+
300
+ def deep_copy_attrdict(self, H, G):
301
+ self.deepcopy_graph_attr(H, G)
302
+ self.deepcopy_node_attr(H, G)
303
+ self.deepcopy_edge_attr(H, G)
304
+
305
+ def deepcopy_graph_attr(self, H, G):
306
+ assert G.graph["foo"] == H.graph["foo"]
307
+ G.graph["foo"].append(1)
308
+ assert G.graph["foo"] != H.graph["foo"]
309
+
310
+ def deepcopy_node_attr(self, H, G):
311
+ assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
312
+ G.nodes[0]["foo"].append(1)
313
+ assert G.nodes[0]["foo"] != H.nodes[0]["foo"]
314
+
315
+ def deepcopy_edge_attr(self, H, G):
316
+ assert G[1][2]["foo"] == H[1][2]["foo"]
317
+ G[1][2]["foo"].append(1)
318
+ assert G[1][2]["foo"] != H[1][2]["foo"]
319
+
320
+ def is_shallow_copy(self, H, G):
321
+ self.graphs_equal(H, G)
322
+ self.shallow_copy_attrdict(H, G)
323
+
324
+ def shallow_copy_attrdict(self, H, G):
325
+ self.shallow_copy_graph_attr(H, G)
326
+ self.shallow_copy_node_attr(H, G)
327
+ self.shallow_copy_edge_attr(H, G)
328
+
329
+ def shallow_copy_graph_attr(self, H, G):
330
+ assert G.graph["foo"] == H.graph["foo"]
331
+ G.graph["foo"].append(1)
332
+ assert G.graph["foo"] == H.graph["foo"]
333
+
334
+ def shallow_copy_node_attr(self, H, G):
335
+ assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
336
+ G.nodes[0]["foo"].append(1)
337
+ assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
338
+
339
+ def shallow_copy_edge_attr(self, H, G):
340
+ assert G[1][2]["foo"] == H[1][2]["foo"]
341
+ G[1][2]["foo"].append(1)
342
+ assert G[1][2]["foo"] == H[1][2]["foo"]
343
+
344
+ def same_attrdict(self, H, G):
345
+ old_foo = H[1][2]["foo"]
346
+ H.adj[1][2]["foo"] = "baz"
347
+ assert G.edges == H.edges
348
+ H.adj[1][2]["foo"] = old_foo
349
+ assert G.edges == H.edges
350
+
351
+ old_foo = H.nodes[0]["foo"]
352
+ H.nodes[0]["foo"] = "baz"
353
+ assert G.nodes == H.nodes
354
+ H.nodes[0]["foo"] = old_foo
355
+ assert G.nodes == H.nodes
356
+
357
+ def different_attrdict(self, H, G):
358
+ old_foo = H[1][2]["foo"]
359
+ H.adj[1][2]["foo"] = "baz"
360
+ assert G._adj != H._adj
361
+ H.adj[1][2]["foo"] = old_foo
362
+ assert G._adj == H._adj
363
+
364
+ old_foo = H.nodes[0]["foo"]
365
+ H.nodes[0]["foo"] = "baz"
366
+ assert G._node != H._node
367
+ H.nodes[0]["foo"] = old_foo
368
+ assert G._node == H._node
369
+
370
+ def graphs_equal(self, H, G):
371
+ assert G._adj == H._adj
372
+ assert G._node == H._node
373
+ assert G.graph == H.graph
374
+ assert G.name == H.name
375
+ if not G.is_directed() and not H.is_directed():
376
+ assert H._adj[1][2] is H._adj[2][1]
377
+ assert G._adj[1][2] is G._adj[2][1]
378
+ else: # at least one is directed
379
+ if not G.is_directed():
380
+ G._pred = G._adj
381
+ G._succ = G._adj
382
+ if not H.is_directed():
383
+ H._pred = H._adj
384
+ H._succ = H._adj
385
+ assert G._pred == H._pred
386
+ assert G._succ == H._succ
387
+ assert H._succ[1][2] is H._pred[2][1]
388
+ assert G._succ[1][2] is G._pred[2][1]
389
+
390
+ def test_graph_attr(self):
391
+ G = self.K3.copy()
392
+ G.graph["foo"] = "bar"
393
+ assert isinstance(G.graph, G.graph_attr_dict_factory)
394
+ assert G.graph["foo"] == "bar"
395
+ del G.graph["foo"]
396
+ assert G.graph == {}
397
+ H = self.Graph(foo="bar")
398
+ assert H.graph["foo"] == "bar"
399
+
400
+ def test_node_attr(self):
401
+ G = self.K3.copy()
402
+ G.add_node(1, foo="bar")
403
+ assert all(
404
+ isinstance(d, G.node_attr_dict_factory) for u, d in G.nodes(data=True)
405
+ )
406
+ assert nodes_equal(G.nodes(), [0, 1, 2])
407
+ assert nodes_equal(G.nodes(data=True), [(0, {}), (1, {"foo": "bar"}), (2, {})])
408
+ G.nodes[1]["foo"] = "baz"
409
+ assert nodes_equal(G.nodes(data=True), [(0, {}), (1, {"foo": "baz"}), (2, {})])
410
+ assert nodes_equal(G.nodes(data="foo"), [(0, None), (1, "baz"), (2, None)])
411
+ assert nodes_equal(
412
+ G.nodes(data="foo", default="bar"), [(0, "bar"), (1, "baz"), (2, "bar")]
413
+ )
414
+
415
+ def test_node_attr2(self):
416
+ G = self.K3.copy()
417
+ a = {"foo": "bar"}
418
+ G.add_node(3, **a)
419
+ assert nodes_equal(G.nodes(), [0, 1, 2, 3])
420
+ assert nodes_equal(
421
+ G.nodes(data=True), [(0, {}), (1, {}), (2, {}), (3, {"foo": "bar"})]
422
+ )
423
+
424
+ def test_edge_lookup(self):
425
+ G = self.Graph()
426
+ G.add_edge(1, 2, foo="bar")
427
+ assert edges_equal(G.edges[1, 2], {"foo": "bar"})
428
+
429
+ def test_edge_attr(self):
430
+ G = self.Graph()
431
+ G.add_edge(1, 2, foo="bar")
432
+ assert all(
433
+ isinstance(d, G.edge_attr_dict_factory) for u, v, d in G.edges(data=True)
434
+ )
435
+ assert edges_equal(G.edges(data=True), [(1, 2, {"foo": "bar"})])
436
+ assert edges_equal(G.edges(data="foo"), [(1, 2, "bar")])
437
+
438
+ def test_edge_attr2(self):
439
+ G = self.Graph()
440
+ G.add_edges_from([(1, 2), (3, 4)], foo="foo")
441
+ assert edges_equal(
442
+ G.edges(data=True), [(1, 2, {"foo": "foo"}), (3, 4, {"foo": "foo"})]
443
+ )
444
+ assert edges_equal(G.edges(data="foo"), [(1, 2, "foo"), (3, 4, "foo")])
445
+
446
+ def test_edge_attr3(self):
447
+ G = self.Graph()
448
+ G.add_edges_from([(1, 2, {"weight": 32}), (3, 4, {"weight": 64})], foo="foo")
449
+ assert edges_equal(
450
+ G.edges(data=True),
451
+ [
452
+ (1, 2, {"foo": "foo", "weight": 32}),
453
+ (3, 4, {"foo": "foo", "weight": 64}),
454
+ ],
455
+ )
456
+
457
+ G.remove_edges_from([(1, 2), (3, 4)])
458
+ G.add_edge(1, 2, data=7, spam="bar", bar="foo")
459
+ assert edges_equal(
460
+ G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
461
+ )
462
+
463
+ def test_edge_attr4(self):
464
+ G = self.Graph()
465
+ G.add_edge(1, 2, data=7, spam="bar", bar="foo")
466
+ assert edges_equal(
467
+ G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
468
+ )
469
+ G[1][2]["data"] = 10 # OK to set data like this
470
+ assert edges_equal(
471
+ G.edges(data=True), [(1, 2, {"data": 10, "spam": "bar", "bar": "foo"})]
472
+ )
473
+
474
+ G.adj[1][2]["data"] = 20
475
+ assert edges_equal(
476
+ G.edges(data=True), [(1, 2, {"data": 20, "spam": "bar", "bar": "foo"})]
477
+ )
478
+ G.edges[1, 2]["data"] = 21 # another spelling, "edge"
479
+ assert edges_equal(
480
+ G.edges(data=True), [(1, 2, {"data": 21, "spam": "bar", "bar": "foo"})]
481
+ )
482
+ G.adj[1][2]["listdata"] = [20, 200]
483
+ G.adj[1][2]["weight"] = 20
484
+ dd = {
485
+ "data": 21,
486
+ "spam": "bar",
487
+ "bar": "foo",
488
+ "listdata": [20, 200],
489
+ "weight": 20,
490
+ }
491
+ assert edges_equal(G.edges(data=True), [(1, 2, dd)])
492
+
493
+ def test_to_undirected(self):
494
+ G = self.K3
495
+ self.add_attributes(G)
496
+ H = nx.Graph(G)
497
+ self.is_shallow_copy(H, G)
498
+ self.different_attrdict(H, G)
499
+ H = G.to_undirected()
500
+ self.is_deepcopy(H, G)
501
+
502
+ def test_to_directed_as_view(self):
503
+ H = nx.path_graph(2, create_using=self.Graph)
504
+ H2 = H.to_directed(as_view=True)
505
+ assert H is H2._graph
506
+ assert H2.has_edge(0, 1)
507
+ assert H2.has_edge(1, 0) or H.is_directed()
508
+ pytest.raises(nx.NetworkXError, H2.add_node, -1)
509
+ pytest.raises(nx.NetworkXError, H2.add_edge, 1, 2)
510
+ H.add_edge(1, 2)
511
+ assert H2.has_edge(1, 2)
512
+ assert H2.has_edge(2, 1) or H.is_directed()
513
+
514
+ def test_to_undirected_as_view(self):
515
+ H = nx.path_graph(2, create_using=self.Graph)
516
+ H2 = H.to_undirected(as_view=True)
517
+ assert H is H2._graph
518
+ assert H2.has_edge(0, 1)
519
+ assert H2.has_edge(1, 0)
520
+ pytest.raises(nx.NetworkXError, H2.add_node, -1)
521
+ pytest.raises(nx.NetworkXError, H2.add_edge, 1, 2)
522
+ H.add_edge(1, 2)
523
+ assert H2.has_edge(1, 2)
524
+ assert H2.has_edge(2, 1)
525
+
526
+ def test_directed_class(self):
527
+ G = self.Graph()
528
+
529
+ class newGraph(G.to_undirected_class()):
530
+ def to_directed_class(self):
531
+ return newDiGraph
532
+
533
+ def to_undirected_class(self):
534
+ return newGraph
535
+
536
+ class newDiGraph(G.to_directed_class()):
537
+ def to_directed_class(self):
538
+ return newDiGraph
539
+
540
+ def to_undirected_class(self):
541
+ return newGraph
542
+
543
+ G = newDiGraph() if G.is_directed() else newGraph()
544
+ H = G.to_directed()
545
+ assert isinstance(H, newDiGraph)
546
+ H = G.to_undirected()
547
+ assert isinstance(H, newGraph)
548
+
549
+ def test_to_directed(self):
550
+ G = self.K3
551
+ self.add_attributes(G)
552
+ H = nx.DiGraph(G)
553
+ self.is_shallow_copy(H, G)
554
+ self.different_attrdict(H, G)
555
+ H = G.to_directed()
556
+ self.is_deepcopy(H, G)
557
+
558
+ def test_subgraph(self):
559
+ G = self.K3
560
+ self.add_attributes(G)
561
+ H = G.subgraph([0, 1, 2, 5])
562
+ self.graphs_equal(H, G)
563
+ self.same_attrdict(H, G)
564
+ self.shallow_copy_attrdict(H, G)
565
+
566
+ H = G.subgraph(0)
567
+ assert H.adj == {0: {}}
568
+ H = G.subgraph([])
569
+ assert H.adj == {}
570
+ assert G.adj != {}
571
+
572
+ def test_selfloops_attr(self):
573
+ G = self.K3.copy()
574
+ G.add_edge(0, 0)
575
+ G.add_edge(1, 1, weight=2)
576
+ assert edges_equal(
577
+ nx.selfloop_edges(G, data=True), [(0, 0, {}), (1, 1, {"weight": 2})]
578
+ )
579
+ assert edges_equal(
580
+ nx.selfloop_edges(G, data="weight"), [(0, 0, None), (1, 1, 2)]
581
+ )
582
+
583
+
584
+ class TestGraph(BaseAttrGraphTester):
585
+ """Tests specific to dict-of-dict-of-dict graph data structure"""
586
+
587
+ def setup_method(self):
588
+ self.Graph = nx.Graph
589
+ # build dict-of-dict-of-dict K3
590
+ ed1, ed2, ed3 = ({}, {}, {})
591
+ self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}}
592
+ self.k3edges = [(0, 1), (0, 2), (1, 2)]
593
+ self.k3nodes = [0, 1, 2]
594
+ self.K3 = self.Graph()
595
+ self.K3._adj = self.k3adj
596
+ self.K3._node = {}
597
+ self.K3._node[0] = {}
598
+ self.K3._node[1] = {}
599
+ self.K3._node[2] = {}
600
+
601
+ def test_pickle(self):
602
+ G = self.K3
603
+ pg = pickle.loads(pickle.dumps(G, -1))
604
+ self.graphs_equal(pg, G)
605
+ pg = pickle.loads(pickle.dumps(G))
606
+ self.graphs_equal(pg, G)
607
+
608
+ def test_data_input(self):
609
+ G = self.Graph({1: [2], 2: [1]}, name="test")
610
+ assert G.name == "test"
611
+ assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})]
612
+
613
+ def test_adjacency(self):
614
+ G = self.K3
615
+ assert dict(G.adjacency()) == {
616
+ 0: {1: {}, 2: {}},
617
+ 1: {0: {}, 2: {}},
618
+ 2: {0: {}, 1: {}},
619
+ }
620
+
621
+ def test_getitem(self):
622
+ G = self.K3
623
+ assert G.adj[0] == {1: {}, 2: {}}
624
+ assert G[0] == {1: {}, 2: {}}
625
+ with pytest.raises(KeyError):
626
+ G.__getitem__("j")
627
+ with pytest.raises(TypeError):
628
+ G.__getitem__(["A"])
629
+
630
+ def test_add_node(self):
631
+ G = self.Graph()
632
+ G.add_node(0)
633
+ assert G.adj == {0: {}}
634
+ # test add attributes
635
+ G.add_node(1, c="red")
636
+ G.add_node(2, c="blue")
637
+ G.add_node(3, c="red")
638
+ assert G.nodes[1]["c"] == "red"
639
+ assert G.nodes[2]["c"] == "blue"
640
+ assert G.nodes[3]["c"] == "red"
641
+ # test updating attributes
642
+ G.add_node(1, c="blue")
643
+ G.add_node(2, c="red")
644
+ G.add_node(3, c="blue")
645
+ assert G.nodes[1]["c"] == "blue"
646
+ assert G.nodes[2]["c"] == "red"
647
+ assert G.nodes[3]["c"] == "blue"
648
+
649
+ def test_add_nodes_from(self):
650
+ G = self.Graph()
651
+ G.add_nodes_from([0, 1, 2])
652
+ assert G.adj == {0: {}, 1: {}, 2: {}}
653
+ # test add attributes
654
+ G.add_nodes_from([0, 1, 2], c="red")
655
+ assert G.nodes[0]["c"] == "red"
656
+ assert G.nodes[2]["c"] == "red"
657
+ # test that attribute dicts are not the same
658
+ assert G.nodes[0] is not G.nodes[1]
659
+ # test updating attributes
660
+ G.add_nodes_from([0, 1, 2], c="blue")
661
+ assert G.nodes[0]["c"] == "blue"
662
+ assert G.nodes[2]["c"] == "blue"
663
+ assert G.nodes[0] is not G.nodes[1]
664
+ # test tuple input
665
+ H = self.Graph()
666
+ H.add_nodes_from(G.nodes(data=True))
667
+ assert H.nodes[0]["c"] == "blue"
668
+ assert H.nodes[2]["c"] == "blue"
669
+ assert H.nodes[0] is not H.nodes[1]
670
+ # specific overrides general
671
+ H.add_nodes_from([0, (1, {"c": "green"}), (3, {"c": "cyan"})], c="red")
672
+ assert H.nodes[0]["c"] == "red"
673
+ assert H.nodes[1]["c"] == "green"
674
+ assert H.nodes[2]["c"] == "blue"
675
+ assert H.nodes[3]["c"] == "cyan"
676
+
677
+ def test_remove_node(self):
678
+ G = self.K3.copy()
679
+ G.remove_node(0)
680
+ assert G.adj == {1: {2: {}}, 2: {1: {}}}
681
+ with pytest.raises(nx.NetworkXError):
682
+ G.remove_node(-1)
683
+
684
+ # generator here to implement list,set,string...
685
+
686
+ def test_remove_nodes_from(self):
687
+ G = self.K3.copy()
688
+ G.remove_nodes_from([0, 1])
689
+ assert G.adj == {2: {}}
690
+ G.remove_nodes_from([-1]) # silent fail
691
+
692
+ def test_add_edge(self):
693
+ G = self.Graph()
694
+ G.add_edge(0, 1)
695
+ assert G.adj == {0: {1: {}}, 1: {0: {}}}
696
+ G = self.Graph()
697
+ G.add_edge(*(0, 1))
698
+ assert G.adj == {0: {1: {}}, 1: {0: {}}}
699
+ G = self.Graph()
700
+ with pytest.raises(ValueError):
701
+ G.add_edge(None, "anything")
702
+
703
+ def test_add_edges_from(self):
704
+ G = self.Graph()
705
+ G.add_edges_from([(0, 1), (0, 2, {"weight": 3})])
706
+ assert G.adj == {
707
+ 0: {1: {}, 2: {"weight": 3}},
708
+ 1: {0: {}},
709
+ 2: {0: {"weight": 3}},
710
+ }
711
+ G = self.Graph()
712
+ G.add_edges_from([(0, 1), (0, 2, {"weight": 3}), (1, 2, {"data": 4})], data=2)
713
+ assert G.adj == {
714
+ 0: {1: {"data": 2}, 2: {"weight": 3, "data": 2}},
715
+ 1: {0: {"data": 2}, 2: {"data": 4}},
716
+ 2: {0: {"weight": 3, "data": 2}, 1: {"data": 4}},
717
+ }
718
+
719
+ with pytest.raises(nx.NetworkXError):
720
+ G.add_edges_from([(0,)]) # too few in tuple
721
+ with pytest.raises(nx.NetworkXError):
722
+ G.add_edges_from([(0, 1, 2, 3)]) # too many in tuple
723
+ with pytest.raises(TypeError):
724
+ G.add_edges_from([0]) # not a tuple
725
+ with pytest.raises(ValueError):
726
+ G.add_edges_from([(None, 3), (3, 2)]) # None cannot be a node
727
+
728
+ def test_remove_edge(self):
729
+ G = self.K3.copy()
730
+ G.remove_edge(0, 1)
731
+ assert G.adj == {0: {2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
732
+ with pytest.raises(nx.NetworkXError):
733
+ G.remove_edge(-1, 0)
734
+
735
+ def test_remove_edges_from(self):
736
+ G = self.K3.copy()
737
+ G.remove_edges_from([(0, 1)])
738
+ assert G.adj == {0: {2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
739
+ G.remove_edges_from([(0, 0)]) # silent fail
740
+
741
+ def test_clear(self):
742
+ G = self.K3.copy()
743
+ G.graph["name"] = "K3"
744
+ G.clear()
745
+ assert list(G.nodes) == []
746
+ assert G.adj == {}
747
+ assert G.graph == {}
748
+
749
+ def test_clear_edges(self):
750
+ G = self.K3.copy()
751
+ G.graph["name"] = "K3"
752
+ nodes = list(G.nodes)
753
+ G.clear_edges()
754
+ assert list(G.nodes) == nodes
755
+ assert G.adj == {0: {}, 1: {}, 2: {}}
756
+ assert list(G.edges) == []
757
+ assert G.graph["name"] == "K3"
758
+
759
+ def test_edges_data(self):
760
+ G = self.K3
761
+ all_edges = [(0, 1, {}), (0, 2, {}), (1, 2, {})]
762
+ assert edges_equal(G.edges(data=True), all_edges)
763
+ assert edges_equal(G.edges(0, data=True), [(0, 1, {}), (0, 2, {})])
764
+ assert edges_equal(G.edges([0, 1], data=True), all_edges)
765
+ with pytest.raises(nx.NetworkXError):
766
+ G.edges(-1, True)
767
+
768
+ def test_get_edge_data(self):
769
+ G = self.K3.copy()
770
+ assert G.get_edge_data(0, 1) == {}
771
+ assert G[0][1] == {}
772
+ assert G.get_edge_data(10, 20) is None
773
+ assert G.get_edge_data(-1, 0) is None
774
+ assert G.get_edge_data(-1, 0, default=1) == 1
775
+
776
+ def test_update(self):
777
+ # specify both edges and nodes
778
+ G = self.K3.copy()
779
+ G.update(nodes=[3, (4, {"size": 2})], edges=[(4, 5), (6, 7, {"weight": 2})])
780
+ nlist = [
781
+ (0, {}),
782
+ (1, {}),
783
+ (2, {}),
784
+ (3, {}),
785
+ (4, {"size": 2}),
786
+ (5, {}),
787
+ (6, {}),
788
+ (7, {}),
789
+ ]
790
+ assert sorted(G.nodes.data()) == nlist
791
+ if G.is_directed():
792
+ elist = [
793
+ (0, 1, {}),
794
+ (0, 2, {}),
795
+ (1, 0, {}),
796
+ (1, 2, {}),
797
+ (2, 0, {}),
798
+ (2, 1, {}),
799
+ (4, 5, {}),
800
+ (6, 7, {"weight": 2}),
801
+ ]
802
+ else:
803
+ elist = [
804
+ (0, 1, {}),
805
+ (0, 2, {}),
806
+ (1, 2, {}),
807
+ (4, 5, {}),
808
+ (6, 7, {"weight": 2}),
809
+ ]
810
+ assert sorted(G.edges.data()) == elist
811
+ assert G.graph == {}
812
+
813
+ # no keywords -- order is edges, nodes
814
+ G = self.K3.copy()
815
+ G.update([(4, 5), (6, 7, {"weight": 2})], [3, (4, {"size": 2})])
816
+ assert sorted(G.nodes.data()) == nlist
817
+ assert sorted(G.edges.data()) == elist
818
+ assert G.graph == {}
819
+
820
+ # update using only a graph
821
+ G = self.Graph()
822
+ G.graph["foo"] = "bar"
823
+ G.add_node(2, data=4)
824
+ G.add_edge(0, 1, weight=0.5)
825
+ GG = G.copy()
826
+ H = self.Graph()
827
+ GG.update(H)
828
+ assert graphs_equal(G, GG)
829
+ H.update(G)
830
+ assert graphs_equal(H, G)
831
+
832
+ # update nodes only
833
+ H = self.Graph()
834
+ H.update(nodes=[3, 4])
835
+ assert H.nodes ^ {3, 4} == set()
836
+ assert H.size() == 0
837
+
838
+ # update edges only
839
+ H = self.Graph()
840
+ H.update(edges=[(3, 4)])
841
+ assert sorted(H.edges.data()) == [(3, 4, {})]
842
+ assert H.size() == 1
843
+
844
+ # No inputs -> exception
845
+ with pytest.raises(nx.NetworkXError):
846
+ nx.Graph().update()
847
+
848
+
849
+ class TestEdgeSubgraph:
850
+ """Unit tests for the :meth:`Graph.edge_subgraph` method."""
851
+
852
+ def setup_method(self):
853
+ # Create a path graph on five nodes.
854
+ G = nx.path_graph(5)
855
+ # Add some node, edge, and graph attributes.
856
+ for i in range(5):
857
+ G.nodes[i]["name"] = f"node{i}"
858
+ G.edges[0, 1]["name"] = "edge01"
859
+ G.edges[3, 4]["name"] = "edge34"
860
+ G.graph["name"] = "graph"
861
+ # Get the subgraph induced by the first and last edges.
862
+ self.G = G
863
+ self.H = G.edge_subgraph([(0, 1), (3, 4)])
864
+
865
+ def test_correct_nodes(self):
866
+ """Tests that the subgraph has the correct nodes."""
867
+ assert [0, 1, 3, 4] == sorted(self.H.nodes())
868
+
869
+ def test_correct_edges(self):
870
+ """Tests that the subgraph has the correct edges."""
871
+ assert [(0, 1, "edge01"), (3, 4, "edge34")] == sorted(self.H.edges(data="name"))
872
+
873
+ def test_add_node(self):
874
+ """Tests that adding a node to the original graph does not
875
+ affect the nodes of the subgraph.
876
+
877
+ """
878
+ self.G.add_node(5)
879
+ assert [0, 1, 3, 4] == sorted(self.H.nodes())
880
+
881
+ def test_remove_node(self):
882
+ """Tests that removing a node in the original graph does
883
+ affect the nodes of the subgraph.
884
+
885
+ """
886
+ self.G.remove_node(0)
887
+ assert [1, 3, 4] == sorted(self.H.nodes())
888
+
889
+ def test_node_attr_dict(self):
890
+ """Tests that the node attribute dictionary of the two graphs is
891
+ the same object.
892
+
893
+ """
894
+ for v in self.H:
895
+ assert self.G.nodes[v] == self.H.nodes[v]
896
+ # Making a change to G should make a change in H and vice versa.
897
+ self.G.nodes[0]["name"] = "foo"
898
+ assert self.G.nodes[0] == self.H.nodes[0]
899
+ self.H.nodes[1]["name"] = "bar"
900
+ assert self.G.nodes[1] == self.H.nodes[1]
901
+
902
+ def test_edge_attr_dict(self):
903
+ """Tests that the edge attribute dictionary of the two graphs is
904
+ the same object.
905
+
906
+ """
907
+ for u, v in self.H.edges():
908
+ assert self.G.edges[u, v] == self.H.edges[u, v]
909
+ # Making a change to G should make a change in H and vice versa.
910
+ self.G.edges[0, 1]["name"] = "foo"
911
+ assert self.G.edges[0, 1]["name"] == self.H.edges[0, 1]["name"]
912
+ self.H.edges[3, 4]["name"] = "bar"
913
+ assert self.G.edges[3, 4]["name"] == self.H.edges[3, 4]["name"]
914
+
915
+ def test_graph_attr_dict(self):
916
+ """Tests that the graph attribute dictionary of the two graphs
917
+ is the same object.
918
+
919
+ """
920
+ assert self.G.graph is self.H.graph
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_graph_historical.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Original NetworkX graph tests"""
2
+ import networkx
3
+ import networkx as nx
4
+
5
+ from .historical_tests import HistoricalTests
6
+
7
+
8
+ class TestGraphHistorical(HistoricalTests):
9
+ @classmethod
10
+ def setup_class(cls):
11
+ HistoricalTests.setup_class()
12
+ cls.G = nx.Graph
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_graphviews.py ADDED
@@ -0,0 +1,350 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx.utils import edges_equal, nodes_equal
5
+
6
+ # Note: SubGraph views are not tested here. They have their own testing file
7
+
8
+
9
+ class TestReverseView:
10
+ def setup_method(self):
11
+ self.G = nx.path_graph(9, create_using=nx.DiGraph())
12
+ self.rv = nx.reverse_view(self.G)
13
+
14
+ def test_pickle(self):
15
+ import pickle
16
+
17
+ rv = self.rv
18
+ prv = pickle.loads(pickle.dumps(rv, -1))
19
+ assert rv._node == prv._node
20
+ assert rv._adj == prv._adj
21
+ assert rv.graph == prv.graph
22
+
23
+ def test_contains(self):
24
+ assert (2, 3) in self.G.edges
25
+ assert (3, 2) not in self.G.edges
26
+ assert (2, 3) not in self.rv.edges
27
+ assert (3, 2) in self.rv.edges
28
+
29
+ def test_iter(self):
30
+ expected = sorted(tuple(reversed(e)) for e in self.G.edges)
31
+ assert sorted(self.rv.edges) == expected
32
+
33
+ def test_exceptions(self):
34
+ G = nx.Graph()
35
+ pytest.raises(nx.NetworkXNotImplemented, nx.reverse_view, G)
36
+
37
+ def test_subclass(self):
38
+ class MyGraph(nx.DiGraph):
39
+ def my_method(self):
40
+ return "me"
41
+
42
+ def to_directed_class(self):
43
+ return MyGraph()
44
+
45
+ M = MyGraph()
46
+ M.add_edge(1, 2)
47
+ RM = nx.reverse_view(M)
48
+ print("RM class", RM.__class__)
49
+ RMC = RM.copy()
50
+ print("RMC class", RMC.__class__)
51
+ print(RMC.edges)
52
+ assert RMC.has_edge(2, 1)
53
+ assert RMC.my_method() == "me"
54
+
55
+
56
+ class TestMultiReverseView:
57
+ def setup_method(self):
58
+ self.G = nx.path_graph(9, create_using=nx.MultiDiGraph())
59
+ self.G.add_edge(4, 5)
60
+ self.rv = nx.reverse_view(self.G)
61
+
62
+ def test_pickle(self):
63
+ import pickle
64
+
65
+ rv = self.rv
66
+ prv = pickle.loads(pickle.dumps(rv, -1))
67
+ assert rv._node == prv._node
68
+ assert rv._adj == prv._adj
69
+ assert rv.graph == prv.graph
70
+
71
+ def test_contains(self):
72
+ assert (2, 3, 0) in self.G.edges
73
+ assert (3, 2, 0) not in self.G.edges
74
+ assert (2, 3, 0) not in self.rv.edges
75
+ assert (3, 2, 0) in self.rv.edges
76
+ assert (5, 4, 1) in self.rv.edges
77
+ assert (4, 5, 1) not in self.rv.edges
78
+
79
+ def test_iter(self):
80
+ expected = sorted((v, u, k) for u, v, k in self.G.edges)
81
+ assert sorted(self.rv.edges) == expected
82
+
83
+ def test_exceptions(self):
84
+ MG = nx.MultiGraph(self.G)
85
+ pytest.raises(nx.NetworkXNotImplemented, nx.reverse_view, MG)
86
+
87
+
88
+ def test_generic_multitype():
89
+ nxg = nx.graphviews
90
+ G = nx.DiGraph([(1, 2)])
91
+ with pytest.raises(nx.NetworkXError):
92
+ nxg.generic_graph_view(G, create_using=nx.MultiGraph)
93
+ G = nx.MultiDiGraph([(1, 2)])
94
+ with pytest.raises(nx.NetworkXError):
95
+ nxg.generic_graph_view(G, create_using=nx.DiGraph)
96
+
97
+
98
+ class TestToDirected:
99
+ def setup_method(self):
100
+ self.G = nx.path_graph(9)
101
+ self.dv = nx.to_directed(self.G)
102
+ self.MG = nx.path_graph(9, create_using=nx.MultiGraph())
103
+ self.Mdv = nx.to_directed(self.MG)
104
+
105
+ def test_directed(self):
106
+ assert not self.G.is_directed()
107
+ assert self.dv.is_directed()
108
+
109
+ def test_already_directed(self):
110
+ dd = nx.to_directed(self.dv)
111
+ Mdd = nx.to_directed(self.Mdv)
112
+ assert edges_equal(dd.edges, self.dv.edges)
113
+ assert edges_equal(Mdd.edges, self.Mdv.edges)
114
+
115
+ def test_pickle(self):
116
+ import pickle
117
+
118
+ dv = self.dv
119
+ pdv = pickle.loads(pickle.dumps(dv, -1))
120
+ assert dv._node == pdv._node
121
+ assert dv._succ == pdv._succ
122
+ assert dv._pred == pdv._pred
123
+ assert dv.graph == pdv.graph
124
+
125
+ def test_contains(self):
126
+ assert (2, 3) in self.G.edges
127
+ assert (3, 2) in self.G.edges
128
+ assert (2, 3) in self.dv.edges
129
+ assert (3, 2) in self.dv.edges
130
+
131
+ def test_iter(self):
132
+ revd = [tuple(reversed(e)) for e in self.G.edges]
133
+ expected = sorted(list(self.G.edges) + revd)
134
+ assert sorted(self.dv.edges) == expected
135
+
136
+
137
+ class TestToUndirected:
138
+ def setup_method(self):
139
+ self.DG = nx.path_graph(9, create_using=nx.DiGraph())
140
+ self.uv = nx.to_undirected(self.DG)
141
+ self.MDG = nx.path_graph(9, create_using=nx.MultiDiGraph())
142
+ self.Muv = nx.to_undirected(self.MDG)
143
+
144
+ def test_directed(self):
145
+ assert self.DG.is_directed()
146
+ assert not self.uv.is_directed()
147
+
148
+ def test_already_directed(self):
149
+ uu = nx.to_undirected(self.uv)
150
+ Muu = nx.to_undirected(self.Muv)
151
+ assert edges_equal(uu.edges, self.uv.edges)
152
+ assert edges_equal(Muu.edges, self.Muv.edges)
153
+
154
+ def test_pickle(self):
155
+ import pickle
156
+
157
+ uv = self.uv
158
+ puv = pickle.loads(pickle.dumps(uv, -1))
159
+ assert uv._node == puv._node
160
+ assert uv._adj == puv._adj
161
+ assert uv.graph == puv.graph
162
+ assert hasattr(uv, "_graph")
163
+
164
+ def test_contains(self):
165
+ assert (2, 3) in self.DG.edges
166
+ assert (3, 2) not in self.DG.edges
167
+ assert (2, 3) in self.uv.edges
168
+ assert (3, 2) in self.uv.edges
169
+
170
+ def test_iter(self):
171
+ expected = sorted(self.DG.edges)
172
+ assert sorted(self.uv.edges) == expected
173
+
174
+
175
+ class TestChainsOfViews:
176
+ @classmethod
177
+ def setup_class(cls):
178
+ cls.G = nx.path_graph(9)
179
+ cls.DG = nx.path_graph(9, create_using=nx.DiGraph())
180
+ cls.MG = nx.path_graph(9, create_using=nx.MultiGraph())
181
+ cls.MDG = nx.path_graph(9, create_using=nx.MultiDiGraph())
182
+ cls.Gv = nx.to_undirected(cls.DG)
183
+ cls.DGv = nx.to_directed(cls.G)
184
+ cls.MGv = nx.to_undirected(cls.MDG)
185
+ cls.MDGv = nx.to_directed(cls.MG)
186
+ cls.Rv = cls.DG.reverse()
187
+ cls.MRv = cls.MDG.reverse()
188
+ cls.graphs = [
189
+ cls.G,
190
+ cls.DG,
191
+ cls.MG,
192
+ cls.MDG,
193
+ cls.Gv,
194
+ cls.DGv,
195
+ cls.MGv,
196
+ cls.MDGv,
197
+ cls.Rv,
198
+ cls.MRv,
199
+ ]
200
+ for G in cls.graphs:
201
+ G.edges, G.nodes, G.degree
202
+
203
+ def test_pickle(self):
204
+ import pickle
205
+
206
+ for G in self.graphs:
207
+ H = pickle.loads(pickle.dumps(G, -1))
208
+ assert edges_equal(H.edges, G.edges)
209
+ assert nodes_equal(H.nodes, G.nodes)
210
+
211
+ def test_subgraph_of_subgraph(self):
212
+ SGv = nx.subgraph(self.G, range(3, 7))
213
+ SDGv = nx.subgraph(self.DG, range(3, 7))
214
+ SMGv = nx.subgraph(self.MG, range(3, 7))
215
+ SMDGv = nx.subgraph(self.MDG, range(3, 7))
216
+ for G in self.graphs + [SGv, SDGv, SMGv, SMDGv]:
217
+ SG = nx.induced_subgraph(G, [4, 5, 6])
218
+ assert list(SG) == [4, 5, 6]
219
+ SSG = SG.subgraph([6, 7])
220
+ assert list(SSG) == [6]
221
+ # subgraph-subgraph chain is short-cut in base class method
222
+ assert SSG._graph is G
223
+
224
+ def test_restricted_induced_subgraph_chains(self):
225
+ """Test subgraph chains that both restrict and show nodes/edges.
226
+
227
+ A restricted_view subgraph should allow induced subgraphs using
228
+ G.subgraph that automagically without a chain (meaning the result
229
+ is a subgraph view of the original graph not a subgraph-of-subgraph.
230
+ """
231
+ hide_nodes = [3, 4, 5]
232
+ hide_edges = [(6, 7)]
233
+ RG = nx.restricted_view(self.G, hide_nodes, hide_edges)
234
+ nodes = [4, 5, 6, 7, 8]
235
+ SG = nx.induced_subgraph(RG, nodes)
236
+ SSG = RG.subgraph(nodes)
237
+ assert RG._graph is self.G
238
+ assert SSG._graph is self.G
239
+ assert SG._graph is RG
240
+ assert edges_equal(SG.edges, SSG.edges)
241
+ # should be same as morphing the graph
242
+ CG = self.G.copy()
243
+ CG.remove_nodes_from(hide_nodes)
244
+ CG.remove_edges_from(hide_edges)
245
+ assert edges_equal(CG.edges(nodes), SSG.edges)
246
+ CG.remove_nodes_from([0, 1, 2, 3])
247
+ assert edges_equal(CG.edges, SSG.edges)
248
+ # switch order: subgraph first, then restricted view
249
+ SSSG = self.G.subgraph(nodes)
250
+ RSG = nx.restricted_view(SSSG, hide_nodes, hide_edges)
251
+ assert RSG._graph is not self.G
252
+ assert edges_equal(RSG.edges, CG.edges)
253
+
254
+ def test_subgraph_copy(self):
255
+ for origG in self.graphs:
256
+ G = nx.Graph(origG)
257
+ SG = G.subgraph([4, 5, 6])
258
+ H = SG.copy()
259
+ assert type(G) == type(H)
260
+
261
+ def test_subgraph_todirected(self):
262
+ SG = nx.induced_subgraph(self.G, [4, 5, 6])
263
+ SSG = SG.to_directed()
264
+ assert sorted(SSG) == [4, 5, 6]
265
+ assert sorted(SSG.edges) == [(4, 5), (5, 4), (5, 6), (6, 5)]
266
+
267
+ def test_subgraph_toundirected(self):
268
+ SG = nx.induced_subgraph(self.G, [4, 5, 6])
269
+ SSG = SG.to_undirected()
270
+ assert list(SSG) == [4, 5, 6]
271
+ assert sorted(SSG.edges) == [(4, 5), (5, 6)]
272
+
273
+ def test_reverse_subgraph_toundirected(self):
274
+ G = self.DG.reverse(copy=False)
275
+ SG = G.subgraph([4, 5, 6])
276
+ SSG = SG.to_undirected()
277
+ assert list(SSG) == [4, 5, 6]
278
+ assert sorted(SSG.edges) == [(4, 5), (5, 6)]
279
+
280
+ def test_reverse_reverse_copy(self):
281
+ G = self.DG.reverse(copy=False)
282
+ H = G.reverse(copy=True)
283
+ assert H.nodes == self.DG.nodes
284
+ assert H.edges == self.DG.edges
285
+ G = self.MDG.reverse(copy=False)
286
+ H = G.reverse(copy=True)
287
+ assert H.nodes == self.MDG.nodes
288
+ assert H.edges == self.MDG.edges
289
+
290
+ def test_subgraph_edgesubgraph_toundirected(self):
291
+ G = self.G.copy()
292
+ SG = G.subgraph([4, 5, 6])
293
+ SSG = SG.edge_subgraph([(4, 5), (5, 4)])
294
+ USSG = SSG.to_undirected()
295
+ assert list(USSG) == [4, 5]
296
+ assert sorted(USSG.edges) == [(4, 5)]
297
+
298
+ def test_copy_subgraph(self):
299
+ G = self.G.copy()
300
+ SG = G.subgraph([4, 5, 6])
301
+ CSG = SG.copy(as_view=True)
302
+ DCSG = SG.copy(as_view=False)
303
+ assert hasattr(CSG, "_graph") # is a view
304
+ assert not hasattr(DCSG, "_graph") # not a view
305
+
306
+ def test_copy_disubgraph(self):
307
+ G = self.DG.copy()
308
+ SG = G.subgraph([4, 5, 6])
309
+ CSG = SG.copy(as_view=True)
310
+ DCSG = SG.copy(as_view=False)
311
+ assert hasattr(CSG, "_graph") # is a view
312
+ assert not hasattr(DCSG, "_graph") # not a view
313
+
314
+ def test_copy_multidisubgraph(self):
315
+ G = self.MDG.copy()
316
+ SG = G.subgraph([4, 5, 6])
317
+ CSG = SG.copy(as_view=True)
318
+ DCSG = SG.copy(as_view=False)
319
+ assert hasattr(CSG, "_graph") # is a view
320
+ assert not hasattr(DCSG, "_graph") # not a view
321
+
322
+ def test_copy_multisubgraph(self):
323
+ G = self.MG.copy()
324
+ SG = G.subgraph([4, 5, 6])
325
+ CSG = SG.copy(as_view=True)
326
+ DCSG = SG.copy(as_view=False)
327
+ assert hasattr(CSG, "_graph") # is a view
328
+ assert not hasattr(DCSG, "_graph") # not a view
329
+
330
+ def test_copy_of_view(self):
331
+ G = nx.MultiGraph(self.MGv)
332
+ assert G.__class__.__name__ == "MultiGraph"
333
+ G = G.copy(as_view=True)
334
+ assert G.__class__.__name__ == "MultiGraph"
335
+
336
+ def test_subclass(self):
337
+ class MyGraph(nx.DiGraph):
338
+ def my_method(self):
339
+ return "me"
340
+
341
+ def to_directed_class(self):
342
+ return MyGraph()
343
+
344
+ for origG in self.graphs:
345
+ G = MyGraph(origG)
346
+ SG = G.subgraph([4, 5, 6])
347
+ H = SG.copy()
348
+ assert SG.my_method() == "me"
349
+ assert H.my_method() == "me"
350
+ assert 3 not in H or 3 in SG
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_multidigraph.py ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import UserDict
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+ from networkx.utils import edges_equal
7
+
8
+ from .test_multigraph import BaseMultiGraphTester
9
+ from .test_multigraph import TestEdgeSubgraph as _TestMultiGraphEdgeSubgraph
10
+ from .test_multigraph import TestMultiGraph as _TestMultiGraph
11
+
12
+
13
+ class BaseMultiDiGraphTester(BaseMultiGraphTester):
14
+ def test_edges(self):
15
+ G = self.K3
16
+ edges = [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
17
+ assert sorted(G.edges()) == edges
18
+ assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
19
+ pytest.raises((KeyError, nx.NetworkXError), G.edges, -1)
20
+
21
+ def test_edges_data(self):
22
+ G = self.K3
23
+ edges = [(0, 1, {}), (0, 2, {}), (1, 0, {}), (1, 2, {}), (2, 0, {}), (2, 1, {})]
24
+ assert sorted(G.edges(data=True)) == edges
25
+ assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})]
26
+ pytest.raises((KeyError, nx.NetworkXError), G.neighbors, -1)
27
+
28
+ def test_edges_multi(self):
29
+ G = self.K3
30
+ assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
31
+ assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
32
+ G.add_edge(0, 1)
33
+ assert sorted(G.edges()) == [
34
+ (0, 1),
35
+ (0, 1),
36
+ (0, 2),
37
+ (1, 0),
38
+ (1, 2),
39
+ (2, 0),
40
+ (2, 1),
41
+ ]
42
+
43
+ def test_out_edges(self):
44
+ G = self.K3
45
+ assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
46
+ assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
47
+ pytest.raises((KeyError, nx.NetworkXError), G.out_edges, -1)
48
+ assert sorted(G.out_edges(0, keys=True)) == [(0, 1, 0), (0, 2, 0)]
49
+
50
+ def test_out_edges_multi(self):
51
+ G = self.K3
52
+ assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
53
+ assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
54
+ G.add_edge(0, 1, 2)
55
+ assert sorted(G.out_edges()) == [
56
+ (0, 1),
57
+ (0, 1),
58
+ (0, 2),
59
+ (1, 0),
60
+ (1, 2),
61
+ (2, 0),
62
+ (2, 1),
63
+ ]
64
+
65
+ def test_out_edges_data(self):
66
+ G = self.K3
67
+ assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})]
68
+ G.remove_edge(0, 1)
69
+ G.add_edge(0, 1, data=1)
70
+ assert sorted(G.edges(0, data=True)) == [(0, 1, {"data": 1}), (0, 2, {})]
71
+ assert sorted(G.edges(0, data="data")) == [(0, 1, 1), (0, 2, None)]
72
+ assert sorted(G.edges(0, data="data", default=-1)) == [(0, 1, 1), (0, 2, -1)]
73
+
74
+ def test_in_edges(self):
75
+ G = self.K3
76
+ assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
77
+ assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)]
78
+ pytest.raises((KeyError, nx.NetworkXError), G.in_edges, -1)
79
+ G.add_edge(0, 1, 2)
80
+ assert sorted(G.in_edges()) == [
81
+ (0, 1),
82
+ (0, 1),
83
+ (0, 2),
84
+ (1, 0),
85
+ (1, 2),
86
+ (2, 0),
87
+ (2, 1),
88
+ ]
89
+ assert sorted(G.in_edges(0, keys=True)) == [(1, 0, 0), (2, 0, 0)]
90
+
91
+ def test_in_edges_no_keys(self):
92
+ G = self.K3
93
+ assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
94
+ assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)]
95
+ G.add_edge(0, 1, 2)
96
+ assert sorted(G.in_edges()) == [
97
+ (0, 1),
98
+ (0, 1),
99
+ (0, 2),
100
+ (1, 0),
101
+ (1, 2),
102
+ (2, 0),
103
+ (2, 1),
104
+ ]
105
+
106
+ assert sorted(G.in_edges(data=True, keys=False)) == [
107
+ (0, 1, {}),
108
+ (0, 1, {}),
109
+ (0, 2, {}),
110
+ (1, 0, {}),
111
+ (1, 2, {}),
112
+ (2, 0, {}),
113
+ (2, 1, {}),
114
+ ]
115
+
116
+ def test_in_edges_data(self):
117
+ G = self.K3
118
+ assert sorted(G.in_edges(0, data=True)) == [(1, 0, {}), (2, 0, {})]
119
+ G.remove_edge(1, 0)
120
+ G.add_edge(1, 0, data=1)
121
+ assert sorted(G.in_edges(0, data=True)) == [(1, 0, {"data": 1}), (2, 0, {})]
122
+ assert sorted(G.in_edges(0, data="data")) == [(1, 0, 1), (2, 0, None)]
123
+ assert sorted(G.in_edges(0, data="data", default=-1)) == [(1, 0, 1), (2, 0, -1)]
124
+
125
+ def is_shallow(self, H, G):
126
+ # graph
127
+ assert G.graph["foo"] == H.graph["foo"]
128
+ G.graph["foo"].append(1)
129
+ assert G.graph["foo"] == H.graph["foo"]
130
+ # node
131
+ assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
132
+ G.nodes[0]["foo"].append(1)
133
+ assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
134
+ # edge
135
+ assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
136
+ G[1][2][0]["foo"].append(1)
137
+ assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
138
+
139
+ def is_deep(self, H, G):
140
+ # graph
141
+ assert G.graph["foo"] == H.graph["foo"]
142
+ G.graph["foo"].append(1)
143
+ assert G.graph["foo"] != H.graph["foo"]
144
+ # node
145
+ assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
146
+ G.nodes[0]["foo"].append(1)
147
+ assert G.nodes[0]["foo"] != H.nodes[0]["foo"]
148
+ # edge
149
+ assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
150
+ G[1][2][0]["foo"].append(1)
151
+ assert G[1][2][0]["foo"] != H[1][2][0]["foo"]
152
+
153
+ def test_to_undirected(self):
154
+ # MultiDiGraph -> MultiGraph changes number of edges so it is
155
+ # not a copy operation... use is_shallow, not is_shallow_copy
156
+ G = self.K3
157
+ self.add_attributes(G)
158
+ H = nx.MultiGraph(G)
159
+ # self.is_shallow(H,G)
160
+ # the result is traversal order dependent so we
161
+ # can't use the is_shallow() test here.
162
+ try:
163
+ assert edges_equal(H.edges(), [(0, 1), (1, 2), (2, 0)])
164
+ except AssertionError:
165
+ assert edges_equal(H.edges(), [(0, 1), (1, 2), (1, 2), (2, 0)])
166
+ H = G.to_undirected()
167
+ self.is_deep(H, G)
168
+
169
+ def test_has_successor(self):
170
+ G = self.K3
171
+ assert G.has_successor(0, 1)
172
+ assert not G.has_successor(0, -1)
173
+
174
+ def test_successors(self):
175
+ G = self.K3
176
+ assert sorted(G.successors(0)) == [1, 2]
177
+ pytest.raises((KeyError, nx.NetworkXError), G.successors, -1)
178
+
179
+ def test_has_predecessor(self):
180
+ G = self.K3
181
+ assert G.has_predecessor(0, 1)
182
+ assert not G.has_predecessor(0, -1)
183
+
184
+ def test_predecessors(self):
185
+ G = self.K3
186
+ assert sorted(G.predecessors(0)) == [1, 2]
187
+ pytest.raises((KeyError, nx.NetworkXError), G.predecessors, -1)
188
+
189
+ def test_degree(self):
190
+ G = self.K3
191
+ assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)]
192
+ assert dict(G.degree()) == {0: 4, 1: 4, 2: 4}
193
+ assert G.degree(0) == 4
194
+ assert list(G.degree(iter([0]))) == [(0, 4)]
195
+ G.add_edge(0, 1, weight=0.3, other=1.2)
196
+ assert sorted(G.degree(weight="weight")) == [(0, 4.3), (1, 4.3), (2, 4)]
197
+ assert sorted(G.degree(weight="other")) == [(0, 5.2), (1, 5.2), (2, 4)]
198
+
199
+ def test_in_degree(self):
200
+ G = self.K3
201
+ assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)]
202
+ assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2}
203
+ assert G.in_degree(0) == 2
204
+ assert list(G.in_degree(iter([0]))) == [(0, 2)]
205
+ assert G.in_degree(0, weight="weight") == 2
206
+
207
+ def test_out_degree(self):
208
+ G = self.K3
209
+ assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)]
210
+ assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2}
211
+ assert G.out_degree(0) == 2
212
+ assert list(G.out_degree(iter([0]))) == [(0, 2)]
213
+ assert G.out_degree(0, weight="weight") == 2
214
+
215
+ def test_size(self):
216
+ G = self.K3
217
+ assert G.size() == 6
218
+ assert G.number_of_edges() == 6
219
+ G.add_edge(0, 1, weight=0.3, other=1.2)
220
+ assert round(G.size(weight="weight"), 2) == 6.3
221
+ assert round(G.size(weight="other"), 2) == 7.2
222
+
223
+ def test_to_undirected_reciprocal(self):
224
+ G = self.Graph()
225
+ G.add_edge(1, 2)
226
+ assert G.to_undirected().has_edge(1, 2)
227
+ assert not G.to_undirected(reciprocal=True).has_edge(1, 2)
228
+ G.add_edge(2, 1)
229
+ assert G.to_undirected(reciprocal=True).has_edge(1, 2)
230
+
231
+ def test_reverse_copy(self):
232
+ G = nx.MultiDiGraph([(0, 1), (0, 1)])
233
+ R = G.reverse()
234
+ assert sorted(R.edges()) == [(1, 0), (1, 0)]
235
+ R.remove_edge(1, 0)
236
+ assert sorted(R.edges()) == [(1, 0)]
237
+ assert sorted(G.edges()) == [(0, 1), (0, 1)]
238
+
239
+ def test_reverse_nocopy(self):
240
+ G = nx.MultiDiGraph([(0, 1), (0, 1)])
241
+ R = G.reverse(copy=False)
242
+ assert sorted(R.edges()) == [(1, 0), (1, 0)]
243
+ pytest.raises(nx.NetworkXError, R.remove_edge, 1, 0)
244
+
245
+ def test_di_attributes_cached(self):
246
+ G = self.K3.copy()
247
+ assert id(G.in_edges) == id(G.in_edges)
248
+ assert id(G.out_edges) == id(G.out_edges)
249
+ assert id(G.in_degree) == id(G.in_degree)
250
+ assert id(G.out_degree) == id(G.out_degree)
251
+ assert id(G.succ) == id(G.succ)
252
+ assert id(G.pred) == id(G.pred)
253
+
254
+
255
+ class TestMultiDiGraph(BaseMultiDiGraphTester, _TestMultiGraph):
256
+ def setup_method(self):
257
+ self.Graph = nx.MultiDiGraph
258
+ # build K3
259
+ self.k3edges = [(0, 1), (0, 2), (1, 2)]
260
+ self.k3nodes = [0, 1, 2]
261
+ self.K3 = self.Graph()
262
+ self.K3._succ = {0: {}, 1: {}, 2: {}}
263
+ # K3._adj is synced with K3._succ
264
+ self.K3._pred = {0: {}, 1: {}, 2: {}}
265
+ for u in self.k3nodes:
266
+ for v in self.k3nodes:
267
+ if u == v:
268
+ continue
269
+ d = {0: {}}
270
+ self.K3._succ[u][v] = d
271
+ self.K3._pred[v][u] = d
272
+ self.K3._node = {}
273
+ self.K3._node[0] = {}
274
+ self.K3._node[1] = {}
275
+ self.K3._node[2] = {}
276
+
277
+ def test_add_edge(self):
278
+ G = self.Graph()
279
+ G.add_edge(0, 1)
280
+ assert G._adj == {0: {1: {0: {}}}, 1: {}}
281
+ assert G._succ == {0: {1: {0: {}}}, 1: {}}
282
+ assert G._pred == {0: {}, 1: {0: {0: {}}}}
283
+ G = self.Graph()
284
+ G.add_edge(*(0, 1))
285
+ assert G._adj == {0: {1: {0: {}}}, 1: {}}
286
+ assert G._succ == {0: {1: {0: {}}}, 1: {}}
287
+ assert G._pred == {0: {}, 1: {0: {0: {}}}}
288
+ with pytest.raises(ValueError, match="None cannot be a node"):
289
+ G.add_edge(None, 3)
290
+
291
+ def test_add_edges_from(self):
292
+ G = self.Graph()
293
+ G.add_edges_from([(0, 1), (0, 1, {"weight": 3})])
294
+ assert G._adj == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}}
295
+ assert G._succ == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}}
296
+ assert G._pred == {0: {}, 1: {0: {0: {}, 1: {"weight": 3}}}}
297
+
298
+ G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2)
299
+ assert G._succ == {
300
+ 0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
301
+ 1: {},
302
+ }
303
+ assert G._pred == {
304
+ 0: {},
305
+ 1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
306
+ }
307
+
308
+ G = self.Graph()
309
+ edges = [
310
+ (0, 1, {"weight": 3}),
311
+ (0, 1, (("weight", 2),)),
312
+ (0, 1, 5),
313
+ (0, 1, "s"),
314
+ ]
315
+ G.add_edges_from(edges)
316
+ keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}}
317
+ assert G._succ == {0: {1: keydict}, 1: {}}
318
+ assert G._pred == {1: {0: keydict}, 0: {}}
319
+
320
+ # too few in tuple
321
+ pytest.raises(nx.NetworkXError, G.add_edges_from, [(0,)])
322
+ # too many in tuple
323
+ pytest.raises(nx.NetworkXError, G.add_edges_from, [(0, 1, 2, 3, 4)])
324
+ # not a tuple
325
+ pytest.raises(TypeError, G.add_edges_from, [0])
326
+ with pytest.raises(ValueError, match="None cannot be a node"):
327
+ G.add_edges_from([(None, 3), (3, 2)])
328
+
329
+ def test_remove_edge(self):
330
+ G = self.K3
331
+ G.remove_edge(0, 1)
332
+ assert G._succ == {
333
+ 0: {2: {0: {}}},
334
+ 1: {0: {0: {}}, 2: {0: {}}},
335
+ 2: {0: {0: {}}, 1: {0: {}}},
336
+ }
337
+ assert G._pred == {
338
+ 0: {1: {0: {}}, 2: {0: {}}},
339
+ 1: {2: {0: {}}},
340
+ 2: {0: {0: {}}, 1: {0: {}}},
341
+ }
342
+ pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0)
343
+ pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, 0, 2, key=1)
344
+
345
+ def test_remove_multiedge(self):
346
+ G = self.K3
347
+ G.add_edge(0, 1, key="parallel edge")
348
+ G.remove_edge(0, 1, key="parallel edge")
349
+ assert G._adj == {
350
+ 0: {1: {0: {}}, 2: {0: {}}},
351
+ 1: {0: {0: {}}, 2: {0: {}}},
352
+ 2: {0: {0: {}}, 1: {0: {}}},
353
+ }
354
+
355
+ assert G._succ == {
356
+ 0: {1: {0: {}}, 2: {0: {}}},
357
+ 1: {0: {0: {}}, 2: {0: {}}},
358
+ 2: {0: {0: {}}, 1: {0: {}}},
359
+ }
360
+
361
+ assert G._pred == {
362
+ 0: {1: {0: {}}, 2: {0: {}}},
363
+ 1: {0: {0: {}}, 2: {0: {}}},
364
+ 2: {0: {0: {}}, 1: {0: {}}},
365
+ }
366
+ G.remove_edge(0, 1)
367
+ assert G._succ == {
368
+ 0: {2: {0: {}}},
369
+ 1: {0: {0: {}}, 2: {0: {}}},
370
+ 2: {0: {0: {}}, 1: {0: {}}},
371
+ }
372
+ assert G._pred == {
373
+ 0: {1: {0: {}}, 2: {0: {}}},
374
+ 1: {2: {0: {}}},
375
+ 2: {0: {0: {}}, 1: {0: {}}},
376
+ }
377
+ pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0)
378
+
379
+ def test_remove_edges_from(self):
380
+ G = self.K3
381
+ G.remove_edges_from([(0, 1)])
382
+ assert G._succ == {
383
+ 0: {2: {0: {}}},
384
+ 1: {0: {0: {}}, 2: {0: {}}},
385
+ 2: {0: {0: {}}, 1: {0: {}}},
386
+ }
387
+ assert G._pred == {
388
+ 0: {1: {0: {}}, 2: {0: {}}},
389
+ 1: {2: {0: {}}},
390
+ 2: {0: {0: {}}, 1: {0: {}}},
391
+ }
392
+ G.remove_edges_from([(0, 0)]) # silent fail
393
+
394
+
395
+ class TestEdgeSubgraph(_TestMultiGraphEdgeSubgraph):
396
+ """Unit tests for the :meth:`MultiDiGraph.edge_subgraph` method."""
397
+
398
+ def setup_method(self):
399
+ # Create a quadruply-linked path graph on five nodes.
400
+ G = nx.MultiDiGraph()
401
+ nx.add_path(G, range(5))
402
+ nx.add_path(G, range(5))
403
+ nx.add_path(G, reversed(range(5)))
404
+ nx.add_path(G, reversed(range(5)))
405
+ # Add some node, edge, and graph attributes.
406
+ for i in range(5):
407
+ G.nodes[i]["name"] = f"node{i}"
408
+ G.adj[0][1][0]["name"] = "edge010"
409
+ G.adj[0][1][1]["name"] = "edge011"
410
+ G.adj[3][4][0]["name"] = "edge340"
411
+ G.adj[3][4][1]["name"] = "edge341"
412
+ G.graph["name"] = "graph"
413
+ # Get the subgraph induced by one of the first edges and one of
414
+ # the last edges.
415
+ self.G = G
416
+ self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)])
417
+
418
+
419
+ class CustomDictClass(UserDict):
420
+ pass
421
+
422
+
423
+ class MultiDiGraphSubClass(nx.MultiDiGraph):
424
+ node_dict_factory = CustomDictClass # type: ignore[assignment]
425
+ node_attr_dict_factory = CustomDictClass # type: ignore[assignment]
426
+ adjlist_outer_dict_factory = CustomDictClass # type: ignore[assignment]
427
+ adjlist_inner_dict_factory = CustomDictClass # type: ignore[assignment]
428
+ edge_key_dict_factory = CustomDictClass # type: ignore[assignment]
429
+ edge_attr_dict_factory = CustomDictClass # type: ignore[assignment]
430
+ graph_attr_dict_factory = CustomDictClass # type: ignore[assignment]
431
+
432
+
433
+ class TestMultiDiGraphSubclass(TestMultiDiGraph):
434
+ def setup_method(self):
435
+ self.Graph = MultiDiGraphSubClass
436
+ # build K3
437
+ self.k3edges = [(0, 1), (0, 2), (1, 2)]
438
+ self.k3nodes = [0, 1, 2]
439
+ self.K3 = self.Graph()
440
+ self.K3._succ = self.K3.adjlist_outer_dict_factory(
441
+ {
442
+ 0: self.K3.adjlist_inner_dict_factory(),
443
+ 1: self.K3.adjlist_inner_dict_factory(),
444
+ 2: self.K3.adjlist_inner_dict_factory(),
445
+ }
446
+ )
447
+ # K3._adj is synced with K3._succ
448
+ self.K3._pred = {0: {}, 1: {}, 2: {}}
449
+ for u in self.k3nodes:
450
+ for v in self.k3nodes:
451
+ if u == v:
452
+ continue
453
+ d = {0: {}}
454
+ self.K3._succ[u][v] = d
455
+ self.K3._pred[v][u] = d
456
+ self.K3._node = self.K3.node_dict_factory()
457
+ self.K3._node[0] = self.K3.node_attr_dict_factory()
458
+ self.K3._node[1] = self.K3.node_attr_dict_factory()
459
+ self.K3._node[2] = self.K3.node_attr_dict_factory()
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_special.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+
3
+ from .test_digraph import BaseDiGraphTester
4
+ from .test_digraph import TestDiGraph as _TestDiGraph
5
+ from .test_graph import BaseGraphTester
6
+ from .test_graph import TestGraph as _TestGraph
7
+ from .test_multidigraph import TestMultiDiGraph as _TestMultiDiGraph
8
+ from .test_multigraph import TestMultiGraph as _TestMultiGraph
9
+
10
+
11
+ def test_factories():
12
+ class mydict1(dict):
13
+ pass
14
+
15
+ class mydict2(dict):
16
+ pass
17
+
18
+ class mydict3(dict):
19
+ pass
20
+
21
+ class mydict4(dict):
22
+ pass
23
+
24
+ class mydict5(dict):
25
+ pass
26
+
27
+ for Graph in (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph):
28
+ # print("testing class: ", Graph.__name__)
29
+ class MyGraph(Graph):
30
+ node_dict_factory = mydict1
31
+ adjlist_outer_dict_factory = mydict2
32
+ adjlist_inner_dict_factory = mydict3
33
+ edge_key_dict_factory = mydict4
34
+ edge_attr_dict_factory = mydict5
35
+
36
+ G = MyGraph()
37
+ assert isinstance(G._node, mydict1)
38
+ assert isinstance(G._adj, mydict2)
39
+ G.add_node(1)
40
+ assert isinstance(G._adj[1], mydict3)
41
+ if G.is_directed():
42
+ assert isinstance(G._pred, mydict2)
43
+ assert isinstance(G._succ, mydict2)
44
+ assert isinstance(G._pred[1], mydict3)
45
+ G.add_edge(1, 2)
46
+ if G.is_multigraph():
47
+ assert isinstance(G._adj[1][2], mydict4)
48
+ assert isinstance(G._adj[1][2][0], mydict5)
49
+ else:
50
+ assert isinstance(G._adj[1][2], mydict5)
51
+
52
+
53
+ class TestSpecialGraph(_TestGraph):
54
+ def setup_method(self):
55
+ _TestGraph.setup_method(self)
56
+ self.Graph = nx.Graph
57
+
58
+
59
+ class TestThinGraph(BaseGraphTester):
60
+ def setup_method(self):
61
+ all_edge_dict = {"weight": 1}
62
+
63
+ class MyGraph(nx.Graph):
64
+ def edge_attr_dict_factory(self):
65
+ return all_edge_dict
66
+
67
+ self.Graph = MyGraph
68
+ # build dict-of-dict-of-dict K3
69
+ ed1, ed2, ed3 = (all_edge_dict, all_edge_dict, all_edge_dict)
70
+ self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}}
71
+ self.k3edges = [(0, 1), (0, 2), (1, 2)]
72
+ self.k3nodes = [0, 1, 2]
73
+ self.K3 = self.Graph()
74
+ self.K3._adj = self.k3adj
75
+ self.K3._node = {}
76
+ self.K3._node[0] = {}
77
+ self.K3._node[1] = {}
78
+ self.K3._node[2] = {}
79
+
80
+
81
+ class TestSpecialDiGraph(_TestDiGraph):
82
+ def setup_method(self):
83
+ _TestDiGraph.setup_method(self)
84
+ self.Graph = nx.DiGraph
85
+
86
+
87
+ class TestThinDiGraph(BaseDiGraphTester):
88
+ def setup_method(self):
89
+ all_edge_dict = {"weight": 1}
90
+
91
+ class MyGraph(nx.DiGraph):
92
+ def edge_attr_dict_factory(self):
93
+ return all_edge_dict
94
+
95
+ self.Graph = MyGraph
96
+ # build dict-of-dict-of-dict K3
97
+ ed1, ed2, ed3 = (all_edge_dict, all_edge_dict, all_edge_dict)
98
+ ed4, ed5, ed6 = (all_edge_dict, all_edge_dict, all_edge_dict)
99
+ self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed3, 2: ed4}, 2: {0: ed5, 1: ed6}}
100
+ self.k3edges = [(0, 1), (0, 2), (1, 2)]
101
+ self.k3nodes = [0, 1, 2]
102
+ self.K3 = self.Graph()
103
+ self.K3._succ = self.k3adj
104
+ # K3._adj is synced with K3._succ
105
+ self.K3._pred = {0: {1: ed3, 2: ed5}, 1: {0: ed1, 2: ed6}, 2: {0: ed2, 1: ed4}}
106
+ self.K3._node = {}
107
+ self.K3._node[0] = {}
108
+ self.K3._node[1] = {}
109
+ self.K3._node[2] = {}
110
+
111
+ ed1, ed2 = (all_edge_dict, all_edge_dict)
112
+ self.P3 = self.Graph()
113
+ self.P3._succ = {0: {1: ed1}, 1: {2: ed2}, 2: {}}
114
+ # P3._adj is synced with P3._succ
115
+ self.P3._pred = {0: {}, 1: {0: ed1}, 2: {1: ed2}}
116
+ self.P3._node = {}
117
+ self.P3._node[0] = {}
118
+ self.P3._node[1] = {}
119
+ self.P3._node[2] = {}
120
+
121
+
122
+ class TestSpecialMultiGraph(_TestMultiGraph):
123
+ def setup_method(self):
124
+ _TestMultiGraph.setup_method(self)
125
+ self.Graph = nx.MultiGraph
126
+
127
+
128
+ class TestSpecialMultiDiGraph(_TestMultiDiGraph):
129
+ def setup_method(self):
130
+ _TestMultiDiGraph.setup_method(self)
131
+ self.Graph = nx.MultiDiGraph
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_subgraphviews.py ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx.utils import edges_equal
5
+
6
+
7
+ class TestSubGraphView:
8
+ gview = staticmethod(nx.subgraph_view)
9
+ graph = nx.Graph
10
+ hide_edges_filter = staticmethod(nx.filters.hide_edges)
11
+ show_edges_filter = staticmethod(nx.filters.show_edges)
12
+
13
+ @classmethod
14
+ def setup_class(cls):
15
+ cls.G = nx.path_graph(9, create_using=cls.graph())
16
+ cls.hide_edges_w_hide_nodes = {(3, 4), (4, 5), (5, 6)}
17
+
18
+ def test_hidden_nodes(self):
19
+ hide_nodes = [4, 5, 111]
20
+ nodes_gone = nx.filters.hide_nodes(hide_nodes)
21
+ gview = self.gview
22
+ G = gview(self.G, filter_node=nodes_gone)
23
+ assert self.G.nodes - G.nodes == {4, 5}
24
+ assert self.G.edges - G.edges == self.hide_edges_w_hide_nodes
25
+ if G.is_directed():
26
+ assert list(G[3]) == []
27
+ assert list(G[2]) == [3]
28
+ else:
29
+ assert list(G[3]) == [2]
30
+ assert set(G[2]) == {1, 3}
31
+ pytest.raises(KeyError, G.__getitem__, 4)
32
+ pytest.raises(KeyError, G.__getitem__, 112)
33
+ pytest.raises(KeyError, G.__getitem__, 111)
34
+ assert G.degree(3) == (3 if G.is_multigraph() else 1)
35
+ assert G.size() == (7 if G.is_multigraph() else 5)
36
+
37
+ def test_hidden_edges(self):
38
+ hide_edges = [(2, 3), (8, 7), (222, 223)]
39
+ edges_gone = self.hide_edges_filter(hide_edges)
40
+ gview = self.gview
41
+ G = gview(self.G, filter_edge=edges_gone)
42
+ assert self.G.nodes == G.nodes
43
+ if G.is_directed():
44
+ assert self.G.edges - G.edges == {(2, 3)}
45
+ assert list(G[2]) == []
46
+ assert list(G.pred[3]) == []
47
+ assert list(G.pred[2]) == [1]
48
+ assert G.size() == 7
49
+ else:
50
+ assert self.G.edges - G.edges == {(2, 3), (7, 8)}
51
+ assert list(G[2]) == [1]
52
+ assert G.size() == 6
53
+ assert list(G[3]) == [4]
54
+ pytest.raises(KeyError, G.__getitem__, 221)
55
+ pytest.raises(KeyError, G.__getitem__, 222)
56
+ assert G.degree(3) == 1
57
+
58
+ def test_shown_node(self):
59
+ induced_subgraph = nx.filters.show_nodes([2, 3, 111])
60
+ gview = self.gview
61
+ G = gview(self.G, filter_node=induced_subgraph)
62
+ assert set(G.nodes) == {2, 3}
63
+ if G.is_directed():
64
+ assert list(G[3]) == []
65
+ else:
66
+ assert list(G[3]) == [2]
67
+ assert list(G[2]) == [3]
68
+ pytest.raises(KeyError, G.__getitem__, 4)
69
+ pytest.raises(KeyError, G.__getitem__, 112)
70
+ pytest.raises(KeyError, G.__getitem__, 111)
71
+ assert G.degree(3) == (3 if G.is_multigraph() else 1)
72
+ assert G.size() == (3 if G.is_multigraph() else 1)
73
+
74
+ def test_shown_edges(self):
75
+ show_edges = [(2, 3), (8, 7), (222, 223)]
76
+ edge_subgraph = self.show_edges_filter(show_edges)
77
+ G = self.gview(self.G, filter_edge=edge_subgraph)
78
+ assert self.G.nodes == G.nodes
79
+ if G.is_directed():
80
+ assert G.edges == {(2, 3)}
81
+ assert list(G[3]) == []
82
+ assert list(G[2]) == [3]
83
+ assert list(G.pred[3]) == [2]
84
+ assert list(G.pred[2]) == []
85
+ assert G.size() == 1
86
+ else:
87
+ assert G.edges == {(2, 3), (7, 8)}
88
+ assert list(G[3]) == [2]
89
+ assert list(G[2]) == [3]
90
+ assert G.size() == 2
91
+ pytest.raises(KeyError, G.__getitem__, 221)
92
+ pytest.raises(KeyError, G.__getitem__, 222)
93
+ assert G.degree(3) == 1
94
+
95
+
96
+ class TestSubDiGraphView(TestSubGraphView):
97
+ gview = staticmethod(nx.subgraph_view)
98
+ graph = nx.DiGraph
99
+ hide_edges_filter = staticmethod(nx.filters.hide_diedges)
100
+ show_edges_filter = staticmethod(nx.filters.show_diedges)
101
+ hide_edges = [(2, 3), (8, 7), (222, 223)]
102
+ excluded = {(2, 3), (3, 4), (4, 5), (5, 6)}
103
+
104
+ def test_inoutedges(self):
105
+ edges_gone = self.hide_edges_filter(self.hide_edges)
106
+ hide_nodes = [4, 5, 111]
107
+ nodes_gone = nx.filters.hide_nodes(hide_nodes)
108
+ G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone)
109
+
110
+ assert self.G.in_edges - G.in_edges == self.excluded
111
+ assert self.G.out_edges - G.out_edges == self.excluded
112
+
113
+ def test_pred(self):
114
+ edges_gone = self.hide_edges_filter(self.hide_edges)
115
+ hide_nodes = [4, 5, 111]
116
+ nodes_gone = nx.filters.hide_nodes(hide_nodes)
117
+ G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone)
118
+
119
+ assert list(G.pred[2]) == [1]
120
+ assert list(G.pred[6]) == []
121
+
122
+ def test_inout_degree(self):
123
+ edges_gone = self.hide_edges_filter(self.hide_edges)
124
+ hide_nodes = [4, 5, 111]
125
+ nodes_gone = nx.filters.hide_nodes(hide_nodes)
126
+ G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone)
127
+
128
+ assert G.degree(2) == 1
129
+ assert G.out_degree(2) == 0
130
+ assert G.in_degree(2) == 1
131
+ assert G.size() == 4
132
+
133
+
134
+ # multigraph
135
+ class TestMultiGraphView(TestSubGraphView):
136
+ gview = staticmethod(nx.subgraph_view)
137
+ graph = nx.MultiGraph
138
+ hide_edges_filter = staticmethod(nx.filters.hide_multiedges)
139
+ show_edges_filter = staticmethod(nx.filters.show_multiedges)
140
+
141
+ @classmethod
142
+ def setup_class(cls):
143
+ cls.G = nx.path_graph(9, create_using=cls.graph())
144
+ multiedges = {(2, 3, 4), (2, 3, 5)}
145
+ cls.G.add_edges_from(multiedges)
146
+ cls.hide_edges_w_hide_nodes = {(3, 4, 0), (4, 5, 0), (5, 6, 0)}
147
+
148
+ def test_hidden_edges(self):
149
+ hide_edges = [(2, 3, 4), (2, 3, 3), (8, 7, 0), (222, 223, 0)]
150
+ edges_gone = self.hide_edges_filter(hide_edges)
151
+ G = self.gview(self.G, filter_edge=edges_gone)
152
+ assert self.G.nodes == G.nodes
153
+ if G.is_directed():
154
+ assert self.G.edges - G.edges == {(2, 3, 4)}
155
+ assert list(G[3]) == [4]
156
+ assert list(G[2]) == [3]
157
+ assert list(G.pred[3]) == [2] # only one 2 but two edges
158
+ assert list(G.pred[2]) == [1]
159
+ assert G.size() == 9
160
+ else:
161
+ assert self.G.edges - G.edges == {(2, 3, 4), (7, 8, 0)}
162
+ assert list(G[3]) == [2, 4]
163
+ assert list(G[2]) == [1, 3]
164
+ assert G.size() == 8
165
+ assert G.degree(3) == 3
166
+ pytest.raises(KeyError, G.__getitem__, 221)
167
+ pytest.raises(KeyError, G.__getitem__, 222)
168
+
169
+ def test_shown_edges(self):
170
+ show_edges = [(2, 3, 4), (2, 3, 3), (8, 7, 0), (222, 223, 0)]
171
+ edge_subgraph = self.show_edges_filter(show_edges)
172
+ G = self.gview(self.G, filter_edge=edge_subgraph)
173
+ assert self.G.nodes == G.nodes
174
+ if G.is_directed():
175
+ assert G.edges == {(2, 3, 4)}
176
+ assert list(G[3]) == []
177
+ assert list(G.pred[3]) == [2]
178
+ assert list(G.pred[2]) == []
179
+ assert G.size() == 1
180
+ else:
181
+ assert G.edges == {(2, 3, 4), (7, 8, 0)}
182
+ assert G.size() == 2
183
+ assert list(G[3]) == [2]
184
+ assert G.degree(3) == 1
185
+ assert list(G[2]) == [3]
186
+ pytest.raises(KeyError, G.__getitem__, 221)
187
+ pytest.raises(KeyError, G.__getitem__, 222)
188
+
189
+
190
+ # multidigraph
191
+ class TestMultiDiGraphView(TestMultiGraphView, TestSubDiGraphView):
192
+ gview = staticmethod(nx.subgraph_view)
193
+ graph = nx.MultiDiGraph
194
+ hide_edges_filter = staticmethod(nx.filters.hide_multidiedges)
195
+ show_edges_filter = staticmethod(nx.filters.show_multidiedges)
196
+ hide_edges = [(2, 3, 0), (8, 7, 0), (222, 223, 0)]
197
+ excluded = {(2, 3, 0), (3, 4, 0), (4, 5, 0), (5, 6, 0)}
198
+
199
+ def test_inout_degree(self):
200
+ edges_gone = self.hide_edges_filter(self.hide_edges)
201
+ hide_nodes = [4, 5, 111]
202
+ nodes_gone = nx.filters.hide_nodes(hide_nodes)
203
+ G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone)
204
+
205
+ assert G.degree(2) == 3
206
+ assert G.out_degree(2) == 2
207
+ assert G.in_degree(2) == 1
208
+ assert G.size() == 6
209
+
210
+
211
+ # induced_subgraph
212
+ class TestInducedSubGraph:
213
+ @classmethod
214
+ def setup_class(cls):
215
+ cls.K3 = G = nx.complete_graph(3)
216
+ G.graph["foo"] = []
217
+ G.nodes[0]["foo"] = []
218
+ G.remove_edge(1, 2)
219
+ ll = []
220
+ G.add_edge(1, 2, foo=ll)
221
+ G.add_edge(2, 1, foo=ll)
222
+
223
+ def test_full_graph(self):
224
+ G = self.K3
225
+ H = nx.induced_subgraph(G, [0, 1, 2, 5])
226
+ assert H.name == G.name
227
+ self.graphs_equal(H, G)
228
+ self.same_attrdict(H, G)
229
+
230
+ def test_partial_subgraph(self):
231
+ G = self.K3
232
+ H = nx.induced_subgraph(G, 0)
233
+ assert dict(H.adj) == {0: {}}
234
+ assert dict(G.adj) != {0: {}}
235
+
236
+ H = nx.induced_subgraph(G, [0, 1])
237
+ assert dict(H.adj) == {0: {1: {}}, 1: {0: {}}}
238
+
239
+ def same_attrdict(self, H, G):
240
+ old_foo = H[1][2]["foo"]
241
+ H.edges[1, 2]["foo"] = "baz"
242
+ assert G.edges == H.edges
243
+ H.edges[1, 2]["foo"] = old_foo
244
+ assert G.edges == H.edges
245
+ old_foo = H.nodes[0]["foo"]
246
+ H.nodes[0]["foo"] = "baz"
247
+ assert G.nodes == H.nodes
248
+ H.nodes[0]["foo"] = old_foo
249
+ assert G.nodes == H.nodes
250
+
251
+ def graphs_equal(self, H, G):
252
+ assert G._adj == H._adj
253
+ assert G._node == H._node
254
+ assert G.graph == H.graph
255
+ assert G.name == H.name
256
+ if not G.is_directed() and not H.is_directed():
257
+ assert H._adj[1][2] is H._adj[2][1]
258
+ assert G._adj[1][2] is G._adj[2][1]
259
+ else: # at least one is directed
260
+ if not G.is_directed():
261
+ G._pred = G._adj
262
+ G._succ = G._adj
263
+ if not H.is_directed():
264
+ H._pred = H._adj
265
+ H._succ = H._adj
266
+ assert G._pred == H._pred
267
+ assert G._succ == H._succ
268
+ assert H._succ[1][2] is H._pred[2][1]
269
+ assert G._succ[1][2] is G._pred[2][1]
270
+
271
+
272
+ # edge_subgraph
273
+ class TestEdgeSubGraph:
274
+ @classmethod
275
+ def setup_class(cls):
276
+ # Create a path graph on five nodes.
277
+ cls.G = G = nx.path_graph(5)
278
+ # Add some node, edge, and graph attributes.
279
+ for i in range(5):
280
+ G.nodes[i]["name"] = f"node{i}"
281
+ G.edges[0, 1]["name"] = "edge01"
282
+ G.edges[3, 4]["name"] = "edge34"
283
+ G.graph["name"] = "graph"
284
+ # Get the subgraph induced by the first and last edges.
285
+ cls.H = nx.edge_subgraph(G, [(0, 1), (3, 4)])
286
+
287
+ def test_correct_nodes(self):
288
+ """Tests that the subgraph has the correct nodes."""
289
+ assert [(0, "node0"), (1, "node1"), (3, "node3"), (4, "node4")] == sorted(
290
+ self.H.nodes.data("name")
291
+ )
292
+
293
+ def test_correct_edges(self):
294
+ """Tests that the subgraph has the correct edges."""
295
+ assert edges_equal(
296
+ [(0, 1, "edge01"), (3, 4, "edge34")], self.H.edges.data("name")
297
+ )
298
+
299
+ def test_add_node(self):
300
+ """Tests that adding a node to the original graph does not
301
+ affect the nodes of the subgraph.
302
+
303
+ """
304
+ self.G.add_node(5)
305
+ assert [0, 1, 3, 4] == sorted(self.H.nodes)
306
+ self.G.remove_node(5)
307
+
308
+ def test_remove_node(self):
309
+ """Tests that removing a node in the original graph
310
+ removes the nodes of the subgraph.
311
+
312
+ """
313
+ self.G.remove_node(0)
314
+ assert [1, 3, 4] == sorted(self.H.nodes)
315
+ self.G.add_node(0, name="node0")
316
+ self.G.add_edge(0, 1, name="edge01")
317
+
318
+ def test_node_attr_dict(self):
319
+ """Tests that the node attribute dictionary of the two graphs is
320
+ the same object.
321
+
322
+ """
323
+ for v in self.H:
324
+ assert self.G.nodes[v] == self.H.nodes[v]
325
+ # Making a change to G should make a change in H and vice versa.
326
+ self.G.nodes[0]["name"] = "foo"
327
+ assert self.G.nodes[0] == self.H.nodes[0]
328
+ self.H.nodes[1]["name"] = "bar"
329
+ assert self.G.nodes[1] == self.H.nodes[1]
330
+ # Revert the change, so tests pass with pytest-randomly
331
+ self.G.nodes[0]["name"] = "node0"
332
+ self.H.nodes[1]["name"] = "node1"
333
+
334
+ def test_edge_attr_dict(self):
335
+ """Tests that the edge attribute dictionary of the two graphs is
336
+ the same object.
337
+
338
+ """
339
+ for u, v in self.H.edges():
340
+ assert self.G.edges[u, v] == self.H.edges[u, v]
341
+ # Making a change to G should make a change in H and vice versa.
342
+ self.G.edges[0, 1]["name"] = "foo"
343
+ assert self.G.edges[0, 1]["name"] == self.H.edges[0, 1]["name"]
344
+ self.H.edges[3, 4]["name"] = "bar"
345
+ assert self.G.edges[3, 4]["name"] == self.H.edges[3, 4]["name"]
346
+ # Revert the change, so tests pass with pytest-randomly
347
+ self.G.edges[0, 1]["name"] = "edge01"
348
+ self.H.edges[3, 4]["name"] = "edge34"
349
+
350
+ def test_graph_attr_dict(self):
351
+ """Tests that the graph attribute dictionary of the two graphs
352
+ is the same object.
353
+
354
+ """
355
+ assert self.G.graph is self.H.graph
356
+
357
+ def test_readonly(self):
358
+ """Tests that the subgraph cannot change the graph structure"""
359
+ pytest.raises(nx.NetworkXError, self.H.add_node, 5)
360
+ pytest.raises(nx.NetworkXError, self.H.remove_node, 0)
361
+ pytest.raises(nx.NetworkXError, self.H.add_edge, 5, 6)
362
+ pytest.raises(nx.NetworkXError, self.H.remove_edge, 0, 1)
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__init__.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A package for reading and writing graphs in various formats.
3
+
4
+ """
5
+
6
+
7
+ from networkx.readwrite.adjlist import *
8
+ from networkx.readwrite.multiline_adjlist import *
9
+ from networkx.readwrite.edgelist import *
10
+ from networkx.readwrite.pajek import *
11
+ from networkx.readwrite.leda import *
12
+ from networkx.readwrite.sparse6 import *
13
+ from networkx.readwrite.graph6 import *
14
+ from networkx.readwrite.gml import *
15
+ from networkx.readwrite.graphml import *
16
+ from networkx.readwrite.gexf import *
17
+ from networkx.readwrite.json_graph import *
18
+ from networkx.readwrite.text import *
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (722 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/adjlist.cpython-310.pyc ADDED
Binary file (8.34 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/edgelist.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/gexf.cpython-310.pyc ADDED
Binary file (25.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/gml.cpython-310.pyc ADDED
Binary file (24.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/graph6.cpython-310.pyc ADDED
Binary file (11.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/graphml.cpython-310.pyc ADDED
Binary file (28.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/leda.cpython-310.pyc ADDED
Binary file (2.89 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/multiline_adjlist.cpython-310.pyc ADDED
Binary file (9.53 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/p2g.cpython-310.pyc ADDED
Binary file (3.08 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/pajek.cpython-310.pyc ADDED
Binary file (6.76 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/sparse6.cpython-310.pyc ADDED
Binary file (9.78 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/__pycache__/text.cpython-310.pyc ADDED
Binary file (23 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/gexf.py ADDED
@@ -0,0 +1,1065 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Read and write graphs in GEXF format.
2
+
3
+ .. warning::
4
+ This parser uses the standard xml library present in Python, which is
5
+ insecure - see :external+python:mod:`xml` for additional information.
6
+ Only parse GEFX files you trust.
7
+
8
+ GEXF (Graph Exchange XML Format) is a language for describing complex
9
+ network structures, their associated data and dynamics.
10
+
11
+ This implementation does not support mixed graphs (directed and
12
+ undirected edges together).
13
+
14
+ Format
15
+ ------
16
+ GEXF is an XML format. See http://gexf.net/schema.html for the
17
+ specification and http://gexf.net/basic.html for examples.
18
+ """
19
+ import itertools
20
+ import time
21
+ from xml.etree.ElementTree import (
22
+ Element,
23
+ ElementTree,
24
+ SubElement,
25
+ register_namespace,
26
+ tostring,
27
+ )
28
+
29
+ import networkx as nx
30
+ from networkx.utils import open_file
31
+
32
+ __all__ = ["write_gexf", "read_gexf", "relabel_gexf_graph", "generate_gexf"]
33
+
34
+
35
+ @open_file(1, mode="wb")
36
+ def write_gexf(G, path, encoding="utf-8", prettyprint=True, version="1.2draft"):
37
+ """Write G in GEXF format to path.
38
+
39
+ "GEXF (Graph Exchange XML Format) is a language for describing
40
+ complex networks structures, their associated data and dynamics" [1]_.
41
+
42
+ Node attributes are checked according to the version of the GEXF
43
+ schemas used for parameters which are not user defined,
44
+ e.g. visualization 'viz' [2]_. See example for usage.
45
+
46
+ Parameters
47
+ ----------
48
+ G : graph
49
+ A NetworkX graph
50
+ path : file or string
51
+ File or file name to write.
52
+ File names ending in .gz or .bz2 will be compressed.
53
+ encoding : string (optional, default: 'utf-8')
54
+ Encoding for text data.
55
+ prettyprint : bool (optional, default: True)
56
+ If True use line breaks and indenting in output XML.
57
+ version: string (optional, default: '1.2draft')
58
+ The version of GEXF to be used for nodes attributes checking
59
+
60
+ Examples
61
+ --------
62
+ >>> G = nx.path_graph(4)
63
+ >>> nx.write_gexf(G, "test.gexf")
64
+
65
+ # visualization data
66
+ >>> G.nodes[0]["viz"] = {"size": 54}
67
+ >>> G.nodes[0]["viz"]["position"] = {"x": 0, "y": 1}
68
+ >>> G.nodes[0]["viz"]["color"] = {"r": 0, "g": 0, "b": 256}
69
+
70
+
71
+ Notes
72
+ -----
73
+ This implementation does not support mixed graphs (directed and undirected
74
+ edges together).
75
+
76
+ The node id attribute is set to be the string of the node label.
77
+ If you want to specify an id use set it as node data, e.g.
78
+ node['a']['id']=1 to set the id of node 'a' to 1.
79
+
80
+ References
81
+ ----------
82
+ .. [1] GEXF File Format, http://gexf.net/
83
+ .. [2] GEXF schema, http://gexf.net/schema.html
84
+ """
85
+ writer = GEXFWriter(encoding=encoding, prettyprint=prettyprint, version=version)
86
+ writer.add_graph(G)
87
+ writer.write(path)
88
+
89
+
90
+ def generate_gexf(G, encoding="utf-8", prettyprint=True, version="1.2draft"):
91
+ """Generate lines of GEXF format representation of G.
92
+
93
+ "GEXF (Graph Exchange XML Format) is a language for describing
94
+ complex networks structures, their associated data and dynamics" [1]_.
95
+
96
+ Parameters
97
+ ----------
98
+ G : graph
99
+ A NetworkX graph
100
+ encoding : string (optional, default: 'utf-8')
101
+ Encoding for text data.
102
+ prettyprint : bool (optional, default: True)
103
+ If True use line breaks and indenting in output XML.
104
+ version : string (default: 1.2draft)
105
+ Version of GEFX File Format (see http://gexf.net/schema.html)
106
+ Supported values: "1.1draft", "1.2draft"
107
+
108
+
109
+ Examples
110
+ --------
111
+ >>> G = nx.path_graph(4)
112
+ >>> linefeed = chr(10) # linefeed=\n
113
+ >>> s = linefeed.join(nx.generate_gexf(G))
114
+ >>> for line in nx.generate_gexf(G): # doctest: +SKIP
115
+ ... print(line)
116
+
117
+ Notes
118
+ -----
119
+ This implementation does not support mixed graphs (directed and undirected
120
+ edges together).
121
+
122
+ The node id attribute is set to be the string of the node label.
123
+ If you want to specify an id use set it as node data, e.g.
124
+ node['a']['id']=1 to set the id of node 'a' to 1.
125
+
126
+ References
127
+ ----------
128
+ .. [1] GEXF File Format, https://gephi.org/gexf/format/
129
+ """
130
+ writer = GEXFWriter(encoding=encoding, prettyprint=prettyprint, version=version)
131
+ writer.add_graph(G)
132
+ yield from str(writer).splitlines()
133
+
134
+
135
+ @open_file(0, mode="rb")
136
+ @nx._dispatchable(graphs=None, returns_graph=True)
137
+ def read_gexf(path, node_type=None, relabel=False, version="1.2draft"):
138
+ """Read graph in GEXF format from path.
139
+
140
+ "GEXF (Graph Exchange XML Format) is a language for describing
141
+ complex networks structures, their associated data and dynamics" [1]_.
142
+
143
+ Parameters
144
+ ----------
145
+ path : file or string
146
+ File or file name to read.
147
+ File names ending in .gz or .bz2 will be decompressed.
148
+ node_type: Python type (default: None)
149
+ Convert node ids to this type if not None.
150
+ relabel : bool (default: False)
151
+ If True relabel the nodes to use the GEXF node "label" attribute
152
+ instead of the node "id" attribute as the NetworkX node label.
153
+ version : string (default: 1.2draft)
154
+ Version of GEFX File Format (see http://gexf.net/schema.html)
155
+ Supported values: "1.1draft", "1.2draft"
156
+
157
+ Returns
158
+ -------
159
+ graph: NetworkX graph
160
+ If no parallel edges are found a Graph or DiGraph is returned.
161
+ Otherwise a MultiGraph or MultiDiGraph is returned.
162
+
163
+ Notes
164
+ -----
165
+ This implementation does not support mixed graphs (directed and undirected
166
+ edges together).
167
+
168
+ References
169
+ ----------
170
+ .. [1] GEXF File Format, http://gexf.net/
171
+ """
172
+ reader = GEXFReader(node_type=node_type, version=version)
173
+ if relabel:
174
+ G = relabel_gexf_graph(reader(path))
175
+ else:
176
+ G = reader(path)
177
+ return G
178
+
179
+
180
+ class GEXF:
181
+ versions = {
182
+ "1.1draft": {
183
+ "NS_GEXF": "http://www.gexf.net/1.1draft",
184
+ "NS_VIZ": "http://www.gexf.net/1.1draft/viz",
185
+ "NS_XSI": "http://www.w3.org/2001/XMLSchema-instance",
186
+ "SCHEMALOCATION": " ".join(
187
+ [
188
+ "http://www.gexf.net/1.1draft",
189
+ "http://www.gexf.net/1.1draft/gexf.xsd",
190
+ ]
191
+ ),
192
+ "VERSION": "1.1",
193
+ },
194
+ "1.2draft": {
195
+ "NS_GEXF": "http://www.gexf.net/1.2draft",
196
+ "NS_VIZ": "http://www.gexf.net/1.2draft/viz",
197
+ "NS_XSI": "http://www.w3.org/2001/XMLSchema-instance",
198
+ "SCHEMALOCATION": " ".join(
199
+ [
200
+ "http://www.gexf.net/1.2draft",
201
+ "http://www.gexf.net/1.2draft/gexf.xsd",
202
+ ]
203
+ ),
204
+ "VERSION": "1.2",
205
+ },
206
+ }
207
+
208
+ def construct_types(self):
209
+ types = [
210
+ (int, "integer"),
211
+ (float, "float"),
212
+ (float, "double"),
213
+ (bool, "boolean"),
214
+ (list, "string"),
215
+ (dict, "string"),
216
+ (int, "long"),
217
+ (str, "liststring"),
218
+ (str, "anyURI"),
219
+ (str, "string"),
220
+ ]
221
+
222
+ # These additions to types allow writing numpy types
223
+ try:
224
+ import numpy as np
225
+ except ImportError:
226
+ pass
227
+ else:
228
+ # prepend so that python types are created upon read (last entry wins)
229
+ types = [
230
+ (np.float64, "float"),
231
+ (np.float32, "float"),
232
+ (np.float16, "float"),
233
+ (np.int_, "int"),
234
+ (np.int8, "int"),
235
+ (np.int16, "int"),
236
+ (np.int32, "int"),
237
+ (np.int64, "int"),
238
+ (np.uint8, "int"),
239
+ (np.uint16, "int"),
240
+ (np.uint32, "int"),
241
+ (np.uint64, "int"),
242
+ (np.int_, "int"),
243
+ (np.intc, "int"),
244
+ (np.intp, "int"),
245
+ ] + types
246
+
247
+ self.xml_type = dict(types)
248
+ self.python_type = dict(reversed(a) for a in types)
249
+
250
+ # http://www.w3.org/TR/xmlschema-2/#boolean
251
+ convert_bool = {
252
+ "true": True,
253
+ "false": False,
254
+ "True": True,
255
+ "False": False,
256
+ "0": False,
257
+ 0: False,
258
+ "1": True,
259
+ 1: True,
260
+ }
261
+
262
+ def set_version(self, version):
263
+ d = self.versions.get(version)
264
+ if d is None:
265
+ raise nx.NetworkXError(f"Unknown GEXF version {version}.")
266
+ self.NS_GEXF = d["NS_GEXF"]
267
+ self.NS_VIZ = d["NS_VIZ"]
268
+ self.NS_XSI = d["NS_XSI"]
269
+ self.SCHEMALOCATION = d["SCHEMALOCATION"]
270
+ self.VERSION = d["VERSION"]
271
+ self.version = version
272
+
273
+
274
+ class GEXFWriter(GEXF):
275
+ # class for writing GEXF format files
276
+ # use write_gexf() function
277
+ def __init__(
278
+ self, graph=None, encoding="utf-8", prettyprint=True, version="1.2draft"
279
+ ):
280
+ self.construct_types()
281
+ self.prettyprint = prettyprint
282
+ self.encoding = encoding
283
+ self.set_version(version)
284
+ self.xml = Element(
285
+ "gexf",
286
+ {
287
+ "xmlns": self.NS_GEXF,
288
+ "xmlns:xsi": self.NS_XSI,
289
+ "xsi:schemaLocation": self.SCHEMALOCATION,
290
+ "version": self.VERSION,
291
+ },
292
+ )
293
+
294
+ # Make meta element a non-graph element
295
+ # Also add lastmodifieddate as attribute, not tag
296
+ meta_element = Element("meta")
297
+ subelement_text = f"NetworkX {nx.__version__}"
298
+ SubElement(meta_element, "creator").text = subelement_text
299
+ meta_element.set("lastmodifieddate", time.strftime("%Y-%m-%d"))
300
+ self.xml.append(meta_element)
301
+
302
+ register_namespace("viz", self.NS_VIZ)
303
+
304
+ # counters for edge and attribute identifiers
305
+ self.edge_id = itertools.count()
306
+ self.attr_id = itertools.count()
307
+ self.all_edge_ids = set()
308
+ # default attributes are stored in dictionaries
309
+ self.attr = {}
310
+ self.attr["node"] = {}
311
+ self.attr["edge"] = {}
312
+ self.attr["node"]["dynamic"] = {}
313
+ self.attr["node"]["static"] = {}
314
+ self.attr["edge"]["dynamic"] = {}
315
+ self.attr["edge"]["static"] = {}
316
+
317
+ if graph is not None:
318
+ self.add_graph(graph)
319
+
320
+ def __str__(self):
321
+ if self.prettyprint:
322
+ self.indent(self.xml)
323
+ s = tostring(self.xml).decode(self.encoding)
324
+ return s
325
+
326
+ def add_graph(self, G):
327
+ # first pass through G collecting edge ids
328
+ for u, v, dd in G.edges(data=True):
329
+ eid = dd.get("id")
330
+ if eid is not None:
331
+ self.all_edge_ids.add(str(eid))
332
+ # set graph attributes
333
+ if G.graph.get("mode") == "dynamic":
334
+ mode = "dynamic"
335
+ else:
336
+ mode = "static"
337
+ # Add a graph element to the XML
338
+ if G.is_directed():
339
+ default = "directed"
340
+ else:
341
+ default = "undirected"
342
+ name = G.graph.get("name", "")
343
+ graph_element = Element("graph", defaultedgetype=default, mode=mode, name=name)
344
+ self.graph_element = graph_element
345
+ self.add_nodes(G, graph_element)
346
+ self.add_edges(G, graph_element)
347
+ self.xml.append(graph_element)
348
+
349
+ def add_nodes(self, G, graph_element):
350
+ nodes_element = Element("nodes")
351
+ for node, data in G.nodes(data=True):
352
+ node_data = data.copy()
353
+ node_id = str(node_data.pop("id", node))
354
+ kw = {"id": node_id}
355
+ label = str(node_data.pop("label", node))
356
+ kw["label"] = label
357
+ try:
358
+ pid = node_data.pop("pid")
359
+ kw["pid"] = str(pid)
360
+ except KeyError:
361
+ pass
362
+ try:
363
+ start = node_data.pop("start")
364
+ kw["start"] = str(start)
365
+ self.alter_graph_mode_timeformat(start)
366
+ except KeyError:
367
+ pass
368
+ try:
369
+ end = node_data.pop("end")
370
+ kw["end"] = str(end)
371
+ self.alter_graph_mode_timeformat(end)
372
+ except KeyError:
373
+ pass
374
+ # add node element with attributes
375
+ node_element = Element("node", **kw)
376
+ # add node element and attr subelements
377
+ default = G.graph.get("node_default", {})
378
+ node_data = self.add_parents(node_element, node_data)
379
+ if self.VERSION == "1.1":
380
+ node_data = self.add_slices(node_element, node_data)
381
+ else:
382
+ node_data = self.add_spells(node_element, node_data)
383
+ node_data = self.add_viz(node_element, node_data)
384
+ node_data = self.add_attributes("node", node_element, node_data, default)
385
+ nodes_element.append(node_element)
386
+ graph_element.append(nodes_element)
387
+
388
+ def add_edges(self, G, graph_element):
389
+ def edge_key_data(G):
390
+ # helper function to unify multigraph and graph edge iterator
391
+ if G.is_multigraph():
392
+ for u, v, key, data in G.edges(data=True, keys=True):
393
+ edge_data = data.copy()
394
+ edge_data.update(key=key)
395
+ edge_id = edge_data.pop("id", None)
396
+ if edge_id is None:
397
+ edge_id = next(self.edge_id)
398
+ while str(edge_id) in self.all_edge_ids:
399
+ edge_id = next(self.edge_id)
400
+ self.all_edge_ids.add(str(edge_id))
401
+ yield u, v, edge_id, edge_data
402
+ else:
403
+ for u, v, data in G.edges(data=True):
404
+ edge_data = data.copy()
405
+ edge_id = edge_data.pop("id", None)
406
+ if edge_id is None:
407
+ edge_id = next(self.edge_id)
408
+ while str(edge_id) in self.all_edge_ids:
409
+ edge_id = next(self.edge_id)
410
+ self.all_edge_ids.add(str(edge_id))
411
+ yield u, v, edge_id, edge_data
412
+
413
+ edges_element = Element("edges")
414
+ for u, v, key, edge_data in edge_key_data(G):
415
+ kw = {"id": str(key)}
416
+ try:
417
+ edge_label = edge_data.pop("label")
418
+ kw["label"] = str(edge_label)
419
+ except KeyError:
420
+ pass
421
+ try:
422
+ edge_weight = edge_data.pop("weight")
423
+ kw["weight"] = str(edge_weight)
424
+ except KeyError:
425
+ pass
426
+ try:
427
+ edge_type = edge_data.pop("type")
428
+ kw["type"] = str(edge_type)
429
+ except KeyError:
430
+ pass
431
+ try:
432
+ start = edge_data.pop("start")
433
+ kw["start"] = str(start)
434
+ self.alter_graph_mode_timeformat(start)
435
+ except KeyError:
436
+ pass
437
+ try:
438
+ end = edge_data.pop("end")
439
+ kw["end"] = str(end)
440
+ self.alter_graph_mode_timeformat(end)
441
+ except KeyError:
442
+ pass
443
+ source_id = str(G.nodes[u].get("id", u))
444
+ target_id = str(G.nodes[v].get("id", v))
445
+ edge_element = Element("edge", source=source_id, target=target_id, **kw)
446
+ default = G.graph.get("edge_default", {})
447
+ if self.VERSION == "1.1":
448
+ edge_data = self.add_slices(edge_element, edge_data)
449
+ else:
450
+ edge_data = self.add_spells(edge_element, edge_data)
451
+ edge_data = self.add_viz(edge_element, edge_data)
452
+ edge_data = self.add_attributes("edge", edge_element, edge_data, default)
453
+ edges_element.append(edge_element)
454
+ graph_element.append(edges_element)
455
+
456
+ def add_attributes(self, node_or_edge, xml_obj, data, default):
457
+ # Add attrvalues to node or edge
458
+ attvalues = Element("attvalues")
459
+ if len(data) == 0:
460
+ return data
461
+ mode = "static"
462
+ for k, v in data.items():
463
+ # rename generic multigraph key to avoid any name conflict
464
+ if k == "key":
465
+ k = "networkx_key"
466
+ val_type = type(v)
467
+ if val_type not in self.xml_type:
468
+ raise TypeError(f"attribute value type is not allowed: {val_type}")
469
+ if isinstance(v, list):
470
+ # dynamic data
471
+ for val, start, end in v:
472
+ val_type = type(val)
473
+ if start is not None or end is not None:
474
+ mode = "dynamic"
475
+ self.alter_graph_mode_timeformat(start)
476
+ self.alter_graph_mode_timeformat(end)
477
+ break
478
+ attr_id = self.get_attr_id(
479
+ str(k), self.xml_type[val_type], node_or_edge, default, mode
480
+ )
481
+ for val, start, end in v:
482
+ e = Element("attvalue")
483
+ e.attrib["for"] = attr_id
484
+ e.attrib["value"] = str(val)
485
+ # Handle nan, inf, -inf differently
486
+ if val_type == float:
487
+ if e.attrib["value"] == "inf":
488
+ e.attrib["value"] = "INF"
489
+ elif e.attrib["value"] == "nan":
490
+ e.attrib["value"] = "NaN"
491
+ elif e.attrib["value"] == "-inf":
492
+ e.attrib["value"] = "-INF"
493
+ if start is not None:
494
+ e.attrib["start"] = str(start)
495
+ if end is not None:
496
+ e.attrib["end"] = str(end)
497
+ attvalues.append(e)
498
+ else:
499
+ # static data
500
+ mode = "static"
501
+ attr_id = self.get_attr_id(
502
+ str(k), self.xml_type[val_type], node_or_edge, default, mode
503
+ )
504
+ e = Element("attvalue")
505
+ e.attrib["for"] = attr_id
506
+ if isinstance(v, bool):
507
+ e.attrib["value"] = str(v).lower()
508
+ else:
509
+ e.attrib["value"] = str(v)
510
+ # Handle float nan, inf, -inf differently
511
+ if val_type == float:
512
+ if e.attrib["value"] == "inf":
513
+ e.attrib["value"] = "INF"
514
+ elif e.attrib["value"] == "nan":
515
+ e.attrib["value"] = "NaN"
516
+ elif e.attrib["value"] == "-inf":
517
+ e.attrib["value"] = "-INF"
518
+ attvalues.append(e)
519
+ xml_obj.append(attvalues)
520
+ return data
521
+
522
+ def get_attr_id(self, title, attr_type, edge_or_node, default, mode):
523
+ # find the id of the attribute or generate a new id
524
+ try:
525
+ return self.attr[edge_or_node][mode][title]
526
+ except KeyError:
527
+ # generate new id
528
+ new_id = str(next(self.attr_id))
529
+ self.attr[edge_or_node][mode][title] = new_id
530
+ attr_kwargs = {"id": new_id, "title": title, "type": attr_type}
531
+ attribute = Element("attribute", **attr_kwargs)
532
+ # add subelement for data default value if present
533
+ default_title = default.get(title)
534
+ if default_title is not None:
535
+ default_element = Element("default")
536
+ default_element.text = str(default_title)
537
+ attribute.append(default_element)
538
+ # new insert it into the XML
539
+ attributes_element = None
540
+ for a in self.graph_element.findall("attributes"):
541
+ # find existing attributes element by class and mode
542
+ a_class = a.get("class")
543
+ a_mode = a.get("mode", "static")
544
+ if a_class == edge_or_node and a_mode == mode:
545
+ attributes_element = a
546
+ if attributes_element is None:
547
+ # create new attributes element
548
+ attr_kwargs = {"mode": mode, "class": edge_or_node}
549
+ attributes_element = Element("attributes", **attr_kwargs)
550
+ self.graph_element.insert(0, attributes_element)
551
+ attributes_element.append(attribute)
552
+ return new_id
553
+
554
+ def add_viz(self, element, node_data):
555
+ viz = node_data.pop("viz", False)
556
+ if viz:
557
+ color = viz.get("color")
558
+ if color is not None:
559
+ if self.VERSION == "1.1":
560
+ e = Element(
561
+ f"{{{self.NS_VIZ}}}color",
562
+ r=str(color.get("r")),
563
+ g=str(color.get("g")),
564
+ b=str(color.get("b")),
565
+ )
566
+ else:
567
+ e = Element(
568
+ f"{{{self.NS_VIZ}}}color",
569
+ r=str(color.get("r")),
570
+ g=str(color.get("g")),
571
+ b=str(color.get("b")),
572
+ a=str(color.get("a", 1.0)),
573
+ )
574
+ element.append(e)
575
+
576
+ size = viz.get("size")
577
+ if size is not None:
578
+ e = Element(f"{{{self.NS_VIZ}}}size", value=str(size))
579
+ element.append(e)
580
+
581
+ thickness = viz.get("thickness")
582
+ if thickness is not None:
583
+ e = Element(f"{{{self.NS_VIZ}}}thickness", value=str(thickness))
584
+ element.append(e)
585
+
586
+ shape = viz.get("shape")
587
+ if shape is not None:
588
+ if shape.startswith("http"):
589
+ e = Element(
590
+ f"{{{self.NS_VIZ}}}shape", value="image", uri=str(shape)
591
+ )
592
+ else:
593
+ e = Element(f"{{{self.NS_VIZ}}}shape", value=str(shape))
594
+ element.append(e)
595
+
596
+ position = viz.get("position")
597
+ if position is not None:
598
+ e = Element(
599
+ f"{{{self.NS_VIZ}}}position",
600
+ x=str(position.get("x")),
601
+ y=str(position.get("y")),
602
+ z=str(position.get("z")),
603
+ )
604
+ element.append(e)
605
+ return node_data
606
+
607
+ def add_parents(self, node_element, node_data):
608
+ parents = node_data.pop("parents", False)
609
+ if parents:
610
+ parents_element = Element("parents")
611
+ for p in parents:
612
+ e = Element("parent")
613
+ e.attrib["for"] = str(p)
614
+ parents_element.append(e)
615
+ node_element.append(parents_element)
616
+ return node_data
617
+
618
+ def add_slices(self, node_or_edge_element, node_or_edge_data):
619
+ slices = node_or_edge_data.pop("slices", False)
620
+ if slices:
621
+ slices_element = Element("slices")
622
+ for start, end in slices:
623
+ e = Element("slice", start=str(start), end=str(end))
624
+ slices_element.append(e)
625
+ node_or_edge_element.append(slices_element)
626
+ return node_or_edge_data
627
+
628
+ def add_spells(self, node_or_edge_element, node_or_edge_data):
629
+ spells = node_or_edge_data.pop("spells", False)
630
+ if spells:
631
+ spells_element = Element("spells")
632
+ for start, end in spells:
633
+ e = Element("spell")
634
+ if start is not None:
635
+ e.attrib["start"] = str(start)
636
+ self.alter_graph_mode_timeformat(start)
637
+ if end is not None:
638
+ e.attrib["end"] = str(end)
639
+ self.alter_graph_mode_timeformat(end)
640
+ spells_element.append(e)
641
+ node_or_edge_element.append(spells_element)
642
+ return node_or_edge_data
643
+
644
+ def alter_graph_mode_timeformat(self, start_or_end):
645
+ # If 'start' or 'end' appears, alter Graph mode to dynamic and
646
+ # set timeformat
647
+ if self.graph_element.get("mode") == "static":
648
+ if start_or_end is not None:
649
+ if isinstance(start_or_end, str):
650
+ timeformat = "date"
651
+ elif isinstance(start_or_end, float):
652
+ timeformat = "double"
653
+ elif isinstance(start_or_end, int):
654
+ timeformat = "long"
655
+ else:
656
+ raise nx.NetworkXError(
657
+ "timeformat should be of the type int, float or str"
658
+ )
659
+ self.graph_element.set("timeformat", timeformat)
660
+ self.graph_element.set("mode", "dynamic")
661
+
662
+ def write(self, fh):
663
+ # Serialize graph G in GEXF to the open fh
664
+ if self.prettyprint:
665
+ self.indent(self.xml)
666
+ document = ElementTree(self.xml)
667
+ document.write(fh, encoding=self.encoding, xml_declaration=True)
668
+
669
+ def indent(self, elem, level=0):
670
+ # in-place prettyprint formatter
671
+ i = "\n" + " " * level
672
+ if len(elem):
673
+ if not elem.text or not elem.text.strip():
674
+ elem.text = i + " "
675
+ if not elem.tail or not elem.tail.strip():
676
+ elem.tail = i
677
+ for elem in elem:
678
+ self.indent(elem, level + 1)
679
+ if not elem.tail or not elem.tail.strip():
680
+ elem.tail = i
681
+ else:
682
+ if level and (not elem.tail or not elem.tail.strip()):
683
+ elem.tail = i
684
+
685
+
686
+ class GEXFReader(GEXF):
687
+ # Class to read GEXF format files
688
+ # use read_gexf() function
689
+ def __init__(self, node_type=None, version="1.2draft"):
690
+ self.construct_types()
691
+ self.node_type = node_type
692
+ # assume simple graph and test for multigraph on read
693
+ self.simple_graph = True
694
+ self.set_version(version)
695
+
696
+ def __call__(self, stream):
697
+ self.xml = ElementTree(file=stream)
698
+ g = self.xml.find(f"{{{self.NS_GEXF}}}graph")
699
+ if g is not None:
700
+ return self.make_graph(g)
701
+ # try all the versions
702
+ for version in self.versions:
703
+ self.set_version(version)
704
+ g = self.xml.find(f"{{{self.NS_GEXF}}}graph")
705
+ if g is not None:
706
+ return self.make_graph(g)
707
+ raise nx.NetworkXError("No <graph> element in GEXF file.")
708
+
709
+ def make_graph(self, graph_xml):
710
+ # start with empty DiGraph or MultiDiGraph
711
+ edgedefault = graph_xml.get("defaultedgetype", None)
712
+ if edgedefault == "directed":
713
+ G = nx.MultiDiGraph()
714
+ else:
715
+ G = nx.MultiGraph()
716
+
717
+ # graph attributes
718
+ graph_name = graph_xml.get("name", "")
719
+ if graph_name != "":
720
+ G.graph["name"] = graph_name
721
+ graph_start = graph_xml.get("start")
722
+ if graph_start is not None:
723
+ G.graph["start"] = graph_start
724
+ graph_end = graph_xml.get("end")
725
+ if graph_end is not None:
726
+ G.graph["end"] = graph_end
727
+ graph_mode = graph_xml.get("mode", "")
728
+ if graph_mode == "dynamic":
729
+ G.graph["mode"] = "dynamic"
730
+ else:
731
+ G.graph["mode"] = "static"
732
+
733
+ # timeformat
734
+ self.timeformat = graph_xml.get("timeformat")
735
+ if self.timeformat == "date":
736
+ self.timeformat = "string"
737
+
738
+ # node and edge attributes
739
+ attributes_elements = graph_xml.findall(f"{{{self.NS_GEXF}}}attributes")
740
+ # dictionaries to hold attributes and attribute defaults
741
+ node_attr = {}
742
+ node_default = {}
743
+ edge_attr = {}
744
+ edge_default = {}
745
+ for a in attributes_elements:
746
+ attr_class = a.get("class")
747
+ if attr_class == "node":
748
+ na, nd = self.find_gexf_attributes(a)
749
+ node_attr.update(na)
750
+ node_default.update(nd)
751
+ G.graph["node_default"] = node_default
752
+ elif attr_class == "edge":
753
+ ea, ed = self.find_gexf_attributes(a)
754
+ edge_attr.update(ea)
755
+ edge_default.update(ed)
756
+ G.graph["edge_default"] = edge_default
757
+ else:
758
+ raise # unknown attribute class
759
+
760
+ # Hack to handle Gephi0.7beta bug
761
+ # add weight attribute
762
+ ea = {"weight": {"type": "double", "mode": "static", "title": "weight"}}
763
+ ed = {}
764
+ edge_attr.update(ea)
765
+ edge_default.update(ed)
766
+ G.graph["edge_default"] = edge_default
767
+
768
+ # add nodes
769
+ nodes_element = graph_xml.find(f"{{{self.NS_GEXF}}}nodes")
770
+ if nodes_element is not None:
771
+ for node_xml in nodes_element.findall(f"{{{self.NS_GEXF}}}node"):
772
+ self.add_node(G, node_xml, node_attr)
773
+
774
+ # add edges
775
+ edges_element = graph_xml.find(f"{{{self.NS_GEXF}}}edges")
776
+ if edges_element is not None:
777
+ for edge_xml in edges_element.findall(f"{{{self.NS_GEXF}}}edge"):
778
+ self.add_edge(G, edge_xml, edge_attr)
779
+
780
+ # switch to Graph or DiGraph if no parallel edges were found.
781
+ if self.simple_graph:
782
+ if G.is_directed():
783
+ G = nx.DiGraph(G)
784
+ else:
785
+ G = nx.Graph(G)
786
+ return G
787
+
788
+ def add_node(self, G, node_xml, node_attr, node_pid=None):
789
+ # add a single node with attributes to the graph
790
+
791
+ # get attributes and subattributues for node
792
+ data = self.decode_attr_elements(node_attr, node_xml)
793
+ data = self.add_parents(data, node_xml) # add any parents
794
+ if self.VERSION == "1.1":
795
+ data = self.add_slices(data, node_xml) # add slices
796
+ else:
797
+ data = self.add_spells(data, node_xml) # add spells
798
+ data = self.add_viz(data, node_xml) # add viz
799
+ data = self.add_start_end(data, node_xml) # add start/end
800
+
801
+ # find the node id and cast it to the appropriate type
802
+ node_id = node_xml.get("id")
803
+ if self.node_type is not None:
804
+ node_id = self.node_type(node_id)
805
+
806
+ # every node should have a label
807
+ node_label = node_xml.get("label")
808
+ data["label"] = node_label
809
+
810
+ # parent node id
811
+ node_pid = node_xml.get("pid", node_pid)
812
+ if node_pid is not None:
813
+ data["pid"] = node_pid
814
+
815
+ # check for subnodes, recursive
816
+ subnodes = node_xml.find(f"{{{self.NS_GEXF}}}nodes")
817
+ if subnodes is not None:
818
+ for node_xml in subnodes.findall(f"{{{self.NS_GEXF}}}node"):
819
+ self.add_node(G, node_xml, node_attr, node_pid=node_id)
820
+
821
+ G.add_node(node_id, **data)
822
+
823
+ def add_start_end(self, data, xml):
824
+ # start and end times
825
+ ttype = self.timeformat
826
+ node_start = xml.get("start")
827
+ if node_start is not None:
828
+ data["start"] = self.python_type[ttype](node_start)
829
+ node_end = xml.get("end")
830
+ if node_end is not None:
831
+ data["end"] = self.python_type[ttype](node_end)
832
+ return data
833
+
834
+ def add_viz(self, data, node_xml):
835
+ # add viz element for node
836
+ viz = {}
837
+ color = node_xml.find(f"{{{self.NS_VIZ}}}color")
838
+ if color is not None:
839
+ if self.VERSION == "1.1":
840
+ viz["color"] = {
841
+ "r": int(color.get("r")),
842
+ "g": int(color.get("g")),
843
+ "b": int(color.get("b")),
844
+ }
845
+ else:
846
+ viz["color"] = {
847
+ "r": int(color.get("r")),
848
+ "g": int(color.get("g")),
849
+ "b": int(color.get("b")),
850
+ "a": float(color.get("a", 1)),
851
+ }
852
+
853
+ size = node_xml.find(f"{{{self.NS_VIZ}}}size")
854
+ if size is not None:
855
+ viz["size"] = float(size.get("value"))
856
+
857
+ thickness = node_xml.find(f"{{{self.NS_VIZ}}}thickness")
858
+ if thickness is not None:
859
+ viz["thickness"] = float(thickness.get("value"))
860
+
861
+ shape = node_xml.find(f"{{{self.NS_VIZ}}}shape")
862
+ if shape is not None:
863
+ viz["shape"] = shape.get("shape")
864
+ if viz["shape"] == "image":
865
+ viz["shape"] = shape.get("uri")
866
+
867
+ position = node_xml.find(f"{{{self.NS_VIZ}}}position")
868
+ if position is not None:
869
+ viz["position"] = {
870
+ "x": float(position.get("x", 0)),
871
+ "y": float(position.get("y", 0)),
872
+ "z": float(position.get("z", 0)),
873
+ }
874
+
875
+ if len(viz) > 0:
876
+ data["viz"] = viz
877
+ return data
878
+
879
+ def add_parents(self, data, node_xml):
880
+ parents_element = node_xml.find(f"{{{self.NS_GEXF}}}parents")
881
+ if parents_element is not None:
882
+ data["parents"] = []
883
+ for p in parents_element.findall(f"{{{self.NS_GEXF}}}parent"):
884
+ parent = p.get("for")
885
+ data["parents"].append(parent)
886
+ return data
887
+
888
+ def add_slices(self, data, node_or_edge_xml):
889
+ slices_element = node_or_edge_xml.find(f"{{{self.NS_GEXF}}}slices")
890
+ if slices_element is not None:
891
+ data["slices"] = []
892
+ for s in slices_element.findall(f"{{{self.NS_GEXF}}}slice"):
893
+ start = s.get("start")
894
+ end = s.get("end")
895
+ data["slices"].append((start, end))
896
+ return data
897
+
898
+ def add_spells(self, data, node_or_edge_xml):
899
+ spells_element = node_or_edge_xml.find(f"{{{self.NS_GEXF}}}spells")
900
+ if spells_element is not None:
901
+ data["spells"] = []
902
+ ttype = self.timeformat
903
+ for s in spells_element.findall(f"{{{self.NS_GEXF}}}spell"):
904
+ start = self.python_type[ttype](s.get("start"))
905
+ end = self.python_type[ttype](s.get("end"))
906
+ data["spells"].append((start, end))
907
+ return data
908
+
909
+ def add_edge(self, G, edge_element, edge_attr):
910
+ # add an edge to the graph
911
+
912
+ # raise error if we find mixed directed and undirected edges
913
+ edge_direction = edge_element.get("type")
914
+ if G.is_directed() and edge_direction == "undirected":
915
+ raise nx.NetworkXError("Undirected edge found in directed graph.")
916
+ if (not G.is_directed()) and edge_direction == "directed":
917
+ raise nx.NetworkXError("Directed edge found in undirected graph.")
918
+
919
+ # Get source and target and recast type if required
920
+ source = edge_element.get("source")
921
+ target = edge_element.get("target")
922
+ if self.node_type is not None:
923
+ source = self.node_type(source)
924
+ target = self.node_type(target)
925
+
926
+ data = self.decode_attr_elements(edge_attr, edge_element)
927
+ data = self.add_start_end(data, edge_element)
928
+
929
+ if self.VERSION == "1.1":
930
+ data = self.add_slices(data, edge_element) # add slices
931
+ else:
932
+ data = self.add_spells(data, edge_element) # add spells
933
+
934
+ # GEXF stores edge ids as an attribute
935
+ # NetworkX uses them as keys in multigraphs
936
+ # if networkx_key is not specified as an attribute
937
+ edge_id = edge_element.get("id")
938
+ if edge_id is not None:
939
+ data["id"] = edge_id
940
+
941
+ # check if there is a 'multigraph_key' and use that as edge_id
942
+ multigraph_key = data.pop("networkx_key", None)
943
+ if multigraph_key is not None:
944
+ edge_id = multigraph_key
945
+
946
+ weight = edge_element.get("weight")
947
+ if weight is not None:
948
+ data["weight"] = float(weight)
949
+
950
+ edge_label = edge_element.get("label")
951
+ if edge_label is not None:
952
+ data["label"] = edge_label
953
+
954
+ if G.has_edge(source, target):
955
+ # seen this edge before - this is a multigraph
956
+ self.simple_graph = False
957
+ G.add_edge(source, target, key=edge_id, **data)
958
+ if edge_direction == "mutual":
959
+ G.add_edge(target, source, key=edge_id, **data)
960
+
961
+ def decode_attr_elements(self, gexf_keys, obj_xml):
962
+ # Use the key information to decode the attr XML
963
+ attr = {}
964
+ # look for outer '<attvalues>' element
965
+ attr_element = obj_xml.find(f"{{{self.NS_GEXF}}}attvalues")
966
+ if attr_element is not None:
967
+ # loop over <attvalue> elements
968
+ for a in attr_element.findall(f"{{{self.NS_GEXF}}}attvalue"):
969
+ key = a.get("for") # for is required
970
+ try: # should be in our gexf_keys dictionary
971
+ title = gexf_keys[key]["title"]
972
+ except KeyError as err:
973
+ raise nx.NetworkXError(f"No attribute defined for={key}.") from err
974
+ atype = gexf_keys[key]["type"]
975
+ value = a.get("value")
976
+ if atype == "boolean":
977
+ value = self.convert_bool[value]
978
+ else:
979
+ value = self.python_type[atype](value)
980
+ if gexf_keys[key]["mode"] == "dynamic":
981
+ # for dynamic graphs use list of three-tuples
982
+ # [(value1,start1,end1), (value2,start2,end2), etc]
983
+ ttype = self.timeformat
984
+ start = self.python_type[ttype](a.get("start"))
985
+ end = self.python_type[ttype](a.get("end"))
986
+ if title in attr:
987
+ attr[title].append((value, start, end))
988
+ else:
989
+ attr[title] = [(value, start, end)]
990
+ else:
991
+ # for static graphs just assign the value
992
+ attr[title] = value
993
+ return attr
994
+
995
+ def find_gexf_attributes(self, attributes_element):
996
+ # Extract all the attributes and defaults
997
+ attrs = {}
998
+ defaults = {}
999
+ mode = attributes_element.get("mode")
1000
+ for k in attributes_element.findall(f"{{{self.NS_GEXF}}}attribute"):
1001
+ attr_id = k.get("id")
1002
+ title = k.get("title")
1003
+ atype = k.get("type")
1004
+ attrs[attr_id] = {"title": title, "type": atype, "mode": mode}
1005
+ # check for the 'default' subelement of key element and add
1006
+ default = k.find(f"{{{self.NS_GEXF}}}default")
1007
+ if default is not None:
1008
+ if atype == "boolean":
1009
+ value = self.convert_bool[default.text]
1010
+ else:
1011
+ value = self.python_type[atype](default.text)
1012
+ defaults[title] = value
1013
+ return attrs, defaults
1014
+
1015
+
1016
+ def relabel_gexf_graph(G):
1017
+ """Relabel graph using "label" node keyword for node label.
1018
+
1019
+ Parameters
1020
+ ----------
1021
+ G : graph
1022
+ A NetworkX graph read from GEXF data
1023
+
1024
+ Returns
1025
+ -------
1026
+ H : graph
1027
+ A NetworkX graph with relabeled nodes
1028
+
1029
+ Raises
1030
+ ------
1031
+ NetworkXError
1032
+ If node labels are missing or not unique while relabel=True.
1033
+
1034
+ Notes
1035
+ -----
1036
+ This function relabels the nodes in a NetworkX graph with the
1037
+ "label" attribute. It also handles relabeling the specific GEXF
1038
+ node attributes "parents", and "pid".
1039
+ """
1040
+ # build mapping of node labels, do some error checking
1041
+ try:
1042
+ mapping = [(u, G.nodes[u]["label"]) for u in G]
1043
+ except KeyError as err:
1044
+ raise nx.NetworkXError(
1045
+ "Failed to relabel nodes: missing node labels found. Use relabel=False."
1046
+ ) from err
1047
+ x, y = zip(*mapping)
1048
+ if len(set(y)) != len(G):
1049
+ raise nx.NetworkXError(
1050
+ "Failed to relabel nodes: "
1051
+ "duplicate node labels found. "
1052
+ "Use relabel=False."
1053
+ )
1054
+ mapping = dict(mapping)
1055
+ H = nx.relabel_nodes(G, mapping)
1056
+ # relabel attributes
1057
+ for n in G:
1058
+ m = mapping[n]
1059
+ H.nodes[m]["id"] = n
1060
+ H.nodes[m].pop("label")
1061
+ if "pid" in H.nodes[m]:
1062
+ H.nodes[m]["pid"] = mapping[G.nodes[n]["pid"]]
1063
+ if "parents" in H.nodes[m]:
1064
+ H.nodes[m]["parents"] = [mapping[p] for p in G.nodes[n]["parents"]]
1065
+ return H
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/graphml.py ADDED
@@ -0,0 +1,1052 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ *******
3
+ GraphML
4
+ *******
5
+ Read and write graphs in GraphML format.
6
+
7
+ .. warning::
8
+
9
+ This parser uses the standard xml library present in Python, which is
10
+ insecure - see :external+python:mod:`xml` for additional information.
11
+ Only parse GraphML files you trust.
12
+
13
+ This implementation does not support mixed graphs (directed and unidirected
14
+ edges together), hyperedges, nested graphs, or ports.
15
+
16
+ "GraphML is a comprehensive and easy-to-use file format for graphs. It
17
+ consists of a language core to describe the structural properties of a
18
+ graph and a flexible extension mechanism to add application-specific
19
+ data. Its main features include support of
20
+
21
+ * directed, undirected, and mixed graphs,
22
+ * hypergraphs,
23
+ * hierarchical graphs,
24
+ * graphical representations,
25
+ * references to external data,
26
+ * application-specific attribute data, and
27
+ * light-weight parsers.
28
+
29
+ Unlike many other file formats for graphs, GraphML does not use a
30
+ custom syntax. Instead, it is based on XML and hence ideally suited as
31
+ a common denominator for all kinds of services generating, archiving,
32
+ or processing graphs."
33
+
34
+ http://graphml.graphdrawing.org/
35
+
36
+ Format
37
+ ------
38
+ GraphML is an XML format. See
39
+ http://graphml.graphdrawing.org/specification.html for the specification and
40
+ http://graphml.graphdrawing.org/primer/graphml-primer.html
41
+ for examples.
42
+ """
43
+ import warnings
44
+ from collections import defaultdict
45
+
46
+ import networkx as nx
47
+ from networkx.utils import open_file
48
+
49
+ __all__ = [
50
+ "write_graphml",
51
+ "read_graphml",
52
+ "generate_graphml",
53
+ "write_graphml_xml",
54
+ "write_graphml_lxml",
55
+ "parse_graphml",
56
+ "GraphMLWriter",
57
+ "GraphMLReader",
58
+ ]
59
+
60
+
61
+ @open_file(1, mode="wb")
62
+ def write_graphml_xml(
63
+ G,
64
+ path,
65
+ encoding="utf-8",
66
+ prettyprint=True,
67
+ infer_numeric_types=False,
68
+ named_key_ids=False,
69
+ edge_id_from_attribute=None,
70
+ ):
71
+ """Write G in GraphML XML format to path
72
+
73
+ Parameters
74
+ ----------
75
+ G : graph
76
+ A networkx graph
77
+ path : file or string
78
+ File or filename to write.
79
+ Filenames ending in .gz or .bz2 will be compressed.
80
+ encoding : string (optional)
81
+ Encoding for text data.
82
+ prettyprint : bool (optional)
83
+ If True use line breaks and indenting in output XML.
84
+ infer_numeric_types : boolean
85
+ Determine if numeric types should be generalized.
86
+ For example, if edges have both int and float 'weight' attributes,
87
+ we infer in GraphML that both are floats.
88
+ named_key_ids : bool (optional)
89
+ If True use attr.name as value for key elements' id attribute.
90
+ edge_id_from_attribute : dict key (optional)
91
+ If provided, the graphml edge id is set by looking up the corresponding
92
+ edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
93
+ the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.
94
+
95
+ Examples
96
+ --------
97
+ >>> G = nx.path_graph(4)
98
+ >>> nx.write_graphml(G, "test.graphml")
99
+
100
+ Notes
101
+ -----
102
+ This implementation does not support mixed graphs (directed
103
+ and unidirected edges together) hyperedges, nested graphs, or ports.
104
+ """
105
+ writer = GraphMLWriter(
106
+ encoding=encoding,
107
+ prettyprint=prettyprint,
108
+ infer_numeric_types=infer_numeric_types,
109
+ named_key_ids=named_key_ids,
110
+ edge_id_from_attribute=edge_id_from_attribute,
111
+ )
112
+ writer.add_graph_element(G)
113
+ writer.dump(path)
114
+
115
+
116
+ @open_file(1, mode="wb")
117
+ def write_graphml_lxml(
118
+ G,
119
+ path,
120
+ encoding="utf-8",
121
+ prettyprint=True,
122
+ infer_numeric_types=False,
123
+ named_key_ids=False,
124
+ edge_id_from_attribute=None,
125
+ ):
126
+ """Write G in GraphML XML format to path
127
+
128
+ This function uses the LXML framework and should be faster than
129
+ the version using the xml library.
130
+
131
+ Parameters
132
+ ----------
133
+ G : graph
134
+ A networkx graph
135
+ path : file or string
136
+ File or filename to write.
137
+ Filenames ending in .gz or .bz2 will be compressed.
138
+ encoding : string (optional)
139
+ Encoding for text data.
140
+ prettyprint : bool (optional)
141
+ If True use line breaks and indenting in output XML.
142
+ infer_numeric_types : boolean
143
+ Determine if numeric types should be generalized.
144
+ For example, if edges have both int and float 'weight' attributes,
145
+ we infer in GraphML that both are floats.
146
+ named_key_ids : bool (optional)
147
+ If True use attr.name as value for key elements' id attribute.
148
+ edge_id_from_attribute : dict key (optional)
149
+ If provided, the graphml edge id is set by looking up the corresponding
150
+ edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
151
+ the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.
152
+
153
+ Examples
154
+ --------
155
+ >>> G = nx.path_graph(4)
156
+ >>> nx.write_graphml_lxml(G, "fourpath.graphml")
157
+
158
+ Notes
159
+ -----
160
+ This implementation does not support mixed graphs (directed
161
+ and unidirected edges together) hyperedges, nested graphs, or ports.
162
+ """
163
+ try:
164
+ import lxml.etree as lxmletree
165
+ except ImportError:
166
+ return write_graphml_xml(
167
+ G,
168
+ path,
169
+ encoding,
170
+ prettyprint,
171
+ infer_numeric_types,
172
+ named_key_ids,
173
+ edge_id_from_attribute,
174
+ )
175
+
176
+ writer = GraphMLWriterLxml(
177
+ path,
178
+ graph=G,
179
+ encoding=encoding,
180
+ prettyprint=prettyprint,
181
+ infer_numeric_types=infer_numeric_types,
182
+ named_key_ids=named_key_ids,
183
+ edge_id_from_attribute=edge_id_from_attribute,
184
+ )
185
+ writer.dump()
186
+
187
+
188
+ def generate_graphml(
189
+ G,
190
+ encoding="utf-8",
191
+ prettyprint=True,
192
+ named_key_ids=False,
193
+ edge_id_from_attribute=None,
194
+ ):
195
+ """Generate GraphML lines for G
196
+
197
+ Parameters
198
+ ----------
199
+ G : graph
200
+ A networkx graph
201
+ encoding : string (optional)
202
+ Encoding for text data.
203
+ prettyprint : bool (optional)
204
+ If True use line breaks and indenting in output XML.
205
+ named_key_ids : bool (optional)
206
+ If True use attr.name as value for key elements' id attribute.
207
+ edge_id_from_attribute : dict key (optional)
208
+ If provided, the graphml edge id is set by looking up the corresponding
209
+ edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
210
+ the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.
211
+
212
+ Examples
213
+ --------
214
+ >>> G = nx.path_graph(4)
215
+ >>> linefeed = chr(10) # linefeed = \n
216
+ >>> s = linefeed.join(nx.generate_graphml(G))
217
+ >>> for line in nx.generate_graphml(G): # doctest: +SKIP
218
+ ... print(line)
219
+
220
+ Notes
221
+ -----
222
+ This implementation does not support mixed graphs (directed and unidirected
223
+ edges together) hyperedges, nested graphs, or ports.
224
+ """
225
+ writer = GraphMLWriter(
226
+ encoding=encoding,
227
+ prettyprint=prettyprint,
228
+ named_key_ids=named_key_ids,
229
+ edge_id_from_attribute=edge_id_from_attribute,
230
+ )
231
+ writer.add_graph_element(G)
232
+ yield from str(writer).splitlines()
233
+
234
+
235
+ @open_file(0, mode="rb")
236
+ @nx._dispatchable(graphs=None, returns_graph=True)
237
+ def read_graphml(path, node_type=str, edge_key_type=int, force_multigraph=False):
238
+ """Read graph in GraphML format from path.
239
+
240
+ Parameters
241
+ ----------
242
+ path : file or string
243
+ File or filename to write.
244
+ Filenames ending in .gz or .bz2 will be compressed.
245
+
246
+ node_type: Python type (default: str)
247
+ Convert node ids to this type
248
+
249
+ edge_key_type: Python type (default: int)
250
+ Convert graphml edge ids to this type. Multigraphs use id as edge key.
251
+ Non-multigraphs add to edge attribute dict with name "id".
252
+
253
+ force_multigraph : bool (default: False)
254
+ If True, return a multigraph with edge keys. If False (the default)
255
+ return a multigraph when multiedges are in the graph.
256
+
257
+ Returns
258
+ -------
259
+ graph: NetworkX graph
260
+ If parallel edges are present or `force_multigraph=True` then
261
+ a MultiGraph or MultiDiGraph is returned. Otherwise a Graph/DiGraph.
262
+ The returned graph is directed if the file indicates it should be.
263
+
264
+ Notes
265
+ -----
266
+ Default node and edge attributes are not propagated to each node and edge.
267
+ They can be obtained from `G.graph` and applied to node and edge attributes
268
+ if desired using something like this:
269
+
270
+ >>> default_color = G.graph["node_default"]["color"] # doctest: +SKIP
271
+ >>> for node, data in G.nodes(data=True): # doctest: +SKIP
272
+ ... if "color" not in data:
273
+ ... data["color"] = default_color
274
+ >>> default_color = G.graph["edge_default"]["color"] # doctest: +SKIP
275
+ >>> for u, v, data in G.edges(data=True): # doctest: +SKIP
276
+ ... if "color" not in data:
277
+ ... data["color"] = default_color
278
+
279
+ This implementation does not support mixed graphs (directed and unidirected
280
+ edges together), hypergraphs, nested graphs, or ports.
281
+
282
+ For multigraphs the GraphML edge "id" will be used as the edge
283
+ key. If not specified then they "key" attribute will be used. If
284
+ there is no "key" attribute a default NetworkX multigraph edge key
285
+ will be provided.
286
+
287
+ Files with the yEd "yfiles" extension can be read. The type of the node's
288
+ shape is preserved in the `shape_type` node attribute.
289
+
290
+ yEd compressed files ("file.graphmlz" extension) can be read by renaming
291
+ the file to "file.graphml.gz".
292
+
293
+ """
294
+ reader = GraphMLReader(node_type, edge_key_type, force_multigraph)
295
+ # need to check for multiple graphs
296
+ glist = list(reader(path=path))
297
+ if len(glist) == 0:
298
+ # If no graph comes back, try looking for an incomplete header
299
+ header = b'<graphml xmlns="http://graphml.graphdrawing.org/xmlns">'
300
+ path.seek(0)
301
+ old_bytes = path.read()
302
+ new_bytes = old_bytes.replace(b"<graphml>", header)
303
+ glist = list(reader(string=new_bytes))
304
+ if len(glist) == 0:
305
+ raise nx.NetworkXError("file not successfully read as graphml")
306
+ return glist[0]
307
+
308
+
309
+ @nx._dispatchable(graphs=None, returns_graph=True)
310
+ def parse_graphml(
311
+ graphml_string, node_type=str, edge_key_type=int, force_multigraph=False
312
+ ):
313
+ """Read graph in GraphML format from string.
314
+
315
+ Parameters
316
+ ----------
317
+ graphml_string : string
318
+ String containing graphml information
319
+ (e.g., contents of a graphml file).
320
+
321
+ node_type: Python type (default: str)
322
+ Convert node ids to this type
323
+
324
+ edge_key_type: Python type (default: int)
325
+ Convert graphml edge ids to this type. Multigraphs use id as edge key.
326
+ Non-multigraphs add to edge attribute dict with name "id".
327
+
328
+ force_multigraph : bool (default: False)
329
+ If True, return a multigraph with edge keys. If False (the default)
330
+ return a multigraph when multiedges are in the graph.
331
+
332
+
333
+ Returns
334
+ -------
335
+ graph: NetworkX graph
336
+ If no parallel edges are found a Graph or DiGraph is returned.
337
+ Otherwise a MultiGraph or MultiDiGraph is returned.
338
+
339
+ Examples
340
+ --------
341
+ >>> G = nx.path_graph(4)
342
+ >>> linefeed = chr(10) # linefeed = \n
343
+ >>> s = linefeed.join(nx.generate_graphml(G))
344
+ >>> H = nx.parse_graphml(s)
345
+
346
+ Notes
347
+ -----
348
+ Default node and edge attributes are not propagated to each node and edge.
349
+ They can be obtained from `G.graph` and applied to node and edge attributes
350
+ if desired using something like this:
351
+
352
+ >>> default_color = G.graph["node_default"]["color"] # doctest: +SKIP
353
+ >>> for node, data in G.nodes(data=True): # doctest: +SKIP
354
+ ... if "color" not in data:
355
+ ... data["color"] = default_color
356
+ >>> default_color = G.graph["edge_default"]["color"] # doctest: +SKIP
357
+ >>> for u, v, data in G.edges(data=True): # doctest: +SKIP
358
+ ... if "color" not in data:
359
+ ... data["color"] = default_color
360
+
361
+ This implementation does not support mixed graphs (directed and unidirected
362
+ edges together), hypergraphs, nested graphs, or ports.
363
+
364
+ For multigraphs the GraphML edge "id" will be used as the edge
365
+ key. If not specified then they "key" attribute will be used. If
366
+ there is no "key" attribute a default NetworkX multigraph edge key
367
+ will be provided.
368
+
369
+ """
370
+ reader = GraphMLReader(node_type, edge_key_type, force_multigraph)
371
+ # need to check for multiple graphs
372
+ glist = list(reader(string=graphml_string))
373
+ if len(glist) == 0:
374
+ # If no graph comes back, try looking for an incomplete header
375
+ header = '<graphml xmlns="http://graphml.graphdrawing.org/xmlns">'
376
+ new_string = graphml_string.replace("<graphml>", header)
377
+ glist = list(reader(string=new_string))
378
+ if len(glist) == 0:
379
+ raise nx.NetworkXError("file not successfully read as graphml")
380
+ return glist[0]
381
+
382
+
383
+ class GraphML:
384
+ NS_GRAPHML = "http://graphml.graphdrawing.org/xmlns"
385
+ NS_XSI = "http://www.w3.org/2001/XMLSchema-instance"
386
+ # xmlns:y="http://www.yworks.com/xml/graphml"
387
+ NS_Y = "http://www.yworks.com/xml/graphml"
388
+ SCHEMALOCATION = " ".join(
389
+ [
390
+ "http://graphml.graphdrawing.org/xmlns",
391
+ "http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd",
392
+ ]
393
+ )
394
+
395
+ def construct_types(self):
396
+ types = [
397
+ (int, "integer"), # for Gephi GraphML bug
398
+ (str, "yfiles"),
399
+ (str, "string"),
400
+ (int, "int"),
401
+ (int, "long"),
402
+ (float, "float"),
403
+ (float, "double"),
404
+ (bool, "boolean"),
405
+ ]
406
+
407
+ # These additions to types allow writing numpy types
408
+ try:
409
+ import numpy as np
410
+ except:
411
+ pass
412
+ else:
413
+ # prepend so that python types are created upon read (last entry wins)
414
+ types = [
415
+ (np.float64, "float"),
416
+ (np.float32, "float"),
417
+ (np.float16, "float"),
418
+ (np.int_, "int"),
419
+ (np.int8, "int"),
420
+ (np.int16, "int"),
421
+ (np.int32, "int"),
422
+ (np.int64, "int"),
423
+ (np.uint8, "int"),
424
+ (np.uint16, "int"),
425
+ (np.uint32, "int"),
426
+ (np.uint64, "int"),
427
+ (np.int_, "int"),
428
+ (np.intc, "int"),
429
+ (np.intp, "int"),
430
+ ] + types
431
+
432
+ self.xml_type = dict(types)
433
+ self.python_type = dict(reversed(a) for a in types)
434
+
435
+ # This page says that data types in GraphML follow Java(TM).
436
+ # http://graphml.graphdrawing.org/primer/graphml-primer.html#AttributesDefinition
437
+ # true and false are the only boolean literals:
438
+ # http://en.wikibooks.org/wiki/Java_Programming/Literals#Boolean_Literals
439
+ convert_bool = {
440
+ # We use data.lower() in actual use.
441
+ "true": True,
442
+ "false": False,
443
+ # Include integer strings for convenience.
444
+ "0": False,
445
+ 0: False,
446
+ "1": True,
447
+ 1: True,
448
+ }
449
+
450
+ def get_xml_type(self, key):
451
+ """Wrapper around the xml_type dict that raises a more informative
452
+ exception message when a user attempts to use data of a type not
453
+ supported by GraphML."""
454
+ try:
455
+ return self.xml_type[key]
456
+ except KeyError as err:
457
+ raise TypeError(
458
+ f"GraphML does not support type {key} as data values."
459
+ ) from err
460
+
461
+
462
+ class GraphMLWriter(GraphML):
463
+ def __init__(
464
+ self,
465
+ graph=None,
466
+ encoding="utf-8",
467
+ prettyprint=True,
468
+ infer_numeric_types=False,
469
+ named_key_ids=False,
470
+ edge_id_from_attribute=None,
471
+ ):
472
+ self.construct_types()
473
+ from xml.etree.ElementTree import Element
474
+
475
+ self.myElement = Element
476
+
477
+ self.infer_numeric_types = infer_numeric_types
478
+ self.prettyprint = prettyprint
479
+ self.named_key_ids = named_key_ids
480
+ self.edge_id_from_attribute = edge_id_from_attribute
481
+ self.encoding = encoding
482
+ self.xml = self.myElement(
483
+ "graphml",
484
+ {
485
+ "xmlns": self.NS_GRAPHML,
486
+ "xmlns:xsi": self.NS_XSI,
487
+ "xsi:schemaLocation": self.SCHEMALOCATION,
488
+ },
489
+ )
490
+ self.keys = {}
491
+ self.attributes = defaultdict(list)
492
+ self.attribute_types = defaultdict(set)
493
+
494
+ if graph is not None:
495
+ self.add_graph_element(graph)
496
+
497
+ def __str__(self):
498
+ from xml.etree.ElementTree import tostring
499
+
500
+ if self.prettyprint:
501
+ self.indent(self.xml)
502
+ s = tostring(self.xml).decode(self.encoding)
503
+ return s
504
+
505
+ def attr_type(self, name, scope, value):
506
+ """Infer the attribute type of data named name. Currently this only
507
+ supports inference of numeric types.
508
+
509
+ If self.infer_numeric_types is false, type is used. Otherwise, pick the
510
+ most general of types found across all values with name and scope. This
511
+ means edges with data named 'weight' are treated separately from nodes
512
+ with data named 'weight'.
513
+ """
514
+ if self.infer_numeric_types:
515
+ types = self.attribute_types[(name, scope)]
516
+
517
+ if len(types) > 1:
518
+ types = {self.get_xml_type(t) for t in types}
519
+ if "string" in types:
520
+ return str
521
+ elif "float" in types or "double" in types:
522
+ return float
523
+ else:
524
+ return int
525
+ else:
526
+ return list(types)[0]
527
+ else:
528
+ return type(value)
529
+
530
+ def get_key(self, name, attr_type, scope, default):
531
+ keys_key = (name, attr_type, scope)
532
+ try:
533
+ return self.keys[keys_key]
534
+ except KeyError:
535
+ if self.named_key_ids:
536
+ new_id = name
537
+ else:
538
+ new_id = f"d{len(list(self.keys))}"
539
+
540
+ self.keys[keys_key] = new_id
541
+ key_kwargs = {
542
+ "id": new_id,
543
+ "for": scope,
544
+ "attr.name": name,
545
+ "attr.type": attr_type,
546
+ }
547
+ key_element = self.myElement("key", **key_kwargs)
548
+ # add subelement for data default value if present
549
+ if default is not None:
550
+ default_element = self.myElement("default")
551
+ default_element.text = str(default)
552
+ key_element.append(default_element)
553
+ self.xml.insert(0, key_element)
554
+ return new_id
555
+
556
+ def add_data(self, name, element_type, value, scope="all", default=None):
557
+ """
558
+ Make a data element for an edge or a node. Keep a log of the
559
+ type in the keys table.
560
+ """
561
+ if element_type not in self.xml_type:
562
+ raise nx.NetworkXError(
563
+ f"GraphML writer does not support {element_type} as data values."
564
+ )
565
+ keyid = self.get_key(name, self.get_xml_type(element_type), scope, default)
566
+ data_element = self.myElement("data", key=keyid)
567
+ data_element.text = str(value)
568
+ return data_element
569
+
570
+ def add_attributes(self, scope, xml_obj, data, default):
571
+ """Appends attribute data to edges or nodes, and stores type information
572
+ to be added later. See add_graph_element.
573
+ """
574
+ for k, v in data.items():
575
+ self.attribute_types[(str(k), scope)].add(type(v))
576
+ self.attributes[xml_obj].append([k, v, scope, default.get(k)])
577
+
578
+ def add_nodes(self, G, graph_element):
579
+ default = G.graph.get("node_default", {})
580
+ for node, data in G.nodes(data=True):
581
+ node_element = self.myElement("node", id=str(node))
582
+ self.add_attributes("node", node_element, data, default)
583
+ graph_element.append(node_element)
584
+
585
+ def add_edges(self, G, graph_element):
586
+ if G.is_multigraph():
587
+ for u, v, key, data in G.edges(data=True, keys=True):
588
+ edge_element = self.myElement(
589
+ "edge",
590
+ source=str(u),
591
+ target=str(v),
592
+ id=str(data.get(self.edge_id_from_attribute))
593
+ if self.edge_id_from_attribute
594
+ and self.edge_id_from_attribute in data
595
+ else str(key),
596
+ )
597
+ default = G.graph.get("edge_default", {})
598
+ self.add_attributes("edge", edge_element, data, default)
599
+ graph_element.append(edge_element)
600
+ else:
601
+ for u, v, data in G.edges(data=True):
602
+ if self.edge_id_from_attribute and self.edge_id_from_attribute in data:
603
+ # select attribute to be edge id
604
+ edge_element = self.myElement(
605
+ "edge",
606
+ source=str(u),
607
+ target=str(v),
608
+ id=str(data.get(self.edge_id_from_attribute)),
609
+ )
610
+ else:
611
+ # default: no edge id
612
+ edge_element = self.myElement("edge", source=str(u), target=str(v))
613
+ default = G.graph.get("edge_default", {})
614
+ self.add_attributes("edge", edge_element, data, default)
615
+ graph_element.append(edge_element)
616
+
617
+ def add_graph_element(self, G):
618
+ """
619
+ Serialize graph G in GraphML to the stream.
620
+ """
621
+ if G.is_directed():
622
+ default_edge_type = "directed"
623
+ else:
624
+ default_edge_type = "undirected"
625
+
626
+ graphid = G.graph.pop("id", None)
627
+ if graphid is None:
628
+ graph_element = self.myElement("graph", edgedefault=default_edge_type)
629
+ else:
630
+ graph_element = self.myElement(
631
+ "graph", edgedefault=default_edge_type, id=graphid
632
+ )
633
+ default = {}
634
+ data = {
635
+ k: v
636
+ for (k, v) in G.graph.items()
637
+ if k not in ["node_default", "edge_default"]
638
+ }
639
+ self.add_attributes("graph", graph_element, data, default)
640
+ self.add_nodes(G, graph_element)
641
+ self.add_edges(G, graph_element)
642
+
643
+ # self.attributes contains a mapping from XML Objects to a list of
644
+ # data that needs to be added to them.
645
+ # We postpone processing in order to do type inference/generalization.
646
+ # See self.attr_type
647
+ for xml_obj, data in self.attributes.items():
648
+ for k, v, scope, default in data:
649
+ xml_obj.append(
650
+ self.add_data(
651
+ str(k), self.attr_type(k, scope, v), str(v), scope, default
652
+ )
653
+ )
654
+ self.xml.append(graph_element)
655
+
656
+ def add_graphs(self, graph_list):
657
+ """Add many graphs to this GraphML document."""
658
+ for G in graph_list:
659
+ self.add_graph_element(G)
660
+
661
+ def dump(self, stream):
662
+ from xml.etree.ElementTree import ElementTree
663
+
664
+ if self.prettyprint:
665
+ self.indent(self.xml)
666
+ document = ElementTree(self.xml)
667
+ document.write(stream, encoding=self.encoding, xml_declaration=True)
668
+
669
+ def indent(self, elem, level=0):
670
+ # in-place prettyprint formatter
671
+ i = "\n" + level * " "
672
+ if len(elem):
673
+ if not elem.text or not elem.text.strip():
674
+ elem.text = i + " "
675
+ if not elem.tail or not elem.tail.strip():
676
+ elem.tail = i
677
+ for elem in elem:
678
+ self.indent(elem, level + 1)
679
+ if not elem.tail or not elem.tail.strip():
680
+ elem.tail = i
681
+ else:
682
+ if level and (not elem.tail or not elem.tail.strip()):
683
+ elem.tail = i
684
+
685
+
686
+ class IncrementalElement:
687
+ """Wrapper for _IncrementalWriter providing an Element like interface.
688
+
689
+ This wrapper does not intend to be a complete implementation but rather to
690
+ deal with those calls used in GraphMLWriter.
691
+ """
692
+
693
+ def __init__(self, xml, prettyprint):
694
+ self.xml = xml
695
+ self.prettyprint = prettyprint
696
+
697
+ def append(self, element):
698
+ self.xml.write(element, pretty_print=self.prettyprint)
699
+
700
+
701
+ class GraphMLWriterLxml(GraphMLWriter):
702
+ def __init__(
703
+ self,
704
+ path,
705
+ graph=None,
706
+ encoding="utf-8",
707
+ prettyprint=True,
708
+ infer_numeric_types=False,
709
+ named_key_ids=False,
710
+ edge_id_from_attribute=None,
711
+ ):
712
+ self.construct_types()
713
+ import lxml.etree as lxmletree
714
+
715
+ self.myElement = lxmletree.Element
716
+
717
+ self._encoding = encoding
718
+ self._prettyprint = prettyprint
719
+ self.named_key_ids = named_key_ids
720
+ self.edge_id_from_attribute = edge_id_from_attribute
721
+ self.infer_numeric_types = infer_numeric_types
722
+
723
+ self._xml_base = lxmletree.xmlfile(path, encoding=encoding)
724
+ self._xml = self._xml_base.__enter__()
725
+ self._xml.write_declaration()
726
+
727
+ # We need to have a xml variable that support insertion. This call is
728
+ # used for adding the keys to the document.
729
+ # We will store those keys in a plain list, and then after the graph
730
+ # element is closed we will add them to the main graphml element.
731
+ self.xml = []
732
+ self._keys = self.xml
733
+ self._graphml = self._xml.element(
734
+ "graphml",
735
+ {
736
+ "xmlns": self.NS_GRAPHML,
737
+ "xmlns:xsi": self.NS_XSI,
738
+ "xsi:schemaLocation": self.SCHEMALOCATION,
739
+ },
740
+ )
741
+ self._graphml.__enter__()
742
+ self.keys = {}
743
+ self.attribute_types = defaultdict(set)
744
+
745
+ if graph is not None:
746
+ self.add_graph_element(graph)
747
+
748
+ def add_graph_element(self, G):
749
+ """
750
+ Serialize graph G in GraphML to the stream.
751
+ """
752
+ if G.is_directed():
753
+ default_edge_type = "directed"
754
+ else:
755
+ default_edge_type = "undirected"
756
+
757
+ graphid = G.graph.pop("id", None)
758
+ if graphid is None:
759
+ graph_element = self._xml.element("graph", edgedefault=default_edge_type)
760
+ else:
761
+ graph_element = self._xml.element(
762
+ "graph", edgedefault=default_edge_type, id=graphid
763
+ )
764
+
765
+ # gather attributes types for the whole graph
766
+ # to find the most general numeric format needed.
767
+ # Then pass through attributes to create key_id for each.
768
+ graphdata = {
769
+ k: v
770
+ for k, v in G.graph.items()
771
+ if k not in ("node_default", "edge_default")
772
+ }
773
+ node_default = G.graph.get("node_default", {})
774
+ edge_default = G.graph.get("edge_default", {})
775
+ # Graph attributes
776
+ for k, v in graphdata.items():
777
+ self.attribute_types[(str(k), "graph")].add(type(v))
778
+ for k, v in graphdata.items():
779
+ element_type = self.get_xml_type(self.attr_type(k, "graph", v))
780
+ self.get_key(str(k), element_type, "graph", None)
781
+ # Nodes and data
782
+ for node, d in G.nodes(data=True):
783
+ for k, v in d.items():
784
+ self.attribute_types[(str(k), "node")].add(type(v))
785
+ for node, d in G.nodes(data=True):
786
+ for k, v in d.items():
787
+ T = self.get_xml_type(self.attr_type(k, "node", v))
788
+ self.get_key(str(k), T, "node", node_default.get(k))
789
+ # Edges and data
790
+ if G.is_multigraph():
791
+ for u, v, ekey, d in G.edges(keys=True, data=True):
792
+ for k, v in d.items():
793
+ self.attribute_types[(str(k), "edge")].add(type(v))
794
+ for u, v, ekey, d in G.edges(keys=True, data=True):
795
+ for k, v in d.items():
796
+ T = self.get_xml_type(self.attr_type(k, "edge", v))
797
+ self.get_key(str(k), T, "edge", edge_default.get(k))
798
+ else:
799
+ for u, v, d in G.edges(data=True):
800
+ for k, v in d.items():
801
+ self.attribute_types[(str(k), "edge")].add(type(v))
802
+ for u, v, d in G.edges(data=True):
803
+ for k, v in d.items():
804
+ T = self.get_xml_type(self.attr_type(k, "edge", v))
805
+ self.get_key(str(k), T, "edge", edge_default.get(k))
806
+
807
+ # Now add attribute keys to the xml file
808
+ for key in self.xml:
809
+ self._xml.write(key, pretty_print=self._prettyprint)
810
+
811
+ # The incremental_writer writes each node/edge as it is created
812
+ incremental_writer = IncrementalElement(self._xml, self._prettyprint)
813
+ with graph_element:
814
+ self.add_attributes("graph", incremental_writer, graphdata, {})
815
+ self.add_nodes(G, incremental_writer) # adds attributes too
816
+ self.add_edges(G, incremental_writer) # adds attributes too
817
+
818
+ def add_attributes(self, scope, xml_obj, data, default):
819
+ """Appends attribute data."""
820
+ for k, v in data.items():
821
+ data_element = self.add_data(
822
+ str(k), self.attr_type(str(k), scope, v), str(v), scope, default.get(k)
823
+ )
824
+ xml_obj.append(data_element)
825
+
826
+ def __str__(self):
827
+ return object.__str__(self)
828
+
829
+ def dump(self, stream=None):
830
+ self._graphml.__exit__(None, None, None)
831
+ self._xml_base.__exit__(None, None, None)
832
+
833
+
834
+ # default is lxml is present.
835
+ write_graphml = write_graphml_lxml
836
+
837
+
838
+ class GraphMLReader(GraphML):
839
+ """Read a GraphML document. Produces NetworkX graph objects."""
840
+
841
+ def __init__(self, node_type=str, edge_key_type=int, force_multigraph=False):
842
+ self.construct_types()
843
+ self.node_type = node_type
844
+ self.edge_key_type = edge_key_type
845
+ self.multigraph = force_multigraph # If False, test for multiedges
846
+ self.edge_ids = {} # dict mapping (u,v) tuples to edge id attributes
847
+
848
+ def __call__(self, path=None, string=None):
849
+ from xml.etree.ElementTree import ElementTree, fromstring
850
+
851
+ if path is not None:
852
+ self.xml = ElementTree(file=path)
853
+ elif string is not None:
854
+ self.xml = fromstring(string)
855
+ else:
856
+ raise ValueError("Must specify either 'path' or 'string' as kwarg")
857
+ (keys, defaults) = self.find_graphml_keys(self.xml)
858
+ for g in self.xml.findall(f"{{{self.NS_GRAPHML}}}graph"):
859
+ yield self.make_graph(g, keys, defaults)
860
+
861
+ def make_graph(self, graph_xml, graphml_keys, defaults, G=None):
862
+ # set default graph type
863
+ edgedefault = graph_xml.get("edgedefault", None)
864
+ if G is None:
865
+ if edgedefault == "directed":
866
+ G = nx.MultiDiGraph()
867
+ else:
868
+ G = nx.MultiGraph()
869
+ # set defaults for graph attributes
870
+ G.graph["node_default"] = {}
871
+ G.graph["edge_default"] = {}
872
+ for key_id, value in defaults.items():
873
+ key_for = graphml_keys[key_id]["for"]
874
+ name = graphml_keys[key_id]["name"]
875
+ python_type = graphml_keys[key_id]["type"]
876
+ if key_for == "node":
877
+ G.graph["node_default"].update({name: python_type(value)})
878
+ if key_for == "edge":
879
+ G.graph["edge_default"].update({name: python_type(value)})
880
+ # hyperedges are not supported
881
+ hyperedge = graph_xml.find(f"{{{self.NS_GRAPHML}}}hyperedge")
882
+ if hyperedge is not None:
883
+ raise nx.NetworkXError("GraphML reader doesn't support hyperedges")
884
+ # add nodes
885
+ for node_xml in graph_xml.findall(f"{{{self.NS_GRAPHML}}}node"):
886
+ self.add_node(G, node_xml, graphml_keys, defaults)
887
+ # add edges
888
+ for edge_xml in graph_xml.findall(f"{{{self.NS_GRAPHML}}}edge"):
889
+ self.add_edge(G, edge_xml, graphml_keys)
890
+ # add graph data
891
+ data = self.decode_data_elements(graphml_keys, graph_xml)
892
+ G.graph.update(data)
893
+
894
+ # switch to Graph or DiGraph if no parallel edges were found
895
+ if self.multigraph:
896
+ return G
897
+
898
+ G = nx.DiGraph(G) if G.is_directed() else nx.Graph(G)
899
+ # add explicit edge "id" from file as attribute in NX graph.
900
+ nx.set_edge_attributes(G, values=self.edge_ids, name="id")
901
+ return G
902
+
903
+ def add_node(self, G, node_xml, graphml_keys, defaults):
904
+ """Add a node to the graph."""
905
+ # warn on finding unsupported ports tag
906
+ ports = node_xml.find(f"{{{self.NS_GRAPHML}}}port")
907
+ if ports is not None:
908
+ warnings.warn("GraphML port tag not supported.")
909
+ # find the node by id and cast it to the appropriate type
910
+ node_id = self.node_type(node_xml.get("id"))
911
+ # get data/attributes for node
912
+ data = self.decode_data_elements(graphml_keys, node_xml)
913
+ G.add_node(node_id, **data)
914
+ # get child nodes
915
+ if node_xml.attrib.get("yfiles.foldertype") == "group":
916
+ graph_xml = node_xml.find(f"{{{self.NS_GRAPHML}}}graph")
917
+ self.make_graph(graph_xml, graphml_keys, defaults, G)
918
+
919
+ def add_edge(self, G, edge_element, graphml_keys):
920
+ """Add an edge to the graph."""
921
+ # warn on finding unsupported ports tag
922
+ ports = edge_element.find(f"{{{self.NS_GRAPHML}}}port")
923
+ if ports is not None:
924
+ warnings.warn("GraphML port tag not supported.")
925
+
926
+ # raise error if we find mixed directed and undirected edges
927
+ directed = edge_element.get("directed")
928
+ if G.is_directed() and directed == "false":
929
+ msg = "directed=false edge found in directed graph."
930
+ raise nx.NetworkXError(msg)
931
+ if (not G.is_directed()) and directed == "true":
932
+ msg = "directed=true edge found in undirected graph."
933
+ raise nx.NetworkXError(msg)
934
+
935
+ source = self.node_type(edge_element.get("source"))
936
+ target = self.node_type(edge_element.get("target"))
937
+ data = self.decode_data_elements(graphml_keys, edge_element)
938
+ # GraphML stores edge ids as an attribute
939
+ # NetworkX uses them as keys in multigraphs too if no key
940
+ # attribute is specified
941
+ edge_id = edge_element.get("id")
942
+ if edge_id:
943
+ # self.edge_ids is used by `make_graph` method for non-multigraphs
944
+ self.edge_ids[source, target] = edge_id
945
+ try:
946
+ edge_id = self.edge_key_type(edge_id)
947
+ except ValueError: # Could not convert.
948
+ pass
949
+ else:
950
+ edge_id = data.get("key")
951
+
952
+ if G.has_edge(source, target):
953
+ # mark this as a multigraph
954
+ self.multigraph = True
955
+
956
+ # Use add_edges_from to avoid error with add_edge when `'key' in data`
957
+ # Note there is only one edge here...
958
+ G.add_edges_from([(source, target, edge_id, data)])
959
+
960
+ def decode_data_elements(self, graphml_keys, obj_xml):
961
+ """Use the key information to decode the data XML if present."""
962
+ data = {}
963
+ for data_element in obj_xml.findall(f"{{{self.NS_GRAPHML}}}data"):
964
+ key = data_element.get("key")
965
+ try:
966
+ data_name = graphml_keys[key]["name"]
967
+ data_type = graphml_keys[key]["type"]
968
+ except KeyError as err:
969
+ raise nx.NetworkXError(f"Bad GraphML data: no key {key}") from err
970
+ text = data_element.text
971
+ # assume anything with subelements is a yfiles extension
972
+ if text is not None and len(list(data_element)) == 0:
973
+ if data_type == bool:
974
+ # Ignore cases.
975
+ # http://docs.oracle.com/javase/6/docs/api/java/lang/
976
+ # Boolean.html#parseBoolean%28java.lang.String%29
977
+ data[data_name] = self.convert_bool[text.lower()]
978
+ else:
979
+ data[data_name] = data_type(text)
980
+ elif len(list(data_element)) > 0:
981
+ # Assume yfiles as subelements, try to extract node_label
982
+ node_label = None
983
+ # set GenericNode's configuration as shape type
984
+ gn = data_element.find(f"{{{self.NS_Y}}}GenericNode")
985
+ if gn is not None:
986
+ data["shape_type"] = gn.get("configuration")
987
+ for node_type in ["GenericNode", "ShapeNode", "SVGNode", "ImageNode"]:
988
+ pref = f"{{{self.NS_Y}}}{node_type}/{{{self.NS_Y}}}"
989
+ geometry = data_element.find(f"{pref}Geometry")
990
+ if geometry is not None:
991
+ data["x"] = geometry.get("x")
992
+ data["y"] = geometry.get("y")
993
+ if node_label is None:
994
+ node_label = data_element.find(f"{pref}NodeLabel")
995
+ shape = data_element.find(f"{pref}Shape")
996
+ if shape is not None:
997
+ data["shape_type"] = shape.get("type")
998
+ if node_label is not None:
999
+ data["label"] = node_label.text
1000
+
1001
+ # check all the different types of edges available in yEd.
1002
+ for edge_type in [
1003
+ "PolyLineEdge",
1004
+ "SplineEdge",
1005
+ "QuadCurveEdge",
1006
+ "BezierEdge",
1007
+ "ArcEdge",
1008
+ ]:
1009
+ pref = f"{{{self.NS_Y}}}{edge_type}/{{{self.NS_Y}}}"
1010
+ edge_label = data_element.find(f"{pref}EdgeLabel")
1011
+ if edge_label is not None:
1012
+ break
1013
+ if edge_label is not None:
1014
+ data["label"] = edge_label.text
1015
+ elif text is None:
1016
+ data[data_name] = ""
1017
+ return data
1018
+
1019
+ def find_graphml_keys(self, graph_element):
1020
+ """Extracts all the keys and key defaults from the xml."""
1021
+ graphml_keys = {}
1022
+ graphml_key_defaults = {}
1023
+ for k in graph_element.findall(f"{{{self.NS_GRAPHML}}}key"):
1024
+ attr_id = k.get("id")
1025
+ attr_type = k.get("attr.type")
1026
+ attr_name = k.get("attr.name")
1027
+ yfiles_type = k.get("yfiles.type")
1028
+ if yfiles_type is not None:
1029
+ attr_name = yfiles_type
1030
+ attr_type = "yfiles"
1031
+ if attr_type is None:
1032
+ attr_type = "string"
1033
+ warnings.warn(f"No key type for id {attr_id}. Using string")
1034
+ if attr_name is None:
1035
+ raise nx.NetworkXError(f"Unknown key for id {attr_id}.")
1036
+ graphml_keys[attr_id] = {
1037
+ "name": attr_name,
1038
+ "type": self.python_type[attr_type],
1039
+ "for": k.get("for"),
1040
+ }
1041
+ # check for "default" sub-element of key element
1042
+ default = k.find(f"{{{self.NS_GRAPHML}}}default")
1043
+ if default is not None:
1044
+ # Handle default values identically to data element values
1045
+ python_type = graphml_keys[attr_id]["type"]
1046
+ if python_type == bool:
1047
+ graphml_key_defaults[attr_id] = self.convert_bool[
1048
+ default.text.lower()
1049
+ ]
1050
+ else:
1051
+ graphml_key_defaults[attr_id] = python_type(default.text)
1052
+ return graphml_keys, graphml_key_defaults
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/__init__.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ *********
3
+ JSON data
4
+ *********
5
+ Generate and parse JSON serializable data for NetworkX graphs.
6
+
7
+ These formats are suitable for use with the d3.js examples https://d3js.org/
8
+
9
+ The three formats that you can generate with NetworkX are:
10
+
11
+ - node-link like in the d3.js example https://bl.ocks.org/mbostock/4062045
12
+ - tree like in the d3.js example https://bl.ocks.org/mbostock/4063550
13
+ - adjacency like in the d3.js example https://bost.ocks.org/mike/miserables/
14
+ """
15
+ from networkx.readwrite.json_graph.node_link import *
16
+ from networkx.readwrite.json_graph.adjacency import *
17
+ from networkx.readwrite.json_graph.tree import *
18
+ from networkx.readwrite.json_graph.cytoscape import *
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/adjacency.cpython-310.pyc ADDED
Binary file (4.15 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/__pycache__/cytoscape.cpython-310.pyc ADDED
Binary file (4.87 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/adjacency.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+
3
+ __all__ = ["adjacency_data", "adjacency_graph"]
4
+
5
+ _attrs = {"id": "id", "key": "key"}
6
+
7
+
8
+ def adjacency_data(G, attrs=_attrs):
9
+ """Returns data in adjacency format that is suitable for JSON serialization
10
+ and use in JavaScript documents.
11
+
12
+ Parameters
13
+ ----------
14
+ G : NetworkX graph
15
+
16
+ attrs : dict
17
+ A dictionary that contains two keys 'id' and 'key'. The corresponding
18
+ values provide the attribute names for storing NetworkX-internal graph
19
+ data. The values should be unique. Default value:
20
+ :samp:`dict(id='id', key='key')`.
21
+
22
+ If some user-defined graph data use these attribute names as data keys,
23
+ they may be silently dropped.
24
+
25
+ Returns
26
+ -------
27
+ data : dict
28
+ A dictionary with adjacency formatted data.
29
+
30
+ Raises
31
+ ------
32
+ NetworkXError
33
+ If values in attrs are not unique.
34
+
35
+ Examples
36
+ --------
37
+ >>> from networkx.readwrite import json_graph
38
+ >>> G = nx.Graph([(1, 2)])
39
+ >>> data = json_graph.adjacency_data(G)
40
+
41
+ To serialize with json
42
+
43
+ >>> import json
44
+ >>> s = json.dumps(data)
45
+
46
+ Notes
47
+ -----
48
+ Graph, node, and link attributes will be written when using this format
49
+ but attribute keys must be strings if you want to serialize the resulting
50
+ data with JSON.
51
+
52
+ The default value of attrs will be changed in a future release of NetworkX.
53
+
54
+ See Also
55
+ --------
56
+ adjacency_graph, node_link_data, tree_data
57
+ """
58
+ multigraph = G.is_multigraph()
59
+ id_ = attrs["id"]
60
+ # Allow 'key' to be omitted from attrs if the graph is not a multigraph.
61
+ key = None if not multigraph else attrs["key"]
62
+ if id_ == key:
63
+ raise nx.NetworkXError("Attribute names are not unique.")
64
+ data = {}
65
+ data["directed"] = G.is_directed()
66
+ data["multigraph"] = multigraph
67
+ data["graph"] = list(G.graph.items())
68
+ data["nodes"] = []
69
+ data["adjacency"] = []
70
+ for n, nbrdict in G.adjacency():
71
+ data["nodes"].append({**G.nodes[n], id_: n})
72
+ adj = []
73
+ if multigraph:
74
+ for nbr, keys in nbrdict.items():
75
+ for k, d in keys.items():
76
+ adj.append({**d, id_: nbr, key: k})
77
+ else:
78
+ for nbr, d in nbrdict.items():
79
+ adj.append({**d, id_: nbr})
80
+ data["adjacency"].append(adj)
81
+ return data
82
+
83
+
84
+ @nx._dispatchable(graphs=None, returns_graph=True)
85
+ def adjacency_graph(data, directed=False, multigraph=True, attrs=_attrs):
86
+ """Returns graph from adjacency data format.
87
+
88
+ Parameters
89
+ ----------
90
+ data : dict
91
+ Adjacency list formatted graph data
92
+
93
+ directed : bool
94
+ If True, and direction not specified in data, return a directed graph.
95
+
96
+ multigraph : bool
97
+ If True, and multigraph not specified in data, return a multigraph.
98
+
99
+ attrs : dict
100
+ A dictionary that contains two keys 'id' and 'key'. The corresponding
101
+ values provide the attribute names for storing NetworkX-internal graph
102
+ data. The values should be unique. Default value:
103
+ :samp:`dict(id='id', key='key')`.
104
+
105
+ Returns
106
+ -------
107
+ G : NetworkX graph
108
+ A NetworkX graph object
109
+
110
+ Examples
111
+ --------
112
+ >>> from networkx.readwrite import json_graph
113
+ >>> G = nx.Graph([(1, 2)])
114
+ >>> data = json_graph.adjacency_data(G)
115
+ >>> H = json_graph.adjacency_graph(data)
116
+
117
+ Notes
118
+ -----
119
+ The default value of attrs will be changed in a future release of NetworkX.
120
+
121
+ See Also
122
+ --------
123
+ adjacency_graph, node_link_data, tree_data
124
+ """
125
+ multigraph = data.get("multigraph", multigraph)
126
+ directed = data.get("directed", directed)
127
+ if multigraph:
128
+ graph = nx.MultiGraph()
129
+ else:
130
+ graph = nx.Graph()
131
+ if directed:
132
+ graph = graph.to_directed()
133
+ id_ = attrs["id"]
134
+ # Allow 'key' to be omitted from attrs if the graph is not a multigraph.
135
+ key = None if not multigraph else attrs["key"]
136
+ graph.graph = dict(data.get("graph", []))
137
+ mapping = []
138
+ for d in data["nodes"]:
139
+ node_data = d.copy()
140
+ node = node_data.pop(id_)
141
+ mapping.append(node)
142
+ graph.add_node(node)
143
+ graph.nodes[node].update(node_data)
144
+ for i, d in enumerate(data["adjacency"]):
145
+ source = mapping[i]
146
+ for tdata in d:
147
+ target_data = tdata.copy()
148
+ target = target_data.pop(id_)
149
+ if not multigraph:
150
+ graph.add_edge(source, target)
151
+ graph[source][target].update(target_data)
152
+ else:
153
+ ky = target_data.pop(key, None)
154
+ graph.add_edge(source, target, key=ky)
155
+ graph[source][target][ky].update(target_data)
156
+ return graph
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/cytoscape.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+
3
+ __all__ = ["cytoscape_data", "cytoscape_graph"]
4
+
5
+
6
+ def cytoscape_data(G, name="name", ident="id"):
7
+ """Returns data in Cytoscape JSON format (cyjs).
8
+
9
+ Parameters
10
+ ----------
11
+ G : NetworkX Graph
12
+ The graph to convert to cytoscape format
13
+ name : string
14
+ A string which is mapped to the 'name' node element in cyjs format.
15
+ Must not have the same value as `ident`.
16
+ ident : string
17
+ A string which is mapped to the 'id' node element in cyjs format.
18
+ Must not have the same value as `name`.
19
+
20
+ Returns
21
+ -------
22
+ data: dict
23
+ A dictionary with cyjs formatted data.
24
+
25
+ Raises
26
+ ------
27
+ NetworkXError
28
+ If the values for `name` and `ident` are identical.
29
+
30
+ See Also
31
+ --------
32
+ cytoscape_graph: convert a dictionary in cyjs format to a graph
33
+
34
+ References
35
+ ----------
36
+ .. [1] Cytoscape user's manual:
37
+ http://manual.cytoscape.org/en/stable/index.html
38
+
39
+ Examples
40
+ --------
41
+ >>> G = nx.path_graph(2)
42
+ >>> nx.cytoscape_data(G) # doctest: +SKIP
43
+ {'data': [],
44
+ 'directed': False,
45
+ 'multigraph': False,
46
+ 'elements': {'nodes': [{'data': {'id': '0', 'value': 0, 'name': '0'}},
47
+ {'data': {'id': '1', 'value': 1, 'name': '1'}}],
48
+ 'edges': [{'data': {'source': 0, 'target': 1}}]}}
49
+ """
50
+ if name == ident:
51
+ raise nx.NetworkXError("name and ident must be different.")
52
+
53
+ jsondata = {"data": list(G.graph.items())}
54
+ jsondata["directed"] = G.is_directed()
55
+ jsondata["multigraph"] = G.is_multigraph()
56
+ jsondata["elements"] = {"nodes": [], "edges": []}
57
+ nodes = jsondata["elements"]["nodes"]
58
+ edges = jsondata["elements"]["edges"]
59
+
60
+ for i, j in G.nodes.items():
61
+ n = {"data": j.copy()}
62
+ n["data"]["id"] = j.get(ident) or str(i)
63
+ n["data"]["value"] = i
64
+ n["data"]["name"] = j.get(name) or str(i)
65
+ nodes.append(n)
66
+
67
+ if G.is_multigraph():
68
+ for e in G.edges(keys=True):
69
+ n = {"data": G.adj[e[0]][e[1]][e[2]].copy()}
70
+ n["data"]["source"] = e[0]
71
+ n["data"]["target"] = e[1]
72
+ n["data"]["key"] = e[2]
73
+ edges.append(n)
74
+ else:
75
+ for e in G.edges():
76
+ n = {"data": G.adj[e[0]][e[1]].copy()}
77
+ n["data"]["source"] = e[0]
78
+ n["data"]["target"] = e[1]
79
+ edges.append(n)
80
+ return jsondata
81
+
82
+
83
+ @nx._dispatchable(graphs=None, returns_graph=True)
84
+ def cytoscape_graph(data, name="name", ident="id"):
85
+ """
86
+ Create a NetworkX graph from a dictionary in cytoscape JSON format.
87
+
88
+ Parameters
89
+ ----------
90
+ data : dict
91
+ A dictionary of data conforming to cytoscape JSON format.
92
+ name : string
93
+ A string which is mapped to the 'name' node element in cyjs format.
94
+ Must not have the same value as `ident`.
95
+ ident : string
96
+ A string which is mapped to the 'id' node element in cyjs format.
97
+ Must not have the same value as `name`.
98
+
99
+ Returns
100
+ -------
101
+ graph : a NetworkX graph instance
102
+ The `graph` can be an instance of `Graph`, `DiGraph`, `MultiGraph`, or
103
+ `MultiDiGraph` depending on the input data.
104
+
105
+ Raises
106
+ ------
107
+ NetworkXError
108
+ If the `name` and `ident` attributes are identical.
109
+
110
+ See Also
111
+ --------
112
+ cytoscape_data: convert a NetworkX graph to a dict in cyjs format
113
+
114
+ References
115
+ ----------
116
+ .. [1] Cytoscape user's manual:
117
+ http://manual.cytoscape.org/en/stable/index.html
118
+
119
+ Examples
120
+ --------
121
+ >>> data_dict = {
122
+ ... "data": [],
123
+ ... "directed": False,
124
+ ... "multigraph": False,
125
+ ... "elements": {
126
+ ... "nodes": [
127
+ ... {"data": {"id": "0", "value": 0, "name": "0"}},
128
+ ... {"data": {"id": "1", "value": 1, "name": "1"}},
129
+ ... ],
130
+ ... "edges": [{"data": {"source": 0, "target": 1}}],
131
+ ... },
132
+ ... }
133
+ >>> G = nx.cytoscape_graph(data_dict)
134
+ >>> G.name
135
+ ''
136
+ >>> G.nodes()
137
+ NodeView((0, 1))
138
+ >>> G.nodes(data=True)[0]
139
+ {'id': '0', 'value': 0, 'name': '0'}
140
+ >>> G.edges(data=True)
141
+ EdgeDataView([(0, 1, {'source': 0, 'target': 1})])
142
+ """
143
+ if name == ident:
144
+ raise nx.NetworkXError("name and ident must be different.")
145
+
146
+ multigraph = data.get("multigraph")
147
+ directed = data.get("directed")
148
+ if multigraph:
149
+ graph = nx.MultiGraph()
150
+ else:
151
+ graph = nx.Graph()
152
+ if directed:
153
+ graph = graph.to_directed()
154
+ graph.graph = dict(data.get("data"))
155
+ for d in data["elements"]["nodes"]:
156
+ node_data = d["data"].copy()
157
+ node = d["data"]["value"]
158
+
159
+ if d["data"].get(name):
160
+ node_data[name] = d["data"].get(name)
161
+ if d["data"].get(ident):
162
+ node_data[ident] = d["data"].get(ident)
163
+
164
+ graph.add_node(node)
165
+ graph.nodes[node].update(node_data)
166
+
167
+ for d in data["elements"]["edges"]:
168
+ edge_data = d["data"].copy()
169
+ sour = d["data"]["source"]
170
+ targ = d["data"]["target"]
171
+ if multigraph:
172
+ key = d["data"].get("key", 0)
173
+ graph.add_edge(sour, targ, key=key)
174
+ graph.edges[sour, targ, key].update(edge_data)
175
+ else:
176
+ graph.add_edge(sour, targ)
177
+ graph.edges[sour, targ].update(edge_data)
178
+ return graph
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/node_link.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import chain, count
2
+
3
+ import networkx as nx
4
+
5
+ __all__ = ["node_link_data", "node_link_graph"]
6
+
7
+
8
+ _attrs = {
9
+ "source": "source",
10
+ "target": "target",
11
+ "name": "id",
12
+ "key": "key",
13
+ "link": "links",
14
+ }
15
+
16
+
17
+ def _to_tuple(x):
18
+ """Converts lists to tuples, including nested lists.
19
+
20
+ All other non-list inputs are passed through unmodified. This function is
21
+ intended to be used to convert potentially nested lists from json files
22
+ into valid nodes.
23
+
24
+ Examples
25
+ --------
26
+ >>> _to_tuple([1, 2, [3, 4]])
27
+ (1, 2, (3, 4))
28
+ """
29
+ if not isinstance(x, tuple | list):
30
+ return x
31
+ return tuple(map(_to_tuple, x))
32
+
33
+
34
+ def node_link_data(
35
+ G,
36
+ *,
37
+ source="source",
38
+ target="target",
39
+ name="id",
40
+ key="key",
41
+ link="links",
42
+ ):
43
+ """Returns data in node-link format that is suitable for JSON serialization
44
+ and use in JavaScript documents.
45
+
46
+ Parameters
47
+ ----------
48
+ G : NetworkX graph
49
+ source : string
50
+ A string that provides the 'source' attribute name for storing NetworkX-internal graph data.
51
+ target : string
52
+ A string that provides the 'target' attribute name for storing NetworkX-internal graph data.
53
+ name : string
54
+ A string that provides the 'name' attribute name for storing NetworkX-internal graph data.
55
+ key : string
56
+ A string that provides the 'key' attribute name for storing NetworkX-internal graph data.
57
+ link : string
58
+ A string that provides the 'link' attribute name for storing NetworkX-internal graph data.
59
+
60
+ Returns
61
+ -------
62
+ data : dict
63
+ A dictionary with node-link formatted data.
64
+
65
+ Raises
66
+ ------
67
+ NetworkXError
68
+ If the values of 'source', 'target' and 'key' are not unique.
69
+
70
+ Examples
71
+ --------
72
+ >>> G = nx.Graph([("A", "B")])
73
+ >>> data1 = nx.node_link_data(G)
74
+ >>> data1
75
+ {'directed': False, 'multigraph': False, 'graph': {}, 'nodes': [{'id': 'A'}, {'id': 'B'}], 'links': [{'source': 'A', 'target': 'B'}]}
76
+
77
+ To serialize with JSON
78
+
79
+ >>> import json
80
+ >>> s1 = json.dumps(data1)
81
+ >>> s1
82
+ '{"directed": false, "multigraph": false, "graph": {}, "nodes": [{"id": "A"}, {"id": "B"}], "links": [{"source": "A", "target": "B"}]}'
83
+
84
+ A graph can also be serialized by passing `node_link_data` as an encoder function. The two methods are equivalent.
85
+
86
+ >>> s1 = json.dumps(G, default=nx.node_link_data)
87
+ >>> s1
88
+ '{"directed": false, "multigraph": false, "graph": {}, "nodes": [{"id": "A"}, {"id": "B"}], "links": [{"source": "A", "target": "B"}]}'
89
+
90
+ The attribute names for storing NetworkX-internal graph data can
91
+ be specified as keyword options.
92
+
93
+ >>> H = nx.gn_graph(2)
94
+ >>> data2 = nx.node_link_data(H, link="edges", source="from", target="to")
95
+ >>> data2
96
+ {'directed': True, 'multigraph': False, 'graph': {}, 'nodes': [{'id': 0}, {'id': 1}], 'edges': [{'from': 1, 'to': 0}]}
97
+
98
+ Notes
99
+ -----
100
+ Graph, node, and link attributes are stored in this format. Note that
101
+ attribute keys will be converted to strings in order to comply with JSON.
102
+
103
+ Attribute 'key' is only used for multigraphs.
104
+
105
+ To use `node_link_data` in conjunction with `node_link_graph`,
106
+ the keyword names for the attributes must match.
107
+
108
+
109
+ See Also
110
+ --------
111
+ node_link_graph, adjacency_data, tree_data
112
+ """
113
+ multigraph = G.is_multigraph()
114
+
115
+ # Allow 'key' to be omitted from attrs if the graph is not a multigraph.
116
+ key = None if not multigraph else key
117
+ if len({source, target, key}) < 3:
118
+ raise nx.NetworkXError("Attribute names are not unique.")
119
+ data = {
120
+ "directed": G.is_directed(),
121
+ "multigraph": multigraph,
122
+ "graph": G.graph,
123
+ "nodes": [{**G.nodes[n], name: n} for n in G],
124
+ }
125
+ if multigraph:
126
+ data[link] = [
127
+ {**d, source: u, target: v, key: k}
128
+ for u, v, k, d in G.edges(keys=True, data=True)
129
+ ]
130
+ else:
131
+ data[link] = [{**d, source: u, target: v} for u, v, d in G.edges(data=True)]
132
+ return data
133
+
134
+
135
+ @nx._dispatchable(graphs=None, returns_graph=True)
136
+ def node_link_graph(
137
+ data,
138
+ directed=False,
139
+ multigraph=True,
140
+ *,
141
+ source="source",
142
+ target="target",
143
+ name="id",
144
+ key="key",
145
+ link="links",
146
+ ):
147
+ """Returns graph from node-link data format.
148
+ Useful for de-serialization from JSON.
149
+
150
+ Parameters
151
+ ----------
152
+ data : dict
153
+ node-link formatted graph data
154
+
155
+ directed : bool
156
+ If True, and direction not specified in data, return a directed graph.
157
+
158
+ multigraph : bool
159
+ If True, and multigraph not specified in data, return a multigraph.
160
+
161
+ source : string
162
+ A string that provides the 'source' attribute name for storing NetworkX-internal graph data.
163
+ target : string
164
+ A string that provides the 'target' attribute name for storing NetworkX-internal graph data.
165
+ name : string
166
+ A string that provides the 'name' attribute name for storing NetworkX-internal graph data.
167
+ key : string
168
+ A string that provides the 'key' attribute name for storing NetworkX-internal graph data.
169
+ link : string
170
+ A string that provides the 'link' attribute name for storing NetworkX-internal graph data.
171
+
172
+ Returns
173
+ -------
174
+ G : NetworkX graph
175
+ A NetworkX graph object
176
+
177
+ Examples
178
+ --------
179
+
180
+ Create data in node-link format by converting a graph.
181
+
182
+ >>> G = nx.Graph([("A", "B")])
183
+ >>> data = nx.node_link_data(G)
184
+ >>> data
185
+ {'directed': False, 'multigraph': False, 'graph': {}, 'nodes': [{'id': 'A'}, {'id': 'B'}], 'links': [{'source': 'A', 'target': 'B'}]}
186
+
187
+ Revert data in node-link format to a graph.
188
+
189
+ >>> H = nx.node_link_graph(data)
190
+ >>> print(H.edges)
191
+ [('A', 'B')]
192
+
193
+ To serialize and deserialize a graph with JSON,
194
+
195
+ >>> import json
196
+ >>> d = json.dumps(node_link_data(G))
197
+ >>> H = node_link_graph(json.loads(d))
198
+ >>> print(G.edges, H.edges)
199
+ [('A', 'B')] [('A', 'B')]
200
+
201
+
202
+ Notes
203
+ -----
204
+ Attribute 'key' is only used for multigraphs.
205
+
206
+ To use `node_link_data` in conjunction with `node_link_graph`,
207
+ the keyword names for the attributes must match.
208
+
209
+ See Also
210
+ --------
211
+ node_link_data, adjacency_data, tree_data
212
+ """
213
+ multigraph = data.get("multigraph", multigraph)
214
+ directed = data.get("directed", directed)
215
+ if multigraph:
216
+ graph = nx.MultiGraph()
217
+ else:
218
+ graph = nx.Graph()
219
+ if directed:
220
+ graph = graph.to_directed()
221
+
222
+ # Allow 'key' to be omitted from attrs if the graph is not a multigraph.
223
+ key = None if not multigraph else key
224
+ graph.graph = data.get("graph", {})
225
+ c = count()
226
+ for d in data["nodes"]:
227
+ node = _to_tuple(d.get(name, next(c)))
228
+ nodedata = {str(k): v for k, v in d.items() if k != name}
229
+ graph.add_node(node, **nodedata)
230
+ for d in data[link]:
231
+ src = tuple(d[source]) if isinstance(d[source], list) else d[source]
232
+ tgt = tuple(d[target]) if isinstance(d[target], list) else d[target]
233
+ if not multigraph:
234
+ edgedata = {str(k): v for k, v in d.items() if k != source and k != target}
235
+ graph.add_edge(src, tgt, **edgedata)
236
+ else:
237
+ ky = d.get(key, None)
238
+ edgedata = {
239
+ str(k): v
240
+ for k, v in d.items()
241
+ if k != source and k != target and k != key
242
+ }
243
+ graph.add_edge(src, tgt, ky, **edgedata)
244
+ return graph
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/json_graph/tree.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import chain
2
+
3
+ import networkx as nx
4
+
5
+ __all__ = ["tree_data", "tree_graph"]
6
+
7
+
8
+ def tree_data(G, root, ident="id", children="children"):
9
+ """Returns data in tree format that is suitable for JSON serialization
10
+ and use in JavaScript documents.
11
+
12
+ Parameters
13
+ ----------
14
+ G : NetworkX graph
15
+ G must be an oriented tree
16
+
17
+ root : node
18
+ The root of the tree
19
+
20
+ ident : string
21
+ Attribute name for storing NetworkX-internal graph data. `ident` must
22
+ have a different value than `children`. The default is 'id'.
23
+
24
+ children : string
25
+ Attribute name for storing NetworkX-internal graph data. `children`
26
+ must have a different value than `ident`. The default is 'children'.
27
+
28
+ Returns
29
+ -------
30
+ data : dict
31
+ A dictionary with node-link formatted data.
32
+
33
+ Raises
34
+ ------
35
+ NetworkXError
36
+ If `children` and `ident` attributes are identical.
37
+
38
+ Examples
39
+ --------
40
+ >>> from networkx.readwrite import json_graph
41
+ >>> G = nx.DiGraph([(1, 2)])
42
+ >>> data = json_graph.tree_data(G, root=1)
43
+
44
+ To serialize with json
45
+
46
+ >>> import json
47
+ >>> s = json.dumps(data)
48
+
49
+ Notes
50
+ -----
51
+ Node attributes are stored in this format but keys
52
+ for attributes must be strings if you want to serialize with JSON.
53
+
54
+ Graph and edge attributes are not stored.
55
+
56
+ See Also
57
+ --------
58
+ tree_graph, node_link_data, adjacency_data
59
+ """
60
+ if G.number_of_nodes() != G.number_of_edges() + 1:
61
+ raise TypeError("G is not a tree.")
62
+ if not G.is_directed():
63
+ raise TypeError("G is not directed.")
64
+ if not nx.is_weakly_connected(G):
65
+ raise TypeError("G is not weakly connected.")
66
+
67
+ if ident == children:
68
+ raise nx.NetworkXError("The values for `id` and `children` must be different.")
69
+
70
+ def add_children(n, G):
71
+ nbrs = G[n]
72
+ if len(nbrs) == 0:
73
+ return []
74
+ children_ = []
75
+ for child in nbrs:
76
+ d = {**G.nodes[child], ident: child}
77
+ c = add_children(child, G)
78
+ if c:
79
+ d[children] = c
80
+ children_.append(d)
81
+ return children_
82
+
83
+ return {**G.nodes[root], ident: root, children: add_children(root, G)}
84
+
85
+
86
+ @nx._dispatchable(graphs=None, returns_graph=True)
87
+ def tree_graph(data, ident="id", children="children"):
88
+ """Returns graph from tree data format.
89
+
90
+ Parameters
91
+ ----------
92
+ data : dict
93
+ Tree formatted graph data
94
+
95
+ ident : string
96
+ Attribute name for storing NetworkX-internal graph data. `ident` must
97
+ have a different value than `children`. The default is 'id'.
98
+
99
+ children : string
100
+ Attribute name for storing NetworkX-internal graph data. `children`
101
+ must have a different value than `ident`. The default is 'children'.
102
+
103
+ Returns
104
+ -------
105
+ G : NetworkX DiGraph
106
+
107
+ Examples
108
+ --------
109
+ >>> from networkx.readwrite import json_graph
110
+ >>> G = nx.DiGraph([(1, 2)])
111
+ >>> data = json_graph.tree_data(G, root=1)
112
+ >>> H = json_graph.tree_graph(data)
113
+
114
+ See Also
115
+ --------
116
+ tree_data, node_link_data, adjacency_data
117
+ """
118
+ graph = nx.DiGraph()
119
+
120
+ def add_children(parent, children_):
121
+ for data in children_:
122
+ child = data[ident]
123
+ graph.add_edge(parent, child)
124
+ grandchildren = data.get(children, [])
125
+ if grandchildren:
126
+ add_children(child, grandchildren)
127
+ nodedata = {
128
+ str(k): v for k, v in data.items() if k != ident and k != children
129
+ }
130
+ graph.add_node(child, **nodedata)
131
+
132
+ root = data[ident]
133
+ children_ = data.get(children, [])
134
+ nodedata = {str(k): v for k, v in data.items() if k != ident and k != children}
135
+ graph.add_node(root, **nodedata)
136
+ add_children(root, children_)
137
+ return graph
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/multiline_adjlist.py ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ *************************
3
+ Multi-line Adjacency List
4
+ *************************
5
+ Read and write NetworkX graphs as multi-line adjacency lists.
6
+
7
+ The multi-line adjacency list format is useful for graphs with
8
+ nodes that can be meaningfully represented as strings. With this format
9
+ simple edge data can be stored but node or graph data is not.
10
+
11
+ Format
12
+ ------
13
+ The first label in a line is the source node label followed by the node degree
14
+ d. The next d lines are target node labels and optional edge data.
15
+ That pattern repeats for all nodes in the graph.
16
+
17
+ The graph with edges a-b, a-c, d-e can be represented as the following
18
+ adjacency list (anything following the # in a line is a comment)::
19
+
20
+ # example.multiline-adjlist
21
+ a 2
22
+ b
23
+ c
24
+ d 1
25
+ e
26
+ """
27
+
28
+ __all__ = [
29
+ "generate_multiline_adjlist",
30
+ "write_multiline_adjlist",
31
+ "parse_multiline_adjlist",
32
+ "read_multiline_adjlist",
33
+ ]
34
+
35
+ import networkx as nx
36
+ from networkx.utils import open_file
37
+
38
+
39
+ def generate_multiline_adjlist(G, delimiter=" "):
40
+ """Generate a single line of the graph G in multiline adjacency list format.
41
+
42
+ Parameters
43
+ ----------
44
+ G : NetworkX graph
45
+
46
+ delimiter : string, optional
47
+ Separator for node labels
48
+
49
+ Returns
50
+ -------
51
+ lines : string
52
+ Lines of data in multiline adjlist format.
53
+
54
+ Examples
55
+ --------
56
+ >>> G = nx.lollipop_graph(4, 3)
57
+ >>> for line in nx.generate_multiline_adjlist(G):
58
+ ... print(line)
59
+ 0 3
60
+ 1 {}
61
+ 2 {}
62
+ 3 {}
63
+ 1 2
64
+ 2 {}
65
+ 3 {}
66
+ 2 1
67
+ 3 {}
68
+ 3 1
69
+ 4 {}
70
+ 4 1
71
+ 5 {}
72
+ 5 1
73
+ 6 {}
74
+ 6 0
75
+
76
+ See Also
77
+ --------
78
+ write_multiline_adjlist, read_multiline_adjlist
79
+ """
80
+ if G.is_directed():
81
+ if G.is_multigraph():
82
+ for s, nbrs in G.adjacency():
83
+ nbr_edges = [
84
+ (u, data)
85
+ for u, datadict in nbrs.items()
86
+ for key, data in datadict.items()
87
+ ]
88
+ deg = len(nbr_edges)
89
+ yield str(s) + delimiter + str(deg)
90
+ for u, d in nbr_edges:
91
+ if d is None:
92
+ yield str(u)
93
+ else:
94
+ yield str(u) + delimiter + str(d)
95
+ else: # directed single edges
96
+ for s, nbrs in G.adjacency():
97
+ deg = len(nbrs)
98
+ yield str(s) + delimiter + str(deg)
99
+ for u, d in nbrs.items():
100
+ if d is None:
101
+ yield str(u)
102
+ else:
103
+ yield str(u) + delimiter + str(d)
104
+ else: # undirected
105
+ if G.is_multigraph():
106
+ seen = set() # helper dict used to avoid duplicate edges
107
+ for s, nbrs in G.adjacency():
108
+ nbr_edges = [
109
+ (u, data)
110
+ for u, datadict in nbrs.items()
111
+ if u not in seen
112
+ for key, data in datadict.items()
113
+ ]
114
+ deg = len(nbr_edges)
115
+ yield str(s) + delimiter + str(deg)
116
+ for u, d in nbr_edges:
117
+ if d is None:
118
+ yield str(u)
119
+ else:
120
+ yield str(u) + delimiter + str(d)
121
+ seen.add(s)
122
+ else: # undirected single edges
123
+ seen = set() # helper dict used to avoid duplicate edges
124
+ for s, nbrs in G.adjacency():
125
+ nbr_edges = [(u, d) for u, d in nbrs.items() if u not in seen]
126
+ deg = len(nbr_edges)
127
+ yield str(s) + delimiter + str(deg)
128
+ for u, d in nbr_edges:
129
+ if d is None:
130
+ yield str(u)
131
+ else:
132
+ yield str(u) + delimiter + str(d)
133
+ seen.add(s)
134
+
135
+
136
+ @open_file(1, mode="wb")
137
+ def write_multiline_adjlist(G, path, delimiter=" ", comments="#", encoding="utf-8"):
138
+ """Write the graph G in multiline adjacency list format to path
139
+
140
+ Parameters
141
+ ----------
142
+ G : NetworkX graph
143
+
144
+ path : string or file
145
+ Filename or file handle to write to.
146
+ Filenames ending in .gz or .bz2 will be compressed.
147
+
148
+ comments : string, optional
149
+ Marker for comment lines
150
+
151
+ delimiter : string, optional
152
+ Separator for node labels
153
+
154
+ encoding : string, optional
155
+ Text encoding.
156
+
157
+ Examples
158
+ --------
159
+ >>> G = nx.path_graph(4)
160
+ >>> nx.write_multiline_adjlist(G, "test.adjlist")
161
+
162
+ The path can be a file handle or a string with the name of the file. If a
163
+ file handle is provided, it has to be opened in 'wb' mode.
164
+
165
+ >>> fh = open("test.adjlist", "wb")
166
+ >>> nx.write_multiline_adjlist(G, fh)
167
+
168
+ Filenames ending in .gz or .bz2 will be compressed.
169
+
170
+ >>> nx.write_multiline_adjlist(G, "test.adjlist.gz")
171
+
172
+ See Also
173
+ --------
174
+ read_multiline_adjlist
175
+ """
176
+ import sys
177
+ import time
178
+
179
+ pargs = comments + " ".join(sys.argv)
180
+ header = (
181
+ f"{pargs}\n"
182
+ + comments
183
+ + f" GMT {time.asctime(time.gmtime())}\n"
184
+ + comments
185
+ + f" {G.name}\n"
186
+ )
187
+ path.write(header.encode(encoding))
188
+
189
+ for multiline in generate_multiline_adjlist(G, delimiter):
190
+ multiline += "\n"
191
+ path.write(multiline.encode(encoding))
192
+
193
+
194
+ @nx._dispatchable(graphs=None, returns_graph=True)
195
+ def parse_multiline_adjlist(
196
+ lines, comments="#", delimiter=None, create_using=None, nodetype=None, edgetype=None
197
+ ):
198
+ """Parse lines of a multiline adjacency list representation of a graph.
199
+
200
+ Parameters
201
+ ----------
202
+ lines : list or iterator of strings
203
+ Input data in multiline adjlist format
204
+
205
+ create_using : NetworkX graph constructor, optional (default=nx.Graph)
206
+ Graph type to create. If graph instance, then cleared before populated.
207
+
208
+ nodetype : Python type, optional
209
+ Convert nodes to this type.
210
+
211
+ edgetype : Python type, optional
212
+ Convert edges to this type.
213
+
214
+ comments : string, optional
215
+ Marker for comment lines
216
+
217
+ delimiter : string, optional
218
+ Separator for node labels. The default is whitespace.
219
+
220
+ Returns
221
+ -------
222
+ G: NetworkX graph
223
+ The graph corresponding to the lines in multiline adjacency list format.
224
+
225
+ Examples
226
+ --------
227
+ >>> lines = [
228
+ ... "1 2",
229
+ ... "2 {'weight':3, 'name': 'Frodo'}",
230
+ ... "3 {}",
231
+ ... "2 1",
232
+ ... "5 {'weight':6, 'name': 'Saruman'}",
233
+ ... ]
234
+ >>> G = nx.parse_multiline_adjlist(iter(lines), nodetype=int)
235
+ >>> list(G)
236
+ [1, 2, 3, 5]
237
+
238
+ """
239
+ from ast import literal_eval
240
+
241
+ G = nx.empty_graph(0, create_using)
242
+ for line in lines:
243
+ p = line.find(comments)
244
+ if p >= 0:
245
+ line = line[:p]
246
+ if not line:
247
+ continue
248
+ try:
249
+ (u, deg) = line.strip().split(delimiter)
250
+ deg = int(deg)
251
+ except BaseException as err:
252
+ raise TypeError(f"Failed to read node and degree on line ({line})") from err
253
+ if nodetype is not None:
254
+ try:
255
+ u = nodetype(u)
256
+ except BaseException as err:
257
+ raise TypeError(
258
+ f"Failed to convert node ({u}) to type {nodetype}"
259
+ ) from err
260
+ G.add_node(u)
261
+ for i in range(deg):
262
+ while True:
263
+ try:
264
+ line = next(lines)
265
+ except StopIteration as err:
266
+ msg = f"Failed to find neighbor for node ({u})"
267
+ raise TypeError(msg) from err
268
+ p = line.find(comments)
269
+ if p >= 0:
270
+ line = line[:p]
271
+ if line:
272
+ break
273
+ vlist = line.strip().split(delimiter)
274
+ numb = len(vlist)
275
+ if numb < 1:
276
+ continue # isolated node
277
+ v = vlist.pop(0)
278
+ data = "".join(vlist)
279
+ if nodetype is not None:
280
+ try:
281
+ v = nodetype(v)
282
+ except BaseException as err:
283
+ raise TypeError(
284
+ f"Failed to convert node ({v}) to type {nodetype}"
285
+ ) from err
286
+ if edgetype is not None:
287
+ try:
288
+ edgedata = {"weight": edgetype(data)}
289
+ except BaseException as err:
290
+ raise TypeError(
291
+ f"Failed to convert edge data ({data}) to type {edgetype}"
292
+ ) from err
293
+ else:
294
+ try: # try to evaluate
295
+ edgedata = literal_eval(data)
296
+ except:
297
+ edgedata = {}
298
+ G.add_edge(u, v, **edgedata)
299
+
300
+ return G
301
+
302
+
303
+ @open_file(0, mode="rb")
304
+ @nx._dispatchable(graphs=None, returns_graph=True)
305
+ def read_multiline_adjlist(
306
+ path,
307
+ comments="#",
308
+ delimiter=None,
309
+ create_using=None,
310
+ nodetype=None,
311
+ edgetype=None,
312
+ encoding="utf-8",
313
+ ):
314
+ """Read graph in multi-line adjacency list format from path.
315
+
316
+ Parameters
317
+ ----------
318
+ path : string or file
319
+ Filename or file handle to read.
320
+ Filenames ending in .gz or .bz2 will be uncompressed.
321
+
322
+ create_using : NetworkX graph constructor, optional (default=nx.Graph)
323
+ Graph type to create. If graph instance, then cleared before populated.
324
+
325
+ nodetype : Python type, optional
326
+ Convert nodes to this type.
327
+
328
+ edgetype : Python type, optional
329
+ Convert edge data to this type.
330
+
331
+ comments : string, optional
332
+ Marker for comment lines
333
+
334
+ delimiter : string, optional
335
+ Separator for node labels. The default is whitespace.
336
+
337
+ Returns
338
+ -------
339
+ G: NetworkX graph
340
+
341
+ Examples
342
+ --------
343
+ >>> G = nx.path_graph(4)
344
+ >>> nx.write_multiline_adjlist(G, "test.adjlist")
345
+ >>> G = nx.read_multiline_adjlist("test.adjlist")
346
+
347
+ The path can be a file or a string with the name of the file. If a
348
+ file s provided, it has to be opened in 'rb' mode.
349
+
350
+ >>> fh = open("test.adjlist", "rb")
351
+ >>> G = nx.read_multiline_adjlist(fh)
352
+
353
+ Filenames ending in .gz or .bz2 will be compressed.
354
+
355
+ >>> nx.write_multiline_adjlist(G, "test.adjlist.gz")
356
+ >>> G = nx.read_multiline_adjlist("test.adjlist.gz")
357
+
358
+ The optional nodetype is a function to convert node strings to nodetype.
359
+
360
+ For example
361
+
362
+ >>> G = nx.read_multiline_adjlist("test.adjlist", nodetype=int)
363
+
364
+ will attempt to convert all nodes to integer type.
365
+
366
+ The optional edgetype is a function to convert edge data strings to
367
+ edgetype.
368
+
369
+ >>> G = nx.read_multiline_adjlist("test.adjlist")
370
+
371
+ The optional create_using parameter is a NetworkX graph container.
372
+ The default is Graph(), an undirected graph. To read the data as
373
+ a directed graph use
374
+
375
+ >>> G = nx.read_multiline_adjlist("test.adjlist", create_using=nx.DiGraph)
376
+
377
+ Notes
378
+ -----
379
+ This format does not store graph, node, or edge data.
380
+
381
+ See Also
382
+ --------
383
+ write_multiline_adjlist
384
+ """
385
+ lines = (line.decode(encoding) for line in path)
386
+ return parse_multiline_adjlist(
387
+ lines,
388
+ comments=comments,
389
+ delimiter=delimiter,
390
+ create_using=create_using,
391
+ nodetype=nodetype,
392
+ edgetype=edgetype,
393
+ )
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/pajek.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ *****
3
+ Pajek
4
+ *****
5
+ Read graphs in Pajek format.
6
+
7
+ This implementation handles directed and undirected graphs including
8
+ those with self loops and parallel edges.
9
+
10
+ Format
11
+ ------
12
+ See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
13
+ for format information.
14
+
15
+ """
16
+
17
+ import warnings
18
+
19
+ import networkx as nx
20
+ from networkx.utils import open_file
21
+
22
+ __all__ = ["read_pajek", "parse_pajek", "generate_pajek", "write_pajek"]
23
+
24
+
25
+ def generate_pajek(G):
26
+ """Generate lines in Pajek graph format.
27
+
28
+ Parameters
29
+ ----------
30
+ G : graph
31
+ A Networkx graph
32
+
33
+ References
34
+ ----------
35
+ See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
36
+ for format information.
37
+ """
38
+ if G.name == "":
39
+ name = "NetworkX"
40
+ else:
41
+ name = G.name
42
+ # Apparently many Pajek format readers can't process this line
43
+ # So we'll leave it out for now.
44
+ # yield '*network %s'%name
45
+
46
+ # write nodes with attributes
47
+ yield f"*vertices {G.order()}"
48
+ nodes = list(G)
49
+ # make dictionary mapping nodes to integers
50
+ nodenumber = dict(zip(nodes, range(1, len(nodes) + 1)))
51
+ for n in nodes:
52
+ # copy node attributes and pop mandatory attributes
53
+ # to avoid duplication.
54
+ na = G.nodes.get(n, {}).copy()
55
+ x = na.pop("x", 0.0)
56
+ y = na.pop("y", 0.0)
57
+ try:
58
+ id = int(na.pop("id", nodenumber[n]))
59
+ except ValueError as err:
60
+ err.args += (
61
+ (
62
+ "Pajek format requires 'id' to be an int()."
63
+ " Refer to the 'Relabeling nodes' section."
64
+ ),
65
+ )
66
+ raise
67
+ nodenumber[n] = id
68
+ shape = na.pop("shape", "ellipse")
69
+ s = " ".join(map(make_qstr, (id, n, x, y, shape)))
70
+ # only optional attributes are left in na.
71
+ for k, v in na.items():
72
+ if isinstance(v, str) and v.strip() != "":
73
+ s += f" {make_qstr(k)} {make_qstr(v)}"
74
+ else:
75
+ warnings.warn(
76
+ f"Node attribute {k} is not processed. {('Empty attribute' if isinstance(v, str) else 'Non-string attribute')}."
77
+ )
78
+ yield s
79
+
80
+ # write edges with attributes
81
+ if G.is_directed():
82
+ yield "*arcs"
83
+ else:
84
+ yield "*edges"
85
+ for u, v, edgedata in G.edges(data=True):
86
+ d = edgedata.copy()
87
+ value = d.pop("weight", 1.0) # use 1 as default edge value
88
+ s = " ".join(map(make_qstr, (nodenumber[u], nodenumber[v], value)))
89
+ for k, v in d.items():
90
+ if isinstance(v, str) and v.strip() != "":
91
+ s += f" {make_qstr(k)} {make_qstr(v)}"
92
+ else:
93
+ warnings.warn(
94
+ f"Edge attribute {k} is not processed. {('Empty attribute' if isinstance(v, str) else 'Non-string attribute')}."
95
+ )
96
+ yield s
97
+
98
+
99
+ @open_file(1, mode="wb")
100
+ def write_pajek(G, path, encoding="UTF-8"):
101
+ """Write graph in Pajek format to path.
102
+
103
+ Parameters
104
+ ----------
105
+ G : graph
106
+ A Networkx graph
107
+ path : file or string
108
+ File or filename to write.
109
+ Filenames ending in .gz or .bz2 will be compressed.
110
+
111
+ Examples
112
+ --------
113
+ >>> G = nx.path_graph(4)
114
+ >>> nx.write_pajek(G, "test.net")
115
+
116
+ Warnings
117
+ --------
118
+ Optional node attributes and edge attributes must be non-empty strings.
119
+ Otherwise it will not be written into the file. You will need to
120
+ convert those attributes to strings if you want to keep them.
121
+
122
+ References
123
+ ----------
124
+ See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
125
+ for format information.
126
+ """
127
+ for line in generate_pajek(G):
128
+ line += "\n"
129
+ path.write(line.encode(encoding))
130
+
131
+
132
+ @open_file(0, mode="rb")
133
+ @nx._dispatchable(graphs=None, returns_graph=True)
134
+ def read_pajek(path, encoding="UTF-8"):
135
+ """Read graph in Pajek format from path.
136
+
137
+ Parameters
138
+ ----------
139
+ path : file or string
140
+ File or filename to write.
141
+ Filenames ending in .gz or .bz2 will be uncompressed.
142
+
143
+ Returns
144
+ -------
145
+ G : NetworkX MultiGraph or MultiDiGraph.
146
+
147
+ Examples
148
+ --------
149
+ >>> G = nx.path_graph(4)
150
+ >>> nx.write_pajek(G, "test.net")
151
+ >>> G = nx.read_pajek("test.net")
152
+
153
+ To create a Graph instead of a MultiGraph use
154
+
155
+ >>> G1 = nx.Graph(G)
156
+
157
+ References
158
+ ----------
159
+ See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
160
+ for format information.
161
+ """
162
+ lines = (line.decode(encoding) for line in path)
163
+ return parse_pajek(lines)
164
+
165
+
166
+ @nx._dispatchable(graphs=None, returns_graph=True)
167
+ def parse_pajek(lines):
168
+ """Parse Pajek format graph from string or iterable.
169
+
170
+ Parameters
171
+ ----------
172
+ lines : string or iterable
173
+ Data in Pajek format.
174
+
175
+ Returns
176
+ -------
177
+ G : NetworkX graph
178
+
179
+ See Also
180
+ --------
181
+ read_pajek
182
+
183
+ """
184
+ import shlex
185
+
186
+ # multigraph=False
187
+ if isinstance(lines, str):
188
+ lines = iter(lines.split("\n"))
189
+ lines = iter([line.rstrip("\n") for line in lines])
190
+ G = nx.MultiDiGraph() # are multiedges allowed in Pajek? assume yes
191
+ labels = [] # in the order of the file, needed for matrix
192
+ while lines:
193
+ try:
194
+ l = next(lines)
195
+ except: # EOF
196
+ break
197
+ if l.lower().startswith("*network"):
198
+ try:
199
+ label, name = l.split(None, 1)
200
+ except ValueError:
201
+ # Line was not of the form: *network NAME
202
+ pass
203
+ else:
204
+ G.graph["name"] = name
205
+ elif l.lower().startswith("*vertices"):
206
+ nodelabels = {}
207
+ l, nnodes = l.split()
208
+ for i in range(int(nnodes)):
209
+ l = next(lines)
210
+ try:
211
+ splitline = [
212
+ x.decode("utf-8") for x in shlex.split(str(l).encode("utf-8"))
213
+ ]
214
+ except AttributeError:
215
+ splitline = shlex.split(str(l))
216
+ id, label = splitline[0:2]
217
+ labels.append(label)
218
+ G.add_node(label)
219
+ nodelabels[id] = label
220
+ G.nodes[label]["id"] = id
221
+ try:
222
+ x, y, shape = splitline[2:5]
223
+ G.nodes[label].update(
224
+ {"x": float(x), "y": float(y), "shape": shape}
225
+ )
226
+ except:
227
+ pass
228
+ extra_attr = zip(splitline[5::2], splitline[6::2])
229
+ G.nodes[label].update(extra_attr)
230
+ elif l.lower().startswith("*edges") or l.lower().startswith("*arcs"):
231
+ if l.lower().startswith("*edge"):
232
+ # switch from multidigraph to multigraph
233
+ G = nx.MultiGraph(G)
234
+ if l.lower().startswith("*arcs"):
235
+ # switch to directed with multiple arcs for each existing edge
236
+ G = G.to_directed()
237
+ for l in lines:
238
+ try:
239
+ splitline = [
240
+ x.decode("utf-8") for x in shlex.split(str(l).encode("utf-8"))
241
+ ]
242
+ except AttributeError:
243
+ splitline = shlex.split(str(l))
244
+
245
+ if len(splitline) < 2:
246
+ continue
247
+ ui, vi = splitline[0:2]
248
+ u = nodelabels.get(ui, ui)
249
+ v = nodelabels.get(vi, vi)
250
+ # parse the data attached to this edge and put in a dictionary
251
+ edge_data = {}
252
+ try:
253
+ # there should always be a single value on the edge?
254
+ w = splitline[2:3]
255
+ edge_data.update({"weight": float(w[0])})
256
+ except:
257
+ pass
258
+ # if there isn't, just assign a 1
259
+ # edge_data.update({'value':1})
260
+ extra_attr = zip(splitline[3::2], splitline[4::2])
261
+ edge_data.update(extra_attr)
262
+ # if G.has_edge(u,v):
263
+ # multigraph=True
264
+ G.add_edge(u, v, **edge_data)
265
+ elif l.lower().startswith("*matrix"):
266
+ G = nx.DiGraph(G)
267
+ adj_list = (
268
+ (labels[row], labels[col], {"weight": int(data)})
269
+ for (row, line) in enumerate(lines)
270
+ for (col, data) in enumerate(line.split())
271
+ if int(data) != 0
272
+ )
273
+ G.add_edges_from(adj_list)
274
+
275
+ return G
276
+
277
+
278
+ def make_qstr(t):
279
+ """Returns the string representation of t.
280
+ Add outer double-quotes if the string has a space.
281
+ """
282
+ if not isinstance(t, str):
283
+ t = str(t)
284
+ if " " in t:
285
+ t = f'"{t}"'
286
+ return t
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/sparse6.py ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Original author: D. Eppstein, UC Irvine, August 12, 2003.
2
+ # The original code at https://www.ics.uci.edu/~eppstein/PADS/ is public domain.
3
+ """Functions for reading and writing graphs in the *sparse6* format.
4
+
5
+ The *sparse6* file format is a space-efficient format for large sparse
6
+ graphs. For small graphs or large dense graphs, use the *graph6* file
7
+ format.
8
+
9
+ For more information, see the `sparse6`_ homepage.
10
+
11
+ .. _sparse6: https://users.cecs.anu.edu.au/~bdm/data/formats.html
12
+
13
+ """
14
+ import networkx as nx
15
+ from networkx.exception import NetworkXError
16
+ from networkx.readwrite.graph6 import data_to_n, n_to_data
17
+ from networkx.utils import not_implemented_for, open_file
18
+
19
+ __all__ = ["from_sparse6_bytes", "read_sparse6", "to_sparse6_bytes", "write_sparse6"]
20
+
21
+
22
+ def _generate_sparse6_bytes(G, nodes, header):
23
+ """Yield bytes in the sparse6 encoding of a graph.
24
+
25
+ `G` is an undirected simple graph. `nodes` is the list of nodes for
26
+ which the node-induced subgraph will be encoded; if `nodes` is the
27
+ list of all nodes in the graph, the entire graph will be
28
+ encoded. `header` is a Boolean that specifies whether to generate
29
+ the header ``b'>>sparse6<<'`` before the remaining data.
30
+
31
+ This function generates `bytes` objects in the following order:
32
+
33
+ 1. the header (if requested),
34
+ 2. the encoding of the number of nodes,
35
+ 3. each character, one-at-a-time, in the encoding of the requested
36
+ node-induced subgraph,
37
+ 4. a newline character.
38
+
39
+ This function raises :exc:`ValueError` if the graph is too large for
40
+ the graph6 format (that is, greater than ``2 ** 36`` nodes).
41
+
42
+ """
43
+ n = len(G)
44
+ if n >= 2**36:
45
+ raise ValueError(
46
+ "sparse6 is only defined if number of nodes is less than 2 ** 36"
47
+ )
48
+ if header:
49
+ yield b">>sparse6<<"
50
+ yield b":"
51
+ for d in n_to_data(n):
52
+ yield str.encode(chr(d + 63))
53
+
54
+ k = 1
55
+ while 1 << k < n:
56
+ k += 1
57
+
58
+ def enc(x):
59
+ """Big endian k-bit encoding of x"""
60
+ return [1 if (x & 1 << (k - 1 - i)) else 0 for i in range(k)]
61
+
62
+ edges = sorted((max(u, v), min(u, v)) for u, v in G.edges())
63
+ bits = []
64
+ curv = 0
65
+ for v, u in edges:
66
+ if v == curv: # current vertex edge
67
+ bits.append(0)
68
+ bits.extend(enc(u))
69
+ elif v == curv + 1: # next vertex edge
70
+ curv += 1
71
+ bits.append(1)
72
+ bits.extend(enc(u))
73
+ else: # skip to vertex v and then add edge to u
74
+ curv = v
75
+ bits.append(1)
76
+ bits.extend(enc(v))
77
+ bits.append(0)
78
+ bits.extend(enc(u))
79
+ if k < 6 and n == (1 << k) and ((-len(bits)) % 6) >= k and curv < (n - 1):
80
+ # Padding special case: small k, n=2^k,
81
+ # more than k bits of padding needed,
82
+ # current vertex is not (n-1) --
83
+ # appending 1111... would add a loop on (n-1)
84
+ bits.append(0)
85
+ bits.extend([1] * ((-len(bits)) % 6))
86
+ else:
87
+ bits.extend([1] * ((-len(bits)) % 6))
88
+
89
+ data = [
90
+ (bits[i + 0] << 5)
91
+ + (bits[i + 1] << 4)
92
+ + (bits[i + 2] << 3)
93
+ + (bits[i + 3] << 2)
94
+ + (bits[i + 4] << 1)
95
+ + (bits[i + 5] << 0)
96
+ for i in range(0, len(bits), 6)
97
+ ]
98
+
99
+ for d in data:
100
+ yield str.encode(chr(d + 63))
101
+ yield b"\n"
102
+
103
+
104
+ @nx._dispatchable(graphs=None, returns_graph=True)
105
+ def from_sparse6_bytes(string):
106
+ """Read an undirected graph in sparse6 format from string.
107
+
108
+ Parameters
109
+ ----------
110
+ string : string
111
+ Data in sparse6 format
112
+
113
+ Returns
114
+ -------
115
+ G : Graph
116
+
117
+ Raises
118
+ ------
119
+ NetworkXError
120
+ If the string is unable to be parsed in sparse6 format
121
+
122
+ Examples
123
+ --------
124
+ >>> G = nx.from_sparse6_bytes(b":A_")
125
+ >>> sorted(G.edges())
126
+ [(0, 1), (0, 1), (0, 1)]
127
+
128
+ See Also
129
+ --------
130
+ read_sparse6, write_sparse6
131
+
132
+ References
133
+ ----------
134
+ .. [1] Sparse6 specification
135
+ <https://users.cecs.anu.edu.au/~bdm/data/formats.html>
136
+
137
+ """
138
+ if string.startswith(b">>sparse6<<"):
139
+ string = string[11:]
140
+ if not string.startswith(b":"):
141
+ raise NetworkXError("Expected leading colon in sparse6")
142
+
143
+ chars = [c - 63 for c in string[1:]]
144
+ n, data = data_to_n(chars)
145
+ k = 1
146
+ while 1 << k < n:
147
+ k += 1
148
+
149
+ def parseData():
150
+ """Returns stream of pairs b[i], x[i] for sparse6 format."""
151
+ chunks = iter(data)
152
+ d = None # partial data word
153
+ dLen = 0 # how many unparsed bits are left in d
154
+
155
+ while 1:
156
+ if dLen < 1:
157
+ try:
158
+ d = next(chunks)
159
+ except StopIteration:
160
+ return
161
+ dLen = 6
162
+ dLen -= 1
163
+ b = (d >> dLen) & 1 # grab top remaining bit
164
+
165
+ x = d & ((1 << dLen) - 1) # partially built up value of x
166
+ xLen = dLen # how many bits included so far in x
167
+ while xLen < k: # now grab full chunks until we have enough
168
+ try:
169
+ d = next(chunks)
170
+ except StopIteration:
171
+ return
172
+ dLen = 6
173
+ x = (x << 6) + d
174
+ xLen += 6
175
+ x = x >> (xLen - k) # shift back the extra bits
176
+ dLen = xLen - k
177
+ yield b, x
178
+
179
+ v = 0
180
+
181
+ G = nx.MultiGraph()
182
+ G.add_nodes_from(range(n))
183
+
184
+ multigraph = False
185
+ for b, x in parseData():
186
+ if b == 1:
187
+ v += 1
188
+ # padding with ones can cause overlarge number here
189
+ if x >= n or v >= n:
190
+ break
191
+ elif x > v:
192
+ v = x
193
+ else:
194
+ if G.has_edge(x, v):
195
+ multigraph = True
196
+ G.add_edge(x, v)
197
+ if not multigraph:
198
+ G = nx.Graph(G)
199
+ return G
200
+
201
+
202
+ def to_sparse6_bytes(G, nodes=None, header=True):
203
+ """Convert an undirected graph to bytes in sparse6 format.
204
+
205
+ Parameters
206
+ ----------
207
+ G : Graph (undirected)
208
+
209
+ nodes: list or iterable
210
+ Nodes are labeled 0...n-1 in the order provided. If None the ordering
211
+ given by ``G.nodes()`` is used.
212
+
213
+ header: bool
214
+ If True add '>>sparse6<<' bytes to head of data.
215
+
216
+ Raises
217
+ ------
218
+ NetworkXNotImplemented
219
+ If the graph is directed.
220
+
221
+ ValueError
222
+ If the graph has at least ``2 ** 36`` nodes; the sparse6 format
223
+ is only defined for graphs of order less than ``2 ** 36``.
224
+
225
+ Examples
226
+ --------
227
+ >>> nx.to_sparse6_bytes(nx.path_graph(2))
228
+ b'>>sparse6<<:An\\n'
229
+
230
+ See Also
231
+ --------
232
+ to_sparse6_bytes, read_sparse6, write_sparse6_bytes
233
+
234
+ Notes
235
+ -----
236
+ The returned bytes end with a newline character.
237
+
238
+ The format does not support edge or node labels.
239
+
240
+ References
241
+ ----------
242
+ .. [1] Graph6 specification
243
+ <https://users.cecs.anu.edu.au/~bdm/data/formats.html>
244
+
245
+ """
246
+ if nodes is not None:
247
+ G = G.subgraph(nodes)
248
+ G = nx.convert_node_labels_to_integers(G, ordering="sorted")
249
+ return b"".join(_generate_sparse6_bytes(G, nodes, header))
250
+
251
+
252
+ @open_file(0, mode="rb")
253
+ @nx._dispatchable(graphs=None, returns_graph=True)
254
+ def read_sparse6(path):
255
+ """Read an undirected graph in sparse6 format from path.
256
+
257
+ Parameters
258
+ ----------
259
+ path : file or string
260
+ File or filename to write.
261
+
262
+ Returns
263
+ -------
264
+ G : Graph/Multigraph or list of Graphs/MultiGraphs
265
+ If the file contains multiple lines then a list of graphs is returned
266
+
267
+ Raises
268
+ ------
269
+ NetworkXError
270
+ If the string is unable to be parsed in sparse6 format
271
+
272
+ Examples
273
+ --------
274
+ You can read a sparse6 file by giving the path to the file::
275
+
276
+ >>> import tempfile
277
+ >>> with tempfile.NamedTemporaryFile(delete=False) as f:
278
+ ... _ = f.write(b">>sparse6<<:An\\n")
279
+ ... _ = f.seek(0)
280
+ ... G = nx.read_sparse6(f.name)
281
+ >>> list(G.edges())
282
+ [(0, 1)]
283
+
284
+ You can also read a sparse6 file by giving an open file-like object::
285
+
286
+ >>> import tempfile
287
+ >>> with tempfile.NamedTemporaryFile() as f:
288
+ ... _ = f.write(b">>sparse6<<:An\\n")
289
+ ... _ = f.seek(0)
290
+ ... G = nx.read_sparse6(f)
291
+ >>> list(G.edges())
292
+ [(0, 1)]
293
+
294
+ See Also
295
+ --------
296
+ read_sparse6, from_sparse6_bytes
297
+
298
+ References
299
+ ----------
300
+ .. [1] Sparse6 specification
301
+ <https://users.cecs.anu.edu.au/~bdm/data/formats.html>
302
+
303
+ """
304
+ glist = []
305
+ for line in path:
306
+ line = line.strip()
307
+ if not len(line):
308
+ continue
309
+ glist.append(from_sparse6_bytes(line))
310
+ if len(glist) == 1:
311
+ return glist[0]
312
+ else:
313
+ return glist
314
+
315
+
316
+ @not_implemented_for("directed")
317
+ @open_file(1, mode="wb")
318
+ def write_sparse6(G, path, nodes=None, header=True):
319
+ """Write graph G to given path in sparse6 format.
320
+
321
+ Parameters
322
+ ----------
323
+ G : Graph (undirected)
324
+
325
+ path : file or string
326
+ File or filename to write
327
+
328
+ nodes: list or iterable
329
+ Nodes are labeled 0...n-1 in the order provided. If None the ordering
330
+ given by G.nodes() is used.
331
+
332
+ header: bool
333
+ If True add '>>sparse6<<' string to head of data
334
+
335
+ Raises
336
+ ------
337
+ NetworkXError
338
+ If the graph is directed
339
+
340
+ Examples
341
+ --------
342
+ You can write a sparse6 file by giving the path to the file::
343
+
344
+ >>> import tempfile
345
+ >>> with tempfile.NamedTemporaryFile(delete=False) as f:
346
+ ... nx.write_sparse6(nx.path_graph(2), f.name)
347
+ ... print(f.read())
348
+ b'>>sparse6<<:An\\n'
349
+
350
+ You can also write a sparse6 file by giving an open file-like object::
351
+
352
+ >>> with tempfile.NamedTemporaryFile() as f:
353
+ ... nx.write_sparse6(nx.path_graph(2), f)
354
+ ... _ = f.seek(0)
355
+ ... print(f.read())
356
+ b'>>sparse6<<:An\\n'
357
+
358
+ See Also
359
+ --------
360
+ read_sparse6, from_sparse6_bytes
361
+
362
+ Notes
363
+ -----
364
+ The format does not support edge or node labels.
365
+
366
+ References
367
+ ----------
368
+ .. [1] Sparse6 specification
369
+ <https://users.cecs.anu.edu.au/~bdm/data/formats.html>
370
+
371
+ """
372
+ if nodes is not None:
373
+ G = G.subgraph(nodes)
374
+ G = nx.convert_node_labels_to_integers(G, ordering="sorted")
375
+ for b in _generate_sparse6_bytes(G, nodes, header):
376
+ path.write(b)
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (189 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/readwrite/tests/__pycache__/test_adjlist.cpython-310.pyc ADDED
Binary file (7.78 kB). View file