Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/networkx/classes/__init__.py +13 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/coreviews.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/digraph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/filters.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/function.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/graphviews.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/multidigraph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/multigraph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/reportviews.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/coreviews.py +418 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/digraph.py +1334 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/filters.py +87 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/function.py +1335 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/graph.py +2043 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/graphviews.py +269 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/multidigraph.py +965 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/multigraph.py +1282 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/reportviews.py +1438 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_coreviews.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_reportviews.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_special.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/dispatch_interface.py +194 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_digraph.py +331 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_digraph_historical.py +110 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_filters.py +177 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_function.py +787 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_multigraph.py +528 -0
- env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_reportviews.py +1427 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/baseline/test_house_with_colors.png +3 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/atlas.dat.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/__init__.py +13 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/algebraicconnectivity.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/attrmatrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/bethehessianmatrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/graphmatrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/laplacianmatrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/modularitymatrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/spectrum.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/algebraicconnectivity.py +656 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/graphmatrix.py +166 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/laplacianmatrix.py +616 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/modularitymatrix.py +166 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/spectrum.py +185 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_algebraic_connectivity.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_attrmatrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_bethehessian.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/networkx/classes/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .graph import Graph
|
2 |
+
from .digraph import DiGraph
|
3 |
+
from .multigraph import MultiGraph
|
4 |
+
from .multidigraph import MultiDiGraph
|
5 |
+
|
6 |
+
from .function import *
|
7 |
+
from .graphviews import subgraph_view, reverse_view
|
8 |
+
|
9 |
+
from networkx.classes import filters
|
10 |
+
|
11 |
+
from networkx.classes import coreviews
|
12 |
+
from networkx.classes import graphviews
|
13 |
+
from networkx.classes import reportviews
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (585 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/coreviews.cpython-310.pyc
ADDED
Binary file (16.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/digraph.cpython-310.pyc
ADDED
Binary file (46.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/filters.cpython-310.pyc
ADDED
Binary file (4.71 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/function.cpython-310.pyc
ADDED
Binary file (37.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/graphviews.cpython-310.pyc
ADDED
Binary file (8.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/multidigraph.cpython-310.pyc
ADDED
Binary file (36 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/multigraph.cpython-310.pyc
ADDED
Binary file (46.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/__pycache__/reportviews.cpython-310.pyc
ADDED
Binary file (49 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/coreviews.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Views of core data structures such as nested Mappings (e.g. dict-of-dicts).
|
2 |
+
These ``Views`` often restrict element access, with either the entire view or
|
3 |
+
layers of nested mappings being read-only.
|
4 |
+
"""
|
5 |
+
from collections.abc import Mapping
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"AtlasView",
|
9 |
+
"AdjacencyView",
|
10 |
+
"MultiAdjacencyView",
|
11 |
+
"UnionAtlas",
|
12 |
+
"UnionAdjacency",
|
13 |
+
"UnionMultiInner",
|
14 |
+
"UnionMultiAdjacency",
|
15 |
+
"FilterAtlas",
|
16 |
+
"FilterAdjacency",
|
17 |
+
"FilterMultiInner",
|
18 |
+
"FilterMultiAdjacency",
|
19 |
+
]
|
20 |
+
|
21 |
+
|
22 |
+
class AtlasView(Mapping):
|
23 |
+
"""An AtlasView is a Read-only Mapping of Mappings.
|
24 |
+
|
25 |
+
It is a View into a dict-of-dict data structure.
|
26 |
+
The inner level of dict is read-write. But the
|
27 |
+
outer level is read-only.
|
28 |
+
|
29 |
+
See Also
|
30 |
+
========
|
31 |
+
AdjacencyView: View into dict-of-dict-of-dict
|
32 |
+
MultiAdjacencyView: View into dict-of-dict-of-dict-of-dict
|
33 |
+
"""
|
34 |
+
|
35 |
+
__slots__ = ("_atlas",)
|
36 |
+
|
37 |
+
def __getstate__(self):
|
38 |
+
return {"_atlas": self._atlas}
|
39 |
+
|
40 |
+
def __setstate__(self, state):
|
41 |
+
self._atlas = state["_atlas"]
|
42 |
+
|
43 |
+
def __init__(self, d):
|
44 |
+
self._atlas = d
|
45 |
+
|
46 |
+
def __len__(self):
|
47 |
+
return len(self._atlas)
|
48 |
+
|
49 |
+
def __iter__(self):
|
50 |
+
return iter(self._atlas)
|
51 |
+
|
52 |
+
def __getitem__(self, key):
|
53 |
+
return self._atlas[key]
|
54 |
+
|
55 |
+
def copy(self):
|
56 |
+
return {n: self[n].copy() for n in self._atlas}
|
57 |
+
|
58 |
+
def __str__(self):
|
59 |
+
return str(self._atlas) # {nbr: self[nbr] for nbr in self})
|
60 |
+
|
61 |
+
def __repr__(self):
|
62 |
+
return f"{self.__class__.__name__}({self._atlas!r})"
|
63 |
+
|
64 |
+
|
65 |
+
class AdjacencyView(AtlasView):
|
66 |
+
"""An AdjacencyView is a Read-only Map of Maps of Maps.
|
67 |
+
|
68 |
+
It is a View into a dict-of-dict-of-dict data structure.
|
69 |
+
The inner level of dict is read-write. But the
|
70 |
+
outer levels are read-only.
|
71 |
+
|
72 |
+
See Also
|
73 |
+
========
|
74 |
+
AtlasView: View into dict-of-dict
|
75 |
+
MultiAdjacencyView: View into dict-of-dict-of-dict-of-dict
|
76 |
+
"""
|
77 |
+
|
78 |
+
__slots__ = () # Still uses AtlasView slots names _atlas
|
79 |
+
|
80 |
+
def __getitem__(self, name):
|
81 |
+
return AtlasView(self._atlas[name])
|
82 |
+
|
83 |
+
def copy(self):
|
84 |
+
return {n: self[n].copy() for n in self._atlas}
|
85 |
+
|
86 |
+
|
87 |
+
class MultiAdjacencyView(AdjacencyView):
|
88 |
+
"""An MultiAdjacencyView is a Read-only Map of Maps of Maps of Maps.
|
89 |
+
|
90 |
+
It is a View into a dict-of-dict-of-dict-of-dict data structure.
|
91 |
+
The inner level of dict is read-write. But the
|
92 |
+
outer levels are read-only.
|
93 |
+
|
94 |
+
See Also
|
95 |
+
========
|
96 |
+
AtlasView: View into dict-of-dict
|
97 |
+
AdjacencyView: View into dict-of-dict-of-dict
|
98 |
+
"""
|
99 |
+
|
100 |
+
__slots__ = () # Still uses AtlasView slots names _atlas
|
101 |
+
|
102 |
+
def __getitem__(self, name):
|
103 |
+
return AdjacencyView(self._atlas[name])
|
104 |
+
|
105 |
+
def copy(self):
|
106 |
+
return {n: self[n].copy() for n in self._atlas}
|
107 |
+
|
108 |
+
|
109 |
+
class UnionAtlas(Mapping):
|
110 |
+
"""A read-only union of two atlases (dict-of-dict).
|
111 |
+
|
112 |
+
The two dict-of-dicts represent the inner dict of
|
113 |
+
an Adjacency: `G.succ[node]` and `G.pred[node]`.
|
114 |
+
The inner level of dict of both hold attribute key:value
|
115 |
+
pairs and is read-write. But the outer level is read-only.
|
116 |
+
|
117 |
+
See Also
|
118 |
+
========
|
119 |
+
UnionAdjacency: View into dict-of-dict-of-dict
|
120 |
+
UnionMultiAdjacency: View into dict-of-dict-of-dict-of-dict
|
121 |
+
"""
|
122 |
+
|
123 |
+
__slots__ = ("_succ", "_pred")
|
124 |
+
|
125 |
+
def __getstate__(self):
|
126 |
+
return {"_succ": self._succ, "_pred": self._pred}
|
127 |
+
|
128 |
+
def __setstate__(self, state):
|
129 |
+
self._succ = state["_succ"]
|
130 |
+
self._pred = state["_pred"]
|
131 |
+
|
132 |
+
def __init__(self, succ, pred):
|
133 |
+
self._succ = succ
|
134 |
+
self._pred = pred
|
135 |
+
|
136 |
+
def __len__(self):
|
137 |
+
return len(self._succ.keys() | self._pred.keys())
|
138 |
+
|
139 |
+
def __iter__(self):
|
140 |
+
return iter(set(self._succ.keys()) | set(self._pred.keys()))
|
141 |
+
|
142 |
+
def __getitem__(self, key):
|
143 |
+
try:
|
144 |
+
return self._succ[key]
|
145 |
+
except KeyError:
|
146 |
+
return self._pred[key]
|
147 |
+
|
148 |
+
def copy(self):
|
149 |
+
result = {nbr: dd.copy() for nbr, dd in self._succ.items()}
|
150 |
+
for nbr, dd in self._pred.items():
|
151 |
+
if nbr in result:
|
152 |
+
result[nbr].update(dd)
|
153 |
+
else:
|
154 |
+
result[nbr] = dd.copy()
|
155 |
+
return result
|
156 |
+
|
157 |
+
def __str__(self):
|
158 |
+
return str({nbr: self[nbr] for nbr in self})
|
159 |
+
|
160 |
+
def __repr__(self):
|
161 |
+
return f"{self.__class__.__name__}({self._succ!r}, {self._pred!r})"
|
162 |
+
|
163 |
+
|
164 |
+
class UnionAdjacency(Mapping):
|
165 |
+
"""A read-only union of dict Adjacencies as a Map of Maps of Maps.
|
166 |
+
|
167 |
+
The two input dict-of-dict-of-dicts represent the union of
|
168 |
+
`G.succ` and `G.pred`. Return values are UnionAtlas
|
169 |
+
The inner level of dict is read-write. But the
|
170 |
+
middle and outer levels are read-only.
|
171 |
+
|
172 |
+
succ : a dict-of-dict-of-dict {node: nbrdict}
|
173 |
+
pred : a dict-of-dict-of-dict {node: nbrdict}
|
174 |
+
The keys for the two dicts should be the same
|
175 |
+
|
176 |
+
See Also
|
177 |
+
========
|
178 |
+
UnionAtlas: View into dict-of-dict
|
179 |
+
UnionMultiAdjacency: View into dict-of-dict-of-dict-of-dict
|
180 |
+
"""
|
181 |
+
|
182 |
+
__slots__ = ("_succ", "_pred")
|
183 |
+
|
184 |
+
def __getstate__(self):
|
185 |
+
return {"_succ": self._succ, "_pred": self._pred}
|
186 |
+
|
187 |
+
def __setstate__(self, state):
|
188 |
+
self._succ = state["_succ"]
|
189 |
+
self._pred = state["_pred"]
|
190 |
+
|
191 |
+
def __init__(self, succ, pred):
|
192 |
+
# keys must be the same for two input dicts
|
193 |
+
assert len(set(succ.keys()) ^ set(pred.keys())) == 0
|
194 |
+
self._succ = succ
|
195 |
+
self._pred = pred
|
196 |
+
|
197 |
+
def __len__(self):
|
198 |
+
return len(self._succ) # length of each dict should be the same
|
199 |
+
|
200 |
+
def __iter__(self):
|
201 |
+
return iter(self._succ)
|
202 |
+
|
203 |
+
def __getitem__(self, nbr):
|
204 |
+
return UnionAtlas(self._succ[nbr], self._pred[nbr])
|
205 |
+
|
206 |
+
def copy(self):
|
207 |
+
return {n: self[n].copy() for n in self._succ}
|
208 |
+
|
209 |
+
def __str__(self):
|
210 |
+
return str({nbr: self[nbr] for nbr in self})
|
211 |
+
|
212 |
+
def __repr__(self):
|
213 |
+
return f"{self.__class__.__name__}({self._succ!r}, {self._pred!r})"
|
214 |
+
|
215 |
+
|
216 |
+
class UnionMultiInner(UnionAtlas):
|
217 |
+
"""A read-only union of two inner dicts of MultiAdjacencies.
|
218 |
+
|
219 |
+
The two input dict-of-dict-of-dicts represent the union of
|
220 |
+
`G.succ[node]` and `G.pred[node]` for MultiDiGraphs.
|
221 |
+
Return values are UnionAtlas.
|
222 |
+
The inner level of dict is read-write. But the outer levels are read-only.
|
223 |
+
|
224 |
+
See Also
|
225 |
+
========
|
226 |
+
UnionAtlas: View into dict-of-dict
|
227 |
+
UnionAdjacency: View into dict-of-dict-of-dict
|
228 |
+
UnionMultiAdjacency: View into dict-of-dict-of-dict-of-dict
|
229 |
+
"""
|
230 |
+
|
231 |
+
__slots__ = () # Still uses UnionAtlas slots names _succ, _pred
|
232 |
+
|
233 |
+
def __getitem__(self, node):
|
234 |
+
in_succ = node in self._succ
|
235 |
+
in_pred = node in self._pred
|
236 |
+
if in_succ:
|
237 |
+
if in_pred:
|
238 |
+
return UnionAtlas(self._succ[node], self._pred[node])
|
239 |
+
return UnionAtlas(self._succ[node], {})
|
240 |
+
return UnionAtlas({}, self._pred[node])
|
241 |
+
|
242 |
+
def copy(self):
|
243 |
+
nodes = set(self._succ.keys()) | set(self._pred.keys())
|
244 |
+
return {n: self[n].copy() for n in nodes}
|
245 |
+
|
246 |
+
|
247 |
+
class UnionMultiAdjacency(UnionAdjacency):
|
248 |
+
"""A read-only union of two dict MultiAdjacencies.
|
249 |
+
|
250 |
+
The two input dict-of-dict-of-dict-of-dicts represent the union of
|
251 |
+
`G.succ` and `G.pred` for MultiDiGraphs. Return values are UnionAdjacency.
|
252 |
+
The inner level of dict is read-write. But the outer levels are read-only.
|
253 |
+
|
254 |
+
See Also
|
255 |
+
========
|
256 |
+
UnionAtlas: View into dict-of-dict
|
257 |
+
UnionMultiInner: View into dict-of-dict-of-dict
|
258 |
+
"""
|
259 |
+
|
260 |
+
__slots__ = () # Still uses UnionAdjacency slots names _succ, _pred
|
261 |
+
|
262 |
+
def __getitem__(self, node):
|
263 |
+
return UnionMultiInner(self._succ[node], self._pred[node])
|
264 |
+
|
265 |
+
|
266 |
+
class FilterAtlas(Mapping): # nodedict, nbrdict, keydict
|
267 |
+
"""A read-only Mapping of Mappings with filtering criteria for nodes.
|
268 |
+
|
269 |
+
It is a view into a dict-of-dict data structure, and it selects only
|
270 |
+
nodes that meet the criteria defined by ``NODE_OK``.
|
271 |
+
|
272 |
+
See Also
|
273 |
+
========
|
274 |
+
FilterAdjacency
|
275 |
+
FilterMultiInner
|
276 |
+
FilterMultiAdjacency
|
277 |
+
"""
|
278 |
+
|
279 |
+
def __init__(self, d, NODE_OK):
|
280 |
+
self._atlas = d
|
281 |
+
self.NODE_OK = NODE_OK
|
282 |
+
|
283 |
+
def __len__(self):
|
284 |
+
return sum(1 for n in self)
|
285 |
+
|
286 |
+
def __iter__(self):
|
287 |
+
try: # check that NODE_OK has attr 'nodes'
|
288 |
+
node_ok_shorter = 2 * len(self.NODE_OK.nodes) < len(self._atlas)
|
289 |
+
except AttributeError:
|
290 |
+
node_ok_shorter = False
|
291 |
+
if node_ok_shorter:
|
292 |
+
return (n for n in self.NODE_OK.nodes if n in self._atlas)
|
293 |
+
return (n for n in self._atlas if self.NODE_OK(n))
|
294 |
+
|
295 |
+
def __getitem__(self, key):
|
296 |
+
if key in self._atlas and self.NODE_OK(key):
|
297 |
+
return self._atlas[key]
|
298 |
+
raise KeyError(f"Key {key} not found")
|
299 |
+
|
300 |
+
def __str__(self):
|
301 |
+
return str({nbr: self[nbr] for nbr in self})
|
302 |
+
|
303 |
+
def __repr__(self):
|
304 |
+
return f"{self.__class__.__name__}({self._atlas!r}, {self.NODE_OK!r})"
|
305 |
+
|
306 |
+
|
307 |
+
class FilterAdjacency(Mapping): # edgedict
|
308 |
+
"""A read-only Mapping of Mappings with filtering criteria for nodes and edges.
|
309 |
+
|
310 |
+
It is a view into a dict-of-dict-of-dict data structure, and it selects nodes
|
311 |
+
and edges that satisfy specific criteria defined by ``NODE_OK`` and ``EDGE_OK``,
|
312 |
+
respectively.
|
313 |
+
|
314 |
+
See Also
|
315 |
+
========
|
316 |
+
FilterAtlas
|
317 |
+
FilterMultiInner
|
318 |
+
FilterMultiAdjacency
|
319 |
+
"""
|
320 |
+
|
321 |
+
def __init__(self, d, NODE_OK, EDGE_OK):
|
322 |
+
self._atlas = d
|
323 |
+
self.NODE_OK = NODE_OK
|
324 |
+
self.EDGE_OK = EDGE_OK
|
325 |
+
|
326 |
+
def __len__(self):
|
327 |
+
return sum(1 for n in self)
|
328 |
+
|
329 |
+
def __iter__(self):
|
330 |
+
try: # check that NODE_OK has attr 'nodes'
|
331 |
+
node_ok_shorter = 2 * len(self.NODE_OK.nodes) < len(self._atlas)
|
332 |
+
except AttributeError:
|
333 |
+
node_ok_shorter = False
|
334 |
+
if node_ok_shorter:
|
335 |
+
return (n for n in self.NODE_OK.nodes if n in self._atlas)
|
336 |
+
return (n for n in self._atlas if self.NODE_OK(n))
|
337 |
+
|
338 |
+
def __getitem__(self, node):
|
339 |
+
if node in self._atlas and self.NODE_OK(node):
|
340 |
+
|
341 |
+
def new_node_ok(nbr):
|
342 |
+
return self.NODE_OK(nbr) and self.EDGE_OK(node, nbr)
|
343 |
+
|
344 |
+
return FilterAtlas(self._atlas[node], new_node_ok)
|
345 |
+
raise KeyError(f"Key {node} not found")
|
346 |
+
|
347 |
+
def __str__(self):
|
348 |
+
return str({nbr: self[nbr] for nbr in self})
|
349 |
+
|
350 |
+
def __repr__(self):
|
351 |
+
name = self.__class__.__name__
|
352 |
+
return f"{name}({self._atlas!r}, {self.NODE_OK!r}, {self.EDGE_OK!r})"
|
353 |
+
|
354 |
+
|
355 |
+
class FilterMultiInner(FilterAdjacency): # muliedge_seconddict
|
356 |
+
"""A read-only Mapping of Mappings with filtering criteria for nodes and edges.
|
357 |
+
|
358 |
+
It is a view into a dict-of-dict-of-dict-of-dict data structure, and it selects nodes
|
359 |
+
and edges that meet specific criteria defined by ``NODE_OK`` and ``EDGE_OK``.
|
360 |
+
|
361 |
+
See Also
|
362 |
+
========
|
363 |
+
FilterAtlas
|
364 |
+
FilterAdjacency
|
365 |
+
FilterMultiAdjacency
|
366 |
+
"""
|
367 |
+
|
368 |
+
def __iter__(self):
|
369 |
+
try: # check that NODE_OK has attr 'nodes'
|
370 |
+
node_ok_shorter = 2 * len(self.NODE_OK.nodes) < len(self._atlas)
|
371 |
+
except AttributeError:
|
372 |
+
node_ok_shorter = False
|
373 |
+
if node_ok_shorter:
|
374 |
+
my_nodes = (n for n in self.NODE_OK.nodes if n in self._atlas)
|
375 |
+
else:
|
376 |
+
my_nodes = (n for n in self._atlas if self.NODE_OK(n))
|
377 |
+
for n in my_nodes:
|
378 |
+
some_keys_ok = False
|
379 |
+
for key in self._atlas[n]:
|
380 |
+
if self.EDGE_OK(n, key):
|
381 |
+
some_keys_ok = True
|
382 |
+
break
|
383 |
+
if some_keys_ok is True:
|
384 |
+
yield n
|
385 |
+
|
386 |
+
def __getitem__(self, nbr):
|
387 |
+
if nbr in self._atlas and self.NODE_OK(nbr):
|
388 |
+
|
389 |
+
def new_node_ok(key):
|
390 |
+
return self.EDGE_OK(nbr, key)
|
391 |
+
|
392 |
+
return FilterAtlas(self._atlas[nbr], new_node_ok)
|
393 |
+
raise KeyError(f"Key {nbr} not found")
|
394 |
+
|
395 |
+
|
396 |
+
class FilterMultiAdjacency(FilterAdjacency): # multiedgedict
|
397 |
+
"""A read-only Mapping of Mappings with filtering criteria
|
398 |
+
for nodes and edges.
|
399 |
+
|
400 |
+
It is a view into a dict-of-dict-of-dict-of-dict data structure,
|
401 |
+
and it selects nodes and edges that satisfy specific criteria
|
402 |
+
defined by ``NODE_OK`` and ``EDGE_OK``, respectively.
|
403 |
+
|
404 |
+
See Also
|
405 |
+
========
|
406 |
+
FilterAtlas
|
407 |
+
FilterAdjacency
|
408 |
+
FilterMultiInner
|
409 |
+
"""
|
410 |
+
|
411 |
+
def __getitem__(self, node):
|
412 |
+
if node in self._atlas and self.NODE_OK(node):
|
413 |
+
|
414 |
+
def edge_ok(nbr, key):
|
415 |
+
return self.NODE_OK(nbr) and self.EDGE_OK(node, nbr, key)
|
416 |
+
|
417 |
+
return FilterMultiInner(self._atlas[node], self.NODE_OK, edge_ok)
|
418 |
+
raise KeyError(f"Key {node} not found")
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/digraph.py
ADDED
@@ -0,0 +1,1334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Base class for directed graphs."""
|
2 |
+
from copy import deepcopy
|
3 |
+
from functools import cached_property
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
from networkx import convert
|
7 |
+
from networkx.classes.coreviews import AdjacencyView
|
8 |
+
from networkx.classes.graph import Graph
|
9 |
+
from networkx.classes.reportviews import (
|
10 |
+
DiDegreeView,
|
11 |
+
InDegreeView,
|
12 |
+
InEdgeView,
|
13 |
+
OutDegreeView,
|
14 |
+
OutEdgeView,
|
15 |
+
)
|
16 |
+
from networkx.exception import NetworkXError
|
17 |
+
|
18 |
+
__all__ = ["DiGraph"]
|
19 |
+
|
20 |
+
|
21 |
+
class _CachedPropertyResetterAdjAndSucc:
|
22 |
+
"""Data Descriptor class that syncs and resets cached properties adj and succ
|
23 |
+
|
24 |
+
The cached properties `adj` and `succ` are reset whenever `_adj` or `_succ`
|
25 |
+
are set to new objects. In addition, the attributes `_succ` and `_adj`
|
26 |
+
are synced so these two names point to the same object.
|
27 |
+
|
28 |
+
This object sits on a class and ensures that any instance of that
|
29 |
+
class clears its cached properties "succ" and "adj" whenever the
|
30 |
+
underlying instance attributes "_succ" or "_adj" are set to a new object.
|
31 |
+
It only affects the set process of the obj._adj and obj._succ attribute.
|
32 |
+
All get/del operations act as they normally would.
|
33 |
+
|
34 |
+
For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __set__(self, obj, value):
|
38 |
+
od = obj.__dict__
|
39 |
+
od["_adj"] = value
|
40 |
+
od["_succ"] = value
|
41 |
+
# reset cached properties
|
42 |
+
if "adj" in od:
|
43 |
+
del od["adj"]
|
44 |
+
if "succ" in od:
|
45 |
+
del od["succ"]
|
46 |
+
|
47 |
+
|
48 |
+
class _CachedPropertyResetterPred:
|
49 |
+
"""Data Descriptor class for _pred that resets ``pred`` cached_property when needed
|
50 |
+
|
51 |
+
This assumes that the ``cached_property`` ``G.pred`` should be reset whenever
|
52 |
+
``G._pred`` is set to a new value.
|
53 |
+
|
54 |
+
This object sits on a class and ensures that any instance of that
|
55 |
+
class clears its cached property "pred" whenever the underlying
|
56 |
+
instance attribute "_pred" is set to a new object. It only affects
|
57 |
+
the set process of the obj._pred attribute. All get/del operations
|
58 |
+
act as they normally would.
|
59 |
+
|
60 |
+
For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __set__(self, obj, value):
|
64 |
+
od = obj.__dict__
|
65 |
+
od["_pred"] = value
|
66 |
+
if "pred" in od:
|
67 |
+
del od["pred"]
|
68 |
+
|
69 |
+
|
70 |
+
class DiGraph(Graph):
|
71 |
+
"""
|
72 |
+
Base class for directed graphs.
|
73 |
+
|
74 |
+
A DiGraph stores nodes and edges with optional data, or attributes.
|
75 |
+
|
76 |
+
DiGraphs hold directed edges. Self loops are allowed but multiple
|
77 |
+
(parallel) edges are not.
|
78 |
+
|
79 |
+
Nodes can be arbitrary (hashable) Python objects with optional
|
80 |
+
key/value attributes. By convention `None` is not used as a node.
|
81 |
+
|
82 |
+
Edges are represented as links between nodes with optional
|
83 |
+
key/value attributes.
|
84 |
+
|
85 |
+
Parameters
|
86 |
+
----------
|
87 |
+
incoming_graph_data : input graph (optional, default: None)
|
88 |
+
Data to initialize graph. If None (default) an empty
|
89 |
+
graph is created. The data can be any format that is supported
|
90 |
+
by the to_networkx_graph() function, currently including edge list,
|
91 |
+
dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
|
92 |
+
sparse matrix, or PyGraphviz graph.
|
93 |
+
|
94 |
+
attr : keyword arguments, optional (default= no attributes)
|
95 |
+
Attributes to add to graph as key=value pairs.
|
96 |
+
|
97 |
+
See Also
|
98 |
+
--------
|
99 |
+
Graph
|
100 |
+
MultiGraph
|
101 |
+
MultiDiGraph
|
102 |
+
|
103 |
+
Examples
|
104 |
+
--------
|
105 |
+
Create an empty graph structure (a "null graph") with no nodes and
|
106 |
+
no edges.
|
107 |
+
|
108 |
+
>>> G = nx.DiGraph()
|
109 |
+
|
110 |
+
G can be grown in several ways.
|
111 |
+
|
112 |
+
**Nodes:**
|
113 |
+
|
114 |
+
Add one node at a time:
|
115 |
+
|
116 |
+
>>> G.add_node(1)
|
117 |
+
|
118 |
+
Add the nodes from any container (a list, dict, set or
|
119 |
+
even the lines from a file or the nodes from another graph).
|
120 |
+
|
121 |
+
>>> G.add_nodes_from([2, 3])
|
122 |
+
>>> G.add_nodes_from(range(100, 110))
|
123 |
+
>>> H = nx.path_graph(10)
|
124 |
+
>>> G.add_nodes_from(H)
|
125 |
+
|
126 |
+
In addition to strings and integers any hashable Python object
|
127 |
+
(except None) can represent a node, e.g. a customized node object,
|
128 |
+
or even another Graph.
|
129 |
+
|
130 |
+
>>> G.add_node(H)
|
131 |
+
|
132 |
+
**Edges:**
|
133 |
+
|
134 |
+
G can also be grown by adding edges.
|
135 |
+
|
136 |
+
Add one edge,
|
137 |
+
|
138 |
+
>>> G.add_edge(1, 2)
|
139 |
+
|
140 |
+
a list of edges,
|
141 |
+
|
142 |
+
>>> G.add_edges_from([(1, 2), (1, 3)])
|
143 |
+
|
144 |
+
or a collection of edges,
|
145 |
+
|
146 |
+
>>> G.add_edges_from(H.edges)
|
147 |
+
|
148 |
+
If some edges connect nodes not yet in the graph, the nodes
|
149 |
+
are added automatically. There are no errors when adding
|
150 |
+
nodes or edges that already exist.
|
151 |
+
|
152 |
+
**Attributes:**
|
153 |
+
|
154 |
+
Each graph, node, and edge can hold key/value attribute pairs
|
155 |
+
in an associated attribute dictionary (the keys must be hashable).
|
156 |
+
By default these are empty, but can be added or changed using
|
157 |
+
add_edge, add_node or direct manipulation of the attribute
|
158 |
+
dictionaries named graph, node and edge respectively.
|
159 |
+
|
160 |
+
>>> G = nx.DiGraph(day="Friday")
|
161 |
+
>>> G.graph
|
162 |
+
{'day': 'Friday'}
|
163 |
+
|
164 |
+
Add node attributes using add_node(), add_nodes_from() or G.nodes
|
165 |
+
|
166 |
+
>>> G.add_node(1, time="5pm")
|
167 |
+
>>> G.add_nodes_from([3], time="2pm")
|
168 |
+
>>> G.nodes[1]
|
169 |
+
{'time': '5pm'}
|
170 |
+
>>> G.nodes[1]["room"] = 714
|
171 |
+
>>> del G.nodes[1]["room"] # remove attribute
|
172 |
+
>>> list(G.nodes(data=True))
|
173 |
+
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
|
174 |
+
|
175 |
+
Add edge attributes using add_edge(), add_edges_from(), subscript
|
176 |
+
notation, or G.edges.
|
177 |
+
|
178 |
+
>>> G.add_edge(1, 2, weight=4.7)
|
179 |
+
>>> G.add_edges_from([(3, 4), (4, 5)], color="red")
|
180 |
+
>>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
|
181 |
+
>>> G[1][2]["weight"] = 4.7
|
182 |
+
>>> G.edges[1, 2]["weight"] = 4
|
183 |
+
|
184 |
+
Warning: we protect the graph data structure by making `G.edges[1, 2]` a
|
185 |
+
read-only dict-like structure. However, you can assign to attributes
|
186 |
+
in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change
|
187 |
+
data attributes: `G.edges[1, 2]['weight'] = 4`
|
188 |
+
(For multigraphs: `MG.edges[u, v, key][name] = value`).
|
189 |
+
|
190 |
+
**Shortcuts:**
|
191 |
+
|
192 |
+
Many common graph features allow python syntax to speed reporting.
|
193 |
+
|
194 |
+
>>> 1 in G # check if node in graph
|
195 |
+
True
|
196 |
+
>>> [n for n in G if n < 3] # iterate through nodes
|
197 |
+
[1, 2]
|
198 |
+
>>> len(G) # number of nodes in graph
|
199 |
+
5
|
200 |
+
|
201 |
+
Often the best way to traverse all edges of a graph is via the neighbors.
|
202 |
+
The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`
|
203 |
+
|
204 |
+
>>> for n, nbrsdict in G.adjacency():
|
205 |
+
... for nbr, eattr in nbrsdict.items():
|
206 |
+
... if "weight" in eattr:
|
207 |
+
... # Do something useful with the edges
|
208 |
+
... pass
|
209 |
+
|
210 |
+
But the edges reporting object is often more convenient:
|
211 |
+
|
212 |
+
>>> for u, v, weight in G.edges(data="weight"):
|
213 |
+
... if weight is not None:
|
214 |
+
... # Do something useful with the edges
|
215 |
+
... pass
|
216 |
+
|
217 |
+
**Reporting:**
|
218 |
+
|
219 |
+
Simple graph information is obtained using object-attributes and methods.
|
220 |
+
Reporting usually provides views instead of containers to reduce memory
|
221 |
+
usage. The views update as the graph is updated similarly to dict-views.
|
222 |
+
The objects `nodes`, `edges` and `adj` provide access to data attributes
|
223 |
+
via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration
|
224 |
+
(e.g. `nodes.items()`, `nodes.data('color')`,
|
225 |
+
`nodes.data('color', default='blue')` and similarly for `edges`)
|
226 |
+
Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
|
227 |
+
|
228 |
+
For details on these and other miscellaneous methods, see below.
|
229 |
+
|
230 |
+
**Subclasses (Advanced):**
|
231 |
+
|
232 |
+
The Graph class uses a dict-of-dict-of-dict data structure.
|
233 |
+
The outer dict (node_dict) holds adjacency information keyed by node.
|
234 |
+
The next dict (adjlist_dict) represents the adjacency information and holds
|
235 |
+
edge data keyed by neighbor. The inner dict (edge_attr_dict) represents
|
236 |
+
the edge data and holds edge attribute values keyed by attribute names.
|
237 |
+
|
238 |
+
Each of these three dicts can be replaced in a subclass by a user defined
|
239 |
+
dict-like object. In general, the dict-like features should be
|
240 |
+
maintained but extra features can be added. To replace one of the
|
241 |
+
dicts create a new graph class by changing the class(!) variable
|
242 |
+
holding the factory for that dict-like structure. The variable names are
|
243 |
+
node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
|
244 |
+
adjlist_outer_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory.
|
245 |
+
|
246 |
+
node_dict_factory : function, (default: dict)
|
247 |
+
Factory function to be used to create the dict containing node
|
248 |
+
attributes, keyed by node id.
|
249 |
+
It should require no arguments and return a dict-like object
|
250 |
+
|
251 |
+
node_attr_dict_factory: function, (default: dict)
|
252 |
+
Factory function to be used to create the node attribute
|
253 |
+
dict which holds attribute values keyed by attribute name.
|
254 |
+
It should require no arguments and return a dict-like object
|
255 |
+
|
256 |
+
adjlist_outer_dict_factory : function, (default: dict)
|
257 |
+
Factory function to be used to create the outer-most dict
|
258 |
+
in the data structure that holds adjacency info keyed by node.
|
259 |
+
It should require no arguments and return a dict-like object.
|
260 |
+
|
261 |
+
adjlist_inner_dict_factory : function, optional (default: dict)
|
262 |
+
Factory function to be used to create the adjacency list
|
263 |
+
dict which holds edge data keyed by neighbor.
|
264 |
+
It should require no arguments and return a dict-like object
|
265 |
+
|
266 |
+
edge_attr_dict_factory : function, optional (default: dict)
|
267 |
+
Factory function to be used to create the edge attribute
|
268 |
+
dict which holds attribute values keyed by attribute name.
|
269 |
+
It should require no arguments and return a dict-like object.
|
270 |
+
|
271 |
+
graph_attr_dict_factory : function, (default: dict)
|
272 |
+
Factory function to be used to create the graph attribute
|
273 |
+
dict which holds attribute values keyed by attribute name.
|
274 |
+
It should require no arguments and return a dict-like object.
|
275 |
+
|
276 |
+
Typically, if your extension doesn't impact the data structure all
|
277 |
+
methods will inherited without issue except: `to_directed/to_undirected`.
|
278 |
+
By default these methods create a DiGraph/Graph class and you probably
|
279 |
+
want them to create your extension of a DiGraph/Graph. To facilitate
|
280 |
+
this we define two class variables that you can set in your subclass.
|
281 |
+
|
282 |
+
to_directed_class : callable, (default: DiGraph or MultiDiGraph)
|
283 |
+
Class to create a new graph structure in the `to_directed` method.
|
284 |
+
If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
|
285 |
+
|
286 |
+
to_undirected_class : callable, (default: Graph or MultiGraph)
|
287 |
+
Class to create a new graph structure in the `to_undirected` method.
|
288 |
+
If `None`, a NetworkX class (Graph or MultiGraph) is used.
|
289 |
+
|
290 |
+
**Subclassing Example**
|
291 |
+
|
292 |
+
Create a low memory graph class that effectively disallows edge
|
293 |
+
attributes by using a single attribute dict for all edges.
|
294 |
+
This reduces the memory used, but you lose edge attributes.
|
295 |
+
|
296 |
+
>>> class ThinGraph(nx.Graph):
|
297 |
+
... all_edge_dict = {"weight": 1}
|
298 |
+
...
|
299 |
+
... def single_edge_dict(self):
|
300 |
+
... return self.all_edge_dict
|
301 |
+
...
|
302 |
+
... edge_attr_dict_factory = single_edge_dict
|
303 |
+
>>> G = ThinGraph()
|
304 |
+
>>> G.add_edge(2, 1)
|
305 |
+
>>> G[2][1]
|
306 |
+
{'weight': 1}
|
307 |
+
>>> G.add_edge(2, 2)
|
308 |
+
>>> G[2][1] is G[2][2]
|
309 |
+
True
|
310 |
+
"""
|
311 |
+
|
312 |
+
_adj = _CachedPropertyResetterAdjAndSucc() # type: ignore[assignment]
|
313 |
+
_succ = _adj # type: ignore[has-type]
|
314 |
+
_pred = _CachedPropertyResetterPred()
|
315 |
+
|
316 |
+
def __init__(self, incoming_graph_data=None, **attr):
|
317 |
+
"""Initialize a graph with edges, name, or graph attributes.
|
318 |
+
|
319 |
+
Parameters
|
320 |
+
----------
|
321 |
+
incoming_graph_data : input graph (optional, default: None)
|
322 |
+
Data to initialize graph. If None (default) an empty
|
323 |
+
graph is created. The data can be an edge list, or any
|
324 |
+
NetworkX graph object. If the corresponding optional Python
|
325 |
+
packages are installed the data can also be a 2D NumPy array, a
|
326 |
+
SciPy sparse array, or a PyGraphviz graph.
|
327 |
+
|
328 |
+
attr : keyword arguments, optional (default= no attributes)
|
329 |
+
Attributes to add to graph as key=value pairs.
|
330 |
+
|
331 |
+
See Also
|
332 |
+
--------
|
333 |
+
convert
|
334 |
+
|
335 |
+
Examples
|
336 |
+
--------
|
337 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
338 |
+
>>> G = nx.Graph(name="my graph")
|
339 |
+
>>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
|
340 |
+
>>> G = nx.Graph(e)
|
341 |
+
|
342 |
+
Arbitrary graph attribute pairs (key=value) may be assigned
|
343 |
+
|
344 |
+
>>> G = nx.Graph(e, day="Friday")
|
345 |
+
>>> G.graph
|
346 |
+
{'day': 'Friday'}
|
347 |
+
|
348 |
+
"""
|
349 |
+
self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes
|
350 |
+
self._node = self.node_dict_factory() # dictionary for node attr
|
351 |
+
# We store two adjacency lists:
|
352 |
+
# the predecessors of node n are stored in the dict self._pred
|
353 |
+
# the successors of node n are stored in the dict self._succ=self._adj
|
354 |
+
self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict successor
|
355 |
+
self._pred = self.adjlist_outer_dict_factory() # predecessor
|
356 |
+
# Note: self._succ = self._adj # successor
|
357 |
+
|
358 |
+
self.__networkx_cache__ = {}
|
359 |
+
# attempt to load graph with data
|
360 |
+
if incoming_graph_data is not None:
|
361 |
+
convert.to_networkx_graph(incoming_graph_data, create_using=self)
|
362 |
+
# load graph attributes (must be after convert)
|
363 |
+
self.graph.update(attr)
|
364 |
+
|
365 |
+
@cached_property
|
366 |
+
def adj(self):
|
367 |
+
"""Graph adjacency object holding the neighbors of each node.
|
368 |
+
|
369 |
+
This object is a read-only dict-like structure with node keys
|
370 |
+
and neighbor-dict values. The neighbor-dict is keyed by neighbor
|
371 |
+
to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets
|
372 |
+
the color of the edge `(3, 2)` to `"blue"`.
|
373 |
+
|
374 |
+
Iterating over G.adj behaves like a dict. Useful idioms include
|
375 |
+
`for nbr, datadict in G.adj[n].items():`.
|
376 |
+
|
377 |
+
The neighbor information is also provided by subscripting the graph.
|
378 |
+
So `for nbr, foovalue in G[node].data('foo', default=1):` works.
|
379 |
+
|
380 |
+
For directed graphs, `G.adj` holds outgoing (successor) info.
|
381 |
+
"""
|
382 |
+
return AdjacencyView(self._succ)
|
383 |
+
|
384 |
+
@cached_property
|
385 |
+
def succ(self):
|
386 |
+
"""Graph adjacency object holding the successors of each node.
|
387 |
+
|
388 |
+
This object is a read-only dict-like structure with node keys
|
389 |
+
and neighbor-dict values. The neighbor-dict is keyed by neighbor
|
390 |
+
to the edge-data-dict. So `G.succ[3][2]['color'] = 'blue'` sets
|
391 |
+
the color of the edge `(3, 2)` to `"blue"`.
|
392 |
+
|
393 |
+
Iterating over G.succ behaves like a dict. Useful idioms include
|
394 |
+
`for nbr, datadict in G.succ[n].items():`. A data-view not provided
|
395 |
+
by dicts also exists: `for nbr, foovalue in G.succ[node].data('foo'):`
|
396 |
+
and a default can be set via a `default` argument to the `data` method.
|
397 |
+
|
398 |
+
The neighbor information is also provided by subscripting the graph.
|
399 |
+
So `for nbr, foovalue in G[node].data('foo', default=1):` works.
|
400 |
+
|
401 |
+
For directed graphs, `G.adj` is identical to `G.succ`.
|
402 |
+
"""
|
403 |
+
return AdjacencyView(self._succ)
|
404 |
+
|
405 |
+
@cached_property
|
406 |
+
def pred(self):
|
407 |
+
"""Graph adjacency object holding the predecessors of each node.
|
408 |
+
|
409 |
+
This object is a read-only dict-like structure with node keys
|
410 |
+
and neighbor-dict values. The neighbor-dict is keyed by neighbor
|
411 |
+
to the edge-data-dict. So `G.pred[2][3]['color'] = 'blue'` sets
|
412 |
+
the color of the edge `(3, 2)` to `"blue"`.
|
413 |
+
|
414 |
+
Iterating over G.pred behaves like a dict. Useful idioms include
|
415 |
+
`for nbr, datadict in G.pred[n].items():`. A data-view not provided
|
416 |
+
by dicts also exists: `for nbr, foovalue in G.pred[node].data('foo'):`
|
417 |
+
A default can be set via a `default` argument to the `data` method.
|
418 |
+
"""
|
419 |
+
return AdjacencyView(self._pred)
|
420 |
+
|
421 |
+
def add_node(self, node_for_adding, **attr):
|
422 |
+
"""Add a single node `node_for_adding` and update node attributes.
|
423 |
+
|
424 |
+
Parameters
|
425 |
+
----------
|
426 |
+
node_for_adding : node
|
427 |
+
A node can be any hashable Python object except None.
|
428 |
+
attr : keyword arguments, optional
|
429 |
+
Set or change node attributes using key=value.
|
430 |
+
|
431 |
+
See Also
|
432 |
+
--------
|
433 |
+
add_nodes_from
|
434 |
+
|
435 |
+
Examples
|
436 |
+
--------
|
437 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
438 |
+
>>> G.add_node(1)
|
439 |
+
>>> G.add_node("Hello")
|
440 |
+
>>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
|
441 |
+
>>> G.add_node(K3)
|
442 |
+
>>> G.number_of_nodes()
|
443 |
+
3
|
444 |
+
|
445 |
+
Use keywords set/change node attributes:
|
446 |
+
|
447 |
+
>>> G.add_node(1, size=10)
|
448 |
+
>>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649))
|
449 |
+
|
450 |
+
Notes
|
451 |
+
-----
|
452 |
+
A hashable object is one that can be used as a key in a Python
|
453 |
+
dictionary. This includes strings, numbers, tuples of strings
|
454 |
+
and numbers, etc.
|
455 |
+
|
456 |
+
On many platforms hashable items also include mutables such as
|
457 |
+
NetworkX Graphs, though one should be careful that the hash
|
458 |
+
doesn't change on mutables.
|
459 |
+
"""
|
460 |
+
if node_for_adding not in self._succ:
|
461 |
+
if node_for_adding is None:
|
462 |
+
raise ValueError("None cannot be a node")
|
463 |
+
self._succ[node_for_adding] = self.adjlist_inner_dict_factory()
|
464 |
+
self._pred[node_for_adding] = self.adjlist_inner_dict_factory()
|
465 |
+
attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory()
|
466 |
+
attr_dict.update(attr)
|
467 |
+
else: # update attr even if node already exists
|
468 |
+
self._node[node_for_adding].update(attr)
|
469 |
+
nx._clear_cache(self)
|
470 |
+
|
471 |
+
def add_nodes_from(self, nodes_for_adding, **attr):
|
472 |
+
"""Add multiple nodes.
|
473 |
+
|
474 |
+
Parameters
|
475 |
+
----------
|
476 |
+
nodes_for_adding : iterable container
|
477 |
+
A container of nodes (list, dict, set, etc.).
|
478 |
+
OR
|
479 |
+
A container of (node, attribute dict) tuples.
|
480 |
+
Node attributes are updated using the attribute dict.
|
481 |
+
attr : keyword arguments, optional (default= no attributes)
|
482 |
+
Update attributes for all nodes in nodes.
|
483 |
+
Node attributes specified in nodes as a tuple take
|
484 |
+
precedence over attributes specified via keyword arguments.
|
485 |
+
|
486 |
+
See Also
|
487 |
+
--------
|
488 |
+
add_node
|
489 |
+
|
490 |
+
Notes
|
491 |
+
-----
|
492 |
+
When adding nodes from an iterator over the graph you are changing,
|
493 |
+
a `RuntimeError` can be raised with message:
|
494 |
+
`RuntimeError: dictionary changed size during iteration`. This
|
495 |
+
happens when the graph's underlying dictionary is modified during
|
496 |
+
iteration. To avoid this error, evaluate the iterator into a separate
|
497 |
+
object, e.g. by using `list(iterator_of_nodes)`, and pass this
|
498 |
+
object to `G.add_nodes_from`.
|
499 |
+
|
500 |
+
Examples
|
501 |
+
--------
|
502 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
503 |
+
>>> G.add_nodes_from("Hello")
|
504 |
+
>>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
|
505 |
+
>>> G.add_nodes_from(K3)
|
506 |
+
>>> sorted(G.nodes(), key=str)
|
507 |
+
[0, 1, 2, 'H', 'e', 'l', 'o']
|
508 |
+
|
509 |
+
Use keywords to update specific node attributes for every node.
|
510 |
+
|
511 |
+
>>> G.add_nodes_from([1, 2], size=10)
|
512 |
+
>>> G.add_nodes_from([3, 4], weight=0.4)
|
513 |
+
|
514 |
+
Use (node, attrdict) tuples to update attributes for specific nodes.
|
515 |
+
|
516 |
+
>>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})])
|
517 |
+
>>> G.nodes[1]["size"]
|
518 |
+
11
|
519 |
+
>>> H = nx.Graph()
|
520 |
+
>>> H.add_nodes_from(G.nodes(data=True))
|
521 |
+
>>> H.nodes[1]["size"]
|
522 |
+
11
|
523 |
+
|
524 |
+
Evaluate an iterator over a graph if using it to modify the same graph
|
525 |
+
|
526 |
+
>>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)])
|
527 |
+
>>> # wrong way - will raise RuntimeError
|
528 |
+
>>> # G.add_nodes_from(n + 1 for n in G.nodes)
|
529 |
+
>>> # correct way
|
530 |
+
>>> G.add_nodes_from(list(n + 1 for n in G.nodes))
|
531 |
+
"""
|
532 |
+
for n in nodes_for_adding:
|
533 |
+
try:
|
534 |
+
newnode = n not in self._node
|
535 |
+
newdict = attr
|
536 |
+
except TypeError:
|
537 |
+
n, ndict = n
|
538 |
+
newnode = n not in self._node
|
539 |
+
newdict = attr.copy()
|
540 |
+
newdict.update(ndict)
|
541 |
+
if newnode:
|
542 |
+
if n is None:
|
543 |
+
raise ValueError("None cannot be a node")
|
544 |
+
self._succ[n] = self.adjlist_inner_dict_factory()
|
545 |
+
self._pred[n] = self.adjlist_inner_dict_factory()
|
546 |
+
self._node[n] = self.node_attr_dict_factory()
|
547 |
+
self._node[n].update(newdict)
|
548 |
+
nx._clear_cache(self)
|
549 |
+
|
550 |
+
def remove_node(self, n):
|
551 |
+
"""Remove node n.
|
552 |
+
|
553 |
+
Removes the node n and all adjacent edges.
|
554 |
+
Attempting to remove a nonexistent node will raise an exception.
|
555 |
+
|
556 |
+
Parameters
|
557 |
+
----------
|
558 |
+
n : node
|
559 |
+
A node in the graph
|
560 |
+
|
561 |
+
Raises
|
562 |
+
------
|
563 |
+
NetworkXError
|
564 |
+
If n is not in the graph.
|
565 |
+
|
566 |
+
See Also
|
567 |
+
--------
|
568 |
+
remove_nodes_from
|
569 |
+
|
570 |
+
Examples
|
571 |
+
--------
|
572 |
+
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
573 |
+
>>> list(G.edges)
|
574 |
+
[(0, 1), (1, 2)]
|
575 |
+
>>> G.remove_node(1)
|
576 |
+
>>> list(G.edges)
|
577 |
+
[]
|
578 |
+
|
579 |
+
"""
|
580 |
+
try:
|
581 |
+
nbrs = self._succ[n]
|
582 |
+
del self._node[n]
|
583 |
+
except KeyError as err: # NetworkXError if n not in self
|
584 |
+
raise NetworkXError(f"The node {n} is not in the digraph.") from err
|
585 |
+
for u in nbrs:
|
586 |
+
del self._pred[u][n] # remove all edges n-u in digraph
|
587 |
+
del self._succ[n] # remove node from succ
|
588 |
+
for u in self._pred[n]:
|
589 |
+
del self._succ[u][n] # remove all edges n-u in digraph
|
590 |
+
del self._pred[n] # remove node from pred
|
591 |
+
nx._clear_cache(self)
|
592 |
+
|
593 |
+
def remove_nodes_from(self, nodes):
|
594 |
+
"""Remove multiple nodes.
|
595 |
+
|
596 |
+
Parameters
|
597 |
+
----------
|
598 |
+
nodes : iterable container
|
599 |
+
A container of nodes (list, dict, set, etc.). If a node
|
600 |
+
in the container is not in the graph it is silently ignored.
|
601 |
+
|
602 |
+
See Also
|
603 |
+
--------
|
604 |
+
remove_node
|
605 |
+
|
606 |
+
Notes
|
607 |
+
-----
|
608 |
+
When removing nodes from an iterator over the graph you are changing,
|
609 |
+
a `RuntimeError` will be raised with message:
|
610 |
+
`RuntimeError: dictionary changed size during iteration`. This
|
611 |
+
happens when the graph's underlying dictionary is modified during
|
612 |
+
iteration. To avoid this error, evaluate the iterator into a separate
|
613 |
+
object, e.g. by using `list(iterator_of_nodes)`, and pass this
|
614 |
+
object to `G.remove_nodes_from`.
|
615 |
+
|
616 |
+
Examples
|
617 |
+
--------
|
618 |
+
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
619 |
+
>>> e = list(G.nodes)
|
620 |
+
>>> e
|
621 |
+
[0, 1, 2]
|
622 |
+
>>> G.remove_nodes_from(e)
|
623 |
+
>>> list(G.nodes)
|
624 |
+
[]
|
625 |
+
|
626 |
+
Evaluate an iterator over a graph if using it to modify the same graph
|
627 |
+
|
628 |
+
>>> G = nx.DiGraph([(0, 1), (1, 2), (3, 4)])
|
629 |
+
>>> # this command will fail, as the graph's dict is modified during iteration
|
630 |
+
>>> # G.remove_nodes_from(n for n in G.nodes if n < 2)
|
631 |
+
>>> # this command will work, since the dictionary underlying graph is not modified
|
632 |
+
>>> G.remove_nodes_from(list(n for n in G.nodes if n < 2))
|
633 |
+
"""
|
634 |
+
for n in nodes:
|
635 |
+
try:
|
636 |
+
succs = self._succ[n]
|
637 |
+
del self._node[n]
|
638 |
+
for u in succs:
|
639 |
+
del self._pred[u][n] # remove all edges n-u in digraph
|
640 |
+
del self._succ[n] # now remove node
|
641 |
+
for u in self._pred[n]:
|
642 |
+
del self._succ[u][n] # remove all edges n-u in digraph
|
643 |
+
del self._pred[n] # now remove node
|
644 |
+
except KeyError:
|
645 |
+
pass # silent failure on remove
|
646 |
+
nx._clear_cache(self)
|
647 |
+
|
648 |
+
def add_edge(self, u_of_edge, v_of_edge, **attr):
|
649 |
+
"""Add an edge between u and v.
|
650 |
+
|
651 |
+
The nodes u and v will be automatically added if they are
|
652 |
+
not already in the graph.
|
653 |
+
|
654 |
+
Edge attributes can be specified with keywords or by directly
|
655 |
+
accessing the edge's attribute dictionary. See examples below.
|
656 |
+
|
657 |
+
Parameters
|
658 |
+
----------
|
659 |
+
u_of_edge, v_of_edge : nodes
|
660 |
+
Nodes can be, for example, strings or numbers.
|
661 |
+
Nodes must be hashable (and not None) Python objects.
|
662 |
+
attr : keyword arguments, optional
|
663 |
+
Edge data (or labels or objects) can be assigned using
|
664 |
+
keyword arguments.
|
665 |
+
|
666 |
+
See Also
|
667 |
+
--------
|
668 |
+
add_edges_from : add a collection of edges
|
669 |
+
|
670 |
+
Notes
|
671 |
+
-----
|
672 |
+
Adding an edge that already exists updates the edge data.
|
673 |
+
|
674 |
+
Many NetworkX algorithms designed for weighted graphs use
|
675 |
+
an edge attribute (by default `weight`) to hold a numerical value.
|
676 |
+
|
677 |
+
Examples
|
678 |
+
--------
|
679 |
+
The following all add the edge e=(1, 2) to graph G:
|
680 |
+
|
681 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
682 |
+
>>> e = (1, 2)
|
683 |
+
>>> G.add_edge(1, 2) # explicit two-node form
|
684 |
+
>>> G.add_edge(*e) # single edge as tuple of two nodes
|
685 |
+
>>> G.add_edges_from([(1, 2)]) # add edges from iterable container
|
686 |
+
|
687 |
+
Associate data to edges using keywords:
|
688 |
+
|
689 |
+
>>> G.add_edge(1, 2, weight=3)
|
690 |
+
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
|
691 |
+
|
692 |
+
For non-string attribute keys, use subscript notation.
|
693 |
+
|
694 |
+
>>> G.add_edge(1, 2)
|
695 |
+
>>> G[1][2].update({0: 5})
|
696 |
+
>>> G.edges[1, 2].update({0: 5})
|
697 |
+
"""
|
698 |
+
u, v = u_of_edge, v_of_edge
|
699 |
+
# add nodes
|
700 |
+
if u not in self._succ:
|
701 |
+
if u is None:
|
702 |
+
raise ValueError("None cannot be a node")
|
703 |
+
self._succ[u] = self.adjlist_inner_dict_factory()
|
704 |
+
self._pred[u] = self.adjlist_inner_dict_factory()
|
705 |
+
self._node[u] = self.node_attr_dict_factory()
|
706 |
+
if v not in self._succ:
|
707 |
+
if v is None:
|
708 |
+
raise ValueError("None cannot be a node")
|
709 |
+
self._succ[v] = self.adjlist_inner_dict_factory()
|
710 |
+
self._pred[v] = self.adjlist_inner_dict_factory()
|
711 |
+
self._node[v] = self.node_attr_dict_factory()
|
712 |
+
# add the edge
|
713 |
+
datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
|
714 |
+
datadict.update(attr)
|
715 |
+
self._succ[u][v] = datadict
|
716 |
+
self._pred[v][u] = datadict
|
717 |
+
nx._clear_cache(self)
|
718 |
+
|
719 |
+
def add_edges_from(self, ebunch_to_add, **attr):
|
720 |
+
"""Add all the edges in ebunch_to_add.
|
721 |
+
|
722 |
+
Parameters
|
723 |
+
----------
|
724 |
+
ebunch_to_add : container of edges
|
725 |
+
Each edge given in the container will be added to the
|
726 |
+
graph. The edges must be given as 2-tuples (u, v) or
|
727 |
+
3-tuples (u, v, d) where d is a dictionary containing edge data.
|
728 |
+
attr : keyword arguments, optional
|
729 |
+
Edge data (or labels or objects) can be assigned using
|
730 |
+
keyword arguments.
|
731 |
+
|
732 |
+
See Also
|
733 |
+
--------
|
734 |
+
add_edge : add a single edge
|
735 |
+
add_weighted_edges_from : convenient way to add weighted edges
|
736 |
+
|
737 |
+
Notes
|
738 |
+
-----
|
739 |
+
Adding the same edge twice has no effect but any edge data
|
740 |
+
will be updated when each duplicate edge is added.
|
741 |
+
|
742 |
+
Edge attributes specified in an ebunch take precedence over
|
743 |
+
attributes specified via keyword arguments.
|
744 |
+
|
745 |
+
When adding edges from an iterator over the graph you are changing,
|
746 |
+
a `RuntimeError` can be raised with message:
|
747 |
+
`RuntimeError: dictionary changed size during iteration`. This
|
748 |
+
happens when the graph's underlying dictionary is modified during
|
749 |
+
iteration. To avoid this error, evaluate the iterator into a separate
|
750 |
+
object, e.g. by using `list(iterator_of_edges)`, and pass this
|
751 |
+
object to `G.add_edges_from`.
|
752 |
+
|
753 |
+
Examples
|
754 |
+
--------
|
755 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
756 |
+
>>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples
|
757 |
+
>>> e = zip(range(0, 3), range(1, 4))
|
758 |
+
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
|
759 |
+
|
760 |
+
Associate data to edges
|
761 |
+
|
762 |
+
>>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
|
763 |
+
>>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
|
764 |
+
|
765 |
+
Evaluate an iterator over a graph if using it to modify the same graph
|
766 |
+
|
767 |
+
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
|
768 |
+
>>> # Grow graph by one new node, adding edges to all existing nodes.
|
769 |
+
>>> # wrong way - will raise RuntimeError
|
770 |
+
>>> # G.add_edges_from(((5, n) for n in G.nodes))
|
771 |
+
>>> # right way - note that there will be no self-edge for node 5
|
772 |
+
>>> G.add_edges_from(list((5, n) for n in G.nodes))
|
773 |
+
"""
|
774 |
+
for e in ebunch_to_add:
|
775 |
+
ne = len(e)
|
776 |
+
if ne == 3:
|
777 |
+
u, v, dd = e
|
778 |
+
elif ne == 2:
|
779 |
+
u, v = e
|
780 |
+
dd = {}
|
781 |
+
else:
|
782 |
+
raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.")
|
783 |
+
if u not in self._succ:
|
784 |
+
if u is None:
|
785 |
+
raise ValueError("None cannot be a node")
|
786 |
+
self._succ[u] = self.adjlist_inner_dict_factory()
|
787 |
+
self._pred[u] = self.adjlist_inner_dict_factory()
|
788 |
+
self._node[u] = self.node_attr_dict_factory()
|
789 |
+
if v not in self._succ:
|
790 |
+
if v is None:
|
791 |
+
raise ValueError("None cannot be a node")
|
792 |
+
self._succ[v] = self.adjlist_inner_dict_factory()
|
793 |
+
self._pred[v] = self.adjlist_inner_dict_factory()
|
794 |
+
self._node[v] = self.node_attr_dict_factory()
|
795 |
+
datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
|
796 |
+
datadict.update(attr)
|
797 |
+
datadict.update(dd)
|
798 |
+
self._succ[u][v] = datadict
|
799 |
+
self._pred[v][u] = datadict
|
800 |
+
nx._clear_cache(self)
|
801 |
+
|
802 |
+
def remove_edge(self, u, v):
|
803 |
+
"""Remove the edge between u and v.
|
804 |
+
|
805 |
+
Parameters
|
806 |
+
----------
|
807 |
+
u, v : nodes
|
808 |
+
Remove the edge between nodes u and v.
|
809 |
+
|
810 |
+
Raises
|
811 |
+
------
|
812 |
+
NetworkXError
|
813 |
+
If there is not an edge between u and v.
|
814 |
+
|
815 |
+
See Also
|
816 |
+
--------
|
817 |
+
remove_edges_from : remove a collection of edges
|
818 |
+
|
819 |
+
Examples
|
820 |
+
--------
|
821 |
+
>>> G = nx.Graph() # or DiGraph, etc
|
822 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
823 |
+
>>> G.remove_edge(0, 1)
|
824 |
+
>>> e = (1, 2)
|
825 |
+
>>> G.remove_edge(*e) # unpacks e from an edge tuple
|
826 |
+
>>> e = (2, 3, {"weight": 7}) # an edge with attribute data
|
827 |
+
>>> G.remove_edge(*e[:2]) # select first part of edge tuple
|
828 |
+
"""
|
829 |
+
try:
|
830 |
+
del self._succ[u][v]
|
831 |
+
del self._pred[v][u]
|
832 |
+
except KeyError as err:
|
833 |
+
raise NetworkXError(f"The edge {u}-{v} not in graph.") from err
|
834 |
+
nx._clear_cache(self)
|
835 |
+
|
836 |
+
def remove_edges_from(self, ebunch):
|
837 |
+
"""Remove all edges specified in ebunch.
|
838 |
+
|
839 |
+
Parameters
|
840 |
+
----------
|
841 |
+
ebunch: list or container of edge tuples
|
842 |
+
Each edge given in the list or container will be removed
|
843 |
+
from the graph. The edges can be:
|
844 |
+
|
845 |
+
- 2-tuples (u, v) edge between u and v.
|
846 |
+
- 3-tuples (u, v, k) where k is ignored.
|
847 |
+
|
848 |
+
See Also
|
849 |
+
--------
|
850 |
+
remove_edge : remove a single edge
|
851 |
+
|
852 |
+
Notes
|
853 |
+
-----
|
854 |
+
Will fail silently if an edge in ebunch is not in the graph.
|
855 |
+
|
856 |
+
Examples
|
857 |
+
--------
|
858 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
859 |
+
>>> ebunch = [(1, 2), (2, 3)]
|
860 |
+
>>> G.remove_edges_from(ebunch)
|
861 |
+
"""
|
862 |
+
for e in ebunch:
|
863 |
+
u, v = e[:2] # ignore edge data
|
864 |
+
if u in self._succ and v in self._succ[u]:
|
865 |
+
del self._succ[u][v]
|
866 |
+
del self._pred[v][u]
|
867 |
+
nx._clear_cache(self)
|
868 |
+
|
869 |
+
def has_successor(self, u, v):
|
870 |
+
"""Returns True if node u has successor v.
|
871 |
+
|
872 |
+
This is true if graph has the edge u->v.
|
873 |
+
"""
|
874 |
+
return u in self._succ and v in self._succ[u]
|
875 |
+
|
876 |
+
def has_predecessor(self, u, v):
|
877 |
+
"""Returns True if node u has predecessor v.
|
878 |
+
|
879 |
+
This is true if graph has the edge u<-v.
|
880 |
+
"""
|
881 |
+
return u in self._pred and v in self._pred[u]
|
882 |
+
|
883 |
+
def successors(self, n):
|
884 |
+
"""Returns an iterator over successor nodes of n.
|
885 |
+
|
886 |
+
A successor of n is a node m such that there exists a directed
|
887 |
+
edge from n to m.
|
888 |
+
|
889 |
+
Parameters
|
890 |
+
----------
|
891 |
+
n : node
|
892 |
+
A node in the graph
|
893 |
+
|
894 |
+
Raises
|
895 |
+
------
|
896 |
+
NetworkXError
|
897 |
+
If n is not in the graph.
|
898 |
+
|
899 |
+
See Also
|
900 |
+
--------
|
901 |
+
predecessors
|
902 |
+
|
903 |
+
Notes
|
904 |
+
-----
|
905 |
+
neighbors() and successors() are the same.
|
906 |
+
"""
|
907 |
+
try:
|
908 |
+
return iter(self._succ[n])
|
909 |
+
except KeyError as err:
|
910 |
+
raise NetworkXError(f"The node {n} is not in the digraph.") from err
|
911 |
+
|
912 |
+
# digraph definitions
|
913 |
+
neighbors = successors
|
914 |
+
|
915 |
+
def predecessors(self, n):
|
916 |
+
"""Returns an iterator over predecessor nodes of n.
|
917 |
+
|
918 |
+
A predecessor of n is a node m such that there exists a directed
|
919 |
+
edge from m to n.
|
920 |
+
|
921 |
+
Parameters
|
922 |
+
----------
|
923 |
+
n : node
|
924 |
+
A node in the graph
|
925 |
+
|
926 |
+
Raises
|
927 |
+
------
|
928 |
+
NetworkXError
|
929 |
+
If n is not in the graph.
|
930 |
+
|
931 |
+
See Also
|
932 |
+
--------
|
933 |
+
successors
|
934 |
+
"""
|
935 |
+
try:
|
936 |
+
return iter(self._pred[n])
|
937 |
+
except KeyError as err:
|
938 |
+
raise NetworkXError(f"The node {n} is not in the digraph.") from err
|
939 |
+
|
940 |
+
@cached_property
|
941 |
+
def edges(self):
|
942 |
+
"""An OutEdgeView of the DiGraph as G.edges or G.edges().
|
943 |
+
|
944 |
+
edges(self, nbunch=None, data=False, default=None)
|
945 |
+
|
946 |
+
The OutEdgeView provides set-like operations on the edge-tuples
|
947 |
+
as well as edge attribute lookup. When called, it also provides
|
948 |
+
an EdgeDataView object which allows control of access to edge
|
949 |
+
attributes (but does not provide set-like operations).
|
950 |
+
Hence, `G.edges[u, v]['color']` provides the value of the color
|
951 |
+
attribute for edge `(u, v)` while
|
952 |
+
`for (u, v, c) in G.edges.data('color', default='red'):`
|
953 |
+
iterates through all the edges yielding the color attribute
|
954 |
+
with default `'red'` if no color attribute exists.
|
955 |
+
|
956 |
+
Parameters
|
957 |
+
----------
|
958 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
959 |
+
The view will only report edges from these nodes.
|
960 |
+
data : string or bool, optional (default=False)
|
961 |
+
The edge attribute returned in 3-tuple (u, v, ddict[data]).
|
962 |
+
If True, return edge attribute dict in 3-tuple (u, v, ddict).
|
963 |
+
If False, return 2-tuple (u, v).
|
964 |
+
default : value, optional (default=None)
|
965 |
+
Value used for edges that don't have the requested attribute.
|
966 |
+
Only relevant if data is not True or False.
|
967 |
+
|
968 |
+
Returns
|
969 |
+
-------
|
970 |
+
edges : OutEdgeView
|
971 |
+
A view of edge attributes, usually it iterates over (u, v)
|
972 |
+
or (u, v, d) tuples of edges, but can also be used for
|
973 |
+
attribute lookup as `edges[u, v]['foo']`.
|
974 |
+
|
975 |
+
See Also
|
976 |
+
--------
|
977 |
+
in_edges, out_edges
|
978 |
+
|
979 |
+
Notes
|
980 |
+
-----
|
981 |
+
Nodes in nbunch that are not in the graph will be (quietly) ignored.
|
982 |
+
For directed graphs this returns the out-edges.
|
983 |
+
|
984 |
+
Examples
|
985 |
+
--------
|
986 |
+
>>> G = nx.DiGraph() # or MultiDiGraph, etc
|
987 |
+
>>> nx.add_path(G, [0, 1, 2])
|
988 |
+
>>> G.add_edge(2, 3, weight=5)
|
989 |
+
>>> [e for e in G.edges]
|
990 |
+
[(0, 1), (1, 2), (2, 3)]
|
991 |
+
>>> G.edges.data() # default data is {} (empty dict)
|
992 |
+
OutEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})])
|
993 |
+
>>> G.edges.data("weight", default=1)
|
994 |
+
OutEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)])
|
995 |
+
>>> G.edges([0, 2]) # only edges originating from these nodes
|
996 |
+
OutEdgeDataView([(0, 1), (2, 3)])
|
997 |
+
>>> G.edges(0) # only edges from node 0
|
998 |
+
OutEdgeDataView([(0, 1)])
|
999 |
+
|
1000 |
+
"""
|
1001 |
+
return OutEdgeView(self)
|
1002 |
+
|
1003 |
+
# alias out_edges to edges
|
1004 |
+
@cached_property
|
1005 |
+
def out_edges(self):
|
1006 |
+
return OutEdgeView(self)
|
1007 |
+
|
1008 |
+
out_edges.__doc__ = edges.__doc__
|
1009 |
+
|
1010 |
+
@cached_property
|
1011 |
+
def in_edges(self):
|
1012 |
+
"""A view of the in edges of the graph as G.in_edges or G.in_edges().
|
1013 |
+
|
1014 |
+
in_edges(self, nbunch=None, data=False, default=None):
|
1015 |
+
|
1016 |
+
Parameters
|
1017 |
+
----------
|
1018 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
1019 |
+
The view will only report edges incident to these nodes.
|
1020 |
+
data : string or bool, optional (default=False)
|
1021 |
+
The edge attribute returned in 3-tuple (u, v, ddict[data]).
|
1022 |
+
If True, return edge attribute dict in 3-tuple (u, v, ddict).
|
1023 |
+
If False, return 2-tuple (u, v).
|
1024 |
+
default : value, optional (default=None)
|
1025 |
+
Value used for edges that don't have the requested attribute.
|
1026 |
+
Only relevant if data is not True or False.
|
1027 |
+
|
1028 |
+
Returns
|
1029 |
+
-------
|
1030 |
+
in_edges : InEdgeView or InEdgeDataView
|
1031 |
+
A view of edge attributes, usually it iterates over (u, v)
|
1032 |
+
or (u, v, d) tuples of edges, but can also be used for
|
1033 |
+
attribute lookup as `edges[u, v]['foo']`.
|
1034 |
+
|
1035 |
+
Examples
|
1036 |
+
--------
|
1037 |
+
>>> G = nx.DiGraph()
|
1038 |
+
>>> G.add_edge(1, 2, color="blue")
|
1039 |
+
>>> G.in_edges()
|
1040 |
+
InEdgeView([(1, 2)])
|
1041 |
+
>>> G.in_edges(nbunch=2)
|
1042 |
+
InEdgeDataView([(1, 2)])
|
1043 |
+
|
1044 |
+
See Also
|
1045 |
+
--------
|
1046 |
+
edges
|
1047 |
+
"""
|
1048 |
+
return InEdgeView(self)
|
1049 |
+
|
1050 |
+
@cached_property
|
1051 |
+
def degree(self):
|
1052 |
+
"""A DegreeView for the Graph as G.degree or G.degree().
|
1053 |
+
|
1054 |
+
The node degree is the number of edges adjacent to the node.
|
1055 |
+
The weighted node degree is the sum of the edge weights for
|
1056 |
+
edges incident to that node.
|
1057 |
+
|
1058 |
+
This object provides an iterator for (node, degree) as well as
|
1059 |
+
lookup for the degree for a single node.
|
1060 |
+
|
1061 |
+
Parameters
|
1062 |
+
----------
|
1063 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
1064 |
+
The view will only report edges incident to these nodes.
|
1065 |
+
|
1066 |
+
weight : string or None, optional (default=None)
|
1067 |
+
The name of an edge attribute that holds the numerical value used
|
1068 |
+
as a weight. If None, then each edge has weight 1.
|
1069 |
+
The degree is the sum of the edge weights adjacent to the node.
|
1070 |
+
|
1071 |
+
Returns
|
1072 |
+
-------
|
1073 |
+
DiDegreeView or int
|
1074 |
+
If multiple nodes are requested (the default), returns a `DiDegreeView`
|
1075 |
+
mapping nodes to their degree.
|
1076 |
+
If a single node is requested, returns the degree of the node as an integer.
|
1077 |
+
|
1078 |
+
See Also
|
1079 |
+
--------
|
1080 |
+
in_degree, out_degree
|
1081 |
+
|
1082 |
+
Examples
|
1083 |
+
--------
|
1084 |
+
>>> G = nx.DiGraph() # or MultiDiGraph
|
1085 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
1086 |
+
>>> G.degree(0) # node 0 with degree 1
|
1087 |
+
1
|
1088 |
+
>>> list(G.degree([0, 1, 2]))
|
1089 |
+
[(0, 1), (1, 2), (2, 2)]
|
1090 |
+
|
1091 |
+
"""
|
1092 |
+
return DiDegreeView(self)
|
1093 |
+
|
1094 |
+
@cached_property
|
1095 |
+
def in_degree(self):
|
1096 |
+
"""An InDegreeView for (node, in_degree) or in_degree for single node.
|
1097 |
+
|
1098 |
+
The node in_degree is the number of edges pointing to the node.
|
1099 |
+
The weighted node degree is the sum of the edge weights for
|
1100 |
+
edges incident to that node.
|
1101 |
+
|
1102 |
+
This object provides an iteration over (node, in_degree) as well as
|
1103 |
+
lookup for the degree for a single node.
|
1104 |
+
|
1105 |
+
Parameters
|
1106 |
+
----------
|
1107 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
1108 |
+
The view will only report edges incident to these nodes.
|
1109 |
+
|
1110 |
+
weight : string or None, optional (default=None)
|
1111 |
+
The name of an edge attribute that holds the numerical value used
|
1112 |
+
as a weight. If None, then each edge has weight 1.
|
1113 |
+
The degree is the sum of the edge weights adjacent to the node.
|
1114 |
+
|
1115 |
+
Returns
|
1116 |
+
-------
|
1117 |
+
If a single node is requested
|
1118 |
+
deg : int
|
1119 |
+
In-degree of the node
|
1120 |
+
|
1121 |
+
OR if multiple nodes are requested
|
1122 |
+
nd_iter : iterator
|
1123 |
+
The iterator returns two-tuples of (node, in-degree).
|
1124 |
+
|
1125 |
+
See Also
|
1126 |
+
--------
|
1127 |
+
degree, out_degree
|
1128 |
+
|
1129 |
+
Examples
|
1130 |
+
--------
|
1131 |
+
>>> G = nx.DiGraph()
|
1132 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
1133 |
+
>>> G.in_degree(0) # node 0 with degree 0
|
1134 |
+
0
|
1135 |
+
>>> list(G.in_degree([0, 1, 2]))
|
1136 |
+
[(0, 0), (1, 1), (2, 1)]
|
1137 |
+
|
1138 |
+
"""
|
1139 |
+
return InDegreeView(self)
|
1140 |
+
|
1141 |
+
@cached_property
|
1142 |
+
def out_degree(self):
|
1143 |
+
"""An OutDegreeView for (node, out_degree)
|
1144 |
+
|
1145 |
+
The node out_degree is the number of edges pointing out of the node.
|
1146 |
+
The weighted node degree is the sum of the edge weights for
|
1147 |
+
edges incident to that node.
|
1148 |
+
|
1149 |
+
This object provides an iterator over (node, out_degree) as well as
|
1150 |
+
lookup for the degree for a single node.
|
1151 |
+
|
1152 |
+
Parameters
|
1153 |
+
----------
|
1154 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
1155 |
+
The view will only report edges incident to these nodes.
|
1156 |
+
|
1157 |
+
weight : string or None, optional (default=None)
|
1158 |
+
The name of an edge attribute that holds the numerical value used
|
1159 |
+
as a weight. If None, then each edge has weight 1.
|
1160 |
+
The degree is the sum of the edge weights adjacent to the node.
|
1161 |
+
|
1162 |
+
Returns
|
1163 |
+
-------
|
1164 |
+
If a single node is requested
|
1165 |
+
deg : int
|
1166 |
+
Out-degree of the node
|
1167 |
+
|
1168 |
+
OR if multiple nodes are requested
|
1169 |
+
nd_iter : iterator
|
1170 |
+
The iterator returns two-tuples of (node, out-degree).
|
1171 |
+
|
1172 |
+
See Also
|
1173 |
+
--------
|
1174 |
+
degree, in_degree
|
1175 |
+
|
1176 |
+
Examples
|
1177 |
+
--------
|
1178 |
+
>>> G = nx.DiGraph()
|
1179 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
1180 |
+
>>> G.out_degree(0) # node 0 with degree 1
|
1181 |
+
1
|
1182 |
+
>>> list(G.out_degree([0, 1, 2]))
|
1183 |
+
[(0, 1), (1, 1), (2, 1)]
|
1184 |
+
|
1185 |
+
"""
|
1186 |
+
return OutDegreeView(self)
|
1187 |
+
|
1188 |
+
def clear(self):
|
1189 |
+
"""Remove all nodes and edges from the graph.
|
1190 |
+
|
1191 |
+
This also removes the name, and all graph, node, and edge attributes.
|
1192 |
+
|
1193 |
+
Examples
|
1194 |
+
--------
|
1195 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1196 |
+
>>> G.clear()
|
1197 |
+
>>> list(G.nodes)
|
1198 |
+
[]
|
1199 |
+
>>> list(G.edges)
|
1200 |
+
[]
|
1201 |
+
|
1202 |
+
"""
|
1203 |
+
self._succ.clear()
|
1204 |
+
self._pred.clear()
|
1205 |
+
self._node.clear()
|
1206 |
+
self.graph.clear()
|
1207 |
+
nx._clear_cache(self)
|
1208 |
+
|
1209 |
+
def clear_edges(self):
|
1210 |
+
"""Remove all edges from the graph without altering nodes.
|
1211 |
+
|
1212 |
+
Examples
|
1213 |
+
--------
|
1214 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1215 |
+
>>> G.clear_edges()
|
1216 |
+
>>> list(G.nodes)
|
1217 |
+
[0, 1, 2, 3]
|
1218 |
+
>>> list(G.edges)
|
1219 |
+
[]
|
1220 |
+
|
1221 |
+
"""
|
1222 |
+
for predecessor_dict in self._pred.values():
|
1223 |
+
predecessor_dict.clear()
|
1224 |
+
for successor_dict in self._succ.values():
|
1225 |
+
successor_dict.clear()
|
1226 |
+
nx._clear_cache(self)
|
1227 |
+
|
1228 |
+
def is_multigraph(self):
|
1229 |
+
"""Returns True if graph is a multigraph, False otherwise."""
|
1230 |
+
return False
|
1231 |
+
|
1232 |
+
def is_directed(self):
|
1233 |
+
"""Returns True if graph is directed, False otherwise."""
|
1234 |
+
return True
|
1235 |
+
|
1236 |
+
def to_undirected(self, reciprocal=False, as_view=False):
|
1237 |
+
"""Returns an undirected representation of the digraph.
|
1238 |
+
|
1239 |
+
Parameters
|
1240 |
+
----------
|
1241 |
+
reciprocal : bool (optional)
|
1242 |
+
If True only keep edges that appear in both directions
|
1243 |
+
in the original digraph.
|
1244 |
+
as_view : bool (optional, default=False)
|
1245 |
+
If True return an undirected view of the original directed graph.
|
1246 |
+
|
1247 |
+
Returns
|
1248 |
+
-------
|
1249 |
+
G : Graph
|
1250 |
+
An undirected graph with the same name and nodes and
|
1251 |
+
with edge (u, v, data) if either (u, v, data) or (v, u, data)
|
1252 |
+
is in the digraph. If both edges exist in digraph and
|
1253 |
+
their edge data is different, only one edge is created
|
1254 |
+
with an arbitrary choice of which edge data to use.
|
1255 |
+
You must check and correct for this manually if desired.
|
1256 |
+
|
1257 |
+
See Also
|
1258 |
+
--------
|
1259 |
+
Graph, copy, add_edge, add_edges_from
|
1260 |
+
|
1261 |
+
Notes
|
1262 |
+
-----
|
1263 |
+
If edges in both directions (u, v) and (v, u) exist in the
|
1264 |
+
graph, attributes for the new undirected edge will be a combination of
|
1265 |
+
the attributes of the directed edges. The edge data is updated
|
1266 |
+
in the (arbitrary) order that the edges are encountered. For
|
1267 |
+
more customized control of the edge attributes use add_edge().
|
1268 |
+
|
1269 |
+
This returns a "deepcopy" of the edge, node, and
|
1270 |
+
graph attributes which attempts to completely copy
|
1271 |
+
all of the data and references.
|
1272 |
+
|
1273 |
+
This is in contrast to the similar G=DiGraph(D) which returns a
|
1274 |
+
shallow copy of the data.
|
1275 |
+
|
1276 |
+
See the Python copy module for more information on shallow
|
1277 |
+
and deep copies, https://docs.python.org/3/library/copy.html.
|
1278 |
+
|
1279 |
+
Warning: If you have subclassed DiGraph to use dict-like objects
|
1280 |
+
in the data structure, those changes do not transfer to the
|
1281 |
+
Graph created by this method.
|
1282 |
+
|
1283 |
+
Examples
|
1284 |
+
--------
|
1285 |
+
>>> G = nx.path_graph(2) # or MultiGraph, etc
|
1286 |
+
>>> H = G.to_directed()
|
1287 |
+
>>> list(H.edges)
|
1288 |
+
[(0, 1), (1, 0)]
|
1289 |
+
>>> G2 = H.to_undirected()
|
1290 |
+
>>> list(G2.edges)
|
1291 |
+
[(0, 1)]
|
1292 |
+
"""
|
1293 |
+
graph_class = self.to_undirected_class()
|
1294 |
+
if as_view is True:
|
1295 |
+
return nx.graphviews.generic_graph_view(self, graph_class)
|
1296 |
+
# deepcopy when not a view
|
1297 |
+
G = graph_class()
|
1298 |
+
G.graph.update(deepcopy(self.graph))
|
1299 |
+
G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
|
1300 |
+
if reciprocal is True:
|
1301 |
+
G.add_edges_from(
|
1302 |
+
(u, v, deepcopy(d))
|
1303 |
+
for u, nbrs in self._adj.items()
|
1304 |
+
for v, d in nbrs.items()
|
1305 |
+
if v in self._pred[u]
|
1306 |
+
)
|
1307 |
+
else:
|
1308 |
+
G.add_edges_from(
|
1309 |
+
(u, v, deepcopy(d))
|
1310 |
+
for u, nbrs in self._adj.items()
|
1311 |
+
for v, d in nbrs.items()
|
1312 |
+
)
|
1313 |
+
return G
|
1314 |
+
|
1315 |
+
def reverse(self, copy=True):
|
1316 |
+
"""Returns the reverse of the graph.
|
1317 |
+
|
1318 |
+
The reverse is a graph with the same nodes and edges
|
1319 |
+
but with the directions of the edges reversed.
|
1320 |
+
|
1321 |
+
Parameters
|
1322 |
+
----------
|
1323 |
+
copy : bool optional (default=True)
|
1324 |
+
If True, return a new DiGraph holding the reversed edges.
|
1325 |
+
If False, the reverse graph is created using a view of
|
1326 |
+
the original graph.
|
1327 |
+
"""
|
1328 |
+
if copy:
|
1329 |
+
H = self.__class__()
|
1330 |
+
H.graph.update(deepcopy(self.graph))
|
1331 |
+
H.add_nodes_from((n, deepcopy(d)) for n, d in self.nodes.items())
|
1332 |
+
H.add_edges_from((v, u, deepcopy(d)) for u, v, d in self.edges(data=True))
|
1333 |
+
return H
|
1334 |
+
return nx.reverse_view(self)
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/filters.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Filter factories to hide or show sets of nodes and edges.
|
2 |
+
|
3 |
+
These filters return the function used when creating `SubGraph`.
|
4 |
+
"""
|
5 |
+
__all__ = [
|
6 |
+
"no_filter",
|
7 |
+
"hide_nodes",
|
8 |
+
"hide_edges",
|
9 |
+
"hide_multiedges",
|
10 |
+
"hide_diedges",
|
11 |
+
"hide_multidiedges",
|
12 |
+
"show_nodes",
|
13 |
+
"show_edges",
|
14 |
+
"show_multiedges",
|
15 |
+
"show_diedges",
|
16 |
+
"show_multidiedges",
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def no_filter(*items):
|
21 |
+
"""Returns a filter function that always evaluates to True."""
|
22 |
+
return True
|
23 |
+
|
24 |
+
|
25 |
+
def hide_nodes(nodes):
|
26 |
+
"""Returns a filter function that hides specific nodes."""
|
27 |
+
nodes = set(nodes)
|
28 |
+
return lambda node: node not in nodes
|
29 |
+
|
30 |
+
|
31 |
+
def hide_diedges(edges):
|
32 |
+
"""Returns a filter function that hides specific directed edges."""
|
33 |
+
edges = {(u, v) for u, v in edges}
|
34 |
+
return lambda u, v: (u, v) not in edges
|
35 |
+
|
36 |
+
|
37 |
+
def hide_edges(edges):
|
38 |
+
"""Returns a filter function that hides specific undirected edges."""
|
39 |
+
alledges = set(edges) | {(v, u) for (u, v) in edges}
|
40 |
+
return lambda u, v: (u, v) not in alledges
|
41 |
+
|
42 |
+
|
43 |
+
def hide_multidiedges(edges):
|
44 |
+
"""Returns a filter function that hides specific multi-directed edges."""
|
45 |
+
edges = {(u, v, k) for u, v, k in edges}
|
46 |
+
return lambda u, v, k: (u, v, k) not in edges
|
47 |
+
|
48 |
+
|
49 |
+
def hide_multiedges(edges):
|
50 |
+
"""Returns a filter function that hides specific multi-undirected edges."""
|
51 |
+
alledges = set(edges) | {(v, u, k) for (u, v, k) in edges}
|
52 |
+
return lambda u, v, k: (u, v, k) not in alledges
|
53 |
+
|
54 |
+
|
55 |
+
# write show_nodes as a class to make SubGraph pickleable
|
56 |
+
class show_nodes:
|
57 |
+
"""Filter class to show specific nodes."""
|
58 |
+
|
59 |
+
def __init__(self, nodes):
|
60 |
+
self.nodes = set(nodes)
|
61 |
+
|
62 |
+
def __call__(self, node):
|
63 |
+
return node in self.nodes
|
64 |
+
|
65 |
+
|
66 |
+
def show_diedges(edges):
|
67 |
+
"""Returns a filter function that shows specific directed edges."""
|
68 |
+
edges = {(u, v) for u, v in edges}
|
69 |
+
return lambda u, v: (u, v) in edges
|
70 |
+
|
71 |
+
|
72 |
+
def show_edges(edges):
|
73 |
+
"""Returns a filter function that shows specific undirected edges."""
|
74 |
+
alledges = set(edges) | {(v, u) for (u, v) in edges}
|
75 |
+
return lambda u, v: (u, v) in alledges
|
76 |
+
|
77 |
+
|
78 |
+
def show_multidiedges(edges):
|
79 |
+
"""Returns a filter function that shows specific multi-directed edges."""
|
80 |
+
edges = {(u, v, k) for u, v, k in edges}
|
81 |
+
return lambda u, v, k: (u, v, k) in edges
|
82 |
+
|
83 |
+
|
84 |
+
def show_multiedges(edges):
|
85 |
+
"""Returns a filter function that shows specific multi-undirected edges."""
|
86 |
+
alledges = set(edges) | {(v, u, k) for (u, v, k) in edges}
|
87 |
+
return lambda u, v, k: (u, v, k) in alledges
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/function.py
ADDED
@@ -0,0 +1,1335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functional interface to graph methods and assorted utilities.
|
2 |
+
"""
|
3 |
+
|
4 |
+
from collections import Counter
|
5 |
+
from itertools import chain
|
6 |
+
|
7 |
+
import networkx as nx
|
8 |
+
from networkx.utils import not_implemented_for, pairwise
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
"nodes",
|
12 |
+
"edges",
|
13 |
+
"degree",
|
14 |
+
"degree_histogram",
|
15 |
+
"neighbors",
|
16 |
+
"number_of_nodes",
|
17 |
+
"number_of_edges",
|
18 |
+
"density",
|
19 |
+
"is_directed",
|
20 |
+
"freeze",
|
21 |
+
"is_frozen",
|
22 |
+
"subgraph",
|
23 |
+
"induced_subgraph",
|
24 |
+
"edge_subgraph",
|
25 |
+
"restricted_view",
|
26 |
+
"to_directed",
|
27 |
+
"to_undirected",
|
28 |
+
"add_star",
|
29 |
+
"add_path",
|
30 |
+
"add_cycle",
|
31 |
+
"create_empty_copy",
|
32 |
+
"set_node_attributes",
|
33 |
+
"get_node_attributes",
|
34 |
+
"set_edge_attributes",
|
35 |
+
"get_edge_attributes",
|
36 |
+
"all_neighbors",
|
37 |
+
"non_neighbors",
|
38 |
+
"non_edges",
|
39 |
+
"common_neighbors",
|
40 |
+
"is_weighted",
|
41 |
+
"is_negatively_weighted",
|
42 |
+
"is_empty",
|
43 |
+
"selfloop_edges",
|
44 |
+
"nodes_with_selfloops",
|
45 |
+
"number_of_selfloops",
|
46 |
+
"path_weight",
|
47 |
+
"is_path",
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
def nodes(G):
|
52 |
+
"""Returns a NodeView over the graph nodes.
|
53 |
+
|
54 |
+
This function wraps the :func:`G.nodes <networkx.Graph.nodes>` property.
|
55 |
+
"""
|
56 |
+
return G.nodes()
|
57 |
+
|
58 |
+
|
59 |
+
def edges(G, nbunch=None):
|
60 |
+
"""Returns an edge view of edges incident to nodes in nbunch.
|
61 |
+
|
62 |
+
Return all edges if nbunch is unspecified or nbunch=None.
|
63 |
+
|
64 |
+
For digraphs, edges=out_edges
|
65 |
+
|
66 |
+
This function wraps the :func:`G.edges <networkx.Graph.edges>` property.
|
67 |
+
"""
|
68 |
+
return G.edges(nbunch)
|
69 |
+
|
70 |
+
|
71 |
+
def degree(G, nbunch=None, weight=None):
|
72 |
+
"""Returns a degree view of single node or of nbunch of nodes.
|
73 |
+
If nbunch is omitted, then return degrees of *all* nodes.
|
74 |
+
|
75 |
+
This function wraps the :func:`G.degree <networkx.Graph.degree>` property.
|
76 |
+
"""
|
77 |
+
return G.degree(nbunch, weight)
|
78 |
+
|
79 |
+
|
80 |
+
def neighbors(G, n):
|
81 |
+
"""Returns an iterator over all neighbors of node n.
|
82 |
+
|
83 |
+
This function wraps the :func:`G.neighbors <networkx.Graph.neighbors>` function.
|
84 |
+
"""
|
85 |
+
return G.neighbors(n)
|
86 |
+
|
87 |
+
|
88 |
+
def number_of_nodes(G):
|
89 |
+
"""Returns the number of nodes in the graph.
|
90 |
+
|
91 |
+
This function wraps the :func:`G.number_of_nodes <networkx.Graph.number_of_nodes>` function.
|
92 |
+
"""
|
93 |
+
return G.number_of_nodes()
|
94 |
+
|
95 |
+
|
96 |
+
def number_of_edges(G):
|
97 |
+
"""Returns the number of edges in the graph.
|
98 |
+
|
99 |
+
This function wraps the :func:`G.number_of_edges <networkx.Graph.number_of_edges>` function.
|
100 |
+
"""
|
101 |
+
return G.number_of_edges()
|
102 |
+
|
103 |
+
|
104 |
+
def density(G):
|
105 |
+
r"""Returns the density of a graph.
|
106 |
+
|
107 |
+
The density for undirected graphs is
|
108 |
+
|
109 |
+
.. math::
|
110 |
+
|
111 |
+
d = \frac{2m}{n(n-1)},
|
112 |
+
|
113 |
+
and for directed graphs is
|
114 |
+
|
115 |
+
.. math::
|
116 |
+
|
117 |
+
d = \frac{m}{n(n-1)},
|
118 |
+
|
119 |
+
where `n` is the number of nodes and `m` is the number of edges in `G`.
|
120 |
+
|
121 |
+
Notes
|
122 |
+
-----
|
123 |
+
The density is 0 for a graph without edges and 1 for a complete graph.
|
124 |
+
The density of multigraphs can be higher than 1.
|
125 |
+
|
126 |
+
Self loops are counted in the total number of edges so graphs with self
|
127 |
+
loops can have density higher than 1.
|
128 |
+
"""
|
129 |
+
n = number_of_nodes(G)
|
130 |
+
m = number_of_edges(G)
|
131 |
+
if m == 0 or n <= 1:
|
132 |
+
return 0
|
133 |
+
d = m / (n * (n - 1))
|
134 |
+
if not G.is_directed():
|
135 |
+
d *= 2
|
136 |
+
return d
|
137 |
+
|
138 |
+
|
139 |
+
def degree_histogram(G):
|
140 |
+
"""Returns a list of the frequency of each degree value.
|
141 |
+
|
142 |
+
Parameters
|
143 |
+
----------
|
144 |
+
G : Networkx graph
|
145 |
+
A graph
|
146 |
+
|
147 |
+
Returns
|
148 |
+
-------
|
149 |
+
hist : list
|
150 |
+
A list of frequencies of degrees.
|
151 |
+
The degree values are the index in the list.
|
152 |
+
|
153 |
+
Notes
|
154 |
+
-----
|
155 |
+
Note: the bins are width one, hence len(list) can be large
|
156 |
+
(Order(number_of_edges))
|
157 |
+
"""
|
158 |
+
counts = Counter(d for n, d in G.degree())
|
159 |
+
return [counts.get(i, 0) for i in range(max(counts) + 1 if counts else 0)]
|
160 |
+
|
161 |
+
|
162 |
+
def is_directed(G):
|
163 |
+
"""Return True if graph is directed."""
|
164 |
+
return G.is_directed()
|
165 |
+
|
166 |
+
|
167 |
+
def frozen(*args, **kwargs):
|
168 |
+
"""Dummy method for raising errors when trying to modify frozen graphs"""
|
169 |
+
raise nx.NetworkXError("Frozen graph can't be modified")
|
170 |
+
|
171 |
+
|
172 |
+
def freeze(G):
|
173 |
+
"""Modify graph to prevent further change by adding or removing
|
174 |
+
nodes or edges.
|
175 |
+
|
176 |
+
Node and edge data can still be modified.
|
177 |
+
|
178 |
+
Parameters
|
179 |
+
----------
|
180 |
+
G : graph
|
181 |
+
A NetworkX graph
|
182 |
+
|
183 |
+
Examples
|
184 |
+
--------
|
185 |
+
>>> G = nx.path_graph(4)
|
186 |
+
>>> G = nx.freeze(G)
|
187 |
+
>>> try:
|
188 |
+
... G.add_edge(4, 5)
|
189 |
+
... except nx.NetworkXError as err:
|
190 |
+
... print(str(err))
|
191 |
+
Frozen graph can't be modified
|
192 |
+
|
193 |
+
Notes
|
194 |
+
-----
|
195 |
+
To "unfreeze" a graph you must make a copy by creating a new graph object:
|
196 |
+
|
197 |
+
>>> graph = nx.path_graph(4)
|
198 |
+
>>> frozen_graph = nx.freeze(graph)
|
199 |
+
>>> unfrozen_graph = nx.Graph(frozen_graph)
|
200 |
+
>>> nx.is_frozen(unfrozen_graph)
|
201 |
+
False
|
202 |
+
|
203 |
+
See Also
|
204 |
+
--------
|
205 |
+
is_frozen
|
206 |
+
"""
|
207 |
+
G.add_node = frozen
|
208 |
+
G.add_nodes_from = frozen
|
209 |
+
G.remove_node = frozen
|
210 |
+
G.remove_nodes_from = frozen
|
211 |
+
G.add_edge = frozen
|
212 |
+
G.add_edges_from = frozen
|
213 |
+
G.add_weighted_edges_from = frozen
|
214 |
+
G.remove_edge = frozen
|
215 |
+
G.remove_edges_from = frozen
|
216 |
+
G.clear = frozen
|
217 |
+
G.clear_edges = frozen
|
218 |
+
G.frozen = True
|
219 |
+
return G
|
220 |
+
|
221 |
+
|
222 |
+
def is_frozen(G):
|
223 |
+
"""Returns True if graph is frozen.
|
224 |
+
|
225 |
+
Parameters
|
226 |
+
----------
|
227 |
+
G : graph
|
228 |
+
A NetworkX graph
|
229 |
+
|
230 |
+
See Also
|
231 |
+
--------
|
232 |
+
freeze
|
233 |
+
"""
|
234 |
+
try:
|
235 |
+
return G.frozen
|
236 |
+
except AttributeError:
|
237 |
+
return False
|
238 |
+
|
239 |
+
|
240 |
+
def add_star(G_to_add_to, nodes_for_star, **attr):
|
241 |
+
"""Add a star to Graph G_to_add_to.
|
242 |
+
|
243 |
+
The first node in `nodes_for_star` is the middle of the star.
|
244 |
+
It is connected to all other nodes.
|
245 |
+
|
246 |
+
Parameters
|
247 |
+
----------
|
248 |
+
G_to_add_to : graph
|
249 |
+
A NetworkX graph
|
250 |
+
nodes_for_star : iterable container
|
251 |
+
A container of nodes.
|
252 |
+
attr : keyword arguments, optional (default= no attributes)
|
253 |
+
Attributes to add to every edge in star.
|
254 |
+
|
255 |
+
See Also
|
256 |
+
--------
|
257 |
+
add_path, add_cycle
|
258 |
+
|
259 |
+
Examples
|
260 |
+
--------
|
261 |
+
>>> G = nx.Graph()
|
262 |
+
>>> nx.add_star(G, [0, 1, 2, 3])
|
263 |
+
>>> nx.add_star(G, [10, 11, 12], weight=2)
|
264 |
+
"""
|
265 |
+
nlist = iter(nodes_for_star)
|
266 |
+
try:
|
267 |
+
v = next(nlist)
|
268 |
+
except StopIteration:
|
269 |
+
return
|
270 |
+
G_to_add_to.add_node(v)
|
271 |
+
edges = ((v, n) for n in nlist)
|
272 |
+
G_to_add_to.add_edges_from(edges, **attr)
|
273 |
+
|
274 |
+
|
275 |
+
def add_path(G_to_add_to, nodes_for_path, **attr):
|
276 |
+
"""Add a path to the Graph G_to_add_to.
|
277 |
+
|
278 |
+
Parameters
|
279 |
+
----------
|
280 |
+
G_to_add_to : graph
|
281 |
+
A NetworkX graph
|
282 |
+
nodes_for_path : iterable container
|
283 |
+
A container of nodes. A path will be constructed from
|
284 |
+
the nodes (in order) and added to the graph.
|
285 |
+
attr : keyword arguments, optional (default= no attributes)
|
286 |
+
Attributes to add to every edge in path.
|
287 |
+
|
288 |
+
See Also
|
289 |
+
--------
|
290 |
+
add_star, add_cycle
|
291 |
+
|
292 |
+
Examples
|
293 |
+
--------
|
294 |
+
>>> G = nx.Graph()
|
295 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
296 |
+
>>> nx.add_path(G, [10, 11, 12], weight=7)
|
297 |
+
"""
|
298 |
+
nlist = iter(nodes_for_path)
|
299 |
+
try:
|
300 |
+
first_node = next(nlist)
|
301 |
+
except StopIteration:
|
302 |
+
return
|
303 |
+
G_to_add_to.add_node(first_node)
|
304 |
+
G_to_add_to.add_edges_from(pairwise(chain((first_node,), nlist)), **attr)
|
305 |
+
|
306 |
+
|
307 |
+
def add_cycle(G_to_add_to, nodes_for_cycle, **attr):
|
308 |
+
"""Add a cycle to the Graph G_to_add_to.
|
309 |
+
|
310 |
+
Parameters
|
311 |
+
----------
|
312 |
+
G_to_add_to : graph
|
313 |
+
A NetworkX graph
|
314 |
+
nodes_for_cycle: iterable container
|
315 |
+
A container of nodes. A cycle will be constructed from
|
316 |
+
the nodes (in order) and added to the graph.
|
317 |
+
attr : keyword arguments, optional (default= no attributes)
|
318 |
+
Attributes to add to every edge in cycle.
|
319 |
+
|
320 |
+
See Also
|
321 |
+
--------
|
322 |
+
add_path, add_star
|
323 |
+
|
324 |
+
Examples
|
325 |
+
--------
|
326 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
327 |
+
>>> nx.add_cycle(G, [0, 1, 2, 3])
|
328 |
+
>>> nx.add_cycle(G, [10, 11, 12], weight=7)
|
329 |
+
"""
|
330 |
+
nlist = iter(nodes_for_cycle)
|
331 |
+
try:
|
332 |
+
first_node = next(nlist)
|
333 |
+
except StopIteration:
|
334 |
+
return
|
335 |
+
G_to_add_to.add_node(first_node)
|
336 |
+
G_to_add_to.add_edges_from(
|
337 |
+
pairwise(chain((first_node,), nlist), cyclic=True), **attr
|
338 |
+
)
|
339 |
+
|
340 |
+
|
341 |
+
def subgraph(G, nbunch):
|
342 |
+
"""Returns the subgraph induced on nodes in nbunch.
|
343 |
+
|
344 |
+
Parameters
|
345 |
+
----------
|
346 |
+
G : graph
|
347 |
+
A NetworkX graph
|
348 |
+
|
349 |
+
nbunch : list, iterable
|
350 |
+
A container of nodes that will be iterated through once (thus
|
351 |
+
it should be an iterator or be iterable). Each element of the
|
352 |
+
container should be a valid node type: any hashable type except
|
353 |
+
None. If nbunch is None, return all edges data in the graph.
|
354 |
+
Nodes in nbunch that are not in the graph will be (quietly)
|
355 |
+
ignored.
|
356 |
+
|
357 |
+
Notes
|
358 |
+
-----
|
359 |
+
subgraph(G) calls G.subgraph()
|
360 |
+
"""
|
361 |
+
return G.subgraph(nbunch)
|
362 |
+
|
363 |
+
|
364 |
+
def induced_subgraph(G, nbunch):
|
365 |
+
"""Returns a SubGraph view of `G` showing only nodes in nbunch.
|
366 |
+
|
367 |
+
The induced subgraph of a graph on a set of nodes N is the
|
368 |
+
graph with nodes N and edges from G which have both ends in N.
|
369 |
+
|
370 |
+
Parameters
|
371 |
+
----------
|
372 |
+
G : NetworkX Graph
|
373 |
+
nbunch : node, container of nodes or None (for all nodes)
|
374 |
+
|
375 |
+
Returns
|
376 |
+
-------
|
377 |
+
subgraph : SubGraph View
|
378 |
+
A read-only view of the subgraph in `G` induced by the nodes.
|
379 |
+
Changes to the graph `G` will be reflected in the view.
|
380 |
+
|
381 |
+
Notes
|
382 |
+
-----
|
383 |
+
To create a mutable subgraph with its own copies of nodes
|
384 |
+
edges and attributes use `subgraph.copy()` or `Graph(subgraph)`
|
385 |
+
|
386 |
+
For an inplace reduction of a graph to a subgraph you can remove nodes:
|
387 |
+
`G.remove_nodes_from(n in G if n not in set(nbunch))`
|
388 |
+
|
389 |
+
If you are going to compute subgraphs of your subgraphs you could
|
390 |
+
end up with a chain of views that can be very slow once the chain
|
391 |
+
has about 15 views in it. If they are all induced subgraphs, you
|
392 |
+
can short-cut the chain by making them all subgraphs of the original
|
393 |
+
graph. The graph class method `G.subgraph` does this when `G` is
|
394 |
+
a subgraph. In contrast, this function allows you to choose to build
|
395 |
+
chains or not, as you wish. The returned subgraph is a view on `G`.
|
396 |
+
|
397 |
+
Examples
|
398 |
+
--------
|
399 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
400 |
+
>>> H = nx.induced_subgraph(G, [0, 1, 3])
|
401 |
+
>>> list(H.edges)
|
402 |
+
[(0, 1)]
|
403 |
+
>>> list(H.nodes)
|
404 |
+
[0, 1, 3]
|
405 |
+
"""
|
406 |
+
induced_nodes = nx.filters.show_nodes(G.nbunch_iter(nbunch))
|
407 |
+
return nx.subgraph_view(G, filter_node=induced_nodes)
|
408 |
+
|
409 |
+
|
410 |
+
def edge_subgraph(G, edges):
|
411 |
+
"""Returns a view of the subgraph induced by the specified edges.
|
412 |
+
|
413 |
+
The induced subgraph contains each edge in `edges` and each
|
414 |
+
node incident to any of those edges.
|
415 |
+
|
416 |
+
Parameters
|
417 |
+
----------
|
418 |
+
G : NetworkX Graph
|
419 |
+
edges : iterable
|
420 |
+
An iterable of edges. Edges not present in `G` are ignored.
|
421 |
+
|
422 |
+
Returns
|
423 |
+
-------
|
424 |
+
subgraph : SubGraph View
|
425 |
+
A read-only edge-induced subgraph of `G`.
|
426 |
+
Changes to `G` are reflected in the view.
|
427 |
+
|
428 |
+
Notes
|
429 |
+
-----
|
430 |
+
To create a mutable subgraph with its own copies of nodes
|
431 |
+
edges and attributes use `subgraph.copy()` or `Graph(subgraph)`
|
432 |
+
|
433 |
+
If you create a subgraph of a subgraph recursively you can end up
|
434 |
+
with a chain of subgraphs that becomes very slow with about 15
|
435 |
+
nested subgraph views. Luckily the edge_subgraph filter nests
|
436 |
+
nicely so you can use the original graph as G in this function
|
437 |
+
to avoid chains. We do not rule out chains programmatically so
|
438 |
+
that odd cases like an `edge_subgraph` of a `restricted_view`
|
439 |
+
can be created.
|
440 |
+
|
441 |
+
Examples
|
442 |
+
--------
|
443 |
+
>>> G = nx.path_graph(5)
|
444 |
+
>>> H = G.edge_subgraph([(0, 1), (3, 4)])
|
445 |
+
>>> list(H.nodes)
|
446 |
+
[0, 1, 3, 4]
|
447 |
+
>>> list(H.edges)
|
448 |
+
[(0, 1), (3, 4)]
|
449 |
+
"""
|
450 |
+
nxf = nx.filters
|
451 |
+
edges = set(edges)
|
452 |
+
nodes = set()
|
453 |
+
for e in edges:
|
454 |
+
nodes.update(e[:2])
|
455 |
+
induced_nodes = nxf.show_nodes(nodes)
|
456 |
+
if G.is_multigraph():
|
457 |
+
if G.is_directed():
|
458 |
+
induced_edges = nxf.show_multidiedges(edges)
|
459 |
+
else:
|
460 |
+
induced_edges = nxf.show_multiedges(edges)
|
461 |
+
else:
|
462 |
+
if G.is_directed():
|
463 |
+
induced_edges = nxf.show_diedges(edges)
|
464 |
+
else:
|
465 |
+
induced_edges = nxf.show_edges(edges)
|
466 |
+
return nx.subgraph_view(G, filter_node=induced_nodes, filter_edge=induced_edges)
|
467 |
+
|
468 |
+
|
469 |
+
def restricted_view(G, nodes, edges):
|
470 |
+
"""Returns a view of `G` with hidden nodes and edges.
|
471 |
+
|
472 |
+
The resulting subgraph filters out node `nodes` and edges `edges`.
|
473 |
+
Filtered out nodes also filter out any of their edges.
|
474 |
+
|
475 |
+
Parameters
|
476 |
+
----------
|
477 |
+
G : NetworkX Graph
|
478 |
+
nodes : iterable
|
479 |
+
An iterable of nodes. Nodes not present in `G` are ignored.
|
480 |
+
edges : iterable
|
481 |
+
An iterable of edges. Edges not present in `G` are ignored.
|
482 |
+
|
483 |
+
Returns
|
484 |
+
-------
|
485 |
+
subgraph : SubGraph View
|
486 |
+
A read-only restricted view of `G` filtering out nodes and edges.
|
487 |
+
Changes to `G` are reflected in the view.
|
488 |
+
|
489 |
+
Notes
|
490 |
+
-----
|
491 |
+
To create a mutable subgraph with its own copies of nodes
|
492 |
+
edges and attributes use `subgraph.copy()` or `Graph(subgraph)`
|
493 |
+
|
494 |
+
If you create a subgraph of a subgraph recursively you may end up
|
495 |
+
with a chain of subgraph views. Such chains can get quite slow
|
496 |
+
for lengths near 15. To avoid long chains, try to make your subgraph
|
497 |
+
based on the original graph. We do not rule out chains programmatically
|
498 |
+
so that odd cases like an `edge_subgraph` of a `restricted_view`
|
499 |
+
can be created.
|
500 |
+
|
501 |
+
Examples
|
502 |
+
--------
|
503 |
+
>>> G = nx.path_graph(5)
|
504 |
+
>>> H = nx.restricted_view(G, [0], [(1, 2), (3, 4)])
|
505 |
+
>>> list(H.nodes)
|
506 |
+
[1, 2, 3, 4]
|
507 |
+
>>> list(H.edges)
|
508 |
+
[(2, 3)]
|
509 |
+
"""
|
510 |
+
nxf = nx.filters
|
511 |
+
hide_nodes = nxf.hide_nodes(nodes)
|
512 |
+
if G.is_multigraph():
|
513 |
+
if G.is_directed():
|
514 |
+
hide_edges = nxf.hide_multidiedges(edges)
|
515 |
+
else:
|
516 |
+
hide_edges = nxf.hide_multiedges(edges)
|
517 |
+
else:
|
518 |
+
if G.is_directed():
|
519 |
+
hide_edges = nxf.hide_diedges(edges)
|
520 |
+
else:
|
521 |
+
hide_edges = nxf.hide_edges(edges)
|
522 |
+
return nx.subgraph_view(G, filter_node=hide_nodes, filter_edge=hide_edges)
|
523 |
+
|
524 |
+
|
525 |
+
def to_directed(graph):
|
526 |
+
"""Returns a directed view of the graph `graph`.
|
527 |
+
|
528 |
+
Identical to graph.to_directed(as_view=True)
|
529 |
+
Note that graph.to_directed defaults to `as_view=False`
|
530 |
+
while this function always provides a view.
|
531 |
+
"""
|
532 |
+
return graph.to_directed(as_view=True)
|
533 |
+
|
534 |
+
|
535 |
+
def to_undirected(graph):
|
536 |
+
"""Returns an undirected view of the graph `graph`.
|
537 |
+
|
538 |
+
Identical to graph.to_undirected(as_view=True)
|
539 |
+
Note that graph.to_undirected defaults to `as_view=False`
|
540 |
+
while this function always provides a view.
|
541 |
+
"""
|
542 |
+
return graph.to_undirected(as_view=True)
|
543 |
+
|
544 |
+
|
545 |
+
def create_empty_copy(G, with_data=True):
|
546 |
+
"""Returns a copy of the graph G with all of the edges removed.
|
547 |
+
|
548 |
+
Parameters
|
549 |
+
----------
|
550 |
+
G : graph
|
551 |
+
A NetworkX graph
|
552 |
+
|
553 |
+
with_data : bool (default=True)
|
554 |
+
Propagate Graph and Nodes data to the new graph.
|
555 |
+
|
556 |
+
See Also
|
557 |
+
--------
|
558 |
+
empty_graph
|
559 |
+
|
560 |
+
"""
|
561 |
+
H = G.__class__()
|
562 |
+
H.add_nodes_from(G.nodes(data=with_data))
|
563 |
+
if with_data:
|
564 |
+
H.graph.update(G.graph)
|
565 |
+
return H
|
566 |
+
|
567 |
+
|
568 |
+
def set_node_attributes(G, values, name=None):
|
569 |
+
"""Sets node attributes from a given value or dictionary of values.
|
570 |
+
|
571 |
+
.. Warning:: The call order of arguments `values` and `name`
|
572 |
+
switched between v1.x & v2.x.
|
573 |
+
|
574 |
+
Parameters
|
575 |
+
----------
|
576 |
+
G : NetworkX Graph
|
577 |
+
|
578 |
+
values : scalar value, dict-like
|
579 |
+
What the node attribute should be set to. If `values` is
|
580 |
+
not a dictionary, then it is treated as a single attribute value
|
581 |
+
that is then applied to every node in `G`. This means that if
|
582 |
+
you provide a mutable object, like a list, updates to that object
|
583 |
+
will be reflected in the node attribute for every node.
|
584 |
+
The attribute name will be `name`.
|
585 |
+
|
586 |
+
If `values` is a dict or a dict of dict, it should be keyed
|
587 |
+
by node to either an attribute value or a dict of attribute key/value
|
588 |
+
pairs used to update the node's attributes.
|
589 |
+
|
590 |
+
name : string (optional, default=None)
|
591 |
+
Name of the node attribute to set if values is a scalar.
|
592 |
+
|
593 |
+
Examples
|
594 |
+
--------
|
595 |
+
After computing some property of the nodes of a graph, you may want
|
596 |
+
to assign a node attribute to store the value of that property for
|
597 |
+
each node::
|
598 |
+
|
599 |
+
>>> G = nx.path_graph(3)
|
600 |
+
>>> bb = nx.betweenness_centrality(G)
|
601 |
+
>>> isinstance(bb, dict)
|
602 |
+
True
|
603 |
+
>>> nx.set_node_attributes(G, bb, "betweenness")
|
604 |
+
>>> G.nodes[1]["betweenness"]
|
605 |
+
1.0
|
606 |
+
|
607 |
+
If you provide a list as the second argument, updates to the list
|
608 |
+
will be reflected in the node attribute for each node::
|
609 |
+
|
610 |
+
>>> G = nx.path_graph(3)
|
611 |
+
>>> labels = []
|
612 |
+
>>> nx.set_node_attributes(G, labels, "labels")
|
613 |
+
>>> labels.append("foo")
|
614 |
+
>>> G.nodes[0]["labels"]
|
615 |
+
['foo']
|
616 |
+
>>> G.nodes[1]["labels"]
|
617 |
+
['foo']
|
618 |
+
>>> G.nodes[2]["labels"]
|
619 |
+
['foo']
|
620 |
+
|
621 |
+
If you provide a dictionary of dictionaries as the second argument,
|
622 |
+
the outer dictionary is assumed to be keyed by node to an inner
|
623 |
+
dictionary of node attributes for that node::
|
624 |
+
|
625 |
+
>>> G = nx.path_graph(3)
|
626 |
+
>>> attrs = {0: {"attr1": 20, "attr2": "nothing"}, 1: {"attr2": 3}}
|
627 |
+
>>> nx.set_node_attributes(G, attrs)
|
628 |
+
>>> G.nodes[0]["attr1"]
|
629 |
+
20
|
630 |
+
>>> G.nodes[0]["attr2"]
|
631 |
+
'nothing'
|
632 |
+
>>> G.nodes[1]["attr2"]
|
633 |
+
3
|
634 |
+
>>> G.nodes[2]
|
635 |
+
{}
|
636 |
+
|
637 |
+
Note that if the dictionary contains nodes that are not in `G`, the
|
638 |
+
values are silently ignored::
|
639 |
+
|
640 |
+
>>> G = nx.Graph()
|
641 |
+
>>> G.add_node(0)
|
642 |
+
>>> nx.set_node_attributes(G, {0: "red", 1: "blue"}, name="color")
|
643 |
+
>>> G.nodes[0]["color"]
|
644 |
+
'red'
|
645 |
+
>>> 1 in G.nodes
|
646 |
+
False
|
647 |
+
|
648 |
+
"""
|
649 |
+
# Set node attributes based on type of `values`
|
650 |
+
if name is not None: # `values` must not be a dict of dict
|
651 |
+
try: # `values` is a dict
|
652 |
+
for n, v in values.items():
|
653 |
+
try:
|
654 |
+
G.nodes[n][name] = values[n]
|
655 |
+
except KeyError:
|
656 |
+
pass
|
657 |
+
except AttributeError: # `values` is a constant
|
658 |
+
for n in G:
|
659 |
+
G.nodes[n][name] = values
|
660 |
+
else: # `values` must be dict of dict
|
661 |
+
for n, d in values.items():
|
662 |
+
try:
|
663 |
+
G.nodes[n].update(d)
|
664 |
+
except KeyError:
|
665 |
+
pass
|
666 |
+
nx._clear_cache(G)
|
667 |
+
|
668 |
+
|
669 |
+
def get_node_attributes(G, name, default=None):
|
670 |
+
"""Get node attributes from graph
|
671 |
+
|
672 |
+
Parameters
|
673 |
+
----------
|
674 |
+
G : NetworkX Graph
|
675 |
+
|
676 |
+
name : string
|
677 |
+
Attribute name
|
678 |
+
|
679 |
+
default: object (default=None)
|
680 |
+
Default value of the node attribute if there is no value set for that
|
681 |
+
node in graph. If `None` then nodes without this attribute are not
|
682 |
+
included in the returned dict.
|
683 |
+
|
684 |
+
Returns
|
685 |
+
-------
|
686 |
+
Dictionary of attributes keyed by node.
|
687 |
+
|
688 |
+
Examples
|
689 |
+
--------
|
690 |
+
>>> G = nx.Graph()
|
691 |
+
>>> G.add_nodes_from([1, 2, 3], color="red")
|
692 |
+
>>> color = nx.get_node_attributes(G, "color")
|
693 |
+
>>> color[1]
|
694 |
+
'red'
|
695 |
+
>>> G.add_node(4)
|
696 |
+
>>> color = nx.get_node_attributes(G, "color", default="yellow")
|
697 |
+
>>> color[4]
|
698 |
+
'yellow'
|
699 |
+
"""
|
700 |
+
if default is not None:
|
701 |
+
return {n: d.get(name, default) for n, d in G.nodes.items()}
|
702 |
+
return {n: d[name] for n, d in G.nodes.items() if name in d}
|
703 |
+
|
704 |
+
|
705 |
+
def set_edge_attributes(G, values, name=None):
|
706 |
+
"""Sets edge attributes from a given value or dictionary of values.
|
707 |
+
|
708 |
+
.. Warning:: The call order of arguments `values` and `name`
|
709 |
+
switched between v1.x & v2.x.
|
710 |
+
|
711 |
+
Parameters
|
712 |
+
----------
|
713 |
+
G : NetworkX Graph
|
714 |
+
|
715 |
+
values : scalar value, dict-like
|
716 |
+
What the edge attribute should be set to. If `values` is
|
717 |
+
not a dictionary, then it is treated as a single attribute value
|
718 |
+
that is then applied to every edge in `G`. This means that if
|
719 |
+
you provide a mutable object, like a list, updates to that object
|
720 |
+
will be reflected in the edge attribute for each edge. The attribute
|
721 |
+
name will be `name`.
|
722 |
+
|
723 |
+
If `values` is a dict or a dict of dict, it should be keyed
|
724 |
+
by edge tuple to either an attribute value or a dict of attribute
|
725 |
+
key/value pairs used to update the edge's attributes.
|
726 |
+
For multigraphs, the edge tuples must be of the form ``(u, v, key)``,
|
727 |
+
where `u` and `v` are nodes and `key` is the edge key.
|
728 |
+
For non-multigraphs, the keys must be tuples of the form ``(u, v)``.
|
729 |
+
|
730 |
+
name : string (optional, default=None)
|
731 |
+
Name of the edge attribute to set if values is a scalar.
|
732 |
+
|
733 |
+
Examples
|
734 |
+
--------
|
735 |
+
After computing some property of the edges of a graph, you may want
|
736 |
+
to assign a edge attribute to store the value of that property for
|
737 |
+
each edge::
|
738 |
+
|
739 |
+
>>> G = nx.path_graph(3)
|
740 |
+
>>> bb = nx.edge_betweenness_centrality(G, normalized=False)
|
741 |
+
>>> nx.set_edge_attributes(G, bb, "betweenness")
|
742 |
+
>>> G.edges[1, 2]["betweenness"]
|
743 |
+
2.0
|
744 |
+
|
745 |
+
If you provide a list as the second argument, updates to the list
|
746 |
+
will be reflected in the edge attribute for each edge::
|
747 |
+
|
748 |
+
>>> labels = []
|
749 |
+
>>> nx.set_edge_attributes(G, labels, "labels")
|
750 |
+
>>> labels.append("foo")
|
751 |
+
>>> G.edges[0, 1]["labels"]
|
752 |
+
['foo']
|
753 |
+
>>> G.edges[1, 2]["labels"]
|
754 |
+
['foo']
|
755 |
+
|
756 |
+
If you provide a dictionary of dictionaries as the second argument,
|
757 |
+
the entire dictionary will be used to update edge attributes::
|
758 |
+
|
759 |
+
>>> G = nx.path_graph(3)
|
760 |
+
>>> attrs = {(0, 1): {"attr1": 20, "attr2": "nothing"}, (1, 2): {"attr2": 3}}
|
761 |
+
>>> nx.set_edge_attributes(G, attrs)
|
762 |
+
>>> G[0][1]["attr1"]
|
763 |
+
20
|
764 |
+
>>> G[0][1]["attr2"]
|
765 |
+
'nothing'
|
766 |
+
>>> G[1][2]["attr2"]
|
767 |
+
3
|
768 |
+
|
769 |
+
The attributes of one Graph can be used to set those of another.
|
770 |
+
|
771 |
+
>>> H = nx.path_graph(3)
|
772 |
+
>>> nx.set_edge_attributes(H, G.edges)
|
773 |
+
|
774 |
+
Note that if the dict contains edges that are not in `G`, they are
|
775 |
+
silently ignored::
|
776 |
+
|
777 |
+
>>> G = nx.Graph([(0, 1)])
|
778 |
+
>>> nx.set_edge_attributes(G, {(1, 2): {"weight": 2.0}})
|
779 |
+
>>> (1, 2) in G.edges()
|
780 |
+
False
|
781 |
+
|
782 |
+
For multigraphs, the `values` dict is expected to be keyed by 3-tuples
|
783 |
+
including the edge key::
|
784 |
+
|
785 |
+
>>> MG = nx.MultiGraph()
|
786 |
+
>>> edges = [(0, 1), (0, 1)]
|
787 |
+
>>> MG.add_edges_from(edges) # Returns list of edge keys
|
788 |
+
[0, 1]
|
789 |
+
>>> attributes = {(0, 1, 0): {"cost": 21}, (0, 1, 1): {"cost": 7}}
|
790 |
+
>>> nx.set_edge_attributes(MG, attributes)
|
791 |
+
>>> MG[0][1][0]["cost"]
|
792 |
+
21
|
793 |
+
>>> MG[0][1][1]["cost"]
|
794 |
+
7
|
795 |
+
|
796 |
+
If MultiGraph attributes are desired for a Graph, you must convert the 3-tuple
|
797 |
+
multiedge to a 2-tuple edge and the last multiedge's attribute value will
|
798 |
+
overwrite the previous values. Continuing from the previous case we get::
|
799 |
+
|
800 |
+
>>> H = nx.path_graph([0, 1, 2])
|
801 |
+
>>> nx.set_edge_attributes(H, {(u, v): ed for u, v, ed in MG.edges.data()})
|
802 |
+
>>> nx.get_edge_attributes(H, "cost")
|
803 |
+
{(0, 1): 7}
|
804 |
+
|
805 |
+
"""
|
806 |
+
if name is not None:
|
807 |
+
# `values` does not contain attribute names
|
808 |
+
try:
|
809 |
+
# if `values` is a dict using `.items()` => {edge: value}
|
810 |
+
if G.is_multigraph():
|
811 |
+
for (u, v, key), value in values.items():
|
812 |
+
try:
|
813 |
+
G._adj[u][v][key][name] = value
|
814 |
+
except KeyError:
|
815 |
+
pass
|
816 |
+
else:
|
817 |
+
for (u, v), value in values.items():
|
818 |
+
try:
|
819 |
+
G._adj[u][v][name] = value
|
820 |
+
except KeyError:
|
821 |
+
pass
|
822 |
+
except AttributeError:
|
823 |
+
# treat `values` as a constant
|
824 |
+
for u, v, data in G.edges(data=True):
|
825 |
+
data[name] = values
|
826 |
+
else:
|
827 |
+
# `values` consists of doct-of-dict {edge: {attr: value}} shape
|
828 |
+
if G.is_multigraph():
|
829 |
+
for (u, v, key), d in values.items():
|
830 |
+
try:
|
831 |
+
G._adj[u][v][key].update(d)
|
832 |
+
except KeyError:
|
833 |
+
pass
|
834 |
+
else:
|
835 |
+
for (u, v), d in values.items():
|
836 |
+
try:
|
837 |
+
G._adj[u][v].update(d)
|
838 |
+
except KeyError:
|
839 |
+
pass
|
840 |
+
nx._clear_cache(G)
|
841 |
+
|
842 |
+
|
843 |
+
def get_edge_attributes(G, name, default=None):
|
844 |
+
"""Get edge attributes from graph
|
845 |
+
|
846 |
+
Parameters
|
847 |
+
----------
|
848 |
+
G : NetworkX Graph
|
849 |
+
|
850 |
+
name : string
|
851 |
+
Attribute name
|
852 |
+
|
853 |
+
default: object (default=None)
|
854 |
+
Default value of the edge attribute if there is no value set for that
|
855 |
+
edge in graph. If `None` then edges without this attribute are not
|
856 |
+
included in the returned dict.
|
857 |
+
|
858 |
+
Returns
|
859 |
+
-------
|
860 |
+
Dictionary of attributes keyed by edge. For (di)graphs, the keys are
|
861 |
+
2-tuples of the form: (u, v). For multi(di)graphs, the keys are 3-tuples of
|
862 |
+
the form: (u, v, key).
|
863 |
+
|
864 |
+
Examples
|
865 |
+
--------
|
866 |
+
>>> G = nx.Graph()
|
867 |
+
>>> nx.add_path(G, [1, 2, 3], color="red")
|
868 |
+
>>> color = nx.get_edge_attributes(G, "color")
|
869 |
+
>>> color[(1, 2)]
|
870 |
+
'red'
|
871 |
+
>>> G.add_edge(3, 4)
|
872 |
+
>>> color = nx.get_edge_attributes(G, "color", default="yellow")
|
873 |
+
>>> color[(3, 4)]
|
874 |
+
'yellow'
|
875 |
+
"""
|
876 |
+
if G.is_multigraph():
|
877 |
+
edges = G.edges(keys=True, data=True)
|
878 |
+
else:
|
879 |
+
edges = G.edges(data=True)
|
880 |
+
if default is not None:
|
881 |
+
return {x[:-1]: x[-1].get(name, default) for x in edges}
|
882 |
+
return {x[:-1]: x[-1][name] for x in edges if name in x[-1]}
|
883 |
+
|
884 |
+
|
885 |
+
def all_neighbors(graph, node):
|
886 |
+
"""Returns all of the neighbors of a node in the graph.
|
887 |
+
|
888 |
+
If the graph is directed returns predecessors as well as successors.
|
889 |
+
|
890 |
+
Parameters
|
891 |
+
----------
|
892 |
+
graph : NetworkX graph
|
893 |
+
Graph to find neighbors.
|
894 |
+
|
895 |
+
node : node
|
896 |
+
The node whose neighbors will be returned.
|
897 |
+
|
898 |
+
Returns
|
899 |
+
-------
|
900 |
+
neighbors : iterator
|
901 |
+
Iterator of neighbors
|
902 |
+
"""
|
903 |
+
if graph.is_directed():
|
904 |
+
values = chain(graph.predecessors(node), graph.successors(node))
|
905 |
+
else:
|
906 |
+
values = graph.neighbors(node)
|
907 |
+
return values
|
908 |
+
|
909 |
+
|
910 |
+
def non_neighbors(graph, node):
|
911 |
+
"""Returns the non-neighbors of the node in the graph.
|
912 |
+
|
913 |
+
Parameters
|
914 |
+
----------
|
915 |
+
graph : NetworkX graph
|
916 |
+
Graph to find neighbors.
|
917 |
+
|
918 |
+
node : node
|
919 |
+
The node whose neighbors will be returned.
|
920 |
+
|
921 |
+
Returns
|
922 |
+
-------
|
923 |
+
non_neighbors : set
|
924 |
+
Set of nodes in the graph that are not neighbors of the node.
|
925 |
+
"""
|
926 |
+
return graph._adj.keys() - graph._adj[node].keys() - {node}
|
927 |
+
|
928 |
+
|
929 |
+
def non_edges(graph):
|
930 |
+
"""Returns the nonexistent edges in the graph.
|
931 |
+
|
932 |
+
Parameters
|
933 |
+
----------
|
934 |
+
graph : NetworkX graph.
|
935 |
+
Graph to find nonexistent edges.
|
936 |
+
|
937 |
+
Returns
|
938 |
+
-------
|
939 |
+
non_edges : iterator
|
940 |
+
Iterator of edges that are not in the graph.
|
941 |
+
"""
|
942 |
+
if graph.is_directed():
|
943 |
+
for u in graph:
|
944 |
+
for v in non_neighbors(graph, u):
|
945 |
+
yield (u, v)
|
946 |
+
else:
|
947 |
+
nodes = set(graph)
|
948 |
+
while nodes:
|
949 |
+
u = nodes.pop()
|
950 |
+
for v in nodes - set(graph[u]):
|
951 |
+
yield (u, v)
|
952 |
+
|
953 |
+
|
954 |
+
@not_implemented_for("directed")
|
955 |
+
def common_neighbors(G, u, v):
|
956 |
+
"""Returns the common neighbors of two nodes in a graph.
|
957 |
+
|
958 |
+
Parameters
|
959 |
+
----------
|
960 |
+
G : graph
|
961 |
+
A NetworkX undirected graph.
|
962 |
+
|
963 |
+
u, v : nodes
|
964 |
+
Nodes in the graph.
|
965 |
+
|
966 |
+
Returns
|
967 |
+
-------
|
968 |
+
cnbors : set
|
969 |
+
Set of common neighbors of u and v in the graph.
|
970 |
+
|
971 |
+
Raises
|
972 |
+
------
|
973 |
+
NetworkXError
|
974 |
+
If u or v is not a node in the graph.
|
975 |
+
|
976 |
+
Examples
|
977 |
+
--------
|
978 |
+
>>> G = nx.complete_graph(5)
|
979 |
+
>>> sorted(nx.common_neighbors(G, 0, 1))
|
980 |
+
[2, 3, 4]
|
981 |
+
"""
|
982 |
+
if u not in G:
|
983 |
+
raise nx.NetworkXError("u is not in the graph.")
|
984 |
+
if v not in G:
|
985 |
+
raise nx.NetworkXError("v is not in the graph.")
|
986 |
+
|
987 |
+
return G._adj[u].keys() & G._adj[v].keys() - {u, v}
|
988 |
+
|
989 |
+
|
990 |
+
def is_weighted(G, edge=None, weight="weight"):
|
991 |
+
"""Returns True if `G` has weighted edges.
|
992 |
+
|
993 |
+
Parameters
|
994 |
+
----------
|
995 |
+
G : graph
|
996 |
+
A NetworkX graph.
|
997 |
+
|
998 |
+
edge : tuple, optional
|
999 |
+
A 2-tuple specifying the only edge in `G` that will be tested. If
|
1000 |
+
None, then every edge in `G` is tested.
|
1001 |
+
|
1002 |
+
weight: string, optional
|
1003 |
+
The attribute name used to query for edge weights.
|
1004 |
+
|
1005 |
+
Returns
|
1006 |
+
-------
|
1007 |
+
bool
|
1008 |
+
A boolean signifying if `G`, or the specified edge, is weighted.
|
1009 |
+
|
1010 |
+
Raises
|
1011 |
+
------
|
1012 |
+
NetworkXError
|
1013 |
+
If the specified edge does not exist.
|
1014 |
+
|
1015 |
+
Examples
|
1016 |
+
--------
|
1017 |
+
>>> G = nx.path_graph(4)
|
1018 |
+
>>> nx.is_weighted(G)
|
1019 |
+
False
|
1020 |
+
>>> nx.is_weighted(G, (2, 3))
|
1021 |
+
False
|
1022 |
+
|
1023 |
+
>>> G = nx.DiGraph()
|
1024 |
+
>>> G.add_edge(1, 2, weight=1)
|
1025 |
+
>>> nx.is_weighted(G)
|
1026 |
+
True
|
1027 |
+
|
1028 |
+
"""
|
1029 |
+
if edge is not None:
|
1030 |
+
data = G.get_edge_data(*edge)
|
1031 |
+
if data is None:
|
1032 |
+
msg = f"Edge {edge!r} does not exist."
|
1033 |
+
raise nx.NetworkXError(msg)
|
1034 |
+
return weight in data
|
1035 |
+
|
1036 |
+
if is_empty(G):
|
1037 |
+
# Special handling required since: all([]) == True
|
1038 |
+
return False
|
1039 |
+
|
1040 |
+
return all(weight in data for u, v, data in G.edges(data=True))
|
1041 |
+
|
1042 |
+
|
1043 |
+
@nx._dispatchable(edge_attrs="weight")
|
1044 |
+
def is_negatively_weighted(G, edge=None, weight="weight"):
|
1045 |
+
"""Returns True if `G` has negatively weighted edges.
|
1046 |
+
|
1047 |
+
Parameters
|
1048 |
+
----------
|
1049 |
+
G : graph
|
1050 |
+
A NetworkX graph.
|
1051 |
+
|
1052 |
+
edge : tuple, optional
|
1053 |
+
A 2-tuple specifying the only edge in `G` that will be tested. If
|
1054 |
+
None, then every edge in `G` is tested.
|
1055 |
+
|
1056 |
+
weight: string, optional
|
1057 |
+
The attribute name used to query for edge weights.
|
1058 |
+
|
1059 |
+
Returns
|
1060 |
+
-------
|
1061 |
+
bool
|
1062 |
+
A boolean signifying if `G`, or the specified edge, is negatively
|
1063 |
+
weighted.
|
1064 |
+
|
1065 |
+
Raises
|
1066 |
+
------
|
1067 |
+
NetworkXError
|
1068 |
+
If the specified edge does not exist.
|
1069 |
+
|
1070 |
+
Examples
|
1071 |
+
--------
|
1072 |
+
>>> G = nx.Graph()
|
1073 |
+
>>> G.add_edges_from([(1, 3), (2, 4), (2, 6)])
|
1074 |
+
>>> G.add_edge(1, 2, weight=4)
|
1075 |
+
>>> nx.is_negatively_weighted(G, (1, 2))
|
1076 |
+
False
|
1077 |
+
>>> G[2][4]["weight"] = -2
|
1078 |
+
>>> nx.is_negatively_weighted(G)
|
1079 |
+
True
|
1080 |
+
>>> G = nx.DiGraph()
|
1081 |
+
>>> edges = [("0", "3", 3), ("0", "1", -5), ("1", "0", -2)]
|
1082 |
+
>>> G.add_weighted_edges_from(edges)
|
1083 |
+
>>> nx.is_negatively_weighted(G)
|
1084 |
+
True
|
1085 |
+
|
1086 |
+
"""
|
1087 |
+
if edge is not None:
|
1088 |
+
data = G.get_edge_data(*edge)
|
1089 |
+
if data is None:
|
1090 |
+
msg = f"Edge {edge!r} does not exist."
|
1091 |
+
raise nx.NetworkXError(msg)
|
1092 |
+
return weight in data and data[weight] < 0
|
1093 |
+
|
1094 |
+
return any(weight in data and data[weight] < 0 for u, v, data in G.edges(data=True))
|
1095 |
+
|
1096 |
+
|
1097 |
+
def is_empty(G):
|
1098 |
+
"""Returns True if `G` has no edges.
|
1099 |
+
|
1100 |
+
Parameters
|
1101 |
+
----------
|
1102 |
+
G : graph
|
1103 |
+
A NetworkX graph.
|
1104 |
+
|
1105 |
+
Returns
|
1106 |
+
-------
|
1107 |
+
bool
|
1108 |
+
True if `G` has no edges, and False otherwise.
|
1109 |
+
|
1110 |
+
Notes
|
1111 |
+
-----
|
1112 |
+
An empty graph can have nodes but not edges. The empty graph with zero
|
1113 |
+
nodes is known as the null graph. This is an $O(n)$ operation where n
|
1114 |
+
is the number of nodes in the graph.
|
1115 |
+
|
1116 |
+
"""
|
1117 |
+
return not any(G._adj.values())
|
1118 |
+
|
1119 |
+
|
1120 |
+
def nodes_with_selfloops(G):
|
1121 |
+
"""Returns an iterator over nodes with self loops.
|
1122 |
+
|
1123 |
+
A node with a self loop has an edge with both ends adjacent
|
1124 |
+
to that node.
|
1125 |
+
|
1126 |
+
Returns
|
1127 |
+
-------
|
1128 |
+
nodelist : iterator
|
1129 |
+
A iterator over nodes with self loops.
|
1130 |
+
|
1131 |
+
See Also
|
1132 |
+
--------
|
1133 |
+
selfloop_edges, number_of_selfloops
|
1134 |
+
|
1135 |
+
Examples
|
1136 |
+
--------
|
1137 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1138 |
+
>>> G.add_edge(1, 1)
|
1139 |
+
>>> G.add_edge(1, 2)
|
1140 |
+
>>> list(nx.nodes_with_selfloops(G))
|
1141 |
+
[1]
|
1142 |
+
|
1143 |
+
"""
|
1144 |
+
return (n for n, nbrs in G._adj.items() if n in nbrs)
|
1145 |
+
|
1146 |
+
|
1147 |
+
def selfloop_edges(G, data=False, keys=False, default=None):
|
1148 |
+
"""Returns an iterator over selfloop edges.
|
1149 |
+
|
1150 |
+
A selfloop edge has the same node at both ends.
|
1151 |
+
|
1152 |
+
Parameters
|
1153 |
+
----------
|
1154 |
+
G : graph
|
1155 |
+
A NetworkX graph.
|
1156 |
+
data : string or bool, optional (default=False)
|
1157 |
+
Return selfloop edges as two tuples (u, v) (data=False)
|
1158 |
+
or three-tuples (u, v, datadict) (data=True)
|
1159 |
+
or three-tuples (u, v, datavalue) (data='attrname')
|
1160 |
+
keys : bool, optional (default=False)
|
1161 |
+
If True, return edge keys with each edge.
|
1162 |
+
default : value, optional (default=None)
|
1163 |
+
Value used for edges that don't have the requested attribute.
|
1164 |
+
Only relevant if data is not True or False.
|
1165 |
+
|
1166 |
+
Returns
|
1167 |
+
-------
|
1168 |
+
edgeiter : iterator over edge tuples
|
1169 |
+
An iterator over all selfloop edges.
|
1170 |
+
|
1171 |
+
See Also
|
1172 |
+
--------
|
1173 |
+
nodes_with_selfloops, number_of_selfloops
|
1174 |
+
|
1175 |
+
Examples
|
1176 |
+
--------
|
1177 |
+
>>> G = nx.MultiGraph() # or Graph, DiGraph, MultiDiGraph, etc
|
1178 |
+
>>> ekey = G.add_edge(1, 1)
|
1179 |
+
>>> ekey = G.add_edge(1, 2)
|
1180 |
+
>>> list(nx.selfloop_edges(G))
|
1181 |
+
[(1, 1)]
|
1182 |
+
>>> list(nx.selfloop_edges(G, data=True))
|
1183 |
+
[(1, 1, {})]
|
1184 |
+
>>> list(nx.selfloop_edges(G, keys=True))
|
1185 |
+
[(1, 1, 0)]
|
1186 |
+
>>> list(nx.selfloop_edges(G, keys=True, data=True))
|
1187 |
+
[(1, 1, 0, {})]
|
1188 |
+
"""
|
1189 |
+
if data is True:
|
1190 |
+
if G.is_multigraph():
|
1191 |
+
if keys is True:
|
1192 |
+
return (
|
1193 |
+
(n, n, k, d)
|
1194 |
+
for n, nbrs in G._adj.items()
|
1195 |
+
if n in nbrs
|
1196 |
+
for k, d in nbrs[n].items()
|
1197 |
+
)
|
1198 |
+
else:
|
1199 |
+
return (
|
1200 |
+
(n, n, d)
|
1201 |
+
for n, nbrs in G._adj.items()
|
1202 |
+
if n in nbrs
|
1203 |
+
for d in nbrs[n].values()
|
1204 |
+
)
|
1205 |
+
else:
|
1206 |
+
return ((n, n, nbrs[n]) for n, nbrs in G._adj.items() if n in nbrs)
|
1207 |
+
elif data is not False:
|
1208 |
+
if G.is_multigraph():
|
1209 |
+
if keys is True:
|
1210 |
+
return (
|
1211 |
+
(n, n, k, d.get(data, default))
|
1212 |
+
for n, nbrs in G._adj.items()
|
1213 |
+
if n in nbrs
|
1214 |
+
for k, d in nbrs[n].items()
|
1215 |
+
)
|
1216 |
+
else:
|
1217 |
+
return (
|
1218 |
+
(n, n, d.get(data, default))
|
1219 |
+
for n, nbrs in G._adj.items()
|
1220 |
+
if n in nbrs
|
1221 |
+
for d in nbrs[n].values()
|
1222 |
+
)
|
1223 |
+
else:
|
1224 |
+
return (
|
1225 |
+
(n, n, nbrs[n].get(data, default))
|
1226 |
+
for n, nbrs in G._adj.items()
|
1227 |
+
if n in nbrs
|
1228 |
+
)
|
1229 |
+
else:
|
1230 |
+
if G.is_multigraph():
|
1231 |
+
if keys is True:
|
1232 |
+
return (
|
1233 |
+
(n, n, k)
|
1234 |
+
for n, nbrs in G._adj.items()
|
1235 |
+
if n in nbrs
|
1236 |
+
for k in nbrs[n]
|
1237 |
+
)
|
1238 |
+
else:
|
1239 |
+
return (
|
1240 |
+
(n, n)
|
1241 |
+
for n, nbrs in G._adj.items()
|
1242 |
+
if n in nbrs
|
1243 |
+
for i in range(len(nbrs[n])) # for easy edge removal (#4068)
|
1244 |
+
)
|
1245 |
+
else:
|
1246 |
+
return ((n, n) for n, nbrs in G._adj.items() if n in nbrs)
|
1247 |
+
|
1248 |
+
|
1249 |
+
def number_of_selfloops(G):
|
1250 |
+
"""Returns the number of selfloop edges.
|
1251 |
+
|
1252 |
+
A selfloop edge has the same node at both ends.
|
1253 |
+
|
1254 |
+
Returns
|
1255 |
+
-------
|
1256 |
+
nloops : int
|
1257 |
+
The number of selfloops.
|
1258 |
+
|
1259 |
+
See Also
|
1260 |
+
--------
|
1261 |
+
nodes_with_selfloops, selfloop_edges
|
1262 |
+
|
1263 |
+
Examples
|
1264 |
+
--------
|
1265 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1266 |
+
>>> G.add_edge(1, 1)
|
1267 |
+
>>> G.add_edge(1, 2)
|
1268 |
+
>>> nx.number_of_selfloops(G)
|
1269 |
+
1
|
1270 |
+
"""
|
1271 |
+
return sum(1 for _ in nx.selfloop_edges(G))
|
1272 |
+
|
1273 |
+
|
1274 |
+
def is_path(G, path):
|
1275 |
+
"""Returns whether or not the specified path exists.
|
1276 |
+
|
1277 |
+
For it to return True, every node on the path must exist and
|
1278 |
+
each consecutive pair must be connected via one or more edges.
|
1279 |
+
|
1280 |
+
Parameters
|
1281 |
+
----------
|
1282 |
+
G : graph
|
1283 |
+
A NetworkX graph.
|
1284 |
+
|
1285 |
+
path : list
|
1286 |
+
A list of nodes which defines the path to traverse
|
1287 |
+
|
1288 |
+
Returns
|
1289 |
+
-------
|
1290 |
+
bool
|
1291 |
+
True if `path` is a valid path in `G`
|
1292 |
+
|
1293 |
+
"""
|
1294 |
+
try:
|
1295 |
+
return all(nbr in G._adj[node] for node, nbr in nx.utils.pairwise(path))
|
1296 |
+
except (KeyError, TypeError):
|
1297 |
+
return False
|
1298 |
+
|
1299 |
+
|
1300 |
+
def path_weight(G, path, weight):
|
1301 |
+
"""Returns total cost associated with specified path and weight
|
1302 |
+
|
1303 |
+
Parameters
|
1304 |
+
----------
|
1305 |
+
G : graph
|
1306 |
+
A NetworkX graph.
|
1307 |
+
|
1308 |
+
path: list
|
1309 |
+
A list of node labels which defines the path to traverse
|
1310 |
+
|
1311 |
+
weight: string
|
1312 |
+
A string indicating which edge attribute to use for path cost
|
1313 |
+
|
1314 |
+
Returns
|
1315 |
+
-------
|
1316 |
+
cost: int or float
|
1317 |
+
An integer or a float representing the total cost with respect to the
|
1318 |
+
specified weight of the specified path
|
1319 |
+
|
1320 |
+
Raises
|
1321 |
+
------
|
1322 |
+
NetworkXNoPath
|
1323 |
+
If the specified edge does not exist.
|
1324 |
+
"""
|
1325 |
+
multigraph = G.is_multigraph()
|
1326 |
+
cost = 0
|
1327 |
+
|
1328 |
+
if not nx.is_path(G, path):
|
1329 |
+
raise nx.NetworkXNoPath("path does not exist")
|
1330 |
+
for node, nbr in nx.utils.pairwise(path):
|
1331 |
+
if multigraph:
|
1332 |
+
cost += min(v[weight] for v in G._adj[node][nbr].values())
|
1333 |
+
else:
|
1334 |
+
cost += G._adj[node][nbr][weight]
|
1335 |
+
return cost
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/graph.py
ADDED
@@ -0,0 +1,2043 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Base class for undirected graphs.
|
2 |
+
|
3 |
+
The Graph class allows any hashable object as a node
|
4 |
+
and can associate key/value attribute pairs with each undirected edge.
|
5 |
+
|
6 |
+
Self-loops are allowed but multiple edges are not (see MultiGraph).
|
7 |
+
|
8 |
+
For directed graphs see DiGraph and MultiDiGraph.
|
9 |
+
"""
|
10 |
+
from copy import deepcopy
|
11 |
+
from functools import cached_property
|
12 |
+
|
13 |
+
import networkx as nx
|
14 |
+
from networkx import convert
|
15 |
+
from networkx.classes.coreviews import AdjacencyView
|
16 |
+
from networkx.classes.reportviews import DegreeView, EdgeView, NodeView
|
17 |
+
from networkx.exception import NetworkXError
|
18 |
+
|
19 |
+
__all__ = ["Graph"]
|
20 |
+
|
21 |
+
|
22 |
+
class _CachedPropertyResetterAdj:
|
23 |
+
"""Data Descriptor class for _adj that resets ``adj`` cached_property when needed
|
24 |
+
|
25 |
+
This assumes that the ``cached_property`` ``G.adj`` should be reset whenever
|
26 |
+
``G._adj`` is set to a new value.
|
27 |
+
|
28 |
+
This object sits on a class and ensures that any instance of that
|
29 |
+
class clears its cached property "adj" whenever the underlying
|
30 |
+
instance attribute "_adj" is set to a new object. It only affects
|
31 |
+
the set process of the obj._adj attribute. All get/del operations
|
32 |
+
act as they normally would.
|
33 |
+
|
34 |
+
For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __set__(self, obj, value):
|
38 |
+
od = obj.__dict__
|
39 |
+
od["_adj"] = value
|
40 |
+
if "adj" in od:
|
41 |
+
del od["adj"]
|
42 |
+
|
43 |
+
|
44 |
+
class _CachedPropertyResetterNode:
|
45 |
+
"""Data Descriptor class for _node that resets ``nodes`` cached_property when needed
|
46 |
+
|
47 |
+
This assumes that the ``cached_property`` ``G.node`` should be reset whenever
|
48 |
+
``G._node`` is set to a new value.
|
49 |
+
|
50 |
+
This object sits on a class and ensures that any instance of that
|
51 |
+
class clears its cached property "nodes" whenever the underlying
|
52 |
+
instance attribute "_node" is set to a new object. It only affects
|
53 |
+
the set process of the obj._adj attribute. All get/del operations
|
54 |
+
act as they normally would.
|
55 |
+
|
56 |
+
For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __set__(self, obj, value):
|
60 |
+
od = obj.__dict__
|
61 |
+
od["_node"] = value
|
62 |
+
if "nodes" in od:
|
63 |
+
del od["nodes"]
|
64 |
+
|
65 |
+
|
66 |
+
class Graph:
|
67 |
+
"""
|
68 |
+
Base class for undirected graphs.
|
69 |
+
|
70 |
+
A Graph stores nodes and edges with optional data, or attributes.
|
71 |
+
|
72 |
+
Graphs hold undirected edges. Self loops are allowed but multiple
|
73 |
+
(parallel) edges are not.
|
74 |
+
|
75 |
+
Nodes can be arbitrary (hashable) Python objects with optional
|
76 |
+
key/value attributes, except that `None` is not allowed as a node.
|
77 |
+
|
78 |
+
Edges are represented as links between nodes with optional
|
79 |
+
key/value attributes.
|
80 |
+
|
81 |
+
Parameters
|
82 |
+
----------
|
83 |
+
incoming_graph_data : input graph (optional, default: None)
|
84 |
+
Data to initialize graph. If None (default) an empty
|
85 |
+
graph is created. The data can be any format that is supported
|
86 |
+
by the to_networkx_graph() function, currently including edge list,
|
87 |
+
dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
|
88 |
+
sparse matrix, or PyGraphviz graph.
|
89 |
+
|
90 |
+
attr : keyword arguments, optional (default= no attributes)
|
91 |
+
Attributes to add to graph as key=value pairs.
|
92 |
+
|
93 |
+
See Also
|
94 |
+
--------
|
95 |
+
DiGraph
|
96 |
+
MultiGraph
|
97 |
+
MultiDiGraph
|
98 |
+
|
99 |
+
Examples
|
100 |
+
--------
|
101 |
+
Create an empty graph structure (a "null graph") with no nodes and
|
102 |
+
no edges.
|
103 |
+
|
104 |
+
>>> G = nx.Graph()
|
105 |
+
|
106 |
+
G can be grown in several ways.
|
107 |
+
|
108 |
+
**Nodes:**
|
109 |
+
|
110 |
+
Add one node at a time:
|
111 |
+
|
112 |
+
>>> G.add_node(1)
|
113 |
+
|
114 |
+
Add the nodes from any container (a list, dict, set or
|
115 |
+
even the lines from a file or the nodes from another graph).
|
116 |
+
|
117 |
+
>>> G.add_nodes_from([2, 3])
|
118 |
+
>>> G.add_nodes_from(range(100, 110))
|
119 |
+
>>> H = nx.path_graph(10)
|
120 |
+
>>> G.add_nodes_from(H)
|
121 |
+
|
122 |
+
In addition to strings and integers any hashable Python object
|
123 |
+
(except None) can represent a node, e.g. a customized node object,
|
124 |
+
or even another Graph.
|
125 |
+
|
126 |
+
>>> G.add_node(H)
|
127 |
+
|
128 |
+
**Edges:**
|
129 |
+
|
130 |
+
G can also be grown by adding edges.
|
131 |
+
|
132 |
+
Add one edge,
|
133 |
+
|
134 |
+
>>> G.add_edge(1, 2)
|
135 |
+
|
136 |
+
a list of edges,
|
137 |
+
|
138 |
+
>>> G.add_edges_from([(1, 2), (1, 3)])
|
139 |
+
|
140 |
+
or a collection of edges,
|
141 |
+
|
142 |
+
>>> G.add_edges_from(H.edges)
|
143 |
+
|
144 |
+
If some edges connect nodes not yet in the graph, the nodes
|
145 |
+
are added automatically. There are no errors when adding
|
146 |
+
nodes or edges that already exist.
|
147 |
+
|
148 |
+
**Attributes:**
|
149 |
+
|
150 |
+
Each graph, node, and edge can hold key/value attribute pairs
|
151 |
+
in an associated attribute dictionary (the keys must be hashable).
|
152 |
+
By default these are empty, but can be added or changed using
|
153 |
+
add_edge, add_node or direct manipulation of the attribute
|
154 |
+
dictionaries named graph, node and edge respectively.
|
155 |
+
|
156 |
+
>>> G = nx.Graph(day="Friday")
|
157 |
+
>>> G.graph
|
158 |
+
{'day': 'Friday'}
|
159 |
+
|
160 |
+
Add node attributes using add_node(), add_nodes_from() or G.nodes
|
161 |
+
|
162 |
+
>>> G.add_node(1, time="5pm")
|
163 |
+
>>> G.add_nodes_from([3], time="2pm")
|
164 |
+
>>> G.nodes[1]
|
165 |
+
{'time': '5pm'}
|
166 |
+
>>> G.nodes[1]["room"] = 714 # node must exist already to use G.nodes
|
167 |
+
>>> del G.nodes[1]["room"] # remove attribute
|
168 |
+
>>> list(G.nodes(data=True))
|
169 |
+
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
|
170 |
+
|
171 |
+
Add edge attributes using add_edge(), add_edges_from(), subscript
|
172 |
+
notation, or G.edges.
|
173 |
+
|
174 |
+
>>> G.add_edge(1, 2, weight=4.7)
|
175 |
+
>>> G.add_edges_from([(3, 4), (4, 5)], color="red")
|
176 |
+
>>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
|
177 |
+
>>> G[1][2]["weight"] = 4.7
|
178 |
+
>>> G.edges[1, 2]["weight"] = 4
|
179 |
+
|
180 |
+
Warning: we protect the graph data structure by making `G.edges` a
|
181 |
+
read-only dict-like structure. However, you can assign to attributes
|
182 |
+
in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change
|
183 |
+
data attributes: `G.edges[1, 2]['weight'] = 4`
|
184 |
+
(For multigraphs: `MG.edges[u, v, key][name] = value`).
|
185 |
+
|
186 |
+
**Shortcuts:**
|
187 |
+
|
188 |
+
Many common graph features allow python syntax to speed reporting.
|
189 |
+
|
190 |
+
>>> 1 in G # check if node in graph
|
191 |
+
True
|
192 |
+
>>> [n for n in G if n < 3] # iterate through nodes
|
193 |
+
[1, 2]
|
194 |
+
>>> len(G) # number of nodes in graph
|
195 |
+
5
|
196 |
+
|
197 |
+
Often the best way to traverse all edges of a graph is via the neighbors.
|
198 |
+
The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`
|
199 |
+
|
200 |
+
>>> for n, nbrsdict in G.adjacency():
|
201 |
+
... for nbr, eattr in nbrsdict.items():
|
202 |
+
... if "weight" in eattr:
|
203 |
+
... # Do something useful with the edges
|
204 |
+
... pass
|
205 |
+
|
206 |
+
But the edges() method is often more convenient:
|
207 |
+
|
208 |
+
>>> for u, v, weight in G.edges.data("weight"):
|
209 |
+
... if weight is not None:
|
210 |
+
... # Do something useful with the edges
|
211 |
+
... pass
|
212 |
+
|
213 |
+
**Reporting:**
|
214 |
+
|
215 |
+
Simple graph information is obtained using object-attributes and methods.
|
216 |
+
Reporting typically provides views instead of containers to reduce memory
|
217 |
+
usage. The views update as the graph is updated similarly to dict-views.
|
218 |
+
The objects `nodes`, `edges` and `adj` provide access to data attributes
|
219 |
+
via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration
|
220 |
+
(e.g. `nodes.items()`, `nodes.data('color')`,
|
221 |
+
`nodes.data('color', default='blue')` and similarly for `edges`)
|
222 |
+
Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
|
223 |
+
|
224 |
+
For details on these and other miscellaneous methods, see below.
|
225 |
+
|
226 |
+
**Subclasses (Advanced):**
|
227 |
+
|
228 |
+
The Graph class uses a dict-of-dict-of-dict data structure.
|
229 |
+
The outer dict (node_dict) holds adjacency information keyed by node.
|
230 |
+
The next dict (adjlist_dict) represents the adjacency information and holds
|
231 |
+
edge data keyed by neighbor. The inner dict (edge_attr_dict) represents
|
232 |
+
the edge data and holds edge attribute values keyed by attribute names.
|
233 |
+
|
234 |
+
Each of these three dicts can be replaced in a subclass by a user defined
|
235 |
+
dict-like object. In general, the dict-like features should be
|
236 |
+
maintained but extra features can be added. To replace one of the
|
237 |
+
dicts create a new graph class by changing the class(!) variable
|
238 |
+
holding the factory for that dict-like structure.
|
239 |
+
|
240 |
+
node_dict_factory : function, (default: dict)
|
241 |
+
Factory function to be used to create the dict containing node
|
242 |
+
attributes, keyed by node id.
|
243 |
+
It should require no arguments and return a dict-like object
|
244 |
+
|
245 |
+
node_attr_dict_factory: function, (default: dict)
|
246 |
+
Factory function to be used to create the node attribute
|
247 |
+
dict which holds attribute values keyed by attribute name.
|
248 |
+
It should require no arguments and return a dict-like object
|
249 |
+
|
250 |
+
adjlist_outer_dict_factory : function, (default: dict)
|
251 |
+
Factory function to be used to create the outer-most dict
|
252 |
+
in the data structure that holds adjacency info keyed by node.
|
253 |
+
It should require no arguments and return a dict-like object.
|
254 |
+
|
255 |
+
adjlist_inner_dict_factory : function, (default: dict)
|
256 |
+
Factory function to be used to create the adjacency list
|
257 |
+
dict which holds edge data keyed by neighbor.
|
258 |
+
It should require no arguments and return a dict-like object
|
259 |
+
|
260 |
+
edge_attr_dict_factory : function, (default: dict)
|
261 |
+
Factory function to be used to create the edge attribute
|
262 |
+
dict which holds attribute values keyed by attribute name.
|
263 |
+
It should require no arguments and return a dict-like object.
|
264 |
+
|
265 |
+
graph_attr_dict_factory : function, (default: dict)
|
266 |
+
Factory function to be used to create the graph attribute
|
267 |
+
dict which holds attribute values keyed by attribute name.
|
268 |
+
It should require no arguments and return a dict-like object.
|
269 |
+
|
270 |
+
Typically, if your extension doesn't impact the data structure all
|
271 |
+
methods will inherit without issue except: `to_directed/to_undirected`.
|
272 |
+
By default these methods create a DiGraph/Graph class and you probably
|
273 |
+
want them to create your extension of a DiGraph/Graph. To facilitate
|
274 |
+
this we define two class variables that you can set in your subclass.
|
275 |
+
|
276 |
+
to_directed_class : callable, (default: DiGraph or MultiDiGraph)
|
277 |
+
Class to create a new graph structure in the `to_directed` method.
|
278 |
+
If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
|
279 |
+
|
280 |
+
to_undirected_class : callable, (default: Graph or MultiGraph)
|
281 |
+
Class to create a new graph structure in the `to_undirected` method.
|
282 |
+
If `None`, a NetworkX class (Graph or MultiGraph) is used.
|
283 |
+
|
284 |
+
**Subclassing Example**
|
285 |
+
|
286 |
+
Create a low memory graph class that effectively disallows edge
|
287 |
+
attributes by using a single attribute dict for all edges.
|
288 |
+
This reduces the memory used, but you lose edge attributes.
|
289 |
+
|
290 |
+
>>> class ThinGraph(nx.Graph):
|
291 |
+
... all_edge_dict = {"weight": 1}
|
292 |
+
...
|
293 |
+
... def single_edge_dict(self):
|
294 |
+
... return self.all_edge_dict
|
295 |
+
...
|
296 |
+
... edge_attr_dict_factory = single_edge_dict
|
297 |
+
>>> G = ThinGraph()
|
298 |
+
>>> G.add_edge(2, 1)
|
299 |
+
>>> G[2][1]
|
300 |
+
{'weight': 1}
|
301 |
+
>>> G.add_edge(2, 2)
|
302 |
+
>>> G[2][1] is G[2][2]
|
303 |
+
True
|
304 |
+
"""
|
305 |
+
|
306 |
+
_adj = _CachedPropertyResetterAdj()
|
307 |
+
_node = _CachedPropertyResetterNode()
|
308 |
+
|
309 |
+
node_dict_factory = dict
|
310 |
+
node_attr_dict_factory = dict
|
311 |
+
adjlist_outer_dict_factory = dict
|
312 |
+
adjlist_inner_dict_factory = dict
|
313 |
+
edge_attr_dict_factory = dict
|
314 |
+
graph_attr_dict_factory = dict
|
315 |
+
|
316 |
+
def to_directed_class(self):
|
317 |
+
"""Returns the class to use for empty directed copies.
|
318 |
+
|
319 |
+
If you subclass the base classes, use this to designate
|
320 |
+
what directed class to use for `to_directed()` copies.
|
321 |
+
"""
|
322 |
+
return nx.DiGraph
|
323 |
+
|
324 |
+
def to_undirected_class(self):
|
325 |
+
"""Returns the class to use for empty undirected copies.
|
326 |
+
|
327 |
+
If you subclass the base classes, use this to designate
|
328 |
+
what directed class to use for `to_directed()` copies.
|
329 |
+
"""
|
330 |
+
return Graph
|
331 |
+
|
332 |
+
def __init__(self, incoming_graph_data=None, **attr):
|
333 |
+
"""Initialize a graph with edges, name, or graph attributes.
|
334 |
+
|
335 |
+
Parameters
|
336 |
+
----------
|
337 |
+
incoming_graph_data : input graph (optional, default: None)
|
338 |
+
Data to initialize graph. If None (default) an empty
|
339 |
+
graph is created. The data can be an edge list, or any
|
340 |
+
NetworkX graph object. If the corresponding optional Python
|
341 |
+
packages are installed the data can also be a 2D NumPy array, a
|
342 |
+
SciPy sparse array, or a PyGraphviz graph.
|
343 |
+
|
344 |
+
attr : keyword arguments, optional (default= no attributes)
|
345 |
+
Attributes to add to graph as key=value pairs.
|
346 |
+
|
347 |
+
See Also
|
348 |
+
--------
|
349 |
+
convert
|
350 |
+
|
351 |
+
Examples
|
352 |
+
--------
|
353 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
354 |
+
>>> G = nx.Graph(name="my graph")
|
355 |
+
>>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
|
356 |
+
>>> G = nx.Graph(e)
|
357 |
+
|
358 |
+
Arbitrary graph attribute pairs (key=value) may be assigned
|
359 |
+
|
360 |
+
>>> G = nx.Graph(e, day="Friday")
|
361 |
+
>>> G.graph
|
362 |
+
{'day': 'Friday'}
|
363 |
+
|
364 |
+
"""
|
365 |
+
self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes
|
366 |
+
self._node = self.node_dict_factory() # empty node attribute dict
|
367 |
+
self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict
|
368 |
+
self.__networkx_cache__ = {}
|
369 |
+
# attempt to load graph with data
|
370 |
+
if incoming_graph_data is not None:
|
371 |
+
convert.to_networkx_graph(incoming_graph_data, create_using=self)
|
372 |
+
# load graph attributes (must be after convert)
|
373 |
+
self.graph.update(attr)
|
374 |
+
|
375 |
+
@cached_property
|
376 |
+
def adj(self):
|
377 |
+
"""Graph adjacency object holding the neighbors of each node.
|
378 |
+
|
379 |
+
This object is a read-only dict-like structure with node keys
|
380 |
+
and neighbor-dict values. The neighbor-dict is keyed by neighbor
|
381 |
+
to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets
|
382 |
+
the color of the edge `(3, 2)` to `"blue"`.
|
383 |
+
|
384 |
+
Iterating over G.adj behaves like a dict. Useful idioms include
|
385 |
+
`for nbr, datadict in G.adj[n].items():`.
|
386 |
+
|
387 |
+
The neighbor information is also provided by subscripting the graph.
|
388 |
+
So `for nbr, foovalue in G[node].data('foo', default=1):` works.
|
389 |
+
|
390 |
+
For directed graphs, `G.adj` holds outgoing (successor) info.
|
391 |
+
"""
|
392 |
+
return AdjacencyView(self._adj)
|
393 |
+
|
394 |
+
@property
|
395 |
+
def name(self):
|
396 |
+
"""String identifier of the graph.
|
397 |
+
|
398 |
+
This graph attribute appears in the attribute dict G.graph
|
399 |
+
keyed by the string `"name"`. as well as an attribute (technically
|
400 |
+
a property) `G.name`. This is entirely user controlled.
|
401 |
+
"""
|
402 |
+
return self.graph.get("name", "")
|
403 |
+
|
404 |
+
@name.setter
|
405 |
+
def name(self, s):
|
406 |
+
self.graph["name"] = s
|
407 |
+
nx._clear_cache(self)
|
408 |
+
|
409 |
+
def __str__(self):
|
410 |
+
"""Returns a short summary of the graph.
|
411 |
+
|
412 |
+
Returns
|
413 |
+
-------
|
414 |
+
info : string
|
415 |
+
Graph information including the graph name (if any), graph type, and the
|
416 |
+
number of nodes and edges.
|
417 |
+
|
418 |
+
Examples
|
419 |
+
--------
|
420 |
+
>>> G = nx.Graph(name="foo")
|
421 |
+
>>> str(G)
|
422 |
+
"Graph named 'foo' with 0 nodes and 0 edges"
|
423 |
+
|
424 |
+
>>> G = nx.path_graph(3)
|
425 |
+
>>> str(G)
|
426 |
+
'Graph with 3 nodes and 2 edges'
|
427 |
+
|
428 |
+
"""
|
429 |
+
return "".join(
|
430 |
+
[
|
431 |
+
type(self).__name__,
|
432 |
+
f" named {self.name!r}" if self.name else "",
|
433 |
+
f" with {self.number_of_nodes()} nodes and {self.number_of_edges()} edges",
|
434 |
+
]
|
435 |
+
)
|
436 |
+
|
437 |
+
def __iter__(self):
|
438 |
+
"""Iterate over the nodes. Use: 'for n in G'.
|
439 |
+
|
440 |
+
Returns
|
441 |
+
-------
|
442 |
+
niter : iterator
|
443 |
+
An iterator over all nodes in the graph.
|
444 |
+
|
445 |
+
Examples
|
446 |
+
--------
|
447 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
448 |
+
>>> [n for n in G]
|
449 |
+
[0, 1, 2, 3]
|
450 |
+
>>> list(G)
|
451 |
+
[0, 1, 2, 3]
|
452 |
+
"""
|
453 |
+
return iter(self._node)
|
454 |
+
|
455 |
+
def __contains__(self, n):
|
456 |
+
"""Returns True if n is a node, False otherwise. Use: 'n in G'.
|
457 |
+
|
458 |
+
Examples
|
459 |
+
--------
|
460 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
461 |
+
>>> 1 in G
|
462 |
+
True
|
463 |
+
"""
|
464 |
+
try:
|
465 |
+
return n in self._node
|
466 |
+
except TypeError:
|
467 |
+
return False
|
468 |
+
|
469 |
+
def __len__(self):
|
470 |
+
"""Returns the number of nodes in the graph. Use: 'len(G)'.
|
471 |
+
|
472 |
+
Returns
|
473 |
+
-------
|
474 |
+
nnodes : int
|
475 |
+
The number of nodes in the graph.
|
476 |
+
|
477 |
+
See Also
|
478 |
+
--------
|
479 |
+
number_of_nodes: identical method
|
480 |
+
order: identical method
|
481 |
+
|
482 |
+
Examples
|
483 |
+
--------
|
484 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
485 |
+
>>> len(G)
|
486 |
+
4
|
487 |
+
|
488 |
+
"""
|
489 |
+
return len(self._node)
|
490 |
+
|
491 |
+
def __getitem__(self, n):
|
492 |
+
"""Returns a dict of neighbors of node n. Use: 'G[n]'.
|
493 |
+
|
494 |
+
Parameters
|
495 |
+
----------
|
496 |
+
n : node
|
497 |
+
A node in the graph.
|
498 |
+
|
499 |
+
Returns
|
500 |
+
-------
|
501 |
+
adj_dict : dictionary
|
502 |
+
The adjacency dictionary for nodes connected to n.
|
503 |
+
|
504 |
+
Notes
|
505 |
+
-----
|
506 |
+
G[n] is the same as G.adj[n] and similar to G.neighbors(n)
|
507 |
+
(which is an iterator over G.adj[n])
|
508 |
+
|
509 |
+
Examples
|
510 |
+
--------
|
511 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
512 |
+
>>> G[0]
|
513 |
+
AtlasView({1: {}})
|
514 |
+
"""
|
515 |
+
return self.adj[n]
|
516 |
+
|
517 |
+
def add_node(self, node_for_adding, **attr):
|
518 |
+
"""Add a single node `node_for_adding` and update node attributes.
|
519 |
+
|
520 |
+
Parameters
|
521 |
+
----------
|
522 |
+
node_for_adding : node
|
523 |
+
A node can be any hashable Python object except None.
|
524 |
+
attr : keyword arguments, optional
|
525 |
+
Set or change node attributes using key=value.
|
526 |
+
|
527 |
+
See Also
|
528 |
+
--------
|
529 |
+
add_nodes_from
|
530 |
+
|
531 |
+
Examples
|
532 |
+
--------
|
533 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
534 |
+
>>> G.add_node(1)
|
535 |
+
>>> G.add_node("Hello")
|
536 |
+
>>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
|
537 |
+
>>> G.add_node(K3)
|
538 |
+
>>> G.number_of_nodes()
|
539 |
+
3
|
540 |
+
|
541 |
+
Use keywords set/change node attributes:
|
542 |
+
|
543 |
+
>>> G.add_node(1, size=10)
|
544 |
+
>>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649))
|
545 |
+
|
546 |
+
Notes
|
547 |
+
-----
|
548 |
+
A hashable object is one that can be used as a key in a Python
|
549 |
+
dictionary. This includes strings, numbers, tuples of strings
|
550 |
+
and numbers, etc.
|
551 |
+
|
552 |
+
On many platforms hashable items also include mutables such as
|
553 |
+
NetworkX Graphs, though one should be careful that the hash
|
554 |
+
doesn't change on mutables.
|
555 |
+
"""
|
556 |
+
if node_for_adding not in self._node:
|
557 |
+
if node_for_adding is None:
|
558 |
+
raise ValueError("None cannot be a node")
|
559 |
+
self._adj[node_for_adding] = self.adjlist_inner_dict_factory()
|
560 |
+
attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory()
|
561 |
+
attr_dict.update(attr)
|
562 |
+
else: # update attr even if node already exists
|
563 |
+
self._node[node_for_adding].update(attr)
|
564 |
+
nx._clear_cache(self)
|
565 |
+
|
566 |
+
def add_nodes_from(self, nodes_for_adding, **attr):
|
567 |
+
"""Add multiple nodes.
|
568 |
+
|
569 |
+
Parameters
|
570 |
+
----------
|
571 |
+
nodes_for_adding : iterable container
|
572 |
+
A container of nodes (list, dict, set, etc.).
|
573 |
+
OR
|
574 |
+
A container of (node, attribute dict) tuples.
|
575 |
+
Node attributes are updated using the attribute dict.
|
576 |
+
attr : keyword arguments, optional (default= no attributes)
|
577 |
+
Update attributes for all nodes in nodes.
|
578 |
+
Node attributes specified in nodes as a tuple take
|
579 |
+
precedence over attributes specified via keyword arguments.
|
580 |
+
|
581 |
+
See Also
|
582 |
+
--------
|
583 |
+
add_node
|
584 |
+
|
585 |
+
Notes
|
586 |
+
-----
|
587 |
+
When adding nodes from an iterator over the graph you are changing,
|
588 |
+
a `RuntimeError` can be raised with message:
|
589 |
+
`RuntimeError: dictionary changed size during iteration`. This
|
590 |
+
happens when the graph's underlying dictionary is modified during
|
591 |
+
iteration. To avoid this error, evaluate the iterator into a separate
|
592 |
+
object, e.g. by using `list(iterator_of_nodes)`, and pass this
|
593 |
+
object to `G.add_nodes_from`.
|
594 |
+
|
595 |
+
Examples
|
596 |
+
--------
|
597 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
598 |
+
>>> G.add_nodes_from("Hello")
|
599 |
+
>>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
|
600 |
+
>>> G.add_nodes_from(K3)
|
601 |
+
>>> sorted(G.nodes(), key=str)
|
602 |
+
[0, 1, 2, 'H', 'e', 'l', 'o']
|
603 |
+
|
604 |
+
Use keywords to update specific node attributes for every node.
|
605 |
+
|
606 |
+
>>> G.add_nodes_from([1, 2], size=10)
|
607 |
+
>>> G.add_nodes_from([3, 4], weight=0.4)
|
608 |
+
|
609 |
+
Use (node, attrdict) tuples to update attributes for specific nodes.
|
610 |
+
|
611 |
+
>>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})])
|
612 |
+
>>> G.nodes[1]["size"]
|
613 |
+
11
|
614 |
+
>>> H = nx.Graph()
|
615 |
+
>>> H.add_nodes_from(G.nodes(data=True))
|
616 |
+
>>> H.nodes[1]["size"]
|
617 |
+
11
|
618 |
+
|
619 |
+
Evaluate an iterator over a graph if using it to modify the same graph
|
620 |
+
|
621 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (3, 4)])
|
622 |
+
>>> # wrong way - will raise RuntimeError
|
623 |
+
>>> # G.add_nodes_from(n + 1 for n in G.nodes)
|
624 |
+
>>> # correct way
|
625 |
+
>>> G.add_nodes_from(list(n + 1 for n in G.nodes))
|
626 |
+
"""
|
627 |
+
for n in nodes_for_adding:
|
628 |
+
try:
|
629 |
+
newnode = n not in self._node
|
630 |
+
newdict = attr
|
631 |
+
except TypeError:
|
632 |
+
n, ndict = n
|
633 |
+
newnode = n not in self._node
|
634 |
+
newdict = attr.copy()
|
635 |
+
newdict.update(ndict)
|
636 |
+
if newnode:
|
637 |
+
if n is None:
|
638 |
+
raise ValueError("None cannot be a node")
|
639 |
+
self._adj[n] = self.adjlist_inner_dict_factory()
|
640 |
+
self._node[n] = self.node_attr_dict_factory()
|
641 |
+
self._node[n].update(newdict)
|
642 |
+
nx._clear_cache(self)
|
643 |
+
|
644 |
+
def remove_node(self, n):
|
645 |
+
"""Remove node n.
|
646 |
+
|
647 |
+
Removes the node n and all adjacent edges.
|
648 |
+
Attempting to remove a nonexistent node will raise an exception.
|
649 |
+
|
650 |
+
Parameters
|
651 |
+
----------
|
652 |
+
n : node
|
653 |
+
A node in the graph
|
654 |
+
|
655 |
+
Raises
|
656 |
+
------
|
657 |
+
NetworkXError
|
658 |
+
If n is not in the graph.
|
659 |
+
|
660 |
+
See Also
|
661 |
+
--------
|
662 |
+
remove_nodes_from
|
663 |
+
|
664 |
+
Examples
|
665 |
+
--------
|
666 |
+
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
667 |
+
>>> list(G.edges)
|
668 |
+
[(0, 1), (1, 2)]
|
669 |
+
>>> G.remove_node(1)
|
670 |
+
>>> list(G.edges)
|
671 |
+
[]
|
672 |
+
|
673 |
+
"""
|
674 |
+
adj = self._adj
|
675 |
+
try:
|
676 |
+
nbrs = list(adj[n]) # list handles self-loops (allows mutation)
|
677 |
+
del self._node[n]
|
678 |
+
except KeyError as err: # NetworkXError if n not in self
|
679 |
+
raise NetworkXError(f"The node {n} is not in the graph.") from err
|
680 |
+
for u in nbrs:
|
681 |
+
del adj[u][n] # remove all edges n-u in graph
|
682 |
+
del adj[n] # now remove node
|
683 |
+
nx._clear_cache(self)
|
684 |
+
|
685 |
+
def remove_nodes_from(self, nodes):
|
686 |
+
"""Remove multiple nodes.
|
687 |
+
|
688 |
+
Parameters
|
689 |
+
----------
|
690 |
+
nodes : iterable container
|
691 |
+
A container of nodes (list, dict, set, etc.). If a node
|
692 |
+
in the container is not in the graph it is silently
|
693 |
+
ignored.
|
694 |
+
|
695 |
+
See Also
|
696 |
+
--------
|
697 |
+
remove_node
|
698 |
+
|
699 |
+
Notes
|
700 |
+
-----
|
701 |
+
When removing nodes from an iterator over the graph you are changing,
|
702 |
+
a `RuntimeError` will be raised with message:
|
703 |
+
`RuntimeError: dictionary changed size during iteration`. This
|
704 |
+
happens when the graph's underlying dictionary is modified during
|
705 |
+
iteration. To avoid this error, evaluate the iterator into a separate
|
706 |
+
object, e.g. by using `list(iterator_of_nodes)`, and pass this
|
707 |
+
object to `G.remove_nodes_from`.
|
708 |
+
|
709 |
+
Examples
|
710 |
+
--------
|
711 |
+
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
712 |
+
>>> e = list(G.nodes)
|
713 |
+
>>> e
|
714 |
+
[0, 1, 2]
|
715 |
+
>>> G.remove_nodes_from(e)
|
716 |
+
>>> list(G.nodes)
|
717 |
+
[]
|
718 |
+
|
719 |
+
Evaluate an iterator over a graph if using it to modify the same graph
|
720 |
+
|
721 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (3, 4)])
|
722 |
+
>>> # this command will fail, as the graph's dict is modified during iteration
|
723 |
+
>>> # G.remove_nodes_from(n for n in G.nodes if n < 2)
|
724 |
+
>>> # this command will work, since the dictionary underlying graph is not modified
|
725 |
+
>>> G.remove_nodes_from(list(n for n in G.nodes if n < 2))
|
726 |
+
"""
|
727 |
+
adj = self._adj
|
728 |
+
for n in nodes:
|
729 |
+
try:
|
730 |
+
del self._node[n]
|
731 |
+
for u in list(adj[n]): # list handles self-loops
|
732 |
+
del adj[u][n] # (allows mutation of dict in loop)
|
733 |
+
del adj[n]
|
734 |
+
except KeyError:
|
735 |
+
pass
|
736 |
+
nx._clear_cache(self)
|
737 |
+
|
738 |
+
@cached_property
|
739 |
+
def nodes(self):
|
740 |
+
"""A NodeView of the Graph as G.nodes or G.nodes().
|
741 |
+
|
742 |
+
Can be used as `G.nodes` for data lookup and for set-like operations.
|
743 |
+
Can also be used as `G.nodes(data='color', default=None)` to return a
|
744 |
+
NodeDataView which reports specific node data but no set operations.
|
745 |
+
It presents a dict-like interface as well with `G.nodes.items()`
|
746 |
+
iterating over `(node, nodedata)` 2-tuples and `G.nodes[3]['foo']`
|
747 |
+
providing the value of the `foo` attribute for node `3`. In addition,
|
748 |
+
a view `G.nodes.data('foo')` provides a dict-like interface to the
|
749 |
+
`foo` attribute of each node. `G.nodes.data('foo', default=1)`
|
750 |
+
provides a default for nodes that do not have attribute `foo`.
|
751 |
+
|
752 |
+
Parameters
|
753 |
+
----------
|
754 |
+
data : string or bool, optional (default=False)
|
755 |
+
The node attribute returned in 2-tuple (n, ddict[data]).
|
756 |
+
If True, return entire node attribute dict as (n, ddict).
|
757 |
+
If False, return just the nodes n.
|
758 |
+
|
759 |
+
default : value, optional (default=None)
|
760 |
+
Value used for nodes that don't have the requested attribute.
|
761 |
+
Only relevant if data is not True or False.
|
762 |
+
|
763 |
+
Returns
|
764 |
+
-------
|
765 |
+
NodeView
|
766 |
+
Allows set-like operations over the nodes as well as node
|
767 |
+
attribute dict lookup and calling to get a NodeDataView.
|
768 |
+
A NodeDataView iterates over `(n, data)` and has no set operations.
|
769 |
+
A NodeView iterates over `n` and includes set operations.
|
770 |
+
|
771 |
+
When called, if data is False, an iterator over nodes.
|
772 |
+
Otherwise an iterator of 2-tuples (node, attribute value)
|
773 |
+
where the attribute is specified in `data`.
|
774 |
+
If data is True then the attribute becomes the
|
775 |
+
entire data dictionary.
|
776 |
+
|
777 |
+
Notes
|
778 |
+
-----
|
779 |
+
If your node data is not needed, it is simpler and equivalent
|
780 |
+
to use the expression ``for n in G``, or ``list(G)``.
|
781 |
+
|
782 |
+
Examples
|
783 |
+
--------
|
784 |
+
There are two simple ways of getting a list of all nodes in the graph:
|
785 |
+
|
786 |
+
>>> G = nx.path_graph(3)
|
787 |
+
>>> list(G.nodes)
|
788 |
+
[0, 1, 2]
|
789 |
+
>>> list(G)
|
790 |
+
[0, 1, 2]
|
791 |
+
|
792 |
+
To get the node data along with the nodes:
|
793 |
+
|
794 |
+
>>> G.add_node(1, time="5pm")
|
795 |
+
>>> G.nodes[0]["foo"] = "bar"
|
796 |
+
>>> list(G.nodes(data=True))
|
797 |
+
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
|
798 |
+
>>> list(G.nodes.data())
|
799 |
+
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
|
800 |
+
|
801 |
+
>>> list(G.nodes(data="foo"))
|
802 |
+
[(0, 'bar'), (1, None), (2, None)]
|
803 |
+
>>> list(G.nodes.data("foo"))
|
804 |
+
[(0, 'bar'), (1, None), (2, None)]
|
805 |
+
|
806 |
+
>>> list(G.nodes(data="time"))
|
807 |
+
[(0, None), (1, '5pm'), (2, None)]
|
808 |
+
>>> list(G.nodes.data("time"))
|
809 |
+
[(0, None), (1, '5pm'), (2, None)]
|
810 |
+
|
811 |
+
>>> list(G.nodes(data="time", default="Not Available"))
|
812 |
+
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
|
813 |
+
>>> list(G.nodes.data("time", default="Not Available"))
|
814 |
+
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
|
815 |
+
|
816 |
+
If some of your nodes have an attribute and the rest are assumed
|
817 |
+
to have a default attribute value you can create a dictionary
|
818 |
+
from node/attribute pairs using the `default` keyword argument
|
819 |
+
to guarantee the value is never None::
|
820 |
+
|
821 |
+
>>> G = nx.Graph()
|
822 |
+
>>> G.add_node(0)
|
823 |
+
>>> G.add_node(1, weight=2)
|
824 |
+
>>> G.add_node(2, weight=3)
|
825 |
+
>>> dict(G.nodes(data="weight", default=1))
|
826 |
+
{0: 1, 1: 2, 2: 3}
|
827 |
+
|
828 |
+
"""
|
829 |
+
return NodeView(self)
|
830 |
+
|
831 |
+
def number_of_nodes(self):
|
832 |
+
"""Returns the number of nodes in the graph.
|
833 |
+
|
834 |
+
Returns
|
835 |
+
-------
|
836 |
+
nnodes : int
|
837 |
+
The number of nodes in the graph.
|
838 |
+
|
839 |
+
See Also
|
840 |
+
--------
|
841 |
+
order: identical method
|
842 |
+
__len__: identical method
|
843 |
+
|
844 |
+
Examples
|
845 |
+
--------
|
846 |
+
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
847 |
+
>>> G.number_of_nodes()
|
848 |
+
3
|
849 |
+
"""
|
850 |
+
return len(self._node)
|
851 |
+
|
852 |
+
def order(self):
|
853 |
+
"""Returns the number of nodes in the graph.
|
854 |
+
|
855 |
+
Returns
|
856 |
+
-------
|
857 |
+
nnodes : int
|
858 |
+
The number of nodes in the graph.
|
859 |
+
|
860 |
+
See Also
|
861 |
+
--------
|
862 |
+
number_of_nodes: identical method
|
863 |
+
__len__: identical method
|
864 |
+
|
865 |
+
Examples
|
866 |
+
--------
|
867 |
+
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
868 |
+
>>> G.order()
|
869 |
+
3
|
870 |
+
"""
|
871 |
+
return len(self._node)
|
872 |
+
|
873 |
+
def has_node(self, n):
|
874 |
+
"""Returns True if the graph contains the node n.
|
875 |
+
|
876 |
+
Identical to `n in G`
|
877 |
+
|
878 |
+
Parameters
|
879 |
+
----------
|
880 |
+
n : node
|
881 |
+
|
882 |
+
Examples
|
883 |
+
--------
|
884 |
+
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
885 |
+
>>> G.has_node(0)
|
886 |
+
True
|
887 |
+
|
888 |
+
It is more readable and simpler to use
|
889 |
+
|
890 |
+
>>> 0 in G
|
891 |
+
True
|
892 |
+
|
893 |
+
"""
|
894 |
+
try:
|
895 |
+
return n in self._node
|
896 |
+
except TypeError:
|
897 |
+
return False
|
898 |
+
|
899 |
+
def add_edge(self, u_of_edge, v_of_edge, **attr):
|
900 |
+
"""Add an edge between u and v.
|
901 |
+
|
902 |
+
The nodes u and v will be automatically added if they are
|
903 |
+
not already in the graph.
|
904 |
+
|
905 |
+
Edge attributes can be specified with keywords or by directly
|
906 |
+
accessing the edge's attribute dictionary. See examples below.
|
907 |
+
|
908 |
+
Parameters
|
909 |
+
----------
|
910 |
+
u_of_edge, v_of_edge : nodes
|
911 |
+
Nodes can be, for example, strings or numbers.
|
912 |
+
Nodes must be hashable (and not None) Python objects.
|
913 |
+
attr : keyword arguments, optional
|
914 |
+
Edge data (or labels or objects) can be assigned using
|
915 |
+
keyword arguments.
|
916 |
+
|
917 |
+
See Also
|
918 |
+
--------
|
919 |
+
add_edges_from : add a collection of edges
|
920 |
+
|
921 |
+
Notes
|
922 |
+
-----
|
923 |
+
Adding an edge that already exists updates the edge data.
|
924 |
+
|
925 |
+
Many NetworkX algorithms designed for weighted graphs use
|
926 |
+
an edge attribute (by default `weight`) to hold a numerical value.
|
927 |
+
|
928 |
+
Examples
|
929 |
+
--------
|
930 |
+
The following all add the edge e=(1, 2) to graph G:
|
931 |
+
|
932 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
933 |
+
>>> e = (1, 2)
|
934 |
+
>>> G.add_edge(1, 2) # explicit two-node form
|
935 |
+
>>> G.add_edge(*e) # single edge as tuple of two nodes
|
936 |
+
>>> G.add_edges_from([(1, 2)]) # add edges from iterable container
|
937 |
+
|
938 |
+
Associate data to edges using keywords:
|
939 |
+
|
940 |
+
>>> G.add_edge(1, 2, weight=3)
|
941 |
+
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
|
942 |
+
|
943 |
+
For non-string attribute keys, use subscript notation.
|
944 |
+
|
945 |
+
>>> G.add_edge(1, 2)
|
946 |
+
>>> G[1][2].update({0: 5})
|
947 |
+
>>> G.edges[1, 2].update({0: 5})
|
948 |
+
"""
|
949 |
+
u, v = u_of_edge, v_of_edge
|
950 |
+
# add nodes
|
951 |
+
if u not in self._node:
|
952 |
+
if u is None:
|
953 |
+
raise ValueError("None cannot be a node")
|
954 |
+
self._adj[u] = self.adjlist_inner_dict_factory()
|
955 |
+
self._node[u] = self.node_attr_dict_factory()
|
956 |
+
if v not in self._node:
|
957 |
+
if v is None:
|
958 |
+
raise ValueError("None cannot be a node")
|
959 |
+
self._adj[v] = self.adjlist_inner_dict_factory()
|
960 |
+
self._node[v] = self.node_attr_dict_factory()
|
961 |
+
# add the edge
|
962 |
+
datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
|
963 |
+
datadict.update(attr)
|
964 |
+
self._adj[u][v] = datadict
|
965 |
+
self._adj[v][u] = datadict
|
966 |
+
nx._clear_cache(self)
|
967 |
+
|
968 |
+
def add_edges_from(self, ebunch_to_add, **attr):
|
969 |
+
"""Add all the edges in ebunch_to_add.
|
970 |
+
|
971 |
+
Parameters
|
972 |
+
----------
|
973 |
+
ebunch_to_add : container of edges
|
974 |
+
Each edge given in the container will be added to the
|
975 |
+
graph. The edges must be given as 2-tuples (u, v) or
|
976 |
+
3-tuples (u, v, d) where d is a dictionary containing edge data.
|
977 |
+
attr : keyword arguments, optional
|
978 |
+
Edge data (or labels or objects) can be assigned using
|
979 |
+
keyword arguments.
|
980 |
+
|
981 |
+
See Also
|
982 |
+
--------
|
983 |
+
add_edge : add a single edge
|
984 |
+
add_weighted_edges_from : convenient way to add weighted edges
|
985 |
+
|
986 |
+
Notes
|
987 |
+
-----
|
988 |
+
Adding the same edge twice has no effect but any edge data
|
989 |
+
will be updated when each duplicate edge is added.
|
990 |
+
|
991 |
+
Edge attributes specified in an ebunch take precedence over
|
992 |
+
attributes specified via keyword arguments.
|
993 |
+
|
994 |
+
When adding edges from an iterator over the graph you are changing,
|
995 |
+
a `RuntimeError` can be raised with message:
|
996 |
+
`RuntimeError: dictionary changed size during iteration`. This
|
997 |
+
happens when the graph's underlying dictionary is modified during
|
998 |
+
iteration. To avoid this error, evaluate the iterator into a separate
|
999 |
+
object, e.g. by using `list(iterator_of_edges)`, and pass this
|
1000 |
+
object to `G.add_edges_from`.
|
1001 |
+
|
1002 |
+
Examples
|
1003 |
+
--------
|
1004 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1005 |
+
>>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples
|
1006 |
+
>>> e = zip(range(0, 3), range(1, 4))
|
1007 |
+
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
|
1008 |
+
|
1009 |
+
Associate data to edges
|
1010 |
+
|
1011 |
+
>>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
|
1012 |
+
>>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
|
1013 |
+
|
1014 |
+
Evaluate an iterator over a graph if using it to modify the same graph
|
1015 |
+
|
1016 |
+
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4)])
|
1017 |
+
>>> # Grow graph by one new node, adding edges to all existing nodes.
|
1018 |
+
>>> # wrong way - will raise RuntimeError
|
1019 |
+
>>> # G.add_edges_from(((5, n) for n in G.nodes))
|
1020 |
+
>>> # correct way - note that there will be no self-edge for node 5
|
1021 |
+
>>> G.add_edges_from(list((5, n) for n in G.nodes))
|
1022 |
+
"""
|
1023 |
+
for e in ebunch_to_add:
|
1024 |
+
ne = len(e)
|
1025 |
+
if ne == 3:
|
1026 |
+
u, v, dd = e
|
1027 |
+
elif ne == 2:
|
1028 |
+
u, v = e
|
1029 |
+
dd = {} # doesn't need edge_attr_dict_factory
|
1030 |
+
else:
|
1031 |
+
raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.")
|
1032 |
+
if u not in self._node:
|
1033 |
+
if u is None:
|
1034 |
+
raise ValueError("None cannot be a node")
|
1035 |
+
self._adj[u] = self.adjlist_inner_dict_factory()
|
1036 |
+
self._node[u] = self.node_attr_dict_factory()
|
1037 |
+
if v not in self._node:
|
1038 |
+
if v is None:
|
1039 |
+
raise ValueError("None cannot be a node")
|
1040 |
+
self._adj[v] = self.adjlist_inner_dict_factory()
|
1041 |
+
self._node[v] = self.node_attr_dict_factory()
|
1042 |
+
datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
|
1043 |
+
datadict.update(attr)
|
1044 |
+
datadict.update(dd)
|
1045 |
+
self._adj[u][v] = datadict
|
1046 |
+
self._adj[v][u] = datadict
|
1047 |
+
nx._clear_cache(self)
|
1048 |
+
|
1049 |
+
def add_weighted_edges_from(self, ebunch_to_add, weight="weight", **attr):
|
1050 |
+
"""Add weighted edges in `ebunch_to_add` with specified weight attr
|
1051 |
+
|
1052 |
+
Parameters
|
1053 |
+
----------
|
1054 |
+
ebunch_to_add : container of edges
|
1055 |
+
Each edge given in the list or container will be added
|
1056 |
+
to the graph. The edges must be given as 3-tuples (u, v, w)
|
1057 |
+
where w is a number.
|
1058 |
+
weight : string, optional (default= 'weight')
|
1059 |
+
The attribute name for the edge weights to be added.
|
1060 |
+
attr : keyword arguments, optional (default= no attributes)
|
1061 |
+
Edge attributes to add/update for all edges.
|
1062 |
+
|
1063 |
+
See Also
|
1064 |
+
--------
|
1065 |
+
add_edge : add a single edge
|
1066 |
+
add_edges_from : add multiple edges
|
1067 |
+
|
1068 |
+
Notes
|
1069 |
+
-----
|
1070 |
+
Adding the same edge twice for Graph/DiGraph simply updates
|
1071 |
+
the edge data. For MultiGraph/MultiDiGraph, duplicate edges
|
1072 |
+
are stored.
|
1073 |
+
|
1074 |
+
When adding edges from an iterator over the graph you are changing,
|
1075 |
+
a `RuntimeError` can be raised with message:
|
1076 |
+
`RuntimeError: dictionary changed size during iteration`. This
|
1077 |
+
happens when the graph's underlying dictionary is modified during
|
1078 |
+
iteration. To avoid this error, evaluate the iterator into a separate
|
1079 |
+
object, e.g. by using `list(iterator_of_edges)`, and pass this
|
1080 |
+
object to `G.add_weighted_edges_from`.
|
1081 |
+
|
1082 |
+
Examples
|
1083 |
+
--------
|
1084 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1085 |
+
>>> G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)])
|
1086 |
+
|
1087 |
+
Evaluate an iterator over edges before passing it
|
1088 |
+
|
1089 |
+
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4)])
|
1090 |
+
>>> weight = 0.1
|
1091 |
+
>>> # Grow graph by one new node, adding edges to all existing nodes.
|
1092 |
+
>>> # wrong way - will raise RuntimeError
|
1093 |
+
>>> # G.add_weighted_edges_from(((5, n, weight) for n in G.nodes))
|
1094 |
+
>>> # correct way - note that there will be no self-edge for node 5
|
1095 |
+
>>> G.add_weighted_edges_from(list((5, n, weight) for n in G.nodes))
|
1096 |
+
"""
|
1097 |
+
self.add_edges_from(((u, v, {weight: d}) for u, v, d in ebunch_to_add), **attr)
|
1098 |
+
nx._clear_cache(self)
|
1099 |
+
|
1100 |
+
def remove_edge(self, u, v):
|
1101 |
+
"""Remove the edge between u and v.
|
1102 |
+
|
1103 |
+
Parameters
|
1104 |
+
----------
|
1105 |
+
u, v : nodes
|
1106 |
+
Remove the edge between nodes u and v.
|
1107 |
+
|
1108 |
+
Raises
|
1109 |
+
------
|
1110 |
+
NetworkXError
|
1111 |
+
If there is not an edge between u and v.
|
1112 |
+
|
1113 |
+
See Also
|
1114 |
+
--------
|
1115 |
+
remove_edges_from : remove a collection of edges
|
1116 |
+
|
1117 |
+
Examples
|
1118 |
+
--------
|
1119 |
+
>>> G = nx.path_graph(4) # or DiGraph, etc
|
1120 |
+
>>> G.remove_edge(0, 1)
|
1121 |
+
>>> e = (1, 2)
|
1122 |
+
>>> G.remove_edge(*e) # unpacks e from an edge tuple
|
1123 |
+
>>> e = (2, 3, {"weight": 7}) # an edge with attribute data
|
1124 |
+
>>> G.remove_edge(*e[:2]) # select first part of edge tuple
|
1125 |
+
"""
|
1126 |
+
try:
|
1127 |
+
del self._adj[u][v]
|
1128 |
+
if u != v: # self-loop needs only one entry removed
|
1129 |
+
del self._adj[v][u]
|
1130 |
+
except KeyError as err:
|
1131 |
+
raise NetworkXError(f"The edge {u}-{v} is not in the graph") from err
|
1132 |
+
nx._clear_cache(self)
|
1133 |
+
|
1134 |
+
def remove_edges_from(self, ebunch):
|
1135 |
+
"""Remove all edges specified in ebunch.
|
1136 |
+
|
1137 |
+
Parameters
|
1138 |
+
----------
|
1139 |
+
ebunch: list or container of edge tuples
|
1140 |
+
Each edge given in the list or container will be removed
|
1141 |
+
from the graph. The edges can be:
|
1142 |
+
|
1143 |
+
- 2-tuples (u, v) edge between u and v.
|
1144 |
+
- 3-tuples (u, v, k) where k is ignored.
|
1145 |
+
|
1146 |
+
See Also
|
1147 |
+
--------
|
1148 |
+
remove_edge : remove a single edge
|
1149 |
+
|
1150 |
+
Notes
|
1151 |
+
-----
|
1152 |
+
Will fail silently if an edge in ebunch is not in the graph.
|
1153 |
+
|
1154 |
+
Examples
|
1155 |
+
--------
|
1156 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1157 |
+
>>> ebunch = [(1, 2), (2, 3)]
|
1158 |
+
>>> G.remove_edges_from(ebunch)
|
1159 |
+
"""
|
1160 |
+
adj = self._adj
|
1161 |
+
for e in ebunch:
|
1162 |
+
u, v = e[:2] # ignore edge data if present
|
1163 |
+
if u in adj and v in adj[u]:
|
1164 |
+
del adj[u][v]
|
1165 |
+
if u != v: # self loop needs only one entry removed
|
1166 |
+
del adj[v][u]
|
1167 |
+
nx._clear_cache(self)
|
1168 |
+
|
1169 |
+
def update(self, edges=None, nodes=None):
|
1170 |
+
"""Update the graph using nodes/edges/graphs as input.
|
1171 |
+
|
1172 |
+
Like dict.update, this method takes a graph as input, adding the
|
1173 |
+
graph's nodes and edges to this graph. It can also take two inputs:
|
1174 |
+
edges and nodes. Finally it can take either edges or nodes.
|
1175 |
+
To specify only nodes the keyword `nodes` must be used.
|
1176 |
+
|
1177 |
+
The collections of edges and nodes are treated similarly to
|
1178 |
+
the add_edges_from/add_nodes_from methods. When iterated, they
|
1179 |
+
should yield 2-tuples (u, v) or 3-tuples (u, v, datadict).
|
1180 |
+
|
1181 |
+
Parameters
|
1182 |
+
----------
|
1183 |
+
edges : Graph object, collection of edges, or None
|
1184 |
+
The first parameter can be a graph or some edges. If it has
|
1185 |
+
attributes `nodes` and `edges`, then it is taken to be a
|
1186 |
+
Graph-like object and those attributes are used as collections
|
1187 |
+
of nodes and edges to be added to the graph.
|
1188 |
+
If the first parameter does not have those attributes, it is
|
1189 |
+
treated as a collection of edges and added to the graph.
|
1190 |
+
If the first argument is None, no edges are added.
|
1191 |
+
nodes : collection of nodes, or None
|
1192 |
+
The second parameter is treated as a collection of nodes
|
1193 |
+
to be added to the graph unless it is None.
|
1194 |
+
If `edges is None` and `nodes is None` an exception is raised.
|
1195 |
+
If the first parameter is a Graph, then `nodes` is ignored.
|
1196 |
+
|
1197 |
+
Examples
|
1198 |
+
--------
|
1199 |
+
>>> G = nx.path_graph(5)
|
1200 |
+
>>> G.update(nx.complete_graph(range(4, 10)))
|
1201 |
+
>>> from itertools import combinations
|
1202 |
+
>>> edges = (
|
1203 |
+
... (u, v, {"power": u * v})
|
1204 |
+
... for u, v in combinations(range(10, 20), 2)
|
1205 |
+
... if u * v < 225
|
1206 |
+
... )
|
1207 |
+
>>> nodes = [1000] # for singleton, use a container
|
1208 |
+
>>> G.update(edges, nodes)
|
1209 |
+
|
1210 |
+
Notes
|
1211 |
+
-----
|
1212 |
+
It you want to update the graph using an adjacency structure
|
1213 |
+
it is straightforward to obtain the edges/nodes from adjacency.
|
1214 |
+
The following examples provide common cases, your adjacency may
|
1215 |
+
be slightly different and require tweaks of these examples::
|
1216 |
+
|
1217 |
+
>>> # dict-of-set/list/tuple
|
1218 |
+
>>> adj = {1: {2, 3}, 2: {1, 3}, 3: {1, 2}}
|
1219 |
+
>>> e = [(u, v) for u, nbrs in adj.items() for v in nbrs]
|
1220 |
+
>>> G.update(edges=e, nodes=adj)
|
1221 |
+
|
1222 |
+
>>> DG = nx.DiGraph()
|
1223 |
+
>>> # dict-of-dict-of-attribute
|
1224 |
+
>>> adj = {1: {2: 1.3, 3: 0.7}, 2: {1: 1.4}, 3: {1: 0.7}}
|
1225 |
+
>>> e = [(u, v, {"weight": d}) for u, nbrs in adj.items() for v, d in nbrs.items()]
|
1226 |
+
>>> DG.update(edges=e, nodes=adj)
|
1227 |
+
|
1228 |
+
>>> # dict-of-dict-of-dict
|
1229 |
+
>>> adj = {1: {2: {"weight": 1.3}, 3: {"color": 0.7, "weight": 1.2}}}
|
1230 |
+
>>> e = [(u, v, {"weight": d}) for u, nbrs in adj.items() for v, d in nbrs.items()]
|
1231 |
+
>>> DG.update(edges=e, nodes=adj)
|
1232 |
+
|
1233 |
+
>>> # predecessor adjacency (dict-of-set)
|
1234 |
+
>>> pred = {1: {2, 3}, 2: {3}, 3: {3}}
|
1235 |
+
>>> e = [(v, u) for u, nbrs in pred.items() for v in nbrs]
|
1236 |
+
|
1237 |
+
>>> # MultiGraph dict-of-dict-of-dict-of-attribute
|
1238 |
+
>>> MDG = nx.MultiDiGraph()
|
1239 |
+
>>> adj = {
|
1240 |
+
... 1: {2: {0: {"weight": 1.3}, 1: {"weight": 1.2}}},
|
1241 |
+
... 3: {2: {0: {"weight": 0.7}}},
|
1242 |
+
... }
|
1243 |
+
>>> e = [
|
1244 |
+
... (u, v, ekey, d)
|
1245 |
+
... for u, nbrs in adj.items()
|
1246 |
+
... for v, keydict in nbrs.items()
|
1247 |
+
... for ekey, d in keydict.items()
|
1248 |
+
... ]
|
1249 |
+
>>> MDG.update(edges=e)
|
1250 |
+
|
1251 |
+
See Also
|
1252 |
+
--------
|
1253 |
+
add_edges_from: add multiple edges to a graph
|
1254 |
+
add_nodes_from: add multiple nodes to a graph
|
1255 |
+
"""
|
1256 |
+
if edges is not None:
|
1257 |
+
if nodes is not None:
|
1258 |
+
self.add_nodes_from(nodes)
|
1259 |
+
self.add_edges_from(edges)
|
1260 |
+
else:
|
1261 |
+
# check if edges is a Graph object
|
1262 |
+
try:
|
1263 |
+
graph_nodes = edges.nodes
|
1264 |
+
graph_edges = edges.edges
|
1265 |
+
except AttributeError:
|
1266 |
+
# edge not Graph-like
|
1267 |
+
self.add_edges_from(edges)
|
1268 |
+
else: # edges is Graph-like
|
1269 |
+
self.add_nodes_from(graph_nodes.data())
|
1270 |
+
self.add_edges_from(graph_edges.data())
|
1271 |
+
self.graph.update(edges.graph)
|
1272 |
+
elif nodes is not None:
|
1273 |
+
self.add_nodes_from(nodes)
|
1274 |
+
else:
|
1275 |
+
raise NetworkXError("update needs nodes or edges input")
|
1276 |
+
|
1277 |
+
def has_edge(self, u, v):
|
1278 |
+
"""Returns True if the edge (u, v) is in the graph.
|
1279 |
+
|
1280 |
+
This is the same as `v in G[u]` without KeyError exceptions.
|
1281 |
+
|
1282 |
+
Parameters
|
1283 |
+
----------
|
1284 |
+
u, v : nodes
|
1285 |
+
Nodes can be, for example, strings or numbers.
|
1286 |
+
Nodes must be hashable (and not None) Python objects.
|
1287 |
+
|
1288 |
+
Returns
|
1289 |
+
-------
|
1290 |
+
edge_ind : bool
|
1291 |
+
True if edge is in the graph, False otherwise.
|
1292 |
+
|
1293 |
+
Examples
|
1294 |
+
--------
|
1295 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1296 |
+
>>> G.has_edge(0, 1) # using two nodes
|
1297 |
+
True
|
1298 |
+
>>> e = (0, 1)
|
1299 |
+
>>> G.has_edge(*e) # e is a 2-tuple (u, v)
|
1300 |
+
True
|
1301 |
+
>>> e = (0, 1, {"weight": 7})
|
1302 |
+
>>> G.has_edge(*e[:2]) # e is a 3-tuple (u, v, data_dictionary)
|
1303 |
+
True
|
1304 |
+
|
1305 |
+
The following syntax are equivalent:
|
1306 |
+
|
1307 |
+
>>> G.has_edge(0, 1)
|
1308 |
+
True
|
1309 |
+
>>> 1 in G[0] # though this gives KeyError if 0 not in G
|
1310 |
+
True
|
1311 |
+
|
1312 |
+
"""
|
1313 |
+
try:
|
1314 |
+
return v in self._adj[u]
|
1315 |
+
except KeyError:
|
1316 |
+
return False
|
1317 |
+
|
1318 |
+
def neighbors(self, n):
|
1319 |
+
"""Returns an iterator over all neighbors of node n.
|
1320 |
+
|
1321 |
+
This is identical to `iter(G[n])`
|
1322 |
+
|
1323 |
+
Parameters
|
1324 |
+
----------
|
1325 |
+
n : node
|
1326 |
+
A node in the graph
|
1327 |
+
|
1328 |
+
Returns
|
1329 |
+
-------
|
1330 |
+
neighbors : iterator
|
1331 |
+
An iterator over all neighbors of node n
|
1332 |
+
|
1333 |
+
Raises
|
1334 |
+
------
|
1335 |
+
NetworkXError
|
1336 |
+
If the node n is not in the graph.
|
1337 |
+
|
1338 |
+
Examples
|
1339 |
+
--------
|
1340 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1341 |
+
>>> [n for n in G.neighbors(0)]
|
1342 |
+
[1]
|
1343 |
+
|
1344 |
+
Notes
|
1345 |
+
-----
|
1346 |
+
Alternate ways to access the neighbors are ``G.adj[n]`` or ``G[n]``:
|
1347 |
+
|
1348 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1349 |
+
>>> G.add_edge("a", "b", weight=7)
|
1350 |
+
>>> G["a"]
|
1351 |
+
AtlasView({'b': {'weight': 7}})
|
1352 |
+
>>> G = nx.path_graph(4)
|
1353 |
+
>>> [n for n in G[0]]
|
1354 |
+
[1]
|
1355 |
+
"""
|
1356 |
+
try:
|
1357 |
+
return iter(self._adj[n])
|
1358 |
+
except KeyError as err:
|
1359 |
+
raise NetworkXError(f"The node {n} is not in the graph.") from err
|
1360 |
+
|
1361 |
+
@cached_property
|
1362 |
+
def edges(self):
|
1363 |
+
"""An EdgeView of the Graph as G.edges or G.edges().
|
1364 |
+
|
1365 |
+
edges(self, nbunch=None, data=False, default=None)
|
1366 |
+
|
1367 |
+
The EdgeView provides set-like operations on the edge-tuples
|
1368 |
+
as well as edge attribute lookup. When called, it also provides
|
1369 |
+
an EdgeDataView object which allows control of access to edge
|
1370 |
+
attributes (but does not provide set-like operations).
|
1371 |
+
Hence, `G.edges[u, v]['color']` provides the value of the color
|
1372 |
+
attribute for edge `(u, v)` while
|
1373 |
+
`for (u, v, c) in G.edges.data('color', default='red'):`
|
1374 |
+
iterates through all the edges yielding the color attribute
|
1375 |
+
with default `'red'` if no color attribute exists.
|
1376 |
+
|
1377 |
+
Parameters
|
1378 |
+
----------
|
1379 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
1380 |
+
The view will only report edges from these nodes.
|
1381 |
+
data : string or bool, optional (default=False)
|
1382 |
+
The edge attribute returned in 3-tuple (u, v, ddict[data]).
|
1383 |
+
If True, return edge attribute dict in 3-tuple (u, v, ddict).
|
1384 |
+
If False, return 2-tuple (u, v).
|
1385 |
+
default : value, optional (default=None)
|
1386 |
+
Value used for edges that don't have the requested attribute.
|
1387 |
+
Only relevant if data is not True or False.
|
1388 |
+
|
1389 |
+
Returns
|
1390 |
+
-------
|
1391 |
+
edges : EdgeView
|
1392 |
+
A view of edge attributes, usually it iterates over (u, v)
|
1393 |
+
or (u, v, d) tuples of edges, but can also be used for
|
1394 |
+
attribute lookup as `edges[u, v]['foo']`.
|
1395 |
+
|
1396 |
+
Notes
|
1397 |
+
-----
|
1398 |
+
Nodes in nbunch that are not in the graph will be (quietly) ignored.
|
1399 |
+
For directed graphs this returns the out-edges.
|
1400 |
+
|
1401 |
+
Examples
|
1402 |
+
--------
|
1403 |
+
>>> G = nx.path_graph(3) # or MultiGraph, etc
|
1404 |
+
>>> G.add_edge(2, 3, weight=5)
|
1405 |
+
>>> [e for e in G.edges]
|
1406 |
+
[(0, 1), (1, 2), (2, 3)]
|
1407 |
+
>>> G.edges.data() # default data is {} (empty dict)
|
1408 |
+
EdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})])
|
1409 |
+
>>> G.edges.data("weight", default=1)
|
1410 |
+
EdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)])
|
1411 |
+
>>> G.edges([0, 3]) # only edges from these nodes
|
1412 |
+
EdgeDataView([(0, 1), (3, 2)])
|
1413 |
+
>>> G.edges(0) # only edges from node 0
|
1414 |
+
EdgeDataView([(0, 1)])
|
1415 |
+
"""
|
1416 |
+
return EdgeView(self)
|
1417 |
+
|
1418 |
+
def get_edge_data(self, u, v, default=None):
|
1419 |
+
"""Returns the attribute dictionary associated with edge (u, v).
|
1420 |
+
|
1421 |
+
This is identical to `G[u][v]` except the default is returned
|
1422 |
+
instead of an exception if the edge doesn't exist.
|
1423 |
+
|
1424 |
+
Parameters
|
1425 |
+
----------
|
1426 |
+
u, v : nodes
|
1427 |
+
default: any Python object (default=None)
|
1428 |
+
Value to return if the edge (u, v) is not found.
|
1429 |
+
|
1430 |
+
Returns
|
1431 |
+
-------
|
1432 |
+
edge_dict : dictionary
|
1433 |
+
The edge attribute dictionary.
|
1434 |
+
|
1435 |
+
Examples
|
1436 |
+
--------
|
1437 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1438 |
+
>>> G[0][1]
|
1439 |
+
{}
|
1440 |
+
|
1441 |
+
Warning: Assigning to `G[u][v]` is not permitted.
|
1442 |
+
But it is safe to assign attributes `G[u][v]['foo']`
|
1443 |
+
|
1444 |
+
>>> G[0][1]["weight"] = 7
|
1445 |
+
>>> G[0][1]["weight"]
|
1446 |
+
7
|
1447 |
+
>>> G[1][0]["weight"]
|
1448 |
+
7
|
1449 |
+
|
1450 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1451 |
+
>>> G.get_edge_data(0, 1) # default edge data is {}
|
1452 |
+
{}
|
1453 |
+
>>> e = (0, 1)
|
1454 |
+
>>> G.get_edge_data(*e) # tuple form
|
1455 |
+
{}
|
1456 |
+
>>> G.get_edge_data("a", "b", default=0) # edge not in graph, return 0
|
1457 |
+
0
|
1458 |
+
"""
|
1459 |
+
try:
|
1460 |
+
return self._adj[u][v]
|
1461 |
+
except KeyError:
|
1462 |
+
return default
|
1463 |
+
|
1464 |
+
def adjacency(self):
|
1465 |
+
"""Returns an iterator over (node, adjacency dict) tuples for all nodes.
|
1466 |
+
|
1467 |
+
For directed graphs, only outgoing neighbors/adjacencies are included.
|
1468 |
+
|
1469 |
+
Returns
|
1470 |
+
-------
|
1471 |
+
adj_iter : iterator
|
1472 |
+
An iterator over (node, adjacency dictionary) for all nodes in
|
1473 |
+
the graph.
|
1474 |
+
|
1475 |
+
Examples
|
1476 |
+
--------
|
1477 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1478 |
+
>>> [(n, nbrdict) for n, nbrdict in G.adjacency()]
|
1479 |
+
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
|
1480 |
+
|
1481 |
+
"""
|
1482 |
+
return iter(self._adj.items())
|
1483 |
+
|
1484 |
+
@cached_property
|
1485 |
+
def degree(self):
|
1486 |
+
"""A DegreeView for the Graph as G.degree or G.degree().
|
1487 |
+
|
1488 |
+
The node degree is the number of edges adjacent to the node.
|
1489 |
+
The weighted node degree is the sum of the edge weights for
|
1490 |
+
edges incident to that node.
|
1491 |
+
|
1492 |
+
This object provides an iterator for (node, degree) as well as
|
1493 |
+
lookup for the degree for a single node.
|
1494 |
+
|
1495 |
+
Parameters
|
1496 |
+
----------
|
1497 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
1498 |
+
The view will only report edges incident to these nodes.
|
1499 |
+
|
1500 |
+
weight : string or None, optional (default=None)
|
1501 |
+
The name of an edge attribute that holds the numerical value used
|
1502 |
+
as a weight. If None, then each edge has weight 1.
|
1503 |
+
The degree is the sum of the edge weights adjacent to the node.
|
1504 |
+
|
1505 |
+
Returns
|
1506 |
+
-------
|
1507 |
+
DegreeView or int
|
1508 |
+
If multiple nodes are requested (the default), returns a `DegreeView`
|
1509 |
+
mapping nodes to their degree.
|
1510 |
+
If a single node is requested, returns the degree of the node as an integer.
|
1511 |
+
|
1512 |
+
Examples
|
1513 |
+
--------
|
1514 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1515 |
+
>>> G.degree[0] # node 0 has degree 1
|
1516 |
+
1
|
1517 |
+
>>> list(G.degree([0, 1, 2]))
|
1518 |
+
[(0, 1), (1, 2), (2, 2)]
|
1519 |
+
"""
|
1520 |
+
return DegreeView(self)
|
1521 |
+
|
1522 |
+
def clear(self):
|
1523 |
+
"""Remove all nodes and edges from the graph.
|
1524 |
+
|
1525 |
+
This also removes the name, and all graph, node, and edge attributes.
|
1526 |
+
|
1527 |
+
Examples
|
1528 |
+
--------
|
1529 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1530 |
+
>>> G.clear()
|
1531 |
+
>>> list(G.nodes)
|
1532 |
+
[]
|
1533 |
+
>>> list(G.edges)
|
1534 |
+
[]
|
1535 |
+
|
1536 |
+
"""
|
1537 |
+
self._adj.clear()
|
1538 |
+
self._node.clear()
|
1539 |
+
self.graph.clear()
|
1540 |
+
nx._clear_cache(self)
|
1541 |
+
|
1542 |
+
def clear_edges(self):
|
1543 |
+
"""Remove all edges from the graph without altering nodes.
|
1544 |
+
|
1545 |
+
Examples
|
1546 |
+
--------
|
1547 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1548 |
+
>>> G.clear_edges()
|
1549 |
+
>>> list(G.nodes)
|
1550 |
+
[0, 1, 2, 3]
|
1551 |
+
>>> list(G.edges)
|
1552 |
+
[]
|
1553 |
+
"""
|
1554 |
+
for nbr_dict in self._adj.values():
|
1555 |
+
nbr_dict.clear()
|
1556 |
+
nx._clear_cache(self)
|
1557 |
+
|
1558 |
+
def is_multigraph(self):
|
1559 |
+
"""Returns True if graph is a multigraph, False otherwise."""
|
1560 |
+
return False
|
1561 |
+
|
1562 |
+
def is_directed(self):
|
1563 |
+
"""Returns True if graph is directed, False otherwise."""
|
1564 |
+
return False
|
1565 |
+
|
1566 |
+
def copy(self, as_view=False):
|
1567 |
+
"""Returns a copy of the graph.
|
1568 |
+
|
1569 |
+
The copy method by default returns an independent shallow copy
|
1570 |
+
of the graph and attributes. That is, if an attribute is a
|
1571 |
+
container, that container is shared by the original an the copy.
|
1572 |
+
Use Python's `copy.deepcopy` for new containers.
|
1573 |
+
|
1574 |
+
If `as_view` is True then a view is returned instead of a copy.
|
1575 |
+
|
1576 |
+
Notes
|
1577 |
+
-----
|
1578 |
+
All copies reproduce the graph structure, but data attributes
|
1579 |
+
may be handled in different ways. There are four types of copies
|
1580 |
+
of a graph that people might want.
|
1581 |
+
|
1582 |
+
Deepcopy -- A "deepcopy" copies the graph structure as well as
|
1583 |
+
all data attributes and any objects they might contain.
|
1584 |
+
The entire graph object is new so that changes in the copy
|
1585 |
+
do not affect the original object. (see Python's copy.deepcopy)
|
1586 |
+
|
1587 |
+
Data Reference (Shallow) -- For a shallow copy the graph structure
|
1588 |
+
is copied but the edge, node and graph attribute dicts are
|
1589 |
+
references to those in the original graph. This saves
|
1590 |
+
time and memory but could cause confusion if you change an attribute
|
1591 |
+
in one graph and it changes the attribute in the other.
|
1592 |
+
NetworkX does not provide this level of shallow copy.
|
1593 |
+
|
1594 |
+
Independent Shallow -- This copy creates new independent attribute
|
1595 |
+
dicts and then does a shallow copy of the attributes. That is, any
|
1596 |
+
attributes that are containers are shared between the new graph
|
1597 |
+
and the original. This is exactly what `dict.copy()` provides.
|
1598 |
+
You can obtain this style copy using:
|
1599 |
+
|
1600 |
+
>>> G = nx.path_graph(5)
|
1601 |
+
>>> H = G.copy()
|
1602 |
+
>>> H = G.copy(as_view=False)
|
1603 |
+
>>> H = nx.Graph(G)
|
1604 |
+
>>> H = G.__class__(G)
|
1605 |
+
|
1606 |
+
Fresh Data -- For fresh data, the graph structure is copied while
|
1607 |
+
new empty data attribute dicts are created. The resulting graph
|
1608 |
+
is independent of the original and it has no edge, node or graph
|
1609 |
+
attributes. Fresh copies are not enabled. Instead use:
|
1610 |
+
|
1611 |
+
>>> H = G.__class__()
|
1612 |
+
>>> H.add_nodes_from(G)
|
1613 |
+
>>> H.add_edges_from(G.edges)
|
1614 |
+
|
1615 |
+
View -- Inspired by dict-views, graph-views act like read-only
|
1616 |
+
versions of the original graph, providing a copy of the original
|
1617 |
+
structure without requiring any memory for copying the information.
|
1618 |
+
|
1619 |
+
See the Python copy module for more information on shallow
|
1620 |
+
and deep copies, https://docs.python.org/3/library/copy.html.
|
1621 |
+
|
1622 |
+
Parameters
|
1623 |
+
----------
|
1624 |
+
as_view : bool, optional (default=False)
|
1625 |
+
If True, the returned graph-view provides a read-only view
|
1626 |
+
of the original graph without actually copying any data.
|
1627 |
+
|
1628 |
+
Returns
|
1629 |
+
-------
|
1630 |
+
G : Graph
|
1631 |
+
A copy of the graph.
|
1632 |
+
|
1633 |
+
See Also
|
1634 |
+
--------
|
1635 |
+
to_directed: return a directed copy of the graph.
|
1636 |
+
|
1637 |
+
Examples
|
1638 |
+
--------
|
1639 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1640 |
+
>>> H = G.copy()
|
1641 |
+
|
1642 |
+
"""
|
1643 |
+
if as_view is True:
|
1644 |
+
return nx.graphviews.generic_graph_view(self)
|
1645 |
+
G = self.__class__()
|
1646 |
+
G.graph.update(self.graph)
|
1647 |
+
G.add_nodes_from((n, d.copy()) for n, d in self._node.items())
|
1648 |
+
G.add_edges_from(
|
1649 |
+
(u, v, datadict.copy())
|
1650 |
+
for u, nbrs in self._adj.items()
|
1651 |
+
for v, datadict in nbrs.items()
|
1652 |
+
)
|
1653 |
+
return G
|
1654 |
+
|
1655 |
+
def to_directed(self, as_view=False):
|
1656 |
+
"""Returns a directed representation of the graph.
|
1657 |
+
|
1658 |
+
Returns
|
1659 |
+
-------
|
1660 |
+
G : DiGraph
|
1661 |
+
A directed graph with the same name, same nodes, and with
|
1662 |
+
each edge (u, v, data) replaced by two directed edges
|
1663 |
+
(u, v, data) and (v, u, data).
|
1664 |
+
|
1665 |
+
Notes
|
1666 |
+
-----
|
1667 |
+
This returns a "deepcopy" of the edge, node, and
|
1668 |
+
graph attributes which attempts to completely copy
|
1669 |
+
all of the data and references.
|
1670 |
+
|
1671 |
+
This is in contrast to the similar D=DiGraph(G) which returns a
|
1672 |
+
shallow copy of the data.
|
1673 |
+
|
1674 |
+
See the Python copy module for more information on shallow
|
1675 |
+
and deep copies, https://docs.python.org/3/library/copy.html.
|
1676 |
+
|
1677 |
+
Warning: If you have subclassed Graph to use dict-like objects
|
1678 |
+
in the data structure, those changes do not transfer to the
|
1679 |
+
DiGraph created by this method.
|
1680 |
+
|
1681 |
+
Examples
|
1682 |
+
--------
|
1683 |
+
>>> G = nx.Graph() # or MultiGraph, etc
|
1684 |
+
>>> G.add_edge(0, 1)
|
1685 |
+
>>> H = G.to_directed()
|
1686 |
+
>>> list(H.edges)
|
1687 |
+
[(0, 1), (1, 0)]
|
1688 |
+
|
1689 |
+
If already directed, return a (deep) copy
|
1690 |
+
|
1691 |
+
>>> G = nx.DiGraph() # or MultiDiGraph, etc
|
1692 |
+
>>> G.add_edge(0, 1)
|
1693 |
+
>>> H = G.to_directed()
|
1694 |
+
>>> list(H.edges)
|
1695 |
+
[(0, 1)]
|
1696 |
+
"""
|
1697 |
+
graph_class = self.to_directed_class()
|
1698 |
+
if as_view is True:
|
1699 |
+
return nx.graphviews.generic_graph_view(self, graph_class)
|
1700 |
+
# deepcopy when not a view
|
1701 |
+
G = graph_class()
|
1702 |
+
G.graph.update(deepcopy(self.graph))
|
1703 |
+
G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
|
1704 |
+
G.add_edges_from(
|
1705 |
+
(u, v, deepcopy(data))
|
1706 |
+
for u, nbrs in self._adj.items()
|
1707 |
+
for v, data in nbrs.items()
|
1708 |
+
)
|
1709 |
+
return G
|
1710 |
+
|
1711 |
+
def to_undirected(self, as_view=False):
|
1712 |
+
"""Returns an undirected copy of the graph.
|
1713 |
+
|
1714 |
+
Parameters
|
1715 |
+
----------
|
1716 |
+
as_view : bool (optional, default=False)
|
1717 |
+
If True return a view of the original undirected graph.
|
1718 |
+
|
1719 |
+
Returns
|
1720 |
+
-------
|
1721 |
+
G : Graph/MultiGraph
|
1722 |
+
A deepcopy of the graph.
|
1723 |
+
|
1724 |
+
See Also
|
1725 |
+
--------
|
1726 |
+
Graph, copy, add_edge, add_edges_from
|
1727 |
+
|
1728 |
+
Notes
|
1729 |
+
-----
|
1730 |
+
This returns a "deepcopy" of the edge, node, and
|
1731 |
+
graph attributes which attempts to completely copy
|
1732 |
+
all of the data and references.
|
1733 |
+
|
1734 |
+
This is in contrast to the similar `G = nx.DiGraph(D)` which returns a
|
1735 |
+
shallow copy of the data.
|
1736 |
+
|
1737 |
+
See the Python copy module for more information on shallow
|
1738 |
+
and deep copies, https://docs.python.org/3/library/copy.html.
|
1739 |
+
|
1740 |
+
Warning: If you have subclassed DiGraph to use dict-like objects
|
1741 |
+
in the data structure, those changes do not transfer to the
|
1742 |
+
Graph created by this method.
|
1743 |
+
|
1744 |
+
Examples
|
1745 |
+
--------
|
1746 |
+
>>> G = nx.path_graph(2) # or MultiGraph, etc
|
1747 |
+
>>> H = G.to_directed()
|
1748 |
+
>>> list(H.edges)
|
1749 |
+
[(0, 1), (1, 0)]
|
1750 |
+
>>> G2 = H.to_undirected()
|
1751 |
+
>>> list(G2.edges)
|
1752 |
+
[(0, 1)]
|
1753 |
+
"""
|
1754 |
+
graph_class = self.to_undirected_class()
|
1755 |
+
if as_view is True:
|
1756 |
+
return nx.graphviews.generic_graph_view(self, graph_class)
|
1757 |
+
# deepcopy when not a view
|
1758 |
+
G = graph_class()
|
1759 |
+
G.graph.update(deepcopy(self.graph))
|
1760 |
+
G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
|
1761 |
+
G.add_edges_from(
|
1762 |
+
(u, v, deepcopy(d))
|
1763 |
+
for u, nbrs in self._adj.items()
|
1764 |
+
for v, d in nbrs.items()
|
1765 |
+
)
|
1766 |
+
return G
|
1767 |
+
|
1768 |
+
def subgraph(self, nodes):
|
1769 |
+
"""Returns a SubGraph view of the subgraph induced on `nodes`.
|
1770 |
+
|
1771 |
+
The induced subgraph of the graph contains the nodes in `nodes`
|
1772 |
+
and the edges between those nodes.
|
1773 |
+
|
1774 |
+
Parameters
|
1775 |
+
----------
|
1776 |
+
nodes : list, iterable
|
1777 |
+
A container of nodes which will be iterated through once.
|
1778 |
+
|
1779 |
+
Returns
|
1780 |
+
-------
|
1781 |
+
G : SubGraph View
|
1782 |
+
A subgraph view of the graph. The graph structure cannot be
|
1783 |
+
changed but node/edge attributes can and are shared with the
|
1784 |
+
original graph.
|
1785 |
+
|
1786 |
+
Notes
|
1787 |
+
-----
|
1788 |
+
The graph, edge and node attributes are shared with the original graph.
|
1789 |
+
Changes to the graph structure is ruled out by the view, but changes
|
1790 |
+
to attributes are reflected in the original graph.
|
1791 |
+
|
1792 |
+
To create a subgraph with its own copy of the edge/node attributes use:
|
1793 |
+
G.subgraph(nodes).copy()
|
1794 |
+
|
1795 |
+
For an inplace reduction of a graph to a subgraph you can remove nodes:
|
1796 |
+
G.remove_nodes_from([n for n in G if n not in set(nodes)])
|
1797 |
+
|
1798 |
+
Subgraph views are sometimes NOT what you want. In most cases where
|
1799 |
+
you want to do more than simply look at the induced edges, it makes
|
1800 |
+
more sense to just create the subgraph as its own graph with code like:
|
1801 |
+
|
1802 |
+
::
|
1803 |
+
|
1804 |
+
# Create a subgraph SG based on a (possibly multigraph) G
|
1805 |
+
SG = G.__class__()
|
1806 |
+
SG.add_nodes_from((n, G.nodes[n]) for n in largest_wcc)
|
1807 |
+
if SG.is_multigraph():
|
1808 |
+
SG.add_edges_from(
|
1809 |
+
(n, nbr, key, d)
|
1810 |
+
for n, nbrs in G.adj.items()
|
1811 |
+
if n in largest_wcc
|
1812 |
+
for nbr, keydict in nbrs.items()
|
1813 |
+
if nbr in largest_wcc
|
1814 |
+
for key, d in keydict.items()
|
1815 |
+
)
|
1816 |
+
else:
|
1817 |
+
SG.add_edges_from(
|
1818 |
+
(n, nbr, d)
|
1819 |
+
for n, nbrs in G.adj.items()
|
1820 |
+
if n in largest_wcc
|
1821 |
+
for nbr, d in nbrs.items()
|
1822 |
+
if nbr in largest_wcc
|
1823 |
+
)
|
1824 |
+
SG.graph.update(G.graph)
|
1825 |
+
|
1826 |
+
Examples
|
1827 |
+
--------
|
1828 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1829 |
+
>>> H = G.subgraph([0, 1, 2])
|
1830 |
+
>>> list(H.edges)
|
1831 |
+
[(0, 1), (1, 2)]
|
1832 |
+
"""
|
1833 |
+
induced_nodes = nx.filters.show_nodes(self.nbunch_iter(nodes))
|
1834 |
+
# if already a subgraph, don't make a chain
|
1835 |
+
subgraph = nx.subgraph_view
|
1836 |
+
if hasattr(self, "_NODE_OK"):
|
1837 |
+
return subgraph(
|
1838 |
+
self._graph, filter_node=induced_nodes, filter_edge=self._EDGE_OK
|
1839 |
+
)
|
1840 |
+
return subgraph(self, filter_node=induced_nodes)
|
1841 |
+
|
1842 |
+
def edge_subgraph(self, edges):
|
1843 |
+
"""Returns the subgraph induced by the specified edges.
|
1844 |
+
|
1845 |
+
The induced subgraph contains each edge in `edges` and each
|
1846 |
+
node incident to any one of those edges.
|
1847 |
+
|
1848 |
+
Parameters
|
1849 |
+
----------
|
1850 |
+
edges : iterable
|
1851 |
+
An iterable of edges in this graph.
|
1852 |
+
|
1853 |
+
Returns
|
1854 |
+
-------
|
1855 |
+
G : Graph
|
1856 |
+
An edge-induced subgraph of this graph with the same edge
|
1857 |
+
attributes.
|
1858 |
+
|
1859 |
+
Notes
|
1860 |
+
-----
|
1861 |
+
The graph, edge, and node attributes in the returned subgraph
|
1862 |
+
view are references to the corresponding attributes in the original
|
1863 |
+
graph. The view is read-only.
|
1864 |
+
|
1865 |
+
To create a full graph version of the subgraph with its own copy
|
1866 |
+
of the edge or node attributes, use::
|
1867 |
+
|
1868 |
+
G.edge_subgraph(edges).copy()
|
1869 |
+
|
1870 |
+
Examples
|
1871 |
+
--------
|
1872 |
+
>>> G = nx.path_graph(5)
|
1873 |
+
>>> H = G.edge_subgraph([(0, 1), (3, 4)])
|
1874 |
+
>>> list(H.nodes)
|
1875 |
+
[0, 1, 3, 4]
|
1876 |
+
>>> list(H.edges)
|
1877 |
+
[(0, 1), (3, 4)]
|
1878 |
+
|
1879 |
+
"""
|
1880 |
+
return nx.edge_subgraph(self, edges)
|
1881 |
+
|
1882 |
+
def size(self, weight=None):
|
1883 |
+
"""Returns the number of edges or total of all edge weights.
|
1884 |
+
|
1885 |
+
Parameters
|
1886 |
+
----------
|
1887 |
+
weight : string or None, optional (default=None)
|
1888 |
+
The edge attribute that holds the numerical value used
|
1889 |
+
as a weight. If None, then each edge has weight 1.
|
1890 |
+
|
1891 |
+
Returns
|
1892 |
+
-------
|
1893 |
+
size : numeric
|
1894 |
+
The number of edges or
|
1895 |
+
(if weight keyword is provided) the total weight sum.
|
1896 |
+
|
1897 |
+
If weight is None, returns an int. Otherwise a float
|
1898 |
+
(or more general numeric if the weights are more general).
|
1899 |
+
|
1900 |
+
See Also
|
1901 |
+
--------
|
1902 |
+
number_of_edges
|
1903 |
+
|
1904 |
+
Examples
|
1905 |
+
--------
|
1906 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1907 |
+
>>> G.size()
|
1908 |
+
3
|
1909 |
+
|
1910 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1911 |
+
>>> G.add_edge("a", "b", weight=2)
|
1912 |
+
>>> G.add_edge("b", "c", weight=4)
|
1913 |
+
>>> G.size()
|
1914 |
+
2
|
1915 |
+
>>> G.size(weight="weight")
|
1916 |
+
6.0
|
1917 |
+
"""
|
1918 |
+
s = sum(d for v, d in self.degree(weight=weight))
|
1919 |
+
# If `weight` is None, the sum of the degrees is guaranteed to be
|
1920 |
+
# even, so we can perform integer division and hence return an
|
1921 |
+
# integer. Otherwise, the sum of the weighted degrees is not
|
1922 |
+
# guaranteed to be an integer, so we perform "real" division.
|
1923 |
+
return s // 2 if weight is None else s / 2
|
1924 |
+
|
1925 |
+
def number_of_edges(self, u=None, v=None):
|
1926 |
+
"""Returns the number of edges between two nodes.
|
1927 |
+
|
1928 |
+
Parameters
|
1929 |
+
----------
|
1930 |
+
u, v : nodes, optional (default=all edges)
|
1931 |
+
If u and v are specified, return the number of edges between
|
1932 |
+
u and v. Otherwise return the total number of all edges.
|
1933 |
+
|
1934 |
+
Returns
|
1935 |
+
-------
|
1936 |
+
nedges : int
|
1937 |
+
The number of edges in the graph. If nodes `u` and `v` are
|
1938 |
+
specified return the number of edges between those nodes. If
|
1939 |
+
the graph is directed, this only returns the number of edges
|
1940 |
+
from `u` to `v`.
|
1941 |
+
|
1942 |
+
See Also
|
1943 |
+
--------
|
1944 |
+
size
|
1945 |
+
|
1946 |
+
Examples
|
1947 |
+
--------
|
1948 |
+
For undirected graphs, this method counts the total number of
|
1949 |
+
edges in the graph:
|
1950 |
+
|
1951 |
+
>>> G = nx.path_graph(4)
|
1952 |
+
>>> G.number_of_edges()
|
1953 |
+
3
|
1954 |
+
|
1955 |
+
If you specify two nodes, this counts the total number of edges
|
1956 |
+
joining the two nodes:
|
1957 |
+
|
1958 |
+
>>> G.number_of_edges(0, 1)
|
1959 |
+
1
|
1960 |
+
|
1961 |
+
For directed graphs, this method can count the total number of
|
1962 |
+
directed edges from `u` to `v`:
|
1963 |
+
|
1964 |
+
>>> G = nx.DiGraph()
|
1965 |
+
>>> G.add_edge(0, 1)
|
1966 |
+
>>> G.add_edge(1, 0)
|
1967 |
+
>>> G.number_of_edges(0, 1)
|
1968 |
+
1
|
1969 |
+
|
1970 |
+
"""
|
1971 |
+
if u is None:
|
1972 |
+
return int(self.size())
|
1973 |
+
if v in self._adj[u]:
|
1974 |
+
return 1
|
1975 |
+
return 0
|
1976 |
+
|
1977 |
+
def nbunch_iter(self, nbunch=None):
|
1978 |
+
"""Returns an iterator over nodes contained in nbunch that are
|
1979 |
+
also in the graph.
|
1980 |
+
|
1981 |
+
The nodes in nbunch are checked for membership in the graph
|
1982 |
+
and if not are silently ignored.
|
1983 |
+
|
1984 |
+
Parameters
|
1985 |
+
----------
|
1986 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
1987 |
+
The view will only report edges incident to these nodes.
|
1988 |
+
|
1989 |
+
Returns
|
1990 |
+
-------
|
1991 |
+
niter : iterator
|
1992 |
+
An iterator over nodes in nbunch that are also in the graph.
|
1993 |
+
If nbunch is None, iterate over all nodes in the graph.
|
1994 |
+
|
1995 |
+
Raises
|
1996 |
+
------
|
1997 |
+
NetworkXError
|
1998 |
+
If nbunch is not a node or sequence of nodes.
|
1999 |
+
If a node in nbunch is not hashable.
|
2000 |
+
|
2001 |
+
See Also
|
2002 |
+
--------
|
2003 |
+
Graph.__iter__
|
2004 |
+
|
2005 |
+
Notes
|
2006 |
+
-----
|
2007 |
+
When nbunch is an iterator, the returned iterator yields values
|
2008 |
+
directly from nbunch, becoming exhausted when nbunch is exhausted.
|
2009 |
+
|
2010 |
+
To test whether nbunch is a single node, one can use
|
2011 |
+
"if nbunch in self:", even after processing with this routine.
|
2012 |
+
|
2013 |
+
If nbunch is not a node or a (possibly empty) sequence/iterator
|
2014 |
+
or None, a :exc:`NetworkXError` is raised. Also, if any object in
|
2015 |
+
nbunch is not hashable, a :exc:`NetworkXError` is raised.
|
2016 |
+
"""
|
2017 |
+
if nbunch is None: # include all nodes via iterator
|
2018 |
+
bunch = iter(self._adj)
|
2019 |
+
elif nbunch in self: # if nbunch is a single node
|
2020 |
+
bunch = iter([nbunch])
|
2021 |
+
else: # if nbunch is a sequence of nodes
|
2022 |
+
|
2023 |
+
def bunch_iter(nlist, adj):
|
2024 |
+
try:
|
2025 |
+
for n in nlist:
|
2026 |
+
if n in adj:
|
2027 |
+
yield n
|
2028 |
+
except TypeError as err:
|
2029 |
+
exc, message = err, err.args[0]
|
2030 |
+
# capture error for non-sequence/iterator nbunch.
|
2031 |
+
if "iter" in message:
|
2032 |
+
exc = NetworkXError(
|
2033 |
+
"nbunch is not a node or a sequence of nodes."
|
2034 |
+
)
|
2035 |
+
# capture error for unhashable node.
|
2036 |
+
if "hashable" in message:
|
2037 |
+
exc = NetworkXError(
|
2038 |
+
f"Node {n} in sequence nbunch is not a valid node."
|
2039 |
+
)
|
2040 |
+
raise exc
|
2041 |
+
|
2042 |
+
bunch = bunch_iter(nbunch, self._adj)
|
2043 |
+
return bunch
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/graphviews.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""View of Graphs as SubGraph, Reverse, Directed, Undirected.
|
2 |
+
|
3 |
+
In some algorithms it is convenient to temporarily morph
|
4 |
+
a graph to exclude some nodes or edges. It should be better
|
5 |
+
to do that via a view than to remove and then re-add.
|
6 |
+
In other algorithms it is convenient to temporarily morph
|
7 |
+
a graph to reverse directed edges, or treat a directed graph
|
8 |
+
as undirected, etc. This module provides those graph views.
|
9 |
+
|
10 |
+
The resulting views are essentially read-only graphs that
|
11 |
+
report data from the original graph object. We provide an
|
12 |
+
attribute G._graph which points to the underlying graph object.
|
13 |
+
|
14 |
+
Note: Since graphviews look like graphs, one can end up with
|
15 |
+
view-of-view-of-view chains. Be careful with chains because
|
16 |
+
they become very slow with about 15 nested views.
|
17 |
+
For the common simple case of node induced subgraphs created
|
18 |
+
from the graph class, we short-cut the chain by returning a
|
19 |
+
subgraph of the original graph directly rather than a subgraph
|
20 |
+
of a subgraph. We are careful not to disrupt any edge filter in
|
21 |
+
the middle subgraph. In general, determining how to short-cut
|
22 |
+
the chain is tricky and much harder with restricted_views than
|
23 |
+
with induced subgraphs.
|
24 |
+
Often it is easiest to use .copy() to avoid chains.
|
25 |
+
"""
|
26 |
+
import networkx as nx
|
27 |
+
from networkx.classes.coreviews import (
|
28 |
+
FilterAdjacency,
|
29 |
+
FilterAtlas,
|
30 |
+
FilterMultiAdjacency,
|
31 |
+
UnionAdjacency,
|
32 |
+
UnionMultiAdjacency,
|
33 |
+
)
|
34 |
+
from networkx.classes.filters import no_filter
|
35 |
+
from networkx.exception import NetworkXError
|
36 |
+
from networkx.utils import deprecate_positional_args, not_implemented_for
|
37 |
+
|
38 |
+
__all__ = ["generic_graph_view", "subgraph_view", "reverse_view"]
|
39 |
+
|
40 |
+
|
41 |
+
def generic_graph_view(G, create_using=None):
|
42 |
+
"""Returns a read-only view of `G`.
|
43 |
+
|
44 |
+
The graph `G` and its attributes are not copied but viewed through the new graph object
|
45 |
+
of the same class as `G` (or of the class specified in `create_using`).
|
46 |
+
|
47 |
+
Parameters
|
48 |
+
----------
|
49 |
+
G : graph
|
50 |
+
A directed/undirected graph/multigraph.
|
51 |
+
|
52 |
+
create_using : NetworkX graph constructor, optional (default=None)
|
53 |
+
Graph type to create. If graph instance, then cleared before populated.
|
54 |
+
If `None`, then the appropriate Graph type is inferred from `G`.
|
55 |
+
|
56 |
+
Returns
|
57 |
+
-------
|
58 |
+
newG : graph
|
59 |
+
A view of the input graph `G` and its attributes as viewed through
|
60 |
+
the `create_using` class.
|
61 |
+
|
62 |
+
Raises
|
63 |
+
------
|
64 |
+
NetworkXError
|
65 |
+
If `G` is a multigraph (or multidigraph) but `create_using` is not, or vice versa.
|
66 |
+
|
67 |
+
Notes
|
68 |
+
-----
|
69 |
+
The returned graph view is read-only (cannot modify the graph).
|
70 |
+
Yet the view reflects any changes in `G`. The intent is to mimic dict views.
|
71 |
+
|
72 |
+
Examples
|
73 |
+
--------
|
74 |
+
>>> G = nx.Graph()
|
75 |
+
>>> G.add_edge(1, 2, weight=0.3)
|
76 |
+
>>> G.add_edge(2, 3, weight=0.5)
|
77 |
+
>>> G.edges(data=True)
|
78 |
+
EdgeDataView([(1, 2, {'weight': 0.3}), (2, 3, {'weight': 0.5})])
|
79 |
+
|
80 |
+
The view exposes the attributes from the original graph.
|
81 |
+
|
82 |
+
>>> viewG = nx.graphviews.generic_graph_view(G)
|
83 |
+
>>> viewG.edges(data=True)
|
84 |
+
EdgeDataView([(1, 2, {'weight': 0.3}), (2, 3, {'weight': 0.5})])
|
85 |
+
|
86 |
+
Changes to `G` are reflected in `viewG`.
|
87 |
+
|
88 |
+
>>> G.remove_edge(2, 3)
|
89 |
+
>>> G.edges(data=True)
|
90 |
+
EdgeDataView([(1, 2, {'weight': 0.3})])
|
91 |
+
|
92 |
+
>>> viewG.edges(data=True)
|
93 |
+
EdgeDataView([(1, 2, {'weight': 0.3})])
|
94 |
+
|
95 |
+
We can change the graph type with the `create_using` parameter.
|
96 |
+
|
97 |
+
>>> type(G)
|
98 |
+
<class 'networkx.classes.graph.Graph'>
|
99 |
+
>>> viewDG = nx.graphviews.generic_graph_view(G, create_using=nx.DiGraph)
|
100 |
+
>>> type(viewDG)
|
101 |
+
<class 'networkx.classes.digraph.DiGraph'>
|
102 |
+
"""
|
103 |
+
if create_using is None:
|
104 |
+
newG = G.__class__()
|
105 |
+
else:
|
106 |
+
newG = nx.empty_graph(0, create_using)
|
107 |
+
if G.is_multigraph() != newG.is_multigraph():
|
108 |
+
raise NetworkXError("Multigraph for G must agree with create_using")
|
109 |
+
newG = nx.freeze(newG)
|
110 |
+
|
111 |
+
# create view by assigning attributes from G
|
112 |
+
newG._graph = G
|
113 |
+
newG.graph = G.graph
|
114 |
+
|
115 |
+
newG._node = G._node
|
116 |
+
if newG.is_directed():
|
117 |
+
if G.is_directed():
|
118 |
+
newG._succ = G._succ
|
119 |
+
newG._pred = G._pred
|
120 |
+
# newG._adj is synced with _succ
|
121 |
+
else:
|
122 |
+
newG._succ = G._adj
|
123 |
+
newG._pred = G._adj
|
124 |
+
# newG._adj is synced with _succ
|
125 |
+
elif G.is_directed():
|
126 |
+
if G.is_multigraph():
|
127 |
+
newG._adj = UnionMultiAdjacency(G._succ, G._pred)
|
128 |
+
else:
|
129 |
+
newG._adj = UnionAdjacency(G._succ, G._pred)
|
130 |
+
else:
|
131 |
+
newG._adj = G._adj
|
132 |
+
return newG
|
133 |
+
|
134 |
+
|
135 |
+
@deprecate_positional_args(version="3.4")
|
136 |
+
def subgraph_view(G, *, filter_node=no_filter, filter_edge=no_filter):
|
137 |
+
"""View of `G` applying a filter on nodes and edges.
|
138 |
+
|
139 |
+
`subgraph_view` provides a read-only view of the input graph that excludes
|
140 |
+
nodes and edges based on the outcome of two filter functions `filter_node`
|
141 |
+
and `filter_edge`.
|
142 |
+
|
143 |
+
The `filter_node` function takes one argument --- the node --- and returns
|
144 |
+
`True` if the node should be included in the subgraph, and `False` if it
|
145 |
+
should not be included.
|
146 |
+
|
147 |
+
The `filter_edge` function takes two (or three arguments if `G` is a
|
148 |
+
multi-graph) --- the nodes describing an edge, plus the edge-key if
|
149 |
+
parallel edges are possible --- and returns `True` if the edge should be
|
150 |
+
included in the subgraph, and `False` if it should not be included.
|
151 |
+
|
152 |
+
Both node and edge filter functions are called on graph elements as they
|
153 |
+
are queried, meaning there is no up-front cost to creating the view.
|
154 |
+
|
155 |
+
Parameters
|
156 |
+
----------
|
157 |
+
G : networkx.Graph
|
158 |
+
A directed/undirected graph/multigraph
|
159 |
+
|
160 |
+
filter_node : callable, optional
|
161 |
+
A function taking a node as input, which returns `True` if the node
|
162 |
+
should appear in the view.
|
163 |
+
|
164 |
+
filter_edge : callable, optional
|
165 |
+
A function taking as input the two nodes describing an edge (plus the
|
166 |
+
edge-key if `G` is a multi-graph), which returns `True` if the edge
|
167 |
+
should appear in the view.
|
168 |
+
|
169 |
+
Returns
|
170 |
+
-------
|
171 |
+
graph : networkx.Graph
|
172 |
+
A read-only graph view of the input graph.
|
173 |
+
|
174 |
+
Examples
|
175 |
+
--------
|
176 |
+
>>> G = nx.path_graph(6)
|
177 |
+
|
178 |
+
Filter functions operate on the node, and return `True` if the node should
|
179 |
+
appear in the view:
|
180 |
+
|
181 |
+
>>> def filter_node(n1):
|
182 |
+
... return n1 != 5
|
183 |
+
>>> view = nx.subgraph_view(G, filter_node=filter_node)
|
184 |
+
>>> view.nodes()
|
185 |
+
NodeView((0, 1, 2, 3, 4))
|
186 |
+
|
187 |
+
We can use a closure pattern to filter graph elements based on additional
|
188 |
+
data --- for example, filtering on edge data attached to the graph:
|
189 |
+
|
190 |
+
>>> G[3][4]["cross_me"] = False
|
191 |
+
>>> def filter_edge(n1, n2):
|
192 |
+
... return G[n1][n2].get("cross_me", True)
|
193 |
+
>>> view = nx.subgraph_view(G, filter_edge=filter_edge)
|
194 |
+
>>> view.edges()
|
195 |
+
EdgeView([(0, 1), (1, 2), (2, 3), (4, 5)])
|
196 |
+
|
197 |
+
>>> view = nx.subgraph_view(
|
198 |
+
... G,
|
199 |
+
... filter_node=filter_node,
|
200 |
+
... filter_edge=filter_edge,
|
201 |
+
... )
|
202 |
+
>>> view.nodes()
|
203 |
+
NodeView((0, 1, 2, 3, 4))
|
204 |
+
>>> view.edges()
|
205 |
+
EdgeView([(0, 1), (1, 2), (2, 3)])
|
206 |
+
"""
|
207 |
+
newG = nx.freeze(G.__class__())
|
208 |
+
newG._NODE_OK = filter_node
|
209 |
+
newG._EDGE_OK = filter_edge
|
210 |
+
|
211 |
+
# create view by assigning attributes from G
|
212 |
+
newG._graph = G
|
213 |
+
newG.graph = G.graph
|
214 |
+
|
215 |
+
newG._node = FilterAtlas(G._node, filter_node)
|
216 |
+
if G.is_multigraph():
|
217 |
+
Adj = FilterMultiAdjacency
|
218 |
+
|
219 |
+
def reverse_edge(u, v, k=None):
|
220 |
+
return filter_edge(v, u, k)
|
221 |
+
|
222 |
+
else:
|
223 |
+
Adj = FilterAdjacency
|
224 |
+
|
225 |
+
def reverse_edge(u, v, k=None):
|
226 |
+
return filter_edge(v, u)
|
227 |
+
|
228 |
+
if G.is_directed():
|
229 |
+
newG._succ = Adj(G._succ, filter_node, filter_edge)
|
230 |
+
newG._pred = Adj(G._pred, filter_node, reverse_edge)
|
231 |
+
# newG._adj is synced with _succ
|
232 |
+
else:
|
233 |
+
newG._adj = Adj(G._adj, filter_node, filter_edge)
|
234 |
+
return newG
|
235 |
+
|
236 |
+
|
237 |
+
@not_implemented_for("undirected")
|
238 |
+
def reverse_view(G):
|
239 |
+
"""View of `G` with edge directions reversed
|
240 |
+
|
241 |
+
`reverse_view` returns a read-only view of the input graph where
|
242 |
+
edge directions are reversed.
|
243 |
+
|
244 |
+
Identical to digraph.reverse(copy=False)
|
245 |
+
|
246 |
+
Parameters
|
247 |
+
----------
|
248 |
+
G : networkx.DiGraph
|
249 |
+
|
250 |
+
Returns
|
251 |
+
-------
|
252 |
+
graph : networkx.DiGraph
|
253 |
+
|
254 |
+
Examples
|
255 |
+
--------
|
256 |
+
>>> G = nx.DiGraph()
|
257 |
+
>>> G.add_edge(1, 2)
|
258 |
+
>>> G.add_edge(2, 3)
|
259 |
+
>>> G.edges()
|
260 |
+
OutEdgeView([(1, 2), (2, 3)])
|
261 |
+
|
262 |
+
>>> view = nx.reverse_view(G)
|
263 |
+
>>> view.edges()
|
264 |
+
OutEdgeView([(2, 1), (3, 2)])
|
265 |
+
"""
|
266 |
+
newG = generic_graph_view(G)
|
267 |
+
newG._succ, newG._pred = G._pred, G._succ
|
268 |
+
# newG._adj is synced with _succ
|
269 |
+
return newG
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/multidigraph.py
ADDED
@@ -0,0 +1,965 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Base class for MultiDiGraph."""
|
2 |
+
from copy import deepcopy
|
3 |
+
from functools import cached_property
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
from networkx import convert
|
7 |
+
from networkx.classes.coreviews import MultiAdjacencyView
|
8 |
+
from networkx.classes.digraph import DiGraph
|
9 |
+
from networkx.classes.multigraph import MultiGraph
|
10 |
+
from networkx.classes.reportviews import (
|
11 |
+
DiMultiDegreeView,
|
12 |
+
InMultiDegreeView,
|
13 |
+
InMultiEdgeView,
|
14 |
+
OutMultiDegreeView,
|
15 |
+
OutMultiEdgeView,
|
16 |
+
)
|
17 |
+
from networkx.exception import NetworkXError
|
18 |
+
|
19 |
+
__all__ = ["MultiDiGraph"]
|
20 |
+
|
21 |
+
|
22 |
+
class MultiDiGraph(MultiGraph, DiGraph):
|
23 |
+
"""A directed graph class that can store multiedges.
|
24 |
+
|
25 |
+
Multiedges are multiple edges between two nodes. Each edge
|
26 |
+
can hold optional data or attributes.
|
27 |
+
|
28 |
+
A MultiDiGraph holds directed edges. Self loops are allowed.
|
29 |
+
|
30 |
+
Nodes can be arbitrary (hashable) Python objects with optional
|
31 |
+
key/value attributes. By convention `None` is not used as a node.
|
32 |
+
|
33 |
+
Edges are represented as links between nodes with optional
|
34 |
+
key/value attributes.
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
----------
|
38 |
+
incoming_graph_data : input graph (optional, default: None)
|
39 |
+
Data to initialize graph. If None (default) an empty
|
40 |
+
graph is created. The data can be any format that is supported
|
41 |
+
by the to_networkx_graph() function, currently including edge list,
|
42 |
+
dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
|
43 |
+
sparse matrix, or PyGraphviz graph.
|
44 |
+
|
45 |
+
multigraph_input : bool or None (default None)
|
46 |
+
Note: Only used when `incoming_graph_data` is a dict.
|
47 |
+
If True, `incoming_graph_data` is assumed to be a
|
48 |
+
dict-of-dict-of-dict-of-dict structure keyed by
|
49 |
+
node to neighbor to edge keys to edge data for multi-edges.
|
50 |
+
A NetworkXError is raised if this is not the case.
|
51 |
+
If False, :func:`to_networkx_graph` is used to try to determine
|
52 |
+
the dict's graph data structure as either a dict-of-dict-of-dict
|
53 |
+
keyed by node to neighbor to edge data, or a dict-of-iterable
|
54 |
+
keyed by node to neighbors.
|
55 |
+
If None, the treatment for True is tried, but if it fails,
|
56 |
+
the treatment for False is tried.
|
57 |
+
|
58 |
+
attr : keyword arguments, optional (default= no attributes)
|
59 |
+
Attributes to add to graph as key=value pairs.
|
60 |
+
|
61 |
+
See Also
|
62 |
+
--------
|
63 |
+
Graph
|
64 |
+
DiGraph
|
65 |
+
MultiGraph
|
66 |
+
|
67 |
+
Examples
|
68 |
+
--------
|
69 |
+
Create an empty graph structure (a "null graph") with no nodes and
|
70 |
+
no edges.
|
71 |
+
|
72 |
+
>>> G = nx.MultiDiGraph()
|
73 |
+
|
74 |
+
G can be grown in several ways.
|
75 |
+
|
76 |
+
**Nodes:**
|
77 |
+
|
78 |
+
Add one node at a time:
|
79 |
+
|
80 |
+
>>> G.add_node(1)
|
81 |
+
|
82 |
+
Add the nodes from any container (a list, dict, set or
|
83 |
+
even the lines from a file or the nodes from another graph).
|
84 |
+
|
85 |
+
>>> G.add_nodes_from([2, 3])
|
86 |
+
>>> G.add_nodes_from(range(100, 110))
|
87 |
+
>>> H = nx.path_graph(10)
|
88 |
+
>>> G.add_nodes_from(H)
|
89 |
+
|
90 |
+
In addition to strings and integers any hashable Python object
|
91 |
+
(except None) can represent a node, e.g. a customized node object,
|
92 |
+
or even another Graph.
|
93 |
+
|
94 |
+
>>> G.add_node(H)
|
95 |
+
|
96 |
+
**Edges:**
|
97 |
+
|
98 |
+
G can also be grown by adding edges.
|
99 |
+
|
100 |
+
Add one edge,
|
101 |
+
|
102 |
+
>>> key = G.add_edge(1, 2)
|
103 |
+
|
104 |
+
a list of edges,
|
105 |
+
|
106 |
+
>>> keys = G.add_edges_from([(1, 2), (1, 3)])
|
107 |
+
|
108 |
+
or a collection of edges,
|
109 |
+
|
110 |
+
>>> keys = G.add_edges_from(H.edges)
|
111 |
+
|
112 |
+
If some edges connect nodes not yet in the graph, the nodes
|
113 |
+
are added automatically. If an edge already exists, an additional
|
114 |
+
edge is created and stored using a key to identify the edge.
|
115 |
+
By default the key is the lowest unused integer.
|
116 |
+
|
117 |
+
>>> keys = G.add_edges_from([(4, 5, dict(route=282)), (4, 5, dict(route=37))])
|
118 |
+
>>> G[4]
|
119 |
+
AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}})
|
120 |
+
|
121 |
+
**Attributes:**
|
122 |
+
|
123 |
+
Each graph, node, and edge can hold key/value attribute pairs
|
124 |
+
in an associated attribute dictionary (the keys must be hashable).
|
125 |
+
By default these are empty, but can be added or changed using
|
126 |
+
add_edge, add_node or direct manipulation of the attribute
|
127 |
+
dictionaries named graph, node and edge respectively.
|
128 |
+
|
129 |
+
>>> G = nx.MultiDiGraph(day="Friday")
|
130 |
+
>>> G.graph
|
131 |
+
{'day': 'Friday'}
|
132 |
+
|
133 |
+
Add node attributes using add_node(), add_nodes_from() or G.nodes
|
134 |
+
|
135 |
+
>>> G.add_node(1, time="5pm")
|
136 |
+
>>> G.add_nodes_from([3], time="2pm")
|
137 |
+
>>> G.nodes[1]
|
138 |
+
{'time': '5pm'}
|
139 |
+
>>> G.nodes[1]["room"] = 714
|
140 |
+
>>> del G.nodes[1]["room"] # remove attribute
|
141 |
+
>>> list(G.nodes(data=True))
|
142 |
+
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
|
143 |
+
|
144 |
+
Add edge attributes using add_edge(), add_edges_from(), subscript
|
145 |
+
notation, or G.edges.
|
146 |
+
|
147 |
+
>>> key = G.add_edge(1, 2, weight=4.7)
|
148 |
+
>>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red")
|
149 |
+
>>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
|
150 |
+
>>> G[1][2][0]["weight"] = 4.7
|
151 |
+
>>> G.edges[1, 2, 0]["weight"] = 4
|
152 |
+
|
153 |
+
Warning: we protect the graph data structure by making `G.edges[1,
|
154 |
+
2, 0]` a read-only dict-like structure. However, you can assign to
|
155 |
+
attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets
|
156 |
+
to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4`
|
157 |
+
(for multigraphs the edge key is required: `MG.edges[u, v,
|
158 |
+
key][name] = value`).
|
159 |
+
|
160 |
+
**Shortcuts:**
|
161 |
+
|
162 |
+
Many common graph features allow python syntax to speed reporting.
|
163 |
+
|
164 |
+
>>> 1 in G # check if node in graph
|
165 |
+
True
|
166 |
+
>>> [n for n in G if n < 3] # iterate through nodes
|
167 |
+
[1, 2]
|
168 |
+
>>> len(G) # number of nodes in graph
|
169 |
+
5
|
170 |
+
>>> G[1] # adjacency dict-like view mapping neighbor -> edge key -> edge attributes
|
171 |
+
AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}})
|
172 |
+
|
173 |
+
Often the best way to traverse all edges of a graph is via the neighbors.
|
174 |
+
The neighbors are available as an adjacency-view `G.adj` object or via
|
175 |
+
the method `G.adjacency()`.
|
176 |
+
|
177 |
+
>>> for n, nbrsdict in G.adjacency():
|
178 |
+
... for nbr, keydict in nbrsdict.items():
|
179 |
+
... for key, eattr in keydict.items():
|
180 |
+
... if "weight" in eattr:
|
181 |
+
... # Do something useful with the edges
|
182 |
+
... pass
|
183 |
+
|
184 |
+
But the edges() method is often more convenient:
|
185 |
+
|
186 |
+
>>> for u, v, keys, weight in G.edges(data="weight", keys=True):
|
187 |
+
... if weight is not None:
|
188 |
+
... # Do something useful with the edges
|
189 |
+
... pass
|
190 |
+
|
191 |
+
**Reporting:**
|
192 |
+
|
193 |
+
Simple graph information is obtained using methods and object-attributes.
|
194 |
+
Reporting usually provides views instead of containers to reduce memory
|
195 |
+
usage. The views update as the graph is updated similarly to dict-views.
|
196 |
+
The objects `nodes`, `edges` and `adj` provide access to data attributes
|
197 |
+
via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration
|
198 |
+
(e.g. `nodes.items()`, `nodes.data('color')`,
|
199 |
+
`nodes.data('color', default='blue')` and similarly for `edges`)
|
200 |
+
Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
|
201 |
+
|
202 |
+
For details on these and other miscellaneous methods, see below.
|
203 |
+
|
204 |
+
**Subclasses (Advanced):**
|
205 |
+
|
206 |
+
The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure.
|
207 |
+
The outer dict (node_dict) holds adjacency information keyed by node.
|
208 |
+
The next dict (adjlist_dict) represents the adjacency information
|
209 |
+
and holds edge_key dicts keyed by neighbor. The edge_key dict holds
|
210 |
+
each edge_attr dict keyed by edge key. The inner dict
|
211 |
+
(edge_attr_dict) represents the edge data and holds edge attribute
|
212 |
+
values keyed by attribute names.
|
213 |
+
|
214 |
+
Each of these four dicts in the dict-of-dict-of-dict-of-dict
|
215 |
+
structure can be replaced by a user defined dict-like object.
|
216 |
+
In general, the dict-like features should be maintained but
|
217 |
+
extra features can be added. To replace one of the dicts create
|
218 |
+
a new graph class by changing the class(!) variable holding the
|
219 |
+
factory for that dict-like structure. The variable names are
|
220 |
+
node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
|
221 |
+
adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory
|
222 |
+
and graph_attr_dict_factory.
|
223 |
+
|
224 |
+
node_dict_factory : function, (default: dict)
|
225 |
+
Factory function to be used to create the dict containing node
|
226 |
+
attributes, keyed by node id.
|
227 |
+
It should require no arguments and return a dict-like object
|
228 |
+
|
229 |
+
node_attr_dict_factory: function, (default: dict)
|
230 |
+
Factory function to be used to create the node attribute
|
231 |
+
dict which holds attribute values keyed by attribute name.
|
232 |
+
It should require no arguments and return a dict-like object
|
233 |
+
|
234 |
+
adjlist_outer_dict_factory : function, (default: dict)
|
235 |
+
Factory function to be used to create the outer-most dict
|
236 |
+
in the data structure that holds adjacency info keyed by node.
|
237 |
+
It should require no arguments and return a dict-like object.
|
238 |
+
|
239 |
+
adjlist_inner_dict_factory : function, (default: dict)
|
240 |
+
Factory function to be used to create the adjacency list
|
241 |
+
dict which holds multiedge key dicts keyed by neighbor.
|
242 |
+
It should require no arguments and return a dict-like object.
|
243 |
+
|
244 |
+
edge_key_dict_factory : function, (default: dict)
|
245 |
+
Factory function to be used to create the edge key dict
|
246 |
+
which holds edge data keyed by edge key.
|
247 |
+
It should require no arguments and return a dict-like object.
|
248 |
+
|
249 |
+
edge_attr_dict_factory : function, (default: dict)
|
250 |
+
Factory function to be used to create the edge attribute
|
251 |
+
dict which holds attribute values keyed by attribute name.
|
252 |
+
It should require no arguments and return a dict-like object.
|
253 |
+
|
254 |
+
graph_attr_dict_factory : function, (default: dict)
|
255 |
+
Factory function to be used to create the graph attribute
|
256 |
+
dict which holds attribute values keyed by attribute name.
|
257 |
+
It should require no arguments and return a dict-like object.
|
258 |
+
|
259 |
+
Typically, if your extension doesn't impact the data structure all
|
260 |
+
methods will inherited without issue except: `to_directed/to_undirected`.
|
261 |
+
By default these methods create a DiGraph/Graph class and you probably
|
262 |
+
want them to create your extension of a DiGraph/Graph. To facilitate
|
263 |
+
this we define two class variables that you can set in your subclass.
|
264 |
+
|
265 |
+
to_directed_class : callable, (default: DiGraph or MultiDiGraph)
|
266 |
+
Class to create a new graph structure in the `to_directed` method.
|
267 |
+
If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
|
268 |
+
|
269 |
+
to_undirected_class : callable, (default: Graph or MultiGraph)
|
270 |
+
Class to create a new graph structure in the `to_undirected` method.
|
271 |
+
If `None`, a NetworkX class (Graph or MultiGraph) is used.
|
272 |
+
|
273 |
+
**Subclassing Example**
|
274 |
+
|
275 |
+
Create a low memory graph class that effectively disallows edge
|
276 |
+
attributes by using a single attribute dict for all edges.
|
277 |
+
This reduces the memory used, but you lose edge attributes.
|
278 |
+
|
279 |
+
>>> class ThinGraph(nx.Graph):
|
280 |
+
... all_edge_dict = {"weight": 1}
|
281 |
+
...
|
282 |
+
... def single_edge_dict(self):
|
283 |
+
... return self.all_edge_dict
|
284 |
+
...
|
285 |
+
... edge_attr_dict_factory = single_edge_dict
|
286 |
+
>>> G = ThinGraph()
|
287 |
+
>>> G.add_edge(2, 1)
|
288 |
+
>>> G[2][1]
|
289 |
+
{'weight': 1}
|
290 |
+
>>> G.add_edge(2, 2)
|
291 |
+
>>> G[2][1] is G[2][2]
|
292 |
+
True
|
293 |
+
"""
|
294 |
+
|
295 |
+
# node_dict_factory = dict # already assigned in Graph
|
296 |
+
# adjlist_outer_dict_factory = dict
|
297 |
+
# adjlist_inner_dict_factory = dict
|
298 |
+
edge_key_dict_factory = dict
|
299 |
+
# edge_attr_dict_factory = dict
|
300 |
+
|
301 |
+
def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr):
|
302 |
+
"""Initialize a graph with edges, name, or graph attributes.
|
303 |
+
|
304 |
+
Parameters
|
305 |
+
----------
|
306 |
+
incoming_graph_data : input graph
|
307 |
+
Data to initialize graph. If incoming_graph_data=None (default)
|
308 |
+
an empty graph is created. The data can be an edge list, or any
|
309 |
+
NetworkX graph object. If the corresponding optional Python
|
310 |
+
packages are installed the data can also be a 2D NumPy array, a
|
311 |
+
SciPy sparse array, or a PyGraphviz graph.
|
312 |
+
|
313 |
+
multigraph_input : bool or None (default None)
|
314 |
+
Note: Only used when `incoming_graph_data` is a dict.
|
315 |
+
If True, `incoming_graph_data` is assumed to be a
|
316 |
+
dict-of-dict-of-dict-of-dict structure keyed by
|
317 |
+
node to neighbor to edge keys to edge data for multi-edges.
|
318 |
+
A NetworkXError is raised if this is not the case.
|
319 |
+
If False, :func:`to_networkx_graph` is used to try to determine
|
320 |
+
the dict's graph data structure as either a dict-of-dict-of-dict
|
321 |
+
keyed by node to neighbor to edge data, or a dict-of-iterable
|
322 |
+
keyed by node to neighbors.
|
323 |
+
If None, the treatment for True is tried, but if it fails,
|
324 |
+
the treatment for False is tried.
|
325 |
+
|
326 |
+
attr : keyword arguments, optional (default= no attributes)
|
327 |
+
Attributes to add to graph as key=value pairs.
|
328 |
+
|
329 |
+
See Also
|
330 |
+
--------
|
331 |
+
convert
|
332 |
+
|
333 |
+
Examples
|
334 |
+
--------
|
335 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
336 |
+
>>> G = nx.Graph(name="my graph")
|
337 |
+
>>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
|
338 |
+
>>> G = nx.Graph(e)
|
339 |
+
|
340 |
+
Arbitrary graph attribute pairs (key=value) may be assigned
|
341 |
+
|
342 |
+
>>> G = nx.Graph(e, day="Friday")
|
343 |
+
>>> G.graph
|
344 |
+
{'day': 'Friday'}
|
345 |
+
|
346 |
+
"""
|
347 |
+
# multigraph_input can be None/True/False. So check "is not False"
|
348 |
+
if isinstance(incoming_graph_data, dict) and multigraph_input is not False:
|
349 |
+
DiGraph.__init__(self)
|
350 |
+
try:
|
351 |
+
convert.from_dict_of_dicts(
|
352 |
+
incoming_graph_data, create_using=self, multigraph_input=True
|
353 |
+
)
|
354 |
+
self.graph.update(attr)
|
355 |
+
except Exception as err:
|
356 |
+
if multigraph_input is True:
|
357 |
+
raise nx.NetworkXError(
|
358 |
+
f"converting multigraph_input raised:\n{type(err)}: {err}"
|
359 |
+
)
|
360 |
+
DiGraph.__init__(self, incoming_graph_data, **attr)
|
361 |
+
else:
|
362 |
+
DiGraph.__init__(self, incoming_graph_data, **attr)
|
363 |
+
|
364 |
+
@cached_property
|
365 |
+
def adj(self):
|
366 |
+
"""Graph adjacency object holding the neighbors of each node.
|
367 |
+
|
368 |
+
This object is a read-only dict-like structure with node keys
|
369 |
+
and neighbor-dict values. The neighbor-dict is keyed by neighbor
|
370 |
+
to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
|
371 |
+
the color of the edge `(3, 2, 0)` to `"blue"`.
|
372 |
+
|
373 |
+
Iterating over G.adj behaves like a dict. Useful idioms include
|
374 |
+
`for nbr, datadict in G.adj[n].items():`.
|
375 |
+
|
376 |
+
The neighbor information is also provided by subscripting the graph.
|
377 |
+
So `for nbr, foovalue in G[node].data('foo', default=1):` works.
|
378 |
+
|
379 |
+
For directed graphs, `G.adj` holds outgoing (successor) info.
|
380 |
+
"""
|
381 |
+
return MultiAdjacencyView(self._succ)
|
382 |
+
|
383 |
+
@cached_property
|
384 |
+
def succ(self):
|
385 |
+
"""Graph adjacency object holding the successors of each node.
|
386 |
+
|
387 |
+
This object is a read-only dict-like structure with node keys
|
388 |
+
and neighbor-dict values. The neighbor-dict is keyed by neighbor
|
389 |
+
to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
|
390 |
+
the color of the edge `(3, 2, 0)` to `"blue"`.
|
391 |
+
|
392 |
+
Iterating over G.adj behaves like a dict. Useful idioms include
|
393 |
+
`for nbr, datadict in G.adj[n].items():`.
|
394 |
+
|
395 |
+
The neighbor information is also provided by subscripting the graph.
|
396 |
+
So `for nbr, foovalue in G[node].data('foo', default=1):` works.
|
397 |
+
|
398 |
+
For directed graphs, `G.succ` is identical to `G.adj`.
|
399 |
+
"""
|
400 |
+
return MultiAdjacencyView(self._succ)
|
401 |
+
|
402 |
+
@cached_property
|
403 |
+
def pred(self):
|
404 |
+
"""Graph adjacency object holding the predecessors of each node.
|
405 |
+
|
406 |
+
This object is a read-only dict-like structure with node keys
|
407 |
+
and neighbor-dict values. The neighbor-dict is keyed by neighbor
|
408 |
+
to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
|
409 |
+
the color of the edge `(3, 2, 0)` to `"blue"`.
|
410 |
+
|
411 |
+
Iterating over G.adj behaves like a dict. Useful idioms include
|
412 |
+
`for nbr, datadict in G.adj[n].items():`.
|
413 |
+
"""
|
414 |
+
return MultiAdjacencyView(self._pred)
|
415 |
+
|
416 |
+
def add_edge(self, u_for_edge, v_for_edge, key=None, **attr):
|
417 |
+
"""Add an edge between u and v.
|
418 |
+
|
419 |
+
The nodes u and v will be automatically added if they are
|
420 |
+
not already in the graph.
|
421 |
+
|
422 |
+
Edge attributes can be specified with keywords or by directly
|
423 |
+
accessing the edge's attribute dictionary. See examples below.
|
424 |
+
|
425 |
+
Parameters
|
426 |
+
----------
|
427 |
+
u_for_edge, v_for_edge : nodes
|
428 |
+
Nodes can be, for example, strings or numbers.
|
429 |
+
Nodes must be hashable (and not None) Python objects.
|
430 |
+
key : hashable identifier, optional (default=lowest unused integer)
|
431 |
+
Used to distinguish multiedges between a pair of nodes.
|
432 |
+
attr : keyword arguments, optional
|
433 |
+
Edge data (or labels or objects) can be assigned using
|
434 |
+
keyword arguments.
|
435 |
+
|
436 |
+
Returns
|
437 |
+
-------
|
438 |
+
The edge key assigned to the edge.
|
439 |
+
|
440 |
+
See Also
|
441 |
+
--------
|
442 |
+
add_edges_from : add a collection of edges
|
443 |
+
|
444 |
+
Notes
|
445 |
+
-----
|
446 |
+
To replace/update edge data, use the optional key argument
|
447 |
+
to identify a unique edge. Otherwise a new edge will be created.
|
448 |
+
|
449 |
+
NetworkX algorithms designed for weighted graphs cannot use
|
450 |
+
multigraphs directly because it is not clear how to handle
|
451 |
+
multiedge weights. Convert to Graph using edge attribute
|
452 |
+
'weight' to enable weighted graph algorithms.
|
453 |
+
|
454 |
+
Default keys are generated using the method `new_edge_key()`.
|
455 |
+
This method can be overridden by subclassing the base class and
|
456 |
+
providing a custom `new_edge_key()` method.
|
457 |
+
|
458 |
+
Examples
|
459 |
+
--------
|
460 |
+
The following all add the edge e=(1, 2) to graph G:
|
461 |
+
|
462 |
+
>>> G = nx.MultiDiGraph()
|
463 |
+
>>> e = (1, 2)
|
464 |
+
>>> key = G.add_edge(1, 2) # explicit two-node form
|
465 |
+
>>> G.add_edge(*e) # single edge as tuple of two nodes
|
466 |
+
1
|
467 |
+
>>> G.add_edges_from([(1, 2)]) # add edges from iterable container
|
468 |
+
[2]
|
469 |
+
|
470 |
+
Associate data to edges using keywords:
|
471 |
+
|
472 |
+
>>> key = G.add_edge(1, 2, weight=3)
|
473 |
+
>>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0
|
474 |
+
>>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
|
475 |
+
|
476 |
+
For non-string attribute keys, use subscript notation.
|
477 |
+
|
478 |
+
>>> ekey = G.add_edge(1, 2)
|
479 |
+
>>> G[1][2][0].update({0: 5})
|
480 |
+
>>> G.edges[1, 2, 0].update({0: 5})
|
481 |
+
"""
|
482 |
+
u, v = u_for_edge, v_for_edge
|
483 |
+
# add nodes
|
484 |
+
if u not in self._succ:
|
485 |
+
if u is None:
|
486 |
+
raise ValueError("None cannot be a node")
|
487 |
+
self._succ[u] = self.adjlist_inner_dict_factory()
|
488 |
+
self._pred[u] = self.adjlist_inner_dict_factory()
|
489 |
+
self._node[u] = self.node_attr_dict_factory()
|
490 |
+
if v not in self._succ:
|
491 |
+
if v is None:
|
492 |
+
raise ValueError("None cannot be a node")
|
493 |
+
self._succ[v] = self.adjlist_inner_dict_factory()
|
494 |
+
self._pred[v] = self.adjlist_inner_dict_factory()
|
495 |
+
self._node[v] = self.node_attr_dict_factory()
|
496 |
+
if key is None:
|
497 |
+
key = self.new_edge_key(u, v)
|
498 |
+
if v in self._succ[u]:
|
499 |
+
keydict = self._adj[u][v]
|
500 |
+
datadict = keydict.get(key, self.edge_attr_dict_factory())
|
501 |
+
datadict.update(attr)
|
502 |
+
keydict[key] = datadict
|
503 |
+
else:
|
504 |
+
# selfloops work this way without special treatment
|
505 |
+
datadict = self.edge_attr_dict_factory()
|
506 |
+
datadict.update(attr)
|
507 |
+
keydict = self.edge_key_dict_factory()
|
508 |
+
keydict[key] = datadict
|
509 |
+
self._succ[u][v] = keydict
|
510 |
+
self._pred[v][u] = keydict
|
511 |
+
nx._clear_cache(self)
|
512 |
+
return key
|
513 |
+
|
514 |
+
def remove_edge(self, u, v, key=None):
|
515 |
+
"""Remove an edge between u and v.
|
516 |
+
|
517 |
+
Parameters
|
518 |
+
----------
|
519 |
+
u, v : nodes
|
520 |
+
Remove an edge between nodes u and v.
|
521 |
+
key : hashable identifier, optional (default=None)
|
522 |
+
Used to distinguish multiple edges between a pair of nodes.
|
523 |
+
If None, remove a single edge between u and v. If there are
|
524 |
+
multiple edges, removes the last edge added in terms of
|
525 |
+
insertion order.
|
526 |
+
|
527 |
+
Raises
|
528 |
+
------
|
529 |
+
NetworkXError
|
530 |
+
If there is not an edge between u and v, or
|
531 |
+
if there is no edge with the specified key.
|
532 |
+
|
533 |
+
See Also
|
534 |
+
--------
|
535 |
+
remove_edges_from : remove a collection of edges
|
536 |
+
|
537 |
+
Examples
|
538 |
+
--------
|
539 |
+
>>> G = nx.MultiDiGraph()
|
540 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
541 |
+
>>> G.remove_edge(0, 1)
|
542 |
+
>>> e = (1, 2)
|
543 |
+
>>> G.remove_edge(*e) # unpacks e from an edge tuple
|
544 |
+
|
545 |
+
For multiple edges
|
546 |
+
|
547 |
+
>>> G = nx.MultiDiGraph()
|
548 |
+
>>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned
|
549 |
+
[0, 1, 2]
|
550 |
+
|
551 |
+
When ``key=None`` (the default), edges are removed in the opposite
|
552 |
+
order that they were added:
|
553 |
+
|
554 |
+
>>> G.remove_edge(1, 2)
|
555 |
+
>>> G.edges(keys=True)
|
556 |
+
OutMultiEdgeView([(1, 2, 0), (1, 2, 1)])
|
557 |
+
|
558 |
+
For edges with keys
|
559 |
+
|
560 |
+
>>> G = nx.MultiDiGraph()
|
561 |
+
>>> G.add_edge(1, 2, key="first")
|
562 |
+
'first'
|
563 |
+
>>> G.add_edge(1, 2, key="second")
|
564 |
+
'second'
|
565 |
+
>>> G.remove_edge(1, 2, key="first")
|
566 |
+
>>> G.edges(keys=True)
|
567 |
+
OutMultiEdgeView([(1, 2, 'second')])
|
568 |
+
|
569 |
+
"""
|
570 |
+
try:
|
571 |
+
d = self._adj[u][v]
|
572 |
+
except KeyError as err:
|
573 |
+
raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err
|
574 |
+
# remove the edge with specified data
|
575 |
+
if key is None:
|
576 |
+
d.popitem()
|
577 |
+
else:
|
578 |
+
try:
|
579 |
+
del d[key]
|
580 |
+
except KeyError as err:
|
581 |
+
msg = f"The edge {u}-{v} with key {key} is not in the graph."
|
582 |
+
raise NetworkXError(msg) from err
|
583 |
+
if len(d) == 0:
|
584 |
+
# remove the key entries if last edge
|
585 |
+
del self._succ[u][v]
|
586 |
+
del self._pred[v][u]
|
587 |
+
nx._clear_cache(self)
|
588 |
+
|
589 |
+
@cached_property
|
590 |
+
def edges(self):
|
591 |
+
"""An OutMultiEdgeView of the Graph as G.edges or G.edges().
|
592 |
+
|
593 |
+
edges(self, nbunch=None, data=False, keys=False, default=None)
|
594 |
+
|
595 |
+
The OutMultiEdgeView provides set-like operations on the edge-tuples
|
596 |
+
as well as edge attribute lookup. When called, it also provides
|
597 |
+
an EdgeDataView object which allows control of access to edge
|
598 |
+
attributes (but does not provide set-like operations).
|
599 |
+
Hence, ``G.edges[u, v, k]['color']`` provides the value of the color
|
600 |
+
attribute for the edge from ``u`` to ``v`` with key ``k`` while
|
601 |
+
``for (u, v, k, c) in G.edges(data='color', default='red', keys=True):``
|
602 |
+
iterates through all the edges yielding the color attribute with
|
603 |
+
default `'red'` if no color attribute exists.
|
604 |
+
|
605 |
+
Edges are returned as tuples with optional data and keys
|
606 |
+
in the order (node, neighbor, key, data). If ``keys=True`` is not
|
607 |
+
provided, the tuples will just be (node, neighbor, data), but
|
608 |
+
multiple tuples with the same node and neighbor will be
|
609 |
+
generated when multiple edges between two nodes exist.
|
610 |
+
|
611 |
+
Parameters
|
612 |
+
----------
|
613 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
614 |
+
The view will only report edges from these nodes.
|
615 |
+
data : string or bool, optional (default=False)
|
616 |
+
The edge attribute returned in 3-tuple (u, v, ddict[data]).
|
617 |
+
If True, return edge attribute dict in 3-tuple (u, v, ddict).
|
618 |
+
If False, return 2-tuple (u, v).
|
619 |
+
keys : bool, optional (default=False)
|
620 |
+
If True, return edge keys with each edge, creating (u, v, k,
|
621 |
+
d) tuples when data is also requested (the default) and (u,
|
622 |
+
v, k) tuples when data is not requested.
|
623 |
+
default : value, optional (default=None)
|
624 |
+
Value used for edges that don't have the requested attribute.
|
625 |
+
Only relevant if data is not True or False.
|
626 |
+
|
627 |
+
Returns
|
628 |
+
-------
|
629 |
+
edges : OutMultiEdgeView
|
630 |
+
A view of edge attributes, usually it iterates over (u, v)
|
631 |
+
(u, v, k) or (u, v, k, d) tuples of edges, but can also be
|
632 |
+
used for attribute lookup as ``edges[u, v, k]['foo']``.
|
633 |
+
|
634 |
+
Notes
|
635 |
+
-----
|
636 |
+
Nodes in nbunch that are not in the graph will be (quietly) ignored.
|
637 |
+
For directed graphs this returns the out-edges.
|
638 |
+
|
639 |
+
Examples
|
640 |
+
--------
|
641 |
+
>>> G = nx.MultiDiGraph()
|
642 |
+
>>> nx.add_path(G, [0, 1, 2])
|
643 |
+
>>> key = G.add_edge(2, 3, weight=5)
|
644 |
+
>>> key2 = G.add_edge(1, 2) # second edge between these nodes
|
645 |
+
>>> [e for e in G.edges()]
|
646 |
+
[(0, 1), (1, 2), (1, 2), (2, 3)]
|
647 |
+
>>> list(G.edges(data=True)) # default data is {} (empty dict)
|
648 |
+
[(0, 1, {}), (1, 2, {}), (1, 2, {}), (2, 3, {'weight': 5})]
|
649 |
+
>>> list(G.edges(data="weight", default=1))
|
650 |
+
[(0, 1, 1), (1, 2, 1), (1, 2, 1), (2, 3, 5)]
|
651 |
+
>>> list(G.edges(keys=True)) # default keys are integers
|
652 |
+
[(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)]
|
653 |
+
>>> list(G.edges(data=True, keys=True))
|
654 |
+
[(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {}), (2, 3, 0, {'weight': 5})]
|
655 |
+
>>> list(G.edges(data="weight", default=1, keys=True))
|
656 |
+
[(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 1), (2, 3, 0, 5)]
|
657 |
+
>>> list(G.edges([0, 2]))
|
658 |
+
[(0, 1), (2, 3)]
|
659 |
+
>>> list(G.edges(0))
|
660 |
+
[(0, 1)]
|
661 |
+
>>> list(G.edges(1))
|
662 |
+
[(1, 2), (1, 2)]
|
663 |
+
|
664 |
+
See Also
|
665 |
+
--------
|
666 |
+
in_edges, out_edges
|
667 |
+
"""
|
668 |
+
return OutMultiEdgeView(self)
|
669 |
+
|
670 |
+
# alias out_edges to edges
|
671 |
+
@cached_property
|
672 |
+
def out_edges(self):
|
673 |
+
return OutMultiEdgeView(self)
|
674 |
+
|
675 |
+
out_edges.__doc__ = edges.__doc__
|
676 |
+
|
677 |
+
@cached_property
|
678 |
+
def in_edges(self):
|
679 |
+
"""A view of the in edges of the graph as G.in_edges or G.in_edges().
|
680 |
+
|
681 |
+
in_edges(self, nbunch=None, data=False, keys=False, default=None)
|
682 |
+
|
683 |
+
Parameters
|
684 |
+
----------
|
685 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
686 |
+
The view will only report edges incident to these nodes.
|
687 |
+
data : string or bool, optional (default=False)
|
688 |
+
The edge attribute returned in 3-tuple (u, v, ddict[data]).
|
689 |
+
If True, return edge attribute dict in 3-tuple (u, v, ddict).
|
690 |
+
If False, return 2-tuple (u, v).
|
691 |
+
keys : bool, optional (default=False)
|
692 |
+
If True, return edge keys with each edge, creating 3-tuples
|
693 |
+
(u, v, k) or with data, 4-tuples (u, v, k, d).
|
694 |
+
default : value, optional (default=None)
|
695 |
+
Value used for edges that don't have the requested attribute.
|
696 |
+
Only relevant if data is not True or False.
|
697 |
+
|
698 |
+
Returns
|
699 |
+
-------
|
700 |
+
in_edges : InMultiEdgeView or InMultiEdgeDataView
|
701 |
+
A view of edge attributes, usually it iterates over (u, v)
|
702 |
+
or (u, v, k) or (u, v, k, d) tuples of edges, but can also be
|
703 |
+
used for attribute lookup as `edges[u, v, k]['foo']`.
|
704 |
+
|
705 |
+
See Also
|
706 |
+
--------
|
707 |
+
edges
|
708 |
+
"""
|
709 |
+
return InMultiEdgeView(self)
|
710 |
+
|
711 |
+
@cached_property
|
712 |
+
def degree(self):
|
713 |
+
"""A DegreeView for the Graph as G.degree or G.degree().
|
714 |
+
|
715 |
+
The node degree is the number of edges adjacent to the node.
|
716 |
+
The weighted node degree is the sum of the edge weights for
|
717 |
+
edges incident to that node.
|
718 |
+
|
719 |
+
This object provides an iterator for (node, degree) as well as
|
720 |
+
lookup for the degree for a single node.
|
721 |
+
|
722 |
+
Parameters
|
723 |
+
----------
|
724 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
725 |
+
The view will only report edges incident to these nodes.
|
726 |
+
|
727 |
+
weight : string or None, optional (default=None)
|
728 |
+
The name of an edge attribute that holds the numerical value used
|
729 |
+
as a weight. If None, then each edge has weight 1.
|
730 |
+
The degree is the sum of the edge weights adjacent to the node.
|
731 |
+
|
732 |
+
Returns
|
733 |
+
-------
|
734 |
+
DiMultiDegreeView or int
|
735 |
+
If multiple nodes are requested (the default), returns a `DiMultiDegreeView`
|
736 |
+
mapping nodes to their degree.
|
737 |
+
If a single node is requested, returns the degree of the node as an integer.
|
738 |
+
|
739 |
+
See Also
|
740 |
+
--------
|
741 |
+
out_degree, in_degree
|
742 |
+
|
743 |
+
Examples
|
744 |
+
--------
|
745 |
+
>>> G = nx.MultiDiGraph()
|
746 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
747 |
+
>>> G.degree(0) # node 0 with degree 1
|
748 |
+
1
|
749 |
+
>>> list(G.degree([0, 1, 2]))
|
750 |
+
[(0, 1), (1, 2), (2, 2)]
|
751 |
+
>>> G.add_edge(0, 1) # parallel edge
|
752 |
+
1
|
753 |
+
>>> list(G.degree([0, 1, 2])) # parallel edges are counted
|
754 |
+
[(0, 2), (1, 3), (2, 2)]
|
755 |
+
|
756 |
+
"""
|
757 |
+
return DiMultiDegreeView(self)
|
758 |
+
|
759 |
+
@cached_property
|
760 |
+
def in_degree(self):
|
761 |
+
"""A DegreeView for (node, in_degree) or in_degree for single node.
|
762 |
+
|
763 |
+
The node in-degree is the number of edges pointing into the node.
|
764 |
+
The weighted node degree is the sum of the edge weights for
|
765 |
+
edges incident to that node.
|
766 |
+
|
767 |
+
This object provides an iterator for (node, degree) as well as
|
768 |
+
lookup for the degree for a single node.
|
769 |
+
|
770 |
+
Parameters
|
771 |
+
----------
|
772 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
773 |
+
The view will only report edges incident to these nodes.
|
774 |
+
|
775 |
+
weight : string or None, optional (default=None)
|
776 |
+
The edge attribute that holds the numerical value used
|
777 |
+
as a weight. If None, then each edge has weight 1.
|
778 |
+
The degree is the sum of the edge weights adjacent to the node.
|
779 |
+
|
780 |
+
Returns
|
781 |
+
-------
|
782 |
+
If a single node is requested
|
783 |
+
deg : int
|
784 |
+
Degree of the node
|
785 |
+
|
786 |
+
OR if multiple nodes are requested
|
787 |
+
nd_iter : iterator
|
788 |
+
The iterator returns two-tuples of (node, in-degree).
|
789 |
+
|
790 |
+
See Also
|
791 |
+
--------
|
792 |
+
degree, out_degree
|
793 |
+
|
794 |
+
Examples
|
795 |
+
--------
|
796 |
+
>>> G = nx.MultiDiGraph()
|
797 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
798 |
+
>>> G.in_degree(0) # node 0 with degree 0
|
799 |
+
0
|
800 |
+
>>> list(G.in_degree([0, 1, 2]))
|
801 |
+
[(0, 0), (1, 1), (2, 1)]
|
802 |
+
>>> G.add_edge(0, 1) # parallel edge
|
803 |
+
1
|
804 |
+
>>> list(G.in_degree([0, 1, 2])) # parallel edges counted
|
805 |
+
[(0, 0), (1, 2), (2, 1)]
|
806 |
+
|
807 |
+
"""
|
808 |
+
return InMultiDegreeView(self)
|
809 |
+
|
810 |
+
@cached_property
|
811 |
+
def out_degree(self):
|
812 |
+
"""Returns an iterator for (node, out-degree) or out-degree for single node.
|
813 |
+
|
814 |
+
out_degree(self, nbunch=None, weight=None)
|
815 |
+
|
816 |
+
The node out-degree is the number of edges pointing out of the node.
|
817 |
+
This function returns the out-degree for a single node or an iterator
|
818 |
+
for a bunch of nodes or if nothing is passed as argument.
|
819 |
+
|
820 |
+
Parameters
|
821 |
+
----------
|
822 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
823 |
+
The view will only report edges incident to these nodes.
|
824 |
+
|
825 |
+
weight : string or None, optional (default=None)
|
826 |
+
The edge attribute that holds the numerical value used
|
827 |
+
as a weight. If None, then each edge has weight 1.
|
828 |
+
The degree is the sum of the edge weights.
|
829 |
+
|
830 |
+
Returns
|
831 |
+
-------
|
832 |
+
If a single node is requested
|
833 |
+
deg : int
|
834 |
+
Degree of the node
|
835 |
+
|
836 |
+
OR if multiple nodes are requested
|
837 |
+
nd_iter : iterator
|
838 |
+
The iterator returns two-tuples of (node, out-degree).
|
839 |
+
|
840 |
+
See Also
|
841 |
+
--------
|
842 |
+
degree, in_degree
|
843 |
+
|
844 |
+
Examples
|
845 |
+
--------
|
846 |
+
>>> G = nx.MultiDiGraph()
|
847 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
848 |
+
>>> G.out_degree(0) # node 0 with degree 1
|
849 |
+
1
|
850 |
+
>>> list(G.out_degree([0, 1, 2]))
|
851 |
+
[(0, 1), (1, 1), (2, 1)]
|
852 |
+
>>> G.add_edge(0, 1) # parallel edge
|
853 |
+
1
|
854 |
+
>>> list(G.out_degree([0, 1, 2])) # counts parallel edges
|
855 |
+
[(0, 2), (1, 1), (2, 1)]
|
856 |
+
|
857 |
+
"""
|
858 |
+
return OutMultiDegreeView(self)
|
859 |
+
|
860 |
+
def is_multigraph(self):
|
861 |
+
"""Returns True if graph is a multigraph, False otherwise."""
|
862 |
+
return True
|
863 |
+
|
864 |
+
def is_directed(self):
|
865 |
+
"""Returns True if graph is directed, False otherwise."""
|
866 |
+
return True
|
867 |
+
|
868 |
+
def to_undirected(self, reciprocal=False, as_view=False):
|
869 |
+
"""Returns an undirected representation of the digraph.
|
870 |
+
|
871 |
+
Parameters
|
872 |
+
----------
|
873 |
+
reciprocal : bool (optional)
|
874 |
+
If True only keep edges that appear in both directions
|
875 |
+
in the original digraph.
|
876 |
+
as_view : bool (optional, default=False)
|
877 |
+
If True return an undirected view of the original directed graph.
|
878 |
+
|
879 |
+
Returns
|
880 |
+
-------
|
881 |
+
G : MultiGraph
|
882 |
+
An undirected graph with the same name and nodes and
|
883 |
+
with edge (u, v, data) if either (u, v, data) or (v, u, data)
|
884 |
+
is in the digraph. If both edges exist in digraph and
|
885 |
+
their edge data is different, only one edge is created
|
886 |
+
with an arbitrary choice of which edge data to use.
|
887 |
+
You must check and correct for this manually if desired.
|
888 |
+
|
889 |
+
See Also
|
890 |
+
--------
|
891 |
+
MultiGraph, copy, add_edge, add_edges_from
|
892 |
+
|
893 |
+
Notes
|
894 |
+
-----
|
895 |
+
This returns a "deepcopy" of the edge, node, and
|
896 |
+
graph attributes which attempts to completely copy
|
897 |
+
all of the data and references.
|
898 |
+
|
899 |
+
This is in contrast to the similar D=MultiDiGraph(G) which
|
900 |
+
returns a shallow copy of the data.
|
901 |
+
|
902 |
+
See the Python copy module for more information on shallow
|
903 |
+
and deep copies, https://docs.python.org/3/library/copy.html.
|
904 |
+
|
905 |
+
Warning: If you have subclassed MultiDiGraph to use dict-like
|
906 |
+
objects in the data structure, those changes do not transfer
|
907 |
+
to the MultiGraph created by this method.
|
908 |
+
|
909 |
+
Examples
|
910 |
+
--------
|
911 |
+
>>> G = nx.path_graph(2) # or MultiGraph, etc
|
912 |
+
>>> H = G.to_directed()
|
913 |
+
>>> list(H.edges)
|
914 |
+
[(0, 1), (1, 0)]
|
915 |
+
>>> G2 = H.to_undirected()
|
916 |
+
>>> list(G2.edges)
|
917 |
+
[(0, 1)]
|
918 |
+
"""
|
919 |
+
graph_class = self.to_undirected_class()
|
920 |
+
if as_view is True:
|
921 |
+
return nx.graphviews.generic_graph_view(self, graph_class)
|
922 |
+
# deepcopy when not a view
|
923 |
+
G = graph_class()
|
924 |
+
G.graph.update(deepcopy(self.graph))
|
925 |
+
G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
|
926 |
+
if reciprocal is True:
|
927 |
+
G.add_edges_from(
|
928 |
+
(u, v, key, deepcopy(data))
|
929 |
+
for u, nbrs in self._adj.items()
|
930 |
+
for v, keydict in nbrs.items()
|
931 |
+
for key, data in keydict.items()
|
932 |
+
if v in self._pred[u] and key in self._pred[u][v]
|
933 |
+
)
|
934 |
+
else:
|
935 |
+
G.add_edges_from(
|
936 |
+
(u, v, key, deepcopy(data))
|
937 |
+
for u, nbrs in self._adj.items()
|
938 |
+
for v, keydict in nbrs.items()
|
939 |
+
for key, data in keydict.items()
|
940 |
+
)
|
941 |
+
return G
|
942 |
+
|
943 |
+
def reverse(self, copy=True):
|
944 |
+
"""Returns the reverse of the graph.
|
945 |
+
|
946 |
+
The reverse is a graph with the same nodes and edges
|
947 |
+
but with the directions of the edges reversed.
|
948 |
+
|
949 |
+
Parameters
|
950 |
+
----------
|
951 |
+
copy : bool optional (default=True)
|
952 |
+
If True, return a new DiGraph holding the reversed edges.
|
953 |
+
If False, the reverse graph is created using a view of
|
954 |
+
the original graph.
|
955 |
+
"""
|
956 |
+
if copy:
|
957 |
+
H = self.__class__()
|
958 |
+
H.graph.update(deepcopy(self.graph))
|
959 |
+
H.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
|
960 |
+
H.add_edges_from(
|
961 |
+
(v, u, k, deepcopy(d))
|
962 |
+
for u, v, k, d in self.edges(keys=True, data=True)
|
963 |
+
)
|
964 |
+
return H
|
965 |
+
return nx.reverse_view(self)
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/multigraph.py
ADDED
@@ -0,0 +1,1282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Base class for MultiGraph."""
|
2 |
+
from copy import deepcopy
|
3 |
+
from functools import cached_property
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
from networkx import NetworkXError, convert
|
7 |
+
from networkx.classes.coreviews import MultiAdjacencyView
|
8 |
+
from networkx.classes.graph import Graph
|
9 |
+
from networkx.classes.reportviews import MultiDegreeView, MultiEdgeView
|
10 |
+
|
11 |
+
__all__ = ["MultiGraph"]
|
12 |
+
|
13 |
+
|
14 |
+
class MultiGraph(Graph):
|
15 |
+
"""
|
16 |
+
An undirected graph class that can store multiedges.
|
17 |
+
|
18 |
+
Multiedges are multiple edges between two nodes. Each edge
|
19 |
+
can hold optional data or attributes.
|
20 |
+
|
21 |
+
A MultiGraph holds undirected edges. Self loops are allowed.
|
22 |
+
|
23 |
+
Nodes can be arbitrary (hashable) Python objects with optional
|
24 |
+
key/value attributes. By convention `None` is not used as a node.
|
25 |
+
|
26 |
+
Edges are represented as links between nodes with optional
|
27 |
+
key/value attributes, in a MultiGraph each edge has a key to
|
28 |
+
distinguish between multiple edges that have the same source and
|
29 |
+
destination nodes.
|
30 |
+
|
31 |
+
Parameters
|
32 |
+
----------
|
33 |
+
incoming_graph_data : input graph (optional, default: None)
|
34 |
+
Data to initialize graph. If None (default) an empty
|
35 |
+
graph is created. The data can be any format that is supported
|
36 |
+
by the to_networkx_graph() function, currently including edge list,
|
37 |
+
dict of dicts, dict of lists, NetworkX graph, 2D NumPy array,
|
38 |
+
SciPy sparse array, or PyGraphviz graph.
|
39 |
+
|
40 |
+
multigraph_input : bool or None (default None)
|
41 |
+
Note: Only used when `incoming_graph_data` is a dict.
|
42 |
+
If True, `incoming_graph_data` is assumed to be a
|
43 |
+
dict-of-dict-of-dict-of-dict structure keyed by
|
44 |
+
node to neighbor to edge keys to edge data for multi-edges.
|
45 |
+
A NetworkXError is raised if this is not the case.
|
46 |
+
If False, :func:`to_networkx_graph` is used to try to determine
|
47 |
+
the dict's graph data structure as either a dict-of-dict-of-dict
|
48 |
+
keyed by node to neighbor to edge data, or a dict-of-iterable
|
49 |
+
keyed by node to neighbors.
|
50 |
+
If None, the treatment for True is tried, but if it fails,
|
51 |
+
the treatment for False is tried.
|
52 |
+
|
53 |
+
attr : keyword arguments, optional (default= no attributes)
|
54 |
+
Attributes to add to graph as key=value pairs.
|
55 |
+
|
56 |
+
See Also
|
57 |
+
--------
|
58 |
+
Graph
|
59 |
+
DiGraph
|
60 |
+
MultiDiGraph
|
61 |
+
|
62 |
+
Examples
|
63 |
+
--------
|
64 |
+
Create an empty graph structure (a "null graph") with no nodes and
|
65 |
+
no edges.
|
66 |
+
|
67 |
+
>>> G = nx.MultiGraph()
|
68 |
+
|
69 |
+
G can be grown in several ways.
|
70 |
+
|
71 |
+
**Nodes:**
|
72 |
+
|
73 |
+
Add one node at a time:
|
74 |
+
|
75 |
+
>>> G.add_node(1)
|
76 |
+
|
77 |
+
Add the nodes from any container (a list, dict, set or
|
78 |
+
even the lines from a file or the nodes from another graph).
|
79 |
+
|
80 |
+
>>> G.add_nodes_from([2, 3])
|
81 |
+
>>> G.add_nodes_from(range(100, 110))
|
82 |
+
>>> H = nx.path_graph(10)
|
83 |
+
>>> G.add_nodes_from(H)
|
84 |
+
|
85 |
+
In addition to strings and integers any hashable Python object
|
86 |
+
(except None) can represent a node, e.g. a customized node object,
|
87 |
+
or even another Graph.
|
88 |
+
|
89 |
+
>>> G.add_node(H)
|
90 |
+
|
91 |
+
**Edges:**
|
92 |
+
|
93 |
+
G can also be grown by adding edges.
|
94 |
+
|
95 |
+
Add one edge,
|
96 |
+
|
97 |
+
>>> key = G.add_edge(1, 2)
|
98 |
+
|
99 |
+
a list of edges,
|
100 |
+
|
101 |
+
>>> keys = G.add_edges_from([(1, 2), (1, 3)])
|
102 |
+
|
103 |
+
or a collection of edges,
|
104 |
+
|
105 |
+
>>> keys = G.add_edges_from(H.edges)
|
106 |
+
|
107 |
+
If some edges connect nodes not yet in the graph, the nodes
|
108 |
+
are added automatically. If an edge already exists, an additional
|
109 |
+
edge is created and stored using a key to identify the edge.
|
110 |
+
By default the key is the lowest unused integer.
|
111 |
+
|
112 |
+
>>> keys = G.add_edges_from([(4, 5, {"route": 28}), (4, 5, {"route": 37})])
|
113 |
+
>>> G[4]
|
114 |
+
AdjacencyView({3: {0: {}}, 5: {0: {}, 1: {'route': 28}, 2: {'route': 37}}})
|
115 |
+
|
116 |
+
**Attributes:**
|
117 |
+
|
118 |
+
Each graph, node, and edge can hold key/value attribute pairs
|
119 |
+
in an associated attribute dictionary (the keys must be hashable).
|
120 |
+
By default these are empty, but can be added or changed using
|
121 |
+
add_edge, add_node or direct manipulation of the attribute
|
122 |
+
dictionaries named graph, node and edge respectively.
|
123 |
+
|
124 |
+
>>> G = nx.MultiGraph(day="Friday")
|
125 |
+
>>> G.graph
|
126 |
+
{'day': 'Friday'}
|
127 |
+
|
128 |
+
Add node attributes using add_node(), add_nodes_from() or G.nodes
|
129 |
+
|
130 |
+
>>> G.add_node(1, time="5pm")
|
131 |
+
>>> G.add_nodes_from([3], time="2pm")
|
132 |
+
>>> G.nodes[1]
|
133 |
+
{'time': '5pm'}
|
134 |
+
>>> G.nodes[1]["room"] = 714
|
135 |
+
>>> del G.nodes[1]["room"] # remove attribute
|
136 |
+
>>> list(G.nodes(data=True))
|
137 |
+
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
|
138 |
+
|
139 |
+
Add edge attributes using add_edge(), add_edges_from(), subscript
|
140 |
+
notation, or G.edges.
|
141 |
+
|
142 |
+
>>> key = G.add_edge(1, 2, weight=4.7)
|
143 |
+
>>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red")
|
144 |
+
>>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
|
145 |
+
>>> G[1][2][0]["weight"] = 4.7
|
146 |
+
>>> G.edges[1, 2, 0]["weight"] = 4
|
147 |
+
|
148 |
+
Warning: we protect the graph data structure by making `G.edges[1,
|
149 |
+
2, 0]` a read-only dict-like structure. However, you can assign to
|
150 |
+
attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets
|
151 |
+
to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4`.
|
152 |
+
|
153 |
+
**Shortcuts:**
|
154 |
+
|
155 |
+
Many common graph features allow python syntax to speed reporting.
|
156 |
+
|
157 |
+
>>> 1 in G # check if node in graph
|
158 |
+
True
|
159 |
+
>>> [n for n in G if n < 3] # iterate through nodes
|
160 |
+
[1, 2]
|
161 |
+
>>> len(G) # number of nodes in graph
|
162 |
+
5
|
163 |
+
>>> G[1] # adjacency dict-like view mapping neighbor -> edge key -> edge attributes
|
164 |
+
AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}})
|
165 |
+
|
166 |
+
Often the best way to traverse all edges of a graph is via the neighbors.
|
167 |
+
The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`.
|
168 |
+
|
169 |
+
>>> for n, nbrsdict in G.adjacency():
|
170 |
+
... for nbr, keydict in nbrsdict.items():
|
171 |
+
... for key, eattr in keydict.items():
|
172 |
+
... if "weight" in eattr:
|
173 |
+
... # Do something useful with the edges
|
174 |
+
... pass
|
175 |
+
|
176 |
+
But the edges() method is often more convenient:
|
177 |
+
|
178 |
+
>>> for u, v, keys, weight in G.edges(data="weight", keys=True):
|
179 |
+
... if weight is not None:
|
180 |
+
... # Do something useful with the edges
|
181 |
+
... pass
|
182 |
+
|
183 |
+
**Reporting:**
|
184 |
+
|
185 |
+
Simple graph information is obtained using methods and object-attributes.
|
186 |
+
Reporting usually provides views instead of containers to reduce memory
|
187 |
+
usage. The views update as the graph is updated similarly to dict-views.
|
188 |
+
The objects `nodes`, `edges` and `adj` provide access to data attributes
|
189 |
+
via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration
|
190 |
+
(e.g. `nodes.items()`, `nodes.data('color')`,
|
191 |
+
`nodes.data('color', default='blue')` and similarly for `edges`)
|
192 |
+
Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
|
193 |
+
|
194 |
+
For details on these and other miscellaneous methods, see below.
|
195 |
+
|
196 |
+
**Subclasses (Advanced):**
|
197 |
+
|
198 |
+
The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure.
|
199 |
+
The outer dict (node_dict) holds adjacency information keyed by node.
|
200 |
+
The next dict (adjlist_dict) represents the adjacency information
|
201 |
+
and holds edge_key dicts keyed by neighbor. The edge_key dict holds
|
202 |
+
each edge_attr dict keyed by edge key. The inner dict
|
203 |
+
(edge_attr_dict) represents the edge data and holds edge attribute
|
204 |
+
values keyed by attribute names.
|
205 |
+
|
206 |
+
Each of these four dicts in the dict-of-dict-of-dict-of-dict
|
207 |
+
structure can be replaced by a user defined dict-like object.
|
208 |
+
In general, the dict-like features should be maintained but
|
209 |
+
extra features can be added. To replace one of the dicts create
|
210 |
+
a new graph class by changing the class(!) variable holding the
|
211 |
+
factory for that dict-like structure. The variable names are
|
212 |
+
node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
|
213 |
+
adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory
|
214 |
+
and graph_attr_dict_factory.
|
215 |
+
|
216 |
+
node_dict_factory : function, (default: dict)
|
217 |
+
Factory function to be used to create the dict containing node
|
218 |
+
attributes, keyed by node id.
|
219 |
+
It should require no arguments and return a dict-like object
|
220 |
+
|
221 |
+
node_attr_dict_factory: function, (default: dict)
|
222 |
+
Factory function to be used to create the node attribute
|
223 |
+
dict which holds attribute values keyed by attribute name.
|
224 |
+
It should require no arguments and return a dict-like object
|
225 |
+
|
226 |
+
adjlist_outer_dict_factory : function, (default: dict)
|
227 |
+
Factory function to be used to create the outer-most dict
|
228 |
+
in the data structure that holds adjacency info keyed by node.
|
229 |
+
It should require no arguments and return a dict-like object.
|
230 |
+
|
231 |
+
adjlist_inner_dict_factory : function, (default: dict)
|
232 |
+
Factory function to be used to create the adjacency list
|
233 |
+
dict which holds multiedge key dicts keyed by neighbor.
|
234 |
+
It should require no arguments and return a dict-like object.
|
235 |
+
|
236 |
+
edge_key_dict_factory : function, (default: dict)
|
237 |
+
Factory function to be used to create the edge key dict
|
238 |
+
which holds edge data keyed by edge key.
|
239 |
+
It should require no arguments and return a dict-like object.
|
240 |
+
|
241 |
+
edge_attr_dict_factory : function, (default: dict)
|
242 |
+
Factory function to be used to create the edge attribute
|
243 |
+
dict which holds attribute values keyed by attribute name.
|
244 |
+
It should require no arguments and return a dict-like object.
|
245 |
+
|
246 |
+
graph_attr_dict_factory : function, (default: dict)
|
247 |
+
Factory function to be used to create the graph attribute
|
248 |
+
dict which holds attribute values keyed by attribute name.
|
249 |
+
It should require no arguments and return a dict-like object.
|
250 |
+
|
251 |
+
Typically, if your extension doesn't impact the data structure all
|
252 |
+
methods will inherited without issue except: `to_directed/to_undirected`.
|
253 |
+
By default these methods create a DiGraph/Graph class and you probably
|
254 |
+
want them to create your extension of a DiGraph/Graph. To facilitate
|
255 |
+
this we define two class variables that you can set in your subclass.
|
256 |
+
|
257 |
+
to_directed_class : callable, (default: DiGraph or MultiDiGraph)
|
258 |
+
Class to create a new graph structure in the `to_directed` method.
|
259 |
+
If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
|
260 |
+
|
261 |
+
to_undirected_class : callable, (default: Graph or MultiGraph)
|
262 |
+
Class to create a new graph structure in the `to_undirected` method.
|
263 |
+
If `None`, a NetworkX class (Graph or MultiGraph) is used.
|
264 |
+
|
265 |
+
**Subclassing Example**
|
266 |
+
|
267 |
+
Create a low memory graph class that effectively disallows edge
|
268 |
+
attributes by using a single attribute dict for all edges.
|
269 |
+
This reduces the memory used, but you lose edge attributes.
|
270 |
+
|
271 |
+
>>> class ThinGraph(nx.Graph):
|
272 |
+
... all_edge_dict = {"weight": 1}
|
273 |
+
...
|
274 |
+
... def single_edge_dict(self):
|
275 |
+
... return self.all_edge_dict
|
276 |
+
...
|
277 |
+
... edge_attr_dict_factory = single_edge_dict
|
278 |
+
>>> G = ThinGraph()
|
279 |
+
>>> G.add_edge(2, 1)
|
280 |
+
>>> G[2][1]
|
281 |
+
{'weight': 1}
|
282 |
+
>>> G.add_edge(2, 2)
|
283 |
+
>>> G[2][1] is G[2][2]
|
284 |
+
True
|
285 |
+
"""
|
286 |
+
|
287 |
+
# node_dict_factory = dict # already assigned in Graph
|
288 |
+
# adjlist_outer_dict_factory = dict
|
289 |
+
# adjlist_inner_dict_factory = dict
|
290 |
+
edge_key_dict_factory = dict
|
291 |
+
# edge_attr_dict_factory = dict
|
292 |
+
|
293 |
+
def to_directed_class(self):
|
294 |
+
"""Returns the class to use for empty directed copies.
|
295 |
+
|
296 |
+
If you subclass the base classes, use this to designate
|
297 |
+
what directed class to use for `to_directed()` copies.
|
298 |
+
"""
|
299 |
+
return nx.MultiDiGraph
|
300 |
+
|
301 |
+
def to_undirected_class(self):
|
302 |
+
"""Returns the class to use for empty undirected copies.
|
303 |
+
|
304 |
+
If you subclass the base classes, use this to designate
|
305 |
+
what directed class to use for `to_directed()` copies.
|
306 |
+
"""
|
307 |
+
return MultiGraph
|
308 |
+
|
309 |
+
def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr):
|
310 |
+
"""Initialize a graph with edges, name, or graph attributes.
|
311 |
+
|
312 |
+
Parameters
|
313 |
+
----------
|
314 |
+
incoming_graph_data : input graph
|
315 |
+
Data to initialize graph. If incoming_graph_data=None (default)
|
316 |
+
an empty graph is created. The data can be an edge list, or any
|
317 |
+
NetworkX graph object. If the corresponding optional Python
|
318 |
+
packages are installed the data can also be a 2D NumPy array, a
|
319 |
+
SciPy sparse array, or a PyGraphviz graph.
|
320 |
+
|
321 |
+
multigraph_input : bool or None (default None)
|
322 |
+
Note: Only used when `incoming_graph_data` is a dict.
|
323 |
+
If True, `incoming_graph_data` is assumed to be a
|
324 |
+
dict-of-dict-of-dict-of-dict structure keyed by
|
325 |
+
node to neighbor to edge keys to edge data for multi-edges.
|
326 |
+
A NetworkXError is raised if this is not the case.
|
327 |
+
If False, :func:`to_networkx_graph` is used to try to determine
|
328 |
+
the dict's graph data structure as either a dict-of-dict-of-dict
|
329 |
+
keyed by node to neighbor to edge data, or a dict-of-iterable
|
330 |
+
keyed by node to neighbors.
|
331 |
+
If None, the treatment for True is tried, but if it fails,
|
332 |
+
the treatment for False is tried.
|
333 |
+
|
334 |
+
attr : keyword arguments, optional (default= no attributes)
|
335 |
+
Attributes to add to graph as key=value pairs.
|
336 |
+
|
337 |
+
See Also
|
338 |
+
--------
|
339 |
+
convert
|
340 |
+
|
341 |
+
Examples
|
342 |
+
--------
|
343 |
+
>>> G = nx.MultiGraph()
|
344 |
+
>>> G = nx.MultiGraph(name="my graph")
|
345 |
+
>>> e = [(1, 2), (1, 2), (2, 3), (3, 4)] # list of edges
|
346 |
+
>>> G = nx.MultiGraph(e)
|
347 |
+
|
348 |
+
Arbitrary graph attribute pairs (key=value) may be assigned
|
349 |
+
|
350 |
+
>>> G = nx.MultiGraph(e, day="Friday")
|
351 |
+
>>> G.graph
|
352 |
+
{'day': 'Friday'}
|
353 |
+
|
354 |
+
"""
|
355 |
+
# multigraph_input can be None/True/False. So check "is not False"
|
356 |
+
if isinstance(incoming_graph_data, dict) and multigraph_input is not False:
|
357 |
+
Graph.__init__(self)
|
358 |
+
try:
|
359 |
+
convert.from_dict_of_dicts(
|
360 |
+
incoming_graph_data, create_using=self, multigraph_input=True
|
361 |
+
)
|
362 |
+
self.graph.update(attr)
|
363 |
+
except Exception as err:
|
364 |
+
if multigraph_input is True:
|
365 |
+
raise nx.NetworkXError(
|
366 |
+
f"converting multigraph_input raised:\n{type(err)}: {err}"
|
367 |
+
)
|
368 |
+
Graph.__init__(self, incoming_graph_data, **attr)
|
369 |
+
else:
|
370 |
+
Graph.__init__(self, incoming_graph_data, **attr)
|
371 |
+
|
372 |
+
@cached_property
|
373 |
+
def adj(self):
|
374 |
+
"""Graph adjacency object holding the neighbors of each node.
|
375 |
+
|
376 |
+
This object is a read-only dict-like structure with node keys
|
377 |
+
and neighbor-dict values. The neighbor-dict is keyed by neighbor
|
378 |
+
to the edgekey-data-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
|
379 |
+
the color of the edge `(3, 2, 0)` to `"blue"`.
|
380 |
+
|
381 |
+
Iterating over G.adj behaves like a dict. Useful idioms include
|
382 |
+
`for nbr, edgesdict in G.adj[n].items():`.
|
383 |
+
|
384 |
+
The neighbor information is also provided by subscripting the graph.
|
385 |
+
|
386 |
+
Examples
|
387 |
+
--------
|
388 |
+
>>> e = [(1, 2), (1, 2), (1, 3), (3, 4)] # list of edges
|
389 |
+
>>> G = nx.MultiGraph(e)
|
390 |
+
>>> G.edges[1, 2, 0]["weight"] = 3
|
391 |
+
>>> result = set()
|
392 |
+
>>> for edgekey, data in G[1][2].items():
|
393 |
+
... result.add(data.get("weight", 1))
|
394 |
+
>>> result
|
395 |
+
{1, 3}
|
396 |
+
|
397 |
+
For directed graphs, `G.adj` holds outgoing (successor) info.
|
398 |
+
"""
|
399 |
+
return MultiAdjacencyView(self._adj)
|
400 |
+
|
401 |
+
def new_edge_key(self, u, v):
|
402 |
+
"""Returns an unused key for edges between nodes `u` and `v`.
|
403 |
+
|
404 |
+
The nodes `u` and `v` do not need to be already in the graph.
|
405 |
+
|
406 |
+
Notes
|
407 |
+
-----
|
408 |
+
In the standard MultiGraph class the new key is the number of existing
|
409 |
+
edges between `u` and `v` (increased if necessary to ensure unused).
|
410 |
+
The first edge will have key 0, then 1, etc. If an edge is removed
|
411 |
+
further new_edge_keys may not be in this order.
|
412 |
+
|
413 |
+
Parameters
|
414 |
+
----------
|
415 |
+
u, v : nodes
|
416 |
+
|
417 |
+
Returns
|
418 |
+
-------
|
419 |
+
key : int
|
420 |
+
"""
|
421 |
+
try:
|
422 |
+
keydict = self._adj[u][v]
|
423 |
+
except KeyError:
|
424 |
+
return 0
|
425 |
+
key = len(keydict)
|
426 |
+
while key in keydict:
|
427 |
+
key += 1
|
428 |
+
return key
|
429 |
+
|
430 |
+
def add_edge(self, u_for_edge, v_for_edge, key=None, **attr):
|
431 |
+
"""Add an edge between u and v.
|
432 |
+
|
433 |
+
The nodes u and v will be automatically added if they are
|
434 |
+
not already in the graph.
|
435 |
+
|
436 |
+
Edge attributes can be specified with keywords or by directly
|
437 |
+
accessing the edge's attribute dictionary. See examples below.
|
438 |
+
|
439 |
+
Parameters
|
440 |
+
----------
|
441 |
+
u_for_edge, v_for_edge : nodes
|
442 |
+
Nodes can be, for example, strings or numbers.
|
443 |
+
Nodes must be hashable (and not None) Python objects.
|
444 |
+
key : hashable identifier, optional (default=lowest unused integer)
|
445 |
+
Used to distinguish multiedges between a pair of nodes.
|
446 |
+
attr : keyword arguments, optional
|
447 |
+
Edge data (or labels or objects) can be assigned using
|
448 |
+
keyword arguments.
|
449 |
+
|
450 |
+
Returns
|
451 |
+
-------
|
452 |
+
The edge key assigned to the edge.
|
453 |
+
|
454 |
+
See Also
|
455 |
+
--------
|
456 |
+
add_edges_from : add a collection of edges
|
457 |
+
|
458 |
+
Notes
|
459 |
+
-----
|
460 |
+
To replace/update edge data, use the optional key argument
|
461 |
+
to identify a unique edge. Otherwise a new edge will be created.
|
462 |
+
|
463 |
+
NetworkX algorithms designed for weighted graphs cannot use
|
464 |
+
multigraphs directly because it is not clear how to handle
|
465 |
+
multiedge weights. Convert to Graph using edge attribute
|
466 |
+
'weight' to enable weighted graph algorithms.
|
467 |
+
|
468 |
+
Default keys are generated using the method `new_edge_key()`.
|
469 |
+
This method can be overridden by subclassing the base class and
|
470 |
+
providing a custom `new_edge_key()` method.
|
471 |
+
|
472 |
+
Examples
|
473 |
+
--------
|
474 |
+
The following each add an additional edge e=(1, 2) to graph G:
|
475 |
+
|
476 |
+
>>> G = nx.MultiGraph()
|
477 |
+
>>> e = (1, 2)
|
478 |
+
>>> ekey = G.add_edge(1, 2) # explicit two-node form
|
479 |
+
>>> G.add_edge(*e) # single edge as tuple of two nodes
|
480 |
+
1
|
481 |
+
>>> G.add_edges_from([(1, 2)]) # add edges from iterable container
|
482 |
+
[2]
|
483 |
+
|
484 |
+
Associate data to edges using keywords:
|
485 |
+
|
486 |
+
>>> ekey = G.add_edge(1, 2, weight=3)
|
487 |
+
>>> ekey = G.add_edge(1, 2, key=0, weight=4) # update data for key=0
|
488 |
+
>>> ekey = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
|
489 |
+
|
490 |
+
For non-string attribute keys, use subscript notation.
|
491 |
+
|
492 |
+
>>> ekey = G.add_edge(1, 2)
|
493 |
+
>>> G[1][2][0].update({0: 5})
|
494 |
+
>>> G.edges[1, 2, 0].update({0: 5})
|
495 |
+
"""
|
496 |
+
u, v = u_for_edge, v_for_edge
|
497 |
+
# add nodes
|
498 |
+
if u not in self._adj:
|
499 |
+
if u is None:
|
500 |
+
raise ValueError("None cannot be a node")
|
501 |
+
self._adj[u] = self.adjlist_inner_dict_factory()
|
502 |
+
self._node[u] = self.node_attr_dict_factory()
|
503 |
+
if v not in self._adj:
|
504 |
+
if v is None:
|
505 |
+
raise ValueError("None cannot be a node")
|
506 |
+
self._adj[v] = self.adjlist_inner_dict_factory()
|
507 |
+
self._node[v] = self.node_attr_dict_factory()
|
508 |
+
if key is None:
|
509 |
+
key = self.new_edge_key(u, v)
|
510 |
+
if v in self._adj[u]:
|
511 |
+
keydict = self._adj[u][v]
|
512 |
+
datadict = keydict.get(key, self.edge_attr_dict_factory())
|
513 |
+
datadict.update(attr)
|
514 |
+
keydict[key] = datadict
|
515 |
+
else:
|
516 |
+
# selfloops work this way without special treatment
|
517 |
+
datadict = self.edge_attr_dict_factory()
|
518 |
+
datadict.update(attr)
|
519 |
+
keydict = self.edge_key_dict_factory()
|
520 |
+
keydict[key] = datadict
|
521 |
+
self._adj[u][v] = keydict
|
522 |
+
self._adj[v][u] = keydict
|
523 |
+
nx._clear_cache(self)
|
524 |
+
return key
|
525 |
+
|
526 |
+
def add_edges_from(self, ebunch_to_add, **attr):
|
527 |
+
"""Add all the edges in ebunch_to_add.
|
528 |
+
|
529 |
+
Parameters
|
530 |
+
----------
|
531 |
+
ebunch_to_add : container of edges
|
532 |
+
Each edge given in the container will be added to the
|
533 |
+
graph. The edges can be:
|
534 |
+
|
535 |
+
- 2-tuples (u, v) or
|
536 |
+
- 3-tuples (u, v, d) for an edge data dict d, or
|
537 |
+
- 3-tuples (u, v, k) for not iterable key k, or
|
538 |
+
- 4-tuples (u, v, k, d) for an edge with data and key k
|
539 |
+
|
540 |
+
attr : keyword arguments, optional
|
541 |
+
Edge data (or labels or objects) can be assigned using
|
542 |
+
keyword arguments.
|
543 |
+
|
544 |
+
Returns
|
545 |
+
-------
|
546 |
+
A list of edge keys assigned to the edges in `ebunch`.
|
547 |
+
|
548 |
+
See Also
|
549 |
+
--------
|
550 |
+
add_edge : add a single edge
|
551 |
+
add_weighted_edges_from : convenient way to add weighted edges
|
552 |
+
|
553 |
+
Notes
|
554 |
+
-----
|
555 |
+
Adding the same edge twice has no effect but any edge data
|
556 |
+
will be updated when each duplicate edge is added.
|
557 |
+
|
558 |
+
Edge attributes specified in an ebunch take precedence over
|
559 |
+
attributes specified via keyword arguments.
|
560 |
+
|
561 |
+
Default keys are generated using the method ``new_edge_key()``.
|
562 |
+
This method can be overridden by subclassing the base class and
|
563 |
+
providing a custom ``new_edge_key()`` method.
|
564 |
+
|
565 |
+
When adding edges from an iterator over the graph you are changing,
|
566 |
+
a `RuntimeError` can be raised with message:
|
567 |
+
`RuntimeError: dictionary changed size during iteration`. This
|
568 |
+
happens when the graph's underlying dictionary is modified during
|
569 |
+
iteration. To avoid this error, evaluate the iterator into a separate
|
570 |
+
object, e.g. by using `list(iterator_of_edges)`, and pass this
|
571 |
+
object to `G.add_edges_from`.
|
572 |
+
|
573 |
+
Examples
|
574 |
+
--------
|
575 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
576 |
+
>>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples
|
577 |
+
>>> e = zip(range(0, 3), range(1, 4))
|
578 |
+
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
|
579 |
+
|
580 |
+
Associate data to edges
|
581 |
+
|
582 |
+
>>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
|
583 |
+
>>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
|
584 |
+
|
585 |
+
Evaluate an iterator over a graph if using it to modify the same graph
|
586 |
+
|
587 |
+
>>> G = nx.MultiGraph([(1, 2), (2, 3), (3, 4)])
|
588 |
+
>>> # Grow graph by one new node, adding edges to all existing nodes.
|
589 |
+
>>> # wrong way - will raise RuntimeError
|
590 |
+
>>> # G.add_edges_from(((5, n) for n in G.nodes))
|
591 |
+
>>> # right way - note that there will be no self-edge for node 5
|
592 |
+
>>> assigned_keys = G.add_edges_from(list((5, n) for n in G.nodes))
|
593 |
+
"""
|
594 |
+
keylist = []
|
595 |
+
for e in ebunch_to_add:
|
596 |
+
ne = len(e)
|
597 |
+
if ne == 4:
|
598 |
+
u, v, key, dd = e
|
599 |
+
elif ne == 3:
|
600 |
+
u, v, dd = e
|
601 |
+
key = None
|
602 |
+
elif ne == 2:
|
603 |
+
u, v = e
|
604 |
+
dd = {}
|
605 |
+
key = None
|
606 |
+
else:
|
607 |
+
msg = f"Edge tuple {e} must be a 2-tuple, 3-tuple or 4-tuple."
|
608 |
+
raise NetworkXError(msg)
|
609 |
+
ddd = {}
|
610 |
+
ddd.update(attr)
|
611 |
+
try:
|
612 |
+
ddd.update(dd)
|
613 |
+
except (TypeError, ValueError):
|
614 |
+
if ne != 3:
|
615 |
+
raise
|
616 |
+
key = dd # ne == 3 with 3rd value not dict, must be a key
|
617 |
+
key = self.add_edge(u, v, key)
|
618 |
+
self[u][v][key].update(ddd)
|
619 |
+
keylist.append(key)
|
620 |
+
nx._clear_cache(self)
|
621 |
+
return keylist
|
622 |
+
|
623 |
+
def remove_edge(self, u, v, key=None):
|
624 |
+
"""Remove an edge between u and v.
|
625 |
+
|
626 |
+
Parameters
|
627 |
+
----------
|
628 |
+
u, v : nodes
|
629 |
+
Remove an edge between nodes u and v.
|
630 |
+
key : hashable identifier, optional (default=None)
|
631 |
+
Used to distinguish multiple edges between a pair of nodes.
|
632 |
+
If None, remove a single edge between u and v. If there are
|
633 |
+
multiple edges, removes the last edge added in terms of
|
634 |
+
insertion order.
|
635 |
+
|
636 |
+
Raises
|
637 |
+
------
|
638 |
+
NetworkXError
|
639 |
+
If there is not an edge between u and v, or
|
640 |
+
if there is no edge with the specified key.
|
641 |
+
|
642 |
+
See Also
|
643 |
+
--------
|
644 |
+
remove_edges_from : remove a collection of edges
|
645 |
+
|
646 |
+
Examples
|
647 |
+
--------
|
648 |
+
>>> G = nx.MultiGraph()
|
649 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
650 |
+
>>> G.remove_edge(0, 1)
|
651 |
+
>>> e = (1, 2)
|
652 |
+
>>> G.remove_edge(*e) # unpacks e from an edge tuple
|
653 |
+
|
654 |
+
For multiple edges
|
655 |
+
|
656 |
+
>>> G = nx.MultiGraph() # or MultiDiGraph, etc
|
657 |
+
>>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned
|
658 |
+
[0, 1, 2]
|
659 |
+
|
660 |
+
When ``key=None`` (the default), edges are removed in the opposite
|
661 |
+
order that they were added:
|
662 |
+
|
663 |
+
>>> G.remove_edge(1, 2)
|
664 |
+
>>> G.edges(keys=True)
|
665 |
+
MultiEdgeView([(1, 2, 0), (1, 2, 1)])
|
666 |
+
>>> G.remove_edge(2, 1) # edges are not directed
|
667 |
+
>>> G.edges(keys=True)
|
668 |
+
MultiEdgeView([(1, 2, 0)])
|
669 |
+
|
670 |
+
For edges with keys
|
671 |
+
|
672 |
+
>>> G = nx.MultiGraph()
|
673 |
+
>>> G.add_edge(1, 2, key="first")
|
674 |
+
'first'
|
675 |
+
>>> G.add_edge(1, 2, key="second")
|
676 |
+
'second'
|
677 |
+
>>> G.remove_edge(1, 2, key="first")
|
678 |
+
>>> G.edges(keys=True)
|
679 |
+
MultiEdgeView([(1, 2, 'second')])
|
680 |
+
|
681 |
+
"""
|
682 |
+
try:
|
683 |
+
d = self._adj[u][v]
|
684 |
+
except KeyError as err:
|
685 |
+
raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err
|
686 |
+
# remove the edge with specified data
|
687 |
+
if key is None:
|
688 |
+
d.popitem()
|
689 |
+
else:
|
690 |
+
try:
|
691 |
+
del d[key]
|
692 |
+
except KeyError as err:
|
693 |
+
msg = f"The edge {u}-{v} with key {key} is not in the graph."
|
694 |
+
raise NetworkXError(msg) from err
|
695 |
+
if len(d) == 0:
|
696 |
+
# remove the key entries if last edge
|
697 |
+
del self._adj[u][v]
|
698 |
+
if u != v: # check for selfloop
|
699 |
+
del self._adj[v][u]
|
700 |
+
nx._clear_cache(self)
|
701 |
+
|
702 |
+
def remove_edges_from(self, ebunch):
|
703 |
+
"""Remove all edges specified in ebunch.
|
704 |
+
|
705 |
+
Parameters
|
706 |
+
----------
|
707 |
+
ebunch: list or container of edge tuples
|
708 |
+
Each edge given in the list or container will be removed
|
709 |
+
from the graph. The edges can be:
|
710 |
+
|
711 |
+
- 2-tuples (u, v) A single edge between u and v is removed.
|
712 |
+
- 3-tuples (u, v, key) The edge identified by key is removed.
|
713 |
+
- 4-tuples (u, v, key, data) where data is ignored.
|
714 |
+
|
715 |
+
See Also
|
716 |
+
--------
|
717 |
+
remove_edge : remove a single edge
|
718 |
+
|
719 |
+
Notes
|
720 |
+
-----
|
721 |
+
Will fail silently if an edge in ebunch is not in the graph.
|
722 |
+
|
723 |
+
Examples
|
724 |
+
--------
|
725 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
726 |
+
>>> ebunch = [(1, 2), (2, 3)]
|
727 |
+
>>> G.remove_edges_from(ebunch)
|
728 |
+
|
729 |
+
Removing multiple copies of edges
|
730 |
+
|
731 |
+
>>> G = nx.MultiGraph()
|
732 |
+
>>> keys = G.add_edges_from([(1, 2), (1, 2), (1, 2)])
|
733 |
+
>>> G.remove_edges_from([(1, 2), (2, 1)]) # edges aren't directed
|
734 |
+
>>> list(G.edges())
|
735 |
+
[(1, 2)]
|
736 |
+
>>> G.remove_edges_from([(1, 2), (1, 2)]) # silently ignore extra copy
|
737 |
+
>>> list(G.edges) # now empty graph
|
738 |
+
[]
|
739 |
+
|
740 |
+
When the edge is a 2-tuple ``(u, v)`` but there are multiple edges between
|
741 |
+
u and v in the graph, the most recent edge (in terms of insertion
|
742 |
+
order) is removed.
|
743 |
+
|
744 |
+
>>> G = nx.MultiGraph()
|
745 |
+
>>> for key in ("x", "y", "a"):
|
746 |
+
... k = G.add_edge(0, 1, key=key)
|
747 |
+
>>> G.edges(keys=True)
|
748 |
+
MultiEdgeView([(0, 1, 'x'), (0, 1, 'y'), (0, 1, 'a')])
|
749 |
+
>>> G.remove_edges_from([(0, 1)])
|
750 |
+
>>> G.edges(keys=True)
|
751 |
+
MultiEdgeView([(0, 1, 'x'), (0, 1, 'y')])
|
752 |
+
|
753 |
+
"""
|
754 |
+
for e in ebunch:
|
755 |
+
try:
|
756 |
+
self.remove_edge(*e[:3])
|
757 |
+
except NetworkXError:
|
758 |
+
pass
|
759 |
+
nx._clear_cache(self)
|
760 |
+
|
761 |
+
def has_edge(self, u, v, key=None):
|
762 |
+
"""Returns True if the graph has an edge between nodes u and v.
|
763 |
+
|
764 |
+
This is the same as `v in G[u] or key in G[u][v]`
|
765 |
+
without KeyError exceptions.
|
766 |
+
|
767 |
+
Parameters
|
768 |
+
----------
|
769 |
+
u, v : nodes
|
770 |
+
Nodes can be, for example, strings or numbers.
|
771 |
+
|
772 |
+
key : hashable identifier, optional (default=None)
|
773 |
+
If specified return True only if the edge with
|
774 |
+
key is found.
|
775 |
+
|
776 |
+
Returns
|
777 |
+
-------
|
778 |
+
edge_ind : bool
|
779 |
+
True if edge is in the graph, False otherwise.
|
780 |
+
|
781 |
+
Examples
|
782 |
+
--------
|
783 |
+
Can be called either using two nodes u, v, an edge tuple (u, v),
|
784 |
+
or an edge tuple (u, v, key).
|
785 |
+
|
786 |
+
>>> G = nx.MultiGraph() # or MultiDiGraph
|
787 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
788 |
+
>>> G.has_edge(0, 1) # using two nodes
|
789 |
+
True
|
790 |
+
>>> e = (0, 1)
|
791 |
+
>>> G.has_edge(*e) # e is a 2-tuple (u, v)
|
792 |
+
True
|
793 |
+
>>> G.add_edge(0, 1, key="a")
|
794 |
+
'a'
|
795 |
+
>>> G.has_edge(0, 1, key="a") # specify key
|
796 |
+
True
|
797 |
+
>>> G.has_edge(1, 0, key="a") # edges aren't directed
|
798 |
+
True
|
799 |
+
>>> e = (0, 1, "a")
|
800 |
+
>>> G.has_edge(*e) # e is a 3-tuple (u, v, 'a')
|
801 |
+
True
|
802 |
+
|
803 |
+
The following syntax are equivalent:
|
804 |
+
|
805 |
+
>>> G.has_edge(0, 1)
|
806 |
+
True
|
807 |
+
>>> 1 in G[0] # though this gives :exc:`KeyError` if 0 not in G
|
808 |
+
True
|
809 |
+
>>> 0 in G[1] # other order; also gives :exc:`KeyError` if 0 not in G
|
810 |
+
True
|
811 |
+
|
812 |
+
"""
|
813 |
+
try:
|
814 |
+
if key is None:
|
815 |
+
return v in self._adj[u]
|
816 |
+
else:
|
817 |
+
return key in self._adj[u][v]
|
818 |
+
except KeyError:
|
819 |
+
return False
|
820 |
+
|
821 |
+
@cached_property
|
822 |
+
def edges(self):
|
823 |
+
"""Returns an iterator over the edges.
|
824 |
+
|
825 |
+
edges(self, nbunch=None, data=False, keys=False, default=None)
|
826 |
+
|
827 |
+
The MultiEdgeView provides set-like operations on the edge-tuples
|
828 |
+
as well as edge attribute lookup. When called, it also provides
|
829 |
+
an EdgeDataView object which allows control of access to edge
|
830 |
+
attributes (but does not provide set-like operations).
|
831 |
+
Hence, ``G.edges[u, v, k]['color']`` provides the value of the color
|
832 |
+
attribute for the edge from ``u`` to ``v`` with key ``k`` while
|
833 |
+
``for (u, v, k, c) in G.edges(data='color', keys=True, default="red"):``
|
834 |
+
iterates through all the edges yielding the color attribute with
|
835 |
+
default `'red'` if no color attribute exists.
|
836 |
+
|
837 |
+
Edges are returned as tuples with optional data and keys
|
838 |
+
in the order (node, neighbor, key, data). If ``keys=True`` is not
|
839 |
+
provided, the tuples will just be (node, neighbor, data), but
|
840 |
+
multiple tuples with the same node and neighbor will be generated
|
841 |
+
when multiple edges exist between two nodes.
|
842 |
+
|
843 |
+
Parameters
|
844 |
+
----------
|
845 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
846 |
+
The view will only report edges from these nodes.
|
847 |
+
data : string or bool, optional (default=False)
|
848 |
+
The edge attribute returned in 3-tuple (u, v, ddict[data]).
|
849 |
+
If True, return edge attribute dict in 3-tuple (u, v, ddict).
|
850 |
+
If False, return 2-tuple (u, v).
|
851 |
+
keys : bool, optional (default=False)
|
852 |
+
If True, return edge keys with each edge, creating (u, v, k)
|
853 |
+
tuples or (u, v, k, d) tuples if data is also requested.
|
854 |
+
default : value, optional (default=None)
|
855 |
+
Value used for edges that don't have the requested attribute.
|
856 |
+
Only relevant if data is not True or False.
|
857 |
+
|
858 |
+
Returns
|
859 |
+
-------
|
860 |
+
edges : MultiEdgeView
|
861 |
+
A view of edge attributes, usually it iterates over (u, v)
|
862 |
+
(u, v, k) or (u, v, k, d) tuples of edges, but can also be
|
863 |
+
used for attribute lookup as ``edges[u, v, k]['foo']``.
|
864 |
+
|
865 |
+
Notes
|
866 |
+
-----
|
867 |
+
Nodes in nbunch that are not in the graph will be (quietly) ignored.
|
868 |
+
For directed graphs this returns the out-edges.
|
869 |
+
|
870 |
+
Examples
|
871 |
+
--------
|
872 |
+
>>> G = nx.MultiGraph()
|
873 |
+
>>> nx.add_path(G, [0, 1, 2])
|
874 |
+
>>> key = G.add_edge(2, 3, weight=5)
|
875 |
+
>>> key2 = G.add_edge(2, 1, weight=2) # multi-edge
|
876 |
+
>>> [e for e in G.edges()]
|
877 |
+
[(0, 1), (1, 2), (1, 2), (2, 3)]
|
878 |
+
>>> G.edges.data() # default data is {} (empty dict)
|
879 |
+
MultiEdgeDataView([(0, 1, {}), (1, 2, {}), (1, 2, {'weight': 2}), (2, 3, {'weight': 5})])
|
880 |
+
>>> G.edges.data("weight", default=1)
|
881 |
+
MultiEdgeDataView([(0, 1, 1), (1, 2, 1), (1, 2, 2), (2, 3, 5)])
|
882 |
+
>>> G.edges(keys=True) # default keys are integers
|
883 |
+
MultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)])
|
884 |
+
>>> G.edges.data(keys=True)
|
885 |
+
MultiEdgeDataView([(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {'weight': 2}), (2, 3, 0, {'weight': 5})])
|
886 |
+
>>> G.edges.data("weight", default=1, keys=True)
|
887 |
+
MultiEdgeDataView([(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 2), (2, 3, 0, 5)])
|
888 |
+
>>> G.edges([0, 3]) # Note ordering of tuples from listed sources
|
889 |
+
MultiEdgeDataView([(0, 1), (3, 2)])
|
890 |
+
>>> G.edges([0, 3, 2, 1]) # Note ordering of tuples
|
891 |
+
MultiEdgeDataView([(0, 1), (3, 2), (2, 1), (2, 1)])
|
892 |
+
>>> G.edges(0)
|
893 |
+
MultiEdgeDataView([(0, 1)])
|
894 |
+
"""
|
895 |
+
return MultiEdgeView(self)
|
896 |
+
|
897 |
+
def get_edge_data(self, u, v, key=None, default=None):
|
898 |
+
"""Returns the attribute dictionary associated with edge (u, v,
|
899 |
+
key).
|
900 |
+
|
901 |
+
If a key is not provided, returns a dictionary mapping edge keys
|
902 |
+
to attribute dictionaries for each edge between u and v.
|
903 |
+
|
904 |
+
This is identical to `G[u][v][key]` except the default is returned
|
905 |
+
instead of an exception is the edge doesn't exist.
|
906 |
+
|
907 |
+
Parameters
|
908 |
+
----------
|
909 |
+
u, v : nodes
|
910 |
+
|
911 |
+
default : any Python object (default=None)
|
912 |
+
Value to return if the specific edge (u, v, key) is not
|
913 |
+
found, OR if there are no edges between u and v and no key
|
914 |
+
is specified.
|
915 |
+
|
916 |
+
key : hashable identifier, optional (default=None)
|
917 |
+
Return data only for the edge with specified key, as an
|
918 |
+
attribute dictionary (rather than a dictionary mapping keys
|
919 |
+
to attribute dictionaries).
|
920 |
+
|
921 |
+
Returns
|
922 |
+
-------
|
923 |
+
edge_dict : dictionary
|
924 |
+
The edge attribute dictionary, OR a dictionary mapping edge
|
925 |
+
keys to attribute dictionaries for each of those edges if no
|
926 |
+
specific key is provided (even if there's only one edge
|
927 |
+
between u and v).
|
928 |
+
|
929 |
+
Examples
|
930 |
+
--------
|
931 |
+
>>> G = nx.MultiGraph() # or MultiDiGraph
|
932 |
+
>>> key = G.add_edge(0, 1, key="a", weight=7)
|
933 |
+
>>> G[0][1]["a"] # key='a'
|
934 |
+
{'weight': 7}
|
935 |
+
>>> G.edges[0, 1, "a"] # key='a'
|
936 |
+
{'weight': 7}
|
937 |
+
|
938 |
+
Warning: we protect the graph data structure by making
|
939 |
+
`G.edges` and `G[1][2]` read-only dict-like structures.
|
940 |
+
However, you can assign values to attributes in e.g.
|
941 |
+
`G.edges[1, 2, 'a']` or `G[1][2]['a']` using an additional
|
942 |
+
bracket as shown next. You need to specify all edge info
|
943 |
+
to assign to the edge data associated with an edge.
|
944 |
+
|
945 |
+
>>> G[0][1]["a"]["weight"] = 10
|
946 |
+
>>> G.edges[0, 1, "a"]["weight"] = 10
|
947 |
+
>>> G[0][1]["a"]["weight"]
|
948 |
+
10
|
949 |
+
>>> G.edges[1, 0, "a"]["weight"]
|
950 |
+
10
|
951 |
+
|
952 |
+
>>> G = nx.MultiGraph() # or MultiDiGraph
|
953 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
954 |
+
>>> G.edges[0, 1, 0]["weight"] = 5
|
955 |
+
>>> G.get_edge_data(0, 1)
|
956 |
+
{0: {'weight': 5}}
|
957 |
+
>>> e = (0, 1)
|
958 |
+
>>> G.get_edge_data(*e) # tuple form
|
959 |
+
{0: {'weight': 5}}
|
960 |
+
>>> G.get_edge_data(3, 0) # edge not in graph, returns None
|
961 |
+
>>> G.get_edge_data(3, 0, default=0) # edge not in graph, return default
|
962 |
+
0
|
963 |
+
>>> G.get_edge_data(1, 0, 0) # specific key gives back
|
964 |
+
{'weight': 5}
|
965 |
+
"""
|
966 |
+
try:
|
967 |
+
if key is None:
|
968 |
+
return self._adj[u][v]
|
969 |
+
else:
|
970 |
+
return self._adj[u][v][key]
|
971 |
+
except KeyError:
|
972 |
+
return default
|
973 |
+
|
974 |
+
@cached_property
|
975 |
+
def degree(self):
|
976 |
+
"""A DegreeView for the Graph as G.degree or G.degree().
|
977 |
+
|
978 |
+
The node degree is the number of edges adjacent to the node.
|
979 |
+
The weighted node degree is the sum of the edge weights for
|
980 |
+
edges incident to that node.
|
981 |
+
|
982 |
+
This object provides an iterator for (node, degree) as well as
|
983 |
+
lookup for the degree for a single node.
|
984 |
+
|
985 |
+
Parameters
|
986 |
+
----------
|
987 |
+
nbunch : single node, container, or all nodes (default= all nodes)
|
988 |
+
The view will only report edges incident to these nodes.
|
989 |
+
|
990 |
+
weight : string or None, optional (default=None)
|
991 |
+
The name of an edge attribute that holds the numerical value used
|
992 |
+
as a weight. If None, then each edge has weight 1.
|
993 |
+
The degree is the sum of the edge weights adjacent to the node.
|
994 |
+
|
995 |
+
Returns
|
996 |
+
-------
|
997 |
+
MultiDegreeView or int
|
998 |
+
If multiple nodes are requested (the default), returns a `MultiDegreeView`
|
999 |
+
mapping nodes to their degree.
|
1000 |
+
If a single node is requested, returns the degree of the node as an integer.
|
1001 |
+
|
1002 |
+
Examples
|
1003 |
+
--------
|
1004 |
+
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1005 |
+
>>> nx.add_path(G, [0, 1, 2, 3])
|
1006 |
+
>>> G.degree(0) # node 0 with degree 1
|
1007 |
+
1
|
1008 |
+
>>> list(G.degree([0, 1]))
|
1009 |
+
[(0, 1), (1, 2)]
|
1010 |
+
|
1011 |
+
"""
|
1012 |
+
return MultiDegreeView(self)
|
1013 |
+
|
1014 |
+
def is_multigraph(self):
|
1015 |
+
"""Returns True if graph is a multigraph, False otherwise."""
|
1016 |
+
return True
|
1017 |
+
|
1018 |
+
def is_directed(self):
|
1019 |
+
"""Returns True if graph is directed, False otherwise."""
|
1020 |
+
return False
|
1021 |
+
|
1022 |
+
def copy(self, as_view=False):
|
1023 |
+
"""Returns a copy of the graph.
|
1024 |
+
|
1025 |
+
The copy method by default returns an independent shallow copy
|
1026 |
+
of the graph and attributes. That is, if an attribute is a
|
1027 |
+
container, that container is shared by the original an the copy.
|
1028 |
+
Use Python's `copy.deepcopy` for new containers.
|
1029 |
+
|
1030 |
+
If `as_view` is True then a view is returned instead of a copy.
|
1031 |
+
|
1032 |
+
Notes
|
1033 |
+
-----
|
1034 |
+
All copies reproduce the graph structure, but data attributes
|
1035 |
+
may be handled in different ways. There are four types of copies
|
1036 |
+
of a graph that people might want.
|
1037 |
+
|
1038 |
+
Deepcopy -- A "deepcopy" copies the graph structure as well as
|
1039 |
+
all data attributes and any objects they might contain.
|
1040 |
+
The entire graph object is new so that changes in the copy
|
1041 |
+
do not affect the original object. (see Python's copy.deepcopy)
|
1042 |
+
|
1043 |
+
Data Reference (Shallow) -- For a shallow copy the graph structure
|
1044 |
+
is copied but the edge, node and graph attribute dicts are
|
1045 |
+
references to those in the original graph. This saves
|
1046 |
+
time and memory but could cause confusion if you change an attribute
|
1047 |
+
in one graph and it changes the attribute in the other.
|
1048 |
+
NetworkX does not provide this level of shallow copy.
|
1049 |
+
|
1050 |
+
Independent Shallow -- This copy creates new independent attribute
|
1051 |
+
dicts and then does a shallow copy of the attributes. That is, any
|
1052 |
+
attributes that are containers are shared between the new graph
|
1053 |
+
and the original. This is exactly what `dict.copy()` provides.
|
1054 |
+
You can obtain this style copy using:
|
1055 |
+
|
1056 |
+
>>> G = nx.path_graph(5)
|
1057 |
+
>>> H = G.copy()
|
1058 |
+
>>> H = G.copy(as_view=False)
|
1059 |
+
>>> H = nx.Graph(G)
|
1060 |
+
>>> H = G.__class__(G)
|
1061 |
+
|
1062 |
+
Fresh Data -- For fresh data, the graph structure is copied while
|
1063 |
+
new empty data attribute dicts are created. The resulting graph
|
1064 |
+
is independent of the original and it has no edge, node or graph
|
1065 |
+
attributes. Fresh copies are not enabled. Instead use:
|
1066 |
+
|
1067 |
+
>>> H = G.__class__()
|
1068 |
+
>>> H.add_nodes_from(G)
|
1069 |
+
>>> H.add_edges_from(G.edges)
|
1070 |
+
|
1071 |
+
View -- Inspired by dict-views, graph-views act like read-only
|
1072 |
+
versions of the original graph, providing a copy of the original
|
1073 |
+
structure without requiring any memory for copying the information.
|
1074 |
+
|
1075 |
+
See the Python copy module for more information on shallow
|
1076 |
+
and deep copies, https://docs.python.org/3/library/copy.html.
|
1077 |
+
|
1078 |
+
Parameters
|
1079 |
+
----------
|
1080 |
+
as_view : bool, optional (default=False)
|
1081 |
+
If True, the returned graph-view provides a read-only view
|
1082 |
+
of the original graph without actually copying any data.
|
1083 |
+
|
1084 |
+
Returns
|
1085 |
+
-------
|
1086 |
+
G : Graph
|
1087 |
+
A copy of the graph.
|
1088 |
+
|
1089 |
+
See Also
|
1090 |
+
--------
|
1091 |
+
to_directed: return a directed copy of the graph.
|
1092 |
+
|
1093 |
+
Examples
|
1094 |
+
--------
|
1095 |
+
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
|
1096 |
+
>>> H = G.copy()
|
1097 |
+
|
1098 |
+
"""
|
1099 |
+
if as_view is True:
|
1100 |
+
return nx.graphviews.generic_graph_view(self)
|
1101 |
+
G = self.__class__()
|
1102 |
+
G.graph.update(self.graph)
|
1103 |
+
G.add_nodes_from((n, d.copy()) for n, d in self._node.items())
|
1104 |
+
G.add_edges_from(
|
1105 |
+
(u, v, key, datadict.copy())
|
1106 |
+
for u, nbrs in self._adj.items()
|
1107 |
+
for v, keydict in nbrs.items()
|
1108 |
+
for key, datadict in keydict.items()
|
1109 |
+
)
|
1110 |
+
return G
|
1111 |
+
|
1112 |
+
def to_directed(self, as_view=False):
|
1113 |
+
"""Returns a directed representation of the graph.
|
1114 |
+
|
1115 |
+
Returns
|
1116 |
+
-------
|
1117 |
+
G : MultiDiGraph
|
1118 |
+
A directed graph with the same name, same nodes, and with
|
1119 |
+
each edge (u, v, k, data) replaced by two directed edges
|
1120 |
+
(u, v, k, data) and (v, u, k, data).
|
1121 |
+
|
1122 |
+
Notes
|
1123 |
+
-----
|
1124 |
+
This returns a "deepcopy" of the edge, node, and
|
1125 |
+
graph attributes which attempts to completely copy
|
1126 |
+
all of the data and references.
|
1127 |
+
|
1128 |
+
This is in contrast to the similar D=MultiDiGraph(G) which
|
1129 |
+
returns a shallow copy of the data.
|
1130 |
+
|
1131 |
+
See the Python copy module for more information on shallow
|
1132 |
+
and deep copies, https://docs.python.org/3/library/copy.html.
|
1133 |
+
|
1134 |
+
Warning: If you have subclassed MultiGraph to use dict-like objects
|
1135 |
+
in the data structure, those changes do not transfer to the
|
1136 |
+
MultiDiGraph created by this method.
|
1137 |
+
|
1138 |
+
Examples
|
1139 |
+
--------
|
1140 |
+
>>> G = nx.MultiGraph()
|
1141 |
+
>>> G.add_edge(0, 1)
|
1142 |
+
0
|
1143 |
+
>>> G.add_edge(0, 1)
|
1144 |
+
1
|
1145 |
+
>>> H = G.to_directed()
|
1146 |
+
>>> list(H.edges)
|
1147 |
+
[(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)]
|
1148 |
+
|
1149 |
+
If already directed, return a (deep) copy
|
1150 |
+
|
1151 |
+
>>> G = nx.MultiDiGraph()
|
1152 |
+
>>> G.add_edge(0, 1)
|
1153 |
+
0
|
1154 |
+
>>> H = G.to_directed()
|
1155 |
+
>>> list(H.edges)
|
1156 |
+
[(0, 1, 0)]
|
1157 |
+
"""
|
1158 |
+
graph_class = self.to_directed_class()
|
1159 |
+
if as_view is True:
|
1160 |
+
return nx.graphviews.generic_graph_view(self, graph_class)
|
1161 |
+
# deepcopy when not a view
|
1162 |
+
G = graph_class()
|
1163 |
+
G.graph.update(deepcopy(self.graph))
|
1164 |
+
G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
|
1165 |
+
G.add_edges_from(
|
1166 |
+
(u, v, key, deepcopy(datadict))
|
1167 |
+
for u, nbrs in self.adj.items()
|
1168 |
+
for v, keydict in nbrs.items()
|
1169 |
+
for key, datadict in keydict.items()
|
1170 |
+
)
|
1171 |
+
return G
|
1172 |
+
|
1173 |
+
def to_undirected(self, as_view=False):
|
1174 |
+
"""Returns an undirected copy of the graph.
|
1175 |
+
|
1176 |
+
Returns
|
1177 |
+
-------
|
1178 |
+
G : Graph/MultiGraph
|
1179 |
+
A deepcopy of the graph.
|
1180 |
+
|
1181 |
+
See Also
|
1182 |
+
--------
|
1183 |
+
copy, add_edge, add_edges_from
|
1184 |
+
|
1185 |
+
Notes
|
1186 |
+
-----
|
1187 |
+
This returns a "deepcopy" of the edge, node, and
|
1188 |
+
graph attributes which attempts to completely copy
|
1189 |
+
all of the data and references.
|
1190 |
+
|
1191 |
+
This is in contrast to the similar `G = nx.MultiGraph(D)`
|
1192 |
+
which returns a shallow copy of the data.
|
1193 |
+
|
1194 |
+
See the Python copy module for more information on shallow
|
1195 |
+
and deep copies, https://docs.python.org/3/library/copy.html.
|
1196 |
+
|
1197 |
+
Warning: If you have subclassed MultiGraph to use dict-like
|
1198 |
+
objects in the data structure, those changes do not transfer
|
1199 |
+
to the MultiGraph created by this method.
|
1200 |
+
|
1201 |
+
Examples
|
1202 |
+
--------
|
1203 |
+
>>> G = nx.MultiGraph([(0, 1), (0, 1), (1, 2)])
|
1204 |
+
>>> H = G.to_directed()
|
1205 |
+
>>> list(H.edges)
|
1206 |
+
[(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 2, 0), (2, 1, 0)]
|
1207 |
+
>>> G2 = H.to_undirected()
|
1208 |
+
>>> list(G2.edges)
|
1209 |
+
[(0, 1, 0), (0, 1, 1), (1, 2, 0)]
|
1210 |
+
"""
|
1211 |
+
graph_class = self.to_undirected_class()
|
1212 |
+
if as_view is True:
|
1213 |
+
return nx.graphviews.generic_graph_view(self, graph_class)
|
1214 |
+
# deepcopy when not a view
|
1215 |
+
G = graph_class()
|
1216 |
+
G.graph.update(deepcopy(self.graph))
|
1217 |
+
G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
|
1218 |
+
G.add_edges_from(
|
1219 |
+
(u, v, key, deepcopy(datadict))
|
1220 |
+
for u, nbrs in self._adj.items()
|
1221 |
+
for v, keydict in nbrs.items()
|
1222 |
+
for key, datadict in keydict.items()
|
1223 |
+
)
|
1224 |
+
return G
|
1225 |
+
|
1226 |
+
def number_of_edges(self, u=None, v=None):
|
1227 |
+
"""Returns the number of edges between two nodes.
|
1228 |
+
|
1229 |
+
Parameters
|
1230 |
+
----------
|
1231 |
+
u, v : nodes, optional (Default=all edges)
|
1232 |
+
If u and v are specified, return the number of edges between
|
1233 |
+
u and v. Otherwise return the total number of all edges.
|
1234 |
+
|
1235 |
+
Returns
|
1236 |
+
-------
|
1237 |
+
nedges : int
|
1238 |
+
The number of edges in the graph. If nodes `u` and `v` are
|
1239 |
+
specified return the number of edges between those nodes. If
|
1240 |
+
the graph is directed, this only returns the number of edges
|
1241 |
+
from `u` to `v`.
|
1242 |
+
|
1243 |
+
See Also
|
1244 |
+
--------
|
1245 |
+
size
|
1246 |
+
|
1247 |
+
Examples
|
1248 |
+
--------
|
1249 |
+
For undirected multigraphs, this method counts the total number
|
1250 |
+
of edges in the graph::
|
1251 |
+
|
1252 |
+
>>> G = nx.MultiGraph()
|
1253 |
+
>>> G.add_edges_from([(0, 1), (0, 1), (1, 2)])
|
1254 |
+
[0, 1, 0]
|
1255 |
+
>>> G.number_of_edges()
|
1256 |
+
3
|
1257 |
+
|
1258 |
+
If you specify two nodes, this counts the total number of edges
|
1259 |
+
joining the two nodes::
|
1260 |
+
|
1261 |
+
>>> G.number_of_edges(0, 1)
|
1262 |
+
2
|
1263 |
+
|
1264 |
+
For directed multigraphs, this method can count the total number
|
1265 |
+
of directed edges from `u` to `v`::
|
1266 |
+
|
1267 |
+
>>> G = nx.MultiDiGraph()
|
1268 |
+
>>> G.add_edges_from([(0, 1), (0, 1), (1, 0)])
|
1269 |
+
[0, 1, 0]
|
1270 |
+
>>> G.number_of_edges(0, 1)
|
1271 |
+
2
|
1272 |
+
>>> G.number_of_edges(1, 0)
|
1273 |
+
1
|
1274 |
+
|
1275 |
+
"""
|
1276 |
+
if u is None:
|
1277 |
+
return self.size()
|
1278 |
+
try:
|
1279 |
+
edgedata = self._adj[u][v]
|
1280 |
+
except KeyError:
|
1281 |
+
return 0 # no such edge
|
1282 |
+
return len(edgedata)
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/reportviews.py
ADDED
@@ -0,0 +1,1438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
View Classes provide node, edge and degree "views" of a graph.
|
3 |
+
|
4 |
+
Views for nodes, edges and degree are provided for all base graph classes.
|
5 |
+
A view means a read-only object that is quick to create, automatically
|
6 |
+
updated when the graph changes, and provides basic access like `n in V`,
|
7 |
+
`for n in V`, `V[n]` and sometimes set operations.
|
8 |
+
|
9 |
+
The views are read-only iterable containers that are updated as the
|
10 |
+
graph is updated. As with dicts, the graph should not be updated
|
11 |
+
while iterating through the view. Views can be iterated multiple times.
|
12 |
+
|
13 |
+
Edge and Node views also allow data attribute lookup.
|
14 |
+
The resulting attribute dict is writable as `G.edges[3, 4]['color']='red'`
|
15 |
+
Degree views allow lookup of degree values for single nodes.
|
16 |
+
Weighted degree is supported with the `weight` argument.
|
17 |
+
|
18 |
+
NodeView
|
19 |
+
========
|
20 |
+
|
21 |
+
`V = G.nodes` (or `V = G.nodes()`) allows `len(V)`, `n in V`, set
|
22 |
+
operations e.g. "G.nodes & H.nodes", and `dd = G.nodes[n]`, where
|
23 |
+
`dd` is the node data dict. Iteration is over the nodes by default.
|
24 |
+
|
25 |
+
NodeDataView
|
26 |
+
============
|
27 |
+
|
28 |
+
To iterate over (node, data) pairs, use arguments to `G.nodes()`
|
29 |
+
to create a DataView e.g. `DV = G.nodes(data='color', default='red')`.
|
30 |
+
The DataView iterates as `for n, color in DV` and allows
|
31 |
+
`(n, 'red') in DV`. Using `DV = G.nodes(data=True)`, the DataViews
|
32 |
+
use the full datadict in writeable form also allowing contain testing as
|
33 |
+
`(n, {'color': 'red'}) in VD`. DataViews allow set operations when
|
34 |
+
data attributes are hashable.
|
35 |
+
|
36 |
+
DegreeView
|
37 |
+
==========
|
38 |
+
|
39 |
+
`V = G.degree` allows iteration over (node, degree) pairs as well
|
40 |
+
as lookup: `deg=V[n]`. There are many flavors of DegreeView
|
41 |
+
for In/Out/Directed/Multi. For Directed Graphs, `G.degree`
|
42 |
+
counts both in and out going edges. `G.out_degree` and
|
43 |
+
`G.in_degree` count only specific directions.
|
44 |
+
Weighted degree using edge data attributes is provide via
|
45 |
+
`V = G.degree(weight='attr_name')` where any string with the
|
46 |
+
attribute name can be used. `weight=None` is the default.
|
47 |
+
No set operations are implemented for degrees, use NodeView.
|
48 |
+
|
49 |
+
The argument `nbunch` restricts iteration to nodes in nbunch.
|
50 |
+
The DegreeView can still lookup any node even if nbunch is specified.
|
51 |
+
|
52 |
+
EdgeView
|
53 |
+
========
|
54 |
+
|
55 |
+
`V = G.edges` or `V = G.edges()` allows iteration over edges as well as
|
56 |
+
`e in V`, set operations and edge data lookup `dd = G.edges[2, 3]`.
|
57 |
+
Iteration is over 2-tuples `(u, v)` for Graph/DiGraph. For multigraphs
|
58 |
+
edges 3-tuples `(u, v, key)` are the default but 2-tuples can be obtained
|
59 |
+
via `V = G.edges(keys=False)`.
|
60 |
+
|
61 |
+
Set operations for directed graphs treat the edges as a set of 2-tuples.
|
62 |
+
For undirected graphs, 2-tuples are not a unique representation of edges.
|
63 |
+
So long as the set being compared to contains unique representations
|
64 |
+
of its edges, the set operations will act as expected. If the other
|
65 |
+
set contains both `(0, 1)` and `(1, 0)` however, the result of set
|
66 |
+
operations may contain both representations of the same edge.
|
67 |
+
|
68 |
+
EdgeDataView
|
69 |
+
============
|
70 |
+
|
71 |
+
Edge data can be reported using an EdgeDataView typically created
|
72 |
+
by calling an EdgeView: `DV = G.edges(data='weight', default=1)`.
|
73 |
+
The EdgeDataView allows iteration over edge tuples, membership checking
|
74 |
+
but no set operations.
|
75 |
+
|
76 |
+
Iteration depends on `data` and `default` and for multigraph `keys`
|
77 |
+
If `data is False` (the default) then iterate over 2-tuples `(u, v)`.
|
78 |
+
If `data is True` iterate over 3-tuples `(u, v, datadict)`.
|
79 |
+
Otherwise iterate over `(u, v, datadict.get(data, default))`.
|
80 |
+
For Multigraphs, if `keys is True`, replace `u, v` with `u, v, key`
|
81 |
+
to create 3-tuples and 4-tuples.
|
82 |
+
|
83 |
+
The argument `nbunch` restricts edges to those incident to nodes in nbunch.
|
84 |
+
"""
|
85 |
+
from collections.abc import Mapping, Set
|
86 |
+
|
87 |
+
import networkx as nx
|
88 |
+
|
89 |
+
__all__ = [
|
90 |
+
"NodeView",
|
91 |
+
"NodeDataView",
|
92 |
+
"EdgeView",
|
93 |
+
"OutEdgeView",
|
94 |
+
"InEdgeView",
|
95 |
+
"EdgeDataView",
|
96 |
+
"OutEdgeDataView",
|
97 |
+
"InEdgeDataView",
|
98 |
+
"MultiEdgeView",
|
99 |
+
"OutMultiEdgeView",
|
100 |
+
"InMultiEdgeView",
|
101 |
+
"MultiEdgeDataView",
|
102 |
+
"OutMultiEdgeDataView",
|
103 |
+
"InMultiEdgeDataView",
|
104 |
+
"DegreeView",
|
105 |
+
"DiDegreeView",
|
106 |
+
"InDegreeView",
|
107 |
+
"OutDegreeView",
|
108 |
+
"MultiDegreeView",
|
109 |
+
"DiMultiDegreeView",
|
110 |
+
"InMultiDegreeView",
|
111 |
+
"OutMultiDegreeView",
|
112 |
+
]
|
113 |
+
|
114 |
+
|
115 |
+
# NodeViews
|
116 |
+
class NodeView(Mapping, Set):
|
117 |
+
"""A NodeView class to act as G.nodes for a NetworkX Graph
|
118 |
+
|
119 |
+
Set operations act on the nodes without considering data.
|
120 |
+
Iteration is over nodes. Node data can be looked up like a dict.
|
121 |
+
Use NodeDataView to iterate over node data or to specify a data
|
122 |
+
attribute for lookup. NodeDataView is created by calling the NodeView.
|
123 |
+
|
124 |
+
Parameters
|
125 |
+
----------
|
126 |
+
graph : NetworkX graph-like class
|
127 |
+
|
128 |
+
Examples
|
129 |
+
--------
|
130 |
+
>>> G = nx.path_graph(3)
|
131 |
+
>>> NV = G.nodes()
|
132 |
+
>>> 2 in NV
|
133 |
+
True
|
134 |
+
>>> for n in NV:
|
135 |
+
... print(n)
|
136 |
+
0
|
137 |
+
1
|
138 |
+
2
|
139 |
+
>>> assert NV & {1, 2, 3} == {1, 2}
|
140 |
+
|
141 |
+
>>> G.add_node(2, color="blue")
|
142 |
+
>>> NV[2]
|
143 |
+
{'color': 'blue'}
|
144 |
+
>>> G.add_node(8, color="red")
|
145 |
+
>>> NDV = G.nodes(data=True)
|
146 |
+
>>> (2, NV[2]) in NDV
|
147 |
+
True
|
148 |
+
>>> for n, dd in NDV:
|
149 |
+
... print((n, dd.get("color", "aqua")))
|
150 |
+
(0, 'aqua')
|
151 |
+
(1, 'aqua')
|
152 |
+
(2, 'blue')
|
153 |
+
(8, 'red')
|
154 |
+
>>> NDV[2] == NV[2]
|
155 |
+
True
|
156 |
+
|
157 |
+
>>> NVdata = G.nodes(data="color", default="aqua")
|
158 |
+
>>> (2, NVdata[2]) in NVdata
|
159 |
+
True
|
160 |
+
>>> for n, dd in NVdata:
|
161 |
+
... print((n, dd))
|
162 |
+
(0, 'aqua')
|
163 |
+
(1, 'aqua')
|
164 |
+
(2, 'blue')
|
165 |
+
(8, 'red')
|
166 |
+
>>> NVdata[2] == NV[2] # NVdata gets 'color', NV gets datadict
|
167 |
+
False
|
168 |
+
"""
|
169 |
+
|
170 |
+
__slots__ = ("_nodes",)
|
171 |
+
|
172 |
+
def __getstate__(self):
|
173 |
+
return {"_nodes": self._nodes}
|
174 |
+
|
175 |
+
def __setstate__(self, state):
|
176 |
+
self._nodes = state["_nodes"]
|
177 |
+
|
178 |
+
def __init__(self, graph):
|
179 |
+
self._nodes = graph._node
|
180 |
+
|
181 |
+
# Mapping methods
|
182 |
+
def __len__(self):
|
183 |
+
return len(self._nodes)
|
184 |
+
|
185 |
+
def __iter__(self):
|
186 |
+
return iter(self._nodes)
|
187 |
+
|
188 |
+
def __getitem__(self, n):
|
189 |
+
if isinstance(n, slice):
|
190 |
+
raise nx.NetworkXError(
|
191 |
+
f"{type(self).__name__} does not support slicing, "
|
192 |
+
f"try list(G.nodes)[{n.start}:{n.stop}:{n.step}]"
|
193 |
+
)
|
194 |
+
return self._nodes[n]
|
195 |
+
|
196 |
+
# Set methods
|
197 |
+
def __contains__(self, n):
|
198 |
+
return n in self._nodes
|
199 |
+
|
200 |
+
@classmethod
|
201 |
+
def _from_iterable(cls, it):
|
202 |
+
return set(it)
|
203 |
+
|
204 |
+
# DataView method
|
205 |
+
def __call__(self, data=False, default=None):
|
206 |
+
if data is False:
|
207 |
+
return self
|
208 |
+
return NodeDataView(self._nodes, data, default)
|
209 |
+
|
210 |
+
def data(self, data=True, default=None):
|
211 |
+
"""
|
212 |
+
Return a read-only view of node data.
|
213 |
+
|
214 |
+
Parameters
|
215 |
+
----------
|
216 |
+
data : bool or node data key, default=True
|
217 |
+
If ``data=True`` (the default), return a `NodeDataView` object that
|
218 |
+
maps each node to *all* of its attributes. `data` may also be an
|
219 |
+
arbitrary key, in which case the `NodeDataView` maps each node to
|
220 |
+
the value for the keyed attribute. In this case, if a node does
|
221 |
+
not have the `data` attribute, the `default` value is used.
|
222 |
+
default : object, default=None
|
223 |
+
The value used when a node does not have a specific attribute.
|
224 |
+
|
225 |
+
Returns
|
226 |
+
-------
|
227 |
+
NodeDataView
|
228 |
+
The layout of the returned NodeDataView depends on the value of the
|
229 |
+
`data` parameter.
|
230 |
+
|
231 |
+
Notes
|
232 |
+
-----
|
233 |
+
If ``data=False``, returns a `NodeView` object without data.
|
234 |
+
|
235 |
+
See Also
|
236 |
+
--------
|
237 |
+
NodeDataView
|
238 |
+
|
239 |
+
Examples
|
240 |
+
--------
|
241 |
+
>>> G = nx.Graph()
|
242 |
+
>>> G.add_nodes_from(
|
243 |
+
... [
|
244 |
+
... (0, {"color": "red", "weight": 10}),
|
245 |
+
... (1, {"color": "blue"}),
|
246 |
+
... (2, {"color": "yellow", "weight": 2}),
|
247 |
+
... ]
|
248 |
+
... )
|
249 |
+
|
250 |
+
Accessing node data with ``data=True`` (the default) returns a
|
251 |
+
NodeDataView mapping each node to all of its attributes:
|
252 |
+
|
253 |
+
>>> G.nodes.data()
|
254 |
+
NodeDataView({0: {'color': 'red', 'weight': 10}, 1: {'color': 'blue'}, 2: {'color': 'yellow', 'weight': 2}})
|
255 |
+
|
256 |
+
If `data` represents a key in the node attribute dict, a NodeDataView mapping
|
257 |
+
the nodes to the value for that specific key is returned:
|
258 |
+
|
259 |
+
>>> G.nodes.data("color")
|
260 |
+
NodeDataView({0: 'red', 1: 'blue', 2: 'yellow'}, data='color')
|
261 |
+
|
262 |
+
If a specific key is not found in an attribute dict, the value specified
|
263 |
+
by `default` is returned:
|
264 |
+
|
265 |
+
>>> G.nodes.data("weight", default=-999)
|
266 |
+
NodeDataView({0: 10, 1: -999, 2: 2}, data='weight')
|
267 |
+
|
268 |
+
Note that there is no check that the `data` key is in any of the
|
269 |
+
node attribute dictionaries:
|
270 |
+
|
271 |
+
>>> G.nodes.data("height")
|
272 |
+
NodeDataView({0: None, 1: None, 2: None}, data='height')
|
273 |
+
"""
|
274 |
+
if data is False:
|
275 |
+
return self
|
276 |
+
return NodeDataView(self._nodes, data, default)
|
277 |
+
|
278 |
+
def __str__(self):
|
279 |
+
return str(list(self))
|
280 |
+
|
281 |
+
def __repr__(self):
|
282 |
+
return f"{self.__class__.__name__}({tuple(self)})"
|
283 |
+
|
284 |
+
|
285 |
+
class NodeDataView(Set):
|
286 |
+
"""A DataView class for nodes of a NetworkX Graph
|
287 |
+
|
288 |
+
The main use for this class is to iterate through node-data pairs.
|
289 |
+
The data can be the entire data-dictionary for each node, or it
|
290 |
+
can be a specific attribute (with default) for each node.
|
291 |
+
Set operations are enabled with NodeDataView, but don't work in
|
292 |
+
cases where the data is not hashable. Use with caution.
|
293 |
+
Typically, set operations on nodes use NodeView, not NodeDataView.
|
294 |
+
That is, they use `G.nodes` instead of `G.nodes(data='foo')`.
|
295 |
+
|
296 |
+
Parameters
|
297 |
+
==========
|
298 |
+
graph : NetworkX graph-like class
|
299 |
+
data : bool or string (default=False)
|
300 |
+
default : object (default=None)
|
301 |
+
"""
|
302 |
+
|
303 |
+
__slots__ = ("_nodes", "_data", "_default")
|
304 |
+
|
305 |
+
def __getstate__(self):
|
306 |
+
return {"_nodes": self._nodes, "_data": self._data, "_default": self._default}
|
307 |
+
|
308 |
+
def __setstate__(self, state):
|
309 |
+
self._nodes = state["_nodes"]
|
310 |
+
self._data = state["_data"]
|
311 |
+
self._default = state["_default"]
|
312 |
+
|
313 |
+
def __init__(self, nodedict, data=False, default=None):
|
314 |
+
self._nodes = nodedict
|
315 |
+
self._data = data
|
316 |
+
self._default = default
|
317 |
+
|
318 |
+
@classmethod
|
319 |
+
def _from_iterable(cls, it):
|
320 |
+
try:
|
321 |
+
return set(it)
|
322 |
+
except TypeError as err:
|
323 |
+
if "unhashable" in str(err):
|
324 |
+
msg = " : Could be b/c data=True or your values are unhashable"
|
325 |
+
raise TypeError(str(err) + msg) from err
|
326 |
+
raise
|
327 |
+
|
328 |
+
def __len__(self):
|
329 |
+
return len(self._nodes)
|
330 |
+
|
331 |
+
def __iter__(self):
|
332 |
+
data = self._data
|
333 |
+
if data is False:
|
334 |
+
return iter(self._nodes)
|
335 |
+
if data is True:
|
336 |
+
return iter(self._nodes.items())
|
337 |
+
return (
|
338 |
+
(n, dd[data] if data in dd else self._default)
|
339 |
+
for n, dd in self._nodes.items()
|
340 |
+
)
|
341 |
+
|
342 |
+
def __contains__(self, n):
|
343 |
+
try:
|
344 |
+
node_in = n in self._nodes
|
345 |
+
except TypeError:
|
346 |
+
n, d = n
|
347 |
+
return n in self._nodes and self[n] == d
|
348 |
+
if node_in is True:
|
349 |
+
return node_in
|
350 |
+
try:
|
351 |
+
n, d = n
|
352 |
+
except (TypeError, ValueError):
|
353 |
+
return False
|
354 |
+
return n in self._nodes and self[n] == d
|
355 |
+
|
356 |
+
def __getitem__(self, n):
|
357 |
+
if isinstance(n, slice):
|
358 |
+
raise nx.NetworkXError(
|
359 |
+
f"{type(self).__name__} does not support slicing, "
|
360 |
+
f"try list(G.nodes.data())[{n.start}:{n.stop}:{n.step}]"
|
361 |
+
)
|
362 |
+
ddict = self._nodes[n]
|
363 |
+
data = self._data
|
364 |
+
if data is False or data is True:
|
365 |
+
return ddict
|
366 |
+
return ddict[data] if data in ddict else self._default
|
367 |
+
|
368 |
+
def __str__(self):
|
369 |
+
return str(list(self))
|
370 |
+
|
371 |
+
def __repr__(self):
|
372 |
+
name = self.__class__.__name__
|
373 |
+
if self._data is False:
|
374 |
+
return f"{name}({tuple(self)})"
|
375 |
+
if self._data is True:
|
376 |
+
return f"{name}({dict(self)})"
|
377 |
+
return f"{name}({dict(self)}, data={self._data!r})"
|
378 |
+
|
379 |
+
|
380 |
+
# DegreeViews
|
381 |
+
class DiDegreeView:
|
382 |
+
"""A View class for degree of nodes in a NetworkX Graph
|
383 |
+
|
384 |
+
The functionality is like dict.items() with (node, degree) pairs.
|
385 |
+
Additional functionality includes read-only lookup of node degree,
|
386 |
+
and calling with optional features nbunch (for only a subset of nodes)
|
387 |
+
and weight (use edge weights to compute degree).
|
388 |
+
|
389 |
+
Parameters
|
390 |
+
==========
|
391 |
+
graph : NetworkX graph-like class
|
392 |
+
nbunch : node, container of nodes, or None meaning all nodes (default=None)
|
393 |
+
weight : bool or string (default=None)
|
394 |
+
|
395 |
+
Notes
|
396 |
+
-----
|
397 |
+
DegreeView can still lookup any node even if nbunch is specified.
|
398 |
+
|
399 |
+
Examples
|
400 |
+
--------
|
401 |
+
>>> G = nx.path_graph(3)
|
402 |
+
>>> DV = G.degree()
|
403 |
+
>>> assert DV[2] == 1
|
404 |
+
>>> assert sum(deg for n, deg in DV) == 4
|
405 |
+
|
406 |
+
>>> DVweight = G.degree(weight="span")
|
407 |
+
>>> G.add_edge(1, 2, span=34)
|
408 |
+
>>> DVweight[2]
|
409 |
+
34
|
410 |
+
>>> DVweight[0] # default edge weight is 1
|
411 |
+
1
|
412 |
+
>>> sum(span for n, span in DVweight) # sum weighted degrees
|
413 |
+
70
|
414 |
+
|
415 |
+
>>> DVnbunch = G.degree(nbunch=(1, 2))
|
416 |
+
>>> assert len(list(DVnbunch)) == 2 # iteration over nbunch only
|
417 |
+
"""
|
418 |
+
|
419 |
+
def __init__(self, G, nbunch=None, weight=None):
|
420 |
+
self._graph = G
|
421 |
+
self._succ = G._succ if hasattr(G, "_succ") else G._adj
|
422 |
+
self._pred = G._pred if hasattr(G, "_pred") else G._adj
|
423 |
+
self._nodes = self._succ if nbunch is None else list(G.nbunch_iter(nbunch))
|
424 |
+
self._weight = weight
|
425 |
+
|
426 |
+
def __call__(self, nbunch=None, weight=None):
|
427 |
+
if nbunch is None:
|
428 |
+
if weight == self._weight:
|
429 |
+
return self
|
430 |
+
return self.__class__(self._graph, None, weight)
|
431 |
+
try:
|
432 |
+
if nbunch in self._nodes:
|
433 |
+
if weight == self._weight:
|
434 |
+
return self[nbunch]
|
435 |
+
return self.__class__(self._graph, None, weight)[nbunch]
|
436 |
+
except TypeError:
|
437 |
+
pass
|
438 |
+
return self.__class__(self._graph, nbunch, weight)
|
439 |
+
|
440 |
+
def __getitem__(self, n):
|
441 |
+
weight = self._weight
|
442 |
+
succs = self._succ[n]
|
443 |
+
preds = self._pred[n]
|
444 |
+
if weight is None:
|
445 |
+
return len(succs) + len(preds)
|
446 |
+
return sum(dd.get(weight, 1) for dd in succs.values()) + sum(
|
447 |
+
dd.get(weight, 1) for dd in preds.values()
|
448 |
+
)
|
449 |
+
|
450 |
+
def __iter__(self):
|
451 |
+
weight = self._weight
|
452 |
+
if weight is None:
|
453 |
+
for n in self._nodes:
|
454 |
+
succs = self._succ[n]
|
455 |
+
preds = self._pred[n]
|
456 |
+
yield (n, len(succs) + len(preds))
|
457 |
+
else:
|
458 |
+
for n in self._nodes:
|
459 |
+
succs = self._succ[n]
|
460 |
+
preds = self._pred[n]
|
461 |
+
deg = sum(dd.get(weight, 1) for dd in succs.values()) + sum(
|
462 |
+
dd.get(weight, 1) for dd in preds.values()
|
463 |
+
)
|
464 |
+
yield (n, deg)
|
465 |
+
|
466 |
+
def __len__(self):
|
467 |
+
return len(self._nodes)
|
468 |
+
|
469 |
+
def __str__(self):
|
470 |
+
return str(list(self))
|
471 |
+
|
472 |
+
def __repr__(self):
|
473 |
+
return f"{self.__class__.__name__}({dict(self)})"
|
474 |
+
|
475 |
+
|
476 |
+
class DegreeView(DiDegreeView):
|
477 |
+
"""A DegreeView class to act as G.degree for a NetworkX Graph
|
478 |
+
|
479 |
+
Typical usage focuses on iteration over `(node, degree)` pairs.
|
480 |
+
The degree is by default the number of edges incident to the node.
|
481 |
+
Optional argument `weight` enables weighted degree using the edge
|
482 |
+
attribute named in the `weight` argument. Reporting and iteration
|
483 |
+
can also be restricted to a subset of nodes using `nbunch`.
|
484 |
+
|
485 |
+
Additional functionality include node lookup so that `G.degree[n]`
|
486 |
+
reported the (possibly weighted) degree of node `n`. Calling the
|
487 |
+
view creates a view with different arguments `nbunch` or `weight`.
|
488 |
+
|
489 |
+
Parameters
|
490 |
+
==========
|
491 |
+
graph : NetworkX graph-like class
|
492 |
+
nbunch : node, container of nodes, or None meaning all nodes (default=None)
|
493 |
+
weight : string or None (default=None)
|
494 |
+
|
495 |
+
Notes
|
496 |
+
-----
|
497 |
+
DegreeView can still lookup any node even if nbunch is specified.
|
498 |
+
|
499 |
+
Examples
|
500 |
+
--------
|
501 |
+
>>> G = nx.path_graph(3)
|
502 |
+
>>> DV = G.degree()
|
503 |
+
>>> assert DV[2] == 1
|
504 |
+
>>> assert G.degree[2] == 1
|
505 |
+
>>> assert sum(deg for n, deg in DV) == 4
|
506 |
+
|
507 |
+
>>> DVweight = G.degree(weight="span")
|
508 |
+
>>> G.add_edge(1, 2, span=34)
|
509 |
+
>>> DVweight[2]
|
510 |
+
34
|
511 |
+
>>> DVweight[0] # default edge weight is 1
|
512 |
+
1
|
513 |
+
>>> sum(span for n, span in DVweight) # sum weighted degrees
|
514 |
+
70
|
515 |
+
|
516 |
+
>>> DVnbunch = G.degree(nbunch=(1, 2))
|
517 |
+
>>> assert len(list(DVnbunch)) == 2 # iteration over nbunch only
|
518 |
+
"""
|
519 |
+
|
520 |
+
def __getitem__(self, n):
|
521 |
+
weight = self._weight
|
522 |
+
nbrs = self._succ[n]
|
523 |
+
if weight is None:
|
524 |
+
return len(nbrs) + (n in nbrs)
|
525 |
+
return sum(dd.get(weight, 1) for dd in nbrs.values()) + (
|
526 |
+
n in nbrs and nbrs[n].get(weight, 1)
|
527 |
+
)
|
528 |
+
|
529 |
+
def __iter__(self):
|
530 |
+
weight = self._weight
|
531 |
+
if weight is None:
|
532 |
+
for n in self._nodes:
|
533 |
+
nbrs = self._succ[n]
|
534 |
+
yield (n, len(nbrs) + (n in nbrs))
|
535 |
+
else:
|
536 |
+
for n in self._nodes:
|
537 |
+
nbrs = self._succ[n]
|
538 |
+
deg = sum(dd.get(weight, 1) for dd in nbrs.values()) + (
|
539 |
+
n in nbrs and nbrs[n].get(weight, 1)
|
540 |
+
)
|
541 |
+
yield (n, deg)
|
542 |
+
|
543 |
+
|
544 |
+
class OutDegreeView(DiDegreeView):
|
545 |
+
"""A DegreeView class to report out_degree for a DiGraph; See DegreeView"""
|
546 |
+
|
547 |
+
def __getitem__(self, n):
|
548 |
+
weight = self._weight
|
549 |
+
nbrs = self._succ[n]
|
550 |
+
if self._weight is None:
|
551 |
+
return len(nbrs)
|
552 |
+
return sum(dd.get(self._weight, 1) for dd in nbrs.values())
|
553 |
+
|
554 |
+
def __iter__(self):
|
555 |
+
weight = self._weight
|
556 |
+
if weight is None:
|
557 |
+
for n in self._nodes:
|
558 |
+
succs = self._succ[n]
|
559 |
+
yield (n, len(succs))
|
560 |
+
else:
|
561 |
+
for n in self._nodes:
|
562 |
+
succs = self._succ[n]
|
563 |
+
deg = sum(dd.get(weight, 1) for dd in succs.values())
|
564 |
+
yield (n, deg)
|
565 |
+
|
566 |
+
|
567 |
+
class InDegreeView(DiDegreeView):
|
568 |
+
"""A DegreeView class to report in_degree for a DiGraph; See DegreeView"""
|
569 |
+
|
570 |
+
def __getitem__(self, n):
|
571 |
+
weight = self._weight
|
572 |
+
nbrs = self._pred[n]
|
573 |
+
if weight is None:
|
574 |
+
return len(nbrs)
|
575 |
+
return sum(dd.get(weight, 1) for dd in nbrs.values())
|
576 |
+
|
577 |
+
def __iter__(self):
|
578 |
+
weight = self._weight
|
579 |
+
if weight is None:
|
580 |
+
for n in self._nodes:
|
581 |
+
preds = self._pred[n]
|
582 |
+
yield (n, len(preds))
|
583 |
+
else:
|
584 |
+
for n in self._nodes:
|
585 |
+
preds = self._pred[n]
|
586 |
+
deg = sum(dd.get(weight, 1) for dd in preds.values())
|
587 |
+
yield (n, deg)
|
588 |
+
|
589 |
+
|
590 |
+
class MultiDegreeView(DiDegreeView):
|
591 |
+
"""A DegreeView class for undirected multigraphs; See DegreeView"""
|
592 |
+
|
593 |
+
def __getitem__(self, n):
|
594 |
+
weight = self._weight
|
595 |
+
nbrs = self._succ[n]
|
596 |
+
if weight is None:
|
597 |
+
return sum(len(keys) for keys in nbrs.values()) + (
|
598 |
+
n in nbrs and len(nbrs[n])
|
599 |
+
)
|
600 |
+
# edge weighted graph - degree is sum of nbr edge weights
|
601 |
+
deg = sum(
|
602 |
+
d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values()
|
603 |
+
)
|
604 |
+
if n in nbrs:
|
605 |
+
deg += sum(d.get(weight, 1) for d in nbrs[n].values())
|
606 |
+
return deg
|
607 |
+
|
608 |
+
def __iter__(self):
|
609 |
+
weight = self._weight
|
610 |
+
if weight is None:
|
611 |
+
for n in self._nodes:
|
612 |
+
nbrs = self._succ[n]
|
613 |
+
deg = sum(len(keys) for keys in nbrs.values()) + (
|
614 |
+
n in nbrs and len(nbrs[n])
|
615 |
+
)
|
616 |
+
yield (n, deg)
|
617 |
+
else:
|
618 |
+
for n in self._nodes:
|
619 |
+
nbrs = self._succ[n]
|
620 |
+
deg = sum(
|
621 |
+
d.get(weight, 1)
|
622 |
+
for key_dict in nbrs.values()
|
623 |
+
for d in key_dict.values()
|
624 |
+
)
|
625 |
+
if n in nbrs:
|
626 |
+
deg += sum(d.get(weight, 1) for d in nbrs[n].values())
|
627 |
+
yield (n, deg)
|
628 |
+
|
629 |
+
|
630 |
+
class DiMultiDegreeView(DiDegreeView):
|
631 |
+
"""A DegreeView class for MultiDiGraph; See DegreeView"""
|
632 |
+
|
633 |
+
def __getitem__(self, n):
|
634 |
+
weight = self._weight
|
635 |
+
succs = self._succ[n]
|
636 |
+
preds = self._pred[n]
|
637 |
+
if weight is None:
|
638 |
+
return sum(len(keys) for keys in succs.values()) + sum(
|
639 |
+
len(keys) for keys in preds.values()
|
640 |
+
)
|
641 |
+
# edge weighted graph - degree is sum of nbr edge weights
|
642 |
+
deg = sum(
|
643 |
+
d.get(weight, 1) for key_dict in succs.values() for d in key_dict.values()
|
644 |
+
) + sum(
|
645 |
+
d.get(weight, 1) for key_dict in preds.values() for d in key_dict.values()
|
646 |
+
)
|
647 |
+
return deg
|
648 |
+
|
649 |
+
def __iter__(self):
|
650 |
+
weight = self._weight
|
651 |
+
if weight is None:
|
652 |
+
for n in self._nodes:
|
653 |
+
succs = self._succ[n]
|
654 |
+
preds = self._pred[n]
|
655 |
+
deg = sum(len(keys) for keys in succs.values()) + sum(
|
656 |
+
len(keys) for keys in preds.values()
|
657 |
+
)
|
658 |
+
yield (n, deg)
|
659 |
+
else:
|
660 |
+
for n in self._nodes:
|
661 |
+
succs = self._succ[n]
|
662 |
+
preds = self._pred[n]
|
663 |
+
deg = sum(
|
664 |
+
d.get(weight, 1)
|
665 |
+
for key_dict in succs.values()
|
666 |
+
for d in key_dict.values()
|
667 |
+
) + sum(
|
668 |
+
d.get(weight, 1)
|
669 |
+
for key_dict in preds.values()
|
670 |
+
for d in key_dict.values()
|
671 |
+
)
|
672 |
+
yield (n, deg)
|
673 |
+
|
674 |
+
|
675 |
+
class InMultiDegreeView(DiDegreeView):
|
676 |
+
"""A DegreeView class for inward degree of MultiDiGraph; See DegreeView"""
|
677 |
+
|
678 |
+
def __getitem__(self, n):
|
679 |
+
weight = self._weight
|
680 |
+
nbrs = self._pred[n]
|
681 |
+
if weight is None:
|
682 |
+
return sum(len(data) for data in nbrs.values())
|
683 |
+
# edge weighted graph - degree is sum of nbr edge weights
|
684 |
+
return sum(
|
685 |
+
d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values()
|
686 |
+
)
|
687 |
+
|
688 |
+
def __iter__(self):
|
689 |
+
weight = self._weight
|
690 |
+
if weight is None:
|
691 |
+
for n in self._nodes:
|
692 |
+
nbrs = self._pred[n]
|
693 |
+
deg = sum(len(data) for data in nbrs.values())
|
694 |
+
yield (n, deg)
|
695 |
+
else:
|
696 |
+
for n in self._nodes:
|
697 |
+
nbrs = self._pred[n]
|
698 |
+
deg = sum(
|
699 |
+
d.get(weight, 1)
|
700 |
+
for key_dict in nbrs.values()
|
701 |
+
for d in key_dict.values()
|
702 |
+
)
|
703 |
+
yield (n, deg)
|
704 |
+
|
705 |
+
|
706 |
+
class OutMultiDegreeView(DiDegreeView):
|
707 |
+
"""A DegreeView class for outward degree of MultiDiGraph; See DegreeView"""
|
708 |
+
|
709 |
+
def __getitem__(self, n):
|
710 |
+
weight = self._weight
|
711 |
+
nbrs = self._succ[n]
|
712 |
+
if weight is None:
|
713 |
+
return sum(len(data) for data in nbrs.values())
|
714 |
+
# edge weighted graph - degree is sum of nbr edge weights
|
715 |
+
return sum(
|
716 |
+
d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values()
|
717 |
+
)
|
718 |
+
|
719 |
+
def __iter__(self):
|
720 |
+
weight = self._weight
|
721 |
+
if weight is None:
|
722 |
+
for n in self._nodes:
|
723 |
+
nbrs = self._succ[n]
|
724 |
+
deg = sum(len(data) for data in nbrs.values())
|
725 |
+
yield (n, deg)
|
726 |
+
else:
|
727 |
+
for n in self._nodes:
|
728 |
+
nbrs = self._succ[n]
|
729 |
+
deg = sum(
|
730 |
+
d.get(weight, 1)
|
731 |
+
for key_dict in nbrs.values()
|
732 |
+
for d in key_dict.values()
|
733 |
+
)
|
734 |
+
yield (n, deg)
|
735 |
+
|
736 |
+
|
737 |
+
# EdgeDataViews
|
738 |
+
class OutEdgeDataView:
|
739 |
+
"""EdgeDataView for outward edges of DiGraph; See EdgeDataView"""
|
740 |
+
|
741 |
+
__slots__ = (
|
742 |
+
"_viewer",
|
743 |
+
"_nbunch",
|
744 |
+
"_data",
|
745 |
+
"_default",
|
746 |
+
"_adjdict",
|
747 |
+
"_nodes_nbrs",
|
748 |
+
"_report",
|
749 |
+
)
|
750 |
+
|
751 |
+
def __getstate__(self):
|
752 |
+
return {
|
753 |
+
"viewer": self._viewer,
|
754 |
+
"nbunch": self._nbunch,
|
755 |
+
"data": self._data,
|
756 |
+
"default": self._default,
|
757 |
+
}
|
758 |
+
|
759 |
+
def __setstate__(self, state):
|
760 |
+
self.__init__(**state)
|
761 |
+
|
762 |
+
def __init__(self, viewer, nbunch=None, data=False, *, default=None):
|
763 |
+
self._viewer = viewer
|
764 |
+
adjdict = self._adjdict = viewer._adjdict
|
765 |
+
if nbunch is None:
|
766 |
+
self._nodes_nbrs = adjdict.items
|
767 |
+
else:
|
768 |
+
# dict retains order of nodes but acts like a set
|
769 |
+
nbunch = dict.fromkeys(viewer._graph.nbunch_iter(nbunch))
|
770 |
+
self._nodes_nbrs = lambda: [(n, adjdict[n]) for n in nbunch]
|
771 |
+
self._nbunch = nbunch
|
772 |
+
self._data = data
|
773 |
+
self._default = default
|
774 |
+
# Set _report based on data and default
|
775 |
+
if data is True:
|
776 |
+
self._report = lambda n, nbr, dd: (n, nbr, dd)
|
777 |
+
elif data is False:
|
778 |
+
self._report = lambda n, nbr, dd: (n, nbr)
|
779 |
+
else: # data is attribute name
|
780 |
+
self._report = (
|
781 |
+
lambda n, nbr, dd: (n, nbr, dd[data])
|
782 |
+
if data in dd
|
783 |
+
else (n, nbr, default)
|
784 |
+
)
|
785 |
+
|
786 |
+
def __len__(self):
|
787 |
+
return sum(len(nbrs) for n, nbrs in self._nodes_nbrs())
|
788 |
+
|
789 |
+
def __iter__(self):
|
790 |
+
return (
|
791 |
+
self._report(n, nbr, dd)
|
792 |
+
for n, nbrs in self._nodes_nbrs()
|
793 |
+
for nbr, dd in nbrs.items()
|
794 |
+
)
|
795 |
+
|
796 |
+
def __contains__(self, e):
|
797 |
+
u, v = e[:2]
|
798 |
+
if self._nbunch is not None and u not in self._nbunch:
|
799 |
+
return False # this edge doesn't start in nbunch
|
800 |
+
try:
|
801 |
+
ddict = self._adjdict[u][v]
|
802 |
+
except KeyError:
|
803 |
+
return False
|
804 |
+
return e == self._report(u, v, ddict)
|
805 |
+
|
806 |
+
def __str__(self):
|
807 |
+
return str(list(self))
|
808 |
+
|
809 |
+
def __repr__(self):
|
810 |
+
return f"{self.__class__.__name__}({list(self)})"
|
811 |
+
|
812 |
+
|
813 |
+
class EdgeDataView(OutEdgeDataView):
|
814 |
+
"""A EdgeDataView class for edges of Graph
|
815 |
+
|
816 |
+
This view is primarily used to iterate over the edges reporting
|
817 |
+
edges as node-tuples with edge data optionally reported. The
|
818 |
+
argument `nbunch` allows restriction to edges incident to nodes
|
819 |
+
in that container/singleton. The default (nbunch=None)
|
820 |
+
reports all edges. The arguments `data` and `default` control
|
821 |
+
what edge data is reported. The default `data is False` reports
|
822 |
+
only node-tuples for each edge. If `data is True` the entire edge
|
823 |
+
data dict is returned. Otherwise `data` is assumed to hold the name
|
824 |
+
of the edge attribute to report with default `default` if that
|
825 |
+
edge attribute is not present.
|
826 |
+
|
827 |
+
Parameters
|
828 |
+
----------
|
829 |
+
nbunch : container of nodes, node or None (default None)
|
830 |
+
data : False, True or string (default False)
|
831 |
+
default : default value (default None)
|
832 |
+
|
833 |
+
Examples
|
834 |
+
--------
|
835 |
+
>>> G = nx.path_graph(3)
|
836 |
+
>>> G.add_edge(1, 2, foo="bar")
|
837 |
+
>>> list(G.edges(data="foo", default="biz"))
|
838 |
+
[(0, 1, 'biz'), (1, 2, 'bar')]
|
839 |
+
>>> assert (0, 1, "biz") in G.edges(data="foo", default="biz")
|
840 |
+
"""
|
841 |
+
|
842 |
+
__slots__ = ()
|
843 |
+
|
844 |
+
def __len__(self):
|
845 |
+
return sum(1 for e in self)
|
846 |
+
|
847 |
+
def __iter__(self):
|
848 |
+
seen = {}
|
849 |
+
for n, nbrs in self._nodes_nbrs():
|
850 |
+
for nbr, dd in nbrs.items():
|
851 |
+
if nbr not in seen:
|
852 |
+
yield self._report(n, nbr, dd)
|
853 |
+
seen[n] = 1
|
854 |
+
del seen
|
855 |
+
|
856 |
+
def __contains__(self, e):
|
857 |
+
u, v = e[:2]
|
858 |
+
if self._nbunch is not None and u not in self._nbunch and v not in self._nbunch:
|
859 |
+
return False # this edge doesn't start and it doesn't end in nbunch
|
860 |
+
try:
|
861 |
+
ddict = self._adjdict[u][v]
|
862 |
+
except KeyError:
|
863 |
+
return False
|
864 |
+
return e == self._report(u, v, ddict)
|
865 |
+
|
866 |
+
|
867 |
+
class InEdgeDataView(OutEdgeDataView):
|
868 |
+
"""An EdgeDataView class for outward edges of DiGraph; See EdgeDataView"""
|
869 |
+
|
870 |
+
__slots__ = ()
|
871 |
+
|
872 |
+
def __iter__(self):
|
873 |
+
return (
|
874 |
+
self._report(nbr, n, dd)
|
875 |
+
for n, nbrs in self._nodes_nbrs()
|
876 |
+
for nbr, dd in nbrs.items()
|
877 |
+
)
|
878 |
+
|
879 |
+
def __contains__(self, e):
|
880 |
+
u, v = e[:2]
|
881 |
+
if self._nbunch is not None and v not in self._nbunch:
|
882 |
+
return False # this edge doesn't end in nbunch
|
883 |
+
try:
|
884 |
+
ddict = self._adjdict[v][u]
|
885 |
+
except KeyError:
|
886 |
+
return False
|
887 |
+
return e == self._report(u, v, ddict)
|
888 |
+
|
889 |
+
|
890 |
+
class OutMultiEdgeDataView(OutEdgeDataView):
|
891 |
+
"""An EdgeDataView for outward edges of MultiDiGraph; See EdgeDataView"""
|
892 |
+
|
893 |
+
__slots__ = ("keys",)
|
894 |
+
|
895 |
+
def __getstate__(self):
|
896 |
+
return {
|
897 |
+
"viewer": self._viewer,
|
898 |
+
"nbunch": self._nbunch,
|
899 |
+
"keys": self.keys,
|
900 |
+
"data": self._data,
|
901 |
+
"default": self._default,
|
902 |
+
}
|
903 |
+
|
904 |
+
def __setstate__(self, state):
|
905 |
+
self.__init__(**state)
|
906 |
+
|
907 |
+
def __init__(self, viewer, nbunch=None, data=False, *, default=None, keys=False):
|
908 |
+
self._viewer = viewer
|
909 |
+
adjdict = self._adjdict = viewer._adjdict
|
910 |
+
self.keys = keys
|
911 |
+
if nbunch is None:
|
912 |
+
self._nodes_nbrs = adjdict.items
|
913 |
+
else:
|
914 |
+
# dict retains order of nodes but acts like a set
|
915 |
+
nbunch = dict.fromkeys(viewer._graph.nbunch_iter(nbunch))
|
916 |
+
self._nodes_nbrs = lambda: [(n, adjdict[n]) for n in nbunch]
|
917 |
+
self._nbunch = nbunch
|
918 |
+
self._data = data
|
919 |
+
self._default = default
|
920 |
+
# Set _report based on data and default
|
921 |
+
if data is True:
|
922 |
+
if keys is True:
|
923 |
+
self._report = lambda n, nbr, k, dd: (n, nbr, k, dd)
|
924 |
+
else:
|
925 |
+
self._report = lambda n, nbr, k, dd: (n, nbr, dd)
|
926 |
+
elif data is False:
|
927 |
+
if keys is True:
|
928 |
+
self._report = lambda n, nbr, k, dd: (n, nbr, k)
|
929 |
+
else:
|
930 |
+
self._report = lambda n, nbr, k, dd: (n, nbr)
|
931 |
+
else: # data is attribute name
|
932 |
+
if keys is True:
|
933 |
+
self._report = (
|
934 |
+
lambda n, nbr, k, dd: (n, nbr, k, dd[data])
|
935 |
+
if data in dd
|
936 |
+
else (n, nbr, k, default)
|
937 |
+
)
|
938 |
+
else:
|
939 |
+
self._report = (
|
940 |
+
lambda n, nbr, k, dd: (n, nbr, dd[data])
|
941 |
+
if data in dd
|
942 |
+
else (n, nbr, default)
|
943 |
+
)
|
944 |
+
|
945 |
+
def __len__(self):
|
946 |
+
return sum(1 for e in self)
|
947 |
+
|
948 |
+
def __iter__(self):
|
949 |
+
return (
|
950 |
+
self._report(n, nbr, k, dd)
|
951 |
+
for n, nbrs in self._nodes_nbrs()
|
952 |
+
for nbr, kd in nbrs.items()
|
953 |
+
for k, dd in kd.items()
|
954 |
+
)
|
955 |
+
|
956 |
+
def __contains__(self, e):
|
957 |
+
u, v = e[:2]
|
958 |
+
if self._nbunch is not None and u not in self._nbunch:
|
959 |
+
return False # this edge doesn't start in nbunch
|
960 |
+
try:
|
961 |
+
kdict = self._adjdict[u][v]
|
962 |
+
except KeyError:
|
963 |
+
return False
|
964 |
+
if self.keys is True:
|
965 |
+
k = e[2]
|
966 |
+
try:
|
967 |
+
dd = kdict[k]
|
968 |
+
except KeyError:
|
969 |
+
return False
|
970 |
+
return e == self._report(u, v, k, dd)
|
971 |
+
return any(e == self._report(u, v, k, dd) for k, dd in kdict.items())
|
972 |
+
|
973 |
+
|
974 |
+
class MultiEdgeDataView(OutMultiEdgeDataView):
|
975 |
+
"""An EdgeDataView class for edges of MultiGraph; See EdgeDataView"""
|
976 |
+
|
977 |
+
__slots__ = ()
|
978 |
+
|
979 |
+
def __iter__(self):
|
980 |
+
seen = {}
|
981 |
+
for n, nbrs in self._nodes_nbrs():
|
982 |
+
for nbr, kd in nbrs.items():
|
983 |
+
if nbr not in seen:
|
984 |
+
for k, dd in kd.items():
|
985 |
+
yield self._report(n, nbr, k, dd)
|
986 |
+
seen[n] = 1
|
987 |
+
del seen
|
988 |
+
|
989 |
+
def __contains__(self, e):
|
990 |
+
u, v = e[:2]
|
991 |
+
if self._nbunch is not None and u not in self._nbunch and v not in self._nbunch:
|
992 |
+
return False # this edge doesn't start and doesn't end in nbunch
|
993 |
+
try:
|
994 |
+
kdict = self._adjdict[u][v]
|
995 |
+
except KeyError:
|
996 |
+
try:
|
997 |
+
kdict = self._adjdict[v][u]
|
998 |
+
except KeyError:
|
999 |
+
return False
|
1000 |
+
if self.keys is True:
|
1001 |
+
k = e[2]
|
1002 |
+
try:
|
1003 |
+
dd = kdict[k]
|
1004 |
+
except KeyError:
|
1005 |
+
return False
|
1006 |
+
return e == self._report(u, v, k, dd)
|
1007 |
+
return any(e == self._report(u, v, k, dd) for k, dd in kdict.items())
|
1008 |
+
|
1009 |
+
|
1010 |
+
class InMultiEdgeDataView(OutMultiEdgeDataView):
|
1011 |
+
"""An EdgeDataView for inward edges of MultiDiGraph; See EdgeDataView"""
|
1012 |
+
|
1013 |
+
__slots__ = ()
|
1014 |
+
|
1015 |
+
def __iter__(self):
|
1016 |
+
return (
|
1017 |
+
self._report(nbr, n, k, dd)
|
1018 |
+
for n, nbrs in self._nodes_nbrs()
|
1019 |
+
for nbr, kd in nbrs.items()
|
1020 |
+
for k, dd in kd.items()
|
1021 |
+
)
|
1022 |
+
|
1023 |
+
def __contains__(self, e):
|
1024 |
+
u, v = e[:2]
|
1025 |
+
if self._nbunch is not None and v not in self._nbunch:
|
1026 |
+
return False # this edge doesn't end in nbunch
|
1027 |
+
try:
|
1028 |
+
kdict = self._adjdict[v][u]
|
1029 |
+
except KeyError:
|
1030 |
+
return False
|
1031 |
+
if self.keys is True:
|
1032 |
+
k = e[2]
|
1033 |
+
dd = kdict[k]
|
1034 |
+
return e == self._report(u, v, k, dd)
|
1035 |
+
return any(e == self._report(u, v, k, dd) for k, dd in kdict.items())
|
1036 |
+
|
1037 |
+
|
1038 |
+
# EdgeViews have set operations and no data reported
|
1039 |
+
class OutEdgeView(Set, Mapping):
|
1040 |
+
"""A EdgeView class for outward edges of a DiGraph"""
|
1041 |
+
|
1042 |
+
__slots__ = ("_adjdict", "_graph", "_nodes_nbrs")
|
1043 |
+
|
1044 |
+
def __getstate__(self):
|
1045 |
+
return {"_graph": self._graph, "_adjdict": self._adjdict}
|
1046 |
+
|
1047 |
+
def __setstate__(self, state):
|
1048 |
+
self._graph = state["_graph"]
|
1049 |
+
self._adjdict = state["_adjdict"]
|
1050 |
+
self._nodes_nbrs = self._adjdict.items
|
1051 |
+
|
1052 |
+
@classmethod
|
1053 |
+
def _from_iterable(cls, it):
|
1054 |
+
return set(it)
|
1055 |
+
|
1056 |
+
dataview = OutEdgeDataView
|
1057 |
+
|
1058 |
+
def __init__(self, G):
|
1059 |
+
self._graph = G
|
1060 |
+
self._adjdict = G._succ if hasattr(G, "succ") else G._adj
|
1061 |
+
self._nodes_nbrs = self._adjdict.items
|
1062 |
+
|
1063 |
+
# Set methods
|
1064 |
+
def __len__(self):
|
1065 |
+
return sum(len(nbrs) for n, nbrs in self._nodes_nbrs())
|
1066 |
+
|
1067 |
+
def __iter__(self):
|
1068 |
+
for n, nbrs in self._nodes_nbrs():
|
1069 |
+
for nbr in nbrs:
|
1070 |
+
yield (n, nbr)
|
1071 |
+
|
1072 |
+
def __contains__(self, e):
|
1073 |
+
try:
|
1074 |
+
u, v = e
|
1075 |
+
return v in self._adjdict[u]
|
1076 |
+
except KeyError:
|
1077 |
+
return False
|
1078 |
+
|
1079 |
+
# Mapping Methods
|
1080 |
+
def __getitem__(self, e):
|
1081 |
+
if isinstance(e, slice):
|
1082 |
+
raise nx.NetworkXError(
|
1083 |
+
f"{type(self).__name__} does not support slicing, "
|
1084 |
+
f"try list(G.edges)[{e.start}:{e.stop}:{e.step}]"
|
1085 |
+
)
|
1086 |
+
u, v = e
|
1087 |
+
try:
|
1088 |
+
return self._adjdict[u][v]
|
1089 |
+
except KeyError as ex: # Customize msg to indicate exception origin
|
1090 |
+
raise KeyError(f"The edge {e} is not in the graph.")
|
1091 |
+
|
1092 |
+
# EdgeDataView methods
|
1093 |
+
def __call__(self, nbunch=None, data=False, *, default=None):
|
1094 |
+
if nbunch is None and data is False:
|
1095 |
+
return self
|
1096 |
+
return self.dataview(self, nbunch, data, default=default)
|
1097 |
+
|
1098 |
+
def data(self, data=True, default=None, nbunch=None):
|
1099 |
+
"""
|
1100 |
+
Return a read-only view of edge data.
|
1101 |
+
|
1102 |
+
Parameters
|
1103 |
+
----------
|
1104 |
+
data : bool or edge attribute key
|
1105 |
+
If ``data=True``, then the data view maps each edge to a dictionary
|
1106 |
+
containing all of its attributes. If `data` is a key in the edge
|
1107 |
+
dictionary, then the data view maps each edge to its value for
|
1108 |
+
the keyed attribute. In this case, if the edge doesn't have the
|
1109 |
+
attribute, the `default` value is returned.
|
1110 |
+
default : object, default=None
|
1111 |
+
The value used when an edge does not have a specific attribute
|
1112 |
+
nbunch : container of nodes, optional (default=None)
|
1113 |
+
Allows restriction to edges only involving certain nodes. All edges
|
1114 |
+
are considered by default.
|
1115 |
+
|
1116 |
+
Returns
|
1117 |
+
-------
|
1118 |
+
dataview
|
1119 |
+
Returns an `EdgeDataView` for undirected Graphs, `OutEdgeDataView`
|
1120 |
+
for DiGraphs, `MultiEdgeDataView` for MultiGraphs and
|
1121 |
+
`OutMultiEdgeDataView` for MultiDiGraphs.
|
1122 |
+
|
1123 |
+
Notes
|
1124 |
+
-----
|
1125 |
+
If ``data=False``, returns an `EdgeView` without any edge data.
|
1126 |
+
|
1127 |
+
See Also
|
1128 |
+
--------
|
1129 |
+
EdgeDataView
|
1130 |
+
OutEdgeDataView
|
1131 |
+
MultiEdgeDataView
|
1132 |
+
OutMultiEdgeDataView
|
1133 |
+
|
1134 |
+
Examples
|
1135 |
+
--------
|
1136 |
+
>>> G = nx.Graph()
|
1137 |
+
>>> G.add_edges_from(
|
1138 |
+
... [
|
1139 |
+
... (0, 1, {"dist": 3, "capacity": 20}),
|
1140 |
+
... (1, 2, {"dist": 4}),
|
1141 |
+
... (2, 0, {"dist": 5}),
|
1142 |
+
... ]
|
1143 |
+
... )
|
1144 |
+
|
1145 |
+
Accessing edge data with ``data=True`` (the default) returns an
|
1146 |
+
edge data view object listing each edge with all of its attributes:
|
1147 |
+
|
1148 |
+
>>> G.edges.data()
|
1149 |
+
EdgeDataView([(0, 1, {'dist': 3, 'capacity': 20}), (0, 2, {'dist': 5}), (1, 2, {'dist': 4})])
|
1150 |
+
|
1151 |
+
If `data` represents a key in the edge attribute dict, a dataview listing
|
1152 |
+
each edge with its value for that specific key is returned:
|
1153 |
+
|
1154 |
+
>>> G.edges.data("dist")
|
1155 |
+
EdgeDataView([(0, 1, 3), (0, 2, 5), (1, 2, 4)])
|
1156 |
+
|
1157 |
+
`nbunch` can be used to limit the edges:
|
1158 |
+
|
1159 |
+
>>> G.edges.data("dist", nbunch=[0])
|
1160 |
+
EdgeDataView([(0, 1, 3), (0, 2, 5)])
|
1161 |
+
|
1162 |
+
If a specific key is not found in an edge attribute dict, the value
|
1163 |
+
specified by `default` is used:
|
1164 |
+
|
1165 |
+
>>> G.edges.data("capacity")
|
1166 |
+
EdgeDataView([(0, 1, 20), (0, 2, None), (1, 2, None)])
|
1167 |
+
|
1168 |
+
Note that there is no check that the `data` key is present in any of
|
1169 |
+
the edge attribute dictionaries:
|
1170 |
+
|
1171 |
+
>>> G.edges.data("speed")
|
1172 |
+
EdgeDataView([(0, 1, None), (0, 2, None), (1, 2, None)])
|
1173 |
+
"""
|
1174 |
+
if nbunch is None and data is False:
|
1175 |
+
return self
|
1176 |
+
return self.dataview(self, nbunch, data, default=default)
|
1177 |
+
|
1178 |
+
# String Methods
|
1179 |
+
def __str__(self):
|
1180 |
+
return str(list(self))
|
1181 |
+
|
1182 |
+
def __repr__(self):
|
1183 |
+
return f"{self.__class__.__name__}({list(self)})"
|
1184 |
+
|
1185 |
+
|
1186 |
+
class EdgeView(OutEdgeView):
|
1187 |
+
"""A EdgeView class for edges of a Graph
|
1188 |
+
|
1189 |
+
This densely packed View allows iteration over edges, data lookup
|
1190 |
+
like a dict and set operations on edges represented by node-tuples.
|
1191 |
+
In addition, edge data can be controlled by calling this object
|
1192 |
+
possibly creating an EdgeDataView. Typically edges are iterated over
|
1193 |
+
and reported as `(u, v)` node tuples or `(u, v, key)` node/key tuples
|
1194 |
+
for multigraphs. Those edge representations can also be using to
|
1195 |
+
lookup the data dict for any edge. Set operations also are available
|
1196 |
+
where those tuples are the elements of the set.
|
1197 |
+
Calling this object with optional arguments `data`, `default` and `keys`
|
1198 |
+
controls the form of the tuple (see EdgeDataView). Optional argument
|
1199 |
+
`nbunch` allows restriction to edges only involving certain nodes.
|
1200 |
+
|
1201 |
+
If `data is False` (the default) then iterate over 2-tuples `(u, v)`.
|
1202 |
+
If `data is True` iterate over 3-tuples `(u, v, datadict)`.
|
1203 |
+
Otherwise iterate over `(u, v, datadict.get(data, default))`.
|
1204 |
+
For Multigraphs, if `keys is True`, replace `u, v` with `u, v, key` above.
|
1205 |
+
|
1206 |
+
Parameters
|
1207 |
+
==========
|
1208 |
+
graph : NetworkX graph-like class
|
1209 |
+
nbunch : (default= all nodes in graph) only report edges with these nodes
|
1210 |
+
keys : (only for MultiGraph. default=False) report edge key in tuple
|
1211 |
+
data : bool or string (default=False) see above
|
1212 |
+
default : object (default=None)
|
1213 |
+
|
1214 |
+
Examples
|
1215 |
+
========
|
1216 |
+
>>> G = nx.path_graph(4)
|
1217 |
+
>>> EV = G.edges()
|
1218 |
+
>>> (2, 3) in EV
|
1219 |
+
True
|
1220 |
+
>>> for u, v in EV:
|
1221 |
+
... print((u, v))
|
1222 |
+
(0, 1)
|
1223 |
+
(1, 2)
|
1224 |
+
(2, 3)
|
1225 |
+
>>> assert EV & {(1, 2), (3, 4)} == {(1, 2)}
|
1226 |
+
|
1227 |
+
>>> EVdata = G.edges(data="color", default="aqua")
|
1228 |
+
>>> G.add_edge(2, 3, color="blue")
|
1229 |
+
>>> assert (2, 3, "blue") in EVdata
|
1230 |
+
>>> for u, v, c in EVdata:
|
1231 |
+
... print(f"({u}, {v}) has color: {c}")
|
1232 |
+
(0, 1) has color: aqua
|
1233 |
+
(1, 2) has color: aqua
|
1234 |
+
(2, 3) has color: blue
|
1235 |
+
|
1236 |
+
>>> EVnbunch = G.edges(nbunch=2)
|
1237 |
+
>>> assert (2, 3) in EVnbunch
|
1238 |
+
>>> assert (0, 1) not in EVnbunch
|
1239 |
+
>>> for u, v in EVnbunch:
|
1240 |
+
... assert u == 2 or v == 2
|
1241 |
+
|
1242 |
+
>>> MG = nx.path_graph(4, create_using=nx.MultiGraph)
|
1243 |
+
>>> EVmulti = MG.edges(keys=True)
|
1244 |
+
>>> (2, 3, 0) in EVmulti
|
1245 |
+
True
|
1246 |
+
>>> (2, 3) in EVmulti # 2-tuples work even when keys is True
|
1247 |
+
True
|
1248 |
+
>>> key = MG.add_edge(2, 3)
|
1249 |
+
>>> for u, v, k in EVmulti:
|
1250 |
+
... print((u, v, k))
|
1251 |
+
(0, 1, 0)
|
1252 |
+
(1, 2, 0)
|
1253 |
+
(2, 3, 0)
|
1254 |
+
(2, 3, 1)
|
1255 |
+
"""
|
1256 |
+
|
1257 |
+
__slots__ = ()
|
1258 |
+
|
1259 |
+
dataview = EdgeDataView
|
1260 |
+
|
1261 |
+
def __len__(self):
|
1262 |
+
num_nbrs = (len(nbrs) + (n in nbrs) for n, nbrs in self._nodes_nbrs())
|
1263 |
+
return sum(num_nbrs) // 2
|
1264 |
+
|
1265 |
+
def __iter__(self):
|
1266 |
+
seen = {}
|
1267 |
+
for n, nbrs in self._nodes_nbrs():
|
1268 |
+
for nbr in list(nbrs):
|
1269 |
+
if nbr not in seen:
|
1270 |
+
yield (n, nbr)
|
1271 |
+
seen[n] = 1
|
1272 |
+
del seen
|
1273 |
+
|
1274 |
+
def __contains__(self, e):
|
1275 |
+
try:
|
1276 |
+
u, v = e[:2]
|
1277 |
+
return v in self._adjdict[u] or u in self._adjdict[v]
|
1278 |
+
except (KeyError, ValueError):
|
1279 |
+
return False
|
1280 |
+
|
1281 |
+
|
1282 |
+
class InEdgeView(OutEdgeView):
|
1283 |
+
"""A EdgeView class for inward edges of a DiGraph"""
|
1284 |
+
|
1285 |
+
__slots__ = ()
|
1286 |
+
|
1287 |
+
def __setstate__(self, state):
|
1288 |
+
self._graph = state["_graph"]
|
1289 |
+
self._adjdict = state["_adjdict"]
|
1290 |
+
self._nodes_nbrs = self._adjdict.items
|
1291 |
+
|
1292 |
+
dataview = InEdgeDataView
|
1293 |
+
|
1294 |
+
def __init__(self, G):
|
1295 |
+
self._graph = G
|
1296 |
+
self._adjdict = G._pred if hasattr(G, "pred") else G._adj
|
1297 |
+
self._nodes_nbrs = self._adjdict.items
|
1298 |
+
|
1299 |
+
def __iter__(self):
|
1300 |
+
for n, nbrs in self._nodes_nbrs():
|
1301 |
+
for nbr in nbrs:
|
1302 |
+
yield (nbr, n)
|
1303 |
+
|
1304 |
+
def __contains__(self, e):
|
1305 |
+
try:
|
1306 |
+
u, v = e
|
1307 |
+
return u in self._adjdict[v]
|
1308 |
+
except KeyError:
|
1309 |
+
return False
|
1310 |
+
|
1311 |
+
def __getitem__(self, e):
|
1312 |
+
if isinstance(e, slice):
|
1313 |
+
raise nx.NetworkXError(
|
1314 |
+
f"{type(self).__name__} does not support slicing, "
|
1315 |
+
f"try list(G.in_edges)[{e.start}:{e.stop}:{e.step}]"
|
1316 |
+
)
|
1317 |
+
u, v = e
|
1318 |
+
return self._adjdict[v][u]
|
1319 |
+
|
1320 |
+
|
1321 |
+
class OutMultiEdgeView(OutEdgeView):
|
1322 |
+
"""A EdgeView class for outward edges of a MultiDiGraph"""
|
1323 |
+
|
1324 |
+
__slots__ = ()
|
1325 |
+
|
1326 |
+
dataview = OutMultiEdgeDataView
|
1327 |
+
|
1328 |
+
def __len__(self):
|
1329 |
+
return sum(
|
1330 |
+
len(kdict) for n, nbrs in self._nodes_nbrs() for nbr, kdict in nbrs.items()
|
1331 |
+
)
|
1332 |
+
|
1333 |
+
def __iter__(self):
|
1334 |
+
for n, nbrs in self._nodes_nbrs():
|
1335 |
+
for nbr, kdict in nbrs.items():
|
1336 |
+
for key in kdict:
|
1337 |
+
yield (n, nbr, key)
|
1338 |
+
|
1339 |
+
def __contains__(self, e):
|
1340 |
+
N = len(e)
|
1341 |
+
if N == 3:
|
1342 |
+
u, v, k = e
|
1343 |
+
elif N == 2:
|
1344 |
+
u, v = e
|
1345 |
+
k = 0
|
1346 |
+
else:
|
1347 |
+
raise ValueError("MultiEdge must have length 2 or 3")
|
1348 |
+
try:
|
1349 |
+
return k in self._adjdict[u][v]
|
1350 |
+
except KeyError:
|
1351 |
+
return False
|
1352 |
+
|
1353 |
+
def __getitem__(self, e):
|
1354 |
+
if isinstance(e, slice):
|
1355 |
+
raise nx.NetworkXError(
|
1356 |
+
f"{type(self).__name__} does not support slicing, "
|
1357 |
+
f"try list(G.edges)[{e.start}:{e.stop}:{e.step}]"
|
1358 |
+
)
|
1359 |
+
u, v, k = e
|
1360 |
+
return self._adjdict[u][v][k]
|
1361 |
+
|
1362 |
+
def __call__(self, nbunch=None, data=False, *, default=None, keys=False):
|
1363 |
+
if nbunch is None and data is False and keys is True:
|
1364 |
+
return self
|
1365 |
+
return self.dataview(self, nbunch, data, default=default, keys=keys)
|
1366 |
+
|
1367 |
+
def data(self, data=True, default=None, nbunch=None, keys=False):
|
1368 |
+
if nbunch is None and data is False and keys is True:
|
1369 |
+
return self
|
1370 |
+
return self.dataview(self, nbunch, data, default=default, keys=keys)
|
1371 |
+
|
1372 |
+
|
1373 |
+
class MultiEdgeView(OutMultiEdgeView):
|
1374 |
+
"""A EdgeView class for edges of a MultiGraph"""
|
1375 |
+
|
1376 |
+
__slots__ = ()
|
1377 |
+
|
1378 |
+
dataview = MultiEdgeDataView
|
1379 |
+
|
1380 |
+
def __len__(self):
|
1381 |
+
return sum(1 for e in self)
|
1382 |
+
|
1383 |
+
def __iter__(self):
|
1384 |
+
seen = {}
|
1385 |
+
for n, nbrs in self._nodes_nbrs():
|
1386 |
+
for nbr, kd in nbrs.items():
|
1387 |
+
if nbr not in seen:
|
1388 |
+
for k, dd in kd.items():
|
1389 |
+
yield (n, nbr, k)
|
1390 |
+
seen[n] = 1
|
1391 |
+
del seen
|
1392 |
+
|
1393 |
+
|
1394 |
+
class InMultiEdgeView(OutMultiEdgeView):
|
1395 |
+
"""A EdgeView class for inward edges of a MultiDiGraph"""
|
1396 |
+
|
1397 |
+
__slots__ = ()
|
1398 |
+
|
1399 |
+
def __setstate__(self, state):
|
1400 |
+
self._graph = state["_graph"]
|
1401 |
+
self._adjdict = state["_adjdict"]
|
1402 |
+
self._nodes_nbrs = self._adjdict.items
|
1403 |
+
|
1404 |
+
dataview = InMultiEdgeDataView
|
1405 |
+
|
1406 |
+
def __init__(self, G):
|
1407 |
+
self._graph = G
|
1408 |
+
self._adjdict = G._pred if hasattr(G, "pred") else G._adj
|
1409 |
+
self._nodes_nbrs = self._adjdict.items
|
1410 |
+
|
1411 |
+
def __iter__(self):
|
1412 |
+
for n, nbrs in self._nodes_nbrs():
|
1413 |
+
for nbr, kdict in nbrs.items():
|
1414 |
+
for key in kdict:
|
1415 |
+
yield (nbr, n, key)
|
1416 |
+
|
1417 |
+
def __contains__(self, e):
|
1418 |
+
N = len(e)
|
1419 |
+
if N == 3:
|
1420 |
+
u, v, k = e
|
1421 |
+
elif N == 2:
|
1422 |
+
u, v = e
|
1423 |
+
k = 0
|
1424 |
+
else:
|
1425 |
+
raise ValueError("MultiEdge must have length 2 or 3")
|
1426 |
+
try:
|
1427 |
+
return k in self._adjdict[v][u]
|
1428 |
+
except KeyError:
|
1429 |
+
return False
|
1430 |
+
|
1431 |
+
def __getitem__(self, e):
|
1432 |
+
if isinstance(e, slice):
|
1433 |
+
raise nx.NetworkXError(
|
1434 |
+
f"{type(self).__name__} does not support slicing, "
|
1435 |
+
f"try list(G.in_edges)[{e.start}:{e.stop}:{e.step}]"
|
1436 |
+
)
|
1437 |
+
u, v, k = e
|
1438 |
+
return self._adjdict[v][u][k]
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_coreviews.cpython-310.pyc
ADDED
Binary file (13.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_reportviews.cpython-310.pyc
ADDED
Binary file (41.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_special.cpython-310.pyc
ADDED
Binary file (5.17 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/dispatch_interface.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file contains utilities for testing the dispatching feature
|
2 |
+
|
3 |
+
# A full test of all dispatchable algorithms is performed by
|
4 |
+
# modifying the pytest invocation and setting an environment variable
|
5 |
+
# NETWORKX_TEST_BACKEND=nx-loopback pytest
|
6 |
+
# This is comprehensive, but only tests the `test_override_dispatch`
|
7 |
+
# function in networkx.classes.backends.
|
8 |
+
|
9 |
+
# To test the `_dispatchable` function directly, several tests scattered throughout
|
10 |
+
# NetworkX have been augmented to test normal and dispatch mode.
|
11 |
+
# Searching for `dispatch_interface` should locate the specific tests.
|
12 |
+
|
13 |
+
import networkx as nx
|
14 |
+
from networkx import DiGraph, Graph, MultiDiGraph, MultiGraph, PlanarEmbedding
|
15 |
+
from networkx.classes.reportviews import NodeView
|
16 |
+
|
17 |
+
|
18 |
+
class LoopbackGraph(Graph):
|
19 |
+
__networkx_backend__ = "nx-loopback"
|
20 |
+
|
21 |
+
|
22 |
+
class LoopbackDiGraph(DiGraph):
|
23 |
+
__networkx_backend__ = "nx-loopback"
|
24 |
+
|
25 |
+
|
26 |
+
class LoopbackMultiGraph(MultiGraph):
|
27 |
+
__networkx_backend__ = "nx-loopback"
|
28 |
+
|
29 |
+
|
30 |
+
class LoopbackMultiDiGraph(MultiDiGraph):
|
31 |
+
__networkx_backend__ = "nx-loopback"
|
32 |
+
|
33 |
+
|
34 |
+
class LoopbackPlanarEmbedding(PlanarEmbedding):
|
35 |
+
__networkx_backend__ = "nx-loopback"
|
36 |
+
|
37 |
+
|
38 |
+
def convert(graph):
|
39 |
+
if isinstance(graph, PlanarEmbedding):
|
40 |
+
return LoopbackPlanarEmbedding(graph)
|
41 |
+
if isinstance(graph, MultiDiGraph):
|
42 |
+
return LoopbackMultiDiGraph(graph)
|
43 |
+
if isinstance(graph, MultiGraph):
|
44 |
+
return LoopbackMultiGraph(graph)
|
45 |
+
if isinstance(graph, DiGraph):
|
46 |
+
return LoopbackDiGraph(graph)
|
47 |
+
if isinstance(graph, Graph):
|
48 |
+
return LoopbackGraph(graph)
|
49 |
+
raise TypeError(f"Unsupported type of graph: {type(graph)}")
|
50 |
+
|
51 |
+
|
52 |
+
class LoopbackDispatcher:
|
53 |
+
def __getattr__(self, item):
|
54 |
+
try:
|
55 |
+
return nx.utils.backends._registered_algorithms[item].orig_func
|
56 |
+
except KeyError:
|
57 |
+
raise AttributeError(item) from None
|
58 |
+
|
59 |
+
@staticmethod
|
60 |
+
def convert_from_nx(
|
61 |
+
graph,
|
62 |
+
*,
|
63 |
+
edge_attrs=None,
|
64 |
+
node_attrs=None,
|
65 |
+
preserve_edge_attrs=None,
|
66 |
+
preserve_node_attrs=None,
|
67 |
+
preserve_graph_attrs=None,
|
68 |
+
name=None,
|
69 |
+
graph_name=None,
|
70 |
+
):
|
71 |
+
if name in {
|
72 |
+
# Raise if input graph changes
|
73 |
+
"lexicographical_topological_sort",
|
74 |
+
"topological_generations",
|
75 |
+
"topological_sort",
|
76 |
+
# Sensitive tests (iteration order matters)
|
77 |
+
"dfs_labeled_edges",
|
78 |
+
}:
|
79 |
+
return graph
|
80 |
+
if isinstance(graph, NodeView):
|
81 |
+
# Convert to a Graph with only nodes (no edges)
|
82 |
+
new_graph = Graph()
|
83 |
+
new_graph.add_nodes_from(graph.items())
|
84 |
+
graph = new_graph
|
85 |
+
G = LoopbackGraph()
|
86 |
+
elif not isinstance(graph, Graph):
|
87 |
+
raise TypeError(
|
88 |
+
f"Bad type for graph argument {graph_name} in {name}: {type(graph)}"
|
89 |
+
)
|
90 |
+
elif graph.__class__ in {Graph, LoopbackGraph}:
|
91 |
+
G = LoopbackGraph()
|
92 |
+
elif graph.__class__ in {DiGraph, LoopbackDiGraph}:
|
93 |
+
G = LoopbackDiGraph()
|
94 |
+
elif graph.__class__ in {MultiGraph, LoopbackMultiGraph}:
|
95 |
+
G = LoopbackMultiGraph()
|
96 |
+
elif graph.__class__ in {MultiDiGraph, LoopbackMultiDiGraph}:
|
97 |
+
G = LoopbackMultiDiGraph()
|
98 |
+
elif graph.__class__ in {PlanarEmbedding, LoopbackPlanarEmbedding}:
|
99 |
+
G = LoopbackDiGraph() # or LoopbackPlanarEmbedding
|
100 |
+
else:
|
101 |
+
# It would be nice to be able to convert _AntiGraph to a regular Graph
|
102 |
+
# nx.algorithms.approximation.kcomponents._AntiGraph
|
103 |
+
# nx.algorithms.tree.branchings.MultiDiGraph_EdgeKey
|
104 |
+
# nx.classes.tests.test_multidigraph.MultiDiGraphSubClass
|
105 |
+
# nx.classes.tests.test_multigraph.MultiGraphSubClass
|
106 |
+
G = graph.__class__()
|
107 |
+
|
108 |
+
if preserve_graph_attrs:
|
109 |
+
G.graph.update(graph.graph)
|
110 |
+
|
111 |
+
if preserve_node_attrs:
|
112 |
+
G.add_nodes_from(graph.nodes(data=True))
|
113 |
+
elif node_attrs:
|
114 |
+
G.add_nodes_from(
|
115 |
+
(
|
116 |
+
node,
|
117 |
+
{
|
118 |
+
k: datadict.get(k, default)
|
119 |
+
for k, default in node_attrs.items()
|
120 |
+
if default is not None or k in datadict
|
121 |
+
},
|
122 |
+
)
|
123 |
+
for node, datadict in graph.nodes(data=True)
|
124 |
+
)
|
125 |
+
else:
|
126 |
+
G.add_nodes_from(graph)
|
127 |
+
|
128 |
+
if graph.is_multigraph():
|
129 |
+
if preserve_edge_attrs:
|
130 |
+
G.add_edges_from(
|
131 |
+
(u, v, key, datadict)
|
132 |
+
for u, nbrs in graph._adj.items()
|
133 |
+
for v, keydict in nbrs.items()
|
134 |
+
for key, datadict in keydict.items()
|
135 |
+
)
|
136 |
+
elif edge_attrs:
|
137 |
+
G.add_edges_from(
|
138 |
+
(
|
139 |
+
u,
|
140 |
+
v,
|
141 |
+
key,
|
142 |
+
{
|
143 |
+
k: datadict.get(k, default)
|
144 |
+
for k, default in edge_attrs.items()
|
145 |
+
if default is not None or k in datadict
|
146 |
+
},
|
147 |
+
)
|
148 |
+
for u, nbrs in graph._adj.items()
|
149 |
+
for v, keydict in nbrs.items()
|
150 |
+
for key, datadict in keydict.items()
|
151 |
+
)
|
152 |
+
else:
|
153 |
+
G.add_edges_from(
|
154 |
+
(u, v, key, {})
|
155 |
+
for u, nbrs in graph._adj.items()
|
156 |
+
for v, keydict in nbrs.items()
|
157 |
+
for key, datadict in keydict.items()
|
158 |
+
)
|
159 |
+
elif preserve_edge_attrs:
|
160 |
+
G.add_edges_from(graph.edges(data=True))
|
161 |
+
elif edge_attrs:
|
162 |
+
G.add_edges_from(
|
163 |
+
(
|
164 |
+
u,
|
165 |
+
v,
|
166 |
+
{
|
167 |
+
k: datadict.get(k, default)
|
168 |
+
for k, default in edge_attrs.items()
|
169 |
+
if default is not None or k in datadict
|
170 |
+
},
|
171 |
+
)
|
172 |
+
for u, v, datadict in graph.edges(data=True)
|
173 |
+
)
|
174 |
+
else:
|
175 |
+
G.add_edges_from(graph.edges)
|
176 |
+
return G
|
177 |
+
|
178 |
+
@staticmethod
|
179 |
+
def convert_to_nx(obj, *, name=None):
|
180 |
+
return obj
|
181 |
+
|
182 |
+
@staticmethod
|
183 |
+
def on_start_tests(items):
|
184 |
+
# Verify that items can be xfailed
|
185 |
+
for item in items:
|
186 |
+
assert hasattr(item, "add_marker")
|
187 |
+
|
188 |
+
def can_run(self, name, args, kwargs):
|
189 |
+
# It is unnecessary to define this function if algorithms are fully supported.
|
190 |
+
# We include it for illustration purposes.
|
191 |
+
return hasattr(self, name)
|
192 |
+
|
193 |
+
|
194 |
+
dispatcher = LoopbackDispatcher()
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_digraph.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
from networkx.utils import nodes_equal
|
5 |
+
|
6 |
+
from .test_graph import BaseAttrGraphTester, BaseGraphTester
|
7 |
+
from .test_graph import TestEdgeSubgraph as _TestGraphEdgeSubgraph
|
8 |
+
from .test_graph import TestGraph as _TestGraph
|
9 |
+
|
10 |
+
|
11 |
+
class BaseDiGraphTester(BaseGraphTester):
|
12 |
+
def test_has_successor(self):
|
13 |
+
G = self.K3
|
14 |
+
assert G.has_successor(0, 1)
|
15 |
+
assert not G.has_successor(0, -1)
|
16 |
+
|
17 |
+
def test_successors(self):
|
18 |
+
G = self.K3
|
19 |
+
assert sorted(G.successors(0)) == [1, 2]
|
20 |
+
with pytest.raises(nx.NetworkXError):
|
21 |
+
G.successors(-1)
|
22 |
+
|
23 |
+
def test_has_predecessor(self):
|
24 |
+
G = self.K3
|
25 |
+
assert G.has_predecessor(0, 1)
|
26 |
+
assert not G.has_predecessor(0, -1)
|
27 |
+
|
28 |
+
def test_predecessors(self):
|
29 |
+
G = self.K3
|
30 |
+
assert sorted(G.predecessors(0)) == [1, 2]
|
31 |
+
with pytest.raises(nx.NetworkXError):
|
32 |
+
G.predecessors(-1)
|
33 |
+
|
34 |
+
def test_edges(self):
|
35 |
+
G = self.K3
|
36 |
+
assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
|
37 |
+
assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
|
38 |
+
assert sorted(G.edges([0, 1])) == [(0, 1), (0, 2), (1, 0), (1, 2)]
|
39 |
+
with pytest.raises(nx.NetworkXError):
|
40 |
+
G.edges(-1)
|
41 |
+
|
42 |
+
def test_out_edges(self):
|
43 |
+
G = self.K3
|
44 |
+
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
|
45 |
+
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
|
46 |
+
with pytest.raises(nx.NetworkXError):
|
47 |
+
G.out_edges(-1)
|
48 |
+
|
49 |
+
def test_out_edges_dir(self):
|
50 |
+
G = self.P3
|
51 |
+
assert sorted(G.out_edges()) == [(0, 1), (1, 2)]
|
52 |
+
assert sorted(G.out_edges(0)) == [(0, 1)]
|
53 |
+
assert sorted(G.out_edges(2)) == []
|
54 |
+
|
55 |
+
def test_out_edges_data(self):
|
56 |
+
G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})])
|
57 |
+
assert sorted(G.out_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})]
|
58 |
+
assert sorted(G.out_edges(0, data=True)) == [(0, 1, {"data": 0})]
|
59 |
+
assert sorted(G.out_edges(data="data")) == [(0, 1, 0), (1, 0, None)]
|
60 |
+
assert sorted(G.out_edges(0, data="data")) == [(0, 1, 0)]
|
61 |
+
|
62 |
+
def test_in_edges_dir(self):
|
63 |
+
G = self.P3
|
64 |
+
assert sorted(G.in_edges()) == [(0, 1), (1, 2)]
|
65 |
+
assert sorted(G.in_edges(0)) == []
|
66 |
+
assert sorted(G.in_edges(2)) == [(1, 2)]
|
67 |
+
|
68 |
+
def test_in_edges_data(self):
|
69 |
+
G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})])
|
70 |
+
assert sorted(G.in_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})]
|
71 |
+
assert sorted(G.in_edges(1, data=True)) == [(0, 1, {"data": 0})]
|
72 |
+
assert sorted(G.in_edges(data="data")) == [(0, 1, 0), (1, 0, None)]
|
73 |
+
assert sorted(G.in_edges(1, data="data")) == [(0, 1, 0)]
|
74 |
+
|
75 |
+
def test_degree(self):
|
76 |
+
G = self.K3
|
77 |
+
assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)]
|
78 |
+
assert dict(G.degree()) == {0: 4, 1: 4, 2: 4}
|
79 |
+
assert G.degree(0) == 4
|
80 |
+
assert list(G.degree(iter([0]))) == [(0, 4)] # run through iterator
|
81 |
+
|
82 |
+
def test_in_degree(self):
|
83 |
+
G = self.K3
|
84 |
+
assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)]
|
85 |
+
assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2}
|
86 |
+
assert G.in_degree(0) == 2
|
87 |
+
assert list(G.in_degree(iter([0]))) == [(0, 2)] # run through iterator
|
88 |
+
|
89 |
+
def test_out_degree(self):
|
90 |
+
G = self.K3
|
91 |
+
assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)]
|
92 |
+
assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2}
|
93 |
+
assert G.out_degree(0) == 2
|
94 |
+
assert list(G.out_degree(iter([0]))) == [(0, 2)]
|
95 |
+
|
96 |
+
def test_size(self):
|
97 |
+
G = self.K3
|
98 |
+
assert G.size() == 6
|
99 |
+
assert G.number_of_edges() == 6
|
100 |
+
|
101 |
+
def test_to_undirected_reciprocal(self):
|
102 |
+
G = self.Graph()
|
103 |
+
G.add_edge(1, 2)
|
104 |
+
assert G.to_undirected().has_edge(1, 2)
|
105 |
+
assert not G.to_undirected(reciprocal=True).has_edge(1, 2)
|
106 |
+
G.add_edge(2, 1)
|
107 |
+
assert G.to_undirected(reciprocal=True).has_edge(1, 2)
|
108 |
+
|
109 |
+
def test_reverse_copy(self):
|
110 |
+
G = nx.DiGraph([(0, 1), (1, 2)])
|
111 |
+
R = G.reverse()
|
112 |
+
assert sorted(R.edges()) == [(1, 0), (2, 1)]
|
113 |
+
R.remove_edge(1, 0)
|
114 |
+
assert sorted(R.edges()) == [(2, 1)]
|
115 |
+
assert sorted(G.edges()) == [(0, 1), (1, 2)]
|
116 |
+
|
117 |
+
def test_reverse_nocopy(self):
|
118 |
+
G = nx.DiGraph([(0, 1), (1, 2)])
|
119 |
+
R = G.reverse(copy=False)
|
120 |
+
assert sorted(R.edges()) == [(1, 0), (2, 1)]
|
121 |
+
with pytest.raises(nx.NetworkXError):
|
122 |
+
R.remove_edge(1, 0)
|
123 |
+
|
124 |
+
def test_reverse_hashable(self):
|
125 |
+
class Foo:
|
126 |
+
pass
|
127 |
+
|
128 |
+
x = Foo()
|
129 |
+
y = Foo()
|
130 |
+
G = nx.DiGraph()
|
131 |
+
G.add_edge(x, y)
|
132 |
+
assert nodes_equal(G.nodes(), G.reverse().nodes())
|
133 |
+
assert [(y, x)] == list(G.reverse().edges())
|
134 |
+
|
135 |
+
def test_di_cache_reset(self):
|
136 |
+
G = self.K3.copy()
|
137 |
+
old_succ = G.succ
|
138 |
+
assert id(G.succ) == id(old_succ)
|
139 |
+
old_adj = G.adj
|
140 |
+
assert id(G.adj) == id(old_adj)
|
141 |
+
|
142 |
+
G._succ = {}
|
143 |
+
assert id(G.succ) != id(old_succ)
|
144 |
+
assert id(G.adj) != id(old_adj)
|
145 |
+
|
146 |
+
old_pred = G.pred
|
147 |
+
assert id(G.pred) == id(old_pred)
|
148 |
+
G._pred = {}
|
149 |
+
assert id(G.pred) != id(old_pred)
|
150 |
+
|
151 |
+
def test_di_attributes_cached(self):
|
152 |
+
G = self.K3.copy()
|
153 |
+
assert id(G.in_edges) == id(G.in_edges)
|
154 |
+
assert id(G.out_edges) == id(G.out_edges)
|
155 |
+
assert id(G.in_degree) == id(G.in_degree)
|
156 |
+
assert id(G.out_degree) == id(G.out_degree)
|
157 |
+
assert id(G.succ) == id(G.succ)
|
158 |
+
assert id(G.pred) == id(G.pred)
|
159 |
+
|
160 |
+
|
161 |
+
class BaseAttrDiGraphTester(BaseDiGraphTester, BaseAttrGraphTester):
|
162 |
+
def test_edges_data(self):
|
163 |
+
G = self.K3
|
164 |
+
all_edges = [
|
165 |
+
(0, 1, {}),
|
166 |
+
(0, 2, {}),
|
167 |
+
(1, 0, {}),
|
168 |
+
(1, 2, {}),
|
169 |
+
(2, 0, {}),
|
170 |
+
(2, 1, {}),
|
171 |
+
]
|
172 |
+
assert sorted(G.edges(data=True)) == all_edges
|
173 |
+
assert sorted(G.edges(0, data=True)) == all_edges[:2]
|
174 |
+
assert sorted(G.edges([0, 1], data=True)) == all_edges[:4]
|
175 |
+
with pytest.raises(nx.NetworkXError):
|
176 |
+
G.edges(-1, True)
|
177 |
+
|
178 |
+
def test_in_degree_weighted(self):
|
179 |
+
G = self.K3.copy()
|
180 |
+
G.add_edge(0, 1, weight=0.3, other=1.2)
|
181 |
+
assert sorted(G.in_degree(weight="weight")) == [(0, 2), (1, 1.3), (2, 2)]
|
182 |
+
assert dict(G.in_degree(weight="weight")) == {0: 2, 1: 1.3, 2: 2}
|
183 |
+
assert G.in_degree(1, weight="weight") == 1.3
|
184 |
+
assert sorted(G.in_degree(weight="other")) == [(0, 2), (1, 2.2), (2, 2)]
|
185 |
+
assert dict(G.in_degree(weight="other")) == {0: 2, 1: 2.2, 2: 2}
|
186 |
+
assert G.in_degree(1, weight="other") == 2.2
|
187 |
+
assert list(G.in_degree(iter([1]), weight="other")) == [(1, 2.2)]
|
188 |
+
|
189 |
+
def test_out_degree_weighted(self):
|
190 |
+
G = self.K3.copy()
|
191 |
+
G.add_edge(0, 1, weight=0.3, other=1.2)
|
192 |
+
assert sorted(G.out_degree(weight="weight")) == [(0, 1.3), (1, 2), (2, 2)]
|
193 |
+
assert dict(G.out_degree(weight="weight")) == {0: 1.3, 1: 2, 2: 2}
|
194 |
+
assert G.out_degree(0, weight="weight") == 1.3
|
195 |
+
assert sorted(G.out_degree(weight="other")) == [(0, 2.2), (1, 2), (2, 2)]
|
196 |
+
assert dict(G.out_degree(weight="other")) == {0: 2.2, 1: 2, 2: 2}
|
197 |
+
assert G.out_degree(0, weight="other") == 2.2
|
198 |
+
assert list(G.out_degree(iter([0]), weight="other")) == [(0, 2.2)]
|
199 |
+
|
200 |
+
|
201 |
+
class TestDiGraph(BaseAttrDiGraphTester, _TestGraph):
|
202 |
+
"""Tests specific to dict-of-dict-of-dict digraph data structure"""
|
203 |
+
|
204 |
+
def setup_method(self):
|
205 |
+
self.Graph = nx.DiGraph
|
206 |
+
# build dict-of-dict-of-dict K3
|
207 |
+
ed1, ed2, ed3, ed4, ed5, ed6 = ({}, {}, {}, {}, {}, {})
|
208 |
+
self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed3, 2: ed4}, 2: {0: ed5, 1: ed6}}
|
209 |
+
self.k3edges = [(0, 1), (0, 2), (1, 2)]
|
210 |
+
self.k3nodes = [0, 1, 2]
|
211 |
+
self.K3 = self.Graph()
|
212 |
+
self.K3._succ = self.k3adj # K3._adj is synced with K3._succ
|
213 |
+
self.K3._pred = {0: {1: ed3, 2: ed5}, 1: {0: ed1, 2: ed6}, 2: {0: ed2, 1: ed4}}
|
214 |
+
self.K3._node = {}
|
215 |
+
self.K3._node[0] = {}
|
216 |
+
self.K3._node[1] = {}
|
217 |
+
self.K3._node[2] = {}
|
218 |
+
|
219 |
+
ed1, ed2 = ({}, {})
|
220 |
+
self.P3 = self.Graph()
|
221 |
+
self.P3._succ = {0: {1: ed1}, 1: {2: ed2}, 2: {}}
|
222 |
+
self.P3._pred = {0: {}, 1: {0: ed1}, 2: {1: ed2}}
|
223 |
+
# P3._adj is synced with P3._succ
|
224 |
+
self.P3._node = {}
|
225 |
+
self.P3._node[0] = {}
|
226 |
+
self.P3._node[1] = {}
|
227 |
+
self.P3._node[2] = {}
|
228 |
+
|
229 |
+
def test_data_input(self):
|
230 |
+
G = self.Graph({1: [2], 2: [1]}, name="test")
|
231 |
+
assert G.name == "test"
|
232 |
+
assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})]
|
233 |
+
assert sorted(G.succ.items()) == [(1, {2: {}}), (2, {1: {}})]
|
234 |
+
assert sorted(G.pred.items()) == [(1, {2: {}}), (2, {1: {}})]
|
235 |
+
|
236 |
+
def test_add_edge(self):
|
237 |
+
G = self.Graph()
|
238 |
+
G.add_edge(0, 1)
|
239 |
+
assert G.adj == {0: {1: {}}, 1: {}}
|
240 |
+
assert G.succ == {0: {1: {}}, 1: {}}
|
241 |
+
assert G.pred == {0: {}, 1: {0: {}}}
|
242 |
+
G = self.Graph()
|
243 |
+
G.add_edge(*(0, 1))
|
244 |
+
assert G.adj == {0: {1: {}}, 1: {}}
|
245 |
+
assert G.succ == {0: {1: {}}, 1: {}}
|
246 |
+
assert G.pred == {0: {}, 1: {0: {}}}
|
247 |
+
with pytest.raises(ValueError, match="None cannot be a node"):
|
248 |
+
G.add_edge(None, 3)
|
249 |
+
|
250 |
+
def test_add_edges_from(self):
|
251 |
+
G = self.Graph()
|
252 |
+
G.add_edges_from([(0, 1), (0, 2, {"data": 3})], data=2)
|
253 |
+
assert G.adj == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}}
|
254 |
+
assert G.succ == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}}
|
255 |
+
assert G.pred == {0: {}, 1: {0: {"data": 2}}, 2: {0: {"data": 3}}}
|
256 |
+
|
257 |
+
with pytest.raises(nx.NetworkXError):
|
258 |
+
G.add_edges_from([(0,)]) # too few in tuple
|
259 |
+
with pytest.raises(nx.NetworkXError):
|
260 |
+
G.add_edges_from([(0, 1, 2, 3)]) # too many in tuple
|
261 |
+
with pytest.raises(TypeError):
|
262 |
+
G.add_edges_from([0]) # not a tuple
|
263 |
+
with pytest.raises(ValueError, match="None cannot be a node"):
|
264 |
+
G.add_edges_from([(None, 3), (3, 2)])
|
265 |
+
|
266 |
+
def test_remove_edge(self):
|
267 |
+
G = self.K3.copy()
|
268 |
+
G.remove_edge(0, 1)
|
269 |
+
assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}}
|
270 |
+
assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
|
271 |
+
with pytest.raises(nx.NetworkXError):
|
272 |
+
G.remove_edge(-1, 0)
|
273 |
+
|
274 |
+
def test_remove_edges_from(self):
|
275 |
+
G = self.K3.copy()
|
276 |
+
G.remove_edges_from([(0, 1)])
|
277 |
+
assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}}
|
278 |
+
assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
|
279 |
+
G.remove_edges_from([(0, 0)]) # silent fail
|
280 |
+
|
281 |
+
def test_clear(self):
|
282 |
+
G = self.K3
|
283 |
+
G.graph["name"] = "K3"
|
284 |
+
G.clear()
|
285 |
+
assert list(G.nodes) == []
|
286 |
+
assert G.succ == {}
|
287 |
+
assert G.pred == {}
|
288 |
+
assert G.graph == {}
|
289 |
+
|
290 |
+
def test_clear_edges(self):
|
291 |
+
G = self.K3
|
292 |
+
G.graph["name"] = "K3"
|
293 |
+
nodes = list(G.nodes)
|
294 |
+
G.clear_edges()
|
295 |
+
assert list(G.nodes) == nodes
|
296 |
+
expected = {0: {}, 1: {}, 2: {}}
|
297 |
+
assert G.succ == expected
|
298 |
+
assert G.pred == expected
|
299 |
+
assert list(G.edges) == []
|
300 |
+
assert G.graph["name"] == "K3"
|
301 |
+
|
302 |
+
|
303 |
+
class TestEdgeSubgraph(_TestGraphEdgeSubgraph):
|
304 |
+
"""Unit tests for the :meth:`DiGraph.edge_subgraph` method."""
|
305 |
+
|
306 |
+
def setup_method(self):
|
307 |
+
# Create a doubly-linked path graph on five nodes.
|
308 |
+
G = nx.DiGraph(nx.path_graph(5))
|
309 |
+
# Add some node, edge, and graph attributes.
|
310 |
+
for i in range(5):
|
311 |
+
G.nodes[i]["name"] = f"node{i}"
|
312 |
+
G.edges[0, 1]["name"] = "edge01"
|
313 |
+
G.edges[3, 4]["name"] = "edge34"
|
314 |
+
G.graph["name"] = "graph"
|
315 |
+
# Get the subgraph induced by the first and last edges.
|
316 |
+
self.G = G
|
317 |
+
self.H = G.edge_subgraph([(0, 1), (3, 4)])
|
318 |
+
|
319 |
+
def test_pred_succ(self):
|
320 |
+
"""Test that nodes are added to predecessors and successors.
|
321 |
+
|
322 |
+
For more information, see GitHub issue #2370.
|
323 |
+
|
324 |
+
"""
|
325 |
+
G = nx.DiGraph()
|
326 |
+
G.add_edge(0, 1)
|
327 |
+
H = G.edge_subgraph([(0, 1)])
|
328 |
+
assert list(H.predecessors(0)) == []
|
329 |
+
assert list(H.successors(0)) == [1]
|
330 |
+
assert list(H.predecessors(1)) == [0]
|
331 |
+
assert list(H.successors(1)) == []
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_digraph_historical.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Original NetworkX graph tests"""
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import networkx
|
5 |
+
import networkx as nx
|
6 |
+
|
7 |
+
from .historical_tests import HistoricalTests
|
8 |
+
|
9 |
+
|
10 |
+
class TestDiGraphHistorical(HistoricalTests):
|
11 |
+
@classmethod
|
12 |
+
def setup_class(cls):
|
13 |
+
HistoricalTests.setup_class()
|
14 |
+
cls.G = nx.DiGraph
|
15 |
+
|
16 |
+
def test_in_degree(self):
|
17 |
+
G = self.G()
|
18 |
+
G.add_nodes_from("GJK")
|
19 |
+
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")])
|
20 |
+
|
21 |
+
assert sorted(d for n, d in G.in_degree()) == [0, 0, 0, 0, 1, 2, 2]
|
22 |
+
assert dict(G.in_degree()) == {
|
23 |
+
"A": 0,
|
24 |
+
"C": 2,
|
25 |
+
"B": 1,
|
26 |
+
"D": 2,
|
27 |
+
"G": 0,
|
28 |
+
"K": 0,
|
29 |
+
"J": 0,
|
30 |
+
}
|
31 |
+
|
32 |
+
def test_out_degree(self):
|
33 |
+
G = self.G()
|
34 |
+
G.add_nodes_from("GJK")
|
35 |
+
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")])
|
36 |
+
assert sorted(v for k, v in G.in_degree()) == [0, 0, 0, 0, 1, 2, 2]
|
37 |
+
assert dict(G.out_degree()) == {
|
38 |
+
"A": 2,
|
39 |
+
"C": 1,
|
40 |
+
"B": 2,
|
41 |
+
"D": 0,
|
42 |
+
"G": 0,
|
43 |
+
"K": 0,
|
44 |
+
"J": 0,
|
45 |
+
}
|
46 |
+
|
47 |
+
def test_degree_digraph(self):
|
48 |
+
H = nx.DiGraph()
|
49 |
+
H.add_edges_from([(1, 24), (1, 2)])
|
50 |
+
assert sorted(d for n, d in H.in_degree([1, 24])) == [0, 1]
|
51 |
+
assert sorted(d for n, d in H.out_degree([1, 24])) == [0, 2]
|
52 |
+
assert sorted(d for n, d in H.degree([1, 24])) == [1, 2]
|
53 |
+
|
54 |
+
def test_neighbors(self):
|
55 |
+
G = self.G()
|
56 |
+
G.add_nodes_from("GJK")
|
57 |
+
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")])
|
58 |
+
|
59 |
+
assert sorted(G.neighbors("C")) == ["D"]
|
60 |
+
assert sorted(G["C"]) == ["D"]
|
61 |
+
assert sorted(G.neighbors("A")) == ["B", "C"]
|
62 |
+
pytest.raises(nx.NetworkXError, G.neighbors, "j")
|
63 |
+
pytest.raises(nx.NetworkXError, G.neighbors, "j")
|
64 |
+
|
65 |
+
def test_successors(self):
|
66 |
+
G = self.G()
|
67 |
+
G.add_nodes_from("GJK")
|
68 |
+
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")])
|
69 |
+
assert sorted(G.successors("A")) == ["B", "C"]
|
70 |
+
assert sorted(G.successors("A")) == ["B", "C"]
|
71 |
+
assert sorted(G.successors("G")) == []
|
72 |
+
assert sorted(G.successors("D")) == []
|
73 |
+
assert sorted(G.successors("G")) == []
|
74 |
+
pytest.raises(nx.NetworkXError, G.successors, "j")
|
75 |
+
pytest.raises(nx.NetworkXError, G.successors, "j")
|
76 |
+
|
77 |
+
def test_predecessors(self):
|
78 |
+
G = self.G()
|
79 |
+
G.add_nodes_from("GJK")
|
80 |
+
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")])
|
81 |
+
assert sorted(G.predecessors("C")) == ["A", "B"]
|
82 |
+
assert sorted(G.predecessors("C")) == ["A", "B"]
|
83 |
+
assert sorted(G.predecessors("G")) == []
|
84 |
+
assert sorted(G.predecessors("A")) == []
|
85 |
+
assert sorted(G.predecessors("G")) == []
|
86 |
+
assert sorted(G.predecessors("A")) == []
|
87 |
+
assert sorted(G.successors("D")) == []
|
88 |
+
|
89 |
+
pytest.raises(nx.NetworkXError, G.predecessors, "j")
|
90 |
+
pytest.raises(nx.NetworkXError, G.predecessors, "j")
|
91 |
+
|
92 |
+
def test_reverse(self):
|
93 |
+
G = nx.complete_graph(10)
|
94 |
+
H = G.to_directed()
|
95 |
+
HR = H.reverse()
|
96 |
+
assert nx.is_isomorphic(H, HR)
|
97 |
+
assert sorted(H.edges()) == sorted(HR.edges())
|
98 |
+
|
99 |
+
def test_reverse2(self):
|
100 |
+
H = nx.DiGraph()
|
101 |
+
foo = [H.add_edge(u, u + 1) for u in range(5)]
|
102 |
+
HR = H.reverse()
|
103 |
+
for u in range(5):
|
104 |
+
assert HR.has_edge(u + 1, u)
|
105 |
+
|
106 |
+
def test_reverse3(self):
|
107 |
+
H = nx.DiGraph()
|
108 |
+
H.add_nodes_from([1, 2, 3, 4])
|
109 |
+
HR = H.reverse()
|
110 |
+
assert sorted(HR.nodes()) == [1, 2, 3, 4]
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_filters.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
|
6 |
+
class TestFilterFactory:
|
7 |
+
def test_no_filter(self):
|
8 |
+
nf = nx.filters.no_filter
|
9 |
+
assert nf()
|
10 |
+
assert nf(1)
|
11 |
+
assert nf(2, 1)
|
12 |
+
|
13 |
+
def test_hide_nodes(self):
|
14 |
+
f = nx.classes.filters.hide_nodes([1, 2, 3])
|
15 |
+
assert not f(1)
|
16 |
+
assert not f(2)
|
17 |
+
assert not f(3)
|
18 |
+
assert f(4)
|
19 |
+
assert f(0)
|
20 |
+
assert f("a")
|
21 |
+
pytest.raises(TypeError, f, 1, 2)
|
22 |
+
pytest.raises(TypeError, f)
|
23 |
+
|
24 |
+
def test_show_nodes(self):
|
25 |
+
f = nx.classes.filters.show_nodes([1, 2, 3])
|
26 |
+
assert f(1)
|
27 |
+
assert f(2)
|
28 |
+
assert f(3)
|
29 |
+
assert not f(4)
|
30 |
+
assert not f(0)
|
31 |
+
assert not f("a")
|
32 |
+
pytest.raises(TypeError, f, 1, 2)
|
33 |
+
pytest.raises(TypeError, f)
|
34 |
+
|
35 |
+
def test_hide_edges(self):
|
36 |
+
factory = nx.classes.filters.hide_edges
|
37 |
+
f = factory([(1, 2), (3, 4)])
|
38 |
+
assert not f(1, 2)
|
39 |
+
assert not f(3, 4)
|
40 |
+
assert not f(4, 3)
|
41 |
+
assert f(2, 3)
|
42 |
+
assert f(0, -1)
|
43 |
+
assert f("a", "b")
|
44 |
+
pytest.raises(TypeError, f, 1, 2, 3)
|
45 |
+
pytest.raises(TypeError, f, 1)
|
46 |
+
pytest.raises(TypeError, f)
|
47 |
+
pytest.raises(TypeError, factory, [1, 2, 3])
|
48 |
+
pytest.raises(ValueError, factory, [(1, 2, 3)])
|
49 |
+
|
50 |
+
def test_show_edges(self):
|
51 |
+
factory = nx.classes.filters.show_edges
|
52 |
+
f = factory([(1, 2), (3, 4)])
|
53 |
+
assert f(1, 2)
|
54 |
+
assert f(3, 4)
|
55 |
+
assert f(4, 3)
|
56 |
+
assert not f(2, 3)
|
57 |
+
assert not f(0, -1)
|
58 |
+
assert not f("a", "b")
|
59 |
+
pytest.raises(TypeError, f, 1, 2, 3)
|
60 |
+
pytest.raises(TypeError, f, 1)
|
61 |
+
pytest.raises(TypeError, f)
|
62 |
+
pytest.raises(TypeError, factory, [1, 2, 3])
|
63 |
+
pytest.raises(ValueError, factory, [(1, 2, 3)])
|
64 |
+
|
65 |
+
def test_hide_diedges(self):
|
66 |
+
factory = nx.classes.filters.hide_diedges
|
67 |
+
f = factory([(1, 2), (3, 4)])
|
68 |
+
assert not f(1, 2)
|
69 |
+
assert not f(3, 4)
|
70 |
+
assert f(4, 3)
|
71 |
+
assert f(2, 3)
|
72 |
+
assert f(0, -1)
|
73 |
+
assert f("a", "b")
|
74 |
+
pytest.raises(TypeError, f, 1, 2, 3)
|
75 |
+
pytest.raises(TypeError, f, 1)
|
76 |
+
pytest.raises(TypeError, f)
|
77 |
+
pytest.raises(TypeError, factory, [1, 2, 3])
|
78 |
+
pytest.raises(ValueError, factory, [(1, 2, 3)])
|
79 |
+
|
80 |
+
def test_show_diedges(self):
|
81 |
+
factory = nx.classes.filters.show_diedges
|
82 |
+
f = factory([(1, 2), (3, 4)])
|
83 |
+
assert f(1, 2)
|
84 |
+
assert f(3, 4)
|
85 |
+
assert not f(4, 3)
|
86 |
+
assert not f(2, 3)
|
87 |
+
assert not f(0, -1)
|
88 |
+
assert not f("a", "b")
|
89 |
+
pytest.raises(TypeError, f, 1, 2, 3)
|
90 |
+
pytest.raises(TypeError, f, 1)
|
91 |
+
pytest.raises(TypeError, f)
|
92 |
+
pytest.raises(TypeError, factory, [1, 2, 3])
|
93 |
+
pytest.raises(ValueError, factory, [(1, 2, 3)])
|
94 |
+
|
95 |
+
def test_hide_multiedges(self):
|
96 |
+
factory = nx.classes.filters.hide_multiedges
|
97 |
+
f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
|
98 |
+
assert not f(1, 2, 0)
|
99 |
+
assert not f(1, 2, 1)
|
100 |
+
assert f(1, 2, 2)
|
101 |
+
assert f(3, 4, 0)
|
102 |
+
assert not f(3, 4, 1)
|
103 |
+
assert not f(4, 3, 1)
|
104 |
+
assert f(4, 3, 0)
|
105 |
+
assert f(2, 3, 0)
|
106 |
+
assert f(0, -1, 0)
|
107 |
+
assert f("a", "b", 0)
|
108 |
+
pytest.raises(TypeError, f, 1, 2, 3, 4)
|
109 |
+
pytest.raises(TypeError, f, 1, 2)
|
110 |
+
pytest.raises(TypeError, f, 1)
|
111 |
+
pytest.raises(TypeError, f)
|
112 |
+
pytest.raises(TypeError, factory, [1, 2, 3])
|
113 |
+
pytest.raises(ValueError, factory, [(1, 2)])
|
114 |
+
pytest.raises(ValueError, factory, [(1, 2, 3, 4)])
|
115 |
+
|
116 |
+
def test_show_multiedges(self):
|
117 |
+
factory = nx.classes.filters.show_multiedges
|
118 |
+
f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
|
119 |
+
assert f(1, 2, 0)
|
120 |
+
assert f(1, 2, 1)
|
121 |
+
assert not f(1, 2, 2)
|
122 |
+
assert not f(3, 4, 0)
|
123 |
+
assert f(3, 4, 1)
|
124 |
+
assert f(4, 3, 1)
|
125 |
+
assert not f(4, 3, 0)
|
126 |
+
assert not f(2, 3, 0)
|
127 |
+
assert not f(0, -1, 0)
|
128 |
+
assert not f("a", "b", 0)
|
129 |
+
pytest.raises(TypeError, f, 1, 2, 3, 4)
|
130 |
+
pytest.raises(TypeError, f, 1, 2)
|
131 |
+
pytest.raises(TypeError, f, 1)
|
132 |
+
pytest.raises(TypeError, f)
|
133 |
+
pytest.raises(TypeError, factory, [1, 2, 3])
|
134 |
+
pytest.raises(ValueError, factory, [(1, 2)])
|
135 |
+
pytest.raises(ValueError, factory, [(1, 2, 3, 4)])
|
136 |
+
|
137 |
+
def test_hide_multidiedges(self):
|
138 |
+
factory = nx.classes.filters.hide_multidiedges
|
139 |
+
f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
|
140 |
+
assert not f(1, 2, 0)
|
141 |
+
assert not f(1, 2, 1)
|
142 |
+
assert f(1, 2, 2)
|
143 |
+
assert f(3, 4, 0)
|
144 |
+
assert not f(3, 4, 1)
|
145 |
+
assert f(4, 3, 1)
|
146 |
+
assert f(4, 3, 0)
|
147 |
+
assert f(2, 3, 0)
|
148 |
+
assert f(0, -1, 0)
|
149 |
+
assert f("a", "b", 0)
|
150 |
+
pytest.raises(TypeError, f, 1, 2, 3, 4)
|
151 |
+
pytest.raises(TypeError, f, 1, 2)
|
152 |
+
pytest.raises(TypeError, f, 1)
|
153 |
+
pytest.raises(TypeError, f)
|
154 |
+
pytest.raises(TypeError, factory, [1, 2, 3])
|
155 |
+
pytest.raises(ValueError, factory, [(1, 2)])
|
156 |
+
pytest.raises(ValueError, factory, [(1, 2, 3, 4)])
|
157 |
+
|
158 |
+
def test_show_multidiedges(self):
|
159 |
+
factory = nx.classes.filters.show_multidiedges
|
160 |
+
f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
|
161 |
+
assert f(1, 2, 0)
|
162 |
+
assert f(1, 2, 1)
|
163 |
+
assert not f(1, 2, 2)
|
164 |
+
assert not f(3, 4, 0)
|
165 |
+
assert f(3, 4, 1)
|
166 |
+
assert not f(4, 3, 1)
|
167 |
+
assert not f(4, 3, 0)
|
168 |
+
assert not f(2, 3, 0)
|
169 |
+
assert not f(0, -1, 0)
|
170 |
+
assert not f("a", "b", 0)
|
171 |
+
pytest.raises(TypeError, f, 1, 2, 3, 4)
|
172 |
+
pytest.raises(TypeError, f, 1, 2)
|
173 |
+
pytest.raises(TypeError, f, 1)
|
174 |
+
pytest.raises(TypeError, f)
|
175 |
+
pytest.raises(TypeError, factory, [1, 2, 3])
|
176 |
+
pytest.raises(ValueError, factory, [(1, 2)])
|
177 |
+
pytest.raises(ValueError, factory, [(1, 2, 3, 4)])
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_function.py
ADDED
@@ -0,0 +1,787 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
from networkx.utils import edges_equal, nodes_equal
|
7 |
+
|
8 |
+
|
9 |
+
def test_degree_histogram_empty():
|
10 |
+
G = nx.Graph()
|
11 |
+
assert nx.degree_histogram(G) == []
|
12 |
+
|
13 |
+
|
14 |
+
class TestFunction:
|
15 |
+
def setup_method(self):
|
16 |
+
self.G = nx.Graph({0: [1, 2, 3], 1: [1, 2, 0], 4: []}, name="Test")
|
17 |
+
self.Gdegree = {0: 3, 1: 2, 2: 2, 3: 1, 4: 0}
|
18 |
+
self.Gnodes = list(range(5))
|
19 |
+
self.Gedges = [(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)]
|
20 |
+
self.DG = nx.DiGraph({0: [1, 2, 3], 1: [1, 2, 0], 4: []})
|
21 |
+
self.DGin_degree = {0: 1, 1: 2, 2: 2, 3: 1, 4: 0}
|
22 |
+
self.DGout_degree = {0: 3, 1: 3, 2: 0, 3: 0, 4: 0}
|
23 |
+
self.DGnodes = list(range(5))
|
24 |
+
self.DGedges = [(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)]
|
25 |
+
|
26 |
+
def test_nodes(self):
|
27 |
+
assert nodes_equal(self.G.nodes(), list(nx.nodes(self.G)))
|
28 |
+
assert nodes_equal(self.DG.nodes(), list(nx.nodes(self.DG)))
|
29 |
+
|
30 |
+
def test_edges(self):
|
31 |
+
assert edges_equal(self.G.edges(), list(nx.edges(self.G)))
|
32 |
+
assert sorted(self.DG.edges()) == sorted(nx.edges(self.DG))
|
33 |
+
assert edges_equal(
|
34 |
+
self.G.edges(nbunch=[0, 1, 3]), list(nx.edges(self.G, nbunch=[0, 1, 3]))
|
35 |
+
)
|
36 |
+
assert sorted(self.DG.edges(nbunch=[0, 1, 3])) == sorted(
|
37 |
+
nx.edges(self.DG, nbunch=[0, 1, 3])
|
38 |
+
)
|
39 |
+
|
40 |
+
def test_degree(self):
|
41 |
+
assert edges_equal(self.G.degree(), list(nx.degree(self.G)))
|
42 |
+
assert sorted(self.DG.degree()) == sorted(nx.degree(self.DG))
|
43 |
+
assert edges_equal(
|
44 |
+
self.G.degree(nbunch=[0, 1]), list(nx.degree(self.G, nbunch=[0, 1]))
|
45 |
+
)
|
46 |
+
assert sorted(self.DG.degree(nbunch=[0, 1])) == sorted(
|
47 |
+
nx.degree(self.DG, nbunch=[0, 1])
|
48 |
+
)
|
49 |
+
assert edges_equal(
|
50 |
+
self.G.degree(weight="weight"), list(nx.degree(self.G, weight="weight"))
|
51 |
+
)
|
52 |
+
assert sorted(self.DG.degree(weight="weight")) == sorted(
|
53 |
+
nx.degree(self.DG, weight="weight")
|
54 |
+
)
|
55 |
+
|
56 |
+
def test_neighbors(self):
|
57 |
+
assert list(self.G.neighbors(1)) == list(nx.neighbors(self.G, 1))
|
58 |
+
assert list(self.DG.neighbors(1)) == list(nx.neighbors(self.DG, 1))
|
59 |
+
|
60 |
+
def test_number_of_nodes(self):
|
61 |
+
assert self.G.number_of_nodes() == nx.number_of_nodes(self.G)
|
62 |
+
assert self.DG.number_of_nodes() == nx.number_of_nodes(self.DG)
|
63 |
+
|
64 |
+
def test_number_of_edges(self):
|
65 |
+
assert self.G.number_of_edges() == nx.number_of_edges(self.G)
|
66 |
+
assert self.DG.number_of_edges() == nx.number_of_edges(self.DG)
|
67 |
+
|
68 |
+
def test_is_directed(self):
|
69 |
+
assert self.G.is_directed() == nx.is_directed(self.G)
|
70 |
+
assert self.DG.is_directed() == nx.is_directed(self.DG)
|
71 |
+
|
72 |
+
def test_add_star(self):
|
73 |
+
G = self.G.copy()
|
74 |
+
nlist = [12, 13, 14, 15]
|
75 |
+
nx.add_star(G, nlist)
|
76 |
+
assert edges_equal(G.edges(nlist), [(12, 13), (12, 14), (12, 15)])
|
77 |
+
|
78 |
+
G = self.G.copy()
|
79 |
+
nx.add_star(G, nlist, weight=2.0)
|
80 |
+
assert edges_equal(
|
81 |
+
G.edges(nlist, data=True),
|
82 |
+
[
|
83 |
+
(12, 13, {"weight": 2.0}),
|
84 |
+
(12, 14, {"weight": 2.0}),
|
85 |
+
(12, 15, {"weight": 2.0}),
|
86 |
+
],
|
87 |
+
)
|
88 |
+
|
89 |
+
G = self.G.copy()
|
90 |
+
nlist = [12]
|
91 |
+
nx.add_star(G, nlist)
|
92 |
+
assert nodes_equal(G, list(self.G) + nlist)
|
93 |
+
|
94 |
+
G = self.G.copy()
|
95 |
+
nlist = []
|
96 |
+
nx.add_star(G, nlist)
|
97 |
+
assert nodes_equal(G.nodes, self.Gnodes)
|
98 |
+
assert edges_equal(G.edges, self.G.edges)
|
99 |
+
|
100 |
+
def test_add_path(self):
|
101 |
+
G = self.G.copy()
|
102 |
+
nlist = [12, 13, 14, 15]
|
103 |
+
nx.add_path(G, nlist)
|
104 |
+
assert edges_equal(G.edges(nlist), [(12, 13), (13, 14), (14, 15)])
|
105 |
+
G = self.G.copy()
|
106 |
+
nx.add_path(G, nlist, weight=2.0)
|
107 |
+
assert edges_equal(
|
108 |
+
G.edges(nlist, data=True),
|
109 |
+
[
|
110 |
+
(12, 13, {"weight": 2.0}),
|
111 |
+
(13, 14, {"weight": 2.0}),
|
112 |
+
(14, 15, {"weight": 2.0}),
|
113 |
+
],
|
114 |
+
)
|
115 |
+
|
116 |
+
G = self.G.copy()
|
117 |
+
nlist = ["node"]
|
118 |
+
nx.add_path(G, nlist)
|
119 |
+
assert edges_equal(G.edges(nlist), [])
|
120 |
+
assert nodes_equal(G, list(self.G) + ["node"])
|
121 |
+
|
122 |
+
G = self.G.copy()
|
123 |
+
nlist = iter(["node"])
|
124 |
+
nx.add_path(G, nlist)
|
125 |
+
assert edges_equal(G.edges(["node"]), [])
|
126 |
+
assert nodes_equal(G, list(self.G) + ["node"])
|
127 |
+
|
128 |
+
G = self.G.copy()
|
129 |
+
nlist = [12]
|
130 |
+
nx.add_path(G, nlist)
|
131 |
+
assert edges_equal(G.edges(nlist), [])
|
132 |
+
assert nodes_equal(G, list(self.G) + [12])
|
133 |
+
|
134 |
+
G = self.G.copy()
|
135 |
+
nlist = iter([12])
|
136 |
+
nx.add_path(G, nlist)
|
137 |
+
assert edges_equal(G.edges([12]), [])
|
138 |
+
assert nodes_equal(G, list(self.G) + [12])
|
139 |
+
|
140 |
+
G = self.G.copy()
|
141 |
+
nlist = []
|
142 |
+
nx.add_path(G, nlist)
|
143 |
+
assert edges_equal(G.edges, self.G.edges)
|
144 |
+
assert nodes_equal(G, list(self.G))
|
145 |
+
|
146 |
+
G = self.G.copy()
|
147 |
+
nlist = iter([])
|
148 |
+
nx.add_path(G, nlist)
|
149 |
+
assert edges_equal(G.edges, self.G.edges)
|
150 |
+
assert nodes_equal(G, list(self.G))
|
151 |
+
|
152 |
+
def test_add_cycle(self):
|
153 |
+
G = self.G.copy()
|
154 |
+
nlist = [12, 13, 14, 15]
|
155 |
+
oklists = [
|
156 |
+
[(12, 13), (12, 15), (13, 14), (14, 15)],
|
157 |
+
[(12, 13), (13, 14), (14, 15), (15, 12)],
|
158 |
+
]
|
159 |
+
nx.add_cycle(G, nlist)
|
160 |
+
assert sorted(G.edges(nlist)) in oklists
|
161 |
+
G = self.G.copy()
|
162 |
+
oklists = [
|
163 |
+
[
|
164 |
+
(12, 13, {"weight": 1.0}),
|
165 |
+
(12, 15, {"weight": 1.0}),
|
166 |
+
(13, 14, {"weight": 1.0}),
|
167 |
+
(14, 15, {"weight": 1.0}),
|
168 |
+
],
|
169 |
+
[
|
170 |
+
(12, 13, {"weight": 1.0}),
|
171 |
+
(13, 14, {"weight": 1.0}),
|
172 |
+
(14, 15, {"weight": 1.0}),
|
173 |
+
(15, 12, {"weight": 1.0}),
|
174 |
+
],
|
175 |
+
]
|
176 |
+
nx.add_cycle(G, nlist, weight=1.0)
|
177 |
+
assert sorted(G.edges(nlist, data=True)) in oklists
|
178 |
+
|
179 |
+
G = self.G.copy()
|
180 |
+
nlist = [12]
|
181 |
+
nx.add_cycle(G, nlist)
|
182 |
+
assert nodes_equal(G, list(self.G) + nlist)
|
183 |
+
|
184 |
+
G = self.G.copy()
|
185 |
+
nlist = []
|
186 |
+
nx.add_cycle(G, nlist)
|
187 |
+
assert nodes_equal(G.nodes, self.Gnodes)
|
188 |
+
assert edges_equal(G.edges, self.G.edges)
|
189 |
+
|
190 |
+
def test_subgraph(self):
|
191 |
+
assert (
|
192 |
+
self.G.subgraph([0, 1, 2, 4]).adj == nx.subgraph(self.G, [0, 1, 2, 4]).adj
|
193 |
+
)
|
194 |
+
assert (
|
195 |
+
self.DG.subgraph([0, 1, 2, 4]).adj == nx.subgraph(self.DG, [0, 1, 2, 4]).adj
|
196 |
+
)
|
197 |
+
assert (
|
198 |
+
self.G.subgraph([0, 1, 2, 4]).adj
|
199 |
+
== nx.induced_subgraph(self.G, [0, 1, 2, 4]).adj
|
200 |
+
)
|
201 |
+
assert (
|
202 |
+
self.DG.subgraph([0, 1, 2, 4]).adj
|
203 |
+
== nx.induced_subgraph(self.DG, [0, 1, 2, 4]).adj
|
204 |
+
)
|
205 |
+
# subgraph-subgraph chain is allowed in function interface
|
206 |
+
H = nx.induced_subgraph(self.G.subgraph([0, 1, 2, 4]), [0, 1, 4])
|
207 |
+
assert H._graph is not self.G
|
208 |
+
assert H.adj == self.G.subgraph([0, 1, 4]).adj
|
209 |
+
|
210 |
+
def test_edge_subgraph(self):
|
211 |
+
assert (
|
212 |
+
self.G.edge_subgraph([(1, 2), (0, 3)]).adj
|
213 |
+
== nx.edge_subgraph(self.G, [(1, 2), (0, 3)]).adj
|
214 |
+
)
|
215 |
+
assert (
|
216 |
+
self.DG.edge_subgraph([(1, 2), (0, 3)]).adj
|
217 |
+
== nx.edge_subgraph(self.DG, [(1, 2), (0, 3)]).adj
|
218 |
+
)
|
219 |
+
|
220 |
+
def test_create_empty_copy(self):
|
221 |
+
G = nx.create_empty_copy(self.G, with_data=False)
|
222 |
+
assert nodes_equal(G, list(self.G))
|
223 |
+
assert G.graph == {}
|
224 |
+
assert G._node == {}.fromkeys(self.G.nodes(), {})
|
225 |
+
assert G._adj == {}.fromkeys(self.G.nodes(), {})
|
226 |
+
G = nx.create_empty_copy(self.G)
|
227 |
+
assert nodes_equal(G, list(self.G))
|
228 |
+
assert G.graph == self.G.graph
|
229 |
+
assert G._node == self.G._node
|
230 |
+
assert G._adj == {}.fromkeys(self.G.nodes(), {})
|
231 |
+
|
232 |
+
def test_degree_histogram(self):
|
233 |
+
assert nx.degree_histogram(self.G) == [1, 1, 1, 1, 1]
|
234 |
+
|
235 |
+
def test_density(self):
|
236 |
+
assert nx.density(self.G) == 0.5
|
237 |
+
assert nx.density(self.DG) == 0.3
|
238 |
+
G = nx.Graph()
|
239 |
+
G.add_node(1)
|
240 |
+
assert nx.density(G) == 0.0
|
241 |
+
|
242 |
+
def test_density_selfloop(self):
|
243 |
+
G = nx.Graph()
|
244 |
+
G.add_edge(1, 1)
|
245 |
+
assert nx.density(G) == 0.0
|
246 |
+
G.add_edge(1, 2)
|
247 |
+
assert nx.density(G) == 2.0
|
248 |
+
|
249 |
+
def test_freeze(self):
|
250 |
+
G = nx.freeze(self.G)
|
251 |
+
assert G.frozen
|
252 |
+
pytest.raises(nx.NetworkXError, G.add_node, 1)
|
253 |
+
pytest.raises(nx.NetworkXError, G.add_nodes_from, [1])
|
254 |
+
pytest.raises(nx.NetworkXError, G.remove_node, 1)
|
255 |
+
pytest.raises(nx.NetworkXError, G.remove_nodes_from, [1])
|
256 |
+
pytest.raises(nx.NetworkXError, G.add_edge, 1, 2)
|
257 |
+
pytest.raises(nx.NetworkXError, G.add_edges_from, [(1, 2)])
|
258 |
+
pytest.raises(nx.NetworkXError, G.remove_edge, 1, 2)
|
259 |
+
pytest.raises(nx.NetworkXError, G.remove_edges_from, [(1, 2)])
|
260 |
+
pytest.raises(nx.NetworkXError, G.clear_edges)
|
261 |
+
pytest.raises(nx.NetworkXError, G.clear)
|
262 |
+
|
263 |
+
def test_is_frozen(self):
|
264 |
+
assert not nx.is_frozen(self.G)
|
265 |
+
G = nx.freeze(self.G)
|
266 |
+
assert G.frozen == nx.is_frozen(self.G)
|
267 |
+
assert G.frozen
|
268 |
+
|
269 |
+
def test_node_attributes_are_still_mutable_on_frozen_graph(self):
|
270 |
+
G = nx.freeze(nx.path_graph(3))
|
271 |
+
node = G.nodes[0]
|
272 |
+
node["node_attribute"] = True
|
273 |
+
assert node["node_attribute"] == True
|
274 |
+
|
275 |
+
def test_edge_attributes_are_still_mutable_on_frozen_graph(self):
|
276 |
+
G = nx.freeze(nx.path_graph(3))
|
277 |
+
edge = G.edges[(0, 1)]
|
278 |
+
edge["edge_attribute"] = True
|
279 |
+
assert edge["edge_attribute"] == True
|
280 |
+
|
281 |
+
def test_neighbors_complete_graph(self):
|
282 |
+
graph = nx.complete_graph(100)
|
283 |
+
pop = random.sample(list(graph), 1)
|
284 |
+
nbors = list(nx.neighbors(graph, pop[0]))
|
285 |
+
# should be all the other vertices in the graph
|
286 |
+
assert len(nbors) == len(graph) - 1
|
287 |
+
|
288 |
+
graph = nx.path_graph(100)
|
289 |
+
node = random.sample(list(graph), 1)[0]
|
290 |
+
nbors = list(nx.neighbors(graph, node))
|
291 |
+
# should be all the other vertices in the graph
|
292 |
+
if node != 0 and node != 99:
|
293 |
+
assert len(nbors) == 2
|
294 |
+
else:
|
295 |
+
assert len(nbors) == 1
|
296 |
+
|
297 |
+
# create a star graph with 99 outer nodes
|
298 |
+
graph = nx.star_graph(99)
|
299 |
+
nbors = list(nx.neighbors(graph, 0))
|
300 |
+
assert len(nbors) == 99
|
301 |
+
|
302 |
+
def test_non_neighbors(self):
|
303 |
+
graph = nx.complete_graph(100)
|
304 |
+
pop = random.sample(list(graph), 1)
|
305 |
+
nbors = nx.non_neighbors(graph, pop[0])
|
306 |
+
# should be all the other vertices in the graph
|
307 |
+
assert len(nbors) == 0
|
308 |
+
|
309 |
+
graph = nx.path_graph(100)
|
310 |
+
node = random.sample(list(graph), 1)[0]
|
311 |
+
nbors = nx.non_neighbors(graph, node)
|
312 |
+
# should be all the other vertices in the graph
|
313 |
+
if node != 0 and node != 99:
|
314 |
+
assert len(nbors) == 97
|
315 |
+
else:
|
316 |
+
assert len(nbors) == 98
|
317 |
+
|
318 |
+
# create a star graph with 99 outer nodes
|
319 |
+
graph = nx.star_graph(99)
|
320 |
+
nbors = nx.non_neighbors(graph, 0)
|
321 |
+
assert len(nbors) == 0
|
322 |
+
|
323 |
+
# disconnected graph
|
324 |
+
graph = nx.Graph()
|
325 |
+
graph.add_nodes_from(range(10))
|
326 |
+
nbors = nx.non_neighbors(graph, 0)
|
327 |
+
assert len(nbors) == 9
|
328 |
+
|
329 |
+
def test_non_edges(self):
|
330 |
+
# All possible edges exist
|
331 |
+
graph = nx.complete_graph(5)
|
332 |
+
nedges = list(nx.non_edges(graph))
|
333 |
+
assert len(nedges) == 0
|
334 |
+
|
335 |
+
graph = nx.path_graph(4)
|
336 |
+
expected = [(0, 2), (0, 3), (1, 3)]
|
337 |
+
nedges = list(nx.non_edges(graph))
|
338 |
+
for u, v in expected:
|
339 |
+
assert (u, v) in nedges or (v, u) in nedges
|
340 |
+
|
341 |
+
graph = nx.star_graph(4)
|
342 |
+
expected = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
|
343 |
+
nedges = list(nx.non_edges(graph))
|
344 |
+
for u, v in expected:
|
345 |
+
assert (u, v) in nedges or (v, u) in nedges
|
346 |
+
|
347 |
+
# Directed graphs
|
348 |
+
graph = nx.DiGraph()
|
349 |
+
graph.add_edges_from([(0, 2), (2, 0), (2, 1)])
|
350 |
+
expected = [(0, 1), (1, 0), (1, 2)]
|
351 |
+
nedges = list(nx.non_edges(graph))
|
352 |
+
for e in expected:
|
353 |
+
assert e in nedges
|
354 |
+
|
355 |
+
def test_is_weighted(self):
|
356 |
+
G = nx.Graph()
|
357 |
+
assert not nx.is_weighted(G)
|
358 |
+
|
359 |
+
G = nx.path_graph(4)
|
360 |
+
assert not nx.is_weighted(G)
|
361 |
+
assert not nx.is_weighted(G, (2, 3))
|
362 |
+
|
363 |
+
G.add_node(4)
|
364 |
+
G.add_edge(3, 4, weight=4)
|
365 |
+
assert not nx.is_weighted(G)
|
366 |
+
assert nx.is_weighted(G, (3, 4))
|
367 |
+
|
368 |
+
G = nx.DiGraph()
|
369 |
+
G.add_weighted_edges_from(
|
370 |
+
[
|
371 |
+
("0", "3", 3),
|
372 |
+
("0", "1", -5),
|
373 |
+
("1", "0", -5),
|
374 |
+
("0", "2", 2),
|
375 |
+
("1", "2", 4),
|
376 |
+
("2", "3", 1),
|
377 |
+
]
|
378 |
+
)
|
379 |
+
assert nx.is_weighted(G)
|
380 |
+
assert nx.is_weighted(G, ("1", "0"))
|
381 |
+
|
382 |
+
G = G.to_undirected()
|
383 |
+
assert nx.is_weighted(G)
|
384 |
+
assert nx.is_weighted(G, ("1", "0"))
|
385 |
+
|
386 |
+
pytest.raises(nx.NetworkXError, nx.is_weighted, G, (1, 2))
|
387 |
+
|
388 |
+
def test_is_negatively_weighted(self):
|
389 |
+
G = nx.Graph()
|
390 |
+
assert not nx.is_negatively_weighted(G)
|
391 |
+
|
392 |
+
G.add_node(1)
|
393 |
+
G.add_nodes_from([2, 3, 4, 5])
|
394 |
+
assert not nx.is_negatively_weighted(G)
|
395 |
+
|
396 |
+
G.add_edge(1, 2, weight=4)
|
397 |
+
assert not nx.is_negatively_weighted(G, (1, 2))
|
398 |
+
|
399 |
+
G.add_edges_from([(1, 3), (2, 4), (2, 6)])
|
400 |
+
G[1][3]["color"] = "blue"
|
401 |
+
assert not nx.is_negatively_weighted(G)
|
402 |
+
assert not nx.is_negatively_weighted(G, (1, 3))
|
403 |
+
|
404 |
+
G[2][4]["weight"] = -2
|
405 |
+
assert nx.is_negatively_weighted(G, (2, 4))
|
406 |
+
assert nx.is_negatively_weighted(G)
|
407 |
+
|
408 |
+
G = nx.DiGraph()
|
409 |
+
G.add_weighted_edges_from(
|
410 |
+
[
|
411 |
+
("0", "3", 3),
|
412 |
+
("0", "1", -5),
|
413 |
+
("1", "0", -2),
|
414 |
+
("0", "2", 2),
|
415 |
+
("1", "2", -3),
|
416 |
+
("2", "3", 1),
|
417 |
+
]
|
418 |
+
)
|
419 |
+
assert nx.is_negatively_weighted(G)
|
420 |
+
assert not nx.is_negatively_weighted(G, ("0", "3"))
|
421 |
+
assert nx.is_negatively_weighted(G, ("1", "0"))
|
422 |
+
|
423 |
+
pytest.raises(nx.NetworkXError, nx.is_negatively_weighted, G, (1, 4))
|
424 |
+
|
425 |
+
|
426 |
+
class TestCommonNeighbors:
|
427 |
+
@classmethod
|
428 |
+
def setup_class(cls):
|
429 |
+
cls.func = staticmethod(nx.common_neighbors)
|
430 |
+
|
431 |
+
def test_func(G, u, v, expected):
|
432 |
+
result = sorted(cls.func(G, u, v))
|
433 |
+
assert result == expected
|
434 |
+
|
435 |
+
cls.test = staticmethod(test_func)
|
436 |
+
|
437 |
+
def test_K5(self):
|
438 |
+
G = nx.complete_graph(5)
|
439 |
+
self.test(G, 0, 1, [2, 3, 4])
|
440 |
+
|
441 |
+
def test_P3(self):
|
442 |
+
G = nx.path_graph(3)
|
443 |
+
self.test(G, 0, 2, [1])
|
444 |
+
|
445 |
+
def test_S4(self):
|
446 |
+
G = nx.star_graph(4)
|
447 |
+
self.test(G, 1, 2, [0])
|
448 |
+
|
449 |
+
def test_digraph(self):
|
450 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
451 |
+
G = nx.DiGraph()
|
452 |
+
G.add_edges_from([(0, 1), (1, 2)])
|
453 |
+
self.func(G, 0, 2)
|
454 |
+
|
455 |
+
def test_nonexistent_nodes(self):
|
456 |
+
G = nx.complete_graph(5)
|
457 |
+
pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 5, 4)
|
458 |
+
pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 4, 5)
|
459 |
+
pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 5, 6)
|
460 |
+
|
461 |
+
def test_custom1(self):
|
462 |
+
"""Case of no common neighbors."""
|
463 |
+
G = nx.Graph()
|
464 |
+
G.add_nodes_from([0, 1])
|
465 |
+
self.test(G, 0, 1, [])
|
466 |
+
|
467 |
+
def test_custom2(self):
|
468 |
+
"""Case of equal nodes."""
|
469 |
+
G = nx.complete_graph(4)
|
470 |
+
self.test(G, 0, 0, [1, 2, 3])
|
471 |
+
|
472 |
+
|
473 |
+
@pytest.mark.parametrize(
|
474 |
+
"graph_type", (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
|
475 |
+
)
|
476 |
+
def test_set_node_attributes(graph_type):
|
477 |
+
# Test single value
|
478 |
+
G = nx.path_graph(3, create_using=graph_type)
|
479 |
+
vals = 100
|
480 |
+
attr = "hello"
|
481 |
+
nx.set_node_attributes(G, vals, attr)
|
482 |
+
assert G.nodes[0][attr] == vals
|
483 |
+
assert G.nodes[1][attr] == vals
|
484 |
+
assert G.nodes[2][attr] == vals
|
485 |
+
|
486 |
+
# Test dictionary
|
487 |
+
G = nx.path_graph(3, create_using=graph_type)
|
488 |
+
vals = dict(zip(sorted(G.nodes()), range(len(G))))
|
489 |
+
attr = "hi"
|
490 |
+
nx.set_node_attributes(G, vals, attr)
|
491 |
+
assert G.nodes[0][attr] == 0
|
492 |
+
assert G.nodes[1][attr] == 1
|
493 |
+
assert G.nodes[2][attr] == 2
|
494 |
+
|
495 |
+
# Test dictionary of dictionaries
|
496 |
+
G = nx.path_graph(3, create_using=graph_type)
|
497 |
+
d = {"hi": 0, "hello": 200}
|
498 |
+
vals = dict.fromkeys(G.nodes(), d)
|
499 |
+
vals.pop(0)
|
500 |
+
nx.set_node_attributes(G, vals)
|
501 |
+
assert G.nodes[0] == {}
|
502 |
+
assert G.nodes[1]["hi"] == 0
|
503 |
+
assert G.nodes[2]["hello"] == 200
|
504 |
+
|
505 |
+
|
506 |
+
@pytest.mark.parametrize(
|
507 |
+
("values", "name"),
|
508 |
+
(
|
509 |
+
({0: "red", 1: "blue"}, "color"), # values dictionary
|
510 |
+
({0: {"color": "red"}, 1: {"color": "blue"}}, None), # dict-of-dict
|
511 |
+
),
|
512 |
+
)
|
513 |
+
def test_set_node_attributes_ignores_extra_nodes(values, name):
|
514 |
+
"""
|
515 |
+
When `values` is a dict or dict-of-dict keyed by nodes, ensure that keys
|
516 |
+
that correspond to nodes not in G are ignored.
|
517 |
+
"""
|
518 |
+
G = nx.Graph()
|
519 |
+
G.add_node(0)
|
520 |
+
nx.set_node_attributes(G, values, name)
|
521 |
+
assert G.nodes[0]["color"] == "red"
|
522 |
+
assert 1 not in G.nodes
|
523 |
+
|
524 |
+
|
525 |
+
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
|
526 |
+
def test_set_edge_attributes(graph_type):
|
527 |
+
# Test single value
|
528 |
+
G = nx.path_graph(3, create_using=graph_type)
|
529 |
+
attr = "hello"
|
530 |
+
vals = 3
|
531 |
+
nx.set_edge_attributes(G, vals, attr)
|
532 |
+
assert G[0][1][attr] == vals
|
533 |
+
assert G[1][2][attr] == vals
|
534 |
+
|
535 |
+
# Test multiple values
|
536 |
+
G = nx.path_graph(3, create_using=graph_type)
|
537 |
+
attr = "hi"
|
538 |
+
edges = [(0, 1), (1, 2)]
|
539 |
+
vals = dict(zip(edges, range(len(edges))))
|
540 |
+
nx.set_edge_attributes(G, vals, attr)
|
541 |
+
assert G[0][1][attr] == 0
|
542 |
+
assert G[1][2][attr] == 1
|
543 |
+
|
544 |
+
# Test dictionary of dictionaries
|
545 |
+
G = nx.path_graph(3, create_using=graph_type)
|
546 |
+
d = {"hi": 0, "hello": 200}
|
547 |
+
edges = [(0, 1)]
|
548 |
+
vals = dict.fromkeys(edges, d)
|
549 |
+
nx.set_edge_attributes(G, vals)
|
550 |
+
assert G[0][1]["hi"] == 0
|
551 |
+
assert G[0][1]["hello"] == 200
|
552 |
+
assert G[1][2] == {}
|
553 |
+
|
554 |
+
|
555 |
+
@pytest.mark.parametrize(
|
556 |
+
("values", "name"),
|
557 |
+
(
|
558 |
+
({(0, 1): 1.0, (0, 2): 2.0}, "weight"), # values dict
|
559 |
+
({(0, 1): {"weight": 1.0}, (0, 2): {"weight": 2.0}}, None), # values dod
|
560 |
+
),
|
561 |
+
)
|
562 |
+
def test_set_edge_attributes_ignores_extra_edges(values, name):
|
563 |
+
"""If `values` is a dict or dict-of-dicts containing edges that are not in
|
564 |
+
G, data associate with these edges should be ignored.
|
565 |
+
"""
|
566 |
+
G = nx.Graph([(0, 1)])
|
567 |
+
nx.set_edge_attributes(G, values, name)
|
568 |
+
assert G[0][1]["weight"] == 1.0
|
569 |
+
assert (0, 2) not in G.edges
|
570 |
+
|
571 |
+
|
572 |
+
@pytest.mark.parametrize("graph_type", (nx.MultiGraph, nx.MultiDiGraph))
|
573 |
+
def test_set_edge_attributes_multi(graph_type):
|
574 |
+
# Test single value
|
575 |
+
G = nx.path_graph(3, create_using=graph_type)
|
576 |
+
attr = "hello"
|
577 |
+
vals = 3
|
578 |
+
nx.set_edge_attributes(G, vals, attr)
|
579 |
+
assert G[0][1][0][attr] == vals
|
580 |
+
assert G[1][2][0][attr] == vals
|
581 |
+
|
582 |
+
# Test multiple values
|
583 |
+
G = nx.path_graph(3, create_using=graph_type)
|
584 |
+
attr = "hi"
|
585 |
+
edges = [(0, 1, 0), (1, 2, 0)]
|
586 |
+
vals = dict(zip(edges, range(len(edges))))
|
587 |
+
nx.set_edge_attributes(G, vals, attr)
|
588 |
+
assert G[0][1][0][attr] == 0
|
589 |
+
assert G[1][2][0][attr] == 1
|
590 |
+
|
591 |
+
# Test dictionary of dictionaries
|
592 |
+
G = nx.path_graph(3, create_using=graph_type)
|
593 |
+
d = {"hi": 0, "hello": 200}
|
594 |
+
edges = [(0, 1, 0)]
|
595 |
+
vals = dict.fromkeys(edges, d)
|
596 |
+
nx.set_edge_attributes(G, vals)
|
597 |
+
assert G[0][1][0]["hi"] == 0
|
598 |
+
assert G[0][1][0]["hello"] == 200
|
599 |
+
assert G[1][2][0] == {}
|
600 |
+
|
601 |
+
|
602 |
+
@pytest.mark.parametrize(
|
603 |
+
("values", "name"),
|
604 |
+
(
|
605 |
+
({(0, 1, 0): 1.0, (0, 2, 0): 2.0}, "weight"), # values dict
|
606 |
+
({(0, 1, 0): {"weight": 1.0}, (0, 2, 0): {"weight": 2.0}}, None), # values dod
|
607 |
+
),
|
608 |
+
)
|
609 |
+
def test_set_edge_attributes_multi_ignores_extra_edges(values, name):
|
610 |
+
"""If `values` is a dict or dict-of-dicts containing edges that are not in
|
611 |
+
G, data associate with these edges should be ignored.
|
612 |
+
"""
|
613 |
+
G = nx.MultiGraph([(0, 1, 0), (0, 1, 1)])
|
614 |
+
nx.set_edge_attributes(G, values, name)
|
615 |
+
assert G[0][1][0]["weight"] == 1.0
|
616 |
+
assert G[0][1][1] == {}
|
617 |
+
assert (0, 2) not in G.edges()
|
618 |
+
|
619 |
+
|
620 |
+
def test_get_node_attributes():
|
621 |
+
graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()]
|
622 |
+
for G in graphs:
|
623 |
+
G = nx.path_graph(3, create_using=G)
|
624 |
+
attr = "hello"
|
625 |
+
vals = 100
|
626 |
+
nx.set_node_attributes(G, vals, attr)
|
627 |
+
attrs = nx.get_node_attributes(G, attr)
|
628 |
+
assert attrs[0] == vals
|
629 |
+
assert attrs[1] == vals
|
630 |
+
assert attrs[2] == vals
|
631 |
+
default_val = 1
|
632 |
+
G.add_node(4)
|
633 |
+
attrs = nx.get_node_attributes(G, attr, default=default_val)
|
634 |
+
assert attrs[4] == default_val
|
635 |
+
|
636 |
+
|
637 |
+
def test_get_edge_attributes():
|
638 |
+
graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()]
|
639 |
+
for G in graphs:
|
640 |
+
G = nx.path_graph(3, create_using=G)
|
641 |
+
attr = "hello"
|
642 |
+
vals = 100
|
643 |
+
nx.set_edge_attributes(G, vals, attr)
|
644 |
+
attrs = nx.get_edge_attributes(G, attr)
|
645 |
+
assert len(attrs) == 2
|
646 |
+
|
647 |
+
for edge in G.edges:
|
648 |
+
assert attrs[edge] == vals
|
649 |
+
|
650 |
+
default_val = vals
|
651 |
+
G.add_edge(4, 5)
|
652 |
+
deafult_attrs = nx.get_edge_attributes(G, attr, default=default_val)
|
653 |
+
assert len(deafult_attrs) == 3
|
654 |
+
|
655 |
+
for edge in G.edges:
|
656 |
+
assert deafult_attrs[edge] == vals
|
657 |
+
|
658 |
+
|
659 |
+
def test_is_empty():
|
660 |
+
graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()]
|
661 |
+
for G in graphs:
|
662 |
+
assert nx.is_empty(G)
|
663 |
+
G.add_nodes_from(range(5))
|
664 |
+
assert nx.is_empty(G)
|
665 |
+
G.add_edges_from([(1, 2), (3, 4)])
|
666 |
+
assert not nx.is_empty(G)
|
667 |
+
|
668 |
+
|
669 |
+
@pytest.mark.parametrize(
|
670 |
+
"graph_type", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph]
|
671 |
+
)
|
672 |
+
def test_selfloops(graph_type):
|
673 |
+
G = nx.complete_graph(3, create_using=graph_type)
|
674 |
+
G.add_edge(0, 0)
|
675 |
+
assert nodes_equal(nx.nodes_with_selfloops(G), [0])
|
676 |
+
assert edges_equal(nx.selfloop_edges(G), [(0, 0)])
|
677 |
+
assert edges_equal(nx.selfloop_edges(G, data=True), [(0, 0, {})])
|
678 |
+
assert nx.number_of_selfloops(G) == 1
|
679 |
+
|
680 |
+
|
681 |
+
@pytest.mark.parametrize(
|
682 |
+
"graph_type", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph]
|
683 |
+
)
|
684 |
+
def test_selfloop_edges_attr(graph_type):
|
685 |
+
G = nx.complete_graph(3, create_using=graph_type)
|
686 |
+
G.add_edge(0, 0)
|
687 |
+
G.add_edge(1, 1, weight=2)
|
688 |
+
assert edges_equal(
|
689 |
+
nx.selfloop_edges(G, data=True), [(0, 0, {}), (1, 1, {"weight": 2})]
|
690 |
+
)
|
691 |
+
assert edges_equal(nx.selfloop_edges(G, data="weight"), [(0, 0, None), (1, 1, 2)])
|
692 |
+
|
693 |
+
|
694 |
+
def test_selfloop_edges_multi_with_data_and_keys():
|
695 |
+
G = nx.complete_graph(3, create_using=nx.MultiGraph)
|
696 |
+
G.add_edge(0, 0, weight=10)
|
697 |
+
G.add_edge(0, 0, weight=100)
|
698 |
+
assert edges_equal(
|
699 |
+
nx.selfloop_edges(G, data="weight", keys=True), [(0, 0, 0, 10), (0, 0, 1, 100)]
|
700 |
+
)
|
701 |
+
|
702 |
+
|
703 |
+
@pytest.mark.parametrize("graph_type", [nx.Graph, nx.DiGraph])
|
704 |
+
def test_selfloops_removal(graph_type):
|
705 |
+
G = nx.complete_graph(3, create_using=graph_type)
|
706 |
+
G.add_edge(0, 0)
|
707 |
+
G.remove_edges_from(nx.selfloop_edges(G, keys=True))
|
708 |
+
G.add_edge(0, 0)
|
709 |
+
G.remove_edges_from(nx.selfloop_edges(G, data=True))
|
710 |
+
G.add_edge(0, 0)
|
711 |
+
G.remove_edges_from(nx.selfloop_edges(G, keys=True, data=True))
|
712 |
+
|
713 |
+
|
714 |
+
@pytest.mark.parametrize("graph_type", [nx.MultiGraph, nx.MultiDiGraph])
|
715 |
+
def test_selfloops_removal_multi(graph_type):
|
716 |
+
"""test removing selfloops behavior vis-a-vis altering a dict while iterating.
|
717 |
+
cf. gh-4068"""
|
718 |
+
G = nx.complete_graph(3, create_using=graph_type)
|
719 |
+
# Defaults - see gh-4080
|
720 |
+
G.add_edge(0, 0)
|
721 |
+
G.add_edge(0, 0)
|
722 |
+
G.remove_edges_from(nx.selfloop_edges(G))
|
723 |
+
assert (0, 0) not in G.edges()
|
724 |
+
# With keys
|
725 |
+
G.add_edge(0, 0)
|
726 |
+
G.add_edge(0, 0)
|
727 |
+
with pytest.raises(RuntimeError):
|
728 |
+
G.remove_edges_from(nx.selfloop_edges(G, keys=True))
|
729 |
+
# With data
|
730 |
+
G.add_edge(0, 0)
|
731 |
+
G.add_edge(0, 0)
|
732 |
+
with pytest.raises(TypeError):
|
733 |
+
G.remove_edges_from(nx.selfloop_edges(G, data=True))
|
734 |
+
# With keys and data
|
735 |
+
G.add_edge(0, 0)
|
736 |
+
G.add_edge(0, 0)
|
737 |
+
with pytest.raises(RuntimeError):
|
738 |
+
G.remove_edges_from(nx.selfloop_edges(G, data=True, keys=True))
|
739 |
+
|
740 |
+
|
741 |
+
def test_pathweight():
|
742 |
+
valid_path = [1, 2, 3]
|
743 |
+
invalid_path = [1, 3, 2]
|
744 |
+
graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()]
|
745 |
+
edges = [
|
746 |
+
(1, 2, {"cost": 5, "dist": 6}),
|
747 |
+
(2, 3, {"cost": 3, "dist": 4}),
|
748 |
+
(1, 2, {"cost": 1, "dist": 2}),
|
749 |
+
]
|
750 |
+
for graph in graphs:
|
751 |
+
graph.add_edges_from(edges)
|
752 |
+
assert nx.path_weight(graph, valid_path, "cost") == 4
|
753 |
+
assert nx.path_weight(graph, valid_path, "dist") == 6
|
754 |
+
pytest.raises(nx.NetworkXNoPath, nx.path_weight, graph, invalid_path, "cost")
|
755 |
+
|
756 |
+
|
757 |
+
@pytest.mark.parametrize(
|
758 |
+
"G", (nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph())
|
759 |
+
)
|
760 |
+
def test_ispath(G):
|
761 |
+
G.add_edges_from([(1, 2), (2, 3), (1, 2), (3, 4)])
|
762 |
+
valid_path = [1, 2, 3, 4]
|
763 |
+
invalid_path = [1, 2, 4, 3] # wrong node order
|
764 |
+
another_invalid_path = [1, 2, 3, 4, 5] # contains node not in G
|
765 |
+
assert nx.is_path(G, valid_path)
|
766 |
+
assert not nx.is_path(G, invalid_path)
|
767 |
+
assert not nx.is_path(G, another_invalid_path)
|
768 |
+
|
769 |
+
|
770 |
+
@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
|
771 |
+
def test_restricted_view(G):
|
772 |
+
G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)])
|
773 |
+
G.add_node(4)
|
774 |
+
H = nx.restricted_view(G, [0, 2, 5], [(1, 2), (3, 4)])
|
775 |
+
assert set(H.nodes()) == {1, 3, 4}
|
776 |
+
assert set(H.edges()) == {(1, 1)}
|
777 |
+
|
778 |
+
|
779 |
+
@pytest.mark.parametrize("G", (nx.MultiGraph(), nx.MultiDiGraph()))
|
780 |
+
def test_restricted_view_multi(G):
|
781 |
+
G.add_edges_from(
|
782 |
+
[(0, 1, 0), (0, 2, 0), (0, 3, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 2, 0)]
|
783 |
+
)
|
784 |
+
G.add_node(4)
|
785 |
+
H = nx.restricted_view(G, [0, 2, 5], [(1, 2, 0), (3, 4, 0)])
|
786 |
+
assert set(H.nodes()) == {1, 3, 4}
|
787 |
+
assert set(H.edges()) == {(1, 1)}
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_multigraph.py
ADDED
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import UserDict
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
from networkx.utils import edges_equal
|
7 |
+
|
8 |
+
from .test_graph import BaseAttrGraphTester
|
9 |
+
from .test_graph import TestGraph as _TestGraph
|
10 |
+
|
11 |
+
|
12 |
+
class BaseMultiGraphTester(BaseAttrGraphTester):
|
13 |
+
def test_has_edge(self):
|
14 |
+
G = self.K3
|
15 |
+
assert G.has_edge(0, 1)
|
16 |
+
assert not G.has_edge(0, -1)
|
17 |
+
assert G.has_edge(0, 1, 0)
|
18 |
+
assert not G.has_edge(0, 1, 1)
|
19 |
+
|
20 |
+
def test_get_edge_data(self):
|
21 |
+
G = self.K3
|
22 |
+
assert G.get_edge_data(0, 1) == {0: {}}
|
23 |
+
assert G[0][1] == {0: {}}
|
24 |
+
assert G[0][1][0] == {}
|
25 |
+
assert G.get_edge_data(10, 20) is None
|
26 |
+
assert G.get_edge_data(0, 1, 0) == {}
|
27 |
+
|
28 |
+
def test_adjacency(self):
|
29 |
+
G = self.K3
|
30 |
+
assert dict(G.adjacency()) == {
|
31 |
+
0: {1: {0: {}}, 2: {0: {}}},
|
32 |
+
1: {0: {0: {}}, 2: {0: {}}},
|
33 |
+
2: {0: {0: {}}, 1: {0: {}}},
|
34 |
+
}
|
35 |
+
|
36 |
+
def deepcopy_edge_attr(self, H, G):
|
37 |
+
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
|
38 |
+
G[1][2][0]["foo"].append(1)
|
39 |
+
assert G[1][2][0]["foo"] != H[1][2][0]["foo"]
|
40 |
+
|
41 |
+
def shallow_copy_edge_attr(self, H, G):
|
42 |
+
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
|
43 |
+
G[1][2][0]["foo"].append(1)
|
44 |
+
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
|
45 |
+
|
46 |
+
def graphs_equal(self, H, G):
|
47 |
+
assert G._adj == H._adj
|
48 |
+
assert G._node == H._node
|
49 |
+
assert G.graph == H.graph
|
50 |
+
assert G.name == H.name
|
51 |
+
if not G.is_directed() and not H.is_directed():
|
52 |
+
assert H._adj[1][2][0] is H._adj[2][1][0]
|
53 |
+
assert G._adj[1][2][0] is G._adj[2][1][0]
|
54 |
+
else: # at least one is directed
|
55 |
+
if not G.is_directed():
|
56 |
+
G._pred = G._adj
|
57 |
+
G._succ = G._adj
|
58 |
+
if not H.is_directed():
|
59 |
+
H._pred = H._adj
|
60 |
+
H._succ = H._adj
|
61 |
+
assert G._pred == H._pred
|
62 |
+
assert G._succ == H._succ
|
63 |
+
assert H._succ[1][2][0] is H._pred[2][1][0]
|
64 |
+
assert G._succ[1][2][0] is G._pred[2][1][0]
|
65 |
+
|
66 |
+
def same_attrdict(self, H, G):
|
67 |
+
# same attrdict in the edgedata
|
68 |
+
old_foo = H[1][2][0]["foo"]
|
69 |
+
H.adj[1][2][0]["foo"] = "baz"
|
70 |
+
assert G._adj == H._adj
|
71 |
+
H.adj[1][2][0]["foo"] = old_foo
|
72 |
+
assert G._adj == H._adj
|
73 |
+
|
74 |
+
old_foo = H.nodes[0]["foo"]
|
75 |
+
H.nodes[0]["foo"] = "baz"
|
76 |
+
assert G._node == H._node
|
77 |
+
H.nodes[0]["foo"] = old_foo
|
78 |
+
assert G._node == H._node
|
79 |
+
|
80 |
+
def different_attrdict(self, H, G):
|
81 |
+
# used by graph_equal_but_different
|
82 |
+
old_foo = H[1][2][0]["foo"]
|
83 |
+
H.adj[1][2][0]["foo"] = "baz"
|
84 |
+
assert G._adj != H._adj
|
85 |
+
H.adj[1][2][0]["foo"] = old_foo
|
86 |
+
assert G._adj == H._adj
|
87 |
+
|
88 |
+
old_foo = H.nodes[0]["foo"]
|
89 |
+
H.nodes[0]["foo"] = "baz"
|
90 |
+
assert G._node != H._node
|
91 |
+
H.nodes[0]["foo"] = old_foo
|
92 |
+
assert G._node == H._node
|
93 |
+
|
94 |
+
def test_to_undirected(self):
|
95 |
+
G = self.K3
|
96 |
+
self.add_attributes(G)
|
97 |
+
H = nx.MultiGraph(G)
|
98 |
+
self.is_shallow_copy(H, G)
|
99 |
+
H = G.to_undirected()
|
100 |
+
self.is_deepcopy(H, G)
|
101 |
+
|
102 |
+
def test_to_directed(self):
|
103 |
+
G = self.K3
|
104 |
+
self.add_attributes(G)
|
105 |
+
H = nx.MultiDiGraph(G)
|
106 |
+
self.is_shallow_copy(H, G)
|
107 |
+
H = G.to_directed()
|
108 |
+
self.is_deepcopy(H, G)
|
109 |
+
|
110 |
+
def test_number_of_edges_selfloops(self):
|
111 |
+
G = self.K3
|
112 |
+
G.add_edge(0, 0)
|
113 |
+
G.add_edge(0, 0)
|
114 |
+
G.add_edge(0, 0, key="parallel edge")
|
115 |
+
G.remove_edge(0, 0, key="parallel edge")
|
116 |
+
assert G.number_of_edges(0, 0) == 2
|
117 |
+
G.remove_edge(0, 0)
|
118 |
+
assert G.number_of_edges(0, 0) == 1
|
119 |
+
|
120 |
+
def test_edge_lookup(self):
|
121 |
+
G = self.Graph()
|
122 |
+
G.add_edge(1, 2, foo="bar")
|
123 |
+
G.add_edge(1, 2, "key", foo="biz")
|
124 |
+
assert edges_equal(G.edges[1, 2, 0], {"foo": "bar"})
|
125 |
+
assert edges_equal(G.edges[1, 2, "key"], {"foo": "biz"})
|
126 |
+
|
127 |
+
def test_edge_attr(self):
|
128 |
+
G = self.Graph()
|
129 |
+
G.add_edge(1, 2, key="k1", foo="bar")
|
130 |
+
G.add_edge(1, 2, key="k2", foo="baz")
|
131 |
+
assert isinstance(G.get_edge_data(1, 2), G.edge_key_dict_factory)
|
132 |
+
assert all(
|
133 |
+
isinstance(d, G.edge_attr_dict_factory) for u, v, d in G.edges(data=True)
|
134 |
+
)
|
135 |
+
assert edges_equal(
|
136 |
+
G.edges(keys=True, data=True),
|
137 |
+
[(1, 2, "k1", {"foo": "bar"}), (1, 2, "k2", {"foo": "baz"})],
|
138 |
+
)
|
139 |
+
assert edges_equal(
|
140 |
+
G.edges(keys=True, data="foo"), [(1, 2, "k1", "bar"), (1, 2, "k2", "baz")]
|
141 |
+
)
|
142 |
+
|
143 |
+
def test_edge_attr4(self):
|
144 |
+
G = self.Graph()
|
145 |
+
G.add_edge(1, 2, key=0, data=7, spam="bar", bar="foo")
|
146 |
+
assert edges_equal(
|
147 |
+
G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
|
148 |
+
)
|
149 |
+
G[1][2][0]["data"] = 10 # OK to set data like this
|
150 |
+
assert edges_equal(
|
151 |
+
G.edges(data=True), [(1, 2, {"data": 10, "spam": "bar", "bar": "foo"})]
|
152 |
+
)
|
153 |
+
|
154 |
+
G.adj[1][2][0]["data"] = 20
|
155 |
+
assert edges_equal(
|
156 |
+
G.edges(data=True), [(1, 2, {"data": 20, "spam": "bar", "bar": "foo"})]
|
157 |
+
)
|
158 |
+
G.edges[1, 2, 0]["data"] = 21 # another spelling, "edge"
|
159 |
+
assert edges_equal(
|
160 |
+
G.edges(data=True), [(1, 2, {"data": 21, "spam": "bar", "bar": "foo"})]
|
161 |
+
)
|
162 |
+
G.adj[1][2][0]["listdata"] = [20, 200]
|
163 |
+
G.adj[1][2][0]["weight"] = 20
|
164 |
+
assert edges_equal(
|
165 |
+
G.edges(data=True),
|
166 |
+
[
|
167 |
+
(
|
168 |
+
1,
|
169 |
+
2,
|
170 |
+
{
|
171 |
+
"data": 21,
|
172 |
+
"spam": "bar",
|
173 |
+
"bar": "foo",
|
174 |
+
"listdata": [20, 200],
|
175 |
+
"weight": 20,
|
176 |
+
},
|
177 |
+
)
|
178 |
+
],
|
179 |
+
)
|
180 |
+
|
181 |
+
|
182 |
+
class TestMultiGraph(BaseMultiGraphTester, _TestGraph):
|
183 |
+
def setup_method(self):
|
184 |
+
self.Graph = nx.MultiGraph
|
185 |
+
# build K3
|
186 |
+
ed1, ed2, ed3 = ({0: {}}, {0: {}}, {0: {}})
|
187 |
+
self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}}
|
188 |
+
self.k3edges = [(0, 1), (0, 2), (1, 2)]
|
189 |
+
self.k3nodes = [0, 1, 2]
|
190 |
+
self.K3 = self.Graph()
|
191 |
+
self.K3._adj = self.k3adj
|
192 |
+
self.K3._node = {}
|
193 |
+
self.K3._node[0] = {}
|
194 |
+
self.K3._node[1] = {}
|
195 |
+
self.K3._node[2] = {}
|
196 |
+
|
197 |
+
def test_data_input(self):
|
198 |
+
G = self.Graph({1: [2], 2: [1]}, name="test")
|
199 |
+
assert G.name == "test"
|
200 |
+
expected = [(1, {2: {0: {}}}), (2, {1: {0: {}}})]
|
201 |
+
assert sorted(G.adj.items()) == expected
|
202 |
+
|
203 |
+
def test_data_multigraph_input(self):
|
204 |
+
# standard case with edge keys and edge data
|
205 |
+
edata0 = {"w": 200, "s": "foo"}
|
206 |
+
edata1 = {"w": 201, "s": "bar"}
|
207 |
+
keydict = {0: edata0, 1: edata1}
|
208 |
+
dododod = {"a": {"b": keydict}}
|
209 |
+
|
210 |
+
multiple_edge = [("a", "b", 0, edata0), ("a", "b", 1, edata1)]
|
211 |
+
single_edge = [("a", "b", 0, keydict)]
|
212 |
+
|
213 |
+
G = self.Graph(dododod, multigraph_input=True)
|
214 |
+
assert list(G.edges(keys=True, data=True)) == multiple_edge
|
215 |
+
G = self.Graph(dododod, multigraph_input=None)
|
216 |
+
assert list(G.edges(keys=True, data=True)) == multiple_edge
|
217 |
+
G = self.Graph(dododod, multigraph_input=False)
|
218 |
+
assert list(G.edges(keys=True, data=True)) == single_edge
|
219 |
+
|
220 |
+
# test round-trip to_dict_of_dict and MultiGraph constructor
|
221 |
+
G = self.Graph(dododod, multigraph_input=True)
|
222 |
+
H = self.Graph(nx.to_dict_of_dicts(G))
|
223 |
+
assert nx.is_isomorphic(G, H) is True # test that default is True
|
224 |
+
for mgi in [True, False]:
|
225 |
+
H = self.Graph(nx.to_dict_of_dicts(G), multigraph_input=mgi)
|
226 |
+
assert nx.is_isomorphic(G, H) == mgi
|
227 |
+
|
228 |
+
# Set up cases for when incoming_graph_data is not multigraph_input
|
229 |
+
etraits = {"w": 200, "s": "foo"}
|
230 |
+
egraphics = {"color": "blue", "shape": "box"}
|
231 |
+
edata = {"traits": etraits, "graphics": egraphics}
|
232 |
+
dodod1 = {"a": {"b": edata}}
|
233 |
+
dodod2 = {"a": {"b": etraits}}
|
234 |
+
dodod3 = {"a": {"b": {"traits": etraits, "s": "foo"}}}
|
235 |
+
dol = {"a": ["b"]}
|
236 |
+
|
237 |
+
multiple_edge = [("a", "b", "traits", etraits), ("a", "b", "graphics", egraphics)]
|
238 |
+
single_edge = [("a", "b", 0, {})] # type: ignore[var-annotated]
|
239 |
+
single_edge1 = [("a", "b", 0, edata)]
|
240 |
+
single_edge2 = [("a", "b", 0, etraits)]
|
241 |
+
single_edge3 = [("a", "b", 0, {"traits": etraits, "s": "foo"})]
|
242 |
+
|
243 |
+
cases = [ # (dod, mgi, edges)
|
244 |
+
(dodod1, True, multiple_edge),
|
245 |
+
(dodod1, False, single_edge1),
|
246 |
+
(dodod2, False, single_edge2),
|
247 |
+
(dodod3, False, single_edge3),
|
248 |
+
(dol, False, single_edge),
|
249 |
+
]
|
250 |
+
|
251 |
+
@pytest.mark.parametrize("dod, mgi, edges", cases)
|
252 |
+
def test_non_multigraph_input(self, dod, mgi, edges):
|
253 |
+
G = self.Graph(dod, multigraph_input=mgi)
|
254 |
+
assert list(G.edges(keys=True, data=True)) == edges
|
255 |
+
G = nx.to_networkx_graph(dod, create_using=self.Graph, multigraph_input=mgi)
|
256 |
+
assert list(G.edges(keys=True, data=True)) == edges
|
257 |
+
|
258 |
+
mgi_none_cases = [
|
259 |
+
(dodod1, multiple_edge),
|
260 |
+
(dodod2, single_edge2),
|
261 |
+
(dodod3, single_edge3),
|
262 |
+
]
|
263 |
+
|
264 |
+
@pytest.mark.parametrize("dod, edges", mgi_none_cases)
|
265 |
+
def test_non_multigraph_input_mgi_none(self, dod, edges):
|
266 |
+
# test constructor without to_networkx_graph for mgi=None
|
267 |
+
G = self.Graph(dod)
|
268 |
+
assert list(G.edges(keys=True, data=True)) == edges
|
269 |
+
|
270 |
+
raise_cases = [dodod2, dodod3, dol]
|
271 |
+
|
272 |
+
@pytest.mark.parametrize("dod", raise_cases)
|
273 |
+
def test_non_multigraph_input_raise(self, dod):
|
274 |
+
# cases where NetworkXError is raised
|
275 |
+
pytest.raises(nx.NetworkXError, self.Graph, dod, multigraph_input=True)
|
276 |
+
pytest.raises(
|
277 |
+
nx.NetworkXError,
|
278 |
+
nx.to_networkx_graph,
|
279 |
+
dod,
|
280 |
+
create_using=self.Graph,
|
281 |
+
multigraph_input=True,
|
282 |
+
)
|
283 |
+
|
284 |
+
def test_getitem(self):
|
285 |
+
G = self.K3
|
286 |
+
assert G[0] == {1: {0: {}}, 2: {0: {}}}
|
287 |
+
with pytest.raises(KeyError):
|
288 |
+
G.__getitem__("j")
|
289 |
+
with pytest.raises(TypeError):
|
290 |
+
G.__getitem__(["A"])
|
291 |
+
|
292 |
+
def test_remove_node(self):
|
293 |
+
G = self.K3
|
294 |
+
G.remove_node(0)
|
295 |
+
assert G.adj == {1: {2: {0: {}}}, 2: {1: {0: {}}}}
|
296 |
+
with pytest.raises(nx.NetworkXError):
|
297 |
+
G.remove_node(-1)
|
298 |
+
|
299 |
+
def test_add_edge(self):
|
300 |
+
G = self.Graph()
|
301 |
+
G.add_edge(0, 1)
|
302 |
+
assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
|
303 |
+
G = self.Graph()
|
304 |
+
G.add_edge(*(0, 1))
|
305 |
+
assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
|
306 |
+
G = self.Graph()
|
307 |
+
with pytest.raises(ValueError):
|
308 |
+
G.add_edge(None, "anything")
|
309 |
+
|
310 |
+
def test_add_edge_conflicting_key(self):
|
311 |
+
G = self.Graph()
|
312 |
+
G.add_edge(0, 1, key=1)
|
313 |
+
G.add_edge(0, 1)
|
314 |
+
assert G.number_of_edges() == 2
|
315 |
+
G = self.Graph()
|
316 |
+
G.add_edges_from([(0, 1, 1, {})])
|
317 |
+
G.add_edges_from([(0, 1)])
|
318 |
+
assert G.number_of_edges() == 2
|
319 |
+
|
320 |
+
def test_add_edges_from(self):
|
321 |
+
G = self.Graph()
|
322 |
+
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})])
|
323 |
+
assert G.adj == {
|
324 |
+
0: {1: {0: {}, 1: {"weight": 3}}},
|
325 |
+
1: {0: {0: {}, 1: {"weight": 3}}},
|
326 |
+
}
|
327 |
+
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2)
|
328 |
+
assert G.adj == {
|
329 |
+
0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
|
330 |
+
1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
|
331 |
+
}
|
332 |
+
G = self.Graph()
|
333 |
+
edges = [
|
334 |
+
(0, 1, {"weight": 3}),
|
335 |
+
(0, 1, (("weight", 2),)),
|
336 |
+
(0, 1, 5),
|
337 |
+
(0, 1, "s"),
|
338 |
+
]
|
339 |
+
G.add_edges_from(edges)
|
340 |
+
keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}}
|
341 |
+
assert G._adj == {0: {1: keydict}, 1: {0: keydict}}
|
342 |
+
|
343 |
+
# too few in tuple
|
344 |
+
with pytest.raises(nx.NetworkXError):
|
345 |
+
G.add_edges_from([(0,)])
|
346 |
+
# too many in tuple
|
347 |
+
with pytest.raises(nx.NetworkXError):
|
348 |
+
G.add_edges_from([(0, 1, 2, 3, 4)])
|
349 |
+
# not a tuple
|
350 |
+
with pytest.raises(TypeError):
|
351 |
+
G.add_edges_from([0])
|
352 |
+
|
353 |
+
def test_multigraph_add_edges_from_four_tuple_misordered(self):
|
354 |
+
"""add_edges_from expects 4-tuples of the format (u, v, key, data_dict).
|
355 |
+
|
356 |
+
Ensure 4-tuples of form (u, v, data_dict, key) raise exception.
|
357 |
+
"""
|
358 |
+
G = nx.MultiGraph()
|
359 |
+
with pytest.raises(TypeError):
|
360 |
+
# key/data values flipped in 4-tuple
|
361 |
+
G.add_edges_from([(0, 1, {"color": "red"}, 0)])
|
362 |
+
|
363 |
+
def test_remove_edge(self):
|
364 |
+
G = self.K3
|
365 |
+
G.remove_edge(0, 1)
|
366 |
+
assert G.adj == {0: {2: {0: {}}}, 1: {2: {0: {}}}, 2: {0: {0: {}}, 1: {0: {}}}}
|
367 |
+
|
368 |
+
with pytest.raises(nx.NetworkXError):
|
369 |
+
G.remove_edge(-1, 0)
|
370 |
+
with pytest.raises(nx.NetworkXError):
|
371 |
+
G.remove_edge(0, 2, key=1)
|
372 |
+
|
373 |
+
def test_remove_edges_from(self):
|
374 |
+
G = self.K3.copy()
|
375 |
+
G.remove_edges_from([(0, 1)])
|
376 |
+
kd = {0: {}}
|
377 |
+
assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
|
378 |
+
G.remove_edges_from([(0, 0)]) # silent fail
|
379 |
+
self.K3.add_edge(0, 1)
|
380 |
+
G = self.K3.copy()
|
381 |
+
G.remove_edges_from(list(G.edges(data=True, keys=True)))
|
382 |
+
assert G.adj == {0: {}, 1: {}, 2: {}}
|
383 |
+
G = self.K3.copy()
|
384 |
+
G.remove_edges_from(list(G.edges(data=False, keys=True)))
|
385 |
+
assert G.adj == {0: {}, 1: {}, 2: {}}
|
386 |
+
G = self.K3.copy()
|
387 |
+
G.remove_edges_from(list(G.edges(data=False, keys=False)))
|
388 |
+
assert G.adj == {0: {}, 1: {}, 2: {}}
|
389 |
+
G = self.K3.copy()
|
390 |
+
G.remove_edges_from([(0, 1, 0), (0, 2, 0, {}), (1, 2)])
|
391 |
+
assert G.adj == {0: {1: {1: {}}}, 1: {0: {1: {}}}, 2: {}}
|
392 |
+
|
393 |
+
def test_remove_multiedge(self):
|
394 |
+
G = self.K3
|
395 |
+
G.add_edge(0, 1, key="parallel edge")
|
396 |
+
G.remove_edge(0, 1, key="parallel edge")
|
397 |
+
assert G.adj == {
|
398 |
+
0: {1: {0: {}}, 2: {0: {}}},
|
399 |
+
1: {0: {0: {}}, 2: {0: {}}},
|
400 |
+
2: {0: {0: {}}, 1: {0: {}}},
|
401 |
+
}
|
402 |
+
G.remove_edge(0, 1)
|
403 |
+
kd = {0: {}}
|
404 |
+
assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
|
405 |
+
with pytest.raises(nx.NetworkXError):
|
406 |
+
G.remove_edge(-1, 0)
|
407 |
+
|
408 |
+
|
409 |
+
class TestEdgeSubgraph:
|
410 |
+
"""Unit tests for the :meth:`MultiGraph.edge_subgraph` method."""
|
411 |
+
|
412 |
+
def setup_method(self):
|
413 |
+
# Create a doubly-linked path graph on five nodes.
|
414 |
+
G = nx.MultiGraph()
|
415 |
+
nx.add_path(G, range(5))
|
416 |
+
nx.add_path(G, range(5))
|
417 |
+
# Add some node, edge, and graph attributes.
|
418 |
+
for i in range(5):
|
419 |
+
G.nodes[i]["name"] = f"node{i}"
|
420 |
+
G.adj[0][1][0]["name"] = "edge010"
|
421 |
+
G.adj[0][1][1]["name"] = "edge011"
|
422 |
+
G.adj[3][4][0]["name"] = "edge340"
|
423 |
+
G.adj[3][4][1]["name"] = "edge341"
|
424 |
+
G.graph["name"] = "graph"
|
425 |
+
# Get the subgraph induced by one of the first edges and one of
|
426 |
+
# the last edges.
|
427 |
+
self.G = G
|
428 |
+
self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)])
|
429 |
+
|
430 |
+
def test_correct_nodes(self):
|
431 |
+
"""Tests that the subgraph has the correct nodes."""
|
432 |
+
assert [0, 1, 3, 4] == sorted(self.H.nodes())
|
433 |
+
|
434 |
+
def test_correct_edges(self):
|
435 |
+
"""Tests that the subgraph has the correct edges."""
|
436 |
+
assert [(0, 1, 0, "edge010"), (3, 4, 1, "edge341")] == sorted(
|
437 |
+
self.H.edges(keys=True, data="name")
|
438 |
+
)
|
439 |
+
|
440 |
+
def test_add_node(self):
|
441 |
+
"""Tests that adding a node to the original graph does not
|
442 |
+
affect the nodes of the subgraph.
|
443 |
+
|
444 |
+
"""
|
445 |
+
self.G.add_node(5)
|
446 |
+
assert [0, 1, 3, 4] == sorted(self.H.nodes())
|
447 |
+
|
448 |
+
def test_remove_node(self):
|
449 |
+
"""Tests that removing a node in the original graph does
|
450 |
+
affect the nodes of the subgraph.
|
451 |
+
|
452 |
+
"""
|
453 |
+
self.G.remove_node(0)
|
454 |
+
assert [1, 3, 4] == sorted(self.H.nodes())
|
455 |
+
|
456 |
+
def test_node_attr_dict(self):
|
457 |
+
"""Tests that the node attribute dictionary of the two graphs is
|
458 |
+
the same object.
|
459 |
+
|
460 |
+
"""
|
461 |
+
for v in self.H:
|
462 |
+
assert self.G.nodes[v] == self.H.nodes[v]
|
463 |
+
# Making a change to G should make a change in H and vice versa.
|
464 |
+
self.G.nodes[0]["name"] = "foo"
|
465 |
+
assert self.G.nodes[0] == self.H.nodes[0]
|
466 |
+
self.H.nodes[1]["name"] = "bar"
|
467 |
+
assert self.G.nodes[1] == self.H.nodes[1]
|
468 |
+
|
469 |
+
def test_edge_attr_dict(self):
|
470 |
+
"""Tests that the edge attribute dictionary of the two graphs is
|
471 |
+
the same object.
|
472 |
+
|
473 |
+
"""
|
474 |
+
for u, v, k in self.H.edges(keys=True):
|
475 |
+
assert self.G._adj[u][v][k] == self.H._adj[u][v][k]
|
476 |
+
# Making a change to G should make a change in H and vice versa.
|
477 |
+
self.G._adj[0][1][0]["name"] = "foo"
|
478 |
+
assert self.G._adj[0][1][0]["name"] == self.H._adj[0][1][0]["name"]
|
479 |
+
self.H._adj[3][4][1]["name"] = "bar"
|
480 |
+
assert self.G._adj[3][4][1]["name"] == self.H._adj[3][4][1]["name"]
|
481 |
+
|
482 |
+
def test_graph_attr_dict(self):
|
483 |
+
"""Tests that the graph attribute dictionary of the two graphs
|
484 |
+
is the same object.
|
485 |
+
|
486 |
+
"""
|
487 |
+
assert self.G.graph is self.H.graph
|
488 |
+
|
489 |
+
|
490 |
+
class CustomDictClass(UserDict):
|
491 |
+
pass
|
492 |
+
|
493 |
+
|
494 |
+
class MultiGraphSubClass(nx.MultiGraph):
|
495 |
+
node_dict_factory = CustomDictClass # type: ignore[assignment]
|
496 |
+
node_attr_dict_factory = CustomDictClass # type: ignore[assignment]
|
497 |
+
adjlist_outer_dict_factory = CustomDictClass # type: ignore[assignment]
|
498 |
+
adjlist_inner_dict_factory = CustomDictClass # type: ignore[assignment]
|
499 |
+
edge_key_dict_factory = CustomDictClass # type: ignore[assignment]
|
500 |
+
edge_attr_dict_factory = CustomDictClass # type: ignore[assignment]
|
501 |
+
graph_attr_dict_factory = CustomDictClass # type: ignore[assignment]
|
502 |
+
|
503 |
+
|
504 |
+
class TestMultiGraphSubclass(TestMultiGraph):
|
505 |
+
def setup_method(self):
|
506 |
+
self.Graph = MultiGraphSubClass
|
507 |
+
# build K3
|
508 |
+
self.k3edges = [(0, 1), (0, 2), (1, 2)]
|
509 |
+
self.k3nodes = [0, 1, 2]
|
510 |
+
self.K3 = self.Graph()
|
511 |
+
self.K3._adj = self.K3.adjlist_outer_dict_factory(
|
512 |
+
{
|
513 |
+
0: self.K3.adjlist_inner_dict_factory(),
|
514 |
+
1: self.K3.adjlist_inner_dict_factory(),
|
515 |
+
2: self.K3.adjlist_inner_dict_factory(),
|
516 |
+
}
|
517 |
+
)
|
518 |
+
self.K3._pred = {0: {}, 1: {}, 2: {}}
|
519 |
+
for u in self.k3nodes:
|
520 |
+
for v in self.k3nodes:
|
521 |
+
if u != v:
|
522 |
+
d = {0: {}}
|
523 |
+
self.K3._adj[u][v] = d
|
524 |
+
self.K3._adj[v][u] = d
|
525 |
+
self.K3._node = self.K3.node_dict_factory()
|
526 |
+
self.K3._node[0] = self.K3.node_attr_dict_factory()
|
527 |
+
self.K3._node[1] = self.K3.node_attr_dict_factory()
|
528 |
+
self.K3._node[2] = self.K3.node_attr_dict_factory()
|
env-llmeval/lib/python3.10/site-packages/networkx/classes/tests/test_reportviews.py
ADDED
@@ -0,0 +1,1427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from copy import deepcopy
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.classes import reportviews as rv
|
8 |
+
from networkx.classes.reportviews import NodeDataView
|
9 |
+
|
10 |
+
|
11 |
+
# Nodes
|
12 |
+
class TestNodeView:
|
13 |
+
@classmethod
|
14 |
+
def setup_class(cls):
|
15 |
+
cls.G = nx.path_graph(9)
|
16 |
+
cls.nv = cls.G.nodes # NodeView(G)
|
17 |
+
|
18 |
+
def test_pickle(self):
|
19 |
+
import pickle
|
20 |
+
|
21 |
+
nv = self.nv
|
22 |
+
pnv = pickle.loads(pickle.dumps(nv, -1))
|
23 |
+
assert nv == pnv
|
24 |
+
assert nv.__slots__ == pnv.__slots__
|
25 |
+
|
26 |
+
def test_str(self):
|
27 |
+
assert str(self.nv) == "[0, 1, 2, 3, 4, 5, 6, 7, 8]"
|
28 |
+
|
29 |
+
def test_repr(self):
|
30 |
+
assert repr(self.nv) == "NodeView((0, 1, 2, 3, 4, 5, 6, 7, 8))"
|
31 |
+
|
32 |
+
def test_contains(self):
|
33 |
+
G = self.G.copy()
|
34 |
+
nv = G.nodes
|
35 |
+
assert 7 in nv
|
36 |
+
assert 9 not in nv
|
37 |
+
G.remove_node(7)
|
38 |
+
G.add_node(9)
|
39 |
+
assert 7 not in nv
|
40 |
+
assert 9 in nv
|
41 |
+
|
42 |
+
def test_getitem(self):
|
43 |
+
G = self.G.copy()
|
44 |
+
nv = G.nodes
|
45 |
+
G.nodes[3]["foo"] = "bar"
|
46 |
+
assert nv[7] == {}
|
47 |
+
assert nv[3] == {"foo": "bar"}
|
48 |
+
# slicing
|
49 |
+
with pytest.raises(nx.NetworkXError):
|
50 |
+
G.nodes[0:5]
|
51 |
+
|
52 |
+
def test_iter(self):
|
53 |
+
nv = self.nv
|
54 |
+
for i, n in enumerate(nv):
|
55 |
+
assert i == n
|
56 |
+
inv = iter(nv)
|
57 |
+
assert next(inv) == 0
|
58 |
+
assert iter(nv) != nv
|
59 |
+
assert iter(inv) == inv
|
60 |
+
inv2 = iter(nv)
|
61 |
+
next(inv2)
|
62 |
+
assert list(inv) == list(inv2)
|
63 |
+
# odd case where NodeView calls NodeDataView with data=False
|
64 |
+
nnv = nv(data=False)
|
65 |
+
for i, n in enumerate(nnv):
|
66 |
+
assert i == n
|
67 |
+
|
68 |
+
def test_call(self):
|
69 |
+
nodes = self.nv
|
70 |
+
assert nodes is nodes()
|
71 |
+
assert nodes is not nodes(data=True)
|
72 |
+
assert nodes is not nodes(data="weight")
|
73 |
+
|
74 |
+
|
75 |
+
class TestNodeDataView:
|
76 |
+
@classmethod
|
77 |
+
def setup_class(cls):
|
78 |
+
cls.G = nx.path_graph(9)
|
79 |
+
cls.nv = NodeDataView(cls.G)
|
80 |
+
cls.ndv = cls.G.nodes.data(True)
|
81 |
+
cls.nwv = cls.G.nodes.data("foo")
|
82 |
+
|
83 |
+
def test_viewtype(self):
|
84 |
+
nv = self.G.nodes
|
85 |
+
ndvfalse = nv.data(False)
|
86 |
+
assert nv is ndvfalse
|
87 |
+
assert nv is not self.ndv
|
88 |
+
|
89 |
+
def test_pickle(self):
|
90 |
+
import pickle
|
91 |
+
|
92 |
+
nv = self.nv
|
93 |
+
pnv = pickle.loads(pickle.dumps(nv, -1))
|
94 |
+
assert nv == pnv
|
95 |
+
assert nv.__slots__ == pnv.__slots__
|
96 |
+
|
97 |
+
def test_str(self):
|
98 |
+
msg = str([(n, {}) for n in range(9)])
|
99 |
+
assert str(self.ndv) == msg
|
100 |
+
|
101 |
+
def test_repr(self):
|
102 |
+
expected = "NodeDataView((0, 1, 2, 3, 4, 5, 6, 7, 8))"
|
103 |
+
assert repr(self.nv) == expected
|
104 |
+
expected = (
|
105 |
+
"NodeDataView({0: {}, 1: {}, 2: {}, 3: {}, "
|
106 |
+
+ "4: {}, 5: {}, 6: {}, 7: {}, 8: {}})"
|
107 |
+
)
|
108 |
+
assert repr(self.ndv) == expected
|
109 |
+
expected = (
|
110 |
+
"NodeDataView({0: None, 1: None, 2: None, 3: None, 4: None, "
|
111 |
+
+ "5: None, 6: None, 7: None, 8: None}, data='foo')"
|
112 |
+
)
|
113 |
+
assert repr(self.nwv) == expected
|
114 |
+
|
115 |
+
def test_contains(self):
|
116 |
+
G = self.G.copy()
|
117 |
+
nv = G.nodes.data()
|
118 |
+
nwv = G.nodes.data("foo")
|
119 |
+
G.nodes[3]["foo"] = "bar"
|
120 |
+
assert (7, {}) in nv
|
121 |
+
assert (3, {"foo": "bar"}) in nv
|
122 |
+
assert (3, "bar") in nwv
|
123 |
+
assert (7, None) in nwv
|
124 |
+
# default
|
125 |
+
nwv_def = G.nodes(data="foo", default="biz")
|
126 |
+
assert (7, "biz") in nwv_def
|
127 |
+
assert (3, "bar") in nwv_def
|
128 |
+
|
129 |
+
def test_getitem(self):
|
130 |
+
G = self.G.copy()
|
131 |
+
nv = G.nodes
|
132 |
+
G.nodes[3]["foo"] = "bar"
|
133 |
+
assert nv[3] == {"foo": "bar"}
|
134 |
+
# default
|
135 |
+
nwv_def = G.nodes(data="foo", default="biz")
|
136 |
+
assert nwv_def[7], "biz"
|
137 |
+
assert nwv_def[3] == "bar"
|
138 |
+
# slicing
|
139 |
+
with pytest.raises(nx.NetworkXError):
|
140 |
+
G.nodes.data()[0:5]
|
141 |
+
|
142 |
+
def test_iter(self):
|
143 |
+
G = self.G.copy()
|
144 |
+
nv = G.nodes.data()
|
145 |
+
ndv = G.nodes.data(True)
|
146 |
+
nwv = G.nodes.data("foo")
|
147 |
+
for i, (n, d) in enumerate(nv):
|
148 |
+
assert i == n
|
149 |
+
assert d == {}
|
150 |
+
inv = iter(nv)
|
151 |
+
assert next(inv) == (0, {})
|
152 |
+
G.nodes[3]["foo"] = "bar"
|
153 |
+
# default
|
154 |
+
for n, d in nv:
|
155 |
+
if n == 3:
|
156 |
+
assert d == {"foo": "bar"}
|
157 |
+
else:
|
158 |
+
assert d == {}
|
159 |
+
# data=True
|
160 |
+
for n, d in ndv:
|
161 |
+
if n == 3:
|
162 |
+
assert d == {"foo": "bar"}
|
163 |
+
else:
|
164 |
+
assert d == {}
|
165 |
+
# data='foo'
|
166 |
+
for n, d in nwv:
|
167 |
+
if n == 3:
|
168 |
+
assert d == "bar"
|
169 |
+
else:
|
170 |
+
assert d is None
|
171 |
+
# data='foo', default=1
|
172 |
+
for n, d in G.nodes.data("foo", default=1):
|
173 |
+
if n == 3:
|
174 |
+
assert d == "bar"
|
175 |
+
else:
|
176 |
+
assert d == 1
|
177 |
+
|
178 |
+
|
179 |
+
def test_nodedataview_unhashable():
|
180 |
+
G = nx.path_graph(9)
|
181 |
+
G.nodes[3]["foo"] = "bar"
|
182 |
+
nvs = [G.nodes.data()]
|
183 |
+
nvs.append(G.nodes.data(True))
|
184 |
+
H = G.copy()
|
185 |
+
H.nodes[4]["foo"] = {1, 2, 3}
|
186 |
+
nvs.append(H.nodes.data(True))
|
187 |
+
# raise unhashable
|
188 |
+
for nv in nvs:
|
189 |
+
pytest.raises(TypeError, set, nv)
|
190 |
+
pytest.raises(TypeError, eval, "nv | nv", locals())
|
191 |
+
# no raise... hashable
|
192 |
+
Gn = G.nodes.data(False)
|
193 |
+
set(Gn)
|
194 |
+
Gn | Gn
|
195 |
+
Gn = G.nodes.data("foo")
|
196 |
+
set(Gn)
|
197 |
+
Gn | Gn
|
198 |
+
|
199 |
+
|
200 |
+
class TestNodeViewSetOps:
|
201 |
+
@classmethod
|
202 |
+
def setup_class(cls):
|
203 |
+
cls.G = nx.path_graph(9)
|
204 |
+
cls.G.nodes[3]["foo"] = "bar"
|
205 |
+
cls.nv = cls.G.nodes
|
206 |
+
|
207 |
+
def n_its(self, nodes):
|
208 |
+
return set(nodes)
|
209 |
+
|
210 |
+
def test_len(self):
|
211 |
+
G = self.G.copy()
|
212 |
+
nv = G.nodes
|
213 |
+
assert len(nv) == 9
|
214 |
+
G.remove_node(7)
|
215 |
+
assert len(nv) == 8
|
216 |
+
G.add_node(9)
|
217 |
+
assert len(nv) == 9
|
218 |
+
|
219 |
+
def test_and(self):
|
220 |
+
# print("G & H nodes:", gnv & hnv)
|
221 |
+
nv = self.nv
|
222 |
+
some_nodes = self.n_its(range(5, 12))
|
223 |
+
assert nv & some_nodes == self.n_its(range(5, 9))
|
224 |
+
assert some_nodes & nv == self.n_its(range(5, 9))
|
225 |
+
|
226 |
+
def test_or(self):
|
227 |
+
# print("G | H nodes:", gnv | hnv)
|
228 |
+
nv = self.nv
|
229 |
+
some_nodes = self.n_its(range(5, 12))
|
230 |
+
assert nv | some_nodes == self.n_its(range(12))
|
231 |
+
assert some_nodes | nv == self.n_its(range(12))
|
232 |
+
|
233 |
+
def test_xor(self):
|
234 |
+
# print("G ^ H nodes:", gnv ^ hnv)
|
235 |
+
nv = self.nv
|
236 |
+
some_nodes = self.n_its(range(5, 12))
|
237 |
+
nodes = {0, 1, 2, 3, 4, 9, 10, 11}
|
238 |
+
assert nv ^ some_nodes == self.n_its(nodes)
|
239 |
+
assert some_nodes ^ nv == self.n_its(nodes)
|
240 |
+
|
241 |
+
def test_sub(self):
|
242 |
+
# print("G - H nodes:", gnv - hnv)
|
243 |
+
nv = self.nv
|
244 |
+
some_nodes = self.n_its(range(5, 12))
|
245 |
+
assert nv - some_nodes == self.n_its(range(5))
|
246 |
+
assert some_nodes - nv == self.n_its(range(9, 12))
|
247 |
+
|
248 |
+
|
249 |
+
class TestNodeDataViewSetOps(TestNodeViewSetOps):
|
250 |
+
@classmethod
|
251 |
+
def setup_class(cls):
|
252 |
+
cls.G = nx.path_graph(9)
|
253 |
+
cls.G.nodes[3]["foo"] = "bar"
|
254 |
+
cls.nv = cls.G.nodes.data("foo")
|
255 |
+
|
256 |
+
def n_its(self, nodes):
|
257 |
+
return {(node, "bar" if node == 3 else None) for node in nodes}
|
258 |
+
|
259 |
+
|
260 |
+
class TestNodeDataViewDefaultSetOps(TestNodeDataViewSetOps):
|
261 |
+
@classmethod
|
262 |
+
def setup_class(cls):
|
263 |
+
cls.G = nx.path_graph(9)
|
264 |
+
cls.G.nodes[3]["foo"] = "bar"
|
265 |
+
cls.nv = cls.G.nodes.data("foo", default=1)
|
266 |
+
|
267 |
+
def n_its(self, nodes):
|
268 |
+
return {(node, "bar" if node == 3 else 1) for node in nodes}
|
269 |
+
|
270 |
+
|
271 |
+
# Edges Data View
|
272 |
+
class TestEdgeDataView:
|
273 |
+
@classmethod
|
274 |
+
def setup_class(cls):
|
275 |
+
cls.G = nx.path_graph(9)
|
276 |
+
cls.eview = nx.reportviews.EdgeView
|
277 |
+
|
278 |
+
def test_pickle(self):
|
279 |
+
import pickle
|
280 |
+
|
281 |
+
ev = self.eview(self.G)(data=True)
|
282 |
+
pev = pickle.loads(pickle.dumps(ev, -1))
|
283 |
+
assert list(ev) == list(pev)
|
284 |
+
assert ev.__slots__ == pev.__slots__
|
285 |
+
|
286 |
+
def modify_edge(self, G, e, **kwds):
|
287 |
+
G._adj[e[0]][e[1]].update(kwds)
|
288 |
+
|
289 |
+
def test_str(self):
|
290 |
+
ev = self.eview(self.G)(data=True)
|
291 |
+
rep = str([(n, n + 1, {}) for n in range(8)])
|
292 |
+
assert str(ev) == rep
|
293 |
+
|
294 |
+
def test_repr(self):
|
295 |
+
ev = self.eview(self.G)(data=True)
|
296 |
+
rep = (
|
297 |
+
"EdgeDataView([(0, 1, {}), (1, 2, {}), "
|
298 |
+
+ "(2, 3, {}), (3, 4, {}), "
|
299 |
+
+ "(4, 5, {}), (5, 6, {}), "
|
300 |
+
+ "(6, 7, {}), (7, 8, {})])"
|
301 |
+
)
|
302 |
+
assert repr(ev) == rep
|
303 |
+
|
304 |
+
def test_iterdata(self):
|
305 |
+
G = self.G.copy()
|
306 |
+
evr = self.eview(G)
|
307 |
+
ev = evr(data=True)
|
308 |
+
ev_def = evr(data="foo", default=1)
|
309 |
+
|
310 |
+
for u, v, d in ev:
|
311 |
+
pass
|
312 |
+
assert d == {}
|
313 |
+
|
314 |
+
for u, v, wt in ev_def:
|
315 |
+
pass
|
316 |
+
assert wt == 1
|
317 |
+
|
318 |
+
self.modify_edge(G, (2, 3), foo="bar")
|
319 |
+
for e in ev:
|
320 |
+
assert len(e) == 3
|
321 |
+
if set(e[:2]) == {2, 3}:
|
322 |
+
assert e[2] == {"foo": "bar"}
|
323 |
+
checked = True
|
324 |
+
else:
|
325 |
+
assert e[2] == {}
|
326 |
+
assert checked
|
327 |
+
|
328 |
+
for e in ev_def:
|
329 |
+
assert len(e) == 3
|
330 |
+
if set(e[:2]) == {2, 3}:
|
331 |
+
assert e[2] == "bar"
|
332 |
+
checked_wt = True
|
333 |
+
else:
|
334 |
+
assert e[2] == 1
|
335 |
+
assert checked_wt
|
336 |
+
|
337 |
+
def test_iter(self):
|
338 |
+
evr = self.eview(self.G)
|
339 |
+
ev = evr()
|
340 |
+
for u, v in ev:
|
341 |
+
pass
|
342 |
+
iev = iter(ev)
|
343 |
+
assert next(iev) == (0, 1)
|
344 |
+
assert iter(ev) != ev
|
345 |
+
assert iter(iev) == iev
|
346 |
+
|
347 |
+
def test_contains(self):
|
348 |
+
evr = self.eview(self.G)
|
349 |
+
ev = evr()
|
350 |
+
if self.G.is_directed():
|
351 |
+
assert (1, 2) in ev and (2, 1) not in ev
|
352 |
+
else:
|
353 |
+
assert (1, 2) in ev and (2, 1) in ev
|
354 |
+
assert (1, 4) not in ev
|
355 |
+
assert (1, 90) not in ev
|
356 |
+
assert (90, 1) not in ev
|
357 |
+
|
358 |
+
def test_contains_with_nbunch(self):
|
359 |
+
evr = self.eview(self.G)
|
360 |
+
ev = evr(nbunch=[0, 2])
|
361 |
+
if self.G.is_directed():
|
362 |
+
assert (0, 1) in ev
|
363 |
+
assert (1, 2) not in ev
|
364 |
+
assert (2, 3) in ev
|
365 |
+
else:
|
366 |
+
assert (0, 1) in ev
|
367 |
+
assert (1, 2) in ev
|
368 |
+
assert (2, 3) in ev
|
369 |
+
assert (3, 4) not in ev
|
370 |
+
assert (4, 5) not in ev
|
371 |
+
assert (5, 6) not in ev
|
372 |
+
assert (7, 8) not in ev
|
373 |
+
assert (8, 9) not in ev
|
374 |
+
|
375 |
+
def test_len(self):
|
376 |
+
evr = self.eview(self.G)
|
377 |
+
ev = evr(data="foo")
|
378 |
+
assert len(ev) == 8
|
379 |
+
assert len(evr(1)) == 2
|
380 |
+
assert len(evr([1, 2, 3])) == 4
|
381 |
+
|
382 |
+
assert len(self.G.edges(1)) == 2
|
383 |
+
assert len(self.G.edges()) == 8
|
384 |
+
assert len(self.G.edges) == 8
|
385 |
+
|
386 |
+
H = self.G.copy()
|
387 |
+
H.add_edge(1, 1)
|
388 |
+
assert len(H.edges(1)) == 3
|
389 |
+
assert len(H.edges()) == 9
|
390 |
+
assert len(H.edges) == 9
|
391 |
+
|
392 |
+
|
393 |
+
class TestOutEdgeDataView(TestEdgeDataView):
|
394 |
+
@classmethod
|
395 |
+
def setup_class(cls):
|
396 |
+
cls.G = nx.path_graph(9, create_using=nx.DiGraph())
|
397 |
+
cls.eview = nx.reportviews.OutEdgeView
|
398 |
+
|
399 |
+
def test_repr(self):
|
400 |
+
ev = self.eview(self.G)(data=True)
|
401 |
+
rep = (
|
402 |
+
"OutEdgeDataView([(0, 1, {}), (1, 2, {}), "
|
403 |
+
+ "(2, 3, {}), (3, 4, {}), "
|
404 |
+
+ "(4, 5, {}), (5, 6, {}), "
|
405 |
+
+ "(6, 7, {}), (7, 8, {})])"
|
406 |
+
)
|
407 |
+
assert repr(ev) == rep
|
408 |
+
|
409 |
+
def test_len(self):
|
410 |
+
evr = self.eview(self.G)
|
411 |
+
ev = evr(data="foo")
|
412 |
+
assert len(ev) == 8
|
413 |
+
assert len(evr(1)) == 1
|
414 |
+
assert len(evr([1, 2, 3])) == 3
|
415 |
+
|
416 |
+
assert len(self.G.edges(1)) == 1
|
417 |
+
assert len(self.G.edges()) == 8
|
418 |
+
assert len(self.G.edges) == 8
|
419 |
+
|
420 |
+
H = self.G.copy()
|
421 |
+
H.add_edge(1, 1)
|
422 |
+
assert len(H.edges(1)) == 2
|
423 |
+
assert len(H.edges()) == 9
|
424 |
+
assert len(H.edges) == 9
|
425 |
+
|
426 |
+
def test_contains_with_nbunch(self):
|
427 |
+
evr = self.eview(self.G)
|
428 |
+
ev = evr(nbunch=[0, 2])
|
429 |
+
assert (0, 1) in ev
|
430 |
+
assert (1, 2) not in ev
|
431 |
+
assert (2, 3) in ev
|
432 |
+
assert (3, 4) not in ev
|
433 |
+
assert (4, 5) not in ev
|
434 |
+
assert (5, 6) not in ev
|
435 |
+
assert (7, 8) not in ev
|
436 |
+
assert (8, 9) not in ev
|
437 |
+
|
438 |
+
|
439 |
+
class TestInEdgeDataView(TestOutEdgeDataView):
|
440 |
+
@classmethod
|
441 |
+
def setup_class(cls):
|
442 |
+
cls.G = nx.path_graph(9, create_using=nx.DiGraph())
|
443 |
+
cls.eview = nx.reportviews.InEdgeView
|
444 |
+
|
445 |
+
def test_repr(self):
|
446 |
+
ev = self.eview(self.G)(data=True)
|
447 |
+
rep = (
|
448 |
+
"InEdgeDataView([(0, 1, {}), (1, 2, {}), "
|
449 |
+
+ "(2, 3, {}), (3, 4, {}), "
|
450 |
+
+ "(4, 5, {}), (5, 6, {}), "
|
451 |
+
+ "(6, 7, {}), (7, 8, {})])"
|
452 |
+
)
|
453 |
+
assert repr(ev) == rep
|
454 |
+
|
455 |
+
def test_contains_with_nbunch(self):
|
456 |
+
evr = self.eview(self.G)
|
457 |
+
ev = evr(nbunch=[0, 2])
|
458 |
+
assert (0, 1) not in ev
|
459 |
+
assert (1, 2) in ev
|
460 |
+
assert (2, 3) not in ev
|
461 |
+
assert (3, 4) not in ev
|
462 |
+
assert (4, 5) not in ev
|
463 |
+
assert (5, 6) not in ev
|
464 |
+
assert (7, 8) not in ev
|
465 |
+
assert (8, 9) not in ev
|
466 |
+
|
467 |
+
|
468 |
+
class TestMultiEdgeDataView(TestEdgeDataView):
|
469 |
+
@classmethod
|
470 |
+
def setup_class(cls):
|
471 |
+
cls.G = nx.path_graph(9, create_using=nx.MultiGraph())
|
472 |
+
cls.eview = nx.reportviews.MultiEdgeView
|
473 |
+
|
474 |
+
def modify_edge(self, G, e, **kwds):
|
475 |
+
G._adj[e[0]][e[1]][0].update(kwds)
|
476 |
+
|
477 |
+
def test_repr(self):
|
478 |
+
ev = self.eview(self.G)(data=True)
|
479 |
+
rep = (
|
480 |
+
"MultiEdgeDataView([(0, 1, {}), (1, 2, {}), "
|
481 |
+
+ "(2, 3, {}), (3, 4, {}), "
|
482 |
+
+ "(4, 5, {}), (5, 6, {}), "
|
483 |
+
+ "(6, 7, {}), (7, 8, {})])"
|
484 |
+
)
|
485 |
+
assert repr(ev) == rep
|
486 |
+
|
487 |
+
def test_contains_with_nbunch(self):
|
488 |
+
evr = self.eview(self.G)
|
489 |
+
ev = evr(nbunch=[0, 2])
|
490 |
+
assert (0, 1) in ev
|
491 |
+
assert (1, 2) in ev
|
492 |
+
assert (2, 3) in ev
|
493 |
+
assert (3, 4) not in ev
|
494 |
+
assert (4, 5) not in ev
|
495 |
+
assert (5, 6) not in ev
|
496 |
+
assert (7, 8) not in ev
|
497 |
+
assert (8, 9) not in ev
|
498 |
+
|
499 |
+
|
500 |
+
class TestOutMultiEdgeDataView(TestOutEdgeDataView):
|
501 |
+
@classmethod
|
502 |
+
def setup_class(cls):
|
503 |
+
cls.G = nx.path_graph(9, create_using=nx.MultiDiGraph())
|
504 |
+
cls.eview = nx.reportviews.OutMultiEdgeView
|
505 |
+
|
506 |
+
def modify_edge(self, G, e, **kwds):
|
507 |
+
G._adj[e[0]][e[1]][0].update(kwds)
|
508 |
+
|
509 |
+
def test_repr(self):
|
510 |
+
ev = self.eview(self.G)(data=True)
|
511 |
+
rep = (
|
512 |
+
"OutMultiEdgeDataView([(0, 1, {}), (1, 2, {}), "
|
513 |
+
+ "(2, 3, {}), (3, 4, {}), "
|
514 |
+
+ "(4, 5, {}), (5, 6, {}), "
|
515 |
+
+ "(6, 7, {}), (7, 8, {})])"
|
516 |
+
)
|
517 |
+
assert repr(ev) == rep
|
518 |
+
|
519 |
+
def test_contains_with_nbunch(self):
|
520 |
+
evr = self.eview(self.G)
|
521 |
+
ev = evr(nbunch=[0, 2])
|
522 |
+
assert (0, 1) in ev
|
523 |
+
assert (1, 2) not in ev
|
524 |
+
assert (2, 3) in ev
|
525 |
+
assert (3, 4) not in ev
|
526 |
+
assert (4, 5) not in ev
|
527 |
+
assert (5, 6) not in ev
|
528 |
+
assert (7, 8) not in ev
|
529 |
+
assert (8, 9) not in ev
|
530 |
+
|
531 |
+
|
532 |
+
class TestInMultiEdgeDataView(TestOutMultiEdgeDataView):
|
533 |
+
@classmethod
|
534 |
+
def setup_class(cls):
|
535 |
+
cls.G = nx.path_graph(9, create_using=nx.MultiDiGraph())
|
536 |
+
cls.eview = nx.reportviews.InMultiEdgeView
|
537 |
+
|
538 |
+
def test_repr(self):
|
539 |
+
ev = self.eview(self.G)(data=True)
|
540 |
+
rep = (
|
541 |
+
"InMultiEdgeDataView([(0, 1, {}), (1, 2, {}), "
|
542 |
+
+ "(2, 3, {}), (3, 4, {}), "
|
543 |
+
+ "(4, 5, {}), (5, 6, {}), "
|
544 |
+
+ "(6, 7, {}), (7, 8, {})])"
|
545 |
+
)
|
546 |
+
assert repr(ev) == rep
|
547 |
+
|
548 |
+
def test_contains_with_nbunch(self):
|
549 |
+
evr = self.eview(self.G)
|
550 |
+
ev = evr(nbunch=[0, 2])
|
551 |
+
assert (0, 1) not in ev
|
552 |
+
assert (1, 2) in ev
|
553 |
+
assert (2, 3) not in ev
|
554 |
+
assert (3, 4) not in ev
|
555 |
+
assert (4, 5) not in ev
|
556 |
+
assert (5, 6) not in ev
|
557 |
+
assert (7, 8) not in ev
|
558 |
+
assert (8, 9) not in ev
|
559 |
+
|
560 |
+
|
561 |
+
# Edge Views
|
562 |
+
class TestEdgeView:
|
563 |
+
@classmethod
|
564 |
+
def setup_class(cls):
|
565 |
+
cls.G = nx.path_graph(9)
|
566 |
+
cls.eview = nx.reportviews.EdgeView
|
567 |
+
|
568 |
+
def test_pickle(self):
|
569 |
+
import pickle
|
570 |
+
|
571 |
+
ev = self.eview(self.G)
|
572 |
+
pev = pickle.loads(pickle.dumps(ev, -1))
|
573 |
+
assert ev == pev
|
574 |
+
assert ev.__slots__ == pev.__slots__
|
575 |
+
|
576 |
+
def modify_edge(self, G, e, **kwds):
|
577 |
+
G._adj[e[0]][e[1]].update(kwds)
|
578 |
+
|
579 |
+
def test_str(self):
|
580 |
+
ev = self.eview(self.G)
|
581 |
+
rep = str([(n, n + 1) for n in range(8)])
|
582 |
+
assert str(ev) == rep
|
583 |
+
|
584 |
+
def test_repr(self):
|
585 |
+
ev = self.eview(self.G)
|
586 |
+
rep = (
|
587 |
+
"EdgeView([(0, 1), (1, 2), (2, 3), (3, 4), "
|
588 |
+
+ "(4, 5), (5, 6), (6, 7), (7, 8)])"
|
589 |
+
)
|
590 |
+
assert repr(ev) == rep
|
591 |
+
|
592 |
+
def test_getitem(self):
|
593 |
+
G = self.G.copy()
|
594 |
+
ev = G.edges
|
595 |
+
G.edges[0, 1]["foo"] = "bar"
|
596 |
+
assert ev[0, 1] == {"foo": "bar"}
|
597 |
+
|
598 |
+
# slicing
|
599 |
+
with pytest.raises(nx.NetworkXError, match=".*does not support slicing"):
|
600 |
+
G.edges[0:5]
|
601 |
+
|
602 |
+
# Invalid edge
|
603 |
+
with pytest.raises(KeyError, match=r".*edge.*is not in the graph."):
|
604 |
+
G.edges[0, 9]
|
605 |
+
|
606 |
+
def test_call(self):
|
607 |
+
ev = self.eview(self.G)
|
608 |
+
assert id(ev) == id(ev())
|
609 |
+
assert id(ev) == id(ev(data=False))
|
610 |
+
assert id(ev) != id(ev(data=True))
|
611 |
+
assert id(ev) != id(ev(nbunch=1))
|
612 |
+
|
613 |
+
def test_data(self):
|
614 |
+
ev = self.eview(self.G)
|
615 |
+
assert id(ev) != id(ev.data())
|
616 |
+
assert id(ev) == id(ev.data(data=False))
|
617 |
+
assert id(ev) != id(ev.data(data=True))
|
618 |
+
assert id(ev) != id(ev.data(nbunch=1))
|
619 |
+
|
620 |
+
def test_iter(self):
|
621 |
+
ev = self.eview(self.G)
|
622 |
+
for u, v in ev:
|
623 |
+
pass
|
624 |
+
iev = iter(ev)
|
625 |
+
assert next(iev) == (0, 1)
|
626 |
+
assert iter(ev) != ev
|
627 |
+
assert iter(iev) == iev
|
628 |
+
|
629 |
+
def test_contains(self):
|
630 |
+
ev = self.eview(self.G)
|
631 |
+
edv = ev()
|
632 |
+
if self.G.is_directed():
|
633 |
+
assert (1, 2) in ev and (2, 1) not in ev
|
634 |
+
assert (1, 2) in edv and (2, 1) not in edv
|
635 |
+
else:
|
636 |
+
assert (1, 2) in ev and (2, 1) in ev
|
637 |
+
assert (1, 2) in edv and (2, 1) in edv
|
638 |
+
assert (1, 4) not in ev
|
639 |
+
assert (1, 4) not in edv
|
640 |
+
# edge not in graph
|
641 |
+
assert (1, 90) not in ev
|
642 |
+
assert (90, 1) not in ev
|
643 |
+
assert (1, 90) not in edv
|
644 |
+
assert (90, 1) not in edv
|
645 |
+
|
646 |
+
def test_contains_with_nbunch(self):
|
647 |
+
ev = self.eview(self.G)
|
648 |
+
evn = ev(nbunch=[0, 2])
|
649 |
+
assert (0, 1) in evn
|
650 |
+
assert (1, 2) in evn
|
651 |
+
assert (2, 3) in evn
|
652 |
+
assert (3, 4) not in evn
|
653 |
+
assert (4, 5) not in evn
|
654 |
+
assert (5, 6) not in evn
|
655 |
+
assert (7, 8) not in evn
|
656 |
+
assert (8, 9) not in evn
|
657 |
+
|
658 |
+
def test_len(self):
|
659 |
+
ev = self.eview(self.G)
|
660 |
+
num_ed = 9 if self.G.is_multigraph() else 8
|
661 |
+
assert len(ev) == num_ed
|
662 |
+
|
663 |
+
H = self.G.copy()
|
664 |
+
H.add_edge(1, 1)
|
665 |
+
assert len(H.edges(1)) == 3 + H.is_multigraph() - H.is_directed()
|
666 |
+
assert len(H.edges()) == num_ed + 1
|
667 |
+
assert len(H.edges) == num_ed + 1
|
668 |
+
|
669 |
+
def test_and(self):
|
670 |
+
# print("G & H edges:", gnv & hnv)
|
671 |
+
ev = self.eview(self.G)
|
672 |
+
some_edges = {(0, 1), (1, 0), (0, 2)}
|
673 |
+
if self.G.is_directed():
|
674 |
+
assert some_edges & ev, {(0, 1)}
|
675 |
+
assert ev & some_edges, {(0, 1)}
|
676 |
+
else:
|
677 |
+
assert ev & some_edges == {(0, 1), (1, 0)}
|
678 |
+
assert some_edges & ev == {(0, 1), (1, 0)}
|
679 |
+
return
|
680 |
+
|
681 |
+
def test_or(self):
|
682 |
+
# print("G | H edges:", gnv | hnv)
|
683 |
+
ev = self.eview(self.G)
|
684 |
+
some_edges = {(0, 1), (1, 0), (0, 2)}
|
685 |
+
result1 = {(n, n + 1) for n in range(8)}
|
686 |
+
result1.update(some_edges)
|
687 |
+
result2 = {(n + 1, n) for n in range(8)}
|
688 |
+
result2.update(some_edges)
|
689 |
+
assert (ev | some_edges) in (result1, result2)
|
690 |
+
assert (some_edges | ev) in (result1, result2)
|
691 |
+
|
692 |
+
def test_xor(self):
|
693 |
+
# print("G ^ H edges:", gnv ^ hnv)
|
694 |
+
ev = self.eview(self.G)
|
695 |
+
some_edges = {(0, 1), (1, 0), (0, 2)}
|
696 |
+
if self.G.is_directed():
|
697 |
+
result = {(n, n + 1) for n in range(1, 8)}
|
698 |
+
result.update({(1, 0), (0, 2)})
|
699 |
+
assert ev ^ some_edges == result
|
700 |
+
else:
|
701 |
+
result = {(n, n + 1) for n in range(1, 8)}
|
702 |
+
result.update({(0, 2)})
|
703 |
+
assert ev ^ some_edges == result
|
704 |
+
return
|
705 |
+
|
706 |
+
def test_sub(self):
|
707 |
+
# print("G - H edges:", gnv - hnv)
|
708 |
+
ev = self.eview(self.G)
|
709 |
+
some_edges = {(0, 1), (1, 0), (0, 2)}
|
710 |
+
result = {(n, n + 1) for n in range(8)}
|
711 |
+
result.remove((0, 1))
|
712 |
+
assert ev - some_edges, result
|
713 |
+
|
714 |
+
|
715 |
+
class TestOutEdgeView(TestEdgeView):
|
716 |
+
@classmethod
|
717 |
+
def setup_class(cls):
|
718 |
+
cls.G = nx.path_graph(9, nx.DiGraph())
|
719 |
+
cls.eview = nx.reportviews.OutEdgeView
|
720 |
+
|
721 |
+
def test_repr(self):
|
722 |
+
ev = self.eview(self.G)
|
723 |
+
rep = (
|
724 |
+
"OutEdgeView([(0, 1), (1, 2), (2, 3), (3, 4), "
|
725 |
+
+ "(4, 5), (5, 6), (6, 7), (7, 8)])"
|
726 |
+
)
|
727 |
+
assert repr(ev) == rep
|
728 |
+
|
729 |
+
def test_contains_with_nbunch(self):
|
730 |
+
ev = self.eview(self.G)
|
731 |
+
evn = ev(nbunch=[0, 2])
|
732 |
+
assert (0, 1) in evn
|
733 |
+
assert (1, 2) not in evn
|
734 |
+
assert (2, 3) in evn
|
735 |
+
assert (3, 4) not in evn
|
736 |
+
assert (4, 5) not in evn
|
737 |
+
assert (5, 6) not in evn
|
738 |
+
assert (7, 8) not in evn
|
739 |
+
assert (8, 9) not in evn
|
740 |
+
|
741 |
+
|
742 |
+
class TestInEdgeView(TestEdgeView):
|
743 |
+
@classmethod
|
744 |
+
def setup_class(cls):
|
745 |
+
cls.G = nx.path_graph(9, nx.DiGraph())
|
746 |
+
cls.eview = nx.reportviews.InEdgeView
|
747 |
+
|
748 |
+
def test_repr(self):
|
749 |
+
ev = self.eview(self.G)
|
750 |
+
rep = (
|
751 |
+
"InEdgeView([(0, 1), (1, 2), (2, 3), (3, 4), "
|
752 |
+
+ "(4, 5), (5, 6), (6, 7), (7, 8)])"
|
753 |
+
)
|
754 |
+
assert repr(ev) == rep
|
755 |
+
|
756 |
+
def test_contains_with_nbunch(self):
|
757 |
+
ev = self.eview(self.G)
|
758 |
+
evn = ev(nbunch=[0, 2])
|
759 |
+
assert (0, 1) not in evn
|
760 |
+
assert (1, 2) in evn
|
761 |
+
assert (2, 3) not in evn
|
762 |
+
assert (3, 4) not in evn
|
763 |
+
assert (4, 5) not in evn
|
764 |
+
assert (5, 6) not in evn
|
765 |
+
assert (7, 8) not in evn
|
766 |
+
assert (8, 9) not in evn
|
767 |
+
|
768 |
+
|
769 |
+
class TestMultiEdgeView(TestEdgeView):
|
770 |
+
@classmethod
|
771 |
+
def setup_class(cls):
|
772 |
+
cls.G = nx.path_graph(9, nx.MultiGraph())
|
773 |
+
cls.G.add_edge(1, 2, key=3, foo="bar")
|
774 |
+
cls.eview = nx.reportviews.MultiEdgeView
|
775 |
+
|
776 |
+
def modify_edge(self, G, e, **kwds):
|
777 |
+
if len(e) == 2:
|
778 |
+
e = e + (0,)
|
779 |
+
G._adj[e[0]][e[1]][e[2]].update(kwds)
|
780 |
+
|
781 |
+
def test_str(self):
|
782 |
+
ev = self.eview(self.G)
|
783 |
+
replist = [(n, n + 1, 0) for n in range(8)]
|
784 |
+
replist.insert(2, (1, 2, 3))
|
785 |
+
rep = str(replist)
|
786 |
+
assert str(ev) == rep
|
787 |
+
|
788 |
+
def test_getitem(self):
|
789 |
+
G = self.G.copy()
|
790 |
+
ev = G.edges
|
791 |
+
G.edges[0, 1, 0]["foo"] = "bar"
|
792 |
+
assert ev[0, 1, 0] == {"foo": "bar"}
|
793 |
+
|
794 |
+
# slicing
|
795 |
+
with pytest.raises(nx.NetworkXError):
|
796 |
+
G.edges[0:5]
|
797 |
+
|
798 |
+
def test_repr(self):
|
799 |
+
ev = self.eview(self.G)
|
800 |
+
rep = (
|
801 |
+
"MultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 3), (2, 3, 0), "
|
802 |
+
+ "(3, 4, 0), (4, 5, 0), (5, 6, 0), (6, 7, 0), (7, 8, 0)])"
|
803 |
+
)
|
804 |
+
assert repr(ev) == rep
|
805 |
+
|
806 |
+
def test_call(self):
|
807 |
+
ev = self.eview(self.G)
|
808 |
+
assert id(ev) == id(ev(keys=True))
|
809 |
+
assert id(ev) == id(ev(data=False, keys=True))
|
810 |
+
assert id(ev) != id(ev(keys=False))
|
811 |
+
assert id(ev) != id(ev(data=True))
|
812 |
+
assert id(ev) != id(ev(nbunch=1))
|
813 |
+
|
814 |
+
def test_data(self):
|
815 |
+
ev = self.eview(self.G)
|
816 |
+
assert id(ev) != id(ev.data())
|
817 |
+
assert id(ev) == id(ev.data(data=False, keys=True))
|
818 |
+
assert id(ev) != id(ev.data(keys=False))
|
819 |
+
assert id(ev) != id(ev.data(data=True))
|
820 |
+
assert id(ev) != id(ev.data(nbunch=1))
|
821 |
+
|
822 |
+
def test_iter(self):
|
823 |
+
ev = self.eview(self.G)
|
824 |
+
for u, v, k in ev:
|
825 |
+
pass
|
826 |
+
iev = iter(ev)
|
827 |
+
assert next(iev) == (0, 1, 0)
|
828 |
+
assert iter(ev) != ev
|
829 |
+
assert iter(iev) == iev
|
830 |
+
|
831 |
+
def test_iterkeys(self):
|
832 |
+
G = self.G
|
833 |
+
evr = self.eview(G)
|
834 |
+
ev = evr(keys=True)
|
835 |
+
for u, v, k in ev:
|
836 |
+
pass
|
837 |
+
assert k == 0
|
838 |
+
ev = evr(keys=True, data="foo", default=1)
|
839 |
+
for u, v, k, wt in ev:
|
840 |
+
pass
|
841 |
+
assert wt == 1
|
842 |
+
|
843 |
+
self.modify_edge(G, (2, 3, 0), foo="bar")
|
844 |
+
ev = evr(keys=True, data=True)
|
845 |
+
for e in ev:
|
846 |
+
assert len(e) == 4
|
847 |
+
print("edge:", e)
|
848 |
+
if set(e[:2]) == {2, 3}:
|
849 |
+
print(self.G._adj[2][3])
|
850 |
+
assert e[2] == 0
|
851 |
+
assert e[3] == {"foo": "bar"}
|
852 |
+
checked = True
|
853 |
+
elif set(e[:3]) == {1, 2, 3}:
|
854 |
+
assert e[2] == 3
|
855 |
+
assert e[3] == {"foo": "bar"}
|
856 |
+
checked_multi = True
|
857 |
+
else:
|
858 |
+
assert e[2] == 0
|
859 |
+
assert e[3] == {}
|
860 |
+
assert checked
|
861 |
+
assert checked_multi
|
862 |
+
ev = evr(keys=True, data="foo", default=1)
|
863 |
+
for e in ev:
|
864 |
+
if set(e[:2]) == {1, 2} and e[2] == 3:
|
865 |
+
assert e[3] == "bar"
|
866 |
+
if set(e[:2]) == {1, 2} and e[2] == 0:
|
867 |
+
assert e[3] == 1
|
868 |
+
if set(e[:2]) == {2, 3}:
|
869 |
+
assert e[2] == 0
|
870 |
+
assert e[3] == "bar"
|
871 |
+
assert len(e) == 4
|
872 |
+
checked_wt = True
|
873 |
+
assert checked_wt
|
874 |
+
ev = evr(keys=True)
|
875 |
+
for e in ev:
|
876 |
+
assert len(e) == 3
|
877 |
+
elist = sorted([(i, i + 1, 0) for i in range(8)] + [(1, 2, 3)])
|
878 |
+
assert sorted(ev) == elist
|
879 |
+
# test that the keyword arguments are passed correctly
|
880 |
+
ev = evr((1, 2), "foo", keys=True, default=1)
|
881 |
+
with pytest.raises(TypeError):
|
882 |
+
evr((1, 2), "foo", True, 1)
|
883 |
+
with pytest.raises(TypeError):
|
884 |
+
evr((1, 2), "foo", True, default=1)
|
885 |
+
for e in ev:
|
886 |
+
if set(e[:2]) == {1, 2}:
|
887 |
+
assert e[2] in {0, 3}
|
888 |
+
if e[2] == 3:
|
889 |
+
assert e[3] == "bar"
|
890 |
+
else: # e[2] == 0
|
891 |
+
assert e[3] == 1
|
892 |
+
if G.is_directed():
|
893 |
+
assert len(list(ev)) == 3
|
894 |
+
else:
|
895 |
+
assert len(list(ev)) == 4
|
896 |
+
|
897 |
+
def test_or(self):
|
898 |
+
# print("G | H edges:", gnv | hnv)
|
899 |
+
ev = self.eview(self.G)
|
900 |
+
some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)}
|
901 |
+
result = {(n, n + 1, 0) for n in range(8)}
|
902 |
+
result.update(some_edges)
|
903 |
+
result.update({(1, 2, 3)})
|
904 |
+
assert ev | some_edges == result
|
905 |
+
assert some_edges | ev == result
|
906 |
+
|
907 |
+
def test_sub(self):
|
908 |
+
# print("G - H edges:", gnv - hnv)
|
909 |
+
ev = self.eview(self.G)
|
910 |
+
some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)}
|
911 |
+
result = {(n, n + 1, 0) for n in range(8)}
|
912 |
+
result.remove((0, 1, 0))
|
913 |
+
result.update({(1, 2, 3)})
|
914 |
+
assert ev - some_edges, result
|
915 |
+
assert some_edges - ev, result
|
916 |
+
|
917 |
+
def test_xor(self):
|
918 |
+
# print("G ^ H edges:", gnv ^ hnv)
|
919 |
+
ev = self.eview(self.G)
|
920 |
+
some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)}
|
921 |
+
if self.G.is_directed():
|
922 |
+
result = {(n, n + 1, 0) for n in range(1, 8)}
|
923 |
+
result.update({(1, 0, 0), (0, 2, 0), (1, 2, 3)})
|
924 |
+
assert ev ^ some_edges == result
|
925 |
+
assert some_edges ^ ev == result
|
926 |
+
else:
|
927 |
+
result = {(n, n + 1, 0) for n in range(1, 8)}
|
928 |
+
result.update({(0, 2, 0), (1, 2, 3)})
|
929 |
+
assert ev ^ some_edges == result
|
930 |
+
assert some_edges ^ ev == result
|
931 |
+
|
932 |
+
def test_and(self):
|
933 |
+
# print("G & H edges:", gnv & hnv)
|
934 |
+
ev = self.eview(self.G)
|
935 |
+
some_edges = {(0, 1, 0), (1, 0, 0), (0, 2, 0)}
|
936 |
+
if self.G.is_directed():
|
937 |
+
assert ev & some_edges == {(0, 1, 0)}
|
938 |
+
assert some_edges & ev == {(0, 1, 0)}
|
939 |
+
else:
|
940 |
+
assert ev & some_edges == {(0, 1, 0), (1, 0, 0)}
|
941 |
+
assert some_edges & ev == {(0, 1, 0), (1, 0, 0)}
|
942 |
+
|
943 |
+
def test_contains_with_nbunch(self):
|
944 |
+
ev = self.eview(self.G)
|
945 |
+
evn = ev(nbunch=[0, 2])
|
946 |
+
assert (0, 1) in evn
|
947 |
+
assert (1, 2) in evn
|
948 |
+
assert (2, 3) in evn
|
949 |
+
assert (3, 4) not in evn
|
950 |
+
assert (4, 5) not in evn
|
951 |
+
assert (5, 6) not in evn
|
952 |
+
assert (7, 8) not in evn
|
953 |
+
assert (8, 9) not in evn
|
954 |
+
|
955 |
+
|
956 |
+
class TestOutMultiEdgeView(TestMultiEdgeView):
|
957 |
+
@classmethod
|
958 |
+
def setup_class(cls):
|
959 |
+
cls.G = nx.path_graph(9, nx.MultiDiGraph())
|
960 |
+
cls.G.add_edge(1, 2, key=3, foo="bar")
|
961 |
+
cls.eview = nx.reportviews.OutMultiEdgeView
|
962 |
+
|
963 |
+
def modify_edge(self, G, e, **kwds):
|
964 |
+
if len(e) == 2:
|
965 |
+
e = e + (0,)
|
966 |
+
G._adj[e[0]][e[1]][e[2]].update(kwds)
|
967 |
+
|
968 |
+
def test_repr(self):
|
969 |
+
ev = self.eview(self.G)
|
970 |
+
rep = (
|
971 |
+
"OutMultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 3), (2, 3, 0),"
|
972 |
+
+ " (3, 4, 0), (4, 5, 0), (5, 6, 0), (6, 7, 0), (7, 8, 0)])"
|
973 |
+
)
|
974 |
+
assert repr(ev) == rep
|
975 |
+
|
976 |
+
def test_contains_with_nbunch(self):
|
977 |
+
ev = self.eview(self.G)
|
978 |
+
evn = ev(nbunch=[0, 2])
|
979 |
+
assert (0, 1) in evn
|
980 |
+
assert (1, 2) not in evn
|
981 |
+
assert (2, 3) in evn
|
982 |
+
assert (3, 4) not in evn
|
983 |
+
assert (4, 5) not in evn
|
984 |
+
assert (5, 6) not in evn
|
985 |
+
assert (7, 8) not in evn
|
986 |
+
assert (8, 9) not in evn
|
987 |
+
|
988 |
+
|
989 |
+
class TestInMultiEdgeView(TestMultiEdgeView):
|
990 |
+
@classmethod
|
991 |
+
def setup_class(cls):
|
992 |
+
cls.G = nx.path_graph(9, nx.MultiDiGraph())
|
993 |
+
cls.G.add_edge(1, 2, key=3, foo="bar")
|
994 |
+
cls.eview = nx.reportviews.InMultiEdgeView
|
995 |
+
|
996 |
+
def modify_edge(self, G, e, **kwds):
|
997 |
+
if len(e) == 2:
|
998 |
+
e = e + (0,)
|
999 |
+
G._adj[e[0]][e[1]][e[2]].update(kwds)
|
1000 |
+
|
1001 |
+
def test_repr(self):
|
1002 |
+
ev = self.eview(self.G)
|
1003 |
+
rep = (
|
1004 |
+
"InMultiEdgeView([(0, 1, 0), (1, 2, 0), (1, 2, 3), (2, 3, 0), "
|
1005 |
+
+ "(3, 4, 0), (4, 5, 0), (5, 6, 0), (6, 7, 0), (7, 8, 0)])"
|
1006 |
+
)
|
1007 |
+
assert repr(ev) == rep
|
1008 |
+
|
1009 |
+
def test_contains_with_nbunch(self):
|
1010 |
+
ev = self.eview(self.G)
|
1011 |
+
evn = ev(nbunch=[0, 2])
|
1012 |
+
assert (0, 1) not in evn
|
1013 |
+
assert (1, 2) in evn
|
1014 |
+
assert (2, 3) not in evn
|
1015 |
+
assert (3, 4) not in evn
|
1016 |
+
assert (4, 5) not in evn
|
1017 |
+
assert (5, 6) not in evn
|
1018 |
+
assert (7, 8) not in evn
|
1019 |
+
assert (8, 9) not in evn
|
1020 |
+
|
1021 |
+
|
1022 |
+
# Degrees
|
1023 |
+
class TestDegreeView:
|
1024 |
+
GRAPH = nx.Graph
|
1025 |
+
dview = nx.reportviews.DegreeView
|
1026 |
+
|
1027 |
+
@classmethod
|
1028 |
+
def setup_class(cls):
|
1029 |
+
cls.G = nx.path_graph(6, cls.GRAPH())
|
1030 |
+
cls.G.add_edge(1, 3, foo=2)
|
1031 |
+
cls.G.add_edge(1, 3, foo=3)
|
1032 |
+
|
1033 |
+
def test_pickle(self):
|
1034 |
+
import pickle
|
1035 |
+
|
1036 |
+
deg = self.G.degree
|
1037 |
+
pdeg = pickle.loads(pickle.dumps(deg, -1))
|
1038 |
+
assert dict(deg) == dict(pdeg)
|
1039 |
+
|
1040 |
+
def test_str(self):
|
1041 |
+
dv = self.dview(self.G)
|
1042 |
+
rep = str([(0, 1), (1, 3), (2, 2), (3, 3), (4, 2), (5, 1)])
|
1043 |
+
assert str(dv) == rep
|
1044 |
+
dv = self.G.degree()
|
1045 |
+
assert str(dv) == rep
|
1046 |
+
|
1047 |
+
def test_repr(self):
|
1048 |
+
dv = self.dview(self.G)
|
1049 |
+
rep = "DegreeView({0: 1, 1: 3, 2: 2, 3: 3, 4: 2, 5: 1})"
|
1050 |
+
assert repr(dv) == rep
|
1051 |
+
|
1052 |
+
def test_iter(self):
|
1053 |
+
dv = self.dview(self.G)
|
1054 |
+
for n, d in dv:
|
1055 |
+
pass
|
1056 |
+
idv = iter(dv)
|
1057 |
+
assert iter(dv) != dv
|
1058 |
+
assert iter(idv) == idv
|
1059 |
+
assert next(idv) == (0, dv[0])
|
1060 |
+
assert next(idv) == (1, dv[1])
|
1061 |
+
# weighted
|
1062 |
+
dv = self.dview(self.G, weight="foo")
|
1063 |
+
for n, d in dv:
|
1064 |
+
pass
|
1065 |
+
idv = iter(dv)
|
1066 |
+
assert iter(dv) != dv
|
1067 |
+
assert iter(idv) == idv
|
1068 |
+
assert next(idv) == (0, dv[0])
|
1069 |
+
assert next(idv) == (1, dv[1])
|
1070 |
+
|
1071 |
+
def test_nbunch(self):
|
1072 |
+
dv = self.dview(self.G)
|
1073 |
+
dvn = dv(0)
|
1074 |
+
assert dvn == 1
|
1075 |
+
dvn = dv([2, 3])
|
1076 |
+
assert sorted(dvn) == [(2, 2), (3, 3)]
|
1077 |
+
|
1078 |
+
def test_getitem(self):
|
1079 |
+
dv = self.dview(self.G)
|
1080 |
+
assert dv[0] == 1
|
1081 |
+
assert dv[1] == 3
|
1082 |
+
assert dv[2] == 2
|
1083 |
+
assert dv[3] == 3
|
1084 |
+
dv = self.dview(self.G, weight="foo")
|
1085 |
+
assert dv[0] == 1
|
1086 |
+
assert dv[1] == 5
|
1087 |
+
assert dv[2] == 2
|
1088 |
+
assert dv[3] == 5
|
1089 |
+
|
1090 |
+
def test_weight(self):
|
1091 |
+
dv = self.dview(self.G)
|
1092 |
+
dvw = dv(0, weight="foo")
|
1093 |
+
assert dvw == 1
|
1094 |
+
dvw = dv(1, weight="foo")
|
1095 |
+
assert dvw == 5
|
1096 |
+
dvw = dv([2, 3], weight="foo")
|
1097 |
+
assert sorted(dvw) == [(2, 2), (3, 5)]
|
1098 |
+
dvd = dict(dv(weight="foo"))
|
1099 |
+
assert dvd[0] == 1
|
1100 |
+
assert dvd[1] == 5
|
1101 |
+
assert dvd[2] == 2
|
1102 |
+
assert dvd[3] == 5
|
1103 |
+
|
1104 |
+
def test_len(self):
|
1105 |
+
dv = self.dview(self.G)
|
1106 |
+
assert len(dv) == 6
|
1107 |
+
|
1108 |
+
|
1109 |
+
class TestDiDegreeView(TestDegreeView):
|
1110 |
+
GRAPH = nx.DiGraph
|
1111 |
+
dview = nx.reportviews.DiDegreeView
|
1112 |
+
|
1113 |
+
def test_repr(self):
|
1114 |
+
dv = self.G.degree()
|
1115 |
+
rep = "DiDegreeView({0: 1, 1: 3, 2: 2, 3: 3, 4: 2, 5: 1})"
|
1116 |
+
assert repr(dv) == rep
|
1117 |
+
|
1118 |
+
|
1119 |
+
class TestOutDegreeView(TestDegreeView):
|
1120 |
+
GRAPH = nx.DiGraph
|
1121 |
+
dview = nx.reportviews.OutDegreeView
|
1122 |
+
|
1123 |
+
def test_str(self):
|
1124 |
+
dv = self.dview(self.G)
|
1125 |
+
rep = str([(0, 1), (1, 2), (2, 1), (3, 1), (4, 1), (5, 0)])
|
1126 |
+
assert str(dv) == rep
|
1127 |
+
dv = self.G.out_degree()
|
1128 |
+
assert str(dv) == rep
|
1129 |
+
|
1130 |
+
def test_repr(self):
|
1131 |
+
dv = self.G.out_degree()
|
1132 |
+
rep = "OutDegreeView({0: 1, 1: 2, 2: 1, 3: 1, 4: 1, 5: 0})"
|
1133 |
+
assert repr(dv) == rep
|
1134 |
+
|
1135 |
+
def test_nbunch(self):
|
1136 |
+
dv = self.dview(self.G)
|
1137 |
+
dvn = dv(0)
|
1138 |
+
assert dvn == 1
|
1139 |
+
dvn = dv([2, 3])
|
1140 |
+
assert sorted(dvn) == [(2, 1), (3, 1)]
|
1141 |
+
|
1142 |
+
def test_getitem(self):
|
1143 |
+
dv = self.dview(self.G)
|
1144 |
+
assert dv[0] == 1
|
1145 |
+
assert dv[1] == 2
|
1146 |
+
assert dv[2] == 1
|
1147 |
+
assert dv[3] == 1
|
1148 |
+
dv = self.dview(self.G, weight="foo")
|
1149 |
+
assert dv[0] == 1
|
1150 |
+
assert dv[1] == 4
|
1151 |
+
assert dv[2] == 1
|
1152 |
+
assert dv[3] == 1
|
1153 |
+
|
1154 |
+
def test_weight(self):
|
1155 |
+
dv = self.dview(self.G)
|
1156 |
+
dvw = dv(0, weight="foo")
|
1157 |
+
assert dvw == 1
|
1158 |
+
dvw = dv(1, weight="foo")
|
1159 |
+
assert dvw == 4
|
1160 |
+
dvw = dv([2, 3], weight="foo")
|
1161 |
+
assert sorted(dvw) == [(2, 1), (3, 1)]
|
1162 |
+
dvd = dict(dv(weight="foo"))
|
1163 |
+
assert dvd[0] == 1
|
1164 |
+
assert dvd[1] == 4
|
1165 |
+
assert dvd[2] == 1
|
1166 |
+
assert dvd[3] == 1
|
1167 |
+
|
1168 |
+
|
1169 |
+
class TestInDegreeView(TestDegreeView):
|
1170 |
+
GRAPH = nx.DiGraph
|
1171 |
+
dview = nx.reportviews.InDegreeView
|
1172 |
+
|
1173 |
+
def test_str(self):
|
1174 |
+
dv = self.dview(self.G)
|
1175 |
+
rep = str([(0, 0), (1, 1), (2, 1), (3, 2), (4, 1), (5, 1)])
|
1176 |
+
assert str(dv) == rep
|
1177 |
+
dv = self.G.in_degree()
|
1178 |
+
assert str(dv) == rep
|
1179 |
+
|
1180 |
+
def test_repr(self):
|
1181 |
+
dv = self.G.in_degree()
|
1182 |
+
rep = "InDegreeView({0: 0, 1: 1, 2: 1, 3: 2, 4: 1, 5: 1})"
|
1183 |
+
assert repr(dv) == rep
|
1184 |
+
|
1185 |
+
def test_nbunch(self):
|
1186 |
+
dv = self.dview(self.G)
|
1187 |
+
dvn = dv(0)
|
1188 |
+
assert dvn == 0
|
1189 |
+
dvn = dv([2, 3])
|
1190 |
+
assert sorted(dvn) == [(2, 1), (3, 2)]
|
1191 |
+
|
1192 |
+
def test_getitem(self):
|
1193 |
+
dv = self.dview(self.G)
|
1194 |
+
assert dv[0] == 0
|
1195 |
+
assert dv[1] == 1
|
1196 |
+
assert dv[2] == 1
|
1197 |
+
assert dv[3] == 2
|
1198 |
+
dv = self.dview(self.G, weight="foo")
|
1199 |
+
assert dv[0] == 0
|
1200 |
+
assert dv[1] == 1
|
1201 |
+
assert dv[2] == 1
|
1202 |
+
assert dv[3] == 4
|
1203 |
+
|
1204 |
+
def test_weight(self):
|
1205 |
+
dv = self.dview(self.G)
|
1206 |
+
dvw = dv(0, weight="foo")
|
1207 |
+
assert dvw == 0
|
1208 |
+
dvw = dv(1, weight="foo")
|
1209 |
+
assert dvw == 1
|
1210 |
+
dvw = dv([2, 3], weight="foo")
|
1211 |
+
assert sorted(dvw) == [(2, 1), (3, 4)]
|
1212 |
+
dvd = dict(dv(weight="foo"))
|
1213 |
+
assert dvd[0] == 0
|
1214 |
+
assert dvd[1] == 1
|
1215 |
+
assert dvd[2] == 1
|
1216 |
+
assert dvd[3] == 4
|
1217 |
+
|
1218 |
+
|
1219 |
+
class TestMultiDegreeView(TestDegreeView):
|
1220 |
+
GRAPH = nx.MultiGraph
|
1221 |
+
dview = nx.reportviews.MultiDegreeView
|
1222 |
+
|
1223 |
+
def test_str(self):
|
1224 |
+
dv = self.dview(self.G)
|
1225 |
+
rep = str([(0, 1), (1, 4), (2, 2), (3, 4), (4, 2), (5, 1)])
|
1226 |
+
assert str(dv) == rep
|
1227 |
+
dv = self.G.degree()
|
1228 |
+
assert str(dv) == rep
|
1229 |
+
|
1230 |
+
def test_repr(self):
|
1231 |
+
dv = self.G.degree()
|
1232 |
+
rep = "MultiDegreeView({0: 1, 1: 4, 2: 2, 3: 4, 4: 2, 5: 1})"
|
1233 |
+
assert repr(dv) == rep
|
1234 |
+
|
1235 |
+
def test_nbunch(self):
|
1236 |
+
dv = self.dview(self.G)
|
1237 |
+
dvn = dv(0)
|
1238 |
+
assert dvn == 1
|
1239 |
+
dvn = dv([2, 3])
|
1240 |
+
assert sorted(dvn) == [(2, 2), (3, 4)]
|
1241 |
+
|
1242 |
+
def test_getitem(self):
|
1243 |
+
dv = self.dview(self.G)
|
1244 |
+
assert dv[0] == 1
|
1245 |
+
assert dv[1] == 4
|
1246 |
+
assert dv[2] == 2
|
1247 |
+
assert dv[3] == 4
|
1248 |
+
dv = self.dview(self.G, weight="foo")
|
1249 |
+
assert dv[0] == 1
|
1250 |
+
assert dv[1] == 7
|
1251 |
+
assert dv[2] == 2
|
1252 |
+
assert dv[3] == 7
|
1253 |
+
|
1254 |
+
def test_weight(self):
|
1255 |
+
dv = self.dview(self.G)
|
1256 |
+
dvw = dv(0, weight="foo")
|
1257 |
+
assert dvw == 1
|
1258 |
+
dvw = dv(1, weight="foo")
|
1259 |
+
assert dvw == 7
|
1260 |
+
dvw = dv([2, 3], weight="foo")
|
1261 |
+
assert sorted(dvw) == [(2, 2), (3, 7)]
|
1262 |
+
dvd = dict(dv(weight="foo"))
|
1263 |
+
assert dvd[0] == 1
|
1264 |
+
assert dvd[1] == 7
|
1265 |
+
assert dvd[2] == 2
|
1266 |
+
assert dvd[3] == 7
|
1267 |
+
|
1268 |
+
|
1269 |
+
class TestDiMultiDegreeView(TestMultiDegreeView):
|
1270 |
+
GRAPH = nx.MultiDiGraph
|
1271 |
+
dview = nx.reportviews.DiMultiDegreeView
|
1272 |
+
|
1273 |
+
def test_repr(self):
|
1274 |
+
dv = self.G.degree()
|
1275 |
+
rep = "DiMultiDegreeView({0: 1, 1: 4, 2: 2, 3: 4, 4: 2, 5: 1})"
|
1276 |
+
assert repr(dv) == rep
|
1277 |
+
|
1278 |
+
|
1279 |
+
class TestOutMultiDegreeView(TestDegreeView):
|
1280 |
+
GRAPH = nx.MultiDiGraph
|
1281 |
+
dview = nx.reportviews.OutMultiDegreeView
|
1282 |
+
|
1283 |
+
def test_str(self):
|
1284 |
+
dv = self.dview(self.G)
|
1285 |
+
rep = str([(0, 1), (1, 3), (2, 1), (3, 1), (4, 1), (5, 0)])
|
1286 |
+
assert str(dv) == rep
|
1287 |
+
dv = self.G.out_degree()
|
1288 |
+
assert str(dv) == rep
|
1289 |
+
|
1290 |
+
def test_repr(self):
|
1291 |
+
dv = self.G.out_degree()
|
1292 |
+
rep = "OutMultiDegreeView({0: 1, 1: 3, 2: 1, 3: 1, 4: 1, 5: 0})"
|
1293 |
+
assert repr(dv) == rep
|
1294 |
+
|
1295 |
+
def test_nbunch(self):
|
1296 |
+
dv = self.dview(self.G)
|
1297 |
+
dvn = dv(0)
|
1298 |
+
assert dvn == 1
|
1299 |
+
dvn = dv([2, 3])
|
1300 |
+
assert sorted(dvn) == [(2, 1), (3, 1)]
|
1301 |
+
|
1302 |
+
def test_getitem(self):
|
1303 |
+
dv = self.dview(self.G)
|
1304 |
+
assert dv[0] == 1
|
1305 |
+
assert dv[1] == 3
|
1306 |
+
assert dv[2] == 1
|
1307 |
+
assert dv[3] == 1
|
1308 |
+
dv = self.dview(self.G, weight="foo")
|
1309 |
+
assert dv[0] == 1
|
1310 |
+
assert dv[1] == 6
|
1311 |
+
assert dv[2] == 1
|
1312 |
+
assert dv[3] == 1
|
1313 |
+
|
1314 |
+
def test_weight(self):
|
1315 |
+
dv = self.dview(self.G)
|
1316 |
+
dvw = dv(0, weight="foo")
|
1317 |
+
assert dvw == 1
|
1318 |
+
dvw = dv(1, weight="foo")
|
1319 |
+
assert dvw == 6
|
1320 |
+
dvw = dv([2, 3], weight="foo")
|
1321 |
+
assert sorted(dvw) == [(2, 1), (3, 1)]
|
1322 |
+
dvd = dict(dv(weight="foo"))
|
1323 |
+
assert dvd[0] == 1
|
1324 |
+
assert dvd[1] == 6
|
1325 |
+
assert dvd[2] == 1
|
1326 |
+
assert dvd[3] == 1
|
1327 |
+
|
1328 |
+
|
1329 |
+
class TestInMultiDegreeView(TestDegreeView):
|
1330 |
+
GRAPH = nx.MultiDiGraph
|
1331 |
+
dview = nx.reportviews.InMultiDegreeView
|
1332 |
+
|
1333 |
+
def test_str(self):
|
1334 |
+
dv = self.dview(self.G)
|
1335 |
+
rep = str([(0, 0), (1, 1), (2, 1), (3, 3), (4, 1), (5, 1)])
|
1336 |
+
assert str(dv) == rep
|
1337 |
+
dv = self.G.in_degree()
|
1338 |
+
assert str(dv) == rep
|
1339 |
+
|
1340 |
+
def test_repr(self):
|
1341 |
+
dv = self.G.in_degree()
|
1342 |
+
rep = "InMultiDegreeView({0: 0, 1: 1, 2: 1, 3: 3, 4: 1, 5: 1})"
|
1343 |
+
assert repr(dv) == rep
|
1344 |
+
|
1345 |
+
def test_nbunch(self):
|
1346 |
+
dv = self.dview(self.G)
|
1347 |
+
dvn = dv(0)
|
1348 |
+
assert dvn == 0
|
1349 |
+
dvn = dv([2, 3])
|
1350 |
+
assert sorted(dvn) == [(2, 1), (3, 3)]
|
1351 |
+
|
1352 |
+
def test_getitem(self):
|
1353 |
+
dv = self.dview(self.G)
|
1354 |
+
assert dv[0] == 0
|
1355 |
+
assert dv[1] == 1
|
1356 |
+
assert dv[2] == 1
|
1357 |
+
assert dv[3] == 3
|
1358 |
+
dv = self.dview(self.G, weight="foo")
|
1359 |
+
assert dv[0] == 0
|
1360 |
+
assert dv[1] == 1
|
1361 |
+
assert dv[2] == 1
|
1362 |
+
assert dv[3] == 6
|
1363 |
+
|
1364 |
+
def test_weight(self):
|
1365 |
+
dv = self.dview(self.G)
|
1366 |
+
dvw = dv(0, weight="foo")
|
1367 |
+
assert dvw == 0
|
1368 |
+
dvw = dv(1, weight="foo")
|
1369 |
+
assert dvw == 1
|
1370 |
+
dvw = dv([2, 3], weight="foo")
|
1371 |
+
assert sorted(dvw) == [(2, 1), (3, 6)]
|
1372 |
+
dvd = dict(dv(weight="foo"))
|
1373 |
+
assert dvd[0] == 0
|
1374 |
+
assert dvd[1] == 1
|
1375 |
+
assert dvd[2] == 1
|
1376 |
+
assert dvd[3] == 6
|
1377 |
+
|
1378 |
+
|
1379 |
+
@pytest.mark.parametrize(
|
1380 |
+
("reportview", "err_msg_terms"),
|
1381 |
+
(
|
1382 |
+
(rv.NodeView, "list(G.nodes"),
|
1383 |
+
(rv.NodeDataView, "list(G.nodes.data"),
|
1384 |
+
(rv.EdgeView, "list(G.edges"),
|
1385 |
+
# Directed EdgeViews
|
1386 |
+
(rv.InEdgeView, "list(G.in_edges"),
|
1387 |
+
(rv.OutEdgeView, "list(G.edges"),
|
1388 |
+
# Multi EdgeViews
|
1389 |
+
(rv.MultiEdgeView, "list(G.edges"),
|
1390 |
+
(rv.InMultiEdgeView, "list(G.in_edges"),
|
1391 |
+
(rv.OutMultiEdgeView, "list(G.edges"),
|
1392 |
+
),
|
1393 |
+
)
|
1394 |
+
def test_slicing_reportviews(reportview, err_msg_terms):
|
1395 |
+
G = nx.complete_graph(3)
|
1396 |
+
view = reportview(G)
|
1397 |
+
with pytest.raises(nx.NetworkXError) as exc:
|
1398 |
+
view[0:2]
|
1399 |
+
errmsg = str(exc.value)
|
1400 |
+
assert type(view).__name__ in errmsg
|
1401 |
+
assert err_msg_terms in errmsg
|
1402 |
+
|
1403 |
+
|
1404 |
+
@pytest.mark.parametrize(
|
1405 |
+
"graph", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph]
|
1406 |
+
)
|
1407 |
+
def test_cache_dict_get_set_state(graph):
|
1408 |
+
G = nx.path_graph(5, graph())
|
1409 |
+
G.nodes, G.edges, G.adj, G.degree
|
1410 |
+
if G.is_directed():
|
1411 |
+
G.pred, G.succ, G.in_edges, G.out_edges, G.in_degree, G.out_degree
|
1412 |
+
cached_dict = G.__dict__
|
1413 |
+
assert "nodes" in cached_dict
|
1414 |
+
assert "edges" in cached_dict
|
1415 |
+
assert "adj" in cached_dict
|
1416 |
+
assert "degree" in cached_dict
|
1417 |
+
if G.is_directed():
|
1418 |
+
assert "pred" in cached_dict
|
1419 |
+
assert "succ" in cached_dict
|
1420 |
+
assert "in_edges" in cached_dict
|
1421 |
+
assert "out_edges" in cached_dict
|
1422 |
+
assert "in_degree" in cached_dict
|
1423 |
+
assert "out_degree" in cached_dict
|
1424 |
+
|
1425 |
+
# Raises error if the cached properties and views do not work
|
1426 |
+
pickle.loads(pickle.dumps(G, -1))
|
1427 |
+
deepcopy(G)
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/baseline/test_house_with_colors.png
ADDED
![]() |
Git LFS Details
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/atlas.dat.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73fc416df0164923607751cb759f4ae81deb5f6550bf25be59c86de3b747e41d
|
3 |
+
size 8887
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from networkx.linalg.attrmatrix import *
|
2 |
+
from networkx.linalg import attrmatrix
|
3 |
+
from networkx.linalg.spectrum import *
|
4 |
+
from networkx.linalg import spectrum
|
5 |
+
from networkx.linalg.graphmatrix import *
|
6 |
+
from networkx.linalg import graphmatrix
|
7 |
+
from networkx.linalg.laplacianmatrix import *
|
8 |
+
from networkx.linalg import laplacianmatrix
|
9 |
+
from networkx.linalg.algebraicconnectivity import *
|
10 |
+
from networkx.linalg.modularitymatrix import *
|
11 |
+
from networkx.linalg import modularitymatrix
|
12 |
+
from networkx.linalg.bethehessianmatrix import *
|
13 |
+
from networkx.linalg import bethehessianmatrix
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (713 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/algebraicconnectivity.cpython-310.pyc
ADDED
Binary file (20 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/attrmatrix.cpython-310.pyc
ADDED
Binary file (14.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/bethehessianmatrix.cpython-310.pyc
ADDED
Binary file (2.97 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/graphmatrix.cpython-310.pyc
ADDED
Binary file (5.47 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/laplacianmatrix.cpython-310.pyc
ADDED
Binary file (18.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/modularitymatrix.cpython-310.pyc
ADDED
Binary file (4.72 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/__pycache__/spectrum.cpython-310.pyc
ADDED
Binary file (4.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/algebraicconnectivity.py
ADDED
@@ -0,0 +1,656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Algebraic connectivity and Fiedler vectors of undirected graphs.
|
3 |
+
"""
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.utils import (
|
8 |
+
not_implemented_for,
|
9 |
+
np_random_state,
|
10 |
+
reverse_cuthill_mckee_ordering,
|
11 |
+
)
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
"algebraic_connectivity",
|
15 |
+
"fiedler_vector",
|
16 |
+
"spectral_ordering",
|
17 |
+
"spectral_bisection",
|
18 |
+
]
|
19 |
+
|
20 |
+
|
21 |
+
class _PCGSolver:
|
22 |
+
"""Preconditioned conjugate gradient method.
|
23 |
+
|
24 |
+
To solve Ax = b:
|
25 |
+
M = A.diagonal() # or some other preconditioner
|
26 |
+
solver = _PCGSolver(lambda x: A * x, lambda x: M * x)
|
27 |
+
x = solver.solve(b)
|
28 |
+
|
29 |
+
The inputs A and M are functions which compute
|
30 |
+
matrix multiplication on the argument.
|
31 |
+
A - multiply by the matrix A in Ax=b
|
32 |
+
M - multiply by M, the preconditioner surrogate for A
|
33 |
+
|
34 |
+
Warning: There is no limit on number of iterations.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self, A, M):
|
38 |
+
self._A = A
|
39 |
+
self._M = M
|
40 |
+
|
41 |
+
def solve(self, B, tol):
|
42 |
+
import numpy as np
|
43 |
+
|
44 |
+
# Densifying step - can this be kept sparse?
|
45 |
+
B = np.asarray(B)
|
46 |
+
X = np.ndarray(B.shape, order="F")
|
47 |
+
for j in range(B.shape[1]):
|
48 |
+
X[:, j] = self._solve(B[:, j], tol)
|
49 |
+
return X
|
50 |
+
|
51 |
+
def _solve(self, b, tol):
|
52 |
+
import numpy as np
|
53 |
+
import scipy as sp
|
54 |
+
|
55 |
+
A = self._A
|
56 |
+
M = self._M
|
57 |
+
tol *= sp.linalg.blas.dasum(b)
|
58 |
+
# Initialize.
|
59 |
+
x = np.zeros(b.shape)
|
60 |
+
r = b.copy()
|
61 |
+
z = M(r)
|
62 |
+
rz = sp.linalg.blas.ddot(r, z)
|
63 |
+
p = z.copy()
|
64 |
+
# Iterate.
|
65 |
+
while True:
|
66 |
+
Ap = A(p)
|
67 |
+
alpha = rz / sp.linalg.blas.ddot(p, Ap)
|
68 |
+
x = sp.linalg.blas.daxpy(p, x, a=alpha)
|
69 |
+
r = sp.linalg.blas.daxpy(Ap, r, a=-alpha)
|
70 |
+
if sp.linalg.blas.dasum(r) < tol:
|
71 |
+
return x
|
72 |
+
z = M(r)
|
73 |
+
beta = sp.linalg.blas.ddot(r, z)
|
74 |
+
beta, rz = beta / rz, beta
|
75 |
+
p = sp.linalg.blas.daxpy(p, z, a=beta)
|
76 |
+
|
77 |
+
|
78 |
+
class _LUSolver:
|
79 |
+
"""LU factorization.
|
80 |
+
|
81 |
+
To solve Ax = b:
|
82 |
+
solver = _LUSolver(A)
|
83 |
+
x = solver.solve(b)
|
84 |
+
|
85 |
+
optional argument `tol` on solve method is ignored but included
|
86 |
+
to match _PCGsolver API.
|
87 |
+
"""
|
88 |
+
|
89 |
+
def __init__(self, A):
|
90 |
+
import scipy as sp
|
91 |
+
|
92 |
+
self._LU = sp.sparse.linalg.splu(
|
93 |
+
A,
|
94 |
+
permc_spec="MMD_AT_PLUS_A",
|
95 |
+
diag_pivot_thresh=0.0,
|
96 |
+
options={"Equil": True, "SymmetricMode": True},
|
97 |
+
)
|
98 |
+
|
99 |
+
def solve(self, B, tol=None):
|
100 |
+
import numpy as np
|
101 |
+
|
102 |
+
B = np.asarray(B)
|
103 |
+
X = np.ndarray(B.shape, order="F")
|
104 |
+
for j in range(B.shape[1]):
|
105 |
+
X[:, j] = self._LU.solve(B[:, j])
|
106 |
+
return X
|
107 |
+
|
108 |
+
|
109 |
+
def _preprocess_graph(G, weight):
|
110 |
+
"""Compute edge weights and eliminate zero-weight edges."""
|
111 |
+
if G.is_directed():
|
112 |
+
H = nx.MultiGraph()
|
113 |
+
H.add_nodes_from(G)
|
114 |
+
H.add_weighted_edges_from(
|
115 |
+
((u, v, e.get(weight, 1.0)) for u, v, e in G.edges(data=True) if u != v),
|
116 |
+
weight=weight,
|
117 |
+
)
|
118 |
+
G = H
|
119 |
+
if not G.is_multigraph():
|
120 |
+
edges = (
|
121 |
+
(u, v, abs(e.get(weight, 1.0))) for u, v, e in G.edges(data=True) if u != v
|
122 |
+
)
|
123 |
+
else:
|
124 |
+
edges = (
|
125 |
+
(u, v, sum(abs(e.get(weight, 1.0)) for e in G[u][v].values()))
|
126 |
+
for u, v in G.edges()
|
127 |
+
if u != v
|
128 |
+
)
|
129 |
+
H = nx.Graph()
|
130 |
+
H.add_nodes_from(G)
|
131 |
+
H.add_weighted_edges_from((u, v, e) for u, v, e in edges if e != 0)
|
132 |
+
return H
|
133 |
+
|
134 |
+
|
135 |
+
def _rcm_estimate(G, nodelist):
|
136 |
+
"""Estimate the Fiedler vector using the reverse Cuthill-McKee ordering."""
|
137 |
+
import numpy as np
|
138 |
+
|
139 |
+
G = G.subgraph(nodelist)
|
140 |
+
order = reverse_cuthill_mckee_ordering(G)
|
141 |
+
n = len(nodelist)
|
142 |
+
index = dict(zip(nodelist, range(n)))
|
143 |
+
x = np.ndarray(n, dtype=float)
|
144 |
+
for i, u in enumerate(order):
|
145 |
+
x[index[u]] = i
|
146 |
+
x -= (n - 1) / 2.0
|
147 |
+
return x
|
148 |
+
|
149 |
+
|
150 |
+
def _tracemin_fiedler(L, X, normalized, tol, method):
|
151 |
+
"""Compute the Fiedler vector of L using the TraceMIN-Fiedler algorithm.
|
152 |
+
|
153 |
+
The Fiedler vector of a connected undirected graph is the eigenvector
|
154 |
+
corresponding to the second smallest eigenvalue of the Laplacian matrix
|
155 |
+
of the graph. This function starts with the Laplacian L, not the Graph.
|
156 |
+
|
157 |
+
Parameters
|
158 |
+
----------
|
159 |
+
L : Laplacian of a possibly weighted or normalized, but undirected graph
|
160 |
+
|
161 |
+
X : Initial guess for a solution. Usually a matrix of random numbers.
|
162 |
+
This function allows more than one column in X to identify more than
|
163 |
+
one eigenvector if desired.
|
164 |
+
|
165 |
+
normalized : bool
|
166 |
+
Whether the normalized Laplacian matrix is used.
|
167 |
+
|
168 |
+
tol : float
|
169 |
+
Tolerance of relative residual in eigenvalue computation.
|
170 |
+
Warning: There is no limit on number of iterations.
|
171 |
+
|
172 |
+
method : string
|
173 |
+
Should be 'tracemin_pcg' or 'tracemin_lu'.
|
174 |
+
Otherwise exception is raised.
|
175 |
+
|
176 |
+
Returns
|
177 |
+
-------
|
178 |
+
sigma, X : Two NumPy arrays of floats.
|
179 |
+
The lowest eigenvalues and corresponding eigenvectors of L.
|
180 |
+
The size of input X determines the size of these outputs.
|
181 |
+
As this is for Fiedler vectors, the zero eigenvalue (and
|
182 |
+
constant eigenvector) are avoided.
|
183 |
+
"""
|
184 |
+
import numpy as np
|
185 |
+
import scipy as sp
|
186 |
+
|
187 |
+
n = X.shape[0]
|
188 |
+
|
189 |
+
if normalized:
|
190 |
+
# Form the normalized Laplacian matrix and determine the eigenvector of
|
191 |
+
# its nullspace.
|
192 |
+
e = np.sqrt(L.diagonal())
|
193 |
+
# TODO: rm csr_array wrapper when spdiags array creation becomes available
|
194 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(1 / e, 0, n, n, format="csr"))
|
195 |
+
L = D @ L @ D
|
196 |
+
e *= 1.0 / np.linalg.norm(e, 2)
|
197 |
+
|
198 |
+
if normalized:
|
199 |
+
|
200 |
+
def project(X):
|
201 |
+
"""Make X orthogonal to the nullspace of L."""
|
202 |
+
X = np.asarray(X)
|
203 |
+
for j in range(X.shape[1]):
|
204 |
+
X[:, j] -= (X[:, j] @ e) * e
|
205 |
+
|
206 |
+
else:
|
207 |
+
|
208 |
+
def project(X):
|
209 |
+
"""Make X orthogonal to the nullspace of L."""
|
210 |
+
X = np.asarray(X)
|
211 |
+
for j in range(X.shape[1]):
|
212 |
+
X[:, j] -= X[:, j].sum() / n
|
213 |
+
|
214 |
+
if method == "tracemin_pcg":
|
215 |
+
D = L.diagonal().astype(float)
|
216 |
+
solver = _PCGSolver(lambda x: L @ x, lambda x: D * x)
|
217 |
+
elif method == "tracemin_lu":
|
218 |
+
# Convert A to CSC to suppress SparseEfficiencyWarning.
|
219 |
+
A = sp.sparse.csc_array(L, dtype=float, copy=True)
|
220 |
+
# Force A to be nonsingular. Since A is the Laplacian matrix of a
|
221 |
+
# connected graph, its rank deficiency is one, and thus one diagonal
|
222 |
+
# element needs to modified. Changing to infinity forces a zero in the
|
223 |
+
# corresponding element in the solution.
|
224 |
+
i = (A.indptr[1:] - A.indptr[:-1]).argmax()
|
225 |
+
A[i, i] = np.inf
|
226 |
+
solver = _LUSolver(A)
|
227 |
+
else:
|
228 |
+
raise nx.NetworkXError(f"Unknown linear system solver: {method}")
|
229 |
+
|
230 |
+
# Initialize.
|
231 |
+
Lnorm = abs(L).sum(axis=1).flatten().max()
|
232 |
+
project(X)
|
233 |
+
W = np.ndarray(X.shape, order="F")
|
234 |
+
|
235 |
+
while True:
|
236 |
+
# Orthonormalize X.
|
237 |
+
X = np.linalg.qr(X)[0]
|
238 |
+
# Compute iteration matrix H.
|
239 |
+
W[:, :] = L @ X
|
240 |
+
H = X.T @ W
|
241 |
+
sigma, Y = sp.linalg.eigh(H, overwrite_a=True)
|
242 |
+
# Compute the Ritz vectors.
|
243 |
+
X = X @ Y
|
244 |
+
# Test for convergence exploiting the fact that L * X == W * Y.
|
245 |
+
res = sp.linalg.blas.dasum(W @ Y[:, 0] - sigma[0] * X[:, 0]) / Lnorm
|
246 |
+
if res < tol:
|
247 |
+
break
|
248 |
+
# Compute X = L \ X / (X' * (L \ X)).
|
249 |
+
# L \ X can have an arbitrary projection on the nullspace of L,
|
250 |
+
# which will be eliminated.
|
251 |
+
W[:, :] = solver.solve(X, tol)
|
252 |
+
X = (sp.linalg.inv(W.T @ X) @ W.T).T # Preserves Fortran storage order.
|
253 |
+
project(X)
|
254 |
+
|
255 |
+
return sigma, np.asarray(X)
|
256 |
+
|
257 |
+
|
258 |
+
def _get_fiedler_func(method):
|
259 |
+
"""Returns a function that solves the Fiedler eigenvalue problem."""
|
260 |
+
import numpy as np
|
261 |
+
|
262 |
+
if method == "tracemin": # old style keyword <v2.1
|
263 |
+
method = "tracemin_pcg"
|
264 |
+
if method in ("tracemin_pcg", "tracemin_lu"):
|
265 |
+
|
266 |
+
def find_fiedler(L, x, normalized, tol, seed):
|
267 |
+
q = 1 if method == "tracemin_pcg" else min(4, L.shape[0] - 1)
|
268 |
+
X = np.asarray(seed.normal(size=(q, L.shape[0]))).T
|
269 |
+
sigma, X = _tracemin_fiedler(L, X, normalized, tol, method)
|
270 |
+
return sigma[0], X[:, 0]
|
271 |
+
|
272 |
+
elif method == "lanczos" or method == "lobpcg":
|
273 |
+
|
274 |
+
def find_fiedler(L, x, normalized, tol, seed):
|
275 |
+
import scipy as sp
|
276 |
+
|
277 |
+
L = sp.sparse.csc_array(L, dtype=float)
|
278 |
+
n = L.shape[0]
|
279 |
+
if normalized:
|
280 |
+
# TODO: rm csc_array wrapping when spdiags array becomes available
|
281 |
+
D = sp.sparse.csc_array(
|
282 |
+
sp.sparse.spdiags(
|
283 |
+
1.0 / np.sqrt(L.diagonal()), [0], n, n, format="csc"
|
284 |
+
)
|
285 |
+
)
|
286 |
+
L = D @ L @ D
|
287 |
+
if method == "lanczos" or n < 10:
|
288 |
+
# Avoid LOBPCG when n < 10 due to
|
289 |
+
# https://github.com/scipy/scipy/issues/3592
|
290 |
+
# https://github.com/scipy/scipy/pull/3594
|
291 |
+
sigma, X = sp.sparse.linalg.eigsh(
|
292 |
+
L, 2, which="SM", tol=tol, return_eigenvectors=True
|
293 |
+
)
|
294 |
+
return sigma[1], X[:, 1]
|
295 |
+
else:
|
296 |
+
X = np.asarray(np.atleast_2d(x).T)
|
297 |
+
# TODO: rm csr_array wrapping when spdiags array becomes available
|
298 |
+
M = sp.sparse.csr_array(sp.sparse.spdiags(1.0 / L.diagonal(), 0, n, n))
|
299 |
+
Y = np.ones(n)
|
300 |
+
if normalized:
|
301 |
+
Y /= D.diagonal()
|
302 |
+
sigma, X = sp.sparse.linalg.lobpcg(
|
303 |
+
L, X, M=M, Y=np.atleast_2d(Y).T, tol=tol, maxiter=n, largest=False
|
304 |
+
)
|
305 |
+
return sigma[0], X[:, 0]
|
306 |
+
|
307 |
+
else:
|
308 |
+
raise nx.NetworkXError(f"unknown method {method!r}.")
|
309 |
+
|
310 |
+
return find_fiedler
|
311 |
+
|
312 |
+
|
313 |
+
@not_implemented_for("directed")
|
314 |
+
@np_random_state(5)
|
315 |
+
@nx._dispatchable(edge_attrs="weight")
|
316 |
+
def algebraic_connectivity(
|
317 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
318 |
+
):
|
319 |
+
r"""Returns the algebraic connectivity of an undirected graph.
|
320 |
+
|
321 |
+
The algebraic connectivity of a connected undirected graph is the second
|
322 |
+
smallest eigenvalue of its Laplacian matrix.
|
323 |
+
|
324 |
+
Parameters
|
325 |
+
----------
|
326 |
+
G : NetworkX graph
|
327 |
+
An undirected graph.
|
328 |
+
|
329 |
+
weight : object, optional (default: None)
|
330 |
+
The data key used to determine the weight of each edge. If None, then
|
331 |
+
each edge has unit weight.
|
332 |
+
|
333 |
+
normalized : bool, optional (default: False)
|
334 |
+
Whether the normalized Laplacian matrix is used.
|
335 |
+
|
336 |
+
tol : float, optional (default: 1e-8)
|
337 |
+
Tolerance of relative residual in eigenvalue computation.
|
338 |
+
|
339 |
+
method : string, optional (default: 'tracemin_pcg')
|
340 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
341 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
342 |
+
or 'lobpcg' (LOBPCG).
|
343 |
+
|
344 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
345 |
+
values allow specifying the solver to be used.
|
346 |
+
|
347 |
+
=============== ========================================
|
348 |
+
Value Solver
|
349 |
+
=============== ========================================
|
350 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
351 |
+
'tracemin_lu' LU factorization
|
352 |
+
=============== ========================================
|
353 |
+
|
354 |
+
seed : integer, random_state, or None (default)
|
355 |
+
Indicator of random number generation state.
|
356 |
+
See :ref:`Randomness<randomness>`.
|
357 |
+
|
358 |
+
Returns
|
359 |
+
-------
|
360 |
+
algebraic_connectivity : float
|
361 |
+
Algebraic connectivity.
|
362 |
+
|
363 |
+
Raises
|
364 |
+
------
|
365 |
+
NetworkXNotImplemented
|
366 |
+
If G is directed.
|
367 |
+
|
368 |
+
NetworkXError
|
369 |
+
If G has less than two nodes.
|
370 |
+
|
371 |
+
Notes
|
372 |
+
-----
|
373 |
+
Edge weights are interpreted by their absolute values. For MultiGraph's,
|
374 |
+
weights of parallel edges are summed. Zero-weighted edges are ignored.
|
375 |
+
|
376 |
+
See Also
|
377 |
+
--------
|
378 |
+
laplacian_matrix
|
379 |
+
|
380 |
+
Examples
|
381 |
+
--------
|
382 |
+
For undirected graphs algebraic connectivity can tell us if a graph is connected or not
|
383 |
+
`G` is connected iff ``algebraic_connectivity(G) > 0``:
|
384 |
+
|
385 |
+
>>> G = nx.complete_graph(5)
|
386 |
+
>>> nx.algebraic_connectivity(G) > 0
|
387 |
+
True
|
388 |
+
>>> G.add_node(10) # G is no longer connected
|
389 |
+
>>> nx.algebraic_connectivity(G) > 0
|
390 |
+
False
|
391 |
+
|
392 |
+
"""
|
393 |
+
if len(G) < 2:
|
394 |
+
raise nx.NetworkXError("graph has less than two nodes.")
|
395 |
+
G = _preprocess_graph(G, weight)
|
396 |
+
if not nx.is_connected(G):
|
397 |
+
return 0.0
|
398 |
+
|
399 |
+
L = nx.laplacian_matrix(G)
|
400 |
+
if L.shape[0] == 2:
|
401 |
+
return 2.0 * float(L[0, 0]) if not normalized else 2.0
|
402 |
+
|
403 |
+
find_fiedler = _get_fiedler_func(method)
|
404 |
+
x = None if method != "lobpcg" else _rcm_estimate(G, G)
|
405 |
+
sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
|
406 |
+
return float(sigma)
|
407 |
+
|
408 |
+
|
409 |
+
@not_implemented_for("directed")
|
410 |
+
@np_random_state(5)
|
411 |
+
@nx._dispatchable(edge_attrs="weight")
|
412 |
+
def fiedler_vector(
|
413 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
414 |
+
):
|
415 |
+
"""Returns the Fiedler vector of a connected undirected graph.
|
416 |
+
|
417 |
+
The Fiedler vector of a connected undirected graph is the eigenvector
|
418 |
+
corresponding to the second smallest eigenvalue of the Laplacian matrix
|
419 |
+
of the graph.
|
420 |
+
|
421 |
+
Parameters
|
422 |
+
----------
|
423 |
+
G : NetworkX graph
|
424 |
+
An undirected graph.
|
425 |
+
|
426 |
+
weight : object, optional (default: None)
|
427 |
+
The data key used to determine the weight of each edge. If None, then
|
428 |
+
each edge has unit weight.
|
429 |
+
|
430 |
+
normalized : bool, optional (default: False)
|
431 |
+
Whether the normalized Laplacian matrix is used.
|
432 |
+
|
433 |
+
tol : float, optional (default: 1e-8)
|
434 |
+
Tolerance of relative residual in eigenvalue computation.
|
435 |
+
|
436 |
+
method : string, optional (default: 'tracemin_pcg')
|
437 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
438 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
439 |
+
or 'lobpcg' (LOBPCG).
|
440 |
+
|
441 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
442 |
+
values allow specifying the solver to be used.
|
443 |
+
|
444 |
+
=============== ========================================
|
445 |
+
Value Solver
|
446 |
+
=============== ========================================
|
447 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
448 |
+
'tracemin_lu' LU factorization
|
449 |
+
=============== ========================================
|
450 |
+
|
451 |
+
seed : integer, random_state, or None (default)
|
452 |
+
Indicator of random number generation state.
|
453 |
+
See :ref:`Randomness<randomness>`.
|
454 |
+
|
455 |
+
Returns
|
456 |
+
-------
|
457 |
+
fiedler_vector : NumPy array of floats.
|
458 |
+
Fiedler vector.
|
459 |
+
|
460 |
+
Raises
|
461 |
+
------
|
462 |
+
NetworkXNotImplemented
|
463 |
+
If G is directed.
|
464 |
+
|
465 |
+
NetworkXError
|
466 |
+
If G has less than two nodes or is not connected.
|
467 |
+
|
468 |
+
Notes
|
469 |
+
-----
|
470 |
+
Edge weights are interpreted by their absolute values. For MultiGraph's,
|
471 |
+
weights of parallel edges are summed. Zero-weighted edges are ignored.
|
472 |
+
|
473 |
+
See Also
|
474 |
+
--------
|
475 |
+
laplacian_matrix
|
476 |
+
|
477 |
+
Examples
|
478 |
+
--------
|
479 |
+
Given a connected graph the signs of the values in the Fiedler vector can be
|
480 |
+
used to partition the graph into two components.
|
481 |
+
|
482 |
+
>>> G = nx.barbell_graph(5, 0)
|
483 |
+
>>> nx.fiedler_vector(G, normalized=True, seed=1)
|
484 |
+
array([-0.32864129, -0.32864129, -0.32864129, -0.32864129, -0.26072899,
|
485 |
+
0.26072899, 0.32864129, 0.32864129, 0.32864129, 0.32864129])
|
486 |
+
|
487 |
+
The connected components are the two 5-node cliques of the barbell graph.
|
488 |
+
"""
|
489 |
+
import numpy as np
|
490 |
+
|
491 |
+
if len(G) < 2:
|
492 |
+
raise nx.NetworkXError("graph has less than two nodes.")
|
493 |
+
G = _preprocess_graph(G, weight)
|
494 |
+
if not nx.is_connected(G):
|
495 |
+
raise nx.NetworkXError("graph is not connected.")
|
496 |
+
|
497 |
+
if len(G) == 2:
|
498 |
+
return np.array([1.0, -1.0])
|
499 |
+
|
500 |
+
find_fiedler = _get_fiedler_func(method)
|
501 |
+
L = nx.laplacian_matrix(G)
|
502 |
+
x = None if method != "lobpcg" else _rcm_estimate(G, G)
|
503 |
+
sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
|
504 |
+
return fiedler
|
505 |
+
|
506 |
+
|
507 |
+
@np_random_state(5)
|
508 |
+
@nx._dispatchable(edge_attrs="weight")
|
509 |
+
def spectral_ordering(
|
510 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
511 |
+
):
|
512 |
+
"""Compute the spectral_ordering of a graph.
|
513 |
+
|
514 |
+
The spectral ordering of a graph is an ordering of its nodes where nodes
|
515 |
+
in the same weakly connected components appear contiguous and ordered by
|
516 |
+
their corresponding elements in the Fiedler vector of the component.
|
517 |
+
|
518 |
+
Parameters
|
519 |
+
----------
|
520 |
+
G : NetworkX graph
|
521 |
+
A graph.
|
522 |
+
|
523 |
+
weight : object, optional (default: None)
|
524 |
+
The data key used to determine the weight of each edge. If None, then
|
525 |
+
each edge has unit weight.
|
526 |
+
|
527 |
+
normalized : bool, optional (default: False)
|
528 |
+
Whether the normalized Laplacian matrix is used.
|
529 |
+
|
530 |
+
tol : float, optional (default: 1e-8)
|
531 |
+
Tolerance of relative residual in eigenvalue computation.
|
532 |
+
|
533 |
+
method : string, optional (default: 'tracemin_pcg')
|
534 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
535 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
536 |
+
or 'lobpcg' (LOBPCG).
|
537 |
+
|
538 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
539 |
+
values allow specifying the solver to be used.
|
540 |
+
|
541 |
+
=============== ========================================
|
542 |
+
Value Solver
|
543 |
+
=============== ========================================
|
544 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
545 |
+
'tracemin_lu' LU factorization
|
546 |
+
=============== ========================================
|
547 |
+
|
548 |
+
seed : integer, random_state, or None (default)
|
549 |
+
Indicator of random number generation state.
|
550 |
+
See :ref:`Randomness<randomness>`.
|
551 |
+
|
552 |
+
Returns
|
553 |
+
-------
|
554 |
+
spectral_ordering : NumPy array of floats.
|
555 |
+
Spectral ordering of nodes.
|
556 |
+
|
557 |
+
Raises
|
558 |
+
------
|
559 |
+
NetworkXError
|
560 |
+
If G is empty.
|
561 |
+
|
562 |
+
Notes
|
563 |
+
-----
|
564 |
+
Edge weights are interpreted by their absolute values. For MultiGraph's,
|
565 |
+
weights of parallel edges are summed. Zero-weighted edges are ignored.
|
566 |
+
|
567 |
+
See Also
|
568 |
+
--------
|
569 |
+
laplacian_matrix
|
570 |
+
"""
|
571 |
+
if len(G) == 0:
|
572 |
+
raise nx.NetworkXError("graph is empty.")
|
573 |
+
G = _preprocess_graph(G, weight)
|
574 |
+
|
575 |
+
find_fiedler = _get_fiedler_func(method)
|
576 |
+
order = []
|
577 |
+
for component in nx.connected_components(G):
|
578 |
+
size = len(component)
|
579 |
+
if size > 2:
|
580 |
+
L = nx.laplacian_matrix(G, component)
|
581 |
+
x = None if method != "lobpcg" else _rcm_estimate(G, component)
|
582 |
+
sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
|
583 |
+
sort_info = zip(fiedler, range(size), component)
|
584 |
+
order.extend(u for x, c, u in sorted(sort_info))
|
585 |
+
else:
|
586 |
+
order.extend(component)
|
587 |
+
|
588 |
+
return order
|
589 |
+
|
590 |
+
|
591 |
+
@nx._dispatchable(edge_attrs="weight")
|
592 |
+
def spectral_bisection(
|
593 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
594 |
+
):
|
595 |
+
"""Bisect the graph using the Fiedler vector.
|
596 |
+
|
597 |
+
This method uses the Fiedler vector to bisect a graph.
|
598 |
+
The partition is defined by the nodes which are associated with
|
599 |
+
either positive or negative values in the vector.
|
600 |
+
|
601 |
+
Parameters
|
602 |
+
----------
|
603 |
+
G : NetworkX Graph
|
604 |
+
|
605 |
+
weight : str, optional (default: weight)
|
606 |
+
The data key used to determine the weight of each edge. If None, then
|
607 |
+
each edge has unit weight.
|
608 |
+
|
609 |
+
normalized : bool, optional (default: False)
|
610 |
+
Whether the normalized Laplacian matrix is used.
|
611 |
+
|
612 |
+
tol : float, optional (default: 1e-8)
|
613 |
+
Tolerance of relative residual in eigenvalue computation.
|
614 |
+
|
615 |
+
method : string, optional (default: 'tracemin_pcg')
|
616 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
617 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
618 |
+
or 'lobpcg' (LOBPCG).
|
619 |
+
|
620 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
621 |
+
values allow specifying the solver to be used.
|
622 |
+
|
623 |
+
=============== ========================================
|
624 |
+
Value Solver
|
625 |
+
=============== ========================================
|
626 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
627 |
+
'tracemin_lu' LU factorization
|
628 |
+
=============== ========================================
|
629 |
+
|
630 |
+
seed : integer, random_state, or None (default)
|
631 |
+
Indicator of random number generation state.
|
632 |
+
See :ref:`Randomness<randomness>`.
|
633 |
+
|
634 |
+
Returns
|
635 |
+
-------
|
636 |
+
bisection : tuple of sets
|
637 |
+
Sets with the bisection of nodes
|
638 |
+
|
639 |
+
Examples
|
640 |
+
--------
|
641 |
+
>>> G = nx.barbell_graph(3, 0)
|
642 |
+
>>> nx.spectral_bisection(G)
|
643 |
+
({0, 1, 2}, {3, 4, 5})
|
644 |
+
|
645 |
+
References
|
646 |
+
----------
|
647 |
+
.. [1] M. E. J Newman 'Networks: An Introduction', pages 364-370
|
648 |
+
Oxford University Press 2011.
|
649 |
+
"""
|
650 |
+
import numpy as np
|
651 |
+
|
652 |
+
v = nx.fiedler_vector(G, weight, normalized, tol, method, seed)
|
653 |
+
nodes = np.array(list(G))
|
654 |
+
pos_vals = v >= 0
|
655 |
+
|
656 |
+
return set(nodes[~pos_vals].tolist()), set(nodes[pos_vals].tolist())
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/graphmatrix.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adjacency matrix and incidence matrix of graphs.
|
3 |
+
"""
|
4 |
+
import networkx as nx
|
5 |
+
|
6 |
+
__all__ = ["incidence_matrix", "adjacency_matrix"]
|
7 |
+
|
8 |
+
|
9 |
+
@nx._dispatchable(edge_attrs="weight")
|
10 |
+
def incidence_matrix(
|
11 |
+
G, nodelist=None, edgelist=None, oriented=False, weight=None, *, dtype=None
|
12 |
+
):
|
13 |
+
"""Returns incidence matrix of G.
|
14 |
+
|
15 |
+
The incidence matrix assigns each row to a node and each column to an edge.
|
16 |
+
For a standard incidence matrix a 1 appears wherever a row's node is
|
17 |
+
incident on the column's edge. For an oriented incidence matrix each
|
18 |
+
edge is assigned an orientation (arbitrarily for undirected and aligning to
|
19 |
+
direction for directed). A -1 appears for the source (tail) of an edge and
|
20 |
+
1 for the destination (head) of the edge. The elements are zero otherwise.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
G : graph
|
25 |
+
A NetworkX graph
|
26 |
+
|
27 |
+
nodelist : list, optional (default= all nodes in G)
|
28 |
+
The rows are ordered according to the nodes in nodelist.
|
29 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
30 |
+
|
31 |
+
edgelist : list, optional (default= all edges in G)
|
32 |
+
The columns are ordered according to the edges in edgelist.
|
33 |
+
If edgelist is None, then the ordering is produced by G.edges().
|
34 |
+
|
35 |
+
oriented: bool, optional (default=False)
|
36 |
+
If True, matrix elements are +1 or -1 for the head or tail node
|
37 |
+
respectively of each edge. If False, +1 occurs at both nodes.
|
38 |
+
|
39 |
+
weight : string or None, optional (default=None)
|
40 |
+
The edge data key used to provide each value in the matrix.
|
41 |
+
If None, then each edge has weight 1. Edge weights, if used,
|
42 |
+
should be positive so that the orientation can provide the sign.
|
43 |
+
|
44 |
+
dtype : a NumPy dtype or None (default=None)
|
45 |
+
The dtype of the output sparse array. This type should be a compatible
|
46 |
+
type of the weight argument, eg. if weight would return a float this
|
47 |
+
argument should also be a float.
|
48 |
+
If None, then the default for SciPy is used.
|
49 |
+
|
50 |
+
Returns
|
51 |
+
-------
|
52 |
+
A : SciPy sparse array
|
53 |
+
The incidence matrix of G.
|
54 |
+
|
55 |
+
Notes
|
56 |
+
-----
|
57 |
+
For MultiGraph/MultiDiGraph, the edges in edgelist should be
|
58 |
+
(u,v,key) 3-tuples.
|
59 |
+
|
60 |
+
"Networks are the best discrete model for so many problems in
|
61 |
+
applied mathematics" [1]_.
|
62 |
+
|
63 |
+
References
|
64 |
+
----------
|
65 |
+
.. [1] Gil Strang, Network applications: A = incidence matrix,
|
66 |
+
http://videolectures.net/mit18085f07_strang_lec03/
|
67 |
+
"""
|
68 |
+
import scipy as sp
|
69 |
+
|
70 |
+
if nodelist is None:
|
71 |
+
nodelist = list(G)
|
72 |
+
if edgelist is None:
|
73 |
+
if G.is_multigraph():
|
74 |
+
edgelist = list(G.edges(keys=True))
|
75 |
+
else:
|
76 |
+
edgelist = list(G.edges())
|
77 |
+
A = sp.sparse.lil_array((len(nodelist), len(edgelist)), dtype=dtype)
|
78 |
+
node_index = {node: i for i, node in enumerate(nodelist)}
|
79 |
+
for ei, e in enumerate(edgelist):
|
80 |
+
(u, v) = e[:2]
|
81 |
+
if u == v:
|
82 |
+
continue # self loops give zero column
|
83 |
+
try:
|
84 |
+
ui = node_index[u]
|
85 |
+
vi = node_index[v]
|
86 |
+
except KeyError as err:
|
87 |
+
raise nx.NetworkXError(
|
88 |
+
f"node {u} or {v} in edgelist but not in nodelist"
|
89 |
+
) from err
|
90 |
+
if weight is None:
|
91 |
+
wt = 1
|
92 |
+
else:
|
93 |
+
if G.is_multigraph():
|
94 |
+
ekey = e[2]
|
95 |
+
wt = G[u][v][ekey].get(weight, 1)
|
96 |
+
else:
|
97 |
+
wt = G[u][v].get(weight, 1)
|
98 |
+
if oriented:
|
99 |
+
A[ui, ei] = -wt
|
100 |
+
A[vi, ei] = wt
|
101 |
+
else:
|
102 |
+
A[ui, ei] = wt
|
103 |
+
A[vi, ei] = wt
|
104 |
+
return A.asformat("csc")
|
105 |
+
|
106 |
+
|
107 |
+
@nx._dispatchable(edge_attrs="weight")
|
108 |
+
def adjacency_matrix(G, nodelist=None, dtype=None, weight="weight"):
|
109 |
+
"""Returns adjacency matrix of G.
|
110 |
+
|
111 |
+
Parameters
|
112 |
+
----------
|
113 |
+
G : graph
|
114 |
+
A NetworkX graph
|
115 |
+
|
116 |
+
nodelist : list, optional
|
117 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
118 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
119 |
+
|
120 |
+
dtype : NumPy data-type, optional
|
121 |
+
The desired data-type for the array.
|
122 |
+
If None, then the NumPy default is used.
|
123 |
+
|
124 |
+
weight : string or None, optional (default='weight')
|
125 |
+
The edge data key used to provide each value in the matrix.
|
126 |
+
If None, then each edge has weight 1.
|
127 |
+
|
128 |
+
Returns
|
129 |
+
-------
|
130 |
+
A : SciPy sparse array
|
131 |
+
Adjacency matrix representation of G.
|
132 |
+
|
133 |
+
Notes
|
134 |
+
-----
|
135 |
+
For directed graphs, entry i,j corresponds to an edge from i to j.
|
136 |
+
|
137 |
+
If you want a pure Python adjacency matrix representation try
|
138 |
+
networkx.convert.to_dict_of_dicts which will return a
|
139 |
+
dictionary-of-dictionaries format that can be addressed as a
|
140 |
+
sparse matrix.
|
141 |
+
|
142 |
+
For MultiGraph/MultiDiGraph with parallel edges the weights are summed.
|
143 |
+
See `to_numpy_array` for other options.
|
144 |
+
|
145 |
+
The convention used for self-loop edges in graphs is to assign the
|
146 |
+
diagonal matrix entry value to the edge weight attribute
|
147 |
+
(or the number 1 if the edge has no weight attribute). If the
|
148 |
+
alternate convention of doubling the edge weight is desired the
|
149 |
+
resulting SciPy sparse array can be modified as follows:
|
150 |
+
|
151 |
+
>>> G = nx.Graph([(1, 1)])
|
152 |
+
>>> A = nx.adjacency_matrix(G)
|
153 |
+
>>> print(A.todense())
|
154 |
+
[[1]]
|
155 |
+
>>> A.setdiag(A.diagonal() * 2)
|
156 |
+
>>> print(A.todense())
|
157 |
+
[[2]]
|
158 |
+
|
159 |
+
See Also
|
160 |
+
--------
|
161 |
+
to_numpy_array
|
162 |
+
to_scipy_sparse_array
|
163 |
+
to_dict_of_dicts
|
164 |
+
adjacency_spectrum
|
165 |
+
"""
|
166 |
+
return nx.to_scipy_sparse_array(G, nodelist=nodelist, dtype=dtype, weight=weight)
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/laplacianmatrix.py
ADDED
@@ -0,0 +1,616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Laplacian matrix of graphs.
|
2 |
+
|
3 |
+
All calculations here are done using the out-degree. For Laplacians using
|
4 |
+
in-degree, use `G.reverse(copy=False)` instead of `G` and take the transpose.
|
5 |
+
|
6 |
+
The `laplacian_matrix` function provides an unnormalized matrix,
|
7 |
+
while `normalized_laplacian_matrix`, `directed_laplacian_matrix`,
|
8 |
+
and `directed_combinatorial_laplacian_matrix` are all normalized.
|
9 |
+
"""
|
10 |
+
import networkx as nx
|
11 |
+
from networkx.utils import not_implemented_for
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
"laplacian_matrix",
|
15 |
+
"normalized_laplacian_matrix",
|
16 |
+
"total_spanning_tree_weight",
|
17 |
+
"directed_laplacian_matrix",
|
18 |
+
"directed_combinatorial_laplacian_matrix",
|
19 |
+
]
|
20 |
+
|
21 |
+
|
22 |
+
@nx._dispatchable(edge_attrs="weight")
|
23 |
+
def laplacian_matrix(G, nodelist=None, weight="weight"):
|
24 |
+
"""Returns the Laplacian matrix of G.
|
25 |
+
|
26 |
+
The graph Laplacian is the matrix L = D - A, where
|
27 |
+
A is the adjacency matrix and D is the diagonal matrix of node degrees.
|
28 |
+
|
29 |
+
Parameters
|
30 |
+
----------
|
31 |
+
G : graph
|
32 |
+
A NetworkX graph
|
33 |
+
|
34 |
+
nodelist : list, optional
|
35 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
36 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
37 |
+
|
38 |
+
weight : string or None, optional (default='weight')
|
39 |
+
The edge data key used to compute each value in the matrix.
|
40 |
+
If None, then each edge has weight 1.
|
41 |
+
|
42 |
+
Returns
|
43 |
+
-------
|
44 |
+
L : SciPy sparse array
|
45 |
+
The Laplacian matrix of G.
|
46 |
+
|
47 |
+
Notes
|
48 |
+
-----
|
49 |
+
For MultiGraph, the edges weights are summed.
|
50 |
+
|
51 |
+
This returns an unnormalized matrix. For a normalized output,
|
52 |
+
use `normalized_laplacian_matrix`, `directed_laplacian_matrix`,
|
53 |
+
or `directed_combinatorial_laplacian_matrix`.
|
54 |
+
|
55 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
56 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
57 |
+
take the transpose.
|
58 |
+
|
59 |
+
See Also
|
60 |
+
--------
|
61 |
+
:func:`~networkx.convert_matrix.to_numpy_array`
|
62 |
+
normalized_laplacian_matrix
|
63 |
+
directed_laplacian_matrix
|
64 |
+
directed_combinatorial_laplacian_matrix
|
65 |
+
:func:`~networkx.linalg.spectrum.laplacian_spectrum`
|
66 |
+
|
67 |
+
Examples
|
68 |
+
--------
|
69 |
+
For graphs with multiple connected components, L is permutation-similar
|
70 |
+
to a block diagonal matrix where each block is the respective Laplacian
|
71 |
+
matrix for each component.
|
72 |
+
|
73 |
+
>>> G = nx.Graph([(1, 2), (2, 3), (4, 5)])
|
74 |
+
>>> print(nx.laplacian_matrix(G).toarray())
|
75 |
+
[[ 1 -1 0 0 0]
|
76 |
+
[-1 2 -1 0 0]
|
77 |
+
[ 0 -1 1 0 0]
|
78 |
+
[ 0 0 0 1 -1]
|
79 |
+
[ 0 0 0 -1 1]]
|
80 |
+
|
81 |
+
>>> edges = [
|
82 |
+
... (1, 2),
|
83 |
+
... (2, 1),
|
84 |
+
... (2, 4),
|
85 |
+
... (4, 3),
|
86 |
+
... (3, 4),
|
87 |
+
... ]
|
88 |
+
>>> DiG = nx.DiGraph(edges)
|
89 |
+
>>> print(nx.laplacian_matrix(DiG).toarray())
|
90 |
+
[[ 1 -1 0 0]
|
91 |
+
[-1 2 -1 0]
|
92 |
+
[ 0 0 1 -1]
|
93 |
+
[ 0 0 -1 1]]
|
94 |
+
|
95 |
+
Notice that node 4 is represented by the third column and row. This is because
|
96 |
+
by default the row/column order is the order of `G.nodes` (i.e. the node added
|
97 |
+
order -- in the edgelist, 4 first appears in (2, 4), before node 3 in edge (4, 3).)
|
98 |
+
To control the node order of the matrix, use the `nodelist` argument.
|
99 |
+
|
100 |
+
>>> print(nx.laplacian_matrix(DiG, nodelist=[1, 2, 3, 4]).toarray())
|
101 |
+
[[ 1 -1 0 0]
|
102 |
+
[-1 2 0 -1]
|
103 |
+
[ 0 0 1 -1]
|
104 |
+
[ 0 0 -1 1]]
|
105 |
+
|
106 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
107 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
108 |
+
take the transpose.
|
109 |
+
|
110 |
+
>>> print(nx.laplacian_matrix(DiG.reverse(copy=False)).toarray().T)
|
111 |
+
[[ 1 -1 0 0]
|
112 |
+
[-1 1 -1 0]
|
113 |
+
[ 0 0 2 -1]
|
114 |
+
[ 0 0 -1 1]]
|
115 |
+
|
116 |
+
References
|
117 |
+
----------
|
118 |
+
.. [1] Langville, Amy N., and Carl D. Meyer. Google’s PageRank and Beyond:
|
119 |
+
The Science of Search Engine Rankings. Princeton University Press, 2006.
|
120 |
+
|
121 |
+
"""
|
122 |
+
import scipy as sp
|
123 |
+
|
124 |
+
if nodelist is None:
|
125 |
+
nodelist = list(G)
|
126 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
127 |
+
n, m = A.shape
|
128 |
+
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
129 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, m, n, format="csr"))
|
130 |
+
return D - A
|
131 |
+
|
132 |
+
|
133 |
+
@nx._dispatchable(edge_attrs="weight")
|
134 |
+
def normalized_laplacian_matrix(G, nodelist=None, weight="weight"):
|
135 |
+
r"""Returns the normalized Laplacian matrix of G.
|
136 |
+
|
137 |
+
The normalized graph Laplacian is the matrix
|
138 |
+
|
139 |
+
.. math::
|
140 |
+
|
141 |
+
N = D^{-1/2} L D^{-1/2}
|
142 |
+
|
143 |
+
where `L` is the graph Laplacian and `D` is the diagonal matrix of
|
144 |
+
node degrees [1]_.
|
145 |
+
|
146 |
+
Parameters
|
147 |
+
----------
|
148 |
+
G : graph
|
149 |
+
A NetworkX graph
|
150 |
+
|
151 |
+
nodelist : list, optional
|
152 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
153 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
154 |
+
|
155 |
+
weight : string or None, optional (default='weight')
|
156 |
+
The edge data key used to compute each value in the matrix.
|
157 |
+
If None, then each edge has weight 1.
|
158 |
+
|
159 |
+
Returns
|
160 |
+
-------
|
161 |
+
N : SciPy sparse array
|
162 |
+
The normalized Laplacian matrix of G.
|
163 |
+
|
164 |
+
Notes
|
165 |
+
-----
|
166 |
+
For MultiGraph, the edges weights are summed.
|
167 |
+
See :func:`to_numpy_array` for other options.
|
168 |
+
|
169 |
+
If the Graph contains selfloops, D is defined as ``diag(sum(A, 1))``, where A is
|
170 |
+
the adjacency matrix [2]_.
|
171 |
+
|
172 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
173 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
174 |
+
take the transpose.
|
175 |
+
|
176 |
+
For an unnormalized output, use `laplacian_matrix`.
|
177 |
+
|
178 |
+
Examples
|
179 |
+
--------
|
180 |
+
|
181 |
+
>>> import numpy as np
|
182 |
+
>>> edges = [
|
183 |
+
... (1, 2),
|
184 |
+
... (2, 1),
|
185 |
+
... (2, 4),
|
186 |
+
... (4, 3),
|
187 |
+
... (3, 4),
|
188 |
+
... ]
|
189 |
+
>>> DiG = nx.DiGraph(edges)
|
190 |
+
>>> print(nx.normalized_laplacian_matrix(DiG).toarray())
|
191 |
+
[[ 1. -0.70710678 0. 0. ]
|
192 |
+
[-0.70710678 1. -0.70710678 0. ]
|
193 |
+
[ 0. 0. 1. -1. ]
|
194 |
+
[ 0. 0. -1. 1. ]]
|
195 |
+
|
196 |
+
Notice that node 4 is represented by the third column and row. This is because
|
197 |
+
by default the row/column order is the order of `G.nodes` (i.e. the node added
|
198 |
+
order -- in the edgelist, 4 first appears in (2, 4), before node 3 in edge (4, 3).)
|
199 |
+
To control the node order of the matrix, use the `nodelist` argument.
|
200 |
+
|
201 |
+
>>> print(nx.normalized_laplacian_matrix(DiG, nodelist=[1, 2, 3, 4]).toarray())
|
202 |
+
[[ 1. -0.70710678 0. 0. ]
|
203 |
+
[-0.70710678 1. 0. -0.70710678]
|
204 |
+
[ 0. 0. 1. -1. ]
|
205 |
+
[ 0. 0. -1. 1. ]]
|
206 |
+
>>> G = nx.Graph(edges)
|
207 |
+
>>> print(nx.normalized_laplacian_matrix(G).toarray())
|
208 |
+
[[ 1. -0.70710678 0. 0. ]
|
209 |
+
[-0.70710678 1. -0.5 0. ]
|
210 |
+
[ 0. -0.5 1. -0.70710678]
|
211 |
+
[ 0. 0. -0.70710678 1. ]]
|
212 |
+
|
213 |
+
See Also
|
214 |
+
--------
|
215 |
+
laplacian_matrix
|
216 |
+
normalized_laplacian_spectrum
|
217 |
+
directed_laplacian_matrix
|
218 |
+
directed_combinatorial_laplacian_matrix
|
219 |
+
|
220 |
+
References
|
221 |
+
----------
|
222 |
+
.. [1] Fan Chung-Graham, Spectral Graph Theory,
|
223 |
+
CBMS Regional Conference Series in Mathematics, Number 92, 1997.
|
224 |
+
.. [2] Steve Butler, Interlacing For Weighted Graphs Using The Normalized
|
225 |
+
Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,
|
226 |
+
March 2007.
|
227 |
+
.. [3] Langville, Amy N., and Carl D. Meyer. Google’s PageRank and Beyond:
|
228 |
+
The Science of Search Engine Rankings. Princeton University Press, 2006.
|
229 |
+
"""
|
230 |
+
import numpy as np
|
231 |
+
import scipy as sp
|
232 |
+
|
233 |
+
if nodelist is None:
|
234 |
+
nodelist = list(G)
|
235 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
236 |
+
n, _ = A.shape
|
237 |
+
diags = A.sum(axis=1)
|
238 |
+
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
239 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(diags, 0, n, n, format="csr"))
|
240 |
+
L = D - A
|
241 |
+
with np.errstate(divide="ignore"):
|
242 |
+
diags_sqrt = 1.0 / np.sqrt(diags)
|
243 |
+
diags_sqrt[np.isinf(diags_sqrt)] = 0
|
244 |
+
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
245 |
+
DH = sp.sparse.csr_array(sp.sparse.spdiags(diags_sqrt, 0, n, n, format="csr"))
|
246 |
+
return DH @ (L @ DH)
|
247 |
+
|
248 |
+
|
249 |
+
@nx._dispatchable(edge_attrs="weight")
|
250 |
+
def total_spanning_tree_weight(G, weight=None, root=None):
|
251 |
+
"""
|
252 |
+
Returns the total weight of all spanning trees of `G`.
|
253 |
+
|
254 |
+
Kirchoff's Tree Matrix Theorem [1]_, [2]_ states that the determinant of any
|
255 |
+
cofactor of the Laplacian matrix of a graph is the number of spanning trees
|
256 |
+
in the graph. For a weighted Laplacian matrix, it is the sum across all
|
257 |
+
spanning trees of the multiplicative weight of each tree. That is, the
|
258 |
+
weight of each tree is the product of its edge weights.
|
259 |
+
|
260 |
+
For unweighted graphs, the total weight equals the number of spanning trees in `G`.
|
261 |
+
|
262 |
+
For directed graphs, the total weight follows by summing over all directed
|
263 |
+
spanning trees in `G` that start in the `root` node [3]_.
|
264 |
+
|
265 |
+
.. deprecated:: 3.3
|
266 |
+
|
267 |
+
``total_spanning_tree_weight`` is deprecated and will be removed in v3.5.
|
268 |
+
Use ``nx.number_of_spanning_trees(G)`` instead.
|
269 |
+
|
270 |
+
Parameters
|
271 |
+
----------
|
272 |
+
G : NetworkX Graph
|
273 |
+
|
274 |
+
weight : string or None, optional (default=None)
|
275 |
+
The key for the edge attribute holding the edge weight.
|
276 |
+
If None, then each edge has weight 1.
|
277 |
+
|
278 |
+
root : node (only required for directed graphs)
|
279 |
+
A node in the directed graph `G`.
|
280 |
+
|
281 |
+
Returns
|
282 |
+
-------
|
283 |
+
total_weight : float
|
284 |
+
Undirected graphs:
|
285 |
+
The sum of the total multiplicative weights for all spanning trees in `G`.
|
286 |
+
Directed graphs:
|
287 |
+
The sum of the total multiplicative weights for all spanning trees of `G`,
|
288 |
+
rooted at node `root`.
|
289 |
+
|
290 |
+
Raises
|
291 |
+
------
|
292 |
+
NetworkXPointlessConcept
|
293 |
+
If `G` does not contain any nodes.
|
294 |
+
|
295 |
+
NetworkXError
|
296 |
+
If the graph `G` is not (weakly) connected,
|
297 |
+
or if `G` is directed and the root node is not specified or not in G.
|
298 |
+
|
299 |
+
Examples
|
300 |
+
--------
|
301 |
+
>>> G = nx.complete_graph(5)
|
302 |
+
>>> round(nx.total_spanning_tree_weight(G))
|
303 |
+
125
|
304 |
+
|
305 |
+
>>> G = nx.Graph()
|
306 |
+
>>> G.add_edge(1, 2, weight=2)
|
307 |
+
>>> G.add_edge(1, 3, weight=1)
|
308 |
+
>>> G.add_edge(2, 3, weight=1)
|
309 |
+
>>> round(nx.total_spanning_tree_weight(G, "weight"))
|
310 |
+
5
|
311 |
+
|
312 |
+
Notes
|
313 |
+
-----
|
314 |
+
Self-loops are excluded. Multi-edges are contracted in one edge
|
315 |
+
equal to the sum of the weights.
|
316 |
+
|
317 |
+
References
|
318 |
+
----------
|
319 |
+
.. [1] Wikipedia
|
320 |
+
"Kirchhoff's theorem."
|
321 |
+
https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem
|
322 |
+
.. [2] Kirchhoff, G. R.
|
323 |
+
Über die Auflösung der Gleichungen, auf welche man
|
324 |
+
bei der Untersuchung der linearen Vertheilung
|
325 |
+
Galvanischer Ströme geführt wird
|
326 |
+
Annalen der Physik und Chemie, vol. 72, pp. 497-508, 1847.
|
327 |
+
.. [3] Margoliash, J.
|
328 |
+
"Matrix-Tree Theorem for Directed Graphs"
|
329 |
+
https://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Margoliash.pdf
|
330 |
+
"""
|
331 |
+
import warnings
|
332 |
+
|
333 |
+
warnings.warn(
|
334 |
+
(
|
335 |
+
"\n\ntotal_spanning_tree_weight is deprecated and will be removed in v3.5.\n"
|
336 |
+
"Use `nx.number_of_spanning_trees(G)` instead."
|
337 |
+
),
|
338 |
+
category=DeprecationWarning,
|
339 |
+
stacklevel=3,
|
340 |
+
)
|
341 |
+
|
342 |
+
return nx.number_of_spanning_trees(G, weight=weight, root=root)
|
343 |
+
|
344 |
+
|
345 |
+
###############################################################################
|
346 |
+
# Code based on work from https://github.com/bjedwards
|
347 |
+
|
348 |
+
|
349 |
+
@not_implemented_for("undirected")
|
350 |
+
@not_implemented_for("multigraph")
|
351 |
+
@nx._dispatchable(edge_attrs="weight")
|
352 |
+
def directed_laplacian_matrix(
|
353 |
+
G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
|
354 |
+
):
|
355 |
+
r"""Returns the directed Laplacian matrix of G.
|
356 |
+
|
357 |
+
The graph directed Laplacian is the matrix
|
358 |
+
|
359 |
+
.. math::
|
360 |
+
|
361 |
+
L = I - \frac{1}{2} \left (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2} \right )
|
362 |
+
|
363 |
+
where `I` is the identity matrix, `P` is the transition matrix of the
|
364 |
+
graph, and `\Phi` a matrix with the Perron vector of `P` in the diagonal and
|
365 |
+
zeros elsewhere [1]_.
|
366 |
+
|
367 |
+
Depending on the value of walk_type, `P` can be the transition matrix
|
368 |
+
induced by a random walk, a lazy random walk, or a random walk with
|
369 |
+
teleportation (PageRank).
|
370 |
+
|
371 |
+
Parameters
|
372 |
+
----------
|
373 |
+
G : DiGraph
|
374 |
+
A NetworkX graph
|
375 |
+
|
376 |
+
nodelist : list, optional
|
377 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
378 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
379 |
+
|
380 |
+
weight : string or None, optional (default='weight')
|
381 |
+
The edge data key used to compute each value in the matrix.
|
382 |
+
If None, then each edge has weight 1.
|
383 |
+
|
384 |
+
walk_type : string or None, optional (default=None)
|
385 |
+
One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
|
386 |
+
(the default), then a value is selected according to the properties of `G`:
|
387 |
+
- ``walk_type="random"`` if `G` is strongly connected and aperiodic
|
388 |
+
- ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
|
389 |
+
- ``walk_type="pagerank"`` for all other cases.
|
390 |
+
|
391 |
+
alpha : real
|
392 |
+
(1 - alpha) is the teleportation probability used with pagerank
|
393 |
+
|
394 |
+
Returns
|
395 |
+
-------
|
396 |
+
L : NumPy matrix
|
397 |
+
Normalized Laplacian of G.
|
398 |
+
|
399 |
+
Notes
|
400 |
+
-----
|
401 |
+
Only implemented for DiGraphs
|
402 |
+
|
403 |
+
The result is always a symmetric matrix.
|
404 |
+
|
405 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
406 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
407 |
+
take the transpose.
|
408 |
+
|
409 |
+
See Also
|
410 |
+
--------
|
411 |
+
laplacian_matrix
|
412 |
+
normalized_laplacian_matrix
|
413 |
+
directed_combinatorial_laplacian_matrix
|
414 |
+
|
415 |
+
References
|
416 |
+
----------
|
417 |
+
.. [1] Fan Chung (2005).
|
418 |
+
Laplacians and the Cheeger inequality for directed graphs.
|
419 |
+
Annals of Combinatorics, 9(1), 2005
|
420 |
+
"""
|
421 |
+
import numpy as np
|
422 |
+
import scipy as sp
|
423 |
+
|
424 |
+
# NOTE: P has type ndarray if walk_type=="pagerank", else csr_array
|
425 |
+
P = _transition_matrix(
|
426 |
+
G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
|
427 |
+
)
|
428 |
+
|
429 |
+
n, m = P.shape
|
430 |
+
|
431 |
+
evals, evecs = sp.sparse.linalg.eigs(P.T, k=1)
|
432 |
+
v = evecs.flatten().real
|
433 |
+
p = v / v.sum()
|
434 |
+
# p>=0 by Perron-Frobenius Thm. Use abs() to fix roundoff across zero gh-6865
|
435 |
+
sqrtp = np.sqrt(np.abs(p))
|
436 |
+
Q = (
|
437 |
+
# TODO: rm csr_array wrapper when spdiags creates arrays
|
438 |
+
sp.sparse.csr_array(sp.sparse.spdiags(sqrtp, 0, n, n))
|
439 |
+
@ P
|
440 |
+
# TODO: rm csr_array wrapper when spdiags creates arrays
|
441 |
+
@ sp.sparse.csr_array(sp.sparse.spdiags(1.0 / sqrtp, 0, n, n))
|
442 |
+
)
|
443 |
+
# NOTE: This could be sparsified for the non-pagerank cases
|
444 |
+
I = np.identity(len(G))
|
445 |
+
|
446 |
+
return I - (Q + Q.T) / 2.0
|
447 |
+
|
448 |
+
|
449 |
+
@not_implemented_for("undirected")
|
450 |
+
@not_implemented_for("multigraph")
|
451 |
+
@nx._dispatchable(edge_attrs="weight")
|
452 |
+
def directed_combinatorial_laplacian_matrix(
|
453 |
+
G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
|
454 |
+
):
|
455 |
+
r"""Return the directed combinatorial Laplacian matrix of G.
|
456 |
+
|
457 |
+
The graph directed combinatorial Laplacian is the matrix
|
458 |
+
|
459 |
+
.. math::
|
460 |
+
|
461 |
+
L = \Phi - \frac{1}{2} \left (\Phi P + P^T \Phi \right)
|
462 |
+
|
463 |
+
where `P` is the transition matrix of the graph and `\Phi` a matrix
|
464 |
+
with the Perron vector of `P` in the diagonal and zeros elsewhere [1]_.
|
465 |
+
|
466 |
+
Depending on the value of walk_type, `P` can be the transition matrix
|
467 |
+
induced by a random walk, a lazy random walk, or a random walk with
|
468 |
+
teleportation (PageRank).
|
469 |
+
|
470 |
+
Parameters
|
471 |
+
----------
|
472 |
+
G : DiGraph
|
473 |
+
A NetworkX graph
|
474 |
+
|
475 |
+
nodelist : list, optional
|
476 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
477 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
478 |
+
|
479 |
+
weight : string or None, optional (default='weight')
|
480 |
+
The edge data key used to compute each value in the matrix.
|
481 |
+
If None, then each edge has weight 1.
|
482 |
+
|
483 |
+
walk_type : string or None, optional (default=None)
|
484 |
+
One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
|
485 |
+
(the default), then a value is selected according to the properties of `G`:
|
486 |
+
- ``walk_type="random"`` if `G` is strongly connected and aperiodic
|
487 |
+
- ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
|
488 |
+
- ``walk_type="pagerank"`` for all other cases.
|
489 |
+
|
490 |
+
alpha : real
|
491 |
+
(1 - alpha) is the teleportation probability used with pagerank
|
492 |
+
|
493 |
+
Returns
|
494 |
+
-------
|
495 |
+
L : NumPy matrix
|
496 |
+
Combinatorial Laplacian of G.
|
497 |
+
|
498 |
+
Notes
|
499 |
+
-----
|
500 |
+
Only implemented for DiGraphs
|
501 |
+
|
502 |
+
The result is always a symmetric matrix.
|
503 |
+
|
504 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
505 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
506 |
+
take the transpose.
|
507 |
+
|
508 |
+
See Also
|
509 |
+
--------
|
510 |
+
laplacian_matrix
|
511 |
+
normalized_laplacian_matrix
|
512 |
+
directed_laplacian_matrix
|
513 |
+
|
514 |
+
References
|
515 |
+
----------
|
516 |
+
.. [1] Fan Chung (2005).
|
517 |
+
Laplacians and the Cheeger inequality for directed graphs.
|
518 |
+
Annals of Combinatorics, 9(1), 2005
|
519 |
+
"""
|
520 |
+
import scipy as sp
|
521 |
+
|
522 |
+
P = _transition_matrix(
|
523 |
+
G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
|
524 |
+
)
|
525 |
+
|
526 |
+
n, m = P.shape
|
527 |
+
|
528 |
+
evals, evecs = sp.sparse.linalg.eigs(P.T, k=1)
|
529 |
+
v = evecs.flatten().real
|
530 |
+
p = v / v.sum()
|
531 |
+
# NOTE: could be improved by not densifying
|
532 |
+
# TODO: Rm csr_array wrapper when spdiags array creation becomes available
|
533 |
+
Phi = sp.sparse.csr_array(sp.sparse.spdiags(p, 0, n, n)).toarray()
|
534 |
+
|
535 |
+
return Phi - (Phi @ P + P.T @ Phi) / 2.0
|
536 |
+
|
537 |
+
|
538 |
+
def _transition_matrix(G, nodelist=None, weight="weight", walk_type=None, alpha=0.95):
|
539 |
+
"""Returns the transition matrix of G.
|
540 |
+
|
541 |
+
This is a row stochastic giving the transition probabilities while
|
542 |
+
performing a random walk on the graph. Depending on the value of walk_type,
|
543 |
+
P can be the transition matrix induced by a random walk, a lazy random walk,
|
544 |
+
or a random walk with teleportation (PageRank).
|
545 |
+
|
546 |
+
Parameters
|
547 |
+
----------
|
548 |
+
G : DiGraph
|
549 |
+
A NetworkX graph
|
550 |
+
|
551 |
+
nodelist : list, optional
|
552 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
553 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
554 |
+
|
555 |
+
weight : string or None, optional (default='weight')
|
556 |
+
The edge data key used to compute each value in the matrix.
|
557 |
+
If None, then each edge has weight 1.
|
558 |
+
|
559 |
+
walk_type : string or None, optional (default=None)
|
560 |
+
One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
|
561 |
+
(the default), then a value is selected according to the properties of `G`:
|
562 |
+
- ``walk_type="random"`` if `G` is strongly connected and aperiodic
|
563 |
+
- ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
|
564 |
+
- ``walk_type="pagerank"`` for all other cases.
|
565 |
+
|
566 |
+
alpha : real
|
567 |
+
(1 - alpha) is the teleportation probability used with pagerank
|
568 |
+
|
569 |
+
Returns
|
570 |
+
-------
|
571 |
+
P : numpy.ndarray
|
572 |
+
transition matrix of G.
|
573 |
+
|
574 |
+
Raises
|
575 |
+
------
|
576 |
+
NetworkXError
|
577 |
+
If walk_type not specified or alpha not in valid range
|
578 |
+
"""
|
579 |
+
import numpy as np
|
580 |
+
import scipy as sp
|
581 |
+
|
582 |
+
if walk_type is None:
|
583 |
+
if nx.is_strongly_connected(G):
|
584 |
+
if nx.is_aperiodic(G):
|
585 |
+
walk_type = "random"
|
586 |
+
else:
|
587 |
+
walk_type = "lazy"
|
588 |
+
else:
|
589 |
+
walk_type = "pagerank"
|
590 |
+
|
591 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, dtype=float)
|
592 |
+
n, m = A.shape
|
593 |
+
if walk_type in ["random", "lazy"]:
|
594 |
+
# TODO: Rm csr_array wrapper when spdiags array creation becomes available
|
595 |
+
DI = sp.sparse.csr_array(sp.sparse.spdiags(1.0 / A.sum(axis=1), 0, n, n))
|
596 |
+
if walk_type == "random":
|
597 |
+
P = DI @ A
|
598 |
+
else:
|
599 |
+
# TODO: Rm csr_array wrapper when identity array creation becomes available
|
600 |
+
I = sp.sparse.csr_array(sp.sparse.identity(n))
|
601 |
+
P = (I + DI @ A) / 2.0
|
602 |
+
|
603 |
+
elif walk_type == "pagerank":
|
604 |
+
if not (0 < alpha < 1):
|
605 |
+
raise nx.NetworkXError("alpha must be between 0 and 1")
|
606 |
+
# this is using a dense representation. NOTE: This should be sparsified!
|
607 |
+
A = A.toarray()
|
608 |
+
# add constant to dangling nodes' row
|
609 |
+
A[A.sum(axis=1) == 0, :] = 1 / n
|
610 |
+
# normalize
|
611 |
+
A = A / A.sum(axis=1)[np.newaxis, :].T
|
612 |
+
P = alpha * A + (1 - alpha) / n
|
613 |
+
else:
|
614 |
+
raise nx.NetworkXError("walk_type must be random, lazy, or pagerank")
|
615 |
+
|
616 |
+
return P
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/modularitymatrix.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Modularity matrix of graphs.
|
2 |
+
"""
|
3 |
+
import networkx as nx
|
4 |
+
from networkx.utils import not_implemented_for
|
5 |
+
|
6 |
+
__all__ = ["modularity_matrix", "directed_modularity_matrix"]
|
7 |
+
|
8 |
+
|
9 |
+
@not_implemented_for("directed")
|
10 |
+
@not_implemented_for("multigraph")
|
11 |
+
@nx._dispatchable(edge_attrs="weight")
|
12 |
+
def modularity_matrix(G, nodelist=None, weight=None):
|
13 |
+
r"""Returns the modularity matrix of G.
|
14 |
+
|
15 |
+
The modularity matrix is the matrix B = A - <A>, where A is the adjacency
|
16 |
+
matrix and <A> is the average adjacency matrix, assuming that the graph
|
17 |
+
is described by the configuration model.
|
18 |
+
|
19 |
+
More specifically, the element B_ij of B is defined as
|
20 |
+
|
21 |
+
.. math::
|
22 |
+
A_{ij} - {k_i k_j \over 2 m}
|
23 |
+
|
24 |
+
where k_i is the degree of node i, and where m is the number of edges
|
25 |
+
in the graph. When weight is set to a name of an attribute edge, Aij, k_i,
|
26 |
+
k_j and m are computed using its value.
|
27 |
+
|
28 |
+
Parameters
|
29 |
+
----------
|
30 |
+
G : Graph
|
31 |
+
A NetworkX graph
|
32 |
+
|
33 |
+
nodelist : list, optional
|
34 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
35 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
36 |
+
|
37 |
+
weight : string or None, optional (default=None)
|
38 |
+
The edge attribute that holds the numerical value used for
|
39 |
+
the edge weight. If None then all edge weights are 1.
|
40 |
+
|
41 |
+
Returns
|
42 |
+
-------
|
43 |
+
B : Numpy array
|
44 |
+
The modularity matrix of G.
|
45 |
+
|
46 |
+
Examples
|
47 |
+
--------
|
48 |
+
>>> k = [3, 2, 2, 1, 0]
|
49 |
+
>>> G = nx.havel_hakimi_graph(k)
|
50 |
+
>>> B = nx.modularity_matrix(G)
|
51 |
+
|
52 |
+
|
53 |
+
See Also
|
54 |
+
--------
|
55 |
+
to_numpy_array
|
56 |
+
modularity_spectrum
|
57 |
+
adjacency_matrix
|
58 |
+
directed_modularity_matrix
|
59 |
+
|
60 |
+
References
|
61 |
+
----------
|
62 |
+
.. [1] M. E. J. Newman, "Modularity and community structure in networks",
|
63 |
+
Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
|
64 |
+
"""
|
65 |
+
import numpy as np
|
66 |
+
|
67 |
+
if nodelist is None:
|
68 |
+
nodelist = list(G)
|
69 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
70 |
+
k = A.sum(axis=1)
|
71 |
+
m = k.sum() * 0.5
|
72 |
+
# Expected adjacency matrix
|
73 |
+
X = np.outer(k, k) / (2 * m)
|
74 |
+
|
75 |
+
return A - X
|
76 |
+
|
77 |
+
|
78 |
+
@not_implemented_for("undirected")
|
79 |
+
@not_implemented_for("multigraph")
|
80 |
+
@nx._dispatchable(edge_attrs="weight")
|
81 |
+
def directed_modularity_matrix(G, nodelist=None, weight=None):
|
82 |
+
"""Returns the directed modularity matrix of G.
|
83 |
+
|
84 |
+
The modularity matrix is the matrix B = A - <A>, where A is the adjacency
|
85 |
+
matrix and <A> is the expected adjacency matrix, assuming that the graph
|
86 |
+
is described by the configuration model.
|
87 |
+
|
88 |
+
More specifically, the element B_ij of B is defined as
|
89 |
+
|
90 |
+
.. math::
|
91 |
+
B_{ij} = A_{ij} - k_i^{out} k_j^{in} / m
|
92 |
+
|
93 |
+
where :math:`k_i^{in}` is the in degree of node i, and :math:`k_j^{out}` is the out degree
|
94 |
+
of node j, with m the number of edges in the graph. When weight is set
|
95 |
+
to a name of an attribute edge, Aij, k_i, k_j and m are computed using
|
96 |
+
its value.
|
97 |
+
|
98 |
+
Parameters
|
99 |
+
----------
|
100 |
+
G : DiGraph
|
101 |
+
A NetworkX DiGraph
|
102 |
+
|
103 |
+
nodelist : list, optional
|
104 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
105 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
106 |
+
|
107 |
+
weight : string or None, optional (default=None)
|
108 |
+
The edge attribute that holds the numerical value used for
|
109 |
+
the edge weight. If None then all edge weights are 1.
|
110 |
+
|
111 |
+
Returns
|
112 |
+
-------
|
113 |
+
B : Numpy array
|
114 |
+
The modularity matrix of G.
|
115 |
+
|
116 |
+
Examples
|
117 |
+
--------
|
118 |
+
>>> G = nx.DiGraph()
|
119 |
+
>>> G.add_edges_from(
|
120 |
+
... (
|
121 |
+
... (1, 2),
|
122 |
+
... (1, 3),
|
123 |
+
... (3, 1),
|
124 |
+
... (3, 2),
|
125 |
+
... (3, 5),
|
126 |
+
... (4, 5),
|
127 |
+
... (4, 6),
|
128 |
+
... (5, 4),
|
129 |
+
... (5, 6),
|
130 |
+
... (6, 4),
|
131 |
+
... )
|
132 |
+
... )
|
133 |
+
>>> B = nx.directed_modularity_matrix(G)
|
134 |
+
|
135 |
+
|
136 |
+
Notes
|
137 |
+
-----
|
138 |
+
NetworkX defines the element A_ij of the adjacency matrix as 1 if there
|
139 |
+
is a link going from node i to node j. Leicht and Newman use the opposite
|
140 |
+
definition. This explains the different expression for B_ij.
|
141 |
+
|
142 |
+
See Also
|
143 |
+
--------
|
144 |
+
to_numpy_array
|
145 |
+
modularity_spectrum
|
146 |
+
adjacency_matrix
|
147 |
+
modularity_matrix
|
148 |
+
|
149 |
+
References
|
150 |
+
----------
|
151 |
+
.. [1] E. A. Leicht, M. E. J. Newman,
|
152 |
+
"Community structure in directed networks",
|
153 |
+
Phys. Rev Lett., vol. 100, no. 11, p. 118703, 2008.
|
154 |
+
"""
|
155 |
+
import numpy as np
|
156 |
+
|
157 |
+
if nodelist is None:
|
158 |
+
nodelist = list(G)
|
159 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
160 |
+
k_in = A.sum(axis=0)
|
161 |
+
k_out = A.sum(axis=1)
|
162 |
+
m = k_in.sum()
|
163 |
+
# Expected adjacency matrix
|
164 |
+
X = np.outer(k_out, k_in) / m
|
165 |
+
|
166 |
+
return A - X
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/spectrum.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Eigenvalue spectrum of graphs.
|
3 |
+
"""
|
4 |
+
import networkx as nx
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
"laplacian_spectrum",
|
8 |
+
"adjacency_spectrum",
|
9 |
+
"modularity_spectrum",
|
10 |
+
"normalized_laplacian_spectrum",
|
11 |
+
"bethe_hessian_spectrum",
|
12 |
+
]
|
13 |
+
|
14 |
+
|
15 |
+
@nx._dispatchable(edge_attrs="weight")
|
16 |
+
def laplacian_spectrum(G, weight="weight"):
|
17 |
+
"""Returns eigenvalues of the Laplacian of G
|
18 |
+
|
19 |
+
Parameters
|
20 |
+
----------
|
21 |
+
G : graph
|
22 |
+
A NetworkX graph
|
23 |
+
|
24 |
+
weight : string or None, optional (default='weight')
|
25 |
+
The edge data key used to compute each value in the matrix.
|
26 |
+
If None, then each edge has weight 1.
|
27 |
+
|
28 |
+
Returns
|
29 |
+
-------
|
30 |
+
evals : NumPy array
|
31 |
+
Eigenvalues
|
32 |
+
|
33 |
+
Notes
|
34 |
+
-----
|
35 |
+
For MultiGraph/MultiDiGraph, the edges weights are summed.
|
36 |
+
See :func:`~networkx.convert_matrix.to_numpy_array` for other options.
|
37 |
+
|
38 |
+
See Also
|
39 |
+
--------
|
40 |
+
laplacian_matrix
|
41 |
+
|
42 |
+
Examples
|
43 |
+
--------
|
44 |
+
The multiplicity of 0 as an eigenvalue of the laplacian matrix is equal
|
45 |
+
to the number of connected components of G.
|
46 |
+
|
47 |
+
>>> G = nx.Graph() # Create a graph with 5 nodes and 3 connected components
|
48 |
+
>>> G.add_nodes_from(range(5))
|
49 |
+
>>> G.add_edges_from([(0, 2), (3, 4)])
|
50 |
+
>>> nx.laplacian_spectrum(G)
|
51 |
+
array([0., 0., 0., 2., 2.])
|
52 |
+
|
53 |
+
"""
|
54 |
+
import scipy as sp
|
55 |
+
|
56 |
+
return sp.linalg.eigvalsh(nx.laplacian_matrix(G, weight=weight).todense())
|
57 |
+
|
58 |
+
|
59 |
+
@nx._dispatchable(edge_attrs="weight")
|
60 |
+
def normalized_laplacian_spectrum(G, weight="weight"):
|
61 |
+
"""Return eigenvalues of the normalized Laplacian of G
|
62 |
+
|
63 |
+
Parameters
|
64 |
+
----------
|
65 |
+
G : graph
|
66 |
+
A NetworkX graph
|
67 |
+
|
68 |
+
weight : string or None, optional (default='weight')
|
69 |
+
The edge data key used to compute each value in the matrix.
|
70 |
+
If None, then each edge has weight 1.
|
71 |
+
|
72 |
+
Returns
|
73 |
+
-------
|
74 |
+
evals : NumPy array
|
75 |
+
Eigenvalues
|
76 |
+
|
77 |
+
Notes
|
78 |
+
-----
|
79 |
+
For MultiGraph/MultiDiGraph, the edges weights are summed.
|
80 |
+
See to_numpy_array for other options.
|
81 |
+
|
82 |
+
See Also
|
83 |
+
--------
|
84 |
+
normalized_laplacian_matrix
|
85 |
+
"""
|
86 |
+
import scipy as sp
|
87 |
+
|
88 |
+
return sp.linalg.eigvalsh(
|
89 |
+
nx.normalized_laplacian_matrix(G, weight=weight).todense()
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
@nx._dispatchable(edge_attrs="weight")
|
94 |
+
def adjacency_spectrum(G, weight="weight"):
|
95 |
+
"""Returns eigenvalues of the adjacency matrix of G.
|
96 |
+
|
97 |
+
Parameters
|
98 |
+
----------
|
99 |
+
G : graph
|
100 |
+
A NetworkX graph
|
101 |
+
|
102 |
+
weight : string or None, optional (default='weight')
|
103 |
+
The edge data key used to compute each value in the matrix.
|
104 |
+
If None, then each edge has weight 1.
|
105 |
+
|
106 |
+
Returns
|
107 |
+
-------
|
108 |
+
evals : NumPy array
|
109 |
+
Eigenvalues
|
110 |
+
|
111 |
+
Notes
|
112 |
+
-----
|
113 |
+
For MultiGraph/MultiDiGraph, the edges weights are summed.
|
114 |
+
See to_numpy_array for other options.
|
115 |
+
|
116 |
+
See Also
|
117 |
+
--------
|
118 |
+
adjacency_matrix
|
119 |
+
"""
|
120 |
+
import scipy as sp
|
121 |
+
|
122 |
+
return sp.linalg.eigvals(nx.adjacency_matrix(G, weight=weight).todense())
|
123 |
+
|
124 |
+
|
125 |
+
@nx._dispatchable
|
126 |
+
def modularity_spectrum(G):
|
127 |
+
"""Returns eigenvalues of the modularity matrix of G.
|
128 |
+
|
129 |
+
Parameters
|
130 |
+
----------
|
131 |
+
G : Graph
|
132 |
+
A NetworkX Graph or DiGraph
|
133 |
+
|
134 |
+
Returns
|
135 |
+
-------
|
136 |
+
evals : NumPy array
|
137 |
+
Eigenvalues
|
138 |
+
|
139 |
+
See Also
|
140 |
+
--------
|
141 |
+
modularity_matrix
|
142 |
+
|
143 |
+
References
|
144 |
+
----------
|
145 |
+
.. [1] M. E. J. Newman, "Modularity and community structure in networks",
|
146 |
+
Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
|
147 |
+
"""
|
148 |
+
import scipy as sp
|
149 |
+
|
150 |
+
if G.is_directed():
|
151 |
+
return sp.linalg.eigvals(nx.directed_modularity_matrix(G))
|
152 |
+
else:
|
153 |
+
return sp.linalg.eigvals(nx.modularity_matrix(G))
|
154 |
+
|
155 |
+
|
156 |
+
@nx._dispatchable
|
157 |
+
def bethe_hessian_spectrum(G, r=None):
|
158 |
+
"""Returns eigenvalues of the Bethe Hessian matrix of G.
|
159 |
+
|
160 |
+
Parameters
|
161 |
+
----------
|
162 |
+
G : Graph
|
163 |
+
A NetworkX Graph or DiGraph
|
164 |
+
|
165 |
+
r : float
|
166 |
+
Regularizer parameter
|
167 |
+
|
168 |
+
Returns
|
169 |
+
-------
|
170 |
+
evals : NumPy array
|
171 |
+
Eigenvalues
|
172 |
+
|
173 |
+
See Also
|
174 |
+
--------
|
175 |
+
bethe_hessian_matrix
|
176 |
+
|
177 |
+
References
|
178 |
+
----------
|
179 |
+
.. [1] A. Saade, F. Krzakala and L. Zdeborová
|
180 |
+
"Spectral clustering of graphs with the bethe hessian",
|
181 |
+
Advances in Neural Information Processing Systems. 2014.
|
182 |
+
"""
|
183 |
+
import scipy as sp
|
184 |
+
|
185 |
+
return sp.linalg.eigvalsh(nx.bethe_hessian_matrix(G, r).todense())
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_algebraic_connectivity.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_attrmatrix.cpython-310.pyc
ADDED
Binary file (3.11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_bethehessian.cpython-310.pyc
ADDED
Binary file (1.4 kB). View file
|
|