Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/layout.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_agraph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_latex.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_pydot.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_pylab.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/test_agraph.py +240 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/test_pydot.py +180 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/test_pylab.py +879 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/atlas.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/classic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/cographs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/community.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/degree_seq.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/directed.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/duplication.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/ego.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/expanders.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/geometric.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/harary_graph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/internet_as_graphs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/intersection.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/interval_graph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/joint_degree_seq.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/lattice.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/line.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/mycielski.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/nonisomorphic_trees.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/random_clustered.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/random_graphs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/small.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/social.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/spectral_graph_forge.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/stochastic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/sudoku.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/time_series.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/trees.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/triads.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_atlas.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_classic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_cographs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_community.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_degree_seq.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_directed.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_duplication.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_ego.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_expanders.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (309 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/layout.cpython-310.pyc
ADDED
Binary file (33.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_agraph.cpython-310.pyc
ADDED
Binary file (12.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_latex.cpython-310.pyc
ADDED
Binary file (22.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_pydot.cpython-310.pyc
ADDED
Binary file (10 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_pylab.cpython-310.pyc
ADDED
Binary file (51.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/test_agraph.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Unit tests for PyGraphviz interface."""
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
pygraphviz = pytest.importorskip("pygraphviz")
|
7 |
+
|
8 |
+
|
9 |
+
import networkx as nx
|
10 |
+
from networkx.utils import edges_equal, graphs_equal, nodes_equal
|
11 |
+
|
12 |
+
|
13 |
+
class TestAGraph:
|
14 |
+
def build_graph(self, G):
|
15 |
+
edges = [("A", "B"), ("A", "C"), ("A", "C"), ("B", "C"), ("A", "D")]
|
16 |
+
G.add_edges_from(edges)
|
17 |
+
G.add_node("E")
|
18 |
+
G.graph["metal"] = "bronze"
|
19 |
+
return G
|
20 |
+
|
21 |
+
def assert_equal(self, G1, G2):
|
22 |
+
assert nodes_equal(G1.nodes(), G2.nodes())
|
23 |
+
assert edges_equal(G1.edges(), G2.edges())
|
24 |
+
assert G1.graph["metal"] == G2.graph["metal"]
|
25 |
+
|
26 |
+
@pytest.mark.parametrize(
|
27 |
+
"G", (nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph())
|
28 |
+
)
|
29 |
+
def test_agraph_roundtripping(self, G, tmp_path):
|
30 |
+
G = self.build_graph(G)
|
31 |
+
A = nx.nx_agraph.to_agraph(G)
|
32 |
+
H = nx.nx_agraph.from_agraph(A)
|
33 |
+
self.assert_equal(G, H)
|
34 |
+
|
35 |
+
fname = tmp_path / "test.dot"
|
36 |
+
nx.drawing.nx_agraph.write_dot(H, fname)
|
37 |
+
Hin = nx.nx_agraph.read_dot(fname)
|
38 |
+
self.assert_equal(H, Hin)
|
39 |
+
|
40 |
+
fname = tmp_path / "fh_test.dot"
|
41 |
+
with open(fname, "w") as fh:
|
42 |
+
nx.drawing.nx_agraph.write_dot(H, fh)
|
43 |
+
|
44 |
+
with open(fname) as fh:
|
45 |
+
Hin = nx.nx_agraph.read_dot(fh)
|
46 |
+
self.assert_equal(H, Hin)
|
47 |
+
|
48 |
+
def test_from_agraph_name(self):
|
49 |
+
G = nx.Graph(name="test")
|
50 |
+
A = nx.nx_agraph.to_agraph(G)
|
51 |
+
H = nx.nx_agraph.from_agraph(A)
|
52 |
+
assert G.name == "test"
|
53 |
+
|
54 |
+
@pytest.mark.parametrize(
|
55 |
+
"graph_class", (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
|
56 |
+
)
|
57 |
+
def test_from_agraph_create_using(self, graph_class):
|
58 |
+
G = nx.path_graph(3)
|
59 |
+
A = nx.nx_agraph.to_agraph(G)
|
60 |
+
H = nx.nx_agraph.from_agraph(A, create_using=graph_class)
|
61 |
+
assert isinstance(H, graph_class)
|
62 |
+
|
63 |
+
def test_from_agraph_named_edges(self):
|
64 |
+
# Create an AGraph from an existing (non-multi) Graph
|
65 |
+
G = nx.Graph()
|
66 |
+
G.add_nodes_from([0, 1])
|
67 |
+
A = nx.nx_agraph.to_agraph(G)
|
68 |
+
# Add edge (+ name, given by key) to the AGraph
|
69 |
+
A.add_edge(0, 1, key="foo")
|
70 |
+
# Verify a.name roundtrips out to 'key' in from_agraph
|
71 |
+
H = nx.nx_agraph.from_agraph(A)
|
72 |
+
assert isinstance(H, nx.Graph)
|
73 |
+
assert ("0", "1", {"key": "foo"}) in H.edges(data=True)
|
74 |
+
|
75 |
+
def test_to_agraph_with_nodedata(self):
|
76 |
+
G = nx.Graph()
|
77 |
+
G.add_node(1, color="red")
|
78 |
+
A = nx.nx_agraph.to_agraph(G)
|
79 |
+
assert dict(A.nodes()[0].attr) == {"color": "red"}
|
80 |
+
|
81 |
+
@pytest.mark.parametrize("graph_class", (nx.Graph, nx.MultiGraph))
|
82 |
+
def test_to_agraph_with_edgedata(self, graph_class):
|
83 |
+
G = graph_class()
|
84 |
+
G.add_nodes_from([0, 1])
|
85 |
+
G.add_edge(0, 1, color="yellow")
|
86 |
+
A = nx.nx_agraph.to_agraph(G)
|
87 |
+
assert dict(A.edges()[0].attr) == {"color": "yellow"}
|
88 |
+
|
89 |
+
def test_view_pygraphviz_path(self, tmp_path):
|
90 |
+
G = nx.complete_graph(3)
|
91 |
+
input_path = str(tmp_path / "graph.png")
|
92 |
+
out_path, A = nx.nx_agraph.view_pygraphviz(G, path=input_path, show=False)
|
93 |
+
assert out_path == input_path
|
94 |
+
# Ensure file is not empty
|
95 |
+
with open(input_path, "rb") as fh:
|
96 |
+
data = fh.read()
|
97 |
+
assert len(data) > 0
|
98 |
+
|
99 |
+
def test_view_pygraphviz_file_suffix(self, tmp_path):
|
100 |
+
G = nx.complete_graph(3)
|
101 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, suffix=1, show=False)
|
102 |
+
assert path[-6:] == "_1.png"
|
103 |
+
|
104 |
+
def test_view_pygraphviz(self):
|
105 |
+
G = nx.Graph() # "An empty graph cannot be drawn."
|
106 |
+
pytest.raises(nx.NetworkXException, nx.nx_agraph.view_pygraphviz, G)
|
107 |
+
G = nx.barbell_graph(4, 6)
|
108 |
+
nx.nx_agraph.view_pygraphviz(G, show=False)
|
109 |
+
|
110 |
+
def test_view_pygraphviz_edgelabel(self):
|
111 |
+
G = nx.Graph()
|
112 |
+
G.add_edge(1, 2, weight=7)
|
113 |
+
G.add_edge(2, 3, weight=8)
|
114 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, edgelabel="weight", show=False)
|
115 |
+
for edge in A.edges():
|
116 |
+
assert edge.attr["weight"] in ("7", "8")
|
117 |
+
|
118 |
+
def test_view_pygraphviz_callable_edgelabel(self):
|
119 |
+
G = nx.complete_graph(3)
|
120 |
+
|
121 |
+
def foo_label(data):
|
122 |
+
return "foo"
|
123 |
+
|
124 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, edgelabel=foo_label, show=False)
|
125 |
+
for edge in A.edges():
|
126 |
+
assert edge.attr["label"] == "foo"
|
127 |
+
|
128 |
+
def test_view_pygraphviz_multigraph_edgelabels(self):
|
129 |
+
G = nx.MultiGraph()
|
130 |
+
G.add_edge(0, 1, key=0, name="left_fork")
|
131 |
+
G.add_edge(0, 1, key=1, name="right_fork")
|
132 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, edgelabel="name", show=False)
|
133 |
+
edges = A.edges()
|
134 |
+
assert len(edges) == 2
|
135 |
+
for edge in edges:
|
136 |
+
assert edge.attr["label"].strip() in ("left_fork", "right_fork")
|
137 |
+
|
138 |
+
def test_graph_with_reserved_keywords(self):
|
139 |
+
# test attribute/keyword clash case for #1582
|
140 |
+
# node: n
|
141 |
+
# edges: u,v
|
142 |
+
G = nx.Graph()
|
143 |
+
G = self.build_graph(G)
|
144 |
+
G.nodes["E"]["n"] = "keyword"
|
145 |
+
G.edges[("A", "B")]["u"] = "keyword"
|
146 |
+
G.edges[("A", "B")]["v"] = "keyword"
|
147 |
+
A = nx.nx_agraph.to_agraph(G)
|
148 |
+
|
149 |
+
def test_view_pygraphviz_no_added_attrs_to_input(self):
|
150 |
+
G = nx.complete_graph(2)
|
151 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, show=False)
|
152 |
+
assert G.graph == {}
|
153 |
+
|
154 |
+
@pytest.mark.xfail(reason="known bug in clean_attrs")
|
155 |
+
def test_view_pygraphviz_leaves_input_graph_unmodified(self):
|
156 |
+
G = nx.complete_graph(2)
|
157 |
+
# Add entries to graph dict that to_agraph handles specially
|
158 |
+
G.graph["node"] = {"width": "0.80"}
|
159 |
+
G.graph["edge"] = {"fontsize": "14"}
|
160 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, show=False)
|
161 |
+
assert G.graph == {"node": {"width": "0.80"}, "edge": {"fontsize": "14"}}
|
162 |
+
|
163 |
+
def test_graph_with_AGraph_attrs(self):
|
164 |
+
G = nx.complete_graph(2)
|
165 |
+
# Add entries to graph dict that to_agraph handles specially
|
166 |
+
G.graph["node"] = {"width": "0.80"}
|
167 |
+
G.graph["edge"] = {"fontsize": "14"}
|
168 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, show=False)
|
169 |
+
# Ensure user-specified values are not lost
|
170 |
+
assert dict(A.node_attr)["width"] == "0.80"
|
171 |
+
assert dict(A.edge_attr)["fontsize"] == "14"
|
172 |
+
|
173 |
+
def test_round_trip_empty_graph(self):
|
174 |
+
G = nx.Graph()
|
175 |
+
A = nx.nx_agraph.to_agraph(G)
|
176 |
+
H = nx.nx_agraph.from_agraph(A)
|
177 |
+
# assert graphs_equal(G, H)
|
178 |
+
AA = nx.nx_agraph.to_agraph(H)
|
179 |
+
HH = nx.nx_agraph.from_agraph(AA)
|
180 |
+
assert graphs_equal(H, HH)
|
181 |
+
G.graph["graph"] = {}
|
182 |
+
G.graph["node"] = {}
|
183 |
+
G.graph["edge"] = {}
|
184 |
+
assert graphs_equal(G, HH)
|
185 |
+
|
186 |
+
@pytest.mark.xfail(reason="integer->string node conversion in round trip")
|
187 |
+
def test_round_trip_integer_nodes(self):
|
188 |
+
G = nx.complete_graph(3)
|
189 |
+
A = nx.nx_agraph.to_agraph(G)
|
190 |
+
H = nx.nx_agraph.from_agraph(A)
|
191 |
+
assert graphs_equal(G, H)
|
192 |
+
|
193 |
+
def test_graphviz_alias(self):
|
194 |
+
G = self.build_graph(nx.Graph())
|
195 |
+
pos_graphviz = nx.nx_agraph.graphviz_layout(G)
|
196 |
+
pos_pygraphviz = nx.nx_agraph.pygraphviz_layout(G)
|
197 |
+
assert pos_graphviz == pos_pygraphviz
|
198 |
+
|
199 |
+
@pytest.mark.parametrize("root", range(5))
|
200 |
+
def test_pygraphviz_layout_root(self, root):
|
201 |
+
# NOTE: test depends on layout prog being deterministic
|
202 |
+
G = nx.complete_graph(5)
|
203 |
+
A = nx.nx_agraph.to_agraph(G)
|
204 |
+
# Get layout with root arg is not None
|
205 |
+
pygv_layout = nx.nx_agraph.pygraphviz_layout(G, prog="circo", root=root)
|
206 |
+
# Equivalent layout directly on AGraph
|
207 |
+
A.layout(args=f"-Groot={root}", prog="circo")
|
208 |
+
# Parse AGraph layout
|
209 |
+
a1_pos = tuple(float(v) for v in dict(A.get_node("1").attr)["pos"].split(","))
|
210 |
+
assert pygv_layout[1] == a1_pos
|
211 |
+
|
212 |
+
def test_2d_layout(self):
|
213 |
+
G = nx.Graph()
|
214 |
+
G = self.build_graph(G)
|
215 |
+
G.graph["dimen"] = 2
|
216 |
+
pos = nx.nx_agraph.pygraphviz_layout(G, prog="neato")
|
217 |
+
pos = list(pos.values())
|
218 |
+
assert len(pos) == 5
|
219 |
+
assert len(pos[0]) == 2
|
220 |
+
|
221 |
+
def test_3d_layout(self):
|
222 |
+
G = nx.Graph()
|
223 |
+
G = self.build_graph(G)
|
224 |
+
G.graph["dimen"] = 3
|
225 |
+
pos = nx.nx_agraph.pygraphviz_layout(G, prog="neato")
|
226 |
+
pos = list(pos.values())
|
227 |
+
assert len(pos) == 5
|
228 |
+
assert len(pos[0]) == 3
|
229 |
+
|
230 |
+
def test_no_warnings_raised(self):
|
231 |
+
# Test that no warnings are raised when Networkx graph
|
232 |
+
# is converted to Pygraphviz graph and 'pos'
|
233 |
+
# attribute is given
|
234 |
+
G = nx.Graph()
|
235 |
+
G.add_node(0, pos=(0, 0))
|
236 |
+
G.add_node(1, pos=(1, 1))
|
237 |
+
A = nx.nx_agraph.to_agraph(G)
|
238 |
+
with warnings.catch_warnings(record=True) as record:
|
239 |
+
A.layout()
|
240 |
+
assert len(record) == 0
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/test_pydot.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Unit tests for pydot drawing functions."""
|
2 |
+
from io import StringIO
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.utils import graphs_equal
|
8 |
+
|
9 |
+
pydot = pytest.importorskip("pydot")
|
10 |
+
|
11 |
+
|
12 |
+
class TestPydot:
|
13 |
+
@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
|
14 |
+
@pytest.mark.parametrize("prog", ("neato", "dot"))
|
15 |
+
def test_pydot(self, G, prog, tmp_path):
|
16 |
+
"""
|
17 |
+
Validate :mod:`pydot`-based usage of the passed NetworkX graph with the
|
18 |
+
passed basename of an external GraphViz command (e.g., `dot`, `neato`).
|
19 |
+
"""
|
20 |
+
|
21 |
+
# Set the name of this graph to... "G". Failing to do so will
|
22 |
+
# subsequently trip an assertion expecting this name.
|
23 |
+
G.graph["name"] = "G"
|
24 |
+
|
25 |
+
# Add arbitrary nodes and edges to the passed empty graph.
|
26 |
+
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "C"), ("A", "D")])
|
27 |
+
G.add_node("E")
|
28 |
+
|
29 |
+
# Validate layout of this graph with the passed GraphViz command.
|
30 |
+
graph_layout = nx.nx_pydot.pydot_layout(G, prog=prog)
|
31 |
+
assert isinstance(graph_layout, dict)
|
32 |
+
|
33 |
+
# Convert this graph into a "pydot.Dot" instance.
|
34 |
+
P = nx.nx_pydot.to_pydot(G)
|
35 |
+
|
36 |
+
# Convert this "pydot.Dot" instance back into a graph of the same type.
|
37 |
+
G2 = G.__class__(nx.nx_pydot.from_pydot(P))
|
38 |
+
|
39 |
+
# Validate the original and resulting graphs to be the same.
|
40 |
+
assert graphs_equal(G, G2)
|
41 |
+
|
42 |
+
fname = tmp_path / "out.dot"
|
43 |
+
|
44 |
+
# Serialize this "pydot.Dot" instance to a temporary file in dot format
|
45 |
+
P.write_raw(fname)
|
46 |
+
|
47 |
+
# Deserialize a list of new "pydot.Dot" instances back from this file.
|
48 |
+
Pin_list = pydot.graph_from_dot_file(path=fname, encoding="utf-8")
|
49 |
+
|
50 |
+
# Validate this file to contain only one graph.
|
51 |
+
assert len(Pin_list) == 1
|
52 |
+
|
53 |
+
# The single "pydot.Dot" instance deserialized from this file.
|
54 |
+
Pin = Pin_list[0]
|
55 |
+
|
56 |
+
# Sorted list of all nodes in the original "pydot.Dot" instance.
|
57 |
+
n1 = sorted(p.get_name() for p in P.get_node_list())
|
58 |
+
|
59 |
+
# Sorted list of all nodes in the deserialized "pydot.Dot" instance.
|
60 |
+
n2 = sorted(p.get_name() for p in Pin.get_node_list())
|
61 |
+
|
62 |
+
# Validate these instances to contain the same nodes.
|
63 |
+
assert n1 == n2
|
64 |
+
|
65 |
+
# Sorted list of all edges in the original "pydot.Dot" instance.
|
66 |
+
e1 = sorted((e.get_source(), e.get_destination()) for e in P.get_edge_list())
|
67 |
+
|
68 |
+
# Sorted list of all edges in the original "pydot.Dot" instance.
|
69 |
+
e2 = sorted((e.get_source(), e.get_destination()) for e in Pin.get_edge_list())
|
70 |
+
|
71 |
+
# Validate these instances to contain the same edges.
|
72 |
+
assert e1 == e2
|
73 |
+
|
74 |
+
# Deserialize a new graph of the same type back from this file.
|
75 |
+
Hin = nx.nx_pydot.read_dot(fname)
|
76 |
+
Hin = G.__class__(Hin)
|
77 |
+
|
78 |
+
# Validate the original and resulting graphs to be the same.
|
79 |
+
assert graphs_equal(G, Hin)
|
80 |
+
|
81 |
+
def test_read_write(self):
|
82 |
+
G = nx.MultiGraph()
|
83 |
+
G.graph["name"] = "G"
|
84 |
+
G.add_edge("1", "2", key="0") # read assumes strings
|
85 |
+
fh = StringIO()
|
86 |
+
nx.nx_pydot.write_dot(G, fh)
|
87 |
+
fh.seek(0)
|
88 |
+
H = nx.nx_pydot.read_dot(fh)
|
89 |
+
assert graphs_equal(G, H)
|
90 |
+
|
91 |
+
|
92 |
+
def test_pydot_issue_258():
|
93 |
+
G = nx.Graph([("Example:A", 1)])
|
94 |
+
with pytest.raises(ValueError):
|
95 |
+
nx.nx_pydot.to_pydot(G)
|
96 |
+
with pytest.raises(ValueError):
|
97 |
+
nx.nx_pydot.pydot_layout(G)
|
98 |
+
|
99 |
+
G = nx.Graph()
|
100 |
+
G.add_node("1.2", style="filled", fillcolor="red:yellow")
|
101 |
+
with pytest.raises(ValueError):
|
102 |
+
nx.nx_pydot.to_pydot(G)
|
103 |
+
G.remove_node("1.2")
|
104 |
+
G.add_node("1.2", style="filled", fillcolor='"red:yellow"')
|
105 |
+
assert (
|
106 |
+
G.nodes.data() == nx.nx_pydot.from_pydot(nx.nx_pydot.to_pydot(G)).nodes.data()
|
107 |
+
)
|
108 |
+
|
109 |
+
G = nx.DiGraph()
|
110 |
+
G.add_edge("1", "2", foo="bar:1")
|
111 |
+
with pytest.raises(ValueError):
|
112 |
+
nx.nx_pydot.to_pydot(G)
|
113 |
+
G = nx.DiGraph()
|
114 |
+
G.add_edge("1", "2", foo='"bar:1"')
|
115 |
+
assert G["1"]["2"] == nx.nx_pydot.from_pydot(nx.nx_pydot.to_pydot(G))["1"]["2"]
|
116 |
+
|
117 |
+
G = nx.MultiGraph()
|
118 |
+
G.add_edge("1", "2", foo="b:1")
|
119 |
+
G.add_edge("1", "2", bar="foo:foo")
|
120 |
+
with pytest.raises(ValueError):
|
121 |
+
nx.nx_pydot.to_pydot(G)
|
122 |
+
G = nx.MultiGraph()
|
123 |
+
G.add_edge("1", "2", foo='"b:1"')
|
124 |
+
G.add_edge("1", "2", bar='"foo:foo"')
|
125 |
+
# Keys as integers aren't preserved in the conversion. They are read as strings.
|
126 |
+
assert [attr for _, _, attr in G.edges.data()] == [
|
127 |
+
attr
|
128 |
+
for _, _, attr in nx.nx_pydot.from_pydot(nx.nx_pydot.to_pydot(G)).edges.data()
|
129 |
+
]
|
130 |
+
|
131 |
+
G = nx.Graph()
|
132 |
+
G.add_edge("1", "2")
|
133 |
+
G["1"]["2"]["f:oo"] = "bar"
|
134 |
+
with pytest.raises(ValueError):
|
135 |
+
nx.nx_pydot.to_pydot(G)
|
136 |
+
G = nx.Graph()
|
137 |
+
G.add_edge("1", "2")
|
138 |
+
G["1"]["2"]['"f:oo"'] = "bar"
|
139 |
+
assert G["1"]["2"] == nx.nx_pydot.from_pydot(nx.nx_pydot.to_pydot(G))["1"]["2"]
|
140 |
+
|
141 |
+
G = nx.Graph([('"Example:A"', 1)])
|
142 |
+
layout = nx.nx_pydot.pydot_layout(G)
|
143 |
+
assert isinstance(layout, dict)
|
144 |
+
|
145 |
+
|
146 |
+
@pytest.mark.parametrize(
|
147 |
+
"graph_type", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph]
|
148 |
+
)
|
149 |
+
def test_hashable_pydot(graph_type):
|
150 |
+
# gh-5790
|
151 |
+
G = graph_type()
|
152 |
+
G.add_edge("5", frozenset([1]), t='"Example:A"', l=False)
|
153 |
+
G.add_edge("1", 2, w=True, t=("node1",), l=frozenset(["node1"]))
|
154 |
+
G.add_edge("node", (3, 3), w="string")
|
155 |
+
|
156 |
+
assert [
|
157 |
+
{"t": '"Example:A"', "l": "False"},
|
158 |
+
{"w": "True", "t": "('node1',)", "l": "frozenset({'node1'})"},
|
159 |
+
{"w": "string"},
|
160 |
+
] == [
|
161 |
+
attr
|
162 |
+
for _, _, attr in nx.nx_pydot.from_pydot(nx.nx_pydot.to_pydot(G)).edges.data()
|
163 |
+
]
|
164 |
+
|
165 |
+
assert {str(i) for i in G.nodes()} == set(
|
166 |
+
nx.nx_pydot.from_pydot(nx.nx_pydot.to_pydot(G)).nodes
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
def test_pydot_numerical_name():
|
171 |
+
G = nx.Graph()
|
172 |
+
G.add_edges_from([("A", "B"), (0, 1)])
|
173 |
+
graph_layout = nx.nx_pydot.pydot_layout(G, prog="dot")
|
174 |
+
assert isinstance(graph_layout, dict)
|
175 |
+
assert "0" not in graph_layout
|
176 |
+
assert 0 in graph_layout
|
177 |
+
assert "1" not in graph_layout
|
178 |
+
assert 1 in graph_layout
|
179 |
+
assert "A" in graph_layout
|
180 |
+
assert "B" in graph_layout
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/test_pylab.py
ADDED
@@ -0,0 +1,879 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Unit tests for matplotlib drawing functions."""
|
2 |
+
import itertools
|
3 |
+
import os
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
mpl = pytest.importorskip("matplotlib")
|
9 |
+
np = pytest.importorskip("numpy")
|
10 |
+
mpl.use("PS")
|
11 |
+
plt = pytest.importorskip("matplotlib.pyplot")
|
12 |
+
plt.rcParams["text.usetex"] = False
|
13 |
+
|
14 |
+
|
15 |
+
import networkx as nx
|
16 |
+
|
17 |
+
barbell = nx.barbell_graph(4, 6)
|
18 |
+
|
19 |
+
|
20 |
+
def test_draw():
|
21 |
+
try:
|
22 |
+
functions = [
|
23 |
+
nx.draw_circular,
|
24 |
+
nx.draw_kamada_kawai,
|
25 |
+
nx.draw_planar,
|
26 |
+
nx.draw_random,
|
27 |
+
nx.draw_spectral,
|
28 |
+
nx.draw_spring,
|
29 |
+
nx.draw_shell,
|
30 |
+
]
|
31 |
+
options = [{"node_color": "black", "node_size": 100, "width": 3}]
|
32 |
+
for function, option in itertools.product(functions, options):
|
33 |
+
function(barbell, **option)
|
34 |
+
plt.savefig("test.ps")
|
35 |
+
except ModuleNotFoundError: # draw_kamada_kawai requires scipy
|
36 |
+
pass
|
37 |
+
finally:
|
38 |
+
try:
|
39 |
+
os.unlink("test.ps")
|
40 |
+
except OSError:
|
41 |
+
pass
|
42 |
+
|
43 |
+
|
44 |
+
def test_draw_shell_nlist():
|
45 |
+
try:
|
46 |
+
nlist = [list(range(4)), list(range(4, 10)), list(range(10, 14))]
|
47 |
+
nx.draw_shell(barbell, nlist=nlist)
|
48 |
+
plt.savefig("test.ps")
|
49 |
+
finally:
|
50 |
+
try:
|
51 |
+
os.unlink("test.ps")
|
52 |
+
except OSError:
|
53 |
+
pass
|
54 |
+
|
55 |
+
|
56 |
+
def test_edge_colormap():
|
57 |
+
colors = range(barbell.number_of_edges())
|
58 |
+
nx.draw_spring(
|
59 |
+
barbell, edge_color=colors, width=4, edge_cmap=plt.cm.Blues, with_labels=True
|
60 |
+
)
|
61 |
+
# plt.show()
|
62 |
+
|
63 |
+
|
64 |
+
def test_arrows():
|
65 |
+
nx.draw_spring(barbell.to_directed())
|
66 |
+
# plt.show()
|
67 |
+
|
68 |
+
|
69 |
+
@pytest.mark.parametrize(
|
70 |
+
("edge_color", "expected"),
|
71 |
+
(
|
72 |
+
(None, "black"), # Default
|
73 |
+
("r", "red"), # Non-default color string
|
74 |
+
(["r"], "red"), # Single non-default color in a list
|
75 |
+
((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
|
76 |
+
([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
|
77 |
+
((0, 1, 0, 1), "lime"), # single color as rgba tuple
|
78 |
+
([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
|
79 |
+
("#0000ff", "blue"), # single color hex code
|
80 |
+
(["#0000ff"], "blue"), # hex code in list
|
81 |
+
),
|
82 |
+
)
|
83 |
+
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
|
84 |
+
def test_single_edge_color_undirected(edge_color, expected, edgelist):
|
85 |
+
"""Tests ways of specifying all edges have a single color for edges
|
86 |
+
drawn with a LineCollection"""
|
87 |
+
|
88 |
+
G = nx.path_graph(3)
|
89 |
+
drawn_edges = nx.draw_networkx_edges(
|
90 |
+
G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
|
91 |
+
)
|
92 |
+
assert mpl.colors.same_color(drawn_edges.get_color(), expected)
|
93 |
+
|
94 |
+
|
95 |
+
@pytest.mark.parametrize(
|
96 |
+
("edge_color", "expected"),
|
97 |
+
(
|
98 |
+
(None, "black"), # Default
|
99 |
+
("r", "red"), # Non-default color string
|
100 |
+
(["r"], "red"), # Single non-default color in a list
|
101 |
+
((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
|
102 |
+
([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
|
103 |
+
((0, 1, 0, 1), "lime"), # single color as rgba tuple
|
104 |
+
([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
|
105 |
+
("#0000ff", "blue"), # single color hex code
|
106 |
+
(["#0000ff"], "blue"), # hex code in list
|
107 |
+
),
|
108 |
+
)
|
109 |
+
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
|
110 |
+
def test_single_edge_color_directed(edge_color, expected, edgelist):
|
111 |
+
"""Tests ways of specifying all edges have a single color for edges drawn
|
112 |
+
with FancyArrowPatches"""
|
113 |
+
|
114 |
+
G = nx.path_graph(3, create_using=nx.DiGraph)
|
115 |
+
drawn_edges = nx.draw_networkx_edges(
|
116 |
+
G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
|
117 |
+
)
|
118 |
+
for fap in drawn_edges:
|
119 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
|
120 |
+
|
121 |
+
|
122 |
+
def test_edge_color_tuple_interpretation():
|
123 |
+
"""If edge_color is a sequence with the same length as edgelist, then each
|
124 |
+
value in edge_color is mapped onto each edge via colormap."""
|
125 |
+
G = nx.path_graph(6, create_using=nx.DiGraph)
|
126 |
+
pos = {n: (n, n) for n in range(len(G))}
|
127 |
+
|
128 |
+
# num edges != 3 or 4 --> edge_color interpreted as rgb(a)
|
129 |
+
for ec in ((0, 0, 1), (0, 0, 1, 1)):
|
130 |
+
# More than 4 edges
|
131 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=ec)
|
132 |
+
for fap in drawn_edges:
|
133 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), ec)
|
134 |
+
# Fewer than 3 edges
|
135 |
+
drawn_edges = nx.draw_networkx_edges(
|
136 |
+
G, pos, edgelist=[(0, 1), (1, 2)], edge_color=ec
|
137 |
+
)
|
138 |
+
for fap in drawn_edges:
|
139 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), ec)
|
140 |
+
|
141 |
+
# num edges == 3, len(edge_color) == 4: interpreted as rgba
|
142 |
+
drawn_edges = nx.draw_networkx_edges(
|
143 |
+
G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1, 1)
|
144 |
+
)
|
145 |
+
for fap in drawn_edges:
|
146 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
|
147 |
+
|
148 |
+
# num edges == 4, len(edge_color) == 3: interpreted as rgb
|
149 |
+
drawn_edges = nx.draw_networkx_edges(
|
150 |
+
G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1)
|
151 |
+
)
|
152 |
+
for fap in drawn_edges:
|
153 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
|
154 |
+
|
155 |
+
# num edges == len(edge_color) == 3: interpreted with cmap, *not* as rgb
|
156 |
+
drawn_edges = nx.draw_networkx_edges(
|
157 |
+
G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1)
|
158 |
+
)
|
159 |
+
assert mpl.colors.same_color(
|
160 |
+
drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
|
161 |
+
)
|
162 |
+
for fap in drawn_edges:
|
163 |
+
assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
|
164 |
+
|
165 |
+
# num edges == len(edge_color) == 4: interpreted with cmap, *not* as rgba
|
166 |
+
drawn_edges = nx.draw_networkx_edges(
|
167 |
+
G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1, 1)
|
168 |
+
)
|
169 |
+
assert mpl.colors.same_color(
|
170 |
+
drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
|
171 |
+
)
|
172 |
+
assert mpl.colors.same_color(
|
173 |
+
drawn_edges[2].get_edgecolor(), drawn_edges[3].get_edgecolor()
|
174 |
+
)
|
175 |
+
for fap in drawn_edges:
|
176 |
+
assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
|
177 |
+
|
178 |
+
|
179 |
+
def test_fewer_edge_colors_than_num_edges_directed():
|
180 |
+
"""Test that the edge colors are cycled when there are fewer specified
|
181 |
+
colors than edges."""
|
182 |
+
G = barbell.to_directed()
|
183 |
+
pos = nx.random_layout(barbell)
|
184 |
+
edgecolors = ("r", "g", "b")
|
185 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
|
186 |
+
for fap, expected in zip(drawn_edges, itertools.cycle(edgecolors)):
|
187 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
|
188 |
+
|
189 |
+
|
190 |
+
def test_more_edge_colors_than_num_edges_directed():
|
191 |
+
"""Test that extra edge colors are ignored when there are more specified
|
192 |
+
colors than edges."""
|
193 |
+
G = nx.path_graph(4, create_using=nx.DiGraph) # 3 edges
|
194 |
+
pos = nx.random_layout(barbell)
|
195 |
+
edgecolors = ("r", "g", "b", "c") # 4 edge colors
|
196 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
|
197 |
+
for fap, expected in zip(drawn_edges, edgecolors[:-1]):
|
198 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
|
199 |
+
|
200 |
+
|
201 |
+
def test_edge_color_string_with_global_alpha_undirected():
|
202 |
+
edge_collection = nx.draw_networkx_edges(
|
203 |
+
barbell,
|
204 |
+
pos=nx.random_layout(barbell),
|
205 |
+
edgelist=[(0, 1), (1, 2)],
|
206 |
+
edge_color="purple",
|
207 |
+
alpha=0.2,
|
208 |
+
)
|
209 |
+
ec = edge_collection.get_color().squeeze() # as rgba tuple
|
210 |
+
assert len(edge_collection.get_paths()) == 2
|
211 |
+
assert mpl.colors.same_color(ec[:-1], "purple")
|
212 |
+
assert ec[-1] == 0.2
|
213 |
+
|
214 |
+
|
215 |
+
def test_edge_color_string_with_global_alpha_directed():
|
216 |
+
drawn_edges = nx.draw_networkx_edges(
|
217 |
+
barbell.to_directed(),
|
218 |
+
pos=nx.random_layout(barbell),
|
219 |
+
edgelist=[(0, 1), (1, 2)],
|
220 |
+
edge_color="purple",
|
221 |
+
alpha=0.2,
|
222 |
+
)
|
223 |
+
assert len(drawn_edges) == 2
|
224 |
+
for fap in drawn_edges:
|
225 |
+
ec = fap.get_edgecolor() # As rgba tuple
|
226 |
+
assert mpl.colors.same_color(ec[:-1], "purple")
|
227 |
+
assert ec[-1] == 0.2
|
228 |
+
|
229 |
+
|
230 |
+
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
|
231 |
+
def test_edge_width_default_value(graph_type):
|
232 |
+
"""Test the default linewidth for edges drawn either via LineCollection or
|
233 |
+
FancyArrowPatches."""
|
234 |
+
G = nx.path_graph(2, create_using=graph_type)
|
235 |
+
pos = {n: (n, n) for n in range(len(G))}
|
236 |
+
drawn_edges = nx.draw_networkx_edges(G, pos)
|
237 |
+
if isinstance(drawn_edges, list): # directed case: list of FancyArrowPatch
|
238 |
+
drawn_edges = drawn_edges[0]
|
239 |
+
assert drawn_edges.get_linewidth() == 1
|
240 |
+
|
241 |
+
|
242 |
+
@pytest.mark.parametrize(
|
243 |
+
("edgewidth", "expected"),
|
244 |
+
(
|
245 |
+
(3, 3), # single-value, non-default
|
246 |
+
([3], 3), # Single value as a list
|
247 |
+
),
|
248 |
+
)
|
249 |
+
def test_edge_width_single_value_undirected(edgewidth, expected):
|
250 |
+
G = nx.path_graph(4)
|
251 |
+
pos = {n: (n, n) for n in range(len(G))}
|
252 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
|
253 |
+
assert len(drawn_edges.get_paths()) == 3
|
254 |
+
assert drawn_edges.get_linewidth() == expected
|
255 |
+
|
256 |
+
|
257 |
+
@pytest.mark.parametrize(
|
258 |
+
("edgewidth", "expected"),
|
259 |
+
(
|
260 |
+
(3, 3), # single-value, non-default
|
261 |
+
([3], 3), # Single value as a list
|
262 |
+
),
|
263 |
+
)
|
264 |
+
def test_edge_width_single_value_directed(edgewidth, expected):
|
265 |
+
G = nx.path_graph(4, create_using=nx.DiGraph)
|
266 |
+
pos = {n: (n, n) for n in range(len(G))}
|
267 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
|
268 |
+
assert len(drawn_edges) == 3
|
269 |
+
for fap in drawn_edges:
|
270 |
+
assert fap.get_linewidth() == expected
|
271 |
+
|
272 |
+
|
273 |
+
@pytest.mark.parametrize(
|
274 |
+
"edgelist",
|
275 |
+
(
|
276 |
+
[(0, 1), (1, 2), (2, 3)], # one width specification per edge
|
277 |
+
None, # fewer widths than edges - widths cycle
|
278 |
+
[(0, 1), (1, 2)], # More widths than edges - unused widths ignored
|
279 |
+
),
|
280 |
+
)
|
281 |
+
def test_edge_width_sequence(edgelist):
|
282 |
+
G = barbell.to_directed()
|
283 |
+
pos = nx.random_layout(G)
|
284 |
+
widths = (0.5, 2.0, 12.0)
|
285 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, edgelist=edgelist, width=widths)
|
286 |
+
for fap, expected_width in zip(drawn_edges, itertools.cycle(widths)):
|
287 |
+
assert fap.get_linewidth() == expected_width
|
288 |
+
|
289 |
+
|
290 |
+
def test_edge_color_with_edge_vmin_vmax():
|
291 |
+
"""Test that edge_vmin and edge_vmax properly set the dynamic range of the
|
292 |
+
color map when num edges == len(edge_colors)."""
|
293 |
+
G = nx.path_graph(3, create_using=nx.DiGraph)
|
294 |
+
pos = nx.random_layout(G)
|
295 |
+
# Extract colors from the original (unscaled) colormap
|
296 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=[0, 1.0])
|
297 |
+
orig_colors = [e.get_edgecolor() for e in drawn_edges]
|
298 |
+
# Colors from scaled colormap
|
299 |
+
drawn_edges = nx.draw_networkx_edges(
|
300 |
+
G, pos, edge_color=[0.2, 0.8], edge_vmin=0.2, edge_vmax=0.8
|
301 |
+
)
|
302 |
+
scaled_colors = [e.get_edgecolor() for e in drawn_edges]
|
303 |
+
assert mpl.colors.same_color(orig_colors, scaled_colors)
|
304 |
+
|
305 |
+
|
306 |
+
def test_directed_edges_linestyle_default():
|
307 |
+
"""Test default linestyle for edges drawn with FancyArrowPatches."""
|
308 |
+
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
|
309 |
+
pos = {n: (n, n) for n in range(len(G))}
|
310 |
+
|
311 |
+
# edge with default style
|
312 |
+
drawn_edges = nx.draw_networkx_edges(G, pos)
|
313 |
+
assert len(drawn_edges) == 3
|
314 |
+
for fap in drawn_edges:
|
315 |
+
assert fap.get_linestyle() == "solid"
|
316 |
+
|
317 |
+
|
318 |
+
@pytest.mark.parametrize(
|
319 |
+
"style",
|
320 |
+
(
|
321 |
+
"dashed", # edge with string style
|
322 |
+
"--", # edge with simplified string style
|
323 |
+
(1, (1, 1)), # edge with (offset, onoffseq) style
|
324 |
+
),
|
325 |
+
)
|
326 |
+
def test_directed_edges_linestyle_single_value(style):
|
327 |
+
"""Tests support for specifying linestyles with a single value to be applied to
|
328 |
+
all edges in ``draw_networkx_edges`` for FancyArrowPatch outputs
|
329 |
+
(e.g. directed edges)."""
|
330 |
+
|
331 |
+
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
|
332 |
+
pos = {n: (n, n) for n in range(len(G))}
|
333 |
+
|
334 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, style=style)
|
335 |
+
assert len(drawn_edges) == 3
|
336 |
+
for fap in drawn_edges:
|
337 |
+
assert fap.get_linestyle() == style
|
338 |
+
|
339 |
+
|
340 |
+
@pytest.mark.parametrize(
|
341 |
+
"style_seq",
|
342 |
+
(
|
343 |
+
["dashed"], # edge with string style in list
|
344 |
+
["--"], # edge with simplified string style in list
|
345 |
+
[(1, (1, 1))], # edge with (offset, onoffseq) style in list
|
346 |
+
["--", "-", ":"], # edges with styles for each edge
|
347 |
+
["--", "-"], # edges with fewer styles than edges (styles cycle)
|
348 |
+
["--", "-", ":", "-."], # edges with more styles than edges (extra unused)
|
349 |
+
),
|
350 |
+
)
|
351 |
+
def test_directed_edges_linestyle_sequence(style_seq):
|
352 |
+
"""Tests support for specifying linestyles with sequences in
|
353 |
+
``draw_networkx_edges`` for FancyArrowPatch outputs (e.g. directed edges)."""
|
354 |
+
|
355 |
+
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
|
356 |
+
pos = {n: (n, n) for n in range(len(G))}
|
357 |
+
|
358 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, style=style_seq)
|
359 |
+
assert len(drawn_edges) == 3
|
360 |
+
for fap, style in zip(drawn_edges, itertools.cycle(style_seq)):
|
361 |
+
assert fap.get_linestyle() == style
|
362 |
+
|
363 |
+
|
364 |
+
def test_labels_and_colors():
|
365 |
+
G = nx.cubical_graph()
|
366 |
+
pos = nx.spring_layout(G) # positions for all nodes
|
367 |
+
# nodes
|
368 |
+
nx.draw_networkx_nodes(
|
369 |
+
G, pos, nodelist=[0, 1, 2, 3], node_color="r", node_size=500, alpha=0.75
|
370 |
+
)
|
371 |
+
nx.draw_networkx_nodes(
|
372 |
+
G,
|
373 |
+
pos,
|
374 |
+
nodelist=[4, 5, 6, 7],
|
375 |
+
node_color="b",
|
376 |
+
node_size=500,
|
377 |
+
alpha=[0.25, 0.5, 0.75, 1.0],
|
378 |
+
)
|
379 |
+
# edges
|
380 |
+
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
|
381 |
+
nx.draw_networkx_edges(
|
382 |
+
G,
|
383 |
+
pos,
|
384 |
+
edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)],
|
385 |
+
width=8,
|
386 |
+
alpha=0.5,
|
387 |
+
edge_color="r",
|
388 |
+
)
|
389 |
+
nx.draw_networkx_edges(
|
390 |
+
G,
|
391 |
+
pos,
|
392 |
+
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
|
393 |
+
width=8,
|
394 |
+
alpha=0.5,
|
395 |
+
edge_color="b",
|
396 |
+
)
|
397 |
+
nx.draw_networkx_edges(
|
398 |
+
G,
|
399 |
+
pos,
|
400 |
+
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
|
401 |
+
arrows=True,
|
402 |
+
min_source_margin=0.5,
|
403 |
+
min_target_margin=0.75,
|
404 |
+
width=8,
|
405 |
+
edge_color="b",
|
406 |
+
)
|
407 |
+
# some math labels
|
408 |
+
labels = {}
|
409 |
+
labels[0] = r"$a$"
|
410 |
+
labels[1] = r"$b$"
|
411 |
+
labels[2] = r"$c$"
|
412 |
+
labels[3] = r"$d$"
|
413 |
+
labels[4] = r"$\alpha$"
|
414 |
+
labels[5] = r"$\beta$"
|
415 |
+
labels[6] = r"$\gamma$"
|
416 |
+
labels[7] = r"$\delta$"
|
417 |
+
nx.draw_networkx_labels(G, pos, labels, font_size=16)
|
418 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels=None, rotate=False)
|
419 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels={(4, 5): "4-5"})
|
420 |
+
# plt.show()
|
421 |
+
|
422 |
+
|
423 |
+
@pytest.mark.mpl_image_compare
|
424 |
+
def test_house_with_colors():
|
425 |
+
G = nx.house_graph()
|
426 |
+
# explicitly set positions
|
427 |
+
fig, ax = plt.subplots()
|
428 |
+
pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}
|
429 |
+
|
430 |
+
# Plot nodes with different properties for the "wall" and "roof" nodes
|
431 |
+
nx.draw_networkx_nodes(
|
432 |
+
G,
|
433 |
+
pos,
|
434 |
+
node_size=3000,
|
435 |
+
nodelist=[0, 1, 2, 3],
|
436 |
+
node_color="tab:blue",
|
437 |
+
)
|
438 |
+
nx.draw_networkx_nodes(
|
439 |
+
G, pos, node_size=2000, nodelist=[4], node_color="tab:orange"
|
440 |
+
)
|
441 |
+
nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
|
442 |
+
# Customize axes
|
443 |
+
ax.margins(0.11)
|
444 |
+
plt.tight_layout()
|
445 |
+
plt.axis("off")
|
446 |
+
return fig
|
447 |
+
|
448 |
+
|
449 |
+
def test_axes():
|
450 |
+
fig, ax = plt.subplots()
|
451 |
+
nx.draw(barbell, ax=ax)
|
452 |
+
nx.draw_networkx_edge_labels(barbell, nx.circular_layout(barbell), ax=ax)
|
453 |
+
|
454 |
+
|
455 |
+
def test_empty_graph():
|
456 |
+
G = nx.Graph()
|
457 |
+
nx.draw(G)
|
458 |
+
|
459 |
+
|
460 |
+
def test_draw_empty_nodes_return_values():
|
461 |
+
# See Issue #3833
|
462 |
+
import matplotlib.collections # call as mpl.collections
|
463 |
+
|
464 |
+
G = nx.Graph([(1, 2), (2, 3)])
|
465 |
+
DG = nx.DiGraph([(1, 2), (2, 3)])
|
466 |
+
pos = nx.circular_layout(G)
|
467 |
+
assert isinstance(
|
468 |
+
nx.draw_networkx_nodes(G, pos, nodelist=[]), mpl.collections.PathCollection
|
469 |
+
)
|
470 |
+
assert isinstance(
|
471 |
+
nx.draw_networkx_nodes(DG, pos, nodelist=[]), mpl.collections.PathCollection
|
472 |
+
)
|
473 |
+
|
474 |
+
# drawing empty edges used to return an empty LineCollection or empty list.
|
475 |
+
# Now it is always an empty list (because edges are now lists of FancyArrows)
|
476 |
+
assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=True) == []
|
477 |
+
assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=False) == []
|
478 |
+
assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=False) == []
|
479 |
+
assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=True) == []
|
480 |
+
|
481 |
+
|
482 |
+
def test_multigraph_edgelist_tuples():
|
483 |
+
# See Issue #3295
|
484 |
+
G = nx.path_graph(3, create_using=nx.MultiDiGraph)
|
485 |
+
nx.draw_networkx(G, edgelist=[(0, 1, 0)])
|
486 |
+
nx.draw_networkx(G, edgelist=[(0, 1, 0)], node_size=[10, 20, 0])
|
487 |
+
|
488 |
+
|
489 |
+
def test_alpha_iter():
|
490 |
+
pos = nx.random_layout(barbell)
|
491 |
+
fig = plt.figure()
|
492 |
+
# with fewer alpha elements than nodes
|
493 |
+
fig.add_subplot(131) # Each test in a new axis object
|
494 |
+
nx.draw_networkx_nodes(barbell, pos, alpha=[0.1, 0.2])
|
495 |
+
# with equal alpha elements and nodes
|
496 |
+
num_nodes = len(barbell.nodes)
|
497 |
+
alpha = [x / num_nodes for x in range(num_nodes)]
|
498 |
+
colors = range(num_nodes)
|
499 |
+
fig.add_subplot(132)
|
500 |
+
nx.draw_networkx_nodes(barbell, pos, node_color=colors, alpha=alpha)
|
501 |
+
# with more alpha elements than nodes
|
502 |
+
alpha.append(1)
|
503 |
+
fig.add_subplot(133)
|
504 |
+
nx.draw_networkx_nodes(barbell, pos, alpha=alpha)
|
505 |
+
|
506 |
+
|
507 |
+
def test_error_invalid_kwds():
|
508 |
+
with pytest.raises(ValueError, match="Received invalid argument"):
|
509 |
+
nx.draw(barbell, foo="bar")
|
510 |
+
|
511 |
+
|
512 |
+
def test_draw_networkx_arrowsize_incorrect_size():
|
513 |
+
G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 3)])
|
514 |
+
arrowsize = [1, 2, 3]
|
515 |
+
with pytest.raises(
|
516 |
+
ValueError, match="arrowsize should have the same length as edgelist"
|
517 |
+
):
|
518 |
+
nx.draw(G, arrowsize=arrowsize)
|
519 |
+
|
520 |
+
|
521 |
+
@pytest.mark.parametrize("arrowsize", (30, [10, 20, 30]))
|
522 |
+
def test_draw_edges_arrowsize(arrowsize):
|
523 |
+
G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
|
524 |
+
pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)}
|
525 |
+
edges = nx.draw_networkx_edges(G, pos=pos, arrowsize=arrowsize)
|
526 |
+
|
527 |
+
arrowsize = itertools.repeat(arrowsize) if isinstance(arrowsize, int) else arrowsize
|
528 |
+
|
529 |
+
for fap, expected in zip(edges, arrowsize):
|
530 |
+
assert isinstance(fap, mpl.patches.FancyArrowPatch)
|
531 |
+
assert fap.get_mutation_scale() == expected
|
532 |
+
|
533 |
+
|
534 |
+
def test_np_edgelist():
|
535 |
+
# see issue #4129
|
536 |
+
nx.draw_networkx(barbell, edgelist=np.array([(0, 2), (0, 3)]))
|
537 |
+
|
538 |
+
|
539 |
+
def test_draw_nodes_missing_node_from_position():
|
540 |
+
G = nx.path_graph(3)
|
541 |
+
pos = {0: (0, 0), 1: (1, 1)} # No position for node 2
|
542 |
+
with pytest.raises(nx.NetworkXError, match="has no position"):
|
543 |
+
nx.draw_networkx_nodes(G, pos)
|
544 |
+
|
545 |
+
|
546 |
+
# NOTE: parametrizing on marker to test both branches of internal
|
547 |
+
# nx.draw_networkx_edges.to_marker_edge function
|
548 |
+
@pytest.mark.parametrize("node_shape", ("o", "s"))
|
549 |
+
def test_draw_edges_min_source_target_margins(node_shape):
|
550 |
+
"""Test that there is a wider gap between the node and the start of an
|
551 |
+
incident edge when min_source_margin is specified.
|
552 |
+
|
553 |
+
This test checks that the use of min_{source/target}_margin kwargs result
|
554 |
+
in shorter (more padding) between the edges and source and target nodes.
|
555 |
+
As a crude visual example, let 's' and 't' represent source and target
|
556 |
+
nodes, respectively:
|
557 |
+
|
558 |
+
Default:
|
559 |
+
s-----------------------------t
|
560 |
+
|
561 |
+
With margins:
|
562 |
+
s ----------------------- t
|
563 |
+
|
564 |
+
"""
|
565 |
+
# Create a single axis object to get consistent pixel coords across
|
566 |
+
# multiple draws
|
567 |
+
fig, ax = plt.subplots()
|
568 |
+
G = nx.DiGraph([(0, 1)])
|
569 |
+
pos = {0: (0, 0), 1: (1, 0)} # horizontal layout
|
570 |
+
# Get leftmost and rightmost points of the FancyArrowPatch object
|
571 |
+
# representing the edge between nodes 0 and 1 (in pixel coordinates)
|
572 |
+
default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)[0]
|
573 |
+
default_extent = default_patch.get_extents().corners()[::2, 0]
|
574 |
+
# Now, do the same but with "padding" for the source and target via the
|
575 |
+
# min_{source/target}_margin kwargs
|
576 |
+
padded_patch = nx.draw_networkx_edges(
|
577 |
+
G,
|
578 |
+
pos,
|
579 |
+
ax=ax,
|
580 |
+
node_shape=node_shape,
|
581 |
+
min_source_margin=100,
|
582 |
+
min_target_margin=100,
|
583 |
+
)[0]
|
584 |
+
padded_extent = padded_patch.get_extents().corners()[::2, 0]
|
585 |
+
|
586 |
+
# With padding, the left-most extent of the edge should be further to the
|
587 |
+
# right
|
588 |
+
assert padded_extent[0] > default_extent[0]
|
589 |
+
# And the rightmost extent of the edge, further to the left
|
590 |
+
assert padded_extent[1] < default_extent[1]
|
591 |
+
|
592 |
+
|
593 |
+
def test_nonzero_selfloop_with_single_node():
|
594 |
+
"""Ensure that selfloop extent is non-zero when there is only one node."""
|
595 |
+
# Create explicit axis object for test
|
596 |
+
fig, ax = plt.subplots()
|
597 |
+
# Graph with single node + self loop
|
598 |
+
G = nx.DiGraph()
|
599 |
+
G.add_node(0)
|
600 |
+
G.add_edge(0, 0)
|
601 |
+
# Draw
|
602 |
+
patch = nx.draw_networkx_edges(G, {0: (0, 0)})[0]
|
603 |
+
# The resulting patch must have non-zero extent
|
604 |
+
bbox = patch.get_extents()
|
605 |
+
assert bbox.width > 0 and bbox.height > 0
|
606 |
+
# Cleanup
|
607 |
+
plt.delaxes(ax)
|
608 |
+
plt.close()
|
609 |
+
|
610 |
+
|
611 |
+
def test_nonzero_selfloop_with_single_edge_in_edgelist():
|
612 |
+
"""Ensure that selfloop extent is non-zero when only a single edge is
|
613 |
+
specified in the edgelist.
|
614 |
+
"""
|
615 |
+
# Create explicit axis object for test
|
616 |
+
fig, ax = plt.subplots()
|
617 |
+
# Graph with selfloop
|
618 |
+
G = nx.path_graph(2, create_using=nx.DiGraph)
|
619 |
+
G.add_edge(1, 1)
|
620 |
+
pos = {n: (n, n) for n in G.nodes}
|
621 |
+
# Draw only the selfloop edge via the `edgelist` kwarg
|
622 |
+
patch = nx.draw_networkx_edges(G, pos, edgelist=[(1, 1)])[0]
|
623 |
+
# The resulting patch must have non-zero extent
|
624 |
+
bbox = patch.get_extents()
|
625 |
+
assert bbox.width > 0 and bbox.height > 0
|
626 |
+
# Cleanup
|
627 |
+
plt.delaxes(ax)
|
628 |
+
plt.close()
|
629 |
+
|
630 |
+
|
631 |
+
def test_apply_alpha():
|
632 |
+
"""Test apply_alpha when there is a mismatch between the number of
|
633 |
+
supplied colors and elements.
|
634 |
+
"""
|
635 |
+
nodelist = [0, 1, 2]
|
636 |
+
colorlist = ["r", "g", "b"]
|
637 |
+
alpha = 0.5
|
638 |
+
rgba_colors = nx.drawing.nx_pylab.apply_alpha(colorlist, alpha, nodelist)
|
639 |
+
assert all(rgba_colors[:, -1] == alpha)
|
640 |
+
|
641 |
+
|
642 |
+
def test_draw_edges_toggling_with_arrows_kwarg():
|
643 |
+
"""
|
644 |
+
The `arrows` keyword argument is used as a 3-way switch to select which
|
645 |
+
type of object to use for drawing edges:
|
646 |
+
- ``arrows=None`` -> default (FancyArrowPatches for directed, else LineCollection)
|
647 |
+
- ``arrows=True`` -> FancyArrowPatches
|
648 |
+
- ``arrows=False`` -> LineCollection
|
649 |
+
"""
|
650 |
+
import matplotlib.collections
|
651 |
+
import matplotlib.patches
|
652 |
+
|
653 |
+
UG = nx.path_graph(3)
|
654 |
+
DG = nx.path_graph(3, create_using=nx.DiGraph)
|
655 |
+
pos = {n: (n, n) for n in UG}
|
656 |
+
|
657 |
+
# Use FancyArrowPatches when arrows=True, regardless of graph type
|
658 |
+
for G in (UG, DG):
|
659 |
+
edges = nx.draw_networkx_edges(G, pos, arrows=True)
|
660 |
+
assert len(edges) == len(G.edges)
|
661 |
+
assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
|
662 |
+
|
663 |
+
# Use LineCollection when arrows=False, regardless of graph type
|
664 |
+
for G in (UG, DG):
|
665 |
+
edges = nx.draw_networkx_edges(G, pos, arrows=False)
|
666 |
+
assert isinstance(edges, mpl.collections.LineCollection)
|
667 |
+
|
668 |
+
# Default behavior when arrows=None: FAPs for directed, LC's for undirected
|
669 |
+
edges = nx.draw_networkx_edges(UG, pos)
|
670 |
+
assert isinstance(edges, mpl.collections.LineCollection)
|
671 |
+
edges = nx.draw_networkx_edges(DG, pos)
|
672 |
+
assert len(edges) == len(G.edges)
|
673 |
+
assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
|
674 |
+
|
675 |
+
|
676 |
+
@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
|
677 |
+
def test_draw_networkx_arrows_default_undirected(drawing_func):
|
678 |
+
import matplotlib.collections
|
679 |
+
|
680 |
+
G = nx.path_graph(3)
|
681 |
+
fig, ax = plt.subplots()
|
682 |
+
drawing_func(G, ax=ax)
|
683 |
+
assert any(isinstance(c, mpl.collections.LineCollection) for c in ax.collections)
|
684 |
+
assert not ax.patches
|
685 |
+
plt.delaxes(ax)
|
686 |
+
plt.close()
|
687 |
+
|
688 |
+
|
689 |
+
@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
|
690 |
+
def test_draw_networkx_arrows_default_directed(drawing_func):
|
691 |
+
import matplotlib.collections
|
692 |
+
|
693 |
+
G = nx.path_graph(3, create_using=nx.DiGraph)
|
694 |
+
fig, ax = plt.subplots()
|
695 |
+
drawing_func(G, ax=ax)
|
696 |
+
assert not any(
|
697 |
+
isinstance(c, mpl.collections.LineCollection) for c in ax.collections
|
698 |
+
)
|
699 |
+
assert ax.patches
|
700 |
+
plt.delaxes(ax)
|
701 |
+
plt.close()
|
702 |
+
|
703 |
+
|
704 |
+
def test_edgelist_kwarg_not_ignored():
|
705 |
+
# See gh-4994
|
706 |
+
G = nx.path_graph(3)
|
707 |
+
G.add_edge(0, 0)
|
708 |
+
fig, ax = plt.subplots()
|
709 |
+
nx.draw(G, edgelist=[(0, 1), (1, 2)], ax=ax) # Exclude self-loop from edgelist
|
710 |
+
assert not ax.patches
|
711 |
+
plt.delaxes(ax)
|
712 |
+
plt.close()
|
713 |
+
|
714 |
+
|
715 |
+
@pytest.mark.parametrize(
|
716 |
+
("G", "expected_n_edges"),
|
717 |
+
([nx.DiGraph(), 2], [nx.MultiGraph(), 4], [nx.MultiDiGraph(), 4]),
|
718 |
+
)
|
719 |
+
def test_draw_networkx_edges_multiedge_connectionstyle(G, expected_n_edges):
|
720 |
+
"""Draws edges correctly for 3 types of graphs and checks for valid length"""
|
721 |
+
for i, (u, v) in enumerate([(0, 1), (0, 1), (0, 1), (0, 2)]):
|
722 |
+
G.add_edge(u, v, weight=round(i / 3, 2))
|
723 |
+
pos = {n: (n, n) for n in G}
|
724 |
+
# Raises on insuficient connectionstyle length
|
725 |
+
for conn_style in [
|
726 |
+
"arc3,rad=0.1",
|
727 |
+
["arc3,rad=0.1", "arc3,rad=0.1"],
|
728 |
+
["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.2"],
|
729 |
+
]:
|
730 |
+
nx.draw_networkx_edges(G, pos, connectionstyle=conn_style)
|
731 |
+
arrows = nx.draw_networkx_edges(G, pos, connectionstyle=conn_style)
|
732 |
+
assert len(arrows) == expected_n_edges
|
733 |
+
|
734 |
+
|
735 |
+
@pytest.mark.parametrize(
|
736 |
+
("G", "expected_n_edges"),
|
737 |
+
([nx.DiGraph(), 2], [nx.MultiGraph(), 4], [nx.MultiDiGraph(), 4]),
|
738 |
+
)
|
739 |
+
def test_draw_networkx_edge_labels_multiedge_connectionstyle(G, expected_n_edges):
|
740 |
+
"""Draws labels correctly for 3 types of graphs and checks for valid length and class names"""
|
741 |
+
for i, (u, v) in enumerate([(0, 1), (0, 1), (0, 1), (0, 2)]):
|
742 |
+
G.add_edge(u, v, weight=round(i / 3, 2))
|
743 |
+
pos = {n: (n, n) for n in G}
|
744 |
+
# Raises on insuficient connectionstyle length
|
745 |
+
arrows = nx.draw_networkx_edges(
|
746 |
+
G, pos, connectionstyle=["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.1"]
|
747 |
+
)
|
748 |
+
for conn_style in [
|
749 |
+
"arc3,rad=0.1",
|
750 |
+
["arc3,rad=0.1", "arc3,rad=0.2"],
|
751 |
+
["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.1"],
|
752 |
+
]:
|
753 |
+
text_items = nx.draw_networkx_edge_labels(G, pos, connectionstyle=conn_style)
|
754 |
+
assert len(text_items) == expected_n_edges
|
755 |
+
for ti in text_items.values():
|
756 |
+
assert ti.__class__.__name__ == "CurvedArrowText"
|
757 |
+
|
758 |
+
|
759 |
+
def test_draw_networkx_edge_label_multiedge():
|
760 |
+
G = nx.MultiGraph()
|
761 |
+
G.add_edge(0, 1, weight=10)
|
762 |
+
G.add_edge(0, 1, weight=20)
|
763 |
+
edge_labels = nx.get_edge_attributes(G, "weight") # Includes edge keys
|
764 |
+
pos = {n: (n, n) for n in G}
|
765 |
+
text_items = nx.draw_networkx_edge_labels(
|
766 |
+
G,
|
767 |
+
pos,
|
768 |
+
edge_labels=edge_labels,
|
769 |
+
connectionstyle=["arc3,rad=0.1", "arc3,rad=0.2"],
|
770 |
+
)
|
771 |
+
assert len(text_items) == 2
|
772 |
+
|
773 |
+
|
774 |
+
def test_draw_networkx_edge_label_empty_dict():
|
775 |
+
"""Regression test for draw_networkx_edge_labels with empty dict. See
|
776 |
+
gh-5372."""
|
777 |
+
G = nx.path_graph(3)
|
778 |
+
pos = {n: (n, n) for n in G.nodes}
|
779 |
+
assert nx.draw_networkx_edge_labels(G, pos, edge_labels={}) == {}
|
780 |
+
|
781 |
+
|
782 |
+
def test_draw_networkx_edges_undirected_selfloop_colors():
|
783 |
+
"""When an edgelist is supplied along with a sequence of colors, check that
|
784 |
+
the self-loops have the correct colors."""
|
785 |
+
fig, ax = plt.subplots()
|
786 |
+
# Edge list and corresponding colors
|
787 |
+
edgelist = [(1, 3), (1, 2), (2, 3), (1, 1), (3, 3), (2, 2)]
|
788 |
+
edge_colors = ["pink", "cyan", "black", "red", "blue", "green"]
|
789 |
+
|
790 |
+
G = nx.Graph(edgelist)
|
791 |
+
pos = {n: (n, n) for n in G.nodes}
|
792 |
+
nx.draw_networkx_edges(G, pos, ax=ax, edgelist=edgelist, edge_color=edge_colors)
|
793 |
+
|
794 |
+
# Verify that there are three fancy arrow patches (1 per self loop)
|
795 |
+
assert len(ax.patches) == 3
|
796 |
+
|
797 |
+
# These are points that should be contained in the self loops. For example,
|
798 |
+
# sl_points[0] will be (1, 1.1), which is inside the "path" of the first
|
799 |
+
# self-loop but outside the others
|
800 |
+
sl_points = np.array(edgelist[-3:]) + np.array([0, 0.1])
|
801 |
+
|
802 |
+
# Check that the mapping between self-loop locations and their colors is
|
803 |
+
# correct
|
804 |
+
for fap, clr, slp in zip(ax.patches, edge_colors[-3:], sl_points):
|
805 |
+
assert fap.get_path().contains_point(slp)
|
806 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), clr)
|
807 |
+
plt.delaxes(ax)
|
808 |
+
plt.close()
|
809 |
+
|
810 |
+
|
811 |
+
@pytest.mark.parametrize(
|
812 |
+
"fap_only_kwarg", # Non-default values for kwargs that only apply to FAPs
|
813 |
+
(
|
814 |
+
{"arrowstyle": "-"},
|
815 |
+
{"arrowsize": 20},
|
816 |
+
{"connectionstyle": "arc3,rad=0.2"},
|
817 |
+
{"min_source_margin": 10},
|
818 |
+
{"min_target_margin": 10},
|
819 |
+
),
|
820 |
+
)
|
821 |
+
def test_user_warnings_for_unused_edge_drawing_kwargs(fap_only_kwarg):
|
822 |
+
"""Users should get a warning when they specify a non-default value for
|
823 |
+
one of the kwargs that applies only to edges drawn with FancyArrowPatches,
|
824 |
+
but FancyArrowPatches aren't being used under the hood."""
|
825 |
+
G = nx.path_graph(3)
|
826 |
+
pos = {n: (n, n) for n in G}
|
827 |
+
fig, ax = plt.subplots()
|
828 |
+
# By default, an undirected graph will use LineCollection to represent
|
829 |
+
# the edges
|
830 |
+
kwarg_name = list(fap_only_kwarg.keys())[0]
|
831 |
+
with pytest.warns(
|
832 |
+
UserWarning, match=f"\n\nThe {kwarg_name} keyword argument is not applicable"
|
833 |
+
):
|
834 |
+
nx.draw_networkx_edges(G, pos, ax=ax, **fap_only_kwarg)
|
835 |
+
# FancyArrowPatches are always used when `arrows=True` is specified.
|
836 |
+
# Check that warnings are *not* raised in this case
|
837 |
+
with warnings.catch_warnings():
|
838 |
+
# Escalate warnings -> errors so tests fail if warnings are raised
|
839 |
+
warnings.simplefilter("error")
|
840 |
+
nx.draw_networkx_edges(G, pos, ax=ax, arrows=True, **fap_only_kwarg)
|
841 |
+
|
842 |
+
plt.delaxes(ax)
|
843 |
+
plt.close()
|
844 |
+
|
845 |
+
|
846 |
+
@pytest.mark.parametrize("draw_fn", (nx.draw, nx.draw_circular))
|
847 |
+
def test_no_warning_on_default_draw_arrowstyle(draw_fn):
|
848 |
+
# See gh-7284
|
849 |
+
fig, ax = plt.subplots()
|
850 |
+
G = nx.cycle_graph(5)
|
851 |
+
with warnings.catch_warnings(record=True) as w:
|
852 |
+
draw_fn(G, ax=ax)
|
853 |
+
assert len(w) == 0
|
854 |
+
|
855 |
+
plt.delaxes(ax)
|
856 |
+
plt.close()
|
857 |
+
|
858 |
+
|
859 |
+
@pytest.mark.parametrize("hide_ticks", [False, True])
|
860 |
+
@pytest.mark.parametrize(
|
861 |
+
"method",
|
862 |
+
[
|
863 |
+
nx.draw_networkx,
|
864 |
+
nx.draw_networkx_edge_labels,
|
865 |
+
nx.draw_networkx_edges,
|
866 |
+
nx.draw_networkx_labels,
|
867 |
+
nx.draw_networkx_nodes,
|
868 |
+
],
|
869 |
+
)
|
870 |
+
def test_hide_ticks(method, hide_ticks):
|
871 |
+
G = nx.path_graph(3)
|
872 |
+
pos = {n: (n, n) for n in G.nodes}
|
873 |
+
_, ax = plt.subplots()
|
874 |
+
method(G, pos=pos, ax=ax, hide_ticks=hide_ticks)
|
875 |
+
for axis in [ax.xaxis, ax.yaxis]:
|
876 |
+
assert bool(axis.get_ticklabels()) != hide_ticks
|
877 |
+
|
878 |
+
plt.delaxes(ax)
|
879 |
+
plt.close()
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.48 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/atlas.cpython-310.pyc
ADDED
Binary file (4.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/classic.cpython-310.pyc
ADDED
Binary file (29.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/cographs.cpython-310.pyc
ADDED
Binary file (2.24 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/community.cpython-310.pyc
ADDED
Binary file (31.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/degree_seq.cpython-310.pyc
ADDED
Binary file (25.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/directed.cpython-310.pyc
ADDED
Binary file (15 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/duplication.cpython-310.pyc
ADDED
Binary file (4.41 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/ego.cpython-310.pyc
ADDED
Binary file (1.82 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/expanders.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/geometric.cpython-310.pyc
ADDED
Binary file (38.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/harary_graph.cpython-310.pyc
ADDED
Binary file (4.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/internet_as_graphs.cpython-310.pyc
ADDED
Binary file (12.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/intersection.cpython-310.pyc
ADDED
Binary file (4.27 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/interval_graph.cpython-310.pyc
ADDED
Binary file (2.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/joint_degree_seq.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/lattice.cpython-310.pyc
ADDED
Binary file (15 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/line.cpython-310.pyc
ADDED
Binary file (15.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/mycielski.cpython-310.pyc
ADDED
Binary file (3.86 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/nonisomorphic_trees.cpython-310.pyc
ADDED
Binary file (5.65 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/random_clustered.cpython-310.pyc
ADDED
Binary file (4.13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/random_graphs.cpython-310.pyc
ADDED
Binary file (35.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/small.cpython-310.pyc
ADDED
Binary file (26.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/social.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/spectral_graph_forge.cpython-310.pyc
ADDED
Binary file (4.23 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/stochastic.cpython-310.pyc
ADDED
Binary file (2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/sudoku.cpython-310.pyc
ADDED
Binary file (4.05 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/time_series.cpython-310.pyc
ADDED
Binary file (2.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/trees.cpython-310.pyc
ADDED
Binary file (36.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__pycache__/triads.cpython-310.pyc
ADDED
Binary file (2.29 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (190 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_atlas.cpython-310.pyc
ADDED
Binary file (3.58 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_classic.cpython-310.pyc
ADDED
Binary file (21.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_cographs.cpython-310.pyc
ADDED
Binary file (655 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_community.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_degree_seq.cpython-310.pyc
ADDED
Binary file (8.64 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_directed.cpython-310.pyc
ADDED
Binary file (7.01 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_duplication.cpython-310.pyc
ADDED
Binary file (3.57 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_ego.cpython-310.pyc
ADDED
Binary file (1.57 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_expanders.cpython-310.pyc
ADDED
Binary file (5.85 kB). View file
|
|