Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/categories/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/categories/__pycache__/baseclasses.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/categories/__pycache__/diagram_drawing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_baseclasses.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_drawing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/__init__.py +111 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/hyperbolic.py +2203 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/miscellaneous.py +915 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/piecewise.py +1506 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__init__.py +38 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/gaussopt.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/medium.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/polarization.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/waves.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/gaussopt.py +923 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/medium.py +253 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/polarization.py +732 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/utils.py +698 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/waves.py +340 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_clebsch_gordan.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_hydrogen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_paulialgebra.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_physics_matrices.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_pring.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_qho_1d.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_secondquant.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_sho.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/test_hydrogen.py +126 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/test_paulialgebra.py +57 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/test_physics_matrices.py +84 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/test_qho_1d.py +50 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/test_secondquant.py +1280 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__init__.py +453 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/dimensions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/prefixes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/unitsystem.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/util.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/__init__.py +265 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/__pycache__/dimension_definitions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/__pycache__/unit_definitions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/dimension_definitions.py +43 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/unit_definitions.py +400 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/dimensions.py +590 -0
- env-llmeval/lib/python3.10/site-packages/sympy/physics/units/prefixes.py +219 -0
env-llmeval/lib/python3.10/site-packages/sympy/categories/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/categories/__pycache__/baseclasses.cpython-310.pyc
ADDED
Binary file (28.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/categories/__pycache__/diagram_drawing.cpython-310.pyc
ADDED
Binary file (65.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_baseclasses.cpython-310.pyc
ADDED
Binary file (4.99 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/__pycache__/test_drawing.cpython-310.pyc
ADDED
Binary file (17.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/__init__.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A functions module, includes all the standard functions.
|
2 |
+
|
3 |
+
Combinatorial - factorial, fibonacci, harmonic, bernoulli...
|
4 |
+
Elementary - hyperbolic, trigonometric, exponential, floor and ceiling, sqrt...
|
5 |
+
Special - gamma, zeta,spherical harmonics...
|
6 |
+
"""
|
7 |
+
|
8 |
+
from sympy.functions.combinatorial.factorials import (factorial, factorial2,
|
9 |
+
rf, ff, binomial, RisingFactorial, FallingFactorial, subfactorial)
|
10 |
+
from sympy.functions.combinatorial.numbers import (carmichael, fibonacci, lucas, tribonacci,
|
11 |
+
harmonic, bernoulli, bell, euler, catalan, genocchi, andre, partition, motzkin)
|
12 |
+
from sympy.functions.elementary.miscellaneous import (sqrt, root, Min, Max,
|
13 |
+
Id, real_root, cbrt, Rem)
|
14 |
+
from sympy.functions.elementary.complexes import (re, im, sign, Abs,
|
15 |
+
conjugate, arg, polar_lift, periodic_argument, unbranched_argument,
|
16 |
+
principal_branch, transpose, adjoint, polarify, unpolarify)
|
17 |
+
from sympy.functions.elementary.trigonometric import (sin, cos, tan,
|
18 |
+
sec, csc, cot, sinc, asin, acos, atan, asec, acsc, acot, atan2)
|
19 |
+
from sympy.functions.elementary.exponential import (exp_polar, exp, log,
|
20 |
+
LambertW)
|
21 |
+
from sympy.functions.elementary.hyperbolic import (sinh, cosh, tanh, coth,
|
22 |
+
sech, csch, asinh, acosh, atanh, acoth, asech, acsch)
|
23 |
+
from sympy.functions.elementary.integers import floor, ceiling, frac
|
24 |
+
from sympy.functions.elementary.piecewise import (Piecewise, piecewise_fold,
|
25 |
+
piecewise_exclusive)
|
26 |
+
from sympy.functions.special.error_functions import (erf, erfc, erfi, erf2,
|
27 |
+
erfinv, erfcinv, erf2inv, Ei, expint, E1, li, Li, Si, Ci, Shi, Chi,
|
28 |
+
fresnels, fresnelc)
|
29 |
+
from sympy.functions.special.gamma_functions import (gamma, lowergamma,
|
30 |
+
uppergamma, polygamma, loggamma, digamma, trigamma, multigamma)
|
31 |
+
from sympy.functions.special.zeta_functions import (dirichlet_eta, zeta,
|
32 |
+
lerchphi, polylog, stieltjes, riemann_xi)
|
33 |
+
from sympy.functions.special.tensor_functions import (Eijk, LeviCivita,
|
34 |
+
KroneckerDelta)
|
35 |
+
from sympy.functions.special.singularity_functions import SingularityFunction
|
36 |
+
from sympy.functions.special.delta_functions import DiracDelta, Heaviside
|
37 |
+
from sympy.functions.special.bsplines import bspline_basis, bspline_basis_set, interpolating_spline
|
38 |
+
from sympy.functions.special.bessel import (besselj, bessely, besseli, besselk,
|
39 |
+
hankel1, hankel2, jn, yn, jn_zeros, hn1, hn2, airyai, airybi, airyaiprime, airybiprime, marcumq)
|
40 |
+
from sympy.functions.special.hyper import hyper, meijerg, appellf1
|
41 |
+
from sympy.functions.special.polynomials import (legendre, assoc_legendre,
|
42 |
+
hermite, hermite_prob, chebyshevt, chebyshevu, chebyshevu_root,
|
43 |
+
chebyshevt_root, laguerre, assoc_laguerre, gegenbauer, jacobi, jacobi_normalized)
|
44 |
+
from sympy.functions.special.spherical_harmonics import Ynm, Ynm_c, Znm
|
45 |
+
from sympy.functions.special.elliptic_integrals import (elliptic_k,
|
46 |
+
elliptic_f, elliptic_e, elliptic_pi)
|
47 |
+
from sympy.functions.special.beta_functions import beta, betainc, betainc_regularized
|
48 |
+
from sympy.functions.special.mathieu_functions import (mathieus, mathieuc,
|
49 |
+
mathieusprime, mathieucprime)
|
50 |
+
ln = log
|
51 |
+
|
52 |
+
__all__ = [
|
53 |
+
'factorial', 'factorial2', 'rf', 'ff', 'binomial', 'RisingFactorial',
|
54 |
+
'FallingFactorial', 'subfactorial',
|
55 |
+
|
56 |
+
'carmichael', 'fibonacci', 'lucas', 'motzkin', 'tribonacci', 'harmonic',
|
57 |
+
'bernoulli', 'bell', 'euler', 'catalan', 'genocchi', 'andre', 'partition',
|
58 |
+
|
59 |
+
'sqrt', 'root', 'Min', 'Max', 'Id', 'real_root', 'cbrt', 'Rem',
|
60 |
+
|
61 |
+
're', 'im', 'sign', 'Abs', 'conjugate', 'arg', 'polar_lift',
|
62 |
+
'periodic_argument', 'unbranched_argument', 'principal_branch',
|
63 |
+
'transpose', 'adjoint', 'polarify', 'unpolarify',
|
64 |
+
|
65 |
+
'sin', 'cos', 'tan', 'sec', 'csc', 'cot', 'sinc', 'asin', 'acos', 'atan',
|
66 |
+
'asec', 'acsc', 'acot', 'atan2',
|
67 |
+
|
68 |
+
'exp_polar', 'exp', 'ln', 'log', 'LambertW',
|
69 |
+
|
70 |
+
'sinh', 'cosh', 'tanh', 'coth', 'sech', 'csch', 'asinh', 'acosh', 'atanh',
|
71 |
+
'acoth', 'asech', 'acsch',
|
72 |
+
|
73 |
+
'floor', 'ceiling', 'frac',
|
74 |
+
|
75 |
+
'Piecewise', 'piecewise_fold', 'piecewise_exclusive',
|
76 |
+
|
77 |
+
'erf', 'erfc', 'erfi', 'erf2', 'erfinv', 'erfcinv', 'erf2inv', 'Ei',
|
78 |
+
'expint', 'E1', 'li', 'Li', 'Si', 'Ci', 'Shi', 'Chi', 'fresnels',
|
79 |
+
'fresnelc',
|
80 |
+
|
81 |
+
'gamma', 'lowergamma', 'uppergamma', 'polygamma', 'loggamma', 'digamma',
|
82 |
+
'trigamma', 'multigamma',
|
83 |
+
|
84 |
+
'dirichlet_eta', 'zeta', 'lerchphi', 'polylog', 'stieltjes', 'riemann_xi',
|
85 |
+
|
86 |
+
'Eijk', 'LeviCivita', 'KroneckerDelta',
|
87 |
+
|
88 |
+
'SingularityFunction',
|
89 |
+
|
90 |
+
'DiracDelta', 'Heaviside',
|
91 |
+
|
92 |
+
'bspline_basis', 'bspline_basis_set', 'interpolating_spline',
|
93 |
+
|
94 |
+
'besselj', 'bessely', 'besseli', 'besselk', 'hankel1', 'hankel2', 'jn',
|
95 |
+
'yn', 'jn_zeros', 'hn1', 'hn2', 'airyai', 'airybi', 'airyaiprime',
|
96 |
+
'airybiprime', 'marcumq',
|
97 |
+
|
98 |
+
'hyper', 'meijerg', 'appellf1',
|
99 |
+
|
100 |
+
'legendre', 'assoc_legendre', 'hermite', 'hermite_prob', 'chebyshevt',
|
101 |
+
'chebyshevu', 'chebyshevu_root', 'chebyshevt_root', 'laguerre',
|
102 |
+
'assoc_laguerre', 'gegenbauer', 'jacobi', 'jacobi_normalized',
|
103 |
+
|
104 |
+
'Ynm', 'Ynm_c', 'Znm',
|
105 |
+
|
106 |
+
'elliptic_k', 'elliptic_f', 'elliptic_e', 'elliptic_pi',
|
107 |
+
|
108 |
+
'beta', 'betainc', 'betainc_regularized',
|
109 |
+
|
110 |
+
'mathieus', 'mathieuc', 'mathieusprime', 'mathieucprime',
|
111 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/hyperbolic.py
ADDED
@@ -0,0 +1,2203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S, sympify, cacheit
|
2 |
+
from sympy.core.add import Add
|
3 |
+
from sympy.core.function import Function, ArgumentIndexError
|
4 |
+
from sympy.core.logic import fuzzy_or, fuzzy_and, FuzzyBool
|
5 |
+
from sympy.core.numbers import I, pi, Rational
|
6 |
+
from sympy.core.symbol import Dummy
|
7 |
+
from sympy.functions.combinatorial.factorials import (binomial, factorial,
|
8 |
+
RisingFactorial)
|
9 |
+
from sympy.functions.combinatorial.numbers import bernoulli, euler, nC
|
10 |
+
from sympy.functions.elementary.complexes import Abs, im, re
|
11 |
+
from sympy.functions.elementary.exponential import exp, log, match_real_imag
|
12 |
+
from sympy.functions.elementary.integers import floor
|
13 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
14 |
+
from sympy.functions.elementary.trigonometric import (
|
15 |
+
acos, acot, asin, atan, cos, cot, csc, sec, sin, tan,
|
16 |
+
_imaginary_unit_as_coefficient)
|
17 |
+
from sympy.polys.specialpolys import symmetric_poly
|
18 |
+
|
19 |
+
|
20 |
+
def _rewrite_hyperbolics_as_exp(expr):
|
21 |
+
return expr.xreplace({h: h.rewrite(exp)
|
22 |
+
for h in expr.atoms(HyperbolicFunction)})
|
23 |
+
|
24 |
+
|
25 |
+
@cacheit
|
26 |
+
def _acosh_table():
|
27 |
+
return {
|
28 |
+
I: log(I*(1 + sqrt(2))),
|
29 |
+
-I: log(-I*(1 + sqrt(2))),
|
30 |
+
S.Half: pi/3,
|
31 |
+
Rational(-1, 2): pi*Rational(2, 3),
|
32 |
+
sqrt(2)/2: pi/4,
|
33 |
+
-sqrt(2)/2: pi*Rational(3, 4),
|
34 |
+
1/sqrt(2): pi/4,
|
35 |
+
-1/sqrt(2): pi*Rational(3, 4),
|
36 |
+
sqrt(3)/2: pi/6,
|
37 |
+
-sqrt(3)/2: pi*Rational(5, 6),
|
38 |
+
(sqrt(3) - 1)/sqrt(2**3): pi*Rational(5, 12),
|
39 |
+
-(sqrt(3) - 1)/sqrt(2**3): pi*Rational(7, 12),
|
40 |
+
sqrt(2 + sqrt(2))/2: pi/8,
|
41 |
+
-sqrt(2 + sqrt(2))/2: pi*Rational(7, 8),
|
42 |
+
sqrt(2 - sqrt(2))/2: pi*Rational(3, 8),
|
43 |
+
-sqrt(2 - sqrt(2))/2: pi*Rational(5, 8),
|
44 |
+
(1 + sqrt(3))/(2*sqrt(2)): pi/12,
|
45 |
+
-(1 + sqrt(3))/(2*sqrt(2)): pi*Rational(11, 12),
|
46 |
+
(sqrt(5) + 1)/4: pi/5,
|
47 |
+
-(sqrt(5) + 1)/4: pi*Rational(4, 5)
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
@cacheit
|
52 |
+
def _acsch_table():
|
53 |
+
return {
|
54 |
+
I: -pi / 2,
|
55 |
+
I*(sqrt(2) + sqrt(6)): -pi / 12,
|
56 |
+
I*(1 + sqrt(5)): -pi / 10,
|
57 |
+
I*2 / sqrt(2 - sqrt(2)): -pi / 8,
|
58 |
+
I*2: -pi / 6,
|
59 |
+
I*sqrt(2 + 2/sqrt(5)): -pi / 5,
|
60 |
+
I*sqrt(2): -pi / 4,
|
61 |
+
I*(sqrt(5)-1): -3*pi / 10,
|
62 |
+
I*2 / sqrt(3): -pi / 3,
|
63 |
+
I*2 / sqrt(2 + sqrt(2)): -3*pi / 8,
|
64 |
+
I*sqrt(2 - 2/sqrt(5)): -2*pi / 5,
|
65 |
+
I*(sqrt(6) - sqrt(2)): -5*pi / 12,
|
66 |
+
S(2): -I*log((1+sqrt(5))/2),
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
@cacheit
|
71 |
+
def _asech_table():
|
72 |
+
return {
|
73 |
+
I: - (pi*I / 2) + log(1 + sqrt(2)),
|
74 |
+
-I: (pi*I / 2) + log(1 + sqrt(2)),
|
75 |
+
(sqrt(6) - sqrt(2)): pi / 12,
|
76 |
+
(sqrt(2) - sqrt(6)): 11*pi / 12,
|
77 |
+
sqrt(2 - 2/sqrt(5)): pi / 10,
|
78 |
+
-sqrt(2 - 2/sqrt(5)): 9*pi / 10,
|
79 |
+
2 / sqrt(2 + sqrt(2)): pi / 8,
|
80 |
+
-2 / sqrt(2 + sqrt(2)): 7*pi / 8,
|
81 |
+
2 / sqrt(3): pi / 6,
|
82 |
+
-2 / sqrt(3): 5*pi / 6,
|
83 |
+
(sqrt(5) - 1): pi / 5,
|
84 |
+
(1 - sqrt(5)): 4*pi / 5,
|
85 |
+
sqrt(2): pi / 4,
|
86 |
+
-sqrt(2): 3*pi / 4,
|
87 |
+
sqrt(2 + 2/sqrt(5)): 3*pi / 10,
|
88 |
+
-sqrt(2 + 2/sqrt(5)): 7*pi / 10,
|
89 |
+
S(2): pi / 3,
|
90 |
+
-S(2): 2*pi / 3,
|
91 |
+
sqrt(2*(2 + sqrt(2))): 3*pi / 8,
|
92 |
+
-sqrt(2*(2 + sqrt(2))): 5*pi / 8,
|
93 |
+
(1 + sqrt(5)): 2*pi / 5,
|
94 |
+
(-1 - sqrt(5)): 3*pi / 5,
|
95 |
+
(sqrt(6) + sqrt(2)): 5*pi / 12,
|
96 |
+
(-sqrt(6) - sqrt(2)): 7*pi / 12,
|
97 |
+
I*S.Infinity: -pi*I / 2,
|
98 |
+
I*S.NegativeInfinity: pi*I / 2,
|
99 |
+
}
|
100 |
+
|
101 |
+
###############################################################################
|
102 |
+
########################### HYPERBOLIC FUNCTIONS ##############################
|
103 |
+
###############################################################################
|
104 |
+
|
105 |
+
|
106 |
+
class HyperbolicFunction(Function):
|
107 |
+
"""
|
108 |
+
Base class for hyperbolic functions.
|
109 |
+
|
110 |
+
See Also
|
111 |
+
========
|
112 |
+
|
113 |
+
sinh, cosh, tanh, coth
|
114 |
+
"""
|
115 |
+
|
116 |
+
unbranched = True
|
117 |
+
|
118 |
+
|
119 |
+
def _peeloff_ipi(arg):
|
120 |
+
r"""
|
121 |
+
Split ARG into two parts, a "rest" and a multiple of $I\pi$.
|
122 |
+
This assumes ARG to be an ``Add``.
|
123 |
+
The multiple of $I\pi$ returned in the second position is always a ``Rational``.
|
124 |
+
|
125 |
+
Examples
|
126 |
+
========
|
127 |
+
|
128 |
+
>>> from sympy.functions.elementary.hyperbolic import _peeloff_ipi as peel
|
129 |
+
>>> from sympy import pi, I
|
130 |
+
>>> from sympy.abc import x, y
|
131 |
+
>>> peel(x + I*pi/2)
|
132 |
+
(x, 1/2)
|
133 |
+
>>> peel(x + I*2*pi/3 + I*pi*y)
|
134 |
+
(x + I*pi*y + I*pi/6, 1/2)
|
135 |
+
"""
|
136 |
+
ipi = pi*I
|
137 |
+
for a in Add.make_args(arg):
|
138 |
+
if a == ipi:
|
139 |
+
K = S.One
|
140 |
+
break
|
141 |
+
elif a.is_Mul:
|
142 |
+
K, p = a.as_two_terms()
|
143 |
+
if p == ipi and K.is_Rational:
|
144 |
+
break
|
145 |
+
else:
|
146 |
+
return arg, S.Zero
|
147 |
+
|
148 |
+
m1 = (K % S.Half)
|
149 |
+
m2 = K - m1
|
150 |
+
return arg - m2*ipi, m2
|
151 |
+
|
152 |
+
|
153 |
+
class sinh(HyperbolicFunction):
|
154 |
+
r"""
|
155 |
+
``sinh(x)`` is the hyperbolic sine of ``x``.
|
156 |
+
|
157 |
+
The hyperbolic sine function is $\frac{e^x - e^{-x}}{2}$.
|
158 |
+
|
159 |
+
Examples
|
160 |
+
========
|
161 |
+
|
162 |
+
>>> from sympy import sinh
|
163 |
+
>>> from sympy.abc import x
|
164 |
+
>>> sinh(x)
|
165 |
+
sinh(x)
|
166 |
+
|
167 |
+
See Also
|
168 |
+
========
|
169 |
+
|
170 |
+
cosh, tanh, asinh
|
171 |
+
"""
|
172 |
+
|
173 |
+
def fdiff(self, argindex=1):
|
174 |
+
"""
|
175 |
+
Returns the first derivative of this function.
|
176 |
+
"""
|
177 |
+
if argindex == 1:
|
178 |
+
return cosh(self.args[0])
|
179 |
+
else:
|
180 |
+
raise ArgumentIndexError(self, argindex)
|
181 |
+
|
182 |
+
def inverse(self, argindex=1):
|
183 |
+
"""
|
184 |
+
Returns the inverse of this function.
|
185 |
+
"""
|
186 |
+
return asinh
|
187 |
+
|
188 |
+
@classmethod
|
189 |
+
def eval(cls, arg):
|
190 |
+
if arg.is_Number:
|
191 |
+
if arg is S.NaN:
|
192 |
+
return S.NaN
|
193 |
+
elif arg is S.Infinity:
|
194 |
+
return S.Infinity
|
195 |
+
elif arg is S.NegativeInfinity:
|
196 |
+
return S.NegativeInfinity
|
197 |
+
elif arg.is_zero:
|
198 |
+
return S.Zero
|
199 |
+
elif arg.is_negative:
|
200 |
+
return -cls(-arg)
|
201 |
+
else:
|
202 |
+
if arg is S.ComplexInfinity:
|
203 |
+
return S.NaN
|
204 |
+
|
205 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
206 |
+
|
207 |
+
if i_coeff is not None:
|
208 |
+
return I * sin(i_coeff)
|
209 |
+
else:
|
210 |
+
if arg.could_extract_minus_sign():
|
211 |
+
return -cls(-arg)
|
212 |
+
|
213 |
+
if arg.is_Add:
|
214 |
+
x, m = _peeloff_ipi(arg)
|
215 |
+
if m:
|
216 |
+
m = m*pi*I
|
217 |
+
return sinh(m)*cosh(x) + cosh(m)*sinh(x)
|
218 |
+
|
219 |
+
if arg.is_zero:
|
220 |
+
return S.Zero
|
221 |
+
|
222 |
+
if arg.func == asinh:
|
223 |
+
return arg.args[0]
|
224 |
+
|
225 |
+
if arg.func == acosh:
|
226 |
+
x = arg.args[0]
|
227 |
+
return sqrt(x - 1) * sqrt(x + 1)
|
228 |
+
|
229 |
+
if arg.func == atanh:
|
230 |
+
x = arg.args[0]
|
231 |
+
return x/sqrt(1 - x**2)
|
232 |
+
|
233 |
+
if arg.func == acoth:
|
234 |
+
x = arg.args[0]
|
235 |
+
return 1/(sqrt(x - 1) * sqrt(x + 1))
|
236 |
+
|
237 |
+
@staticmethod
|
238 |
+
@cacheit
|
239 |
+
def taylor_term(n, x, *previous_terms):
|
240 |
+
"""
|
241 |
+
Returns the next term in the Taylor series expansion.
|
242 |
+
"""
|
243 |
+
if n < 0 or n % 2 == 0:
|
244 |
+
return S.Zero
|
245 |
+
else:
|
246 |
+
x = sympify(x)
|
247 |
+
|
248 |
+
if len(previous_terms) > 2:
|
249 |
+
p = previous_terms[-2]
|
250 |
+
return p * x**2 / (n*(n - 1))
|
251 |
+
else:
|
252 |
+
return x**(n) / factorial(n)
|
253 |
+
|
254 |
+
def _eval_conjugate(self):
|
255 |
+
return self.func(self.args[0].conjugate())
|
256 |
+
|
257 |
+
def as_real_imag(self, deep=True, **hints):
|
258 |
+
"""
|
259 |
+
Returns this function as a complex coordinate.
|
260 |
+
"""
|
261 |
+
if self.args[0].is_extended_real:
|
262 |
+
if deep:
|
263 |
+
hints['complex'] = False
|
264 |
+
return (self.expand(deep, **hints), S.Zero)
|
265 |
+
else:
|
266 |
+
return (self, S.Zero)
|
267 |
+
if deep:
|
268 |
+
re, im = self.args[0].expand(deep, **hints).as_real_imag()
|
269 |
+
else:
|
270 |
+
re, im = self.args[0].as_real_imag()
|
271 |
+
return (sinh(re)*cos(im), cosh(re)*sin(im))
|
272 |
+
|
273 |
+
def _eval_expand_complex(self, deep=True, **hints):
|
274 |
+
re_part, im_part = self.as_real_imag(deep=deep, **hints)
|
275 |
+
return re_part + im_part*I
|
276 |
+
|
277 |
+
def _eval_expand_trig(self, deep=True, **hints):
|
278 |
+
if deep:
|
279 |
+
arg = self.args[0].expand(deep, **hints)
|
280 |
+
else:
|
281 |
+
arg = self.args[0]
|
282 |
+
x = None
|
283 |
+
if arg.is_Add: # TODO, implement more if deep stuff here
|
284 |
+
x, y = arg.as_two_terms()
|
285 |
+
else:
|
286 |
+
coeff, terms = arg.as_coeff_Mul(rational=True)
|
287 |
+
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
|
288 |
+
x = terms
|
289 |
+
y = (coeff - 1)*x
|
290 |
+
if x is not None:
|
291 |
+
return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True)
|
292 |
+
return sinh(arg)
|
293 |
+
|
294 |
+
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
|
295 |
+
return (exp(arg) - exp(-arg)) / 2
|
296 |
+
|
297 |
+
def _eval_rewrite_as_exp(self, arg, **kwargs):
|
298 |
+
return (exp(arg) - exp(-arg)) / 2
|
299 |
+
|
300 |
+
def _eval_rewrite_as_sin(self, arg, **kwargs):
|
301 |
+
return -I * sin(I * arg)
|
302 |
+
|
303 |
+
def _eval_rewrite_as_csc(self, arg, **kwargs):
|
304 |
+
return -I / csc(I * arg)
|
305 |
+
|
306 |
+
def _eval_rewrite_as_cosh(self, arg, **kwargs):
|
307 |
+
return -I*cosh(arg + pi*I/2)
|
308 |
+
|
309 |
+
def _eval_rewrite_as_tanh(self, arg, **kwargs):
|
310 |
+
tanh_half = tanh(S.Half*arg)
|
311 |
+
return 2*tanh_half/(1 - tanh_half**2)
|
312 |
+
|
313 |
+
def _eval_rewrite_as_coth(self, arg, **kwargs):
|
314 |
+
coth_half = coth(S.Half*arg)
|
315 |
+
return 2*coth_half/(coth_half**2 - 1)
|
316 |
+
|
317 |
+
def _eval_rewrite_as_csch(self, arg, **kwargs):
|
318 |
+
return 1 / csch(arg)
|
319 |
+
|
320 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
321 |
+
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
|
322 |
+
arg0 = arg.subs(x, 0)
|
323 |
+
|
324 |
+
if arg0 is S.NaN:
|
325 |
+
arg0 = arg.limit(x, 0, dir='-' if cdir.is_negative else '+')
|
326 |
+
if arg0.is_zero:
|
327 |
+
return arg
|
328 |
+
elif arg0.is_finite:
|
329 |
+
return self.func(arg0)
|
330 |
+
else:
|
331 |
+
return self
|
332 |
+
|
333 |
+
def _eval_is_real(self):
|
334 |
+
arg = self.args[0]
|
335 |
+
if arg.is_real:
|
336 |
+
return True
|
337 |
+
|
338 |
+
# if `im` is of the form n*pi
|
339 |
+
# else, check if it is a number
|
340 |
+
re, im = arg.as_real_imag()
|
341 |
+
return (im%pi).is_zero
|
342 |
+
|
343 |
+
def _eval_is_extended_real(self):
|
344 |
+
if self.args[0].is_extended_real:
|
345 |
+
return True
|
346 |
+
|
347 |
+
def _eval_is_positive(self):
|
348 |
+
if self.args[0].is_extended_real:
|
349 |
+
return self.args[0].is_positive
|
350 |
+
|
351 |
+
def _eval_is_negative(self):
|
352 |
+
if self.args[0].is_extended_real:
|
353 |
+
return self.args[0].is_negative
|
354 |
+
|
355 |
+
def _eval_is_finite(self):
|
356 |
+
arg = self.args[0]
|
357 |
+
return arg.is_finite
|
358 |
+
|
359 |
+
def _eval_is_zero(self):
|
360 |
+
rest, ipi_mult = _peeloff_ipi(self.args[0])
|
361 |
+
if rest.is_zero:
|
362 |
+
return ipi_mult.is_integer
|
363 |
+
|
364 |
+
|
365 |
+
class cosh(HyperbolicFunction):
|
366 |
+
r"""
|
367 |
+
``cosh(x)`` is the hyperbolic cosine of ``x``.
|
368 |
+
|
369 |
+
The hyperbolic cosine function is $\frac{e^x + e^{-x}}{2}$.
|
370 |
+
|
371 |
+
Examples
|
372 |
+
========
|
373 |
+
|
374 |
+
>>> from sympy import cosh
|
375 |
+
>>> from sympy.abc import x
|
376 |
+
>>> cosh(x)
|
377 |
+
cosh(x)
|
378 |
+
|
379 |
+
See Also
|
380 |
+
========
|
381 |
+
|
382 |
+
sinh, tanh, acosh
|
383 |
+
"""
|
384 |
+
|
385 |
+
def fdiff(self, argindex=1):
|
386 |
+
if argindex == 1:
|
387 |
+
return sinh(self.args[0])
|
388 |
+
else:
|
389 |
+
raise ArgumentIndexError(self, argindex)
|
390 |
+
|
391 |
+
@classmethod
|
392 |
+
def eval(cls, arg):
|
393 |
+
from sympy.functions.elementary.trigonometric import cos
|
394 |
+
if arg.is_Number:
|
395 |
+
if arg is S.NaN:
|
396 |
+
return S.NaN
|
397 |
+
elif arg is S.Infinity:
|
398 |
+
return S.Infinity
|
399 |
+
elif arg is S.NegativeInfinity:
|
400 |
+
return S.Infinity
|
401 |
+
elif arg.is_zero:
|
402 |
+
return S.One
|
403 |
+
elif arg.is_negative:
|
404 |
+
return cls(-arg)
|
405 |
+
else:
|
406 |
+
if arg is S.ComplexInfinity:
|
407 |
+
return S.NaN
|
408 |
+
|
409 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
410 |
+
|
411 |
+
if i_coeff is not None:
|
412 |
+
return cos(i_coeff)
|
413 |
+
else:
|
414 |
+
if arg.could_extract_minus_sign():
|
415 |
+
return cls(-arg)
|
416 |
+
|
417 |
+
if arg.is_Add:
|
418 |
+
x, m = _peeloff_ipi(arg)
|
419 |
+
if m:
|
420 |
+
m = m*pi*I
|
421 |
+
return cosh(m)*cosh(x) + sinh(m)*sinh(x)
|
422 |
+
|
423 |
+
if arg.is_zero:
|
424 |
+
return S.One
|
425 |
+
|
426 |
+
if arg.func == asinh:
|
427 |
+
return sqrt(1 + arg.args[0]**2)
|
428 |
+
|
429 |
+
if arg.func == acosh:
|
430 |
+
return arg.args[0]
|
431 |
+
|
432 |
+
if arg.func == atanh:
|
433 |
+
return 1/sqrt(1 - arg.args[0]**2)
|
434 |
+
|
435 |
+
if arg.func == acoth:
|
436 |
+
x = arg.args[0]
|
437 |
+
return x/(sqrt(x - 1) * sqrt(x + 1))
|
438 |
+
|
439 |
+
@staticmethod
|
440 |
+
@cacheit
|
441 |
+
def taylor_term(n, x, *previous_terms):
|
442 |
+
if n < 0 or n % 2 == 1:
|
443 |
+
return S.Zero
|
444 |
+
else:
|
445 |
+
x = sympify(x)
|
446 |
+
|
447 |
+
if len(previous_terms) > 2:
|
448 |
+
p = previous_terms[-2]
|
449 |
+
return p * x**2 / (n*(n - 1))
|
450 |
+
else:
|
451 |
+
return x**(n)/factorial(n)
|
452 |
+
|
453 |
+
def _eval_conjugate(self):
|
454 |
+
return self.func(self.args[0].conjugate())
|
455 |
+
|
456 |
+
def as_real_imag(self, deep=True, **hints):
|
457 |
+
if self.args[0].is_extended_real:
|
458 |
+
if deep:
|
459 |
+
hints['complex'] = False
|
460 |
+
return (self.expand(deep, **hints), S.Zero)
|
461 |
+
else:
|
462 |
+
return (self, S.Zero)
|
463 |
+
if deep:
|
464 |
+
re, im = self.args[0].expand(deep, **hints).as_real_imag()
|
465 |
+
else:
|
466 |
+
re, im = self.args[0].as_real_imag()
|
467 |
+
|
468 |
+
return (cosh(re)*cos(im), sinh(re)*sin(im))
|
469 |
+
|
470 |
+
def _eval_expand_complex(self, deep=True, **hints):
|
471 |
+
re_part, im_part = self.as_real_imag(deep=deep, **hints)
|
472 |
+
return re_part + im_part*I
|
473 |
+
|
474 |
+
def _eval_expand_trig(self, deep=True, **hints):
|
475 |
+
if deep:
|
476 |
+
arg = self.args[0].expand(deep, **hints)
|
477 |
+
else:
|
478 |
+
arg = self.args[0]
|
479 |
+
x = None
|
480 |
+
if arg.is_Add: # TODO, implement more if deep stuff here
|
481 |
+
x, y = arg.as_two_terms()
|
482 |
+
else:
|
483 |
+
coeff, terms = arg.as_coeff_Mul(rational=True)
|
484 |
+
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
|
485 |
+
x = terms
|
486 |
+
y = (coeff - 1)*x
|
487 |
+
if x is not None:
|
488 |
+
return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True)
|
489 |
+
return cosh(arg)
|
490 |
+
|
491 |
+
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
|
492 |
+
return (exp(arg) + exp(-arg)) / 2
|
493 |
+
|
494 |
+
def _eval_rewrite_as_exp(self, arg, **kwargs):
|
495 |
+
return (exp(arg) + exp(-arg)) / 2
|
496 |
+
|
497 |
+
def _eval_rewrite_as_cos(self, arg, **kwargs):
|
498 |
+
return cos(I * arg)
|
499 |
+
|
500 |
+
def _eval_rewrite_as_sec(self, arg, **kwargs):
|
501 |
+
return 1 / sec(I * arg)
|
502 |
+
|
503 |
+
def _eval_rewrite_as_sinh(self, arg, **kwargs):
|
504 |
+
return -I*sinh(arg + pi*I/2)
|
505 |
+
|
506 |
+
def _eval_rewrite_as_tanh(self, arg, **kwargs):
|
507 |
+
tanh_half = tanh(S.Half*arg)**2
|
508 |
+
return (1 + tanh_half)/(1 - tanh_half)
|
509 |
+
|
510 |
+
def _eval_rewrite_as_coth(self, arg, **kwargs):
|
511 |
+
coth_half = coth(S.Half*arg)**2
|
512 |
+
return (coth_half + 1)/(coth_half - 1)
|
513 |
+
|
514 |
+
def _eval_rewrite_as_sech(self, arg, **kwargs):
|
515 |
+
return 1 / sech(arg)
|
516 |
+
|
517 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
518 |
+
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
|
519 |
+
arg0 = arg.subs(x, 0)
|
520 |
+
|
521 |
+
if arg0 is S.NaN:
|
522 |
+
arg0 = arg.limit(x, 0, dir='-' if cdir.is_negative else '+')
|
523 |
+
if arg0.is_zero:
|
524 |
+
return S.One
|
525 |
+
elif arg0.is_finite:
|
526 |
+
return self.func(arg0)
|
527 |
+
else:
|
528 |
+
return self
|
529 |
+
|
530 |
+
def _eval_is_real(self):
|
531 |
+
arg = self.args[0]
|
532 |
+
|
533 |
+
# `cosh(x)` is real for real OR purely imaginary `x`
|
534 |
+
if arg.is_real or arg.is_imaginary:
|
535 |
+
return True
|
536 |
+
|
537 |
+
# cosh(a+ib) = cos(b)*cosh(a) + i*sin(b)*sinh(a)
|
538 |
+
# the imaginary part can be an expression like n*pi
|
539 |
+
# if not, check if the imaginary part is a number
|
540 |
+
re, im = arg.as_real_imag()
|
541 |
+
return (im%pi).is_zero
|
542 |
+
|
543 |
+
def _eval_is_positive(self):
|
544 |
+
# cosh(x+I*y) = cos(y)*cosh(x) + I*sin(y)*sinh(x)
|
545 |
+
# cosh(z) is positive iff it is real and the real part is positive.
|
546 |
+
# So we need sin(y)*sinh(x) = 0 which gives x=0 or y=n*pi
|
547 |
+
# Case 1 (y=n*pi): cosh(z) = (-1)**n * cosh(x) -> positive for n even
|
548 |
+
# Case 2 (x=0): cosh(z) = cos(y) -> positive when cos(y) is positive
|
549 |
+
z = self.args[0]
|
550 |
+
|
551 |
+
x, y = z.as_real_imag()
|
552 |
+
ymod = y % (2*pi)
|
553 |
+
|
554 |
+
yzero = ymod.is_zero
|
555 |
+
# shortcut if ymod is zero
|
556 |
+
if yzero:
|
557 |
+
return True
|
558 |
+
|
559 |
+
xzero = x.is_zero
|
560 |
+
# shortcut x is not zero
|
561 |
+
if xzero is False:
|
562 |
+
return yzero
|
563 |
+
|
564 |
+
return fuzzy_or([
|
565 |
+
# Case 1:
|
566 |
+
yzero,
|
567 |
+
# Case 2:
|
568 |
+
fuzzy_and([
|
569 |
+
xzero,
|
570 |
+
fuzzy_or([ymod < pi/2, ymod > 3*pi/2])
|
571 |
+
])
|
572 |
+
])
|
573 |
+
|
574 |
+
|
575 |
+
def _eval_is_nonnegative(self):
|
576 |
+
z = self.args[0]
|
577 |
+
|
578 |
+
x, y = z.as_real_imag()
|
579 |
+
ymod = y % (2*pi)
|
580 |
+
|
581 |
+
yzero = ymod.is_zero
|
582 |
+
# shortcut if ymod is zero
|
583 |
+
if yzero:
|
584 |
+
return True
|
585 |
+
|
586 |
+
xzero = x.is_zero
|
587 |
+
# shortcut x is not zero
|
588 |
+
if xzero is False:
|
589 |
+
return yzero
|
590 |
+
|
591 |
+
return fuzzy_or([
|
592 |
+
# Case 1:
|
593 |
+
yzero,
|
594 |
+
# Case 2:
|
595 |
+
fuzzy_and([
|
596 |
+
xzero,
|
597 |
+
fuzzy_or([ymod <= pi/2, ymod >= 3*pi/2])
|
598 |
+
])
|
599 |
+
])
|
600 |
+
|
601 |
+
def _eval_is_finite(self):
|
602 |
+
arg = self.args[0]
|
603 |
+
return arg.is_finite
|
604 |
+
|
605 |
+
def _eval_is_zero(self):
|
606 |
+
rest, ipi_mult = _peeloff_ipi(self.args[0])
|
607 |
+
if ipi_mult and rest.is_zero:
|
608 |
+
return (ipi_mult - S.Half).is_integer
|
609 |
+
|
610 |
+
|
611 |
+
class tanh(HyperbolicFunction):
|
612 |
+
r"""
|
613 |
+
``tanh(x)`` is the hyperbolic tangent of ``x``.
|
614 |
+
|
615 |
+
The hyperbolic tangent function is $\frac{\sinh(x)}{\cosh(x)}$.
|
616 |
+
|
617 |
+
Examples
|
618 |
+
========
|
619 |
+
|
620 |
+
>>> from sympy import tanh
|
621 |
+
>>> from sympy.abc import x
|
622 |
+
>>> tanh(x)
|
623 |
+
tanh(x)
|
624 |
+
|
625 |
+
See Also
|
626 |
+
========
|
627 |
+
|
628 |
+
sinh, cosh, atanh
|
629 |
+
"""
|
630 |
+
|
631 |
+
def fdiff(self, argindex=1):
|
632 |
+
if argindex == 1:
|
633 |
+
return S.One - tanh(self.args[0])**2
|
634 |
+
else:
|
635 |
+
raise ArgumentIndexError(self, argindex)
|
636 |
+
|
637 |
+
def inverse(self, argindex=1):
|
638 |
+
"""
|
639 |
+
Returns the inverse of this function.
|
640 |
+
"""
|
641 |
+
return atanh
|
642 |
+
|
643 |
+
@classmethod
|
644 |
+
def eval(cls, arg):
|
645 |
+
if arg.is_Number:
|
646 |
+
if arg is S.NaN:
|
647 |
+
return S.NaN
|
648 |
+
elif arg is S.Infinity:
|
649 |
+
return S.One
|
650 |
+
elif arg is S.NegativeInfinity:
|
651 |
+
return S.NegativeOne
|
652 |
+
elif arg.is_zero:
|
653 |
+
return S.Zero
|
654 |
+
elif arg.is_negative:
|
655 |
+
return -cls(-arg)
|
656 |
+
else:
|
657 |
+
if arg is S.ComplexInfinity:
|
658 |
+
return S.NaN
|
659 |
+
|
660 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
661 |
+
|
662 |
+
if i_coeff is not None:
|
663 |
+
if i_coeff.could_extract_minus_sign():
|
664 |
+
return -I * tan(-i_coeff)
|
665 |
+
return I * tan(i_coeff)
|
666 |
+
else:
|
667 |
+
if arg.could_extract_minus_sign():
|
668 |
+
return -cls(-arg)
|
669 |
+
|
670 |
+
if arg.is_Add:
|
671 |
+
x, m = _peeloff_ipi(arg)
|
672 |
+
if m:
|
673 |
+
tanhm = tanh(m*pi*I)
|
674 |
+
if tanhm is S.ComplexInfinity:
|
675 |
+
return coth(x)
|
676 |
+
else: # tanhm == 0
|
677 |
+
return tanh(x)
|
678 |
+
|
679 |
+
if arg.is_zero:
|
680 |
+
return S.Zero
|
681 |
+
|
682 |
+
if arg.func == asinh:
|
683 |
+
x = arg.args[0]
|
684 |
+
return x/sqrt(1 + x**2)
|
685 |
+
|
686 |
+
if arg.func == acosh:
|
687 |
+
x = arg.args[0]
|
688 |
+
return sqrt(x - 1) * sqrt(x + 1) / x
|
689 |
+
|
690 |
+
if arg.func == atanh:
|
691 |
+
return arg.args[0]
|
692 |
+
|
693 |
+
if arg.func == acoth:
|
694 |
+
return 1/arg.args[0]
|
695 |
+
|
696 |
+
@staticmethod
|
697 |
+
@cacheit
|
698 |
+
def taylor_term(n, x, *previous_terms):
|
699 |
+
if n < 0 or n % 2 == 0:
|
700 |
+
return S.Zero
|
701 |
+
else:
|
702 |
+
x = sympify(x)
|
703 |
+
|
704 |
+
a = 2**(n + 1)
|
705 |
+
|
706 |
+
B = bernoulli(n + 1)
|
707 |
+
F = factorial(n + 1)
|
708 |
+
|
709 |
+
return a*(a - 1) * B/F * x**n
|
710 |
+
|
711 |
+
def _eval_conjugate(self):
|
712 |
+
return self.func(self.args[0].conjugate())
|
713 |
+
|
714 |
+
def as_real_imag(self, deep=True, **hints):
|
715 |
+
if self.args[0].is_extended_real:
|
716 |
+
if deep:
|
717 |
+
hints['complex'] = False
|
718 |
+
return (self.expand(deep, **hints), S.Zero)
|
719 |
+
else:
|
720 |
+
return (self, S.Zero)
|
721 |
+
if deep:
|
722 |
+
re, im = self.args[0].expand(deep, **hints).as_real_imag()
|
723 |
+
else:
|
724 |
+
re, im = self.args[0].as_real_imag()
|
725 |
+
denom = sinh(re)**2 + cos(im)**2
|
726 |
+
return (sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom)
|
727 |
+
|
728 |
+
def _eval_expand_trig(self, **hints):
|
729 |
+
arg = self.args[0]
|
730 |
+
if arg.is_Add:
|
731 |
+
n = len(arg.args)
|
732 |
+
TX = [tanh(x, evaluate=False)._eval_expand_trig()
|
733 |
+
for x in arg.args]
|
734 |
+
p = [0, 0] # [den, num]
|
735 |
+
for i in range(n + 1):
|
736 |
+
p[i % 2] += symmetric_poly(i, TX)
|
737 |
+
return p[1]/p[0]
|
738 |
+
elif arg.is_Mul:
|
739 |
+
coeff, terms = arg.as_coeff_Mul()
|
740 |
+
if coeff.is_Integer and coeff > 1:
|
741 |
+
T = tanh(terms)
|
742 |
+
n = [nC(range(coeff), k)*T**k for k in range(1, coeff + 1, 2)]
|
743 |
+
d = [nC(range(coeff), k)*T**k for k in range(0, coeff + 1, 2)]
|
744 |
+
return Add(*n)/Add(*d)
|
745 |
+
return tanh(arg)
|
746 |
+
|
747 |
+
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
|
748 |
+
neg_exp, pos_exp = exp(-arg), exp(arg)
|
749 |
+
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
|
750 |
+
|
751 |
+
def _eval_rewrite_as_exp(self, arg, **kwargs):
|
752 |
+
neg_exp, pos_exp = exp(-arg), exp(arg)
|
753 |
+
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
|
754 |
+
|
755 |
+
def _eval_rewrite_as_tan(self, arg, **kwargs):
|
756 |
+
return -I * tan(I * arg)
|
757 |
+
|
758 |
+
def _eval_rewrite_as_cot(self, arg, **kwargs):
|
759 |
+
return -I / cot(I * arg)
|
760 |
+
|
761 |
+
def _eval_rewrite_as_sinh(self, arg, **kwargs):
|
762 |
+
return I*sinh(arg)/sinh(pi*I/2 - arg)
|
763 |
+
|
764 |
+
def _eval_rewrite_as_cosh(self, arg, **kwargs):
|
765 |
+
return I*cosh(pi*I/2 - arg)/cosh(arg)
|
766 |
+
|
767 |
+
def _eval_rewrite_as_coth(self, arg, **kwargs):
|
768 |
+
return 1/coth(arg)
|
769 |
+
|
770 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
771 |
+
from sympy.series.order import Order
|
772 |
+
arg = self.args[0].as_leading_term(x)
|
773 |
+
|
774 |
+
if x in arg.free_symbols and Order(1, x).contains(arg):
|
775 |
+
return arg
|
776 |
+
else:
|
777 |
+
return self.func(arg)
|
778 |
+
|
779 |
+
def _eval_is_real(self):
|
780 |
+
arg = self.args[0]
|
781 |
+
if arg.is_real:
|
782 |
+
return True
|
783 |
+
|
784 |
+
re, im = arg.as_real_imag()
|
785 |
+
|
786 |
+
# if denom = 0, tanh(arg) = zoo
|
787 |
+
if re == 0 and im % pi == pi/2:
|
788 |
+
return None
|
789 |
+
|
790 |
+
# check if im is of the form n*pi/2 to make sin(2*im) = 0
|
791 |
+
# if not, im could be a number, return False in that case
|
792 |
+
return (im % (pi/2)).is_zero
|
793 |
+
|
794 |
+
def _eval_is_extended_real(self):
|
795 |
+
if self.args[0].is_extended_real:
|
796 |
+
return True
|
797 |
+
|
798 |
+
def _eval_is_positive(self):
|
799 |
+
if self.args[0].is_extended_real:
|
800 |
+
return self.args[0].is_positive
|
801 |
+
|
802 |
+
def _eval_is_negative(self):
|
803 |
+
if self.args[0].is_extended_real:
|
804 |
+
return self.args[0].is_negative
|
805 |
+
|
806 |
+
def _eval_is_finite(self):
|
807 |
+
arg = self.args[0]
|
808 |
+
|
809 |
+
re, im = arg.as_real_imag()
|
810 |
+
denom = cos(im)**2 + sinh(re)**2
|
811 |
+
if denom == 0:
|
812 |
+
return False
|
813 |
+
elif denom.is_number:
|
814 |
+
return True
|
815 |
+
if arg.is_extended_real:
|
816 |
+
return True
|
817 |
+
|
818 |
+
def _eval_is_zero(self):
|
819 |
+
arg = self.args[0]
|
820 |
+
if arg.is_zero:
|
821 |
+
return True
|
822 |
+
|
823 |
+
|
824 |
+
class coth(HyperbolicFunction):
|
825 |
+
r"""
|
826 |
+
``coth(x)`` is the hyperbolic cotangent of ``x``.
|
827 |
+
|
828 |
+
The hyperbolic cotangent function is $\frac{\cosh(x)}{\sinh(x)}$.
|
829 |
+
|
830 |
+
Examples
|
831 |
+
========
|
832 |
+
|
833 |
+
>>> from sympy import coth
|
834 |
+
>>> from sympy.abc import x
|
835 |
+
>>> coth(x)
|
836 |
+
coth(x)
|
837 |
+
|
838 |
+
See Also
|
839 |
+
========
|
840 |
+
|
841 |
+
sinh, cosh, acoth
|
842 |
+
"""
|
843 |
+
|
844 |
+
def fdiff(self, argindex=1):
|
845 |
+
if argindex == 1:
|
846 |
+
return -1/sinh(self.args[0])**2
|
847 |
+
else:
|
848 |
+
raise ArgumentIndexError(self, argindex)
|
849 |
+
|
850 |
+
def inverse(self, argindex=1):
|
851 |
+
"""
|
852 |
+
Returns the inverse of this function.
|
853 |
+
"""
|
854 |
+
return acoth
|
855 |
+
|
856 |
+
@classmethod
|
857 |
+
def eval(cls, arg):
|
858 |
+
if arg.is_Number:
|
859 |
+
if arg is S.NaN:
|
860 |
+
return S.NaN
|
861 |
+
elif arg is S.Infinity:
|
862 |
+
return S.One
|
863 |
+
elif arg is S.NegativeInfinity:
|
864 |
+
return S.NegativeOne
|
865 |
+
elif arg.is_zero:
|
866 |
+
return S.ComplexInfinity
|
867 |
+
elif arg.is_negative:
|
868 |
+
return -cls(-arg)
|
869 |
+
else:
|
870 |
+
if arg is S.ComplexInfinity:
|
871 |
+
return S.NaN
|
872 |
+
|
873 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
874 |
+
|
875 |
+
if i_coeff is not None:
|
876 |
+
if i_coeff.could_extract_minus_sign():
|
877 |
+
return I * cot(-i_coeff)
|
878 |
+
return -I * cot(i_coeff)
|
879 |
+
else:
|
880 |
+
if arg.could_extract_minus_sign():
|
881 |
+
return -cls(-arg)
|
882 |
+
|
883 |
+
if arg.is_Add:
|
884 |
+
x, m = _peeloff_ipi(arg)
|
885 |
+
if m:
|
886 |
+
cothm = coth(m*pi*I)
|
887 |
+
if cothm is S.ComplexInfinity:
|
888 |
+
return coth(x)
|
889 |
+
else: # cothm == 0
|
890 |
+
return tanh(x)
|
891 |
+
|
892 |
+
if arg.is_zero:
|
893 |
+
return S.ComplexInfinity
|
894 |
+
|
895 |
+
if arg.func == asinh:
|
896 |
+
x = arg.args[0]
|
897 |
+
return sqrt(1 + x**2)/x
|
898 |
+
|
899 |
+
if arg.func == acosh:
|
900 |
+
x = arg.args[0]
|
901 |
+
return x/(sqrt(x - 1) * sqrt(x + 1))
|
902 |
+
|
903 |
+
if arg.func == atanh:
|
904 |
+
return 1/arg.args[0]
|
905 |
+
|
906 |
+
if arg.func == acoth:
|
907 |
+
return arg.args[0]
|
908 |
+
|
909 |
+
@staticmethod
|
910 |
+
@cacheit
|
911 |
+
def taylor_term(n, x, *previous_terms):
|
912 |
+
if n == 0:
|
913 |
+
return 1 / sympify(x)
|
914 |
+
elif n < 0 or n % 2 == 0:
|
915 |
+
return S.Zero
|
916 |
+
else:
|
917 |
+
x = sympify(x)
|
918 |
+
|
919 |
+
B = bernoulli(n + 1)
|
920 |
+
F = factorial(n + 1)
|
921 |
+
|
922 |
+
return 2**(n + 1) * B/F * x**n
|
923 |
+
|
924 |
+
def _eval_conjugate(self):
|
925 |
+
return self.func(self.args[0].conjugate())
|
926 |
+
|
927 |
+
def as_real_imag(self, deep=True, **hints):
|
928 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
929 |
+
if self.args[0].is_extended_real:
|
930 |
+
if deep:
|
931 |
+
hints['complex'] = False
|
932 |
+
return (self.expand(deep, **hints), S.Zero)
|
933 |
+
else:
|
934 |
+
return (self, S.Zero)
|
935 |
+
if deep:
|
936 |
+
re, im = self.args[0].expand(deep, **hints).as_real_imag()
|
937 |
+
else:
|
938 |
+
re, im = self.args[0].as_real_imag()
|
939 |
+
denom = sinh(re)**2 + sin(im)**2
|
940 |
+
return (sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom)
|
941 |
+
|
942 |
+
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
|
943 |
+
neg_exp, pos_exp = exp(-arg), exp(arg)
|
944 |
+
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
|
945 |
+
|
946 |
+
def _eval_rewrite_as_exp(self, arg, **kwargs):
|
947 |
+
neg_exp, pos_exp = exp(-arg), exp(arg)
|
948 |
+
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
|
949 |
+
|
950 |
+
def _eval_rewrite_as_sinh(self, arg, **kwargs):
|
951 |
+
return -I*sinh(pi*I/2 - arg)/sinh(arg)
|
952 |
+
|
953 |
+
def _eval_rewrite_as_cosh(self, arg, **kwargs):
|
954 |
+
return -I*cosh(arg)/cosh(pi*I/2 - arg)
|
955 |
+
|
956 |
+
def _eval_rewrite_as_tanh(self, arg, **kwargs):
|
957 |
+
return 1/tanh(arg)
|
958 |
+
|
959 |
+
def _eval_is_positive(self):
|
960 |
+
if self.args[0].is_extended_real:
|
961 |
+
return self.args[0].is_positive
|
962 |
+
|
963 |
+
def _eval_is_negative(self):
|
964 |
+
if self.args[0].is_extended_real:
|
965 |
+
return self.args[0].is_negative
|
966 |
+
|
967 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
968 |
+
from sympy.series.order import Order
|
969 |
+
arg = self.args[0].as_leading_term(x)
|
970 |
+
|
971 |
+
if x in arg.free_symbols and Order(1, x).contains(arg):
|
972 |
+
return 1/arg
|
973 |
+
else:
|
974 |
+
return self.func(arg)
|
975 |
+
|
976 |
+
def _eval_expand_trig(self, **hints):
|
977 |
+
arg = self.args[0]
|
978 |
+
if arg.is_Add:
|
979 |
+
CX = [coth(x, evaluate=False)._eval_expand_trig() for x in arg.args]
|
980 |
+
p = [[], []]
|
981 |
+
n = len(arg.args)
|
982 |
+
for i in range(n, -1, -1):
|
983 |
+
p[(n - i) % 2].append(symmetric_poly(i, CX))
|
984 |
+
return Add(*p[0])/Add(*p[1])
|
985 |
+
elif arg.is_Mul:
|
986 |
+
coeff, x = arg.as_coeff_Mul(rational=True)
|
987 |
+
if coeff.is_Integer and coeff > 1:
|
988 |
+
c = coth(x, evaluate=False)
|
989 |
+
p = [[], []]
|
990 |
+
for i in range(coeff, -1, -1):
|
991 |
+
p[(coeff - i) % 2].append(binomial(coeff, i)*c**i)
|
992 |
+
return Add(*p[0])/Add(*p[1])
|
993 |
+
return coth(arg)
|
994 |
+
|
995 |
+
|
996 |
+
class ReciprocalHyperbolicFunction(HyperbolicFunction):
|
997 |
+
"""Base class for reciprocal functions of hyperbolic functions. """
|
998 |
+
|
999 |
+
#To be defined in class
|
1000 |
+
_reciprocal_of = None
|
1001 |
+
_is_even: FuzzyBool = None
|
1002 |
+
_is_odd: FuzzyBool = None
|
1003 |
+
|
1004 |
+
@classmethod
|
1005 |
+
def eval(cls, arg):
|
1006 |
+
if arg.could_extract_minus_sign():
|
1007 |
+
if cls._is_even:
|
1008 |
+
return cls(-arg)
|
1009 |
+
if cls._is_odd:
|
1010 |
+
return -cls(-arg)
|
1011 |
+
|
1012 |
+
t = cls._reciprocal_of.eval(arg)
|
1013 |
+
if hasattr(arg, 'inverse') and arg.inverse() == cls:
|
1014 |
+
return arg.args[0]
|
1015 |
+
return 1/t if t is not None else t
|
1016 |
+
|
1017 |
+
def _call_reciprocal(self, method_name, *args, **kwargs):
|
1018 |
+
# Calls method_name on _reciprocal_of
|
1019 |
+
o = self._reciprocal_of(self.args[0])
|
1020 |
+
return getattr(o, method_name)(*args, **kwargs)
|
1021 |
+
|
1022 |
+
def _calculate_reciprocal(self, method_name, *args, **kwargs):
|
1023 |
+
# If calling method_name on _reciprocal_of returns a value != None
|
1024 |
+
# then return the reciprocal of that value
|
1025 |
+
t = self._call_reciprocal(method_name, *args, **kwargs)
|
1026 |
+
return 1/t if t is not None else t
|
1027 |
+
|
1028 |
+
def _rewrite_reciprocal(self, method_name, arg):
|
1029 |
+
# Special handling for rewrite functions. If reciprocal rewrite returns
|
1030 |
+
# unmodified expression, then return None
|
1031 |
+
t = self._call_reciprocal(method_name, arg)
|
1032 |
+
if t is not None and t != self._reciprocal_of(arg):
|
1033 |
+
return 1/t
|
1034 |
+
|
1035 |
+
def _eval_rewrite_as_exp(self, arg, **kwargs):
|
1036 |
+
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
|
1037 |
+
|
1038 |
+
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
|
1039 |
+
return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg)
|
1040 |
+
|
1041 |
+
def _eval_rewrite_as_tanh(self, arg, **kwargs):
|
1042 |
+
return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg)
|
1043 |
+
|
1044 |
+
def _eval_rewrite_as_coth(self, arg, **kwargs):
|
1045 |
+
return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg)
|
1046 |
+
|
1047 |
+
def as_real_imag(self, deep = True, **hints):
|
1048 |
+
return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints)
|
1049 |
+
|
1050 |
+
def _eval_conjugate(self):
|
1051 |
+
return self.func(self.args[0].conjugate())
|
1052 |
+
|
1053 |
+
def _eval_expand_complex(self, deep=True, **hints):
|
1054 |
+
re_part, im_part = self.as_real_imag(deep=True, **hints)
|
1055 |
+
return re_part + I*im_part
|
1056 |
+
|
1057 |
+
def _eval_expand_trig(self, **hints):
|
1058 |
+
return self._calculate_reciprocal("_eval_expand_trig", **hints)
|
1059 |
+
|
1060 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
1061 |
+
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
|
1062 |
+
|
1063 |
+
def _eval_is_extended_real(self):
|
1064 |
+
return self._reciprocal_of(self.args[0]).is_extended_real
|
1065 |
+
|
1066 |
+
def _eval_is_finite(self):
|
1067 |
+
return (1/self._reciprocal_of(self.args[0])).is_finite
|
1068 |
+
|
1069 |
+
|
1070 |
+
class csch(ReciprocalHyperbolicFunction):
|
1071 |
+
r"""
|
1072 |
+
``csch(x)`` is the hyperbolic cosecant of ``x``.
|
1073 |
+
|
1074 |
+
The hyperbolic cosecant function is $\frac{2}{e^x - e^{-x}}$
|
1075 |
+
|
1076 |
+
Examples
|
1077 |
+
========
|
1078 |
+
|
1079 |
+
>>> from sympy import csch
|
1080 |
+
>>> from sympy.abc import x
|
1081 |
+
>>> csch(x)
|
1082 |
+
csch(x)
|
1083 |
+
|
1084 |
+
See Also
|
1085 |
+
========
|
1086 |
+
|
1087 |
+
sinh, cosh, tanh, sech, asinh, acosh
|
1088 |
+
"""
|
1089 |
+
|
1090 |
+
_reciprocal_of = sinh
|
1091 |
+
_is_odd = True
|
1092 |
+
|
1093 |
+
def fdiff(self, argindex=1):
|
1094 |
+
"""
|
1095 |
+
Returns the first derivative of this function
|
1096 |
+
"""
|
1097 |
+
if argindex == 1:
|
1098 |
+
return -coth(self.args[0]) * csch(self.args[0])
|
1099 |
+
else:
|
1100 |
+
raise ArgumentIndexError(self, argindex)
|
1101 |
+
|
1102 |
+
@staticmethod
|
1103 |
+
@cacheit
|
1104 |
+
def taylor_term(n, x, *previous_terms):
|
1105 |
+
"""
|
1106 |
+
Returns the next term in the Taylor series expansion
|
1107 |
+
"""
|
1108 |
+
if n == 0:
|
1109 |
+
return 1/sympify(x)
|
1110 |
+
elif n < 0 or n % 2 == 0:
|
1111 |
+
return S.Zero
|
1112 |
+
else:
|
1113 |
+
x = sympify(x)
|
1114 |
+
|
1115 |
+
B = bernoulli(n + 1)
|
1116 |
+
F = factorial(n + 1)
|
1117 |
+
|
1118 |
+
return 2 * (1 - 2**n) * B/F * x**n
|
1119 |
+
|
1120 |
+
def _eval_rewrite_as_sin(self, arg, **kwargs):
|
1121 |
+
return I / sin(I * arg)
|
1122 |
+
|
1123 |
+
def _eval_rewrite_as_csc(self, arg, **kwargs):
|
1124 |
+
return I * csc(I * arg)
|
1125 |
+
|
1126 |
+
def _eval_rewrite_as_cosh(self, arg, **kwargs):
|
1127 |
+
return I / cosh(arg + I * pi / 2)
|
1128 |
+
|
1129 |
+
def _eval_rewrite_as_sinh(self, arg, **kwargs):
|
1130 |
+
return 1 / sinh(arg)
|
1131 |
+
|
1132 |
+
def _eval_is_positive(self):
|
1133 |
+
if self.args[0].is_extended_real:
|
1134 |
+
return self.args[0].is_positive
|
1135 |
+
|
1136 |
+
def _eval_is_negative(self):
|
1137 |
+
if self.args[0].is_extended_real:
|
1138 |
+
return self.args[0].is_negative
|
1139 |
+
|
1140 |
+
|
1141 |
+
class sech(ReciprocalHyperbolicFunction):
|
1142 |
+
r"""
|
1143 |
+
``sech(x)`` is the hyperbolic secant of ``x``.
|
1144 |
+
|
1145 |
+
The hyperbolic secant function is $\frac{2}{e^x + e^{-x}}$
|
1146 |
+
|
1147 |
+
Examples
|
1148 |
+
========
|
1149 |
+
|
1150 |
+
>>> from sympy import sech
|
1151 |
+
>>> from sympy.abc import x
|
1152 |
+
>>> sech(x)
|
1153 |
+
sech(x)
|
1154 |
+
|
1155 |
+
See Also
|
1156 |
+
========
|
1157 |
+
|
1158 |
+
sinh, cosh, tanh, coth, csch, asinh, acosh
|
1159 |
+
"""
|
1160 |
+
|
1161 |
+
_reciprocal_of = cosh
|
1162 |
+
_is_even = True
|
1163 |
+
|
1164 |
+
def fdiff(self, argindex=1):
|
1165 |
+
if argindex == 1:
|
1166 |
+
return - tanh(self.args[0])*sech(self.args[0])
|
1167 |
+
else:
|
1168 |
+
raise ArgumentIndexError(self, argindex)
|
1169 |
+
|
1170 |
+
@staticmethod
|
1171 |
+
@cacheit
|
1172 |
+
def taylor_term(n, x, *previous_terms):
|
1173 |
+
if n < 0 or n % 2 == 1:
|
1174 |
+
return S.Zero
|
1175 |
+
else:
|
1176 |
+
x = sympify(x)
|
1177 |
+
return euler(n) / factorial(n) * x**(n)
|
1178 |
+
|
1179 |
+
def _eval_rewrite_as_cos(self, arg, **kwargs):
|
1180 |
+
return 1 / cos(I * arg)
|
1181 |
+
|
1182 |
+
def _eval_rewrite_as_sec(self, arg, **kwargs):
|
1183 |
+
return sec(I * arg)
|
1184 |
+
|
1185 |
+
def _eval_rewrite_as_sinh(self, arg, **kwargs):
|
1186 |
+
return I / sinh(arg + I * pi /2)
|
1187 |
+
|
1188 |
+
def _eval_rewrite_as_cosh(self, arg, **kwargs):
|
1189 |
+
return 1 / cosh(arg)
|
1190 |
+
|
1191 |
+
def _eval_is_positive(self):
|
1192 |
+
if self.args[0].is_extended_real:
|
1193 |
+
return True
|
1194 |
+
|
1195 |
+
|
1196 |
+
###############################################################################
|
1197 |
+
############################# HYPERBOLIC INVERSES #############################
|
1198 |
+
###############################################################################
|
1199 |
+
|
1200 |
+
class InverseHyperbolicFunction(Function):
|
1201 |
+
"""Base class for inverse hyperbolic functions."""
|
1202 |
+
|
1203 |
+
pass
|
1204 |
+
|
1205 |
+
|
1206 |
+
class asinh(InverseHyperbolicFunction):
|
1207 |
+
"""
|
1208 |
+
``asinh(x)`` is the inverse hyperbolic sine of ``x``.
|
1209 |
+
|
1210 |
+
The inverse hyperbolic sine function.
|
1211 |
+
|
1212 |
+
Examples
|
1213 |
+
========
|
1214 |
+
|
1215 |
+
>>> from sympy import asinh
|
1216 |
+
>>> from sympy.abc import x
|
1217 |
+
>>> asinh(x).diff(x)
|
1218 |
+
1/sqrt(x**2 + 1)
|
1219 |
+
>>> asinh(1)
|
1220 |
+
log(1 + sqrt(2))
|
1221 |
+
|
1222 |
+
See Also
|
1223 |
+
========
|
1224 |
+
|
1225 |
+
acosh, atanh, sinh
|
1226 |
+
"""
|
1227 |
+
|
1228 |
+
def fdiff(self, argindex=1):
|
1229 |
+
if argindex == 1:
|
1230 |
+
return 1/sqrt(self.args[0]**2 + 1)
|
1231 |
+
else:
|
1232 |
+
raise ArgumentIndexError(self, argindex)
|
1233 |
+
|
1234 |
+
@classmethod
|
1235 |
+
def eval(cls, arg):
|
1236 |
+
if arg.is_Number:
|
1237 |
+
if arg is S.NaN:
|
1238 |
+
return S.NaN
|
1239 |
+
elif arg is S.Infinity:
|
1240 |
+
return S.Infinity
|
1241 |
+
elif arg is S.NegativeInfinity:
|
1242 |
+
return S.NegativeInfinity
|
1243 |
+
elif arg.is_zero:
|
1244 |
+
return S.Zero
|
1245 |
+
elif arg is S.One:
|
1246 |
+
return log(sqrt(2) + 1)
|
1247 |
+
elif arg is S.NegativeOne:
|
1248 |
+
return log(sqrt(2) - 1)
|
1249 |
+
elif arg.is_negative:
|
1250 |
+
return -cls(-arg)
|
1251 |
+
else:
|
1252 |
+
if arg is S.ComplexInfinity:
|
1253 |
+
return S.ComplexInfinity
|
1254 |
+
|
1255 |
+
if arg.is_zero:
|
1256 |
+
return S.Zero
|
1257 |
+
|
1258 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
1259 |
+
|
1260 |
+
if i_coeff is not None:
|
1261 |
+
return I * asin(i_coeff)
|
1262 |
+
else:
|
1263 |
+
if arg.could_extract_minus_sign():
|
1264 |
+
return -cls(-arg)
|
1265 |
+
|
1266 |
+
if isinstance(arg, sinh) and arg.args[0].is_number:
|
1267 |
+
z = arg.args[0]
|
1268 |
+
if z.is_real:
|
1269 |
+
return z
|
1270 |
+
r, i = match_real_imag(z)
|
1271 |
+
if r is not None and i is not None:
|
1272 |
+
f = floor((i + pi/2)/pi)
|
1273 |
+
m = z - I*pi*f
|
1274 |
+
even = f.is_even
|
1275 |
+
if even is True:
|
1276 |
+
return m
|
1277 |
+
elif even is False:
|
1278 |
+
return -m
|
1279 |
+
|
1280 |
+
@staticmethod
|
1281 |
+
@cacheit
|
1282 |
+
def taylor_term(n, x, *previous_terms):
|
1283 |
+
if n < 0 or n % 2 == 0:
|
1284 |
+
return S.Zero
|
1285 |
+
else:
|
1286 |
+
x = sympify(x)
|
1287 |
+
if len(previous_terms) >= 2 and n > 2:
|
1288 |
+
p = previous_terms[-2]
|
1289 |
+
return -p * (n - 2)**2/(n*(n - 1)) * x**2
|
1290 |
+
else:
|
1291 |
+
k = (n - 1) // 2
|
1292 |
+
R = RisingFactorial(S.Half, k)
|
1293 |
+
F = factorial(k)
|
1294 |
+
return S.NegativeOne**k * R / F * x**n / n
|
1295 |
+
|
1296 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asinh
|
1297 |
+
arg = self.args[0]
|
1298 |
+
x0 = arg.subs(x, 0).cancel()
|
1299 |
+
if x0.is_zero:
|
1300 |
+
return arg.as_leading_term(x)
|
1301 |
+
# Handling branch points
|
1302 |
+
if x0 in (-I, I, S.ComplexInfinity):
|
1303 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1304 |
+
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
|
1305 |
+
if (1 + x0**2).is_negative:
|
1306 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1307 |
+
if re(ndir).is_positive:
|
1308 |
+
if im(x0).is_negative:
|
1309 |
+
return -self.func(x0) - I*pi
|
1310 |
+
elif re(ndir).is_negative:
|
1311 |
+
if im(x0).is_positive:
|
1312 |
+
return -self.func(x0) + I*pi
|
1313 |
+
else:
|
1314 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1315 |
+
return self.func(x0)
|
1316 |
+
|
1317 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # asinh
|
1318 |
+
arg = self.args[0]
|
1319 |
+
arg0 = arg.subs(x, 0)
|
1320 |
+
|
1321 |
+
# Handling branch points
|
1322 |
+
if arg0 in (I, -I):
|
1323 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1324 |
+
|
1325 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
1326 |
+
if arg0 is S.ComplexInfinity:
|
1327 |
+
return res
|
1328 |
+
|
1329 |
+
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
|
1330 |
+
if (1 + arg0**2).is_negative:
|
1331 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1332 |
+
if re(ndir).is_positive:
|
1333 |
+
if im(arg0).is_negative:
|
1334 |
+
return -res - I*pi
|
1335 |
+
elif re(ndir).is_negative:
|
1336 |
+
if im(arg0).is_positive:
|
1337 |
+
return -res + I*pi
|
1338 |
+
else:
|
1339 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1340 |
+
return res
|
1341 |
+
|
1342 |
+
def _eval_rewrite_as_log(self, x, **kwargs):
|
1343 |
+
return log(x + sqrt(x**2 + 1))
|
1344 |
+
|
1345 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
1346 |
+
|
1347 |
+
def _eval_rewrite_as_atanh(self, x, **kwargs):
|
1348 |
+
return atanh(x/sqrt(1 + x**2))
|
1349 |
+
|
1350 |
+
def _eval_rewrite_as_acosh(self, x, **kwargs):
|
1351 |
+
ix = I*x
|
1352 |
+
return I*(sqrt(1 - ix)/sqrt(ix - 1) * acosh(ix) - pi/2)
|
1353 |
+
|
1354 |
+
def _eval_rewrite_as_asin(self, x, **kwargs):
|
1355 |
+
return -I * asin(I * x)
|
1356 |
+
|
1357 |
+
def _eval_rewrite_as_acos(self, x, **kwargs):
|
1358 |
+
return I * acos(I * x) - I*pi/2
|
1359 |
+
|
1360 |
+
def inverse(self, argindex=1):
|
1361 |
+
"""
|
1362 |
+
Returns the inverse of this function.
|
1363 |
+
"""
|
1364 |
+
return sinh
|
1365 |
+
|
1366 |
+
def _eval_is_zero(self):
|
1367 |
+
return self.args[0].is_zero
|
1368 |
+
|
1369 |
+
|
1370 |
+
class acosh(InverseHyperbolicFunction):
|
1371 |
+
"""
|
1372 |
+
``acosh(x)`` is the inverse hyperbolic cosine of ``x``.
|
1373 |
+
|
1374 |
+
The inverse hyperbolic cosine function.
|
1375 |
+
|
1376 |
+
Examples
|
1377 |
+
========
|
1378 |
+
|
1379 |
+
>>> from sympy import acosh
|
1380 |
+
>>> from sympy.abc import x
|
1381 |
+
>>> acosh(x).diff(x)
|
1382 |
+
1/(sqrt(x - 1)*sqrt(x + 1))
|
1383 |
+
>>> acosh(1)
|
1384 |
+
0
|
1385 |
+
|
1386 |
+
See Also
|
1387 |
+
========
|
1388 |
+
|
1389 |
+
asinh, atanh, cosh
|
1390 |
+
"""
|
1391 |
+
|
1392 |
+
def fdiff(self, argindex=1):
|
1393 |
+
if argindex == 1:
|
1394 |
+
arg = self.args[0]
|
1395 |
+
return 1/(sqrt(arg - 1)*sqrt(arg + 1))
|
1396 |
+
else:
|
1397 |
+
raise ArgumentIndexError(self, argindex)
|
1398 |
+
|
1399 |
+
@classmethod
|
1400 |
+
def eval(cls, arg):
|
1401 |
+
if arg.is_Number:
|
1402 |
+
if arg is S.NaN:
|
1403 |
+
return S.NaN
|
1404 |
+
elif arg is S.Infinity:
|
1405 |
+
return S.Infinity
|
1406 |
+
elif arg is S.NegativeInfinity:
|
1407 |
+
return S.Infinity
|
1408 |
+
elif arg.is_zero:
|
1409 |
+
return pi*I / 2
|
1410 |
+
elif arg is S.One:
|
1411 |
+
return S.Zero
|
1412 |
+
elif arg is S.NegativeOne:
|
1413 |
+
return pi*I
|
1414 |
+
|
1415 |
+
if arg.is_number:
|
1416 |
+
cst_table = _acosh_table()
|
1417 |
+
|
1418 |
+
if arg in cst_table:
|
1419 |
+
if arg.is_extended_real:
|
1420 |
+
return cst_table[arg]*I
|
1421 |
+
return cst_table[arg]
|
1422 |
+
|
1423 |
+
if arg is S.ComplexInfinity:
|
1424 |
+
return S.ComplexInfinity
|
1425 |
+
if arg == I*S.Infinity:
|
1426 |
+
return S.Infinity + I*pi/2
|
1427 |
+
if arg == -I*S.Infinity:
|
1428 |
+
return S.Infinity - I*pi/2
|
1429 |
+
|
1430 |
+
if arg.is_zero:
|
1431 |
+
return pi*I*S.Half
|
1432 |
+
|
1433 |
+
if isinstance(arg, cosh) and arg.args[0].is_number:
|
1434 |
+
z = arg.args[0]
|
1435 |
+
if z.is_real:
|
1436 |
+
return Abs(z)
|
1437 |
+
r, i = match_real_imag(z)
|
1438 |
+
if r is not None and i is not None:
|
1439 |
+
f = floor(i/pi)
|
1440 |
+
m = z - I*pi*f
|
1441 |
+
even = f.is_even
|
1442 |
+
if even is True:
|
1443 |
+
if r.is_nonnegative:
|
1444 |
+
return m
|
1445 |
+
elif r.is_negative:
|
1446 |
+
return -m
|
1447 |
+
elif even is False:
|
1448 |
+
m -= I*pi
|
1449 |
+
if r.is_nonpositive:
|
1450 |
+
return -m
|
1451 |
+
elif r.is_positive:
|
1452 |
+
return m
|
1453 |
+
|
1454 |
+
@staticmethod
|
1455 |
+
@cacheit
|
1456 |
+
def taylor_term(n, x, *previous_terms):
|
1457 |
+
if n == 0:
|
1458 |
+
return I*pi/2
|
1459 |
+
elif n < 0 or n % 2 == 0:
|
1460 |
+
return S.Zero
|
1461 |
+
else:
|
1462 |
+
x = sympify(x)
|
1463 |
+
if len(previous_terms) >= 2 and n > 2:
|
1464 |
+
p = previous_terms[-2]
|
1465 |
+
return p * (n - 2)**2/(n*(n - 1)) * x**2
|
1466 |
+
else:
|
1467 |
+
k = (n - 1) // 2
|
1468 |
+
R = RisingFactorial(S.Half, k)
|
1469 |
+
F = factorial(k)
|
1470 |
+
return -R / F * I * x**n / n
|
1471 |
+
|
1472 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acosh
|
1473 |
+
arg = self.args[0]
|
1474 |
+
x0 = arg.subs(x, 0).cancel()
|
1475 |
+
# Handling branch points
|
1476 |
+
if x0 in (-S.One, S.Zero, S.One, S.ComplexInfinity):
|
1477 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1478 |
+
# Handling points lying on branch cuts (-oo, 1)
|
1479 |
+
if (x0 - 1).is_negative:
|
1480 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1481 |
+
if im(ndir).is_negative:
|
1482 |
+
if (x0 + 1).is_negative:
|
1483 |
+
return self.func(x0) - 2*I*pi
|
1484 |
+
return -self.func(x0)
|
1485 |
+
elif not im(ndir).is_positive:
|
1486 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1487 |
+
return self.func(x0)
|
1488 |
+
|
1489 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # acosh
|
1490 |
+
arg = self.args[0]
|
1491 |
+
arg0 = arg.subs(x, 0)
|
1492 |
+
|
1493 |
+
# Handling branch points
|
1494 |
+
if arg0 in (S.One, S.NegativeOne):
|
1495 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1496 |
+
|
1497 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
1498 |
+
if arg0 is S.ComplexInfinity:
|
1499 |
+
return res
|
1500 |
+
|
1501 |
+
# Handling points lying on branch cuts (-oo, 1)
|
1502 |
+
if (arg0 - 1).is_negative:
|
1503 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1504 |
+
if im(ndir).is_negative:
|
1505 |
+
if (arg0 + 1).is_negative:
|
1506 |
+
return res - 2*I*pi
|
1507 |
+
return -res
|
1508 |
+
elif not im(ndir).is_positive:
|
1509 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1510 |
+
return res
|
1511 |
+
|
1512 |
+
def _eval_rewrite_as_log(self, x, **kwargs):
|
1513 |
+
return log(x + sqrt(x + 1) * sqrt(x - 1))
|
1514 |
+
|
1515 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
1516 |
+
|
1517 |
+
def _eval_rewrite_as_acos(self, x, **kwargs):
|
1518 |
+
return sqrt(x - 1)/sqrt(1 - x) * acos(x)
|
1519 |
+
|
1520 |
+
def _eval_rewrite_as_asin(self, x, **kwargs):
|
1521 |
+
return sqrt(x - 1)/sqrt(1 - x) * (pi/2 - asin(x))
|
1522 |
+
|
1523 |
+
def _eval_rewrite_as_asinh(self, x, **kwargs):
|
1524 |
+
return sqrt(x - 1)/sqrt(1 - x) * (pi/2 + I*asinh(I*x))
|
1525 |
+
|
1526 |
+
def _eval_rewrite_as_atanh(self, x, **kwargs):
|
1527 |
+
sxm1 = sqrt(x - 1)
|
1528 |
+
s1mx = sqrt(1 - x)
|
1529 |
+
sx2m1 = sqrt(x**2 - 1)
|
1530 |
+
return (pi/2*sxm1/s1mx*(1 - x * sqrt(1/x**2)) +
|
1531 |
+
sxm1*sqrt(x + 1)/sx2m1 * atanh(sx2m1/x))
|
1532 |
+
|
1533 |
+
def inverse(self, argindex=1):
|
1534 |
+
"""
|
1535 |
+
Returns the inverse of this function.
|
1536 |
+
"""
|
1537 |
+
return cosh
|
1538 |
+
|
1539 |
+
def _eval_is_zero(self):
|
1540 |
+
if (self.args[0] - 1).is_zero:
|
1541 |
+
return True
|
1542 |
+
|
1543 |
+
|
1544 |
+
class atanh(InverseHyperbolicFunction):
|
1545 |
+
"""
|
1546 |
+
``atanh(x)`` is the inverse hyperbolic tangent of ``x``.
|
1547 |
+
|
1548 |
+
The inverse hyperbolic tangent function.
|
1549 |
+
|
1550 |
+
Examples
|
1551 |
+
========
|
1552 |
+
|
1553 |
+
>>> from sympy import atanh
|
1554 |
+
>>> from sympy.abc import x
|
1555 |
+
>>> atanh(x).diff(x)
|
1556 |
+
1/(1 - x**2)
|
1557 |
+
|
1558 |
+
See Also
|
1559 |
+
========
|
1560 |
+
|
1561 |
+
asinh, acosh, tanh
|
1562 |
+
"""
|
1563 |
+
|
1564 |
+
def fdiff(self, argindex=1):
|
1565 |
+
if argindex == 1:
|
1566 |
+
return 1/(1 - self.args[0]**2)
|
1567 |
+
else:
|
1568 |
+
raise ArgumentIndexError(self, argindex)
|
1569 |
+
|
1570 |
+
@classmethod
|
1571 |
+
def eval(cls, arg):
|
1572 |
+
if arg.is_Number:
|
1573 |
+
if arg is S.NaN:
|
1574 |
+
return S.NaN
|
1575 |
+
elif arg.is_zero:
|
1576 |
+
return S.Zero
|
1577 |
+
elif arg is S.One:
|
1578 |
+
return S.Infinity
|
1579 |
+
elif arg is S.NegativeOne:
|
1580 |
+
return S.NegativeInfinity
|
1581 |
+
elif arg is S.Infinity:
|
1582 |
+
return -I * atan(arg)
|
1583 |
+
elif arg is S.NegativeInfinity:
|
1584 |
+
return I * atan(-arg)
|
1585 |
+
elif arg.is_negative:
|
1586 |
+
return -cls(-arg)
|
1587 |
+
else:
|
1588 |
+
if arg is S.ComplexInfinity:
|
1589 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
1590 |
+
return I*AccumBounds(-pi/2, pi/2)
|
1591 |
+
|
1592 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
1593 |
+
|
1594 |
+
if i_coeff is not None:
|
1595 |
+
return I * atan(i_coeff)
|
1596 |
+
else:
|
1597 |
+
if arg.could_extract_minus_sign():
|
1598 |
+
return -cls(-arg)
|
1599 |
+
|
1600 |
+
if arg.is_zero:
|
1601 |
+
return S.Zero
|
1602 |
+
|
1603 |
+
if isinstance(arg, tanh) and arg.args[0].is_number:
|
1604 |
+
z = arg.args[0]
|
1605 |
+
if z.is_real:
|
1606 |
+
return z
|
1607 |
+
r, i = match_real_imag(z)
|
1608 |
+
if r is not None and i is not None:
|
1609 |
+
f = floor(2*i/pi)
|
1610 |
+
even = f.is_even
|
1611 |
+
m = z - I*f*pi/2
|
1612 |
+
if even is True:
|
1613 |
+
return m
|
1614 |
+
elif even is False:
|
1615 |
+
return m - I*pi/2
|
1616 |
+
|
1617 |
+
@staticmethod
|
1618 |
+
@cacheit
|
1619 |
+
def taylor_term(n, x, *previous_terms):
|
1620 |
+
if n < 0 or n % 2 == 0:
|
1621 |
+
return S.Zero
|
1622 |
+
else:
|
1623 |
+
x = sympify(x)
|
1624 |
+
return x**n / n
|
1625 |
+
|
1626 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # atanh
|
1627 |
+
arg = self.args[0]
|
1628 |
+
x0 = arg.subs(x, 0).cancel()
|
1629 |
+
if x0.is_zero:
|
1630 |
+
return arg.as_leading_term(x)
|
1631 |
+
# Handling branch points
|
1632 |
+
if x0 in (-S.One, S.One, S.ComplexInfinity):
|
1633 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1634 |
+
# Handling points lying on branch cuts (-oo, -1] U [1, oo)
|
1635 |
+
if (1 - x0**2).is_negative:
|
1636 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1637 |
+
if im(ndir).is_negative:
|
1638 |
+
if x0.is_negative:
|
1639 |
+
return self.func(x0) - I*pi
|
1640 |
+
elif im(ndir).is_positive:
|
1641 |
+
if x0.is_positive:
|
1642 |
+
return self.func(x0) + I*pi
|
1643 |
+
else:
|
1644 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1645 |
+
return self.func(x0)
|
1646 |
+
|
1647 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # atanh
|
1648 |
+
arg = self.args[0]
|
1649 |
+
arg0 = arg.subs(x, 0)
|
1650 |
+
|
1651 |
+
# Handling branch points
|
1652 |
+
if arg0 in (S.One, S.NegativeOne):
|
1653 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1654 |
+
|
1655 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
1656 |
+
if arg0 is S.ComplexInfinity:
|
1657 |
+
return res
|
1658 |
+
|
1659 |
+
# Handling points lying on branch cuts (-oo, -1] U [1, oo)
|
1660 |
+
if (1 - arg0**2).is_negative:
|
1661 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1662 |
+
if im(ndir).is_negative:
|
1663 |
+
if arg0.is_negative:
|
1664 |
+
return res - I*pi
|
1665 |
+
elif im(ndir).is_positive:
|
1666 |
+
if arg0.is_positive:
|
1667 |
+
return res + I*pi
|
1668 |
+
else:
|
1669 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1670 |
+
return res
|
1671 |
+
|
1672 |
+
def _eval_rewrite_as_log(self, x, **kwargs):
|
1673 |
+
return (log(1 + x) - log(1 - x)) / 2
|
1674 |
+
|
1675 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
1676 |
+
|
1677 |
+
def _eval_rewrite_as_asinh(self, x, **kwargs):
|
1678 |
+
f = sqrt(1/(x**2 - 1))
|
1679 |
+
return (pi*x/(2*sqrt(-x**2)) -
|
1680 |
+
sqrt(-x)*sqrt(1 - x**2)/sqrt(x)*f*asinh(f))
|
1681 |
+
|
1682 |
+
def _eval_is_zero(self):
|
1683 |
+
if self.args[0].is_zero:
|
1684 |
+
return True
|
1685 |
+
|
1686 |
+
def _eval_is_imaginary(self):
|
1687 |
+
return self.args[0].is_imaginary
|
1688 |
+
|
1689 |
+
def inverse(self, argindex=1):
|
1690 |
+
"""
|
1691 |
+
Returns the inverse of this function.
|
1692 |
+
"""
|
1693 |
+
return tanh
|
1694 |
+
|
1695 |
+
|
1696 |
+
class acoth(InverseHyperbolicFunction):
|
1697 |
+
"""
|
1698 |
+
``acoth(x)`` is the inverse hyperbolic cotangent of ``x``.
|
1699 |
+
|
1700 |
+
The inverse hyperbolic cotangent function.
|
1701 |
+
|
1702 |
+
Examples
|
1703 |
+
========
|
1704 |
+
|
1705 |
+
>>> from sympy import acoth
|
1706 |
+
>>> from sympy.abc import x
|
1707 |
+
>>> acoth(x).diff(x)
|
1708 |
+
1/(1 - x**2)
|
1709 |
+
|
1710 |
+
See Also
|
1711 |
+
========
|
1712 |
+
|
1713 |
+
asinh, acosh, coth
|
1714 |
+
"""
|
1715 |
+
|
1716 |
+
def fdiff(self, argindex=1):
|
1717 |
+
if argindex == 1:
|
1718 |
+
return 1/(1 - self.args[0]**2)
|
1719 |
+
else:
|
1720 |
+
raise ArgumentIndexError(self, argindex)
|
1721 |
+
|
1722 |
+
@classmethod
|
1723 |
+
def eval(cls, arg):
|
1724 |
+
if arg.is_Number:
|
1725 |
+
if arg is S.NaN:
|
1726 |
+
return S.NaN
|
1727 |
+
elif arg is S.Infinity:
|
1728 |
+
return S.Zero
|
1729 |
+
elif arg is S.NegativeInfinity:
|
1730 |
+
return S.Zero
|
1731 |
+
elif arg.is_zero:
|
1732 |
+
return pi*I / 2
|
1733 |
+
elif arg is S.One:
|
1734 |
+
return S.Infinity
|
1735 |
+
elif arg is S.NegativeOne:
|
1736 |
+
return S.NegativeInfinity
|
1737 |
+
elif arg.is_negative:
|
1738 |
+
return -cls(-arg)
|
1739 |
+
else:
|
1740 |
+
if arg is S.ComplexInfinity:
|
1741 |
+
return S.Zero
|
1742 |
+
|
1743 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
1744 |
+
|
1745 |
+
if i_coeff is not None:
|
1746 |
+
return -I * acot(i_coeff)
|
1747 |
+
else:
|
1748 |
+
if arg.could_extract_minus_sign():
|
1749 |
+
return -cls(-arg)
|
1750 |
+
|
1751 |
+
if arg.is_zero:
|
1752 |
+
return pi*I*S.Half
|
1753 |
+
|
1754 |
+
@staticmethod
|
1755 |
+
@cacheit
|
1756 |
+
def taylor_term(n, x, *previous_terms):
|
1757 |
+
if n == 0:
|
1758 |
+
return -I*pi/2
|
1759 |
+
elif n < 0 or n % 2 == 0:
|
1760 |
+
return S.Zero
|
1761 |
+
else:
|
1762 |
+
x = sympify(x)
|
1763 |
+
return x**n / n
|
1764 |
+
|
1765 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acoth
|
1766 |
+
arg = self.args[0]
|
1767 |
+
x0 = arg.subs(x, 0).cancel()
|
1768 |
+
if x0 is S.ComplexInfinity:
|
1769 |
+
return (1/arg).as_leading_term(x)
|
1770 |
+
# Handling branch points
|
1771 |
+
if x0 in (-S.One, S.One, S.Zero):
|
1772 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1773 |
+
# Handling points lying on branch cuts [-1, 1]
|
1774 |
+
if x0.is_real and (1 - x0**2).is_positive:
|
1775 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1776 |
+
if im(ndir).is_negative:
|
1777 |
+
if x0.is_positive:
|
1778 |
+
return self.func(x0) + I*pi
|
1779 |
+
elif im(ndir).is_positive:
|
1780 |
+
if x0.is_negative:
|
1781 |
+
return self.func(x0) - I*pi
|
1782 |
+
else:
|
1783 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1784 |
+
return self.func(x0)
|
1785 |
+
|
1786 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # acoth
|
1787 |
+
arg = self.args[0]
|
1788 |
+
arg0 = arg.subs(x, 0)
|
1789 |
+
|
1790 |
+
# Handling branch points
|
1791 |
+
if arg0 in (S.One, S.NegativeOne):
|
1792 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1793 |
+
|
1794 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
1795 |
+
if arg0 is S.ComplexInfinity:
|
1796 |
+
return res
|
1797 |
+
|
1798 |
+
# Handling points lying on branch cuts [-1, 1]
|
1799 |
+
if arg0.is_real and (1 - arg0**2).is_positive:
|
1800 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1801 |
+
if im(ndir).is_negative:
|
1802 |
+
if arg0.is_positive:
|
1803 |
+
return res + I*pi
|
1804 |
+
elif im(ndir).is_positive:
|
1805 |
+
if arg0.is_negative:
|
1806 |
+
return res - I*pi
|
1807 |
+
else:
|
1808 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1809 |
+
return res
|
1810 |
+
|
1811 |
+
def _eval_rewrite_as_log(self, x, **kwargs):
|
1812 |
+
return (log(1 + 1/x) - log(1 - 1/x)) / 2
|
1813 |
+
|
1814 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
1815 |
+
|
1816 |
+
def _eval_rewrite_as_atanh(self, x, **kwargs):
|
1817 |
+
return atanh(1/x)
|
1818 |
+
|
1819 |
+
def _eval_rewrite_as_asinh(self, x, **kwargs):
|
1820 |
+
return (pi*I/2*(sqrt((x - 1)/x)*sqrt(x/(x - 1)) - sqrt(1 + 1/x)*sqrt(x/(x + 1))) +
|
1821 |
+
x*sqrt(1/x**2)*asinh(sqrt(1/(x**2 - 1))))
|
1822 |
+
|
1823 |
+
def inverse(self, argindex=1):
|
1824 |
+
"""
|
1825 |
+
Returns the inverse of this function.
|
1826 |
+
"""
|
1827 |
+
return coth
|
1828 |
+
|
1829 |
+
|
1830 |
+
class asech(InverseHyperbolicFunction):
|
1831 |
+
"""
|
1832 |
+
``asech(x)`` is the inverse hyperbolic secant of ``x``.
|
1833 |
+
|
1834 |
+
The inverse hyperbolic secant function.
|
1835 |
+
|
1836 |
+
Examples
|
1837 |
+
========
|
1838 |
+
|
1839 |
+
>>> from sympy import asech, sqrt, S
|
1840 |
+
>>> from sympy.abc import x
|
1841 |
+
>>> asech(x).diff(x)
|
1842 |
+
-1/(x*sqrt(1 - x**2))
|
1843 |
+
>>> asech(1).diff(x)
|
1844 |
+
0
|
1845 |
+
>>> asech(1)
|
1846 |
+
0
|
1847 |
+
>>> asech(S(2))
|
1848 |
+
I*pi/3
|
1849 |
+
>>> asech(-sqrt(2))
|
1850 |
+
3*I*pi/4
|
1851 |
+
>>> asech((sqrt(6) - sqrt(2)))
|
1852 |
+
I*pi/12
|
1853 |
+
|
1854 |
+
See Also
|
1855 |
+
========
|
1856 |
+
|
1857 |
+
asinh, atanh, cosh, acoth
|
1858 |
+
|
1859 |
+
References
|
1860 |
+
==========
|
1861 |
+
|
1862 |
+
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
|
1863 |
+
.. [2] https://dlmf.nist.gov/4.37
|
1864 |
+
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcSech/
|
1865 |
+
|
1866 |
+
"""
|
1867 |
+
|
1868 |
+
def fdiff(self, argindex=1):
|
1869 |
+
if argindex == 1:
|
1870 |
+
z = self.args[0]
|
1871 |
+
return -1/(z*sqrt(1 - z**2))
|
1872 |
+
else:
|
1873 |
+
raise ArgumentIndexError(self, argindex)
|
1874 |
+
|
1875 |
+
@classmethod
|
1876 |
+
def eval(cls, arg):
|
1877 |
+
if arg.is_Number:
|
1878 |
+
if arg is S.NaN:
|
1879 |
+
return S.NaN
|
1880 |
+
elif arg is S.Infinity:
|
1881 |
+
return pi*I / 2
|
1882 |
+
elif arg is S.NegativeInfinity:
|
1883 |
+
return pi*I / 2
|
1884 |
+
elif arg.is_zero:
|
1885 |
+
return S.Infinity
|
1886 |
+
elif arg is S.One:
|
1887 |
+
return S.Zero
|
1888 |
+
elif arg is S.NegativeOne:
|
1889 |
+
return pi*I
|
1890 |
+
|
1891 |
+
if arg.is_number:
|
1892 |
+
cst_table = _asech_table()
|
1893 |
+
|
1894 |
+
if arg in cst_table:
|
1895 |
+
if arg.is_extended_real:
|
1896 |
+
return cst_table[arg]*I
|
1897 |
+
return cst_table[arg]
|
1898 |
+
|
1899 |
+
if arg is S.ComplexInfinity:
|
1900 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
1901 |
+
return I*AccumBounds(-pi/2, pi/2)
|
1902 |
+
|
1903 |
+
if arg.is_zero:
|
1904 |
+
return S.Infinity
|
1905 |
+
|
1906 |
+
@staticmethod
|
1907 |
+
@cacheit
|
1908 |
+
def taylor_term(n, x, *previous_terms):
|
1909 |
+
if n == 0:
|
1910 |
+
return log(2 / x)
|
1911 |
+
elif n < 0 or n % 2 == 1:
|
1912 |
+
return S.Zero
|
1913 |
+
else:
|
1914 |
+
x = sympify(x)
|
1915 |
+
if len(previous_terms) > 2 and n > 2:
|
1916 |
+
p = previous_terms[-2]
|
1917 |
+
return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
|
1918 |
+
else:
|
1919 |
+
k = n // 2
|
1920 |
+
R = RisingFactorial(S.Half, k) * n
|
1921 |
+
F = factorial(k) * n // 2 * n // 2
|
1922 |
+
return -1 * R / F * x**n / 4
|
1923 |
+
|
1924 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asech
|
1925 |
+
arg = self.args[0]
|
1926 |
+
x0 = arg.subs(x, 0).cancel()
|
1927 |
+
# Handling branch points
|
1928 |
+
if x0 in (-S.One, S.Zero, S.One, S.ComplexInfinity):
|
1929 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1930 |
+
# Handling points lying on branch cuts (-oo, 0] U (1, oo)
|
1931 |
+
if x0.is_negative or (1 - x0).is_negative:
|
1932 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1933 |
+
if im(ndir).is_positive:
|
1934 |
+
if x0.is_positive or (x0 + 1).is_negative:
|
1935 |
+
return -self.func(x0)
|
1936 |
+
return self.func(x0) - 2*I*pi
|
1937 |
+
elif not im(ndir).is_negative:
|
1938 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1939 |
+
return self.func(x0)
|
1940 |
+
|
1941 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # asech
|
1942 |
+
from sympy.series.order import O
|
1943 |
+
arg = self.args[0]
|
1944 |
+
arg0 = arg.subs(x, 0)
|
1945 |
+
|
1946 |
+
# Handling branch points
|
1947 |
+
if arg0 is S.One:
|
1948 |
+
t = Dummy('t', positive=True)
|
1949 |
+
ser = asech(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
|
1950 |
+
arg1 = S.One - self.args[0]
|
1951 |
+
f = arg1.as_leading_term(x)
|
1952 |
+
g = (arg1 - f)/ f
|
1953 |
+
if not g.is_meromorphic(x, 0): # cannot be expanded
|
1954 |
+
return O(1) if n == 0 else O(sqrt(x))
|
1955 |
+
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
|
1956 |
+
res = (res1.removeO()*sqrt(f)).expand()
|
1957 |
+
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
|
1958 |
+
|
1959 |
+
if arg0 is S.NegativeOne:
|
1960 |
+
t = Dummy('t', positive=True)
|
1961 |
+
ser = asech(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
|
1962 |
+
arg1 = S.One + self.args[0]
|
1963 |
+
f = arg1.as_leading_term(x)
|
1964 |
+
g = (arg1 - f)/ f
|
1965 |
+
if not g.is_meromorphic(x, 0): # cannot be expanded
|
1966 |
+
return O(1) if n == 0 else I*pi + O(sqrt(x))
|
1967 |
+
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
|
1968 |
+
res = (res1.removeO()*sqrt(f)).expand()
|
1969 |
+
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
|
1970 |
+
|
1971 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
1972 |
+
if arg0 is S.ComplexInfinity:
|
1973 |
+
return res
|
1974 |
+
|
1975 |
+
# Handling points lying on branch cuts (-oo, 0] U (1, oo)
|
1976 |
+
if arg0.is_negative or (1 - arg0).is_negative:
|
1977 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1978 |
+
if im(ndir).is_positive:
|
1979 |
+
if arg0.is_positive or (arg0 + 1).is_negative:
|
1980 |
+
return -res
|
1981 |
+
return res - 2*I*pi
|
1982 |
+
elif not im(ndir).is_negative:
|
1983 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1984 |
+
return res
|
1985 |
+
|
1986 |
+
def inverse(self, argindex=1):
|
1987 |
+
"""
|
1988 |
+
Returns the inverse of this function.
|
1989 |
+
"""
|
1990 |
+
return sech
|
1991 |
+
|
1992 |
+
def _eval_rewrite_as_log(self, arg, **kwargs):
|
1993 |
+
return log(1/arg + sqrt(1/arg - 1) * sqrt(1/arg + 1))
|
1994 |
+
|
1995 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
1996 |
+
|
1997 |
+
def _eval_rewrite_as_acosh(self, arg, **kwargs):
|
1998 |
+
return acosh(1/arg)
|
1999 |
+
|
2000 |
+
def _eval_rewrite_as_asinh(self, arg, **kwargs):
|
2001 |
+
return sqrt(1/arg - 1)/sqrt(1 - 1/arg)*(I*asinh(I/arg)
|
2002 |
+
+ pi*S.Half)
|
2003 |
+
|
2004 |
+
def _eval_rewrite_as_atanh(self, x, **kwargs):
|
2005 |
+
return (I*pi*(1 - sqrt(x)*sqrt(1/x) - I/2*sqrt(-x)/sqrt(x) - I/2*sqrt(x**2)/sqrt(-x**2))
|
2006 |
+
+ sqrt(1/(x + 1))*sqrt(x + 1)*atanh(sqrt(1 - x**2)))
|
2007 |
+
|
2008 |
+
def _eval_rewrite_as_acsch(self, x, **kwargs):
|
2009 |
+
return sqrt(1/x - 1)/sqrt(1 - 1/x)*(pi/2 - I*acsch(I*x))
|
2010 |
+
|
2011 |
+
|
2012 |
+
class acsch(InverseHyperbolicFunction):
|
2013 |
+
"""
|
2014 |
+
``acsch(x)`` is the inverse hyperbolic cosecant of ``x``.
|
2015 |
+
|
2016 |
+
The inverse hyperbolic cosecant function.
|
2017 |
+
|
2018 |
+
Examples
|
2019 |
+
========
|
2020 |
+
|
2021 |
+
>>> from sympy import acsch, sqrt, I
|
2022 |
+
>>> from sympy.abc import x
|
2023 |
+
>>> acsch(x).diff(x)
|
2024 |
+
-1/(x**2*sqrt(1 + x**(-2)))
|
2025 |
+
>>> acsch(1).diff(x)
|
2026 |
+
0
|
2027 |
+
>>> acsch(1)
|
2028 |
+
log(1 + sqrt(2))
|
2029 |
+
>>> acsch(I)
|
2030 |
+
-I*pi/2
|
2031 |
+
>>> acsch(-2*I)
|
2032 |
+
I*pi/6
|
2033 |
+
>>> acsch(I*(sqrt(6) - sqrt(2)))
|
2034 |
+
-5*I*pi/12
|
2035 |
+
|
2036 |
+
See Also
|
2037 |
+
========
|
2038 |
+
|
2039 |
+
asinh
|
2040 |
+
|
2041 |
+
References
|
2042 |
+
==========
|
2043 |
+
|
2044 |
+
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
|
2045 |
+
.. [2] https://dlmf.nist.gov/4.37
|
2046 |
+
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcCsch/
|
2047 |
+
|
2048 |
+
"""
|
2049 |
+
|
2050 |
+
def fdiff(self, argindex=1):
|
2051 |
+
if argindex == 1:
|
2052 |
+
z = self.args[0]
|
2053 |
+
return -1/(z**2*sqrt(1 + 1/z**2))
|
2054 |
+
else:
|
2055 |
+
raise ArgumentIndexError(self, argindex)
|
2056 |
+
|
2057 |
+
@classmethod
|
2058 |
+
def eval(cls, arg):
|
2059 |
+
if arg.is_Number:
|
2060 |
+
if arg is S.NaN:
|
2061 |
+
return S.NaN
|
2062 |
+
elif arg is S.Infinity:
|
2063 |
+
return S.Zero
|
2064 |
+
elif arg is S.NegativeInfinity:
|
2065 |
+
return S.Zero
|
2066 |
+
elif arg.is_zero:
|
2067 |
+
return S.ComplexInfinity
|
2068 |
+
elif arg is S.One:
|
2069 |
+
return log(1 + sqrt(2))
|
2070 |
+
elif arg is S.NegativeOne:
|
2071 |
+
return - log(1 + sqrt(2))
|
2072 |
+
|
2073 |
+
if arg.is_number:
|
2074 |
+
cst_table = _acsch_table()
|
2075 |
+
|
2076 |
+
if arg in cst_table:
|
2077 |
+
return cst_table[arg]*I
|
2078 |
+
|
2079 |
+
if arg is S.ComplexInfinity:
|
2080 |
+
return S.Zero
|
2081 |
+
|
2082 |
+
if arg.is_infinite:
|
2083 |
+
return S.Zero
|
2084 |
+
|
2085 |
+
if arg.is_zero:
|
2086 |
+
return S.ComplexInfinity
|
2087 |
+
|
2088 |
+
if arg.could_extract_minus_sign():
|
2089 |
+
return -cls(-arg)
|
2090 |
+
|
2091 |
+
@staticmethod
|
2092 |
+
@cacheit
|
2093 |
+
def taylor_term(n, x, *previous_terms):
|
2094 |
+
if n == 0:
|
2095 |
+
return log(2 / x)
|
2096 |
+
elif n < 0 or n % 2 == 1:
|
2097 |
+
return S.Zero
|
2098 |
+
else:
|
2099 |
+
x = sympify(x)
|
2100 |
+
if len(previous_terms) > 2 and n > 2:
|
2101 |
+
p = previous_terms[-2]
|
2102 |
+
return -p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
|
2103 |
+
else:
|
2104 |
+
k = n // 2
|
2105 |
+
R = RisingFactorial(S.Half, k) * n
|
2106 |
+
F = factorial(k) * n // 2 * n // 2
|
2107 |
+
return S.NegativeOne**(k +1) * R / F * x**n / 4
|
2108 |
+
|
2109 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acsch
|
2110 |
+
arg = self.args[0]
|
2111 |
+
x0 = arg.subs(x, 0).cancel()
|
2112 |
+
# Handling branch points
|
2113 |
+
if x0 in (-I, I, S.Zero):
|
2114 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
2115 |
+
if x0 is S.ComplexInfinity:
|
2116 |
+
return (1/arg).as_leading_term(x)
|
2117 |
+
# Handling points lying on branch cuts (-I, I)
|
2118 |
+
if x0.is_imaginary and (1 + x0**2).is_positive:
|
2119 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
2120 |
+
if re(ndir).is_positive:
|
2121 |
+
if im(x0).is_positive:
|
2122 |
+
return -self.func(x0) - I*pi
|
2123 |
+
elif re(ndir).is_negative:
|
2124 |
+
if im(x0).is_negative:
|
2125 |
+
return -self.func(x0) + I*pi
|
2126 |
+
else:
|
2127 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
2128 |
+
return self.func(x0)
|
2129 |
+
|
2130 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # acsch
|
2131 |
+
from sympy.series.order import O
|
2132 |
+
arg = self.args[0]
|
2133 |
+
arg0 = arg.subs(x, 0)
|
2134 |
+
|
2135 |
+
# Handling branch points
|
2136 |
+
if arg0 is I:
|
2137 |
+
t = Dummy('t', positive=True)
|
2138 |
+
ser = acsch(I + t**2).rewrite(log).nseries(t, 0, 2*n)
|
2139 |
+
arg1 = -I + self.args[0]
|
2140 |
+
f = arg1.as_leading_term(x)
|
2141 |
+
g = (arg1 - f)/ f
|
2142 |
+
if not g.is_meromorphic(x, 0): # cannot be expanded
|
2143 |
+
return O(1) if n == 0 else -I*pi/2 + O(sqrt(x))
|
2144 |
+
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
|
2145 |
+
res = (res1.removeO()*sqrt(f)).expand()
|
2146 |
+
res = ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
|
2147 |
+
return res
|
2148 |
+
|
2149 |
+
if arg0 == S.NegativeOne*I:
|
2150 |
+
t = Dummy('t', positive=True)
|
2151 |
+
ser = acsch(-I + t**2).rewrite(log).nseries(t, 0, 2*n)
|
2152 |
+
arg1 = I + self.args[0]
|
2153 |
+
f = arg1.as_leading_term(x)
|
2154 |
+
g = (arg1 - f)/ f
|
2155 |
+
if not g.is_meromorphic(x, 0): # cannot be expanded
|
2156 |
+
return O(1) if n == 0 else I*pi/2 + O(sqrt(x))
|
2157 |
+
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
|
2158 |
+
res = (res1.removeO()*sqrt(f)).expand()
|
2159 |
+
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
|
2160 |
+
|
2161 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
2162 |
+
if arg0 is S.ComplexInfinity:
|
2163 |
+
return res
|
2164 |
+
|
2165 |
+
# Handling points lying on branch cuts (-I, I)
|
2166 |
+
if arg0.is_imaginary and (1 + arg0**2).is_positive:
|
2167 |
+
ndir = self.args[0].dir(x, cdir if cdir else 1)
|
2168 |
+
if re(ndir).is_positive:
|
2169 |
+
if im(arg0).is_positive:
|
2170 |
+
return -res - I*pi
|
2171 |
+
elif re(ndir).is_negative:
|
2172 |
+
if im(arg0).is_negative:
|
2173 |
+
return -res + I*pi
|
2174 |
+
else:
|
2175 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
2176 |
+
return res
|
2177 |
+
|
2178 |
+
def inverse(self, argindex=1):
|
2179 |
+
"""
|
2180 |
+
Returns the inverse of this function.
|
2181 |
+
"""
|
2182 |
+
return csch
|
2183 |
+
|
2184 |
+
def _eval_rewrite_as_log(self, arg, **kwargs):
|
2185 |
+
return log(1/arg + sqrt(1/arg**2 + 1))
|
2186 |
+
|
2187 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
2188 |
+
|
2189 |
+
def _eval_rewrite_as_asinh(self, arg, **kwargs):
|
2190 |
+
return asinh(1/arg)
|
2191 |
+
|
2192 |
+
def _eval_rewrite_as_acosh(self, arg, **kwargs):
|
2193 |
+
return I*(sqrt(1 - I/arg)/sqrt(I/arg - 1)*
|
2194 |
+
acosh(I/arg) - pi*S.Half)
|
2195 |
+
|
2196 |
+
def _eval_rewrite_as_atanh(self, arg, **kwargs):
|
2197 |
+
arg2 = arg**2
|
2198 |
+
arg2p1 = arg2 + 1
|
2199 |
+
return sqrt(-arg2)/arg*(pi*S.Half -
|
2200 |
+
sqrt(-arg2p1**2)/arg2p1*atanh(sqrt(arg2p1)))
|
2201 |
+
|
2202 |
+
def _eval_is_zero(self):
|
2203 |
+
return self.args[0].is_infinite
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/miscellaneous.py
ADDED
@@ -0,0 +1,915 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Function, S, sympify, NumberKind
|
2 |
+
from sympy.utilities.iterables import sift
|
3 |
+
from sympy.core.add import Add
|
4 |
+
from sympy.core.containers import Tuple
|
5 |
+
from sympy.core.operations import LatticeOp, ShortCircuit
|
6 |
+
from sympy.core.function import (Application, Lambda,
|
7 |
+
ArgumentIndexError)
|
8 |
+
from sympy.core.expr import Expr
|
9 |
+
from sympy.core.exprtools import factor_terms
|
10 |
+
from sympy.core.mod import Mod
|
11 |
+
from sympy.core.mul import Mul
|
12 |
+
from sympy.core.numbers import Rational
|
13 |
+
from sympy.core.power import Pow
|
14 |
+
from sympy.core.relational import Eq, Relational
|
15 |
+
from sympy.core.singleton import Singleton
|
16 |
+
from sympy.core.sorting import ordered
|
17 |
+
from sympy.core.symbol import Dummy
|
18 |
+
from sympy.core.rules import Transform
|
19 |
+
from sympy.core.logic import fuzzy_and, fuzzy_or, _torf
|
20 |
+
from sympy.core.traversal import walk
|
21 |
+
from sympy.core.numbers import Integer
|
22 |
+
from sympy.logic.boolalg import And, Or
|
23 |
+
|
24 |
+
|
25 |
+
def _minmax_as_Piecewise(op, *args):
|
26 |
+
# helper for Min/Max rewrite as Piecewise
|
27 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
28 |
+
ec = []
|
29 |
+
for i, a in enumerate(args):
|
30 |
+
c = [Relational(a, args[j], op) for j in range(i + 1, len(args))]
|
31 |
+
ec.append((a, And(*c)))
|
32 |
+
return Piecewise(*ec)
|
33 |
+
|
34 |
+
|
35 |
+
class IdentityFunction(Lambda, metaclass=Singleton):
|
36 |
+
"""
|
37 |
+
The identity function
|
38 |
+
|
39 |
+
Examples
|
40 |
+
========
|
41 |
+
|
42 |
+
>>> from sympy import Id, Symbol
|
43 |
+
>>> x = Symbol('x')
|
44 |
+
>>> Id(x)
|
45 |
+
x
|
46 |
+
|
47 |
+
"""
|
48 |
+
|
49 |
+
_symbol = Dummy('x')
|
50 |
+
|
51 |
+
@property
|
52 |
+
def signature(self):
|
53 |
+
return Tuple(self._symbol)
|
54 |
+
|
55 |
+
@property
|
56 |
+
def expr(self):
|
57 |
+
return self._symbol
|
58 |
+
|
59 |
+
|
60 |
+
Id = S.IdentityFunction
|
61 |
+
|
62 |
+
###############################################################################
|
63 |
+
############################# ROOT and SQUARE ROOT FUNCTION ###################
|
64 |
+
###############################################################################
|
65 |
+
|
66 |
+
|
67 |
+
def sqrt(arg, evaluate=None):
|
68 |
+
"""Returns the principal square root.
|
69 |
+
|
70 |
+
Parameters
|
71 |
+
==========
|
72 |
+
|
73 |
+
evaluate : bool, optional
|
74 |
+
The parameter determines if the expression should be evaluated.
|
75 |
+
If ``None``, its value is taken from
|
76 |
+
``global_parameters.evaluate``.
|
77 |
+
|
78 |
+
Examples
|
79 |
+
========
|
80 |
+
|
81 |
+
>>> from sympy import sqrt, Symbol, S
|
82 |
+
>>> x = Symbol('x')
|
83 |
+
|
84 |
+
>>> sqrt(x)
|
85 |
+
sqrt(x)
|
86 |
+
|
87 |
+
>>> sqrt(x)**2
|
88 |
+
x
|
89 |
+
|
90 |
+
Note that sqrt(x**2) does not simplify to x.
|
91 |
+
|
92 |
+
>>> sqrt(x**2)
|
93 |
+
sqrt(x**2)
|
94 |
+
|
95 |
+
This is because the two are not equal to each other in general.
|
96 |
+
For example, consider x == -1:
|
97 |
+
|
98 |
+
>>> from sympy import Eq
|
99 |
+
>>> Eq(sqrt(x**2), x).subs(x, -1)
|
100 |
+
False
|
101 |
+
|
102 |
+
This is because sqrt computes the principal square root, so the square may
|
103 |
+
put the argument in a different branch. This identity does hold if x is
|
104 |
+
positive:
|
105 |
+
|
106 |
+
>>> y = Symbol('y', positive=True)
|
107 |
+
>>> sqrt(y**2)
|
108 |
+
y
|
109 |
+
|
110 |
+
You can force this simplification by using the powdenest() function with
|
111 |
+
the force option set to True:
|
112 |
+
|
113 |
+
>>> from sympy import powdenest
|
114 |
+
>>> sqrt(x**2)
|
115 |
+
sqrt(x**2)
|
116 |
+
>>> powdenest(sqrt(x**2), force=True)
|
117 |
+
x
|
118 |
+
|
119 |
+
To get both branches of the square root you can use the rootof function:
|
120 |
+
|
121 |
+
>>> from sympy import rootof
|
122 |
+
|
123 |
+
>>> [rootof(x**2-3,i) for i in (0,1)]
|
124 |
+
[-sqrt(3), sqrt(3)]
|
125 |
+
|
126 |
+
Although ``sqrt`` is printed, there is no ``sqrt`` function so looking for
|
127 |
+
``sqrt`` in an expression will fail:
|
128 |
+
|
129 |
+
>>> from sympy.utilities.misc import func_name
|
130 |
+
>>> func_name(sqrt(x))
|
131 |
+
'Pow'
|
132 |
+
>>> sqrt(x).has(sqrt)
|
133 |
+
False
|
134 |
+
|
135 |
+
To find ``sqrt`` look for ``Pow`` with an exponent of ``1/2``:
|
136 |
+
|
137 |
+
>>> (x + 1/sqrt(x)).find(lambda i: i.is_Pow and abs(i.exp) is S.Half)
|
138 |
+
{1/sqrt(x)}
|
139 |
+
|
140 |
+
See Also
|
141 |
+
========
|
142 |
+
|
143 |
+
sympy.polys.rootoftools.rootof, root, real_root
|
144 |
+
|
145 |
+
References
|
146 |
+
==========
|
147 |
+
|
148 |
+
.. [1] https://en.wikipedia.org/wiki/Square_root
|
149 |
+
.. [2] https://en.wikipedia.org/wiki/Principal_value
|
150 |
+
"""
|
151 |
+
# arg = sympify(arg) is handled by Pow
|
152 |
+
return Pow(arg, S.Half, evaluate=evaluate)
|
153 |
+
|
154 |
+
|
155 |
+
def cbrt(arg, evaluate=None):
|
156 |
+
"""Returns the principal cube root.
|
157 |
+
|
158 |
+
Parameters
|
159 |
+
==========
|
160 |
+
|
161 |
+
evaluate : bool, optional
|
162 |
+
The parameter determines if the expression should be evaluated.
|
163 |
+
If ``None``, its value is taken from
|
164 |
+
``global_parameters.evaluate``.
|
165 |
+
|
166 |
+
Examples
|
167 |
+
========
|
168 |
+
|
169 |
+
>>> from sympy import cbrt, Symbol
|
170 |
+
>>> x = Symbol('x')
|
171 |
+
|
172 |
+
>>> cbrt(x)
|
173 |
+
x**(1/3)
|
174 |
+
|
175 |
+
>>> cbrt(x)**3
|
176 |
+
x
|
177 |
+
|
178 |
+
Note that cbrt(x**3) does not simplify to x.
|
179 |
+
|
180 |
+
>>> cbrt(x**3)
|
181 |
+
(x**3)**(1/3)
|
182 |
+
|
183 |
+
This is because the two are not equal to each other in general.
|
184 |
+
For example, consider `x == -1`:
|
185 |
+
|
186 |
+
>>> from sympy import Eq
|
187 |
+
>>> Eq(cbrt(x**3), x).subs(x, -1)
|
188 |
+
False
|
189 |
+
|
190 |
+
This is because cbrt computes the principal cube root, this
|
191 |
+
identity does hold if `x` is positive:
|
192 |
+
|
193 |
+
>>> y = Symbol('y', positive=True)
|
194 |
+
>>> cbrt(y**3)
|
195 |
+
y
|
196 |
+
|
197 |
+
See Also
|
198 |
+
========
|
199 |
+
|
200 |
+
sympy.polys.rootoftools.rootof, root, real_root
|
201 |
+
|
202 |
+
References
|
203 |
+
==========
|
204 |
+
|
205 |
+
.. [1] https://en.wikipedia.org/wiki/Cube_root
|
206 |
+
.. [2] https://en.wikipedia.org/wiki/Principal_value
|
207 |
+
|
208 |
+
"""
|
209 |
+
return Pow(arg, Rational(1, 3), evaluate=evaluate)
|
210 |
+
|
211 |
+
|
212 |
+
def root(arg, n, k=0, evaluate=None):
|
213 |
+
r"""Returns the *k*-th *n*-th root of ``arg``.
|
214 |
+
|
215 |
+
Parameters
|
216 |
+
==========
|
217 |
+
|
218 |
+
k : int, optional
|
219 |
+
Should be an integer in $\{0, 1, ..., n-1\}$.
|
220 |
+
Defaults to the principal root if $0$.
|
221 |
+
|
222 |
+
evaluate : bool, optional
|
223 |
+
The parameter determines if the expression should be evaluated.
|
224 |
+
If ``None``, its value is taken from
|
225 |
+
``global_parameters.evaluate``.
|
226 |
+
|
227 |
+
Examples
|
228 |
+
========
|
229 |
+
|
230 |
+
>>> from sympy import root, Rational
|
231 |
+
>>> from sympy.abc import x, n
|
232 |
+
|
233 |
+
>>> root(x, 2)
|
234 |
+
sqrt(x)
|
235 |
+
|
236 |
+
>>> root(x, 3)
|
237 |
+
x**(1/3)
|
238 |
+
|
239 |
+
>>> root(x, n)
|
240 |
+
x**(1/n)
|
241 |
+
|
242 |
+
>>> root(x, -Rational(2, 3))
|
243 |
+
x**(-3/2)
|
244 |
+
|
245 |
+
To get the k-th n-th root, specify k:
|
246 |
+
|
247 |
+
>>> root(-2, 3, 2)
|
248 |
+
-(-1)**(2/3)*2**(1/3)
|
249 |
+
|
250 |
+
To get all n n-th roots you can use the rootof function.
|
251 |
+
The following examples show the roots of unity for n
|
252 |
+
equal 2, 3 and 4:
|
253 |
+
|
254 |
+
>>> from sympy import rootof
|
255 |
+
|
256 |
+
>>> [rootof(x**2 - 1, i) for i in range(2)]
|
257 |
+
[-1, 1]
|
258 |
+
|
259 |
+
>>> [rootof(x**3 - 1,i) for i in range(3)]
|
260 |
+
[1, -1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2]
|
261 |
+
|
262 |
+
>>> [rootof(x**4 - 1,i) for i in range(4)]
|
263 |
+
[-1, 1, -I, I]
|
264 |
+
|
265 |
+
SymPy, like other symbolic algebra systems, returns the
|
266 |
+
complex root of negative numbers. This is the principal
|
267 |
+
root and differs from the text-book result that one might
|
268 |
+
be expecting. For example, the cube root of -8 does not
|
269 |
+
come back as -2:
|
270 |
+
|
271 |
+
>>> root(-8, 3)
|
272 |
+
2*(-1)**(1/3)
|
273 |
+
|
274 |
+
The real_root function can be used to either make the principal
|
275 |
+
result real (or simply to return the real root directly):
|
276 |
+
|
277 |
+
>>> from sympy import real_root
|
278 |
+
>>> real_root(_)
|
279 |
+
-2
|
280 |
+
>>> real_root(-32, 5)
|
281 |
+
-2
|
282 |
+
|
283 |
+
Alternatively, the n//2-th n-th root of a negative number can be
|
284 |
+
computed with root:
|
285 |
+
|
286 |
+
>>> root(-32, 5, 5//2)
|
287 |
+
-2
|
288 |
+
|
289 |
+
See Also
|
290 |
+
========
|
291 |
+
|
292 |
+
sympy.polys.rootoftools.rootof
|
293 |
+
sympy.core.power.integer_nthroot
|
294 |
+
sqrt, real_root
|
295 |
+
|
296 |
+
References
|
297 |
+
==========
|
298 |
+
|
299 |
+
.. [1] https://en.wikipedia.org/wiki/Square_root
|
300 |
+
.. [2] https://en.wikipedia.org/wiki/Real_root
|
301 |
+
.. [3] https://en.wikipedia.org/wiki/Root_of_unity
|
302 |
+
.. [4] https://en.wikipedia.org/wiki/Principal_value
|
303 |
+
.. [5] https://mathworld.wolfram.com/CubeRoot.html
|
304 |
+
|
305 |
+
"""
|
306 |
+
n = sympify(n)
|
307 |
+
if k:
|
308 |
+
return Mul(Pow(arg, S.One/n, evaluate=evaluate), S.NegativeOne**(2*k/n), evaluate=evaluate)
|
309 |
+
return Pow(arg, 1/n, evaluate=evaluate)
|
310 |
+
|
311 |
+
|
312 |
+
def real_root(arg, n=None, evaluate=None):
|
313 |
+
r"""Return the real *n*'th-root of *arg* if possible.
|
314 |
+
|
315 |
+
Parameters
|
316 |
+
==========
|
317 |
+
|
318 |
+
n : int or None, optional
|
319 |
+
If *n* is ``None``, then all instances of
|
320 |
+
$(-n)^{1/\text{odd}}$ will be changed to $-n^{1/\text{odd}}$.
|
321 |
+
This will only create a real root of a principal root.
|
322 |
+
The presence of other factors may cause the result to not be
|
323 |
+
real.
|
324 |
+
|
325 |
+
evaluate : bool, optional
|
326 |
+
The parameter determines if the expression should be evaluated.
|
327 |
+
If ``None``, its value is taken from
|
328 |
+
``global_parameters.evaluate``.
|
329 |
+
|
330 |
+
Examples
|
331 |
+
========
|
332 |
+
|
333 |
+
>>> from sympy import root, real_root
|
334 |
+
|
335 |
+
>>> real_root(-8, 3)
|
336 |
+
-2
|
337 |
+
>>> root(-8, 3)
|
338 |
+
2*(-1)**(1/3)
|
339 |
+
>>> real_root(_)
|
340 |
+
-2
|
341 |
+
|
342 |
+
If one creates a non-principal root and applies real_root, the
|
343 |
+
result will not be real (so use with caution):
|
344 |
+
|
345 |
+
>>> root(-8, 3, 2)
|
346 |
+
-2*(-1)**(2/3)
|
347 |
+
>>> real_root(_)
|
348 |
+
-2*(-1)**(2/3)
|
349 |
+
|
350 |
+
See Also
|
351 |
+
========
|
352 |
+
|
353 |
+
sympy.polys.rootoftools.rootof
|
354 |
+
sympy.core.power.integer_nthroot
|
355 |
+
root, sqrt
|
356 |
+
"""
|
357 |
+
from sympy.functions.elementary.complexes import Abs, im, sign
|
358 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
359 |
+
if n is not None:
|
360 |
+
return Piecewise(
|
361 |
+
(root(arg, n, evaluate=evaluate), Or(Eq(n, S.One), Eq(n, S.NegativeOne))),
|
362 |
+
(Mul(sign(arg), root(Abs(arg), n, evaluate=evaluate), evaluate=evaluate),
|
363 |
+
And(Eq(im(arg), S.Zero), Eq(Mod(n, 2), S.One))),
|
364 |
+
(root(arg, n, evaluate=evaluate), True))
|
365 |
+
rv = sympify(arg)
|
366 |
+
n1pow = Transform(lambda x: -(-x.base)**x.exp,
|
367 |
+
lambda x:
|
368 |
+
x.is_Pow and
|
369 |
+
x.base.is_negative and
|
370 |
+
x.exp.is_Rational and
|
371 |
+
x.exp.p == 1 and x.exp.q % 2)
|
372 |
+
return rv.xreplace(n1pow)
|
373 |
+
|
374 |
+
###############################################################################
|
375 |
+
############################# MINIMUM and MAXIMUM #############################
|
376 |
+
###############################################################################
|
377 |
+
|
378 |
+
|
379 |
+
class MinMaxBase(Expr, LatticeOp):
|
380 |
+
def __new__(cls, *args, **assumptions):
|
381 |
+
from sympy.core.parameters import global_parameters
|
382 |
+
evaluate = assumptions.pop('evaluate', global_parameters.evaluate)
|
383 |
+
args = (sympify(arg) for arg in args)
|
384 |
+
|
385 |
+
# first standard filter, for cls.zero and cls.identity
|
386 |
+
# also reshape Max(a, Max(b, c)) to Max(a, b, c)
|
387 |
+
|
388 |
+
if evaluate:
|
389 |
+
try:
|
390 |
+
args = frozenset(cls._new_args_filter(args))
|
391 |
+
except ShortCircuit:
|
392 |
+
return cls.zero
|
393 |
+
# remove redundant args that are easily identified
|
394 |
+
args = cls._collapse_arguments(args, **assumptions)
|
395 |
+
# find local zeros
|
396 |
+
args = cls._find_localzeros(args, **assumptions)
|
397 |
+
args = frozenset(args)
|
398 |
+
|
399 |
+
if not args:
|
400 |
+
return cls.identity
|
401 |
+
|
402 |
+
if len(args) == 1:
|
403 |
+
return list(args).pop()
|
404 |
+
|
405 |
+
# base creation
|
406 |
+
obj = Expr.__new__(cls, *ordered(args), **assumptions)
|
407 |
+
obj._argset = args
|
408 |
+
return obj
|
409 |
+
|
410 |
+
@classmethod
|
411 |
+
def _collapse_arguments(cls, args, **assumptions):
|
412 |
+
"""Remove redundant args.
|
413 |
+
|
414 |
+
Examples
|
415 |
+
========
|
416 |
+
|
417 |
+
>>> from sympy import Min, Max
|
418 |
+
>>> from sympy.abc import a, b, c, d, e
|
419 |
+
|
420 |
+
Any arg in parent that appears in any
|
421 |
+
parent-like function in any of the flat args
|
422 |
+
of parent can be removed from that sub-arg:
|
423 |
+
|
424 |
+
>>> Min(a, Max(b, Min(a, c, d)))
|
425 |
+
Min(a, Max(b, Min(c, d)))
|
426 |
+
|
427 |
+
If the arg of parent appears in an opposite-than parent
|
428 |
+
function in any of the flat args of parent that function
|
429 |
+
can be replaced with the arg:
|
430 |
+
|
431 |
+
>>> Min(a, Max(b, Min(c, d, Max(a, e))))
|
432 |
+
Min(a, Max(b, Min(a, c, d)))
|
433 |
+
"""
|
434 |
+
if not args:
|
435 |
+
return args
|
436 |
+
args = list(ordered(args))
|
437 |
+
if cls == Min:
|
438 |
+
other = Max
|
439 |
+
else:
|
440 |
+
other = Min
|
441 |
+
|
442 |
+
# find global comparable max of Max and min of Min if a new
|
443 |
+
# value is being introduced in these args at position 0 of
|
444 |
+
# the ordered args
|
445 |
+
if args[0].is_number:
|
446 |
+
sifted = mins, maxs = [], []
|
447 |
+
for i in args:
|
448 |
+
for v in walk(i, Min, Max):
|
449 |
+
if v.args[0].is_comparable:
|
450 |
+
sifted[isinstance(v, Max)].append(v)
|
451 |
+
small = Min.identity
|
452 |
+
for i in mins:
|
453 |
+
v = i.args[0]
|
454 |
+
if v.is_number and (v < small) == True:
|
455 |
+
small = v
|
456 |
+
big = Max.identity
|
457 |
+
for i in maxs:
|
458 |
+
v = i.args[0]
|
459 |
+
if v.is_number and (v > big) == True:
|
460 |
+
big = v
|
461 |
+
# at the point when this function is called from __new__,
|
462 |
+
# there may be more than one numeric arg present since
|
463 |
+
# local zeros have not been handled yet, so look through
|
464 |
+
# more than the first arg
|
465 |
+
if cls == Min:
|
466 |
+
for arg in args:
|
467 |
+
if not arg.is_number:
|
468 |
+
break
|
469 |
+
if (arg < small) == True:
|
470 |
+
small = arg
|
471 |
+
elif cls == Max:
|
472 |
+
for arg in args:
|
473 |
+
if not arg.is_number:
|
474 |
+
break
|
475 |
+
if (arg > big) == True:
|
476 |
+
big = arg
|
477 |
+
T = None
|
478 |
+
if cls == Min:
|
479 |
+
if small != Min.identity:
|
480 |
+
other = Max
|
481 |
+
T = small
|
482 |
+
elif big != Max.identity:
|
483 |
+
other = Min
|
484 |
+
T = big
|
485 |
+
if T is not None:
|
486 |
+
# remove numerical redundancy
|
487 |
+
for i in range(len(args)):
|
488 |
+
a = args[i]
|
489 |
+
if isinstance(a, other):
|
490 |
+
a0 = a.args[0]
|
491 |
+
if ((a0 > T) if other == Max else (a0 < T)) == True:
|
492 |
+
args[i] = cls.identity
|
493 |
+
|
494 |
+
# remove redundant symbolic args
|
495 |
+
def do(ai, a):
|
496 |
+
if not isinstance(ai, (Min, Max)):
|
497 |
+
return ai
|
498 |
+
cond = a in ai.args
|
499 |
+
if not cond:
|
500 |
+
return ai.func(*[do(i, a) for i in ai.args],
|
501 |
+
evaluate=False)
|
502 |
+
if isinstance(ai, cls):
|
503 |
+
return ai.func(*[do(i, a) for i in ai.args if i != a],
|
504 |
+
evaluate=False)
|
505 |
+
return a
|
506 |
+
for i, a in enumerate(args):
|
507 |
+
args[i + 1:] = [do(ai, a) for ai in args[i + 1:]]
|
508 |
+
|
509 |
+
# factor out common elements as for
|
510 |
+
# Min(Max(x, y), Max(x, z)) -> Max(x, Min(y, z))
|
511 |
+
# and vice versa when swapping Min/Max -- do this only for the
|
512 |
+
# easy case where all functions contain something in common;
|
513 |
+
# trying to find some optimal subset of args to modify takes
|
514 |
+
# too long
|
515 |
+
|
516 |
+
def factor_minmax(args):
|
517 |
+
is_other = lambda arg: isinstance(arg, other)
|
518 |
+
other_args, remaining_args = sift(args, is_other, binary=True)
|
519 |
+
if not other_args:
|
520 |
+
return args
|
521 |
+
|
522 |
+
# Min(Max(x, y, z), Max(x, y, u, v)) -> {x,y}, ({z}, {u,v})
|
523 |
+
arg_sets = [set(arg.args) for arg in other_args]
|
524 |
+
common = set.intersection(*arg_sets)
|
525 |
+
if not common:
|
526 |
+
return args
|
527 |
+
|
528 |
+
new_other_args = list(common)
|
529 |
+
arg_sets_diff = [arg_set - common for arg_set in arg_sets]
|
530 |
+
|
531 |
+
# If any set is empty after removing common then all can be
|
532 |
+
# discarded e.g. Min(Max(a, b, c), Max(a, b)) -> Max(a, b)
|
533 |
+
if all(arg_sets_diff):
|
534 |
+
other_args_diff = [other(*s, evaluate=False) for s in arg_sets_diff]
|
535 |
+
new_other_args.append(cls(*other_args_diff, evaluate=False))
|
536 |
+
|
537 |
+
other_args_factored = other(*new_other_args, evaluate=False)
|
538 |
+
return remaining_args + [other_args_factored]
|
539 |
+
|
540 |
+
if len(args) > 1:
|
541 |
+
args = factor_minmax(args)
|
542 |
+
|
543 |
+
return args
|
544 |
+
|
545 |
+
@classmethod
|
546 |
+
def _new_args_filter(cls, arg_sequence):
|
547 |
+
"""
|
548 |
+
Generator filtering args.
|
549 |
+
|
550 |
+
first standard filter, for cls.zero and cls.identity.
|
551 |
+
Also reshape ``Max(a, Max(b, c))`` to ``Max(a, b, c)``,
|
552 |
+
and check arguments for comparability
|
553 |
+
"""
|
554 |
+
for arg in arg_sequence:
|
555 |
+
# pre-filter, checking comparability of arguments
|
556 |
+
if not isinstance(arg, Expr) or arg.is_extended_real is False or (
|
557 |
+
arg.is_number and
|
558 |
+
not arg.is_comparable):
|
559 |
+
raise ValueError("The argument '%s' is not comparable." % arg)
|
560 |
+
|
561 |
+
if arg == cls.zero:
|
562 |
+
raise ShortCircuit(arg)
|
563 |
+
elif arg == cls.identity:
|
564 |
+
continue
|
565 |
+
elif arg.func == cls:
|
566 |
+
yield from arg.args
|
567 |
+
else:
|
568 |
+
yield arg
|
569 |
+
|
570 |
+
@classmethod
|
571 |
+
def _find_localzeros(cls, values, **options):
|
572 |
+
"""
|
573 |
+
Sequentially allocate values to localzeros.
|
574 |
+
|
575 |
+
When a value is identified as being more extreme than another member it
|
576 |
+
replaces that member; if this is never true, then the value is simply
|
577 |
+
appended to the localzeros.
|
578 |
+
"""
|
579 |
+
localzeros = set()
|
580 |
+
for v in values:
|
581 |
+
is_newzero = True
|
582 |
+
localzeros_ = list(localzeros)
|
583 |
+
for z in localzeros_:
|
584 |
+
if id(v) == id(z):
|
585 |
+
is_newzero = False
|
586 |
+
else:
|
587 |
+
con = cls._is_connected(v, z)
|
588 |
+
if con:
|
589 |
+
is_newzero = False
|
590 |
+
if con is True or con == cls:
|
591 |
+
localzeros.remove(z)
|
592 |
+
localzeros.update([v])
|
593 |
+
if is_newzero:
|
594 |
+
localzeros.update([v])
|
595 |
+
return localzeros
|
596 |
+
|
597 |
+
@classmethod
|
598 |
+
def _is_connected(cls, x, y):
|
599 |
+
"""
|
600 |
+
Check if x and y are connected somehow.
|
601 |
+
"""
|
602 |
+
for i in range(2):
|
603 |
+
if x == y:
|
604 |
+
return True
|
605 |
+
t, f = Max, Min
|
606 |
+
for op in "><":
|
607 |
+
for j in range(2):
|
608 |
+
try:
|
609 |
+
if op == ">":
|
610 |
+
v = x >= y
|
611 |
+
else:
|
612 |
+
v = x <= y
|
613 |
+
except TypeError:
|
614 |
+
return False # non-real arg
|
615 |
+
if not v.is_Relational:
|
616 |
+
return t if v else f
|
617 |
+
t, f = f, t
|
618 |
+
x, y = y, x
|
619 |
+
x, y = y, x # run next pass with reversed order relative to start
|
620 |
+
# simplification can be expensive, so be conservative
|
621 |
+
# in what is attempted
|
622 |
+
x = factor_terms(x - y)
|
623 |
+
y = S.Zero
|
624 |
+
|
625 |
+
return False
|
626 |
+
|
627 |
+
def _eval_derivative(self, s):
|
628 |
+
# f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s)
|
629 |
+
i = 0
|
630 |
+
l = []
|
631 |
+
for a in self.args:
|
632 |
+
i += 1
|
633 |
+
da = a.diff(s)
|
634 |
+
if da.is_zero:
|
635 |
+
continue
|
636 |
+
try:
|
637 |
+
df = self.fdiff(i)
|
638 |
+
except ArgumentIndexError:
|
639 |
+
df = Function.fdiff(self, i)
|
640 |
+
l.append(df * da)
|
641 |
+
return Add(*l)
|
642 |
+
|
643 |
+
def _eval_rewrite_as_Abs(self, *args, **kwargs):
|
644 |
+
from sympy.functions.elementary.complexes import Abs
|
645 |
+
s = (args[0] + self.func(*args[1:]))/2
|
646 |
+
d = abs(args[0] - self.func(*args[1:]))/2
|
647 |
+
return (s + d if isinstance(self, Max) else s - d).rewrite(Abs)
|
648 |
+
|
649 |
+
def evalf(self, n=15, **options):
|
650 |
+
return self.func(*[a.evalf(n, **options) for a in self.args])
|
651 |
+
|
652 |
+
def n(self, *args, **kwargs):
|
653 |
+
return self.evalf(*args, **kwargs)
|
654 |
+
|
655 |
+
_eval_is_algebraic = lambda s: _torf(i.is_algebraic for i in s.args)
|
656 |
+
_eval_is_antihermitian = lambda s: _torf(i.is_antihermitian for i in s.args)
|
657 |
+
_eval_is_commutative = lambda s: _torf(i.is_commutative for i in s.args)
|
658 |
+
_eval_is_complex = lambda s: _torf(i.is_complex for i in s.args)
|
659 |
+
_eval_is_composite = lambda s: _torf(i.is_composite for i in s.args)
|
660 |
+
_eval_is_even = lambda s: _torf(i.is_even for i in s.args)
|
661 |
+
_eval_is_finite = lambda s: _torf(i.is_finite for i in s.args)
|
662 |
+
_eval_is_hermitian = lambda s: _torf(i.is_hermitian for i in s.args)
|
663 |
+
_eval_is_imaginary = lambda s: _torf(i.is_imaginary for i in s.args)
|
664 |
+
_eval_is_infinite = lambda s: _torf(i.is_infinite for i in s.args)
|
665 |
+
_eval_is_integer = lambda s: _torf(i.is_integer for i in s.args)
|
666 |
+
_eval_is_irrational = lambda s: _torf(i.is_irrational for i in s.args)
|
667 |
+
_eval_is_negative = lambda s: _torf(i.is_negative for i in s.args)
|
668 |
+
_eval_is_noninteger = lambda s: _torf(i.is_noninteger for i in s.args)
|
669 |
+
_eval_is_nonnegative = lambda s: _torf(i.is_nonnegative for i in s.args)
|
670 |
+
_eval_is_nonpositive = lambda s: _torf(i.is_nonpositive for i in s.args)
|
671 |
+
_eval_is_nonzero = lambda s: _torf(i.is_nonzero for i in s.args)
|
672 |
+
_eval_is_odd = lambda s: _torf(i.is_odd for i in s.args)
|
673 |
+
_eval_is_polar = lambda s: _torf(i.is_polar for i in s.args)
|
674 |
+
_eval_is_positive = lambda s: _torf(i.is_positive for i in s.args)
|
675 |
+
_eval_is_prime = lambda s: _torf(i.is_prime for i in s.args)
|
676 |
+
_eval_is_rational = lambda s: _torf(i.is_rational for i in s.args)
|
677 |
+
_eval_is_real = lambda s: _torf(i.is_real for i in s.args)
|
678 |
+
_eval_is_extended_real = lambda s: _torf(i.is_extended_real for i in s.args)
|
679 |
+
_eval_is_transcendental = lambda s: _torf(i.is_transcendental for i in s.args)
|
680 |
+
_eval_is_zero = lambda s: _torf(i.is_zero for i in s.args)
|
681 |
+
|
682 |
+
|
683 |
+
class Max(MinMaxBase, Application):
|
684 |
+
r"""
|
685 |
+
Return, if possible, the maximum value of the list.
|
686 |
+
|
687 |
+
When number of arguments is equal one, then
|
688 |
+
return this argument.
|
689 |
+
|
690 |
+
When number of arguments is equal two, then
|
691 |
+
return, if possible, the value from (a, b) that is $\ge$ the other.
|
692 |
+
|
693 |
+
In common case, when the length of list greater than 2, the task
|
694 |
+
is more complicated. Return only the arguments, which are greater
|
695 |
+
than others, if it is possible to determine directional relation.
|
696 |
+
|
697 |
+
If is not possible to determine such a relation, return a partially
|
698 |
+
evaluated result.
|
699 |
+
|
700 |
+
Assumptions are used to make the decision too.
|
701 |
+
|
702 |
+
Also, only comparable arguments are permitted.
|
703 |
+
|
704 |
+
It is named ``Max`` and not ``max`` to avoid conflicts
|
705 |
+
with the built-in function ``max``.
|
706 |
+
|
707 |
+
|
708 |
+
Examples
|
709 |
+
========
|
710 |
+
|
711 |
+
>>> from sympy import Max, Symbol, oo
|
712 |
+
>>> from sympy.abc import x, y, z
|
713 |
+
>>> p = Symbol('p', positive=True)
|
714 |
+
>>> n = Symbol('n', negative=True)
|
715 |
+
|
716 |
+
>>> Max(x, -2)
|
717 |
+
Max(-2, x)
|
718 |
+
>>> Max(x, -2).subs(x, 3)
|
719 |
+
3
|
720 |
+
>>> Max(p, -2)
|
721 |
+
p
|
722 |
+
>>> Max(x, y)
|
723 |
+
Max(x, y)
|
724 |
+
>>> Max(x, y) == Max(y, x)
|
725 |
+
True
|
726 |
+
>>> Max(x, Max(y, z))
|
727 |
+
Max(x, y, z)
|
728 |
+
>>> Max(n, 8, p, 7, -oo)
|
729 |
+
Max(8, p)
|
730 |
+
>>> Max (1, x, oo)
|
731 |
+
oo
|
732 |
+
|
733 |
+
* Algorithm
|
734 |
+
|
735 |
+
The task can be considered as searching of supremums in the
|
736 |
+
directed complete partial orders [1]_.
|
737 |
+
|
738 |
+
The source values are sequentially allocated by the isolated subsets
|
739 |
+
in which supremums are searched and result as Max arguments.
|
740 |
+
|
741 |
+
If the resulted supremum is single, then it is returned.
|
742 |
+
|
743 |
+
The isolated subsets are the sets of values which are only the comparable
|
744 |
+
with each other in the current set. E.g. natural numbers are comparable with
|
745 |
+
each other, but not comparable with the `x` symbol. Another example: the
|
746 |
+
symbol `x` with negative assumption is comparable with a natural number.
|
747 |
+
|
748 |
+
Also there are "least" elements, which are comparable with all others,
|
749 |
+
and have a zero property (maximum or minimum for all elements).
|
750 |
+
For example, in case of $\infty$, the allocation operation is terminated
|
751 |
+
and only this value is returned.
|
752 |
+
|
753 |
+
Assumption:
|
754 |
+
- if $A > B > C$ then $A > C$
|
755 |
+
- if $A = B$ then $B$ can be removed
|
756 |
+
|
757 |
+
References
|
758 |
+
==========
|
759 |
+
|
760 |
+
.. [1] https://en.wikipedia.org/wiki/Directed_complete_partial_order
|
761 |
+
.. [2] https://en.wikipedia.org/wiki/Lattice_%28order%29
|
762 |
+
|
763 |
+
See Also
|
764 |
+
========
|
765 |
+
|
766 |
+
Min : find minimum values
|
767 |
+
"""
|
768 |
+
zero = S.Infinity
|
769 |
+
identity = S.NegativeInfinity
|
770 |
+
|
771 |
+
def fdiff( self, argindex ):
|
772 |
+
from sympy.functions.special.delta_functions import Heaviside
|
773 |
+
n = len(self.args)
|
774 |
+
if 0 < argindex and argindex <= n:
|
775 |
+
argindex -= 1
|
776 |
+
if n == 2:
|
777 |
+
return Heaviside(self.args[argindex] - self.args[1 - argindex])
|
778 |
+
newargs = tuple([self.args[i] for i in range(n) if i != argindex])
|
779 |
+
return Heaviside(self.args[argindex] - Max(*newargs))
|
780 |
+
else:
|
781 |
+
raise ArgumentIndexError(self, argindex)
|
782 |
+
|
783 |
+
def _eval_rewrite_as_Heaviside(self, *args, **kwargs):
|
784 |
+
from sympy.functions.special.delta_functions import Heaviside
|
785 |
+
return Add(*[j*Mul(*[Heaviside(j - i) for i in args if i!=j]) \
|
786 |
+
for j in args])
|
787 |
+
|
788 |
+
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
|
789 |
+
return _minmax_as_Piecewise('>=', *args)
|
790 |
+
|
791 |
+
def _eval_is_positive(self):
|
792 |
+
return fuzzy_or(a.is_positive for a in self.args)
|
793 |
+
|
794 |
+
def _eval_is_nonnegative(self):
|
795 |
+
return fuzzy_or(a.is_nonnegative for a in self.args)
|
796 |
+
|
797 |
+
def _eval_is_negative(self):
|
798 |
+
return fuzzy_and(a.is_negative for a in self.args)
|
799 |
+
|
800 |
+
|
801 |
+
class Min(MinMaxBase, Application):
|
802 |
+
"""
|
803 |
+
Return, if possible, the minimum value of the list.
|
804 |
+
It is named ``Min`` and not ``min`` to avoid conflicts
|
805 |
+
with the built-in function ``min``.
|
806 |
+
|
807 |
+
Examples
|
808 |
+
========
|
809 |
+
|
810 |
+
>>> from sympy import Min, Symbol, oo
|
811 |
+
>>> from sympy.abc import x, y
|
812 |
+
>>> p = Symbol('p', positive=True)
|
813 |
+
>>> n = Symbol('n', negative=True)
|
814 |
+
|
815 |
+
>>> Min(x, -2)
|
816 |
+
Min(-2, x)
|
817 |
+
>>> Min(x, -2).subs(x, 3)
|
818 |
+
-2
|
819 |
+
>>> Min(p, -3)
|
820 |
+
-3
|
821 |
+
>>> Min(x, y)
|
822 |
+
Min(x, y)
|
823 |
+
>>> Min(n, 8, p, -7, p, oo)
|
824 |
+
Min(-7, n)
|
825 |
+
|
826 |
+
See Also
|
827 |
+
========
|
828 |
+
|
829 |
+
Max : find maximum values
|
830 |
+
"""
|
831 |
+
zero = S.NegativeInfinity
|
832 |
+
identity = S.Infinity
|
833 |
+
|
834 |
+
def fdiff( self, argindex ):
|
835 |
+
from sympy.functions.special.delta_functions import Heaviside
|
836 |
+
n = len(self.args)
|
837 |
+
if 0 < argindex and argindex <= n:
|
838 |
+
argindex -= 1
|
839 |
+
if n == 2:
|
840 |
+
return Heaviside( self.args[1-argindex] - self.args[argindex] )
|
841 |
+
newargs = tuple([ self.args[i] for i in range(n) if i != argindex])
|
842 |
+
return Heaviside( Min(*newargs) - self.args[argindex] )
|
843 |
+
else:
|
844 |
+
raise ArgumentIndexError(self, argindex)
|
845 |
+
|
846 |
+
def _eval_rewrite_as_Heaviside(self, *args, **kwargs):
|
847 |
+
from sympy.functions.special.delta_functions import Heaviside
|
848 |
+
return Add(*[j*Mul(*[Heaviside(i-j) for i in args if i!=j]) \
|
849 |
+
for j in args])
|
850 |
+
|
851 |
+
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
|
852 |
+
return _minmax_as_Piecewise('<=', *args)
|
853 |
+
|
854 |
+
def _eval_is_positive(self):
|
855 |
+
return fuzzy_and(a.is_positive for a in self.args)
|
856 |
+
|
857 |
+
def _eval_is_nonnegative(self):
|
858 |
+
return fuzzy_and(a.is_nonnegative for a in self.args)
|
859 |
+
|
860 |
+
def _eval_is_negative(self):
|
861 |
+
return fuzzy_or(a.is_negative for a in self.args)
|
862 |
+
|
863 |
+
|
864 |
+
class Rem(Function):
|
865 |
+
"""Returns the remainder when ``p`` is divided by ``q`` where ``p`` is finite
|
866 |
+
and ``q`` is not equal to zero. The result, ``p - int(p/q)*q``, has the same sign
|
867 |
+
as the divisor.
|
868 |
+
|
869 |
+
Parameters
|
870 |
+
==========
|
871 |
+
|
872 |
+
p : Expr
|
873 |
+
Dividend.
|
874 |
+
|
875 |
+
q : Expr
|
876 |
+
Divisor.
|
877 |
+
|
878 |
+
Notes
|
879 |
+
=====
|
880 |
+
|
881 |
+
``Rem`` corresponds to the ``%`` operator in C.
|
882 |
+
|
883 |
+
Examples
|
884 |
+
========
|
885 |
+
|
886 |
+
>>> from sympy.abc import x, y
|
887 |
+
>>> from sympy import Rem
|
888 |
+
>>> Rem(x**3, y)
|
889 |
+
Rem(x**3, y)
|
890 |
+
>>> Rem(x**3, y).subs({x: -5, y: 3})
|
891 |
+
-2
|
892 |
+
|
893 |
+
See Also
|
894 |
+
========
|
895 |
+
|
896 |
+
Mod
|
897 |
+
"""
|
898 |
+
kind = NumberKind
|
899 |
+
|
900 |
+
@classmethod
|
901 |
+
def eval(cls, p, q):
|
902 |
+
"""Return the function remainder if both p, q are numbers and q is not
|
903 |
+
zero.
|
904 |
+
"""
|
905 |
+
|
906 |
+
if q.is_zero:
|
907 |
+
raise ZeroDivisionError("Division by zero")
|
908 |
+
if p is S.NaN or q is S.NaN or p.is_finite is False or q.is_finite is False:
|
909 |
+
return S.NaN
|
910 |
+
if p is S.Zero or p in (q, -q) or (p.is_integer and q == 1):
|
911 |
+
return S.Zero
|
912 |
+
|
913 |
+
if q.is_Number:
|
914 |
+
if p.is_Number:
|
915 |
+
return p - Integer(p/q)*q
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/piecewise.py
ADDED
@@ -0,0 +1,1506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S, Function, diff, Tuple, Dummy, Mul
|
2 |
+
from sympy.core.basic import Basic, as_Basic
|
3 |
+
from sympy.core.numbers import Rational, NumberSymbol, _illegal
|
4 |
+
from sympy.core.parameters import global_parameters
|
5 |
+
from sympy.core.relational import (Lt, Gt, Eq, Ne, Relational,
|
6 |
+
_canonical, _canonical_coeff)
|
7 |
+
from sympy.core.sorting import ordered
|
8 |
+
from sympy.functions.elementary.miscellaneous import Max, Min
|
9 |
+
from sympy.logic.boolalg import (And, Boolean, distribute_and_over_or, Not,
|
10 |
+
true, false, Or, ITE, simplify_logic, to_cnf, distribute_or_over_and)
|
11 |
+
from sympy.utilities.iterables import uniq, sift, common_prefix
|
12 |
+
from sympy.utilities.misc import filldedent, func_name
|
13 |
+
|
14 |
+
from itertools import product
|
15 |
+
|
16 |
+
Undefined = S.NaN # Piecewise()
|
17 |
+
|
18 |
+
class ExprCondPair(Tuple):
|
19 |
+
"""Represents an expression, condition pair."""
|
20 |
+
|
21 |
+
def __new__(cls, expr, cond):
|
22 |
+
expr = as_Basic(expr)
|
23 |
+
if cond == True:
|
24 |
+
return Tuple.__new__(cls, expr, true)
|
25 |
+
elif cond == False:
|
26 |
+
return Tuple.__new__(cls, expr, false)
|
27 |
+
elif isinstance(cond, Basic) and cond.has(Piecewise):
|
28 |
+
cond = piecewise_fold(cond)
|
29 |
+
if isinstance(cond, Piecewise):
|
30 |
+
cond = cond.rewrite(ITE)
|
31 |
+
|
32 |
+
if not isinstance(cond, Boolean):
|
33 |
+
raise TypeError(filldedent('''
|
34 |
+
Second argument must be a Boolean,
|
35 |
+
not `%s`''' % func_name(cond)))
|
36 |
+
return Tuple.__new__(cls, expr, cond)
|
37 |
+
|
38 |
+
@property
|
39 |
+
def expr(self):
|
40 |
+
"""
|
41 |
+
Returns the expression of this pair.
|
42 |
+
"""
|
43 |
+
return self.args[0]
|
44 |
+
|
45 |
+
@property
|
46 |
+
def cond(self):
|
47 |
+
"""
|
48 |
+
Returns the condition of this pair.
|
49 |
+
"""
|
50 |
+
return self.args[1]
|
51 |
+
|
52 |
+
@property
|
53 |
+
def is_commutative(self):
|
54 |
+
return self.expr.is_commutative
|
55 |
+
|
56 |
+
def __iter__(self):
|
57 |
+
yield self.expr
|
58 |
+
yield self.cond
|
59 |
+
|
60 |
+
def _eval_simplify(self, **kwargs):
|
61 |
+
return self.func(*[a.simplify(**kwargs) for a in self.args])
|
62 |
+
|
63 |
+
|
64 |
+
class Piecewise(Function):
|
65 |
+
"""
|
66 |
+
Represents a piecewise function.
|
67 |
+
|
68 |
+
Usage:
|
69 |
+
|
70 |
+
Piecewise( (expr,cond), (expr,cond), ... )
|
71 |
+
- Each argument is a 2-tuple defining an expression and condition
|
72 |
+
- The conds are evaluated in turn returning the first that is True.
|
73 |
+
If any of the evaluated conds are not explicitly False,
|
74 |
+
e.g. ``x < 1``, the function is returned in symbolic form.
|
75 |
+
- If the function is evaluated at a place where all conditions are False,
|
76 |
+
nan will be returned.
|
77 |
+
- Pairs where the cond is explicitly False, will be removed and no pair
|
78 |
+
appearing after a True condition will ever be retained. If a single
|
79 |
+
pair with a True condition remains, it will be returned, even when
|
80 |
+
evaluation is False.
|
81 |
+
|
82 |
+
Examples
|
83 |
+
========
|
84 |
+
|
85 |
+
>>> from sympy import Piecewise, log, piecewise_fold
|
86 |
+
>>> from sympy.abc import x, y
|
87 |
+
>>> f = x**2
|
88 |
+
>>> g = log(x)
|
89 |
+
>>> p = Piecewise((0, x < -1), (f, x <= 1), (g, True))
|
90 |
+
>>> p.subs(x,1)
|
91 |
+
1
|
92 |
+
>>> p.subs(x,5)
|
93 |
+
log(5)
|
94 |
+
|
95 |
+
Booleans can contain Piecewise elements:
|
96 |
+
|
97 |
+
>>> cond = (x < y).subs(x, Piecewise((2, x < 0), (3, True))); cond
|
98 |
+
Piecewise((2, x < 0), (3, True)) < y
|
99 |
+
|
100 |
+
The folded version of this results in a Piecewise whose
|
101 |
+
expressions are Booleans:
|
102 |
+
|
103 |
+
>>> folded_cond = piecewise_fold(cond); folded_cond
|
104 |
+
Piecewise((2 < y, x < 0), (3 < y, True))
|
105 |
+
|
106 |
+
When a Boolean containing Piecewise (like cond) or a Piecewise
|
107 |
+
with Boolean expressions (like folded_cond) is used as a condition,
|
108 |
+
it is converted to an equivalent :class:`~.ITE` object:
|
109 |
+
|
110 |
+
>>> Piecewise((1, folded_cond))
|
111 |
+
Piecewise((1, ITE(x < 0, y > 2, y > 3)))
|
112 |
+
|
113 |
+
When a condition is an ``ITE``, it will be converted to a simplified
|
114 |
+
Boolean expression:
|
115 |
+
|
116 |
+
>>> piecewise_fold(_)
|
117 |
+
Piecewise((1, ((x >= 0) | (y > 2)) & ((y > 3) | (x < 0))))
|
118 |
+
|
119 |
+
See Also
|
120 |
+
========
|
121 |
+
|
122 |
+
piecewise_fold
|
123 |
+
piecewise_exclusive
|
124 |
+
ITE
|
125 |
+
"""
|
126 |
+
|
127 |
+
nargs = None
|
128 |
+
is_Piecewise = True
|
129 |
+
|
130 |
+
def __new__(cls, *args, **options):
|
131 |
+
if len(args) == 0:
|
132 |
+
raise TypeError("At least one (expr, cond) pair expected.")
|
133 |
+
# (Try to) sympify args first
|
134 |
+
newargs = []
|
135 |
+
for ec in args:
|
136 |
+
# ec could be a ExprCondPair or a tuple
|
137 |
+
pair = ExprCondPair(*getattr(ec, 'args', ec))
|
138 |
+
cond = pair.cond
|
139 |
+
if cond is false:
|
140 |
+
continue
|
141 |
+
newargs.append(pair)
|
142 |
+
if cond is true:
|
143 |
+
break
|
144 |
+
|
145 |
+
eval = options.pop('evaluate', global_parameters.evaluate)
|
146 |
+
if eval:
|
147 |
+
r = cls.eval(*newargs)
|
148 |
+
if r is not None:
|
149 |
+
return r
|
150 |
+
elif len(newargs) == 1 and newargs[0].cond == True:
|
151 |
+
return newargs[0].expr
|
152 |
+
|
153 |
+
return Basic.__new__(cls, *newargs, **options)
|
154 |
+
|
155 |
+
@classmethod
|
156 |
+
def eval(cls, *_args):
|
157 |
+
"""Either return a modified version of the args or, if no
|
158 |
+
modifications were made, return None.
|
159 |
+
|
160 |
+
Modifications that are made here:
|
161 |
+
|
162 |
+
1. relationals are made canonical
|
163 |
+
2. any False conditions are dropped
|
164 |
+
3. any repeat of a previous condition is ignored
|
165 |
+
4. any args past one with a true condition are dropped
|
166 |
+
|
167 |
+
If there are no args left, nan will be returned.
|
168 |
+
If there is a single arg with a True condition, its
|
169 |
+
corresponding expression will be returned.
|
170 |
+
|
171 |
+
EXAMPLES
|
172 |
+
========
|
173 |
+
|
174 |
+
>>> from sympy import Piecewise
|
175 |
+
>>> from sympy.abc import x
|
176 |
+
>>> cond = -x < -1
|
177 |
+
>>> args = [(1, cond), (4, cond), (3, False), (2, True), (5, x < 1)]
|
178 |
+
>>> Piecewise(*args, evaluate=False)
|
179 |
+
Piecewise((1, -x < -1), (4, -x < -1), (2, True))
|
180 |
+
>>> Piecewise(*args)
|
181 |
+
Piecewise((1, x > 1), (2, True))
|
182 |
+
"""
|
183 |
+
if not _args:
|
184 |
+
return Undefined
|
185 |
+
|
186 |
+
if len(_args) == 1 and _args[0][-1] == True:
|
187 |
+
return _args[0][0]
|
188 |
+
|
189 |
+
newargs = _piecewise_collapse_arguments(_args)
|
190 |
+
|
191 |
+
# some conditions may have been redundant
|
192 |
+
missing = len(newargs) != len(_args)
|
193 |
+
# some conditions may have changed
|
194 |
+
same = all(a == b for a, b in zip(newargs, _args))
|
195 |
+
# if either change happened we return the expr with the
|
196 |
+
# updated args
|
197 |
+
if not newargs:
|
198 |
+
raise ValueError(filldedent('''
|
199 |
+
There are no conditions (or none that
|
200 |
+
are not trivially false) to define an
|
201 |
+
expression.'''))
|
202 |
+
if missing or not same:
|
203 |
+
return cls(*newargs)
|
204 |
+
|
205 |
+
def doit(self, **hints):
|
206 |
+
"""
|
207 |
+
Evaluate this piecewise function.
|
208 |
+
"""
|
209 |
+
newargs = []
|
210 |
+
for e, c in self.args:
|
211 |
+
if hints.get('deep', True):
|
212 |
+
if isinstance(e, Basic):
|
213 |
+
newe = e.doit(**hints)
|
214 |
+
if newe != self:
|
215 |
+
e = newe
|
216 |
+
if isinstance(c, Basic):
|
217 |
+
c = c.doit(**hints)
|
218 |
+
newargs.append((e, c))
|
219 |
+
return self.func(*newargs)
|
220 |
+
|
221 |
+
def _eval_simplify(self, **kwargs):
|
222 |
+
return piecewise_simplify(self, **kwargs)
|
223 |
+
|
224 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
225 |
+
for e, c in self.args:
|
226 |
+
if c == True or c.subs(x, 0) == True:
|
227 |
+
return e.as_leading_term(x)
|
228 |
+
|
229 |
+
def _eval_adjoint(self):
|
230 |
+
return self.func(*[(e.adjoint(), c) for e, c in self.args])
|
231 |
+
|
232 |
+
def _eval_conjugate(self):
|
233 |
+
return self.func(*[(e.conjugate(), c) for e, c in self.args])
|
234 |
+
|
235 |
+
def _eval_derivative(self, x):
|
236 |
+
return self.func(*[(diff(e, x), c) for e, c in self.args])
|
237 |
+
|
238 |
+
def _eval_evalf(self, prec):
|
239 |
+
return self.func(*[(e._evalf(prec), c) for e, c in self.args])
|
240 |
+
|
241 |
+
def _eval_is_meromorphic(self, x, a):
|
242 |
+
# Conditions often implicitly assume that the argument is real.
|
243 |
+
# Hence, there needs to be some check for as_set.
|
244 |
+
if not a.is_real:
|
245 |
+
return None
|
246 |
+
|
247 |
+
# Then, scan ExprCondPairs in the given order to find a piece that would contain a,
|
248 |
+
# possibly as a boundary point.
|
249 |
+
for e, c in self.args:
|
250 |
+
cond = c.subs(x, a)
|
251 |
+
|
252 |
+
if cond.is_Relational:
|
253 |
+
return None
|
254 |
+
if a in c.as_set().boundary:
|
255 |
+
return None
|
256 |
+
# Apply expression if a is an interior point of the domain of e.
|
257 |
+
if cond:
|
258 |
+
return e._eval_is_meromorphic(x, a)
|
259 |
+
|
260 |
+
def piecewise_integrate(self, x, **kwargs):
|
261 |
+
"""Return the Piecewise with each expression being
|
262 |
+
replaced with its antiderivative. To obtain a continuous
|
263 |
+
antiderivative, use the :func:`~.integrate` function or method.
|
264 |
+
|
265 |
+
Examples
|
266 |
+
========
|
267 |
+
|
268 |
+
>>> from sympy import Piecewise
|
269 |
+
>>> from sympy.abc import x
|
270 |
+
>>> p = Piecewise((0, x < 0), (1, x < 1), (2, True))
|
271 |
+
>>> p.piecewise_integrate(x)
|
272 |
+
Piecewise((0, x < 0), (x, x < 1), (2*x, True))
|
273 |
+
|
274 |
+
Note that this does not give a continuous function, e.g.
|
275 |
+
at x = 1 the 3rd condition applies and the antiderivative
|
276 |
+
there is 2*x so the value of the antiderivative is 2:
|
277 |
+
|
278 |
+
>>> anti = _
|
279 |
+
>>> anti.subs(x, 1)
|
280 |
+
2
|
281 |
+
|
282 |
+
The continuous derivative accounts for the integral *up to*
|
283 |
+
the point of interest, however:
|
284 |
+
|
285 |
+
>>> p.integrate(x)
|
286 |
+
Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True))
|
287 |
+
>>> _.subs(x, 1)
|
288 |
+
1
|
289 |
+
|
290 |
+
See Also
|
291 |
+
========
|
292 |
+
Piecewise._eval_integral
|
293 |
+
"""
|
294 |
+
from sympy.integrals import integrate
|
295 |
+
return self.func(*[(integrate(e, x, **kwargs), c) for e, c in self.args])
|
296 |
+
|
297 |
+
def _handle_irel(self, x, handler):
|
298 |
+
"""Return either None (if the conditions of self depend only on x) else
|
299 |
+
a Piecewise expression whose expressions (handled by the handler that
|
300 |
+
was passed) are paired with the governing x-independent relationals,
|
301 |
+
e.g. Piecewise((A, a(x) & b(y)), (B, c(x) | c(y)) ->
|
302 |
+
Piecewise(
|
303 |
+
(handler(Piecewise((A, a(x) & True), (B, c(x) | True)), b(y) & c(y)),
|
304 |
+
(handler(Piecewise((A, a(x) & True), (B, c(x) | False)), b(y)),
|
305 |
+
(handler(Piecewise((A, a(x) & False), (B, c(x) | True)), c(y)),
|
306 |
+
(handler(Piecewise((A, a(x) & False), (B, c(x) | False)), True))
|
307 |
+
"""
|
308 |
+
# identify governing relationals
|
309 |
+
rel = self.atoms(Relational)
|
310 |
+
irel = list(ordered([r for r in rel if x not in r.free_symbols
|
311 |
+
and r not in (S.true, S.false)]))
|
312 |
+
if irel:
|
313 |
+
args = {}
|
314 |
+
exprinorder = []
|
315 |
+
for truth in product((1, 0), repeat=len(irel)):
|
316 |
+
reps = dict(zip(irel, truth))
|
317 |
+
# only store the true conditions since the false are implied
|
318 |
+
# when they appear lower in the Piecewise args
|
319 |
+
if 1 not in truth:
|
320 |
+
cond = None # flag this one so it doesn't get combined
|
321 |
+
else:
|
322 |
+
andargs = Tuple(*[i for i in reps if reps[i]])
|
323 |
+
free = list(andargs.free_symbols)
|
324 |
+
if len(free) == 1:
|
325 |
+
from sympy.solvers.inequalities import (
|
326 |
+
reduce_inequalities, _solve_inequality)
|
327 |
+
try:
|
328 |
+
t = reduce_inequalities(andargs, free[0])
|
329 |
+
# ValueError when there are potentially
|
330 |
+
# nonvanishing imaginary parts
|
331 |
+
except (ValueError, NotImplementedError):
|
332 |
+
# at least isolate free symbol on left
|
333 |
+
t = And(*[_solve_inequality(
|
334 |
+
a, free[0], linear=True)
|
335 |
+
for a in andargs])
|
336 |
+
else:
|
337 |
+
t = And(*andargs)
|
338 |
+
if t is S.false:
|
339 |
+
continue # an impossible combination
|
340 |
+
cond = t
|
341 |
+
expr = handler(self.xreplace(reps))
|
342 |
+
if isinstance(expr, self.func) and len(expr.args) == 1:
|
343 |
+
expr, econd = expr.args[0]
|
344 |
+
cond = And(econd, True if cond is None else cond)
|
345 |
+
# the ec pairs are being collected since all possibilities
|
346 |
+
# are being enumerated, but don't put the last one in since
|
347 |
+
# its expr might match a previous expression and it
|
348 |
+
# must appear last in the args
|
349 |
+
if cond is not None:
|
350 |
+
args.setdefault(expr, []).append(cond)
|
351 |
+
# but since we only store the true conditions we must maintain
|
352 |
+
# the order so that the expression with the most true values
|
353 |
+
# comes first
|
354 |
+
exprinorder.append(expr)
|
355 |
+
# convert collected conditions as args of Or
|
356 |
+
for k in args:
|
357 |
+
args[k] = Or(*args[k])
|
358 |
+
# take them in the order obtained
|
359 |
+
args = [(e, args[e]) for e in uniq(exprinorder)]
|
360 |
+
# add in the last arg
|
361 |
+
args.append((expr, True))
|
362 |
+
return Piecewise(*args)
|
363 |
+
|
364 |
+
def _eval_integral(self, x, _first=True, **kwargs):
|
365 |
+
"""Return the indefinite integral of the
|
366 |
+
Piecewise such that subsequent substitution of x with a
|
367 |
+
value will give the value of the integral (not including
|
368 |
+
the constant of integration) up to that point. To only
|
369 |
+
integrate the individual parts of Piecewise, use the
|
370 |
+
``piecewise_integrate`` method.
|
371 |
+
|
372 |
+
Examples
|
373 |
+
========
|
374 |
+
|
375 |
+
>>> from sympy import Piecewise
|
376 |
+
>>> from sympy.abc import x
|
377 |
+
>>> p = Piecewise((0, x < 0), (1, x < 1), (2, True))
|
378 |
+
>>> p.integrate(x)
|
379 |
+
Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True))
|
380 |
+
>>> p.piecewise_integrate(x)
|
381 |
+
Piecewise((0, x < 0), (x, x < 1), (2*x, True))
|
382 |
+
|
383 |
+
See Also
|
384 |
+
========
|
385 |
+
Piecewise.piecewise_integrate
|
386 |
+
"""
|
387 |
+
from sympy.integrals.integrals import integrate
|
388 |
+
|
389 |
+
if _first:
|
390 |
+
def handler(ipw):
|
391 |
+
if isinstance(ipw, self.func):
|
392 |
+
return ipw._eval_integral(x, _first=False, **kwargs)
|
393 |
+
else:
|
394 |
+
return ipw.integrate(x, **kwargs)
|
395 |
+
irv = self._handle_irel(x, handler)
|
396 |
+
if irv is not None:
|
397 |
+
return irv
|
398 |
+
|
399 |
+
# handle a Piecewise from -oo to oo with and no x-independent relationals
|
400 |
+
# -----------------------------------------------------------------------
|
401 |
+
ok, abei = self._intervals(x)
|
402 |
+
if not ok:
|
403 |
+
from sympy.integrals.integrals import Integral
|
404 |
+
return Integral(self, x) # unevaluated
|
405 |
+
|
406 |
+
pieces = [(a, b) for a, b, _, _ in abei]
|
407 |
+
oo = S.Infinity
|
408 |
+
done = [(-oo, oo, -1)]
|
409 |
+
for k, p in enumerate(pieces):
|
410 |
+
if p == (-oo, oo):
|
411 |
+
# all undone intervals will get this key
|
412 |
+
for j, (a, b, i) in enumerate(done):
|
413 |
+
if i == -1:
|
414 |
+
done[j] = a, b, k
|
415 |
+
break # nothing else to consider
|
416 |
+
N = len(done) - 1
|
417 |
+
for j, (a, b, i) in enumerate(reversed(done)):
|
418 |
+
if i == -1:
|
419 |
+
j = N - j
|
420 |
+
done[j: j + 1] = _clip(p, (a, b), k)
|
421 |
+
done = [(a, b, i) for a, b, i in done if a != b]
|
422 |
+
|
423 |
+
# append an arg if there is a hole so a reference to
|
424 |
+
# argument -1 will give Undefined
|
425 |
+
if any(i == -1 for (a, b, i) in done):
|
426 |
+
abei.append((-oo, oo, Undefined, -1))
|
427 |
+
|
428 |
+
# return the sum of the intervals
|
429 |
+
args = []
|
430 |
+
sum = None
|
431 |
+
for a, b, i in done:
|
432 |
+
anti = integrate(abei[i][-2], x, **kwargs)
|
433 |
+
if sum is None:
|
434 |
+
sum = anti
|
435 |
+
else:
|
436 |
+
sum = sum.subs(x, a)
|
437 |
+
e = anti._eval_interval(x, a, x)
|
438 |
+
if sum.has(*_illegal) or e.has(*_illegal):
|
439 |
+
sum = anti
|
440 |
+
else:
|
441 |
+
sum += e
|
442 |
+
# see if we know whether b is contained in original
|
443 |
+
# condition
|
444 |
+
if b is S.Infinity:
|
445 |
+
cond = True
|
446 |
+
elif self.args[abei[i][-1]].cond.subs(x, b) == False:
|
447 |
+
cond = (x < b)
|
448 |
+
else:
|
449 |
+
cond = (x <= b)
|
450 |
+
args.append((sum, cond))
|
451 |
+
return Piecewise(*args)
|
452 |
+
|
453 |
+
def _eval_interval(self, sym, a, b, _first=True):
|
454 |
+
"""Evaluates the function along the sym in a given interval [a, b]"""
|
455 |
+
# FIXME: Currently complex intervals are not supported. A possible
|
456 |
+
# replacement algorithm, discussed in issue 5227, can be found in the
|
457 |
+
# following papers;
|
458 |
+
# http://portal.acm.org/citation.cfm?id=281649
|
459 |
+
# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4127&rep=rep1&type=pdf
|
460 |
+
|
461 |
+
if a is None or b is None:
|
462 |
+
# In this case, it is just simple substitution
|
463 |
+
return super()._eval_interval(sym, a, b)
|
464 |
+
else:
|
465 |
+
x, lo, hi = map(as_Basic, (sym, a, b))
|
466 |
+
|
467 |
+
if _first: # get only x-dependent relationals
|
468 |
+
def handler(ipw):
|
469 |
+
if isinstance(ipw, self.func):
|
470 |
+
return ipw._eval_interval(x, lo, hi, _first=None)
|
471 |
+
else:
|
472 |
+
return ipw._eval_interval(x, lo, hi)
|
473 |
+
irv = self._handle_irel(x, handler)
|
474 |
+
if irv is not None:
|
475 |
+
return irv
|
476 |
+
|
477 |
+
if (lo < hi) is S.false or (
|
478 |
+
lo is S.Infinity or hi is S.NegativeInfinity):
|
479 |
+
rv = self._eval_interval(x, hi, lo, _first=False)
|
480 |
+
if isinstance(rv, Piecewise):
|
481 |
+
rv = Piecewise(*[(-e, c) for e, c in rv.args])
|
482 |
+
else:
|
483 |
+
rv = -rv
|
484 |
+
return rv
|
485 |
+
|
486 |
+
if (lo < hi) is S.true or (
|
487 |
+
hi is S.Infinity or lo is S.NegativeInfinity):
|
488 |
+
pass
|
489 |
+
else:
|
490 |
+
_a = Dummy('lo')
|
491 |
+
_b = Dummy('hi')
|
492 |
+
a = lo if lo.is_comparable else _a
|
493 |
+
b = hi if hi.is_comparable else _b
|
494 |
+
pos = self._eval_interval(x, a, b, _first=False)
|
495 |
+
if a == _a and b == _b:
|
496 |
+
# it's purely symbolic so just swap lo and hi and
|
497 |
+
# change the sign to get the value for when lo > hi
|
498 |
+
neg, pos = (-pos.xreplace({_a: hi, _b: lo}),
|
499 |
+
pos.xreplace({_a: lo, _b: hi}))
|
500 |
+
else:
|
501 |
+
# at least one of the bounds was comparable, so allow
|
502 |
+
# _eval_interval to use that information when computing
|
503 |
+
# the interval with lo and hi reversed
|
504 |
+
neg, pos = (-self._eval_interval(x, hi, lo, _first=False),
|
505 |
+
pos.xreplace({_a: lo, _b: hi}))
|
506 |
+
|
507 |
+
# allow simplification based on ordering of lo and hi
|
508 |
+
p = Dummy('', positive=True)
|
509 |
+
if lo.is_Symbol:
|
510 |
+
pos = pos.xreplace({lo: hi - p}).xreplace({p: hi - lo})
|
511 |
+
neg = neg.xreplace({lo: hi + p}).xreplace({p: lo - hi})
|
512 |
+
elif hi.is_Symbol:
|
513 |
+
pos = pos.xreplace({hi: lo + p}).xreplace({p: hi - lo})
|
514 |
+
neg = neg.xreplace({hi: lo - p}).xreplace({p: lo - hi})
|
515 |
+
# evaluate limits that may have unevaluate Min/Max
|
516 |
+
touch = lambda _: _.replace(
|
517 |
+
lambda x: isinstance(x, (Min, Max)),
|
518 |
+
lambda x: x.func(*x.args))
|
519 |
+
neg = touch(neg)
|
520 |
+
pos = touch(pos)
|
521 |
+
# assemble return expression; make the first condition be Lt
|
522 |
+
# b/c then the first expression will look the same whether
|
523 |
+
# the lo or hi limit is symbolic
|
524 |
+
if a == _a: # the lower limit was symbolic
|
525 |
+
rv = Piecewise(
|
526 |
+
(pos,
|
527 |
+
lo < hi),
|
528 |
+
(neg,
|
529 |
+
True))
|
530 |
+
else:
|
531 |
+
rv = Piecewise(
|
532 |
+
(neg,
|
533 |
+
hi < lo),
|
534 |
+
(pos,
|
535 |
+
True))
|
536 |
+
|
537 |
+
if rv == Undefined:
|
538 |
+
raise ValueError("Can't integrate across undefined region.")
|
539 |
+
if any(isinstance(i, Piecewise) for i in (pos, neg)):
|
540 |
+
rv = piecewise_fold(rv)
|
541 |
+
return rv
|
542 |
+
|
543 |
+
# handle a Piecewise with lo <= hi and no x-independent relationals
|
544 |
+
# -----------------------------------------------------------------
|
545 |
+
ok, abei = self._intervals(x)
|
546 |
+
if not ok:
|
547 |
+
from sympy.integrals.integrals import Integral
|
548 |
+
# not being able to do the interval of f(x) can
|
549 |
+
# be stated as not being able to do the integral
|
550 |
+
# of f'(x) over the same range
|
551 |
+
return Integral(self.diff(x), (x, lo, hi)) # unevaluated
|
552 |
+
|
553 |
+
pieces = [(a, b) for a, b, _, _ in abei]
|
554 |
+
done = [(lo, hi, -1)]
|
555 |
+
oo = S.Infinity
|
556 |
+
for k, p in enumerate(pieces):
|
557 |
+
if p[:2] == (-oo, oo):
|
558 |
+
# all undone intervals will get this key
|
559 |
+
for j, (a, b, i) in enumerate(done):
|
560 |
+
if i == -1:
|
561 |
+
done[j] = a, b, k
|
562 |
+
break # nothing else to consider
|
563 |
+
N = len(done) - 1
|
564 |
+
for j, (a, b, i) in enumerate(reversed(done)):
|
565 |
+
if i == -1:
|
566 |
+
j = N - j
|
567 |
+
done[j: j + 1] = _clip(p, (a, b), k)
|
568 |
+
done = [(a, b, i) for a, b, i in done if a != b]
|
569 |
+
|
570 |
+
# return the sum of the intervals
|
571 |
+
sum = S.Zero
|
572 |
+
upto = None
|
573 |
+
for a, b, i in done:
|
574 |
+
if i == -1:
|
575 |
+
if upto is None:
|
576 |
+
return Undefined
|
577 |
+
# TODO simplify hi <= upto
|
578 |
+
return Piecewise((sum, hi <= upto), (Undefined, True))
|
579 |
+
sum += abei[i][-2]._eval_interval(x, a, b)
|
580 |
+
upto = b
|
581 |
+
return sum
|
582 |
+
|
583 |
+
def _intervals(self, sym, err_on_Eq=False):
|
584 |
+
r"""Return a bool and a message (when bool is False), else a
|
585 |
+
list of unique tuples, (a, b, e, i), where a and b
|
586 |
+
are the lower and upper bounds in which the expression e of
|
587 |
+
argument i in self is defined and $a < b$ (when involving
|
588 |
+
numbers) or $a \le b$ when involving symbols.
|
589 |
+
|
590 |
+
If there are any relationals not involving sym, or any
|
591 |
+
relational cannot be solved for sym, the bool will be False
|
592 |
+
a message be given as the second return value. The calling
|
593 |
+
routine should have removed such relationals before calling
|
594 |
+
this routine.
|
595 |
+
|
596 |
+
The evaluated conditions will be returned as ranges.
|
597 |
+
Discontinuous ranges will be returned separately with
|
598 |
+
identical expressions. The first condition that evaluates to
|
599 |
+
True will be returned as the last tuple with a, b = -oo, oo.
|
600 |
+
"""
|
601 |
+
from sympy.solvers.inequalities import _solve_inequality
|
602 |
+
|
603 |
+
assert isinstance(self, Piecewise)
|
604 |
+
|
605 |
+
def nonsymfail(cond):
|
606 |
+
return False, filldedent('''
|
607 |
+
A condition not involving
|
608 |
+
%s appeared: %s''' % (sym, cond))
|
609 |
+
|
610 |
+
def _solve_relational(r):
|
611 |
+
if sym not in r.free_symbols:
|
612 |
+
return nonsymfail(r)
|
613 |
+
try:
|
614 |
+
rv = _solve_inequality(r, sym)
|
615 |
+
except NotImplementedError:
|
616 |
+
return False, 'Unable to solve relational %s for %s.' % (r, sym)
|
617 |
+
if isinstance(rv, Relational):
|
618 |
+
free = rv.args[1].free_symbols
|
619 |
+
if rv.args[0] != sym or sym in free:
|
620 |
+
return False, 'Unable to solve relational %s for %s.' % (r, sym)
|
621 |
+
if rv.rel_op == '==':
|
622 |
+
# this equality has been affirmed to have the form
|
623 |
+
# Eq(sym, rhs) where rhs is sym-free; it represents
|
624 |
+
# a zero-width interval which will be ignored
|
625 |
+
# whether it is an isolated condition or contained
|
626 |
+
# within an And or an Or
|
627 |
+
rv = S.false
|
628 |
+
elif rv.rel_op == '!=':
|
629 |
+
try:
|
630 |
+
rv = Or(sym < rv.rhs, sym > rv.rhs)
|
631 |
+
except TypeError:
|
632 |
+
# e.g. x != I ==> all real x satisfy
|
633 |
+
rv = S.true
|
634 |
+
elif rv == (S.NegativeInfinity < sym) & (sym < S.Infinity):
|
635 |
+
rv = S.true
|
636 |
+
return True, rv
|
637 |
+
|
638 |
+
args = list(self.args)
|
639 |
+
# make self canonical wrt Relationals
|
640 |
+
keys = self.atoms(Relational)
|
641 |
+
reps = {}
|
642 |
+
for r in keys:
|
643 |
+
ok, s = _solve_relational(r)
|
644 |
+
if ok != True:
|
645 |
+
return False, ok
|
646 |
+
reps[r] = s
|
647 |
+
# process args individually so if any evaluate, their position
|
648 |
+
# in the original Piecewise will be known
|
649 |
+
args = [i.xreplace(reps) for i in self.args]
|
650 |
+
|
651 |
+
# precondition args
|
652 |
+
expr_cond = []
|
653 |
+
default = idefault = None
|
654 |
+
for i, (expr, cond) in enumerate(args):
|
655 |
+
if cond is S.false:
|
656 |
+
continue
|
657 |
+
if cond is S.true:
|
658 |
+
default = expr
|
659 |
+
idefault = i
|
660 |
+
break
|
661 |
+
if isinstance(cond, Eq):
|
662 |
+
# unanticipated condition, but it is here in case a
|
663 |
+
# replacement caused an Eq to appear
|
664 |
+
if err_on_Eq:
|
665 |
+
return False, 'encountered Eq condition: %s' % cond
|
666 |
+
continue # zero width interval
|
667 |
+
|
668 |
+
cond = to_cnf(cond)
|
669 |
+
if isinstance(cond, And):
|
670 |
+
cond = distribute_or_over_and(cond)
|
671 |
+
|
672 |
+
if isinstance(cond, Or):
|
673 |
+
expr_cond.extend(
|
674 |
+
[(i, expr, o) for o in cond.args
|
675 |
+
if not isinstance(o, Eq)])
|
676 |
+
elif cond is not S.false:
|
677 |
+
expr_cond.append((i, expr, cond))
|
678 |
+
elif cond is S.true:
|
679 |
+
default = expr
|
680 |
+
idefault = i
|
681 |
+
break
|
682 |
+
|
683 |
+
# determine intervals represented by conditions
|
684 |
+
int_expr = []
|
685 |
+
for iarg, expr, cond in expr_cond:
|
686 |
+
if isinstance(cond, And):
|
687 |
+
lower = S.NegativeInfinity
|
688 |
+
upper = S.Infinity
|
689 |
+
exclude = []
|
690 |
+
for cond2 in cond.args:
|
691 |
+
if not isinstance(cond2, Relational):
|
692 |
+
return False, 'expecting only Relationals'
|
693 |
+
if isinstance(cond2, Eq):
|
694 |
+
lower = upper # ignore
|
695 |
+
if err_on_Eq:
|
696 |
+
return False, 'encountered secondary Eq condition'
|
697 |
+
break
|
698 |
+
elif isinstance(cond2, Ne):
|
699 |
+
l, r = cond2.args
|
700 |
+
if l == sym:
|
701 |
+
exclude.append(r)
|
702 |
+
elif r == sym:
|
703 |
+
exclude.append(l)
|
704 |
+
else:
|
705 |
+
return nonsymfail(cond2)
|
706 |
+
continue
|
707 |
+
elif cond2.lts == sym:
|
708 |
+
upper = Min(cond2.gts, upper)
|
709 |
+
elif cond2.gts == sym:
|
710 |
+
lower = Max(cond2.lts, lower)
|
711 |
+
else:
|
712 |
+
return nonsymfail(cond2) # should never get here
|
713 |
+
if exclude:
|
714 |
+
exclude = list(ordered(exclude))
|
715 |
+
newcond = []
|
716 |
+
for i, e in enumerate(exclude):
|
717 |
+
if e < lower == True or e > upper == True:
|
718 |
+
continue
|
719 |
+
if not newcond:
|
720 |
+
newcond.append((None, lower)) # add a primer
|
721 |
+
newcond.append((newcond[-1][1], e))
|
722 |
+
newcond.append((newcond[-1][1], upper))
|
723 |
+
newcond.pop(0) # remove the primer
|
724 |
+
expr_cond.extend([(iarg, expr, And(i[0] < sym, sym < i[1])) for i in newcond])
|
725 |
+
continue
|
726 |
+
elif isinstance(cond, Relational) and cond.rel_op != '!=':
|
727 |
+
lower, upper = cond.lts, cond.gts # part 1: initialize with givens
|
728 |
+
if cond.lts == sym: # part 1a: expand the side ...
|
729 |
+
lower = S.NegativeInfinity # e.g. x <= 0 ---> -oo <= 0
|
730 |
+
elif cond.gts == sym: # part 1a: ... that can be expanded
|
731 |
+
upper = S.Infinity # e.g. x >= 0 ---> oo >= 0
|
732 |
+
else:
|
733 |
+
return nonsymfail(cond)
|
734 |
+
else:
|
735 |
+
return False, 'unrecognized condition: %s' % cond
|
736 |
+
|
737 |
+
lower, upper = lower, Max(lower, upper)
|
738 |
+
if err_on_Eq and lower == upper:
|
739 |
+
return False, 'encountered Eq condition'
|
740 |
+
if (lower >= upper) is not S.true:
|
741 |
+
int_expr.append((lower, upper, expr, iarg))
|
742 |
+
|
743 |
+
if default is not None:
|
744 |
+
int_expr.append(
|
745 |
+
(S.NegativeInfinity, S.Infinity, default, idefault))
|
746 |
+
|
747 |
+
return True, list(uniq(int_expr))
|
748 |
+
|
749 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
750 |
+
args = [(ec.expr._eval_nseries(x, n, logx), ec.cond) for ec in self.args]
|
751 |
+
return self.func(*args)
|
752 |
+
|
753 |
+
def _eval_power(self, s):
|
754 |
+
return self.func(*[(e**s, c) for e, c in self.args])
|
755 |
+
|
756 |
+
def _eval_subs(self, old, new):
|
757 |
+
# this is strictly not necessary, but we can keep track
|
758 |
+
# of whether True or False conditions arise and be
|
759 |
+
# somewhat more efficient by avoiding other substitutions
|
760 |
+
# and avoiding invalid conditions that appear after a
|
761 |
+
# True condition
|
762 |
+
args = list(self.args)
|
763 |
+
args_exist = False
|
764 |
+
for i, (e, c) in enumerate(args):
|
765 |
+
c = c._subs(old, new)
|
766 |
+
if c != False:
|
767 |
+
args_exist = True
|
768 |
+
e = e._subs(old, new)
|
769 |
+
args[i] = (e, c)
|
770 |
+
if c == True:
|
771 |
+
break
|
772 |
+
if not args_exist:
|
773 |
+
args = ((Undefined, True),)
|
774 |
+
return self.func(*args)
|
775 |
+
|
776 |
+
def _eval_transpose(self):
|
777 |
+
return self.func(*[(e.transpose(), c) for e, c in self.args])
|
778 |
+
|
779 |
+
def _eval_template_is_attr(self, is_attr):
|
780 |
+
b = None
|
781 |
+
for expr, _ in self.args:
|
782 |
+
a = getattr(expr, is_attr)
|
783 |
+
if a is None:
|
784 |
+
return
|
785 |
+
if b is None:
|
786 |
+
b = a
|
787 |
+
elif b is not a:
|
788 |
+
return
|
789 |
+
return b
|
790 |
+
|
791 |
+
_eval_is_finite = lambda self: self._eval_template_is_attr(
|
792 |
+
'is_finite')
|
793 |
+
_eval_is_complex = lambda self: self._eval_template_is_attr('is_complex')
|
794 |
+
_eval_is_even = lambda self: self._eval_template_is_attr('is_even')
|
795 |
+
_eval_is_imaginary = lambda self: self._eval_template_is_attr(
|
796 |
+
'is_imaginary')
|
797 |
+
_eval_is_integer = lambda self: self._eval_template_is_attr('is_integer')
|
798 |
+
_eval_is_irrational = lambda self: self._eval_template_is_attr(
|
799 |
+
'is_irrational')
|
800 |
+
_eval_is_negative = lambda self: self._eval_template_is_attr('is_negative')
|
801 |
+
_eval_is_nonnegative = lambda self: self._eval_template_is_attr(
|
802 |
+
'is_nonnegative')
|
803 |
+
_eval_is_nonpositive = lambda self: self._eval_template_is_attr(
|
804 |
+
'is_nonpositive')
|
805 |
+
_eval_is_nonzero = lambda self: self._eval_template_is_attr(
|
806 |
+
'is_nonzero')
|
807 |
+
_eval_is_odd = lambda self: self._eval_template_is_attr('is_odd')
|
808 |
+
_eval_is_polar = lambda self: self._eval_template_is_attr('is_polar')
|
809 |
+
_eval_is_positive = lambda self: self._eval_template_is_attr('is_positive')
|
810 |
+
_eval_is_extended_real = lambda self: self._eval_template_is_attr(
|
811 |
+
'is_extended_real')
|
812 |
+
_eval_is_extended_positive = lambda self: self._eval_template_is_attr(
|
813 |
+
'is_extended_positive')
|
814 |
+
_eval_is_extended_negative = lambda self: self._eval_template_is_attr(
|
815 |
+
'is_extended_negative')
|
816 |
+
_eval_is_extended_nonzero = lambda self: self._eval_template_is_attr(
|
817 |
+
'is_extended_nonzero')
|
818 |
+
_eval_is_extended_nonpositive = lambda self: self._eval_template_is_attr(
|
819 |
+
'is_extended_nonpositive')
|
820 |
+
_eval_is_extended_nonnegative = lambda self: self._eval_template_is_attr(
|
821 |
+
'is_extended_nonnegative')
|
822 |
+
_eval_is_real = lambda self: self._eval_template_is_attr('is_real')
|
823 |
+
_eval_is_zero = lambda self: self._eval_template_is_attr(
|
824 |
+
'is_zero')
|
825 |
+
|
826 |
+
@classmethod
|
827 |
+
def __eval_cond(cls, cond):
|
828 |
+
"""Return the truth value of the condition."""
|
829 |
+
if cond == True:
|
830 |
+
return True
|
831 |
+
if isinstance(cond, Eq):
|
832 |
+
try:
|
833 |
+
diff = cond.lhs - cond.rhs
|
834 |
+
if diff.is_commutative:
|
835 |
+
return diff.is_zero
|
836 |
+
except TypeError:
|
837 |
+
pass
|
838 |
+
|
839 |
+
def as_expr_set_pairs(self, domain=None):
|
840 |
+
"""Return tuples for each argument of self that give
|
841 |
+
the expression and the interval in which it is valid
|
842 |
+
which is contained within the given domain.
|
843 |
+
If a condition cannot be converted to a set, an error
|
844 |
+
will be raised. The variable of the conditions is
|
845 |
+
assumed to be real; sets of real values are returned.
|
846 |
+
|
847 |
+
Examples
|
848 |
+
========
|
849 |
+
|
850 |
+
>>> from sympy import Piecewise, Interval
|
851 |
+
>>> from sympy.abc import x
|
852 |
+
>>> p = Piecewise(
|
853 |
+
... (1, x < 2),
|
854 |
+
... (2,(x > 0) & (x < 4)),
|
855 |
+
... (3, True))
|
856 |
+
>>> p.as_expr_set_pairs()
|
857 |
+
[(1, Interval.open(-oo, 2)),
|
858 |
+
(2, Interval.Ropen(2, 4)),
|
859 |
+
(3, Interval(4, oo))]
|
860 |
+
>>> p.as_expr_set_pairs(Interval(0, 3))
|
861 |
+
[(1, Interval.Ropen(0, 2)),
|
862 |
+
(2, Interval(2, 3))]
|
863 |
+
"""
|
864 |
+
if domain is None:
|
865 |
+
domain = S.Reals
|
866 |
+
exp_sets = []
|
867 |
+
U = domain
|
868 |
+
complex = not domain.is_subset(S.Reals)
|
869 |
+
cond_free = set()
|
870 |
+
for expr, cond in self.args:
|
871 |
+
cond_free |= cond.free_symbols
|
872 |
+
if len(cond_free) > 1:
|
873 |
+
raise NotImplementedError(filldedent('''
|
874 |
+
multivariate conditions are not handled.'''))
|
875 |
+
if complex:
|
876 |
+
for i in cond.atoms(Relational):
|
877 |
+
if not isinstance(i, (Eq, Ne)):
|
878 |
+
raise ValueError(filldedent('''
|
879 |
+
Inequalities in the complex domain are
|
880 |
+
not supported. Try the real domain by
|
881 |
+
setting domain=S.Reals'''))
|
882 |
+
cond_int = U.intersect(cond.as_set())
|
883 |
+
U = U - cond_int
|
884 |
+
if cond_int != S.EmptySet:
|
885 |
+
exp_sets.append((expr, cond_int))
|
886 |
+
return exp_sets
|
887 |
+
|
888 |
+
def _eval_rewrite_as_ITE(self, *args, **kwargs):
|
889 |
+
byfree = {}
|
890 |
+
args = list(args)
|
891 |
+
default = any(c == True for b, c in args)
|
892 |
+
for i, (b, c) in enumerate(args):
|
893 |
+
if not isinstance(b, Boolean) and b != True:
|
894 |
+
raise TypeError(filldedent('''
|
895 |
+
Expecting Boolean or bool but got `%s`
|
896 |
+
''' % func_name(b)))
|
897 |
+
if c == True:
|
898 |
+
break
|
899 |
+
# loop over independent conditions for this b
|
900 |
+
for c in c.args if isinstance(c, Or) else [c]:
|
901 |
+
free = c.free_symbols
|
902 |
+
x = free.pop()
|
903 |
+
try:
|
904 |
+
byfree[x] = byfree.setdefault(
|
905 |
+
x, S.EmptySet).union(c.as_set())
|
906 |
+
except NotImplementedError:
|
907 |
+
if not default:
|
908 |
+
raise NotImplementedError(filldedent('''
|
909 |
+
A method to determine whether a multivariate
|
910 |
+
conditional is consistent with a complete coverage
|
911 |
+
of all variables has not been implemented so the
|
912 |
+
rewrite is being stopped after encountering `%s`.
|
913 |
+
This error would not occur if a default expression
|
914 |
+
like `(foo, True)` were given.
|
915 |
+
''' % c))
|
916 |
+
if byfree[x] in (S.UniversalSet, S.Reals):
|
917 |
+
# collapse the ith condition to True and break
|
918 |
+
args[i] = list(args[i])
|
919 |
+
c = args[i][1] = True
|
920 |
+
break
|
921 |
+
if c == True:
|
922 |
+
break
|
923 |
+
if c != True:
|
924 |
+
raise ValueError(filldedent('''
|
925 |
+
Conditions must cover all reals or a final default
|
926 |
+
condition `(foo, True)` must be given.
|
927 |
+
'''))
|
928 |
+
last, _ = args[i] # ignore all past ith arg
|
929 |
+
for a, c in reversed(args[:i]):
|
930 |
+
last = ITE(c, a, last)
|
931 |
+
return _canonical(last)
|
932 |
+
|
933 |
+
def _eval_rewrite_as_KroneckerDelta(self, *args):
|
934 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
935 |
+
|
936 |
+
rules = {
|
937 |
+
And: [False, False],
|
938 |
+
Or: [True, True],
|
939 |
+
Not: [True, False],
|
940 |
+
Eq: [None, None],
|
941 |
+
Ne: [None, None]
|
942 |
+
}
|
943 |
+
|
944 |
+
class UnrecognizedCondition(Exception):
|
945 |
+
pass
|
946 |
+
|
947 |
+
def rewrite(cond):
|
948 |
+
if isinstance(cond, Eq):
|
949 |
+
return KroneckerDelta(*cond.args)
|
950 |
+
if isinstance(cond, Ne):
|
951 |
+
return 1 - KroneckerDelta(*cond.args)
|
952 |
+
|
953 |
+
cls, args = type(cond), cond.args
|
954 |
+
if cls not in rules:
|
955 |
+
raise UnrecognizedCondition(cls)
|
956 |
+
|
957 |
+
b1, b2 = rules[cls]
|
958 |
+
k = Mul(*[1 - rewrite(c) for c in args]) if b1 else Mul(*[rewrite(c) for c in args])
|
959 |
+
|
960 |
+
if b2:
|
961 |
+
return 1 - k
|
962 |
+
return k
|
963 |
+
|
964 |
+
conditions = []
|
965 |
+
true_value = None
|
966 |
+
for value, cond in args:
|
967 |
+
if type(cond) in rules:
|
968 |
+
conditions.append((value, cond))
|
969 |
+
elif cond is S.true:
|
970 |
+
if true_value is None:
|
971 |
+
true_value = value
|
972 |
+
else:
|
973 |
+
return
|
974 |
+
|
975 |
+
if true_value is not None:
|
976 |
+
result = true_value
|
977 |
+
|
978 |
+
for value, cond in conditions[::-1]:
|
979 |
+
try:
|
980 |
+
k = rewrite(cond)
|
981 |
+
result = k * value + (1 - k) * result
|
982 |
+
except UnrecognizedCondition:
|
983 |
+
return
|
984 |
+
|
985 |
+
return result
|
986 |
+
|
987 |
+
|
988 |
+
def piecewise_fold(expr, evaluate=True):
|
989 |
+
"""
|
990 |
+
Takes an expression containing a piecewise function and returns the
|
991 |
+
expression in piecewise form. In addition, any ITE conditions are
|
992 |
+
rewritten in negation normal form and simplified.
|
993 |
+
|
994 |
+
The final Piecewise is evaluated (default) but if the raw form
|
995 |
+
is desired, send ``evaluate=False``; if trivial evaluation is
|
996 |
+
desired, send ``evaluate=None`` and duplicate conditions and
|
997 |
+
processing of True and False will be handled.
|
998 |
+
|
999 |
+
Examples
|
1000 |
+
========
|
1001 |
+
|
1002 |
+
>>> from sympy import Piecewise, piecewise_fold, S
|
1003 |
+
>>> from sympy.abc import x
|
1004 |
+
>>> p = Piecewise((x, x < 1), (1, S(1) <= x))
|
1005 |
+
>>> piecewise_fold(x*p)
|
1006 |
+
Piecewise((x**2, x < 1), (x, True))
|
1007 |
+
|
1008 |
+
See Also
|
1009 |
+
========
|
1010 |
+
|
1011 |
+
Piecewise
|
1012 |
+
piecewise_exclusive
|
1013 |
+
"""
|
1014 |
+
if not isinstance(expr, Basic) or not expr.has(Piecewise):
|
1015 |
+
return expr
|
1016 |
+
|
1017 |
+
new_args = []
|
1018 |
+
if isinstance(expr, (ExprCondPair, Piecewise)):
|
1019 |
+
for e, c in expr.args:
|
1020 |
+
if not isinstance(e, Piecewise):
|
1021 |
+
e = piecewise_fold(e)
|
1022 |
+
# we don't keep Piecewise in condition because
|
1023 |
+
# it has to be checked to see that it's complete
|
1024 |
+
# and we convert it to ITE at that time
|
1025 |
+
assert not c.has(Piecewise) # pragma: no cover
|
1026 |
+
if isinstance(c, ITE):
|
1027 |
+
c = c.to_nnf()
|
1028 |
+
c = simplify_logic(c, form='cnf')
|
1029 |
+
if isinstance(e, Piecewise):
|
1030 |
+
new_args.extend([(piecewise_fold(ei), And(ci, c))
|
1031 |
+
for ei, ci in e.args])
|
1032 |
+
else:
|
1033 |
+
new_args.append((e, c))
|
1034 |
+
else:
|
1035 |
+
# Given
|
1036 |
+
# P1 = Piecewise((e11, c1), (e12, c2), A)
|
1037 |
+
# P2 = Piecewise((e21, c1), (e22, c2), B)
|
1038 |
+
# ...
|
1039 |
+
# the folding of f(P1, P2) is trivially
|
1040 |
+
# Piecewise(
|
1041 |
+
# (f(e11, e21), c1),
|
1042 |
+
# (f(e12, e22), c2),
|
1043 |
+
# (f(Piecewise(A), Piecewise(B)), True))
|
1044 |
+
# Certain objects end up rewriting themselves as thus, so
|
1045 |
+
# we do that grouping before the more generic folding.
|
1046 |
+
# The following applies this idea when f = Add or f = Mul
|
1047 |
+
# (and the expression is commutative).
|
1048 |
+
if expr.is_Add or expr.is_Mul and expr.is_commutative:
|
1049 |
+
p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True)
|
1050 |
+
pc = sift(p, lambda x: tuple([c for e,c in x.args]))
|
1051 |
+
for c in list(ordered(pc)):
|
1052 |
+
if len(pc[c]) > 1:
|
1053 |
+
pargs = [list(i.args) for i in pc[c]]
|
1054 |
+
# the first one is the same; there may be more
|
1055 |
+
com = common_prefix(*[
|
1056 |
+
[i.cond for i in j] for j in pargs])
|
1057 |
+
n = len(com)
|
1058 |
+
collected = []
|
1059 |
+
for i in range(n):
|
1060 |
+
collected.append((
|
1061 |
+
expr.func(*[ai[i].expr for ai in pargs]),
|
1062 |
+
com[i]))
|
1063 |
+
remains = []
|
1064 |
+
for a in pargs:
|
1065 |
+
if n == len(a): # no more args
|
1066 |
+
continue
|
1067 |
+
if a[n].cond == True: # no longer Piecewise
|
1068 |
+
remains.append(a[n].expr)
|
1069 |
+
else: # restore the remaining Piecewise
|
1070 |
+
remains.append(
|
1071 |
+
Piecewise(*a[n:], evaluate=False))
|
1072 |
+
if remains:
|
1073 |
+
collected.append((expr.func(*remains), True))
|
1074 |
+
args.append(Piecewise(*collected, evaluate=False))
|
1075 |
+
continue
|
1076 |
+
args.extend(pc[c])
|
1077 |
+
else:
|
1078 |
+
args = expr.args
|
1079 |
+
# fold
|
1080 |
+
folded = list(map(piecewise_fold, args))
|
1081 |
+
for ec in product(*[
|
1082 |
+
(i.args if isinstance(i, Piecewise) else
|
1083 |
+
[(i, true)]) for i in folded]):
|
1084 |
+
e, c = zip(*ec)
|
1085 |
+
new_args.append((expr.func(*e), And(*c)))
|
1086 |
+
|
1087 |
+
if evaluate is None:
|
1088 |
+
# don't return duplicate conditions, otherwise don't evaluate
|
1089 |
+
new_args = list(reversed([(e, c) for c, e in {
|
1090 |
+
c: e for e, c in reversed(new_args)}.items()]))
|
1091 |
+
rv = Piecewise(*new_args, evaluate=evaluate)
|
1092 |
+
if evaluate is None and len(rv.args) == 1 and rv.args[0].cond == True:
|
1093 |
+
return rv.args[0].expr
|
1094 |
+
if any(s.expr.has(Piecewise) for p in rv.atoms(Piecewise) for s in p.args):
|
1095 |
+
return piecewise_fold(rv)
|
1096 |
+
return rv
|
1097 |
+
|
1098 |
+
|
1099 |
+
def _clip(A, B, k):
|
1100 |
+
"""Return interval B as intervals that are covered by A (keyed
|
1101 |
+
to k) and all other intervals of B not covered by A keyed to -1.
|
1102 |
+
|
1103 |
+
The reference point of each interval is the rhs; if the lhs is
|
1104 |
+
greater than the rhs then an interval of zero width interval will
|
1105 |
+
result, e.g. (4, 1) is treated like (1, 1).
|
1106 |
+
|
1107 |
+
Examples
|
1108 |
+
========
|
1109 |
+
|
1110 |
+
>>> from sympy.functions.elementary.piecewise import _clip
|
1111 |
+
>>> from sympy import Tuple
|
1112 |
+
>>> A = Tuple(1, 3)
|
1113 |
+
>>> B = Tuple(2, 4)
|
1114 |
+
>>> _clip(A, B, 0)
|
1115 |
+
[(2, 3, 0), (3, 4, -1)]
|
1116 |
+
|
1117 |
+
Interpretation: interval portion (2, 3) of interval (2, 4) is
|
1118 |
+
covered by interval (1, 3) and is keyed to 0 as requested;
|
1119 |
+
interval (3, 4) was not covered by (1, 3) and is keyed to -1.
|
1120 |
+
"""
|
1121 |
+
a, b = B
|
1122 |
+
c, d = A
|
1123 |
+
c, d = Min(Max(c, a), b), Min(Max(d, a), b)
|
1124 |
+
a, b = Min(a, b), b
|
1125 |
+
p = []
|
1126 |
+
if a != c:
|
1127 |
+
p.append((a, c, -1))
|
1128 |
+
else:
|
1129 |
+
pass
|
1130 |
+
if c != d:
|
1131 |
+
p.append((c, d, k))
|
1132 |
+
else:
|
1133 |
+
pass
|
1134 |
+
if b != d:
|
1135 |
+
if d == c and p and p[-1][-1] == -1:
|
1136 |
+
p[-1] = p[-1][0], b, -1
|
1137 |
+
else:
|
1138 |
+
p.append((d, b, -1))
|
1139 |
+
else:
|
1140 |
+
pass
|
1141 |
+
|
1142 |
+
return p
|
1143 |
+
|
1144 |
+
|
1145 |
+
def piecewise_simplify_arguments(expr, **kwargs):
|
1146 |
+
from sympy.simplify.simplify import simplify
|
1147 |
+
|
1148 |
+
# simplify conditions
|
1149 |
+
f1 = expr.args[0].cond.free_symbols
|
1150 |
+
args = None
|
1151 |
+
if len(f1) == 1 and not expr.atoms(Eq):
|
1152 |
+
x = f1.pop()
|
1153 |
+
# this won't return intervals involving Eq
|
1154 |
+
# and it won't handle symbols treated as
|
1155 |
+
# booleans
|
1156 |
+
ok, abe_ = expr._intervals(x, err_on_Eq=True)
|
1157 |
+
def include(c, x, a):
|
1158 |
+
"return True if c.subs(x, a) is True, else False"
|
1159 |
+
try:
|
1160 |
+
return c.subs(x, a) == True
|
1161 |
+
except TypeError:
|
1162 |
+
return False
|
1163 |
+
if ok:
|
1164 |
+
args = []
|
1165 |
+
covered = S.EmptySet
|
1166 |
+
from sympy.sets.sets import Interval
|
1167 |
+
for a, b, e, i in abe_:
|
1168 |
+
c = expr.args[i].cond
|
1169 |
+
incl_a = include(c, x, a)
|
1170 |
+
incl_b = include(c, x, b)
|
1171 |
+
iv = Interval(a, b, not incl_a, not incl_b)
|
1172 |
+
cset = iv - covered
|
1173 |
+
if not cset:
|
1174 |
+
continue
|
1175 |
+
if incl_a and incl_b:
|
1176 |
+
if a.is_infinite and b.is_infinite:
|
1177 |
+
c = S.true
|
1178 |
+
elif b.is_infinite:
|
1179 |
+
c = (x >= a)
|
1180 |
+
elif a in covered or a.is_infinite:
|
1181 |
+
c = (x <= b)
|
1182 |
+
else:
|
1183 |
+
c = And(a <= x, x <= b)
|
1184 |
+
elif incl_a:
|
1185 |
+
if a in covered or a.is_infinite:
|
1186 |
+
c = (x < b)
|
1187 |
+
else:
|
1188 |
+
c = And(a <= x, x < b)
|
1189 |
+
elif incl_b:
|
1190 |
+
if b.is_infinite:
|
1191 |
+
c = (x > a)
|
1192 |
+
else:
|
1193 |
+
c = (x <= b)
|
1194 |
+
else:
|
1195 |
+
if a in covered:
|
1196 |
+
c = (x < b)
|
1197 |
+
else:
|
1198 |
+
c = And(a < x, x < b)
|
1199 |
+
covered |= iv
|
1200 |
+
if a is S.NegativeInfinity and incl_a:
|
1201 |
+
covered |= {S.NegativeInfinity}
|
1202 |
+
if b is S.Infinity and incl_b:
|
1203 |
+
covered |= {S.Infinity}
|
1204 |
+
args.append((e, c))
|
1205 |
+
if not S.Reals.is_subset(covered):
|
1206 |
+
args.append((Undefined, True))
|
1207 |
+
if args is None:
|
1208 |
+
args = list(expr.args)
|
1209 |
+
for i in range(len(args)):
|
1210 |
+
e, c = args[i]
|
1211 |
+
if isinstance(c, Basic):
|
1212 |
+
c = simplify(c, **kwargs)
|
1213 |
+
args[i] = (e, c)
|
1214 |
+
|
1215 |
+
# simplify expressions
|
1216 |
+
doit = kwargs.pop('doit', None)
|
1217 |
+
for i in range(len(args)):
|
1218 |
+
e, c = args[i]
|
1219 |
+
if isinstance(e, Basic):
|
1220 |
+
# Skip doit to avoid growth at every call for some integrals
|
1221 |
+
# and sums, see sympy/sympy#17165
|
1222 |
+
newe = simplify(e, doit=False, **kwargs)
|
1223 |
+
if newe != e:
|
1224 |
+
e = newe
|
1225 |
+
args[i] = (e, c)
|
1226 |
+
|
1227 |
+
# restore kwargs flag
|
1228 |
+
if doit is not None:
|
1229 |
+
kwargs['doit'] = doit
|
1230 |
+
|
1231 |
+
return Piecewise(*args)
|
1232 |
+
|
1233 |
+
|
1234 |
+
def _piecewise_collapse_arguments(_args):
|
1235 |
+
newargs = [] # the unevaluated conditions
|
1236 |
+
current_cond = set() # the conditions up to a given e, c pair
|
1237 |
+
for expr, cond in _args:
|
1238 |
+
cond = cond.replace(
|
1239 |
+
lambda _: _.is_Relational, _canonical_coeff)
|
1240 |
+
# Check here if expr is a Piecewise and collapse if one of
|
1241 |
+
# the conds in expr matches cond. This allows the collapsing
|
1242 |
+
# of Piecewise((Piecewise((x,x<0)),x<0)) to Piecewise((x,x<0)).
|
1243 |
+
# This is important when using piecewise_fold to simplify
|
1244 |
+
# multiple Piecewise instances having the same conds.
|
1245 |
+
# Eventually, this code should be able to collapse Piecewise's
|
1246 |
+
# having different intervals, but this will probably require
|
1247 |
+
# using the new assumptions.
|
1248 |
+
if isinstance(expr, Piecewise):
|
1249 |
+
unmatching = []
|
1250 |
+
for i, (e, c) in enumerate(expr.args):
|
1251 |
+
if c in current_cond:
|
1252 |
+
# this would already have triggered
|
1253 |
+
continue
|
1254 |
+
if c == cond:
|
1255 |
+
if c != True:
|
1256 |
+
# nothing past this condition will ever
|
1257 |
+
# trigger and only those args before this
|
1258 |
+
# that didn't match a previous condition
|
1259 |
+
# could possibly trigger
|
1260 |
+
if unmatching:
|
1261 |
+
expr = Piecewise(*(
|
1262 |
+
unmatching + [(e, c)]))
|
1263 |
+
else:
|
1264 |
+
expr = e
|
1265 |
+
break
|
1266 |
+
else:
|
1267 |
+
unmatching.append((e, c))
|
1268 |
+
|
1269 |
+
# check for condition repeats
|
1270 |
+
got = False
|
1271 |
+
# -- if an And contains a condition that was
|
1272 |
+
# already encountered, then the And will be
|
1273 |
+
# False: if the previous condition was False
|
1274 |
+
# then the And will be False and if the previous
|
1275 |
+
# condition is True then then we wouldn't get to
|
1276 |
+
# this point. In either case, we can skip this condition.
|
1277 |
+
for i in ([cond] +
|
1278 |
+
(list(cond.args) if isinstance(cond, And) else
|
1279 |
+
[])):
|
1280 |
+
if i in current_cond:
|
1281 |
+
got = True
|
1282 |
+
break
|
1283 |
+
if got:
|
1284 |
+
continue
|
1285 |
+
|
1286 |
+
# -- if not(c) is already in current_cond then c is
|
1287 |
+
# a redundant condition in an And. This does not
|
1288 |
+
# apply to Or, however: (e1, c), (e2, Or(~c, d))
|
1289 |
+
# is not (e1, c), (e2, d) because if c and d are
|
1290 |
+
# both False this would give no results when the
|
1291 |
+
# true answer should be (e2, True)
|
1292 |
+
if isinstance(cond, And):
|
1293 |
+
nonredundant = []
|
1294 |
+
for c in cond.args:
|
1295 |
+
if isinstance(c, Relational):
|
1296 |
+
if c.negated.canonical in current_cond:
|
1297 |
+
continue
|
1298 |
+
# if a strict inequality appears after
|
1299 |
+
# a non-strict one, then the condition is
|
1300 |
+
# redundant
|
1301 |
+
if isinstance(c, (Lt, Gt)) and (
|
1302 |
+
c.weak in current_cond):
|
1303 |
+
cond = False
|
1304 |
+
break
|
1305 |
+
nonredundant.append(c)
|
1306 |
+
else:
|
1307 |
+
cond = cond.func(*nonredundant)
|
1308 |
+
elif isinstance(cond, Relational):
|
1309 |
+
if cond.negated.canonical in current_cond:
|
1310 |
+
cond = S.true
|
1311 |
+
|
1312 |
+
current_cond.add(cond)
|
1313 |
+
|
1314 |
+
# collect successive e,c pairs when exprs or cond match
|
1315 |
+
if newargs:
|
1316 |
+
if newargs[-1].expr == expr:
|
1317 |
+
orcond = Or(cond, newargs[-1].cond)
|
1318 |
+
if isinstance(orcond, (And, Or)):
|
1319 |
+
orcond = distribute_and_over_or(orcond)
|
1320 |
+
newargs[-1] = ExprCondPair(expr, orcond)
|
1321 |
+
continue
|
1322 |
+
elif newargs[-1].cond == cond:
|
1323 |
+
continue
|
1324 |
+
newargs.append(ExprCondPair(expr, cond))
|
1325 |
+
return newargs
|
1326 |
+
|
1327 |
+
|
1328 |
+
_blessed = lambda e: getattr(e.lhs, '_diff_wrt', False) and (
|
1329 |
+
getattr(e.rhs, '_diff_wrt', None) or
|
1330 |
+
isinstance(e.rhs, (Rational, NumberSymbol)))
|
1331 |
+
|
1332 |
+
|
1333 |
+
def piecewise_simplify(expr, **kwargs):
|
1334 |
+
expr = piecewise_simplify_arguments(expr, **kwargs)
|
1335 |
+
if not isinstance(expr, Piecewise):
|
1336 |
+
return expr
|
1337 |
+
args = list(expr.args)
|
1338 |
+
|
1339 |
+
args = _piecewise_simplify_eq_and(args)
|
1340 |
+
args = _piecewise_simplify_equal_to_next_segment(args)
|
1341 |
+
return Piecewise(*args)
|
1342 |
+
|
1343 |
+
|
1344 |
+
def _piecewise_simplify_equal_to_next_segment(args):
|
1345 |
+
"""
|
1346 |
+
See if expressions valid for an Equal expression happens to evaluate
|
1347 |
+
to the same function as in the next piecewise segment, see:
|
1348 |
+
https://github.com/sympy/sympy/issues/8458
|
1349 |
+
"""
|
1350 |
+
prevexpr = None
|
1351 |
+
for i, (expr, cond) in reversed(list(enumerate(args))):
|
1352 |
+
if prevexpr is not None:
|
1353 |
+
if isinstance(cond, And):
|
1354 |
+
eqs, other = sift(cond.args,
|
1355 |
+
lambda i: isinstance(i, Eq), binary=True)
|
1356 |
+
elif isinstance(cond, Eq):
|
1357 |
+
eqs, other = [cond], []
|
1358 |
+
else:
|
1359 |
+
eqs = other = []
|
1360 |
+
_prevexpr = prevexpr
|
1361 |
+
_expr = expr
|
1362 |
+
if eqs and not other:
|
1363 |
+
eqs = list(ordered(eqs))
|
1364 |
+
for e in eqs:
|
1365 |
+
# allow 2 args to collapse into 1 for any e
|
1366 |
+
# otherwise limit simplification to only simple-arg
|
1367 |
+
# Eq instances
|
1368 |
+
if len(args) == 2 or _blessed(e):
|
1369 |
+
_prevexpr = _prevexpr.subs(*e.args)
|
1370 |
+
_expr = _expr.subs(*e.args)
|
1371 |
+
# Did it evaluate to the same?
|
1372 |
+
if _prevexpr == _expr:
|
1373 |
+
# Set the expression for the Not equal section to the same
|
1374 |
+
# as the next. These will be merged when creating the new
|
1375 |
+
# Piecewise
|
1376 |
+
args[i] = args[i].func(args[i + 1][0], cond)
|
1377 |
+
else:
|
1378 |
+
# Update the expression that we compare against
|
1379 |
+
prevexpr = expr
|
1380 |
+
else:
|
1381 |
+
prevexpr = expr
|
1382 |
+
return args
|
1383 |
+
|
1384 |
+
|
1385 |
+
def _piecewise_simplify_eq_and(args):
|
1386 |
+
"""
|
1387 |
+
Try to simplify conditions and the expression for
|
1388 |
+
equalities that are part of the condition, e.g.
|
1389 |
+
Piecewise((n, And(Eq(n,0), Eq(n + m, 0))), (1, True))
|
1390 |
+
-> Piecewise((0, And(Eq(n, 0), Eq(m, 0))), (1, True))
|
1391 |
+
"""
|
1392 |
+
for i, (expr, cond) in enumerate(args):
|
1393 |
+
if isinstance(cond, And):
|
1394 |
+
eqs, other = sift(cond.args,
|
1395 |
+
lambda i: isinstance(i, Eq), binary=True)
|
1396 |
+
elif isinstance(cond, Eq):
|
1397 |
+
eqs, other = [cond], []
|
1398 |
+
else:
|
1399 |
+
eqs = other = []
|
1400 |
+
if eqs:
|
1401 |
+
eqs = list(ordered(eqs))
|
1402 |
+
for j, e in enumerate(eqs):
|
1403 |
+
# these blessed lhs objects behave like Symbols
|
1404 |
+
# and the rhs are simple replacements for the "symbols"
|
1405 |
+
if _blessed(e):
|
1406 |
+
expr = expr.subs(*e.args)
|
1407 |
+
eqs[j + 1:] = [ei.subs(*e.args) for ei in eqs[j + 1:]]
|
1408 |
+
other = [ei.subs(*e.args) for ei in other]
|
1409 |
+
cond = And(*(eqs + other))
|
1410 |
+
args[i] = args[i].func(expr, cond)
|
1411 |
+
return args
|
1412 |
+
|
1413 |
+
|
1414 |
+
def piecewise_exclusive(expr, *, skip_nan=False, deep=True):
|
1415 |
+
"""
|
1416 |
+
Rewrite :class:`Piecewise` with mutually exclusive conditions.
|
1417 |
+
|
1418 |
+
Explanation
|
1419 |
+
===========
|
1420 |
+
|
1421 |
+
SymPy represents the conditions of a :class:`Piecewise` in an
|
1422 |
+
"if-elif"-fashion, allowing more than one condition to be simultaneously
|
1423 |
+
True. The interpretation is that the first condition that is True is the
|
1424 |
+
case that holds. While this is a useful representation computationally it
|
1425 |
+
is not how a piecewise formula is typically shown in a mathematical text.
|
1426 |
+
The :func:`piecewise_exclusive` function can be used to rewrite any
|
1427 |
+
:class:`Piecewise` with more typical mutually exclusive conditions.
|
1428 |
+
|
1429 |
+
Note that further manipulation of the resulting :class:`Piecewise`, e.g.
|
1430 |
+
simplifying it, will most likely make it non-exclusive. Hence, this is
|
1431 |
+
primarily a function to be used in conjunction with printing the Piecewise
|
1432 |
+
or if one would like to reorder the expression-condition pairs.
|
1433 |
+
|
1434 |
+
If it is not possible to determine that all possibilities are covered by
|
1435 |
+
the different cases of the :class:`Piecewise` then a final
|
1436 |
+
:class:`~sympy.core.numbers.NaN` case will be included explicitly. This
|
1437 |
+
can be prevented by passing ``skip_nan=True``.
|
1438 |
+
|
1439 |
+
Examples
|
1440 |
+
========
|
1441 |
+
|
1442 |
+
>>> from sympy import piecewise_exclusive, Symbol, Piecewise, S
|
1443 |
+
>>> x = Symbol('x', real=True)
|
1444 |
+
>>> p = Piecewise((0, x < 0), (S.Half, x <= 0), (1, True))
|
1445 |
+
>>> piecewise_exclusive(p)
|
1446 |
+
Piecewise((0, x < 0), (1/2, Eq(x, 0)), (1, x > 0))
|
1447 |
+
>>> piecewise_exclusive(Piecewise((2, x > 1)))
|
1448 |
+
Piecewise((2, x > 1), (nan, x <= 1))
|
1449 |
+
>>> piecewise_exclusive(Piecewise((2, x > 1)), skip_nan=True)
|
1450 |
+
Piecewise((2, x > 1))
|
1451 |
+
|
1452 |
+
Parameters
|
1453 |
+
==========
|
1454 |
+
|
1455 |
+
expr: a SymPy expression.
|
1456 |
+
Any :class:`Piecewise` in the expression will be rewritten.
|
1457 |
+
skip_nan: ``bool`` (default ``False``)
|
1458 |
+
If ``skip_nan`` is set to ``True`` then a final
|
1459 |
+
:class:`~sympy.core.numbers.NaN` case will not be included.
|
1460 |
+
deep: ``bool`` (default ``True``)
|
1461 |
+
If ``deep`` is ``True`` then :func:`piecewise_exclusive` will rewrite
|
1462 |
+
any :class:`Piecewise` subexpressions in ``expr`` rather than just
|
1463 |
+
rewriting ``expr`` itself.
|
1464 |
+
|
1465 |
+
Returns
|
1466 |
+
=======
|
1467 |
+
|
1468 |
+
An expression equivalent to ``expr`` but where all :class:`Piecewise` have
|
1469 |
+
been rewritten with mutually exclusive conditions.
|
1470 |
+
|
1471 |
+
See Also
|
1472 |
+
========
|
1473 |
+
|
1474 |
+
Piecewise
|
1475 |
+
piecewise_fold
|
1476 |
+
"""
|
1477 |
+
|
1478 |
+
def make_exclusive(*pwargs):
|
1479 |
+
|
1480 |
+
cumcond = false
|
1481 |
+
newargs = []
|
1482 |
+
|
1483 |
+
# Handle the first n-1 cases
|
1484 |
+
for expr_i, cond_i in pwargs[:-1]:
|
1485 |
+
cancond = And(cond_i, Not(cumcond)).simplify()
|
1486 |
+
cumcond = Or(cond_i, cumcond).simplify()
|
1487 |
+
newargs.append((expr_i, cancond))
|
1488 |
+
|
1489 |
+
# For the nth case defer simplification of cumcond
|
1490 |
+
expr_n, cond_n = pwargs[-1]
|
1491 |
+
cancond_n = And(cond_n, Not(cumcond)).simplify()
|
1492 |
+
newargs.append((expr_n, cancond_n))
|
1493 |
+
|
1494 |
+
if not skip_nan:
|
1495 |
+
cumcond = Or(cond_n, cumcond).simplify()
|
1496 |
+
if cumcond is not true:
|
1497 |
+
newargs.append((Undefined, Not(cumcond).simplify()))
|
1498 |
+
|
1499 |
+
return Piecewise(*newargs, evaluate=False)
|
1500 |
+
|
1501 |
+
if deep:
|
1502 |
+
return expr.replace(Piecewise, make_exclusive)
|
1503 |
+
elif isinstance(expr, Piecewise):
|
1504 |
+
return make_exclusive(*expr.args)
|
1505 |
+
else:
|
1506 |
+
return expr
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__init__.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
'TWave',
|
3 |
+
|
4 |
+
'RayTransferMatrix', 'FreeSpace', 'FlatRefraction', 'CurvedRefraction',
|
5 |
+
'FlatMirror', 'CurvedMirror', 'ThinLens', 'GeometricRay', 'BeamParameter',
|
6 |
+
'waist2rayleigh', 'rayleigh2waist', 'geometric_conj_ab',
|
7 |
+
'geometric_conj_af', 'geometric_conj_bf', 'gaussian_conj',
|
8 |
+
'conjugate_gauss_beams',
|
9 |
+
|
10 |
+
'Medium',
|
11 |
+
|
12 |
+
'refraction_angle', 'deviation', 'fresnel_coefficients', 'brewster_angle',
|
13 |
+
'critical_angle', 'lens_makers_formula', 'mirror_formula', 'lens_formula',
|
14 |
+
'hyperfocal_distance', 'transverse_magnification',
|
15 |
+
|
16 |
+
'jones_vector', 'stokes_vector', 'jones_2_stokes', 'linear_polarizer',
|
17 |
+
'phase_retarder', 'half_wave_retarder', 'quarter_wave_retarder',
|
18 |
+
'transmissive_filter', 'reflective_filter', 'mueller_matrix',
|
19 |
+
'polarizing_beam_splitter',
|
20 |
+
]
|
21 |
+
from .waves import TWave
|
22 |
+
|
23 |
+
from .gaussopt import (RayTransferMatrix, FreeSpace, FlatRefraction,
|
24 |
+
CurvedRefraction, FlatMirror, CurvedMirror, ThinLens, GeometricRay,
|
25 |
+
BeamParameter, waist2rayleigh, rayleigh2waist, geometric_conj_ab,
|
26 |
+
geometric_conj_af, geometric_conj_bf, gaussian_conj,
|
27 |
+
conjugate_gauss_beams)
|
28 |
+
|
29 |
+
from .medium import Medium
|
30 |
+
|
31 |
+
from .utils import (refraction_angle, deviation, fresnel_coefficients,
|
32 |
+
brewster_angle, critical_angle, lens_makers_formula, mirror_formula,
|
33 |
+
lens_formula, hyperfocal_distance, transverse_magnification)
|
34 |
+
|
35 |
+
from .polarization import (jones_vector, stokes_vector, jones_2_stokes,
|
36 |
+
linear_polarizer, phase_retarder, half_wave_retarder,
|
37 |
+
quarter_wave_retarder, transmissive_filter, reflective_filter,
|
38 |
+
mueller_matrix, polarizing_beam_splitter)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.51 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/gaussopt.cpython-310.pyc
ADDED
Binary file (21.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/medium.cpython-310.pyc
ADDED
Binary file (7.52 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/polarization.cpython-310.pyc
ADDED
Binary file (22.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/__pycache__/waves.cpython-310.pyc
ADDED
Binary file (10.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/gaussopt.py
ADDED
@@ -0,0 +1,923 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Gaussian optics.
|
3 |
+
|
4 |
+
The module implements:
|
5 |
+
|
6 |
+
- Ray transfer matrices for geometrical and gaussian optics.
|
7 |
+
|
8 |
+
See RayTransferMatrix, GeometricRay and BeamParameter
|
9 |
+
|
10 |
+
- Conjugation relations for geometrical and gaussian optics.
|
11 |
+
|
12 |
+
See geometric_conj*, gauss_conj and conjugate_gauss_beams
|
13 |
+
|
14 |
+
The conventions for the distances are as follows:
|
15 |
+
|
16 |
+
focal distance
|
17 |
+
positive for convergent lenses
|
18 |
+
object distance
|
19 |
+
positive for real objects
|
20 |
+
image distance
|
21 |
+
positive for real images
|
22 |
+
"""
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
'RayTransferMatrix',
|
26 |
+
'FreeSpace',
|
27 |
+
'FlatRefraction',
|
28 |
+
'CurvedRefraction',
|
29 |
+
'FlatMirror',
|
30 |
+
'CurvedMirror',
|
31 |
+
'ThinLens',
|
32 |
+
'GeometricRay',
|
33 |
+
'BeamParameter',
|
34 |
+
'waist2rayleigh',
|
35 |
+
'rayleigh2waist',
|
36 |
+
'geometric_conj_ab',
|
37 |
+
'geometric_conj_af',
|
38 |
+
'geometric_conj_bf',
|
39 |
+
'gaussian_conj',
|
40 |
+
'conjugate_gauss_beams',
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
from sympy.core.expr import Expr
|
45 |
+
from sympy.core.numbers import (I, pi)
|
46 |
+
from sympy.core.sympify import sympify
|
47 |
+
from sympy.functions.elementary.complexes import (im, re)
|
48 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
49 |
+
from sympy.functions.elementary.trigonometric import atan2
|
50 |
+
from sympy.matrices.dense import Matrix, MutableDenseMatrix
|
51 |
+
from sympy.polys.rationaltools import together
|
52 |
+
from sympy.utilities.misc import filldedent
|
53 |
+
|
54 |
+
###
|
55 |
+
# A, B, C, D matrices
|
56 |
+
###
|
57 |
+
|
58 |
+
|
59 |
+
class RayTransferMatrix(MutableDenseMatrix):
|
60 |
+
"""
|
61 |
+
Base class for a Ray Transfer Matrix.
|
62 |
+
|
63 |
+
It should be used if there is not already a more specific subclass mentioned
|
64 |
+
in See Also.
|
65 |
+
|
66 |
+
Parameters
|
67 |
+
==========
|
68 |
+
|
69 |
+
parameters :
|
70 |
+
A, B, C and D or 2x2 matrix (Matrix(2, 2, [A, B, C, D]))
|
71 |
+
|
72 |
+
Examples
|
73 |
+
========
|
74 |
+
|
75 |
+
>>> from sympy.physics.optics import RayTransferMatrix, ThinLens
|
76 |
+
>>> from sympy import Symbol, Matrix
|
77 |
+
|
78 |
+
>>> mat = RayTransferMatrix(1, 2, 3, 4)
|
79 |
+
>>> mat
|
80 |
+
Matrix([
|
81 |
+
[1, 2],
|
82 |
+
[3, 4]])
|
83 |
+
|
84 |
+
>>> RayTransferMatrix(Matrix([[1, 2], [3, 4]]))
|
85 |
+
Matrix([
|
86 |
+
[1, 2],
|
87 |
+
[3, 4]])
|
88 |
+
|
89 |
+
>>> mat.A
|
90 |
+
1
|
91 |
+
|
92 |
+
>>> f = Symbol('f')
|
93 |
+
>>> lens = ThinLens(f)
|
94 |
+
>>> lens
|
95 |
+
Matrix([
|
96 |
+
[ 1, 0],
|
97 |
+
[-1/f, 1]])
|
98 |
+
|
99 |
+
>>> lens.C
|
100 |
+
-1/f
|
101 |
+
|
102 |
+
See Also
|
103 |
+
========
|
104 |
+
|
105 |
+
GeometricRay, BeamParameter,
|
106 |
+
FreeSpace, FlatRefraction, CurvedRefraction,
|
107 |
+
FlatMirror, CurvedMirror, ThinLens
|
108 |
+
|
109 |
+
References
|
110 |
+
==========
|
111 |
+
|
112 |
+
.. [1] https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis
|
113 |
+
"""
|
114 |
+
|
115 |
+
def __new__(cls, *args):
|
116 |
+
|
117 |
+
if len(args) == 4:
|
118 |
+
temp = ((args[0], args[1]), (args[2], args[3]))
|
119 |
+
elif len(args) == 1 \
|
120 |
+
and isinstance(args[0], Matrix) \
|
121 |
+
and args[0].shape == (2, 2):
|
122 |
+
temp = args[0]
|
123 |
+
else:
|
124 |
+
raise ValueError(filldedent('''
|
125 |
+
Expecting 2x2 Matrix or the 4 elements of
|
126 |
+
the Matrix but got %s''' % str(args)))
|
127 |
+
return Matrix.__new__(cls, temp)
|
128 |
+
|
129 |
+
def __mul__(self, other):
|
130 |
+
if isinstance(other, RayTransferMatrix):
|
131 |
+
return RayTransferMatrix(Matrix.__mul__(self, other))
|
132 |
+
elif isinstance(other, GeometricRay):
|
133 |
+
return GeometricRay(Matrix.__mul__(self, other))
|
134 |
+
elif isinstance(other, BeamParameter):
|
135 |
+
temp = self*Matrix(((other.q,), (1,)))
|
136 |
+
q = (temp[0]/temp[1]).expand(complex=True)
|
137 |
+
return BeamParameter(other.wavelen,
|
138 |
+
together(re(q)),
|
139 |
+
z_r=together(im(q)))
|
140 |
+
else:
|
141 |
+
return Matrix.__mul__(self, other)
|
142 |
+
|
143 |
+
@property
|
144 |
+
def A(self):
|
145 |
+
"""
|
146 |
+
The A parameter of the Matrix.
|
147 |
+
|
148 |
+
Examples
|
149 |
+
========
|
150 |
+
|
151 |
+
>>> from sympy.physics.optics import RayTransferMatrix
|
152 |
+
>>> mat = RayTransferMatrix(1, 2, 3, 4)
|
153 |
+
>>> mat.A
|
154 |
+
1
|
155 |
+
"""
|
156 |
+
return self[0, 0]
|
157 |
+
|
158 |
+
@property
|
159 |
+
def B(self):
|
160 |
+
"""
|
161 |
+
The B parameter of the Matrix.
|
162 |
+
|
163 |
+
Examples
|
164 |
+
========
|
165 |
+
|
166 |
+
>>> from sympy.physics.optics import RayTransferMatrix
|
167 |
+
>>> mat = RayTransferMatrix(1, 2, 3, 4)
|
168 |
+
>>> mat.B
|
169 |
+
2
|
170 |
+
"""
|
171 |
+
return self[0, 1]
|
172 |
+
|
173 |
+
@property
|
174 |
+
def C(self):
|
175 |
+
"""
|
176 |
+
The C parameter of the Matrix.
|
177 |
+
|
178 |
+
Examples
|
179 |
+
========
|
180 |
+
|
181 |
+
>>> from sympy.physics.optics import RayTransferMatrix
|
182 |
+
>>> mat = RayTransferMatrix(1, 2, 3, 4)
|
183 |
+
>>> mat.C
|
184 |
+
3
|
185 |
+
"""
|
186 |
+
return self[1, 0]
|
187 |
+
|
188 |
+
@property
|
189 |
+
def D(self):
|
190 |
+
"""
|
191 |
+
The D parameter of the Matrix.
|
192 |
+
|
193 |
+
Examples
|
194 |
+
========
|
195 |
+
|
196 |
+
>>> from sympy.physics.optics import RayTransferMatrix
|
197 |
+
>>> mat = RayTransferMatrix(1, 2, 3, 4)
|
198 |
+
>>> mat.D
|
199 |
+
4
|
200 |
+
"""
|
201 |
+
return self[1, 1]
|
202 |
+
|
203 |
+
|
204 |
+
class FreeSpace(RayTransferMatrix):
|
205 |
+
"""
|
206 |
+
Ray Transfer Matrix for free space.
|
207 |
+
|
208 |
+
Parameters
|
209 |
+
==========
|
210 |
+
|
211 |
+
distance
|
212 |
+
|
213 |
+
See Also
|
214 |
+
========
|
215 |
+
|
216 |
+
RayTransferMatrix
|
217 |
+
|
218 |
+
Examples
|
219 |
+
========
|
220 |
+
|
221 |
+
>>> from sympy.physics.optics import FreeSpace
|
222 |
+
>>> from sympy import symbols
|
223 |
+
>>> d = symbols('d')
|
224 |
+
>>> FreeSpace(d)
|
225 |
+
Matrix([
|
226 |
+
[1, d],
|
227 |
+
[0, 1]])
|
228 |
+
"""
|
229 |
+
def __new__(cls, d):
|
230 |
+
return RayTransferMatrix.__new__(cls, 1, d, 0, 1)
|
231 |
+
|
232 |
+
|
233 |
+
class FlatRefraction(RayTransferMatrix):
|
234 |
+
"""
|
235 |
+
Ray Transfer Matrix for refraction.
|
236 |
+
|
237 |
+
Parameters
|
238 |
+
==========
|
239 |
+
|
240 |
+
n1 :
|
241 |
+
Refractive index of one medium.
|
242 |
+
n2 :
|
243 |
+
Refractive index of other medium.
|
244 |
+
|
245 |
+
See Also
|
246 |
+
========
|
247 |
+
|
248 |
+
RayTransferMatrix
|
249 |
+
|
250 |
+
Examples
|
251 |
+
========
|
252 |
+
|
253 |
+
>>> from sympy.physics.optics import FlatRefraction
|
254 |
+
>>> from sympy import symbols
|
255 |
+
>>> n1, n2 = symbols('n1 n2')
|
256 |
+
>>> FlatRefraction(n1, n2)
|
257 |
+
Matrix([
|
258 |
+
[1, 0],
|
259 |
+
[0, n1/n2]])
|
260 |
+
"""
|
261 |
+
def __new__(cls, n1, n2):
|
262 |
+
n1, n2 = map(sympify, (n1, n2))
|
263 |
+
return RayTransferMatrix.__new__(cls, 1, 0, 0, n1/n2)
|
264 |
+
|
265 |
+
|
266 |
+
class CurvedRefraction(RayTransferMatrix):
|
267 |
+
"""
|
268 |
+
Ray Transfer Matrix for refraction on curved interface.
|
269 |
+
|
270 |
+
Parameters
|
271 |
+
==========
|
272 |
+
|
273 |
+
R :
|
274 |
+
Radius of curvature (positive for concave).
|
275 |
+
n1 :
|
276 |
+
Refractive index of one medium.
|
277 |
+
n2 :
|
278 |
+
Refractive index of other medium.
|
279 |
+
|
280 |
+
See Also
|
281 |
+
========
|
282 |
+
|
283 |
+
RayTransferMatrix
|
284 |
+
|
285 |
+
Examples
|
286 |
+
========
|
287 |
+
|
288 |
+
>>> from sympy.physics.optics import CurvedRefraction
|
289 |
+
>>> from sympy import symbols
|
290 |
+
>>> R, n1, n2 = symbols('R n1 n2')
|
291 |
+
>>> CurvedRefraction(R, n1, n2)
|
292 |
+
Matrix([
|
293 |
+
[ 1, 0],
|
294 |
+
[(n1 - n2)/(R*n2), n1/n2]])
|
295 |
+
"""
|
296 |
+
def __new__(cls, R, n1, n2):
|
297 |
+
R, n1, n2 = map(sympify, (R, n1, n2))
|
298 |
+
return RayTransferMatrix.__new__(cls, 1, 0, (n1 - n2)/R/n2, n1/n2)
|
299 |
+
|
300 |
+
|
301 |
+
class FlatMirror(RayTransferMatrix):
|
302 |
+
"""
|
303 |
+
Ray Transfer Matrix for reflection.
|
304 |
+
|
305 |
+
See Also
|
306 |
+
========
|
307 |
+
|
308 |
+
RayTransferMatrix
|
309 |
+
|
310 |
+
Examples
|
311 |
+
========
|
312 |
+
|
313 |
+
>>> from sympy.physics.optics import FlatMirror
|
314 |
+
>>> FlatMirror()
|
315 |
+
Matrix([
|
316 |
+
[1, 0],
|
317 |
+
[0, 1]])
|
318 |
+
"""
|
319 |
+
def __new__(cls):
|
320 |
+
return RayTransferMatrix.__new__(cls, 1, 0, 0, 1)
|
321 |
+
|
322 |
+
|
323 |
+
class CurvedMirror(RayTransferMatrix):
|
324 |
+
"""
|
325 |
+
Ray Transfer Matrix for reflection from curved surface.
|
326 |
+
|
327 |
+
Parameters
|
328 |
+
==========
|
329 |
+
|
330 |
+
R : radius of curvature (positive for concave)
|
331 |
+
|
332 |
+
See Also
|
333 |
+
========
|
334 |
+
|
335 |
+
RayTransferMatrix
|
336 |
+
|
337 |
+
Examples
|
338 |
+
========
|
339 |
+
|
340 |
+
>>> from sympy.physics.optics import CurvedMirror
|
341 |
+
>>> from sympy import symbols
|
342 |
+
>>> R = symbols('R')
|
343 |
+
>>> CurvedMirror(R)
|
344 |
+
Matrix([
|
345 |
+
[ 1, 0],
|
346 |
+
[-2/R, 1]])
|
347 |
+
"""
|
348 |
+
def __new__(cls, R):
|
349 |
+
R = sympify(R)
|
350 |
+
return RayTransferMatrix.__new__(cls, 1, 0, -2/R, 1)
|
351 |
+
|
352 |
+
|
353 |
+
class ThinLens(RayTransferMatrix):
|
354 |
+
"""
|
355 |
+
Ray Transfer Matrix for a thin lens.
|
356 |
+
|
357 |
+
Parameters
|
358 |
+
==========
|
359 |
+
|
360 |
+
f :
|
361 |
+
The focal distance.
|
362 |
+
|
363 |
+
See Also
|
364 |
+
========
|
365 |
+
|
366 |
+
RayTransferMatrix
|
367 |
+
|
368 |
+
Examples
|
369 |
+
========
|
370 |
+
|
371 |
+
>>> from sympy.physics.optics import ThinLens
|
372 |
+
>>> from sympy import symbols
|
373 |
+
>>> f = symbols('f')
|
374 |
+
>>> ThinLens(f)
|
375 |
+
Matrix([
|
376 |
+
[ 1, 0],
|
377 |
+
[-1/f, 1]])
|
378 |
+
"""
|
379 |
+
def __new__(cls, f):
|
380 |
+
f = sympify(f)
|
381 |
+
return RayTransferMatrix.__new__(cls, 1, 0, -1/f, 1)
|
382 |
+
|
383 |
+
|
384 |
+
###
|
385 |
+
# Representation for geometric ray
|
386 |
+
###
|
387 |
+
|
388 |
+
class GeometricRay(MutableDenseMatrix):
|
389 |
+
"""
|
390 |
+
Representation for a geometric ray in the Ray Transfer Matrix formalism.
|
391 |
+
|
392 |
+
Parameters
|
393 |
+
==========
|
394 |
+
|
395 |
+
h : height, and
|
396 |
+
angle : angle, or
|
397 |
+
matrix : a 2x1 matrix (Matrix(2, 1, [height, angle]))
|
398 |
+
|
399 |
+
Examples
|
400 |
+
========
|
401 |
+
|
402 |
+
>>> from sympy.physics.optics import GeometricRay, FreeSpace
|
403 |
+
>>> from sympy import symbols, Matrix
|
404 |
+
>>> d, h, angle = symbols('d, h, angle')
|
405 |
+
|
406 |
+
>>> GeometricRay(h, angle)
|
407 |
+
Matrix([
|
408 |
+
[ h],
|
409 |
+
[angle]])
|
410 |
+
|
411 |
+
>>> FreeSpace(d)*GeometricRay(h, angle)
|
412 |
+
Matrix([
|
413 |
+
[angle*d + h],
|
414 |
+
[ angle]])
|
415 |
+
|
416 |
+
>>> GeometricRay( Matrix( ((h,), (angle,)) ) )
|
417 |
+
Matrix([
|
418 |
+
[ h],
|
419 |
+
[angle]])
|
420 |
+
|
421 |
+
See Also
|
422 |
+
========
|
423 |
+
|
424 |
+
RayTransferMatrix
|
425 |
+
|
426 |
+
"""
|
427 |
+
|
428 |
+
def __new__(cls, *args):
|
429 |
+
if len(args) == 1 and isinstance(args[0], Matrix) \
|
430 |
+
and args[0].shape == (2, 1):
|
431 |
+
temp = args[0]
|
432 |
+
elif len(args) == 2:
|
433 |
+
temp = ((args[0],), (args[1],))
|
434 |
+
else:
|
435 |
+
raise ValueError(filldedent('''
|
436 |
+
Expecting 2x1 Matrix or the 2 elements of
|
437 |
+
the Matrix but got %s''' % str(args)))
|
438 |
+
return Matrix.__new__(cls, temp)
|
439 |
+
|
440 |
+
@property
|
441 |
+
def height(self):
|
442 |
+
"""
|
443 |
+
The distance from the optical axis.
|
444 |
+
|
445 |
+
Examples
|
446 |
+
========
|
447 |
+
|
448 |
+
>>> from sympy.physics.optics import GeometricRay
|
449 |
+
>>> from sympy import symbols
|
450 |
+
>>> h, angle = symbols('h, angle')
|
451 |
+
>>> gRay = GeometricRay(h, angle)
|
452 |
+
>>> gRay.height
|
453 |
+
h
|
454 |
+
"""
|
455 |
+
return self[0]
|
456 |
+
|
457 |
+
@property
|
458 |
+
def angle(self):
|
459 |
+
"""
|
460 |
+
The angle with the optical axis.
|
461 |
+
|
462 |
+
Examples
|
463 |
+
========
|
464 |
+
|
465 |
+
>>> from sympy.physics.optics import GeometricRay
|
466 |
+
>>> from sympy import symbols
|
467 |
+
>>> h, angle = symbols('h, angle')
|
468 |
+
>>> gRay = GeometricRay(h, angle)
|
469 |
+
>>> gRay.angle
|
470 |
+
angle
|
471 |
+
"""
|
472 |
+
return self[1]
|
473 |
+
|
474 |
+
|
475 |
+
###
|
476 |
+
# Representation for gauss beam
|
477 |
+
###
|
478 |
+
|
479 |
+
class BeamParameter(Expr):
|
480 |
+
"""
|
481 |
+
Representation for a gaussian ray in the Ray Transfer Matrix formalism.
|
482 |
+
|
483 |
+
Parameters
|
484 |
+
==========
|
485 |
+
|
486 |
+
wavelen : the wavelength,
|
487 |
+
z : the distance to waist, and
|
488 |
+
w : the waist, or
|
489 |
+
z_r : the rayleigh range.
|
490 |
+
n : the refractive index of medium.
|
491 |
+
|
492 |
+
Examples
|
493 |
+
========
|
494 |
+
|
495 |
+
>>> from sympy.physics.optics import BeamParameter
|
496 |
+
>>> p = BeamParameter(530e-9, 1, w=1e-3)
|
497 |
+
>>> p.q
|
498 |
+
1 + 1.88679245283019*I*pi
|
499 |
+
|
500 |
+
>>> p.q.n()
|
501 |
+
1.0 + 5.92753330865999*I
|
502 |
+
>>> p.w_0.n()
|
503 |
+
0.00100000000000000
|
504 |
+
>>> p.z_r.n()
|
505 |
+
5.92753330865999
|
506 |
+
|
507 |
+
>>> from sympy.physics.optics import FreeSpace
|
508 |
+
>>> fs = FreeSpace(10)
|
509 |
+
>>> p1 = fs*p
|
510 |
+
>>> p.w.n()
|
511 |
+
0.00101413072159615
|
512 |
+
>>> p1.w.n()
|
513 |
+
0.00210803120913829
|
514 |
+
|
515 |
+
See Also
|
516 |
+
========
|
517 |
+
|
518 |
+
RayTransferMatrix
|
519 |
+
|
520 |
+
References
|
521 |
+
==========
|
522 |
+
|
523 |
+
.. [1] https://en.wikipedia.org/wiki/Complex_beam_parameter
|
524 |
+
.. [2] https://en.wikipedia.org/wiki/Gaussian_beam
|
525 |
+
"""
|
526 |
+
#TODO A class Complex may be implemented. The BeamParameter may
|
527 |
+
# subclass it. See:
|
528 |
+
# https://groups.google.com/d/topic/sympy/7XkU07NRBEs/discussion
|
529 |
+
|
530 |
+
def __new__(cls, wavelen, z, z_r=None, w=None, n=1):
|
531 |
+
wavelen = sympify(wavelen)
|
532 |
+
z = sympify(z)
|
533 |
+
n = sympify(n)
|
534 |
+
|
535 |
+
if z_r is not None and w is None:
|
536 |
+
z_r = sympify(z_r)
|
537 |
+
elif w is not None and z_r is None:
|
538 |
+
z_r = waist2rayleigh(sympify(w), wavelen, n)
|
539 |
+
elif z_r is None and w is None:
|
540 |
+
raise ValueError('Must specify one of w and z_r.')
|
541 |
+
|
542 |
+
return Expr.__new__(cls, wavelen, z, z_r, n)
|
543 |
+
|
544 |
+
@property
|
545 |
+
def wavelen(self):
|
546 |
+
return self.args[0]
|
547 |
+
|
548 |
+
@property
|
549 |
+
def z(self):
|
550 |
+
return self.args[1]
|
551 |
+
|
552 |
+
@property
|
553 |
+
def z_r(self):
|
554 |
+
return self.args[2]
|
555 |
+
|
556 |
+
@property
|
557 |
+
def n(self):
|
558 |
+
return self.args[3]
|
559 |
+
|
560 |
+
@property
|
561 |
+
def q(self):
|
562 |
+
"""
|
563 |
+
The complex parameter representing the beam.
|
564 |
+
|
565 |
+
Examples
|
566 |
+
========
|
567 |
+
|
568 |
+
>>> from sympy.physics.optics import BeamParameter
|
569 |
+
>>> p = BeamParameter(530e-9, 1, w=1e-3)
|
570 |
+
>>> p.q
|
571 |
+
1 + 1.88679245283019*I*pi
|
572 |
+
"""
|
573 |
+
return self.z + I*self.z_r
|
574 |
+
|
575 |
+
@property
|
576 |
+
def radius(self):
|
577 |
+
"""
|
578 |
+
The radius of curvature of the phase front.
|
579 |
+
|
580 |
+
Examples
|
581 |
+
========
|
582 |
+
|
583 |
+
>>> from sympy.physics.optics import BeamParameter
|
584 |
+
>>> p = BeamParameter(530e-9, 1, w=1e-3)
|
585 |
+
>>> p.radius
|
586 |
+
1 + 3.55998576005696*pi**2
|
587 |
+
"""
|
588 |
+
return self.z*(1 + (self.z_r/self.z)**2)
|
589 |
+
|
590 |
+
@property
|
591 |
+
def w(self):
|
592 |
+
"""
|
593 |
+
The radius of the beam w(z), at any position z along the beam.
|
594 |
+
The beam radius at `1/e^2` intensity (axial value).
|
595 |
+
|
596 |
+
See Also
|
597 |
+
========
|
598 |
+
|
599 |
+
w_0 :
|
600 |
+
The minimal radius of beam.
|
601 |
+
|
602 |
+
Examples
|
603 |
+
========
|
604 |
+
|
605 |
+
>>> from sympy.physics.optics import BeamParameter
|
606 |
+
>>> p = BeamParameter(530e-9, 1, w=1e-3)
|
607 |
+
>>> p.w
|
608 |
+
0.001*sqrt(0.2809/pi**2 + 1)
|
609 |
+
"""
|
610 |
+
return self.w_0*sqrt(1 + (self.z/self.z_r)**2)
|
611 |
+
|
612 |
+
@property
|
613 |
+
def w_0(self):
|
614 |
+
"""
|
615 |
+
The minimal radius of beam at `1/e^2` intensity (peak value).
|
616 |
+
|
617 |
+
See Also
|
618 |
+
========
|
619 |
+
|
620 |
+
w : the beam radius at `1/e^2` intensity (axial value).
|
621 |
+
|
622 |
+
Examples
|
623 |
+
========
|
624 |
+
|
625 |
+
>>> from sympy.physics.optics import BeamParameter
|
626 |
+
>>> p = BeamParameter(530e-9, 1, w=1e-3)
|
627 |
+
>>> p.w_0
|
628 |
+
0.00100000000000000
|
629 |
+
"""
|
630 |
+
return sqrt(self.z_r/(pi*self.n)*self.wavelen)
|
631 |
+
|
632 |
+
@property
|
633 |
+
def divergence(self):
|
634 |
+
"""
|
635 |
+
Half of the total angular spread.
|
636 |
+
|
637 |
+
Examples
|
638 |
+
========
|
639 |
+
|
640 |
+
>>> from sympy.physics.optics import BeamParameter
|
641 |
+
>>> p = BeamParameter(530e-9, 1, w=1e-3)
|
642 |
+
>>> p.divergence
|
643 |
+
0.00053/pi
|
644 |
+
"""
|
645 |
+
return self.wavelen/pi/self.w_0
|
646 |
+
|
647 |
+
@property
|
648 |
+
def gouy(self):
|
649 |
+
"""
|
650 |
+
The Gouy phase.
|
651 |
+
|
652 |
+
Examples
|
653 |
+
========
|
654 |
+
|
655 |
+
>>> from sympy.physics.optics import BeamParameter
|
656 |
+
>>> p = BeamParameter(530e-9, 1, w=1e-3)
|
657 |
+
>>> p.gouy
|
658 |
+
atan(0.53/pi)
|
659 |
+
"""
|
660 |
+
return atan2(self.z, self.z_r)
|
661 |
+
|
662 |
+
@property
|
663 |
+
def waist_approximation_limit(self):
|
664 |
+
"""
|
665 |
+
The minimal waist for which the gauss beam approximation is valid.
|
666 |
+
|
667 |
+
Explanation
|
668 |
+
===========
|
669 |
+
|
670 |
+
The gauss beam is a solution to the paraxial equation. For curvatures
|
671 |
+
that are too great it is not a valid approximation.
|
672 |
+
|
673 |
+
Examples
|
674 |
+
========
|
675 |
+
|
676 |
+
>>> from sympy.physics.optics import BeamParameter
|
677 |
+
>>> p = BeamParameter(530e-9, 1, w=1e-3)
|
678 |
+
>>> p.waist_approximation_limit
|
679 |
+
1.06e-6/pi
|
680 |
+
"""
|
681 |
+
return 2*self.wavelen/pi
|
682 |
+
|
683 |
+
|
684 |
+
###
|
685 |
+
# Utilities
|
686 |
+
###
|
687 |
+
|
688 |
+
def waist2rayleigh(w, wavelen, n=1):
|
689 |
+
"""
|
690 |
+
Calculate the rayleigh range from the waist of a gaussian beam.
|
691 |
+
|
692 |
+
See Also
|
693 |
+
========
|
694 |
+
|
695 |
+
rayleigh2waist, BeamParameter
|
696 |
+
|
697 |
+
Examples
|
698 |
+
========
|
699 |
+
|
700 |
+
>>> from sympy.physics.optics import waist2rayleigh
|
701 |
+
>>> from sympy import symbols
|
702 |
+
>>> w, wavelen = symbols('w wavelen')
|
703 |
+
>>> waist2rayleigh(w, wavelen)
|
704 |
+
pi*w**2/wavelen
|
705 |
+
"""
|
706 |
+
w, wavelen = map(sympify, (w, wavelen))
|
707 |
+
return w**2*n*pi/wavelen
|
708 |
+
|
709 |
+
|
710 |
+
def rayleigh2waist(z_r, wavelen):
|
711 |
+
"""Calculate the waist from the rayleigh range of a gaussian beam.
|
712 |
+
|
713 |
+
See Also
|
714 |
+
========
|
715 |
+
|
716 |
+
waist2rayleigh, BeamParameter
|
717 |
+
|
718 |
+
Examples
|
719 |
+
========
|
720 |
+
|
721 |
+
>>> from sympy.physics.optics import rayleigh2waist
|
722 |
+
>>> from sympy import symbols
|
723 |
+
>>> z_r, wavelen = symbols('z_r wavelen')
|
724 |
+
>>> rayleigh2waist(z_r, wavelen)
|
725 |
+
sqrt(wavelen*z_r)/sqrt(pi)
|
726 |
+
"""
|
727 |
+
z_r, wavelen = map(sympify, (z_r, wavelen))
|
728 |
+
return sqrt(z_r/pi*wavelen)
|
729 |
+
|
730 |
+
|
731 |
+
def geometric_conj_ab(a, b):
|
732 |
+
"""
|
733 |
+
Conjugation relation for geometrical beams under paraxial conditions.
|
734 |
+
|
735 |
+
Explanation
|
736 |
+
===========
|
737 |
+
|
738 |
+
Takes the distances to the optical element and returns the needed
|
739 |
+
focal distance.
|
740 |
+
|
741 |
+
See Also
|
742 |
+
========
|
743 |
+
|
744 |
+
geometric_conj_af, geometric_conj_bf
|
745 |
+
|
746 |
+
Examples
|
747 |
+
========
|
748 |
+
|
749 |
+
>>> from sympy.physics.optics import geometric_conj_ab
|
750 |
+
>>> from sympy import symbols
|
751 |
+
>>> a, b = symbols('a b')
|
752 |
+
>>> geometric_conj_ab(a, b)
|
753 |
+
a*b/(a + b)
|
754 |
+
"""
|
755 |
+
a, b = map(sympify, (a, b))
|
756 |
+
if a.is_infinite or b.is_infinite:
|
757 |
+
return a if b.is_infinite else b
|
758 |
+
else:
|
759 |
+
return a*b/(a + b)
|
760 |
+
|
761 |
+
|
762 |
+
def geometric_conj_af(a, f):
|
763 |
+
"""
|
764 |
+
Conjugation relation for geometrical beams under paraxial conditions.
|
765 |
+
|
766 |
+
Explanation
|
767 |
+
===========
|
768 |
+
|
769 |
+
Takes the object distance (for geometric_conj_af) or the image distance
|
770 |
+
(for geometric_conj_bf) to the optical element and the focal distance.
|
771 |
+
Then it returns the other distance needed for conjugation.
|
772 |
+
|
773 |
+
See Also
|
774 |
+
========
|
775 |
+
|
776 |
+
geometric_conj_ab
|
777 |
+
|
778 |
+
Examples
|
779 |
+
========
|
780 |
+
|
781 |
+
>>> from sympy.physics.optics.gaussopt import geometric_conj_af, geometric_conj_bf
|
782 |
+
>>> from sympy import symbols
|
783 |
+
>>> a, b, f = symbols('a b f')
|
784 |
+
>>> geometric_conj_af(a, f)
|
785 |
+
a*f/(a - f)
|
786 |
+
>>> geometric_conj_bf(b, f)
|
787 |
+
b*f/(b - f)
|
788 |
+
"""
|
789 |
+
a, f = map(sympify, (a, f))
|
790 |
+
return -geometric_conj_ab(a, -f)
|
791 |
+
|
792 |
+
geometric_conj_bf = geometric_conj_af
|
793 |
+
|
794 |
+
|
795 |
+
def gaussian_conj(s_in, z_r_in, f):
|
796 |
+
"""
|
797 |
+
Conjugation relation for gaussian beams.
|
798 |
+
|
799 |
+
Parameters
|
800 |
+
==========
|
801 |
+
|
802 |
+
s_in :
|
803 |
+
The distance to optical element from the waist.
|
804 |
+
z_r_in :
|
805 |
+
The rayleigh range of the incident beam.
|
806 |
+
f :
|
807 |
+
The focal length of the optical element.
|
808 |
+
|
809 |
+
Returns
|
810 |
+
=======
|
811 |
+
|
812 |
+
a tuple containing (s_out, z_r_out, m)
|
813 |
+
s_out :
|
814 |
+
The distance between the new waist and the optical element.
|
815 |
+
z_r_out :
|
816 |
+
The rayleigh range of the emergent beam.
|
817 |
+
m :
|
818 |
+
The ration between the new and the old waists.
|
819 |
+
|
820 |
+
Examples
|
821 |
+
========
|
822 |
+
|
823 |
+
>>> from sympy.physics.optics import gaussian_conj
|
824 |
+
>>> from sympy import symbols
|
825 |
+
>>> s_in, z_r_in, f = symbols('s_in z_r_in f')
|
826 |
+
|
827 |
+
>>> gaussian_conj(s_in, z_r_in, f)[0]
|
828 |
+
1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f)
|
829 |
+
|
830 |
+
>>> gaussian_conj(s_in, z_r_in, f)[1]
|
831 |
+
z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2)
|
832 |
+
|
833 |
+
>>> gaussian_conj(s_in, z_r_in, f)[2]
|
834 |
+
1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2)
|
835 |
+
"""
|
836 |
+
s_in, z_r_in, f = map(sympify, (s_in, z_r_in, f))
|
837 |
+
s_out = 1 / ( -1/(s_in + z_r_in**2/(s_in - f)) + 1/f )
|
838 |
+
m = 1/sqrt((1 - (s_in/f)**2) + (z_r_in/f)**2)
|
839 |
+
z_r_out = z_r_in / ((1 - (s_in/f)**2) + (z_r_in/f)**2)
|
840 |
+
return (s_out, z_r_out, m)
|
841 |
+
|
842 |
+
|
843 |
+
def conjugate_gauss_beams(wavelen, waist_in, waist_out, **kwargs):
|
844 |
+
"""
|
845 |
+
Find the optical setup conjugating the object/image waists.
|
846 |
+
|
847 |
+
Parameters
|
848 |
+
==========
|
849 |
+
|
850 |
+
wavelen :
|
851 |
+
The wavelength of the beam.
|
852 |
+
waist_in and waist_out :
|
853 |
+
The waists to be conjugated.
|
854 |
+
f :
|
855 |
+
The focal distance of the element used in the conjugation.
|
856 |
+
|
857 |
+
Returns
|
858 |
+
=======
|
859 |
+
|
860 |
+
a tuple containing (s_in, s_out, f)
|
861 |
+
s_in :
|
862 |
+
The distance before the optical element.
|
863 |
+
s_out :
|
864 |
+
The distance after the optical element.
|
865 |
+
f :
|
866 |
+
The focal distance of the optical element.
|
867 |
+
|
868 |
+
Examples
|
869 |
+
========
|
870 |
+
|
871 |
+
>>> from sympy.physics.optics import conjugate_gauss_beams
|
872 |
+
>>> from sympy import symbols, factor
|
873 |
+
>>> l, w_i, w_o, f = symbols('l w_i w_o f')
|
874 |
+
|
875 |
+
>>> conjugate_gauss_beams(l, w_i, w_o, f=f)[0]
|
876 |
+
f*(1 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))
|
877 |
+
|
878 |
+
>>> factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1])
|
879 |
+
f*w_o**2*(w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 -
|
880 |
+
pi**2*w_i**4/(f**2*l**2)))/w_i**2
|
881 |
+
|
882 |
+
>>> conjugate_gauss_beams(l, w_i, w_o, f=f)[2]
|
883 |
+
f
|
884 |
+
"""
|
885 |
+
#TODO add the other possible arguments
|
886 |
+
wavelen, waist_in, waist_out = map(sympify, (wavelen, waist_in, waist_out))
|
887 |
+
m = waist_out / waist_in
|
888 |
+
z = waist2rayleigh(waist_in, wavelen)
|
889 |
+
if len(kwargs) != 1:
|
890 |
+
raise ValueError("The function expects only one named argument")
|
891 |
+
elif 'dist' in kwargs:
|
892 |
+
raise NotImplementedError(filldedent('''
|
893 |
+
Currently only focal length is supported as a parameter'''))
|
894 |
+
elif 'f' in kwargs:
|
895 |
+
f = sympify(kwargs['f'])
|
896 |
+
s_in = f * (1 - sqrt(1/m**2 - z**2/f**2))
|
897 |
+
s_out = gaussian_conj(s_in, z, f)[0]
|
898 |
+
elif 's_in' in kwargs:
|
899 |
+
raise NotImplementedError(filldedent('''
|
900 |
+
Currently only focal length is supported as a parameter'''))
|
901 |
+
else:
|
902 |
+
raise ValueError(filldedent('''
|
903 |
+
The functions expects the focal length as a named argument'''))
|
904 |
+
return (s_in, s_out, f)
|
905 |
+
|
906 |
+
#TODO
|
907 |
+
#def plot_beam():
|
908 |
+
# """Plot the beam radius as it propagates in space."""
|
909 |
+
# pass
|
910 |
+
|
911 |
+
#TODO
|
912 |
+
#def plot_beam_conjugation():
|
913 |
+
# """
|
914 |
+
# Plot the intersection of two beams.
|
915 |
+
#
|
916 |
+
# Represents the conjugation relation.
|
917 |
+
#
|
918 |
+
# See Also
|
919 |
+
# ========
|
920 |
+
#
|
921 |
+
# conjugate_gauss_beams
|
922 |
+
# """
|
923 |
+
# pass
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/medium.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
**Contains**
|
3 |
+
|
4 |
+
* Medium
|
5 |
+
"""
|
6 |
+
from sympy.physics.units import second, meter, kilogram, ampere
|
7 |
+
|
8 |
+
__all__ = ['Medium']
|
9 |
+
|
10 |
+
from sympy.core.basic import Basic
|
11 |
+
from sympy.core.symbol import Str
|
12 |
+
from sympy.core.sympify import _sympify
|
13 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
14 |
+
from sympy.physics.units import speed_of_light, u0, e0
|
15 |
+
|
16 |
+
|
17 |
+
c = speed_of_light.convert_to(meter/second)
|
18 |
+
_e0mksa = e0.convert_to(ampere**2*second**4/(kilogram*meter**3))
|
19 |
+
_u0mksa = u0.convert_to(meter*kilogram/(ampere**2*second**2))
|
20 |
+
|
21 |
+
|
22 |
+
class Medium(Basic):
|
23 |
+
|
24 |
+
"""
|
25 |
+
This class represents an optical medium. The prime reason to implement this is
|
26 |
+
to facilitate refraction, Fermat's principle, etc.
|
27 |
+
|
28 |
+
Explanation
|
29 |
+
===========
|
30 |
+
|
31 |
+
An optical medium is a material through which electromagnetic waves propagate.
|
32 |
+
The permittivity and permeability of the medium define how electromagnetic
|
33 |
+
waves propagate in it.
|
34 |
+
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
==========
|
38 |
+
|
39 |
+
name: string
|
40 |
+
The display name of the Medium.
|
41 |
+
|
42 |
+
permittivity: Sympifyable
|
43 |
+
Electric permittivity of the space.
|
44 |
+
|
45 |
+
permeability: Sympifyable
|
46 |
+
Magnetic permeability of the space.
|
47 |
+
|
48 |
+
n: Sympifyable
|
49 |
+
Index of refraction of the medium.
|
50 |
+
|
51 |
+
|
52 |
+
Examples
|
53 |
+
========
|
54 |
+
|
55 |
+
>>> from sympy.abc import epsilon, mu
|
56 |
+
>>> from sympy.physics.optics import Medium
|
57 |
+
>>> m1 = Medium('m1')
|
58 |
+
>>> m2 = Medium('m2', epsilon, mu)
|
59 |
+
>>> m1.intrinsic_impedance
|
60 |
+
149896229*pi*kilogram*meter**2/(1250000*ampere**2*second**3)
|
61 |
+
>>> m2.refractive_index
|
62 |
+
299792458*meter*sqrt(epsilon*mu)/second
|
63 |
+
|
64 |
+
|
65 |
+
References
|
66 |
+
==========
|
67 |
+
|
68 |
+
.. [1] https://en.wikipedia.org/wiki/Optical_medium
|
69 |
+
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __new__(cls, name, permittivity=None, permeability=None, n=None):
|
73 |
+
if not isinstance(name, Str):
|
74 |
+
name = Str(name)
|
75 |
+
|
76 |
+
permittivity = _sympify(permittivity) if permittivity is not None else permittivity
|
77 |
+
permeability = _sympify(permeability) if permeability is not None else permeability
|
78 |
+
n = _sympify(n) if n is not None else n
|
79 |
+
|
80 |
+
if n is not None:
|
81 |
+
if permittivity is not None and permeability is None:
|
82 |
+
permeability = n**2/(c**2*permittivity)
|
83 |
+
return MediumPP(name, permittivity, permeability)
|
84 |
+
elif permeability is not None and permittivity is None:
|
85 |
+
permittivity = n**2/(c**2*permeability)
|
86 |
+
return MediumPP(name, permittivity, permeability)
|
87 |
+
elif permittivity is not None and permittivity is not None:
|
88 |
+
raise ValueError("Specifying all of permittivity, permeability, and n is not allowed")
|
89 |
+
else:
|
90 |
+
return MediumN(name, n)
|
91 |
+
elif permittivity is not None and permeability is not None:
|
92 |
+
return MediumPP(name, permittivity, permeability)
|
93 |
+
elif permittivity is None and permeability is None:
|
94 |
+
return MediumPP(name, _e0mksa, _u0mksa)
|
95 |
+
else:
|
96 |
+
raise ValueError("Arguments are underspecified. Either specify n or any two of permittivity, "
|
97 |
+
"permeability, and n")
|
98 |
+
|
99 |
+
@property
|
100 |
+
def name(self):
|
101 |
+
return self.args[0]
|
102 |
+
|
103 |
+
@property
|
104 |
+
def speed(self):
|
105 |
+
"""
|
106 |
+
Returns speed of the electromagnetic wave travelling in the medium.
|
107 |
+
|
108 |
+
Examples
|
109 |
+
========
|
110 |
+
|
111 |
+
>>> from sympy.physics.optics import Medium
|
112 |
+
>>> m = Medium('m')
|
113 |
+
>>> m.speed
|
114 |
+
299792458*meter/second
|
115 |
+
>>> m2 = Medium('m2', n=1)
|
116 |
+
>>> m.speed == m2.speed
|
117 |
+
True
|
118 |
+
|
119 |
+
"""
|
120 |
+
return c / self.n
|
121 |
+
|
122 |
+
@property
|
123 |
+
def refractive_index(self):
|
124 |
+
"""
|
125 |
+
Returns refractive index of the medium.
|
126 |
+
|
127 |
+
Examples
|
128 |
+
========
|
129 |
+
|
130 |
+
>>> from sympy.physics.optics import Medium
|
131 |
+
>>> m = Medium('m')
|
132 |
+
>>> m.refractive_index
|
133 |
+
1
|
134 |
+
|
135 |
+
"""
|
136 |
+
return (c/self.speed)
|
137 |
+
|
138 |
+
|
139 |
+
class MediumN(Medium):
|
140 |
+
|
141 |
+
"""
|
142 |
+
Represents an optical medium for which only the refractive index is known.
|
143 |
+
Useful for simple ray optics.
|
144 |
+
|
145 |
+
This class should never be instantiated directly.
|
146 |
+
Instead it should be instantiated indirectly by instantiating Medium with
|
147 |
+
only n specified.
|
148 |
+
|
149 |
+
Examples
|
150 |
+
========
|
151 |
+
>>> from sympy.physics.optics import Medium
|
152 |
+
>>> m = Medium('m', n=2)
|
153 |
+
>>> m
|
154 |
+
MediumN(Str('m'), 2)
|
155 |
+
"""
|
156 |
+
|
157 |
+
def __new__(cls, name, n):
|
158 |
+
obj = super(Medium, cls).__new__(cls, name, n)
|
159 |
+
return obj
|
160 |
+
|
161 |
+
@property
|
162 |
+
def n(self):
|
163 |
+
return self.args[1]
|
164 |
+
|
165 |
+
|
166 |
+
class MediumPP(Medium):
|
167 |
+
"""
|
168 |
+
Represents an optical medium for which the permittivity and permeability are known.
|
169 |
+
|
170 |
+
This class should never be instantiated directly. Instead it should be
|
171 |
+
instantiated indirectly by instantiating Medium with any two of
|
172 |
+
permittivity, permeability, and n specified, or by not specifying any
|
173 |
+
of permittivity, permeability, or n, in which case default values for
|
174 |
+
permittivity and permeability will be used.
|
175 |
+
|
176 |
+
Examples
|
177 |
+
========
|
178 |
+
>>> from sympy.physics.optics import Medium
|
179 |
+
>>> from sympy.abc import epsilon, mu
|
180 |
+
>>> m1 = Medium('m1', permittivity=epsilon, permeability=mu)
|
181 |
+
>>> m1
|
182 |
+
MediumPP(Str('m1'), epsilon, mu)
|
183 |
+
>>> m2 = Medium('m2')
|
184 |
+
>>> m2
|
185 |
+
MediumPP(Str('m2'), 625000*ampere**2*second**4/(22468879468420441*pi*kilogram*meter**3), pi*kilogram*meter/(2500000*ampere**2*second**2))
|
186 |
+
"""
|
187 |
+
|
188 |
+
|
189 |
+
def __new__(cls, name, permittivity, permeability):
|
190 |
+
obj = super(Medium, cls).__new__(cls, name, permittivity, permeability)
|
191 |
+
return obj
|
192 |
+
|
193 |
+
@property
|
194 |
+
def intrinsic_impedance(self):
|
195 |
+
"""
|
196 |
+
Returns intrinsic impedance of the medium.
|
197 |
+
|
198 |
+
Explanation
|
199 |
+
===========
|
200 |
+
|
201 |
+
The intrinsic impedance of a medium is the ratio of the
|
202 |
+
transverse components of the electric and magnetic fields
|
203 |
+
of the electromagnetic wave travelling in the medium.
|
204 |
+
In a region with no electrical conductivity it simplifies
|
205 |
+
to the square root of ratio of magnetic permeability to
|
206 |
+
electric permittivity.
|
207 |
+
|
208 |
+
Examples
|
209 |
+
========
|
210 |
+
|
211 |
+
>>> from sympy.physics.optics import Medium
|
212 |
+
>>> m = Medium('m')
|
213 |
+
>>> m.intrinsic_impedance
|
214 |
+
149896229*pi*kilogram*meter**2/(1250000*ampere**2*second**3)
|
215 |
+
|
216 |
+
"""
|
217 |
+
return sqrt(self.permeability / self.permittivity)
|
218 |
+
|
219 |
+
@property
|
220 |
+
def permittivity(self):
|
221 |
+
"""
|
222 |
+
Returns electric permittivity of the medium.
|
223 |
+
|
224 |
+
Examples
|
225 |
+
========
|
226 |
+
|
227 |
+
>>> from sympy.physics.optics import Medium
|
228 |
+
>>> m = Medium('m')
|
229 |
+
>>> m.permittivity
|
230 |
+
625000*ampere**2*second**4/(22468879468420441*pi*kilogram*meter**3)
|
231 |
+
|
232 |
+
"""
|
233 |
+
return self.args[1]
|
234 |
+
|
235 |
+
@property
|
236 |
+
def permeability(self):
|
237 |
+
"""
|
238 |
+
Returns magnetic permeability of the medium.
|
239 |
+
|
240 |
+
Examples
|
241 |
+
========
|
242 |
+
|
243 |
+
>>> from sympy.physics.optics import Medium
|
244 |
+
>>> m = Medium('m')
|
245 |
+
>>> m.permeability
|
246 |
+
pi*kilogram*meter/(2500000*ampere**2*second**2)
|
247 |
+
|
248 |
+
"""
|
249 |
+
return self.args[2]
|
250 |
+
|
251 |
+
@property
|
252 |
+
def n(self):
|
253 |
+
return c*sqrt(self.permittivity*self.permeability)
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/polarization.py
ADDED
@@ -0,0 +1,732 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
The module implements routines to model the polarization of optical fields
|
5 |
+
and can be used to calculate the effects of polarization optical elements on
|
6 |
+
the fields.
|
7 |
+
|
8 |
+
- Jones vectors.
|
9 |
+
|
10 |
+
- Stokes vectors.
|
11 |
+
|
12 |
+
- Jones matrices.
|
13 |
+
|
14 |
+
- Mueller matrices.
|
15 |
+
|
16 |
+
Examples
|
17 |
+
========
|
18 |
+
|
19 |
+
We calculate a generic Jones vector:
|
20 |
+
|
21 |
+
>>> from sympy import symbols, pprint, zeros, simplify
|
22 |
+
>>> from sympy.physics.optics.polarization import (jones_vector, stokes_vector,
|
23 |
+
... half_wave_retarder, polarizing_beam_splitter, jones_2_stokes)
|
24 |
+
|
25 |
+
>>> psi, chi, p, I0 = symbols("psi, chi, p, I0", real=True)
|
26 |
+
>>> x0 = jones_vector(psi, chi)
|
27 |
+
>>> pprint(x0, use_unicode=True)
|
28 |
+
⎡-ⅈ⋅sin(χ)⋅sin(ψ) + cos(χ)⋅cos(ψ)⎤
|
29 |
+
⎢ ⎥
|
30 |
+
⎣ⅈ⋅sin(χ)⋅cos(ψ) + sin(ψ)⋅cos(χ) ⎦
|
31 |
+
|
32 |
+
And the more general Stokes vector:
|
33 |
+
|
34 |
+
>>> s0 = stokes_vector(psi, chi, p, I0)
|
35 |
+
>>> pprint(s0, use_unicode=True)
|
36 |
+
⎡ I₀ ⎤
|
37 |
+
⎢ ⎥
|
38 |
+
⎢I₀⋅p⋅cos(2⋅χ)⋅cos(2⋅ψ)⎥
|
39 |
+
⎢ ⎥
|
40 |
+
⎢I₀⋅p⋅sin(2⋅ψ)⋅cos(2⋅χ)⎥
|
41 |
+
⎢ ⎥
|
42 |
+
⎣ I₀⋅p⋅sin(2⋅χ) ⎦
|
43 |
+
|
44 |
+
We calculate how the Jones vector is modified by a half-wave plate:
|
45 |
+
|
46 |
+
>>> alpha = symbols("alpha", real=True)
|
47 |
+
>>> HWP = half_wave_retarder(alpha)
|
48 |
+
>>> x1 = simplify(HWP*x0)
|
49 |
+
|
50 |
+
We calculate the very common operation of passing a beam through a half-wave
|
51 |
+
plate and then through a polarizing beam-splitter. We do this by putting this
|
52 |
+
Jones vector as the first entry of a two-Jones-vector state that is transformed
|
53 |
+
by a 4x4 Jones matrix modelling the polarizing beam-splitter to get the
|
54 |
+
transmitted and reflected Jones vectors:
|
55 |
+
|
56 |
+
>>> PBS = polarizing_beam_splitter()
|
57 |
+
>>> X1 = zeros(4, 1)
|
58 |
+
>>> X1[:2, :] = x1
|
59 |
+
>>> X2 = PBS*X1
|
60 |
+
>>> transmitted_port = X2[:2, :]
|
61 |
+
>>> reflected_port = X2[2:, :]
|
62 |
+
|
63 |
+
This allows us to calculate how the power in both ports depends on the initial
|
64 |
+
polarization:
|
65 |
+
|
66 |
+
>>> transmitted_power = jones_2_stokes(transmitted_port)[0]
|
67 |
+
>>> reflected_power = jones_2_stokes(reflected_port)[0]
|
68 |
+
>>> print(transmitted_power)
|
69 |
+
cos(-2*alpha + chi + psi)**2/2 + cos(2*alpha + chi - psi)**2/2
|
70 |
+
|
71 |
+
|
72 |
+
>>> print(reflected_power)
|
73 |
+
sin(-2*alpha + chi + psi)**2/2 + sin(2*alpha + chi - psi)**2/2
|
74 |
+
|
75 |
+
Please see the description of the individual functions for further
|
76 |
+
details and examples.
|
77 |
+
|
78 |
+
References
|
79 |
+
==========
|
80 |
+
|
81 |
+
.. [1] https://en.wikipedia.org/wiki/Jones_calculus
|
82 |
+
.. [2] https://en.wikipedia.org/wiki/Mueller_calculus
|
83 |
+
.. [3] https://en.wikipedia.org/wiki/Stokes_parameters
|
84 |
+
|
85 |
+
"""
|
86 |
+
|
87 |
+
from sympy.core.numbers import (I, pi)
|
88 |
+
from sympy.functions.elementary.complexes import (Abs, im, re)
|
89 |
+
from sympy.functions.elementary.exponential import exp
|
90 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
91 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
92 |
+
from sympy.matrices.dense import Matrix
|
93 |
+
from sympy.simplify.simplify import simplify
|
94 |
+
from sympy.physics.quantum import TensorProduct
|
95 |
+
|
96 |
+
|
97 |
+
def jones_vector(psi, chi):
|
98 |
+
"""A Jones vector corresponding to a polarization ellipse with `psi` tilt,
|
99 |
+
and `chi` circularity.
|
100 |
+
|
101 |
+
Parameters
|
102 |
+
==========
|
103 |
+
|
104 |
+
psi : numeric type or SymPy Symbol
|
105 |
+
The tilt of the polarization relative to the `x` axis.
|
106 |
+
|
107 |
+
chi : numeric type or SymPy Symbol
|
108 |
+
The angle adjacent to the mayor axis of the polarization ellipse.
|
109 |
+
|
110 |
+
|
111 |
+
Returns
|
112 |
+
=======
|
113 |
+
|
114 |
+
Matrix :
|
115 |
+
A Jones vector.
|
116 |
+
|
117 |
+
Examples
|
118 |
+
========
|
119 |
+
|
120 |
+
The axes on the Poincaré sphere.
|
121 |
+
|
122 |
+
>>> from sympy import pprint, symbols, pi
|
123 |
+
>>> from sympy.physics.optics.polarization import jones_vector
|
124 |
+
>>> psi, chi = symbols("psi, chi", real=True)
|
125 |
+
|
126 |
+
A general Jones vector.
|
127 |
+
|
128 |
+
>>> pprint(jones_vector(psi, chi), use_unicode=True)
|
129 |
+
⎡-ⅈ⋅sin(χ)⋅sin(ψ) + cos(χ)⋅cos(ψ)⎤
|
130 |
+
⎢ ⎥
|
131 |
+
⎣ⅈ⋅sin(χ)⋅cos(ψ) + sin(ψ)⋅cos(χ) ⎦
|
132 |
+
|
133 |
+
Horizontal polarization.
|
134 |
+
|
135 |
+
>>> pprint(jones_vector(0, 0), use_unicode=True)
|
136 |
+
⎡1⎤
|
137 |
+
⎢ ⎥
|
138 |
+
⎣0⎦
|
139 |
+
|
140 |
+
Vertical polarization.
|
141 |
+
|
142 |
+
>>> pprint(jones_vector(pi/2, 0), use_unicode=True)
|
143 |
+
⎡0⎤
|
144 |
+
⎢ ⎥
|
145 |
+
⎣1⎦
|
146 |
+
|
147 |
+
Diagonal polarization.
|
148 |
+
|
149 |
+
>>> pprint(jones_vector(pi/4, 0), use_unicode=True)
|
150 |
+
⎡√2⎤
|
151 |
+
⎢──⎥
|
152 |
+
⎢2 ⎥
|
153 |
+
⎢ ⎥
|
154 |
+
⎢√2⎥
|
155 |
+
⎢──⎥
|
156 |
+
⎣2 ⎦
|
157 |
+
|
158 |
+
Anti-diagonal polarization.
|
159 |
+
|
160 |
+
>>> pprint(jones_vector(-pi/4, 0), use_unicode=True)
|
161 |
+
⎡ √2 ⎤
|
162 |
+
⎢ ── ⎥
|
163 |
+
⎢ 2 ⎥
|
164 |
+
⎢ ⎥
|
165 |
+
⎢-√2 ⎥
|
166 |
+
⎢────⎥
|
167 |
+
⎣ 2 ⎦
|
168 |
+
|
169 |
+
Right-hand circular polarization.
|
170 |
+
|
171 |
+
>>> pprint(jones_vector(0, pi/4), use_unicode=True)
|
172 |
+
⎡ √2 ⎤
|
173 |
+
⎢ ── ⎥
|
174 |
+
⎢ 2 ⎥
|
175 |
+
⎢ ⎥
|
176 |
+
⎢√2⋅ⅈ⎥
|
177 |
+
⎢────⎥
|
178 |
+
⎣ 2 ⎦
|
179 |
+
|
180 |
+
Left-hand circular polarization.
|
181 |
+
|
182 |
+
>>> pprint(jones_vector(0, -pi/4), use_unicode=True)
|
183 |
+
⎡ √2 ⎤
|
184 |
+
⎢ ── ⎥
|
185 |
+
⎢ 2 ⎥
|
186 |
+
⎢ ⎥
|
187 |
+
⎢-√2⋅ⅈ ⎥
|
188 |
+
⎢──────⎥
|
189 |
+
⎣ 2 ⎦
|
190 |
+
|
191 |
+
"""
|
192 |
+
return Matrix([-I*sin(chi)*sin(psi) + cos(chi)*cos(psi),
|
193 |
+
I*sin(chi)*cos(psi) + sin(psi)*cos(chi)])
|
194 |
+
|
195 |
+
|
196 |
+
def stokes_vector(psi, chi, p=1, I=1):
|
197 |
+
"""A Stokes vector corresponding to a polarization ellipse with ``psi``
|
198 |
+
tilt, and ``chi`` circularity.
|
199 |
+
|
200 |
+
Parameters
|
201 |
+
==========
|
202 |
+
|
203 |
+
psi : numeric type or SymPy Symbol
|
204 |
+
The tilt of the polarization relative to the ``x`` axis.
|
205 |
+
chi : numeric type or SymPy Symbol
|
206 |
+
The angle adjacent to the mayor axis of the polarization ellipse.
|
207 |
+
p : numeric type or SymPy Symbol
|
208 |
+
The degree of polarization.
|
209 |
+
I : numeric type or SymPy Symbol
|
210 |
+
The intensity of the field.
|
211 |
+
|
212 |
+
|
213 |
+
Returns
|
214 |
+
=======
|
215 |
+
|
216 |
+
Matrix :
|
217 |
+
A Stokes vector.
|
218 |
+
|
219 |
+
Examples
|
220 |
+
========
|
221 |
+
|
222 |
+
The axes on the Poincaré sphere.
|
223 |
+
|
224 |
+
>>> from sympy import pprint, symbols, pi
|
225 |
+
>>> from sympy.physics.optics.polarization import stokes_vector
|
226 |
+
>>> psi, chi, p, I = symbols("psi, chi, p, I", real=True)
|
227 |
+
>>> pprint(stokes_vector(psi, chi, p, I), use_unicode=True)
|
228 |
+
⎡ I ⎤
|
229 |
+
⎢ ⎥
|
230 |
+
⎢I⋅p⋅cos(2⋅χ)⋅cos(2⋅ψ)⎥
|
231 |
+
⎢ ⎥
|
232 |
+
⎢I⋅p⋅sin(2⋅ψ)⋅cos(2⋅χ)⎥
|
233 |
+
⎢ ⎥
|
234 |
+
⎣ I⋅p⋅sin(2⋅χ) ⎦
|
235 |
+
|
236 |
+
|
237 |
+
Horizontal polarization
|
238 |
+
|
239 |
+
>>> pprint(stokes_vector(0, 0), use_unicode=True)
|
240 |
+
⎡1⎤
|
241 |
+
⎢ ⎥
|
242 |
+
⎢1⎥
|
243 |
+
⎢ ⎥
|
244 |
+
⎢0⎥
|
245 |
+
⎢ ⎥
|
246 |
+
⎣0⎦
|
247 |
+
|
248 |
+
Vertical polarization
|
249 |
+
|
250 |
+
>>> pprint(stokes_vector(pi/2, 0), use_unicode=True)
|
251 |
+
⎡1 ⎤
|
252 |
+
⎢ ⎥
|
253 |
+
⎢-1⎥
|
254 |
+
⎢ ⎥
|
255 |
+
⎢0 ⎥
|
256 |
+
⎢ ⎥
|
257 |
+
⎣0 ⎦
|
258 |
+
|
259 |
+
Diagonal polarization
|
260 |
+
|
261 |
+
>>> pprint(stokes_vector(pi/4, 0), use_unicode=True)
|
262 |
+
⎡1⎤
|
263 |
+
⎢ ⎥
|
264 |
+
⎢0⎥
|
265 |
+
⎢ ⎥
|
266 |
+
⎢1⎥
|
267 |
+
⎢ ⎥
|
268 |
+
⎣0⎦
|
269 |
+
|
270 |
+
Anti-diagonal polarization
|
271 |
+
|
272 |
+
>>> pprint(stokes_vector(-pi/4, 0), use_unicode=True)
|
273 |
+
⎡1 ⎤
|
274 |
+
⎢ ⎥
|
275 |
+
⎢0 ⎥
|
276 |
+
⎢ ⎥
|
277 |
+
⎢-1⎥
|
278 |
+
⎢ ⎥
|
279 |
+
⎣0 ⎦
|
280 |
+
|
281 |
+
Right-hand circular polarization
|
282 |
+
|
283 |
+
>>> pprint(stokes_vector(0, pi/4), use_unicode=True)
|
284 |
+
⎡1⎤
|
285 |
+
⎢ ⎥
|
286 |
+
⎢0⎥
|
287 |
+
⎢ ⎥
|
288 |
+
⎢0⎥
|
289 |
+
⎢ ⎥
|
290 |
+
⎣1⎦
|
291 |
+
|
292 |
+
Left-hand circular polarization
|
293 |
+
|
294 |
+
>>> pprint(stokes_vector(0, -pi/4), use_unicode=True)
|
295 |
+
⎡1 ⎤
|
296 |
+
⎢ ⎥
|
297 |
+
⎢0 ⎥
|
298 |
+
⎢ ⎥
|
299 |
+
⎢0 ⎥
|
300 |
+
⎢ ⎥
|
301 |
+
⎣-1⎦
|
302 |
+
|
303 |
+
Unpolarized light
|
304 |
+
|
305 |
+
>>> pprint(stokes_vector(0, 0, 0), use_unicode=True)
|
306 |
+
⎡1⎤
|
307 |
+
⎢ ⎥
|
308 |
+
⎢0⎥
|
309 |
+
⎢ ⎥
|
310 |
+
⎢0⎥
|
311 |
+
⎢ ⎥
|
312 |
+
⎣0⎦
|
313 |
+
|
314 |
+
"""
|
315 |
+
S0 = I
|
316 |
+
S1 = I*p*cos(2*psi)*cos(2*chi)
|
317 |
+
S2 = I*p*sin(2*psi)*cos(2*chi)
|
318 |
+
S3 = I*p*sin(2*chi)
|
319 |
+
return Matrix([S0, S1, S2, S3])
|
320 |
+
|
321 |
+
|
322 |
+
def jones_2_stokes(e):
|
323 |
+
"""Return the Stokes vector for a Jones vector ``e``.
|
324 |
+
|
325 |
+
Parameters
|
326 |
+
==========
|
327 |
+
|
328 |
+
e : SymPy Matrix
|
329 |
+
A Jones vector.
|
330 |
+
|
331 |
+
Returns
|
332 |
+
=======
|
333 |
+
|
334 |
+
SymPy Matrix
|
335 |
+
A Jones vector.
|
336 |
+
|
337 |
+
Examples
|
338 |
+
========
|
339 |
+
|
340 |
+
The axes on the Poincaré sphere.
|
341 |
+
|
342 |
+
>>> from sympy import pprint, pi
|
343 |
+
>>> from sympy.physics.optics.polarization import jones_vector
|
344 |
+
>>> from sympy.physics.optics.polarization import jones_2_stokes
|
345 |
+
>>> H = jones_vector(0, 0)
|
346 |
+
>>> V = jones_vector(pi/2, 0)
|
347 |
+
>>> D = jones_vector(pi/4, 0)
|
348 |
+
>>> A = jones_vector(-pi/4, 0)
|
349 |
+
>>> R = jones_vector(0, pi/4)
|
350 |
+
>>> L = jones_vector(0, -pi/4)
|
351 |
+
>>> pprint([jones_2_stokes(e) for e in [H, V, D, A, R, L]],
|
352 |
+
... use_unicode=True)
|
353 |
+
⎡⎡1⎤ ⎡1 ⎤ ⎡1⎤ ⎡1 ⎤ ⎡1⎤ ⎡1 ⎤⎤
|
354 |
+
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
|
355 |
+
⎢⎢1⎥ ⎢-1⎥ ⎢0⎥ ⎢0 ⎥ ⎢0⎥ ⎢0 ⎥⎥
|
356 |
+
⎢⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥⎥
|
357 |
+
⎢⎢0⎥ ⎢0 ⎥ ⎢1⎥ ⎢-1⎥ ⎢0⎥ ⎢0 ⎥⎥
|
358 |
+
⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥
|
359 |
+
⎣⎣0⎦ ⎣0 ⎦ ⎣0⎦ ⎣0 ⎦ ⎣1⎦ ⎣-1⎦⎦
|
360 |
+
|
361 |
+
"""
|
362 |
+
ex, ey = e
|
363 |
+
return Matrix([Abs(ex)**2 + Abs(ey)**2,
|
364 |
+
Abs(ex)**2 - Abs(ey)**2,
|
365 |
+
2*re(ex*ey.conjugate()),
|
366 |
+
-2*im(ex*ey.conjugate())])
|
367 |
+
|
368 |
+
|
369 |
+
def linear_polarizer(theta=0):
|
370 |
+
"""A linear polarizer Jones matrix with transmission axis at
|
371 |
+
an angle ``theta``.
|
372 |
+
|
373 |
+
Parameters
|
374 |
+
==========
|
375 |
+
|
376 |
+
theta : numeric type or SymPy Symbol
|
377 |
+
The angle of the transmission axis relative to the horizontal plane.
|
378 |
+
|
379 |
+
Returns
|
380 |
+
=======
|
381 |
+
|
382 |
+
SymPy Matrix
|
383 |
+
A Jones matrix representing the polarizer.
|
384 |
+
|
385 |
+
Examples
|
386 |
+
========
|
387 |
+
|
388 |
+
A generic polarizer.
|
389 |
+
|
390 |
+
>>> from sympy import pprint, symbols
|
391 |
+
>>> from sympy.physics.optics.polarization import linear_polarizer
|
392 |
+
>>> theta = symbols("theta", real=True)
|
393 |
+
>>> J = linear_polarizer(theta)
|
394 |
+
>>> pprint(J, use_unicode=True)
|
395 |
+
⎡ 2 ⎤
|
396 |
+
⎢ cos (θ) sin(θ)⋅cos(θ)⎥
|
397 |
+
⎢ ⎥
|
398 |
+
⎢ 2 ⎥
|
399 |
+
⎣sin(θ)⋅cos(θ) sin (θ) ⎦
|
400 |
+
|
401 |
+
|
402 |
+
"""
|
403 |
+
M = Matrix([[cos(theta)**2, sin(theta)*cos(theta)],
|
404 |
+
[sin(theta)*cos(theta), sin(theta)**2]])
|
405 |
+
return M
|
406 |
+
|
407 |
+
|
408 |
+
def phase_retarder(theta=0, delta=0):
|
409 |
+
"""A phase retarder Jones matrix with retardance ``delta`` at angle ``theta``.
|
410 |
+
|
411 |
+
Parameters
|
412 |
+
==========
|
413 |
+
|
414 |
+
theta : numeric type or SymPy Symbol
|
415 |
+
The angle of the fast axis relative to the horizontal plane.
|
416 |
+
delta : numeric type or SymPy Symbol
|
417 |
+
The phase difference between the fast and slow axes of the
|
418 |
+
transmitted light.
|
419 |
+
|
420 |
+
Returns
|
421 |
+
=======
|
422 |
+
|
423 |
+
SymPy Matrix :
|
424 |
+
A Jones matrix representing the retarder.
|
425 |
+
|
426 |
+
Examples
|
427 |
+
========
|
428 |
+
|
429 |
+
A generic retarder.
|
430 |
+
|
431 |
+
>>> from sympy import pprint, symbols
|
432 |
+
>>> from sympy.physics.optics.polarization import phase_retarder
|
433 |
+
>>> theta, delta = symbols("theta, delta", real=True)
|
434 |
+
>>> R = phase_retarder(theta, delta)
|
435 |
+
>>> pprint(R, use_unicode=True)
|
436 |
+
⎡ -ⅈ⋅δ -ⅈ⋅δ ⎤
|
437 |
+
⎢ ───── ───── ⎥
|
438 |
+
⎢⎛ ⅈ⋅δ 2 2 ⎞ 2 ⎛ ⅈ⋅δ⎞ 2 ⎥
|
439 |
+
⎢⎝ℯ ⋅sin (θ) + cos (θ)⎠⋅ℯ ⎝1 - ℯ ⎠⋅ℯ ⋅sin(θ)⋅cos(θ)⎥
|
440 |
+
⎢ ⎥
|
441 |
+
⎢ -ⅈ⋅δ -ⅈ⋅δ ⎥
|
442 |
+
⎢ ───── ─────⎥
|
443 |
+
⎢⎛ ⅈ⋅δ⎞ 2 ⎛ ⅈ⋅δ 2 2 ⎞ 2 ⎥
|
444 |
+
⎣⎝1 - ℯ ⎠⋅ℯ ⋅sin(θ)⋅cos(θ) ⎝ℯ ⋅cos (θ) + sin (θ)⎠⋅ℯ ⎦
|
445 |
+
|
446 |
+
"""
|
447 |
+
R = Matrix([[cos(theta)**2 + exp(I*delta)*sin(theta)**2,
|
448 |
+
(1-exp(I*delta))*cos(theta)*sin(theta)],
|
449 |
+
[(1-exp(I*delta))*cos(theta)*sin(theta),
|
450 |
+
sin(theta)**2 + exp(I*delta)*cos(theta)**2]])
|
451 |
+
return R*exp(-I*delta/2)
|
452 |
+
|
453 |
+
|
454 |
+
def half_wave_retarder(theta):
|
455 |
+
"""A half-wave retarder Jones matrix at angle ``theta``.
|
456 |
+
|
457 |
+
Parameters
|
458 |
+
==========
|
459 |
+
|
460 |
+
theta : numeric type or SymPy Symbol
|
461 |
+
The angle of the fast axis relative to the horizontal plane.
|
462 |
+
|
463 |
+
Returns
|
464 |
+
=======
|
465 |
+
|
466 |
+
SymPy Matrix
|
467 |
+
A Jones matrix representing the retarder.
|
468 |
+
|
469 |
+
Examples
|
470 |
+
========
|
471 |
+
|
472 |
+
A generic half-wave plate.
|
473 |
+
|
474 |
+
>>> from sympy import pprint, symbols
|
475 |
+
>>> from sympy.physics.optics.polarization import half_wave_retarder
|
476 |
+
>>> theta= symbols("theta", real=True)
|
477 |
+
>>> HWP = half_wave_retarder(theta)
|
478 |
+
>>> pprint(HWP, use_unicode=True)
|
479 |
+
⎡ ⎛ 2 2 ⎞ ⎤
|
480 |
+
⎢-ⅈ⋅⎝- sin (θ) + cos (θ)⎠ -2⋅ⅈ⋅sin(θ)⋅cos(θ) ⎥
|
481 |
+
⎢ ⎥
|
482 |
+
⎢ ⎛ 2 2 ⎞⎥
|
483 |
+
⎣ -2⋅ⅈ⋅sin(θ)⋅cos(θ) -ⅈ⋅⎝sin (θ) - cos (θ)⎠⎦
|
484 |
+
|
485 |
+
"""
|
486 |
+
return phase_retarder(theta, pi)
|
487 |
+
|
488 |
+
|
489 |
+
def quarter_wave_retarder(theta):
|
490 |
+
"""A quarter-wave retarder Jones matrix at angle ``theta``.
|
491 |
+
|
492 |
+
Parameters
|
493 |
+
==========
|
494 |
+
|
495 |
+
theta : numeric type or SymPy Symbol
|
496 |
+
The angle of the fast axis relative to the horizontal plane.
|
497 |
+
|
498 |
+
Returns
|
499 |
+
=======
|
500 |
+
|
501 |
+
SymPy Matrix
|
502 |
+
A Jones matrix representing the retarder.
|
503 |
+
|
504 |
+
Examples
|
505 |
+
========
|
506 |
+
|
507 |
+
A generic quarter-wave plate.
|
508 |
+
|
509 |
+
>>> from sympy import pprint, symbols
|
510 |
+
>>> from sympy.physics.optics.polarization import quarter_wave_retarder
|
511 |
+
>>> theta= symbols("theta", real=True)
|
512 |
+
>>> QWP = quarter_wave_retarder(theta)
|
513 |
+
>>> pprint(QWP, use_unicode=True)
|
514 |
+
⎡ -ⅈ⋅π -ⅈ⋅π ⎤
|
515 |
+
⎢ ───── ───── ⎥
|
516 |
+
⎢⎛ 2 2 ⎞ 4 4 ⎥
|
517 |
+
⎢⎝ⅈ⋅sin (θ) + cos (θ)⎠⋅ℯ (1 - ⅈ)⋅ℯ ⋅sin(θ)⋅cos(θ)⎥
|
518 |
+
⎢ ⎥
|
519 |
+
⎢ -ⅈ⋅π -ⅈ⋅π ⎥
|
520 |
+
⎢ ───── ─────⎥
|
521 |
+
⎢ 4 ⎛ 2 2 ⎞ 4 ⎥
|
522 |
+
⎣(1 - ⅈ)⋅ℯ ⋅sin(θ)⋅cos(θ) ⎝sin (θ) + ⅈ⋅cos (θ)⎠⋅ℯ ⎦
|
523 |
+
|
524 |
+
"""
|
525 |
+
return phase_retarder(theta, pi/2)
|
526 |
+
|
527 |
+
|
528 |
+
def transmissive_filter(T):
|
529 |
+
"""An attenuator Jones matrix with transmittance ``T``.
|
530 |
+
|
531 |
+
Parameters
|
532 |
+
==========
|
533 |
+
|
534 |
+
T : numeric type or SymPy Symbol
|
535 |
+
The transmittance of the attenuator.
|
536 |
+
|
537 |
+
Returns
|
538 |
+
=======
|
539 |
+
|
540 |
+
SymPy Matrix
|
541 |
+
A Jones matrix representing the filter.
|
542 |
+
|
543 |
+
Examples
|
544 |
+
========
|
545 |
+
|
546 |
+
A generic filter.
|
547 |
+
|
548 |
+
>>> from sympy import pprint, symbols
|
549 |
+
>>> from sympy.physics.optics.polarization import transmissive_filter
|
550 |
+
>>> T = symbols("T", real=True)
|
551 |
+
>>> NDF = transmissive_filter(T)
|
552 |
+
>>> pprint(NDF, use_unicode=True)
|
553 |
+
⎡√T 0 ⎤
|
554 |
+
⎢ ⎥
|
555 |
+
⎣0 √T⎦
|
556 |
+
|
557 |
+
"""
|
558 |
+
return Matrix([[sqrt(T), 0], [0, sqrt(T)]])
|
559 |
+
|
560 |
+
|
561 |
+
def reflective_filter(R):
|
562 |
+
"""A reflective filter Jones matrix with reflectance ``R``.
|
563 |
+
|
564 |
+
Parameters
|
565 |
+
==========
|
566 |
+
|
567 |
+
R : numeric type or SymPy Symbol
|
568 |
+
The reflectance of the filter.
|
569 |
+
|
570 |
+
Returns
|
571 |
+
=======
|
572 |
+
|
573 |
+
SymPy Matrix
|
574 |
+
A Jones matrix representing the filter.
|
575 |
+
|
576 |
+
Examples
|
577 |
+
========
|
578 |
+
|
579 |
+
A generic filter.
|
580 |
+
|
581 |
+
>>> from sympy import pprint, symbols
|
582 |
+
>>> from sympy.physics.optics.polarization import reflective_filter
|
583 |
+
>>> R = symbols("R", real=True)
|
584 |
+
>>> pprint(reflective_filter(R), use_unicode=True)
|
585 |
+
⎡√R 0 ⎤
|
586 |
+
⎢ ⎥
|
587 |
+
⎣0 -√R⎦
|
588 |
+
|
589 |
+
"""
|
590 |
+
return Matrix([[sqrt(R), 0], [0, -sqrt(R)]])
|
591 |
+
|
592 |
+
|
593 |
+
def mueller_matrix(J):
|
594 |
+
"""The Mueller matrix corresponding to Jones matrix `J`.
|
595 |
+
|
596 |
+
Parameters
|
597 |
+
==========
|
598 |
+
|
599 |
+
J : SymPy Matrix
|
600 |
+
A Jones matrix.
|
601 |
+
|
602 |
+
Returns
|
603 |
+
=======
|
604 |
+
|
605 |
+
SymPy Matrix
|
606 |
+
The corresponding Mueller matrix.
|
607 |
+
|
608 |
+
Examples
|
609 |
+
========
|
610 |
+
|
611 |
+
Generic optical components.
|
612 |
+
|
613 |
+
>>> from sympy import pprint, symbols
|
614 |
+
>>> from sympy.physics.optics.polarization import (mueller_matrix,
|
615 |
+
... linear_polarizer, half_wave_retarder, quarter_wave_retarder)
|
616 |
+
>>> theta = symbols("theta", real=True)
|
617 |
+
|
618 |
+
A linear_polarizer
|
619 |
+
|
620 |
+
>>> pprint(mueller_matrix(linear_polarizer(theta)), use_unicode=True)
|
621 |
+
⎡ cos(2⋅θ) sin(2⋅θ) ⎤
|
622 |
+
⎢ 1/2 ──────── ──────── 0⎥
|
623 |
+
⎢ 2 2 ⎥
|
624 |
+
⎢ ⎥
|
625 |
+
⎢cos(2⋅θ) cos(4⋅θ) 1 sin(4⋅θ) ⎥
|
626 |
+
⎢──────── ──────── + ─ ──────── 0⎥
|
627 |
+
⎢ 2 4 4 4 ⎥
|
628 |
+
⎢ ⎥
|
629 |
+
⎢sin(2⋅θ) sin(4⋅θ) 1 cos(4⋅θ) ⎥
|
630 |
+
⎢──────── ──────── ─ - ──────── 0⎥
|
631 |
+
⎢ 2 4 4 4 ⎥
|
632 |
+
⎢ ⎥
|
633 |
+
⎣ 0 0 0 0⎦
|
634 |
+
|
635 |
+
A half-wave plate
|
636 |
+
|
637 |
+
>>> pprint(mueller_matrix(half_wave_retarder(theta)), use_unicode=True)
|
638 |
+
⎡1 0 0 0 ⎤
|
639 |
+
⎢ ⎥
|
640 |
+
⎢ 4 2 ⎥
|
641 |
+
⎢0 8⋅sin (θ) - 8⋅sin (θ) + 1 sin(4⋅θ) 0 ⎥
|
642 |
+
⎢ ⎥
|
643 |
+
⎢ 4 2 ⎥
|
644 |
+
⎢0 sin(4⋅θ) - 8⋅sin (θ) + 8⋅sin (θ) - 1 0 ⎥
|
645 |
+
⎢ ⎥
|
646 |
+
⎣0 0 0 -1⎦
|
647 |
+
|
648 |
+
A quarter-wave plate
|
649 |
+
|
650 |
+
>>> pprint(mueller_matrix(quarter_wave_retarder(theta)), use_unicode=True)
|
651 |
+
⎡1 0 0 0 ⎤
|
652 |
+
⎢ ⎥
|
653 |
+
⎢ cos(4⋅θ) 1 sin(4⋅θ) ⎥
|
654 |
+
⎢0 ──────── + ─ ──────── -sin(2⋅θ)⎥
|
655 |
+
⎢ 2 2 2 ⎥
|
656 |
+
⎢ ⎥
|
657 |
+
⎢ sin(4⋅θ) 1 cos(4⋅θ) ⎥
|
658 |
+
⎢0 ──────── ─ - ──────── cos(2⋅θ) ⎥
|
659 |
+
⎢ 2 2 2 ⎥
|
660 |
+
⎢ ⎥
|
661 |
+
⎣0 sin(2⋅θ) -cos(2⋅θ) 0 ⎦
|
662 |
+
|
663 |
+
"""
|
664 |
+
A = Matrix([[1, 0, 0, 1],
|
665 |
+
[1, 0, 0, -1],
|
666 |
+
[0, 1, 1, 0],
|
667 |
+
[0, -I, I, 0]])
|
668 |
+
|
669 |
+
return simplify(A*TensorProduct(J, J.conjugate())*A.inv())
|
670 |
+
|
671 |
+
|
672 |
+
def polarizing_beam_splitter(Tp=1, Rs=1, Ts=0, Rp=0, phia=0, phib=0):
|
673 |
+
r"""A polarizing beam splitter Jones matrix at angle `theta`.
|
674 |
+
|
675 |
+
Parameters
|
676 |
+
==========
|
677 |
+
|
678 |
+
J : SymPy Matrix
|
679 |
+
A Jones matrix.
|
680 |
+
Tp : numeric type or SymPy Symbol
|
681 |
+
The transmissivity of the P-polarized component.
|
682 |
+
Rs : numeric type or SymPy Symbol
|
683 |
+
The reflectivity of the S-polarized component.
|
684 |
+
Ts : numeric type or SymPy Symbol
|
685 |
+
The transmissivity of the S-polarized component.
|
686 |
+
Rp : numeric type or SymPy Symbol
|
687 |
+
The reflectivity of the P-polarized component.
|
688 |
+
phia : numeric type or SymPy Symbol
|
689 |
+
The phase difference between transmitted and reflected component for
|
690 |
+
output mode a.
|
691 |
+
phib : numeric type or SymPy Symbol
|
692 |
+
The phase difference between transmitted and reflected component for
|
693 |
+
output mode b.
|
694 |
+
|
695 |
+
|
696 |
+
Returns
|
697 |
+
=======
|
698 |
+
|
699 |
+
SymPy Matrix
|
700 |
+
A 4x4 matrix representing the PBS. This matrix acts on a 4x1 vector
|
701 |
+
whose first two entries are the Jones vector on one of the PBS ports,
|
702 |
+
and the last two entries the Jones vector on the other port.
|
703 |
+
|
704 |
+
Examples
|
705 |
+
========
|
706 |
+
|
707 |
+
Generic polarizing beam-splitter.
|
708 |
+
|
709 |
+
>>> from sympy import pprint, symbols
|
710 |
+
>>> from sympy.physics.optics.polarization import polarizing_beam_splitter
|
711 |
+
>>> Ts, Rs, Tp, Rp = symbols(r"Ts, Rs, Tp, Rp", positive=True)
|
712 |
+
>>> phia, phib = symbols("phi_a, phi_b", real=True)
|
713 |
+
>>> PBS = polarizing_beam_splitter(Tp, Rs, Ts, Rp, phia, phib)
|
714 |
+
>>> pprint(PBS, use_unicode=False)
|
715 |
+
[ ____ ____ ]
|
716 |
+
[ \/ Tp 0 I*\/ Rp 0 ]
|
717 |
+
[ ]
|
718 |
+
[ ____ ____ I*phi_a]
|
719 |
+
[ 0 \/ Ts 0 -I*\/ Rs *e ]
|
720 |
+
[ ]
|
721 |
+
[ ____ ____ ]
|
722 |
+
[I*\/ Rp 0 \/ Tp 0 ]
|
723 |
+
[ ]
|
724 |
+
[ ____ I*phi_b ____ ]
|
725 |
+
[ 0 -I*\/ Rs *e 0 \/ Ts ]
|
726 |
+
|
727 |
+
"""
|
728 |
+
PBS = Matrix([[sqrt(Tp), 0, I*sqrt(Rp), 0],
|
729 |
+
[0, sqrt(Ts), 0, -I*sqrt(Rs)*exp(I*phia)],
|
730 |
+
[I*sqrt(Rp), 0, sqrt(Tp), 0],
|
731 |
+
[0, -I*sqrt(Rs)*exp(I*phib), 0, sqrt(Ts)]])
|
732 |
+
return PBS
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/utils.py
ADDED
@@ -0,0 +1,698 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
**Contains**
|
3 |
+
|
4 |
+
* refraction_angle
|
5 |
+
* fresnel_coefficients
|
6 |
+
* deviation
|
7 |
+
* brewster_angle
|
8 |
+
* critical_angle
|
9 |
+
* lens_makers_formula
|
10 |
+
* mirror_formula
|
11 |
+
* lens_formula
|
12 |
+
* hyperfocal_distance
|
13 |
+
* transverse_magnification
|
14 |
+
"""
|
15 |
+
|
16 |
+
__all__ = ['refraction_angle',
|
17 |
+
'deviation',
|
18 |
+
'fresnel_coefficients',
|
19 |
+
'brewster_angle',
|
20 |
+
'critical_angle',
|
21 |
+
'lens_makers_formula',
|
22 |
+
'mirror_formula',
|
23 |
+
'lens_formula',
|
24 |
+
'hyperfocal_distance',
|
25 |
+
'transverse_magnification'
|
26 |
+
]
|
27 |
+
|
28 |
+
from sympy.core.numbers import (Float, I, oo, pi, zoo)
|
29 |
+
from sympy.core.singleton import S
|
30 |
+
from sympy.core.symbol import Symbol
|
31 |
+
from sympy.core.sympify import sympify
|
32 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
33 |
+
from sympy.functions.elementary.trigonometric import (acos, asin, atan2, cos, sin, tan)
|
34 |
+
from sympy.matrices.dense import Matrix
|
35 |
+
from sympy.polys.polytools import cancel
|
36 |
+
from sympy.series.limits import Limit
|
37 |
+
from sympy.geometry.line import Ray3D
|
38 |
+
from sympy.geometry.util import intersection
|
39 |
+
from sympy.geometry.plane import Plane
|
40 |
+
from sympy.utilities.iterables import is_sequence
|
41 |
+
from .medium import Medium
|
42 |
+
|
43 |
+
|
44 |
+
def refractive_index_of_medium(medium):
|
45 |
+
"""
|
46 |
+
Helper function that returns refractive index, given a medium
|
47 |
+
"""
|
48 |
+
if isinstance(medium, Medium):
|
49 |
+
n = medium.refractive_index
|
50 |
+
else:
|
51 |
+
n = sympify(medium)
|
52 |
+
return n
|
53 |
+
|
54 |
+
|
55 |
+
def refraction_angle(incident, medium1, medium2, normal=None, plane=None):
|
56 |
+
"""
|
57 |
+
This function calculates transmitted vector after refraction at planar
|
58 |
+
surface. ``medium1`` and ``medium2`` can be ``Medium`` or any sympifiable object.
|
59 |
+
If ``incident`` is a number then treated as angle of incidence (in radians)
|
60 |
+
in which case refraction angle is returned.
|
61 |
+
|
62 |
+
If ``incident`` is an object of `Ray3D`, `normal` also has to be an instance
|
63 |
+
of `Ray3D` in order to get the output as a `Ray3D`. Please note that if
|
64 |
+
plane of separation is not provided and normal is an instance of `Ray3D`,
|
65 |
+
``normal`` will be assumed to be intersecting incident ray at the plane of
|
66 |
+
separation. This will not be the case when `normal` is a `Matrix` or
|
67 |
+
any other sequence.
|
68 |
+
If ``incident`` is an instance of `Ray3D` and `plane` has not been provided
|
69 |
+
and ``normal`` is not `Ray3D`, output will be a `Matrix`.
|
70 |
+
|
71 |
+
Parameters
|
72 |
+
==========
|
73 |
+
|
74 |
+
incident : Matrix, Ray3D, sequence or a number
|
75 |
+
Incident vector or angle of incidence
|
76 |
+
medium1 : sympy.physics.optics.medium.Medium or sympifiable
|
77 |
+
Medium 1 or its refractive index
|
78 |
+
medium2 : sympy.physics.optics.medium.Medium or sympifiable
|
79 |
+
Medium 2 or its refractive index
|
80 |
+
normal : Matrix, Ray3D, or sequence
|
81 |
+
Normal vector
|
82 |
+
plane : Plane
|
83 |
+
Plane of separation of the two media.
|
84 |
+
|
85 |
+
Returns
|
86 |
+
=======
|
87 |
+
|
88 |
+
Returns an angle of refraction or a refracted ray depending on inputs.
|
89 |
+
|
90 |
+
Examples
|
91 |
+
========
|
92 |
+
|
93 |
+
>>> from sympy.physics.optics import refraction_angle
|
94 |
+
>>> from sympy.geometry import Point3D, Ray3D, Plane
|
95 |
+
>>> from sympy.matrices import Matrix
|
96 |
+
>>> from sympy import symbols, pi
|
97 |
+
>>> n = Matrix([0, 0, 1])
|
98 |
+
>>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
|
99 |
+
>>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
|
100 |
+
>>> refraction_angle(r1, 1, 1, n)
|
101 |
+
Matrix([
|
102 |
+
[ 1],
|
103 |
+
[ 1],
|
104 |
+
[-1]])
|
105 |
+
>>> refraction_angle(r1, 1, 1, plane=P)
|
106 |
+
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
|
107 |
+
|
108 |
+
With different index of refraction of the two media
|
109 |
+
|
110 |
+
>>> n1, n2 = symbols('n1, n2')
|
111 |
+
>>> refraction_angle(r1, n1, n2, n)
|
112 |
+
Matrix([
|
113 |
+
[ n1/n2],
|
114 |
+
[ n1/n2],
|
115 |
+
[-sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)]])
|
116 |
+
>>> refraction_angle(r1, n1, n2, plane=P)
|
117 |
+
Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
|
118 |
+
>>> round(refraction_angle(pi/6, 1.2, 1.5), 5)
|
119 |
+
0.41152
|
120 |
+
"""
|
121 |
+
|
122 |
+
n1 = refractive_index_of_medium(medium1)
|
123 |
+
n2 = refractive_index_of_medium(medium2)
|
124 |
+
|
125 |
+
# check if an incidence angle was supplied instead of a ray
|
126 |
+
try:
|
127 |
+
angle_of_incidence = float(incident)
|
128 |
+
except TypeError:
|
129 |
+
angle_of_incidence = None
|
130 |
+
|
131 |
+
try:
|
132 |
+
critical_angle_ = critical_angle(medium1, medium2)
|
133 |
+
except (ValueError, TypeError):
|
134 |
+
critical_angle_ = None
|
135 |
+
|
136 |
+
if angle_of_incidence is not None:
|
137 |
+
if normal is not None or plane is not None:
|
138 |
+
raise ValueError('Normal/plane not allowed if incident is an angle')
|
139 |
+
|
140 |
+
if not 0.0 <= angle_of_incidence < pi*0.5:
|
141 |
+
raise ValueError('Angle of incidence not in range [0:pi/2)')
|
142 |
+
|
143 |
+
if critical_angle_ and angle_of_incidence > critical_angle_:
|
144 |
+
raise ValueError('Ray undergoes total internal reflection')
|
145 |
+
return asin(n1*sin(angle_of_incidence)/n2)
|
146 |
+
|
147 |
+
# Treat the incident as ray below
|
148 |
+
# A flag to check whether to return Ray3D or not
|
149 |
+
return_ray = False
|
150 |
+
|
151 |
+
if plane is not None and normal is not None:
|
152 |
+
raise ValueError("Either plane or normal is acceptable.")
|
153 |
+
|
154 |
+
if not isinstance(incident, Matrix):
|
155 |
+
if is_sequence(incident):
|
156 |
+
_incident = Matrix(incident)
|
157 |
+
elif isinstance(incident, Ray3D):
|
158 |
+
_incident = Matrix(incident.direction_ratio)
|
159 |
+
else:
|
160 |
+
raise TypeError(
|
161 |
+
"incident should be a Matrix, Ray3D, or sequence")
|
162 |
+
else:
|
163 |
+
_incident = incident
|
164 |
+
|
165 |
+
# If plane is provided, get direction ratios of the normal
|
166 |
+
# to the plane from the plane else go with `normal` param.
|
167 |
+
if plane is not None:
|
168 |
+
if not isinstance(plane, Plane):
|
169 |
+
raise TypeError("plane should be an instance of geometry.plane.Plane")
|
170 |
+
# If we have the plane, we can get the intersection
|
171 |
+
# point of incident ray and the plane and thus return
|
172 |
+
# an instance of Ray3D.
|
173 |
+
if isinstance(incident, Ray3D):
|
174 |
+
return_ray = True
|
175 |
+
intersection_pt = plane.intersection(incident)[0]
|
176 |
+
_normal = Matrix(plane.normal_vector)
|
177 |
+
else:
|
178 |
+
if not isinstance(normal, Matrix):
|
179 |
+
if is_sequence(normal):
|
180 |
+
_normal = Matrix(normal)
|
181 |
+
elif isinstance(normal, Ray3D):
|
182 |
+
_normal = Matrix(normal.direction_ratio)
|
183 |
+
if isinstance(incident, Ray3D):
|
184 |
+
intersection_pt = intersection(incident, normal)
|
185 |
+
if len(intersection_pt) == 0:
|
186 |
+
raise ValueError(
|
187 |
+
"Normal isn't concurrent with the incident ray.")
|
188 |
+
else:
|
189 |
+
return_ray = True
|
190 |
+
intersection_pt = intersection_pt[0]
|
191 |
+
else:
|
192 |
+
raise TypeError(
|
193 |
+
"Normal should be a Matrix, Ray3D, or sequence")
|
194 |
+
else:
|
195 |
+
_normal = normal
|
196 |
+
|
197 |
+
eta = n1/n2 # Relative index of refraction
|
198 |
+
# Calculating magnitude of the vectors
|
199 |
+
mag_incident = sqrt(sum([i**2 for i in _incident]))
|
200 |
+
mag_normal = sqrt(sum([i**2 for i in _normal]))
|
201 |
+
# Converting vectors to unit vectors by dividing
|
202 |
+
# them with their magnitudes
|
203 |
+
_incident /= mag_incident
|
204 |
+
_normal /= mag_normal
|
205 |
+
c1 = -_incident.dot(_normal) # cos(angle_of_incidence)
|
206 |
+
cs2 = 1 - eta**2*(1 - c1**2) # cos(angle_of_refraction)**2
|
207 |
+
if cs2.is_negative: # This is the case of total internal reflection(TIR).
|
208 |
+
return S.Zero
|
209 |
+
drs = eta*_incident + (eta*c1 - sqrt(cs2))*_normal
|
210 |
+
# Multiplying unit vector by its magnitude
|
211 |
+
drs = drs*mag_incident
|
212 |
+
if not return_ray:
|
213 |
+
return drs
|
214 |
+
else:
|
215 |
+
return Ray3D(intersection_pt, direction_ratio=drs)
|
216 |
+
|
217 |
+
|
218 |
+
def fresnel_coefficients(angle_of_incidence, medium1, medium2):
|
219 |
+
"""
|
220 |
+
This function uses Fresnel equations to calculate reflection and
|
221 |
+
transmission coefficients. Those are obtained for both polarisations
|
222 |
+
when the electric field vector is in the plane of incidence (labelled 'p')
|
223 |
+
and when the electric field vector is perpendicular to the plane of
|
224 |
+
incidence (labelled 's'). There are four real coefficients unless the
|
225 |
+
incident ray reflects in total internal in which case there are two complex
|
226 |
+
ones. Angle of incidence is the angle between the incident ray and the
|
227 |
+
surface normal. ``medium1`` and ``medium2`` can be ``Medium`` or any
|
228 |
+
sympifiable object.
|
229 |
+
|
230 |
+
Parameters
|
231 |
+
==========
|
232 |
+
|
233 |
+
angle_of_incidence : sympifiable
|
234 |
+
|
235 |
+
medium1 : Medium or sympifiable
|
236 |
+
Medium 1 or its refractive index
|
237 |
+
|
238 |
+
medium2 : Medium or sympifiable
|
239 |
+
Medium 2 or its refractive index
|
240 |
+
|
241 |
+
Returns
|
242 |
+
=======
|
243 |
+
|
244 |
+
Returns a list with four real Fresnel coefficients:
|
245 |
+
[reflection p (TM), reflection s (TE),
|
246 |
+
transmission p (TM), transmission s (TE)]
|
247 |
+
If the ray is undergoes total internal reflection then returns a
|
248 |
+
list of two complex Fresnel coefficients:
|
249 |
+
[reflection p (TM), reflection s (TE)]
|
250 |
+
|
251 |
+
Examples
|
252 |
+
========
|
253 |
+
|
254 |
+
>>> from sympy.physics.optics import fresnel_coefficients
|
255 |
+
>>> fresnel_coefficients(0.3, 1, 2)
|
256 |
+
[0.317843553417859, -0.348645229818821,
|
257 |
+
0.658921776708929, 0.651354770181179]
|
258 |
+
>>> fresnel_coefficients(0.6, 2, 1)
|
259 |
+
[-0.235625382192159 - 0.971843958291041*I,
|
260 |
+
0.816477005968898 - 0.577377951366403*I]
|
261 |
+
|
262 |
+
References
|
263 |
+
==========
|
264 |
+
|
265 |
+
.. [1] https://en.wikipedia.org/wiki/Fresnel_equations
|
266 |
+
"""
|
267 |
+
if not 0 <= 2*angle_of_incidence < pi:
|
268 |
+
raise ValueError('Angle of incidence not in range [0:pi/2)')
|
269 |
+
|
270 |
+
n1 = refractive_index_of_medium(medium1)
|
271 |
+
n2 = refractive_index_of_medium(medium2)
|
272 |
+
|
273 |
+
angle_of_refraction = asin(n1*sin(angle_of_incidence)/n2)
|
274 |
+
try:
|
275 |
+
angle_of_total_internal_reflection_onset = critical_angle(n1, n2)
|
276 |
+
except ValueError:
|
277 |
+
angle_of_total_internal_reflection_onset = None
|
278 |
+
|
279 |
+
if angle_of_total_internal_reflection_onset is None or\
|
280 |
+
angle_of_total_internal_reflection_onset > angle_of_incidence:
|
281 |
+
R_s = -sin(angle_of_incidence - angle_of_refraction)\
|
282 |
+
/sin(angle_of_incidence + angle_of_refraction)
|
283 |
+
R_p = tan(angle_of_incidence - angle_of_refraction)\
|
284 |
+
/tan(angle_of_incidence + angle_of_refraction)
|
285 |
+
T_s = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\
|
286 |
+
/sin(angle_of_incidence + angle_of_refraction)
|
287 |
+
T_p = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\
|
288 |
+
/(sin(angle_of_incidence + angle_of_refraction)\
|
289 |
+
*cos(angle_of_incidence - angle_of_refraction))
|
290 |
+
return [R_p, R_s, T_p, T_s]
|
291 |
+
else:
|
292 |
+
n = n2/n1
|
293 |
+
R_s = cancel((cos(angle_of_incidence)-\
|
294 |
+
I*sqrt(sin(angle_of_incidence)**2 - n**2))\
|
295 |
+
/(cos(angle_of_incidence)+\
|
296 |
+
I*sqrt(sin(angle_of_incidence)**2 - n**2)))
|
297 |
+
R_p = cancel((n**2*cos(angle_of_incidence)-\
|
298 |
+
I*sqrt(sin(angle_of_incidence)**2 - n**2))\
|
299 |
+
/(n**2*cos(angle_of_incidence)+\
|
300 |
+
I*sqrt(sin(angle_of_incidence)**2 - n**2)))
|
301 |
+
return [R_p, R_s]
|
302 |
+
|
303 |
+
|
304 |
+
def deviation(incident, medium1, medium2, normal=None, plane=None):
|
305 |
+
"""
|
306 |
+
This function calculates the angle of deviation of a ray
|
307 |
+
due to refraction at planar surface.
|
308 |
+
|
309 |
+
Parameters
|
310 |
+
==========
|
311 |
+
|
312 |
+
incident : Matrix, Ray3D, sequence or float
|
313 |
+
Incident vector or angle of incidence
|
314 |
+
medium1 : sympy.physics.optics.medium.Medium or sympifiable
|
315 |
+
Medium 1 or its refractive index
|
316 |
+
medium2 : sympy.physics.optics.medium.Medium or sympifiable
|
317 |
+
Medium 2 or its refractive index
|
318 |
+
normal : Matrix, Ray3D, or sequence
|
319 |
+
Normal vector
|
320 |
+
plane : Plane
|
321 |
+
Plane of separation of the two media.
|
322 |
+
|
323 |
+
Returns angular deviation between incident and refracted rays
|
324 |
+
|
325 |
+
Examples
|
326 |
+
========
|
327 |
+
|
328 |
+
>>> from sympy.physics.optics import deviation
|
329 |
+
>>> from sympy.geometry import Point3D, Ray3D, Plane
|
330 |
+
>>> from sympy.matrices import Matrix
|
331 |
+
>>> from sympy import symbols
|
332 |
+
>>> n1, n2 = symbols('n1, n2')
|
333 |
+
>>> n = Matrix([0, 0, 1])
|
334 |
+
>>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
|
335 |
+
>>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
|
336 |
+
>>> deviation(r1, 1, 1, n)
|
337 |
+
0
|
338 |
+
>>> deviation(r1, n1, n2, plane=P)
|
339 |
+
-acos(-sqrt(-2*n1**2/(3*n2**2) + 1)) + acos(-sqrt(3)/3)
|
340 |
+
>>> round(deviation(0.1, 1.2, 1.5), 5)
|
341 |
+
-0.02005
|
342 |
+
"""
|
343 |
+
refracted = refraction_angle(incident,
|
344 |
+
medium1,
|
345 |
+
medium2,
|
346 |
+
normal=normal,
|
347 |
+
plane=plane)
|
348 |
+
try:
|
349 |
+
angle_of_incidence = Float(incident)
|
350 |
+
except TypeError:
|
351 |
+
angle_of_incidence = None
|
352 |
+
|
353 |
+
if angle_of_incidence is not None:
|
354 |
+
return float(refracted) - angle_of_incidence
|
355 |
+
|
356 |
+
if refracted != 0:
|
357 |
+
if isinstance(refracted, Ray3D):
|
358 |
+
refracted = Matrix(refracted.direction_ratio)
|
359 |
+
|
360 |
+
if not isinstance(incident, Matrix):
|
361 |
+
if is_sequence(incident):
|
362 |
+
_incident = Matrix(incident)
|
363 |
+
elif isinstance(incident, Ray3D):
|
364 |
+
_incident = Matrix(incident.direction_ratio)
|
365 |
+
else:
|
366 |
+
raise TypeError(
|
367 |
+
"incident should be a Matrix, Ray3D, or sequence")
|
368 |
+
else:
|
369 |
+
_incident = incident
|
370 |
+
|
371 |
+
if plane is None:
|
372 |
+
if not isinstance(normal, Matrix):
|
373 |
+
if is_sequence(normal):
|
374 |
+
_normal = Matrix(normal)
|
375 |
+
elif isinstance(normal, Ray3D):
|
376 |
+
_normal = Matrix(normal.direction_ratio)
|
377 |
+
else:
|
378 |
+
raise TypeError(
|
379 |
+
"normal should be a Matrix, Ray3D, or sequence")
|
380 |
+
else:
|
381 |
+
_normal = normal
|
382 |
+
else:
|
383 |
+
_normal = Matrix(plane.normal_vector)
|
384 |
+
|
385 |
+
mag_incident = sqrt(sum([i**2 for i in _incident]))
|
386 |
+
mag_normal = sqrt(sum([i**2 for i in _normal]))
|
387 |
+
mag_refracted = sqrt(sum([i**2 for i in refracted]))
|
388 |
+
_incident /= mag_incident
|
389 |
+
_normal /= mag_normal
|
390 |
+
refracted /= mag_refracted
|
391 |
+
i = acos(_incident.dot(_normal))
|
392 |
+
r = acos(refracted.dot(_normal))
|
393 |
+
return i - r
|
394 |
+
|
395 |
+
|
396 |
+
def brewster_angle(medium1, medium2):
|
397 |
+
"""
|
398 |
+
This function calculates the Brewster's angle of incidence to Medium 2 from
|
399 |
+
Medium 1 in radians.
|
400 |
+
|
401 |
+
Parameters
|
402 |
+
==========
|
403 |
+
|
404 |
+
medium 1 : Medium or sympifiable
|
405 |
+
Refractive index of Medium 1
|
406 |
+
medium 2 : Medium or sympifiable
|
407 |
+
Refractive index of Medium 1
|
408 |
+
|
409 |
+
Examples
|
410 |
+
========
|
411 |
+
|
412 |
+
>>> from sympy.physics.optics import brewster_angle
|
413 |
+
>>> brewster_angle(1, 1.33)
|
414 |
+
0.926093295503462
|
415 |
+
|
416 |
+
"""
|
417 |
+
|
418 |
+
n1 = refractive_index_of_medium(medium1)
|
419 |
+
n2 = refractive_index_of_medium(medium2)
|
420 |
+
|
421 |
+
return atan2(n2, n1)
|
422 |
+
|
423 |
+
def critical_angle(medium1, medium2):
|
424 |
+
"""
|
425 |
+
This function calculates the critical angle of incidence (marking the onset
|
426 |
+
of total internal) to Medium 2 from Medium 1 in radians.
|
427 |
+
|
428 |
+
Parameters
|
429 |
+
==========
|
430 |
+
|
431 |
+
medium 1 : Medium or sympifiable
|
432 |
+
Refractive index of Medium 1.
|
433 |
+
medium 2 : Medium or sympifiable
|
434 |
+
Refractive index of Medium 1.
|
435 |
+
|
436 |
+
Examples
|
437 |
+
========
|
438 |
+
|
439 |
+
>>> from sympy.physics.optics import critical_angle
|
440 |
+
>>> critical_angle(1.33, 1)
|
441 |
+
0.850908514477849
|
442 |
+
|
443 |
+
"""
|
444 |
+
|
445 |
+
n1 = refractive_index_of_medium(medium1)
|
446 |
+
n2 = refractive_index_of_medium(medium2)
|
447 |
+
|
448 |
+
if n2 > n1:
|
449 |
+
raise ValueError('Total internal reflection impossible for n1 < n2')
|
450 |
+
else:
|
451 |
+
return asin(n2/n1)
|
452 |
+
|
453 |
+
|
454 |
+
|
455 |
+
def lens_makers_formula(n_lens, n_surr, r1, r2, d=0):
|
456 |
+
"""
|
457 |
+
This function calculates focal length of a lens.
|
458 |
+
It follows cartesian sign convention.
|
459 |
+
|
460 |
+
Parameters
|
461 |
+
==========
|
462 |
+
|
463 |
+
n_lens : Medium or sympifiable
|
464 |
+
Index of refraction of lens.
|
465 |
+
n_surr : Medium or sympifiable
|
466 |
+
Index of reflection of surrounding.
|
467 |
+
r1 : sympifiable
|
468 |
+
Radius of curvature of first surface.
|
469 |
+
r2 : sympifiable
|
470 |
+
Radius of curvature of second surface.
|
471 |
+
d : sympifiable, optional
|
472 |
+
Thickness of lens, default value is 0.
|
473 |
+
|
474 |
+
Examples
|
475 |
+
========
|
476 |
+
|
477 |
+
>>> from sympy.physics.optics import lens_makers_formula
|
478 |
+
>>> from sympy import S
|
479 |
+
>>> lens_makers_formula(1.33, 1, 10, -10)
|
480 |
+
15.1515151515151
|
481 |
+
>>> lens_makers_formula(1.2, 1, 10, S.Infinity)
|
482 |
+
50.0000000000000
|
483 |
+
>>> lens_makers_formula(1.33, 1, 10, -10, d=1)
|
484 |
+
15.3418463277618
|
485 |
+
|
486 |
+
"""
|
487 |
+
|
488 |
+
if isinstance(n_lens, Medium):
|
489 |
+
n_lens = n_lens.refractive_index
|
490 |
+
else:
|
491 |
+
n_lens = sympify(n_lens)
|
492 |
+
if isinstance(n_surr, Medium):
|
493 |
+
n_surr = n_surr.refractive_index
|
494 |
+
else:
|
495 |
+
n_surr = sympify(n_surr)
|
496 |
+
d = sympify(d)
|
497 |
+
|
498 |
+
focal_length = 1/((n_lens - n_surr) / n_surr*(1/r1 - 1/r2 + (((n_lens - n_surr) * d) / (n_lens * r1 * r2))))
|
499 |
+
|
500 |
+
if focal_length == zoo:
|
501 |
+
return S.Infinity
|
502 |
+
return focal_length
|
503 |
+
|
504 |
+
|
505 |
+
def mirror_formula(focal_length=None, u=None, v=None):
|
506 |
+
"""
|
507 |
+
This function provides one of the three parameters
|
508 |
+
when two of them are supplied.
|
509 |
+
This is valid only for paraxial rays.
|
510 |
+
|
511 |
+
Parameters
|
512 |
+
==========
|
513 |
+
|
514 |
+
focal_length : sympifiable
|
515 |
+
Focal length of the mirror.
|
516 |
+
u : sympifiable
|
517 |
+
Distance of object from the pole on
|
518 |
+
the principal axis.
|
519 |
+
v : sympifiable
|
520 |
+
Distance of the image from the pole
|
521 |
+
on the principal axis.
|
522 |
+
|
523 |
+
Examples
|
524 |
+
========
|
525 |
+
|
526 |
+
>>> from sympy.physics.optics import mirror_formula
|
527 |
+
>>> from sympy.abc import f, u, v
|
528 |
+
>>> mirror_formula(focal_length=f, u=u)
|
529 |
+
f*u/(-f + u)
|
530 |
+
>>> mirror_formula(focal_length=f, v=v)
|
531 |
+
f*v/(-f + v)
|
532 |
+
>>> mirror_formula(u=u, v=v)
|
533 |
+
u*v/(u + v)
|
534 |
+
|
535 |
+
"""
|
536 |
+
if focal_length and u and v:
|
537 |
+
raise ValueError("Please provide only two parameters")
|
538 |
+
|
539 |
+
focal_length = sympify(focal_length)
|
540 |
+
u = sympify(u)
|
541 |
+
v = sympify(v)
|
542 |
+
if u is oo:
|
543 |
+
_u = Symbol('u')
|
544 |
+
if v is oo:
|
545 |
+
_v = Symbol('v')
|
546 |
+
if focal_length is oo:
|
547 |
+
_f = Symbol('f')
|
548 |
+
if focal_length is None:
|
549 |
+
if u is oo and v is oo:
|
550 |
+
return Limit(Limit(_v*_u/(_v + _u), _u, oo), _v, oo).doit()
|
551 |
+
if u is oo:
|
552 |
+
return Limit(v*_u/(v + _u), _u, oo).doit()
|
553 |
+
if v is oo:
|
554 |
+
return Limit(_v*u/(_v + u), _v, oo).doit()
|
555 |
+
return v*u/(v + u)
|
556 |
+
if u is None:
|
557 |
+
if v is oo and focal_length is oo:
|
558 |
+
return Limit(Limit(_v*_f/(_v - _f), _v, oo), _f, oo).doit()
|
559 |
+
if v is oo:
|
560 |
+
return Limit(_v*focal_length/(_v - focal_length), _v, oo).doit()
|
561 |
+
if focal_length is oo:
|
562 |
+
return Limit(v*_f/(v - _f), _f, oo).doit()
|
563 |
+
return v*focal_length/(v - focal_length)
|
564 |
+
if v is None:
|
565 |
+
if u is oo and focal_length is oo:
|
566 |
+
return Limit(Limit(_u*_f/(_u - _f), _u, oo), _f, oo).doit()
|
567 |
+
if u is oo:
|
568 |
+
return Limit(_u*focal_length/(_u - focal_length), _u, oo).doit()
|
569 |
+
if focal_length is oo:
|
570 |
+
return Limit(u*_f/(u - _f), _f, oo).doit()
|
571 |
+
return u*focal_length/(u - focal_length)
|
572 |
+
|
573 |
+
|
574 |
+
def lens_formula(focal_length=None, u=None, v=None):
|
575 |
+
"""
|
576 |
+
This function provides one of the three parameters
|
577 |
+
when two of them are supplied.
|
578 |
+
This is valid only for paraxial rays.
|
579 |
+
|
580 |
+
Parameters
|
581 |
+
==========
|
582 |
+
|
583 |
+
focal_length : sympifiable
|
584 |
+
Focal length of the mirror.
|
585 |
+
u : sympifiable
|
586 |
+
Distance of object from the optical center on
|
587 |
+
the principal axis.
|
588 |
+
v : sympifiable
|
589 |
+
Distance of the image from the optical center
|
590 |
+
on the principal axis.
|
591 |
+
|
592 |
+
Examples
|
593 |
+
========
|
594 |
+
|
595 |
+
>>> from sympy.physics.optics import lens_formula
|
596 |
+
>>> from sympy.abc import f, u, v
|
597 |
+
>>> lens_formula(focal_length=f, u=u)
|
598 |
+
f*u/(f + u)
|
599 |
+
>>> lens_formula(focal_length=f, v=v)
|
600 |
+
f*v/(f - v)
|
601 |
+
>>> lens_formula(u=u, v=v)
|
602 |
+
u*v/(u - v)
|
603 |
+
|
604 |
+
"""
|
605 |
+
if focal_length and u and v:
|
606 |
+
raise ValueError("Please provide only two parameters")
|
607 |
+
|
608 |
+
focal_length = sympify(focal_length)
|
609 |
+
u = sympify(u)
|
610 |
+
v = sympify(v)
|
611 |
+
if u is oo:
|
612 |
+
_u = Symbol('u')
|
613 |
+
if v is oo:
|
614 |
+
_v = Symbol('v')
|
615 |
+
if focal_length is oo:
|
616 |
+
_f = Symbol('f')
|
617 |
+
if focal_length is None:
|
618 |
+
if u is oo and v is oo:
|
619 |
+
return Limit(Limit(_v*_u/(_u - _v), _u, oo), _v, oo).doit()
|
620 |
+
if u is oo:
|
621 |
+
return Limit(v*_u/(_u - v), _u, oo).doit()
|
622 |
+
if v is oo:
|
623 |
+
return Limit(_v*u/(u - _v), _v, oo).doit()
|
624 |
+
return v*u/(u - v)
|
625 |
+
if u is None:
|
626 |
+
if v is oo and focal_length is oo:
|
627 |
+
return Limit(Limit(_v*_f/(_f - _v), _v, oo), _f, oo).doit()
|
628 |
+
if v is oo:
|
629 |
+
return Limit(_v*focal_length/(focal_length - _v), _v, oo).doit()
|
630 |
+
if focal_length is oo:
|
631 |
+
return Limit(v*_f/(_f - v), _f, oo).doit()
|
632 |
+
return v*focal_length/(focal_length - v)
|
633 |
+
if v is None:
|
634 |
+
if u is oo and focal_length is oo:
|
635 |
+
return Limit(Limit(_u*_f/(_u + _f), _u, oo), _f, oo).doit()
|
636 |
+
if u is oo:
|
637 |
+
return Limit(_u*focal_length/(_u + focal_length), _u, oo).doit()
|
638 |
+
if focal_length is oo:
|
639 |
+
return Limit(u*_f/(u + _f), _f, oo).doit()
|
640 |
+
return u*focal_length/(u + focal_length)
|
641 |
+
|
642 |
+
def hyperfocal_distance(f, N, c):
|
643 |
+
"""
|
644 |
+
|
645 |
+
Parameters
|
646 |
+
==========
|
647 |
+
|
648 |
+
f: sympifiable
|
649 |
+
Focal length of a given lens.
|
650 |
+
|
651 |
+
N: sympifiable
|
652 |
+
F-number of a given lens.
|
653 |
+
|
654 |
+
c: sympifiable
|
655 |
+
Circle of Confusion (CoC) of a given image format.
|
656 |
+
|
657 |
+
Example
|
658 |
+
=======
|
659 |
+
|
660 |
+
>>> from sympy.physics.optics import hyperfocal_distance
|
661 |
+
>>> round(hyperfocal_distance(f = 0.5, N = 8, c = 0.0033), 2)
|
662 |
+
9.47
|
663 |
+
"""
|
664 |
+
|
665 |
+
f = sympify(f)
|
666 |
+
N = sympify(N)
|
667 |
+
c = sympify(c)
|
668 |
+
|
669 |
+
return (1/(N * c))*(f**2)
|
670 |
+
|
671 |
+
def transverse_magnification(si, so):
|
672 |
+
"""
|
673 |
+
|
674 |
+
Calculates the transverse magnification, which is the ratio of the
|
675 |
+
image size to the object size.
|
676 |
+
|
677 |
+
Parameters
|
678 |
+
==========
|
679 |
+
|
680 |
+
so: sympifiable
|
681 |
+
Lens-object distance.
|
682 |
+
|
683 |
+
si: sympifiable
|
684 |
+
Lens-image distance.
|
685 |
+
|
686 |
+
Example
|
687 |
+
=======
|
688 |
+
|
689 |
+
>>> from sympy.physics.optics import transverse_magnification
|
690 |
+
>>> transverse_magnification(30, 15)
|
691 |
+
-2
|
692 |
+
|
693 |
+
"""
|
694 |
+
|
695 |
+
si = sympify(si)
|
696 |
+
so = sympify(so)
|
697 |
+
|
698 |
+
return (-(si/so))
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/waves.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module has all the classes and functions related to waves in optics.
|
3 |
+
|
4 |
+
**Contains**
|
5 |
+
|
6 |
+
* TWave
|
7 |
+
"""
|
8 |
+
|
9 |
+
__all__ = ['TWave']
|
10 |
+
|
11 |
+
from sympy.core.basic import Basic
|
12 |
+
from sympy.core.expr import Expr
|
13 |
+
from sympy.core.function import Derivative, Function
|
14 |
+
from sympy.core.numbers import (Number, pi, I)
|
15 |
+
from sympy.core.singleton import S
|
16 |
+
from sympy.core.symbol import (Symbol, symbols)
|
17 |
+
from sympy.core.sympify import _sympify, sympify
|
18 |
+
from sympy.functions.elementary.exponential import exp
|
19 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
20 |
+
from sympy.functions.elementary.trigonometric import (atan2, cos, sin)
|
21 |
+
from sympy.physics.units import speed_of_light, meter, second
|
22 |
+
|
23 |
+
|
24 |
+
c = speed_of_light.convert_to(meter/second)
|
25 |
+
|
26 |
+
|
27 |
+
class TWave(Expr):
|
28 |
+
|
29 |
+
r"""
|
30 |
+
This is a simple transverse sine wave travelling in a one-dimensional space.
|
31 |
+
Basic properties are required at the time of creation of the object,
|
32 |
+
but they can be changed later with respective methods provided.
|
33 |
+
|
34 |
+
Explanation
|
35 |
+
===========
|
36 |
+
|
37 |
+
It is represented as :math:`A \times cos(k*x - \omega \times t + \phi )`,
|
38 |
+
where :math:`A` is the amplitude, :math:`\omega` is the angular frequency,
|
39 |
+
:math:`k` is the wavenumber (spatial frequency), :math:`x` is a spatial variable
|
40 |
+
to represent the position on the dimension on which the wave propagates,
|
41 |
+
and :math:`\phi` is the phase angle of the wave.
|
42 |
+
|
43 |
+
|
44 |
+
Arguments
|
45 |
+
=========
|
46 |
+
|
47 |
+
amplitude : Sympifyable
|
48 |
+
Amplitude of the wave.
|
49 |
+
frequency : Sympifyable
|
50 |
+
Frequency of the wave.
|
51 |
+
phase : Sympifyable
|
52 |
+
Phase angle of the wave.
|
53 |
+
time_period : Sympifyable
|
54 |
+
Time period of the wave.
|
55 |
+
n : Sympifyable
|
56 |
+
Refractive index of the medium.
|
57 |
+
|
58 |
+
Raises
|
59 |
+
=======
|
60 |
+
|
61 |
+
ValueError : When neither frequency nor time period is provided
|
62 |
+
or they are not consistent.
|
63 |
+
TypeError : When anything other than TWave objects is added.
|
64 |
+
|
65 |
+
|
66 |
+
Examples
|
67 |
+
========
|
68 |
+
|
69 |
+
>>> from sympy import symbols
|
70 |
+
>>> from sympy.physics.optics import TWave
|
71 |
+
>>> A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f')
|
72 |
+
>>> w1 = TWave(A1, f, phi1)
|
73 |
+
>>> w2 = TWave(A2, f, phi2)
|
74 |
+
>>> w3 = w1 + w2 # Superposition of two waves
|
75 |
+
>>> w3
|
76 |
+
TWave(sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2), f,
|
77 |
+
atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)), 1/f, n)
|
78 |
+
>>> w3.amplitude
|
79 |
+
sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)
|
80 |
+
>>> w3.phase
|
81 |
+
atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2))
|
82 |
+
>>> w3.speed
|
83 |
+
299792458*meter/(second*n)
|
84 |
+
>>> w3.angular_velocity
|
85 |
+
2*pi*f
|
86 |
+
|
87 |
+
"""
|
88 |
+
|
89 |
+
def __new__(
|
90 |
+
cls,
|
91 |
+
amplitude,
|
92 |
+
frequency=None,
|
93 |
+
phase=S.Zero,
|
94 |
+
time_period=None,
|
95 |
+
n=Symbol('n')):
|
96 |
+
if time_period is not None:
|
97 |
+
time_period = _sympify(time_period)
|
98 |
+
_frequency = S.One/time_period
|
99 |
+
if frequency is not None:
|
100 |
+
frequency = _sympify(frequency)
|
101 |
+
_time_period = S.One/frequency
|
102 |
+
if time_period is not None:
|
103 |
+
if frequency != S.One/time_period:
|
104 |
+
raise ValueError("frequency and time_period should be consistent.")
|
105 |
+
if frequency is None and time_period is None:
|
106 |
+
raise ValueError("Either frequency or time period is needed.")
|
107 |
+
if frequency is None:
|
108 |
+
frequency = _frequency
|
109 |
+
if time_period is None:
|
110 |
+
time_period = _time_period
|
111 |
+
|
112 |
+
amplitude = _sympify(amplitude)
|
113 |
+
phase = _sympify(phase)
|
114 |
+
n = sympify(n)
|
115 |
+
obj = Basic.__new__(cls, amplitude, frequency, phase, time_period, n)
|
116 |
+
return obj
|
117 |
+
|
118 |
+
@property
|
119 |
+
def amplitude(self):
|
120 |
+
"""
|
121 |
+
Returns the amplitude of the wave.
|
122 |
+
|
123 |
+
Examples
|
124 |
+
========
|
125 |
+
|
126 |
+
>>> from sympy import symbols
|
127 |
+
>>> from sympy.physics.optics import TWave
|
128 |
+
>>> A, phi, f = symbols('A, phi, f')
|
129 |
+
>>> w = TWave(A, f, phi)
|
130 |
+
>>> w.amplitude
|
131 |
+
A
|
132 |
+
"""
|
133 |
+
return self.args[0]
|
134 |
+
|
135 |
+
@property
|
136 |
+
def frequency(self):
|
137 |
+
"""
|
138 |
+
Returns the frequency of the wave,
|
139 |
+
in cycles per second.
|
140 |
+
|
141 |
+
Examples
|
142 |
+
========
|
143 |
+
|
144 |
+
>>> from sympy import symbols
|
145 |
+
>>> from sympy.physics.optics import TWave
|
146 |
+
>>> A, phi, f = symbols('A, phi, f')
|
147 |
+
>>> w = TWave(A, f, phi)
|
148 |
+
>>> w.frequency
|
149 |
+
f
|
150 |
+
"""
|
151 |
+
return self.args[1]
|
152 |
+
|
153 |
+
@property
|
154 |
+
def phase(self):
|
155 |
+
"""
|
156 |
+
Returns the phase angle of the wave,
|
157 |
+
in radians.
|
158 |
+
|
159 |
+
Examples
|
160 |
+
========
|
161 |
+
|
162 |
+
>>> from sympy import symbols
|
163 |
+
>>> from sympy.physics.optics import TWave
|
164 |
+
>>> A, phi, f = symbols('A, phi, f')
|
165 |
+
>>> w = TWave(A, f, phi)
|
166 |
+
>>> w.phase
|
167 |
+
phi
|
168 |
+
"""
|
169 |
+
return self.args[2]
|
170 |
+
|
171 |
+
@property
|
172 |
+
def time_period(self):
|
173 |
+
"""
|
174 |
+
Returns the temporal period of the wave,
|
175 |
+
in seconds per cycle.
|
176 |
+
|
177 |
+
Examples
|
178 |
+
========
|
179 |
+
|
180 |
+
>>> from sympy import symbols
|
181 |
+
>>> from sympy.physics.optics import TWave
|
182 |
+
>>> A, phi, f = symbols('A, phi, f')
|
183 |
+
>>> w = TWave(A, f, phi)
|
184 |
+
>>> w.time_period
|
185 |
+
1/f
|
186 |
+
"""
|
187 |
+
return self.args[3]
|
188 |
+
|
189 |
+
@property
|
190 |
+
def n(self):
|
191 |
+
"""
|
192 |
+
Returns the refractive index of the medium
|
193 |
+
"""
|
194 |
+
return self.args[4]
|
195 |
+
|
196 |
+
@property
|
197 |
+
def wavelength(self):
|
198 |
+
"""
|
199 |
+
Returns the wavelength (spatial period) of the wave,
|
200 |
+
in meters per cycle.
|
201 |
+
It depends on the medium of the wave.
|
202 |
+
|
203 |
+
Examples
|
204 |
+
========
|
205 |
+
|
206 |
+
>>> from sympy import symbols
|
207 |
+
>>> from sympy.physics.optics import TWave
|
208 |
+
>>> A, phi, f = symbols('A, phi, f')
|
209 |
+
>>> w = TWave(A, f, phi)
|
210 |
+
>>> w.wavelength
|
211 |
+
299792458*meter/(second*f*n)
|
212 |
+
"""
|
213 |
+
return c/(self.frequency*self.n)
|
214 |
+
|
215 |
+
|
216 |
+
@property
|
217 |
+
def speed(self):
|
218 |
+
"""
|
219 |
+
Returns the propagation speed of the wave,
|
220 |
+
in meters per second.
|
221 |
+
It is dependent on the propagation medium.
|
222 |
+
|
223 |
+
Examples
|
224 |
+
========
|
225 |
+
|
226 |
+
>>> from sympy import symbols
|
227 |
+
>>> from sympy.physics.optics import TWave
|
228 |
+
>>> A, phi, f = symbols('A, phi, f')
|
229 |
+
>>> w = TWave(A, f, phi)
|
230 |
+
>>> w.speed
|
231 |
+
299792458*meter/(second*n)
|
232 |
+
"""
|
233 |
+
return self.wavelength*self.frequency
|
234 |
+
|
235 |
+
@property
|
236 |
+
def angular_velocity(self):
|
237 |
+
"""
|
238 |
+
Returns the angular velocity of the wave,
|
239 |
+
in radians per second.
|
240 |
+
|
241 |
+
Examples
|
242 |
+
========
|
243 |
+
|
244 |
+
>>> from sympy import symbols
|
245 |
+
>>> from sympy.physics.optics import TWave
|
246 |
+
>>> A, phi, f = symbols('A, phi, f')
|
247 |
+
>>> w = TWave(A, f, phi)
|
248 |
+
>>> w.angular_velocity
|
249 |
+
2*pi*f
|
250 |
+
"""
|
251 |
+
return 2*pi*self.frequency
|
252 |
+
|
253 |
+
@property
|
254 |
+
def wavenumber(self):
|
255 |
+
"""
|
256 |
+
Returns the wavenumber of the wave,
|
257 |
+
in radians per meter.
|
258 |
+
|
259 |
+
Examples
|
260 |
+
========
|
261 |
+
|
262 |
+
>>> from sympy import symbols
|
263 |
+
>>> from sympy.physics.optics import TWave
|
264 |
+
>>> A, phi, f = symbols('A, phi, f')
|
265 |
+
>>> w = TWave(A, f, phi)
|
266 |
+
>>> w.wavenumber
|
267 |
+
pi*second*f*n/(149896229*meter)
|
268 |
+
"""
|
269 |
+
return 2*pi/self.wavelength
|
270 |
+
|
271 |
+
def __str__(self):
|
272 |
+
"""String representation of a TWave."""
|
273 |
+
from sympy.printing import sstr
|
274 |
+
return type(self).__name__ + sstr(self.args)
|
275 |
+
|
276 |
+
__repr__ = __str__
|
277 |
+
|
278 |
+
def __add__(self, other):
|
279 |
+
"""
|
280 |
+
Addition of two waves will result in their superposition.
|
281 |
+
The type of interference will depend on their phase angles.
|
282 |
+
"""
|
283 |
+
if isinstance(other, TWave):
|
284 |
+
if self.frequency == other.frequency and self.wavelength == other.wavelength:
|
285 |
+
return TWave(sqrt(self.amplitude**2 + other.amplitude**2 + 2 *
|
286 |
+
self.amplitude*other.amplitude*cos(
|
287 |
+
self.phase - other.phase)),
|
288 |
+
self.frequency,
|
289 |
+
atan2(self.amplitude*sin(self.phase)
|
290 |
+
+ other.amplitude*sin(other.phase),
|
291 |
+
self.amplitude*cos(self.phase)
|
292 |
+
+ other.amplitude*cos(other.phase))
|
293 |
+
)
|
294 |
+
else:
|
295 |
+
raise NotImplementedError("Interference of waves with different frequencies"
|
296 |
+
" has not been implemented.")
|
297 |
+
else:
|
298 |
+
raise TypeError(type(other).__name__ + " and TWave objects cannot be added.")
|
299 |
+
|
300 |
+
def __mul__(self, other):
|
301 |
+
"""
|
302 |
+
Multiplying a wave by a scalar rescales the amplitude of the wave.
|
303 |
+
"""
|
304 |
+
other = sympify(other)
|
305 |
+
if isinstance(other, Number):
|
306 |
+
return TWave(self.amplitude*other, *self.args[1:])
|
307 |
+
else:
|
308 |
+
raise TypeError(type(other).__name__ + " and TWave objects cannot be multiplied.")
|
309 |
+
|
310 |
+
def __sub__(self, other):
|
311 |
+
return self.__add__(-1*other)
|
312 |
+
|
313 |
+
def __neg__(self):
|
314 |
+
return self.__mul__(-1)
|
315 |
+
|
316 |
+
def __radd__(self, other):
|
317 |
+
return self.__add__(other)
|
318 |
+
|
319 |
+
def __rmul__(self, other):
|
320 |
+
return self.__mul__(other)
|
321 |
+
|
322 |
+
def __rsub__(self, other):
|
323 |
+
return (-self).__radd__(other)
|
324 |
+
|
325 |
+
def _eval_rewrite_as_sin(self, *args, **kwargs):
|
326 |
+
return self.amplitude*sin(self.wavenumber*Symbol('x')
|
327 |
+
- self.angular_velocity*Symbol('t') + self.phase + pi/2, evaluate=False)
|
328 |
+
|
329 |
+
def _eval_rewrite_as_cos(self, *args, **kwargs):
|
330 |
+
return self.amplitude*cos(self.wavenumber*Symbol('x')
|
331 |
+
- self.angular_velocity*Symbol('t') + self.phase)
|
332 |
+
|
333 |
+
def _eval_rewrite_as_pde(self, *args, **kwargs):
|
334 |
+
mu, epsilon, x, t = symbols('mu, epsilon, x, t')
|
335 |
+
E = Function('E')
|
336 |
+
return Derivative(E(x, t), x, 2) + mu*epsilon*Derivative(E(x, t), t, 2)
|
337 |
+
|
338 |
+
def _eval_rewrite_as_exp(self, *args, **kwargs):
|
339 |
+
return self.amplitude*exp(I*(self.wavenumber*Symbol('x')
|
340 |
+
- self.angular_velocity*Symbol('t') + self.phase))
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_clebsch_gordan.cpython-310.pyc
ADDED
Binary file (7.86 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_hydrogen.cpython-310.pyc
ADDED
Binary file (5.26 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_paulialgebra.cpython-310.pyc
ADDED
Binary file (1.62 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_physics_matrices.cpython-310.pyc
ADDED
Binary file (2.58 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_pring.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_qho_1d.cpython-310.pyc
ADDED
Binary file (2.26 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_secondquant.cpython-310.pyc
ADDED
Binary file (38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_sho.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/test_hydrogen.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (I, Rational, oo, pi)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import symbols
|
4 |
+
from sympy.functions.elementary.exponential import exp
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
7 |
+
from sympy.integrals.integrals import integrate
|
8 |
+
from sympy.simplify.simplify import simplify
|
9 |
+
from sympy.physics.hydrogen import R_nl, E_nl, E_nl_dirac, Psi_nlm
|
10 |
+
from sympy.testing.pytest import raises
|
11 |
+
|
12 |
+
n, r, Z = symbols('n r Z')
|
13 |
+
|
14 |
+
|
15 |
+
def feq(a, b, max_relative_error=1e-12, max_absolute_error=1e-12):
|
16 |
+
a = float(a)
|
17 |
+
b = float(b)
|
18 |
+
# if the numbers are close enough (absolutely), then they are equal
|
19 |
+
if abs(a - b) < max_absolute_error:
|
20 |
+
return True
|
21 |
+
# if not, they can still be equal if their relative error is small
|
22 |
+
if abs(b) > abs(a):
|
23 |
+
relative_error = abs((a - b)/b)
|
24 |
+
else:
|
25 |
+
relative_error = abs((a - b)/a)
|
26 |
+
return relative_error <= max_relative_error
|
27 |
+
|
28 |
+
|
29 |
+
def test_wavefunction():
|
30 |
+
a = 1/Z
|
31 |
+
R = {
|
32 |
+
(1, 0): 2*sqrt(1/a**3) * exp(-r/a),
|
33 |
+
(2, 0): sqrt(1/(2*a**3)) * exp(-r/(2*a)) * (1 - r/(2*a)),
|
34 |
+
(2, 1): S.Half * sqrt(1/(6*a**3)) * exp(-r/(2*a)) * r/a,
|
35 |
+
(3, 0): Rational(2, 3) * sqrt(1/(3*a**3)) * exp(-r/(3*a)) *
|
36 |
+
(1 - 2*r/(3*a) + Rational(2, 27) * (r/a)**2),
|
37 |
+
(3, 1): Rational(4, 27) * sqrt(2/(3*a**3)) * exp(-r/(3*a)) *
|
38 |
+
(1 - r/(6*a)) * r/a,
|
39 |
+
(3, 2): Rational(2, 81) * sqrt(2/(15*a**3)) * exp(-r/(3*a)) * (r/a)**2,
|
40 |
+
(4, 0): Rational(1, 4) * sqrt(1/a**3) * exp(-r/(4*a)) *
|
41 |
+
(1 - 3*r/(4*a) + Rational(1, 8) * (r/a)**2 - Rational(1, 192) * (r/a)**3),
|
42 |
+
(4, 1): Rational(1, 16) * sqrt(5/(3*a**3)) * exp(-r/(4*a)) *
|
43 |
+
(1 - r/(4*a) + Rational(1, 80) * (r/a)**2) * (r/a),
|
44 |
+
(4, 2): Rational(1, 64) * sqrt(1/(5*a**3)) * exp(-r/(4*a)) *
|
45 |
+
(1 - r/(12*a)) * (r/a)**2,
|
46 |
+
(4, 3): Rational(1, 768) * sqrt(1/(35*a**3)) * exp(-r/(4*a)) * (r/a)**3,
|
47 |
+
}
|
48 |
+
for n, l in R:
|
49 |
+
assert simplify(R_nl(n, l, r, Z) - R[(n, l)]) == 0
|
50 |
+
|
51 |
+
|
52 |
+
def test_norm():
|
53 |
+
# Maximum "n" which is tested:
|
54 |
+
n_max = 2 # it works, but is slow, for n_max > 2
|
55 |
+
for n in range(n_max + 1):
|
56 |
+
for l in range(n):
|
57 |
+
assert integrate(R_nl(n, l, r)**2 * r**2, (r, 0, oo)) == 1
|
58 |
+
|
59 |
+
def test_psi_nlm():
|
60 |
+
r=S('r')
|
61 |
+
phi=S('phi')
|
62 |
+
theta=S('theta')
|
63 |
+
assert (Psi_nlm(1, 0, 0, r, phi, theta) == exp(-r) / sqrt(pi))
|
64 |
+
assert (Psi_nlm(2, 1, -1, r, phi, theta)) == S.Half * exp(-r / (2)) * r \
|
65 |
+
* (sin(theta) * exp(-I * phi) / (4 * sqrt(pi)))
|
66 |
+
assert (Psi_nlm(3, 2, 1, r, phi, theta, 2) == -sqrt(2) * sin(theta) \
|
67 |
+
* exp(I * phi) * cos(theta) / (4 * sqrt(pi)) * S(2) / 81 \
|
68 |
+
* sqrt(2 * 2 ** 3) * exp(-2 * r / (3)) * (r * 2) ** 2)
|
69 |
+
|
70 |
+
def test_hydrogen_energies():
|
71 |
+
assert E_nl(n, Z) == -Z**2/(2*n**2)
|
72 |
+
assert E_nl(n) == -1/(2*n**2)
|
73 |
+
|
74 |
+
assert E_nl(1, 47) == -S(47)**2/(2*1**2)
|
75 |
+
assert E_nl(2, 47) == -S(47)**2/(2*2**2)
|
76 |
+
|
77 |
+
assert E_nl(1) == -S.One/(2*1**2)
|
78 |
+
assert E_nl(2) == -S.One/(2*2**2)
|
79 |
+
assert E_nl(3) == -S.One/(2*3**2)
|
80 |
+
assert E_nl(4) == -S.One/(2*4**2)
|
81 |
+
assert E_nl(100) == -S.One/(2*100**2)
|
82 |
+
|
83 |
+
raises(ValueError, lambda: E_nl(0))
|
84 |
+
|
85 |
+
|
86 |
+
def test_hydrogen_energies_relat():
|
87 |
+
# First test exact formulas for small "c" so that we get nice expressions:
|
88 |
+
assert E_nl_dirac(2, 0, Z=1, c=1) == 1/sqrt(2) - 1
|
89 |
+
assert simplify(E_nl_dirac(2, 0, Z=1, c=2) - ( (8*sqrt(3) + 16)
|
90 |
+
/ sqrt(16*sqrt(3) + 32) - 4)) == 0
|
91 |
+
assert simplify(E_nl_dirac(2, 0, Z=1, c=3) - ( (54*sqrt(2) + 81)
|
92 |
+
/ sqrt(108*sqrt(2) + 162) - 9)) == 0
|
93 |
+
|
94 |
+
# Now test for almost the correct speed of light, without floating point
|
95 |
+
# numbers:
|
96 |
+
assert simplify(E_nl_dirac(2, 0, Z=1, c=137) - ( (352275361 + 10285412 *
|
97 |
+
sqrt(1173)) / sqrt(704550722 + 20570824 * sqrt(1173)) - 18769)) == 0
|
98 |
+
assert simplify(E_nl_dirac(2, 0, Z=82, c=137) - ( (352275361 + 2571353 *
|
99 |
+
sqrt(12045)) / sqrt(704550722 + 5142706*sqrt(12045)) - 18769)) == 0
|
100 |
+
|
101 |
+
# Test using exact speed of light, and compare against the nonrelativistic
|
102 |
+
# energies:
|
103 |
+
for n in range(1, 5):
|
104 |
+
for l in range(n):
|
105 |
+
assert feq(E_nl_dirac(n, l), E_nl(n), 1e-5, 1e-5)
|
106 |
+
if l > 0:
|
107 |
+
assert feq(E_nl_dirac(n, l, False), E_nl(n), 1e-5, 1e-5)
|
108 |
+
|
109 |
+
Z = 2
|
110 |
+
for n in range(1, 5):
|
111 |
+
for l in range(n):
|
112 |
+
assert feq(E_nl_dirac(n, l, Z=Z), E_nl(n, Z), 1e-4, 1e-4)
|
113 |
+
if l > 0:
|
114 |
+
assert feq(E_nl_dirac(n, l, False, Z), E_nl(n, Z), 1e-4, 1e-4)
|
115 |
+
|
116 |
+
Z = 3
|
117 |
+
for n in range(1, 5):
|
118 |
+
for l in range(n):
|
119 |
+
assert feq(E_nl_dirac(n, l, Z=Z), E_nl(n, Z), 1e-3, 1e-3)
|
120 |
+
if l > 0:
|
121 |
+
assert feq(E_nl_dirac(n, l, False, Z), E_nl(n, Z), 1e-3, 1e-3)
|
122 |
+
|
123 |
+
# Test the exceptions:
|
124 |
+
raises(ValueError, lambda: E_nl_dirac(0, 0))
|
125 |
+
raises(ValueError, lambda: E_nl_dirac(1, -1))
|
126 |
+
raises(ValueError, lambda: E_nl_dirac(1, 0, False))
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/test_paulialgebra.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import I
|
2 |
+
from sympy.core.symbol import symbols
|
3 |
+
from sympy.physics.paulialgebra import Pauli
|
4 |
+
from sympy.testing.pytest import XFAIL
|
5 |
+
from sympy.physics.quantum import TensorProduct
|
6 |
+
|
7 |
+
sigma1 = Pauli(1)
|
8 |
+
sigma2 = Pauli(2)
|
9 |
+
sigma3 = Pauli(3)
|
10 |
+
|
11 |
+
tau1 = symbols("tau1", commutative = False)
|
12 |
+
|
13 |
+
|
14 |
+
def test_Pauli():
|
15 |
+
|
16 |
+
assert sigma1 == sigma1
|
17 |
+
assert sigma1 != sigma2
|
18 |
+
|
19 |
+
assert sigma1*sigma2 == I*sigma3
|
20 |
+
assert sigma3*sigma1 == I*sigma2
|
21 |
+
assert sigma2*sigma3 == I*sigma1
|
22 |
+
|
23 |
+
assert sigma1*sigma1 == 1
|
24 |
+
assert sigma2*sigma2 == 1
|
25 |
+
assert sigma3*sigma3 == 1
|
26 |
+
|
27 |
+
assert sigma1**0 == 1
|
28 |
+
assert sigma1**1 == sigma1
|
29 |
+
assert sigma1**2 == 1
|
30 |
+
assert sigma1**3 == sigma1
|
31 |
+
assert sigma1**4 == 1
|
32 |
+
|
33 |
+
assert sigma3**2 == 1
|
34 |
+
|
35 |
+
assert sigma1*2*sigma1 == 2
|
36 |
+
|
37 |
+
|
38 |
+
def test_evaluate_pauli_product():
|
39 |
+
from sympy.physics.paulialgebra import evaluate_pauli_product
|
40 |
+
|
41 |
+
assert evaluate_pauli_product(I*sigma2*sigma3) == -sigma1
|
42 |
+
|
43 |
+
# Check issue 6471
|
44 |
+
assert evaluate_pauli_product(-I*4*sigma1*sigma2) == 4*sigma3
|
45 |
+
|
46 |
+
assert evaluate_pauli_product(
|
47 |
+
1 + I*sigma1*sigma2*sigma1*sigma2 + \
|
48 |
+
I*sigma1*sigma2*tau1*sigma1*sigma3 + \
|
49 |
+
((tau1**2).subs(tau1, I*sigma1)) + \
|
50 |
+
sigma3*((tau1**2).subs(tau1, I*sigma1)) + \
|
51 |
+
TensorProduct(I*sigma1*sigma2*sigma1*sigma2, 1)
|
52 |
+
) == 1 -I + I*sigma3*tau1*sigma2 - 1 - sigma3 - I*TensorProduct(1,1)
|
53 |
+
|
54 |
+
|
55 |
+
@XFAIL
|
56 |
+
def test_Pauli_should_work():
|
57 |
+
assert sigma1*sigma3*sigma1 == -sigma3
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/test_physics_matrices.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.physics.matrices import msigma, mgamma, minkowski_tensor, pat_matrix, mdft
|
2 |
+
from sympy.core.numbers import (I, Rational)
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
5 |
+
from sympy.matrices.dense import (Matrix, eye, zeros)
|
6 |
+
from sympy.testing.pytest import warns_deprecated_sympy
|
7 |
+
|
8 |
+
|
9 |
+
def test_parallel_axis_theorem():
|
10 |
+
# This tests the parallel axis theorem matrix by comparing to test
|
11 |
+
# matrices.
|
12 |
+
|
13 |
+
# First case, 1 in all directions.
|
14 |
+
mat1 = Matrix(((2, -1, -1), (-1, 2, -1), (-1, -1, 2)))
|
15 |
+
assert pat_matrix(1, 1, 1, 1) == mat1
|
16 |
+
assert pat_matrix(2, 1, 1, 1) == 2*mat1
|
17 |
+
|
18 |
+
# Second case, 1 in x, 0 in all others
|
19 |
+
mat2 = Matrix(((0, 0, 0), (0, 1, 0), (0, 0, 1)))
|
20 |
+
assert pat_matrix(1, 1, 0, 0) == mat2
|
21 |
+
assert pat_matrix(2, 1, 0, 0) == 2*mat2
|
22 |
+
|
23 |
+
# Third case, 1 in y, 0 in all others
|
24 |
+
mat3 = Matrix(((1, 0, 0), (0, 0, 0), (0, 0, 1)))
|
25 |
+
assert pat_matrix(1, 0, 1, 0) == mat3
|
26 |
+
assert pat_matrix(2, 0, 1, 0) == 2*mat3
|
27 |
+
|
28 |
+
# Fourth case, 1 in z, 0 in all others
|
29 |
+
mat4 = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 0)))
|
30 |
+
assert pat_matrix(1, 0, 0, 1) == mat4
|
31 |
+
assert pat_matrix(2, 0, 0, 1) == 2*mat4
|
32 |
+
|
33 |
+
|
34 |
+
def test_Pauli():
|
35 |
+
#this and the following test are testing both Pauli and Dirac matrices
|
36 |
+
#and also that the general Matrix class works correctly in a real world
|
37 |
+
#situation
|
38 |
+
sigma1 = msigma(1)
|
39 |
+
sigma2 = msigma(2)
|
40 |
+
sigma3 = msigma(3)
|
41 |
+
|
42 |
+
assert sigma1 == sigma1
|
43 |
+
assert sigma1 != sigma2
|
44 |
+
|
45 |
+
# sigma*I -> I*sigma (see #354)
|
46 |
+
assert sigma1*sigma2 == sigma3*I
|
47 |
+
assert sigma3*sigma1 == sigma2*I
|
48 |
+
assert sigma2*sigma3 == sigma1*I
|
49 |
+
|
50 |
+
assert sigma1*sigma1 == eye(2)
|
51 |
+
assert sigma2*sigma2 == eye(2)
|
52 |
+
assert sigma3*sigma3 == eye(2)
|
53 |
+
|
54 |
+
assert sigma1*2*sigma1 == 2*eye(2)
|
55 |
+
assert sigma1*sigma3*sigma1 == -sigma3
|
56 |
+
|
57 |
+
|
58 |
+
def test_Dirac():
|
59 |
+
gamma0 = mgamma(0)
|
60 |
+
gamma1 = mgamma(1)
|
61 |
+
gamma2 = mgamma(2)
|
62 |
+
gamma3 = mgamma(3)
|
63 |
+
gamma5 = mgamma(5)
|
64 |
+
|
65 |
+
# gamma*I -> I*gamma (see #354)
|
66 |
+
assert gamma5 == gamma0 * gamma1 * gamma2 * gamma3 * I
|
67 |
+
assert gamma1 * gamma2 + gamma2 * gamma1 == zeros(4)
|
68 |
+
assert gamma0 * gamma0 == eye(4) * minkowski_tensor[0, 0]
|
69 |
+
assert gamma2 * gamma2 != eye(4) * minkowski_tensor[0, 0]
|
70 |
+
assert gamma2 * gamma2 == eye(4) * minkowski_tensor[2, 2]
|
71 |
+
|
72 |
+
assert mgamma(5, True) == \
|
73 |
+
mgamma(0, True)*mgamma(1, True)*mgamma(2, True)*mgamma(3, True)*I
|
74 |
+
|
75 |
+
def test_mdft():
|
76 |
+
with warns_deprecated_sympy():
|
77 |
+
assert mdft(1) == Matrix([[1]])
|
78 |
+
with warns_deprecated_sympy():
|
79 |
+
assert mdft(2) == 1/sqrt(2)*Matrix([[1,1],[1,-1]])
|
80 |
+
with warns_deprecated_sympy():
|
81 |
+
assert mdft(4) == Matrix([[S.Half, S.Half, S.Half, S.Half],
|
82 |
+
[S.Half, -I/2, Rational(-1,2), I/2],
|
83 |
+
[S.Half, Rational(-1,2), S.Half, Rational(-1,2)],
|
84 |
+
[S.Half, I/2, Rational(-1,2), -I/2]])
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/test_qho_1d.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (Rational, oo, pi)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import Symbol
|
4 |
+
from sympy.functions.elementary.exponential import exp
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.integrals.integrals import integrate
|
7 |
+
from sympy.simplify.simplify import simplify
|
8 |
+
from sympy.abc import omega, m, x
|
9 |
+
from sympy.physics.qho_1d import psi_n, E_n, coherent_state
|
10 |
+
from sympy.physics.quantum.constants import hbar
|
11 |
+
|
12 |
+
nu = m * omega / hbar
|
13 |
+
|
14 |
+
|
15 |
+
def test_wavefunction():
|
16 |
+
Psi = {
|
17 |
+
0: (nu/pi)**Rational(1, 4) * exp(-nu * x**2 /2),
|
18 |
+
1: (nu/pi)**Rational(1, 4) * sqrt(2*nu) * x * exp(-nu * x**2 /2),
|
19 |
+
2: (nu/pi)**Rational(1, 4) * (2 * nu * x**2 - 1)/sqrt(2) * exp(-nu * x**2 /2),
|
20 |
+
3: (nu/pi)**Rational(1, 4) * sqrt(nu/3) * (2 * nu * x**3 - 3 * x) * exp(-nu * x**2 /2)
|
21 |
+
}
|
22 |
+
for n in Psi:
|
23 |
+
assert simplify(psi_n(n, x, m, omega) - Psi[n]) == 0
|
24 |
+
|
25 |
+
|
26 |
+
def test_norm(n=1):
|
27 |
+
# Maximum "n" which is tested:
|
28 |
+
for i in range(n + 1):
|
29 |
+
assert integrate(psi_n(i, x, 1, 1)**2, (x, -oo, oo)) == 1
|
30 |
+
|
31 |
+
|
32 |
+
def test_orthogonality(n=1):
|
33 |
+
# Maximum "n" which is tested:
|
34 |
+
for i in range(n + 1):
|
35 |
+
for j in range(i + 1, n + 1):
|
36 |
+
assert integrate(
|
37 |
+
psi_n(i, x, 1, 1)*psi_n(j, x, 1, 1), (x, -oo, oo)) == 0
|
38 |
+
|
39 |
+
|
40 |
+
def test_energies(n=1):
|
41 |
+
# Maximum "n" which is tested:
|
42 |
+
for i in range(n + 1):
|
43 |
+
assert E_n(i, omega) == hbar * omega * (i + S.Half)
|
44 |
+
|
45 |
+
def test_coherent_state(n=10):
|
46 |
+
# Maximum "n" which is tested:
|
47 |
+
# test whether coherent state is the eigenstate of annihilation operator
|
48 |
+
alpha = Symbol("alpha")
|
49 |
+
for i in range(n + 1):
|
50 |
+
assert simplify(sqrt(n + 1) * coherent_state(n + 1, alpha)) == simplify(alpha * coherent_state(n, alpha))
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/tests/test_secondquant.py
ADDED
@@ -0,0 +1,1280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.physics.secondquant import (
|
2 |
+
Dagger, Bd, VarBosonicBasis, BBra, B, BKet, FixedBosonicBasis,
|
3 |
+
matrix_rep, apply_operators, InnerProduct, Commutator, KroneckerDelta,
|
4 |
+
AnnihilateBoson, CreateBoson, BosonicOperator,
|
5 |
+
F, Fd, FKet, BosonState, CreateFermion, AnnihilateFermion,
|
6 |
+
evaluate_deltas, AntiSymmetricTensor, contraction, NO, wicks,
|
7 |
+
PermutationOperator, simplify_index_permutations,
|
8 |
+
_sort_anticommuting_fermions, _get_ordered_dummies,
|
9 |
+
substitute_dummies, FockStateBosonKet,
|
10 |
+
ContractionAppliesOnlyToFermions
|
11 |
+
)
|
12 |
+
|
13 |
+
from sympy.concrete.summations import Sum
|
14 |
+
from sympy.core.function import (Function, expand)
|
15 |
+
from sympy.core.numbers import (I, Rational)
|
16 |
+
from sympy.core.singleton import S
|
17 |
+
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
18 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
19 |
+
from sympy.printing.repr import srepr
|
20 |
+
from sympy.simplify.simplify import simplify
|
21 |
+
|
22 |
+
from sympy.testing.pytest import slow, raises
|
23 |
+
from sympy.printing.latex import latex
|
24 |
+
|
25 |
+
|
26 |
+
def test_PermutationOperator():
|
27 |
+
p, q, r, s = symbols('p,q,r,s')
|
28 |
+
f, g, h, i = map(Function, 'fghi')
|
29 |
+
P = PermutationOperator
|
30 |
+
assert P(p, q).get_permuted(f(p)*g(q)) == -f(q)*g(p)
|
31 |
+
assert P(p, q).get_permuted(f(p, q)) == -f(q, p)
|
32 |
+
assert P(p, q).get_permuted(f(p)) == f(p)
|
33 |
+
expr = (f(p)*g(q)*h(r)*i(s)
|
34 |
+
- f(q)*g(p)*h(r)*i(s)
|
35 |
+
- f(p)*g(q)*h(s)*i(r)
|
36 |
+
+ f(q)*g(p)*h(s)*i(r))
|
37 |
+
perms = [P(p, q), P(r, s)]
|
38 |
+
assert (simplify_index_permutations(expr, perms) ==
|
39 |
+
P(p, q)*P(r, s)*f(p)*g(q)*h(r)*i(s))
|
40 |
+
assert latex(P(p, q)) == 'P(pq)'
|
41 |
+
|
42 |
+
|
43 |
+
def test_index_permutations_with_dummies():
|
44 |
+
a, b, c, d = symbols('a b c d')
|
45 |
+
p, q, r, s = symbols('p q r s', cls=Dummy)
|
46 |
+
f, g = map(Function, 'fg')
|
47 |
+
P = PermutationOperator
|
48 |
+
|
49 |
+
# No dummy substitution necessary
|
50 |
+
expr = f(a, b, p, q) - f(b, a, p, q)
|
51 |
+
assert simplify_index_permutations(
|
52 |
+
expr, [P(a, b)]) == P(a, b)*f(a, b, p, q)
|
53 |
+
|
54 |
+
# Cases where dummy substitution is needed
|
55 |
+
expected = P(a, b)*substitute_dummies(f(a, b, p, q))
|
56 |
+
|
57 |
+
expr = f(a, b, p, q) - f(b, a, q, p)
|
58 |
+
result = simplify_index_permutations(expr, [P(a, b)])
|
59 |
+
assert expected == substitute_dummies(result)
|
60 |
+
|
61 |
+
expr = f(a, b, q, p) - f(b, a, p, q)
|
62 |
+
result = simplify_index_permutations(expr, [P(a, b)])
|
63 |
+
assert expected == substitute_dummies(result)
|
64 |
+
|
65 |
+
# A case where nothing can be done
|
66 |
+
expr = f(a, b, q, p) - g(b, a, p, q)
|
67 |
+
result = simplify_index_permutations(expr, [P(a, b)])
|
68 |
+
assert expr == result
|
69 |
+
|
70 |
+
|
71 |
+
def test_dagger():
|
72 |
+
i, j, n, m = symbols('i,j,n,m')
|
73 |
+
assert Dagger(1) == 1
|
74 |
+
assert Dagger(1.0) == 1.0
|
75 |
+
assert Dagger(2*I) == -2*I
|
76 |
+
assert Dagger(S.Half*I/3.0) == I*Rational(-1, 2)/3.0
|
77 |
+
assert Dagger(BKet([n])) == BBra([n])
|
78 |
+
assert Dagger(B(0)) == Bd(0)
|
79 |
+
assert Dagger(Bd(0)) == B(0)
|
80 |
+
assert Dagger(B(n)) == Bd(n)
|
81 |
+
assert Dagger(Bd(n)) == B(n)
|
82 |
+
assert Dagger(B(0) + B(1)) == Bd(0) + Bd(1)
|
83 |
+
assert Dagger(n*m) == Dagger(n)*Dagger(m) # n, m commute
|
84 |
+
assert Dagger(B(n)*B(m)) == Bd(m)*Bd(n)
|
85 |
+
assert Dagger(B(n)**10) == Dagger(B(n))**10
|
86 |
+
assert Dagger('a') == Dagger(Symbol('a'))
|
87 |
+
assert Dagger(Dagger('a')) == Symbol('a')
|
88 |
+
|
89 |
+
|
90 |
+
def test_operator():
|
91 |
+
i, j = symbols('i,j')
|
92 |
+
o = BosonicOperator(i)
|
93 |
+
assert o.state == i
|
94 |
+
assert o.is_symbolic
|
95 |
+
o = BosonicOperator(1)
|
96 |
+
assert o.state == 1
|
97 |
+
assert not o.is_symbolic
|
98 |
+
|
99 |
+
|
100 |
+
def test_create():
|
101 |
+
i, j, n, m = symbols('i,j,n,m')
|
102 |
+
o = Bd(i)
|
103 |
+
assert latex(o) == "{b^\\dagger_{i}}"
|
104 |
+
assert isinstance(o, CreateBoson)
|
105 |
+
o = o.subs(i, j)
|
106 |
+
assert o.atoms(Symbol) == {j}
|
107 |
+
o = Bd(0)
|
108 |
+
assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1])
|
109 |
+
o = Bd(n)
|
110 |
+
assert o.apply_operator(BKet([n])) == o*BKet([n])
|
111 |
+
|
112 |
+
|
113 |
+
def test_annihilate():
|
114 |
+
i, j, n, m = symbols('i,j,n,m')
|
115 |
+
o = B(i)
|
116 |
+
assert latex(o) == "b_{i}"
|
117 |
+
assert isinstance(o, AnnihilateBoson)
|
118 |
+
o = o.subs(i, j)
|
119 |
+
assert o.atoms(Symbol) == {j}
|
120 |
+
o = B(0)
|
121 |
+
assert o.apply_operator(BKet([n])) == sqrt(n)*BKet([n - 1])
|
122 |
+
o = B(n)
|
123 |
+
assert o.apply_operator(BKet([n])) == o*BKet([n])
|
124 |
+
|
125 |
+
|
126 |
+
def test_basic_state():
|
127 |
+
i, j, n, m = symbols('i,j,n,m')
|
128 |
+
s = BosonState([0, 1, 2, 3, 4])
|
129 |
+
assert len(s) == 5
|
130 |
+
assert s.args[0] == tuple(range(5))
|
131 |
+
assert s.up(0) == BosonState([1, 1, 2, 3, 4])
|
132 |
+
assert s.down(4) == BosonState([0, 1, 2, 3, 3])
|
133 |
+
for i in range(5):
|
134 |
+
assert s.up(i).down(i) == s
|
135 |
+
assert s.down(0) == 0
|
136 |
+
for i in range(5):
|
137 |
+
assert s[i] == i
|
138 |
+
s = BosonState([n, m])
|
139 |
+
assert s.down(0) == BosonState([n - 1, m])
|
140 |
+
assert s.up(0) == BosonState([n + 1, m])
|
141 |
+
|
142 |
+
|
143 |
+
def test_basic_apply():
|
144 |
+
n = symbols("n")
|
145 |
+
e = B(0)*BKet([n])
|
146 |
+
assert apply_operators(e) == sqrt(n)*BKet([n - 1])
|
147 |
+
e = Bd(0)*BKet([n])
|
148 |
+
assert apply_operators(e) == sqrt(n + 1)*BKet([n + 1])
|
149 |
+
|
150 |
+
|
151 |
+
def test_complex_apply():
|
152 |
+
n, m = symbols("n,m")
|
153 |
+
o = Bd(0)*B(0)*Bd(1)*B(0)
|
154 |
+
e = apply_operators(o*BKet([n, m]))
|
155 |
+
answer = sqrt(n)*sqrt(m + 1)*(-1 + n)*BKet([-1 + n, 1 + m])
|
156 |
+
assert expand(e) == expand(answer)
|
157 |
+
|
158 |
+
|
159 |
+
def test_number_operator():
|
160 |
+
n = symbols("n")
|
161 |
+
o = Bd(0)*B(0)
|
162 |
+
e = apply_operators(o*BKet([n]))
|
163 |
+
assert e == n*BKet([n])
|
164 |
+
|
165 |
+
|
166 |
+
def test_inner_product():
|
167 |
+
i, j, k, l = symbols('i,j,k,l')
|
168 |
+
s1 = BBra([0])
|
169 |
+
s2 = BKet([1])
|
170 |
+
assert InnerProduct(s1, Dagger(s1)) == 1
|
171 |
+
assert InnerProduct(s1, s2) == 0
|
172 |
+
s1 = BBra([i, j])
|
173 |
+
s2 = BKet([k, l])
|
174 |
+
r = InnerProduct(s1, s2)
|
175 |
+
assert r == KroneckerDelta(i, k)*KroneckerDelta(j, l)
|
176 |
+
|
177 |
+
|
178 |
+
def test_symbolic_matrix_elements():
|
179 |
+
n, m = symbols('n,m')
|
180 |
+
s1 = BBra([n])
|
181 |
+
s2 = BKet([m])
|
182 |
+
o = B(0)
|
183 |
+
e = apply_operators(s1*o*s2)
|
184 |
+
assert e == sqrt(m)*KroneckerDelta(n, m - 1)
|
185 |
+
|
186 |
+
|
187 |
+
def test_matrix_elements():
|
188 |
+
b = VarBosonicBasis(5)
|
189 |
+
o = B(0)
|
190 |
+
m = matrix_rep(o, b)
|
191 |
+
for i in range(4):
|
192 |
+
assert m[i, i + 1] == sqrt(i + 1)
|
193 |
+
o = Bd(0)
|
194 |
+
m = matrix_rep(o, b)
|
195 |
+
for i in range(4):
|
196 |
+
assert m[i + 1, i] == sqrt(i + 1)
|
197 |
+
|
198 |
+
|
199 |
+
def test_fixed_bosonic_basis():
|
200 |
+
b = FixedBosonicBasis(2, 2)
|
201 |
+
# assert b == [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]
|
202 |
+
state = b.state(1)
|
203 |
+
assert state == FockStateBosonKet((1, 1))
|
204 |
+
assert b.index(state) == 1
|
205 |
+
assert b.state(1) == b[1]
|
206 |
+
assert len(b) == 3
|
207 |
+
assert str(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]'
|
208 |
+
assert repr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]'
|
209 |
+
assert srepr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]'
|
210 |
+
|
211 |
+
|
212 |
+
@slow
|
213 |
+
def test_sho():
|
214 |
+
n, m = symbols('n,m')
|
215 |
+
h_n = Bd(n)*B(n)*(n + S.Half)
|
216 |
+
H = Sum(h_n, (n, 0, 5))
|
217 |
+
o = H.doit(deep=False)
|
218 |
+
b = FixedBosonicBasis(2, 6)
|
219 |
+
m = matrix_rep(o, b)
|
220 |
+
# We need to double check these energy values to make sure that they
|
221 |
+
# are correct and have the proper degeneracies!
|
222 |
+
diag = [1, 2, 3, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11]
|
223 |
+
for i in range(len(diag)):
|
224 |
+
assert diag[i] == m[i, i]
|
225 |
+
|
226 |
+
|
227 |
+
def test_commutation():
|
228 |
+
n, m = symbols("n,m", above_fermi=True)
|
229 |
+
c = Commutator(B(0), Bd(0))
|
230 |
+
assert c == 1
|
231 |
+
c = Commutator(Bd(0), B(0))
|
232 |
+
assert c == -1
|
233 |
+
c = Commutator(B(n), Bd(0))
|
234 |
+
assert c == KroneckerDelta(n, 0)
|
235 |
+
c = Commutator(B(0), B(0))
|
236 |
+
assert c == 0
|
237 |
+
c = Commutator(B(0), Bd(0))
|
238 |
+
e = simplify(apply_operators(c*BKet([n])))
|
239 |
+
assert e == BKet([n])
|
240 |
+
c = Commutator(B(0), B(1))
|
241 |
+
e = simplify(apply_operators(c*BKet([n, m])))
|
242 |
+
assert e == 0
|
243 |
+
|
244 |
+
c = Commutator(F(m), Fd(m))
|
245 |
+
assert c == +1 - 2*NO(Fd(m)*F(m))
|
246 |
+
c = Commutator(Fd(m), F(m))
|
247 |
+
assert c.expand() == -1 + 2*NO(Fd(m)*F(m))
|
248 |
+
|
249 |
+
C = Commutator
|
250 |
+
X, Y, Z = symbols('X,Y,Z', commutative=False)
|
251 |
+
assert C(C(X, Y), Z) != 0
|
252 |
+
assert C(C(X, Z), Y) != 0
|
253 |
+
assert C(Y, C(X, Z)) != 0
|
254 |
+
|
255 |
+
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
|
256 |
+
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
|
257 |
+
p, q, r, s = symbols('p,q,r,s')
|
258 |
+
D = KroneckerDelta
|
259 |
+
|
260 |
+
assert C(Fd(a), F(i)) == -2*NO(F(i)*Fd(a))
|
261 |
+
assert C(Fd(j), NO(Fd(a)*F(i))).doit(wicks=True) == -D(j, i)*Fd(a)
|
262 |
+
assert C(Fd(a)*F(i), Fd(b)*F(j)).doit(wicks=True) == 0
|
263 |
+
|
264 |
+
c1 = Commutator(F(a), Fd(a))
|
265 |
+
assert Commutator.eval(c1, c1) == 0
|
266 |
+
c = Commutator(Fd(a)*F(i),Fd(b)*F(j))
|
267 |
+
assert latex(c) == r'\left[{a^\dagger_{a}} a_{i},{a^\dagger_{b}} a_{j}\right]'
|
268 |
+
assert repr(c) == 'Commutator(CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j))'
|
269 |
+
assert str(c) == '[CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j)]'
|
270 |
+
|
271 |
+
|
272 |
+
def test_create_f():
|
273 |
+
i, j, n, m = symbols('i,j,n,m')
|
274 |
+
o = Fd(i)
|
275 |
+
assert isinstance(o, CreateFermion)
|
276 |
+
o = o.subs(i, j)
|
277 |
+
assert o.atoms(Symbol) == {j}
|
278 |
+
o = Fd(1)
|
279 |
+
assert o.apply_operator(FKet([n])) == FKet([1, n])
|
280 |
+
assert o.apply_operator(FKet([n])) == -FKet([n, 1])
|
281 |
+
o = Fd(n)
|
282 |
+
assert o.apply_operator(FKet([])) == FKet([n])
|
283 |
+
|
284 |
+
vacuum = FKet([], fermi_level=4)
|
285 |
+
assert vacuum == FKet([], fermi_level=4)
|
286 |
+
|
287 |
+
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
|
288 |
+
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
|
289 |
+
p, q, r, s = symbols('p,q,r,s')
|
290 |
+
|
291 |
+
assert Fd(i).apply_operator(FKet([i, j, k], 4)) == FKet([j, k], 4)
|
292 |
+
assert Fd(a).apply_operator(FKet([i, b, k], 4)) == FKet([a, i, b, k], 4)
|
293 |
+
|
294 |
+
assert Dagger(B(p)).apply_operator(q) == q*CreateBoson(p)
|
295 |
+
assert repr(Fd(p)) == 'CreateFermion(p)'
|
296 |
+
assert srepr(Fd(p)) == "CreateFermion(Symbol('p'))"
|
297 |
+
assert latex(Fd(p)) == r'{a^\dagger_{p}}'
|
298 |
+
|
299 |
+
|
300 |
+
def test_annihilate_f():
|
301 |
+
i, j, n, m = symbols('i,j,n,m')
|
302 |
+
o = F(i)
|
303 |
+
assert isinstance(o, AnnihilateFermion)
|
304 |
+
o = o.subs(i, j)
|
305 |
+
assert o.atoms(Symbol) == {j}
|
306 |
+
o = F(1)
|
307 |
+
assert o.apply_operator(FKet([1, n])) == FKet([n])
|
308 |
+
assert o.apply_operator(FKet([n, 1])) == -FKet([n])
|
309 |
+
o = F(n)
|
310 |
+
assert o.apply_operator(FKet([n])) == FKet([])
|
311 |
+
|
312 |
+
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
|
313 |
+
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
|
314 |
+
p, q, r, s = symbols('p,q,r,s')
|
315 |
+
assert F(i).apply_operator(FKet([i, j, k], 4)) == 0
|
316 |
+
assert F(a).apply_operator(FKet([i, b, k], 4)) == 0
|
317 |
+
assert F(l).apply_operator(FKet([i, j, k], 3)) == 0
|
318 |
+
assert F(l).apply_operator(FKet([i, j, k], 4)) == FKet([l, i, j, k], 4)
|
319 |
+
assert str(F(p)) == 'f(p)'
|
320 |
+
assert repr(F(p)) == 'AnnihilateFermion(p)'
|
321 |
+
assert srepr(F(p)) == "AnnihilateFermion(Symbol('p'))"
|
322 |
+
assert latex(F(p)) == 'a_{p}'
|
323 |
+
|
324 |
+
|
325 |
+
def test_create_b():
|
326 |
+
i, j, n, m = symbols('i,j,n,m')
|
327 |
+
o = Bd(i)
|
328 |
+
assert isinstance(o, CreateBoson)
|
329 |
+
o = o.subs(i, j)
|
330 |
+
assert o.atoms(Symbol) == {j}
|
331 |
+
o = Bd(0)
|
332 |
+
assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1])
|
333 |
+
o = Bd(n)
|
334 |
+
assert o.apply_operator(BKet([n])) == o*BKet([n])
|
335 |
+
|
336 |
+
|
337 |
+
def test_annihilate_b():
|
338 |
+
i, j, n, m = symbols('i,j,n,m')
|
339 |
+
o = B(i)
|
340 |
+
assert isinstance(o, AnnihilateBoson)
|
341 |
+
o = o.subs(i, j)
|
342 |
+
assert o.atoms(Symbol) == {j}
|
343 |
+
o = B(0)
|
344 |
+
|
345 |
+
|
346 |
+
def test_wicks():
|
347 |
+
p, q, r, s = symbols('p,q,r,s', above_fermi=True)
|
348 |
+
|
349 |
+
# Testing for particles only
|
350 |
+
|
351 |
+
str = F(p)*Fd(q)
|
352 |
+
assert wicks(str) == NO(F(p)*Fd(q)) + KroneckerDelta(p, q)
|
353 |
+
str = Fd(p)*F(q)
|
354 |
+
assert wicks(str) == NO(Fd(p)*F(q))
|
355 |
+
|
356 |
+
str = F(p)*Fd(q)*F(r)*Fd(s)
|
357 |
+
nstr = wicks(str)
|
358 |
+
fasit = NO(
|
359 |
+
KroneckerDelta(p, q)*KroneckerDelta(r, s)
|
360 |
+
+ KroneckerDelta(p, q)*AnnihilateFermion(r)*CreateFermion(s)
|
361 |
+
+ KroneckerDelta(r, s)*AnnihilateFermion(p)*CreateFermion(q)
|
362 |
+
- KroneckerDelta(p, s)*AnnihilateFermion(r)*CreateFermion(q)
|
363 |
+
- AnnihilateFermion(p)*AnnihilateFermion(r)*CreateFermion(q)*CreateFermion(s))
|
364 |
+
assert nstr == fasit
|
365 |
+
|
366 |
+
assert (p*q*nstr).expand() == wicks(p*q*str)
|
367 |
+
assert (nstr*p*q*2).expand() == wicks(str*p*q*2)
|
368 |
+
|
369 |
+
# Testing CC equations particles and holes
|
370 |
+
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
|
371 |
+
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
|
372 |
+
p, q, r, s = symbols('p q r s', cls=Dummy)
|
373 |
+
|
374 |
+
assert (wicks(F(a)*NO(F(i)*F(j))*Fd(b)) ==
|
375 |
+
NO(F(a)*F(i)*F(j)*Fd(b)) +
|
376 |
+
KroneckerDelta(a, b)*NO(F(i)*F(j)))
|
377 |
+
assert (wicks(F(a)*NO(F(i)*F(j)*F(k))*Fd(b)) ==
|
378 |
+
NO(F(a)*F(i)*F(j)*F(k)*Fd(b)) -
|
379 |
+
KroneckerDelta(a, b)*NO(F(i)*F(j)*F(k)))
|
380 |
+
|
381 |
+
expr = wicks(Fd(i)*NO(Fd(j)*F(k))*F(l))
|
382 |
+
assert (expr ==
|
383 |
+
-KroneckerDelta(i, k)*NO(Fd(j)*F(l)) -
|
384 |
+
KroneckerDelta(j, l)*NO(Fd(i)*F(k)) -
|
385 |
+
KroneckerDelta(i, k)*KroneckerDelta(j, l) +
|
386 |
+
KroneckerDelta(i, l)*NO(Fd(j)*F(k)) +
|
387 |
+
NO(Fd(i)*Fd(j)*F(k)*F(l)))
|
388 |
+
expr = wicks(F(a)*NO(F(b)*Fd(c))*Fd(d))
|
389 |
+
assert (expr ==
|
390 |
+
-KroneckerDelta(a, c)*NO(F(b)*Fd(d)) -
|
391 |
+
KroneckerDelta(b, d)*NO(F(a)*Fd(c)) -
|
392 |
+
KroneckerDelta(a, c)*KroneckerDelta(b, d) +
|
393 |
+
KroneckerDelta(a, d)*NO(F(b)*Fd(c)) +
|
394 |
+
NO(F(a)*F(b)*Fd(c)*Fd(d)))
|
395 |
+
|
396 |
+
|
397 |
+
def test_NO():
|
398 |
+
i, j, k, l = symbols('i j k l', below_fermi=True)
|
399 |
+
a, b, c, d = symbols('a b c d', above_fermi=True)
|
400 |
+
p, q, r, s = symbols('p q r s', cls=Dummy)
|
401 |
+
|
402 |
+
assert (NO(Fd(p)*F(q) + Fd(a)*F(b)) ==
|
403 |
+
NO(Fd(p)*F(q)) + NO(Fd(a)*F(b)))
|
404 |
+
assert (NO(Fd(i)*NO(F(j)*Fd(a))) ==
|
405 |
+
NO(Fd(i)*F(j)*Fd(a)))
|
406 |
+
assert NO(1) == 1
|
407 |
+
assert NO(i) == i
|
408 |
+
assert (NO(Fd(a)*Fd(b)*(F(c) + F(d))) ==
|
409 |
+
NO(Fd(a)*Fd(b)*F(c)) +
|
410 |
+
NO(Fd(a)*Fd(b)*F(d)))
|
411 |
+
|
412 |
+
assert NO(Fd(a)*F(b))._remove_brackets() == Fd(a)*F(b)
|
413 |
+
assert NO(F(j)*Fd(i))._remove_brackets() == F(j)*Fd(i)
|
414 |
+
|
415 |
+
assert (NO(Fd(p)*F(q)).subs(Fd(p), Fd(a) + Fd(i)) ==
|
416 |
+
NO(Fd(a)*F(q)) + NO(Fd(i)*F(q)))
|
417 |
+
assert (NO(Fd(p)*F(q)).subs(F(q), F(a) + F(i)) ==
|
418 |
+
NO(Fd(p)*F(a)) + NO(Fd(p)*F(i)))
|
419 |
+
|
420 |
+
expr = NO(Fd(p)*F(q))._remove_brackets()
|
421 |
+
assert wicks(expr) == NO(expr)
|
422 |
+
|
423 |
+
assert NO(Fd(a)*F(b)) == - NO(F(b)*Fd(a))
|
424 |
+
|
425 |
+
no = NO(Fd(a)*F(i)*F(b)*Fd(j))
|
426 |
+
l1 = list(no.iter_q_creators())
|
427 |
+
assert l1 == [0, 1]
|
428 |
+
l2 = list(no.iter_q_annihilators())
|
429 |
+
assert l2 == [3, 2]
|
430 |
+
no = NO(Fd(a)*Fd(i))
|
431 |
+
assert no.has_q_creators == 1
|
432 |
+
assert no.has_q_annihilators == -1
|
433 |
+
assert str(no) == ':CreateFermion(a)*CreateFermion(i):'
|
434 |
+
assert repr(no) == 'NO(CreateFermion(a)*CreateFermion(i))'
|
435 |
+
assert latex(no) == r'\left\{{a^\dagger_{a}} {a^\dagger_{i}}\right\}'
|
436 |
+
raises(NotImplementedError, lambda: NO(Bd(p)*F(q)))
|
437 |
+
|
438 |
+
|
439 |
+
def test_sorting():
|
440 |
+
i, j = symbols('i,j', below_fermi=True)
|
441 |
+
a, b = symbols('a,b', above_fermi=True)
|
442 |
+
p, q = symbols('p,q')
|
443 |
+
|
444 |
+
# p, q
|
445 |
+
assert _sort_anticommuting_fermions([Fd(p), F(q)]) == ([Fd(p), F(q)], 0)
|
446 |
+
assert _sort_anticommuting_fermions([F(p), Fd(q)]) == ([Fd(q), F(p)], 1)
|
447 |
+
|
448 |
+
# i, p
|
449 |
+
assert _sort_anticommuting_fermions([F(p), Fd(i)]) == ([F(p), Fd(i)], 0)
|
450 |
+
assert _sort_anticommuting_fermions([Fd(i), F(p)]) == ([F(p), Fd(i)], 1)
|
451 |
+
assert _sort_anticommuting_fermions([Fd(p), Fd(i)]) == ([Fd(p), Fd(i)], 0)
|
452 |
+
assert _sort_anticommuting_fermions([Fd(i), Fd(p)]) == ([Fd(p), Fd(i)], 1)
|
453 |
+
assert _sort_anticommuting_fermions([F(p), F(i)]) == ([F(i), F(p)], 1)
|
454 |
+
assert _sort_anticommuting_fermions([F(i), F(p)]) == ([F(i), F(p)], 0)
|
455 |
+
assert _sort_anticommuting_fermions([Fd(p), F(i)]) == ([F(i), Fd(p)], 1)
|
456 |
+
assert _sort_anticommuting_fermions([F(i), Fd(p)]) == ([F(i), Fd(p)], 0)
|
457 |
+
|
458 |
+
# a, p
|
459 |
+
assert _sort_anticommuting_fermions([F(p), Fd(a)]) == ([Fd(a), F(p)], 1)
|
460 |
+
assert _sort_anticommuting_fermions([Fd(a), F(p)]) == ([Fd(a), F(p)], 0)
|
461 |
+
assert _sort_anticommuting_fermions([Fd(p), Fd(a)]) == ([Fd(a), Fd(p)], 1)
|
462 |
+
assert _sort_anticommuting_fermions([Fd(a), Fd(p)]) == ([Fd(a), Fd(p)], 0)
|
463 |
+
assert _sort_anticommuting_fermions([F(p), F(a)]) == ([F(p), F(a)], 0)
|
464 |
+
assert _sort_anticommuting_fermions([F(a), F(p)]) == ([F(p), F(a)], 1)
|
465 |
+
assert _sort_anticommuting_fermions([Fd(p), F(a)]) == ([Fd(p), F(a)], 0)
|
466 |
+
assert _sort_anticommuting_fermions([F(a), Fd(p)]) == ([Fd(p), F(a)], 1)
|
467 |
+
|
468 |
+
# i, a
|
469 |
+
assert _sort_anticommuting_fermions([F(i), Fd(j)]) == ([F(i), Fd(j)], 0)
|
470 |
+
assert _sort_anticommuting_fermions([Fd(j), F(i)]) == ([F(i), Fd(j)], 1)
|
471 |
+
assert _sort_anticommuting_fermions([Fd(a), Fd(i)]) == ([Fd(a), Fd(i)], 0)
|
472 |
+
assert _sort_anticommuting_fermions([Fd(i), Fd(a)]) == ([Fd(a), Fd(i)], 1)
|
473 |
+
assert _sort_anticommuting_fermions([F(a), F(i)]) == ([F(i), F(a)], 1)
|
474 |
+
assert _sort_anticommuting_fermions([F(i), F(a)]) == ([F(i), F(a)], 0)
|
475 |
+
|
476 |
+
|
477 |
+
def test_contraction():
|
478 |
+
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
|
479 |
+
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
|
480 |
+
p, q, r, s = symbols('p,q,r,s')
|
481 |
+
assert contraction(Fd(i), F(j)) == KroneckerDelta(i, j)
|
482 |
+
assert contraction(F(a), Fd(b)) == KroneckerDelta(a, b)
|
483 |
+
assert contraction(F(a), Fd(i)) == 0
|
484 |
+
assert contraction(Fd(a), F(i)) == 0
|
485 |
+
assert contraction(F(i), Fd(a)) == 0
|
486 |
+
assert contraction(Fd(i), F(a)) == 0
|
487 |
+
assert contraction(Fd(i), F(p)) == KroneckerDelta(i, p)
|
488 |
+
restr = evaluate_deltas(contraction(Fd(p), F(q)))
|
489 |
+
assert restr.is_only_below_fermi
|
490 |
+
restr = evaluate_deltas(contraction(F(p), Fd(q)))
|
491 |
+
assert restr.is_only_above_fermi
|
492 |
+
raises(ContractionAppliesOnlyToFermions, lambda: contraction(B(a), Fd(b)))
|
493 |
+
|
494 |
+
|
495 |
+
def test_evaluate_deltas():
|
496 |
+
i, j, k = symbols('i,j,k')
|
497 |
+
|
498 |
+
r = KroneckerDelta(i, j) * KroneckerDelta(j, k)
|
499 |
+
assert evaluate_deltas(r) == KroneckerDelta(i, k)
|
500 |
+
|
501 |
+
r = KroneckerDelta(i, 0) * KroneckerDelta(j, k)
|
502 |
+
assert evaluate_deltas(r) == KroneckerDelta(i, 0) * KroneckerDelta(j, k)
|
503 |
+
|
504 |
+
r = KroneckerDelta(1, j) * KroneckerDelta(j, k)
|
505 |
+
assert evaluate_deltas(r) == KroneckerDelta(1, k)
|
506 |
+
|
507 |
+
r = KroneckerDelta(j, 2) * KroneckerDelta(k, j)
|
508 |
+
assert evaluate_deltas(r) == KroneckerDelta(2, k)
|
509 |
+
|
510 |
+
r = KroneckerDelta(i, 0) * KroneckerDelta(i, j) * KroneckerDelta(j, 1)
|
511 |
+
assert evaluate_deltas(r) == 0
|
512 |
+
|
513 |
+
r = (KroneckerDelta(0, i) * KroneckerDelta(0, j)
|
514 |
+
* KroneckerDelta(1, j) * KroneckerDelta(1, j))
|
515 |
+
assert evaluate_deltas(r) == 0
|
516 |
+
|
517 |
+
|
518 |
+
def test_Tensors():
|
519 |
+
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
|
520 |
+
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
|
521 |
+
p, q, r, s = symbols('p q r s')
|
522 |
+
|
523 |
+
AT = AntiSymmetricTensor
|
524 |
+
assert AT('t', (a, b), (i, j)) == -AT('t', (b, a), (i, j))
|
525 |
+
assert AT('t', (a, b), (i, j)) == AT('t', (b, a), (j, i))
|
526 |
+
assert AT('t', (a, b), (i, j)) == -AT('t', (a, b), (j, i))
|
527 |
+
assert AT('t', (a, a), (i, j)) == 0
|
528 |
+
assert AT('t', (a, b), (i, i)) == 0
|
529 |
+
assert AT('t', (a, b, c), (i, j)) == -AT('t', (b, a, c), (i, j))
|
530 |
+
assert AT('t', (a, b, c), (i, j, k)) == AT('t', (b, a, c), (i, k, j))
|
531 |
+
|
532 |
+
tabij = AT('t', (a, b), (i, j))
|
533 |
+
assert tabij.has(a)
|
534 |
+
assert tabij.has(b)
|
535 |
+
assert tabij.has(i)
|
536 |
+
assert tabij.has(j)
|
537 |
+
assert tabij.subs(b, c) == AT('t', (a, c), (i, j))
|
538 |
+
assert (2*tabij).subs(i, c) == 2*AT('t', (a, b), (c, j))
|
539 |
+
assert tabij.symbol == Symbol('t')
|
540 |
+
assert latex(tabij) == '{t^{ab}_{ij}}'
|
541 |
+
assert str(tabij) == 't((_a, _b),(_i, _j))'
|
542 |
+
|
543 |
+
assert AT('t', (a, a), (i, j)).subs(a, b) == AT('t', (b, b), (i, j))
|
544 |
+
assert AT('t', (a, i), (a, j)).subs(a, b) == AT('t', (b, i), (b, j))
|
545 |
+
|
546 |
+
|
547 |
+
def test_fully_contracted():
|
548 |
+
i, j, k, l = symbols('i j k l', below_fermi=True)
|
549 |
+
a, b, c, d = symbols('a b c d', above_fermi=True)
|
550 |
+
p, q, r, s = symbols('p q r s', cls=Dummy)
|
551 |
+
|
552 |
+
Fock = (AntiSymmetricTensor('f', (p,), (q,))*
|
553 |
+
NO(Fd(p)*F(q)))
|
554 |
+
V = (AntiSymmetricTensor('v', (p, q), (r, s))*
|
555 |
+
NO(Fd(p)*Fd(q)*F(s)*F(r)))/4
|
556 |
+
|
557 |
+
Fai = wicks(NO(Fd(i)*F(a))*Fock,
|
558 |
+
keep_only_fully_contracted=True,
|
559 |
+
simplify_kronecker_deltas=True)
|
560 |
+
assert Fai == AntiSymmetricTensor('f', (a,), (i,))
|
561 |
+
Vabij = wicks(NO(Fd(i)*Fd(j)*F(b)*F(a))*V,
|
562 |
+
keep_only_fully_contracted=True,
|
563 |
+
simplify_kronecker_deltas=True)
|
564 |
+
assert Vabij == AntiSymmetricTensor('v', (a, b), (i, j))
|
565 |
+
|
566 |
+
|
567 |
+
def test_substitute_dummies_without_dummies():
|
568 |
+
i, j = symbols('i,j')
|
569 |
+
assert substitute_dummies(att(i, j) + 2) == att(i, j) + 2
|
570 |
+
assert substitute_dummies(att(i, j) + 1) == att(i, j) + 1
|
571 |
+
|
572 |
+
|
573 |
+
def test_substitute_dummies_NO_operator():
|
574 |
+
i, j = symbols('i j', cls=Dummy)
|
575 |
+
assert substitute_dummies(att(i, j)*NO(Fd(i)*F(j))
|
576 |
+
- att(j, i)*NO(Fd(j)*F(i))) == 0
|
577 |
+
|
578 |
+
|
579 |
+
def test_substitute_dummies_SQ_operator():
|
580 |
+
i, j = symbols('i j', cls=Dummy)
|
581 |
+
assert substitute_dummies(att(i, j)*Fd(i)*F(j)
|
582 |
+
- att(j, i)*Fd(j)*F(i)) == 0
|
583 |
+
|
584 |
+
|
585 |
+
def test_substitute_dummies_new_indices():
|
586 |
+
i, j = symbols('i j', below_fermi=True, cls=Dummy)
|
587 |
+
a, b = symbols('a b', above_fermi=True, cls=Dummy)
|
588 |
+
p, q = symbols('p q', cls=Dummy)
|
589 |
+
f = Function('f')
|
590 |
+
assert substitute_dummies(f(i, a, p) - f(j, b, q), new_indices=True) == 0
|
591 |
+
|
592 |
+
|
593 |
+
def test_substitute_dummies_substitution_order():
|
594 |
+
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
|
595 |
+
f = Function('f')
|
596 |
+
from sympy.utilities.iterables import variations
|
597 |
+
for permut in variations([i, j, k, l], 4):
|
598 |
+
assert substitute_dummies(f(*permut) - f(i, j, k, l)) == 0
|
599 |
+
|
600 |
+
|
601 |
+
def test_dummy_order_inner_outer_lines_VT1T1T1():
|
602 |
+
ii = symbols('i', below_fermi=True)
|
603 |
+
aa = symbols('a', above_fermi=True)
|
604 |
+
k, l = symbols('k l', below_fermi=True, cls=Dummy)
|
605 |
+
c, d = symbols('c d', above_fermi=True, cls=Dummy)
|
606 |
+
|
607 |
+
v = Function('v')
|
608 |
+
t = Function('t')
|
609 |
+
dums = _get_ordered_dummies
|
610 |
+
|
611 |
+
# Coupled-Cluster T1 terms with V*T1*T1*T1
|
612 |
+
# t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc}
|
613 |
+
exprs = [
|
614 |
+
# permut v and t <=> swapping internal lines, equivalent
|
615 |
+
# irrespective of symmetries in v
|
616 |
+
v(k, l, c, d)*t(c, ii)*t(d, l)*t(aa, k),
|
617 |
+
v(l, k, c, d)*t(c, ii)*t(d, k)*t(aa, l),
|
618 |
+
v(k, l, d, c)*t(d, ii)*t(c, l)*t(aa, k),
|
619 |
+
v(l, k, d, c)*t(d, ii)*t(c, k)*t(aa, l),
|
620 |
+
]
|
621 |
+
for permut in exprs[1:]:
|
622 |
+
assert dums(exprs[0]) != dums(permut)
|
623 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
624 |
+
|
625 |
+
|
626 |
+
def test_dummy_order_inner_outer_lines_VT1T1T1T1():
|
627 |
+
ii, jj = symbols('i j', below_fermi=True)
|
628 |
+
aa, bb = symbols('a b', above_fermi=True)
|
629 |
+
k, l = symbols('k l', below_fermi=True, cls=Dummy)
|
630 |
+
c, d = symbols('c d', above_fermi=True, cls=Dummy)
|
631 |
+
|
632 |
+
v = Function('v')
|
633 |
+
t = Function('t')
|
634 |
+
dums = _get_ordered_dummies
|
635 |
+
|
636 |
+
# Coupled-Cluster T2 terms with V*T1*T1*T1*T1
|
637 |
+
exprs = [
|
638 |
+
# permut t <=> swapping external lines, not equivalent
|
639 |
+
# except if v has certain symmetries.
|
640 |
+
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
|
641 |
+
v(k, l, c, d)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l),
|
642 |
+
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l),
|
643 |
+
v(k, l, c, d)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l),
|
644 |
+
]
|
645 |
+
for permut in exprs[1:]:
|
646 |
+
assert dums(exprs[0]) != dums(permut)
|
647 |
+
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
|
648 |
+
exprs = [
|
649 |
+
# permut v <=> swapping external lines, not equivalent
|
650 |
+
# except if v has certain symmetries.
|
651 |
+
#
|
652 |
+
# Note that in contrast to above, these permutations have identical
|
653 |
+
# dummy order. That is because the proximity to external indices
|
654 |
+
# has higher influence on the canonical dummy ordering than the
|
655 |
+
# position of a dummy on the factors. In fact, the terms here are
|
656 |
+
# similar in structure as the result of the dummy substitutions above.
|
657 |
+
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
|
658 |
+
v(l, k, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
|
659 |
+
v(k, l, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
|
660 |
+
v(l, k, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
|
661 |
+
]
|
662 |
+
for permut in exprs[1:]:
|
663 |
+
assert dums(exprs[0]) == dums(permut)
|
664 |
+
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
|
665 |
+
exprs = [
|
666 |
+
# permut t and v <=> swapping internal lines, equivalent.
|
667 |
+
# Canonical dummy order is different, and a consistent
|
668 |
+
# substitution reveals the equivalence.
|
669 |
+
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
|
670 |
+
v(k, l, d, c)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l),
|
671 |
+
v(l, k, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l),
|
672 |
+
v(l, k, d, c)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l),
|
673 |
+
]
|
674 |
+
for permut in exprs[1:]:
|
675 |
+
assert dums(exprs[0]) != dums(permut)
|
676 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
677 |
+
|
678 |
+
|
679 |
+
def test_get_subNO():
|
680 |
+
p, q, r = symbols('p,q,r')
|
681 |
+
assert NO(F(p)*F(q)*F(r)).get_subNO(1) == NO(F(p)*F(r))
|
682 |
+
assert NO(F(p)*F(q)*F(r)).get_subNO(0) == NO(F(q)*F(r))
|
683 |
+
assert NO(F(p)*F(q)*F(r)).get_subNO(2) == NO(F(p)*F(q))
|
684 |
+
|
685 |
+
|
686 |
+
def test_equivalent_internal_lines_VT1T1():
|
687 |
+
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
|
688 |
+
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
|
689 |
+
|
690 |
+
v = Function('v')
|
691 |
+
t = Function('t')
|
692 |
+
dums = _get_ordered_dummies
|
693 |
+
|
694 |
+
exprs = [ # permute v. Different dummy order. Not equivalent.
|
695 |
+
v(i, j, a, b)*t(a, i)*t(b, j),
|
696 |
+
v(j, i, a, b)*t(a, i)*t(b, j),
|
697 |
+
v(i, j, b, a)*t(a, i)*t(b, j),
|
698 |
+
]
|
699 |
+
for permut in exprs[1:]:
|
700 |
+
assert dums(exprs[0]) != dums(permut)
|
701 |
+
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
|
702 |
+
|
703 |
+
exprs = [ # permute v. Different dummy order. Equivalent
|
704 |
+
v(i, j, a, b)*t(a, i)*t(b, j),
|
705 |
+
v(j, i, b, a)*t(a, i)*t(b, j),
|
706 |
+
]
|
707 |
+
for permut in exprs[1:]:
|
708 |
+
assert dums(exprs[0]) != dums(permut)
|
709 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
710 |
+
|
711 |
+
exprs = [ # permute t. Same dummy order, not equivalent.
|
712 |
+
v(i, j, a, b)*t(a, i)*t(b, j),
|
713 |
+
v(i, j, a, b)*t(b, i)*t(a, j),
|
714 |
+
]
|
715 |
+
for permut in exprs[1:]:
|
716 |
+
assert dums(exprs[0]) == dums(permut)
|
717 |
+
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
|
718 |
+
|
719 |
+
exprs = [ # permute v and t. Different dummy order, equivalent
|
720 |
+
v(i, j, a, b)*t(a, i)*t(b, j),
|
721 |
+
v(j, i, a, b)*t(a, j)*t(b, i),
|
722 |
+
v(i, j, b, a)*t(b, i)*t(a, j),
|
723 |
+
v(j, i, b, a)*t(b, j)*t(a, i),
|
724 |
+
]
|
725 |
+
for permut in exprs[1:]:
|
726 |
+
assert dums(exprs[0]) != dums(permut)
|
727 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
728 |
+
|
729 |
+
|
730 |
+
def test_equivalent_internal_lines_VT2conjT2():
|
731 |
+
# this diagram requires special handling in TCE
|
732 |
+
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
|
733 |
+
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
|
734 |
+
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
|
735 |
+
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
|
736 |
+
|
737 |
+
from sympy.utilities.iterables import variations
|
738 |
+
|
739 |
+
v = Function('v')
|
740 |
+
t = Function('t')
|
741 |
+
dums = _get_ordered_dummies
|
742 |
+
|
743 |
+
# v(abcd)t(abij)t(ijcd)
|
744 |
+
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(i, j, p3, p4)
|
745 |
+
permutator = variations([a, b, c, d], 4)
|
746 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
747 |
+
for permut in permutator:
|
748 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
749 |
+
expr = template.subs(subslist)
|
750 |
+
assert dums(base) != dums(expr)
|
751 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
752 |
+
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(j, i, p3, p4)
|
753 |
+
permutator = variations([a, b, c, d], 4)
|
754 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
755 |
+
for permut in permutator:
|
756 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
757 |
+
expr = template.subs(subslist)
|
758 |
+
assert dums(base) != dums(expr)
|
759 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
760 |
+
|
761 |
+
# v(abcd)t(abij)t(jicd)
|
762 |
+
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(j, i, p3, p4)
|
763 |
+
permutator = variations([a, b, c, d], 4)
|
764 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
765 |
+
for permut in permutator:
|
766 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
767 |
+
expr = template.subs(subslist)
|
768 |
+
assert dums(base) != dums(expr)
|
769 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
770 |
+
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(i, j, p3, p4)
|
771 |
+
permutator = variations([a, b, c, d], 4)
|
772 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
773 |
+
for permut in permutator:
|
774 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
775 |
+
expr = template.subs(subslist)
|
776 |
+
assert dums(base) != dums(expr)
|
777 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
778 |
+
|
779 |
+
|
780 |
+
def test_equivalent_internal_lines_VT2conjT2_ambiguous_order():
|
781 |
+
# These diagrams invokes _determine_ambiguous() because the
|
782 |
+
# dummies can not be ordered unambiguously by the key alone
|
783 |
+
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
|
784 |
+
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
|
785 |
+
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
|
786 |
+
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
|
787 |
+
|
788 |
+
from sympy.utilities.iterables import variations
|
789 |
+
|
790 |
+
v = Function('v')
|
791 |
+
t = Function('t')
|
792 |
+
dums = _get_ordered_dummies
|
793 |
+
|
794 |
+
# v(abcd)t(abij)t(cdij)
|
795 |
+
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(p3, p4, i, j)
|
796 |
+
permutator = variations([a, b, c, d], 4)
|
797 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
798 |
+
for permut in permutator:
|
799 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
800 |
+
expr = template.subs(subslist)
|
801 |
+
assert dums(base) != dums(expr)
|
802 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
803 |
+
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(p3, p4, i, j)
|
804 |
+
permutator = variations([a, b, c, d], 4)
|
805 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
806 |
+
for permut in permutator:
|
807 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
808 |
+
expr = template.subs(subslist)
|
809 |
+
assert dums(base) != dums(expr)
|
810 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
811 |
+
|
812 |
+
|
813 |
+
def test_equivalent_internal_lines_VT2():
|
814 |
+
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
|
815 |
+
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
|
816 |
+
|
817 |
+
v = Function('v')
|
818 |
+
t = Function('t')
|
819 |
+
dums = _get_ordered_dummies
|
820 |
+
exprs = [
|
821 |
+
# permute v. Same dummy order, not equivalent.
|
822 |
+
#
|
823 |
+
# This test show that the dummy order may not be sensitive to all
|
824 |
+
# index permutations. The following expressions have identical
|
825 |
+
# structure as the resulting terms from of the dummy substitutions
|
826 |
+
# in the test above. Here, all expressions have the same dummy
|
827 |
+
# order, so they cannot be simplified by means of dummy
|
828 |
+
# substitution. In order to simplify further, it is necessary to
|
829 |
+
# exploit symmetries in the objects, for instance if t or v is
|
830 |
+
# antisymmetric.
|
831 |
+
v(i, j, a, b)*t(a, b, i, j),
|
832 |
+
v(j, i, a, b)*t(a, b, i, j),
|
833 |
+
v(i, j, b, a)*t(a, b, i, j),
|
834 |
+
v(j, i, b, a)*t(a, b, i, j),
|
835 |
+
]
|
836 |
+
for permut in exprs[1:]:
|
837 |
+
assert dums(exprs[0]) == dums(permut)
|
838 |
+
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
|
839 |
+
|
840 |
+
exprs = [
|
841 |
+
# permute t.
|
842 |
+
v(i, j, a, b)*t(a, b, i, j),
|
843 |
+
v(i, j, a, b)*t(b, a, i, j),
|
844 |
+
v(i, j, a, b)*t(a, b, j, i),
|
845 |
+
v(i, j, a, b)*t(b, a, j, i),
|
846 |
+
]
|
847 |
+
for permut in exprs[1:]:
|
848 |
+
assert dums(exprs[0]) != dums(permut)
|
849 |
+
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
|
850 |
+
|
851 |
+
exprs = [ # permute v and t. Relabelling of dummies should be equivalent.
|
852 |
+
v(i, j, a, b)*t(a, b, i, j),
|
853 |
+
v(j, i, a, b)*t(a, b, j, i),
|
854 |
+
v(i, j, b, a)*t(b, a, i, j),
|
855 |
+
v(j, i, b, a)*t(b, a, j, i),
|
856 |
+
]
|
857 |
+
for permut in exprs[1:]:
|
858 |
+
assert dums(exprs[0]) != dums(permut)
|
859 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
860 |
+
|
861 |
+
|
862 |
+
def test_internal_external_VT2T2():
|
863 |
+
ii, jj = symbols('i j', below_fermi=True)
|
864 |
+
aa, bb = symbols('a b', above_fermi=True)
|
865 |
+
k, l = symbols('k l', below_fermi=True, cls=Dummy)
|
866 |
+
c, d = symbols('c d', above_fermi=True, cls=Dummy)
|
867 |
+
|
868 |
+
v = Function('v')
|
869 |
+
t = Function('t')
|
870 |
+
dums = _get_ordered_dummies
|
871 |
+
|
872 |
+
exprs = [
|
873 |
+
v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l),
|
874 |
+
v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k),
|
875 |
+
v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l),
|
876 |
+
v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k),
|
877 |
+
]
|
878 |
+
for permut in exprs[1:]:
|
879 |
+
assert dums(exprs[0]) != dums(permut)
|
880 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
881 |
+
exprs = [
|
882 |
+
v(k, l, c, d)*t(aa, c, ii, k)*t(d, bb, jj, l),
|
883 |
+
v(l, k, c, d)*t(aa, c, ii, l)*t(d, bb, jj, k),
|
884 |
+
v(k, l, d, c)*t(aa, d, ii, k)*t(c, bb, jj, l),
|
885 |
+
v(l, k, d, c)*t(aa, d, ii, l)*t(c, bb, jj, k),
|
886 |
+
]
|
887 |
+
for permut in exprs[1:]:
|
888 |
+
assert dums(exprs[0]) != dums(permut)
|
889 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
890 |
+
exprs = [
|
891 |
+
v(k, l, c, d)*t(c, aa, ii, k)*t(bb, d, jj, l),
|
892 |
+
v(l, k, c, d)*t(c, aa, ii, l)*t(bb, d, jj, k),
|
893 |
+
v(k, l, d, c)*t(d, aa, ii, k)*t(bb, c, jj, l),
|
894 |
+
v(l, k, d, c)*t(d, aa, ii, l)*t(bb, c, jj, k),
|
895 |
+
]
|
896 |
+
for permut in exprs[1:]:
|
897 |
+
assert dums(exprs[0]) != dums(permut)
|
898 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
899 |
+
|
900 |
+
|
901 |
+
def test_internal_external_pqrs():
|
902 |
+
ii, jj = symbols('i j')
|
903 |
+
aa, bb = symbols('a b')
|
904 |
+
k, l = symbols('k l', cls=Dummy)
|
905 |
+
c, d = symbols('c d', cls=Dummy)
|
906 |
+
|
907 |
+
v = Function('v')
|
908 |
+
t = Function('t')
|
909 |
+
dums = _get_ordered_dummies
|
910 |
+
|
911 |
+
exprs = [
|
912 |
+
v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l),
|
913 |
+
v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k),
|
914 |
+
v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l),
|
915 |
+
v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k),
|
916 |
+
]
|
917 |
+
for permut in exprs[1:]:
|
918 |
+
assert dums(exprs[0]) != dums(permut)
|
919 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
920 |
+
|
921 |
+
|
922 |
+
def test_dummy_order_well_defined():
|
923 |
+
aa, bb = symbols('a b', above_fermi=True)
|
924 |
+
k, l, m = symbols('k l m', below_fermi=True, cls=Dummy)
|
925 |
+
c, d = symbols('c d', above_fermi=True, cls=Dummy)
|
926 |
+
p, q = symbols('p q', cls=Dummy)
|
927 |
+
|
928 |
+
A = Function('A')
|
929 |
+
B = Function('B')
|
930 |
+
C = Function('C')
|
931 |
+
dums = _get_ordered_dummies
|
932 |
+
|
933 |
+
# We go through all key components in the order of increasing priority,
|
934 |
+
# and consider only fully orderable expressions. Non-orderable expressions
|
935 |
+
# are tested elsewhere.
|
936 |
+
|
937 |
+
# pos in first factor determines sort order
|
938 |
+
assert dums(A(k, l)*B(l, k)) == [k, l]
|
939 |
+
assert dums(A(l, k)*B(l, k)) == [l, k]
|
940 |
+
assert dums(A(k, l)*B(k, l)) == [k, l]
|
941 |
+
assert dums(A(l, k)*B(k, l)) == [l, k]
|
942 |
+
|
943 |
+
# factors involving the index
|
944 |
+
assert dums(A(k, l)*B(l, m)*C(k, m)) == [l, k, m]
|
945 |
+
assert dums(A(k, l)*B(l, m)*C(m, k)) == [l, k, m]
|
946 |
+
assert dums(A(l, k)*B(l, m)*C(k, m)) == [l, k, m]
|
947 |
+
assert dums(A(l, k)*B(l, m)*C(m, k)) == [l, k, m]
|
948 |
+
assert dums(A(k, l)*B(m, l)*C(k, m)) == [l, k, m]
|
949 |
+
assert dums(A(k, l)*B(m, l)*C(m, k)) == [l, k, m]
|
950 |
+
assert dums(A(l, k)*B(m, l)*C(k, m)) == [l, k, m]
|
951 |
+
assert dums(A(l, k)*B(m, l)*C(m, k)) == [l, k, m]
|
952 |
+
|
953 |
+
# same, but with factor order determined by non-dummies
|
954 |
+
assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, k, m)) == [l, k, m]
|
955 |
+
assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, m, k)) == [l, k, m]
|
956 |
+
assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, k, m)) == [l, k, m]
|
957 |
+
assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, m, k)) == [l, k, m]
|
958 |
+
assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, k, m)) == [l, k, m]
|
959 |
+
assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, m, k)) == [l, k, m]
|
960 |
+
assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, k, m)) == [l, k, m]
|
961 |
+
assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, m, k)) == [l, k, m]
|
962 |
+
|
963 |
+
# index range
|
964 |
+
assert dums(A(p, c, k)*B(p, c, k)) == [k, c, p]
|
965 |
+
assert dums(A(p, k, c)*B(p, c, k)) == [k, c, p]
|
966 |
+
assert dums(A(c, k, p)*B(p, c, k)) == [k, c, p]
|
967 |
+
assert dums(A(c, p, k)*B(p, c, k)) == [k, c, p]
|
968 |
+
assert dums(A(k, c, p)*B(p, c, k)) == [k, c, p]
|
969 |
+
assert dums(A(k, p, c)*B(p, c, k)) == [k, c, p]
|
970 |
+
assert dums(B(p, c, k)*A(p, c, k)) == [k, c, p]
|
971 |
+
assert dums(B(p, k, c)*A(p, c, k)) == [k, c, p]
|
972 |
+
assert dums(B(c, k, p)*A(p, c, k)) == [k, c, p]
|
973 |
+
assert dums(B(c, p, k)*A(p, c, k)) == [k, c, p]
|
974 |
+
assert dums(B(k, c, p)*A(p, c, k)) == [k, c, p]
|
975 |
+
assert dums(B(k, p, c)*A(p, c, k)) == [k, c, p]
|
976 |
+
|
977 |
+
|
978 |
+
def test_dummy_order_ambiguous():
|
979 |
+
aa, bb = symbols('a b', above_fermi=True)
|
980 |
+
i, j, k, l, m = symbols('i j k l m', below_fermi=True, cls=Dummy)
|
981 |
+
a, b, c, d, e = symbols('a b c d e', above_fermi=True, cls=Dummy)
|
982 |
+
p, q = symbols('p q', cls=Dummy)
|
983 |
+
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
|
984 |
+
p5, p6, p7, p8 = symbols('p5 p6 p7 p8', above_fermi=True, cls=Dummy)
|
985 |
+
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
|
986 |
+
h5, h6, h7, h8 = symbols('h5 h6 h7 h8', below_fermi=True, cls=Dummy)
|
987 |
+
|
988 |
+
A = Function('A')
|
989 |
+
B = Function('B')
|
990 |
+
|
991 |
+
from sympy.utilities.iterables import variations
|
992 |
+
|
993 |
+
# A*A*A*A*B -- ordering of p5 and p4 is used to figure out the rest
|
994 |
+
template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*B(p5, p4)
|
995 |
+
permutator = variations([a, b, c, d, e], 5)
|
996 |
+
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator)))
|
997 |
+
for permut in permutator:
|
998 |
+
subslist = zip([p1, p2, p3, p4, p5], permut)
|
999 |
+
expr = template.subs(subslist)
|
1000 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
1001 |
+
|
1002 |
+
# A*A*A*A*A -- an arbitrary index is assigned and the rest are figured out
|
1003 |
+
template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*A(p5, p4)
|
1004 |
+
permutator = variations([a, b, c, d, e], 5)
|
1005 |
+
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator)))
|
1006 |
+
for permut in permutator:
|
1007 |
+
subslist = zip([p1, p2, p3, p4, p5], permut)
|
1008 |
+
expr = template.subs(subslist)
|
1009 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
1010 |
+
|
1011 |
+
# A*A*A -- ordering of p5 and p4 is used to figure out the rest
|
1012 |
+
template = A(p1, p2, p4, p1)*A(p2, p3, p3, p5)*A(p5, p4)
|
1013 |
+
permutator = variations([a, b, c, d, e], 5)
|
1014 |
+
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator)))
|
1015 |
+
for permut in permutator:
|
1016 |
+
subslist = zip([p1, p2, p3, p4, p5], permut)
|
1017 |
+
expr = template.subs(subslist)
|
1018 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
1019 |
+
|
1020 |
+
|
1021 |
+
def atv(*args):
|
1022 |
+
return AntiSymmetricTensor('v', args[:2], args[2:] )
|
1023 |
+
|
1024 |
+
|
1025 |
+
def att(*args):
|
1026 |
+
if len(args) == 4:
|
1027 |
+
return AntiSymmetricTensor('t', args[:2], args[2:] )
|
1028 |
+
elif len(args) == 2:
|
1029 |
+
return AntiSymmetricTensor('t', (args[0],), (args[1],))
|
1030 |
+
|
1031 |
+
|
1032 |
+
def test_dummy_order_inner_outer_lines_VT1T1T1_AT():
|
1033 |
+
ii = symbols('i', below_fermi=True)
|
1034 |
+
aa = symbols('a', above_fermi=True)
|
1035 |
+
k, l = symbols('k l', below_fermi=True, cls=Dummy)
|
1036 |
+
c, d = symbols('c d', above_fermi=True, cls=Dummy)
|
1037 |
+
|
1038 |
+
# Coupled-Cluster T1 terms with V*T1*T1*T1
|
1039 |
+
# t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc}
|
1040 |
+
exprs = [
|
1041 |
+
# permut v and t <=> swapping internal lines, equivalent
|
1042 |
+
# irrespective of symmetries in v
|
1043 |
+
atv(k, l, c, d)*att(c, ii)*att(d, l)*att(aa, k),
|
1044 |
+
atv(l, k, c, d)*att(c, ii)*att(d, k)*att(aa, l),
|
1045 |
+
atv(k, l, d, c)*att(d, ii)*att(c, l)*att(aa, k),
|
1046 |
+
atv(l, k, d, c)*att(d, ii)*att(c, k)*att(aa, l),
|
1047 |
+
]
|
1048 |
+
for permut in exprs[1:]:
|
1049 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
1050 |
+
|
1051 |
+
|
1052 |
+
def test_dummy_order_inner_outer_lines_VT1T1T1T1_AT():
|
1053 |
+
ii, jj = symbols('i j', below_fermi=True)
|
1054 |
+
aa, bb = symbols('a b', above_fermi=True)
|
1055 |
+
k, l = symbols('k l', below_fermi=True, cls=Dummy)
|
1056 |
+
c, d = symbols('c d', above_fermi=True, cls=Dummy)
|
1057 |
+
|
1058 |
+
# Coupled-Cluster T2 terms with V*T1*T1*T1*T1
|
1059 |
+
# non-equivalent substitutions (change of sign)
|
1060 |
+
exprs = [
|
1061 |
+
# permut t <=> swapping external lines
|
1062 |
+
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l),
|
1063 |
+
atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(aa, k)*att(bb, l),
|
1064 |
+
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(bb, k)*att(aa, l),
|
1065 |
+
]
|
1066 |
+
for permut in exprs[1:]:
|
1067 |
+
assert substitute_dummies(exprs[0]) == -substitute_dummies(permut)
|
1068 |
+
|
1069 |
+
# equivalent substitutions
|
1070 |
+
exprs = [
|
1071 |
+
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l),
|
1072 |
+
# permut t <=> swapping external lines
|
1073 |
+
atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(bb, k)*att(aa, l),
|
1074 |
+
]
|
1075 |
+
for permut in exprs[1:]:
|
1076 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
1077 |
+
|
1078 |
+
|
1079 |
+
def test_equivalent_internal_lines_VT1T1_AT():
|
1080 |
+
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
|
1081 |
+
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
|
1082 |
+
|
1083 |
+
exprs = [ # permute v. Different dummy order. Not equivalent.
|
1084 |
+
atv(i, j, a, b)*att(a, i)*att(b, j),
|
1085 |
+
atv(j, i, a, b)*att(a, i)*att(b, j),
|
1086 |
+
atv(i, j, b, a)*att(a, i)*att(b, j),
|
1087 |
+
]
|
1088 |
+
for permut in exprs[1:]:
|
1089 |
+
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
|
1090 |
+
|
1091 |
+
exprs = [ # permute v. Different dummy order. Equivalent
|
1092 |
+
atv(i, j, a, b)*att(a, i)*att(b, j),
|
1093 |
+
atv(j, i, b, a)*att(a, i)*att(b, j),
|
1094 |
+
]
|
1095 |
+
for permut in exprs[1:]:
|
1096 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
1097 |
+
|
1098 |
+
exprs = [ # permute t. Same dummy order, not equivalent.
|
1099 |
+
atv(i, j, a, b)*att(a, i)*att(b, j),
|
1100 |
+
atv(i, j, a, b)*att(b, i)*att(a, j),
|
1101 |
+
]
|
1102 |
+
for permut in exprs[1:]:
|
1103 |
+
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
|
1104 |
+
|
1105 |
+
exprs = [ # permute v and t. Different dummy order, equivalent
|
1106 |
+
atv(i, j, a, b)*att(a, i)*att(b, j),
|
1107 |
+
atv(j, i, a, b)*att(a, j)*att(b, i),
|
1108 |
+
atv(i, j, b, a)*att(b, i)*att(a, j),
|
1109 |
+
atv(j, i, b, a)*att(b, j)*att(a, i),
|
1110 |
+
]
|
1111 |
+
for permut in exprs[1:]:
|
1112 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
1113 |
+
|
1114 |
+
|
1115 |
+
def test_equivalent_internal_lines_VT2conjT2_AT():
|
1116 |
+
# this diagram requires special handling in TCE
|
1117 |
+
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
|
1118 |
+
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
|
1119 |
+
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
|
1120 |
+
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
|
1121 |
+
|
1122 |
+
from sympy.utilities.iterables import variations
|
1123 |
+
|
1124 |
+
# atv(abcd)att(abij)att(ijcd)
|
1125 |
+
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(i, j, p3, p4)
|
1126 |
+
permutator = variations([a, b, c, d], 4)
|
1127 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
1128 |
+
for permut in permutator:
|
1129 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
1130 |
+
expr = template.subs(subslist)
|
1131 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
1132 |
+
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(j, i, p3, p4)
|
1133 |
+
permutator = variations([a, b, c, d], 4)
|
1134 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
1135 |
+
for permut in permutator:
|
1136 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
1137 |
+
expr = template.subs(subslist)
|
1138 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
1139 |
+
|
1140 |
+
# atv(abcd)att(abij)att(jicd)
|
1141 |
+
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(j, i, p3, p4)
|
1142 |
+
permutator = variations([a, b, c, d], 4)
|
1143 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
1144 |
+
for permut in permutator:
|
1145 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
1146 |
+
expr = template.subs(subslist)
|
1147 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
1148 |
+
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(i, j, p3, p4)
|
1149 |
+
permutator = variations([a, b, c, d], 4)
|
1150 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
1151 |
+
for permut in permutator:
|
1152 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
1153 |
+
expr = template.subs(subslist)
|
1154 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
1155 |
+
|
1156 |
+
|
1157 |
+
def test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT():
|
1158 |
+
# These diagrams invokes _determine_ambiguous() because the
|
1159 |
+
# dummies can not be ordered unambiguously by the key alone
|
1160 |
+
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
|
1161 |
+
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
|
1162 |
+
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
|
1163 |
+
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
|
1164 |
+
|
1165 |
+
from sympy.utilities.iterables import variations
|
1166 |
+
|
1167 |
+
# atv(abcd)att(abij)att(cdij)
|
1168 |
+
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(p3, p4, i, j)
|
1169 |
+
permutator = variations([a, b, c, d], 4)
|
1170 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
1171 |
+
for permut in permutator:
|
1172 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
1173 |
+
expr = template.subs(subslist)
|
1174 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
1175 |
+
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(p3, p4, i, j)
|
1176 |
+
permutator = variations([a, b, c, d], 4)
|
1177 |
+
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
|
1178 |
+
for permut in permutator:
|
1179 |
+
subslist = zip([p1, p2, p3, p4], permut)
|
1180 |
+
expr = template.subs(subslist)
|
1181 |
+
assert substitute_dummies(expr) == substitute_dummies(base)
|
1182 |
+
|
1183 |
+
|
1184 |
+
def test_equivalent_internal_lines_VT2_AT():
|
1185 |
+
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
|
1186 |
+
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
|
1187 |
+
|
1188 |
+
exprs = [
|
1189 |
+
# permute v. Same dummy order, not equivalent.
|
1190 |
+
atv(i, j, a, b)*att(a, b, i, j),
|
1191 |
+
atv(j, i, a, b)*att(a, b, i, j),
|
1192 |
+
atv(i, j, b, a)*att(a, b, i, j),
|
1193 |
+
]
|
1194 |
+
for permut in exprs[1:]:
|
1195 |
+
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
|
1196 |
+
|
1197 |
+
exprs = [
|
1198 |
+
# permute t.
|
1199 |
+
atv(i, j, a, b)*att(a, b, i, j),
|
1200 |
+
atv(i, j, a, b)*att(b, a, i, j),
|
1201 |
+
atv(i, j, a, b)*att(a, b, j, i),
|
1202 |
+
]
|
1203 |
+
for permut in exprs[1:]:
|
1204 |
+
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
|
1205 |
+
|
1206 |
+
exprs = [ # permute v and t. Relabelling of dummies should be equivalent.
|
1207 |
+
atv(i, j, a, b)*att(a, b, i, j),
|
1208 |
+
atv(j, i, a, b)*att(a, b, j, i),
|
1209 |
+
atv(i, j, b, a)*att(b, a, i, j),
|
1210 |
+
atv(j, i, b, a)*att(b, a, j, i),
|
1211 |
+
]
|
1212 |
+
for permut in exprs[1:]:
|
1213 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
1214 |
+
|
1215 |
+
|
1216 |
+
def test_internal_external_VT2T2_AT():
|
1217 |
+
ii, jj = symbols('i j', below_fermi=True)
|
1218 |
+
aa, bb = symbols('a b', above_fermi=True)
|
1219 |
+
k, l = symbols('k l', below_fermi=True, cls=Dummy)
|
1220 |
+
c, d = symbols('c d', above_fermi=True, cls=Dummy)
|
1221 |
+
|
1222 |
+
exprs = [
|
1223 |
+
atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l),
|
1224 |
+
atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k),
|
1225 |
+
atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l),
|
1226 |
+
atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k),
|
1227 |
+
]
|
1228 |
+
for permut in exprs[1:]:
|
1229 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
1230 |
+
exprs = [
|
1231 |
+
atv(k, l, c, d)*att(aa, c, ii, k)*att(d, bb, jj, l),
|
1232 |
+
atv(l, k, c, d)*att(aa, c, ii, l)*att(d, bb, jj, k),
|
1233 |
+
atv(k, l, d, c)*att(aa, d, ii, k)*att(c, bb, jj, l),
|
1234 |
+
atv(l, k, d, c)*att(aa, d, ii, l)*att(c, bb, jj, k),
|
1235 |
+
]
|
1236 |
+
for permut in exprs[1:]:
|
1237 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
1238 |
+
exprs = [
|
1239 |
+
atv(k, l, c, d)*att(c, aa, ii, k)*att(bb, d, jj, l),
|
1240 |
+
atv(l, k, c, d)*att(c, aa, ii, l)*att(bb, d, jj, k),
|
1241 |
+
atv(k, l, d, c)*att(d, aa, ii, k)*att(bb, c, jj, l),
|
1242 |
+
atv(l, k, d, c)*att(d, aa, ii, l)*att(bb, c, jj, k),
|
1243 |
+
]
|
1244 |
+
for permut in exprs[1:]:
|
1245 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
1246 |
+
|
1247 |
+
|
1248 |
+
def test_internal_external_pqrs_AT():
|
1249 |
+
ii, jj = symbols('i j')
|
1250 |
+
aa, bb = symbols('a b')
|
1251 |
+
k, l = symbols('k l', cls=Dummy)
|
1252 |
+
c, d = symbols('c d', cls=Dummy)
|
1253 |
+
|
1254 |
+
exprs = [
|
1255 |
+
atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l),
|
1256 |
+
atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k),
|
1257 |
+
atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l),
|
1258 |
+
atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k),
|
1259 |
+
]
|
1260 |
+
for permut in exprs[1:]:
|
1261 |
+
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
|
1262 |
+
|
1263 |
+
|
1264 |
+
def test_issue_19661():
|
1265 |
+
a = Symbol('0')
|
1266 |
+
assert latex(Commutator(Bd(a)**2, B(a))
|
1267 |
+
) == '- \\left[b_{0},{b^\\dagger_{0}}^{2}\\right]'
|
1268 |
+
|
1269 |
+
|
1270 |
+
def test_canonical_ordering_AntiSymmetricTensor():
|
1271 |
+
v = symbols("v")
|
1272 |
+
|
1273 |
+
c, d = symbols(('c','d'), above_fermi=True,
|
1274 |
+
cls=Dummy)
|
1275 |
+
k, l = symbols(('k','l'), below_fermi=True,
|
1276 |
+
cls=Dummy)
|
1277 |
+
|
1278 |
+
# formerly, the left gave either the left or the right
|
1279 |
+
assert AntiSymmetricTensor(v, (k, l), (d, c)
|
1280 |
+
) == -AntiSymmetricTensor(v, (l, k), (d, c))
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__init__.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# isort:skip_file
|
2 |
+
"""
|
3 |
+
Dimensional analysis and unit systems.
|
4 |
+
|
5 |
+
This module defines dimension/unit systems and physical quantities. It is
|
6 |
+
based on a group-theoretical construction where dimensions are represented as
|
7 |
+
vectors (coefficients being the exponents), and units are defined as a dimension
|
8 |
+
to which we added a scale.
|
9 |
+
|
10 |
+
Quantities are built from a factor and a unit, and are the basic objects that
|
11 |
+
one will use when doing computations.
|
12 |
+
|
13 |
+
All objects except systems and prefixes can be used in SymPy expressions.
|
14 |
+
Note that as part of a CAS, various objects do not combine automatically
|
15 |
+
under operations.
|
16 |
+
|
17 |
+
Details about the implementation can be found in the documentation, and we
|
18 |
+
will not repeat all the explanations we gave there concerning our approach.
|
19 |
+
Ideas about future developments can be found on the `Github wiki
|
20 |
+
<https://github.com/sympy/sympy/wiki/Unit-systems>`_, and you should consult
|
21 |
+
this page if you are willing to help.
|
22 |
+
|
23 |
+
Useful functions:
|
24 |
+
|
25 |
+
- ``find_unit``: easily lookup pre-defined units.
|
26 |
+
- ``convert_to(expr, newunit)``: converts an expression into the same
|
27 |
+
expression expressed in another unit.
|
28 |
+
|
29 |
+
"""
|
30 |
+
|
31 |
+
from .dimensions import Dimension, DimensionSystem
|
32 |
+
from .unitsystem import UnitSystem
|
33 |
+
from .util import convert_to
|
34 |
+
from .quantities import Quantity
|
35 |
+
|
36 |
+
from .definitions.dimension_definitions import (
|
37 |
+
amount_of_substance, acceleration, action, area,
|
38 |
+
capacitance, charge, conductance, current, energy,
|
39 |
+
force, frequency, impedance, inductance, length,
|
40 |
+
luminous_intensity, magnetic_density,
|
41 |
+
magnetic_flux, mass, momentum, power, pressure, temperature, time,
|
42 |
+
velocity, voltage, volume
|
43 |
+
)
|
44 |
+
|
45 |
+
Unit = Quantity
|
46 |
+
|
47 |
+
speed = velocity
|
48 |
+
luminosity = luminous_intensity
|
49 |
+
magnetic_flux_density = magnetic_density
|
50 |
+
amount = amount_of_substance
|
51 |
+
|
52 |
+
from .prefixes import (
|
53 |
+
# 10-power based:
|
54 |
+
yotta,
|
55 |
+
zetta,
|
56 |
+
exa,
|
57 |
+
peta,
|
58 |
+
tera,
|
59 |
+
giga,
|
60 |
+
mega,
|
61 |
+
kilo,
|
62 |
+
hecto,
|
63 |
+
deca,
|
64 |
+
deci,
|
65 |
+
centi,
|
66 |
+
milli,
|
67 |
+
micro,
|
68 |
+
nano,
|
69 |
+
pico,
|
70 |
+
femto,
|
71 |
+
atto,
|
72 |
+
zepto,
|
73 |
+
yocto,
|
74 |
+
# 2-power based:
|
75 |
+
kibi,
|
76 |
+
mebi,
|
77 |
+
gibi,
|
78 |
+
tebi,
|
79 |
+
pebi,
|
80 |
+
exbi,
|
81 |
+
)
|
82 |
+
|
83 |
+
from .definitions import (
|
84 |
+
percent, percents,
|
85 |
+
permille,
|
86 |
+
rad, radian, radians,
|
87 |
+
deg, degree, degrees,
|
88 |
+
sr, steradian, steradians,
|
89 |
+
mil, angular_mil, angular_mils,
|
90 |
+
m, meter, meters,
|
91 |
+
kg, kilogram, kilograms,
|
92 |
+
s, second, seconds,
|
93 |
+
A, ampere, amperes,
|
94 |
+
K, kelvin, kelvins,
|
95 |
+
mol, mole, moles,
|
96 |
+
cd, candela, candelas,
|
97 |
+
g, gram, grams,
|
98 |
+
mg, milligram, milligrams,
|
99 |
+
ug, microgram, micrograms,
|
100 |
+
t, tonne, metric_ton,
|
101 |
+
newton, newtons, N,
|
102 |
+
joule, joules, J,
|
103 |
+
watt, watts, W,
|
104 |
+
pascal, pascals, Pa, pa,
|
105 |
+
hertz, hz, Hz,
|
106 |
+
coulomb, coulombs, C,
|
107 |
+
volt, volts, v, V,
|
108 |
+
ohm, ohms,
|
109 |
+
siemens, S, mho, mhos,
|
110 |
+
farad, farads, F,
|
111 |
+
henry, henrys, H,
|
112 |
+
tesla, teslas, T,
|
113 |
+
weber, webers, Wb, wb,
|
114 |
+
optical_power, dioptre, D,
|
115 |
+
lux, lx,
|
116 |
+
katal, kat,
|
117 |
+
gray, Gy,
|
118 |
+
becquerel, Bq,
|
119 |
+
km, kilometer, kilometers,
|
120 |
+
dm, decimeter, decimeters,
|
121 |
+
cm, centimeter, centimeters,
|
122 |
+
mm, millimeter, millimeters,
|
123 |
+
um, micrometer, micrometers, micron, microns,
|
124 |
+
nm, nanometer, nanometers,
|
125 |
+
pm, picometer, picometers,
|
126 |
+
ft, foot, feet,
|
127 |
+
inch, inches,
|
128 |
+
yd, yard, yards,
|
129 |
+
mi, mile, miles,
|
130 |
+
nmi, nautical_mile, nautical_miles,
|
131 |
+
angstrom, angstroms,
|
132 |
+
ha, hectare,
|
133 |
+
l, L, liter, liters,
|
134 |
+
dl, dL, deciliter, deciliters,
|
135 |
+
cl, cL, centiliter, centiliters,
|
136 |
+
ml, mL, milliliter, milliliters,
|
137 |
+
ms, millisecond, milliseconds,
|
138 |
+
us, microsecond, microseconds,
|
139 |
+
ns, nanosecond, nanoseconds,
|
140 |
+
ps, picosecond, picoseconds,
|
141 |
+
minute, minutes,
|
142 |
+
h, hour, hours,
|
143 |
+
day, days,
|
144 |
+
anomalistic_year, anomalistic_years,
|
145 |
+
sidereal_year, sidereal_years,
|
146 |
+
tropical_year, tropical_years,
|
147 |
+
common_year, common_years,
|
148 |
+
julian_year, julian_years,
|
149 |
+
draconic_year, draconic_years,
|
150 |
+
gaussian_year, gaussian_years,
|
151 |
+
full_moon_cycle, full_moon_cycles,
|
152 |
+
year, years,
|
153 |
+
G, gravitational_constant,
|
154 |
+
c, speed_of_light,
|
155 |
+
elementary_charge,
|
156 |
+
hbar,
|
157 |
+
planck,
|
158 |
+
eV, electronvolt, electronvolts,
|
159 |
+
avogadro_number,
|
160 |
+
avogadro, avogadro_constant,
|
161 |
+
boltzmann, boltzmann_constant,
|
162 |
+
stefan, stefan_boltzmann_constant,
|
163 |
+
R, molar_gas_constant,
|
164 |
+
faraday_constant,
|
165 |
+
josephson_constant,
|
166 |
+
von_klitzing_constant,
|
167 |
+
Da, dalton, amu, amus, atomic_mass_unit, atomic_mass_constant,
|
168 |
+
me, electron_rest_mass,
|
169 |
+
gee, gees, acceleration_due_to_gravity,
|
170 |
+
u0, magnetic_constant, vacuum_permeability,
|
171 |
+
e0, electric_constant, vacuum_permittivity,
|
172 |
+
Z0, vacuum_impedance,
|
173 |
+
coulomb_constant, electric_force_constant,
|
174 |
+
atmosphere, atmospheres, atm,
|
175 |
+
kPa,
|
176 |
+
bar, bars,
|
177 |
+
pound, pounds,
|
178 |
+
psi,
|
179 |
+
dHg0,
|
180 |
+
mmHg, torr,
|
181 |
+
mmu, mmus, milli_mass_unit,
|
182 |
+
quart, quarts,
|
183 |
+
ly, lightyear, lightyears,
|
184 |
+
au, astronomical_unit, astronomical_units,
|
185 |
+
planck_mass,
|
186 |
+
planck_time,
|
187 |
+
planck_temperature,
|
188 |
+
planck_length,
|
189 |
+
planck_charge,
|
190 |
+
planck_area,
|
191 |
+
planck_volume,
|
192 |
+
planck_momentum,
|
193 |
+
planck_energy,
|
194 |
+
planck_force,
|
195 |
+
planck_power,
|
196 |
+
planck_density,
|
197 |
+
planck_energy_density,
|
198 |
+
planck_intensity,
|
199 |
+
planck_angular_frequency,
|
200 |
+
planck_pressure,
|
201 |
+
planck_current,
|
202 |
+
planck_voltage,
|
203 |
+
planck_impedance,
|
204 |
+
planck_acceleration,
|
205 |
+
bit, bits,
|
206 |
+
byte,
|
207 |
+
kibibyte, kibibytes,
|
208 |
+
mebibyte, mebibytes,
|
209 |
+
gibibyte, gibibytes,
|
210 |
+
tebibyte, tebibytes,
|
211 |
+
pebibyte, pebibytes,
|
212 |
+
exbibyte, exbibytes,
|
213 |
+
)
|
214 |
+
|
215 |
+
from .systems import (
|
216 |
+
mks, mksa, si
|
217 |
+
)
|
218 |
+
|
219 |
+
|
220 |
+
def find_unit(quantity, unit_system="SI"):
|
221 |
+
"""
|
222 |
+
Return a list of matching units or dimension names.
|
223 |
+
|
224 |
+
- If ``quantity`` is a string -- units/dimensions containing the string
|
225 |
+
`quantity`.
|
226 |
+
- If ``quantity`` is a unit or dimension -- units having matching base
|
227 |
+
units or dimensions.
|
228 |
+
|
229 |
+
Examples
|
230 |
+
========
|
231 |
+
|
232 |
+
>>> from sympy.physics import units as u
|
233 |
+
>>> u.find_unit('charge')
|
234 |
+
['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge']
|
235 |
+
>>> u.find_unit(u.charge)
|
236 |
+
['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge']
|
237 |
+
>>> u.find_unit("ampere")
|
238 |
+
['ampere', 'amperes']
|
239 |
+
>>> u.find_unit('angstrom')
|
240 |
+
['angstrom', 'angstroms']
|
241 |
+
>>> u.find_unit('volt')
|
242 |
+
['volt', 'volts', 'electronvolt', 'electronvolts', 'planck_voltage']
|
243 |
+
>>> u.find_unit(u.inch**3)[:9]
|
244 |
+
['L', 'l', 'cL', 'cl', 'dL', 'dl', 'mL', 'ml', 'liter']
|
245 |
+
"""
|
246 |
+
unit_system = UnitSystem.get_unit_system(unit_system)
|
247 |
+
|
248 |
+
import sympy.physics.units as u
|
249 |
+
rv = []
|
250 |
+
if isinstance(quantity, str):
|
251 |
+
rv = [i for i in dir(u) if quantity in i and isinstance(getattr(u, i), Quantity)]
|
252 |
+
dim = getattr(u, quantity)
|
253 |
+
if isinstance(dim, Dimension):
|
254 |
+
rv.extend(find_unit(dim))
|
255 |
+
else:
|
256 |
+
for i in sorted(dir(u)):
|
257 |
+
other = getattr(u, i)
|
258 |
+
if not isinstance(other, Quantity):
|
259 |
+
continue
|
260 |
+
if isinstance(quantity, Quantity):
|
261 |
+
if quantity.dimension == other.dimension:
|
262 |
+
rv.append(str(i))
|
263 |
+
elif isinstance(quantity, Dimension):
|
264 |
+
if other.dimension == quantity:
|
265 |
+
rv.append(str(i))
|
266 |
+
elif other.dimension == Dimension(unit_system.get_dimensional_expr(quantity)):
|
267 |
+
rv.append(str(i))
|
268 |
+
return sorted(set(rv), key=lambda x: (len(x), x))
|
269 |
+
|
270 |
+
# NOTE: the old units module had additional variables:
|
271 |
+
# 'density', 'illuminance', 'resistance'.
|
272 |
+
# They were not dimensions, but units (old Unit class).
|
273 |
+
|
274 |
+
__all__ = [
|
275 |
+
'Dimension', 'DimensionSystem',
|
276 |
+
'UnitSystem',
|
277 |
+
'convert_to',
|
278 |
+
'Quantity',
|
279 |
+
|
280 |
+
'amount_of_substance', 'acceleration', 'action', 'area',
|
281 |
+
'capacitance', 'charge', 'conductance', 'current', 'energy',
|
282 |
+
'force', 'frequency', 'impedance', 'inductance', 'length',
|
283 |
+
'luminous_intensity', 'magnetic_density',
|
284 |
+
'magnetic_flux', 'mass', 'momentum', 'power', 'pressure', 'temperature', 'time',
|
285 |
+
'velocity', 'voltage', 'volume',
|
286 |
+
|
287 |
+
'Unit',
|
288 |
+
|
289 |
+
'speed',
|
290 |
+
'luminosity',
|
291 |
+
'magnetic_flux_density',
|
292 |
+
'amount',
|
293 |
+
|
294 |
+
'yotta',
|
295 |
+
'zetta',
|
296 |
+
'exa',
|
297 |
+
'peta',
|
298 |
+
'tera',
|
299 |
+
'giga',
|
300 |
+
'mega',
|
301 |
+
'kilo',
|
302 |
+
'hecto',
|
303 |
+
'deca',
|
304 |
+
'deci',
|
305 |
+
'centi',
|
306 |
+
'milli',
|
307 |
+
'micro',
|
308 |
+
'nano',
|
309 |
+
'pico',
|
310 |
+
'femto',
|
311 |
+
'atto',
|
312 |
+
'zepto',
|
313 |
+
'yocto',
|
314 |
+
|
315 |
+
'kibi',
|
316 |
+
'mebi',
|
317 |
+
'gibi',
|
318 |
+
'tebi',
|
319 |
+
'pebi',
|
320 |
+
'exbi',
|
321 |
+
|
322 |
+
'percent', 'percents',
|
323 |
+
'permille',
|
324 |
+
'rad', 'radian', 'radians',
|
325 |
+
'deg', 'degree', 'degrees',
|
326 |
+
'sr', 'steradian', 'steradians',
|
327 |
+
'mil', 'angular_mil', 'angular_mils',
|
328 |
+
'm', 'meter', 'meters',
|
329 |
+
'kg', 'kilogram', 'kilograms',
|
330 |
+
's', 'second', 'seconds',
|
331 |
+
'A', 'ampere', 'amperes',
|
332 |
+
'K', 'kelvin', 'kelvins',
|
333 |
+
'mol', 'mole', 'moles',
|
334 |
+
'cd', 'candela', 'candelas',
|
335 |
+
'g', 'gram', 'grams',
|
336 |
+
'mg', 'milligram', 'milligrams',
|
337 |
+
'ug', 'microgram', 'micrograms',
|
338 |
+
't', 'tonne', 'metric_ton',
|
339 |
+
'newton', 'newtons', 'N',
|
340 |
+
'joule', 'joules', 'J',
|
341 |
+
'watt', 'watts', 'W',
|
342 |
+
'pascal', 'pascals', 'Pa', 'pa',
|
343 |
+
'hertz', 'hz', 'Hz',
|
344 |
+
'coulomb', 'coulombs', 'C',
|
345 |
+
'volt', 'volts', 'v', 'V',
|
346 |
+
'ohm', 'ohms',
|
347 |
+
'siemens', 'S', 'mho', 'mhos',
|
348 |
+
'farad', 'farads', 'F',
|
349 |
+
'henry', 'henrys', 'H',
|
350 |
+
'tesla', 'teslas', 'T',
|
351 |
+
'weber', 'webers', 'Wb', 'wb',
|
352 |
+
'optical_power', 'dioptre', 'D',
|
353 |
+
'lux', 'lx',
|
354 |
+
'katal', 'kat',
|
355 |
+
'gray', 'Gy',
|
356 |
+
'becquerel', 'Bq',
|
357 |
+
'km', 'kilometer', 'kilometers',
|
358 |
+
'dm', 'decimeter', 'decimeters',
|
359 |
+
'cm', 'centimeter', 'centimeters',
|
360 |
+
'mm', 'millimeter', 'millimeters',
|
361 |
+
'um', 'micrometer', 'micrometers', 'micron', 'microns',
|
362 |
+
'nm', 'nanometer', 'nanometers',
|
363 |
+
'pm', 'picometer', 'picometers',
|
364 |
+
'ft', 'foot', 'feet',
|
365 |
+
'inch', 'inches',
|
366 |
+
'yd', 'yard', 'yards',
|
367 |
+
'mi', 'mile', 'miles',
|
368 |
+
'nmi', 'nautical_mile', 'nautical_miles',
|
369 |
+
'angstrom', 'angstroms',
|
370 |
+
'ha', 'hectare',
|
371 |
+
'l', 'L', 'liter', 'liters',
|
372 |
+
'dl', 'dL', 'deciliter', 'deciliters',
|
373 |
+
'cl', 'cL', 'centiliter', 'centiliters',
|
374 |
+
'ml', 'mL', 'milliliter', 'milliliters',
|
375 |
+
'ms', 'millisecond', 'milliseconds',
|
376 |
+
'us', 'microsecond', 'microseconds',
|
377 |
+
'ns', 'nanosecond', 'nanoseconds',
|
378 |
+
'ps', 'picosecond', 'picoseconds',
|
379 |
+
'minute', 'minutes',
|
380 |
+
'h', 'hour', 'hours',
|
381 |
+
'day', 'days',
|
382 |
+
'anomalistic_year', 'anomalistic_years',
|
383 |
+
'sidereal_year', 'sidereal_years',
|
384 |
+
'tropical_year', 'tropical_years',
|
385 |
+
'common_year', 'common_years',
|
386 |
+
'julian_year', 'julian_years',
|
387 |
+
'draconic_year', 'draconic_years',
|
388 |
+
'gaussian_year', 'gaussian_years',
|
389 |
+
'full_moon_cycle', 'full_moon_cycles',
|
390 |
+
'year', 'years',
|
391 |
+
'G', 'gravitational_constant',
|
392 |
+
'c', 'speed_of_light',
|
393 |
+
'elementary_charge',
|
394 |
+
'hbar',
|
395 |
+
'planck',
|
396 |
+
'eV', 'electronvolt', 'electronvolts',
|
397 |
+
'avogadro_number',
|
398 |
+
'avogadro', 'avogadro_constant',
|
399 |
+
'boltzmann', 'boltzmann_constant',
|
400 |
+
'stefan', 'stefan_boltzmann_constant',
|
401 |
+
'R', 'molar_gas_constant',
|
402 |
+
'faraday_constant',
|
403 |
+
'josephson_constant',
|
404 |
+
'von_klitzing_constant',
|
405 |
+
'Da', 'dalton', 'amu', 'amus', 'atomic_mass_unit', 'atomic_mass_constant',
|
406 |
+
'me', 'electron_rest_mass',
|
407 |
+
'gee', 'gees', 'acceleration_due_to_gravity',
|
408 |
+
'u0', 'magnetic_constant', 'vacuum_permeability',
|
409 |
+
'e0', 'electric_constant', 'vacuum_permittivity',
|
410 |
+
'Z0', 'vacuum_impedance',
|
411 |
+
'coulomb_constant', 'electric_force_constant',
|
412 |
+
'atmosphere', 'atmospheres', 'atm',
|
413 |
+
'kPa',
|
414 |
+
'bar', 'bars',
|
415 |
+
'pound', 'pounds',
|
416 |
+
'psi',
|
417 |
+
'dHg0',
|
418 |
+
'mmHg', 'torr',
|
419 |
+
'mmu', 'mmus', 'milli_mass_unit',
|
420 |
+
'quart', 'quarts',
|
421 |
+
'ly', 'lightyear', 'lightyears',
|
422 |
+
'au', 'astronomical_unit', 'astronomical_units',
|
423 |
+
'planck_mass',
|
424 |
+
'planck_time',
|
425 |
+
'planck_temperature',
|
426 |
+
'planck_length',
|
427 |
+
'planck_charge',
|
428 |
+
'planck_area',
|
429 |
+
'planck_volume',
|
430 |
+
'planck_momentum',
|
431 |
+
'planck_energy',
|
432 |
+
'planck_force',
|
433 |
+
'planck_power',
|
434 |
+
'planck_density',
|
435 |
+
'planck_energy_density',
|
436 |
+
'planck_intensity',
|
437 |
+
'planck_angular_frequency',
|
438 |
+
'planck_pressure',
|
439 |
+
'planck_current',
|
440 |
+
'planck_voltage',
|
441 |
+
'planck_impedance',
|
442 |
+
'planck_acceleration',
|
443 |
+
'bit', 'bits',
|
444 |
+
'byte',
|
445 |
+
'kibibyte', 'kibibytes',
|
446 |
+
'mebibyte', 'mebibytes',
|
447 |
+
'gibibyte', 'gibibytes',
|
448 |
+
'tebibyte', 'tebibytes',
|
449 |
+
'pebibyte', 'pebibytes',
|
450 |
+
'exbibyte', 'exbibytes',
|
451 |
+
|
452 |
+
'mks', 'mksa', 'si',
|
453 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/dimensions.cpython-310.pyc
ADDED
Binary file (21.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/prefixes.cpython-310.pyc
ADDED
Binary file (6.06 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/unitsystem.cpython-310.pyc
ADDED
Binary file (7.72 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/util.cpython-310.pyc
ADDED
Binary file (9.63 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/__init__.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .unit_definitions import (
|
2 |
+
percent, percents,
|
3 |
+
permille,
|
4 |
+
rad, radian, radians,
|
5 |
+
deg, degree, degrees,
|
6 |
+
sr, steradian, steradians,
|
7 |
+
mil, angular_mil, angular_mils,
|
8 |
+
m, meter, meters,
|
9 |
+
kg, kilogram, kilograms,
|
10 |
+
s, second, seconds,
|
11 |
+
A, ampere, amperes,
|
12 |
+
K, kelvin, kelvins,
|
13 |
+
mol, mole, moles,
|
14 |
+
cd, candela, candelas,
|
15 |
+
g, gram, grams,
|
16 |
+
mg, milligram, milligrams,
|
17 |
+
ug, microgram, micrograms,
|
18 |
+
t, tonne, metric_ton,
|
19 |
+
newton, newtons, N,
|
20 |
+
joule, joules, J,
|
21 |
+
watt, watts, W,
|
22 |
+
pascal, pascals, Pa, pa,
|
23 |
+
hertz, hz, Hz,
|
24 |
+
coulomb, coulombs, C,
|
25 |
+
volt, volts, v, V,
|
26 |
+
ohm, ohms,
|
27 |
+
siemens, S, mho, mhos,
|
28 |
+
farad, farads, F,
|
29 |
+
henry, henrys, H,
|
30 |
+
tesla, teslas, T,
|
31 |
+
weber, webers, Wb, wb,
|
32 |
+
optical_power, dioptre, D,
|
33 |
+
lux, lx,
|
34 |
+
katal, kat,
|
35 |
+
gray, Gy,
|
36 |
+
becquerel, Bq,
|
37 |
+
km, kilometer, kilometers,
|
38 |
+
dm, decimeter, decimeters,
|
39 |
+
cm, centimeter, centimeters,
|
40 |
+
mm, millimeter, millimeters,
|
41 |
+
um, micrometer, micrometers, micron, microns,
|
42 |
+
nm, nanometer, nanometers,
|
43 |
+
pm, picometer, picometers,
|
44 |
+
ft, foot, feet,
|
45 |
+
inch, inches,
|
46 |
+
yd, yard, yards,
|
47 |
+
mi, mile, miles,
|
48 |
+
nmi, nautical_mile, nautical_miles,
|
49 |
+
ha, hectare,
|
50 |
+
l, L, liter, liters,
|
51 |
+
dl, dL, deciliter, deciliters,
|
52 |
+
cl, cL, centiliter, centiliters,
|
53 |
+
ml, mL, milliliter, milliliters,
|
54 |
+
ms, millisecond, milliseconds,
|
55 |
+
us, microsecond, microseconds,
|
56 |
+
ns, nanosecond, nanoseconds,
|
57 |
+
ps, picosecond, picoseconds,
|
58 |
+
minute, minutes,
|
59 |
+
h, hour, hours,
|
60 |
+
day, days,
|
61 |
+
anomalistic_year, anomalistic_years,
|
62 |
+
sidereal_year, sidereal_years,
|
63 |
+
tropical_year, tropical_years,
|
64 |
+
common_year, common_years,
|
65 |
+
julian_year, julian_years,
|
66 |
+
draconic_year, draconic_years,
|
67 |
+
gaussian_year, gaussian_years,
|
68 |
+
full_moon_cycle, full_moon_cycles,
|
69 |
+
year, years,
|
70 |
+
G, gravitational_constant,
|
71 |
+
c, speed_of_light,
|
72 |
+
elementary_charge,
|
73 |
+
hbar,
|
74 |
+
planck,
|
75 |
+
eV, electronvolt, electronvolts,
|
76 |
+
avogadro_number,
|
77 |
+
avogadro, avogadro_constant,
|
78 |
+
boltzmann, boltzmann_constant,
|
79 |
+
stefan, stefan_boltzmann_constant,
|
80 |
+
R, molar_gas_constant,
|
81 |
+
faraday_constant,
|
82 |
+
josephson_constant,
|
83 |
+
von_klitzing_constant,
|
84 |
+
Da, dalton, amu, amus, atomic_mass_unit, atomic_mass_constant,
|
85 |
+
me, electron_rest_mass,
|
86 |
+
gee, gees, acceleration_due_to_gravity,
|
87 |
+
u0, magnetic_constant, vacuum_permeability,
|
88 |
+
e0, electric_constant, vacuum_permittivity,
|
89 |
+
Z0, vacuum_impedance,
|
90 |
+
coulomb_constant, coulombs_constant, electric_force_constant,
|
91 |
+
atmosphere, atmospheres, atm,
|
92 |
+
kPa, kilopascal,
|
93 |
+
bar, bars,
|
94 |
+
pound, pounds,
|
95 |
+
psi,
|
96 |
+
dHg0,
|
97 |
+
mmHg, torr,
|
98 |
+
mmu, mmus, milli_mass_unit,
|
99 |
+
quart, quarts,
|
100 |
+
angstrom, angstroms,
|
101 |
+
ly, lightyear, lightyears,
|
102 |
+
au, astronomical_unit, astronomical_units,
|
103 |
+
planck_mass,
|
104 |
+
planck_time,
|
105 |
+
planck_temperature,
|
106 |
+
planck_length,
|
107 |
+
planck_charge,
|
108 |
+
planck_area,
|
109 |
+
planck_volume,
|
110 |
+
planck_momentum,
|
111 |
+
planck_energy,
|
112 |
+
planck_force,
|
113 |
+
planck_power,
|
114 |
+
planck_density,
|
115 |
+
planck_energy_density,
|
116 |
+
planck_intensity,
|
117 |
+
planck_angular_frequency,
|
118 |
+
planck_pressure,
|
119 |
+
planck_current,
|
120 |
+
planck_voltage,
|
121 |
+
planck_impedance,
|
122 |
+
planck_acceleration,
|
123 |
+
bit, bits,
|
124 |
+
byte,
|
125 |
+
kibibyte, kibibytes,
|
126 |
+
mebibyte, mebibytes,
|
127 |
+
gibibyte, gibibytes,
|
128 |
+
tebibyte, tebibytes,
|
129 |
+
pebibyte, pebibytes,
|
130 |
+
exbibyte, exbibytes,
|
131 |
+
curie, rutherford
|
132 |
+
)
|
133 |
+
|
134 |
+
__all__ = [
|
135 |
+
'percent', 'percents',
|
136 |
+
'permille',
|
137 |
+
'rad', 'radian', 'radians',
|
138 |
+
'deg', 'degree', 'degrees',
|
139 |
+
'sr', 'steradian', 'steradians',
|
140 |
+
'mil', 'angular_mil', 'angular_mils',
|
141 |
+
'm', 'meter', 'meters',
|
142 |
+
'kg', 'kilogram', 'kilograms',
|
143 |
+
's', 'second', 'seconds',
|
144 |
+
'A', 'ampere', 'amperes',
|
145 |
+
'K', 'kelvin', 'kelvins',
|
146 |
+
'mol', 'mole', 'moles',
|
147 |
+
'cd', 'candela', 'candelas',
|
148 |
+
'g', 'gram', 'grams',
|
149 |
+
'mg', 'milligram', 'milligrams',
|
150 |
+
'ug', 'microgram', 'micrograms',
|
151 |
+
't', 'tonne', 'metric_ton',
|
152 |
+
'newton', 'newtons', 'N',
|
153 |
+
'joule', 'joules', 'J',
|
154 |
+
'watt', 'watts', 'W',
|
155 |
+
'pascal', 'pascals', 'Pa', 'pa',
|
156 |
+
'hertz', 'hz', 'Hz',
|
157 |
+
'coulomb', 'coulombs', 'C',
|
158 |
+
'volt', 'volts', 'v', 'V',
|
159 |
+
'ohm', 'ohms',
|
160 |
+
'siemens', 'S', 'mho', 'mhos',
|
161 |
+
'farad', 'farads', 'F',
|
162 |
+
'henry', 'henrys', 'H',
|
163 |
+
'tesla', 'teslas', 'T',
|
164 |
+
'weber', 'webers', 'Wb', 'wb',
|
165 |
+
'optical_power', 'dioptre', 'D',
|
166 |
+
'lux', 'lx',
|
167 |
+
'katal', 'kat',
|
168 |
+
'gray', 'Gy',
|
169 |
+
'becquerel', 'Bq',
|
170 |
+
'km', 'kilometer', 'kilometers',
|
171 |
+
'dm', 'decimeter', 'decimeters',
|
172 |
+
'cm', 'centimeter', 'centimeters',
|
173 |
+
'mm', 'millimeter', 'millimeters',
|
174 |
+
'um', 'micrometer', 'micrometers', 'micron', 'microns',
|
175 |
+
'nm', 'nanometer', 'nanometers',
|
176 |
+
'pm', 'picometer', 'picometers',
|
177 |
+
'ft', 'foot', 'feet',
|
178 |
+
'inch', 'inches',
|
179 |
+
'yd', 'yard', 'yards',
|
180 |
+
'mi', 'mile', 'miles',
|
181 |
+
'nmi', 'nautical_mile', 'nautical_miles',
|
182 |
+
'ha', 'hectare',
|
183 |
+
'l', 'L', 'liter', 'liters',
|
184 |
+
'dl', 'dL', 'deciliter', 'deciliters',
|
185 |
+
'cl', 'cL', 'centiliter', 'centiliters',
|
186 |
+
'ml', 'mL', 'milliliter', 'milliliters',
|
187 |
+
'ms', 'millisecond', 'milliseconds',
|
188 |
+
'us', 'microsecond', 'microseconds',
|
189 |
+
'ns', 'nanosecond', 'nanoseconds',
|
190 |
+
'ps', 'picosecond', 'picoseconds',
|
191 |
+
'minute', 'minutes',
|
192 |
+
'h', 'hour', 'hours',
|
193 |
+
'day', 'days',
|
194 |
+
'anomalistic_year', 'anomalistic_years',
|
195 |
+
'sidereal_year', 'sidereal_years',
|
196 |
+
'tropical_year', 'tropical_years',
|
197 |
+
'common_year', 'common_years',
|
198 |
+
'julian_year', 'julian_years',
|
199 |
+
'draconic_year', 'draconic_years',
|
200 |
+
'gaussian_year', 'gaussian_years',
|
201 |
+
'full_moon_cycle', 'full_moon_cycles',
|
202 |
+
'year', 'years',
|
203 |
+
'G', 'gravitational_constant',
|
204 |
+
'c', 'speed_of_light',
|
205 |
+
'elementary_charge',
|
206 |
+
'hbar',
|
207 |
+
'planck',
|
208 |
+
'eV', 'electronvolt', 'electronvolts',
|
209 |
+
'avogadro_number',
|
210 |
+
'avogadro', 'avogadro_constant',
|
211 |
+
'boltzmann', 'boltzmann_constant',
|
212 |
+
'stefan', 'stefan_boltzmann_constant',
|
213 |
+
'R', 'molar_gas_constant',
|
214 |
+
'faraday_constant',
|
215 |
+
'josephson_constant',
|
216 |
+
'von_klitzing_constant',
|
217 |
+
'Da', 'dalton', 'amu', 'amus', 'atomic_mass_unit', 'atomic_mass_constant',
|
218 |
+
'me', 'electron_rest_mass',
|
219 |
+
'gee', 'gees', 'acceleration_due_to_gravity',
|
220 |
+
'u0', 'magnetic_constant', 'vacuum_permeability',
|
221 |
+
'e0', 'electric_constant', 'vacuum_permittivity',
|
222 |
+
'Z0', 'vacuum_impedance',
|
223 |
+
'coulomb_constant', 'coulombs_constant', 'electric_force_constant',
|
224 |
+
'atmosphere', 'atmospheres', 'atm',
|
225 |
+
'kPa', 'kilopascal',
|
226 |
+
'bar', 'bars',
|
227 |
+
'pound', 'pounds',
|
228 |
+
'psi',
|
229 |
+
'dHg0',
|
230 |
+
'mmHg', 'torr',
|
231 |
+
'mmu', 'mmus', 'milli_mass_unit',
|
232 |
+
'quart', 'quarts',
|
233 |
+
'angstrom', 'angstroms',
|
234 |
+
'ly', 'lightyear', 'lightyears',
|
235 |
+
'au', 'astronomical_unit', 'astronomical_units',
|
236 |
+
'planck_mass',
|
237 |
+
'planck_time',
|
238 |
+
'planck_temperature',
|
239 |
+
'planck_length',
|
240 |
+
'planck_charge',
|
241 |
+
'planck_area',
|
242 |
+
'planck_volume',
|
243 |
+
'planck_momentum',
|
244 |
+
'planck_energy',
|
245 |
+
'planck_force',
|
246 |
+
'planck_power',
|
247 |
+
'planck_density',
|
248 |
+
'planck_energy_density',
|
249 |
+
'planck_intensity',
|
250 |
+
'planck_angular_frequency',
|
251 |
+
'planck_pressure',
|
252 |
+
'planck_current',
|
253 |
+
'planck_voltage',
|
254 |
+
'planck_impedance',
|
255 |
+
'planck_acceleration',
|
256 |
+
'bit', 'bits',
|
257 |
+
'byte',
|
258 |
+
'kibibyte', 'kibibytes',
|
259 |
+
'mebibyte', 'mebibytes',
|
260 |
+
'gibibyte', 'gibibytes',
|
261 |
+
'tebibyte', 'tebibytes',
|
262 |
+
'pebibyte', 'pebibytes',
|
263 |
+
'exbibyte', 'exbibytes',
|
264 |
+
'curie', 'rutherford',
|
265 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (6.04 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/__pycache__/dimension_definitions.cpython-310.pyc
ADDED
Binary file (1.12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/__pycache__/unit_definitions.cpython-310.pyc
ADDED
Binary file (9.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/dimension_definitions.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.physics.units import Dimension
|
2 |
+
|
3 |
+
|
4 |
+
angle = Dimension(name="angle") # type: Dimension
|
5 |
+
|
6 |
+
# base dimensions (MKS)
|
7 |
+
length = Dimension(name="length", symbol="L")
|
8 |
+
mass = Dimension(name="mass", symbol="M")
|
9 |
+
time = Dimension(name="time", symbol="T")
|
10 |
+
|
11 |
+
# base dimensions (MKSA not in MKS)
|
12 |
+
current = Dimension(name='current', symbol='I') # type: Dimension
|
13 |
+
|
14 |
+
# other base dimensions:
|
15 |
+
temperature = Dimension("temperature", "T") # type: Dimension
|
16 |
+
amount_of_substance = Dimension("amount_of_substance") # type: Dimension
|
17 |
+
luminous_intensity = Dimension("luminous_intensity") # type: Dimension
|
18 |
+
|
19 |
+
# derived dimensions (MKS)
|
20 |
+
velocity = Dimension(name="velocity")
|
21 |
+
acceleration = Dimension(name="acceleration")
|
22 |
+
momentum = Dimension(name="momentum")
|
23 |
+
force = Dimension(name="force", symbol="F")
|
24 |
+
energy = Dimension(name="energy", symbol="E")
|
25 |
+
power = Dimension(name="power")
|
26 |
+
pressure = Dimension(name="pressure")
|
27 |
+
frequency = Dimension(name="frequency", symbol="f")
|
28 |
+
action = Dimension(name="action", symbol="A")
|
29 |
+
area = Dimension("area")
|
30 |
+
volume = Dimension("volume")
|
31 |
+
|
32 |
+
# derived dimensions (MKSA not in MKS)
|
33 |
+
voltage = Dimension(name='voltage', symbol='U') # type: Dimension
|
34 |
+
impedance = Dimension(name='impedance', symbol='Z') # type: Dimension
|
35 |
+
conductance = Dimension(name='conductance', symbol='G') # type: Dimension
|
36 |
+
capacitance = Dimension(name='capacitance') # type: Dimension
|
37 |
+
inductance = Dimension(name='inductance') # type: Dimension
|
38 |
+
charge = Dimension(name='charge', symbol='Q') # type: Dimension
|
39 |
+
magnetic_density = Dimension(name='magnetic_density', symbol='B') # type: Dimension
|
40 |
+
magnetic_flux = Dimension(name='magnetic_flux') # type: Dimension
|
41 |
+
|
42 |
+
# Dimensions in information theory:
|
43 |
+
information = Dimension(name='information') # type: Dimension
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/definitions/unit_definitions.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.physics.units.definitions.dimension_definitions import current, temperature, amount_of_substance, \
|
2 |
+
luminous_intensity, angle, charge, voltage, impedance, conductance, capacitance, inductance, magnetic_density, \
|
3 |
+
magnetic_flux, information
|
4 |
+
|
5 |
+
from sympy.core.numbers import (Rational, pi)
|
6 |
+
from sympy.core.singleton import S as S_singleton
|
7 |
+
from sympy.physics.units.prefixes import kilo, mega, milli, micro, deci, centi, nano, pico, kibi, mebi, gibi, tebi, pebi, exbi
|
8 |
+
from sympy.physics.units.quantities import PhysicalConstant, Quantity
|
9 |
+
|
10 |
+
One = S_singleton.One
|
11 |
+
|
12 |
+
#### UNITS ####
|
13 |
+
|
14 |
+
# Dimensionless:
|
15 |
+
percent = percents = Quantity("percent", latex_repr=r"\%")
|
16 |
+
percent.set_global_relative_scale_factor(Rational(1, 100), One)
|
17 |
+
|
18 |
+
permille = Quantity("permille")
|
19 |
+
permille.set_global_relative_scale_factor(Rational(1, 1000), One)
|
20 |
+
|
21 |
+
|
22 |
+
# Angular units (dimensionless)
|
23 |
+
rad = radian = radians = Quantity("radian", abbrev="rad")
|
24 |
+
radian.set_global_dimension(angle)
|
25 |
+
deg = degree = degrees = Quantity("degree", abbrev="deg", latex_repr=r"^\circ")
|
26 |
+
degree.set_global_relative_scale_factor(pi/180, radian)
|
27 |
+
sr = steradian = steradians = Quantity("steradian", abbrev="sr")
|
28 |
+
mil = angular_mil = angular_mils = Quantity("angular_mil", abbrev="mil")
|
29 |
+
|
30 |
+
# Base units:
|
31 |
+
m = meter = meters = Quantity("meter", abbrev="m")
|
32 |
+
|
33 |
+
# gram; used to define its prefixed units
|
34 |
+
g = gram = grams = Quantity("gram", abbrev="g")
|
35 |
+
|
36 |
+
# NOTE: the `kilogram` has scale factor 1000. In SI, kg is a base unit, but
|
37 |
+
# nonetheless we are trying to be compatible with the `kilo` prefix. In a
|
38 |
+
# similar manner, people using CGS or gaussian units could argue that the
|
39 |
+
# `centimeter` rather than `meter` is the fundamental unit for length, but the
|
40 |
+
# scale factor of `centimeter` will be kept as 1/100 to be compatible with the
|
41 |
+
# `centi` prefix. The current state of the code assumes SI unit dimensions, in
|
42 |
+
# the future this module will be modified in order to be unit system-neutral
|
43 |
+
# (that is, support all kinds of unit systems).
|
44 |
+
kg = kilogram = kilograms = Quantity("kilogram", abbrev="kg")
|
45 |
+
kg.set_global_relative_scale_factor(kilo, gram)
|
46 |
+
|
47 |
+
s = second = seconds = Quantity("second", abbrev="s")
|
48 |
+
A = ampere = amperes = Quantity("ampere", abbrev='A')
|
49 |
+
ampere.set_global_dimension(current)
|
50 |
+
K = kelvin = kelvins = Quantity("kelvin", abbrev='K')
|
51 |
+
kelvin.set_global_dimension(temperature)
|
52 |
+
mol = mole = moles = Quantity("mole", abbrev="mol")
|
53 |
+
mole.set_global_dimension(amount_of_substance)
|
54 |
+
cd = candela = candelas = Quantity("candela", abbrev="cd")
|
55 |
+
candela.set_global_dimension(luminous_intensity)
|
56 |
+
|
57 |
+
# derived units
|
58 |
+
newton = newtons = N = Quantity("newton", abbrev="N")
|
59 |
+
joule = joules = J = Quantity("joule", abbrev="J")
|
60 |
+
watt = watts = W = Quantity("watt", abbrev="W")
|
61 |
+
pascal = pascals = Pa = pa = Quantity("pascal", abbrev="Pa")
|
62 |
+
hertz = hz = Hz = Quantity("hertz", abbrev="Hz")
|
63 |
+
|
64 |
+
# CGS derived units:
|
65 |
+
dyne = Quantity("dyne")
|
66 |
+
dyne.set_global_relative_scale_factor(One/10**5, newton)
|
67 |
+
erg = Quantity("erg")
|
68 |
+
erg.set_global_relative_scale_factor(One/10**7, joule)
|
69 |
+
|
70 |
+
# MKSA extension to MKS: derived units
|
71 |
+
coulomb = coulombs = C = Quantity("coulomb", abbrev='C')
|
72 |
+
coulomb.set_global_dimension(charge)
|
73 |
+
volt = volts = v = V = Quantity("volt", abbrev='V')
|
74 |
+
volt.set_global_dimension(voltage)
|
75 |
+
ohm = ohms = Quantity("ohm", abbrev='ohm', latex_repr=r"\Omega")
|
76 |
+
ohm.set_global_dimension(impedance)
|
77 |
+
siemens = S = mho = mhos = Quantity("siemens", abbrev='S')
|
78 |
+
siemens.set_global_dimension(conductance)
|
79 |
+
farad = farads = F = Quantity("farad", abbrev='F')
|
80 |
+
farad.set_global_dimension(capacitance)
|
81 |
+
henry = henrys = H = Quantity("henry", abbrev='H')
|
82 |
+
henry.set_global_dimension(inductance)
|
83 |
+
tesla = teslas = T = Quantity("tesla", abbrev='T')
|
84 |
+
tesla.set_global_dimension(magnetic_density)
|
85 |
+
weber = webers = Wb = wb = Quantity("weber", abbrev='Wb')
|
86 |
+
weber.set_global_dimension(magnetic_flux)
|
87 |
+
|
88 |
+
# CGS units for electromagnetic quantities:
|
89 |
+
statampere = Quantity("statampere")
|
90 |
+
statcoulomb = statC = franklin = Quantity("statcoulomb", abbrev="statC")
|
91 |
+
statvolt = Quantity("statvolt")
|
92 |
+
gauss = Quantity("gauss")
|
93 |
+
maxwell = Quantity("maxwell")
|
94 |
+
debye = Quantity("debye")
|
95 |
+
oersted = Quantity("oersted")
|
96 |
+
|
97 |
+
# Other derived units:
|
98 |
+
optical_power = dioptre = diopter = D = Quantity("dioptre")
|
99 |
+
lux = lx = Quantity("lux", abbrev="lx")
|
100 |
+
|
101 |
+
# katal is the SI unit of catalytic activity
|
102 |
+
katal = kat = Quantity("katal", abbrev="kat")
|
103 |
+
|
104 |
+
# gray is the SI unit of absorbed dose
|
105 |
+
gray = Gy = Quantity("gray")
|
106 |
+
|
107 |
+
# becquerel is the SI unit of radioactivity
|
108 |
+
becquerel = Bq = Quantity("becquerel", abbrev="Bq")
|
109 |
+
|
110 |
+
|
111 |
+
# Common mass units
|
112 |
+
|
113 |
+
mg = milligram = milligrams = Quantity("milligram", abbrev="mg")
|
114 |
+
mg.set_global_relative_scale_factor(milli, gram)
|
115 |
+
|
116 |
+
ug = microgram = micrograms = Quantity("microgram", abbrev="ug", latex_repr=r"\mu\text{g}")
|
117 |
+
ug.set_global_relative_scale_factor(micro, gram)
|
118 |
+
|
119 |
+
# Atomic mass constant
|
120 |
+
Da = dalton = amu = amus = atomic_mass_unit = atomic_mass_constant = PhysicalConstant("atomic_mass_constant")
|
121 |
+
|
122 |
+
t = metric_ton = tonne = Quantity("tonne", abbrev="t")
|
123 |
+
tonne.set_global_relative_scale_factor(mega, gram)
|
124 |
+
|
125 |
+
# Electron rest mass
|
126 |
+
me = electron_rest_mass = Quantity("electron_rest_mass", abbrev="me")
|
127 |
+
|
128 |
+
|
129 |
+
# Common length units
|
130 |
+
|
131 |
+
km = kilometer = kilometers = Quantity("kilometer", abbrev="km")
|
132 |
+
km.set_global_relative_scale_factor(kilo, meter)
|
133 |
+
|
134 |
+
dm = decimeter = decimeters = Quantity("decimeter", abbrev="dm")
|
135 |
+
dm.set_global_relative_scale_factor(deci, meter)
|
136 |
+
|
137 |
+
cm = centimeter = centimeters = Quantity("centimeter", abbrev="cm")
|
138 |
+
cm.set_global_relative_scale_factor(centi, meter)
|
139 |
+
|
140 |
+
mm = millimeter = millimeters = Quantity("millimeter", abbrev="mm")
|
141 |
+
mm.set_global_relative_scale_factor(milli, meter)
|
142 |
+
|
143 |
+
um = micrometer = micrometers = micron = microns = \
|
144 |
+
Quantity("micrometer", abbrev="um", latex_repr=r'\mu\text{m}')
|
145 |
+
um.set_global_relative_scale_factor(micro, meter)
|
146 |
+
|
147 |
+
nm = nanometer = nanometers = Quantity("nanometer", abbrev="nm")
|
148 |
+
nm.set_global_relative_scale_factor(nano, meter)
|
149 |
+
|
150 |
+
pm = picometer = picometers = Quantity("picometer", abbrev="pm")
|
151 |
+
pm.set_global_relative_scale_factor(pico, meter)
|
152 |
+
|
153 |
+
ft = foot = feet = Quantity("foot", abbrev="ft")
|
154 |
+
ft.set_global_relative_scale_factor(Rational(3048, 10000), meter)
|
155 |
+
|
156 |
+
inch = inches = Quantity("inch")
|
157 |
+
inch.set_global_relative_scale_factor(Rational(1, 12), foot)
|
158 |
+
|
159 |
+
yd = yard = yards = Quantity("yard", abbrev="yd")
|
160 |
+
yd.set_global_relative_scale_factor(3, feet)
|
161 |
+
|
162 |
+
mi = mile = miles = Quantity("mile")
|
163 |
+
mi.set_global_relative_scale_factor(5280, feet)
|
164 |
+
|
165 |
+
nmi = nautical_mile = nautical_miles = Quantity("nautical_mile")
|
166 |
+
nmi.set_global_relative_scale_factor(6076, feet)
|
167 |
+
|
168 |
+
angstrom = angstroms = Quantity("angstrom", latex_repr=r'\r{A}')
|
169 |
+
angstrom.set_global_relative_scale_factor(Rational(1, 10**10), meter)
|
170 |
+
|
171 |
+
|
172 |
+
# Common volume and area units
|
173 |
+
|
174 |
+
ha = hectare = Quantity("hectare", abbrev="ha")
|
175 |
+
|
176 |
+
l = L = liter = liters = Quantity("liter")
|
177 |
+
|
178 |
+
dl = dL = deciliter = deciliters = Quantity("deciliter")
|
179 |
+
dl.set_global_relative_scale_factor(Rational(1, 10), liter)
|
180 |
+
|
181 |
+
cl = cL = centiliter = centiliters = Quantity("centiliter")
|
182 |
+
cl.set_global_relative_scale_factor(Rational(1, 100), liter)
|
183 |
+
|
184 |
+
ml = mL = milliliter = milliliters = Quantity("milliliter")
|
185 |
+
ml.set_global_relative_scale_factor(Rational(1, 1000), liter)
|
186 |
+
|
187 |
+
|
188 |
+
# Common time units
|
189 |
+
|
190 |
+
ms = millisecond = milliseconds = Quantity("millisecond", abbrev="ms")
|
191 |
+
millisecond.set_global_relative_scale_factor(milli, second)
|
192 |
+
|
193 |
+
us = microsecond = microseconds = Quantity("microsecond", abbrev="us", latex_repr=r'\mu\text{s}')
|
194 |
+
microsecond.set_global_relative_scale_factor(micro, second)
|
195 |
+
|
196 |
+
ns = nanosecond = nanoseconds = Quantity("nanosecond", abbrev="ns")
|
197 |
+
nanosecond.set_global_relative_scale_factor(nano, second)
|
198 |
+
|
199 |
+
ps = picosecond = picoseconds = Quantity("picosecond", abbrev="ps")
|
200 |
+
picosecond.set_global_relative_scale_factor(pico, second)
|
201 |
+
|
202 |
+
minute = minutes = Quantity("minute")
|
203 |
+
minute.set_global_relative_scale_factor(60, second)
|
204 |
+
|
205 |
+
h = hour = hours = Quantity("hour")
|
206 |
+
hour.set_global_relative_scale_factor(60, minute)
|
207 |
+
|
208 |
+
day = days = Quantity("day")
|
209 |
+
day.set_global_relative_scale_factor(24, hour)
|
210 |
+
|
211 |
+
anomalistic_year = anomalistic_years = Quantity("anomalistic_year")
|
212 |
+
anomalistic_year.set_global_relative_scale_factor(365.259636, day)
|
213 |
+
|
214 |
+
sidereal_year = sidereal_years = Quantity("sidereal_year")
|
215 |
+
sidereal_year.set_global_relative_scale_factor(31558149.540, seconds)
|
216 |
+
|
217 |
+
tropical_year = tropical_years = Quantity("tropical_year")
|
218 |
+
tropical_year.set_global_relative_scale_factor(365.24219, day)
|
219 |
+
|
220 |
+
common_year = common_years = Quantity("common_year")
|
221 |
+
common_year.set_global_relative_scale_factor(365, day)
|
222 |
+
|
223 |
+
julian_year = julian_years = Quantity("julian_year")
|
224 |
+
julian_year.set_global_relative_scale_factor((365 + One/4), day)
|
225 |
+
|
226 |
+
draconic_year = draconic_years = Quantity("draconic_year")
|
227 |
+
draconic_year.set_global_relative_scale_factor(346.62, day)
|
228 |
+
|
229 |
+
gaussian_year = gaussian_years = Quantity("gaussian_year")
|
230 |
+
gaussian_year.set_global_relative_scale_factor(365.2568983, day)
|
231 |
+
|
232 |
+
full_moon_cycle = full_moon_cycles = Quantity("full_moon_cycle")
|
233 |
+
full_moon_cycle.set_global_relative_scale_factor(411.78443029, day)
|
234 |
+
|
235 |
+
year = years = tropical_year
|
236 |
+
|
237 |
+
|
238 |
+
#### CONSTANTS ####
|
239 |
+
|
240 |
+
# Newton constant
|
241 |
+
G = gravitational_constant = PhysicalConstant("gravitational_constant", abbrev="G")
|
242 |
+
|
243 |
+
# speed of light
|
244 |
+
c = speed_of_light = PhysicalConstant("speed_of_light", abbrev="c")
|
245 |
+
|
246 |
+
# elementary charge
|
247 |
+
elementary_charge = PhysicalConstant("elementary_charge", abbrev="e")
|
248 |
+
|
249 |
+
# Planck constant
|
250 |
+
planck = PhysicalConstant("planck", abbrev="h")
|
251 |
+
|
252 |
+
# Reduced Planck constant
|
253 |
+
hbar = PhysicalConstant("hbar", abbrev="hbar")
|
254 |
+
|
255 |
+
# Electronvolt
|
256 |
+
eV = electronvolt = electronvolts = PhysicalConstant("electronvolt", abbrev="eV")
|
257 |
+
|
258 |
+
# Avogadro number
|
259 |
+
avogadro_number = PhysicalConstant("avogadro_number")
|
260 |
+
|
261 |
+
# Avogadro constant
|
262 |
+
avogadro = avogadro_constant = PhysicalConstant("avogadro_constant")
|
263 |
+
|
264 |
+
# Boltzmann constant
|
265 |
+
boltzmann = boltzmann_constant = PhysicalConstant("boltzmann_constant")
|
266 |
+
|
267 |
+
# Stefan-Boltzmann constant
|
268 |
+
stefan = stefan_boltzmann_constant = PhysicalConstant("stefan_boltzmann_constant")
|
269 |
+
|
270 |
+
# Molar gas constant
|
271 |
+
R = molar_gas_constant = PhysicalConstant("molar_gas_constant", abbrev="R")
|
272 |
+
|
273 |
+
# Faraday constant
|
274 |
+
faraday_constant = PhysicalConstant("faraday_constant")
|
275 |
+
|
276 |
+
# Josephson constant
|
277 |
+
josephson_constant = PhysicalConstant("josephson_constant", abbrev="K_j")
|
278 |
+
|
279 |
+
# Von Klitzing constant
|
280 |
+
von_klitzing_constant = PhysicalConstant("von_klitzing_constant", abbrev="R_k")
|
281 |
+
|
282 |
+
# Acceleration due to gravity (on the Earth surface)
|
283 |
+
gee = gees = acceleration_due_to_gravity = PhysicalConstant("acceleration_due_to_gravity", abbrev="g")
|
284 |
+
|
285 |
+
# magnetic constant:
|
286 |
+
u0 = magnetic_constant = vacuum_permeability = PhysicalConstant("magnetic_constant")
|
287 |
+
|
288 |
+
# electric constat:
|
289 |
+
e0 = electric_constant = vacuum_permittivity = PhysicalConstant("vacuum_permittivity")
|
290 |
+
|
291 |
+
# vacuum impedance:
|
292 |
+
Z0 = vacuum_impedance = PhysicalConstant("vacuum_impedance", abbrev='Z_0', latex_repr=r'Z_{0}')
|
293 |
+
|
294 |
+
# Coulomb's constant:
|
295 |
+
coulomb_constant = coulombs_constant = electric_force_constant = \
|
296 |
+
PhysicalConstant("coulomb_constant", abbrev="k_e")
|
297 |
+
|
298 |
+
|
299 |
+
atmosphere = atmospheres = atm = Quantity("atmosphere", abbrev="atm")
|
300 |
+
|
301 |
+
kPa = kilopascal = Quantity("kilopascal", abbrev="kPa")
|
302 |
+
kilopascal.set_global_relative_scale_factor(kilo, Pa)
|
303 |
+
|
304 |
+
bar = bars = Quantity("bar", abbrev="bar")
|
305 |
+
|
306 |
+
pound = pounds = Quantity("pound") # exact
|
307 |
+
|
308 |
+
psi = Quantity("psi")
|
309 |
+
|
310 |
+
dHg0 = 13.5951 # approx value at 0 C
|
311 |
+
mmHg = torr = Quantity("mmHg")
|
312 |
+
|
313 |
+
atmosphere.set_global_relative_scale_factor(101325, pascal)
|
314 |
+
bar.set_global_relative_scale_factor(100, kPa)
|
315 |
+
pound.set_global_relative_scale_factor(Rational(45359237, 100000000), kg)
|
316 |
+
|
317 |
+
mmu = mmus = milli_mass_unit = Quantity("milli_mass_unit")
|
318 |
+
|
319 |
+
quart = quarts = Quantity("quart")
|
320 |
+
|
321 |
+
|
322 |
+
# Other convenient units and magnitudes
|
323 |
+
|
324 |
+
ly = lightyear = lightyears = Quantity("lightyear", abbrev="ly")
|
325 |
+
|
326 |
+
au = astronomical_unit = astronomical_units = Quantity("astronomical_unit", abbrev="AU")
|
327 |
+
|
328 |
+
|
329 |
+
# Fundamental Planck units:
|
330 |
+
planck_mass = Quantity("planck_mass", abbrev="m_P", latex_repr=r'm_\text{P}')
|
331 |
+
|
332 |
+
planck_time = Quantity("planck_time", abbrev="t_P", latex_repr=r't_\text{P}')
|
333 |
+
|
334 |
+
planck_temperature = Quantity("planck_temperature", abbrev="T_P",
|
335 |
+
latex_repr=r'T_\text{P}')
|
336 |
+
|
337 |
+
planck_length = Quantity("planck_length", abbrev="l_P", latex_repr=r'l_\text{P}')
|
338 |
+
|
339 |
+
planck_charge = Quantity("planck_charge", abbrev="q_P", latex_repr=r'q_\text{P}')
|
340 |
+
|
341 |
+
|
342 |
+
# Derived Planck units:
|
343 |
+
planck_area = Quantity("planck_area")
|
344 |
+
|
345 |
+
planck_volume = Quantity("planck_volume")
|
346 |
+
|
347 |
+
planck_momentum = Quantity("planck_momentum")
|
348 |
+
|
349 |
+
planck_energy = Quantity("planck_energy", abbrev="E_P", latex_repr=r'E_\text{P}')
|
350 |
+
|
351 |
+
planck_force = Quantity("planck_force", abbrev="F_P", latex_repr=r'F_\text{P}')
|
352 |
+
|
353 |
+
planck_power = Quantity("planck_power", abbrev="P_P", latex_repr=r'P_\text{P}')
|
354 |
+
|
355 |
+
planck_density = Quantity("planck_density", abbrev="rho_P", latex_repr=r'\rho_\text{P}')
|
356 |
+
|
357 |
+
planck_energy_density = Quantity("planck_energy_density", abbrev="rho^E_P")
|
358 |
+
|
359 |
+
planck_intensity = Quantity("planck_intensity", abbrev="I_P", latex_repr=r'I_\text{P}')
|
360 |
+
|
361 |
+
planck_angular_frequency = Quantity("planck_angular_frequency", abbrev="omega_P",
|
362 |
+
latex_repr=r'\omega_\text{P}')
|
363 |
+
|
364 |
+
planck_pressure = Quantity("planck_pressure", abbrev="p_P", latex_repr=r'p_\text{P}')
|
365 |
+
|
366 |
+
planck_current = Quantity("planck_current", abbrev="I_P", latex_repr=r'I_\text{P}')
|
367 |
+
|
368 |
+
planck_voltage = Quantity("planck_voltage", abbrev="V_P", latex_repr=r'V_\text{P}')
|
369 |
+
|
370 |
+
planck_impedance = Quantity("planck_impedance", abbrev="Z_P", latex_repr=r'Z_\text{P}')
|
371 |
+
|
372 |
+
planck_acceleration = Quantity("planck_acceleration", abbrev="a_P",
|
373 |
+
latex_repr=r'a_\text{P}')
|
374 |
+
|
375 |
+
|
376 |
+
# Information theory units:
|
377 |
+
bit = bits = Quantity("bit")
|
378 |
+
bit.set_global_dimension(information)
|
379 |
+
|
380 |
+
byte = bytes = Quantity("byte")
|
381 |
+
|
382 |
+
kibibyte = kibibytes = Quantity("kibibyte")
|
383 |
+
mebibyte = mebibytes = Quantity("mebibyte")
|
384 |
+
gibibyte = gibibytes = Quantity("gibibyte")
|
385 |
+
tebibyte = tebibytes = Quantity("tebibyte")
|
386 |
+
pebibyte = pebibytes = Quantity("pebibyte")
|
387 |
+
exbibyte = exbibytes = Quantity("exbibyte")
|
388 |
+
|
389 |
+
byte.set_global_relative_scale_factor(8, bit)
|
390 |
+
kibibyte.set_global_relative_scale_factor(kibi, byte)
|
391 |
+
mebibyte.set_global_relative_scale_factor(mebi, byte)
|
392 |
+
gibibyte.set_global_relative_scale_factor(gibi, byte)
|
393 |
+
tebibyte.set_global_relative_scale_factor(tebi, byte)
|
394 |
+
pebibyte.set_global_relative_scale_factor(pebi, byte)
|
395 |
+
exbibyte.set_global_relative_scale_factor(exbi, byte)
|
396 |
+
|
397 |
+
# Older units for radioactivity
|
398 |
+
curie = Ci = Quantity("curie", abbrev="Ci")
|
399 |
+
|
400 |
+
rutherford = Rd = Quantity("rutherford", abbrev="Rd")
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/dimensions.py
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Definition of physical dimensions.
|
3 |
+
|
4 |
+
Unit systems will be constructed on top of these dimensions.
|
5 |
+
|
6 |
+
Most of the examples in the doc use MKS system and are presented from the
|
7 |
+
computer point of view: from a human point, adding length to time is not legal
|
8 |
+
in MKS but it is in natural system; for a computer in natural system there is
|
9 |
+
no time dimension (but a velocity dimension instead) - in the basis - so the
|
10 |
+
question of adding time to length has no meaning.
|
11 |
+
"""
|
12 |
+
|
13 |
+
from __future__ import annotations
|
14 |
+
|
15 |
+
import collections
|
16 |
+
from functools import reduce
|
17 |
+
|
18 |
+
from sympy.core.basic import Basic
|
19 |
+
from sympy.core.containers import (Dict, Tuple)
|
20 |
+
from sympy.core.singleton import S
|
21 |
+
from sympy.core.sorting import default_sort_key
|
22 |
+
from sympy.core.symbol import Symbol
|
23 |
+
from sympy.core.sympify import sympify
|
24 |
+
from sympy.matrices.dense import Matrix
|
25 |
+
from sympy.functions.elementary.trigonometric import TrigonometricFunction
|
26 |
+
from sympy.core.expr import Expr
|
27 |
+
from sympy.core.power import Pow
|
28 |
+
|
29 |
+
|
30 |
+
class _QuantityMapper:
|
31 |
+
|
32 |
+
_quantity_scale_factors_global: dict[Expr, Expr] = {}
|
33 |
+
_quantity_dimensional_equivalence_map_global: dict[Expr, Expr] = {}
|
34 |
+
_quantity_dimension_global: dict[Expr, Expr] = {}
|
35 |
+
|
36 |
+
def __init__(self, *args, **kwargs):
|
37 |
+
self._quantity_dimension_map = {}
|
38 |
+
self._quantity_scale_factors = {}
|
39 |
+
|
40 |
+
def set_quantity_dimension(self, quantity, dimension):
|
41 |
+
"""
|
42 |
+
Set the dimension for the quantity in a unit system.
|
43 |
+
|
44 |
+
If this relation is valid in every unit system, use
|
45 |
+
``quantity.set_global_dimension(dimension)`` instead.
|
46 |
+
"""
|
47 |
+
from sympy.physics.units import Quantity
|
48 |
+
dimension = sympify(dimension)
|
49 |
+
if not isinstance(dimension, Dimension):
|
50 |
+
if dimension == 1:
|
51 |
+
dimension = Dimension(1)
|
52 |
+
else:
|
53 |
+
raise ValueError("expected dimension or 1")
|
54 |
+
elif isinstance(dimension, Quantity):
|
55 |
+
dimension = self.get_quantity_dimension(dimension)
|
56 |
+
self._quantity_dimension_map[quantity] = dimension
|
57 |
+
|
58 |
+
def set_quantity_scale_factor(self, quantity, scale_factor):
|
59 |
+
"""
|
60 |
+
Set the scale factor of a quantity relative to another quantity.
|
61 |
+
|
62 |
+
It should be used only once per quantity to just one other quantity,
|
63 |
+
the algorithm will then be able to compute the scale factors to all
|
64 |
+
other quantities.
|
65 |
+
|
66 |
+
In case the scale factor is valid in every unit system, please use
|
67 |
+
``quantity.set_global_relative_scale_factor(scale_factor)`` instead.
|
68 |
+
"""
|
69 |
+
from sympy.physics.units import Quantity
|
70 |
+
from sympy.physics.units.prefixes import Prefix
|
71 |
+
scale_factor = sympify(scale_factor)
|
72 |
+
# replace all prefixes by their ratio to canonical units:
|
73 |
+
scale_factor = scale_factor.replace(
|
74 |
+
lambda x: isinstance(x, Prefix),
|
75 |
+
lambda x: x.scale_factor
|
76 |
+
)
|
77 |
+
# replace all quantities by their ratio to canonical units:
|
78 |
+
scale_factor = scale_factor.replace(
|
79 |
+
lambda x: isinstance(x, Quantity),
|
80 |
+
lambda x: self.get_quantity_scale_factor(x)
|
81 |
+
)
|
82 |
+
self._quantity_scale_factors[quantity] = scale_factor
|
83 |
+
|
84 |
+
def get_quantity_dimension(self, unit):
|
85 |
+
from sympy.physics.units import Quantity
|
86 |
+
# First look-up the local dimension map, then the global one:
|
87 |
+
if unit in self._quantity_dimension_map:
|
88 |
+
return self._quantity_dimension_map[unit]
|
89 |
+
if unit in self._quantity_dimension_global:
|
90 |
+
return self._quantity_dimension_global[unit]
|
91 |
+
if unit in self._quantity_dimensional_equivalence_map_global:
|
92 |
+
dep_unit = self._quantity_dimensional_equivalence_map_global[unit]
|
93 |
+
if isinstance(dep_unit, Quantity):
|
94 |
+
return self.get_quantity_dimension(dep_unit)
|
95 |
+
else:
|
96 |
+
return Dimension(self.get_dimensional_expr(dep_unit))
|
97 |
+
if isinstance(unit, Quantity):
|
98 |
+
return Dimension(unit.name)
|
99 |
+
else:
|
100 |
+
return Dimension(1)
|
101 |
+
|
102 |
+
def get_quantity_scale_factor(self, unit):
|
103 |
+
if unit in self._quantity_scale_factors:
|
104 |
+
return self._quantity_scale_factors[unit]
|
105 |
+
if unit in self._quantity_scale_factors_global:
|
106 |
+
mul_factor, other_unit = self._quantity_scale_factors_global[unit]
|
107 |
+
return mul_factor*self.get_quantity_scale_factor(other_unit)
|
108 |
+
return S.One
|
109 |
+
|
110 |
+
|
111 |
+
class Dimension(Expr):
|
112 |
+
"""
|
113 |
+
This class represent the dimension of a physical quantities.
|
114 |
+
|
115 |
+
The ``Dimension`` constructor takes as parameters a name and an optional
|
116 |
+
symbol.
|
117 |
+
|
118 |
+
For example, in classical mechanics we know that time is different from
|
119 |
+
temperature and dimensions make this difference (but they do not provide
|
120 |
+
any measure of these quantites.
|
121 |
+
|
122 |
+
>>> from sympy.physics.units import Dimension
|
123 |
+
>>> length = Dimension('length')
|
124 |
+
>>> length
|
125 |
+
Dimension(length)
|
126 |
+
>>> time = Dimension('time')
|
127 |
+
>>> time
|
128 |
+
Dimension(time)
|
129 |
+
|
130 |
+
Dimensions can be composed using multiplication, division and
|
131 |
+
exponentiation (by a number) to give new dimensions. Addition and
|
132 |
+
subtraction is defined only when the two objects are the same dimension.
|
133 |
+
|
134 |
+
>>> velocity = length / time
|
135 |
+
>>> velocity
|
136 |
+
Dimension(length/time)
|
137 |
+
|
138 |
+
It is possible to use a dimension system object to get the dimensionsal
|
139 |
+
dependencies of a dimension, for example the dimension system used by the
|
140 |
+
SI units convention can be used:
|
141 |
+
|
142 |
+
>>> from sympy.physics.units.systems.si import dimsys_SI
|
143 |
+
>>> dimsys_SI.get_dimensional_dependencies(velocity)
|
144 |
+
{Dimension(length, L): 1, Dimension(time, T): -1}
|
145 |
+
>>> length + length
|
146 |
+
Dimension(length)
|
147 |
+
>>> l2 = length**2
|
148 |
+
>>> l2
|
149 |
+
Dimension(length**2)
|
150 |
+
>>> dimsys_SI.get_dimensional_dependencies(l2)
|
151 |
+
{Dimension(length, L): 2}
|
152 |
+
|
153 |
+
"""
|
154 |
+
|
155 |
+
_op_priority = 13.0
|
156 |
+
|
157 |
+
# XXX: This doesn't seem to be used anywhere...
|
158 |
+
_dimensional_dependencies = {} # type: ignore
|
159 |
+
|
160 |
+
is_commutative = True
|
161 |
+
is_number = False
|
162 |
+
# make sqrt(M**2) --> M
|
163 |
+
is_positive = True
|
164 |
+
is_real = True
|
165 |
+
|
166 |
+
def __new__(cls, name, symbol=None):
|
167 |
+
|
168 |
+
if isinstance(name, str):
|
169 |
+
name = Symbol(name)
|
170 |
+
else:
|
171 |
+
name = sympify(name)
|
172 |
+
|
173 |
+
if not isinstance(name, Expr):
|
174 |
+
raise TypeError("Dimension name needs to be a valid math expression")
|
175 |
+
|
176 |
+
if isinstance(symbol, str):
|
177 |
+
symbol = Symbol(symbol)
|
178 |
+
elif symbol is not None:
|
179 |
+
assert isinstance(symbol, Symbol)
|
180 |
+
|
181 |
+
obj = Expr.__new__(cls, name)
|
182 |
+
|
183 |
+
obj._name = name
|
184 |
+
obj._symbol = symbol
|
185 |
+
return obj
|
186 |
+
|
187 |
+
@property
|
188 |
+
def name(self):
|
189 |
+
return self._name
|
190 |
+
|
191 |
+
@property
|
192 |
+
def symbol(self):
|
193 |
+
return self._symbol
|
194 |
+
|
195 |
+
def __str__(self):
|
196 |
+
"""
|
197 |
+
Display the string representation of the dimension.
|
198 |
+
"""
|
199 |
+
if self.symbol is None:
|
200 |
+
return "Dimension(%s)" % (self.name)
|
201 |
+
else:
|
202 |
+
return "Dimension(%s, %s)" % (self.name, self.symbol)
|
203 |
+
|
204 |
+
def __repr__(self):
|
205 |
+
return self.__str__()
|
206 |
+
|
207 |
+
def __neg__(self):
|
208 |
+
return self
|
209 |
+
|
210 |
+
def __add__(self, other):
|
211 |
+
from sympy.physics.units.quantities import Quantity
|
212 |
+
other = sympify(other)
|
213 |
+
if isinstance(other, Basic):
|
214 |
+
if other.has(Quantity):
|
215 |
+
raise TypeError("cannot sum dimension and quantity")
|
216 |
+
if isinstance(other, Dimension) and self == other:
|
217 |
+
return self
|
218 |
+
return super().__add__(other)
|
219 |
+
return self
|
220 |
+
|
221 |
+
def __radd__(self, other):
|
222 |
+
return self.__add__(other)
|
223 |
+
|
224 |
+
def __sub__(self, other):
|
225 |
+
# there is no notion of ordering (or magnitude) among dimension,
|
226 |
+
# subtraction is equivalent to addition when the operation is legal
|
227 |
+
return self + other
|
228 |
+
|
229 |
+
def __rsub__(self, other):
|
230 |
+
# there is no notion of ordering (or magnitude) among dimension,
|
231 |
+
# subtraction is equivalent to addition when the operation is legal
|
232 |
+
return self + other
|
233 |
+
|
234 |
+
def __pow__(self, other):
|
235 |
+
return self._eval_power(other)
|
236 |
+
|
237 |
+
def _eval_power(self, other):
|
238 |
+
other = sympify(other)
|
239 |
+
return Dimension(self.name**other)
|
240 |
+
|
241 |
+
def __mul__(self, other):
|
242 |
+
from sympy.physics.units.quantities import Quantity
|
243 |
+
if isinstance(other, Basic):
|
244 |
+
if other.has(Quantity):
|
245 |
+
raise TypeError("cannot sum dimension and quantity")
|
246 |
+
if isinstance(other, Dimension):
|
247 |
+
return Dimension(self.name*other.name)
|
248 |
+
if not other.free_symbols: # other.is_number cannot be used
|
249 |
+
return self
|
250 |
+
return super().__mul__(other)
|
251 |
+
return self
|
252 |
+
|
253 |
+
def __rmul__(self, other):
|
254 |
+
return self.__mul__(other)
|
255 |
+
|
256 |
+
def __truediv__(self, other):
|
257 |
+
return self*Pow(other, -1)
|
258 |
+
|
259 |
+
def __rtruediv__(self, other):
|
260 |
+
return other * pow(self, -1)
|
261 |
+
|
262 |
+
@classmethod
|
263 |
+
def _from_dimensional_dependencies(cls, dependencies):
|
264 |
+
return reduce(lambda x, y: x * y, (
|
265 |
+
d**e for d, e in dependencies.items()
|
266 |
+
), 1)
|
267 |
+
|
268 |
+
def has_integer_powers(self, dim_sys):
|
269 |
+
"""
|
270 |
+
Check if the dimension object has only integer powers.
|
271 |
+
|
272 |
+
All the dimension powers should be integers, but rational powers may
|
273 |
+
appear in intermediate steps. This method may be used to check that the
|
274 |
+
final result is well-defined.
|
275 |
+
"""
|
276 |
+
|
277 |
+
return all(dpow.is_Integer for dpow in dim_sys.get_dimensional_dependencies(self).values())
|
278 |
+
|
279 |
+
|
280 |
+
# Create dimensions according to the base units in MKSA.
|
281 |
+
# For other unit systems, they can be derived by transforming the base
|
282 |
+
# dimensional dependency dictionary.
|
283 |
+
|
284 |
+
|
285 |
+
class DimensionSystem(Basic, _QuantityMapper):
|
286 |
+
r"""
|
287 |
+
DimensionSystem represents a coherent set of dimensions.
|
288 |
+
|
289 |
+
The constructor takes three parameters:
|
290 |
+
|
291 |
+
- base dimensions;
|
292 |
+
- derived dimensions: these are defined in terms of the base dimensions
|
293 |
+
(for example velocity is defined from the division of length by time);
|
294 |
+
- dependency of dimensions: how the derived dimensions depend
|
295 |
+
on the base dimensions.
|
296 |
+
|
297 |
+
Optionally either the ``derived_dims`` or the ``dimensional_dependencies``
|
298 |
+
may be omitted.
|
299 |
+
"""
|
300 |
+
|
301 |
+
def __new__(cls, base_dims, derived_dims=(), dimensional_dependencies={}):
|
302 |
+
dimensional_dependencies = dict(dimensional_dependencies)
|
303 |
+
|
304 |
+
def parse_dim(dim):
|
305 |
+
if isinstance(dim, str):
|
306 |
+
dim = Dimension(Symbol(dim))
|
307 |
+
elif isinstance(dim, Dimension):
|
308 |
+
pass
|
309 |
+
elif isinstance(dim, Symbol):
|
310 |
+
dim = Dimension(dim)
|
311 |
+
else:
|
312 |
+
raise TypeError("%s wrong type" % dim)
|
313 |
+
return dim
|
314 |
+
|
315 |
+
base_dims = [parse_dim(i) for i in base_dims]
|
316 |
+
derived_dims = [parse_dim(i) for i in derived_dims]
|
317 |
+
|
318 |
+
for dim in base_dims:
|
319 |
+
if (dim in dimensional_dependencies
|
320 |
+
and (len(dimensional_dependencies[dim]) != 1 or
|
321 |
+
dimensional_dependencies[dim].get(dim, None) != 1)):
|
322 |
+
raise IndexError("Repeated value in base dimensions")
|
323 |
+
dimensional_dependencies[dim] = Dict({dim: 1})
|
324 |
+
|
325 |
+
def parse_dim_name(dim):
|
326 |
+
if isinstance(dim, Dimension):
|
327 |
+
return dim
|
328 |
+
elif isinstance(dim, str):
|
329 |
+
return Dimension(Symbol(dim))
|
330 |
+
elif isinstance(dim, Symbol):
|
331 |
+
return Dimension(dim)
|
332 |
+
else:
|
333 |
+
raise TypeError("unrecognized type %s for %s" % (type(dim), dim))
|
334 |
+
|
335 |
+
for dim in dimensional_dependencies.keys():
|
336 |
+
dim = parse_dim(dim)
|
337 |
+
if (dim not in derived_dims) and (dim not in base_dims):
|
338 |
+
derived_dims.append(dim)
|
339 |
+
|
340 |
+
def parse_dict(d):
|
341 |
+
return Dict({parse_dim_name(i): j for i, j in d.items()})
|
342 |
+
|
343 |
+
# Make sure everything is a SymPy type:
|
344 |
+
dimensional_dependencies = {parse_dim_name(i): parse_dict(j) for i, j in
|
345 |
+
dimensional_dependencies.items()}
|
346 |
+
|
347 |
+
for dim in derived_dims:
|
348 |
+
if dim in base_dims:
|
349 |
+
raise ValueError("Dimension %s both in base and derived" % dim)
|
350 |
+
if dim not in dimensional_dependencies:
|
351 |
+
# TODO: should this raise a warning?
|
352 |
+
dimensional_dependencies[dim] = Dict({dim: 1})
|
353 |
+
|
354 |
+
base_dims.sort(key=default_sort_key)
|
355 |
+
derived_dims.sort(key=default_sort_key)
|
356 |
+
|
357 |
+
base_dims = Tuple(*base_dims)
|
358 |
+
derived_dims = Tuple(*derived_dims)
|
359 |
+
dimensional_dependencies = Dict({i: Dict(j) for i, j in dimensional_dependencies.items()})
|
360 |
+
obj = Basic.__new__(cls, base_dims, derived_dims, dimensional_dependencies)
|
361 |
+
return obj
|
362 |
+
|
363 |
+
@property
|
364 |
+
def base_dims(self):
|
365 |
+
return self.args[0]
|
366 |
+
|
367 |
+
@property
|
368 |
+
def derived_dims(self):
|
369 |
+
return self.args[1]
|
370 |
+
|
371 |
+
@property
|
372 |
+
def dimensional_dependencies(self):
|
373 |
+
return self.args[2]
|
374 |
+
|
375 |
+
def _get_dimensional_dependencies_for_name(self, dimension):
|
376 |
+
if isinstance(dimension, str):
|
377 |
+
dimension = Dimension(Symbol(dimension))
|
378 |
+
elif not isinstance(dimension, Dimension):
|
379 |
+
dimension = Dimension(dimension)
|
380 |
+
|
381 |
+
if dimension.name.is_Symbol:
|
382 |
+
# Dimensions not included in the dependencies are considered
|
383 |
+
# as base dimensions:
|
384 |
+
return dict(self.dimensional_dependencies.get(dimension, {dimension: 1}))
|
385 |
+
|
386 |
+
if dimension.name.is_number or dimension.name.is_NumberSymbol:
|
387 |
+
return {}
|
388 |
+
|
389 |
+
get_for_name = self._get_dimensional_dependencies_for_name
|
390 |
+
|
391 |
+
if dimension.name.is_Mul:
|
392 |
+
ret = collections.defaultdict(int)
|
393 |
+
dicts = [get_for_name(i) for i in dimension.name.args]
|
394 |
+
for d in dicts:
|
395 |
+
for k, v in d.items():
|
396 |
+
ret[k] += v
|
397 |
+
return {k: v for (k, v) in ret.items() if v != 0}
|
398 |
+
|
399 |
+
if dimension.name.is_Add:
|
400 |
+
dicts = [get_for_name(i) for i in dimension.name.args]
|
401 |
+
if all(d == dicts[0] for d in dicts[1:]):
|
402 |
+
return dicts[0]
|
403 |
+
raise TypeError("Only equivalent dimensions can be added or subtracted.")
|
404 |
+
|
405 |
+
if dimension.name.is_Pow:
|
406 |
+
dim_base = get_for_name(dimension.name.base)
|
407 |
+
dim_exp = get_for_name(dimension.name.exp)
|
408 |
+
if dim_exp == {} or dimension.name.exp.is_Symbol:
|
409 |
+
return {k: v * dimension.name.exp for (k, v) in dim_base.items()}
|
410 |
+
else:
|
411 |
+
raise TypeError("The exponent for the power operator must be a Symbol or dimensionless.")
|
412 |
+
|
413 |
+
if dimension.name.is_Function:
|
414 |
+
args = (Dimension._from_dimensional_dependencies(
|
415 |
+
get_for_name(arg)) for arg in dimension.name.args)
|
416 |
+
result = dimension.name.func(*args)
|
417 |
+
|
418 |
+
dicts = [get_for_name(i) for i in dimension.name.args]
|
419 |
+
|
420 |
+
if isinstance(result, Dimension):
|
421 |
+
return self.get_dimensional_dependencies(result)
|
422 |
+
elif result.func == dimension.name.func:
|
423 |
+
if isinstance(dimension.name, TrigonometricFunction):
|
424 |
+
if dicts[0] in ({}, {Dimension('angle'): 1}):
|
425 |
+
return {}
|
426 |
+
else:
|
427 |
+
raise TypeError("The input argument for the function {} must be dimensionless or have dimensions of angle.".format(dimension.func))
|
428 |
+
else:
|
429 |
+
if all(item == {} for item in dicts):
|
430 |
+
return {}
|
431 |
+
else:
|
432 |
+
raise TypeError("The input arguments for the function {} must be dimensionless.".format(dimension.func))
|
433 |
+
else:
|
434 |
+
return get_for_name(result)
|
435 |
+
|
436 |
+
raise TypeError("Type {} not implemented for get_dimensional_dependencies".format(type(dimension.name)))
|
437 |
+
|
438 |
+
def get_dimensional_dependencies(self, name, mark_dimensionless=False):
|
439 |
+
dimdep = self._get_dimensional_dependencies_for_name(name)
|
440 |
+
if mark_dimensionless and dimdep == {}:
|
441 |
+
return {Dimension(1): 1}
|
442 |
+
return {k: v for k, v in dimdep.items()}
|
443 |
+
|
444 |
+
def equivalent_dims(self, dim1, dim2):
|
445 |
+
deps1 = self.get_dimensional_dependencies(dim1)
|
446 |
+
deps2 = self.get_dimensional_dependencies(dim2)
|
447 |
+
return deps1 == deps2
|
448 |
+
|
449 |
+
def extend(self, new_base_dims, new_derived_dims=(), new_dim_deps=None):
|
450 |
+
deps = dict(self.dimensional_dependencies)
|
451 |
+
if new_dim_deps:
|
452 |
+
deps.update(new_dim_deps)
|
453 |
+
|
454 |
+
new_dim_sys = DimensionSystem(
|
455 |
+
tuple(self.base_dims) + tuple(new_base_dims),
|
456 |
+
tuple(self.derived_dims) + tuple(new_derived_dims),
|
457 |
+
deps
|
458 |
+
)
|
459 |
+
new_dim_sys._quantity_dimension_map.update(self._quantity_dimension_map)
|
460 |
+
new_dim_sys._quantity_scale_factors.update(self._quantity_scale_factors)
|
461 |
+
return new_dim_sys
|
462 |
+
|
463 |
+
def is_dimensionless(self, dimension):
|
464 |
+
"""
|
465 |
+
Check if the dimension object really has a dimension.
|
466 |
+
|
467 |
+
A dimension should have at least one component with non-zero power.
|
468 |
+
"""
|
469 |
+
if dimension.name == 1:
|
470 |
+
return True
|
471 |
+
return self.get_dimensional_dependencies(dimension) == {}
|
472 |
+
|
473 |
+
@property
|
474 |
+
def list_can_dims(self):
|
475 |
+
"""
|
476 |
+
Useless method, kept for compatibility with previous versions.
|
477 |
+
|
478 |
+
DO NOT USE.
|
479 |
+
|
480 |
+
List all canonical dimension names.
|
481 |
+
"""
|
482 |
+
dimset = set()
|
483 |
+
for i in self.base_dims:
|
484 |
+
dimset.update(set(self.get_dimensional_dependencies(i).keys()))
|
485 |
+
return tuple(sorted(dimset, key=str))
|
486 |
+
|
487 |
+
@property
|
488 |
+
def inv_can_transf_matrix(self):
|
489 |
+
"""
|
490 |
+
Useless method, kept for compatibility with previous versions.
|
491 |
+
|
492 |
+
DO NOT USE.
|
493 |
+
|
494 |
+
Compute the inverse transformation matrix from the base to the
|
495 |
+
canonical dimension basis.
|
496 |
+
|
497 |
+
It corresponds to the matrix where columns are the vector of base
|
498 |
+
dimensions in canonical basis.
|
499 |
+
|
500 |
+
This matrix will almost never be used because dimensions are always
|
501 |
+
defined with respect to the canonical basis, so no work has to be done
|
502 |
+
to get them in this basis. Nonetheless if this matrix is not square
|
503 |
+
(or not invertible) it means that we have chosen a bad basis.
|
504 |
+
"""
|
505 |
+
matrix = reduce(lambda x, y: x.row_join(y),
|
506 |
+
[self.dim_can_vector(d) for d in self.base_dims])
|
507 |
+
return matrix
|
508 |
+
|
509 |
+
@property
|
510 |
+
def can_transf_matrix(self):
|
511 |
+
"""
|
512 |
+
Useless method, kept for compatibility with previous versions.
|
513 |
+
|
514 |
+
DO NOT USE.
|
515 |
+
|
516 |
+
Return the canonical transformation matrix from the canonical to the
|
517 |
+
base dimension basis.
|
518 |
+
|
519 |
+
It is the inverse of the matrix computed with inv_can_transf_matrix().
|
520 |
+
"""
|
521 |
+
|
522 |
+
#TODO: the inversion will fail if the system is inconsistent, for
|
523 |
+
# example if the matrix is not a square
|
524 |
+
return reduce(lambda x, y: x.row_join(y),
|
525 |
+
[self.dim_can_vector(d) for d in sorted(self.base_dims, key=str)]
|
526 |
+
).inv()
|
527 |
+
|
528 |
+
def dim_can_vector(self, dim):
|
529 |
+
"""
|
530 |
+
Useless method, kept for compatibility with previous versions.
|
531 |
+
|
532 |
+
DO NOT USE.
|
533 |
+
|
534 |
+
Dimensional representation in terms of the canonical base dimensions.
|
535 |
+
"""
|
536 |
+
|
537 |
+
vec = []
|
538 |
+
for d in self.list_can_dims:
|
539 |
+
vec.append(self.get_dimensional_dependencies(dim).get(d, 0))
|
540 |
+
return Matrix(vec)
|
541 |
+
|
542 |
+
def dim_vector(self, dim):
|
543 |
+
"""
|
544 |
+
Useless method, kept for compatibility with previous versions.
|
545 |
+
|
546 |
+
DO NOT USE.
|
547 |
+
|
548 |
+
|
549 |
+
Vector representation in terms of the base dimensions.
|
550 |
+
"""
|
551 |
+
return self.can_transf_matrix * Matrix(self.dim_can_vector(dim))
|
552 |
+
|
553 |
+
def print_dim_base(self, dim):
|
554 |
+
"""
|
555 |
+
Give the string expression of a dimension in term of the basis symbols.
|
556 |
+
"""
|
557 |
+
dims = self.dim_vector(dim)
|
558 |
+
symbols = [i.symbol if i.symbol is not None else i.name for i in self.base_dims]
|
559 |
+
res = S.One
|
560 |
+
for (s, p) in zip(symbols, dims):
|
561 |
+
res *= s**p
|
562 |
+
return res
|
563 |
+
|
564 |
+
@property
|
565 |
+
def dim(self):
|
566 |
+
"""
|
567 |
+
Useless method, kept for compatibility with previous versions.
|
568 |
+
|
569 |
+
DO NOT USE.
|
570 |
+
|
571 |
+
Give the dimension of the system.
|
572 |
+
|
573 |
+
That is return the number of dimensions forming the basis.
|
574 |
+
"""
|
575 |
+
return len(self.base_dims)
|
576 |
+
|
577 |
+
@property
|
578 |
+
def is_consistent(self):
|
579 |
+
"""
|
580 |
+
Useless method, kept for compatibility with previous versions.
|
581 |
+
|
582 |
+
DO NOT USE.
|
583 |
+
|
584 |
+
Check if the system is well defined.
|
585 |
+
"""
|
586 |
+
|
587 |
+
# not enough or too many base dimensions compared to independent
|
588 |
+
# dimensions
|
589 |
+
# in vector language: the set of vectors do not form a basis
|
590 |
+
return self.inv_can_transf_matrix.is_square
|
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/prefixes.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module defining unit prefixe class and some constants.
|
3 |
+
|
4 |
+
Constant dict for SI and binary prefixes are defined as PREFIXES and
|
5 |
+
BIN_PREFIXES.
|
6 |
+
"""
|
7 |
+
from sympy.core.expr import Expr
|
8 |
+
from sympy.core.sympify import sympify
|
9 |
+
|
10 |
+
|
11 |
+
class Prefix(Expr):
|
12 |
+
"""
|
13 |
+
This class represent prefixes, with their name, symbol and factor.
|
14 |
+
|
15 |
+
Prefixes are used to create derived units from a given unit. They should
|
16 |
+
always be encapsulated into units.
|
17 |
+
|
18 |
+
The factor is constructed from a base (default is 10) to some power, and
|
19 |
+
it gives the total multiple or fraction. For example the kilometer km
|
20 |
+
is constructed from the meter (factor 1) and the kilo (10 to the power 3,
|
21 |
+
i.e. 1000). The base can be changed to allow e.g. binary prefixes.
|
22 |
+
|
23 |
+
A prefix multiplied by something will always return the product of this
|
24 |
+
other object times the factor, except if the other object:
|
25 |
+
|
26 |
+
- is a prefix and they can be combined into a new prefix;
|
27 |
+
- defines multiplication with prefixes (which is the case for the Unit
|
28 |
+
class).
|
29 |
+
"""
|
30 |
+
_op_priority = 13.0
|
31 |
+
is_commutative = True
|
32 |
+
|
33 |
+
def __new__(cls, name, abbrev, exponent, base=sympify(10), latex_repr=None):
|
34 |
+
|
35 |
+
name = sympify(name)
|
36 |
+
abbrev = sympify(abbrev)
|
37 |
+
exponent = sympify(exponent)
|
38 |
+
base = sympify(base)
|
39 |
+
|
40 |
+
obj = Expr.__new__(cls, name, abbrev, exponent, base)
|
41 |
+
obj._name = name
|
42 |
+
obj._abbrev = abbrev
|
43 |
+
obj._scale_factor = base**exponent
|
44 |
+
obj._exponent = exponent
|
45 |
+
obj._base = base
|
46 |
+
obj._latex_repr = latex_repr
|
47 |
+
return obj
|
48 |
+
|
49 |
+
@property
|
50 |
+
def name(self):
|
51 |
+
return self._name
|
52 |
+
|
53 |
+
@property
|
54 |
+
def abbrev(self):
|
55 |
+
return self._abbrev
|
56 |
+
|
57 |
+
@property
|
58 |
+
def scale_factor(self):
|
59 |
+
return self._scale_factor
|
60 |
+
|
61 |
+
def _latex(self, printer):
|
62 |
+
if self._latex_repr is None:
|
63 |
+
return r'\text{%s}' % self._abbrev
|
64 |
+
return self._latex_repr
|
65 |
+
|
66 |
+
@property
|
67 |
+
def base(self):
|
68 |
+
return self._base
|
69 |
+
|
70 |
+
def __str__(self):
|
71 |
+
return str(self._abbrev)
|
72 |
+
|
73 |
+
def __repr__(self):
|
74 |
+
if self.base == 10:
|
75 |
+
return "Prefix(%r, %r, %r)" % (
|
76 |
+
str(self.name), str(self.abbrev), self._exponent)
|
77 |
+
else:
|
78 |
+
return "Prefix(%r, %r, %r, %r)" % (
|
79 |
+
str(self.name), str(self.abbrev), self._exponent, self.base)
|
80 |
+
|
81 |
+
def __mul__(self, other):
|
82 |
+
from sympy.physics.units import Quantity
|
83 |
+
if not isinstance(other, (Quantity, Prefix)):
|
84 |
+
return super().__mul__(other)
|
85 |
+
|
86 |
+
fact = self.scale_factor * other.scale_factor
|
87 |
+
|
88 |
+
if fact == 1:
|
89 |
+
return 1
|
90 |
+
elif isinstance(other, Prefix):
|
91 |
+
# simplify prefix
|
92 |
+
for p in PREFIXES:
|
93 |
+
if PREFIXES[p].scale_factor == fact:
|
94 |
+
return PREFIXES[p]
|
95 |
+
return fact
|
96 |
+
|
97 |
+
return self.scale_factor * other
|
98 |
+
|
99 |
+
def __truediv__(self, other):
|
100 |
+
if not hasattr(other, "scale_factor"):
|
101 |
+
return super().__truediv__(other)
|
102 |
+
|
103 |
+
fact = self.scale_factor / other.scale_factor
|
104 |
+
|
105 |
+
if fact == 1:
|
106 |
+
return 1
|
107 |
+
elif isinstance(other, Prefix):
|
108 |
+
for p in PREFIXES:
|
109 |
+
if PREFIXES[p].scale_factor == fact:
|
110 |
+
return PREFIXES[p]
|
111 |
+
return fact
|
112 |
+
|
113 |
+
return self.scale_factor / other
|
114 |
+
|
115 |
+
def __rtruediv__(self, other):
|
116 |
+
if other == 1:
|
117 |
+
for p in PREFIXES:
|
118 |
+
if PREFIXES[p].scale_factor == 1 / self.scale_factor:
|
119 |
+
return PREFIXES[p]
|
120 |
+
return other / self.scale_factor
|
121 |
+
|
122 |
+
|
123 |
+
def prefix_unit(unit, prefixes):
|
124 |
+
"""
|
125 |
+
Return a list of all units formed by unit and the given prefixes.
|
126 |
+
|
127 |
+
You can use the predefined PREFIXES or BIN_PREFIXES, but you can also
|
128 |
+
pass as argument a subdict of them if you do not want all prefixed units.
|
129 |
+
|
130 |
+
>>> from sympy.physics.units.prefixes import (PREFIXES,
|
131 |
+
... prefix_unit)
|
132 |
+
>>> from sympy.physics.units import m
|
133 |
+
>>> pref = {"m": PREFIXES["m"], "c": PREFIXES["c"], "d": PREFIXES["d"]}
|
134 |
+
>>> prefix_unit(m, pref) # doctest: +SKIP
|
135 |
+
[millimeter, centimeter, decimeter]
|
136 |
+
"""
|
137 |
+
|
138 |
+
from sympy.physics.units.quantities import Quantity
|
139 |
+
from sympy.physics.units import UnitSystem
|
140 |
+
|
141 |
+
prefixed_units = []
|
142 |
+
|
143 |
+
for prefix_abbr, prefix in prefixes.items():
|
144 |
+
quantity = Quantity(
|
145 |
+
"%s%s" % (prefix.name, unit.name),
|
146 |
+
abbrev=("%s%s" % (prefix.abbrev, unit.abbrev)),
|
147 |
+
is_prefixed=True,
|
148 |
+
)
|
149 |
+
UnitSystem._quantity_dimensional_equivalence_map_global[quantity] = unit
|
150 |
+
UnitSystem._quantity_scale_factors_global[quantity] = (prefix.scale_factor, unit)
|
151 |
+
prefixed_units.append(quantity)
|
152 |
+
|
153 |
+
return prefixed_units
|
154 |
+
|
155 |
+
|
156 |
+
yotta = Prefix('yotta', 'Y', 24)
|
157 |
+
zetta = Prefix('zetta', 'Z', 21)
|
158 |
+
exa = Prefix('exa', 'E', 18)
|
159 |
+
peta = Prefix('peta', 'P', 15)
|
160 |
+
tera = Prefix('tera', 'T', 12)
|
161 |
+
giga = Prefix('giga', 'G', 9)
|
162 |
+
mega = Prefix('mega', 'M', 6)
|
163 |
+
kilo = Prefix('kilo', 'k', 3)
|
164 |
+
hecto = Prefix('hecto', 'h', 2)
|
165 |
+
deca = Prefix('deca', 'da', 1)
|
166 |
+
deci = Prefix('deci', 'd', -1)
|
167 |
+
centi = Prefix('centi', 'c', -2)
|
168 |
+
milli = Prefix('milli', 'm', -3)
|
169 |
+
micro = Prefix('micro', 'mu', -6, latex_repr=r"\mu")
|
170 |
+
nano = Prefix('nano', 'n', -9)
|
171 |
+
pico = Prefix('pico', 'p', -12)
|
172 |
+
femto = Prefix('femto', 'f', -15)
|
173 |
+
atto = Prefix('atto', 'a', -18)
|
174 |
+
zepto = Prefix('zepto', 'z', -21)
|
175 |
+
yocto = Prefix('yocto', 'y', -24)
|
176 |
+
|
177 |
+
|
178 |
+
# https://physics.nist.gov/cuu/Units/prefixes.html
|
179 |
+
PREFIXES = {
|
180 |
+
'Y': yotta,
|
181 |
+
'Z': zetta,
|
182 |
+
'E': exa,
|
183 |
+
'P': peta,
|
184 |
+
'T': tera,
|
185 |
+
'G': giga,
|
186 |
+
'M': mega,
|
187 |
+
'k': kilo,
|
188 |
+
'h': hecto,
|
189 |
+
'da': deca,
|
190 |
+
'd': deci,
|
191 |
+
'c': centi,
|
192 |
+
'm': milli,
|
193 |
+
'mu': micro,
|
194 |
+
'n': nano,
|
195 |
+
'p': pico,
|
196 |
+
'f': femto,
|
197 |
+
'a': atto,
|
198 |
+
'z': zepto,
|
199 |
+
'y': yocto,
|
200 |
+
}
|
201 |
+
|
202 |
+
|
203 |
+
kibi = Prefix('kibi', 'Y', 10, 2)
|
204 |
+
mebi = Prefix('mebi', 'Y', 20, 2)
|
205 |
+
gibi = Prefix('gibi', 'Y', 30, 2)
|
206 |
+
tebi = Prefix('tebi', 'Y', 40, 2)
|
207 |
+
pebi = Prefix('pebi', 'Y', 50, 2)
|
208 |
+
exbi = Prefix('exbi', 'Y', 60, 2)
|
209 |
+
|
210 |
+
|
211 |
+
# https://physics.nist.gov/cuu/Units/binary.html
|
212 |
+
BIN_PREFIXES = {
|
213 |
+
'Ki': kibi,
|
214 |
+
'Mi': mebi,
|
215 |
+
'Gi': gibi,
|
216 |
+
'Ti': tebi,
|
217 |
+
'Pi': pebi,
|
218 |
+
'Ei': exbi,
|
219 |
+
}
|