Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_homomorphisms.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__init__.py +15 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/_typing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/ddm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/dense.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainmatrix.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainscalar.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/eigen.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/exceptions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/linsolve.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/lll.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/normalforms.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/sdm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/_typing.py +12 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/ddm.py +496 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/dense.py +348 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/domainmatrix.py +1791 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/domainscalar.py +116 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/eigen.py +90 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/exceptions.py +67 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/linsolve.py +230 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/lll.py +94 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/normalforms.py +406 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/sdm.py +1241 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_ddm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_dense.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_domainmatrix.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_domainscalar.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_eigen.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_linsolve.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_lll.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_normalforms.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_sdm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_ddm.py +557 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_dense.py +345 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_domainmatrix.py +910 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_domainscalar.py +147 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_eigen.py +90 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_linsolve.py +111 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_lll.py +145 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_normalforms.py +75 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_sdm.py +444 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_basis.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_galoisgroups.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_minpoly.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_modules.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_homomorphisms.cpython-310.pyc
ADDED
Binary file (5.63 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
sympy.polys.matrices package.
|
4 |
+
|
5 |
+
The main export from this package is the DomainMatrix class which is a
|
6 |
+
lower-level implementation of matrices based on the polys Domains. This
|
7 |
+
implementation is typically a lot faster than SymPy's standard Matrix class
|
8 |
+
but is a work in progress and is still experimental.
|
9 |
+
|
10 |
+
"""
|
11 |
+
from .domainmatrix import DomainMatrix, DM
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
'DomainMatrix', 'DM',
|
15 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (612 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/_typing.cpython-310.pyc
ADDED
Binary file (1.11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/ddm.cpython-310.pyc
ADDED
Binary file (17.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/dense.cpython-310.pyc
ADDED
Binary file (8.92 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainmatrix.cpython-310.pyc
ADDED
Binary file (51.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainscalar.cpython-310.pyc
ADDED
Binary file (4.38 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/eigen.cpython-310.pyc
ADDED
Binary file (3.79 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/exceptions.cpython-310.pyc
ADDED
Binary file (2.12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/linsolve.cpython-310.pyc
ADDED
Binary file (5.46 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/lll.cpython-310.pyc
ADDED
Binary file (4.89 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/normalforms.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/sdm.cpython-310.pyc
ADDED
Binary file (34.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/_typing.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TypeVar, Protocol
|
2 |
+
|
3 |
+
|
4 |
+
T = TypeVar('T')
|
5 |
+
|
6 |
+
|
7 |
+
class RingElement(Protocol):
|
8 |
+
def __add__(self: T, other: T, /) -> T: ...
|
9 |
+
def __sub__(self: T, other: T, /) -> T: ...
|
10 |
+
def __mul__(self: T, other: T, /) -> T: ...
|
11 |
+
def __pow__(self: T, other: int, /) -> T: ...
|
12 |
+
def __neg__(self: T, /) -> T: ...
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/ddm.py
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
Module for the DDM class.
|
4 |
+
|
5 |
+
The DDM class is an internal representation used by DomainMatrix. The letters
|
6 |
+
DDM stand for Dense Domain Matrix. A DDM instance represents a matrix using
|
7 |
+
elements from a polynomial Domain (e.g. ZZ, QQ, ...) in a dense-matrix
|
8 |
+
representation.
|
9 |
+
|
10 |
+
Basic usage:
|
11 |
+
|
12 |
+
>>> from sympy import ZZ, QQ
|
13 |
+
>>> from sympy.polys.matrices.ddm import DDM
|
14 |
+
>>> A = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
|
15 |
+
>>> A.shape
|
16 |
+
(2, 2)
|
17 |
+
>>> A
|
18 |
+
[[0, 1], [-1, 0]]
|
19 |
+
>>> type(A)
|
20 |
+
<class 'sympy.polys.matrices.ddm.DDM'>
|
21 |
+
>>> A @ A
|
22 |
+
[[-1, 0], [0, -1]]
|
23 |
+
|
24 |
+
The ddm_* functions are designed to operate on DDM as well as on an ordinary
|
25 |
+
list of lists:
|
26 |
+
|
27 |
+
>>> from sympy.polys.matrices.dense import ddm_idet
|
28 |
+
>>> ddm_idet(A, QQ)
|
29 |
+
1
|
30 |
+
>>> ddm_idet([[0, 1], [-1, 0]], QQ)
|
31 |
+
1
|
32 |
+
>>> A
|
33 |
+
[[-1, 0], [0, -1]]
|
34 |
+
|
35 |
+
Note that ddm_idet modifies the input matrix in-place. It is recommended to
|
36 |
+
use the DDM.det method as a friendlier interface to this instead which takes
|
37 |
+
care of copying the matrix:
|
38 |
+
|
39 |
+
>>> B = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
|
40 |
+
>>> B.det()
|
41 |
+
1
|
42 |
+
|
43 |
+
Normally DDM would not be used directly and is just part of the internal
|
44 |
+
representation of DomainMatrix which adds further functionality including e.g.
|
45 |
+
unifying domains.
|
46 |
+
|
47 |
+
The dense format used by DDM is a list of lists of elements e.g. the 2x2
|
48 |
+
identity matrix is like [[1, 0], [0, 1]]. The DDM class itself is a subclass
|
49 |
+
of list and its list items are plain lists. Elements are accessed as e.g.
|
50 |
+
ddm[i][j] where ddm[i] gives the ith row and ddm[i][j] gets the element in the
|
51 |
+
jth column of that row. Subclassing list makes e.g. iteration and indexing
|
52 |
+
very efficient. We do not override __getitem__ because it would lose that
|
53 |
+
benefit.
|
54 |
+
|
55 |
+
The core routines are implemented by the ddm_* functions defined in dense.py.
|
56 |
+
Those functions are intended to be able to operate on a raw list-of-lists
|
57 |
+
representation of matrices with most functions operating in-place. The DDM
|
58 |
+
class takes care of copying etc and also stores a Domain object associated
|
59 |
+
with its elements. This makes it possible to implement things like A + B with
|
60 |
+
domain checking and also shape checking so that the list of lists
|
61 |
+
representation is friendlier.
|
62 |
+
|
63 |
+
"""
|
64 |
+
from itertools import chain
|
65 |
+
|
66 |
+
from .exceptions import DMBadInputError, DMShapeError, DMDomainError
|
67 |
+
|
68 |
+
from .dense import (
|
69 |
+
ddm_transpose,
|
70 |
+
ddm_iadd,
|
71 |
+
ddm_isub,
|
72 |
+
ddm_ineg,
|
73 |
+
ddm_imul,
|
74 |
+
ddm_irmul,
|
75 |
+
ddm_imatmul,
|
76 |
+
ddm_irref,
|
77 |
+
ddm_idet,
|
78 |
+
ddm_iinv,
|
79 |
+
ddm_ilu_split,
|
80 |
+
ddm_ilu_solve,
|
81 |
+
ddm_berk,
|
82 |
+
)
|
83 |
+
|
84 |
+
from sympy.polys.domains import QQ
|
85 |
+
from .lll import ddm_lll, ddm_lll_transform
|
86 |
+
|
87 |
+
|
88 |
+
class DDM(list):
|
89 |
+
"""Dense matrix based on polys domain elements
|
90 |
+
|
91 |
+
This is a list subclass and is a wrapper for a list of lists that supports
|
92 |
+
basic matrix arithmetic +, -, *, **.
|
93 |
+
"""
|
94 |
+
|
95 |
+
fmt = 'dense'
|
96 |
+
|
97 |
+
def __init__(self, rowslist, shape, domain):
|
98 |
+
super().__init__(rowslist)
|
99 |
+
self.shape = self.rows, self.cols = m, n = shape
|
100 |
+
self.domain = domain
|
101 |
+
|
102 |
+
if not (len(self) == m and all(len(row) == n for row in self)):
|
103 |
+
raise DMBadInputError("Inconsistent row-list/shape")
|
104 |
+
|
105 |
+
def getitem(self, i, j):
|
106 |
+
return self[i][j]
|
107 |
+
|
108 |
+
def setitem(self, i, j, value):
|
109 |
+
self[i][j] = value
|
110 |
+
|
111 |
+
def extract_slice(self, slice1, slice2):
|
112 |
+
ddm = [row[slice2] for row in self[slice1]]
|
113 |
+
rows = len(ddm)
|
114 |
+
cols = len(ddm[0]) if ddm else len(range(self.shape[1])[slice2])
|
115 |
+
return DDM(ddm, (rows, cols), self.domain)
|
116 |
+
|
117 |
+
def extract(self, rows, cols):
|
118 |
+
ddm = []
|
119 |
+
for i in rows:
|
120 |
+
rowi = self[i]
|
121 |
+
ddm.append([rowi[j] for j in cols])
|
122 |
+
return DDM(ddm, (len(rows), len(cols)), self.domain)
|
123 |
+
|
124 |
+
def to_list(self):
|
125 |
+
return list(self)
|
126 |
+
|
127 |
+
def to_list_flat(self):
|
128 |
+
flat = []
|
129 |
+
for row in self:
|
130 |
+
flat.extend(row)
|
131 |
+
return flat
|
132 |
+
|
133 |
+
def flatiter(self):
|
134 |
+
return chain.from_iterable(self)
|
135 |
+
|
136 |
+
def flat(self):
|
137 |
+
items = []
|
138 |
+
for row in self:
|
139 |
+
items.extend(row)
|
140 |
+
return items
|
141 |
+
|
142 |
+
def to_dok(self):
|
143 |
+
return {(i, j): e for i, row in enumerate(self) for j, e in enumerate(row)}
|
144 |
+
|
145 |
+
def to_ddm(self):
|
146 |
+
return self
|
147 |
+
|
148 |
+
def to_sdm(self):
|
149 |
+
return SDM.from_list(self, self.shape, self.domain)
|
150 |
+
|
151 |
+
def convert_to(self, K):
|
152 |
+
Kold = self.domain
|
153 |
+
if K == Kold:
|
154 |
+
return self.copy()
|
155 |
+
rows = ([K.convert_from(e, Kold) for e in row] for row in self)
|
156 |
+
return DDM(rows, self.shape, K)
|
157 |
+
|
158 |
+
def __str__(self):
|
159 |
+
rowsstr = ['[%s]' % ', '.join(map(str, row)) for row in self]
|
160 |
+
return '[%s]' % ', '.join(rowsstr)
|
161 |
+
|
162 |
+
def __repr__(self):
|
163 |
+
cls = type(self).__name__
|
164 |
+
rows = list.__repr__(self)
|
165 |
+
return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain)
|
166 |
+
|
167 |
+
def __eq__(self, other):
|
168 |
+
if not isinstance(other, DDM):
|
169 |
+
return False
|
170 |
+
return (super().__eq__(other) and self.domain == other.domain)
|
171 |
+
|
172 |
+
def __ne__(self, other):
|
173 |
+
return not self.__eq__(other)
|
174 |
+
|
175 |
+
@classmethod
|
176 |
+
def zeros(cls, shape, domain):
|
177 |
+
z = domain.zero
|
178 |
+
m, n = shape
|
179 |
+
rowslist = ([z] * n for _ in range(m))
|
180 |
+
return DDM(rowslist, shape, domain)
|
181 |
+
|
182 |
+
@classmethod
|
183 |
+
def ones(cls, shape, domain):
|
184 |
+
one = domain.one
|
185 |
+
m, n = shape
|
186 |
+
rowlist = ([one] * n for _ in range(m))
|
187 |
+
return DDM(rowlist, shape, domain)
|
188 |
+
|
189 |
+
@classmethod
|
190 |
+
def eye(cls, size, domain):
|
191 |
+
one = domain.one
|
192 |
+
ddm = cls.zeros((size, size), domain)
|
193 |
+
for i in range(size):
|
194 |
+
ddm[i][i] = one
|
195 |
+
return ddm
|
196 |
+
|
197 |
+
def copy(self):
|
198 |
+
copyrows = (row[:] for row in self)
|
199 |
+
return DDM(copyrows, self.shape, self.domain)
|
200 |
+
|
201 |
+
def transpose(self):
|
202 |
+
rows, cols = self.shape
|
203 |
+
if rows:
|
204 |
+
ddmT = ddm_transpose(self)
|
205 |
+
else:
|
206 |
+
ddmT = [[]] * cols
|
207 |
+
return DDM(ddmT, (cols, rows), self.domain)
|
208 |
+
|
209 |
+
def __add__(a, b):
|
210 |
+
if not isinstance(b, DDM):
|
211 |
+
return NotImplemented
|
212 |
+
return a.add(b)
|
213 |
+
|
214 |
+
def __sub__(a, b):
|
215 |
+
if not isinstance(b, DDM):
|
216 |
+
return NotImplemented
|
217 |
+
return a.sub(b)
|
218 |
+
|
219 |
+
def __neg__(a):
|
220 |
+
return a.neg()
|
221 |
+
|
222 |
+
def __mul__(a, b):
|
223 |
+
if b in a.domain:
|
224 |
+
return a.mul(b)
|
225 |
+
else:
|
226 |
+
return NotImplemented
|
227 |
+
|
228 |
+
def __rmul__(a, b):
|
229 |
+
if b in a.domain:
|
230 |
+
return a.mul(b)
|
231 |
+
else:
|
232 |
+
return NotImplemented
|
233 |
+
|
234 |
+
def __matmul__(a, b):
|
235 |
+
if isinstance(b, DDM):
|
236 |
+
return a.matmul(b)
|
237 |
+
else:
|
238 |
+
return NotImplemented
|
239 |
+
|
240 |
+
@classmethod
|
241 |
+
def _check(cls, a, op, b, ashape, bshape):
|
242 |
+
if a.domain != b.domain:
|
243 |
+
msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain)
|
244 |
+
raise DMDomainError(msg)
|
245 |
+
if ashape != bshape:
|
246 |
+
msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape)
|
247 |
+
raise DMShapeError(msg)
|
248 |
+
|
249 |
+
def add(a, b):
|
250 |
+
"""a + b"""
|
251 |
+
a._check(a, '+', b, a.shape, b.shape)
|
252 |
+
c = a.copy()
|
253 |
+
ddm_iadd(c, b)
|
254 |
+
return c
|
255 |
+
|
256 |
+
def sub(a, b):
|
257 |
+
"""a - b"""
|
258 |
+
a._check(a, '-', b, a.shape, b.shape)
|
259 |
+
c = a.copy()
|
260 |
+
ddm_isub(c, b)
|
261 |
+
return c
|
262 |
+
|
263 |
+
def neg(a):
|
264 |
+
"""-a"""
|
265 |
+
b = a.copy()
|
266 |
+
ddm_ineg(b)
|
267 |
+
return b
|
268 |
+
|
269 |
+
def mul(a, b):
|
270 |
+
c = a.copy()
|
271 |
+
ddm_imul(c, b)
|
272 |
+
return c
|
273 |
+
|
274 |
+
def rmul(a, b):
|
275 |
+
c = a.copy()
|
276 |
+
ddm_irmul(c, b)
|
277 |
+
return c
|
278 |
+
|
279 |
+
def matmul(a, b):
|
280 |
+
"""a @ b (matrix product)"""
|
281 |
+
m, o = a.shape
|
282 |
+
o2, n = b.shape
|
283 |
+
a._check(a, '*', b, o, o2)
|
284 |
+
c = a.zeros((m, n), a.domain)
|
285 |
+
ddm_imatmul(c, a, b)
|
286 |
+
return c
|
287 |
+
|
288 |
+
def mul_elementwise(a, b):
|
289 |
+
assert a.shape == b.shape
|
290 |
+
assert a.domain == b.domain
|
291 |
+
c = [[aij * bij for aij, bij in zip(ai, bi)] for ai, bi in zip(a, b)]
|
292 |
+
return DDM(c, a.shape, a.domain)
|
293 |
+
|
294 |
+
def hstack(A, *B):
|
295 |
+
"""Horizontally stacks :py:class:`~.DDM` matrices.
|
296 |
+
|
297 |
+
Examples
|
298 |
+
========
|
299 |
+
|
300 |
+
>>> from sympy import ZZ
|
301 |
+
>>> from sympy.polys.matrices.sdm import DDM
|
302 |
+
|
303 |
+
>>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
304 |
+
>>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
|
305 |
+
>>> A.hstack(B)
|
306 |
+
[[1, 2, 5, 6], [3, 4, 7, 8]]
|
307 |
+
|
308 |
+
>>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
|
309 |
+
>>> A.hstack(B, C)
|
310 |
+
[[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]]
|
311 |
+
"""
|
312 |
+
Anew = list(A.copy())
|
313 |
+
rows, cols = A.shape
|
314 |
+
domain = A.domain
|
315 |
+
|
316 |
+
for Bk in B:
|
317 |
+
Bkrows, Bkcols = Bk.shape
|
318 |
+
assert Bkrows == rows
|
319 |
+
assert Bk.domain == domain
|
320 |
+
|
321 |
+
cols += Bkcols
|
322 |
+
|
323 |
+
for i, Bki in enumerate(Bk):
|
324 |
+
Anew[i].extend(Bki)
|
325 |
+
|
326 |
+
return DDM(Anew, (rows, cols), A.domain)
|
327 |
+
|
328 |
+
def vstack(A, *B):
|
329 |
+
"""Vertically stacks :py:class:`~.DDM` matrices.
|
330 |
+
|
331 |
+
Examples
|
332 |
+
========
|
333 |
+
|
334 |
+
>>> from sympy import ZZ
|
335 |
+
>>> from sympy.polys.matrices.sdm import DDM
|
336 |
+
|
337 |
+
>>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
338 |
+
>>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
|
339 |
+
>>> A.vstack(B)
|
340 |
+
[[1, 2], [3, 4], [5, 6], [7, 8]]
|
341 |
+
|
342 |
+
>>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
|
343 |
+
>>> A.vstack(B, C)
|
344 |
+
[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]]
|
345 |
+
"""
|
346 |
+
Anew = list(A.copy())
|
347 |
+
rows, cols = A.shape
|
348 |
+
domain = A.domain
|
349 |
+
|
350 |
+
for Bk in B:
|
351 |
+
Bkrows, Bkcols = Bk.shape
|
352 |
+
assert Bkcols == cols
|
353 |
+
assert Bk.domain == domain
|
354 |
+
|
355 |
+
rows += Bkrows
|
356 |
+
|
357 |
+
Anew.extend(Bk.copy())
|
358 |
+
|
359 |
+
return DDM(Anew, (rows, cols), A.domain)
|
360 |
+
|
361 |
+
def applyfunc(self, func, domain):
|
362 |
+
elements = (list(map(func, row)) for row in self)
|
363 |
+
return DDM(elements, self.shape, domain)
|
364 |
+
|
365 |
+
def scc(a):
|
366 |
+
"""Strongly connected components of a square matrix *a*.
|
367 |
+
|
368 |
+
Examples
|
369 |
+
========
|
370 |
+
|
371 |
+
>>> from sympy import ZZ
|
372 |
+
>>> from sympy.polys.matrices.sdm import DDM
|
373 |
+
>>> A = DDM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ)
|
374 |
+
>>> A.scc()
|
375 |
+
[[0], [1]]
|
376 |
+
|
377 |
+
See also
|
378 |
+
========
|
379 |
+
|
380 |
+
sympy.polys.matrices.domainmatrix.DomainMatrix.scc
|
381 |
+
|
382 |
+
"""
|
383 |
+
return a.to_sdm().scc()
|
384 |
+
|
385 |
+
def rref(a):
|
386 |
+
"""Reduced-row echelon form of a and list of pivots"""
|
387 |
+
b = a.copy()
|
388 |
+
K = a.domain
|
389 |
+
partial_pivot = K.is_RealField or K.is_ComplexField
|
390 |
+
pivots = ddm_irref(b, _partial_pivot=partial_pivot)
|
391 |
+
return b, pivots
|
392 |
+
|
393 |
+
def nullspace(a):
|
394 |
+
rref, pivots = a.rref()
|
395 |
+
rows, cols = a.shape
|
396 |
+
domain = a.domain
|
397 |
+
|
398 |
+
basis = []
|
399 |
+
nonpivots = []
|
400 |
+
for i in range(cols):
|
401 |
+
if i in pivots:
|
402 |
+
continue
|
403 |
+
nonpivots.append(i)
|
404 |
+
vec = [domain.one if i == j else domain.zero for j in range(cols)]
|
405 |
+
for ii, jj in enumerate(pivots):
|
406 |
+
vec[jj] -= rref[ii][i]
|
407 |
+
basis.append(vec)
|
408 |
+
|
409 |
+
return DDM(basis, (len(basis), cols), domain), nonpivots
|
410 |
+
|
411 |
+
def particular(a):
|
412 |
+
return a.to_sdm().particular().to_ddm()
|
413 |
+
|
414 |
+
def det(a):
|
415 |
+
"""Determinant of a"""
|
416 |
+
m, n = a.shape
|
417 |
+
if m != n:
|
418 |
+
raise DMShapeError("Determinant of non-square matrix")
|
419 |
+
b = a.copy()
|
420 |
+
K = b.domain
|
421 |
+
deta = ddm_idet(b, K)
|
422 |
+
return deta
|
423 |
+
|
424 |
+
def inv(a):
|
425 |
+
"""Inverse of a"""
|
426 |
+
m, n = a.shape
|
427 |
+
if m != n:
|
428 |
+
raise DMShapeError("Determinant of non-square matrix")
|
429 |
+
ainv = a.copy()
|
430 |
+
K = a.domain
|
431 |
+
ddm_iinv(ainv, a, K)
|
432 |
+
return ainv
|
433 |
+
|
434 |
+
def lu(a):
|
435 |
+
"""L, U decomposition of a"""
|
436 |
+
m, n = a.shape
|
437 |
+
K = a.domain
|
438 |
+
|
439 |
+
U = a.copy()
|
440 |
+
L = a.eye(m, K)
|
441 |
+
swaps = ddm_ilu_split(L, U, K)
|
442 |
+
|
443 |
+
return L, U, swaps
|
444 |
+
|
445 |
+
def lu_solve(a, b):
|
446 |
+
"""x where a*x = b"""
|
447 |
+
m, n = a.shape
|
448 |
+
m2, o = b.shape
|
449 |
+
a._check(a, 'lu_solve', b, m, m2)
|
450 |
+
|
451 |
+
L, U, swaps = a.lu()
|
452 |
+
x = a.zeros((n, o), a.domain)
|
453 |
+
ddm_ilu_solve(x, L, U, swaps, b)
|
454 |
+
return x
|
455 |
+
|
456 |
+
def charpoly(a):
|
457 |
+
"""Coefficients of characteristic polynomial of a"""
|
458 |
+
K = a.domain
|
459 |
+
m, n = a.shape
|
460 |
+
if m != n:
|
461 |
+
raise DMShapeError("Charpoly of non-square matrix")
|
462 |
+
vec = ddm_berk(a, K)
|
463 |
+
coeffs = [vec[i][0] for i in range(n+1)]
|
464 |
+
return coeffs
|
465 |
+
|
466 |
+
def is_zero_matrix(self):
|
467 |
+
"""
|
468 |
+
Says whether this matrix has all zero entries.
|
469 |
+
"""
|
470 |
+
zero = self.domain.zero
|
471 |
+
return all(Mij == zero for Mij in self.flatiter())
|
472 |
+
|
473 |
+
def is_upper(self):
|
474 |
+
"""
|
475 |
+
Says whether this matrix is upper-triangular. True can be returned
|
476 |
+
even if the matrix is not square.
|
477 |
+
"""
|
478 |
+
zero = self.domain.zero
|
479 |
+
return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[:i])
|
480 |
+
|
481 |
+
def is_lower(self):
|
482 |
+
"""
|
483 |
+
Says whether this matrix is lower-triangular. True can be returned
|
484 |
+
even if the matrix is not square.
|
485 |
+
"""
|
486 |
+
zero = self.domain.zero
|
487 |
+
return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[i+1:])
|
488 |
+
|
489 |
+
def lll(A, delta=QQ(3, 4)):
|
490 |
+
return ddm_lll(A, delta=delta)
|
491 |
+
|
492 |
+
def lll_transform(A, delta=QQ(3, 4)):
|
493 |
+
return ddm_lll_transform(A, delta=delta)
|
494 |
+
|
495 |
+
|
496 |
+
from .sdm import SDM
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/dense.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
Module for the ddm_* routines for operating on a matrix in list of lists
|
4 |
+
matrix representation.
|
5 |
+
|
6 |
+
These routines are used internally by the DDM class which also provides a
|
7 |
+
friendlier interface for them. The idea here is to implement core matrix
|
8 |
+
routines in a way that can be applied to any simple list representation
|
9 |
+
without the need to use any particular matrix class. For example we can
|
10 |
+
compute the RREF of a matrix like:
|
11 |
+
|
12 |
+
>>> from sympy.polys.matrices.dense import ddm_irref
|
13 |
+
>>> M = [[1, 2, 3], [4, 5, 6]]
|
14 |
+
>>> pivots = ddm_irref(M)
|
15 |
+
>>> M
|
16 |
+
[[1.0, 0.0, -1.0], [0, 1.0, 2.0]]
|
17 |
+
|
18 |
+
These are lower-level routines that work mostly in place.The routines at this
|
19 |
+
level should not need to know what the domain of the elements is but should
|
20 |
+
ideally document what operations they will use and what functions they need to
|
21 |
+
be provided with.
|
22 |
+
|
23 |
+
The next-level up is the DDM class which uses these routines but wraps them up
|
24 |
+
with an interface that handles copying etc and keeps track of the Domain of
|
25 |
+
the elements of the matrix:
|
26 |
+
|
27 |
+
>>> from sympy.polys.domains import QQ
|
28 |
+
>>> from sympy.polys.matrices.ddm import DDM
|
29 |
+
>>> M = DDM([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ)
|
30 |
+
>>> M
|
31 |
+
[[1, 2, 3], [4, 5, 6]]
|
32 |
+
>>> Mrref, pivots = M.rref()
|
33 |
+
>>> Mrref
|
34 |
+
[[1, 0, -1], [0, 1, 2]]
|
35 |
+
|
36 |
+
"""
|
37 |
+
from __future__ import annotations
|
38 |
+
from operator import mul
|
39 |
+
from .exceptions import (
|
40 |
+
DMShapeError,
|
41 |
+
DMNonInvertibleMatrixError,
|
42 |
+
DMNonSquareMatrixError,
|
43 |
+
)
|
44 |
+
from typing import Sequence, TypeVar
|
45 |
+
from sympy.polys.matrices._typing import RingElement
|
46 |
+
|
47 |
+
|
48 |
+
T = TypeVar('T')
|
49 |
+
R = TypeVar('R', bound=RingElement)
|
50 |
+
|
51 |
+
|
52 |
+
def ddm_transpose(matrix: Sequence[Sequence[T]]) -> list[list[T]]:
|
53 |
+
"""matrix transpose"""
|
54 |
+
return list(map(list, zip(*matrix)))
|
55 |
+
|
56 |
+
|
57 |
+
def ddm_iadd(a: list[list[R]], b: Sequence[Sequence[R]]) -> None:
|
58 |
+
"""a += b"""
|
59 |
+
for ai, bi in zip(a, b):
|
60 |
+
for j, bij in enumerate(bi):
|
61 |
+
ai[j] += bij
|
62 |
+
|
63 |
+
|
64 |
+
def ddm_isub(a: list[list[R]], b: Sequence[Sequence[R]]) -> None:
|
65 |
+
"""a -= b"""
|
66 |
+
for ai, bi in zip(a, b):
|
67 |
+
for j, bij in enumerate(bi):
|
68 |
+
ai[j] -= bij
|
69 |
+
|
70 |
+
|
71 |
+
def ddm_ineg(a: list[list[R]]) -> None:
|
72 |
+
"""a <-- -a"""
|
73 |
+
for ai in a:
|
74 |
+
for j, aij in enumerate(ai):
|
75 |
+
ai[j] = -aij
|
76 |
+
|
77 |
+
|
78 |
+
def ddm_imul(a: list[list[R]], b: R) -> None:
|
79 |
+
for ai in a:
|
80 |
+
for j, aij in enumerate(ai):
|
81 |
+
ai[j] = aij * b
|
82 |
+
|
83 |
+
|
84 |
+
def ddm_irmul(a: list[list[R]], b: R) -> None:
|
85 |
+
for ai in a:
|
86 |
+
for j, aij in enumerate(ai):
|
87 |
+
ai[j] = b * aij
|
88 |
+
|
89 |
+
|
90 |
+
def ddm_imatmul(
|
91 |
+
a: list[list[R]], b: Sequence[Sequence[R]], c: Sequence[Sequence[R]]
|
92 |
+
) -> None:
|
93 |
+
"""a += b @ c"""
|
94 |
+
cT = list(zip(*c))
|
95 |
+
|
96 |
+
for bi, ai in zip(b, a):
|
97 |
+
for j, cTj in enumerate(cT):
|
98 |
+
ai[j] = sum(map(mul, bi, cTj), ai[j])
|
99 |
+
|
100 |
+
|
101 |
+
def ddm_irref(a, _partial_pivot=False):
|
102 |
+
"""a <-- rref(a)"""
|
103 |
+
# a is (m x n)
|
104 |
+
m = len(a)
|
105 |
+
if not m:
|
106 |
+
return []
|
107 |
+
n = len(a[0])
|
108 |
+
|
109 |
+
i = 0
|
110 |
+
pivots = []
|
111 |
+
|
112 |
+
for j in range(n):
|
113 |
+
# Proper pivoting should be used for all domains for performance
|
114 |
+
# reasons but it is only strictly needed for RR and CC (and possibly
|
115 |
+
# other domains like RR(x)). This path is used by DDM.rref() if the
|
116 |
+
# domain is RR or CC. It uses partial (row) pivoting based on the
|
117 |
+
# absolute value of the pivot candidates.
|
118 |
+
if _partial_pivot:
|
119 |
+
ip = max(range(i, m), key=lambda ip: abs(a[ip][j]))
|
120 |
+
a[i], a[ip] = a[ip], a[i]
|
121 |
+
|
122 |
+
# pivot
|
123 |
+
aij = a[i][j]
|
124 |
+
|
125 |
+
# zero-pivot
|
126 |
+
if not aij:
|
127 |
+
for ip in range(i+1, m):
|
128 |
+
aij = a[ip][j]
|
129 |
+
# row-swap
|
130 |
+
if aij:
|
131 |
+
a[i], a[ip] = a[ip], a[i]
|
132 |
+
break
|
133 |
+
else:
|
134 |
+
# next column
|
135 |
+
continue
|
136 |
+
|
137 |
+
# normalise row
|
138 |
+
ai = a[i]
|
139 |
+
aijinv = aij**-1
|
140 |
+
for l in range(j, n):
|
141 |
+
ai[l] *= aijinv # ai[j] = one
|
142 |
+
|
143 |
+
# eliminate above and below to the right
|
144 |
+
for k, ak in enumerate(a):
|
145 |
+
if k == i or not ak[j]:
|
146 |
+
continue
|
147 |
+
akj = ak[j]
|
148 |
+
ak[j] -= akj # ak[j] = zero
|
149 |
+
for l in range(j+1, n):
|
150 |
+
ak[l] -= akj * ai[l]
|
151 |
+
|
152 |
+
# next row
|
153 |
+
pivots.append(j)
|
154 |
+
i += 1
|
155 |
+
|
156 |
+
# no more rows?
|
157 |
+
if i >= m:
|
158 |
+
break
|
159 |
+
|
160 |
+
return pivots
|
161 |
+
|
162 |
+
|
163 |
+
def ddm_idet(a, K):
|
164 |
+
"""a <-- echelon(a); return det"""
|
165 |
+
# Bareiss algorithm
|
166 |
+
# https://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
|
167 |
+
|
168 |
+
# a is (m x n)
|
169 |
+
m = len(a)
|
170 |
+
if not m:
|
171 |
+
return K.one
|
172 |
+
n = len(a[0])
|
173 |
+
|
174 |
+
exquo = K.exquo
|
175 |
+
# uf keeps track of the sign change from row swaps
|
176 |
+
uf = K.one
|
177 |
+
|
178 |
+
for k in range(n-1):
|
179 |
+
if not a[k][k]:
|
180 |
+
for i in range(k+1, n):
|
181 |
+
if a[i][k]:
|
182 |
+
a[k], a[i] = a[i], a[k]
|
183 |
+
uf = -uf
|
184 |
+
break
|
185 |
+
else:
|
186 |
+
return K.zero
|
187 |
+
|
188 |
+
akkm1 = a[k-1][k-1] if k else K.one
|
189 |
+
|
190 |
+
for i in range(k+1, n):
|
191 |
+
for j in range(k+1, n):
|
192 |
+
a[i][j] = exquo(a[i][j]*a[k][k] - a[i][k]*a[k][j], akkm1)
|
193 |
+
|
194 |
+
return uf * a[-1][-1]
|
195 |
+
|
196 |
+
|
197 |
+
def ddm_iinv(ainv, a, K):
|
198 |
+
if not K.is_Field:
|
199 |
+
raise ValueError('Not a field')
|
200 |
+
|
201 |
+
# a is (m x n)
|
202 |
+
m = len(a)
|
203 |
+
if not m:
|
204 |
+
return
|
205 |
+
n = len(a[0])
|
206 |
+
if m != n:
|
207 |
+
raise DMNonSquareMatrixError
|
208 |
+
|
209 |
+
eye = [[K.one if i==j else K.zero for j in range(n)] for i in range(n)]
|
210 |
+
Aaug = [row + eyerow for row, eyerow in zip(a, eye)]
|
211 |
+
pivots = ddm_irref(Aaug)
|
212 |
+
if pivots != list(range(n)):
|
213 |
+
raise DMNonInvertibleMatrixError('Matrix det == 0; not invertible.')
|
214 |
+
ainv[:] = [row[n:] for row in Aaug]
|
215 |
+
|
216 |
+
|
217 |
+
def ddm_ilu_split(L, U, K):
|
218 |
+
"""L, U <-- LU(U)"""
|
219 |
+
m = len(U)
|
220 |
+
if not m:
|
221 |
+
return []
|
222 |
+
n = len(U[0])
|
223 |
+
|
224 |
+
swaps = ddm_ilu(U)
|
225 |
+
|
226 |
+
zeros = [K.zero] * min(m, n)
|
227 |
+
for i in range(1, m):
|
228 |
+
j = min(i, n)
|
229 |
+
L[i][:j] = U[i][:j]
|
230 |
+
U[i][:j] = zeros[:j]
|
231 |
+
|
232 |
+
return swaps
|
233 |
+
|
234 |
+
|
235 |
+
def ddm_ilu(a):
|
236 |
+
"""a <-- LU(a)"""
|
237 |
+
m = len(a)
|
238 |
+
if not m:
|
239 |
+
return []
|
240 |
+
n = len(a[0])
|
241 |
+
|
242 |
+
swaps = []
|
243 |
+
|
244 |
+
for i in range(min(m, n)):
|
245 |
+
if not a[i][i]:
|
246 |
+
for ip in range(i+1, m):
|
247 |
+
if a[ip][i]:
|
248 |
+
swaps.append((i, ip))
|
249 |
+
a[i], a[ip] = a[ip], a[i]
|
250 |
+
break
|
251 |
+
else:
|
252 |
+
# M = Matrix([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]])
|
253 |
+
continue
|
254 |
+
for j in range(i+1, m):
|
255 |
+
l_ji = a[j][i] / a[i][i]
|
256 |
+
a[j][i] = l_ji
|
257 |
+
for k in range(i+1, n):
|
258 |
+
a[j][k] -= l_ji * a[i][k]
|
259 |
+
|
260 |
+
return swaps
|
261 |
+
|
262 |
+
|
263 |
+
def ddm_ilu_solve(x, L, U, swaps, b):
|
264 |
+
"""x <-- solve(L*U*x = swaps(b))"""
|
265 |
+
m = len(U)
|
266 |
+
if not m:
|
267 |
+
return
|
268 |
+
n = len(U[0])
|
269 |
+
|
270 |
+
m2 = len(b)
|
271 |
+
if not m2:
|
272 |
+
raise DMShapeError("Shape mismtch")
|
273 |
+
o = len(b[0])
|
274 |
+
|
275 |
+
if m != m2:
|
276 |
+
raise DMShapeError("Shape mismtch")
|
277 |
+
if m < n:
|
278 |
+
raise NotImplementedError("Underdetermined")
|
279 |
+
|
280 |
+
if swaps:
|
281 |
+
b = [row[:] for row in b]
|
282 |
+
for i1, i2 in swaps:
|
283 |
+
b[i1], b[i2] = b[i2], b[i1]
|
284 |
+
|
285 |
+
# solve Ly = b
|
286 |
+
y = [[None] * o for _ in range(m)]
|
287 |
+
for k in range(o):
|
288 |
+
for i in range(m):
|
289 |
+
rhs = b[i][k]
|
290 |
+
for j in range(i):
|
291 |
+
rhs -= L[i][j] * y[j][k]
|
292 |
+
y[i][k] = rhs
|
293 |
+
|
294 |
+
if m > n:
|
295 |
+
for i in range(n, m):
|
296 |
+
for j in range(o):
|
297 |
+
if y[i][j]:
|
298 |
+
raise DMNonInvertibleMatrixError
|
299 |
+
|
300 |
+
# Solve Ux = y
|
301 |
+
for k in range(o):
|
302 |
+
for i in reversed(range(n)):
|
303 |
+
if not U[i][i]:
|
304 |
+
raise DMNonInvertibleMatrixError
|
305 |
+
rhs = y[i][k]
|
306 |
+
for j in range(i+1, n):
|
307 |
+
rhs -= U[i][j] * x[j][k]
|
308 |
+
x[i][k] = rhs / U[i][i]
|
309 |
+
|
310 |
+
|
311 |
+
def ddm_berk(M, K):
|
312 |
+
m = len(M)
|
313 |
+
if not m:
|
314 |
+
return [[K.one]]
|
315 |
+
n = len(M[0])
|
316 |
+
|
317 |
+
if m != n:
|
318 |
+
raise DMShapeError("Not square")
|
319 |
+
|
320 |
+
if n == 1:
|
321 |
+
return [[K.one], [-M[0][0]]]
|
322 |
+
|
323 |
+
a = M[0][0]
|
324 |
+
R = [M[0][1:]]
|
325 |
+
C = [[row[0]] for row in M[1:]]
|
326 |
+
A = [row[1:] for row in M[1:]]
|
327 |
+
|
328 |
+
q = ddm_berk(A, K)
|
329 |
+
|
330 |
+
T = [[K.zero] * n for _ in range(n+1)]
|
331 |
+
for i in range(n):
|
332 |
+
T[i][i] = K.one
|
333 |
+
T[i+1][i] = -a
|
334 |
+
for i in range(2, n+1):
|
335 |
+
if i == 2:
|
336 |
+
AnC = C
|
337 |
+
else:
|
338 |
+
C = AnC
|
339 |
+
AnC = [[K.zero] for row in C]
|
340 |
+
ddm_imatmul(AnC, A, C)
|
341 |
+
RAnC = [[K.zero]]
|
342 |
+
ddm_imatmul(RAnC, R, AnC)
|
343 |
+
for j in range(0, n+1-i):
|
344 |
+
T[i+j][j] = -RAnC[0][0]
|
345 |
+
|
346 |
+
qout = [[K.zero] for _ in range(n+1)]
|
347 |
+
ddm_imatmul(qout, T, q)
|
348 |
+
return qout
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/domainmatrix.py
ADDED
@@ -0,0 +1,1791 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
Module for the DomainMatrix class.
|
4 |
+
|
5 |
+
A DomainMatrix represents a matrix with elements that are in a particular
|
6 |
+
Domain. Each DomainMatrix internally wraps a DDM which is used for the
|
7 |
+
lower-level operations. The idea is that the DomainMatrix class provides the
|
8 |
+
convenience routines for converting between Expr and the poly domains as well
|
9 |
+
as unifying matrices with different domains.
|
10 |
+
|
11 |
+
"""
|
12 |
+
from functools import reduce
|
13 |
+
from typing import Union as tUnion, Tuple as tTuple
|
14 |
+
|
15 |
+
from sympy.core.sympify import _sympify
|
16 |
+
|
17 |
+
from ..domains import Domain
|
18 |
+
|
19 |
+
from ..constructor import construct_domain
|
20 |
+
|
21 |
+
from .exceptions import (DMNonSquareMatrixError, DMShapeError,
|
22 |
+
DMDomainError, DMFormatError, DMBadInputError,
|
23 |
+
DMNotAField)
|
24 |
+
|
25 |
+
from .ddm import DDM
|
26 |
+
|
27 |
+
from .sdm import SDM
|
28 |
+
|
29 |
+
from .domainscalar import DomainScalar
|
30 |
+
|
31 |
+
from sympy.polys.domains import ZZ, EXRAW, QQ
|
32 |
+
|
33 |
+
|
34 |
+
def DM(rows, domain):
|
35 |
+
"""Convenient alias for DomainMatrix.from_list
|
36 |
+
|
37 |
+
Examples
|
38 |
+
=======
|
39 |
+
|
40 |
+
>>> from sympy import ZZ
|
41 |
+
>>> from sympy.polys.matrices import DM
|
42 |
+
>>> DM([[1, 2], [3, 4]], ZZ)
|
43 |
+
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
|
44 |
+
|
45 |
+
See also
|
46 |
+
=======
|
47 |
+
|
48 |
+
DomainMatrix.from_list
|
49 |
+
"""
|
50 |
+
return DomainMatrix.from_list(rows, domain)
|
51 |
+
|
52 |
+
|
53 |
+
class DomainMatrix:
|
54 |
+
r"""
|
55 |
+
Associate Matrix with :py:class:`~.Domain`
|
56 |
+
|
57 |
+
Explanation
|
58 |
+
===========
|
59 |
+
|
60 |
+
DomainMatrix uses :py:class:`~.Domain` for its internal representation
|
61 |
+
which makes it faster than the SymPy Matrix class (currently) for many
|
62 |
+
common operations, but this advantage makes it not entirely compatible
|
63 |
+
with Matrix. DomainMatrix are analogous to numpy arrays with "dtype".
|
64 |
+
In the DomainMatrix, each element has a domain such as :ref:`ZZ`
|
65 |
+
or :ref:`QQ(a)`.
|
66 |
+
|
67 |
+
|
68 |
+
Examples
|
69 |
+
========
|
70 |
+
|
71 |
+
Creating a DomainMatrix from the existing Matrix class:
|
72 |
+
|
73 |
+
>>> from sympy import Matrix
|
74 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
75 |
+
>>> Matrix1 = Matrix([
|
76 |
+
... [1, 2],
|
77 |
+
... [3, 4]])
|
78 |
+
>>> A = DomainMatrix.from_Matrix(Matrix1)
|
79 |
+
>>> A
|
80 |
+
DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)
|
81 |
+
|
82 |
+
Directly forming a DomainMatrix:
|
83 |
+
|
84 |
+
>>> from sympy import ZZ
|
85 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
86 |
+
>>> A = DomainMatrix([
|
87 |
+
... [ZZ(1), ZZ(2)],
|
88 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
89 |
+
>>> A
|
90 |
+
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
|
91 |
+
|
92 |
+
See Also
|
93 |
+
========
|
94 |
+
|
95 |
+
DDM
|
96 |
+
SDM
|
97 |
+
Domain
|
98 |
+
Poly
|
99 |
+
|
100 |
+
"""
|
101 |
+
rep: tUnion[SDM, DDM]
|
102 |
+
shape: tTuple[int, int]
|
103 |
+
domain: Domain
|
104 |
+
|
105 |
+
def __new__(cls, rows, shape, domain, *, fmt=None):
|
106 |
+
"""
|
107 |
+
Creates a :py:class:`~.DomainMatrix`.
|
108 |
+
|
109 |
+
Parameters
|
110 |
+
==========
|
111 |
+
|
112 |
+
rows : Represents elements of DomainMatrix as list of lists
|
113 |
+
shape : Represents dimension of DomainMatrix
|
114 |
+
domain : Represents :py:class:`~.Domain` of DomainMatrix
|
115 |
+
|
116 |
+
Raises
|
117 |
+
======
|
118 |
+
|
119 |
+
TypeError
|
120 |
+
If any of rows, shape and domain are not provided
|
121 |
+
|
122 |
+
"""
|
123 |
+
if isinstance(rows, (DDM, SDM)):
|
124 |
+
raise TypeError("Use from_rep to initialise from SDM/DDM")
|
125 |
+
elif isinstance(rows, list):
|
126 |
+
rep = DDM(rows, shape, domain)
|
127 |
+
elif isinstance(rows, dict):
|
128 |
+
rep = SDM(rows, shape, domain)
|
129 |
+
else:
|
130 |
+
msg = "Input should be list-of-lists or dict-of-dicts"
|
131 |
+
raise TypeError(msg)
|
132 |
+
|
133 |
+
if fmt is not None:
|
134 |
+
if fmt == 'sparse':
|
135 |
+
rep = rep.to_sdm()
|
136 |
+
elif fmt == 'dense':
|
137 |
+
rep = rep.to_ddm()
|
138 |
+
else:
|
139 |
+
raise ValueError("fmt should be 'sparse' or 'dense'")
|
140 |
+
|
141 |
+
return cls.from_rep(rep)
|
142 |
+
|
143 |
+
def __getnewargs__(self):
|
144 |
+
rep = self.rep
|
145 |
+
if isinstance(rep, DDM):
|
146 |
+
arg = list(rep)
|
147 |
+
elif isinstance(rep, SDM):
|
148 |
+
arg = dict(rep)
|
149 |
+
else:
|
150 |
+
raise RuntimeError # pragma: no cover
|
151 |
+
return arg, self.shape, self.domain
|
152 |
+
|
153 |
+
def __getitem__(self, key):
|
154 |
+
i, j = key
|
155 |
+
m, n = self.shape
|
156 |
+
if not (isinstance(i, slice) or isinstance(j, slice)):
|
157 |
+
return DomainScalar(self.rep.getitem(i, j), self.domain)
|
158 |
+
|
159 |
+
if not isinstance(i, slice):
|
160 |
+
if not -m <= i < m:
|
161 |
+
raise IndexError("Row index out of range")
|
162 |
+
i = i % m
|
163 |
+
i = slice(i, i+1)
|
164 |
+
if not isinstance(j, slice):
|
165 |
+
if not -n <= j < n:
|
166 |
+
raise IndexError("Column index out of range")
|
167 |
+
j = j % n
|
168 |
+
j = slice(j, j+1)
|
169 |
+
|
170 |
+
return self.from_rep(self.rep.extract_slice(i, j))
|
171 |
+
|
172 |
+
def getitem_sympy(self, i, j):
|
173 |
+
return self.domain.to_sympy(self.rep.getitem(i, j))
|
174 |
+
|
175 |
+
def extract(self, rowslist, colslist):
|
176 |
+
return self.from_rep(self.rep.extract(rowslist, colslist))
|
177 |
+
|
178 |
+
def __setitem__(self, key, value):
|
179 |
+
i, j = key
|
180 |
+
if not self.domain.of_type(value):
|
181 |
+
raise TypeError
|
182 |
+
if isinstance(i, int) and isinstance(j, int):
|
183 |
+
self.rep.setitem(i, j, value)
|
184 |
+
else:
|
185 |
+
raise NotImplementedError
|
186 |
+
|
187 |
+
@classmethod
|
188 |
+
def from_rep(cls, rep):
|
189 |
+
"""Create a new DomainMatrix efficiently from DDM/SDM.
|
190 |
+
|
191 |
+
Examples
|
192 |
+
========
|
193 |
+
|
194 |
+
Create a :py:class:`~.DomainMatrix` with an dense internal
|
195 |
+
representation as :py:class:`~.DDM`:
|
196 |
+
|
197 |
+
>>> from sympy.polys.domains import ZZ
|
198 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
199 |
+
>>> from sympy.polys.matrices.ddm import DDM
|
200 |
+
>>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
201 |
+
>>> dM = DomainMatrix.from_rep(drep)
|
202 |
+
>>> dM
|
203 |
+
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
|
204 |
+
|
205 |
+
Create a :py:class:`~.DomainMatrix` with a sparse internal
|
206 |
+
representation as :py:class:`~.SDM`:
|
207 |
+
|
208 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
209 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
210 |
+
>>> from sympy import ZZ
|
211 |
+
>>> drep = SDM({0:{1:ZZ(1)},1:{0:ZZ(2)}}, (2, 2), ZZ)
|
212 |
+
>>> dM = DomainMatrix.from_rep(drep)
|
213 |
+
>>> dM
|
214 |
+
DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ)
|
215 |
+
|
216 |
+
Parameters
|
217 |
+
==========
|
218 |
+
|
219 |
+
rep: SDM or DDM
|
220 |
+
The internal sparse or dense representation of the matrix.
|
221 |
+
|
222 |
+
Returns
|
223 |
+
=======
|
224 |
+
|
225 |
+
DomainMatrix
|
226 |
+
A :py:class:`~.DomainMatrix` wrapping *rep*.
|
227 |
+
|
228 |
+
Notes
|
229 |
+
=====
|
230 |
+
|
231 |
+
This takes ownership of rep as its internal representation. If rep is
|
232 |
+
being mutated elsewhere then a copy should be provided to
|
233 |
+
``from_rep``. Only minimal verification or checking is done on *rep*
|
234 |
+
as this is supposed to be an efficient internal routine.
|
235 |
+
|
236 |
+
"""
|
237 |
+
if not isinstance(rep, (DDM, SDM)):
|
238 |
+
raise TypeError("rep should be of type DDM or SDM")
|
239 |
+
self = super().__new__(cls)
|
240 |
+
self.rep = rep
|
241 |
+
self.shape = rep.shape
|
242 |
+
self.domain = rep.domain
|
243 |
+
return self
|
244 |
+
|
245 |
+
|
246 |
+
@classmethod
|
247 |
+
def from_list(cls, rows, domain):
|
248 |
+
r"""
|
249 |
+
Convert a list of lists into a DomainMatrix
|
250 |
+
|
251 |
+
Parameters
|
252 |
+
==========
|
253 |
+
|
254 |
+
rows: list of lists
|
255 |
+
Each element of the inner lists should be either the single arg,
|
256 |
+
or tuple of args, that would be passed to the domain constructor
|
257 |
+
in order to form an element of the domain. See examples.
|
258 |
+
|
259 |
+
Returns
|
260 |
+
=======
|
261 |
+
|
262 |
+
DomainMatrix containing elements defined in rows
|
263 |
+
|
264 |
+
Examples
|
265 |
+
========
|
266 |
+
|
267 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
268 |
+
>>> from sympy import FF, QQ, ZZ
|
269 |
+
>>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ)
|
270 |
+
>>> A
|
271 |
+
DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ)
|
272 |
+
>>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7))
|
273 |
+
>>> B
|
274 |
+
DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7))
|
275 |
+
>>> C = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ)
|
276 |
+
>>> C
|
277 |
+
DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ)
|
278 |
+
|
279 |
+
See Also
|
280 |
+
========
|
281 |
+
|
282 |
+
from_list_sympy
|
283 |
+
|
284 |
+
"""
|
285 |
+
nrows = len(rows)
|
286 |
+
ncols = 0 if not nrows else len(rows[0])
|
287 |
+
conv = lambda e: domain(*e) if isinstance(e, tuple) else domain(e)
|
288 |
+
domain_rows = [[conv(e) for e in row] for row in rows]
|
289 |
+
return DomainMatrix(domain_rows, (nrows, ncols), domain)
|
290 |
+
|
291 |
+
|
292 |
+
@classmethod
|
293 |
+
def from_list_sympy(cls, nrows, ncols, rows, **kwargs):
|
294 |
+
r"""
|
295 |
+
Convert a list of lists of Expr into a DomainMatrix using construct_domain
|
296 |
+
|
297 |
+
Parameters
|
298 |
+
==========
|
299 |
+
|
300 |
+
nrows: number of rows
|
301 |
+
ncols: number of columns
|
302 |
+
rows: list of lists
|
303 |
+
|
304 |
+
Returns
|
305 |
+
=======
|
306 |
+
|
307 |
+
DomainMatrix containing elements of rows
|
308 |
+
|
309 |
+
Examples
|
310 |
+
========
|
311 |
+
|
312 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
313 |
+
>>> from sympy.abc import x, y, z
|
314 |
+
>>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]])
|
315 |
+
>>> A
|
316 |
+
DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z])
|
317 |
+
|
318 |
+
See Also
|
319 |
+
========
|
320 |
+
|
321 |
+
sympy.polys.constructor.construct_domain, from_dict_sympy
|
322 |
+
|
323 |
+
"""
|
324 |
+
assert len(rows) == nrows
|
325 |
+
assert all(len(row) == ncols for row in rows)
|
326 |
+
|
327 |
+
items_sympy = [_sympify(item) for row in rows for item in row]
|
328 |
+
|
329 |
+
domain, items_domain = cls.get_domain(items_sympy, **kwargs)
|
330 |
+
|
331 |
+
domain_rows = [[items_domain[ncols*r + c] for c in range(ncols)] for r in range(nrows)]
|
332 |
+
|
333 |
+
return DomainMatrix(domain_rows, (nrows, ncols), domain)
|
334 |
+
|
335 |
+
@classmethod
|
336 |
+
def from_dict_sympy(cls, nrows, ncols, elemsdict, **kwargs):
|
337 |
+
"""
|
338 |
+
|
339 |
+
Parameters
|
340 |
+
==========
|
341 |
+
|
342 |
+
nrows: number of rows
|
343 |
+
ncols: number of cols
|
344 |
+
elemsdict: dict of dicts containing non-zero elements of the DomainMatrix
|
345 |
+
|
346 |
+
Returns
|
347 |
+
=======
|
348 |
+
|
349 |
+
DomainMatrix containing elements of elemsdict
|
350 |
+
|
351 |
+
Examples
|
352 |
+
========
|
353 |
+
|
354 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
355 |
+
>>> from sympy.abc import x,y,z
|
356 |
+
>>> elemsdict = {0: {0:x}, 1:{1: y}, 2: {2: z}}
|
357 |
+
>>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict)
|
358 |
+
>>> A
|
359 |
+
DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z])
|
360 |
+
|
361 |
+
See Also
|
362 |
+
========
|
363 |
+
|
364 |
+
from_list_sympy
|
365 |
+
|
366 |
+
"""
|
367 |
+
if not all(0 <= r < nrows for r in elemsdict):
|
368 |
+
raise DMBadInputError("Row out of range")
|
369 |
+
if not all(0 <= c < ncols for row in elemsdict.values() for c in row):
|
370 |
+
raise DMBadInputError("Column out of range")
|
371 |
+
|
372 |
+
items_sympy = [_sympify(item) for row in elemsdict.values() for item in row.values()]
|
373 |
+
domain, items_domain = cls.get_domain(items_sympy, **kwargs)
|
374 |
+
|
375 |
+
idx = 0
|
376 |
+
items_dict = {}
|
377 |
+
for i, row in elemsdict.items():
|
378 |
+
items_dict[i] = {}
|
379 |
+
for j in row:
|
380 |
+
items_dict[i][j] = items_domain[idx]
|
381 |
+
idx += 1
|
382 |
+
|
383 |
+
return DomainMatrix(items_dict, (nrows, ncols), domain)
|
384 |
+
|
385 |
+
@classmethod
|
386 |
+
def from_Matrix(cls, M, fmt='sparse',**kwargs):
|
387 |
+
r"""
|
388 |
+
Convert Matrix to DomainMatrix
|
389 |
+
|
390 |
+
Parameters
|
391 |
+
==========
|
392 |
+
|
393 |
+
M: Matrix
|
394 |
+
|
395 |
+
Returns
|
396 |
+
=======
|
397 |
+
|
398 |
+
Returns DomainMatrix with identical elements as M
|
399 |
+
|
400 |
+
Examples
|
401 |
+
========
|
402 |
+
|
403 |
+
>>> from sympy import Matrix
|
404 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
405 |
+
>>> M = Matrix([
|
406 |
+
... [1.0, 3.4],
|
407 |
+
... [2.4, 1]])
|
408 |
+
>>> A = DomainMatrix.from_Matrix(M)
|
409 |
+
>>> A
|
410 |
+
DomainMatrix({0: {0: 1.0, 1: 3.4}, 1: {0: 2.4, 1: 1.0}}, (2, 2), RR)
|
411 |
+
|
412 |
+
We can keep internal representation as ddm using fmt='dense'
|
413 |
+
>>> from sympy import Matrix, QQ
|
414 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
415 |
+
>>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense')
|
416 |
+
>>> A.rep
|
417 |
+
[[1/2, 3/4], [0, 0]]
|
418 |
+
|
419 |
+
See Also
|
420 |
+
========
|
421 |
+
|
422 |
+
Matrix
|
423 |
+
|
424 |
+
"""
|
425 |
+
if fmt == 'dense':
|
426 |
+
return cls.from_list_sympy(*M.shape, M.tolist(), **kwargs)
|
427 |
+
|
428 |
+
return cls.from_dict_sympy(*M.shape, M.todod(), **kwargs)
|
429 |
+
|
430 |
+
@classmethod
|
431 |
+
def get_domain(cls, items_sympy, **kwargs):
|
432 |
+
K, items_K = construct_domain(items_sympy, **kwargs)
|
433 |
+
return K, items_K
|
434 |
+
|
435 |
+
def copy(self):
|
436 |
+
return self.from_rep(self.rep.copy())
|
437 |
+
|
438 |
+
def convert_to(self, K):
|
439 |
+
r"""
|
440 |
+
Change the domain of DomainMatrix to desired domain or field
|
441 |
+
|
442 |
+
Parameters
|
443 |
+
==========
|
444 |
+
|
445 |
+
K : Represents the desired domain or field.
|
446 |
+
Alternatively, ``None`` may be passed, in which case this method
|
447 |
+
just returns a copy of this DomainMatrix.
|
448 |
+
|
449 |
+
Returns
|
450 |
+
=======
|
451 |
+
|
452 |
+
DomainMatrix
|
453 |
+
DomainMatrix with the desired domain or field
|
454 |
+
|
455 |
+
Examples
|
456 |
+
========
|
457 |
+
|
458 |
+
>>> from sympy import ZZ, ZZ_I
|
459 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
460 |
+
>>> A = DomainMatrix([
|
461 |
+
... [ZZ(1), ZZ(2)],
|
462 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
463 |
+
|
464 |
+
>>> A.convert_to(ZZ_I)
|
465 |
+
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I)
|
466 |
+
|
467 |
+
"""
|
468 |
+
if K is None:
|
469 |
+
return self.copy()
|
470 |
+
return self.from_rep(self.rep.convert_to(K))
|
471 |
+
|
472 |
+
def to_sympy(self):
|
473 |
+
return self.convert_to(EXRAW)
|
474 |
+
|
475 |
+
def to_field(self):
|
476 |
+
r"""
|
477 |
+
Returns a DomainMatrix with the appropriate field
|
478 |
+
|
479 |
+
Returns
|
480 |
+
=======
|
481 |
+
|
482 |
+
DomainMatrix
|
483 |
+
DomainMatrix with the appropriate field
|
484 |
+
|
485 |
+
Examples
|
486 |
+
========
|
487 |
+
|
488 |
+
>>> from sympy import ZZ
|
489 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
490 |
+
>>> A = DomainMatrix([
|
491 |
+
... [ZZ(1), ZZ(2)],
|
492 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
493 |
+
|
494 |
+
>>> A.to_field()
|
495 |
+
DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ)
|
496 |
+
|
497 |
+
"""
|
498 |
+
K = self.domain.get_field()
|
499 |
+
return self.convert_to(K)
|
500 |
+
|
501 |
+
def to_sparse(self):
|
502 |
+
"""
|
503 |
+
Return a sparse DomainMatrix representation of *self*.
|
504 |
+
|
505 |
+
Examples
|
506 |
+
========
|
507 |
+
|
508 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
509 |
+
>>> from sympy import QQ
|
510 |
+
>>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ)
|
511 |
+
>>> A.rep
|
512 |
+
[[1, 0], [0, 2]]
|
513 |
+
>>> B = A.to_sparse()
|
514 |
+
>>> B.rep
|
515 |
+
{0: {0: 1}, 1: {1: 2}}
|
516 |
+
"""
|
517 |
+
if self.rep.fmt == 'sparse':
|
518 |
+
return self
|
519 |
+
|
520 |
+
return self.from_rep(SDM.from_ddm(self.rep))
|
521 |
+
|
522 |
+
def to_dense(self):
|
523 |
+
"""
|
524 |
+
Return a dense DomainMatrix representation of *self*.
|
525 |
+
|
526 |
+
Examples
|
527 |
+
========
|
528 |
+
|
529 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
530 |
+
>>> from sympy import QQ
|
531 |
+
>>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ)
|
532 |
+
>>> A.rep
|
533 |
+
{0: {0: 1}, 1: {1: 2}}
|
534 |
+
>>> B = A.to_dense()
|
535 |
+
>>> B.rep
|
536 |
+
[[1, 0], [0, 2]]
|
537 |
+
|
538 |
+
"""
|
539 |
+
if self.rep.fmt == 'dense':
|
540 |
+
return self
|
541 |
+
|
542 |
+
return self.from_rep(SDM.to_ddm(self.rep))
|
543 |
+
|
544 |
+
@classmethod
|
545 |
+
def _unify_domain(cls, *matrices):
|
546 |
+
"""Convert matrices to a common domain"""
|
547 |
+
domains = {matrix.domain for matrix in matrices}
|
548 |
+
if len(domains) == 1:
|
549 |
+
return matrices
|
550 |
+
domain = reduce(lambda x, y: x.unify(y), domains)
|
551 |
+
return tuple(matrix.convert_to(domain) for matrix in matrices)
|
552 |
+
|
553 |
+
@classmethod
|
554 |
+
def _unify_fmt(cls, *matrices, fmt=None):
|
555 |
+
"""Convert matrices to the same format.
|
556 |
+
|
557 |
+
If all matrices have the same format, then return unmodified.
|
558 |
+
Otherwise convert both to the preferred format given as *fmt* which
|
559 |
+
should be 'dense' or 'sparse'.
|
560 |
+
"""
|
561 |
+
formats = {matrix.rep.fmt for matrix in matrices}
|
562 |
+
if len(formats) == 1:
|
563 |
+
return matrices
|
564 |
+
if fmt == 'sparse':
|
565 |
+
return tuple(matrix.to_sparse() for matrix in matrices)
|
566 |
+
elif fmt == 'dense':
|
567 |
+
return tuple(matrix.to_dense() for matrix in matrices)
|
568 |
+
else:
|
569 |
+
raise ValueError("fmt should be 'sparse' or 'dense'")
|
570 |
+
|
571 |
+
def unify(self, *others, fmt=None):
|
572 |
+
"""
|
573 |
+
Unifies the domains and the format of self and other
|
574 |
+
matrices.
|
575 |
+
|
576 |
+
Parameters
|
577 |
+
==========
|
578 |
+
|
579 |
+
others : DomainMatrix
|
580 |
+
|
581 |
+
fmt: string 'dense', 'sparse' or `None` (default)
|
582 |
+
The preferred format to convert to if self and other are not
|
583 |
+
already in the same format. If `None` or not specified then no
|
584 |
+
conversion if performed.
|
585 |
+
|
586 |
+
Returns
|
587 |
+
=======
|
588 |
+
|
589 |
+
Tuple[DomainMatrix]
|
590 |
+
Matrices with unified domain and format
|
591 |
+
|
592 |
+
Examples
|
593 |
+
========
|
594 |
+
|
595 |
+
Unify the domain of DomainMatrix that have different domains:
|
596 |
+
|
597 |
+
>>> from sympy import ZZ, QQ
|
598 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
599 |
+
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
|
600 |
+
>>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ)
|
601 |
+
>>> Aq, Bq = A.unify(B)
|
602 |
+
>>> Aq
|
603 |
+
DomainMatrix([[1, 2]], (1, 2), QQ)
|
604 |
+
>>> Bq
|
605 |
+
DomainMatrix([[1/2, 2]], (1, 2), QQ)
|
606 |
+
|
607 |
+
Unify the format (dense or sparse):
|
608 |
+
|
609 |
+
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
|
610 |
+
>>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ)
|
611 |
+
>>> B.rep
|
612 |
+
{0: {0: 1}}
|
613 |
+
|
614 |
+
>>> A2, B2 = A.unify(B, fmt='dense')
|
615 |
+
>>> B2.rep
|
616 |
+
[[1, 0], [0, 0]]
|
617 |
+
|
618 |
+
See Also
|
619 |
+
========
|
620 |
+
|
621 |
+
convert_to, to_dense, to_sparse
|
622 |
+
|
623 |
+
"""
|
624 |
+
matrices = (self,) + others
|
625 |
+
matrices = DomainMatrix._unify_domain(*matrices)
|
626 |
+
if fmt is not None:
|
627 |
+
matrices = DomainMatrix._unify_fmt(*matrices, fmt=fmt)
|
628 |
+
return matrices
|
629 |
+
|
630 |
+
def to_Matrix(self):
|
631 |
+
r"""
|
632 |
+
Convert DomainMatrix to Matrix
|
633 |
+
|
634 |
+
Returns
|
635 |
+
=======
|
636 |
+
|
637 |
+
Matrix
|
638 |
+
MutableDenseMatrix for the DomainMatrix
|
639 |
+
|
640 |
+
Examples
|
641 |
+
========
|
642 |
+
|
643 |
+
>>> from sympy import ZZ
|
644 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
645 |
+
>>> A = DomainMatrix([
|
646 |
+
... [ZZ(1), ZZ(2)],
|
647 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
648 |
+
|
649 |
+
>>> A.to_Matrix()
|
650 |
+
Matrix([
|
651 |
+
[1, 2],
|
652 |
+
[3, 4]])
|
653 |
+
|
654 |
+
See Also
|
655 |
+
========
|
656 |
+
|
657 |
+
from_Matrix
|
658 |
+
|
659 |
+
"""
|
660 |
+
from sympy.matrices.dense import MutableDenseMatrix
|
661 |
+
elemlist = self.rep.to_list()
|
662 |
+
elements_sympy = [self.domain.to_sympy(e) for row in elemlist for e in row]
|
663 |
+
return MutableDenseMatrix(*self.shape, elements_sympy)
|
664 |
+
|
665 |
+
def to_list(self):
|
666 |
+
return self.rep.to_list()
|
667 |
+
|
668 |
+
def to_list_flat(self):
|
669 |
+
return self.rep.to_list_flat()
|
670 |
+
|
671 |
+
def to_dok(self):
|
672 |
+
return self.rep.to_dok()
|
673 |
+
|
674 |
+
def __repr__(self):
|
675 |
+
return 'DomainMatrix(%s, %r, %r)' % (str(self.rep), self.shape, self.domain)
|
676 |
+
|
677 |
+
def transpose(self):
|
678 |
+
"""Matrix transpose of ``self``"""
|
679 |
+
return self.from_rep(self.rep.transpose())
|
680 |
+
|
681 |
+
def flat(self):
|
682 |
+
rows, cols = self.shape
|
683 |
+
return [self[i,j].element for i in range(rows) for j in range(cols)]
|
684 |
+
|
685 |
+
@property
|
686 |
+
def is_zero_matrix(self):
|
687 |
+
return self.rep.is_zero_matrix()
|
688 |
+
|
689 |
+
@property
|
690 |
+
def is_upper(self):
|
691 |
+
"""
|
692 |
+
Says whether this matrix is upper-triangular. True can be returned
|
693 |
+
even if the matrix is not square.
|
694 |
+
"""
|
695 |
+
return self.rep.is_upper()
|
696 |
+
|
697 |
+
@property
|
698 |
+
def is_lower(self):
|
699 |
+
"""
|
700 |
+
Says whether this matrix is lower-triangular. True can be returned
|
701 |
+
even if the matrix is not square.
|
702 |
+
"""
|
703 |
+
return self.rep.is_lower()
|
704 |
+
|
705 |
+
@property
|
706 |
+
def is_square(self):
|
707 |
+
return self.shape[0] == self.shape[1]
|
708 |
+
|
709 |
+
def rank(self):
|
710 |
+
rref, pivots = self.rref()
|
711 |
+
return len(pivots)
|
712 |
+
|
713 |
+
def hstack(A, *B):
|
714 |
+
r"""Horizontally stack the given matrices.
|
715 |
+
|
716 |
+
Parameters
|
717 |
+
==========
|
718 |
+
|
719 |
+
B: DomainMatrix
|
720 |
+
Matrices to stack horizontally.
|
721 |
+
|
722 |
+
Returns
|
723 |
+
=======
|
724 |
+
|
725 |
+
DomainMatrix
|
726 |
+
DomainMatrix by stacking horizontally.
|
727 |
+
|
728 |
+
Examples
|
729 |
+
========
|
730 |
+
|
731 |
+
>>> from sympy import ZZ
|
732 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
733 |
+
|
734 |
+
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
735 |
+
>>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
|
736 |
+
>>> A.hstack(B)
|
737 |
+
DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ)
|
738 |
+
|
739 |
+
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
|
740 |
+
>>> A.hstack(B, C)
|
741 |
+
DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ)
|
742 |
+
|
743 |
+
See Also
|
744 |
+
========
|
745 |
+
|
746 |
+
unify
|
747 |
+
"""
|
748 |
+
A, *B = A.unify(*B, fmt='dense')
|
749 |
+
return DomainMatrix.from_rep(A.rep.hstack(*(Bk.rep for Bk in B)))
|
750 |
+
|
751 |
+
def vstack(A, *B):
|
752 |
+
r"""Vertically stack the given matrices.
|
753 |
+
|
754 |
+
Parameters
|
755 |
+
==========
|
756 |
+
|
757 |
+
B: DomainMatrix
|
758 |
+
Matrices to stack vertically.
|
759 |
+
|
760 |
+
Returns
|
761 |
+
=======
|
762 |
+
|
763 |
+
DomainMatrix
|
764 |
+
DomainMatrix by stacking vertically.
|
765 |
+
|
766 |
+
Examples
|
767 |
+
========
|
768 |
+
|
769 |
+
>>> from sympy import ZZ
|
770 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
771 |
+
|
772 |
+
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
773 |
+
>>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
|
774 |
+
>>> A.vstack(B)
|
775 |
+
DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], (4, 2), ZZ)
|
776 |
+
|
777 |
+
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
|
778 |
+
>>> A.vstack(B, C)
|
779 |
+
DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], (6, 2), ZZ)
|
780 |
+
|
781 |
+
See Also
|
782 |
+
========
|
783 |
+
|
784 |
+
unify
|
785 |
+
"""
|
786 |
+
A, *B = A.unify(*B, fmt='dense')
|
787 |
+
return DomainMatrix.from_rep(A.rep.vstack(*(Bk.rep for Bk in B)))
|
788 |
+
|
789 |
+
def applyfunc(self, func, domain=None):
|
790 |
+
if domain is None:
|
791 |
+
domain = self.domain
|
792 |
+
return self.from_rep(self.rep.applyfunc(func, domain))
|
793 |
+
|
794 |
+
def __add__(A, B):
|
795 |
+
if not isinstance(B, DomainMatrix):
|
796 |
+
return NotImplemented
|
797 |
+
A, B = A.unify(B, fmt='dense')
|
798 |
+
return A.add(B)
|
799 |
+
|
800 |
+
def __sub__(A, B):
|
801 |
+
if not isinstance(B, DomainMatrix):
|
802 |
+
return NotImplemented
|
803 |
+
A, B = A.unify(B, fmt='dense')
|
804 |
+
return A.sub(B)
|
805 |
+
|
806 |
+
def __neg__(A):
|
807 |
+
return A.neg()
|
808 |
+
|
809 |
+
def __mul__(A, B):
|
810 |
+
"""A * B"""
|
811 |
+
if isinstance(B, DomainMatrix):
|
812 |
+
A, B = A.unify(B, fmt='dense')
|
813 |
+
return A.matmul(B)
|
814 |
+
elif B in A.domain:
|
815 |
+
return A.scalarmul(B)
|
816 |
+
elif isinstance(B, DomainScalar):
|
817 |
+
A, B = A.unify(B)
|
818 |
+
return A.scalarmul(B.element)
|
819 |
+
else:
|
820 |
+
return NotImplemented
|
821 |
+
|
822 |
+
def __rmul__(A, B):
|
823 |
+
if B in A.domain:
|
824 |
+
return A.rscalarmul(B)
|
825 |
+
elif isinstance(B, DomainScalar):
|
826 |
+
A, B = A.unify(B)
|
827 |
+
return A.rscalarmul(B.element)
|
828 |
+
else:
|
829 |
+
return NotImplemented
|
830 |
+
|
831 |
+
def __pow__(A, n):
|
832 |
+
"""A ** n"""
|
833 |
+
if not isinstance(n, int):
|
834 |
+
return NotImplemented
|
835 |
+
return A.pow(n)
|
836 |
+
|
837 |
+
def _check(a, op, b, ashape, bshape):
|
838 |
+
if a.domain != b.domain:
|
839 |
+
msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain)
|
840 |
+
raise DMDomainError(msg)
|
841 |
+
if ashape != bshape:
|
842 |
+
msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape)
|
843 |
+
raise DMShapeError(msg)
|
844 |
+
if a.rep.fmt != b.rep.fmt:
|
845 |
+
msg = "Format mismatch: %s %s %s" % (a.rep.fmt, op, b.rep.fmt)
|
846 |
+
raise DMFormatError(msg)
|
847 |
+
|
848 |
+
def add(A, B):
|
849 |
+
r"""
|
850 |
+
Adds two DomainMatrix matrices of the same Domain
|
851 |
+
|
852 |
+
Parameters
|
853 |
+
==========
|
854 |
+
|
855 |
+
A, B: DomainMatrix
|
856 |
+
matrices to add
|
857 |
+
|
858 |
+
Returns
|
859 |
+
=======
|
860 |
+
|
861 |
+
DomainMatrix
|
862 |
+
DomainMatrix after Addition
|
863 |
+
|
864 |
+
Raises
|
865 |
+
======
|
866 |
+
|
867 |
+
DMShapeError
|
868 |
+
If the dimensions of the two DomainMatrix are not equal
|
869 |
+
|
870 |
+
ValueError
|
871 |
+
If the domain of the two DomainMatrix are not same
|
872 |
+
|
873 |
+
Examples
|
874 |
+
========
|
875 |
+
|
876 |
+
>>> from sympy import ZZ
|
877 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
878 |
+
>>> A = DomainMatrix([
|
879 |
+
... [ZZ(1), ZZ(2)],
|
880 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
881 |
+
>>> B = DomainMatrix([
|
882 |
+
... [ZZ(4), ZZ(3)],
|
883 |
+
... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
|
884 |
+
|
885 |
+
>>> A.add(B)
|
886 |
+
DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ)
|
887 |
+
|
888 |
+
See Also
|
889 |
+
========
|
890 |
+
|
891 |
+
sub, matmul
|
892 |
+
|
893 |
+
"""
|
894 |
+
A._check('+', B, A.shape, B.shape)
|
895 |
+
return A.from_rep(A.rep.add(B.rep))
|
896 |
+
|
897 |
+
|
898 |
+
def sub(A, B):
|
899 |
+
r"""
|
900 |
+
Subtracts two DomainMatrix matrices of the same Domain
|
901 |
+
|
902 |
+
Parameters
|
903 |
+
==========
|
904 |
+
|
905 |
+
A, B: DomainMatrix
|
906 |
+
matrices to subtract
|
907 |
+
|
908 |
+
Returns
|
909 |
+
=======
|
910 |
+
|
911 |
+
DomainMatrix
|
912 |
+
DomainMatrix after Subtraction
|
913 |
+
|
914 |
+
Raises
|
915 |
+
======
|
916 |
+
|
917 |
+
DMShapeError
|
918 |
+
If the dimensions of the two DomainMatrix are not equal
|
919 |
+
|
920 |
+
ValueError
|
921 |
+
If the domain of the two DomainMatrix are not same
|
922 |
+
|
923 |
+
Examples
|
924 |
+
========
|
925 |
+
|
926 |
+
>>> from sympy import ZZ
|
927 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
928 |
+
>>> A = DomainMatrix([
|
929 |
+
... [ZZ(1), ZZ(2)],
|
930 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
931 |
+
>>> B = DomainMatrix([
|
932 |
+
... [ZZ(4), ZZ(3)],
|
933 |
+
... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
|
934 |
+
|
935 |
+
>>> A.sub(B)
|
936 |
+
DomainMatrix([[-3, -1], [1, 3]], (2, 2), ZZ)
|
937 |
+
|
938 |
+
See Also
|
939 |
+
========
|
940 |
+
|
941 |
+
add, matmul
|
942 |
+
|
943 |
+
"""
|
944 |
+
A._check('-', B, A.shape, B.shape)
|
945 |
+
return A.from_rep(A.rep.sub(B.rep))
|
946 |
+
|
947 |
+
def neg(A):
|
948 |
+
r"""
|
949 |
+
Returns the negative of DomainMatrix
|
950 |
+
|
951 |
+
Parameters
|
952 |
+
==========
|
953 |
+
|
954 |
+
A : Represents a DomainMatrix
|
955 |
+
|
956 |
+
Returns
|
957 |
+
=======
|
958 |
+
|
959 |
+
DomainMatrix
|
960 |
+
DomainMatrix after Negation
|
961 |
+
|
962 |
+
Examples
|
963 |
+
========
|
964 |
+
|
965 |
+
>>> from sympy import ZZ
|
966 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
967 |
+
>>> A = DomainMatrix([
|
968 |
+
... [ZZ(1), ZZ(2)],
|
969 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
970 |
+
|
971 |
+
>>> A.neg()
|
972 |
+
DomainMatrix([[-1, -2], [-3, -4]], (2, 2), ZZ)
|
973 |
+
|
974 |
+
"""
|
975 |
+
return A.from_rep(A.rep.neg())
|
976 |
+
|
977 |
+
def mul(A, b):
|
978 |
+
r"""
|
979 |
+
Performs term by term multiplication for the second DomainMatrix
|
980 |
+
w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are
|
981 |
+
list of DomainMatrix matrices created after term by term multiplication.
|
982 |
+
|
983 |
+
Parameters
|
984 |
+
==========
|
985 |
+
|
986 |
+
A, B: DomainMatrix
|
987 |
+
matrices to multiply term-wise
|
988 |
+
|
989 |
+
Returns
|
990 |
+
=======
|
991 |
+
|
992 |
+
DomainMatrix
|
993 |
+
DomainMatrix after term by term multiplication
|
994 |
+
|
995 |
+
Examples
|
996 |
+
========
|
997 |
+
|
998 |
+
>>> from sympy import ZZ
|
999 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1000 |
+
>>> A = DomainMatrix([
|
1001 |
+
... [ZZ(1), ZZ(2)],
|
1002 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
1003 |
+
>>> B = DomainMatrix([
|
1004 |
+
... [ZZ(1), ZZ(1)],
|
1005 |
+
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
|
1006 |
+
|
1007 |
+
>>> A.mul(B)
|
1008 |
+
DomainMatrix([[DomainMatrix([[1, 1], [0, 1]], (2, 2), ZZ),
|
1009 |
+
DomainMatrix([[2, 2], [0, 2]], (2, 2), ZZ)],
|
1010 |
+
[DomainMatrix([[3, 3], [0, 3]], (2, 2), ZZ),
|
1011 |
+
DomainMatrix([[4, 4], [0, 4]], (2, 2), ZZ)]], (2, 2), ZZ)
|
1012 |
+
|
1013 |
+
See Also
|
1014 |
+
========
|
1015 |
+
|
1016 |
+
matmul
|
1017 |
+
|
1018 |
+
"""
|
1019 |
+
return A.from_rep(A.rep.mul(b))
|
1020 |
+
|
1021 |
+
def rmul(A, b):
|
1022 |
+
return A.from_rep(A.rep.rmul(b))
|
1023 |
+
|
1024 |
+
def matmul(A, B):
|
1025 |
+
r"""
|
1026 |
+
Performs matrix multiplication of two DomainMatrix matrices
|
1027 |
+
|
1028 |
+
Parameters
|
1029 |
+
==========
|
1030 |
+
|
1031 |
+
A, B: DomainMatrix
|
1032 |
+
to multiply
|
1033 |
+
|
1034 |
+
Returns
|
1035 |
+
=======
|
1036 |
+
|
1037 |
+
DomainMatrix
|
1038 |
+
DomainMatrix after multiplication
|
1039 |
+
|
1040 |
+
Examples
|
1041 |
+
========
|
1042 |
+
|
1043 |
+
>>> from sympy import ZZ
|
1044 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1045 |
+
>>> A = DomainMatrix([
|
1046 |
+
... [ZZ(1), ZZ(2)],
|
1047 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
1048 |
+
>>> B = DomainMatrix([
|
1049 |
+
... [ZZ(1), ZZ(1)],
|
1050 |
+
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
|
1051 |
+
|
1052 |
+
>>> A.matmul(B)
|
1053 |
+
DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ)
|
1054 |
+
|
1055 |
+
See Also
|
1056 |
+
========
|
1057 |
+
|
1058 |
+
mul, pow, add, sub
|
1059 |
+
|
1060 |
+
"""
|
1061 |
+
|
1062 |
+
A._check('*', B, A.shape[1], B.shape[0])
|
1063 |
+
return A.from_rep(A.rep.matmul(B.rep))
|
1064 |
+
|
1065 |
+
def _scalarmul(A, lamda, reverse):
|
1066 |
+
if lamda == A.domain.zero:
|
1067 |
+
return DomainMatrix.zeros(A.shape, A.domain)
|
1068 |
+
elif lamda == A.domain.one:
|
1069 |
+
return A.copy()
|
1070 |
+
elif reverse:
|
1071 |
+
return A.rmul(lamda)
|
1072 |
+
else:
|
1073 |
+
return A.mul(lamda)
|
1074 |
+
|
1075 |
+
def scalarmul(A, lamda):
|
1076 |
+
return A._scalarmul(lamda, reverse=False)
|
1077 |
+
|
1078 |
+
def rscalarmul(A, lamda):
|
1079 |
+
return A._scalarmul(lamda, reverse=True)
|
1080 |
+
|
1081 |
+
def mul_elementwise(A, B):
|
1082 |
+
assert A.domain == B.domain
|
1083 |
+
return A.from_rep(A.rep.mul_elementwise(B.rep))
|
1084 |
+
|
1085 |
+
def __truediv__(A, lamda):
|
1086 |
+
""" Method for Scalar Division"""
|
1087 |
+
if isinstance(lamda, int) or ZZ.of_type(lamda):
|
1088 |
+
lamda = DomainScalar(ZZ(lamda), ZZ)
|
1089 |
+
|
1090 |
+
if not isinstance(lamda, DomainScalar):
|
1091 |
+
return NotImplemented
|
1092 |
+
|
1093 |
+
A, lamda = A.to_field().unify(lamda)
|
1094 |
+
if lamda.element == lamda.domain.zero:
|
1095 |
+
raise ZeroDivisionError
|
1096 |
+
if lamda.element == lamda.domain.one:
|
1097 |
+
return A.to_field()
|
1098 |
+
|
1099 |
+
return A.mul(1 / lamda.element)
|
1100 |
+
|
1101 |
+
def pow(A, n):
|
1102 |
+
r"""
|
1103 |
+
Computes A**n
|
1104 |
+
|
1105 |
+
Parameters
|
1106 |
+
==========
|
1107 |
+
|
1108 |
+
A : DomainMatrix
|
1109 |
+
|
1110 |
+
n : exponent for A
|
1111 |
+
|
1112 |
+
Returns
|
1113 |
+
=======
|
1114 |
+
|
1115 |
+
DomainMatrix
|
1116 |
+
DomainMatrix on computing A**n
|
1117 |
+
|
1118 |
+
Raises
|
1119 |
+
======
|
1120 |
+
|
1121 |
+
NotImplementedError
|
1122 |
+
if n is negative.
|
1123 |
+
|
1124 |
+
Examples
|
1125 |
+
========
|
1126 |
+
|
1127 |
+
>>> from sympy import ZZ
|
1128 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1129 |
+
>>> A = DomainMatrix([
|
1130 |
+
... [ZZ(1), ZZ(1)],
|
1131 |
+
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
|
1132 |
+
|
1133 |
+
>>> A.pow(2)
|
1134 |
+
DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ)
|
1135 |
+
|
1136 |
+
See Also
|
1137 |
+
========
|
1138 |
+
|
1139 |
+
matmul
|
1140 |
+
|
1141 |
+
"""
|
1142 |
+
nrows, ncols = A.shape
|
1143 |
+
if nrows != ncols:
|
1144 |
+
raise DMNonSquareMatrixError('Power of a nonsquare matrix')
|
1145 |
+
if n < 0:
|
1146 |
+
raise NotImplementedError('Negative powers')
|
1147 |
+
elif n == 0:
|
1148 |
+
return A.eye(nrows, A.domain)
|
1149 |
+
elif n == 1:
|
1150 |
+
return A
|
1151 |
+
elif n % 2 == 1:
|
1152 |
+
return A * A**(n - 1)
|
1153 |
+
else:
|
1154 |
+
sqrtAn = A ** (n // 2)
|
1155 |
+
return sqrtAn * sqrtAn
|
1156 |
+
|
1157 |
+
def scc(self):
|
1158 |
+
"""Compute the strongly connected components of a DomainMatrix
|
1159 |
+
|
1160 |
+
Explanation
|
1161 |
+
===========
|
1162 |
+
|
1163 |
+
A square matrix can be considered as the adjacency matrix for a
|
1164 |
+
directed graph where the row and column indices are the vertices. In
|
1165 |
+
this graph if there is an edge from vertex ``i`` to vertex ``j`` if
|
1166 |
+
``M[i, j]`` is nonzero. This routine computes the strongly connected
|
1167 |
+
components of that graph which are subsets of the rows and columns that
|
1168 |
+
are connected by some nonzero element of the matrix. The strongly
|
1169 |
+
connected components are useful because many operations such as the
|
1170 |
+
determinant can be computed by working with the submatrices
|
1171 |
+
corresponding to each component.
|
1172 |
+
|
1173 |
+
Examples
|
1174 |
+
========
|
1175 |
+
|
1176 |
+
Find the strongly connected components of a matrix:
|
1177 |
+
|
1178 |
+
>>> from sympy import ZZ
|
1179 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1180 |
+
>>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)],
|
1181 |
+
... [ZZ(0), ZZ(3), ZZ(0)],
|
1182 |
+
... [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ)
|
1183 |
+
>>> M.scc()
|
1184 |
+
[[1], [0, 2]]
|
1185 |
+
|
1186 |
+
Compute the determinant from the components:
|
1187 |
+
|
1188 |
+
>>> MM = M.to_Matrix()
|
1189 |
+
>>> MM
|
1190 |
+
Matrix([
|
1191 |
+
[1, 0, 2],
|
1192 |
+
[0, 3, 0],
|
1193 |
+
[4, 6, 5]])
|
1194 |
+
>>> MM[[1], [1]]
|
1195 |
+
Matrix([[3]])
|
1196 |
+
>>> MM[[0, 2], [0, 2]]
|
1197 |
+
Matrix([
|
1198 |
+
[1, 2],
|
1199 |
+
[4, 5]])
|
1200 |
+
>>> MM.det()
|
1201 |
+
-9
|
1202 |
+
>>> MM[[1], [1]].det() * MM[[0, 2], [0, 2]].det()
|
1203 |
+
-9
|
1204 |
+
|
1205 |
+
The components are given in reverse topological order and represent a
|
1206 |
+
permutation of the rows and columns that will bring the matrix into
|
1207 |
+
block lower-triangular form:
|
1208 |
+
|
1209 |
+
>>> MM[[1, 0, 2], [1, 0, 2]]
|
1210 |
+
Matrix([
|
1211 |
+
[3, 0, 0],
|
1212 |
+
[0, 1, 2],
|
1213 |
+
[6, 4, 5]])
|
1214 |
+
|
1215 |
+
Returns
|
1216 |
+
=======
|
1217 |
+
|
1218 |
+
List of lists of integers
|
1219 |
+
Each list represents a strongly connected component.
|
1220 |
+
|
1221 |
+
See also
|
1222 |
+
========
|
1223 |
+
|
1224 |
+
sympy.matrices.matrices.MatrixBase.strongly_connected_components
|
1225 |
+
sympy.utilities.iterables.strongly_connected_components
|
1226 |
+
|
1227 |
+
"""
|
1228 |
+
rows, cols = self.shape
|
1229 |
+
assert rows == cols
|
1230 |
+
return self.rep.scc()
|
1231 |
+
|
1232 |
+
def rref(self):
|
1233 |
+
r"""
|
1234 |
+
Returns reduced-row echelon form and list of pivots for the DomainMatrix
|
1235 |
+
|
1236 |
+
Returns
|
1237 |
+
=======
|
1238 |
+
|
1239 |
+
(DomainMatrix, list)
|
1240 |
+
reduced-row echelon form and list of pivots for the DomainMatrix
|
1241 |
+
|
1242 |
+
Raises
|
1243 |
+
======
|
1244 |
+
|
1245 |
+
ValueError
|
1246 |
+
If the domain of DomainMatrix not a Field
|
1247 |
+
|
1248 |
+
Examples
|
1249 |
+
========
|
1250 |
+
|
1251 |
+
>>> from sympy import QQ
|
1252 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1253 |
+
>>> A = DomainMatrix([
|
1254 |
+
... [QQ(2), QQ(-1), QQ(0)],
|
1255 |
+
... [QQ(-1), QQ(2), QQ(-1)],
|
1256 |
+
... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
|
1257 |
+
|
1258 |
+
>>> rref_matrix, rref_pivots = A.rref()
|
1259 |
+
>>> rref_matrix
|
1260 |
+
DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ)
|
1261 |
+
>>> rref_pivots
|
1262 |
+
(0, 1, 2)
|
1263 |
+
|
1264 |
+
See Also
|
1265 |
+
========
|
1266 |
+
|
1267 |
+
convert_to, lu
|
1268 |
+
|
1269 |
+
"""
|
1270 |
+
if not self.domain.is_Field:
|
1271 |
+
raise DMNotAField('Not a field')
|
1272 |
+
rref_ddm, pivots = self.rep.rref()
|
1273 |
+
return self.from_rep(rref_ddm), tuple(pivots)
|
1274 |
+
|
1275 |
+
def columnspace(self):
|
1276 |
+
r"""
|
1277 |
+
Returns the columnspace for the DomainMatrix
|
1278 |
+
|
1279 |
+
Returns
|
1280 |
+
=======
|
1281 |
+
|
1282 |
+
DomainMatrix
|
1283 |
+
The columns of this matrix form a basis for the columnspace.
|
1284 |
+
|
1285 |
+
Examples
|
1286 |
+
========
|
1287 |
+
|
1288 |
+
>>> from sympy import QQ
|
1289 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1290 |
+
>>> A = DomainMatrix([
|
1291 |
+
... [QQ(1), QQ(-1)],
|
1292 |
+
... [QQ(2), QQ(-2)]], (2, 2), QQ)
|
1293 |
+
>>> A.columnspace()
|
1294 |
+
DomainMatrix([[1], [2]], (2, 1), QQ)
|
1295 |
+
|
1296 |
+
"""
|
1297 |
+
if not self.domain.is_Field:
|
1298 |
+
raise DMNotAField('Not a field')
|
1299 |
+
rref, pivots = self.rref()
|
1300 |
+
rows, cols = self.shape
|
1301 |
+
return self.extract(range(rows), pivots)
|
1302 |
+
|
1303 |
+
def rowspace(self):
|
1304 |
+
r"""
|
1305 |
+
Returns the rowspace for the DomainMatrix
|
1306 |
+
|
1307 |
+
Returns
|
1308 |
+
=======
|
1309 |
+
|
1310 |
+
DomainMatrix
|
1311 |
+
The rows of this matrix form a basis for the rowspace.
|
1312 |
+
|
1313 |
+
Examples
|
1314 |
+
========
|
1315 |
+
|
1316 |
+
>>> from sympy import QQ
|
1317 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1318 |
+
>>> A = DomainMatrix([
|
1319 |
+
... [QQ(1), QQ(-1)],
|
1320 |
+
... [QQ(2), QQ(-2)]], (2, 2), QQ)
|
1321 |
+
>>> A.rowspace()
|
1322 |
+
DomainMatrix([[1, -1]], (1, 2), QQ)
|
1323 |
+
|
1324 |
+
"""
|
1325 |
+
if not self.domain.is_Field:
|
1326 |
+
raise DMNotAField('Not a field')
|
1327 |
+
rref, pivots = self.rref()
|
1328 |
+
rows, cols = self.shape
|
1329 |
+
return self.extract(range(len(pivots)), range(cols))
|
1330 |
+
|
1331 |
+
def nullspace(self):
|
1332 |
+
r"""
|
1333 |
+
Returns the nullspace for the DomainMatrix
|
1334 |
+
|
1335 |
+
Returns
|
1336 |
+
=======
|
1337 |
+
|
1338 |
+
DomainMatrix
|
1339 |
+
The rows of this matrix form a basis for the nullspace.
|
1340 |
+
|
1341 |
+
Examples
|
1342 |
+
========
|
1343 |
+
|
1344 |
+
>>> from sympy import QQ
|
1345 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1346 |
+
>>> A = DomainMatrix([
|
1347 |
+
... [QQ(1), QQ(-1)],
|
1348 |
+
... [QQ(2), QQ(-2)]], (2, 2), QQ)
|
1349 |
+
>>> A.nullspace()
|
1350 |
+
DomainMatrix([[1, 1]], (1, 2), QQ)
|
1351 |
+
|
1352 |
+
"""
|
1353 |
+
if not self.domain.is_Field:
|
1354 |
+
raise DMNotAField('Not a field')
|
1355 |
+
return self.from_rep(self.rep.nullspace()[0])
|
1356 |
+
|
1357 |
+
def inv(self):
|
1358 |
+
r"""
|
1359 |
+
Finds the inverse of the DomainMatrix if exists
|
1360 |
+
|
1361 |
+
Returns
|
1362 |
+
=======
|
1363 |
+
|
1364 |
+
DomainMatrix
|
1365 |
+
DomainMatrix after inverse
|
1366 |
+
|
1367 |
+
Raises
|
1368 |
+
======
|
1369 |
+
|
1370 |
+
ValueError
|
1371 |
+
If the domain of DomainMatrix not a Field
|
1372 |
+
|
1373 |
+
DMNonSquareMatrixError
|
1374 |
+
If the DomainMatrix is not a not Square DomainMatrix
|
1375 |
+
|
1376 |
+
Examples
|
1377 |
+
========
|
1378 |
+
|
1379 |
+
>>> from sympy import QQ
|
1380 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1381 |
+
>>> A = DomainMatrix([
|
1382 |
+
... [QQ(2), QQ(-1), QQ(0)],
|
1383 |
+
... [QQ(-1), QQ(2), QQ(-1)],
|
1384 |
+
... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
|
1385 |
+
>>> A.inv()
|
1386 |
+
DomainMatrix([[2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ)
|
1387 |
+
|
1388 |
+
See Also
|
1389 |
+
========
|
1390 |
+
|
1391 |
+
neg
|
1392 |
+
|
1393 |
+
"""
|
1394 |
+
if not self.domain.is_Field:
|
1395 |
+
raise DMNotAField('Not a field')
|
1396 |
+
m, n = self.shape
|
1397 |
+
if m != n:
|
1398 |
+
raise DMNonSquareMatrixError
|
1399 |
+
inv = self.rep.inv()
|
1400 |
+
return self.from_rep(inv)
|
1401 |
+
|
1402 |
+
def det(self):
|
1403 |
+
r"""
|
1404 |
+
Returns the determinant of a Square DomainMatrix
|
1405 |
+
|
1406 |
+
Returns
|
1407 |
+
=======
|
1408 |
+
|
1409 |
+
S.Complexes
|
1410 |
+
determinant of Square DomainMatrix
|
1411 |
+
|
1412 |
+
Raises
|
1413 |
+
======
|
1414 |
+
|
1415 |
+
ValueError
|
1416 |
+
If the domain of DomainMatrix not a Field
|
1417 |
+
|
1418 |
+
Examples
|
1419 |
+
========
|
1420 |
+
|
1421 |
+
>>> from sympy import ZZ
|
1422 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1423 |
+
>>> A = DomainMatrix([
|
1424 |
+
... [ZZ(1), ZZ(2)],
|
1425 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
1426 |
+
|
1427 |
+
>>> A.det()
|
1428 |
+
-2
|
1429 |
+
|
1430 |
+
"""
|
1431 |
+
m, n = self.shape
|
1432 |
+
if m != n:
|
1433 |
+
raise DMNonSquareMatrixError
|
1434 |
+
return self.rep.det()
|
1435 |
+
|
1436 |
+
def lu(self):
|
1437 |
+
r"""
|
1438 |
+
Returns Lower and Upper decomposition of the DomainMatrix
|
1439 |
+
|
1440 |
+
Returns
|
1441 |
+
=======
|
1442 |
+
|
1443 |
+
(L, U, exchange)
|
1444 |
+
L, U are Lower and Upper decomposition of the DomainMatrix,
|
1445 |
+
exchange is the list of indices of rows exchanged in the decomposition.
|
1446 |
+
|
1447 |
+
Raises
|
1448 |
+
======
|
1449 |
+
|
1450 |
+
ValueError
|
1451 |
+
If the domain of DomainMatrix not a Field
|
1452 |
+
|
1453 |
+
Examples
|
1454 |
+
========
|
1455 |
+
|
1456 |
+
>>> from sympy import QQ
|
1457 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1458 |
+
>>> A = DomainMatrix([
|
1459 |
+
... [QQ(1), QQ(-1)],
|
1460 |
+
... [QQ(2), QQ(-2)]], (2, 2), QQ)
|
1461 |
+
>>> A.lu()
|
1462 |
+
(DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ), DomainMatrix([[1, -1], [0, 0]], (2, 2), QQ), [])
|
1463 |
+
|
1464 |
+
See Also
|
1465 |
+
========
|
1466 |
+
|
1467 |
+
lu_solve
|
1468 |
+
|
1469 |
+
"""
|
1470 |
+
if not self.domain.is_Field:
|
1471 |
+
raise DMNotAField('Not a field')
|
1472 |
+
L, U, swaps = self.rep.lu()
|
1473 |
+
return self.from_rep(L), self.from_rep(U), swaps
|
1474 |
+
|
1475 |
+
def lu_solve(self, rhs):
|
1476 |
+
r"""
|
1477 |
+
Solver for DomainMatrix x in the A*x = B
|
1478 |
+
|
1479 |
+
Parameters
|
1480 |
+
==========
|
1481 |
+
|
1482 |
+
rhs : DomainMatrix B
|
1483 |
+
|
1484 |
+
Returns
|
1485 |
+
=======
|
1486 |
+
|
1487 |
+
DomainMatrix
|
1488 |
+
x in A*x = B
|
1489 |
+
|
1490 |
+
Raises
|
1491 |
+
======
|
1492 |
+
|
1493 |
+
DMShapeError
|
1494 |
+
If the DomainMatrix A and rhs have different number of rows
|
1495 |
+
|
1496 |
+
ValueError
|
1497 |
+
If the domain of DomainMatrix A not a Field
|
1498 |
+
|
1499 |
+
Examples
|
1500 |
+
========
|
1501 |
+
|
1502 |
+
>>> from sympy import QQ
|
1503 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1504 |
+
>>> A = DomainMatrix([
|
1505 |
+
... [QQ(1), QQ(2)],
|
1506 |
+
... [QQ(3), QQ(4)]], (2, 2), QQ)
|
1507 |
+
>>> B = DomainMatrix([
|
1508 |
+
... [QQ(1), QQ(1)],
|
1509 |
+
... [QQ(0), QQ(1)]], (2, 2), QQ)
|
1510 |
+
|
1511 |
+
>>> A.lu_solve(B)
|
1512 |
+
DomainMatrix([[-2, -1], [3/2, 1]], (2, 2), QQ)
|
1513 |
+
|
1514 |
+
See Also
|
1515 |
+
========
|
1516 |
+
|
1517 |
+
lu
|
1518 |
+
|
1519 |
+
"""
|
1520 |
+
if self.shape[0] != rhs.shape[0]:
|
1521 |
+
raise DMShapeError("Shape")
|
1522 |
+
if not self.domain.is_Field:
|
1523 |
+
raise DMNotAField('Not a field')
|
1524 |
+
sol = self.rep.lu_solve(rhs.rep)
|
1525 |
+
return self.from_rep(sol)
|
1526 |
+
|
1527 |
+
def _solve(A, b):
|
1528 |
+
# XXX: Not sure about this method or its signature. It is just created
|
1529 |
+
# because it is needed by the holonomic module.
|
1530 |
+
if A.shape[0] != b.shape[0]:
|
1531 |
+
raise DMShapeError("Shape")
|
1532 |
+
if A.domain != b.domain or not A.domain.is_Field:
|
1533 |
+
raise DMNotAField('Not a field')
|
1534 |
+
Aaug = A.hstack(b)
|
1535 |
+
Arref, pivots = Aaug.rref()
|
1536 |
+
particular = Arref.from_rep(Arref.rep.particular())
|
1537 |
+
nullspace_rep, nonpivots = Arref[:,:-1].rep.nullspace()
|
1538 |
+
nullspace = Arref.from_rep(nullspace_rep)
|
1539 |
+
return particular, nullspace
|
1540 |
+
|
1541 |
+
def charpoly(self):
|
1542 |
+
r"""
|
1543 |
+
Returns the coefficients of the characteristic polynomial
|
1544 |
+
of the DomainMatrix. These elements will be domain elements.
|
1545 |
+
The domain of the elements will be same as domain of the DomainMatrix.
|
1546 |
+
|
1547 |
+
Returns
|
1548 |
+
=======
|
1549 |
+
|
1550 |
+
list
|
1551 |
+
coefficients of the characteristic polynomial
|
1552 |
+
|
1553 |
+
Raises
|
1554 |
+
======
|
1555 |
+
|
1556 |
+
DMNonSquareMatrixError
|
1557 |
+
If the DomainMatrix is not a not Square DomainMatrix
|
1558 |
+
|
1559 |
+
Examples
|
1560 |
+
========
|
1561 |
+
|
1562 |
+
>>> from sympy import ZZ
|
1563 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1564 |
+
>>> A = DomainMatrix([
|
1565 |
+
... [ZZ(1), ZZ(2)],
|
1566 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
1567 |
+
|
1568 |
+
>>> A.charpoly()
|
1569 |
+
[1, -5, -2]
|
1570 |
+
|
1571 |
+
"""
|
1572 |
+
m, n = self.shape
|
1573 |
+
if m != n:
|
1574 |
+
raise DMNonSquareMatrixError("not square")
|
1575 |
+
return self.rep.charpoly()
|
1576 |
+
|
1577 |
+
@classmethod
|
1578 |
+
def eye(cls, shape, domain):
|
1579 |
+
r"""
|
1580 |
+
Return identity matrix of size n
|
1581 |
+
|
1582 |
+
Examples
|
1583 |
+
========
|
1584 |
+
|
1585 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1586 |
+
>>> from sympy import QQ
|
1587 |
+
>>> DomainMatrix.eye(3, QQ)
|
1588 |
+
DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ)
|
1589 |
+
|
1590 |
+
"""
|
1591 |
+
if isinstance(shape, int):
|
1592 |
+
shape = (shape, shape)
|
1593 |
+
return cls.from_rep(SDM.eye(shape, domain))
|
1594 |
+
|
1595 |
+
@classmethod
|
1596 |
+
def diag(cls, diagonal, domain, shape=None):
|
1597 |
+
r"""
|
1598 |
+
Return diagonal matrix with entries from ``diagonal``.
|
1599 |
+
|
1600 |
+
Examples
|
1601 |
+
========
|
1602 |
+
|
1603 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1604 |
+
>>> from sympy import ZZ
|
1605 |
+
>>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ)
|
1606 |
+
DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ)
|
1607 |
+
|
1608 |
+
"""
|
1609 |
+
if shape is None:
|
1610 |
+
N = len(diagonal)
|
1611 |
+
shape = (N, N)
|
1612 |
+
return cls.from_rep(SDM.diag(diagonal, domain, shape))
|
1613 |
+
|
1614 |
+
@classmethod
|
1615 |
+
def zeros(cls, shape, domain, *, fmt='sparse'):
|
1616 |
+
"""Returns a zero DomainMatrix of size shape, belonging to the specified domain
|
1617 |
+
|
1618 |
+
Examples
|
1619 |
+
========
|
1620 |
+
|
1621 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1622 |
+
>>> from sympy import QQ
|
1623 |
+
>>> DomainMatrix.zeros((2, 3), QQ)
|
1624 |
+
DomainMatrix({}, (2, 3), QQ)
|
1625 |
+
|
1626 |
+
"""
|
1627 |
+
return cls.from_rep(SDM.zeros(shape, domain))
|
1628 |
+
|
1629 |
+
@classmethod
|
1630 |
+
def ones(cls, shape, domain):
|
1631 |
+
"""Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain
|
1632 |
+
|
1633 |
+
Examples
|
1634 |
+
========
|
1635 |
+
|
1636 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1637 |
+
>>> from sympy import QQ
|
1638 |
+
>>> DomainMatrix.ones((2,3), QQ)
|
1639 |
+
DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ)
|
1640 |
+
|
1641 |
+
"""
|
1642 |
+
return cls.from_rep(DDM.ones(shape, domain))
|
1643 |
+
|
1644 |
+
def __eq__(A, B):
|
1645 |
+
r"""
|
1646 |
+
Checks for two DomainMatrix matrices to be equal or not
|
1647 |
+
|
1648 |
+
Parameters
|
1649 |
+
==========
|
1650 |
+
|
1651 |
+
A, B: DomainMatrix
|
1652 |
+
to check equality
|
1653 |
+
|
1654 |
+
Returns
|
1655 |
+
=======
|
1656 |
+
|
1657 |
+
Boolean
|
1658 |
+
True for equal, else False
|
1659 |
+
|
1660 |
+
Raises
|
1661 |
+
======
|
1662 |
+
|
1663 |
+
NotImplementedError
|
1664 |
+
If B is not a DomainMatrix
|
1665 |
+
|
1666 |
+
Examples
|
1667 |
+
========
|
1668 |
+
|
1669 |
+
>>> from sympy import ZZ
|
1670 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
1671 |
+
>>> A = DomainMatrix([
|
1672 |
+
... [ZZ(1), ZZ(2)],
|
1673 |
+
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
1674 |
+
>>> B = DomainMatrix([
|
1675 |
+
... [ZZ(1), ZZ(1)],
|
1676 |
+
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
|
1677 |
+
>>> A.__eq__(A)
|
1678 |
+
True
|
1679 |
+
>>> A.__eq__(B)
|
1680 |
+
False
|
1681 |
+
|
1682 |
+
"""
|
1683 |
+
if not isinstance(A, type(B)):
|
1684 |
+
return NotImplemented
|
1685 |
+
return A.domain == B.domain and A.rep == B.rep
|
1686 |
+
|
1687 |
+
def unify_eq(A, B):
|
1688 |
+
if A.shape != B.shape:
|
1689 |
+
return False
|
1690 |
+
if A.domain != B.domain:
|
1691 |
+
A, B = A.unify(B)
|
1692 |
+
return A == B
|
1693 |
+
|
1694 |
+
def lll(A, delta=QQ(3, 4)):
|
1695 |
+
"""
|
1696 |
+
Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm.
|
1697 |
+
See [1]_ and [2]_.
|
1698 |
+
|
1699 |
+
Parameters
|
1700 |
+
==========
|
1701 |
+
|
1702 |
+
delta : QQ, optional
|
1703 |
+
The Lovász parameter. Must be in the interval (0.25, 1), with larger
|
1704 |
+
values producing a more reduced basis. The default is 0.75 for
|
1705 |
+
historical reasons.
|
1706 |
+
|
1707 |
+
Returns
|
1708 |
+
=======
|
1709 |
+
|
1710 |
+
The reduced basis as a DomainMatrix over ZZ.
|
1711 |
+
|
1712 |
+
Throws
|
1713 |
+
======
|
1714 |
+
|
1715 |
+
DMValueError: if delta is not in the range (0.25, 1)
|
1716 |
+
DMShapeError: if the matrix is not of shape (m, n) with m <= n
|
1717 |
+
DMDomainError: if the matrix domain is not ZZ
|
1718 |
+
DMRankError: if the matrix contains linearly dependent rows
|
1719 |
+
|
1720 |
+
Examples
|
1721 |
+
========
|
1722 |
+
|
1723 |
+
>>> from sympy.polys.domains import ZZ, QQ
|
1724 |
+
>>> from sympy.polys.matrices import DM
|
1725 |
+
>>> x = DM([[1, 0, 0, 0, -20160],
|
1726 |
+
... [0, 1, 0, 0, 33768],
|
1727 |
+
... [0, 0, 1, 0, 39578],
|
1728 |
+
... [0, 0, 0, 1, 47757]], ZZ)
|
1729 |
+
>>> y = DM([[10, -3, -2, 8, -4],
|
1730 |
+
... [3, -9, 8, 1, -11],
|
1731 |
+
... [-3, 13, -9, -3, -9],
|
1732 |
+
... [-12, -7, -11, 9, -1]], ZZ)
|
1733 |
+
>>> assert x.lll(delta=QQ(5, 6)) == y
|
1734 |
+
|
1735 |
+
Notes
|
1736 |
+
=====
|
1737 |
+
|
1738 |
+
The implementation is derived from the Maple code given in Figures 4.3
|
1739 |
+
and 4.4 of [3]_ (pp.68-69). It uses the efficient method of only calculating
|
1740 |
+
state updates as they are required.
|
1741 |
+
|
1742 |
+
See also
|
1743 |
+
========
|
1744 |
+
|
1745 |
+
lll_transform
|
1746 |
+
|
1747 |
+
References
|
1748 |
+
==========
|
1749 |
+
|
1750 |
+
.. [1] https://en.wikipedia.org/wiki/Lenstra–Lenstra–Lovász_lattice_basis_reduction_algorithm
|
1751 |
+
.. [2] https://web.archive.org/web/20221029115428/https://web.cs.elte.hu/~lovasz/scans/lll.pdf
|
1752 |
+
.. [3] Murray R. Bremner, "Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications"
|
1753 |
+
|
1754 |
+
"""
|
1755 |
+
return DomainMatrix.from_rep(A.rep.lll(delta=delta))
|
1756 |
+
|
1757 |
+
def lll_transform(A, delta=QQ(3, 4)):
|
1758 |
+
"""
|
1759 |
+
Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm
|
1760 |
+
and returns the reduced basis and transformation matrix.
|
1761 |
+
|
1762 |
+
Explanation
|
1763 |
+
===========
|
1764 |
+
|
1765 |
+
Parameters, algorithm and basis are the same as for :meth:`lll` except that
|
1766 |
+
the return value is a tuple `(B, T)` with `B` the reduced basis and
|
1767 |
+
`T` a transformation matrix. The original basis `A` is transformed to
|
1768 |
+
`B` with `T*A == B`. If only `B` is needed then :meth:`lll` should be
|
1769 |
+
used as it is a little faster.
|
1770 |
+
|
1771 |
+
Examples
|
1772 |
+
========
|
1773 |
+
|
1774 |
+
>>> from sympy.polys.domains import ZZ, QQ
|
1775 |
+
>>> from sympy.polys.matrices import DM
|
1776 |
+
>>> X = DM([[1, 0, 0, 0, -20160],
|
1777 |
+
... [0, 1, 0, 0, 33768],
|
1778 |
+
... [0, 0, 1, 0, 39578],
|
1779 |
+
... [0, 0, 0, 1, 47757]], ZZ)
|
1780 |
+
>>> B, T = X.lll_transform(delta=QQ(5, 6))
|
1781 |
+
>>> T * X == B
|
1782 |
+
True
|
1783 |
+
|
1784 |
+
See also
|
1785 |
+
========
|
1786 |
+
|
1787 |
+
lll
|
1788 |
+
|
1789 |
+
"""
|
1790 |
+
reduced, transform = A.rep.lll_transform(delta=delta)
|
1791 |
+
return DomainMatrix.from_rep(reduced), DomainMatrix.from_rep(transform)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/domainscalar.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
Module for the DomainScalar class.
|
4 |
+
|
5 |
+
A DomainScalar represents an element which is in a particular
|
6 |
+
Domain. The idea is that the DomainScalar class provides the
|
7 |
+
convenience routines for unifying elements with different domains.
|
8 |
+
|
9 |
+
It assists in Scalar Multiplication and getitem for DomainMatrix.
|
10 |
+
|
11 |
+
"""
|
12 |
+
from ..constructor import construct_domain
|
13 |
+
|
14 |
+
from sympy.polys.domains import Domain, ZZ
|
15 |
+
|
16 |
+
|
17 |
+
class DomainScalar:
|
18 |
+
r"""
|
19 |
+
docstring
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __new__(cls, element, domain):
|
23 |
+
if not isinstance(domain, Domain):
|
24 |
+
raise TypeError("domain should be of type Domain")
|
25 |
+
if not domain.of_type(element):
|
26 |
+
raise TypeError("element %s should be in domain %s" % (element, domain))
|
27 |
+
return cls.new(element, domain)
|
28 |
+
|
29 |
+
@classmethod
|
30 |
+
def new(cls, element, domain):
|
31 |
+
obj = super().__new__(cls)
|
32 |
+
obj.element = element
|
33 |
+
obj.domain = domain
|
34 |
+
return obj
|
35 |
+
|
36 |
+
def __repr__(self):
|
37 |
+
return repr(self.element)
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def from_sympy(cls, expr):
|
41 |
+
[domain, [element]] = construct_domain([expr])
|
42 |
+
return cls.new(element, domain)
|
43 |
+
|
44 |
+
def to_sympy(self):
|
45 |
+
return self.domain.to_sympy(self.element)
|
46 |
+
|
47 |
+
def to_domain(self, domain):
|
48 |
+
element = domain.convert_from(self.element, self.domain)
|
49 |
+
return self.new(element, domain)
|
50 |
+
|
51 |
+
def convert_to(self, domain):
|
52 |
+
return self.to_domain(domain)
|
53 |
+
|
54 |
+
def unify(self, other):
|
55 |
+
domain = self.domain.unify(other.domain)
|
56 |
+
return self.to_domain(domain), other.to_domain(domain)
|
57 |
+
|
58 |
+
def __add__(self, other):
|
59 |
+
if not isinstance(other, DomainScalar):
|
60 |
+
return NotImplemented
|
61 |
+
self, other = self.unify(other)
|
62 |
+
return self.new(self.element + other.element, self.domain)
|
63 |
+
|
64 |
+
def __sub__(self, other):
|
65 |
+
if not isinstance(other, DomainScalar):
|
66 |
+
return NotImplemented
|
67 |
+
self, other = self.unify(other)
|
68 |
+
return self.new(self.element - other.element, self.domain)
|
69 |
+
|
70 |
+
def __mul__(self, other):
|
71 |
+
if not isinstance(other, DomainScalar):
|
72 |
+
if isinstance(other, int):
|
73 |
+
other = DomainScalar(ZZ(other), ZZ)
|
74 |
+
else:
|
75 |
+
return NotImplemented
|
76 |
+
|
77 |
+
self, other = self.unify(other)
|
78 |
+
return self.new(self.element * other.element, self.domain)
|
79 |
+
|
80 |
+
def __floordiv__(self, other):
|
81 |
+
if not isinstance(other, DomainScalar):
|
82 |
+
return NotImplemented
|
83 |
+
self, other = self.unify(other)
|
84 |
+
return self.new(self.domain.quo(self.element, other.element), self.domain)
|
85 |
+
|
86 |
+
def __mod__(self, other):
|
87 |
+
if not isinstance(other, DomainScalar):
|
88 |
+
return NotImplemented
|
89 |
+
self, other = self.unify(other)
|
90 |
+
return self.new(self.domain.rem(self.element, other.element), self.domain)
|
91 |
+
|
92 |
+
def __divmod__(self, other):
|
93 |
+
if not isinstance(other, DomainScalar):
|
94 |
+
return NotImplemented
|
95 |
+
self, other = self.unify(other)
|
96 |
+
q, r = self.domain.div(self.element, other.element)
|
97 |
+
return (self.new(q, self.domain), self.new(r, self.domain))
|
98 |
+
|
99 |
+
def __pow__(self, n):
|
100 |
+
if not isinstance(n, int):
|
101 |
+
return NotImplemented
|
102 |
+
return self.new(self.element**n, self.domain)
|
103 |
+
|
104 |
+
def __pos__(self):
|
105 |
+
return self.new(+self.element, self.domain)
|
106 |
+
|
107 |
+
def __eq__(self, other):
|
108 |
+
if not isinstance(other, DomainScalar):
|
109 |
+
return NotImplemented
|
110 |
+
return self.element == other.element and self.domain == other.domain
|
111 |
+
|
112 |
+
def is_zero(self):
|
113 |
+
return self.element == self.domain.zero
|
114 |
+
|
115 |
+
def is_one(self):
|
116 |
+
return self.element == self.domain.one
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/eigen.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
Routines for computing eigenvectors with DomainMatrix.
|
4 |
+
|
5 |
+
"""
|
6 |
+
from sympy.core.symbol import Dummy
|
7 |
+
|
8 |
+
from ..agca.extensions import FiniteExtension
|
9 |
+
from ..factortools import dup_factor_list
|
10 |
+
from ..polyroots import roots
|
11 |
+
from ..polytools import Poly
|
12 |
+
from ..rootoftools import CRootOf
|
13 |
+
|
14 |
+
from .domainmatrix import DomainMatrix
|
15 |
+
|
16 |
+
|
17 |
+
def dom_eigenvects(A, l=Dummy('lambda')):
|
18 |
+
charpoly = A.charpoly()
|
19 |
+
rows, cols = A.shape
|
20 |
+
domain = A.domain
|
21 |
+
_, factors = dup_factor_list(charpoly, domain)
|
22 |
+
|
23 |
+
rational_eigenvects = []
|
24 |
+
algebraic_eigenvects = []
|
25 |
+
for base, exp in factors:
|
26 |
+
if len(base) == 2:
|
27 |
+
field = domain
|
28 |
+
eigenval = -base[1] / base[0]
|
29 |
+
|
30 |
+
EE_items = [
|
31 |
+
[eigenval if i == j else field.zero for j in range(cols)]
|
32 |
+
for i in range(rows)]
|
33 |
+
EE = DomainMatrix(EE_items, (rows, cols), field)
|
34 |
+
|
35 |
+
basis = (A - EE).nullspace()
|
36 |
+
rational_eigenvects.append((field, eigenval, exp, basis))
|
37 |
+
else:
|
38 |
+
minpoly = Poly.from_list(base, l, domain=domain)
|
39 |
+
field = FiniteExtension(minpoly)
|
40 |
+
eigenval = field(l)
|
41 |
+
|
42 |
+
AA_items = [
|
43 |
+
[Poly.from_list([item], l, domain=domain).rep for item in row]
|
44 |
+
for row in A.rep.to_ddm()]
|
45 |
+
AA_items = [[field(item) for item in row] for row in AA_items]
|
46 |
+
AA = DomainMatrix(AA_items, (rows, cols), field)
|
47 |
+
EE_items = [
|
48 |
+
[eigenval if i == j else field.zero for j in range(cols)]
|
49 |
+
for i in range(rows)]
|
50 |
+
EE = DomainMatrix(EE_items, (rows, cols), field)
|
51 |
+
|
52 |
+
basis = (AA - EE).nullspace()
|
53 |
+
algebraic_eigenvects.append((field, minpoly, exp, basis))
|
54 |
+
|
55 |
+
return rational_eigenvects, algebraic_eigenvects
|
56 |
+
|
57 |
+
|
58 |
+
def dom_eigenvects_to_sympy(
|
59 |
+
rational_eigenvects, algebraic_eigenvects,
|
60 |
+
Matrix, **kwargs
|
61 |
+
):
|
62 |
+
result = []
|
63 |
+
|
64 |
+
for field, eigenvalue, multiplicity, eigenvects in rational_eigenvects:
|
65 |
+
eigenvects = eigenvects.rep.to_ddm()
|
66 |
+
eigenvalue = field.to_sympy(eigenvalue)
|
67 |
+
new_eigenvects = [
|
68 |
+
Matrix([field.to_sympy(x) for x in vect])
|
69 |
+
for vect in eigenvects]
|
70 |
+
result.append((eigenvalue, multiplicity, new_eigenvects))
|
71 |
+
|
72 |
+
for field, minpoly, multiplicity, eigenvects in algebraic_eigenvects:
|
73 |
+
eigenvects = eigenvects.rep.to_ddm()
|
74 |
+
l = minpoly.gens[0]
|
75 |
+
|
76 |
+
eigenvects = [[field.to_sympy(x) for x in vect] for vect in eigenvects]
|
77 |
+
|
78 |
+
degree = minpoly.degree()
|
79 |
+
minpoly = minpoly.as_expr()
|
80 |
+
eigenvals = roots(minpoly, l, **kwargs)
|
81 |
+
if len(eigenvals) != degree:
|
82 |
+
eigenvals = [CRootOf(minpoly, l, idx) for idx in range(degree)]
|
83 |
+
|
84 |
+
for eigenvalue in eigenvals:
|
85 |
+
new_eigenvects = [
|
86 |
+
Matrix([x.subs(l, eigenvalue) for x in vect])
|
87 |
+
for vect in eigenvects]
|
88 |
+
result.append((eigenvalue, multiplicity, new_eigenvects))
|
89 |
+
|
90 |
+
return result
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/exceptions.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
Module to define exceptions to be used in sympy.polys.matrices modules and
|
4 |
+
classes.
|
5 |
+
|
6 |
+
Ideally all exceptions raised in these modules would be defined and documented
|
7 |
+
here and not e.g. imported from matrices. Also ideally generic exceptions like
|
8 |
+
ValueError/TypeError would not be raised anywhere.
|
9 |
+
|
10 |
+
"""
|
11 |
+
|
12 |
+
|
13 |
+
class DMError(Exception):
|
14 |
+
"""Base class for errors raised by DomainMatrix"""
|
15 |
+
pass
|
16 |
+
|
17 |
+
|
18 |
+
class DMBadInputError(DMError):
|
19 |
+
"""list of lists is inconsistent with shape"""
|
20 |
+
pass
|
21 |
+
|
22 |
+
|
23 |
+
class DMDomainError(DMError):
|
24 |
+
"""domains do not match"""
|
25 |
+
pass
|
26 |
+
|
27 |
+
|
28 |
+
class DMNotAField(DMDomainError):
|
29 |
+
"""domain is not a field"""
|
30 |
+
pass
|
31 |
+
|
32 |
+
|
33 |
+
class DMFormatError(DMError):
|
34 |
+
"""mixed dense/sparse not supported"""
|
35 |
+
pass
|
36 |
+
|
37 |
+
|
38 |
+
class DMNonInvertibleMatrixError(DMError):
|
39 |
+
"""The matrix in not invertible"""
|
40 |
+
pass
|
41 |
+
|
42 |
+
|
43 |
+
class DMRankError(DMError):
|
44 |
+
"""matrix does not have expected rank"""
|
45 |
+
pass
|
46 |
+
|
47 |
+
|
48 |
+
class DMShapeError(DMError):
|
49 |
+
"""shapes are inconsistent"""
|
50 |
+
pass
|
51 |
+
|
52 |
+
|
53 |
+
class DMNonSquareMatrixError(DMShapeError):
|
54 |
+
"""The matrix is not square"""
|
55 |
+
pass
|
56 |
+
|
57 |
+
|
58 |
+
class DMValueError(DMError):
|
59 |
+
"""The value passed is invalid"""
|
60 |
+
pass
|
61 |
+
|
62 |
+
|
63 |
+
__all__ = [
|
64 |
+
'DMError', 'DMBadInputError', 'DMDomainError', 'DMFormatError',
|
65 |
+
'DMRankError', 'DMShapeError', 'DMNotAField',
|
66 |
+
'DMNonInvertibleMatrixError', 'DMNonSquareMatrixError', 'DMValueError'
|
67 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/linsolve.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# sympy.polys.matrices.linsolve module
|
3 |
+
#
|
4 |
+
# This module defines the _linsolve function which is the internal workhorse
|
5 |
+
# used by linsolve. This computes the solution of a system of linear equations
|
6 |
+
# using the SDM sparse matrix implementation in sympy.polys.matrices.sdm. This
|
7 |
+
# is a replacement for solve_lin_sys in sympy.polys.solvers which is
|
8 |
+
# inefficient for large sparse systems due to the use of a PolyRing with many
|
9 |
+
# generators:
|
10 |
+
#
|
11 |
+
# https://github.com/sympy/sympy/issues/20857
|
12 |
+
#
|
13 |
+
# The implementation of _linsolve here handles:
|
14 |
+
#
|
15 |
+
# - Extracting the coefficients from the Expr/Eq input equations.
|
16 |
+
# - Constructing a domain and converting the coefficients to
|
17 |
+
# that domain.
|
18 |
+
# - Using the SDM.rref, SDM.nullspace etc methods to generate the full
|
19 |
+
# solution working with arithmetic only in the domain of the coefficients.
|
20 |
+
#
|
21 |
+
# The routines here are particularly designed to be efficient for large sparse
|
22 |
+
# systems of linear equations although as well as dense systems. It is
|
23 |
+
# possible that for some small dense systems solve_lin_sys which uses the
|
24 |
+
# dense matrix implementation DDM will be more efficient. With smaller systems
|
25 |
+
# though the bulk of the time is spent just preprocessing the inputs and the
|
26 |
+
# relative time spent in rref is too small to be noticeable.
|
27 |
+
#
|
28 |
+
|
29 |
+
from collections import defaultdict
|
30 |
+
|
31 |
+
from sympy.core.add import Add
|
32 |
+
from sympy.core.mul import Mul
|
33 |
+
from sympy.core.singleton import S
|
34 |
+
|
35 |
+
from sympy.polys.constructor import construct_domain
|
36 |
+
from sympy.polys.solvers import PolyNonlinearError
|
37 |
+
|
38 |
+
from .sdm import (
|
39 |
+
SDM,
|
40 |
+
sdm_irref,
|
41 |
+
sdm_particular_from_rref,
|
42 |
+
sdm_nullspace_from_rref
|
43 |
+
)
|
44 |
+
|
45 |
+
from sympy.utilities.misc import filldedent
|
46 |
+
|
47 |
+
|
48 |
+
def _linsolve(eqs, syms):
|
49 |
+
|
50 |
+
"""Solve a linear system of equations.
|
51 |
+
|
52 |
+
Examples
|
53 |
+
========
|
54 |
+
|
55 |
+
Solve a linear system with a unique solution:
|
56 |
+
|
57 |
+
>>> from sympy import symbols, Eq
|
58 |
+
>>> from sympy.polys.matrices.linsolve import _linsolve
|
59 |
+
>>> x, y = symbols('x, y')
|
60 |
+
>>> eqs = [Eq(x + y, 1), Eq(x - y, 2)]
|
61 |
+
>>> _linsolve(eqs, [x, y])
|
62 |
+
{x: 3/2, y: -1/2}
|
63 |
+
|
64 |
+
In the case of underdetermined systems the solution will be expressed in
|
65 |
+
terms of the unknown symbols that are unconstrained:
|
66 |
+
|
67 |
+
>>> _linsolve([Eq(x + y, 0)], [x, y])
|
68 |
+
{x: -y, y: y}
|
69 |
+
|
70 |
+
"""
|
71 |
+
# Number of unknowns (columns in the non-augmented matrix)
|
72 |
+
nsyms = len(syms)
|
73 |
+
|
74 |
+
# Convert to sparse augmented matrix (len(eqs) x (nsyms+1))
|
75 |
+
eqsdict, const = _linear_eq_to_dict(eqs, syms)
|
76 |
+
Aaug = sympy_dict_to_dm(eqsdict, const, syms)
|
77 |
+
K = Aaug.domain
|
78 |
+
|
79 |
+
# sdm_irref has issues with float matrices. This uses the ddm_rref()
|
80 |
+
# function. When sdm_rref() can handle float matrices reasonably this
|
81 |
+
# should be removed...
|
82 |
+
if K.is_RealField or K.is_ComplexField:
|
83 |
+
Aaug = Aaug.to_ddm().rref()[0].to_sdm()
|
84 |
+
|
85 |
+
# Compute reduced-row echelon form (RREF)
|
86 |
+
Arref, pivots, nzcols = sdm_irref(Aaug)
|
87 |
+
|
88 |
+
# No solution:
|
89 |
+
if pivots and pivots[-1] == nsyms:
|
90 |
+
return None
|
91 |
+
|
92 |
+
# Particular solution for non-homogeneous system:
|
93 |
+
P = sdm_particular_from_rref(Arref, nsyms+1, pivots)
|
94 |
+
|
95 |
+
# Nullspace - general solution to homogeneous system
|
96 |
+
# Note: using nsyms not nsyms+1 to ignore last column
|
97 |
+
V, nonpivots = sdm_nullspace_from_rref(Arref, K.one, nsyms, pivots, nzcols)
|
98 |
+
|
99 |
+
# Collect together terms from particular and nullspace:
|
100 |
+
sol = defaultdict(list)
|
101 |
+
for i, v in P.items():
|
102 |
+
sol[syms[i]].append(K.to_sympy(v))
|
103 |
+
for npi, Vi in zip(nonpivots, V):
|
104 |
+
sym = syms[npi]
|
105 |
+
for i, v in Vi.items():
|
106 |
+
sol[syms[i]].append(sym * K.to_sympy(v))
|
107 |
+
|
108 |
+
# Use a single call to Add for each term:
|
109 |
+
sol = {s: Add(*terms) for s, terms in sol.items()}
|
110 |
+
|
111 |
+
# Fill in the zeros:
|
112 |
+
zero = S.Zero
|
113 |
+
for s in set(syms) - set(sol):
|
114 |
+
sol[s] = zero
|
115 |
+
|
116 |
+
# All done!
|
117 |
+
return sol
|
118 |
+
|
119 |
+
|
120 |
+
def sympy_dict_to_dm(eqs_coeffs, eqs_rhs, syms):
|
121 |
+
"""Convert a system of dict equations to a sparse augmented matrix"""
|
122 |
+
elems = set(eqs_rhs).union(*(e.values() for e in eqs_coeffs))
|
123 |
+
K, elems_K = construct_domain(elems, field=True, extension=True)
|
124 |
+
elem_map = dict(zip(elems, elems_K))
|
125 |
+
neqs = len(eqs_coeffs)
|
126 |
+
nsyms = len(syms)
|
127 |
+
sym2index = dict(zip(syms, range(nsyms)))
|
128 |
+
eqsdict = []
|
129 |
+
for eq, rhs in zip(eqs_coeffs, eqs_rhs):
|
130 |
+
eqdict = {sym2index[s]: elem_map[c] for s, c in eq.items()}
|
131 |
+
if rhs:
|
132 |
+
eqdict[nsyms] = -elem_map[rhs]
|
133 |
+
if eqdict:
|
134 |
+
eqsdict.append(eqdict)
|
135 |
+
sdm_aug = SDM(enumerate(eqsdict), (neqs, nsyms + 1), K)
|
136 |
+
return sdm_aug
|
137 |
+
|
138 |
+
|
139 |
+
def _linear_eq_to_dict(eqs, syms):
|
140 |
+
"""Convert a system Expr/Eq equations into dict form, returning
|
141 |
+
the coefficient dictionaries and a list of syms-independent terms
|
142 |
+
from each expression in ``eqs```.
|
143 |
+
|
144 |
+
Examples
|
145 |
+
========
|
146 |
+
|
147 |
+
>>> from sympy.polys.matrices.linsolve import _linear_eq_to_dict
|
148 |
+
>>> from sympy.abc import x
|
149 |
+
>>> _linear_eq_to_dict([2*x + 3], {x})
|
150 |
+
([{x: 2}], [3])
|
151 |
+
"""
|
152 |
+
coeffs = []
|
153 |
+
ind = []
|
154 |
+
symset = set(syms)
|
155 |
+
for i, e in enumerate(eqs):
|
156 |
+
if e.is_Equality:
|
157 |
+
coeff, terms = _lin_eq2dict(e.lhs, symset)
|
158 |
+
cR, tR = _lin_eq2dict(e.rhs, symset)
|
159 |
+
# there were no nonlinear errors so now
|
160 |
+
# cancellation is allowed
|
161 |
+
coeff -= cR
|
162 |
+
for k, v in tR.items():
|
163 |
+
if k in terms:
|
164 |
+
terms[k] -= v
|
165 |
+
else:
|
166 |
+
terms[k] = -v
|
167 |
+
# don't store coefficients of 0, however
|
168 |
+
terms = {k: v for k, v in terms.items() if v}
|
169 |
+
c, d = coeff, terms
|
170 |
+
else:
|
171 |
+
c, d = _lin_eq2dict(e, symset)
|
172 |
+
coeffs.append(d)
|
173 |
+
ind.append(c)
|
174 |
+
return coeffs, ind
|
175 |
+
|
176 |
+
|
177 |
+
def _lin_eq2dict(a, symset):
|
178 |
+
"""return (c, d) where c is the sym-independent part of ``a`` and
|
179 |
+
``d`` is an efficiently calculated dictionary mapping symbols to
|
180 |
+
their coefficients. A PolyNonlinearError is raised if non-linearity
|
181 |
+
is detected.
|
182 |
+
|
183 |
+
The values in the dictionary will be non-zero.
|
184 |
+
|
185 |
+
Examples
|
186 |
+
========
|
187 |
+
|
188 |
+
>>> from sympy.polys.matrices.linsolve import _lin_eq2dict
|
189 |
+
>>> from sympy.abc import x, y
|
190 |
+
>>> _lin_eq2dict(x + 2*y + 3, {x, y})
|
191 |
+
(3, {x: 1, y: 2})
|
192 |
+
"""
|
193 |
+
if a in symset:
|
194 |
+
return S.Zero, {a: S.One}
|
195 |
+
elif a.is_Add:
|
196 |
+
terms_list = defaultdict(list)
|
197 |
+
coeff_list = []
|
198 |
+
for ai in a.args:
|
199 |
+
ci, ti = _lin_eq2dict(ai, symset)
|
200 |
+
coeff_list.append(ci)
|
201 |
+
for mij, cij in ti.items():
|
202 |
+
terms_list[mij].append(cij)
|
203 |
+
coeff = Add(*coeff_list)
|
204 |
+
terms = {sym: Add(*coeffs) for sym, coeffs in terms_list.items()}
|
205 |
+
return coeff, terms
|
206 |
+
elif a.is_Mul:
|
207 |
+
terms = terms_coeff = None
|
208 |
+
coeff_list = []
|
209 |
+
for ai in a.args:
|
210 |
+
ci, ti = _lin_eq2dict(ai, symset)
|
211 |
+
if not ti:
|
212 |
+
coeff_list.append(ci)
|
213 |
+
elif terms is None:
|
214 |
+
terms = ti
|
215 |
+
terms_coeff = ci
|
216 |
+
else:
|
217 |
+
# since ti is not null and we already have
|
218 |
+
# a term, this is a cross term
|
219 |
+
raise PolyNonlinearError(filldedent('''
|
220 |
+
nonlinear cross-term: %s''' % a))
|
221 |
+
coeff = Mul._from_args(coeff_list)
|
222 |
+
if terms is None:
|
223 |
+
return coeff, {}
|
224 |
+
else:
|
225 |
+
terms = {sym: coeff * c for sym, c in terms.items()}
|
226 |
+
return coeff * terms_coeff, terms
|
227 |
+
elif not a.has_xfree(symset):
|
228 |
+
return a, {}
|
229 |
+
else:
|
230 |
+
raise PolyNonlinearError('nonlinear term: %s' % a)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/lll.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from math import floor as mfloor
|
4 |
+
|
5 |
+
from sympy.polys.domains import ZZ, QQ
|
6 |
+
from sympy.polys.matrices.exceptions import DMRankError, DMShapeError, DMValueError, DMDomainError
|
7 |
+
|
8 |
+
|
9 |
+
def _ddm_lll(x, delta=QQ(3, 4), return_transform=False):
|
10 |
+
if QQ(1, 4) >= delta or delta >= QQ(1, 1):
|
11 |
+
raise DMValueError("delta must lie in range (0.25, 1)")
|
12 |
+
if x.shape[0] > x.shape[1]:
|
13 |
+
raise DMShapeError("input matrix must have shape (m, n) with m <= n")
|
14 |
+
if x.domain != ZZ:
|
15 |
+
raise DMDomainError("input matrix domain must be ZZ")
|
16 |
+
m = x.shape[0]
|
17 |
+
n = x.shape[1]
|
18 |
+
k = 1
|
19 |
+
y = x.copy()
|
20 |
+
y_star = x.zeros((m, n), QQ)
|
21 |
+
mu = x.zeros((m, m), QQ)
|
22 |
+
g_star = [QQ(0, 1) for _ in range(m)]
|
23 |
+
half = QQ(1, 2)
|
24 |
+
T = x.eye(m, ZZ) if return_transform else None
|
25 |
+
linear_dependent_error = "input matrix contains linearly dependent rows"
|
26 |
+
|
27 |
+
def closest_integer(x):
|
28 |
+
return ZZ(mfloor(x + half))
|
29 |
+
|
30 |
+
def lovasz_condition(k: int) -> bool:
|
31 |
+
return g_star[k] >= ((delta - mu[k][k - 1] ** 2) * g_star[k - 1])
|
32 |
+
|
33 |
+
def mu_small(k: int, j: int) -> bool:
|
34 |
+
return abs(mu[k][j]) <= half
|
35 |
+
|
36 |
+
def dot_rows(x, y, rows: tuple[int, int]):
|
37 |
+
return sum([x[rows[0]][z] * y[rows[1]][z] for z in range(x.shape[1])])
|
38 |
+
|
39 |
+
def reduce_row(T, mu, y, rows: tuple[int, int]):
|
40 |
+
r = closest_integer(mu[rows[0]][rows[1]])
|
41 |
+
y[rows[0]] = [y[rows[0]][z] - r * y[rows[1]][z] for z in range(n)]
|
42 |
+
mu[rows[0]][:rows[1]] = [mu[rows[0]][z] - r * mu[rows[1]][z] for z in range(rows[1])]
|
43 |
+
mu[rows[0]][rows[1]] -= r
|
44 |
+
if return_transform:
|
45 |
+
T[rows[0]] = [T[rows[0]][z] - r * T[rows[1]][z] for z in range(m)]
|
46 |
+
|
47 |
+
for i in range(m):
|
48 |
+
y_star[i] = [QQ.convert_from(z, ZZ) for z in y[i]]
|
49 |
+
for j in range(i):
|
50 |
+
row_dot = dot_rows(y, y_star, (i, j))
|
51 |
+
try:
|
52 |
+
mu[i][j] = row_dot / g_star[j]
|
53 |
+
except ZeroDivisionError:
|
54 |
+
raise DMRankError(linear_dependent_error)
|
55 |
+
y_star[i] = [y_star[i][z] - mu[i][j] * y_star[j][z] for z in range(n)]
|
56 |
+
g_star[i] = dot_rows(y_star, y_star, (i, i))
|
57 |
+
while k < m:
|
58 |
+
if not mu_small(k, k - 1):
|
59 |
+
reduce_row(T, mu, y, (k, k - 1))
|
60 |
+
if lovasz_condition(k):
|
61 |
+
for l in range(k - 2, -1, -1):
|
62 |
+
if not mu_small(k, l):
|
63 |
+
reduce_row(T, mu, y, (k, l))
|
64 |
+
k += 1
|
65 |
+
else:
|
66 |
+
nu = mu[k][k - 1]
|
67 |
+
alpha = g_star[k] + nu ** 2 * g_star[k - 1]
|
68 |
+
try:
|
69 |
+
beta = g_star[k - 1] / alpha
|
70 |
+
except ZeroDivisionError:
|
71 |
+
raise DMRankError(linear_dependent_error)
|
72 |
+
mu[k][k - 1] = nu * beta
|
73 |
+
g_star[k] = g_star[k] * beta
|
74 |
+
g_star[k - 1] = alpha
|
75 |
+
y[k], y[k - 1] = y[k - 1], y[k]
|
76 |
+
mu[k][:k - 1], mu[k - 1][:k - 1] = mu[k - 1][:k - 1], mu[k][:k - 1]
|
77 |
+
for i in range(k + 1, m):
|
78 |
+
xi = mu[i][k]
|
79 |
+
mu[i][k] = mu[i][k - 1] - nu * xi
|
80 |
+
mu[i][k - 1] = mu[k][k - 1] * mu[i][k] + xi
|
81 |
+
if return_transform:
|
82 |
+
T[k], T[k - 1] = T[k - 1], T[k]
|
83 |
+
k = max(k - 1, 1)
|
84 |
+
assert all([lovasz_condition(i) for i in range(1, m)])
|
85 |
+
assert all([mu_small(i, j) for i in range(m) for j in range(i)])
|
86 |
+
return y, T
|
87 |
+
|
88 |
+
|
89 |
+
def ddm_lll(x, delta=QQ(3, 4)):
|
90 |
+
return _ddm_lll(x, delta=delta, return_transform=False)[0]
|
91 |
+
|
92 |
+
|
93 |
+
def ddm_lll_transform(x, delta=QQ(3, 4)):
|
94 |
+
return _ddm_lll(x, delta=delta, return_transform=True)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/normalforms.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''Functions returning normal forms of matrices'''
|
2 |
+
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
from .domainmatrix import DomainMatrix
|
6 |
+
from .exceptions import DMDomainError, DMShapeError
|
7 |
+
from sympy.ntheory.modular import symmetric_residue
|
8 |
+
from sympy.polys.domains import QQ, ZZ
|
9 |
+
|
10 |
+
|
11 |
+
# TODO (future work):
|
12 |
+
# There are faster algorithms for Smith and Hermite normal forms, which
|
13 |
+
# we should implement. See e.g. the Kannan-Bachem algorithm:
|
14 |
+
# <https://www.researchgate.net/publication/220617516_Polynomial_Algorithms_for_Computing_the_Smith_and_Hermite_Normal_Forms_of_an_Integer_Matrix>
|
15 |
+
|
16 |
+
|
17 |
+
def smith_normal_form(m):
|
18 |
+
'''
|
19 |
+
Return the Smith Normal Form of a matrix `m` over the ring `domain`.
|
20 |
+
This will only work if the ring is a principal ideal domain.
|
21 |
+
|
22 |
+
Examples
|
23 |
+
========
|
24 |
+
|
25 |
+
>>> from sympy import ZZ
|
26 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
27 |
+
>>> from sympy.polys.matrices.normalforms import smith_normal_form
|
28 |
+
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
|
29 |
+
... [ZZ(3), ZZ(9), ZZ(6)],
|
30 |
+
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
|
31 |
+
>>> print(smith_normal_form(m).to_Matrix())
|
32 |
+
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
|
33 |
+
|
34 |
+
'''
|
35 |
+
invs = invariant_factors(m)
|
36 |
+
smf = DomainMatrix.diag(invs, m.domain, m.shape)
|
37 |
+
return smf
|
38 |
+
|
39 |
+
|
40 |
+
def add_columns(m, i, j, a, b, c, d):
|
41 |
+
# replace m[:, i] by a*m[:, i] + b*m[:, j]
|
42 |
+
# and m[:, j] by c*m[:, i] + d*m[:, j]
|
43 |
+
for k in range(len(m)):
|
44 |
+
e = m[k][i]
|
45 |
+
m[k][i] = a*e + b*m[k][j]
|
46 |
+
m[k][j] = c*e + d*m[k][j]
|
47 |
+
|
48 |
+
|
49 |
+
def invariant_factors(m):
|
50 |
+
'''
|
51 |
+
Return the tuple of abelian invariants for a matrix `m`
|
52 |
+
(as in the Smith-Normal form)
|
53 |
+
|
54 |
+
References
|
55 |
+
==========
|
56 |
+
|
57 |
+
[1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
|
58 |
+
[2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
|
59 |
+
|
60 |
+
'''
|
61 |
+
domain = m.domain
|
62 |
+
if not domain.is_PID:
|
63 |
+
msg = "The matrix entries must be over a principal ideal domain"
|
64 |
+
raise ValueError(msg)
|
65 |
+
|
66 |
+
if 0 in m.shape:
|
67 |
+
return ()
|
68 |
+
|
69 |
+
rows, cols = shape = m.shape
|
70 |
+
m = list(m.to_dense().rep)
|
71 |
+
|
72 |
+
def add_rows(m, i, j, a, b, c, d):
|
73 |
+
# replace m[i, :] by a*m[i, :] + b*m[j, :]
|
74 |
+
# and m[j, :] by c*m[i, :] + d*m[j, :]
|
75 |
+
for k in range(cols):
|
76 |
+
e = m[i][k]
|
77 |
+
m[i][k] = a*e + b*m[j][k]
|
78 |
+
m[j][k] = c*e + d*m[j][k]
|
79 |
+
|
80 |
+
def clear_column(m):
|
81 |
+
# make m[1:, 0] zero by row and column operations
|
82 |
+
if m[0][0] == 0:
|
83 |
+
return m # pragma: nocover
|
84 |
+
pivot = m[0][0]
|
85 |
+
for j in range(1, rows):
|
86 |
+
if m[j][0] == 0:
|
87 |
+
continue
|
88 |
+
d, r = domain.div(m[j][0], pivot)
|
89 |
+
if r == 0:
|
90 |
+
add_rows(m, 0, j, 1, 0, -d, 1)
|
91 |
+
else:
|
92 |
+
a, b, g = domain.gcdex(pivot, m[j][0])
|
93 |
+
d_0 = domain.div(m[j][0], g)[0]
|
94 |
+
d_j = domain.div(pivot, g)[0]
|
95 |
+
add_rows(m, 0, j, a, b, d_0, -d_j)
|
96 |
+
pivot = g
|
97 |
+
return m
|
98 |
+
|
99 |
+
def clear_row(m):
|
100 |
+
# make m[0, 1:] zero by row and column operations
|
101 |
+
if m[0][0] == 0:
|
102 |
+
return m # pragma: nocover
|
103 |
+
pivot = m[0][0]
|
104 |
+
for j in range(1, cols):
|
105 |
+
if m[0][j] == 0:
|
106 |
+
continue
|
107 |
+
d, r = domain.div(m[0][j], pivot)
|
108 |
+
if r == 0:
|
109 |
+
add_columns(m, 0, j, 1, 0, -d, 1)
|
110 |
+
else:
|
111 |
+
a, b, g = domain.gcdex(pivot, m[0][j])
|
112 |
+
d_0 = domain.div(m[0][j], g)[0]
|
113 |
+
d_j = domain.div(pivot, g)[0]
|
114 |
+
add_columns(m, 0, j, a, b, d_0, -d_j)
|
115 |
+
pivot = g
|
116 |
+
return m
|
117 |
+
|
118 |
+
# permute the rows and columns until m[0,0] is non-zero if possible
|
119 |
+
ind = [i for i in range(rows) if m[i][0] != 0]
|
120 |
+
if ind and ind[0] != 0:
|
121 |
+
m[0], m[ind[0]] = m[ind[0]], m[0]
|
122 |
+
else:
|
123 |
+
ind = [j for j in range(cols) if m[0][j] != 0]
|
124 |
+
if ind and ind[0] != 0:
|
125 |
+
for row in m:
|
126 |
+
row[0], row[ind[0]] = row[ind[0]], row[0]
|
127 |
+
|
128 |
+
# make the first row and column except m[0,0] zero
|
129 |
+
while (any(m[0][i] != 0 for i in range(1,cols)) or
|
130 |
+
any(m[i][0] != 0 for i in range(1,rows))):
|
131 |
+
m = clear_column(m)
|
132 |
+
m = clear_row(m)
|
133 |
+
|
134 |
+
if 1 in shape:
|
135 |
+
invs = ()
|
136 |
+
else:
|
137 |
+
lower_right = DomainMatrix([r[1:] for r in m[1:]], (rows-1, cols-1), domain)
|
138 |
+
invs = invariant_factors(lower_right)
|
139 |
+
|
140 |
+
if m[0][0]:
|
141 |
+
result = [m[0][0]]
|
142 |
+
result.extend(invs)
|
143 |
+
# in case m[0] doesn't divide the invariants of the rest of the matrix
|
144 |
+
for i in range(len(result)-1):
|
145 |
+
if result[i] and domain.div(result[i+1], result[i])[1] != 0:
|
146 |
+
g = domain.gcd(result[i+1], result[i])
|
147 |
+
result[i+1] = domain.div(result[i], g)[0]*result[i+1]
|
148 |
+
result[i] = g
|
149 |
+
else:
|
150 |
+
break
|
151 |
+
else:
|
152 |
+
result = invs + (m[0][0],)
|
153 |
+
return tuple(result)
|
154 |
+
|
155 |
+
|
156 |
+
def _gcdex(a, b):
|
157 |
+
r"""
|
158 |
+
This supports the functions that compute Hermite Normal Form.
|
159 |
+
|
160 |
+
Explanation
|
161 |
+
===========
|
162 |
+
|
163 |
+
Let x, y be the coefficients returned by the extended Euclidean
|
164 |
+
Algorithm, so that x*a + y*b = g. In the algorithms for computing HNF,
|
165 |
+
it is critical that x, y not only satisfy the condition of being small
|
166 |
+
in magnitude -- namely that |x| <= |b|/g, |y| <- |a|/g -- but also that
|
167 |
+
y == 0 when a | b.
|
168 |
+
|
169 |
+
"""
|
170 |
+
x, y, g = ZZ.gcdex(a, b)
|
171 |
+
if a != 0 and b % a == 0:
|
172 |
+
y = 0
|
173 |
+
x = -1 if a < 0 else 1
|
174 |
+
return x, y, g
|
175 |
+
|
176 |
+
|
177 |
+
def _hermite_normal_form(A):
|
178 |
+
r"""
|
179 |
+
Compute the Hermite Normal Form of DomainMatrix *A* over :ref:`ZZ`.
|
180 |
+
|
181 |
+
Parameters
|
182 |
+
==========
|
183 |
+
|
184 |
+
A : :py:class:`~.DomainMatrix` over domain :ref:`ZZ`.
|
185 |
+
|
186 |
+
Returns
|
187 |
+
=======
|
188 |
+
|
189 |
+
:py:class:`~.DomainMatrix`
|
190 |
+
The HNF of matrix *A*.
|
191 |
+
|
192 |
+
Raises
|
193 |
+
======
|
194 |
+
|
195 |
+
DMDomainError
|
196 |
+
If the domain of the matrix is not :ref:`ZZ`.
|
197 |
+
|
198 |
+
References
|
199 |
+
==========
|
200 |
+
|
201 |
+
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
|
202 |
+
(See Algorithm 2.4.5.)
|
203 |
+
|
204 |
+
"""
|
205 |
+
if not A.domain.is_ZZ:
|
206 |
+
raise DMDomainError('Matrix must be over domain ZZ.')
|
207 |
+
# We work one row at a time, starting from the bottom row, and working our
|
208 |
+
# way up.
|
209 |
+
m, n = A.shape
|
210 |
+
A = A.to_dense().rep.copy()
|
211 |
+
# Our goal is to put pivot entries in the rightmost columns.
|
212 |
+
# Invariant: Before processing each row, k should be the index of the
|
213 |
+
# leftmost column in which we have so far put a pivot.
|
214 |
+
k = n
|
215 |
+
for i in range(m - 1, -1, -1):
|
216 |
+
if k == 0:
|
217 |
+
# This case can arise when n < m and we've already found n pivots.
|
218 |
+
# We don't need to consider any more rows, because this is already
|
219 |
+
# the maximum possible number of pivots.
|
220 |
+
break
|
221 |
+
k -= 1
|
222 |
+
# k now points to the column in which we want to put a pivot.
|
223 |
+
# We want zeros in all entries to the left of the pivot column.
|
224 |
+
for j in range(k - 1, -1, -1):
|
225 |
+
if A[i][j] != 0:
|
226 |
+
# Replace cols j, k by lin combs of these cols such that, in row i,
|
227 |
+
# col j has 0, while col k has the gcd of their row i entries. Note
|
228 |
+
# that this ensures a nonzero entry in col k.
|
229 |
+
u, v, d = _gcdex(A[i][k], A[i][j])
|
230 |
+
r, s = A[i][k] // d, A[i][j] // d
|
231 |
+
add_columns(A, k, j, u, v, -s, r)
|
232 |
+
b = A[i][k]
|
233 |
+
# Do not want the pivot entry to be negative.
|
234 |
+
if b < 0:
|
235 |
+
add_columns(A, k, k, -1, 0, -1, 0)
|
236 |
+
b = -b
|
237 |
+
# The pivot entry will be 0 iff the row was 0 from the pivot col all the
|
238 |
+
# way to the left. In this case, we are still working on the same pivot
|
239 |
+
# col for the next row. Therefore:
|
240 |
+
if b == 0:
|
241 |
+
k += 1
|
242 |
+
# If the pivot entry is nonzero, then we want to reduce all entries to its
|
243 |
+
# right in the sense of the division algorithm, i.e. make them all remainders
|
244 |
+
# w.r.t. the pivot as divisor.
|
245 |
+
else:
|
246 |
+
for j in range(k + 1, n):
|
247 |
+
q = A[i][j] // b
|
248 |
+
add_columns(A, j, k, 1, -q, 0, 1)
|
249 |
+
# Finally, the HNF consists of those columns of A in which we succeeded in making
|
250 |
+
# a nonzero pivot.
|
251 |
+
return DomainMatrix.from_rep(A)[:, k:]
|
252 |
+
|
253 |
+
|
254 |
+
def _hermite_normal_form_modulo_D(A, D):
|
255 |
+
r"""
|
256 |
+
Perform the mod *D* Hermite Normal Form reduction algorithm on
|
257 |
+
:py:class:`~.DomainMatrix` *A*.
|
258 |
+
|
259 |
+
Explanation
|
260 |
+
===========
|
261 |
+
|
262 |
+
If *A* is an $m \times n$ matrix of rank $m$, having Hermite Normal Form
|
263 |
+
$W$, and if *D* is any positive integer known in advance to be a multiple
|
264 |
+
of $\det(W)$, then the HNF of *A* can be computed by an algorithm that
|
265 |
+
works mod *D* in order to prevent coefficient explosion.
|
266 |
+
|
267 |
+
Parameters
|
268 |
+
==========
|
269 |
+
|
270 |
+
A : :py:class:`~.DomainMatrix` over :ref:`ZZ`
|
271 |
+
$m \times n$ matrix, having rank $m$.
|
272 |
+
D : :ref:`ZZ`
|
273 |
+
Positive integer, known to be a multiple of the determinant of the
|
274 |
+
HNF of *A*.
|
275 |
+
|
276 |
+
Returns
|
277 |
+
=======
|
278 |
+
|
279 |
+
:py:class:`~.DomainMatrix`
|
280 |
+
The HNF of matrix *A*.
|
281 |
+
|
282 |
+
Raises
|
283 |
+
======
|
284 |
+
|
285 |
+
DMDomainError
|
286 |
+
If the domain of the matrix is not :ref:`ZZ`, or
|
287 |
+
if *D* is given but is not in :ref:`ZZ`.
|
288 |
+
|
289 |
+
DMShapeError
|
290 |
+
If the matrix has more rows than columns.
|
291 |
+
|
292 |
+
References
|
293 |
+
==========
|
294 |
+
|
295 |
+
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
|
296 |
+
(See Algorithm 2.4.8.)
|
297 |
+
|
298 |
+
"""
|
299 |
+
if not A.domain.is_ZZ:
|
300 |
+
raise DMDomainError('Matrix must be over domain ZZ.')
|
301 |
+
if not ZZ.of_type(D) or D < 1:
|
302 |
+
raise DMDomainError('Modulus D must be positive element of domain ZZ.')
|
303 |
+
|
304 |
+
def add_columns_mod_R(m, R, i, j, a, b, c, d):
|
305 |
+
# replace m[:, i] by (a*m[:, i] + b*m[:, j]) % R
|
306 |
+
# and m[:, j] by (c*m[:, i] + d*m[:, j]) % R
|
307 |
+
for k in range(len(m)):
|
308 |
+
e = m[k][i]
|
309 |
+
m[k][i] = symmetric_residue((a * e + b * m[k][j]) % R, R)
|
310 |
+
m[k][j] = symmetric_residue((c * e + d * m[k][j]) % R, R)
|
311 |
+
|
312 |
+
W = defaultdict(dict)
|
313 |
+
|
314 |
+
m, n = A.shape
|
315 |
+
if n < m:
|
316 |
+
raise DMShapeError('Matrix must have at least as many columns as rows.')
|
317 |
+
A = A.to_dense().rep.copy()
|
318 |
+
k = n
|
319 |
+
R = D
|
320 |
+
for i in range(m - 1, -1, -1):
|
321 |
+
k -= 1
|
322 |
+
for j in range(k - 1, -1, -1):
|
323 |
+
if A[i][j] != 0:
|
324 |
+
u, v, d = _gcdex(A[i][k], A[i][j])
|
325 |
+
r, s = A[i][k] // d, A[i][j] // d
|
326 |
+
add_columns_mod_R(A, R, k, j, u, v, -s, r)
|
327 |
+
b = A[i][k]
|
328 |
+
if b == 0:
|
329 |
+
A[i][k] = b = R
|
330 |
+
u, v, d = _gcdex(b, R)
|
331 |
+
for ii in range(m):
|
332 |
+
W[ii][i] = u*A[ii][k] % R
|
333 |
+
if W[i][i] == 0:
|
334 |
+
W[i][i] = R
|
335 |
+
for j in range(i + 1, m):
|
336 |
+
q = W[i][j] // W[i][i]
|
337 |
+
add_columns(W, j, i, 1, -q, 0, 1)
|
338 |
+
R //= d
|
339 |
+
return DomainMatrix(W, (m, m), ZZ).to_dense()
|
340 |
+
|
341 |
+
|
342 |
+
def hermite_normal_form(A, *, D=None, check_rank=False):
|
343 |
+
r"""
|
344 |
+
Compute the Hermite Normal Form of :py:class:`~.DomainMatrix` *A* over
|
345 |
+
:ref:`ZZ`.
|
346 |
+
|
347 |
+
Examples
|
348 |
+
========
|
349 |
+
|
350 |
+
>>> from sympy import ZZ
|
351 |
+
>>> from sympy.polys.matrices import DomainMatrix
|
352 |
+
>>> from sympy.polys.matrices.normalforms import hermite_normal_form
|
353 |
+
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
|
354 |
+
... [ZZ(3), ZZ(9), ZZ(6)],
|
355 |
+
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
|
356 |
+
>>> print(hermite_normal_form(m).to_Matrix())
|
357 |
+
Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])
|
358 |
+
|
359 |
+
Parameters
|
360 |
+
==========
|
361 |
+
|
362 |
+
A : $m \times n$ ``DomainMatrix`` over :ref:`ZZ`.
|
363 |
+
|
364 |
+
D : :ref:`ZZ`, optional
|
365 |
+
Let $W$ be the HNF of *A*. If known in advance, a positive integer *D*
|
366 |
+
being any multiple of $\det(W)$ may be provided. In this case, if *A*
|
367 |
+
also has rank $m$, then we may use an alternative algorithm that works
|
368 |
+
mod *D* in order to prevent coefficient explosion.
|
369 |
+
|
370 |
+
check_rank : boolean, optional (default=False)
|
371 |
+
The basic assumption is that, if you pass a value for *D*, then
|
372 |
+
you already believe that *A* has rank $m$, so we do not waste time
|
373 |
+
checking it for you. If you do want this to be checked (and the
|
374 |
+
ordinary, non-modulo *D* algorithm to be used if the check fails), then
|
375 |
+
set *check_rank* to ``True``.
|
376 |
+
|
377 |
+
Returns
|
378 |
+
=======
|
379 |
+
|
380 |
+
:py:class:`~.DomainMatrix`
|
381 |
+
The HNF of matrix *A*.
|
382 |
+
|
383 |
+
Raises
|
384 |
+
======
|
385 |
+
|
386 |
+
DMDomainError
|
387 |
+
If the domain of the matrix is not :ref:`ZZ`, or
|
388 |
+
if *D* is given but is not in :ref:`ZZ`.
|
389 |
+
|
390 |
+
DMShapeError
|
391 |
+
If the mod *D* algorithm is used but the matrix has more rows than
|
392 |
+
columns.
|
393 |
+
|
394 |
+
References
|
395 |
+
==========
|
396 |
+
|
397 |
+
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
|
398 |
+
(See Algorithms 2.4.5 and 2.4.8.)
|
399 |
+
|
400 |
+
"""
|
401 |
+
if not A.domain.is_ZZ:
|
402 |
+
raise DMDomainError('Matrix must be over domain ZZ.')
|
403 |
+
if D is not None and (not check_rank or A.convert_to(QQ).rank() == A.shape[0]):
|
404 |
+
return _hermite_normal_form_modulo_D(A, D)
|
405 |
+
else:
|
406 |
+
return _hermite_normal_form(A)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/sdm.py
ADDED
@@ -0,0 +1,1241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
Module for the SDM class.
|
4 |
+
|
5 |
+
"""
|
6 |
+
|
7 |
+
from operator import add, neg, pos, sub, mul
|
8 |
+
from collections import defaultdict
|
9 |
+
|
10 |
+
from sympy.utilities.iterables import _strongly_connected_components
|
11 |
+
|
12 |
+
from .exceptions import DMBadInputError, DMDomainError, DMShapeError
|
13 |
+
|
14 |
+
from .ddm import DDM
|
15 |
+
from .lll import ddm_lll, ddm_lll_transform
|
16 |
+
from sympy.polys.domains import QQ
|
17 |
+
|
18 |
+
|
19 |
+
class SDM(dict):
|
20 |
+
r"""Sparse matrix based on polys domain elements
|
21 |
+
|
22 |
+
This is a dict subclass and is a wrapper for a dict of dicts that supports
|
23 |
+
basic matrix arithmetic +, -, *, **.
|
24 |
+
|
25 |
+
|
26 |
+
In order to create a new :py:class:`~.SDM`, a dict
|
27 |
+
of dicts mapping non-zero elements to their
|
28 |
+
corresponding row and column in the matrix is needed.
|
29 |
+
|
30 |
+
We also need to specify the shape and :py:class:`~.Domain`
|
31 |
+
of our :py:class:`~.SDM` object.
|
32 |
+
|
33 |
+
We declare a 2x2 :py:class:`~.SDM` matrix belonging
|
34 |
+
to QQ domain as shown below.
|
35 |
+
The 2x2 Matrix in the example is
|
36 |
+
|
37 |
+
.. math::
|
38 |
+
A = \left[\begin{array}{ccc}
|
39 |
+
0 & \frac{1}{2} \\
|
40 |
+
0 & 0 \end{array} \right]
|
41 |
+
|
42 |
+
|
43 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
44 |
+
>>> from sympy import QQ
|
45 |
+
>>> elemsdict = {0:{1:QQ(1, 2)}}
|
46 |
+
>>> A = SDM(elemsdict, (2, 2), QQ)
|
47 |
+
>>> A
|
48 |
+
{0: {1: 1/2}}
|
49 |
+
|
50 |
+
We can manipulate :py:class:`~.SDM` the same way
|
51 |
+
as a Matrix class
|
52 |
+
|
53 |
+
>>> from sympy import ZZ
|
54 |
+
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
|
55 |
+
>>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ)
|
56 |
+
>>> A + B
|
57 |
+
{0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}}
|
58 |
+
|
59 |
+
Multiplication
|
60 |
+
|
61 |
+
>>> A*B
|
62 |
+
{0: {1: 8}, 1: {0: 3}}
|
63 |
+
>>> A*ZZ(2)
|
64 |
+
{0: {1: 4}, 1: {0: 2}}
|
65 |
+
|
66 |
+
"""
|
67 |
+
|
68 |
+
fmt = 'sparse'
|
69 |
+
|
70 |
+
def __init__(self, elemsdict, shape, domain):
|
71 |
+
super().__init__(elemsdict)
|
72 |
+
self.shape = self.rows, self.cols = m, n = shape
|
73 |
+
self.domain = domain
|
74 |
+
|
75 |
+
if not all(0 <= r < m for r in self):
|
76 |
+
raise DMBadInputError("Row out of range")
|
77 |
+
if not all(0 <= c < n for row in self.values() for c in row):
|
78 |
+
raise DMBadInputError("Column out of range")
|
79 |
+
|
80 |
+
def getitem(self, i, j):
|
81 |
+
try:
|
82 |
+
return self[i][j]
|
83 |
+
except KeyError:
|
84 |
+
m, n = self.shape
|
85 |
+
if -m <= i < m and -n <= j < n:
|
86 |
+
try:
|
87 |
+
return self[i % m][j % n]
|
88 |
+
except KeyError:
|
89 |
+
return self.domain.zero
|
90 |
+
else:
|
91 |
+
raise IndexError("index out of range")
|
92 |
+
|
93 |
+
def setitem(self, i, j, value):
|
94 |
+
m, n = self.shape
|
95 |
+
if not (-m <= i < m and -n <= j < n):
|
96 |
+
raise IndexError("index out of range")
|
97 |
+
i, j = i % m, j % n
|
98 |
+
if value:
|
99 |
+
try:
|
100 |
+
self[i][j] = value
|
101 |
+
except KeyError:
|
102 |
+
self[i] = {j: value}
|
103 |
+
else:
|
104 |
+
rowi = self.get(i, None)
|
105 |
+
if rowi is not None:
|
106 |
+
try:
|
107 |
+
del rowi[j]
|
108 |
+
except KeyError:
|
109 |
+
pass
|
110 |
+
else:
|
111 |
+
if not rowi:
|
112 |
+
del self[i]
|
113 |
+
|
114 |
+
def extract_slice(self, slice1, slice2):
|
115 |
+
m, n = self.shape
|
116 |
+
ri = range(m)[slice1]
|
117 |
+
ci = range(n)[slice2]
|
118 |
+
|
119 |
+
sdm = {}
|
120 |
+
for i, row in self.items():
|
121 |
+
if i in ri:
|
122 |
+
row = {ci.index(j): e for j, e in row.items() if j in ci}
|
123 |
+
if row:
|
124 |
+
sdm[ri.index(i)] = row
|
125 |
+
|
126 |
+
return self.new(sdm, (len(ri), len(ci)), self.domain)
|
127 |
+
|
128 |
+
def extract(self, rows, cols):
|
129 |
+
if not (self and rows and cols):
|
130 |
+
return self.zeros((len(rows), len(cols)), self.domain)
|
131 |
+
|
132 |
+
m, n = self.shape
|
133 |
+
if not (-m <= min(rows) <= max(rows) < m):
|
134 |
+
raise IndexError('Row index out of range')
|
135 |
+
if not (-n <= min(cols) <= max(cols) < n):
|
136 |
+
raise IndexError('Column index out of range')
|
137 |
+
|
138 |
+
# rows and cols can contain duplicates e.g. M[[1, 2, 2], [0, 1]]
|
139 |
+
# Build a map from row/col in self to list of rows/cols in output
|
140 |
+
rowmap = defaultdict(list)
|
141 |
+
colmap = defaultdict(list)
|
142 |
+
for i2, i1 in enumerate(rows):
|
143 |
+
rowmap[i1 % m].append(i2)
|
144 |
+
for j2, j1 in enumerate(cols):
|
145 |
+
colmap[j1 % n].append(j2)
|
146 |
+
|
147 |
+
# Used to efficiently skip zero rows/cols
|
148 |
+
rowset = set(rowmap)
|
149 |
+
colset = set(colmap)
|
150 |
+
|
151 |
+
sdm1 = self
|
152 |
+
sdm2 = {}
|
153 |
+
for i1 in rowset & set(sdm1):
|
154 |
+
row1 = sdm1[i1]
|
155 |
+
row2 = {}
|
156 |
+
for j1 in colset & set(row1):
|
157 |
+
row1_j1 = row1[j1]
|
158 |
+
for j2 in colmap[j1]:
|
159 |
+
row2[j2] = row1_j1
|
160 |
+
if row2:
|
161 |
+
for i2 in rowmap[i1]:
|
162 |
+
sdm2[i2] = row2.copy()
|
163 |
+
|
164 |
+
return self.new(sdm2, (len(rows), len(cols)), self.domain)
|
165 |
+
|
166 |
+
def __str__(self):
|
167 |
+
rowsstr = []
|
168 |
+
for i, row in self.items():
|
169 |
+
elemsstr = ', '.join('%s: %s' % (j, elem) for j, elem in row.items())
|
170 |
+
rowsstr.append('%s: {%s}' % (i, elemsstr))
|
171 |
+
return '{%s}' % ', '.join(rowsstr)
|
172 |
+
|
173 |
+
def __repr__(self):
|
174 |
+
cls = type(self).__name__
|
175 |
+
rows = dict.__repr__(self)
|
176 |
+
return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain)
|
177 |
+
|
178 |
+
@classmethod
|
179 |
+
def new(cls, sdm, shape, domain):
|
180 |
+
"""
|
181 |
+
|
182 |
+
Parameters
|
183 |
+
==========
|
184 |
+
|
185 |
+
sdm: A dict of dicts for non-zero elements in SDM
|
186 |
+
shape: tuple representing dimension of SDM
|
187 |
+
domain: Represents :py:class:`~.Domain` of SDM
|
188 |
+
|
189 |
+
Returns
|
190 |
+
=======
|
191 |
+
|
192 |
+
An :py:class:`~.SDM` object
|
193 |
+
|
194 |
+
Examples
|
195 |
+
========
|
196 |
+
|
197 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
198 |
+
>>> from sympy import QQ
|
199 |
+
>>> elemsdict = {0:{1: QQ(2)}}
|
200 |
+
>>> A = SDM.new(elemsdict, (2, 2), QQ)
|
201 |
+
>>> A
|
202 |
+
{0: {1: 2}}
|
203 |
+
|
204 |
+
"""
|
205 |
+
return cls(sdm, shape, domain)
|
206 |
+
|
207 |
+
def copy(A):
|
208 |
+
"""
|
209 |
+
Returns the copy of a :py:class:`~.SDM` object
|
210 |
+
|
211 |
+
Examples
|
212 |
+
========
|
213 |
+
|
214 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
215 |
+
>>> from sympy import QQ
|
216 |
+
>>> elemsdict = {0:{1:QQ(2)}, 1:{}}
|
217 |
+
>>> A = SDM(elemsdict, (2, 2), QQ)
|
218 |
+
>>> B = A.copy()
|
219 |
+
>>> B
|
220 |
+
{0: {1: 2}, 1: {}}
|
221 |
+
|
222 |
+
"""
|
223 |
+
Ac = {i: Ai.copy() for i, Ai in A.items()}
|
224 |
+
return A.new(Ac, A.shape, A.domain)
|
225 |
+
|
226 |
+
@classmethod
|
227 |
+
def from_list(cls, ddm, shape, domain):
|
228 |
+
"""
|
229 |
+
|
230 |
+
Parameters
|
231 |
+
==========
|
232 |
+
|
233 |
+
ddm:
|
234 |
+
list of lists containing domain elements
|
235 |
+
shape:
|
236 |
+
Dimensions of :py:class:`~.SDM` matrix
|
237 |
+
domain:
|
238 |
+
Represents :py:class:`~.Domain` of :py:class:`~.SDM` object
|
239 |
+
|
240 |
+
Returns
|
241 |
+
=======
|
242 |
+
|
243 |
+
:py:class:`~.SDM` containing elements of ddm
|
244 |
+
|
245 |
+
Examples
|
246 |
+
========
|
247 |
+
|
248 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
249 |
+
>>> from sympy import QQ
|
250 |
+
>>> ddm = [[QQ(1, 2), QQ(0)], [QQ(0), QQ(3, 4)]]
|
251 |
+
>>> A = SDM.from_list(ddm, (2, 2), QQ)
|
252 |
+
>>> A
|
253 |
+
{0: {0: 1/2}, 1: {1: 3/4}}
|
254 |
+
|
255 |
+
"""
|
256 |
+
|
257 |
+
m, n = shape
|
258 |
+
if not (len(ddm) == m and all(len(row) == n for row in ddm)):
|
259 |
+
raise DMBadInputError("Inconsistent row-list/shape")
|
260 |
+
getrow = lambda i: {j:ddm[i][j] for j in range(n) if ddm[i][j]}
|
261 |
+
irows = ((i, getrow(i)) for i in range(m))
|
262 |
+
sdm = {i: row for i, row in irows if row}
|
263 |
+
return cls(sdm, shape, domain)
|
264 |
+
|
265 |
+
@classmethod
|
266 |
+
def from_ddm(cls, ddm):
|
267 |
+
"""
|
268 |
+
converts object of :py:class:`~.DDM` to
|
269 |
+
:py:class:`~.SDM`
|
270 |
+
|
271 |
+
Examples
|
272 |
+
========
|
273 |
+
|
274 |
+
>>> from sympy.polys.matrices.ddm import DDM
|
275 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
276 |
+
>>> from sympy import QQ
|
277 |
+
>>> ddm = DDM( [[QQ(1, 2), 0], [0, QQ(3, 4)]], (2, 2), QQ)
|
278 |
+
>>> A = SDM.from_ddm(ddm)
|
279 |
+
>>> A
|
280 |
+
{0: {0: 1/2}, 1: {1: 3/4}}
|
281 |
+
|
282 |
+
"""
|
283 |
+
return cls.from_list(ddm, ddm.shape, ddm.domain)
|
284 |
+
|
285 |
+
def to_list(M):
|
286 |
+
"""
|
287 |
+
|
288 |
+
Converts a :py:class:`~.SDM` object to a list
|
289 |
+
|
290 |
+
Examples
|
291 |
+
========
|
292 |
+
|
293 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
294 |
+
>>> from sympy import QQ
|
295 |
+
>>> elemsdict = {0:{1:QQ(2)}, 1:{}}
|
296 |
+
>>> A = SDM(elemsdict, (2, 2), QQ)
|
297 |
+
>>> A.to_list()
|
298 |
+
[[0, 2], [0, 0]]
|
299 |
+
|
300 |
+
"""
|
301 |
+
m, n = M.shape
|
302 |
+
zero = M.domain.zero
|
303 |
+
ddm = [[zero] * n for _ in range(m)]
|
304 |
+
for i, row in M.items():
|
305 |
+
for j, e in row.items():
|
306 |
+
ddm[i][j] = e
|
307 |
+
return ddm
|
308 |
+
|
309 |
+
def to_list_flat(M):
|
310 |
+
m, n = M.shape
|
311 |
+
zero = M.domain.zero
|
312 |
+
flat = [zero] * (m * n)
|
313 |
+
for i, row in M.items():
|
314 |
+
for j, e in row.items():
|
315 |
+
flat[i*n + j] = e
|
316 |
+
return flat
|
317 |
+
|
318 |
+
def to_dok(M):
|
319 |
+
return {(i, j): e for i, row in M.items() for j, e in row.items()}
|
320 |
+
|
321 |
+
def to_ddm(M):
|
322 |
+
"""
|
323 |
+
Convert a :py:class:`~.SDM` object to a :py:class:`~.DDM` object
|
324 |
+
|
325 |
+
Examples
|
326 |
+
========
|
327 |
+
|
328 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
329 |
+
>>> from sympy import QQ
|
330 |
+
>>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ)
|
331 |
+
>>> A.to_ddm()
|
332 |
+
[[0, 2], [0, 0]]
|
333 |
+
|
334 |
+
"""
|
335 |
+
return DDM(M.to_list(), M.shape, M.domain)
|
336 |
+
|
337 |
+
def to_sdm(M):
|
338 |
+
return M
|
339 |
+
|
340 |
+
@classmethod
|
341 |
+
def zeros(cls, shape, domain):
|
342 |
+
r"""
|
343 |
+
|
344 |
+
Returns a :py:class:`~.SDM` of size shape,
|
345 |
+
belonging to the specified domain
|
346 |
+
|
347 |
+
In the example below we declare a matrix A where,
|
348 |
+
|
349 |
+
.. math::
|
350 |
+
A := \left[\begin{array}{ccc}
|
351 |
+
0 & 0 & 0 \\
|
352 |
+
0 & 0 & 0 \end{array} \right]
|
353 |
+
|
354 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
355 |
+
>>> from sympy import QQ
|
356 |
+
>>> A = SDM.zeros((2, 3), QQ)
|
357 |
+
>>> A
|
358 |
+
{}
|
359 |
+
|
360 |
+
"""
|
361 |
+
return cls({}, shape, domain)
|
362 |
+
|
363 |
+
@classmethod
|
364 |
+
def ones(cls, shape, domain):
|
365 |
+
one = domain.one
|
366 |
+
m, n = shape
|
367 |
+
row = dict(zip(range(n), [one]*n))
|
368 |
+
sdm = {i: row.copy() for i in range(m)}
|
369 |
+
return cls(sdm, shape, domain)
|
370 |
+
|
371 |
+
@classmethod
|
372 |
+
def eye(cls, shape, domain):
|
373 |
+
"""
|
374 |
+
|
375 |
+
Returns a identity :py:class:`~.SDM` matrix of dimensions
|
376 |
+
size x size, belonging to the specified domain
|
377 |
+
|
378 |
+
Examples
|
379 |
+
========
|
380 |
+
|
381 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
382 |
+
>>> from sympy import QQ
|
383 |
+
>>> I = SDM.eye((2, 2), QQ)
|
384 |
+
>>> I
|
385 |
+
{0: {0: 1}, 1: {1: 1}}
|
386 |
+
|
387 |
+
"""
|
388 |
+
rows, cols = shape
|
389 |
+
one = domain.one
|
390 |
+
sdm = {i: {i: one} for i in range(min(rows, cols))}
|
391 |
+
return cls(sdm, shape, domain)
|
392 |
+
|
393 |
+
@classmethod
|
394 |
+
def diag(cls, diagonal, domain, shape):
|
395 |
+
sdm = {i: {i: v} for i, v in enumerate(diagonal) if v}
|
396 |
+
return cls(sdm, shape, domain)
|
397 |
+
|
398 |
+
def transpose(M):
|
399 |
+
"""
|
400 |
+
|
401 |
+
Returns the transpose of a :py:class:`~.SDM` matrix
|
402 |
+
|
403 |
+
Examples
|
404 |
+
========
|
405 |
+
|
406 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
407 |
+
>>> from sympy import QQ
|
408 |
+
>>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ)
|
409 |
+
>>> A.transpose()
|
410 |
+
{1: {0: 2}}
|
411 |
+
|
412 |
+
"""
|
413 |
+
MT = sdm_transpose(M)
|
414 |
+
return M.new(MT, M.shape[::-1], M.domain)
|
415 |
+
|
416 |
+
def __add__(A, B):
|
417 |
+
if not isinstance(B, SDM):
|
418 |
+
return NotImplemented
|
419 |
+
return A.add(B)
|
420 |
+
|
421 |
+
def __sub__(A, B):
|
422 |
+
if not isinstance(B, SDM):
|
423 |
+
return NotImplemented
|
424 |
+
return A.sub(B)
|
425 |
+
|
426 |
+
def __neg__(A):
|
427 |
+
return A.neg()
|
428 |
+
|
429 |
+
def __mul__(A, B):
|
430 |
+
"""A * B"""
|
431 |
+
if isinstance(B, SDM):
|
432 |
+
return A.matmul(B)
|
433 |
+
elif B in A.domain:
|
434 |
+
return A.mul(B)
|
435 |
+
else:
|
436 |
+
return NotImplemented
|
437 |
+
|
438 |
+
def __rmul__(a, b):
|
439 |
+
if b in a.domain:
|
440 |
+
return a.rmul(b)
|
441 |
+
else:
|
442 |
+
return NotImplemented
|
443 |
+
|
444 |
+
def matmul(A, B):
|
445 |
+
"""
|
446 |
+
Performs matrix multiplication of two SDM matrices
|
447 |
+
|
448 |
+
Parameters
|
449 |
+
==========
|
450 |
+
|
451 |
+
A, B: SDM to multiply
|
452 |
+
|
453 |
+
Returns
|
454 |
+
=======
|
455 |
+
|
456 |
+
SDM
|
457 |
+
SDM after multiplication
|
458 |
+
|
459 |
+
Raises
|
460 |
+
======
|
461 |
+
|
462 |
+
DomainError
|
463 |
+
If domain of A does not match
|
464 |
+
with that of B
|
465 |
+
|
466 |
+
Examples
|
467 |
+
========
|
468 |
+
|
469 |
+
>>> from sympy import ZZ
|
470 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
471 |
+
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
|
472 |
+
>>> B = SDM({0:{0:ZZ(2), 1:ZZ(3)}, 1:{0:ZZ(4)}}, (2, 2), ZZ)
|
473 |
+
>>> A.matmul(B)
|
474 |
+
{0: {0: 8}, 1: {0: 2, 1: 3}}
|
475 |
+
|
476 |
+
"""
|
477 |
+
if A.domain != B.domain:
|
478 |
+
raise DMDomainError
|
479 |
+
m, n = A.shape
|
480 |
+
n2, o = B.shape
|
481 |
+
if n != n2:
|
482 |
+
raise DMShapeError
|
483 |
+
C = sdm_matmul(A, B, A.domain, m, o)
|
484 |
+
return A.new(C, (m, o), A.domain)
|
485 |
+
|
486 |
+
def mul(A, b):
|
487 |
+
"""
|
488 |
+
Multiplies each element of A with a scalar b
|
489 |
+
|
490 |
+
Examples
|
491 |
+
========
|
492 |
+
|
493 |
+
>>> from sympy import ZZ
|
494 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
495 |
+
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
|
496 |
+
>>> A.mul(ZZ(3))
|
497 |
+
{0: {1: 6}, 1: {0: 3}}
|
498 |
+
|
499 |
+
"""
|
500 |
+
Csdm = unop_dict(A, lambda aij: aij*b)
|
501 |
+
return A.new(Csdm, A.shape, A.domain)
|
502 |
+
|
503 |
+
def rmul(A, b):
|
504 |
+
Csdm = unop_dict(A, lambda aij: b*aij)
|
505 |
+
return A.new(Csdm, A.shape, A.domain)
|
506 |
+
|
507 |
+
def mul_elementwise(A, B):
|
508 |
+
if A.domain != B.domain:
|
509 |
+
raise DMDomainError
|
510 |
+
if A.shape != B.shape:
|
511 |
+
raise DMShapeError
|
512 |
+
zero = A.domain.zero
|
513 |
+
fzero = lambda e: zero
|
514 |
+
Csdm = binop_dict(A, B, mul, fzero, fzero)
|
515 |
+
return A.new(Csdm, A.shape, A.domain)
|
516 |
+
|
517 |
+
def add(A, B):
|
518 |
+
"""
|
519 |
+
|
520 |
+
Adds two :py:class:`~.SDM` matrices
|
521 |
+
|
522 |
+
Examples
|
523 |
+
========
|
524 |
+
|
525 |
+
>>> from sympy import ZZ
|
526 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
527 |
+
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
|
528 |
+
>>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ)
|
529 |
+
>>> A.add(B)
|
530 |
+
{0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}}
|
531 |
+
|
532 |
+
"""
|
533 |
+
|
534 |
+
Csdm = binop_dict(A, B, add, pos, pos)
|
535 |
+
return A.new(Csdm, A.shape, A.domain)
|
536 |
+
|
537 |
+
def sub(A, B):
|
538 |
+
"""
|
539 |
+
|
540 |
+
Subtracts two :py:class:`~.SDM` matrices
|
541 |
+
|
542 |
+
Examples
|
543 |
+
========
|
544 |
+
|
545 |
+
>>> from sympy import ZZ
|
546 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
547 |
+
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
|
548 |
+
>>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ)
|
549 |
+
>>> A.sub(B)
|
550 |
+
{0: {0: -3, 1: 2}, 1: {0: 1, 1: -4}}
|
551 |
+
|
552 |
+
"""
|
553 |
+
Csdm = binop_dict(A, B, sub, pos, neg)
|
554 |
+
return A.new(Csdm, A.shape, A.domain)
|
555 |
+
|
556 |
+
def neg(A):
|
557 |
+
"""
|
558 |
+
|
559 |
+
Returns the negative of a :py:class:`~.SDM` matrix
|
560 |
+
|
561 |
+
Examples
|
562 |
+
========
|
563 |
+
|
564 |
+
>>> from sympy import ZZ
|
565 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
566 |
+
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
|
567 |
+
>>> A.neg()
|
568 |
+
{0: {1: -2}, 1: {0: -1}}
|
569 |
+
|
570 |
+
"""
|
571 |
+
Csdm = unop_dict(A, neg)
|
572 |
+
return A.new(Csdm, A.shape, A.domain)
|
573 |
+
|
574 |
+
def convert_to(A, K):
|
575 |
+
"""
|
576 |
+
|
577 |
+
Converts the :py:class:`~.Domain` of a :py:class:`~.SDM` matrix to K
|
578 |
+
|
579 |
+
Examples
|
580 |
+
========
|
581 |
+
|
582 |
+
>>> from sympy import ZZ, QQ
|
583 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
584 |
+
>>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
|
585 |
+
>>> A.convert_to(QQ)
|
586 |
+
{0: {1: 2}, 1: {0: 1}}
|
587 |
+
|
588 |
+
"""
|
589 |
+
Kold = A.domain
|
590 |
+
if K == Kold:
|
591 |
+
return A.copy()
|
592 |
+
Ak = unop_dict(A, lambda e: K.convert_from(e, Kold))
|
593 |
+
return A.new(Ak, A.shape, K)
|
594 |
+
|
595 |
+
def scc(A):
|
596 |
+
"""Strongly connected components of a square matrix *A*.
|
597 |
+
|
598 |
+
Examples
|
599 |
+
========
|
600 |
+
|
601 |
+
>>> from sympy import ZZ
|
602 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
603 |
+
>>> A = SDM({0:{0: ZZ(2)}, 1:{1:ZZ(1)}}, (2, 2), ZZ)
|
604 |
+
>>> A.scc()
|
605 |
+
[[0], [1]]
|
606 |
+
|
607 |
+
See also
|
608 |
+
========
|
609 |
+
|
610 |
+
sympy.polys.matrices.domainmatrix.DomainMatrix.scc
|
611 |
+
"""
|
612 |
+
rows, cols = A.shape
|
613 |
+
assert rows == cols
|
614 |
+
V = range(rows)
|
615 |
+
Emap = {v: list(A.get(v, [])) for v in V}
|
616 |
+
return _strongly_connected_components(V, Emap)
|
617 |
+
|
618 |
+
def rref(A):
|
619 |
+
"""
|
620 |
+
|
621 |
+
Returns reduced-row echelon form and list of pivots for the :py:class:`~.SDM`
|
622 |
+
|
623 |
+
Examples
|
624 |
+
========
|
625 |
+
|
626 |
+
>>> from sympy import QQ
|
627 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
628 |
+
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(2), 1:QQ(4)}}, (2, 2), QQ)
|
629 |
+
>>> A.rref()
|
630 |
+
({0: {0: 1, 1: 2}}, [0])
|
631 |
+
|
632 |
+
"""
|
633 |
+
B, pivots, _ = sdm_irref(A)
|
634 |
+
return A.new(B, A.shape, A.domain), pivots
|
635 |
+
|
636 |
+
def inv(A):
|
637 |
+
"""
|
638 |
+
|
639 |
+
Returns inverse of a matrix A
|
640 |
+
|
641 |
+
Examples
|
642 |
+
========
|
643 |
+
|
644 |
+
>>> from sympy import QQ
|
645 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
646 |
+
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
647 |
+
>>> A.inv()
|
648 |
+
{0: {0: -2, 1: 1}, 1: {0: 3/2, 1: -1/2}}
|
649 |
+
|
650 |
+
"""
|
651 |
+
return A.from_ddm(A.to_ddm().inv())
|
652 |
+
|
653 |
+
def det(A):
|
654 |
+
"""
|
655 |
+
Returns determinant of A
|
656 |
+
|
657 |
+
Examples
|
658 |
+
========
|
659 |
+
|
660 |
+
>>> from sympy import QQ
|
661 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
662 |
+
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
663 |
+
>>> A.det()
|
664 |
+
-2
|
665 |
+
|
666 |
+
"""
|
667 |
+
return A.to_ddm().det()
|
668 |
+
|
669 |
+
def lu(A):
|
670 |
+
"""
|
671 |
+
|
672 |
+
Returns LU decomposition for a matrix A
|
673 |
+
|
674 |
+
Examples
|
675 |
+
========
|
676 |
+
|
677 |
+
>>> from sympy import QQ
|
678 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
679 |
+
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
680 |
+
>>> A.lu()
|
681 |
+
({0: {0: 1}, 1: {0: 3, 1: 1}}, {0: {0: 1, 1: 2}, 1: {1: -2}}, [])
|
682 |
+
|
683 |
+
"""
|
684 |
+
L, U, swaps = A.to_ddm().lu()
|
685 |
+
return A.from_ddm(L), A.from_ddm(U), swaps
|
686 |
+
|
687 |
+
def lu_solve(A, b):
|
688 |
+
"""
|
689 |
+
|
690 |
+
Uses LU decomposition to solve Ax = b,
|
691 |
+
|
692 |
+
Examples
|
693 |
+
========
|
694 |
+
|
695 |
+
>>> from sympy import QQ
|
696 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
697 |
+
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
698 |
+
>>> b = SDM({0:{0:QQ(1)}, 1:{0:QQ(2)}}, (2, 1), QQ)
|
699 |
+
>>> A.lu_solve(b)
|
700 |
+
{1: {0: 1/2}}
|
701 |
+
|
702 |
+
"""
|
703 |
+
return A.from_ddm(A.to_ddm().lu_solve(b.to_ddm()))
|
704 |
+
|
705 |
+
def nullspace(A):
|
706 |
+
"""
|
707 |
+
|
708 |
+
Returns nullspace for a :py:class:`~.SDM` matrix A
|
709 |
+
|
710 |
+
Examples
|
711 |
+
========
|
712 |
+
|
713 |
+
>>> from sympy import QQ
|
714 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
715 |
+
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0: QQ(2), 1: QQ(4)}}, (2, 2), QQ)
|
716 |
+
>>> A.nullspace()
|
717 |
+
({0: {0: -2, 1: 1}}, [1])
|
718 |
+
|
719 |
+
"""
|
720 |
+
ncols = A.shape[1]
|
721 |
+
one = A.domain.one
|
722 |
+
B, pivots, nzcols = sdm_irref(A)
|
723 |
+
K, nonpivots = sdm_nullspace_from_rref(B, one, ncols, pivots, nzcols)
|
724 |
+
K = dict(enumerate(K))
|
725 |
+
shape = (len(K), ncols)
|
726 |
+
return A.new(K, shape, A.domain), nonpivots
|
727 |
+
|
728 |
+
def particular(A):
|
729 |
+
ncols = A.shape[1]
|
730 |
+
B, pivots, nzcols = sdm_irref(A)
|
731 |
+
P = sdm_particular_from_rref(B, ncols, pivots)
|
732 |
+
rep = {0:P} if P else {}
|
733 |
+
return A.new(rep, (1, ncols-1), A.domain)
|
734 |
+
|
735 |
+
def hstack(A, *B):
|
736 |
+
"""Horizontally stacks :py:class:`~.SDM` matrices.
|
737 |
+
|
738 |
+
Examples
|
739 |
+
========
|
740 |
+
|
741 |
+
>>> from sympy import ZZ
|
742 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
743 |
+
|
744 |
+
>>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ)
|
745 |
+
>>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ)
|
746 |
+
>>> A.hstack(B)
|
747 |
+
{0: {0: 1, 1: 2, 2: 5, 3: 6}, 1: {0: 3, 1: 4, 2: 7, 3: 8}}
|
748 |
+
|
749 |
+
>>> C = SDM({0: {0: ZZ(9), 1: ZZ(10)}, 1: {0: ZZ(11), 1: ZZ(12)}}, (2, 2), ZZ)
|
750 |
+
>>> A.hstack(B, C)
|
751 |
+
{0: {0: 1, 1: 2, 2: 5, 3: 6, 4: 9, 5: 10}, 1: {0: 3, 1: 4, 2: 7, 3: 8, 4: 11, 5: 12}}
|
752 |
+
"""
|
753 |
+
Anew = dict(A.copy())
|
754 |
+
rows, cols = A.shape
|
755 |
+
domain = A.domain
|
756 |
+
|
757 |
+
for Bk in B:
|
758 |
+
Bkrows, Bkcols = Bk.shape
|
759 |
+
assert Bkrows == rows
|
760 |
+
assert Bk.domain == domain
|
761 |
+
|
762 |
+
for i, Bki in Bk.items():
|
763 |
+
Ai = Anew.get(i, None)
|
764 |
+
if Ai is None:
|
765 |
+
Anew[i] = Ai = {}
|
766 |
+
for j, Bkij in Bki.items():
|
767 |
+
Ai[j + cols] = Bkij
|
768 |
+
cols += Bkcols
|
769 |
+
|
770 |
+
return A.new(Anew, (rows, cols), A.domain)
|
771 |
+
|
772 |
+
def vstack(A, *B):
|
773 |
+
"""Vertically stacks :py:class:`~.SDM` matrices.
|
774 |
+
|
775 |
+
Examples
|
776 |
+
========
|
777 |
+
|
778 |
+
>>> from sympy import ZZ
|
779 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
780 |
+
|
781 |
+
>>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ)
|
782 |
+
>>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ)
|
783 |
+
>>> A.vstack(B)
|
784 |
+
{0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}, 2: {0: 5, 1: 6}, 3: {0: 7, 1: 8}}
|
785 |
+
|
786 |
+
>>> C = SDM({0: {0: ZZ(9), 1: ZZ(10)}, 1: {0: ZZ(11), 1: ZZ(12)}}, (2, 2), ZZ)
|
787 |
+
>>> A.vstack(B, C)
|
788 |
+
{0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}, 2: {0: 5, 1: 6}, 3: {0: 7, 1: 8}, 4: {0: 9, 1: 10}, 5: {0: 11, 1: 12}}
|
789 |
+
"""
|
790 |
+
Anew = dict(A.copy())
|
791 |
+
rows, cols = A.shape
|
792 |
+
domain = A.domain
|
793 |
+
|
794 |
+
for Bk in B:
|
795 |
+
Bkrows, Bkcols = Bk.shape
|
796 |
+
assert Bkcols == cols
|
797 |
+
assert Bk.domain == domain
|
798 |
+
|
799 |
+
for i, Bki in Bk.items():
|
800 |
+
Anew[i + rows] = Bki
|
801 |
+
rows += Bkrows
|
802 |
+
|
803 |
+
return A.new(Anew, (rows, cols), A.domain)
|
804 |
+
|
805 |
+
def applyfunc(self, func, domain):
|
806 |
+
sdm = {i: {j: func(e) for j, e in row.items()} for i, row in self.items()}
|
807 |
+
return self.new(sdm, self.shape, domain)
|
808 |
+
|
809 |
+
def charpoly(A):
|
810 |
+
"""
|
811 |
+
Returns the coefficients of the characteristic polynomial
|
812 |
+
of the :py:class:`~.SDM` matrix. These elements will be domain elements.
|
813 |
+
The domain of the elements will be same as domain of the :py:class:`~.SDM`.
|
814 |
+
|
815 |
+
Examples
|
816 |
+
========
|
817 |
+
|
818 |
+
>>> from sympy import QQ, Symbol
|
819 |
+
>>> from sympy.polys.matrices.sdm import SDM
|
820 |
+
>>> from sympy.polys import Poly
|
821 |
+
>>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
822 |
+
>>> A.charpoly()
|
823 |
+
[1, -5, -2]
|
824 |
+
|
825 |
+
We can create a polynomial using the
|
826 |
+
coefficients using :py:class:`~.Poly`
|
827 |
+
|
828 |
+
>>> x = Symbol('x')
|
829 |
+
>>> p = Poly(A.charpoly(), x, domain=A.domain)
|
830 |
+
>>> p
|
831 |
+
Poly(x**2 - 5*x - 2, x, domain='QQ')
|
832 |
+
|
833 |
+
"""
|
834 |
+
return A.to_ddm().charpoly()
|
835 |
+
|
836 |
+
def is_zero_matrix(self):
|
837 |
+
"""
|
838 |
+
Says whether this matrix has all zero entries.
|
839 |
+
"""
|
840 |
+
return not self
|
841 |
+
|
842 |
+
def is_upper(self):
|
843 |
+
"""
|
844 |
+
Says whether this matrix is upper-triangular. True can be returned
|
845 |
+
even if the matrix is not square.
|
846 |
+
"""
|
847 |
+
return all(i <= j for i, row in self.items() for j in row)
|
848 |
+
|
849 |
+
def is_lower(self):
|
850 |
+
"""
|
851 |
+
Says whether this matrix is lower-triangular. True can be returned
|
852 |
+
even if the matrix is not square.
|
853 |
+
"""
|
854 |
+
return all(i >= j for i, row in self.items() for j in row)
|
855 |
+
|
856 |
+
def lll(A, delta=QQ(3, 4)):
|
857 |
+
return A.from_ddm(ddm_lll(A.to_ddm(), delta=delta))
|
858 |
+
|
859 |
+
def lll_transform(A, delta=QQ(3, 4)):
|
860 |
+
reduced, transform = ddm_lll_transform(A.to_ddm(), delta=delta)
|
861 |
+
return A.from_ddm(reduced), A.from_ddm(transform)
|
862 |
+
|
863 |
+
|
864 |
+
def binop_dict(A, B, fab, fa, fb):
|
865 |
+
Anz, Bnz = set(A), set(B)
|
866 |
+
C = {}
|
867 |
+
|
868 |
+
for i in Anz & Bnz:
|
869 |
+
Ai, Bi = A[i], B[i]
|
870 |
+
Ci = {}
|
871 |
+
Anzi, Bnzi = set(Ai), set(Bi)
|
872 |
+
for j in Anzi & Bnzi:
|
873 |
+
Cij = fab(Ai[j], Bi[j])
|
874 |
+
if Cij:
|
875 |
+
Ci[j] = Cij
|
876 |
+
for j in Anzi - Bnzi:
|
877 |
+
Cij = fa(Ai[j])
|
878 |
+
if Cij:
|
879 |
+
Ci[j] = Cij
|
880 |
+
for j in Bnzi - Anzi:
|
881 |
+
Cij = fb(Bi[j])
|
882 |
+
if Cij:
|
883 |
+
Ci[j] = Cij
|
884 |
+
if Ci:
|
885 |
+
C[i] = Ci
|
886 |
+
|
887 |
+
for i in Anz - Bnz:
|
888 |
+
Ai = A[i]
|
889 |
+
Ci = {}
|
890 |
+
for j, Aij in Ai.items():
|
891 |
+
Cij = fa(Aij)
|
892 |
+
if Cij:
|
893 |
+
Ci[j] = Cij
|
894 |
+
if Ci:
|
895 |
+
C[i] = Ci
|
896 |
+
|
897 |
+
for i in Bnz - Anz:
|
898 |
+
Bi = B[i]
|
899 |
+
Ci = {}
|
900 |
+
for j, Bij in Bi.items():
|
901 |
+
Cij = fb(Bij)
|
902 |
+
if Cij:
|
903 |
+
Ci[j] = Cij
|
904 |
+
if Ci:
|
905 |
+
C[i] = Ci
|
906 |
+
|
907 |
+
return C
|
908 |
+
|
909 |
+
|
910 |
+
def unop_dict(A, f):
|
911 |
+
B = {}
|
912 |
+
for i, Ai in A.items():
|
913 |
+
Bi = {}
|
914 |
+
for j, Aij in Ai.items():
|
915 |
+
Bij = f(Aij)
|
916 |
+
if Bij:
|
917 |
+
Bi[j] = Bij
|
918 |
+
if Bi:
|
919 |
+
B[i] = Bi
|
920 |
+
return B
|
921 |
+
|
922 |
+
|
923 |
+
def sdm_transpose(M):
|
924 |
+
MT = {}
|
925 |
+
for i, Mi in M.items():
|
926 |
+
for j, Mij in Mi.items():
|
927 |
+
try:
|
928 |
+
MT[j][i] = Mij
|
929 |
+
except KeyError:
|
930 |
+
MT[j] = {i: Mij}
|
931 |
+
return MT
|
932 |
+
|
933 |
+
|
934 |
+
def sdm_matmul(A, B, K, m, o):
|
935 |
+
#
|
936 |
+
# Should be fast if A and B are very sparse.
|
937 |
+
# Consider e.g. A = B = eye(1000).
|
938 |
+
#
|
939 |
+
# The idea here is that we compute C = A*B in terms of the rows of C and
|
940 |
+
# B since the dict of dicts representation naturally stores the matrix as
|
941 |
+
# rows. The ith row of C (Ci) is equal to the sum of Aik * Bk where Bk is
|
942 |
+
# the kth row of B. The algorithm below loops over each nonzero element
|
943 |
+
# Aik of A and if the corresponding row Bj is nonzero then we do
|
944 |
+
# Ci += Aik * Bk.
|
945 |
+
# To make this more efficient we don't need to loop over all elements Aik.
|
946 |
+
# Instead for each row Ai we compute the intersection of the nonzero
|
947 |
+
# columns in Ai with the nonzero rows in B. That gives the k such that
|
948 |
+
# Aik and Bk are both nonzero. In Python the intersection of two sets
|
949 |
+
# of int can be computed very efficiently.
|
950 |
+
#
|
951 |
+
if K.is_EXRAW:
|
952 |
+
return sdm_matmul_exraw(A, B, K, m, o)
|
953 |
+
|
954 |
+
C = {}
|
955 |
+
B_knz = set(B)
|
956 |
+
for i, Ai in A.items():
|
957 |
+
Ci = {}
|
958 |
+
Ai_knz = set(Ai)
|
959 |
+
for k in Ai_knz & B_knz:
|
960 |
+
Aik = Ai[k]
|
961 |
+
for j, Bkj in B[k].items():
|
962 |
+
Cij = Ci.get(j, None)
|
963 |
+
if Cij is not None:
|
964 |
+
Cij = Cij + Aik * Bkj
|
965 |
+
if Cij:
|
966 |
+
Ci[j] = Cij
|
967 |
+
else:
|
968 |
+
Ci.pop(j)
|
969 |
+
else:
|
970 |
+
Cij = Aik * Bkj
|
971 |
+
if Cij:
|
972 |
+
Ci[j] = Cij
|
973 |
+
if Ci:
|
974 |
+
C[i] = Ci
|
975 |
+
return C
|
976 |
+
|
977 |
+
|
978 |
+
def sdm_matmul_exraw(A, B, K, m, o):
|
979 |
+
#
|
980 |
+
# Like sdm_matmul above except that:
|
981 |
+
#
|
982 |
+
# - Handles cases like 0*oo -> nan (sdm_matmul skips multipication by zero)
|
983 |
+
# - Uses K.sum (Add(*items)) for efficient addition of Expr
|
984 |
+
#
|
985 |
+
zero = K.zero
|
986 |
+
C = {}
|
987 |
+
B_knz = set(B)
|
988 |
+
for i, Ai in A.items():
|
989 |
+
Ci_list = defaultdict(list)
|
990 |
+
Ai_knz = set(Ai)
|
991 |
+
|
992 |
+
# Nonzero row/column pair
|
993 |
+
for k in Ai_knz & B_knz:
|
994 |
+
Aik = Ai[k]
|
995 |
+
if zero * Aik == zero:
|
996 |
+
# This is the main inner loop:
|
997 |
+
for j, Bkj in B[k].items():
|
998 |
+
Ci_list[j].append(Aik * Bkj)
|
999 |
+
else:
|
1000 |
+
for j in range(o):
|
1001 |
+
Ci_list[j].append(Aik * B[k].get(j, zero))
|
1002 |
+
|
1003 |
+
# Zero row in B, check for infinities in A
|
1004 |
+
for k in Ai_knz - B_knz:
|
1005 |
+
zAik = zero * Ai[k]
|
1006 |
+
if zAik != zero:
|
1007 |
+
for j in range(o):
|
1008 |
+
Ci_list[j].append(zAik)
|
1009 |
+
|
1010 |
+
# Add terms using K.sum (Add(*terms)) for efficiency
|
1011 |
+
Ci = {}
|
1012 |
+
for j, Cij_list in Ci_list.items():
|
1013 |
+
Cij = K.sum(Cij_list)
|
1014 |
+
if Cij:
|
1015 |
+
Ci[j] = Cij
|
1016 |
+
if Ci:
|
1017 |
+
C[i] = Ci
|
1018 |
+
|
1019 |
+
# Find all infinities in B
|
1020 |
+
for k, Bk in B.items():
|
1021 |
+
for j, Bkj in Bk.items():
|
1022 |
+
if zero * Bkj != zero:
|
1023 |
+
for i in range(m):
|
1024 |
+
Aik = A.get(i, {}).get(k, zero)
|
1025 |
+
# If Aik is not zero then this was handled above
|
1026 |
+
if Aik == zero:
|
1027 |
+
Ci = C.get(i, {})
|
1028 |
+
Cij = Ci.get(j, zero) + Aik * Bkj
|
1029 |
+
if Cij != zero:
|
1030 |
+
Ci[j] = Cij
|
1031 |
+
else: # pragma: no cover
|
1032 |
+
# Not sure how we could get here but let's raise an
|
1033 |
+
# exception just in case.
|
1034 |
+
raise RuntimeError
|
1035 |
+
C[i] = Ci
|
1036 |
+
|
1037 |
+
return C
|
1038 |
+
|
1039 |
+
|
1040 |
+
def sdm_irref(A):
|
1041 |
+
"""RREF and pivots of a sparse matrix *A*.
|
1042 |
+
|
1043 |
+
Compute the reduced row echelon form (RREF) of the matrix *A* and return a
|
1044 |
+
list of the pivot columns. This routine does not work in place and leaves
|
1045 |
+
the original matrix *A* unmodified.
|
1046 |
+
|
1047 |
+
Examples
|
1048 |
+
========
|
1049 |
+
|
1050 |
+
This routine works with a dict of dicts sparse representation of a matrix:
|
1051 |
+
|
1052 |
+
>>> from sympy import QQ
|
1053 |
+
>>> from sympy.polys.matrices.sdm import sdm_irref
|
1054 |
+
>>> A = {0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}}
|
1055 |
+
>>> Arref, pivots, _ = sdm_irref(A)
|
1056 |
+
>>> Arref
|
1057 |
+
{0: {0: 1}, 1: {1: 1}}
|
1058 |
+
>>> pivots
|
1059 |
+
[0, 1]
|
1060 |
+
|
1061 |
+
The analogous calculation with :py:class:`~.Matrix` would be
|
1062 |
+
|
1063 |
+
>>> from sympy import Matrix
|
1064 |
+
>>> M = Matrix([[1, 2], [3, 4]])
|
1065 |
+
>>> Mrref, pivots = M.rref()
|
1066 |
+
>>> Mrref
|
1067 |
+
Matrix([
|
1068 |
+
[1, 0],
|
1069 |
+
[0, 1]])
|
1070 |
+
>>> pivots
|
1071 |
+
(0, 1)
|
1072 |
+
|
1073 |
+
Notes
|
1074 |
+
=====
|
1075 |
+
|
1076 |
+
The cost of this algorithm is determined purely by the nonzero elements of
|
1077 |
+
the matrix. No part of the cost of any step in this algorithm depends on
|
1078 |
+
the number of rows or columns in the matrix. No step depends even on the
|
1079 |
+
number of nonzero rows apart from the primary loop over those rows. The
|
1080 |
+
implementation is much faster than ddm_rref for sparse matrices. In fact
|
1081 |
+
at the time of writing it is also (slightly) faster than the dense
|
1082 |
+
implementation even if the input is a fully dense matrix so it seems to be
|
1083 |
+
faster in all cases.
|
1084 |
+
|
1085 |
+
The elements of the matrix should support exact division with ``/``. For
|
1086 |
+
example elements of any domain that is a field (e.g. ``QQ``) should be
|
1087 |
+
fine. No attempt is made to handle inexact arithmetic.
|
1088 |
+
|
1089 |
+
"""
|
1090 |
+
#
|
1091 |
+
# Any zeros in the matrix are not stored at all so an element is zero if
|
1092 |
+
# its row dict has no index at that key. A row is entirely zero if its
|
1093 |
+
# row index is not in the outer dict. Since rref reorders the rows and
|
1094 |
+
# removes zero rows we can completely discard the row indices. The first
|
1095 |
+
# step then copies the row dicts into a list sorted by the index of the
|
1096 |
+
# first nonzero column in each row.
|
1097 |
+
#
|
1098 |
+
# The algorithm then processes each row Ai one at a time. Previously seen
|
1099 |
+
# rows are used to cancel their pivot columns from Ai. Then a pivot from
|
1100 |
+
# Ai is chosen and is cancelled from all previously seen rows. At this
|
1101 |
+
# point Ai joins the previously seen rows. Once all rows are seen all
|
1102 |
+
# elimination has occurred and the rows are sorted by pivot column index.
|
1103 |
+
#
|
1104 |
+
# The previously seen rows are stored in two separate groups. The reduced
|
1105 |
+
# group consists of all rows that have been reduced to a single nonzero
|
1106 |
+
# element (the pivot). There is no need to attempt any further reduction
|
1107 |
+
# with these. Rows that still have other nonzeros need to be considered
|
1108 |
+
# when Ai is cancelled from the previously seen rows.
|
1109 |
+
#
|
1110 |
+
# A dict nonzerocolumns is used to map from a column index to a set of
|
1111 |
+
# previously seen rows that still have a nonzero element in that column.
|
1112 |
+
# This means that we can cancel the pivot from Ai into the previously seen
|
1113 |
+
# rows without needing to loop over each row that might have a zero in
|
1114 |
+
# that column.
|
1115 |
+
#
|
1116 |
+
|
1117 |
+
# Row dicts sorted by index of first nonzero column
|
1118 |
+
# (Maybe sorting is not needed/useful.)
|
1119 |
+
Arows = sorted((Ai.copy() for Ai in A.values()), key=min)
|
1120 |
+
|
1121 |
+
# Each processed row has an associated pivot column.
|
1122 |
+
# pivot_row_map maps from the pivot column index to the row dict.
|
1123 |
+
# This means that we can represent a set of rows purely as a set of their
|
1124 |
+
# pivot indices.
|
1125 |
+
pivot_row_map = {}
|
1126 |
+
|
1127 |
+
# Set of pivot indices for rows that are fully reduced to a single nonzero.
|
1128 |
+
reduced_pivots = set()
|
1129 |
+
|
1130 |
+
# Set of pivot indices for rows not fully reduced
|
1131 |
+
nonreduced_pivots = set()
|
1132 |
+
|
1133 |
+
# Map from column index to a set of pivot indices representing the rows
|
1134 |
+
# that have a nonzero at that column.
|
1135 |
+
nonzero_columns = defaultdict(set)
|
1136 |
+
|
1137 |
+
while Arows:
|
1138 |
+
# Select pivot element and row
|
1139 |
+
Ai = Arows.pop()
|
1140 |
+
|
1141 |
+
# Nonzero columns from fully reduced pivot rows can be removed
|
1142 |
+
Ai = {j: Aij for j, Aij in Ai.items() if j not in reduced_pivots}
|
1143 |
+
|
1144 |
+
# Others require full row cancellation
|
1145 |
+
for j in nonreduced_pivots & set(Ai):
|
1146 |
+
Aj = pivot_row_map[j]
|
1147 |
+
Aij = Ai[j]
|
1148 |
+
Ainz = set(Ai)
|
1149 |
+
Ajnz = set(Aj)
|
1150 |
+
for k in Ajnz - Ainz:
|
1151 |
+
Ai[k] = - Aij * Aj[k]
|
1152 |
+
Ai.pop(j)
|
1153 |
+
Ainz.remove(j)
|
1154 |
+
for k in Ajnz & Ainz:
|
1155 |
+
Aik = Ai[k] - Aij * Aj[k]
|
1156 |
+
if Aik:
|
1157 |
+
Ai[k] = Aik
|
1158 |
+
else:
|
1159 |
+
Ai.pop(k)
|
1160 |
+
|
1161 |
+
# We have now cancelled previously seen pivots from Ai.
|
1162 |
+
# If it is zero then discard it.
|
1163 |
+
if not Ai:
|
1164 |
+
continue
|
1165 |
+
|
1166 |
+
# Choose a pivot from Ai:
|
1167 |
+
j = min(Ai)
|
1168 |
+
Aij = Ai[j]
|
1169 |
+
pivot_row_map[j] = Ai
|
1170 |
+
Ainz = set(Ai)
|
1171 |
+
|
1172 |
+
# Normalise the pivot row to make the pivot 1.
|
1173 |
+
#
|
1174 |
+
# This approach is slow for some domains. Cross cancellation might be
|
1175 |
+
# better for e.g. QQ(x) with division delayed to the final steps.
|
1176 |
+
Aijinv = Aij**-1
|
1177 |
+
for l in Ai:
|
1178 |
+
Ai[l] *= Aijinv
|
1179 |
+
|
1180 |
+
# Use Aij to cancel column j from all previously seen rows
|
1181 |
+
for k in nonzero_columns.pop(j, ()):
|
1182 |
+
Ak = pivot_row_map[k]
|
1183 |
+
Akj = Ak[j]
|
1184 |
+
Aknz = set(Ak)
|
1185 |
+
for l in Ainz - Aknz:
|
1186 |
+
Ak[l] = - Akj * Ai[l]
|
1187 |
+
nonzero_columns[l].add(k)
|
1188 |
+
Ak.pop(j)
|
1189 |
+
Aknz.remove(j)
|
1190 |
+
for l in Ainz & Aknz:
|
1191 |
+
Akl = Ak[l] - Akj * Ai[l]
|
1192 |
+
if Akl:
|
1193 |
+
Ak[l] = Akl
|
1194 |
+
else:
|
1195 |
+
# Drop nonzero elements
|
1196 |
+
Ak.pop(l)
|
1197 |
+
if l != j:
|
1198 |
+
nonzero_columns[l].remove(k)
|
1199 |
+
if len(Ak) == 1:
|
1200 |
+
reduced_pivots.add(k)
|
1201 |
+
nonreduced_pivots.remove(k)
|
1202 |
+
|
1203 |
+
if len(Ai) == 1:
|
1204 |
+
reduced_pivots.add(j)
|
1205 |
+
else:
|
1206 |
+
nonreduced_pivots.add(j)
|
1207 |
+
for l in Ai:
|
1208 |
+
if l != j:
|
1209 |
+
nonzero_columns[l].add(j)
|
1210 |
+
|
1211 |
+
# All done!
|
1212 |
+
pivots = sorted(reduced_pivots | nonreduced_pivots)
|
1213 |
+
pivot2row = {p: n for n, p in enumerate(pivots)}
|
1214 |
+
nonzero_columns = {c: {pivot2row[p] for p in s} for c, s in nonzero_columns.items()}
|
1215 |
+
rows = [pivot_row_map[i] for i in pivots]
|
1216 |
+
rref = dict(enumerate(rows))
|
1217 |
+
return rref, pivots, nonzero_columns
|
1218 |
+
|
1219 |
+
|
1220 |
+
def sdm_nullspace_from_rref(A, one, ncols, pivots, nonzero_cols):
|
1221 |
+
"""Get nullspace from A which is in RREF"""
|
1222 |
+
nonpivots = sorted(set(range(ncols)) - set(pivots))
|
1223 |
+
|
1224 |
+
K = []
|
1225 |
+
for j in nonpivots:
|
1226 |
+
Kj = {j:one}
|
1227 |
+
for i in nonzero_cols.get(j, ()):
|
1228 |
+
Kj[pivots[i]] = -A[i][j]
|
1229 |
+
K.append(Kj)
|
1230 |
+
|
1231 |
+
return K, nonpivots
|
1232 |
+
|
1233 |
+
|
1234 |
+
def sdm_particular_from_rref(A, ncols, pivots):
|
1235 |
+
"""Get a particular solution from A which is in RREF"""
|
1236 |
+
P = {}
|
1237 |
+
for i, j in enumerate(pivots):
|
1238 |
+
Ain = A[i].get(ncols-1, None)
|
1239 |
+
if Ain is not None:
|
1240 |
+
P[j] = Ain / A[i][j]
|
1241 |
+
return P
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (199 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_ddm.cpython-310.pyc
ADDED
Binary file (21.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_dense.cpython-310.pyc
ADDED
Binary file (9.49 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_domainmatrix.cpython-310.pyc
ADDED
Binary file (37.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_domainscalar.cpython-310.pyc
ADDED
Binary file (5.79 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_eigen.cpython-310.pyc
ADDED
Binary file (3.05 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_linsolve.cpython-310.pyc
ADDED
Binary file (3.38 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_lll.cpython-310.pyc
ADDED
Binary file (7.29 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_normalforms.cpython-310.pyc
ADDED
Binary file (3.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/__pycache__/test_sdm.cpython-310.pyc
ADDED
Binary file (18.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_ddm.py
ADDED
@@ -0,0 +1,557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.testing.pytest import raises
|
2 |
+
from sympy.external.gmpy import HAS_GMPY
|
3 |
+
|
4 |
+
from sympy.polys import ZZ, QQ
|
5 |
+
|
6 |
+
from sympy.polys.matrices.ddm import DDM
|
7 |
+
from sympy.polys.matrices.exceptions import (
|
8 |
+
DMShapeError, DMNonInvertibleMatrixError, DMDomainError,
|
9 |
+
DMBadInputError)
|
10 |
+
|
11 |
+
|
12 |
+
def test_DDM_init():
|
13 |
+
items = [[ZZ(0), ZZ(1), ZZ(2)], [ZZ(3), ZZ(4), ZZ(5)]]
|
14 |
+
shape = (2, 3)
|
15 |
+
ddm = DDM(items, shape, ZZ)
|
16 |
+
assert ddm.shape == shape
|
17 |
+
assert ddm.rows == 2
|
18 |
+
assert ddm.cols == 3
|
19 |
+
assert ddm.domain == ZZ
|
20 |
+
|
21 |
+
raises(DMBadInputError, lambda: DDM([[ZZ(2), ZZ(3)]], (2, 2), ZZ))
|
22 |
+
raises(DMBadInputError, lambda: DDM([[ZZ(1)], [ZZ(2), ZZ(3)]], (2, 2), ZZ))
|
23 |
+
|
24 |
+
|
25 |
+
def test_DDM_getsetitem():
|
26 |
+
ddm = DDM([[ZZ(2), ZZ(3)], [ZZ(4), ZZ(5)]], (2, 2), ZZ)
|
27 |
+
|
28 |
+
assert ddm[0][0] == ZZ(2)
|
29 |
+
assert ddm[0][1] == ZZ(3)
|
30 |
+
assert ddm[1][0] == ZZ(4)
|
31 |
+
assert ddm[1][1] == ZZ(5)
|
32 |
+
|
33 |
+
raises(IndexError, lambda: ddm[2][0])
|
34 |
+
raises(IndexError, lambda: ddm[0][2])
|
35 |
+
|
36 |
+
ddm[0][0] = ZZ(-1)
|
37 |
+
assert ddm[0][0] == ZZ(-1)
|
38 |
+
|
39 |
+
|
40 |
+
def test_DDM_str():
|
41 |
+
ddm = DDM([[ZZ(0), ZZ(1)], [ZZ(2), ZZ(3)]], (2, 2), ZZ)
|
42 |
+
if HAS_GMPY: # pragma: no cover
|
43 |
+
assert str(ddm) == '[[0, 1], [2, 3]]'
|
44 |
+
assert repr(ddm) == 'DDM([[mpz(0), mpz(1)], [mpz(2), mpz(3)]], (2, 2), ZZ)'
|
45 |
+
else: # pragma: no cover
|
46 |
+
assert repr(ddm) == 'DDM([[0, 1], [2, 3]], (2, 2), ZZ)'
|
47 |
+
assert str(ddm) == '[[0, 1], [2, 3]]'
|
48 |
+
|
49 |
+
|
50 |
+
def test_DDM_eq():
|
51 |
+
items = [[ZZ(0), ZZ(1)], [ZZ(2), ZZ(3)]]
|
52 |
+
ddm1 = DDM(items, (2, 2), ZZ)
|
53 |
+
ddm2 = DDM(items, (2, 2), ZZ)
|
54 |
+
|
55 |
+
assert (ddm1 == ddm1) is True
|
56 |
+
assert (ddm1 == items) is False
|
57 |
+
assert (items == ddm1) is False
|
58 |
+
assert (ddm1 == ddm2) is True
|
59 |
+
assert (ddm2 == ddm1) is True
|
60 |
+
|
61 |
+
assert (ddm1 != ddm1) is False
|
62 |
+
assert (ddm1 != items) is True
|
63 |
+
assert (items != ddm1) is True
|
64 |
+
assert (ddm1 != ddm2) is False
|
65 |
+
assert (ddm2 != ddm1) is False
|
66 |
+
|
67 |
+
ddm3 = DDM([[ZZ(0), ZZ(1)], [ZZ(3), ZZ(3)]], (2, 2), ZZ)
|
68 |
+
ddm3 = DDM(items, (2, 2), QQ)
|
69 |
+
|
70 |
+
assert (ddm1 == ddm3) is False
|
71 |
+
assert (ddm3 == ddm1) is False
|
72 |
+
assert (ddm1 != ddm3) is True
|
73 |
+
assert (ddm3 != ddm1) is True
|
74 |
+
|
75 |
+
|
76 |
+
def test_DDM_convert_to():
|
77 |
+
ddm = DDM([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
|
78 |
+
assert ddm.convert_to(ZZ) == ddm
|
79 |
+
ddmq = ddm.convert_to(QQ)
|
80 |
+
assert ddmq.domain == QQ
|
81 |
+
|
82 |
+
|
83 |
+
def test_DDM_zeros():
|
84 |
+
ddmz = DDM.zeros((3, 4), QQ)
|
85 |
+
assert list(ddmz) == [[QQ(0)] * 4] * 3
|
86 |
+
assert ddmz.shape == (3, 4)
|
87 |
+
assert ddmz.domain == QQ
|
88 |
+
|
89 |
+
def test_DDM_ones():
|
90 |
+
ddmone = DDM.ones((2, 3), QQ)
|
91 |
+
assert list(ddmone) == [[QQ(1)] * 3] * 2
|
92 |
+
assert ddmone.shape == (2, 3)
|
93 |
+
assert ddmone.domain == QQ
|
94 |
+
|
95 |
+
def test_DDM_eye():
|
96 |
+
ddmz = DDM.eye(3, QQ)
|
97 |
+
f = lambda i, j: QQ(1) if i == j else QQ(0)
|
98 |
+
assert list(ddmz) == [[f(i, j) for i in range(3)] for j in range(3)]
|
99 |
+
assert ddmz.shape == (3, 3)
|
100 |
+
assert ddmz.domain == QQ
|
101 |
+
|
102 |
+
|
103 |
+
def test_DDM_copy():
|
104 |
+
ddm1 = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
105 |
+
ddm2 = ddm1.copy()
|
106 |
+
assert (ddm1 == ddm2) is True
|
107 |
+
ddm1[0][0] = QQ(-1)
|
108 |
+
assert (ddm1 == ddm2) is False
|
109 |
+
ddm2[0][0] = QQ(-1)
|
110 |
+
assert (ddm1 == ddm2) is True
|
111 |
+
|
112 |
+
|
113 |
+
def test_DDM_transpose():
|
114 |
+
ddm = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
115 |
+
ddmT = DDM([[QQ(1), QQ(2)]], (1, 2), QQ)
|
116 |
+
assert ddm.transpose() == ddmT
|
117 |
+
ddm02 = DDM([], (0, 2), QQ)
|
118 |
+
ddm02T = DDM([[], []], (2, 0), QQ)
|
119 |
+
assert ddm02.transpose() == ddm02T
|
120 |
+
assert ddm02T.transpose() == ddm02
|
121 |
+
ddm0 = DDM([], (0, 0), QQ)
|
122 |
+
assert ddm0.transpose() == ddm0
|
123 |
+
|
124 |
+
|
125 |
+
def test_DDM_add():
|
126 |
+
A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ)
|
127 |
+
B = DDM([[ZZ(3)], [ZZ(4)]], (2, 1), ZZ)
|
128 |
+
C = DDM([[ZZ(4)], [ZZ(6)]], (2, 1), ZZ)
|
129 |
+
AQ = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
130 |
+
assert A + B == A.add(B) == C
|
131 |
+
|
132 |
+
raises(DMShapeError, lambda: A + DDM([[ZZ(5)]], (1, 1), ZZ))
|
133 |
+
raises(TypeError, lambda: A + ZZ(1))
|
134 |
+
raises(TypeError, lambda: ZZ(1) + A)
|
135 |
+
raises(DMDomainError, lambda: A + AQ)
|
136 |
+
raises(DMDomainError, lambda: AQ + A)
|
137 |
+
|
138 |
+
|
139 |
+
def test_DDM_sub():
|
140 |
+
A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ)
|
141 |
+
B = DDM([[ZZ(3)], [ZZ(4)]], (2, 1), ZZ)
|
142 |
+
C = DDM([[ZZ(-2)], [ZZ(-2)]], (2, 1), ZZ)
|
143 |
+
AQ = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
144 |
+
D = DDM([[ZZ(5)]], (1, 1), ZZ)
|
145 |
+
assert A - B == A.sub(B) == C
|
146 |
+
|
147 |
+
raises(TypeError, lambda: A - ZZ(1))
|
148 |
+
raises(TypeError, lambda: ZZ(1) - A)
|
149 |
+
raises(DMShapeError, lambda: A - D)
|
150 |
+
raises(DMShapeError, lambda: D - A)
|
151 |
+
raises(DMShapeError, lambda: A.sub(D))
|
152 |
+
raises(DMShapeError, lambda: D.sub(A))
|
153 |
+
raises(DMDomainError, lambda: A - AQ)
|
154 |
+
raises(DMDomainError, lambda: AQ - A)
|
155 |
+
raises(DMDomainError, lambda: A.sub(AQ))
|
156 |
+
raises(DMDomainError, lambda: AQ.sub(A))
|
157 |
+
|
158 |
+
|
159 |
+
def test_DDM_neg():
|
160 |
+
A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ)
|
161 |
+
An = DDM([[ZZ(-1)], [ZZ(-2)]], (2, 1), ZZ)
|
162 |
+
assert -A == A.neg() == An
|
163 |
+
assert -An == An.neg() == A
|
164 |
+
|
165 |
+
|
166 |
+
def test_DDM_mul():
|
167 |
+
A = DDM([[ZZ(1)]], (1, 1), ZZ)
|
168 |
+
A2 = DDM([[ZZ(2)]], (1, 1), ZZ)
|
169 |
+
assert A * ZZ(2) == A2
|
170 |
+
assert ZZ(2) * A == A2
|
171 |
+
raises(TypeError, lambda: [[1]] * A)
|
172 |
+
raises(TypeError, lambda: A * [[1]])
|
173 |
+
|
174 |
+
|
175 |
+
def test_DDM_matmul():
|
176 |
+
A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ)
|
177 |
+
B = DDM([[ZZ(3), ZZ(4)]], (1, 2), ZZ)
|
178 |
+
AB = DDM([[ZZ(3), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ)
|
179 |
+
BA = DDM([[ZZ(11)]], (1, 1), ZZ)
|
180 |
+
|
181 |
+
assert A @ B == A.matmul(B) == AB
|
182 |
+
assert B @ A == B.matmul(A) == BA
|
183 |
+
|
184 |
+
raises(TypeError, lambda: A @ 1)
|
185 |
+
raises(TypeError, lambda: A @ [[3, 4]])
|
186 |
+
|
187 |
+
Bq = DDM([[QQ(3), QQ(4)]], (1, 2), QQ)
|
188 |
+
|
189 |
+
raises(DMDomainError, lambda: A @ Bq)
|
190 |
+
raises(DMDomainError, lambda: Bq @ A)
|
191 |
+
|
192 |
+
C = DDM([[ZZ(1)]], (1, 1), ZZ)
|
193 |
+
|
194 |
+
assert A @ C == A.matmul(C) == A
|
195 |
+
|
196 |
+
raises(DMShapeError, lambda: C @ A)
|
197 |
+
raises(DMShapeError, lambda: C.matmul(A))
|
198 |
+
|
199 |
+
Z04 = DDM([], (0, 4), ZZ)
|
200 |
+
Z40 = DDM([[]]*4, (4, 0), ZZ)
|
201 |
+
Z50 = DDM([[]]*5, (5, 0), ZZ)
|
202 |
+
Z05 = DDM([], (0, 5), ZZ)
|
203 |
+
Z45 = DDM([[0] * 5] * 4, (4, 5), ZZ)
|
204 |
+
Z54 = DDM([[0] * 4] * 5, (5, 4), ZZ)
|
205 |
+
Z00 = DDM([], (0, 0), ZZ)
|
206 |
+
|
207 |
+
assert Z04 @ Z45 == Z04.matmul(Z45) == Z05
|
208 |
+
assert Z45 @ Z50 == Z45.matmul(Z50) == Z40
|
209 |
+
assert Z00 @ Z04 == Z00.matmul(Z04) == Z04
|
210 |
+
assert Z50 @ Z00 == Z50.matmul(Z00) == Z50
|
211 |
+
assert Z00 @ Z00 == Z00.matmul(Z00) == Z00
|
212 |
+
assert Z50 @ Z04 == Z50.matmul(Z04) == Z54
|
213 |
+
|
214 |
+
raises(DMShapeError, lambda: Z05 @ Z40)
|
215 |
+
raises(DMShapeError, lambda: Z05.matmul(Z40))
|
216 |
+
|
217 |
+
|
218 |
+
def test_DDM_hstack():
|
219 |
+
A = DDM([[ZZ(1), ZZ(2), ZZ(3)]], (1, 3), ZZ)
|
220 |
+
B = DDM([[ZZ(4), ZZ(5)]], (1, 2), ZZ)
|
221 |
+
C = DDM([[ZZ(6)]], (1, 1), ZZ)
|
222 |
+
|
223 |
+
Ah = A.hstack(B)
|
224 |
+
assert Ah.shape == (1, 5)
|
225 |
+
assert Ah.domain == ZZ
|
226 |
+
assert Ah == DDM([[ZZ(1), ZZ(2), ZZ(3), ZZ(4), ZZ(5)]], (1, 5), ZZ)
|
227 |
+
|
228 |
+
Ah = A.hstack(B, C)
|
229 |
+
assert Ah.shape == (1, 6)
|
230 |
+
assert Ah.domain == ZZ
|
231 |
+
assert Ah == DDM([[ZZ(1), ZZ(2), ZZ(3), ZZ(4), ZZ(5), ZZ(6)]], (1, 6), ZZ)
|
232 |
+
|
233 |
+
|
234 |
+
def test_DDM_vstack():
|
235 |
+
A = DDM([[ZZ(1)], [ZZ(2)], [ZZ(3)]], (3, 1), ZZ)
|
236 |
+
B = DDM([[ZZ(4)], [ZZ(5)]], (2, 1), ZZ)
|
237 |
+
C = DDM([[ZZ(6)]], (1, 1), ZZ)
|
238 |
+
|
239 |
+
Ah = A.vstack(B)
|
240 |
+
assert Ah.shape == (5, 1)
|
241 |
+
assert Ah.domain == ZZ
|
242 |
+
assert Ah == DDM([[ZZ(1)], [ZZ(2)], [ZZ(3)], [ZZ(4)], [ZZ(5)]], (5, 1), ZZ)
|
243 |
+
|
244 |
+
Ah = A.vstack(B, C)
|
245 |
+
assert Ah.shape == (6, 1)
|
246 |
+
assert Ah.domain == ZZ
|
247 |
+
assert Ah == DDM([[ZZ(1)], [ZZ(2)], [ZZ(3)], [ZZ(4)], [ZZ(5)], [ZZ(6)]], (6, 1), ZZ)
|
248 |
+
|
249 |
+
|
250 |
+
def test_DDM_applyfunc():
|
251 |
+
A = DDM([[ZZ(1), ZZ(2), ZZ(3)]], (1, 3), ZZ)
|
252 |
+
B = DDM([[ZZ(2), ZZ(4), ZZ(6)]], (1, 3), ZZ)
|
253 |
+
assert A.applyfunc(lambda x: 2*x, ZZ) == B
|
254 |
+
|
255 |
+
def test_DDM_rref():
|
256 |
+
|
257 |
+
A = DDM([], (0, 4), QQ)
|
258 |
+
assert A.rref() == (A, [])
|
259 |
+
|
260 |
+
A = DDM([[QQ(0), QQ(1)], [QQ(1), QQ(1)]], (2, 2), QQ)
|
261 |
+
Ar = DDM([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ)
|
262 |
+
pivots = [0, 1]
|
263 |
+
assert A.rref() == (Ar, pivots)
|
264 |
+
|
265 |
+
A = DDM([[QQ(1), QQ(2), QQ(1)], [QQ(3), QQ(4), QQ(1)]], (2, 3), QQ)
|
266 |
+
Ar = DDM([[QQ(1), QQ(0), QQ(-1)], [QQ(0), QQ(1), QQ(1)]], (2, 3), QQ)
|
267 |
+
pivots = [0, 1]
|
268 |
+
assert A.rref() == (Ar, pivots)
|
269 |
+
|
270 |
+
A = DDM([[QQ(3), QQ(4), QQ(1)], [QQ(1), QQ(2), QQ(1)]], (2, 3), QQ)
|
271 |
+
Ar = DDM([[QQ(1), QQ(0), QQ(-1)], [QQ(0), QQ(1), QQ(1)]], (2, 3), QQ)
|
272 |
+
pivots = [0, 1]
|
273 |
+
assert A.rref() == (Ar, pivots)
|
274 |
+
|
275 |
+
A = DDM([[QQ(1), QQ(0)], [QQ(1), QQ(3)], [QQ(0), QQ(1)]], (3, 2), QQ)
|
276 |
+
Ar = DDM([[QQ(1), QQ(0)], [QQ(0), QQ(1)], [QQ(0), QQ(0)]], (3, 2), QQ)
|
277 |
+
pivots = [0, 1]
|
278 |
+
assert A.rref() == (Ar, pivots)
|
279 |
+
|
280 |
+
A = DDM([[QQ(1), QQ(0), QQ(1)], [QQ(3), QQ(0), QQ(1)]], (2, 3), QQ)
|
281 |
+
Ar = DDM([[QQ(1), QQ(0), QQ(0)], [QQ(0), QQ(0), QQ(1)]], (2, 3), QQ)
|
282 |
+
pivots = [0, 2]
|
283 |
+
assert A.rref() == (Ar, pivots)
|
284 |
+
|
285 |
+
|
286 |
+
def test_DDM_nullspace():
|
287 |
+
A = DDM([[QQ(1), QQ(1)], [QQ(1), QQ(1)]], (2, 2), QQ)
|
288 |
+
Anull = DDM([[QQ(-1), QQ(1)]], (1, 2), QQ)
|
289 |
+
nonpivots = [1]
|
290 |
+
assert A.nullspace() == (Anull, nonpivots)
|
291 |
+
|
292 |
+
|
293 |
+
def test_DDM_particular():
|
294 |
+
A = DDM([[QQ(1), QQ(0)]], (1, 2), QQ)
|
295 |
+
assert A.particular() == DDM.zeros((1, 1), QQ)
|
296 |
+
|
297 |
+
|
298 |
+
def test_DDM_det():
|
299 |
+
# 0x0 case
|
300 |
+
A = DDM([], (0, 0), ZZ)
|
301 |
+
assert A.det() == ZZ(1)
|
302 |
+
|
303 |
+
# 1x1 case
|
304 |
+
A = DDM([[ZZ(2)]], (1, 1), ZZ)
|
305 |
+
assert A.det() == ZZ(2)
|
306 |
+
|
307 |
+
# 2x2 case
|
308 |
+
A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
309 |
+
assert A.det() == ZZ(-2)
|
310 |
+
|
311 |
+
# 3x3 with swap
|
312 |
+
A = DDM([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(2), ZZ(5)]], (3, 3), ZZ)
|
313 |
+
assert A.det() == ZZ(0)
|
314 |
+
|
315 |
+
# 2x2 QQ case
|
316 |
+
A = DDM([[QQ(1, 2), QQ(1, 2)], [QQ(1, 3), QQ(1, 4)]], (2, 2), QQ)
|
317 |
+
assert A.det() == QQ(-1, 24)
|
318 |
+
|
319 |
+
# Nonsquare error
|
320 |
+
A = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ)
|
321 |
+
raises(DMShapeError, lambda: A.det())
|
322 |
+
|
323 |
+
# Nonsquare error with empty matrix
|
324 |
+
A = DDM([], (0, 1), ZZ)
|
325 |
+
raises(DMShapeError, lambda: A.det())
|
326 |
+
|
327 |
+
|
328 |
+
def test_DDM_inv():
|
329 |
+
A = DDM([[QQ(1, 1), QQ(2, 1)], [QQ(3, 1), QQ(4, 1)]], (2, 2), QQ)
|
330 |
+
Ainv = DDM([[QQ(-2, 1), QQ(1, 1)], [QQ(3, 2), QQ(-1, 2)]], (2, 2), QQ)
|
331 |
+
assert A.inv() == Ainv
|
332 |
+
|
333 |
+
A = DDM([[QQ(1), QQ(2)]], (1, 2), QQ)
|
334 |
+
raises(DMShapeError, lambda: A.inv())
|
335 |
+
|
336 |
+
A = DDM([[ZZ(2)]], (1, 1), ZZ)
|
337 |
+
raises(ValueError, lambda: A.inv())
|
338 |
+
|
339 |
+
A = DDM([], (0, 0), QQ)
|
340 |
+
assert A.inv() == A
|
341 |
+
|
342 |
+
A = DDM([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ)
|
343 |
+
raises(DMNonInvertibleMatrixError, lambda: A.inv())
|
344 |
+
|
345 |
+
|
346 |
+
def test_DDM_lu():
|
347 |
+
A = DDM([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
348 |
+
L, U, swaps = A.lu()
|
349 |
+
assert L == DDM([[QQ(1), QQ(0)], [QQ(3), QQ(1)]], (2, 2), QQ)
|
350 |
+
assert U == DDM([[QQ(1), QQ(2)], [QQ(0), QQ(-2)]], (2, 2), QQ)
|
351 |
+
assert swaps == []
|
352 |
+
|
353 |
+
A = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]]
|
354 |
+
Lexp = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 1]]
|
355 |
+
Uexp = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]]
|
356 |
+
to_dom = lambda rows, dom: [[dom(e) for e in row] for row in rows]
|
357 |
+
A = DDM(to_dom(A, QQ), (4, 4), QQ)
|
358 |
+
Lexp = DDM(to_dom(Lexp, QQ), (4, 4), QQ)
|
359 |
+
Uexp = DDM(to_dom(Uexp, QQ), (4, 4), QQ)
|
360 |
+
L, U, swaps = A.lu()
|
361 |
+
assert L == Lexp
|
362 |
+
assert U == Uexp
|
363 |
+
assert swaps == []
|
364 |
+
|
365 |
+
|
366 |
+
def test_DDM_lu_solve():
|
367 |
+
# Basic example
|
368 |
+
A = DDM([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
369 |
+
b = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
370 |
+
x = DDM([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ)
|
371 |
+
assert A.lu_solve(b) == x
|
372 |
+
|
373 |
+
# Example with swaps
|
374 |
+
A = DDM([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
375 |
+
assert A.lu_solve(b) == x
|
376 |
+
|
377 |
+
# Overdetermined, consistent
|
378 |
+
A = DDM([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ)
|
379 |
+
b = DDM([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ)
|
380 |
+
assert A.lu_solve(b) == x
|
381 |
+
|
382 |
+
# Overdetermined, inconsistent
|
383 |
+
b = DDM([[QQ(1)], [QQ(2)], [QQ(4)]], (3, 1), QQ)
|
384 |
+
raises(DMNonInvertibleMatrixError, lambda: A.lu_solve(b))
|
385 |
+
|
386 |
+
# Square, noninvertible
|
387 |
+
A = DDM([[QQ(1), QQ(2)], [QQ(1), QQ(2)]], (2, 2), QQ)
|
388 |
+
b = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
389 |
+
raises(DMNonInvertibleMatrixError, lambda: A.lu_solve(b))
|
390 |
+
|
391 |
+
# Underdetermined
|
392 |
+
A = DDM([[QQ(1), QQ(2)]], (1, 2), QQ)
|
393 |
+
b = DDM([[QQ(3)]], (1, 1), QQ)
|
394 |
+
raises(NotImplementedError, lambda: A.lu_solve(b))
|
395 |
+
|
396 |
+
# Domain mismatch
|
397 |
+
bz = DDM([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ)
|
398 |
+
raises(DMDomainError, lambda: A.lu_solve(bz))
|
399 |
+
|
400 |
+
# Shape mismatch
|
401 |
+
b3 = DDM([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ)
|
402 |
+
raises(DMShapeError, lambda: A.lu_solve(b3))
|
403 |
+
|
404 |
+
|
405 |
+
def test_DDM_charpoly():
|
406 |
+
A = DDM([], (0, 0), ZZ)
|
407 |
+
assert A.charpoly() == [ZZ(1)]
|
408 |
+
|
409 |
+
A = DDM([
|
410 |
+
[ZZ(1), ZZ(2), ZZ(3)],
|
411 |
+
[ZZ(4), ZZ(5), ZZ(6)],
|
412 |
+
[ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ)
|
413 |
+
Avec = [ZZ(1), ZZ(-15), ZZ(-18), ZZ(0)]
|
414 |
+
assert A.charpoly() == Avec
|
415 |
+
|
416 |
+
A = DDM([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
|
417 |
+
raises(DMShapeError, lambda: A.charpoly())
|
418 |
+
|
419 |
+
|
420 |
+
def test_DDM_getitem():
|
421 |
+
dm = DDM([
|
422 |
+
[ZZ(1), ZZ(2), ZZ(3)],
|
423 |
+
[ZZ(4), ZZ(5), ZZ(6)],
|
424 |
+
[ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ)
|
425 |
+
|
426 |
+
assert dm.getitem(1, 1) == ZZ(5)
|
427 |
+
assert dm.getitem(1, -2) == ZZ(5)
|
428 |
+
assert dm.getitem(-1, -3) == ZZ(7)
|
429 |
+
|
430 |
+
raises(IndexError, lambda: dm.getitem(3, 3))
|
431 |
+
|
432 |
+
|
433 |
+
def test_DDM_setitem():
|
434 |
+
dm = DDM.zeros((3, 3), ZZ)
|
435 |
+
dm.setitem(0, 0, 1)
|
436 |
+
dm.setitem(1, -2, 1)
|
437 |
+
dm.setitem(-1, -1, 1)
|
438 |
+
assert dm == DDM.eye(3, ZZ)
|
439 |
+
|
440 |
+
raises(IndexError, lambda: dm.setitem(3, 3, 0))
|
441 |
+
|
442 |
+
|
443 |
+
def test_DDM_extract_slice():
|
444 |
+
dm = DDM([
|
445 |
+
[ZZ(1), ZZ(2), ZZ(3)],
|
446 |
+
[ZZ(4), ZZ(5), ZZ(6)],
|
447 |
+
[ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ)
|
448 |
+
|
449 |
+
assert dm.extract_slice(slice(0, 3), slice(0, 3)) == dm
|
450 |
+
assert dm.extract_slice(slice(1, 3), slice(-2)) == DDM([[4], [7]], (2, 1), ZZ)
|
451 |
+
assert dm.extract_slice(slice(1, 3), slice(-2)) == DDM([[4], [7]], (2, 1), ZZ)
|
452 |
+
assert dm.extract_slice(slice(2, 3), slice(-2)) == DDM([[ZZ(7)]], (1, 1), ZZ)
|
453 |
+
assert dm.extract_slice(slice(0, 2), slice(-2)) == DDM([[1], [4]], (2, 1), ZZ)
|
454 |
+
assert dm.extract_slice(slice(-1), slice(-1)) == DDM([[1, 2], [4, 5]], (2, 2), ZZ)
|
455 |
+
|
456 |
+
assert dm.extract_slice(slice(2), slice(3, 4)) == DDM([[], []], (2, 0), ZZ)
|
457 |
+
assert dm.extract_slice(slice(3, 4), slice(2)) == DDM([], (0, 2), ZZ)
|
458 |
+
assert dm.extract_slice(slice(3, 4), slice(3, 4)) == DDM([], (0, 0), ZZ)
|
459 |
+
|
460 |
+
|
461 |
+
def test_DDM_extract():
|
462 |
+
dm1 = DDM([
|
463 |
+
[ZZ(1), ZZ(2), ZZ(3)],
|
464 |
+
[ZZ(4), ZZ(5), ZZ(6)],
|
465 |
+
[ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ)
|
466 |
+
dm2 = DDM([
|
467 |
+
[ZZ(6), ZZ(4)],
|
468 |
+
[ZZ(3), ZZ(1)]], (2, 2), ZZ)
|
469 |
+
assert dm1.extract([1, 0], [2, 0]) == dm2
|
470 |
+
assert dm1.extract([-2, 0], [-1, 0]) == dm2
|
471 |
+
|
472 |
+
assert dm1.extract([], []) == DDM.zeros((0, 0), ZZ)
|
473 |
+
assert dm1.extract([1], []) == DDM.zeros((1, 0), ZZ)
|
474 |
+
assert dm1.extract([], [1]) == DDM.zeros((0, 1), ZZ)
|
475 |
+
|
476 |
+
raises(IndexError, lambda: dm2.extract([2], [0]))
|
477 |
+
raises(IndexError, lambda: dm2.extract([0], [2]))
|
478 |
+
raises(IndexError, lambda: dm2.extract([-3], [0]))
|
479 |
+
raises(IndexError, lambda: dm2.extract([0], [-3]))
|
480 |
+
|
481 |
+
|
482 |
+
def test_DDM_flat():
|
483 |
+
dm = DDM([
|
484 |
+
[ZZ(6), ZZ(4)],
|
485 |
+
[ZZ(3), ZZ(1)]], (2, 2), ZZ)
|
486 |
+
assert dm.flat() == [ZZ(6), ZZ(4), ZZ(3), ZZ(1)]
|
487 |
+
|
488 |
+
|
489 |
+
def test_DDM_is_zero_matrix():
|
490 |
+
A = DDM([[QQ(1), QQ(0)], [QQ(0), QQ(0)]], (2, 2), QQ)
|
491 |
+
Azero = DDM.zeros((1, 2), QQ)
|
492 |
+
assert A.is_zero_matrix() is False
|
493 |
+
assert Azero.is_zero_matrix() is True
|
494 |
+
|
495 |
+
|
496 |
+
def test_DDM_is_upper():
|
497 |
+
# Wide matrices:
|
498 |
+
A = DDM([
|
499 |
+
[QQ(1), QQ(2), QQ(3), QQ(4)],
|
500 |
+
[QQ(0), QQ(5), QQ(6), QQ(7)],
|
501 |
+
[QQ(0), QQ(0), QQ(8), QQ(9)]
|
502 |
+
], (3, 4), QQ)
|
503 |
+
B = DDM([
|
504 |
+
[QQ(1), QQ(2), QQ(3), QQ(4)],
|
505 |
+
[QQ(0), QQ(5), QQ(6), QQ(7)],
|
506 |
+
[QQ(0), QQ(7), QQ(8), QQ(9)]
|
507 |
+
], (3, 4), QQ)
|
508 |
+
assert A.is_upper() is True
|
509 |
+
assert B.is_upper() is False
|
510 |
+
|
511 |
+
# Tall matrices:
|
512 |
+
A = DDM([
|
513 |
+
[QQ(1), QQ(2), QQ(3)],
|
514 |
+
[QQ(0), QQ(5), QQ(6)],
|
515 |
+
[QQ(0), QQ(0), QQ(8)],
|
516 |
+
[QQ(0), QQ(0), QQ(0)]
|
517 |
+
], (4, 3), QQ)
|
518 |
+
B = DDM([
|
519 |
+
[QQ(1), QQ(2), QQ(3)],
|
520 |
+
[QQ(0), QQ(5), QQ(6)],
|
521 |
+
[QQ(0), QQ(0), QQ(8)],
|
522 |
+
[QQ(0), QQ(0), QQ(10)]
|
523 |
+
], (4, 3), QQ)
|
524 |
+
assert A.is_upper() is True
|
525 |
+
assert B.is_upper() is False
|
526 |
+
|
527 |
+
|
528 |
+
def test_DDM_is_lower():
|
529 |
+
# Tall matrices:
|
530 |
+
A = DDM([
|
531 |
+
[QQ(1), QQ(2), QQ(3), QQ(4)],
|
532 |
+
[QQ(0), QQ(5), QQ(6), QQ(7)],
|
533 |
+
[QQ(0), QQ(0), QQ(8), QQ(9)]
|
534 |
+
], (3, 4), QQ).transpose()
|
535 |
+
B = DDM([
|
536 |
+
[QQ(1), QQ(2), QQ(3), QQ(4)],
|
537 |
+
[QQ(0), QQ(5), QQ(6), QQ(7)],
|
538 |
+
[QQ(0), QQ(7), QQ(8), QQ(9)]
|
539 |
+
], (3, 4), QQ).transpose()
|
540 |
+
assert A.is_lower() is True
|
541 |
+
assert B.is_lower() is False
|
542 |
+
|
543 |
+
# Wide matrices:
|
544 |
+
A = DDM([
|
545 |
+
[QQ(1), QQ(2), QQ(3)],
|
546 |
+
[QQ(0), QQ(5), QQ(6)],
|
547 |
+
[QQ(0), QQ(0), QQ(8)],
|
548 |
+
[QQ(0), QQ(0), QQ(0)]
|
549 |
+
], (4, 3), QQ).transpose()
|
550 |
+
B = DDM([
|
551 |
+
[QQ(1), QQ(2), QQ(3)],
|
552 |
+
[QQ(0), QQ(5), QQ(6)],
|
553 |
+
[QQ(0), QQ(0), QQ(8)],
|
554 |
+
[QQ(0), QQ(0), QQ(10)]
|
555 |
+
], (4, 3), QQ).transpose()
|
556 |
+
assert A.is_lower() is True
|
557 |
+
assert B.is_lower() is False
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_dense.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.testing.pytest import raises
|
2 |
+
|
3 |
+
from sympy.polys import ZZ, QQ
|
4 |
+
|
5 |
+
from sympy.polys.matrices.ddm import DDM
|
6 |
+
from sympy.polys.matrices.dense import (
|
7 |
+
ddm_transpose,
|
8 |
+
ddm_iadd, ddm_isub, ddm_ineg, ddm_imatmul, ddm_imul, ddm_irref,
|
9 |
+
ddm_idet, ddm_iinv, ddm_ilu, ddm_ilu_split, ddm_ilu_solve, ddm_berk)
|
10 |
+
from sympy.polys.matrices.exceptions import (
|
11 |
+
DMShapeError, DMNonInvertibleMatrixError, DMNonSquareMatrixError)
|
12 |
+
|
13 |
+
|
14 |
+
def test_ddm_transpose():
|
15 |
+
a = [[1, 2], [3, 4]]
|
16 |
+
assert ddm_transpose(a) == [[1, 3], [2, 4]]
|
17 |
+
|
18 |
+
|
19 |
+
def test_ddm_iadd():
|
20 |
+
a = [[1, 2], [3, 4]]
|
21 |
+
b = [[5, 6], [7, 8]]
|
22 |
+
ddm_iadd(a, b)
|
23 |
+
assert a == [[6, 8], [10, 12]]
|
24 |
+
|
25 |
+
|
26 |
+
def test_ddm_isub():
|
27 |
+
a = [[1, 2], [3, 4]]
|
28 |
+
b = [[5, 6], [7, 8]]
|
29 |
+
ddm_isub(a, b)
|
30 |
+
assert a == [[-4, -4], [-4, -4]]
|
31 |
+
|
32 |
+
|
33 |
+
def test_ddm_ineg():
|
34 |
+
a = [[1, 2], [3, 4]]
|
35 |
+
ddm_ineg(a)
|
36 |
+
assert a == [[-1, -2], [-3, -4]]
|
37 |
+
|
38 |
+
|
39 |
+
def test_ddm_matmul():
|
40 |
+
a = [[1, 2], [3, 4]]
|
41 |
+
ddm_imul(a, 2)
|
42 |
+
assert a == [[2, 4], [6, 8]]
|
43 |
+
|
44 |
+
a = [[1, 2], [3, 4]]
|
45 |
+
ddm_imul(a, 0)
|
46 |
+
assert a == [[0, 0], [0, 0]]
|
47 |
+
|
48 |
+
|
49 |
+
def test_ddm_imatmul():
|
50 |
+
a = [[1, 2, 3], [4, 5, 6]]
|
51 |
+
b = [[1, 2], [3, 4], [5, 6]]
|
52 |
+
|
53 |
+
c1 = [[0, 0], [0, 0]]
|
54 |
+
ddm_imatmul(c1, a, b)
|
55 |
+
assert c1 == [[22, 28], [49, 64]]
|
56 |
+
|
57 |
+
c2 = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
|
58 |
+
ddm_imatmul(c2, b, a)
|
59 |
+
assert c2 == [[9, 12, 15], [19, 26, 33], [29, 40, 51]]
|
60 |
+
|
61 |
+
b3 = [[1], [2], [3]]
|
62 |
+
c3 = [[0], [0]]
|
63 |
+
ddm_imatmul(c3, a, b3)
|
64 |
+
assert c3 == [[14], [32]]
|
65 |
+
|
66 |
+
|
67 |
+
def test_ddm_irref():
|
68 |
+
# Empty matrix
|
69 |
+
A = []
|
70 |
+
Ar = []
|
71 |
+
pivots = []
|
72 |
+
assert ddm_irref(A) == pivots
|
73 |
+
assert A == Ar
|
74 |
+
|
75 |
+
# Standard square case
|
76 |
+
A = [[QQ(0), QQ(1)], [QQ(1), QQ(1)]]
|
77 |
+
Ar = [[QQ(1), QQ(0)], [QQ(0), QQ(1)]]
|
78 |
+
pivots = [0, 1]
|
79 |
+
assert ddm_irref(A) == pivots
|
80 |
+
assert A == Ar
|
81 |
+
|
82 |
+
# m < n case
|
83 |
+
A = [[QQ(1), QQ(2), QQ(1)], [QQ(3), QQ(4), QQ(1)]]
|
84 |
+
Ar = [[QQ(1), QQ(0), QQ(-1)], [QQ(0), QQ(1), QQ(1)]]
|
85 |
+
pivots = [0, 1]
|
86 |
+
assert ddm_irref(A) == pivots
|
87 |
+
assert A == Ar
|
88 |
+
|
89 |
+
# same m < n but reversed
|
90 |
+
A = [[QQ(3), QQ(4), QQ(1)], [QQ(1), QQ(2), QQ(1)]]
|
91 |
+
Ar = [[QQ(1), QQ(0), QQ(-1)], [QQ(0), QQ(1), QQ(1)]]
|
92 |
+
pivots = [0, 1]
|
93 |
+
assert ddm_irref(A) == pivots
|
94 |
+
assert A == Ar
|
95 |
+
|
96 |
+
# m > n case
|
97 |
+
A = [[QQ(1), QQ(0)], [QQ(1), QQ(3)], [QQ(0), QQ(1)]]
|
98 |
+
Ar = [[QQ(1), QQ(0)], [QQ(0), QQ(1)], [QQ(0), QQ(0)]]
|
99 |
+
pivots = [0, 1]
|
100 |
+
assert ddm_irref(A) == pivots
|
101 |
+
assert A == Ar
|
102 |
+
|
103 |
+
# Example with missing pivot
|
104 |
+
A = [[QQ(1), QQ(0), QQ(1)], [QQ(3), QQ(0), QQ(1)]]
|
105 |
+
Ar = [[QQ(1), QQ(0), QQ(0)], [QQ(0), QQ(0), QQ(1)]]
|
106 |
+
pivots = [0, 2]
|
107 |
+
assert ddm_irref(A) == pivots
|
108 |
+
assert A == Ar
|
109 |
+
|
110 |
+
# Example with missing pivot and no replacement
|
111 |
+
A = [[QQ(0), QQ(1)], [QQ(0), QQ(2)], [QQ(1), QQ(0)]]
|
112 |
+
Ar = [[QQ(1), QQ(0)], [QQ(0), QQ(1)], [QQ(0), QQ(0)]]
|
113 |
+
pivots = [0, 1]
|
114 |
+
assert ddm_irref(A) == pivots
|
115 |
+
assert A == Ar
|
116 |
+
|
117 |
+
|
118 |
+
def test_ddm_idet():
|
119 |
+
A = []
|
120 |
+
assert ddm_idet(A, ZZ) == ZZ(1)
|
121 |
+
|
122 |
+
A = [[ZZ(2)]]
|
123 |
+
assert ddm_idet(A, ZZ) == ZZ(2)
|
124 |
+
|
125 |
+
A = [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]]
|
126 |
+
assert ddm_idet(A, ZZ) == ZZ(-2)
|
127 |
+
|
128 |
+
A = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(3), ZZ(5)]]
|
129 |
+
assert ddm_idet(A, ZZ) == ZZ(-1)
|
130 |
+
|
131 |
+
A = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(2), ZZ(5)]]
|
132 |
+
assert ddm_idet(A, ZZ) == ZZ(0)
|
133 |
+
|
134 |
+
A = [[QQ(1, 2), QQ(1, 2)], [QQ(1, 3), QQ(1, 4)]]
|
135 |
+
assert ddm_idet(A, QQ) == QQ(-1, 24)
|
136 |
+
|
137 |
+
|
138 |
+
def test_ddm_inv():
|
139 |
+
A = []
|
140 |
+
Ainv = []
|
141 |
+
ddm_iinv(Ainv, A, QQ)
|
142 |
+
assert Ainv == A
|
143 |
+
|
144 |
+
A = []
|
145 |
+
Ainv = []
|
146 |
+
raises(ValueError, lambda: ddm_iinv(Ainv, A, ZZ))
|
147 |
+
|
148 |
+
A = [[QQ(1), QQ(2)]]
|
149 |
+
Ainv = [[QQ(0), QQ(0)]]
|
150 |
+
raises(DMNonSquareMatrixError, lambda: ddm_iinv(Ainv, A, QQ))
|
151 |
+
|
152 |
+
A = [[QQ(1, 1), QQ(2, 1)], [QQ(3, 1), QQ(4, 1)]]
|
153 |
+
Ainv = [[QQ(0), QQ(0)], [QQ(0), QQ(0)]]
|
154 |
+
Ainv_expected = [[QQ(-2, 1), QQ(1, 1)], [QQ(3, 2), QQ(-1, 2)]]
|
155 |
+
ddm_iinv(Ainv, A, QQ)
|
156 |
+
assert Ainv == Ainv_expected
|
157 |
+
|
158 |
+
A = [[QQ(1, 1), QQ(2, 1)], [QQ(2, 1), QQ(4, 1)]]
|
159 |
+
Ainv = [[QQ(0), QQ(0)], [QQ(0), QQ(0)]]
|
160 |
+
raises(DMNonInvertibleMatrixError, lambda: ddm_iinv(Ainv, A, QQ))
|
161 |
+
|
162 |
+
|
163 |
+
def test_ddm_ilu():
|
164 |
+
A = []
|
165 |
+
Alu = []
|
166 |
+
swaps = ddm_ilu(A)
|
167 |
+
assert A == Alu
|
168 |
+
assert swaps == []
|
169 |
+
|
170 |
+
A = [[]]
|
171 |
+
Alu = [[]]
|
172 |
+
swaps = ddm_ilu(A)
|
173 |
+
assert A == Alu
|
174 |
+
assert swaps == []
|
175 |
+
|
176 |
+
A = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]]
|
177 |
+
Alu = [[QQ(1), QQ(2)], [QQ(3), QQ(-2)]]
|
178 |
+
swaps = ddm_ilu(A)
|
179 |
+
assert A == Alu
|
180 |
+
assert swaps == []
|
181 |
+
|
182 |
+
A = [[QQ(0), QQ(2)], [QQ(3), QQ(4)]]
|
183 |
+
Alu = [[QQ(3), QQ(4)], [QQ(0), QQ(2)]]
|
184 |
+
swaps = ddm_ilu(A)
|
185 |
+
assert A == Alu
|
186 |
+
assert swaps == [(0, 1)]
|
187 |
+
|
188 |
+
A = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)], [QQ(7), QQ(8), QQ(9)]]
|
189 |
+
Alu = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(-3), QQ(-6)], [QQ(7), QQ(2), QQ(0)]]
|
190 |
+
swaps = ddm_ilu(A)
|
191 |
+
assert A == Alu
|
192 |
+
assert swaps == []
|
193 |
+
|
194 |
+
A = [[QQ(0), QQ(1), QQ(2)], [QQ(0), QQ(1), QQ(3)], [QQ(1), QQ(1), QQ(2)]]
|
195 |
+
Alu = [[QQ(1), QQ(1), QQ(2)], [QQ(0), QQ(1), QQ(3)], [QQ(0), QQ(1), QQ(-1)]]
|
196 |
+
swaps = ddm_ilu(A)
|
197 |
+
assert A == Alu
|
198 |
+
assert swaps == [(0, 2)]
|
199 |
+
|
200 |
+
A = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]]
|
201 |
+
Alu = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(-3), QQ(-6)]]
|
202 |
+
swaps = ddm_ilu(A)
|
203 |
+
assert A == Alu
|
204 |
+
assert swaps == []
|
205 |
+
|
206 |
+
A = [[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]]
|
207 |
+
Alu = [[QQ(1), QQ(2)], [QQ(3), QQ(-2)], [QQ(5), QQ(2)]]
|
208 |
+
swaps = ddm_ilu(A)
|
209 |
+
assert A == Alu
|
210 |
+
assert swaps == []
|
211 |
+
|
212 |
+
|
213 |
+
def test_ddm_ilu_split():
|
214 |
+
U = []
|
215 |
+
L = []
|
216 |
+
Uexp = []
|
217 |
+
Lexp = []
|
218 |
+
swaps = ddm_ilu_split(L, U, QQ)
|
219 |
+
assert U == Uexp
|
220 |
+
assert L == Lexp
|
221 |
+
assert swaps == []
|
222 |
+
|
223 |
+
U = [[]]
|
224 |
+
L = [[QQ(1)]]
|
225 |
+
Uexp = [[]]
|
226 |
+
Lexp = [[QQ(1)]]
|
227 |
+
swaps = ddm_ilu_split(L, U, QQ)
|
228 |
+
assert U == Uexp
|
229 |
+
assert L == Lexp
|
230 |
+
assert swaps == []
|
231 |
+
|
232 |
+
U = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]]
|
233 |
+
L = [[QQ(1), QQ(0)], [QQ(0), QQ(1)]]
|
234 |
+
Uexp = [[QQ(1), QQ(2)], [QQ(0), QQ(-2)]]
|
235 |
+
Lexp = [[QQ(1), QQ(0)], [QQ(3), QQ(1)]]
|
236 |
+
swaps = ddm_ilu_split(L, U, QQ)
|
237 |
+
assert U == Uexp
|
238 |
+
assert L == Lexp
|
239 |
+
assert swaps == []
|
240 |
+
|
241 |
+
U = [[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]]
|
242 |
+
L = [[QQ(1), QQ(0)], [QQ(0), QQ(1)]]
|
243 |
+
Uexp = [[QQ(1), QQ(2), QQ(3)], [QQ(0), QQ(-3), QQ(-6)]]
|
244 |
+
Lexp = [[QQ(1), QQ(0)], [QQ(4), QQ(1)]]
|
245 |
+
swaps = ddm_ilu_split(L, U, QQ)
|
246 |
+
assert U == Uexp
|
247 |
+
assert L == Lexp
|
248 |
+
assert swaps == []
|
249 |
+
|
250 |
+
U = [[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]]
|
251 |
+
L = [[QQ(1), QQ(0), QQ(0)], [QQ(0), QQ(1), QQ(0)], [QQ(0), QQ(0), QQ(1)]]
|
252 |
+
Uexp = [[QQ(1), QQ(2)], [QQ(0), QQ(-2)], [QQ(0), QQ(0)]]
|
253 |
+
Lexp = [[QQ(1), QQ(0), QQ(0)], [QQ(3), QQ(1), QQ(0)], [QQ(5), QQ(2), QQ(1)]]
|
254 |
+
swaps = ddm_ilu_split(L, U, QQ)
|
255 |
+
assert U == Uexp
|
256 |
+
assert L == Lexp
|
257 |
+
assert swaps == []
|
258 |
+
|
259 |
+
|
260 |
+
def test_ddm_ilu_solve():
|
261 |
+
# Basic example
|
262 |
+
# A = [[QQ(1), QQ(2)], [QQ(3), QQ(4)]]
|
263 |
+
U = [[QQ(1), QQ(2)], [QQ(0), QQ(-2)]]
|
264 |
+
L = [[QQ(1), QQ(0)], [QQ(3), QQ(1)]]
|
265 |
+
swaps = []
|
266 |
+
b = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
267 |
+
x = DDM([[QQ(0)], [QQ(0)]], (2, 1), QQ)
|
268 |
+
xexp = DDM([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ)
|
269 |
+
ddm_ilu_solve(x, L, U, swaps, b)
|
270 |
+
assert x == xexp
|
271 |
+
|
272 |
+
# Example with swaps
|
273 |
+
# A = [[QQ(0), QQ(2)], [QQ(3), QQ(4)]]
|
274 |
+
U = [[QQ(3), QQ(4)], [QQ(0), QQ(2)]]
|
275 |
+
L = [[QQ(1), QQ(0)], [QQ(0), QQ(1)]]
|
276 |
+
swaps = [(0, 1)]
|
277 |
+
b = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
278 |
+
x = DDM([[QQ(0)], [QQ(0)]], (2, 1), QQ)
|
279 |
+
xexp = DDM([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ)
|
280 |
+
ddm_ilu_solve(x, L, U, swaps, b)
|
281 |
+
assert x == xexp
|
282 |
+
|
283 |
+
# Overdetermined, consistent
|
284 |
+
# A = DDM([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ)
|
285 |
+
U = [[QQ(1), QQ(2)], [QQ(0), QQ(-2)], [QQ(0), QQ(0)]]
|
286 |
+
L = [[QQ(1), QQ(0), QQ(0)], [QQ(3), QQ(1), QQ(0)], [QQ(5), QQ(2), QQ(1)]]
|
287 |
+
swaps = []
|
288 |
+
b = DDM([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ)
|
289 |
+
x = DDM([[QQ(0)], [QQ(0)]], (2, 1), QQ)
|
290 |
+
xexp = DDM([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ)
|
291 |
+
ddm_ilu_solve(x, L, U, swaps, b)
|
292 |
+
assert x == xexp
|
293 |
+
|
294 |
+
# Overdetermined, inconsistent
|
295 |
+
b = DDM([[QQ(1)], [QQ(2)], [QQ(4)]], (3, 1), QQ)
|
296 |
+
raises(DMNonInvertibleMatrixError, lambda: ddm_ilu_solve(x, L, U, swaps, b))
|
297 |
+
|
298 |
+
# Square, noninvertible
|
299 |
+
# A = DDM([[QQ(1), QQ(2)], [QQ(1), QQ(2)]], (2, 2), QQ)
|
300 |
+
U = [[QQ(1), QQ(2)], [QQ(0), QQ(0)]]
|
301 |
+
L = [[QQ(1), QQ(0)], [QQ(1), QQ(1)]]
|
302 |
+
swaps = []
|
303 |
+
b = DDM([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
304 |
+
raises(DMNonInvertibleMatrixError, lambda: ddm_ilu_solve(x, L, U, swaps, b))
|
305 |
+
|
306 |
+
# Underdetermined
|
307 |
+
# A = DDM([[QQ(1), QQ(2)]], (1, 2), QQ)
|
308 |
+
U = [[QQ(1), QQ(2)]]
|
309 |
+
L = [[QQ(1)]]
|
310 |
+
swaps = []
|
311 |
+
b = DDM([[QQ(3)]], (1, 1), QQ)
|
312 |
+
raises(NotImplementedError, lambda: ddm_ilu_solve(x, L, U, swaps, b))
|
313 |
+
|
314 |
+
# Shape mismatch
|
315 |
+
b3 = DDM([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ)
|
316 |
+
raises(DMShapeError, lambda: ddm_ilu_solve(x, L, U, swaps, b3))
|
317 |
+
|
318 |
+
# Empty shape mismatch
|
319 |
+
U = [[QQ(1)]]
|
320 |
+
L = [[QQ(1)]]
|
321 |
+
swaps = []
|
322 |
+
x = [[QQ(1)]]
|
323 |
+
b = []
|
324 |
+
raises(DMShapeError, lambda: ddm_ilu_solve(x, L, U, swaps, b))
|
325 |
+
|
326 |
+
# Empty system
|
327 |
+
U = []
|
328 |
+
L = []
|
329 |
+
swaps = []
|
330 |
+
b = []
|
331 |
+
x = []
|
332 |
+
ddm_ilu_solve(x, L, U, swaps, b)
|
333 |
+
assert x == []
|
334 |
+
|
335 |
+
|
336 |
+
def test_ddm_charpoly():
|
337 |
+
A = []
|
338 |
+
assert ddm_berk(A, ZZ) == [[ZZ(1)]]
|
339 |
+
|
340 |
+
A = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]]
|
341 |
+
Avec = [[ZZ(1)], [ZZ(-15)], [ZZ(-18)], [ZZ(0)]]
|
342 |
+
assert ddm_berk(A, ZZ) == Avec
|
343 |
+
|
344 |
+
A = DDM([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
|
345 |
+
raises(DMShapeError, lambda: ddm_berk(A, ZZ))
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_domainmatrix.py
ADDED
@@ -0,0 +1,910 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.testing.pytest import raises
|
2 |
+
|
3 |
+
from sympy.core.numbers import Integer, Rational
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.functions import sqrt
|
6 |
+
|
7 |
+
from sympy.matrices.dense import Matrix
|
8 |
+
from sympy.polys.domains import FF, ZZ, QQ, EXRAW
|
9 |
+
|
10 |
+
from sympy.polys.matrices.domainmatrix import DomainMatrix, DomainScalar, DM
|
11 |
+
from sympy.polys.matrices.exceptions import (
|
12 |
+
DMBadInputError, DMDomainError, DMShapeError, DMFormatError, DMNotAField,
|
13 |
+
DMNonSquareMatrixError, DMNonInvertibleMatrixError,
|
14 |
+
)
|
15 |
+
from sympy.polys.matrices.ddm import DDM
|
16 |
+
from sympy.polys.matrices.sdm import SDM
|
17 |
+
|
18 |
+
|
19 |
+
def test_DM():
|
20 |
+
ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
21 |
+
A = DM([[1, 2], [3, 4]], ZZ)
|
22 |
+
assert A.rep == ddm
|
23 |
+
assert A.shape == (2, 2)
|
24 |
+
assert A.domain == ZZ
|
25 |
+
|
26 |
+
|
27 |
+
def test_DomainMatrix_init():
|
28 |
+
lol = [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]]
|
29 |
+
dod = {0: {0: ZZ(1), 1:ZZ(2)}, 1: {0:ZZ(3), 1:ZZ(4)}}
|
30 |
+
ddm = DDM(lol, (2, 2), ZZ)
|
31 |
+
sdm = SDM(dod, (2, 2), ZZ)
|
32 |
+
|
33 |
+
A = DomainMatrix(lol, (2, 2), ZZ)
|
34 |
+
assert A.rep == ddm
|
35 |
+
assert A.shape == (2, 2)
|
36 |
+
assert A.domain == ZZ
|
37 |
+
|
38 |
+
A = DomainMatrix(dod, (2, 2), ZZ)
|
39 |
+
assert A.rep == sdm
|
40 |
+
assert A.shape == (2, 2)
|
41 |
+
assert A.domain == ZZ
|
42 |
+
|
43 |
+
raises(TypeError, lambda: DomainMatrix(ddm, (2, 2), ZZ))
|
44 |
+
raises(TypeError, lambda: DomainMatrix(sdm, (2, 2), ZZ))
|
45 |
+
raises(TypeError, lambda: DomainMatrix(Matrix([[1]]), (1, 1), ZZ))
|
46 |
+
|
47 |
+
for fmt, rep in [('sparse', sdm), ('dense', ddm)]:
|
48 |
+
A = DomainMatrix(lol, (2, 2), ZZ, fmt=fmt)
|
49 |
+
assert A.rep == rep
|
50 |
+
A = DomainMatrix(dod, (2, 2), ZZ, fmt=fmt)
|
51 |
+
assert A.rep == rep
|
52 |
+
|
53 |
+
raises(ValueError, lambda: DomainMatrix(lol, (2, 2), ZZ, fmt='invalid'))
|
54 |
+
|
55 |
+
raises(DMBadInputError, lambda: DomainMatrix([[ZZ(1), ZZ(2)]], (2, 2), ZZ))
|
56 |
+
|
57 |
+
|
58 |
+
def test_DomainMatrix_from_rep():
|
59 |
+
ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
60 |
+
A = DomainMatrix.from_rep(ddm)
|
61 |
+
assert A.rep == ddm
|
62 |
+
assert A.shape == (2, 2)
|
63 |
+
assert A.domain == ZZ
|
64 |
+
|
65 |
+
sdm = SDM({0: {0: ZZ(1), 1:ZZ(2)}, 1: {0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ)
|
66 |
+
A = DomainMatrix.from_rep(sdm)
|
67 |
+
assert A.rep == sdm
|
68 |
+
assert A.shape == (2, 2)
|
69 |
+
assert A.domain == ZZ
|
70 |
+
|
71 |
+
A = DomainMatrix([[ZZ(1)]], (1, 1), ZZ)
|
72 |
+
raises(TypeError, lambda: DomainMatrix.from_rep(A))
|
73 |
+
|
74 |
+
|
75 |
+
def test_DomainMatrix_from_list():
|
76 |
+
ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
77 |
+
A = DomainMatrix.from_list([[1, 2], [3, 4]], ZZ)
|
78 |
+
assert A.rep == ddm
|
79 |
+
assert A.shape == (2, 2)
|
80 |
+
assert A.domain == ZZ
|
81 |
+
|
82 |
+
dom = FF(7)
|
83 |
+
ddm = DDM([[dom(1), dom(2)], [dom(3), dom(4)]], (2, 2), dom)
|
84 |
+
A = DomainMatrix.from_list([[1, 2], [3, 4]], dom)
|
85 |
+
assert A.rep == ddm
|
86 |
+
assert A.shape == (2, 2)
|
87 |
+
assert A.domain == dom
|
88 |
+
|
89 |
+
ddm = DDM([[QQ(1, 2), QQ(3, 1)], [QQ(1, 4), QQ(5, 1)]], (2, 2), QQ)
|
90 |
+
A = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ)
|
91 |
+
assert A.rep == ddm
|
92 |
+
assert A.shape == (2, 2)
|
93 |
+
assert A.domain == QQ
|
94 |
+
|
95 |
+
|
96 |
+
def test_DomainMatrix_from_list_sympy():
|
97 |
+
ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
98 |
+
A = DomainMatrix.from_list_sympy(2, 2, [[1, 2], [3, 4]])
|
99 |
+
assert A.rep == ddm
|
100 |
+
assert A.shape == (2, 2)
|
101 |
+
assert A.domain == ZZ
|
102 |
+
|
103 |
+
K = QQ.algebraic_field(sqrt(2))
|
104 |
+
ddm = DDM(
|
105 |
+
[[K.convert(1 + sqrt(2)), K.convert(2 + sqrt(2))],
|
106 |
+
[K.convert(3 + sqrt(2)), K.convert(4 + sqrt(2))]],
|
107 |
+
(2, 2),
|
108 |
+
K
|
109 |
+
)
|
110 |
+
A = DomainMatrix.from_list_sympy(
|
111 |
+
2, 2, [[1 + sqrt(2), 2 + sqrt(2)], [3 + sqrt(2), 4 + sqrt(2)]],
|
112 |
+
extension=True)
|
113 |
+
assert A.rep == ddm
|
114 |
+
assert A.shape == (2, 2)
|
115 |
+
assert A.domain == K
|
116 |
+
|
117 |
+
|
118 |
+
def test_DomainMatrix_from_dict_sympy():
|
119 |
+
sdm = SDM({0: {0: QQ(1, 2)}, 1: {1: QQ(2, 3)}}, (2, 2), QQ)
|
120 |
+
sympy_dict = {0: {0: Rational(1, 2)}, 1: {1: Rational(2, 3)}}
|
121 |
+
A = DomainMatrix.from_dict_sympy(2, 2, sympy_dict)
|
122 |
+
assert A.rep == sdm
|
123 |
+
assert A.shape == (2, 2)
|
124 |
+
assert A.domain == QQ
|
125 |
+
|
126 |
+
fds = DomainMatrix.from_dict_sympy
|
127 |
+
raises(DMBadInputError, lambda: fds(2, 2, {3: {0: Rational(1, 2)}}))
|
128 |
+
raises(DMBadInputError, lambda: fds(2, 2, {0: {3: Rational(1, 2)}}))
|
129 |
+
|
130 |
+
|
131 |
+
def test_DomainMatrix_from_Matrix():
|
132 |
+
sdm = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ)
|
133 |
+
A = DomainMatrix.from_Matrix(Matrix([[1, 2], [3, 4]]))
|
134 |
+
assert A.rep == sdm
|
135 |
+
assert A.shape == (2, 2)
|
136 |
+
assert A.domain == ZZ
|
137 |
+
|
138 |
+
K = QQ.algebraic_field(sqrt(2))
|
139 |
+
sdm = SDM(
|
140 |
+
{0: {0: K.convert(1 + sqrt(2)), 1: K.convert(2 + sqrt(2))},
|
141 |
+
1: {0: K.convert(3 + sqrt(2)), 1: K.convert(4 + sqrt(2))}},
|
142 |
+
(2, 2),
|
143 |
+
K
|
144 |
+
)
|
145 |
+
A = DomainMatrix.from_Matrix(
|
146 |
+
Matrix([[1 + sqrt(2), 2 + sqrt(2)], [3 + sqrt(2), 4 + sqrt(2)]]),
|
147 |
+
extension=True)
|
148 |
+
assert A.rep == sdm
|
149 |
+
assert A.shape == (2, 2)
|
150 |
+
assert A.domain == K
|
151 |
+
|
152 |
+
A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense')
|
153 |
+
ddm = DDM([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]], (2, 2), QQ)
|
154 |
+
|
155 |
+
assert A.rep == ddm
|
156 |
+
assert A.shape == (2, 2)
|
157 |
+
assert A.domain == QQ
|
158 |
+
|
159 |
+
|
160 |
+
def test_DomainMatrix_eq():
|
161 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
162 |
+
assert A == A
|
163 |
+
B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(1)]], (2, 2), ZZ)
|
164 |
+
assert A != B
|
165 |
+
C = [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]]
|
166 |
+
assert A != C
|
167 |
+
|
168 |
+
|
169 |
+
def test_DomainMatrix_unify_eq():
|
170 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
171 |
+
B1 = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
172 |
+
B2 = DomainMatrix([[QQ(1), QQ(3)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
173 |
+
B3 = DomainMatrix([[ZZ(1)]], (1, 1), ZZ)
|
174 |
+
assert A.unify_eq(B1) is True
|
175 |
+
assert A.unify_eq(B2) is False
|
176 |
+
assert A.unify_eq(B3) is False
|
177 |
+
|
178 |
+
|
179 |
+
def test_DomainMatrix_get_domain():
|
180 |
+
K, items = DomainMatrix.get_domain([1, 2, 3, 4])
|
181 |
+
assert items == [ZZ(1), ZZ(2), ZZ(3), ZZ(4)]
|
182 |
+
assert K == ZZ
|
183 |
+
|
184 |
+
K, items = DomainMatrix.get_domain([1, 2, 3, Rational(1, 2)])
|
185 |
+
assert items == [QQ(1), QQ(2), QQ(3), QQ(1, 2)]
|
186 |
+
assert K == QQ
|
187 |
+
|
188 |
+
|
189 |
+
def test_DomainMatrix_convert_to():
|
190 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
191 |
+
Aq = A.convert_to(QQ)
|
192 |
+
assert Aq == DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
193 |
+
Acopy = A.convert_to(None)
|
194 |
+
assert Acopy == A and Acopy is not A
|
195 |
+
|
196 |
+
|
197 |
+
def test_DomainMatrix_to_sympy():
|
198 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
199 |
+
assert A.to_sympy() == A.convert_to(EXRAW)
|
200 |
+
|
201 |
+
|
202 |
+
def test_DomainMatrix_to_field():
|
203 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
204 |
+
Aq = A.to_field()
|
205 |
+
assert Aq == DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
206 |
+
|
207 |
+
|
208 |
+
def test_DomainMatrix_to_sparse():
|
209 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
210 |
+
A_sparse = A.to_sparse()
|
211 |
+
assert A_sparse.rep == {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}
|
212 |
+
|
213 |
+
|
214 |
+
def test_DomainMatrix_to_dense():
|
215 |
+
A = DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)
|
216 |
+
A_dense = A.to_dense()
|
217 |
+
assert A_dense.rep == DDM([[1, 2], [3, 4]], (2, 2), ZZ)
|
218 |
+
|
219 |
+
|
220 |
+
def test_DomainMatrix_unify():
|
221 |
+
Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
222 |
+
Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
223 |
+
assert Az.unify(Az) == (Az, Az)
|
224 |
+
assert Az.unify(Aq) == (Aq, Aq)
|
225 |
+
assert Aq.unify(Az) == (Aq, Aq)
|
226 |
+
assert Aq.unify(Aq) == (Aq, Aq)
|
227 |
+
|
228 |
+
As = DomainMatrix({0: {1: ZZ(1)}, 1:{0:ZZ(2)}}, (2, 2), ZZ)
|
229 |
+
Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
230 |
+
|
231 |
+
assert As.unify(As) == (As, As)
|
232 |
+
assert Ad.unify(Ad) == (Ad, Ad)
|
233 |
+
|
234 |
+
Bs, Bd = As.unify(Ad, fmt='dense')
|
235 |
+
assert Bs.rep == DDM([[0, 1], [2, 0]], (2, 2), ZZ)
|
236 |
+
assert Bd.rep == DDM([[1, 2],[3, 4]], (2, 2), ZZ)
|
237 |
+
|
238 |
+
Bs, Bd = As.unify(Ad, fmt='sparse')
|
239 |
+
assert Bs.rep == SDM({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ)
|
240 |
+
assert Bd.rep == SDM({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)
|
241 |
+
|
242 |
+
raises(ValueError, lambda: As.unify(Ad, fmt='invalid'))
|
243 |
+
|
244 |
+
|
245 |
+
def test_DomainMatrix_to_Matrix():
|
246 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
247 |
+
assert A.to_Matrix() == Matrix([[1, 2], [3, 4]])
|
248 |
+
|
249 |
+
|
250 |
+
def test_DomainMatrix_to_list():
|
251 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
252 |
+
assert A.to_list() == [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]]
|
253 |
+
|
254 |
+
|
255 |
+
def test_DomainMatrix_to_list_flat():
|
256 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
257 |
+
assert A.to_list_flat() == [ZZ(1), ZZ(2), ZZ(3), ZZ(4)]
|
258 |
+
|
259 |
+
|
260 |
+
def test_DomainMatrix_to_dok():
|
261 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
262 |
+
assert A.to_dok() == {(0, 0):ZZ(1), (0, 1):ZZ(2), (1, 0):ZZ(3), (1, 1):ZZ(4)}
|
263 |
+
|
264 |
+
|
265 |
+
def test_DomainMatrix_repr():
|
266 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
267 |
+
assert repr(A) == 'DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)'
|
268 |
+
|
269 |
+
|
270 |
+
def test_DomainMatrix_transpose():
|
271 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
272 |
+
AT = DomainMatrix([[ZZ(1), ZZ(3)], [ZZ(2), ZZ(4)]], (2, 2), ZZ)
|
273 |
+
assert A.transpose() == AT
|
274 |
+
|
275 |
+
|
276 |
+
def test_DomainMatrix_flat():
|
277 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
278 |
+
assert A.flat() == [ZZ(1), ZZ(2), ZZ(3), ZZ(4)]
|
279 |
+
|
280 |
+
|
281 |
+
def test_DomainMatrix_is_zero_matrix():
|
282 |
+
A = DomainMatrix([[ZZ(1)]], (1, 1), ZZ)
|
283 |
+
B = DomainMatrix([[ZZ(0)]], (1, 1), ZZ)
|
284 |
+
assert A.is_zero_matrix is False
|
285 |
+
assert B.is_zero_matrix is True
|
286 |
+
|
287 |
+
|
288 |
+
def test_DomainMatrix_is_upper():
|
289 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(0), ZZ(4)]], (2, 2), ZZ)
|
290 |
+
B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
291 |
+
assert A.is_upper is True
|
292 |
+
assert B.is_upper is False
|
293 |
+
|
294 |
+
|
295 |
+
def test_DomainMatrix_is_lower():
|
296 |
+
A = DomainMatrix([[ZZ(1), ZZ(0)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
297 |
+
B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
298 |
+
assert A.is_lower is True
|
299 |
+
assert B.is_lower is False
|
300 |
+
|
301 |
+
|
302 |
+
def test_DomainMatrix_is_square():
|
303 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
304 |
+
B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)], [ZZ(5), ZZ(6)]], (3, 2), ZZ)
|
305 |
+
assert A.is_square is True
|
306 |
+
assert B.is_square is False
|
307 |
+
|
308 |
+
|
309 |
+
def test_DomainMatrix_rank():
|
310 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(6), QQ(8)]], (3, 2), QQ)
|
311 |
+
assert A.rank() == 2
|
312 |
+
|
313 |
+
|
314 |
+
def test_DomainMatrix_add():
|
315 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
316 |
+
B = DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ)
|
317 |
+
assert A + A == A.add(A) == B
|
318 |
+
|
319 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
320 |
+
L = [[2, 3], [3, 4]]
|
321 |
+
raises(TypeError, lambda: A + L)
|
322 |
+
raises(TypeError, lambda: L + A)
|
323 |
+
|
324 |
+
A1 = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
325 |
+
A2 = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
|
326 |
+
raises(DMShapeError, lambda: A1 + A2)
|
327 |
+
raises(DMShapeError, lambda: A2 + A1)
|
328 |
+
raises(DMShapeError, lambda: A1.add(A2))
|
329 |
+
raises(DMShapeError, lambda: A2.add(A1))
|
330 |
+
|
331 |
+
Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
332 |
+
Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
333 |
+
Asum = DomainMatrix([[QQ(2), QQ(4)], [QQ(6), QQ(8)]], (2, 2), QQ)
|
334 |
+
assert Az + Aq == Asum
|
335 |
+
assert Aq + Az == Asum
|
336 |
+
raises(DMDomainError, lambda: Az.add(Aq))
|
337 |
+
raises(DMDomainError, lambda: Aq.add(Az))
|
338 |
+
|
339 |
+
As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ)
|
340 |
+
Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
341 |
+
|
342 |
+
Asd = As + Ad
|
343 |
+
Ads = Ad + As
|
344 |
+
assert Asd == DomainMatrix([[1, 3], [5, 4]], (2, 2), ZZ)
|
345 |
+
assert Asd.rep == DDM([[1, 3], [5, 4]], (2, 2), ZZ)
|
346 |
+
assert Ads == DomainMatrix([[1, 3], [5, 4]], (2, 2), ZZ)
|
347 |
+
assert Ads.rep == DDM([[1, 3], [5, 4]], (2, 2), ZZ)
|
348 |
+
raises(DMFormatError, lambda: As.add(Ad))
|
349 |
+
|
350 |
+
|
351 |
+
def test_DomainMatrix_sub():
|
352 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
353 |
+
B = DomainMatrix([[ZZ(0), ZZ(0)], [ZZ(0), ZZ(0)]], (2, 2), ZZ)
|
354 |
+
assert A - A == A.sub(A) == B
|
355 |
+
|
356 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
357 |
+
L = [[2, 3], [3, 4]]
|
358 |
+
raises(TypeError, lambda: A - L)
|
359 |
+
raises(TypeError, lambda: L - A)
|
360 |
+
|
361 |
+
A1 = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
362 |
+
A2 = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
|
363 |
+
raises(DMShapeError, lambda: A1 - A2)
|
364 |
+
raises(DMShapeError, lambda: A2 - A1)
|
365 |
+
raises(DMShapeError, lambda: A1.sub(A2))
|
366 |
+
raises(DMShapeError, lambda: A2.sub(A1))
|
367 |
+
|
368 |
+
Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
369 |
+
Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
370 |
+
Adiff = DomainMatrix([[QQ(0), QQ(0)], [QQ(0), QQ(0)]], (2, 2), QQ)
|
371 |
+
assert Az - Aq == Adiff
|
372 |
+
assert Aq - Az == Adiff
|
373 |
+
raises(DMDomainError, lambda: Az.sub(Aq))
|
374 |
+
raises(DMDomainError, lambda: Aq.sub(Az))
|
375 |
+
|
376 |
+
As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ)
|
377 |
+
Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
378 |
+
|
379 |
+
Asd = As - Ad
|
380 |
+
Ads = Ad - As
|
381 |
+
assert Asd == DomainMatrix([[-1, -1], [-1, -4]], (2, 2), ZZ)
|
382 |
+
assert Asd.rep == DDM([[-1, -1], [-1, -4]], (2, 2), ZZ)
|
383 |
+
assert Asd == -Ads
|
384 |
+
assert Asd.rep == -Ads.rep
|
385 |
+
|
386 |
+
|
387 |
+
def test_DomainMatrix_neg():
|
388 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
389 |
+
Aneg = DomainMatrix([[ZZ(-1), ZZ(-2)], [ZZ(-3), ZZ(-4)]], (2, 2), ZZ)
|
390 |
+
assert -A == A.neg() == Aneg
|
391 |
+
|
392 |
+
|
393 |
+
def test_DomainMatrix_mul():
|
394 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
395 |
+
A2 = DomainMatrix([[ZZ(7), ZZ(10)], [ZZ(15), ZZ(22)]], (2, 2), ZZ)
|
396 |
+
assert A*A == A.matmul(A) == A2
|
397 |
+
|
398 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
399 |
+
L = [[1, 2], [3, 4]]
|
400 |
+
raises(TypeError, lambda: A * L)
|
401 |
+
raises(TypeError, lambda: L * A)
|
402 |
+
|
403 |
+
Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
404 |
+
Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
405 |
+
Aprod = DomainMatrix([[QQ(7), QQ(10)], [QQ(15), QQ(22)]], (2, 2), QQ)
|
406 |
+
assert Az * Aq == Aprod
|
407 |
+
assert Aq * Az == Aprod
|
408 |
+
raises(DMDomainError, lambda: Az.matmul(Aq))
|
409 |
+
raises(DMDomainError, lambda: Aq.matmul(Az))
|
410 |
+
|
411 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
412 |
+
AA = DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ)
|
413 |
+
x = ZZ(2)
|
414 |
+
assert A * x == x * A == A.mul(x) == AA
|
415 |
+
|
416 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
417 |
+
AA = DomainMatrix.zeros((2, 2), ZZ)
|
418 |
+
x = ZZ(0)
|
419 |
+
assert A * x == x * A == A.mul(x).to_sparse() == AA
|
420 |
+
|
421 |
+
As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ)
|
422 |
+
Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
423 |
+
|
424 |
+
Asd = As * Ad
|
425 |
+
Ads = Ad * As
|
426 |
+
assert Asd == DomainMatrix([[3, 4], [2, 4]], (2, 2), ZZ)
|
427 |
+
assert Asd.rep == DDM([[3, 4], [2, 4]], (2, 2), ZZ)
|
428 |
+
assert Ads == DomainMatrix([[4, 1], [8, 3]], (2, 2), ZZ)
|
429 |
+
assert Ads.rep == DDM([[4, 1], [8, 3]], (2, 2), ZZ)
|
430 |
+
|
431 |
+
|
432 |
+
def test_DomainMatrix_mul_elementwise():
|
433 |
+
A = DomainMatrix([[ZZ(2), ZZ(2)], [ZZ(0), ZZ(0)]], (2, 2), ZZ)
|
434 |
+
B = DomainMatrix([[ZZ(4), ZZ(0)], [ZZ(3), ZZ(0)]], (2, 2), ZZ)
|
435 |
+
C = DomainMatrix([[ZZ(8), ZZ(0)], [ZZ(0), ZZ(0)]], (2, 2), ZZ)
|
436 |
+
assert A.mul_elementwise(B) == C
|
437 |
+
assert B.mul_elementwise(A) == C
|
438 |
+
|
439 |
+
|
440 |
+
def test_DomainMatrix_pow():
|
441 |
+
eye = DomainMatrix.eye(2, ZZ)
|
442 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
443 |
+
A2 = DomainMatrix([[ZZ(7), ZZ(10)], [ZZ(15), ZZ(22)]], (2, 2), ZZ)
|
444 |
+
A3 = DomainMatrix([[ZZ(37), ZZ(54)], [ZZ(81), ZZ(118)]], (2, 2), ZZ)
|
445 |
+
assert A**0 == A.pow(0) == eye
|
446 |
+
assert A**1 == A.pow(1) == A
|
447 |
+
assert A**2 == A.pow(2) == A2
|
448 |
+
assert A**3 == A.pow(3) == A3
|
449 |
+
|
450 |
+
raises(TypeError, lambda: A ** Rational(1, 2))
|
451 |
+
raises(NotImplementedError, lambda: A ** -1)
|
452 |
+
raises(NotImplementedError, lambda: A.pow(-1))
|
453 |
+
|
454 |
+
A = DomainMatrix.zeros((2, 1), ZZ)
|
455 |
+
raises(DMNonSquareMatrixError, lambda: A ** 1)
|
456 |
+
|
457 |
+
|
458 |
+
def test_DomainMatrix_scc():
|
459 |
+
Ad = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)],
|
460 |
+
[ZZ(0), ZZ(1), ZZ(0)],
|
461 |
+
[ZZ(2), ZZ(0), ZZ(4)]], (3, 3), ZZ)
|
462 |
+
As = Ad.to_sparse()
|
463 |
+
Addm = Ad.rep
|
464 |
+
Asdm = As.rep
|
465 |
+
for A in [Ad, As, Addm, Asdm]:
|
466 |
+
assert Ad.scc() == [[1], [0, 2]]
|
467 |
+
|
468 |
+
|
469 |
+
def test_DomainMatrix_rref():
|
470 |
+
A = DomainMatrix([], (0, 1), QQ)
|
471 |
+
assert A.rref() == (A, ())
|
472 |
+
|
473 |
+
A = DomainMatrix([[QQ(1)]], (1, 1), QQ)
|
474 |
+
assert A.rref() == (A, (0,))
|
475 |
+
|
476 |
+
A = DomainMatrix([[QQ(0)]], (1, 1), QQ)
|
477 |
+
assert A.rref() == (A, ())
|
478 |
+
|
479 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
480 |
+
Ar, pivots = A.rref()
|
481 |
+
assert Ar == DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ)
|
482 |
+
assert pivots == (0, 1)
|
483 |
+
|
484 |
+
A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
485 |
+
Ar, pivots = A.rref()
|
486 |
+
assert Ar == DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ)
|
487 |
+
assert pivots == (0, 1)
|
488 |
+
|
489 |
+
A = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ)
|
490 |
+
Ar, pivots = A.rref()
|
491 |
+
assert Ar == DomainMatrix([[QQ(0), QQ(1)], [QQ(0), QQ(0)]], (2, 2), QQ)
|
492 |
+
assert pivots == (1,)
|
493 |
+
|
494 |
+
Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
495 |
+
raises(DMNotAField, lambda: Az.rref())
|
496 |
+
|
497 |
+
|
498 |
+
def test_DomainMatrix_columnspace():
|
499 |
+
A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ)
|
500 |
+
Acol = DomainMatrix([[QQ(1), QQ(1)], [QQ(2), QQ(3)]], (2, 2), QQ)
|
501 |
+
assert A.columnspace() == Acol
|
502 |
+
|
503 |
+
Az = DomainMatrix([[ZZ(1), ZZ(-1), ZZ(1)], [ZZ(2), ZZ(-2), ZZ(3)]], (2, 3), ZZ)
|
504 |
+
raises(DMNotAField, lambda: Az.columnspace())
|
505 |
+
|
506 |
+
A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ, fmt='sparse')
|
507 |
+
Acol = DomainMatrix({0: {0: QQ(1), 1: QQ(1)}, 1: {0: QQ(2), 1: QQ(3)}}, (2, 2), QQ)
|
508 |
+
assert A.columnspace() == Acol
|
509 |
+
|
510 |
+
|
511 |
+
def test_DomainMatrix_rowspace():
|
512 |
+
A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ)
|
513 |
+
assert A.rowspace() == A
|
514 |
+
|
515 |
+
Az = DomainMatrix([[ZZ(1), ZZ(-1), ZZ(1)], [ZZ(2), ZZ(-2), ZZ(3)]], (2, 3), ZZ)
|
516 |
+
raises(DMNotAField, lambda: Az.rowspace())
|
517 |
+
|
518 |
+
A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ, fmt='sparse')
|
519 |
+
assert A.rowspace() == A
|
520 |
+
|
521 |
+
|
522 |
+
def test_DomainMatrix_nullspace():
|
523 |
+
A = DomainMatrix([[QQ(1), QQ(1)], [QQ(1), QQ(1)]], (2, 2), QQ)
|
524 |
+
Anull = DomainMatrix([[QQ(-1), QQ(1)]], (1, 2), QQ)
|
525 |
+
assert A.nullspace() == Anull
|
526 |
+
|
527 |
+
Az = DomainMatrix([[ZZ(1), ZZ(1)], [ZZ(1), ZZ(1)]], (2, 2), ZZ)
|
528 |
+
raises(DMNotAField, lambda: Az.nullspace())
|
529 |
+
|
530 |
+
|
531 |
+
def test_DomainMatrix_solve():
|
532 |
+
# XXX: Maybe the _solve method should be changed...
|
533 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ)
|
534 |
+
b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
535 |
+
particular = DomainMatrix([[1, 0]], (1, 2), QQ)
|
536 |
+
nullspace = DomainMatrix([[-2, 1]], (1, 2), QQ)
|
537 |
+
assert A._solve(b) == (particular, nullspace)
|
538 |
+
|
539 |
+
b3 = DomainMatrix([[QQ(1)], [QQ(1)], [QQ(1)]], (3, 1), QQ)
|
540 |
+
raises(DMShapeError, lambda: A._solve(b3))
|
541 |
+
|
542 |
+
bz = DomainMatrix([[ZZ(1)], [ZZ(1)]], (2, 1), ZZ)
|
543 |
+
raises(DMNotAField, lambda: A._solve(bz))
|
544 |
+
|
545 |
+
|
546 |
+
def test_DomainMatrix_inv():
|
547 |
+
A = DomainMatrix([], (0, 0), QQ)
|
548 |
+
assert A.inv() == A
|
549 |
+
|
550 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
551 |
+
Ainv = DomainMatrix([[QQ(-2), QQ(1)], [QQ(3, 2), QQ(-1, 2)]], (2, 2), QQ)
|
552 |
+
assert A.inv() == Ainv
|
553 |
+
|
554 |
+
Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
555 |
+
raises(DMNotAField, lambda: Az.inv())
|
556 |
+
|
557 |
+
Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ)
|
558 |
+
raises(DMNonSquareMatrixError, lambda: Ans.inv())
|
559 |
+
|
560 |
+
Aninv = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(6)]], (2, 2), QQ)
|
561 |
+
raises(DMNonInvertibleMatrixError, lambda: Aninv.inv())
|
562 |
+
|
563 |
+
|
564 |
+
def test_DomainMatrix_det():
|
565 |
+
A = DomainMatrix([], (0, 0), ZZ)
|
566 |
+
assert A.det() == 1
|
567 |
+
|
568 |
+
A = DomainMatrix([[1]], (1, 1), ZZ)
|
569 |
+
assert A.det() == 1
|
570 |
+
|
571 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
572 |
+
assert A.det() == ZZ(-2)
|
573 |
+
|
574 |
+
A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(3), ZZ(5)]], (3, 3), ZZ)
|
575 |
+
assert A.det() == ZZ(-1)
|
576 |
+
|
577 |
+
A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(2), ZZ(5)]], (3, 3), ZZ)
|
578 |
+
assert A.det() == ZZ(0)
|
579 |
+
|
580 |
+
Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ)
|
581 |
+
raises(DMNonSquareMatrixError, lambda: Ans.det())
|
582 |
+
|
583 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
584 |
+
assert A.det() == QQ(-2)
|
585 |
+
|
586 |
+
|
587 |
+
def test_DomainMatrix_lu():
|
588 |
+
A = DomainMatrix([], (0, 0), QQ)
|
589 |
+
assert A.lu() == (A, A, [])
|
590 |
+
|
591 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
592 |
+
L = DomainMatrix([[QQ(1), QQ(0)], [QQ(3), QQ(1)]], (2, 2), QQ)
|
593 |
+
U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(-2)]], (2, 2), QQ)
|
594 |
+
swaps = []
|
595 |
+
assert A.lu() == (L, U, swaps)
|
596 |
+
|
597 |
+
A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
598 |
+
L = DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ)
|
599 |
+
U = DomainMatrix([[QQ(3), QQ(4)], [QQ(0), QQ(2)]], (2, 2), QQ)
|
600 |
+
swaps = [(0, 1)]
|
601 |
+
assert A.lu() == (L, U, swaps)
|
602 |
+
|
603 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ)
|
604 |
+
L = DomainMatrix([[QQ(1), QQ(0)], [QQ(2), QQ(1)]], (2, 2), QQ)
|
605 |
+
U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(0)]], (2, 2), QQ)
|
606 |
+
swaps = []
|
607 |
+
assert A.lu() == (L, U, swaps)
|
608 |
+
|
609 |
+
A = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ)
|
610 |
+
L = DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ)
|
611 |
+
U = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ)
|
612 |
+
swaps = []
|
613 |
+
assert A.lu() == (L, U, swaps)
|
614 |
+
|
615 |
+
A = DomainMatrix([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ)
|
616 |
+
L = DomainMatrix([[QQ(1), QQ(0)], [QQ(4), QQ(1)]], (2, 2), QQ)
|
617 |
+
U = DomainMatrix([[QQ(1), QQ(2), QQ(3)], [QQ(0), QQ(-3), QQ(-6)]], (2, 3), QQ)
|
618 |
+
swaps = []
|
619 |
+
assert A.lu() == (L, U, swaps)
|
620 |
+
|
621 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ)
|
622 |
+
L = DomainMatrix([
|
623 |
+
[QQ(1), QQ(0), QQ(0)],
|
624 |
+
[QQ(3), QQ(1), QQ(0)],
|
625 |
+
[QQ(5), QQ(2), QQ(1)]], (3, 3), QQ)
|
626 |
+
U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(-2)], [QQ(0), QQ(0)]], (3, 2), QQ)
|
627 |
+
swaps = []
|
628 |
+
assert A.lu() == (L, U, swaps)
|
629 |
+
|
630 |
+
A = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]]
|
631 |
+
L = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 1]]
|
632 |
+
U = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]]
|
633 |
+
to_dom = lambda rows, dom: [[dom(e) for e in row] for row in rows]
|
634 |
+
A = DomainMatrix(to_dom(A, QQ), (4, 4), QQ)
|
635 |
+
L = DomainMatrix(to_dom(L, QQ), (4, 4), QQ)
|
636 |
+
U = DomainMatrix(to_dom(U, QQ), (4, 4), QQ)
|
637 |
+
assert A.lu() == (L, U, [])
|
638 |
+
|
639 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
640 |
+
raises(DMNotAField, lambda: A.lu())
|
641 |
+
|
642 |
+
|
643 |
+
def test_DomainMatrix_lu_solve():
|
644 |
+
# Base case
|
645 |
+
A = b = x = DomainMatrix([], (0, 0), QQ)
|
646 |
+
assert A.lu_solve(b) == x
|
647 |
+
|
648 |
+
# Basic example
|
649 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
650 |
+
b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
651 |
+
x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ)
|
652 |
+
assert A.lu_solve(b) == x
|
653 |
+
|
654 |
+
# Example with swaps
|
655 |
+
A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
656 |
+
b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
657 |
+
x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ)
|
658 |
+
assert A.lu_solve(b) == x
|
659 |
+
|
660 |
+
# Non-invertible
|
661 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ)
|
662 |
+
b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ)
|
663 |
+
raises(DMNonInvertibleMatrixError, lambda: A.lu_solve(b))
|
664 |
+
|
665 |
+
# Overdetermined, consistent
|
666 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ)
|
667 |
+
b = DomainMatrix([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ)
|
668 |
+
x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ)
|
669 |
+
assert A.lu_solve(b) == x
|
670 |
+
|
671 |
+
# Overdetermined, inconsistent
|
672 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ)
|
673 |
+
b = DomainMatrix([[QQ(1)], [QQ(2)], [QQ(4)]], (3, 1), QQ)
|
674 |
+
raises(DMNonInvertibleMatrixError, lambda: A.lu_solve(b))
|
675 |
+
|
676 |
+
# Underdetermined
|
677 |
+
A = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ)
|
678 |
+
b = DomainMatrix([[QQ(1)]], (1, 1), QQ)
|
679 |
+
raises(NotImplementedError, lambda: A.lu_solve(b))
|
680 |
+
|
681 |
+
# Non-field
|
682 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
683 |
+
b = DomainMatrix([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ)
|
684 |
+
raises(DMNotAField, lambda: A.lu_solve(b))
|
685 |
+
|
686 |
+
# Shape mismatch
|
687 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
688 |
+
b = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ)
|
689 |
+
raises(DMShapeError, lambda: A.lu_solve(b))
|
690 |
+
|
691 |
+
|
692 |
+
def test_DomainMatrix_charpoly():
|
693 |
+
A = DomainMatrix([], (0, 0), ZZ)
|
694 |
+
assert A.charpoly() == [ZZ(1)]
|
695 |
+
|
696 |
+
A = DomainMatrix([[1]], (1, 1), ZZ)
|
697 |
+
assert A.charpoly() == [ZZ(1), ZZ(-1)]
|
698 |
+
|
699 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
700 |
+
assert A.charpoly() == [ZZ(1), ZZ(-5), ZZ(-2)]
|
701 |
+
|
702 |
+
A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ)
|
703 |
+
assert A.charpoly() == [ZZ(1), ZZ(-15), ZZ(-18), ZZ(0)]
|
704 |
+
|
705 |
+
Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ)
|
706 |
+
raises(DMNonSquareMatrixError, lambda: Ans.charpoly())
|
707 |
+
|
708 |
+
|
709 |
+
def test_DomainMatrix_eye():
|
710 |
+
A = DomainMatrix.eye(3, QQ)
|
711 |
+
assert A.rep == SDM.eye((3, 3), QQ)
|
712 |
+
assert A.shape == (3, 3)
|
713 |
+
assert A.domain == QQ
|
714 |
+
|
715 |
+
|
716 |
+
def test_DomainMatrix_zeros():
|
717 |
+
A = DomainMatrix.zeros((1, 2), QQ)
|
718 |
+
assert A.rep == SDM.zeros((1, 2), QQ)
|
719 |
+
assert A.shape == (1, 2)
|
720 |
+
assert A.domain == QQ
|
721 |
+
|
722 |
+
|
723 |
+
def test_DomainMatrix_ones():
|
724 |
+
A = DomainMatrix.ones((2, 3), QQ)
|
725 |
+
assert A.rep == DDM.ones((2, 3), QQ)
|
726 |
+
assert A.shape == (2, 3)
|
727 |
+
assert A.domain == QQ
|
728 |
+
|
729 |
+
|
730 |
+
def test_DomainMatrix_diag():
|
731 |
+
A = DomainMatrix({0:{0:ZZ(2)}, 1:{1:ZZ(3)}}, (2, 2), ZZ)
|
732 |
+
assert DomainMatrix.diag([ZZ(2), ZZ(3)], ZZ) == A
|
733 |
+
|
734 |
+
A = DomainMatrix({0:{0:ZZ(2)}, 1:{1:ZZ(3)}}, (3, 4), ZZ)
|
735 |
+
assert DomainMatrix.diag([ZZ(2), ZZ(3)], ZZ, (3, 4)) == A
|
736 |
+
|
737 |
+
|
738 |
+
def test_DomainMatrix_hstack():
|
739 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
740 |
+
B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
|
741 |
+
C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
|
742 |
+
|
743 |
+
AB = DomainMatrix([
|
744 |
+
[ZZ(1), ZZ(2), ZZ(5), ZZ(6)],
|
745 |
+
[ZZ(3), ZZ(4), ZZ(7), ZZ(8)]], (2, 4), ZZ)
|
746 |
+
ABC = DomainMatrix([
|
747 |
+
[ZZ(1), ZZ(2), ZZ(5), ZZ(6), ZZ(9), ZZ(10)],
|
748 |
+
[ZZ(3), ZZ(4), ZZ(7), ZZ(8), ZZ(11), ZZ(12)]], (2, 6), ZZ)
|
749 |
+
assert A.hstack(B) == AB
|
750 |
+
assert A.hstack(B, C) == ABC
|
751 |
+
|
752 |
+
|
753 |
+
def test_DomainMatrix_vstack():
|
754 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
755 |
+
B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
|
756 |
+
C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
|
757 |
+
|
758 |
+
AB = DomainMatrix([
|
759 |
+
[ZZ(1), ZZ(2)],
|
760 |
+
[ZZ(3), ZZ(4)],
|
761 |
+
[ZZ(5), ZZ(6)],
|
762 |
+
[ZZ(7), ZZ(8)]], (4, 2), ZZ)
|
763 |
+
ABC = DomainMatrix([
|
764 |
+
[ZZ(1), ZZ(2)],
|
765 |
+
[ZZ(3), ZZ(4)],
|
766 |
+
[ZZ(5), ZZ(6)],
|
767 |
+
[ZZ(7), ZZ(8)],
|
768 |
+
[ZZ(9), ZZ(10)],
|
769 |
+
[ZZ(11), ZZ(12)]], (6, 2), ZZ)
|
770 |
+
assert A.vstack(B) == AB
|
771 |
+
assert A.vstack(B, C) == ABC
|
772 |
+
|
773 |
+
|
774 |
+
def test_DomainMatrix_applyfunc():
|
775 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
|
776 |
+
B = DomainMatrix([[ZZ(2), ZZ(4)]], (1, 2), ZZ)
|
777 |
+
assert A.applyfunc(lambda x: 2*x) == B
|
778 |
+
|
779 |
+
|
780 |
+
def test_DomainMatrix_scalarmul():
|
781 |
+
A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
782 |
+
lamda = DomainScalar(QQ(3)/QQ(2), QQ)
|
783 |
+
assert A * lamda == DomainMatrix([[QQ(3, 2), QQ(3)], [QQ(9, 2), QQ(6)]], (2, 2), QQ)
|
784 |
+
assert A * 2 == DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ)
|
785 |
+
assert 2 * A == DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ)
|
786 |
+
assert A * DomainScalar(ZZ(0), ZZ) == DomainMatrix({}, (2, 2), ZZ)
|
787 |
+
assert A * DomainScalar(ZZ(1), ZZ) == A
|
788 |
+
|
789 |
+
raises(TypeError, lambda: A * 1.5)
|
790 |
+
|
791 |
+
|
792 |
+
def test_DomainMatrix_truediv():
|
793 |
+
A = DomainMatrix.from_Matrix(Matrix([[1, 2], [3, 4]]))
|
794 |
+
lamda = DomainScalar(QQ(3)/QQ(2), QQ)
|
795 |
+
assert A / lamda == DomainMatrix({0: {0: QQ(2, 3), 1: QQ(4, 3)}, 1: {0: QQ(2), 1: QQ(8, 3)}}, (2, 2), QQ)
|
796 |
+
b = DomainScalar(ZZ(1), ZZ)
|
797 |
+
assert A / b == DomainMatrix({0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}}, (2, 2), QQ)
|
798 |
+
|
799 |
+
assert A / 1 == DomainMatrix({0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}}, (2, 2), QQ)
|
800 |
+
assert A / 2 == DomainMatrix({0: {0: QQ(1, 2), 1: QQ(1)}, 1: {0: QQ(3, 2), 1: QQ(2)}}, (2, 2), QQ)
|
801 |
+
|
802 |
+
raises(ZeroDivisionError, lambda: A / 0)
|
803 |
+
raises(TypeError, lambda: A / 1.5)
|
804 |
+
raises(ZeroDivisionError, lambda: A / DomainScalar(ZZ(0), ZZ))
|
805 |
+
|
806 |
+
|
807 |
+
def test_DomainMatrix_getitem():
|
808 |
+
dM = DomainMatrix([
|
809 |
+
[ZZ(1), ZZ(2), ZZ(3)],
|
810 |
+
[ZZ(4), ZZ(5), ZZ(6)],
|
811 |
+
[ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ)
|
812 |
+
|
813 |
+
assert dM[1:,:-2] == DomainMatrix([[ZZ(4)], [ZZ(7)]], (2, 1), ZZ)
|
814 |
+
assert dM[2,:-2] == DomainMatrix([[ZZ(7)]], (1, 1), ZZ)
|
815 |
+
assert dM[:-2,:-2] == DomainMatrix([[ZZ(1)]], (1, 1), ZZ)
|
816 |
+
assert dM[:-1,0:2] == DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(4), ZZ(5)]], (2, 2), ZZ)
|
817 |
+
assert dM[:, -1] == DomainMatrix([[ZZ(3)], [ZZ(6)], [ZZ(9)]], (3, 1), ZZ)
|
818 |
+
assert dM[-1, :] == DomainMatrix([[ZZ(7), ZZ(8), ZZ(9)]], (1, 3), ZZ)
|
819 |
+
assert dM[::-1, :] == DomainMatrix([
|
820 |
+
[ZZ(7), ZZ(8), ZZ(9)],
|
821 |
+
[ZZ(4), ZZ(5), ZZ(6)],
|
822 |
+
[ZZ(1), ZZ(2), ZZ(3)]], (3, 3), ZZ)
|
823 |
+
|
824 |
+
raises(IndexError, lambda: dM[4, :-2])
|
825 |
+
raises(IndexError, lambda: dM[:-2, 4])
|
826 |
+
|
827 |
+
assert dM[1, 2] == DomainScalar(ZZ(6), ZZ)
|
828 |
+
assert dM[-2, 2] == DomainScalar(ZZ(6), ZZ)
|
829 |
+
assert dM[1, -2] == DomainScalar(ZZ(5), ZZ)
|
830 |
+
assert dM[-1, -3] == DomainScalar(ZZ(7), ZZ)
|
831 |
+
|
832 |
+
raises(IndexError, lambda: dM[3, 3])
|
833 |
+
raises(IndexError, lambda: dM[1, 4])
|
834 |
+
raises(IndexError, lambda: dM[-1, -4])
|
835 |
+
|
836 |
+
dM = DomainMatrix({0: {0: ZZ(1)}}, (10, 10), ZZ)
|
837 |
+
assert dM[5, 5] == DomainScalar(ZZ(0), ZZ)
|
838 |
+
assert dM[0, 0] == DomainScalar(ZZ(1), ZZ)
|
839 |
+
|
840 |
+
dM = DomainMatrix({1: {0: 1}}, (2,1), ZZ)
|
841 |
+
assert dM[0:, 0] == DomainMatrix({1: {0: 1}}, (2, 1), ZZ)
|
842 |
+
raises(IndexError, lambda: dM[3, 0])
|
843 |
+
|
844 |
+
dM = DomainMatrix({2: {2: ZZ(1)}, 4: {4: ZZ(1)}}, (5, 5), ZZ)
|
845 |
+
assert dM[:2,:2] == DomainMatrix({}, (2, 2), ZZ)
|
846 |
+
assert dM[2:,2:] == DomainMatrix({0: {0: 1}, 2: {2: 1}}, (3, 3), ZZ)
|
847 |
+
assert dM[3:,3:] == DomainMatrix({1: {1: 1}}, (2, 2), ZZ)
|
848 |
+
assert dM[2:, 6:] == DomainMatrix({}, (3, 0), ZZ)
|
849 |
+
|
850 |
+
|
851 |
+
def test_DomainMatrix_getitem_sympy():
|
852 |
+
dM = DomainMatrix({2: {2: ZZ(2)}, 4: {4: ZZ(1)}}, (5, 5), ZZ)
|
853 |
+
val1 = dM.getitem_sympy(0, 0)
|
854 |
+
assert val1 is S.Zero
|
855 |
+
val2 = dM.getitem_sympy(2, 2)
|
856 |
+
assert val2 == 2 and isinstance(val2, Integer)
|
857 |
+
|
858 |
+
|
859 |
+
def test_DomainMatrix_extract():
|
860 |
+
dM1 = DomainMatrix([
|
861 |
+
[ZZ(1), ZZ(2), ZZ(3)],
|
862 |
+
[ZZ(4), ZZ(5), ZZ(6)],
|
863 |
+
[ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ)
|
864 |
+
dM2 = DomainMatrix([
|
865 |
+
[ZZ(1), ZZ(3)],
|
866 |
+
[ZZ(7), ZZ(9)]], (2, 2), ZZ)
|
867 |
+
assert dM1.extract([0, 2], [0, 2]) == dM2
|
868 |
+
assert dM1.to_sparse().extract([0, 2], [0, 2]) == dM2.to_sparse()
|
869 |
+
assert dM1.extract([0, -1], [0, -1]) == dM2
|
870 |
+
assert dM1.to_sparse().extract([0, -1], [0, -1]) == dM2.to_sparse()
|
871 |
+
|
872 |
+
dM3 = DomainMatrix([
|
873 |
+
[ZZ(1), ZZ(2), ZZ(2)],
|
874 |
+
[ZZ(4), ZZ(5), ZZ(5)],
|
875 |
+
[ZZ(4), ZZ(5), ZZ(5)]], (3, 3), ZZ)
|
876 |
+
assert dM1.extract([0, 1, 1], [0, 1, 1]) == dM3
|
877 |
+
assert dM1.to_sparse().extract([0, 1, 1], [0, 1, 1]) == dM3.to_sparse()
|
878 |
+
|
879 |
+
empty = [
|
880 |
+
([], [], (0, 0)),
|
881 |
+
([1], [], (1, 0)),
|
882 |
+
([], [1], (0, 1)),
|
883 |
+
]
|
884 |
+
for rows, cols, size in empty:
|
885 |
+
assert dM1.extract(rows, cols) == DomainMatrix.zeros(size, ZZ).to_dense()
|
886 |
+
assert dM1.to_sparse().extract(rows, cols) == DomainMatrix.zeros(size, ZZ)
|
887 |
+
|
888 |
+
dM = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
889 |
+
bad_indices = [([2], [0]), ([0], [2]), ([-3], [0]), ([0], [-3])]
|
890 |
+
for rows, cols in bad_indices:
|
891 |
+
raises(IndexError, lambda: dM.extract(rows, cols))
|
892 |
+
raises(IndexError, lambda: dM.to_sparse().extract(rows, cols))
|
893 |
+
|
894 |
+
|
895 |
+
def test_DomainMatrix_setitem():
|
896 |
+
dM = DomainMatrix({2: {2: ZZ(1)}, 4: {4: ZZ(1)}}, (5, 5), ZZ)
|
897 |
+
dM[2, 2] = ZZ(2)
|
898 |
+
assert dM == DomainMatrix({2: {2: ZZ(2)}, 4: {4: ZZ(1)}}, (5, 5), ZZ)
|
899 |
+
def setitem(i, j, val):
|
900 |
+
dM[i, j] = val
|
901 |
+
raises(TypeError, lambda: setitem(2, 2, QQ(1, 2)))
|
902 |
+
raises(NotImplementedError, lambda: setitem(slice(1, 2), 2, ZZ(1)))
|
903 |
+
|
904 |
+
|
905 |
+
def test_DomainMatrix_pickling():
|
906 |
+
import pickle
|
907 |
+
dM = DomainMatrix({2: {2: ZZ(1)}, 4: {4: ZZ(1)}}, (5, 5), ZZ)
|
908 |
+
assert pickle.loads(pickle.dumps(dM)) == dM
|
909 |
+
dM = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
910 |
+
assert pickle.loads(pickle.dumps(dM)) == dM
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_domainscalar.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.testing.pytest import raises
|
2 |
+
|
3 |
+
from sympy.core.symbol import S
|
4 |
+
from sympy.polys import ZZ, QQ
|
5 |
+
from sympy.polys.matrices.domainscalar import DomainScalar
|
6 |
+
from sympy.polys.matrices.domainmatrix import DomainMatrix
|
7 |
+
|
8 |
+
|
9 |
+
def test_DomainScalar___new__():
|
10 |
+
raises(TypeError, lambda: DomainScalar(ZZ(1), QQ))
|
11 |
+
raises(TypeError, lambda: DomainScalar(ZZ(1), 1))
|
12 |
+
|
13 |
+
|
14 |
+
def test_DomainScalar_new():
|
15 |
+
A = DomainScalar(ZZ(1), ZZ)
|
16 |
+
B = A.new(ZZ(4), ZZ)
|
17 |
+
assert B == DomainScalar(ZZ(4), ZZ)
|
18 |
+
|
19 |
+
|
20 |
+
def test_DomainScalar_repr():
|
21 |
+
A = DomainScalar(ZZ(1), ZZ)
|
22 |
+
assert repr(A) in {'1', 'mpz(1)'}
|
23 |
+
|
24 |
+
|
25 |
+
def test_DomainScalar_from_sympy():
|
26 |
+
expr = S(1)
|
27 |
+
B = DomainScalar.from_sympy(expr)
|
28 |
+
assert B == DomainScalar(ZZ(1), ZZ)
|
29 |
+
|
30 |
+
|
31 |
+
def test_DomainScalar_to_sympy():
|
32 |
+
B = DomainScalar(ZZ(1), ZZ)
|
33 |
+
expr = B.to_sympy()
|
34 |
+
assert expr.is_Integer and expr == 1
|
35 |
+
|
36 |
+
|
37 |
+
def test_DomainScalar_to_domain():
|
38 |
+
A = DomainScalar(ZZ(1), ZZ)
|
39 |
+
B = A.to_domain(QQ)
|
40 |
+
assert B == DomainScalar(QQ(1), QQ)
|
41 |
+
|
42 |
+
|
43 |
+
def test_DomainScalar_convert_to():
|
44 |
+
A = DomainScalar(ZZ(1), ZZ)
|
45 |
+
B = A.convert_to(QQ)
|
46 |
+
assert B == DomainScalar(QQ(1), QQ)
|
47 |
+
|
48 |
+
|
49 |
+
def test_DomainScalar_unify():
|
50 |
+
A = DomainScalar(ZZ(1), ZZ)
|
51 |
+
B = DomainScalar(QQ(2), QQ)
|
52 |
+
A, B = A.unify(B)
|
53 |
+
assert A.domain == B.domain == QQ
|
54 |
+
|
55 |
+
|
56 |
+
def test_DomainScalar_add():
|
57 |
+
A = DomainScalar(ZZ(1), ZZ)
|
58 |
+
B = DomainScalar(QQ(2), QQ)
|
59 |
+
assert A + B == DomainScalar(QQ(3), QQ)
|
60 |
+
|
61 |
+
raises(TypeError, lambda: A + 1.5)
|
62 |
+
|
63 |
+
def test_DomainScalar_sub():
|
64 |
+
A = DomainScalar(ZZ(1), ZZ)
|
65 |
+
B = DomainScalar(QQ(2), QQ)
|
66 |
+
assert A - B == DomainScalar(QQ(-1), QQ)
|
67 |
+
|
68 |
+
raises(TypeError, lambda: A - 1.5)
|
69 |
+
|
70 |
+
def test_DomainScalar_mul():
|
71 |
+
A = DomainScalar(ZZ(1), ZZ)
|
72 |
+
B = DomainScalar(QQ(2), QQ)
|
73 |
+
dm = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
|
74 |
+
assert A * B == DomainScalar(QQ(2), QQ)
|
75 |
+
assert A * dm == dm
|
76 |
+
assert B * 2 == DomainScalar(QQ(4), QQ)
|
77 |
+
|
78 |
+
raises(TypeError, lambda: A * 1.5)
|
79 |
+
|
80 |
+
|
81 |
+
def test_DomainScalar_floordiv():
|
82 |
+
A = DomainScalar(ZZ(-5), ZZ)
|
83 |
+
B = DomainScalar(QQ(2), QQ)
|
84 |
+
assert A // B == DomainScalar(QQ(-5, 2), QQ)
|
85 |
+
C = DomainScalar(ZZ(2), ZZ)
|
86 |
+
assert A // C == DomainScalar(ZZ(-3), ZZ)
|
87 |
+
|
88 |
+
raises(TypeError, lambda: A // 1.5)
|
89 |
+
|
90 |
+
|
91 |
+
def test_DomainScalar_mod():
|
92 |
+
A = DomainScalar(ZZ(5), ZZ)
|
93 |
+
B = DomainScalar(QQ(2), QQ)
|
94 |
+
assert A % B == DomainScalar(QQ(0), QQ)
|
95 |
+
C = DomainScalar(ZZ(2), ZZ)
|
96 |
+
assert A % C == DomainScalar(ZZ(1), ZZ)
|
97 |
+
|
98 |
+
raises(TypeError, lambda: A % 1.5)
|
99 |
+
|
100 |
+
|
101 |
+
def test_DomainScalar_divmod():
|
102 |
+
A = DomainScalar(ZZ(5), ZZ)
|
103 |
+
B = DomainScalar(QQ(2), QQ)
|
104 |
+
assert divmod(A, B) == (DomainScalar(QQ(5, 2), QQ), DomainScalar(QQ(0), QQ))
|
105 |
+
C = DomainScalar(ZZ(2), ZZ)
|
106 |
+
assert divmod(A, C) == (DomainScalar(ZZ(2), ZZ), DomainScalar(ZZ(1), ZZ))
|
107 |
+
|
108 |
+
raises(TypeError, lambda: divmod(A, 1.5))
|
109 |
+
|
110 |
+
|
111 |
+
def test_DomainScalar_pow():
|
112 |
+
A = DomainScalar(ZZ(-5), ZZ)
|
113 |
+
B = A**(2)
|
114 |
+
assert B == DomainScalar(ZZ(25), ZZ)
|
115 |
+
|
116 |
+
raises(TypeError, lambda: A**(1.5))
|
117 |
+
|
118 |
+
|
119 |
+
def test_DomainScalar_pos():
|
120 |
+
A = DomainScalar(QQ(2), QQ)
|
121 |
+
B = DomainScalar(QQ(2), QQ)
|
122 |
+
assert +A == B
|
123 |
+
|
124 |
+
|
125 |
+
def test_DomainScalar_eq():
|
126 |
+
A = DomainScalar(QQ(2), QQ)
|
127 |
+
assert A == A
|
128 |
+
B = DomainScalar(ZZ(-5), ZZ)
|
129 |
+
assert A != B
|
130 |
+
C = DomainScalar(ZZ(2), ZZ)
|
131 |
+
assert A != C
|
132 |
+
D = [1]
|
133 |
+
assert A != D
|
134 |
+
|
135 |
+
|
136 |
+
def test_DomainScalar_isZero():
|
137 |
+
A = DomainScalar(ZZ(0), ZZ)
|
138 |
+
assert A.is_zero() == True
|
139 |
+
B = DomainScalar(ZZ(1), ZZ)
|
140 |
+
assert B.is_zero() == False
|
141 |
+
|
142 |
+
|
143 |
+
def test_DomainScalar_isOne():
|
144 |
+
A = DomainScalar(ZZ(1), ZZ)
|
145 |
+
assert A.is_one() == True
|
146 |
+
B = DomainScalar(ZZ(0), ZZ)
|
147 |
+
assert B.is_one() == False
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_eigen.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests for the sympy.polys.matrices.eigen module
|
3 |
+
"""
|
4 |
+
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
7 |
+
from sympy.matrices.dense import Matrix
|
8 |
+
|
9 |
+
from sympy.polys.agca.extensions import FiniteExtension
|
10 |
+
from sympy.polys.domains import QQ
|
11 |
+
from sympy.polys.polytools import Poly
|
12 |
+
from sympy.polys.rootoftools import CRootOf
|
13 |
+
from sympy.polys.matrices.domainmatrix import DomainMatrix
|
14 |
+
|
15 |
+
from sympy.polys.matrices.eigen import dom_eigenvects, dom_eigenvects_to_sympy
|
16 |
+
|
17 |
+
|
18 |
+
def test_dom_eigenvects_rational():
|
19 |
+
# Rational eigenvalues
|
20 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(1), QQ(2)]], (2, 2), QQ)
|
21 |
+
rational_eigenvects = [
|
22 |
+
(QQ, QQ(3), 1, DomainMatrix([[QQ(1), QQ(1)]], (1, 2), QQ)),
|
23 |
+
(QQ, QQ(0), 1, DomainMatrix([[QQ(-2), QQ(1)]], (1, 2), QQ)),
|
24 |
+
]
|
25 |
+
assert dom_eigenvects(A) == (rational_eigenvects, [])
|
26 |
+
|
27 |
+
# Test converting to Expr:
|
28 |
+
sympy_eigenvects = [
|
29 |
+
(S(3), 1, [Matrix([1, 1])]),
|
30 |
+
(S(0), 1, [Matrix([-2, 1])]),
|
31 |
+
]
|
32 |
+
assert dom_eigenvects_to_sympy(rational_eigenvects, [], Matrix) == sympy_eigenvects
|
33 |
+
|
34 |
+
|
35 |
+
def test_dom_eigenvects_algebraic():
|
36 |
+
# Algebraic eigenvalues
|
37 |
+
A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ)
|
38 |
+
Avects = dom_eigenvects(A)
|
39 |
+
|
40 |
+
# Extract the dummy to build the expected result:
|
41 |
+
lamda = Avects[1][0][1].gens[0]
|
42 |
+
irreducible = Poly(lamda**2 - 5*lamda - 2, lamda, domain=QQ)
|
43 |
+
K = FiniteExtension(irreducible)
|
44 |
+
KK = K.from_sympy
|
45 |
+
algebraic_eigenvects = [
|
46 |
+
(K, irreducible, 1, DomainMatrix([[KK((lamda-4)/3), KK(1)]], (1, 2), K)),
|
47 |
+
]
|
48 |
+
assert Avects == ([], algebraic_eigenvects)
|
49 |
+
|
50 |
+
# Test converting to Expr:
|
51 |
+
sympy_eigenvects = [
|
52 |
+
(S(5)/2 - sqrt(33)/2, 1, [Matrix([[-sqrt(33)/6 - S(1)/2], [1]])]),
|
53 |
+
(S(5)/2 + sqrt(33)/2, 1, [Matrix([[-S(1)/2 + sqrt(33)/6], [1]])]),
|
54 |
+
]
|
55 |
+
assert dom_eigenvects_to_sympy([], algebraic_eigenvects, Matrix) == sympy_eigenvects
|
56 |
+
|
57 |
+
|
58 |
+
def test_dom_eigenvects_rootof():
|
59 |
+
# Algebraic eigenvalues
|
60 |
+
A = DomainMatrix([
|
61 |
+
[0, 0, 0, 0, -1],
|
62 |
+
[1, 0, 0, 0, 1],
|
63 |
+
[0, 1, 0, 0, 0],
|
64 |
+
[0, 0, 1, 0, 0],
|
65 |
+
[0, 0, 0, 1, 0]], (5, 5), QQ)
|
66 |
+
Avects = dom_eigenvects(A)
|
67 |
+
|
68 |
+
# Extract the dummy to build the expected result:
|
69 |
+
lamda = Avects[1][0][1].gens[0]
|
70 |
+
irreducible = Poly(lamda**5 - lamda + 1, lamda, domain=QQ)
|
71 |
+
K = FiniteExtension(irreducible)
|
72 |
+
KK = K.from_sympy
|
73 |
+
algebraic_eigenvects = [
|
74 |
+
(K, irreducible, 1,
|
75 |
+
DomainMatrix([
|
76 |
+
[KK(lamda**4-1), KK(lamda**3), KK(lamda**2), KK(lamda), KK(1)]
|
77 |
+
], (1, 5), K)),
|
78 |
+
]
|
79 |
+
assert Avects == ([], algebraic_eigenvects)
|
80 |
+
|
81 |
+
# Test converting to Expr (slow):
|
82 |
+
l0, l1, l2, l3, l4 = [CRootOf(lamda**5 - lamda + 1, i) for i in range(5)]
|
83 |
+
sympy_eigenvects = [
|
84 |
+
(l0, 1, [Matrix([-1 + l0**4, l0**3, l0**2, l0, 1])]),
|
85 |
+
(l1, 1, [Matrix([-1 + l1**4, l1**3, l1**2, l1, 1])]),
|
86 |
+
(l2, 1, [Matrix([-1 + l2**4, l2**3, l2**2, l2, 1])]),
|
87 |
+
(l3, 1, [Matrix([-1 + l3**4, l3**3, l3**2, l3, 1])]),
|
88 |
+
(l4, 1, [Matrix([-1 + l4**4, l4**3, l4**2, l4, 1])]),
|
89 |
+
]
|
90 |
+
assert dom_eigenvects_to_sympy([], algebraic_eigenvects, Matrix) == sympy_eigenvects
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_linsolve.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# test_linsolve.py
|
3 |
+
#
|
4 |
+
# Test the internal implementation of linsolve.
|
5 |
+
#
|
6 |
+
|
7 |
+
from sympy.testing.pytest import raises
|
8 |
+
|
9 |
+
from sympy.core.numbers import I
|
10 |
+
from sympy.core.relational import Eq
|
11 |
+
from sympy.core.singleton import S
|
12 |
+
from sympy.abc import x, y, z
|
13 |
+
|
14 |
+
from sympy.polys.matrices.linsolve import _linsolve
|
15 |
+
from sympy.polys.solvers import PolyNonlinearError
|
16 |
+
|
17 |
+
|
18 |
+
def test__linsolve():
|
19 |
+
assert _linsolve([], [x]) == {x:x}
|
20 |
+
assert _linsolve([S.Zero], [x]) == {x:x}
|
21 |
+
assert _linsolve([x-1,x-2], [x]) is None
|
22 |
+
assert _linsolve([x-1], [x]) == {x:1}
|
23 |
+
assert _linsolve([x-1, y], [x, y]) == {x:1, y:S.Zero}
|
24 |
+
assert _linsolve([2*I], [x]) is None
|
25 |
+
raises(PolyNonlinearError, lambda: _linsolve([x*(1 + x)], [x]))
|
26 |
+
|
27 |
+
|
28 |
+
def test__linsolve_float():
|
29 |
+
|
30 |
+
# This should give the exact answer:
|
31 |
+
eqs = [
|
32 |
+
y - x,
|
33 |
+
y - 0.0216 * x
|
34 |
+
]
|
35 |
+
sol = {x:0.0, y:0.0}
|
36 |
+
assert _linsolve(eqs, (x, y)) == sol
|
37 |
+
|
38 |
+
# Other cases should be close to eps
|
39 |
+
|
40 |
+
def all_close(sol1, sol2, eps=1e-15):
|
41 |
+
close = lambda a, b: abs(a - b) < eps
|
42 |
+
assert sol1.keys() == sol2.keys()
|
43 |
+
return all(close(sol1[s], sol2[s]) for s in sol1)
|
44 |
+
|
45 |
+
eqs = [
|
46 |
+
0.8*x + 0.8*z + 0.2,
|
47 |
+
0.9*x + 0.7*y + 0.2*z + 0.9,
|
48 |
+
0.7*x + 0.2*y + 0.2*z + 0.5
|
49 |
+
]
|
50 |
+
sol_exact = {x:-29/42, y:-11/21, z:37/84}
|
51 |
+
sol_linsolve = _linsolve(eqs, [x,y,z])
|
52 |
+
assert all_close(sol_exact, sol_linsolve)
|
53 |
+
|
54 |
+
eqs = [
|
55 |
+
0.9*x + 0.3*y + 0.4*z + 0.6,
|
56 |
+
0.6*x + 0.9*y + 0.1*z + 0.7,
|
57 |
+
0.4*x + 0.6*y + 0.9*z + 0.5
|
58 |
+
]
|
59 |
+
sol_exact = {x:-88/175, y:-46/105, z:-1/25}
|
60 |
+
sol_linsolve = _linsolve(eqs, [x,y,z])
|
61 |
+
assert all_close(sol_exact, sol_linsolve)
|
62 |
+
|
63 |
+
eqs = [
|
64 |
+
0.4*x + 0.3*y + 0.6*z + 0.7,
|
65 |
+
0.4*x + 0.3*y + 0.9*z + 0.9,
|
66 |
+
0.7*x + 0.9*y,
|
67 |
+
]
|
68 |
+
sol_exact = {x:-9/5, y:7/5, z:-2/3}
|
69 |
+
sol_linsolve = _linsolve(eqs, [x,y,z])
|
70 |
+
assert all_close(sol_exact, sol_linsolve)
|
71 |
+
|
72 |
+
eqs = [
|
73 |
+
x*(0.7 + 0.6*I) + y*(0.4 + 0.7*I) + z*(0.9 + 0.1*I) + 0.5,
|
74 |
+
0.2*I*x + 0.2*I*y + z*(0.9 + 0.2*I) + 0.1,
|
75 |
+
x*(0.9 + 0.7*I) + y*(0.9 + 0.7*I) + z*(0.9 + 0.4*I) + 0.4,
|
76 |
+
]
|
77 |
+
sol_exact = {
|
78 |
+
x:-6157/7995 - 411/5330*I,
|
79 |
+
y:8519/15990 + 1784/7995*I,
|
80 |
+
z:-34/533 + 107/1599*I,
|
81 |
+
}
|
82 |
+
sol_linsolve = _linsolve(eqs, [x,y,z])
|
83 |
+
assert all_close(sol_exact, sol_linsolve)
|
84 |
+
|
85 |
+
# XXX: This system for x and y over RR(z) is problematic.
|
86 |
+
#
|
87 |
+
# eqs = [
|
88 |
+
# x*(0.2*z + 0.9) + y*(0.5*z + 0.8) + 0.6,
|
89 |
+
# 0.1*x*z + y*(0.1*z + 0.6) + 0.9,
|
90 |
+
# ]
|
91 |
+
#
|
92 |
+
# linsolve(eqs, [x, y])
|
93 |
+
# The solution for x comes out as
|
94 |
+
#
|
95 |
+
# -3.9e-5*z**2 - 3.6e-5*z - 8.67361737988404e-20
|
96 |
+
# x = ----------------------------------------------
|
97 |
+
# 3.0e-6*z**3 - 1.3e-5*z**2 - 5.4e-5*z
|
98 |
+
#
|
99 |
+
# The 8e-20 in the numerator should be zero which would allow z to cancel
|
100 |
+
# from top and bottom. It should be possible to avoid this somehow because
|
101 |
+
# the inverse of the matrix only has a quadratic factor (the determinant)
|
102 |
+
# in the denominator.
|
103 |
+
|
104 |
+
|
105 |
+
def test__linsolve_deprecated():
|
106 |
+
raises(PolyNonlinearError, lambda:
|
107 |
+
_linsolve([Eq(x**2, x**2 + y)], [x, y]))
|
108 |
+
raises(PolyNonlinearError, lambda:
|
109 |
+
_linsolve([(x + y)**2 - x**2], [x]))
|
110 |
+
raises(PolyNonlinearError, lambda:
|
111 |
+
_linsolve([Eq((x + y)**2, x**2)], [x]))
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_lll.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.polys.domains import ZZ, QQ
|
2 |
+
from sympy.polys.matrices import DM
|
3 |
+
from sympy.polys.matrices.domainmatrix import DomainMatrix
|
4 |
+
from sympy.polys.matrices.exceptions import DMRankError, DMValueError, DMShapeError, DMDomainError
|
5 |
+
from sympy.polys.matrices.lll import _ddm_lll, ddm_lll, ddm_lll_transform
|
6 |
+
from sympy.testing.pytest import raises
|
7 |
+
|
8 |
+
|
9 |
+
def test_lll():
|
10 |
+
normal_test_data = [
|
11 |
+
(
|
12 |
+
DM([[1, 0, 0, 0, -20160],
|
13 |
+
[0, 1, 0, 0, 33768],
|
14 |
+
[0, 0, 1, 0, 39578],
|
15 |
+
[0, 0, 0, 1, 47757]], ZZ),
|
16 |
+
DM([[10, -3, -2, 8, -4],
|
17 |
+
[3, -9, 8, 1, -11],
|
18 |
+
[-3, 13, -9, -3, -9],
|
19 |
+
[-12, -7, -11, 9, -1]], ZZ)
|
20 |
+
),
|
21 |
+
(
|
22 |
+
DM([[20, 52, 3456],
|
23 |
+
[14, 31, -1],
|
24 |
+
[34, -442, 0]], ZZ),
|
25 |
+
DM([[14, 31, -1],
|
26 |
+
[188, -101, -11],
|
27 |
+
[236, 13, 3443]], ZZ)
|
28 |
+
),
|
29 |
+
(
|
30 |
+
DM([[34, -1, -86, 12],
|
31 |
+
[-54, 34, 55, 678],
|
32 |
+
[23, 3498, 234, 6783],
|
33 |
+
[87, 49, 665, 11]], ZZ),
|
34 |
+
DM([[34, -1, -86, 12],
|
35 |
+
[291, 43, 149, 83],
|
36 |
+
[-54, 34, 55, 678],
|
37 |
+
[-189, 3077, -184, -223]], ZZ)
|
38 |
+
)
|
39 |
+
]
|
40 |
+
delta = QQ(5, 6)
|
41 |
+
for basis_dm, reduced_dm in normal_test_data:
|
42 |
+
reduced = _ddm_lll(basis_dm.rep, delta=delta)[0]
|
43 |
+
assert reduced == reduced_dm.rep
|
44 |
+
|
45 |
+
reduced = ddm_lll(basis_dm.rep, delta=delta)
|
46 |
+
assert reduced == reduced_dm.rep
|
47 |
+
|
48 |
+
reduced, transform = _ddm_lll(basis_dm.rep, delta=delta, return_transform=True)
|
49 |
+
assert reduced == reduced_dm.rep
|
50 |
+
assert transform.matmul(basis_dm.rep) == reduced_dm.rep
|
51 |
+
|
52 |
+
reduced, transform = ddm_lll_transform(basis_dm.rep, delta=delta)
|
53 |
+
assert reduced == reduced_dm.rep
|
54 |
+
assert transform.matmul(basis_dm.rep) == reduced_dm.rep
|
55 |
+
|
56 |
+
reduced = basis_dm.rep.lll(delta=delta)
|
57 |
+
assert reduced == reduced_dm.rep
|
58 |
+
|
59 |
+
reduced, transform = basis_dm.rep.lll_transform(delta=delta)
|
60 |
+
assert reduced == reduced_dm.rep
|
61 |
+
assert transform.matmul(basis_dm.rep) == reduced_dm.rep
|
62 |
+
|
63 |
+
reduced = basis_dm.rep.to_sdm().lll(delta=delta)
|
64 |
+
assert reduced == reduced_dm.rep.to_sdm()
|
65 |
+
|
66 |
+
reduced, transform = basis_dm.rep.to_sdm().lll_transform(delta=delta)
|
67 |
+
assert reduced == reduced_dm.rep.to_sdm()
|
68 |
+
assert transform.matmul(basis_dm.rep.to_sdm()) == reduced_dm.rep.to_sdm()
|
69 |
+
|
70 |
+
reduced = basis_dm.lll(delta=delta)
|
71 |
+
assert reduced == reduced_dm
|
72 |
+
|
73 |
+
reduced, transform = basis_dm.lll_transform(delta=delta)
|
74 |
+
assert reduced == reduced_dm
|
75 |
+
assert transform.matmul(basis_dm) == reduced_dm
|
76 |
+
|
77 |
+
|
78 |
+
def test_lll_linear_dependent():
|
79 |
+
linear_dependent_test_data = [
|
80 |
+
DM([[0, -1, -2, -3],
|
81 |
+
[1, 0, -1, -2],
|
82 |
+
[2, 1, 0, -1],
|
83 |
+
[3, 2, 1, 0]], ZZ),
|
84 |
+
DM([[1, 0, 0, 1],
|
85 |
+
[0, 1, 0, 1],
|
86 |
+
[0, 0, 1, 1],
|
87 |
+
[1, 2, 3, 6]], ZZ),
|
88 |
+
DM([[3, -5, 1],
|
89 |
+
[4, 6, 0],
|
90 |
+
[10, -4, 2]], ZZ)
|
91 |
+
]
|
92 |
+
for not_basis in linear_dependent_test_data:
|
93 |
+
raises(DMRankError, lambda: _ddm_lll(not_basis.rep))
|
94 |
+
raises(DMRankError, lambda: ddm_lll(not_basis.rep))
|
95 |
+
raises(DMRankError, lambda: not_basis.rep.lll())
|
96 |
+
raises(DMRankError, lambda: not_basis.rep.to_sdm().lll())
|
97 |
+
raises(DMRankError, lambda: not_basis.lll())
|
98 |
+
raises(DMRankError, lambda: _ddm_lll(not_basis.rep, return_transform=True))
|
99 |
+
raises(DMRankError, lambda: ddm_lll_transform(not_basis.rep))
|
100 |
+
raises(DMRankError, lambda: not_basis.rep.lll_transform())
|
101 |
+
raises(DMRankError, lambda: not_basis.rep.to_sdm().lll_transform())
|
102 |
+
raises(DMRankError, lambda: not_basis.lll_transform())
|
103 |
+
|
104 |
+
|
105 |
+
def test_lll_wrong_delta():
|
106 |
+
dummy_matrix = DomainMatrix.ones((3, 3), ZZ)
|
107 |
+
for wrong_delta in [QQ(-1, 4), QQ(0, 1), QQ(1, 4), QQ(1, 1), QQ(100, 1)]:
|
108 |
+
raises(DMValueError, lambda: _ddm_lll(dummy_matrix.rep, delta=wrong_delta))
|
109 |
+
raises(DMValueError, lambda: ddm_lll(dummy_matrix.rep, delta=wrong_delta))
|
110 |
+
raises(DMValueError, lambda: dummy_matrix.rep.lll(delta=wrong_delta))
|
111 |
+
raises(DMValueError, lambda: dummy_matrix.rep.to_sdm().lll(delta=wrong_delta))
|
112 |
+
raises(DMValueError, lambda: dummy_matrix.lll(delta=wrong_delta))
|
113 |
+
raises(DMValueError, lambda: _ddm_lll(dummy_matrix.rep, delta=wrong_delta, return_transform=True))
|
114 |
+
raises(DMValueError, lambda: ddm_lll_transform(dummy_matrix.rep, delta=wrong_delta))
|
115 |
+
raises(DMValueError, lambda: dummy_matrix.rep.lll_transform(delta=wrong_delta))
|
116 |
+
raises(DMValueError, lambda: dummy_matrix.rep.to_sdm().lll_transform(delta=wrong_delta))
|
117 |
+
raises(DMValueError, lambda: dummy_matrix.lll_transform(delta=wrong_delta))
|
118 |
+
|
119 |
+
|
120 |
+
def test_lll_wrong_shape():
|
121 |
+
wrong_shape_matrix = DomainMatrix.ones((4, 3), ZZ)
|
122 |
+
raises(DMShapeError, lambda: _ddm_lll(wrong_shape_matrix.rep))
|
123 |
+
raises(DMShapeError, lambda: ddm_lll(wrong_shape_matrix.rep))
|
124 |
+
raises(DMShapeError, lambda: wrong_shape_matrix.rep.lll())
|
125 |
+
raises(DMShapeError, lambda: wrong_shape_matrix.rep.to_sdm().lll())
|
126 |
+
raises(DMShapeError, lambda: wrong_shape_matrix.lll())
|
127 |
+
raises(DMShapeError, lambda: _ddm_lll(wrong_shape_matrix.rep, return_transform=True))
|
128 |
+
raises(DMShapeError, lambda: ddm_lll_transform(wrong_shape_matrix.rep))
|
129 |
+
raises(DMShapeError, lambda: wrong_shape_matrix.rep.lll_transform())
|
130 |
+
raises(DMShapeError, lambda: wrong_shape_matrix.rep.to_sdm().lll_transform())
|
131 |
+
raises(DMShapeError, lambda: wrong_shape_matrix.lll_transform())
|
132 |
+
|
133 |
+
|
134 |
+
def test_lll_wrong_domain():
|
135 |
+
wrong_domain_matrix = DomainMatrix.ones((3, 3), QQ)
|
136 |
+
raises(DMDomainError, lambda: _ddm_lll(wrong_domain_matrix.rep))
|
137 |
+
raises(DMDomainError, lambda: ddm_lll(wrong_domain_matrix.rep))
|
138 |
+
raises(DMDomainError, lambda: wrong_domain_matrix.rep.lll())
|
139 |
+
raises(DMDomainError, lambda: wrong_domain_matrix.rep.to_sdm().lll())
|
140 |
+
raises(DMDomainError, lambda: wrong_domain_matrix.lll())
|
141 |
+
raises(DMDomainError, lambda: _ddm_lll(wrong_domain_matrix.rep, return_transform=True))
|
142 |
+
raises(DMDomainError, lambda: ddm_lll_transform(wrong_domain_matrix.rep))
|
143 |
+
raises(DMDomainError, lambda: wrong_domain_matrix.rep.lll_transform())
|
144 |
+
raises(DMDomainError, lambda: wrong_domain_matrix.rep.to_sdm().lll_transform())
|
145 |
+
raises(DMDomainError, lambda: wrong_domain_matrix.lll_transform())
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_normalforms.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.testing.pytest import raises
|
2 |
+
|
3 |
+
from sympy.core.symbol import Symbol
|
4 |
+
from sympy.polys.matrices.normalforms import (
|
5 |
+
invariant_factors, smith_normal_form,
|
6 |
+
hermite_normal_form, _hermite_normal_form, _hermite_normal_form_modulo_D)
|
7 |
+
from sympy.polys.domains import ZZ, QQ
|
8 |
+
from sympy.polys.matrices import DomainMatrix, DM
|
9 |
+
from sympy.polys.matrices.exceptions import DMDomainError, DMShapeError
|
10 |
+
|
11 |
+
|
12 |
+
def test_smith_normal():
|
13 |
+
|
14 |
+
m = DM([[12, 6, 4, 8], [3, 9, 6, 12], [2, 16, 14, 28], [20, 10, 10, 20]], ZZ)
|
15 |
+
smf = DM([[1, 0, 0, 0], [0, 10, 0, 0], [0, 0, -30, 0], [0, 0, 0, 0]], ZZ)
|
16 |
+
assert smith_normal_form(m).to_dense() == smf
|
17 |
+
|
18 |
+
x = Symbol('x')
|
19 |
+
m = DM([[x-1, 1, -1],
|
20 |
+
[ 0, x, -1],
|
21 |
+
[ 0, -1, x]], QQ[x])
|
22 |
+
dx = m.domain.gens[0]
|
23 |
+
assert invariant_factors(m) == (1, dx-1, dx**2-1)
|
24 |
+
|
25 |
+
zr = DomainMatrix([], (0, 2), ZZ)
|
26 |
+
zc = DomainMatrix([[], []], (2, 0), ZZ)
|
27 |
+
assert smith_normal_form(zr).to_dense() == zr
|
28 |
+
assert smith_normal_form(zc).to_dense() == zc
|
29 |
+
|
30 |
+
assert smith_normal_form(DM([[2, 4]], ZZ)).to_dense() == DM([[2, 0]], ZZ)
|
31 |
+
assert smith_normal_form(DM([[0, -2]], ZZ)).to_dense() == DM([[-2, 0]], ZZ)
|
32 |
+
assert smith_normal_form(DM([[0], [-2]], ZZ)).to_dense() == DM([[-2], [0]], ZZ)
|
33 |
+
|
34 |
+
m = DM([[3, 0, 0, 0], [0, 0, 0, 0], [0, 0, 2, 0]], ZZ)
|
35 |
+
snf = DM([[1, 0, 0, 0], [0, 6, 0, 0], [0, 0, 0, 0]], ZZ)
|
36 |
+
assert smith_normal_form(m).to_dense() == snf
|
37 |
+
|
38 |
+
raises(ValueError, lambda: smith_normal_form(DM([[1]], ZZ[x])))
|
39 |
+
|
40 |
+
|
41 |
+
def test_hermite_normal():
|
42 |
+
m = DM([[2, 7, 17, 29, 41], [3, 11, 19, 31, 43], [5, 13, 23, 37, 47]], ZZ)
|
43 |
+
hnf = DM([[1, 0, 0], [0, 2, 1], [0, 0, 1]], ZZ)
|
44 |
+
assert hermite_normal_form(m) == hnf
|
45 |
+
assert hermite_normal_form(m, D=ZZ(2)) == hnf
|
46 |
+
assert hermite_normal_form(m, D=ZZ(2), check_rank=True) == hnf
|
47 |
+
|
48 |
+
m = m.transpose()
|
49 |
+
hnf = DM([[37, 0, 19], [222, -6, 113], [48, 0, 25], [0, 2, 1], [0, 0, 1]], ZZ)
|
50 |
+
assert hermite_normal_form(m) == hnf
|
51 |
+
raises(DMShapeError, lambda: _hermite_normal_form_modulo_D(m, ZZ(96)))
|
52 |
+
raises(DMDomainError, lambda: _hermite_normal_form_modulo_D(m, QQ(96)))
|
53 |
+
|
54 |
+
m = DM([[8, 28, 68, 116, 164], [3, 11, 19, 31, 43], [5, 13, 23, 37, 47]], ZZ)
|
55 |
+
hnf = DM([[4, 0, 0], [0, 2, 1], [0, 0, 1]], ZZ)
|
56 |
+
assert hermite_normal_form(m) == hnf
|
57 |
+
assert hermite_normal_form(m, D=ZZ(8)) == hnf
|
58 |
+
assert hermite_normal_form(m, D=ZZ(8), check_rank=True) == hnf
|
59 |
+
|
60 |
+
m = DM([[10, 8, 6, 30, 2], [45, 36, 27, 18, 9], [5, 4, 3, 2, 1]], ZZ)
|
61 |
+
hnf = DM([[26, 2], [0, 9], [0, 1]], ZZ)
|
62 |
+
assert hermite_normal_form(m) == hnf
|
63 |
+
|
64 |
+
m = DM([[2, 7], [0, 0], [0, 0]], ZZ)
|
65 |
+
hnf = DM([[1], [0], [0]], ZZ)
|
66 |
+
assert hermite_normal_form(m) == hnf
|
67 |
+
|
68 |
+
m = DM([[-2, 1], [0, 1]], ZZ)
|
69 |
+
hnf = DM([[2, 1], [0, 1]], ZZ)
|
70 |
+
assert hermite_normal_form(m) == hnf
|
71 |
+
|
72 |
+
m = DomainMatrix([[QQ(1)]], (1, 1), QQ)
|
73 |
+
raises(DMDomainError, lambda: hermite_normal_form(m))
|
74 |
+
raises(DMDomainError, lambda: _hermite_normal_form(m))
|
75 |
+
raises(DMDomainError, lambda: _hermite_normal_form_modulo_D(m, ZZ(1)))
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/matrices/tests/test_sdm.py
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests for the basic functionality of the SDM class.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from itertools import product
|
6 |
+
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.external.gmpy import HAS_GMPY
|
9 |
+
from sympy.testing.pytest import raises
|
10 |
+
|
11 |
+
from sympy.polys.domains import QQ, ZZ, EXRAW
|
12 |
+
from sympy.polys.matrices.sdm import SDM
|
13 |
+
from sympy.polys.matrices.ddm import DDM
|
14 |
+
from sympy.polys.matrices.exceptions import (DMBadInputError, DMDomainError,
|
15 |
+
DMShapeError)
|
16 |
+
|
17 |
+
|
18 |
+
def test_SDM():
|
19 |
+
A = SDM({0:{0:ZZ(1)}}, (2, 2), ZZ)
|
20 |
+
assert A.domain == ZZ
|
21 |
+
assert A.shape == (2, 2)
|
22 |
+
assert dict(A) == {0:{0:ZZ(1)}}
|
23 |
+
|
24 |
+
raises(DMBadInputError, lambda: SDM({5:{1:ZZ(0)}}, (2, 2), ZZ))
|
25 |
+
raises(DMBadInputError, lambda: SDM({0:{5:ZZ(0)}}, (2, 2), ZZ))
|
26 |
+
|
27 |
+
|
28 |
+
def test_DDM_str():
|
29 |
+
sdm = SDM({0:{0:ZZ(1)}, 1:{1:ZZ(1)}}, (2, 2), ZZ)
|
30 |
+
assert str(sdm) == '{0: {0: 1}, 1: {1: 1}}'
|
31 |
+
if HAS_GMPY: # pragma: no cover
|
32 |
+
assert repr(sdm) == 'SDM({0: {0: mpz(1)}, 1: {1: mpz(1)}}, (2, 2), ZZ)'
|
33 |
+
else: # pragma: no cover
|
34 |
+
assert repr(sdm) == 'SDM({0: {0: 1}, 1: {1: 1}}, (2, 2), ZZ)'
|
35 |
+
|
36 |
+
|
37 |
+
def test_SDM_new():
|
38 |
+
A = SDM({0:{0:ZZ(1)}}, (2, 2), ZZ)
|
39 |
+
B = A.new({}, (2, 2), ZZ)
|
40 |
+
assert B == SDM({}, (2, 2), ZZ)
|
41 |
+
|
42 |
+
|
43 |
+
def test_SDM_copy():
|
44 |
+
A = SDM({0:{0:ZZ(1)}}, (2, 2), ZZ)
|
45 |
+
B = A.copy()
|
46 |
+
assert A == B
|
47 |
+
A[0][0] = ZZ(2)
|
48 |
+
assert A != B
|
49 |
+
|
50 |
+
|
51 |
+
def test_SDM_from_list():
|
52 |
+
A = SDM.from_list([[ZZ(0), ZZ(1)], [ZZ(1), ZZ(0)]], (2, 2), ZZ)
|
53 |
+
assert A == SDM({0:{1:ZZ(1)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
|
54 |
+
|
55 |
+
raises(DMBadInputError, lambda: SDM.from_list([[ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ))
|
56 |
+
raises(DMBadInputError, lambda: SDM.from_list([[ZZ(0), ZZ(1)]], (2, 2), ZZ))
|
57 |
+
|
58 |
+
|
59 |
+
def test_SDM_to_list():
|
60 |
+
A = SDM({0:{1: ZZ(1)}}, (2, 2), ZZ)
|
61 |
+
assert A.to_list() == [[ZZ(0), ZZ(1)], [ZZ(0), ZZ(0)]]
|
62 |
+
|
63 |
+
A = SDM({}, (0, 2), ZZ)
|
64 |
+
assert A.to_list() == []
|
65 |
+
|
66 |
+
A = SDM({}, (2, 0), ZZ)
|
67 |
+
assert A.to_list() == [[], []]
|
68 |
+
|
69 |
+
|
70 |
+
def test_SDM_to_list_flat():
|
71 |
+
A = SDM({0:{1: ZZ(1)}}, (2, 2), ZZ)
|
72 |
+
assert A.to_list_flat() == [ZZ(0), ZZ(1), ZZ(0), ZZ(0)]
|
73 |
+
|
74 |
+
|
75 |
+
def test_SDM_to_dok():
|
76 |
+
A = SDM({0:{1: ZZ(1)}}, (2, 2), ZZ)
|
77 |
+
assert A.to_dok() == {(0, 1): ZZ(1)}
|
78 |
+
|
79 |
+
|
80 |
+
def test_SDM_from_ddm():
|
81 |
+
A = DDM([[ZZ(1), ZZ(0)], [ZZ(1), ZZ(0)]], (2, 2), ZZ)
|
82 |
+
B = SDM.from_ddm(A)
|
83 |
+
assert B.domain == ZZ
|
84 |
+
assert B.shape == (2, 2)
|
85 |
+
assert dict(B) == {0:{0:ZZ(1)}, 1:{0:ZZ(1)}}
|
86 |
+
|
87 |
+
|
88 |
+
def test_SDM_to_ddm():
|
89 |
+
A = SDM({0:{1: ZZ(1)}}, (2, 2), ZZ)
|
90 |
+
B = DDM([[ZZ(0), ZZ(1)], [ZZ(0), ZZ(0)]], (2, 2), ZZ)
|
91 |
+
assert A.to_ddm() == B
|
92 |
+
|
93 |
+
|
94 |
+
def test_SDM_to_sdm():
|
95 |
+
A = SDM({0:{1: ZZ(1)}}, (2, 2), ZZ)
|
96 |
+
assert A.to_sdm() == A
|
97 |
+
|
98 |
+
|
99 |
+
def test_SDM_getitem():
|
100 |
+
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ)
|
101 |
+
assert A.getitem(0, 0) == ZZ.zero
|
102 |
+
assert A.getitem(0, 1) == ZZ.one
|
103 |
+
assert A.getitem(1, 0) == ZZ.zero
|
104 |
+
assert A.getitem(-2, -2) == ZZ.zero
|
105 |
+
assert A.getitem(-2, -1) == ZZ.one
|
106 |
+
assert A.getitem(-1, -2) == ZZ.zero
|
107 |
+
raises(IndexError, lambda: A.getitem(2, 0))
|
108 |
+
raises(IndexError, lambda: A.getitem(0, 2))
|
109 |
+
|
110 |
+
|
111 |
+
def test_SDM_setitem():
|
112 |
+
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ)
|
113 |
+
A.setitem(0, 0, ZZ(1))
|
114 |
+
assert A == SDM({0:{0:ZZ(1), 1:ZZ(1)}}, (2, 2), ZZ)
|
115 |
+
A.setitem(1, 0, ZZ(1))
|
116 |
+
assert A == SDM({0:{0:ZZ(1), 1:ZZ(1)}, 1:{0:ZZ(1)}}, (2, 2), ZZ)
|
117 |
+
A.setitem(1, 0, ZZ(0))
|
118 |
+
assert A == SDM({0:{0:ZZ(1), 1:ZZ(1)}}, (2, 2), ZZ)
|
119 |
+
# Repeat the above test so that this time the row is empty
|
120 |
+
A.setitem(1, 0, ZZ(0))
|
121 |
+
assert A == SDM({0:{0:ZZ(1), 1:ZZ(1)}}, (2, 2), ZZ)
|
122 |
+
A.setitem(0, 0, ZZ(0))
|
123 |
+
assert A == SDM({0:{1:ZZ(1)}}, (2, 2), ZZ)
|
124 |
+
# This time the row is there but column is empty
|
125 |
+
A.setitem(0, 0, ZZ(0))
|
126 |
+
assert A == SDM({0:{1:ZZ(1)}}, (2, 2), ZZ)
|
127 |
+
raises(IndexError, lambda: A.setitem(2, 0, ZZ(1)))
|
128 |
+
raises(IndexError, lambda: A.setitem(0, 2, ZZ(1)))
|
129 |
+
|
130 |
+
|
131 |
+
def test_SDM_extract_slice():
|
132 |
+
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ)
|
133 |
+
B = A.extract_slice(slice(1, 2), slice(1, 2))
|
134 |
+
assert B == SDM({0:{0:ZZ(4)}}, (1, 1), ZZ)
|
135 |
+
|
136 |
+
|
137 |
+
def test_SDM_extract():
|
138 |
+
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ)
|
139 |
+
B = A.extract([1], [1])
|
140 |
+
assert B == SDM({0:{0:ZZ(4)}}, (1, 1), ZZ)
|
141 |
+
B = A.extract([1, 0], [1, 0])
|
142 |
+
assert B == SDM({0:{0:ZZ(4), 1:ZZ(3)}, 1:{0:ZZ(2), 1:ZZ(1)}}, (2, 2), ZZ)
|
143 |
+
B = A.extract([1, 1], [1, 1])
|
144 |
+
assert B == SDM({0:{0:ZZ(4), 1:ZZ(4)}, 1:{0:ZZ(4), 1:ZZ(4)}}, (2, 2), ZZ)
|
145 |
+
B = A.extract([-1], [-1])
|
146 |
+
assert B == SDM({0:{0:ZZ(4)}}, (1, 1), ZZ)
|
147 |
+
|
148 |
+
A = SDM({}, (2, 2), ZZ)
|
149 |
+
B = A.extract([0, 1, 0], [0, 0])
|
150 |
+
assert B == SDM({}, (3, 2), ZZ)
|
151 |
+
|
152 |
+
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ)
|
153 |
+
assert A.extract([], []) == SDM.zeros((0, 0), ZZ)
|
154 |
+
assert A.extract([1], []) == SDM.zeros((1, 0), ZZ)
|
155 |
+
assert A.extract([], [1]) == SDM.zeros((0, 1), ZZ)
|
156 |
+
|
157 |
+
raises(IndexError, lambda: A.extract([2], [0]))
|
158 |
+
raises(IndexError, lambda: A.extract([0], [2]))
|
159 |
+
raises(IndexError, lambda: A.extract([-3], [0]))
|
160 |
+
raises(IndexError, lambda: A.extract([0], [-3]))
|
161 |
+
|
162 |
+
|
163 |
+
def test_SDM_zeros():
|
164 |
+
A = SDM.zeros((2, 2), ZZ)
|
165 |
+
assert A.domain == ZZ
|
166 |
+
assert A.shape == (2, 2)
|
167 |
+
assert dict(A) == {}
|
168 |
+
|
169 |
+
def test_SDM_ones():
|
170 |
+
A = SDM.ones((1, 2), QQ)
|
171 |
+
assert A.domain == QQ
|
172 |
+
assert A.shape == (1, 2)
|
173 |
+
assert dict(A) == {0:{0:QQ(1), 1:QQ(1)}}
|
174 |
+
|
175 |
+
def test_SDM_eye():
|
176 |
+
A = SDM.eye((2, 2), ZZ)
|
177 |
+
assert A.domain == ZZ
|
178 |
+
assert A.shape == (2, 2)
|
179 |
+
assert dict(A) == {0:{0:ZZ(1)}, 1:{1:ZZ(1)}}
|
180 |
+
|
181 |
+
|
182 |
+
def test_SDM_diag():
|
183 |
+
A = SDM.diag([ZZ(1), ZZ(2)], ZZ, (2, 3))
|
184 |
+
assert A == SDM({0:{0:ZZ(1)}, 1:{1:ZZ(2)}}, (2, 3), ZZ)
|
185 |
+
|
186 |
+
|
187 |
+
def test_SDM_transpose():
|
188 |
+
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ)
|
189 |
+
B = SDM({0:{0:ZZ(1), 1:ZZ(3)}, 1:{0:ZZ(2), 1:ZZ(4)}}, (2, 2), ZZ)
|
190 |
+
assert A.transpose() == B
|
191 |
+
|
192 |
+
A = SDM({0:{1:ZZ(2)}}, (2, 2), ZZ)
|
193 |
+
B = SDM({1:{0:ZZ(2)}}, (2, 2), ZZ)
|
194 |
+
assert A.transpose() == B
|
195 |
+
|
196 |
+
A = SDM({0:{1:ZZ(2)}}, (1, 2), ZZ)
|
197 |
+
B = SDM({1:{0:ZZ(2)}}, (2, 1), ZZ)
|
198 |
+
assert A.transpose() == B
|
199 |
+
|
200 |
+
|
201 |
+
def test_SDM_mul():
|
202 |
+
A = SDM({0:{0:ZZ(2)}}, (2, 2), ZZ)
|
203 |
+
B = SDM({0:{0:ZZ(4)}}, (2, 2), ZZ)
|
204 |
+
assert A*ZZ(2) == B
|
205 |
+
assert ZZ(2)*A == B
|
206 |
+
|
207 |
+
raises(TypeError, lambda: A*QQ(1, 2))
|
208 |
+
raises(TypeError, lambda: QQ(1, 2)*A)
|
209 |
+
|
210 |
+
|
211 |
+
def test_SDM_mul_elementwise():
|
212 |
+
A = SDM({0:{0:ZZ(2), 1:ZZ(2)}}, (2, 2), ZZ)
|
213 |
+
B = SDM({0:{0:ZZ(4)}, 1:{0:ZZ(3)}}, (2, 2), ZZ)
|
214 |
+
C = SDM({0:{0:ZZ(8)}}, (2, 2), ZZ)
|
215 |
+
assert A.mul_elementwise(B) == C
|
216 |
+
assert B.mul_elementwise(A) == C
|
217 |
+
|
218 |
+
Aq = A.convert_to(QQ)
|
219 |
+
A1 = SDM({0:{0:ZZ(1)}}, (1, 1), ZZ)
|
220 |
+
|
221 |
+
raises(DMDomainError, lambda: Aq.mul_elementwise(B))
|
222 |
+
raises(DMShapeError, lambda: A1.mul_elementwise(B))
|
223 |
+
|
224 |
+
|
225 |
+
def test_SDM_matmul():
|
226 |
+
A = SDM({0:{0:ZZ(2)}}, (2, 2), ZZ)
|
227 |
+
B = SDM({0:{0:ZZ(4)}}, (2, 2), ZZ)
|
228 |
+
assert A.matmul(A) == A*A == B
|
229 |
+
|
230 |
+
C = SDM({0:{0:ZZ(2)}}, (2, 2), QQ)
|
231 |
+
raises(DMDomainError, lambda: A.matmul(C))
|
232 |
+
|
233 |
+
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ)
|
234 |
+
B = SDM({0:{0:ZZ(7), 1:ZZ(10)}, 1:{0:ZZ(15), 1:ZZ(22)}}, (2, 2), ZZ)
|
235 |
+
assert A.matmul(A) == A*A == B
|
236 |
+
|
237 |
+
A22 = SDM({0:{0:ZZ(4)}}, (2, 2), ZZ)
|
238 |
+
A32 = SDM({0:{0:ZZ(2)}}, (3, 2), ZZ)
|
239 |
+
A23 = SDM({0:{0:ZZ(4)}}, (2, 3), ZZ)
|
240 |
+
A33 = SDM({0:{0:ZZ(8)}}, (3, 3), ZZ)
|
241 |
+
A22 = SDM({0:{0:ZZ(8)}}, (2, 2), ZZ)
|
242 |
+
assert A32.matmul(A23) == A33
|
243 |
+
assert A23.matmul(A32) == A22
|
244 |
+
# XXX: @ not supported by SDM...
|
245 |
+
#assert A32.matmul(A23) == A32 @ A23 == A33
|
246 |
+
#assert A23.matmul(A32) == A23 @ A32 == A22
|
247 |
+
#raises(DMShapeError, lambda: A23 @ A22)
|
248 |
+
raises(DMShapeError, lambda: A23.matmul(A22))
|
249 |
+
|
250 |
+
A = SDM({0: {0: ZZ(-1), 1: ZZ(1)}}, (1, 2), ZZ)
|
251 |
+
B = SDM({0: {0: ZZ(-1)}, 1: {0: ZZ(-1)}}, (2, 1), ZZ)
|
252 |
+
assert A.matmul(B) == A*B == SDM({}, (1, 1), ZZ)
|
253 |
+
|
254 |
+
|
255 |
+
def test_matmul_exraw():
|
256 |
+
|
257 |
+
def dm(d):
|
258 |
+
result = {}
|
259 |
+
for i, row in d.items():
|
260 |
+
row = {j:val for j, val in row.items() if val}
|
261 |
+
if row:
|
262 |
+
result[i] = row
|
263 |
+
return SDM(result, (2, 2), EXRAW)
|
264 |
+
|
265 |
+
values = [S.NegativeInfinity, S.NegativeOne, S.Zero, S.One, S.Infinity]
|
266 |
+
for a, b, c, d in product(*[values]*4):
|
267 |
+
Ad = dm({0: {0:a, 1:b}, 1: {0:c, 1:d}})
|
268 |
+
Ad2 = dm({0: {0:a*a + b*c, 1:a*b + b*d}, 1:{0:c*a + d*c, 1: c*b + d*d}})
|
269 |
+
assert Ad * Ad == Ad2
|
270 |
+
|
271 |
+
|
272 |
+
def test_SDM_add():
|
273 |
+
A = SDM({0:{1:ZZ(1)}, 1:{0:ZZ(2), 1:ZZ(3)}}, (2, 2), ZZ)
|
274 |
+
B = SDM({0:{0:ZZ(1)}, 1:{0:ZZ(-2), 1:ZZ(3)}}, (2, 2), ZZ)
|
275 |
+
C = SDM({0:{0:ZZ(1), 1:ZZ(1)}, 1:{1:ZZ(6)}}, (2, 2), ZZ)
|
276 |
+
assert A.add(B) == B.add(A) == A + B == B + A == C
|
277 |
+
|
278 |
+
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ)
|
279 |
+
B = SDM({0:{0:ZZ(1)}, 1:{0:ZZ(-2), 1:ZZ(3)}}, (2, 2), ZZ)
|
280 |
+
C = SDM({0:{0:ZZ(1), 1:ZZ(1)}, 1:{0:ZZ(-2), 1:ZZ(3)}}, (2, 2), ZZ)
|
281 |
+
assert A.add(B) == B.add(A) == A + B == B + A == C
|
282 |
+
|
283 |
+
raises(TypeError, lambda: A + [])
|
284 |
+
|
285 |
+
|
286 |
+
def test_SDM_sub():
|
287 |
+
A = SDM({0:{1:ZZ(1)}, 1:{0:ZZ(2), 1:ZZ(3)}}, (2, 2), ZZ)
|
288 |
+
B = SDM({0:{0:ZZ(1)}, 1:{0:ZZ(-2), 1:ZZ(3)}}, (2, 2), ZZ)
|
289 |
+
C = SDM({0:{0:ZZ(-1), 1:ZZ(1)}, 1:{0:ZZ(4)}}, (2, 2), ZZ)
|
290 |
+
assert A.sub(B) == A - B == C
|
291 |
+
|
292 |
+
raises(TypeError, lambda: A - [])
|
293 |
+
|
294 |
+
|
295 |
+
def test_SDM_neg():
|
296 |
+
A = SDM({0:{1:ZZ(1)}, 1:{0:ZZ(2), 1:ZZ(3)}}, (2, 2), ZZ)
|
297 |
+
B = SDM({0:{1:ZZ(-1)}, 1:{0:ZZ(-2), 1:ZZ(-3)}}, (2, 2), ZZ)
|
298 |
+
assert A.neg() == -A == B
|
299 |
+
|
300 |
+
|
301 |
+
def test_SDM_convert_to():
|
302 |
+
A = SDM({0:{1:ZZ(1)}, 1:{0:ZZ(2), 1:ZZ(3)}}, (2, 2), ZZ)
|
303 |
+
B = SDM({0:{1:QQ(1)}, 1:{0:QQ(2), 1:QQ(3)}}, (2, 2), QQ)
|
304 |
+
C = A.convert_to(QQ)
|
305 |
+
assert C == B
|
306 |
+
assert C.domain == QQ
|
307 |
+
|
308 |
+
D = A.convert_to(ZZ)
|
309 |
+
assert D == A
|
310 |
+
assert D.domain == ZZ
|
311 |
+
|
312 |
+
|
313 |
+
def test_SDM_hstack():
|
314 |
+
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ)
|
315 |
+
B = SDM({1:{1:ZZ(1)}}, (2, 2), ZZ)
|
316 |
+
AA = SDM({0:{1:ZZ(1), 3:ZZ(1)}}, (2, 4), ZZ)
|
317 |
+
AB = SDM({0:{1:ZZ(1)}, 1:{3:ZZ(1)}}, (2, 4), ZZ)
|
318 |
+
assert SDM.hstack(A) == A
|
319 |
+
assert SDM.hstack(A, A) == AA
|
320 |
+
assert SDM.hstack(A, B) == AB
|
321 |
+
|
322 |
+
|
323 |
+
def test_SDM_vstack():
|
324 |
+
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ)
|
325 |
+
B = SDM({1:{1:ZZ(1)}}, (2, 2), ZZ)
|
326 |
+
AA = SDM({0:{1:ZZ(1)}, 2:{1:ZZ(1)}}, (4, 2), ZZ)
|
327 |
+
AB = SDM({0:{1:ZZ(1)}, 3:{1:ZZ(1)}}, (4, 2), ZZ)
|
328 |
+
assert SDM.vstack(A) == A
|
329 |
+
assert SDM.vstack(A, A) == AA
|
330 |
+
assert SDM.vstack(A, B) == AB
|
331 |
+
|
332 |
+
|
333 |
+
def test_SDM_applyfunc():
|
334 |
+
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ)
|
335 |
+
B = SDM({0:{1:ZZ(2)}}, (2, 2), ZZ)
|
336 |
+
assert A.applyfunc(lambda x: 2*x, ZZ) == B
|
337 |
+
|
338 |
+
|
339 |
+
def test_SDM_inv():
|
340 |
+
A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
341 |
+
B = SDM({0:{0:QQ(-2), 1:QQ(1)}, 1:{0:QQ(3, 2), 1:QQ(-1, 2)}}, (2, 2), QQ)
|
342 |
+
assert A.inv() == B
|
343 |
+
|
344 |
+
|
345 |
+
def test_SDM_det():
|
346 |
+
A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
347 |
+
assert A.det() == QQ(-2)
|
348 |
+
|
349 |
+
|
350 |
+
def test_SDM_lu():
|
351 |
+
A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
352 |
+
L = SDM({0:{0:QQ(1)}, 1:{0:QQ(3), 1:QQ(1)}}, (2, 2), QQ)
|
353 |
+
#U = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(-2)}}, (2, 2), QQ)
|
354 |
+
#swaps = []
|
355 |
+
# This doesn't quite work. U has some nonzero elements in the lower part.
|
356 |
+
#assert A.lu() == (L, U, swaps)
|
357 |
+
assert A.lu()[0] == L
|
358 |
+
|
359 |
+
|
360 |
+
def test_SDM_lu_solve():
|
361 |
+
A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
362 |
+
b = SDM({0:{0:QQ(1)}, 1:{0:QQ(2)}}, (2, 1), QQ)
|
363 |
+
x = SDM({1:{0:QQ(1, 2)}}, (2, 1), QQ)
|
364 |
+
assert A.matmul(x) == b
|
365 |
+
assert A.lu_solve(b) == x
|
366 |
+
|
367 |
+
|
368 |
+
def test_SDM_charpoly():
|
369 |
+
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ)
|
370 |
+
assert A.charpoly() == [ZZ(1), ZZ(-5), ZZ(-2)]
|
371 |
+
|
372 |
+
|
373 |
+
def test_SDM_nullspace():
|
374 |
+
A = SDM({0:{0:QQ(1), 1:QQ(1)}}, (2, 2), QQ)
|
375 |
+
assert A.nullspace()[0] == SDM({0:{0:QQ(-1), 1:QQ(1)}}, (1, 2), QQ)
|
376 |
+
|
377 |
+
|
378 |
+
def test_SDM_rref():
|
379 |
+
eye2 = SDM({0:{0:QQ(1)}, 1:{1:QQ(1)}}, (2, 2), QQ)
|
380 |
+
|
381 |
+
A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
382 |
+
assert A.rref() == (eye2, [0, 1])
|
383 |
+
|
384 |
+
A = SDM({0:{0:QQ(1)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
385 |
+
assert A.rref() == (eye2, [0, 1])
|
386 |
+
|
387 |
+
A = SDM({0:{1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ)
|
388 |
+
assert A.rref() == (eye2, [0, 1])
|
389 |
+
|
390 |
+
A = SDM({0:{0:QQ(1), 1:QQ(2), 2:QQ(3)},
|
391 |
+
1:{0:QQ(4), 1:QQ(5), 2:QQ(6)},
|
392 |
+
2:{0:QQ(7), 1:QQ(8), 2:QQ(9)} }, (3, 3), QQ)
|
393 |
+
Arref = SDM({0:{0:QQ(1), 2:QQ(-1)}, 1:{1:QQ(1), 2:QQ(2)}}, (3, 3), QQ)
|
394 |
+
assert A.rref() == (Arref, [0, 1])
|
395 |
+
|
396 |
+
A = SDM({0:{0:QQ(1), 1:QQ(2), 3:QQ(1)},
|
397 |
+
1:{0:QQ(1), 1:QQ(1), 2:QQ(9)}}, (2, 4), QQ)
|
398 |
+
Arref = SDM({0:{0:QQ(1), 2:QQ(18), 3:QQ(-1)},
|
399 |
+
1:{1:QQ(1), 2:QQ(-9), 3:QQ(1)}}, (2, 4), QQ)
|
400 |
+
assert A.rref() == (Arref, [0, 1])
|
401 |
+
|
402 |
+
A = SDM({0:{0:QQ(1), 1:QQ(1), 2:QQ(1)},
|
403 |
+
1:{0:QQ(1), 1:QQ(2), 2:QQ(2)}}, (2, 3), QQ)
|
404 |
+
Arref = SDM(
|
405 |
+
{0: {0: QQ(1,1)}, 1: {1: QQ(1,1), 2: QQ(1,1)}},
|
406 |
+
(2, 3), QQ)
|
407 |
+
assert A.rref() == (Arref, [0, 1])
|
408 |
+
|
409 |
+
|
410 |
+
def test_SDM_particular():
|
411 |
+
A = SDM({0:{0:QQ(1)}}, (2, 2), QQ)
|
412 |
+
Apart = SDM.zeros((1, 2), QQ)
|
413 |
+
assert A.particular() == Apart
|
414 |
+
|
415 |
+
|
416 |
+
def test_SDM_is_zero_matrix():
|
417 |
+
A = SDM({0: {0: QQ(1)}}, (2, 2), QQ)
|
418 |
+
Azero = SDM.zeros((1, 2), QQ)
|
419 |
+
assert A.is_zero_matrix() is False
|
420 |
+
assert Azero.is_zero_matrix() is True
|
421 |
+
|
422 |
+
|
423 |
+
def test_SDM_is_upper():
|
424 |
+
A = SDM({0: {0: QQ(1), 1: QQ(2), 2: QQ(3), 3: QQ(4)},
|
425 |
+
1: {1: QQ(5), 2: QQ(6), 3: QQ(7)},
|
426 |
+
2: {2: QQ(8), 3: QQ(9)}}, (3, 4), QQ)
|
427 |
+
B = SDM({0: {0: QQ(1), 1: QQ(2), 2: QQ(3), 3: QQ(4)},
|
428 |
+
1: {1: QQ(5), 2: QQ(6), 3: QQ(7)},
|
429 |
+
2: {1: QQ(7), 2: QQ(8), 3: QQ(9)}}, (3, 4), QQ)
|
430 |
+
assert A.is_upper() is True
|
431 |
+
assert B.is_upper() is False
|
432 |
+
|
433 |
+
|
434 |
+
def test_SDM_is_lower():
|
435 |
+
A = SDM({0: {0: QQ(1), 1: QQ(2), 2: QQ(3), 3: QQ(4)},
|
436 |
+
1: {1: QQ(5), 2: QQ(6), 3: QQ(7)},
|
437 |
+
2: {2: QQ(8), 3: QQ(9)}}, (3, 4), QQ
|
438 |
+
).transpose()
|
439 |
+
B = SDM({0: {0: QQ(1), 1: QQ(2), 2: QQ(3), 3: QQ(4)},
|
440 |
+
1: {1: QQ(5), 2: QQ(6), 3: QQ(7)},
|
441 |
+
2: {1: QQ(7), 2: QQ(8), 3: QQ(9)}}, (3, 4), QQ
|
442 |
+
).transpose()
|
443 |
+
assert A.is_lower() is True
|
444 |
+
assert B.is_lower() is False
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (203 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_basis.cpython-310.pyc
ADDED
Binary file (3.59 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_galoisgroups.cpython-310.pyc
ADDED
Binary file (4.99 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_minpoly.cpython-310.pyc
ADDED
Binary file (21.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_modules.cpython-310.pyc
ADDED
Binary file (28.1 kB). View file
|
|