applied-ai-018 commited on
Commit
32f4873
·
verified ·
1 Parent(s): 21b1cd1

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/idna-3.7.dist-info/INSTALLER +1 -0
  2. env-llmeval/lib/python3.10/site-packages/idna-3.7.dist-info/LICENSE.md +31 -0
  3. env-llmeval/lib/python3.10/site-packages/idna-3.7.dist-info/METADATA +243 -0
  4. env-llmeval/lib/python3.10/site-packages/idna-3.7.dist-info/RECORD +22 -0
  5. env-llmeval/lib/python3.10/site-packages/idna-3.7.dist-info/WHEEL +4 -0
  6. env-llmeval/lib/python3.10/site-packages/sympy/crypto/__init__.py +35 -0
  7. env-llmeval/lib/python3.10/site-packages/sympy/crypto/__pycache__/__init__.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/sympy/crypto/__pycache__/crypto.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/sympy/crypto/crypto.py +3360 -0
  10. env-llmeval/lib/python3.10/site-packages/sympy/crypto/tests/__init__.py +0 -0
  11. env-llmeval/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/test_crypto.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/sympy/crypto/tests/test_crypto.py +562 -0
  14. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__init__.py +0 -0
  15. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_gaussopt.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_medium.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_polarization.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_utils.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_waves.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/test_gaussopt.py +102 -0
  22. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/test_medium.py +48 -0
  23. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/test_polarization.py +57 -0
  24. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/test_utils.py +202 -0
  25. env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/test_waves.py +82 -0
  26. env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/__init__.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/quantities.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/__init__.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/cgs.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/length_weight_time.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/mks.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/mksa.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/natural.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/si.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/si.py +377 -0
  36. env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/INSTALLER +1 -0
  37. env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/LICENSE +21 -0
  38. env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/METADATA +162 -0
  39. env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/RECORD +17 -0
  40. env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/WHEEL +5 -0
  41. env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/top_level.txt +1 -0
  42. env-llmeval/lib/python3.10/site-packages/yaml/__init__.py +390 -0
  43. env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/__init__.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/composer.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/constructor.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/cyaml.cpython-310.pyc +0 -0
  47. env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/dumper.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/emitter.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/error.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/events.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/idna-3.7.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
env-llmeval/lib/python3.10/site-packages/idna-3.7.dist-info/LICENSE.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2013-2024, Kim Davies and contributors.
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without
7
+ modification, are permitted provided that the following conditions are
8
+ met:
9
+
10
+ 1. Redistributions of source code must retain the above copyright
11
+ notice, this list of conditions and the following disclaimer.
12
+
13
+ 2. Redistributions in binary form must reproduce the above copyright
14
+ notice, this list of conditions and the following disclaimer in the
15
+ documentation and/or other materials provided with the distribution.
16
+
17
+ 3. Neither the name of the copyright holder nor the names of its
18
+ contributors may be used to endorse or promote products derived from
19
+ this software without specific prior written permission.
20
+
21
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
+ HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
27
+ TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
28
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
29
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
env-llmeval/lib/python3.10/site-packages/idna-3.7.dist-info/METADATA ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: idna
3
+ Version: 3.7
4
+ Summary: Internationalized Domain Names in Applications (IDNA)
5
+ Author-email: Kim Davies <[email protected]>
6
+ Requires-Python: >=3.5
7
+ Description-Content-Type: text/x-rst
8
+ Classifier: Development Status :: 5 - Production/Stable
9
+ Classifier: Intended Audience :: Developers
10
+ Classifier: Intended Audience :: System Administrators
11
+ Classifier: License :: OSI Approved :: BSD License
12
+ Classifier: Operating System :: OS Independent
13
+ Classifier: Programming Language :: Python
14
+ Classifier: Programming Language :: Python :: 3
15
+ Classifier: Programming Language :: Python :: 3 :: Only
16
+ Classifier: Programming Language :: Python :: 3.5
17
+ Classifier: Programming Language :: Python :: 3.6
18
+ Classifier: Programming Language :: Python :: 3.7
19
+ Classifier: Programming Language :: Python :: 3.8
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: 3.11
23
+ Classifier: Programming Language :: Python :: 3.12
24
+ Classifier: Programming Language :: Python :: Implementation :: CPython
25
+ Classifier: Programming Language :: Python :: Implementation :: PyPy
26
+ Classifier: Topic :: Internet :: Name Service (DNS)
27
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
28
+ Classifier: Topic :: Utilities
29
+ Project-URL: Changelog, https://github.com/kjd/idna/blob/master/HISTORY.rst
30
+ Project-URL: Issue tracker, https://github.com/kjd/idna/issues
31
+ Project-URL: Source, https://github.com/kjd/idna
32
+
33
+ Internationalized Domain Names in Applications (IDNA)
34
+ =====================================================
35
+
36
+ Support for the Internationalized Domain Names in
37
+ Applications (IDNA) protocol as specified in `RFC 5891
38
+ <https://tools.ietf.org/html/rfc5891>`_. This is the latest version of
39
+ the protocol and is sometimes referred to as “IDNA 2008”.
40
+
41
+ This library also provides support for Unicode Technical
42
+ Standard 46, `Unicode IDNA Compatibility Processing
43
+ <https://unicode.org/reports/tr46/>`_.
44
+
45
+ This acts as a suitable replacement for the “encodings.idna”
46
+ module that comes with the Python standard library, but which
47
+ only supports the older superseded IDNA specification (`RFC 3490
48
+ <https://tools.ietf.org/html/rfc3490>`_).
49
+
50
+ Basic functions are simply executed:
51
+
52
+ .. code-block:: pycon
53
+
54
+ >>> import idna
55
+ >>> idna.encode('ドメイン.テスト')
56
+ b'xn--eckwd4c7c.xn--zckzah'
57
+ >>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
58
+ ドメイン.テスト
59
+
60
+
61
+ Installation
62
+ ------------
63
+
64
+ This package is available for installation from PyPI:
65
+
66
+ .. code-block:: bash
67
+
68
+ $ python3 -m pip install idna
69
+
70
+
71
+ Usage
72
+ -----
73
+
74
+ For typical usage, the ``encode`` and ``decode`` functions will take a
75
+ domain name argument and perform a conversion to A-labels or U-labels
76
+ respectively.
77
+
78
+ .. code-block:: pycon
79
+
80
+ >>> import idna
81
+ >>> idna.encode('ドメイン.テスト')
82
+ b'xn--eckwd4c7c.xn--zckzah'
83
+ >>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
84
+ ドメイン.テスト
85
+
86
+ You may use the codec encoding and decoding methods using the
87
+ ``idna.codec`` module:
88
+
89
+ .. code-block:: pycon
90
+
91
+ >>> import idna.codec
92
+ >>> print('домен.испытание'.encode('idna2008'))
93
+ b'xn--d1acufc.xn--80akhbyknj4f'
94
+ >>> print(b'xn--d1acufc.xn--80akhbyknj4f'.decode('idna2008'))
95
+ домен.испытание
96
+
97
+ Conversions can be applied at a per-label basis using the ``ulabel`` or
98
+ ``alabel`` functions if necessary:
99
+
100
+ .. code-block:: pycon
101
+
102
+ >>> idna.alabel('测试')
103
+ b'xn--0zwm56d'
104
+
105
+ Compatibility Mapping (UTS #46)
106
+ +++++++++++++++++++++++++++++++
107
+
108
+ As described in `RFC 5895 <https://tools.ietf.org/html/rfc5895>`_, the
109
+ IDNA specification does not normalize input from different potential
110
+ ways a user may input a domain name. This functionality, known as
111
+ a “mapping”, is considered by the specification to be a local
112
+ user-interface issue distinct from IDNA conversion functionality.
113
+
114
+ This library provides one such mapping that was developed by the
115
+ Unicode Consortium. Known as `Unicode IDNA Compatibility Processing
116
+ <https://unicode.org/reports/tr46/>`_, it provides for both a regular
117
+ mapping for typical applications, as well as a transitional mapping to
118
+ help migrate from older IDNA 2003 applications.
119
+
120
+ For example, “Königsgäßchen” is not a permissible label as *LATIN
121
+ CAPITAL LETTER K* is not allowed (nor are capital letters in general).
122
+ UTS 46 will convert this into lower case prior to applying the IDNA
123
+ conversion.
124
+
125
+ .. code-block:: pycon
126
+
127
+ >>> import idna
128
+ >>> idna.encode('Königsgäßchen')
129
+ ...
130
+ idna.core.InvalidCodepoint: Codepoint U+004B at position 1 of 'Königsgäßchen' not allowed
131
+ >>> idna.encode('Königsgäßchen', uts46=True)
132
+ b'xn--knigsgchen-b4a3dun'
133
+ >>> print(idna.decode('xn--knigsgchen-b4a3dun'))
134
+ königsgäßchen
135
+
136
+ Transitional processing provides conversions to help transition from
137
+ the older 2003 standard to the current standard. For example, in the
138
+ original IDNA specification, the *LATIN SMALL LETTER SHARP S* (ß) was
139
+ converted into two *LATIN SMALL LETTER S* (ss), whereas in the current
140
+ IDNA specification this conversion is not performed.
141
+
142
+ .. code-block:: pycon
143
+
144
+ >>> idna.encode('Königsgäßchen', uts46=True, transitional=True)
145
+ 'xn--knigsgsschen-lcb0w'
146
+
147
+ Implementers should use transitional processing with caution, only in
148
+ rare cases where conversion from legacy labels to current labels must be
149
+ performed (i.e. IDNA implementations that pre-date 2008). For typical
150
+ applications that just need to convert labels, transitional processing
151
+ is unlikely to be beneficial and could produce unexpected incompatible
152
+ results.
153
+
154
+ ``encodings.idna`` Compatibility
155
+ ++++++++++++++++++++++++++++++++
156
+
157
+ Function calls from the Python built-in ``encodings.idna`` module are
158
+ mapped to their IDNA 2008 equivalents using the ``idna.compat`` module.
159
+ Simply substitute the ``import`` clause in your code to refer to the new
160
+ module name.
161
+
162
+ Exceptions
163
+ ----------
164
+
165
+ All errors raised during the conversion following the specification
166
+ should raise an exception derived from the ``idna.IDNAError`` base
167
+ class.
168
+
169
+ More specific exceptions that may be generated as ``idna.IDNABidiError``
170
+ when the error reflects an illegal combination of left-to-right and
171
+ right-to-left characters in a label; ``idna.InvalidCodepoint`` when
172
+ a specific codepoint is an illegal character in an IDN label (i.e.
173
+ INVALID); and ``idna.InvalidCodepointContext`` when the codepoint is
174
+ illegal based on its positional context (i.e. it is CONTEXTO or CONTEXTJ
175
+ but the contextual requirements are not satisfied.)
176
+
177
+ Building and Diagnostics
178
+ ------------------------
179
+
180
+ The IDNA and UTS 46 functionality relies upon pre-calculated lookup
181
+ tables for performance. These tables are derived from computing against
182
+ eligibility criteria in the respective standards. These tables are
183
+ computed using the command-line script ``tools/idna-data``.
184
+
185
+ This tool will fetch relevant codepoint data from the Unicode repository
186
+ and perform the required calculations to identify eligibility. There are
187
+ three main modes:
188
+
189
+ * ``idna-data make-libdata``. Generates ``idnadata.py`` and
190
+ ``uts46data.py``, the pre-calculated lookup tables used for IDNA and
191
+ UTS 46 conversions. Implementers who wish to track this library against
192
+ a different Unicode version may use this tool to manually generate a
193
+ different version of the ``idnadata.py`` and ``uts46data.py`` files.
194
+
195
+ * ``idna-data make-table``. Generate a table of the IDNA disposition
196
+ (e.g. PVALID, CONTEXTJ, CONTEXTO) in the format found in Appendix
197
+ B.1 of RFC 5892 and the pre-computed tables published by `IANA
198
+ <https://www.iana.org/>`_.
199
+
200
+ * ``idna-data U+0061``. Prints debugging output on the various
201
+ properties associated with an individual Unicode codepoint (in this
202
+ case, U+0061), that are used to assess the IDNA and UTS 46 status of a
203
+ codepoint. This is helpful in debugging or analysis.
204
+
205
+ The tool accepts a number of arguments, described using ``idna-data
206
+ -h``. Most notably, the ``--version`` argument allows the specification
207
+ of the version of Unicode to be used in computing the table data. For
208
+ example, ``idna-data --version 9.0.0 make-libdata`` will generate
209
+ library data against Unicode 9.0.0.
210
+
211
+
212
+ Additional Notes
213
+ ----------------
214
+
215
+ * **Packages**. The latest tagged release version is published in the
216
+ `Python Package Index <https://pypi.org/project/idna/>`_.
217
+
218
+ * **Version support**. This library supports Python 3.5 and higher.
219
+ As this library serves as a low-level toolkit for a variety of
220
+ applications, many of which strive for broad compatibility with older
221
+ Python versions, there is no rush to remove older interpreter support.
222
+ Removing support for older versions should be well justified in that the
223
+ maintenance burden has become too high.
224
+
225
+ * **Python 2**. Python 2 is supported by version 2.x of this library.
226
+ While active development of the version 2.x series has ended, notable
227
+ issues being corrected may be backported to 2.x. Use "idna<3" in your
228
+ requirements file if you need this library for a Python 2 application.
229
+
230
+ * **Testing**. The library has a test suite based on each rule of the
231
+ IDNA specification, as well as tests that are provided as part of the
232
+ Unicode Technical Standard 46, `Unicode IDNA Compatibility Processing
233
+ <https://unicode.org/reports/tr46/>`_.
234
+
235
+ * **Emoji**. It is an occasional request to support emoji domains in
236
+ this library. Encoding of symbols like emoji is expressly prohibited by
237
+ the technical standard IDNA 2008 and emoji domains are broadly phased
238
+ out across the domain industry due to associated security risks. For
239
+ now, applications that need to support these non-compliant labels
240
+ may wish to consider trying the encode/decode operation in this library
241
+ first, and then falling back to using `encodings.idna`. See `the Github
242
+ project <https://github.com/kjd/idna/issues/18>`_ for more discussion.
243
+
env-llmeval/lib/python3.10/site-packages/idna-3.7.dist-info/RECORD ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ idna-3.7.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ idna-3.7.dist-info/LICENSE.md,sha256=pZ8LDvNjWHQQmkRhykT_enDVBpboFHZ7-vch1Mmw2w8,1541
3
+ idna-3.7.dist-info/METADATA,sha256=OixCk-dKLZkPy-MfviOmiPvwJ1O2K_8rqCrFjC_uxy4,9888
4
+ idna-3.7.dist-info/RECORD,,
5
+ idna-3.7.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
6
+ idna/__init__.py,sha256=KJQN1eQBr8iIK5SKrJ47lXvxG0BJ7Lm38W4zT0v_8lk,849
7
+ idna/__pycache__/__init__.cpython-310.pyc,,
8
+ idna/__pycache__/codec.cpython-310.pyc,,
9
+ idna/__pycache__/compat.cpython-310.pyc,,
10
+ idna/__pycache__/core.cpython-310.pyc,,
11
+ idna/__pycache__/idnadata.cpython-310.pyc,,
12
+ idna/__pycache__/intranges.cpython-310.pyc,,
13
+ idna/__pycache__/package_data.cpython-310.pyc,,
14
+ idna/__pycache__/uts46data.cpython-310.pyc,,
15
+ idna/codec.py,sha256=PS6m-XmdST7Wj7J7ulRMakPDt5EBJyYrT3CPtjh-7t4,3426
16
+ idna/compat.py,sha256=0_sOEUMT4CVw9doD3vyRhX80X19PwqFoUBs7gWsFME4,321
17
+ idna/core.py,sha256=lyhpoe2vulEaB_65xhXmoKgO-xUqFDvcwxu5hpNNO4E,12663
18
+ idna/idnadata.py,sha256=dqRwytzkjIHMBa2R1lYvHDwACenZPt8eGVu1Y8UBE-E,78320
19
+ idna/intranges.py,sha256=YBr4fRYuWH7kTKS2tXlFjM24ZF1Pdvcir-aywniInqg,1881
20
+ idna/package_data.py,sha256=Tkt0KnIeyIlnHddOaz9WSkkislNgokJAuE-p5GorMqo,21
21
+ idna/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
+ idna/uts46data.py,sha256=1KuksWqLuccPXm2uyRVkhfiFLNIhM_H2m4azCcnOqEU,206503
env-llmeval/lib/python3.10/site-packages/idna-3.7.dist-info/WHEEL ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: flit 3.9.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
env-llmeval/lib/python3.10/site-packages/sympy/crypto/__init__.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.crypto.crypto import (cycle_list,
2
+ encipher_shift, encipher_affine, encipher_substitution,
3
+ check_and_join, encipher_vigenere, decipher_vigenere, bifid5_square,
4
+ bifid6_square, encipher_hill, decipher_hill,
5
+ encipher_bifid5, encipher_bifid6, decipher_bifid5,
6
+ decipher_bifid6, encipher_kid_rsa, decipher_kid_rsa,
7
+ kid_rsa_private_key, kid_rsa_public_key, decipher_rsa, rsa_private_key,
8
+ rsa_public_key, encipher_rsa, lfsr_connection_polynomial,
9
+ lfsr_autocorrelation, lfsr_sequence, encode_morse, decode_morse,
10
+ elgamal_private_key, elgamal_public_key, decipher_elgamal,
11
+ encipher_elgamal, dh_private_key, dh_public_key, dh_shared_key,
12
+ padded_key, encipher_bifid, decipher_bifid, bifid_square, bifid5,
13
+ bifid6, bifid10, decipher_gm, encipher_gm, gm_public_key,
14
+ gm_private_key, bg_private_key, bg_public_key, encipher_bg, decipher_bg,
15
+ encipher_rot13, decipher_rot13, encipher_atbash, decipher_atbash,
16
+ encipher_railfence, decipher_railfence)
17
+
18
+ __all__ = [
19
+ 'cycle_list', 'encipher_shift', 'encipher_affine',
20
+ 'encipher_substitution', 'check_and_join', 'encipher_vigenere',
21
+ 'decipher_vigenere', 'bifid5_square', 'bifid6_square', 'encipher_hill',
22
+ 'decipher_hill', 'encipher_bifid5', 'encipher_bifid6', 'decipher_bifid5',
23
+ 'decipher_bifid6', 'encipher_kid_rsa', 'decipher_kid_rsa',
24
+ 'kid_rsa_private_key', 'kid_rsa_public_key', 'decipher_rsa',
25
+ 'rsa_private_key', 'rsa_public_key', 'encipher_rsa',
26
+ 'lfsr_connection_polynomial', 'lfsr_autocorrelation', 'lfsr_sequence',
27
+ 'encode_morse', 'decode_morse', 'elgamal_private_key',
28
+ 'elgamal_public_key', 'decipher_elgamal', 'encipher_elgamal',
29
+ 'dh_private_key', 'dh_public_key', 'dh_shared_key', 'padded_key',
30
+ 'encipher_bifid', 'decipher_bifid', 'bifid_square', 'bifid5', 'bifid6',
31
+ 'bifid10', 'decipher_gm', 'encipher_gm', 'gm_public_key',
32
+ 'gm_private_key', 'bg_private_key', 'bg_public_key', 'encipher_bg',
33
+ 'decipher_bg', 'encipher_rot13', 'decipher_rot13', 'encipher_atbash',
34
+ 'decipher_atbash', 'encipher_railfence', 'decipher_railfence',
35
+ ]
env-llmeval/lib/python3.10/site-packages/sympy/crypto/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.64 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/crypto/__pycache__/crypto.cpython-310.pyc ADDED
Binary file (93.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/crypto/crypto.py ADDED
@@ -0,0 +1,3360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains some classical ciphers and routines
3
+ implementing a linear-feedback shift register (LFSR)
4
+ and the Diffie-Hellman key exchange.
5
+
6
+ .. warning::
7
+
8
+ This module is intended for educational purposes only. Do not use the
9
+ functions in this module for real cryptographic applications. If you wish
10
+ to encrypt real data, we recommend using something like the `cryptography
11
+ <https://cryptography.io/en/latest/>`_ module.
12
+
13
+ """
14
+
15
+ from string import whitespace, ascii_uppercase as uppercase, printable
16
+ from functools import reduce
17
+ import warnings
18
+
19
+ from itertools import cycle
20
+
21
+ from sympy.core import Symbol
22
+ from sympy.core.numbers import igcdex, mod_inverse, igcd, Rational
23
+ from sympy.core.random import _randrange, _randint
24
+ from sympy.matrices import Matrix
25
+ from sympy.ntheory import isprime, primitive_root, factorint
26
+ from sympy.ntheory import totient as _euler
27
+ from sympy.ntheory import reduced_totient as _carmichael
28
+ from sympy.ntheory.generate import nextprime
29
+ from sympy.ntheory.modular import crt
30
+ from sympy.polys.domains import FF
31
+ from sympy.polys.polytools import gcd, Poly
32
+ from sympy.utilities.misc import as_int, filldedent, translate
33
+ from sympy.utilities.iterables import uniq, multiset
34
+
35
+
36
+ class NonInvertibleCipherWarning(RuntimeWarning):
37
+ """A warning raised if the cipher is not invertible."""
38
+ def __init__(self, msg):
39
+ self.fullMessage = msg
40
+
41
+ def __str__(self):
42
+ return '\n\t' + self.fullMessage
43
+
44
+ def warn(self, stacklevel=3):
45
+ warnings.warn(self, stacklevel=stacklevel)
46
+
47
+
48
+ def AZ(s=None):
49
+ """Return the letters of ``s`` in uppercase. In case more than
50
+ one string is passed, each of them will be processed and a list
51
+ of upper case strings will be returned.
52
+
53
+ Examples
54
+ ========
55
+
56
+ >>> from sympy.crypto.crypto import AZ
57
+ >>> AZ('Hello, world!')
58
+ 'HELLOWORLD'
59
+ >>> AZ('Hello, world!'.split())
60
+ ['HELLO', 'WORLD']
61
+
62
+ See Also
63
+ ========
64
+
65
+ check_and_join
66
+
67
+ """
68
+ if not s:
69
+ return uppercase
70
+ t = isinstance(s, str)
71
+ if t:
72
+ s = [s]
73
+ rv = [check_and_join(i.upper().split(), uppercase, filter=True)
74
+ for i in s]
75
+ if t:
76
+ return rv[0]
77
+ return rv
78
+
79
+ bifid5 = AZ().replace('J', '')
80
+ bifid6 = AZ() + '0123456789'
81
+ bifid10 = printable
82
+
83
+
84
+ def padded_key(key, symbols):
85
+ """Return a string of the distinct characters of ``symbols`` with
86
+ those of ``key`` appearing first. A ValueError is raised if
87
+ a) there are duplicate characters in ``symbols`` or
88
+ b) there are characters in ``key`` that are not in ``symbols``.
89
+
90
+ Examples
91
+ ========
92
+
93
+ >>> from sympy.crypto.crypto import padded_key
94
+ >>> padded_key('PUPPY', 'OPQRSTUVWXY')
95
+ 'PUYOQRSTVWX'
96
+ >>> padded_key('RSA', 'ARTIST')
97
+ Traceback (most recent call last):
98
+ ...
99
+ ValueError: duplicate characters in symbols: T
100
+
101
+ """
102
+ syms = list(uniq(symbols))
103
+ if len(syms) != len(symbols):
104
+ extra = ''.join(sorted({
105
+ i for i in symbols if symbols.count(i) > 1}))
106
+ raise ValueError('duplicate characters in symbols: %s' % extra)
107
+ extra = set(key) - set(syms)
108
+ if extra:
109
+ raise ValueError(
110
+ 'characters in key but not symbols: %s' % ''.join(
111
+ sorted(extra)))
112
+ key0 = ''.join(list(uniq(key)))
113
+ # remove from syms characters in key0
114
+ return key0 + translate(''.join(syms), None, key0)
115
+
116
+
117
+ def check_and_join(phrase, symbols=None, filter=None):
118
+ """
119
+ Joins characters of ``phrase`` and if ``symbols`` is given, raises
120
+ an error if any character in ``phrase`` is not in ``symbols``.
121
+
122
+ Parameters
123
+ ==========
124
+
125
+ phrase
126
+ String or list of strings to be returned as a string.
127
+
128
+ symbols
129
+ Iterable of characters allowed in ``phrase``.
130
+
131
+ If ``symbols`` is ``None``, no checking is performed.
132
+
133
+ Examples
134
+ ========
135
+
136
+ >>> from sympy.crypto.crypto import check_and_join
137
+ >>> check_and_join('a phrase')
138
+ 'a phrase'
139
+ >>> check_and_join('a phrase'.upper().split())
140
+ 'APHRASE'
141
+ >>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True)
142
+ 'ARAE'
143
+ >>> check_and_join('a phrase!'.upper().split(), 'ARE')
144
+ Traceback (most recent call last):
145
+ ...
146
+ ValueError: characters in phrase but not symbols: "!HPS"
147
+
148
+ """
149
+ rv = ''.join(''.join(phrase))
150
+ if symbols is not None:
151
+ symbols = check_and_join(symbols)
152
+ missing = ''.join(sorted(set(rv) - set(symbols)))
153
+ if missing:
154
+ if not filter:
155
+ raise ValueError(
156
+ 'characters in phrase but not symbols: "%s"' % missing)
157
+ rv = translate(rv, None, missing)
158
+ return rv
159
+
160
+
161
+ def _prep(msg, key, alp, default=None):
162
+ if not alp:
163
+ if not default:
164
+ alp = AZ()
165
+ msg = AZ(msg)
166
+ key = AZ(key)
167
+ else:
168
+ alp = default
169
+ else:
170
+ alp = ''.join(alp)
171
+ key = check_and_join(key, alp, filter=True)
172
+ msg = check_and_join(msg, alp, filter=True)
173
+ return msg, key, alp
174
+
175
+
176
+ def cycle_list(k, n):
177
+ """
178
+ Returns the elements of the list ``range(n)`` shifted to the
179
+ left by ``k`` (so the list starts with ``k`` (mod ``n``)).
180
+
181
+ Examples
182
+ ========
183
+
184
+ >>> from sympy.crypto.crypto import cycle_list
185
+ >>> cycle_list(3, 10)
186
+ [3, 4, 5, 6, 7, 8, 9, 0, 1, 2]
187
+
188
+ """
189
+ k = k % n
190
+ return list(range(k, n)) + list(range(k))
191
+
192
+
193
+ ######## shift cipher examples ############
194
+
195
+
196
+ def encipher_shift(msg, key, symbols=None):
197
+ """
198
+ Performs shift cipher encryption on plaintext msg, and returns the
199
+ ciphertext.
200
+
201
+ Parameters
202
+ ==========
203
+
204
+ key : int
205
+ The secret key.
206
+
207
+ msg : str
208
+ Plaintext of upper-case letters.
209
+
210
+ Returns
211
+ =======
212
+
213
+ str
214
+ Ciphertext of upper-case letters.
215
+
216
+ Examples
217
+ ========
218
+
219
+ >>> from sympy.crypto.crypto import encipher_shift, decipher_shift
220
+ >>> msg = "GONAVYBEATARMY"
221
+ >>> ct = encipher_shift(msg, 1); ct
222
+ 'HPOBWZCFBUBSNZ'
223
+
224
+ To decipher the shifted text, change the sign of the key:
225
+
226
+ >>> encipher_shift(ct, -1)
227
+ 'GONAVYBEATARMY'
228
+
229
+ There is also a convenience function that does this with the
230
+ original key:
231
+
232
+ >>> decipher_shift(ct, 1)
233
+ 'GONAVYBEATARMY'
234
+
235
+ Notes
236
+ =====
237
+
238
+ ALGORITHM:
239
+
240
+ STEPS:
241
+ 0. Number the letters of the alphabet from 0, ..., N
242
+ 1. Compute from the string ``msg`` a list ``L1`` of
243
+ corresponding integers.
244
+ 2. Compute from the list ``L1`` a new list ``L2``, given by
245
+ adding ``(k mod 26)`` to each element in ``L1``.
246
+ 3. Compute from the list ``L2`` a string ``ct`` of
247
+ corresponding letters.
248
+
249
+ The shift cipher is also called the Caesar cipher, after
250
+ Julius Caesar, who, according to Suetonius, used it with a
251
+ shift of three to protect messages of military significance.
252
+ Caesar's nephew Augustus reportedly used a similar cipher, but
253
+ with a right shift of 1.
254
+
255
+ References
256
+ ==========
257
+
258
+ .. [1] https://en.wikipedia.org/wiki/Caesar_cipher
259
+ .. [2] https://mathworld.wolfram.com/CaesarsMethod.html
260
+
261
+ See Also
262
+ ========
263
+
264
+ decipher_shift
265
+
266
+ """
267
+ msg, _, A = _prep(msg, '', symbols)
268
+ shift = len(A) - key % len(A)
269
+ key = A[shift:] + A[:shift]
270
+ return translate(msg, key, A)
271
+
272
+
273
+ def decipher_shift(msg, key, symbols=None):
274
+ """
275
+ Return the text by shifting the characters of ``msg`` to the
276
+ left by the amount given by ``key``.
277
+
278
+ Examples
279
+ ========
280
+
281
+ >>> from sympy.crypto.crypto import encipher_shift, decipher_shift
282
+ >>> msg = "GONAVYBEATARMY"
283
+ >>> ct = encipher_shift(msg, 1); ct
284
+ 'HPOBWZCFBUBSNZ'
285
+
286
+ To decipher the shifted text, change the sign of the key:
287
+
288
+ >>> encipher_shift(ct, -1)
289
+ 'GONAVYBEATARMY'
290
+
291
+ Or use this function with the original key:
292
+
293
+ >>> decipher_shift(ct, 1)
294
+ 'GONAVYBEATARMY'
295
+
296
+ """
297
+ return encipher_shift(msg, -key, symbols)
298
+
299
+ def encipher_rot13(msg, symbols=None):
300
+ """
301
+ Performs the ROT13 encryption on a given plaintext ``msg``.
302
+
303
+ Explanation
304
+ ===========
305
+
306
+ ROT13 is a substitution cipher which substitutes each letter
307
+ in the plaintext message for the letter furthest away from it
308
+ in the English alphabet.
309
+
310
+ Equivalently, it is just a Caeser (shift) cipher with a shift
311
+ key of 13 (midway point of the alphabet).
312
+
313
+ References
314
+ ==========
315
+
316
+ .. [1] https://en.wikipedia.org/wiki/ROT13
317
+
318
+ See Also
319
+ ========
320
+
321
+ decipher_rot13
322
+ encipher_shift
323
+
324
+ """
325
+ return encipher_shift(msg, 13, symbols)
326
+
327
+ def decipher_rot13(msg, symbols=None):
328
+ """
329
+ Performs the ROT13 decryption on a given plaintext ``msg``.
330
+
331
+ Explanation
332
+ ============
333
+
334
+ ``decipher_rot13`` is equivalent to ``encipher_rot13`` as both
335
+ ``decipher_shift`` with a key of 13 and ``encipher_shift`` key with a
336
+ key of 13 will return the same results. Nonetheless,
337
+ ``decipher_rot13`` has nonetheless been explicitly defined here for
338
+ consistency.
339
+
340
+ Examples
341
+ ========
342
+
343
+ >>> from sympy.crypto.crypto import encipher_rot13, decipher_rot13
344
+ >>> msg = 'GONAVYBEATARMY'
345
+ >>> ciphertext = encipher_rot13(msg);ciphertext
346
+ 'TBANILORNGNEZL'
347
+ >>> decipher_rot13(ciphertext)
348
+ 'GONAVYBEATARMY'
349
+ >>> encipher_rot13(msg) == decipher_rot13(msg)
350
+ True
351
+ >>> msg == decipher_rot13(ciphertext)
352
+ True
353
+
354
+ """
355
+ return decipher_shift(msg, 13, symbols)
356
+
357
+ ######## affine cipher examples ############
358
+
359
+
360
+ def encipher_affine(msg, key, symbols=None, _inverse=False):
361
+ r"""
362
+ Performs the affine cipher encryption on plaintext ``msg``, and
363
+ returns the ciphertext.
364
+
365
+ Explanation
366
+ ===========
367
+
368
+ Encryption is based on the map `x \rightarrow ax+b` (mod `N`)
369
+ where ``N`` is the number of characters in the alphabet.
370
+ Decryption is based on the map `x \rightarrow cx+d` (mod `N`),
371
+ where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
372
+ In particular, for the map to be invertible, we need
373
+ `\mathrm{gcd}(a, N) = 1` and an error will be raised if this is
374
+ not true.
375
+
376
+ Parameters
377
+ ==========
378
+
379
+ msg : str
380
+ Characters that appear in ``symbols``.
381
+
382
+ a, b : int, int
383
+ A pair integers, with ``gcd(a, N) = 1`` (the secret key).
384
+
385
+ symbols
386
+ String of characters (default = uppercase letters).
387
+
388
+ When no symbols are given, ``msg`` is converted to upper case
389
+ letters and all other characters are ignored.
390
+
391
+ Returns
392
+ =======
393
+
394
+ ct
395
+ String of characters (the ciphertext message)
396
+
397
+ Notes
398
+ =====
399
+
400
+ ALGORITHM:
401
+
402
+ STEPS:
403
+ 0. Number the letters of the alphabet from 0, ..., N
404
+ 1. Compute from the string ``msg`` a list ``L1`` of
405
+ corresponding integers.
406
+ 2. Compute from the list ``L1`` a new list ``L2``, given by
407
+ replacing ``x`` by ``a*x + b (mod N)``, for each element
408
+ ``x`` in ``L1``.
409
+ 3. Compute from the list ``L2`` a string ``ct`` of
410
+ corresponding letters.
411
+
412
+ This is a straightforward generalization of the shift cipher with
413
+ the added complexity of requiring 2 characters to be deciphered in
414
+ order to recover the key.
415
+
416
+ References
417
+ ==========
418
+
419
+ .. [1] https://en.wikipedia.org/wiki/Affine_cipher
420
+
421
+ See Also
422
+ ========
423
+
424
+ decipher_affine
425
+
426
+ """
427
+ msg, _, A = _prep(msg, '', symbols)
428
+ N = len(A)
429
+ a, b = key
430
+ assert gcd(a, N) == 1
431
+ if _inverse:
432
+ c = mod_inverse(a, N)
433
+ d = -b*c
434
+ a, b = c, d
435
+ B = ''.join([A[(a*i + b) % N] for i in range(N)])
436
+ return translate(msg, A, B)
437
+
438
+
439
+ def decipher_affine(msg, key, symbols=None):
440
+ r"""
441
+ Return the deciphered text that was made from the mapping,
442
+ `x \rightarrow ax+b` (mod `N`), where ``N`` is the
443
+ number of characters in the alphabet. Deciphering is done by
444
+ reciphering with a new key: `x \rightarrow cx+d` (mod `N`),
445
+ where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
446
+
447
+ Examples
448
+ ========
449
+
450
+ >>> from sympy.crypto.crypto import encipher_affine, decipher_affine
451
+ >>> msg = "GO NAVY BEAT ARMY"
452
+ >>> key = (3, 1)
453
+ >>> encipher_affine(msg, key)
454
+ 'TROBMVENBGBALV'
455
+ >>> decipher_affine(_, key)
456
+ 'GONAVYBEATARMY'
457
+
458
+ See Also
459
+ ========
460
+
461
+ encipher_affine
462
+
463
+ """
464
+ return encipher_affine(msg, key, symbols, _inverse=True)
465
+
466
+
467
+ def encipher_atbash(msg, symbols=None):
468
+ r"""
469
+ Enciphers a given ``msg`` into its Atbash ciphertext and returns it.
470
+
471
+ Explanation
472
+ ===========
473
+
474
+ Atbash is a substitution cipher originally used to encrypt the Hebrew
475
+ alphabet. Atbash works on the principle of mapping each alphabet to its
476
+ reverse / counterpart (i.e. a would map to z, b to y etc.)
477
+
478
+ Atbash is functionally equivalent to the affine cipher with ``a = 25``
479
+ and ``b = 25``
480
+
481
+ See Also
482
+ ========
483
+
484
+ decipher_atbash
485
+
486
+ """
487
+ return encipher_affine(msg, (25, 25), symbols)
488
+
489
+
490
+ def decipher_atbash(msg, symbols=None):
491
+ r"""
492
+ Deciphers a given ``msg`` using Atbash cipher and returns it.
493
+
494
+ Explanation
495
+ ===========
496
+
497
+ ``decipher_atbash`` is functionally equivalent to ``encipher_atbash``.
498
+ However, it has still been added as a separate function to maintain
499
+ consistency.
500
+
501
+ Examples
502
+ ========
503
+
504
+ >>> from sympy.crypto.crypto import encipher_atbash, decipher_atbash
505
+ >>> msg = 'GONAVYBEATARMY'
506
+ >>> encipher_atbash(msg)
507
+ 'TLMZEBYVZGZINB'
508
+ >>> decipher_atbash(msg)
509
+ 'TLMZEBYVZGZINB'
510
+ >>> encipher_atbash(msg) == decipher_atbash(msg)
511
+ True
512
+ >>> msg == encipher_atbash(encipher_atbash(msg))
513
+ True
514
+
515
+ References
516
+ ==========
517
+
518
+ .. [1] https://en.wikipedia.org/wiki/Atbash
519
+
520
+ See Also
521
+ ========
522
+
523
+ encipher_atbash
524
+
525
+ """
526
+ return decipher_affine(msg, (25, 25), symbols)
527
+
528
+ #################### substitution cipher ###########################
529
+
530
+
531
+ def encipher_substitution(msg, old, new=None):
532
+ r"""
533
+ Returns the ciphertext obtained by replacing each character that
534
+ appears in ``old`` with the corresponding character in ``new``.
535
+ If ``old`` is a mapping, then new is ignored and the replacements
536
+ defined by ``old`` are used.
537
+
538
+ Explanation
539
+ ===========
540
+
541
+ This is a more general than the affine cipher in that the key can
542
+ only be recovered by determining the mapping for each symbol.
543
+ Though in practice, once a few symbols are recognized the mappings
544
+ for other characters can be quickly guessed.
545
+
546
+ Examples
547
+ ========
548
+
549
+ >>> from sympy.crypto.crypto import encipher_substitution, AZ
550
+ >>> old = 'OEYAG'
551
+ >>> new = '034^6'
552
+ >>> msg = AZ("go navy! beat army!")
553
+ >>> ct = encipher_substitution(msg, old, new); ct
554
+ '60N^V4B3^T^RM4'
555
+
556
+ To decrypt a substitution, reverse the last two arguments:
557
+
558
+ >>> encipher_substitution(ct, new, old)
559
+ 'GONAVYBEATARMY'
560
+
561
+ In the special case where ``old`` and ``new`` are a permutation of
562
+ order 2 (representing a transposition of characters) their order
563
+ is immaterial:
564
+
565
+ >>> old = 'NAVY'
566
+ >>> new = 'ANYV'
567
+ >>> encipher = lambda x: encipher_substitution(x, old, new)
568
+ >>> encipher('NAVY')
569
+ 'ANYV'
570
+ >>> encipher(_)
571
+ 'NAVY'
572
+
573
+ The substitution cipher, in general, is a method
574
+ whereby "units" (not necessarily single characters) of plaintext
575
+ are replaced with ciphertext according to a regular system.
576
+
577
+ >>> ords = dict(zip('abc', ['\\%i' % ord(i) for i in 'abc']))
578
+ >>> print(encipher_substitution('abc', ords))
579
+ \97\98\99
580
+
581
+ References
582
+ ==========
583
+
584
+ .. [1] https://en.wikipedia.org/wiki/Substitution_cipher
585
+
586
+ """
587
+ return translate(msg, old, new)
588
+
589
+
590
+ ######################################################################
591
+ #################### Vigenere cipher examples ########################
592
+ ######################################################################
593
+
594
+ def encipher_vigenere(msg, key, symbols=None):
595
+ """
596
+ Performs the Vigenere cipher encryption on plaintext ``msg``, and
597
+ returns the ciphertext.
598
+
599
+ Examples
600
+ ========
601
+
602
+ >>> from sympy.crypto.crypto import encipher_vigenere, AZ
603
+ >>> key = "encrypt"
604
+ >>> msg = "meet me on monday"
605
+ >>> encipher_vigenere(msg, key)
606
+ 'QRGKKTHRZQEBPR'
607
+
608
+ Section 1 of the Kryptos sculpture at the CIA headquarters
609
+ uses this cipher and also changes the order of the
610
+ alphabet [2]_. Here is the first line of that section of
611
+ the sculpture:
612
+
613
+ >>> from sympy.crypto.crypto import decipher_vigenere, padded_key
614
+ >>> alp = padded_key('KRYPTOS', AZ())
615
+ >>> key = 'PALIMPSEST'
616
+ >>> msg = 'EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ'
617
+ >>> decipher_vigenere(msg, key, alp)
618
+ 'BETWEENSUBTLESHADINGANDTHEABSENC'
619
+
620
+ Explanation
621
+ ===========
622
+
623
+ The Vigenere cipher is named after Blaise de Vigenere, a sixteenth
624
+ century diplomat and cryptographer, by a historical accident.
625
+ Vigenere actually invented a different and more complicated cipher.
626
+ The so-called *Vigenere cipher* was actually invented
627
+ by Giovan Batista Belaso in 1553.
628
+
629
+ This cipher was used in the 1800's, for example, during the American
630
+ Civil War. The Confederacy used a brass cipher disk to implement the
631
+ Vigenere cipher (now on display in the NSA Museum in Fort
632
+ Meade) [1]_.
633
+
634
+ The Vigenere cipher is a generalization of the shift cipher.
635
+ Whereas the shift cipher shifts each letter by the same amount
636
+ (that amount being the key of the shift cipher) the Vigenere
637
+ cipher shifts a letter by an amount determined by the key (which is
638
+ a word or phrase known only to the sender and receiver).
639
+
640
+ For example, if the key was a single letter, such as "C", then the
641
+ so-called Vigenere cipher is actually a shift cipher with a
642
+ shift of `2` (since "C" is the 2nd letter of the alphabet, if
643
+ you start counting at `0`). If the key was a word with two
644
+ letters, such as "CA", then the so-called Vigenere cipher will
645
+ shift letters in even positions by `2` and letters in odd positions
646
+ are left alone (shifted by `0`, since "A" is the 0th letter, if
647
+ you start counting at `0`).
648
+
649
+
650
+ ALGORITHM:
651
+
652
+ INPUT:
653
+
654
+ ``msg``: string of characters that appear in ``symbols``
655
+ (the plaintext)
656
+
657
+ ``key``: a string of characters that appear in ``symbols``
658
+ (the secret key)
659
+
660
+ ``symbols``: a string of letters defining the alphabet
661
+
662
+
663
+ OUTPUT:
664
+
665
+ ``ct``: string of characters (the ciphertext message)
666
+
667
+ STEPS:
668
+ 0. Number the letters of the alphabet from 0, ..., N
669
+ 1. Compute from the string ``key`` a list ``L1`` of
670
+ corresponding integers. Let ``n1 = len(L1)``.
671
+ 2. Compute from the string ``msg`` a list ``L2`` of
672
+ corresponding integers. Let ``n2 = len(L2)``.
673
+ 3. Break ``L2`` up sequentially into sublists of size
674
+ ``n1``; the last sublist may be smaller than ``n1``
675
+ 4. For each of these sublists ``L`` of ``L2``, compute a
676
+ new list ``C`` given by ``C[i] = L[i] + L1[i] (mod N)``
677
+ to the ``i``-th element in the sublist, for each ``i``.
678
+ 5. Assemble these lists ``C`` by concatenation into a new
679
+ list of length ``n2``.
680
+ 6. Compute from the new list a string ``ct`` of
681
+ corresponding letters.
682
+
683
+ Once it is known that the key is, say, `n` characters long,
684
+ frequency analysis can be applied to every `n`-th letter of
685
+ the ciphertext to determine the plaintext. This method is
686
+ called *Kasiski examination* (although it was first discovered
687
+ by Babbage). If they key is as long as the message and is
688
+ comprised of randomly selected characters -- a one-time pad -- the
689
+ message is theoretically unbreakable.
690
+
691
+ The cipher Vigenere actually discovered is an "auto-key" cipher
692
+ described as follows.
693
+
694
+ ALGORITHM:
695
+
696
+ INPUT:
697
+
698
+ ``key``: a string of letters (the secret key)
699
+
700
+ ``msg``: string of letters (the plaintext message)
701
+
702
+ OUTPUT:
703
+
704
+ ``ct``: string of upper-case letters (the ciphertext message)
705
+
706
+ STEPS:
707
+ 0. Number the letters of the alphabet from 0, ..., N
708
+ 1. Compute from the string ``msg`` a list ``L2`` of
709
+ corresponding integers. Let ``n2 = len(L2)``.
710
+ 2. Let ``n1`` be the length of the key. Append to the
711
+ string ``key`` the first ``n2 - n1`` characters of
712
+ the plaintext message. Compute from this string (also of
713
+ length ``n2``) a list ``L1`` of integers corresponding
714
+ to the letter numbers in the first step.
715
+ 3. Compute a new list ``C`` given by
716
+ ``C[i] = L1[i] + L2[i] (mod N)``.
717
+ 4. Compute from the new list a string ``ct`` of letters
718
+ corresponding to the new integers.
719
+
720
+ To decipher the auto-key ciphertext, the key is used to decipher
721
+ the first ``n1`` characters and then those characters become the
722
+ key to decipher the next ``n1`` characters, etc...:
723
+
724
+ >>> m = AZ('go navy, beat army! yes you can'); m
725
+ 'GONAVYBEATARMYYESYOUCAN'
726
+ >>> key = AZ('gold bug'); n1 = len(key); n2 = len(m)
727
+ >>> auto_key = key + m[:n2 - n1]; auto_key
728
+ 'GOLDBUGGONAVYBEATARMYYE'
729
+ >>> ct = encipher_vigenere(m, auto_key); ct
730
+ 'MCYDWSHKOGAMKZCELYFGAYR'
731
+ >>> n1 = len(key)
732
+ >>> pt = []
733
+ >>> while ct:
734
+ ... part, ct = ct[:n1], ct[n1:]
735
+ ... pt.append(decipher_vigenere(part, key))
736
+ ... key = pt[-1]
737
+ ...
738
+ >>> ''.join(pt) == m
739
+ True
740
+
741
+ References
742
+ ==========
743
+
744
+ .. [1] https://en.wikipedia.org/wiki/Vigenere_cipher
745
+ .. [2] https://web.archive.org/web/20071116100808/https://filebox.vt.edu/users/batman/kryptos.html
746
+ (short URL: https://goo.gl/ijr22d)
747
+
748
+ """
749
+ msg, key, A = _prep(msg, key, symbols)
750
+ map = {c: i for i, c in enumerate(A)}
751
+ key = [map[c] for c in key]
752
+ N = len(map)
753
+ k = len(key)
754
+ rv = []
755
+ for i, m in enumerate(msg):
756
+ rv.append(A[(map[m] + key[i % k]) % N])
757
+ rv = ''.join(rv)
758
+ return rv
759
+
760
+
761
+ def decipher_vigenere(msg, key, symbols=None):
762
+ """
763
+ Decode using the Vigenere cipher.
764
+
765
+ Examples
766
+ ========
767
+
768
+ >>> from sympy.crypto.crypto import decipher_vigenere
769
+ >>> key = "encrypt"
770
+ >>> ct = "QRGK kt HRZQE BPR"
771
+ >>> decipher_vigenere(ct, key)
772
+ 'MEETMEONMONDAY'
773
+
774
+ """
775
+ msg, key, A = _prep(msg, key, symbols)
776
+ map = {c: i for i, c in enumerate(A)}
777
+ N = len(A) # normally, 26
778
+ K = [map[c] for c in key]
779
+ n = len(K)
780
+ C = [map[c] for c in msg]
781
+ rv = ''.join([A[(-K[i % n] + c) % N] for i, c in enumerate(C)])
782
+ return rv
783
+
784
+
785
+ #################### Hill cipher ########################
786
+
787
+
788
+ def encipher_hill(msg, key, symbols=None, pad="Q"):
789
+ r"""
790
+ Return the Hill cipher encryption of ``msg``.
791
+
792
+ Explanation
793
+ ===========
794
+
795
+ The Hill cipher [1]_, invented by Lester S. Hill in the 1920's [2]_,
796
+ was the first polygraphic cipher in which it was practical
797
+ (though barely) to operate on more than three symbols at once.
798
+ The following discussion assumes an elementary knowledge of
799
+ matrices.
800
+
801
+ First, each letter is first encoded as a number starting with 0.
802
+ Suppose your message `msg` consists of `n` capital letters, with no
803
+ spaces. This may be regarded an `n`-tuple M of elements of
804
+ `Z_{26}` (if the letters are those of the English alphabet). A key
805
+ in the Hill cipher is a `k x k` matrix `K`, all of whose entries
806
+ are in `Z_{26}`, such that the matrix `K` is invertible (i.e., the
807
+ linear transformation `K: Z_{N}^k \rightarrow Z_{N}^k`
808
+ is one-to-one).
809
+
810
+
811
+ Parameters
812
+ ==========
813
+
814
+ msg
815
+ Plaintext message of `n` upper-case letters.
816
+
817
+ key
818
+ A `k \times k` invertible matrix `K`, all of whose entries are
819
+ in `Z_{26}` (or whatever number of symbols are being used).
820
+
821
+ pad
822
+ Character (default "Q") to use to make length of text be a
823
+ multiple of ``k``.
824
+
825
+ Returns
826
+ =======
827
+
828
+ ct
829
+ Ciphertext of upper-case letters.
830
+
831
+ Notes
832
+ =====
833
+
834
+ ALGORITHM:
835
+
836
+ STEPS:
837
+ 0. Number the letters of the alphabet from 0, ..., N
838
+ 1. Compute from the string ``msg`` a list ``L`` of
839
+ corresponding integers. Let ``n = len(L)``.
840
+ 2. Break the list ``L`` up into ``t = ceiling(n/k)``
841
+ sublists ``L_1``, ..., ``L_t`` of size ``k`` (with
842
+ the last list "padded" to ensure its size is
843
+ ``k``).
844
+ 3. Compute new list ``C_1``, ..., ``C_t`` given by
845
+ ``C[i] = K*L_i`` (arithmetic is done mod N), for each
846
+ ``i``.
847
+ 4. Concatenate these into a list ``C = C_1 + ... + C_t``.
848
+ 5. Compute from ``C`` a string ``ct`` of corresponding
849
+ letters. This has length ``k*t``.
850
+
851
+ References
852
+ ==========
853
+
854
+ .. [1] https://en.wikipedia.org/wiki/Hill_cipher
855
+ .. [2] Lester S. Hill, Cryptography in an Algebraic Alphabet,
856
+ The American Mathematical Monthly Vol.36, June-July 1929,
857
+ pp.306-312.
858
+
859
+ See Also
860
+ ========
861
+
862
+ decipher_hill
863
+
864
+ """
865
+ assert key.is_square
866
+ assert len(pad) == 1
867
+ msg, pad, A = _prep(msg, pad, symbols)
868
+ map = {c: i for i, c in enumerate(A)}
869
+ P = [map[c] for c in msg]
870
+ N = len(A)
871
+ k = key.cols
872
+ n = len(P)
873
+ m, r = divmod(n, k)
874
+ if r:
875
+ P = P + [map[pad]]*(k - r)
876
+ m += 1
877
+ rv = ''.join([A[c % N] for j in range(m) for c in
878
+ list(key*Matrix(k, 1, [P[i]
879
+ for i in range(k*j, k*(j + 1))]))])
880
+ return rv
881
+
882
+
883
+ def decipher_hill(msg, key, symbols=None):
884
+ """
885
+ Deciphering is the same as enciphering but using the inverse of the
886
+ key matrix.
887
+
888
+ Examples
889
+ ========
890
+
891
+ >>> from sympy.crypto.crypto import encipher_hill, decipher_hill
892
+ >>> from sympy import Matrix
893
+
894
+ >>> key = Matrix([[1, 2], [3, 5]])
895
+ >>> encipher_hill("meet me on monday", key)
896
+ 'UEQDUEODOCTCWQ'
897
+ >>> decipher_hill(_, key)
898
+ 'MEETMEONMONDAY'
899
+
900
+ When the length of the plaintext (stripped of invalid characters)
901
+ is not a multiple of the key dimension, extra characters will
902
+ appear at the end of the enciphered and deciphered text. In order to
903
+ decipher the text, those characters must be included in the text to
904
+ be deciphered. In the following, the key has a dimension of 4 but
905
+ the text is 2 short of being a multiple of 4 so two characters will
906
+ be added.
907
+
908
+ >>> key = Matrix([[1, 1, 1, 2], [0, 1, 1, 0],
909
+ ... [2, 2, 3, 4], [1, 1, 0, 1]])
910
+ >>> msg = "ST"
911
+ >>> encipher_hill(msg, key)
912
+ 'HJEB'
913
+ >>> decipher_hill(_, key)
914
+ 'STQQ'
915
+ >>> encipher_hill(msg, key, pad="Z")
916
+ 'ISPK'
917
+ >>> decipher_hill(_, key)
918
+ 'STZZ'
919
+
920
+ If the last two characters of the ciphertext were ignored in
921
+ either case, the wrong plaintext would be recovered:
922
+
923
+ >>> decipher_hill("HD", key)
924
+ 'ORMV'
925
+ >>> decipher_hill("IS", key)
926
+ 'UIKY'
927
+
928
+ See Also
929
+ ========
930
+
931
+ encipher_hill
932
+
933
+ """
934
+ assert key.is_square
935
+ msg, _, A = _prep(msg, '', symbols)
936
+ map = {c: i for i, c in enumerate(A)}
937
+ C = [map[c] for c in msg]
938
+ N = len(A)
939
+ k = key.cols
940
+ n = len(C)
941
+ m, r = divmod(n, k)
942
+ if r:
943
+ C = C + [0]*(k - r)
944
+ m += 1
945
+ key_inv = key.inv_mod(N)
946
+ rv = ''.join([A[p % N] for j in range(m) for p in
947
+ list(key_inv*Matrix(
948
+ k, 1, [C[i] for i in range(k*j, k*(j + 1))]))])
949
+ return rv
950
+
951
+
952
+ #################### Bifid cipher ########################
953
+
954
+
955
+ def encipher_bifid(msg, key, symbols=None):
956
+ r"""
957
+ Performs the Bifid cipher encryption on plaintext ``msg``, and
958
+ returns the ciphertext.
959
+
960
+ This is the version of the Bifid cipher that uses an `n \times n`
961
+ Polybius square.
962
+
963
+ Parameters
964
+ ==========
965
+
966
+ msg
967
+ Plaintext string.
968
+
969
+ key
970
+ Short string for key.
971
+
972
+ Duplicate characters are ignored and then it is padded with the
973
+ characters in ``symbols`` that were not in the short key.
974
+
975
+ symbols
976
+ `n \times n` characters defining the alphabet.
977
+
978
+ (default is string.printable)
979
+
980
+ Returns
981
+ =======
982
+
983
+ ciphertext
984
+ Ciphertext using Bifid5 cipher without spaces.
985
+
986
+ See Also
987
+ ========
988
+
989
+ decipher_bifid, encipher_bifid5, encipher_bifid6
990
+
991
+ References
992
+ ==========
993
+
994
+ .. [1] https://en.wikipedia.org/wiki/Bifid_cipher
995
+
996
+ """
997
+ msg, key, A = _prep(msg, key, symbols, bifid10)
998
+ long_key = ''.join(uniq(key)) or A
999
+
1000
+ n = len(A)**.5
1001
+ if n != int(n):
1002
+ raise ValueError(
1003
+ 'Length of alphabet (%s) is not a square number.' % len(A))
1004
+ N = int(n)
1005
+ if len(long_key) < N**2:
1006
+ long_key = list(long_key) + [x for x in A if x not in long_key]
1007
+
1008
+ # the fractionalization
1009
+ row_col = {ch: divmod(i, N) for i, ch in enumerate(long_key)}
1010
+ r, c = zip(*[row_col[x] for x in msg])
1011
+ rc = r + c
1012
+ ch = {i: ch for ch, i in row_col.items()}
1013
+ rv = ''.join(ch[i] for i in zip(rc[::2], rc[1::2]))
1014
+ return rv
1015
+
1016
+
1017
+ def decipher_bifid(msg, key, symbols=None):
1018
+ r"""
1019
+ Performs the Bifid cipher decryption on ciphertext ``msg``, and
1020
+ returns the plaintext.
1021
+
1022
+ This is the version of the Bifid cipher that uses the `n \times n`
1023
+ Polybius square.
1024
+
1025
+ Parameters
1026
+ ==========
1027
+
1028
+ msg
1029
+ Ciphertext string.
1030
+
1031
+ key
1032
+ Short string for key.
1033
+
1034
+ Duplicate characters are ignored and then it is padded with the
1035
+ characters in symbols that were not in the short key.
1036
+
1037
+ symbols
1038
+ `n \times n` characters defining the alphabet.
1039
+
1040
+ (default=string.printable, a `10 \times 10` matrix)
1041
+
1042
+ Returns
1043
+ =======
1044
+
1045
+ deciphered
1046
+ Deciphered text.
1047
+
1048
+ Examples
1049
+ ========
1050
+
1051
+ >>> from sympy.crypto.crypto import (
1052
+ ... encipher_bifid, decipher_bifid, AZ)
1053
+
1054
+ Do an encryption using the bifid5 alphabet:
1055
+
1056
+ >>> alp = AZ().replace('J', '')
1057
+ >>> ct = AZ("meet me on monday!")
1058
+ >>> key = AZ("gold bug")
1059
+ >>> encipher_bifid(ct, key, alp)
1060
+ 'IEILHHFSTSFQYE'
1061
+
1062
+ When entering the text or ciphertext, spaces are ignored so it
1063
+ can be formatted as desired. Re-entering the ciphertext from the
1064
+ preceding, putting 4 characters per line and padding with an extra
1065
+ J, does not cause problems for the deciphering:
1066
+
1067
+ >>> decipher_bifid('''
1068
+ ... IEILH
1069
+ ... HFSTS
1070
+ ... FQYEJ''', key, alp)
1071
+ 'MEETMEONMONDAY'
1072
+
1073
+ When no alphabet is given, all 100 printable characters will be
1074
+ used:
1075
+
1076
+ >>> key = ''
1077
+ >>> encipher_bifid('hello world!', key)
1078
+ 'bmtwmg-bIo*w'
1079
+ >>> decipher_bifid(_, key)
1080
+ 'hello world!'
1081
+
1082
+ If the key is changed, a different encryption is obtained:
1083
+
1084
+ >>> key = 'gold bug'
1085
+ >>> encipher_bifid('hello world!', 'gold_bug')
1086
+ 'hg2sfuei7t}w'
1087
+
1088
+ And if the key used to decrypt the message is not exact, the
1089
+ original text will not be perfectly obtained:
1090
+
1091
+ >>> decipher_bifid(_, 'gold pug')
1092
+ 'heldo~wor6d!'
1093
+
1094
+ """
1095
+ msg, _, A = _prep(msg, '', symbols, bifid10)
1096
+ long_key = ''.join(uniq(key)) or A
1097
+
1098
+ n = len(A)**.5
1099
+ if n != int(n):
1100
+ raise ValueError(
1101
+ 'Length of alphabet (%s) is not a square number.' % len(A))
1102
+ N = int(n)
1103
+ if len(long_key) < N**2:
1104
+ long_key = list(long_key) + [x for x in A if x not in long_key]
1105
+
1106
+ # the reverse fractionalization
1107
+ row_col = {
1108
+ ch: divmod(i, N) for i, ch in enumerate(long_key)}
1109
+ rc = [i for c in msg for i in row_col[c]]
1110
+ n = len(msg)
1111
+ rc = zip(*(rc[:n], rc[n:]))
1112
+ ch = {i: ch for ch, i in row_col.items()}
1113
+ rv = ''.join(ch[i] for i in rc)
1114
+ return rv
1115
+
1116
+
1117
+ def bifid_square(key):
1118
+ """Return characters of ``key`` arranged in a square.
1119
+
1120
+ Examples
1121
+ ========
1122
+
1123
+ >>> from sympy.crypto.crypto import (
1124
+ ... bifid_square, AZ, padded_key, bifid5)
1125
+ >>> bifid_square(AZ().replace('J', ''))
1126
+ Matrix([
1127
+ [A, B, C, D, E],
1128
+ [F, G, H, I, K],
1129
+ [L, M, N, O, P],
1130
+ [Q, R, S, T, U],
1131
+ [V, W, X, Y, Z]])
1132
+
1133
+ >>> bifid_square(padded_key(AZ('gold bug!'), bifid5))
1134
+ Matrix([
1135
+ [G, O, L, D, B],
1136
+ [U, A, C, E, F],
1137
+ [H, I, K, M, N],
1138
+ [P, Q, R, S, T],
1139
+ [V, W, X, Y, Z]])
1140
+
1141
+ See Also
1142
+ ========
1143
+
1144
+ padded_key
1145
+
1146
+ """
1147
+ A = ''.join(uniq(''.join(key)))
1148
+ n = len(A)**.5
1149
+ if n != int(n):
1150
+ raise ValueError(
1151
+ 'Length of alphabet (%s) is not a square number.' % len(A))
1152
+ n = int(n)
1153
+ f = lambda i, j: Symbol(A[n*i + j])
1154
+ rv = Matrix(n, n, f)
1155
+ return rv
1156
+
1157
+
1158
+ def encipher_bifid5(msg, key):
1159
+ r"""
1160
+ Performs the Bifid cipher encryption on plaintext ``msg``, and
1161
+ returns the ciphertext.
1162
+
1163
+ Explanation
1164
+ ===========
1165
+
1166
+ This is the version of the Bifid cipher that uses the `5 \times 5`
1167
+ Polybius square. The letter "J" is ignored so it must be replaced
1168
+ with something else (traditionally an "I") before encryption.
1169
+
1170
+ ALGORITHM: (5x5 case)
1171
+
1172
+ STEPS:
1173
+ 0. Create the `5 \times 5` Polybius square ``S`` associated
1174
+ to ``key`` as follows:
1175
+
1176
+ a) moving from left-to-right, top-to-bottom,
1177
+ place the letters of the key into a `5 \times 5`
1178
+ matrix,
1179
+ b) if the key has less than 25 letters, add the
1180
+ letters of the alphabet not in the key until the
1181
+ `5 \times 5` square is filled.
1182
+
1183
+ 1. Create a list ``P`` of pairs of numbers which are the
1184
+ coordinates in the Polybius square of the letters in
1185
+ ``msg``.
1186
+ 2. Let ``L1`` be the list of all first coordinates of ``P``
1187
+ (length of ``L1 = n``), let ``L2`` be the list of all
1188
+ second coordinates of ``P`` (so the length of ``L2``
1189
+ is also ``n``).
1190
+ 3. Let ``L`` be the concatenation of ``L1`` and ``L2``
1191
+ (length ``L = 2*n``), except that consecutive numbers
1192
+ are paired ``(L[2*i], L[2*i + 1])``. You can regard
1193
+ ``L`` as a list of pairs of length ``n``.
1194
+ 4. Let ``C`` be the list of all letters which are of the
1195
+ form ``S[i, j]``, for all ``(i, j)`` in ``L``. As a
1196
+ string, this is the ciphertext of ``msg``.
1197
+
1198
+ Parameters
1199
+ ==========
1200
+
1201
+ msg : str
1202
+ Plaintext string.
1203
+
1204
+ Converted to upper case and filtered of anything but all letters
1205
+ except J.
1206
+
1207
+ key
1208
+ Short string for key; non-alphabetic letters, J and duplicated
1209
+ characters are ignored and then, if the length is less than 25
1210
+ characters, it is padded with other letters of the alphabet
1211
+ (in alphabetical order).
1212
+
1213
+ Returns
1214
+ =======
1215
+
1216
+ ct
1217
+ Ciphertext (all caps, no spaces).
1218
+
1219
+ Examples
1220
+ ========
1221
+
1222
+ >>> from sympy.crypto.crypto import (
1223
+ ... encipher_bifid5, decipher_bifid5)
1224
+
1225
+ "J" will be omitted unless it is replaced with something else:
1226
+
1227
+ >>> round_trip = lambda m, k: \
1228
+ ... decipher_bifid5(encipher_bifid5(m, k), k)
1229
+ >>> key = 'a'
1230
+ >>> msg = "JOSIE"
1231
+ >>> round_trip(msg, key)
1232
+ 'OSIE'
1233
+ >>> round_trip(msg.replace("J", "I"), key)
1234
+ 'IOSIE'
1235
+ >>> j = "QIQ"
1236
+ >>> round_trip(msg.replace("J", j), key).replace(j, "J")
1237
+ 'JOSIE'
1238
+
1239
+
1240
+ Notes
1241
+ =====
1242
+
1243
+ The Bifid cipher was invented around 1901 by Felix Delastelle.
1244
+ It is a *fractional substitution* cipher, where letters are
1245
+ replaced by pairs of symbols from a smaller alphabet. The
1246
+ cipher uses a `5 \times 5` square filled with some ordering of the
1247
+ alphabet, except that "J" is replaced with "I" (this is a so-called
1248
+ Polybius square; there is a `6 \times 6` analog if you add back in
1249
+ "J" and also append onto the usual 26 letter alphabet, the digits
1250
+ 0, 1, ..., 9).
1251
+ According to Helen Gaines' book *Cryptanalysis*, this type of cipher
1252
+ was used in the field by the German Army during World War I.
1253
+
1254
+ See Also
1255
+ ========
1256
+
1257
+ decipher_bifid5, encipher_bifid
1258
+
1259
+ """
1260
+ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
1261
+ key = padded_key(key, bifid5)
1262
+ return encipher_bifid(msg, '', key)
1263
+
1264
+
1265
+ def decipher_bifid5(msg, key):
1266
+ r"""
1267
+ Return the Bifid cipher decryption of ``msg``.
1268
+
1269
+ Explanation
1270
+ ===========
1271
+
1272
+ This is the version of the Bifid cipher that uses the `5 \times 5`
1273
+ Polybius square; the letter "J" is ignored unless a ``key`` of
1274
+ length 25 is used.
1275
+
1276
+ Parameters
1277
+ ==========
1278
+
1279
+ msg
1280
+ Ciphertext string.
1281
+
1282
+ key
1283
+ Short string for key; duplicated characters are ignored and if
1284
+ the length is less then 25 characters, it will be padded with
1285
+ other letters from the alphabet omitting "J".
1286
+ Non-alphabetic characters are ignored.
1287
+
1288
+ Returns
1289
+ =======
1290
+
1291
+ plaintext
1292
+ Plaintext from Bifid5 cipher (all caps, no spaces).
1293
+
1294
+ Examples
1295
+ ========
1296
+
1297
+ >>> from sympy.crypto.crypto import encipher_bifid5, decipher_bifid5
1298
+ >>> key = "gold bug"
1299
+ >>> encipher_bifid5('meet me on friday', key)
1300
+ 'IEILEHFSTSFXEE'
1301
+ >>> encipher_bifid5('meet me on monday', key)
1302
+ 'IEILHHFSTSFQYE'
1303
+ >>> decipher_bifid5(_, key)
1304
+ 'MEETMEONMONDAY'
1305
+
1306
+ """
1307
+ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
1308
+ key = padded_key(key, bifid5)
1309
+ return decipher_bifid(msg, '', key)
1310
+
1311
+
1312
+ def bifid5_square(key=None):
1313
+ r"""
1314
+ 5x5 Polybius square.
1315
+
1316
+ Produce the Polybius square for the `5 \times 5` Bifid cipher.
1317
+
1318
+ Examples
1319
+ ========
1320
+
1321
+ >>> from sympy.crypto.crypto import bifid5_square
1322
+ >>> bifid5_square("gold bug")
1323
+ Matrix([
1324
+ [G, O, L, D, B],
1325
+ [U, A, C, E, F],
1326
+ [H, I, K, M, N],
1327
+ [P, Q, R, S, T],
1328
+ [V, W, X, Y, Z]])
1329
+
1330
+ """
1331
+ if not key:
1332
+ key = bifid5
1333
+ else:
1334
+ _, key, _ = _prep('', key.upper(), None, bifid5)
1335
+ key = padded_key(key, bifid5)
1336
+ return bifid_square(key)
1337
+
1338
+
1339
+ def encipher_bifid6(msg, key):
1340
+ r"""
1341
+ Performs the Bifid cipher encryption on plaintext ``msg``, and
1342
+ returns the ciphertext.
1343
+
1344
+ This is the version of the Bifid cipher that uses the `6 \times 6`
1345
+ Polybius square.
1346
+
1347
+ Parameters
1348
+ ==========
1349
+
1350
+ msg
1351
+ Plaintext string (digits okay).
1352
+
1353
+ key
1354
+ Short string for key (digits okay).
1355
+
1356
+ If ``key`` is less than 36 characters long, the square will be
1357
+ filled with letters A through Z and digits 0 through 9.
1358
+
1359
+ Returns
1360
+ =======
1361
+
1362
+ ciphertext
1363
+ Ciphertext from Bifid cipher (all caps, no spaces).
1364
+
1365
+ See Also
1366
+ ========
1367
+
1368
+ decipher_bifid6, encipher_bifid
1369
+
1370
+ """
1371
+ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
1372
+ key = padded_key(key, bifid6)
1373
+ return encipher_bifid(msg, '', key)
1374
+
1375
+
1376
+ def decipher_bifid6(msg, key):
1377
+ r"""
1378
+ Performs the Bifid cipher decryption on ciphertext ``msg``, and
1379
+ returns the plaintext.
1380
+
1381
+ This is the version of the Bifid cipher that uses the `6 \times 6`
1382
+ Polybius square.
1383
+
1384
+ Parameters
1385
+ ==========
1386
+
1387
+ msg
1388
+ Ciphertext string (digits okay); converted to upper case
1389
+
1390
+ key
1391
+ Short string for key (digits okay).
1392
+
1393
+ If ``key`` is less than 36 characters long, the square will be
1394
+ filled with letters A through Z and digits 0 through 9.
1395
+ All letters are converted to uppercase.
1396
+
1397
+ Returns
1398
+ =======
1399
+
1400
+ plaintext
1401
+ Plaintext from Bifid cipher (all caps, no spaces).
1402
+
1403
+ Examples
1404
+ ========
1405
+
1406
+ >>> from sympy.crypto.crypto import encipher_bifid6, decipher_bifid6
1407
+ >>> key = "gold bug"
1408
+ >>> encipher_bifid6('meet me on monday at 8am', key)
1409
+ 'KFKLJJHF5MMMKTFRGPL'
1410
+ >>> decipher_bifid6(_, key)
1411
+ 'MEETMEONMONDAYAT8AM'
1412
+
1413
+ """
1414
+ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
1415
+ key = padded_key(key, bifid6)
1416
+ return decipher_bifid(msg, '', key)
1417
+
1418
+
1419
+ def bifid6_square(key=None):
1420
+ r"""
1421
+ 6x6 Polybius square.
1422
+
1423
+ Produces the Polybius square for the `6 \times 6` Bifid cipher.
1424
+ Assumes alphabet of symbols is "A", ..., "Z", "0", ..., "9".
1425
+
1426
+ Examples
1427
+ ========
1428
+
1429
+ >>> from sympy.crypto.crypto import bifid6_square
1430
+ >>> key = "gold bug"
1431
+ >>> bifid6_square(key)
1432
+ Matrix([
1433
+ [G, O, L, D, B, U],
1434
+ [A, C, E, F, H, I],
1435
+ [J, K, M, N, P, Q],
1436
+ [R, S, T, V, W, X],
1437
+ [Y, Z, 0, 1, 2, 3],
1438
+ [4, 5, 6, 7, 8, 9]])
1439
+
1440
+ """
1441
+ if not key:
1442
+ key = bifid6
1443
+ else:
1444
+ _, key, _ = _prep('', key.upper(), None, bifid6)
1445
+ key = padded_key(key, bifid6)
1446
+ return bifid_square(key)
1447
+
1448
+
1449
+ #################### RSA #############################
1450
+
1451
+ def _decipher_rsa_crt(i, d, factors):
1452
+ """Decipher RSA using chinese remainder theorem from the information
1453
+ of the relatively-prime factors of the modulus.
1454
+
1455
+ Parameters
1456
+ ==========
1457
+
1458
+ i : integer
1459
+ Ciphertext
1460
+
1461
+ d : integer
1462
+ The exponent component.
1463
+
1464
+ factors : list of relatively-prime integers
1465
+ The integers given must be coprime and the product must equal
1466
+ the modulus component of the original RSA key.
1467
+
1468
+ Examples
1469
+ ========
1470
+
1471
+ How to decrypt RSA with CRT:
1472
+
1473
+ >>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
1474
+ >>> primes = [61, 53]
1475
+ >>> e = 17
1476
+ >>> args = primes + [e]
1477
+ >>> puk = rsa_public_key(*args)
1478
+ >>> prk = rsa_private_key(*args)
1479
+
1480
+ >>> from sympy.crypto.crypto import encipher_rsa, _decipher_rsa_crt
1481
+ >>> msg = 65
1482
+ >>> crt_primes = primes
1483
+ >>> encrypted = encipher_rsa(msg, puk)
1484
+ >>> decrypted = _decipher_rsa_crt(encrypted, prk[1], primes)
1485
+ >>> decrypted
1486
+ 65
1487
+ """
1488
+ moduluses = [pow(i, d, p) for p in factors]
1489
+
1490
+ result = crt(factors, moduluses)
1491
+ if not result:
1492
+ raise ValueError("CRT failed")
1493
+ return result[0]
1494
+
1495
+
1496
+ def _rsa_key(*args, public=True, private=True, totient='Euler', index=None, multipower=None):
1497
+ r"""A private subroutine to generate RSA key
1498
+
1499
+ Parameters
1500
+ ==========
1501
+
1502
+ public, private : bool, optional
1503
+ Flag to generate either a public key, a private key.
1504
+
1505
+ totient : 'Euler' or 'Carmichael'
1506
+ Different notation used for totient.
1507
+
1508
+ multipower : bool, optional
1509
+ Flag to bypass warning for multipower RSA.
1510
+ """
1511
+
1512
+ if len(args) < 2:
1513
+ return False
1514
+
1515
+ if totient not in ('Euler', 'Carmichael'):
1516
+ raise ValueError(
1517
+ "The argument totient={} should either be " \
1518
+ "'Euler', 'Carmichalel'." \
1519
+ .format(totient))
1520
+
1521
+ if totient == 'Euler':
1522
+ _totient = _euler
1523
+ else:
1524
+ _totient = _carmichael
1525
+
1526
+ if index is not None:
1527
+ index = as_int(index)
1528
+ if totient != 'Carmichael':
1529
+ raise ValueError(
1530
+ "Setting the 'index' keyword argument requires totient"
1531
+ "notation to be specified as 'Carmichael'.")
1532
+
1533
+ primes, e = args[:-1], args[-1]
1534
+
1535
+ if not all(isprime(p) for p in primes):
1536
+ new_primes = []
1537
+ for i in primes:
1538
+ new_primes.extend(factorint(i, multiple=True))
1539
+ primes = new_primes
1540
+
1541
+ n = reduce(lambda i, j: i*j, primes)
1542
+
1543
+ tally = multiset(primes)
1544
+ if all(v == 1 for v in tally.values()):
1545
+ multiple = list(tally.keys())
1546
+ phi = _totient._from_distinct_primes(*multiple)
1547
+
1548
+ else:
1549
+ if not multipower:
1550
+ NonInvertibleCipherWarning(
1551
+ 'Non-distinctive primes found in the factors {}. '
1552
+ 'The cipher may not be decryptable for some numbers '
1553
+ 'in the complete residue system Z[{}], but the cipher '
1554
+ 'can still be valid if you restrict the domain to be '
1555
+ 'the reduced residue system Z*[{}]. You can pass '
1556
+ 'the flag multipower=True if you want to suppress this '
1557
+ 'warning.'
1558
+ .format(primes, n, n)
1559
+ # stacklevel=4 because most users will call a function that
1560
+ # calls this function
1561
+ ).warn(stacklevel=4)
1562
+ phi = _totient._from_factors(tally)
1563
+
1564
+ if igcd(e, phi) == 1:
1565
+ if public and not private:
1566
+ if isinstance(index, int):
1567
+ e = e % phi
1568
+ e += index * phi
1569
+ return n, e
1570
+
1571
+ if private and not public:
1572
+ d = mod_inverse(e, phi)
1573
+ if isinstance(index, int):
1574
+ d += index * phi
1575
+ return n, d
1576
+
1577
+ return False
1578
+
1579
+
1580
+ def rsa_public_key(*args, **kwargs):
1581
+ r"""Return the RSA *public key* pair, `(n, e)`
1582
+
1583
+ Parameters
1584
+ ==========
1585
+
1586
+ args : naturals
1587
+ If specified as `p, q, e` where `p` and `q` are distinct primes
1588
+ and `e` is a desired public exponent of the RSA, `n = p q` and
1589
+ `e` will be verified against the totient
1590
+ `\phi(n)` (Euler totient) or `\lambda(n)` (Carmichael totient)
1591
+ to be `\gcd(e, \phi(n)) = 1` or `\gcd(e, \lambda(n)) = 1`.
1592
+
1593
+ If specified as `p_1, p_2, \dots, p_n, e` where
1594
+ `p_1, p_2, \dots, p_n` are specified as primes,
1595
+ and `e` is specified as a desired public exponent of the RSA,
1596
+ it will be able to form a multi-prime RSA, which is a more
1597
+ generalized form of the popular 2-prime RSA.
1598
+
1599
+ It can also be possible to form a single-prime RSA by specifying
1600
+ the argument as `p, e`, which can be considered a trivial case
1601
+ of a multiprime RSA.
1602
+
1603
+ Furthermore, it can be possible to form a multi-power RSA by
1604
+ specifying two or more pairs of the primes to be same.
1605
+ However, unlike the two-distinct prime RSA or multi-prime
1606
+ RSA, not every numbers in the complete residue system
1607
+ (`\mathbb{Z}_n`) will be decryptable since the mapping
1608
+ `\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}`
1609
+ will not be bijective.
1610
+ (Only except for the trivial case when
1611
+ `e = 1`
1612
+ or more generally,
1613
+
1614
+ .. math::
1615
+ e \in \left \{ 1 + k \lambda(n)
1616
+ \mid k \in \mathbb{Z} \land k \geq 0 \right \}
1617
+
1618
+ when RSA reduces to the identity.)
1619
+ However, the RSA can still be decryptable for the numbers in the
1620
+ reduced residue system (`\mathbb{Z}_n^{\times}`), since the
1621
+ mapping
1622
+ `\mathbb{Z}_{n}^{\times} \rightarrow \mathbb{Z}_{n}^{\times}`
1623
+ can still be bijective.
1624
+
1625
+ If you pass a non-prime integer to the arguments
1626
+ `p_1, p_2, \dots, p_n`, the particular number will be
1627
+ prime-factored and it will become either a multi-prime RSA or a
1628
+ multi-power RSA in its canonical form, depending on whether the
1629
+ product equals its radical or not.
1630
+ `p_1 p_2 \dots p_n = \text{rad}(p_1 p_2 \dots p_n)`
1631
+
1632
+ totient : bool, optional
1633
+ If ``'Euler'``, it uses Euler's totient `\phi(n)` which is
1634
+ :meth:`sympy.ntheory.factor_.totient` in SymPy.
1635
+
1636
+ If ``'Carmichael'``, it uses Carmichael's totient `\lambda(n)`
1637
+ which is :meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
1638
+
1639
+ Unlike private key generation, this is a trivial keyword for
1640
+ public key generation because
1641
+ `\gcd(e, \phi(n)) = 1 \iff \gcd(e, \lambda(n)) = 1`.
1642
+
1643
+ index : nonnegative integer, optional
1644
+ Returns an arbitrary solution of a RSA public key at the index
1645
+ specified at `0, 1, 2, \dots`. This parameter needs to be
1646
+ specified along with ``totient='Carmichael'``.
1647
+
1648
+ Similarly to the non-uniquenss of a RSA private key as described
1649
+ in the ``index`` parameter documentation in
1650
+ :meth:`rsa_private_key`, RSA public key is also not unique and
1651
+ there is an infinite number of RSA public exponents which
1652
+ can behave in the same manner.
1653
+
1654
+ From any given RSA public exponent `e`, there are can be an
1655
+ another RSA public exponent `e + k \lambda(n)` where `k` is an
1656
+ integer, `\lambda` is a Carmichael's totient function.
1657
+
1658
+ However, considering only the positive cases, there can be
1659
+ a principal solution of a RSA public exponent `e_0` in
1660
+ `0 < e_0 < \lambda(n)`, and all the other solutions
1661
+ can be canonicalzed in a form of `e_0 + k \lambda(n)`.
1662
+
1663
+ ``index`` specifies the `k` notation to yield any possible value
1664
+ an RSA public key can have.
1665
+
1666
+ An example of computing any arbitrary RSA public key:
1667
+
1668
+ >>> from sympy.crypto.crypto import rsa_public_key
1669
+ >>> rsa_public_key(61, 53, 17, totient='Carmichael', index=0)
1670
+ (3233, 17)
1671
+ >>> rsa_public_key(61, 53, 17, totient='Carmichael', index=1)
1672
+ (3233, 797)
1673
+ >>> rsa_public_key(61, 53, 17, totient='Carmichael', index=2)
1674
+ (3233, 1577)
1675
+
1676
+ multipower : bool, optional
1677
+ Any pair of non-distinct primes found in the RSA specification
1678
+ will restrict the domain of the cryptosystem, as noted in the
1679
+ explanation of the parameter ``args``.
1680
+
1681
+ SymPy RSA key generator may give a warning before dispatching it
1682
+ as a multi-power RSA, however, you can disable the warning if
1683
+ you pass ``True`` to this keyword.
1684
+
1685
+ Returns
1686
+ =======
1687
+
1688
+ (n, e) : int, int
1689
+ `n` is a product of any arbitrary number of primes given as
1690
+ the argument.
1691
+
1692
+ `e` is relatively prime (coprime) to the Euler totient
1693
+ `\phi(n)`.
1694
+
1695
+ False
1696
+ Returned if less than two arguments are given, or `e` is
1697
+ not relatively prime to the modulus.
1698
+
1699
+ Examples
1700
+ ========
1701
+
1702
+ >>> from sympy.crypto.crypto import rsa_public_key
1703
+
1704
+ A public key of a two-prime RSA:
1705
+
1706
+ >>> p, q, e = 3, 5, 7
1707
+ >>> rsa_public_key(p, q, e)
1708
+ (15, 7)
1709
+ >>> rsa_public_key(p, q, 30)
1710
+ False
1711
+
1712
+ A public key of a multiprime RSA:
1713
+
1714
+ >>> primes = [2, 3, 5, 7, 11, 13]
1715
+ >>> e = 7
1716
+ >>> args = primes + [e]
1717
+ >>> rsa_public_key(*args)
1718
+ (30030, 7)
1719
+
1720
+ Notes
1721
+ =====
1722
+
1723
+ Although the RSA can be generalized over any modulus `n`, using
1724
+ two large primes had became the most popular specification because a
1725
+ product of two large primes is usually the hardest to factor
1726
+ relatively to the digits of `n` can have.
1727
+
1728
+ However, it may need further understanding of the time complexities
1729
+ of each prime-factoring algorithms to verify the claim.
1730
+
1731
+ See Also
1732
+ ========
1733
+
1734
+ rsa_private_key
1735
+ encipher_rsa
1736
+ decipher_rsa
1737
+
1738
+ References
1739
+ ==========
1740
+
1741
+ .. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
1742
+
1743
+ .. [2] https://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
1744
+
1745
+ .. [3] https://link.springer.com/content/pdf/10.1007/BFb0055738.pdf
1746
+
1747
+ .. [4] https://www.itiis.org/digital-library/manuscript/1381
1748
+ """
1749
+ return _rsa_key(*args, public=True, private=False, **kwargs)
1750
+
1751
+
1752
+ def rsa_private_key(*args, **kwargs):
1753
+ r"""Return the RSA *private key* pair, `(n, d)`
1754
+
1755
+ Parameters
1756
+ ==========
1757
+
1758
+ args : naturals
1759
+ The keyword is identical to the ``args`` in
1760
+ :meth:`rsa_public_key`.
1761
+
1762
+ totient : bool, optional
1763
+ If ``'Euler'``, it uses Euler's totient convention `\phi(n)`
1764
+ which is :meth:`sympy.ntheory.factor_.totient` in SymPy.
1765
+
1766
+ If ``'Carmichael'``, it uses Carmichael's totient convention
1767
+ `\lambda(n)` which is
1768
+ :meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
1769
+
1770
+ There can be some output differences for private key generation
1771
+ as examples below.
1772
+
1773
+ Example using Euler's totient:
1774
+
1775
+ >>> from sympy.crypto.crypto import rsa_private_key
1776
+ >>> rsa_private_key(61, 53, 17, totient='Euler')
1777
+ (3233, 2753)
1778
+
1779
+ Example using Carmichael's totient:
1780
+
1781
+ >>> from sympy.crypto.crypto import rsa_private_key
1782
+ >>> rsa_private_key(61, 53, 17, totient='Carmichael')
1783
+ (3233, 413)
1784
+
1785
+ index : nonnegative integer, optional
1786
+ Returns an arbitrary solution of a RSA private key at the index
1787
+ specified at `0, 1, 2, \dots`. This parameter needs to be
1788
+ specified along with ``totient='Carmichael'``.
1789
+
1790
+ RSA private exponent is a non-unique solution of
1791
+ `e d \mod \lambda(n) = 1` and it is possible in any form of
1792
+ `d + k \lambda(n)`, where `d` is an another
1793
+ already-computed private exponent, and `\lambda` is a
1794
+ Carmichael's totient function, and `k` is any integer.
1795
+
1796
+ However, considering only the positive cases, there can be
1797
+ a principal solution of a RSA private exponent `d_0` in
1798
+ `0 < d_0 < \lambda(n)`, and all the other solutions
1799
+ can be canonicalzed in a form of `d_0 + k \lambda(n)`.
1800
+
1801
+ ``index`` specifies the `k` notation to yield any possible value
1802
+ an RSA private key can have.
1803
+
1804
+ An example of computing any arbitrary RSA private key:
1805
+
1806
+ >>> from sympy.crypto.crypto import rsa_private_key
1807
+ >>> rsa_private_key(61, 53, 17, totient='Carmichael', index=0)
1808
+ (3233, 413)
1809
+ >>> rsa_private_key(61, 53, 17, totient='Carmichael', index=1)
1810
+ (3233, 1193)
1811
+ >>> rsa_private_key(61, 53, 17, totient='Carmichael', index=2)
1812
+ (3233, 1973)
1813
+
1814
+ multipower : bool, optional
1815
+ The keyword is identical to the ``multipower`` in
1816
+ :meth:`rsa_public_key`.
1817
+
1818
+ Returns
1819
+ =======
1820
+
1821
+ (n, d) : int, int
1822
+ `n` is a product of any arbitrary number of primes given as
1823
+ the argument.
1824
+
1825
+ `d` is the inverse of `e` (mod `\phi(n)`) where `e` is the
1826
+ exponent given, and `\phi` is a Euler totient.
1827
+
1828
+ False
1829
+ Returned if less than two arguments are given, or `e` is
1830
+ not relatively prime to the totient of the modulus.
1831
+
1832
+ Examples
1833
+ ========
1834
+
1835
+ >>> from sympy.crypto.crypto import rsa_private_key
1836
+
1837
+ A private key of a two-prime RSA:
1838
+
1839
+ >>> p, q, e = 3, 5, 7
1840
+ >>> rsa_private_key(p, q, e)
1841
+ (15, 7)
1842
+ >>> rsa_private_key(p, q, 30)
1843
+ False
1844
+
1845
+ A private key of a multiprime RSA:
1846
+
1847
+ >>> primes = [2, 3, 5, 7, 11, 13]
1848
+ >>> e = 7
1849
+ >>> args = primes + [e]
1850
+ >>> rsa_private_key(*args)
1851
+ (30030, 823)
1852
+
1853
+ See Also
1854
+ ========
1855
+
1856
+ rsa_public_key
1857
+ encipher_rsa
1858
+ decipher_rsa
1859
+
1860
+ References
1861
+ ==========
1862
+
1863
+ .. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
1864
+
1865
+ .. [2] https://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
1866
+
1867
+ .. [3] https://link.springer.com/content/pdf/10.1007/BFb0055738.pdf
1868
+
1869
+ .. [4] https://www.itiis.org/digital-library/manuscript/1381
1870
+ """
1871
+ return _rsa_key(*args, public=False, private=True, **kwargs)
1872
+
1873
+
1874
+ def _encipher_decipher_rsa(i, key, factors=None):
1875
+ n, d = key
1876
+ if not factors:
1877
+ return pow(i, d, n)
1878
+
1879
+ def _is_coprime_set(l):
1880
+ is_coprime_set = True
1881
+ for i in range(len(l)):
1882
+ for j in range(i+1, len(l)):
1883
+ if igcd(l[i], l[j]) != 1:
1884
+ is_coprime_set = False
1885
+ break
1886
+ return is_coprime_set
1887
+
1888
+ prod = reduce(lambda i, j: i*j, factors)
1889
+ if prod == n and _is_coprime_set(factors):
1890
+ return _decipher_rsa_crt(i, d, factors)
1891
+ return _encipher_decipher_rsa(i, key, factors=None)
1892
+
1893
+
1894
+ def encipher_rsa(i, key, factors=None):
1895
+ r"""Encrypt the plaintext with RSA.
1896
+
1897
+ Parameters
1898
+ ==========
1899
+
1900
+ i : integer
1901
+ The plaintext to be encrypted for.
1902
+
1903
+ key : (n, e) where n, e are integers
1904
+ `n` is the modulus of the key and `e` is the exponent of the
1905
+ key. The encryption is computed by `i^e \bmod n`.
1906
+
1907
+ The key can either be a public key or a private key, however,
1908
+ the message encrypted by a public key can only be decrypted by
1909
+ a private key, and vice versa, as RSA is an asymmetric
1910
+ cryptography system.
1911
+
1912
+ factors : list of coprime integers
1913
+ This is identical to the keyword ``factors`` in
1914
+ :meth:`decipher_rsa`.
1915
+
1916
+ Notes
1917
+ =====
1918
+
1919
+ Some specifications may make the RSA not cryptographically
1920
+ meaningful.
1921
+
1922
+ For example, `0`, `1` will remain always same after taking any
1923
+ number of exponentiation, thus, should be avoided.
1924
+
1925
+ Furthermore, if `i^e < n`, `i` may easily be figured out by taking
1926
+ `e` th root.
1927
+
1928
+ And also, specifying the exponent as `1` or in more generalized form
1929
+ as `1 + k \lambda(n)` where `k` is an nonnegative integer,
1930
+ `\lambda` is a carmichael totient, the RSA becomes an identity
1931
+ mapping.
1932
+
1933
+ Examples
1934
+ ========
1935
+
1936
+ >>> from sympy.crypto.crypto import encipher_rsa
1937
+ >>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
1938
+
1939
+ Public Key Encryption:
1940
+
1941
+ >>> p, q, e = 3, 5, 7
1942
+ >>> puk = rsa_public_key(p, q, e)
1943
+ >>> msg = 12
1944
+ >>> encipher_rsa(msg, puk)
1945
+ 3
1946
+
1947
+ Private Key Encryption:
1948
+
1949
+ >>> p, q, e = 3, 5, 7
1950
+ >>> prk = rsa_private_key(p, q, e)
1951
+ >>> msg = 12
1952
+ >>> encipher_rsa(msg, prk)
1953
+ 3
1954
+
1955
+ Encryption using chinese remainder theorem:
1956
+
1957
+ >>> encipher_rsa(msg, prk, factors=[p, q])
1958
+ 3
1959
+ """
1960
+ return _encipher_decipher_rsa(i, key, factors=factors)
1961
+
1962
+
1963
+ def decipher_rsa(i, key, factors=None):
1964
+ r"""Decrypt the ciphertext with RSA.
1965
+
1966
+ Parameters
1967
+ ==========
1968
+
1969
+ i : integer
1970
+ The ciphertext to be decrypted for.
1971
+
1972
+ key : (n, d) where n, d are integers
1973
+ `n` is the modulus of the key and `d` is the exponent of the
1974
+ key. The decryption is computed by `i^d \bmod n`.
1975
+
1976
+ The key can either be a public key or a private key, however,
1977
+ the message encrypted by a public key can only be decrypted by
1978
+ a private key, and vice versa, as RSA is an asymmetric
1979
+ cryptography system.
1980
+
1981
+ factors : list of coprime integers
1982
+ As the modulus `n` created from RSA key generation is composed
1983
+ of arbitrary prime factors
1984
+ `n = {p_1}^{k_1}{p_2}^{k_2}\dots{p_n}^{k_n}` where
1985
+ `p_1, p_2, \dots, p_n` are distinct primes and
1986
+ `k_1, k_2, \dots, k_n` are positive integers, chinese remainder
1987
+ theorem can be used to compute `i^d \bmod n` from the
1988
+ fragmented modulo operations like
1989
+
1990
+ .. math::
1991
+ i^d \bmod {p_1}^{k_1}, i^d \bmod {p_2}^{k_2}, \dots,
1992
+ i^d \bmod {p_n}^{k_n}
1993
+
1994
+ or like
1995
+
1996
+ .. math::
1997
+ i^d \bmod {p_1}^{k_1}{p_2}^{k_2},
1998
+ i^d \bmod {p_3}^{k_3}, \dots ,
1999
+ i^d \bmod {p_n}^{k_n}
2000
+
2001
+ as long as every moduli does not share any common divisor each
2002
+ other.
2003
+
2004
+ The raw primes used in generating the RSA key pair can be a good
2005
+ option.
2006
+
2007
+ Note that the speed advantage of using this is only viable for
2008
+ very large cases (Like 2048-bit RSA keys) since the
2009
+ overhead of using pure Python implementation of
2010
+ :meth:`sympy.ntheory.modular.crt` may overcompensate the
2011
+ theoretical speed advantage.
2012
+
2013
+ Notes
2014
+ =====
2015
+
2016
+ See the ``Notes`` section in the documentation of
2017
+ :meth:`encipher_rsa`
2018
+
2019
+ Examples
2020
+ ========
2021
+
2022
+ >>> from sympy.crypto.crypto import decipher_rsa, encipher_rsa
2023
+ >>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
2024
+
2025
+ Public Key Encryption and Decryption:
2026
+
2027
+ >>> p, q, e = 3, 5, 7
2028
+ >>> prk = rsa_private_key(p, q, e)
2029
+ >>> puk = rsa_public_key(p, q, e)
2030
+ >>> msg = 12
2031
+ >>> new_msg = encipher_rsa(msg, prk)
2032
+ >>> new_msg
2033
+ 3
2034
+ >>> decipher_rsa(new_msg, puk)
2035
+ 12
2036
+
2037
+ Private Key Encryption and Decryption:
2038
+
2039
+ >>> p, q, e = 3, 5, 7
2040
+ >>> prk = rsa_private_key(p, q, e)
2041
+ >>> puk = rsa_public_key(p, q, e)
2042
+ >>> msg = 12
2043
+ >>> new_msg = encipher_rsa(msg, puk)
2044
+ >>> new_msg
2045
+ 3
2046
+ >>> decipher_rsa(new_msg, prk)
2047
+ 12
2048
+
2049
+ Decryption using chinese remainder theorem:
2050
+
2051
+ >>> decipher_rsa(new_msg, prk, factors=[p, q])
2052
+ 12
2053
+
2054
+ See Also
2055
+ ========
2056
+
2057
+ encipher_rsa
2058
+ """
2059
+ return _encipher_decipher_rsa(i, key, factors=factors)
2060
+
2061
+
2062
+ #################### kid krypto (kid RSA) #############################
2063
+
2064
+
2065
+ def kid_rsa_public_key(a, b, A, B):
2066
+ r"""
2067
+ Kid RSA is a version of RSA useful to teach grade school children
2068
+ since it does not involve exponentiation.
2069
+
2070
+ Explanation
2071
+ ===========
2072
+
2073
+ Alice wants to talk to Bob. Bob generates keys as follows.
2074
+ Key generation:
2075
+
2076
+ * Select positive integers `a, b, A, B` at random.
2077
+ * Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
2078
+ `n = (e d - 1)//M`.
2079
+ * The *public key* is `(n, e)`. Bob sends these to Alice.
2080
+ * The *private key* is `(n, d)`, which Bob keeps secret.
2081
+
2082
+ Encryption: If `p` is the plaintext message then the
2083
+ ciphertext is `c = p e \pmod n`.
2084
+
2085
+ Decryption: If `c` is the ciphertext message then the
2086
+ plaintext is `p = c d \pmod n`.
2087
+
2088
+ Examples
2089
+ ========
2090
+
2091
+ >>> from sympy.crypto.crypto import kid_rsa_public_key
2092
+ >>> a, b, A, B = 3, 4, 5, 6
2093
+ >>> kid_rsa_public_key(a, b, A, B)
2094
+ (369, 58)
2095
+
2096
+ """
2097
+ M = a*b - 1
2098
+ e = A*M + a
2099
+ d = B*M + b
2100
+ n = (e*d - 1)//M
2101
+ return n, e
2102
+
2103
+
2104
+ def kid_rsa_private_key(a, b, A, B):
2105
+ """
2106
+ Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
2107
+ `n = (e d - 1) / M`. The *private key* is `d`, which Bob
2108
+ keeps secret.
2109
+
2110
+ Examples
2111
+ ========
2112
+
2113
+ >>> from sympy.crypto.crypto import kid_rsa_private_key
2114
+ >>> a, b, A, B = 3, 4, 5, 6
2115
+ >>> kid_rsa_private_key(a, b, A, B)
2116
+ (369, 70)
2117
+
2118
+ """
2119
+ M = a*b - 1
2120
+ e = A*M + a
2121
+ d = B*M + b
2122
+ n = (e*d - 1)//M
2123
+ return n, d
2124
+
2125
+
2126
+ def encipher_kid_rsa(msg, key):
2127
+ """
2128
+ Here ``msg`` is the plaintext and ``key`` is the public key.
2129
+
2130
+ Examples
2131
+ ========
2132
+
2133
+ >>> from sympy.crypto.crypto import (
2134
+ ... encipher_kid_rsa, kid_rsa_public_key)
2135
+ >>> msg = 200
2136
+ >>> a, b, A, B = 3, 4, 5, 6
2137
+ >>> key = kid_rsa_public_key(a, b, A, B)
2138
+ >>> encipher_kid_rsa(msg, key)
2139
+ 161
2140
+
2141
+ """
2142
+ n, e = key
2143
+ return (msg*e) % n
2144
+
2145
+
2146
+ def decipher_kid_rsa(msg, key):
2147
+ """
2148
+ Here ``msg`` is the plaintext and ``key`` is the private key.
2149
+
2150
+ Examples
2151
+ ========
2152
+
2153
+ >>> from sympy.crypto.crypto import (
2154
+ ... kid_rsa_public_key, kid_rsa_private_key,
2155
+ ... decipher_kid_rsa, encipher_kid_rsa)
2156
+ >>> a, b, A, B = 3, 4, 5, 6
2157
+ >>> d = kid_rsa_private_key(a, b, A, B)
2158
+ >>> msg = 200
2159
+ >>> pub = kid_rsa_public_key(a, b, A, B)
2160
+ >>> pri = kid_rsa_private_key(a, b, A, B)
2161
+ >>> ct = encipher_kid_rsa(msg, pub)
2162
+ >>> decipher_kid_rsa(ct, pri)
2163
+ 200
2164
+
2165
+ """
2166
+ n, d = key
2167
+ return (msg*d) % n
2168
+
2169
+
2170
+ #################### Morse Code ######################################
2171
+
2172
+ morse_char = {
2173
+ ".-": "A", "-...": "B",
2174
+ "-.-.": "C", "-..": "D",
2175
+ ".": "E", "..-.": "F",
2176
+ "--.": "G", "....": "H",
2177
+ "..": "I", ".---": "J",
2178
+ "-.-": "K", ".-..": "L",
2179
+ "--": "M", "-.": "N",
2180
+ "---": "O", ".--.": "P",
2181
+ "--.-": "Q", ".-.": "R",
2182
+ "...": "S", "-": "T",
2183
+ "..-": "U", "...-": "V",
2184
+ ".--": "W", "-..-": "X",
2185
+ "-.--": "Y", "--..": "Z",
2186
+ "-----": "0", ".----": "1",
2187
+ "..---": "2", "...--": "3",
2188
+ "....-": "4", ".....": "5",
2189
+ "-....": "6", "--...": "7",
2190
+ "---..": "8", "----.": "9",
2191
+ ".-.-.-": ".", "--..--": ",",
2192
+ "---...": ":", "-.-.-.": ";",
2193
+ "..--..": "?", "-....-": "-",
2194
+ "..--.-": "_", "-.--.": "(",
2195
+ "-.--.-": ")", ".----.": "'",
2196
+ "-...-": "=", ".-.-.": "+",
2197
+ "-..-.": "/", ".--.-.": "@",
2198
+ "...-..-": "$", "-.-.--": "!"}
2199
+ char_morse = {v: k for k, v in morse_char.items()}
2200
+
2201
+
2202
+ def encode_morse(msg, sep='|', mapping=None):
2203
+ """
2204
+ Encodes a plaintext into popular Morse Code with letters
2205
+ separated by ``sep`` and words by a double ``sep``.
2206
+
2207
+ Examples
2208
+ ========
2209
+
2210
+ >>> from sympy.crypto.crypto import encode_morse
2211
+ >>> msg = 'ATTACK RIGHT FLANK'
2212
+ >>> encode_morse(msg)
2213
+ '.-|-|-|.-|-.-.|-.-||.-.|..|--.|....|-||..-.|.-..|.-|-.|-.-'
2214
+
2215
+ References
2216
+ ==========
2217
+
2218
+ .. [1] https://en.wikipedia.org/wiki/Morse_code
2219
+
2220
+ """
2221
+
2222
+ mapping = mapping or char_morse
2223
+ assert sep not in mapping
2224
+ word_sep = 2*sep
2225
+ mapping[" "] = word_sep
2226
+ suffix = msg and msg[-1] in whitespace
2227
+
2228
+ # normalize whitespace
2229
+ msg = (' ' if word_sep else '').join(msg.split())
2230
+ # omit unmapped chars
2231
+ chars = set(''.join(msg.split()))
2232
+ ok = set(mapping.keys())
2233
+ msg = translate(msg, None, ''.join(chars - ok))
2234
+
2235
+ morsestring = []
2236
+ words = msg.split()
2237
+ for word in words:
2238
+ morseword = []
2239
+ for letter in word:
2240
+ morseletter = mapping[letter]
2241
+ morseword.append(morseletter)
2242
+
2243
+ word = sep.join(morseword)
2244
+ morsestring.append(word)
2245
+
2246
+ return word_sep.join(morsestring) + (word_sep if suffix else '')
2247
+
2248
+
2249
+ def decode_morse(msg, sep='|', mapping=None):
2250
+ """
2251
+ Decodes a Morse Code with letters separated by ``sep``
2252
+ (default is '|') and words by `word_sep` (default is '||)
2253
+ into plaintext.
2254
+
2255
+ Examples
2256
+ ========
2257
+
2258
+ >>> from sympy.crypto.crypto import decode_morse
2259
+ >>> mc = '--|---|...-|.||.|.-|...|-'
2260
+ >>> decode_morse(mc)
2261
+ 'MOVE EAST'
2262
+
2263
+ References
2264
+ ==========
2265
+
2266
+ .. [1] https://en.wikipedia.org/wiki/Morse_code
2267
+
2268
+ """
2269
+
2270
+ mapping = mapping or morse_char
2271
+ word_sep = 2*sep
2272
+ characterstring = []
2273
+ words = msg.strip(word_sep).split(word_sep)
2274
+ for word in words:
2275
+ letters = word.split(sep)
2276
+ chars = [mapping[c] for c in letters]
2277
+ word = ''.join(chars)
2278
+ characterstring.append(word)
2279
+ rv = " ".join(characterstring)
2280
+ return rv
2281
+
2282
+
2283
+ #################### LFSRs ##########################################
2284
+
2285
+
2286
+ def lfsr_sequence(key, fill, n):
2287
+ r"""
2288
+ This function creates an LFSR sequence.
2289
+
2290
+ Parameters
2291
+ ==========
2292
+
2293
+ key : list
2294
+ A list of finite field elements, `[c_0, c_1, \ldots, c_k].`
2295
+
2296
+ fill : list
2297
+ The list of the initial terms of the LFSR sequence,
2298
+ `[x_0, x_1, \ldots, x_k].`
2299
+
2300
+ n
2301
+ Number of terms of the sequence that the function returns.
2302
+
2303
+ Returns
2304
+ =======
2305
+
2306
+ L
2307
+ The LFSR sequence defined by
2308
+ `x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k}`, for
2309
+ `n \leq k`.
2310
+
2311
+ Notes
2312
+ =====
2313
+
2314
+ S. Golomb [G]_ gives a list of three statistical properties a
2315
+ sequence of numbers `a = \{a_n\}_{n=1}^\infty`,
2316
+ `a_n \in \{0,1\}`, should display to be considered
2317
+ "random". Define the autocorrelation of `a` to be
2318
+
2319
+ .. math::
2320
+
2321
+ C(k) = C(k,a) = \lim_{N\rightarrow \infty} {1\over N}\sum_{n=1}^N (-1)^{a_n + a_{n+k}}.
2322
+
2323
+ In the case where `a` is periodic with period
2324
+ `P` then this reduces to
2325
+
2326
+ .. math::
2327
+
2328
+ C(k) = {1\over P}\sum_{n=1}^P (-1)^{a_n + a_{n+k}}.
2329
+
2330
+ Assume `a` is periodic with period `P`.
2331
+
2332
+ - balance:
2333
+
2334
+ .. math::
2335
+
2336
+ \left|\sum_{n=1}^P(-1)^{a_n}\right| \leq 1.
2337
+
2338
+ - low autocorrelation:
2339
+
2340
+ .. math::
2341
+
2342
+ C(k) = \left\{ \begin{array}{cc} 1,& k = 0,\\ \epsilon, & k \ne 0. \end{array} \right.
2343
+
2344
+ (For sequences satisfying these first two properties, it is known
2345
+ that `\epsilon = -1/P` must hold.)
2346
+
2347
+ - proportional runs property: In each period, half the runs have
2348
+ length `1`, one-fourth have length `2`, etc.
2349
+ Moreover, there are as many runs of `1`'s as there are of
2350
+ `0`'s.
2351
+
2352
+ Examples
2353
+ ========
2354
+
2355
+ >>> from sympy.crypto.crypto import lfsr_sequence
2356
+ >>> from sympy.polys.domains import FF
2357
+ >>> F = FF(2)
2358
+ >>> fill = [F(1), F(1), F(0), F(1)]
2359
+ >>> key = [F(1), F(0), F(0), F(1)]
2360
+ >>> lfsr_sequence(key, fill, 10)
2361
+ [1 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 0 mod 2,
2362
+ 1 mod 2, 1 mod 2, 0 mod 2, 0 mod 2, 1 mod 2]
2363
+
2364
+ References
2365
+ ==========
2366
+
2367
+ .. [G] Solomon Golomb, Shift register sequences, Aegean Park Press,
2368
+ Laguna Hills, Ca, 1967
2369
+
2370
+ """
2371
+ if not isinstance(key, list):
2372
+ raise TypeError("key must be a list")
2373
+ if not isinstance(fill, list):
2374
+ raise TypeError("fill must be a list")
2375
+ p = key[0].mod
2376
+ F = FF(p)
2377
+ s = fill
2378
+ k = len(fill)
2379
+ L = []
2380
+ for i in range(n):
2381
+ s0 = s[:]
2382
+ L.append(s[0])
2383
+ s = s[1:k]
2384
+ x = sum([int(key[i]*s0[i]) for i in range(k)])
2385
+ s.append(F(x))
2386
+ return L # use [x.to_int() for x in L] for int version
2387
+
2388
+
2389
+ def lfsr_autocorrelation(L, P, k):
2390
+ """
2391
+ This function computes the LFSR autocorrelation function.
2392
+
2393
+ Parameters
2394
+ ==========
2395
+
2396
+ L
2397
+ A periodic sequence of elements of `GF(2)`.
2398
+ L must have length larger than P.
2399
+
2400
+ P
2401
+ The period of L.
2402
+
2403
+ k : int
2404
+ An integer `k` (`0 < k < P`).
2405
+
2406
+ Returns
2407
+ =======
2408
+
2409
+ autocorrelation
2410
+ The k-th value of the autocorrelation of the LFSR L.
2411
+
2412
+ Examples
2413
+ ========
2414
+
2415
+ >>> from sympy.crypto.crypto import (
2416
+ ... lfsr_sequence, lfsr_autocorrelation)
2417
+ >>> from sympy.polys.domains import FF
2418
+ >>> F = FF(2)
2419
+ >>> fill = [F(1), F(1), F(0), F(1)]
2420
+ >>> key = [F(1), F(0), F(0), F(1)]
2421
+ >>> s = lfsr_sequence(key, fill, 20)
2422
+ >>> lfsr_autocorrelation(s, 15, 7)
2423
+ -1/15
2424
+ >>> lfsr_autocorrelation(s, 15, 0)
2425
+ 1
2426
+
2427
+ """
2428
+ if not isinstance(L, list):
2429
+ raise TypeError("L (=%s) must be a list" % L)
2430
+ P = int(P)
2431
+ k = int(k)
2432
+ L0 = L[:P] # slices makes a copy
2433
+ L1 = L0 + L0[:k]
2434
+ L2 = [(-1)**(L1[i].to_int() + L1[i + k].to_int()) for i in range(P)]
2435
+ tot = sum(L2)
2436
+ return Rational(tot, P)
2437
+
2438
+
2439
+ def lfsr_connection_polynomial(s):
2440
+ """
2441
+ This function computes the LFSR connection polynomial.
2442
+
2443
+ Parameters
2444
+ ==========
2445
+
2446
+ s
2447
+ A sequence of elements of even length, with entries in a finite
2448
+ field.
2449
+
2450
+ Returns
2451
+ =======
2452
+
2453
+ C(x)
2454
+ The connection polynomial of a minimal LFSR yielding s.
2455
+
2456
+ This implements the algorithm in section 3 of J. L. Massey's
2457
+ article [M]_.
2458
+
2459
+ Examples
2460
+ ========
2461
+
2462
+ >>> from sympy.crypto.crypto import (
2463
+ ... lfsr_sequence, lfsr_connection_polynomial)
2464
+ >>> from sympy.polys.domains import FF
2465
+ >>> F = FF(2)
2466
+ >>> fill = [F(1), F(1), F(0), F(1)]
2467
+ >>> key = [F(1), F(0), F(0), F(1)]
2468
+ >>> s = lfsr_sequence(key, fill, 20)
2469
+ >>> lfsr_connection_polynomial(s)
2470
+ x**4 + x + 1
2471
+ >>> fill = [F(1), F(0), F(0), F(1)]
2472
+ >>> key = [F(1), F(1), F(0), F(1)]
2473
+ >>> s = lfsr_sequence(key, fill, 20)
2474
+ >>> lfsr_connection_polynomial(s)
2475
+ x**3 + 1
2476
+ >>> fill = [F(1), F(0), F(1)]
2477
+ >>> key = [F(1), F(1), F(0)]
2478
+ >>> s = lfsr_sequence(key, fill, 20)
2479
+ >>> lfsr_connection_polynomial(s)
2480
+ x**3 + x**2 + 1
2481
+ >>> fill = [F(1), F(0), F(1)]
2482
+ >>> key = [F(1), F(0), F(1)]
2483
+ >>> s = lfsr_sequence(key, fill, 20)
2484
+ >>> lfsr_connection_polynomial(s)
2485
+ x**3 + x + 1
2486
+
2487
+ References
2488
+ ==========
2489
+
2490
+ .. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding."
2491
+ IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127,
2492
+ Jan 1969.
2493
+
2494
+ """
2495
+ # Initialization:
2496
+ p = s[0].mod
2497
+ x = Symbol("x")
2498
+ C = 1*x**0
2499
+ B = 1*x**0
2500
+ m = 1
2501
+ b = 1*x**0
2502
+ L = 0
2503
+ N = 0
2504
+ while N < len(s):
2505
+ if L > 0:
2506
+ dC = Poly(C).degree()
2507
+ r = min(L + 1, dC + 1)
2508
+ coeffsC = [C.subs(x, 0)] + [C.coeff(x**i)
2509
+ for i in range(1, dC + 1)]
2510
+ d = (s[N].to_int() + sum([coeffsC[i]*s[N - i].to_int()
2511
+ for i in range(1, r)])) % p
2512
+ if L == 0:
2513
+ d = s[N].to_int()*x**0
2514
+ if d == 0:
2515
+ m += 1
2516
+ N += 1
2517
+ if d > 0:
2518
+ if 2*L > N:
2519
+ C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
2520
+ m += 1
2521
+ N += 1
2522
+ else:
2523
+ T = C
2524
+ C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
2525
+ L = N + 1 - L
2526
+ m = 1
2527
+ b = d
2528
+ B = T
2529
+ N += 1
2530
+ dC = Poly(C).degree()
2531
+ coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)]
2532
+ return sum([coeffsC[i] % p*x**i for i in range(dC + 1)
2533
+ if coeffsC[i] is not None])
2534
+
2535
+
2536
+ #################### ElGamal #############################
2537
+
2538
+
2539
+ def elgamal_private_key(digit=10, seed=None):
2540
+ r"""
2541
+ Return three number tuple as private key.
2542
+
2543
+ Explanation
2544
+ ===========
2545
+
2546
+ Elgamal encryption is based on the mathematical problem
2547
+ called the Discrete Logarithm Problem (DLP). For example,
2548
+
2549
+ `a^{b} \equiv c \pmod p`
2550
+
2551
+ In general, if ``a`` and ``b`` are known, ``ct`` is easily
2552
+ calculated. If ``b`` is unknown, it is hard to use
2553
+ ``a`` and ``ct`` to get ``b``.
2554
+
2555
+ Parameters
2556
+ ==========
2557
+
2558
+ digit : int
2559
+ Minimum number of binary digits for key.
2560
+
2561
+ Returns
2562
+ =======
2563
+
2564
+ tuple : (p, r, d)
2565
+ p = prime number.
2566
+
2567
+ r = primitive root.
2568
+
2569
+ d = random number.
2570
+
2571
+ Notes
2572
+ =====
2573
+
2574
+ For testing purposes, the ``seed`` parameter may be set to control
2575
+ the output of this routine. See sympy.core.random._randrange.
2576
+
2577
+ Examples
2578
+ ========
2579
+
2580
+ >>> from sympy.crypto.crypto import elgamal_private_key
2581
+ >>> from sympy.ntheory import is_primitive_root, isprime
2582
+ >>> a, b, _ = elgamal_private_key()
2583
+ >>> isprime(a)
2584
+ True
2585
+ >>> is_primitive_root(b, a)
2586
+ True
2587
+
2588
+ """
2589
+ randrange = _randrange(seed)
2590
+ p = nextprime(2**digit)
2591
+ return p, primitive_root(p), randrange(2, p)
2592
+
2593
+
2594
+ def elgamal_public_key(key):
2595
+ r"""
2596
+ Return three number tuple as public key.
2597
+
2598
+ Parameters
2599
+ ==========
2600
+
2601
+ key : (p, r, e)
2602
+ Tuple generated by ``elgamal_private_key``.
2603
+
2604
+ Returns
2605
+ =======
2606
+
2607
+ tuple : (p, r, e)
2608
+ `e = r**d \bmod p`
2609
+
2610
+ `d` is a random number in private key.
2611
+
2612
+ Examples
2613
+ ========
2614
+
2615
+ >>> from sympy.crypto.crypto import elgamal_public_key
2616
+ >>> elgamal_public_key((1031, 14, 636))
2617
+ (1031, 14, 212)
2618
+
2619
+ """
2620
+ p, r, e = key
2621
+ return p, r, pow(r, e, p)
2622
+
2623
+
2624
+ def encipher_elgamal(i, key, seed=None):
2625
+ r"""
2626
+ Encrypt message with public key.
2627
+
2628
+ Explanation
2629
+ ===========
2630
+
2631
+ ``i`` is a plaintext message expressed as an integer.
2632
+ ``key`` is public key (p, r, e). In order to encrypt
2633
+ a message, a random number ``a`` in ``range(2, p)``
2634
+ is generated and the encryped message is returned as
2635
+ `c_{1}` and `c_{2}` where:
2636
+
2637
+ `c_{1} \equiv r^{a} \pmod p`
2638
+
2639
+ `c_{2} \equiv m e^{a} \pmod p`
2640
+
2641
+ Parameters
2642
+ ==========
2643
+
2644
+ msg
2645
+ int of encoded message.
2646
+
2647
+ key
2648
+ Public key.
2649
+
2650
+ Returns
2651
+ =======
2652
+
2653
+ tuple : (c1, c2)
2654
+ Encipher into two number.
2655
+
2656
+ Notes
2657
+ =====
2658
+
2659
+ For testing purposes, the ``seed`` parameter may be set to control
2660
+ the output of this routine. See sympy.core.random._randrange.
2661
+
2662
+ Examples
2663
+ ========
2664
+
2665
+ >>> from sympy.crypto.crypto import encipher_elgamal, elgamal_private_key, elgamal_public_key
2666
+ >>> pri = elgamal_private_key(5, seed=[3]); pri
2667
+ (37, 2, 3)
2668
+ >>> pub = elgamal_public_key(pri); pub
2669
+ (37, 2, 8)
2670
+ >>> msg = 36
2671
+ >>> encipher_elgamal(msg, pub, seed=[3])
2672
+ (8, 6)
2673
+
2674
+ """
2675
+ p, r, e = key
2676
+ if i < 0 or i >= p:
2677
+ raise ValueError(
2678
+ 'Message (%s) should be in range(%s)' % (i, p))
2679
+ randrange = _randrange(seed)
2680
+ a = randrange(2, p)
2681
+ return pow(r, a, p), i*pow(e, a, p) % p
2682
+
2683
+
2684
+ def decipher_elgamal(msg, key):
2685
+ r"""
2686
+ Decrypt message with private key.
2687
+
2688
+ `msg = (c_{1}, c_{2})`
2689
+
2690
+ `key = (p, r, d)`
2691
+
2692
+ According to extended Eucliden theorem,
2693
+ `u c_{1}^{d} + p n = 1`
2694
+
2695
+ `u \equiv 1/{{c_{1}}^d} \pmod p`
2696
+
2697
+ `u c_{2} \equiv \frac{1}{c_{1}^d} c_{2} \equiv \frac{1}{r^{ad}} c_{2} \pmod p`
2698
+
2699
+ `\frac{1}{r^{ad}} m e^a \equiv \frac{1}{r^{ad}} m {r^{d a}} \equiv m \pmod p`
2700
+
2701
+ Examples
2702
+ ========
2703
+
2704
+ >>> from sympy.crypto.crypto import decipher_elgamal
2705
+ >>> from sympy.crypto.crypto import encipher_elgamal
2706
+ >>> from sympy.crypto.crypto import elgamal_private_key
2707
+ >>> from sympy.crypto.crypto import elgamal_public_key
2708
+
2709
+ >>> pri = elgamal_private_key(5, seed=[3])
2710
+ >>> pub = elgamal_public_key(pri); pub
2711
+ (37, 2, 8)
2712
+ >>> msg = 17
2713
+ >>> decipher_elgamal(encipher_elgamal(msg, pub), pri) == msg
2714
+ True
2715
+
2716
+ """
2717
+ p, _, d = key
2718
+ c1, c2 = msg
2719
+ u = igcdex(c1**d, p)[0]
2720
+ return u * c2 % p
2721
+
2722
+
2723
+ ################ Diffie-Hellman Key Exchange #########################
2724
+
2725
+ def dh_private_key(digit=10, seed=None):
2726
+ r"""
2727
+ Return three integer tuple as private key.
2728
+
2729
+ Explanation
2730
+ ===========
2731
+
2732
+ Diffie-Hellman key exchange is based on the mathematical problem
2733
+ called the Discrete Logarithm Problem (see ElGamal).
2734
+
2735
+ Diffie-Hellman key exchange is divided into the following steps:
2736
+
2737
+ * Alice and Bob agree on a base that consist of a prime ``p``
2738
+ and a primitive root of ``p`` called ``g``
2739
+ * Alice choses a number ``a`` and Bob choses a number ``b`` where
2740
+ ``a`` and ``b`` are random numbers in range `[2, p)`. These are
2741
+ their private keys.
2742
+ * Alice then publicly sends Bob `g^{a} \pmod p` while Bob sends
2743
+ Alice `g^{b} \pmod p`
2744
+ * They both raise the received value to their secretly chosen
2745
+ number (``a`` or ``b``) and now have both as their shared key
2746
+ `g^{ab} \pmod p`
2747
+
2748
+ Parameters
2749
+ ==========
2750
+
2751
+ digit
2752
+ Minimum number of binary digits required in key.
2753
+
2754
+ Returns
2755
+ =======
2756
+
2757
+ tuple : (p, g, a)
2758
+ p = prime number.
2759
+
2760
+ g = primitive root of p.
2761
+
2762
+ a = random number from 2 through p - 1.
2763
+
2764
+ Notes
2765
+ =====
2766
+
2767
+ For testing purposes, the ``seed`` parameter may be set to control
2768
+ the output of this routine. See sympy.core.random._randrange.
2769
+
2770
+ Examples
2771
+ ========
2772
+
2773
+ >>> from sympy.crypto.crypto import dh_private_key
2774
+ >>> from sympy.ntheory import isprime, is_primitive_root
2775
+ >>> p, g, _ = dh_private_key()
2776
+ >>> isprime(p)
2777
+ True
2778
+ >>> is_primitive_root(g, p)
2779
+ True
2780
+ >>> p, g, _ = dh_private_key(5)
2781
+ >>> isprime(p)
2782
+ True
2783
+ >>> is_primitive_root(g, p)
2784
+ True
2785
+
2786
+ """
2787
+ p = nextprime(2**digit)
2788
+ g = primitive_root(p)
2789
+ randrange = _randrange(seed)
2790
+ a = randrange(2, p)
2791
+ return p, g, a
2792
+
2793
+
2794
+ def dh_public_key(key):
2795
+ r"""
2796
+ Return three number tuple as public key.
2797
+
2798
+ This is the tuple that Alice sends to Bob.
2799
+
2800
+ Parameters
2801
+ ==========
2802
+
2803
+ key : (p, g, a)
2804
+ A tuple generated by ``dh_private_key``.
2805
+
2806
+ Returns
2807
+ =======
2808
+
2809
+ tuple : int, int, int
2810
+ A tuple of `(p, g, g^a \mod p)` with `p`, `g` and `a` given as
2811
+ parameters.s
2812
+
2813
+ Examples
2814
+ ========
2815
+
2816
+ >>> from sympy.crypto.crypto import dh_private_key, dh_public_key
2817
+ >>> p, g, a = dh_private_key();
2818
+ >>> _p, _g, x = dh_public_key((p, g, a))
2819
+ >>> p == _p and g == _g
2820
+ True
2821
+ >>> x == pow(g, a, p)
2822
+ True
2823
+
2824
+ """
2825
+ p, g, a = key
2826
+ return p, g, pow(g, a, p)
2827
+
2828
+
2829
+ def dh_shared_key(key, b):
2830
+ """
2831
+ Return an integer that is the shared key.
2832
+
2833
+ This is what Bob and Alice can both calculate using the public
2834
+ keys they received from each other and their private keys.
2835
+
2836
+ Parameters
2837
+ ==========
2838
+
2839
+ key : (p, g, x)
2840
+ Tuple `(p, g, x)` generated by ``dh_public_key``.
2841
+
2842
+ b
2843
+ Random number in the range of `2` to `p - 1`
2844
+ (Chosen by second key exchange member (Bob)).
2845
+
2846
+ Returns
2847
+ =======
2848
+
2849
+ int
2850
+ A shared key.
2851
+
2852
+ Examples
2853
+ ========
2854
+
2855
+ >>> from sympy.crypto.crypto import (
2856
+ ... dh_private_key, dh_public_key, dh_shared_key)
2857
+ >>> prk = dh_private_key();
2858
+ >>> p, g, x = dh_public_key(prk);
2859
+ >>> sk = dh_shared_key((p, g, x), 1000)
2860
+ >>> sk == pow(x, 1000, p)
2861
+ True
2862
+
2863
+ """
2864
+ p, _, x = key
2865
+ if 1 >= b or b >= p:
2866
+ raise ValueError(filldedent('''
2867
+ Value of b should be greater 1 and less
2868
+ than prime %s.''' % p))
2869
+
2870
+ return pow(x, b, p)
2871
+
2872
+
2873
+ ################ Goldwasser-Micali Encryption #########################
2874
+
2875
+
2876
+ def _legendre(a, p):
2877
+ """
2878
+ Returns the legendre symbol of a and p
2879
+ assuming that p is a prime.
2880
+
2881
+ i.e. 1 if a is a quadratic residue mod p
2882
+ -1 if a is not a quadratic residue mod p
2883
+ 0 if a is divisible by p
2884
+
2885
+ Parameters
2886
+ ==========
2887
+
2888
+ a : int
2889
+ The number to test.
2890
+
2891
+ p : prime
2892
+ The prime to test ``a`` against.
2893
+
2894
+ Returns
2895
+ =======
2896
+
2897
+ int
2898
+ Legendre symbol (a / p).
2899
+
2900
+ """
2901
+ sig = pow(a, (p - 1)//2, p)
2902
+ if sig == 1:
2903
+ return 1
2904
+ elif sig == 0:
2905
+ return 0
2906
+ else:
2907
+ return -1
2908
+
2909
+
2910
+ def _random_coprime_stream(n, seed=None):
2911
+ randrange = _randrange(seed)
2912
+ while True:
2913
+ y = randrange(n)
2914
+ if gcd(y, n) == 1:
2915
+ yield y
2916
+
2917
+
2918
+ def gm_private_key(p, q, a=None):
2919
+ r"""
2920
+ Check if ``p`` and ``q`` can be used as private keys for
2921
+ the Goldwasser-Micali encryption. The method works
2922
+ roughly as follows.
2923
+
2924
+ Explanation
2925
+ ===========
2926
+
2927
+ #. Pick two large primes $p$ and $q$.
2928
+ #. Call their product $N$.
2929
+ #. Given a message as an integer $i$, write $i$ in its bit representation $b_0, \dots, b_n$.
2930
+ #. For each $k$,
2931
+
2932
+ if $b_k = 0$:
2933
+ let $a_k$ be a random square
2934
+ (quadratic residue) modulo $p q$
2935
+ such that ``jacobi_symbol(a, p*q) = 1``
2936
+ if $b_k = 1$:
2937
+ let $a_k$ be a random non-square
2938
+ (non-quadratic residue) modulo $p q$
2939
+ such that ``jacobi_symbol(a, p*q) = 1``
2940
+
2941
+ returns $\left[a_1, a_2, \dots\right]$
2942
+
2943
+ $b_k$ can be recovered by checking whether or not
2944
+ $a_k$ is a residue. And from the $b_k$'s, the message
2945
+ can be reconstructed.
2946
+
2947
+ The idea is that, while ``jacobi_symbol(a, p*q)``
2948
+ can be easily computed (and when it is equal to $-1$ will
2949
+ tell you that $a$ is not a square mod $p q$), quadratic
2950
+ residuosity modulo a composite number is hard to compute
2951
+ without knowing its factorization.
2952
+
2953
+ Moreover, approximately half the numbers coprime to $p q$ have
2954
+ :func:`~.jacobi_symbol` equal to $1$ . And among those, approximately half
2955
+ are residues and approximately half are not. This maximizes the
2956
+ entropy of the code.
2957
+
2958
+ Parameters
2959
+ ==========
2960
+
2961
+ p, q, a
2962
+ Initialization variables.
2963
+
2964
+ Returns
2965
+ =======
2966
+
2967
+ tuple : (p, q)
2968
+ The input value ``p`` and ``q``.
2969
+
2970
+ Raises
2971
+ ======
2972
+
2973
+ ValueError
2974
+ If ``p`` and ``q`` are not distinct odd primes.
2975
+
2976
+ """
2977
+ if p == q:
2978
+ raise ValueError("expected distinct primes, "
2979
+ "got two copies of %i" % p)
2980
+ elif not isprime(p) or not isprime(q):
2981
+ raise ValueError("first two arguments must be prime, "
2982
+ "got %i of %i" % (p, q))
2983
+ elif p == 2 or q == 2:
2984
+ raise ValueError("first two arguments must not be even, "
2985
+ "got %i of %i" % (p, q))
2986
+ return p, q
2987
+
2988
+
2989
+ def gm_public_key(p, q, a=None, seed=None):
2990
+ """
2991
+ Compute public keys for ``p`` and ``q``.
2992
+ Note that in Goldwasser-Micali Encryption,
2993
+ public keys are randomly selected.
2994
+
2995
+ Parameters
2996
+ ==========
2997
+
2998
+ p, q, a : int, int, int
2999
+ Initialization variables.
3000
+
3001
+ Returns
3002
+ =======
3003
+
3004
+ tuple : (a, N)
3005
+ ``a`` is the input ``a`` if it is not ``None`` otherwise
3006
+ some random integer coprime to ``p`` and ``q``.
3007
+
3008
+ ``N`` is the product of ``p`` and ``q``.
3009
+
3010
+ """
3011
+
3012
+ p, q = gm_private_key(p, q)
3013
+ N = p * q
3014
+
3015
+ if a is None:
3016
+ randrange = _randrange(seed)
3017
+ while True:
3018
+ a = randrange(N)
3019
+ if _legendre(a, p) == _legendre(a, q) == -1:
3020
+ break
3021
+ else:
3022
+ if _legendre(a, p) != -1 or _legendre(a, q) != -1:
3023
+ return False
3024
+ return (a, N)
3025
+
3026
+
3027
+ def encipher_gm(i, key, seed=None):
3028
+ """
3029
+ Encrypt integer 'i' using public_key 'key'
3030
+ Note that gm uses random encryption.
3031
+
3032
+ Parameters
3033
+ ==========
3034
+
3035
+ i : int
3036
+ The message to encrypt.
3037
+
3038
+ key : (a, N)
3039
+ The public key.
3040
+
3041
+ Returns
3042
+ =======
3043
+
3044
+ list : list of int
3045
+ The randomized encrypted message.
3046
+
3047
+ """
3048
+ if i < 0:
3049
+ raise ValueError(
3050
+ "message must be a non-negative "
3051
+ "integer: got %d instead" % i)
3052
+ a, N = key
3053
+ bits = []
3054
+ while i > 0:
3055
+ bits.append(i % 2)
3056
+ i //= 2
3057
+
3058
+ gen = _random_coprime_stream(N, seed)
3059
+ rev = reversed(bits)
3060
+ encode = lambda b: next(gen)**2*pow(a, b) % N
3061
+ return [ encode(b) for b in rev ]
3062
+
3063
+
3064
+
3065
+ def decipher_gm(message, key):
3066
+ """
3067
+ Decrypt message 'message' using public_key 'key'.
3068
+
3069
+ Parameters
3070
+ ==========
3071
+
3072
+ message : list of int
3073
+ The randomized encrypted message.
3074
+
3075
+ key : (p, q)
3076
+ The private key.
3077
+
3078
+ Returns
3079
+ =======
3080
+
3081
+ int
3082
+ The encrypted message.
3083
+
3084
+ """
3085
+ p, q = key
3086
+ res = lambda m, p: _legendre(m, p) > 0
3087
+ bits = [res(m, p) * res(m, q) for m in message]
3088
+ m = 0
3089
+ for b in bits:
3090
+ m <<= 1
3091
+ m += not b
3092
+ return m
3093
+
3094
+
3095
+
3096
+ ########### RailFence Cipher #############
3097
+
3098
+ def encipher_railfence(message,rails):
3099
+ """
3100
+ Performs Railfence Encryption on plaintext and returns ciphertext
3101
+
3102
+ Examples
3103
+ ========
3104
+
3105
+ >>> from sympy.crypto.crypto import encipher_railfence
3106
+ >>> message = "hello world"
3107
+ >>> encipher_railfence(message,3)
3108
+ 'horel ollwd'
3109
+
3110
+ Parameters
3111
+ ==========
3112
+
3113
+ message : string, the message to encrypt.
3114
+ rails : int, the number of rails.
3115
+
3116
+ Returns
3117
+ =======
3118
+
3119
+ The Encrypted string message.
3120
+
3121
+ References
3122
+ ==========
3123
+ .. [1] https://en.wikipedia.org/wiki/Rail_fence_cipher
3124
+
3125
+ """
3126
+ r = list(range(rails))
3127
+ p = cycle(r + r[-2:0:-1])
3128
+ return ''.join(sorted(message, key=lambda i: next(p)))
3129
+
3130
+
3131
+ def decipher_railfence(ciphertext,rails):
3132
+ """
3133
+ Decrypt the message using the given rails
3134
+
3135
+ Examples
3136
+ ========
3137
+
3138
+ >>> from sympy.crypto.crypto import decipher_railfence
3139
+ >>> decipher_railfence("horel ollwd",3)
3140
+ 'hello world'
3141
+
3142
+ Parameters
3143
+ ==========
3144
+
3145
+ message : string, the message to encrypt.
3146
+ rails : int, the number of rails.
3147
+
3148
+ Returns
3149
+ =======
3150
+
3151
+ The Decrypted string message.
3152
+
3153
+ """
3154
+ r = list(range(rails))
3155
+ p = cycle(r + r[-2:0:-1])
3156
+
3157
+ idx = sorted(range(len(ciphertext)), key=lambda i: next(p))
3158
+ res = [''] * len(ciphertext)
3159
+ for i, c in zip(idx, ciphertext):
3160
+ res[i] = c
3161
+ return ''.join(res)
3162
+
3163
+
3164
+ ################ Blum-Goldwasser cryptosystem #########################
3165
+
3166
+ def bg_private_key(p, q):
3167
+ """
3168
+ Check if p and q can be used as private keys for
3169
+ the Blum-Goldwasser cryptosystem.
3170
+
3171
+ Explanation
3172
+ ===========
3173
+
3174
+ The three necessary checks for p and q to pass
3175
+ so that they can be used as private keys:
3176
+
3177
+ 1. p and q must both be prime
3178
+ 2. p and q must be distinct
3179
+ 3. p and q must be congruent to 3 mod 4
3180
+
3181
+ Parameters
3182
+ ==========
3183
+
3184
+ p, q
3185
+ The keys to be checked.
3186
+
3187
+ Returns
3188
+ =======
3189
+
3190
+ p, q
3191
+ Input values.
3192
+
3193
+ Raises
3194
+ ======
3195
+
3196
+ ValueError
3197
+ If p and q do not pass the above conditions.
3198
+
3199
+ """
3200
+
3201
+ if not isprime(p) or not isprime(q):
3202
+ raise ValueError("the two arguments must be prime, "
3203
+ "got %i and %i" %(p, q))
3204
+ elif p == q:
3205
+ raise ValueError("the two arguments must be distinct, "
3206
+ "got two copies of %i. " %p)
3207
+ elif (p - 3) % 4 != 0 or (q - 3) % 4 != 0:
3208
+ raise ValueError("the two arguments must be congruent to 3 mod 4, "
3209
+ "got %i and %i" %(p, q))
3210
+ return p, q
3211
+
3212
+ def bg_public_key(p, q):
3213
+ """
3214
+ Calculates public keys from private keys.
3215
+
3216
+ Explanation
3217
+ ===========
3218
+
3219
+ The function first checks the validity of
3220
+ private keys passed as arguments and
3221
+ then returns their product.
3222
+
3223
+ Parameters
3224
+ ==========
3225
+
3226
+ p, q
3227
+ The private keys.
3228
+
3229
+ Returns
3230
+ =======
3231
+
3232
+ N
3233
+ The public key.
3234
+
3235
+ """
3236
+ p, q = bg_private_key(p, q)
3237
+ N = p * q
3238
+ return N
3239
+
3240
+ def encipher_bg(i, key, seed=None):
3241
+ """
3242
+ Encrypts the message using public key and seed.
3243
+
3244
+ Explanation
3245
+ ===========
3246
+
3247
+ ALGORITHM:
3248
+ 1. Encodes i as a string of L bits, m.
3249
+ 2. Select a random element r, where 1 < r < key, and computes
3250
+ x = r^2 mod key.
3251
+ 3. Use BBS pseudo-random number generator to generate L random bits, b,
3252
+ using the initial seed as x.
3253
+ 4. Encrypted message, c_i = m_i XOR b_i, 1 <= i <= L.
3254
+ 5. x_L = x^(2^L) mod key.
3255
+ 6. Return (c, x_L)
3256
+
3257
+ Parameters
3258
+ ==========
3259
+
3260
+ i
3261
+ Message, a non-negative integer
3262
+
3263
+ key
3264
+ The public key
3265
+
3266
+ Returns
3267
+ =======
3268
+
3269
+ Tuple
3270
+ (encrypted_message, x_L)
3271
+
3272
+ Raises
3273
+ ======
3274
+
3275
+ ValueError
3276
+ If i is negative.
3277
+
3278
+ """
3279
+
3280
+ if i < 0:
3281
+ raise ValueError(
3282
+ "message must be a non-negative "
3283
+ "integer: got %d instead" % i)
3284
+
3285
+ enc_msg = []
3286
+ while i > 0:
3287
+ enc_msg.append(i % 2)
3288
+ i //= 2
3289
+ enc_msg.reverse()
3290
+ L = len(enc_msg)
3291
+
3292
+ r = _randint(seed)(2, key - 1)
3293
+ x = r**2 % key
3294
+ x_L = pow(int(x), int(2**L), int(key))
3295
+
3296
+ rand_bits = []
3297
+ for _ in range(L):
3298
+ rand_bits.append(x % 2)
3299
+ x = x**2 % key
3300
+
3301
+ encrypt_msg = [m ^ b for (m, b) in zip(enc_msg, rand_bits)]
3302
+
3303
+ return (encrypt_msg, x_L)
3304
+
3305
+ def decipher_bg(message, key):
3306
+ """
3307
+ Decrypts the message using private keys.
3308
+
3309
+ Explanation
3310
+ ===========
3311
+
3312
+ ALGORITHM:
3313
+ 1. Let, c be the encrypted message, y the second number received,
3314
+ and p and q be the private keys.
3315
+ 2. Compute, r_p = y^((p+1)/4 ^ L) mod p and
3316
+ r_q = y^((q+1)/4 ^ L) mod q.
3317
+ 3. Compute x_0 = (q(q^-1 mod p)r_p + p(p^-1 mod q)r_q) mod N.
3318
+ 4. From, recompute the bits using the BBS generator, as in the
3319
+ encryption algorithm.
3320
+ 5. Compute original message by XORing c and b.
3321
+
3322
+ Parameters
3323
+ ==========
3324
+
3325
+ message
3326
+ Tuple of encrypted message and a non-negative integer.
3327
+
3328
+ key
3329
+ Tuple of private keys.
3330
+
3331
+ Returns
3332
+ =======
3333
+
3334
+ orig_msg
3335
+ The original message
3336
+
3337
+ """
3338
+
3339
+ p, q = key
3340
+ encrypt_msg, y = message
3341
+ public_key = p * q
3342
+ L = len(encrypt_msg)
3343
+ p_t = ((p + 1)/4)**L
3344
+ q_t = ((q + 1)/4)**L
3345
+ r_p = pow(int(y), int(p_t), int(p))
3346
+ r_q = pow(int(y), int(q_t), int(q))
3347
+
3348
+ x = (q * mod_inverse(q, p) * r_p + p * mod_inverse(p, q) * r_q) % public_key
3349
+
3350
+ orig_bits = []
3351
+ for _ in range(L):
3352
+ orig_bits.append(x % 2)
3353
+ x = x**2 % public_key
3354
+
3355
+ orig_msg = 0
3356
+ for (m, b) in zip(encrypt_msg, orig_bits):
3357
+ orig_msg = orig_msg * 2
3358
+ orig_msg += (m ^ b)
3359
+
3360
+ return orig_msg
env-llmeval/lib/python3.10/site-packages/sympy/crypto/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (183 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/crypto/tests/__pycache__/test_crypto.cpython-310.pyc ADDED
Binary file (21 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/crypto/tests/test_crypto.py ADDED
@@ -0,0 +1,562 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import symbols
2
+ from sympy.crypto.crypto import (cycle_list,
3
+ encipher_shift, encipher_affine, encipher_substitution,
4
+ check_and_join, encipher_vigenere, decipher_vigenere,
5
+ encipher_hill, decipher_hill, encipher_bifid5, encipher_bifid6,
6
+ bifid5_square, bifid6_square, bifid5, bifid6,
7
+ decipher_bifid5, decipher_bifid6, encipher_kid_rsa,
8
+ decipher_kid_rsa, kid_rsa_private_key, kid_rsa_public_key,
9
+ decipher_rsa, rsa_private_key, rsa_public_key, encipher_rsa,
10
+ lfsr_connection_polynomial, lfsr_autocorrelation, lfsr_sequence,
11
+ encode_morse, decode_morse, elgamal_private_key, elgamal_public_key,
12
+ encipher_elgamal, decipher_elgamal, dh_private_key, dh_public_key,
13
+ dh_shared_key, decipher_shift, decipher_affine, encipher_bifid,
14
+ decipher_bifid, bifid_square, padded_key, uniq, decipher_gm,
15
+ encipher_gm, gm_public_key, gm_private_key, encipher_bg, decipher_bg,
16
+ bg_private_key, bg_public_key, encipher_rot13, decipher_rot13,
17
+ encipher_atbash, decipher_atbash, NonInvertibleCipherWarning,
18
+ encipher_railfence, decipher_railfence)
19
+ from sympy.matrices import Matrix
20
+ from sympy.ntheory import isprime, is_primitive_root
21
+ from sympy.polys.domains import FF
22
+
23
+ from sympy.testing.pytest import raises, warns
24
+
25
+ from sympy.core.random import randrange
26
+
27
+ def test_encipher_railfence():
28
+ assert encipher_railfence("hello world",2) == "hlowrdel ol"
29
+ assert encipher_railfence("hello world",3) == "horel ollwd"
30
+ assert encipher_railfence("hello world",4) == "hwe olordll"
31
+
32
+ def test_decipher_railfence():
33
+ assert decipher_railfence("hlowrdel ol",2) == "hello world"
34
+ assert decipher_railfence("horel ollwd",3) == "hello world"
35
+ assert decipher_railfence("hwe olordll",4) == "hello world"
36
+
37
+
38
+ def test_cycle_list():
39
+ assert cycle_list(3, 4) == [3, 0, 1, 2]
40
+ assert cycle_list(-1, 4) == [3, 0, 1, 2]
41
+ assert cycle_list(1, 4) == [1, 2, 3, 0]
42
+
43
+
44
+ def test_encipher_shift():
45
+ assert encipher_shift("ABC", 0) == "ABC"
46
+ assert encipher_shift("ABC", 1) == "BCD"
47
+ assert encipher_shift("ABC", -1) == "ZAB"
48
+ assert decipher_shift("ZAB", -1) == "ABC"
49
+
50
+ def test_encipher_rot13():
51
+ assert encipher_rot13("ABC") == "NOP"
52
+ assert encipher_rot13("NOP") == "ABC"
53
+ assert decipher_rot13("ABC") == "NOP"
54
+ assert decipher_rot13("NOP") == "ABC"
55
+
56
+
57
+ def test_encipher_affine():
58
+ assert encipher_affine("ABC", (1, 0)) == "ABC"
59
+ assert encipher_affine("ABC", (1, 1)) == "BCD"
60
+ assert encipher_affine("ABC", (-1, 0)) == "AZY"
61
+ assert encipher_affine("ABC", (-1, 1), symbols="ABCD") == "BAD"
62
+ assert encipher_affine("123", (-1, 1), symbols="1234") == "214"
63
+ assert encipher_affine("ABC", (3, 16)) == "QTW"
64
+ assert decipher_affine("QTW", (3, 16)) == "ABC"
65
+
66
+ def test_encipher_atbash():
67
+ assert encipher_atbash("ABC") == "ZYX"
68
+ assert encipher_atbash("ZYX") == "ABC"
69
+ assert decipher_atbash("ABC") == "ZYX"
70
+ assert decipher_atbash("ZYX") == "ABC"
71
+
72
+ def test_encipher_substitution():
73
+ assert encipher_substitution("ABC", "BAC", "ABC") == "BAC"
74
+ assert encipher_substitution("123", "1243", "1234") == "124"
75
+
76
+
77
+ def test_check_and_join():
78
+ assert check_and_join("abc") == "abc"
79
+ assert check_and_join(uniq("aaabc")) == "abc"
80
+ assert check_and_join("ab c".split()) == "abc"
81
+ assert check_and_join("abc", "a", filter=True) == "a"
82
+ raises(ValueError, lambda: check_and_join('ab', 'a'))
83
+
84
+
85
+ def test_encipher_vigenere():
86
+ assert encipher_vigenere("ABC", "ABC") == "ACE"
87
+ assert encipher_vigenere("ABC", "ABC", symbols="ABCD") == "ACA"
88
+ assert encipher_vigenere("ABC", "AB", symbols="ABCD") == "ACC"
89
+ assert encipher_vigenere("AB", "ABC", symbols="ABCD") == "AC"
90
+ assert encipher_vigenere("A", "ABC", symbols="ABCD") == "A"
91
+
92
+
93
+ def test_decipher_vigenere():
94
+ assert decipher_vigenere("ABC", "ABC") == "AAA"
95
+ assert decipher_vigenere("ABC", "ABC", symbols="ABCD") == "AAA"
96
+ assert decipher_vigenere("ABC", "AB", symbols="ABCD") == "AAC"
97
+ assert decipher_vigenere("AB", "ABC", symbols="ABCD") == "AA"
98
+ assert decipher_vigenere("A", "ABC", symbols="ABCD") == "A"
99
+
100
+
101
+ def test_encipher_hill():
102
+ A = Matrix(2, 2, [1, 2, 3, 5])
103
+ assert encipher_hill("ABCD", A) == "CFIV"
104
+ A = Matrix(2, 2, [1, 0, 0, 1])
105
+ assert encipher_hill("ABCD", A) == "ABCD"
106
+ assert encipher_hill("ABCD", A, symbols="ABCD") == "ABCD"
107
+ A = Matrix(2, 2, [1, 2, 3, 5])
108
+ assert encipher_hill("ABCD", A, symbols="ABCD") == "CBAB"
109
+ assert encipher_hill("AB", A, symbols="ABCD") == "CB"
110
+ # message length, n, does not need to be a multiple of k;
111
+ # it is padded
112
+ assert encipher_hill("ABA", A) == "CFGC"
113
+ assert encipher_hill("ABA", A, pad="Z") == "CFYV"
114
+
115
+
116
+ def test_decipher_hill():
117
+ A = Matrix(2, 2, [1, 2, 3, 5])
118
+ assert decipher_hill("CFIV", A) == "ABCD"
119
+ A = Matrix(2, 2, [1, 0, 0, 1])
120
+ assert decipher_hill("ABCD", A) == "ABCD"
121
+ assert decipher_hill("ABCD", A, symbols="ABCD") == "ABCD"
122
+ A = Matrix(2, 2, [1, 2, 3, 5])
123
+ assert decipher_hill("CBAB", A, symbols="ABCD") == "ABCD"
124
+ assert decipher_hill("CB", A, symbols="ABCD") == "AB"
125
+ # n does not need to be a multiple of k
126
+ assert decipher_hill("CFA", A) == "ABAA"
127
+
128
+
129
+ def test_encipher_bifid5():
130
+ assert encipher_bifid5("AB", "AB") == "AB"
131
+ assert encipher_bifid5("AB", "CD") == "CO"
132
+ assert encipher_bifid5("ab", "c") == "CH"
133
+ assert encipher_bifid5("a bc", "b") == "BAC"
134
+
135
+
136
+ def test_bifid5_square():
137
+ A = bifid5
138
+ f = lambda i, j: symbols(A[5*i + j])
139
+ M = Matrix(5, 5, f)
140
+ assert bifid5_square("") == M
141
+
142
+
143
+ def test_decipher_bifid5():
144
+ assert decipher_bifid5("AB", "AB") == "AB"
145
+ assert decipher_bifid5("CO", "CD") == "AB"
146
+ assert decipher_bifid5("ch", "c") == "AB"
147
+ assert decipher_bifid5("b ac", "b") == "ABC"
148
+
149
+
150
+ def test_encipher_bifid6():
151
+ assert encipher_bifid6("AB", "AB") == "AB"
152
+ assert encipher_bifid6("AB", "CD") == "CP"
153
+ assert encipher_bifid6("ab", "c") == "CI"
154
+ assert encipher_bifid6("a bc", "b") == "BAC"
155
+
156
+
157
+ def test_decipher_bifid6():
158
+ assert decipher_bifid6("AB", "AB") == "AB"
159
+ assert decipher_bifid6("CP", "CD") == "AB"
160
+ assert decipher_bifid6("ci", "c") == "AB"
161
+ assert decipher_bifid6("b ac", "b") == "ABC"
162
+
163
+
164
+ def test_bifid6_square():
165
+ A = bifid6
166
+ f = lambda i, j: symbols(A[6*i + j])
167
+ M = Matrix(6, 6, f)
168
+ assert bifid6_square("") == M
169
+
170
+
171
+ def test_rsa_public_key():
172
+ assert rsa_public_key(2, 3, 1) == (6, 1)
173
+ assert rsa_public_key(5, 3, 3) == (15, 3)
174
+
175
+ with warns(NonInvertibleCipherWarning):
176
+ assert rsa_public_key(2, 2, 1) == (4, 1)
177
+ assert rsa_public_key(8, 8, 8) is False
178
+
179
+
180
+ def test_rsa_private_key():
181
+ assert rsa_private_key(2, 3, 1) == (6, 1)
182
+ assert rsa_private_key(5, 3, 3) == (15, 3)
183
+ assert rsa_private_key(23,29,5) == (667,493)
184
+
185
+ with warns(NonInvertibleCipherWarning):
186
+ assert rsa_private_key(2, 2, 1) == (4, 1)
187
+ assert rsa_private_key(8, 8, 8) is False
188
+
189
+
190
+ def test_rsa_large_key():
191
+ # Sample from
192
+ # http://www.herongyang.com/Cryptography/JCE-Public-Key-RSA-Private-Public-Key-Pair-Sample.html
193
+ p = int('101565610013301240713207239558950144682174355406589305284428666'\
194
+ '903702505233009')
195
+ q = int('894687191887545488935455605955948413812376003053143521429242133'\
196
+ '12069293984003')
197
+ e = int('65537')
198
+ d = int('893650581832704239530398858744759129594796235440844479456143566'\
199
+ '6999402846577625762582824202269399672579058991442587406384754958587'\
200
+ '400493169361356902030209')
201
+ assert rsa_public_key(p, q, e) == (p*q, e)
202
+ assert rsa_private_key(p, q, e) == (p*q, d)
203
+
204
+
205
+ def test_encipher_rsa():
206
+ puk = rsa_public_key(2, 3, 1)
207
+ assert encipher_rsa(2, puk) == 2
208
+ puk = rsa_public_key(5, 3, 3)
209
+ assert encipher_rsa(2, puk) == 8
210
+
211
+ with warns(NonInvertibleCipherWarning):
212
+ puk = rsa_public_key(2, 2, 1)
213
+ assert encipher_rsa(2, puk) == 2
214
+
215
+
216
+ def test_decipher_rsa():
217
+ prk = rsa_private_key(2, 3, 1)
218
+ assert decipher_rsa(2, prk) == 2
219
+ prk = rsa_private_key(5, 3, 3)
220
+ assert decipher_rsa(8, prk) == 2
221
+
222
+ with warns(NonInvertibleCipherWarning):
223
+ prk = rsa_private_key(2, 2, 1)
224
+ assert decipher_rsa(2, prk) == 2
225
+
226
+
227
+ def test_mutltiprime_rsa_full_example():
228
+ # Test example from
229
+ # https://iopscience.iop.org/article/10.1088/1742-6596/995/1/012030
230
+ puk = rsa_public_key(2, 3, 5, 7, 11, 13, 7)
231
+ prk = rsa_private_key(2, 3, 5, 7, 11, 13, 7)
232
+ assert puk == (30030, 7)
233
+ assert prk == (30030, 823)
234
+
235
+ msg = 10
236
+ encrypted = encipher_rsa(2 * msg - 15, puk)
237
+ assert encrypted == 18065
238
+ decrypted = (decipher_rsa(encrypted, prk) + 15) / 2
239
+ assert decrypted == msg
240
+
241
+ # Test example from
242
+ # https://www.scirp.org/pdf/JCC_2018032215502008.pdf
243
+ puk1 = rsa_public_key(53, 41, 43, 47, 41)
244
+ prk1 = rsa_private_key(53, 41, 43, 47, 41)
245
+ puk2 = rsa_public_key(53, 41, 43, 47, 97)
246
+ prk2 = rsa_private_key(53, 41, 43, 47, 97)
247
+
248
+ assert puk1 == (4391633, 41)
249
+ assert prk1 == (4391633, 294041)
250
+ assert puk2 == (4391633, 97)
251
+ assert prk2 == (4391633, 455713)
252
+
253
+ msg = 12321
254
+ encrypted = encipher_rsa(encipher_rsa(msg, puk1), puk2)
255
+ assert encrypted == 1081588
256
+ decrypted = decipher_rsa(decipher_rsa(encrypted, prk2), prk1)
257
+ assert decrypted == msg
258
+
259
+
260
+ def test_rsa_crt_extreme():
261
+ p = int(
262
+ '10177157607154245068023861503693082120906487143725062283406501' \
263
+ '54082258226204046999838297167140821364638180697194879500245557' \
264
+ '65445186962893346463841419427008800341257468600224049986260471' \
265
+ '92257248163014468841725476918639415726709736077813632961290911' \
266
+ '0256421232977833028677441206049309220354796014376698325101693')
267
+
268
+ q = int(
269
+ '28752342353095132872290181526607275886182793241660805077850801' \
270
+ '75689512797754286972952273553128181861830576836289738668745250' \
271
+ '34028199691128870676414118458442900035778874482624765513861643' \
272
+ '27966696316822188398336199002306588703902894100476186823849595' \
273
+ '103239410527279605442148285816149368667083114802852804976893')
274
+
275
+ r = int(
276
+ '17698229259868825776879500736350186838850961935956310134378261' \
277
+ '89771862186717463067541369694816245225291921138038800171125596' \
278
+ '07315449521981157084370187887650624061033066022458512942411841' \
279
+ '18747893789972315277160085086164119879536041875335384844820566' \
280
+ '0287479617671726408053319619892052000850883994343378882717849')
281
+
282
+ s = int(
283
+ '68925428438585431029269182233502611027091755064643742383515623' \
284
+ '64321310582896893395529367074942808353187138794422745718419645' \
285
+ '28291231865157212604266903677599180789896916456120289112752835' \
286
+ '98502265889669730331688206825220074713977607415178738015831030' \
287
+ '364290585369150502819743827343552098197095520550865360159439'
288
+ )
289
+
290
+ t = int(
291
+ '69035483433453632820551311892368908779778144568711455301541094' \
292
+ '31487047642322695357696860925747923189635033183069823820910521' \
293
+ '71172909106797748883261493224162414050106920442445896819806600' \
294
+ '15448444826108008217972129130625571421904893252804729877353352' \
295
+ '739420480574842850202181462656251626522910618936534699566291'
296
+ )
297
+
298
+ e = 65537
299
+ puk = rsa_public_key(p, q, r, s, t, e)
300
+ prk = rsa_private_key(p, q, r, s, t, e)
301
+
302
+ plaintext = 1000
303
+ ciphertext_1 = encipher_rsa(plaintext, puk)
304
+ ciphertext_2 = encipher_rsa(plaintext, puk, [p, q, r, s, t])
305
+ assert ciphertext_1 == ciphertext_2
306
+ assert decipher_rsa(ciphertext_1, prk) == \
307
+ decipher_rsa(ciphertext_1, prk, [p, q, r, s, t])
308
+
309
+
310
+ def test_rsa_exhaustive():
311
+ p, q = 61, 53
312
+ e = 17
313
+ puk = rsa_public_key(p, q, e, totient='Carmichael')
314
+ prk = rsa_private_key(p, q, e, totient='Carmichael')
315
+
316
+ for msg in range(puk[0]):
317
+ encrypted = encipher_rsa(msg, puk)
318
+ decrypted = decipher_rsa(encrypted, prk)
319
+ try:
320
+ assert decrypted == msg
321
+ except AssertionError:
322
+ raise AssertionError(
323
+ "The RSA is not correctly decrypted " \
324
+ "(Original : {}, Encrypted : {}, Decrypted : {})" \
325
+ .format(msg, encrypted, decrypted)
326
+ )
327
+
328
+
329
+ def test_rsa_multiprime_exhanstive():
330
+ primes = [3, 5, 7, 11]
331
+ e = 7
332
+ args = primes + [e]
333
+ puk = rsa_public_key(*args, totient='Carmichael')
334
+ prk = rsa_private_key(*args, totient='Carmichael')
335
+ n = puk[0]
336
+
337
+ for msg in range(n):
338
+ encrypted = encipher_rsa(msg, puk)
339
+ decrypted = decipher_rsa(encrypted, prk)
340
+ try:
341
+ assert decrypted == msg
342
+ except AssertionError:
343
+ raise AssertionError(
344
+ "The RSA is not correctly decrypted " \
345
+ "(Original : {}, Encrypted : {}, Decrypted : {})" \
346
+ .format(msg, encrypted, decrypted)
347
+ )
348
+
349
+
350
+ def test_rsa_multipower_exhanstive():
351
+ from sympy.core.numbers import igcd
352
+ primes = [5, 5, 7]
353
+ e = 7
354
+ args = primes + [e]
355
+ puk = rsa_public_key(*args, multipower=True)
356
+ prk = rsa_private_key(*args, multipower=True)
357
+ n = puk[0]
358
+
359
+ for msg in range(n):
360
+ if igcd(msg, n) != 1:
361
+ continue
362
+
363
+ encrypted = encipher_rsa(msg, puk)
364
+ decrypted = decipher_rsa(encrypted, prk)
365
+ try:
366
+ assert decrypted == msg
367
+ except AssertionError:
368
+ raise AssertionError(
369
+ "The RSA is not correctly decrypted " \
370
+ "(Original : {}, Encrypted : {}, Decrypted : {})" \
371
+ .format(msg, encrypted, decrypted)
372
+ )
373
+
374
+
375
+ def test_kid_rsa_public_key():
376
+ assert kid_rsa_public_key(1, 2, 1, 1) == (5, 2)
377
+ assert kid_rsa_public_key(1, 2, 2, 1) == (8, 3)
378
+ assert kid_rsa_public_key(1, 2, 1, 2) == (7, 2)
379
+
380
+
381
+ def test_kid_rsa_private_key():
382
+ assert kid_rsa_private_key(1, 2, 1, 1) == (5, 3)
383
+ assert kid_rsa_private_key(1, 2, 2, 1) == (8, 3)
384
+ assert kid_rsa_private_key(1, 2, 1, 2) == (7, 4)
385
+
386
+
387
+ def test_encipher_kid_rsa():
388
+ assert encipher_kid_rsa(1, (5, 2)) == 2
389
+ assert encipher_kid_rsa(1, (8, 3)) == 3
390
+ assert encipher_kid_rsa(1, (7, 2)) == 2
391
+
392
+
393
+ def test_decipher_kid_rsa():
394
+ assert decipher_kid_rsa(2, (5, 3)) == 1
395
+ assert decipher_kid_rsa(3, (8, 3)) == 1
396
+ assert decipher_kid_rsa(2, (7, 4)) == 1
397
+
398
+
399
+ def test_encode_morse():
400
+ assert encode_morse('ABC') == '.-|-...|-.-.'
401
+ assert encode_morse('SMS ') == '...|--|...||'
402
+ assert encode_morse('SMS\n') == '...|--|...||'
403
+ assert encode_morse('') == ''
404
+ assert encode_morse(' ') == '||'
405
+ assert encode_morse(' ', sep='`') == '``'
406
+ assert encode_morse(' ', sep='``') == '````'
407
+ assert encode_morse('!@#$%^&*()_+') == '-.-.--|.--.-.|...-..-|-.--.|-.--.-|..--.-|.-.-.'
408
+ assert encode_morse('12345') == '.----|..---|...--|....-|.....'
409
+ assert encode_morse('67890') == '-....|--...|---..|----.|-----'
410
+
411
+
412
+ def test_decode_morse():
413
+ assert decode_morse('-.-|.|-.--') == 'KEY'
414
+ assert decode_morse('.-.|..-|-.||') == 'RUN'
415
+ raises(KeyError, lambda: decode_morse('.....----'))
416
+
417
+
418
+ def test_lfsr_sequence():
419
+ raises(TypeError, lambda: lfsr_sequence(1, [1], 1))
420
+ raises(TypeError, lambda: lfsr_sequence([1], 1, 1))
421
+ F = FF(2)
422
+ assert lfsr_sequence([F(1)], [F(1)], 2) == [F(1), F(1)]
423
+ assert lfsr_sequence([F(0)], [F(1)], 2) == [F(1), F(0)]
424
+ F = FF(3)
425
+ assert lfsr_sequence([F(1)], [F(1)], 2) == [F(1), F(1)]
426
+ assert lfsr_sequence([F(0)], [F(2)], 2) == [F(2), F(0)]
427
+ assert lfsr_sequence([F(1)], [F(2)], 2) == [F(2), F(2)]
428
+
429
+
430
+ def test_lfsr_autocorrelation():
431
+ raises(TypeError, lambda: lfsr_autocorrelation(1, 2, 3))
432
+ F = FF(2)
433
+ s = lfsr_sequence([F(1), F(0)], [F(0), F(1)], 5)
434
+ assert lfsr_autocorrelation(s, 2, 0) == 1
435
+ assert lfsr_autocorrelation(s, 2, 1) == -1
436
+
437
+
438
+ def test_lfsr_connection_polynomial():
439
+ F = FF(2)
440
+ x = symbols("x")
441
+ s = lfsr_sequence([F(1), F(0)], [F(0), F(1)], 5)
442
+ assert lfsr_connection_polynomial(s) == x**2 + 1
443
+ s = lfsr_sequence([F(1), F(1)], [F(0), F(1)], 5)
444
+ assert lfsr_connection_polynomial(s) == x**2 + x + 1
445
+
446
+
447
+ def test_elgamal_private_key():
448
+ a, b, _ = elgamal_private_key(digit=100)
449
+ assert isprime(a)
450
+ assert is_primitive_root(b, a)
451
+ assert len(bin(a)) >= 102
452
+
453
+
454
+ def test_elgamal():
455
+ dk = elgamal_private_key(5)
456
+ ek = elgamal_public_key(dk)
457
+ P = ek[0]
458
+ assert P - 1 == decipher_elgamal(encipher_elgamal(P - 1, ek), dk)
459
+ raises(ValueError, lambda: encipher_elgamal(P, dk))
460
+ raises(ValueError, lambda: encipher_elgamal(-1, dk))
461
+
462
+
463
+ def test_dh_private_key():
464
+ p, g, _ = dh_private_key(digit = 100)
465
+ assert isprime(p)
466
+ assert is_primitive_root(g, p)
467
+ assert len(bin(p)) >= 102
468
+
469
+
470
+ def test_dh_public_key():
471
+ p1, g1, a = dh_private_key(digit = 100)
472
+ p2, g2, ga = dh_public_key((p1, g1, a))
473
+ assert p1 == p2
474
+ assert g1 == g2
475
+ assert ga == pow(g1, a, p1)
476
+
477
+
478
+ def test_dh_shared_key():
479
+ prk = dh_private_key(digit = 100)
480
+ p, _, ga = dh_public_key(prk)
481
+ b = randrange(2, p)
482
+ sk = dh_shared_key((p, _, ga), b)
483
+ assert sk == pow(ga, b, p)
484
+ raises(ValueError, lambda: dh_shared_key((1031, 14, 565), 2000))
485
+
486
+
487
+ def test_padded_key():
488
+ assert padded_key('b', 'ab') == 'ba'
489
+ raises(ValueError, lambda: padded_key('ab', 'ace'))
490
+ raises(ValueError, lambda: padded_key('ab', 'abba'))
491
+
492
+
493
+ def test_bifid():
494
+ raises(ValueError, lambda: encipher_bifid('abc', 'b', 'abcde'))
495
+ assert encipher_bifid('abc', 'b', 'abcd') == 'bdb'
496
+ raises(ValueError, lambda: decipher_bifid('bdb', 'b', 'abcde'))
497
+ assert encipher_bifid('bdb', 'b', 'abcd') == 'abc'
498
+ raises(ValueError, lambda: bifid_square('abcde'))
499
+ assert bifid5_square("B") == \
500
+ bifid5_square('BACDEFGHIKLMNOPQRSTUVWXYZ')
501
+ assert bifid6_square('B0') == \
502
+ bifid6_square('B0ACDEFGHIJKLMNOPQRSTUVWXYZ123456789')
503
+
504
+
505
+ def test_encipher_decipher_gm():
506
+ ps = [131, 137, 139, 149, 151, 157, 163, 167,
507
+ 173, 179, 181, 191, 193, 197, 199]
508
+ qs = [89, 97, 101, 103, 107, 109, 113, 127,
509
+ 131, 137, 139, 149, 151, 157, 47]
510
+ messages = [
511
+ 0, 32855, 34303, 14805, 1280, 75859, 38368,
512
+ 724, 60356, 51675, 76697, 61854, 18661,
513
+ ]
514
+ for p, q in zip(ps, qs):
515
+ pri = gm_private_key(p, q)
516
+ for msg in messages:
517
+ pub = gm_public_key(p, q)
518
+ enc = encipher_gm(msg, pub)
519
+ dec = decipher_gm(enc, pri)
520
+ assert dec == msg
521
+
522
+
523
+ def test_gm_private_key():
524
+ raises(ValueError, lambda: gm_public_key(13, 15))
525
+ raises(ValueError, lambda: gm_public_key(0, 0))
526
+ raises(ValueError, lambda: gm_public_key(0, 5))
527
+ assert 17, 19 == gm_public_key(17, 19)
528
+
529
+
530
+ def test_gm_public_key():
531
+ assert 323 == gm_public_key(17, 19)[1]
532
+ assert 15 == gm_public_key(3, 5)[1]
533
+ raises(ValueError, lambda: gm_public_key(15, 19))
534
+
535
+ def test_encipher_decipher_bg():
536
+ ps = [67, 7, 71, 103, 11, 43, 107, 47,
537
+ 79, 19, 83, 23, 59, 127, 31]
538
+ qs = qs = [7, 71, 103, 11, 43, 107, 47,
539
+ 79, 19, 83, 23, 59, 127, 31, 67]
540
+ messages = [
541
+ 0, 328, 343, 148, 1280, 758, 383,
542
+ 724, 603, 516, 766, 618, 186,
543
+ ]
544
+
545
+ for p, q in zip(ps, qs):
546
+ pri = bg_private_key(p, q)
547
+ for msg in messages:
548
+ pub = bg_public_key(p, q)
549
+ enc = encipher_bg(msg, pub)
550
+ dec = decipher_bg(enc, pri)
551
+ assert dec == msg
552
+
553
+ def test_bg_private_key():
554
+ raises(ValueError, lambda: bg_private_key(8, 16))
555
+ raises(ValueError, lambda: bg_private_key(8, 8))
556
+ raises(ValueError, lambda: bg_private_key(13, 17))
557
+ assert 23, 31 == bg_private_key(23, 31)
558
+
559
+ def test_bg_public_key():
560
+ assert 5293 == bg_public_key(67, 79)
561
+ assert 713 == bg_public_key(23, 31)
562
+ raises(ValueError, lambda: bg_private_key(13, 17))
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (191 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_gaussopt.cpython-310.pyc ADDED
Binary file (4.11 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_medium.cpython-310.pyc ADDED
Binary file (2.17 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_polarization.cpython-310.pyc ADDED
Binary file (2.21 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_utils.cpython-310.pyc ADDED
Binary file (8.23 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/__pycache__/test_waves.cpython-310.pyc ADDED
Binary file (3.54 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/test_gaussopt.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.evalf import N
2
+ from sympy.core.numbers import (Float, I, oo, pi)
3
+ from sympy.core.symbol import symbols
4
+ from sympy.functions.elementary.miscellaneous import sqrt
5
+ from sympy.functions.elementary.trigonometric import atan2
6
+ from sympy.matrices.dense import Matrix
7
+ from sympy.polys.polytools import factor
8
+
9
+ from sympy.physics.optics import (BeamParameter, CurvedMirror,
10
+ CurvedRefraction, FlatMirror, FlatRefraction, FreeSpace, GeometricRay,
11
+ RayTransferMatrix, ThinLens, conjugate_gauss_beams,
12
+ gaussian_conj, geometric_conj_ab, geometric_conj_af, geometric_conj_bf,
13
+ rayleigh2waist, waist2rayleigh)
14
+
15
+
16
+ def streq(a, b):
17
+ return str(a) == str(b)
18
+
19
+
20
+ def test_gauss_opt():
21
+ mat = RayTransferMatrix(1, 2, 3, 4)
22
+ assert mat == Matrix([[1, 2], [3, 4]])
23
+ assert mat == RayTransferMatrix( Matrix([[1, 2], [3, 4]]) )
24
+ assert [mat.A, mat.B, mat.C, mat.D] == [1, 2, 3, 4]
25
+
26
+ d, f, h, n1, n2, R = symbols('d f h n1 n2 R')
27
+ lens = ThinLens(f)
28
+ assert lens == Matrix([[ 1, 0], [-1/f, 1]])
29
+ assert lens.C == -1/f
30
+ assert FreeSpace(d) == Matrix([[ 1, d], [0, 1]])
31
+ assert FlatRefraction(n1, n2) == Matrix([[1, 0], [0, n1/n2]])
32
+ assert CurvedRefraction(
33
+ R, n1, n2) == Matrix([[1, 0], [(n1 - n2)/(R*n2), n1/n2]])
34
+ assert FlatMirror() == Matrix([[1, 0], [0, 1]])
35
+ assert CurvedMirror(R) == Matrix([[ 1, 0], [-2/R, 1]])
36
+ assert ThinLens(f) == Matrix([[ 1, 0], [-1/f, 1]])
37
+
38
+ mul = CurvedMirror(R)*FreeSpace(d)
39
+ mul_mat = Matrix([[ 1, 0], [-2/R, 1]])*Matrix([[ 1, d], [0, 1]])
40
+ assert mul.A == mul_mat[0, 0]
41
+ assert mul.B == mul_mat[0, 1]
42
+ assert mul.C == mul_mat[1, 0]
43
+ assert mul.D == mul_mat[1, 1]
44
+
45
+ angle = symbols('angle')
46
+ assert GeometricRay(h, angle) == Matrix([[ h], [angle]])
47
+ assert FreeSpace(
48
+ d)*GeometricRay(h, angle) == Matrix([[angle*d + h], [angle]])
49
+ assert GeometricRay( Matrix( ((h,), (angle,)) ) ) == Matrix([[h], [angle]])
50
+ assert (FreeSpace(d)*GeometricRay(h, angle)).height == angle*d + h
51
+ assert (FreeSpace(d)*GeometricRay(h, angle)).angle == angle
52
+
53
+ p = BeamParameter(530e-9, 1, w=1e-3)
54
+ assert streq(p.q, 1 + 1.88679245283019*I*pi)
55
+ assert streq(N(p.q), 1.0 + 5.92753330865999*I)
56
+ assert streq(N(p.w_0), Float(0.00100000000000000))
57
+ assert streq(N(p.z_r), Float(5.92753330865999))
58
+ fs = FreeSpace(10)
59
+ p1 = fs*p
60
+ assert streq(N(p.w), Float(0.00101413072159615))
61
+ assert streq(N(p1.w), Float(0.00210803120913829))
62
+
63
+ w, wavelen = symbols('w wavelen')
64
+ assert waist2rayleigh(w, wavelen) == pi*w**2/wavelen
65
+ z_r, wavelen = symbols('z_r wavelen')
66
+ assert rayleigh2waist(z_r, wavelen) == sqrt(wavelen*z_r)/sqrt(pi)
67
+
68
+ a, b, f = symbols('a b f')
69
+ assert geometric_conj_ab(a, b) == a*b/(a + b)
70
+ assert geometric_conj_af(a, f) == a*f/(a - f)
71
+ assert geometric_conj_bf(b, f) == b*f/(b - f)
72
+ assert geometric_conj_ab(oo, b) == b
73
+ assert geometric_conj_ab(a, oo) == a
74
+
75
+ s_in, z_r_in, f = symbols('s_in z_r_in f')
76
+ assert gaussian_conj(
77
+ s_in, z_r_in, f)[0] == 1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f)
78
+ assert gaussian_conj(
79
+ s_in, z_r_in, f)[1] == z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2)
80
+ assert gaussian_conj(
81
+ s_in, z_r_in, f)[2] == 1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2)
82
+
83
+ l, w_i, w_o, f = symbols('l w_i w_o f')
84
+ assert conjugate_gauss_beams(l, w_i, w_o, f=f)[0] == f*(
85
+ -sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)) + 1)
86
+ assert factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1]) == f*w_o**2*(
87
+ w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))/w_i**2
88
+ assert conjugate_gauss_beams(l, w_i, w_o, f=f)[2] == f
89
+
90
+ z, l, w_0 = symbols('z l w_0', positive=True)
91
+ p = BeamParameter(l, z, w=w_0)
92
+ assert p.radius == z*(pi**2*w_0**4/(l**2*z**2) + 1)
93
+ assert p.w == w_0*sqrt(l**2*z**2/(pi**2*w_0**4) + 1)
94
+ assert p.w_0 == w_0
95
+ assert p.divergence == l/(pi*w_0)
96
+ assert p.gouy == atan2(z, pi*w_0**2/l)
97
+ assert p.waist_approximation_limit == 2*l/pi
98
+
99
+ p = BeamParameter(530e-9, 1, w=1e-3, n=2)
100
+ assert streq(p.q, 1 + 3.77358490566038*I*pi)
101
+ assert streq(N(p.z_r), Float(11.8550666173200))
102
+ assert streq(N(p.w_0), Float(0.00100000000000000))
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/test_medium.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.functions.elementary.miscellaneous import sqrt
2
+ from sympy.physics.optics import Medium
3
+ from sympy.abc import epsilon, mu, n
4
+ from sympy.physics.units import speed_of_light, u0, e0, m, kg, s, A
5
+
6
+ from sympy.testing.pytest import raises
7
+
8
+ c = speed_of_light.convert_to(m/s)
9
+ e0 = e0.convert_to(A**2*s**4/(kg*m**3))
10
+ u0 = u0.convert_to(m*kg/(A**2*s**2))
11
+
12
+
13
+ def test_medium():
14
+ m1 = Medium('m1')
15
+ assert m1.intrinsic_impedance == sqrt(u0/e0)
16
+ assert m1.speed == 1/sqrt(e0*u0)
17
+ assert m1.refractive_index == c*sqrt(e0*u0)
18
+ assert m1.permittivity == e0
19
+ assert m1.permeability == u0
20
+ m2 = Medium('m2', epsilon, mu)
21
+ assert m2.intrinsic_impedance == sqrt(mu/epsilon)
22
+ assert m2.speed == 1/sqrt(epsilon*mu)
23
+ assert m2.refractive_index == c*sqrt(epsilon*mu)
24
+ assert m2.permittivity == epsilon
25
+ assert m2.permeability == mu
26
+ # Increasing electric permittivity and magnetic permeability
27
+ # by small amount from its value in vacuum.
28
+ m3 = Medium('m3', 9.0*10**(-12)*s**4*A**2/(m**3*kg), 1.45*10**(-6)*kg*m/(A**2*s**2))
29
+ assert m3.refractive_index > m1.refractive_index
30
+ assert m3 != m1
31
+ # Decreasing electric permittivity and magnetic permeability
32
+ # by small amount from its value in vacuum.
33
+ m4 = Medium('m4', 7.0*10**(-12)*s**4*A**2/(m**3*kg), 1.15*10**(-6)*kg*m/(A**2*s**2))
34
+ assert m4.refractive_index < m1.refractive_index
35
+ m5 = Medium('m5', permittivity=710*10**(-12)*s**4*A**2/(m**3*kg), n=1.33)
36
+ assert abs(m5.intrinsic_impedance - 6.24845417765552*kg*m**2/(A**2*s**3)) \
37
+ < 1e-12*kg*m**2/(A**2*s**3)
38
+ assert abs(m5.speed - 225407863.157895*m/s) < 1e-6*m/s
39
+ assert abs(m5.refractive_index - 1.33000000000000) < 1e-12
40
+ assert abs(m5.permittivity - 7.1e-10*A**2*s**4/(kg*m**3)) \
41
+ < 1e-20*A**2*s**4/(kg*m**3)
42
+ assert abs(m5.permeability - 2.77206575232851e-8*kg*m/(A**2*s**2)) \
43
+ < 1e-20*kg*m/(A**2*s**2)
44
+ m6 = Medium('m6', None, mu, n)
45
+ assert m6.permittivity == n**2/(c**2*mu)
46
+ # test for equality of refractive indices
47
+ assert Medium('m7').refractive_index == Medium('m8', e0, u0).refractive_index
48
+ raises(ValueError, lambda:Medium('m9', e0, u0, 2))
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/test_polarization.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.physics.optics.polarization import (jones_vector, stokes_vector,
2
+ jones_2_stokes, linear_polarizer, phase_retarder, half_wave_retarder,
3
+ quarter_wave_retarder, transmissive_filter, reflective_filter,
4
+ mueller_matrix, polarizing_beam_splitter)
5
+ from sympy.core.numbers import (I, pi)
6
+ from sympy.core.singleton import S
7
+ from sympy.core.symbol import symbols
8
+ from sympy.functions.elementary.exponential import exp
9
+ from sympy.matrices.dense import Matrix
10
+
11
+
12
+ def test_polarization():
13
+ assert jones_vector(0, 0) == Matrix([1, 0])
14
+ assert jones_vector(pi/2, 0) == Matrix([0, 1])
15
+ #################################################################
16
+ assert stokes_vector(0, 0) == Matrix([1, 1, 0, 0])
17
+ assert stokes_vector(pi/2, 0) == Matrix([1, -1, 0, 0])
18
+ #################################################################
19
+ H = jones_vector(0, 0)
20
+ V = jones_vector(pi/2, 0)
21
+ D = jones_vector(pi/4, 0)
22
+ A = jones_vector(-pi/4, 0)
23
+ R = jones_vector(0, pi/4)
24
+ L = jones_vector(0, -pi/4)
25
+
26
+ res = [Matrix([1, 1, 0, 0]),
27
+ Matrix([1, -1, 0, 0]),
28
+ Matrix([1, 0, 1, 0]),
29
+ Matrix([1, 0, -1, 0]),
30
+ Matrix([1, 0, 0, 1]),
31
+ Matrix([1, 0, 0, -1])]
32
+
33
+ assert [jones_2_stokes(e) for e in [H, V, D, A, R, L]] == res
34
+ #################################################################
35
+ assert linear_polarizer(0) == Matrix([[1, 0], [0, 0]])
36
+ #################################################################
37
+ delta = symbols("delta", real=True)
38
+ res = Matrix([[exp(-I*delta/2), 0], [0, exp(I*delta/2)]])
39
+ assert phase_retarder(0, delta) == res
40
+ #################################################################
41
+ assert half_wave_retarder(0) == Matrix([[-I, 0], [0, I]])
42
+ #################################################################
43
+ res = Matrix([[exp(-I*pi/4), 0], [0, I*exp(-I*pi/4)]])
44
+ assert quarter_wave_retarder(0) == res
45
+ #################################################################
46
+ assert transmissive_filter(1) == Matrix([[1, 0], [0, 1]])
47
+ #################################################################
48
+ assert reflective_filter(1) == Matrix([[1, 0], [0, -1]])
49
+
50
+ res = Matrix([[S(1)/2, S(1)/2, 0, 0],
51
+ [S(1)/2, S(1)/2, 0, 0],
52
+ [0, 0, 0, 0],
53
+ [0, 0, 0, 0]])
54
+ assert mueller_matrix(linear_polarizer(0)) == res
55
+ #################################################################
56
+ res = Matrix([[1, 0, 0, 0], [0, 0, 0, -I], [0, 0, 1, 0], [0, -I, 0, 0]])
57
+ assert polarizing_beam_splitter() == res
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/test_utils.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import comp, Rational
2
+ from sympy.physics.optics.utils import (refraction_angle, fresnel_coefficients,
3
+ deviation, brewster_angle, critical_angle, lens_makers_formula,
4
+ mirror_formula, lens_formula, hyperfocal_distance,
5
+ transverse_magnification)
6
+ from sympy.physics.optics.medium import Medium
7
+ from sympy.physics.units import e0
8
+
9
+ from sympy.core.numbers import oo
10
+ from sympy.core.symbol import symbols
11
+ from sympy.functions.elementary.miscellaneous import sqrt
12
+ from sympy.matrices.dense import Matrix
13
+ from sympy.geometry.point import Point3D
14
+ from sympy.geometry.line import Ray3D
15
+ from sympy.geometry.plane import Plane
16
+
17
+ from sympy.testing.pytest import raises
18
+
19
+
20
+ ae = lambda a, b, n: comp(a, b, 10**-n)
21
+
22
+
23
+ def test_refraction_angle():
24
+ n1, n2 = symbols('n1, n2')
25
+ m1 = Medium('m1')
26
+ m2 = Medium('m2')
27
+ r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
28
+ i = Matrix([1, 1, 1])
29
+ n = Matrix([0, 0, 1])
30
+ normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
31
+ P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
32
+ assert refraction_angle(r1, 1, 1, n) == Matrix([
33
+ [ 1],
34
+ [ 1],
35
+ [-1]])
36
+ assert refraction_angle([1, 1, 1], 1, 1, n) == Matrix([
37
+ [ 1],
38
+ [ 1],
39
+ [-1]])
40
+ assert refraction_angle((1, 1, 1), 1, 1, n) == Matrix([
41
+ [ 1],
42
+ [ 1],
43
+ [-1]])
44
+ assert refraction_angle(i, 1, 1, [0, 0, 1]) == Matrix([
45
+ [ 1],
46
+ [ 1],
47
+ [-1]])
48
+ assert refraction_angle(i, 1, 1, (0, 0, 1)) == Matrix([
49
+ [ 1],
50
+ [ 1],
51
+ [-1]])
52
+ assert refraction_angle(i, 1, 1, normal_ray) == Matrix([
53
+ [ 1],
54
+ [ 1],
55
+ [-1]])
56
+ assert refraction_angle(i, 1, 1, plane=P) == Matrix([
57
+ [ 1],
58
+ [ 1],
59
+ [-1]])
60
+ assert refraction_angle(r1, 1, 1, plane=P) == \
61
+ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
62
+ assert refraction_angle(r1, m1, 1.33, plane=P) == \
63
+ Ray3D(Point3D(0, 0, 0), Point3D(Rational(100, 133), Rational(100, 133), -789378201649271*sqrt(3)/1000000000000000))
64
+ assert refraction_angle(r1, 1, m2, plane=P) == \
65
+ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
66
+ assert refraction_angle(r1, n1, n2, plane=P) == \
67
+ Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
68
+ assert refraction_angle(r1, 1.33, 1, plane=P) == 0 # TIR
69
+ assert refraction_angle(r1, 1, 1, normal_ray) == \
70
+ Ray3D(Point3D(0, 0, 0), direction_ratio=[1, 1, -1])
71
+ assert ae(refraction_angle(0.5, 1, 2), 0.24207, 5)
72
+ assert ae(refraction_angle(0.5, 2, 1), 1.28293, 5)
73
+ raises(ValueError, lambda: refraction_angle(r1, m1, m2, normal_ray, P))
74
+ raises(TypeError, lambda: refraction_angle(m1, m1, m2)) # can add other values for arg[0]
75
+ raises(TypeError, lambda: refraction_angle(r1, m1, m2, None, i))
76
+ raises(TypeError, lambda: refraction_angle(r1, m1, m2, m2))
77
+
78
+
79
+ def test_fresnel_coefficients():
80
+ assert all(ae(i, j, 5) for i, j in zip(
81
+ fresnel_coefficients(0.5, 1, 1.33),
82
+ [0.11163, -0.17138, 0.83581, 0.82862]))
83
+ assert all(ae(i, j, 5) for i, j in zip(
84
+ fresnel_coefficients(0.5, 1.33, 1),
85
+ [-0.07726, 0.20482, 1.22724, 1.20482]))
86
+ m1 = Medium('m1')
87
+ m2 = Medium('m2', n=2)
88
+ assert all(ae(i, j, 5) for i, j in zip(
89
+ fresnel_coefficients(0.3, m1, m2),
90
+ [0.31784, -0.34865, 0.65892, 0.65135]))
91
+ ans = [[-0.23563, -0.97184], [0.81648, -0.57738]]
92
+ got = fresnel_coefficients(0.6, m2, m1)
93
+ for i, j in zip(got, ans):
94
+ for a, b in zip(i.as_real_imag(), j):
95
+ assert ae(a, b, 5)
96
+
97
+
98
+ def test_deviation():
99
+ n1, n2 = symbols('n1, n2')
100
+ r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
101
+ n = Matrix([0, 0, 1])
102
+ i = Matrix([-1, -1, -1])
103
+ normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
104
+ P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
105
+ assert deviation(r1, 1, 1, normal=n) == 0
106
+ assert deviation(r1, 1, 1, plane=P) == 0
107
+ assert deviation(r1, 1, 1.1, plane=P).evalf(3) + 0.119 < 1e-3
108
+ assert deviation(i, 1, 1.1, normal=normal_ray).evalf(3) + 0.119 < 1e-3
109
+ assert deviation(r1, 1.33, 1, plane=P) is None # TIR
110
+ assert deviation(r1, 1, 1, normal=[0, 0, 1]) == 0
111
+ assert deviation([-1, -1, -1], 1, 1, normal=[0, 0, 1]) == 0
112
+ assert ae(deviation(0.5, 1, 2), -0.25793, 5)
113
+ assert ae(deviation(0.5, 2, 1), 0.78293, 5)
114
+
115
+
116
+ def test_brewster_angle():
117
+ m1 = Medium('m1', n=1)
118
+ m2 = Medium('m2', n=1.33)
119
+ assert ae(brewster_angle(m1, m2), 0.93, 2)
120
+ m1 = Medium('m1', permittivity=e0, n=1)
121
+ m2 = Medium('m2', permittivity=e0, n=1.33)
122
+ assert ae(brewster_angle(m1, m2), 0.93, 2)
123
+ assert ae(brewster_angle(1, 1.33), 0.93, 2)
124
+
125
+
126
+ def test_critical_angle():
127
+ m1 = Medium('m1', n=1)
128
+ m2 = Medium('m2', n=1.33)
129
+ assert ae(critical_angle(m2, m1), 0.85, 2)
130
+
131
+
132
+ def test_lens_makers_formula():
133
+ n1, n2 = symbols('n1, n2')
134
+ m1 = Medium('m1', permittivity=e0, n=1)
135
+ m2 = Medium('m2', permittivity=e0, n=1.33)
136
+ assert lens_makers_formula(n1, n2, 10, -10) == 5.0*n2/(n1 - n2)
137
+ assert ae(lens_makers_formula(m1, m2, 10, -10), -20.15, 2)
138
+ assert ae(lens_makers_formula(1.33, 1, 10, -10), 15.15, 2)
139
+
140
+
141
+ def test_mirror_formula():
142
+ u, v, f = symbols('u, v, f')
143
+ assert mirror_formula(focal_length=f, u=u) == f*u/(-f + u)
144
+ assert mirror_formula(focal_length=f, v=v) == f*v/(-f + v)
145
+ assert mirror_formula(u=u, v=v) == u*v/(u + v)
146
+ assert mirror_formula(u=oo, v=v) == v
147
+ assert mirror_formula(u=oo, v=oo) is oo
148
+ assert mirror_formula(focal_length=oo, u=u) == -u
149
+ assert mirror_formula(u=u, v=oo) == u
150
+ assert mirror_formula(focal_length=oo, v=oo) is oo
151
+ assert mirror_formula(focal_length=f, v=oo) == f
152
+ assert mirror_formula(focal_length=oo, v=v) == -v
153
+ assert mirror_formula(focal_length=oo, u=oo) is oo
154
+ assert mirror_formula(focal_length=f, u=oo) == f
155
+ assert mirror_formula(focal_length=oo, u=u) == -u
156
+ raises(ValueError, lambda: mirror_formula(focal_length=f, u=u, v=v))
157
+
158
+
159
+ def test_lens_formula():
160
+ u, v, f = symbols('u, v, f')
161
+ assert lens_formula(focal_length=f, u=u) == f*u/(f + u)
162
+ assert lens_formula(focal_length=f, v=v) == f*v/(f - v)
163
+ assert lens_formula(u=u, v=v) == u*v/(u - v)
164
+ assert lens_formula(u=oo, v=v) == v
165
+ assert lens_formula(u=oo, v=oo) is oo
166
+ assert lens_formula(focal_length=oo, u=u) == u
167
+ assert lens_formula(u=u, v=oo) == -u
168
+ assert lens_formula(focal_length=oo, v=oo) is -oo
169
+ assert lens_formula(focal_length=oo, v=v) == v
170
+ assert lens_formula(focal_length=f, v=oo) == -f
171
+ assert lens_formula(focal_length=oo, u=oo) is oo
172
+ assert lens_formula(focal_length=oo, u=u) == u
173
+ assert lens_formula(focal_length=f, u=oo) == f
174
+ raises(ValueError, lambda: lens_formula(focal_length=f, u=u, v=v))
175
+
176
+
177
+ def test_hyperfocal_distance():
178
+ f, N, c = symbols('f, N, c')
179
+ assert hyperfocal_distance(f=f, N=N, c=c) == f**2/(N*c)
180
+ assert ae(hyperfocal_distance(f=0.5, N=8, c=0.0033), 9.47, 2)
181
+
182
+
183
+ def test_transverse_magnification():
184
+ si, so = symbols('si, so')
185
+ assert transverse_magnification(si, so) == -si/so
186
+ assert transverse_magnification(30, 15) == -2
187
+
188
+
189
+ def test_lens_makers_formula_thick_lens():
190
+ n1, n2 = symbols('n1, n2')
191
+ m1 = Medium('m1', permittivity=e0, n=1)
192
+ m2 = Medium('m2', permittivity=e0, n=1.33)
193
+ assert ae(lens_makers_formula(m1, m2, 10, -10, d=1), -19.82, 2)
194
+ assert lens_makers_formula(n1, n2, 1, -1, d=0.1) == n2/((2.0 - (0.1*n1 - 0.1*n2)/n1)*(n1 - n2))
195
+
196
+
197
+ def test_lens_makers_formula_plano_lens():
198
+ n1, n2 = symbols('n1, n2')
199
+ m1 = Medium('m1', permittivity=e0, n=1)
200
+ m2 = Medium('m2', permittivity=e0, n=1.33)
201
+ assert ae(lens_makers_formula(m1, m2, 10, oo), -40.30, 2)
202
+ assert lens_makers_formula(n1, n2, 10, oo) == 10.0*n2/(n1 - n2)
env-llmeval/lib/python3.10/site-packages/sympy/physics/optics/tests/test_waves.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import (Derivative, Function)
2
+ from sympy.core.numbers import (I, pi)
3
+ from sympy.core.symbol import (Symbol, symbols)
4
+ from sympy.functions.elementary.miscellaneous import sqrt
5
+ from sympy.functions.elementary.trigonometric import (atan2, cos, sin)
6
+ from sympy.simplify.simplify import simplify
7
+ from sympy.abc import epsilon, mu
8
+ from sympy.functions.elementary.exponential import exp
9
+ from sympy.physics.units import speed_of_light, m, s
10
+ from sympy.physics.optics import TWave
11
+
12
+ from sympy.testing.pytest import raises
13
+
14
+ c = speed_of_light.convert_to(m/s)
15
+
16
+ def test_twave():
17
+ A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f')
18
+ n = Symbol('n') # Refractive index
19
+ t = Symbol('t') # Time
20
+ x = Symbol('x') # Spatial variable
21
+ E = Function('E')
22
+ w1 = TWave(A1, f, phi1)
23
+ w2 = TWave(A2, f, phi2)
24
+ assert w1.amplitude == A1
25
+ assert w1.frequency == f
26
+ assert w1.phase == phi1
27
+ assert w1.wavelength == c/(f*n)
28
+ assert w1.time_period == 1/f
29
+ assert w1.angular_velocity == 2*pi*f
30
+ assert w1.wavenumber == 2*pi*f*n/c
31
+ assert w1.speed == c/n
32
+
33
+ w3 = w1 + w2
34
+ assert w3.amplitude == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)
35
+ assert w3.frequency == f
36
+ assert w3.phase == atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2))
37
+ assert w3.wavelength == c/(f*n)
38
+ assert w3.time_period == 1/f
39
+ assert w3.angular_velocity == 2*pi*f
40
+ assert w3.wavenumber == 2*pi*f*n/c
41
+ assert w3.speed == c/n
42
+ assert simplify(w3.rewrite(sin) - w2.rewrite(sin) - w1.rewrite(sin)) == 0
43
+ assert w3.rewrite('pde') == epsilon*mu*Derivative(E(x, t), t, t) + Derivative(E(x, t), x, x)
44
+ assert w3.rewrite(cos) == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2)
45
+ + A2**2)*cos(pi*f*n*x*s/(149896229*m) - 2*pi*f*t + atan2(A1*sin(phi1)
46
+ + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)))
47
+ assert w3.rewrite(exp) == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2)
48
+ + A2**2)*exp(I*(-2*pi*f*t + atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1)
49
+ + A2*cos(phi2)) + pi*s*f*n*x/(149896229*m)))
50
+
51
+ w4 = TWave(A1, None, 0, 1/f)
52
+ assert w4.frequency == f
53
+
54
+ w5 = w1 - w2
55
+ assert w5.amplitude == sqrt(A1**2 - 2*A1*A2*cos(phi1 - phi2) + A2**2)
56
+ assert w5.frequency == f
57
+ assert w5.phase == atan2(A1*sin(phi1) - A2*sin(phi2), A1*cos(phi1) - A2*cos(phi2))
58
+ assert w5.wavelength == c/(f*n)
59
+ assert w5.time_period == 1/f
60
+ assert w5.angular_velocity == 2*pi*f
61
+ assert w5.wavenumber == 2*pi*f*n/c
62
+ assert w5.speed == c/n
63
+ assert simplify(w5.rewrite(sin) - w1.rewrite(sin) + w2.rewrite(sin)) == 0
64
+ assert w5.rewrite('pde') == epsilon*mu*Derivative(E(x, t), t, t) + Derivative(E(x, t), x, x)
65
+ assert w5.rewrite(cos) == sqrt(A1**2 - 2*A1*A2*cos(phi1 - phi2)
66
+ + A2**2)*cos(-2*pi*f*t + atan2(A1*sin(phi1) - A2*sin(phi2), A1*cos(phi1)
67
+ - A2*cos(phi2)) + pi*s*f*n*x/(149896229*m))
68
+ assert w5.rewrite(exp) == sqrt(A1**2 - 2*A1*A2*cos(phi1 - phi2)
69
+ + A2**2)*exp(I*(-2*pi*f*t + atan2(A1*sin(phi1) - A2*sin(phi2), A1*cos(phi1)
70
+ - A2*cos(phi2)) + pi*s*f*n*x/(149896229*m)))
71
+
72
+ w6 = 2*w1
73
+ assert w6.amplitude == 2*A1
74
+ assert w6.frequency == f
75
+ assert w6.phase == phi1
76
+ w7 = -w6
77
+ assert w7.amplitude == -2*A1
78
+ assert w7.frequency == f
79
+ assert w7.phase == phi1
80
+
81
+ raises(ValueError, lambda:TWave(A1))
82
+ raises(ValueError, lambda:TWave(A1, f, phi1, t))
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (12.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/__pycache__/quantities.cpython-310.pyc ADDED
Binary file (5.29 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (477 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/cgs.cpython-310.pyc ADDED
Binary file (2.39 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/length_weight_time.cpython-310.pyc ADDED
Binary file (4.87 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/mks.cpython-310.pyc ADDED
Binary file (1.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/mksa.cpython-310.pyc ADDED
Binary file (1.69 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/natural.cpython-310.pyc ADDED
Binary file (1.13 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/__pycache__/si.cpython-310.pyc ADDED
Binary file (7.77 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/physics/units/systems/si.py ADDED
@@ -0,0 +1,377 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ SI unit system.
3
+ Based on MKSA, which stands for "meter, kilogram, second, ampere".
4
+ Added kelvin, candela and mole.
5
+
6
+ """
7
+
8
+ from __future__ import annotations
9
+
10
+ from sympy.physics.units import DimensionSystem, Dimension, dHg0
11
+
12
+ from sympy.physics.units.quantities import Quantity
13
+
14
+ from sympy.core.numbers import (Rational, pi)
15
+ from sympy.core.singleton import S
16
+ from sympy.functions.elementary.miscellaneous import sqrt
17
+ from sympy.physics.units.definitions.dimension_definitions import (
18
+ acceleration, action, current, impedance, length, mass, time, velocity,
19
+ amount_of_substance, temperature, information, frequency, force, pressure,
20
+ energy, power, charge, voltage, capacitance, conductance, magnetic_flux,
21
+ magnetic_density, inductance, luminous_intensity
22
+ )
23
+ from sympy.physics.units.definitions import (
24
+ kilogram, newton, second, meter, gram, cd, K, joule, watt, pascal, hertz,
25
+ coulomb, volt, ohm, siemens, farad, henry, tesla, weber, dioptre, lux,
26
+ katal, gray, becquerel, inch, liter, julian_year, gravitational_constant,
27
+ speed_of_light, elementary_charge, planck, hbar, electronvolt,
28
+ avogadro_number, avogadro_constant, boltzmann_constant, electron_rest_mass,
29
+ stefan_boltzmann_constant, Da, atomic_mass_constant, molar_gas_constant,
30
+ faraday_constant, josephson_constant, von_klitzing_constant,
31
+ acceleration_due_to_gravity, magnetic_constant, vacuum_permittivity,
32
+ vacuum_impedance, coulomb_constant, atmosphere, bar, pound, psi, mmHg,
33
+ milli_mass_unit, quart, lightyear, astronomical_unit, planck_mass,
34
+ planck_time, planck_temperature, planck_length, planck_charge, planck_area,
35
+ planck_volume, planck_momentum, planck_energy, planck_force, planck_power,
36
+ planck_density, planck_energy_density, planck_intensity,
37
+ planck_angular_frequency, planck_pressure, planck_current, planck_voltage,
38
+ planck_impedance, planck_acceleration, bit, byte, kibibyte, mebibyte,
39
+ gibibyte, tebibyte, pebibyte, exbibyte, curie, rutherford, radian, degree,
40
+ steradian, angular_mil, atomic_mass_unit, gee, kPa, ampere, u0, c, kelvin,
41
+ mol, mole, candela, m, kg, s, electric_constant, G, boltzmann
42
+ )
43
+ from sympy.physics.units.prefixes import PREFIXES, prefix_unit
44
+ from sympy.physics.units.systems.mksa import MKSA, dimsys_MKSA
45
+
46
+ derived_dims = (frequency, force, pressure, energy, power, charge, voltage,
47
+ capacitance, conductance, magnetic_flux,
48
+ magnetic_density, inductance, luminous_intensity)
49
+ base_dims = (amount_of_substance, luminous_intensity, temperature)
50
+
51
+ units = [mol, cd, K, lux, hertz, newton, pascal, joule, watt, coulomb, volt,
52
+ farad, ohm, siemens, weber, tesla, henry, candela, lux, becquerel,
53
+ gray, katal]
54
+
55
+ all_units: list[Quantity] = []
56
+ for u in units:
57
+ all_units.extend(prefix_unit(u, PREFIXES))
58
+
59
+ all_units.extend(units)
60
+ all_units.extend([mol, cd, K, lux])
61
+
62
+
63
+ dimsys_SI = dimsys_MKSA.extend(
64
+ [
65
+ # Dimensional dependencies for other base dimensions:
66
+ temperature,
67
+ amount_of_substance,
68
+ luminous_intensity,
69
+ ])
70
+
71
+ dimsys_default = dimsys_SI.extend(
72
+ [information],
73
+ )
74
+
75
+ SI = MKSA.extend(base=(mol, cd, K), units=all_units, name='SI', dimension_system=dimsys_SI, derived_units={
76
+ power: watt,
77
+ magnetic_flux: weber,
78
+ time: second,
79
+ impedance: ohm,
80
+ pressure: pascal,
81
+ current: ampere,
82
+ voltage: volt,
83
+ length: meter,
84
+ frequency: hertz,
85
+ inductance: henry,
86
+ temperature: kelvin,
87
+ amount_of_substance: mole,
88
+ luminous_intensity: candela,
89
+ conductance: siemens,
90
+ mass: kilogram,
91
+ magnetic_density: tesla,
92
+ charge: coulomb,
93
+ force: newton,
94
+ capacitance: farad,
95
+ energy: joule,
96
+ velocity: meter/second,
97
+ })
98
+
99
+ One = S.One
100
+
101
+ SI.set_quantity_dimension(radian, One)
102
+
103
+ SI.set_quantity_scale_factor(ampere, One)
104
+
105
+ SI.set_quantity_scale_factor(kelvin, One)
106
+
107
+ SI.set_quantity_scale_factor(mole, One)
108
+
109
+ SI.set_quantity_scale_factor(candela, One)
110
+
111
+ # MKSA extension to MKS: derived units
112
+
113
+ SI.set_quantity_scale_factor(coulomb, One)
114
+
115
+ SI.set_quantity_scale_factor(volt, joule/coulomb)
116
+
117
+ SI.set_quantity_scale_factor(ohm, volt/ampere)
118
+
119
+ SI.set_quantity_scale_factor(siemens, ampere/volt)
120
+
121
+ SI.set_quantity_scale_factor(farad, coulomb/volt)
122
+
123
+ SI.set_quantity_scale_factor(henry, volt*second/ampere)
124
+
125
+ SI.set_quantity_scale_factor(tesla, volt*second/meter**2)
126
+
127
+ SI.set_quantity_scale_factor(weber, joule/ampere)
128
+
129
+
130
+ SI.set_quantity_dimension(lux, luminous_intensity / length ** 2)
131
+ SI.set_quantity_scale_factor(lux, steradian*candela/meter**2)
132
+
133
+ # katal is the SI unit of catalytic activity
134
+
135
+ SI.set_quantity_dimension(katal, amount_of_substance / time)
136
+ SI.set_quantity_scale_factor(katal, mol/second)
137
+
138
+ # gray is the SI unit of absorbed dose
139
+
140
+ SI.set_quantity_dimension(gray, energy / mass)
141
+ SI.set_quantity_scale_factor(gray, meter**2/second**2)
142
+
143
+ # becquerel is the SI unit of radioactivity
144
+
145
+ SI.set_quantity_dimension(becquerel, 1 / time)
146
+ SI.set_quantity_scale_factor(becquerel, 1/second)
147
+
148
+ #### CONSTANTS ####
149
+
150
+ # elementary charge
151
+ # REF: NIST SP 959 (June 2019)
152
+
153
+ SI.set_quantity_dimension(elementary_charge, charge)
154
+ SI.set_quantity_scale_factor(elementary_charge, 1.602176634e-19*coulomb)
155
+
156
+ # Electronvolt
157
+ # REF: NIST SP 959 (June 2019)
158
+
159
+ SI.set_quantity_dimension(electronvolt, energy)
160
+ SI.set_quantity_scale_factor(electronvolt, 1.602176634e-19*joule)
161
+
162
+ # Avogadro number
163
+ # REF: NIST SP 959 (June 2019)
164
+
165
+ SI.set_quantity_dimension(avogadro_number, One)
166
+ SI.set_quantity_scale_factor(avogadro_number, 6.02214076e23)
167
+
168
+ # Avogadro constant
169
+
170
+ SI.set_quantity_dimension(avogadro_constant, amount_of_substance ** -1)
171
+ SI.set_quantity_scale_factor(avogadro_constant, avogadro_number / mol)
172
+
173
+ # Boltzmann constant
174
+ # REF: NIST SP 959 (June 2019)
175
+
176
+ SI.set_quantity_dimension(boltzmann_constant, energy / temperature)
177
+ SI.set_quantity_scale_factor(boltzmann_constant, 1.380649e-23*joule/kelvin)
178
+
179
+ # Stefan-Boltzmann constant
180
+ # REF: NIST SP 959 (June 2019)
181
+
182
+ SI.set_quantity_dimension(stefan_boltzmann_constant, energy * time ** -1 * length ** -2 * temperature ** -4)
183
+ SI.set_quantity_scale_factor(stefan_boltzmann_constant, pi**2 * boltzmann_constant**4 / (60 * hbar**3 * speed_of_light ** 2))
184
+
185
+ # Atomic mass
186
+ # REF: NIST SP 959 (June 2019)
187
+
188
+ SI.set_quantity_dimension(atomic_mass_constant, mass)
189
+ SI.set_quantity_scale_factor(atomic_mass_constant, 1.66053906660e-24*gram)
190
+
191
+ # Molar gas constant
192
+ # REF: NIST SP 959 (June 2019)
193
+
194
+ SI.set_quantity_dimension(molar_gas_constant, energy / (temperature * amount_of_substance))
195
+ SI.set_quantity_scale_factor(molar_gas_constant, boltzmann_constant * avogadro_constant)
196
+
197
+ # Faraday constant
198
+
199
+ SI.set_quantity_dimension(faraday_constant, charge / amount_of_substance)
200
+ SI.set_quantity_scale_factor(faraday_constant, elementary_charge * avogadro_constant)
201
+
202
+ # Josephson constant
203
+
204
+ SI.set_quantity_dimension(josephson_constant, frequency / voltage)
205
+ SI.set_quantity_scale_factor(josephson_constant, 0.5 * planck / elementary_charge)
206
+
207
+ # Von Klitzing constant
208
+
209
+ SI.set_quantity_dimension(von_klitzing_constant, voltage / current)
210
+ SI.set_quantity_scale_factor(von_klitzing_constant, hbar / elementary_charge ** 2)
211
+
212
+ # Acceleration due to gravity (on the Earth surface)
213
+
214
+ SI.set_quantity_dimension(acceleration_due_to_gravity, acceleration)
215
+ SI.set_quantity_scale_factor(acceleration_due_to_gravity, 9.80665*meter/second**2)
216
+
217
+ # magnetic constant:
218
+
219
+ SI.set_quantity_dimension(magnetic_constant, force / current ** 2)
220
+ SI.set_quantity_scale_factor(magnetic_constant, 4*pi/10**7 * newton/ampere**2)
221
+
222
+ # electric constant:
223
+
224
+ SI.set_quantity_dimension(vacuum_permittivity, capacitance / length)
225
+ SI.set_quantity_scale_factor(vacuum_permittivity, 1/(u0 * c**2))
226
+
227
+ # vacuum impedance:
228
+
229
+ SI.set_quantity_dimension(vacuum_impedance, impedance)
230
+ SI.set_quantity_scale_factor(vacuum_impedance, u0 * c)
231
+
232
+ # Electron rest mass
233
+ SI.set_quantity_dimension(electron_rest_mass, mass)
234
+ SI.set_quantity_scale_factor(electron_rest_mass, 9.1093837015e-31*kilogram)
235
+
236
+ # Coulomb's constant:
237
+ SI.set_quantity_dimension(coulomb_constant, force * length ** 2 / charge ** 2)
238
+ SI.set_quantity_scale_factor(coulomb_constant, 1/(4*pi*vacuum_permittivity))
239
+
240
+ SI.set_quantity_dimension(psi, pressure)
241
+ SI.set_quantity_scale_factor(psi, pound * gee / inch ** 2)
242
+
243
+ SI.set_quantity_dimension(mmHg, pressure)
244
+ SI.set_quantity_scale_factor(mmHg, dHg0 * acceleration_due_to_gravity * kilogram / meter**2)
245
+
246
+ SI.set_quantity_dimension(milli_mass_unit, mass)
247
+ SI.set_quantity_scale_factor(milli_mass_unit, atomic_mass_unit/1000)
248
+
249
+ SI.set_quantity_dimension(quart, length ** 3)
250
+ SI.set_quantity_scale_factor(quart, Rational(231, 4) * inch**3)
251
+
252
+ # Other convenient units and magnitudes
253
+
254
+ SI.set_quantity_dimension(lightyear, length)
255
+ SI.set_quantity_scale_factor(lightyear, speed_of_light*julian_year)
256
+
257
+ SI.set_quantity_dimension(astronomical_unit, length)
258
+ SI.set_quantity_scale_factor(astronomical_unit, 149597870691*meter)
259
+
260
+ # Fundamental Planck units:
261
+
262
+ SI.set_quantity_dimension(planck_mass, mass)
263
+ SI.set_quantity_scale_factor(planck_mass, sqrt(hbar*speed_of_light/G))
264
+
265
+ SI.set_quantity_dimension(planck_time, time)
266
+ SI.set_quantity_scale_factor(planck_time, sqrt(hbar*G/speed_of_light**5))
267
+
268
+ SI.set_quantity_dimension(planck_temperature, temperature)
269
+ SI.set_quantity_scale_factor(planck_temperature, sqrt(hbar*speed_of_light**5/G/boltzmann**2))
270
+
271
+ SI.set_quantity_dimension(planck_length, length)
272
+ SI.set_quantity_scale_factor(planck_length, sqrt(hbar*G/speed_of_light**3))
273
+
274
+ SI.set_quantity_dimension(planck_charge, charge)
275
+ SI.set_quantity_scale_factor(planck_charge, sqrt(4*pi*electric_constant*hbar*speed_of_light))
276
+
277
+ # Derived Planck units:
278
+
279
+ SI.set_quantity_dimension(planck_area, length ** 2)
280
+ SI.set_quantity_scale_factor(planck_area, planck_length**2)
281
+
282
+ SI.set_quantity_dimension(planck_volume, length ** 3)
283
+ SI.set_quantity_scale_factor(planck_volume, planck_length**3)
284
+
285
+ SI.set_quantity_dimension(planck_momentum, mass * velocity)
286
+ SI.set_quantity_scale_factor(planck_momentum, planck_mass * speed_of_light)
287
+
288
+ SI.set_quantity_dimension(planck_energy, energy)
289
+ SI.set_quantity_scale_factor(planck_energy, planck_mass * speed_of_light**2)
290
+
291
+ SI.set_quantity_dimension(planck_force, force)
292
+ SI.set_quantity_scale_factor(planck_force, planck_energy / planck_length)
293
+
294
+ SI.set_quantity_dimension(planck_power, power)
295
+ SI.set_quantity_scale_factor(planck_power, planck_energy / planck_time)
296
+
297
+ SI.set_quantity_dimension(planck_density, mass / length ** 3)
298
+ SI.set_quantity_scale_factor(planck_density, planck_mass / planck_length**3)
299
+
300
+ SI.set_quantity_dimension(planck_energy_density, energy / length ** 3)
301
+ SI.set_quantity_scale_factor(planck_energy_density, planck_energy / planck_length**3)
302
+
303
+ SI.set_quantity_dimension(planck_intensity, mass * time ** (-3))
304
+ SI.set_quantity_scale_factor(planck_intensity, planck_energy_density * speed_of_light)
305
+
306
+ SI.set_quantity_dimension(planck_angular_frequency, 1 / time)
307
+ SI.set_quantity_scale_factor(planck_angular_frequency, 1 / planck_time)
308
+
309
+ SI.set_quantity_dimension(planck_pressure, pressure)
310
+ SI.set_quantity_scale_factor(planck_pressure, planck_force / planck_length**2)
311
+
312
+ SI.set_quantity_dimension(planck_current, current)
313
+ SI.set_quantity_scale_factor(planck_current, planck_charge / planck_time)
314
+
315
+ SI.set_quantity_dimension(planck_voltage, voltage)
316
+ SI.set_quantity_scale_factor(planck_voltage, planck_energy / planck_charge)
317
+
318
+ SI.set_quantity_dimension(planck_impedance, impedance)
319
+ SI.set_quantity_scale_factor(planck_impedance, planck_voltage / planck_current)
320
+
321
+ SI.set_quantity_dimension(planck_acceleration, acceleration)
322
+ SI.set_quantity_scale_factor(planck_acceleration, speed_of_light / planck_time)
323
+
324
+ # Older units for radioactivity
325
+
326
+ SI.set_quantity_dimension(curie, 1 / time)
327
+ SI.set_quantity_scale_factor(curie, 37000000000*becquerel)
328
+
329
+ SI.set_quantity_dimension(rutherford, 1 / time)
330
+ SI.set_quantity_scale_factor(rutherford, 1000000*becquerel)
331
+
332
+
333
+ # check that scale factors are the right SI dimensions:
334
+ for _scale_factor, _dimension in zip(
335
+ SI._quantity_scale_factors.values(),
336
+ SI._quantity_dimension_map.values()
337
+ ):
338
+ dimex = SI.get_dimensional_expr(_scale_factor)
339
+ if dimex != 1:
340
+ # XXX: equivalent_dims is an instance method taking two arguments in
341
+ # addition to self so this can not work:
342
+ if not DimensionSystem.equivalent_dims(_dimension, Dimension(dimex)): # type: ignore
343
+ raise ValueError("quantity value and dimension mismatch")
344
+ del _scale_factor, _dimension
345
+
346
+ __all__ = [
347
+ 'mmHg', 'atmosphere', 'inductance', 'newton', 'meter',
348
+ 'vacuum_permittivity', 'pascal', 'magnetic_constant', 'voltage',
349
+ 'angular_mil', 'luminous_intensity', 'all_units',
350
+ 'julian_year', 'weber', 'exbibyte', 'liter',
351
+ 'molar_gas_constant', 'faraday_constant', 'avogadro_constant',
352
+ 'lightyear', 'planck_density', 'gee', 'mol', 'bit', 'gray',
353
+ 'planck_momentum', 'bar', 'magnetic_density', 'prefix_unit', 'PREFIXES',
354
+ 'planck_time', 'dimex', 'gram', 'candela', 'force', 'planck_intensity',
355
+ 'energy', 'becquerel', 'planck_acceleration', 'speed_of_light',
356
+ 'conductance', 'frequency', 'coulomb_constant', 'degree', 'lux', 'planck',
357
+ 'current', 'planck_current', 'tebibyte', 'planck_power', 'MKSA', 'power',
358
+ 'K', 'planck_volume', 'quart', 'pressure', 'amount_of_substance',
359
+ 'joule', 'boltzmann_constant', 'Dimension', 'c', 'planck_force', 'length',
360
+ 'watt', 'action', 'hbar', 'gibibyte', 'DimensionSystem', 'cd', 'volt',
361
+ 'planck_charge', 'dioptre', 'vacuum_impedance', 'dimsys_default', 'farad',
362
+ 'charge', 'gravitational_constant', 'temperature', 'u0', 'hertz',
363
+ 'capacitance', 'tesla', 'steradian', 'planck_mass', 'josephson_constant',
364
+ 'planck_area', 'stefan_boltzmann_constant', 'base_dims',
365
+ 'astronomical_unit', 'radian', 'planck_voltage', 'impedance',
366
+ 'planck_energy', 'Da', 'atomic_mass_constant', 'rutherford', 'second', 'inch',
367
+ 'elementary_charge', 'SI', 'electronvolt', 'dimsys_SI', 'henry',
368
+ 'planck_angular_frequency', 'ohm', 'pound', 'planck_pressure', 'G', 'psi',
369
+ 'dHg0', 'von_klitzing_constant', 'planck_length', 'avogadro_number',
370
+ 'mole', 'acceleration', 'information', 'planck_energy_density',
371
+ 'mebibyte', 's', 'acceleration_due_to_gravity', 'electron_rest_mass',
372
+ 'planck_temperature', 'units', 'mass', 'dimsys_MKSA', 'kelvin', 'kPa',
373
+ 'boltzmann', 'milli_mass_unit', 'planck_impedance', 'electric_constant',
374
+ 'derived_dims', 'kg', 'coulomb', 'siemens', 'byte', 'magnetic_flux',
375
+ 'atomic_mass_unit', 'm', 'kibibyte', 'kilogram', 'One', 'curie', 'u',
376
+ 'time', 'pebibyte', 'velocity', 'ampere', 'katal',
377
+ ]
env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2020 Tsuyoshi Hombashi
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/METADATA ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: tcolorpy
3
+ Version: 0.1.4
4
+ Summary: tcolopy is a Python library to apply true color for terminal text.
5
+ Home-page: https://github.com/thombashi/tcolorpy
6
+ Author: Tsuyoshi Hombashi
7
+ Author-email: [email protected]
8
+ License: MIT License
9
+ Project-URL: Source, https://github.com/thombashi/tcolorpy
10
+ Project-URL: Tracker, https://github.com/thombashi/tcolorpy/issues
11
+ Keywords: ANSI escape,terminal color,truecolor
12
+ Classifier: Development Status :: 4 - Beta
13
+ Classifier: Intended Audience :: Information Technology
14
+ Classifier: License :: OSI Approved :: MIT License
15
+ Classifier: Operating System :: OS Independent
16
+ Classifier: Programming Language :: Python :: 3
17
+ Classifier: Programming Language :: Python :: 3.7
18
+ Classifier: Programming Language :: Python :: 3.8
19
+ Classifier: Programming Language :: Python :: 3.9
20
+ Classifier: Programming Language :: Python :: 3.10
21
+ Classifier: Programming Language :: Python :: 3.11
22
+ Classifier: Programming Language :: Python :: 3 :: Only
23
+ Classifier: Programming Language :: Python :: Implementation :: CPython
24
+ Classifier: Programming Language :: Python :: Implementation :: PyPy
25
+ Classifier: Topic :: Software Development :: Libraries
26
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
27
+ Classifier: Topic :: Terminals
28
+ Classifier: Topic :: Text Processing
29
+ Requires-Python: >=3.7
30
+ Description-Content-Type: text/x-rst
31
+ License-File: LICENSE
32
+ Provides-Extra: test
33
+ Requires-Dist: pytest >=6.0.1 ; extra == 'test'
34
+ Requires-Dist: pytest-md-report >=0.4.1 ; extra == 'test'
35
+
36
+ .. contents:: **tcolorpy**
37
+ :backlinks: top
38
+ :depth: 2
39
+
40
+
41
+ Summary
42
+ ============================================
43
+ tcolopy is a Python library to apply true color for terminal text.
44
+
45
+ .. image:: https://badge.fury.io/py/tcolorpy.svg
46
+ :target: https://badge.fury.io/py/tcolorpy
47
+ :alt: PyPI package version
48
+
49
+ .. image:: https://anaconda.org/conda-forge/tcolorpy/badges/version.svg
50
+ :target: https://anaconda.org/conda-forge/tcolorpy
51
+ :alt: conda-forge package version
52
+
53
+ .. image:: https://img.shields.io/pypi/pyversions/tcolorpy.svg
54
+ :target: https://pypi.org/project/tcolorpy
55
+ :alt: Supported Python versions
56
+
57
+ .. image:: https://img.shields.io/pypi/implementation/tcolorpy.svg
58
+ :target: https://pypi.org/project/tcolorpy
59
+ :alt: Supported Python implementations
60
+
61
+ .. image:: https://github.com/thombashi/tcolorpy/workflows/Tests/badge.svg
62
+ :target: https://github.com/thombashi/tcolorpy/actions?query=workflow%3ATests
63
+ :alt: Linux/macOS/Windows CI status
64
+
65
+ .. image:: https://coveralls.io/repos/github/thombashi/tcolorpy/badge.svg?branch=master
66
+ :target: https://coveralls.io/github/thombashi/tcolorpy?branch=master
67
+ :alt: Test coverage: coveralls
68
+
69
+
70
+ Installation
71
+ ============================================
72
+
73
+ Installation: pip
74
+ ------------------------------
75
+ ::
76
+
77
+ pip install tcolorpy
78
+
79
+ Installation: conda
80
+ ------------------------------
81
+ ::
82
+
83
+ conda install -c conda-forge tcolorpy
84
+
85
+
86
+ Usage
87
+ ============================================
88
+
89
+ Library usage
90
+ --------------------------------------------
91
+
92
+ :Sample Code:
93
+ .. code-block:: python
94
+
95
+ from tcolorpy import tcolor
96
+
97
+ print(tcolor("tcolopy example", color="#ee1177", styles=["bold", "italic", "underline"]))
98
+
99
+ :Output:
100
+ .. figure:: https://cdn.jsdelivr.net/gh/thombashi/tcolorpy@master/ss/oneline.png
101
+ :scale: 60%
102
+ :alt: https://github.com/thombashi/tcolorpy/blob/master/ss/oneline.png
103
+
104
+ You can set the following ``tcolor`` arguments:
105
+
106
+ - ``color``/``bg_color``
107
+ - color names (``"red"``, ``"green"``, etc.) or color code (``"#RRGGBB"``)
108
+ - ``styles``
109
+ - ``"bold"``, ``"italic"``, etc.
110
+
111
+
112
+ Other examples
113
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
114
+ Apply true color and styles to text:
115
+
116
+ .. figure:: https://cdn.jsdelivr.net/gh/thombashi/tcolorpy@master/ss/styles.png
117
+ :scale: 60%
118
+ :alt: https://github.com/thombashi/tcolorpy/blob/master/ss/styles.png
119
+
120
+ `example source code <https://github.com/thombashi/tcolorpy/blob/master/examples/ansi_styles.py>`__
121
+
122
+ You can also specify colors by name:
123
+
124
+ .. figure:: https://cdn.jsdelivr.net/gh/thombashi/tcolorpy@master/ss/ansi_colors.png
125
+ :scale: 60%
126
+ :alt: https://github.com/thombashi/tcolorpy/blob/master/ss/ansi_colors.png
127
+
128
+ `example source code <https://github.com/thombashi/tcolorpy/blob/master/examples/ansi_colors.py>`__
129
+
130
+
131
+ CLI usage
132
+ --------------------------------------------
133
+ ``tcolorpy`` can be used via CLI:
134
+
135
+ ::
136
+
137
+ $ python3 -m tcolorpy "tcolopy example" -c "#ee1177" -s bold,italic,underline
138
+
139
+ Command help
140
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
141
+ ::
142
+
143
+ usage: __main__.py [-h] [-c COLOR] [-b BG_COLOR] [-s STYLES] [--encode ENCODE] string
144
+
145
+ positional arguments:
146
+ string string to apply styles.
147
+
148
+ options:
149
+ -h, --help show this help message and exit
150
+ -c COLOR, --color COLOR
151
+ specify a color code (#XXXXXX) or a name. valid names are: black, red, green, yellow, blue, magenta, cyan, white, lightblack, lightred, lightgreen, lightyellow, lightblue, lightmagenta, lightcyan, lightwhite
152
+ -b BG_COLOR, --bg-color BG_COLOR
153
+ specify a background color code (#XXXXXX) or a name. valid names are: black, red, green, yellow, blue, magenta, cyan, white, lightblack, lightred, lightgreen, lightyellow, lightblue, lightmagenta, lightcyan, lightwhite
154
+ -s STYLES, --styles STYLES
155
+ specify a comma-separated style. valid values are: bold, dim, italic, underline, blink, invert, strike
156
+ --encode ENCODE output a text encoded with the specified encoding
157
+
158
+
159
+ Dependencies
160
+ ============================================
161
+ Python 3.7+
162
+ no external dependencies.
env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/RECORD ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ tcolorpy-0.1.4.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ tcolorpy-0.1.4.dist-info/LICENSE,sha256=9BoEVtXyu6Jf1NflC1GpXeMEdw_x21p5UV0DOXqRTY0,1074
3
+ tcolorpy-0.1.4.dist-info/METADATA,sha256=rFyw79V_YbDAiIAncjF7kdjKdHq0v7CJAlcy0ImSQFw,5716
4
+ tcolorpy-0.1.4.dist-info/RECORD,,
5
+ tcolorpy-0.1.4.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
6
+ tcolorpy-0.1.4.dist-info/top_level.txt,sha256=g8LDaQz0FVP61jibPz7OTwQqiseVV9pxUYDeGp2lFAI,9
7
+ tcolorpy/__init__.py,sha256=729PMIfmOYicXFInfS4Uml-uA17tRllqPJ1ZFmSsIQ0,705
8
+ tcolorpy/__main__.py,sha256=gjNpi78hE-X6CpY20ZLMmQ_yaWYIh_eOu2XrLnoGkBE,1701
9
+ tcolorpy/__pycache__/__init__.cpython-310.pyc,,
10
+ tcolorpy/__pycache__/__main__.cpython-310.pyc,,
11
+ tcolorpy/__pycache__/__version__.cpython-310.pyc,,
12
+ tcolorpy/__pycache__/_const.cpython-310.pyc,,
13
+ tcolorpy/__pycache__/_truecolor.cpython-310.pyc,,
14
+ tcolorpy/__version__.py,sha256=uzTkOQkPBiZDuqTer6QpBlWsMYzrB5PZ-7rn53qkbaQ,201
15
+ tcolorpy/_const.py,sha256=XS2rzsxY7SKxg0HreYTR_kEGeSi_59gOrrntI2_kG1o,1080
16
+ tcolorpy/_truecolor.py,sha256=nzu2GCc6Tu_4no5_Qcksm88-Vm75sCdeOMDQHG_2DhM,7495
17
+ tcolorpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/WHEEL ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.41.2)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
env-llmeval/lib/python3.10/site-packages/tcolorpy-0.1.4.dist-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ tcolorpy
env-llmeval/lib/python3.10/site-packages/yaml/__init__.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from .error import *
3
+
4
+ from .tokens import *
5
+ from .events import *
6
+ from .nodes import *
7
+
8
+ from .loader import *
9
+ from .dumper import *
10
+
11
+ __version__ = '6.0.1'
12
+ try:
13
+ from .cyaml import *
14
+ __with_libyaml__ = True
15
+ except ImportError:
16
+ __with_libyaml__ = False
17
+
18
+ import io
19
+
20
+ #------------------------------------------------------------------------------
21
+ # XXX "Warnings control" is now deprecated. Leaving in the API function to not
22
+ # break code that uses it.
23
+ #------------------------------------------------------------------------------
24
+ def warnings(settings=None):
25
+ if settings is None:
26
+ return {}
27
+
28
+ #------------------------------------------------------------------------------
29
+ def scan(stream, Loader=Loader):
30
+ """
31
+ Scan a YAML stream and produce scanning tokens.
32
+ """
33
+ loader = Loader(stream)
34
+ try:
35
+ while loader.check_token():
36
+ yield loader.get_token()
37
+ finally:
38
+ loader.dispose()
39
+
40
+ def parse(stream, Loader=Loader):
41
+ """
42
+ Parse a YAML stream and produce parsing events.
43
+ """
44
+ loader = Loader(stream)
45
+ try:
46
+ while loader.check_event():
47
+ yield loader.get_event()
48
+ finally:
49
+ loader.dispose()
50
+
51
+ def compose(stream, Loader=Loader):
52
+ """
53
+ Parse the first YAML document in a stream
54
+ and produce the corresponding representation tree.
55
+ """
56
+ loader = Loader(stream)
57
+ try:
58
+ return loader.get_single_node()
59
+ finally:
60
+ loader.dispose()
61
+
62
+ def compose_all(stream, Loader=Loader):
63
+ """
64
+ Parse all YAML documents in a stream
65
+ and produce corresponding representation trees.
66
+ """
67
+ loader = Loader(stream)
68
+ try:
69
+ while loader.check_node():
70
+ yield loader.get_node()
71
+ finally:
72
+ loader.dispose()
73
+
74
+ def load(stream, Loader):
75
+ """
76
+ Parse the first YAML document in a stream
77
+ and produce the corresponding Python object.
78
+ """
79
+ loader = Loader(stream)
80
+ try:
81
+ return loader.get_single_data()
82
+ finally:
83
+ loader.dispose()
84
+
85
+ def load_all(stream, Loader):
86
+ """
87
+ Parse all YAML documents in a stream
88
+ and produce corresponding Python objects.
89
+ """
90
+ loader = Loader(stream)
91
+ try:
92
+ while loader.check_data():
93
+ yield loader.get_data()
94
+ finally:
95
+ loader.dispose()
96
+
97
+ def full_load(stream):
98
+ """
99
+ Parse the first YAML document in a stream
100
+ and produce the corresponding Python object.
101
+
102
+ Resolve all tags except those known to be
103
+ unsafe on untrusted input.
104
+ """
105
+ return load(stream, FullLoader)
106
+
107
+ def full_load_all(stream):
108
+ """
109
+ Parse all YAML documents in a stream
110
+ and produce corresponding Python objects.
111
+
112
+ Resolve all tags except those known to be
113
+ unsafe on untrusted input.
114
+ """
115
+ return load_all(stream, FullLoader)
116
+
117
+ def safe_load(stream):
118
+ """
119
+ Parse the first YAML document in a stream
120
+ and produce the corresponding Python object.
121
+
122
+ Resolve only basic YAML tags. This is known
123
+ to be safe for untrusted input.
124
+ """
125
+ return load(stream, SafeLoader)
126
+
127
+ def safe_load_all(stream):
128
+ """
129
+ Parse all YAML documents in a stream
130
+ and produce corresponding Python objects.
131
+
132
+ Resolve only basic YAML tags. This is known
133
+ to be safe for untrusted input.
134
+ """
135
+ return load_all(stream, SafeLoader)
136
+
137
+ def unsafe_load(stream):
138
+ """
139
+ Parse the first YAML document in a stream
140
+ and produce the corresponding Python object.
141
+
142
+ Resolve all tags, even those known to be
143
+ unsafe on untrusted input.
144
+ """
145
+ return load(stream, UnsafeLoader)
146
+
147
+ def unsafe_load_all(stream):
148
+ """
149
+ Parse all YAML documents in a stream
150
+ and produce corresponding Python objects.
151
+
152
+ Resolve all tags, even those known to be
153
+ unsafe on untrusted input.
154
+ """
155
+ return load_all(stream, UnsafeLoader)
156
+
157
+ def emit(events, stream=None, Dumper=Dumper,
158
+ canonical=None, indent=None, width=None,
159
+ allow_unicode=None, line_break=None):
160
+ """
161
+ Emit YAML parsing events into a stream.
162
+ If stream is None, return the produced string instead.
163
+ """
164
+ getvalue = None
165
+ if stream is None:
166
+ stream = io.StringIO()
167
+ getvalue = stream.getvalue
168
+ dumper = Dumper(stream, canonical=canonical, indent=indent, width=width,
169
+ allow_unicode=allow_unicode, line_break=line_break)
170
+ try:
171
+ for event in events:
172
+ dumper.emit(event)
173
+ finally:
174
+ dumper.dispose()
175
+ if getvalue:
176
+ return getvalue()
177
+
178
+ def serialize_all(nodes, stream=None, Dumper=Dumper,
179
+ canonical=None, indent=None, width=None,
180
+ allow_unicode=None, line_break=None,
181
+ encoding=None, explicit_start=None, explicit_end=None,
182
+ version=None, tags=None):
183
+ """
184
+ Serialize a sequence of representation trees into a YAML stream.
185
+ If stream is None, return the produced string instead.
186
+ """
187
+ getvalue = None
188
+ if stream is None:
189
+ if encoding is None:
190
+ stream = io.StringIO()
191
+ else:
192
+ stream = io.BytesIO()
193
+ getvalue = stream.getvalue
194
+ dumper = Dumper(stream, canonical=canonical, indent=indent, width=width,
195
+ allow_unicode=allow_unicode, line_break=line_break,
196
+ encoding=encoding, version=version, tags=tags,
197
+ explicit_start=explicit_start, explicit_end=explicit_end)
198
+ try:
199
+ dumper.open()
200
+ for node in nodes:
201
+ dumper.serialize(node)
202
+ dumper.close()
203
+ finally:
204
+ dumper.dispose()
205
+ if getvalue:
206
+ return getvalue()
207
+
208
+ def serialize(node, stream=None, Dumper=Dumper, **kwds):
209
+ """
210
+ Serialize a representation tree into a YAML stream.
211
+ If stream is None, return the produced string instead.
212
+ """
213
+ return serialize_all([node], stream, Dumper=Dumper, **kwds)
214
+
215
+ def dump_all(documents, stream=None, Dumper=Dumper,
216
+ default_style=None, default_flow_style=False,
217
+ canonical=None, indent=None, width=None,
218
+ allow_unicode=None, line_break=None,
219
+ encoding=None, explicit_start=None, explicit_end=None,
220
+ version=None, tags=None, sort_keys=True):
221
+ """
222
+ Serialize a sequence of Python objects into a YAML stream.
223
+ If stream is None, return the produced string instead.
224
+ """
225
+ getvalue = None
226
+ if stream is None:
227
+ if encoding is None:
228
+ stream = io.StringIO()
229
+ else:
230
+ stream = io.BytesIO()
231
+ getvalue = stream.getvalue
232
+ dumper = Dumper(stream, default_style=default_style,
233
+ default_flow_style=default_flow_style,
234
+ canonical=canonical, indent=indent, width=width,
235
+ allow_unicode=allow_unicode, line_break=line_break,
236
+ encoding=encoding, version=version, tags=tags,
237
+ explicit_start=explicit_start, explicit_end=explicit_end, sort_keys=sort_keys)
238
+ try:
239
+ dumper.open()
240
+ for data in documents:
241
+ dumper.represent(data)
242
+ dumper.close()
243
+ finally:
244
+ dumper.dispose()
245
+ if getvalue:
246
+ return getvalue()
247
+
248
+ def dump(data, stream=None, Dumper=Dumper, **kwds):
249
+ """
250
+ Serialize a Python object into a YAML stream.
251
+ If stream is None, return the produced string instead.
252
+ """
253
+ return dump_all([data], stream, Dumper=Dumper, **kwds)
254
+
255
+ def safe_dump_all(documents, stream=None, **kwds):
256
+ """
257
+ Serialize a sequence of Python objects into a YAML stream.
258
+ Produce only basic YAML tags.
259
+ If stream is None, return the produced string instead.
260
+ """
261
+ return dump_all(documents, stream, Dumper=SafeDumper, **kwds)
262
+
263
+ def safe_dump(data, stream=None, **kwds):
264
+ """
265
+ Serialize a Python object into a YAML stream.
266
+ Produce only basic YAML tags.
267
+ If stream is None, return the produced string instead.
268
+ """
269
+ return dump_all([data], stream, Dumper=SafeDumper, **kwds)
270
+
271
+ def add_implicit_resolver(tag, regexp, first=None,
272
+ Loader=None, Dumper=Dumper):
273
+ """
274
+ Add an implicit scalar detector.
275
+ If an implicit scalar value matches the given regexp,
276
+ the corresponding tag is assigned to the scalar.
277
+ first is a sequence of possible initial characters or None.
278
+ """
279
+ if Loader is None:
280
+ loader.Loader.add_implicit_resolver(tag, regexp, first)
281
+ loader.FullLoader.add_implicit_resolver(tag, regexp, first)
282
+ loader.UnsafeLoader.add_implicit_resolver(tag, regexp, first)
283
+ else:
284
+ Loader.add_implicit_resolver(tag, regexp, first)
285
+ Dumper.add_implicit_resolver(tag, regexp, first)
286
+
287
+ def add_path_resolver(tag, path, kind=None, Loader=None, Dumper=Dumper):
288
+ """
289
+ Add a path based resolver for the given tag.
290
+ A path is a list of keys that forms a path
291
+ to a node in the representation tree.
292
+ Keys can be string values, integers, or None.
293
+ """
294
+ if Loader is None:
295
+ loader.Loader.add_path_resolver(tag, path, kind)
296
+ loader.FullLoader.add_path_resolver(tag, path, kind)
297
+ loader.UnsafeLoader.add_path_resolver(tag, path, kind)
298
+ else:
299
+ Loader.add_path_resolver(tag, path, kind)
300
+ Dumper.add_path_resolver(tag, path, kind)
301
+
302
+ def add_constructor(tag, constructor, Loader=None):
303
+ """
304
+ Add a constructor for the given tag.
305
+ Constructor is a function that accepts a Loader instance
306
+ and a node object and produces the corresponding Python object.
307
+ """
308
+ if Loader is None:
309
+ loader.Loader.add_constructor(tag, constructor)
310
+ loader.FullLoader.add_constructor(tag, constructor)
311
+ loader.UnsafeLoader.add_constructor(tag, constructor)
312
+ else:
313
+ Loader.add_constructor(tag, constructor)
314
+
315
+ def add_multi_constructor(tag_prefix, multi_constructor, Loader=None):
316
+ """
317
+ Add a multi-constructor for the given tag prefix.
318
+ Multi-constructor is called for a node if its tag starts with tag_prefix.
319
+ Multi-constructor accepts a Loader instance, a tag suffix,
320
+ and a node object and produces the corresponding Python object.
321
+ """
322
+ if Loader is None:
323
+ loader.Loader.add_multi_constructor(tag_prefix, multi_constructor)
324
+ loader.FullLoader.add_multi_constructor(tag_prefix, multi_constructor)
325
+ loader.UnsafeLoader.add_multi_constructor(tag_prefix, multi_constructor)
326
+ else:
327
+ Loader.add_multi_constructor(tag_prefix, multi_constructor)
328
+
329
+ def add_representer(data_type, representer, Dumper=Dumper):
330
+ """
331
+ Add a representer for the given type.
332
+ Representer is a function accepting a Dumper instance
333
+ and an instance of the given data type
334
+ and producing the corresponding representation node.
335
+ """
336
+ Dumper.add_representer(data_type, representer)
337
+
338
+ def add_multi_representer(data_type, multi_representer, Dumper=Dumper):
339
+ """
340
+ Add a representer for the given type.
341
+ Multi-representer is a function accepting a Dumper instance
342
+ and an instance of the given data type or subtype
343
+ and producing the corresponding representation node.
344
+ """
345
+ Dumper.add_multi_representer(data_type, multi_representer)
346
+
347
+ class YAMLObjectMetaclass(type):
348
+ """
349
+ The metaclass for YAMLObject.
350
+ """
351
+ def __init__(cls, name, bases, kwds):
352
+ super(YAMLObjectMetaclass, cls).__init__(name, bases, kwds)
353
+ if 'yaml_tag' in kwds and kwds['yaml_tag'] is not None:
354
+ if isinstance(cls.yaml_loader, list):
355
+ for loader in cls.yaml_loader:
356
+ loader.add_constructor(cls.yaml_tag, cls.from_yaml)
357
+ else:
358
+ cls.yaml_loader.add_constructor(cls.yaml_tag, cls.from_yaml)
359
+
360
+ cls.yaml_dumper.add_representer(cls, cls.to_yaml)
361
+
362
+ class YAMLObject(metaclass=YAMLObjectMetaclass):
363
+ """
364
+ An object that can dump itself to a YAML stream
365
+ and load itself from a YAML stream.
366
+ """
367
+
368
+ __slots__ = () # no direct instantiation, so allow immutable subclasses
369
+
370
+ yaml_loader = [Loader, FullLoader, UnsafeLoader]
371
+ yaml_dumper = Dumper
372
+
373
+ yaml_tag = None
374
+ yaml_flow_style = None
375
+
376
+ @classmethod
377
+ def from_yaml(cls, loader, node):
378
+ """
379
+ Convert a representation node to a Python object.
380
+ """
381
+ return loader.construct_yaml_object(node, cls)
382
+
383
+ @classmethod
384
+ def to_yaml(cls, dumper, data):
385
+ """
386
+ Convert a Python object to a representation node.
387
+ """
388
+ return dumper.represent_yaml_object(cls.yaml_tag, data, cls,
389
+ flow_style=cls.yaml_flow_style)
390
+
env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/composer.cpython-310.pyc ADDED
Binary file (3.61 kB). View file
 
env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/constructor.cpython-310.pyc ADDED
Binary file (20.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/cyaml.cpython-310.pyc ADDED
Binary file (2.87 kB). View file
 
env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/dumper.cpython-310.pyc ADDED
Binary file (1.52 kB). View file
 
env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/emitter.cpython-310.pyc ADDED
Binary file (25.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/error.cpython-310.pyc ADDED
Binary file (2.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/yaml/__pycache__/events.cpython-310.pyc ADDED
Binary file (3.81 kB). View file