applied-ai-018 commited on
Commit
35f1d8a
·
verified ·
1 Parent(s): f9aa8a3

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. llmeval-env/lib/python3.10/site-packages/pandas/_libs/interval.cpython-310-x86_64-linux-gnu.so +3 -0
  3. llmeval-env/lib/python3.10/site-packages/pandas/_libs/join.cpython-310-x86_64-linux-gnu.so +3 -0
  4. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_argsort.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_between.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_case_when.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_compare.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_count.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_diff.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_drop_duplicates.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_dropna.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_duplicated.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_equals.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_explode.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_infer_objects.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_unique.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isin.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_map.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pop.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_repeat.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_set_name.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_values.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_csv.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_dict.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_truncate.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_tz_localize.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_unique.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_update.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_value_counts.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_values.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_view.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_add_prefix_suffix.py +41 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_align.py +249 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_autocorr.py +30 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_between.py +75 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_case_when.py +148 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine.py +17 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine_first.py +149 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_compare.py +141 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_convert_dtypes.py +306 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_count.py +34 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_cov_corr.py +185 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_diff.py +88 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop_duplicates.py +267 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_dropna.py +117 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_duplicated.py +77 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_head_tail.py +8 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_info.py +181 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_interpolate.py +868 -0
.gitattributes CHANGED
@@ -191,3 +191,5 @@ llmeval-env/lib/python3.10/site-packages/nvidia/nccl/lib/libnccl.so.2 filter=lfs
191
  llmeval-env/lib/python3.10/site-packages/nvidia/cusparse/lib/libcusparse.so.12 filter=lfs diff=lfs merge=lfs -text
192
  llmeval-env/lib/python3.10/site-packages/numexpr/interpreter.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
193
  llmeval-env/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 filter=lfs diff=lfs merge=lfs -text
 
 
 
191
  llmeval-env/lib/python3.10/site-packages/nvidia/cusparse/lib/libcusparse.so.12 filter=lfs diff=lfs merge=lfs -text
192
  llmeval-env/lib/python3.10/site-packages/numexpr/interpreter.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
193
  llmeval-env/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 filter=lfs diff=lfs merge=lfs -text
194
+ llmeval-env/lib/python3.10/site-packages/pandas/_libs/interval.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
195
+ llmeval-env/lib/python3.10/site-packages/pandas/_libs/join.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
llmeval-env/lib/python3.10/site-packages/pandas/_libs/interval.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e13e757cc911f2818ebea4f5cfaf5197639154cf160d8be4d0e0c27451997f4
3
+ size 1532904
llmeval-env/lib/python3.10/site-packages/pandas/_libs/join.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97df0241d7470fafc2785aaef2c2c4216803f45190f2c617a9042fecfc04678b
3
+ size 1409928
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_argsort.cpython-310.pyc ADDED
Binary file (3.38 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_between.cpython-310.pyc ADDED
Binary file (2.65 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_case_when.cpython-310.pyc ADDED
Binary file (5.47 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_compare.cpython-310.pyc ADDED
Binary file (3.91 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_count.cpython-310.pyc ADDED
Binary file (1.55 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_diff.cpython-310.pyc ADDED
Binary file (2.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_drop_duplicates.cpython-310.pyc ADDED
Binary file (6.76 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_dropna.cpython-310.pyc ADDED
Binary file (3.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_duplicated.cpython-310.pyc ADDED
Binary file (1.96 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_equals.cpython-310.pyc ADDED
Binary file (3.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_explode.cpython-310.pyc ADDED
Binary file (5.67 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_infer_objects.cpython-310.pyc ADDED
Binary file (1.96 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_unique.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isin.cpython-310.pyc ADDED
Binary file (7.51 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_map.cpython-310.pyc ADDED
Binary file (21.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pop.cpython-310.pyc ADDED
Binary file (592 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename.cpython-310.pyc ADDED
Binary file (7.38 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_repeat.cpython-310.pyc ADDED
Binary file (1.79 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_set_name.cpython-310.pyc ADDED
Binary file (1.04 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_values.cpython-310.pyc ADDED
Binary file (7.53 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_csv.cpython-310.pyc ADDED
Binary file (5.45 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_dict.cpython-310.pyc ADDED
Binary file (1.44 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_truncate.cpython-310.pyc ADDED
Binary file (2.46 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_tz_localize.cpython-310.pyc ADDED
Binary file (3.68 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_unique.cpython-310.pyc ADDED
Binary file (2.69 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_update.cpython-310.pyc ADDED
Binary file (4.27 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_value_counts.cpython-310.pyc ADDED
Binary file (6.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_values.cpython-310.pyc ADDED
Binary file (1.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_view.cpython-310.pyc ADDED
Binary file (2.09 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_add_prefix_suffix.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import Index
4
+ import pandas._testing as tm
5
+
6
+
7
+ def test_add_prefix_suffix(string_series):
8
+ with_prefix = string_series.add_prefix("foo#")
9
+ expected = Index([f"foo#{c}" for c in string_series.index])
10
+ tm.assert_index_equal(with_prefix.index, expected)
11
+
12
+ with_suffix = string_series.add_suffix("#foo")
13
+ expected = Index([f"{c}#foo" for c in string_series.index])
14
+ tm.assert_index_equal(with_suffix.index, expected)
15
+
16
+ with_pct_prefix = string_series.add_prefix("%")
17
+ expected = Index([f"%{c}" for c in string_series.index])
18
+ tm.assert_index_equal(with_pct_prefix.index, expected)
19
+
20
+ with_pct_suffix = string_series.add_suffix("%")
21
+ expected = Index([f"{c}%" for c in string_series.index])
22
+ tm.assert_index_equal(with_pct_suffix.index, expected)
23
+
24
+
25
+ def test_add_prefix_suffix_axis(string_series):
26
+ # GH 47819
27
+ with_prefix = string_series.add_prefix("foo#", axis=0)
28
+ expected = Index([f"foo#{c}" for c in string_series.index])
29
+ tm.assert_index_equal(with_prefix.index, expected)
30
+
31
+ with_pct_suffix = string_series.add_suffix("#foo", axis=0)
32
+ expected = Index([f"{c}#foo" for c in string_series.index])
33
+ tm.assert_index_equal(with_pct_suffix.index, expected)
34
+
35
+
36
+ def test_add_prefix_suffix_invalid_axis(string_series):
37
+ with pytest.raises(ValueError, match="No axis named 1 for object type Series"):
38
+ string_series.add_prefix("foo#", axis=1)
39
+
40
+ with pytest.raises(ValueError, match="No axis named 1 for object type Series"):
41
+ string_series.add_suffix("foo#", axis=1)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_align.py ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import timezone
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ from pandas import (
8
+ Series,
9
+ date_range,
10
+ period_range,
11
+ )
12
+ import pandas._testing as tm
13
+
14
+
15
+ @pytest.mark.parametrize(
16
+ "first_slice,second_slice",
17
+ [
18
+ [[2, None], [None, -5]],
19
+ [[None, 0], [None, -5]],
20
+ [[None, -5], [None, 0]],
21
+ [[None, 0], [None, 0]],
22
+ ],
23
+ )
24
+ @pytest.mark.parametrize("fill", [None, -1])
25
+ def test_align(datetime_series, first_slice, second_slice, join_type, fill):
26
+ a = datetime_series[slice(*first_slice)]
27
+ b = datetime_series[slice(*second_slice)]
28
+
29
+ aa, ab = a.align(b, join=join_type, fill_value=fill)
30
+
31
+ join_index = a.index.join(b.index, how=join_type)
32
+ if fill is not None:
33
+ diff_a = aa.index.difference(join_index)
34
+ diff_b = ab.index.difference(join_index)
35
+ if len(diff_a) > 0:
36
+ assert (aa.reindex(diff_a) == fill).all()
37
+ if len(diff_b) > 0:
38
+ assert (ab.reindex(diff_b) == fill).all()
39
+
40
+ ea = a.reindex(join_index)
41
+ eb = b.reindex(join_index)
42
+
43
+ if fill is not None:
44
+ ea = ea.fillna(fill)
45
+ eb = eb.fillna(fill)
46
+
47
+ tm.assert_series_equal(aa, ea)
48
+ tm.assert_series_equal(ab, eb)
49
+ assert aa.name == "ts"
50
+ assert ea.name == "ts"
51
+ assert ab.name == "ts"
52
+ assert eb.name == "ts"
53
+
54
+
55
+ @pytest.mark.parametrize(
56
+ "first_slice,second_slice",
57
+ [
58
+ [[2, None], [None, -5]],
59
+ [[None, 0], [None, -5]],
60
+ [[None, -5], [None, 0]],
61
+ [[None, 0], [None, 0]],
62
+ ],
63
+ )
64
+ @pytest.mark.parametrize("method", ["pad", "bfill"])
65
+ @pytest.mark.parametrize("limit", [None, 1])
66
+ def test_align_fill_method(
67
+ datetime_series, first_slice, second_slice, join_type, method, limit
68
+ ):
69
+ a = datetime_series[slice(*first_slice)]
70
+ b = datetime_series[slice(*second_slice)]
71
+
72
+ msg = (
73
+ "The 'method', 'limit', and 'fill_axis' keywords in Series.align "
74
+ "are deprecated"
75
+ )
76
+ with tm.assert_produces_warning(FutureWarning, match=msg):
77
+ aa, ab = a.align(b, join=join_type, method=method, limit=limit)
78
+
79
+ join_index = a.index.join(b.index, how=join_type)
80
+ ea = a.reindex(join_index)
81
+ eb = b.reindex(join_index)
82
+
83
+ msg2 = "Series.fillna with 'method' is deprecated"
84
+ with tm.assert_produces_warning(FutureWarning, match=msg2):
85
+ ea = ea.fillna(method=method, limit=limit)
86
+ eb = eb.fillna(method=method, limit=limit)
87
+
88
+ tm.assert_series_equal(aa, ea)
89
+ tm.assert_series_equal(ab, eb)
90
+
91
+
92
+ def test_align_nocopy(datetime_series, using_copy_on_write):
93
+ b = datetime_series[:5].copy()
94
+
95
+ # do copy
96
+ a = datetime_series.copy()
97
+ ra, _ = a.align(b, join="left")
98
+ ra[:5] = 5
99
+ assert not (a[:5] == 5).any()
100
+
101
+ # do not copy
102
+ a = datetime_series.copy()
103
+ ra, _ = a.align(b, join="left", copy=False)
104
+ ra[:5] = 5
105
+ if using_copy_on_write:
106
+ assert not (a[:5] == 5).any()
107
+ else:
108
+ assert (a[:5] == 5).all()
109
+
110
+ # do copy
111
+ a = datetime_series.copy()
112
+ b = datetime_series[:5].copy()
113
+ _, rb = a.align(b, join="right")
114
+ rb[:3] = 5
115
+ assert not (b[:3] == 5).any()
116
+
117
+ # do not copy
118
+ a = datetime_series.copy()
119
+ b = datetime_series[:5].copy()
120
+ _, rb = a.align(b, join="right", copy=False)
121
+ rb[:2] = 5
122
+ if using_copy_on_write:
123
+ assert not (b[:2] == 5).any()
124
+ else:
125
+ assert (b[:2] == 5).all()
126
+
127
+
128
+ def test_align_same_index(datetime_series, using_copy_on_write):
129
+ a, b = datetime_series.align(datetime_series, copy=False)
130
+ if not using_copy_on_write:
131
+ assert a.index is datetime_series.index
132
+ assert b.index is datetime_series.index
133
+ else:
134
+ assert a.index.is_(datetime_series.index)
135
+ assert b.index.is_(datetime_series.index)
136
+
137
+ a, b = datetime_series.align(datetime_series, copy=True)
138
+ assert a.index is not datetime_series.index
139
+ assert b.index is not datetime_series.index
140
+ assert a.index.is_(datetime_series.index)
141
+ assert b.index.is_(datetime_series.index)
142
+
143
+
144
+ def test_align_multiindex():
145
+ # GH 10665
146
+
147
+ midx = pd.MultiIndex.from_product(
148
+ [range(2), range(3), range(2)], names=("a", "b", "c")
149
+ )
150
+ idx = pd.Index(range(2), name="b")
151
+ s1 = Series(np.arange(12, dtype="int64"), index=midx)
152
+ s2 = Series(np.arange(2, dtype="int64"), index=idx)
153
+
154
+ # these must be the same results (but flipped)
155
+ res1l, res1r = s1.align(s2, join="left")
156
+ res2l, res2r = s2.align(s1, join="right")
157
+
158
+ expl = s1
159
+ tm.assert_series_equal(expl, res1l)
160
+ tm.assert_series_equal(expl, res2r)
161
+ expr = Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx)
162
+ tm.assert_series_equal(expr, res1r)
163
+ tm.assert_series_equal(expr, res2l)
164
+
165
+ res1l, res1r = s1.align(s2, join="right")
166
+ res2l, res2r = s2.align(s1, join="left")
167
+
168
+ exp_idx = pd.MultiIndex.from_product(
169
+ [range(2), range(2), range(2)], names=("a", "b", "c")
170
+ )
171
+ expl = Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx)
172
+ tm.assert_series_equal(expl, res1l)
173
+ tm.assert_series_equal(expl, res2r)
174
+ expr = Series([0, 0, 1, 1] * 2, index=exp_idx)
175
+ tm.assert_series_equal(expr, res1r)
176
+ tm.assert_series_equal(expr, res2l)
177
+
178
+
179
+ @pytest.mark.parametrize("method", ["backfill", "bfill", "pad", "ffill", None])
180
+ def test_align_with_dataframe_method(method):
181
+ # GH31788
182
+ ser = Series(range(3), index=range(3))
183
+ df = pd.DataFrame(0.0, index=range(3), columns=range(3))
184
+
185
+ msg = (
186
+ "The 'method', 'limit', and 'fill_axis' keywords in Series.align "
187
+ "are deprecated"
188
+ )
189
+ with tm.assert_produces_warning(FutureWarning, match=msg):
190
+ result_ser, result_df = ser.align(df, method=method)
191
+ tm.assert_series_equal(result_ser, ser)
192
+ tm.assert_frame_equal(result_df, df)
193
+
194
+
195
+ def test_align_dt64tzindex_mismatched_tzs():
196
+ idx1 = date_range("2001", periods=5, freq="h", tz="US/Eastern")
197
+ ser = Series(np.random.default_rng(2).standard_normal(len(idx1)), index=idx1)
198
+ ser_central = ser.tz_convert("US/Central")
199
+ # different timezones convert to UTC
200
+
201
+ new1, new2 = ser.align(ser_central)
202
+ assert new1.index.tz is timezone.utc
203
+ assert new2.index.tz is timezone.utc
204
+
205
+
206
+ def test_align_periodindex(join_type):
207
+ rng = period_range("1/1/2000", "1/1/2010", freq="Y")
208
+ ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
209
+
210
+ # TODO: assert something?
211
+ ts.align(ts[::2], join=join_type)
212
+
213
+
214
+ def test_align_left_fewer_levels():
215
+ # GH#45224
216
+ left = Series([2], index=pd.MultiIndex.from_tuples([(1, 3)], names=["a", "c"]))
217
+ right = Series(
218
+ [1], index=pd.MultiIndex.from_tuples([(1, 2, 3)], names=["a", "b", "c"])
219
+ )
220
+ result_left, result_right = left.align(right)
221
+
222
+ expected_right = Series(
223
+ [1], index=pd.MultiIndex.from_tuples([(1, 3, 2)], names=["a", "c", "b"])
224
+ )
225
+ expected_left = Series(
226
+ [2], index=pd.MultiIndex.from_tuples([(1, 3, 2)], names=["a", "c", "b"])
227
+ )
228
+ tm.assert_series_equal(result_left, expected_left)
229
+ tm.assert_series_equal(result_right, expected_right)
230
+
231
+
232
+ def test_align_left_different_named_levels():
233
+ # GH#45224
234
+ left = Series(
235
+ [2], index=pd.MultiIndex.from_tuples([(1, 4, 3)], names=["a", "d", "c"])
236
+ )
237
+ right = Series(
238
+ [1], index=pd.MultiIndex.from_tuples([(1, 2, 3)], names=["a", "b", "c"])
239
+ )
240
+ result_left, result_right = left.align(right)
241
+
242
+ expected_left = Series(
243
+ [2], index=pd.MultiIndex.from_tuples([(1, 4, 3, 2)], names=["a", "d", "c", "b"])
244
+ )
245
+ expected_right = Series(
246
+ [1], index=pd.MultiIndex.from_tuples([(1, 4, 3, 2)], names=["a", "d", "c", "b"])
247
+ )
248
+ tm.assert_series_equal(result_left, expected_left)
249
+ tm.assert_series_equal(result_right, expected_right)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_autocorr.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class TestAutoCorr:
5
+ def test_autocorr(self, datetime_series):
6
+ # Just run the function
7
+ corr1 = datetime_series.autocorr()
8
+
9
+ # Now run it with the lag parameter
10
+ corr2 = datetime_series.autocorr(lag=1)
11
+
12
+ # corr() with lag needs Series of at least length 2
13
+ if len(datetime_series) <= 2:
14
+ assert np.isnan(corr1)
15
+ assert np.isnan(corr2)
16
+ else:
17
+ assert corr1 == corr2
18
+
19
+ # Choose a random lag between 1 and length of Series - 2
20
+ # and compare the result with the Series corr() function
21
+ n = 1 + np.random.default_rng(2).integers(max(1, len(datetime_series) - 2))
22
+ corr1 = datetime_series.corr(datetime_series.shift(n))
23
+ corr2 = datetime_series.autocorr(lag=n)
24
+
25
+ # corr() with lag needs Series of at least length 2
26
+ if len(datetime_series) <= 2:
27
+ assert np.isnan(corr1)
28
+ assert np.isnan(corr2)
29
+ else:
30
+ assert corr1 == corr2
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_between.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Series,
6
+ bdate_range,
7
+ date_range,
8
+ period_range,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ class TestBetween:
14
+ def test_between(self):
15
+ series = Series(date_range("1/1/2000", periods=10))
16
+ left, right = series[[2, 7]]
17
+
18
+ result = series.between(left, right)
19
+ expected = (series >= left) & (series <= right)
20
+ tm.assert_series_equal(result, expected)
21
+
22
+ def test_between_datetime_object_dtype(self):
23
+ ser = Series(bdate_range("1/1/2000", periods=20), dtype=object)
24
+ ser[::2] = np.nan
25
+
26
+ result = ser[ser.between(ser[3], ser[17])]
27
+ expected = ser[3:18].dropna()
28
+ tm.assert_series_equal(result, expected)
29
+
30
+ result = ser[ser.between(ser[3], ser[17], inclusive="neither")]
31
+ expected = ser[5:16].dropna()
32
+ tm.assert_series_equal(result, expected)
33
+
34
+ def test_between_period_values(self):
35
+ ser = Series(period_range("2000-01-01", periods=10, freq="D"))
36
+ left, right = ser[[2, 7]]
37
+ result = ser.between(left, right)
38
+ expected = (ser >= left) & (ser <= right)
39
+ tm.assert_series_equal(result, expected)
40
+
41
+ def test_between_inclusive_string(self):
42
+ # GH 40628
43
+ series = Series(date_range("1/1/2000", periods=10))
44
+ left, right = series[[2, 7]]
45
+
46
+ result = series.between(left, right, inclusive="both")
47
+ expected = (series >= left) & (series <= right)
48
+ tm.assert_series_equal(result, expected)
49
+
50
+ result = series.between(left, right, inclusive="left")
51
+ expected = (series >= left) & (series < right)
52
+ tm.assert_series_equal(result, expected)
53
+
54
+ result = series.between(left, right, inclusive="right")
55
+ expected = (series > left) & (series <= right)
56
+ tm.assert_series_equal(result, expected)
57
+
58
+ result = series.between(left, right, inclusive="neither")
59
+ expected = (series > left) & (series < right)
60
+ tm.assert_series_equal(result, expected)
61
+
62
+ @pytest.mark.parametrize("inclusive", ["yes", True, False])
63
+ def test_between_error_args(self, inclusive):
64
+ # GH 40628
65
+ series = Series(date_range("1/1/2000", periods=10))
66
+ left, right = series[[2, 7]]
67
+
68
+ value_error_msg = (
69
+ "Inclusive has to be either string of 'both',"
70
+ "'left', 'right', or 'neither'."
71
+ )
72
+
73
+ with pytest.raises(ValueError, match=value_error_msg):
74
+ series = Series(date_range("1/1/2000", periods=10))
75
+ series.between(left, right, inclusive=inclusive)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_case_when.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DataFrame,
6
+ Series,
7
+ array as pd_array,
8
+ date_range,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ @pytest.fixture
14
+ def df():
15
+ """
16
+ base dataframe for testing
17
+ """
18
+ return DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
19
+
20
+
21
+ def test_case_when_caselist_is_not_a_list(df):
22
+ """
23
+ Raise ValueError if caselist is not a list.
24
+ """
25
+ msg = "The caselist argument should be a list; "
26
+ msg += "instead got.+"
27
+ with pytest.raises(TypeError, match=msg): # GH39154
28
+ df["a"].case_when(caselist=())
29
+
30
+
31
+ def test_case_when_no_caselist(df):
32
+ """
33
+ Raise ValueError if no caselist is provided.
34
+ """
35
+ msg = "provide at least one boolean condition, "
36
+ msg += "with a corresponding replacement."
37
+ with pytest.raises(ValueError, match=msg): # GH39154
38
+ df["a"].case_when([])
39
+
40
+
41
+ def test_case_when_odd_caselist(df):
42
+ """
43
+ Raise ValueError if no of caselist is odd.
44
+ """
45
+ msg = "Argument 0 must have length 2; "
46
+ msg += "a condition and replacement; instead got length 3."
47
+
48
+ with pytest.raises(ValueError, match=msg):
49
+ df["a"].case_when([(df["a"].eq(1), 1, df.a.gt(1))])
50
+
51
+
52
+ def test_case_when_raise_error_from_mask(df):
53
+ """
54
+ Raise Error from within Series.mask
55
+ """
56
+ msg = "Failed to apply condition0 and replacement0."
57
+ with pytest.raises(ValueError, match=msg):
58
+ df["a"].case_when([(df["a"].eq(1), [1, 2])])
59
+
60
+
61
+ def test_case_when_single_condition(df):
62
+ """
63
+ Test output on a single condition.
64
+ """
65
+ result = Series([np.nan, np.nan, np.nan]).case_when([(df.a.eq(1), 1)])
66
+ expected = Series([1, np.nan, np.nan])
67
+ tm.assert_series_equal(result, expected)
68
+
69
+
70
+ def test_case_when_multiple_conditions(df):
71
+ """
72
+ Test output when booleans are derived from a computation
73
+ """
74
+ result = Series([np.nan, np.nan, np.nan]).case_when(
75
+ [(df.a.eq(1), 1), (Series([False, True, False]), 2)]
76
+ )
77
+ expected = Series([1, 2, np.nan])
78
+ tm.assert_series_equal(result, expected)
79
+
80
+
81
+ def test_case_when_multiple_conditions_replacement_list(df):
82
+ """
83
+ Test output when replacement is a list
84
+ """
85
+ result = Series([np.nan, np.nan, np.nan]).case_when(
86
+ [([True, False, False], 1), (df["a"].gt(1) & df["b"].eq(5), [1, 2, 3])]
87
+ )
88
+ expected = Series([1, 2, np.nan])
89
+ tm.assert_series_equal(result, expected)
90
+
91
+
92
+ def test_case_when_multiple_conditions_replacement_extension_dtype(df):
93
+ """
94
+ Test output when replacement has an extension dtype
95
+ """
96
+ result = Series([np.nan, np.nan, np.nan]).case_when(
97
+ [
98
+ ([True, False, False], 1),
99
+ (df["a"].gt(1) & df["b"].eq(5), pd_array([1, 2, 3], dtype="Int64")),
100
+ ],
101
+ )
102
+ expected = Series([1, 2, np.nan], dtype="Float64")
103
+ tm.assert_series_equal(result, expected)
104
+
105
+
106
+ def test_case_when_multiple_conditions_replacement_series(df):
107
+ """
108
+ Test output when replacement is a Series
109
+ """
110
+ result = Series([np.nan, np.nan, np.nan]).case_when(
111
+ [
112
+ (np.array([True, False, False]), 1),
113
+ (df["a"].gt(1) & df["b"].eq(5), Series([1, 2, 3])),
114
+ ],
115
+ )
116
+ expected = Series([1, 2, np.nan])
117
+ tm.assert_series_equal(result, expected)
118
+
119
+
120
+ def test_case_when_non_range_index():
121
+ """
122
+ Test output if index is not RangeIndex
123
+ """
124
+ rng = np.random.default_rng(seed=123)
125
+ dates = date_range("1/1/2000", periods=8)
126
+ df = DataFrame(
127
+ rng.standard_normal(size=(8, 4)), index=dates, columns=["A", "B", "C", "D"]
128
+ )
129
+ result = Series(5, index=df.index, name="A").case_when([(df.A.gt(0), df.B)])
130
+ expected = df.A.mask(df.A.gt(0), df.B).where(df.A.gt(0), 5)
131
+ tm.assert_series_equal(result, expected)
132
+
133
+
134
+ def test_case_when_callable():
135
+ """
136
+ Test output on a callable
137
+ """
138
+ # https://numpy.org/doc/stable/reference/generated/numpy.piecewise.html
139
+ x = np.linspace(-2.5, 2.5, 6)
140
+ ser = Series(x)
141
+ result = ser.case_when(
142
+ caselist=[
143
+ (lambda df: df < 0, lambda df: -df),
144
+ (lambda df: df >= 0, lambda df: df),
145
+ ]
146
+ )
147
+ expected = np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x])
148
+ tm.assert_series_equal(result, Series(expected))
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas import Series
2
+ import pandas._testing as tm
3
+
4
+
5
+ class TestCombine:
6
+ def test_combine_scalar(self):
7
+ # GH#21248
8
+ # Note - combine() with another Series is tested elsewhere because
9
+ # it is used when testing operators
10
+ ser = Series([i * 10 for i in range(5)])
11
+ result = ser.combine(3, lambda x, y: x + y)
12
+ expected = Series([i * 10 + 3 for i in range(5)])
13
+ tm.assert_series_equal(result, expected)
14
+
15
+ result = ser.combine(22, lambda x, y: min(x, y))
16
+ expected = Series([min(i * 10, 22) for i in range(5)])
17
+ tm.assert_series_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine_first.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ import numpy as np
4
+
5
+ import pandas as pd
6
+ from pandas import (
7
+ Period,
8
+ Series,
9
+ date_range,
10
+ period_range,
11
+ to_datetime,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+
16
+ class TestCombineFirst:
17
+ def test_combine_first_period_datetime(self):
18
+ # GH#3367
19
+ didx = date_range(start="1950-01-31", end="1950-07-31", freq="ME")
20
+ pidx = period_range(start=Period("1950-1"), end=Period("1950-7"), freq="M")
21
+ # check to be consistent with DatetimeIndex
22
+ for idx in [didx, pidx]:
23
+ a = Series([1, np.nan, np.nan, 4, 5, np.nan, 7], index=idx)
24
+ b = Series([9, 9, 9, 9, 9, 9, 9], index=idx)
25
+
26
+ result = a.combine_first(b)
27
+ expected = Series([1, 9, 9, 4, 5, 9, 7], index=idx, dtype=np.float64)
28
+ tm.assert_series_equal(result, expected)
29
+
30
+ def test_combine_first_name(self, datetime_series):
31
+ result = datetime_series.combine_first(datetime_series[:5])
32
+ assert result.name == datetime_series.name
33
+
34
+ def test_combine_first(self):
35
+ values = np.arange(20, dtype=np.float64)
36
+ series = Series(values, index=np.arange(20, dtype=np.int64))
37
+
38
+ series_copy = series * 2
39
+ series_copy[::2] = np.nan
40
+
41
+ # nothing used from the input
42
+ combined = series.combine_first(series_copy)
43
+
44
+ tm.assert_series_equal(combined, series)
45
+
46
+ # Holes filled from input
47
+ combined = series_copy.combine_first(series)
48
+ assert np.isfinite(combined).all()
49
+
50
+ tm.assert_series_equal(combined[::2], series[::2])
51
+ tm.assert_series_equal(combined[1::2], series_copy[1::2])
52
+
53
+ # mixed types
54
+ index = pd.Index([str(i) for i in range(20)])
55
+ floats = Series(np.random.default_rng(2).standard_normal(20), index=index)
56
+ strings = Series([str(i) for i in range(10)], index=index[::2], dtype=object)
57
+
58
+ combined = strings.combine_first(floats)
59
+
60
+ tm.assert_series_equal(strings, combined.loc[index[::2]])
61
+ tm.assert_series_equal(floats[1::2].astype(object), combined.loc[index[1::2]])
62
+
63
+ # corner case
64
+ ser = Series([1.0, 2, 3], index=[0, 1, 2])
65
+ empty = Series([], index=[], dtype=object)
66
+ msg = "The behavior of array concatenation with empty entries is deprecated"
67
+ with tm.assert_produces_warning(FutureWarning, match=msg):
68
+ result = ser.combine_first(empty)
69
+ ser.index = ser.index.astype("O")
70
+ tm.assert_series_equal(ser, result)
71
+
72
+ def test_combine_first_dt64(self, unit):
73
+ s0 = to_datetime(Series(["2010", np.nan])).dt.as_unit(unit)
74
+ s1 = to_datetime(Series([np.nan, "2011"])).dt.as_unit(unit)
75
+ rs = s0.combine_first(s1)
76
+ xp = to_datetime(Series(["2010", "2011"])).dt.as_unit(unit)
77
+ tm.assert_series_equal(rs, xp)
78
+
79
+ s0 = to_datetime(Series(["2010", np.nan])).dt.as_unit(unit)
80
+ s1 = Series([np.nan, "2011"])
81
+ rs = s0.combine_first(s1)
82
+
83
+ xp = Series([datetime(2010, 1, 1), "2011"], dtype="datetime64[ns]")
84
+
85
+ tm.assert_series_equal(rs, xp)
86
+
87
+ def test_combine_first_dt_tz_values(self, tz_naive_fixture):
88
+ ser1 = Series(
89
+ pd.DatetimeIndex(["20150101", "20150102", "20150103"], tz=tz_naive_fixture),
90
+ name="ser1",
91
+ )
92
+ ser2 = Series(
93
+ pd.DatetimeIndex(["20160514", "20160515", "20160516"], tz=tz_naive_fixture),
94
+ index=[2, 3, 4],
95
+ name="ser2",
96
+ )
97
+ result = ser1.combine_first(ser2)
98
+ exp_vals = pd.DatetimeIndex(
99
+ ["20150101", "20150102", "20150103", "20160515", "20160516"],
100
+ tz=tz_naive_fixture,
101
+ )
102
+ exp = Series(exp_vals, name="ser1")
103
+ tm.assert_series_equal(exp, result)
104
+
105
+ def test_combine_first_timezone_series_with_empty_series(self):
106
+ # GH 41800
107
+ time_index = date_range(
108
+ datetime(2021, 1, 1, 1),
109
+ datetime(2021, 1, 1, 10),
110
+ freq="h",
111
+ tz="Europe/Rome",
112
+ )
113
+ s1 = Series(range(10), index=time_index)
114
+ s2 = Series(index=time_index)
115
+ msg = "The behavior of array concatenation with empty entries is deprecated"
116
+ with tm.assert_produces_warning(FutureWarning, match=msg):
117
+ result = s1.combine_first(s2)
118
+ tm.assert_series_equal(result, s1)
119
+
120
+ def test_combine_first_preserves_dtype(self):
121
+ # GH51764
122
+ s1 = Series([1666880195890293744, 1666880195890293837])
123
+ s2 = Series([1, 2, 3])
124
+ result = s1.combine_first(s2)
125
+ expected = Series([1666880195890293744, 1666880195890293837, 3])
126
+ tm.assert_series_equal(result, expected)
127
+
128
+ def test_combine_mixed_timezone(self):
129
+ # GH 26283
130
+ uniform_tz = Series({pd.Timestamp("2019-05-01", tz="UTC"): 1.0})
131
+ multi_tz = Series(
132
+ {
133
+ pd.Timestamp("2019-05-01 01:00:00+0100", tz="Europe/London"): 2.0,
134
+ pd.Timestamp("2019-05-02", tz="UTC"): 3.0,
135
+ }
136
+ )
137
+
138
+ result = uniform_tz.combine_first(multi_tz)
139
+ expected = Series(
140
+ [1.0, 3.0],
141
+ index=pd.Index(
142
+ [
143
+ pd.Timestamp("2019-05-01 00:00:00+00:00", tz="UTC"),
144
+ pd.Timestamp("2019-05-02 00:00:00+00:00", tz="UTC"),
145
+ ],
146
+ dtype="object",
147
+ ),
148
+ )
149
+ tm.assert_series_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_compare.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ @pytest.mark.parametrize("align_axis", [0, 1, "index", "columns"])
9
+ def test_compare_axis(align_axis):
10
+ # GH#30429
11
+ s1 = pd.Series(["a", "b", "c"])
12
+ s2 = pd.Series(["x", "b", "z"])
13
+
14
+ result = s1.compare(s2, align_axis=align_axis)
15
+
16
+ if align_axis in (1, "columns"):
17
+ indices = pd.Index([0, 2])
18
+ columns = pd.Index(["self", "other"])
19
+ expected = pd.DataFrame(
20
+ [["a", "x"], ["c", "z"]], index=indices, columns=columns
21
+ )
22
+ tm.assert_frame_equal(result, expected)
23
+ else:
24
+ indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]])
25
+ expected = pd.Series(["a", "x", "c", "z"], index=indices)
26
+ tm.assert_series_equal(result, expected)
27
+
28
+
29
+ @pytest.mark.parametrize(
30
+ "keep_shape, keep_equal",
31
+ [
32
+ (True, False),
33
+ (False, True),
34
+ (True, True),
35
+ # False, False case is already covered in test_compare_axis
36
+ ],
37
+ )
38
+ def test_compare_various_formats(keep_shape, keep_equal):
39
+ s1 = pd.Series(["a", "b", "c"])
40
+ s2 = pd.Series(["x", "b", "z"])
41
+
42
+ result = s1.compare(s2, keep_shape=keep_shape, keep_equal=keep_equal)
43
+
44
+ if keep_shape:
45
+ indices = pd.Index([0, 1, 2])
46
+ columns = pd.Index(["self", "other"])
47
+ if keep_equal:
48
+ expected = pd.DataFrame(
49
+ [["a", "x"], ["b", "b"], ["c", "z"]], index=indices, columns=columns
50
+ )
51
+ else:
52
+ expected = pd.DataFrame(
53
+ [["a", "x"], [np.nan, np.nan], ["c", "z"]],
54
+ index=indices,
55
+ columns=columns,
56
+ )
57
+ else:
58
+ indices = pd.Index([0, 2])
59
+ columns = pd.Index(["self", "other"])
60
+ expected = pd.DataFrame(
61
+ [["a", "x"], ["c", "z"]], index=indices, columns=columns
62
+ )
63
+ tm.assert_frame_equal(result, expected)
64
+
65
+
66
+ def test_compare_with_equal_nulls():
67
+ # We want to make sure two NaNs are considered the same
68
+ # and dropped where applicable
69
+ s1 = pd.Series(["a", "b", np.nan])
70
+ s2 = pd.Series(["x", "b", np.nan])
71
+
72
+ result = s1.compare(s2)
73
+ expected = pd.DataFrame([["a", "x"]], columns=["self", "other"])
74
+ tm.assert_frame_equal(result, expected)
75
+
76
+
77
+ def test_compare_with_non_equal_nulls():
78
+ # We want to make sure the relevant NaNs do not get dropped
79
+ s1 = pd.Series(["a", "b", "c"])
80
+ s2 = pd.Series(["x", "b", np.nan])
81
+
82
+ result = s1.compare(s2, align_axis=0)
83
+
84
+ indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]])
85
+ expected = pd.Series(["a", "x", "c", np.nan], index=indices)
86
+ tm.assert_series_equal(result, expected)
87
+
88
+
89
+ def test_compare_multi_index():
90
+ index = pd.MultiIndex.from_arrays([[0, 0, 1], [0, 1, 2]])
91
+ s1 = pd.Series(["a", "b", "c"], index=index)
92
+ s2 = pd.Series(["x", "b", "z"], index=index)
93
+
94
+ result = s1.compare(s2, align_axis=0)
95
+
96
+ indices = pd.MultiIndex.from_arrays(
97
+ [[0, 0, 1, 1], [0, 0, 2, 2], ["self", "other", "self", "other"]]
98
+ )
99
+ expected = pd.Series(["a", "x", "c", "z"], index=indices)
100
+ tm.assert_series_equal(result, expected)
101
+
102
+
103
+ def test_compare_unaligned_objects():
104
+ # test Series with different indices
105
+ msg = "Can only compare identically-labeled Series objects"
106
+ with pytest.raises(ValueError, match=msg):
107
+ ser1 = pd.Series([1, 2, 3], index=["a", "b", "c"])
108
+ ser2 = pd.Series([1, 2, 3], index=["a", "b", "d"])
109
+ ser1.compare(ser2)
110
+
111
+ # test Series with different lengths
112
+ msg = "Can only compare identically-labeled Series objects"
113
+ with pytest.raises(ValueError, match=msg):
114
+ ser1 = pd.Series([1, 2, 3])
115
+ ser2 = pd.Series([1, 2, 3, 4])
116
+ ser1.compare(ser2)
117
+
118
+
119
+ def test_compare_datetime64_and_string():
120
+ # Issue https://github.com/pandas-dev/pandas/issues/45506
121
+ # Catch OverflowError when comparing datetime64 and string
122
+ data = [
123
+ {"a": "2015-07-01", "b": "08335394550"},
124
+ {"a": "2015-07-02", "b": "+49 (0) 0345 300033"},
125
+ {"a": "2015-07-03", "b": "+49(0)2598 04457"},
126
+ {"a": "2015-07-04", "b": "0741470003"},
127
+ {"a": "2015-07-05", "b": "04181 83668"},
128
+ ]
129
+ dtypes = {"a": "datetime64[ns]", "b": "string"}
130
+ df = pd.DataFrame(data=data).astype(dtypes)
131
+
132
+ result_eq1 = df["a"].eq(df["b"])
133
+ result_eq2 = df["a"] == df["b"]
134
+ result_neq = df["a"] != df["b"]
135
+
136
+ expected_eq = pd.Series([False] * 5) # For .eq and ==
137
+ expected_neq = pd.Series([True] * 5) # For !=
138
+
139
+ tm.assert_series_equal(result_eq1, expected_eq)
140
+ tm.assert_series_equal(result_eq2, expected_eq)
141
+ tm.assert_series_equal(result_neq, expected_neq)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_convert_dtypes.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import product
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas._libs import lib
7
+
8
+ import pandas as pd
9
+ import pandas._testing as tm
10
+
11
+ # Each test case consists of a tuple with the data and dtype to create the
12
+ # test Series, the default dtype for the expected result (which is valid
13
+ # for most cases), and the specific cases where the result deviates from
14
+ # this default. Those overrides are defined as a dict with (keyword, val) as
15
+ # dictionary key. In case of multiple items, the last override takes precedence.
16
+
17
+
18
+ @pytest.fixture(
19
+ params=[
20
+ (
21
+ # data
22
+ [1, 2, 3],
23
+ # original dtype
24
+ np.dtype("int32"),
25
+ # default expected dtype
26
+ "Int32",
27
+ # exceptions on expected dtype
28
+ {("convert_integer", False): np.dtype("int32")},
29
+ ),
30
+ (
31
+ [1, 2, 3],
32
+ np.dtype("int64"),
33
+ "Int64",
34
+ {("convert_integer", False): np.dtype("int64")},
35
+ ),
36
+ (
37
+ ["x", "y", "z"],
38
+ np.dtype("O"),
39
+ pd.StringDtype(),
40
+ {("convert_string", False): np.dtype("O")},
41
+ ),
42
+ (
43
+ [True, False, np.nan],
44
+ np.dtype("O"),
45
+ pd.BooleanDtype(),
46
+ {("convert_boolean", False): np.dtype("O")},
47
+ ),
48
+ (
49
+ ["h", "i", np.nan],
50
+ np.dtype("O"),
51
+ pd.StringDtype(),
52
+ {("convert_string", False): np.dtype("O")},
53
+ ),
54
+ ( # GH32117
55
+ ["h", "i", 1],
56
+ np.dtype("O"),
57
+ np.dtype("O"),
58
+ {},
59
+ ),
60
+ (
61
+ [10, np.nan, 20],
62
+ np.dtype("float"),
63
+ "Int64",
64
+ {
65
+ ("convert_integer", False, "convert_floating", True): "Float64",
66
+ ("convert_integer", False, "convert_floating", False): np.dtype(
67
+ "float"
68
+ ),
69
+ },
70
+ ),
71
+ (
72
+ [np.nan, 100.5, 200],
73
+ np.dtype("float"),
74
+ "Float64",
75
+ {("convert_floating", False): np.dtype("float")},
76
+ ),
77
+ (
78
+ [3, 4, 5],
79
+ "Int8",
80
+ "Int8",
81
+ {},
82
+ ),
83
+ (
84
+ [[1, 2], [3, 4], [5]],
85
+ None,
86
+ np.dtype("O"),
87
+ {},
88
+ ),
89
+ (
90
+ [4, 5, 6],
91
+ np.dtype("uint32"),
92
+ "UInt32",
93
+ {("convert_integer", False): np.dtype("uint32")},
94
+ ),
95
+ (
96
+ [-10, 12, 13],
97
+ np.dtype("i1"),
98
+ "Int8",
99
+ {("convert_integer", False): np.dtype("i1")},
100
+ ),
101
+ (
102
+ [1.2, 1.3],
103
+ np.dtype("float32"),
104
+ "Float32",
105
+ {("convert_floating", False): np.dtype("float32")},
106
+ ),
107
+ (
108
+ [1, 2.0],
109
+ object,
110
+ "Int64",
111
+ {
112
+ ("convert_integer", False): "Float64",
113
+ ("convert_integer", False, "convert_floating", False): np.dtype(
114
+ "float"
115
+ ),
116
+ ("infer_objects", False): np.dtype("object"),
117
+ },
118
+ ),
119
+ (
120
+ [1, 2.5],
121
+ object,
122
+ "Float64",
123
+ {
124
+ ("convert_floating", False): np.dtype("float"),
125
+ ("infer_objects", False): np.dtype("object"),
126
+ },
127
+ ),
128
+ (["a", "b"], pd.CategoricalDtype(), pd.CategoricalDtype(), {}),
129
+ (
130
+ pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("s"),
131
+ pd.DatetimeTZDtype(tz="UTC"),
132
+ pd.DatetimeTZDtype(tz="UTC"),
133
+ {},
134
+ ),
135
+ (
136
+ pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ms"),
137
+ pd.DatetimeTZDtype(tz="UTC"),
138
+ pd.DatetimeTZDtype(tz="UTC"),
139
+ {},
140
+ ),
141
+ (
142
+ pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("us"),
143
+ pd.DatetimeTZDtype(tz="UTC"),
144
+ pd.DatetimeTZDtype(tz="UTC"),
145
+ {},
146
+ ),
147
+ (
148
+ pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ns"),
149
+ pd.DatetimeTZDtype(tz="UTC"),
150
+ pd.DatetimeTZDtype(tz="UTC"),
151
+ {},
152
+ ),
153
+ (
154
+ pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ns"),
155
+ "datetime64[ns]",
156
+ np.dtype("datetime64[ns]"),
157
+ {},
158
+ ),
159
+ (
160
+ pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ns"),
161
+ object,
162
+ np.dtype("datetime64[ns]"),
163
+ {("infer_objects", False): np.dtype("object")},
164
+ ),
165
+ (
166
+ pd.period_range("1/1/2011", freq="M", periods=3),
167
+ None,
168
+ pd.PeriodDtype("M"),
169
+ {},
170
+ ),
171
+ (
172
+ pd.arrays.IntervalArray([pd.Interval(0, 1), pd.Interval(1, 5)]),
173
+ None,
174
+ pd.IntervalDtype("int64", "right"),
175
+ {},
176
+ ),
177
+ ]
178
+ )
179
+ def test_cases(request):
180
+ return request.param
181
+
182
+
183
+ class TestSeriesConvertDtypes:
184
+ @pytest.mark.parametrize("params", product(*[(True, False)] * 5))
185
+ def test_convert_dtypes(
186
+ self,
187
+ test_cases,
188
+ params,
189
+ using_infer_string,
190
+ ):
191
+ data, maindtype, expected_default, expected_other = test_cases
192
+ if (
193
+ hasattr(data, "dtype")
194
+ and lib.is_np_dtype(data.dtype, "M")
195
+ and isinstance(maindtype, pd.DatetimeTZDtype)
196
+ ):
197
+ # this astype is deprecated in favor of tz_localize
198
+ msg = "Cannot use .astype to convert from timezone-naive dtype"
199
+ with pytest.raises(TypeError, match=msg):
200
+ pd.Series(data, dtype=maindtype)
201
+ return
202
+
203
+ if maindtype is not None:
204
+ series = pd.Series(data, dtype=maindtype)
205
+ else:
206
+ series = pd.Series(data)
207
+
208
+ result = series.convert_dtypes(*params)
209
+
210
+ param_names = [
211
+ "infer_objects",
212
+ "convert_string",
213
+ "convert_integer",
214
+ "convert_boolean",
215
+ "convert_floating",
216
+ ]
217
+ params_dict = dict(zip(param_names, params))
218
+
219
+ expected_dtype = expected_default
220
+ for spec, dtype in expected_other.items():
221
+ if all(params_dict[key] is val for key, val in zip(spec[::2], spec[1::2])):
222
+ expected_dtype = dtype
223
+ if (
224
+ using_infer_string
225
+ and expected_default == "string"
226
+ and expected_dtype == object
227
+ and params[0]
228
+ and not params[1]
229
+ ):
230
+ # If we would convert with convert strings then infer_objects converts
231
+ # with the option
232
+ expected_dtype = "string[pyarrow_numpy]"
233
+
234
+ expected = pd.Series(data, dtype=expected_dtype)
235
+ tm.assert_series_equal(result, expected)
236
+
237
+ # Test that it is a copy
238
+ copy = series.copy(deep=True)
239
+
240
+ if result.notna().sum() > 0 and result.dtype in ["interval[int64, right]"]:
241
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
242
+ result[result.notna()] = np.nan
243
+ else:
244
+ result[result.notna()] = np.nan
245
+
246
+ # Make sure original not changed
247
+ tm.assert_series_equal(series, copy)
248
+
249
+ def test_convert_string_dtype(self, nullable_string_dtype):
250
+ # https://github.com/pandas-dev/pandas/issues/31731 -> converting columns
251
+ # that are already string dtype
252
+ df = pd.DataFrame(
253
+ {"A": ["a", "b", pd.NA], "B": ["ä", "ö", "ü"]}, dtype=nullable_string_dtype
254
+ )
255
+ result = df.convert_dtypes()
256
+ tm.assert_frame_equal(df, result)
257
+
258
+ def test_convert_bool_dtype(self):
259
+ # GH32287
260
+ df = pd.DataFrame({"A": pd.array([True])})
261
+ tm.assert_frame_equal(df, df.convert_dtypes())
262
+
263
+ def test_convert_byte_string_dtype(self):
264
+ # GH-43183
265
+ byte_str = b"binary-string"
266
+
267
+ df = pd.DataFrame(data={"A": byte_str}, index=[0])
268
+ result = df.convert_dtypes()
269
+ expected = df
270
+ tm.assert_frame_equal(result, expected)
271
+
272
+ @pytest.mark.parametrize(
273
+ "infer_objects, dtype", [(True, "Int64"), (False, "object")]
274
+ )
275
+ def test_convert_dtype_object_with_na(self, infer_objects, dtype):
276
+ # GH#48791
277
+ ser = pd.Series([1, pd.NA])
278
+ result = ser.convert_dtypes(infer_objects=infer_objects)
279
+ expected = pd.Series([1, pd.NA], dtype=dtype)
280
+ tm.assert_series_equal(result, expected)
281
+
282
+ @pytest.mark.parametrize(
283
+ "infer_objects, dtype", [(True, "Float64"), (False, "object")]
284
+ )
285
+ def test_convert_dtype_object_with_na_float(self, infer_objects, dtype):
286
+ # GH#48791
287
+ ser = pd.Series([1.5, pd.NA])
288
+ result = ser.convert_dtypes(infer_objects=infer_objects)
289
+ expected = pd.Series([1.5, pd.NA], dtype=dtype)
290
+ tm.assert_series_equal(result, expected)
291
+
292
+ def test_convert_dtypes_pyarrow_to_np_nullable(self):
293
+ # GH 53648
294
+ pytest.importorskip("pyarrow")
295
+ ser = pd.Series(range(2), dtype="int32[pyarrow]")
296
+ result = ser.convert_dtypes(dtype_backend="numpy_nullable")
297
+ expected = pd.Series(range(2), dtype="Int32")
298
+ tm.assert_series_equal(result, expected)
299
+
300
+ def test_convert_dtypes_pyarrow_null(self):
301
+ # GH#55346
302
+ pa = pytest.importorskip("pyarrow")
303
+ ser = pd.Series([None, None])
304
+ result = ser.convert_dtypes(dtype_backend="pyarrow")
305
+ expected = pd.Series([None, None], dtype=pd.ArrowDtype(pa.null()))
306
+ tm.assert_series_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_count.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ import pandas as pd
4
+ from pandas import (
5
+ Categorical,
6
+ Series,
7
+ )
8
+ import pandas._testing as tm
9
+
10
+
11
+ class TestSeriesCount:
12
+ def test_count(self, datetime_series):
13
+ assert datetime_series.count() == len(datetime_series)
14
+
15
+ datetime_series[::2] = np.nan
16
+
17
+ assert datetime_series.count() == np.isfinite(datetime_series).sum()
18
+
19
+ def test_count_inf_as_na(self):
20
+ # GH#29478
21
+ ser = Series([pd.Timestamp("1990/1/1")])
22
+ msg = "use_inf_as_na option is deprecated"
23
+ with tm.assert_produces_warning(FutureWarning, match=msg):
24
+ with pd.option_context("use_inf_as_na", True):
25
+ assert ser.count() == 1
26
+
27
+ def test_count_categorical(self):
28
+ ser = Series(
29
+ Categorical(
30
+ [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True
31
+ )
32
+ )
33
+ result = ser.count()
34
+ assert result == 2
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_cov_corr.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ from pandas import (
8
+ Series,
9
+ date_range,
10
+ isna,
11
+ )
12
+ import pandas._testing as tm
13
+
14
+
15
+ class TestSeriesCov:
16
+ def test_cov(self, datetime_series):
17
+ # full overlap
18
+ tm.assert_almost_equal(
19
+ datetime_series.cov(datetime_series), datetime_series.std() ** 2
20
+ )
21
+
22
+ # partial overlap
23
+ tm.assert_almost_equal(
24
+ datetime_series[:15].cov(datetime_series[5:]),
25
+ datetime_series[5:15].std() ** 2,
26
+ )
27
+
28
+ # No overlap
29
+ assert np.isnan(datetime_series[::2].cov(datetime_series[1::2]))
30
+
31
+ # all NA
32
+ cp = datetime_series[:10].copy()
33
+ cp[:] = np.nan
34
+ assert isna(cp.cov(cp))
35
+
36
+ # min_periods
37
+ assert isna(datetime_series[:15].cov(datetime_series[5:], min_periods=12))
38
+
39
+ ts1 = datetime_series[:15].reindex(datetime_series.index)
40
+ ts2 = datetime_series[5:].reindex(datetime_series.index)
41
+ assert isna(ts1.cov(ts2, min_periods=12))
42
+
43
+ @pytest.mark.parametrize("test_ddof", [None, 0, 1, 2, 3])
44
+ @pytest.mark.parametrize("dtype", ["float64", "Float64"])
45
+ def test_cov_ddof(self, test_ddof, dtype):
46
+ # GH#34611
47
+ np_array1 = np.random.default_rng(2).random(10)
48
+ np_array2 = np.random.default_rng(2).random(10)
49
+
50
+ s1 = Series(np_array1, dtype=dtype)
51
+ s2 = Series(np_array2, dtype=dtype)
52
+
53
+ result = s1.cov(s2, ddof=test_ddof)
54
+ expected = np.cov(np_array1, np_array2, ddof=test_ddof)[0][1]
55
+ assert math.isclose(expected, result)
56
+
57
+
58
+ class TestSeriesCorr:
59
+ @pytest.mark.parametrize("dtype", ["float64", "Float64"])
60
+ def test_corr(self, datetime_series, dtype):
61
+ stats = pytest.importorskip("scipy.stats")
62
+
63
+ datetime_series = datetime_series.astype(dtype)
64
+
65
+ # full overlap
66
+ tm.assert_almost_equal(datetime_series.corr(datetime_series), 1)
67
+
68
+ # partial overlap
69
+ tm.assert_almost_equal(datetime_series[:15].corr(datetime_series[5:]), 1)
70
+
71
+ assert isna(datetime_series[:15].corr(datetime_series[5:], min_periods=12))
72
+
73
+ ts1 = datetime_series[:15].reindex(datetime_series.index)
74
+ ts2 = datetime_series[5:].reindex(datetime_series.index)
75
+ assert isna(ts1.corr(ts2, min_periods=12))
76
+
77
+ # No overlap
78
+ assert np.isnan(datetime_series[::2].corr(datetime_series[1::2]))
79
+
80
+ # all NA
81
+ cp = datetime_series[:10].copy()
82
+ cp[:] = np.nan
83
+ assert isna(cp.corr(cp))
84
+
85
+ A = Series(
86
+ np.arange(10, dtype=np.float64),
87
+ index=date_range("2020-01-01", periods=10),
88
+ name="ts",
89
+ )
90
+ B = A.copy()
91
+ result = A.corr(B)
92
+ expected, _ = stats.pearsonr(A, B)
93
+ tm.assert_almost_equal(result, expected)
94
+
95
+ def test_corr_rank(self):
96
+ stats = pytest.importorskip("scipy.stats")
97
+
98
+ # kendall and spearman
99
+ A = Series(
100
+ np.arange(10, dtype=np.float64),
101
+ index=date_range("2020-01-01", periods=10),
102
+ name="ts",
103
+ )
104
+ B = A.copy()
105
+ A[-5:] = A[:5].copy()
106
+ result = A.corr(B, method="kendall")
107
+ expected = stats.kendalltau(A, B)[0]
108
+ tm.assert_almost_equal(result, expected)
109
+
110
+ result = A.corr(B, method="spearman")
111
+ expected = stats.spearmanr(A, B)[0]
112
+ tm.assert_almost_equal(result, expected)
113
+
114
+ # results from R
115
+ A = Series(
116
+ [
117
+ -0.89926396,
118
+ 0.94209606,
119
+ -1.03289164,
120
+ -0.95445587,
121
+ 0.76910310,
122
+ -0.06430576,
123
+ -2.09704447,
124
+ 0.40660407,
125
+ -0.89926396,
126
+ 0.94209606,
127
+ ]
128
+ )
129
+ B = Series(
130
+ [
131
+ -1.01270225,
132
+ -0.62210117,
133
+ -1.56895827,
134
+ 0.59592943,
135
+ -0.01680292,
136
+ 1.17258718,
137
+ -1.06009347,
138
+ -0.10222060,
139
+ -0.89076239,
140
+ 0.89372375,
141
+ ]
142
+ )
143
+ kexp = 0.4319297
144
+ sexp = 0.5853767
145
+ tm.assert_almost_equal(A.corr(B, method="kendall"), kexp)
146
+ tm.assert_almost_equal(A.corr(B, method="spearman"), sexp)
147
+
148
+ def test_corr_invalid_method(self):
149
+ # GH PR #22298
150
+ s1 = Series(np.random.default_rng(2).standard_normal(10))
151
+ s2 = Series(np.random.default_rng(2).standard_normal(10))
152
+ msg = "method must be either 'pearson', 'spearman', 'kendall', or a callable, "
153
+ with pytest.raises(ValueError, match=msg):
154
+ s1.corr(s2, method="____")
155
+
156
+ def test_corr_callable_method(self, datetime_series):
157
+ # simple correlation example
158
+ # returns 1 if exact equality, 0 otherwise
159
+ my_corr = lambda a, b: 1.0 if (a == b).all() else 0.0
160
+
161
+ # simple example
162
+ s1 = Series([1, 2, 3, 4, 5])
163
+ s2 = Series([5, 4, 3, 2, 1])
164
+ expected = 0
165
+ tm.assert_almost_equal(s1.corr(s2, method=my_corr), expected)
166
+
167
+ # full overlap
168
+ tm.assert_almost_equal(
169
+ datetime_series.corr(datetime_series, method=my_corr), 1.0
170
+ )
171
+
172
+ # partial overlap
173
+ tm.assert_almost_equal(
174
+ datetime_series[:15].corr(datetime_series[5:], method=my_corr), 1.0
175
+ )
176
+
177
+ # No overlap
178
+ assert np.isnan(
179
+ datetime_series[::2].corr(datetime_series[1::2], method=my_corr)
180
+ )
181
+
182
+ # dataframe example
183
+ df = pd.DataFrame([s1, s2])
184
+ expected = pd.DataFrame([{0: 1.0, 1: 0}, {0: 0, 1: 1.0}])
185
+ tm.assert_almost_equal(df.transpose().corr(method=my_corr), expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_diff.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Series,
6
+ TimedeltaIndex,
7
+ date_range,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ class TestSeriesDiff:
13
+ def test_diff_np(self):
14
+ # TODO(__array_function__): could make np.diff return a Series
15
+ # matching ser.diff()
16
+
17
+ ser = Series(np.arange(5))
18
+
19
+ res = np.diff(ser)
20
+ expected = np.array([1, 1, 1, 1])
21
+ tm.assert_numpy_array_equal(res, expected)
22
+
23
+ def test_diff_int(self):
24
+ # int dtype
25
+ a = 10000000000000000
26
+ b = a + 1
27
+ ser = Series([a, b])
28
+
29
+ result = ser.diff()
30
+ assert result[1] == 1
31
+
32
+ def test_diff_tz(self):
33
+ # Combined datetime diff, normal diff and boolean diff test
34
+ ts = Series(
35
+ np.arange(10, dtype=np.float64),
36
+ index=date_range("2020-01-01", periods=10),
37
+ name="ts",
38
+ )
39
+ ts.diff()
40
+
41
+ # neg n
42
+ result = ts.diff(-1)
43
+ expected = ts - ts.shift(-1)
44
+ tm.assert_series_equal(result, expected)
45
+
46
+ # 0
47
+ result = ts.diff(0)
48
+ expected = ts - ts
49
+ tm.assert_series_equal(result, expected)
50
+
51
+ def test_diff_dt64(self):
52
+ # datetime diff (GH#3100)
53
+ ser = Series(date_range("20130102", periods=5))
54
+ result = ser.diff()
55
+ expected = ser - ser.shift(1)
56
+ tm.assert_series_equal(result, expected)
57
+
58
+ # timedelta diff
59
+ result = result - result.shift(1) # previous result
60
+ expected = expected.diff() # previously expected
61
+ tm.assert_series_equal(result, expected)
62
+
63
+ def test_diff_dt64tz(self):
64
+ # with tz
65
+ ser = Series(
66
+ date_range("2000-01-01 09:00:00", periods=5, tz="US/Eastern"), name="foo"
67
+ )
68
+ result = ser.diff()
69
+ expected = Series(TimedeltaIndex(["NaT"] + ["1 days"] * 4), name="foo")
70
+ tm.assert_series_equal(result, expected)
71
+
72
+ @pytest.mark.parametrize(
73
+ "input,output,diff",
74
+ [([False, True, True, False, False], [np.nan, True, False, True, False], 1)],
75
+ )
76
+ def test_diff_bool(self, input, output, diff):
77
+ # boolean series (test for fixing #17294)
78
+ ser = Series(input)
79
+ result = ser.diff()
80
+ expected = Series(output)
81
+ tm.assert_series_equal(result, expected)
82
+
83
+ def test_diff_object_dtype(self):
84
+ # object series
85
+ ser = Series([False, True, 5.0, np.nan, True, False])
86
+ result = ser.diff()
87
+ expected = ser - ser.shift(1)
88
+ tm.assert_series_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop_duplicates.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ Categorical,
7
+ Series,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ @pytest.mark.parametrize(
13
+ "keep, expected",
14
+ [
15
+ ("first", Series([False, False, False, False, True, True, False])),
16
+ ("last", Series([False, True, True, False, False, False, False])),
17
+ (False, Series([False, True, True, False, True, True, False])),
18
+ ],
19
+ )
20
+ def test_drop_duplicates(any_numpy_dtype, keep, expected):
21
+ tc = Series([1, 0, 3, 5, 3, 0, 4], dtype=np.dtype(any_numpy_dtype))
22
+
23
+ if tc.dtype == "bool":
24
+ pytest.skip("tested separately in test_drop_duplicates_bool")
25
+
26
+ tm.assert_series_equal(tc.duplicated(keep=keep), expected)
27
+ tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected])
28
+ sc = tc.copy()
29
+ return_value = sc.drop_duplicates(keep=keep, inplace=True)
30
+ assert return_value is None
31
+ tm.assert_series_equal(sc, tc[~expected])
32
+
33
+
34
+ @pytest.mark.parametrize(
35
+ "keep, expected",
36
+ [
37
+ ("first", Series([False, False, True, True])),
38
+ ("last", Series([True, True, False, False])),
39
+ (False, Series([True, True, True, True])),
40
+ ],
41
+ )
42
+ def test_drop_duplicates_bool(keep, expected):
43
+ tc = Series([True, False, True, False])
44
+
45
+ tm.assert_series_equal(tc.duplicated(keep=keep), expected)
46
+ tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected])
47
+ sc = tc.copy()
48
+ return_value = sc.drop_duplicates(keep=keep, inplace=True)
49
+ tm.assert_series_equal(sc, tc[~expected])
50
+ assert return_value is None
51
+
52
+
53
+ @pytest.mark.parametrize("values", [[], list(range(5))])
54
+ def test_drop_duplicates_no_duplicates(any_numpy_dtype, keep, values):
55
+ tc = Series(values, dtype=np.dtype(any_numpy_dtype))
56
+ expected = Series([False] * len(tc), dtype="bool")
57
+
58
+ if tc.dtype == "bool":
59
+ # 0 -> False and 1-> True
60
+ # any other value would be duplicated
61
+ tc = tc[:2]
62
+ expected = expected[:2]
63
+
64
+ tm.assert_series_equal(tc.duplicated(keep=keep), expected)
65
+
66
+ result_dropped = tc.drop_duplicates(keep=keep)
67
+ tm.assert_series_equal(result_dropped, tc)
68
+
69
+ # validate shallow copy
70
+ assert result_dropped is not tc
71
+
72
+
73
+ class TestSeriesDropDuplicates:
74
+ @pytest.fixture(
75
+ params=["int_", "uint", "float64", "str_", "timedelta64[h]", "datetime64[D]"]
76
+ )
77
+ def dtype(self, request):
78
+ return request.param
79
+
80
+ @pytest.fixture
81
+ def cat_series_unused_category(self, dtype, ordered):
82
+ # Test case 1
83
+ cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype))
84
+
85
+ input1 = np.array([1, 2, 3, 3], dtype=np.dtype(dtype))
86
+ cat = Categorical(input1, categories=cat_array, ordered=ordered)
87
+ tc1 = Series(cat)
88
+ return tc1
89
+
90
+ def test_drop_duplicates_categorical_non_bool(self, cat_series_unused_category):
91
+ tc1 = cat_series_unused_category
92
+
93
+ expected = Series([False, False, False, True])
94
+
95
+ result = tc1.duplicated()
96
+ tm.assert_series_equal(result, expected)
97
+
98
+ result = tc1.drop_duplicates()
99
+ tm.assert_series_equal(result, tc1[~expected])
100
+
101
+ sc = tc1.copy()
102
+ return_value = sc.drop_duplicates(inplace=True)
103
+ assert return_value is None
104
+ tm.assert_series_equal(sc, tc1[~expected])
105
+
106
+ def test_drop_duplicates_categorical_non_bool_keeplast(
107
+ self, cat_series_unused_category
108
+ ):
109
+ tc1 = cat_series_unused_category
110
+
111
+ expected = Series([False, False, True, False])
112
+
113
+ result = tc1.duplicated(keep="last")
114
+ tm.assert_series_equal(result, expected)
115
+
116
+ result = tc1.drop_duplicates(keep="last")
117
+ tm.assert_series_equal(result, tc1[~expected])
118
+
119
+ sc = tc1.copy()
120
+ return_value = sc.drop_duplicates(keep="last", inplace=True)
121
+ assert return_value is None
122
+ tm.assert_series_equal(sc, tc1[~expected])
123
+
124
+ def test_drop_duplicates_categorical_non_bool_keepfalse(
125
+ self, cat_series_unused_category
126
+ ):
127
+ tc1 = cat_series_unused_category
128
+
129
+ expected = Series([False, False, True, True])
130
+
131
+ result = tc1.duplicated(keep=False)
132
+ tm.assert_series_equal(result, expected)
133
+
134
+ result = tc1.drop_duplicates(keep=False)
135
+ tm.assert_series_equal(result, tc1[~expected])
136
+
137
+ sc = tc1.copy()
138
+ return_value = sc.drop_duplicates(keep=False, inplace=True)
139
+ assert return_value is None
140
+ tm.assert_series_equal(sc, tc1[~expected])
141
+
142
+ @pytest.fixture
143
+ def cat_series(self, dtype, ordered):
144
+ # no unused categories, unlike cat_series_unused_category
145
+ cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype))
146
+
147
+ input2 = np.array([1, 2, 3, 5, 3, 2, 4], dtype=np.dtype(dtype))
148
+ cat = Categorical(input2, categories=cat_array, ordered=ordered)
149
+ tc2 = Series(cat)
150
+ return tc2
151
+
152
+ def test_drop_duplicates_categorical_non_bool2(self, cat_series):
153
+ tc2 = cat_series
154
+
155
+ expected = Series([False, False, False, False, True, True, False])
156
+
157
+ result = tc2.duplicated()
158
+ tm.assert_series_equal(result, expected)
159
+
160
+ result = tc2.drop_duplicates()
161
+ tm.assert_series_equal(result, tc2[~expected])
162
+
163
+ sc = tc2.copy()
164
+ return_value = sc.drop_duplicates(inplace=True)
165
+ assert return_value is None
166
+ tm.assert_series_equal(sc, tc2[~expected])
167
+
168
+ def test_drop_duplicates_categorical_non_bool2_keeplast(self, cat_series):
169
+ tc2 = cat_series
170
+
171
+ expected = Series([False, True, True, False, False, False, False])
172
+
173
+ result = tc2.duplicated(keep="last")
174
+ tm.assert_series_equal(result, expected)
175
+
176
+ result = tc2.drop_duplicates(keep="last")
177
+ tm.assert_series_equal(result, tc2[~expected])
178
+
179
+ sc = tc2.copy()
180
+ return_value = sc.drop_duplicates(keep="last", inplace=True)
181
+ assert return_value is None
182
+ tm.assert_series_equal(sc, tc2[~expected])
183
+
184
+ def test_drop_duplicates_categorical_non_bool2_keepfalse(self, cat_series):
185
+ tc2 = cat_series
186
+
187
+ expected = Series([False, True, True, False, True, True, False])
188
+
189
+ result = tc2.duplicated(keep=False)
190
+ tm.assert_series_equal(result, expected)
191
+
192
+ result = tc2.drop_duplicates(keep=False)
193
+ tm.assert_series_equal(result, tc2[~expected])
194
+
195
+ sc = tc2.copy()
196
+ return_value = sc.drop_duplicates(keep=False, inplace=True)
197
+ assert return_value is None
198
+ tm.assert_series_equal(sc, tc2[~expected])
199
+
200
+ def test_drop_duplicates_categorical_bool(self, ordered):
201
+ tc = Series(
202
+ Categorical(
203
+ [True, False, True, False], categories=[True, False], ordered=ordered
204
+ )
205
+ )
206
+
207
+ expected = Series([False, False, True, True])
208
+ tm.assert_series_equal(tc.duplicated(), expected)
209
+ tm.assert_series_equal(tc.drop_duplicates(), tc[~expected])
210
+ sc = tc.copy()
211
+ return_value = sc.drop_duplicates(inplace=True)
212
+ assert return_value is None
213
+ tm.assert_series_equal(sc, tc[~expected])
214
+
215
+ expected = Series([True, True, False, False])
216
+ tm.assert_series_equal(tc.duplicated(keep="last"), expected)
217
+ tm.assert_series_equal(tc.drop_duplicates(keep="last"), tc[~expected])
218
+ sc = tc.copy()
219
+ return_value = sc.drop_duplicates(keep="last", inplace=True)
220
+ assert return_value is None
221
+ tm.assert_series_equal(sc, tc[~expected])
222
+
223
+ expected = Series([True, True, True, True])
224
+ tm.assert_series_equal(tc.duplicated(keep=False), expected)
225
+ tm.assert_series_equal(tc.drop_duplicates(keep=False), tc[~expected])
226
+ sc = tc.copy()
227
+ return_value = sc.drop_duplicates(keep=False, inplace=True)
228
+ assert return_value is None
229
+ tm.assert_series_equal(sc, tc[~expected])
230
+
231
+ def test_drop_duplicates_categorical_bool_na(self, nulls_fixture):
232
+ # GH#44351
233
+ ser = Series(
234
+ Categorical(
235
+ [True, False, True, False, nulls_fixture],
236
+ categories=[True, False],
237
+ ordered=True,
238
+ )
239
+ )
240
+ result = ser.drop_duplicates()
241
+ expected = Series(
242
+ Categorical([True, False, np.nan], categories=[True, False], ordered=True),
243
+ index=[0, 1, 4],
244
+ )
245
+ tm.assert_series_equal(result, expected)
246
+
247
+ def test_drop_duplicates_ignore_index(self):
248
+ # GH#48304
249
+ ser = Series([1, 2, 2, 3])
250
+ result = ser.drop_duplicates(ignore_index=True)
251
+ expected = Series([1, 2, 3])
252
+ tm.assert_series_equal(result, expected)
253
+
254
+ def test_duplicated_arrow_dtype(self):
255
+ pytest.importorskip("pyarrow")
256
+ ser = Series([True, False, None, False], dtype="bool[pyarrow]")
257
+ result = ser.drop_duplicates()
258
+ expected = Series([True, False, None], dtype="bool[pyarrow]")
259
+ tm.assert_series_equal(result, expected)
260
+
261
+ def test_drop_duplicates_arrow_strings(self):
262
+ # GH#54904
263
+ pa = pytest.importorskip("pyarrow")
264
+ ser = Series(["a", "a"], dtype=pd.ArrowDtype(pa.string()))
265
+ result = ser.drop_duplicates()
266
+ expecetd = Series(["a"], dtype=pd.ArrowDtype(pa.string()))
267
+ tm.assert_series_equal(result, expecetd)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_dropna.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DatetimeIndex,
6
+ IntervalIndex,
7
+ NaT,
8
+ Period,
9
+ Series,
10
+ Timestamp,
11
+ )
12
+ import pandas._testing as tm
13
+
14
+
15
+ class TestDropna:
16
+ def test_dropna_empty(self):
17
+ ser = Series([], dtype=object)
18
+
19
+ assert len(ser.dropna()) == 0
20
+ return_value = ser.dropna(inplace=True)
21
+ assert return_value is None
22
+ assert len(ser) == 0
23
+
24
+ # invalid axis
25
+ msg = "No axis named 1 for object type Series"
26
+ with pytest.raises(ValueError, match=msg):
27
+ ser.dropna(axis=1)
28
+
29
+ def test_dropna_preserve_name(self, datetime_series):
30
+ datetime_series[:5] = np.nan
31
+ result = datetime_series.dropna()
32
+ assert result.name == datetime_series.name
33
+ name = datetime_series.name
34
+ ts = datetime_series.copy()
35
+ return_value = ts.dropna(inplace=True)
36
+ assert return_value is None
37
+ assert ts.name == name
38
+
39
+ def test_dropna_no_nan(self):
40
+ for ser in [
41
+ Series([1, 2, 3], name="x"),
42
+ Series([False, True, False], name="x"),
43
+ ]:
44
+ result = ser.dropna()
45
+ tm.assert_series_equal(result, ser)
46
+ assert result is not ser
47
+
48
+ s2 = ser.copy()
49
+ return_value = s2.dropna(inplace=True)
50
+ assert return_value is None
51
+ tm.assert_series_equal(s2, ser)
52
+
53
+ def test_dropna_intervals(self):
54
+ ser = Series(
55
+ [np.nan, 1, 2, 3],
56
+ IntervalIndex.from_arrays([np.nan, 0, 1, 2], [np.nan, 1, 2, 3]),
57
+ )
58
+
59
+ result = ser.dropna()
60
+ expected = ser.iloc[1:]
61
+ tm.assert_series_equal(result, expected)
62
+
63
+ def test_dropna_period_dtype(self):
64
+ # GH#13737
65
+ ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")])
66
+ result = ser.dropna()
67
+ expected = Series([Period("2011-01", freq="M")])
68
+
69
+ tm.assert_series_equal(result, expected)
70
+
71
+ def test_datetime64_tz_dropna(self, unit):
72
+ # DatetimeLikeBlock
73
+ ser = Series(
74
+ [
75
+ Timestamp("2011-01-01 10:00"),
76
+ NaT,
77
+ Timestamp("2011-01-03 10:00"),
78
+ NaT,
79
+ ],
80
+ dtype=f"M8[{unit}]",
81
+ )
82
+ result = ser.dropna()
83
+ expected = Series(
84
+ [Timestamp("2011-01-01 10:00"), Timestamp("2011-01-03 10:00")],
85
+ index=[0, 2],
86
+ dtype=f"M8[{unit}]",
87
+ )
88
+ tm.assert_series_equal(result, expected)
89
+
90
+ # DatetimeTZBlock
91
+ idx = DatetimeIndex(
92
+ ["2011-01-01 10:00", NaT, "2011-01-03 10:00", NaT], tz="Asia/Tokyo"
93
+ ).as_unit(unit)
94
+ ser = Series(idx)
95
+ assert ser.dtype == f"datetime64[{unit}, Asia/Tokyo]"
96
+ result = ser.dropna()
97
+ expected = Series(
98
+ [
99
+ Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"),
100
+ Timestamp("2011-01-03 10:00", tz="Asia/Tokyo"),
101
+ ],
102
+ index=[0, 2],
103
+ dtype=f"datetime64[{unit}, Asia/Tokyo]",
104
+ )
105
+ assert result.dtype == f"datetime64[{unit}, Asia/Tokyo]"
106
+ tm.assert_series_equal(result, expected)
107
+
108
+ @pytest.mark.parametrize("val", [1, 1.5])
109
+ def test_dropna_ignore_index(self, val):
110
+ # GH#31725
111
+ ser = Series([1, 2, val], index=[3, 2, 1])
112
+ result = ser.dropna(ignore_index=True)
113
+ expected = Series([1, 2, val])
114
+ tm.assert_series_equal(result, expected)
115
+
116
+ ser.dropna(ignore_index=True, inplace=True)
117
+ tm.assert_series_equal(ser, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_duplicated.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ NA,
6
+ Categorical,
7
+ Series,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ @pytest.mark.parametrize(
13
+ "keep, expected",
14
+ [
15
+ ("first", Series([False, False, True, False, True], name="name")),
16
+ ("last", Series([True, True, False, False, False], name="name")),
17
+ (False, Series([True, True, True, False, True], name="name")),
18
+ ],
19
+ )
20
+ def test_duplicated_keep(keep, expected):
21
+ ser = Series(["a", "b", "b", "c", "a"], name="name")
22
+
23
+ result = ser.duplicated(keep=keep)
24
+ tm.assert_series_equal(result, expected)
25
+
26
+
27
+ @pytest.mark.parametrize(
28
+ "keep, expected",
29
+ [
30
+ ("first", Series([False, False, True, False, True])),
31
+ ("last", Series([True, True, False, False, False])),
32
+ (False, Series([True, True, True, False, True])),
33
+ ],
34
+ )
35
+ def test_duplicated_nan_none(keep, expected):
36
+ ser = Series([np.nan, 3, 3, None, np.nan], dtype=object)
37
+
38
+ result = ser.duplicated(keep=keep)
39
+ tm.assert_series_equal(result, expected)
40
+
41
+
42
+ def test_duplicated_categorical_bool_na(nulls_fixture):
43
+ # GH#44351
44
+ ser = Series(
45
+ Categorical(
46
+ [True, False, True, False, nulls_fixture],
47
+ categories=[True, False],
48
+ ordered=True,
49
+ )
50
+ )
51
+ result = ser.duplicated()
52
+ expected = Series([False, False, True, True, False])
53
+ tm.assert_series_equal(result, expected)
54
+
55
+
56
+ @pytest.mark.parametrize(
57
+ "keep, vals",
58
+ [
59
+ ("last", [True, True, False]),
60
+ ("first", [False, True, True]),
61
+ (False, [True, True, True]),
62
+ ],
63
+ )
64
+ def test_duplicated_mask(keep, vals):
65
+ # GH#48150
66
+ ser = Series([1, 2, NA, NA, NA], dtype="Int64")
67
+ result = ser.duplicated(keep=keep)
68
+ expected = Series([False, False] + vals)
69
+ tm.assert_series_equal(result, expected)
70
+
71
+
72
+ def test_duplicated_mask_no_duplicated_na(keep):
73
+ # GH#48150
74
+ ser = Series([1, 2, NA], dtype="Int64")
75
+ result = ser.duplicated(keep=keep)
76
+ expected = Series([False, False, False])
77
+ tm.assert_series_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_head_tail.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ import pandas._testing as tm
2
+
3
+
4
+ def test_head_tail(string_series):
5
+ tm.assert_series_equal(string_series.head(), string_series[:5])
6
+ tm.assert_series_equal(string_series.head(0), string_series[0:0])
7
+ tm.assert_series_equal(string_series.tail(), string_series[-5:])
8
+ tm.assert_series_equal(string_series.tail(0), string_series[0:0])
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_info.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import StringIO
2
+ from string import ascii_uppercase
3
+ import textwrap
4
+
5
+ import numpy as np
6
+ import pytest
7
+
8
+ from pandas.compat import PYPY
9
+
10
+ from pandas import (
11
+ CategoricalIndex,
12
+ MultiIndex,
13
+ Series,
14
+ date_range,
15
+ )
16
+
17
+
18
+ def test_info_categorical_column_just_works():
19
+ n = 2500
20
+ data = np.array(list("abcdefghij")).take(
21
+ np.random.default_rng(2).integers(0, 10, size=n, dtype=int)
22
+ )
23
+ s = Series(data).astype("category")
24
+ s.isna()
25
+ buf = StringIO()
26
+ s.info(buf=buf)
27
+
28
+ s2 = s[s == "d"]
29
+ buf = StringIO()
30
+ s2.info(buf=buf)
31
+
32
+
33
+ def test_info_categorical():
34
+ # GH14298
35
+ idx = CategoricalIndex(["a", "b"])
36
+ s = Series(np.zeros(2), index=idx)
37
+ buf = StringIO()
38
+ s.info(buf=buf)
39
+
40
+
41
+ @pytest.mark.parametrize("verbose", [True, False])
42
+ def test_info_series(lexsorted_two_level_string_multiindex, verbose):
43
+ index = lexsorted_two_level_string_multiindex
44
+ ser = Series(range(len(index)), index=index, name="sth")
45
+ buf = StringIO()
46
+ ser.info(verbose=verbose, buf=buf)
47
+ result = buf.getvalue()
48
+
49
+ expected = textwrap.dedent(
50
+ """\
51
+ <class 'pandas.core.series.Series'>
52
+ MultiIndex: 10 entries, ('foo', 'one') to ('qux', 'three')
53
+ """
54
+ )
55
+ if verbose:
56
+ expected += textwrap.dedent(
57
+ """\
58
+ Series name: sth
59
+ Non-Null Count Dtype
60
+ -------------- -----
61
+ 10 non-null int64
62
+ """
63
+ )
64
+ expected += textwrap.dedent(
65
+ f"""\
66
+ dtypes: int64(1)
67
+ memory usage: {ser.memory_usage()}.0+ bytes
68
+ """
69
+ )
70
+ assert result == expected
71
+
72
+
73
+ def test_info_memory():
74
+ s = Series([1, 2], dtype="i8")
75
+ buf = StringIO()
76
+ s.info(buf=buf)
77
+ result = buf.getvalue()
78
+ memory_bytes = float(s.memory_usage())
79
+ expected = textwrap.dedent(
80
+ f"""\
81
+ <class 'pandas.core.series.Series'>
82
+ RangeIndex: 2 entries, 0 to 1
83
+ Series name: None
84
+ Non-Null Count Dtype
85
+ -------------- -----
86
+ 2 non-null int64
87
+ dtypes: int64(1)
88
+ memory usage: {memory_bytes} bytes
89
+ """
90
+ )
91
+ assert result == expected
92
+
93
+
94
+ def test_info_wide():
95
+ s = Series(np.random.default_rng(2).standard_normal(101))
96
+ msg = "Argument `max_cols` can only be passed in DataFrame.info, not Series.info"
97
+ with pytest.raises(ValueError, match=msg):
98
+ s.info(max_cols=1)
99
+
100
+
101
+ def test_info_shows_dtypes():
102
+ dtypes = [
103
+ "int64",
104
+ "float64",
105
+ "datetime64[ns]",
106
+ "timedelta64[ns]",
107
+ "complex128",
108
+ "object",
109
+ "bool",
110
+ ]
111
+ n = 10
112
+ for dtype in dtypes:
113
+ s = Series(np.random.default_rng(2).integers(2, size=n).astype(dtype))
114
+ buf = StringIO()
115
+ s.info(buf=buf)
116
+ res = buf.getvalue()
117
+ name = f"{n:d} non-null {dtype}"
118
+ assert name in res
119
+
120
+
121
+ @pytest.mark.xfail(PYPY, reason="on PyPy deep=True doesn't change result")
122
+ def test_info_memory_usage_deep_not_pypy():
123
+ s_with_object_index = Series({"a": [1]}, index=["foo"])
124
+ assert s_with_object_index.memory_usage(
125
+ index=True, deep=True
126
+ ) > s_with_object_index.memory_usage(index=True)
127
+
128
+ s_object = Series({"a": ["a"]})
129
+ assert s_object.memory_usage(deep=True) > s_object.memory_usage()
130
+
131
+
132
+ @pytest.mark.xfail(not PYPY, reason="on PyPy deep=True does not change result")
133
+ def test_info_memory_usage_deep_pypy():
134
+ s_with_object_index = Series({"a": [1]}, index=["foo"])
135
+ assert s_with_object_index.memory_usage(
136
+ index=True, deep=True
137
+ ) == s_with_object_index.memory_usage(index=True)
138
+
139
+ s_object = Series({"a": ["a"]})
140
+ assert s_object.memory_usage(deep=True) == s_object.memory_usage()
141
+
142
+
143
+ @pytest.mark.parametrize(
144
+ "series, plus",
145
+ [
146
+ (Series(1, index=[1, 2, 3]), False),
147
+ (Series(1, index=list("ABC")), True),
148
+ (Series(1, index=MultiIndex.from_product([range(3), range(3)])), False),
149
+ (
150
+ Series(1, index=MultiIndex.from_product([range(3), ["foo", "bar"]])),
151
+ True,
152
+ ),
153
+ ],
154
+ )
155
+ def test_info_memory_usage_qualified(series, plus):
156
+ buf = StringIO()
157
+ series.info(buf=buf)
158
+ if plus:
159
+ assert "+" in buf.getvalue()
160
+ else:
161
+ assert "+" not in buf.getvalue()
162
+
163
+
164
+ def test_info_memory_usage_bug_on_multiindex():
165
+ # GH 14308
166
+ # memory usage introspection should not materialize .values
167
+ N = 100
168
+ M = len(ascii_uppercase)
169
+ index = MultiIndex.from_product(
170
+ [list(ascii_uppercase), date_range("20160101", periods=N)],
171
+ names=["id", "date"],
172
+ )
173
+ s = Series(np.random.default_rng(2).standard_normal(N * M), index=index)
174
+
175
+ unstacked = s.unstack("id")
176
+ assert s.values.nbytes == unstacked.values.nbytes
177
+ assert s.memory_usage(deep=True) > unstacked.memory_usage(deep=True).sum()
178
+
179
+ # high upper bound
180
+ diff = unstacked.memory_usage(deep=True).sum() - s.memory_usage(deep=True)
181
+ assert diff < 2000
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_interpolate.py ADDED
@@ -0,0 +1,868 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas.util._test_decorators as td
5
+
6
+ import pandas as pd
7
+ from pandas import (
8
+ Index,
9
+ MultiIndex,
10
+ Series,
11
+ date_range,
12
+ isna,
13
+ )
14
+ import pandas._testing as tm
15
+
16
+
17
+ @pytest.fixture(
18
+ params=[
19
+ "linear",
20
+ "index",
21
+ "values",
22
+ "nearest",
23
+ "slinear",
24
+ "zero",
25
+ "quadratic",
26
+ "cubic",
27
+ "barycentric",
28
+ "krogh",
29
+ "polynomial",
30
+ "spline",
31
+ "piecewise_polynomial",
32
+ "from_derivatives",
33
+ "pchip",
34
+ "akima",
35
+ "cubicspline",
36
+ ]
37
+ )
38
+ def nontemporal_method(request):
39
+ """Fixture that returns an (method name, required kwargs) pair.
40
+
41
+ This fixture does not include method 'time' as a parameterization; that
42
+ method requires a Series with a DatetimeIndex, and is generally tested
43
+ separately from these non-temporal methods.
44
+ """
45
+ method = request.param
46
+ kwargs = {"order": 1} if method in ("spline", "polynomial") else {}
47
+ return method, kwargs
48
+
49
+
50
+ @pytest.fixture(
51
+ params=[
52
+ "linear",
53
+ "slinear",
54
+ "zero",
55
+ "quadratic",
56
+ "cubic",
57
+ "barycentric",
58
+ "krogh",
59
+ "polynomial",
60
+ "spline",
61
+ "piecewise_polynomial",
62
+ "from_derivatives",
63
+ "pchip",
64
+ "akima",
65
+ "cubicspline",
66
+ ]
67
+ )
68
+ def interp_methods_ind(request):
69
+ """Fixture that returns a (method name, required kwargs) pair to
70
+ be tested for various Index types.
71
+
72
+ This fixture does not include methods - 'time', 'index', 'nearest',
73
+ 'values' as a parameterization
74
+ """
75
+ method = request.param
76
+ kwargs = {"order": 1} if method in ("spline", "polynomial") else {}
77
+ return method, kwargs
78
+
79
+
80
+ class TestSeriesInterpolateData:
81
+ @pytest.mark.xfail(reason="EA.fillna does not handle 'linear' method")
82
+ def test_interpolate_period_values(self):
83
+ orig = Series(date_range("2012-01-01", periods=5))
84
+ ser = orig.copy()
85
+ ser[2] = pd.NaT
86
+
87
+ # period cast
88
+ ser_per = ser.dt.to_period("D")
89
+ res_per = ser_per.interpolate()
90
+ expected_per = orig.dt.to_period("D")
91
+ tm.assert_series_equal(res_per, expected_per)
92
+
93
+ def test_interpolate(self, datetime_series):
94
+ ts = Series(np.arange(len(datetime_series), dtype=float), datetime_series.index)
95
+
96
+ ts_copy = ts.copy()
97
+ ts_copy[5:10] = np.nan
98
+
99
+ linear_interp = ts_copy.interpolate(method="linear")
100
+ tm.assert_series_equal(linear_interp, ts)
101
+
102
+ ord_ts = Series(
103
+ [d.toordinal() for d in datetime_series.index], index=datetime_series.index
104
+ ).astype(float)
105
+
106
+ ord_ts_copy = ord_ts.copy()
107
+ ord_ts_copy[5:10] = np.nan
108
+
109
+ time_interp = ord_ts_copy.interpolate(method="time")
110
+ tm.assert_series_equal(time_interp, ord_ts)
111
+
112
+ def test_interpolate_time_raises_for_non_timeseries(self):
113
+ # When method='time' is used on a non-TimeSeries that contains a null
114
+ # value, a ValueError should be raised.
115
+ non_ts = Series([0, 1, 2, np.nan])
116
+ msg = "time-weighted interpolation only works on Series.* with a DatetimeIndex"
117
+ with pytest.raises(ValueError, match=msg):
118
+ non_ts.interpolate(method="time")
119
+
120
+ def test_interpolate_cubicspline(self):
121
+ pytest.importorskip("scipy")
122
+ ser = Series([10, 11, 12, 13])
123
+
124
+ expected = Series(
125
+ [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00],
126
+ index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]),
127
+ )
128
+ # interpolate at new_index
129
+ new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype(
130
+ float
131
+ )
132
+ result = ser.reindex(new_index).interpolate(method="cubicspline").loc[1:3]
133
+ tm.assert_series_equal(result, expected)
134
+
135
+ def test_interpolate_pchip(self):
136
+ pytest.importorskip("scipy")
137
+ ser = Series(np.sort(np.random.default_rng(2).uniform(size=100)))
138
+
139
+ # interpolate at new_index
140
+ new_index = ser.index.union(
141
+ Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])
142
+ ).astype(float)
143
+ interp_s = ser.reindex(new_index).interpolate(method="pchip")
144
+ # does not blow up, GH5977
145
+ interp_s.loc[49:51]
146
+
147
+ def test_interpolate_akima(self):
148
+ pytest.importorskip("scipy")
149
+ ser = Series([10, 11, 12, 13])
150
+
151
+ # interpolate at new_index where `der` is zero
152
+ expected = Series(
153
+ [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00],
154
+ index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]),
155
+ )
156
+ new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype(
157
+ float
158
+ )
159
+ interp_s = ser.reindex(new_index).interpolate(method="akima")
160
+ tm.assert_series_equal(interp_s.loc[1:3], expected)
161
+
162
+ # interpolate at new_index where `der` is a non-zero int
163
+ expected = Series(
164
+ [11.0, 1.0, 1.0, 1.0, 12.0, 1.0, 1.0, 1.0, 13.0],
165
+ index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]),
166
+ )
167
+ new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype(
168
+ float
169
+ )
170
+ interp_s = ser.reindex(new_index).interpolate(method="akima", der=1)
171
+ tm.assert_series_equal(interp_s.loc[1:3], expected)
172
+
173
+ def test_interpolate_piecewise_polynomial(self):
174
+ pytest.importorskip("scipy")
175
+ ser = Series([10, 11, 12, 13])
176
+
177
+ expected = Series(
178
+ [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00],
179
+ index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]),
180
+ )
181
+ # interpolate at new_index
182
+ new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype(
183
+ float
184
+ )
185
+ interp_s = ser.reindex(new_index).interpolate(method="piecewise_polynomial")
186
+ tm.assert_series_equal(interp_s.loc[1:3], expected)
187
+
188
+ def test_interpolate_from_derivatives(self):
189
+ pytest.importorskip("scipy")
190
+ ser = Series([10, 11, 12, 13])
191
+
192
+ expected = Series(
193
+ [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00],
194
+ index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]),
195
+ )
196
+ # interpolate at new_index
197
+ new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype(
198
+ float
199
+ )
200
+ interp_s = ser.reindex(new_index).interpolate(method="from_derivatives")
201
+ tm.assert_series_equal(interp_s.loc[1:3], expected)
202
+
203
+ @pytest.mark.parametrize(
204
+ "kwargs",
205
+ [
206
+ {},
207
+ pytest.param(
208
+ {"method": "polynomial", "order": 1}, marks=td.skip_if_no("scipy")
209
+ ),
210
+ ],
211
+ )
212
+ def test_interpolate_corners(self, kwargs):
213
+ s = Series([np.nan, np.nan])
214
+ tm.assert_series_equal(s.interpolate(**kwargs), s)
215
+
216
+ s = Series([], dtype=object).interpolate()
217
+ tm.assert_series_equal(s.interpolate(**kwargs), s)
218
+
219
+ def test_interpolate_index_values(self):
220
+ s = Series(np.nan, index=np.sort(np.random.default_rng(2).random(30)))
221
+ s.loc[::3] = np.random.default_rng(2).standard_normal(10)
222
+
223
+ vals = s.index.values.astype(float)
224
+
225
+ result = s.interpolate(method="index")
226
+
227
+ expected = s.copy()
228
+ bad = isna(expected.values)
229
+ good = ~bad
230
+ expected = Series(
231
+ np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad]
232
+ )
233
+
234
+ tm.assert_series_equal(result[bad], expected)
235
+
236
+ # 'values' is synonymous with 'index' for the method kwarg
237
+ other_result = s.interpolate(method="values")
238
+
239
+ tm.assert_series_equal(other_result, result)
240
+ tm.assert_series_equal(other_result[bad], expected)
241
+
242
+ def test_interpolate_non_ts(self):
243
+ s = Series([1, 3, np.nan, np.nan, np.nan, 11])
244
+ msg = (
245
+ "time-weighted interpolation only works on Series or DataFrames "
246
+ "with a DatetimeIndex"
247
+ )
248
+ with pytest.raises(ValueError, match=msg):
249
+ s.interpolate(method="time")
250
+
251
+ @pytest.mark.parametrize(
252
+ "kwargs",
253
+ [
254
+ {},
255
+ pytest.param(
256
+ {"method": "polynomial", "order": 1}, marks=td.skip_if_no("scipy")
257
+ ),
258
+ ],
259
+ )
260
+ def test_nan_interpolate(self, kwargs):
261
+ s = Series([0, 1, np.nan, 3])
262
+ result = s.interpolate(**kwargs)
263
+ expected = Series([0.0, 1.0, 2.0, 3.0])
264
+ tm.assert_series_equal(result, expected)
265
+
266
+ def test_nan_irregular_index(self):
267
+ s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9])
268
+ result = s.interpolate()
269
+ expected = Series([1.0, 2.0, 3.0, 4.0], index=[1, 3, 5, 9])
270
+ tm.assert_series_equal(result, expected)
271
+
272
+ def test_nan_str_index(self):
273
+ s = Series([0, 1, 2, np.nan], index=list("abcd"))
274
+ result = s.interpolate()
275
+ expected = Series([0.0, 1.0, 2.0, 2.0], index=list("abcd"))
276
+ tm.assert_series_equal(result, expected)
277
+
278
+ def test_interp_quad(self):
279
+ pytest.importorskip("scipy")
280
+ sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4])
281
+ result = sq.interpolate(method="quadratic")
282
+ expected = Series([1.0, 4.0, 9.0, 16.0], index=[1, 2, 3, 4])
283
+ tm.assert_series_equal(result, expected)
284
+
285
+ def test_interp_scipy_basic(self):
286
+ pytest.importorskip("scipy")
287
+ s = Series([1, 3, np.nan, 12, np.nan, 25])
288
+ # slinear
289
+ expected = Series([1.0, 3.0, 7.5, 12.0, 18.5, 25.0])
290
+ result = s.interpolate(method="slinear")
291
+ tm.assert_series_equal(result, expected)
292
+
293
+ msg = "The 'downcast' keyword in Series.interpolate is deprecated"
294
+ with tm.assert_produces_warning(FutureWarning, match=msg):
295
+ result = s.interpolate(method="slinear", downcast="infer")
296
+ tm.assert_series_equal(result, expected)
297
+ # nearest
298
+ expected = Series([1, 3, 3, 12, 12, 25])
299
+ result = s.interpolate(method="nearest")
300
+ tm.assert_series_equal(result, expected.astype("float"))
301
+
302
+ with tm.assert_produces_warning(FutureWarning, match=msg):
303
+ result = s.interpolate(method="nearest", downcast="infer")
304
+ tm.assert_series_equal(result, expected)
305
+ # zero
306
+ expected = Series([1, 3, 3, 12, 12, 25])
307
+ result = s.interpolate(method="zero")
308
+ tm.assert_series_equal(result, expected.astype("float"))
309
+
310
+ with tm.assert_produces_warning(FutureWarning, match=msg):
311
+ result = s.interpolate(method="zero", downcast="infer")
312
+ tm.assert_series_equal(result, expected)
313
+ # quadratic
314
+ # GH #15662.
315
+ expected = Series([1, 3.0, 6.823529, 12.0, 18.058824, 25.0])
316
+ result = s.interpolate(method="quadratic")
317
+ tm.assert_series_equal(result, expected)
318
+
319
+ with tm.assert_produces_warning(FutureWarning, match=msg):
320
+ result = s.interpolate(method="quadratic", downcast="infer")
321
+ tm.assert_series_equal(result, expected)
322
+ # cubic
323
+ expected = Series([1.0, 3.0, 6.8, 12.0, 18.2, 25.0])
324
+ result = s.interpolate(method="cubic")
325
+ tm.assert_series_equal(result, expected)
326
+
327
+ def test_interp_limit(self):
328
+ s = Series([1, 3, np.nan, np.nan, np.nan, 11])
329
+
330
+ expected = Series([1.0, 3.0, 5.0, 7.0, np.nan, 11.0])
331
+ result = s.interpolate(method="linear", limit=2)
332
+ tm.assert_series_equal(result, expected)
333
+
334
+ @pytest.mark.parametrize("limit", [-1, 0])
335
+ def test_interpolate_invalid_nonpositive_limit(self, nontemporal_method, limit):
336
+ # GH 9217: make sure limit is greater than zero.
337
+ s = Series([1, 2, np.nan, 4])
338
+ method, kwargs = nontemporal_method
339
+ with pytest.raises(ValueError, match="Limit must be greater than 0"):
340
+ s.interpolate(limit=limit, method=method, **kwargs)
341
+
342
+ def test_interpolate_invalid_float_limit(self, nontemporal_method):
343
+ # GH 9217: make sure limit is an integer.
344
+ s = Series([1, 2, np.nan, 4])
345
+ method, kwargs = nontemporal_method
346
+ limit = 2.0
347
+ with pytest.raises(ValueError, match="Limit must be an integer"):
348
+ s.interpolate(limit=limit, method=method, **kwargs)
349
+
350
+ @pytest.mark.parametrize("invalid_method", [None, "nonexistent_method"])
351
+ def test_interp_invalid_method(self, invalid_method):
352
+ s = Series([1, 3, np.nan, 12, np.nan, 25])
353
+
354
+ msg = f"method must be one of.* Got '{invalid_method}' instead"
355
+ if invalid_method is None:
356
+ msg = "'method' should be a string, not None"
357
+ with pytest.raises(ValueError, match=msg):
358
+ s.interpolate(method=invalid_method)
359
+
360
+ # When an invalid method and invalid limit (such as -1) are
361
+ # provided, the error message reflects the invalid method.
362
+ with pytest.raises(ValueError, match=msg):
363
+ s.interpolate(method=invalid_method, limit=-1)
364
+
365
+ def test_interp_invalid_method_and_value(self):
366
+ # GH#36624
367
+ ser = Series([1, 3, np.nan, 12, np.nan, 25])
368
+
369
+ msg = "'fill_value' is not a valid keyword for Series.interpolate"
370
+ msg2 = "Series.interpolate with method=pad"
371
+ with pytest.raises(ValueError, match=msg):
372
+ with tm.assert_produces_warning(FutureWarning, match=msg2):
373
+ ser.interpolate(fill_value=3, method="pad")
374
+
375
+ def test_interp_limit_forward(self):
376
+ s = Series([1, 3, np.nan, np.nan, np.nan, 11])
377
+
378
+ # Provide 'forward' (the default) explicitly here.
379
+ expected = Series([1.0, 3.0, 5.0, 7.0, np.nan, 11.0])
380
+
381
+ result = s.interpolate(method="linear", limit=2, limit_direction="forward")
382
+ tm.assert_series_equal(result, expected)
383
+
384
+ result = s.interpolate(method="linear", limit=2, limit_direction="FORWARD")
385
+ tm.assert_series_equal(result, expected)
386
+
387
+ def test_interp_unlimited(self):
388
+ # these test are for issue #16282 default Limit=None is unlimited
389
+ s = Series([np.nan, 1.0, 3.0, np.nan, np.nan, np.nan, 11.0, np.nan])
390
+ expected = Series([1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 11.0])
391
+ result = s.interpolate(method="linear", limit_direction="both")
392
+ tm.assert_series_equal(result, expected)
393
+
394
+ expected = Series([np.nan, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 11.0])
395
+ result = s.interpolate(method="linear", limit_direction="forward")
396
+ tm.assert_series_equal(result, expected)
397
+
398
+ expected = Series([1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, np.nan])
399
+ result = s.interpolate(method="linear", limit_direction="backward")
400
+ tm.assert_series_equal(result, expected)
401
+
402
+ def test_interp_limit_bad_direction(self):
403
+ s = Series([1, 3, np.nan, np.nan, np.nan, 11])
404
+
405
+ msg = (
406
+ r"Invalid limit_direction: expecting one of \['forward', "
407
+ r"'backward', 'both'\], got 'abc'"
408
+ )
409
+ with pytest.raises(ValueError, match=msg):
410
+ s.interpolate(method="linear", limit=2, limit_direction="abc")
411
+
412
+ # raises an error even if no limit is specified.
413
+ with pytest.raises(ValueError, match=msg):
414
+ s.interpolate(method="linear", limit_direction="abc")
415
+
416
+ # limit_area introduced GH #16284
417
+ def test_interp_limit_area(self):
418
+ # These tests are for issue #9218 -- fill NaNs in both directions.
419
+ s = Series([np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan])
420
+
421
+ expected = Series([np.nan, np.nan, 3.0, 4.0, 5.0, 6.0, 7.0, np.nan, np.nan])
422
+ result = s.interpolate(method="linear", limit_area="inside")
423
+ tm.assert_series_equal(result, expected)
424
+
425
+ expected = Series(
426
+ [np.nan, np.nan, 3.0, 4.0, np.nan, np.nan, 7.0, np.nan, np.nan]
427
+ )
428
+ result = s.interpolate(method="linear", limit_area="inside", limit=1)
429
+ tm.assert_series_equal(result, expected)
430
+
431
+ expected = Series([np.nan, np.nan, 3.0, 4.0, np.nan, 6.0, 7.0, np.nan, np.nan])
432
+ result = s.interpolate(
433
+ method="linear", limit_area="inside", limit_direction="both", limit=1
434
+ )
435
+ tm.assert_series_equal(result, expected)
436
+
437
+ expected = Series([np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, 7.0])
438
+ result = s.interpolate(method="linear", limit_area="outside")
439
+ tm.assert_series_equal(result, expected)
440
+
441
+ expected = Series(
442
+ [np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan]
443
+ )
444
+ result = s.interpolate(method="linear", limit_area="outside", limit=1)
445
+ tm.assert_series_equal(result, expected)
446
+
447
+ expected = Series([np.nan, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan])
448
+ result = s.interpolate(
449
+ method="linear", limit_area="outside", limit_direction="both", limit=1
450
+ )
451
+ tm.assert_series_equal(result, expected)
452
+
453
+ expected = Series([3.0, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan])
454
+ result = s.interpolate(
455
+ method="linear", limit_area="outside", limit_direction="backward"
456
+ )
457
+ tm.assert_series_equal(result, expected)
458
+
459
+ # raises an error even if limit type is wrong.
460
+ msg = r"Invalid limit_area: expecting one of \['inside', 'outside'\], got abc"
461
+ with pytest.raises(ValueError, match=msg):
462
+ s.interpolate(method="linear", limit_area="abc")
463
+
464
+ @pytest.mark.parametrize(
465
+ "method, limit_direction, expected",
466
+ [
467
+ ("pad", "backward", "forward"),
468
+ ("ffill", "backward", "forward"),
469
+ ("backfill", "forward", "backward"),
470
+ ("bfill", "forward", "backward"),
471
+ ("pad", "both", "forward"),
472
+ ("ffill", "both", "forward"),
473
+ ("backfill", "both", "backward"),
474
+ ("bfill", "both", "backward"),
475
+ ],
476
+ )
477
+ def test_interp_limit_direction_raises(self, method, limit_direction, expected):
478
+ # https://github.com/pandas-dev/pandas/pull/34746
479
+ s = Series([1, 2, 3])
480
+
481
+ msg = f"`limit_direction` must be '{expected}' for method `{method}`"
482
+ msg2 = "Series.interpolate with method="
483
+ with pytest.raises(ValueError, match=msg):
484
+ with tm.assert_produces_warning(FutureWarning, match=msg2):
485
+ s.interpolate(method=method, limit_direction=limit_direction)
486
+
487
+ @pytest.mark.parametrize(
488
+ "data, expected_data, kwargs",
489
+ (
490
+ (
491
+ [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
492
+ [np.nan, np.nan, 3.0, 3.0, 3.0, 3.0, 7.0, np.nan, np.nan],
493
+ {"method": "pad", "limit_area": "inside"},
494
+ ),
495
+ (
496
+ [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
497
+ [np.nan, np.nan, 3.0, 3.0, np.nan, np.nan, 7.0, np.nan, np.nan],
498
+ {"method": "pad", "limit_area": "inside", "limit": 1},
499
+ ),
500
+ (
501
+ [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
502
+ [np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, 7.0],
503
+ {"method": "pad", "limit_area": "outside"},
504
+ ),
505
+ (
506
+ [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
507
+ [np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan],
508
+ {"method": "pad", "limit_area": "outside", "limit": 1},
509
+ ),
510
+ (
511
+ [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
512
+ [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
513
+ {"method": "pad", "limit_area": "outside", "limit": 1},
514
+ ),
515
+ (
516
+ range(5),
517
+ range(5),
518
+ {"method": "pad", "limit_area": "outside", "limit": 1},
519
+ ),
520
+ ),
521
+ )
522
+ def test_interp_limit_area_with_pad(self, data, expected_data, kwargs):
523
+ # GH26796
524
+
525
+ s = Series(data)
526
+ expected = Series(expected_data)
527
+ msg = "Series.interpolate with method=pad"
528
+ with tm.assert_produces_warning(FutureWarning, match=msg):
529
+ result = s.interpolate(**kwargs)
530
+ tm.assert_series_equal(result, expected)
531
+
532
+ @pytest.mark.parametrize(
533
+ "data, expected_data, kwargs",
534
+ (
535
+ (
536
+ [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
537
+ [np.nan, np.nan, 3.0, 7.0, 7.0, 7.0, 7.0, np.nan, np.nan],
538
+ {"method": "bfill", "limit_area": "inside"},
539
+ ),
540
+ (
541
+ [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
542
+ [np.nan, np.nan, 3.0, np.nan, np.nan, 7.0, 7.0, np.nan, np.nan],
543
+ {"method": "bfill", "limit_area": "inside", "limit": 1},
544
+ ),
545
+ (
546
+ [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
547
+ [3.0, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan],
548
+ {"method": "bfill", "limit_area": "outside"},
549
+ ),
550
+ (
551
+ [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
552
+ [np.nan, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan],
553
+ {"method": "bfill", "limit_area": "outside", "limit": 1},
554
+ ),
555
+ ),
556
+ )
557
+ def test_interp_limit_area_with_backfill(self, data, expected_data, kwargs):
558
+ # GH26796
559
+
560
+ s = Series(data)
561
+ expected = Series(expected_data)
562
+ msg = "Series.interpolate with method=bfill"
563
+ with tm.assert_produces_warning(FutureWarning, match=msg):
564
+ result = s.interpolate(**kwargs)
565
+ tm.assert_series_equal(result, expected)
566
+
567
+ def test_interp_limit_direction(self):
568
+ # These tests are for issue #9218 -- fill NaNs in both directions.
569
+ s = Series([1, 3, np.nan, np.nan, np.nan, 11])
570
+
571
+ expected = Series([1.0, 3.0, np.nan, 7.0, 9.0, 11.0])
572
+ result = s.interpolate(method="linear", limit=2, limit_direction="backward")
573
+ tm.assert_series_equal(result, expected)
574
+
575
+ expected = Series([1.0, 3.0, 5.0, np.nan, 9.0, 11.0])
576
+ result = s.interpolate(method="linear", limit=1, limit_direction="both")
577
+ tm.assert_series_equal(result, expected)
578
+
579
+ # Check that this works on a longer series of nans.
580
+ s = Series([1, 3, np.nan, np.nan, np.nan, 7, 9, np.nan, np.nan, 12, np.nan])
581
+
582
+ expected = Series([1.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 12.0])
583
+ result = s.interpolate(method="linear", limit=2, limit_direction="both")
584
+ tm.assert_series_equal(result, expected)
585
+
586
+ expected = Series(
587
+ [1.0, 3.0, 4.0, np.nan, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 12.0]
588
+ )
589
+ result = s.interpolate(method="linear", limit=1, limit_direction="both")
590
+ tm.assert_series_equal(result, expected)
591
+
592
+ def test_interp_limit_to_ends(self):
593
+ # These test are for issue #10420 -- flow back to beginning.
594
+ s = Series([np.nan, np.nan, 5, 7, 9, np.nan])
595
+
596
+ expected = Series([5.0, 5.0, 5.0, 7.0, 9.0, np.nan])
597
+ result = s.interpolate(method="linear", limit=2, limit_direction="backward")
598
+ tm.assert_series_equal(result, expected)
599
+
600
+ expected = Series([5.0, 5.0, 5.0, 7.0, 9.0, 9.0])
601
+ result = s.interpolate(method="linear", limit=2, limit_direction="both")
602
+ tm.assert_series_equal(result, expected)
603
+
604
+ def test_interp_limit_before_ends(self):
605
+ # These test are for issue #11115 -- limit ends properly.
606
+ s = Series([np.nan, np.nan, 5, 7, np.nan, np.nan])
607
+
608
+ expected = Series([np.nan, np.nan, 5.0, 7.0, 7.0, np.nan])
609
+ result = s.interpolate(method="linear", limit=1, limit_direction="forward")
610
+ tm.assert_series_equal(result, expected)
611
+
612
+ expected = Series([np.nan, 5.0, 5.0, 7.0, np.nan, np.nan])
613
+ result = s.interpolate(method="linear", limit=1, limit_direction="backward")
614
+ tm.assert_series_equal(result, expected)
615
+
616
+ expected = Series([np.nan, 5.0, 5.0, 7.0, 7.0, np.nan])
617
+ result = s.interpolate(method="linear", limit=1, limit_direction="both")
618
+ tm.assert_series_equal(result, expected)
619
+
620
+ def test_interp_all_good(self):
621
+ pytest.importorskip("scipy")
622
+ s = Series([1, 2, 3])
623
+ result = s.interpolate(method="polynomial", order=1)
624
+ tm.assert_series_equal(result, s)
625
+
626
+ # non-scipy
627
+ result = s.interpolate()
628
+ tm.assert_series_equal(result, s)
629
+
630
+ @pytest.mark.parametrize(
631
+ "check_scipy", [False, pytest.param(True, marks=td.skip_if_no("scipy"))]
632
+ )
633
+ def test_interp_multiIndex(self, check_scipy):
634
+ idx = MultiIndex.from_tuples([(0, "a"), (1, "b"), (2, "c")])
635
+ s = Series([1, 2, np.nan], index=idx)
636
+
637
+ expected = s.copy()
638
+ expected.loc[2] = 2
639
+ result = s.interpolate()
640
+ tm.assert_series_equal(result, expected)
641
+
642
+ msg = "Only `method=linear` interpolation is supported on MultiIndexes"
643
+ if check_scipy:
644
+ with pytest.raises(ValueError, match=msg):
645
+ s.interpolate(method="polynomial", order=1)
646
+
647
+ def test_interp_nonmono_raise(self):
648
+ pytest.importorskip("scipy")
649
+ s = Series([1, np.nan, 3], index=[0, 2, 1])
650
+ msg = "krogh interpolation requires that the index be monotonic"
651
+ with pytest.raises(ValueError, match=msg):
652
+ s.interpolate(method="krogh")
653
+
654
+ @pytest.mark.parametrize("method", ["nearest", "pad"])
655
+ def test_interp_datetime64(self, method, tz_naive_fixture):
656
+ pytest.importorskip("scipy")
657
+ df = Series(
658
+ [1, np.nan, 3], index=date_range("1/1/2000", periods=3, tz=tz_naive_fixture)
659
+ )
660
+ warn = None if method == "nearest" else FutureWarning
661
+ msg = "Series.interpolate with method=pad is deprecated"
662
+ with tm.assert_produces_warning(warn, match=msg):
663
+ result = df.interpolate(method=method)
664
+ if warn is not None:
665
+ # check the "use ffill instead" is equivalent
666
+ alt = df.ffill()
667
+ tm.assert_series_equal(result, alt)
668
+
669
+ expected = Series(
670
+ [1.0, 1.0, 3.0],
671
+ index=date_range("1/1/2000", periods=3, tz=tz_naive_fixture),
672
+ )
673
+ tm.assert_series_equal(result, expected)
674
+
675
+ def test_interp_pad_datetime64tz_values(self):
676
+ # GH#27628 missing.interpolate_2d should handle datetimetz values
677
+ dti = date_range("2015-04-05", periods=3, tz="US/Central")
678
+ ser = Series(dti)
679
+ ser[1] = pd.NaT
680
+
681
+ msg = "Series.interpolate with method=pad is deprecated"
682
+ with tm.assert_produces_warning(FutureWarning, match=msg):
683
+ result = ser.interpolate(method="pad")
684
+ # check the "use ffill instead" is equivalent
685
+ alt = ser.ffill()
686
+ tm.assert_series_equal(result, alt)
687
+
688
+ expected = Series(dti)
689
+ expected[1] = expected[0]
690
+ tm.assert_series_equal(result, expected)
691
+
692
+ def test_interp_limit_no_nans(self):
693
+ # GH 7173
694
+ s = Series([1.0, 2.0, 3.0])
695
+ result = s.interpolate(limit=1)
696
+ expected = s
697
+ tm.assert_series_equal(result, expected)
698
+
699
+ @pytest.mark.parametrize("method", ["polynomial", "spline"])
700
+ def test_no_order(self, method):
701
+ # see GH-10633, GH-24014
702
+ pytest.importorskip("scipy")
703
+ s = Series([0, 1, np.nan, 3])
704
+ msg = "You must specify the order of the spline or polynomial"
705
+ with pytest.raises(ValueError, match=msg):
706
+ s.interpolate(method=method)
707
+
708
+ @pytest.mark.parametrize("order", [-1, -1.0, 0, 0.0, np.nan])
709
+ def test_interpolate_spline_invalid_order(self, order):
710
+ pytest.importorskip("scipy")
711
+ s = Series([0, 1, np.nan, 3])
712
+ msg = "order needs to be specified and greater than 0"
713
+ with pytest.raises(ValueError, match=msg):
714
+ s.interpolate(method="spline", order=order)
715
+
716
+ def test_spline(self):
717
+ pytest.importorskip("scipy")
718
+ s = Series([1, 2, np.nan, 4, 5, np.nan, 7])
719
+ result = s.interpolate(method="spline", order=1)
720
+ expected = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])
721
+ tm.assert_series_equal(result, expected)
722
+
723
+ def test_spline_extrapolate(self):
724
+ pytest.importorskip("scipy")
725
+ s = Series([1, 2, 3, 4, np.nan, 6, np.nan])
726
+ result3 = s.interpolate(method="spline", order=1, ext=3)
727
+ expected3 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 6.0])
728
+ tm.assert_series_equal(result3, expected3)
729
+
730
+ result1 = s.interpolate(method="spline", order=1, ext=0)
731
+ expected1 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])
732
+ tm.assert_series_equal(result1, expected1)
733
+
734
+ def test_spline_smooth(self):
735
+ pytest.importorskip("scipy")
736
+ s = Series([1, 2, np.nan, 4, 5.1, np.nan, 7])
737
+ assert (
738
+ s.interpolate(method="spline", order=3, s=0)[5]
739
+ != s.interpolate(method="spline", order=3)[5]
740
+ )
741
+
742
+ def test_spline_interpolation(self):
743
+ # Explicit cast to float to avoid implicit cast when setting np.nan
744
+ pytest.importorskip("scipy")
745
+ s = Series(np.arange(10) ** 2, dtype="float")
746
+ s[np.random.default_rng(2).integers(0, 9, 3)] = np.nan
747
+ result1 = s.interpolate(method="spline", order=1)
748
+ expected1 = s.interpolate(method="spline", order=1)
749
+ tm.assert_series_equal(result1, expected1)
750
+
751
+ def test_interp_timedelta64(self):
752
+ # GH 6424
753
+ df = Series([1, np.nan, 3], index=pd.to_timedelta([1, 2, 3]))
754
+ result = df.interpolate(method="time")
755
+ expected = Series([1.0, 2.0, 3.0], index=pd.to_timedelta([1, 2, 3]))
756
+ tm.assert_series_equal(result, expected)
757
+
758
+ # test for non uniform spacing
759
+ df = Series([1, np.nan, 3], index=pd.to_timedelta([1, 2, 4]))
760
+ result = df.interpolate(method="time")
761
+ expected = Series([1.0, 1.666667, 3.0], index=pd.to_timedelta([1, 2, 4]))
762
+ tm.assert_series_equal(result, expected)
763
+
764
+ def test_series_interpolate_method_values(self):
765
+ # GH#1646
766
+ rng = date_range("1/1/2000", "1/20/2000", freq="D")
767
+ ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
768
+
769
+ ts[::2] = np.nan
770
+
771
+ result = ts.interpolate(method="values")
772
+ exp = ts.interpolate()
773
+ tm.assert_series_equal(result, exp)
774
+
775
+ def test_series_interpolate_intraday(self):
776
+ # #1698
777
+ index = date_range("1/1/2012", periods=4, freq="12D")
778
+ ts = Series([0, 12, 24, 36], index)
779
+ new_index = index.append(index + pd.DateOffset(days=1)).sort_values()
780
+
781
+ exp = ts.reindex(new_index).interpolate(method="time")
782
+
783
+ index = date_range("1/1/2012", periods=4, freq="12h")
784
+ ts = Series([0, 12, 24, 36], index)
785
+ new_index = index.append(index + pd.DateOffset(hours=1)).sort_values()
786
+ result = ts.reindex(new_index).interpolate(method="time")
787
+
788
+ tm.assert_numpy_array_equal(result.values, exp.values)
789
+
790
+ @pytest.mark.parametrize(
791
+ "ind",
792
+ [
793
+ ["a", "b", "c", "d"],
794
+ pd.period_range(start="2019-01-01", periods=4),
795
+ pd.interval_range(start=0, end=4),
796
+ ],
797
+ )
798
+ def test_interp_non_timedelta_index(self, interp_methods_ind, ind):
799
+ # gh 21662
800
+ df = pd.DataFrame([0, 1, np.nan, 3], index=ind)
801
+
802
+ method, kwargs = interp_methods_ind
803
+ if method == "pchip":
804
+ pytest.importorskip("scipy")
805
+
806
+ if method == "linear":
807
+ result = df[0].interpolate(**kwargs)
808
+ expected = Series([0.0, 1.0, 2.0, 3.0], name=0, index=ind)
809
+ tm.assert_series_equal(result, expected)
810
+ else:
811
+ expected_error = (
812
+ "Index column must be numeric or datetime type when "
813
+ f"using {method} method other than linear. "
814
+ "Try setting a numeric or datetime index column before "
815
+ "interpolating."
816
+ )
817
+ with pytest.raises(ValueError, match=expected_error):
818
+ df[0].interpolate(method=method, **kwargs)
819
+
820
+ def test_interpolate_timedelta_index(self, request, interp_methods_ind):
821
+ """
822
+ Tests for non numerical index types - object, period, timedelta
823
+ Note that all methods except time, index, nearest and values
824
+ are tested here.
825
+ """
826
+ # gh 21662
827
+ pytest.importorskip("scipy")
828
+ ind = pd.timedelta_range(start=1, periods=4)
829
+ df = pd.DataFrame([0, 1, np.nan, 3], index=ind)
830
+
831
+ method, kwargs = interp_methods_ind
832
+
833
+ if method in {"cubic", "zero"}:
834
+ request.applymarker(
835
+ pytest.mark.xfail(
836
+ reason=f"{method} interpolation is not supported for TimedeltaIndex"
837
+ )
838
+ )
839
+ result = df[0].interpolate(method=method, **kwargs)
840
+ expected = Series([0.0, 1.0, 2.0, 3.0], name=0, index=ind)
841
+ tm.assert_series_equal(result, expected)
842
+
843
+ @pytest.mark.parametrize(
844
+ "ascending, expected_values",
845
+ [(True, [1, 2, 3, 9, 10]), (False, [10, 9, 3, 2, 1])],
846
+ )
847
+ def test_interpolate_unsorted_index(self, ascending, expected_values):
848
+ # GH 21037
849
+ ts = Series(data=[10, 9, np.nan, 2, 1], index=[10, 9, 3, 2, 1])
850
+ result = ts.sort_index(ascending=ascending).interpolate(method="index")
851
+ expected = Series(data=expected_values, index=expected_values, dtype=float)
852
+ tm.assert_series_equal(result, expected)
853
+
854
+ def test_interpolate_asfreq_raises(self):
855
+ ser = Series(["a", None, "b"], dtype=object)
856
+ msg2 = "Series.interpolate with object dtype"
857
+ msg = "Invalid fill method"
858
+ with pytest.raises(ValueError, match=msg):
859
+ with tm.assert_produces_warning(FutureWarning, match=msg2):
860
+ ser.interpolate(method="asfreq")
861
+
862
+ def test_interpolate_fill_value(self):
863
+ # GH#54920
864
+ pytest.importorskip("scipy")
865
+ ser = Series([np.nan, 0, 1, np.nan, 3, np.nan])
866
+ result = ser.interpolate(method="nearest", fill_value=0)
867
+ expected = Series([np.nan, 0, 1, 1, 3, 0])
868
+ tm.assert_series_equal(result, expected)