Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi +5 -0
- llmeval-env/lib/python3.10/site-packages/pandas/compat/__init__.py +197 -0
- llmeval-env/lib/python3.10/site-packages/pandas/compat/_constants.py +30 -0
- llmeval-env/lib/python3.10/site-packages/pandas/compat/_optional.py +168 -0
- llmeval-env/lib/python3.10/site-packages/pandas/compat/compressors.py +77 -0
- llmeval-env/lib/python3.10/site-packages/pandas/compat/numpy/__init__.py +53 -0
- llmeval-env/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/compat/numpy/function.py +418 -0
- llmeval-env/lib/python3.10/site-packages/pandas/compat/pickle_compat.py +262 -0
- llmeval-env/lib/python3.10/site-packages/pandas/compat/pyarrow.py +27 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_cat_accessor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_dt_accessor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_list_accessor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_sparse_accessor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_str_accessor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_struct_accessor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_cat_accessor.py +258 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_dt_accessor.py +843 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_list_accessor.py +129 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_sparse_accessor.py +9 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_str_accessor.py +25 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_struct_accessor.py +196 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__init__.py +7 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_argsort.py +84 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_asof.py +205 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_astype.py +683 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_clip.py +146 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_copy.py +91 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_describe.py +203 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop.py +99 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_dtypes.py +7 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_equals.py +145 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_explode.py +175 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_fillna.py +1155 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_get_numeric_data.py +38 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_infer_objects.py +56 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_isin.py +252 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_isna.py +35 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_reindex_like.py +41 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_rename_axis.py +47 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_replace.py +813 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_set_name.py +21 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_size.py +22 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_frame.py +63 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_unstack.py +169 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_values.py +29 -0
- llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_view.py +61 -0
llmeval-env/lib/python3.10/site-packages/pandas/_libs/ops_dispatch.pyi
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
def maybe_dispatch_ufunc_to_dunder_op(
|
4 |
+
self, ufunc: np.ufunc, method: str, *inputs, **kwargs
|
5 |
+
): ...
|
llmeval-env/lib/python3.10/site-packages/pandas/compat/__init__.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
compat
|
3 |
+
======
|
4 |
+
|
5 |
+
Cross-compatible functions for different versions of Python.
|
6 |
+
|
7 |
+
Other items:
|
8 |
+
* platform checker
|
9 |
+
"""
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import os
|
13 |
+
import platform
|
14 |
+
import sys
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from pandas.compat._constants import (
|
18 |
+
IS64,
|
19 |
+
ISMUSL,
|
20 |
+
PY310,
|
21 |
+
PY311,
|
22 |
+
PY312,
|
23 |
+
PYPY,
|
24 |
+
)
|
25 |
+
import pandas.compat.compressors
|
26 |
+
from pandas.compat.numpy import is_numpy_dev
|
27 |
+
from pandas.compat.pyarrow import (
|
28 |
+
pa_version_under10p1,
|
29 |
+
pa_version_under11p0,
|
30 |
+
pa_version_under13p0,
|
31 |
+
pa_version_under14p0,
|
32 |
+
pa_version_under14p1,
|
33 |
+
pa_version_under16p0,
|
34 |
+
)
|
35 |
+
|
36 |
+
if TYPE_CHECKING:
|
37 |
+
from pandas._typing import F
|
38 |
+
|
39 |
+
|
40 |
+
def set_function_name(f: F, name: str, cls: type) -> F:
|
41 |
+
"""
|
42 |
+
Bind the name/qualname attributes of the function.
|
43 |
+
"""
|
44 |
+
f.__name__ = name
|
45 |
+
f.__qualname__ = f"{cls.__name__}.{name}"
|
46 |
+
f.__module__ = cls.__module__
|
47 |
+
return f
|
48 |
+
|
49 |
+
|
50 |
+
def is_platform_little_endian() -> bool:
|
51 |
+
"""
|
52 |
+
Checking if the running platform is little endian.
|
53 |
+
|
54 |
+
Returns
|
55 |
+
-------
|
56 |
+
bool
|
57 |
+
True if the running platform is little endian.
|
58 |
+
"""
|
59 |
+
return sys.byteorder == "little"
|
60 |
+
|
61 |
+
|
62 |
+
def is_platform_windows() -> bool:
|
63 |
+
"""
|
64 |
+
Checking if the running platform is windows.
|
65 |
+
|
66 |
+
Returns
|
67 |
+
-------
|
68 |
+
bool
|
69 |
+
True if the running platform is windows.
|
70 |
+
"""
|
71 |
+
return sys.platform in ["win32", "cygwin"]
|
72 |
+
|
73 |
+
|
74 |
+
def is_platform_linux() -> bool:
|
75 |
+
"""
|
76 |
+
Checking if the running platform is linux.
|
77 |
+
|
78 |
+
Returns
|
79 |
+
-------
|
80 |
+
bool
|
81 |
+
True if the running platform is linux.
|
82 |
+
"""
|
83 |
+
return sys.platform == "linux"
|
84 |
+
|
85 |
+
|
86 |
+
def is_platform_mac() -> bool:
|
87 |
+
"""
|
88 |
+
Checking if the running platform is mac.
|
89 |
+
|
90 |
+
Returns
|
91 |
+
-------
|
92 |
+
bool
|
93 |
+
True if the running platform is mac.
|
94 |
+
"""
|
95 |
+
return sys.platform == "darwin"
|
96 |
+
|
97 |
+
|
98 |
+
def is_platform_arm() -> bool:
|
99 |
+
"""
|
100 |
+
Checking if the running platform use ARM architecture.
|
101 |
+
|
102 |
+
Returns
|
103 |
+
-------
|
104 |
+
bool
|
105 |
+
True if the running platform uses ARM architecture.
|
106 |
+
"""
|
107 |
+
return platform.machine() in ("arm64", "aarch64") or platform.machine().startswith(
|
108 |
+
"armv"
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
def is_platform_power() -> bool:
|
113 |
+
"""
|
114 |
+
Checking if the running platform use Power architecture.
|
115 |
+
|
116 |
+
Returns
|
117 |
+
-------
|
118 |
+
bool
|
119 |
+
True if the running platform uses ARM architecture.
|
120 |
+
"""
|
121 |
+
return platform.machine() in ("ppc64", "ppc64le")
|
122 |
+
|
123 |
+
|
124 |
+
def is_ci_environment() -> bool:
|
125 |
+
"""
|
126 |
+
Checking if running in a continuous integration environment by checking
|
127 |
+
the PANDAS_CI environment variable.
|
128 |
+
|
129 |
+
Returns
|
130 |
+
-------
|
131 |
+
bool
|
132 |
+
True if the running in a continuous integration environment.
|
133 |
+
"""
|
134 |
+
return os.environ.get("PANDAS_CI", "0") == "1"
|
135 |
+
|
136 |
+
|
137 |
+
def get_lzma_file() -> type[pandas.compat.compressors.LZMAFile]:
|
138 |
+
"""
|
139 |
+
Importing the `LZMAFile` class from the `lzma` module.
|
140 |
+
|
141 |
+
Returns
|
142 |
+
-------
|
143 |
+
class
|
144 |
+
The `LZMAFile` class from the `lzma` module.
|
145 |
+
|
146 |
+
Raises
|
147 |
+
------
|
148 |
+
RuntimeError
|
149 |
+
If the `lzma` module was not imported correctly, or didn't exist.
|
150 |
+
"""
|
151 |
+
if not pandas.compat.compressors.has_lzma:
|
152 |
+
raise RuntimeError(
|
153 |
+
"lzma module not available. "
|
154 |
+
"A Python re-install with the proper dependencies, "
|
155 |
+
"might be required to solve this issue."
|
156 |
+
)
|
157 |
+
return pandas.compat.compressors.LZMAFile
|
158 |
+
|
159 |
+
|
160 |
+
def get_bz2_file() -> type[pandas.compat.compressors.BZ2File]:
|
161 |
+
"""
|
162 |
+
Importing the `BZ2File` class from the `bz2` module.
|
163 |
+
|
164 |
+
Returns
|
165 |
+
-------
|
166 |
+
class
|
167 |
+
The `BZ2File` class from the `bz2` module.
|
168 |
+
|
169 |
+
Raises
|
170 |
+
------
|
171 |
+
RuntimeError
|
172 |
+
If the `bz2` module was not imported correctly, or didn't exist.
|
173 |
+
"""
|
174 |
+
if not pandas.compat.compressors.has_bz2:
|
175 |
+
raise RuntimeError(
|
176 |
+
"bz2 module not available. "
|
177 |
+
"A Python re-install with the proper dependencies, "
|
178 |
+
"might be required to solve this issue."
|
179 |
+
)
|
180 |
+
return pandas.compat.compressors.BZ2File
|
181 |
+
|
182 |
+
|
183 |
+
__all__ = [
|
184 |
+
"is_numpy_dev",
|
185 |
+
"pa_version_under10p1",
|
186 |
+
"pa_version_under11p0",
|
187 |
+
"pa_version_under13p0",
|
188 |
+
"pa_version_under14p0",
|
189 |
+
"pa_version_under14p1",
|
190 |
+
"pa_version_under16p0",
|
191 |
+
"IS64",
|
192 |
+
"ISMUSL",
|
193 |
+
"PY310",
|
194 |
+
"PY311",
|
195 |
+
"PY312",
|
196 |
+
"PYPY",
|
197 |
+
]
|
llmeval-env/lib/python3.10/site-packages/pandas/compat/_constants.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
_constants
|
3 |
+
======
|
4 |
+
|
5 |
+
Constants relevant for the Python implementation.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
import platform
|
11 |
+
import sys
|
12 |
+
import sysconfig
|
13 |
+
|
14 |
+
IS64 = sys.maxsize > 2**32
|
15 |
+
|
16 |
+
PY310 = sys.version_info >= (3, 10)
|
17 |
+
PY311 = sys.version_info >= (3, 11)
|
18 |
+
PY312 = sys.version_info >= (3, 12)
|
19 |
+
PYPY = platform.python_implementation() == "PyPy"
|
20 |
+
ISMUSL = "musl" in (sysconfig.get_config_var("HOST_GNU_TYPE") or "")
|
21 |
+
REF_COUNT = 2 if PY311 else 3
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
"IS64",
|
25 |
+
"ISMUSL",
|
26 |
+
"PY310",
|
27 |
+
"PY311",
|
28 |
+
"PY312",
|
29 |
+
"PYPY",
|
30 |
+
]
|
llmeval-env/lib/python3.10/site-packages/pandas/compat/_optional.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import importlib
|
4 |
+
import sys
|
5 |
+
from typing import TYPE_CHECKING
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
from pandas.util._exceptions import find_stack_level
|
9 |
+
|
10 |
+
from pandas.util.version import Version
|
11 |
+
|
12 |
+
if TYPE_CHECKING:
|
13 |
+
import types
|
14 |
+
|
15 |
+
# Update install.rst & setup.cfg when updating versions!
|
16 |
+
|
17 |
+
VERSIONS = {
|
18 |
+
"adbc-driver-postgresql": "0.8.0",
|
19 |
+
"adbc-driver-sqlite": "0.8.0",
|
20 |
+
"bs4": "4.11.2",
|
21 |
+
"blosc": "1.21.3",
|
22 |
+
"bottleneck": "1.3.6",
|
23 |
+
"dataframe-api-compat": "0.1.7",
|
24 |
+
"fastparquet": "2022.12.0",
|
25 |
+
"fsspec": "2022.11.0",
|
26 |
+
"html5lib": "1.1",
|
27 |
+
"hypothesis": "6.46.1",
|
28 |
+
"gcsfs": "2022.11.0",
|
29 |
+
"jinja2": "3.1.2",
|
30 |
+
"lxml.etree": "4.9.2",
|
31 |
+
"matplotlib": "3.6.3",
|
32 |
+
"numba": "0.56.4",
|
33 |
+
"numexpr": "2.8.4",
|
34 |
+
"odfpy": "1.4.1",
|
35 |
+
"openpyxl": "3.1.0",
|
36 |
+
"pandas_gbq": "0.19.0",
|
37 |
+
"psycopg2": "2.9.6", # (dt dec pq3 ext lo64)
|
38 |
+
"pymysql": "1.0.2",
|
39 |
+
"pyarrow": "10.0.1",
|
40 |
+
"pyreadstat": "1.2.0",
|
41 |
+
"pytest": "7.3.2",
|
42 |
+
"python-calamine": "0.1.7",
|
43 |
+
"pyxlsb": "1.0.10",
|
44 |
+
"s3fs": "2022.11.0",
|
45 |
+
"scipy": "1.10.0",
|
46 |
+
"sqlalchemy": "2.0.0",
|
47 |
+
"tables": "3.8.0",
|
48 |
+
"tabulate": "0.9.0",
|
49 |
+
"xarray": "2022.12.0",
|
50 |
+
"xlrd": "2.0.1",
|
51 |
+
"xlsxwriter": "3.0.5",
|
52 |
+
"zstandard": "0.19.0",
|
53 |
+
"tzdata": "2022.7",
|
54 |
+
"qtpy": "2.3.0",
|
55 |
+
"pyqt5": "5.15.9",
|
56 |
+
}
|
57 |
+
|
58 |
+
# A mapping from import name to package name (on PyPI) for packages where
|
59 |
+
# these two names are different.
|
60 |
+
|
61 |
+
INSTALL_MAPPING = {
|
62 |
+
"bs4": "beautifulsoup4",
|
63 |
+
"bottleneck": "Bottleneck",
|
64 |
+
"jinja2": "Jinja2",
|
65 |
+
"lxml.etree": "lxml",
|
66 |
+
"odf": "odfpy",
|
67 |
+
"pandas_gbq": "pandas-gbq",
|
68 |
+
"python_calamine": "python-calamine",
|
69 |
+
"sqlalchemy": "SQLAlchemy",
|
70 |
+
"tables": "pytables",
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
def get_version(module: types.ModuleType) -> str:
|
75 |
+
version = getattr(module, "__version__", None)
|
76 |
+
|
77 |
+
if version is None:
|
78 |
+
raise ImportError(f"Can't determine version for {module.__name__}")
|
79 |
+
if module.__name__ == "psycopg2":
|
80 |
+
# psycopg2 appends " (dt dec pq3 ext lo64)" to it's version
|
81 |
+
version = version.split()[0]
|
82 |
+
return version
|
83 |
+
|
84 |
+
|
85 |
+
def import_optional_dependency(
|
86 |
+
name: str,
|
87 |
+
extra: str = "",
|
88 |
+
errors: str = "raise",
|
89 |
+
min_version: str | None = None,
|
90 |
+
):
|
91 |
+
"""
|
92 |
+
Import an optional dependency.
|
93 |
+
|
94 |
+
By default, if a dependency is missing an ImportError with a nice
|
95 |
+
message will be raised. If a dependency is present, but too old,
|
96 |
+
we raise.
|
97 |
+
|
98 |
+
Parameters
|
99 |
+
----------
|
100 |
+
name : str
|
101 |
+
The module name.
|
102 |
+
extra : str
|
103 |
+
Additional text to include in the ImportError message.
|
104 |
+
errors : str {'raise', 'warn', 'ignore'}
|
105 |
+
What to do when a dependency is not found or its version is too old.
|
106 |
+
|
107 |
+
* raise : Raise an ImportError
|
108 |
+
* warn : Only applicable when a module's version is to old.
|
109 |
+
Warns that the version is too old and returns None
|
110 |
+
* ignore: If the module is not installed, return None, otherwise,
|
111 |
+
return the module, even if the version is too old.
|
112 |
+
It's expected that users validate the version locally when
|
113 |
+
using ``errors="ignore"`` (see. ``io/html.py``)
|
114 |
+
min_version : str, default None
|
115 |
+
Specify a minimum version that is different from the global pandas
|
116 |
+
minimum version required.
|
117 |
+
Returns
|
118 |
+
-------
|
119 |
+
maybe_module : Optional[ModuleType]
|
120 |
+
The imported module, when found and the version is correct.
|
121 |
+
None is returned when the package is not found and `errors`
|
122 |
+
is False, or when the package's version is too old and `errors`
|
123 |
+
is ``'warn'`` or ``'ignore'``.
|
124 |
+
"""
|
125 |
+
assert errors in {"warn", "raise", "ignore"}
|
126 |
+
|
127 |
+
package_name = INSTALL_MAPPING.get(name)
|
128 |
+
install_name = package_name if package_name is not None else name
|
129 |
+
|
130 |
+
msg = (
|
131 |
+
f"Missing optional dependency '{install_name}'. {extra} "
|
132 |
+
f"Use pip or conda to install {install_name}."
|
133 |
+
)
|
134 |
+
try:
|
135 |
+
module = importlib.import_module(name)
|
136 |
+
except ImportError:
|
137 |
+
if errors == "raise":
|
138 |
+
raise ImportError(msg)
|
139 |
+
return None
|
140 |
+
|
141 |
+
# Handle submodules: if we have submodule, grab parent module from sys.modules
|
142 |
+
parent = name.split(".")[0]
|
143 |
+
if parent != name:
|
144 |
+
install_name = parent
|
145 |
+
module_to_get = sys.modules[install_name]
|
146 |
+
else:
|
147 |
+
module_to_get = module
|
148 |
+
minimum_version = min_version if min_version is not None else VERSIONS.get(parent)
|
149 |
+
if minimum_version:
|
150 |
+
version = get_version(module_to_get)
|
151 |
+
if version and Version(version) < Version(minimum_version):
|
152 |
+
msg = (
|
153 |
+
f"Pandas requires version '{minimum_version}' or newer of '{parent}' "
|
154 |
+
f"(version '{version}' currently installed)."
|
155 |
+
)
|
156 |
+
if errors == "warn":
|
157 |
+
warnings.warn(
|
158 |
+
msg,
|
159 |
+
UserWarning,
|
160 |
+
stacklevel=find_stack_level(),
|
161 |
+
)
|
162 |
+
return None
|
163 |
+
elif errors == "raise":
|
164 |
+
raise ImportError(msg)
|
165 |
+
else:
|
166 |
+
return None
|
167 |
+
|
168 |
+
return module
|
llmeval-env/lib/python3.10/site-packages/pandas/compat/compressors.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Patched ``BZ2File`` and ``LZMAFile`` to handle pickle protocol 5.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from pickle import PickleBuffer
|
8 |
+
|
9 |
+
from pandas.compat._constants import PY310
|
10 |
+
|
11 |
+
try:
|
12 |
+
import bz2
|
13 |
+
|
14 |
+
has_bz2 = True
|
15 |
+
except ImportError:
|
16 |
+
has_bz2 = False
|
17 |
+
|
18 |
+
try:
|
19 |
+
import lzma
|
20 |
+
|
21 |
+
has_lzma = True
|
22 |
+
except ImportError:
|
23 |
+
has_lzma = False
|
24 |
+
|
25 |
+
|
26 |
+
def flatten_buffer(
|
27 |
+
b: bytes | bytearray | memoryview | PickleBuffer,
|
28 |
+
) -> bytes | bytearray | memoryview:
|
29 |
+
"""
|
30 |
+
Return some 1-D `uint8` typed buffer.
|
31 |
+
|
32 |
+
Coerces anything that does not match that description to one that does
|
33 |
+
without copying if possible (otherwise will copy).
|
34 |
+
"""
|
35 |
+
|
36 |
+
if isinstance(b, (bytes, bytearray)):
|
37 |
+
return b
|
38 |
+
|
39 |
+
if not isinstance(b, PickleBuffer):
|
40 |
+
b = PickleBuffer(b)
|
41 |
+
|
42 |
+
try:
|
43 |
+
# coerce to 1-D `uint8` C-contiguous `memoryview` zero-copy
|
44 |
+
return b.raw()
|
45 |
+
except BufferError:
|
46 |
+
# perform in-memory copy if buffer is not contiguous
|
47 |
+
return memoryview(b).tobytes("A")
|
48 |
+
|
49 |
+
|
50 |
+
if has_bz2:
|
51 |
+
|
52 |
+
class BZ2File(bz2.BZ2File):
|
53 |
+
if not PY310:
|
54 |
+
|
55 |
+
def write(self, b) -> int:
|
56 |
+
# Workaround issue where `bz2.BZ2File` expects `len`
|
57 |
+
# to return the number of bytes in `b` by converting
|
58 |
+
# `b` into something that meets that constraint with
|
59 |
+
# minimal copying.
|
60 |
+
#
|
61 |
+
# Note: This is fixed in Python 3.10.
|
62 |
+
return super().write(flatten_buffer(b))
|
63 |
+
|
64 |
+
|
65 |
+
if has_lzma:
|
66 |
+
|
67 |
+
class LZMAFile(lzma.LZMAFile):
|
68 |
+
if not PY310:
|
69 |
+
|
70 |
+
def write(self, b) -> int:
|
71 |
+
# Workaround issue where `lzma.LZMAFile` expects `len`
|
72 |
+
# to return the number of bytes in `b` by converting
|
73 |
+
# `b` into something that meets that constraint with
|
74 |
+
# minimal copying.
|
75 |
+
#
|
76 |
+
# Note: This is fixed in Python 3.10.
|
77 |
+
return super().write(flatten_buffer(b))
|
llmeval-env/lib/python3.10/site-packages/pandas/compat/numpy/__init__.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" support numpy compatibility across versions """
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from pandas.util.version import Version
|
7 |
+
|
8 |
+
# numpy versioning
|
9 |
+
_np_version = np.__version__
|
10 |
+
_nlv = Version(_np_version)
|
11 |
+
np_version_lt1p23 = _nlv < Version("1.23")
|
12 |
+
np_version_gte1p24 = _nlv >= Version("1.24")
|
13 |
+
np_version_gte1p24p3 = _nlv >= Version("1.24.3")
|
14 |
+
np_version_gte1p25 = _nlv >= Version("1.25")
|
15 |
+
np_version_gt2 = _nlv >= Version("2.0.0.dev0")
|
16 |
+
is_numpy_dev = _nlv.dev is not None
|
17 |
+
_min_numpy_ver = "1.22.4"
|
18 |
+
|
19 |
+
|
20 |
+
if _nlv < Version(_min_numpy_ver):
|
21 |
+
raise ImportError(
|
22 |
+
f"this version of pandas is incompatible with numpy < {_min_numpy_ver}\n"
|
23 |
+
f"your numpy version is {_np_version}.\n"
|
24 |
+
f"Please upgrade numpy to >= {_min_numpy_ver} to use this pandas version"
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
np_long: type
|
29 |
+
np_ulong: type
|
30 |
+
|
31 |
+
if np_version_gt2:
|
32 |
+
try:
|
33 |
+
with warnings.catch_warnings():
|
34 |
+
warnings.filterwarnings(
|
35 |
+
"ignore",
|
36 |
+
r".*In the future `np\.long` will be defined as.*",
|
37 |
+
FutureWarning,
|
38 |
+
)
|
39 |
+
np_long = np.long # type: ignore[attr-defined]
|
40 |
+
np_ulong = np.ulong # type: ignore[attr-defined]
|
41 |
+
except AttributeError:
|
42 |
+
np_long = np.int_
|
43 |
+
np_ulong = np.uint
|
44 |
+
else:
|
45 |
+
np_long = np.int_
|
46 |
+
np_ulong = np.uint
|
47 |
+
|
48 |
+
|
49 |
+
__all__ = [
|
50 |
+
"np",
|
51 |
+
"_np_version",
|
52 |
+
"is_numpy_dev",
|
53 |
+
]
|
llmeval-env/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.28 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/compat/numpy/function.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
For compatibility with numpy libraries, pandas functions or methods have to
|
3 |
+
accept '*args' and '**kwargs' parameters to accommodate numpy arguments that
|
4 |
+
are not actually used or respected in the pandas implementation.
|
5 |
+
|
6 |
+
To ensure that users do not abuse these parameters, validation is performed in
|
7 |
+
'validators.py' to make sure that any extra parameters passed correspond ONLY
|
8 |
+
to those in the numpy signature. Part of that validation includes whether or
|
9 |
+
not the user attempted to pass in non-default values for these extraneous
|
10 |
+
parameters. As we want to discourage users from relying on these parameters
|
11 |
+
when calling the pandas implementation, we want them only to pass in the
|
12 |
+
default values for these parameters.
|
13 |
+
|
14 |
+
This module provides a set of commonly used default arguments for functions and
|
15 |
+
methods that are spread throughout the codebase. This module will make it
|
16 |
+
easier to adjust to future upstream changes in the analogous numpy signatures.
|
17 |
+
"""
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
from typing import (
|
21 |
+
TYPE_CHECKING,
|
22 |
+
Any,
|
23 |
+
TypeVar,
|
24 |
+
cast,
|
25 |
+
overload,
|
26 |
+
)
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
from numpy import ndarray
|
30 |
+
|
31 |
+
from pandas._libs.lib import (
|
32 |
+
is_bool,
|
33 |
+
is_integer,
|
34 |
+
)
|
35 |
+
from pandas.errors import UnsupportedFunctionCall
|
36 |
+
from pandas.util._validators import (
|
37 |
+
validate_args,
|
38 |
+
validate_args_and_kwargs,
|
39 |
+
validate_kwargs,
|
40 |
+
)
|
41 |
+
|
42 |
+
if TYPE_CHECKING:
|
43 |
+
from pandas._typing import (
|
44 |
+
Axis,
|
45 |
+
AxisInt,
|
46 |
+
)
|
47 |
+
|
48 |
+
AxisNoneT = TypeVar("AxisNoneT", Axis, None)
|
49 |
+
|
50 |
+
|
51 |
+
class CompatValidator:
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
defaults,
|
55 |
+
fname=None,
|
56 |
+
method: str | None = None,
|
57 |
+
max_fname_arg_count=None,
|
58 |
+
) -> None:
|
59 |
+
self.fname = fname
|
60 |
+
self.method = method
|
61 |
+
self.defaults = defaults
|
62 |
+
self.max_fname_arg_count = max_fname_arg_count
|
63 |
+
|
64 |
+
def __call__(
|
65 |
+
self,
|
66 |
+
args,
|
67 |
+
kwargs,
|
68 |
+
fname=None,
|
69 |
+
max_fname_arg_count=None,
|
70 |
+
method: str | None = None,
|
71 |
+
) -> None:
|
72 |
+
if not args and not kwargs:
|
73 |
+
return None
|
74 |
+
|
75 |
+
fname = self.fname if fname is None else fname
|
76 |
+
max_fname_arg_count = (
|
77 |
+
self.max_fname_arg_count
|
78 |
+
if max_fname_arg_count is None
|
79 |
+
else max_fname_arg_count
|
80 |
+
)
|
81 |
+
method = self.method if method is None else method
|
82 |
+
|
83 |
+
if method == "args":
|
84 |
+
validate_args(fname, args, max_fname_arg_count, self.defaults)
|
85 |
+
elif method == "kwargs":
|
86 |
+
validate_kwargs(fname, kwargs, self.defaults)
|
87 |
+
elif method == "both":
|
88 |
+
validate_args_and_kwargs(
|
89 |
+
fname, args, kwargs, max_fname_arg_count, self.defaults
|
90 |
+
)
|
91 |
+
else:
|
92 |
+
raise ValueError(f"invalid validation method '{method}'")
|
93 |
+
|
94 |
+
|
95 |
+
ARGMINMAX_DEFAULTS = {"out": None}
|
96 |
+
validate_argmin = CompatValidator(
|
97 |
+
ARGMINMAX_DEFAULTS, fname="argmin", method="both", max_fname_arg_count=1
|
98 |
+
)
|
99 |
+
validate_argmax = CompatValidator(
|
100 |
+
ARGMINMAX_DEFAULTS, fname="argmax", method="both", max_fname_arg_count=1
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
def process_skipna(skipna: bool | ndarray | None, args) -> tuple[bool, Any]:
|
105 |
+
if isinstance(skipna, ndarray) or skipna is None:
|
106 |
+
args = (skipna,) + args
|
107 |
+
skipna = True
|
108 |
+
|
109 |
+
return skipna, args
|
110 |
+
|
111 |
+
|
112 |
+
def validate_argmin_with_skipna(skipna: bool | ndarray | None, args, kwargs) -> bool:
|
113 |
+
"""
|
114 |
+
If 'Series.argmin' is called via the 'numpy' library, the third parameter
|
115 |
+
in its signature is 'out', which takes either an ndarray or 'None', so
|
116 |
+
check if the 'skipna' parameter is either an instance of ndarray or is
|
117 |
+
None, since 'skipna' itself should be a boolean
|
118 |
+
"""
|
119 |
+
skipna, args = process_skipna(skipna, args)
|
120 |
+
validate_argmin(args, kwargs)
|
121 |
+
return skipna
|
122 |
+
|
123 |
+
|
124 |
+
def validate_argmax_with_skipna(skipna: bool | ndarray | None, args, kwargs) -> bool:
|
125 |
+
"""
|
126 |
+
If 'Series.argmax' is called via the 'numpy' library, the third parameter
|
127 |
+
in its signature is 'out', which takes either an ndarray or 'None', so
|
128 |
+
check if the 'skipna' parameter is either an instance of ndarray or is
|
129 |
+
None, since 'skipna' itself should be a boolean
|
130 |
+
"""
|
131 |
+
skipna, args = process_skipna(skipna, args)
|
132 |
+
validate_argmax(args, kwargs)
|
133 |
+
return skipna
|
134 |
+
|
135 |
+
|
136 |
+
ARGSORT_DEFAULTS: dict[str, int | str | None] = {}
|
137 |
+
ARGSORT_DEFAULTS["axis"] = -1
|
138 |
+
ARGSORT_DEFAULTS["kind"] = "quicksort"
|
139 |
+
ARGSORT_DEFAULTS["order"] = None
|
140 |
+
ARGSORT_DEFAULTS["kind"] = None
|
141 |
+
ARGSORT_DEFAULTS["stable"] = None
|
142 |
+
|
143 |
+
|
144 |
+
validate_argsort = CompatValidator(
|
145 |
+
ARGSORT_DEFAULTS, fname="argsort", max_fname_arg_count=0, method="both"
|
146 |
+
)
|
147 |
+
|
148 |
+
# two different signatures of argsort, this second validation for when the
|
149 |
+
# `kind` param is supported
|
150 |
+
ARGSORT_DEFAULTS_KIND: dict[str, int | None] = {}
|
151 |
+
ARGSORT_DEFAULTS_KIND["axis"] = -1
|
152 |
+
ARGSORT_DEFAULTS_KIND["order"] = None
|
153 |
+
ARGSORT_DEFAULTS_KIND["stable"] = None
|
154 |
+
validate_argsort_kind = CompatValidator(
|
155 |
+
ARGSORT_DEFAULTS_KIND, fname="argsort", max_fname_arg_count=0, method="both"
|
156 |
+
)
|
157 |
+
|
158 |
+
|
159 |
+
def validate_argsort_with_ascending(ascending: bool | int | None, args, kwargs) -> bool:
|
160 |
+
"""
|
161 |
+
If 'Categorical.argsort' is called via the 'numpy' library, the first
|
162 |
+
parameter in its signature is 'axis', which takes either an integer or
|
163 |
+
'None', so check if the 'ascending' parameter has either integer type or is
|
164 |
+
None, since 'ascending' itself should be a boolean
|
165 |
+
"""
|
166 |
+
if is_integer(ascending) or ascending is None:
|
167 |
+
args = (ascending,) + args
|
168 |
+
ascending = True
|
169 |
+
|
170 |
+
validate_argsort_kind(args, kwargs, max_fname_arg_count=3)
|
171 |
+
ascending = cast(bool, ascending)
|
172 |
+
return ascending
|
173 |
+
|
174 |
+
|
175 |
+
CLIP_DEFAULTS: dict[str, Any] = {"out": None}
|
176 |
+
validate_clip = CompatValidator(
|
177 |
+
CLIP_DEFAULTS, fname="clip", method="both", max_fname_arg_count=3
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
@overload
|
182 |
+
def validate_clip_with_axis(axis: ndarray, args, kwargs) -> None:
|
183 |
+
...
|
184 |
+
|
185 |
+
|
186 |
+
@overload
|
187 |
+
def validate_clip_with_axis(axis: AxisNoneT, args, kwargs) -> AxisNoneT:
|
188 |
+
...
|
189 |
+
|
190 |
+
|
191 |
+
def validate_clip_with_axis(
|
192 |
+
axis: ndarray | AxisNoneT, args, kwargs
|
193 |
+
) -> AxisNoneT | None:
|
194 |
+
"""
|
195 |
+
If 'NDFrame.clip' is called via the numpy library, the third parameter in
|
196 |
+
its signature is 'out', which can takes an ndarray, so check if the 'axis'
|
197 |
+
parameter is an instance of ndarray, since 'axis' itself should either be
|
198 |
+
an integer or None
|
199 |
+
"""
|
200 |
+
if isinstance(axis, ndarray):
|
201 |
+
args = (axis,) + args
|
202 |
+
# error: Incompatible types in assignment (expression has type "None",
|
203 |
+
# variable has type "Union[ndarray[Any, Any], str, int]")
|
204 |
+
axis = None # type: ignore[assignment]
|
205 |
+
|
206 |
+
validate_clip(args, kwargs)
|
207 |
+
# error: Incompatible return value type (got "Union[ndarray[Any, Any],
|
208 |
+
# str, int]", expected "Union[str, int, None]")
|
209 |
+
return axis # type: ignore[return-value]
|
210 |
+
|
211 |
+
|
212 |
+
CUM_FUNC_DEFAULTS: dict[str, Any] = {}
|
213 |
+
CUM_FUNC_DEFAULTS["dtype"] = None
|
214 |
+
CUM_FUNC_DEFAULTS["out"] = None
|
215 |
+
validate_cum_func = CompatValidator(
|
216 |
+
CUM_FUNC_DEFAULTS, method="both", max_fname_arg_count=1
|
217 |
+
)
|
218 |
+
validate_cumsum = CompatValidator(
|
219 |
+
CUM_FUNC_DEFAULTS, fname="cumsum", method="both", max_fname_arg_count=1
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
def validate_cum_func_with_skipna(skipna: bool, args, kwargs, name) -> bool:
|
224 |
+
"""
|
225 |
+
If this function is called via the 'numpy' library, the third parameter in
|
226 |
+
its signature is 'dtype', which takes either a 'numpy' dtype or 'None', so
|
227 |
+
check if the 'skipna' parameter is a boolean or not
|
228 |
+
"""
|
229 |
+
if not is_bool(skipna):
|
230 |
+
args = (skipna,) + args
|
231 |
+
skipna = True
|
232 |
+
elif isinstance(skipna, np.bool_):
|
233 |
+
skipna = bool(skipna)
|
234 |
+
|
235 |
+
validate_cum_func(args, kwargs, fname=name)
|
236 |
+
return skipna
|
237 |
+
|
238 |
+
|
239 |
+
ALLANY_DEFAULTS: dict[str, bool | None] = {}
|
240 |
+
ALLANY_DEFAULTS["dtype"] = None
|
241 |
+
ALLANY_DEFAULTS["out"] = None
|
242 |
+
ALLANY_DEFAULTS["keepdims"] = False
|
243 |
+
ALLANY_DEFAULTS["axis"] = None
|
244 |
+
validate_all = CompatValidator(
|
245 |
+
ALLANY_DEFAULTS, fname="all", method="both", max_fname_arg_count=1
|
246 |
+
)
|
247 |
+
validate_any = CompatValidator(
|
248 |
+
ALLANY_DEFAULTS, fname="any", method="both", max_fname_arg_count=1
|
249 |
+
)
|
250 |
+
|
251 |
+
LOGICAL_FUNC_DEFAULTS = {"out": None, "keepdims": False}
|
252 |
+
validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method="kwargs")
|
253 |
+
|
254 |
+
MINMAX_DEFAULTS = {"axis": None, "dtype": None, "out": None, "keepdims": False}
|
255 |
+
validate_min = CompatValidator(
|
256 |
+
MINMAX_DEFAULTS, fname="min", method="both", max_fname_arg_count=1
|
257 |
+
)
|
258 |
+
validate_max = CompatValidator(
|
259 |
+
MINMAX_DEFAULTS, fname="max", method="both", max_fname_arg_count=1
|
260 |
+
)
|
261 |
+
|
262 |
+
RESHAPE_DEFAULTS: dict[str, str] = {"order": "C"}
|
263 |
+
validate_reshape = CompatValidator(
|
264 |
+
RESHAPE_DEFAULTS, fname="reshape", method="both", max_fname_arg_count=1
|
265 |
+
)
|
266 |
+
|
267 |
+
REPEAT_DEFAULTS: dict[str, Any] = {"axis": None}
|
268 |
+
validate_repeat = CompatValidator(
|
269 |
+
REPEAT_DEFAULTS, fname="repeat", method="both", max_fname_arg_count=1
|
270 |
+
)
|
271 |
+
|
272 |
+
ROUND_DEFAULTS: dict[str, Any] = {"out": None}
|
273 |
+
validate_round = CompatValidator(
|
274 |
+
ROUND_DEFAULTS, fname="round", method="both", max_fname_arg_count=1
|
275 |
+
)
|
276 |
+
|
277 |
+
SORT_DEFAULTS: dict[str, int | str | None] = {}
|
278 |
+
SORT_DEFAULTS["axis"] = -1
|
279 |
+
SORT_DEFAULTS["kind"] = "quicksort"
|
280 |
+
SORT_DEFAULTS["order"] = None
|
281 |
+
validate_sort = CompatValidator(SORT_DEFAULTS, fname="sort", method="kwargs")
|
282 |
+
|
283 |
+
STAT_FUNC_DEFAULTS: dict[str, Any | None] = {}
|
284 |
+
STAT_FUNC_DEFAULTS["dtype"] = None
|
285 |
+
STAT_FUNC_DEFAULTS["out"] = None
|
286 |
+
|
287 |
+
SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
|
288 |
+
SUM_DEFAULTS["axis"] = None
|
289 |
+
SUM_DEFAULTS["keepdims"] = False
|
290 |
+
SUM_DEFAULTS["initial"] = None
|
291 |
+
|
292 |
+
PROD_DEFAULTS = SUM_DEFAULTS.copy()
|
293 |
+
|
294 |
+
MEAN_DEFAULTS = SUM_DEFAULTS.copy()
|
295 |
+
|
296 |
+
MEDIAN_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
|
297 |
+
MEDIAN_DEFAULTS["overwrite_input"] = False
|
298 |
+
MEDIAN_DEFAULTS["keepdims"] = False
|
299 |
+
|
300 |
+
STAT_FUNC_DEFAULTS["keepdims"] = False
|
301 |
+
|
302 |
+
validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS, method="kwargs")
|
303 |
+
validate_sum = CompatValidator(
|
304 |
+
SUM_DEFAULTS, fname="sum", method="both", max_fname_arg_count=1
|
305 |
+
)
|
306 |
+
validate_prod = CompatValidator(
|
307 |
+
PROD_DEFAULTS, fname="prod", method="both", max_fname_arg_count=1
|
308 |
+
)
|
309 |
+
validate_mean = CompatValidator(
|
310 |
+
MEAN_DEFAULTS, fname="mean", method="both", max_fname_arg_count=1
|
311 |
+
)
|
312 |
+
validate_median = CompatValidator(
|
313 |
+
MEDIAN_DEFAULTS, fname="median", method="both", max_fname_arg_count=1
|
314 |
+
)
|
315 |
+
|
316 |
+
STAT_DDOF_FUNC_DEFAULTS: dict[str, bool | None] = {}
|
317 |
+
STAT_DDOF_FUNC_DEFAULTS["dtype"] = None
|
318 |
+
STAT_DDOF_FUNC_DEFAULTS["out"] = None
|
319 |
+
STAT_DDOF_FUNC_DEFAULTS["keepdims"] = False
|
320 |
+
validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, method="kwargs")
|
321 |
+
|
322 |
+
TAKE_DEFAULTS: dict[str, str | None] = {}
|
323 |
+
TAKE_DEFAULTS["out"] = None
|
324 |
+
TAKE_DEFAULTS["mode"] = "raise"
|
325 |
+
validate_take = CompatValidator(TAKE_DEFAULTS, fname="take", method="kwargs")
|
326 |
+
|
327 |
+
|
328 |
+
def validate_take_with_convert(convert: ndarray | bool | None, args, kwargs) -> bool:
|
329 |
+
"""
|
330 |
+
If this function is called via the 'numpy' library, the third parameter in
|
331 |
+
its signature is 'axis', which takes either an ndarray or 'None', so check
|
332 |
+
if the 'convert' parameter is either an instance of ndarray or is None
|
333 |
+
"""
|
334 |
+
if isinstance(convert, ndarray) or convert is None:
|
335 |
+
args = (convert,) + args
|
336 |
+
convert = True
|
337 |
+
|
338 |
+
validate_take(args, kwargs, max_fname_arg_count=3, method="both")
|
339 |
+
return convert
|
340 |
+
|
341 |
+
|
342 |
+
TRANSPOSE_DEFAULTS = {"axes": None}
|
343 |
+
validate_transpose = CompatValidator(
|
344 |
+
TRANSPOSE_DEFAULTS, fname="transpose", method="both", max_fname_arg_count=0
|
345 |
+
)
|
346 |
+
|
347 |
+
|
348 |
+
def validate_groupby_func(name: str, args, kwargs, allowed=None) -> None:
|
349 |
+
"""
|
350 |
+
'args' and 'kwargs' should be empty, except for allowed kwargs because all
|
351 |
+
of their necessary parameters are explicitly listed in the function
|
352 |
+
signature
|
353 |
+
"""
|
354 |
+
if allowed is None:
|
355 |
+
allowed = []
|
356 |
+
|
357 |
+
kwargs = set(kwargs) - set(allowed)
|
358 |
+
|
359 |
+
if len(args) + len(kwargs) > 0:
|
360 |
+
raise UnsupportedFunctionCall(
|
361 |
+
"numpy operations are not valid with groupby. "
|
362 |
+
f"Use .groupby(...).{name}() instead"
|
363 |
+
)
|
364 |
+
|
365 |
+
|
366 |
+
RESAMPLER_NUMPY_OPS = ("min", "max", "sum", "prod", "mean", "std", "var")
|
367 |
+
|
368 |
+
|
369 |
+
def validate_resampler_func(method: str, args, kwargs) -> None:
|
370 |
+
"""
|
371 |
+
'args' and 'kwargs' should be empty because all of their necessary
|
372 |
+
parameters are explicitly listed in the function signature
|
373 |
+
"""
|
374 |
+
if len(args) + len(kwargs) > 0:
|
375 |
+
if method in RESAMPLER_NUMPY_OPS:
|
376 |
+
raise UnsupportedFunctionCall(
|
377 |
+
"numpy operations are not valid with resample. "
|
378 |
+
f"Use .resample(...).{method}() instead"
|
379 |
+
)
|
380 |
+
raise TypeError("too many arguments passed in")
|
381 |
+
|
382 |
+
|
383 |
+
def validate_minmax_axis(axis: AxisInt | None, ndim: int = 1) -> None:
|
384 |
+
"""
|
385 |
+
Ensure that the axis argument passed to min, max, argmin, or argmax is zero
|
386 |
+
or None, as otherwise it will be incorrectly ignored.
|
387 |
+
|
388 |
+
Parameters
|
389 |
+
----------
|
390 |
+
axis : int or None
|
391 |
+
ndim : int, default 1
|
392 |
+
|
393 |
+
Raises
|
394 |
+
------
|
395 |
+
ValueError
|
396 |
+
"""
|
397 |
+
if axis is None:
|
398 |
+
return
|
399 |
+
if axis >= ndim or (axis < 0 and ndim + axis < 0):
|
400 |
+
raise ValueError(f"`axis` must be fewer than the number of dimensions ({ndim})")
|
401 |
+
|
402 |
+
|
403 |
+
_validation_funcs = {
|
404 |
+
"median": validate_median,
|
405 |
+
"mean": validate_mean,
|
406 |
+
"min": validate_min,
|
407 |
+
"max": validate_max,
|
408 |
+
"sum": validate_sum,
|
409 |
+
"prod": validate_prod,
|
410 |
+
}
|
411 |
+
|
412 |
+
|
413 |
+
def validate_func(fname, args, kwargs) -> None:
|
414 |
+
if fname not in _validation_funcs:
|
415 |
+
return validate_stat_func(args, kwargs, fname=fname)
|
416 |
+
|
417 |
+
validation_func = _validation_funcs[fname]
|
418 |
+
return validation_func(args, kwargs)
|
llmeval-env/lib/python3.10/site-packages/pandas/compat/pickle_compat.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Support pre-0.12 series pickle compatibility.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import contextlib
|
7 |
+
import copy
|
8 |
+
import io
|
9 |
+
import pickle as pkl
|
10 |
+
from typing import TYPE_CHECKING
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
from pandas._libs.arrays import NDArrayBacked
|
15 |
+
from pandas._libs.tslibs import BaseOffset
|
16 |
+
|
17 |
+
from pandas import Index
|
18 |
+
from pandas.core.arrays import (
|
19 |
+
DatetimeArray,
|
20 |
+
PeriodArray,
|
21 |
+
TimedeltaArray,
|
22 |
+
)
|
23 |
+
from pandas.core.internals import BlockManager
|
24 |
+
|
25 |
+
if TYPE_CHECKING:
|
26 |
+
from collections.abc import Generator
|
27 |
+
|
28 |
+
|
29 |
+
def load_reduce(self) -> None:
|
30 |
+
stack = self.stack
|
31 |
+
args = stack.pop()
|
32 |
+
func = stack[-1]
|
33 |
+
|
34 |
+
try:
|
35 |
+
stack[-1] = func(*args)
|
36 |
+
return
|
37 |
+
except TypeError as err:
|
38 |
+
# If we have a deprecated function,
|
39 |
+
# try to replace and try again.
|
40 |
+
|
41 |
+
msg = "_reconstruct: First argument must be a sub-type of ndarray"
|
42 |
+
|
43 |
+
if msg in str(err):
|
44 |
+
try:
|
45 |
+
cls = args[0]
|
46 |
+
stack[-1] = object.__new__(cls)
|
47 |
+
return
|
48 |
+
except TypeError:
|
49 |
+
pass
|
50 |
+
elif args and isinstance(args[0], type) and issubclass(args[0], BaseOffset):
|
51 |
+
# TypeError: object.__new__(Day) is not safe, use Day.__new__()
|
52 |
+
cls = args[0]
|
53 |
+
stack[-1] = cls.__new__(*args)
|
54 |
+
return
|
55 |
+
elif args and issubclass(args[0], PeriodArray):
|
56 |
+
cls = args[0]
|
57 |
+
stack[-1] = NDArrayBacked.__new__(*args)
|
58 |
+
return
|
59 |
+
|
60 |
+
raise
|
61 |
+
|
62 |
+
|
63 |
+
# If classes are moved, provide compat here.
|
64 |
+
_class_locations_map = {
|
65 |
+
("pandas.core.sparse.array", "SparseArray"): ("pandas.core.arrays", "SparseArray"),
|
66 |
+
# 15477
|
67 |
+
("pandas.core.base", "FrozenNDArray"): ("numpy", "ndarray"),
|
68 |
+
# Re-routing unpickle block logic to go through _unpickle_block instead
|
69 |
+
# for pandas <= 1.3.5
|
70 |
+
("pandas.core.internals.blocks", "new_block"): (
|
71 |
+
"pandas._libs.internals",
|
72 |
+
"_unpickle_block",
|
73 |
+
),
|
74 |
+
("pandas.core.indexes.frozen", "FrozenNDArray"): ("numpy", "ndarray"),
|
75 |
+
("pandas.core.base", "FrozenList"): ("pandas.core.indexes.frozen", "FrozenList"),
|
76 |
+
# 10890
|
77 |
+
("pandas.core.series", "TimeSeries"): ("pandas.core.series", "Series"),
|
78 |
+
("pandas.sparse.series", "SparseTimeSeries"): (
|
79 |
+
"pandas.core.sparse.series",
|
80 |
+
"SparseSeries",
|
81 |
+
),
|
82 |
+
# 12588, extensions moving
|
83 |
+
("pandas._sparse", "BlockIndex"): ("pandas._libs.sparse", "BlockIndex"),
|
84 |
+
("pandas.tslib", "Timestamp"): ("pandas._libs.tslib", "Timestamp"),
|
85 |
+
# 18543 moving period
|
86 |
+
("pandas._period", "Period"): ("pandas._libs.tslibs.period", "Period"),
|
87 |
+
("pandas._libs.period", "Period"): ("pandas._libs.tslibs.period", "Period"),
|
88 |
+
# 18014 moved __nat_unpickle from _libs.tslib-->_libs.tslibs.nattype
|
89 |
+
("pandas.tslib", "__nat_unpickle"): (
|
90 |
+
"pandas._libs.tslibs.nattype",
|
91 |
+
"__nat_unpickle",
|
92 |
+
),
|
93 |
+
("pandas._libs.tslib", "__nat_unpickle"): (
|
94 |
+
"pandas._libs.tslibs.nattype",
|
95 |
+
"__nat_unpickle",
|
96 |
+
),
|
97 |
+
# 15998 top-level dirs moving
|
98 |
+
("pandas.sparse.array", "SparseArray"): (
|
99 |
+
"pandas.core.arrays.sparse",
|
100 |
+
"SparseArray",
|
101 |
+
),
|
102 |
+
("pandas.indexes.base", "_new_Index"): ("pandas.core.indexes.base", "_new_Index"),
|
103 |
+
("pandas.indexes.base", "Index"): ("pandas.core.indexes.base", "Index"),
|
104 |
+
("pandas.indexes.numeric", "Int64Index"): (
|
105 |
+
"pandas.core.indexes.base",
|
106 |
+
"Index", # updated in 50775
|
107 |
+
),
|
108 |
+
("pandas.indexes.range", "RangeIndex"): ("pandas.core.indexes.range", "RangeIndex"),
|
109 |
+
("pandas.indexes.multi", "MultiIndex"): ("pandas.core.indexes.multi", "MultiIndex"),
|
110 |
+
("pandas.tseries.index", "_new_DatetimeIndex"): (
|
111 |
+
"pandas.core.indexes.datetimes",
|
112 |
+
"_new_DatetimeIndex",
|
113 |
+
),
|
114 |
+
("pandas.tseries.index", "DatetimeIndex"): (
|
115 |
+
"pandas.core.indexes.datetimes",
|
116 |
+
"DatetimeIndex",
|
117 |
+
),
|
118 |
+
("pandas.tseries.period", "PeriodIndex"): (
|
119 |
+
"pandas.core.indexes.period",
|
120 |
+
"PeriodIndex",
|
121 |
+
),
|
122 |
+
# 19269, arrays moving
|
123 |
+
("pandas.core.categorical", "Categorical"): ("pandas.core.arrays", "Categorical"),
|
124 |
+
# 19939, add timedeltaindex, float64index compat from 15998 move
|
125 |
+
("pandas.tseries.tdi", "TimedeltaIndex"): (
|
126 |
+
"pandas.core.indexes.timedeltas",
|
127 |
+
"TimedeltaIndex",
|
128 |
+
),
|
129 |
+
("pandas.indexes.numeric", "Float64Index"): (
|
130 |
+
"pandas.core.indexes.base",
|
131 |
+
"Index", # updated in 50775
|
132 |
+
),
|
133 |
+
# 50775, remove Int64Index, UInt64Index & Float64Index from codabase
|
134 |
+
("pandas.core.indexes.numeric", "Int64Index"): (
|
135 |
+
"pandas.core.indexes.base",
|
136 |
+
"Index",
|
137 |
+
),
|
138 |
+
("pandas.core.indexes.numeric", "UInt64Index"): (
|
139 |
+
"pandas.core.indexes.base",
|
140 |
+
"Index",
|
141 |
+
),
|
142 |
+
("pandas.core.indexes.numeric", "Float64Index"): (
|
143 |
+
"pandas.core.indexes.base",
|
144 |
+
"Index",
|
145 |
+
),
|
146 |
+
("pandas.core.arrays.sparse.dtype", "SparseDtype"): (
|
147 |
+
"pandas.core.dtypes.dtypes",
|
148 |
+
"SparseDtype",
|
149 |
+
),
|
150 |
+
}
|
151 |
+
|
152 |
+
|
153 |
+
# our Unpickler sub-class to override methods and some dispatcher
|
154 |
+
# functions for compat and uses a non-public class of the pickle module.
|
155 |
+
|
156 |
+
|
157 |
+
class Unpickler(pkl._Unpickler):
|
158 |
+
def find_class(self, module, name):
|
159 |
+
# override superclass
|
160 |
+
key = (module, name)
|
161 |
+
module, name = _class_locations_map.get(key, key)
|
162 |
+
return super().find_class(module, name)
|
163 |
+
|
164 |
+
|
165 |
+
Unpickler.dispatch = copy.copy(Unpickler.dispatch)
|
166 |
+
Unpickler.dispatch[pkl.REDUCE[0]] = load_reduce
|
167 |
+
|
168 |
+
|
169 |
+
def load_newobj(self) -> None:
|
170 |
+
args = self.stack.pop()
|
171 |
+
cls = self.stack[-1]
|
172 |
+
|
173 |
+
# compat
|
174 |
+
if issubclass(cls, Index):
|
175 |
+
obj = object.__new__(cls)
|
176 |
+
elif issubclass(cls, DatetimeArray) and not args:
|
177 |
+
arr = np.array([], dtype="M8[ns]")
|
178 |
+
obj = cls.__new__(cls, arr, arr.dtype)
|
179 |
+
elif issubclass(cls, TimedeltaArray) and not args:
|
180 |
+
arr = np.array([], dtype="m8[ns]")
|
181 |
+
obj = cls.__new__(cls, arr, arr.dtype)
|
182 |
+
elif cls is BlockManager and not args:
|
183 |
+
obj = cls.__new__(cls, (), [], False)
|
184 |
+
else:
|
185 |
+
obj = cls.__new__(cls, *args)
|
186 |
+
|
187 |
+
self.stack[-1] = obj
|
188 |
+
|
189 |
+
|
190 |
+
Unpickler.dispatch[pkl.NEWOBJ[0]] = load_newobj
|
191 |
+
|
192 |
+
|
193 |
+
def load_newobj_ex(self) -> None:
|
194 |
+
kwargs = self.stack.pop()
|
195 |
+
args = self.stack.pop()
|
196 |
+
cls = self.stack.pop()
|
197 |
+
|
198 |
+
# compat
|
199 |
+
if issubclass(cls, Index):
|
200 |
+
obj = object.__new__(cls)
|
201 |
+
else:
|
202 |
+
obj = cls.__new__(cls, *args, **kwargs)
|
203 |
+
self.append(obj)
|
204 |
+
|
205 |
+
|
206 |
+
try:
|
207 |
+
Unpickler.dispatch[pkl.NEWOBJ_EX[0]] = load_newobj_ex
|
208 |
+
except (AttributeError, KeyError):
|
209 |
+
pass
|
210 |
+
|
211 |
+
|
212 |
+
def load(fh, encoding: str | None = None, is_verbose: bool = False):
|
213 |
+
"""
|
214 |
+
Load a pickle, with a provided encoding,
|
215 |
+
|
216 |
+
Parameters
|
217 |
+
----------
|
218 |
+
fh : a filelike object
|
219 |
+
encoding : an optional encoding
|
220 |
+
is_verbose : show exception output
|
221 |
+
"""
|
222 |
+
try:
|
223 |
+
fh.seek(0)
|
224 |
+
if encoding is not None:
|
225 |
+
up = Unpickler(fh, encoding=encoding)
|
226 |
+
else:
|
227 |
+
up = Unpickler(fh)
|
228 |
+
# "Unpickler" has no attribute "is_verbose" [attr-defined]
|
229 |
+
up.is_verbose = is_verbose # type: ignore[attr-defined]
|
230 |
+
|
231 |
+
return up.load()
|
232 |
+
except (ValueError, TypeError):
|
233 |
+
raise
|
234 |
+
|
235 |
+
|
236 |
+
def loads(
|
237 |
+
bytes_object: bytes,
|
238 |
+
*,
|
239 |
+
fix_imports: bool = True,
|
240 |
+
encoding: str = "ASCII",
|
241 |
+
errors: str = "strict",
|
242 |
+
):
|
243 |
+
"""
|
244 |
+
Analogous to pickle._loads.
|
245 |
+
"""
|
246 |
+
fd = io.BytesIO(bytes_object)
|
247 |
+
return Unpickler(
|
248 |
+
fd, fix_imports=fix_imports, encoding=encoding, errors=errors
|
249 |
+
).load()
|
250 |
+
|
251 |
+
|
252 |
+
@contextlib.contextmanager
|
253 |
+
def patch_pickle() -> Generator[None, None, None]:
|
254 |
+
"""
|
255 |
+
Temporarily patch pickle to use our unpickler.
|
256 |
+
"""
|
257 |
+
orig_loads = pkl.loads
|
258 |
+
try:
|
259 |
+
setattr(pkl, "loads", loads)
|
260 |
+
yield
|
261 |
+
finally:
|
262 |
+
setattr(pkl, "loads", orig_loads)
|
llmeval-env/lib/python3.10/site-packages/pandas/compat/pyarrow.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" support pyarrow compatibility across versions """
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from pandas.util.version import Version
|
6 |
+
|
7 |
+
try:
|
8 |
+
import pyarrow as pa
|
9 |
+
|
10 |
+
_palv = Version(Version(pa.__version__).base_version)
|
11 |
+
pa_version_under10p1 = _palv < Version("10.0.1")
|
12 |
+
pa_version_under11p0 = _palv < Version("11.0.0")
|
13 |
+
pa_version_under12p0 = _palv < Version("12.0.0")
|
14 |
+
pa_version_under13p0 = _palv < Version("13.0.0")
|
15 |
+
pa_version_under14p0 = _palv < Version("14.0.0")
|
16 |
+
pa_version_under14p1 = _palv < Version("14.0.1")
|
17 |
+
pa_version_under15p0 = _palv < Version("15.0.0")
|
18 |
+
pa_version_under16p0 = _palv < Version("16.0.0")
|
19 |
+
except ImportError:
|
20 |
+
pa_version_under10p1 = True
|
21 |
+
pa_version_under11p0 = True
|
22 |
+
pa_version_under12p0 = True
|
23 |
+
pa_version_under13p0 = True
|
24 |
+
pa_version_under14p0 = True
|
25 |
+
pa_version_under14p1 = True
|
26 |
+
pa_version_under15p0 = True
|
27 |
+
pa_version_under16p0 = True
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (202 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_cat_accessor.cpython-310.pyc
ADDED
Binary file (8.64 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_dt_accessor.cpython-310.pyc
ADDED
Binary file (24.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_list_accessor.cpython-310.pyc
ADDED
Binary file (3.82 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_sparse_accessor.cpython-310.pyc
ADDED
Binary file (795 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_str_accessor.cpython-310.pyc
ADDED
Binary file (1.51 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_struct_accessor.cpython-310.pyc
ADDED
Binary file (4.05 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_cat_accessor.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
Categorical,
|
6 |
+
DataFrame,
|
7 |
+
Index,
|
8 |
+
Series,
|
9 |
+
Timestamp,
|
10 |
+
date_range,
|
11 |
+
period_range,
|
12 |
+
timedelta_range,
|
13 |
+
)
|
14 |
+
import pandas._testing as tm
|
15 |
+
from pandas.core.arrays.categorical import CategoricalAccessor
|
16 |
+
from pandas.core.indexes.accessors import Properties
|
17 |
+
|
18 |
+
|
19 |
+
class TestCatAccessor:
|
20 |
+
@pytest.mark.parametrize(
|
21 |
+
"method",
|
22 |
+
[
|
23 |
+
lambda x: x.cat.set_categories([1, 2, 3]),
|
24 |
+
lambda x: x.cat.reorder_categories([2, 3, 1], ordered=True),
|
25 |
+
lambda x: x.cat.rename_categories([1, 2, 3]),
|
26 |
+
lambda x: x.cat.remove_unused_categories(),
|
27 |
+
lambda x: x.cat.remove_categories([2]),
|
28 |
+
lambda x: x.cat.add_categories([4]),
|
29 |
+
lambda x: x.cat.as_ordered(),
|
30 |
+
lambda x: x.cat.as_unordered(),
|
31 |
+
],
|
32 |
+
)
|
33 |
+
def test_getname_categorical_accessor(self, method):
|
34 |
+
# GH#17509
|
35 |
+
ser = Series([1, 2, 3], name="A").astype("category")
|
36 |
+
expected = "A"
|
37 |
+
result = method(ser).name
|
38 |
+
assert result == expected
|
39 |
+
|
40 |
+
def test_cat_accessor(self):
|
41 |
+
ser = Series(Categorical(["a", "b", np.nan, "a"]))
|
42 |
+
tm.assert_index_equal(ser.cat.categories, Index(["a", "b"]))
|
43 |
+
assert not ser.cat.ordered, False
|
44 |
+
|
45 |
+
exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"])
|
46 |
+
|
47 |
+
res = ser.cat.set_categories(["b", "a"])
|
48 |
+
tm.assert_categorical_equal(res.values, exp)
|
49 |
+
|
50 |
+
ser[:] = "a"
|
51 |
+
ser = ser.cat.remove_unused_categories()
|
52 |
+
tm.assert_index_equal(ser.cat.categories, Index(["a"]))
|
53 |
+
|
54 |
+
def test_cat_accessor_api(self):
|
55 |
+
# GH#9322
|
56 |
+
|
57 |
+
assert Series.cat is CategoricalAccessor
|
58 |
+
ser = Series(list("aabbcde")).astype("category")
|
59 |
+
assert isinstance(ser.cat, CategoricalAccessor)
|
60 |
+
|
61 |
+
invalid = Series([1])
|
62 |
+
with pytest.raises(AttributeError, match="only use .cat accessor"):
|
63 |
+
invalid.cat
|
64 |
+
assert not hasattr(invalid, "cat")
|
65 |
+
|
66 |
+
def test_cat_accessor_no_new_attributes(self):
|
67 |
+
# https://github.com/pandas-dev/pandas/issues/10673
|
68 |
+
cat = Series(list("aabbcde")).astype("category")
|
69 |
+
with pytest.raises(AttributeError, match="You cannot add any new attribute"):
|
70 |
+
cat.cat.xlabel = "a"
|
71 |
+
|
72 |
+
def test_categorical_delegations(self):
|
73 |
+
# invalid accessor
|
74 |
+
msg = r"Can only use \.cat accessor with a 'category' dtype"
|
75 |
+
with pytest.raises(AttributeError, match=msg):
|
76 |
+
Series([1, 2, 3]).cat
|
77 |
+
with pytest.raises(AttributeError, match=msg):
|
78 |
+
Series([1, 2, 3]).cat()
|
79 |
+
with pytest.raises(AttributeError, match=msg):
|
80 |
+
Series(["a", "b", "c"]).cat
|
81 |
+
with pytest.raises(AttributeError, match=msg):
|
82 |
+
Series(np.arange(5.0)).cat
|
83 |
+
with pytest.raises(AttributeError, match=msg):
|
84 |
+
Series([Timestamp("20130101")]).cat
|
85 |
+
|
86 |
+
# Series should delegate calls to '.categories', '.codes', '.ordered'
|
87 |
+
# and the methods '.set_categories()' 'drop_unused_categories()' to the
|
88 |
+
# categorical
|
89 |
+
ser = Series(Categorical(["a", "b", "c", "a"], ordered=True))
|
90 |
+
exp_categories = Index(["a", "b", "c"])
|
91 |
+
tm.assert_index_equal(ser.cat.categories, exp_categories)
|
92 |
+
ser = ser.cat.rename_categories([1, 2, 3])
|
93 |
+
exp_categories = Index([1, 2, 3])
|
94 |
+
tm.assert_index_equal(ser.cat.categories, exp_categories)
|
95 |
+
|
96 |
+
exp_codes = Series([0, 1, 2, 0], dtype="int8")
|
97 |
+
tm.assert_series_equal(ser.cat.codes, exp_codes)
|
98 |
+
|
99 |
+
assert ser.cat.ordered
|
100 |
+
ser = ser.cat.as_unordered()
|
101 |
+
assert not ser.cat.ordered
|
102 |
+
|
103 |
+
ser = ser.cat.as_ordered()
|
104 |
+
assert ser.cat.ordered
|
105 |
+
|
106 |
+
# reorder
|
107 |
+
ser = Series(Categorical(["a", "b", "c", "a"], ordered=True))
|
108 |
+
exp_categories = Index(["c", "b", "a"])
|
109 |
+
exp_values = np.array(["a", "b", "c", "a"], dtype=np.object_)
|
110 |
+
ser = ser.cat.set_categories(["c", "b", "a"])
|
111 |
+
tm.assert_index_equal(ser.cat.categories, exp_categories)
|
112 |
+
tm.assert_numpy_array_equal(ser.values.__array__(), exp_values)
|
113 |
+
tm.assert_numpy_array_equal(ser.__array__(), exp_values)
|
114 |
+
|
115 |
+
# remove unused categories
|
116 |
+
ser = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c"]))
|
117 |
+
exp_categories = Index(["a", "b"])
|
118 |
+
exp_values = np.array(["a", "b", "b", "a"], dtype=np.object_)
|
119 |
+
ser = ser.cat.remove_unused_categories()
|
120 |
+
tm.assert_index_equal(ser.cat.categories, exp_categories)
|
121 |
+
tm.assert_numpy_array_equal(ser.values.__array__(), exp_values)
|
122 |
+
tm.assert_numpy_array_equal(ser.__array__(), exp_values)
|
123 |
+
|
124 |
+
# This method is likely to be confused, so test that it raises an error
|
125 |
+
# on wrong inputs:
|
126 |
+
msg = "'Series' object has no attribute 'set_categories'"
|
127 |
+
with pytest.raises(AttributeError, match=msg):
|
128 |
+
ser.set_categories([4, 3, 2, 1])
|
129 |
+
|
130 |
+
# right: ser.cat.set_categories([4,3,2,1])
|
131 |
+
|
132 |
+
# GH#18862 (let Series.cat.rename_categories take callables)
|
133 |
+
ser = Series(Categorical(["a", "b", "c", "a"], ordered=True))
|
134 |
+
result = ser.cat.rename_categories(lambda x: x.upper())
|
135 |
+
expected = Series(
|
136 |
+
Categorical(["A", "B", "C", "A"], categories=["A", "B", "C"], ordered=True)
|
137 |
+
)
|
138 |
+
tm.assert_series_equal(result, expected)
|
139 |
+
|
140 |
+
@pytest.mark.parametrize(
|
141 |
+
"idx",
|
142 |
+
[
|
143 |
+
date_range("1/1/2015", periods=5),
|
144 |
+
date_range("1/1/2015", periods=5, tz="MET"),
|
145 |
+
period_range("1/1/2015", freq="D", periods=5),
|
146 |
+
timedelta_range("1 days", "10 days"),
|
147 |
+
],
|
148 |
+
)
|
149 |
+
def test_dt_accessor_api_for_categorical(self, idx):
|
150 |
+
# https://github.com/pandas-dev/pandas/issues/10661
|
151 |
+
|
152 |
+
ser = Series(idx)
|
153 |
+
cat = ser.astype("category")
|
154 |
+
|
155 |
+
# only testing field (like .day)
|
156 |
+
# and bool (is_month_start)
|
157 |
+
attr_names = type(ser._values)._datetimelike_ops
|
158 |
+
|
159 |
+
assert isinstance(cat.dt, Properties)
|
160 |
+
|
161 |
+
special_func_defs = [
|
162 |
+
("strftime", ("%Y-%m-%d",), {}),
|
163 |
+
("round", ("D",), {}),
|
164 |
+
("floor", ("D",), {}),
|
165 |
+
("ceil", ("D",), {}),
|
166 |
+
("asfreq", ("D",), {}),
|
167 |
+
("as_unit", ("s"), {}),
|
168 |
+
]
|
169 |
+
if idx.dtype == "M8[ns]":
|
170 |
+
# exclude dt64tz since that is already localized and would raise
|
171 |
+
tup = ("tz_localize", ("UTC",), {})
|
172 |
+
special_func_defs.append(tup)
|
173 |
+
elif idx.dtype.kind == "M":
|
174 |
+
# exclude dt64 since that is not localized so would raise
|
175 |
+
tup = ("tz_convert", ("EST",), {})
|
176 |
+
special_func_defs.append(tup)
|
177 |
+
|
178 |
+
_special_func_names = [f[0] for f in special_func_defs]
|
179 |
+
|
180 |
+
_ignore_names = ["components", "tz_localize", "tz_convert"]
|
181 |
+
|
182 |
+
func_names = [
|
183 |
+
fname
|
184 |
+
for fname in dir(ser.dt)
|
185 |
+
if not (
|
186 |
+
fname.startswith("_")
|
187 |
+
or fname in attr_names
|
188 |
+
or fname in _special_func_names
|
189 |
+
or fname in _ignore_names
|
190 |
+
)
|
191 |
+
]
|
192 |
+
|
193 |
+
func_defs = [(fname, (), {}) for fname in func_names]
|
194 |
+
func_defs.extend(
|
195 |
+
f_def for f_def in special_func_defs if f_def[0] in dir(ser.dt)
|
196 |
+
)
|
197 |
+
|
198 |
+
for func, args, kwargs in func_defs:
|
199 |
+
warn_cls = []
|
200 |
+
if func == "to_period" and getattr(idx, "tz", None) is not None:
|
201 |
+
# dropping TZ
|
202 |
+
warn_cls.append(UserWarning)
|
203 |
+
if func == "to_pydatetime":
|
204 |
+
# deprecated to return Index[object]
|
205 |
+
warn_cls.append(FutureWarning)
|
206 |
+
if warn_cls:
|
207 |
+
warn_cls = tuple(warn_cls)
|
208 |
+
else:
|
209 |
+
warn_cls = None
|
210 |
+
with tm.assert_produces_warning(warn_cls):
|
211 |
+
res = getattr(cat.dt, func)(*args, **kwargs)
|
212 |
+
exp = getattr(ser.dt, func)(*args, **kwargs)
|
213 |
+
|
214 |
+
tm.assert_equal(res, exp)
|
215 |
+
|
216 |
+
for attr in attr_names:
|
217 |
+
res = getattr(cat.dt, attr)
|
218 |
+
exp = getattr(ser.dt, attr)
|
219 |
+
|
220 |
+
tm.assert_equal(res, exp)
|
221 |
+
|
222 |
+
def test_dt_accessor_api_for_categorical_invalid(self):
|
223 |
+
invalid = Series([1, 2, 3]).astype("category")
|
224 |
+
msg = "Can only use .dt accessor with datetimelike"
|
225 |
+
|
226 |
+
with pytest.raises(AttributeError, match=msg):
|
227 |
+
invalid.dt
|
228 |
+
assert not hasattr(invalid, "str")
|
229 |
+
|
230 |
+
def test_set_categories_setitem(self):
|
231 |
+
# GH#43334
|
232 |
+
|
233 |
+
df = DataFrame({"Survived": [1, 0, 1], "Sex": [0, 1, 1]}, dtype="category")
|
234 |
+
|
235 |
+
df["Survived"] = df["Survived"].cat.rename_categories(["No", "Yes"])
|
236 |
+
df["Sex"] = df["Sex"].cat.rename_categories(["female", "male"])
|
237 |
+
|
238 |
+
# values should not be coerced to NaN
|
239 |
+
assert list(df["Sex"]) == ["female", "male", "male"]
|
240 |
+
assert list(df["Survived"]) == ["Yes", "No", "Yes"]
|
241 |
+
|
242 |
+
df["Sex"] = Categorical(df["Sex"], categories=["female", "male"], ordered=False)
|
243 |
+
df["Survived"] = Categorical(
|
244 |
+
df["Survived"], categories=["No", "Yes"], ordered=False
|
245 |
+
)
|
246 |
+
|
247 |
+
# values should not be coerced to NaN
|
248 |
+
assert list(df["Sex"]) == ["female", "male", "male"]
|
249 |
+
assert list(df["Survived"]) == ["Yes", "No", "Yes"]
|
250 |
+
|
251 |
+
def test_categorical_of_booleans_is_boolean(self):
|
252 |
+
# https://github.com/pandas-dev/pandas/issues/46313
|
253 |
+
df = DataFrame(
|
254 |
+
{"int_cat": [1, 2, 3], "bool_cat": [True, False, False]}, dtype="category"
|
255 |
+
)
|
256 |
+
value = df["bool_cat"].cat.categories.dtype
|
257 |
+
expected = np.dtype(np.bool_)
|
258 |
+
assert value is expected
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_dt_accessor.py
ADDED
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import calendar
|
2 |
+
from datetime import (
|
3 |
+
date,
|
4 |
+
datetime,
|
5 |
+
time,
|
6 |
+
)
|
7 |
+
import locale
|
8 |
+
import unicodedata
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import pytest
|
12 |
+
import pytz
|
13 |
+
|
14 |
+
from pandas._libs.tslibs.timezones import maybe_get_tz
|
15 |
+
from pandas.errors import SettingWithCopyError
|
16 |
+
|
17 |
+
from pandas.core.dtypes.common import (
|
18 |
+
is_integer_dtype,
|
19 |
+
is_list_like,
|
20 |
+
)
|
21 |
+
|
22 |
+
import pandas as pd
|
23 |
+
from pandas import (
|
24 |
+
DataFrame,
|
25 |
+
DatetimeIndex,
|
26 |
+
Index,
|
27 |
+
Period,
|
28 |
+
PeriodIndex,
|
29 |
+
Series,
|
30 |
+
TimedeltaIndex,
|
31 |
+
date_range,
|
32 |
+
period_range,
|
33 |
+
timedelta_range,
|
34 |
+
)
|
35 |
+
import pandas._testing as tm
|
36 |
+
from pandas.core.arrays import (
|
37 |
+
DatetimeArray,
|
38 |
+
PeriodArray,
|
39 |
+
TimedeltaArray,
|
40 |
+
)
|
41 |
+
|
42 |
+
ok_for_period = PeriodArray._datetimelike_ops
|
43 |
+
ok_for_period_methods = ["strftime", "to_timestamp", "asfreq"]
|
44 |
+
ok_for_dt = DatetimeArray._datetimelike_ops
|
45 |
+
ok_for_dt_methods = [
|
46 |
+
"to_period",
|
47 |
+
"to_pydatetime",
|
48 |
+
"tz_localize",
|
49 |
+
"tz_convert",
|
50 |
+
"normalize",
|
51 |
+
"strftime",
|
52 |
+
"round",
|
53 |
+
"floor",
|
54 |
+
"ceil",
|
55 |
+
"day_name",
|
56 |
+
"month_name",
|
57 |
+
"isocalendar",
|
58 |
+
"as_unit",
|
59 |
+
]
|
60 |
+
ok_for_td = TimedeltaArray._datetimelike_ops
|
61 |
+
ok_for_td_methods = [
|
62 |
+
"components",
|
63 |
+
"to_pytimedelta",
|
64 |
+
"total_seconds",
|
65 |
+
"round",
|
66 |
+
"floor",
|
67 |
+
"ceil",
|
68 |
+
"as_unit",
|
69 |
+
]
|
70 |
+
|
71 |
+
|
72 |
+
def get_dir(ser):
|
73 |
+
# check limited display api
|
74 |
+
results = [r for r in ser.dt.__dir__() if not r.startswith("_")]
|
75 |
+
return sorted(set(results))
|
76 |
+
|
77 |
+
|
78 |
+
class TestSeriesDatetimeValues:
|
79 |
+
def _compare(self, ser, name):
|
80 |
+
# GH 7207, 11128
|
81 |
+
# test .dt namespace accessor
|
82 |
+
|
83 |
+
def get_expected(ser, prop):
|
84 |
+
result = getattr(Index(ser._values), prop)
|
85 |
+
if isinstance(result, np.ndarray):
|
86 |
+
if is_integer_dtype(result):
|
87 |
+
result = result.astype("int64")
|
88 |
+
elif not is_list_like(result) or isinstance(result, DataFrame):
|
89 |
+
return result
|
90 |
+
return Series(result, index=ser.index, name=ser.name)
|
91 |
+
|
92 |
+
left = getattr(ser.dt, name)
|
93 |
+
right = get_expected(ser, name)
|
94 |
+
if not (is_list_like(left) and is_list_like(right)):
|
95 |
+
assert left == right
|
96 |
+
elif isinstance(left, DataFrame):
|
97 |
+
tm.assert_frame_equal(left, right)
|
98 |
+
else:
|
99 |
+
tm.assert_series_equal(left, right)
|
100 |
+
|
101 |
+
@pytest.mark.parametrize("freq", ["D", "s", "ms"])
|
102 |
+
def test_dt_namespace_accessor_datetime64(self, freq):
|
103 |
+
# GH#7207, GH#11128
|
104 |
+
# test .dt namespace accessor
|
105 |
+
|
106 |
+
# datetimeindex
|
107 |
+
dti = date_range("20130101", periods=5, freq=freq)
|
108 |
+
ser = Series(dti, name="xxx")
|
109 |
+
|
110 |
+
for prop in ok_for_dt:
|
111 |
+
# we test freq below
|
112 |
+
if prop != "freq":
|
113 |
+
self._compare(ser, prop)
|
114 |
+
|
115 |
+
for prop in ok_for_dt_methods:
|
116 |
+
getattr(ser.dt, prop)
|
117 |
+
|
118 |
+
msg = "The behavior of DatetimeProperties.to_pydatetime is deprecated"
|
119 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
120 |
+
result = ser.dt.to_pydatetime()
|
121 |
+
assert isinstance(result, np.ndarray)
|
122 |
+
assert result.dtype == object
|
123 |
+
|
124 |
+
result = ser.dt.tz_localize("US/Eastern")
|
125 |
+
exp_values = DatetimeIndex(ser.values).tz_localize("US/Eastern")
|
126 |
+
expected = Series(exp_values, index=ser.index, name="xxx")
|
127 |
+
tm.assert_series_equal(result, expected)
|
128 |
+
|
129 |
+
tz_result = result.dt.tz
|
130 |
+
assert str(tz_result) == "US/Eastern"
|
131 |
+
freq_result = ser.dt.freq
|
132 |
+
assert freq_result == DatetimeIndex(ser.values, freq="infer").freq
|
133 |
+
|
134 |
+
# let's localize, then convert
|
135 |
+
result = ser.dt.tz_localize("UTC").dt.tz_convert("US/Eastern")
|
136 |
+
exp_values = (
|
137 |
+
DatetimeIndex(ser.values).tz_localize("UTC").tz_convert("US/Eastern")
|
138 |
+
)
|
139 |
+
expected = Series(exp_values, index=ser.index, name="xxx")
|
140 |
+
tm.assert_series_equal(result, expected)
|
141 |
+
|
142 |
+
def test_dt_namespace_accessor_datetime64tz(self):
|
143 |
+
# GH#7207, GH#11128
|
144 |
+
# test .dt namespace accessor
|
145 |
+
|
146 |
+
# datetimeindex with tz
|
147 |
+
dti = date_range("20130101", periods=5, tz="US/Eastern")
|
148 |
+
ser = Series(dti, name="xxx")
|
149 |
+
for prop in ok_for_dt:
|
150 |
+
# we test freq below
|
151 |
+
if prop != "freq":
|
152 |
+
self._compare(ser, prop)
|
153 |
+
|
154 |
+
for prop in ok_for_dt_methods:
|
155 |
+
getattr(ser.dt, prop)
|
156 |
+
|
157 |
+
msg = "The behavior of DatetimeProperties.to_pydatetime is deprecated"
|
158 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
159 |
+
result = ser.dt.to_pydatetime()
|
160 |
+
assert isinstance(result, np.ndarray)
|
161 |
+
assert result.dtype == object
|
162 |
+
|
163 |
+
result = ser.dt.tz_convert("CET")
|
164 |
+
expected = Series(ser._values.tz_convert("CET"), index=ser.index, name="xxx")
|
165 |
+
tm.assert_series_equal(result, expected)
|
166 |
+
|
167 |
+
tz_result = result.dt.tz
|
168 |
+
assert str(tz_result) == "CET"
|
169 |
+
freq_result = ser.dt.freq
|
170 |
+
assert freq_result == DatetimeIndex(ser.values, freq="infer").freq
|
171 |
+
|
172 |
+
def test_dt_namespace_accessor_timedelta(self):
|
173 |
+
# GH#7207, GH#11128
|
174 |
+
# test .dt namespace accessor
|
175 |
+
|
176 |
+
# timedelta index
|
177 |
+
cases = [
|
178 |
+
Series(
|
179 |
+
timedelta_range("1 day", periods=5), index=list("abcde"), name="xxx"
|
180 |
+
),
|
181 |
+
Series(timedelta_range("1 day 01:23:45", periods=5, freq="s"), name="xxx"),
|
182 |
+
Series(
|
183 |
+
timedelta_range("2 days 01:23:45.012345", periods=5, freq="ms"),
|
184 |
+
name="xxx",
|
185 |
+
),
|
186 |
+
]
|
187 |
+
for ser in cases:
|
188 |
+
for prop in ok_for_td:
|
189 |
+
# we test freq below
|
190 |
+
if prop != "freq":
|
191 |
+
self._compare(ser, prop)
|
192 |
+
|
193 |
+
for prop in ok_for_td_methods:
|
194 |
+
getattr(ser.dt, prop)
|
195 |
+
|
196 |
+
result = ser.dt.components
|
197 |
+
assert isinstance(result, DataFrame)
|
198 |
+
tm.assert_index_equal(result.index, ser.index)
|
199 |
+
|
200 |
+
result = ser.dt.to_pytimedelta()
|
201 |
+
assert isinstance(result, np.ndarray)
|
202 |
+
assert result.dtype == object
|
203 |
+
|
204 |
+
result = ser.dt.total_seconds()
|
205 |
+
assert isinstance(result, Series)
|
206 |
+
assert result.dtype == "float64"
|
207 |
+
|
208 |
+
freq_result = ser.dt.freq
|
209 |
+
assert freq_result == TimedeltaIndex(ser.values, freq="infer").freq
|
210 |
+
|
211 |
+
def test_dt_namespace_accessor_period(self):
|
212 |
+
# GH#7207, GH#11128
|
213 |
+
# test .dt namespace accessor
|
214 |
+
|
215 |
+
# periodindex
|
216 |
+
pi = period_range("20130101", periods=5, freq="D")
|
217 |
+
ser = Series(pi, name="xxx")
|
218 |
+
|
219 |
+
for prop in ok_for_period:
|
220 |
+
# we test freq below
|
221 |
+
if prop != "freq":
|
222 |
+
self._compare(ser, prop)
|
223 |
+
|
224 |
+
for prop in ok_for_period_methods:
|
225 |
+
getattr(ser.dt, prop)
|
226 |
+
|
227 |
+
freq_result = ser.dt.freq
|
228 |
+
assert freq_result == PeriodIndex(ser.values).freq
|
229 |
+
|
230 |
+
def test_dt_namespace_accessor_index_and_values(self):
|
231 |
+
# both
|
232 |
+
index = date_range("20130101", periods=3, freq="D")
|
233 |
+
dti = date_range("20140204", periods=3, freq="s")
|
234 |
+
ser = Series(dti, index=index, name="xxx")
|
235 |
+
exp = Series(
|
236 |
+
np.array([2014, 2014, 2014], dtype="int32"), index=index, name="xxx"
|
237 |
+
)
|
238 |
+
tm.assert_series_equal(ser.dt.year, exp)
|
239 |
+
|
240 |
+
exp = Series(np.array([2, 2, 2], dtype="int32"), index=index, name="xxx")
|
241 |
+
tm.assert_series_equal(ser.dt.month, exp)
|
242 |
+
|
243 |
+
exp = Series(np.array([0, 1, 2], dtype="int32"), index=index, name="xxx")
|
244 |
+
tm.assert_series_equal(ser.dt.second, exp)
|
245 |
+
|
246 |
+
exp = Series([ser.iloc[0]] * 3, index=index, name="xxx")
|
247 |
+
tm.assert_series_equal(ser.dt.normalize(), exp)
|
248 |
+
|
249 |
+
def test_dt_accessor_limited_display_api(self):
|
250 |
+
# tznaive
|
251 |
+
ser = Series(date_range("20130101", periods=5, freq="D"), name="xxx")
|
252 |
+
results = get_dir(ser)
|
253 |
+
tm.assert_almost_equal(results, sorted(set(ok_for_dt + ok_for_dt_methods)))
|
254 |
+
|
255 |
+
# tzaware
|
256 |
+
ser = Series(date_range("2015-01-01", "2016-01-01", freq="min"), name="xxx")
|
257 |
+
ser = ser.dt.tz_localize("UTC").dt.tz_convert("America/Chicago")
|
258 |
+
results = get_dir(ser)
|
259 |
+
tm.assert_almost_equal(results, sorted(set(ok_for_dt + ok_for_dt_methods)))
|
260 |
+
|
261 |
+
# Period
|
262 |
+
idx = period_range("20130101", periods=5, freq="D", name="xxx").astype(object)
|
263 |
+
with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
|
264 |
+
ser = Series(idx)
|
265 |
+
results = get_dir(ser)
|
266 |
+
tm.assert_almost_equal(
|
267 |
+
results, sorted(set(ok_for_period + ok_for_period_methods))
|
268 |
+
)
|
269 |
+
|
270 |
+
def test_dt_accessor_ambiguous_freq_conversions(self):
|
271 |
+
# GH#11295
|
272 |
+
# ambiguous time error on the conversions
|
273 |
+
ser = Series(date_range("2015-01-01", "2016-01-01", freq="min"), name="xxx")
|
274 |
+
ser = ser.dt.tz_localize("UTC").dt.tz_convert("America/Chicago")
|
275 |
+
|
276 |
+
exp_values = date_range(
|
277 |
+
"2015-01-01", "2016-01-01", freq="min", tz="UTC"
|
278 |
+
).tz_convert("America/Chicago")
|
279 |
+
# freq not preserved by tz_localize above
|
280 |
+
exp_values = exp_values._with_freq(None)
|
281 |
+
expected = Series(exp_values, name="xxx")
|
282 |
+
tm.assert_series_equal(ser, expected)
|
283 |
+
|
284 |
+
def test_dt_accessor_not_writeable(self, using_copy_on_write, warn_copy_on_write):
|
285 |
+
# no setting allowed
|
286 |
+
ser = Series(date_range("20130101", periods=5, freq="D"), name="xxx")
|
287 |
+
with pytest.raises(ValueError, match="modifications"):
|
288 |
+
ser.dt.hour = 5
|
289 |
+
|
290 |
+
# trying to set a copy
|
291 |
+
msg = "modifications to a property of a datetimelike.+not supported"
|
292 |
+
with pd.option_context("chained_assignment", "raise"):
|
293 |
+
if using_copy_on_write:
|
294 |
+
with tm.raises_chained_assignment_error():
|
295 |
+
ser.dt.hour[0] = 5
|
296 |
+
elif warn_copy_on_write:
|
297 |
+
with tm.assert_produces_warning(
|
298 |
+
FutureWarning, match="ChainedAssignmentError"
|
299 |
+
):
|
300 |
+
ser.dt.hour[0] = 5
|
301 |
+
else:
|
302 |
+
with pytest.raises(SettingWithCopyError, match=msg):
|
303 |
+
ser.dt.hour[0] = 5
|
304 |
+
|
305 |
+
@pytest.mark.parametrize(
|
306 |
+
"method, dates",
|
307 |
+
[
|
308 |
+
["round", ["2012-01-02", "2012-01-02", "2012-01-01"]],
|
309 |
+
["floor", ["2012-01-01", "2012-01-01", "2012-01-01"]],
|
310 |
+
["ceil", ["2012-01-02", "2012-01-02", "2012-01-02"]],
|
311 |
+
],
|
312 |
+
)
|
313 |
+
def test_dt_round(self, method, dates):
|
314 |
+
# round
|
315 |
+
ser = Series(
|
316 |
+
pd.to_datetime(
|
317 |
+
["2012-01-01 13:00:00", "2012-01-01 12:01:00", "2012-01-01 08:00:00"]
|
318 |
+
),
|
319 |
+
name="xxx",
|
320 |
+
)
|
321 |
+
result = getattr(ser.dt, method)("D")
|
322 |
+
expected = Series(pd.to_datetime(dates), name="xxx")
|
323 |
+
tm.assert_series_equal(result, expected)
|
324 |
+
|
325 |
+
def test_dt_round_tz(self):
|
326 |
+
ser = Series(
|
327 |
+
pd.to_datetime(
|
328 |
+
["2012-01-01 13:00:00", "2012-01-01 12:01:00", "2012-01-01 08:00:00"]
|
329 |
+
),
|
330 |
+
name="xxx",
|
331 |
+
)
|
332 |
+
result = ser.dt.tz_localize("UTC").dt.tz_convert("US/Eastern").dt.round("D")
|
333 |
+
|
334 |
+
exp_values = pd.to_datetime(
|
335 |
+
["2012-01-01", "2012-01-01", "2012-01-01"]
|
336 |
+
).tz_localize("US/Eastern")
|
337 |
+
expected = Series(exp_values, name="xxx")
|
338 |
+
tm.assert_series_equal(result, expected)
|
339 |
+
|
340 |
+
@pytest.mark.parametrize("method", ["ceil", "round", "floor"])
|
341 |
+
def test_dt_round_tz_ambiguous(self, method):
|
342 |
+
# GH 18946 round near "fall back" DST
|
343 |
+
df1 = DataFrame(
|
344 |
+
[
|
345 |
+
pd.to_datetime("2017-10-29 02:00:00+02:00", utc=True),
|
346 |
+
pd.to_datetime("2017-10-29 02:00:00+01:00", utc=True),
|
347 |
+
pd.to_datetime("2017-10-29 03:00:00+01:00", utc=True),
|
348 |
+
],
|
349 |
+
columns=["date"],
|
350 |
+
)
|
351 |
+
df1["date"] = df1["date"].dt.tz_convert("Europe/Madrid")
|
352 |
+
# infer
|
353 |
+
result = getattr(df1.date.dt, method)("h", ambiguous="infer")
|
354 |
+
expected = df1["date"]
|
355 |
+
tm.assert_series_equal(result, expected)
|
356 |
+
|
357 |
+
# bool-array
|
358 |
+
result = getattr(df1.date.dt, method)("h", ambiguous=[True, False, False])
|
359 |
+
tm.assert_series_equal(result, expected)
|
360 |
+
|
361 |
+
# NaT
|
362 |
+
result = getattr(df1.date.dt, method)("h", ambiguous="NaT")
|
363 |
+
expected = df1["date"].copy()
|
364 |
+
expected.iloc[0:2] = pd.NaT
|
365 |
+
tm.assert_series_equal(result, expected)
|
366 |
+
|
367 |
+
# raise
|
368 |
+
with tm.external_error_raised(pytz.AmbiguousTimeError):
|
369 |
+
getattr(df1.date.dt, method)("h", ambiguous="raise")
|
370 |
+
|
371 |
+
@pytest.mark.parametrize(
|
372 |
+
"method, ts_str, freq",
|
373 |
+
[
|
374 |
+
["ceil", "2018-03-11 01:59:00-0600", "5min"],
|
375 |
+
["round", "2018-03-11 01:59:00-0600", "5min"],
|
376 |
+
["floor", "2018-03-11 03:01:00-0500", "2h"],
|
377 |
+
],
|
378 |
+
)
|
379 |
+
def test_dt_round_tz_nonexistent(self, method, ts_str, freq):
|
380 |
+
# GH 23324 round near "spring forward" DST
|
381 |
+
ser = Series([pd.Timestamp(ts_str, tz="America/Chicago")])
|
382 |
+
result = getattr(ser.dt, method)(freq, nonexistent="shift_forward")
|
383 |
+
expected = Series([pd.Timestamp("2018-03-11 03:00:00", tz="America/Chicago")])
|
384 |
+
tm.assert_series_equal(result, expected)
|
385 |
+
|
386 |
+
result = getattr(ser.dt, method)(freq, nonexistent="NaT")
|
387 |
+
expected = Series([pd.NaT]).dt.tz_localize(result.dt.tz)
|
388 |
+
tm.assert_series_equal(result, expected)
|
389 |
+
|
390 |
+
with pytest.raises(pytz.NonExistentTimeError, match="2018-03-11 02:00:00"):
|
391 |
+
getattr(ser.dt, method)(freq, nonexistent="raise")
|
392 |
+
|
393 |
+
@pytest.mark.parametrize("freq", ["ns", "us", "1000us"])
|
394 |
+
def test_dt_round_nonnano_higher_resolution_no_op(self, freq):
|
395 |
+
# GH 52761
|
396 |
+
ser = Series(
|
397 |
+
["2020-05-31 08:00:00", "2000-12-31 04:00:05", "1800-03-14 07:30:20"],
|
398 |
+
dtype="datetime64[ms]",
|
399 |
+
)
|
400 |
+
expected = ser.copy()
|
401 |
+
result = ser.dt.round(freq)
|
402 |
+
tm.assert_series_equal(result, expected)
|
403 |
+
|
404 |
+
assert not np.shares_memory(ser.array._ndarray, result.array._ndarray)
|
405 |
+
|
406 |
+
def test_dt_namespace_accessor_categorical(self):
|
407 |
+
# GH 19468
|
408 |
+
dti = DatetimeIndex(["20171111", "20181212"]).repeat(2)
|
409 |
+
ser = Series(pd.Categorical(dti), name="foo")
|
410 |
+
result = ser.dt.year
|
411 |
+
expected = Series([2017, 2017, 2018, 2018], dtype="int32", name="foo")
|
412 |
+
tm.assert_series_equal(result, expected)
|
413 |
+
|
414 |
+
def test_dt_tz_localize_categorical(self, tz_aware_fixture):
|
415 |
+
# GH 27952
|
416 |
+
tz = tz_aware_fixture
|
417 |
+
datetimes = Series(
|
418 |
+
["2019-01-01", "2019-01-01", "2019-01-02"], dtype="datetime64[ns]"
|
419 |
+
)
|
420 |
+
categorical = datetimes.astype("category")
|
421 |
+
result = categorical.dt.tz_localize(tz)
|
422 |
+
expected = datetimes.dt.tz_localize(tz)
|
423 |
+
tm.assert_series_equal(result, expected)
|
424 |
+
|
425 |
+
def test_dt_tz_convert_categorical(self, tz_aware_fixture):
|
426 |
+
# GH 27952
|
427 |
+
tz = tz_aware_fixture
|
428 |
+
datetimes = Series(
|
429 |
+
["2019-01-01", "2019-01-01", "2019-01-02"], dtype="datetime64[ns, MET]"
|
430 |
+
)
|
431 |
+
categorical = datetimes.astype("category")
|
432 |
+
result = categorical.dt.tz_convert(tz)
|
433 |
+
expected = datetimes.dt.tz_convert(tz)
|
434 |
+
tm.assert_series_equal(result, expected)
|
435 |
+
|
436 |
+
@pytest.mark.parametrize("accessor", ["year", "month", "day"])
|
437 |
+
def test_dt_other_accessors_categorical(self, accessor):
|
438 |
+
# GH 27952
|
439 |
+
datetimes = Series(
|
440 |
+
["2018-01-01", "2018-01-01", "2019-01-02"], dtype="datetime64[ns]"
|
441 |
+
)
|
442 |
+
categorical = datetimes.astype("category")
|
443 |
+
result = getattr(categorical.dt, accessor)
|
444 |
+
expected = getattr(datetimes.dt, accessor)
|
445 |
+
tm.assert_series_equal(result, expected)
|
446 |
+
|
447 |
+
def test_dt_accessor_no_new_attributes(self):
|
448 |
+
# https://github.com/pandas-dev/pandas/issues/10673
|
449 |
+
ser = Series(date_range("20130101", periods=5, freq="D"))
|
450 |
+
with pytest.raises(AttributeError, match="You cannot add any new attribute"):
|
451 |
+
ser.dt.xlabel = "a"
|
452 |
+
|
453 |
+
# error: Unsupported operand types for + ("List[None]" and "List[str]")
|
454 |
+
@pytest.mark.parametrize(
|
455 |
+
"time_locale", [None] + tm.get_locales() # type: ignore[operator]
|
456 |
+
)
|
457 |
+
def test_dt_accessor_datetime_name_accessors(self, time_locale):
|
458 |
+
# Test Monday -> Sunday and January -> December, in that sequence
|
459 |
+
if time_locale is None:
|
460 |
+
# If the time_locale is None, day-name and month_name should
|
461 |
+
# return the english attributes
|
462 |
+
expected_days = [
|
463 |
+
"Monday",
|
464 |
+
"Tuesday",
|
465 |
+
"Wednesday",
|
466 |
+
"Thursday",
|
467 |
+
"Friday",
|
468 |
+
"Saturday",
|
469 |
+
"Sunday",
|
470 |
+
]
|
471 |
+
expected_months = [
|
472 |
+
"January",
|
473 |
+
"February",
|
474 |
+
"March",
|
475 |
+
"April",
|
476 |
+
"May",
|
477 |
+
"June",
|
478 |
+
"July",
|
479 |
+
"August",
|
480 |
+
"September",
|
481 |
+
"October",
|
482 |
+
"November",
|
483 |
+
"December",
|
484 |
+
]
|
485 |
+
else:
|
486 |
+
with tm.set_locale(time_locale, locale.LC_TIME):
|
487 |
+
expected_days = calendar.day_name[:]
|
488 |
+
expected_months = calendar.month_name[1:]
|
489 |
+
|
490 |
+
ser = Series(date_range(freq="D", start=datetime(1998, 1, 1), periods=365))
|
491 |
+
english_days = [
|
492 |
+
"Monday",
|
493 |
+
"Tuesday",
|
494 |
+
"Wednesday",
|
495 |
+
"Thursday",
|
496 |
+
"Friday",
|
497 |
+
"Saturday",
|
498 |
+
"Sunday",
|
499 |
+
]
|
500 |
+
for day, name, eng_name in zip(range(4, 11), expected_days, english_days):
|
501 |
+
name = name.capitalize()
|
502 |
+
assert ser.dt.day_name(locale=time_locale)[day] == name
|
503 |
+
assert ser.dt.day_name(locale=None)[day] == eng_name
|
504 |
+
ser = pd.concat([ser, Series([pd.NaT])])
|
505 |
+
assert np.isnan(ser.dt.day_name(locale=time_locale).iloc[-1])
|
506 |
+
|
507 |
+
ser = Series(date_range(freq="ME", start="2012", end="2013"))
|
508 |
+
result = ser.dt.month_name(locale=time_locale)
|
509 |
+
expected = Series([month.capitalize() for month in expected_months])
|
510 |
+
|
511 |
+
# work around https://github.com/pandas-dev/pandas/issues/22342
|
512 |
+
result = result.str.normalize("NFD")
|
513 |
+
expected = expected.str.normalize("NFD")
|
514 |
+
|
515 |
+
tm.assert_series_equal(result, expected)
|
516 |
+
|
517 |
+
for s_date, expected in zip(ser, expected_months):
|
518 |
+
result = s_date.month_name(locale=time_locale)
|
519 |
+
expected = expected.capitalize()
|
520 |
+
|
521 |
+
result = unicodedata.normalize("NFD", result)
|
522 |
+
expected = unicodedata.normalize("NFD", expected)
|
523 |
+
|
524 |
+
assert result == expected
|
525 |
+
|
526 |
+
ser = pd.concat([ser, Series([pd.NaT])])
|
527 |
+
assert np.isnan(ser.dt.month_name(locale=time_locale).iloc[-1])
|
528 |
+
|
529 |
+
def test_strftime(self):
|
530 |
+
# GH 10086
|
531 |
+
ser = Series(date_range("20130101", periods=5))
|
532 |
+
result = ser.dt.strftime("%Y/%m/%d")
|
533 |
+
expected = Series(
|
534 |
+
["2013/01/01", "2013/01/02", "2013/01/03", "2013/01/04", "2013/01/05"]
|
535 |
+
)
|
536 |
+
tm.assert_series_equal(result, expected)
|
537 |
+
|
538 |
+
ser = Series(date_range("2015-02-03 11:22:33.4567", periods=5))
|
539 |
+
result = ser.dt.strftime("%Y/%m/%d %H-%M-%S")
|
540 |
+
expected = Series(
|
541 |
+
[
|
542 |
+
"2015/02/03 11-22-33",
|
543 |
+
"2015/02/04 11-22-33",
|
544 |
+
"2015/02/05 11-22-33",
|
545 |
+
"2015/02/06 11-22-33",
|
546 |
+
"2015/02/07 11-22-33",
|
547 |
+
]
|
548 |
+
)
|
549 |
+
tm.assert_series_equal(result, expected)
|
550 |
+
|
551 |
+
ser = Series(period_range("20130101", periods=5))
|
552 |
+
result = ser.dt.strftime("%Y/%m/%d")
|
553 |
+
expected = Series(
|
554 |
+
["2013/01/01", "2013/01/02", "2013/01/03", "2013/01/04", "2013/01/05"]
|
555 |
+
)
|
556 |
+
tm.assert_series_equal(result, expected)
|
557 |
+
|
558 |
+
ser = Series(period_range("2015-02-03 11:22:33.4567", periods=5, freq="s"))
|
559 |
+
result = ser.dt.strftime("%Y/%m/%d %H-%M-%S")
|
560 |
+
expected = Series(
|
561 |
+
[
|
562 |
+
"2015/02/03 11-22-33",
|
563 |
+
"2015/02/03 11-22-34",
|
564 |
+
"2015/02/03 11-22-35",
|
565 |
+
"2015/02/03 11-22-36",
|
566 |
+
"2015/02/03 11-22-37",
|
567 |
+
]
|
568 |
+
)
|
569 |
+
tm.assert_series_equal(result, expected)
|
570 |
+
|
571 |
+
def test_strftime_dt64_days(self):
|
572 |
+
ser = Series(date_range("20130101", periods=5))
|
573 |
+
ser.iloc[0] = pd.NaT
|
574 |
+
result = ser.dt.strftime("%Y/%m/%d")
|
575 |
+
expected = Series(
|
576 |
+
[np.nan, "2013/01/02", "2013/01/03", "2013/01/04", "2013/01/05"]
|
577 |
+
)
|
578 |
+
tm.assert_series_equal(result, expected)
|
579 |
+
|
580 |
+
datetime_index = date_range("20150301", periods=5)
|
581 |
+
result = datetime_index.strftime("%Y/%m/%d")
|
582 |
+
|
583 |
+
expected = Index(
|
584 |
+
["2015/03/01", "2015/03/02", "2015/03/03", "2015/03/04", "2015/03/05"],
|
585 |
+
dtype=np.object_,
|
586 |
+
)
|
587 |
+
# dtype may be S10 or U10 depending on python version
|
588 |
+
tm.assert_index_equal(result, expected)
|
589 |
+
|
590 |
+
def test_strftime_period_days(self, using_infer_string):
|
591 |
+
period_index = period_range("20150301", periods=5)
|
592 |
+
result = period_index.strftime("%Y/%m/%d")
|
593 |
+
expected = Index(
|
594 |
+
["2015/03/01", "2015/03/02", "2015/03/03", "2015/03/04", "2015/03/05"],
|
595 |
+
dtype="=U10",
|
596 |
+
)
|
597 |
+
if using_infer_string:
|
598 |
+
expected = expected.astype("string[pyarrow_numpy]")
|
599 |
+
tm.assert_index_equal(result, expected)
|
600 |
+
|
601 |
+
def test_strftime_dt64_microsecond_resolution(self):
|
602 |
+
ser = Series([datetime(2013, 1, 1, 2, 32, 59), datetime(2013, 1, 2, 14, 32, 1)])
|
603 |
+
result = ser.dt.strftime("%Y-%m-%d %H:%M:%S")
|
604 |
+
expected = Series(["2013-01-01 02:32:59", "2013-01-02 14:32:01"])
|
605 |
+
tm.assert_series_equal(result, expected)
|
606 |
+
|
607 |
+
def test_strftime_period_hours(self):
|
608 |
+
ser = Series(period_range("20130101", periods=4, freq="h"))
|
609 |
+
result = ser.dt.strftime("%Y/%m/%d %H:%M:%S")
|
610 |
+
expected = Series(
|
611 |
+
[
|
612 |
+
"2013/01/01 00:00:00",
|
613 |
+
"2013/01/01 01:00:00",
|
614 |
+
"2013/01/01 02:00:00",
|
615 |
+
"2013/01/01 03:00:00",
|
616 |
+
]
|
617 |
+
)
|
618 |
+
tm.assert_series_equal(result, expected)
|
619 |
+
|
620 |
+
def test_strftime_period_minutes(self):
|
621 |
+
ser = Series(period_range("20130101", periods=4, freq="ms"))
|
622 |
+
result = ser.dt.strftime("%Y/%m/%d %H:%M:%S.%l")
|
623 |
+
expected = Series(
|
624 |
+
[
|
625 |
+
"2013/01/01 00:00:00.000",
|
626 |
+
"2013/01/01 00:00:00.001",
|
627 |
+
"2013/01/01 00:00:00.002",
|
628 |
+
"2013/01/01 00:00:00.003",
|
629 |
+
]
|
630 |
+
)
|
631 |
+
tm.assert_series_equal(result, expected)
|
632 |
+
|
633 |
+
@pytest.mark.parametrize(
|
634 |
+
"data",
|
635 |
+
[
|
636 |
+
DatetimeIndex(["2019-01-01", pd.NaT]),
|
637 |
+
PeriodIndex(["2019-01-01", pd.NaT], dtype="period[D]"),
|
638 |
+
],
|
639 |
+
)
|
640 |
+
def test_strftime_nat(self, data):
|
641 |
+
# GH 29578
|
642 |
+
ser = Series(data)
|
643 |
+
result = ser.dt.strftime("%Y-%m-%d")
|
644 |
+
expected = Series(["2019-01-01", np.nan])
|
645 |
+
tm.assert_series_equal(result, expected)
|
646 |
+
|
647 |
+
@pytest.mark.parametrize(
|
648 |
+
"data", [DatetimeIndex([pd.NaT]), PeriodIndex([pd.NaT], dtype="period[D]")]
|
649 |
+
)
|
650 |
+
def test_strftime_all_nat(self, data):
|
651 |
+
# https://github.com/pandas-dev/pandas/issues/45858
|
652 |
+
ser = Series(data)
|
653 |
+
with tm.assert_produces_warning(None):
|
654 |
+
result = ser.dt.strftime("%Y-%m-%d")
|
655 |
+
expected = Series([np.nan], dtype=object)
|
656 |
+
tm.assert_series_equal(result, expected)
|
657 |
+
|
658 |
+
def test_valid_dt_with_missing_values(self):
|
659 |
+
# GH 8689
|
660 |
+
ser = Series(date_range("20130101", periods=5, freq="D"))
|
661 |
+
ser.iloc[2] = pd.NaT
|
662 |
+
|
663 |
+
for attr in ["microsecond", "nanosecond", "second", "minute", "hour", "day"]:
|
664 |
+
expected = getattr(ser.dt, attr).copy()
|
665 |
+
expected.iloc[2] = np.nan
|
666 |
+
result = getattr(ser.dt, attr)
|
667 |
+
tm.assert_series_equal(result, expected)
|
668 |
+
|
669 |
+
result = ser.dt.date
|
670 |
+
expected = Series(
|
671 |
+
[
|
672 |
+
date(2013, 1, 1),
|
673 |
+
date(2013, 1, 2),
|
674 |
+
pd.NaT,
|
675 |
+
date(2013, 1, 4),
|
676 |
+
date(2013, 1, 5),
|
677 |
+
],
|
678 |
+
dtype="object",
|
679 |
+
)
|
680 |
+
tm.assert_series_equal(result, expected)
|
681 |
+
|
682 |
+
result = ser.dt.time
|
683 |
+
expected = Series([time(0), time(0), pd.NaT, time(0), time(0)], dtype="object")
|
684 |
+
tm.assert_series_equal(result, expected)
|
685 |
+
|
686 |
+
def test_dt_accessor_api(self):
|
687 |
+
# GH 9322
|
688 |
+
from pandas.core.indexes.accessors import (
|
689 |
+
CombinedDatetimelikeProperties,
|
690 |
+
DatetimeProperties,
|
691 |
+
)
|
692 |
+
|
693 |
+
assert Series.dt is CombinedDatetimelikeProperties
|
694 |
+
|
695 |
+
ser = Series(date_range("2000-01-01", periods=3))
|
696 |
+
assert isinstance(ser.dt, DatetimeProperties)
|
697 |
+
|
698 |
+
@pytest.mark.parametrize(
|
699 |
+
"ser",
|
700 |
+
[
|
701 |
+
Series(np.arange(5)),
|
702 |
+
Series(list("abcde")),
|
703 |
+
Series(np.random.default_rng(2).standard_normal(5)),
|
704 |
+
],
|
705 |
+
)
|
706 |
+
def test_dt_accessor_invalid(self, ser):
|
707 |
+
# GH#9322 check that series with incorrect dtypes don't have attr
|
708 |
+
with pytest.raises(AttributeError, match="only use .dt accessor"):
|
709 |
+
ser.dt
|
710 |
+
assert not hasattr(ser, "dt")
|
711 |
+
|
712 |
+
def test_dt_accessor_updates_on_inplace(self):
|
713 |
+
ser = Series(date_range("2018-01-01", periods=10))
|
714 |
+
ser[2] = None
|
715 |
+
return_value = ser.fillna(pd.Timestamp("2018-01-01"), inplace=True)
|
716 |
+
assert return_value is None
|
717 |
+
result = ser.dt.date
|
718 |
+
assert result[0] == result[2]
|
719 |
+
|
720 |
+
def test_date_tz(self):
|
721 |
+
# GH11757
|
722 |
+
rng = DatetimeIndex(
|
723 |
+
["2014-04-04 23:56", "2014-07-18 21:24", "2015-11-22 22:14"],
|
724 |
+
tz="US/Eastern",
|
725 |
+
)
|
726 |
+
ser = Series(rng)
|
727 |
+
expected = Series([date(2014, 4, 4), date(2014, 7, 18), date(2015, 11, 22)])
|
728 |
+
tm.assert_series_equal(ser.dt.date, expected)
|
729 |
+
tm.assert_series_equal(ser.apply(lambda x: x.date()), expected)
|
730 |
+
|
731 |
+
def test_dt_timetz_accessor(self, tz_naive_fixture):
|
732 |
+
# GH21358
|
733 |
+
tz = maybe_get_tz(tz_naive_fixture)
|
734 |
+
|
735 |
+
dtindex = DatetimeIndex(
|
736 |
+
["2014-04-04 23:56", "2014-07-18 21:24", "2015-11-22 22:14"], tz=tz
|
737 |
+
)
|
738 |
+
ser = Series(dtindex)
|
739 |
+
expected = Series(
|
740 |
+
[time(23, 56, tzinfo=tz), time(21, 24, tzinfo=tz), time(22, 14, tzinfo=tz)]
|
741 |
+
)
|
742 |
+
result = ser.dt.timetz
|
743 |
+
tm.assert_series_equal(result, expected)
|
744 |
+
|
745 |
+
@pytest.mark.parametrize(
|
746 |
+
"input_series, expected_output",
|
747 |
+
[
|
748 |
+
[["2020-01-01"], [[2020, 1, 3]]],
|
749 |
+
[[pd.NaT], [[np.nan, np.nan, np.nan]]],
|
750 |
+
[["2019-12-31", "2019-12-29"], [[2020, 1, 2], [2019, 52, 7]]],
|
751 |
+
[["2010-01-01", pd.NaT], [[2009, 53, 5], [np.nan, np.nan, np.nan]]],
|
752 |
+
# see GH#36032
|
753 |
+
[["2016-01-08", "2016-01-04"], [[2016, 1, 5], [2016, 1, 1]]],
|
754 |
+
[["2016-01-07", "2016-01-01"], [[2016, 1, 4], [2015, 53, 5]]],
|
755 |
+
],
|
756 |
+
)
|
757 |
+
def test_isocalendar(self, input_series, expected_output):
|
758 |
+
result = pd.to_datetime(Series(input_series)).dt.isocalendar()
|
759 |
+
expected_frame = DataFrame(
|
760 |
+
expected_output, columns=["year", "week", "day"], dtype="UInt32"
|
761 |
+
)
|
762 |
+
tm.assert_frame_equal(result, expected_frame)
|
763 |
+
|
764 |
+
def test_hour_index(self):
|
765 |
+
dt_series = Series(
|
766 |
+
date_range(start="2021-01-01", periods=5, freq="h"),
|
767 |
+
index=[2, 6, 7, 8, 11],
|
768 |
+
dtype="category",
|
769 |
+
)
|
770 |
+
result = dt_series.dt.hour
|
771 |
+
expected = Series(
|
772 |
+
[0, 1, 2, 3, 4],
|
773 |
+
dtype="int32",
|
774 |
+
index=[2, 6, 7, 8, 11],
|
775 |
+
)
|
776 |
+
tm.assert_series_equal(result, expected)
|
777 |
+
|
778 |
+
|
779 |
+
class TestSeriesPeriodValuesDtAccessor:
|
780 |
+
@pytest.mark.parametrize(
|
781 |
+
"input_vals",
|
782 |
+
[
|
783 |
+
[Period("2016-01", freq="M"), Period("2016-02", freq="M")],
|
784 |
+
[Period("2016-01-01", freq="D"), Period("2016-01-02", freq="D")],
|
785 |
+
[
|
786 |
+
Period("2016-01-01 00:00:00", freq="h"),
|
787 |
+
Period("2016-01-01 01:00:00", freq="h"),
|
788 |
+
],
|
789 |
+
[
|
790 |
+
Period("2016-01-01 00:00:00", freq="M"),
|
791 |
+
Period("2016-01-01 00:01:00", freq="M"),
|
792 |
+
],
|
793 |
+
[
|
794 |
+
Period("2016-01-01 00:00:00", freq="s"),
|
795 |
+
Period("2016-01-01 00:00:01", freq="s"),
|
796 |
+
],
|
797 |
+
],
|
798 |
+
)
|
799 |
+
def test_end_time_timevalues(self, input_vals):
|
800 |
+
# GH#17157
|
801 |
+
# Check that the time part of the Period is adjusted by end_time
|
802 |
+
# when using the dt accessor on a Series
|
803 |
+
input_vals = PeriodArray._from_sequence(np.asarray(input_vals))
|
804 |
+
|
805 |
+
ser = Series(input_vals)
|
806 |
+
result = ser.dt.end_time
|
807 |
+
expected = ser.apply(lambda x: x.end_time)
|
808 |
+
tm.assert_series_equal(result, expected)
|
809 |
+
|
810 |
+
@pytest.mark.parametrize("input_vals", [("2001"), ("NaT")])
|
811 |
+
def test_to_period(self, input_vals):
|
812 |
+
# GH#21205
|
813 |
+
expected = Series([input_vals], dtype="Period[D]")
|
814 |
+
result = Series([input_vals], dtype="datetime64[ns]").dt.to_period("D")
|
815 |
+
tm.assert_series_equal(result, expected)
|
816 |
+
|
817 |
+
|
818 |
+
def test_normalize_pre_epoch_dates():
|
819 |
+
# GH: 36294
|
820 |
+
ser = pd.to_datetime(Series(["1969-01-01 09:00:00", "2016-01-01 09:00:00"]))
|
821 |
+
result = ser.dt.normalize()
|
822 |
+
expected = pd.to_datetime(Series(["1969-01-01", "2016-01-01"]))
|
823 |
+
tm.assert_series_equal(result, expected)
|
824 |
+
|
825 |
+
|
826 |
+
def test_day_attribute_non_nano_beyond_int32():
|
827 |
+
# GH 52386
|
828 |
+
data = np.array(
|
829 |
+
[
|
830 |
+
136457654736252,
|
831 |
+
134736784364431,
|
832 |
+
245345345545332,
|
833 |
+
223432411,
|
834 |
+
2343241,
|
835 |
+
3634548734,
|
836 |
+
23234,
|
837 |
+
],
|
838 |
+
dtype="timedelta64[s]",
|
839 |
+
)
|
840 |
+
ser = Series(data)
|
841 |
+
result = ser.dt.days
|
842 |
+
expected = Series([1579371003, 1559453522, 2839645203, 2586, 27, 42066, 0])
|
843 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_list_accessor.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
from pandas import (
|
6 |
+
ArrowDtype,
|
7 |
+
Series,
|
8 |
+
)
|
9 |
+
import pandas._testing as tm
|
10 |
+
|
11 |
+
pa = pytest.importorskip("pyarrow")
|
12 |
+
|
13 |
+
from pandas.compat import pa_version_under11p0
|
14 |
+
|
15 |
+
|
16 |
+
@pytest.mark.parametrize(
|
17 |
+
"list_dtype",
|
18 |
+
(
|
19 |
+
pa.list_(pa.int64()),
|
20 |
+
pa.list_(pa.int64(), list_size=3),
|
21 |
+
pa.large_list(pa.int64()),
|
22 |
+
),
|
23 |
+
)
|
24 |
+
def test_list_getitem(list_dtype):
|
25 |
+
ser = Series(
|
26 |
+
[[1, 2, 3], [4, None, 5], None],
|
27 |
+
dtype=ArrowDtype(list_dtype),
|
28 |
+
)
|
29 |
+
actual = ser.list[1]
|
30 |
+
expected = Series([2, None, None], dtype="int64[pyarrow]")
|
31 |
+
tm.assert_series_equal(actual, expected)
|
32 |
+
|
33 |
+
|
34 |
+
def test_list_getitem_slice():
|
35 |
+
ser = Series(
|
36 |
+
[[1, 2, 3], [4, None, 5], None],
|
37 |
+
dtype=ArrowDtype(pa.list_(pa.int64())),
|
38 |
+
)
|
39 |
+
if pa_version_under11p0:
|
40 |
+
with pytest.raises(
|
41 |
+
NotImplementedError, match="List slice not supported by pyarrow "
|
42 |
+
):
|
43 |
+
ser.list[1:None:None]
|
44 |
+
else:
|
45 |
+
actual = ser.list[1:None:None]
|
46 |
+
expected = Series(
|
47 |
+
[[2, 3], [None, 5], None], dtype=ArrowDtype(pa.list_(pa.int64()))
|
48 |
+
)
|
49 |
+
tm.assert_series_equal(actual, expected)
|
50 |
+
|
51 |
+
|
52 |
+
def test_list_len():
|
53 |
+
ser = Series(
|
54 |
+
[[1, 2, 3], [4, None], None],
|
55 |
+
dtype=ArrowDtype(pa.list_(pa.int64())),
|
56 |
+
)
|
57 |
+
actual = ser.list.len()
|
58 |
+
expected = Series([3, 2, None], dtype=ArrowDtype(pa.int32()))
|
59 |
+
tm.assert_series_equal(actual, expected)
|
60 |
+
|
61 |
+
|
62 |
+
def test_list_flatten():
|
63 |
+
ser = Series(
|
64 |
+
[[1, 2, 3], [4, None], None],
|
65 |
+
dtype=ArrowDtype(pa.list_(pa.int64())),
|
66 |
+
)
|
67 |
+
actual = ser.list.flatten()
|
68 |
+
expected = Series([1, 2, 3, 4, None], dtype=ArrowDtype(pa.int64()))
|
69 |
+
tm.assert_series_equal(actual, expected)
|
70 |
+
|
71 |
+
|
72 |
+
def test_list_getitem_slice_invalid():
|
73 |
+
ser = Series(
|
74 |
+
[[1, 2, 3], [4, None, 5], None],
|
75 |
+
dtype=ArrowDtype(pa.list_(pa.int64())),
|
76 |
+
)
|
77 |
+
if pa_version_under11p0:
|
78 |
+
with pytest.raises(
|
79 |
+
NotImplementedError, match="List slice not supported by pyarrow "
|
80 |
+
):
|
81 |
+
ser.list[1:None:0]
|
82 |
+
else:
|
83 |
+
with pytest.raises(pa.lib.ArrowInvalid, match=re.escape("`step` must be >= 1")):
|
84 |
+
ser.list[1:None:0]
|
85 |
+
|
86 |
+
|
87 |
+
def test_list_accessor_non_list_dtype():
|
88 |
+
ser = Series(
|
89 |
+
[1, 2, 4],
|
90 |
+
dtype=ArrowDtype(pa.int64()),
|
91 |
+
)
|
92 |
+
with pytest.raises(
|
93 |
+
AttributeError,
|
94 |
+
match=re.escape(
|
95 |
+
"Can only use the '.list' accessor with 'list[pyarrow]' dtype, "
|
96 |
+
"not int64[pyarrow]."
|
97 |
+
),
|
98 |
+
):
|
99 |
+
ser.list[1:None:0]
|
100 |
+
|
101 |
+
|
102 |
+
@pytest.mark.parametrize(
|
103 |
+
"list_dtype",
|
104 |
+
(
|
105 |
+
pa.list_(pa.int64()),
|
106 |
+
pa.list_(pa.int64(), list_size=3),
|
107 |
+
pa.large_list(pa.int64()),
|
108 |
+
),
|
109 |
+
)
|
110 |
+
def test_list_getitem_invalid_index(list_dtype):
|
111 |
+
ser = Series(
|
112 |
+
[[1, 2, 3], [4, None, 5], None],
|
113 |
+
dtype=ArrowDtype(list_dtype),
|
114 |
+
)
|
115 |
+
with pytest.raises(pa.lib.ArrowInvalid, match="Index -1 is out of bounds"):
|
116 |
+
ser.list[-1]
|
117 |
+
with pytest.raises(pa.lib.ArrowInvalid, match="Index 5 is out of bounds"):
|
118 |
+
ser.list[5]
|
119 |
+
with pytest.raises(ValueError, match="key must be an int or slice, got str"):
|
120 |
+
ser.list["abc"]
|
121 |
+
|
122 |
+
|
123 |
+
def test_list_accessor_not_iterable():
|
124 |
+
ser = Series(
|
125 |
+
[[1, 2, 3], [4, None], None],
|
126 |
+
dtype=ArrowDtype(pa.list_(pa.int64())),
|
127 |
+
)
|
128 |
+
with pytest.raises(TypeError, match="'ListAccessor' object is not iterable"):
|
129 |
+
iter(ser.list)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_sparse_accessor.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas import Series
|
2 |
+
|
3 |
+
|
4 |
+
class TestSparseAccessor:
|
5 |
+
def test_sparse_accessor_updates_on_inplace(self):
|
6 |
+
ser = Series([1, 1, 2, 3], dtype="Sparse[int]")
|
7 |
+
return_value = ser.drop([0, 1], inplace=True)
|
8 |
+
assert return_value is None
|
9 |
+
assert ser.sparse.density == 1.0
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_str_accessor.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import Series
|
4 |
+
import pandas._testing as tm
|
5 |
+
|
6 |
+
|
7 |
+
class TestStrAccessor:
|
8 |
+
def test_str_attribute(self):
|
9 |
+
# GH#9068
|
10 |
+
methods = ["strip", "rstrip", "lstrip"]
|
11 |
+
ser = Series([" jack", "jill ", " jesse ", "frank"])
|
12 |
+
for method in methods:
|
13 |
+
expected = Series([getattr(str, method)(x) for x in ser.values])
|
14 |
+
tm.assert_series_equal(getattr(Series.str, method)(ser.str), expected)
|
15 |
+
|
16 |
+
# str accessor only valid with string values
|
17 |
+
ser = Series(range(5))
|
18 |
+
with pytest.raises(AttributeError, match="only use .str accessor"):
|
19 |
+
ser.str.repeat(2)
|
20 |
+
|
21 |
+
def test_str_accessor_updates_on_inplace(self):
|
22 |
+
ser = Series(list("abc"))
|
23 |
+
return_value = ser.drop([0], inplace=True)
|
24 |
+
assert return_value is None
|
25 |
+
assert len(ser.str.lower()) == 2
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/accessors/test_struct_accessor.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
from pandas.compat.pyarrow import (
|
6 |
+
pa_version_under11p0,
|
7 |
+
pa_version_under13p0,
|
8 |
+
)
|
9 |
+
|
10 |
+
from pandas import (
|
11 |
+
ArrowDtype,
|
12 |
+
DataFrame,
|
13 |
+
Index,
|
14 |
+
Series,
|
15 |
+
)
|
16 |
+
import pandas._testing as tm
|
17 |
+
|
18 |
+
pa = pytest.importorskip("pyarrow")
|
19 |
+
pc = pytest.importorskip("pyarrow.compute")
|
20 |
+
|
21 |
+
|
22 |
+
def test_struct_accessor_dtypes():
|
23 |
+
ser = Series(
|
24 |
+
[],
|
25 |
+
dtype=ArrowDtype(
|
26 |
+
pa.struct(
|
27 |
+
[
|
28 |
+
("int_col", pa.int64()),
|
29 |
+
("string_col", pa.string()),
|
30 |
+
(
|
31 |
+
"struct_col",
|
32 |
+
pa.struct(
|
33 |
+
[
|
34 |
+
("int_col", pa.int64()),
|
35 |
+
("float_col", pa.float64()),
|
36 |
+
]
|
37 |
+
),
|
38 |
+
),
|
39 |
+
]
|
40 |
+
)
|
41 |
+
),
|
42 |
+
)
|
43 |
+
actual = ser.struct.dtypes
|
44 |
+
expected = Series(
|
45 |
+
[
|
46 |
+
ArrowDtype(pa.int64()),
|
47 |
+
ArrowDtype(pa.string()),
|
48 |
+
ArrowDtype(
|
49 |
+
pa.struct(
|
50 |
+
[
|
51 |
+
("int_col", pa.int64()),
|
52 |
+
("float_col", pa.float64()),
|
53 |
+
]
|
54 |
+
)
|
55 |
+
),
|
56 |
+
],
|
57 |
+
index=Index(["int_col", "string_col", "struct_col"]),
|
58 |
+
)
|
59 |
+
tm.assert_series_equal(actual, expected)
|
60 |
+
|
61 |
+
|
62 |
+
@pytest.mark.skipif(pa_version_under13p0, reason="pyarrow>=13.0.0 required")
|
63 |
+
def test_struct_accessor_field():
|
64 |
+
index = Index([-100, 42, 123])
|
65 |
+
ser = Series(
|
66 |
+
[
|
67 |
+
{"rice": 1.0, "maize": -1, "wheat": "a"},
|
68 |
+
{"rice": 2.0, "maize": 0, "wheat": "b"},
|
69 |
+
{"rice": 3.0, "maize": 1, "wheat": "c"},
|
70 |
+
],
|
71 |
+
dtype=ArrowDtype(
|
72 |
+
pa.struct(
|
73 |
+
[
|
74 |
+
("rice", pa.float64()),
|
75 |
+
("maize", pa.int64()),
|
76 |
+
("wheat", pa.string()),
|
77 |
+
]
|
78 |
+
)
|
79 |
+
),
|
80 |
+
index=index,
|
81 |
+
)
|
82 |
+
by_name = ser.struct.field("maize")
|
83 |
+
by_name_expected = Series(
|
84 |
+
[-1, 0, 1],
|
85 |
+
dtype=ArrowDtype(pa.int64()),
|
86 |
+
index=index,
|
87 |
+
name="maize",
|
88 |
+
)
|
89 |
+
tm.assert_series_equal(by_name, by_name_expected)
|
90 |
+
|
91 |
+
by_index = ser.struct.field(2)
|
92 |
+
by_index_expected = Series(
|
93 |
+
["a", "b", "c"],
|
94 |
+
dtype=ArrowDtype(pa.string()),
|
95 |
+
index=index,
|
96 |
+
name="wheat",
|
97 |
+
)
|
98 |
+
tm.assert_series_equal(by_index, by_index_expected)
|
99 |
+
|
100 |
+
|
101 |
+
def test_struct_accessor_field_with_invalid_name_or_index():
|
102 |
+
ser = Series([], dtype=ArrowDtype(pa.struct([("field", pa.int64())])))
|
103 |
+
|
104 |
+
with pytest.raises(ValueError, match="name_or_index must be an int, str,"):
|
105 |
+
ser.struct.field(1.1)
|
106 |
+
|
107 |
+
|
108 |
+
@pytest.mark.skipif(pa_version_under11p0, reason="pyarrow>=11.0.0 required")
|
109 |
+
def test_struct_accessor_explode():
|
110 |
+
index = Index([-100, 42, 123])
|
111 |
+
ser = Series(
|
112 |
+
[
|
113 |
+
{"painted": 1, "snapping": {"sea": "green"}},
|
114 |
+
{"painted": 2, "snapping": {"sea": "leatherback"}},
|
115 |
+
{"painted": 3, "snapping": {"sea": "hawksbill"}},
|
116 |
+
],
|
117 |
+
dtype=ArrowDtype(
|
118 |
+
pa.struct(
|
119 |
+
[
|
120 |
+
("painted", pa.int64()),
|
121 |
+
("snapping", pa.struct([("sea", pa.string())])),
|
122 |
+
]
|
123 |
+
)
|
124 |
+
),
|
125 |
+
index=index,
|
126 |
+
)
|
127 |
+
actual = ser.struct.explode()
|
128 |
+
expected = DataFrame(
|
129 |
+
{
|
130 |
+
"painted": Series([1, 2, 3], index=index, dtype=ArrowDtype(pa.int64())),
|
131 |
+
"snapping": Series(
|
132 |
+
[{"sea": "green"}, {"sea": "leatherback"}, {"sea": "hawksbill"}],
|
133 |
+
index=index,
|
134 |
+
dtype=ArrowDtype(pa.struct([("sea", pa.string())])),
|
135 |
+
),
|
136 |
+
},
|
137 |
+
)
|
138 |
+
tm.assert_frame_equal(actual, expected)
|
139 |
+
|
140 |
+
|
141 |
+
@pytest.mark.parametrize(
|
142 |
+
"invalid",
|
143 |
+
[
|
144 |
+
pytest.param(Series([1, 2, 3], dtype="int64"), id="int64"),
|
145 |
+
pytest.param(
|
146 |
+
Series(["a", "b", "c"], dtype="string[pyarrow]"), id="string-pyarrow"
|
147 |
+
),
|
148 |
+
],
|
149 |
+
)
|
150 |
+
def test_struct_accessor_api_for_invalid(invalid):
|
151 |
+
with pytest.raises(
|
152 |
+
AttributeError,
|
153 |
+
match=re.escape(
|
154 |
+
"Can only use the '.struct' accessor with 'struct[pyarrow]' dtype, "
|
155 |
+
f"not {invalid.dtype}."
|
156 |
+
),
|
157 |
+
):
|
158 |
+
invalid.struct
|
159 |
+
|
160 |
+
|
161 |
+
@pytest.mark.parametrize(
|
162 |
+
["indices", "name"],
|
163 |
+
[
|
164 |
+
(0, "int_col"),
|
165 |
+
([1, 2], "str_col"),
|
166 |
+
(pc.field("int_col"), "int_col"),
|
167 |
+
("int_col", "int_col"),
|
168 |
+
(b"string_col", b"string_col"),
|
169 |
+
([b"string_col"], "string_col"),
|
170 |
+
],
|
171 |
+
)
|
172 |
+
@pytest.mark.skipif(pa_version_under13p0, reason="pyarrow>=13.0.0 required")
|
173 |
+
def test_struct_accessor_field_expanded(indices, name):
|
174 |
+
arrow_type = pa.struct(
|
175 |
+
[
|
176 |
+
("int_col", pa.int64()),
|
177 |
+
(
|
178 |
+
"struct_col",
|
179 |
+
pa.struct(
|
180 |
+
[
|
181 |
+
("int_col", pa.int64()),
|
182 |
+
("float_col", pa.float64()),
|
183 |
+
("str_col", pa.string()),
|
184 |
+
]
|
185 |
+
),
|
186 |
+
),
|
187 |
+
(b"string_col", pa.string()),
|
188 |
+
]
|
189 |
+
)
|
190 |
+
|
191 |
+
data = pa.array([], type=arrow_type)
|
192 |
+
ser = Series(data, dtype=ArrowDtype(arrow_type))
|
193 |
+
expected = pc.struct_field(data, indices)
|
194 |
+
result = ser.struct.field(indices)
|
195 |
+
tm.assert_equal(result.array._pa_array.combine_chunks(), expected)
|
196 |
+
assert result.name == name
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test files dedicated to individual (stand-alone) Series methods
|
3 |
+
|
4 |
+
Ideally these files/tests should correspond 1-to-1 with tests.frame.methods
|
5 |
+
|
6 |
+
These may also present opportunities for sharing/de-duplicating test code.
|
7 |
+
"""
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_argsort.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
Series,
|
6 |
+
Timestamp,
|
7 |
+
isna,
|
8 |
+
)
|
9 |
+
import pandas._testing as tm
|
10 |
+
|
11 |
+
|
12 |
+
class TestSeriesArgsort:
|
13 |
+
def test_argsort_axis(self):
|
14 |
+
# GH#54257
|
15 |
+
ser = Series(range(3))
|
16 |
+
|
17 |
+
msg = "No axis named 2 for object type Series"
|
18 |
+
with pytest.raises(ValueError, match=msg):
|
19 |
+
ser.argsort(axis=2)
|
20 |
+
|
21 |
+
def test_argsort_numpy(self, datetime_series):
|
22 |
+
ser = datetime_series
|
23 |
+
|
24 |
+
res = np.argsort(ser).values
|
25 |
+
expected = np.argsort(np.array(ser))
|
26 |
+
tm.assert_numpy_array_equal(res, expected)
|
27 |
+
|
28 |
+
# with missing values
|
29 |
+
ts = ser.copy()
|
30 |
+
ts[::2] = np.nan
|
31 |
+
|
32 |
+
msg = "The behavior of Series.argsort in the presence of NA values"
|
33 |
+
with tm.assert_produces_warning(
|
34 |
+
FutureWarning, match=msg, check_stacklevel=False
|
35 |
+
):
|
36 |
+
result = np.argsort(ts)[1::2]
|
37 |
+
expected = np.argsort(np.array(ts.dropna()))
|
38 |
+
|
39 |
+
tm.assert_numpy_array_equal(result.values, expected)
|
40 |
+
|
41 |
+
def test_argsort(self, datetime_series):
|
42 |
+
argsorted = datetime_series.argsort()
|
43 |
+
assert issubclass(argsorted.dtype.type, np.integer)
|
44 |
+
|
45 |
+
def test_argsort_dt64(self, unit):
|
46 |
+
# GH#2967 (introduced bug in 0.11-dev I think)
|
47 |
+
ser = Series(
|
48 |
+
[Timestamp(f"201301{i:02d}") for i in range(1, 6)], dtype=f"M8[{unit}]"
|
49 |
+
)
|
50 |
+
assert ser.dtype == f"datetime64[{unit}]"
|
51 |
+
shifted = ser.shift(-1)
|
52 |
+
assert shifted.dtype == f"datetime64[{unit}]"
|
53 |
+
assert isna(shifted[4])
|
54 |
+
|
55 |
+
result = ser.argsort()
|
56 |
+
expected = Series(range(5), dtype=np.intp)
|
57 |
+
tm.assert_series_equal(result, expected)
|
58 |
+
|
59 |
+
msg = "The behavior of Series.argsort in the presence of NA values"
|
60 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
61 |
+
result = shifted.argsort()
|
62 |
+
expected = Series(list(range(4)) + [-1], dtype=np.intp)
|
63 |
+
tm.assert_series_equal(result, expected)
|
64 |
+
|
65 |
+
def test_argsort_stable(self):
|
66 |
+
ser = Series(np.random.default_rng(2).integers(0, 100, size=10000))
|
67 |
+
mindexer = ser.argsort(kind="mergesort")
|
68 |
+
qindexer = ser.argsort()
|
69 |
+
|
70 |
+
mexpected = np.argsort(ser.values, kind="mergesort")
|
71 |
+
qexpected = np.argsort(ser.values, kind="quicksort")
|
72 |
+
|
73 |
+
tm.assert_series_equal(mindexer.astype(np.intp), Series(mexpected))
|
74 |
+
tm.assert_series_equal(qindexer.astype(np.intp), Series(qexpected))
|
75 |
+
msg = (
|
76 |
+
r"ndarray Expected type <class 'numpy\.ndarray'>, "
|
77 |
+
r"found <class 'pandas\.core\.series\.Series'> instead"
|
78 |
+
)
|
79 |
+
with pytest.raises(AssertionError, match=msg):
|
80 |
+
tm.assert_numpy_array_equal(qindexer, mindexer)
|
81 |
+
|
82 |
+
def test_argsort_preserve_name(self, datetime_series):
|
83 |
+
result = datetime_series.argsort()
|
84 |
+
assert result.name == datetime_series.name
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_asof.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas._libs.tslibs import IncompatibleFrequency
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
DatetimeIndex,
|
8 |
+
PeriodIndex,
|
9 |
+
Series,
|
10 |
+
Timestamp,
|
11 |
+
date_range,
|
12 |
+
isna,
|
13 |
+
notna,
|
14 |
+
offsets,
|
15 |
+
period_range,
|
16 |
+
)
|
17 |
+
import pandas._testing as tm
|
18 |
+
|
19 |
+
|
20 |
+
class TestSeriesAsof:
|
21 |
+
def test_asof_nanosecond_index_access(self):
|
22 |
+
ts = Timestamp("20130101").as_unit("ns")._value
|
23 |
+
dti = DatetimeIndex([ts + 50 + i for i in range(100)])
|
24 |
+
ser = Series(np.random.default_rng(2).standard_normal(100), index=dti)
|
25 |
+
|
26 |
+
first_value = ser.asof(ser.index[0])
|
27 |
+
|
28 |
+
# GH#46903 previously incorrectly was "day"
|
29 |
+
assert dti.resolution == "nanosecond"
|
30 |
+
|
31 |
+
# this used to not work bc parsing was done by dateutil that didn't
|
32 |
+
# handle nanoseconds
|
33 |
+
assert first_value == ser["2013-01-01 00:00:00.000000050"]
|
34 |
+
|
35 |
+
expected_ts = np.datetime64("2013-01-01 00:00:00.000000050", "ns")
|
36 |
+
assert first_value == ser[Timestamp(expected_ts)]
|
37 |
+
|
38 |
+
def test_basic(self):
|
39 |
+
# array or list or dates
|
40 |
+
N = 50
|
41 |
+
rng = date_range("1/1/1990", periods=N, freq="53s")
|
42 |
+
ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
|
43 |
+
ts.iloc[15:30] = np.nan
|
44 |
+
dates = date_range("1/1/1990", periods=N * 3, freq="25s")
|
45 |
+
|
46 |
+
result = ts.asof(dates)
|
47 |
+
assert notna(result).all()
|
48 |
+
lb = ts.index[14]
|
49 |
+
ub = ts.index[30]
|
50 |
+
|
51 |
+
result = ts.asof(list(dates))
|
52 |
+
assert notna(result).all()
|
53 |
+
lb = ts.index[14]
|
54 |
+
ub = ts.index[30]
|
55 |
+
|
56 |
+
mask = (result.index >= lb) & (result.index < ub)
|
57 |
+
rs = result[mask]
|
58 |
+
assert (rs == ts[lb]).all()
|
59 |
+
|
60 |
+
val = result[result.index[result.index >= ub][0]]
|
61 |
+
assert ts[ub] == val
|
62 |
+
|
63 |
+
def test_scalar(self):
|
64 |
+
N = 30
|
65 |
+
rng = date_range("1/1/1990", periods=N, freq="53s")
|
66 |
+
# Explicit cast to float avoid implicit cast when setting nan
|
67 |
+
ts = Series(np.arange(N), index=rng, dtype="float")
|
68 |
+
ts.iloc[5:10] = np.nan
|
69 |
+
ts.iloc[15:20] = np.nan
|
70 |
+
|
71 |
+
val1 = ts.asof(ts.index[7])
|
72 |
+
val2 = ts.asof(ts.index[19])
|
73 |
+
|
74 |
+
assert val1 == ts.iloc[4]
|
75 |
+
assert val2 == ts.iloc[14]
|
76 |
+
|
77 |
+
# accepts strings
|
78 |
+
val1 = ts.asof(str(ts.index[7]))
|
79 |
+
assert val1 == ts.iloc[4]
|
80 |
+
|
81 |
+
# in there
|
82 |
+
result = ts.asof(ts.index[3])
|
83 |
+
assert result == ts.iloc[3]
|
84 |
+
|
85 |
+
# no as of value
|
86 |
+
d = ts.index[0] - offsets.BDay()
|
87 |
+
assert np.isnan(ts.asof(d))
|
88 |
+
|
89 |
+
def test_with_nan(self):
|
90 |
+
# basic asof test
|
91 |
+
rng = date_range("1/1/2000", "1/2/2000", freq="4h")
|
92 |
+
s = Series(np.arange(len(rng)), index=rng)
|
93 |
+
r = s.resample("2h").mean()
|
94 |
+
|
95 |
+
result = r.asof(r.index)
|
96 |
+
expected = Series(
|
97 |
+
[0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6.0],
|
98 |
+
index=date_range("1/1/2000", "1/2/2000", freq="2h"),
|
99 |
+
)
|
100 |
+
tm.assert_series_equal(result, expected)
|
101 |
+
|
102 |
+
r.iloc[3:5] = np.nan
|
103 |
+
result = r.asof(r.index)
|
104 |
+
expected = Series(
|
105 |
+
[0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 5, 5, 6.0],
|
106 |
+
index=date_range("1/1/2000", "1/2/2000", freq="2h"),
|
107 |
+
)
|
108 |
+
tm.assert_series_equal(result, expected)
|
109 |
+
|
110 |
+
r.iloc[-3:] = np.nan
|
111 |
+
result = r.asof(r.index)
|
112 |
+
expected = Series(
|
113 |
+
[0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 4, 4, 4.0],
|
114 |
+
index=date_range("1/1/2000", "1/2/2000", freq="2h"),
|
115 |
+
)
|
116 |
+
tm.assert_series_equal(result, expected)
|
117 |
+
|
118 |
+
def test_periodindex(self):
|
119 |
+
# array or list or dates
|
120 |
+
N = 50
|
121 |
+
rng = period_range("1/1/1990", periods=N, freq="h")
|
122 |
+
ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
|
123 |
+
ts.iloc[15:30] = np.nan
|
124 |
+
dates = date_range("1/1/1990", periods=N * 3, freq="37min")
|
125 |
+
|
126 |
+
result = ts.asof(dates)
|
127 |
+
assert notna(result).all()
|
128 |
+
lb = ts.index[14]
|
129 |
+
ub = ts.index[30]
|
130 |
+
|
131 |
+
result = ts.asof(list(dates))
|
132 |
+
assert notna(result).all()
|
133 |
+
lb = ts.index[14]
|
134 |
+
ub = ts.index[30]
|
135 |
+
|
136 |
+
pix = PeriodIndex(result.index.values, freq="h")
|
137 |
+
mask = (pix >= lb) & (pix < ub)
|
138 |
+
rs = result[mask]
|
139 |
+
assert (rs == ts[lb]).all()
|
140 |
+
|
141 |
+
ts.iloc[5:10] = np.nan
|
142 |
+
ts.iloc[15:20] = np.nan
|
143 |
+
|
144 |
+
val1 = ts.asof(ts.index[7])
|
145 |
+
val2 = ts.asof(ts.index[19])
|
146 |
+
|
147 |
+
assert val1 == ts.iloc[4]
|
148 |
+
assert val2 == ts.iloc[14]
|
149 |
+
|
150 |
+
# accepts strings
|
151 |
+
val1 = ts.asof(str(ts.index[7]))
|
152 |
+
assert val1 == ts.iloc[4]
|
153 |
+
|
154 |
+
# in there
|
155 |
+
assert ts.asof(ts.index[3]) == ts.iloc[3]
|
156 |
+
|
157 |
+
# no as of value
|
158 |
+
d = ts.index[0].to_timestamp() - offsets.BDay()
|
159 |
+
assert isna(ts.asof(d))
|
160 |
+
|
161 |
+
# Mismatched freq
|
162 |
+
msg = "Input has different freq"
|
163 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
164 |
+
ts.asof(rng.asfreq("D"))
|
165 |
+
|
166 |
+
def test_errors(self):
|
167 |
+
s = Series(
|
168 |
+
[1, 2, 3],
|
169 |
+
index=[Timestamp("20130101"), Timestamp("20130103"), Timestamp("20130102")],
|
170 |
+
)
|
171 |
+
|
172 |
+
# non-monotonic
|
173 |
+
assert not s.index.is_monotonic_increasing
|
174 |
+
with pytest.raises(ValueError, match="requires a sorted index"):
|
175 |
+
s.asof(s.index[0])
|
176 |
+
|
177 |
+
# subset with Series
|
178 |
+
N = 10
|
179 |
+
rng = date_range("1/1/1990", periods=N, freq="53s")
|
180 |
+
s = Series(np.random.default_rng(2).standard_normal(N), index=rng)
|
181 |
+
with pytest.raises(ValueError, match="not valid for Series"):
|
182 |
+
s.asof(s.index[0], subset="foo")
|
183 |
+
|
184 |
+
def test_all_nans(self):
|
185 |
+
# GH 15713
|
186 |
+
# series is all nans
|
187 |
+
|
188 |
+
# testing non-default indexes
|
189 |
+
N = 50
|
190 |
+
rng = date_range("1/1/1990", periods=N, freq="53s")
|
191 |
+
|
192 |
+
dates = date_range("1/1/1990", periods=N * 3, freq="25s")
|
193 |
+
result = Series(np.nan, index=rng).asof(dates)
|
194 |
+
expected = Series(np.nan, index=dates)
|
195 |
+
tm.assert_series_equal(result, expected)
|
196 |
+
|
197 |
+
# testing scalar input
|
198 |
+
date = date_range("1/1/1990", periods=N * 3, freq="25s")[0]
|
199 |
+
result = Series(np.nan, index=rng).asof(date)
|
200 |
+
assert isna(result)
|
201 |
+
|
202 |
+
# test name is propagated
|
203 |
+
result = Series(np.nan, index=[1, 2, 3, 4], name="test").asof([4, 5])
|
204 |
+
expected = Series(np.nan, index=[4, 5], name="test")
|
205 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_astype.py
ADDED
@@ -0,0 +1,683 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
timedelta,
|
4 |
+
)
|
5 |
+
from importlib import reload
|
6 |
+
import string
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import pytest
|
11 |
+
|
12 |
+
from pandas._libs.tslibs import iNaT
|
13 |
+
import pandas.util._test_decorators as td
|
14 |
+
|
15 |
+
from pandas import (
|
16 |
+
NA,
|
17 |
+
Categorical,
|
18 |
+
CategoricalDtype,
|
19 |
+
DatetimeTZDtype,
|
20 |
+
Index,
|
21 |
+
Interval,
|
22 |
+
NaT,
|
23 |
+
Series,
|
24 |
+
Timedelta,
|
25 |
+
Timestamp,
|
26 |
+
cut,
|
27 |
+
date_range,
|
28 |
+
to_datetime,
|
29 |
+
)
|
30 |
+
import pandas._testing as tm
|
31 |
+
|
32 |
+
|
33 |
+
def rand_str(nchars: int) -> str:
|
34 |
+
"""
|
35 |
+
Generate one random byte string.
|
36 |
+
"""
|
37 |
+
RANDS_CHARS = np.array(
|
38 |
+
list(string.ascii_letters + string.digits), dtype=(np.str_, 1)
|
39 |
+
)
|
40 |
+
return "".join(np.random.default_rng(2).choice(RANDS_CHARS, nchars))
|
41 |
+
|
42 |
+
|
43 |
+
class TestAstypeAPI:
|
44 |
+
def test_astype_unitless_dt64_raises(self):
|
45 |
+
# GH#47844
|
46 |
+
ser = Series(["1970-01-01", "1970-01-01", "1970-01-01"], dtype="datetime64[ns]")
|
47 |
+
df = ser.to_frame()
|
48 |
+
|
49 |
+
msg = "Casting to unit-less dtype 'datetime64' is not supported"
|
50 |
+
with pytest.raises(TypeError, match=msg):
|
51 |
+
ser.astype(np.datetime64)
|
52 |
+
with pytest.raises(TypeError, match=msg):
|
53 |
+
df.astype(np.datetime64)
|
54 |
+
with pytest.raises(TypeError, match=msg):
|
55 |
+
ser.astype("datetime64")
|
56 |
+
with pytest.raises(TypeError, match=msg):
|
57 |
+
df.astype("datetime64")
|
58 |
+
|
59 |
+
def test_arg_for_errors_in_astype(self):
|
60 |
+
# see GH#14878
|
61 |
+
ser = Series([1, 2, 3])
|
62 |
+
|
63 |
+
msg = (
|
64 |
+
r"Expected value of kwarg 'errors' to be one of \['raise', "
|
65 |
+
r"'ignore'\]\. Supplied value is 'False'"
|
66 |
+
)
|
67 |
+
with pytest.raises(ValueError, match=msg):
|
68 |
+
ser.astype(np.float64, errors=False)
|
69 |
+
|
70 |
+
ser.astype(np.int8, errors="raise")
|
71 |
+
|
72 |
+
@pytest.mark.parametrize("dtype_class", [dict, Series])
|
73 |
+
def test_astype_dict_like(self, dtype_class):
|
74 |
+
# see GH#7271
|
75 |
+
ser = Series(range(0, 10, 2), name="abc")
|
76 |
+
|
77 |
+
dt1 = dtype_class({"abc": str})
|
78 |
+
result = ser.astype(dt1)
|
79 |
+
expected = Series(["0", "2", "4", "6", "8"], name="abc", dtype=object)
|
80 |
+
tm.assert_series_equal(result, expected)
|
81 |
+
|
82 |
+
dt2 = dtype_class({"abc": "float64"})
|
83 |
+
result = ser.astype(dt2)
|
84 |
+
expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc")
|
85 |
+
tm.assert_series_equal(result, expected)
|
86 |
+
|
87 |
+
dt3 = dtype_class({"abc": str, "def": str})
|
88 |
+
msg = (
|
89 |
+
"Only the Series name can be used for the key in Series dtype "
|
90 |
+
r"mappings\."
|
91 |
+
)
|
92 |
+
with pytest.raises(KeyError, match=msg):
|
93 |
+
ser.astype(dt3)
|
94 |
+
|
95 |
+
dt4 = dtype_class({0: str})
|
96 |
+
with pytest.raises(KeyError, match=msg):
|
97 |
+
ser.astype(dt4)
|
98 |
+
|
99 |
+
# GH#16717
|
100 |
+
# if dtypes provided is empty, it should error
|
101 |
+
if dtype_class is Series:
|
102 |
+
dt5 = dtype_class({}, dtype=object)
|
103 |
+
else:
|
104 |
+
dt5 = dtype_class({})
|
105 |
+
|
106 |
+
with pytest.raises(KeyError, match=msg):
|
107 |
+
ser.astype(dt5)
|
108 |
+
|
109 |
+
|
110 |
+
class TestAstype:
|
111 |
+
@pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"])
|
112 |
+
def test_astype_object_to_dt64_non_nano(self, tz):
|
113 |
+
# GH#55756, GH#54620
|
114 |
+
ts = Timestamp("2999-01-01")
|
115 |
+
dtype = "M8[us]"
|
116 |
+
if tz is not None:
|
117 |
+
dtype = f"M8[us, {tz}]"
|
118 |
+
vals = [ts, "2999-01-02 03:04:05.678910", 2500]
|
119 |
+
ser = Series(vals, dtype=object)
|
120 |
+
result = ser.astype(dtype)
|
121 |
+
|
122 |
+
# The 2500 is interpreted as microseconds, consistent with what
|
123 |
+
# we would get if we created DatetimeIndexes from vals[:2] and vals[2:]
|
124 |
+
# and concated the results.
|
125 |
+
pointwise = [
|
126 |
+
vals[0].tz_localize(tz),
|
127 |
+
Timestamp(vals[1], tz=tz),
|
128 |
+
to_datetime(vals[2], unit="us", utc=True).tz_convert(tz),
|
129 |
+
]
|
130 |
+
exp_vals = [x.as_unit("us").asm8 for x in pointwise]
|
131 |
+
exp_arr = np.array(exp_vals, dtype="M8[us]")
|
132 |
+
expected = Series(exp_arr, dtype="M8[us]")
|
133 |
+
if tz is not None:
|
134 |
+
expected = expected.dt.tz_localize("UTC").dt.tz_convert(tz)
|
135 |
+
tm.assert_series_equal(result, expected)
|
136 |
+
|
137 |
+
def test_astype_mixed_object_to_dt64tz(self):
|
138 |
+
# pre-2.0 this raised ValueError bc of tz mismatch
|
139 |
+
# xref GH#32581
|
140 |
+
ts = Timestamp("2016-01-04 05:06:07", tz="US/Pacific")
|
141 |
+
ts2 = ts.tz_convert("Asia/Tokyo")
|
142 |
+
|
143 |
+
ser = Series([ts, ts2], dtype=object)
|
144 |
+
res = ser.astype("datetime64[ns, Europe/Brussels]")
|
145 |
+
expected = Series(
|
146 |
+
[ts.tz_convert("Europe/Brussels"), ts2.tz_convert("Europe/Brussels")],
|
147 |
+
dtype="datetime64[ns, Europe/Brussels]",
|
148 |
+
)
|
149 |
+
tm.assert_series_equal(res, expected)
|
150 |
+
|
151 |
+
@pytest.mark.parametrize("dtype", np.typecodes["All"])
|
152 |
+
def test_astype_empty_constructor_equality(self, dtype):
|
153 |
+
# see GH#15524
|
154 |
+
|
155 |
+
if dtype not in (
|
156 |
+
"S",
|
157 |
+
"V", # poor support (if any) currently
|
158 |
+
"M",
|
159 |
+
"m", # Generic timestamps raise a ValueError. Already tested.
|
160 |
+
):
|
161 |
+
init_empty = Series([], dtype=dtype)
|
162 |
+
as_type_empty = Series([]).astype(dtype)
|
163 |
+
tm.assert_series_equal(init_empty, as_type_empty)
|
164 |
+
|
165 |
+
@pytest.mark.parametrize("dtype", [str, np.str_])
|
166 |
+
@pytest.mark.parametrize(
|
167 |
+
"series",
|
168 |
+
[
|
169 |
+
Series([string.digits * 10, rand_str(63), rand_str(64), rand_str(1000)]),
|
170 |
+
Series([string.digits * 10, rand_str(63), rand_str(64), np.nan, 1.0]),
|
171 |
+
],
|
172 |
+
)
|
173 |
+
def test_astype_str_map(self, dtype, series, using_infer_string):
|
174 |
+
# see GH#4405
|
175 |
+
result = series.astype(dtype)
|
176 |
+
expected = series.map(str)
|
177 |
+
if using_infer_string:
|
178 |
+
expected = expected.astype(object)
|
179 |
+
tm.assert_series_equal(result, expected)
|
180 |
+
|
181 |
+
def test_astype_float_to_period(self):
|
182 |
+
result = Series([np.nan]).astype("period[D]")
|
183 |
+
expected = Series([NaT], dtype="period[D]")
|
184 |
+
tm.assert_series_equal(result, expected)
|
185 |
+
|
186 |
+
def test_astype_no_pandas_dtype(self):
|
187 |
+
# https://github.com/pandas-dev/pandas/pull/24866
|
188 |
+
ser = Series([1, 2], dtype="int64")
|
189 |
+
# Don't have NumpyEADtype in the public API, so we use `.array.dtype`,
|
190 |
+
# which is a NumpyEADtype.
|
191 |
+
result = ser.astype(ser.array.dtype)
|
192 |
+
tm.assert_series_equal(result, ser)
|
193 |
+
|
194 |
+
@pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64])
|
195 |
+
def test_astype_generic_timestamp_no_frequency(self, dtype, request):
|
196 |
+
# see GH#15524, GH#15987
|
197 |
+
data = [1]
|
198 |
+
ser = Series(data)
|
199 |
+
|
200 |
+
if np.dtype(dtype).name not in ["timedelta64", "datetime64"]:
|
201 |
+
mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit")
|
202 |
+
request.applymarker(mark)
|
203 |
+
|
204 |
+
msg = (
|
205 |
+
rf"The '{dtype.__name__}' dtype has no unit\. "
|
206 |
+
rf"Please pass in '{dtype.__name__}\[ns\]' instead."
|
207 |
+
)
|
208 |
+
with pytest.raises(ValueError, match=msg):
|
209 |
+
ser.astype(dtype)
|
210 |
+
|
211 |
+
def test_astype_dt64_to_str(self):
|
212 |
+
# GH#10442 : testing astype(str) is correct for Series/DatetimeIndex
|
213 |
+
dti = date_range("2012-01-01", periods=3)
|
214 |
+
result = Series(dti).astype(str)
|
215 |
+
expected = Series(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object)
|
216 |
+
tm.assert_series_equal(result, expected)
|
217 |
+
|
218 |
+
def test_astype_dt64tz_to_str(self):
|
219 |
+
# GH#10442 : testing astype(str) is correct for Series/DatetimeIndex
|
220 |
+
dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern")
|
221 |
+
result = Series(dti_tz).astype(str)
|
222 |
+
expected = Series(
|
223 |
+
[
|
224 |
+
"2012-01-01 00:00:00-05:00",
|
225 |
+
"2012-01-02 00:00:00-05:00",
|
226 |
+
"2012-01-03 00:00:00-05:00",
|
227 |
+
],
|
228 |
+
dtype=object,
|
229 |
+
)
|
230 |
+
tm.assert_series_equal(result, expected)
|
231 |
+
|
232 |
+
def test_astype_datetime(self, unit):
|
233 |
+
ser = Series(iNaT, dtype=f"M8[{unit}]", index=range(5))
|
234 |
+
|
235 |
+
ser = ser.astype("O")
|
236 |
+
assert ser.dtype == np.object_
|
237 |
+
|
238 |
+
ser = Series([datetime(2001, 1, 2, 0, 0)])
|
239 |
+
|
240 |
+
ser = ser.astype("O")
|
241 |
+
assert ser.dtype == np.object_
|
242 |
+
|
243 |
+
ser = Series(
|
244 |
+
[datetime(2001, 1, 2, 0, 0) for i in range(3)], dtype=f"M8[{unit}]"
|
245 |
+
)
|
246 |
+
|
247 |
+
ser[1] = np.nan
|
248 |
+
assert ser.dtype == f"M8[{unit}]"
|
249 |
+
|
250 |
+
ser = ser.astype("O")
|
251 |
+
assert ser.dtype == np.object_
|
252 |
+
|
253 |
+
def test_astype_datetime64tz(self):
|
254 |
+
ser = Series(date_range("20130101", periods=3, tz="US/Eastern"))
|
255 |
+
|
256 |
+
# astype
|
257 |
+
result = ser.astype(object)
|
258 |
+
expected = Series(ser.astype(object), dtype=object)
|
259 |
+
tm.assert_series_equal(result, expected)
|
260 |
+
|
261 |
+
result = Series(ser.values).dt.tz_localize("UTC").dt.tz_convert(ser.dt.tz)
|
262 |
+
tm.assert_series_equal(result, ser)
|
263 |
+
|
264 |
+
# astype - object, preserves on construction
|
265 |
+
result = Series(ser.astype(object))
|
266 |
+
expected = ser.astype(object)
|
267 |
+
tm.assert_series_equal(result, expected)
|
268 |
+
|
269 |
+
# astype - datetime64[ns, tz]
|
270 |
+
msg = "Cannot use .astype to convert from timezone-naive"
|
271 |
+
with pytest.raises(TypeError, match=msg):
|
272 |
+
# dt64->dt64tz astype deprecated
|
273 |
+
Series(ser.values).astype("datetime64[ns, US/Eastern]")
|
274 |
+
|
275 |
+
with pytest.raises(TypeError, match=msg):
|
276 |
+
# dt64->dt64tz astype deprecated
|
277 |
+
Series(ser.values).astype(ser.dtype)
|
278 |
+
|
279 |
+
result = ser.astype("datetime64[ns, CET]")
|
280 |
+
expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET"))
|
281 |
+
tm.assert_series_equal(result, expected)
|
282 |
+
|
283 |
+
def test_astype_str_cast_dt64(self):
|
284 |
+
# see GH#9757
|
285 |
+
ts = Series([Timestamp("2010-01-04 00:00:00")])
|
286 |
+
res = ts.astype(str)
|
287 |
+
|
288 |
+
expected = Series(["2010-01-04"], dtype=object)
|
289 |
+
tm.assert_series_equal(res, expected)
|
290 |
+
|
291 |
+
ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")])
|
292 |
+
res = ts.astype(str)
|
293 |
+
|
294 |
+
expected = Series(["2010-01-04 00:00:00-05:00"], dtype=object)
|
295 |
+
tm.assert_series_equal(res, expected)
|
296 |
+
|
297 |
+
def test_astype_str_cast_td64(self):
|
298 |
+
# see GH#9757
|
299 |
+
|
300 |
+
td = Series([Timedelta(1, unit="d")])
|
301 |
+
ser = td.astype(str)
|
302 |
+
|
303 |
+
expected = Series(["1 days"], dtype=object)
|
304 |
+
tm.assert_series_equal(ser, expected)
|
305 |
+
|
306 |
+
def test_dt64_series_astype_object(self):
|
307 |
+
dt64ser = Series(date_range("20130101", periods=3))
|
308 |
+
result = dt64ser.astype(object)
|
309 |
+
assert isinstance(result.iloc[0], datetime)
|
310 |
+
assert result.dtype == np.object_
|
311 |
+
|
312 |
+
def test_td64_series_astype_object(self):
|
313 |
+
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="timedelta64[ns]")
|
314 |
+
result = tdser.astype(object)
|
315 |
+
assert isinstance(result.iloc[0], timedelta)
|
316 |
+
assert result.dtype == np.object_
|
317 |
+
|
318 |
+
@pytest.mark.parametrize(
|
319 |
+
"data, dtype",
|
320 |
+
[
|
321 |
+
(["x", "y", "z"], "string[python]"),
|
322 |
+
pytest.param(
|
323 |
+
["x", "y", "z"],
|
324 |
+
"string[pyarrow]",
|
325 |
+
marks=td.skip_if_no("pyarrow"),
|
326 |
+
),
|
327 |
+
(["x", "y", "z"], "category"),
|
328 |
+
(3 * [Timestamp("2020-01-01", tz="UTC")], None),
|
329 |
+
(3 * [Interval(0, 1)], None),
|
330 |
+
],
|
331 |
+
)
|
332 |
+
@pytest.mark.parametrize("errors", ["raise", "ignore"])
|
333 |
+
def test_astype_ignores_errors_for_extension_dtypes(self, data, dtype, errors):
|
334 |
+
# https://github.com/pandas-dev/pandas/issues/35471
|
335 |
+
ser = Series(data, dtype=dtype)
|
336 |
+
if errors == "ignore":
|
337 |
+
expected = ser
|
338 |
+
result = ser.astype(float, errors="ignore")
|
339 |
+
tm.assert_series_equal(result, expected)
|
340 |
+
else:
|
341 |
+
msg = "(Cannot cast)|(could not convert)"
|
342 |
+
with pytest.raises((ValueError, TypeError), match=msg):
|
343 |
+
ser.astype(float, errors=errors)
|
344 |
+
|
345 |
+
@pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64])
|
346 |
+
def test_astype_from_float_to_str(self, dtype):
|
347 |
+
# https://github.com/pandas-dev/pandas/issues/36451
|
348 |
+
ser = Series([0.1], dtype=dtype)
|
349 |
+
result = ser.astype(str)
|
350 |
+
expected = Series(["0.1"], dtype=object)
|
351 |
+
tm.assert_series_equal(result, expected)
|
352 |
+
|
353 |
+
@pytest.mark.parametrize(
|
354 |
+
"value, string_value",
|
355 |
+
[
|
356 |
+
(None, "None"),
|
357 |
+
(np.nan, "nan"),
|
358 |
+
(NA, "<NA>"),
|
359 |
+
],
|
360 |
+
)
|
361 |
+
def test_astype_to_str_preserves_na(self, value, string_value):
|
362 |
+
# https://github.com/pandas-dev/pandas/issues/36904
|
363 |
+
ser = Series(["a", "b", value], dtype=object)
|
364 |
+
result = ser.astype(str)
|
365 |
+
expected = Series(["a", "b", string_value], dtype=object)
|
366 |
+
tm.assert_series_equal(result, expected)
|
367 |
+
|
368 |
+
@pytest.mark.parametrize("dtype", ["float32", "float64", "int64", "int32"])
|
369 |
+
def test_astype(self, dtype):
|
370 |
+
ser = Series(np.random.default_rng(2).standard_normal(5), name="foo")
|
371 |
+
as_typed = ser.astype(dtype)
|
372 |
+
|
373 |
+
assert as_typed.dtype == dtype
|
374 |
+
assert as_typed.name == ser.name
|
375 |
+
|
376 |
+
@pytest.mark.parametrize("value", [np.nan, np.inf])
|
377 |
+
@pytest.mark.parametrize("dtype", [np.int32, np.int64])
|
378 |
+
def test_astype_cast_nan_inf_int(self, dtype, value):
|
379 |
+
# gh-14265: check NaN and inf raise error when converting to int
|
380 |
+
msg = "Cannot convert non-finite values \\(NA or inf\\) to integer"
|
381 |
+
ser = Series([value])
|
382 |
+
|
383 |
+
with pytest.raises(ValueError, match=msg):
|
384 |
+
ser.astype(dtype)
|
385 |
+
|
386 |
+
@pytest.mark.parametrize("dtype", [int, np.int8, np.int64])
|
387 |
+
def test_astype_cast_object_int_fail(self, dtype):
|
388 |
+
arr = Series(["car", "house", "tree", "1"])
|
389 |
+
msg = r"invalid literal for int\(\) with base 10: 'car'"
|
390 |
+
with pytest.raises(ValueError, match=msg):
|
391 |
+
arr.astype(dtype)
|
392 |
+
|
393 |
+
def test_astype_float_to_uint_negatives_raise(
|
394 |
+
self, float_numpy_dtype, any_unsigned_int_numpy_dtype
|
395 |
+
):
|
396 |
+
# GH#45151 We don't cast negative numbers to nonsense values
|
397 |
+
# TODO: same for EA float/uint dtypes, signed integers?
|
398 |
+
arr = np.arange(5).astype(float_numpy_dtype) - 3 # includes negatives
|
399 |
+
ser = Series(arr)
|
400 |
+
|
401 |
+
msg = "Cannot losslessly cast from .* to .*"
|
402 |
+
with pytest.raises(ValueError, match=msg):
|
403 |
+
ser.astype(any_unsigned_int_numpy_dtype)
|
404 |
+
|
405 |
+
with pytest.raises(ValueError, match=msg):
|
406 |
+
ser.to_frame().astype(any_unsigned_int_numpy_dtype)
|
407 |
+
|
408 |
+
with pytest.raises(ValueError, match=msg):
|
409 |
+
# We currently catch and re-raise in Index.astype
|
410 |
+
Index(ser).astype(any_unsigned_int_numpy_dtype)
|
411 |
+
|
412 |
+
with pytest.raises(ValueError, match=msg):
|
413 |
+
ser.array.astype(any_unsigned_int_numpy_dtype)
|
414 |
+
|
415 |
+
def test_astype_cast_object_int(self):
|
416 |
+
arr = Series(["1", "2", "3", "4"], dtype=object)
|
417 |
+
result = arr.astype(int)
|
418 |
+
|
419 |
+
tm.assert_series_equal(result, Series(np.arange(1, 5)))
|
420 |
+
|
421 |
+
def test_astype_unicode(self, using_infer_string):
|
422 |
+
# see GH#7758: A bit of magic is required to set
|
423 |
+
# default encoding to utf-8
|
424 |
+
digits = string.digits
|
425 |
+
test_series = [
|
426 |
+
Series([digits * 10, rand_str(63), rand_str(64), rand_str(1000)]),
|
427 |
+
Series(["データーサイエンス、お前はもう死んでいる"]),
|
428 |
+
]
|
429 |
+
|
430 |
+
former_encoding = None
|
431 |
+
|
432 |
+
if sys.getdefaultencoding() == "utf-8":
|
433 |
+
# GH#45326 as of 2.0 Series.astype matches Index.astype by handling
|
434 |
+
# bytes with obj.decode() instead of str(obj)
|
435 |
+
item = "野菜食べないとやばい"
|
436 |
+
ser = Series([item.encode()])
|
437 |
+
result = ser.astype(np.str_)
|
438 |
+
expected = Series([item], dtype=object)
|
439 |
+
tm.assert_series_equal(result, expected)
|
440 |
+
|
441 |
+
for ser in test_series:
|
442 |
+
res = ser.astype(np.str_)
|
443 |
+
expec = ser.map(str)
|
444 |
+
if using_infer_string:
|
445 |
+
expec = expec.astype(object)
|
446 |
+
tm.assert_series_equal(res, expec)
|
447 |
+
|
448 |
+
# Restore the former encoding
|
449 |
+
if former_encoding is not None and former_encoding != "utf-8":
|
450 |
+
reload(sys)
|
451 |
+
sys.setdefaultencoding(former_encoding)
|
452 |
+
|
453 |
+
def test_astype_bytes(self):
|
454 |
+
# GH#39474
|
455 |
+
result = Series(["foo", "bar", "baz"]).astype(bytes)
|
456 |
+
assert result.dtypes == np.dtype("S3")
|
457 |
+
|
458 |
+
def test_astype_nan_to_bool(self):
|
459 |
+
# GH#43018
|
460 |
+
ser = Series(np.nan, dtype="object")
|
461 |
+
result = ser.astype("bool")
|
462 |
+
expected = Series(True, dtype="bool")
|
463 |
+
tm.assert_series_equal(result, expected)
|
464 |
+
|
465 |
+
@pytest.mark.parametrize(
|
466 |
+
"dtype",
|
467 |
+
tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES,
|
468 |
+
)
|
469 |
+
def test_astype_ea_to_datetimetzdtype(self, dtype):
|
470 |
+
# GH37553
|
471 |
+
ser = Series([4, 0, 9], dtype=dtype)
|
472 |
+
result = ser.astype(DatetimeTZDtype(tz="US/Pacific"))
|
473 |
+
|
474 |
+
expected = Series(
|
475 |
+
{
|
476 |
+
0: Timestamp("1969-12-31 16:00:00.000000004-08:00", tz="US/Pacific"),
|
477 |
+
1: Timestamp("1969-12-31 16:00:00.000000000-08:00", tz="US/Pacific"),
|
478 |
+
2: Timestamp("1969-12-31 16:00:00.000000009-08:00", tz="US/Pacific"),
|
479 |
+
}
|
480 |
+
)
|
481 |
+
|
482 |
+
tm.assert_series_equal(result, expected)
|
483 |
+
|
484 |
+
def test_astype_retain_attrs(self, any_numpy_dtype):
|
485 |
+
# GH#44414
|
486 |
+
ser = Series([0, 1, 2, 3])
|
487 |
+
ser.attrs["Location"] = "Michigan"
|
488 |
+
|
489 |
+
result = ser.astype(any_numpy_dtype).attrs
|
490 |
+
expected = ser.attrs
|
491 |
+
|
492 |
+
tm.assert_dict_equal(expected, result)
|
493 |
+
|
494 |
+
|
495 |
+
class TestAstypeString:
|
496 |
+
@pytest.mark.parametrize(
|
497 |
+
"data, dtype",
|
498 |
+
[
|
499 |
+
([True, NA], "boolean"),
|
500 |
+
(["A", NA], "category"),
|
501 |
+
(["2020-10-10", "2020-10-10"], "datetime64[ns]"),
|
502 |
+
(["2020-10-10", "2020-10-10", NaT], "datetime64[ns]"),
|
503 |
+
(
|
504 |
+
["2012-01-01 00:00:00-05:00", NaT],
|
505 |
+
"datetime64[ns, US/Eastern]",
|
506 |
+
),
|
507 |
+
([1, None], "UInt16"),
|
508 |
+
(["1/1/2021", "2/1/2021"], "period[M]"),
|
509 |
+
(["1/1/2021", "2/1/2021", NaT], "period[M]"),
|
510 |
+
(["1 Day", "59 Days", NaT], "timedelta64[ns]"),
|
511 |
+
# currently no way to parse IntervalArray from a list of strings
|
512 |
+
],
|
513 |
+
)
|
514 |
+
def test_astype_string_to_extension_dtype_roundtrip(
|
515 |
+
self, data, dtype, request, nullable_string_dtype
|
516 |
+
):
|
517 |
+
if dtype == "boolean":
|
518 |
+
mark = pytest.mark.xfail(
|
519 |
+
reason="TODO StringArray.astype() with missing values #GH40566"
|
520 |
+
)
|
521 |
+
request.applymarker(mark)
|
522 |
+
# GH-40351
|
523 |
+
ser = Series(data, dtype=dtype)
|
524 |
+
|
525 |
+
# Note: just passing .astype(dtype) fails for dtype="category"
|
526 |
+
# with bc ser.dtype.categories will be object dtype whereas
|
527 |
+
# result.dtype.categories will have string dtype
|
528 |
+
result = ser.astype(nullable_string_dtype).astype(ser.dtype)
|
529 |
+
tm.assert_series_equal(result, ser)
|
530 |
+
|
531 |
+
|
532 |
+
class TestAstypeCategorical:
|
533 |
+
def test_astype_categorical_to_other(self):
|
534 |
+
cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)])
|
535 |
+
ser = Series(np.random.default_rng(2).integers(0, 10000, 100)).sort_values()
|
536 |
+
ser = cut(ser, range(0, 10500, 500), right=False, labels=cat)
|
537 |
+
|
538 |
+
expected = ser
|
539 |
+
tm.assert_series_equal(ser.astype("category"), expected)
|
540 |
+
tm.assert_series_equal(ser.astype(CategoricalDtype()), expected)
|
541 |
+
msg = r"Cannot cast object|string dtype to float64"
|
542 |
+
with pytest.raises(ValueError, match=msg):
|
543 |
+
ser.astype("float64")
|
544 |
+
|
545 |
+
cat = Series(Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]))
|
546 |
+
exp = Series(["a", "b", "b", "a", "a", "c", "c", "c"], dtype=object)
|
547 |
+
tm.assert_series_equal(cat.astype("str"), exp)
|
548 |
+
s2 = Series(Categorical(["1", "2", "3", "4"]))
|
549 |
+
exp2 = Series([1, 2, 3, 4]).astype("int")
|
550 |
+
tm.assert_series_equal(s2.astype("int"), exp2)
|
551 |
+
|
552 |
+
# object don't sort correctly, so just compare that we have the same
|
553 |
+
# values
|
554 |
+
def cmp(a, b):
|
555 |
+
tm.assert_almost_equal(np.sort(np.unique(a)), np.sort(np.unique(b)))
|
556 |
+
|
557 |
+
expected = Series(np.array(ser.values), name="value_group")
|
558 |
+
cmp(ser.astype("object"), expected)
|
559 |
+
cmp(ser.astype(np.object_), expected)
|
560 |
+
|
561 |
+
# array conversion
|
562 |
+
tm.assert_almost_equal(np.array(ser), np.array(ser.values))
|
563 |
+
|
564 |
+
tm.assert_series_equal(ser.astype("category"), ser)
|
565 |
+
tm.assert_series_equal(ser.astype(CategoricalDtype()), ser)
|
566 |
+
|
567 |
+
roundtrip_expected = ser.cat.set_categories(
|
568 |
+
ser.cat.categories.sort_values()
|
569 |
+
).cat.remove_unused_categories()
|
570 |
+
result = ser.astype("object").astype("category")
|
571 |
+
tm.assert_series_equal(result, roundtrip_expected)
|
572 |
+
result = ser.astype("object").astype(CategoricalDtype())
|
573 |
+
tm.assert_series_equal(result, roundtrip_expected)
|
574 |
+
|
575 |
+
def test_astype_categorical_invalid_conversions(self):
|
576 |
+
# invalid conversion (these are NOT a dtype)
|
577 |
+
cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)])
|
578 |
+
ser = Series(np.random.default_rng(2).integers(0, 10000, 100)).sort_values()
|
579 |
+
ser = cut(ser, range(0, 10500, 500), right=False, labels=cat)
|
580 |
+
|
581 |
+
msg = (
|
582 |
+
"dtype '<class 'pandas.core.arrays.categorical.Categorical'>' "
|
583 |
+
"not understood"
|
584 |
+
)
|
585 |
+
with pytest.raises(TypeError, match=msg):
|
586 |
+
ser.astype(Categorical)
|
587 |
+
with pytest.raises(TypeError, match=msg):
|
588 |
+
ser.astype("object").astype(Categorical)
|
589 |
+
|
590 |
+
def test_astype_categoricaldtype(self):
|
591 |
+
ser = Series(["a", "b", "a"])
|
592 |
+
result = ser.astype(CategoricalDtype(["a", "b"], ordered=True))
|
593 |
+
expected = Series(Categorical(["a", "b", "a"], ordered=True))
|
594 |
+
tm.assert_series_equal(result, expected)
|
595 |
+
|
596 |
+
result = ser.astype(CategoricalDtype(["a", "b"], ordered=False))
|
597 |
+
expected = Series(Categorical(["a", "b", "a"], ordered=False))
|
598 |
+
tm.assert_series_equal(result, expected)
|
599 |
+
|
600 |
+
result = ser.astype(CategoricalDtype(["a", "b", "c"], ordered=False))
|
601 |
+
expected = Series(
|
602 |
+
Categorical(["a", "b", "a"], categories=["a", "b", "c"], ordered=False)
|
603 |
+
)
|
604 |
+
tm.assert_series_equal(result, expected)
|
605 |
+
tm.assert_index_equal(result.cat.categories, Index(["a", "b", "c"]))
|
606 |
+
|
607 |
+
@pytest.mark.parametrize("name", [None, "foo"])
|
608 |
+
@pytest.mark.parametrize("dtype_ordered", [True, False])
|
609 |
+
@pytest.mark.parametrize("series_ordered", [True, False])
|
610 |
+
def test_astype_categorical_to_categorical(
|
611 |
+
self, name, dtype_ordered, series_ordered
|
612 |
+
):
|
613 |
+
# GH#10696, GH#18593
|
614 |
+
s_data = list("abcaacbab")
|
615 |
+
s_dtype = CategoricalDtype(list("bac"), ordered=series_ordered)
|
616 |
+
ser = Series(s_data, dtype=s_dtype, name=name)
|
617 |
+
|
618 |
+
# unspecified categories
|
619 |
+
dtype = CategoricalDtype(ordered=dtype_ordered)
|
620 |
+
result = ser.astype(dtype)
|
621 |
+
exp_dtype = CategoricalDtype(s_dtype.categories, dtype_ordered)
|
622 |
+
expected = Series(s_data, name=name, dtype=exp_dtype)
|
623 |
+
tm.assert_series_equal(result, expected)
|
624 |
+
|
625 |
+
# different categories
|
626 |
+
dtype = CategoricalDtype(list("adc"), dtype_ordered)
|
627 |
+
result = ser.astype(dtype)
|
628 |
+
expected = Series(s_data, name=name, dtype=dtype)
|
629 |
+
tm.assert_series_equal(result, expected)
|
630 |
+
|
631 |
+
if dtype_ordered is False:
|
632 |
+
# not specifying ordered, so only test once
|
633 |
+
expected = ser
|
634 |
+
result = ser.astype("category")
|
635 |
+
tm.assert_series_equal(result, expected)
|
636 |
+
|
637 |
+
def test_astype_bool_missing_to_categorical(self):
|
638 |
+
# GH-19182
|
639 |
+
ser = Series([True, False, np.nan])
|
640 |
+
assert ser.dtypes == np.object_
|
641 |
+
|
642 |
+
result = ser.astype(CategoricalDtype(categories=[True, False]))
|
643 |
+
expected = Series(Categorical([True, False, np.nan], categories=[True, False]))
|
644 |
+
tm.assert_series_equal(result, expected)
|
645 |
+
|
646 |
+
def test_astype_categories_raises(self):
|
647 |
+
# deprecated GH#17636, removed in GH#27141
|
648 |
+
ser = Series(["a", "b", "a"])
|
649 |
+
with pytest.raises(TypeError, match="got an unexpected"):
|
650 |
+
ser.astype("category", categories=["a", "b"], ordered=True)
|
651 |
+
|
652 |
+
@pytest.mark.parametrize("items", [["a", "b", "c", "a"], [1, 2, 3, 1]])
|
653 |
+
def test_astype_from_categorical(self, items):
|
654 |
+
ser = Series(items)
|
655 |
+
exp = Series(Categorical(items))
|
656 |
+
res = ser.astype("category")
|
657 |
+
tm.assert_series_equal(res, exp)
|
658 |
+
|
659 |
+
def test_astype_from_categorical_with_keywords(self):
|
660 |
+
# with keywords
|
661 |
+
lst = ["a", "b", "c", "a"]
|
662 |
+
ser = Series(lst)
|
663 |
+
exp = Series(Categorical(lst, ordered=True))
|
664 |
+
res = ser.astype(CategoricalDtype(None, ordered=True))
|
665 |
+
tm.assert_series_equal(res, exp)
|
666 |
+
|
667 |
+
exp = Series(Categorical(lst, categories=list("abcdef"), ordered=True))
|
668 |
+
res = ser.astype(CategoricalDtype(list("abcdef"), ordered=True))
|
669 |
+
tm.assert_series_equal(res, exp)
|
670 |
+
|
671 |
+
def test_astype_timedelta64_with_np_nan(self):
|
672 |
+
# GH45798
|
673 |
+
result = Series([Timedelta(1), np.nan], dtype="timedelta64[ns]")
|
674 |
+
expected = Series([Timedelta(1), NaT], dtype="timedelta64[ns]")
|
675 |
+
tm.assert_series_equal(result, expected)
|
676 |
+
|
677 |
+
@td.skip_if_no("pyarrow")
|
678 |
+
def test_astype_int_na_string(self):
|
679 |
+
# GH#57418
|
680 |
+
ser = Series([12, NA], dtype="Int64[pyarrow]")
|
681 |
+
result = ser.astype("string[pyarrow]")
|
682 |
+
expected = Series(["12", NA], dtype="string[pyarrow]")
|
683 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_clip.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
from pandas import (
|
8 |
+
Series,
|
9 |
+
Timestamp,
|
10 |
+
isna,
|
11 |
+
notna,
|
12 |
+
)
|
13 |
+
import pandas._testing as tm
|
14 |
+
|
15 |
+
|
16 |
+
class TestSeriesClip:
|
17 |
+
def test_clip(self, datetime_series):
|
18 |
+
val = datetime_series.median()
|
19 |
+
|
20 |
+
assert datetime_series.clip(lower=val).min() == val
|
21 |
+
assert datetime_series.clip(upper=val).max() == val
|
22 |
+
|
23 |
+
result = datetime_series.clip(-0.5, 0.5)
|
24 |
+
expected = np.clip(datetime_series, -0.5, 0.5)
|
25 |
+
tm.assert_series_equal(result, expected)
|
26 |
+
assert isinstance(expected, Series)
|
27 |
+
|
28 |
+
def test_clip_types_and_nulls(self):
|
29 |
+
sers = [
|
30 |
+
Series([np.nan, 1.0, 2.0, 3.0]),
|
31 |
+
Series([None, "a", "b", "c"]),
|
32 |
+
Series(pd.to_datetime([np.nan, 1, 2, 3], unit="D")),
|
33 |
+
]
|
34 |
+
|
35 |
+
for s in sers:
|
36 |
+
thresh = s[2]
|
37 |
+
lower = s.clip(lower=thresh)
|
38 |
+
upper = s.clip(upper=thresh)
|
39 |
+
assert lower[notna(lower)].min() == thresh
|
40 |
+
assert upper[notna(upper)].max() == thresh
|
41 |
+
assert list(isna(s)) == list(isna(lower))
|
42 |
+
assert list(isna(s)) == list(isna(upper))
|
43 |
+
|
44 |
+
def test_series_clipping_with_na_values(self, any_numeric_ea_dtype, nulls_fixture):
|
45 |
+
# Ensure that clipping method can handle NA values with out failing
|
46 |
+
# GH#40581
|
47 |
+
|
48 |
+
if nulls_fixture is pd.NaT:
|
49 |
+
# constructor will raise, see
|
50 |
+
# test_constructor_mismatched_null_nullable_dtype
|
51 |
+
pytest.skip("See test_constructor_mismatched_null_nullable_dtype")
|
52 |
+
|
53 |
+
ser = Series([nulls_fixture, 1.0, 3.0], dtype=any_numeric_ea_dtype)
|
54 |
+
s_clipped_upper = ser.clip(upper=2.0)
|
55 |
+
s_clipped_lower = ser.clip(lower=2.0)
|
56 |
+
|
57 |
+
expected_upper = Series([nulls_fixture, 1.0, 2.0], dtype=any_numeric_ea_dtype)
|
58 |
+
expected_lower = Series([nulls_fixture, 2.0, 3.0], dtype=any_numeric_ea_dtype)
|
59 |
+
|
60 |
+
tm.assert_series_equal(s_clipped_upper, expected_upper)
|
61 |
+
tm.assert_series_equal(s_clipped_lower, expected_lower)
|
62 |
+
|
63 |
+
def test_clip_with_na_args(self):
|
64 |
+
"""Should process np.nan argument as None"""
|
65 |
+
# GH#17276
|
66 |
+
s = Series([1, 2, 3])
|
67 |
+
|
68 |
+
tm.assert_series_equal(s.clip(np.nan), Series([1, 2, 3]))
|
69 |
+
tm.assert_series_equal(s.clip(upper=np.nan, lower=np.nan), Series([1, 2, 3]))
|
70 |
+
|
71 |
+
# GH#19992
|
72 |
+
msg = "Downcasting behavior in Series and DataFrame methods 'where'"
|
73 |
+
# TODO: avoid this warning here? seems like we should never be upcasting
|
74 |
+
# in the first place?
|
75 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
76 |
+
res = s.clip(lower=[0, 4, np.nan])
|
77 |
+
tm.assert_series_equal(res, Series([1, 4, 3]))
|
78 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
79 |
+
res = s.clip(upper=[1, np.nan, 1])
|
80 |
+
tm.assert_series_equal(res, Series([1, 2, 1]))
|
81 |
+
|
82 |
+
# GH#40420
|
83 |
+
s = Series([1, 2, 3])
|
84 |
+
result = s.clip(0, [np.nan, np.nan, np.nan])
|
85 |
+
tm.assert_series_equal(s, result)
|
86 |
+
|
87 |
+
def test_clip_against_series(self):
|
88 |
+
# GH#6966
|
89 |
+
|
90 |
+
s = Series([1.0, 1.0, 4.0])
|
91 |
+
|
92 |
+
lower = Series([1.0, 2.0, 3.0])
|
93 |
+
upper = Series([1.5, 2.5, 3.5])
|
94 |
+
|
95 |
+
tm.assert_series_equal(s.clip(lower, upper), Series([1.0, 2.0, 3.5]))
|
96 |
+
tm.assert_series_equal(s.clip(1.5, upper), Series([1.5, 1.5, 3.5]))
|
97 |
+
|
98 |
+
@pytest.mark.parametrize("inplace", [True, False])
|
99 |
+
@pytest.mark.parametrize("upper", [[1, 2, 3], np.asarray([1, 2, 3])])
|
100 |
+
def test_clip_against_list_like(self, inplace, upper):
|
101 |
+
# GH#15390
|
102 |
+
original = Series([5, 6, 7])
|
103 |
+
result = original.clip(upper=upper, inplace=inplace)
|
104 |
+
expected = Series([1, 2, 3])
|
105 |
+
|
106 |
+
if inplace:
|
107 |
+
result = original
|
108 |
+
tm.assert_series_equal(result, expected, check_exact=True)
|
109 |
+
|
110 |
+
def test_clip_with_datetimes(self):
|
111 |
+
# GH#11838
|
112 |
+
# naive and tz-aware datetimes
|
113 |
+
|
114 |
+
t = Timestamp("2015-12-01 09:30:30")
|
115 |
+
s = Series([Timestamp("2015-12-01 09:30:00"), Timestamp("2015-12-01 09:31:00")])
|
116 |
+
result = s.clip(upper=t)
|
117 |
+
expected = Series(
|
118 |
+
[Timestamp("2015-12-01 09:30:00"), Timestamp("2015-12-01 09:30:30")]
|
119 |
+
)
|
120 |
+
tm.assert_series_equal(result, expected)
|
121 |
+
|
122 |
+
t = Timestamp("2015-12-01 09:30:30", tz="US/Eastern")
|
123 |
+
s = Series(
|
124 |
+
[
|
125 |
+
Timestamp("2015-12-01 09:30:00", tz="US/Eastern"),
|
126 |
+
Timestamp("2015-12-01 09:31:00", tz="US/Eastern"),
|
127 |
+
]
|
128 |
+
)
|
129 |
+
result = s.clip(upper=t)
|
130 |
+
expected = Series(
|
131 |
+
[
|
132 |
+
Timestamp("2015-12-01 09:30:00", tz="US/Eastern"),
|
133 |
+
Timestamp("2015-12-01 09:30:30", tz="US/Eastern"),
|
134 |
+
]
|
135 |
+
)
|
136 |
+
tm.assert_series_equal(result, expected)
|
137 |
+
|
138 |
+
@pytest.mark.parametrize("dtype", [object, "M8[us]"])
|
139 |
+
def test_clip_with_timestamps_and_oob_datetimes(self, dtype):
|
140 |
+
# GH-42794
|
141 |
+
ser = Series([datetime(1, 1, 1), datetime(9999, 9, 9)], dtype=dtype)
|
142 |
+
|
143 |
+
result = ser.clip(lower=Timestamp.min, upper=Timestamp.max)
|
144 |
+
expected = Series([Timestamp.min, Timestamp.max], dtype=dtype)
|
145 |
+
|
146 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_copy.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
Series,
|
6 |
+
Timestamp,
|
7 |
+
)
|
8 |
+
import pandas._testing as tm
|
9 |
+
|
10 |
+
|
11 |
+
class TestCopy:
|
12 |
+
@pytest.mark.parametrize("deep", ["default", None, False, True])
|
13 |
+
def test_copy(self, deep, using_copy_on_write, warn_copy_on_write):
|
14 |
+
ser = Series(np.arange(10), dtype="float64")
|
15 |
+
|
16 |
+
# default deep is True
|
17 |
+
if deep == "default":
|
18 |
+
ser2 = ser.copy()
|
19 |
+
else:
|
20 |
+
ser2 = ser.copy(deep=deep)
|
21 |
+
|
22 |
+
if using_copy_on_write:
|
23 |
+
# INFO(CoW) a shallow copy doesn't yet copy the data
|
24 |
+
# but parent will not be modified (CoW)
|
25 |
+
if deep is None or deep is False:
|
26 |
+
assert np.may_share_memory(ser.values, ser2.values)
|
27 |
+
else:
|
28 |
+
assert not np.may_share_memory(ser.values, ser2.values)
|
29 |
+
|
30 |
+
with tm.assert_cow_warning(warn_copy_on_write and deep is False):
|
31 |
+
ser2[::2] = np.nan
|
32 |
+
|
33 |
+
if deep is not False or using_copy_on_write:
|
34 |
+
# Did not modify original Series
|
35 |
+
assert np.isnan(ser2[0])
|
36 |
+
assert not np.isnan(ser[0])
|
37 |
+
else:
|
38 |
+
# we DID modify the original Series
|
39 |
+
assert np.isnan(ser2[0])
|
40 |
+
assert np.isnan(ser[0])
|
41 |
+
|
42 |
+
@pytest.mark.filterwarnings("ignore:Setting a value on a view:FutureWarning")
|
43 |
+
@pytest.mark.parametrize("deep", ["default", None, False, True])
|
44 |
+
def test_copy_tzaware(self, deep, using_copy_on_write):
|
45 |
+
# GH#11794
|
46 |
+
# copy of tz-aware
|
47 |
+
expected = Series([Timestamp("2012/01/01", tz="UTC")])
|
48 |
+
expected2 = Series([Timestamp("1999/01/01", tz="UTC")])
|
49 |
+
|
50 |
+
ser = Series([Timestamp("2012/01/01", tz="UTC")])
|
51 |
+
|
52 |
+
if deep == "default":
|
53 |
+
ser2 = ser.copy()
|
54 |
+
else:
|
55 |
+
ser2 = ser.copy(deep=deep)
|
56 |
+
|
57 |
+
if using_copy_on_write:
|
58 |
+
# INFO(CoW) a shallow copy doesn't yet copy the data
|
59 |
+
# but parent will not be modified (CoW)
|
60 |
+
if deep is None or deep is False:
|
61 |
+
assert np.may_share_memory(ser.values, ser2.values)
|
62 |
+
else:
|
63 |
+
assert not np.may_share_memory(ser.values, ser2.values)
|
64 |
+
|
65 |
+
ser2[0] = Timestamp("1999/01/01", tz="UTC")
|
66 |
+
|
67 |
+
# default deep is True
|
68 |
+
if deep is not False or using_copy_on_write:
|
69 |
+
# Did not modify original Series
|
70 |
+
tm.assert_series_equal(ser2, expected2)
|
71 |
+
tm.assert_series_equal(ser, expected)
|
72 |
+
else:
|
73 |
+
# we DID modify the original Series
|
74 |
+
tm.assert_series_equal(ser2, expected2)
|
75 |
+
tm.assert_series_equal(ser, expected2)
|
76 |
+
|
77 |
+
def test_copy_name(self, datetime_series):
|
78 |
+
result = datetime_series.copy()
|
79 |
+
assert result.name == datetime_series.name
|
80 |
+
|
81 |
+
def test_copy_index_name_checking(self, datetime_series):
|
82 |
+
# don't want to be able to modify the index stored elsewhere after
|
83 |
+
# making a copy
|
84 |
+
|
85 |
+
datetime_series.index.name = None
|
86 |
+
assert datetime_series.index.name is None
|
87 |
+
assert datetime_series is datetime_series
|
88 |
+
|
89 |
+
cp = datetime_series.copy()
|
90 |
+
cp.index.name = "foo"
|
91 |
+
assert datetime_series.index.name is None
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_describe.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas.compat.numpy import np_version_gte1p25
|
5 |
+
|
6 |
+
from pandas.core.dtypes.common import (
|
7 |
+
is_complex_dtype,
|
8 |
+
is_extension_array_dtype,
|
9 |
+
)
|
10 |
+
|
11 |
+
from pandas import (
|
12 |
+
NA,
|
13 |
+
Period,
|
14 |
+
Series,
|
15 |
+
Timedelta,
|
16 |
+
Timestamp,
|
17 |
+
date_range,
|
18 |
+
)
|
19 |
+
import pandas._testing as tm
|
20 |
+
|
21 |
+
|
22 |
+
class TestSeriesDescribe:
|
23 |
+
def test_describe_ints(self):
|
24 |
+
ser = Series([0, 1, 2, 3, 4], name="int_data")
|
25 |
+
result = ser.describe()
|
26 |
+
expected = Series(
|
27 |
+
[5, 2, ser.std(), 0, 1, 2, 3, 4],
|
28 |
+
name="int_data",
|
29 |
+
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
30 |
+
)
|
31 |
+
tm.assert_series_equal(result, expected)
|
32 |
+
|
33 |
+
def test_describe_bools(self):
|
34 |
+
ser = Series([True, True, False, False, False], name="bool_data")
|
35 |
+
result = ser.describe()
|
36 |
+
expected = Series(
|
37 |
+
[5, 2, False, 3], name="bool_data", index=["count", "unique", "top", "freq"]
|
38 |
+
)
|
39 |
+
tm.assert_series_equal(result, expected)
|
40 |
+
|
41 |
+
def test_describe_strs(self):
|
42 |
+
ser = Series(["a", "a", "b", "c", "d"], name="str_data")
|
43 |
+
result = ser.describe()
|
44 |
+
expected = Series(
|
45 |
+
[5, 4, "a", 2], name="str_data", index=["count", "unique", "top", "freq"]
|
46 |
+
)
|
47 |
+
tm.assert_series_equal(result, expected)
|
48 |
+
|
49 |
+
def test_describe_timedelta64(self):
|
50 |
+
ser = Series(
|
51 |
+
[
|
52 |
+
Timedelta("1 days"),
|
53 |
+
Timedelta("2 days"),
|
54 |
+
Timedelta("3 days"),
|
55 |
+
Timedelta("4 days"),
|
56 |
+
Timedelta("5 days"),
|
57 |
+
],
|
58 |
+
name="timedelta_data",
|
59 |
+
)
|
60 |
+
result = ser.describe()
|
61 |
+
expected = Series(
|
62 |
+
[5, ser[2], ser.std(), ser[0], ser[1], ser[2], ser[3], ser[4]],
|
63 |
+
name="timedelta_data",
|
64 |
+
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
65 |
+
)
|
66 |
+
tm.assert_series_equal(result, expected)
|
67 |
+
|
68 |
+
def test_describe_period(self):
|
69 |
+
ser = Series(
|
70 |
+
[Period("2020-01", "M"), Period("2020-01", "M"), Period("2019-12", "M")],
|
71 |
+
name="period_data",
|
72 |
+
)
|
73 |
+
result = ser.describe()
|
74 |
+
expected = Series(
|
75 |
+
[3, 2, ser[0], 2],
|
76 |
+
name="period_data",
|
77 |
+
index=["count", "unique", "top", "freq"],
|
78 |
+
)
|
79 |
+
tm.assert_series_equal(result, expected)
|
80 |
+
|
81 |
+
def test_describe_empty_object(self):
|
82 |
+
# https://github.com/pandas-dev/pandas/issues/27183
|
83 |
+
s = Series([None, None], dtype=object)
|
84 |
+
result = s.describe()
|
85 |
+
expected = Series(
|
86 |
+
[0, 0, np.nan, np.nan],
|
87 |
+
dtype=object,
|
88 |
+
index=["count", "unique", "top", "freq"],
|
89 |
+
)
|
90 |
+
tm.assert_series_equal(result, expected)
|
91 |
+
|
92 |
+
result = s[:0].describe()
|
93 |
+
tm.assert_series_equal(result, expected)
|
94 |
+
# ensure NaN, not None
|
95 |
+
assert np.isnan(result.iloc[2])
|
96 |
+
assert np.isnan(result.iloc[3])
|
97 |
+
|
98 |
+
def test_describe_with_tz(self, tz_naive_fixture):
|
99 |
+
# GH 21332
|
100 |
+
tz = tz_naive_fixture
|
101 |
+
name = str(tz_naive_fixture)
|
102 |
+
start = Timestamp(2018, 1, 1)
|
103 |
+
end = Timestamp(2018, 1, 5)
|
104 |
+
s = Series(date_range(start, end, tz=tz), name=name)
|
105 |
+
result = s.describe()
|
106 |
+
expected = Series(
|
107 |
+
[
|
108 |
+
5,
|
109 |
+
Timestamp(2018, 1, 3).tz_localize(tz),
|
110 |
+
start.tz_localize(tz),
|
111 |
+
s[1],
|
112 |
+
s[2],
|
113 |
+
s[3],
|
114 |
+
end.tz_localize(tz),
|
115 |
+
],
|
116 |
+
name=name,
|
117 |
+
index=["count", "mean", "min", "25%", "50%", "75%", "max"],
|
118 |
+
)
|
119 |
+
tm.assert_series_equal(result, expected)
|
120 |
+
|
121 |
+
def test_describe_with_tz_numeric(self):
|
122 |
+
name = tz = "CET"
|
123 |
+
start = Timestamp(2018, 1, 1)
|
124 |
+
end = Timestamp(2018, 1, 5)
|
125 |
+
s = Series(date_range(start, end, tz=tz), name=name)
|
126 |
+
|
127 |
+
result = s.describe()
|
128 |
+
|
129 |
+
expected = Series(
|
130 |
+
[
|
131 |
+
5,
|
132 |
+
Timestamp("2018-01-03 00:00:00", tz=tz),
|
133 |
+
Timestamp("2018-01-01 00:00:00", tz=tz),
|
134 |
+
Timestamp("2018-01-02 00:00:00", tz=tz),
|
135 |
+
Timestamp("2018-01-03 00:00:00", tz=tz),
|
136 |
+
Timestamp("2018-01-04 00:00:00", tz=tz),
|
137 |
+
Timestamp("2018-01-05 00:00:00", tz=tz),
|
138 |
+
],
|
139 |
+
name=name,
|
140 |
+
index=["count", "mean", "min", "25%", "50%", "75%", "max"],
|
141 |
+
)
|
142 |
+
tm.assert_series_equal(result, expected)
|
143 |
+
|
144 |
+
def test_datetime_is_numeric_includes_datetime(self):
|
145 |
+
s = Series(date_range("2012", periods=3))
|
146 |
+
result = s.describe()
|
147 |
+
expected = Series(
|
148 |
+
[
|
149 |
+
3,
|
150 |
+
Timestamp("2012-01-02"),
|
151 |
+
Timestamp("2012-01-01"),
|
152 |
+
Timestamp("2012-01-01T12:00:00"),
|
153 |
+
Timestamp("2012-01-02"),
|
154 |
+
Timestamp("2012-01-02T12:00:00"),
|
155 |
+
Timestamp("2012-01-03"),
|
156 |
+
],
|
157 |
+
index=["count", "mean", "min", "25%", "50%", "75%", "max"],
|
158 |
+
)
|
159 |
+
tm.assert_series_equal(result, expected)
|
160 |
+
|
161 |
+
@pytest.mark.filterwarnings("ignore:Casting complex values to real discards")
|
162 |
+
def test_numeric_result_dtype(self, any_numeric_dtype):
|
163 |
+
# GH#48340 - describe should always return float on non-complex numeric input
|
164 |
+
if is_extension_array_dtype(any_numeric_dtype):
|
165 |
+
dtype = "Float64"
|
166 |
+
else:
|
167 |
+
dtype = "complex128" if is_complex_dtype(any_numeric_dtype) else None
|
168 |
+
|
169 |
+
ser = Series([0, 1], dtype=any_numeric_dtype)
|
170 |
+
if dtype == "complex128" and np_version_gte1p25:
|
171 |
+
with pytest.raises(
|
172 |
+
TypeError, match=r"^a must be an array of real numbers$"
|
173 |
+
):
|
174 |
+
ser.describe()
|
175 |
+
return
|
176 |
+
result = ser.describe()
|
177 |
+
expected = Series(
|
178 |
+
[
|
179 |
+
2.0,
|
180 |
+
0.5,
|
181 |
+
ser.std(),
|
182 |
+
0,
|
183 |
+
0.25,
|
184 |
+
0.5,
|
185 |
+
0.75,
|
186 |
+
1.0,
|
187 |
+
],
|
188 |
+
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
189 |
+
dtype=dtype,
|
190 |
+
)
|
191 |
+
tm.assert_series_equal(result, expected)
|
192 |
+
|
193 |
+
def test_describe_one_element_ea(self):
|
194 |
+
# GH#52515
|
195 |
+
ser = Series([0.0], dtype="Float64")
|
196 |
+
with tm.assert_produces_warning(None):
|
197 |
+
result = ser.describe()
|
198 |
+
expected = Series(
|
199 |
+
[1, 0, NA, 0, 0, 0, 0, 0],
|
200 |
+
dtype="Float64",
|
201 |
+
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
202 |
+
)
|
203 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
Index,
|
5 |
+
Series,
|
6 |
+
)
|
7 |
+
import pandas._testing as tm
|
8 |
+
from pandas.api.types import is_bool_dtype
|
9 |
+
|
10 |
+
|
11 |
+
@pytest.mark.parametrize(
|
12 |
+
"data, index, drop_labels, axis, expected_data, expected_index",
|
13 |
+
[
|
14 |
+
# Unique Index
|
15 |
+
([1, 2], ["one", "two"], ["two"], 0, [1], ["one"]),
|
16 |
+
([1, 2], ["one", "two"], ["two"], "rows", [1], ["one"]),
|
17 |
+
([1, 1, 2], ["one", "two", "one"], ["two"], 0, [1, 2], ["one", "one"]),
|
18 |
+
# GH 5248 Non-Unique Index
|
19 |
+
([1, 1, 2], ["one", "two", "one"], "two", 0, [1, 2], ["one", "one"]),
|
20 |
+
([1, 1, 2], ["one", "two", "one"], ["one"], 0, [1], ["two"]),
|
21 |
+
([1, 1, 2], ["one", "two", "one"], "one", 0, [1], ["two"]),
|
22 |
+
],
|
23 |
+
)
|
24 |
+
def test_drop_unique_and_non_unique_index(
|
25 |
+
data, index, axis, drop_labels, expected_data, expected_index
|
26 |
+
):
|
27 |
+
ser = Series(data=data, index=index)
|
28 |
+
result = ser.drop(drop_labels, axis=axis)
|
29 |
+
expected = Series(data=expected_data, index=expected_index)
|
30 |
+
tm.assert_series_equal(result, expected)
|
31 |
+
|
32 |
+
|
33 |
+
@pytest.mark.parametrize(
|
34 |
+
"data, index, drop_labels, axis, error_type, error_desc",
|
35 |
+
[
|
36 |
+
# single string/tuple-like
|
37 |
+
(range(3), list("abc"), "bc", 0, KeyError, "not found in axis"),
|
38 |
+
# bad axis
|
39 |
+
(range(3), list("abc"), ("a",), 0, KeyError, "not found in axis"),
|
40 |
+
(range(3), list("abc"), "one", "columns", ValueError, "No axis named columns"),
|
41 |
+
],
|
42 |
+
)
|
43 |
+
def test_drop_exception_raised(data, index, drop_labels, axis, error_type, error_desc):
|
44 |
+
ser = Series(data, index=index)
|
45 |
+
with pytest.raises(error_type, match=error_desc):
|
46 |
+
ser.drop(drop_labels, axis=axis)
|
47 |
+
|
48 |
+
|
49 |
+
def test_drop_with_ignore_errors():
|
50 |
+
# errors='ignore'
|
51 |
+
ser = Series(range(3), index=list("abc"))
|
52 |
+
result = ser.drop("bc", errors="ignore")
|
53 |
+
tm.assert_series_equal(result, ser)
|
54 |
+
result = ser.drop(["a", "d"], errors="ignore")
|
55 |
+
expected = ser.iloc[1:]
|
56 |
+
tm.assert_series_equal(result, expected)
|
57 |
+
|
58 |
+
# GH 8522
|
59 |
+
ser = Series([2, 3], index=[True, False])
|
60 |
+
assert is_bool_dtype(ser.index)
|
61 |
+
assert ser.index.dtype == bool
|
62 |
+
result = ser.drop(True)
|
63 |
+
expected = Series([3], index=[False])
|
64 |
+
tm.assert_series_equal(result, expected)
|
65 |
+
|
66 |
+
|
67 |
+
@pytest.mark.parametrize("index", [[1, 2, 3], [1, 1, 3]])
|
68 |
+
@pytest.mark.parametrize("drop_labels", [[], [1], [3]])
|
69 |
+
def test_drop_empty_list(index, drop_labels):
|
70 |
+
# GH 21494
|
71 |
+
expected_index = [i for i in index if i not in drop_labels]
|
72 |
+
series = Series(index=index, dtype=object).drop(drop_labels)
|
73 |
+
expected = Series(index=expected_index, dtype=object)
|
74 |
+
tm.assert_series_equal(series, expected)
|
75 |
+
|
76 |
+
|
77 |
+
@pytest.mark.parametrize(
|
78 |
+
"data, index, drop_labels",
|
79 |
+
[
|
80 |
+
(None, [1, 2, 3], [1, 4]),
|
81 |
+
(None, [1, 2, 2], [1, 4]),
|
82 |
+
([2, 3], [0, 1], [False, True]),
|
83 |
+
],
|
84 |
+
)
|
85 |
+
def test_drop_non_empty_list(data, index, drop_labels):
|
86 |
+
# GH 21494 and GH 16877
|
87 |
+
dtype = object if data is None else None
|
88 |
+
ser = Series(data=data, index=index, dtype=dtype)
|
89 |
+
with pytest.raises(KeyError, match="not found in axis"):
|
90 |
+
ser.drop(drop_labels)
|
91 |
+
|
92 |
+
|
93 |
+
def test_drop_index_ea_dtype(any_numeric_ea_dtype):
|
94 |
+
# GH#45860
|
95 |
+
df = Series(100, index=Index([1, 2, 2], dtype=any_numeric_ea_dtype))
|
96 |
+
idx = Index([df.index[1]])
|
97 |
+
result = df.drop(idx)
|
98 |
+
expected = Series(100, index=Index([1], dtype=any_numeric_ea_dtype))
|
99 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_dtypes.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
class TestSeriesDtypes:
|
5 |
+
def test_dtype(self, datetime_series):
|
6 |
+
assert datetime_series.dtype == np.dtype("float64")
|
7 |
+
assert datetime_series.dtypes == np.dtype("float64")
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_equals.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import nullcontext
|
2 |
+
import copy
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from pandas._libs.missing import is_matching_na
|
8 |
+
from pandas.compat.numpy import np_version_gte1p25
|
9 |
+
|
10 |
+
from pandas.core.dtypes.common import is_float
|
11 |
+
|
12 |
+
from pandas import (
|
13 |
+
Index,
|
14 |
+
MultiIndex,
|
15 |
+
Series,
|
16 |
+
)
|
17 |
+
import pandas._testing as tm
|
18 |
+
|
19 |
+
|
20 |
+
@pytest.mark.parametrize(
|
21 |
+
"arr, idx",
|
22 |
+
[
|
23 |
+
([1, 2, 3, 4], [0, 2, 1, 3]),
|
24 |
+
([1, np.nan, 3, np.nan], [0, 2, 1, 3]),
|
25 |
+
(
|
26 |
+
[1, np.nan, 3, np.nan],
|
27 |
+
MultiIndex.from_tuples([(0, "a"), (1, "b"), (2, "c"), (3, "c")]),
|
28 |
+
),
|
29 |
+
],
|
30 |
+
)
|
31 |
+
def test_equals(arr, idx):
|
32 |
+
s1 = Series(arr, index=idx)
|
33 |
+
s2 = s1.copy()
|
34 |
+
assert s1.equals(s2)
|
35 |
+
|
36 |
+
s1[1] = 9
|
37 |
+
assert not s1.equals(s2)
|
38 |
+
|
39 |
+
|
40 |
+
@pytest.mark.parametrize(
|
41 |
+
"val", [1, 1.1, 1 + 1j, True, "abc", [1, 2], (1, 2), {1, 2}, {"a": 1}, None]
|
42 |
+
)
|
43 |
+
def test_equals_list_array(val):
|
44 |
+
# GH20676 Verify equals operator for list of Numpy arrays
|
45 |
+
arr = np.array([1, 2])
|
46 |
+
s1 = Series([arr, arr])
|
47 |
+
s2 = s1.copy()
|
48 |
+
assert s1.equals(s2)
|
49 |
+
|
50 |
+
s1[1] = val
|
51 |
+
|
52 |
+
cm = (
|
53 |
+
tm.assert_produces_warning(FutureWarning, check_stacklevel=False)
|
54 |
+
if isinstance(val, str) and not np_version_gte1p25
|
55 |
+
else nullcontext()
|
56 |
+
)
|
57 |
+
with cm:
|
58 |
+
assert not s1.equals(s2)
|
59 |
+
|
60 |
+
|
61 |
+
def test_equals_false_negative():
|
62 |
+
# GH8437 Verify false negative behavior of equals function for dtype object
|
63 |
+
arr = [False, np.nan]
|
64 |
+
s1 = Series(arr)
|
65 |
+
s2 = s1.copy()
|
66 |
+
s3 = Series(index=range(2), dtype=object)
|
67 |
+
s4 = s3.copy()
|
68 |
+
s5 = s3.copy()
|
69 |
+
s6 = s3.copy()
|
70 |
+
|
71 |
+
s3[:-1] = s4[:-1] = s5[0] = s6[0] = False
|
72 |
+
assert s1.equals(s1)
|
73 |
+
assert s1.equals(s2)
|
74 |
+
assert s1.equals(s3)
|
75 |
+
assert s1.equals(s4)
|
76 |
+
assert s1.equals(s5)
|
77 |
+
assert s5.equals(s6)
|
78 |
+
|
79 |
+
|
80 |
+
def test_equals_matching_nas():
|
81 |
+
# matching but not identical NAs
|
82 |
+
left = Series([np.datetime64("NaT")], dtype=object)
|
83 |
+
right = Series([np.datetime64("NaT")], dtype=object)
|
84 |
+
assert left.equals(right)
|
85 |
+
with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
|
86 |
+
assert Index(left).equals(Index(right))
|
87 |
+
assert left.array.equals(right.array)
|
88 |
+
|
89 |
+
left = Series([np.timedelta64("NaT")], dtype=object)
|
90 |
+
right = Series([np.timedelta64("NaT")], dtype=object)
|
91 |
+
assert left.equals(right)
|
92 |
+
with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
|
93 |
+
assert Index(left).equals(Index(right))
|
94 |
+
assert left.array.equals(right.array)
|
95 |
+
|
96 |
+
left = Series([np.float64("NaN")], dtype=object)
|
97 |
+
right = Series([np.float64("NaN")], dtype=object)
|
98 |
+
assert left.equals(right)
|
99 |
+
assert Index(left, dtype=left.dtype).equals(Index(right, dtype=right.dtype))
|
100 |
+
assert left.array.equals(right.array)
|
101 |
+
|
102 |
+
|
103 |
+
def test_equals_mismatched_nas(nulls_fixture, nulls_fixture2):
|
104 |
+
# GH#39650
|
105 |
+
left = nulls_fixture
|
106 |
+
right = nulls_fixture2
|
107 |
+
if hasattr(right, "copy"):
|
108 |
+
right = right.copy()
|
109 |
+
else:
|
110 |
+
right = copy.copy(right)
|
111 |
+
|
112 |
+
ser = Series([left], dtype=object)
|
113 |
+
ser2 = Series([right], dtype=object)
|
114 |
+
|
115 |
+
if is_matching_na(left, right):
|
116 |
+
assert ser.equals(ser2)
|
117 |
+
elif (left is None and is_float(right)) or (right is None and is_float(left)):
|
118 |
+
assert ser.equals(ser2)
|
119 |
+
else:
|
120 |
+
assert not ser.equals(ser2)
|
121 |
+
|
122 |
+
|
123 |
+
def test_equals_none_vs_nan():
|
124 |
+
# GH#39650
|
125 |
+
ser = Series([1, None], dtype=object)
|
126 |
+
ser2 = Series([1, np.nan], dtype=object)
|
127 |
+
|
128 |
+
assert ser.equals(ser2)
|
129 |
+
assert Index(ser, dtype=ser.dtype).equals(Index(ser2, dtype=ser2.dtype))
|
130 |
+
assert ser.array.equals(ser2.array)
|
131 |
+
|
132 |
+
|
133 |
+
def test_equals_None_vs_float():
|
134 |
+
# GH#44190
|
135 |
+
left = Series([-np.inf, np.nan, -1.0, 0.0, 1.0, 10 / 3, np.inf], dtype=object)
|
136 |
+
right = Series([None] * len(left))
|
137 |
+
|
138 |
+
# these series were found to be equal due to a bug, check that they are correctly
|
139 |
+
# found to not equal
|
140 |
+
assert not left.equals(right)
|
141 |
+
assert not right.equals(left)
|
142 |
+
assert not left.to_frame().equals(right.to_frame())
|
143 |
+
assert not right.to_frame().equals(left.to_frame())
|
144 |
+
assert not Index(left, dtype="object").equals(Index(right, dtype="object"))
|
145 |
+
assert not Index(right, dtype="object").equals(Index(left, dtype="object"))
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_explode.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
|
7 |
+
|
8 |
+
def test_basic():
|
9 |
+
s = pd.Series([[0, 1, 2], np.nan, [], (3, 4)], index=list("abcd"), name="foo")
|
10 |
+
result = s.explode()
|
11 |
+
expected = pd.Series(
|
12 |
+
[0, 1, 2, np.nan, np.nan, 3, 4], index=list("aaabcdd"), dtype=object, name="foo"
|
13 |
+
)
|
14 |
+
tm.assert_series_equal(result, expected)
|
15 |
+
|
16 |
+
|
17 |
+
def test_mixed_type():
|
18 |
+
s = pd.Series(
|
19 |
+
[[0, 1, 2], np.nan, None, np.array([]), pd.Series(["a", "b"])], name="foo"
|
20 |
+
)
|
21 |
+
result = s.explode()
|
22 |
+
expected = pd.Series(
|
23 |
+
[0, 1, 2, np.nan, None, np.nan, "a", "b"],
|
24 |
+
index=[0, 0, 0, 1, 2, 3, 4, 4],
|
25 |
+
dtype=object,
|
26 |
+
name="foo",
|
27 |
+
)
|
28 |
+
tm.assert_series_equal(result, expected)
|
29 |
+
|
30 |
+
|
31 |
+
def test_empty():
|
32 |
+
s = pd.Series(dtype=object)
|
33 |
+
result = s.explode()
|
34 |
+
expected = s.copy()
|
35 |
+
tm.assert_series_equal(result, expected)
|
36 |
+
|
37 |
+
|
38 |
+
def test_nested_lists():
|
39 |
+
s = pd.Series([[[1, 2, 3]], [1, 2], 1])
|
40 |
+
result = s.explode()
|
41 |
+
expected = pd.Series([[1, 2, 3], 1, 2, 1], index=[0, 1, 1, 2])
|
42 |
+
tm.assert_series_equal(result, expected)
|
43 |
+
|
44 |
+
|
45 |
+
def test_multi_index():
|
46 |
+
s = pd.Series(
|
47 |
+
[[0, 1, 2], np.nan, [], (3, 4)],
|
48 |
+
name="foo",
|
49 |
+
index=pd.MultiIndex.from_product([list("ab"), range(2)], names=["foo", "bar"]),
|
50 |
+
)
|
51 |
+
result = s.explode()
|
52 |
+
index = pd.MultiIndex.from_tuples(
|
53 |
+
[("a", 0), ("a", 0), ("a", 0), ("a", 1), ("b", 0), ("b", 1), ("b", 1)],
|
54 |
+
names=["foo", "bar"],
|
55 |
+
)
|
56 |
+
expected = pd.Series(
|
57 |
+
[0, 1, 2, np.nan, np.nan, 3, 4], index=index, dtype=object, name="foo"
|
58 |
+
)
|
59 |
+
tm.assert_series_equal(result, expected)
|
60 |
+
|
61 |
+
|
62 |
+
def test_large():
|
63 |
+
s = pd.Series([range(256)]).explode()
|
64 |
+
result = s.explode()
|
65 |
+
tm.assert_series_equal(result, s)
|
66 |
+
|
67 |
+
|
68 |
+
def test_invert_array():
|
69 |
+
df = pd.DataFrame({"a": pd.date_range("20190101", periods=3, tz="UTC")})
|
70 |
+
|
71 |
+
listify = df.apply(lambda x: x.array, axis=1)
|
72 |
+
result = listify.explode()
|
73 |
+
tm.assert_series_equal(result, df["a"].rename())
|
74 |
+
|
75 |
+
|
76 |
+
@pytest.mark.parametrize(
|
77 |
+
"s", [pd.Series([1, 2, 3]), pd.Series(pd.date_range("2019", periods=3, tz="UTC"))]
|
78 |
+
)
|
79 |
+
def test_non_object_dtype(s):
|
80 |
+
result = s.explode()
|
81 |
+
tm.assert_series_equal(result, s)
|
82 |
+
|
83 |
+
|
84 |
+
def test_typical_usecase():
|
85 |
+
df = pd.DataFrame(
|
86 |
+
[{"var1": "a,b,c", "var2": 1}, {"var1": "d,e,f", "var2": 2}],
|
87 |
+
columns=["var1", "var2"],
|
88 |
+
)
|
89 |
+
exploded = df.var1.str.split(",").explode()
|
90 |
+
result = df[["var2"]].join(exploded)
|
91 |
+
expected = pd.DataFrame(
|
92 |
+
{"var2": [1, 1, 1, 2, 2, 2], "var1": list("abcdef")},
|
93 |
+
columns=["var2", "var1"],
|
94 |
+
index=[0, 0, 0, 1, 1, 1],
|
95 |
+
)
|
96 |
+
tm.assert_frame_equal(result, expected)
|
97 |
+
|
98 |
+
|
99 |
+
def test_nested_EA():
|
100 |
+
# a nested EA array
|
101 |
+
s = pd.Series(
|
102 |
+
[
|
103 |
+
pd.date_range("20170101", periods=3, tz="UTC"),
|
104 |
+
pd.date_range("20170104", periods=3, tz="UTC"),
|
105 |
+
]
|
106 |
+
)
|
107 |
+
result = s.explode()
|
108 |
+
expected = pd.Series(
|
109 |
+
pd.date_range("20170101", periods=6, tz="UTC"), index=[0, 0, 0, 1, 1, 1]
|
110 |
+
)
|
111 |
+
tm.assert_series_equal(result, expected)
|
112 |
+
|
113 |
+
|
114 |
+
def test_duplicate_index():
|
115 |
+
# GH 28005
|
116 |
+
s = pd.Series([[1, 2], [3, 4]], index=[0, 0])
|
117 |
+
result = s.explode()
|
118 |
+
expected = pd.Series([1, 2, 3, 4], index=[0, 0, 0, 0], dtype=object)
|
119 |
+
tm.assert_series_equal(result, expected)
|
120 |
+
|
121 |
+
|
122 |
+
def test_ignore_index():
|
123 |
+
# GH 34932
|
124 |
+
s = pd.Series([[1, 2], [3, 4]])
|
125 |
+
result = s.explode(ignore_index=True)
|
126 |
+
expected = pd.Series([1, 2, 3, 4], index=[0, 1, 2, 3], dtype=object)
|
127 |
+
tm.assert_series_equal(result, expected)
|
128 |
+
|
129 |
+
|
130 |
+
def test_explode_sets():
|
131 |
+
# https://github.com/pandas-dev/pandas/issues/35614
|
132 |
+
s = pd.Series([{"a", "b", "c"}], index=[1])
|
133 |
+
result = s.explode().sort_values()
|
134 |
+
expected = pd.Series(["a", "b", "c"], index=[1, 1, 1])
|
135 |
+
tm.assert_series_equal(result, expected)
|
136 |
+
|
137 |
+
|
138 |
+
def test_explode_scalars_can_ignore_index():
|
139 |
+
# https://github.com/pandas-dev/pandas/issues/40487
|
140 |
+
s = pd.Series([1, 2, 3], index=["a", "b", "c"])
|
141 |
+
result = s.explode(ignore_index=True)
|
142 |
+
expected = pd.Series([1, 2, 3])
|
143 |
+
tm.assert_series_equal(result, expected)
|
144 |
+
|
145 |
+
|
146 |
+
@pytest.mark.parametrize("ignore_index", [True, False])
|
147 |
+
def test_explode_pyarrow_list_type(ignore_index):
|
148 |
+
# GH 53602
|
149 |
+
pa = pytest.importorskip("pyarrow")
|
150 |
+
|
151 |
+
data = [
|
152 |
+
[None, None],
|
153 |
+
[1],
|
154 |
+
[],
|
155 |
+
[2, 3],
|
156 |
+
None,
|
157 |
+
]
|
158 |
+
ser = pd.Series(data, dtype=pd.ArrowDtype(pa.list_(pa.int64())))
|
159 |
+
result = ser.explode(ignore_index=ignore_index)
|
160 |
+
expected = pd.Series(
|
161 |
+
data=[None, None, 1, None, 2, 3, None],
|
162 |
+
index=None if ignore_index else [0, 0, 1, 2, 3, 3, 4],
|
163 |
+
dtype=pd.ArrowDtype(pa.int64()),
|
164 |
+
)
|
165 |
+
tm.assert_series_equal(result, expected)
|
166 |
+
|
167 |
+
|
168 |
+
@pytest.mark.parametrize("ignore_index", [True, False])
|
169 |
+
def test_explode_pyarrow_non_list_type(ignore_index):
|
170 |
+
pa = pytest.importorskip("pyarrow")
|
171 |
+
data = [1, 2, 3]
|
172 |
+
ser = pd.Series(data, dtype=pd.ArrowDtype(pa.int64()))
|
173 |
+
result = ser.explode(ignore_index=ignore_index)
|
174 |
+
expected = pd.Series([1, 2, 3], dtype="int64[pyarrow]", index=[0, 1, 2])
|
175 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_fillna.py
ADDED
@@ -0,0 +1,1155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
timedelta,
|
4 |
+
timezone,
|
5 |
+
)
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pytest
|
9 |
+
import pytz
|
10 |
+
|
11 |
+
from pandas import (
|
12 |
+
Categorical,
|
13 |
+
DataFrame,
|
14 |
+
DatetimeIndex,
|
15 |
+
NaT,
|
16 |
+
Period,
|
17 |
+
Series,
|
18 |
+
Timedelta,
|
19 |
+
Timestamp,
|
20 |
+
date_range,
|
21 |
+
isna,
|
22 |
+
timedelta_range,
|
23 |
+
)
|
24 |
+
import pandas._testing as tm
|
25 |
+
from pandas.core.arrays import period_array
|
26 |
+
|
27 |
+
|
28 |
+
@pytest.mark.filterwarnings(
|
29 |
+
"ignore:(Series|DataFrame).fillna with 'method' is deprecated:FutureWarning"
|
30 |
+
)
|
31 |
+
class TestSeriesFillNA:
|
32 |
+
def test_fillna_nat(self):
|
33 |
+
series = Series([0, 1, 2, NaT._value], dtype="M8[ns]")
|
34 |
+
|
35 |
+
filled = series.fillna(method="pad")
|
36 |
+
filled2 = series.fillna(value=series.values[2])
|
37 |
+
|
38 |
+
expected = series.copy()
|
39 |
+
expected.iloc[3] = expected.iloc[2]
|
40 |
+
|
41 |
+
tm.assert_series_equal(filled, expected)
|
42 |
+
tm.assert_series_equal(filled2, expected)
|
43 |
+
|
44 |
+
df = DataFrame({"A": series})
|
45 |
+
filled = df.fillna(method="pad")
|
46 |
+
filled2 = df.fillna(value=series.values[2])
|
47 |
+
expected = DataFrame({"A": expected})
|
48 |
+
tm.assert_frame_equal(filled, expected)
|
49 |
+
tm.assert_frame_equal(filled2, expected)
|
50 |
+
|
51 |
+
series = Series([NaT._value, 0, 1, 2], dtype="M8[ns]")
|
52 |
+
|
53 |
+
filled = series.fillna(method="bfill")
|
54 |
+
filled2 = series.fillna(value=series[1])
|
55 |
+
|
56 |
+
expected = series.copy()
|
57 |
+
expected[0] = expected[1]
|
58 |
+
|
59 |
+
tm.assert_series_equal(filled, expected)
|
60 |
+
tm.assert_series_equal(filled2, expected)
|
61 |
+
|
62 |
+
df = DataFrame({"A": series})
|
63 |
+
filled = df.fillna(method="bfill")
|
64 |
+
filled2 = df.fillna(value=series[1])
|
65 |
+
expected = DataFrame({"A": expected})
|
66 |
+
tm.assert_frame_equal(filled, expected)
|
67 |
+
tm.assert_frame_equal(filled2, expected)
|
68 |
+
|
69 |
+
def test_fillna_value_or_method(self, datetime_series):
|
70 |
+
msg = "Cannot specify both 'value' and 'method'"
|
71 |
+
with pytest.raises(ValueError, match=msg):
|
72 |
+
datetime_series.fillna(value=0, method="ffill")
|
73 |
+
|
74 |
+
def test_fillna(self):
|
75 |
+
ts = Series(
|
76 |
+
[0.0, 1.0, 2.0, 3.0, 4.0], index=date_range("2020-01-01", periods=5)
|
77 |
+
)
|
78 |
+
|
79 |
+
tm.assert_series_equal(ts, ts.fillna(method="ffill"))
|
80 |
+
|
81 |
+
ts.iloc[2] = np.nan
|
82 |
+
|
83 |
+
exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index)
|
84 |
+
tm.assert_series_equal(ts.fillna(method="ffill"), exp)
|
85 |
+
|
86 |
+
exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index)
|
87 |
+
tm.assert_series_equal(ts.fillna(method="backfill"), exp)
|
88 |
+
|
89 |
+
exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index)
|
90 |
+
tm.assert_series_equal(ts.fillna(value=5), exp)
|
91 |
+
|
92 |
+
msg = "Must specify a fill 'value' or 'method'"
|
93 |
+
with pytest.raises(ValueError, match=msg):
|
94 |
+
ts.fillna()
|
95 |
+
|
96 |
+
def test_fillna_nonscalar(self):
|
97 |
+
# GH#5703
|
98 |
+
s1 = Series([np.nan])
|
99 |
+
s2 = Series([1])
|
100 |
+
result = s1.fillna(s2)
|
101 |
+
expected = Series([1.0])
|
102 |
+
tm.assert_series_equal(result, expected)
|
103 |
+
result = s1.fillna({})
|
104 |
+
tm.assert_series_equal(result, s1)
|
105 |
+
result = s1.fillna(Series((), dtype=object))
|
106 |
+
tm.assert_series_equal(result, s1)
|
107 |
+
result = s2.fillna(s1)
|
108 |
+
tm.assert_series_equal(result, s2)
|
109 |
+
result = s1.fillna({0: 1})
|
110 |
+
tm.assert_series_equal(result, expected)
|
111 |
+
result = s1.fillna({1: 1})
|
112 |
+
tm.assert_series_equal(result, Series([np.nan]))
|
113 |
+
result = s1.fillna({0: 1, 1: 1})
|
114 |
+
tm.assert_series_equal(result, expected)
|
115 |
+
result = s1.fillna(Series({0: 1, 1: 1}))
|
116 |
+
tm.assert_series_equal(result, expected)
|
117 |
+
result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5]))
|
118 |
+
tm.assert_series_equal(result, s1)
|
119 |
+
|
120 |
+
def test_fillna_aligns(self):
|
121 |
+
s1 = Series([0, 1, 2], list("abc"))
|
122 |
+
s2 = Series([0, np.nan, 2], list("bac"))
|
123 |
+
result = s2.fillna(s1)
|
124 |
+
expected = Series([0, 0, 2.0], list("bac"))
|
125 |
+
tm.assert_series_equal(result, expected)
|
126 |
+
|
127 |
+
def test_fillna_limit(self):
|
128 |
+
ser = Series(np.nan, index=[0, 1, 2])
|
129 |
+
result = ser.fillna(999, limit=1)
|
130 |
+
expected = Series([999, np.nan, np.nan], index=[0, 1, 2])
|
131 |
+
tm.assert_series_equal(result, expected)
|
132 |
+
|
133 |
+
result = ser.fillna(999, limit=2)
|
134 |
+
expected = Series([999, 999, np.nan], index=[0, 1, 2])
|
135 |
+
tm.assert_series_equal(result, expected)
|
136 |
+
|
137 |
+
def test_fillna_dont_cast_strings(self):
|
138 |
+
# GH#9043
|
139 |
+
# make sure a string representation of int/float values can be filled
|
140 |
+
# correctly without raising errors or being converted
|
141 |
+
vals = ["0", "1.5", "-0.3"]
|
142 |
+
for val in vals:
|
143 |
+
ser = Series([0, 1, np.nan, np.nan, 4], dtype="float64")
|
144 |
+
result = ser.fillna(val)
|
145 |
+
expected = Series([0, 1, val, val, 4], dtype="object")
|
146 |
+
tm.assert_series_equal(result, expected)
|
147 |
+
|
148 |
+
def test_fillna_consistency(self):
|
149 |
+
# GH#16402
|
150 |
+
# fillna with a tz aware to a tz-naive, should result in object
|
151 |
+
|
152 |
+
ser = Series([Timestamp("20130101"), NaT])
|
153 |
+
|
154 |
+
result = ser.fillna(Timestamp("20130101", tz="US/Eastern"))
|
155 |
+
expected = Series(
|
156 |
+
[Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")],
|
157 |
+
dtype="object",
|
158 |
+
)
|
159 |
+
tm.assert_series_equal(result, expected)
|
160 |
+
|
161 |
+
result = ser.where([True, False], Timestamp("20130101", tz="US/Eastern"))
|
162 |
+
tm.assert_series_equal(result, expected)
|
163 |
+
|
164 |
+
result = ser.where([True, False], Timestamp("20130101", tz="US/Eastern"))
|
165 |
+
tm.assert_series_equal(result, expected)
|
166 |
+
|
167 |
+
# with a non-datetime
|
168 |
+
result = ser.fillna("foo")
|
169 |
+
expected = Series([Timestamp("20130101"), "foo"])
|
170 |
+
tm.assert_series_equal(result, expected)
|
171 |
+
|
172 |
+
# assignment
|
173 |
+
ser2 = ser.copy()
|
174 |
+
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
|
175 |
+
ser2[1] = "foo"
|
176 |
+
tm.assert_series_equal(ser2, expected)
|
177 |
+
|
178 |
+
def test_fillna_downcast(self):
|
179 |
+
# GH#15277
|
180 |
+
# infer int64 from float64
|
181 |
+
ser = Series([1.0, np.nan])
|
182 |
+
msg = "The 'downcast' keyword in fillna is deprecated"
|
183 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
184 |
+
result = ser.fillna(0, downcast="infer")
|
185 |
+
expected = Series([1, 0])
|
186 |
+
tm.assert_series_equal(result, expected)
|
187 |
+
|
188 |
+
# infer int64 from float64 when fillna value is a dict
|
189 |
+
ser = Series([1.0, np.nan])
|
190 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
191 |
+
result = ser.fillna({1: 0}, downcast="infer")
|
192 |
+
expected = Series([1, 0])
|
193 |
+
tm.assert_series_equal(result, expected)
|
194 |
+
|
195 |
+
def test_fillna_downcast_infer_objects_to_numeric(self):
|
196 |
+
# GH#44241 if we have object-dtype, 'downcast="infer"' should
|
197 |
+
# _actually_ infer
|
198 |
+
|
199 |
+
arr = np.arange(5).astype(object)
|
200 |
+
arr[3] = np.nan
|
201 |
+
|
202 |
+
ser = Series(arr)
|
203 |
+
|
204 |
+
msg = "The 'downcast' keyword in fillna is deprecated"
|
205 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
206 |
+
res = ser.fillna(3, downcast="infer")
|
207 |
+
expected = Series(np.arange(5), dtype=np.int64)
|
208 |
+
tm.assert_series_equal(res, expected)
|
209 |
+
|
210 |
+
msg = "The 'downcast' keyword in ffill is deprecated"
|
211 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
212 |
+
res = ser.ffill(downcast="infer")
|
213 |
+
expected = Series([0, 1, 2, 2, 4], dtype=np.int64)
|
214 |
+
tm.assert_series_equal(res, expected)
|
215 |
+
|
216 |
+
msg = "The 'downcast' keyword in bfill is deprecated"
|
217 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
218 |
+
res = ser.bfill(downcast="infer")
|
219 |
+
expected = Series([0, 1, 2, 4, 4], dtype=np.int64)
|
220 |
+
tm.assert_series_equal(res, expected)
|
221 |
+
|
222 |
+
# with a non-round float present, we will downcast to float64
|
223 |
+
ser[2] = 2.5
|
224 |
+
|
225 |
+
expected = Series([0, 1, 2.5, 3, 4], dtype=np.float64)
|
226 |
+
msg = "The 'downcast' keyword in fillna is deprecated"
|
227 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
228 |
+
res = ser.fillna(3, downcast="infer")
|
229 |
+
tm.assert_series_equal(res, expected)
|
230 |
+
|
231 |
+
msg = "The 'downcast' keyword in ffill is deprecated"
|
232 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
233 |
+
res = ser.ffill(downcast="infer")
|
234 |
+
expected = Series([0, 1, 2.5, 2.5, 4], dtype=np.float64)
|
235 |
+
tm.assert_series_equal(res, expected)
|
236 |
+
|
237 |
+
msg = "The 'downcast' keyword in bfill is deprecated"
|
238 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
239 |
+
res = ser.bfill(downcast="infer")
|
240 |
+
expected = Series([0, 1, 2.5, 4, 4], dtype=np.float64)
|
241 |
+
tm.assert_series_equal(res, expected)
|
242 |
+
|
243 |
+
def test_timedelta_fillna(self, frame_or_series, unit):
|
244 |
+
# GH#3371
|
245 |
+
ser = Series(
|
246 |
+
[
|
247 |
+
Timestamp("20130101"),
|
248 |
+
Timestamp("20130101"),
|
249 |
+
Timestamp("20130102"),
|
250 |
+
Timestamp("20130103 9:01:01"),
|
251 |
+
],
|
252 |
+
dtype=f"M8[{unit}]",
|
253 |
+
)
|
254 |
+
td = ser.diff()
|
255 |
+
obj = frame_or_series(td).copy()
|
256 |
+
|
257 |
+
# reg fillna
|
258 |
+
result = obj.fillna(Timedelta(seconds=0))
|
259 |
+
expected = Series(
|
260 |
+
[
|
261 |
+
timedelta(0),
|
262 |
+
timedelta(0),
|
263 |
+
timedelta(1),
|
264 |
+
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
|
265 |
+
],
|
266 |
+
dtype=f"m8[{unit}]",
|
267 |
+
)
|
268 |
+
expected = frame_or_series(expected)
|
269 |
+
tm.assert_equal(result, expected)
|
270 |
+
|
271 |
+
# GH#45746 pre-1.? ints were interpreted as seconds. then that was
|
272 |
+
# deprecated and changed to raise. In 2.0 it casts to common dtype,
|
273 |
+
# consistent with every other dtype's behavior
|
274 |
+
res = obj.fillna(1)
|
275 |
+
expected = obj.astype(object).fillna(1)
|
276 |
+
tm.assert_equal(res, expected)
|
277 |
+
|
278 |
+
result = obj.fillna(Timedelta(seconds=1))
|
279 |
+
expected = Series(
|
280 |
+
[
|
281 |
+
timedelta(seconds=1),
|
282 |
+
timedelta(0),
|
283 |
+
timedelta(1),
|
284 |
+
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
|
285 |
+
],
|
286 |
+
dtype=f"m8[{unit}]",
|
287 |
+
)
|
288 |
+
expected = frame_or_series(expected)
|
289 |
+
tm.assert_equal(result, expected)
|
290 |
+
|
291 |
+
result = obj.fillna(timedelta(days=1, seconds=1))
|
292 |
+
expected = Series(
|
293 |
+
[
|
294 |
+
timedelta(days=1, seconds=1),
|
295 |
+
timedelta(0),
|
296 |
+
timedelta(1),
|
297 |
+
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
|
298 |
+
],
|
299 |
+
dtype=f"m8[{unit}]",
|
300 |
+
)
|
301 |
+
expected = frame_or_series(expected)
|
302 |
+
tm.assert_equal(result, expected)
|
303 |
+
|
304 |
+
result = obj.fillna(np.timedelta64(10**9))
|
305 |
+
expected = Series(
|
306 |
+
[
|
307 |
+
timedelta(seconds=1),
|
308 |
+
timedelta(0),
|
309 |
+
timedelta(1),
|
310 |
+
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
|
311 |
+
],
|
312 |
+
dtype=f"m8[{unit}]",
|
313 |
+
)
|
314 |
+
expected = frame_or_series(expected)
|
315 |
+
tm.assert_equal(result, expected)
|
316 |
+
|
317 |
+
result = obj.fillna(NaT)
|
318 |
+
expected = Series(
|
319 |
+
[
|
320 |
+
NaT,
|
321 |
+
timedelta(0),
|
322 |
+
timedelta(1),
|
323 |
+
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
|
324 |
+
],
|
325 |
+
dtype=f"m8[{unit}]",
|
326 |
+
)
|
327 |
+
expected = frame_or_series(expected)
|
328 |
+
tm.assert_equal(result, expected)
|
329 |
+
|
330 |
+
# ffill
|
331 |
+
td[2] = np.nan
|
332 |
+
obj = frame_or_series(td).copy()
|
333 |
+
result = obj.ffill()
|
334 |
+
expected = td.fillna(Timedelta(seconds=0))
|
335 |
+
expected[0] = np.nan
|
336 |
+
expected = frame_or_series(expected)
|
337 |
+
|
338 |
+
tm.assert_equal(result, expected)
|
339 |
+
|
340 |
+
# bfill
|
341 |
+
td[2] = np.nan
|
342 |
+
obj = frame_or_series(td)
|
343 |
+
result = obj.bfill()
|
344 |
+
expected = td.fillna(Timedelta(seconds=0))
|
345 |
+
expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1)
|
346 |
+
expected = frame_or_series(expected)
|
347 |
+
tm.assert_equal(result, expected)
|
348 |
+
|
349 |
+
def test_datetime64_fillna(self):
|
350 |
+
ser = Series(
|
351 |
+
[
|
352 |
+
Timestamp("20130101"),
|
353 |
+
Timestamp("20130101"),
|
354 |
+
Timestamp("20130102"),
|
355 |
+
Timestamp("20130103 9:01:01"),
|
356 |
+
]
|
357 |
+
)
|
358 |
+
ser[2] = np.nan
|
359 |
+
|
360 |
+
# ffill
|
361 |
+
result = ser.ffill()
|
362 |
+
expected = Series(
|
363 |
+
[
|
364 |
+
Timestamp("20130101"),
|
365 |
+
Timestamp("20130101"),
|
366 |
+
Timestamp("20130101"),
|
367 |
+
Timestamp("20130103 9:01:01"),
|
368 |
+
]
|
369 |
+
)
|
370 |
+
tm.assert_series_equal(result, expected)
|
371 |
+
|
372 |
+
# bfill
|
373 |
+
result = ser.bfill()
|
374 |
+
expected = Series(
|
375 |
+
[
|
376 |
+
Timestamp("20130101"),
|
377 |
+
Timestamp("20130101"),
|
378 |
+
Timestamp("20130103 9:01:01"),
|
379 |
+
Timestamp("20130103 9:01:01"),
|
380 |
+
]
|
381 |
+
)
|
382 |
+
tm.assert_series_equal(result, expected)
|
383 |
+
|
384 |
+
@pytest.mark.parametrize(
|
385 |
+
"scalar",
|
386 |
+
[
|
387 |
+
False,
|
388 |
+
pytest.param(
|
389 |
+
True,
|
390 |
+
marks=pytest.mark.xfail(
|
391 |
+
reason="GH#56410 scalar case not yet addressed"
|
392 |
+
),
|
393 |
+
),
|
394 |
+
],
|
395 |
+
)
|
396 |
+
@pytest.mark.parametrize("tz", [None, "UTC"])
|
397 |
+
def test_datetime64_fillna_mismatched_reso_no_rounding(self, tz, scalar):
|
398 |
+
# GH#56410
|
399 |
+
dti = date_range("2016-01-01", periods=3, unit="s", tz=tz)
|
400 |
+
item = Timestamp("2016-02-03 04:05:06.789", tz=tz)
|
401 |
+
vec = date_range(item, periods=3, unit="ms")
|
402 |
+
|
403 |
+
exp_dtype = "M8[ms]" if tz is None else "M8[ms, UTC]"
|
404 |
+
expected = Series([item, dti[1], dti[2]], dtype=exp_dtype)
|
405 |
+
|
406 |
+
ser = Series(dti)
|
407 |
+
ser[0] = NaT
|
408 |
+
ser2 = ser.copy()
|
409 |
+
|
410 |
+
res = ser.fillna(item)
|
411 |
+
res2 = ser2.fillna(Series(vec))
|
412 |
+
|
413 |
+
if scalar:
|
414 |
+
tm.assert_series_equal(res, expected)
|
415 |
+
else:
|
416 |
+
tm.assert_series_equal(res2, expected)
|
417 |
+
|
418 |
+
@pytest.mark.parametrize(
|
419 |
+
"scalar",
|
420 |
+
[
|
421 |
+
False,
|
422 |
+
pytest.param(
|
423 |
+
True,
|
424 |
+
marks=pytest.mark.xfail(
|
425 |
+
reason="GH#56410 scalar case not yet addressed"
|
426 |
+
),
|
427 |
+
),
|
428 |
+
],
|
429 |
+
)
|
430 |
+
def test_timedelta64_fillna_mismatched_reso_no_rounding(self, scalar):
|
431 |
+
# GH#56410
|
432 |
+
tdi = date_range("2016-01-01", periods=3, unit="s") - Timestamp("1970-01-01")
|
433 |
+
item = Timestamp("2016-02-03 04:05:06.789") - Timestamp("1970-01-01")
|
434 |
+
vec = timedelta_range(item, periods=3, unit="ms")
|
435 |
+
|
436 |
+
expected = Series([item, tdi[1], tdi[2]], dtype="m8[ms]")
|
437 |
+
|
438 |
+
ser = Series(tdi)
|
439 |
+
ser[0] = NaT
|
440 |
+
ser2 = ser.copy()
|
441 |
+
|
442 |
+
res = ser.fillna(item)
|
443 |
+
res2 = ser2.fillna(Series(vec))
|
444 |
+
|
445 |
+
if scalar:
|
446 |
+
tm.assert_series_equal(res, expected)
|
447 |
+
else:
|
448 |
+
tm.assert_series_equal(res2, expected)
|
449 |
+
|
450 |
+
def test_datetime64_fillna_backfill(self):
|
451 |
+
# GH#6587
|
452 |
+
# make sure that we are treating as integer when filling
|
453 |
+
ser = Series([NaT, NaT, "2013-08-05 15:30:00.000001"], dtype="M8[ns]")
|
454 |
+
|
455 |
+
expected = Series(
|
456 |
+
[
|
457 |
+
"2013-08-05 15:30:00.000001",
|
458 |
+
"2013-08-05 15:30:00.000001",
|
459 |
+
"2013-08-05 15:30:00.000001",
|
460 |
+
],
|
461 |
+
dtype="M8[ns]",
|
462 |
+
)
|
463 |
+
result = ser.fillna(method="backfill")
|
464 |
+
tm.assert_series_equal(result, expected)
|
465 |
+
|
466 |
+
@pytest.mark.parametrize("tz", ["US/Eastern", "Asia/Tokyo"])
|
467 |
+
def test_datetime64_tz_fillna(self, tz, unit):
|
468 |
+
# DatetimeLikeBlock
|
469 |
+
ser = Series(
|
470 |
+
[
|
471 |
+
Timestamp("2011-01-01 10:00"),
|
472 |
+
NaT,
|
473 |
+
Timestamp("2011-01-03 10:00"),
|
474 |
+
NaT,
|
475 |
+
],
|
476 |
+
dtype=f"M8[{unit}]",
|
477 |
+
)
|
478 |
+
null_loc = Series([False, True, False, True])
|
479 |
+
|
480 |
+
result = ser.fillna(Timestamp("2011-01-02 10:00"))
|
481 |
+
expected = Series(
|
482 |
+
[
|
483 |
+
Timestamp("2011-01-01 10:00"),
|
484 |
+
Timestamp("2011-01-02 10:00"),
|
485 |
+
Timestamp("2011-01-03 10:00"),
|
486 |
+
Timestamp("2011-01-02 10:00"),
|
487 |
+
],
|
488 |
+
dtype=f"M8[{unit}]",
|
489 |
+
)
|
490 |
+
tm.assert_series_equal(expected, result)
|
491 |
+
# check s is not changed
|
492 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
493 |
+
|
494 |
+
result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz))
|
495 |
+
expected = Series(
|
496 |
+
[
|
497 |
+
Timestamp("2011-01-01 10:00"),
|
498 |
+
Timestamp("2011-01-02 10:00", tz=tz),
|
499 |
+
Timestamp("2011-01-03 10:00"),
|
500 |
+
Timestamp("2011-01-02 10:00", tz=tz),
|
501 |
+
]
|
502 |
+
)
|
503 |
+
tm.assert_series_equal(expected, result)
|
504 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
505 |
+
|
506 |
+
result = ser.fillna("AAA")
|
507 |
+
expected = Series(
|
508 |
+
[
|
509 |
+
Timestamp("2011-01-01 10:00"),
|
510 |
+
"AAA",
|
511 |
+
Timestamp("2011-01-03 10:00"),
|
512 |
+
"AAA",
|
513 |
+
],
|
514 |
+
dtype=object,
|
515 |
+
)
|
516 |
+
tm.assert_series_equal(expected, result)
|
517 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
518 |
+
|
519 |
+
result = ser.fillna(
|
520 |
+
{
|
521 |
+
1: Timestamp("2011-01-02 10:00", tz=tz),
|
522 |
+
3: Timestamp("2011-01-04 10:00"),
|
523 |
+
}
|
524 |
+
)
|
525 |
+
expected = Series(
|
526 |
+
[
|
527 |
+
Timestamp("2011-01-01 10:00"),
|
528 |
+
Timestamp("2011-01-02 10:00", tz=tz),
|
529 |
+
Timestamp("2011-01-03 10:00"),
|
530 |
+
Timestamp("2011-01-04 10:00"),
|
531 |
+
]
|
532 |
+
)
|
533 |
+
tm.assert_series_equal(expected, result)
|
534 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
535 |
+
|
536 |
+
result = ser.fillna(
|
537 |
+
{1: Timestamp("2011-01-02 10:00"), 3: Timestamp("2011-01-04 10:00")}
|
538 |
+
)
|
539 |
+
expected = Series(
|
540 |
+
[
|
541 |
+
Timestamp("2011-01-01 10:00"),
|
542 |
+
Timestamp("2011-01-02 10:00"),
|
543 |
+
Timestamp("2011-01-03 10:00"),
|
544 |
+
Timestamp("2011-01-04 10:00"),
|
545 |
+
],
|
546 |
+
dtype=f"M8[{unit}]",
|
547 |
+
)
|
548 |
+
tm.assert_series_equal(expected, result)
|
549 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
550 |
+
|
551 |
+
# DatetimeTZBlock
|
552 |
+
idx = DatetimeIndex(
|
553 |
+
["2011-01-01 10:00", NaT, "2011-01-03 10:00", NaT], tz=tz
|
554 |
+
).as_unit(unit)
|
555 |
+
ser = Series(idx)
|
556 |
+
assert ser.dtype == f"datetime64[{unit}, {tz}]"
|
557 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
558 |
+
|
559 |
+
result = ser.fillna(Timestamp("2011-01-02 10:00"))
|
560 |
+
expected = Series(
|
561 |
+
[
|
562 |
+
Timestamp("2011-01-01 10:00", tz=tz),
|
563 |
+
Timestamp("2011-01-02 10:00"),
|
564 |
+
Timestamp("2011-01-03 10:00", tz=tz),
|
565 |
+
Timestamp("2011-01-02 10:00"),
|
566 |
+
]
|
567 |
+
)
|
568 |
+
tm.assert_series_equal(expected, result)
|
569 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
570 |
+
|
571 |
+
result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz))
|
572 |
+
idx = DatetimeIndex(
|
573 |
+
[
|
574 |
+
"2011-01-01 10:00",
|
575 |
+
"2011-01-02 10:00",
|
576 |
+
"2011-01-03 10:00",
|
577 |
+
"2011-01-02 10:00",
|
578 |
+
],
|
579 |
+
tz=tz,
|
580 |
+
).as_unit(unit)
|
581 |
+
expected = Series(idx)
|
582 |
+
tm.assert_series_equal(expected, result)
|
583 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
584 |
+
|
585 |
+
result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz).to_pydatetime())
|
586 |
+
idx = DatetimeIndex(
|
587 |
+
[
|
588 |
+
"2011-01-01 10:00",
|
589 |
+
"2011-01-02 10:00",
|
590 |
+
"2011-01-03 10:00",
|
591 |
+
"2011-01-02 10:00",
|
592 |
+
],
|
593 |
+
tz=tz,
|
594 |
+
).as_unit(unit)
|
595 |
+
expected = Series(idx)
|
596 |
+
tm.assert_series_equal(expected, result)
|
597 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
598 |
+
|
599 |
+
result = ser.fillna("AAA")
|
600 |
+
expected = Series(
|
601 |
+
[
|
602 |
+
Timestamp("2011-01-01 10:00", tz=tz),
|
603 |
+
"AAA",
|
604 |
+
Timestamp("2011-01-03 10:00", tz=tz),
|
605 |
+
"AAA",
|
606 |
+
],
|
607 |
+
dtype=object,
|
608 |
+
)
|
609 |
+
tm.assert_series_equal(expected, result)
|
610 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
611 |
+
|
612 |
+
result = ser.fillna(
|
613 |
+
{
|
614 |
+
1: Timestamp("2011-01-02 10:00", tz=tz),
|
615 |
+
3: Timestamp("2011-01-04 10:00"),
|
616 |
+
}
|
617 |
+
)
|
618 |
+
expected = Series(
|
619 |
+
[
|
620 |
+
Timestamp("2011-01-01 10:00", tz=tz),
|
621 |
+
Timestamp("2011-01-02 10:00", tz=tz),
|
622 |
+
Timestamp("2011-01-03 10:00", tz=tz),
|
623 |
+
Timestamp("2011-01-04 10:00"),
|
624 |
+
]
|
625 |
+
)
|
626 |
+
tm.assert_series_equal(expected, result)
|
627 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
628 |
+
|
629 |
+
result = ser.fillna(
|
630 |
+
{
|
631 |
+
1: Timestamp("2011-01-02 10:00", tz=tz),
|
632 |
+
3: Timestamp("2011-01-04 10:00", tz=tz),
|
633 |
+
}
|
634 |
+
)
|
635 |
+
expected = Series(
|
636 |
+
[
|
637 |
+
Timestamp("2011-01-01 10:00", tz=tz),
|
638 |
+
Timestamp("2011-01-02 10:00", tz=tz),
|
639 |
+
Timestamp("2011-01-03 10:00", tz=tz),
|
640 |
+
Timestamp("2011-01-04 10:00", tz=tz),
|
641 |
+
]
|
642 |
+
).dt.as_unit(unit)
|
643 |
+
tm.assert_series_equal(expected, result)
|
644 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
645 |
+
|
646 |
+
# filling with a naive/other zone, coerce to object
|
647 |
+
result = ser.fillna(Timestamp("20130101"))
|
648 |
+
expected = Series(
|
649 |
+
[
|
650 |
+
Timestamp("2011-01-01 10:00", tz=tz),
|
651 |
+
Timestamp("2013-01-01"),
|
652 |
+
Timestamp("2011-01-03 10:00", tz=tz),
|
653 |
+
Timestamp("2013-01-01"),
|
654 |
+
]
|
655 |
+
)
|
656 |
+
tm.assert_series_equal(expected, result)
|
657 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
658 |
+
|
659 |
+
# pre-2.0 fillna with mixed tzs would cast to object, in 2.0
|
660 |
+
# it retains dtype.
|
661 |
+
result = ser.fillna(Timestamp("20130101", tz="US/Pacific"))
|
662 |
+
expected = Series(
|
663 |
+
[
|
664 |
+
Timestamp("2011-01-01 10:00", tz=tz),
|
665 |
+
Timestamp("2013-01-01", tz="US/Pacific").tz_convert(tz),
|
666 |
+
Timestamp("2011-01-03 10:00", tz=tz),
|
667 |
+
Timestamp("2013-01-01", tz="US/Pacific").tz_convert(tz),
|
668 |
+
]
|
669 |
+
).dt.as_unit(unit)
|
670 |
+
tm.assert_series_equal(expected, result)
|
671 |
+
tm.assert_series_equal(isna(ser), null_loc)
|
672 |
+
|
673 |
+
def test_fillna_dt64tz_with_method(self):
|
674 |
+
# with timezone
|
675 |
+
# GH#15855
|
676 |
+
ser = Series([Timestamp("2012-11-11 00:00:00+01:00"), NaT])
|
677 |
+
exp = Series(
|
678 |
+
[
|
679 |
+
Timestamp("2012-11-11 00:00:00+01:00"),
|
680 |
+
Timestamp("2012-11-11 00:00:00+01:00"),
|
681 |
+
]
|
682 |
+
)
|
683 |
+
tm.assert_series_equal(ser.fillna(method="pad"), exp)
|
684 |
+
|
685 |
+
ser = Series([NaT, Timestamp("2012-11-11 00:00:00+01:00")])
|
686 |
+
exp = Series(
|
687 |
+
[
|
688 |
+
Timestamp("2012-11-11 00:00:00+01:00"),
|
689 |
+
Timestamp("2012-11-11 00:00:00+01:00"),
|
690 |
+
]
|
691 |
+
)
|
692 |
+
tm.assert_series_equal(ser.fillna(method="bfill"), exp)
|
693 |
+
|
694 |
+
def test_fillna_pytimedelta(self):
|
695 |
+
# GH#8209
|
696 |
+
ser = Series([np.nan, Timedelta("1 days")], index=["A", "B"])
|
697 |
+
|
698 |
+
result = ser.fillna(timedelta(1))
|
699 |
+
expected = Series(Timedelta("1 days"), index=["A", "B"])
|
700 |
+
tm.assert_series_equal(result, expected)
|
701 |
+
|
702 |
+
def test_fillna_period(self):
|
703 |
+
# GH#13737
|
704 |
+
ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")])
|
705 |
+
|
706 |
+
res = ser.fillna(Period("2012-01", freq="M"))
|
707 |
+
exp = Series([Period("2011-01", freq="M"), Period("2012-01", freq="M")])
|
708 |
+
tm.assert_series_equal(res, exp)
|
709 |
+
assert res.dtype == "Period[M]"
|
710 |
+
|
711 |
+
def test_fillna_dt64_timestamp(self, frame_or_series):
|
712 |
+
ser = Series(
|
713 |
+
[
|
714 |
+
Timestamp("20130101"),
|
715 |
+
Timestamp("20130101"),
|
716 |
+
Timestamp("20130102"),
|
717 |
+
Timestamp("20130103 9:01:01"),
|
718 |
+
]
|
719 |
+
)
|
720 |
+
ser[2] = np.nan
|
721 |
+
obj = frame_or_series(ser)
|
722 |
+
|
723 |
+
# reg fillna
|
724 |
+
result = obj.fillna(Timestamp("20130104"))
|
725 |
+
expected = Series(
|
726 |
+
[
|
727 |
+
Timestamp("20130101"),
|
728 |
+
Timestamp("20130101"),
|
729 |
+
Timestamp("20130104"),
|
730 |
+
Timestamp("20130103 9:01:01"),
|
731 |
+
]
|
732 |
+
)
|
733 |
+
expected = frame_or_series(expected)
|
734 |
+
tm.assert_equal(result, expected)
|
735 |
+
|
736 |
+
result = obj.fillna(NaT)
|
737 |
+
expected = obj
|
738 |
+
tm.assert_equal(result, expected)
|
739 |
+
|
740 |
+
def test_fillna_dt64_non_nao(self):
|
741 |
+
# GH#27419
|
742 |
+
ser = Series([Timestamp("2010-01-01"), NaT, Timestamp("2000-01-01")])
|
743 |
+
val = np.datetime64("1975-04-05", "ms")
|
744 |
+
|
745 |
+
result = ser.fillna(val)
|
746 |
+
expected = Series(
|
747 |
+
[Timestamp("2010-01-01"), Timestamp("1975-04-05"), Timestamp("2000-01-01")]
|
748 |
+
)
|
749 |
+
tm.assert_series_equal(result, expected)
|
750 |
+
|
751 |
+
def test_fillna_numeric_inplace(self):
|
752 |
+
x = Series([np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"])
|
753 |
+
y = x.copy()
|
754 |
+
|
755 |
+
return_value = y.fillna(value=0, inplace=True)
|
756 |
+
assert return_value is None
|
757 |
+
|
758 |
+
expected = x.fillna(value=0)
|
759 |
+
tm.assert_series_equal(y, expected)
|
760 |
+
|
761 |
+
# ---------------------------------------------------------------
|
762 |
+
# CategoricalDtype
|
763 |
+
|
764 |
+
@pytest.mark.parametrize(
|
765 |
+
"fill_value, expected_output",
|
766 |
+
[
|
767 |
+
("a", ["a", "a", "b", "a", "a"]),
|
768 |
+
({1: "a", 3: "b", 4: "b"}, ["a", "a", "b", "b", "b"]),
|
769 |
+
({1: "a"}, ["a", "a", "b", np.nan, np.nan]),
|
770 |
+
({1: "a", 3: "b"}, ["a", "a", "b", "b", np.nan]),
|
771 |
+
(Series("a"), ["a", np.nan, "b", np.nan, np.nan]),
|
772 |
+
(Series("a", index=[1]), ["a", "a", "b", np.nan, np.nan]),
|
773 |
+
(Series({1: "a", 3: "b"}), ["a", "a", "b", "b", np.nan]),
|
774 |
+
(Series(["a", "b"], index=[3, 4]), ["a", np.nan, "b", "a", "b"]),
|
775 |
+
],
|
776 |
+
)
|
777 |
+
def test_fillna_categorical(self, fill_value, expected_output):
|
778 |
+
# GH#17033
|
779 |
+
# Test fillna for a Categorical series
|
780 |
+
data = ["a", np.nan, "b", np.nan, np.nan]
|
781 |
+
ser = Series(Categorical(data, categories=["a", "b"]))
|
782 |
+
exp = Series(Categorical(expected_output, categories=["a", "b"]))
|
783 |
+
result = ser.fillna(fill_value)
|
784 |
+
tm.assert_series_equal(result, exp)
|
785 |
+
|
786 |
+
@pytest.mark.parametrize(
|
787 |
+
"fill_value, expected_output",
|
788 |
+
[
|
789 |
+
(Series(["a", "b", "c", "d", "e"]), ["a", "b", "b", "d", "e"]),
|
790 |
+
(Series(["b", "d", "a", "d", "a"]), ["a", "d", "b", "d", "a"]),
|
791 |
+
(
|
792 |
+
Series(
|
793 |
+
Categorical(
|
794 |
+
["b", "d", "a", "d", "a"], categories=["b", "c", "d", "e", "a"]
|
795 |
+
)
|
796 |
+
),
|
797 |
+
["a", "d", "b", "d", "a"],
|
798 |
+
),
|
799 |
+
],
|
800 |
+
)
|
801 |
+
def test_fillna_categorical_with_new_categories(self, fill_value, expected_output):
|
802 |
+
# GH#26215
|
803 |
+
data = ["a", np.nan, "b", np.nan, np.nan]
|
804 |
+
ser = Series(Categorical(data, categories=["a", "b", "c", "d", "e"]))
|
805 |
+
exp = Series(Categorical(expected_output, categories=["a", "b", "c", "d", "e"]))
|
806 |
+
result = ser.fillna(fill_value)
|
807 |
+
tm.assert_series_equal(result, exp)
|
808 |
+
|
809 |
+
def test_fillna_categorical_raises(self):
|
810 |
+
data = ["a", np.nan, "b", np.nan, np.nan]
|
811 |
+
ser = Series(Categorical(data, categories=["a", "b"]))
|
812 |
+
cat = ser._values
|
813 |
+
|
814 |
+
msg = "Cannot setitem on a Categorical with a new category"
|
815 |
+
with pytest.raises(TypeError, match=msg):
|
816 |
+
ser.fillna("d")
|
817 |
+
|
818 |
+
msg2 = "Length of 'value' does not match."
|
819 |
+
with pytest.raises(ValueError, match=msg2):
|
820 |
+
cat.fillna(Series("d"))
|
821 |
+
|
822 |
+
with pytest.raises(TypeError, match=msg):
|
823 |
+
ser.fillna({1: "d", 3: "a"})
|
824 |
+
|
825 |
+
msg = '"value" parameter must be a scalar or dict, but you passed a "list"'
|
826 |
+
with pytest.raises(TypeError, match=msg):
|
827 |
+
ser.fillna(["a", "b"])
|
828 |
+
|
829 |
+
msg = '"value" parameter must be a scalar or dict, but you passed a "tuple"'
|
830 |
+
with pytest.raises(TypeError, match=msg):
|
831 |
+
ser.fillna(("a", "b"))
|
832 |
+
|
833 |
+
msg = (
|
834 |
+
'"value" parameter must be a scalar, dict '
|
835 |
+
'or Series, but you passed a "DataFrame"'
|
836 |
+
)
|
837 |
+
with pytest.raises(TypeError, match=msg):
|
838 |
+
ser.fillna(DataFrame({1: ["a"], 3: ["b"]}))
|
839 |
+
|
840 |
+
@pytest.mark.parametrize("dtype", [float, "float32", "float64"])
|
841 |
+
@pytest.mark.parametrize("fill_type", tm.ALL_REAL_NUMPY_DTYPES)
|
842 |
+
@pytest.mark.parametrize("scalar", [True, False])
|
843 |
+
def test_fillna_float_casting(self, dtype, fill_type, scalar):
|
844 |
+
# GH-43424
|
845 |
+
ser = Series([np.nan, 1.2], dtype=dtype)
|
846 |
+
fill_values = Series([2, 2], dtype=fill_type)
|
847 |
+
if scalar:
|
848 |
+
fill_values = fill_values.dtype.type(2)
|
849 |
+
|
850 |
+
result = ser.fillna(fill_values)
|
851 |
+
expected = Series([2.0, 1.2], dtype=dtype)
|
852 |
+
tm.assert_series_equal(result, expected)
|
853 |
+
|
854 |
+
ser = Series([np.nan, 1.2], dtype=dtype)
|
855 |
+
mask = ser.isna().to_numpy()
|
856 |
+
ser[mask] = fill_values
|
857 |
+
tm.assert_series_equal(ser, expected)
|
858 |
+
|
859 |
+
ser = Series([np.nan, 1.2], dtype=dtype)
|
860 |
+
ser.mask(mask, fill_values, inplace=True)
|
861 |
+
tm.assert_series_equal(ser, expected)
|
862 |
+
|
863 |
+
ser = Series([np.nan, 1.2], dtype=dtype)
|
864 |
+
res = ser.where(~mask, fill_values)
|
865 |
+
tm.assert_series_equal(res, expected)
|
866 |
+
|
867 |
+
def test_fillna_f32_upcast_with_dict(self):
|
868 |
+
# GH-43424
|
869 |
+
ser = Series([np.nan, 1.2], dtype=np.float32)
|
870 |
+
result = ser.fillna({0: 1})
|
871 |
+
expected = Series([1.0, 1.2], dtype=np.float32)
|
872 |
+
tm.assert_series_equal(result, expected)
|
873 |
+
|
874 |
+
# ---------------------------------------------------------------
|
875 |
+
# Invalid Usages
|
876 |
+
|
877 |
+
def test_fillna_invalid_method(self, datetime_series):
|
878 |
+
try:
|
879 |
+
datetime_series.fillna(method="ffil")
|
880 |
+
except ValueError as inst:
|
881 |
+
assert "ffil" in str(inst)
|
882 |
+
|
883 |
+
def test_fillna_listlike_invalid(self):
|
884 |
+
ser = Series(np.random.default_rng(2).integers(-100, 100, 50))
|
885 |
+
msg = '"value" parameter must be a scalar or dict, but you passed a "list"'
|
886 |
+
with pytest.raises(TypeError, match=msg):
|
887 |
+
ser.fillna([1, 2])
|
888 |
+
|
889 |
+
msg = '"value" parameter must be a scalar or dict, but you passed a "tuple"'
|
890 |
+
with pytest.raises(TypeError, match=msg):
|
891 |
+
ser.fillna((1, 2))
|
892 |
+
|
893 |
+
def test_fillna_method_and_limit_invalid(self):
|
894 |
+
# related GH#9217, make sure limit is an int and greater than 0
|
895 |
+
ser = Series([1, 2, 3, None])
|
896 |
+
msg = "|".join(
|
897 |
+
[
|
898 |
+
r"Cannot specify both 'value' and 'method'\.",
|
899 |
+
"Limit must be greater than 0",
|
900 |
+
"Limit must be an integer",
|
901 |
+
]
|
902 |
+
)
|
903 |
+
for limit in [-1, 0, 1.0, 2.0]:
|
904 |
+
for method in ["backfill", "bfill", "pad", "ffill", None]:
|
905 |
+
with pytest.raises(ValueError, match=msg):
|
906 |
+
ser.fillna(1, limit=limit, method=method)
|
907 |
+
|
908 |
+
def test_fillna_datetime64_with_timezone_tzinfo(self):
|
909 |
+
# https://github.com/pandas-dev/pandas/issues/38851
|
910 |
+
# different tzinfos representing UTC treated as equal
|
911 |
+
ser = Series(date_range("2020", periods=3, tz="UTC"))
|
912 |
+
expected = ser.copy()
|
913 |
+
ser[1] = NaT
|
914 |
+
result = ser.fillna(datetime(2020, 1, 2, tzinfo=timezone.utc))
|
915 |
+
tm.assert_series_equal(result, expected)
|
916 |
+
|
917 |
+
# pre-2.0 we cast to object with mixed tzs, in 2.0 we retain dtype
|
918 |
+
ts = Timestamp("2000-01-01", tz="US/Pacific")
|
919 |
+
ser2 = Series(ser._values.tz_convert("dateutil/US/Pacific"))
|
920 |
+
assert ser2.dtype.kind == "M"
|
921 |
+
result = ser2.fillna(ts)
|
922 |
+
expected = Series(
|
923 |
+
[ser2[0], ts.tz_convert(ser2.dtype.tz), ser2[2]],
|
924 |
+
dtype=ser2.dtype,
|
925 |
+
)
|
926 |
+
tm.assert_series_equal(result, expected)
|
927 |
+
|
928 |
+
@pytest.mark.parametrize(
|
929 |
+
"input, input_fillna, expected_data, expected_categories",
|
930 |
+
[
|
931 |
+
(["A", "B", None, "A"], "B", ["A", "B", "B", "A"], ["A", "B"]),
|
932 |
+
(["A", "B", np.nan, "A"], "B", ["A", "B", "B", "A"], ["A", "B"]),
|
933 |
+
],
|
934 |
+
)
|
935 |
+
def test_fillna_categorical_accept_same_type(
|
936 |
+
self, input, input_fillna, expected_data, expected_categories
|
937 |
+
):
|
938 |
+
# GH32414
|
939 |
+
cat = Categorical(input)
|
940 |
+
ser = Series(cat).fillna(input_fillna)
|
941 |
+
filled = cat.fillna(ser)
|
942 |
+
result = cat.fillna(filled)
|
943 |
+
expected = Categorical(expected_data, categories=expected_categories)
|
944 |
+
tm.assert_categorical_equal(result, expected)
|
945 |
+
|
946 |
+
|
947 |
+
@pytest.mark.filterwarnings(
|
948 |
+
"ignore:Series.fillna with 'method' is deprecated:FutureWarning"
|
949 |
+
)
|
950 |
+
class TestFillnaPad:
|
951 |
+
def test_fillna_bug(self):
|
952 |
+
ser = Series([np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"])
|
953 |
+
filled = ser.fillna(method="ffill")
|
954 |
+
expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], ser.index)
|
955 |
+
tm.assert_series_equal(filled, expected)
|
956 |
+
|
957 |
+
filled = ser.fillna(method="bfill")
|
958 |
+
expected = Series([1.0, 1.0, 3.0, 3.0, np.nan], ser.index)
|
959 |
+
tm.assert_series_equal(filled, expected)
|
960 |
+
|
961 |
+
def test_ffill(self):
|
962 |
+
ts = Series(
|
963 |
+
[0.0, 1.0, 2.0, 3.0, 4.0], index=date_range("2020-01-01", periods=5)
|
964 |
+
)
|
965 |
+
ts.iloc[2] = np.nan
|
966 |
+
tm.assert_series_equal(ts.ffill(), ts.fillna(method="ffill"))
|
967 |
+
|
968 |
+
def test_ffill_mixed_dtypes_without_missing_data(self):
|
969 |
+
# GH#14956
|
970 |
+
series = Series([datetime(2015, 1, 1, tzinfo=pytz.utc), 1])
|
971 |
+
result = series.ffill()
|
972 |
+
tm.assert_series_equal(series, result)
|
973 |
+
|
974 |
+
def test_bfill(self):
|
975 |
+
ts = Series(
|
976 |
+
[0.0, 1.0, 2.0, 3.0, 4.0], index=date_range("2020-01-01", periods=5)
|
977 |
+
)
|
978 |
+
ts.iloc[2] = np.nan
|
979 |
+
tm.assert_series_equal(ts.bfill(), ts.fillna(method="bfill"))
|
980 |
+
|
981 |
+
def test_pad_nan(self):
|
982 |
+
x = Series(
|
983 |
+
[np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"], dtype=float
|
984 |
+
)
|
985 |
+
|
986 |
+
return_value = x.fillna(method="pad", inplace=True)
|
987 |
+
assert return_value is None
|
988 |
+
|
989 |
+
expected = Series(
|
990 |
+
[np.nan, 1.0, 1.0, 3.0, 3.0], ["z", "a", "b", "c", "d"], dtype=float
|
991 |
+
)
|
992 |
+
tm.assert_series_equal(x[1:], expected[1:])
|
993 |
+
assert np.isnan(x.iloc[0]), np.isnan(expected.iloc[0])
|
994 |
+
|
995 |
+
def test_series_fillna_limit(self):
|
996 |
+
index = np.arange(10)
|
997 |
+
s = Series(np.random.default_rng(2).standard_normal(10), index=index)
|
998 |
+
|
999 |
+
result = s[:2].reindex(index)
|
1000 |
+
result = result.fillna(method="pad", limit=5)
|
1001 |
+
|
1002 |
+
expected = s[:2].reindex(index).fillna(method="pad")
|
1003 |
+
expected[-3:] = np.nan
|
1004 |
+
tm.assert_series_equal(result, expected)
|
1005 |
+
|
1006 |
+
result = s[-2:].reindex(index)
|
1007 |
+
result = result.fillna(method="bfill", limit=5)
|
1008 |
+
|
1009 |
+
expected = s[-2:].reindex(index).fillna(method="backfill")
|
1010 |
+
expected[:3] = np.nan
|
1011 |
+
tm.assert_series_equal(result, expected)
|
1012 |
+
|
1013 |
+
def test_series_pad_backfill_limit(self):
|
1014 |
+
index = np.arange(10)
|
1015 |
+
s = Series(np.random.default_rng(2).standard_normal(10), index=index)
|
1016 |
+
|
1017 |
+
result = s[:2].reindex(index, method="pad", limit=5)
|
1018 |
+
|
1019 |
+
expected = s[:2].reindex(index).fillna(method="pad")
|
1020 |
+
expected[-3:] = np.nan
|
1021 |
+
tm.assert_series_equal(result, expected)
|
1022 |
+
|
1023 |
+
result = s[-2:].reindex(index, method="backfill", limit=5)
|
1024 |
+
|
1025 |
+
expected = s[-2:].reindex(index).fillna(method="backfill")
|
1026 |
+
expected[:3] = np.nan
|
1027 |
+
tm.assert_series_equal(result, expected)
|
1028 |
+
|
1029 |
+
def test_fillna_int(self):
|
1030 |
+
ser = Series(np.random.default_rng(2).integers(-100, 100, 50))
|
1031 |
+
return_value = ser.fillna(method="ffill", inplace=True)
|
1032 |
+
assert return_value is None
|
1033 |
+
tm.assert_series_equal(ser.fillna(method="ffill", inplace=False), ser)
|
1034 |
+
|
1035 |
+
def test_datetime64tz_fillna_round_issue(self):
|
1036 |
+
# GH#14872
|
1037 |
+
|
1038 |
+
data = Series(
|
1039 |
+
[NaT, NaT, datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc)]
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
filled = data.bfill()
|
1043 |
+
|
1044 |
+
expected = Series(
|
1045 |
+
[
|
1046 |
+
datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
|
1047 |
+
datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
|
1048 |
+
datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
|
1049 |
+
]
|
1050 |
+
)
|
1051 |
+
|
1052 |
+
tm.assert_series_equal(filled, expected)
|
1053 |
+
|
1054 |
+
def test_fillna_parr(self):
|
1055 |
+
# GH-24537
|
1056 |
+
dti = date_range(
|
1057 |
+
Timestamp.max - Timedelta(nanoseconds=10), periods=5, freq="ns"
|
1058 |
+
)
|
1059 |
+
ser = Series(dti.to_period("ns"))
|
1060 |
+
ser[2] = NaT
|
1061 |
+
arr = period_array(
|
1062 |
+
[
|
1063 |
+
Timestamp("2262-04-11 23:47:16.854775797"),
|
1064 |
+
Timestamp("2262-04-11 23:47:16.854775798"),
|
1065 |
+
Timestamp("2262-04-11 23:47:16.854775798"),
|
1066 |
+
Timestamp("2262-04-11 23:47:16.854775800"),
|
1067 |
+
Timestamp("2262-04-11 23:47:16.854775801"),
|
1068 |
+
],
|
1069 |
+
freq="ns",
|
1070 |
+
)
|
1071 |
+
expected = Series(arr)
|
1072 |
+
|
1073 |
+
filled = ser.ffill()
|
1074 |
+
|
1075 |
+
tm.assert_series_equal(filled, expected)
|
1076 |
+
|
1077 |
+
@pytest.mark.parametrize("func", ["pad", "backfill"])
|
1078 |
+
def test_pad_backfill_deprecated(self, func):
|
1079 |
+
# GH#33396
|
1080 |
+
ser = Series([1, 2, 3])
|
1081 |
+
with tm.assert_produces_warning(FutureWarning):
|
1082 |
+
getattr(ser, func)()
|
1083 |
+
|
1084 |
+
|
1085 |
+
@pytest.mark.parametrize(
|
1086 |
+
"data, expected_data, method, kwargs",
|
1087 |
+
(
|
1088 |
+
(
|
1089 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
1090 |
+
[np.nan, np.nan, 3.0, 3.0, 3.0, 3.0, 7.0, np.nan, np.nan],
|
1091 |
+
"ffill",
|
1092 |
+
{"limit_area": "inside"},
|
1093 |
+
),
|
1094 |
+
(
|
1095 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
1096 |
+
[np.nan, np.nan, 3.0, 3.0, np.nan, np.nan, 7.0, np.nan, np.nan],
|
1097 |
+
"ffill",
|
1098 |
+
{"limit_area": "inside", "limit": 1},
|
1099 |
+
),
|
1100 |
+
(
|
1101 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
1102 |
+
[np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, 7.0],
|
1103 |
+
"ffill",
|
1104 |
+
{"limit_area": "outside"},
|
1105 |
+
),
|
1106 |
+
(
|
1107 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
1108 |
+
[np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan],
|
1109 |
+
"ffill",
|
1110 |
+
{"limit_area": "outside", "limit": 1},
|
1111 |
+
),
|
1112 |
+
(
|
1113 |
+
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
|
1114 |
+
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
|
1115 |
+
"ffill",
|
1116 |
+
{"limit_area": "outside", "limit": 1},
|
1117 |
+
),
|
1118 |
+
(
|
1119 |
+
range(5),
|
1120 |
+
range(5),
|
1121 |
+
"ffill",
|
1122 |
+
{"limit_area": "outside", "limit": 1},
|
1123 |
+
),
|
1124 |
+
(
|
1125 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
1126 |
+
[np.nan, np.nan, 3.0, 7.0, 7.0, 7.0, 7.0, np.nan, np.nan],
|
1127 |
+
"bfill",
|
1128 |
+
{"limit_area": "inside"},
|
1129 |
+
),
|
1130 |
+
(
|
1131 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
1132 |
+
[np.nan, np.nan, 3.0, np.nan, np.nan, 7.0, 7.0, np.nan, np.nan],
|
1133 |
+
"bfill",
|
1134 |
+
{"limit_area": "inside", "limit": 1},
|
1135 |
+
),
|
1136 |
+
(
|
1137 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
1138 |
+
[3.0, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan],
|
1139 |
+
"bfill",
|
1140 |
+
{"limit_area": "outside"},
|
1141 |
+
),
|
1142 |
+
(
|
1143 |
+
[np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan],
|
1144 |
+
[np.nan, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan],
|
1145 |
+
"bfill",
|
1146 |
+
{"limit_area": "outside", "limit": 1},
|
1147 |
+
),
|
1148 |
+
),
|
1149 |
+
)
|
1150 |
+
def test_ffill_bfill_limit_area(data, expected_data, method, kwargs):
|
1151 |
+
# GH#56492
|
1152 |
+
s = Series(data)
|
1153 |
+
expected = Series(expected_data)
|
1154 |
+
result = getattr(s, method)(**kwargs)
|
1155 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_get_numeric_data.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas import (
|
2 |
+
Index,
|
3 |
+
Series,
|
4 |
+
date_range,
|
5 |
+
)
|
6 |
+
import pandas._testing as tm
|
7 |
+
|
8 |
+
|
9 |
+
class TestGetNumericData:
|
10 |
+
def test_get_numeric_data_preserve_dtype(
|
11 |
+
self, using_copy_on_write, warn_copy_on_write
|
12 |
+
):
|
13 |
+
# get the numeric data
|
14 |
+
obj = Series([1, 2, 3])
|
15 |
+
result = obj._get_numeric_data()
|
16 |
+
tm.assert_series_equal(result, obj)
|
17 |
+
|
18 |
+
# returned object is a shallow copy
|
19 |
+
with tm.assert_cow_warning(warn_copy_on_write):
|
20 |
+
result.iloc[0] = 0
|
21 |
+
if using_copy_on_write:
|
22 |
+
assert obj.iloc[0] == 1
|
23 |
+
else:
|
24 |
+
assert obj.iloc[0] == 0
|
25 |
+
|
26 |
+
obj = Series([1, "2", 3.0])
|
27 |
+
result = obj._get_numeric_data()
|
28 |
+
expected = Series([], dtype=object, index=Index([], dtype=object))
|
29 |
+
tm.assert_series_equal(result, expected)
|
30 |
+
|
31 |
+
obj = Series([True, False, True])
|
32 |
+
result = obj._get_numeric_data()
|
33 |
+
tm.assert_series_equal(result, obj)
|
34 |
+
|
35 |
+
obj = Series(date_range("20130101", periods=3))
|
36 |
+
result = obj._get_numeric_data()
|
37 |
+
expected = Series([], dtype="M8[ns]", index=Index([], dtype=object))
|
38 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_infer_objects.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
Series,
|
5 |
+
interval_range,
|
6 |
+
)
|
7 |
+
import pandas._testing as tm
|
8 |
+
|
9 |
+
|
10 |
+
class TestInferObjects:
|
11 |
+
def test_copy(self, index_or_series):
|
12 |
+
# GH#50096
|
13 |
+
# case where we don't need to do inference because it is already non-object
|
14 |
+
obj = index_or_series(np.array([1, 2, 3], dtype="int64"))
|
15 |
+
|
16 |
+
result = obj.infer_objects(copy=False)
|
17 |
+
assert tm.shares_memory(result, obj)
|
18 |
+
|
19 |
+
# case where we try to do inference but can't do better than object
|
20 |
+
obj2 = index_or_series(np.array(["foo", 2], dtype=object))
|
21 |
+
result2 = obj2.infer_objects(copy=False)
|
22 |
+
assert tm.shares_memory(result2, obj2)
|
23 |
+
|
24 |
+
def test_infer_objects_series(self, index_or_series):
|
25 |
+
# GH#11221
|
26 |
+
actual = index_or_series(np.array([1, 2, 3], dtype="O")).infer_objects()
|
27 |
+
expected = index_or_series([1, 2, 3])
|
28 |
+
tm.assert_equal(actual, expected)
|
29 |
+
|
30 |
+
actual = index_or_series(np.array([1, 2, 3, None], dtype="O")).infer_objects()
|
31 |
+
expected = index_or_series([1.0, 2.0, 3.0, np.nan])
|
32 |
+
tm.assert_equal(actual, expected)
|
33 |
+
|
34 |
+
# only soft conversions, unconvertible pass thru unchanged
|
35 |
+
|
36 |
+
obj = index_or_series(np.array([1, 2, 3, None, "a"], dtype="O"))
|
37 |
+
actual = obj.infer_objects()
|
38 |
+
expected = index_or_series([1, 2, 3, None, "a"], dtype=object)
|
39 |
+
|
40 |
+
assert actual.dtype == "object"
|
41 |
+
tm.assert_equal(actual, expected)
|
42 |
+
|
43 |
+
def test_infer_objects_interval(self, index_or_series):
|
44 |
+
# GH#50090
|
45 |
+
ii = interval_range(1, 10)
|
46 |
+
obj = index_or_series(ii)
|
47 |
+
|
48 |
+
result = obj.astype(object).infer_objects()
|
49 |
+
tm.assert_equal(result, obj)
|
50 |
+
|
51 |
+
def test_infer_objects_bytes(self):
|
52 |
+
# GH#49650
|
53 |
+
ser = Series([b"a"], dtype="bytes")
|
54 |
+
expected = ser.copy()
|
55 |
+
result = ser.infer_objects()
|
56 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_isin.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import (
|
6 |
+
Series,
|
7 |
+
date_range,
|
8 |
+
)
|
9 |
+
import pandas._testing as tm
|
10 |
+
from pandas.core import algorithms
|
11 |
+
from pandas.core.arrays import PeriodArray
|
12 |
+
|
13 |
+
|
14 |
+
class TestSeriesIsIn:
|
15 |
+
def test_isin(self):
|
16 |
+
s = Series(["A", "B", "C", "a", "B", "B", "A", "C"])
|
17 |
+
|
18 |
+
result = s.isin(["A", "C"])
|
19 |
+
expected = Series([True, False, True, False, False, False, True, True])
|
20 |
+
tm.assert_series_equal(result, expected)
|
21 |
+
|
22 |
+
# GH#16012
|
23 |
+
# This specific issue has to have a series over 1e6 in len, but the
|
24 |
+
# comparison array (in_list) must be large enough so that numpy doesn't
|
25 |
+
# do a manual masking trick that will avoid this issue altogether
|
26 |
+
s = Series(list("abcdefghijk" * 10**5))
|
27 |
+
# If numpy doesn't do the manual comparison/mask, these
|
28 |
+
# unorderable mixed types are what cause the exception in numpy
|
29 |
+
in_list = [-1, "a", "b", "G", "Y", "Z", "E", "K", "E", "S", "I", "R", "R"] * 6
|
30 |
+
|
31 |
+
assert s.isin(in_list).sum() == 200000
|
32 |
+
|
33 |
+
def test_isin_with_string_scalar(self):
|
34 |
+
# GH#4763
|
35 |
+
s = Series(["A", "B", "C", "a", "B", "B", "A", "C"])
|
36 |
+
msg = (
|
37 |
+
r"only list-like objects are allowed to be passed to isin\(\), "
|
38 |
+
r"you passed a `str`"
|
39 |
+
)
|
40 |
+
with pytest.raises(TypeError, match=msg):
|
41 |
+
s.isin("a")
|
42 |
+
|
43 |
+
s = Series(["aaa", "b", "c"])
|
44 |
+
with pytest.raises(TypeError, match=msg):
|
45 |
+
s.isin("aaa")
|
46 |
+
|
47 |
+
def test_isin_datetimelike_mismatched_reso(self):
|
48 |
+
expected = Series([True, True, False, False, False])
|
49 |
+
|
50 |
+
ser = Series(date_range("jan-01-2013", "jan-05-2013"))
|
51 |
+
|
52 |
+
# fails on dtype conversion in the first place
|
53 |
+
day_values = np.asarray(ser[0:2].values).astype("datetime64[D]")
|
54 |
+
result = ser.isin(day_values)
|
55 |
+
tm.assert_series_equal(result, expected)
|
56 |
+
|
57 |
+
dta = ser[:2]._values.astype("M8[s]")
|
58 |
+
result = ser.isin(dta)
|
59 |
+
tm.assert_series_equal(result, expected)
|
60 |
+
|
61 |
+
def test_isin_datetimelike_mismatched_reso_list(self):
|
62 |
+
expected = Series([True, True, False, False, False])
|
63 |
+
|
64 |
+
ser = Series(date_range("jan-01-2013", "jan-05-2013"))
|
65 |
+
|
66 |
+
dta = ser[:2]._values.astype("M8[s]")
|
67 |
+
result = ser.isin(list(dta))
|
68 |
+
tm.assert_series_equal(result, expected)
|
69 |
+
|
70 |
+
def test_isin_with_i8(self):
|
71 |
+
# GH#5021
|
72 |
+
|
73 |
+
expected = Series([True, True, False, False, False])
|
74 |
+
expected2 = Series([False, True, False, False, False])
|
75 |
+
|
76 |
+
# datetime64[ns]
|
77 |
+
s = Series(date_range("jan-01-2013", "jan-05-2013"))
|
78 |
+
|
79 |
+
result = s.isin(s[0:2])
|
80 |
+
tm.assert_series_equal(result, expected)
|
81 |
+
|
82 |
+
result = s.isin(s[0:2].values)
|
83 |
+
tm.assert_series_equal(result, expected)
|
84 |
+
|
85 |
+
result = s.isin([s[1]])
|
86 |
+
tm.assert_series_equal(result, expected2)
|
87 |
+
|
88 |
+
result = s.isin([np.datetime64(s[1])])
|
89 |
+
tm.assert_series_equal(result, expected2)
|
90 |
+
|
91 |
+
result = s.isin(set(s[0:2]))
|
92 |
+
tm.assert_series_equal(result, expected)
|
93 |
+
|
94 |
+
# timedelta64[ns]
|
95 |
+
s = Series(pd.to_timedelta(range(5), unit="d"))
|
96 |
+
result = s.isin(s[0:2])
|
97 |
+
tm.assert_series_equal(result, expected)
|
98 |
+
|
99 |
+
@pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])])
|
100 |
+
def test_isin_empty(self, empty):
|
101 |
+
# see GH#16991
|
102 |
+
s = Series(["a", "b"])
|
103 |
+
expected = Series([False, False])
|
104 |
+
|
105 |
+
result = s.isin(empty)
|
106 |
+
tm.assert_series_equal(expected, result)
|
107 |
+
|
108 |
+
def test_isin_read_only(self):
|
109 |
+
# https://github.com/pandas-dev/pandas/issues/37174
|
110 |
+
arr = np.array([1, 2, 3])
|
111 |
+
arr.setflags(write=False)
|
112 |
+
s = Series([1, 2, 3])
|
113 |
+
result = s.isin(arr)
|
114 |
+
expected = Series([True, True, True])
|
115 |
+
tm.assert_series_equal(result, expected)
|
116 |
+
|
117 |
+
@pytest.mark.parametrize("dtype", [object, None])
|
118 |
+
def test_isin_dt64_values_vs_ints(self, dtype):
|
119 |
+
# GH#36621 dont cast integers to datetimes for isin
|
120 |
+
dti = date_range("2013-01-01", "2013-01-05")
|
121 |
+
ser = Series(dti)
|
122 |
+
|
123 |
+
comps = np.asarray([1356998400000000000], dtype=dtype)
|
124 |
+
|
125 |
+
res = dti.isin(comps)
|
126 |
+
expected = np.array([False] * len(dti), dtype=bool)
|
127 |
+
tm.assert_numpy_array_equal(res, expected)
|
128 |
+
|
129 |
+
res = ser.isin(comps)
|
130 |
+
tm.assert_series_equal(res, Series(expected))
|
131 |
+
|
132 |
+
res = pd.core.algorithms.isin(ser, comps)
|
133 |
+
tm.assert_numpy_array_equal(res, expected)
|
134 |
+
|
135 |
+
def test_isin_tzawareness_mismatch(self):
|
136 |
+
dti = date_range("2013-01-01", "2013-01-05")
|
137 |
+
ser = Series(dti)
|
138 |
+
|
139 |
+
other = dti.tz_localize("UTC")
|
140 |
+
|
141 |
+
res = dti.isin(other)
|
142 |
+
expected = np.array([False] * len(dti), dtype=bool)
|
143 |
+
tm.assert_numpy_array_equal(res, expected)
|
144 |
+
|
145 |
+
res = ser.isin(other)
|
146 |
+
tm.assert_series_equal(res, Series(expected))
|
147 |
+
|
148 |
+
res = pd.core.algorithms.isin(ser, other)
|
149 |
+
tm.assert_numpy_array_equal(res, expected)
|
150 |
+
|
151 |
+
def test_isin_period_freq_mismatch(self):
|
152 |
+
dti = date_range("2013-01-01", "2013-01-05")
|
153 |
+
pi = dti.to_period("M")
|
154 |
+
ser = Series(pi)
|
155 |
+
|
156 |
+
# We construct another PeriodIndex with the same i8 values
|
157 |
+
# but different dtype
|
158 |
+
dtype = dti.to_period("Y").dtype
|
159 |
+
other = PeriodArray._simple_new(pi.asi8, dtype=dtype)
|
160 |
+
|
161 |
+
res = pi.isin(other)
|
162 |
+
expected = np.array([False] * len(pi), dtype=bool)
|
163 |
+
tm.assert_numpy_array_equal(res, expected)
|
164 |
+
|
165 |
+
res = ser.isin(other)
|
166 |
+
tm.assert_series_equal(res, Series(expected))
|
167 |
+
|
168 |
+
res = pd.core.algorithms.isin(ser, other)
|
169 |
+
tm.assert_numpy_array_equal(res, expected)
|
170 |
+
|
171 |
+
@pytest.mark.parametrize("values", [[-9.0, 0.0], [-9, 0]])
|
172 |
+
def test_isin_float_in_int_series(self, values):
|
173 |
+
# GH#19356 GH#21804
|
174 |
+
ser = Series(values)
|
175 |
+
result = ser.isin([-9, -0.5])
|
176 |
+
expected = Series([True, False])
|
177 |
+
tm.assert_series_equal(result, expected)
|
178 |
+
|
179 |
+
@pytest.mark.parametrize("dtype", ["boolean", "Int64", "Float64"])
|
180 |
+
@pytest.mark.parametrize(
|
181 |
+
"data,values,expected",
|
182 |
+
[
|
183 |
+
([0, 1, 0], [1], [False, True, False]),
|
184 |
+
([0, 1, 0], [1, pd.NA], [False, True, False]),
|
185 |
+
([0, pd.NA, 0], [1, 0], [True, False, True]),
|
186 |
+
([0, 1, pd.NA], [1, pd.NA], [False, True, True]),
|
187 |
+
([0, 1, pd.NA], [1, np.nan], [False, True, False]),
|
188 |
+
([0, pd.NA, pd.NA], [np.nan, pd.NaT, None], [False, False, False]),
|
189 |
+
],
|
190 |
+
)
|
191 |
+
def test_isin_masked_types(self, dtype, data, values, expected):
|
192 |
+
# GH#42405
|
193 |
+
ser = Series(data, dtype=dtype)
|
194 |
+
|
195 |
+
result = ser.isin(values)
|
196 |
+
expected = Series(expected, dtype="boolean")
|
197 |
+
|
198 |
+
tm.assert_series_equal(result, expected)
|
199 |
+
|
200 |
+
|
201 |
+
def test_isin_large_series_mixed_dtypes_and_nan(monkeypatch):
|
202 |
+
# https://github.com/pandas-dev/pandas/issues/37094
|
203 |
+
# combination of object dtype for the values
|
204 |
+
# and > _MINIMUM_COMP_ARR_LEN elements
|
205 |
+
min_isin_comp = 5
|
206 |
+
ser = Series([1, 2, np.nan] * min_isin_comp)
|
207 |
+
with monkeypatch.context() as m:
|
208 |
+
m.setattr(algorithms, "_MINIMUM_COMP_ARR_LEN", min_isin_comp)
|
209 |
+
result = ser.isin({"foo", "bar"})
|
210 |
+
expected = Series([False] * 3 * min_isin_comp)
|
211 |
+
tm.assert_series_equal(result, expected)
|
212 |
+
|
213 |
+
|
214 |
+
@pytest.mark.parametrize(
|
215 |
+
"array,expected",
|
216 |
+
[
|
217 |
+
(
|
218 |
+
[0, 1j, 1j, 1, 1 + 1j, 1 + 2j, 1 + 1j],
|
219 |
+
Series([False, True, True, False, True, True, True], dtype=bool),
|
220 |
+
)
|
221 |
+
],
|
222 |
+
)
|
223 |
+
def test_isin_complex_numbers(array, expected):
|
224 |
+
# GH 17927
|
225 |
+
result = Series(array).isin([1j, 1 + 1j, 1 + 2j])
|
226 |
+
tm.assert_series_equal(result, expected)
|
227 |
+
|
228 |
+
|
229 |
+
@pytest.mark.parametrize(
|
230 |
+
"data,is_in",
|
231 |
+
[([1, [2]], [1]), (["simple str", [{"values": 3}]], ["simple str"])],
|
232 |
+
)
|
233 |
+
def test_isin_filtering_with_mixed_object_types(data, is_in):
|
234 |
+
# GH 20883
|
235 |
+
|
236 |
+
ser = Series(data)
|
237 |
+
result = ser.isin(is_in)
|
238 |
+
expected = Series([True, False])
|
239 |
+
|
240 |
+
tm.assert_series_equal(result, expected)
|
241 |
+
|
242 |
+
|
243 |
+
@pytest.mark.parametrize("data", [[1, 2, 3], [1.0, 2.0, 3.0]])
|
244 |
+
@pytest.mark.parametrize("isin", [[1, 2], [1.0, 2.0]])
|
245 |
+
def test_isin_filtering_on_iterable(data, isin):
|
246 |
+
# GH 50234
|
247 |
+
|
248 |
+
ser = Series(data)
|
249 |
+
result = ser.isin(i for i in isin)
|
250 |
+
expected_result = Series([True, True, False])
|
251 |
+
|
252 |
+
tm.assert_series_equal(result, expected_result)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_isna.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
We also test Series.notna in this file.
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
Period,
|
8 |
+
Series,
|
9 |
+
)
|
10 |
+
import pandas._testing as tm
|
11 |
+
|
12 |
+
|
13 |
+
class TestIsna:
|
14 |
+
def test_isna_period_dtype(self):
|
15 |
+
# GH#13737
|
16 |
+
ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")])
|
17 |
+
|
18 |
+
expected = Series([False, True])
|
19 |
+
|
20 |
+
result = ser.isna()
|
21 |
+
tm.assert_series_equal(result, expected)
|
22 |
+
|
23 |
+
result = ser.notna()
|
24 |
+
tm.assert_series_equal(result, ~expected)
|
25 |
+
|
26 |
+
def test_isna(self):
|
27 |
+
ser = Series([0, 5.4, 3, np.nan, -0.001])
|
28 |
+
expected = Series([False, False, False, True, False])
|
29 |
+
tm.assert_series_equal(ser.isna(), expected)
|
30 |
+
tm.assert_series_equal(ser.notna(), ~expected)
|
31 |
+
|
32 |
+
ser = Series(["hi", "", np.nan])
|
33 |
+
expected = Series([False, False, True])
|
34 |
+
tm.assert_series_equal(ser.isna(), expected)
|
35 |
+
tm.assert_series_equal(ser.notna(), ~expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_reindex_like.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas import Series
|
6 |
+
import pandas._testing as tm
|
7 |
+
|
8 |
+
|
9 |
+
def test_reindex_like(datetime_series):
|
10 |
+
other = datetime_series[::2]
|
11 |
+
tm.assert_series_equal(
|
12 |
+
datetime_series.reindex(other.index), datetime_series.reindex_like(other)
|
13 |
+
)
|
14 |
+
|
15 |
+
# GH#7179
|
16 |
+
day1 = datetime(2013, 3, 5)
|
17 |
+
day2 = datetime(2013, 5, 5)
|
18 |
+
day3 = datetime(2014, 3, 5)
|
19 |
+
|
20 |
+
series1 = Series([5, None, None], [day1, day2, day3])
|
21 |
+
series2 = Series([None, None], [day1, day3])
|
22 |
+
|
23 |
+
result = series1.reindex_like(series2, method="pad")
|
24 |
+
expected = Series([5, np.nan], index=[day1, day3])
|
25 |
+
tm.assert_series_equal(result, expected)
|
26 |
+
|
27 |
+
|
28 |
+
def test_reindex_like_nearest():
|
29 |
+
ser = Series(np.arange(10, dtype="int64"))
|
30 |
+
|
31 |
+
target = [0.1, 0.9, 1.5, 2.0]
|
32 |
+
other = ser.reindex(target, method="nearest")
|
33 |
+
expected = Series(np.around(target).astype("int64"), target)
|
34 |
+
|
35 |
+
result = ser.reindex_like(other, method="nearest")
|
36 |
+
tm.assert_series_equal(expected, result)
|
37 |
+
|
38 |
+
result = ser.reindex_like(other, method="nearest", tolerance=1)
|
39 |
+
tm.assert_series_equal(expected, result)
|
40 |
+
result = ser.reindex_like(other, method="nearest", tolerance=[1, 2, 3, 4])
|
41 |
+
tm.assert_series_equal(expected, result)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_rename_axis.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
Index,
|
5 |
+
MultiIndex,
|
6 |
+
Series,
|
7 |
+
)
|
8 |
+
import pandas._testing as tm
|
9 |
+
|
10 |
+
|
11 |
+
class TestSeriesRenameAxis:
|
12 |
+
def test_rename_axis_mapper(self):
|
13 |
+
# GH 19978
|
14 |
+
mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"])
|
15 |
+
ser = Series(list(range(len(mi))), index=mi)
|
16 |
+
|
17 |
+
result = ser.rename_axis(index={"ll": "foo"})
|
18 |
+
assert result.index.names == ["foo", "nn"]
|
19 |
+
|
20 |
+
result = ser.rename_axis(index=str.upper, axis=0)
|
21 |
+
assert result.index.names == ["LL", "NN"]
|
22 |
+
|
23 |
+
result = ser.rename_axis(index=["foo", "goo"])
|
24 |
+
assert result.index.names == ["foo", "goo"]
|
25 |
+
|
26 |
+
with pytest.raises(TypeError, match="unexpected"):
|
27 |
+
ser.rename_axis(columns="wrong")
|
28 |
+
|
29 |
+
def test_rename_axis_inplace(self, datetime_series):
|
30 |
+
# GH 15704
|
31 |
+
expected = datetime_series.rename_axis("foo")
|
32 |
+
result = datetime_series
|
33 |
+
no_return = result.rename_axis("foo", inplace=True)
|
34 |
+
|
35 |
+
assert no_return is None
|
36 |
+
tm.assert_series_equal(result, expected)
|
37 |
+
|
38 |
+
@pytest.mark.parametrize("kwargs", [{"mapper": None}, {"index": None}, {}])
|
39 |
+
def test_rename_axis_none(self, kwargs):
|
40 |
+
# GH 25034
|
41 |
+
index = Index(list("abc"), name="foo")
|
42 |
+
ser = Series([1, 2, 3], index=index)
|
43 |
+
|
44 |
+
result = ser.rename_axis(**kwargs)
|
45 |
+
expected_index = index.rename(None) if kwargs else index
|
46 |
+
expected = Series([1, 2, 3], index=expected_index)
|
47 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_replace.py
ADDED
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas._config import using_pyarrow_string_dtype
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import pandas._testing as tm
|
10 |
+
from pandas.core.arrays import IntervalArray
|
11 |
+
|
12 |
+
|
13 |
+
class TestSeriesReplace:
|
14 |
+
def test_replace_explicit_none(self):
|
15 |
+
# GH#36984 if the user explicitly passes value=None, give it to them
|
16 |
+
ser = pd.Series([0, 0, ""], dtype=object)
|
17 |
+
result = ser.replace("", None)
|
18 |
+
expected = pd.Series([0, 0, None], dtype=object)
|
19 |
+
tm.assert_series_equal(result, expected)
|
20 |
+
|
21 |
+
# Cast column 2 to object to avoid implicit cast when setting entry to ""
|
22 |
+
df = pd.DataFrame(np.zeros((3, 3))).astype({2: object})
|
23 |
+
df.iloc[2, 2] = ""
|
24 |
+
result = df.replace("", None)
|
25 |
+
expected = pd.DataFrame(
|
26 |
+
{
|
27 |
+
0: np.zeros(3),
|
28 |
+
1: np.zeros(3),
|
29 |
+
2: np.array([0.0, 0.0, None], dtype=object),
|
30 |
+
}
|
31 |
+
)
|
32 |
+
assert expected.iloc[2, 2] is None
|
33 |
+
tm.assert_frame_equal(result, expected)
|
34 |
+
|
35 |
+
# GH#19998 same thing with object dtype
|
36 |
+
ser = pd.Series([10, 20, 30, "a", "a", "b", "a"])
|
37 |
+
result = ser.replace("a", None)
|
38 |
+
expected = pd.Series([10, 20, 30, None, None, "b", None])
|
39 |
+
assert expected.iloc[-1] is None
|
40 |
+
tm.assert_series_equal(result, expected)
|
41 |
+
|
42 |
+
def test_replace_noop_doesnt_downcast(self):
|
43 |
+
# GH#44498
|
44 |
+
ser = pd.Series([None, None, pd.Timestamp("2021-12-16 17:31")], dtype=object)
|
45 |
+
res = ser.replace({np.nan: None}) # should be a no-op
|
46 |
+
tm.assert_series_equal(res, ser)
|
47 |
+
assert res.dtype == object
|
48 |
+
|
49 |
+
# same thing but different calling convention
|
50 |
+
res = ser.replace(np.nan, None)
|
51 |
+
tm.assert_series_equal(res, ser)
|
52 |
+
assert res.dtype == object
|
53 |
+
|
54 |
+
def test_replace(self):
|
55 |
+
N = 50
|
56 |
+
ser = pd.Series(np.random.default_rng(2).standard_normal(N))
|
57 |
+
ser[0:4] = np.nan
|
58 |
+
ser[6:10] = 0
|
59 |
+
|
60 |
+
# replace list with a single value
|
61 |
+
return_value = ser.replace([np.nan], -1, inplace=True)
|
62 |
+
assert return_value is None
|
63 |
+
|
64 |
+
exp = ser.fillna(-1)
|
65 |
+
tm.assert_series_equal(ser, exp)
|
66 |
+
|
67 |
+
rs = ser.replace(0.0, np.nan)
|
68 |
+
ser[ser == 0.0] = np.nan
|
69 |
+
tm.assert_series_equal(rs, ser)
|
70 |
+
|
71 |
+
ser = pd.Series(
|
72 |
+
np.fabs(np.random.default_rng(2).standard_normal(N)),
|
73 |
+
pd.date_range("2020-01-01", periods=N),
|
74 |
+
dtype=object,
|
75 |
+
)
|
76 |
+
ser[:5] = np.nan
|
77 |
+
ser[6:10] = "foo"
|
78 |
+
ser[20:30] = "bar"
|
79 |
+
|
80 |
+
# replace list with a single value
|
81 |
+
msg = "Downcasting behavior in `replace`"
|
82 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
83 |
+
rs = ser.replace([np.nan, "foo", "bar"], -1)
|
84 |
+
|
85 |
+
assert (rs[:5] == -1).all()
|
86 |
+
assert (rs[6:10] == -1).all()
|
87 |
+
assert (rs[20:30] == -1).all()
|
88 |
+
assert (pd.isna(ser[:5])).all()
|
89 |
+
|
90 |
+
# replace with different values
|
91 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
92 |
+
rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3})
|
93 |
+
|
94 |
+
assert (rs[:5] == -1).all()
|
95 |
+
assert (rs[6:10] == -2).all()
|
96 |
+
assert (rs[20:30] == -3).all()
|
97 |
+
assert (pd.isna(ser[:5])).all()
|
98 |
+
|
99 |
+
# replace with different values with 2 lists
|
100 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
101 |
+
rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3])
|
102 |
+
tm.assert_series_equal(rs, rs2)
|
103 |
+
|
104 |
+
# replace inplace
|
105 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
106 |
+
return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True)
|
107 |
+
assert return_value is None
|
108 |
+
|
109 |
+
assert (ser[:5] == -1).all()
|
110 |
+
assert (ser[6:10] == -1).all()
|
111 |
+
assert (ser[20:30] == -1).all()
|
112 |
+
|
113 |
+
def test_replace_nan_with_inf(self):
|
114 |
+
ser = pd.Series([np.nan, 0, np.inf])
|
115 |
+
tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
|
116 |
+
|
117 |
+
ser = pd.Series([np.nan, 0, "foo", "bar", np.inf, None, pd.NaT])
|
118 |
+
tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
|
119 |
+
filled = ser.copy()
|
120 |
+
filled[4] = 0
|
121 |
+
tm.assert_series_equal(ser.replace(np.inf, 0), filled)
|
122 |
+
|
123 |
+
def test_replace_listlike_value_listlike_target(self, datetime_series):
|
124 |
+
ser = pd.Series(datetime_series.index)
|
125 |
+
tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
|
126 |
+
|
127 |
+
# malformed
|
128 |
+
msg = r"Replacement lists must match in length\. Expecting 3 got 2"
|
129 |
+
with pytest.raises(ValueError, match=msg):
|
130 |
+
ser.replace([1, 2, 3], [np.nan, 0])
|
131 |
+
|
132 |
+
# ser is dt64 so can't hold 1 or 2, so this replace is a no-op
|
133 |
+
result = ser.replace([1, 2], [np.nan, 0])
|
134 |
+
tm.assert_series_equal(result, ser)
|
135 |
+
|
136 |
+
ser = pd.Series([0, 1, 2, 3, 4])
|
137 |
+
result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
|
138 |
+
tm.assert_series_equal(result, pd.Series([4, 3, 2, 1, 0]))
|
139 |
+
|
140 |
+
def test_replace_gh5319(self):
|
141 |
+
# API change from 0.12?
|
142 |
+
# GH 5319
|
143 |
+
ser = pd.Series([0, np.nan, 2, 3, 4])
|
144 |
+
expected = ser.ffill()
|
145 |
+
msg = (
|
146 |
+
"Series.replace without 'value' and with non-dict-like "
|
147 |
+
"'to_replace' is deprecated"
|
148 |
+
)
|
149 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
150 |
+
result = ser.replace([np.nan])
|
151 |
+
tm.assert_series_equal(result, expected)
|
152 |
+
|
153 |
+
ser = pd.Series([0, np.nan, 2, 3, 4])
|
154 |
+
expected = ser.ffill()
|
155 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
156 |
+
result = ser.replace(np.nan)
|
157 |
+
tm.assert_series_equal(result, expected)
|
158 |
+
|
159 |
+
def test_replace_datetime64(self):
|
160 |
+
# GH 5797
|
161 |
+
ser = pd.Series(pd.date_range("20130101", periods=5))
|
162 |
+
expected = ser.copy()
|
163 |
+
expected.loc[2] = pd.Timestamp("20120101")
|
164 |
+
result = ser.replace({pd.Timestamp("20130103"): pd.Timestamp("20120101")})
|
165 |
+
tm.assert_series_equal(result, expected)
|
166 |
+
result = ser.replace(pd.Timestamp("20130103"), pd.Timestamp("20120101"))
|
167 |
+
tm.assert_series_equal(result, expected)
|
168 |
+
|
169 |
+
def test_replace_nat_with_tz(self):
|
170 |
+
# GH 11792: Test with replacing NaT in a list with tz data
|
171 |
+
ts = pd.Timestamp("2015/01/01", tz="UTC")
|
172 |
+
s = pd.Series([pd.NaT, pd.Timestamp("2015/01/01", tz="UTC")])
|
173 |
+
result = s.replace([np.nan, pd.NaT], pd.Timestamp.min)
|
174 |
+
expected = pd.Series([pd.Timestamp.min, ts], dtype=object)
|
175 |
+
tm.assert_series_equal(expected, result)
|
176 |
+
|
177 |
+
def test_replace_timedelta_td64(self):
|
178 |
+
tdi = pd.timedelta_range(0, periods=5)
|
179 |
+
ser = pd.Series(tdi)
|
180 |
+
|
181 |
+
# Using a single dict argument means we go through replace_list
|
182 |
+
result = ser.replace({ser[1]: ser[3]})
|
183 |
+
|
184 |
+
expected = pd.Series([ser[0], ser[3], ser[2], ser[3], ser[4]])
|
185 |
+
tm.assert_series_equal(result, expected)
|
186 |
+
|
187 |
+
def test_replace_with_single_list(self):
|
188 |
+
ser = pd.Series([0, 1, 2, 3, 4])
|
189 |
+
msg2 = (
|
190 |
+
"Series.replace without 'value' and with non-dict-like "
|
191 |
+
"'to_replace' is deprecated"
|
192 |
+
)
|
193 |
+
with tm.assert_produces_warning(FutureWarning, match=msg2):
|
194 |
+
result = ser.replace([1, 2, 3])
|
195 |
+
tm.assert_series_equal(result, pd.Series([0, 0, 0, 0, 4]))
|
196 |
+
|
197 |
+
s = ser.copy()
|
198 |
+
with tm.assert_produces_warning(FutureWarning, match=msg2):
|
199 |
+
return_value = s.replace([1, 2, 3], inplace=True)
|
200 |
+
assert return_value is None
|
201 |
+
tm.assert_series_equal(s, pd.Series([0, 0, 0, 0, 4]))
|
202 |
+
|
203 |
+
# make sure things don't get corrupted when fillna call fails
|
204 |
+
s = ser.copy()
|
205 |
+
msg = (
|
206 |
+
r"Invalid fill method\. Expecting pad \(ffill\) or backfill "
|
207 |
+
r"\(bfill\)\. Got crash_cymbal"
|
208 |
+
)
|
209 |
+
msg3 = "The 'method' keyword in Series.replace is deprecated"
|
210 |
+
with pytest.raises(ValueError, match=msg):
|
211 |
+
with tm.assert_produces_warning(FutureWarning, match=msg3):
|
212 |
+
return_value = s.replace([1, 2, 3], inplace=True, method="crash_cymbal")
|
213 |
+
assert return_value is None
|
214 |
+
tm.assert_series_equal(s, ser)
|
215 |
+
|
216 |
+
def test_replace_mixed_types(self):
|
217 |
+
ser = pd.Series(np.arange(5), dtype="int64")
|
218 |
+
|
219 |
+
def check_replace(to_rep, val, expected):
|
220 |
+
sc = ser.copy()
|
221 |
+
result = ser.replace(to_rep, val)
|
222 |
+
return_value = sc.replace(to_rep, val, inplace=True)
|
223 |
+
assert return_value is None
|
224 |
+
tm.assert_series_equal(expected, result)
|
225 |
+
tm.assert_series_equal(expected, sc)
|
226 |
+
|
227 |
+
# 3.0 can still be held in our int64 series, so we do not upcast GH#44940
|
228 |
+
tr, v = [3], [3.0]
|
229 |
+
check_replace(tr, v, ser)
|
230 |
+
# Note this matches what we get with the scalars 3 and 3.0
|
231 |
+
check_replace(tr[0], v[0], ser)
|
232 |
+
|
233 |
+
# MUST upcast to float
|
234 |
+
e = pd.Series([0, 1, 2, 3.5, 4])
|
235 |
+
tr, v = [3], [3.5]
|
236 |
+
check_replace(tr, v, e)
|
237 |
+
|
238 |
+
# casts to object
|
239 |
+
e = pd.Series([0, 1, 2, 3.5, "a"])
|
240 |
+
tr, v = [3, 4], [3.5, "a"]
|
241 |
+
check_replace(tr, v, e)
|
242 |
+
|
243 |
+
# again casts to object
|
244 |
+
e = pd.Series([0, 1, 2, 3.5, pd.Timestamp("20130101")])
|
245 |
+
tr, v = [3, 4], [3.5, pd.Timestamp("20130101")]
|
246 |
+
check_replace(tr, v, e)
|
247 |
+
|
248 |
+
# casts to object
|
249 |
+
e = pd.Series([0, 1, 2, 3.5, True], dtype="object")
|
250 |
+
tr, v = [3, 4], [3.5, True]
|
251 |
+
check_replace(tr, v, e)
|
252 |
+
|
253 |
+
# test an object with dates + floats + integers + strings
|
254 |
+
dr = pd.Series(pd.date_range("1/1/2001", "1/10/2001", freq="D"))
|
255 |
+
result = dr.astype(object).replace([dr[0], dr[1], dr[2]], [1.0, 2, "a"])
|
256 |
+
expected = pd.Series([1.0, 2, "a"] + dr[3:].tolist(), dtype=object)
|
257 |
+
tm.assert_series_equal(result, expected)
|
258 |
+
|
259 |
+
def test_replace_bool_with_string_no_op(self):
|
260 |
+
s = pd.Series([True, False, True])
|
261 |
+
result = s.replace("fun", "in-the-sun")
|
262 |
+
tm.assert_series_equal(s, result)
|
263 |
+
|
264 |
+
def test_replace_bool_with_string(self):
|
265 |
+
# nonexistent elements
|
266 |
+
s = pd.Series([True, False, True])
|
267 |
+
result = s.replace(True, "2u")
|
268 |
+
expected = pd.Series(["2u", False, "2u"])
|
269 |
+
tm.assert_series_equal(expected, result)
|
270 |
+
|
271 |
+
def test_replace_bool_with_bool(self):
|
272 |
+
s = pd.Series([True, False, True])
|
273 |
+
result = s.replace(True, False)
|
274 |
+
expected = pd.Series([False] * len(s))
|
275 |
+
tm.assert_series_equal(expected, result)
|
276 |
+
|
277 |
+
def test_replace_with_dict_with_bool_keys(self):
|
278 |
+
s = pd.Series([True, False, True])
|
279 |
+
result = s.replace({"asdf": "asdb", True: "yes"})
|
280 |
+
expected = pd.Series(["yes", False, "yes"])
|
281 |
+
tm.assert_series_equal(result, expected)
|
282 |
+
|
283 |
+
def test_replace_Int_with_na(self, any_int_ea_dtype):
|
284 |
+
# GH 38267
|
285 |
+
result = pd.Series([0, None], dtype=any_int_ea_dtype).replace(0, pd.NA)
|
286 |
+
expected = pd.Series([pd.NA, pd.NA], dtype=any_int_ea_dtype)
|
287 |
+
tm.assert_series_equal(result, expected)
|
288 |
+
result = pd.Series([0, 1], dtype=any_int_ea_dtype).replace(0, pd.NA)
|
289 |
+
result.replace(1, pd.NA, inplace=True)
|
290 |
+
tm.assert_series_equal(result, expected)
|
291 |
+
|
292 |
+
def test_replace2(self):
|
293 |
+
N = 50
|
294 |
+
ser = pd.Series(
|
295 |
+
np.fabs(np.random.default_rng(2).standard_normal(N)),
|
296 |
+
pd.date_range("2020-01-01", periods=N),
|
297 |
+
dtype=object,
|
298 |
+
)
|
299 |
+
ser[:5] = np.nan
|
300 |
+
ser[6:10] = "foo"
|
301 |
+
ser[20:30] = "bar"
|
302 |
+
|
303 |
+
# replace list with a single value
|
304 |
+
msg = "Downcasting behavior in `replace`"
|
305 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
306 |
+
rs = ser.replace([np.nan, "foo", "bar"], -1)
|
307 |
+
|
308 |
+
assert (rs[:5] == -1).all()
|
309 |
+
assert (rs[6:10] == -1).all()
|
310 |
+
assert (rs[20:30] == -1).all()
|
311 |
+
assert (pd.isna(ser[:5])).all()
|
312 |
+
|
313 |
+
# replace with different values
|
314 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
315 |
+
rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3})
|
316 |
+
|
317 |
+
assert (rs[:5] == -1).all()
|
318 |
+
assert (rs[6:10] == -2).all()
|
319 |
+
assert (rs[20:30] == -3).all()
|
320 |
+
assert (pd.isna(ser[:5])).all()
|
321 |
+
|
322 |
+
# replace with different values with 2 lists
|
323 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
324 |
+
rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3])
|
325 |
+
tm.assert_series_equal(rs, rs2)
|
326 |
+
|
327 |
+
# replace inplace
|
328 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
329 |
+
return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True)
|
330 |
+
assert return_value is None
|
331 |
+
assert (ser[:5] == -1).all()
|
332 |
+
assert (ser[6:10] == -1).all()
|
333 |
+
assert (ser[20:30] == -1).all()
|
334 |
+
|
335 |
+
@pytest.mark.parametrize("inplace", [True, False])
|
336 |
+
def test_replace_cascade(self, inplace):
|
337 |
+
# Test that replaced values are not replaced again
|
338 |
+
# GH #50778
|
339 |
+
ser = pd.Series([1, 2, 3])
|
340 |
+
expected = pd.Series([2, 3, 4])
|
341 |
+
|
342 |
+
res = ser.replace([1, 2, 3], [2, 3, 4], inplace=inplace)
|
343 |
+
if inplace:
|
344 |
+
tm.assert_series_equal(ser, expected)
|
345 |
+
else:
|
346 |
+
tm.assert_series_equal(res, expected)
|
347 |
+
|
348 |
+
def test_replace_with_dictlike_and_string_dtype(self, nullable_string_dtype):
|
349 |
+
# GH 32621, GH#44940
|
350 |
+
ser = pd.Series(["one", "two", np.nan], dtype=nullable_string_dtype)
|
351 |
+
expected = pd.Series(["1", "2", np.nan], dtype=nullable_string_dtype)
|
352 |
+
result = ser.replace({"one": "1", "two": "2"})
|
353 |
+
tm.assert_series_equal(expected, result)
|
354 |
+
|
355 |
+
def test_replace_with_empty_dictlike(self):
|
356 |
+
# GH 15289
|
357 |
+
s = pd.Series(list("abcd"))
|
358 |
+
tm.assert_series_equal(s, s.replace({}))
|
359 |
+
|
360 |
+
empty_series = pd.Series([])
|
361 |
+
tm.assert_series_equal(s, s.replace(empty_series))
|
362 |
+
|
363 |
+
def test_replace_string_with_number(self):
|
364 |
+
# GH 15743
|
365 |
+
s = pd.Series([1, 2, 3])
|
366 |
+
result = s.replace("2", np.nan)
|
367 |
+
expected = pd.Series([1, 2, 3])
|
368 |
+
tm.assert_series_equal(expected, result)
|
369 |
+
|
370 |
+
def test_replace_replacer_equals_replacement(self):
|
371 |
+
# GH 20656
|
372 |
+
# make sure all replacers are matching against original values
|
373 |
+
s = pd.Series(["a", "b"])
|
374 |
+
expected = pd.Series(["b", "a"])
|
375 |
+
result = s.replace({"a": "b", "b": "a"})
|
376 |
+
tm.assert_series_equal(expected, result)
|
377 |
+
|
378 |
+
def test_replace_unicode_with_number(self):
|
379 |
+
# GH 15743
|
380 |
+
s = pd.Series([1, 2, 3])
|
381 |
+
result = s.replace("2", np.nan)
|
382 |
+
expected = pd.Series([1, 2, 3])
|
383 |
+
tm.assert_series_equal(expected, result)
|
384 |
+
|
385 |
+
def test_replace_mixed_types_with_string(self):
|
386 |
+
# Testing mixed
|
387 |
+
s = pd.Series([1, 2, 3, "4", 4, 5])
|
388 |
+
msg = "Downcasting behavior in `replace`"
|
389 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
390 |
+
result = s.replace([2, "4"], np.nan)
|
391 |
+
expected = pd.Series([1, np.nan, 3, np.nan, 4, 5])
|
392 |
+
tm.assert_series_equal(expected, result)
|
393 |
+
|
394 |
+
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't fill 0 in string")
|
395 |
+
@pytest.mark.parametrize(
|
396 |
+
"categorical, numeric",
|
397 |
+
[
|
398 |
+
(pd.Categorical(["A"], categories=["A", "B"]), [1]),
|
399 |
+
(pd.Categorical(["A", "B"], categories=["A", "B"]), [1, 2]),
|
400 |
+
],
|
401 |
+
)
|
402 |
+
def test_replace_categorical(self, categorical, numeric):
|
403 |
+
# GH 24971, GH#23305
|
404 |
+
ser = pd.Series(categorical)
|
405 |
+
msg = "Downcasting behavior in `replace`"
|
406 |
+
msg = "with CategoricalDtype is deprecated"
|
407 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
408 |
+
result = ser.replace({"A": 1, "B": 2})
|
409 |
+
expected = pd.Series(numeric).astype("category")
|
410 |
+
if 2 not in expected.cat.categories:
|
411 |
+
# i.e. categories should be [1, 2] even if there are no "B"s present
|
412 |
+
# GH#44940
|
413 |
+
expected = expected.cat.add_categories(2)
|
414 |
+
tm.assert_series_equal(expected, result)
|
415 |
+
|
416 |
+
@pytest.mark.parametrize(
|
417 |
+
"data, data_exp", [(["a", "b", "c"], ["b", "b", "c"]), (["a"], ["b"])]
|
418 |
+
)
|
419 |
+
def test_replace_categorical_inplace(self, data, data_exp):
|
420 |
+
# GH 53358
|
421 |
+
result = pd.Series(data, dtype="category")
|
422 |
+
msg = "with CategoricalDtype is deprecated"
|
423 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
424 |
+
result.replace(to_replace="a", value="b", inplace=True)
|
425 |
+
expected = pd.Series(data_exp, dtype="category")
|
426 |
+
tm.assert_series_equal(result, expected)
|
427 |
+
|
428 |
+
def test_replace_categorical_single(self):
|
429 |
+
# GH 26988
|
430 |
+
dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
|
431 |
+
s = pd.Series(dti)
|
432 |
+
c = s.astype("category")
|
433 |
+
|
434 |
+
expected = c.copy()
|
435 |
+
expected = expected.cat.add_categories("foo")
|
436 |
+
expected[2] = "foo"
|
437 |
+
expected = expected.cat.remove_unused_categories()
|
438 |
+
assert c[2] != "foo"
|
439 |
+
|
440 |
+
msg = "with CategoricalDtype is deprecated"
|
441 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
442 |
+
result = c.replace(c[2], "foo")
|
443 |
+
tm.assert_series_equal(expected, result)
|
444 |
+
assert c[2] != "foo" # ensure non-inplace call does not alter original
|
445 |
+
|
446 |
+
msg = "with CategoricalDtype is deprecated"
|
447 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
448 |
+
return_value = c.replace(c[2], "foo", inplace=True)
|
449 |
+
assert return_value is None
|
450 |
+
tm.assert_series_equal(expected, c)
|
451 |
+
|
452 |
+
first_value = c[0]
|
453 |
+
msg = "with CategoricalDtype is deprecated"
|
454 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
455 |
+
return_value = c.replace(c[1], c[0], inplace=True)
|
456 |
+
assert return_value is None
|
457 |
+
assert c[0] == c[1] == first_value # test replacing with existing value
|
458 |
+
|
459 |
+
def test_replace_with_no_overflowerror(self):
|
460 |
+
# GH 25616
|
461 |
+
# casts to object without Exception from OverflowError
|
462 |
+
s = pd.Series([0, 1, 2, 3, 4])
|
463 |
+
result = s.replace([3], ["100000000000000000000"])
|
464 |
+
expected = pd.Series([0, 1, 2, "100000000000000000000", 4])
|
465 |
+
tm.assert_series_equal(result, expected)
|
466 |
+
|
467 |
+
s = pd.Series([0, "100000000000000000000", "100000000000000000001"])
|
468 |
+
result = s.replace(["100000000000000000000"], [1])
|
469 |
+
expected = pd.Series([0, 1, "100000000000000000001"])
|
470 |
+
tm.assert_series_equal(result, expected)
|
471 |
+
|
472 |
+
@pytest.mark.parametrize(
|
473 |
+
"ser, to_replace, exp",
|
474 |
+
[
|
475 |
+
([1, 2, 3], {1: 2, 2: 3, 3: 4}, [2, 3, 4]),
|
476 |
+
(["1", "2", "3"], {"1": "2", "2": "3", "3": "4"}, ["2", "3", "4"]),
|
477 |
+
],
|
478 |
+
)
|
479 |
+
def test_replace_commutative(self, ser, to_replace, exp):
|
480 |
+
# GH 16051
|
481 |
+
# DataFrame.replace() overwrites when values are non-numeric
|
482 |
+
|
483 |
+
series = pd.Series(ser)
|
484 |
+
|
485 |
+
expected = pd.Series(exp)
|
486 |
+
result = series.replace(to_replace)
|
487 |
+
|
488 |
+
tm.assert_series_equal(result, expected)
|
489 |
+
|
490 |
+
@pytest.mark.parametrize(
|
491 |
+
"ser, exp", [([1, 2, 3], [1, True, 3]), (["x", 2, 3], ["x", True, 3])]
|
492 |
+
)
|
493 |
+
def test_replace_no_cast(self, ser, exp):
|
494 |
+
# GH 9113
|
495 |
+
# BUG: replace int64 dtype with bool coerces to int64
|
496 |
+
|
497 |
+
series = pd.Series(ser)
|
498 |
+
result = series.replace(2, True)
|
499 |
+
expected = pd.Series(exp)
|
500 |
+
|
501 |
+
tm.assert_series_equal(result, expected)
|
502 |
+
|
503 |
+
def test_replace_invalid_to_replace(self):
|
504 |
+
# GH 18634
|
505 |
+
# API: replace() should raise an exception if invalid argument is given
|
506 |
+
series = pd.Series(["a", "b", "c "])
|
507 |
+
msg = (
|
508 |
+
r"Expecting 'to_replace' to be either a scalar, array-like, "
|
509 |
+
r"dict or None, got invalid type.*"
|
510 |
+
)
|
511 |
+
msg2 = (
|
512 |
+
"Series.replace without 'value' and with non-dict-like "
|
513 |
+
"'to_replace' is deprecated"
|
514 |
+
)
|
515 |
+
with pytest.raises(TypeError, match=msg):
|
516 |
+
with tm.assert_produces_warning(FutureWarning, match=msg2):
|
517 |
+
series.replace(lambda x: x.strip())
|
518 |
+
|
519 |
+
@pytest.mark.parametrize("frame", [False, True])
|
520 |
+
def test_replace_nonbool_regex(self, frame):
|
521 |
+
obj = pd.Series(["a", "b", "c "])
|
522 |
+
if frame:
|
523 |
+
obj = obj.to_frame()
|
524 |
+
|
525 |
+
msg = "'to_replace' must be 'None' if 'regex' is not a bool"
|
526 |
+
with pytest.raises(ValueError, match=msg):
|
527 |
+
obj.replace(to_replace=["a"], regex="foo")
|
528 |
+
|
529 |
+
@pytest.mark.parametrize("frame", [False, True])
|
530 |
+
def test_replace_empty_copy(self, frame):
|
531 |
+
obj = pd.Series([], dtype=np.float64)
|
532 |
+
if frame:
|
533 |
+
obj = obj.to_frame()
|
534 |
+
|
535 |
+
res = obj.replace(4, 5, inplace=True)
|
536 |
+
assert res is None
|
537 |
+
|
538 |
+
res = obj.replace(4, 5, inplace=False)
|
539 |
+
tm.assert_equal(res, obj)
|
540 |
+
assert res is not obj
|
541 |
+
|
542 |
+
def test_replace_only_one_dictlike_arg(self, fixed_now_ts):
|
543 |
+
# GH#33340
|
544 |
+
|
545 |
+
ser = pd.Series([1, 2, "A", fixed_now_ts, True])
|
546 |
+
to_replace = {0: 1, 2: "A"}
|
547 |
+
value = "foo"
|
548 |
+
msg = "Series.replace cannot use dict-like to_replace and non-None value"
|
549 |
+
with pytest.raises(ValueError, match=msg):
|
550 |
+
ser.replace(to_replace, value)
|
551 |
+
|
552 |
+
to_replace = 1
|
553 |
+
value = {0: "foo", 2: "bar"}
|
554 |
+
msg = "Series.replace cannot use dict-value and non-None to_replace"
|
555 |
+
with pytest.raises(ValueError, match=msg):
|
556 |
+
ser.replace(to_replace, value)
|
557 |
+
|
558 |
+
def test_replace_extension_other(self, frame_or_series):
|
559 |
+
# https://github.com/pandas-dev/pandas/issues/34530
|
560 |
+
obj = frame_or_series(pd.array([1, 2, 3], dtype="Int64"))
|
561 |
+
result = obj.replace("", "") # no exception
|
562 |
+
# should not have changed dtype
|
563 |
+
tm.assert_equal(obj, result)
|
564 |
+
|
565 |
+
def _check_replace_with_method(self, ser: pd.Series):
|
566 |
+
df = ser.to_frame()
|
567 |
+
|
568 |
+
msg1 = "The 'method' keyword in Series.replace is deprecated"
|
569 |
+
with tm.assert_produces_warning(FutureWarning, match=msg1):
|
570 |
+
res = ser.replace(ser[1], method="pad")
|
571 |
+
expected = pd.Series([ser[0], ser[0]] + list(ser[2:]), dtype=ser.dtype)
|
572 |
+
tm.assert_series_equal(res, expected)
|
573 |
+
|
574 |
+
msg2 = "The 'method' keyword in DataFrame.replace is deprecated"
|
575 |
+
with tm.assert_produces_warning(FutureWarning, match=msg2):
|
576 |
+
res_df = df.replace(ser[1], method="pad")
|
577 |
+
tm.assert_frame_equal(res_df, expected.to_frame())
|
578 |
+
|
579 |
+
ser2 = ser.copy()
|
580 |
+
with tm.assert_produces_warning(FutureWarning, match=msg1):
|
581 |
+
res2 = ser2.replace(ser[1], method="pad", inplace=True)
|
582 |
+
assert res2 is None
|
583 |
+
tm.assert_series_equal(ser2, expected)
|
584 |
+
|
585 |
+
with tm.assert_produces_warning(FutureWarning, match=msg2):
|
586 |
+
res_df2 = df.replace(ser[1], method="pad", inplace=True)
|
587 |
+
assert res_df2 is None
|
588 |
+
tm.assert_frame_equal(df, expected.to_frame())
|
589 |
+
|
590 |
+
def test_replace_ea_dtype_with_method(self, any_numeric_ea_dtype):
|
591 |
+
arr = pd.array([1, 2, pd.NA, 4], dtype=any_numeric_ea_dtype)
|
592 |
+
ser = pd.Series(arr)
|
593 |
+
|
594 |
+
self._check_replace_with_method(ser)
|
595 |
+
|
596 |
+
@pytest.mark.parametrize("as_categorical", [True, False])
|
597 |
+
def test_replace_interval_with_method(self, as_categorical):
|
598 |
+
# in particular interval that can't hold NA
|
599 |
+
|
600 |
+
idx = pd.IntervalIndex.from_breaks(range(4))
|
601 |
+
ser = pd.Series(idx)
|
602 |
+
if as_categorical:
|
603 |
+
ser = ser.astype("category")
|
604 |
+
|
605 |
+
self._check_replace_with_method(ser)
|
606 |
+
|
607 |
+
@pytest.mark.parametrize("as_period", [True, False])
|
608 |
+
@pytest.mark.parametrize("as_categorical", [True, False])
|
609 |
+
def test_replace_datetimelike_with_method(self, as_period, as_categorical):
|
610 |
+
idx = pd.date_range("2016-01-01", periods=5, tz="US/Pacific")
|
611 |
+
if as_period:
|
612 |
+
idx = idx.tz_localize(None).to_period("D")
|
613 |
+
|
614 |
+
ser = pd.Series(idx)
|
615 |
+
ser.iloc[-2] = pd.NaT
|
616 |
+
if as_categorical:
|
617 |
+
ser = ser.astype("category")
|
618 |
+
|
619 |
+
self._check_replace_with_method(ser)
|
620 |
+
|
621 |
+
def test_replace_with_compiled_regex(self):
|
622 |
+
# https://github.com/pandas-dev/pandas/issues/35680
|
623 |
+
s = pd.Series(["a", "b", "c"])
|
624 |
+
regex = re.compile("^a$")
|
625 |
+
result = s.replace({regex: "z"}, regex=True)
|
626 |
+
expected = pd.Series(["z", "b", "c"])
|
627 |
+
tm.assert_series_equal(result, expected)
|
628 |
+
|
629 |
+
def test_pandas_replace_na(self):
|
630 |
+
# GH#43344
|
631 |
+
ser = pd.Series(["AA", "BB", "CC", "DD", "EE", "", pd.NA], dtype="string")
|
632 |
+
regex_mapping = {
|
633 |
+
"AA": "CC",
|
634 |
+
"BB": "CC",
|
635 |
+
"EE": "CC",
|
636 |
+
"CC": "CC-REPL",
|
637 |
+
}
|
638 |
+
result = ser.replace(regex_mapping, regex=True)
|
639 |
+
exp = pd.Series(["CC", "CC", "CC-REPL", "DD", "CC", "", pd.NA], dtype="string")
|
640 |
+
tm.assert_series_equal(result, exp)
|
641 |
+
|
642 |
+
@pytest.mark.parametrize(
|
643 |
+
"dtype, input_data, to_replace, expected_data",
|
644 |
+
[
|
645 |
+
("bool", [True, False], {True: False}, [False, False]),
|
646 |
+
("int64", [1, 2], {1: 10, 2: 20}, [10, 20]),
|
647 |
+
("Int64", [1, 2], {1: 10, 2: 20}, [10, 20]),
|
648 |
+
("float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]),
|
649 |
+
("Float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]),
|
650 |
+
("string", ["one", "two"], {"one": "1", "two": "2"}, ["1", "2"]),
|
651 |
+
(
|
652 |
+
pd.IntervalDtype("int64"),
|
653 |
+
IntervalArray([pd.Interval(1, 2), pd.Interval(2, 3)]),
|
654 |
+
{pd.Interval(1, 2): pd.Interval(10, 20)},
|
655 |
+
IntervalArray([pd.Interval(10, 20), pd.Interval(2, 3)]),
|
656 |
+
),
|
657 |
+
(
|
658 |
+
pd.IntervalDtype("float64"),
|
659 |
+
IntervalArray([pd.Interval(1.0, 2.7), pd.Interval(2.8, 3.1)]),
|
660 |
+
{pd.Interval(1.0, 2.7): pd.Interval(10.6, 20.8)},
|
661 |
+
IntervalArray([pd.Interval(10.6, 20.8), pd.Interval(2.8, 3.1)]),
|
662 |
+
),
|
663 |
+
(
|
664 |
+
pd.PeriodDtype("M"),
|
665 |
+
[pd.Period("2020-05", freq="M")],
|
666 |
+
{pd.Period("2020-05", freq="M"): pd.Period("2020-06", freq="M")},
|
667 |
+
[pd.Period("2020-06", freq="M")],
|
668 |
+
),
|
669 |
+
],
|
670 |
+
)
|
671 |
+
def test_replace_dtype(self, dtype, input_data, to_replace, expected_data):
|
672 |
+
# GH#33484
|
673 |
+
ser = pd.Series(input_data, dtype=dtype)
|
674 |
+
result = ser.replace(to_replace)
|
675 |
+
expected = pd.Series(expected_data, dtype=dtype)
|
676 |
+
tm.assert_series_equal(result, expected)
|
677 |
+
|
678 |
+
def test_replace_string_dtype(self):
|
679 |
+
# GH#40732, GH#44940
|
680 |
+
ser = pd.Series(["one", "two", np.nan], dtype="string")
|
681 |
+
res = ser.replace({"one": "1", "two": "2"})
|
682 |
+
expected = pd.Series(["1", "2", np.nan], dtype="string")
|
683 |
+
tm.assert_series_equal(res, expected)
|
684 |
+
|
685 |
+
# GH#31644
|
686 |
+
ser2 = pd.Series(["A", np.nan], dtype="string")
|
687 |
+
res2 = ser2.replace("A", "B")
|
688 |
+
expected2 = pd.Series(["B", np.nan], dtype="string")
|
689 |
+
tm.assert_series_equal(res2, expected2)
|
690 |
+
|
691 |
+
ser3 = pd.Series(["A", "B"], dtype="string")
|
692 |
+
res3 = ser3.replace("A", pd.NA)
|
693 |
+
expected3 = pd.Series([pd.NA, "B"], dtype="string")
|
694 |
+
tm.assert_series_equal(res3, expected3)
|
695 |
+
|
696 |
+
def test_replace_string_dtype_list_to_replace(self):
|
697 |
+
# GH#41215, GH#44940
|
698 |
+
ser = pd.Series(["abc", "def"], dtype="string")
|
699 |
+
res = ser.replace(["abc", "any other string"], "xyz")
|
700 |
+
expected = pd.Series(["xyz", "def"], dtype="string")
|
701 |
+
tm.assert_series_equal(res, expected)
|
702 |
+
|
703 |
+
def test_replace_string_dtype_regex(self):
|
704 |
+
# GH#31644
|
705 |
+
ser = pd.Series(["A", "B"], dtype="string")
|
706 |
+
res = ser.replace(r".", "C", regex=True)
|
707 |
+
expected = pd.Series(["C", "C"], dtype="string")
|
708 |
+
tm.assert_series_equal(res, expected)
|
709 |
+
|
710 |
+
def test_replace_nullable_numeric(self):
|
711 |
+
# GH#40732, GH#44940
|
712 |
+
|
713 |
+
floats = pd.Series([1.0, 2.0, 3.999, 4.4], dtype=pd.Float64Dtype())
|
714 |
+
assert floats.replace({1.0: 9}).dtype == floats.dtype
|
715 |
+
assert floats.replace(1.0, 9).dtype == floats.dtype
|
716 |
+
assert floats.replace({1.0: 9.0}).dtype == floats.dtype
|
717 |
+
assert floats.replace(1.0, 9.0).dtype == floats.dtype
|
718 |
+
|
719 |
+
res = floats.replace(to_replace=[1.0, 2.0], value=[9.0, 10.0])
|
720 |
+
assert res.dtype == floats.dtype
|
721 |
+
|
722 |
+
ints = pd.Series([1, 2, 3, 4], dtype=pd.Int64Dtype())
|
723 |
+
assert ints.replace({1: 9}).dtype == ints.dtype
|
724 |
+
assert ints.replace(1, 9).dtype == ints.dtype
|
725 |
+
assert ints.replace({1: 9.0}).dtype == ints.dtype
|
726 |
+
assert ints.replace(1, 9.0).dtype == ints.dtype
|
727 |
+
|
728 |
+
# nullable (for now) raises instead of casting
|
729 |
+
with pytest.raises(TypeError, match="Invalid value"):
|
730 |
+
ints.replace({1: 9.5})
|
731 |
+
with pytest.raises(TypeError, match="Invalid value"):
|
732 |
+
ints.replace(1, 9.5)
|
733 |
+
|
734 |
+
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't fill 1 in string")
|
735 |
+
@pytest.mark.parametrize("regex", [False, True])
|
736 |
+
def test_replace_regex_dtype_series(self, regex):
|
737 |
+
# GH-48644
|
738 |
+
series = pd.Series(["0"])
|
739 |
+
expected = pd.Series([1])
|
740 |
+
msg = "Downcasting behavior in `replace`"
|
741 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
742 |
+
result = series.replace(to_replace="0", value=1, regex=regex)
|
743 |
+
tm.assert_series_equal(result, expected)
|
744 |
+
|
745 |
+
def test_replace_different_int_types(self, any_int_numpy_dtype):
|
746 |
+
# GH#45311
|
747 |
+
labs = pd.Series([1, 1, 1, 0, 0, 2, 2, 2], dtype=any_int_numpy_dtype)
|
748 |
+
|
749 |
+
maps = pd.Series([0, 2, 1], dtype=any_int_numpy_dtype)
|
750 |
+
map_dict = dict(zip(maps.values, maps.index))
|
751 |
+
|
752 |
+
result = labs.replace(map_dict)
|
753 |
+
expected = labs.replace({0: 0, 2: 1, 1: 2})
|
754 |
+
tm.assert_series_equal(result, expected)
|
755 |
+
|
756 |
+
@pytest.mark.parametrize("val", [2, np.nan, 2.0])
|
757 |
+
def test_replace_value_none_dtype_numeric(self, val):
|
758 |
+
# GH#48231
|
759 |
+
ser = pd.Series([1, val])
|
760 |
+
result = ser.replace(val, None)
|
761 |
+
expected = pd.Series([1, None], dtype=object)
|
762 |
+
tm.assert_series_equal(result, expected)
|
763 |
+
|
764 |
+
def test_replace_change_dtype_series(self, using_infer_string):
|
765 |
+
# GH#25797
|
766 |
+
df = pd.DataFrame.from_dict({"Test": ["0.5", True, "0.6"]})
|
767 |
+
warn = FutureWarning if using_infer_string else None
|
768 |
+
with tm.assert_produces_warning(warn, match="Downcasting"):
|
769 |
+
df["Test"] = df["Test"].replace([True], [np.nan])
|
770 |
+
expected = pd.DataFrame.from_dict({"Test": ["0.5", np.nan, "0.6"]})
|
771 |
+
tm.assert_frame_equal(df, expected)
|
772 |
+
|
773 |
+
df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]})
|
774 |
+
df["Test"] = df["Test"].replace([None], [np.nan])
|
775 |
+
tm.assert_frame_equal(df, expected)
|
776 |
+
|
777 |
+
df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]})
|
778 |
+
df["Test"] = df["Test"].fillna(np.nan)
|
779 |
+
tm.assert_frame_equal(df, expected)
|
780 |
+
|
781 |
+
@pytest.mark.parametrize("dtype", ["object", "Int64"])
|
782 |
+
def test_replace_na_in_obj_column(self, dtype):
|
783 |
+
# GH#47480
|
784 |
+
ser = pd.Series([0, 1, pd.NA], dtype=dtype)
|
785 |
+
expected = pd.Series([0, 2, pd.NA], dtype=dtype)
|
786 |
+
result = ser.replace(to_replace=1, value=2)
|
787 |
+
tm.assert_series_equal(result, expected)
|
788 |
+
|
789 |
+
ser.replace(to_replace=1, value=2, inplace=True)
|
790 |
+
tm.assert_series_equal(ser, expected)
|
791 |
+
|
792 |
+
@pytest.mark.parametrize("val", [0, 0.5])
|
793 |
+
def test_replace_numeric_column_with_na(self, val):
|
794 |
+
# GH#50758
|
795 |
+
ser = pd.Series([val, 1])
|
796 |
+
expected = pd.Series([val, pd.NA])
|
797 |
+
result = ser.replace(to_replace=1, value=pd.NA)
|
798 |
+
tm.assert_series_equal(result, expected)
|
799 |
+
|
800 |
+
ser.replace(to_replace=1, value=pd.NA, inplace=True)
|
801 |
+
tm.assert_series_equal(ser, expected)
|
802 |
+
|
803 |
+
def test_replace_ea_float_with_bool(self):
|
804 |
+
# GH#55398
|
805 |
+
ser = pd.Series([0.0], dtype="Float64")
|
806 |
+
expected = ser.copy()
|
807 |
+
result = ser.replace(False, 1.0)
|
808 |
+
tm.assert_series_equal(result, expected)
|
809 |
+
|
810 |
+
ser = pd.Series([False], dtype="boolean")
|
811 |
+
expected = ser.copy()
|
812 |
+
result = ser.replace(0.0, True)
|
813 |
+
tm.assert_series_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_set_name.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
from pandas import Series
|
4 |
+
|
5 |
+
|
6 |
+
class TestSetName:
|
7 |
+
def test_set_name(self):
|
8 |
+
ser = Series([1, 2, 3])
|
9 |
+
ser2 = ser._set_name("foo")
|
10 |
+
assert ser2.name == "foo"
|
11 |
+
assert ser.name is None
|
12 |
+
assert ser is not ser2
|
13 |
+
|
14 |
+
def test_set_name_attribute(self):
|
15 |
+
ser = Series([1, 2, 3])
|
16 |
+
ser2 = Series([1, 2, 3], name="bar")
|
17 |
+
for name in [7, 7.0, "name", datetime(2001, 1, 1), (1,), "\u05D0"]:
|
18 |
+
ser.name = name
|
19 |
+
assert ser.name == name
|
20 |
+
ser2.name = name
|
21 |
+
assert ser2.name == name
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_size.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import Series
|
4 |
+
|
5 |
+
|
6 |
+
@pytest.mark.parametrize(
|
7 |
+
"data, index, expected",
|
8 |
+
[
|
9 |
+
([1, 2, 3], None, 3),
|
10 |
+
({"a": 1, "b": 2, "c": 3}, None, 3),
|
11 |
+
([1, 2, 3], ["x", "y", "z"], 3),
|
12 |
+
([1, 2, 3, 4, 5], ["x", "y", "z", "w", "n"], 5),
|
13 |
+
([1, 2, 3], None, 3),
|
14 |
+
([1, 2, 3], ["x", "y", "z"], 3),
|
15 |
+
([1, 2, 3, 4], ["x", "y", "z", "w"], 4),
|
16 |
+
],
|
17 |
+
)
|
18 |
+
def test_series(data, index, expected):
|
19 |
+
# GH#52897
|
20 |
+
ser = Series(data, index=index)
|
21 |
+
assert ser.size == expected
|
22 |
+
assert isinstance(ser.size, int)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_frame.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
DataFrame,
|
5 |
+
Index,
|
6 |
+
Series,
|
7 |
+
)
|
8 |
+
import pandas._testing as tm
|
9 |
+
|
10 |
+
|
11 |
+
class TestToFrame:
|
12 |
+
def test_to_frame_respects_name_none(self):
|
13 |
+
# GH#44212 if we explicitly pass name=None, then that should be respected,
|
14 |
+
# not changed to 0
|
15 |
+
# GH-45448 this is first deprecated & enforced in 2.0
|
16 |
+
ser = Series(range(3))
|
17 |
+
result = ser.to_frame(None)
|
18 |
+
|
19 |
+
exp_index = Index([None], dtype=object)
|
20 |
+
tm.assert_index_equal(result.columns, exp_index)
|
21 |
+
|
22 |
+
result = ser.rename("foo").to_frame(None)
|
23 |
+
exp_index = Index([None], dtype=object)
|
24 |
+
tm.assert_index_equal(result.columns, exp_index)
|
25 |
+
|
26 |
+
def test_to_frame(self, datetime_series):
|
27 |
+
datetime_series.name = None
|
28 |
+
rs = datetime_series.to_frame()
|
29 |
+
xp = DataFrame(datetime_series.values, index=datetime_series.index)
|
30 |
+
tm.assert_frame_equal(rs, xp)
|
31 |
+
|
32 |
+
datetime_series.name = "testname"
|
33 |
+
rs = datetime_series.to_frame()
|
34 |
+
xp = DataFrame(
|
35 |
+
{"testname": datetime_series.values}, index=datetime_series.index
|
36 |
+
)
|
37 |
+
tm.assert_frame_equal(rs, xp)
|
38 |
+
|
39 |
+
rs = datetime_series.to_frame(name="testdifferent")
|
40 |
+
xp = DataFrame(
|
41 |
+
{"testdifferent": datetime_series.values}, index=datetime_series.index
|
42 |
+
)
|
43 |
+
tm.assert_frame_equal(rs, xp)
|
44 |
+
|
45 |
+
@pytest.mark.filterwarnings(
|
46 |
+
"ignore:Passing a BlockManager|Passing a SingleBlockManager:DeprecationWarning"
|
47 |
+
)
|
48 |
+
def test_to_frame_expanddim(self):
|
49 |
+
# GH#9762
|
50 |
+
|
51 |
+
class SubclassedSeries(Series):
|
52 |
+
@property
|
53 |
+
def _constructor_expanddim(self):
|
54 |
+
return SubclassedFrame
|
55 |
+
|
56 |
+
class SubclassedFrame(DataFrame):
|
57 |
+
pass
|
58 |
+
|
59 |
+
ser = SubclassedSeries([1, 2, 3], name="X")
|
60 |
+
result = ser.to_frame()
|
61 |
+
assert isinstance(result, SubclassedFrame)
|
62 |
+
expected = SubclassedFrame({"X": [1, 2, 3]})
|
63 |
+
tm.assert_frame_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_unstack.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import (
|
6 |
+
DataFrame,
|
7 |
+
Index,
|
8 |
+
MultiIndex,
|
9 |
+
Series,
|
10 |
+
date_range,
|
11 |
+
)
|
12 |
+
import pandas._testing as tm
|
13 |
+
|
14 |
+
|
15 |
+
def test_unstack_preserves_object():
|
16 |
+
mi = MultiIndex.from_product([["bar", "foo"], ["one", "two"]])
|
17 |
+
|
18 |
+
ser = Series(np.arange(4.0), index=mi, dtype=object)
|
19 |
+
|
20 |
+
res1 = ser.unstack()
|
21 |
+
assert (res1.dtypes == object).all()
|
22 |
+
|
23 |
+
res2 = ser.unstack(level=0)
|
24 |
+
assert (res2.dtypes == object).all()
|
25 |
+
|
26 |
+
|
27 |
+
def test_unstack():
|
28 |
+
index = MultiIndex(
|
29 |
+
levels=[["bar", "foo"], ["one", "three", "two"]],
|
30 |
+
codes=[[1, 1, 0, 0], [0, 1, 0, 2]],
|
31 |
+
)
|
32 |
+
|
33 |
+
s = Series(np.arange(4.0), index=index)
|
34 |
+
unstacked = s.unstack()
|
35 |
+
|
36 |
+
expected = DataFrame(
|
37 |
+
[[2.0, np.nan, 3.0], [0.0, 1.0, np.nan]],
|
38 |
+
index=["bar", "foo"],
|
39 |
+
columns=["one", "three", "two"],
|
40 |
+
)
|
41 |
+
|
42 |
+
tm.assert_frame_equal(unstacked, expected)
|
43 |
+
|
44 |
+
unstacked = s.unstack(level=0)
|
45 |
+
tm.assert_frame_equal(unstacked, expected.T)
|
46 |
+
|
47 |
+
index = MultiIndex(
|
48 |
+
levels=[["bar"], ["one", "two", "three"], [0, 1]],
|
49 |
+
codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]],
|
50 |
+
)
|
51 |
+
s = Series(np.random.default_rng(2).standard_normal(6), index=index)
|
52 |
+
exp_index = MultiIndex(
|
53 |
+
levels=[["one", "two", "three"], [0, 1]],
|
54 |
+
codes=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]],
|
55 |
+
)
|
56 |
+
expected = DataFrame({"bar": s.values}, index=exp_index).sort_index(level=0)
|
57 |
+
unstacked = s.unstack(0).sort_index()
|
58 |
+
tm.assert_frame_equal(unstacked, expected)
|
59 |
+
|
60 |
+
# GH5873
|
61 |
+
idx = MultiIndex.from_arrays([[101, 102], [3.5, np.nan]])
|
62 |
+
ts = Series([1, 2], index=idx)
|
63 |
+
left = ts.unstack()
|
64 |
+
right = DataFrame(
|
65 |
+
[[np.nan, 1], [2, np.nan]], index=[101, 102], columns=[np.nan, 3.5]
|
66 |
+
)
|
67 |
+
tm.assert_frame_equal(left, right)
|
68 |
+
|
69 |
+
idx = MultiIndex.from_arrays(
|
70 |
+
[
|
71 |
+
["cat", "cat", "cat", "dog", "dog"],
|
72 |
+
["a", "a", "b", "a", "b"],
|
73 |
+
[1, 2, 1, 1, np.nan],
|
74 |
+
]
|
75 |
+
)
|
76 |
+
ts = Series([1.0, 1.1, 1.2, 1.3, 1.4], index=idx)
|
77 |
+
right = DataFrame(
|
78 |
+
[[1.0, 1.3], [1.1, np.nan], [np.nan, 1.4], [1.2, np.nan]],
|
79 |
+
columns=["cat", "dog"],
|
80 |
+
)
|
81 |
+
tpls = [("a", 1), ("a", 2), ("b", np.nan), ("b", 1)]
|
82 |
+
right.index = MultiIndex.from_tuples(tpls)
|
83 |
+
tm.assert_frame_equal(ts.unstack(level=0), right)
|
84 |
+
|
85 |
+
|
86 |
+
def test_unstack_tuplename_in_multiindex():
|
87 |
+
# GH 19966
|
88 |
+
idx = MultiIndex.from_product(
|
89 |
+
[["a", "b", "c"], [1, 2, 3]], names=[("A", "a"), ("B", "b")]
|
90 |
+
)
|
91 |
+
ser = Series(1, index=idx)
|
92 |
+
result = ser.unstack(("A", "a"))
|
93 |
+
|
94 |
+
expected = DataFrame(
|
95 |
+
[[1, 1, 1], [1, 1, 1], [1, 1, 1]],
|
96 |
+
columns=MultiIndex.from_tuples([("a",), ("b",), ("c",)], names=[("A", "a")]),
|
97 |
+
index=Index([1, 2, 3], name=("B", "b")),
|
98 |
+
)
|
99 |
+
tm.assert_frame_equal(result, expected)
|
100 |
+
|
101 |
+
|
102 |
+
@pytest.mark.parametrize(
|
103 |
+
"unstack_idx, expected_values, expected_index, expected_columns",
|
104 |
+
[
|
105 |
+
(
|
106 |
+
("A", "a"),
|
107 |
+
[[1, 1], [1, 1], [1, 1], [1, 1]],
|
108 |
+
MultiIndex.from_tuples([(1, 3), (1, 4), (2, 3), (2, 4)], names=["B", "C"]),
|
109 |
+
MultiIndex.from_tuples([("a",), ("b",)], names=[("A", "a")]),
|
110 |
+
),
|
111 |
+
(
|
112 |
+
(("A", "a"), "B"),
|
113 |
+
[[1, 1, 1, 1], [1, 1, 1, 1]],
|
114 |
+
Index([3, 4], name="C"),
|
115 |
+
MultiIndex.from_tuples(
|
116 |
+
[("a", 1), ("a", 2), ("b", 1), ("b", 2)], names=[("A", "a"), "B"]
|
117 |
+
),
|
118 |
+
),
|
119 |
+
],
|
120 |
+
)
|
121 |
+
def test_unstack_mixed_type_name_in_multiindex(
|
122 |
+
unstack_idx, expected_values, expected_index, expected_columns
|
123 |
+
):
|
124 |
+
# GH 19966
|
125 |
+
idx = MultiIndex.from_product(
|
126 |
+
[["a", "b"], [1, 2], [3, 4]], names=[("A", "a"), "B", "C"]
|
127 |
+
)
|
128 |
+
ser = Series(1, index=idx)
|
129 |
+
result = ser.unstack(unstack_idx)
|
130 |
+
|
131 |
+
expected = DataFrame(
|
132 |
+
expected_values, columns=expected_columns, index=expected_index
|
133 |
+
)
|
134 |
+
tm.assert_frame_equal(result, expected)
|
135 |
+
|
136 |
+
|
137 |
+
def test_unstack_multi_index_categorical_values():
|
138 |
+
df = DataFrame(
|
139 |
+
np.random.default_rng(2).standard_normal((10, 4)),
|
140 |
+
columns=Index(list("ABCD"), dtype=object),
|
141 |
+
index=date_range("2000-01-01", periods=10, freq="B"),
|
142 |
+
)
|
143 |
+
mi = df.stack(future_stack=True).index.rename(["major", "minor"])
|
144 |
+
ser = Series(["foo"] * len(mi), index=mi, name="category", dtype="category")
|
145 |
+
|
146 |
+
result = ser.unstack()
|
147 |
+
|
148 |
+
dti = ser.index.levels[0]
|
149 |
+
c = pd.Categorical(["foo"] * len(dti))
|
150 |
+
expected = DataFrame(
|
151 |
+
{"A": c.copy(), "B": c.copy(), "C": c.copy(), "D": c.copy()},
|
152 |
+
columns=Index(list("ABCD"), name="minor"),
|
153 |
+
index=dti.rename("major"),
|
154 |
+
)
|
155 |
+
tm.assert_frame_equal(result, expected)
|
156 |
+
|
157 |
+
|
158 |
+
def test_unstack_mixed_level_names():
|
159 |
+
# GH#48763
|
160 |
+
arrays = [["a", "a"], [1, 2], ["red", "blue"]]
|
161 |
+
idx = MultiIndex.from_arrays(arrays, names=("x", 0, "y"))
|
162 |
+
ser = Series([1, 2], index=idx)
|
163 |
+
result = ser.unstack("x")
|
164 |
+
expected = DataFrame(
|
165 |
+
[[1], [2]],
|
166 |
+
columns=Index(["a"], name="x"),
|
167 |
+
index=MultiIndex.from_tuples([(1, "red"), (2, "blue")], names=[0, "y"]),
|
168 |
+
)
|
169 |
+
tm.assert_frame_equal(result, expected)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_values.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
IntervalIndex,
|
6 |
+
Series,
|
7 |
+
period_range,
|
8 |
+
)
|
9 |
+
import pandas._testing as tm
|
10 |
+
|
11 |
+
|
12 |
+
class TestValues:
|
13 |
+
@pytest.mark.parametrize(
|
14 |
+
"data",
|
15 |
+
[
|
16 |
+
period_range("2000", periods=4),
|
17 |
+
IntervalIndex.from_breaks([1, 2, 3, 4]),
|
18 |
+
],
|
19 |
+
)
|
20 |
+
def test_values_object_extension_dtypes(self, data):
|
21 |
+
# https://github.com/pandas-dev/pandas/issues/23995
|
22 |
+
result = Series(data).values
|
23 |
+
expected = np.array(data.astype(object))
|
24 |
+
tm.assert_numpy_array_equal(result, expected)
|
25 |
+
|
26 |
+
def test_values(self, datetime_series):
|
27 |
+
tm.assert_almost_equal(
|
28 |
+
datetime_series.values, list(datetime_series), check_dtype=False
|
29 |
+
)
|
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/methods/test_view.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
Index,
|
6 |
+
Series,
|
7 |
+
array,
|
8 |
+
date_range,
|
9 |
+
)
|
10 |
+
import pandas._testing as tm
|
11 |
+
|
12 |
+
pytestmark = pytest.mark.filterwarnings(
|
13 |
+
"ignore:Series.view is deprecated and will be removed in a future version.:FutureWarning" # noqa: E501
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
class TestView:
|
18 |
+
def test_view_i8_to_datetimelike(self):
|
19 |
+
dti = date_range("2000", periods=4, tz="US/Central")
|
20 |
+
ser = Series(dti.asi8)
|
21 |
+
|
22 |
+
result = ser.view(dti.dtype)
|
23 |
+
tm.assert_datetime_array_equal(result._values, dti._data._with_freq(None))
|
24 |
+
|
25 |
+
pi = dti.tz_localize(None).to_period("D")
|
26 |
+
ser = Series(pi.asi8)
|
27 |
+
result = ser.view(pi.dtype)
|
28 |
+
tm.assert_period_array_equal(result._values, pi._data)
|
29 |
+
|
30 |
+
def test_view_tz(self):
|
31 |
+
# GH#24024
|
32 |
+
ser = Series(date_range("2000", periods=4, tz="US/Central"))
|
33 |
+
result = ser.view("i8")
|
34 |
+
expected = Series(
|
35 |
+
[
|
36 |
+
946706400000000000,
|
37 |
+
946792800000000000,
|
38 |
+
946879200000000000,
|
39 |
+
946965600000000000,
|
40 |
+
]
|
41 |
+
)
|
42 |
+
tm.assert_series_equal(result, expected)
|
43 |
+
|
44 |
+
@pytest.mark.parametrize(
|
45 |
+
"first", ["m8[ns]", "M8[ns]", "M8[ns, US/Central]", "period[D]"]
|
46 |
+
)
|
47 |
+
@pytest.mark.parametrize(
|
48 |
+
"second", ["m8[ns]", "M8[ns]", "M8[ns, US/Central]", "period[D]"]
|
49 |
+
)
|
50 |
+
@pytest.mark.parametrize("box", [Series, Index, array])
|
51 |
+
def test_view_between_datetimelike(self, first, second, box):
|
52 |
+
dti = date_range("2016-01-01", periods=3)
|
53 |
+
|
54 |
+
orig = box(dti)
|
55 |
+
obj = orig.view(first)
|
56 |
+
assert obj.dtype == first
|
57 |
+
tm.assert_numpy_array_equal(np.asarray(obj.view("i8")), dti.asi8)
|
58 |
+
|
59 |
+
res = obj.view(second)
|
60 |
+
assert res.dtype == second
|
61 |
+
tm.assert_numpy_array_equal(np.asarray(obj.view("i8")), dti.asi8)
|