applied-ai-018 commited on
Commit
3625e1f
·
verified ·
1 Parent(s): 3a52800

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sympy/concrete/__init__.py +8 -0
  2. env-llmeval/lib/python3.10/site-packages/sympy/concrete/delta.py +331 -0
  3. env-llmeval/lib/python3.10/site-packages/sympy/concrete/expr_with_intlimits.py +354 -0
  4. env-llmeval/lib/python3.10/site-packages/sympy/concrete/expr_with_limits.py +603 -0
  5. env-llmeval/lib/python3.10/site-packages/sympy/concrete/gosper.py +227 -0
  6. env-llmeval/lib/python3.10/site-packages/sympy/concrete/guess.py +473 -0
  7. env-llmeval/lib/python3.10/site-packages/sympy/concrete/products.py +610 -0
  8. env-llmeval/lib/python3.10/site-packages/sympy/concrete/summations.py +1646 -0
  9. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/complexfield.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/expressionrawdomain.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/fractionfield.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyfinitefield.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyintegerring.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyrationalfield.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/mpelements.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonintegerring.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonrational.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/simpledomain.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_basis.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_primes.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_basis.py +85 -0
  22. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_galoisgroups.py +143 -0
  23. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_minpoly.py +474 -0
  24. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_modules.py +752 -0
  25. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_primes.py +296 -0
  26. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_subfield.py +304 -0
  27. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_utilities.py +113 -0
  28. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_c.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_conventions.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_cupy.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_cxx.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_fortran.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_glsl.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_jscode.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_julia.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_latex.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_llvmjit.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_maple.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_mathematica.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_mathml.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_octave.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_python.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_rust.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_str.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_tableform.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_tensorflow.cpython-310.pyc +0 -0
  47. env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_tree.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/sympy/utilities/__init__.py +30 -0
  49. env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/__init__.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/codegen.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/sympy/concrete/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from .products import product, Product
2
+ from .summations import summation, Sum
3
+
4
+ __all__ = [
5
+ 'product', 'Product',
6
+
7
+ 'summation', 'Sum',
8
+ ]
env-llmeval/lib/python3.10/site-packages/sympy/concrete/delta.py ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module implements sums and products containing the Kronecker Delta function.
3
+
4
+ References
5
+ ==========
6
+
7
+ .. [1] https://mathworld.wolfram.com/KroneckerDelta.html
8
+
9
+ """
10
+ from .products import product
11
+ from .summations import Sum, summation
12
+ from sympy.core import Add, Mul, S, Dummy
13
+ from sympy.core.cache import cacheit
14
+ from sympy.core.sorting import default_sort_key
15
+ from sympy.functions import KroneckerDelta, Piecewise, piecewise_fold
16
+ from sympy.polys.polytools import factor
17
+ from sympy.sets.sets import Interval
18
+ from sympy.solvers.solvers import solve
19
+
20
+
21
+ @cacheit
22
+ def _expand_delta(expr, index):
23
+ """
24
+ Expand the first Add containing a simple KroneckerDelta.
25
+ """
26
+ if not expr.is_Mul:
27
+ return expr
28
+ delta = None
29
+ func = Add
30
+ terms = [S.One]
31
+ for h in expr.args:
32
+ if delta is None and h.is_Add and _has_simple_delta(h, index):
33
+ delta = True
34
+ func = h.func
35
+ terms = [terms[0]*t for t in h.args]
36
+ else:
37
+ terms = [t*h for t in terms]
38
+ return func(*terms)
39
+
40
+
41
+ @cacheit
42
+ def _extract_delta(expr, index):
43
+ """
44
+ Extract a simple KroneckerDelta from the expression.
45
+
46
+ Explanation
47
+ ===========
48
+
49
+ Returns the tuple ``(delta, newexpr)`` where:
50
+
51
+ - ``delta`` is a simple KroneckerDelta expression if one was found,
52
+ or ``None`` if no simple KroneckerDelta expression was found.
53
+
54
+ - ``newexpr`` is a Mul containing the remaining terms; ``expr`` is
55
+ returned unchanged if no simple KroneckerDelta expression was found.
56
+
57
+ Examples
58
+ ========
59
+
60
+ >>> from sympy import KroneckerDelta
61
+ >>> from sympy.concrete.delta import _extract_delta
62
+ >>> from sympy.abc import x, y, i, j, k
63
+ >>> _extract_delta(4*x*y*KroneckerDelta(i, j), i)
64
+ (KroneckerDelta(i, j), 4*x*y)
65
+ >>> _extract_delta(4*x*y*KroneckerDelta(i, j), k)
66
+ (None, 4*x*y*KroneckerDelta(i, j))
67
+
68
+ See Also
69
+ ========
70
+
71
+ sympy.functions.special.tensor_functions.KroneckerDelta
72
+ deltaproduct
73
+ deltasummation
74
+ """
75
+ if not _has_simple_delta(expr, index):
76
+ return (None, expr)
77
+ if isinstance(expr, KroneckerDelta):
78
+ return (expr, S.One)
79
+ if not expr.is_Mul:
80
+ raise ValueError("Incorrect expr")
81
+ delta = None
82
+ terms = []
83
+
84
+ for arg in expr.args:
85
+ if delta is None and _is_simple_delta(arg, index):
86
+ delta = arg
87
+ else:
88
+ terms.append(arg)
89
+ return (delta, expr.func(*terms))
90
+
91
+
92
+ @cacheit
93
+ def _has_simple_delta(expr, index):
94
+ """
95
+ Returns True if ``expr`` is an expression that contains a KroneckerDelta
96
+ that is simple in the index ``index``, meaning that this KroneckerDelta
97
+ is nonzero for a single value of the index ``index``.
98
+ """
99
+ if expr.has(KroneckerDelta):
100
+ if _is_simple_delta(expr, index):
101
+ return True
102
+ if expr.is_Add or expr.is_Mul:
103
+ for arg in expr.args:
104
+ if _has_simple_delta(arg, index):
105
+ return True
106
+ return False
107
+
108
+
109
+ @cacheit
110
+ def _is_simple_delta(delta, index):
111
+ """
112
+ Returns True if ``delta`` is a KroneckerDelta and is nonzero for a single
113
+ value of the index ``index``.
114
+ """
115
+ if isinstance(delta, KroneckerDelta) and delta.has(index):
116
+ p = (delta.args[0] - delta.args[1]).as_poly(index)
117
+ if p:
118
+ return p.degree() == 1
119
+ return False
120
+
121
+
122
+ @cacheit
123
+ def _remove_multiple_delta(expr):
124
+ """
125
+ Evaluate products of KroneckerDelta's.
126
+ """
127
+ if expr.is_Add:
128
+ return expr.func(*list(map(_remove_multiple_delta, expr.args)))
129
+ if not expr.is_Mul:
130
+ return expr
131
+ eqs = []
132
+ newargs = []
133
+ for arg in expr.args:
134
+ if isinstance(arg, KroneckerDelta):
135
+ eqs.append(arg.args[0] - arg.args[1])
136
+ else:
137
+ newargs.append(arg)
138
+ if not eqs:
139
+ return expr
140
+ solns = solve(eqs, dict=True)
141
+ if len(solns) == 0:
142
+ return S.Zero
143
+ elif len(solns) == 1:
144
+ for key in solns[0].keys():
145
+ newargs.append(KroneckerDelta(key, solns[0][key]))
146
+ expr2 = expr.func(*newargs)
147
+ if expr != expr2:
148
+ return _remove_multiple_delta(expr2)
149
+ return expr
150
+
151
+
152
+ @cacheit
153
+ def _simplify_delta(expr):
154
+ """
155
+ Rewrite a KroneckerDelta's indices in its simplest form.
156
+ """
157
+ if isinstance(expr, KroneckerDelta):
158
+ try:
159
+ slns = solve(expr.args[0] - expr.args[1], dict=True)
160
+ if slns and len(slns) == 1:
161
+ return Mul(*[KroneckerDelta(*(key, value))
162
+ for key, value in slns[0].items()])
163
+ except NotImplementedError:
164
+ pass
165
+ return expr
166
+
167
+
168
+ @cacheit
169
+ def deltaproduct(f, limit):
170
+ """
171
+ Handle products containing a KroneckerDelta.
172
+
173
+ See Also
174
+ ========
175
+
176
+ deltasummation
177
+ sympy.functions.special.tensor_functions.KroneckerDelta
178
+ sympy.concrete.products.product
179
+ """
180
+ if ((limit[2] - limit[1]) < 0) == True:
181
+ return S.One
182
+
183
+ if not f.has(KroneckerDelta):
184
+ return product(f, limit)
185
+
186
+ if f.is_Add:
187
+ # Identify the term in the Add that has a simple KroneckerDelta
188
+ delta = None
189
+ terms = []
190
+ for arg in sorted(f.args, key=default_sort_key):
191
+ if delta is None and _has_simple_delta(arg, limit[0]):
192
+ delta = arg
193
+ else:
194
+ terms.append(arg)
195
+ newexpr = f.func(*terms)
196
+ k = Dummy("kprime", integer=True)
197
+ if isinstance(limit[1], int) and isinstance(limit[2], int):
198
+ result = deltaproduct(newexpr, limit) + sum([
199
+ deltaproduct(newexpr, (limit[0], limit[1], ik - 1)) *
200
+ delta.subs(limit[0], ik) *
201
+ deltaproduct(newexpr, (limit[0], ik + 1, limit[2])) for ik in range(int(limit[1]), int(limit[2] + 1))]
202
+ )
203
+ else:
204
+ result = deltaproduct(newexpr, limit) + deltasummation(
205
+ deltaproduct(newexpr, (limit[0], limit[1], k - 1)) *
206
+ delta.subs(limit[0], k) *
207
+ deltaproduct(newexpr, (limit[0], k + 1, limit[2])),
208
+ (k, limit[1], limit[2]),
209
+ no_piecewise=_has_simple_delta(newexpr, limit[0])
210
+ )
211
+ return _remove_multiple_delta(result)
212
+
213
+ delta, _ = _extract_delta(f, limit[0])
214
+
215
+ if not delta:
216
+ g = _expand_delta(f, limit[0])
217
+ if f != g:
218
+ try:
219
+ return factor(deltaproduct(g, limit))
220
+ except AssertionError:
221
+ return deltaproduct(g, limit)
222
+ return product(f, limit)
223
+
224
+ return _remove_multiple_delta(f.subs(limit[0], limit[1])*KroneckerDelta(limit[2], limit[1])) + \
225
+ S.One*_simplify_delta(KroneckerDelta(limit[2], limit[1] - 1))
226
+
227
+
228
+ @cacheit
229
+ def deltasummation(f, limit, no_piecewise=False):
230
+ """
231
+ Handle summations containing a KroneckerDelta.
232
+
233
+ Explanation
234
+ ===========
235
+
236
+ The idea for summation is the following:
237
+
238
+ - If we are dealing with a KroneckerDelta expression, i.e. KroneckerDelta(g(x), j),
239
+ we try to simplify it.
240
+
241
+ If we could simplify it, then we sum the resulting expression.
242
+ We already know we can sum a simplified expression, because only
243
+ simple KroneckerDelta expressions are involved.
244
+
245
+ If we could not simplify it, there are two cases:
246
+
247
+ 1) The expression is a simple expression: we return the summation,
248
+ taking care if we are dealing with a Derivative or with a proper
249
+ KroneckerDelta.
250
+
251
+ 2) The expression is not simple (i.e. KroneckerDelta(cos(x))): we can do
252
+ nothing at all.
253
+
254
+ - If the expr is a multiplication expr having a KroneckerDelta term:
255
+
256
+ First we expand it.
257
+
258
+ If the expansion did work, then we try to sum the expansion.
259
+
260
+ If not, we try to extract a simple KroneckerDelta term, then we have two
261
+ cases:
262
+
263
+ 1) We have a simple KroneckerDelta term, so we return the summation.
264
+
265
+ 2) We did not have a simple term, but we do have an expression with
266
+ simplified KroneckerDelta terms, so we sum this expression.
267
+
268
+ Examples
269
+ ========
270
+
271
+ >>> from sympy import oo, symbols
272
+ >>> from sympy.abc import k
273
+ >>> i, j = symbols('i, j', integer=True, finite=True)
274
+ >>> from sympy.concrete.delta import deltasummation
275
+ >>> from sympy import KroneckerDelta
276
+ >>> deltasummation(KroneckerDelta(i, k), (k, -oo, oo))
277
+ 1
278
+ >>> deltasummation(KroneckerDelta(i, k), (k, 0, oo))
279
+ Piecewise((1, i >= 0), (0, True))
280
+ >>> deltasummation(KroneckerDelta(i, k), (k, 1, 3))
281
+ Piecewise((1, (i >= 1) & (i <= 3)), (0, True))
282
+ >>> deltasummation(k*KroneckerDelta(i, j)*KroneckerDelta(j, k), (k, -oo, oo))
283
+ j*KroneckerDelta(i, j)
284
+ >>> deltasummation(j*KroneckerDelta(i, j), (j, -oo, oo))
285
+ i
286
+ >>> deltasummation(i*KroneckerDelta(i, j), (i, -oo, oo))
287
+ j
288
+
289
+ See Also
290
+ ========
291
+
292
+ deltaproduct
293
+ sympy.functions.special.tensor_functions.KroneckerDelta
294
+ sympy.concrete.sums.summation
295
+ """
296
+ if ((limit[2] - limit[1]) < 0) == True:
297
+ return S.Zero
298
+
299
+ if not f.has(KroneckerDelta):
300
+ return summation(f, limit)
301
+
302
+ x = limit[0]
303
+
304
+ g = _expand_delta(f, x)
305
+ if g.is_Add:
306
+ return piecewise_fold(
307
+ g.func(*[deltasummation(h, limit, no_piecewise) for h in g.args]))
308
+
309
+ # try to extract a simple KroneckerDelta term
310
+ delta, expr = _extract_delta(g, x)
311
+
312
+ if (delta is not None) and (delta.delta_range is not None):
313
+ dinf, dsup = delta.delta_range
314
+ if (limit[1] - dinf <= 0) == True and (limit[2] - dsup >= 0) == True:
315
+ no_piecewise = True
316
+
317
+ if not delta:
318
+ return summation(f, limit)
319
+
320
+ solns = solve(delta.args[0] - delta.args[1], x)
321
+ if len(solns) == 0:
322
+ return S.Zero
323
+ elif len(solns) != 1:
324
+ return Sum(f, limit)
325
+ value = solns[0]
326
+ if no_piecewise:
327
+ return expr.subs(x, value)
328
+ return Piecewise(
329
+ (expr.subs(x, value), Interval(*limit[1:3]).as_relational(value)),
330
+ (S.Zero, True)
331
+ )
env-llmeval/lib/python3.10/site-packages/sympy/concrete/expr_with_intlimits.py ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.concrete.expr_with_limits import ExprWithLimits
2
+ from sympy.core.singleton import S
3
+ from sympy.core.relational import Eq
4
+
5
+ class ReorderError(NotImplementedError):
6
+ """
7
+ Exception raised when trying to reorder dependent limits.
8
+ """
9
+ def __init__(self, expr, msg):
10
+ super().__init__(
11
+ "%s could not be reordered: %s." % (expr, msg))
12
+
13
+ class ExprWithIntLimits(ExprWithLimits):
14
+ """
15
+ Superclass for Product and Sum.
16
+
17
+ See Also
18
+ ========
19
+
20
+ sympy.concrete.expr_with_limits.ExprWithLimits
21
+ sympy.concrete.products.Product
22
+ sympy.concrete.summations.Sum
23
+ """
24
+ __slots__ = ()
25
+
26
+ def change_index(self, var, trafo, newvar=None):
27
+ r"""
28
+ Change index of a Sum or Product.
29
+
30
+ Perform a linear transformation `x \mapsto a x + b` on the index variable
31
+ `x`. For `a` the only values allowed are `\pm 1`. A new variable to be used
32
+ after the change of index can also be specified.
33
+
34
+ Explanation
35
+ ===========
36
+
37
+ ``change_index(expr, var, trafo, newvar=None)`` where ``var`` specifies the
38
+ index variable `x` to transform. The transformation ``trafo`` must be linear
39
+ and given in terms of ``var``. If the optional argument ``newvar`` is
40
+ provided then ``var`` gets replaced by ``newvar`` in the final expression.
41
+
42
+ Examples
43
+ ========
44
+
45
+ >>> from sympy import Sum, Product, simplify
46
+ >>> from sympy.abc import x, y, a, b, c, d, u, v, i, j, k, l
47
+
48
+ >>> S = Sum(x, (x, a, b))
49
+ >>> S.doit()
50
+ -a**2/2 + a/2 + b**2/2 + b/2
51
+
52
+ >>> Sn = S.change_index(x, x + 1, y)
53
+ >>> Sn
54
+ Sum(y - 1, (y, a + 1, b + 1))
55
+ >>> Sn.doit()
56
+ -a**2/2 + a/2 + b**2/2 + b/2
57
+
58
+ >>> Sn = S.change_index(x, -x, y)
59
+ >>> Sn
60
+ Sum(-y, (y, -b, -a))
61
+ >>> Sn.doit()
62
+ -a**2/2 + a/2 + b**2/2 + b/2
63
+
64
+ >>> Sn = S.change_index(x, x+u)
65
+ >>> Sn
66
+ Sum(-u + x, (x, a + u, b + u))
67
+ >>> Sn.doit()
68
+ -a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u
69
+ >>> simplify(Sn.doit())
70
+ -a**2/2 + a/2 + b**2/2 + b/2
71
+
72
+ >>> Sn = S.change_index(x, -x - u, y)
73
+ >>> Sn
74
+ Sum(-u - y, (y, -b - u, -a - u))
75
+ >>> Sn.doit()
76
+ -a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u
77
+ >>> simplify(Sn.doit())
78
+ -a**2/2 + a/2 + b**2/2 + b/2
79
+
80
+ >>> P = Product(i*j**2, (i, a, b), (j, c, d))
81
+ >>> P
82
+ Product(i*j**2, (i, a, b), (j, c, d))
83
+ >>> P2 = P.change_index(i, i+3, k)
84
+ >>> P2
85
+ Product(j**2*(k - 3), (k, a + 3, b + 3), (j, c, d))
86
+ >>> P3 = P2.change_index(j, -j, l)
87
+ >>> P3
88
+ Product(l**2*(k - 3), (k, a + 3, b + 3), (l, -d, -c))
89
+
90
+ When dealing with symbols only, we can make a
91
+ general linear transformation:
92
+
93
+ >>> Sn = S.change_index(x, u*x+v, y)
94
+ >>> Sn
95
+ Sum((-v + y)/u, (y, b*u + v, a*u + v))
96
+ >>> Sn.doit()
97
+ -v*(a*u - b*u + 1)/u + (a**2*u**2/2 + a*u*v + a*u/2 - b**2*u**2/2 - b*u*v + b*u/2 + v)/u
98
+ >>> simplify(Sn.doit())
99
+ a**2*u/2 + a/2 - b**2*u/2 + b/2
100
+
101
+ However, the last result can be inconsistent with usual
102
+ summation where the index increment is always 1. This is
103
+ obvious as we get back the original value only for ``u``
104
+ equal +1 or -1.
105
+
106
+ See Also
107
+ ========
108
+
109
+ sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index,
110
+ reorder_limit,
111
+ sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder,
112
+ sympy.concrete.summations.Sum.reverse_order,
113
+ sympy.concrete.products.Product.reverse_order
114
+ """
115
+ if newvar is None:
116
+ newvar = var
117
+
118
+ limits = []
119
+ for limit in self.limits:
120
+ if limit[0] == var:
121
+ p = trafo.as_poly(var)
122
+ if p.degree() != 1:
123
+ raise ValueError("Index transformation is not linear")
124
+ alpha = p.coeff_monomial(var)
125
+ beta = p.coeff_monomial(S.One)
126
+ if alpha.is_number:
127
+ if alpha == S.One:
128
+ limits.append((newvar, alpha*limit[1] + beta, alpha*limit[2] + beta))
129
+ elif alpha == S.NegativeOne:
130
+ limits.append((newvar, alpha*limit[2] + beta, alpha*limit[1] + beta))
131
+ else:
132
+ raise ValueError("Linear transformation results in non-linear summation stepsize")
133
+ else:
134
+ # Note that the case of alpha being symbolic can give issues if alpha < 0.
135
+ limits.append((newvar, alpha*limit[2] + beta, alpha*limit[1] + beta))
136
+ else:
137
+ limits.append(limit)
138
+
139
+ function = self.function.subs(var, (var - beta)/alpha)
140
+ function = function.subs(var, newvar)
141
+
142
+ return self.func(function, *limits)
143
+
144
+
145
+ def index(expr, x):
146
+ """
147
+ Return the index of a dummy variable in the list of limits.
148
+
149
+ Explanation
150
+ ===========
151
+
152
+ ``index(expr, x)`` returns the index of the dummy variable ``x`` in the
153
+ limits of ``expr``. Note that we start counting with 0 at the inner-most
154
+ limits tuple.
155
+
156
+ Examples
157
+ ========
158
+
159
+ >>> from sympy.abc import x, y, a, b, c, d
160
+ >>> from sympy import Sum, Product
161
+ >>> Sum(x*y, (x, a, b), (y, c, d)).index(x)
162
+ 0
163
+ >>> Sum(x*y, (x, a, b), (y, c, d)).index(y)
164
+ 1
165
+ >>> Product(x*y, (x, a, b), (y, c, d)).index(x)
166
+ 0
167
+ >>> Product(x*y, (x, a, b), (y, c, d)).index(y)
168
+ 1
169
+
170
+ See Also
171
+ ========
172
+
173
+ reorder_limit, reorder, sympy.concrete.summations.Sum.reverse_order,
174
+ sympy.concrete.products.Product.reverse_order
175
+ """
176
+ variables = [limit[0] for limit in expr.limits]
177
+
178
+ if variables.count(x) != 1:
179
+ raise ValueError(expr, "Number of instances of variable not equal to one")
180
+ else:
181
+ return variables.index(x)
182
+
183
+ def reorder(expr, *arg):
184
+ """
185
+ Reorder limits in a expression containing a Sum or a Product.
186
+
187
+ Explanation
188
+ ===========
189
+
190
+ ``expr.reorder(*arg)`` reorders the limits in the expression ``expr``
191
+ according to the list of tuples given by ``arg``. These tuples can
192
+ contain numerical indices or index variable names or involve both.
193
+
194
+ Examples
195
+ ========
196
+
197
+ >>> from sympy import Sum, Product
198
+ >>> from sympy.abc import x, y, z, a, b, c, d, e, f
199
+
200
+ >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((x, y))
201
+ Sum(x*y, (y, c, d), (x, a, b))
202
+
203
+ >>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder((x, y), (x, z), (y, z))
204
+ Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b))
205
+
206
+ >>> P = Product(x*y*z, (x, a, b), (y, c, d), (z, e, f))
207
+ >>> P.reorder((x, y), (x, z), (y, z))
208
+ Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))
209
+
210
+ We can also select the index variables by counting them, starting
211
+ with the inner-most one:
212
+
213
+ >>> Sum(x**2, (x, a, b), (x, c, d)).reorder((0, 1))
214
+ Sum(x**2, (x, c, d), (x, a, b))
215
+
216
+ And of course we can mix both schemes:
217
+
218
+ >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x))
219
+ Sum(x*y, (y, c, d), (x, a, b))
220
+ >>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, 0))
221
+ Sum(x*y, (y, c, d), (x, a, b))
222
+
223
+ See Also
224
+ ========
225
+
226
+ reorder_limit, index, sympy.concrete.summations.Sum.reverse_order,
227
+ sympy.concrete.products.Product.reverse_order
228
+ """
229
+ new_expr = expr
230
+
231
+ for r in arg:
232
+ if len(r) != 2:
233
+ raise ValueError(r, "Invalid number of arguments")
234
+
235
+ index1 = r[0]
236
+ index2 = r[1]
237
+
238
+ if not isinstance(r[0], int):
239
+ index1 = expr.index(r[0])
240
+ if not isinstance(r[1], int):
241
+ index2 = expr.index(r[1])
242
+
243
+ new_expr = new_expr.reorder_limit(index1, index2)
244
+
245
+ return new_expr
246
+
247
+
248
+ def reorder_limit(expr, x, y):
249
+ """
250
+ Interchange two limit tuples of a Sum or Product expression.
251
+
252
+ Explanation
253
+ ===========
254
+
255
+ ``expr.reorder_limit(x, y)`` interchanges two limit tuples. The
256
+ arguments ``x`` and ``y`` are integers corresponding to the index
257
+ variables of the two limits which are to be interchanged. The
258
+ expression ``expr`` has to be either a Sum or a Product.
259
+
260
+ Examples
261
+ ========
262
+
263
+ >>> from sympy.abc import x, y, z, a, b, c, d, e, f
264
+ >>> from sympy import Sum, Product
265
+
266
+ >>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
267
+ Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b))
268
+ >>> Sum(x**2, (x, a, b), (x, c, d)).reorder_limit(1, 0)
269
+ Sum(x**2, (x, c, d), (x, a, b))
270
+
271
+ >>> Product(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
272
+ Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))
273
+
274
+ See Also
275
+ ========
276
+
277
+ index, reorder, sympy.concrete.summations.Sum.reverse_order,
278
+ sympy.concrete.products.Product.reverse_order
279
+ """
280
+ var = {limit[0] for limit in expr.limits}
281
+ limit_x = expr.limits[x]
282
+ limit_y = expr.limits[y]
283
+
284
+ if (len(set(limit_x[1].free_symbols).intersection(var)) == 0 and
285
+ len(set(limit_x[2].free_symbols).intersection(var)) == 0 and
286
+ len(set(limit_y[1].free_symbols).intersection(var)) == 0 and
287
+ len(set(limit_y[2].free_symbols).intersection(var)) == 0):
288
+
289
+ limits = []
290
+ for i, limit in enumerate(expr.limits):
291
+ if i == x:
292
+ limits.append(limit_y)
293
+ elif i == y:
294
+ limits.append(limit_x)
295
+ else:
296
+ limits.append(limit)
297
+
298
+ return type(expr)(expr.function, *limits)
299
+ else:
300
+ raise ReorderError(expr, "could not interchange the two limits specified")
301
+
302
+ @property
303
+ def has_empty_sequence(self):
304
+ """
305
+ Returns True if the Sum or Product is computed for an empty sequence.
306
+
307
+ Examples
308
+ ========
309
+
310
+ >>> from sympy import Sum, Product, Symbol
311
+ >>> m = Symbol('m')
312
+ >>> Sum(m, (m, 1, 0)).has_empty_sequence
313
+ True
314
+
315
+ >>> Sum(m, (m, 1, 1)).has_empty_sequence
316
+ False
317
+
318
+ >>> M = Symbol('M', integer=True, positive=True)
319
+ >>> Product(m, (m, 1, M)).has_empty_sequence
320
+ False
321
+
322
+ >>> Product(m, (m, 2, M)).has_empty_sequence
323
+
324
+ >>> Product(m, (m, M + 1, M)).has_empty_sequence
325
+ True
326
+
327
+ >>> N = Symbol('N', integer=True, positive=True)
328
+ >>> Sum(m, (m, N, M)).has_empty_sequence
329
+
330
+ >>> N = Symbol('N', integer=True, negative=True)
331
+ >>> Sum(m, (m, N, M)).has_empty_sequence
332
+ False
333
+
334
+ See Also
335
+ ========
336
+
337
+ has_reversed_limits
338
+ has_finite_limits
339
+
340
+ """
341
+ ret_None = False
342
+ for lim in self.limits:
343
+ dif = lim[1] - lim[2]
344
+ eq = Eq(dif, 1)
345
+ if eq == True:
346
+ return True
347
+ elif eq == False:
348
+ continue
349
+ else:
350
+ ret_None = True
351
+
352
+ if ret_None:
353
+ return None
354
+ return False
env-llmeval/lib/python3.10/site-packages/sympy/concrete/expr_with_limits.py ADDED
@@ -0,0 +1,603 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.add import Add
2
+ from sympy.core.containers import Tuple
3
+ from sympy.core.expr import Expr
4
+ from sympy.core.function import AppliedUndef, UndefinedFunction
5
+ from sympy.core.mul import Mul
6
+ from sympy.core.relational import Equality, Relational
7
+ from sympy.core.singleton import S
8
+ from sympy.core.symbol import Symbol, Dummy
9
+ from sympy.core.sympify import sympify
10
+ from sympy.functions.elementary.piecewise import (piecewise_fold,
11
+ Piecewise)
12
+ from sympy.logic.boolalg import BooleanFunction
13
+ from sympy.matrices.matrices import MatrixBase
14
+ from sympy.sets.sets import Interval, Set
15
+ from sympy.sets.fancysets import Range
16
+ from sympy.tensor.indexed import Idx
17
+ from sympy.utilities import flatten
18
+ from sympy.utilities.iterables import sift, is_sequence
19
+ from sympy.utilities.exceptions import sympy_deprecation_warning
20
+
21
+
22
+ def _common_new(cls, function, *symbols, discrete, **assumptions):
23
+ """Return either a special return value or the tuple,
24
+ (function, limits, orientation). This code is common to
25
+ both ExprWithLimits and AddWithLimits."""
26
+ function = sympify(function)
27
+
28
+ if isinstance(function, Equality):
29
+ # This transforms e.g. Integral(Eq(x, y)) to Eq(Integral(x), Integral(y))
30
+ # but that is only valid for definite integrals.
31
+ limits, orientation = _process_limits(*symbols, discrete=discrete)
32
+ if not (limits and all(len(limit) == 3 for limit in limits)):
33
+ sympy_deprecation_warning(
34
+ """
35
+ Creating a indefinite integral with an Eq() argument is
36
+ deprecated.
37
+
38
+ This is because indefinite integrals do not preserve equality
39
+ due to the arbitrary constants. If you want an equality of
40
+ indefinite integrals, use Eq(Integral(a, x), Integral(b, x))
41
+ explicitly.
42
+ """,
43
+ deprecated_since_version="1.6",
44
+ active_deprecations_target="deprecated-indefinite-integral-eq",
45
+ stacklevel=5,
46
+ )
47
+
48
+ lhs = function.lhs
49
+ rhs = function.rhs
50
+ return Equality(cls(lhs, *symbols, **assumptions), \
51
+ cls(rhs, *symbols, **assumptions))
52
+
53
+ if function is S.NaN:
54
+ return S.NaN
55
+
56
+ if symbols:
57
+ limits, orientation = _process_limits(*symbols, discrete=discrete)
58
+ for i, li in enumerate(limits):
59
+ if len(li) == 4:
60
+ function = function.subs(li[0], li[-1])
61
+ limits[i] = Tuple(*li[:-1])
62
+ else:
63
+ # symbol not provided -- we can still try to compute a general form
64
+ free = function.free_symbols
65
+ if len(free) != 1:
66
+ raise ValueError(
67
+ "specify dummy variables for %s" % function)
68
+ limits, orientation = [Tuple(s) for s in free], 1
69
+
70
+ # denest any nested calls
71
+ while cls == type(function):
72
+ limits = list(function.limits) + limits
73
+ function = function.function
74
+
75
+ # Any embedded piecewise functions need to be brought out to the
76
+ # top level. We only fold Piecewise that contain the integration
77
+ # variable.
78
+ reps = {}
79
+ symbols_of_integration = {i[0] for i in limits}
80
+ for p in function.atoms(Piecewise):
81
+ if not p.has(*symbols_of_integration):
82
+ reps[p] = Dummy()
83
+ # mask off those that don't
84
+ function = function.xreplace(reps)
85
+ # do the fold
86
+ function = piecewise_fold(function)
87
+ # remove the masking
88
+ function = function.xreplace({v: k for k, v in reps.items()})
89
+
90
+ return function, limits, orientation
91
+
92
+
93
+ def _process_limits(*symbols, discrete=None):
94
+ """Process the list of symbols and convert them to canonical limits,
95
+ storing them as Tuple(symbol, lower, upper). The orientation of
96
+ the function is also returned when the upper limit is missing
97
+ so (x, 1, None) becomes (x, None, 1) and the orientation is changed.
98
+ In the case that a limit is specified as (symbol, Range), a list of
99
+ length 4 may be returned if a change of variables is needed; the
100
+ expression that should replace the symbol in the expression is
101
+ the fourth element in the list.
102
+ """
103
+ limits = []
104
+ orientation = 1
105
+ if discrete is None:
106
+ err_msg = 'discrete must be True or False'
107
+ elif discrete:
108
+ err_msg = 'use Range, not Interval or Relational'
109
+ else:
110
+ err_msg = 'use Interval or Relational, not Range'
111
+ for V in symbols:
112
+ if isinstance(V, (Relational, BooleanFunction)):
113
+ if discrete:
114
+ raise TypeError(err_msg)
115
+ variable = V.atoms(Symbol).pop()
116
+ V = (variable, V.as_set())
117
+ elif isinstance(V, Symbol) or getattr(V, '_diff_wrt', False):
118
+ if isinstance(V, Idx):
119
+ if V.lower is None or V.upper is None:
120
+ limits.append(Tuple(V))
121
+ else:
122
+ limits.append(Tuple(V, V.lower, V.upper))
123
+ else:
124
+ limits.append(Tuple(V))
125
+ continue
126
+ if is_sequence(V) and not isinstance(V, Set):
127
+ if len(V) == 2 and isinstance(V[1], Set):
128
+ V = list(V)
129
+ if isinstance(V[1], Interval): # includes Reals
130
+ if discrete:
131
+ raise TypeError(err_msg)
132
+ V[1:] = V[1].inf, V[1].sup
133
+ elif isinstance(V[1], Range):
134
+ if not discrete:
135
+ raise TypeError(err_msg)
136
+ lo = V[1].inf
137
+ hi = V[1].sup
138
+ dx = abs(V[1].step) # direction doesn't matter
139
+ if dx == 1:
140
+ V[1:] = [lo, hi]
141
+ else:
142
+ if lo is not S.NegativeInfinity:
143
+ V = [V[0]] + [0, (hi - lo)//dx, dx*V[0] + lo]
144
+ else:
145
+ V = [V[0]] + [0, S.Infinity, -dx*V[0] + hi]
146
+ else:
147
+ # more complicated sets would require splitting, e.g.
148
+ # Union(Interval(1, 3), interval(6,10))
149
+ raise NotImplementedError(
150
+ 'expecting Range' if discrete else
151
+ 'Relational or single Interval' )
152
+ V = sympify(flatten(V)) # list of sympified elements/None
153
+ if isinstance(V[0], (Symbol, Idx)) or getattr(V[0], '_diff_wrt', False):
154
+ newsymbol = V[0]
155
+ if len(V) == 3:
156
+ # general case
157
+ if V[2] is None and V[1] is not None:
158
+ orientation *= -1
159
+ V = [newsymbol] + [i for i in V[1:] if i is not None]
160
+
161
+ lenV = len(V)
162
+ if not isinstance(newsymbol, Idx) or lenV == 3:
163
+ if lenV == 4:
164
+ limits.append(Tuple(*V))
165
+ continue
166
+ if lenV == 3:
167
+ if isinstance(newsymbol, Idx):
168
+ # Idx represents an integer which may have
169
+ # specified values it can take on; if it is
170
+ # given such a value, an error is raised here
171
+ # if the summation would try to give it a larger
172
+ # or smaller value than permitted. None and Symbolic
173
+ # values will not raise an error.
174
+ lo, hi = newsymbol.lower, newsymbol.upper
175
+ try:
176
+ if lo is not None and not bool(V[1] >= lo):
177
+ raise ValueError("Summation will set Idx value too low.")
178
+ except TypeError:
179
+ pass
180
+ try:
181
+ if hi is not None and not bool(V[2] <= hi):
182
+ raise ValueError("Summation will set Idx value too high.")
183
+ except TypeError:
184
+ pass
185
+ limits.append(Tuple(*V))
186
+ continue
187
+ if lenV == 1 or (lenV == 2 and V[1] is None):
188
+ limits.append(Tuple(newsymbol))
189
+ continue
190
+ elif lenV == 2:
191
+ limits.append(Tuple(newsymbol, V[1]))
192
+ continue
193
+
194
+ raise ValueError('Invalid limits given: %s' % str(symbols))
195
+
196
+ return limits, orientation
197
+
198
+
199
+ class ExprWithLimits(Expr):
200
+ __slots__ = ('is_commutative',)
201
+
202
+ def __new__(cls, function, *symbols, **assumptions):
203
+ from sympy.concrete.products import Product
204
+ pre = _common_new(cls, function, *symbols,
205
+ discrete=issubclass(cls, Product), **assumptions)
206
+ if isinstance(pre, tuple):
207
+ function, limits, _ = pre
208
+ else:
209
+ return pre
210
+
211
+ # limits must have upper and lower bounds; the indefinite form
212
+ # is not supported. This restriction does not apply to AddWithLimits
213
+ if any(len(l) != 3 or None in l for l in limits):
214
+ raise ValueError('ExprWithLimits requires values for lower and upper bounds.')
215
+
216
+ obj = Expr.__new__(cls, **assumptions)
217
+ arglist = [function]
218
+ arglist.extend(limits)
219
+ obj._args = tuple(arglist)
220
+ obj.is_commutative = function.is_commutative # limits already checked
221
+
222
+ return obj
223
+
224
+ @property
225
+ def function(self):
226
+ """Return the function applied across limits.
227
+
228
+ Examples
229
+ ========
230
+
231
+ >>> from sympy import Integral
232
+ >>> from sympy.abc import x
233
+ >>> Integral(x**2, (x,)).function
234
+ x**2
235
+
236
+ See Also
237
+ ========
238
+
239
+ limits, variables, free_symbols
240
+ """
241
+ return self._args[0]
242
+
243
+ @property
244
+ def kind(self):
245
+ return self.function.kind
246
+
247
+ @property
248
+ def limits(self):
249
+ """Return the limits of expression.
250
+
251
+ Examples
252
+ ========
253
+
254
+ >>> from sympy import Integral
255
+ >>> from sympy.abc import x, i
256
+ >>> Integral(x**i, (i, 1, 3)).limits
257
+ ((i, 1, 3),)
258
+
259
+ See Also
260
+ ========
261
+
262
+ function, variables, free_symbols
263
+ """
264
+ return self._args[1:]
265
+
266
+ @property
267
+ def variables(self):
268
+ """Return a list of the limit variables.
269
+
270
+ >>> from sympy import Sum
271
+ >>> from sympy.abc import x, i
272
+ >>> Sum(x**i, (i, 1, 3)).variables
273
+ [i]
274
+
275
+ See Also
276
+ ========
277
+
278
+ function, limits, free_symbols
279
+ as_dummy : Rename dummy variables
280
+ sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable
281
+ """
282
+ return [l[0] for l in self.limits]
283
+
284
+ @property
285
+ def bound_symbols(self):
286
+ """Return only variables that are dummy variables.
287
+
288
+ Examples
289
+ ========
290
+
291
+ >>> from sympy import Integral
292
+ >>> from sympy.abc import x, i, j, k
293
+ >>> Integral(x**i, (i, 1, 3), (j, 2), k).bound_symbols
294
+ [i, j]
295
+
296
+ See Also
297
+ ========
298
+
299
+ function, limits, free_symbols
300
+ as_dummy : Rename dummy variables
301
+ sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable
302
+ """
303
+ return [l[0] for l in self.limits if len(l) != 1]
304
+
305
+ @property
306
+ def free_symbols(self):
307
+ """
308
+ This method returns the symbols in the object, excluding those
309
+ that take on a specific value (i.e. the dummy symbols).
310
+
311
+ Examples
312
+ ========
313
+
314
+ >>> from sympy import Sum
315
+ >>> from sympy.abc import x, y
316
+ >>> Sum(x, (x, y, 1)).free_symbols
317
+ {y}
318
+ """
319
+ # don't test for any special values -- nominal free symbols
320
+ # should be returned, e.g. don't return set() if the
321
+ # function is zero -- treat it like an unevaluated expression.
322
+ function, limits = self.function, self.limits
323
+ # mask off non-symbol integration variables that have
324
+ # more than themself as a free symbol
325
+ reps = {i[0]: i[0] if i[0].free_symbols == {i[0]} else Dummy()
326
+ for i in self.limits}
327
+ function = function.xreplace(reps)
328
+ isyms = function.free_symbols
329
+ for xab in limits:
330
+ v = reps[xab[0]]
331
+ if len(xab) == 1:
332
+ isyms.add(v)
333
+ continue
334
+ # take out the target symbol
335
+ if v in isyms:
336
+ isyms.remove(v)
337
+ # add in the new symbols
338
+ for i in xab[1:]:
339
+ isyms.update(i.free_symbols)
340
+ reps = {v: k for k, v in reps.items()}
341
+ return {reps.get(_, _) for _ in isyms}
342
+
343
+ @property
344
+ def is_number(self):
345
+ """Return True if the Sum has no free symbols, else False."""
346
+ return not self.free_symbols
347
+
348
+ def _eval_interval(self, x, a, b):
349
+ limits = [(i if i[0] != x else (x, a, b)) for i in self.limits]
350
+ integrand = self.function
351
+ return self.func(integrand, *limits)
352
+
353
+ def _eval_subs(self, old, new):
354
+ """
355
+ Perform substitutions over non-dummy variables
356
+ of an expression with limits. Also, can be used
357
+ to specify point-evaluation of an abstract antiderivative.
358
+
359
+ Examples
360
+ ========
361
+
362
+ >>> from sympy import Sum, oo
363
+ >>> from sympy.abc import s, n
364
+ >>> Sum(1/n**s, (n, 1, oo)).subs(s, 2)
365
+ Sum(n**(-2), (n, 1, oo))
366
+
367
+ >>> from sympy import Integral
368
+ >>> from sympy.abc import x, a
369
+ >>> Integral(a*x**2, x).subs(x, 4)
370
+ Integral(a*x**2, (x, 4))
371
+
372
+ See Also
373
+ ========
374
+
375
+ variables : Lists the integration variables
376
+ transform : Perform mapping on the dummy variable for integrals
377
+ change_index : Perform mapping on the sum and product dummy variables
378
+
379
+ """
380
+ func, limits = self.function, list(self.limits)
381
+
382
+ # If one of the expressions we are replacing is used as a func index
383
+ # one of two things happens.
384
+ # - the old variable first appears as a free variable
385
+ # so we perform all free substitutions before it becomes
386
+ # a func index.
387
+ # - the old variable first appears as a func index, in
388
+ # which case we ignore. See change_index.
389
+
390
+ # Reorder limits to match standard mathematical practice for scoping
391
+ limits.reverse()
392
+
393
+ if not isinstance(old, Symbol) or \
394
+ old.free_symbols.intersection(self.free_symbols):
395
+ sub_into_func = True
396
+ for i, xab in enumerate(limits):
397
+ if 1 == len(xab) and old == xab[0]:
398
+ if new._diff_wrt:
399
+ xab = (new,)
400
+ else:
401
+ xab = (old, old)
402
+ limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]])
403
+ if len(xab[0].free_symbols.intersection(old.free_symbols)) != 0:
404
+ sub_into_func = False
405
+ break
406
+ if isinstance(old, (AppliedUndef, UndefinedFunction)):
407
+ sy2 = set(self.variables).intersection(set(new.atoms(Symbol)))
408
+ sy1 = set(self.variables).intersection(set(old.args))
409
+ if not sy2.issubset(sy1):
410
+ raise ValueError(
411
+ "substitution cannot create dummy dependencies")
412
+ sub_into_func = True
413
+ if sub_into_func:
414
+ func = func.subs(old, new)
415
+ else:
416
+ # old is a Symbol and a dummy variable of some limit
417
+ for i, xab in enumerate(limits):
418
+ if len(xab) == 3:
419
+ limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]])
420
+ if old == xab[0]:
421
+ break
422
+ # simplify redundant limits (x, x) to (x, )
423
+ for i, xab in enumerate(limits):
424
+ if len(xab) == 2 and (xab[0] - xab[1]).is_zero:
425
+ limits[i] = Tuple(xab[0], )
426
+
427
+ # Reorder limits back to representation-form
428
+ limits.reverse()
429
+
430
+ return self.func(func, *limits)
431
+
432
+ @property
433
+ def has_finite_limits(self):
434
+ """
435
+ Returns True if the limits are known to be finite, either by the
436
+ explicit bounds, assumptions on the bounds, or assumptions on the
437
+ variables. False if known to be infinite, based on the bounds.
438
+ None if not enough information is available to determine.
439
+
440
+ Examples
441
+ ========
442
+
443
+ >>> from sympy import Sum, Integral, Product, oo, Symbol
444
+ >>> x = Symbol('x')
445
+ >>> Sum(x, (x, 1, 8)).has_finite_limits
446
+ True
447
+
448
+ >>> Integral(x, (x, 1, oo)).has_finite_limits
449
+ False
450
+
451
+ >>> M = Symbol('M')
452
+ >>> Sum(x, (x, 1, M)).has_finite_limits
453
+
454
+ >>> N = Symbol('N', integer=True)
455
+ >>> Product(x, (x, 1, N)).has_finite_limits
456
+ True
457
+
458
+ See Also
459
+ ========
460
+
461
+ has_reversed_limits
462
+
463
+ """
464
+
465
+ ret_None = False
466
+ for lim in self.limits:
467
+ if len(lim) == 3:
468
+ if any(l.is_infinite for l in lim[1:]):
469
+ # Any of the bounds are +/-oo
470
+ return False
471
+ elif any(l.is_infinite is None for l in lim[1:]):
472
+ # Maybe there are assumptions on the variable?
473
+ if lim[0].is_infinite is None:
474
+ ret_None = True
475
+ else:
476
+ if lim[0].is_infinite is None:
477
+ ret_None = True
478
+
479
+ if ret_None:
480
+ return None
481
+ return True
482
+
483
+ @property
484
+ def has_reversed_limits(self):
485
+ """
486
+ Returns True if the limits are known to be in reversed order, either
487
+ by the explicit bounds, assumptions on the bounds, or assumptions on the
488
+ variables. False if known to be in normal order, based on the bounds.
489
+ None if not enough information is available to determine.
490
+
491
+ Examples
492
+ ========
493
+
494
+ >>> from sympy import Sum, Integral, Product, oo, Symbol
495
+ >>> x = Symbol('x')
496
+ >>> Sum(x, (x, 8, 1)).has_reversed_limits
497
+ True
498
+
499
+ >>> Sum(x, (x, 1, oo)).has_reversed_limits
500
+ False
501
+
502
+ >>> M = Symbol('M')
503
+ >>> Integral(x, (x, 1, M)).has_reversed_limits
504
+
505
+ >>> N = Symbol('N', integer=True, positive=True)
506
+ >>> Sum(x, (x, 1, N)).has_reversed_limits
507
+ False
508
+
509
+ >>> Product(x, (x, 2, N)).has_reversed_limits
510
+
511
+ >>> Product(x, (x, 2, N)).subs(N, N + 2).has_reversed_limits
512
+ False
513
+
514
+ See Also
515
+ ========
516
+
517
+ sympy.concrete.expr_with_intlimits.ExprWithIntLimits.has_empty_sequence
518
+
519
+ """
520
+ ret_None = False
521
+ for lim in self.limits:
522
+ if len(lim) == 3:
523
+ var, a, b = lim
524
+ dif = b - a
525
+ if dif.is_extended_negative:
526
+ return True
527
+ elif dif.is_extended_nonnegative:
528
+ continue
529
+ else:
530
+ ret_None = True
531
+ else:
532
+ return None
533
+ if ret_None:
534
+ return None
535
+ return False
536
+
537
+
538
+ class AddWithLimits(ExprWithLimits):
539
+ r"""Represents unevaluated oriented additions.
540
+ Parent class for Integral and Sum.
541
+ """
542
+
543
+ __slots__ = ()
544
+
545
+ def __new__(cls, function, *symbols, **assumptions):
546
+ from sympy.concrete.summations import Sum
547
+ pre = _common_new(cls, function, *symbols,
548
+ discrete=issubclass(cls, Sum), **assumptions)
549
+ if isinstance(pre, tuple):
550
+ function, limits, orientation = pre
551
+ else:
552
+ return pre
553
+
554
+ obj = Expr.__new__(cls, **assumptions)
555
+ arglist = [orientation*function] # orientation not used in ExprWithLimits
556
+ arglist.extend(limits)
557
+ obj._args = tuple(arglist)
558
+ obj.is_commutative = function.is_commutative # limits already checked
559
+
560
+ return obj
561
+
562
+ def _eval_adjoint(self):
563
+ if all(x.is_real for x in flatten(self.limits)):
564
+ return self.func(self.function.adjoint(), *self.limits)
565
+ return None
566
+
567
+ def _eval_conjugate(self):
568
+ if all(x.is_real for x in flatten(self.limits)):
569
+ return self.func(self.function.conjugate(), *self.limits)
570
+ return None
571
+
572
+ def _eval_transpose(self):
573
+ if all(x.is_real for x in flatten(self.limits)):
574
+ return self.func(self.function.transpose(), *self.limits)
575
+ return None
576
+
577
+ def _eval_factor(self, **hints):
578
+ if 1 == len(self.limits):
579
+ summand = self.function.factor(**hints)
580
+ if summand.is_Mul:
581
+ out = sift(summand.args, lambda w: w.is_commutative \
582
+ and not set(self.variables) & w.free_symbols)
583
+ return Mul(*out[True])*self.func(Mul(*out[False]), \
584
+ *self.limits)
585
+ else:
586
+ summand = self.func(self.function, *self.limits[0:-1]).factor()
587
+ if not summand.has(self.variables[-1]):
588
+ return self.func(1, [self.limits[-1]]).doit()*summand
589
+ elif isinstance(summand, Mul):
590
+ return self.func(summand, self.limits[-1]).factor()
591
+ return self
592
+
593
+ def _eval_expand_basic(self, **hints):
594
+ summand = self.function.expand(**hints)
595
+ force = hints.get('force', False)
596
+ if (summand.is_Add and (force or summand.is_commutative and
597
+ self.has_finite_limits is not False)):
598
+ return Add(*[self.func(i, *self.limits) for i in summand.args])
599
+ elif isinstance(summand, MatrixBase):
600
+ return summand.applyfunc(lambda x: self.func(x, *self.limits))
601
+ elif summand != self.function:
602
+ return self.func(summand, *self.limits)
603
+ return self
env-llmeval/lib/python3.10/site-packages/sympy/concrete/gosper.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Gosper's algorithm for hypergeometric summation. """
2
+
3
+ from sympy.core import S, Dummy, symbols
4
+ from sympy.polys import Poly, parallel_poly_from_expr, factor
5
+ from sympy.utilities.iterables import is_sequence
6
+
7
+
8
+ def gosper_normal(f, g, n, polys=True):
9
+ r"""
10
+ Compute the Gosper's normal form of ``f`` and ``g``.
11
+
12
+ Explanation
13
+ ===========
14
+
15
+ Given relatively prime univariate polynomials ``f`` and ``g``,
16
+ rewrite their quotient to a normal form defined as follows:
17
+
18
+ .. math::
19
+ \frac{f(n)}{g(n)} = Z \cdot \frac{A(n) C(n+1)}{B(n) C(n)}
20
+
21
+ where ``Z`` is an arbitrary constant and ``A``, ``B``, ``C`` are
22
+ monic polynomials in ``n`` with the following properties:
23
+
24
+ 1. `\gcd(A(n), B(n+h)) = 1 \forall h \in \mathbb{N}`
25
+ 2. `\gcd(B(n), C(n+1)) = 1`
26
+ 3. `\gcd(A(n), C(n)) = 1`
27
+
28
+ This normal form, or rational factorization in other words, is a
29
+ crucial step in Gosper's algorithm and in solving of difference
30
+ equations. It can be also used to decide if two hypergeometric
31
+ terms are similar or not.
32
+
33
+ This procedure will return a tuple containing elements of this
34
+ factorization in the form ``(Z*A, B, C)``.
35
+
36
+ Examples
37
+ ========
38
+
39
+ >>> from sympy.concrete.gosper import gosper_normal
40
+ >>> from sympy.abc import n
41
+
42
+ >>> gosper_normal(4*n+5, 2*(4*n+1)*(2*n+3), n, polys=False)
43
+ (1/4, n + 3/2, n + 1/4)
44
+
45
+ """
46
+ (p, q), opt = parallel_poly_from_expr(
47
+ (f, g), n, field=True, extension=True)
48
+
49
+ a, A = p.LC(), p.monic()
50
+ b, B = q.LC(), q.monic()
51
+
52
+ C, Z = A.one, a/b
53
+ h = Dummy('h')
54
+
55
+ D = Poly(n + h, n, h, domain=opt.domain)
56
+
57
+ R = A.resultant(B.compose(D))
58
+ roots = set(R.ground_roots().keys())
59
+
60
+ for r in set(roots):
61
+ if not r.is_Integer or r < 0:
62
+ roots.remove(r)
63
+
64
+ for i in sorted(roots):
65
+ d = A.gcd(B.shift(+i))
66
+
67
+ A = A.quo(d)
68
+ B = B.quo(d.shift(-i))
69
+
70
+ for j in range(1, i + 1):
71
+ C *= d.shift(-j)
72
+
73
+ A = A.mul_ground(Z)
74
+
75
+ if not polys:
76
+ A = A.as_expr()
77
+ B = B.as_expr()
78
+ C = C.as_expr()
79
+
80
+ return A, B, C
81
+
82
+
83
+ def gosper_term(f, n):
84
+ r"""
85
+ Compute Gosper's hypergeometric term for ``f``.
86
+
87
+ Explanation
88
+ ===========
89
+
90
+ Suppose ``f`` is a hypergeometric term such that:
91
+
92
+ .. math::
93
+ s_n = \sum_{k=0}^{n-1} f_k
94
+
95
+ and `f_k` does not depend on `n`. Returns a hypergeometric
96
+ term `g_n` such that `g_{n+1} - g_n = f_n`.
97
+
98
+ Examples
99
+ ========
100
+
101
+ >>> from sympy.concrete.gosper import gosper_term
102
+ >>> from sympy import factorial
103
+ >>> from sympy.abc import n
104
+
105
+ >>> gosper_term((4*n + 1)*factorial(n)/factorial(2*n + 1), n)
106
+ (-n - 1/2)/(n + 1/4)
107
+
108
+ """
109
+ from sympy.simplify import hypersimp
110
+ r = hypersimp(f, n)
111
+
112
+ if r is None:
113
+ return None # 'f' is *not* a hypergeometric term
114
+
115
+ p, q = r.as_numer_denom()
116
+
117
+ A, B, C = gosper_normal(p, q, n)
118
+ B = B.shift(-1)
119
+
120
+ N = S(A.degree())
121
+ M = S(B.degree())
122
+ K = S(C.degree())
123
+
124
+ if (N != M) or (A.LC() != B.LC()):
125
+ D = {K - max(N, M)}
126
+ elif not N:
127
+ D = {K - N + 1, S.Zero}
128
+ else:
129
+ D = {K - N + 1, (B.nth(N - 1) - A.nth(N - 1))/A.LC()}
130
+
131
+ for d in set(D):
132
+ if not d.is_Integer or d < 0:
133
+ D.remove(d)
134
+
135
+ if not D:
136
+ return None # 'f(n)' is *not* Gosper-summable
137
+
138
+ d = max(D)
139
+
140
+ coeffs = symbols('c:%s' % (d + 1), cls=Dummy)
141
+ domain = A.get_domain().inject(*coeffs)
142
+
143
+ x = Poly(coeffs, n, domain=domain)
144
+ H = A*x.shift(1) - B*x - C
145
+
146
+ from sympy.solvers.solvers import solve
147
+ solution = solve(H.coeffs(), coeffs)
148
+
149
+ if solution is None:
150
+ return None # 'f(n)' is *not* Gosper-summable
151
+
152
+ x = x.as_expr().subs(solution)
153
+
154
+ for coeff in coeffs:
155
+ if coeff not in solution:
156
+ x = x.subs(coeff, 0)
157
+
158
+ if x.is_zero:
159
+ return None # 'f(n)' is *not* Gosper-summable
160
+ else:
161
+ return B.as_expr()*x/C.as_expr()
162
+
163
+
164
+ def gosper_sum(f, k):
165
+ r"""
166
+ Gosper's hypergeometric summation algorithm.
167
+
168
+ Explanation
169
+ ===========
170
+
171
+ Given a hypergeometric term ``f`` such that:
172
+
173
+ .. math ::
174
+ s_n = \sum_{k=0}^{n-1} f_k
175
+
176
+ and `f(n)` does not depend on `n`, returns `g_{n} - g(0)` where
177
+ `g_{n+1} - g_n = f_n`, or ``None`` if `s_n` cannot be expressed
178
+ in closed form as a sum of hypergeometric terms.
179
+
180
+ Examples
181
+ ========
182
+
183
+ >>> from sympy.concrete.gosper import gosper_sum
184
+ >>> from sympy import factorial
185
+ >>> from sympy.abc import n, k
186
+
187
+ >>> f = (4*k + 1)*factorial(k)/factorial(2*k + 1)
188
+ >>> gosper_sum(f, (k, 0, n))
189
+ (-factorial(n) + 2*factorial(2*n + 1))/factorial(2*n + 1)
190
+ >>> _.subs(n, 2) == sum(f.subs(k, i) for i in [0, 1, 2])
191
+ True
192
+ >>> gosper_sum(f, (k, 3, n))
193
+ (-60*factorial(n) + factorial(2*n + 1))/(60*factorial(2*n + 1))
194
+ >>> _.subs(n, 5) == sum(f.subs(k, i) for i in [3, 4, 5])
195
+ True
196
+
197
+ References
198
+ ==========
199
+
200
+ .. [1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B,
201
+ AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73--100
202
+
203
+ """
204
+ indefinite = False
205
+
206
+ if is_sequence(k):
207
+ k, a, b = k
208
+ else:
209
+ indefinite = True
210
+
211
+ g = gosper_term(f, k)
212
+
213
+ if g is None:
214
+ return None
215
+
216
+ if indefinite:
217
+ result = f*g
218
+ else:
219
+ result = (f*(g + 1)).subs(k, b) - (f*g).subs(k, a)
220
+
221
+ if result is S.NaN:
222
+ try:
223
+ result = (f*(g + 1)).limit(k, b) - (f*g).limit(k, a)
224
+ except NotImplementedError:
225
+ result = None
226
+
227
+ return factor(result)
env-llmeval/lib/python3.10/site-packages/sympy/concrete/guess.py ADDED
@@ -0,0 +1,473 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Various algorithms for helping identifying numbers and sequences."""
2
+
3
+
4
+ from sympy.concrete.products import (Product, product)
5
+ from sympy.core import Function, S
6
+ from sympy.core.add import Add
7
+ from sympy.core.numbers import Integer, Rational
8
+ from sympy.core.symbol import Symbol, symbols
9
+ from sympy.core.sympify import sympify
10
+ from sympy.functions.elementary.exponential import exp
11
+ from sympy.functions.elementary.integers import floor
12
+ from sympy.integrals.integrals import integrate
13
+ from sympy.polys.polyfuncs import rational_interpolate as rinterp
14
+ from sympy.polys.polytools import lcm
15
+ from sympy.simplify.radsimp import denom
16
+ from sympy.utilities import public
17
+
18
+
19
+ @public
20
+ def find_simple_recurrence_vector(l):
21
+ """
22
+ This function is used internally by other functions from the
23
+ sympy.concrete.guess module. While most users may want to rather use the
24
+ function find_simple_recurrence when looking for recurrence relations
25
+ among rational numbers, the current function may still be useful when
26
+ some post-processing has to be done.
27
+
28
+ Explanation
29
+ ===========
30
+
31
+ The function returns a vector of length n when a recurrence relation of
32
+ order n is detected in the sequence of rational numbers v.
33
+
34
+ If the returned vector has a length 1, then the returned value is always
35
+ the list [0], which means that no relation has been found.
36
+
37
+ While the functions is intended to be used with rational numbers, it should
38
+ work for other kinds of real numbers except for some cases involving
39
+ quadratic numbers; for that reason it should be used with some caution when
40
+ the argument is not a list of rational numbers.
41
+
42
+ Examples
43
+ ========
44
+
45
+ >>> from sympy.concrete.guess import find_simple_recurrence_vector
46
+ >>> from sympy import fibonacci
47
+ >>> find_simple_recurrence_vector([fibonacci(k) for k in range(12)])
48
+ [1, -1, -1]
49
+
50
+ See Also
51
+ ========
52
+
53
+ See the function sympy.concrete.guess.find_simple_recurrence which is more
54
+ user-friendly.
55
+
56
+ """
57
+ q1 = [0]
58
+ q2 = [1]
59
+ b, z = 0, len(l) >> 1
60
+ while len(q2) <= z:
61
+ while l[b]==0:
62
+ b += 1
63
+ if b == len(l):
64
+ c = 1
65
+ for x in q2:
66
+ c = lcm(c, denom(x))
67
+ if q2[0]*c < 0: c = -c
68
+ for k in range(len(q2)):
69
+ q2[k] = int(q2[k]*c)
70
+ return q2
71
+ a = S.One/l[b]
72
+ m = [a]
73
+ for k in range(b+1, len(l)):
74
+ m.append(-sum(l[j+1]*m[b-j-1] for j in range(b, k))*a)
75
+ l, m = m, [0] * max(len(q2), b+len(q1))
76
+ for k, q in enumerate(q2):
77
+ m[k] = a*q
78
+ for k, q in enumerate(q1):
79
+ m[k+b] += q
80
+ while m[-1]==0: m.pop() # because trailing zeros can occur
81
+ q1, q2, b = q2, m, 1
82
+ return [0]
83
+
84
+ @public
85
+ def find_simple_recurrence(v, A=Function('a'), N=Symbol('n')):
86
+ """
87
+ Detects and returns a recurrence relation from a sequence of several integer
88
+ (or rational) terms. The name of the function in the returned expression is
89
+ 'a' by default; the main variable is 'n' by default. The smallest index in
90
+ the returned expression is always n (and never n-1, n-2, etc.).
91
+
92
+ Examples
93
+ ========
94
+
95
+ >>> from sympy.concrete.guess import find_simple_recurrence
96
+ >>> from sympy import fibonacci
97
+ >>> find_simple_recurrence([fibonacci(k) for k in range(12)])
98
+ -a(n) - a(n + 1) + a(n + 2)
99
+
100
+ >>> from sympy import Function, Symbol
101
+ >>> a = [1, 1, 1]
102
+ >>> for k in range(15): a.append(5*a[-1]-3*a[-2]+8*a[-3])
103
+ >>> find_simple_recurrence(a, A=Function('f'), N=Symbol('i'))
104
+ -8*f(i) + 3*f(i + 1) - 5*f(i + 2) + f(i + 3)
105
+
106
+ """
107
+ p = find_simple_recurrence_vector(v)
108
+ n = len(p)
109
+ if n <= 1: return S.Zero
110
+
111
+ return Add(*[A(N+n-1-k)*p[k] for k in range(n)])
112
+
113
+
114
+ @public
115
+ def rationalize(x, maxcoeff=10000):
116
+ """
117
+ Helps identifying a rational number from a float (or mpmath.mpf) value by
118
+ using a continued fraction. The algorithm stops as soon as a large partial
119
+ quotient is detected (greater than 10000 by default).
120
+
121
+ Examples
122
+ ========
123
+
124
+ >>> from sympy.concrete.guess import rationalize
125
+ >>> from mpmath import cos, pi
126
+ >>> rationalize(cos(pi/3))
127
+ 1/2
128
+
129
+ >>> from mpmath import mpf
130
+ >>> rationalize(mpf("0.333333333333333"))
131
+ 1/3
132
+
133
+ While the function is rather intended to help 'identifying' rational
134
+ values, it may be used in some cases for approximating real numbers.
135
+ (Though other functions may be more relevant in that case.)
136
+
137
+ >>> rationalize(pi, maxcoeff = 250)
138
+ 355/113
139
+
140
+ See Also
141
+ ========
142
+
143
+ Several other methods can approximate a real number as a rational, like:
144
+
145
+ * fractions.Fraction.from_decimal
146
+ * fractions.Fraction.from_float
147
+ * mpmath.identify
148
+ * mpmath.pslq by using the following syntax: mpmath.pslq([x, 1])
149
+ * mpmath.findpoly by using the following syntax: mpmath.findpoly(x, 1)
150
+ * sympy.simplify.nsimplify (which is a more general function)
151
+
152
+ The main difference between the current function and all these variants is
153
+ that control focuses on magnitude of partial quotients here rather than on
154
+ global precision of the approximation. If the real is "known to be" a
155
+ rational number, the current function should be able to detect it correctly
156
+ with the default settings even when denominator is great (unless its
157
+ expansion contains unusually big partial quotients) which may occur
158
+ when studying sequences of increasing numbers. If the user cares more
159
+ on getting simple fractions, other methods may be more convenient.
160
+
161
+ """
162
+ p0, p1 = 0, 1
163
+ q0, q1 = 1, 0
164
+ a = floor(x)
165
+ while a < maxcoeff or q1==0:
166
+ p = a*p1 + p0
167
+ q = a*q1 + q0
168
+ p0, p1 = p1, p
169
+ q0, q1 = q1, q
170
+ if x==a: break
171
+ x = 1/(x-a)
172
+ a = floor(x)
173
+ return sympify(p) / q
174
+
175
+
176
+ @public
177
+ def guess_generating_function_rational(v, X=Symbol('x')):
178
+ """
179
+ Tries to "guess" a rational generating function for a sequence of rational
180
+ numbers v.
181
+
182
+ Examples
183
+ ========
184
+
185
+ >>> from sympy.concrete.guess import guess_generating_function_rational
186
+ >>> from sympy import fibonacci
187
+ >>> l = [fibonacci(k) for k in range(5,15)]
188
+ >>> guess_generating_function_rational(l)
189
+ (3*x + 5)/(-x**2 - x + 1)
190
+
191
+ See Also
192
+ ========
193
+
194
+ sympy.series.approximants
195
+ mpmath.pade
196
+
197
+ """
198
+ # a) compute the denominator as q
199
+ q = find_simple_recurrence_vector(v)
200
+ n = len(q)
201
+ if n <= 1: return None
202
+ # b) compute the numerator as p
203
+ p = [sum(v[i-k]*q[k] for k in range(min(i+1, n)))
204
+ for i in range(len(v)>>1)]
205
+ return (sum(p[k]*X**k for k in range(len(p)))
206
+ / sum(q[k]*X**k for k in range(n)))
207
+
208
+
209
+ @public
210
+ def guess_generating_function(v, X=Symbol('x'), types=['all'], maxsqrtn=2):
211
+ """
212
+ Tries to "guess" a generating function for a sequence of rational numbers v.
213
+ Only a few patterns are implemented yet.
214
+
215
+ Explanation
216
+ ===========
217
+
218
+ The function returns a dictionary where keys are the name of a given type of
219
+ generating function. Six types are currently implemented:
220
+
221
+ type | formal definition
222
+ -------+----------------------------------------------------------------
223
+ ogf | f(x) = Sum( a_k * x^k , k: 0..infinity )
224
+ egf | f(x) = Sum( a_k * x^k / k! , k: 0..infinity )
225
+ lgf | f(x) = Sum( (-1)^(k+1) a_k * x^k / k , k: 1..infinity )
226
+ | (with initial index being hold as 1 rather than 0)
227
+ hlgf | f(x) = Sum( a_k * x^k / k , k: 1..infinity )
228
+ | (with initial index being hold as 1 rather than 0)
229
+ lgdogf | f(x) = derivate( log(Sum( a_k * x^k, k: 0..infinity )), x)
230
+ lgdegf | f(x) = derivate( log(Sum( a_k * x^k / k!, k: 0..infinity )), x)
231
+
232
+ In order to spare time, the user can select only some types of generating
233
+ functions (default being ['all']). While forgetting to use a list in the
234
+ case of a single type may seem to work most of the time as in: types='ogf'
235
+ this (convenient) syntax may lead to unexpected extra results in some cases.
236
+
237
+ Discarding a type when calling the function does not mean that the type will
238
+ not be present in the returned dictionary; it only means that no extra
239
+ computation will be performed for that type, but the function may still add
240
+ it in the result when it can be easily converted from another type.
241
+
242
+ Two generating functions (lgdogf and lgdegf) are not even computed if the
243
+ initial term of the sequence is 0; it may be useful in that case to try
244
+ again after having removed the leading zeros.
245
+
246
+ Examples
247
+ ========
248
+
249
+ >>> from sympy.concrete.guess import guess_generating_function as ggf
250
+ >>> ggf([k+1 for k in range(12)], types=['ogf', 'lgf', 'hlgf'])
251
+ {'hlgf': 1/(1 - x), 'lgf': 1/(x + 1), 'ogf': 1/(x**2 - 2*x + 1)}
252
+
253
+ >>> from sympy import sympify
254
+ >>> l = sympify("[3/2, 11/2, 0, -121/2, -363/2, 121]")
255
+ >>> ggf(l)
256
+ {'ogf': (x + 3/2)/(11*x**2 - 3*x + 1)}
257
+
258
+ >>> from sympy import fibonacci
259
+ >>> ggf([fibonacci(k) for k in range(5, 15)], types=['ogf'])
260
+ {'ogf': (3*x + 5)/(-x**2 - x + 1)}
261
+
262
+ >>> from sympy import factorial
263
+ >>> ggf([factorial(k) for k in range(12)], types=['ogf', 'egf', 'lgf'])
264
+ {'egf': 1/(1 - x)}
265
+
266
+ >>> ggf([k+1 for k in range(12)], types=['egf'])
267
+ {'egf': (x + 1)*exp(x), 'lgdegf': (x + 2)/(x + 1)}
268
+
269
+ N-th root of a rational function can also be detected (below is an example
270
+ coming from the sequence A108626 from https://oeis.org).
271
+ The greatest n-th root to be tested is specified as maxsqrtn (default 2).
272
+
273
+ >>> ggf([1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, 38919])['ogf']
274
+ sqrt(1/(x**4 + 2*x**2 - 4*x + 1))
275
+
276
+ References
277
+ ==========
278
+
279
+ .. [1] "Concrete Mathematics", R.L. Graham, D.E. Knuth, O. Patashnik
280
+ .. [2] https://oeis.org/wiki/Generating_functions
281
+
282
+ """
283
+ # List of all types of all g.f. known by the algorithm
284
+ if 'all' in types:
285
+ types = ('ogf', 'egf', 'lgf', 'hlgf', 'lgdogf', 'lgdegf')
286
+
287
+ result = {}
288
+
289
+ # Ordinary Generating Function (ogf)
290
+ if 'ogf' in types:
291
+ # Perform some convolutions of the sequence with itself
292
+ t = [1] + [0]*(len(v) - 1)
293
+ for d in range(max(1, maxsqrtn)):
294
+ t = [sum(t[n-i]*v[i] for i in range(n+1)) for n in range(len(v))]
295
+ g = guess_generating_function_rational(t, X=X)
296
+ if g:
297
+ result['ogf'] = g**Rational(1, d+1)
298
+ break
299
+
300
+ # Exponential Generating Function (egf)
301
+ if 'egf' in types:
302
+ # Transform sequence (division by factorial)
303
+ w, f = [], S.One
304
+ for i, k in enumerate(v):
305
+ f *= i if i else 1
306
+ w.append(k/f)
307
+ # Perform some convolutions of the sequence with itself
308
+ t = [1] + [0]*(len(w) - 1)
309
+ for d in range(max(1, maxsqrtn)):
310
+ t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
311
+ g = guess_generating_function_rational(t, X=X)
312
+ if g:
313
+ result['egf'] = g**Rational(1, d+1)
314
+ break
315
+
316
+ # Logarithmic Generating Function (lgf)
317
+ if 'lgf' in types:
318
+ # Transform sequence (multiplication by (-1)^(n+1) / n)
319
+ w, f = [], S.NegativeOne
320
+ for i, k in enumerate(v):
321
+ f = -f
322
+ w.append(f*k/Integer(i+1))
323
+ # Perform some convolutions of the sequence with itself
324
+ t = [1] + [0]*(len(w) - 1)
325
+ for d in range(max(1, maxsqrtn)):
326
+ t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
327
+ g = guess_generating_function_rational(t, X=X)
328
+ if g:
329
+ result['lgf'] = g**Rational(1, d+1)
330
+ break
331
+
332
+ # Hyperbolic logarithmic Generating Function (hlgf)
333
+ if 'hlgf' in types:
334
+ # Transform sequence (division by n+1)
335
+ w = []
336
+ for i, k in enumerate(v):
337
+ w.append(k/Integer(i+1))
338
+ # Perform some convolutions of the sequence with itself
339
+ t = [1] + [0]*(len(w) - 1)
340
+ for d in range(max(1, maxsqrtn)):
341
+ t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
342
+ g = guess_generating_function_rational(t, X=X)
343
+ if g:
344
+ result['hlgf'] = g**Rational(1, d+1)
345
+ break
346
+
347
+ # Logarithmic derivative of ordinary generating Function (lgdogf)
348
+ if v[0] != 0 and ('lgdogf' in types
349
+ or ('ogf' in types and 'ogf' not in result)):
350
+ # Transform sequence by computing f'(x)/f(x)
351
+ # because log(f(x)) = integrate( f'(x)/f(x) )
352
+ a, w = sympify(v[0]), []
353
+ for n in range(len(v)-1):
354
+ w.append(
355
+ (v[n+1]*(n+1) - sum(w[-i-1]*v[i+1] for i in range(n)))/a)
356
+ # Perform some convolutions of the sequence with itself
357
+ t = [1] + [0]*(len(w) - 1)
358
+ for d in range(max(1, maxsqrtn)):
359
+ t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
360
+ g = guess_generating_function_rational(t, X=X)
361
+ if g:
362
+ result['lgdogf'] = g**Rational(1, d+1)
363
+ if 'ogf' not in result:
364
+ result['ogf'] = exp(integrate(result['lgdogf'], X))
365
+ break
366
+
367
+ # Logarithmic derivative of exponential generating Function (lgdegf)
368
+ if v[0] != 0 and ('lgdegf' in types
369
+ or ('egf' in types and 'egf' not in result)):
370
+ # Transform sequence / step 1 (division by factorial)
371
+ z, f = [], S.One
372
+ for i, k in enumerate(v):
373
+ f *= i if i else 1
374
+ z.append(k/f)
375
+ # Transform sequence / step 2 by computing f'(x)/f(x)
376
+ # because log(f(x)) = integrate( f'(x)/f(x) )
377
+ a, w = z[0], []
378
+ for n in range(len(z)-1):
379
+ w.append(
380
+ (z[n+1]*(n+1) - sum(w[-i-1]*z[i+1] for i in range(n)))/a)
381
+ # Perform some convolutions of the sequence with itself
382
+ t = [1] + [0]*(len(w) - 1)
383
+ for d in range(max(1, maxsqrtn)):
384
+ t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
385
+ g = guess_generating_function_rational(t, X=X)
386
+ if g:
387
+ result['lgdegf'] = g**Rational(1, d+1)
388
+ if 'egf' not in result:
389
+ result['egf'] = exp(integrate(result['lgdegf'], X))
390
+ break
391
+
392
+ return result
393
+
394
+
395
+ @public
396
+ def guess(l, all=False, evaluate=True, niter=2, variables=None):
397
+ """
398
+ This function is adapted from the Rate.m package for Mathematica
399
+ written by Christian Krattenthaler.
400
+ It tries to guess a formula from a given sequence of rational numbers.
401
+
402
+ Explanation
403
+ ===========
404
+
405
+ In order to speed up the process, the 'all' variable is set to False by
406
+ default, stopping the computation as some results are returned during an
407
+ iteration; the variable can be set to True if more iterations are needed
408
+ (other formulas may be found; however they may be equivalent to the first
409
+ ones).
410
+
411
+ Another option is the 'evaluate' variable (default is True); setting it
412
+ to False will leave the involved products unevaluated.
413
+
414
+ By default, the number of iterations is set to 2 but a greater value (up
415
+ to len(l)-1) can be specified with the optional 'niter' variable.
416
+ More and more convoluted results are found when the order of the
417
+ iteration gets higher:
418
+
419
+ * first iteration returns polynomial or rational functions;
420
+ * second iteration returns products of rising factorials and their
421
+ inverses;
422
+ * third iteration returns products of products of rising factorials
423
+ and their inverses;
424
+ * etc.
425
+
426
+ The returned formulas contain symbols i0, i1, i2, ... where the main
427
+ variables is i0 (and auxiliary variables are i1, i2, ...). A list of
428
+ other symbols can be provided in the 'variables' option; the length of
429
+ the least should be the value of 'niter' (more is acceptable but only
430
+ the first symbols will be used); in this case, the main variable will be
431
+ the first symbol in the list.
432
+
433
+ Examples
434
+ ========
435
+
436
+ >>> from sympy.concrete.guess import guess
437
+ >>> guess([1,2,6,24,120], evaluate=False)
438
+ [Product(i1 + 1, (i1, 1, i0 - 1))]
439
+
440
+ >>> from sympy import symbols
441
+ >>> r = guess([1,2,7,42,429,7436,218348,10850216], niter=4)
442
+ >>> i0 = symbols("i0")
443
+ >>> [r[0].subs(i0,n).doit() for n in range(1,10)]
444
+ [1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460]
445
+ """
446
+ if any(a==0 for a in l[:-1]):
447
+ return []
448
+ N = len(l)
449
+ niter = min(N-1, niter)
450
+ myprod = product if evaluate else Product
451
+ g = []
452
+ res = []
453
+ if variables is None:
454
+ symb = symbols('i:'+str(niter))
455
+ else:
456
+ symb = variables
457
+ for k, s in enumerate(symb):
458
+ g.append(l)
459
+ n, r = len(l), []
460
+ for i in range(n-2-1, -1, -1):
461
+ ri = rinterp(enumerate(g[k][:-1], start=1), i, X=s)
462
+ if ((denom(ri).subs({s:n}) != 0)
463
+ and (ri.subs({s:n}) - g[k][-1] == 0)
464
+ and ri not in r):
465
+ r.append(ri)
466
+ if r:
467
+ for i in range(k-1, -1, -1):
468
+ r = [g[i][0]
469
+ * myprod(v, (symb[i+1], 1, symb[i]-1)) for v in r]
470
+ if not all: return r
471
+ res += r
472
+ l = [Rational(l[i+1], l[i]) for i in range(N-k-1)]
473
+ return res
env-llmeval/lib/python3.10/site-packages/sympy/concrete/products.py ADDED
@@ -0,0 +1,610 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple as tTuple
2
+
3
+ from .expr_with_intlimits import ExprWithIntLimits
4
+ from .summations import Sum, summation, _dummy_with_inherited_properties_concrete
5
+ from sympy.core.expr import Expr
6
+ from sympy.core.exprtools import factor_terms
7
+ from sympy.core.function import Derivative
8
+ from sympy.core.mul import Mul
9
+ from sympy.core.singleton import S
10
+ from sympy.core.symbol import Dummy, Symbol
11
+ from sympy.functions.combinatorial.factorials import RisingFactorial
12
+ from sympy.functions.elementary.exponential import exp, log
13
+ from sympy.functions.special.tensor_functions import KroneckerDelta
14
+ from sympy.polys import quo, roots
15
+
16
+
17
+ class Product(ExprWithIntLimits):
18
+ r"""
19
+ Represents unevaluated products.
20
+
21
+ Explanation
22
+ ===========
23
+
24
+ ``Product`` represents a finite or infinite product, with the first
25
+ argument being the general form of terms in the series, and the second
26
+ argument being ``(dummy_variable, start, end)``, with ``dummy_variable``
27
+ taking all integer values from ``start`` through ``end``. In accordance
28
+ with long-standing mathematical convention, the end term is included in
29
+ the product.
30
+
31
+ Finite products
32
+ ===============
33
+
34
+ For finite products (and products with symbolic limits assumed to be finite)
35
+ we follow the analogue of the summation convention described by Karr [1],
36
+ especially definition 3 of section 1.4. The product:
37
+
38
+ .. math::
39
+
40
+ \prod_{m \leq i < n} f(i)
41
+
42
+ has *the obvious meaning* for `m < n`, namely:
43
+
44
+ .. math::
45
+
46
+ \prod_{m \leq i < n} f(i) = f(m) f(m+1) \cdot \ldots \cdot f(n-2) f(n-1)
47
+
48
+ with the upper limit value `f(n)` excluded. The product over an empty set is
49
+ one if and only if `m = n`:
50
+
51
+ .. math::
52
+
53
+ \prod_{m \leq i < n} f(i) = 1 \quad \mathrm{for} \quad m = n
54
+
55
+ Finally, for all other products over empty sets we assume the following
56
+ definition:
57
+
58
+ .. math::
59
+
60
+ \prod_{m \leq i < n} f(i) = \frac{1}{\prod_{n \leq i < m} f(i)} \quad \mathrm{for} \quad m > n
61
+
62
+ It is important to note that above we define all products with the upper
63
+ limit being exclusive. This is in contrast to the usual mathematical notation,
64
+ but does not affect the product convention. Indeed we have:
65
+
66
+ .. math::
67
+
68
+ \prod_{m \leq i < n} f(i) = \prod_{i = m}^{n - 1} f(i)
69
+
70
+ where the difference in notation is intentional to emphasize the meaning,
71
+ with limits typeset on the top being inclusive.
72
+
73
+ Examples
74
+ ========
75
+
76
+ >>> from sympy.abc import a, b, i, k, m, n, x
77
+ >>> from sympy import Product, oo
78
+ >>> Product(k, (k, 1, m))
79
+ Product(k, (k, 1, m))
80
+ >>> Product(k, (k, 1, m)).doit()
81
+ factorial(m)
82
+ >>> Product(k**2,(k, 1, m))
83
+ Product(k**2, (k, 1, m))
84
+ >>> Product(k**2,(k, 1, m)).doit()
85
+ factorial(m)**2
86
+
87
+ Wallis' product for pi:
88
+
89
+ >>> W = Product(2*i/(2*i-1) * 2*i/(2*i+1), (i, 1, oo))
90
+ >>> W
91
+ Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo))
92
+
93
+ Direct computation currently fails:
94
+
95
+ >>> W.doit()
96
+ Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo))
97
+
98
+ But we can approach the infinite product by a limit of finite products:
99
+
100
+ >>> from sympy import limit
101
+ >>> W2 = Product(2*i/(2*i-1)*2*i/(2*i+1), (i, 1, n))
102
+ >>> W2
103
+ Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, n))
104
+ >>> W2e = W2.doit()
105
+ >>> W2e
106
+ 4**n*factorial(n)**2/(2**(2*n)*RisingFactorial(1/2, n)*RisingFactorial(3/2, n))
107
+ >>> limit(W2e, n, oo)
108
+ pi/2
109
+
110
+ By the same formula we can compute sin(pi/2):
111
+
112
+ >>> from sympy import combsimp, pi, gamma, simplify
113
+ >>> P = pi * x * Product(1 - x**2/k**2, (k, 1, n))
114
+ >>> P = P.subs(x, pi/2)
115
+ >>> P
116
+ pi**2*Product(1 - pi**2/(4*k**2), (k, 1, n))/2
117
+ >>> Pe = P.doit()
118
+ >>> Pe
119
+ pi**2*RisingFactorial(1 - pi/2, n)*RisingFactorial(1 + pi/2, n)/(2*factorial(n)**2)
120
+ >>> limit(Pe, n, oo).gammasimp()
121
+ sin(pi**2/2)
122
+ >>> Pe.rewrite(gamma)
123
+ (-1)**n*pi**2*gamma(pi/2)*gamma(n + 1 + pi/2)/(2*gamma(1 + pi/2)*gamma(-n + pi/2)*gamma(n + 1)**2)
124
+
125
+ Products with the lower limit being larger than the upper one:
126
+
127
+ >>> Product(1/i, (i, 6, 1)).doit()
128
+ 120
129
+ >>> Product(i, (i, 2, 5)).doit()
130
+ 120
131
+
132
+ The empty product:
133
+
134
+ >>> Product(i, (i, n, n-1)).doit()
135
+ 1
136
+
137
+ An example showing that the symbolic result of a product is still
138
+ valid for seemingly nonsensical values of the limits. Then the Karr
139
+ convention allows us to give a perfectly valid interpretation to
140
+ those products by interchanging the limits according to the above rules:
141
+
142
+ >>> P = Product(2, (i, 10, n)).doit()
143
+ >>> P
144
+ 2**(n - 9)
145
+ >>> P.subs(n, 5)
146
+ 1/16
147
+ >>> Product(2, (i, 10, 5)).doit()
148
+ 1/16
149
+ >>> 1/Product(2, (i, 6, 9)).doit()
150
+ 1/16
151
+
152
+ An explicit example of the Karr summation convention applied to products:
153
+
154
+ >>> P1 = Product(x, (i, a, b)).doit()
155
+ >>> P1
156
+ x**(-a + b + 1)
157
+ >>> P2 = Product(x, (i, b+1, a-1)).doit()
158
+ >>> P2
159
+ x**(a - b - 1)
160
+ >>> simplify(P1 * P2)
161
+ 1
162
+
163
+ And another one:
164
+
165
+ >>> P1 = Product(i, (i, b, a)).doit()
166
+ >>> P1
167
+ RisingFactorial(b, a - b + 1)
168
+ >>> P2 = Product(i, (i, a+1, b-1)).doit()
169
+ >>> P2
170
+ RisingFactorial(a + 1, -a + b - 1)
171
+ >>> P1 * P2
172
+ RisingFactorial(b, a - b + 1)*RisingFactorial(a + 1, -a + b - 1)
173
+ >>> combsimp(P1 * P2)
174
+ 1
175
+
176
+ See Also
177
+ ========
178
+
179
+ Sum, summation
180
+ product
181
+
182
+ References
183
+ ==========
184
+
185
+ .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
186
+ Volume 28 Issue 2, April 1981, Pages 305-350
187
+ https://dl.acm.org/doi/10.1145/322248.322255
188
+ .. [2] https://en.wikipedia.org/wiki/Multiplication#Capital_Pi_notation
189
+ .. [3] https://en.wikipedia.org/wiki/Empty_product
190
+ """
191
+
192
+ __slots__ = ()
193
+
194
+ limits: tTuple[tTuple[Symbol, Expr, Expr]]
195
+
196
+ def __new__(cls, function, *symbols, **assumptions):
197
+ obj = ExprWithIntLimits.__new__(cls, function, *symbols, **assumptions)
198
+ return obj
199
+
200
+ def _eval_rewrite_as_Sum(self, *args, **kwargs):
201
+ return exp(Sum(log(self.function), *self.limits))
202
+
203
+ @property
204
+ def term(self):
205
+ return self._args[0]
206
+ function = term
207
+
208
+ def _eval_is_zero(self):
209
+ if self.has_empty_sequence:
210
+ return False
211
+
212
+ z = self.term.is_zero
213
+ if z is True:
214
+ return True
215
+ if self.has_finite_limits:
216
+ # A Product is zero only if its term is zero assuming finite limits.
217
+ return z
218
+
219
+ def _eval_is_extended_real(self):
220
+ if self.has_empty_sequence:
221
+ return True
222
+
223
+ return self.function.is_extended_real
224
+
225
+ def _eval_is_positive(self):
226
+ if self.has_empty_sequence:
227
+ return True
228
+ if self.function.is_positive and self.has_finite_limits:
229
+ return True
230
+
231
+ def _eval_is_nonnegative(self):
232
+ if self.has_empty_sequence:
233
+ return True
234
+ if self.function.is_nonnegative and self.has_finite_limits:
235
+ return True
236
+
237
+ def _eval_is_extended_nonnegative(self):
238
+ if self.has_empty_sequence:
239
+ return True
240
+ if self.function.is_extended_nonnegative:
241
+ return True
242
+
243
+ def _eval_is_extended_nonpositive(self):
244
+ if self.has_empty_sequence:
245
+ return True
246
+
247
+ def _eval_is_finite(self):
248
+ if self.has_finite_limits and self.function.is_finite:
249
+ return True
250
+
251
+ def doit(self, **hints):
252
+ # first make sure any definite limits have product
253
+ # variables with matching assumptions
254
+ reps = {}
255
+ for xab in self.limits:
256
+ d = _dummy_with_inherited_properties_concrete(xab)
257
+ if d:
258
+ reps[xab[0]] = d
259
+ if reps:
260
+ undo = {v: k for k, v in reps.items()}
261
+ did = self.xreplace(reps).doit(**hints)
262
+ if isinstance(did, tuple): # when separate=True
263
+ did = tuple([i.xreplace(undo) for i in did])
264
+ else:
265
+ did = did.xreplace(undo)
266
+ return did
267
+
268
+ from sympy.simplify.powsimp import powsimp
269
+ f = self.function
270
+ for index, limit in enumerate(self.limits):
271
+ i, a, b = limit
272
+ dif = b - a
273
+ if dif.is_integer and dif.is_negative:
274
+ a, b = b + 1, a - 1
275
+ f = 1 / f
276
+
277
+ g = self._eval_product(f, (i, a, b))
278
+ if g in (None, S.NaN):
279
+ return self.func(powsimp(f), *self.limits[index:])
280
+ else:
281
+ f = g
282
+
283
+ if hints.get('deep', True):
284
+ return f.doit(**hints)
285
+ else:
286
+ return powsimp(f)
287
+
288
+ def _eval_adjoint(self):
289
+ if self.is_commutative:
290
+ return self.func(self.function.adjoint(), *self.limits)
291
+ return None
292
+
293
+ def _eval_conjugate(self):
294
+ return self.func(self.function.conjugate(), *self.limits)
295
+
296
+ def _eval_product(self, term, limits):
297
+
298
+ (k, a, n) = limits
299
+
300
+ if k not in term.free_symbols:
301
+ if (term - 1).is_zero:
302
+ return S.One
303
+ return term**(n - a + 1)
304
+
305
+ if a == n:
306
+ return term.subs(k, a)
307
+
308
+ from .delta import deltaproduct, _has_simple_delta
309
+ if term.has(KroneckerDelta) and _has_simple_delta(term, limits[0]):
310
+ return deltaproduct(term, limits)
311
+
312
+ dif = n - a
313
+ definite = dif.is_Integer
314
+ if definite and (dif < 100):
315
+ return self._eval_product_direct(term, limits)
316
+
317
+ elif term.is_polynomial(k):
318
+ poly = term.as_poly(k)
319
+
320
+ A = B = Q = S.One
321
+
322
+ all_roots = roots(poly)
323
+
324
+ M = 0
325
+ for r, m in all_roots.items():
326
+ M += m
327
+ A *= RisingFactorial(a - r, n - a + 1)**m
328
+ Q *= (n - r)**m
329
+
330
+ if M < poly.degree():
331
+ arg = quo(poly, Q.as_poly(k))
332
+ B = self.func(arg, (k, a, n)).doit()
333
+
334
+ return poly.LC()**(n - a + 1) * A * B
335
+
336
+ elif term.is_Add:
337
+ factored = factor_terms(term, fraction=True)
338
+ if factored.is_Mul:
339
+ return self._eval_product(factored, (k, a, n))
340
+
341
+ elif term.is_Mul:
342
+ # Factor in part without the summation variable and part with
343
+ without_k, with_k = term.as_coeff_mul(k)
344
+
345
+ if len(with_k) >= 2:
346
+ # More than one term including k, so still a multiplication
347
+ exclude, include = [], []
348
+ for t in with_k:
349
+ p = self._eval_product(t, (k, a, n))
350
+
351
+ if p is not None:
352
+ exclude.append(p)
353
+ else:
354
+ include.append(t)
355
+
356
+ if not exclude:
357
+ return None
358
+ else:
359
+ arg = term._new_rawargs(*include)
360
+ A = Mul(*exclude)
361
+ B = self.func(arg, (k, a, n)).doit()
362
+ return without_k**(n - a + 1)*A * B
363
+ else:
364
+ # Just a single term
365
+ p = self._eval_product(with_k[0], (k, a, n))
366
+ if p is None:
367
+ p = self.func(with_k[0], (k, a, n)).doit()
368
+ return without_k**(n - a + 1)*p
369
+
370
+
371
+ elif term.is_Pow:
372
+ if not term.base.has(k):
373
+ s = summation(term.exp, (k, a, n))
374
+
375
+ return term.base**s
376
+ elif not term.exp.has(k):
377
+ p = self._eval_product(term.base, (k, a, n))
378
+
379
+ if p is not None:
380
+ return p**term.exp
381
+
382
+ elif isinstance(term, Product):
383
+ evaluated = term.doit()
384
+ f = self._eval_product(evaluated, limits)
385
+ if f is None:
386
+ return self.func(evaluated, limits)
387
+ else:
388
+ return f
389
+
390
+ if definite:
391
+ return self._eval_product_direct(term, limits)
392
+
393
+ def _eval_simplify(self, **kwargs):
394
+ from sympy.simplify.simplify import product_simplify
395
+ rv = product_simplify(self, **kwargs)
396
+ return rv.doit() if kwargs['doit'] else rv
397
+
398
+ def _eval_transpose(self):
399
+ if self.is_commutative:
400
+ return self.func(self.function.transpose(), *self.limits)
401
+ return None
402
+
403
+ def _eval_product_direct(self, term, limits):
404
+ (k, a, n) = limits
405
+ return Mul(*[term.subs(k, a + i) for i in range(n - a + 1)])
406
+
407
+ def _eval_derivative(self, x):
408
+ if isinstance(x, Symbol) and x not in self.free_symbols:
409
+ return S.Zero
410
+ f, limits = self.function, list(self.limits)
411
+ limit = limits.pop(-1)
412
+ if limits:
413
+ f = self.func(f, *limits)
414
+ i, a, b = limit
415
+ if x in a.free_symbols or x in b.free_symbols:
416
+ return None
417
+ h = Dummy()
418
+ rv = Sum( Product(f, (i, a, h - 1)) * Product(f, (i, h + 1, b)) * Derivative(f, x, evaluate=True).subs(i, h), (h, a, b))
419
+ return rv
420
+
421
+ def is_convergent(self):
422
+ r"""
423
+ See docs of :obj:`.Sum.is_convergent()` for explanation of convergence
424
+ in SymPy.
425
+
426
+ Explanation
427
+ ===========
428
+
429
+ The infinite product:
430
+
431
+ .. math::
432
+
433
+ \prod_{1 \leq i < \infty} f(i)
434
+
435
+ is defined by the sequence of partial products:
436
+
437
+ .. math::
438
+
439
+ \prod_{i=1}^{n} f(i) = f(1) f(2) \cdots f(n)
440
+
441
+ as n increases without bound. The product converges to a non-zero
442
+ value if and only if the sum:
443
+
444
+ .. math::
445
+
446
+ \sum_{1 \leq i < \infty} \log{f(n)}
447
+
448
+ converges.
449
+
450
+ Examples
451
+ ========
452
+
453
+ >>> from sympy import Product, Symbol, cos, pi, exp, oo
454
+ >>> n = Symbol('n', integer=True)
455
+ >>> Product(n/(n + 1), (n, 1, oo)).is_convergent()
456
+ False
457
+ >>> Product(1/n**2, (n, 1, oo)).is_convergent()
458
+ False
459
+ >>> Product(cos(pi/n), (n, 1, oo)).is_convergent()
460
+ True
461
+ >>> Product(exp(-n**2), (n, 1, oo)).is_convergent()
462
+ False
463
+
464
+ References
465
+ ==========
466
+
467
+ .. [1] https://en.wikipedia.org/wiki/Infinite_product
468
+ """
469
+ sequence_term = self.function
470
+ log_sum = log(sequence_term)
471
+ lim = self.limits
472
+ try:
473
+ is_conv = Sum(log_sum, *lim).is_convergent()
474
+ except NotImplementedError:
475
+ if Sum(sequence_term - 1, *lim).is_absolutely_convergent() is S.true:
476
+ return S.true
477
+ raise NotImplementedError("The algorithm to find the product convergence of %s "
478
+ "is not yet implemented" % (sequence_term))
479
+ return is_conv
480
+
481
+ def reverse_order(expr, *indices):
482
+ """
483
+ Reverse the order of a limit in a Product.
484
+
485
+ Explanation
486
+ ===========
487
+
488
+ ``reverse_order(expr, *indices)`` reverses some limits in the expression
489
+ ``expr`` which can be either a ``Sum`` or a ``Product``. The selectors in
490
+ the argument ``indices`` specify some indices whose limits get reversed.
491
+ These selectors are either variable names or numerical indices counted
492
+ starting from the inner-most limit tuple.
493
+
494
+ Examples
495
+ ========
496
+
497
+ >>> from sympy import gamma, Product, simplify, Sum
498
+ >>> from sympy.abc import x, y, a, b, c, d
499
+ >>> P = Product(x, (x, a, b))
500
+ >>> Pr = P.reverse_order(x)
501
+ >>> Pr
502
+ Product(1/x, (x, b + 1, a - 1))
503
+ >>> Pr = Pr.doit()
504
+ >>> Pr
505
+ 1/RisingFactorial(b + 1, a - b - 1)
506
+ >>> simplify(Pr.rewrite(gamma))
507
+ Piecewise((gamma(b + 1)/gamma(a), b > -1), ((-1)**(-a + b + 1)*gamma(1 - a)/gamma(-b), True))
508
+ >>> P = P.doit()
509
+ >>> P
510
+ RisingFactorial(a, -a + b + 1)
511
+ >>> simplify(P.rewrite(gamma))
512
+ Piecewise((gamma(b + 1)/gamma(a), a > 0), ((-1)**(-a + b + 1)*gamma(1 - a)/gamma(-b), True))
513
+
514
+ While one should prefer variable names when specifying which limits
515
+ to reverse, the index counting notation comes in handy in case there
516
+ are several symbols with the same name.
517
+
518
+ >>> S = Sum(x*y, (x, a, b), (y, c, d))
519
+ >>> S
520
+ Sum(x*y, (x, a, b), (y, c, d))
521
+ >>> S0 = S.reverse_order(0)
522
+ >>> S0
523
+ Sum(-x*y, (x, b + 1, a - 1), (y, c, d))
524
+ >>> S1 = S0.reverse_order(1)
525
+ >>> S1
526
+ Sum(x*y, (x, b + 1, a - 1), (y, d + 1, c - 1))
527
+
528
+ Of course we can mix both notations:
529
+
530
+ >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
531
+ Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
532
+ >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
533
+ Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
534
+
535
+ See Also
536
+ ========
537
+
538
+ sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index,
539
+ reorder_limit,
540
+ sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder
541
+
542
+ References
543
+ ==========
544
+
545
+ .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
546
+ Volume 28 Issue 2, April 1981, Pages 305-350
547
+ https://dl.acm.org/doi/10.1145/322248.322255
548
+
549
+ """
550
+ l_indices = list(indices)
551
+
552
+ for i, indx in enumerate(l_indices):
553
+ if not isinstance(indx, int):
554
+ l_indices[i] = expr.index(indx)
555
+
556
+ e = 1
557
+ limits = []
558
+ for i, limit in enumerate(expr.limits):
559
+ l = limit
560
+ if i in l_indices:
561
+ e = -e
562
+ l = (limit[0], limit[2] + 1, limit[1] - 1)
563
+ limits.append(l)
564
+
565
+ return Product(expr.function ** e, *limits)
566
+
567
+
568
+ def product(*args, **kwargs):
569
+ r"""
570
+ Compute the product.
571
+
572
+ Explanation
573
+ ===========
574
+
575
+ The notation for symbols is similar to the notation used in Sum or
576
+ Integral. product(f, (i, a, b)) computes the product of f with
577
+ respect to i from a to b, i.e.,
578
+
579
+ ::
580
+
581
+ b
582
+ _____
583
+ product(f(n), (i, a, b)) = | | f(n)
584
+ | |
585
+ i = a
586
+
587
+ If it cannot compute the product, it returns an unevaluated Product object.
588
+ Repeated products can be computed by introducing additional symbols tuples::
589
+
590
+ Examples
591
+ ========
592
+
593
+ >>> from sympy import product, symbols
594
+ >>> i, n, m, k = symbols('i n m k', integer=True)
595
+
596
+ >>> product(i, (i, 1, k))
597
+ factorial(k)
598
+ >>> product(m, (i, 1, k))
599
+ m**k
600
+ >>> product(i, (i, 1, k), (k, 1, n))
601
+ Product(factorial(k), (k, 1, n))
602
+
603
+ """
604
+
605
+ prod = Product(*args, **kwargs)
606
+
607
+ if isinstance(prod, Product):
608
+ return prod.doit(deep=False)
609
+ else:
610
+ return prod
env-llmeval/lib/python3.10/site-packages/sympy/concrete/summations.py ADDED
@@ -0,0 +1,1646 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple as tTuple
2
+
3
+ from sympy.calculus.singularities import is_decreasing
4
+ from sympy.calculus.accumulationbounds import AccumulationBounds
5
+ from .expr_with_intlimits import ExprWithIntLimits
6
+ from .expr_with_limits import AddWithLimits
7
+ from .gosper import gosper_sum
8
+ from sympy.core.expr import Expr
9
+ from sympy.core.add import Add
10
+ from sympy.core.containers import Tuple
11
+ from sympy.core.function import Derivative, expand
12
+ from sympy.core.mul import Mul
13
+ from sympy.core.numbers import Float, _illegal
14
+ from sympy.core.relational import Eq
15
+ from sympy.core.singleton import S
16
+ from sympy.core.sorting import ordered
17
+ from sympy.core.symbol import Dummy, Wild, Symbol, symbols
18
+ from sympy.functions.combinatorial.factorials import factorial
19
+ from sympy.functions.combinatorial.numbers import bernoulli, harmonic
20
+ from sympy.functions.elementary.exponential import exp, log
21
+ from sympy.functions.elementary.piecewise import Piecewise
22
+ from sympy.functions.elementary.trigonometric import cot, csc
23
+ from sympy.functions.special.hyper import hyper
24
+ from sympy.functions.special.tensor_functions import KroneckerDelta
25
+ from sympy.functions.special.zeta_functions import zeta
26
+ from sympy.integrals.integrals import Integral
27
+ from sympy.logic.boolalg import And
28
+ from sympy.polys.partfrac import apart
29
+ from sympy.polys.polyerrors import PolynomialError, PolificationFailed
30
+ from sympy.polys.polytools import parallel_poly_from_expr, Poly, factor
31
+ from sympy.polys.rationaltools import together
32
+ from sympy.series.limitseq import limit_seq
33
+ from sympy.series.order import O
34
+ from sympy.series.residues import residue
35
+ from sympy.sets.sets import FiniteSet, Interval
36
+ from sympy.utilities.iterables import sift
37
+ import itertools
38
+
39
+
40
+ class Sum(AddWithLimits, ExprWithIntLimits):
41
+ r"""
42
+ Represents unevaluated summation.
43
+
44
+ Explanation
45
+ ===========
46
+
47
+ ``Sum`` represents a finite or infinite series, with the first argument
48
+ being the general form of terms in the series, and the second argument
49
+ being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking
50
+ all integer values from ``start`` through ``end``. In accordance with
51
+ long-standing mathematical convention, the end term is included in the
52
+ summation.
53
+
54
+ Finite sums
55
+ ===========
56
+
57
+ For finite sums (and sums with symbolic limits assumed to be finite) we
58
+ follow the summation convention described by Karr [1], especially
59
+ definition 3 of section 1.4. The sum:
60
+
61
+ .. math::
62
+
63
+ \sum_{m \leq i < n} f(i)
64
+
65
+ has *the obvious meaning* for `m < n`, namely:
66
+
67
+ .. math::
68
+
69
+ \sum_{m \leq i < n} f(i) = f(m) + f(m+1) + \ldots + f(n-2) + f(n-1)
70
+
71
+ with the upper limit value `f(n)` excluded. The sum over an empty set is
72
+ zero if and only if `m = n`:
73
+
74
+ .. math::
75
+
76
+ \sum_{m \leq i < n} f(i) = 0 \quad \mathrm{for} \quad m = n
77
+
78
+ Finally, for all other sums over empty sets we assume the following
79
+ definition:
80
+
81
+ .. math::
82
+
83
+ \sum_{m \leq i < n} f(i) = - \sum_{n \leq i < m} f(i) \quad \mathrm{for} \quad m > n
84
+
85
+ It is important to note that Karr defines all sums with the upper
86
+ limit being exclusive. This is in contrast to the usual mathematical notation,
87
+ but does not affect the summation convention. Indeed we have:
88
+
89
+ .. math::
90
+
91
+ \sum_{m \leq i < n} f(i) = \sum_{i = m}^{n - 1} f(i)
92
+
93
+ where the difference in notation is intentional to emphasize the meaning,
94
+ with limits typeset on the top being inclusive.
95
+
96
+ Examples
97
+ ========
98
+
99
+ >>> from sympy.abc import i, k, m, n, x
100
+ >>> from sympy import Sum, factorial, oo, IndexedBase, Function
101
+ >>> Sum(k, (k, 1, m))
102
+ Sum(k, (k, 1, m))
103
+ >>> Sum(k, (k, 1, m)).doit()
104
+ m**2/2 + m/2
105
+ >>> Sum(k**2, (k, 1, m))
106
+ Sum(k**2, (k, 1, m))
107
+ >>> Sum(k**2, (k, 1, m)).doit()
108
+ m**3/3 + m**2/2 + m/6
109
+ >>> Sum(x**k, (k, 0, oo))
110
+ Sum(x**k, (k, 0, oo))
111
+ >>> Sum(x**k, (k, 0, oo)).doit()
112
+ Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True))
113
+ >>> Sum(x**k/factorial(k), (k, 0, oo)).doit()
114
+ exp(x)
115
+
116
+ Here are examples to do summation with symbolic indices. You
117
+ can use either Function of IndexedBase classes:
118
+
119
+ >>> f = Function('f')
120
+ >>> Sum(f(n), (n, 0, 3)).doit()
121
+ f(0) + f(1) + f(2) + f(3)
122
+ >>> Sum(f(n), (n, 0, oo)).doit()
123
+ Sum(f(n), (n, 0, oo))
124
+ >>> f = IndexedBase('f')
125
+ >>> Sum(f[n]**2, (n, 0, 3)).doit()
126
+ f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2
127
+
128
+ An example showing that the symbolic result of a summation is still
129
+ valid for seemingly nonsensical values of the limits. Then the Karr
130
+ convention allows us to give a perfectly valid interpretation to
131
+ those sums by interchanging the limits according to the above rules:
132
+
133
+ >>> S = Sum(i, (i, 1, n)).doit()
134
+ >>> S
135
+ n**2/2 + n/2
136
+ >>> S.subs(n, -4)
137
+ 6
138
+ >>> Sum(i, (i, 1, -4)).doit()
139
+ 6
140
+ >>> Sum(-i, (i, -3, 0)).doit()
141
+ 6
142
+
143
+ An explicit example of the Karr summation convention:
144
+
145
+ >>> S1 = Sum(i**2, (i, m, m+n-1)).doit()
146
+ >>> S1
147
+ m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6
148
+ >>> S2 = Sum(i**2, (i, m+n, m-1)).doit()
149
+ >>> S2
150
+ -m**2*n - m*n**2 + m*n - n**3/3 + n**2/2 - n/6
151
+ >>> S1 + S2
152
+ 0
153
+ >>> S3 = Sum(i, (i, m, m-1)).doit()
154
+ >>> S3
155
+ 0
156
+
157
+ See Also
158
+ ========
159
+
160
+ summation
161
+ Product, sympy.concrete.products.product
162
+
163
+ References
164
+ ==========
165
+
166
+ .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
167
+ Volume 28 Issue 2, April 1981, Pages 305-350
168
+ https://dl.acm.org/doi/10.1145/322248.322255
169
+ .. [2] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
170
+ .. [3] https://en.wikipedia.org/wiki/Empty_sum
171
+ """
172
+
173
+ __slots__ = ()
174
+
175
+ limits: tTuple[tTuple[Symbol, Expr, Expr]]
176
+
177
+ def __new__(cls, function, *symbols, **assumptions):
178
+ obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions)
179
+ if not hasattr(obj, 'limits'):
180
+ return obj
181
+ if any(len(l) != 3 or None in l for l in obj.limits):
182
+ raise ValueError('Sum requires values for lower and upper bounds.')
183
+
184
+ return obj
185
+
186
+ def _eval_is_zero(self):
187
+ # a Sum is only zero if its function is zero or if all terms
188
+ # cancel out. This only answers whether the summand is zero; if
189
+ # not then None is returned since we don't analyze whether all
190
+ # terms cancel out.
191
+ if self.function.is_zero or self.has_empty_sequence:
192
+ return True
193
+
194
+ def _eval_is_extended_real(self):
195
+ if self.has_empty_sequence:
196
+ return True
197
+ return self.function.is_extended_real
198
+
199
+ def _eval_is_positive(self):
200
+ if self.has_finite_limits and self.has_reversed_limits is False:
201
+ return self.function.is_positive
202
+
203
+ def _eval_is_negative(self):
204
+ if self.has_finite_limits and self.has_reversed_limits is False:
205
+ return self.function.is_negative
206
+
207
+ def _eval_is_finite(self):
208
+ if self.has_finite_limits and self.function.is_finite:
209
+ return True
210
+
211
+ def doit(self, **hints):
212
+ if hints.get('deep', True):
213
+ f = self.function.doit(**hints)
214
+ else:
215
+ f = self.function
216
+
217
+ # first make sure any definite limits have summation
218
+ # variables with matching assumptions
219
+ reps = {}
220
+ for xab in self.limits:
221
+ d = _dummy_with_inherited_properties_concrete(xab)
222
+ if d:
223
+ reps[xab[0]] = d
224
+ if reps:
225
+ undo = {v: k for k, v in reps.items()}
226
+ did = self.xreplace(reps).doit(**hints)
227
+ if isinstance(did, tuple): # when separate=True
228
+ did = tuple([i.xreplace(undo) for i in did])
229
+ elif did is not None:
230
+ did = did.xreplace(undo)
231
+ else:
232
+ did = self
233
+ return did
234
+
235
+
236
+ if self.function.is_Matrix:
237
+ expanded = self.expand()
238
+ if self != expanded:
239
+ return expanded.doit()
240
+ return _eval_matrix_sum(self)
241
+
242
+ for n, limit in enumerate(self.limits):
243
+ i, a, b = limit
244
+ dif = b - a
245
+ if dif == -1:
246
+ # Any summation over an empty set is zero
247
+ return S.Zero
248
+ if dif.is_integer and dif.is_negative:
249
+ a, b = b + 1, a - 1
250
+ f = -f
251
+
252
+ newf = eval_sum(f, (i, a, b))
253
+ if newf is None:
254
+ if f == self.function:
255
+ zeta_function = self.eval_zeta_function(f, (i, a, b))
256
+ if zeta_function is not None:
257
+ return zeta_function
258
+ return self
259
+ else:
260
+ return self.func(f, *self.limits[n:])
261
+ f = newf
262
+
263
+ if hints.get('deep', True):
264
+ # eval_sum could return partially unevaluated
265
+ # result with Piecewise. In this case we won't
266
+ # doit() recursively.
267
+ if not isinstance(f, Piecewise):
268
+ return f.doit(**hints)
269
+
270
+ return f
271
+
272
+ def eval_zeta_function(self, f, limits):
273
+ """
274
+ Check whether the function matches with the zeta function.
275
+
276
+ If it matches, then return a `Piecewise` expression because
277
+ zeta function does not converge unless `s > 1` and `q > 0`
278
+ """
279
+ i, a, b = limits
280
+ w, y, z = Wild('w', exclude=[i]), Wild('y', exclude=[i]), Wild('z', exclude=[i])
281
+ result = f.match((w * i + y) ** (-z))
282
+ if result is not None and b is S.Infinity:
283
+ coeff = 1 / result[w] ** result[z]
284
+ s = result[z]
285
+ q = result[y] / result[w] + a
286
+ return Piecewise((coeff * zeta(s, q), And(q > 0, s > 1)), (self, True))
287
+
288
+ def _eval_derivative(self, x):
289
+ """
290
+ Differentiate wrt x as long as x is not in the free symbols of any of
291
+ the upper or lower limits.
292
+
293
+ Explanation
294
+ ===========
295
+
296
+ Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a`
297
+ since the value of the sum is discontinuous in `a`. In a case
298
+ involving a limit variable, the unevaluated derivative is returned.
299
+ """
300
+
301
+ # diff already confirmed that x is in the free symbols of self, but we
302
+ # don't want to differentiate wrt any free symbol in the upper or lower
303
+ # limits
304
+ # XXX remove this test for free_symbols when the default _eval_derivative is in
305
+ if isinstance(x, Symbol) and x not in self.free_symbols:
306
+ return S.Zero
307
+
308
+ # get limits and the function
309
+ f, limits = self.function, list(self.limits)
310
+
311
+ limit = limits.pop(-1)
312
+
313
+ if limits: # f is the argument to a Sum
314
+ f = self.func(f, *limits)
315
+
316
+ _, a, b = limit
317
+ if x in a.free_symbols or x in b.free_symbols:
318
+ return None
319
+ df = Derivative(f, x, evaluate=True)
320
+ rv = self.func(df, limit)
321
+ return rv
322
+
323
+ def _eval_difference_delta(self, n, step):
324
+ k, _, upper = self.args[-1]
325
+ new_upper = upper.subs(n, n + step)
326
+
327
+ if len(self.args) == 2:
328
+ f = self.args[0]
329
+ else:
330
+ f = self.func(*self.args[:-1])
331
+
332
+ return Sum(f, (k, upper + 1, new_upper)).doit()
333
+
334
+ def _eval_simplify(self, **kwargs):
335
+
336
+ function = self.function
337
+
338
+ if kwargs.get('deep', True):
339
+ function = function.simplify(**kwargs)
340
+
341
+ # split the function into adds
342
+ terms = Add.make_args(expand(function))
343
+ s_t = [] # Sum Terms
344
+ o_t = [] # Other Terms
345
+
346
+ for term in terms:
347
+ if term.has(Sum):
348
+ # if there is an embedded sum here
349
+ # it is of the form x * (Sum(whatever))
350
+ # hence we make a Mul out of it, and simplify all interior sum terms
351
+ subterms = Mul.make_args(expand(term))
352
+ out_terms = []
353
+ for subterm in subterms:
354
+ # go through each term
355
+ if isinstance(subterm, Sum):
356
+ # if it's a sum, simplify it
357
+ out_terms.append(subterm._eval_simplify(**kwargs))
358
+ else:
359
+ # otherwise, add it as is
360
+ out_terms.append(subterm)
361
+
362
+ # turn it back into a Mul
363
+ s_t.append(Mul(*out_terms))
364
+ else:
365
+ o_t.append(term)
366
+
367
+ # next try to combine any interior sums for further simplification
368
+ from sympy.simplify.simplify import factor_sum, sum_combine
369
+ result = Add(sum_combine(s_t), *o_t)
370
+
371
+ return factor_sum(result, limits=self.limits)
372
+
373
+ def is_convergent(self):
374
+ r"""
375
+ Checks for the convergence of a Sum.
376
+
377
+ Explanation
378
+ ===========
379
+
380
+ We divide the study of convergence of infinite sums and products in
381
+ two parts.
382
+
383
+ First Part:
384
+ One part is the question whether all the terms are well defined, i.e.,
385
+ they are finite in a sum and also non-zero in a product. Zero
386
+ is the analogy of (minus) infinity in products as
387
+ :math:`e^{-\infty} = 0`.
388
+
389
+ Second Part:
390
+ The second part is the question of convergence after infinities,
391
+ and zeros in products, have been omitted assuming that their number
392
+ is finite. This means that we only consider the tail of the sum or
393
+ product, starting from some point after which all terms are well
394
+ defined.
395
+
396
+ For example, in a sum of the form:
397
+
398
+ .. math::
399
+
400
+ \sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}
401
+
402
+ where a and b are numbers. The routine will return true, even if there
403
+ are infinities in the term sequence (at most two). An analogous
404
+ product would be:
405
+
406
+ .. math::
407
+
408
+ \prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}}
409
+
410
+ This is how convergence is interpreted. It is concerned with what
411
+ happens at the limit. Finding the bad terms is another independent
412
+ matter.
413
+
414
+ Note: It is responsibility of user to see that the sum or product
415
+ is well defined.
416
+
417
+ There are various tests employed to check the convergence like
418
+ divergence test, root test, integral test, alternating series test,
419
+ comparison tests, Dirichlet tests. It returns true if Sum is convergent
420
+ and false if divergent and NotImplementedError if it cannot be checked.
421
+
422
+ References
423
+ ==========
424
+
425
+ .. [1] https://en.wikipedia.org/wiki/Convergence_tests
426
+
427
+ Examples
428
+ ========
429
+
430
+ >>> from sympy import factorial, S, Sum, Symbol, oo
431
+ >>> n = Symbol('n', integer=True)
432
+ >>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
433
+ True
434
+ >>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
435
+ False
436
+ >>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
437
+ False
438
+ >>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
439
+ True
440
+
441
+ See Also
442
+ ========
443
+
444
+ Sum.is_absolutely_convergent
445
+ sympy.concrete.products.Product.is_convergent
446
+ """
447
+ p, q, r = symbols('p q r', cls=Wild)
448
+
449
+ sym = self.limits[0][0]
450
+ lower_limit = self.limits[0][1]
451
+ upper_limit = self.limits[0][2]
452
+ sequence_term = self.function.simplify()
453
+
454
+ if len(sequence_term.free_symbols) > 1:
455
+ raise NotImplementedError("convergence checking for more than one symbol "
456
+ "containing series is not handled")
457
+
458
+ if lower_limit.is_finite and upper_limit.is_finite:
459
+ return S.true
460
+
461
+ # transform sym -> -sym and swap the upper_limit = S.Infinity
462
+ # and lower_limit = - upper_limit
463
+ if lower_limit is S.NegativeInfinity:
464
+ if upper_limit is S.Infinity:
465
+ return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
466
+ Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
467
+ from sympy.simplify.simplify import simplify
468
+ sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
469
+ lower_limit = -upper_limit
470
+ upper_limit = S.Infinity
471
+
472
+ sym_ = Dummy(sym.name, integer=True, positive=True)
473
+ sequence_term = sequence_term.xreplace({sym: sym_})
474
+ sym = sym_
475
+
476
+ interval = Interval(lower_limit, upper_limit)
477
+
478
+ # Piecewise function handle
479
+ if sequence_term.is_Piecewise:
480
+ for func, cond in sequence_term.args:
481
+ # see if it represents something going to oo
482
+ if cond == True or cond.as_set().sup is S.Infinity:
483
+ s = Sum(func, (sym, lower_limit, upper_limit))
484
+ return s.is_convergent()
485
+ return S.true
486
+
487
+ ### -------- Divergence test ----------- ###
488
+ try:
489
+ lim_val = limit_seq(sequence_term, sym)
490
+ if lim_val is not None and lim_val.is_zero is False:
491
+ return S.false
492
+ except NotImplementedError:
493
+ pass
494
+
495
+ try:
496
+ lim_val_abs = limit_seq(abs(sequence_term), sym)
497
+ if lim_val_abs is not None and lim_val_abs.is_zero is False:
498
+ return S.false
499
+ except NotImplementedError:
500
+ pass
501
+
502
+ order = O(sequence_term, (sym, S.Infinity))
503
+
504
+ ### --------- p-series test (1/n**p) ---------- ###
505
+ p_series_test = order.expr.match(sym**p)
506
+ if p_series_test is not None:
507
+ if p_series_test[p] < -1:
508
+ return S.true
509
+ if p_series_test[p] >= -1:
510
+ return S.false
511
+
512
+ ### ------------- comparison test ------------- ###
513
+ # 1/(n**p*log(n)**q*log(log(n))**r) comparison
514
+ n_log_test = (order.expr.match(1/(sym**p*log(1/sym)**q*log(-log(1/sym))**r)) or
515
+ order.expr.match(1/(sym**p*(-log(1/sym))**q*log(-log(1/sym))**r)))
516
+ if n_log_test is not None:
517
+ if (n_log_test[p] > 1 or
518
+ (n_log_test[p] == 1 and n_log_test[q] > 1) or
519
+ (n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)):
520
+ return S.true
521
+ return S.false
522
+
523
+ ### ------------- Limit comparison test -----------###
524
+ # (1/n) comparison
525
+ try:
526
+ lim_comp = limit_seq(sym*sequence_term, sym)
527
+ if lim_comp is not None and lim_comp.is_number and lim_comp > 0:
528
+ return S.false
529
+ except NotImplementedError:
530
+ pass
531
+
532
+ ### ----------- ratio test ---------------- ###
533
+ next_sequence_term = sequence_term.xreplace({sym: sym + 1})
534
+ from sympy.simplify.combsimp import combsimp
535
+ from sympy.simplify.powsimp import powsimp
536
+ ratio = combsimp(powsimp(next_sequence_term/sequence_term))
537
+ try:
538
+ lim_ratio = limit_seq(ratio, sym)
539
+ if lim_ratio is not None and lim_ratio.is_number:
540
+ if abs(lim_ratio) > 1:
541
+ return S.false
542
+ if abs(lim_ratio) < 1:
543
+ return S.true
544
+ except NotImplementedError:
545
+ lim_ratio = None
546
+
547
+ ### ---------- Raabe's test -------------- ###
548
+ if lim_ratio == 1: # ratio test inconclusive
549
+ test_val = sym*(sequence_term/
550
+ sequence_term.subs(sym, sym + 1) - 1)
551
+ test_val = test_val.gammasimp()
552
+ try:
553
+ lim_val = limit_seq(test_val, sym)
554
+ if lim_val is not None and lim_val.is_number:
555
+ if lim_val > 1:
556
+ return S.true
557
+ if lim_val < 1:
558
+ return S.false
559
+ except NotImplementedError:
560
+ pass
561
+
562
+ ### ----------- root test ---------------- ###
563
+ # lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
564
+ try:
565
+ lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym)
566
+ if lim_evaluated is not None and lim_evaluated.is_number:
567
+ if lim_evaluated < 1:
568
+ return S.true
569
+ if lim_evaluated > 1:
570
+ return S.false
571
+ except NotImplementedError:
572
+ pass
573
+
574
+ ### ------------- alternating series test ----------- ###
575
+ dict_val = sequence_term.match(S.NegativeOne**(sym + p)*q)
576
+ if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
577
+ return S.true
578
+
579
+ ### ------------- integral test -------------- ###
580
+ check_interval = None
581
+ from sympy.solvers.solveset import solveset
582
+ maxima = solveset(sequence_term.diff(sym), sym, interval)
583
+ if not maxima:
584
+ check_interval = interval
585
+ elif isinstance(maxima, FiniteSet) and maxima.sup.is_number:
586
+ check_interval = Interval(maxima.sup, interval.sup)
587
+ if (check_interval is not None and
588
+ (is_decreasing(sequence_term, check_interval) or
589
+ is_decreasing(-sequence_term, check_interval))):
590
+ integral_val = Integral(
591
+ sequence_term, (sym, lower_limit, upper_limit))
592
+ try:
593
+ integral_val_evaluated = integral_val.doit()
594
+ if integral_val_evaluated.is_number:
595
+ return S(integral_val_evaluated.is_finite)
596
+ except NotImplementedError:
597
+ pass
598
+
599
+ ### ----- Dirichlet and bounded times convergent tests ----- ###
600
+ # TODO
601
+ #
602
+ # Dirichlet_test
603
+ # https://en.wikipedia.org/wiki/Dirichlet%27s_test
604
+ #
605
+ # Bounded times convergent test
606
+ # It is based on comparison theorems for series.
607
+ # In particular, if the general term of a series can
608
+ # be written as a product of two terms a_n and b_n
609
+ # and if a_n is bounded and if Sum(b_n) is absolutely
610
+ # convergent, then the original series Sum(a_n * b_n)
611
+ # is absolutely convergent and so convergent.
612
+ #
613
+ # The following code can grows like 2**n where n is the
614
+ # number of args in order.expr
615
+ # Possibly combined with the potentially slow checks
616
+ # inside the loop, could make this test extremely slow
617
+ # for larger summation expressions.
618
+
619
+ if order.expr.is_Mul:
620
+ args = order.expr.args
621
+ argset = set(args)
622
+
623
+ ### -------------- Dirichlet tests -------------- ###
624
+ m = Dummy('m', integer=True)
625
+ def _dirichlet_test(g_n):
626
+ try:
627
+ ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m)
628
+ if ing_val is not None and ing_val.is_finite:
629
+ return S.true
630
+ except NotImplementedError:
631
+ pass
632
+
633
+ ### -------- bounded times convergent test ---------###
634
+ def _bounded_convergent_test(g1_n, g2_n):
635
+ try:
636
+ lim_val = limit_seq(g1_n, sym)
637
+ if lim_val is not None and (lim_val.is_finite or (
638
+ isinstance(lim_val, AccumulationBounds)
639
+ and (lim_val.max - lim_val.min).is_finite)):
640
+ if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent():
641
+ return S.true
642
+ except NotImplementedError:
643
+ pass
644
+
645
+ for n in range(1, len(argset)):
646
+ for a_tuple in itertools.combinations(args, n):
647
+ b_set = argset - set(a_tuple)
648
+ a_n = Mul(*a_tuple)
649
+ b_n = Mul(*b_set)
650
+
651
+ if is_decreasing(a_n, interval):
652
+ dirich = _dirichlet_test(b_n)
653
+ if dirich is not None:
654
+ return dirich
655
+
656
+ bc_test = _bounded_convergent_test(a_n, b_n)
657
+ if bc_test is not None:
658
+ return bc_test
659
+
660
+ _sym = self.limits[0][0]
661
+ sequence_term = sequence_term.xreplace({sym: _sym})
662
+ raise NotImplementedError("The algorithm to find the Sum convergence of %s "
663
+ "is not yet implemented" % (sequence_term))
664
+
665
+ def is_absolutely_convergent(self):
666
+ """
667
+ Checks for the absolute convergence of an infinite series.
668
+
669
+ Same as checking convergence of absolute value of sequence_term of
670
+ an infinite series.
671
+
672
+ References
673
+ ==========
674
+
675
+ .. [1] https://en.wikipedia.org/wiki/Absolute_convergence
676
+
677
+ Examples
678
+ ========
679
+
680
+ >>> from sympy import Sum, Symbol, oo
681
+ >>> n = Symbol('n', integer=True)
682
+ >>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent()
683
+ False
684
+ >>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent()
685
+ True
686
+
687
+ See Also
688
+ ========
689
+
690
+ Sum.is_convergent
691
+ """
692
+ return Sum(abs(self.function), self.limits).is_convergent()
693
+
694
+ def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True):
695
+ """
696
+ Return an Euler-Maclaurin approximation of self, where m is the
697
+ number of leading terms to sum directly and n is the number of
698
+ terms in the tail.
699
+
700
+ With m = n = 0, this is simply the corresponding integral
701
+ plus a first-order endpoint correction.
702
+
703
+ Returns (s, e) where s is the Euler-Maclaurin approximation
704
+ and e is the estimated error (taken to be the magnitude of
705
+ the first omitted term in the tail):
706
+
707
+ >>> from sympy.abc import k, a, b
708
+ >>> from sympy import Sum
709
+ >>> Sum(1/k, (k, 2, 5)).doit().evalf()
710
+ 1.28333333333333
711
+ >>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
712
+ >>> s
713
+ -log(2) + 7/20 + log(5)
714
+ >>> from sympy import sstr
715
+ >>> print(sstr((s.evalf(), e.evalf()), full_prec=True))
716
+ (1.26629073187415, 0.0175000000000000)
717
+
718
+ The endpoints may be symbolic:
719
+
720
+ >>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
721
+ >>> s
722
+ -log(a) + log(b) + 1/(2*b) + 1/(2*a)
723
+ >>> e
724
+ Abs(1/(12*b**2) - 1/(12*a**2))
725
+
726
+ If the function is a polynomial of degree at most 2n+1, the
727
+ Euler-Maclaurin formula becomes exact (and e = 0 is returned):
728
+
729
+ >>> Sum(k, (k, 2, b)).euler_maclaurin()
730
+ (b**2/2 + b/2 - 1, 0)
731
+ >>> Sum(k, (k, 2, b)).doit()
732
+ b**2/2 + b/2 - 1
733
+
734
+ With a nonzero eps specified, the summation is ended
735
+ as soon as the remainder term is less than the epsilon.
736
+ """
737
+ m = int(m)
738
+ n = int(n)
739
+ f = self.function
740
+ if len(self.limits) != 1:
741
+ raise ValueError("More than 1 limit")
742
+ i, a, b = self.limits[0]
743
+ if (a > b) == True:
744
+ if a - b == 1:
745
+ return S.Zero, S.Zero
746
+ a, b = b + 1, a - 1
747
+ f = -f
748
+ s = S.Zero
749
+ if m:
750
+ if b.is_Integer and a.is_Integer:
751
+ m = min(m, b - a + 1)
752
+ if not eps or f.is_polynomial(i):
753
+ s = Add(*[f.subs(i, a + k) for k in range(m)])
754
+ else:
755
+ term = f.subs(i, a)
756
+ if term:
757
+ test = abs(term.evalf(3)) < eps
758
+ if test == True:
759
+ return s, abs(term)
760
+ elif not (test == False):
761
+ # a symbolic Relational class, can't go further
762
+ return term, S.Zero
763
+ s = term
764
+ for k in range(1, m):
765
+ term = f.subs(i, a + k)
766
+ if abs(term.evalf(3)) < eps and term != 0:
767
+ return s, abs(term)
768
+ s += term
769
+ if b - a + 1 == m:
770
+ return s, S.Zero
771
+ a += m
772
+ x = Dummy('x')
773
+ I = Integral(f.subs(i, x), (x, a, b))
774
+ if eval_integral:
775
+ I = I.doit()
776
+ s += I
777
+
778
+ def fpoint(expr):
779
+ if b is S.Infinity:
780
+ return expr.subs(i, a), 0
781
+ return expr.subs(i, a), expr.subs(i, b)
782
+ fa, fb = fpoint(f)
783
+ iterm = (fa + fb)/2
784
+ g = f.diff(i)
785
+ for k in range(1, n + 2):
786
+ ga, gb = fpoint(g)
787
+ term = bernoulli(2*k)/factorial(2*k)*(gb - ga)
788
+ if k > n:
789
+ break
790
+ if eps and term:
791
+ term_evalf = term.evalf(3)
792
+ if term_evalf is S.NaN:
793
+ return S.NaN, S.NaN
794
+ if abs(term_evalf) < eps:
795
+ break
796
+ s += term
797
+ g = g.diff(i, 2, simplify=False)
798
+ return s + iterm, abs(term)
799
+
800
+
801
+ def reverse_order(self, *indices):
802
+ """
803
+ Reverse the order of a limit in a Sum.
804
+
805
+ Explanation
806
+ ===========
807
+
808
+ ``reverse_order(self, *indices)`` reverses some limits in the expression
809
+ ``self`` which can be either a ``Sum`` or a ``Product``. The selectors in
810
+ the argument ``indices`` specify some indices whose limits get reversed.
811
+ These selectors are either variable names or numerical indices counted
812
+ starting from the inner-most limit tuple.
813
+
814
+ Examples
815
+ ========
816
+
817
+ >>> from sympy import Sum
818
+ >>> from sympy.abc import x, y, a, b, c, d
819
+
820
+ >>> Sum(x, (x, 0, 3)).reverse_order(x)
821
+ Sum(-x, (x, 4, -1))
822
+ >>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y)
823
+ Sum(x*y, (x, 6, 0), (y, 7, -1))
824
+ >>> Sum(x, (x, a, b)).reverse_order(x)
825
+ Sum(-x, (x, b + 1, a - 1))
826
+ >>> Sum(x, (x, a, b)).reverse_order(0)
827
+ Sum(-x, (x, b + 1, a - 1))
828
+
829
+ While one should prefer variable names when specifying which limits
830
+ to reverse, the index counting notation comes in handy in case there
831
+ are several symbols with the same name.
832
+
833
+ >>> S = Sum(x**2, (x, a, b), (x, c, d))
834
+ >>> S
835
+ Sum(x**2, (x, a, b), (x, c, d))
836
+ >>> S0 = S.reverse_order(0)
837
+ >>> S0
838
+ Sum(-x**2, (x, b + 1, a - 1), (x, c, d))
839
+ >>> S1 = S0.reverse_order(1)
840
+ >>> S1
841
+ Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1))
842
+
843
+ Of course we can mix both notations:
844
+
845
+ >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
846
+ Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
847
+ >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
848
+ Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
849
+
850
+ See Also
851
+ ========
852
+
853
+ sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit,
854
+ sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder
855
+
856
+ References
857
+ ==========
858
+
859
+ .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
860
+ Volume 28 Issue 2, April 1981, Pages 305-350
861
+ https://dl.acm.org/doi/10.1145/322248.322255
862
+ """
863
+ l_indices = list(indices)
864
+
865
+ for i, indx in enumerate(l_indices):
866
+ if not isinstance(indx, int):
867
+ l_indices[i] = self.index(indx)
868
+
869
+ e = 1
870
+ limits = []
871
+ for i, limit in enumerate(self.limits):
872
+ l = limit
873
+ if i in l_indices:
874
+ e = -e
875
+ l = (limit[0], limit[2] + 1, limit[1] - 1)
876
+ limits.append(l)
877
+
878
+ return Sum(e * self.function, *limits)
879
+
880
+ def _eval_rewrite_as_Product(self, *args, **kwargs):
881
+ from sympy.concrete.products import Product
882
+ if self.function.is_extended_real:
883
+ return log(Product(exp(self.function), *self.limits))
884
+
885
+
886
+ def summation(f, *symbols, **kwargs):
887
+ r"""
888
+ Compute the summation of f with respect to symbols.
889
+
890
+ Explanation
891
+ ===========
892
+
893
+ The notation for symbols is similar to the notation used in Integral.
894
+ summation(f, (i, a, b)) computes the sum of f with respect to i from a to b,
895
+ i.e.,
896
+
897
+ ::
898
+
899
+ b
900
+ ____
901
+ \ `
902
+ summation(f, (i, a, b)) = ) f
903
+ /___,
904
+ i = a
905
+
906
+ If it cannot compute the sum, it returns an unevaluated Sum object.
907
+ Repeated sums can be computed by introducing additional symbols tuples::
908
+
909
+ Examples
910
+ ========
911
+
912
+ >>> from sympy import summation, oo, symbols, log
913
+ >>> i, n, m = symbols('i n m', integer=True)
914
+
915
+ >>> summation(2*i - 1, (i, 1, n))
916
+ n**2
917
+ >>> summation(1/2**i, (i, 0, oo))
918
+ 2
919
+ >>> summation(1/log(n)**n, (n, 2, oo))
920
+ Sum(log(n)**(-n), (n, 2, oo))
921
+ >>> summation(i, (i, 0, n), (n, 0, m))
922
+ m**3/6 + m**2/2 + m/3
923
+
924
+ >>> from sympy.abc import x
925
+ >>> from sympy import factorial
926
+ >>> summation(x**n/factorial(n), (n, 0, oo))
927
+ exp(x)
928
+
929
+ See Also
930
+ ========
931
+
932
+ Sum
933
+ Product, sympy.concrete.products.product
934
+
935
+ """
936
+ return Sum(f, *symbols, **kwargs).doit(deep=False)
937
+
938
+
939
+ def telescopic_direct(L, R, n, limits):
940
+ """
941
+ Returns the direct summation of the terms of a telescopic sum
942
+
943
+ Explanation
944
+ ===========
945
+
946
+ L is the term with lower index
947
+ R is the term with higher index
948
+ n difference between the indexes of L and R
949
+
950
+ Examples
951
+ ========
952
+
953
+ >>> from sympy.concrete.summations import telescopic_direct
954
+ >>> from sympy.abc import k, a, b
955
+ >>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b))
956
+ -1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a
957
+
958
+ """
959
+ (i, a, b) = limits
960
+ return Add(*[L.subs(i, a + m) + R.subs(i, b - m) for m in range(n)])
961
+
962
+
963
+ def telescopic(L, R, limits):
964
+ '''
965
+ Tries to perform the summation using the telescopic property.
966
+
967
+ Return None if not possible.
968
+ '''
969
+ (i, a, b) = limits
970
+ if L.is_Add or R.is_Add:
971
+ return None
972
+
973
+ # We want to solve(L.subs(i, i + m) + R, m)
974
+ # First we try a simple match since this does things that
975
+ # solve doesn't do, e.g. solve(cos(k+m)-cos(k), m) gives
976
+ # a more complicated solution than m == 0.
977
+
978
+ k = Wild("k")
979
+ sol = (-R).match(L.subs(i, i + k))
980
+ s = None
981
+ if sol and k in sol:
982
+ s = sol[k]
983
+ if not (s.is_Integer and L.subs(i, i + s) + R == 0):
984
+ # invalid match or match didn't work
985
+ s = None
986
+
987
+ # But there are things that match doesn't do that solve
988
+ # can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1
989
+
990
+ if s is None:
991
+ m = Dummy('m')
992
+ try:
993
+ from sympy.solvers.solvers import solve
994
+ sol = solve(L.subs(i, i + m) + R, m) or []
995
+ except NotImplementedError:
996
+ return None
997
+ sol = [si for si in sol if si.is_Integer and
998
+ (L.subs(i, i + si) + R).expand().is_zero]
999
+ if len(sol) != 1:
1000
+ return None
1001
+ s = sol[0]
1002
+
1003
+ if s < 0:
1004
+ return telescopic_direct(R, L, abs(s), (i, a, b))
1005
+ elif s > 0:
1006
+ return telescopic_direct(L, R, s, (i, a, b))
1007
+
1008
+
1009
+ def eval_sum(f, limits):
1010
+ (i, a, b) = limits
1011
+ if f.is_zero:
1012
+ return S.Zero
1013
+ if i not in f.free_symbols:
1014
+ return f*(b - a + 1)
1015
+ if a == b:
1016
+ return f.subs(i, a)
1017
+ if isinstance(f, Piecewise):
1018
+ if not any(i in arg.args[1].free_symbols for arg in f.args):
1019
+ # Piecewise conditions do not depend on the dummy summation variable,
1020
+ # therefore we can fold: Sum(Piecewise((e, c), ...), limits)
1021
+ # --> Piecewise((Sum(e, limits), c), ...)
1022
+ newargs = []
1023
+ for arg in f.args:
1024
+ newexpr = eval_sum(arg.expr, limits)
1025
+ if newexpr is None:
1026
+ return None
1027
+ newargs.append((newexpr, arg.cond))
1028
+ return f.func(*newargs)
1029
+
1030
+ if f.has(KroneckerDelta):
1031
+ from .delta import deltasummation, _has_simple_delta
1032
+ f = f.replace(
1033
+ lambda x: isinstance(x, Sum),
1034
+ lambda x: x.factor()
1035
+ )
1036
+ if _has_simple_delta(f, limits[0]):
1037
+ return deltasummation(f, limits)
1038
+
1039
+ dif = b - a
1040
+ definite = dif.is_Integer
1041
+ # Doing it directly may be faster if there are very few terms.
1042
+ if definite and (dif < 100):
1043
+ return eval_sum_direct(f, (i, a, b))
1044
+ if isinstance(f, Piecewise):
1045
+ return None
1046
+ # Try to do it symbolically. Even when the number of terms is
1047
+ # known, this can save time when b-a is big.
1048
+ value = eval_sum_symbolic(f.expand(), (i, a, b))
1049
+ if value is not None:
1050
+ return value
1051
+ # Do it directly
1052
+ if definite:
1053
+ return eval_sum_direct(f, (i, a, b))
1054
+
1055
+
1056
+ def eval_sum_direct(expr, limits):
1057
+ """
1058
+ Evaluate expression directly, but perform some simple checks first
1059
+ to possibly result in a smaller expression and faster execution.
1060
+ """
1061
+ (i, a, b) = limits
1062
+
1063
+ dif = b - a
1064
+ # Linearity
1065
+ if expr.is_Mul:
1066
+ # Try factor out everything not including i
1067
+ without_i, with_i = expr.as_independent(i)
1068
+ if without_i != 1:
1069
+ s = eval_sum_direct(with_i, (i, a, b))
1070
+ if s:
1071
+ r = without_i*s
1072
+ if r is not S.NaN:
1073
+ return r
1074
+ else:
1075
+ # Try term by term
1076
+ L, R = expr.as_two_terms()
1077
+
1078
+ if not L.has(i):
1079
+ sR = eval_sum_direct(R, (i, a, b))
1080
+ if sR:
1081
+ return L*sR
1082
+
1083
+ if not R.has(i):
1084
+ sL = eval_sum_direct(L, (i, a, b))
1085
+ if sL:
1086
+ return sL*R
1087
+
1088
+ # do this whether its an Add or Mul
1089
+ # e.g. apart(1/(25*i**2 + 45*i + 14)) and
1090
+ # apart(1/((5*i + 2)*(5*i + 7))) ->
1091
+ # -1/(5*(5*i + 7)) + 1/(5*(5*i + 2))
1092
+ try:
1093
+ expr = apart(expr, i) # see if it becomes an Add
1094
+ except PolynomialError:
1095
+ pass
1096
+
1097
+ if expr.is_Add:
1098
+ # Try factor out everything not including i
1099
+ without_i, with_i = expr.as_independent(i)
1100
+ if without_i != 0:
1101
+ s = eval_sum_direct(with_i, (i, a, b))
1102
+ if s:
1103
+ r = without_i*(dif + 1) + s
1104
+ if r is not S.NaN:
1105
+ return r
1106
+ else:
1107
+ # Try term by term
1108
+ L, R = expr.as_two_terms()
1109
+ lsum = eval_sum_direct(L, (i, a, b))
1110
+ rsum = eval_sum_direct(R, (i, a, b))
1111
+
1112
+ if None not in (lsum, rsum):
1113
+ r = lsum + rsum
1114
+ if r is not S.NaN:
1115
+ return r
1116
+
1117
+ return Add(*[expr.subs(i, a + j) for j in range(dif + 1)])
1118
+
1119
+
1120
+ def eval_sum_symbolic(f, limits):
1121
+ f_orig = f
1122
+ (i, a, b) = limits
1123
+ if not f.has(i):
1124
+ return f*(b - a + 1)
1125
+
1126
+ # Linearity
1127
+ if f.is_Mul:
1128
+ # Try factor out everything not including i
1129
+ without_i, with_i = f.as_independent(i)
1130
+ if without_i != 1:
1131
+ s = eval_sum_symbolic(with_i, (i, a, b))
1132
+ if s:
1133
+ r = without_i*s
1134
+ if r is not S.NaN:
1135
+ return r
1136
+ else:
1137
+ # Try term by term
1138
+ L, R = f.as_two_terms()
1139
+
1140
+ if not L.has(i):
1141
+ sR = eval_sum_symbolic(R, (i, a, b))
1142
+ if sR:
1143
+ return L*sR
1144
+
1145
+ if not R.has(i):
1146
+ sL = eval_sum_symbolic(L, (i, a, b))
1147
+ if sL:
1148
+ return sL*R
1149
+
1150
+ # do this whether its an Add or Mul
1151
+ # e.g. apart(1/(25*i**2 + 45*i + 14)) and
1152
+ # apart(1/((5*i + 2)*(5*i + 7))) ->
1153
+ # -1/(5*(5*i + 7)) + 1/(5*(5*i + 2))
1154
+ try:
1155
+ f = apart(f, i)
1156
+ except PolynomialError:
1157
+ pass
1158
+
1159
+ if f.is_Add:
1160
+ L, R = f.as_two_terms()
1161
+ lrsum = telescopic(L, R, (i, a, b))
1162
+
1163
+ if lrsum:
1164
+ return lrsum
1165
+
1166
+ # Try factor out everything not including i
1167
+ without_i, with_i = f.as_independent(i)
1168
+ if without_i != 0:
1169
+ s = eval_sum_symbolic(with_i, (i, a, b))
1170
+ if s:
1171
+ r = without_i*(b - a + 1) + s
1172
+ if r is not S.NaN:
1173
+ return r
1174
+ else:
1175
+ # Try term by term
1176
+ lsum = eval_sum_symbolic(L, (i, a, b))
1177
+ rsum = eval_sum_symbolic(R, (i, a, b))
1178
+
1179
+ if None not in (lsum, rsum):
1180
+ r = lsum + rsum
1181
+ if r is not S.NaN:
1182
+ return r
1183
+
1184
+
1185
+ # Polynomial terms with Faulhaber's formula
1186
+ n = Wild('n')
1187
+ result = f.match(i**n)
1188
+
1189
+ if result is not None:
1190
+ n = result[n]
1191
+
1192
+ if n.is_Integer:
1193
+ if n >= 0:
1194
+ if (b is S.Infinity and a is not S.NegativeInfinity) or \
1195
+ (a is S.NegativeInfinity and b is not S.Infinity):
1196
+ return S.Infinity
1197
+ return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand()
1198
+ elif a.is_Integer and a >= 1:
1199
+ if n == -1:
1200
+ return harmonic(b) - harmonic(a - 1)
1201
+ else:
1202
+ return harmonic(b, abs(n)) - harmonic(a - 1, abs(n))
1203
+
1204
+ if not (a.has(S.Infinity, S.NegativeInfinity) or
1205
+ b.has(S.Infinity, S.NegativeInfinity)):
1206
+ # Geometric terms
1207
+ c1 = Wild('c1', exclude=[i])
1208
+ c2 = Wild('c2', exclude=[i])
1209
+ c3 = Wild('c3', exclude=[i])
1210
+ wexp = Wild('wexp')
1211
+
1212
+ # Here we first attempt powsimp on f for easier matching with the
1213
+ # exponential pattern, and attempt expansion on the exponent for easier
1214
+ # matching with the linear pattern.
1215
+ e = f.powsimp().match(c1 ** wexp)
1216
+ if e is not None:
1217
+ e_exp = e.pop(wexp).expand().match(c2*i + c3)
1218
+ if e_exp is not None:
1219
+ e.update(e_exp)
1220
+
1221
+ p = (c1**c3).subs(e)
1222
+ q = (c1**c2).subs(e)
1223
+ r = p*(q**a - q**(b + 1))/(1 - q)
1224
+ l = p*(b - a + 1)
1225
+ return Piecewise((l, Eq(q, S.One)), (r, True))
1226
+
1227
+ r = gosper_sum(f, (i, a, b))
1228
+
1229
+ if isinstance(r, (Mul,Add)):
1230
+ from sympy.simplify.radsimp import denom
1231
+ from sympy.solvers.solvers import solve
1232
+ non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols
1233
+ den = denom(together(r))
1234
+ den_sym = non_limit & den.free_symbols
1235
+ args = []
1236
+ for v in ordered(den_sym):
1237
+ try:
1238
+ s = solve(den, v)
1239
+ m = Eq(v, s[0]) if s else S.false
1240
+ if m != False:
1241
+ args.append((Sum(f_orig.subs(*m.args), limits).doit(), m))
1242
+ break
1243
+ except NotImplementedError:
1244
+ continue
1245
+
1246
+ args.append((r, True))
1247
+ return Piecewise(*args)
1248
+
1249
+ if r not in (None, S.NaN):
1250
+ return r
1251
+
1252
+ h = eval_sum_hyper(f_orig, (i, a, b))
1253
+ if h is not None:
1254
+ return h
1255
+
1256
+ r = eval_sum_residue(f_orig, (i, a, b))
1257
+ if r is not None:
1258
+ return r
1259
+
1260
+ factored = f_orig.factor()
1261
+ if factored != f_orig:
1262
+ return eval_sum_symbolic(factored, (i, a, b))
1263
+
1264
+
1265
+ def _eval_sum_hyper(f, i, a):
1266
+ """ Returns (res, cond). Sums from a to oo. """
1267
+ if a != 0:
1268
+ return _eval_sum_hyper(f.subs(i, i + a), i, 0)
1269
+
1270
+ if f.subs(i, 0) == 0:
1271
+ from sympy.simplify.simplify import simplify
1272
+ if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0:
1273
+ return S.Zero, True
1274
+ return _eval_sum_hyper(f.subs(i, i + 1), i, 0)
1275
+
1276
+ from sympy.simplify.simplify import hypersimp
1277
+ hs = hypersimp(f, i)
1278
+ if hs is None:
1279
+ return None
1280
+
1281
+ if isinstance(hs, Float):
1282
+ from sympy.simplify.simplify import nsimplify
1283
+ hs = nsimplify(hs)
1284
+
1285
+ from sympy.simplify.combsimp import combsimp
1286
+ from sympy.simplify.hyperexpand import hyperexpand
1287
+ from sympy.simplify.radsimp import fraction
1288
+ numer, denom = fraction(factor(hs))
1289
+ top, topl = numer.as_coeff_mul(i)
1290
+ bot, botl = denom.as_coeff_mul(i)
1291
+ ab = [top, bot]
1292
+ factors = [topl, botl]
1293
+ params = [[], []]
1294
+ for k in range(2):
1295
+ for fac in factors[k]:
1296
+ mul = 1
1297
+ if fac.is_Pow:
1298
+ mul = fac.exp
1299
+ fac = fac.base
1300
+ if not mul.is_Integer:
1301
+ return None
1302
+ p = Poly(fac, i)
1303
+ if p.degree() != 1:
1304
+ return None
1305
+ m, n = p.all_coeffs()
1306
+ ab[k] *= m**mul
1307
+ params[k] += [n/m]*mul
1308
+
1309
+ # Add "1" to numerator parameters, to account for implicit n! in
1310
+ # hypergeometric series.
1311
+ ap = params[0] + [1]
1312
+ bq = params[1]
1313
+ x = ab[0]/ab[1]
1314
+ h = hyper(ap, bq, x)
1315
+ f = combsimp(f)
1316
+ return f.subs(i, 0)*hyperexpand(h), h.convergence_statement
1317
+
1318
+
1319
+ def eval_sum_hyper(f, i_a_b):
1320
+ i, a, b = i_a_b
1321
+
1322
+ if f.is_hypergeometric(i) is False:
1323
+ return
1324
+
1325
+ if (b - a).is_Integer:
1326
+ # We are never going to do better than doing the sum in the obvious way
1327
+ return None
1328
+
1329
+ old_sum = Sum(f, (i, a, b))
1330
+
1331
+ if b != S.Infinity:
1332
+ if a is S.NegativeInfinity:
1333
+ res = _eval_sum_hyper(f.subs(i, -i), i, -b)
1334
+ if res is not None:
1335
+ return Piecewise(res, (old_sum, True))
1336
+ else:
1337
+ n_illegal = lambda x: sum(x.count(_) for _ in _illegal)
1338
+ had = n_illegal(f)
1339
+ # check that no extra illegals are introduced
1340
+ res1 = _eval_sum_hyper(f, i, a)
1341
+ if res1 is None or n_illegal(res1) > had:
1342
+ return
1343
+ res2 = _eval_sum_hyper(f, i, b + 1)
1344
+ if res2 is None or n_illegal(res2) > had:
1345
+ return
1346
+ (res1, cond1), (res2, cond2) = res1, res2
1347
+ cond = And(cond1, cond2)
1348
+ if cond == False:
1349
+ return None
1350
+ return Piecewise((res1 - res2, cond), (old_sum, True))
1351
+
1352
+ if a is S.NegativeInfinity:
1353
+ res1 = _eval_sum_hyper(f.subs(i, -i), i, 1)
1354
+ res2 = _eval_sum_hyper(f, i, 0)
1355
+ if res1 is None or res2 is None:
1356
+ return None
1357
+ res1, cond1 = res1
1358
+ res2, cond2 = res2
1359
+ cond = And(cond1, cond2)
1360
+ if cond == False or cond.as_set() == S.EmptySet:
1361
+ return None
1362
+ return Piecewise((res1 + res2, cond), (old_sum, True))
1363
+
1364
+ # Now b == oo, a != -oo
1365
+ res = _eval_sum_hyper(f, i, a)
1366
+ if res is not None:
1367
+ r, c = res
1368
+ if c == False:
1369
+ if r.is_number:
1370
+ f = f.subs(i, Dummy('i', integer=True, positive=True) + a)
1371
+ if f.is_positive or f.is_zero:
1372
+ return S.Infinity
1373
+ elif f.is_negative:
1374
+ return S.NegativeInfinity
1375
+ return None
1376
+ return Piecewise(res, (old_sum, True))
1377
+
1378
+
1379
+ def eval_sum_residue(f, i_a_b):
1380
+ r"""Compute the infinite summation with residues
1381
+
1382
+ Notes
1383
+ =====
1384
+
1385
+ If $f(n), g(n)$ are polynomials with $\deg(g(n)) - \deg(f(n)) \ge 2$,
1386
+ some infinite summations can be computed by the following residue
1387
+ evaluations.
1388
+
1389
+ .. math::
1390
+ \sum_{n=-\infty, g(n) \ne 0}^{\infty} \frac{f(n)}{g(n)} =
1391
+ -\pi \sum_{\alpha|g(\alpha)=0}
1392
+ \text{Res}(\cot(\pi x) \frac{f(x)}{g(x)}, \alpha)
1393
+
1394
+ .. math::
1395
+ \sum_{n=-\infty, g(n) \ne 0}^{\infty} (-1)^n \frac{f(n)}{g(n)} =
1396
+ -\pi \sum_{\alpha|g(\alpha)=0}
1397
+ \text{Res}(\csc(\pi x) \frac{f(x)}{g(x)}, \alpha)
1398
+
1399
+ Examples
1400
+ ========
1401
+
1402
+ >>> from sympy import Sum, oo, Symbol
1403
+ >>> x = Symbol('x')
1404
+
1405
+ Doubly infinite series of rational functions.
1406
+
1407
+ >>> Sum(1 / (x**2 + 1), (x, -oo, oo)).doit()
1408
+ pi/tanh(pi)
1409
+
1410
+ Doubly infinite alternating series of rational functions.
1411
+
1412
+ >>> Sum((-1)**x / (x**2 + 1), (x, -oo, oo)).doit()
1413
+ pi/sinh(pi)
1414
+
1415
+ Infinite series of even rational functions.
1416
+
1417
+ >>> Sum(1 / (x**2 + 1), (x, 0, oo)).doit()
1418
+ 1/2 + pi/(2*tanh(pi))
1419
+
1420
+ Infinite series of alternating even rational functions.
1421
+
1422
+ >>> Sum((-1)**x / (x**2 + 1), (x, 0, oo)).doit()
1423
+ pi/(2*sinh(pi)) + 1/2
1424
+
1425
+ This also have heuristics to transform arbitrarily shifted summand or
1426
+ arbitrarily shifted summation range to the canonical problem the
1427
+ formula can handle.
1428
+
1429
+ >>> Sum(1 / (x**2 + 2*x + 2), (x, -1, oo)).doit()
1430
+ 1/2 + pi/(2*tanh(pi))
1431
+ >>> Sum(1 / (x**2 + 4*x + 5), (x, -2, oo)).doit()
1432
+ 1/2 + pi/(2*tanh(pi))
1433
+ >>> Sum(1 / (x**2 + 1), (x, 1, oo)).doit()
1434
+ -1/2 + pi/(2*tanh(pi))
1435
+ >>> Sum(1 / (x**2 + 1), (x, 2, oo)).doit()
1436
+ -1 + pi/(2*tanh(pi))
1437
+
1438
+ References
1439
+ ==========
1440
+
1441
+ .. [#] http://www.supermath.info/InfiniteSeriesandtheResidueTheorem.pdf
1442
+
1443
+ .. [#] Asmar N.H., Grafakos L. (2018) Residue Theory.
1444
+ In: Complex Analysis with Applications.
1445
+ Undergraduate Texts in Mathematics. Springer, Cham.
1446
+ https://doi.org/10.1007/978-3-319-94063-2_5
1447
+ """
1448
+ i, a, b = i_a_b
1449
+
1450
+ def is_even_function(numer, denom):
1451
+ """Test if the rational function is an even function"""
1452
+ numer_even = all(i % 2 == 0 for (i,) in numer.monoms())
1453
+ denom_even = all(i % 2 == 0 for (i,) in denom.monoms())
1454
+ numer_odd = all(i % 2 == 1 for (i,) in numer.monoms())
1455
+ denom_odd = all(i % 2 == 1 for (i,) in denom.monoms())
1456
+ return (numer_even and denom_even) or (numer_odd and denom_odd)
1457
+
1458
+ def match_rational(f, i):
1459
+ numer, denom = f.as_numer_denom()
1460
+ try:
1461
+ (numer, denom), opt = parallel_poly_from_expr((numer, denom), i)
1462
+ except (PolificationFailed, PolynomialError):
1463
+ return None
1464
+ return numer, denom
1465
+
1466
+ def get_poles(denom):
1467
+ roots = denom.sqf_part().all_roots()
1468
+ roots = sift(roots, lambda x: x.is_integer)
1469
+ if None in roots:
1470
+ return None
1471
+ int_roots, nonint_roots = roots[True], roots[False]
1472
+ return int_roots, nonint_roots
1473
+
1474
+ def get_shift(denom):
1475
+ n = denom.degree(i)
1476
+ a = denom.coeff_monomial(i**n)
1477
+ b = denom.coeff_monomial(i**(n-1))
1478
+ shift = - b / a / n
1479
+ return shift
1480
+
1481
+ #Need a dummy symbol with no assumptions set for get_residue_factor
1482
+ z = Dummy('z')
1483
+
1484
+ def get_residue_factor(numer, denom, alternating):
1485
+ residue_factor = (numer.as_expr() / denom.as_expr()).subs(i, z)
1486
+ if not alternating:
1487
+ residue_factor *= cot(S.Pi * z)
1488
+ else:
1489
+ residue_factor *= csc(S.Pi * z)
1490
+ return residue_factor
1491
+
1492
+ # We don't know how to deal with symbolic constants in summand
1493
+ if f.free_symbols - {i}:
1494
+ return None
1495
+
1496
+ if not (a.is_Integer or a in (S.Infinity, S.NegativeInfinity)):
1497
+ return None
1498
+ if not (b.is_Integer or b in (S.Infinity, S.NegativeInfinity)):
1499
+ return None
1500
+
1501
+ # Quick exit heuristic for the sums which doesn't have infinite range
1502
+ if a != S.NegativeInfinity and b != S.Infinity:
1503
+ return None
1504
+
1505
+ match = match_rational(f, i)
1506
+ if match:
1507
+ alternating = False
1508
+ numer, denom = match
1509
+ else:
1510
+ match = match_rational(f / S.NegativeOne**i, i)
1511
+ if match:
1512
+ alternating = True
1513
+ numer, denom = match
1514
+ else:
1515
+ return None
1516
+
1517
+ if denom.degree(i) - numer.degree(i) < 2:
1518
+ return None
1519
+
1520
+ if (a, b) == (S.NegativeInfinity, S.Infinity):
1521
+ poles = get_poles(denom)
1522
+ if poles is None:
1523
+ return None
1524
+ int_roots, nonint_roots = poles
1525
+
1526
+ if int_roots:
1527
+ return None
1528
+
1529
+ residue_factor = get_residue_factor(numer, denom, alternating)
1530
+ residues = [residue(residue_factor, z, root) for root in nonint_roots]
1531
+ return -S.Pi * sum(residues)
1532
+
1533
+ if not (a.is_finite and b is S.Infinity):
1534
+ return None
1535
+
1536
+ if not is_even_function(numer, denom):
1537
+ # Try shifting summation and check if the summand can be made
1538
+ # and even function from the origin.
1539
+ # Sum(f(n), (n, a, b)) => Sum(f(n + s), (n, a - s, b - s))
1540
+ shift = get_shift(denom)
1541
+
1542
+ if not shift.is_Integer:
1543
+ return None
1544
+ if shift == 0:
1545
+ return None
1546
+
1547
+ numer = numer.shift(shift)
1548
+ denom = denom.shift(shift)
1549
+
1550
+ if not is_even_function(numer, denom):
1551
+ return None
1552
+
1553
+ if alternating:
1554
+ f = S.NegativeOne**i * (S.NegativeOne**shift * numer.as_expr() / denom.as_expr())
1555
+ else:
1556
+ f = numer.as_expr() / denom.as_expr()
1557
+ return eval_sum_residue(f, (i, a-shift, b-shift))
1558
+
1559
+ poles = get_poles(denom)
1560
+ if poles is None:
1561
+ return None
1562
+ int_roots, nonint_roots = poles
1563
+
1564
+ if int_roots:
1565
+ int_roots = [int(root) for root in int_roots]
1566
+ int_roots_max = max(int_roots)
1567
+ int_roots_min = min(int_roots)
1568
+ # Integer valued poles must be next to each other
1569
+ # and also symmetric from origin (Because the function is even)
1570
+ if not len(int_roots) == int_roots_max - int_roots_min + 1:
1571
+ return None
1572
+
1573
+ # Check whether the summation indices contain poles
1574
+ if a <= max(int_roots):
1575
+ return None
1576
+
1577
+ residue_factor = get_residue_factor(numer, denom, alternating)
1578
+ residues = [residue(residue_factor, z, root) for root in int_roots + nonint_roots]
1579
+ full_sum = -S.Pi * sum(residues)
1580
+
1581
+ if not int_roots:
1582
+ # Compute Sum(f, (i, 0, oo)) by adding a extraneous evaluation
1583
+ # at the origin.
1584
+ half_sum = (full_sum + f.xreplace({i: 0})) / 2
1585
+
1586
+ # Add and subtract extraneous evaluations
1587
+ extraneous_neg = [f.xreplace({i: i0}) for i0 in range(int(a), 0)]
1588
+ extraneous_pos = [f.xreplace({i: i0}) for i0 in range(0, int(a))]
1589
+ result = half_sum + sum(extraneous_neg) - sum(extraneous_pos)
1590
+
1591
+ return result
1592
+
1593
+ # Compute Sum(f, (i, min(poles) + 1, oo))
1594
+ half_sum = full_sum / 2
1595
+
1596
+ # Subtract extraneous evaluations
1597
+ extraneous = [f.xreplace({i: i0}) for i0 in range(max(int_roots) + 1, int(a))]
1598
+ result = half_sum - sum(extraneous)
1599
+
1600
+ return result
1601
+
1602
+
1603
+ def _eval_matrix_sum(expression):
1604
+ f = expression.function
1605
+ for n, limit in enumerate(expression.limits):
1606
+ i, a, b = limit
1607
+ dif = b - a
1608
+ if dif.is_Integer:
1609
+ if (dif < 0) == True:
1610
+ a, b = b + 1, a - 1
1611
+ f = -f
1612
+
1613
+ newf = eval_sum_direct(f, (i, a, b))
1614
+ if newf is not None:
1615
+ return newf.doit()
1616
+
1617
+
1618
+ def _dummy_with_inherited_properties_concrete(limits):
1619
+ """
1620
+ Return a Dummy symbol that inherits as many assumptions as possible
1621
+ from the provided symbol and limits.
1622
+
1623
+ If the symbol already has all True assumption shared by the limits
1624
+ then return None.
1625
+ """
1626
+ x, a, b = limits
1627
+ l = [a, b]
1628
+
1629
+ assumptions_to_consider = ['extended_nonnegative', 'nonnegative',
1630
+ 'extended_nonpositive', 'nonpositive',
1631
+ 'extended_positive', 'positive',
1632
+ 'extended_negative', 'negative',
1633
+ 'integer', 'rational', 'finite',
1634
+ 'zero', 'real', 'extended_real']
1635
+
1636
+ assumptions_to_keep = {}
1637
+ assumptions_to_add = {}
1638
+ for assum in assumptions_to_consider:
1639
+ assum_true = x._assumptions.get(assum, None)
1640
+ if assum_true:
1641
+ assumptions_to_keep[assum] = True
1642
+ elif all(getattr(i, 'is_' + assum) for i in l):
1643
+ assumptions_to_add[assum] = True
1644
+ if assumptions_to_add:
1645
+ assumptions_to_keep.update(assumptions_to_add)
1646
+ return Dummy('d', **assumptions_to_keep)
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/complexfield.cpython-310.pyc ADDED
Binary file (6.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/expressionrawdomain.cpython-310.pyc ADDED
Binary file (2.34 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/fractionfield.cpython-310.pyc ADDED
Binary file (7.16 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyfinitefield.cpython-310.pyc ADDED
Binary file (895 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyintegerring.cpython-310.pyc ADDED
Binary file (4.32 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gmpyrationalfield.cpython-310.pyc ADDED
Binary file (4.48 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/mpelements.cpython-310.pyc ADDED
Binary file (5.06 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonintegerring.cpython-310.pyc ADDED
Binary file (4.14 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonrational.cpython-310.pyc ADDED
Binary file (799 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/simpledomain.cpython-310.pyc ADDED
Binary file (774 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_basis.cpython-310.pyc ADDED
Binary file (3.58 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/__pycache__/test_primes.cpython-310.pyc ADDED
Binary file (9.29 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_basis.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.abc import x
2
+ from sympy.core import S
3
+ from sympy.core.numbers import AlgebraicNumber
4
+ from sympy.functions.elementary.miscellaneous import sqrt
5
+ from sympy.polys import Poly, cyclotomic_poly
6
+ from sympy.polys.domains import QQ
7
+ from sympy.polys.matrices import DomainMatrix, DM
8
+ from sympy.polys.numberfields.basis import round_two
9
+ from sympy.testing.pytest import raises
10
+
11
+
12
+ def test_round_two():
13
+ # Poly must be irreducible, and over ZZ or QQ:
14
+ raises(ValueError, lambda: round_two(Poly(x ** 2 - 1)))
15
+ raises(ValueError, lambda: round_two(Poly(x ** 2 + sqrt(2))))
16
+
17
+ # Test on many fields:
18
+ cases = (
19
+ # A couple of cyclotomic fields:
20
+ (cyclotomic_poly(5), DomainMatrix.eye(4, QQ), 125),
21
+ (cyclotomic_poly(7), DomainMatrix.eye(6, QQ), -16807),
22
+ # A couple of quadratic fields (one 1 mod 4, one 3 mod 4):
23
+ (x ** 2 - 5, DM([[1, (1, 2)], [0, (1, 2)]], QQ), 5),
24
+ (x ** 2 - 7, DM([[1, 0], [0, 1]], QQ), 28),
25
+ # Dedekind's example of a field with 2 as essential disc divisor:
26
+ (x ** 3 + x ** 2 - 2 * x + 8, DM([[1, 0, 0], [0, 1, 0], [0, (1, 2), (1, 2)]], QQ).transpose(), -503),
27
+ # A bunch of cubics with various forms for F -- all of these require
28
+ # second or third enlargements. (Five of them require a third, while the rest require just a second.)
29
+ # F = 2^2
30
+ (x**3 + 3 * x**2 - 4 * x + 4, DM([((1, 2), (1, 4), (1, 4)), (0, (1, 2), (1, 2)), (0, 0, 1)], QQ).transpose(), -83),
31
+ # F = 2^2 * 3
32
+ (x**3 + 3 * x**2 + 3 * x - 3, DM([((1, 2), 0, (1, 2)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -108),
33
+ # F = 2^3
34
+ (x**3 + 5 * x**2 - x + 3, DM([((1, 4), 0, (3, 4)), (0, (1, 2), (1, 2)), (0, 0, 1)], QQ).transpose(), -31),
35
+ # F = 2^2 * 5
36
+ (x**3 + 5 * x**2 - 5 * x - 5, DM([((1, 2), 0, (1, 2)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), 1300),
37
+ # F = 3^2
38
+ (x**3 + 3 * x**2 + 5, DM([((1, 3), (1, 3), (1, 3)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -135),
39
+ # F = 3^3
40
+ (x**3 + 6 * x**2 + 3 * x - 1, DM([((1, 3), (1, 3), (1, 3)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), 81),
41
+ # F = 2^2 * 3^2
42
+ (x**3 + 6 * x**2 + 4, DM([((1, 3), (2, 3), (1, 3)), (0, 1, 0), (0, 0, (1, 2))], QQ).transpose(), -108),
43
+ # F = 2^3 * 7
44
+ (x**3 + 7 * x**2 + 7 * x - 7, DM([((1, 4), 0, (3, 4)), (0, (1, 2), (1, 2)), (0, 0, 1)], QQ).transpose(), 49),
45
+ # F = 2^2 * 13
46
+ (x**3 + 7 * x**2 - x + 5, DM([((1, 2), 0, (1, 2)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -2028),
47
+ # F = 2^4
48
+ (x**3 + 7 * x**2 - 5 * x + 5, DM([((1, 4), 0, (3, 4)), (0, (1, 2), (1, 2)), (0, 0, 1)], QQ).transpose(), -140),
49
+ # F = 5^2
50
+ (x**3 + 4 * x**2 - 3 * x + 7, DM([((1, 5), (4, 5), (4, 5)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -175),
51
+ # F = 7^2
52
+ (x**3 + 8 * x**2 + 5 * x - 1, DM([((1, 7), (6, 7), (2, 7)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), 49),
53
+ # F = 2 * 5 * 7
54
+ (x**3 + 8 * x**2 - 2 * x + 6, DM([(1, 0, 0), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -14700),
55
+ # F = 2^2 * 3 * 5
56
+ (x**3 + 6 * x**2 - 3 * x + 8, DM([(1, 0, 0), (0, (1, 4), (1, 4)), (0, 0, 1)], QQ).transpose(), -675),
57
+ # F = 2 * 3^2 * 7
58
+ (x**3 + 9 * x**2 + 6 * x - 8, DM([(1, 0, 0), (0, (1, 2), (1, 2)), (0, 0, 1)], QQ).transpose(), 3969),
59
+ # F = 2^2 * 3^2 * 7
60
+ (x**3 + 15 * x**2 - 9 * x + 13, DM([((1, 6), (1, 3), (1, 6)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -5292),
61
+ # Polynomial need not be monic
62
+ (5*x**3 + 5*x**2 - 10 * x + 40, DM([[1, 0, 0], [0, 1, 0], [0, (1, 2), (1, 2)]], QQ).transpose(), -503),
63
+ # Polynomial can have non-integer rational coeffs
64
+ (QQ(5, 3)*x**3 + QQ(5, 3)*x**2 - QQ(10, 3)*x + QQ(40, 3), DM([[1, 0, 0], [0, 1, 0], [0, (1, 2), (1, 2)]], QQ).transpose(), -503),
65
+ )
66
+ for f, B_exp, d_exp in cases:
67
+ K = QQ.alg_field_from_poly(f)
68
+ B = K.maximal_order().QQ_matrix
69
+ d = K.discriminant()
70
+ assert d == d_exp
71
+ # The computed basis need not equal the expected one, but their quotient
72
+ # must be unimodular:
73
+ assert (B.inv()*B_exp).det()**2 == 1
74
+
75
+
76
+ def test_AlgebraicField_integral_basis():
77
+ alpha = AlgebraicNumber(sqrt(5), alias='alpha')
78
+ k = QQ.algebraic_field(alpha)
79
+ B0 = k.integral_basis()
80
+ B1 = k.integral_basis(fmt='sympy')
81
+ B2 = k.integral_basis(fmt='alg')
82
+ assert B0 == [k([1]), k([S.Half, S.Half])]
83
+ assert B1 == [1, S.Half + alpha/2]
84
+ assert B2 == [k.ext.field_element([1]),
85
+ k.ext.field_element([S.Half, S.Half])]
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_galoisgroups.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for computing Galois groups. """
2
+
3
+ from sympy.abc import x
4
+ from sympy.combinatorics.galois import (
5
+ S1TransitiveSubgroups, S2TransitiveSubgroups, S3TransitiveSubgroups,
6
+ S4TransitiveSubgroups, S5TransitiveSubgroups, S6TransitiveSubgroups,
7
+ )
8
+ from sympy.polys.domains.rationalfield import QQ
9
+ from sympy.polys.numberfields.galoisgroups import (
10
+ tschirnhausen_transformation,
11
+ galois_group,
12
+ _galois_group_degree_4_root_approx,
13
+ _galois_group_degree_5_hybrid,
14
+ )
15
+ from sympy.polys.numberfields.subfield import field_isomorphism
16
+ from sympy.polys.polytools import Poly
17
+ from sympy.testing.pytest import raises
18
+
19
+
20
+ def test_tschirnhausen_transformation():
21
+ for T in [
22
+ Poly(x**2 - 2),
23
+ Poly(x**2 + x + 1),
24
+ Poly(x**4 + 1),
25
+ Poly(x**4 - x**3 + x**2 - x + 1),
26
+ ]:
27
+ _, U = tschirnhausen_transformation(T)
28
+ assert U.degree() == T.degree()
29
+ assert U.is_monic
30
+ assert U.is_irreducible
31
+ K = QQ.alg_field_from_poly(T)
32
+ L = QQ.alg_field_from_poly(U)
33
+ assert field_isomorphism(K.ext, L.ext) is not None
34
+
35
+
36
+ # Test polys are from:
37
+ # Cohen, H. *A Course in Computational Algebraic Number Theory*.
38
+ test_polys_by_deg = {
39
+ # Degree 1
40
+ 1: [
41
+ (x, S1TransitiveSubgroups.S1, True)
42
+ ],
43
+ # Degree 2
44
+ 2: [
45
+ (x**2 + x + 1, S2TransitiveSubgroups.S2, False)
46
+ ],
47
+ # Degree 3
48
+ 3: [
49
+ (x**3 + x**2 - 2*x - 1, S3TransitiveSubgroups.A3, True),
50
+ (x**3 + 2, S3TransitiveSubgroups.S3, False),
51
+ ],
52
+ # Degree 4
53
+ 4: [
54
+ (x**4 + x**3 + x**2 + x + 1, S4TransitiveSubgroups.C4, False),
55
+ (x**4 + 1, S4TransitiveSubgroups.V, True),
56
+ (x**4 - 2, S4TransitiveSubgroups.D4, False),
57
+ (x**4 + 8*x + 12, S4TransitiveSubgroups.A4, True),
58
+ (x**4 + x + 1, S4TransitiveSubgroups.S4, False),
59
+ ],
60
+ # Degree 5
61
+ 5: [
62
+ (x**5 + x**4 - 4*x**3 - 3*x**2 + 3*x + 1, S5TransitiveSubgroups.C5, True),
63
+ (x**5 - 5*x + 12, S5TransitiveSubgroups.D5, True),
64
+ (x**5 + 2, S5TransitiveSubgroups.M20, False),
65
+ (x**5 + 20*x + 16, S5TransitiveSubgroups.A5, True),
66
+ (x**5 - x + 1, S5TransitiveSubgroups.S5, False),
67
+ ],
68
+ # Degree 6
69
+ 6: [
70
+ (x**6 + x**5 + x**4 + x**3 + x**2 + x + 1, S6TransitiveSubgroups.C6, False),
71
+ (x**6 + 108, S6TransitiveSubgroups.S3, False),
72
+ (x**6 + 2, S6TransitiveSubgroups.D6, False),
73
+ (x**6 - 3*x**2 - 1, S6TransitiveSubgroups.A4, True),
74
+ (x**6 + 3*x**3 + 3, S6TransitiveSubgroups.G18, False),
75
+ (x**6 - 3*x**2 + 1, S6TransitiveSubgroups.A4xC2, False),
76
+ (x**6 - 4*x**2 - 1, S6TransitiveSubgroups.S4p, True),
77
+ (x**6 - 3*x**5 + 6*x**4 - 7*x**3 + 2*x**2 + x - 4, S6TransitiveSubgroups.S4m, False),
78
+ (x**6 + 2*x**3 - 2, S6TransitiveSubgroups.G36m, False),
79
+ (x**6 + 2*x**2 + 2, S6TransitiveSubgroups.S4xC2, False),
80
+ (x**6 + 10*x**5 + 55*x**4 + 140*x**3 + 175*x**2 + 170*x + 25, S6TransitiveSubgroups.PSL2F5, True),
81
+ (x**6 + 10*x**5 + 55*x**4 + 140*x**3 + 175*x**2 - 3019*x + 25, S6TransitiveSubgroups.PGL2F5, False),
82
+ (x**6 + 6*x**4 + 2*x**3 + 9*x**2 + 6*x - 4, S6TransitiveSubgroups.G36p, True),
83
+ (x**6 + 2*x**4 + 2*x**3 + x**2 + 2*x + 2, S6TransitiveSubgroups.G72, False),
84
+ (x**6 + 24*x - 20, S6TransitiveSubgroups.A6, True),
85
+ (x**6 + x + 1, S6TransitiveSubgroups.S6, False),
86
+ ],
87
+ }
88
+
89
+
90
+ def test_galois_group():
91
+ """
92
+ Try all the test polys.
93
+ """
94
+ for deg in range(1, 7):
95
+ polys = test_polys_by_deg[deg]
96
+ for T, G, alt in polys:
97
+ assert galois_group(T, by_name=True) == (G, alt)
98
+
99
+
100
+ def test_galois_group_degree_out_of_bounds():
101
+ raises(ValueError, lambda: galois_group(Poly(0, x)))
102
+ raises(ValueError, lambda: galois_group(Poly(1, x)))
103
+ raises(ValueError, lambda: galois_group(Poly(x ** 7 + 1)))
104
+
105
+
106
+ def test_galois_group_not_by_name():
107
+ """
108
+ Check at least one polynomial of each supported degree, to see that
109
+ conversion from name to group works.
110
+ """
111
+ for deg in range(1, 7):
112
+ T, G_name, _ = test_polys_by_deg[deg][0]
113
+ G, _ = galois_group(T)
114
+ assert G == G_name.get_perm_group()
115
+
116
+
117
+ def test_galois_group_not_monic_over_ZZ():
118
+ """
119
+ Check that we can work with polys that are not monic over ZZ.
120
+ """
121
+ for deg in range(1, 7):
122
+ T, G, alt = test_polys_by_deg[deg][0]
123
+ assert galois_group(T/2, by_name=True) == (G, alt)
124
+
125
+
126
+ def test__galois_group_degree_4_root_approx():
127
+ for T, G, alt in test_polys_by_deg[4]:
128
+ assert _galois_group_degree_4_root_approx(Poly(T)) == (G, alt)
129
+
130
+
131
+ def test__galois_group_degree_5_hybrid():
132
+ for T, G, alt in test_polys_by_deg[5]:
133
+ assert _galois_group_degree_5_hybrid(Poly(T)) == (G, alt)
134
+
135
+
136
+ def test_AlgebraicField_galois_group():
137
+ k = QQ.alg_field_from_poly(Poly(x**4 + 1))
138
+ G, _ = k.galois_group(by_name=True)
139
+ assert G == S4TransitiveSubgroups.V
140
+
141
+ k = QQ.alg_field_from_poly(Poly(x**4 - 2))
142
+ G, _ = k.galois_group(by_name=True)
143
+ assert G == S4TransitiveSubgroups.D4
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_minpoly.py ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for minimal polynomials. """
2
+
3
+ from sympy.core.function import expand
4
+ from sympy.core import (GoldenRatio, TribonacciConstant)
5
+ from sympy.core.numbers import (AlgebraicNumber, I, Rational, oo, pi)
6
+ from sympy.core.power import Pow
7
+ from sympy.core.singleton import S
8
+ from sympy.functions.elementary.exponential import exp
9
+ from sympy.functions.elementary.miscellaneous import (cbrt, sqrt)
10
+ from sympy.functions.elementary.trigonometric import (cos, sin, tan)
11
+ from sympy.polys.polytools import Poly
12
+ from sympy.polys.rootoftools import CRootOf
13
+ from sympy.solvers.solveset import nonlinsolve
14
+ from sympy.geometry import Circle, intersection
15
+ from sympy.testing.pytest import raises, slow
16
+ from sympy.sets.sets import FiniteSet
17
+ from sympy.geometry.point import Point2D
18
+ from sympy.polys.numberfields.minpoly import (
19
+ minimal_polynomial,
20
+ _choose_factor,
21
+ _minpoly_op_algebraic_element,
22
+ _separate_sq,
23
+ _minpoly_groebner,
24
+ )
25
+ from sympy.polys.partfrac import apart
26
+ from sympy.polys.polyerrors import (
27
+ NotAlgebraic,
28
+ GeneratorsError,
29
+ )
30
+
31
+ from sympy.polys.domains import QQ
32
+ from sympy.polys.rootoftools import rootof
33
+ from sympy.polys.polytools import degree
34
+
35
+ from sympy.abc import x, y, z
36
+
37
+ Q = Rational
38
+
39
+
40
+ def test_minimal_polynomial():
41
+ assert minimal_polynomial(-7, x) == x + 7
42
+ assert minimal_polynomial(-1, x) == x + 1
43
+ assert minimal_polynomial( 0, x) == x
44
+ assert minimal_polynomial( 1, x) == x - 1
45
+ assert minimal_polynomial( 7, x) == x - 7
46
+
47
+ assert minimal_polynomial(sqrt(2), x) == x**2 - 2
48
+ assert minimal_polynomial(sqrt(5), x) == x**2 - 5
49
+ assert minimal_polynomial(sqrt(6), x) == x**2 - 6
50
+
51
+ assert minimal_polynomial(2*sqrt(2), x) == x**2 - 8
52
+ assert minimal_polynomial(3*sqrt(5), x) == x**2 - 45
53
+ assert minimal_polynomial(4*sqrt(6), x) == x**2 - 96
54
+
55
+ assert minimal_polynomial(2*sqrt(2) + 3, x) == x**2 - 6*x + 1
56
+ assert minimal_polynomial(3*sqrt(5) + 6, x) == x**2 - 12*x - 9
57
+ assert minimal_polynomial(4*sqrt(6) + 7, x) == x**2 - 14*x - 47
58
+
59
+ assert minimal_polynomial(2*sqrt(2) - 3, x) == x**2 + 6*x + 1
60
+ assert minimal_polynomial(3*sqrt(5) - 6, x) == x**2 + 12*x - 9
61
+ assert minimal_polynomial(4*sqrt(6) - 7, x) == x**2 + 14*x - 47
62
+
63
+ assert minimal_polynomial(sqrt(1 + sqrt(6)), x) == x**4 - 2*x**2 - 5
64
+ assert minimal_polynomial(sqrt(I + sqrt(6)), x) == x**8 - 10*x**4 + 49
65
+
66
+ assert minimal_polynomial(2*I + sqrt(2 + I), x) == x**4 + 4*x**2 + 8*x + 37
67
+
68
+ assert minimal_polynomial(sqrt(2) + sqrt(3), x) == x**4 - 10*x**2 + 1
69
+ assert minimal_polynomial(
70
+ sqrt(2) + sqrt(3) + sqrt(6), x) == x**4 - 22*x**2 - 48*x - 23
71
+
72
+ a = 1 - 9*sqrt(2) + 7*sqrt(3)
73
+
74
+ assert minimal_polynomial(
75
+ 1/a, x) == 392*x**4 - 1232*x**3 + 612*x**2 + 4*x - 1
76
+ assert minimal_polynomial(
77
+ 1/sqrt(a), x) == 392*x**8 - 1232*x**6 + 612*x**4 + 4*x**2 - 1
78
+
79
+ raises(NotAlgebraic, lambda: minimal_polynomial(oo, x))
80
+ raises(NotAlgebraic, lambda: minimal_polynomial(2**y, x))
81
+ raises(NotAlgebraic, lambda: minimal_polynomial(sin(1), x))
82
+
83
+ assert minimal_polynomial(sqrt(2)).dummy_eq(x**2 - 2)
84
+ assert minimal_polynomial(sqrt(2), x) == x**2 - 2
85
+
86
+ assert minimal_polynomial(sqrt(2), polys=True) == Poly(x**2 - 2)
87
+ assert minimal_polynomial(sqrt(2), x, polys=True) == Poly(x**2 - 2, domain='QQ')
88
+ assert minimal_polynomial(sqrt(2), x, polys=True, compose=False) == Poly(x**2 - 2, domain='QQ')
89
+
90
+ a = AlgebraicNumber(sqrt(2))
91
+ b = AlgebraicNumber(sqrt(3))
92
+
93
+ assert minimal_polynomial(a, x) == x**2 - 2
94
+ assert minimal_polynomial(b, x) == x**2 - 3
95
+
96
+ assert minimal_polynomial(a, x, polys=True) == Poly(x**2 - 2, domain='QQ')
97
+ assert minimal_polynomial(b, x, polys=True) == Poly(x**2 - 3, domain='QQ')
98
+
99
+ assert minimal_polynomial(sqrt(a/2 + 17), x) == 2*x**4 - 68*x**2 + 577
100
+ assert minimal_polynomial(sqrt(b/2 + 17), x) == 4*x**4 - 136*x**2 + 1153
101
+
102
+ a, b = sqrt(2)/3 + 7, AlgebraicNumber(sqrt(2)/3 + 7)
103
+
104
+ f = 81*x**8 - 2268*x**6 - 4536*x**5 + 22644*x**4 + 63216*x**3 - \
105
+ 31608*x**2 - 189648*x + 141358
106
+
107
+ assert minimal_polynomial(sqrt(a) + sqrt(sqrt(a)), x) == f
108
+ assert minimal_polynomial(sqrt(b) + sqrt(sqrt(b)), x) == f
109
+
110
+ assert minimal_polynomial(
111
+ a**Q(3, 2), x) == 729*x**4 - 506898*x**2 + 84604519
112
+
113
+ # issue 5994
114
+ eq = S('''
115
+ -1/(800*sqrt(-1/240 + 1/(18000*(-1/17280000 +
116
+ sqrt(15)*I/28800000)**(1/3)) + 2*(-1/17280000 +
117
+ sqrt(15)*I/28800000)**(1/3)))''')
118
+ assert minimal_polynomial(eq, x) == 8000*x**2 - 1
119
+
120
+ ex = (sqrt(5)*sqrt(I)/(5*sqrt(1 + 125*I))
121
+ + 25*sqrt(5)/(I**Q(5,2)*(1 + 125*I)**Q(3,2))
122
+ + 3125*sqrt(5)/(I**Q(11,2)*(1 + 125*I)**Q(3,2))
123
+ + 5*I*sqrt(1 - I/125))
124
+ mp = minimal_polynomial(ex, x)
125
+ assert mp == 25*x**4 + 5000*x**2 + 250016
126
+
127
+ ex = 1 + sqrt(2) + sqrt(3)
128
+ mp = minimal_polynomial(ex, x)
129
+ assert mp == x**4 - 4*x**3 - 4*x**2 + 16*x - 8
130
+
131
+ ex = 1/(1 + sqrt(2) + sqrt(3))
132
+ mp = minimal_polynomial(ex, x)
133
+ assert mp == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1
134
+
135
+ p = (expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3))**Rational(1, 3)
136
+ mp = minimal_polynomial(p, x)
137
+ assert mp == x**8 - 8*x**7 - 56*x**6 + 448*x**5 + 480*x**4 - 5056*x**3 + 1984*x**2 + 7424*x - 3008
138
+ p = expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3)
139
+ mp = minimal_polynomial(p, x)
140
+ assert mp == x**8 - 512*x**7 - 118208*x**6 + 31131136*x**5 + 647362560*x**4 - 56026611712*x**3 + 116994310144*x**2 + 404854931456*x - 27216576512
141
+
142
+ assert minimal_polynomial(S("-sqrt(5)/2 - 1/2 + (-sqrt(5)/2 - 1/2)**2"), x) == x - 1
143
+ a = 1 + sqrt(2)
144
+ assert minimal_polynomial((a*sqrt(2) + a)**3, x) == x**2 - 198*x + 1
145
+
146
+ p = 1/(1 + sqrt(2) + sqrt(3))
147
+ assert minimal_polynomial(p, x, compose=False) == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1
148
+
149
+ p = 2/(1 + sqrt(2) + sqrt(3))
150
+ assert minimal_polynomial(p, x, compose=False) == x**4 - 4*x**3 + 2*x**2 + 4*x - 2
151
+
152
+ assert minimal_polynomial(1 + sqrt(2)*I, x, compose=False) == x**2 - 2*x + 3
153
+ assert minimal_polynomial(1/(1 + sqrt(2)) + 1, x, compose=False) == x**2 - 2
154
+ assert minimal_polynomial(sqrt(2)*I + I*(1 + sqrt(2)), x,
155
+ compose=False) == x**4 + 18*x**2 + 49
156
+
157
+ # minimal polynomial of I
158
+ assert minimal_polynomial(I, x, domain=QQ.algebraic_field(I)) == x - I
159
+ K = QQ.algebraic_field(I*(sqrt(2) + 1))
160
+ assert minimal_polynomial(I, x, domain=K) == x - I
161
+ assert minimal_polynomial(I, x, domain=QQ) == x**2 + 1
162
+ assert minimal_polynomial(I, x, domain='QQ(y)') == x**2 + 1
163
+
164
+ #issue 11553
165
+ assert minimal_polynomial(GoldenRatio, x) == x**2 - x - 1
166
+ assert minimal_polynomial(TribonacciConstant + 3, x) == x**3 - 10*x**2 + 32*x - 34
167
+ assert minimal_polynomial(GoldenRatio, x, domain=QQ.algebraic_field(sqrt(5))) == \
168
+ 2*x - sqrt(5) - 1
169
+ assert minimal_polynomial(TribonacciConstant, x, domain=QQ.algebraic_field(cbrt(19 - 3*sqrt(33)))) == \
170
+ 48*x - 19*(19 - 3*sqrt(33))**Rational(2, 3) - 3*sqrt(33)*(19 - 3*sqrt(33))**Rational(2, 3) \
171
+ - 16*(19 - 3*sqrt(33))**Rational(1, 3) - 16
172
+
173
+ # AlgebraicNumber with an alias.
174
+ # Wester H24
175
+ phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi')
176
+ assert minimal_polynomial(phi, x) == x**2 - x - 1
177
+
178
+
179
+ def test_minimal_polynomial_issue_19732():
180
+ # https://github.com/sympy/sympy/issues/19732
181
+ expr = (-280898097948878450887044002323982963174671632174995451265117559518123750720061943079105185551006003416773064305074191140286225850817291393988597615/(-488144716373031204149459129212782509078221364279079444636386844223983756114492222145074506571622290776245390771587888364089507840000000*sqrt(238368341569)*sqrt(S(11918417078450)/63568729
182
+ - 24411360*sqrt(238368341569)/63568729) +
183
+ 238326799225996604451373809274348704114327860564921529846705817404208077866956345381951726531296652901169111729944612727047670549086208000000*sqrt(S(11918417078450)/63568729
184
+ - 24411360*sqrt(238368341569)/63568729)) -
185
+ 180561807339168676696180573852937120123827201075968945871075967679148461189459480842956689723484024031016208588658753107/(-59358007109636562851035004992802812513575019937126272896569856090962677491318275291141463850327474176000000*sqrt(238368341569)*sqrt(S(11918417078450)/63568729
186
+ - 24411360*sqrt(238368341569)/63568729) +
187
+ 28980348180319251787320809875930301310576055074938369007463004788921613896002936637780993064387310446267596800000*sqrt(S(11918417078450)/63568729
188
+ - 24411360*sqrt(238368341569)/63568729)))
189
+ poly = (2151288870990266634727173620565483054187142169311153766675688628985237817262915166497766867289157986631135400926544697981091151416655364879773546003475813114962656742744975460025956167152918469472166170500512008351638710934022160294849059721218824490226159355197136265032810944357335461128949781377875451881300105989490353140886315677977149440000000000000000000000*x**4
190
+ - 5773274155644072033773937864114266313663195672820501581692669271302387257492905909558846459600429795784309388968498783843631580008547382703258503404023153694528041873101120067477617592651525155101107144042679962433039557235772239171616433004024998230222455940044709064078962397144550855715640331680262171410099614469231080995436488414164502751395405398078353242072696360734131090111239998110773292915337556205692674790561090109440000000000000*x**2
191
+ + 211295968822207088328287206509522887719741955693091053353263782924470627623790749534705683380138972642560898936171035770539616881000369889020398551821767092685775598633794696371561234818461806577723412581353857653829324364446419444210520602157621008010129702779407422072249192199762604318993590841636967747488049176548615614290254356975376588506729604345612047361483789518445332415765213187893207704958013682516462853001964919444736320672860140355089)
192
+ assert minimal_polynomial(expr, x) == poly
193
+
194
+
195
+ def test_minimal_polynomial_hi_prec():
196
+ p = 1/sqrt(1 - 9*sqrt(2) + 7*sqrt(3) + Rational(1, 10)**30)
197
+ mp = minimal_polynomial(p, x)
198
+ # checked with Wolfram Alpha
199
+ assert mp.coeff(x**6) == -1232000000000000000000000000001223999999999999999999999999999987999999999999999999999999999996000000000000000000000000000000
200
+
201
+
202
+ def test_minimal_polynomial_sq():
203
+ from sympy.core.add import Add
204
+ from sympy.core.function import expand_multinomial
205
+ p = expand_multinomial((1 + 5*sqrt(2) + 2*sqrt(3))**3)
206
+ mp = minimal_polynomial(p**Rational(1, 3), x)
207
+ assert mp == x**4 - 4*x**3 - 118*x**2 + 244*x + 1321
208
+ p = expand_multinomial((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3)
209
+ mp = minimal_polynomial(p**Rational(1, 3), x)
210
+ assert mp == x**8 - 8*x**7 - 56*x**6 + 448*x**5 + 480*x**4 - 5056*x**3 + 1984*x**2 + 7424*x - 3008
211
+ p = Add(*[sqrt(i) for i in range(1, 12)])
212
+ mp = minimal_polynomial(p, x)
213
+ assert mp.subs({x: 0}) == -71965773323122507776
214
+
215
+
216
+ def test_minpoly_compose():
217
+ # issue 6868
218
+ eq = S('''
219
+ -1/(800*sqrt(-1/240 + 1/(18000*(-1/17280000 +
220
+ sqrt(15)*I/28800000)**(1/3)) + 2*(-1/17280000 +
221
+ sqrt(15)*I/28800000)**(1/3)))''')
222
+ mp = minimal_polynomial(eq + 3, x)
223
+ assert mp == 8000*x**2 - 48000*x + 71999
224
+
225
+ # issue 5888
226
+ assert minimal_polynomial(exp(I*pi/8), x) == x**8 + 1
227
+
228
+ mp = minimal_polynomial(sin(pi/7) + sqrt(2), x)
229
+ assert mp == 4096*x**12 - 63488*x**10 + 351488*x**8 - 826496*x**6 + \
230
+ 770912*x**4 - 268432*x**2 + 28561
231
+ mp = minimal_polynomial(cos(pi/7) + sqrt(2), x)
232
+ assert mp == 64*x**6 - 64*x**5 - 432*x**4 + 304*x**3 + 712*x**2 - \
233
+ 232*x - 239
234
+ mp = minimal_polynomial(exp(I*pi/7) + sqrt(2), x)
235
+ assert mp == x**12 - 2*x**11 - 9*x**10 + 16*x**9 + 43*x**8 - 70*x**7 - 97*x**6 + 126*x**5 + 211*x**4 - 212*x**3 - 37*x**2 + 142*x + 127
236
+
237
+ mp = minimal_polynomial(sin(pi/7) + sqrt(2), x)
238
+ assert mp == 4096*x**12 - 63488*x**10 + 351488*x**8 - 826496*x**6 + \
239
+ 770912*x**4 - 268432*x**2 + 28561
240
+ mp = minimal_polynomial(cos(pi/7) + sqrt(2), x)
241
+ assert mp == 64*x**6 - 64*x**5 - 432*x**4 + 304*x**3 + 712*x**2 - \
242
+ 232*x - 239
243
+ mp = minimal_polynomial(exp(I*pi/7) + sqrt(2), x)
244
+ assert mp == x**12 - 2*x**11 - 9*x**10 + 16*x**9 + 43*x**8 - 70*x**7 - 97*x**6 + 126*x**5 + 211*x**4 - 212*x**3 - 37*x**2 + 142*x + 127
245
+
246
+ mp = minimal_polynomial(exp(I*pi*Rational(2, 7)), x)
247
+ assert mp == x**6 + x**5 + x**4 + x**3 + x**2 + x + 1
248
+ mp = minimal_polynomial(exp(I*pi*Rational(2, 15)), x)
249
+ assert mp == x**8 - x**7 + x**5 - x**4 + x**3 - x + 1
250
+ mp = minimal_polynomial(cos(pi*Rational(2, 7)), x)
251
+ assert mp == 8*x**3 + 4*x**2 - 4*x - 1
252
+ mp = minimal_polynomial(sin(pi*Rational(2, 7)), x)
253
+ ex = (5*cos(pi*Rational(2, 7)) - 7)/(9*cos(pi/7) - 5*cos(pi*Rational(3, 7)))
254
+ mp = minimal_polynomial(ex, x)
255
+ assert mp == x**3 + 2*x**2 - x - 1
256
+ assert minimal_polynomial(-1/(2*cos(pi/7)), x) == x**3 + 2*x**2 - x - 1
257
+ assert minimal_polynomial(sin(pi*Rational(2, 15)), x) == \
258
+ 256*x**8 - 448*x**6 + 224*x**4 - 32*x**2 + 1
259
+ assert minimal_polynomial(sin(pi*Rational(5, 14)), x) == 8*x**3 - 4*x**2 - 4*x + 1
260
+ assert minimal_polynomial(cos(pi/15), x) == 16*x**4 + 8*x**3 - 16*x**2 - 8*x + 1
261
+
262
+ ex = rootof(x**3 +x*4 + 1, 0)
263
+ mp = minimal_polynomial(ex, x)
264
+ assert mp == x**3 + 4*x + 1
265
+ mp = minimal_polynomial(ex + 1, x)
266
+ assert mp == x**3 - 3*x**2 + 7*x - 4
267
+ assert minimal_polynomial(exp(I*pi/3), x) == x**2 - x + 1
268
+ assert minimal_polynomial(exp(I*pi/4), x) == x**4 + 1
269
+ assert minimal_polynomial(exp(I*pi/6), x) == x**4 - x**2 + 1
270
+ assert minimal_polynomial(exp(I*pi/9), x) == x**6 - x**3 + 1
271
+ assert minimal_polynomial(exp(I*pi/10), x) == x**8 - x**6 + x**4 - x**2 + 1
272
+ assert minimal_polynomial(sin(pi/9), x) == 64*x**6 - 96*x**4 + 36*x**2 - 3
273
+ assert minimal_polynomial(sin(pi/11), x) == 1024*x**10 - 2816*x**8 + \
274
+ 2816*x**6 - 1232*x**4 + 220*x**2 - 11
275
+ assert minimal_polynomial(sin(pi/21), x) == 4096*x**12 - 11264*x**10 + \
276
+ 11264*x**8 - 4992*x**6 + 960*x**4 - 64*x**2 + 1
277
+ assert minimal_polynomial(cos(pi/9), x) == 8*x**3 - 6*x - 1
278
+
279
+ ex = 2**Rational(1, 3)*exp(2*I*pi/3)
280
+ assert minimal_polynomial(ex, x) == x**3 - 2
281
+
282
+ raises(NotAlgebraic, lambda: minimal_polynomial(cos(pi*sqrt(2)), x))
283
+ raises(NotAlgebraic, lambda: minimal_polynomial(sin(pi*sqrt(2)), x))
284
+ raises(NotAlgebraic, lambda: minimal_polynomial(exp(1.618*I*pi), x))
285
+ raises(NotAlgebraic, lambda: minimal_polynomial(exp(I*pi*sqrt(2)), x))
286
+
287
+ # issue 5934
288
+ ex = 1/(-36000 - 7200*sqrt(5) + (12*sqrt(10)*sqrt(sqrt(5) + 5) +
289
+ 24*sqrt(10)*sqrt(-sqrt(5) + 5))**2) + 1
290
+ raises(ZeroDivisionError, lambda: minimal_polynomial(ex, x))
291
+
292
+ ex = sqrt(1 + 2**Rational(1,3)) + sqrt(1 + 2**Rational(1,4)) + sqrt(2)
293
+ mp = minimal_polynomial(ex, x)
294
+ assert degree(mp) == 48 and mp.subs({x:0}) == -16630256576
295
+
296
+ ex = tan(pi/5, evaluate=False)
297
+ mp = minimal_polynomial(ex, x)
298
+ assert mp == x**4 - 10*x**2 + 5
299
+ assert mp.subs(x, tan(pi/5)).is_zero
300
+
301
+ ex = tan(pi/6, evaluate=False)
302
+ mp = minimal_polynomial(ex, x)
303
+ assert mp == 3*x**2 - 1
304
+ assert mp.subs(x, tan(pi/6)).is_zero
305
+
306
+ ex = tan(pi/10, evaluate=False)
307
+ mp = minimal_polynomial(ex, x)
308
+ assert mp == 5*x**4 - 10*x**2 + 1
309
+ assert mp.subs(x, tan(pi/10)).is_zero
310
+
311
+ raises(NotAlgebraic, lambda: minimal_polynomial(tan(pi*sqrt(2)), x))
312
+
313
+
314
+ def test_minpoly_issue_7113():
315
+ # see discussion in https://github.com/sympy/sympy/pull/2234
316
+ from sympy.simplify.simplify import nsimplify
317
+ r = nsimplify(pi, tolerance=0.000000001)
318
+ mp = minimal_polynomial(r, x)
319
+ assert mp == 1768292677839237920489538677417507171630859375*x**109 - \
320
+ 2734577732179183863586489182929671773182898498218854181690460140337930774573792597743853652058046464
321
+
322
+
323
+ def test_minpoly_issue_23677():
324
+ r1 = CRootOf(4000000*x**3 - 239960000*x**2 + 4782399900*x - 31663998001, 0)
325
+ r2 = CRootOf(4000000*x**3 - 239960000*x**2 + 4782399900*x - 31663998001, 1)
326
+ num = (7680000000000000000*r1**4*r2**4 - 614323200000000000000*r1**4*r2**3
327
+ + 18458112576000000000000*r1**4*r2**2 - 246896663036160000000000*r1**4*r2
328
+ + 1240473830323209600000000*r1**4 - 614323200000000000000*r1**3*r2**4
329
+ - 1476464424954240000000000*r1**3*r2**2 - 99225501687553535904000000*r1**3
330
+ + 18458112576000000000000*r1**2*r2**4 - 1476464424954240000000000*r1**2*r2**3
331
+ - 593391458458356671712000000*r1**2*r2 + 2981354896834339226880720000*r1**2
332
+ - 246896663036160000000000*r1*r2**4 - 593391458458356671712000000*r1*r2**2
333
+ - 39878756418031796275267195200*r1 + 1240473830323209600000000*r2**4
334
+ - 99225501687553535904000000*r2**3 + 2981354896834339226880720000*r2**2 -
335
+ 39878756418031796275267195200*r2 + 200361370275616536577343808012)
336
+ mp = (x**3 + 59426520028417434406408556687919*x**2 +
337
+ 1161475464966574421163316896737773190861975156439163671112508400*x +
338
+ 7467465541178623874454517208254940823818304424383315270991298807299003671748074773558707779600)
339
+ assert minimal_polynomial(num, x) == mp
340
+
341
+
342
+ def test_minpoly_issue_7574():
343
+ ex = -(-1)**Rational(1, 3) + (-1)**Rational(2,3)
344
+ assert minimal_polynomial(ex, x) == x + 1
345
+
346
+
347
+ def test_choose_factor():
348
+ # Test that this does not enter an infinite loop:
349
+ bad_factors = [Poly(x-2, x), Poly(x+2, x)]
350
+ raises(NotImplementedError, lambda: _choose_factor(bad_factors, x, sqrt(3)))
351
+
352
+
353
+ def test_minpoly_fraction_field():
354
+ assert minimal_polynomial(1/x, y) == -x*y + 1
355
+ assert minimal_polynomial(1 / (x + 1), y) == (x + 1)*y - 1
356
+
357
+ assert minimal_polynomial(sqrt(x), y) == y**2 - x
358
+ assert minimal_polynomial(sqrt(x + 1), y) == y**2 - x - 1
359
+ assert minimal_polynomial(sqrt(x) / x, y) == x*y**2 - 1
360
+ assert minimal_polynomial(sqrt(2) * sqrt(x), y) == y**2 - 2 * x
361
+ assert minimal_polynomial(sqrt(2) + sqrt(x), y) == \
362
+ y**4 + (-2*x - 4)*y**2 + x**2 - 4*x + 4
363
+
364
+ assert minimal_polynomial(x**Rational(1,3), y) == y**3 - x
365
+ assert minimal_polynomial(x**Rational(1,3) + sqrt(x), y) == \
366
+ y**6 - 3*x*y**4 - 2*x*y**3 + 3*x**2*y**2 - 6*x**2*y - x**3 + x**2
367
+
368
+ assert minimal_polynomial(sqrt(x) / z, y) == z**2*y**2 - x
369
+ assert minimal_polynomial(sqrt(x) / (z + 1), y) == (z**2 + 2*z + 1)*y**2 - x
370
+
371
+ assert minimal_polynomial(1/x, y, polys=True) == Poly(-x*y + 1, y, domain='ZZ(x)')
372
+ assert minimal_polynomial(1 / (x + 1), y, polys=True) == \
373
+ Poly((x + 1)*y - 1, y, domain='ZZ(x)')
374
+ assert minimal_polynomial(sqrt(x), y, polys=True) == Poly(y**2 - x, y, domain='ZZ(x)')
375
+ assert minimal_polynomial(sqrt(x) / z, y, polys=True) == \
376
+ Poly(z**2*y**2 - x, y, domain='ZZ(x, z)')
377
+
378
+ # this is (sqrt(1 + x**3)/x).integrate(x).diff(x) - sqrt(1 + x**3)/x
379
+ a = sqrt(x)/sqrt(1 + x**(-3)) - sqrt(x**3 + 1)/x + 1/(x**Rational(5, 2)* \
380
+ (1 + x**(-3))**Rational(3, 2)) + 1/(x**Rational(11, 2)*(1 + x**(-3))**Rational(3, 2))
381
+
382
+ assert minimal_polynomial(a, y) == y
383
+
384
+ raises(NotAlgebraic, lambda: minimal_polynomial(exp(x), y))
385
+ raises(GeneratorsError, lambda: minimal_polynomial(sqrt(x), x))
386
+ raises(GeneratorsError, lambda: minimal_polynomial(sqrt(x) - y, x))
387
+ raises(NotImplementedError, lambda: minimal_polynomial(sqrt(x), y, compose=False))
388
+
389
+ @slow
390
+ def test_minpoly_fraction_field_slow():
391
+ assert minimal_polynomial(minimal_polynomial(sqrt(x**Rational(1,5) - 1),
392
+ y).subs(y, sqrt(x**Rational(1,5) - 1)), z) == z
393
+
394
+ def test_minpoly_domain():
395
+ assert minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2))) == \
396
+ x - sqrt(2)
397
+ assert minimal_polynomial(sqrt(8), x, domain=QQ.algebraic_field(sqrt(2))) == \
398
+ x - 2*sqrt(2)
399
+ assert minimal_polynomial(sqrt(Rational(3,2)), x,
400
+ domain=QQ.algebraic_field(sqrt(2))) == 2*x**2 - 3
401
+
402
+ raises(NotAlgebraic, lambda: minimal_polynomial(y, x, domain=QQ))
403
+
404
+
405
+ def test_issue_14831():
406
+ a = -2*sqrt(2)*sqrt(12*sqrt(2) + 17)
407
+ assert minimal_polynomial(a, x) == x**2 + 16*x - 8
408
+ e = (-3*sqrt(12*sqrt(2) + 17) + 12*sqrt(2) +
409
+ 17 - 2*sqrt(2)*sqrt(12*sqrt(2) + 17))
410
+ assert minimal_polynomial(e, x) == x
411
+
412
+
413
+ def test_issue_18248():
414
+ assert nonlinsolve([x*y**3-sqrt(2)/3, x*y**6-4/(9*(sqrt(3)))],x,y) == \
415
+ FiniteSet((sqrt(3)/2, sqrt(6)/3), (sqrt(3)/2, -sqrt(6)/6 - sqrt(2)*I/2),
416
+ (sqrt(3)/2, -sqrt(6)/6 + sqrt(2)*I/2))
417
+
418
+
419
+ def test_issue_13230():
420
+ c1 = Circle(Point2D(3, sqrt(5)), 5)
421
+ c2 = Circle(Point2D(4, sqrt(7)), 6)
422
+ assert intersection(c1, c2) == [Point2D(-1 + (-sqrt(7) + sqrt(5))*(-2*sqrt(7)/29
423
+ + 9*sqrt(5)/29 + sqrt(196*sqrt(35) + 1941)/29), -2*sqrt(7)/29 + 9*sqrt(5)/29
424
+ + sqrt(196*sqrt(35) + 1941)/29), Point2D(-1 + (-sqrt(7) + sqrt(5))*(-sqrt(196*sqrt(35)
425
+ + 1941)/29 - 2*sqrt(7)/29 + 9*sqrt(5)/29), -sqrt(196*sqrt(35) + 1941)/29 - 2*sqrt(7)/29 + 9*sqrt(5)/29)]
426
+
427
+ def test_issue_19760():
428
+ e = 1/(sqrt(1 + sqrt(2)) - sqrt(2)*sqrt(1 + sqrt(2))) + 1
429
+ mp_expected = x**4 - 4*x**3 + 4*x**2 - 2
430
+
431
+ for comp in (True, False):
432
+ mp = Poly(minimal_polynomial(e, compose=comp))
433
+ assert mp(x) == mp_expected, "minimal_polynomial(e, compose=%s) = %s; %s expected" % (comp, mp(x), mp_expected)
434
+
435
+
436
+ def test_issue_20163():
437
+ assert apart(1/(x**6+1), extension=[sqrt(3), I]) == \
438
+ (sqrt(3) + I)/(2*x + sqrt(3) + I)/6 + \
439
+ (sqrt(3) - I)/(2*x + sqrt(3) - I)/6 - \
440
+ (sqrt(3) - I)/(2*x - sqrt(3) + I)/6 - \
441
+ (sqrt(3) + I)/(2*x - sqrt(3) - I)/6 + \
442
+ I/(x + I)/6 - I/(x - I)/6
443
+
444
+
445
+ def test_issue_22559():
446
+ alpha = AlgebraicNumber(sqrt(2))
447
+ assert minimal_polynomial(alpha**3, x) == x**2 - 8
448
+
449
+
450
+ def test_issue_22561():
451
+ a = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1) / 2, 0, S(-9) / 2, 0], gen=x)
452
+ assert a.as_expr() == sqrt(2)
453
+ assert minimal_polynomial(a, x) == x**2 - 2
454
+ assert minimal_polynomial(a**3, x) == x**2 - 8
455
+
456
+
457
+ def test_separate_sq_not_impl():
458
+ raises(NotImplementedError, lambda: _separate_sq(x**(S(1)/3) + x))
459
+
460
+
461
+ def test_minpoly_op_algebraic_element_not_impl():
462
+ raises(NotImplementedError,
463
+ lambda: _minpoly_op_algebraic_element(Pow, sqrt(2), sqrt(3), x, QQ))
464
+
465
+
466
+ def test_minpoly_groebner():
467
+ assert _minpoly_groebner(S(2)/3, x, Poly) == 3*x - 2
468
+ assert _minpoly_groebner(
469
+ (sqrt(2) + 3)*(sqrt(2) + 1), x, Poly) == x**2 - 10*x - 7
470
+ assert _minpoly_groebner((sqrt(2) + 3)**(S(1)/3)*(sqrt(2) + 1)**(S(1)/3),
471
+ x, Poly) == x**6 - 10*x**3 - 7
472
+ assert _minpoly_groebner((sqrt(2) + 3)**(-S(1)/3)*(sqrt(2) + 1)**(S(1)/3),
473
+ x, Poly) == 7*x**6 - 2*x**3 - 1
474
+ raises(NotAlgebraic, lambda: _minpoly_groebner(pi**2, x, Poly))
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_modules.py ADDED
@@ -0,0 +1,752 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.abc import x, zeta
2
+ from sympy.polys import Poly, cyclotomic_poly
3
+ from sympy.polys.domains import FF, QQ, ZZ
4
+ from sympy.polys.matrices import DomainMatrix, DM
5
+ from sympy.polys.numberfields.exceptions import (
6
+ ClosureFailure, MissingUnityError, StructureError
7
+ )
8
+ from sympy.polys.numberfields.modules import (
9
+ Module, ModuleElement, ModuleEndomorphism, PowerBasis, PowerBasisElement,
10
+ find_min_poly, is_sq_maxrank_HNF, make_mod_elt, to_col,
11
+ )
12
+ from sympy.polys.numberfields.utilities import is_int
13
+ from sympy.polys.polyerrors import UnificationFailed
14
+ from sympy.testing.pytest import raises
15
+
16
+
17
+ def test_to_col():
18
+ c = [1, 2, 3, 4]
19
+ m = to_col(c)
20
+ assert m.domain.is_ZZ
21
+ assert m.shape == (4, 1)
22
+ assert m.flat() == c
23
+
24
+
25
+ def test_Module_NotImplemented():
26
+ M = Module()
27
+ raises(NotImplementedError, lambda: M.n)
28
+ raises(NotImplementedError, lambda: M.mult_tab())
29
+ raises(NotImplementedError, lambda: M.represent(None))
30
+ raises(NotImplementedError, lambda: M.starts_with_unity())
31
+ raises(NotImplementedError, lambda: M.element_from_rational(QQ(2, 3)))
32
+
33
+
34
+ def test_Module_ancestors():
35
+ T = Poly(cyclotomic_poly(5, x))
36
+ A = PowerBasis(T)
37
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
38
+ C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
39
+ D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
40
+ assert C.ancestors(include_self=True) == [A, B, C]
41
+ assert D.ancestors(include_self=True) == [A, B, D]
42
+ assert C.power_basis_ancestor() == A
43
+ assert C.nearest_common_ancestor(D) == B
44
+ M = Module()
45
+ assert M.power_basis_ancestor() is None
46
+
47
+
48
+ def test_Module_compat_col():
49
+ T = Poly(cyclotomic_poly(5, x))
50
+ A = PowerBasis(T)
51
+ col = to_col([1, 2, 3, 4])
52
+ row = col.transpose()
53
+ assert A.is_compat_col(col) is True
54
+ assert A.is_compat_col(row) is False
55
+ assert A.is_compat_col(1) is False
56
+ assert A.is_compat_col(DomainMatrix.eye(3, ZZ)[:, 0]) is False
57
+ assert A.is_compat_col(DomainMatrix.eye(4, QQ)[:, 0]) is False
58
+ assert A.is_compat_col(DomainMatrix.eye(4, ZZ)[:, 0]) is True
59
+
60
+
61
+ def test_Module_call():
62
+ T = Poly(cyclotomic_poly(5, x))
63
+ B = PowerBasis(T)
64
+ assert B(0).col.flat() == [1, 0, 0, 0]
65
+ assert B(1).col.flat() == [0, 1, 0, 0]
66
+ col = DomainMatrix.eye(4, ZZ)[:, 2]
67
+ assert B(col).col == col
68
+ raises(ValueError, lambda: B(-1))
69
+
70
+
71
+ def test_Module_starts_with_unity():
72
+ T = Poly(cyclotomic_poly(5, x))
73
+ A = PowerBasis(T)
74
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
75
+ assert A.starts_with_unity() is True
76
+ assert B.starts_with_unity() is False
77
+
78
+
79
+ def test_Module_basis_elements():
80
+ T = Poly(cyclotomic_poly(5, x))
81
+ A = PowerBasis(T)
82
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
83
+ basis = B.basis_elements()
84
+ bp = B.basis_element_pullbacks()
85
+ for i, (e, p) in enumerate(zip(basis, bp)):
86
+ c = [0] * 4
87
+ assert e.module == B
88
+ assert p.module == A
89
+ c[i] = 1
90
+ assert e == B(to_col(c))
91
+ c[i] = 2
92
+ assert p == A(to_col(c))
93
+
94
+
95
+ def test_Module_zero():
96
+ T = Poly(cyclotomic_poly(5, x))
97
+ A = PowerBasis(T)
98
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
99
+ assert A.zero().col.flat() == [0, 0, 0, 0]
100
+ assert A.zero().module == A
101
+ assert B.zero().col.flat() == [0, 0, 0, 0]
102
+ assert B.zero().module == B
103
+
104
+
105
+ def test_Module_one():
106
+ T = Poly(cyclotomic_poly(5, x))
107
+ A = PowerBasis(T)
108
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
109
+ assert A.one().col.flat() == [1, 0, 0, 0]
110
+ assert A.one().module == A
111
+ assert B.one().col.flat() == [1, 0, 0, 0]
112
+ assert B.one().module == A
113
+
114
+
115
+ def test_Module_element_from_rational():
116
+ T = Poly(cyclotomic_poly(5, x))
117
+ A = PowerBasis(T)
118
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
119
+ rA = A.element_from_rational(QQ(22, 7))
120
+ rB = B.element_from_rational(QQ(22, 7))
121
+ assert rA.coeffs == [22, 0, 0, 0]
122
+ assert rA.denom == 7
123
+ assert rA.module == A
124
+ assert rB.coeffs == [22, 0, 0, 0]
125
+ assert rB.denom == 7
126
+ assert rB.module == A
127
+
128
+
129
+ def test_Module_submodule_from_gens():
130
+ T = Poly(cyclotomic_poly(5, x))
131
+ A = PowerBasis(T)
132
+ gens = [2*A(0), 2*A(1), 6*A(0), 6*A(1)]
133
+ B = A.submodule_from_gens(gens)
134
+ # Because the 3rd and 4th generators do not add anything new, we expect
135
+ # the cols of the matrix of B to just reproduce the first two gens:
136
+ M = gens[0].column().hstack(gens[1].column())
137
+ assert B.matrix == M
138
+ # At least one generator must be provided:
139
+ raises(ValueError, lambda: A.submodule_from_gens([]))
140
+ # All generators must belong to A:
141
+ raises(ValueError, lambda: A.submodule_from_gens([3*A(0), B(0)]))
142
+
143
+
144
+ def test_Module_submodule_from_matrix():
145
+ T = Poly(cyclotomic_poly(5, x))
146
+ A = PowerBasis(T)
147
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
148
+ e = B(to_col([1, 2, 3, 4]))
149
+ f = e.to_parent()
150
+ assert f.col.flat() == [2, 4, 6, 8]
151
+ # Matrix must be over ZZ:
152
+ raises(ValueError, lambda: A.submodule_from_matrix(DomainMatrix.eye(4, QQ)))
153
+ # Number of rows of matrix must equal number of generators of module A:
154
+ raises(ValueError, lambda: A.submodule_from_matrix(2 * DomainMatrix.eye(5, ZZ)))
155
+
156
+
157
+ def test_Module_whole_submodule():
158
+ T = Poly(cyclotomic_poly(5, x))
159
+ A = PowerBasis(T)
160
+ B = A.whole_submodule()
161
+ e = B(to_col([1, 2, 3, 4]))
162
+ f = e.to_parent()
163
+ assert f.col.flat() == [1, 2, 3, 4]
164
+ e0, e1, e2, e3 = B(0), B(1), B(2), B(3)
165
+ assert e2 * e3 == e0
166
+ assert e3 ** 2 == e1
167
+
168
+
169
+ def test_PowerBasis_repr():
170
+ T = Poly(cyclotomic_poly(5, x))
171
+ A = PowerBasis(T)
172
+ assert repr(A) == 'PowerBasis(x**4 + x**3 + x**2 + x + 1)'
173
+
174
+
175
+ def test_PowerBasis_eq():
176
+ T = Poly(cyclotomic_poly(5, x))
177
+ A = PowerBasis(T)
178
+ B = PowerBasis(T)
179
+ assert A == B
180
+
181
+
182
+ def test_PowerBasis_mult_tab():
183
+ T = Poly(cyclotomic_poly(5, x))
184
+ A = PowerBasis(T)
185
+ M = A.mult_tab()
186
+ exp = {0: {0: [1, 0, 0, 0], 1: [0, 1, 0, 0], 2: [0, 0, 1, 0], 3: [0, 0, 0, 1]},
187
+ 1: {1: [0, 0, 1, 0], 2: [0, 0, 0, 1], 3: [-1, -1, -1, -1]},
188
+ 2: {2: [-1, -1, -1, -1], 3: [1, 0, 0, 0]},
189
+ 3: {3: [0, 1, 0, 0]}}
190
+ # We get the table we expect:
191
+ assert M == exp
192
+ # And all entries are of expected type:
193
+ assert all(is_int(c) for u in M for v in M[u] for c in M[u][v])
194
+
195
+
196
+ def test_PowerBasis_represent():
197
+ T = Poly(cyclotomic_poly(5, x))
198
+ A = PowerBasis(T)
199
+ col = to_col([1, 2, 3, 4])
200
+ a = A(col)
201
+ assert A.represent(a) == col
202
+ b = A(col, denom=2)
203
+ raises(ClosureFailure, lambda: A.represent(b))
204
+
205
+
206
+ def test_PowerBasis_element_from_poly():
207
+ T = Poly(cyclotomic_poly(5, x))
208
+ A = PowerBasis(T)
209
+ f = Poly(1 + 2*x)
210
+ g = Poly(x**4)
211
+ h = Poly(0, x)
212
+ assert A.element_from_poly(f).coeffs == [1, 2, 0, 0]
213
+ assert A.element_from_poly(g).coeffs == [-1, -1, -1, -1]
214
+ assert A.element_from_poly(h).coeffs == [0, 0, 0, 0]
215
+
216
+
217
+ def test_PowerBasis_element__conversions():
218
+ k = QQ.cyclotomic_field(5)
219
+ L = QQ.cyclotomic_field(7)
220
+ B = PowerBasis(k)
221
+
222
+ # ANP --> PowerBasisElement
223
+ a = k([QQ(1, 2), QQ(1, 3), 5, 7])
224
+ e = B.element_from_ANP(a)
225
+ assert e.coeffs == [42, 30, 2, 3]
226
+ assert e.denom == 6
227
+
228
+ # PowerBasisElement --> ANP
229
+ assert e.to_ANP() == a
230
+
231
+ # Cannot convert ANP from different field
232
+ d = L([QQ(1, 2), QQ(1, 3), 5, 7])
233
+ raises(UnificationFailed, lambda: B.element_from_ANP(d))
234
+
235
+ # AlgebraicNumber --> PowerBasisElement
236
+ alpha = k.to_alg_num(a)
237
+ eps = B.element_from_alg_num(alpha)
238
+ assert eps.coeffs == [42, 30, 2, 3]
239
+ assert eps.denom == 6
240
+
241
+ # PowerBasisElement --> AlgebraicNumber
242
+ assert eps.to_alg_num() == alpha
243
+
244
+ # Cannot convert AlgebraicNumber from different field
245
+ delta = L.to_alg_num(d)
246
+ raises(UnificationFailed, lambda: B.element_from_alg_num(delta))
247
+
248
+ # When we don't know the field:
249
+ C = PowerBasis(k.ext.minpoly)
250
+ # Can convert from AlgebraicNumber:
251
+ eps = C.element_from_alg_num(alpha)
252
+ assert eps.coeffs == [42, 30, 2, 3]
253
+ assert eps.denom == 6
254
+ # But can't convert back:
255
+ raises(StructureError, lambda: eps.to_alg_num())
256
+
257
+
258
+ def test_Submodule_repr():
259
+ T = Poly(cyclotomic_poly(5, x))
260
+ A = PowerBasis(T)
261
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ), denom=3)
262
+ assert repr(B) == 'Submodule[[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]]/3'
263
+
264
+
265
+ def test_Submodule_reduced():
266
+ T = Poly(cyclotomic_poly(5, x))
267
+ A = PowerBasis(T)
268
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
269
+ C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
270
+ D = C.reduced()
271
+ assert D.denom == 1 and D == C == B
272
+
273
+
274
+ def test_Submodule_discard_before():
275
+ T = Poly(cyclotomic_poly(5, x))
276
+ A = PowerBasis(T)
277
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
278
+ B.compute_mult_tab()
279
+ C = B.discard_before(2)
280
+ assert C.parent == B.parent
281
+ assert B.is_sq_maxrank_HNF() and not C.is_sq_maxrank_HNF()
282
+ assert C.matrix == B.matrix[:, 2:]
283
+ assert C.mult_tab() == {0: {0: [-2, -2], 1: [0, 0]}, 1: {1: [0, 0]}}
284
+
285
+
286
+ def test_Submodule_QQ_matrix():
287
+ T = Poly(cyclotomic_poly(5, x))
288
+ A = PowerBasis(T)
289
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
290
+ C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
291
+ assert C.QQ_matrix == B.QQ_matrix
292
+
293
+
294
+ def test_Submodule_represent():
295
+ T = Poly(cyclotomic_poly(5, x))
296
+ A = PowerBasis(T)
297
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
298
+ C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
299
+ a0 = A(to_col([6, 12, 18, 24]))
300
+ a1 = A(to_col([2, 4, 6, 8]))
301
+ a2 = A(to_col([1, 3, 5, 7]))
302
+
303
+ b1 = B.represent(a1)
304
+ assert b1.flat() == [1, 2, 3, 4]
305
+
306
+ c0 = C.represent(a0)
307
+ assert c0.flat() == [1, 2, 3, 4]
308
+
309
+ Y = A.submodule_from_matrix(DomainMatrix([
310
+ [1, 0, 0, 0],
311
+ [0, 1, 0, 0],
312
+ [0, 0, 1, 0],
313
+ ], (3, 4), ZZ).transpose())
314
+
315
+ U = Poly(cyclotomic_poly(7, x))
316
+ Z = PowerBasis(U)
317
+ z0 = Z(to_col([1, 2, 3, 4, 5, 6]))
318
+
319
+ raises(ClosureFailure, lambda: Y.represent(A(3)))
320
+ raises(ClosureFailure, lambda: B.represent(a2))
321
+ raises(ClosureFailure, lambda: B.represent(z0))
322
+
323
+
324
+ def test_Submodule_is_compat_submodule():
325
+ T = Poly(cyclotomic_poly(5, x))
326
+ A = PowerBasis(T)
327
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
328
+ C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
329
+ D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
330
+ assert B.is_compat_submodule(C) is True
331
+ assert B.is_compat_submodule(A) is False
332
+ assert B.is_compat_submodule(D) is False
333
+
334
+
335
+ def test_Submodule_eq():
336
+ T = Poly(cyclotomic_poly(5, x))
337
+ A = PowerBasis(T)
338
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
339
+ C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
340
+ assert C == B
341
+
342
+
343
+ def test_Submodule_add():
344
+ T = Poly(cyclotomic_poly(5, x))
345
+ A = PowerBasis(T)
346
+ B = A.submodule_from_matrix(DomainMatrix([
347
+ [4, 0, 0, 0],
348
+ [0, 4, 0, 0],
349
+ ], (2, 4), ZZ).transpose(), denom=6)
350
+ C = A.submodule_from_matrix(DomainMatrix([
351
+ [0, 10, 0, 0],
352
+ [0, 0, 7, 0],
353
+ ], (2, 4), ZZ).transpose(), denom=15)
354
+ D = A.submodule_from_matrix(DomainMatrix([
355
+ [20, 0, 0, 0],
356
+ [ 0, 20, 0, 0],
357
+ [ 0, 0, 14, 0],
358
+ ], (3, 4), ZZ).transpose(), denom=30)
359
+ assert B + C == D
360
+
361
+ U = Poly(cyclotomic_poly(7, x))
362
+ Z = PowerBasis(U)
363
+ Y = Z.submodule_from_gens([Z(0), Z(1)])
364
+ raises(TypeError, lambda: B + Y)
365
+
366
+
367
+ def test_Submodule_mul():
368
+ T = Poly(cyclotomic_poly(5, x))
369
+ A = PowerBasis(T)
370
+ C = A.submodule_from_matrix(DomainMatrix([
371
+ [0, 10, 0, 0],
372
+ [0, 0, 7, 0],
373
+ ], (2, 4), ZZ).transpose(), denom=15)
374
+ C1 = A.submodule_from_matrix(DomainMatrix([
375
+ [0, 20, 0, 0],
376
+ [0, 0, 14, 0],
377
+ ], (2, 4), ZZ).transpose(), denom=3)
378
+ C2 = A.submodule_from_matrix(DomainMatrix([
379
+ [0, 0, 10, 0],
380
+ [0, 0, 0, 7],
381
+ ], (2, 4), ZZ).transpose(), denom=15)
382
+ C3_unred = A.submodule_from_matrix(DomainMatrix([
383
+ [0, 0, 100, 0],
384
+ [0, 0, 0, 70],
385
+ [0, 0, 0, 70],
386
+ [-49, -49, -49, -49]
387
+ ], (4, 4), ZZ).transpose(), denom=225)
388
+ C3 = A.submodule_from_matrix(DomainMatrix([
389
+ [4900, 4900, 0, 0],
390
+ [4410, 4410, 10, 0],
391
+ [2107, 2107, 7, 7]
392
+ ], (3, 4), ZZ).transpose(), denom=225)
393
+ assert C * 1 == C
394
+ assert C ** 1 == C
395
+ assert C * 10 == C1
396
+ assert C * A(1) == C2
397
+ assert C.mul(C, hnf=False) == C3_unred
398
+ assert C * C == C3
399
+ assert C ** 2 == C3
400
+
401
+
402
+ def test_Submodule_reduce_element():
403
+ T = Poly(cyclotomic_poly(5, x))
404
+ A = PowerBasis(T)
405
+ B = A.whole_submodule()
406
+ b = B(to_col([90, 84, 80, 75]), denom=120)
407
+
408
+ C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=2)
409
+ b_bar_expected = B(to_col([30, 24, 20, 15]), denom=120)
410
+ b_bar = C.reduce_element(b)
411
+ assert b_bar == b_bar_expected
412
+
413
+ C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=4)
414
+ b_bar_expected = B(to_col([0, 24, 20, 15]), denom=120)
415
+ b_bar = C.reduce_element(b)
416
+ assert b_bar == b_bar_expected
417
+
418
+ C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=8)
419
+ b_bar_expected = B(to_col([0, 9, 5, 0]), denom=120)
420
+ b_bar = C.reduce_element(b)
421
+ assert b_bar == b_bar_expected
422
+
423
+ a = A(to_col([1, 2, 3, 4]))
424
+ raises(NotImplementedError, lambda: C.reduce_element(a))
425
+
426
+ C = B.submodule_from_matrix(DomainMatrix([
427
+ [5, 4, 3, 2],
428
+ [0, 8, 7, 6],
429
+ [0, 0,11,12],
430
+ [0, 0, 0, 1]
431
+ ], (4, 4), ZZ).transpose())
432
+ raises(StructureError, lambda: C.reduce_element(b))
433
+
434
+
435
+ def test_is_HNF():
436
+ M = DM([
437
+ [3, 2, 1],
438
+ [0, 2, 1],
439
+ [0, 0, 1]
440
+ ], ZZ)
441
+ M1 = DM([
442
+ [3, 2, 1],
443
+ [0, -2, 1],
444
+ [0, 0, 1]
445
+ ], ZZ)
446
+ M2 = DM([
447
+ [3, 2, 3],
448
+ [0, 2, 1],
449
+ [0, 0, 1]
450
+ ], ZZ)
451
+ assert is_sq_maxrank_HNF(M) is True
452
+ assert is_sq_maxrank_HNF(M1) is False
453
+ assert is_sq_maxrank_HNF(M2) is False
454
+
455
+
456
+ def test_make_mod_elt():
457
+ T = Poly(cyclotomic_poly(5, x))
458
+ A = PowerBasis(T)
459
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
460
+ col = to_col([1, 2, 3, 4])
461
+ eA = make_mod_elt(A, col)
462
+ eB = make_mod_elt(B, col)
463
+ assert isinstance(eA, PowerBasisElement)
464
+ assert not isinstance(eB, PowerBasisElement)
465
+
466
+
467
+ def test_ModuleElement_repr():
468
+ T = Poly(cyclotomic_poly(5, x))
469
+ A = PowerBasis(T)
470
+ e = A(to_col([1, 2, 3, 4]), denom=2)
471
+ assert repr(e) == '[1, 2, 3, 4]/2'
472
+
473
+
474
+ def test_ModuleElement_reduced():
475
+ T = Poly(cyclotomic_poly(5, x))
476
+ A = PowerBasis(T)
477
+ e = A(to_col([2, 4, 6, 8]), denom=2)
478
+ f = e.reduced()
479
+ assert f.denom == 1 and f == e
480
+
481
+
482
+ def test_ModuleElement_reduced_mod_p():
483
+ T = Poly(cyclotomic_poly(5, x))
484
+ A = PowerBasis(T)
485
+ e = A(to_col([20, 40, 60, 80]))
486
+ f = e.reduced_mod_p(7)
487
+ assert f.coeffs == [-1, -2, -3, 3]
488
+
489
+
490
+ def test_ModuleElement_from_int_list():
491
+ T = Poly(cyclotomic_poly(5, x))
492
+ A = PowerBasis(T)
493
+ c = [1, 2, 3, 4]
494
+ assert ModuleElement.from_int_list(A, c).coeffs == c
495
+
496
+
497
+ def test_ModuleElement_len():
498
+ T = Poly(cyclotomic_poly(5, x))
499
+ A = PowerBasis(T)
500
+ e = A(0)
501
+ assert len(e) == 4
502
+
503
+
504
+ def test_ModuleElement_column():
505
+ T = Poly(cyclotomic_poly(5, x))
506
+ A = PowerBasis(T)
507
+ e = A(0)
508
+ col1 = e.column()
509
+ assert col1 == e.col and col1 is not e.col
510
+ col2 = e.column(domain=FF(5))
511
+ assert col2.domain.is_FF
512
+
513
+
514
+ def test_ModuleElement_QQ_col():
515
+ T = Poly(cyclotomic_poly(5, x))
516
+ A = PowerBasis(T)
517
+ e = A(to_col([1, 2, 3, 4]), denom=1)
518
+ f = A(to_col([3, 6, 9, 12]), denom=3)
519
+ assert e.QQ_col == f.QQ_col
520
+
521
+
522
+ def test_ModuleElement_to_ancestors():
523
+ T = Poly(cyclotomic_poly(5, x))
524
+ A = PowerBasis(T)
525
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
526
+ C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
527
+ D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
528
+ eD = D(0)
529
+ eC = eD.to_parent()
530
+ eB = eD.to_ancestor(B)
531
+ eA = eD.over_power_basis()
532
+ assert eC.module is C and eC.coeffs == [5, 0, 0, 0]
533
+ assert eB.module is B and eB.coeffs == [15, 0, 0, 0]
534
+ assert eA.module is A and eA.coeffs == [30, 0, 0, 0]
535
+
536
+ a = A(0)
537
+ raises(ValueError, lambda: a.to_parent())
538
+
539
+
540
+ def test_ModuleElement_compatibility():
541
+ T = Poly(cyclotomic_poly(5, x))
542
+ A = PowerBasis(T)
543
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
544
+ C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
545
+ D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
546
+ assert C(0).is_compat(C(1)) is True
547
+ assert C(0).is_compat(D(0)) is False
548
+ u, v = C(0).unify(D(0))
549
+ assert u.module is B and v.module is B
550
+ assert C(C.represent(u)) == C(0) and D(D.represent(v)) == D(0)
551
+
552
+ u, v = C(0).unify(C(1))
553
+ assert u == C(0) and v == C(1)
554
+
555
+ U = Poly(cyclotomic_poly(7, x))
556
+ Z = PowerBasis(U)
557
+ raises(UnificationFailed, lambda: C(0).unify(Z(1)))
558
+
559
+
560
+ def test_ModuleElement_eq():
561
+ T = Poly(cyclotomic_poly(5, x))
562
+ A = PowerBasis(T)
563
+ e = A(to_col([1, 2, 3, 4]), denom=1)
564
+ f = A(to_col([3, 6, 9, 12]), denom=3)
565
+ assert e == f
566
+
567
+ U = Poly(cyclotomic_poly(7, x))
568
+ Z = PowerBasis(U)
569
+ assert e != Z(0)
570
+ assert e != 3.14
571
+
572
+
573
+ def test_ModuleElement_equiv():
574
+ T = Poly(cyclotomic_poly(5, x))
575
+ A = PowerBasis(T)
576
+ e = A(to_col([1, 2, 3, 4]), denom=1)
577
+ f = A(to_col([3, 6, 9, 12]), denom=3)
578
+ assert e.equiv(f)
579
+
580
+ C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
581
+ g = C(to_col([1, 2, 3, 4]), denom=1)
582
+ h = A(to_col([3, 6, 9, 12]), denom=1)
583
+ assert g.equiv(h)
584
+ assert C(to_col([5, 0, 0, 0]), denom=7).equiv(QQ(15, 7))
585
+
586
+ U = Poly(cyclotomic_poly(7, x))
587
+ Z = PowerBasis(U)
588
+ raises(UnificationFailed, lambda: e.equiv(Z(0)))
589
+
590
+ assert e.equiv(3.14) is False
591
+
592
+
593
+ def test_ModuleElement_add():
594
+ T = Poly(cyclotomic_poly(5, x))
595
+ A = PowerBasis(T)
596
+ C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
597
+ e = A(to_col([1, 2, 3, 4]), denom=6)
598
+ f = A(to_col([5, 6, 7, 8]), denom=10)
599
+ g = C(to_col([1, 1, 1, 1]), denom=2)
600
+ assert e + f == A(to_col([10, 14, 18, 22]), denom=15)
601
+ assert e - f == A(to_col([-5, -4, -3, -2]), denom=15)
602
+ assert e + g == A(to_col([10, 11, 12, 13]), denom=6)
603
+ assert e + QQ(7, 10) == A(to_col([26, 10, 15, 20]), denom=30)
604
+ assert g + QQ(7, 10) == A(to_col([22, 15, 15, 15]), denom=10)
605
+
606
+ U = Poly(cyclotomic_poly(7, x))
607
+ Z = PowerBasis(U)
608
+ raises(TypeError, lambda: e + Z(0))
609
+ raises(TypeError, lambda: e + 3.14)
610
+
611
+
612
+ def test_ModuleElement_mul():
613
+ T = Poly(cyclotomic_poly(5, x))
614
+ A = PowerBasis(T)
615
+ C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
616
+ e = A(to_col([0, 2, 0, 0]), denom=3)
617
+ f = A(to_col([0, 0, 0, 7]), denom=5)
618
+ g = C(to_col([0, 0, 0, 1]), denom=2)
619
+ h = A(to_col([0, 0, 3, 1]), denom=7)
620
+ assert e * f == A(to_col([-14, -14, -14, -14]), denom=15)
621
+ assert e * g == A(to_col([-1, -1, -1, -1]))
622
+ assert e * h == A(to_col([-2, -2, -2, 4]), denom=21)
623
+ assert e * QQ(6, 5) == A(to_col([0, 4, 0, 0]), denom=5)
624
+ assert (g * QQ(10, 21)).equiv(A(to_col([0, 0, 0, 5]), denom=7))
625
+ assert e // QQ(6, 5) == A(to_col([0, 5, 0, 0]), denom=9)
626
+
627
+ U = Poly(cyclotomic_poly(7, x))
628
+ Z = PowerBasis(U)
629
+ raises(TypeError, lambda: e * Z(0))
630
+ raises(TypeError, lambda: e * 3.14)
631
+ raises(TypeError, lambda: e // 3.14)
632
+ raises(ZeroDivisionError, lambda: e // 0)
633
+
634
+
635
+ def test_ModuleElement_div():
636
+ T = Poly(cyclotomic_poly(5, x))
637
+ A = PowerBasis(T)
638
+ C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
639
+ e = A(to_col([0, 2, 0, 0]), denom=3)
640
+ f = A(to_col([0, 0, 0, 7]), denom=5)
641
+ g = C(to_col([1, 1, 1, 1]))
642
+ assert e // f == 10*A(3)//21
643
+ assert e // g == -2*A(2)//9
644
+ assert 3 // g == -A(1)
645
+
646
+
647
+ def test_ModuleElement_pow():
648
+ T = Poly(cyclotomic_poly(5, x))
649
+ A = PowerBasis(T)
650
+ C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
651
+ e = A(to_col([0, 2, 0, 0]), denom=3)
652
+ g = C(to_col([0, 0, 0, 1]), denom=2)
653
+ assert e ** 3 == A(to_col([0, 0, 0, 8]), denom=27)
654
+ assert g ** 2 == C(to_col([0, 3, 0, 0]), denom=4)
655
+ assert e ** 0 == A(to_col([1, 0, 0, 0]))
656
+ assert g ** 0 == A(to_col([1, 0, 0, 0]))
657
+ assert e ** 1 == e
658
+ assert g ** 1 == g
659
+
660
+
661
+ def test_ModuleElement_mod():
662
+ T = Poly(cyclotomic_poly(5, x))
663
+ A = PowerBasis(T)
664
+ e = A(to_col([1, 15, 8, 0]), denom=2)
665
+ assert e % 7 == A(to_col([1, 1, 8, 0]), denom=2)
666
+ assert e % QQ(1, 2) == A.zero()
667
+ assert e % QQ(1, 3) == A(to_col([1, 1, 0, 0]), denom=6)
668
+
669
+ B = A.submodule_from_gens([A(0), 5*A(1), 3*A(2), A(3)])
670
+ assert e % B == A(to_col([1, 5, 2, 0]), denom=2)
671
+
672
+ C = B.whole_submodule()
673
+ raises(TypeError, lambda: e % C)
674
+
675
+
676
+ def test_PowerBasisElement_polys():
677
+ T = Poly(cyclotomic_poly(5, x))
678
+ A = PowerBasis(T)
679
+ e = A(to_col([1, 15, 8, 0]), denom=2)
680
+ assert e.numerator(x=zeta) == Poly(8 * zeta ** 2 + 15 * zeta + 1, domain=ZZ)
681
+ assert e.poly(x=zeta) == Poly(4 * zeta ** 2 + QQ(15, 2) * zeta + QQ(1, 2), domain=QQ)
682
+
683
+
684
+ def test_PowerBasisElement_norm():
685
+ T = Poly(cyclotomic_poly(5, x))
686
+ A = PowerBasis(T)
687
+ lam = A(to_col([1, -1, 0, 0]))
688
+ assert lam.norm() == 5
689
+
690
+
691
+ def test_PowerBasisElement_inverse():
692
+ T = Poly(cyclotomic_poly(5, x))
693
+ A = PowerBasis(T)
694
+ e = A(to_col([1, 1, 1, 1]))
695
+ assert 2 // e == -2*A(1)
696
+ assert e ** -3 == -A(3)
697
+
698
+
699
+ def test_ModuleHomomorphism_matrix():
700
+ T = Poly(cyclotomic_poly(5, x))
701
+ A = PowerBasis(T)
702
+ phi = ModuleEndomorphism(A, lambda a: a ** 2)
703
+ M = phi.matrix()
704
+ assert M == DomainMatrix([
705
+ [1, 0, -1, 0],
706
+ [0, 0, -1, 1],
707
+ [0, 1, -1, 0],
708
+ [0, 0, -1, 0]
709
+ ], (4, 4), ZZ)
710
+
711
+
712
+ def test_ModuleHomomorphism_kernel():
713
+ T = Poly(cyclotomic_poly(5, x))
714
+ A = PowerBasis(T)
715
+ phi = ModuleEndomorphism(A, lambda a: a ** 5)
716
+ N = phi.kernel()
717
+ assert N.n == 3
718
+
719
+
720
+ def test_EndomorphismRing_represent():
721
+ T = Poly(cyclotomic_poly(5, x))
722
+ A = PowerBasis(T)
723
+ R = A.endomorphism_ring()
724
+ phi = R.inner_endomorphism(A(1))
725
+ col = R.represent(phi)
726
+ assert col.transpose() == DomainMatrix([
727
+ [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1]
728
+ ], (1, 16), ZZ)
729
+
730
+ B = A.submodule_from_matrix(DomainMatrix.zeros((4, 0), ZZ))
731
+ S = B.endomorphism_ring()
732
+ psi = S.inner_endomorphism(A(1))
733
+ col = S.represent(psi)
734
+ assert col == DomainMatrix([], (0, 0), ZZ)
735
+
736
+ raises(NotImplementedError, lambda: R.represent(3.14))
737
+
738
+
739
+ def test_find_min_poly():
740
+ T = Poly(cyclotomic_poly(5, x))
741
+ A = PowerBasis(T)
742
+ powers = []
743
+ m = find_min_poly(A(1), QQ, x=x, powers=powers)
744
+ assert m == Poly(T, domain=QQ)
745
+ assert len(powers) == 5
746
+
747
+ # powers list need not be passed
748
+ m = find_min_poly(A(1), QQ, x=x)
749
+ assert m == Poly(T, domain=QQ)
750
+
751
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
752
+ raises(MissingUnityError, lambda: find_min_poly(B(1), QQ))
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_primes.py ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import prod
2
+
3
+ from sympy import QQ, ZZ
4
+ from sympy.abc import x, theta
5
+ from sympy.ntheory import factorint
6
+ from sympy.ntheory.residue_ntheory import n_order
7
+ from sympy.polys import Poly, cyclotomic_poly
8
+ from sympy.polys.matrices import DomainMatrix
9
+ from sympy.polys.numberfields.basis import round_two
10
+ from sympy.polys.numberfields.exceptions import StructureError
11
+ from sympy.polys.numberfields.modules import PowerBasis, to_col
12
+ from sympy.polys.numberfields.primes import (
13
+ prime_decomp, _two_elt_rep,
14
+ _check_formal_conditions_for_maximal_order,
15
+ )
16
+ from sympy.testing.pytest import raises
17
+
18
+
19
+ def test_check_formal_conditions_for_maximal_order():
20
+ T = Poly(cyclotomic_poly(5, x))
21
+ A = PowerBasis(T)
22
+ B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
23
+ C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
24
+ D = A.submodule_from_matrix(DomainMatrix.eye(4, ZZ)[:, :-1])
25
+ # Is a direct submodule of a power basis, but lacks 1 as first generator:
26
+ raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(B))
27
+ # Is not a direct submodule of a power basis:
28
+ raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(C))
29
+ # Is direct submod of pow basis, and starts with 1, but not sq/max rank/HNF:
30
+ raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(D))
31
+
32
+
33
+ def test_two_elt_rep():
34
+ ell = 7
35
+ T = Poly(cyclotomic_poly(ell))
36
+ ZK, dK = round_two(T)
37
+ for p in [29, 13, 11, 5]:
38
+ P = prime_decomp(p, T)
39
+ for Pi in P:
40
+ # We have Pi in two-element representation, and, because we are
41
+ # looking at a cyclotomic field, this was computed by the "easy"
42
+ # method that just factors T mod p. We will now convert this to
43
+ # a set of Z-generators, then convert that back into a two-element
44
+ # rep. The latter need not be identical to the two-elt rep we
45
+ # already have, but it must have the same HNF.
46
+ H = p*ZK + Pi.alpha*ZK
47
+ gens = H.basis_element_pullbacks()
48
+ # Note: we could supply f = Pi.f, but prefer to test behavior without it.
49
+ b = _two_elt_rep(gens, ZK, p)
50
+ if b != Pi.alpha:
51
+ H2 = p*ZK + b*ZK
52
+ assert H2 == H
53
+
54
+
55
+ def test_valuation_at_prime_ideal():
56
+ p = 7
57
+ T = Poly(cyclotomic_poly(p))
58
+ ZK, dK = round_two(T)
59
+ P = prime_decomp(p, T, dK=dK, ZK=ZK)
60
+ assert len(P) == 1
61
+ P0 = P[0]
62
+ v = P0.valuation(p*ZK)
63
+ assert v == P0.e
64
+ # Test easy 0 case:
65
+ assert P0.valuation(5*ZK) == 0
66
+
67
+
68
+ def test_decomp_1():
69
+ # All prime decompositions in cyclotomic fields are in the "easy case,"
70
+ # since the index is unity.
71
+ # Here we check the ramified prime.
72
+ T = Poly(cyclotomic_poly(7))
73
+ raises(ValueError, lambda: prime_decomp(7))
74
+ P = prime_decomp(7, T)
75
+ assert len(P) == 1
76
+ P0 = P[0]
77
+ assert P0.e == 6
78
+ assert P0.f == 1
79
+ # Test powers:
80
+ assert P0**0 == P0.ZK
81
+ assert P0**1 == P0
82
+ assert P0**6 == 7 * P0.ZK
83
+
84
+
85
+ def test_decomp_2():
86
+ # More easy cyclotomic cases, but here we check unramified primes.
87
+ ell = 7
88
+ T = Poly(cyclotomic_poly(ell))
89
+ for p in [29, 13, 11, 5]:
90
+ f_exp = n_order(p, ell)
91
+ g_exp = (ell - 1) // f_exp
92
+ P = prime_decomp(p, T)
93
+ assert len(P) == g_exp
94
+ for Pi in P:
95
+ assert Pi.e == 1
96
+ assert Pi.f == f_exp
97
+
98
+
99
+ def test_decomp_3():
100
+ T = Poly(x ** 2 - 35)
101
+ rad = {}
102
+ ZK, dK = round_two(T, radicals=rad)
103
+ # 35 is 3 mod 4, so field disc is 4*5*7, and theory says each of the
104
+ # rational primes 2, 5, 7 should be the square of a prime ideal.
105
+ for p in [2, 5, 7]:
106
+ P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
107
+ assert len(P) == 1
108
+ assert P[0].e == 2
109
+ assert P[0]**2 == p*ZK
110
+
111
+
112
+ def test_decomp_4():
113
+ T = Poly(x ** 2 - 21)
114
+ rad = {}
115
+ ZK, dK = round_two(T, radicals=rad)
116
+ # 21 is 1 mod 4, so field disc is 3*7, and theory says the
117
+ # rational primes 3, 7 should be the square of a prime ideal.
118
+ for p in [3, 7]:
119
+ P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
120
+ assert len(P) == 1
121
+ assert P[0].e == 2
122
+ assert P[0]**2 == p*ZK
123
+
124
+
125
+ def test_decomp_5():
126
+ # Here is our first test of the "hard case" of prime decomposition.
127
+ # We work in a quadratic extension Q(sqrt(d)) where d is 1 mod 4, and
128
+ # we consider the factorization of the rational prime 2, which divides
129
+ # the index.
130
+ # Theory says the form of p's factorization depends on the residue of
131
+ # d mod 8, so we consider both cases, d = 1 mod 8 and d = 5 mod 8.
132
+ for d in [-7, -3]:
133
+ T = Poly(x ** 2 - d)
134
+ rad = {}
135
+ ZK, dK = round_two(T, radicals=rad)
136
+ p = 2
137
+ P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
138
+ if d % 8 == 1:
139
+ assert len(P) == 2
140
+ assert all(P[i].e == 1 and P[i].f == 1 for i in range(2))
141
+ assert prod(Pi**Pi.e for Pi in P) == p * ZK
142
+ else:
143
+ assert d % 8 == 5
144
+ assert len(P) == 1
145
+ assert P[0].e == 1
146
+ assert P[0].f == 2
147
+ assert P[0].as_submodule() == p * ZK
148
+
149
+
150
+ def test_decomp_6():
151
+ # Another case where 2 divides the index. This is Dedekind's example of
152
+ # an essential discriminant divisor. (See Cohen, Exercise 6.10.)
153
+ T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
154
+ rad = {}
155
+ ZK, dK = round_two(T, radicals=rad)
156
+ p = 2
157
+ P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
158
+ assert len(P) == 3
159
+ assert all(Pi.e == Pi.f == 1 for Pi in P)
160
+ assert prod(Pi**Pi.e for Pi in P) == p*ZK
161
+
162
+
163
+ def test_decomp_7():
164
+ # Try working through an AlgebraicField
165
+ T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
166
+ K = QQ.alg_field_from_poly(T)
167
+ p = 2
168
+ P = K.primes_above(p)
169
+ ZK = K.maximal_order()
170
+ assert len(P) == 3
171
+ assert all(Pi.e == Pi.f == 1 for Pi in P)
172
+ assert prod(Pi**Pi.e for Pi in P) == p*ZK
173
+
174
+
175
+ def test_decomp_8():
176
+ # This time we consider various cubics, and try factoring all primes
177
+ # dividing the index.
178
+ cases = (
179
+ x ** 3 + 3 * x ** 2 - 4 * x + 4,
180
+ x ** 3 + 3 * x ** 2 + 3 * x - 3,
181
+ x ** 3 + 5 * x ** 2 - x + 3,
182
+ x ** 3 + 5 * x ** 2 - 5 * x - 5,
183
+ x ** 3 + 3 * x ** 2 + 5,
184
+ x ** 3 + 6 * x ** 2 + 3 * x - 1,
185
+ x ** 3 + 6 * x ** 2 + 4,
186
+ x ** 3 + 7 * x ** 2 + 7 * x - 7,
187
+ x ** 3 + 7 * x ** 2 - x + 5,
188
+ x ** 3 + 7 * x ** 2 - 5 * x + 5,
189
+ x ** 3 + 4 * x ** 2 - 3 * x + 7,
190
+ x ** 3 + 8 * x ** 2 + 5 * x - 1,
191
+ x ** 3 + 8 * x ** 2 - 2 * x + 6,
192
+ x ** 3 + 6 * x ** 2 - 3 * x + 8,
193
+ x ** 3 + 9 * x ** 2 + 6 * x - 8,
194
+ x ** 3 + 15 * x ** 2 - 9 * x + 13,
195
+ )
196
+ def display(T, p, radical, P, I, J):
197
+ """Useful for inspection, when running test manually."""
198
+ print('=' * 20)
199
+ print(T, p, radical)
200
+ for Pi in P:
201
+ print(f' ({Pi!r})')
202
+ print("I: ", I)
203
+ print("J: ", J)
204
+ print(f'Equal: {I == J}')
205
+ inspect = False
206
+ for g in cases:
207
+ T = Poly(g)
208
+ rad = {}
209
+ ZK, dK = round_two(T, radicals=rad)
210
+ dT = T.discriminant()
211
+ f_squared = dT // dK
212
+ F = factorint(f_squared)
213
+ for p in F:
214
+ radical = rad.get(p)
215
+ P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=radical)
216
+ I = prod(Pi**Pi.e for Pi in P)
217
+ J = p * ZK
218
+ if inspect:
219
+ display(T, p, radical, P, I, J)
220
+ assert I == J
221
+
222
+
223
+ def test_PrimeIdeal_eq():
224
+ # `==` should fail on objects of different types, so even a completely
225
+ # inert PrimeIdeal should test unequal to the rational prime it divides.
226
+ T = Poly(cyclotomic_poly(7))
227
+ P0 = prime_decomp(5, T)[0]
228
+ assert P0.f == 6
229
+ assert P0.as_submodule() == 5 * P0.ZK
230
+ assert P0 != 5
231
+
232
+
233
+ def test_PrimeIdeal_add():
234
+ T = Poly(cyclotomic_poly(7))
235
+ P0 = prime_decomp(7, T)[0]
236
+ # Adding ideals computes their GCD, so adding the ramified prime dividing
237
+ # 7 to 7 itself should reproduce this prime (as a submodule).
238
+ assert P0 + 7 * P0.ZK == P0.as_submodule()
239
+
240
+
241
+ def test_str():
242
+ # Without alias:
243
+ k = QQ.alg_field_from_poly(Poly(x**2 + 7))
244
+ frp = k.primes_above(2)[0]
245
+ assert str(frp) == '(2, 3*_x/2 + 1/2)'
246
+
247
+ frp = k.primes_above(3)[0]
248
+ assert str(frp) == '(3)'
249
+
250
+ # With alias:
251
+ k = QQ.alg_field_from_poly(Poly(x ** 2 + 7), alias='alpha')
252
+ frp = k.primes_above(2)[0]
253
+ assert str(frp) == '(2, 3*alpha/2 + 1/2)'
254
+
255
+ frp = k.primes_above(3)[0]
256
+ assert str(frp) == '(3)'
257
+
258
+
259
+ def test_repr():
260
+ T = Poly(x**2 + 7)
261
+ ZK, dK = round_two(T)
262
+ P = prime_decomp(2, T, dK=dK, ZK=ZK)
263
+ assert repr(P[0]) == '[ (2, (3*x + 1)/2) e=1, f=1 ]'
264
+ assert P[0].repr(field_gen=theta) == '[ (2, (3*theta + 1)/2) e=1, f=1 ]'
265
+ assert P[0].repr(field_gen=theta, just_gens=True) == '(2, (3*theta + 1)/2)'
266
+
267
+
268
+ def test_PrimeIdeal_reduce():
269
+ k = QQ.alg_field_from_poly(Poly(x ** 3 + x ** 2 - 2 * x + 8))
270
+ Zk = k.maximal_order()
271
+ P = k.primes_above(2)
272
+ frp = P[2]
273
+
274
+ # reduce_element
275
+ a = Zk.parent(to_col([23, 20, 11]), denom=6)
276
+ a_bar_expected = Zk.parent(to_col([11, 5, 2]), denom=6)
277
+ a_bar = frp.reduce_element(a)
278
+ assert a_bar == a_bar_expected
279
+
280
+ # reduce_ANP
281
+ a = k([QQ(11, 6), QQ(20, 6), QQ(23, 6)])
282
+ a_bar_expected = k([QQ(2, 6), QQ(5, 6), QQ(11, 6)])
283
+ a_bar = frp.reduce_ANP(a)
284
+ assert a_bar == a_bar_expected
285
+
286
+ # reduce_alg_num
287
+ a = k.to_alg_num(a)
288
+ a_bar_expected = k.to_alg_num(a_bar_expected)
289
+ a_bar = frp.reduce_alg_num(a)
290
+ assert a_bar == a_bar_expected
291
+
292
+
293
+ def test_issue_23402():
294
+ k = QQ.alg_field_from_poly(Poly(x ** 3 + x ** 2 - 2 * x + 8))
295
+ P = k.primes_above(3)
296
+ assert P[0].alpha.equiv(0)
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_subfield.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for the subfield problem and allied problems. """
2
+
3
+ from sympy.core.numbers import (AlgebraicNumber, I, pi, Rational)
4
+ from sympy.core.singleton import S
5
+ from sympy.functions.elementary.exponential import exp
6
+ from sympy.functions.elementary.miscellaneous import sqrt
7
+ from sympy.external.gmpy import MPQ
8
+ from sympy.polys.numberfields.subfield import (
9
+ is_isomorphism_possible,
10
+ field_isomorphism_pslq,
11
+ field_isomorphism,
12
+ primitive_element,
13
+ to_number_field,
14
+ )
15
+ from sympy.polys.polyerrors import IsomorphismFailed
16
+ from sympy.polys.polytools import Poly
17
+ from sympy.polys.rootoftools import CRootOf
18
+ from sympy.testing.pytest import raises
19
+
20
+ from sympy.abc import x
21
+
22
+ Q = Rational
23
+
24
+
25
+ def test_field_isomorphism_pslq():
26
+ a = AlgebraicNumber(I)
27
+ b = AlgebraicNumber(I*sqrt(3))
28
+
29
+ raises(NotImplementedError, lambda: field_isomorphism_pslq(a, b))
30
+
31
+ a = AlgebraicNumber(sqrt(2))
32
+ b = AlgebraicNumber(sqrt(3))
33
+ c = AlgebraicNumber(sqrt(7))
34
+ d = AlgebraicNumber(sqrt(2) + sqrt(3))
35
+ e = AlgebraicNumber(sqrt(2) + sqrt(3) + sqrt(7))
36
+
37
+ assert field_isomorphism_pslq(a, a) == [1, 0]
38
+ assert field_isomorphism_pslq(a, b) is None
39
+ assert field_isomorphism_pslq(a, c) is None
40
+ assert field_isomorphism_pslq(a, d) == [Q(1, 2), 0, -Q(9, 2), 0]
41
+ assert field_isomorphism_pslq(
42
+ a, e) == [Q(1, 80), 0, -Q(1, 2), 0, Q(59, 20), 0]
43
+
44
+ assert field_isomorphism_pslq(b, a) is None
45
+ assert field_isomorphism_pslq(b, b) == [1, 0]
46
+ assert field_isomorphism_pslq(b, c) is None
47
+ assert field_isomorphism_pslq(b, d) == [-Q(1, 2), 0, Q(11, 2), 0]
48
+ assert field_isomorphism_pslq(b, e) == [-Q(
49
+ 3, 640), 0, Q(67, 320), 0, -Q(297, 160), 0, Q(313, 80), 0]
50
+
51
+ assert field_isomorphism_pslq(c, a) is None
52
+ assert field_isomorphism_pslq(c, b) is None
53
+ assert field_isomorphism_pslq(c, c) == [1, 0]
54
+ assert field_isomorphism_pslq(c, d) is None
55
+ assert field_isomorphism_pslq(c, e) == [Q(
56
+ 3, 640), 0, -Q(71, 320), 0, Q(377, 160), 0, -Q(469, 80), 0]
57
+
58
+ assert field_isomorphism_pslq(d, a) is None
59
+ assert field_isomorphism_pslq(d, b) is None
60
+ assert field_isomorphism_pslq(d, c) is None
61
+ assert field_isomorphism_pslq(d, d) == [1, 0]
62
+ assert field_isomorphism_pslq(d, e) == [-Q(
63
+ 3, 640), 0, Q(71, 320), 0, -Q(377, 160), 0, Q(549, 80), 0]
64
+
65
+ assert field_isomorphism_pslq(e, a) is None
66
+ assert field_isomorphism_pslq(e, b) is None
67
+ assert field_isomorphism_pslq(e, c) is None
68
+ assert field_isomorphism_pslq(e, d) is None
69
+ assert field_isomorphism_pslq(e, e) == [1, 0]
70
+
71
+ f = AlgebraicNumber(3*sqrt(2) + 8*sqrt(7) - 5)
72
+
73
+ assert field_isomorphism_pslq(
74
+ f, e) == [Q(3, 80), 0, -Q(139, 80), 0, Q(347, 20), 0, -Q(761, 20), -5]
75
+
76
+
77
+ def test_field_isomorphism():
78
+ assert field_isomorphism(3, sqrt(2)) == [3]
79
+
80
+ assert field_isomorphism( I*sqrt(3), I*sqrt(3)/2) == [ 2, 0]
81
+ assert field_isomorphism(-I*sqrt(3), I*sqrt(3)/2) == [-2, 0]
82
+
83
+ assert field_isomorphism( I*sqrt(3), -I*sqrt(3)/2) == [-2, 0]
84
+ assert field_isomorphism(-I*sqrt(3), -I*sqrt(3)/2) == [ 2, 0]
85
+
86
+ assert field_isomorphism( 2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [ Rational(6, 35), 0]
87
+ assert field_isomorphism(-2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [Rational(-6, 35), 0]
88
+
89
+ assert field_isomorphism( 2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [Rational(-6, 35), 0]
90
+ assert field_isomorphism(-2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [ Rational(6, 35), 0]
91
+
92
+ assert field_isomorphism(
93
+ 2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [ Rational(6, 35), 27]
94
+ assert field_isomorphism(
95
+ -2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [Rational(-6, 35), 27]
96
+
97
+ assert field_isomorphism(
98
+ 2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [Rational(-6, 35), 27]
99
+ assert field_isomorphism(
100
+ -2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [ Rational(6, 35), 27]
101
+
102
+ p = AlgebraicNumber( sqrt(2) + sqrt(3))
103
+ q = AlgebraicNumber(-sqrt(2) + sqrt(3))
104
+ r = AlgebraicNumber( sqrt(2) - sqrt(3))
105
+ s = AlgebraicNumber(-sqrt(2) - sqrt(3))
106
+
107
+ pos_coeffs = [ S.Half, S.Zero, Rational(-9, 2), S.Zero]
108
+ neg_coeffs = [Rational(-1, 2), S.Zero, Rational(9, 2), S.Zero]
109
+
110
+ a = AlgebraicNumber(sqrt(2))
111
+
112
+ assert is_isomorphism_possible(a, p) is True
113
+ assert is_isomorphism_possible(a, q) is True
114
+ assert is_isomorphism_possible(a, r) is True
115
+ assert is_isomorphism_possible(a, s) is True
116
+
117
+ assert field_isomorphism(a, p, fast=True) == pos_coeffs
118
+ assert field_isomorphism(a, q, fast=True) == neg_coeffs
119
+ assert field_isomorphism(a, r, fast=True) == pos_coeffs
120
+ assert field_isomorphism(a, s, fast=True) == neg_coeffs
121
+
122
+ assert field_isomorphism(a, p, fast=False) == pos_coeffs
123
+ assert field_isomorphism(a, q, fast=False) == neg_coeffs
124
+ assert field_isomorphism(a, r, fast=False) == pos_coeffs
125
+ assert field_isomorphism(a, s, fast=False) == neg_coeffs
126
+
127
+ a = AlgebraicNumber(-sqrt(2))
128
+
129
+ assert is_isomorphism_possible(a, p) is True
130
+ assert is_isomorphism_possible(a, q) is True
131
+ assert is_isomorphism_possible(a, r) is True
132
+ assert is_isomorphism_possible(a, s) is True
133
+
134
+ assert field_isomorphism(a, p, fast=True) == neg_coeffs
135
+ assert field_isomorphism(a, q, fast=True) == pos_coeffs
136
+ assert field_isomorphism(a, r, fast=True) == neg_coeffs
137
+ assert field_isomorphism(a, s, fast=True) == pos_coeffs
138
+
139
+ assert field_isomorphism(a, p, fast=False) == neg_coeffs
140
+ assert field_isomorphism(a, q, fast=False) == pos_coeffs
141
+ assert field_isomorphism(a, r, fast=False) == neg_coeffs
142
+ assert field_isomorphism(a, s, fast=False) == pos_coeffs
143
+
144
+ pos_coeffs = [ S.Half, S.Zero, Rational(-11, 2), S.Zero]
145
+ neg_coeffs = [Rational(-1, 2), S.Zero, Rational(11, 2), S.Zero]
146
+
147
+ a = AlgebraicNumber(sqrt(3))
148
+
149
+ assert is_isomorphism_possible(a, p) is True
150
+ assert is_isomorphism_possible(a, q) is True
151
+ assert is_isomorphism_possible(a, r) is True
152
+ assert is_isomorphism_possible(a, s) is True
153
+
154
+ assert field_isomorphism(a, p, fast=True) == neg_coeffs
155
+ assert field_isomorphism(a, q, fast=True) == neg_coeffs
156
+ assert field_isomorphism(a, r, fast=True) == pos_coeffs
157
+ assert field_isomorphism(a, s, fast=True) == pos_coeffs
158
+
159
+ assert field_isomorphism(a, p, fast=False) == neg_coeffs
160
+ assert field_isomorphism(a, q, fast=False) == neg_coeffs
161
+ assert field_isomorphism(a, r, fast=False) == pos_coeffs
162
+ assert field_isomorphism(a, s, fast=False) == pos_coeffs
163
+
164
+ a = AlgebraicNumber(-sqrt(3))
165
+
166
+ assert is_isomorphism_possible(a, p) is True
167
+ assert is_isomorphism_possible(a, q) is True
168
+ assert is_isomorphism_possible(a, r) is True
169
+ assert is_isomorphism_possible(a, s) is True
170
+
171
+ assert field_isomorphism(a, p, fast=True) == pos_coeffs
172
+ assert field_isomorphism(a, q, fast=True) == pos_coeffs
173
+ assert field_isomorphism(a, r, fast=True) == neg_coeffs
174
+ assert field_isomorphism(a, s, fast=True) == neg_coeffs
175
+
176
+ assert field_isomorphism(a, p, fast=False) == pos_coeffs
177
+ assert field_isomorphism(a, q, fast=False) == pos_coeffs
178
+ assert field_isomorphism(a, r, fast=False) == neg_coeffs
179
+ assert field_isomorphism(a, s, fast=False) == neg_coeffs
180
+
181
+ pos_coeffs = [ Rational(3, 2), S.Zero, Rational(-33, 2), -S(8)]
182
+ neg_coeffs = [Rational(-3, 2), S.Zero, Rational(33, 2), -S(8)]
183
+
184
+ a = AlgebraicNumber(3*sqrt(3) - 8)
185
+
186
+ assert is_isomorphism_possible(a, p) is True
187
+ assert is_isomorphism_possible(a, q) is True
188
+ assert is_isomorphism_possible(a, r) is True
189
+ assert is_isomorphism_possible(a, s) is True
190
+
191
+ assert field_isomorphism(a, p, fast=True) == neg_coeffs
192
+ assert field_isomorphism(a, q, fast=True) == neg_coeffs
193
+ assert field_isomorphism(a, r, fast=True) == pos_coeffs
194
+ assert field_isomorphism(a, s, fast=True) == pos_coeffs
195
+
196
+ assert field_isomorphism(a, p, fast=False) == neg_coeffs
197
+ assert field_isomorphism(a, q, fast=False) == neg_coeffs
198
+ assert field_isomorphism(a, r, fast=False) == pos_coeffs
199
+ assert field_isomorphism(a, s, fast=False) == pos_coeffs
200
+
201
+ a = AlgebraicNumber(3*sqrt(2) + 2*sqrt(3) + 1)
202
+
203
+ pos_1_coeffs = [ S.Half, S.Zero, Rational(-5, 2), S.One]
204
+ neg_5_coeffs = [Rational(-5, 2), S.Zero, Rational(49, 2), S.One]
205
+ pos_5_coeffs = [ Rational(5, 2), S.Zero, Rational(-49, 2), S.One]
206
+ neg_1_coeffs = [Rational(-1, 2), S.Zero, Rational(5, 2), S.One]
207
+
208
+ assert is_isomorphism_possible(a, p) is True
209
+ assert is_isomorphism_possible(a, q) is True
210
+ assert is_isomorphism_possible(a, r) is True
211
+ assert is_isomorphism_possible(a, s) is True
212
+
213
+ assert field_isomorphism(a, p, fast=True) == pos_1_coeffs
214
+ assert field_isomorphism(a, q, fast=True) == neg_5_coeffs
215
+ assert field_isomorphism(a, r, fast=True) == pos_5_coeffs
216
+ assert field_isomorphism(a, s, fast=True) == neg_1_coeffs
217
+
218
+ assert field_isomorphism(a, p, fast=False) == pos_1_coeffs
219
+ assert field_isomorphism(a, q, fast=False) == neg_5_coeffs
220
+ assert field_isomorphism(a, r, fast=False) == pos_5_coeffs
221
+ assert field_isomorphism(a, s, fast=False) == neg_1_coeffs
222
+
223
+ a = AlgebraicNumber(sqrt(2))
224
+ b = AlgebraicNumber(sqrt(3))
225
+ c = AlgebraicNumber(sqrt(7))
226
+
227
+ assert is_isomorphism_possible(a, b) is True
228
+ assert is_isomorphism_possible(b, a) is True
229
+
230
+ assert is_isomorphism_possible(c, p) is False
231
+
232
+ assert field_isomorphism(sqrt(2), sqrt(3), fast=True) is None
233
+ assert field_isomorphism(sqrt(3), sqrt(2), fast=True) is None
234
+
235
+ assert field_isomorphism(sqrt(2), sqrt(3), fast=False) is None
236
+ assert field_isomorphism(sqrt(3), sqrt(2), fast=False) is None
237
+
238
+ a = AlgebraicNumber(sqrt(2))
239
+ b = AlgebraicNumber(2 ** (S(1) / 3))
240
+
241
+ assert is_isomorphism_possible(a, b) is False
242
+ assert field_isomorphism(a, b) is None
243
+
244
+
245
+ def test_primitive_element():
246
+ assert primitive_element([sqrt(2)], x) == (x**2 - 2, [1])
247
+ assert primitive_element(
248
+ [sqrt(2), sqrt(3)], x) == (x**4 - 10*x**2 + 1, [1, 1])
249
+
250
+ assert primitive_element([sqrt(2)], x, polys=True) == (Poly(x**2 - 2, domain='QQ'), [1])
251
+ assert primitive_element([sqrt(
252
+ 2), sqrt(3)], x, polys=True) == (Poly(x**4 - 10*x**2 + 1, domain='QQ'), [1, 1])
253
+
254
+ assert primitive_element(
255
+ [sqrt(2)], x, ex=True) == (x**2 - 2, [1], [[1, 0]])
256
+ assert primitive_element([sqrt(2), sqrt(3)], x, ex=True) == \
257
+ (x**4 - 10*x**2 + 1, [1, 1], [[Q(1, 2), 0, -Q(9, 2), 0], [-
258
+ Q(1, 2), 0, Q(11, 2), 0]])
259
+
260
+ assert primitive_element(
261
+ [sqrt(2)], x, ex=True, polys=True) == (Poly(x**2 - 2, domain='QQ'), [1], [[1, 0]])
262
+ assert primitive_element([sqrt(2), sqrt(3)], x, ex=True, polys=True) == \
263
+ (Poly(x**4 - 10*x**2 + 1, domain='QQ'), [1, 1], [[Q(1, 2), 0, -Q(9, 2),
264
+ 0], [-Q(1, 2), 0, Q(11, 2), 0]])
265
+
266
+ assert primitive_element([sqrt(2)], polys=True) == (Poly(x**2 - 2), [1])
267
+
268
+ raises(ValueError, lambda: primitive_element([], x, ex=False))
269
+ raises(ValueError, lambda: primitive_element([], x, ex=True))
270
+
271
+ # Issue 14117
272
+ a, b = I*sqrt(2*sqrt(2) + 3), I*sqrt(-2*sqrt(2) + 3)
273
+ assert primitive_element([a, b, I], x) == (x**4 + 6*x**2 + 1, [1, 0, 0])
274
+
275
+ assert primitive_element([sqrt(2), 0], x) == (x**2 - 2, [1, 0])
276
+ assert primitive_element([0, sqrt(2)], x) == (x**2 - 2, [1, 1])
277
+ assert primitive_element([sqrt(2), 0], x, ex=True) == (x**2 - 2, [1, 0], [[MPQ(1,1), MPQ(0,1)], []])
278
+ assert primitive_element([0, sqrt(2)], x, ex=True) == (x**2 - 2, [1, 1], [[], [MPQ(1,1), MPQ(0,1)]])
279
+
280
+
281
+ def test_to_number_field():
282
+ assert to_number_field(sqrt(2)) == AlgebraicNumber(sqrt(2))
283
+ assert to_number_field(
284
+ [sqrt(2), sqrt(3)]) == AlgebraicNumber(sqrt(2) + sqrt(3))
285
+
286
+ a = AlgebraicNumber(sqrt(2) + sqrt(3), [S.Half, S.Zero, Rational(-9, 2), S.Zero])
287
+
288
+ assert to_number_field(sqrt(2), sqrt(2) + sqrt(3)) == a
289
+ assert to_number_field(sqrt(2), AlgebraicNumber(sqrt(2) + sqrt(3))) == a
290
+
291
+ raises(IsomorphismFailed, lambda: to_number_field(sqrt(2), sqrt(3)))
292
+
293
+
294
+ def test_issue_22561():
295
+ a = to_number_field(sqrt(2), sqrt(2) + sqrt(3))
296
+ b = to_number_field(sqrt(2), sqrt(2) + sqrt(5))
297
+ assert field_isomorphism(a, b) == [1, 0]
298
+
299
+
300
+ def test_issue_22736():
301
+ a = CRootOf(x**4 + x**3 + x**2 + x + 1, -1)
302
+ a._reset()
303
+ b = exp(2*I*pi/5)
304
+ assert field_isomorphism(a, b) == [1, 0]
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/tests/test_utilities.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.abc import x
2
+ from sympy.core.numbers import (I, Rational)
3
+ from sympy.core.singleton import S
4
+ from sympy.functions.elementary.miscellaneous import sqrt
5
+ from sympy.polys import Poly, cyclotomic_poly
6
+ from sympy.polys.domains import FF, QQ
7
+ from sympy.polys.matrices import DomainMatrix, DM
8
+ from sympy.polys.matrices.exceptions import DMRankError
9
+ from sympy.polys.numberfields.utilities import (
10
+ AlgIntPowers, coeff_search, extract_fundamental_discriminant,
11
+ isolate, supplement_a_subspace,
12
+ )
13
+ from sympy.printing.lambdarepr import IntervalPrinter
14
+ from sympy.testing.pytest import raises
15
+
16
+
17
+ def test_AlgIntPowers_01():
18
+ T = Poly(cyclotomic_poly(5))
19
+ zeta_pow = AlgIntPowers(T)
20
+ raises(ValueError, lambda: zeta_pow[-1])
21
+ for e in range(10):
22
+ a = e % 5
23
+ if a < 4:
24
+ c = zeta_pow[e]
25
+ assert c[a] == 1 and all(c[i] == 0 for i in range(4) if i != a)
26
+ else:
27
+ assert zeta_pow[e] == [-1] * 4
28
+
29
+
30
+ def test_AlgIntPowers_02():
31
+ T = Poly(x**3 + 2*x**2 + 3*x + 4)
32
+ m = 7
33
+ theta_pow = AlgIntPowers(T, m)
34
+ for e in range(10):
35
+ computed = theta_pow[e]
36
+ coeffs = (Poly(x)**e % T + Poly(x**3)).rep.rep[1:]
37
+ expected = [c % m for c in reversed(coeffs)]
38
+ assert computed == expected
39
+
40
+
41
+ def test_coeff_search():
42
+ C = []
43
+ search = coeff_search(2, 1)
44
+ for i, c in enumerate(search):
45
+ C.append(c)
46
+ if i == 12:
47
+ break
48
+ assert C == [[1, 1], [1, 0], [1, -1], [0, 1], [2, 2], [2, 1], [2, 0], [2, -1], [2, -2], [1, 2], [1, -2], [0, 2], [3, 3]]
49
+
50
+
51
+ def test_extract_fundamental_discriminant():
52
+ # To extract, integer must be 0 or 1 mod 4.
53
+ raises(ValueError, lambda: extract_fundamental_discriminant(2))
54
+ raises(ValueError, lambda: extract_fundamental_discriminant(3))
55
+ # Try many cases, of different forms:
56
+ cases = (
57
+ (0, {}, {0: 1}),
58
+ (1, {}, {}),
59
+ (8, {2: 3}, {}),
60
+ (-8, {2: 3, -1: 1}, {}),
61
+ (12, {2: 2, 3: 1}, {}),
62
+ (36, {}, {2: 1, 3: 1}),
63
+ (45, {5: 1}, {3: 1}),
64
+ (48, {2: 2, 3: 1}, {2: 1}),
65
+ (1125, {5: 1}, {3: 1, 5: 1}),
66
+ )
67
+ for a, D_expected, F_expected in cases:
68
+ D, F = extract_fundamental_discriminant(a)
69
+ assert D == D_expected
70
+ assert F == F_expected
71
+
72
+
73
+ def test_supplement_a_subspace_1():
74
+ M = DM([[1, 7, 0], [2, 3, 4]], QQ).transpose()
75
+
76
+ # First supplement over QQ:
77
+ B = supplement_a_subspace(M)
78
+ assert B[:, :2] == M
79
+ assert B[:, 2] == DomainMatrix.eye(3, QQ).to_dense()[:, 0]
80
+
81
+ # Now supplement over FF(7):
82
+ M = M.convert_to(FF(7))
83
+ B = supplement_a_subspace(M)
84
+ assert B[:, :2] == M
85
+ # When we work mod 7, first col of M goes to [1, 0, 0],
86
+ # so the supplementary vector cannot equal this, as it did
87
+ # when we worked over QQ. Instead, we get the second std basis vector:
88
+ assert B[:, 2] == DomainMatrix.eye(3, FF(7)).to_dense()[:, 1]
89
+
90
+
91
+ def test_supplement_a_subspace_2():
92
+ M = DM([[1, 0, 0], [2, 0, 0]], QQ).transpose()
93
+ with raises(DMRankError):
94
+ supplement_a_subspace(M)
95
+
96
+
97
+ def test_IntervalPrinter():
98
+ ip = IntervalPrinter()
99
+ assert ip.doprint(x**Rational(1, 3)) == "x**(mpi('1/3'))"
100
+ assert ip.doprint(sqrt(x)) == "x**(mpi('1/2'))"
101
+
102
+
103
+ def test_isolate():
104
+ assert isolate(1) == (1, 1)
105
+ assert isolate(S.Half) == (S.Half, S.Half)
106
+
107
+ assert isolate(sqrt(2)) == (1, 2)
108
+ assert isolate(-sqrt(2)) == (-2, -1)
109
+
110
+ assert isolate(sqrt(2), eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12))
111
+ assert isolate(-sqrt(2), eps=Rational(1, 100)) == (Rational(-17, 12), Rational(-24, 17))
112
+
113
+ raises(NotImplementedError, lambda: isolate(I))
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_c.cpython-310.pyc ADDED
Binary file (30.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_conventions.cpython-310.pyc ADDED
Binary file (3.83 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_cupy.cpython-310.pyc ADDED
Binary file (2.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_cxx.cpython-310.pyc ADDED
Binary file (3.38 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_fortran.cpython-310.pyc ADDED
Binary file (32.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_glsl.cpython-310.pyc ADDED
Binary file (26.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_jscode.cpython-310.pyc ADDED
Binary file (12.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_julia.cpython-310.pyc ADDED
Binary file (14.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_latex.cpython-310.pyc ADDED
Binary file (127 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_llvmjit.cpython-310.pyc ADDED
Binary file (6.71 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_maple.cpython-310.pyc ADDED
Binary file (14.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_mathematica.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_mathml.cpython-310.pyc ADDED
Binary file (81.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_octave.cpython-310.pyc ADDED
Binary file (20.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_python.cpython-310.pyc ADDED
Binary file (8.37 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_rust.cpython-310.pyc ADDED
Binary file (12.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_str.cpython-310.pyc ADDED
Binary file (48.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_tableform.cpython-310.pyc ADDED
Binary file (4.35 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_tensorflow.cpython-310.pyc ADDED
Binary file (16 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__pycache__/test_tree.cpython-310.pyc ADDED
Binary file (4.48 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/utilities/__init__.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This module contains some general purpose utilities that are used across
2
+ SymPy.
3
+ """
4
+ from .iterables import (flatten, group, take, subsets,
5
+ variations, numbered_symbols, cartes, capture, dict_merge,
6
+ prefixes, postfixes, sift, topological_sort, unflatten,
7
+ has_dups, has_variety, reshape, rotations)
8
+
9
+ from .misc import filldedent
10
+
11
+ from .lambdify import lambdify
12
+
13
+ from .decorator import threaded, xthreaded, public, memoize_property
14
+
15
+ from .timeutils import timed
16
+
17
+ __all__ = [
18
+ 'flatten', 'group', 'take', 'subsets', 'variations', 'numbered_symbols',
19
+ 'cartes', 'capture', 'dict_merge', 'prefixes', 'postfixes', 'sift',
20
+ 'topological_sort', 'unflatten', 'has_dups', 'has_variety', 'reshape',
21
+ 'rotations',
22
+
23
+ 'filldedent',
24
+
25
+ 'lambdify',
26
+
27
+ 'threaded', 'xthreaded', 'public', 'memoize_property',
28
+
29
+ 'timed',
30
+ ]
env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.01 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/utilities/__pycache__/codegen.cpython-310.pyc ADDED
Binary file (63.6 kB). View file