Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/delta.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/expr_with_intlimits.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/expr_with_limits.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/gosper.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/guess.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/products.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/summations.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_delta.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_guess.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_products.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/__init__.py +116 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/codeprinter.py +875 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/cxx.py +169 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/defaults.py +5 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/fortran.py +782 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/glsl.py +557 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/gtk.py +16 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/jscode.py +339 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/julia.py +658 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/lambdarepr.py +251 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/latex.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/llvmjitcode.py +489 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/maple.py +311 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/mathematica.py +354 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/mathml.py +2126 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/numpy.py +507 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/octave.py +719 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/preview.py +390 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/printer.py +396 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/pycode.py +750 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/python.py +93 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/repr.py +342 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/str.py +1027 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_aesaracode.py +626 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_c.py +875 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_codeprinter.py +55 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_conventions.py +116 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_cupy.py +55 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_cxx.py +67 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_dot.py +134 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_fortran.py +853 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_glsl.py +998 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_gtk.py +18 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_jax.py +347 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_jscode.py +396 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_julia.py +388 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_lambdarepr.py +246 -0
- env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_latex.py +0 -0
env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (336 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/delta.cpython-310.pyc
ADDED
Binary file (9.22 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/expr_with_intlimits.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/expr_with_limits.cpython-310.pyc
ADDED
Binary file (18.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/gosper.cpython-310.pyc
ADDED
Binary file (5.41 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/guess.cpython-310.pyc
ADDED
Binary file (17.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/products.cpython-310.pyc
ADDED
Binary file (18 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/__pycache__/summations.cpython-310.pyc
ADDED
Binary file (42.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_delta.cpython-310.pyc
ADDED
Binary file (22.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_guess.cpython-310.pyc
ADDED
Binary file (4.56 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/concrete/tests/__pycache__/test_products.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/__init__.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Printing subsystem"""
|
2 |
+
|
3 |
+
from .pretty import pager_print, pretty, pretty_print, pprint, pprint_use_unicode, pprint_try_use_unicode
|
4 |
+
|
5 |
+
from .latex import latex, print_latex, multiline_latex
|
6 |
+
|
7 |
+
from .mathml import mathml, print_mathml
|
8 |
+
|
9 |
+
from .python import python, print_python
|
10 |
+
|
11 |
+
from .pycode import pycode
|
12 |
+
|
13 |
+
from .codeprinter import print_ccode, print_fcode
|
14 |
+
|
15 |
+
from .codeprinter import ccode, fcode, cxxcode # noqa:F811
|
16 |
+
|
17 |
+
from .smtlib import smtlib_code
|
18 |
+
|
19 |
+
from .glsl import glsl_code, print_glsl
|
20 |
+
|
21 |
+
from .rcode import rcode, print_rcode
|
22 |
+
|
23 |
+
from .jscode import jscode, print_jscode
|
24 |
+
|
25 |
+
from .julia import julia_code
|
26 |
+
|
27 |
+
from .mathematica import mathematica_code
|
28 |
+
|
29 |
+
from .octave import octave_code
|
30 |
+
|
31 |
+
from .rust import rust_code
|
32 |
+
|
33 |
+
from .gtk import print_gtk
|
34 |
+
|
35 |
+
from .preview import preview
|
36 |
+
|
37 |
+
from .repr import srepr
|
38 |
+
|
39 |
+
from .tree import print_tree
|
40 |
+
|
41 |
+
from .str import StrPrinter, sstr, sstrrepr
|
42 |
+
|
43 |
+
from .tableform import TableForm
|
44 |
+
|
45 |
+
from .dot import dotprint
|
46 |
+
|
47 |
+
from .maple import maple_code, print_maple_code
|
48 |
+
|
49 |
+
__all__ = [
|
50 |
+
# sympy.printing.pretty
|
51 |
+
'pager_print', 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode',
|
52 |
+
'pprint_try_use_unicode',
|
53 |
+
|
54 |
+
# sympy.printing.latex
|
55 |
+
'latex', 'print_latex', 'multiline_latex',
|
56 |
+
|
57 |
+
# sympy.printing.mathml
|
58 |
+
'mathml', 'print_mathml',
|
59 |
+
|
60 |
+
# sympy.printing.python
|
61 |
+
'python', 'print_python',
|
62 |
+
|
63 |
+
# sympy.printing.pycode
|
64 |
+
'pycode',
|
65 |
+
|
66 |
+
# sympy.printing.codeprinter
|
67 |
+
'ccode', 'print_ccode', 'cxxcode', 'fcode', 'print_fcode',
|
68 |
+
|
69 |
+
# sympy.printing.smtlib
|
70 |
+
'smtlib_code',
|
71 |
+
|
72 |
+
# sympy.printing.glsl
|
73 |
+
'glsl_code', 'print_glsl',
|
74 |
+
|
75 |
+
# sympy.printing.rcode
|
76 |
+
'rcode', 'print_rcode',
|
77 |
+
|
78 |
+
# sympy.printing.jscode
|
79 |
+
'jscode', 'print_jscode',
|
80 |
+
|
81 |
+
# sympy.printing.julia
|
82 |
+
'julia_code',
|
83 |
+
|
84 |
+
# sympy.printing.mathematica
|
85 |
+
'mathematica_code',
|
86 |
+
|
87 |
+
# sympy.printing.octave
|
88 |
+
'octave_code',
|
89 |
+
|
90 |
+
# sympy.printing.rust
|
91 |
+
'rust_code',
|
92 |
+
|
93 |
+
# sympy.printing.gtk
|
94 |
+
'print_gtk',
|
95 |
+
|
96 |
+
# sympy.printing.preview
|
97 |
+
'preview',
|
98 |
+
|
99 |
+
# sympy.printing.repr
|
100 |
+
'srepr',
|
101 |
+
|
102 |
+
# sympy.printing.tree
|
103 |
+
'print_tree',
|
104 |
+
|
105 |
+
# sympy.printing.str
|
106 |
+
'StrPrinter', 'sstr', 'sstrrepr',
|
107 |
+
|
108 |
+
# sympy.printing.tableform
|
109 |
+
'TableForm',
|
110 |
+
|
111 |
+
# sympy.printing.dot
|
112 |
+
'dotprint',
|
113 |
+
|
114 |
+
# sympy.printing.maple
|
115 |
+
'maple_code', 'print_maple_code',
|
116 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/codeprinter.py
ADDED
@@ -0,0 +1,875 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
from functools import wraps
|
5 |
+
|
6 |
+
from sympy.core import Add, Mul, Pow, S, sympify, Float
|
7 |
+
from sympy.core.basic import Basic
|
8 |
+
from sympy.core.expr import UnevaluatedExpr
|
9 |
+
from sympy.core.function import Lambda
|
10 |
+
from sympy.core.mul import _keep_coeff
|
11 |
+
from sympy.core.sorting import default_sort_key
|
12 |
+
from sympy.core.symbol import Symbol
|
13 |
+
from sympy.functions.elementary.complexes import re
|
14 |
+
from sympy.printing.str import StrPrinter
|
15 |
+
from sympy.printing.precedence import precedence, PRECEDENCE
|
16 |
+
|
17 |
+
|
18 |
+
class requires:
|
19 |
+
""" Decorator for registering requirements on print methods. """
|
20 |
+
def __init__(self, **kwargs):
|
21 |
+
self._req = kwargs
|
22 |
+
|
23 |
+
def __call__(self, method):
|
24 |
+
def _method_wrapper(self_, *args, **kwargs):
|
25 |
+
for k, v in self._req.items():
|
26 |
+
getattr(self_, k).update(v)
|
27 |
+
return method(self_, *args, **kwargs)
|
28 |
+
return wraps(method)(_method_wrapper)
|
29 |
+
|
30 |
+
|
31 |
+
class AssignmentError(Exception):
|
32 |
+
"""
|
33 |
+
Raised if an assignment variable for a loop is missing.
|
34 |
+
"""
|
35 |
+
pass
|
36 |
+
|
37 |
+
|
38 |
+
def _convert_python_lists(arg):
|
39 |
+
if isinstance(arg, list):
|
40 |
+
from sympy.codegen.abstract_nodes import List
|
41 |
+
return List(*(_convert_python_lists(e) for e in arg))
|
42 |
+
elif isinstance(arg, tuple):
|
43 |
+
return tuple(_convert_python_lists(e) for e in arg)
|
44 |
+
else:
|
45 |
+
return arg
|
46 |
+
|
47 |
+
|
48 |
+
class CodePrinter(StrPrinter):
|
49 |
+
"""
|
50 |
+
The base class for code-printing subclasses.
|
51 |
+
"""
|
52 |
+
|
53 |
+
_operators = {
|
54 |
+
'and': '&&',
|
55 |
+
'or': '||',
|
56 |
+
'not': '!',
|
57 |
+
}
|
58 |
+
|
59 |
+
_default_settings: dict[str, Any] = {
|
60 |
+
'order': None,
|
61 |
+
'full_prec': 'auto',
|
62 |
+
'error_on_reserved': False,
|
63 |
+
'reserved_word_suffix': '_',
|
64 |
+
'human': True,
|
65 |
+
'inline': False,
|
66 |
+
'allow_unknown_functions': False,
|
67 |
+
}
|
68 |
+
|
69 |
+
# Functions which are "simple" to rewrite to other functions that
|
70 |
+
# may be supported
|
71 |
+
# function_to_rewrite : (function_to_rewrite_to, iterable_with_other_functions_required)
|
72 |
+
_rewriteable_functions = {
|
73 |
+
'cot': ('tan', []),
|
74 |
+
'csc': ('sin', []),
|
75 |
+
'sec': ('cos', []),
|
76 |
+
'acot': ('atan', []),
|
77 |
+
'acsc': ('asin', []),
|
78 |
+
'asec': ('acos', []),
|
79 |
+
'coth': ('exp', []),
|
80 |
+
'csch': ('exp', []),
|
81 |
+
'sech': ('exp', []),
|
82 |
+
'acoth': ('log', []),
|
83 |
+
'acsch': ('log', []),
|
84 |
+
'asech': ('log', []),
|
85 |
+
'catalan': ('gamma', []),
|
86 |
+
'fibonacci': ('sqrt', []),
|
87 |
+
'lucas': ('sqrt', []),
|
88 |
+
'beta': ('gamma', []),
|
89 |
+
'sinc': ('sin', ['Piecewise']),
|
90 |
+
'Mod': ('floor', []),
|
91 |
+
'factorial': ('gamma', []),
|
92 |
+
'factorial2': ('gamma', ['Piecewise']),
|
93 |
+
'subfactorial': ('uppergamma', []),
|
94 |
+
'RisingFactorial': ('gamma', ['Piecewise']),
|
95 |
+
'FallingFactorial': ('gamma', ['Piecewise']),
|
96 |
+
'binomial': ('gamma', []),
|
97 |
+
'frac': ('floor', []),
|
98 |
+
'Max': ('Piecewise', []),
|
99 |
+
'Min': ('Piecewise', []),
|
100 |
+
'Heaviside': ('Piecewise', []),
|
101 |
+
'erf2': ('erf', []),
|
102 |
+
'erfc': ('erf', []),
|
103 |
+
'Li': ('li', []),
|
104 |
+
'Ei': ('li', []),
|
105 |
+
'dirichlet_eta': ('zeta', []),
|
106 |
+
'riemann_xi': ('zeta', ['gamma']),
|
107 |
+
}
|
108 |
+
|
109 |
+
def __init__(self, settings=None):
|
110 |
+
|
111 |
+
super().__init__(settings=settings)
|
112 |
+
if not hasattr(self, 'reserved_words'):
|
113 |
+
self.reserved_words = set()
|
114 |
+
|
115 |
+
def _handle_UnevaluatedExpr(self, expr):
|
116 |
+
return expr.replace(re, lambda arg: arg if isinstance(
|
117 |
+
arg, UnevaluatedExpr) and arg.args[0].is_real else re(arg))
|
118 |
+
|
119 |
+
def doprint(self, expr, assign_to=None):
|
120 |
+
"""
|
121 |
+
Print the expression as code.
|
122 |
+
|
123 |
+
Parameters
|
124 |
+
----------
|
125 |
+
expr : Expression
|
126 |
+
The expression to be printed.
|
127 |
+
|
128 |
+
assign_to : Symbol, string, MatrixSymbol, list of strings or Symbols (optional)
|
129 |
+
If provided, the printed code will set the expression to a variable or multiple variables
|
130 |
+
with the name or names given in ``assign_to``.
|
131 |
+
"""
|
132 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
133 |
+
from sympy.codegen.ast import CodeBlock, Assignment
|
134 |
+
|
135 |
+
def _handle_assign_to(expr, assign_to):
|
136 |
+
if assign_to is None:
|
137 |
+
return sympify(expr)
|
138 |
+
if isinstance(assign_to, (list, tuple)):
|
139 |
+
if len(expr) != len(assign_to):
|
140 |
+
raise ValueError('Failed to assign an expression of length {} to {} variables'.format(len(expr), len(assign_to)))
|
141 |
+
return CodeBlock(*[_handle_assign_to(lhs, rhs) for lhs, rhs in zip(expr, assign_to)])
|
142 |
+
if isinstance(assign_to, str):
|
143 |
+
if expr.is_Matrix:
|
144 |
+
assign_to = MatrixSymbol(assign_to, *expr.shape)
|
145 |
+
else:
|
146 |
+
assign_to = Symbol(assign_to)
|
147 |
+
elif not isinstance(assign_to, Basic):
|
148 |
+
raise TypeError("{} cannot assign to object of type {}".format(
|
149 |
+
type(self).__name__, type(assign_to)))
|
150 |
+
return Assignment(assign_to, expr)
|
151 |
+
|
152 |
+
expr = _convert_python_lists(expr)
|
153 |
+
expr = _handle_assign_to(expr, assign_to)
|
154 |
+
|
155 |
+
# Remove re(...) nodes due to UnevaluatedExpr.is_real always is None:
|
156 |
+
expr = self._handle_UnevaluatedExpr(expr)
|
157 |
+
|
158 |
+
# keep a set of expressions that are not strictly translatable to Code
|
159 |
+
# and number constants that must be declared and initialized
|
160 |
+
self._not_supported = set()
|
161 |
+
self._number_symbols = set()
|
162 |
+
|
163 |
+
lines = self._print(expr).splitlines()
|
164 |
+
|
165 |
+
# format the output
|
166 |
+
if self._settings["human"]:
|
167 |
+
frontlines = []
|
168 |
+
if self._not_supported:
|
169 |
+
frontlines.append(self._get_comment(
|
170 |
+
"Not supported in {}:".format(self.language)))
|
171 |
+
for expr in sorted(self._not_supported, key=str):
|
172 |
+
frontlines.append(self._get_comment(type(expr).__name__))
|
173 |
+
for name, value in sorted(self._number_symbols, key=str):
|
174 |
+
frontlines.append(self._declare_number_const(name, value))
|
175 |
+
lines = frontlines + lines
|
176 |
+
lines = self._format_code(lines)
|
177 |
+
result = "\n".join(lines)
|
178 |
+
else:
|
179 |
+
lines = self._format_code(lines)
|
180 |
+
num_syms = {(k, self._print(v)) for k, v in self._number_symbols}
|
181 |
+
result = (num_syms, self._not_supported, "\n".join(lines))
|
182 |
+
self._not_supported = set()
|
183 |
+
self._number_symbols = set()
|
184 |
+
return result
|
185 |
+
|
186 |
+
def _doprint_loops(self, expr, assign_to=None):
|
187 |
+
# Here we print an expression that contains Indexed objects, they
|
188 |
+
# correspond to arrays in the generated code. The low-level implementation
|
189 |
+
# involves looping over array elements and possibly storing results in temporary
|
190 |
+
# variables or accumulate it in the assign_to object.
|
191 |
+
|
192 |
+
if self._settings.get('contract', True):
|
193 |
+
from sympy.tensor import get_contraction_structure
|
194 |
+
# Setup loops over non-dummy indices -- all terms need these
|
195 |
+
indices = self._get_expression_indices(expr, assign_to)
|
196 |
+
# Setup loops over dummy indices -- each term needs separate treatment
|
197 |
+
dummies = get_contraction_structure(expr)
|
198 |
+
else:
|
199 |
+
indices = []
|
200 |
+
dummies = {None: (expr,)}
|
201 |
+
openloop, closeloop = self._get_loop_opening_ending(indices)
|
202 |
+
|
203 |
+
# terms with no summations first
|
204 |
+
if None in dummies:
|
205 |
+
text = StrPrinter.doprint(self, Add(*dummies[None]))
|
206 |
+
else:
|
207 |
+
# If all terms have summations we must initialize array to Zero
|
208 |
+
text = StrPrinter.doprint(self, 0)
|
209 |
+
|
210 |
+
# skip redundant assignments (where lhs == rhs)
|
211 |
+
lhs_printed = self._print(assign_to)
|
212 |
+
lines = []
|
213 |
+
if text != lhs_printed:
|
214 |
+
lines.extend(openloop)
|
215 |
+
if assign_to is not None:
|
216 |
+
text = self._get_statement("%s = %s" % (lhs_printed, text))
|
217 |
+
lines.append(text)
|
218 |
+
lines.extend(closeloop)
|
219 |
+
|
220 |
+
# then terms with summations
|
221 |
+
for d in dummies:
|
222 |
+
if isinstance(d, tuple):
|
223 |
+
indices = self._sort_optimized(d, expr)
|
224 |
+
openloop_d, closeloop_d = self._get_loop_opening_ending(
|
225 |
+
indices)
|
226 |
+
|
227 |
+
for term in dummies[d]:
|
228 |
+
if term in dummies and not ([list(f.keys()) for f in dummies[term]]
|
229 |
+
== [[None] for f in dummies[term]]):
|
230 |
+
# If one factor in the term has it's own internal
|
231 |
+
# contractions, those must be computed first.
|
232 |
+
# (temporary variables?)
|
233 |
+
raise NotImplementedError(
|
234 |
+
"FIXME: no support for contractions in factor yet")
|
235 |
+
else:
|
236 |
+
|
237 |
+
# We need the lhs expression as an accumulator for
|
238 |
+
# the loops, i.e
|
239 |
+
#
|
240 |
+
# for (int d=0; d < dim; d++){
|
241 |
+
# lhs[] = lhs[] + term[][d]
|
242 |
+
# } ^.................. the accumulator
|
243 |
+
#
|
244 |
+
# We check if the expression already contains the
|
245 |
+
# lhs, and raise an exception if it does, as that
|
246 |
+
# syntax is currently undefined. FIXME: What would be
|
247 |
+
# a good interpretation?
|
248 |
+
if assign_to is None:
|
249 |
+
raise AssignmentError(
|
250 |
+
"need assignment variable for loops")
|
251 |
+
if term.has(assign_to):
|
252 |
+
raise ValueError("FIXME: lhs present in rhs,\
|
253 |
+
this is undefined in CodePrinter")
|
254 |
+
|
255 |
+
lines.extend(openloop)
|
256 |
+
lines.extend(openloop_d)
|
257 |
+
text = "%s = %s" % (lhs_printed, StrPrinter.doprint(
|
258 |
+
self, assign_to + term))
|
259 |
+
lines.append(self._get_statement(text))
|
260 |
+
lines.extend(closeloop_d)
|
261 |
+
lines.extend(closeloop)
|
262 |
+
|
263 |
+
return "\n".join(lines)
|
264 |
+
|
265 |
+
def _get_expression_indices(self, expr, assign_to):
|
266 |
+
from sympy.tensor import get_indices
|
267 |
+
rinds, junk = get_indices(expr)
|
268 |
+
linds, junk = get_indices(assign_to)
|
269 |
+
|
270 |
+
# support broadcast of scalar
|
271 |
+
if linds and not rinds:
|
272 |
+
rinds = linds
|
273 |
+
if rinds != linds:
|
274 |
+
raise ValueError("lhs indices must match non-dummy"
|
275 |
+
" rhs indices in %s" % expr)
|
276 |
+
|
277 |
+
return self._sort_optimized(rinds, assign_to)
|
278 |
+
|
279 |
+
def _sort_optimized(self, indices, expr):
|
280 |
+
|
281 |
+
from sympy.tensor.indexed import Indexed
|
282 |
+
|
283 |
+
if not indices:
|
284 |
+
return []
|
285 |
+
|
286 |
+
# determine optimized loop order by giving a score to each index
|
287 |
+
# the index with the highest score are put in the innermost loop.
|
288 |
+
score_table = {}
|
289 |
+
for i in indices:
|
290 |
+
score_table[i] = 0
|
291 |
+
|
292 |
+
arrays = expr.atoms(Indexed)
|
293 |
+
for arr in arrays:
|
294 |
+
for p, ind in enumerate(arr.indices):
|
295 |
+
try:
|
296 |
+
score_table[ind] += self._rate_index_position(p)
|
297 |
+
except KeyError:
|
298 |
+
pass
|
299 |
+
|
300 |
+
return sorted(indices, key=lambda x: score_table[x])
|
301 |
+
|
302 |
+
def _rate_index_position(self, p):
|
303 |
+
"""function to calculate score based on position among indices
|
304 |
+
|
305 |
+
This method is used to sort loops in an optimized order, see
|
306 |
+
CodePrinter._sort_optimized()
|
307 |
+
"""
|
308 |
+
raise NotImplementedError("This function must be implemented by "
|
309 |
+
"subclass of CodePrinter.")
|
310 |
+
|
311 |
+
def _get_statement(self, codestring):
|
312 |
+
"""Formats a codestring with the proper line ending."""
|
313 |
+
raise NotImplementedError("This function must be implemented by "
|
314 |
+
"subclass of CodePrinter.")
|
315 |
+
|
316 |
+
def _get_comment(self, text):
|
317 |
+
"""Formats a text string as a comment."""
|
318 |
+
raise NotImplementedError("This function must be implemented by "
|
319 |
+
"subclass of CodePrinter.")
|
320 |
+
|
321 |
+
def _declare_number_const(self, name, value):
|
322 |
+
"""Declare a numeric constant at the top of a function"""
|
323 |
+
raise NotImplementedError("This function must be implemented by "
|
324 |
+
"subclass of CodePrinter.")
|
325 |
+
|
326 |
+
def _format_code(self, lines):
|
327 |
+
"""Take in a list of lines of code, and format them accordingly.
|
328 |
+
|
329 |
+
This may include indenting, wrapping long lines, etc..."""
|
330 |
+
raise NotImplementedError("This function must be implemented by "
|
331 |
+
"subclass of CodePrinter.")
|
332 |
+
|
333 |
+
def _get_loop_opening_ending(self, indices):
|
334 |
+
"""Returns a tuple (open_lines, close_lines) containing lists
|
335 |
+
of codelines"""
|
336 |
+
raise NotImplementedError("This function must be implemented by "
|
337 |
+
"subclass of CodePrinter.")
|
338 |
+
|
339 |
+
def _print_Dummy(self, expr):
|
340 |
+
if expr.name.startswith('Dummy_'):
|
341 |
+
return '_' + expr.name
|
342 |
+
else:
|
343 |
+
return '%s_%d' % (expr.name, expr.dummy_index)
|
344 |
+
|
345 |
+
def _print_CodeBlock(self, expr):
|
346 |
+
return '\n'.join([self._print(i) for i in expr.args])
|
347 |
+
|
348 |
+
def _print_String(self, string):
|
349 |
+
return str(string)
|
350 |
+
|
351 |
+
def _print_QuotedString(self, arg):
|
352 |
+
return '"%s"' % arg.text
|
353 |
+
|
354 |
+
def _print_Comment(self, string):
|
355 |
+
return self._get_comment(str(string))
|
356 |
+
|
357 |
+
def _print_Assignment(self, expr):
|
358 |
+
from sympy.codegen.ast import Assignment
|
359 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
360 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
361 |
+
from sympy.tensor.indexed import IndexedBase
|
362 |
+
lhs = expr.lhs
|
363 |
+
rhs = expr.rhs
|
364 |
+
# We special case assignments that take multiple lines
|
365 |
+
if isinstance(expr.rhs, Piecewise):
|
366 |
+
# Here we modify Piecewise so each expression is now
|
367 |
+
# an Assignment, and then continue on the print.
|
368 |
+
expressions = []
|
369 |
+
conditions = []
|
370 |
+
for (e, c) in rhs.args:
|
371 |
+
expressions.append(Assignment(lhs, e))
|
372 |
+
conditions.append(c)
|
373 |
+
temp = Piecewise(*zip(expressions, conditions))
|
374 |
+
return self._print(temp)
|
375 |
+
elif isinstance(lhs, MatrixSymbol):
|
376 |
+
# Here we form an Assignment for each element in the array,
|
377 |
+
# printing each one.
|
378 |
+
lines = []
|
379 |
+
for (i, j) in self._traverse_matrix_indices(lhs):
|
380 |
+
temp = Assignment(lhs[i, j], rhs[i, j])
|
381 |
+
code0 = self._print(temp)
|
382 |
+
lines.append(code0)
|
383 |
+
return "\n".join(lines)
|
384 |
+
elif self._settings.get("contract", False) and (lhs.has(IndexedBase) or
|
385 |
+
rhs.has(IndexedBase)):
|
386 |
+
# Here we check if there is looping to be done, and if so
|
387 |
+
# print the required loops.
|
388 |
+
return self._doprint_loops(rhs, lhs)
|
389 |
+
else:
|
390 |
+
lhs_code = self._print(lhs)
|
391 |
+
rhs_code = self._print(rhs)
|
392 |
+
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
|
393 |
+
|
394 |
+
def _print_AugmentedAssignment(self, expr):
|
395 |
+
lhs_code = self._print(expr.lhs)
|
396 |
+
rhs_code = self._print(expr.rhs)
|
397 |
+
return self._get_statement("{} {} {}".format(
|
398 |
+
*(self._print(arg) for arg in [lhs_code, expr.op, rhs_code])))
|
399 |
+
|
400 |
+
def _print_FunctionCall(self, expr):
|
401 |
+
return '%s(%s)' % (
|
402 |
+
expr.name,
|
403 |
+
', '.join((self._print(arg) for arg in expr.function_args)))
|
404 |
+
|
405 |
+
def _print_Variable(self, expr):
|
406 |
+
return self._print(expr.symbol)
|
407 |
+
|
408 |
+
def _print_Symbol(self, expr):
|
409 |
+
|
410 |
+
name = super()._print_Symbol(expr)
|
411 |
+
|
412 |
+
if name in self.reserved_words:
|
413 |
+
if self._settings['error_on_reserved']:
|
414 |
+
msg = ('This expression includes the symbol "{}" which is a '
|
415 |
+
'reserved keyword in this language.')
|
416 |
+
raise ValueError(msg.format(name))
|
417 |
+
return name + self._settings['reserved_word_suffix']
|
418 |
+
else:
|
419 |
+
return name
|
420 |
+
|
421 |
+
def _can_print(self, name):
|
422 |
+
""" Check if function ``name`` is either a known function or has its own
|
423 |
+
printing method. Used to check if rewriting is possible."""
|
424 |
+
return name in self.known_functions or getattr(self, '_print_{}'.format(name), False)
|
425 |
+
|
426 |
+
def _print_Function(self, expr):
|
427 |
+
if expr.func.__name__ in self.known_functions:
|
428 |
+
cond_func = self.known_functions[expr.func.__name__]
|
429 |
+
if isinstance(cond_func, str):
|
430 |
+
return "%s(%s)" % (cond_func, self.stringify(expr.args, ", "))
|
431 |
+
else:
|
432 |
+
for cond, func in cond_func:
|
433 |
+
if cond(*expr.args):
|
434 |
+
break
|
435 |
+
if func is not None:
|
436 |
+
try:
|
437 |
+
return func(*[self.parenthesize(item, 0) for item in expr.args])
|
438 |
+
except TypeError:
|
439 |
+
return "%s(%s)" % (func, self.stringify(expr.args, ", "))
|
440 |
+
elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda):
|
441 |
+
# inlined function
|
442 |
+
return self._print(expr._imp_(*expr.args))
|
443 |
+
elif expr.func.__name__ in self._rewriteable_functions:
|
444 |
+
# Simple rewrite to supported function possible
|
445 |
+
target_f, required_fs = self._rewriteable_functions[expr.func.__name__]
|
446 |
+
if self._can_print(target_f) and all(self._can_print(f) for f in required_fs):
|
447 |
+
return self._print(expr.rewrite(target_f))
|
448 |
+
if expr.is_Function and self._settings.get('allow_unknown_functions', False):
|
449 |
+
return '%s(%s)' % (self._print(expr.func), ', '.join(map(self._print, expr.args)))
|
450 |
+
else:
|
451 |
+
return self._print_not_supported(expr)
|
452 |
+
|
453 |
+
_print_Expr = _print_Function
|
454 |
+
|
455 |
+
# Don't inherit the str-printer method for Heaviside to the code printers
|
456 |
+
_print_Heaviside = None
|
457 |
+
|
458 |
+
def _print_NumberSymbol(self, expr):
|
459 |
+
if self._settings.get("inline", False):
|
460 |
+
return self._print(Float(expr.evalf(self._settings["precision"])))
|
461 |
+
else:
|
462 |
+
# A Number symbol that is not implemented here or with _printmethod
|
463 |
+
# is registered and evaluated
|
464 |
+
self._number_symbols.add((expr,
|
465 |
+
Float(expr.evalf(self._settings["precision"]))))
|
466 |
+
return str(expr)
|
467 |
+
|
468 |
+
def _print_Catalan(self, expr):
|
469 |
+
return self._print_NumberSymbol(expr)
|
470 |
+
def _print_EulerGamma(self, expr):
|
471 |
+
return self._print_NumberSymbol(expr)
|
472 |
+
def _print_GoldenRatio(self, expr):
|
473 |
+
return self._print_NumberSymbol(expr)
|
474 |
+
def _print_TribonacciConstant(self, expr):
|
475 |
+
return self._print_NumberSymbol(expr)
|
476 |
+
def _print_Exp1(self, expr):
|
477 |
+
return self._print_NumberSymbol(expr)
|
478 |
+
def _print_Pi(self, expr):
|
479 |
+
return self._print_NumberSymbol(expr)
|
480 |
+
|
481 |
+
def _print_And(self, expr):
|
482 |
+
PREC = precedence(expr)
|
483 |
+
return (" %s " % self._operators['and']).join(self.parenthesize(a, PREC)
|
484 |
+
for a in sorted(expr.args, key=default_sort_key))
|
485 |
+
|
486 |
+
def _print_Or(self, expr):
|
487 |
+
PREC = precedence(expr)
|
488 |
+
return (" %s " % self._operators['or']).join(self.parenthesize(a, PREC)
|
489 |
+
for a in sorted(expr.args, key=default_sort_key))
|
490 |
+
|
491 |
+
def _print_Xor(self, expr):
|
492 |
+
if self._operators.get('xor') is None:
|
493 |
+
return self._print(expr.to_nnf())
|
494 |
+
PREC = precedence(expr)
|
495 |
+
return (" %s " % self._operators['xor']).join(self.parenthesize(a, PREC)
|
496 |
+
for a in expr.args)
|
497 |
+
|
498 |
+
def _print_Equivalent(self, expr):
|
499 |
+
if self._operators.get('equivalent') is None:
|
500 |
+
return self._print(expr.to_nnf())
|
501 |
+
PREC = precedence(expr)
|
502 |
+
return (" %s " % self._operators['equivalent']).join(self.parenthesize(a, PREC)
|
503 |
+
for a in expr.args)
|
504 |
+
|
505 |
+
def _print_Not(self, expr):
|
506 |
+
PREC = precedence(expr)
|
507 |
+
return self._operators['not'] + self.parenthesize(expr.args[0], PREC)
|
508 |
+
|
509 |
+
def _print_BooleanFunction(self, expr):
|
510 |
+
return self._print(expr.to_nnf())
|
511 |
+
|
512 |
+
def _print_Mul(self, expr):
|
513 |
+
|
514 |
+
prec = precedence(expr)
|
515 |
+
|
516 |
+
c, e = expr.as_coeff_Mul()
|
517 |
+
if c < 0:
|
518 |
+
expr = _keep_coeff(-c, e)
|
519 |
+
sign = "-"
|
520 |
+
else:
|
521 |
+
sign = ""
|
522 |
+
|
523 |
+
a = [] # items in the numerator
|
524 |
+
b = [] # items that are in the denominator (if any)
|
525 |
+
|
526 |
+
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
|
527 |
+
|
528 |
+
if self.order not in ('old', 'none'):
|
529 |
+
args = expr.as_ordered_factors()
|
530 |
+
else:
|
531 |
+
# use make_args in case expr was something like -x -> x
|
532 |
+
args = Mul.make_args(expr)
|
533 |
+
|
534 |
+
# Gather args for numerator/denominator
|
535 |
+
for item in args:
|
536 |
+
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
|
537 |
+
if item.exp != -1:
|
538 |
+
b.append(Pow(item.base, -item.exp, evaluate=False))
|
539 |
+
else:
|
540 |
+
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
|
541 |
+
pow_paren.append(item)
|
542 |
+
b.append(Pow(item.base, -item.exp))
|
543 |
+
else:
|
544 |
+
a.append(item)
|
545 |
+
|
546 |
+
a = a or [S.One]
|
547 |
+
|
548 |
+
if len(a) == 1 and sign == "-":
|
549 |
+
# Unary minus does not have a SymPy class, and hence there's no
|
550 |
+
# precedence weight associated with it, Python's unary minus has
|
551 |
+
# an operator precedence between multiplication and exponentiation,
|
552 |
+
# so we use this to compute a weight.
|
553 |
+
a_str = [self.parenthesize(a[0], 0.5*(PRECEDENCE["Pow"]+PRECEDENCE["Mul"]))]
|
554 |
+
else:
|
555 |
+
a_str = [self.parenthesize(x, prec) for x in a]
|
556 |
+
b_str = [self.parenthesize(x, prec) for x in b]
|
557 |
+
|
558 |
+
# To parenthesize Pow with exp = -1 and having more than one Symbol
|
559 |
+
for item in pow_paren:
|
560 |
+
if item.base in b:
|
561 |
+
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
|
562 |
+
|
563 |
+
if not b:
|
564 |
+
return sign + '*'.join(a_str)
|
565 |
+
elif len(b) == 1:
|
566 |
+
return sign + '*'.join(a_str) + "/" + b_str[0]
|
567 |
+
else:
|
568 |
+
return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
|
569 |
+
|
570 |
+
def _print_not_supported(self, expr):
|
571 |
+
try:
|
572 |
+
self._not_supported.add(expr)
|
573 |
+
except TypeError:
|
574 |
+
# not hashable
|
575 |
+
pass
|
576 |
+
return self.emptyPrinter(expr)
|
577 |
+
|
578 |
+
# The following can not be simply translated into C or Fortran
|
579 |
+
_print_Basic = _print_not_supported
|
580 |
+
_print_ComplexInfinity = _print_not_supported
|
581 |
+
_print_Derivative = _print_not_supported
|
582 |
+
_print_ExprCondPair = _print_not_supported
|
583 |
+
_print_GeometryEntity = _print_not_supported
|
584 |
+
_print_Infinity = _print_not_supported
|
585 |
+
_print_Integral = _print_not_supported
|
586 |
+
_print_Interval = _print_not_supported
|
587 |
+
_print_AccumulationBounds = _print_not_supported
|
588 |
+
_print_Limit = _print_not_supported
|
589 |
+
_print_MatrixBase = _print_not_supported
|
590 |
+
_print_DeferredVector = _print_not_supported
|
591 |
+
_print_NaN = _print_not_supported
|
592 |
+
_print_NegativeInfinity = _print_not_supported
|
593 |
+
_print_Order = _print_not_supported
|
594 |
+
_print_RootOf = _print_not_supported
|
595 |
+
_print_RootsOf = _print_not_supported
|
596 |
+
_print_RootSum = _print_not_supported
|
597 |
+
_print_Uniform = _print_not_supported
|
598 |
+
_print_Unit = _print_not_supported
|
599 |
+
_print_Wild = _print_not_supported
|
600 |
+
_print_WildFunction = _print_not_supported
|
601 |
+
_print_Relational = _print_not_supported
|
602 |
+
|
603 |
+
|
604 |
+
# Code printer functions. These are included in this file so that they can be
|
605 |
+
# imported in the top-level __init__.py without importing the sympy.codegen
|
606 |
+
# module.
|
607 |
+
|
608 |
+
def ccode(expr, assign_to=None, standard='c99', **settings):
|
609 |
+
"""Converts an expr to a string of c code
|
610 |
+
|
611 |
+
Parameters
|
612 |
+
==========
|
613 |
+
|
614 |
+
expr : Expr
|
615 |
+
A SymPy expression to be converted.
|
616 |
+
assign_to : optional
|
617 |
+
When given, the argument is used as the name of the variable to which
|
618 |
+
the expression is assigned. Can be a string, ``Symbol``,
|
619 |
+
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
|
620 |
+
line-wrapping, or for expressions that generate multi-line statements.
|
621 |
+
standard : str, optional
|
622 |
+
String specifying the standard. If your compiler supports a more modern
|
623 |
+
standard you may set this to 'c99' to allow the printer to use more math
|
624 |
+
functions. [default='c89'].
|
625 |
+
precision : integer, optional
|
626 |
+
The precision for numbers such as pi [default=17].
|
627 |
+
user_functions : dict, optional
|
628 |
+
A dictionary where the keys are string representations of either
|
629 |
+
``FunctionClass`` or ``UndefinedFunction`` instances and the values
|
630 |
+
are their desired C string representations. Alternatively, the
|
631 |
+
dictionary value can be a list of tuples i.e. [(argument_test,
|
632 |
+
cfunction_string)] or [(argument_test, cfunction_formater)]. See below
|
633 |
+
for examples.
|
634 |
+
dereference : iterable, optional
|
635 |
+
An iterable of symbols that should be dereferenced in the printed code
|
636 |
+
expression. These would be values passed by address to the function.
|
637 |
+
For example, if ``dereference=[a]``, the resulting code would print
|
638 |
+
``(*a)`` instead of ``a``.
|
639 |
+
human : bool, optional
|
640 |
+
If True, the result is a single string that may contain some constant
|
641 |
+
declarations for the number symbols. If False, the same information is
|
642 |
+
returned in a tuple of (symbols_to_declare, not_supported_functions,
|
643 |
+
code_text). [default=True].
|
644 |
+
contract: bool, optional
|
645 |
+
If True, ``Indexed`` instances are assumed to obey tensor contraction
|
646 |
+
rules and the corresponding nested loops over indices are generated.
|
647 |
+
Setting contract=False will not generate loops, instead the user is
|
648 |
+
responsible to provide values for the indices in the code.
|
649 |
+
[default=True].
|
650 |
+
|
651 |
+
Examples
|
652 |
+
========
|
653 |
+
|
654 |
+
>>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs, Function
|
655 |
+
>>> x, tau = symbols("x, tau")
|
656 |
+
>>> expr = (2*tau)**Rational(7, 2)
|
657 |
+
>>> ccode(expr)
|
658 |
+
'8*M_SQRT2*pow(tau, 7.0/2.0)'
|
659 |
+
>>> ccode(expr, math_macros={})
|
660 |
+
'8*sqrt(2)*pow(tau, 7.0/2.0)'
|
661 |
+
>>> ccode(sin(x), assign_to="s")
|
662 |
+
's = sin(x);'
|
663 |
+
>>> from sympy.codegen.ast import real, float80
|
664 |
+
>>> ccode(expr, type_aliases={real: float80})
|
665 |
+
'8*M_SQRT2l*powl(tau, 7.0L/2.0L)'
|
666 |
+
|
667 |
+
Simple custom printing can be defined for certain types by passing a
|
668 |
+
dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
|
669 |
+
Alternatively, the dictionary value can be a list of tuples i.e.
|
670 |
+
[(argument_test, cfunction_string)].
|
671 |
+
|
672 |
+
>>> custom_functions = {
|
673 |
+
... "ceiling": "CEIL",
|
674 |
+
... "Abs": [(lambda x: not x.is_integer, "fabs"),
|
675 |
+
... (lambda x: x.is_integer, "ABS")],
|
676 |
+
... "func": "f"
|
677 |
+
... }
|
678 |
+
>>> func = Function('func')
|
679 |
+
>>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions)
|
680 |
+
'f(fabs(x) + CEIL(x))'
|
681 |
+
|
682 |
+
or if the C-function takes a subset of the original arguments:
|
683 |
+
|
684 |
+
>>> ccode(2**x + 3**x, standard='C99', user_functions={'Pow': [
|
685 |
+
... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e),
|
686 |
+
... (lambda b, e: b != 2, 'pow')]})
|
687 |
+
'exp2(x) + pow(3, x)'
|
688 |
+
|
689 |
+
``Piecewise`` expressions are converted into conditionals. If an
|
690 |
+
``assign_to`` variable is provided an if statement is created, otherwise
|
691 |
+
the ternary operator is used. Note that if the ``Piecewise`` lacks a
|
692 |
+
default term, represented by ``(expr, True)`` then an error will be thrown.
|
693 |
+
This is to prevent generating an expression that may not evaluate to
|
694 |
+
anything.
|
695 |
+
|
696 |
+
>>> from sympy import Piecewise
|
697 |
+
>>> expr = Piecewise((x + 1, x > 0), (x, True))
|
698 |
+
>>> print(ccode(expr, tau, standard='C89'))
|
699 |
+
if (x > 0) {
|
700 |
+
tau = x + 1;
|
701 |
+
}
|
702 |
+
else {
|
703 |
+
tau = x;
|
704 |
+
}
|
705 |
+
|
706 |
+
Support for loops is provided through ``Indexed`` types. With
|
707 |
+
``contract=True`` these expressions will be turned into loops, whereas
|
708 |
+
``contract=False`` will just print the assignment expression that should be
|
709 |
+
looped over:
|
710 |
+
|
711 |
+
>>> from sympy import Eq, IndexedBase, Idx
|
712 |
+
>>> len_y = 5
|
713 |
+
>>> y = IndexedBase('y', shape=(len_y,))
|
714 |
+
>>> t = IndexedBase('t', shape=(len_y,))
|
715 |
+
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
|
716 |
+
>>> i = Idx('i', len_y-1)
|
717 |
+
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
|
718 |
+
>>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89')
|
719 |
+
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
|
720 |
+
|
721 |
+
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
|
722 |
+
must be provided to ``assign_to``. Note that any expression that can be
|
723 |
+
generated normally can also exist inside a Matrix:
|
724 |
+
|
725 |
+
>>> from sympy import Matrix, MatrixSymbol
|
726 |
+
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
|
727 |
+
>>> A = MatrixSymbol('A', 3, 1)
|
728 |
+
>>> print(ccode(mat, A, standard='C89'))
|
729 |
+
A[0] = pow(x, 2);
|
730 |
+
if (x > 0) {
|
731 |
+
A[1] = x + 1;
|
732 |
+
}
|
733 |
+
else {
|
734 |
+
A[1] = x;
|
735 |
+
}
|
736 |
+
A[2] = sin(x);
|
737 |
+
"""
|
738 |
+
from sympy.printing.c import c_code_printers
|
739 |
+
return c_code_printers[standard.lower()](settings).doprint(expr, assign_to)
|
740 |
+
|
741 |
+
def print_ccode(expr, **settings):
|
742 |
+
"""Prints C representation of the given expression."""
|
743 |
+
print(ccode(expr, **settings))
|
744 |
+
|
745 |
+
def fcode(expr, assign_to=None, **settings):
|
746 |
+
"""Converts an expr to a string of fortran code
|
747 |
+
|
748 |
+
Parameters
|
749 |
+
==========
|
750 |
+
|
751 |
+
expr : Expr
|
752 |
+
A SymPy expression to be converted.
|
753 |
+
assign_to : optional
|
754 |
+
When given, the argument is used as the name of the variable to which
|
755 |
+
the expression is assigned. Can be a string, ``Symbol``,
|
756 |
+
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
|
757 |
+
line-wrapping, or for expressions that generate multi-line statements.
|
758 |
+
precision : integer, optional
|
759 |
+
DEPRECATED. Use type_mappings instead. The precision for numbers such
|
760 |
+
as pi [default=17].
|
761 |
+
user_functions : dict, optional
|
762 |
+
A dictionary where keys are ``FunctionClass`` instances and values are
|
763 |
+
their string representations. Alternatively, the dictionary value can
|
764 |
+
be a list of tuples i.e. [(argument_test, cfunction_string)]. See below
|
765 |
+
for examples.
|
766 |
+
human : bool, optional
|
767 |
+
If True, the result is a single string that may contain some constant
|
768 |
+
declarations for the number symbols. If False, the same information is
|
769 |
+
returned in a tuple of (symbols_to_declare, not_supported_functions,
|
770 |
+
code_text). [default=True].
|
771 |
+
contract: bool, optional
|
772 |
+
If True, ``Indexed`` instances are assumed to obey tensor contraction
|
773 |
+
rules and the corresponding nested loops over indices are generated.
|
774 |
+
Setting contract=False will not generate loops, instead the user is
|
775 |
+
responsible to provide values for the indices in the code.
|
776 |
+
[default=True].
|
777 |
+
source_format : optional
|
778 |
+
The source format can be either 'fixed' or 'free'. [default='fixed']
|
779 |
+
standard : integer, optional
|
780 |
+
The Fortran standard to be followed. This is specified as an integer.
|
781 |
+
Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77.
|
782 |
+
Note that currently the only distinction internally is between
|
783 |
+
standards before 95, and those 95 and after. This may change later as
|
784 |
+
more features are added.
|
785 |
+
name_mangling : bool, optional
|
786 |
+
If True, then the variables that would become identical in
|
787 |
+
case-insensitive Fortran are mangled by appending different number
|
788 |
+
of ``_`` at the end. If False, SymPy Will not interfere with naming of
|
789 |
+
variables. [default=True]
|
790 |
+
|
791 |
+
Examples
|
792 |
+
========
|
793 |
+
|
794 |
+
>>> from sympy import fcode, symbols, Rational, sin, ceiling, floor
|
795 |
+
>>> x, tau = symbols("x, tau")
|
796 |
+
>>> fcode((2*tau)**Rational(7, 2))
|
797 |
+
' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)'
|
798 |
+
>>> fcode(sin(x), assign_to="s")
|
799 |
+
' s = sin(x)'
|
800 |
+
|
801 |
+
Custom printing can be defined for certain types by passing a dictionary of
|
802 |
+
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
|
803 |
+
dictionary value can be a list of tuples i.e. [(argument_test,
|
804 |
+
cfunction_string)].
|
805 |
+
|
806 |
+
>>> custom_functions = {
|
807 |
+
... "ceiling": "CEIL",
|
808 |
+
... "floor": [(lambda x: not x.is_integer, "FLOOR1"),
|
809 |
+
... (lambda x: x.is_integer, "FLOOR2")]
|
810 |
+
... }
|
811 |
+
>>> fcode(floor(x) + ceiling(x), user_functions=custom_functions)
|
812 |
+
' CEIL(x) + FLOOR1(x)'
|
813 |
+
|
814 |
+
``Piecewise`` expressions are converted into conditionals. If an
|
815 |
+
``assign_to`` variable is provided an if statement is created, otherwise
|
816 |
+
the ternary operator is used. Note that if the ``Piecewise`` lacks a
|
817 |
+
default term, represented by ``(expr, True)`` then an error will be thrown.
|
818 |
+
This is to prevent generating an expression that may not evaluate to
|
819 |
+
anything.
|
820 |
+
|
821 |
+
>>> from sympy import Piecewise
|
822 |
+
>>> expr = Piecewise((x + 1, x > 0), (x, True))
|
823 |
+
>>> print(fcode(expr, tau))
|
824 |
+
if (x > 0) then
|
825 |
+
tau = x + 1
|
826 |
+
else
|
827 |
+
tau = x
|
828 |
+
end if
|
829 |
+
|
830 |
+
Support for loops is provided through ``Indexed`` types. With
|
831 |
+
``contract=True`` these expressions will be turned into loops, whereas
|
832 |
+
``contract=False`` will just print the assignment expression that should be
|
833 |
+
looped over:
|
834 |
+
|
835 |
+
>>> from sympy import Eq, IndexedBase, Idx
|
836 |
+
>>> len_y = 5
|
837 |
+
>>> y = IndexedBase('y', shape=(len_y,))
|
838 |
+
>>> t = IndexedBase('t', shape=(len_y,))
|
839 |
+
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
|
840 |
+
>>> i = Idx('i', len_y-1)
|
841 |
+
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
|
842 |
+
>>> fcode(e.rhs, assign_to=e.lhs, contract=False)
|
843 |
+
' Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))'
|
844 |
+
|
845 |
+
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
|
846 |
+
must be provided to ``assign_to``. Note that any expression that can be
|
847 |
+
generated normally can also exist inside a Matrix:
|
848 |
+
|
849 |
+
>>> from sympy import Matrix, MatrixSymbol
|
850 |
+
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
|
851 |
+
>>> A = MatrixSymbol('A', 3, 1)
|
852 |
+
>>> print(fcode(mat, A))
|
853 |
+
A(1, 1) = x**2
|
854 |
+
if (x > 0) then
|
855 |
+
A(2, 1) = x + 1
|
856 |
+
else
|
857 |
+
A(2, 1) = x
|
858 |
+
end if
|
859 |
+
A(3, 1) = sin(x)
|
860 |
+
"""
|
861 |
+
from sympy.printing.fortran import FCodePrinter
|
862 |
+
return FCodePrinter(settings).doprint(expr, assign_to)
|
863 |
+
|
864 |
+
|
865 |
+
def print_fcode(expr, **settings):
|
866 |
+
"""Prints the Fortran representation of the given expression.
|
867 |
+
|
868 |
+
See fcode for the meaning of the optional arguments.
|
869 |
+
"""
|
870 |
+
print(fcode(expr, **settings))
|
871 |
+
|
872 |
+
def cxxcode(expr, assign_to=None, standard='c++11', **settings):
|
873 |
+
""" C++ equivalent of :func:`~.ccode`. """
|
874 |
+
from sympy.printing.cxx import cxx_code_printers
|
875 |
+
return cxx_code_printers[standard.lower()](settings).doprint(expr, assign_to)
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/cxx.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
C++ code printer
|
3 |
+
"""
|
4 |
+
|
5 |
+
from itertools import chain
|
6 |
+
from sympy.codegen.ast import Type, none
|
7 |
+
from .c import C89CodePrinter, C99CodePrinter
|
8 |
+
|
9 |
+
# These are defined in the other file so we can avoid importing sympy.codegen
|
10 |
+
# from the top-level 'import sympy'. Export them here as well.
|
11 |
+
from sympy.printing.codeprinter import cxxcode # noqa:F401
|
12 |
+
|
13 |
+
# from https://en.cppreference.com/w/cpp/keyword
|
14 |
+
reserved = {
|
15 |
+
'C++98': [
|
16 |
+
'and', 'and_eq', 'asm', 'auto', 'bitand', 'bitor', 'bool', 'break',
|
17 |
+
'case', 'catch,', 'char', 'class', 'compl', 'const', 'const_cast',
|
18 |
+
'continue', 'default', 'delete', 'do', 'double', 'dynamic_cast',
|
19 |
+
'else', 'enum', 'explicit', 'export', 'extern', 'false', 'float',
|
20 |
+
'for', 'friend', 'goto', 'if', 'inline', 'int', 'long', 'mutable',
|
21 |
+
'namespace', 'new', 'not', 'not_eq', 'operator', 'or', 'or_eq',
|
22 |
+
'private', 'protected', 'public', 'register', 'reinterpret_cast',
|
23 |
+
'return', 'short', 'signed', 'sizeof', 'static', 'static_cast',
|
24 |
+
'struct', 'switch', 'template', 'this', 'throw', 'true', 'try',
|
25 |
+
'typedef', 'typeid', 'typename', 'union', 'unsigned', 'using',
|
26 |
+
'virtual', 'void', 'volatile', 'wchar_t', 'while', 'xor', 'xor_eq'
|
27 |
+
]
|
28 |
+
}
|
29 |
+
|
30 |
+
reserved['C++11'] = reserved['C++98'][:] + [
|
31 |
+
'alignas', 'alignof', 'char16_t', 'char32_t', 'constexpr', 'decltype',
|
32 |
+
'noexcept', 'nullptr', 'static_assert', 'thread_local'
|
33 |
+
]
|
34 |
+
reserved['C++17'] = reserved['C++11'][:]
|
35 |
+
reserved['C++17'].remove('register')
|
36 |
+
# TM TS: atomic_cancel, atomic_commit, atomic_noexcept, synchronized
|
37 |
+
# concepts TS: concept, requires
|
38 |
+
# module TS: import, module
|
39 |
+
|
40 |
+
|
41 |
+
_math_functions = {
|
42 |
+
'C++98': {
|
43 |
+
'Mod': 'fmod',
|
44 |
+
'ceiling': 'ceil',
|
45 |
+
},
|
46 |
+
'C++11': {
|
47 |
+
'gamma': 'tgamma',
|
48 |
+
},
|
49 |
+
'C++17': {
|
50 |
+
'beta': 'beta',
|
51 |
+
'Ei': 'expint',
|
52 |
+
'zeta': 'riemann_zeta',
|
53 |
+
}
|
54 |
+
}
|
55 |
+
|
56 |
+
# from https://en.cppreference.com/w/cpp/header/cmath
|
57 |
+
for k in ('Abs', 'exp', 'log', 'log10', 'sqrt', 'sin', 'cos', 'tan', # 'Pow'
|
58 |
+
'asin', 'acos', 'atan', 'atan2', 'sinh', 'cosh', 'tanh', 'floor'):
|
59 |
+
_math_functions['C++98'][k] = k.lower()
|
60 |
+
|
61 |
+
|
62 |
+
for k in ('asinh', 'acosh', 'atanh', 'erf', 'erfc'):
|
63 |
+
_math_functions['C++11'][k] = k.lower()
|
64 |
+
|
65 |
+
|
66 |
+
def _attach_print_method(cls, sympy_name, func_name):
|
67 |
+
meth_name = '_print_%s' % sympy_name
|
68 |
+
if hasattr(cls, meth_name):
|
69 |
+
raise ValueError("Edit method (or subclass) instead of overwriting.")
|
70 |
+
def _print_method(self, expr):
|
71 |
+
return '{}{}({})'.format(self._ns, func_name, ', '.join(map(self._print, expr.args)))
|
72 |
+
_print_method.__doc__ = "Prints code for %s" % k
|
73 |
+
setattr(cls, meth_name, _print_method)
|
74 |
+
|
75 |
+
|
76 |
+
def _attach_print_methods(cls, cont):
|
77 |
+
for sympy_name, cxx_name in cont[cls.standard].items():
|
78 |
+
_attach_print_method(cls, sympy_name, cxx_name)
|
79 |
+
|
80 |
+
|
81 |
+
class _CXXCodePrinterBase:
|
82 |
+
printmethod = "_cxxcode"
|
83 |
+
language = 'C++'
|
84 |
+
_ns = 'std::' # namespace
|
85 |
+
|
86 |
+
def __init__(self, settings=None):
|
87 |
+
super().__init__(settings or {})
|
88 |
+
|
89 |
+
def _print_Max(self, expr):
|
90 |
+
from sympy.functions.elementary.miscellaneous import Max
|
91 |
+
if len(expr.args) == 1:
|
92 |
+
return self._print(expr.args[0])
|
93 |
+
return "%smax(%s, %s)" % (self._ns, self._print(expr.args[0]),
|
94 |
+
self._print(Max(*expr.args[1:])))
|
95 |
+
|
96 |
+
def _print_Min(self, expr):
|
97 |
+
from sympy.functions.elementary.miscellaneous import Min
|
98 |
+
if len(expr.args) == 1:
|
99 |
+
return self._print(expr.args[0])
|
100 |
+
return "%smin(%s, %s)" % (self._ns, self._print(expr.args[0]),
|
101 |
+
self._print(Min(*expr.args[1:])))
|
102 |
+
|
103 |
+
def _print_using(self, expr):
|
104 |
+
if expr.alias == none:
|
105 |
+
return 'using %s' % expr.type
|
106 |
+
else:
|
107 |
+
raise ValueError("C++98 does not support type aliases")
|
108 |
+
|
109 |
+
|
110 |
+
class CXX98CodePrinter(_CXXCodePrinterBase, C89CodePrinter):
|
111 |
+
standard = 'C++98'
|
112 |
+
reserved_words = set(reserved['C++98'])
|
113 |
+
|
114 |
+
|
115 |
+
# _attach_print_methods(CXX98CodePrinter, _math_functions)
|
116 |
+
|
117 |
+
|
118 |
+
class CXX11CodePrinter(_CXXCodePrinterBase, C99CodePrinter):
|
119 |
+
standard = 'C++11'
|
120 |
+
reserved_words = set(reserved['C++11'])
|
121 |
+
type_mappings = dict(chain(
|
122 |
+
CXX98CodePrinter.type_mappings.items(),
|
123 |
+
{
|
124 |
+
Type('int8'): ('int8_t', {'cstdint'}),
|
125 |
+
Type('int16'): ('int16_t', {'cstdint'}),
|
126 |
+
Type('int32'): ('int32_t', {'cstdint'}),
|
127 |
+
Type('int64'): ('int64_t', {'cstdint'}),
|
128 |
+
Type('uint8'): ('uint8_t', {'cstdint'}),
|
129 |
+
Type('uint16'): ('uint16_t', {'cstdint'}),
|
130 |
+
Type('uint32'): ('uint32_t', {'cstdint'}),
|
131 |
+
Type('uint64'): ('uint64_t', {'cstdint'}),
|
132 |
+
Type('complex64'): ('std::complex<float>', {'complex'}),
|
133 |
+
Type('complex128'): ('std::complex<double>', {'complex'}),
|
134 |
+
Type('bool'): ('bool', None),
|
135 |
+
}.items()
|
136 |
+
))
|
137 |
+
|
138 |
+
def _print_using(self, expr):
|
139 |
+
if expr.alias == none:
|
140 |
+
return super()._print_using(expr)
|
141 |
+
else:
|
142 |
+
return 'using %(alias)s = %(type)s' % expr.kwargs(apply=self._print)
|
143 |
+
|
144 |
+
# _attach_print_methods(CXX11CodePrinter, _math_functions)
|
145 |
+
|
146 |
+
|
147 |
+
class CXX17CodePrinter(_CXXCodePrinterBase, C99CodePrinter):
|
148 |
+
standard = 'C++17'
|
149 |
+
reserved_words = set(reserved['C++17'])
|
150 |
+
|
151 |
+
_kf = dict(C99CodePrinter._kf, **_math_functions['C++17'])
|
152 |
+
|
153 |
+
def _print_beta(self, expr):
|
154 |
+
return self._print_math_func(expr)
|
155 |
+
|
156 |
+
def _print_Ei(self, expr):
|
157 |
+
return self._print_math_func(expr)
|
158 |
+
|
159 |
+
def _print_zeta(self, expr):
|
160 |
+
return self._print_math_func(expr)
|
161 |
+
|
162 |
+
|
163 |
+
# _attach_print_methods(CXX17CodePrinter, _math_functions)
|
164 |
+
|
165 |
+
cxx_code_printers = {
|
166 |
+
'c++98': CXX98CodePrinter,
|
167 |
+
'c++11': CXX11CodePrinter,
|
168 |
+
'c++17': CXX17CodePrinter
|
169 |
+
}
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/defaults.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core._print_helpers import Printable
|
2 |
+
|
3 |
+
# alias for compatibility
|
4 |
+
Printable.__module__ = __name__
|
5 |
+
DefaultPrinting = Printable
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/fortran.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Fortran code printer
|
3 |
+
|
4 |
+
The FCodePrinter converts single SymPy expressions into single Fortran
|
5 |
+
expressions, using the functions defined in the Fortran 77 standard where
|
6 |
+
possible. Some useful pointers to Fortran can be found on wikipedia:
|
7 |
+
|
8 |
+
https://en.wikipedia.org/wiki/Fortran
|
9 |
+
|
10 |
+
Most of the code below is based on the "Professional Programmer\'s Guide to
|
11 |
+
Fortran77" by Clive G. Page:
|
12 |
+
|
13 |
+
https://www.star.le.ac.uk/~cgp/prof77.html
|
14 |
+
|
15 |
+
Fortran is a case-insensitive language. This might cause trouble because
|
16 |
+
SymPy is case sensitive. So, fcode adds underscores to variable names when
|
17 |
+
it is necessary to make them different for Fortran.
|
18 |
+
"""
|
19 |
+
|
20 |
+
from __future__ import annotations
|
21 |
+
from typing import Any
|
22 |
+
|
23 |
+
from collections import defaultdict
|
24 |
+
from itertools import chain
|
25 |
+
import string
|
26 |
+
|
27 |
+
from sympy.codegen.ast import (
|
28 |
+
Assignment, Declaration, Pointer, value_const,
|
29 |
+
float32, float64, float80, complex64, complex128, int8, int16, int32,
|
30 |
+
int64, intc, real, integer, bool_, complex_
|
31 |
+
)
|
32 |
+
from sympy.codegen.fnodes import (
|
33 |
+
allocatable, isign, dsign, cmplx, merge, literal_dp, elemental, pure,
|
34 |
+
intent_in, intent_out, intent_inout
|
35 |
+
)
|
36 |
+
from sympy.core import S, Add, N, Float, Symbol
|
37 |
+
from sympy.core.function import Function
|
38 |
+
from sympy.core.numbers import equal_valued
|
39 |
+
from sympy.core.relational import Eq
|
40 |
+
from sympy.sets import Range
|
41 |
+
from sympy.printing.codeprinter import CodePrinter
|
42 |
+
from sympy.printing.precedence import precedence, PRECEDENCE
|
43 |
+
from sympy.printing.printer import printer_context
|
44 |
+
|
45 |
+
# These are defined in the other file so we can avoid importing sympy.codegen
|
46 |
+
# from the top-level 'import sympy'. Export them here as well.
|
47 |
+
from sympy.printing.codeprinter import fcode, print_fcode # noqa:F401
|
48 |
+
|
49 |
+
known_functions = {
|
50 |
+
"sin": "sin",
|
51 |
+
"cos": "cos",
|
52 |
+
"tan": "tan",
|
53 |
+
"asin": "asin",
|
54 |
+
"acos": "acos",
|
55 |
+
"atan": "atan",
|
56 |
+
"atan2": "atan2",
|
57 |
+
"sinh": "sinh",
|
58 |
+
"cosh": "cosh",
|
59 |
+
"tanh": "tanh",
|
60 |
+
"log": "log",
|
61 |
+
"exp": "exp",
|
62 |
+
"erf": "erf",
|
63 |
+
"Abs": "abs",
|
64 |
+
"conjugate": "conjg",
|
65 |
+
"Max": "max",
|
66 |
+
"Min": "min",
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
class FCodePrinter(CodePrinter):
|
71 |
+
"""A printer to convert SymPy expressions to strings of Fortran code"""
|
72 |
+
printmethod = "_fcode"
|
73 |
+
language = "Fortran"
|
74 |
+
|
75 |
+
type_aliases = {
|
76 |
+
integer: int32,
|
77 |
+
real: float64,
|
78 |
+
complex_: complex128,
|
79 |
+
}
|
80 |
+
|
81 |
+
type_mappings = {
|
82 |
+
intc: 'integer(c_int)',
|
83 |
+
float32: 'real*4', # real(kind(0.e0))
|
84 |
+
float64: 'real*8', # real(kind(0.d0))
|
85 |
+
float80: 'real*10', # real(kind(????))
|
86 |
+
complex64: 'complex*8',
|
87 |
+
complex128: 'complex*16',
|
88 |
+
int8: 'integer*1',
|
89 |
+
int16: 'integer*2',
|
90 |
+
int32: 'integer*4',
|
91 |
+
int64: 'integer*8',
|
92 |
+
bool_: 'logical'
|
93 |
+
}
|
94 |
+
|
95 |
+
type_modules = {
|
96 |
+
intc: {'iso_c_binding': 'c_int'}
|
97 |
+
}
|
98 |
+
|
99 |
+
_default_settings: dict[str, Any] = {
|
100 |
+
'order': None,
|
101 |
+
'full_prec': 'auto',
|
102 |
+
'precision': 17,
|
103 |
+
'user_functions': {},
|
104 |
+
'human': True,
|
105 |
+
'allow_unknown_functions': False,
|
106 |
+
'source_format': 'fixed',
|
107 |
+
'contract': True,
|
108 |
+
'standard': 77,
|
109 |
+
'name_mangling': True,
|
110 |
+
}
|
111 |
+
|
112 |
+
_operators = {
|
113 |
+
'and': '.and.',
|
114 |
+
'or': '.or.',
|
115 |
+
'xor': '.neqv.',
|
116 |
+
'equivalent': '.eqv.',
|
117 |
+
'not': '.not. ',
|
118 |
+
}
|
119 |
+
|
120 |
+
_relationals = {
|
121 |
+
'!=': '/=',
|
122 |
+
}
|
123 |
+
|
124 |
+
def __init__(self, settings=None):
|
125 |
+
if not settings:
|
126 |
+
settings = {}
|
127 |
+
self.mangled_symbols = {} # Dict showing mapping of all words
|
128 |
+
self.used_name = []
|
129 |
+
self.type_aliases = dict(chain(self.type_aliases.items(),
|
130 |
+
settings.pop('type_aliases', {}).items()))
|
131 |
+
self.type_mappings = dict(chain(self.type_mappings.items(),
|
132 |
+
settings.pop('type_mappings', {}).items()))
|
133 |
+
super().__init__(settings)
|
134 |
+
self.known_functions = dict(known_functions)
|
135 |
+
userfuncs = settings.get('user_functions', {})
|
136 |
+
self.known_functions.update(userfuncs)
|
137 |
+
# leading columns depend on fixed or free format
|
138 |
+
standards = {66, 77, 90, 95, 2003, 2008}
|
139 |
+
if self._settings['standard'] not in standards:
|
140 |
+
raise ValueError("Unknown Fortran standard: %s" % self._settings[
|
141 |
+
'standard'])
|
142 |
+
self.module_uses = defaultdict(set) # e.g.: use iso_c_binding, only: c_int
|
143 |
+
|
144 |
+
@property
|
145 |
+
def _lead(self):
|
146 |
+
if self._settings['source_format'] == 'fixed':
|
147 |
+
return {'code': " ", 'cont': " @ ", 'comment': "C "}
|
148 |
+
elif self._settings['source_format'] == 'free':
|
149 |
+
return {'code': "", 'cont': " ", 'comment': "! "}
|
150 |
+
else:
|
151 |
+
raise ValueError("Unknown source format: %s" % self._settings['source_format'])
|
152 |
+
|
153 |
+
def _print_Symbol(self, expr):
|
154 |
+
if self._settings['name_mangling'] == True:
|
155 |
+
if expr not in self.mangled_symbols:
|
156 |
+
name = expr.name
|
157 |
+
while name.lower() in self.used_name:
|
158 |
+
name += '_'
|
159 |
+
self.used_name.append(name.lower())
|
160 |
+
if name == expr.name:
|
161 |
+
self.mangled_symbols[expr] = expr
|
162 |
+
else:
|
163 |
+
self.mangled_symbols[expr] = Symbol(name)
|
164 |
+
|
165 |
+
expr = expr.xreplace(self.mangled_symbols)
|
166 |
+
|
167 |
+
name = super()._print_Symbol(expr)
|
168 |
+
return name
|
169 |
+
|
170 |
+
def _rate_index_position(self, p):
|
171 |
+
return -p*5
|
172 |
+
|
173 |
+
def _get_statement(self, codestring):
|
174 |
+
return codestring
|
175 |
+
|
176 |
+
def _get_comment(self, text):
|
177 |
+
return "! {}".format(text)
|
178 |
+
|
179 |
+
def _declare_number_const(self, name, value):
|
180 |
+
return "parameter ({} = {})".format(name, self._print(value))
|
181 |
+
|
182 |
+
def _print_NumberSymbol(self, expr):
|
183 |
+
# A Number symbol that is not implemented here or with _printmethod
|
184 |
+
# is registered and evaluated
|
185 |
+
self._number_symbols.add((expr, Float(expr.evalf(self._settings['precision']))))
|
186 |
+
return str(expr)
|
187 |
+
|
188 |
+
def _format_code(self, lines):
|
189 |
+
return self._wrap_fortran(self.indent_code(lines))
|
190 |
+
|
191 |
+
def _traverse_matrix_indices(self, mat):
|
192 |
+
rows, cols = mat.shape
|
193 |
+
return ((i, j) for j in range(cols) for i in range(rows))
|
194 |
+
|
195 |
+
def _get_loop_opening_ending(self, indices):
|
196 |
+
open_lines = []
|
197 |
+
close_lines = []
|
198 |
+
for i in indices:
|
199 |
+
# fortran arrays start at 1 and end at dimension
|
200 |
+
var, start, stop = map(self._print,
|
201 |
+
[i.label, i.lower + 1, i.upper + 1])
|
202 |
+
open_lines.append("do %s = %s, %s" % (var, start, stop))
|
203 |
+
close_lines.append("end do")
|
204 |
+
return open_lines, close_lines
|
205 |
+
|
206 |
+
def _print_sign(self, expr):
|
207 |
+
from sympy.functions.elementary.complexes import Abs
|
208 |
+
arg, = expr.args
|
209 |
+
if arg.is_integer:
|
210 |
+
new_expr = merge(0, isign(1, arg), Eq(arg, 0))
|
211 |
+
elif (arg.is_complex or arg.is_infinite):
|
212 |
+
new_expr = merge(cmplx(literal_dp(0), literal_dp(0)), arg/Abs(arg), Eq(Abs(arg), literal_dp(0)))
|
213 |
+
else:
|
214 |
+
new_expr = merge(literal_dp(0), dsign(literal_dp(1), arg), Eq(arg, literal_dp(0)))
|
215 |
+
return self._print(new_expr)
|
216 |
+
|
217 |
+
|
218 |
+
def _print_Piecewise(self, expr):
|
219 |
+
if expr.args[-1].cond != True:
|
220 |
+
# We need the last conditional to be a True, otherwise the resulting
|
221 |
+
# function may not return a result.
|
222 |
+
raise ValueError("All Piecewise expressions must contain an "
|
223 |
+
"(expr, True) statement to be used as a default "
|
224 |
+
"condition. Without one, the generated "
|
225 |
+
"expression may not evaluate to anything under "
|
226 |
+
"some condition.")
|
227 |
+
lines = []
|
228 |
+
if expr.has(Assignment):
|
229 |
+
for i, (e, c) in enumerate(expr.args):
|
230 |
+
if i == 0:
|
231 |
+
lines.append("if (%s) then" % self._print(c))
|
232 |
+
elif i == len(expr.args) - 1 and c == True:
|
233 |
+
lines.append("else")
|
234 |
+
else:
|
235 |
+
lines.append("else if (%s) then" % self._print(c))
|
236 |
+
lines.append(self._print(e))
|
237 |
+
lines.append("end if")
|
238 |
+
return "\n".join(lines)
|
239 |
+
elif self._settings["standard"] >= 95:
|
240 |
+
# Only supported in F95 and newer:
|
241 |
+
# The piecewise was used in an expression, need to do inline
|
242 |
+
# operators. This has the downside that inline operators will
|
243 |
+
# not work for statements that span multiple lines (Matrix or
|
244 |
+
# Indexed expressions).
|
245 |
+
pattern = "merge({T}, {F}, {COND})"
|
246 |
+
code = self._print(expr.args[-1].expr)
|
247 |
+
terms = list(expr.args[:-1])
|
248 |
+
while terms:
|
249 |
+
e, c = terms.pop()
|
250 |
+
expr = self._print(e)
|
251 |
+
cond = self._print(c)
|
252 |
+
code = pattern.format(T=expr, F=code, COND=cond)
|
253 |
+
return code
|
254 |
+
else:
|
255 |
+
# `merge` is not supported prior to F95
|
256 |
+
raise NotImplementedError("Using Piecewise as an expression using "
|
257 |
+
"inline operators is not supported in "
|
258 |
+
"standards earlier than Fortran95.")
|
259 |
+
|
260 |
+
def _print_MatrixElement(self, expr):
|
261 |
+
return "{}({}, {})".format(self.parenthesize(expr.parent,
|
262 |
+
PRECEDENCE["Atom"], strict=True), expr.i + 1, expr.j + 1)
|
263 |
+
|
264 |
+
def _print_Add(self, expr):
|
265 |
+
# purpose: print complex numbers nicely in Fortran.
|
266 |
+
# collect the purely real and purely imaginary parts:
|
267 |
+
pure_real = []
|
268 |
+
pure_imaginary = []
|
269 |
+
mixed = []
|
270 |
+
for arg in expr.args:
|
271 |
+
if arg.is_number and arg.is_real:
|
272 |
+
pure_real.append(arg)
|
273 |
+
elif arg.is_number and arg.is_imaginary:
|
274 |
+
pure_imaginary.append(arg)
|
275 |
+
else:
|
276 |
+
mixed.append(arg)
|
277 |
+
if pure_imaginary:
|
278 |
+
if mixed:
|
279 |
+
PREC = precedence(expr)
|
280 |
+
term = Add(*mixed)
|
281 |
+
t = self._print(term)
|
282 |
+
if t.startswith('-'):
|
283 |
+
sign = "-"
|
284 |
+
t = t[1:]
|
285 |
+
else:
|
286 |
+
sign = "+"
|
287 |
+
if precedence(term) < PREC:
|
288 |
+
t = "(%s)" % t
|
289 |
+
|
290 |
+
return "cmplx(%s,%s) %s %s" % (
|
291 |
+
self._print(Add(*pure_real)),
|
292 |
+
self._print(-S.ImaginaryUnit*Add(*pure_imaginary)),
|
293 |
+
sign, t,
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
return "cmplx(%s,%s)" % (
|
297 |
+
self._print(Add(*pure_real)),
|
298 |
+
self._print(-S.ImaginaryUnit*Add(*pure_imaginary)),
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
return CodePrinter._print_Add(self, expr)
|
302 |
+
|
303 |
+
def _print_Function(self, expr):
|
304 |
+
# All constant function args are evaluated as floats
|
305 |
+
prec = self._settings['precision']
|
306 |
+
args = [N(a, prec) for a in expr.args]
|
307 |
+
eval_expr = expr.func(*args)
|
308 |
+
if not isinstance(eval_expr, Function):
|
309 |
+
return self._print(eval_expr)
|
310 |
+
else:
|
311 |
+
return CodePrinter._print_Function(self, expr.func(*args))
|
312 |
+
|
313 |
+
def _print_Mod(self, expr):
|
314 |
+
# NOTE : Fortran has the functions mod() and modulo(). modulo() behaves
|
315 |
+
# the same wrt to the sign of the arguments as Python and SymPy's
|
316 |
+
# modulus computations (% and Mod()) but is not available in Fortran 66
|
317 |
+
# or Fortran 77, thus we raise an error.
|
318 |
+
if self._settings['standard'] in [66, 77]:
|
319 |
+
msg = ("Python % operator and SymPy's Mod() function are not "
|
320 |
+
"supported by Fortran 66 or 77 standards.")
|
321 |
+
raise NotImplementedError(msg)
|
322 |
+
else:
|
323 |
+
x, y = expr.args
|
324 |
+
return " modulo({}, {})".format(self._print(x), self._print(y))
|
325 |
+
|
326 |
+
def _print_ImaginaryUnit(self, expr):
|
327 |
+
# purpose: print complex numbers nicely in Fortran.
|
328 |
+
return "cmplx(0,1)"
|
329 |
+
|
330 |
+
def _print_int(self, expr):
|
331 |
+
return str(expr)
|
332 |
+
|
333 |
+
def _print_Mul(self, expr):
|
334 |
+
# purpose: print complex numbers nicely in Fortran.
|
335 |
+
if expr.is_number and expr.is_imaginary:
|
336 |
+
return "cmplx(0,%s)" % (
|
337 |
+
self._print(-S.ImaginaryUnit*expr)
|
338 |
+
)
|
339 |
+
else:
|
340 |
+
return CodePrinter._print_Mul(self, expr)
|
341 |
+
|
342 |
+
def _print_Pow(self, expr):
|
343 |
+
PREC = precedence(expr)
|
344 |
+
if equal_valued(expr.exp, -1):
|
345 |
+
return '%s/%s' % (
|
346 |
+
self._print(literal_dp(1)),
|
347 |
+
self.parenthesize(expr.base, PREC)
|
348 |
+
)
|
349 |
+
elif equal_valued(expr.exp, 0.5):
|
350 |
+
if expr.base.is_integer:
|
351 |
+
# Fortran intrinsic sqrt() does not accept integer argument
|
352 |
+
if expr.base.is_Number:
|
353 |
+
return 'sqrt(%s.0d0)' % self._print(expr.base)
|
354 |
+
else:
|
355 |
+
return 'sqrt(dble(%s))' % self._print(expr.base)
|
356 |
+
else:
|
357 |
+
return 'sqrt(%s)' % self._print(expr.base)
|
358 |
+
else:
|
359 |
+
return CodePrinter._print_Pow(self, expr)
|
360 |
+
|
361 |
+
def _print_Rational(self, expr):
|
362 |
+
p, q = int(expr.p), int(expr.q)
|
363 |
+
return "%d.0d0/%d.0d0" % (p, q)
|
364 |
+
|
365 |
+
def _print_Float(self, expr):
|
366 |
+
printed = CodePrinter._print_Float(self, expr)
|
367 |
+
e = printed.find('e')
|
368 |
+
if e > -1:
|
369 |
+
return "%sd%s" % (printed[:e], printed[e + 1:])
|
370 |
+
return "%sd0" % printed
|
371 |
+
|
372 |
+
def _print_Relational(self, expr):
|
373 |
+
lhs_code = self._print(expr.lhs)
|
374 |
+
rhs_code = self._print(expr.rhs)
|
375 |
+
op = expr.rel_op
|
376 |
+
op = op if op not in self._relationals else self._relationals[op]
|
377 |
+
return "{} {} {}".format(lhs_code, op, rhs_code)
|
378 |
+
|
379 |
+
def _print_Indexed(self, expr):
|
380 |
+
inds = [ self._print(i) for i in expr.indices ]
|
381 |
+
return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds))
|
382 |
+
|
383 |
+
def _print_Idx(self, expr):
|
384 |
+
return self._print(expr.label)
|
385 |
+
|
386 |
+
def _print_AugmentedAssignment(self, expr):
|
387 |
+
lhs_code = self._print(expr.lhs)
|
388 |
+
rhs_code = self._print(expr.rhs)
|
389 |
+
return self._get_statement("{0} = {0} {1} {2}".format(
|
390 |
+
self._print(lhs_code), self._print(expr.binop), self._print(rhs_code)))
|
391 |
+
|
392 |
+
def _print_sum_(self, sm):
|
393 |
+
params = self._print(sm.array)
|
394 |
+
if sm.dim != None: # Must use '!= None', cannot use 'is not None'
|
395 |
+
params += ', ' + self._print(sm.dim)
|
396 |
+
if sm.mask != None: # Must use '!= None', cannot use 'is not None'
|
397 |
+
params += ', mask=' + self._print(sm.mask)
|
398 |
+
return '%s(%s)' % (sm.__class__.__name__.rstrip('_'), params)
|
399 |
+
|
400 |
+
def _print_product_(self, prod):
|
401 |
+
return self._print_sum_(prod)
|
402 |
+
|
403 |
+
def _print_Do(self, do):
|
404 |
+
excl = ['concurrent']
|
405 |
+
if do.step == 1:
|
406 |
+
excl.append('step')
|
407 |
+
step = ''
|
408 |
+
else:
|
409 |
+
step = ', {step}'
|
410 |
+
|
411 |
+
return (
|
412 |
+
'do {concurrent}{counter} = {first}, {last}'+step+'\n'
|
413 |
+
'{body}\n'
|
414 |
+
'end do\n'
|
415 |
+
).format(
|
416 |
+
concurrent='concurrent ' if do.concurrent else '',
|
417 |
+
**do.kwargs(apply=lambda arg: self._print(arg), exclude=excl)
|
418 |
+
)
|
419 |
+
|
420 |
+
def _print_ImpliedDoLoop(self, idl):
|
421 |
+
step = '' if idl.step == 1 else ', {step}'
|
422 |
+
return ('({expr}, {counter} = {first}, {last}'+step+')').format(
|
423 |
+
**idl.kwargs(apply=lambda arg: self._print(arg))
|
424 |
+
)
|
425 |
+
|
426 |
+
def _print_For(self, expr):
|
427 |
+
target = self._print(expr.target)
|
428 |
+
if isinstance(expr.iterable, Range):
|
429 |
+
start, stop, step = expr.iterable.args
|
430 |
+
else:
|
431 |
+
raise NotImplementedError("Only iterable currently supported is Range")
|
432 |
+
body = self._print(expr.body)
|
433 |
+
return ('do {target} = {start}, {stop}, {step}\n'
|
434 |
+
'{body}\n'
|
435 |
+
'end do').format(target=target, start=start, stop=stop - 1,
|
436 |
+
step=step, body=body)
|
437 |
+
|
438 |
+
def _print_Type(self, type_):
|
439 |
+
type_ = self.type_aliases.get(type_, type_)
|
440 |
+
type_str = self.type_mappings.get(type_, type_.name)
|
441 |
+
module_uses = self.type_modules.get(type_)
|
442 |
+
if module_uses:
|
443 |
+
for k, v in module_uses:
|
444 |
+
self.module_uses[k].add(v)
|
445 |
+
return type_str
|
446 |
+
|
447 |
+
def _print_Element(self, elem):
|
448 |
+
return '{symbol}({idxs})'.format(
|
449 |
+
symbol=self._print(elem.symbol),
|
450 |
+
idxs=', '.join((self._print(arg) for arg in elem.indices))
|
451 |
+
)
|
452 |
+
|
453 |
+
def _print_Extent(self, ext):
|
454 |
+
return str(ext)
|
455 |
+
|
456 |
+
def _print_Declaration(self, expr):
|
457 |
+
var = expr.variable
|
458 |
+
val = var.value
|
459 |
+
dim = var.attr_params('dimension')
|
460 |
+
intents = [intent in var.attrs for intent in (intent_in, intent_out, intent_inout)]
|
461 |
+
if intents.count(True) == 0:
|
462 |
+
intent = ''
|
463 |
+
elif intents.count(True) == 1:
|
464 |
+
intent = ', intent(%s)' % ['in', 'out', 'inout'][intents.index(True)]
|
465 |
+
else:
|
466 |
+
raise ValueError("Multiple intents specified for %s" % self)
|
467 |
+
|
468 |
+
if isinstance(var, Pointer):
|
469 |
+
raise NotImplementedError("Pointers are not available by default in Fortran.")
|
470 |
+
if self._settings["standard"] >= 90:
|
471 |
+
result = '{t}{vc}{dim}{intent}{alloc} :: {s}'.format(
|
472 |
+
t=self._print(var.type),
|
473 |
+
vc=', parameter' if value_const in var.attrs else '',
|
474 |
+
dim=', dimension(%s)' % ', '.join((self._print(arg) for arg in dim)) if dim else '',
|
475 |
+
intent=intent,
|
476 |
+
alloc=', allocatable' if allocatable in var.attrs else '',
|
477 |
+
s=self._print(var.symbol)
|
478 |
+
)
|
479 |
+
if val != None: # Must be "!= None", cannot be "is not None"
|
480 |
+
result += ' = %s' % self._print(val)
|
481 |
+
else:
|
482 |
+
if value_const in var.attrs or val:
|
483 |
+
raise NotImplementedError("F77 init./parameter statem. req. multiple lines.")
|
484 |
+
result = ' '.join((self._print(arg) for arg in [var.type, var.symbol]))
|
485 |
+
|
486 |
+
return result
|
487 |
+
|
488 |
+
|
489 |
+
def _print_Infinity(self, expr):
|
490 |
+
return '(huge(%s) + 1)' % self._print(literal_dp(0))
|
491 |
+
|
492 |
+
def _print_While(self, expr):
|
493 |
+
return 'do while ({condition})\n{body}\nend do'.format(**expr.kwargs(
|
494 |
+
apply=lambda arg: self._print(arg)))
|
495 |
+
|
496 |
+
def _print_BooleanTrue(self, expr):
|
497 |
+
return '.true.'
|
498 |
+
|
499 |
+
def _print_BooleanFalse(self, expr):
|
500 |
+
return '.false.'
|
501 |
+
|
502 |
+
def _pad_leading_columns(self, lines):
|
503 |
+
result = []
|
504 |
+
for line in lines:
|
505 |
+
if line.startswith('!'):
|
506 |
+
result.append(self._lead['comment'] + line[1:].lstrip())
|
507 |
+
else:
|
508 |
+
result.append(self._lead['code'] + line)
|
509 |
+
return result
|
510 |
+
|
511 |
+
def _wrap_fortran(self, lines):
|
512 |
+
"""Wrap long Fortran lines
|
513 |
+
|
514 |
+
Argument:
|
515 |
+
lines -- a list of lines (without \\n character)
|
516 |
+
|
517 |
+
A comment line is split at white space. Code lines are split with a more
|
518 |
+
complex rule to give nice results.
|
519 |
+
"""
|
520 |
+
# routine to find split point in a code line
|
521 |
+
my_alnum = set("_+-." + string.digits + string.ascii_letters)
|
522 |
+
my_white = set(" \t()")
|
523 |
+
|
524 |
+
def split_pos_code(line, endpos):
|
525 |
+
if len(line) <= endpos:
|
526 |
+
return len(line)
|
527 |
+
pos = endpos
|
528 |
+
split = lambda pos: \
|
529 |
+
(line[pos] in my_alnum and line[pos - 1] not in my_alnum) or \
|
530 |
+
(line[pos] not in my_alnum and line[pos - 1] in my_alnum) or \
|
531 |
+
(line[pos] in my_white and line[pos - 1] not in my_white) or \
|
532 |
+
(line[pos] not in my_white and line[pos - 1] in my_white)
|
533 |
+
while not split(pos):
|
534 |
+
pos -= 1
|
535 |
+
if pos == 0:
|
536 |
+
return endpos
|
537 |
+
return pos
|
538 |
+
# split line by line and add the split lines to result
|
539 |
+
result = []
|
540 |
+
if self._settings['source_format'] == 'free':
|
541 |
+
trailing = ' &'
|
542 |
+
else:
|
543 |
+
trailing = ''
|
544 |
+
for line in lines:
|
545 |
+
if line.startswith(self._lead['comment']):
|
546 |
+
# comment line
|
547 |
+
if len(line) > 72:
|
548 |
+
pos = line.rfind(" ", 6, 72)
|
549 |
+
if pos == -1:
|
550 |
+
pos = 72
|
551 |
+
hunk = line[:pos]
|
552 |
+
line = line[pos:].lstrip()
|
553 |
+
result.append(hunk)
|
554 |
+
while line:
|
555 |
+
pos = line.rfind(" ", 0, 66)
|
556 |
+
if pos == -1 or len(line) < 66:
|
557 |
+
pos = 66
|
558 |
+
hunk = line[:pos]
|
559 |
+
line = line[pos:].lstrip()
|
560 |
+
result.append("%s%s" % (self._lead['comment'], hunk))
|
561 |
+
else:
|
562 |
+
result.append(line)
|
563 |
+
elif line.startswith(self._lead['code']):
|
564 |
+
# code line
|
565 |
+
pos = split_pos_code(line, 72)
|
566 |
+
hunk = line[:pos].rstrip()
|
567 |
+
line = line[pos:].lstrip()
|
568 |
+
if line:
|
569 |
+
hunk += trailing
|
570 |
+
result.append(hunk)
|
571 |
+
while line:
|
572 |
+
pos = split_pos_code(line, 65)
|
573 |
+
hunk = line[:pos].rstrip()
|
574 |
+
line = line[pos:].lstrip()
|
575 |
+
if line:
|
576 |
+
hunk += trailing
|
577 |
+
result.append("%s%s" % (self._lead['cont'], hunk))
|
578 |
+
else:
|
579 |
+
result.append(line)
|
580 |
+
return result
|
581 |
+
|
582 |
+
def indent_code(self, code):
|
583 |
+
"""Accepts a string of code or a list of code lines"""
|
584 |
+
if isinstance(code, str):
|
585 |
+
code_lines = self.indent_code(code.splitlines(True))
|
586 |
+
return ''.join(code_lines)
|
587 |
+
|
588 |
+
free = self._settings['source_format'] == 'free'
|
589 |
+
code = [ line.lstrip(' \t') for line in code ]
|
590 |
+
|
591 |
+
inc_keyword = ('do ', 'if(', 'if ', 'do\n', 'else', 'program', 'interface')
|
592 |
+
dec_keyword = ('end do', 'enddo', 'end if', 'endif', 'else', 'end program', 'end interface')
|
593 |
+
|
594 |
+
increase = [ int(any(map(line.startswith, inc_keyword)))
|
595 |
+
for line in code ]
|
596 |
+
decrease = [ int(any(map(line.startswith, dec_keyword)))
|
597 |
+
for line in code ]
|
598 |
+
continuation = [ int(any(map(line.endswith, ['&', '&\n'])))
|
599 |
+
for line in code ]
|
600 |
+
|
601 |
+
level = 0
|
602 |
+
cont_padding = 0
|
603 |
+
tabwidth = 3
|
604 |
+
new_code = []
|
605 |
+
for i, line in enumerate(code):
|
606 |
+
if line in ('', '\n'):
|
607 |
+
new_code.append(line)
|
608 |
+
continue
|
609 |
+
level -= decrease[i]
|
610 |
+
|
611 |
+
if free:
|
612 |
+
padding = " "*(level*tabwidth + cont_padding)
|
613 |
+
else:
|
614 |
+
padding = " "*level*tabwidth
|
615 |
+
|
616 |
+
line = "%s%s" % (padding, line)
|
617 |
+
if not free:
|
618 |
+
line = self._pad_leading_columns([line])[0]
|
619 |
+
|
620 |
+
new_code.append(line)
|
621 |
+
|
622 |
+
if continuation[i]:
|
623 |
+
cont_padding = 2*tabwidth
|
624 |
+
else:
|
625 |
+
cont_padding = 0
|
626 |
+
level += increase[i]
|
627 |
+
|
628 |
+
if not free:
|
629 |
+
return self._wrap_fortran(new_code)
|
630 |
+
return new_code
|
631 |
+
|
632 |
+
def _print_GoTo(self, goto):
|
633 |
+
if goto.expr: # computed goto
|
634 |
+
return "go to ({labels}), {expr}".format(
|
635 |
+
labels=', '.join((self._print(arg) for arg in goto.labels)),
|
636 |
+
expr=self._print(goto.expr)
|
637 |
+
)
|
638 |
+
else:
|
639 |
+
lbl, = goto.labels
|
640 |
+
return "go to %s" % self._print(lbl)
|
641 |
+
|
642 |
+
def _print_Program(self, prog):
|
643 |
+
return (
|
644 |
+
"program {name}\n"
|
645 |
+
"{body}\n"
|
646 |
+
"end program\n"
|
647 |
+
).format(**prog.kwargs(apply=lambda arg: self._print(arg)))
|
648 |
+
|
649 |
+
def _print_Module(self, mod):
|
650 |
+
return (
|
651 |
+
"module {name}\n"
|
652 |
+
"{declarations}\n"
|
653 |
+
"\ncontains\n\n"
|
654 |
+
"{definitions}\n"
|
655 |
+
"end module\n"
|
656 |
+
).format(**mod.kwargs(apply=lambda arg: self._print(arg)))
|
657 |
+
|
658 |
+
def _print_Stream(self, strm):
|
659 |
+
if strm.name == 'stdout' and self._settings["standard"] >= 2003:
|
660 |
+
self.module_uses['iso_c_binding'].add('stdint=>input_unit')
|
661 |
+
return 'input_unit'
|
662 |
+
elif strm.name == 'stderr' and self._settings["standard"] >= 2003:
|
663 |
+
self.module_uses['iso_c_binding'].add('stdint=>error_unit')
|
664 |
+
return 'error_unit'
|
665 |
+
else:
|
666 |
+
if strm.name == 'stdout':
|
667 |
+
return '*'
|
668 |
+
else:
|
669 |
+
return strm.name
|
670 |
+
|
671 |
+
def _print_Print(self, ps):
|
672 |
+
if ps.format_string != None: # Must be '!= None', cannot be 'is not None'
|
673 |
+
fmt = self._print(ps.format_string)
|
674 |
+
else:
|
675 |
+
fmt = "*"
|
676 |
+
return "print {fmt}, {iolist}".format(fmt=fmt, iolist=', '.join(
|
677 |
+
(self._print(arg) for arg in ps.print_args)))
|
678 |
+
|
679 |
+
def _print_Return(self, rs):
|
680 |
+
arg, = rs.args
|
681 |
+
return "{result_name} = {arg}".format(
|
682 |
+
result_name=self._context.get('result_name', 'sympy_result'),
|
683 |
+
arg=self._print(arg)
|
684 |
+
)
|
685 |
+
|
686 |
+
def _print_FortranReturn(self, frs):
|
687 |
+
arg, = frs.args
|
688 |
+
if arg:
|
689 |
+
return 'return %s' % self._print(arg)
|
690 |
+
else:
|
691 |
+
return 'return'
|
692 |
+
|
693 |
+
def _head(self, entity, fp, **kwargs):
|
694 |
+
bind_C_params = fp.attr_params('bind_C')
|
695 |
+
if bind_C_params is None:
|
696 |
+
bind = ''
|
697 |
+
else:
|
698 |
+
bind = ' bind(C, name="%s")' % bind_C_params[0] if bind_C_params else ' bind(C)'
|
699 |
+
result_name = self._settings.get('result_name', None)
|
700 |
+
return (
|
701 |
+
"{entity}{name}({arg_names}){result}{bind}\n"
|
702 |
+
"{arg_declarations}"
|
703 |
+
).format(
|
704 |
+
entity=entity,
|
705 |
+
name=self._print(fp.name),
|
706 |
+
arg_names=', '.join([self._print(arg.symbol) for arg in fp.parameters]),
|
707 |
+
result=(' result(%s)' % result_name) if result_name else '',
|
708 |
+
bind=bind,
|
709 |
+
arg_declarations='\n'.join((self._print(Declaration(arg)) for arg in fp.parameters))
|
710 |
+
)
|
711 |
+
|
712 |
+
def _print_FunctionPrototype(self, fp):
|
713 |
+
entity = "{} function ".format(self._print(fp.return_type))
|
714 |
+
return (
|
715 |
+
"interface\n"
|
716 |
+
"{function_head}\n"
|
717 |
+
"end function\n"
|
718 |
+
"end interface"
|
719 |
+
).format(function_head=self._head(entity, fp))
|
720 |
+
|
721 |
+
def _print_FunctionDefinition(self, fd):
|
722 |
+
if elemental in fd.attrs:
|
723 |
+
prefix = 'elemental '
|
724 |
+
elif pure in fd.attrs:
|
725 |
+
prefix = 'pure '
|
726 |
+
else:
|
727 |
+
prefix = ''
|
728 |
+
|
729 |
+
entity = "{} function ".format(self._print(fd.return_type))
|
730 |
+
with printer_context(self, result_name=fd.name):
|
731 |
+
return (
|
732 |
+
"{prefix}{function_head}\n"
|
733 |
+
"{body}\n"
|
734 |
+
"end function\n"
|
735 |
+
).format(
|
736 |
+
prefix=prefix,
|
737 |
+
function_head=self._head(entity, fd),
|
738 |
+
body=self._print(fd.body)
|
739 |
+
)
|
740 |
+
|
741 |
+
def _print_Subroutine(self, sub):
|
742 |
+
return (
|
743 |
+
'{subroutine_head}\n'
|
744 |
+
'{body}\n'
|
745 |
+
'end subroutine\n'
|
746 |
+
).format(
|
747 |
+
subroutine_head=self._head('subroutine ', sub),
|
748 |
+
body=self._print(sub.body)
|
749 |
+
)
|
750 |
+
|
751 |
+
def _print_SubroutineCall(self, scall):
|
752 |
+
return 'call {name}({args})'.format(
|
753 |
+
name=self._print(scall.name),
|
754 |
+
args=', '.join((self._print(arg) for arg in scall.subroutine_args))
|
755 |
+
)
|
756 |
+
|
757 |
+
def _print_use_rename(self, rnm):
|
758 |
+
return "%s => %s" % tuple((self._print(arg) for arg in rnm.args))
|
759 |
+
|
760 |
+
def _print_use(self, use):
|
761 |
+
result = 'use %s' % self._print(use.namespace)
|
762 |
+
if use.rename != None: # Must be '!= None', cannot be 'is not None'
|
763 |
+
result += ', ' + ', '.join([self._print(rnm) for rnm in use.rename])
|
764 |
+
if use.only != None: # Must be '!= None', cannot be 'is not None'
|
765 |
+
result += ', only: ' + ', '.join([self._print(nly) for nly in use.only])
|
766 |
+
return result
|
767 |
+
|
768 |
+
def _print_BreakToken(self, _):
|
769 |
+
return 'exit'
|
770 |
+
|
771 |
+
def _print_ContinueToken(self, _):
|
772 |
+
return 'cycle'
|
773 |
+
|
774 |
+
def _print_ArrayConstructor(self, ac):
|
775 |
+
fmtstr = "[%s]" if self._settings["standard"] >= 2003 else '(/%s/)'
|
776 |
+
return fmtstr % ', '.join((self._print(arg) for arg in ac.elements))
|
777 |
+
|
778 |
+
def _print_ArrayElement(self, elem):
|
779 |
+
return '{symbol}({idxs})'.format(
|
780 |
+
symbol=self._print(elem.name),
|
781 |
+
idxs=', '.join((self._print(arg) for arg in elem.indices))
|
782 |
+
)
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/glsl.py
ADDED
@@ -0,0 +1,557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from sympy.core import Basic, S
|
4 |
+
from sympy.core.function import Lambda
|
5 |
+
from sympy.core.numbers import equal_valued
|
6 |
+
from sympy.printing.codeprinter import CodePrinter
|
7 |
+
from sympy.printing.precedence import precedence
|
8 |
+
from functools import reduce
|
9 |
+
|
10 |
+
known_functions = {
|
11 |
+
'Abs': 'abs',
|
12 |
+
'sin': 'sin',
|
13 |
+
'cos': 'cos',
|
14 |
+
'tan': 'tan',
|
15 |
+
'acos': 'acos',
|
16 |
+
'asin': 'asin',
|
17 |
+
'atan': 'atan',
|
18 |
+
'atan2': 'atan',
|
19 |
+
'ceiling': 'ceil',
|
20 |
+
'floor': 'floor',
|
21 |
+
'sign': 'sign',
|
22 |
+
'exp': 'exp',
|
23 |
+
'log': 'log',
|
24 |
+
'add': 'add',
|
25 |
+
'sub': 'sub',
|
26 |
+
'mul': 'mul',
|
27 |
+
'pow': 'pow'
|
28 |
+
}
|
29 |
+
|
30 |
+
class GLSLPrinter(CodePrinter):
|
31 |
+
"""
|
32 |
+
Rudimentary, generic GLSL printing tools.
|
33 |
+
|
34 |
+
Additional settings:
|
35 |
+
'use_operators': Boolean (should the printer use operators for +,-,*, or functions?)
|
36 |
+
"""
|
37 |
+
_not_supported: set[Basic] = set()
|
38 |
+
printmethod = "_glsl"
|
39 |
+
language = "GLSL"
|
40 |
+
|
41 |
+
_default_settings = {
|
42 |
+
'use_operators': True,
|
43 |
+
'zero': 0,
|
44 |
+
'mat_nested': False,
|
45 |
+
'mat_separator': ',\n',
|
46 |
+
'mat_transpose': False,
|
47 |
+
'array_type': 'float',
|
48 |
+
'glsl_types': True,
|
49 |
+
|
50 |
+
'order': None,
|
51 |
+
'full_prec': 'auto',
|
52 |
+
'precision': 9,
|
53 |
+
'user_functions': {},
|
54 |
+
'human': True,
|
55 |
+
'allow_unknown_functions': False,
|
56 |
+
'contract': True,
|
57 |
+
'error_on_reserved': False,
|
58 |
+
'reserved_word_suffix': '_',
|
59 |
+
}
|
60 |
+
|
61 |
+
def __init__(self, settings={}):
|
62 |
+
CodePrinter.__init__(self, settings)
|
63 |
+
self.known_functions = dict(known_functions)
|
64 |
+
userfuncs = settings.get('user_functions', {})
|
65 |
+
self.known_functions.update(userfuncs)
|
66 |
+
|
67 |
+
def _rate_index_position(self, p):
|
68 |
+
return p*5
|
69 |
+
|
70 |
+
def _get_statement(self, codestring):
|
71 |
+
return "%s;" % codestring
|
72 |
+
|
73 |
+
def _get_comment(self, text):
|
74 |
+
return "// {}".format(text)
|
75 |
+
|
76 |
+
def _declare_number_const(self, name, value):
|
77 |
+
return "float {} = {};".format(name, value)
|
78 |
+
|
79 |
+
def _format_code(self, lines):
|
80 |
+
return self.indent_code(lines)
|
81 |
+
|
82 |
+
def indent_code(self, code):
|
83 |
+
"""Accepts a string of code or a list of code lines"""
|
84 |
+
|
85 |
+
if isinstance(code, str):
|
86 |
+
code_lines = self.indent_code(code.splitlines(True))
|
87 |
+
return ''.join(code_lines)
|
88 |
+
|
89 |
+
tab = " "
|
90 |
+
inc_token = ('{', '(', '{\n', '(\n')
|
91 |
+
dec_token = ('}', ')')
|
92 |
+
|
93 |
+
code = [line.lstrip(' \t') for line in code]
|
94 |
+
|
95 |
+
increase = [int(any(map(line.endswith, inc_token))) for line in code]
|
96 |
+
decrease = [int(any(map(line.startswith, dec_token))) for line in code]
|
97 |
+
|
98 |
+
pretty = []
|
99 |
+
level = 0
|
100 |
+
for n, line in enumerate(code):
|
101 |
+
if line in ('', '\n'):
|
102 |
+
pretty.append(line)
|
103 |
+
continue
|
104 |
+
level -= decrease[n]
|
105 |
+
pretty.append("%s%s" % (tab*level, line))
|
106 |
+
level += increase[n]
|
107 |
+
return pretty
|
108 |
+
|
109 |
+
def _print_MatrixBase(self, mat):
|
110 |
+
mat_separator = self._settings['mat_separator']
|
111 |
+
mat_transpose = self._settings['mat_transpose']
|
112 |
+
column_vector = (mat.rows == 1) if mat_transpose else (mat.cols == 1)
|
113 |
+
A = mat.transpose() if mat_transpose != column_vector else mat
|
114 |
+
|
115 |
+
glsl_types = self._settings['glsl_types']
|
116 |
+
array_type = self._settings['array_type']
|
117 |
+
array_size = A.cols*A.rows
|
118 |
+
array_constructor = "{}[{}]".format(array_type, array_size)
|
119 |
+
|
120 |
+
if A.cols == 1:
|
121 |
+
return self._print(A[0]);
|
122 |
+
if A.rows <= 4 and A.cols <= 4 and glsl_types:
|
123 |
+
if A.rows == 1:
|
124 |
+
return "vec{}{}".format(
|
125 |
+
A.cols, A.table(self,rowstart='(',rowend=')')
|
126 |
+
)
|
127 |
+
elif A.rows == A.cols:
|
128 |
+
return "mat{}({})".format(
|
129 |
+
A.rows, A.table(self,rowsep=', ',
|
130 |
+
rowstart='',rowend='')
|
131 |
+
)
|
132 |
+
else:
|
133 |
+
return "mat{}x{}({})".format(
|
134 |
+
A.cols, A.rows,
|
135 |
+
A.table(self,rowsep=', ',
|
136 |
+
rowstart='',rowend='')
|
137 |
+
)
|
138 |
+
elif S.One in A.shape:
|
139 |
+
return "{}({})".format(
|
140 |
+
array_constructor,
|
141 |
+
A.table(self,rowsep=mat_separator,rowstart='',rowend='')
|
142 |
+
)
|
143 |
+
elif not self._settings['mat_nested']:
|
144 |
+
return "{}(\n{}\n) /* a {}x{} matrix */".format(
|
145 |
+
array_constructor,
|
146 |
+
A.table(self,rowsep=mat_separator,rowstart='',rowend=''),
|
147 |
+
A.rows, A.cols
|
148 |
+
)
|
149 |
+
elif self._settings['mat_nested']:
|
150 |
+
return "{}[{}][{}](\n{}\n)".format(
|
151 |
+
array_type, A.rows, A.cols,
|
152 |
+
A.table(self,rowsep=mat_separator,rowstart='float[](',rowend=')')
|
153 |
+
)
|
154 |
+
|
155 |
+
def _print_SparseRepMatrix(self, mat):
|
156 |
+
# do not allow sparse matrices to be made dense
|
157 |
+
return self._print_not_supported(mat)
|
158 |
+
|
159 |
+
def _traverse_matrix_indices(self, mat):
|
160 |
+
mat_transpose = self._settings['mat_transpose']
|
161 |
+
if mat_transpose:
|
162 |
+
rows,cols = mat.shape
|
163 |
+
else:
|
164 |
+
cols,rows = mat.shape
|
165 |
+
return ((i, j) for i in range(cols) for j in range(rows))
|
166 |
+
|
167 |
+
def _print_MatrixElement(self, expr):
|
168 |
+
# print('begin _print_MatrixElement')
|
169 |
+
nest = self._settings['mat_nested'];
|
170 |
+
glsl_types = self._settings['glsl_types'];
|
171 |
+
mat_transpose = self._settings['mat_transpose'];
|
172 |
+
if mat_transpose:
|
173 |
+
cols,rows = expr.parent.shape
|
174 |
+
i,j = expr.j,expr.i
|
175 |
+
else:
|
176 |
+
rows,cols = expr.parent.shape
|
177 |
+
i,j = expr.i,expr.j
|
178 |
+
pnt = self._print(expr.parent)
|
179 |
+
if glsl_types and ((rows <= 4 and cols <=4) or nest):
|
180 |
+
return "{}[{}][{}]".format(pnt, i, j)
|
181 |
+
else:
|
182 |
+
return "{}[{}]".format(pnt, i + j*rows)
|
183 |
+
|
184 |
+
def _print_list(self, expr):
|
185 |
+
l = ', '.join(self._print(item) for item in expr)
|
186 |
+
glsl_types = self._settings['glsl_types']
|
187 |
+
array_type = self._settings['array_type']
|
188 |
+
array_size = len(expr)
|
189 |
+
array_constructor = '{}[{}]'.format(array_type, array_size)
|
190 |
+
|
191 |
+
if array_size <= 4 and glsl_types:
|
192 |
+
return 'vec{}({})'.format(array_size, l)
|
193 |
+
else:
|
194 |
+
return '{}({})'.format(array_constructor, l)
|
195 |
+
|
196 |
+
_print_tuple = _print_list
|
197 |
+
_print_Tuple = _print_list
|
198 |
+
|
199 |
+
def _get_loop_opening_ending(self, indices):
|
200 |
+
open_lines = []
|
201 |
+
close_lines = []
|
202 |
+
loopstart = "for (int %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){"
|
203 |
+
for i in indices:
|
204 |
+
# GLSL arrays start at 0 and end at dimension-1
|
205 |
+
open_lines.append(loopstart % {
|
206 |
+
'varble': self._print(i.label),
|
207 |
+
'start': self._print(i.lower),
|
208 |
+
'end': self._print(i.upper + 1)})
|
209 |
+
close_lines.append("}")
|
210 |
+
return open_lines, close_lines
|
211 |
+
|
212 |
+
def _print_Function_with_args(self, func, func_args):
|
213 |
+
if func in self.known_functions:
|
214 |
+
cond_func = self.known_functions[func]
|
215 |
+
func = None
|
216 |
+
if isinstance(cond_func, str):
|
217 |
+
func = cond_func
|
218 |
+
else:
|
219 |
+
for cond, func in cond_func:
|
220 |
+
if cond(func_args):
|
221 |
+
break
|
222 |
+
if func is not None:
|
223 |
+
try:
|
224 |
+
return func(*[self.parenthesize(item, 0) for item in func_args])
|
225 |
+
except TypeError:
|
226 |
+
return '{}({})'.format(func, self.stringify(func_args, ", "))
|
227 |
+
elif isinstance(func, Lambda):
|
228 |
+
# inlined function
|
229 |
+
return self._print(func(*func_args))
|
230 |
+
else:
|
231 |
+
return self._print_not_supported(func)
|
232 |
+
|
233 |
+
def _print_Piecewise(self, expr):
|
234 |
+
from sympy.codegen.ast import Assignment
|
235 |
+
if expr.args[-1].cond != True:
|
236 |
+
# We need the last conditional to be a True, otherwise the resulting
|
237 |
+
# function may not return a result.
|
238 |
+
raise ValueError("All Piecewise expressions must contain an "
|
239 |
+
"(expr, True) statement to be used as a default "
|
240 |
+
"condition. Without one, the generated "
|
241 |
+
"expression may not evaluate to anything under "
|
242 |
+
"some condition.")
|
243 |
+
lines = []
|
244 |
+
if expr.has(Assignment):
|
245 |
+
for i, (e, c) in enumerate(expr.args):
|
246 |
+
if i == 0:
|
247 |
+
lines.append("if (%s) {" % self._print(c))
|
248 |
+
elif i == len(expr.args) - 1 and c == True:
|
249 |
+
lines.append("else {")
|
250 |
+
else:
|
251 |
+
lines.append("else if (%s) {" % self._print(c))
|
252 |
+
code0 = self._print(e)
|
253 |
+
lines.append(code0)
|
254 |
+
lines.append("}")
|
255 |
+
return "\n".join(lines)
|
256 |
+
else:
|
257 |
+
# The piecewise was used in an expression, need to do inline
|
258 |
+
# operators. This has the downside that inline operators will
|
259 |
+
# not work for statements that span multiple lines (Matrix or
|
260 |
+
# Indexed expressions).
|
261 |
+
ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c),
|
262 |
+
self._print(e))
|
263 |
+
for e, c in expr.args[:-1]]
|
264 |
+
last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
|
265 |
+
return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])
|
266 |
+
|
267 |
+
def _print_Idx(self, expr):
|
268 |
+
return self._print(expr.label)
|
269 |
+
|
270 |
+
def _print_Indexed(self, expr):
|
271 |
+
# calculate index for 1d array
|
272 |
+
dims = expr.shape
|
273 |
+
elem = S.Zero
|
274 |
+
offset = S.One
|
275 |
+
for i in reversed(range(expr.rank)):
|
276 |
+
elem += expr.indices[i]*offset
|
277 |
+
offset *= dims[i]
|
278 |
+
return "{}[{}]".format(
|
279 |
+
self._print(expr.base.label),
|
280 |
+
self._print(elem)
|
281 |
+
)
|
282 |
+
|
283 |
+
def _print_Pow(self, expr):
|
284 |
+
PREC = precedence(expr)
|
285 |
+
if equal_valued(expr.exp, -1):
|
286 |
+
return '1.0/%s' % (self.parenthesize(expr.base, PREC))
|
287 |
+
elif equal_valued(expr.exp, 0.5):
|
288 |
+
return 'sqrt(%s)' % self._print(expr.base)
|
289 |
+
else:
|
290 |
+
try:
|
291 |
+
e = self._print(float(expr.exp))
|
292 |
+
except TypeError:
|
293 |
+
e = self._print(expr.exp)
|
294 |
+
return self._print_Function_with_args('pow', (
|
295 |
+
self._print(expr.base),
|
296 |
+
e
|
297 |
+
))
|
298 |
+
|
299 |
+
def _print_int(self, expr):
|
300 |
+
return str(float(expr))
|
301 |
+
|
302 |
+
def _print_Rational(self, expr):
|
303 |
+
return "{}.0/{}.0".format(expr.p, expr.q)
|
304 |
+
|
305 |
+
def _print_Relational(self, expr):
|
306 |
+
lhs_code = self._print(expr.lhs)
|
307 |
+
rhs_code = self._print(expr.rhs)
|
308 |
+
op = expr.rel_op
|
309 |
+
return "{} {} {}".format(lhs_code, op, rhs_code)
|
310 |
+
|
311 |
+
def _print_Add(self, expr, order=None):
|
312 |
+
if self._settings['use_operators']:
|
313 |
+
return CodePrinter._print_Add(self, expr, order=order)
|
314 |
+
|
315 |
+
terms = expr.as_ordered_terms()
|
316 |
+
|
317 |
+
def partition(p,l):
|
318 |
+
return reduce(lambda x, y: (x[0]+[y], x[1]) if p(y) else (x[0], x[1]+[y]), l, ([], []))
|
319 |
+
def add(a,b):
|
320 |
+
return self._print_Function_with_args('add', (a, b))
|
321 |
+
# return self.known_functions['add']+'(%s, %s)' % (a,b)
|
322 |
+
neg, pos = partition(lambda arg: arg.could_extract_minus_sign(), terms)
|
323 |
+
if pos:
|
324 |
+
s = pos = reduce(lambda a,b: add(a,b), (self._print(t) for t in pos))
|
325 |
+
else:
|
326 |
+
s = pos = self._print(self._settings['zero'])
|
327 |
+
|
328 |
+
if neg:
|
329 |
+
# sum the absolute values of the negative terms
|
330 |
+
neg = reduce(lambda a,b: add(a,b), (self._print(-n) for n in neg))
|
331 |
+
# then subtract them from the positive terms
|
332 |
+
s = self._print_Function_with_args('sub', (pos,neg))
|
333 |
+
# s = self.known_functions['sub']+'(%s, %s)' % (pos,neg)
|
334 |
+
return s
|
335 |
+
|
336 |
+
def _print_Mul(self, expr, **kwargs):
|
337 |
+
if self._settings['use_operators']:
|
338 |
+
return CodePrinter._print_Mul(self, expr, **kwargs)
|
339 |
+
terms = expr.as_ordered_factors()
|
340 |
+
def mul(a,b):
|
341 |
+
# return self.known_functions['mul']+'(%s, %s)' % (a,b)
|
342 |
+
return self._print_Function_with_args('mul', (a,b))
|
343 |
+
|
344 |
+
s = reduce(lambda a,b: mul(a,b), (self._print(t) for t in terms))
|
345 |
+
return s
|
346 |
+
|
347 |
+
def glsl_code(expr,assign_to=None,**settings):
|
348 |
+
"""Converts an expr to a string of GLSL code
|
349 |
+
|
350 |
+
Parameters
|
351 |
+
==========
|
352 |
+
|
353 |
+
expr : Expr
|
354 |
+
A SymPy expression to be converted.
|
355 |
+
assign_to : optional
|
356 |
+
When given, the argument is used for naming the variable or variables
|
357 |
+
to which the expression is assigned. Can be a string, ``Symbol``,
|
358 |
+
``MatrixSymbol`` or ``Indexed`` type object. In cases where ``expr``
|
359 |
+
would be printed as an array, a list of string or ``Symbol`` objects
|
360 |
+
can also be passed.
|
361 |
+
|
362 |
+
This is helpful in case of line-wrapping, or for expressions that
|
363 |
+
generate multi-line statements. It can also be used to spread an array-like
|
364 |
+
expression into multiple assignments.
|
365 |
+
use_operators: bool, optional
|
366 |
+
If set to False, then *,/,+,- operators will be replaced with functions
|
367 |
+
mul, add, and sub, which must be implemented by the user, e.g. for
|
368 |
+
implementing non-standard rings or emulated quad/octal precision.
|
369 |
+
[default=True]
|
370 |
+
glsl_types: bool, optional
|
371 |
+
Set this argument to ``False`` in order to avoid using the ``vec`` and ``mat``
|
372 |
+
types. The printer will instead use arrays (or nested arrays).
|
373 |
+
[default=True]
|
374 |
+
mat_nested: bool, optional
|
375 |
+
GLSL version 4.3 and above support nested arrays (arrays of arrays). Set this to ``True``
|
376 |
+
to render matrices as nested arrays.
|
377 |
+
[default=False]
|
378 |
+
mat_separator: str, optional
|
379 |
+
By default, matrices are rendered with newlines using this separator,
|
380 |
+
making them easier to read, but less compact. By removing the newline
|
381 |
+
this option can be used to make them more vertically compact.
|
382 |
+
[default=',\n']
|
383 |
+
mat_transpose: bool, optional
|
384 |
+
GLSL's matrix multiplication implementation assumes column-major indexing.
|
385 |
+
By default, this printer ignores that convention. Setting this option to
|
386 |
+
``True`` transposes all matrix output.
|
387 |
+
[default=False]
|
388 |
+
array_type: str, optional
|
389 |
+
The GLSL array constructor type.
|
390 |
+
[default='float']
|
391 |
+
precision : integer, optional
|
392 |
+
The precision for numbers such as pi [default=15].
|
393 |
+
user_functions : dict, optional
|
394 |
+
A dictionary where keys are ``FunctionClass`` instances and values are
|
395 |
+
their string representations. Alternatively, the dictionary value can
|
396 |
+
be a list of tuples i.e. [(argument_test, js_function_string)]. See
|
397 |
+
below for examples.
|
398 |
+
human : bool, optional
|
399 |
+
If True, the result is a single string that may contain some constant
|
400 |
+
declarations for the number symbols. If False, the same information is
|
401 |
+
returned in a tuple of (symbols_to_declare, not_supported_functions,
|
402 |
+
code_text). [default=True].
|
403 |
+
contract: bool, optional
|
404 |
+
If True, ``Indexed`` instances are assumed to obey tensor contraction
|
405 |
+
rules and the corresponding nested loops over indices are generated.
|
406 |
+
Setting contract=False will not generate loops, instead the user is
|
407 |
+
responsible to provide values for the indices in the code.
|
408 |
+
[default=True].
|
409 |
+
|
410 |
+
Examples
|
411 |
+
========
|
412 |
+
|
413 |
+
>>> from sympy import glsl_code, symbols, Rational, sin, ceiling, Abs
|
414 |
+
>>> x, tau = symbols("x, tau")
|
415 |
+
>>> glsl_code((2*tau)**Rational(7, 2))
|
416 |
+
'8*sqrt(2)*pow(tau, 3.5)'
|
417 |
+
>>> glsl_code(sin(x), assign_to="float y")
|
418 |
+
'float y = sin(x);'
|
419 |
+
|
420 |
+
Various GLSL types are supported:
|
421 |
+
>>> from sympy import Matrix, glsl_code
|
422 |
+
>>> glsl_code(Matrix([1,2,3]))
|
423 |
+
'vec3(1, 2, 3)'
|
424 |
+
|
425 |
+
>>> glsl_code(Matrix([[1, 2],[3, 4]]))
|
426 |
+
'mat2(1, 2, 3, 4)'
|
427 |
+
|
428 |
+
Pass ``mat_transpose = True`` to switch to column-major indexing:
|
429 |
+
>>> glsl_code(Matrix([[1, 2],[3, 4]]), mat_transpose = True)
|
430 |
+
'mat2(1, 3, 2, 4)'
|
431 |
+
|
432 |
+
By default, larger matrices get collapsed into float arrays:
|
433 |
+
>>> print(glsl_code( Matrix([[1,2,3,4,5],[6,7,8,9,10]]) ))
|
434 |
+
float[10](
|
435 |
+
1, 2, 3, 4, 5,
|
436 |
+
6, 7, 8, 9, 10
|
437 |
+
) /* a 2x5 matrix */
|
438 |
+
|
439 |
+
The type of array constructor used to print GLSL arrays can be controlled
|
440 |
+
via the ``array_type`` parameter:
|
441 |
+
>>> glsl_code(Matrix([1,2,3,4,5]), array_type='int')
|
442 |
+
'int[5](1, 2, 3, 4, 5)'
|
443 |
+
|
444 |
+
Passing a list of strings or ``symbols`` to the ``assign_to`` parameter will yield
|
445 |
+
a multi-line assignment for each item in an array-like expression:
|
446 |
+
>>> x_struct_members = symbols('x.a x.b x.c x.d')
|
447 |
+
>>> print(glsl_code(Matrix([1,2,3,4]), assign_to=x_struct_members))
|
448 |
+
x.a = 1;
|
449 |
+
x.b = 2;
|
450 |
+
x.c = 3;
|
451 |
+
x.d = 4;
|
452 |
+
|
453 |
+
This could be useful in cases where it's desirable to modify members of a
|
454 |
+
GLSL ``Struct``. It could also be used to spread items from an array-like
|
455 |
+
expression into various miscellaneous assignments:
|
456 |
+
>>> misc_assignments = ('x[0]', 'x[1]', 'float y', 'float z')
|
457 |
+
>>> print(glsl_code(Matrix([1,2,3,4]), assign_to=misc_assignments))
|
458 |
+
x[0] = 1;
|
459 |
+
x[1] = 2;
|
460 |
+
float y = 3;
|
461 |
+
float z = 4;
|
462 |
+
|
463 |
+
Passing ``mat_nested = True`` instead prints out nested float arrays, which are
|
464 |
+
supported in GLSL 4.3 and above.
|
465 |
+
>>> mat = Matrix([
|
466 |
+
... [ 0, 1, 2],
|
467 |
+
... [ 3, 4, 5],
|
468 |
+
... [ 6, 7, 8],
|
469 |
+
... [ 9, 10, 11],
|
470 |
+
... [12, 13, 14]])
|
471 |
+
>>> print(glsl_code( mat, mat_nested = True ))
|
472 |
+
float[5][3](
|
473 |
+
float[]( 0, 1, 2),
|
474 |
+
float[]( 3, 4, 5),
|
475 |
+
float[]( 6, 7, 8),
|
476 |
+
float[]( 9, 10, 11),
|
477 |
+
float[](12, 13, 14)
|
478 |
+
)
|
479 |
+
|
480 |
+
|
481 |
+
|
482 |
+
Custom printing can be defined for certain types by passing a dictionary of
|
483 |
+
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
|
484 |
+
dictionary value can be a list of tuples i.e. [(argument_test,
|
485 |
+
js_function_string)].
|
486 |
+
|
487 |
+
>>> custom_functions = {
|
488 |
+
... "ceiling": "CEIL",
|
489 |
+
... "Abs": [(lambda x: not x.is_integer, "fabs"),
|
490 |
+
... (lambda x: x.is_integer, "ABS")]
|
491 |
+
... }
|
492 |
+
>>> glsl_code(Abs(x) + ceiling(x), user_functions=custom_functions)
|
493 |
+
'fabs(x) + CEIL(x)'
|
494 |
+
|
495 |
+
If further control is needed, addition, subtraction, multiplication and
|
496 |
+
division operators can be replaced with ``add``, ``sub``, and ``mul``
|
497 |
+
functions. This is done by passing ``use_operators = False``:
|
498 |
+
|
499 |
+
>>> x,y,z = symbols('x,y,z')
|
500 |
+
>>> glsl_code(x*(y+z), use_operators = False)
|
501 |
+
'mul(x, add(y, z))'
|
502 |
+
>>> glsl_code(x*(y+z*(x-y)**z), use_operators = False)
|
503 |
+
'mul(x, add(y, mul(z, pow(sub(x, y), z))))'
|
504 |
+
|
505 |
+
``Piecewise`` expressions are converted into conditionals. If an
|
506 |
+
``assign_to`` variable is provided an if statement is created, otherwise
|
507 |
+
the ternary operator is used. Note that if the ``Piecewise`` lacks a
|
508 |
+
default term, represented by ``(expr, True)`` then an error will be thrown.
|
509 |
+
This is to prevent generating an expression that may not evaluate to
|
510 |
+
anything.
|
511 |
+
|
512 |
+
>>> from sympy import Piecewise
|
513 |
+
>>> expr = Piecewise((x + 1, x > 0), (x, True))
|
514 |
+
>>> print(glsl_code(expr, tau))
|
515 |
+
if (x > 0) {
|
516 |
+
tau = x + 1;
|
517 |
+
}
|
518 |
+
else {
|
519 |
+
tau = x;
|
520 |
+
}
|
521 |
+
|
522 |
+
Support for loops is provided through ``Indexed`` types. With
|
523 |
+
``contract=True`` these expressions will be turned into loops, whereas
|
524 |
+
``contract=False`` will just print the assignment expression that should be
|
525 |
+
looped over:
|
526 |
+
|
527 |
+
>>> from sympy import Eq, IndexedBase, Idx
|
528 |
+
>>> len_y = 5
|
529 |
+
>>> y = IndexedBase('y', shape=(len_y,))
|
530 |
+
>>> t = IndexedBase('t', shape=(len_y,))
|
531 |
+
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
|
532 |
+
>>> i = Idx('i', len_y-1)
|
533 |
+
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
|
534 |
+
>>> glsl_code(e.rhs, assign_to=e.lhs, contract=False)
|
535 |
+
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
|
536 |
+
|
537 |
+
>>> from sympy import Matrix, MatrixSymbol
|
538 |
+
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
|
539 |
+
>>> A = MatrixSymbol('A', 3, 1)
|
540 |
+
>>> print(glsl_code(mat, A))
|
541 |
+
A[0][0] = pow(x, 2.0);
|
542 |
+
if (x > 0) {
|
543 |
+
A[1][0] = x + 1;
|
544 |
+
}
|
545 |
+
else {
|
546 |
+
A[1][0] = x;
|
547 |
+
}
|
548 |
+
A[2][0] = sin(x);
|
549 |
+
"""
|
550 |
+
return GLSLPrinter(settings).doprint(expr,assign_to)
|
551 |
+
|
552 |
+
def print_glsl(expr, **settings):
|
553 |
+
"""Prints the GLSL representation of the given expression.
|
554 |
+
|
555 |
+
See GLSLPrinter init function for settings.
|
556 |
+
"""
|
557 |
+
print(glsl_code(expr, **settings))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/gtk.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.printing.mathml import mathml
|
2 |
+
from sympy.utilities.mathml import c2p
|
3 |
+
import tempfile
|
4 |
+
import subprocess
|
5 |
+
|
6 |
+
|
7 |
+
def print_gtk(x, start_viewer=True):
|
8 |
+
"""Print to Gtkmathview, a gtk widget capable of rendering MathML.
|
9 |
+
|
10 |
+
Needs libgtkmathview-bin"""
|
11 |
+
with tempfile.NamedTemporaryFile('w') as file:
|
12 |
+
file.write(c2p(mathml(x), simple=True))
|
13 |
+
file.flush()
|
14 |
+
|
15 |
+
if start_viewer:
|
16 |
+
subprocess.check_call(('mathmlviewer', file.name))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/jscode.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Javascript code printer
|
3 |
+
|
4 |
+
The JavascriptCodePrinter converts single SymPy expressions into single
|
5 |
+
Javascript expressions, using the functions defined in the Javascript
|
6 |
+
Math object where possible.
|
7 |
+
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
from typing import Any
|
12 |
+
|
13 |
+
from sympy.core import S
|
14 |
+
from sympy.core.numbers import equal_valued
|
15 |
+
from sympy.printing.codeprinter import CodePrinter
|
16 |
+
from sympy.printing.precedence import precedence, PRECEDENCE
|
17 |
+
|
18 |
+
|
19 |
+
# dictionary mapping SymPy function to (argument_conditions, Javascript_function).
|
20 |
+
# Used in JavascriptCodePrinter._print_Function(self)
|
21 |
+
known_functions = {
|
22 |
+
'Abs': 'Math.abs',
|
23 |
+
'acos': 'Math.acos',
|
24 |
+
'acosh': 'Math.acosh',
|
25 |
+
'asin': 'Math.asin',
|
26 |
+
'asinh': 'Math.asinh',
|
27 |
+
'atan': 'Math.atan',
|
28 |
+
'atan2': 'Math.atan2',
|
29 |
+
'atanh': 'Math.atanh',
|
30 |
+
'ceiling': 'Math.ceil',
|
31 |
+
'cos': 'Math.cos',
|
32 |
+
'cosh': 'Math.cosh',
|
33 |
+
'exp': 'Math.exp',
|
34 |
+
'floor': 'Math.floor',
|
35 |
+
'log': 'Math.log',
|
36 |
+
'Max': 'Math.max',
|
37 |
+
'Min': 'Math.min',
|
38 |
+
'sign': 'Math.sign',
|
39 |
+
'sin': 'Math.sin',
|
40 |
+
'sinh': 'Math.sinh',
|
41 |
+
'tan': 'Math.tan',
|
42 |
+
'tanh': 'Math.tanh',
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
class JavascriptCodePrinter(CodePrinter):
|
47 |
+
""""A Printer to convert Python expressions to strings of JavaScript code
|
48 |
+
"""
|
49 |
+
printmethod = '_javascript'
|
50 |
+
language = 'JavaScript'
|
51 |
+
|
52 |
+
_default_settings: dict[str, Any] = {
|
53 |
+
'order': None,
|
54 |
+
'full_prec': 'auto',
|
55 |
+
'precision': 17,
|
56 |
+
'user_functions': {},
|
57 |
+
'human': True,
|
58 |
+
'allow_unknown_functions': False,
|
59 |
+
'contract': True,
|
60 |
+
}
|
61 |
+
|
62 |
+
def __init__(self, settings={}):
|
63 |
+
CodePrinter.__init__(self, settings)
|
64 |
+
self.known_functions = dict(known_functions)
|
65 |
+
userfuncs = settings.get('user_functions', {})
|
66 |
+
self.known_functions.update(userfuncs)
|
67 |
+
|
68 |
+
def _rate_index_position(self, p):
|
69 |
+
return p*5
|
70 |
+
|
71 |
+
def _get_statement(self, codestring):
|
72 |
+
return "%s;" % codestring
|
73 |
+
|
74 |
+
def _get_comment(self, text):
|
75 |
+
return "// {}".format(text)
|
76 |
+
|
77 |
+
def _declare_number_const(self, name, value):
|
78 |
+
return "var {} = {};".format(name, value.evalf(self._settings['precision']))
|
79 |
+
|
80 |
+
def _format_code(self, lines):
|
81 |
+
return self.indent_code(lines)
|
82 |
+
|
83 |
+
def _traverse_matrix_indices(self, mat):
|
84 |
+
rows, cols = mat.shape
|
85 |
+
return ((i, j) for i in range(rows) for j in range(cols))
|
86 |
+
|
87 |
+
def _get_loop_opening_ending(self, indices):
|
88 |
+
open_lines = []
|
89 |
+
close_lines = []
|
90 |
+
loopstart = "for (var %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){"
|
91 |
+
for i in indices:
|
92 |
+
# Javascript arrays start at 0 and end at dimension-1
|
93 |
+
open_lines.append(loopstart % {
|
94 |
+
'varble': self._print(i.label),
|
95 |
+
'start': self._print(i.lower),
|
96 |
+
'end': self._print(i.upper + 1)})
|
97 |
+
close_lines.append("}")
|
98 |
+
return open_lines, close_lines
|
99 |
+
|
100 |
+
def _print_Pow(self, expr):
|
101 |
+
PREC = precedence(expr)
|
102 |
+
if equal_valued(expr.exp, -1):
|
103 |
+
return '1/%s' % (self.parenthesize(expr.base, PREC))
|
104 |
+
elif equal_valued(expr.exp, 0.5):
|
105 |
+
return 'Math.sqrt(%s)' % self._print(expr.base)
|
106 |
+
elif expr.exp == S.One/3:
|
107 |
+
return 'Math.cbrt(%s)' % self._print(expr.base)
|
108 |
+
else:
|
109 |
+
return 'Math.pow(%s, %s)' % (self._print(expr.base),
|
110 |
+
self._print(expr.exp))
|
111 |
+
|
112 |
+
def _print_Rational(self, expr):
|
113 |
+
p, q = int(expr.p), int(expr.q)
|
114 |
+
return '%d/%d' % (p, q)
|
115 |
+
|
116 |
+
def _print_Mod(self, expr):
|
117 |
+
num, den = expr.args
|
118 |
+
PREC = precedence(expr)
|
119 |
+
snum, sden = [self.parenthesize(arg, PREC) for arg in expr.args]
|
120 |
+
# % is remainder (same sign as numerator), not modulo (same sign as
|
121 |
+
# denominator), in js. Hence, % only works as modulo if both numbers
|
122 |
+
# have the same sign
|
123 |
+
if (num.is_nonnegative and den.is_nonnegative or
|
124 |
+
num.is_nonpositive and den.is_nonpositive):
|
125 |
+
return f"{snum} % {sden}"
|
126 |
+
return f"(({snum} % {sden}) + {sden}) % {sden}"
|
127 |
+
|
128 |
+
def _print_Relational(self, expr):
|
129 |
+
lhs_code = self._print(expr.lhs)
|
130 |
+
rhs_code = self._print(expr.rhs)
|
131 |
+
op = expr.rel_op
|
132 |
+
return "{} {} {}".format(lhs_code, op, rhs_code)
|
133 |
+
|
134 |
+
def _print_Indexed(self, expr):
|
135 |
+
# calculate index for 1d array
|
136 |
+
dims = expr.shape
|
137 |
+
elem = S.Zero
|
138 |
+
offset = S.One
|
139 |
+
for i in reversed(range(expr.rank)):
|
140 |
+
elem += expr.indices[i]*offset
|
141 |
+
offset *= dims[i]
|
142 |
+
return "%s[%s]" % (self._print(expr.base.label), self._print(elem))
|
143 |
+
|
144 |
+
def _print_Idx(self, expr):
|
145 |
+
return self._print(expr.label)
|
146 |
+
|
147 |
+
def _print_Exp1(self, expr):
|
148 |
+
return "Math.E"
|
149 |
+
|
150 |
+
def _print_Pi(self, expr):
|
151 |
+
return 'Math.PI'
|
152 |
+
|
153 |
+
def _print_Infinity(self, expr):
|
154 |
+
return 'Number.POSITIVE_INFINITY'
|
155 |
+
|
156 |
+
def _print_NegativeInfinity(self, expr):
|
157 |
+
return 'Number.NEGATIVE_INFINITY'
|
158 |
+
|
159 |
+
def _print_Piecewise(self, expr):
|
160 |
+
from sympy.codegen.ast import Assignment
|
161 |
+
if expr.args[-1].cond != True:
|
162 |
+
# We need the last conditional to be a True, otherwise the resulting
|
163 |
+
# function may not return a result.
|
164 |
+
raise ValueError("All Piecewise expressions must contain an "
|
165 |
+
"(expr, True) statement to be used as a default "
|
166 |
+
"condition. Without one, the generated "
|
167 |
+
"expression may not evaluate to anything under "
|
168 |
+
"some condition.")
|
169 |
+
lines = []
|
170 |
+
if expr.has(Assignment):
|
171 |
+
for i, (e, c) in enumerate(expr.args):
|
172 |
+
if i == 0:
|
173 |
+
lines.append("if (%s) {" % self._print(c))
|
174 |
+
elif i == len(expr.args) - 1 and c == True:
|
175 |
+
lines.append("else {")
|
176 |
+
else:
|
177 |
+
lines.append("else if (%s) {" % self._print(c))
|
178 |
+
code0 = self._print(e)
|
179 |
+
lines.append(code0)
|
180 |
+
lines.append("}")
|
181 |
+
return "\n".join(lines)
|
182 |
+
else:
|
183 |
+
# The piecewise was used in an expression, need to do inline
|
184 |
+
# operators. This has the downside that inline operators will
|
185 |
+
# not work for statements that span multiple lines (Matrix or
|
186 |
+
# Indexed expressions).
|
187 |
+
ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e))
|
188 |
+
for e, c in expr.args[:-1]]
|
189 |
+
last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
|
190 |
+
return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])
|
191 |
+
|
192 |
+
def _print_MatrixElement(self, expr):
|
193 |
+
return "{}[{}]".format(self.parenthesize(expr.parent,
|
194 |
+
PRECEDENCE["Atom"], strict=True),
|
195 |
+
expr.j + expr.i*expr.parent.shape[1])
|
196 |
+
|
197 |
+
def indent_code(self, code):
|
198 |
+
"""Accepts a string of code or a list of code lines"""
|
199 |
+
|
200 |
+
if isinstance(code, str):
|
201 |
+
code_lines = self.indent_code(code.splitlines(True))
|
202 |
+
return ''.join(code_lines)
|
203 |
+
|
204 |
+
tab = " "
|
205 |
+
inc_token = ('{', '(', '{\n', '(\n')
|
206 |
+
dec_token = ('}', ')')
|
207 |
+
|
208 |
+
code = [ line.lstrip(' \t') for line in code ]
|
209 |
+
|
210 |
+
increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
|
211 |
+
decrease = [ int(any(map(line.startswith, dec_token)))
|
212 |
+
for line in code ]
|
213 |
+
|
214 |
+
pretty = []
|
215 |
+
level = 0
|
216 |
+
for n, line in enumerate(code):
|
217 |
+
if line in ('', '\n'):
|
218 |
+
pretty.append(line)
|
219 |
+
continue
|
220 |
+
level -= decrease[n]
|
221 |
+
pretty.append("%s%s" % (tab*level, line))
|
222 |
+
level += increase[n]
|
223 |
+
return pretty
|
224 |
+
|
225 |
+
|
226 |
+
def jscode(expr, assign_to=None, **settings):
|
227 |
+
"""Converts an expr to a string of javascript code
|
228 |
+
|
229 |
+
Parameters
|
230 |
+
==========
|
231 |
+
|
232 |
+
expr : Expr
|
233 |
+
A SymPy expression to be converted.
|
234 |
+
assign_to : optional
|
235 |
+
When given, the argument is used as the name of the variable to which
|
236 |
+
the expression is assigned. Can be a string, ``Symbol``,
|
237 |
+
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
|
238 |
+
line-wrapping, or for expressions that generate multi-line statements.
|
239 |
+
precision : integer, optional
|
240 |
+
The precision for numbers such as pi [default=15].
|
241 |
+
user_functions : dict, optional
|
242 |
+
A dictionary where keys are ``FunctionClass`` instances and values are
|
243 |
+
their string representations. Alternatively, the dictionary value can
|
244 |
+
be a list of tuples i.e. [(argument_test, js_function_string)]. See
|
245 |
+
below for examples.
|
246 |
+
human : bool, optional
|
247 |
+
If True, the result is a single string that may contain some constant
|
248 |
+
declarations for the number symbols. If False, the same information is
|
249 |
+
returned in a tuple of (symbols_to_declare, not_supported_functions,
|
250 |
+
code_text). [default=True].
|
251 |
+
contract: bool, optional
|
252 |
+
If True, ``Indexed`` instances are assumed to obey tensor contraction
|
253 |
+
rules and the corresponding nested loops over indices are generated.
|
254 |
+
Setting contract=False will not generate loops, instead the user is
|
255 |
+
responsible to provide values for the indices in the code.
|
256 |
+
[default=True].
|
257 |
+
|
258 |
+
Examples
|
259 |
+
========
|
260 |
+
|
261 |
+
>>> from sympy import jscode, symbols, Rational, sin, ceiling, Abs
|
262 |
+
>>> x, tau = symbols("x, tau")
|
263 |
+
>>> jscode((2*tau)**Rational(7, 2))
|
264 |
+
'8*Math.sqrt(2)*Math.pow(tau, 7/2)'
|
265 |
+
>>> jscode(sin(x), assign_to="s")
|
266 |
+
's = Math.sin(x);'
|
267 |
+
|
268 |
+
Custom printing can be defined for certain types by passing a dictionary of
|
269 |
+
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
|
270 |
+
dictionary value can be a list of tuples i.e. [(argument_test,
|
271 |
+
js_function_string)].
|
272 |
+
|
273 |
+
>>> custom_functions = {
|
274 |
+
... "ceiling": "CEIL",
|
275 |
+
... "Abs": [(lambda x: not x.is_integer, "fabs"),
|
276 |
+
... (lambda x: x.is_integer, "ABS")]
|
277 |
+
... }
|
278 |
+
>>> jscode(Abs(x) + ceiling(x), user_functions=custom_functions)
|
279 |
+
'fabs(x) + CEIL(x)'
|
280 |
+
|
281 |
+
``Piecewise`` expressions are converted into conditionals. If an
|
282 |
+
``assign_to`` variable is provided an if statement is created, otherwise
|
283 |
+
the ternary operator is used. Note that if the ``Piecewise`` lacks a
|
284 |
+
default term, represented by ``(expr, True)`` then an error will be thrown.
|
285 |
+
This is to prevent generating an expression that may not evaluate to
|
286 |
+
anything.
|
287 |
+
|
288 |
+
>>> from sympy import Piecewise
|
289 |
+
>>> expr = Piecewise((x + 1, x > 0), (x, True))
|
290 |
+
>>> print(jscode(expr, tau))
|
291 |
+
if (x > 0) {
|
292 |
+
tau = x + 1;
|
293 |
+
}
|
294 |
+
else {
|
295 |
+
tau = x;
|
296 |
+
}
|
297 |
+
|
298 |
+
Support for loops is provided through ``Indexed`` types. With
|
299 |
+
``contract=True`` these expressions will be turned into loops, whereas
|
300 |
+
``contract=False`` will just print the assignment expression that should be
|
301 |
+
looped over:
|
302 |
+
|
303 |
+
>>> from sympy import Eq, IndexedBase, Idx
|
304 |
+
>>> len_y = 5
|
305 |
+
>>> y = IndexedBase('y', shape=(len_y,))
|
306 |
+
>>> t = IndexedBase('t', shape=(len_y,))
|
307 |
+
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
|
308 |
+
>>> i = Idx('i', len_y-1)
|
309 |
+
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
|
310 |
+
>>> jscode(e.rhs, assign_to=e.lhs, contract=False)
|
311 |
+
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
|
312 |
+
|
313 |
+
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
|
314 |
+
must be provided to ``assign_to``. Note that any expression that can be
|
315 |
+
generated normally can also exist inside a Matrix:
|
316 |
+
|
317 |
+
>>> from sympy import Matrix, MatrixSymbol
|
318 |
+
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
|
319 |
+
>>> A = MatrixSymbol('A', 3, 1)
|
320 |
+
>>> print(jscode(mat, A))
|
321 |
+
A[0] = Math.pow(x, 2);
|
322 |
+
if (x > 0) {
|
323 |
+
A[1] = x + 1;
|
324 |
+
}
|
325 |
+
else {
|
326 |
+
A[1] = x;
|
327 |
+
}
|
328 |
+
A[2] = Math.sin(x);
|
329 |
+
"""
|
330 |
+
|
331 |
+
return JavascriptCodePrinter(settings).doprint(expr, assign_to)
|
332 |
+
|
333 |
+
|
334 |
+
def print_jscode(expr, **settings):
|
335 |
+
"""Prints the Javascript representation of the given expression.
|
336 |
+
|
337 |
+
See jscode for the meaning of the optional arguments.
|
338 |
+
"""
|
339 |
+
print(jscode(expr, **settings))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/julia.py
ADDED
@@ -0,0 +1,658 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Julia code printer
|
3 |
+
|
4 |
+
The `JuliaCodePrinter` converts SymPy expressions into Julia expressions.
|
5 |
+
|
6 |
+
A complete code generator, which uses `julia_code` extensively, can be found
|
7 |
+
in `sympy.utilities.codegen`. The `codegen` module can be used to generate
|
8 |
+
complete source code files.
|
9 |
+
|
10 |
+
"""
|
11 |
+
|
12 |
+
from __future__ import annotations
|
13 |
+
from typing import Any
|
14 |
+
|
15 |
+
from sympy.core import Mul, Pow, S, Rational
|
16 |
+
from sympy.core.mul import _keep_coeff
|
17 |
+
from sympy.core.numbers import equal_valued
|
18 |
+
from sympy.printing.codeprinter import CodePrinter
|
19 |
+
from sympy.printing.precedence import precedence, PRECEDENCE
|
20 |
+
from re import search
|
21 |
+
|
22 |
+
# List of known functions. First, those that have the same name in
|
23 |
+
# SymPy and Julia. This is almost certainly incomplete!
|
24 |
+
known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc",
|
25 |
+
"asin", "acos", "atan", "acot", "asec", "acsc",
|
26 |
+
"sinh", "cosh", "tanh", "coth", "sech", "csch",
|
27 |
+
"asinh", "acosh", "atanh", "acoth", "asech", "acsch",
|
28 |
+
"sinc", "atan2", "sign", "floor", "log", "exp",
|
29 |
+
"cbrt", "sqrt", "erf", "erfc", "erfi",
|
30 |
+
"factorial", "gamma", "digamma", "trigamma",
|
31 |
+
"polygamma", "beta",
|
32 |
+
"airyai", "airyaiprime", "airybi", "airybiprime",
|
33 |
+
"besselj", "bessely", "besseli", "besselk",
|
34 |
+
"erfinv", "erfcinv"]
|
35 |
+
# These functions have different names ("SymPy": "Julia"), more
|
36 |
+
# generally a mapping to (argument_conditions, julia_function).
|
37 |
+
known_fcns_src2 = {
|
38 |
+
"Abs": "abs",
|
39 |
+
"ceiling": "ceil",
|
40 |
+
"conjugate": "conj",
|
41 |
+
"hankel1": "hankelh1",
|
42 |
+
"hankel2": "hankelh2",
|
43 |
+
"im": "imag",
|
44 |
+
"re": "real"
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
class JuliaCodePrinter(CodePrinter):
|
49 |
+
"""
|
50 |
+
A printer to convert expressions to strings of Julia code.
|
51 |
+
"""
|
52 |
+
printmethod = "_julia"
|
53 |
+
language = "Julia"
|
54 |
+
|
55 |
+
_operators = {
|
56 |
+
'and': '&&',
|
57 |
+
'or': '||',
|
58 |
+
'not': '!',
|
59 |
+
}
|
60 |
+
|
61 |
+
_default_settings: dict[str, Any] = {
|
62 |
+
'order': None,
|
63 |
+
'full_prec': 'auto',
|
64 |
+
'precision': 17,
|
65 |
+
'user_functions': {},
|
66 |
+
'human': True,
|
67 |
+
'allow_unknown_functions': False,
|
68 |
+
'contract': True,
|
69 |
+
'inline': True,
|
70 |
+
}
|
71 |
+
# Note: contract is for expressing tensors as loops (if True), or just
|
72 |
+
# assignment (if False). FIXME: this should be looked a more carefully
|
73 |
+
# for Julia.
|
74 |
+
|
75 |
+
def __init__(self, settings={}):
|
76 |
+
super().__init__(settings)
|
77 |
+
self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1))
|
78 |
+
self.known_functions.update(dict(known_fcns_src2))
|
79 |
+
userfuncs = settings.get('user_functions', {})
|
80 |
+
self.known_functions.update(userfuncs)
|
81 |
+
|
82 |
+
|
83 |
+
def _rate_index_position(self, p):
|
84 |
+
return p*5
|
85 |
+
|
86 |
+
|
87 |
+
def _get_statement(self, codestring):
|
88 |
+
return "%s" % codestring
|
89 |
+
|
90 |
+
|
91 |
+
def _get_comment(self, text):
|
92 |
+
return "# {}".format(text)
|
93 |
+
|
94 |
+
|
95 |
+
def _declare_number_const(self, name, value):
|
96 |
+
return "const {} = {}".format(name, value)
|
97 |
+
|
98 |
+
|
99 |
+
def _format_code(self, lines):
|
100 |
+
return self.indent_code(lines)
|
101 |
+
|
102 |
+
|
103 |
+
def _traverse_matrix_indices(self, mat):
|
104 |
+
# Julia uses Fortran order (column-major)
|
105 |
+
rows, cols = mat.shape
|
106 |
+
return ((i, j) for j in range(cols) for i in range(rows))
|
107 |
+
|
108 |
+
|
109 |
+
def _get_loop_opening_ending(self, indices):
|
110 |
+
open_lines = []
|
111 |
+
close_lines = []
|
112 |
+
for i in indices:
|
113 |
+
# Julia arrays start at 1 and end at dimension
|
114 |
+
var, start, stop = map(self._print,
|
115 |
+
[i.label, i.lower + 1, i.upper + 1])
|
116 |
+
open_lines.append("for %s = %s:%s" % (var, start, stop))
|
117 |
+
close_lines.append("end")
|
118 |
+
return open_lines, close_lines
|
119 |
+
|
120 |
+
|
121 |
+
def _print_Mul(self, expr):
|
122 |
+
# print complex numbers nicely in Julia
|
123 |
+
if (expr.is_number and expr.is_imaginary and
|
124 |
+
expr.as_coeff_Mul()[0].is_integer):
|
125 |
+
return "%sim" % self._print(-S.ImaginaryUnit*expr)
|
126 |
+
|
127 |
+
# cribbed from str.py
|
128 |
+
prec = precedence(expr)
|
129 |
+
|
130 |
+
c, e = expr.as_coeff_Mul()
|
131 |
+
if c < 0:
|
132 |
+
expr = _keep_coeff(-c, e)
|
133 |
+
sign = "-"
|
134 |
+
else:
|
135 |
+
sign = ""
|
136 |
+
|
137 |
+
a = [] # items in the numerator
|
138 |
+
b = [] # items that are in the denominator (if any)
|
139 |
+
|
140 |
+
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
|
141 |
+
|
142 |
+
if self.order not in ('old', 'none'):
|
143 |
+
args = expr.as_ordered_factors()
|
144 |
+
else:
|
145 |
+
# use make_args in case expr was something like -x -> x
|
146 |
+
args = Mul.make_args(expr)
|
147 |
+
|
148 |
+
# Gather args for numerator/denominator
|
149 |
+
for item in args:
|
150 |
+
if (item.is_commutative and item.is_Pow and item.exp.is_Rational
|
151 |
+
and item.exp.is_negative):
|
152 |
+
if item.exp != -1:
|
153 |
+
b.append(Pow(item.base, -item.exp, evaluate=False))
|
154 |
+
else:
|
155 |
+
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
|
156 |
+
pow_paren.append(item)
|
157 |
+
b.append(Pow(item.base, -item.exp))
|
158 |
+
elif item.is_Rational and item is not S.Infinity and item.p == 1:
|
159 |
+
# Save the Rational type in julia Unless the numerator is 1.
|
160 |
+
# For example:
|
161 |
+
# julia_code(Rational(3, 7)*x) --> (3 // 7) * x
|
162 |
+
# julia_code(x/3) --> x / 3 but not x * (1 // 3)
|
163 |
+
b.append(Rational(item.q))
|
164 |
+
else:
|
165 |
+
a.append(item)
|
166 |
+
|
167 |
+
a = a or [S.One]
|
168 |
+
|
169 |
+
a_str = [self.parenthesize(x, prec) for x in a]
|
170 |
+
b_str = [self.parenthesize(x, prec) for x in b]
|
171 |
+
|
172 |
+
# To parenthesize Pow with exp = -1 and having more than one Symbol
|
173 |
+
for item in pow_paren:
|
174 |
+
if item.base in b:
|
175 |
+
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
|
176 |
+
|
177 |
+
# from here it differs from str.py to deal with "*" and ".*"
|
178 |
+
def multjoin(a, a_str):
|
179 |
+
# here we probably are assuming the constants will come first
|
180 |
+
r = a_str[0]
|
181 |
+
for i in range(1, len(a)):
|
182 |
+
mulsym = '*' if a[i-1].is_number else '.*'
|
183 |
+
r = "%s %s %s" % (r, mulsym, a_str[i])
|
184 |
+
return r
|
185 |
+
|
186 |
+
if not b:
|
187 |
+
return sign + multjoin(a, a_str)
|
188 |
+
elif len(b) == 1:
|
189 |
+
divsym = '/' if b[0].is_number else './'
|
190 |
+
return "%s %s %s" % (sign+multjoin(a, a_str), divsym, b_str[0])
|
191 |
+
else:
|
192 |
+
divsym = '/' if all(bi.is_number for bi in b) else './'
|
193 |
+
return "%s %s (%s)" % (sign + multjoin(a, a_str), divsym, multjoin(b, b_str))
|
194 |
+
|
195 |
+
def _print_Relational(self, expr):
|
196 |
+
lhs_code = self._print(expr.lhs)
|
197 |
+
rhs_code = self._print(expr.rhs)
|
198 |
+
op = expr.rel_op
|
199 |
+
return "{} {} {}".format(lhs_code, op, rhs_code)
|
200 |
+
|
201 |
+
def _print_Pow(self, expr):
|
202 |
+
powsymbol = '^' if all(x.is_number for x in expr.args) else '.^'
|
203 |
+
|
204 |
+
PREC = precedence(expr)
|
205 |
+
|
206 |
+
if equal_valued(expr.exp, 0.5):
|
207 |
+
return "sqrt(%s)" % self._print(expr.base)
|
208 |
+
|
209 |
+
if expr.is_commutative:
|
210 |
+
if equal_valued(expr.exp, -0.5):
|
211 |
+
sym = '/' if expr.base.is_number else './'
|
212 |
+
return "1 %s sqrt(%s)" % (sym, self._print(expr.base))
|
213 |
+
if equal_valued(expr.exp, -1):
|
214 |
+
sym = '/' if expr.base.is_number else './'
|
215 |
+
return "1 %s %s" % (sym, self.parenthesize(expr.base, PREC))
|
216 |
+
|
217 |
+
return '%s %s %s' % (self.parenthesize(expr.base, PREC), powsymbol,
|
218 |
+
self.parenthesize(expr.exp, PREC))
|
219 |
+
|
220 |
+
|
221 |
+
def _print_MatPow(self, expr):
|
222 |
+
PREC = precedence(expr)
|
223 |
+
return '%s ^ %s' % (self.parenthesize(expr.base, PREC),
|
224 |
+
self.parenthesize(expr.exp, PREC))
|
225 |
+
|
226 |
+
|
227 |
+
def _print_Pi(self, expr):
|
228 |
+
if self._settings["inline"]:
|
229 |
+
return "pi"
|
230 |
+
else:
|
231 |
+
return super()._print_NumberSymbol(expr)
|
232 |
+
|
233 |
+
|
234 |
+
def _print_ImaginaryUnit(self, expr):
|
235 |
+
return "im"
|
236 |
+
|
237 |
+
|
238 |
+
def _print_Exp1(self, expr):
|
239 |
+
if self._settings["inline"]:
|
240 |
+
return "e"
|
241 |
+
else:
|
242 |
+
return super()._print_NumberSymbol(expr)
|
243 |
+
|
244 |
+
|
245 |
+
def _print_EulerGamma(self, expr):
|
246 |
+
if self._settings["inline"]:
|
247 |
+
return "eulergamma"
|
248 |
+
else:
|
249 |
+
return super()._print_NumberSymbol(expr)
|
250 |
+
|
251 |
+
|
252 |
+
def _print_Catalan(self, expr):
|
253 |
+
if self._settings["inline"]:
|
254 |
+
return "catalan"
|
255 |
+
else:
|
256 |
+
return super()._print_NumberSymbol(expr)
|
257 |
+
|
258 |
+
|
259 |
+
def _print_GoldenRatio(self, expr):
|
260 |
+
if self._settings["inline"]:
|
261 |
+
return "golden"
|
262 |
+
else:
|
263 |
+
return super()._print_NumberSymbol(expr)
|
264 |
+
|
265 |
+
|
266 |
+
def _print_Assignment(self, expr):
|
267 |
+
from sympy.codegen.ast import Assignment
|
268 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
269 |
+
from sympy.tensor.indexed import IndexedBase
|
270 |
+
# Copied from codeprinter, but remove special MatrixSymbol treatment
|
271 |
+
lhs = expr.lhs
|
272 |
+
rhs = expr.rhs
|
273 |
+
# We special case assignments that take multiple lines
|
274 |
+
if not self._settings["inline"] and isinstance(expr.rhs, Piecewise):
|
275 |
+
# Here we modify Piecewise so each expression is now
|
276 |
+
# an Assignment, and then continue on the print.
|
277 |
+
expressions = []
|
278 |
+
conditions = []
|
279 |
+
for (e, c) in rhs.args:
|
280 |
+
expressions.append(Assignment(lhs, e))
|
281 |
+
conditions.append(c)
|
282 |
+
temp = Piecewise(*zip(expressions, conditions))
|
283 |
+
return self._print(temp)
|
284 |
+
if self._settings["contract"] and (lhs.has(IndexedBase) or
|
285 |
+
rhs.has(IndexedBase)):
|
286 |
+
# Here we check if there is looping to be done, and if so
|
287 |
+
# print the required loops.
|
288 |
+
return self._doprint_loops(rhs, lhs)
|
289 |
+
else:
|
290 |
+
lhs_code = self._print(lhs)
|
291 |
+
rhs_code = self._print(rhs)
|
292 |
+
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
|
293 |
+
|
294 |
+
|
295 |
+
def _print_Infinity(self, expr):
|
296 |
+
return 'Inf'
|
297 |
+
|
298 |
+
|
299 |
+
def _print_NegativeInfinity(self, expr):
|
300 |
+
return '-Inf'
|
301 |
+
|
302 |
+
|
303 |
+
def _print_NaN(self, expr):
|
304 |
+
return 'NaN'
|
305 |
+
|
306 |
+
|
307 |
+
def _print_list(self, expr):
|
308 |
+
return 'Any[' + ', '.join(self._print(a) for a in expr) + ']'
|
309 |
+
|
310 |
+
|
311 |
+
def _print_tuple(self, expr):
|
312 |
+
if len(expr) == 1:
|
313 |
+
return "(%s,)" % self._print(expr[0])
|
314 |
+
else:
|
315 |
+
return "(%s)" % self.stringify(expr, ", ")
|
316 |
+
_print_Tuple = _print_tuple
|
317 |
+
|
318 |
+
|
319 |
+
def _print_BooleanTrue(self, expr):
|
320 |
+
return "true"
|
321 |
+
|
322 |
+
|
323 |
+
def _print_BooleanFalse(self, expr):
|
324 |
+
return "false"
|
325 |
+
|
326 |
+
|
327 |
+
def _print_bool(self, expr):
|
328 |
+
return str(expr).lower()
|
329 |
+
|
330 |
+
|
331 |
+
# Could generate quadrature code for definite Integrals?
|
332 |
+
#_print_Integral = _print_not_supported
|
333 |
+
|
334 |
+
|
335 |
+
def _print_MatrixBase(self, A):
|
336 |
+
# Handle zero dimensions:
|
337 |
+
if S.Zero in A.shape:
|
338 |
+
return 'zeros(%s, %s)' % (A.rows, A.cols)
|
339 |
+
elif (A.rows, A.cols) == (1, 1):
|
340 |
+
return "[%s]" % A[0, 0]
|
341 |
+
elif A.rows == 1:
|
342 |
+
return "[%s]" % A.table(self, rowstart='', rowend='', colsep=' ')
|
343 |
+
elif A.cols == 1:
|
344 |
+
# note .table would unnecessarily equispace the rows
|
345 |
+
return "[%s]" % ", ".join([self._print(a) for a in A])
|
346 |
+
return "[%s]" % A.table(self, rowstart='', rowend='',
|
347 |
+
rowsep=';\n', colsep=' ')
|
348 |
+
|
349 |
+
|
350 |
+
def _print_SparseRepMatrix(self, A):
|
351 |
+
from sympy.matrices import Matrix
|
352 |
+
L = A.col_list();
|
353 |
+
# make row vectors of the indices and entries
|
354 |
+
I = Matrix([k[0] + 1 for k in L])
|
355 |
+
J = Matrix([k[1] + 1 for k in L])
|
356 |
+
AIJ = Matrix([k[2] for k in L])
|
357 |
+
return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J),
|
358 |
+
self._print(AIJ), A.rows, A.cols)
|
359 |
+
|
360 |
+
|
361 |
+
def _print_MatrixElement(self, expr):
|
362 |
+
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
|
363 |
+
+ '[%s,%s]' % (expr.i + 1, expr.j + 1)
|
364 |
+
|
365 |
+
|
366 |
+
def _print_MatrixSlice(self, expr):
|
367 |
+
def strslice(x, lim):
|
368 |
+
l = x[0] + 1
|
369 |
+
h = x[1]
|
370 |
+
step = x[2]
|
371 |
+
lstr = self._print(l)
|
372 |
+
hstr = 'end' if h == lim else self._print(h)
|
373 |
+
if step == 1:
|
374 |
+
if l == 1 and h == lim:
|
375 |
+
return ':'
|
376 |
+
if l == h:
|
377 |
+
return lstr
|
378 |
+
else:
|
379 |
+
return lstr + ':' + hstr
|
380 |
+
else:
|
381 |
+
return ':'.join((lstr, self._print(step), hstr))
|
382 |
+
return (self._print(expr.parent) + '[' +
|
383 |
+
strslice(expr.rowslice, expr.parent.shape[0]) + ',' +
|
384 |
+
strslice(expr.colslice, expr.parent.shape[1]) + ']')
|
385 |
+
|
386 |
+
|
387 |
+
def _print_Indexed(self, expr):
|
388 |
+
inds = [ self._print(i) for i in expr.indices ]
|
389 |
+
return "%s[%s]" % (self._print(expr.base.label), ",".join(inds))
|
390 |
+
|
391 |
+
|
392 |
+
def _print_Idx(self, expr):
|
393 |
+
return self._print(expr.label)
|
394 |
+
|
395 |
+
|
396 |
+
def _print_Identity(self, expr):
|
397 |
+
return "eye(%s)" % self._print(expr.shape[0])
|
398 |
+
|
399 |
+
def _print_HadamardProduct(self, expr):
|
400 |
+
return ' .* '.join([self.parenthesize(arg, precedence(expr))
|
401 |
+
for arg in expr.args])
|
402 |
+
|
403 |
+
def _print_HadamardPower(self, expr):
|
404 |
+
PREC = precedence(expr)
|
405 |
+
return '.**'.join([
|
406 |
+
self.parenthesize(expr.base, PREC),
|
407 |
+
self.parenthesize(expr.exp, PREC)
|
408 |
+
])
|
409 |
+
|
410 |
+
def _print_Rational(self, expr):
|
411 |
+
if expr.q == 1:
|
412 |
+
return str(expr.p)
|
413 |
+
return "%s // %s" % (expr.p, expr.q)
|
414 |
+
|
415 |
+
# Note: as of 2022, Julia doesn't have spherical Bessel functions
|
416 |
+
def _print_jn(self, expr):
|
417 |
+
from sympy.functions import sqrt, besselj
|
418 |
+
x = expr.argument
|
419 |
+
expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x)
|
420 |
+
return self._print(expr2)
|
421 |
+
|
422 |
+
|
423 |
+
def _print_yn(self, expr):
|
424 |
+
from sympy.functions import sqrt, bessely
|
425 |
+
x = expr.argument
|
426 |
+
expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x)
|
427 |
+
return self._print(expr2)
|
428 |
+
|
429 |
+
|
430 |
+
def _print_Piecewise(self, expr):
|
431 |
+
if expr.args[-1].cond != True:
|
432 |
+
# We need the last conditional to be a True, otherwise the resulting
|
433 |
+
# function may not return a result.
|
434 |
+
raise ValueError("All Piecewise expressions must contain an "
|
435 |
+
"(expr, True) statement to be used as a default "
|
436 |
+
"condition. Without one, the generated "
|
437 |
+
"expression may not evaluate to anything under "
|
438 |
+
"some condition.")
|
439 |
+
lines = []
|
440 |
+
if self._settings["inline"]:
|
441 |
+
# Express each (cond, expr) pair in a nested Horner form:
|
442 |
+
# (condition) .* (expr) + (not cond) .* (<others>)
|
443 |
+
# Expressions that result in multiple statements won't work here.
|
444 |
+
ecpairs = ["({}) ? ({}) :".format
|
445 |
+
(self._print(c), self._print(e))
|
446 |
+
for e, c in expr.args[:-1]]
|
447 |
+
elast = " (%s)" % self._print(expr.args[-1].expr)
|
448 |
+
pw = "\n".join(ecpairs) + elast
|
449 |
+
# Note: current need these outer brackets for 2*pw. Would be
|
450 |
+
# nicer to teach parenthesize() to do this for us when needed!
|
451 |
+
return "(" + pw + ")"
|
452 |
+
else:
|
453 |
+
for i, (e, c) in enumerate(expr.args):
|
454 |
+
if i == 0:
|
455 |
+
lines.append("if (%s)" % self._print(c))
|
456 |
+
elif i == len(expr.args) - 1 and c == True:
|
457 |
+
lines.append("else")
|
458 |
+
else:
|
459 |
+
lines.append("elseif (%s)" % self._print(c))
|
460 |
+
code0 = self._print(e)
|
461 |
+
lines.append(code0)
|
462 |
+
if i == len(expr.args) - 1:
|
463 |
+
lines.append("end")
|
464 |
+
return "\n".join(lines)
|
465 |
+
|
466 |
+
def _print_MatMul(self, expr):
|
467 |
+
c, m = expr.as_coeff_mmul()
|
468 |
+
|
469 |
+
sign = ""
|
470 |
+
if c.is_number:
|
471 |
+
re, im = c.as_real_imag()
|
472 |
+
if im.is_zero and re.is_negative:
|
473 |
+
expr = _keep_coeff(-c, m)
|
474 |
+
sign = "-"
|
475 |
+
elif re.is_zero and im.is_negative:
|
476 |
+
expr = _keep_coeff(-c, m)
|
477 |
+
sign = "-"
|
478 |
+
|
479 |
+
return sign + ' * '.join(
|
480 |
+
(self.parenthesize(arg, precedence(expr)) for arg in expr.args)
|
481 |
+
)
|
482 |
+
|
483 |
+
|
484 |
+
def indent_code(self, code):
|
485 |
+
"""Accepts a string of code or a list of code lines"""
|
486 |
+
|
487 |
+
# code mostly copied from ccode
|
488 |
+
if isinstance(code, str):
|
489 |
+
code_lines = self.indent_code(code.splitlines(True))
|
490 |
+
return ''.join(code_lines)
|
491 |
+
|
492 |
+
tab = " "
|
493 |
+
inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ')
|
494 |
+
dec_regex = ('^end$', '^elseif ', '^else$')
|
495 |
+
|
496 |
+
# pre-strip left-space from the code
|
497 |
+
code = [ line.lstrip(' \t') for line in code ]
|
498 |
+
|
499 |
+
increase = [ int(any(search(re, line) for re in inc_regex))
|
500 |
+
for line in code ]
|
501 |
+
decrease = [ int(any(search(re, line) for re in dec_regex))
|
502 |
+
for line in code ]
|
503 |
+
|
504 |
+
pretty = []
|
505 |
+
level = 0
|
506 |
+
for n, line in enumerate(code):
|
507 |
+
if line in ('', '\n'):
|
508 |
+
pretty.append(line)
|
509 |
+
continue
|
510 |
+
level -= decrease[n]
|
511 |
+
pretty.append("%s%s" % (tab*level, line))
|
512 |
+
level += increase[n]
|
513 |
+
return pretty
|
514 |
+
|
515 |
+
|
516 |
+
def julia_code(expr, assign_to=None, **settings):
|
517 |
+
r"""Converts `expr` to a string of Julia code.
|
518 |
+
|
519 |
+
Parameters
|
520 |
+
==========
|
521 |
+
|
522 |
+
expr : Expr
|
523 |
+
A SymPy expression to be converted.
|
524 |
+
assign_to : optional
|
525 |
+
When given, the argument is used as the name of the variable to which
|
526 |
+
the expression is assigned. Can be a string, ``Symbol``,
|
527 |
+
``MatrixSymbol``, or ``Indexed`` type. This can be helpful for
|
528 |
+
expressions that generate multi-line statements.
|
529 |
+
precision : integer, optional
|
530 |
+
The precision for numbers such as pi [default=16].
|
531 |
+
user_functions : dict, optional
|
532 |
+
A dictionary where keys are ``FunctionClass`` instances and values are
|
533 |
+
their string representations. Alternatively, the dictionary value can
|
534 |
+
be a list of tuples i.e. [(argument_test, cfunction_string)]. See
|
535 |
+
below for examples.
|
536 |
+
human : bool, optional
|
537 |
+
If True, the result is a single string that may contain some constant
|
538 |
+
declarations for the number symbols. If False, the same information is
|
539 |
+
returned in a tuple of (symbols_to_declare, not_supported_functions,
|
540 |
+
code_text). [default=True].
|
541 |
+
contract: bool, optional
|
542 |
+
If True, ``Indexed`` instances are assumed to obey tensor contraction
|
543 |
+
rules and the corresponding nested loops over indices are generated.
|
544 |
+
Setting contract=False will not generate loops, instead the user is
|
545 |
+
responsible to provide values for the indices in the code.
|
546 |
+
[default=True].
|
547 |
+
inline: bool, optional
|
548 |
+
If True, we try to create single-statement code instead of multiple
|
549 |
+
statements. [default=True].
|
550 |
+
|
551 |
+
Examples
|
552 |
+
========
|
553 |
+
|
554 |
+
>>> from sympy import julia_code, symbols, sin, pi
|
555 |
+
>>> x = symbols('x')
|
556 |
+
>>> julia_code(sin(x).series(x).removeO())
|
557 |
+
'x .^ 5 / 120 - x .^ 3 / 6 + x'
|
558 |
+
|
559 |
+
>>> from sympy import Rational, ceiling
|
560 |
+
>>> x, y, tau = symbols("x, y, tau")
|
561 |
+
>>> julia_code((2*tau)**Rational(7, 2))
|
562 |
+
'8 * sqrt(2) * tau .^ (7 // 2)'
|
563 |
+
|
564 |
+
Note that element-wise (Hadamard) operations are used by default between
|
565 |
+
symbols. This is because its possible in Julia to write "vectorized"
|
566 |
+
code. It is harmless if the values are scalars.
|
567 |
+
|
568 |
+
>>> julia_code(sin(pi*x*y), assign_to="s")
|
569 |
+
's = sin(pi * x .* y)'
|
570 |
+
|
571 |
+
If you need a matrix product "*" or matrix power "^", you can specify the
|
572 |
+
symbol as a ``MatrixSymbol``.
|
573 |
+
|
574 |
+
>>> from sympy import Symbol, MatrixSymbol
|
575 |
+
>>> n = Symbol('n', integer=True, positive=True)
|
576 |
+
>>> A = MatrixSymbol('A', n, n)
|
577 |
+
>>> julia_code(3*pi*A**3)
|
578 |
+
'(3 * pi) * A ^ 3'
|
579 |
+
|
580 |
+
This class uses several rules to decide which symbol to use a product.
|
581 |
+
Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
|
582 |
+
A HadamardProduct can be used to specify componentwise multiplication ".*"
|
583 |
+
of two MatrixSymbols. There is currently there is no easy way to specify
|
584 |
+
scalar symbols, so sometimes the code might have some minor cosmetic
|
585 |
+
issues. For example, suppose x and y are scalars and A is a Matrix, then
|
586 |
+
while a human programmer might write "(x^2*y)*A^3", we generate:
|
587 |
+
|
588 |
+
>>> julia_code(x**2*y*A**3)
|
589 |
+
'(x .^ 2 .* y) * A ^ 3'
|
590 |
+
|
591 |
+
Matrices are supported using Julia inline notation. When using
|
592 |
+
``assign_to`` with matrices, the name can be specified either as a string
|
593 |
+
or as a ``MatrixSymbol``. The dimensions must align in the latter case.
|
594 |
+
|
595 |
+
>>> from sympy import Matrix, MatrixSymbol
|
596 |
+
>>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
|
597 |
+
>>> julia_code(mat, assign_to='A')
|
598 |
+
'A = [x .^ 2 sin(x) ceil(x)]'
|
599 |
+
|
600 |
+
``Piecewise`` expressions are implemented with logical masking by default.
|
601 |
+
Alternatively, you can pass "inline=False" to use if-else conditionals.
|
602 |
+
Note that if the ``Piecewise`` lacks a default term, represented by
|
603 |
+
``(expr, True)`` then an error will be thrown. This is to prevent
|
604 |
+
generating an expression that may not evaluate to anything.
|
605 |
+
|
606 |
+
>>> from sympy import Piecewise
|
607 |
+
>>> pw = Piecewise((x + 1, x > 0), (x, True))
|
608 |
+
>>> julia_code(pw, assign_to=tau)
|
609 |
+
'tau = ((x > 0) ? (x + 1) : (x))'
|
610 |
+
|
611 |
+
Note that any expression that can be generated normally can also exist
|
612 |
+
inside a Matrix:
|
613 |
+
|
614 |
+
>>> mat = Matrix([[x**2, pw, sin(x)]])
|
615 |
+
>>> julia_code(mat, assign_to='A')
|
616 |
+
'A = [x .^ 2 ((x > 0) ? (x + 1) : (x)) sin(x)]'
|
617 |
+
|
618 |
+
Custom printing can be defined for certain types by passing a dictionary of
|
619 |
+
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
|
620 |
+
dictionary value can be a list of tuples i.e., [(argument_test,
|
621 |
+
cfunction_string)]. This can be used to call a custom Julia function.
|
622 |
+
|
623 |
+
>>> from sympy import Function
|
624 |
+
>>> f = Function('f')
|
625 |
+
>>> g = Function('g')
|
626 |
+
>>> custom_functions = {
|
627 |
+
... "f": "existing_julia_fcn",
|
628 |
+
... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
|
629 |
+
... (lambda x: not x.is_Matrix, "my_fcn")]
|
630 |
+
... }
|
631 |
+
>>> mat = Matrix([[1, x]])
|
632 |
+
>>> julia_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
|
633 |
+
'existing_julia_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
|
634 |
+
|
635 |
+
Support for loops is provided through ``Indexed`` types. With
|
636 |
+
``contract=True`` these expressions will be turned into loops, whereas
|
637 |
+
``contract=False`` will just print the assignment expression that should be
|
638 |
+
looped over:
|
639 |
+
|
640 |
+
>>> from sympy import Eq, IndexedBase, Idx
|
641 |
+
>>> len_y = 5
|
642 |
+
>>> y = IndexedBase('y', shape=(len_y,))
|
643 |
+
>>> t = IndexedBase('t', shape=(len_y,))
|
644 |
+
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
|
645 |
+
>>> i = Idx('i', len_y-1)
|
646 |
+
>>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
|
647 |
+
>>> julia_code(e.rhs, assign_to=e.lhs, contract=False)
|
648 |
+
'Dy[i] = (y[i + 1] - y[i]) ./ (t[i + 1] - t[i])'
|
649 |
+
"""
|
650 |
+
return JuliaCodePrinter(settings).doprint(expr, assign_to)
|
651 |
+
|
652 |
+
|
653 |
+
def print_julia_code(expr, **settings):
|
654 |
+
"""Prints the Julia representation of the given expression.
|
655 |
+
|
656 |
+
See `julia_code` for the meaning of the optional arguments.
|
657 |
+
"""
|
658 |
+
print(julia_code(expr, **settings))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/lambdarepr.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pycode import (
|
2 |
+
PythonCodePrinter,
|
3 |
+
MpmathPrinter,
|
4 |
+
)
|
5 |
+
from .numpy import NumPyPrinter # NumPyPrinter is imported for backward compatibility
|
6 |
+
from sympy.core.sorting import default_sort_key
|
7 |
+
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
'PythonCodePrinter',
|
11 |
+
'MpmathPrinter', # MpmathPrinter is published for backward compatibility
|
12 |
+
'NumPyPrinter',
|
13 |
+
'LambdaPrinter',
|
14 |
+
'NumPyPrinter',
|
15 |
+
'IntervalPrinter',
|
16 |
+
'lambdarepr',
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
class LambdaPrinter(PythonCodePrinter):
|
21 |
+
"""
|
22 |
+
This printer converts expressions into strings that can be used by
|
23 |
+
lambdify.
|
24 |
+
"""
|
25 |
+
printmethod = "_lambdacode"
|
26 |
+
|
27 |
+
|
28 |
+
def _print_And(self, expr):
|
29 |
+
result = ['(']
|
30 |
+
for arg in sorted(expr.args, key=default_sort_key):
|
31 |
+
result.extend(['(', self._print(arg), ')'])
|
32 |
+
result.append(' and ')
|
33 |
+
result = result[:-1]
|
34 |
+
result.append(')')
|
35 |
+
return ''.join(result)
|
36 |
+
|
37 |
+
def _print_Or(self, expr):
|
38 |
+
result = ['(']
|
39 |
+
for arg in sorted(expr.args, key=default_sort_key):
|
40 |
+
result.extend(['(', self._print(arg), ')'])
|
41 |
+
result.append(' or ')
|
42 |
+
result = result[:-1]
|
43 |
+
result.append(')')
|
44 |
+
return ''.join(result)
|
45 |
+
|
46 |
+
def _print_Not(self, expr):
|
47 |
+
result = ['(', 'not (', self._print(expr.args[0]), '))']
|
48 |
+
return ''.join(result)
|
49 |
+
|
50 |
+
def _print_BooleanTrue(self, expr):
|
51 |
+
return "True"
|
52 |
+
|
53 |
+
def _print_BooleanFalse(self, expr):
|
54 |
+
return "False"
|
55 |
+
|
56 |
+
def _print_ITE(self, expr):
|
57 |
+
result = [
|
58 |
+
'((', self._print(expr.args[1]),
|
59 |
+
') if (', self._print(expr.args[0]),
|
60 |
+
') else (', self._print(expr.args[2]), '))'
|
61 |
+
]
|
62 |
+
return ''.join(result)
|
63 |
+
|
64 |
+
def _print_NumberSymbol(self, expr):
|
65 |
+
return str(expr)
|
66 |
+
|
67 |
+
def _print_Pow(self, expr, **kwargs):
|
68 |
+
# XXX Temporary workaround. Should Python math printer be
|
69 |
+
# isolated from PythonCodePrinter?
|
70 |
+
return super(PythonCodePrinter, self)._print_Pow(expr, **kwargs)
|
71 |
+
|
72 |
+
|
73 |
+
# numexpr works by altering the string passed to numexpr.evaluate
|
74 |
+
# rather than by populating a namespace. Thus a special printer...
|
75 |
+
class NumExprPrinter(LambdaPrinter):
|
76 |
+
# key, value pairs correspond to SymPy name and numexpr name
|
77 |
+
# functions not appearing in this dict will raise a TypeError
|
78 |
+
printmethod = "_numexprcode"
|
79 |
+
|
80 |
+
_numexpr_functions = {
|
81 |
+
'sin' : 'sin',
|
82 |
+
'cos' : 'cos',
|
83 |
+
'tan' : 'tan',
|
84 |
+
'asin': 'arcsin',
|
85 |
+
'acos': 'arccos',
|
86 |
+
'atan': 'arctan',
|
87 |
+
'atan2' : 'arctan2',
|
88 |
+
'sinh' : 'sinh',
|
89 |
+
'cosh' : 'cosh',
|
90 |
+
'tanh' : 'tanh',
|
91 |
+
'asinh': 'arcsinh',
|
92 |
+
'acosh': 'arccosh',
|
93 |
+
'atanh': 'arctanh',
|
94 |
+
'ln' : 'log',
|
95 |
+
'log': 'log',
|
96 |
+
'exp': 'exp',
|
97 |
+
'sqrt' : 'sqrt',
|
98 |
+
'Abs' : 'abs',
|
99 |
+
'conjugate' : 'conj',
|
100 |
+
'im' : 'imag',
|
101 |
+
're' : 'real',
|
102 |
+
'where' : 'where',
|
103 |
+
'complex' : 'complex',
|
104 |
+
'contains' : 'contains',
|
105 |
+
}
|
106 |
+
|
107 |
+
module = 'numexpr'
|
108 |
+
|
109 |
+
def _print_ImaginaryUnit(self, expr):
|
110 |
+
return '1j'
|
111 |
+
|
112 |
+
def _print_seq(self, seq, delimiter=', '):
|
113 |
+
# simplified _print_seq taken from pretty.py
|
114 |
+
s = [self._print(item) for item in seq]
|
115 |
+
if s:
|
116 |
+
return delimiter.join(s)
|
117 |
+
else:
|
118 |
+
return ""
|
119 |
+
|
120 |
+
def _print_Function(self, e):
|
121 |
+
func_name = e.func.__name__
|
122 |
+
|
123 |
+
nstr = self._numexpr_functions.get(func_name, None)
|
124 |
+
if nstr is None:
|
125 |
+
# check for implemented_function
|
126 |
+
if hasattr(e, '_imp_'):
|
127 |
+
return "(%s)" % self._print(e._imp_(*e.args))
|
128 |
+
else:
|
129 |
+
raise TypeError("numexpr does not support function '%s'" %
|
130 |
+
func_name)
|
131 |
+
return "%s(%s)" % (nstr, self._print_seq(e.args))
|
132 |
+
|
133 |
+
def _print_Piecewise(self, expr):
|
134 |
+
"Piecewise function printer"
|
135 |
+
exprs = [self._print(arg.expr) for arg in expr.args]
|
136 |
+
conds = [self._print(arg.cond) for arg in expr.args]
|
137 |
+
# If [default_value, True] is a (expr, cond) sequence in a Piecewise object
|
138 |
+
# it will behave the same as passing the 'default' kwarg to select()
|
139 |
+
# *as long as* it is the last element in expr.args.
|
140 |
+
# If this is not the case, it may be triggered prematurely.
|
141 |
+
ans = []
|
142 |
+
parenthesis_count = 0
|
143 |
+
is_last_cond_True = False
|
144 |
+
for cond, expr in zip(conds, exprs):
|
145 |
+
if cond == 'True':
|
146 |
+
ans.append(expr)
|
147 |
+
is_last_cond_True = True
|
148 |
+
break
|
149 |
+
else:
|
150 |
+
ans.append('where(%s, %s, ' % (cond, expr))
|
151 |
+
parenthesis_count += 1
|
152 |
+
if not is_last_cond_True:
|
153 |
+
# See https://github.com/pydata/numexpr/issues/298
|
154 |
+
#
|
155 |
+
# simplest way to put a nan but raises
|
156 |
+
# 'RuntimeWarning: invalid value encountered in log'
|
157 |
+
#
|
158 |
+
# There are other ways to do this such as
|
159 |
+
#
|
160 |
+
# >>> import numexpr as ne
|
161 |
+
# >>> nan = float('nan')
|
162 |
+
# >>> ne.evaluate('where(x < 0, -1, nan)', {'x': [-1, 2, 3], 'nan':nan})
|
163 |
+
# array([-1., nan, nan])
|
164 |
+
#
|
165 |
+
# That needs to be handled in the lambdified function though rather
|
166 |
+
# than here in the printer.
|
167 |
+
ans.append('log(-1)')
|
168 |
+
return ''.join(ans) + ')' * parenthesis_count
|
169 |
+
|
170 |
+
def _print_ITE(self, expr):
|
171 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
172 |
+
return self._print(expr.rewrite(Piecewise))
|
173 |
+
|
174 |
+
def blacklisted(self, expr):
|
175 |
+
raise TypeError("numexpr cannot be used with %s" %
|
176 |
+
expr.__class__.__name__)
|
177 |
+
|
178 |
+
# blacklist all Matrix printing
|
179 |
+
_print_SparseRepMatrix = \
|
180 |
+
_print_MutableSparseMatrix = \
|
181 |
+
_print_ImmutableSparseMatrix = \
|
182 |
+
_print_Matrix = \
|
183 |
+
_print_DenseMatrix = \
|
184 |
+
_print_MutableDenseMatrix = \
|
185 |
+
_print_ImmutableMatrix = \
|
186 |
+
_print_ImmutableDenseMatrix = \
|
187 |
+
blacklisted
|
188 |
+
# blacklist some Python expressions
|
189 |
+
_print_list = \
|
190 |
+
_print_tuple = \
|
191 |
+
_print_Tuple = \
|
192 |
+
_print_dict = \
|
193 |
+
_print_Dict = \
|
194 |
+
blacklisted
|
195 |
+
|
196 |
+
def _print_NumExprEvaluate(self, expr):
|
197 |
+
evaluate = self._module_format(self.module +".evaluate")
|
198 |
+
return "%s('%s', truediv=True)" % (evaluate, self._print(expr.expr))
|
199 |
+
|
200 |
+
def doprint(self, expr):
|
201 |
+
from sympy.codegen.ast import CodegenAST
|
202 |
+
from sympy.codegen.pynodes import NumExprEvaluate
|
203 |
+
if not isinstance(expr, CodegenAST):
|
204 |
+
expr = NumExprEvaluate(expr)
|
205 |
+
return super().doprint(expr)
|
206 |
+
|
207 |
+
def _print_Return(self, expr):
|
208 |
+
from sympy.codegen.pynodes import NumExprEvaluate
|
209 |
+
r, = expr.args
|
210 |
+
if not isinstance(r, NumExprEvaluate):
|
211 |
+
expr = expr.func(NumExprEvaluate(r))
|
212 |
+
return super()._print_Return(expr)
|
213 |
+
|
214 |
+
def _print_Assignment(self, expr):
|
215 |
+
from sympy.codegen.pynodes import NumExprEvaluate
|
216 |
+
lhs, rhs, *args = expr.args
|
217 |
+
if not isinstance(rhs, NumExprEvaluate):
|
218 |
+
expr = expr.func(lhs, NumExprEvaluate(rhs), *args)
|
219 |
+
return super()._print_Assignment(expr)
|
220 |
+
|
221 |
+
def _print_CodeBlock(self, expr):
|
222 |
+
from sympy.codegen.ast import CodegenAST
|
223 |
+
from sympy.codegen.pynodes import NumExprEvaluate
|
224 |
+
args = [ arg if isinstance(arg, CodegenAST) else NumExprEvaluate(arg) for arg in expr.args ]
|
225 |
+
return super()._print_CodeBlock(self, expr.func(*args))
|
226 |
+
|
227 |
+
|
228 |
+
class IntervalPrinter(MpmathPrinter, LambdaPrinter):
|
229 |
+
"""Use ``lambda`` printer but print numbers as ``mpi`` intervals. """
|
230 |
+
|
231 |
+
def _print_Integer(self, expr):
|
232 |
+
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Integer(expr)
|
233 |
+
|
234 |
+
def _print_Rational(self, expr):
|
235 |
+
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr)
|
236 |
+
|
237 |
+
def _print_Half(self, expr):
|
238 |
+
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr)
|
239 |
+
|
240 |
+
def _print_Pow(self, expr):
|
241 |
+
return super(MpmathPrinter, self)._print_Pow(expr, rational=True)
|
242 |
+
|
243 |
+
|
244 |
+
for k in NumExprPrinter._numexpr_functions:
|
245 |
+
setattr(NumExprPrinter, '_print_%s' % k, NumExprPrinter._print_Function)
|
246 |
+
|
247 |
+
def lambdarepr(expr, **settings):
|
248 |
+
"""
|
249 |
+
Returns a string usable for lambdifying.
|
250 |
+
"""
|
251 |
+
return LambdaPrinter(settings).doprint(expr)
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/latex.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/llvmjitcode.py
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Use llvmlite to create executable functions from SymPy expressions
|
3 |
+
|
4 |
+
This module requires llvmlite (https://github.com/numba/llvmlite).
|
5 |
+
'''
|
6 |
+
|
7 |
+
import ctypes
|
8 |
+
|
9 |
+
from sympy.external import import_module
|
10 |
+
from sympy.printing.printer import Printer
|
11 |
+
from sympy.core.singleton import S
|
12 |
+
from sympy.tensor.indexed import IndexedBase
|
13 |
+
from sympy.utilities.decorator import doctest_depends_on
|
14 |
+
|
15 |
+
llvmlite = import_module('llvmlite')
|
16 |
+
if llvmlite:
|
17 |
+
ll = import_module('llvmlite.ir').ir
|
18 |
+
llvm = import_module('llvmlite.binding').binding
|
19 |
+
llvm.initialize()
|
20 |
+
llvm.initialize_native_target()
|
21 |
+
llvm.initialize_native_asmprinter()
|
22 |
+
|
23 |
+
|
24 |
+
__doctest_requires__ = {('llvm_callable'): ['llvmlite']}
|
25 |
+
|
26 |
+
|
27 |
+
class LLVMJitPrinter(Printer):
|
28 |
+
'''Convert expressions to LLVM IR'''
|
29 |
+
def __init__(self, module, builder, fn, *args, **kwargs):
|
30 |
+
self.func_arg_map = kwargs.pop("func_arg_map", {})
|
31 |
+
if not llvmlite:
|
32 |
+
raise ImportError("llvmlite is required for LLVMJITPrinter")
|
33 |
+
super().__init__(*args, **kwargs)
|
34 |
+
self.fp_type = ll.DoubleType()
|
35 |
+
self.module = module
|
36 |
+
self.builder = builder
|
37 |
+
self.fn = fn
|
38 |
+
self.ext_fn = {} # keep track of wrappers to external functions
|
39 |
+
self.tmp_var = {}
|
40 |
+
|
41 |
+
def _add_tmp_var(self, name, value):
|
42 |
+
self.tmp_var[name] = value
|
43 |
+
|
44 |
+
def _print_Number(self, n):
|
45 |
+
return ll.Constant(self.fp_type, float(n))
|
46 |
+
|
47 |
+
def _print_Integer(self, expr):
|
48 |
+
return ll.Constant(self.fp_type, float(expr.p))
|
49 |
+
|
50 |
+
def _print_Symbol(self, s):
|
51 |
+
val = self.tmp_var.get(s)
|
52 |
+
if not val:
|
53 |
+
# look up parameter with name s
|
54 |
+
val = self.func_arg_map.get(s)
|
55 |
+
if not val:
|
56 |
+
raise LookupError("Symbol not found: %s" % s)
|
57 |
+
return val
|
58 |
+
|
59 |
+
def _print_Pow(self, expr):
|
60 |
+
base0 = self._print(expr.base)
|
61 |
+
if expr.exp == S.NegativeOne:
|
62 |
+
return self.builder.fdiv(ll.Constant(self.fp_type, 1.0), base0)
|
63 |
+
if expr.exp == S.Half:
|
64 |
+
fn = self.ext_fn.get("sqrt")
|
65 |
+
if not fn:
|
66 |
+
fn_type = ll.FunctionType(self.fp_type, [self.fp_type])
|
67 |
+
fn = ll.Function(self.module, fn_type, "sqrt")
|
68 |
+
self.ext_fn["sqrt"] = fn
|
69 |
+
return self.builder.call(fn, [base0], "sqrt")
|
70 |
+
if expr.exp == 2:
|
71 |
+
return self.builder.fmul(base0, base0)
|
72 |
+
|
73 |
+
exp0 = self._print(expr.exp)
|
74 |
+
fn = self.ext_fn.get("pow")
|
75 |
+
if not fn:
|
76 |
+
fn_type = ll.FunctionType(self.fp_type, [self.fp_type, self.fp_type])
|
77 |
+
fn = ll.Function(self.module, fn_type, "pow")
|
78 |
+
self.ext_fn["pow"] = fn
|
79 |
+
return self.builder.call(fn, [base0, exp0], "pow")
|
80 |
+
|
81 |
+
def _print_Mul(self, expr):
|
82 |
+
nodes = [self._print(a) for a in expr.args]
|
83 |
+
e = nodes[0]
|
84 |
+
for node in nodes[1:]:
|
85 |
+
e = self.builder.fmul(e, node)
|
86 |
+
return e
|
87 |
+
|
88 |
+
def _print_Add(self, expr):
|
89 |
+
nodes = [self._print(a) for a in expr.args]
|
90 |
+
e = nodes[0]
|
91 |
+
for node in nodes[1:]:
|
92 |
+
e = self.builder.fadd(e, node)
|
93 |
+
return e
|
94 |
+
|
95 |
+
# TODO - assumes all called functions take one double precision argument.
|
96 |
+
# Should have a list of math library functions to validate this.
|
97 |
+
def _print_Function(self, expr):
|
98 |
+
name = expr.func.__name__
|
99 |
+
e0 = self._print(expr.args[0])
|
100 |
+
fn = self.ext_fn.get(name)
|
101 |
+
if not fn:
|
102 |
+
fn_type = ll.FunctionType(self.fp_type, [self.fp_type])
|
103 |
+
fn = ll.Function(self.module, fn_type, name)
|
104 |
+
self.ext_fn[name] = fn
|
105 |
+
return self.builder.call(fn, [e0], name)
|
106 |
+
|
107 |
+
def emptyPrinter(self, expr):
|
108 |
+
raise TypeError("Unsupported type for LLVM JIT conversion: %s"
|
109 |
+
% type(expr))
|
110 |
+
|
111 |
+
|
112 |
+
# Used when parameters are passed by array. Often used in callbacks to
|
113 |
+
# handle a variable number of parameters.
|
114 |
+
class LLVMJitCallbackPrinter(LLVMJitPrinter):
|
115 |
+
def __init__(self, *args, **kwargs):
|
116 |
+
super().__init__(*args, **kwargs)
|
117 |
+
|
118 |
+
def _print_Indexed(self, expr):
|
119 |
+
array, idx = self.func_arg_map[expr.base]
|
120 |
+
offset = int(expr.indices[0].evalf())
|
121 |
+
array_ptr = self.builder.gep(array, [ll.Constant(ll.IntType(32), offset)])
|
122 |
+
fp_array_ptr = self.builder.bitcast(array_ptr, ll.PointerType(self.fp_type))
|
123 |
+
value = self.builder.load(fp_array_ptr)
|
124 |
+
return value
|
125 |
+
|
126 |
+
def _print_Symbol(self, s):
|
127 |
+
val = self.tmp_var.get(s)
|
128 |
+
if val:
|
129 |
+
return val
|
130 |
+
|
131 |
+
array, idx = self.func_arg_map.get(s, [None, 0])
|
132 |
+
if not array:
|
133 |
+
raise LookupError("Symbol not found: %s" % s)
|
134 |
+
array_ptr = self.builder.gep(array, [ll.Constant(ll.IntType(32), idx)])
|
135 |
+
fp_array_ptr = self.builder.bitcast(array_ptr,
|
136 |
+
ll.PointerType(self.fp_type))
|
137 |
+
value = self.builder.load(fp_array_ptr)
|
138 |
+
return value
|
139 |
+
|
140 |
+
|
141 |
+
# ensure lifetime of the execution engine persists (else call to compiled
|
142 |
+
# function will seg fault)
|
143 |
+
exe_engines = []
|
144 |
+
|
145 |
+
# ensure names for generated functions are unique
|
146 |
+
link_names = set()
|
147 |
+
current_link_suffix = 0
|
148 |
+
|
149 |
+
|
150 |
+
class LLVMJitCode:
|
151 |
+
def __init__(self, signature):
|
152 |
+
self.signature = signature
|
153 |
+
self.fp_type = ll.DoubleType()
|
154 |
+
self.module = ll.Module('mod1')
|
155 |
+
self.fn = None
|
156 |
+
self.llvm_arg_types = []
|
157 |
+
self.llvm_ret_type = self.fp_type
|
158 |
+
self.param_dict = {} # map symbol name to LLVM function argument
|
159 |
+
self.link_name = ''
|
160 |
+
|
161 |
+
def _from_ctype(self, ctype):
|
162 |
+
if ctype == ctypes.c_int:
|
163 |
+
return ll.IntType(32)
|
164 |
+
if ctype == ctypes.c_double:
|
165 |
+
return self.fp_type
|
166 |
+
if ctype == ctypes.POINTER(ctypes.c_double):
|
167 |
+
return ll.PointerType(self.fp_type)
|
168 |
+
if ctype == ctypes.c_void_p:
|
169 |
+
return ll.PointerType(ll.IntType(32))
|
170 |
+
if ctype == ctypes.py_object:
|
171 |
+
return ll.PointerType(ll.IntType(32))
|
172 |
+
|
173 |
+
print("Unhandled ctype = %s" % str(ctype))
|
174 |
+
|
175 |
+
def _create_args(self, func_args):
|
176 |
+
"""Create types for function arguments"""
|
177 |
+
self.llvm_ret_type = self._from_ctype(self.signature.ret_type)
|
178 |
+
self.llvm_arg_types = \
|
179 |
+
[self._from_ctype(a) for a in self.signature.arg_ctypes]
|
180 |
+
|
181 |
+
def _create_function_base(self):
|
182 |
+
"""Create function with name and type signature"""
|
183 |
+
global link_names, current_link_suffix
|
184 |
+
default_link_name = 'jit_func'
|
185 |
+
current_link_suffix += 1
|
186 |
+
self.link_name = default_link_name + str(current_link_suffix)
|
187 |
+
link_names.add(self.link_name)
|
188 |
+
|
189 |
+
fn_type = ll.FunctionType(self.llvm_ret_type, self.llvm_arg_types)
|
190 |
+
self.fn = ll.Function(self.module, fn_type, name=self.link_name)
|
191 |
+
|
192 |
+
def _create_param_dict(self, func_args):
|
193 |
+
"""Mapping of symbolic values to function arguments"""
|
194 |
+
for i, a in enumerate(func_args):
|
195 |
+
self.fn.args[i].name = str(a)
|
196 |
+
self.param_dict[a] = self.fn.args[i]
|
197 |
+
|
198 |
+
def _create_function(self, expr):
|
199 |
+
"""Create function body and return LLVM IR"""
|
200 |
+
bb_entry = self.fn.append_basic_block('entry')
|
201 |
+
builder = ll.IRBuilder(bb_entry)
|
202 |
+
|
203 |
+
lj = LLVMJitPrinter(self.module, builder, self.fn,
|
204 |
+
func_arg_map=self.param_dict)
|
205 |
+
|
206 |
+
ret = self._convert_expr(lj, expr)
|
207 |
+
lj.builder.ret(self._wrap_return(lj, ret))
|
208 |
+
|
209 |
+
strmod = str(self.module)
|
210 |
+
return strmod
|
211 |
+
|
212 |
+
def _wrap_return(self, lj, vals):
|
213 |
+
# Return a single double if there is one return value,
|
214 |
+
# else return a tuple of doubles.
|
215 |
+
|
216 |
+
# Don't wrap return value in this case
|
217 |
+
if self.signature.ret_type == ctypes.c_double:
|
218 |
+
return vals[0]
|
219 |
+
|
220 |
+
# Use this instead of a real PyObject*
|
221 |
+
void_ptr = ll.PointerType(ll.IntType(32))
|
222 |
+
|
223 |
+
# Create a wrapped double: PyObject* PyFloat_FromDouble(double v)
|
224 |
+
wrap_type = ll.FunctionType(void_ptr, [self.fp_type])
|
225 |
+
wrap_fn = ll.Function(lj.module, wrap_type, "PyFloat_FromDouble")
|
226 |
+
|
227 |
+
wrapped_vals = [lj.builder.call(wrap_fn, [v]) for v in vals]
|
228 |
+
if len(vals) == 1:
|
229 |
+
final_val = wrapped_vals[0]
|
230 |
+
else:
|
231 |
+
# Create a tuple: PyObject* PyTuple_Pack(Py_ssize_t n, ...)
|
232 |
+
|
233 |
+
# This should be Py_ssize_t
|
234 |
+
tuple_arg_types = [ll.IntType(32)]
|
235 |
+
|
236 |
+
tuple_arg_types.extend([void_ptr]*len(vals))
|
237 |
+
tuple_type = ll.FunctionType(void_ptr, tuple_arg_types)
|
238 |
+
tuple_fn = ll.Function(lj.module, tuple_type, "PyTuple_Pack")
|
239 |
+
|
240 |
+
tuple_args = [ll.Constant(ll.IntType(32), len(wrapped_vals))]
|
241 |
+
tuple_args.extend(wrapped_vals)
|
242 |
+
|
243 |
+
final_val = lj.builder.call(tuple_fn, tuple_args)
|
244 |
+
|
245 |
+
return final_val
|
246 |
+
|
247 |
+
def _convert_expr(self, lj, expr):
|
248 |
+
try:
|
249 |
+
# Match CSE return data structure.
|
250 |
+
if len(expr) == 2:
|
251 |
+
tmp_exprs = expr[0]
|
252 |
+
final_exprs = expr[1]
|
253 |
+
if len(final_exprs) != 1 and self.signature.ret_type == ctypes.c_double:
|
254 |
+
raise NotImplementedError("Return of multiple expressions not supported for this callback")
|
255 |
+
for name, e in tmp_exprs:
|
256 |
+
val = lj._print(e)
|
257 |
+
lj._add_tmp_var(name, val)
|
258 |
+
except TypeError:
|
259 |
+
final_exprs = [expr]
|
260 |
+
|
261 |
+
vals = [lj._print(e) for e in final_exprs]
|
262 |
+
|
263 |
+
return vals
|
264 |
+
|
265 |
+
def _compile_function(self, strmod):
|
266 |
+
global exe_engines
|
267 |
+
llmod = llvm.parse_assembly(strmod)
|
268 |
+
|
269 |
+
pmb = llvm.create_pass_manager_builder()
|
270 |
+
pmb.opt_level = 2
|
271 |
+
pass_manager = llvm.create_module_pass_manager()
|
272 |
+
pmb.populate(pass_manager)
|
273 |
+
|
274 |
+
pass_manager.run(llmod)
|
275 |
+
|
276 |
+
target_machine = \
|
277 |
+
llvm.Target.from_default_triple().create_target_machine()
|
278 |
+
exe_eng = llvm.create_mcjit_compiler(llmod, target_machine)
|
279 |
+
exe_eng.finalize_object()
|
280 |
+
exe_engines.append(exe_eng)
|
281 |
+
|
282 |
+
if False:
|
283 |
+
print("Assembly")
|
284 |
+
print(target_machine.emit_assembly(llmod))
|
285 |
+
|
286 |
+
fptr = exe_eng.get_function_address(self.link_name)
|
287 |
+
|
288 |
+
return fptr
|
289 |
+
|
290 |
+
|
291 |
+
class LLVMJitCodeCallback(LLVMJitCode):
|
292 |
+
def __init__(self, signature):
|
293 |
+
super().__init__(signature)
|
294 |
+
|
295 |
+
def _create_param_dict(self, func_args):
|
296 |
+
for i, a in enumerate(func_args):
|
297 |
+
if isinstance(a, IndexedBase):
|
298 |
+
self.param_dict[a] = (self.fn.args[i], i)
|
299 |
+
self.fn.args[i].name = str(a)
|
300 |
+
else:
|
301 |
+
self.param_dict[a] = (self.fn.args[self.signature.input_arg],
|
302 |
+
i)
|
303 |
+
|
304 |
+
def _create_function(self, expr):
|
305 |
+
"""Create function body and return LLVM IR"""
|
306 |
+
bb_entry = self.fn.append_basic_block('entry')
|
307 |
+
builder = ll.IRBuilder(bb_entry)
|
308 |
+
|
309 |
+
lj = LLVMJitCallbackPrinter(self.module, builder, self.fn,
|
310 |
+
func_arg_map=self.param_dict)
|
311 |
+
|
312 |
+
ret = self._convert_expr(lj, expr)
|
313 |
+
|
314 |
+
if self.signature.ret_arg:
|
315 |
+
output_fp_ptr = builder.bitcast(self.fn.args[self.signature.ret_arg],
|
316 |
+
ll.PointerType(self.fp_type))
|
317 |
+
for i, val in enumerate(ret):
|
318 |
+
index = ll.Constant(ll.IntType(32), i)
|
319 |
+
output_array_ptr = builder.gep(output_fp_ptr, [index])
|
320 |
+
builder.store(val, output_array_ptr)
|
321 |
+
builder.ret(ll.Constant(ll.IntType(32), 0)) # return success
|
322 |
+
else:
|
323 |
+
lj.builder.ret(self._wrap_return(lj, ret))
|
324 |
+
|
325 |
+
strmod = str(self.module)
|
326 |
+
return strmod
|
327 |
+
|
328 |
+
|
329 |
+
class CodeSignature:
|
330 |
+
def __init__(self, ret_type):
|
331 |
+
self.ret_type = ret_type
|
332 |
+
self.arg_ctypes = []
|
333 |
+
|
334 |
+
# Input argument array element index
|
335 |
+
self.input_arg = 0
|
336 |
+
|
337 |
+
# For the case output value is referenced through a parameter rather
|
338 |
+
# than the return value
|
339 |
+
self.ret_arg = None
|
340 |
+
|
341 |
+
|
342 |
+
def _llvm_jit_code(args, expr, signature, callback_type):
|
343 |
+
"""Create a native code function from a SymPy expression"""
|
344 |
+
if callback_type is None:
|
345 |
+
jit = LLVMJitCode(signature)
|
346 |
+
else:
|
347 |
+
jit = LLVMJitCodeCallback(signature)
|
348 |
+
|
349 |
+
jit._create_args(args)
|
350 |
+
jit._create_function_base()
|
351 |
+
jit._create_param_dict(args)
|
352 |
+
strmod = jit._create_function(expr)
|
353 |
+
if False:
|
354 |
+
print("LLVM IR")
|
355 |
+
print(strmod)
|
356 |
+
fptr = jit._compile_function(strmod)
|
357 |
+
return fptr
|
358 |
+
|
359 |
+
|
360 |
+
@doctest_depends_on(modules=('llvmlite', 'scipy'))
|
361 |
+
def llvm_callable(args, expr, callback_type=None):
|
362 |
+
'''Compile function from a SymPy expression
|
363 |
+
|
364 |
+
Expressions are evaluated using double precision arithmetic.
|
365 |
+
Some single argument math functions (exp, sin, cos, etc.) are supported
|
366 |
+
in expressions.
|
367 |
+
|
368 |
+
Parameters
|
369 |
+
==========
|
370 |
+
|
371 |
+
args : List of Symbol
|
372 |
+
Arguments to the generated function. Usually the free symbols in
|
373 |
+
the expression. Currently each one is assumed to convert to
|
374 |
+
a double precision scalar.
|
375 |
+
expr : Expr, or (Replacements, Expr) as returned from 'cse'
|
376 |
+
Expression to compile.
|
377 |
+
callback_type : string
|
378 |
+
Create function with signature appropriate to use as a callback.
|
379 |
+
Currently supported:
|
380 |
+
'scipy.integrate'
|
381 |
+
'scipy.integrate.test'
|
382 |
+
'cubature'
|
383 |
+
|
384 |
+
Returns
|
385 |
+
=======
|
386 |
+
|
387 |
+
Compiled function that can evaluate the expression.
|
388 |
+
|
389 |
+
Examples
|
390 |
+
========
|
391 |
+
|
392 |
+
>>> import sympy.printing.llvmjitcode as jit
|
393 |
+
>>> from sympy.abc import a
|
394 |
+
>>> e = a*a + a + 1
|
395 |
+
>>> e1 = jit.llvm_callable([a], e)
|
396 |
+
>>> e.subs(a, 1.1) # Evaluate via substitution
|
397 |
+
3.31000000000000
|
398 |
+
>>> e1(1.1) # Evaluate using JIT-compiled code
|
399 |
+
3.3100000000000005
|
400 |
+
|
401 |
+
|
402 |
+
Callbacks for integration functions can be JIT compiled.
|
403 |
+
>>> import sympy.printing.llvmjitcode as jit
|
404 |
+
>>> from sympy.abc import a
|
405 |
+
>>> from sympy import integrate
|
406 |
+
>>> from scipy.integrate import quad
|
407 |
+
>>> e = a*a
|
408 |
+
>>> e1 = jit.llvm_callable([a], e, callback_type='scipy.integrate')
|
409 |
+
>>> integrate(e, (a, 0.0, 2.0))
|
410 |
+
2.66666666666667
|
411 |
+
>>> quad(e1, 0.0, 2.0)[0]
|
412 |
+
2.66666666666667
|
413 |
+
|
414 |
+
The 'cubature' callback is for the Python wrapper around the
|
415 |
+
cubature package ( https://github.com/saullocastro/cubature )
|
416 |
+
and ( http://ab-initio.mit.edu/wiki/index.php/Cubature )
|
417 |
+
|
418 |
+
There are two signatures for the SciPy integration callbacks.
|
419 |
+
The first ('scipy.integrate') is the function to be passed to the
|
420 |
+
integration routine, and will pass the signature checks.
|
421 |
+
The second ('scipy.integrate.test') is only useful for directly calling
|
422 |
+
the function using ctypes variables. It will not pass the signature checks
|
423 |
+
for scipy.integrate.
|
424 |
+
|
425 |
+
The return value from the cse module can also be compiled. This
|
426 |
+
can improve the performance of the compiled function. If multiple
|
427 |
+
expressions are given to cse, the compiled function returns a tuple.
|
428 |
+
The 'cubature' callback handles multiple expressions (set `fdim`
|
429 |
+
to match in the integration call.)
|
430 |
+
>>> import sympy.printing.llvmjitcode as jit
|
431 |
+
>>> from sympy import cse
|
432 |
+
>>> from sympy.abc import x,y
|
433 |
+
>>> e1 = x*x + y*y
|
434 |
+
>>> e2 = 4*(x*x + y*y) + 8.0
|
435 |
+
>>> after_cse = cse([e1,e2])
|
436 |
+
>>> after_cse
|
437 |
+
([(x0, x**2), (x1, y**2)], [x0 + x1, 4*x0 + 4*x1 + 8.0])
|
438 |
+
>>> j1 = jit.llvm_callable([x,y], after_cse)
|
439 |
+
>>> j1(1.0, 2.0)
|
440 |
+
(5.0, 28.0)
|
441 |
+
'''
|
442 |
+
|
443 |
+
if not llvmlite:
|
444 |
+
raise ImportError("llvmlite is required for llvmjitcode")
|
445 |
+
|
446 |
+
signature = CodeSignature(ctypes.py_object)
|
447 |
+
|
448 |
+
arg_ctypes = []
|
449 |
+
if callback_type is None:
|
450 |
+
for _ in args:
|
451 |
+
arg_ctype = ctypes.c_double
|
452 |
+
arg_ctypes.append(arg_ctype)
|
453 |
+
elif callback_type in ('scipy.integrate', 'scipy.integrate.test'):
|
454 |
+
signature.ret_type = ctypes.c_double
|
455 |
+
arg_ctypes = [ctypes.c_int, ctypes.POINTER(ctypes.c_double)]
|
456 |
+
arg_ctypes_formal = [ctypes.c_int, ctypes.c_double]
|
457 |
+
signature.input_arg = 1
|
458 |
+
elif callback_type == 'cubature':
|
459 |
+
arg_ctypes = [ctypes.c_int,
|
460 |
+
ctypes.POINTER(ctypes.c_double),
|
461 |
+
ctypes.c_void_p,
|
462 |
+
ctypes.c_int,
|
463 |
+
ctypes.POINTER(ctypes.c_double)
|
464 |
+
]
|
465 |
+
signature.ret_type = ctypes.c_int
|
466 |
+
signature.input_arg = 1
|
467 |
+
signature.ret_arg = 4
|
468 |
+
else:
|
469 |
+
raise ValueError("Unknown callback type: %s" % callback_type)
|
470 |
+
|
471 |
+
signature.arg_ctypes = arg_ctypes
|
472 |
+
|
473 |
+
fptr = _llvm_jit_code(args, expr, signature, callback_type)
|
474 |
+
|
475 |
+
if callback_type and callback_type == 'scipy.integrate':
|
476 |
+
arg_ctypes = arg_ctypes_formal
|
477 |
+
|
478 |
+
# PYFUNCTYPE holds the GIL which is needed to prevent a segfault when
|
479 |
+
# calling PyFloat_FromDouble on Python 3.10. Probably it is better to use
|
480 |
+
# ctypes.c_double when returning a float rather than using ctypes.py_object
|
481 |
+
# and returning a PyFloat from inside the jitted function (i.e. let ctypes
|
482 |
+
# handle the conversion from double to PyFloat).
|
483 |
+
if signature.ret_type == ctypes.py_object:
|
484 |
+
FUNCTYPE = ctypes.PYFUNCTYPE
|
485 |
+
else:
|
486 |
+
FUNCTYPE = ctypes.CFUNCTYPE
|
487 |
+
|
488 |
+
cfunc = FUNCTYPE(signature.ret_type, *arg_ctypes)(fptr)
|
489 |
+
return cfunc
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/maple.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Maple code printer
|
3 |
+
|
4 |
+
The MapleCodePrinter converts single SymPy expressions into single
|
5 |
+
Maple expressions, using the functions defined in the Maple objects where possible.
|
6 |
+
|
7 |
+
|
8 |
+
FIXME: This module is still under actively developed. Some functions may be not completed.
|
9 |
+
"""
|
10 |
+
|
11 |
+
from sympy.core import S
|
12 |
+
from sympy.core.numbers import Integer, IntegerConstant, equal_valued
|
13 |
+
from sympy.printing.codeprinter import CodePrinter
|
14 |
+
from sympy.printing.precedence import precedence, PRECEDENCE
|
15 |
+
|
16 |
+
import sympy
|
17 |
+
|
18 |
+
_known_func_same_name = (
|
19 |
+
'sin', 'cos', 'tan', 'sec', 'csc', 'cot', 'sinh', 'cosh', 'tanh', 'sech',
|
20 |
+
'csch', 'coth', 'exp', 'floor', 'factorial', 'bernoulli', 'euler',
|
21 |
+
'fibonacci', 'gcd', 'lcm', 'conjugate', 'Ci', 'Chi', 'Ei', 'Li', 'Si', 'Shi',
|
22 |
+
'erf', 'erfc', 'harmonic', 'LambertW',
|
23 |
+
'sqrt', # For automatic rewrites
|
24 |
+
)
|
25 |
+
|
26 |
+
known_functions = {
|
27 |
+
# SymPy -> Maple
|
28 |
+
'Abs': 'abs',
|
29 |
+
'log': 'ln',
|
30 |
+
'asin': 'arcsin',
|
31 |
+
'acos': 'arccos',
|
32 |
+
'atan': 'arctan',
|
33 |
+
'asec': 'arcsec',
|
34 |
+
'acsc': 'arccsc',
|
35 |
+
'acot': 'arccot',
|
36 |
+
'asinh': 'arcsinh',
|
37 |
+
'acosh': 'arccosh',
|
38 |
+
'atanh': 'arctanh',
|
39 |
+
'asech': 'arcsech',
|
40 |
+
'acsch': 'arccsch',
|
41 |
+
'acoth': 'arccoth',
|
42 |
+
'ceiling': 'ceil',
|
43 |
+
'Max' : 'max',
|
44 |
+
'Min' : 'min',
|
45 |
+
|
46 |
+
'factorial2': 'doublefactorial',
|
47 |
+
'RisingFactorial': 'pochhammer',
|
48 |
+
'besseli': 'BesselI',
|
49 |
+
'besselj': 'BesselJ',
|
50 |
+
'besselk': 'BesselK',
|
51 |
+
'bessely': 'BesselY',
|
52 |
+
'hankelh1': 'HankelH1',
|
53 |
+
'hankelh2': 'HankelH2',
|
54 |
+
'airyai': 'AiryAi',
|
55 |
+
'airybi': 'AiryBi',
|
56 |
+
'appellf1': 'AppellF1',
|
57 |
+
'fresnelc': 'FresnelC',
|
58 |
+
'fresnels': 'FresnelS',
|
59 |
+
'lerchphi' : 'LerchPhi',
|
60 |
+
}
|
61 |
+
|
62 |
+
for _func in _known_func_same_name:
|
63 |
+
known_functions[_func] = _func
|
64 |
+
|
65 |
+
number_symbols = {
|
66 |
+
# SymPy -> Maple
|
67 |
+
S.Pi: 'Pi',
|
68 |
+
S.Exp1: 'exp(1)',
|
69 |
+
S.Catalan: 'Catalan',
|
70 |
+
S.EulerGamma: 'gamma',
|
71 |
+
S.GoldenRatio: '(1/2 + (1/2)*sqrt(5))'
|
72 |
+
}
|
73 |
+
|
74 |
+
spec_relational_ops = {
|
75 |
+
# SymPy -> Maple
|
76 |
+
'==': '=',
|
77 |
+
'!=': '<>'
|
78 |
+
}
|
79 |
+
|
80 |
+
not_supported_symbol = [
|
81 |
+
S.ComplexInfinity
|
82 |
+
]
|
83 |
+
|
84 |
+
class MapleCodePrinter(CodePrinter):
|
85 |
+
"""
|
86 |
+
Printer which converts a SymPy expression into a maple code.
|
87 |
+
"""
|
88 |
+
printmethod = "_maple"
|
89 |
+
language = "maple"
|
90 |
+
|
91 |
+
_default_settings = {
|
92 |
+
'order': None,
|
93 |
+
'full_prec': 'auto',
|
94 |
+
'human': True,
|
95 |
+
'inline': True,
|
96 |
+
'allow_unknown_functions': True,
|
97 |
+
}
|
98 |
+
|
99 |
+
def __init__(self, settings=None):
|
100 |
+
if settings is None:
|
101 |
+
settings = {}
|
102 |
+
super().__init__(settings)
|
103 |
+
self.known_functions = dict(known_functions)
|
104 |
+
userfuncs = settings.get('user_functions', {})
|
105 |
+
self.known_functions.update(userfuncs)
|
106 |
+
|
107 |
+
def _get_statement(self, codestring):
|
108 |
+
return "%s;" % codestring
|
109 |
+
|
110 |
+
def _get_comment(self, text):
|
111 |
+
return "# {}".format(text)
|
112 |
+
|
113 |
+
def _declare_number_const(self, name, value):
|
114 |
+
return "{} := {};".format(name,
|
115 |
+
value.evalf(self._settings['precision']))
|
116 |
+
|
117 |
+
def _format_code(self, lines):
|
118 |
+
return lines
|
119 |
+
|
120 |
+
def _print_tuple(self, expr):
|
121 |
+
return self._print(list(expr))
|
122 |
+
|
123 |
+
def _print_Tuple(self, expr):
|
124 |
+
return self._print(list(expr))
|
125 |
+
|
126 |
+
def _print_Assignment(self, expr):
|
127 |
+
lhs = self._print(expr.lhs)
|
128 |
+
rhs = self._print(expr.rhs)
|
129 |
+
return "{lhs} := {rhs}".format(lhs=lhs, rhs=rhs)
|
130 |
+
|
131 |
+
def _print_Pow(self, expr, **kwargs):
|
132 |
+
PREC = precedence(expr)
|
133 |
+
if equal_valued(expr.exp, -1):
|
134 |
+
return '1/%s' % (self.parenthesize(expr.base, PREC))
|
135 |
+
elif equal_valued(expr.exp, 0.5):
|
136 |
+
return 'sqrt(%s)' % self._print(expr.base)
|
137 |
+
elif equal_valued(expr.exp, -0.5):
|
138 |
+
return '1/sqrt(%s)' % self._print(expr.base)
|
139 |
+
else:
|
140 |
+
return '{base}^{exp}'.format(
|
141 |
+
base=self.parenthesize(expr.base, PREC),
|
142 |
+
exp=self.parenthesize(expr.exp, PREC))
|
143 |
+
|
144 |
+
def _print_Piecewise(self, expr):
|
145 |
+
if (expr.args[-1].cond is not True) and (expr.args[-1].cond != S.BooleanTrue):
|
146 |
+
# We need the last conditional to be a True, otherwise the resulting
|
147 |
+
# function may not return a result.
|
148 |
+
raise ValueError("All Piecewise expressions must contain an "
|
149 |
+
"(expr, True) statement to be used as a default "
|
150 |
+
"condition. Without one, the generated "
|
151 |
+
"expression may not evaluate to anything under "
|
152 |
+
"some condition.")
|
153 |
+
_coup_list = [
|
154 |
+
("{c}, {e}".format(c=self._print(c),
|
155 |
+
e=self._print(e)) if c is not True and c is not S.BooleanTrue else "{e}".format(
|
156 |
+
e=self._print(e)))
|
157 |
+
for e, c in expr.args]
|
158 |
+
_inbrace = ', '.join(_coup_list)
|
159 |
+
return 'piecewise({_inbrace})'.format(_inbrace=_inbrace)
|
160 |
+
|
161 |
+
def _print_Rational(self, expr):
|
162 |
+
p, q = int(expr.p), int(expr.q)
|
163 |
+
return "{p}/{q}".format(p=str(p), q=str(q))
|
164 |
+
|
165 |
+
def _print_Relational(self, expr):
|
166 |
+
PREC=precedence(expr)
|
167 |
+
lhs_code = self.parenthesize(expr.lhs, PREC)
|
168 |
+
rhs_code = self.parenthesize(expr.rhs, PREC)
|
169 |
+
op = expr.rel_op
|
170 |
+
if op in spec_relational_ops:
|
171 |
+
op = spec_relational_ops[op]
|
172 |
+
return "{lhs} {rel_op} {rhs}".format(lhs=lhs_code, rel_op=op, rhs=rhs_code)
|
173 |
+
|
174 |
+
def _print_NumberSymbol(self, expr):
|
175 |
+
return number_symbols[expr]
|
176 |
+
|
177 |
+
def _print_NegativeInfinity(self, expr):
|
178 |
+
return '-infinity'
|
179 |
+
|
180 |
+
def _print_Infinity(self, expr):
|
181 |
+
return 'infinity'
|
182 |
+
|
183 |
+
def _print_Idx(self, expr):
|
184 |
+
return self._print(expr.label)
|
185 |
+
|
186 |
+
def _print_BooleanTrue(self, expr):
|
187 |
+
return "true"
|
188 |
+
|
189 |
+
def _print_BooleanFalse(self, expr):
|
190 |
+
return "false"
|
191 |
+
|
192 |
+
def _print_bool(self, expr):
|
193 |
+
return 'true' if expr else 'false'
|
194 |
+
|
195 |
+
def _print_NaN(self, expr):
|
196 |
+
return 'undefined'
|
197 |
+
|
198 |
+
def _get_matrix(self, expr, sparse=False):
|
199 |
+
if S.Zero in expr.shape:
|
200 |
+
_strM = 'Matrix([], storage = {storage})'.format(
|
201 |
+
storage='sparse' if sparse else 'rectangular')
|
202 |
+
else:
|
203 |
+
_strM = 'Matrix({list}, storage = {storage})'.format(
|
204 |
+
list=self._print(expr.tolist()),
|
205 |
+
storage='sparse' if sparse else 'rectangular')
|
206 |
+
return _strM
|
207 |
+
|
208 |
+
def _print_MatrixElement(self, expr):
|
209 |
+
return "{parent}[{i_maple}, {j_maple}]".format(
|
210 |
+
parent=self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True),
|
211 |
+
i_maple=self._print(expr.i + 1),
|
212 |
+
j_maple=self._print(expr.j + 1))
|
213 |
+
|
214 |
+
def _print_MatrixBase(self, expr):
|
215 |
+
return self._get_matrix(expr, sparse=False)
|
216 |
+
|
217 |
+
def _print_SparseRepMatrix(self, expr):
|
218 |
+
return self._get_matrix(expr, sparse=True)
|
219 |
+
|
220 |
+
def _print_Identity(self, expr):
|
221 |
+
if isinstance(expr.rows, (Integer, IntegerConstant)):
|
222 |
+
return self._print(sympy.SparseMatrix(expr))
|
223 |
+
else:
|
224 |
+
return "Matrix({var_size}, shape = identity)".format(var_size=self._print(expr.rows))
|
225 |
+
|
226 |
+
def _print_MatMul(self, expr):
|
227 |
+
PREC=precedence(expr)
|
228 |
+
_fact_list = list(expr.args)
|
229 |
+
_const = None
|
230 |
+
if not isinstance(_fact_list[0], (sympy.MatrixBase, sympy.MatrixExpr,
|
231 |
+
sympy.MatrixSlice, sympy.MatrixSymbol)):
|
232 |
+
_const, _fact_list = _fact_list[0], _fact_list[1:]
|
233 |
+
|
234 |
+
if _const is None or _const == 1:
|
235 |
+
return '.'.join(self.parenthesize(_m, PREC) for _m in _fact_list)
|
236 |
+
else:
|
237 |
+
return '{c}*{m}'.format(c=_const, m='.'.join(self.parenthesize(_m, PREC) for _m in _fact_list))
|
238 |
+
|
239 |
+
def _print_MatPow(self, expr):
|
240 |
+
# This function requires LinearAlgebra Function in Maple
|
241 |
+
return 'MatrixPower({A}, {n})'.format(A=self._print(expr.base), n=self._print(expr.exp))
|
242 |
+
|
243 |
+
def _print_HadamardProduct(self, expr):
|
244 |
+
PREC = precedence(expr)
|
245 |
+
_fact_list = list(expr.args)
|
246 |
+
return '*'.join(self.parenthesize(_m, PREC) for _m in _fact_list)
|
247 |
+
|
248 |
+
def _print_Derivative(self, expr):
|
249 |
+
_f, (_var, _order) = expr.args
|
250 |
+
|
251 |
+
if _order != 1:
|
252 |
+
_second_arg = '{var}${order}'.format(var=self._print(_var),
|
253 |
+
order=self._print(_order))
|
254 |
+
else:
|
255 |
+
_second_arg = '{var}'.format(var=self._print(_var))
|
256 |
+
return 'diff({func_expr}, {sec_arg})'.format(func_expr=self._print(_f), sec_arg=_second_arg)
|
257 |
+
|
258 |
+
|
259 |
+
def maple_code(expr, assign_to=None, **settings):
|
260 |
+
r"""Converts ``expr`` to a string of Maple code.
|
261 |
+
|
262 |
+
Parameters
|
263 |
+
==========
|
264 |
+
|
265 |
+
expr : Expr
|
266 |
+
A SymPy expression to be converted.
|
267 |
+
assign_to : optional
|
268 |
+
When given, the argument is used as the name of the variable to which
|
269 |
+
the expression is assigned. Can be a string, ``Symbol``,
|
270 |
+
``MatrixSymbol``, or ``Indexed`` type. This can be helpful for
|
271 |
+
expressions that generate multi-line statements.
|
272 |
+
precision : integer, optional
|
273 |
+
The precision for numbers such as pi [default=16].
|
274 |
+
user_functions : dict, optional
|
275 |
+
A dictionary where keys are ``FunctionClass`` instances and values are
|
276 |
+
their string representations. Alternatively, the dictionary value can
|
277 |
+
be a list of tuples i.e. [(argument_test, cfunction_string)]. See
|
278 |
+
below for examples.
|
279 |
+
human : bool, optional
|
280 |
+
If True, the result is a single string that may contain some constant
|
281 |
+
declarations for the number symbols. If False, the same information is
|
282 |
+
returned in a tuple of (symbols_to_declare, not_supported_functions,
|
283 |
+
code_text). [default=True].
|
284 |
+
contract: bool, optional
|
285 |
+
If True, ``Indexed`` instances are assumed to obey tensor contraction
|
286 |
+
rules and the corresponding nested loops over indices are generated.
|
287 |
+
Setting contract=False will not generate loops, instead the user is
|
288 |
+
responsible to provide values for the indices in the code.
|
289 |
+
[default=True].
|
290 |
+
inline: bool, optional
|
291 |
+
If True, we try to create single-statement code instead of multiple
|
292 |
+
statements. [default=True].
|
293 |
+
|
294 |
+
"""
|
295 |
+
return MapleCodePrinter(settings).doprint(expr, assign_to)
|
296 |
+
|
297 |
+
|
298 |
+
def print_maple_code(expr, **settings):
|
299 |
+
"""Prints the Maple representation of the given expression.
|
300 |
+
|
301 |
+
See :func:`maple_code` for the meaning of the optional arguments.
|
302 |
+
|
303 |
+
Examples
|
304 |
+
========
|
305 |
+
|
306 |
+
>>> from sympy import print_maple_code, symbols
|
307 |
+
>>> x, y = symbols('x y')
|
308 |
+
>>> print_maple_code(x, assign_to=y)
|
309 |
+
y := x
|
310 |
+
"""
|
311 |
+
print(maple_code(expr, **settings))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/mathematica.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Mathematica code printer
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
from typing import Any
|
7 |
+
|
8 |
+
from sympy.core import Basic, Expr, Float
|
9 |
+
from sympy.core.sorting import default_sort_key
|
10 |
+
|
11 |
+
from sympy.printing.codeprinter import CodePrinter
|
12 |
+
from sympy.printing.precedence import precedence
|
13 |
+
|
14 |
+
# Used in MCodePrinter._print_Function(self)
|
15 |
+
known_functions = {
|
16 |
+
"exp": [(lambda x: True, "Exp")],
|
17 |
+
"log": [(lambda x: True, "Log")],
|
18 |
+
"sin": [(lambda x: True, "Sin")],
|
19 |
+
"cos": [(lambda x: True, "Cos")],
|
20 |
+
"tan": [(lambda x: True, "Tan")],
|
21 |
+
"cot": [(lambda x: True, "Cot")],
|
22 |
+
"sec": [(lambda x: True, "Sec")],
|
23 |
+
"csc": [(lambda x: True, "Csc")],
|
24 |
+
"asin": [(lambda x: True, "ArcSin")],
|
25 |
+
"acos": [(lambda x: True, "ArcCos")],
|
26 |
+
"atan": [(lambda x: True, "ArcTan")],
|
27 |
+
"acot": [(lambda x: True, "ArcCot")],
|
28 |
+
"asec": [(lambda x: True, "ArcSec")],
|
29 |
+
"acsc": [(lambda x: True, "ArcCsc")],
|
30 |
+
"atan2": [(lambda *x: True, "ArcTan")],
|
31 |
+
"sinh": [(lambda x: True, "Sinh")],
|
32 |
+
"cosh": [(lambda x: True, "Cosh")],
|
33 |
+
"tanh": [(lambda x: True, "Tanh")],
|
34 |
+
"coth": [(lambda x: True, "Coth")],
|
35 |
+
"sech": [(lambda x: True, "Sech")],
|
36 |
+
"csch": [(lambda x: True, "Csch")],
|
37 |
+
"asinh": [(lambda x: True, "ArcSinh")],
|
38 |
+
"acosh": [(lambda x: True, "ArcCosh")],
|
39 |
+
"atanh": [(lambda x: True, "ArcTanh")],
|
40 |
+
"acoth": [(lambda x: True, "ArcCoth")],
|
41 |
+
"asech": [(lambda x: True, "ArcSech")],
|
42 |
+
"acsch": [(lambda x: True, "ArcCsch")],
|
43 |
+
"sinc": [(lambda x: True, "Sinc")],
|
44 |
+
"conjugate": [(lambda x: True, "Conjugate")],
|
45 |
+
"Max": [(lambda *x: True, "Max")],
|
46 |
+
"Min": [(lambda *x: True, "Min")],
|
47 |
+
"erf": [(lambda x: True, "Erf")],
|
48 |
+
"erf2": [(lambda *x: True, "Erf")],
|
49 |
+
"erfc": [(lambda x: True, "Erfc")],
|
50 |
+
"erfi": [(lambda x: True, "Erfi")],
|
51 |
+
"erfinv": [(lambda x: True, "InverseErf")],
|
52 |
+
"erfcinv": [(lambda x: True, "InverseErfc")],
|
53 |
+
"erf2inv": [(lambda *x: True, "InverseErf")],
|
54 |
+
"expint": [(lambda *x: True, "ExpIntegralE")],
|
55 |
+
"Ei": [(lambda x: True, "ExpIntegralEi")],
|
56 |
+
"fresnelc": [(lambda x: True, "FresnelC")],
|
57 |
+
"fresnels": [(lambda x: True, "FresnelS")],
|
58 |
+
"gamma": [(lambda x: True, "Gamma")],
|
59 |
+
"uppergamma": [(lambda *x: True, "Gamma")],
|
60 |
+
"polygamma": [(lambda *x: True, "PolyGamma")],
|
61 |
+
"loggamma": [(lambda x: True, "LogGamma")],
|
62 |
+
"beta": [(lambda *x: True, "Beta")],
|
63 |
+
"Ci": [(lambda x: True, "CosIntegral")],
|
64 |
+
"Si": [(lambda x: True, "SinIntegral")],
|
65 |
+
"Chi": [(lambda x: True, "CoshIntegral")],
|
66 |
+
"Shi": [(lambda x: True, "SinhIntegral")],
|
67 |
+
"li": [(lambda x: True, "LogIntegral")],
|
68 |
+
"factorial": [(lambda x: True, "Factorial")],
|
69 |
+
"factorial2": [(lambda x: True, "Factorial2")],
|
70 |
+
"subfactorial": [(lambda x: True, "Subfactorial")],
|
71 |
+
"catalan": [(lambda x: True, "CatalanNumber")],
|
72 |
+
"harmonic": [(lambda *x: True, "HarmonicNumber")],
|
73 |
+
"lucas": [(lambda x: True, "LucasL")],
|
74 |
+
"RisingFactorial": [(lambda *x: True, "Pochhammer")],
|
75 |
+
"FallingFactorial": [(lambda *x: True, "FactorialPower")],
|
76 |
+
"laguerre": [(lambda *x: True, "LaguerreL")],
|
77 |
+
"assoc_laguerre": [(lambda *x: True, "LaguerreL")],
|
78 |
+
"hermite": [(lambda *x: True, "HermiteH")],
|
79 |
+
"jacobi": [(lambda *x: True, "JacobiP")],
|
80 |
+
"gegenbauer": [(lambda *x: True, "GegenbauerC")],
|
81 |
+
"chebyshevt": [(lambda *x: True, "ChebyshevT")],
|
82 |
+
"chebyshevu": [(lambda *x: True, "ChebyshevU")],
|
83 |
+
"legendre": [(lambda *x: True, "LegendreP")],
|
84 |
+
"assoc_legendre": [(lambda *x: True, "LegendreP")],
|
85 |
+
"mathieuc": [(lambda *x: True, "MathieuC")],
|
86 |
+
"mathieus": [(lambda *x: True, "MathieuS")],
|
87 |
+
"mathieucprime": [(lambda *x: True, "MathieuCPrime")],
|
88 |
+
"mathieusprime": [(lambda *x: True, "MathieuSPrime")],
|
89 |
+
"stieltjes": [(lambda x: True, "StieltjesGamma")],
|
90 |
+
"elliptic_e": [(lambda *x: True, "EllipticE")],
|
91 |
+
"elliptic_f": [(lambda *x: True, "EllipticE")],
|
92 |
+
"elliptic_k": [(lambda x: True, "EllipticK")],
|
93 |
+
"elliptic_pi": [(lambda *x: True, "EllipticPi")],
|
94 |
+
"zeta": [(lambda *x: True, "Zeta")],
|
95 |
+
"dirichlet_eta": [(lambda x: True, "DirichletEta")],
|
96 |
+
"riemann_xi": [(lambda x: True, "RiemannXi")],
|
97 |
+
"besseli": [(lambda *x: True, "BesselI")],
|
98 |
+
"besselj": [(lambda *x: True, "BesselJ")],
|
99 |
+
"besselk": [(lambda *x: True, "BesselK")],
|
100 |
+
"bessely": [(lambda *x: True, "BesselY")],
|
101 |
+
"hankel1": [(lambda *x: True, "HankelH1")],
|
102 |
+
"hankel2": [(lambda *x: True, "HankelH2")],
|
103 |
+
"airyai": [(lambda x: True, "AiryAi")],
|
104 |
+
"airybi": [(lambda x: True, "AiryBi")],
|
105 |
+
"airyaiprime": [(lambda x: True, "AiryAiPrime")],
|
106 |
+
"airybiprime": [(lambda x: True, "AiryBiPrime")],
|
107 |
+
"polylog": [(lambda *x: True, "PolyLog")],
|
108 |
+
"lerchphi": [(lambda *x: True, "LerchPhi")],
|
109 |
+
"gcd": [(lambda *x: True, "GCD")],
|
110 |
+
"lcm": [(lambda *x: True, "LCM")],
|
111 |
+
"jn": [(lambda *x: True, "SphericalBesselJ")],
|
112 |
+
"yn": [(lambda *x: True, "SphericalBesselY")],
|
113 |
+
"hyper": [(lambda *x: True, "HypergeometricPFQ")],
|
114 |
+
"meijerg": [(lambda *x: True, "MeijerG")],
|
115 |
+
"appellf1": [(lambda *x: True, "AppellF1")],
|
116 |
+
"DiracDelta": [(lambda x: True, "DiracDelta")],
|
117 |
+
"Heaviside": [(lambda x: True, "HeavisideTheta")],
|
118 |
+
"KroneckerDelta": [(lambda *x: True, "KroneckerDelta")],
|
119 |
+
"sqrt": [(lambda x: True, "Sqrt")], # For automatic rewrites
|
120 |
+
}
|
121 |
+
|
122 |
+
|
123 |
+
class MCodePrinter(CodePrinter):
|
124 |
+
"""A printer to convert Python expressions to
|
125 |
+
strings of the Wolfram's Mathematica code
|
126 |
+
"""
|
127 |
+
printmethod = "_mcode"
|
128 |
+
language = "Wolfram Language"
|
129 |
+
|
130 |
+
_default_settings: dict[str, Any] = {
|
131 |
+
'order': None,
|
132 |
+
'full_prec': 'auto',
|
133 |
+
'precision': 15,
|
134 |
+
'user_functions': {},
|
135 |
+
'human': True,
|
136 |
+
'allow_unknown_functions': False,
|
137 |
+
}
|
138 |
+
|
139 |
+
_number_symbols: set[tuple[Expr, Float]] = set()
|
140 |
+
_not_supported: set[Basic] = set()
|
141 |
+
|
142 |
+
def __init__(self, settings={}):
|
143 |
+
"""Register function mappings supplied by user"""
|
144 |
+
CodePrinter.__init__(self, settings)
|
145 |
+
self.known_functions = dict(known_functions)
|
146 |
+
userfuncs = settings.get('user_functions', {}).copy()
|
147 |
+
for k, v in userfuncs.items():
|
148 |
+
if not isinstance(v, list):
|
149 |
+
userfuncs[k] = [(lambda *x: True, v)]
|
150 |
+
self.known_functions.update(userfuncs)
|
151 |
+
|
152 |
+
def _format_code(self, lines):
|
153 |
+
return lines
|
154 |
+
|
155 |
+
def _print_Pow(self, expr):
|
156 |
+
PREC = precedence(expr)
|
157 |
+
return '%s^%s' % (self.parenthesize(expr.base, PREC),
|
158 |
+
self.parenthesize(expr.exp, PREC))
|
159 |
+
|
160 |
+
def _print_Mul(self, expr):
|
161 |
+
PREC = precedence(expr)
|
162 |
+
c, nc = expr.args_cnc()
|
163 |
+
res = super()._print_Mul(expr.func(*c))
|
164 |
+
if nc:
|
165 |
+
res += '*'
|
166 |
+
res += '**'.join(self.parenthesize(a, PREC) for a in nc)
|
167 |
+
return res
|
168 |
+
|
169 |
+
def _print_Relational(self, expr):
|
170 |
+
lhs_code = self._print(expr.lhs)
|
171 |
+
rhs_code = self._print(expr.rhs)
|
172 |
+
op = expr.rel_op
|
173 |
+
return "{} {} {}".format(lhs_code, op, rhs_code)
|
174 |
+
|
175 |
+
# Primitive numbers
|
176 |
+
def _print_Zero(self, expr):
|
177 |
+
return '0'
|
178 |
+
|
179 |
+
def _print_One(self, expr):
|
180 |
+
return '1'
|
181 |
+
|
182 |
+
def _print_NegativeOne(self, expr):
|
183 |
+
return '-1'
|
184 |
+
|
185 |
+
def _print_Half(self, expr):
|
186 |
+
return '1/2'
|
187 |
+
|
188 |
+
def _print_ImaginaryUnit(self, expr):
|
189 |
+
return 'I'
|
190 |
+
|
191 |
+
|
192 |
+
# Infinity and invalid numbers
|
193 |
+
def _print_Infinity(self, expr):
|
194 |
+
return 'Infinity'
|
195 |
+
|
196 |
+
def _print_NegativeInfinity(self, expr):
|
197 |
+
return '-Infinity'
|
198 |
+
|
199 |
+
def _print_ComplexInfinity(self, expr):
|
200 |
+
return 'ComplexInfinity'
|
201 |
+
|
202 |
+
def _print_NaN(self, expr):
|
203 |
+
return 'Indeterminate'
|
204 |
+
|
205 |
+
|
206 |
+
# Mathematical constants
|
207 |
+
def _print_Exp1(self, expr):
|
208 |
+
return 'E'
|
209 |
+
|
210 |
+
def _print_Pi(self, expr):
|
211 |
+
return 'Pi'
|
212 |
+
|
213 |
+
def _print_GoldenRatio(self, expr):
|
214 |
+
return 'GoldenRatio'
|
215 |
+
|
216 |
+
def _print_TribonacciConstant(self, expr):
|
217 |
+
expanded = expr.expand(func=True)
|
218 |
+
PREC = precedence(expr)
|
219 |
+
return self.parenthesize(expanded, PREC)
|
220 |
+
|
221 |
+
def _print_EulerGamma(self, expr):
|
222 |
+
return 'EulerGamma'
|
223 |
+
|
224 |
+
def _print_Catalan(self, expr):
|
225 |
+
return 'Catalan'
|
226 |
+
|
227 |
+
|
228 |
+
def _print_list(self, expr):
|
229 |
+
return '{' + ', '.join(self.doprint(a) for a in expr) + '}'
|
230 |
+
_print_tuple = _print_list
|
231 |
+
_print_Tuple = _print_list
|
232 |
+
|
233 |
+
def _print_ImmutableDenseMatrix(self, expr):
|
234 |
+
return self.doprint(expr.tolist())
|
235 |
+
|
236 |
+
def _print_ImmutableSparseMatrix(self, expr):
|
237 |
+
|
238 |
+
def print_rule(pos, val):
|
239 |
+
return '{} -> {}'.format(
|
240 |
+
self.doprint((pos[0]+1, pos[1]+1)), self.doprint(val))
|
241 |
+
|
242 |
+
def print_data():
|
243 |
+
items = sorted(expr.todok().items(), key=default_sort_key)
|
244 |
+
return '{' + \
|
245 |
+
', '.join(print_rule(k, v) for k, v in items) + \
|
246 |
+
'}'
|
247 |
+
|
248 |
+
def print_dims():
|
249 |
+
return self.doprint(expr.shape)
|
250 |
+
|
251 |
+
return 'SparseArray[{}, {}]'.format(print_data(), print_dims())
|
252 |
+
|
253 |
+
def _print_ImmutableDenseNDimArray(self, expr):
|
254 |
+
return self.doprint(expr.tolist())
|
255 |
+
|
256 |
+
def _print_ImmutableSparseNDimArray(self, expr):
|
257 |
+
def print_string_list(string_list):
|
258 |
+
return '{' + ', '.join(a for a in string_list) + '}'
|
259 |
+
|
260 |
+
def to_mathematica_index(*args):
|
261 |
+
"""Helper function to change Python style indexing to
|
262 |
+
Pathematica indexing.
|
263 |
+
|
264 |
+
Python indexing (0, 1 ... n-1)
|
265 |
+
-> Mathematica indexing (1, 2 ... n)
|
266 |
+
"""
|
267 |
+
return tuple(i + 1 for i in args)
|
268 |
+
|
269 |
+
def print_rule(pos, val):
|
270 |
+
"""Helper function to print a rule of Mathematica"""
|
271 |
+
return '{} -> {}'.format(self.doprint(pos), self.doprint(val))
|
272 |
+
|
273 |
+
def print_data():
|
274 |
+
"""Helper function to print data part of Mathematica
|
275 |
+
sparse array.
|
276 |
+
|
277 |
+
It uses the fourth notation ``SparseArray[data,{d1,d2,...}]``
|
278 |
+
from
|
279 |
+
https://reference.wolfram.com/language/ref/SparseArray.html
|
280 |
+
|
281 |
+
``data`` must be formatted with rule.
|
282 |
+
"""
|
283 |
+
return print_string_list(
|
284 |
+
[print_rule(
|
285 |
+
to_mathematica_index(*(expr._get_tuple_index(key))),
|
286 |
+
value)
|
287 |
+
for key, value in sorted(expr._sparse_array.items())]
|
288 |
+
)
|
289 |
+
|
290 |
+
def print_dims():
|
291 |
+
"""Helper function to print dimensions part of Mathematica
|
292 |
+
sparse array.
|
293 |
+
|
294 |
+
It uses the fourth notation ``SparseArray[data,{d1,d2,...}]``
|
295 |
+
from
|
296 |
+
https://reference.wolfram.com/language/ref/SparseArray.html
|
297 |
+
"""
|
298 |
+
return self.doprint(expr.shape)
|
299 |
+
|
300 |
+
return 'SparseArray[{}, {}]'.format(print_data(), print_dims())
|
301 |
+
|
302 |
+
def _print_Function(self, expr):
|
303 |
+
if expr.func.__name__ in self.known_functions:
|
304 |
+
cond_mfunc = self.known_functions[expr.func.__name__]
|
305 |
+
for cond, mfunc in cond_mfunc:
|
306 |
+
if cond(*expr.args):
|
307 |
+
return "%s[%s]" % (mfunc, self.stringify(expr.args, ", "))
|
308 |
+
elif expr.func.__name__ in self._rewriteable_functions:
|
309 |
+
# Simple rewrite to supported function possible
|
310 |
+
target_f, required_fs = self._rewriteable_functions[expr.func.__name__]
|
311 |
+
if self._can_print(target_f) and all(self._can_print(f) for f in required_fs):
|
312 |
+
return self._print(expr.rewrite(target_f))
|
313 |
+
return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ")
|
314 |
+
|
315 |
+
_print_MinMaxBase = _print_Function
|
316 |
+
|
317 |
+
def _print_LambertW(self, expr):
|
318 |
+
if len(expr.args) == 1:
|
319 |
+
return "ProductLog[{}]".format(self._print(expr.args[0]))
|
320 |
+
return "ProductLog[{}, {}]".format(
|
321 |
+
self._print(expr.args[1]), self._print(expr.args[0]))
|
322 |
+
|
323 |
+
def _print_Integral(self, expr):
|
324 |
+
if len(expr.variables) == 1 and not expr.limits[0][1:]:
|
325 |
+
args = [expr.args[0], expr.variables[0]]
|
326 |
+
else:
|
327 |
+
args = expr.args
|
328 |
+
return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]"
|
329 |
+
|
330 |
+
def _print_Sum(self, expr):
|
331 |
+
return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]"
|
332 |
+
|
333 |
+
def _print_Derivative(self, expr):
|
334 |
+
dexpr = expr.expr
|
335 |
+
dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
|
336 |
+
return "Hold[D[" + ', '.join(self.doprint(a) for a in [dexpr] + dvars) + "]]"
|
337 |
+
|
338 |
+
|
339 |
+
def _get_comment(self, text):
|
340 |
+
return "(* {} *)".format(text)
|
341 |
+
|
342 |
+
|
343 |
+
def mathematica_code(expr, **settings):
|
344 |
+
r"""Converts an expr to a string of the Wolfram Mathematica code
|
345 |
+
|
346 |
+
Examples
|
347 |
+
========
|
348 |
+
|
349 |
+
>>> from sympy import mathematica_code as mcode, symbols, sin
|
350 |
+
>>> x = symbols('x')
|
351 |
+
>>> mcode(sin(x).series(x).removeO())
|
352 |
+
'(1/120)*x^5 - 1/6*x^3 + x'
|
353 |
+
"""
|
354 |
+
return MCodePrinter(settings).doprint(expr)
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/mathml.py
ADDED
@@ -0,0 +1,2126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A MathML printer.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
from typing import Any
|
7 |
+
|
8 |
+
from sympy.core.mul import Mul
|
9 |
+
from sympy.core.singleton import S
|
10 |
+
from sympy.core.sorting import default_sort_key
|
11 |
+
from sympy.core.sympify import sympify
|
12 |
+
from sympy.printing.conventions import split_super_sub, requires_partial
|
13 |
+
from sympy.printing.precedence import \
|
14 |
+
precedence_traditional, PRECEDENCE, PRECEDENCE_TRADITIONAL
|
15 |
+
from sympy.printing.pretty.pretty_symbology import greek_unicode
|
16 |
+
from sympy.printing.printer import Printer, print_function
|
17 |
+
|
18 |
+
from mpmath.libmp import prec_to_dps, repr_dps, to_str as mlib_to_str
|
19 |
+
|
20 |
+
|
21 |
+
class MathMLPrinterBase(Printer):
|
22 |
+
"""Contains common code required for MathMLContentPrinter and
|
23 |
+
MathMLPresentationPrinter.
|
24 |
+
"""
|
25 |
+
|
26 |
+
_default_settings: dict[str, Any] = {
|
27 |
+
"order": None,
|
28 |
+
"encoding": "utf-8",
|
29 |
+
"fold_frac_powers": False,
|
30 |
+
"fold_func_brackets": False,
|
31 |
+
"fold_short_frac": None,
|
32 |
+
"inv_trig_style": "abbreviated",
|
33 |
+
"ln_notation": False,
|
34 |
+
"long_frac_ratio": None,
|
35 |
+
"mat_delim": "[",
|
36 |
+
"mat_symbol_style": "plain",
|
37 |
+
"mul_symbol": None,
|
38 |
+
"root_notation": True,
|
39 |
+
"symbol_names": {},
|
40 |
+
"mul_symbol_mathml_numbers": '·',
|
41 |
+
}
|
42 |
+
|
43 |
+
def __init__(self, settings=None):
|
44 |
+
Printer.__init__(self, settings)
|
45 |
+
from xml.dom.minidom import Document, Text
|
46 |
+
|
47 |
+
self.dom = Document()
|
48 |
+
|
49 |
+
# Workaround to allow strings to remain unescaped
|
50 |
+
# Based on
|
51 |
+
# https://stackoverflow.com/questions/38015864/python-xml-dom-minidom-\
|
52 |
+
# please-dont-escape-my-strings/38041194
|
53 |
+
class RawText(Text):
|
54 |
+
def writexml(self, writer, indent='', addindent='', newl=''):
|
55 |
+
if self.data:
|
56 |
+
writer.write('{}{}{}'.format(indent, self.data, newl))
|
57 |
+
|
58 |
+
def createRawTextNode(data):
|
59 |
+
r = RawText()
|
60 |
+
r.data = data
|
61 |
+
r.ownerDocument = self.dom
|
62 |
+
return r
|
63 |
+
|
64 |
+
self.dom.createTextNode = createRawTextNode
|
65 |
+
|
66 |
+
def doprint(self, expr):
|
67 |
+
"""
|
68 |
+
Prints the expression as MathML.
|
69 |
+
"""
|
70 |
+
mathML = Printer._print(self, expr)
|
71 |
+
unistr = mathML.toxml()
|
72 |
+
xmlbstr = unistr.encode('ascii', 'xmlcharrefreplace')
|
73 |
+
res = xmlbstr.decode()
|
74 |
+
return res
|
75 |
+
|
76 |
+
def apply_patch(self):
|
77 |
+
# Applying the patch of xml.dom.minidom bug
|
78 |
+
# Date: 2011-11-18
|
79 |
+
# Description: http://ronrothman.com/public/leftbraned/xml-dom-minidom\
|
80 |
+
# -toprettyxml-and-silly-whitespace/#best-solution
|
81 |
+
# Issue: https://bugs.python.org/issue4147
|
82 |
+
# Patch: https://hg.python.org/cpython/rev/7262f8f276ff/
|
83 |
+
|
84 |
+
from xml.dom.minidom import Element, Text, Node, _write_data
|
85 |
+
|
86 |
+
def writexml(self, writer, indent="", addindent="", newl=""):
|
87 |
+
# indent = current indentation
|
88 |
+
# addindent = indentation to add to higher levels
|
89 |
+
# newl = newline string
|
90 |
+
writer.write(indent + "<" + self.tagName)
|
91 |
+
|
92 |
+
attrs = self._get_attributes()
|
93 |
+
a_names = list(attrs.keys())
|
94 |
+
a_names.sort()
|
95 |
+
|
96 |
+
for a_name in a_names:
|
97 |
+
writer.write(" %s=\"" % a_name)
|
98 |
+
_write_data(writer, attrs[a_name].value)
|
99 |
+
writer.write("\"")
|
100 |
+
if self.childNodes:
|
101 |
+
writer.write(">")
|
102 |
+
if (len(self.childNodes) == 1 and
|
103 |
+
self.childNodes[0].nodeType == Node.TEXT_NODE):
|
104 |
+
self.childNodes[0].writexml(writer, '', '', '')
|
105 |
+
else:
|
106 |
+
writer.write(newl)
|
107 |
+
for node in self.childNodes:
|
108 |
+
node.writexml(
|
109 |
+
writer, indent + addindent, addindent, newl)
|
110 |
+
writer.write(indent)
|
111 |
+
writer.write("</%s>%s" % (self.tagName, newl))
|
112 |
+
else:
|
113 |
+
writer.write("/>%s" % (newl))
|
114 |
+
self._Element_writexml_old = Element.writexml
|
115 |
+
Element.writexml = writexml
|
116 |
+
|
117 |
+
def writexml(self, writer, indent="", addindent="", newl=""):
|
118 |
+
_write_data(writer, "%s%s%s" % (indent, self.data, newl))
|
119 |
+
self._Text_writexml_old = Text.writexml
|
120 |
+
Text.writexml = writexml
|
121 |
+
|
122 |
+
def restore_patch(self):
|
123 |
+
from xml.dom.minidom import Element, Text
|
124 |
+
Element.writexml = self._Element_writexml_old
|
125 |
+
Text.writexml = self._Text_writexml_old
|
126 |
+
|
127 |
+
|
128 |
+
class MathMLContentPrinter(MathMLPrinterBase):
|
129 |
+
"""Prints an expression to the Content MathML markup language.
|
130 |
+
|
131 |
+
References: https://www.w3.org/TR/MathML2/chapter4.html
|
132 |
+
"""
|
133 |
+
printmethod = "_mathml_content"
|
134 |
+
|
135 |
+
def mathml_tag(self, e):
|
136 |
+
"""Returns the MathML tag for an expression."""
|
137 |
+
translate = {
|
138 |
+
'Add': 'plus',
|
139 |
+
'Mul': 'times',
|
140 |
+
'Derivative': 'diff',
|
141 |
+
'Number': 'cn',
|
142 |
+
'int': 'cn',
|
143 |
+
'Pow': 'power',
|
144 |
+
'Max': 'max',
|
145 |
+
'Min': 'min',
|
146 |
+
'Abs': 'abs',
|
147 |
+
'And': 'and',
|
148 |
+
'Or': 'or',
|
149 |
+
'Xor': 'xor',
|
150 |
+
'Not': 'not',
|
151 |
+
'Implies': 'implies',
|
152 |
+
'Symbol': 'ci',
|
153 |
+
'MatrixSymbol': 'ci',
|
154 |
+
'RandomSymbol': 'ci',
|
155 |
+
'Integral': 'int',
|
156 |
+
'Sum': 'sum',
|
157 |
+
'sin': 'sin',
|
158 |
+
'cos': 'cos',
|
159 |
+
'tan': 'tan',
|
160 |
+
'cot': 'cot',
|
161 |
+
'csc': 'csc',
|
162 |
+
'sec': 'sec',
|
163 |
+
'sinh': 'sinh',
|
164 |
+
'cosh': 'cosh',
|
165 |
+
'tanh': 'tanh',
|
166 |
+
'coth': 'coth',
|
167 |
+
'csch': 'csch',
|
168 |
+
'sech': 'sech',
|
169 |
+
'asin': 'arcsin',
|
170 |
+
'asinh': 'arcsinh',
|
171 |
+
'acos': 'arccos',
|
172 |
+
'acosh': 'arccosh',
|
173 |
+
'atan': 'arctan',
|
174 |
+
'atanh': 'arctanh',
|
175 |
+
'atan2': 'arctan',
|
176 |
+
'acot': 'arccot',
|
177 |
+
'acoth': 'arccoth',
|
178 |
+
'asec': 'arcsec',
|
179 |
+
'asech': 'arcsech',
|
180 |
+
'acsc': 'arccsc',
|
181 |
+
'acsch': 'arccsch',
|
182 |
+
'log': 'ln',
|
183 |
+
'Equality': 'eq',
|
184 |
+
'Unequality': 'neq',
|
185 |
+
'GreaterThan': 'geq',
|
186 |
+
'LessThan': 'leq',
|
187 |
+
'StrictGreaterThan': 'gt',
|
188 |
+
'StrictLessThan': 'lt',
|
189 |
+
'Union': 'union',
|
190 |
+
'Intersection': 'intersect',
|
191 |
+
}
|
192 |
+
|
193 |
+
for cls in e.__class__.__mro__:
|
194 |
+
n = cls.__name__
|
195 |
+
if n in translate:
|
196 |
+
return translate[n]
|
197 |
+
# Not found in the MRO set
|
198 |
+
n = e.__class__.__name__
|
199 |
+
return n.lower()
|
200 |
+
|
201 |
+
def _print_Mul(self, expr):
|
202 |
+
|
203 |
+
if expr.could_extract_minus_sign():
|
204 |
+
x = self.dom.createElement('apply')
|
205 |
+
x.appendChild(self.dom.createElement('minus'))
|
206 |
+
x.appendChild(self._print_Mul(-expr))
|
207 |
+
return x
|
208 |
+
|
209 |
+
from sympy.simplify import fraction
|
210 |
+
numer, denom = fraction(expr)
|
211 |
+
|
212 |
+
if denom is not S.One:
|
213 |
+
x = self.dom.createElement('apply')
|
214 |
+
x.appendChild(self.dom.createElement('divide'))
|
215 |
+
x.appendChild(self._print(numer))
|
216 |
+
x.appendChild(self._print(denom))
|
217 |
+
return x
|
218 |
+
|
219 |
+
coeff, terms = expr.as_coeff_mul()
|
220 |
+
if coeff is S.One and len(terms) == 1:
|
221 |
+
# XXX since the negative coefficient has been handled, I don't
|
222 |
+
# think a coeff of 1 can remain
|
223 |
+
return self._print(terms[0])
|
224 |
+
|
225 |
+
if self.order != 'old':
|
226 |
+
terms = Mul._from_args(terms).as_ordered_factors()
|
227 |
+
|
228 |
+
x = self.dom.createElement('apply')
|
229 |
+
x.appendChild(self.dom.createElement('times'))
|
230 |
+
if coeff != 1:
|
231 |
+
x.appendChild(self._print(coeff))
|
232 |
+
for term in terms:
|
233 |
+
x.appendChild(self._print(term))
|
234 |
+
return x
|
235 |
+
|
236 |
+
def _print_Add(self, expr, order=None):
|
237 |
+
args = self._as_ordered_terms(expr, order=order)
|
238 |
+
lastProcessed = self._print(args[0])
|
239 |
+
plusNodes = []
|
240 |
+
for arg in args[1:]:
|
241 |
+
if arg.could_extract_minus_sign():
|
242 |
+
# use minus
|
243 |
+
x = self.dom.createElement('apply')
|
244 |
+
x.appendChild(self.dom.createElement('minus'))
|
245 |
+
x.appendChild(lastProcessed)
|
246 |
+
x.appendChild(self._print(-arg))
|
247 |
+
# invert expression since this is now minused
|
248 |
+
lastProcessed = x
|
249 |
+
if arg == args[-1]:
|
250 |
+
plusNodes.append(lastProcessed)
|
251 |
+
else:
|
252 |
+
plusNodes.append(lastProcessed)
|
253 |
+
lastProcessed = self._print(arg)
|
254 |
+
if arg == args[-1]:
|
255 |
+
plusNodes.append(self._print(arg))
|
256 |
+
if len(plusNodes) == 1:
|
257 |
+
return lastProcessed
|
258 |
+
x = self.dom.createElement('apply')
|
259 |
+
x.appendChild(self.dom.createElement('plus'))
|
260 |
+
while plusNodes:
|
261 |
+
x.appendChild(plusNodes.pop(0))
|
262 |
+
return x
|
263 |
+
|
264 |
+
def _print_Piecewise(self, expr):
|
265 |
+
if expr.args[-1].cond != True:
|
266 |
+
# We need the last conditional to be a True, otherwise the resulting
|
267 |
+
# function may not return a result.
|
268 |
+
raise ValueError("All Piecewise expressions must contain an "
|
269 |
+
"(expr, True) statement to be used as a default "
|
270 |
+
"condition. Without one, the generated "
|
271 |
+
"expression may not evaluate to anything under "
|
272 |
+
"some condition.")
|
273 |
+
root = self.dom.createElement('piecewise')
|
274 |
+
for i, (e, c) in enumerate(expr.args):
|
275 |
+
if i == len(expr.args) - 1 and c == True:
|
276 |
+
piece = self.dom.createElement('otherwise')
|
277 |
+
piece.appendChild(self._print(e))
|
278 |
+
else:
|
279 |
+
piece = self.dom.createElement('piece')
|
280 |
+
piece.appendChild(self._print(e))
|
281 |
+
piece.appendChild(self._print(c))
|
282 |
+
root.appendChild(piece)
|
283 |
+
return root
|
284 |
+
|
285 |
+
def _print_MatrixBase(self, m):
|
286 |
+
x = self.dom.createElement('matrix')
|
287 |
+
for i in range(m.rows):
|
288 |
+
x_r = self.dom.createElement('matrixrow')
|
289 |
+
for j in range(m.cols):
|
290 |
+
x_r.appendChild(self._print(m[i, j]))
|
291 |
+
x.appendChild(x_r)
|
292 |
+
return x
|
293 |
+
|
294 |
+
def _print_Rational(self, e):
|
295 |
+
if e.q == 1:
|
296 |
+
# don't divide
|
297 |
+
x = self.dom.createElement('cn')
|
298 |
+
x.appendChild(self.dom.createTextNode(str(e.p)))
|
299 |
+
return x
|
300 |
+
x = self.dom.createElement('apply')
|
301 |
+
x.appendChild(self.dom.createElement('divide'))
|
302 |
+
# numerator
|
303 |
+
xnum = self.dom.createElement('cn')
|
304 |
+
xnum.appendChild(self.dom.createTextNode(str(e.p)))
|
305 |
+
# denominator
|
306 |
+
xdenom = self.dom.createElement('cn')
|
307 |
+
xdenom.appendChild(self.dom.createTextNode(str(e.q)))
|
308 |
+
x.appendChild(xnum)
|
309 |
+
x.appendChild(xdenom)
|
310 |
+
return x
|
311 |
+
|
312 |
+
def _print_Limit(self, e):
|
313 |
+
x = self.dom.createElement('apply')
|
314 |
+
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
|
315 |
+
|
316 |
+
x_1 = self.dom.createElement('bvar')
|
317 |
+
x_2 = self.dom.createElement('lowlimit')
|
318 |
+
x_1.appendChild(self._print(e.args[1]))
|
319 |
+
x_2.appendChild(self._print(e.args[2]))
|
320 |
+
|
321 |
+
x.appendChild(x_1)
|
322 |
+
x.appendChild(x_2)
|
323 |
+
x.appendChild(self._print(e.args[0]))
|
324 |
+
return x
|
325 |
+
|
326 |
+
def _print_ImaginaryUnit(self, e):
|
327 |
+
return self.dom.createElement('imaginaryi')
|
328 |
+
|
329 |
+
def _print_EulerGamma(self, e):
|
330 |
+
return self.dom.createElement('eulergamma')
|
331 |
+
|
332 |
+
def _print_GoldenRatio(self, e):
|
333 |
+
"""We use unicode #x3c6 for Greek letter phi as defined here
|
334 |
+
https://www.w3.org/2003/entities/2007doc/isogrk1.html"""
|
335 |
+
x = self.dom.createElement('cn')
|
336 |
+
x.appendChild(self.dom.createTextNode("\N{GREEK SMALL LETTER PHI}"))
|
337 |
+
return x
|
338 |
+
|
339 |
+
def _print_Exp1(self, e):
|
340 |
+
return self.dom.createElement('exponentiale')
|
341 |
+
|
342 |
+
def _print_Pi(self, e):
|
343 |
+
return self.dom.createElement('pi')
|
344 |
+
|
345 |
+
def _print_Infinity(self, e):
|
346 |
+
return self.dom.createElement('infinity')
|
347 |
+
|
348 |
+
def _print_NaN(self, e):
|
349 |
+
return self.dom.createElement('notanumber')
|
350 |
+
|
351 |
+
def _print_EmptySet(self, e):
|
352 |
+
return self.dom.createElement('emptyset')
|
353 |
+
|
354 |
+
def _print_BooleanTrue(self, e):
|
355 |
+
return self.dom.createElement('true')
|
356 |
+
|
357 |
+
def _print_BooleanFalse(self, e):
|
358 |
+
return self.dom.createElement('false')
|
359 |
+
|
360 |
+
def _print_NegativeInfinity(self, e):
|
361 |
+
x = self.dom.createElement('apply')
|
362 |
+
x.appendChild(self.dom.createElement('minus'))
|
363 |
+
x.appendChild(self.dom.createElement('infinity'))
|
364 |
+
return x
|
365 |
+
|
366 |
+
def _print_Integral(self, e):
|
367 |
+
def lime_recur(limits):
|
368 |
+
x = self.dom.createElement('apply')
|
369 |
+
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
|
370 |
+
bvar_elem = self.dom.createElement('bvar')
|
371 |
+
bvar_elem.appendChild(self._print(limits[0][0]))
|
372 |
+
x.appendChild(bvar_elem)
|
373 |
+
|
374 |
+
if len(limits[0]) == 3:
|
375 |
+
low_elem = self.dom.createElement('lowlimit')
|
376 |
+
low_elem.appendChild(self._print(limits[0][1]))
|
377 |
+
x.appendChild(low_elem)
|
378 |
+
up_elem = self.dom.createElement('uplimit')
|
379 |
+
up_elem.appendChild(self._print(limits[0][2]))
|
380 |
+
x.appendChild(up_elem)
|
381 |
+
if len(limits[0]) == 2:
|
382 |
+
up_elem = self.dom.createElement('uplimit')
|
383 |
+
up_elem.appendChild(self._print(limits[0][1]))
|
384 |
+
x.appendChild(up_elem)
|
385 |
+
if len(limits) == 1:
|
386 |
+
x.appendChild(self._print(e.function))
|
387 |
+
else:
|
388 |
+
x.appendChild(lime_recur(limits[1:]))
|
389 |
+
return x
|
390 |
+
|
391 |
+
limits = list(e.limits)
|
392 |
+
limits.reverse()
|
393 |
+
return lime_recur(limits)
|
394 |
+
|
395 |
+
def _print_Sum(self, e):
|
396 |
+
# Printer can be shared because Sum and Integral have the
|
397 |
+
# same internal representation.
|
398 |
+
return self._print_Integral(e)
|
399 |
+
|
400 |
+
def _print_Symbol(self, sym):
|
401 |
+
ci = self.dom.createElement(self.mathml_tag(sym))
|
402 |
+
|
403 |
+
def join(items):
|
404 |
+
if len(items) > 1:
|
405 |
+
mrow = self.dom.createElement('mml:mrow')
|
406 |
+
for i, item in enumerate(items):
|
407 |
+
if i > 0:
|
408 |
+
mo = self.dom.createElement('mml:mo')
|
409 |
+
mo.appendChild(self.dom.createTextNode(" "))
|
410 |
+
mrow.appendChild(mo)
|
411 |
+
mi = self.dom.createElement('mml:mi')
|
412 |
+
mi.appendChild(self.dom.createTextNode(item))
|
413 |
+
mrow.appendChild(mi)
|
414 |
+
return mrow
|
415 |
+
else:
|
416 |
+
mi = self.dom.createElement('mml:mi')
|
417 |
+
mi.appendChild(self.dom.createTextNode(items[0]))
|
418 |
+
return mi
|
419 |
+
|
420 |
+
# translate name, supers and subs to unicode characters
|
421 |
+
def translate(s):
|
422 |
+
if s in greek_unicode:
|
423 |
+
return greek_unicode.get(s)
|
424 |
+
else:
|
425 |
+
return s
|
426 |
+
|
427 |
+
name, supers, subs = split_super_sub(sym.name)
|
428 |
+
name = translate(name)
|
429 |
+
supers = [translate(sup) for sup in supers]
|
430 |
+
subs = [translate(sub) for sub in subs]
|
431 |
+
|
432 |
+
mname = self.dom.createElement('mml:mi')
|
433 |
+
mname.appendChild(self.dom.createTextNode(name))
|
434 |
+
if not supers:
|
435 |
+
if not subs:
|
436 |
+
ci.appendChild(self.dom.createTextNode(name))
|
437 |
+
else:
|
438 |
+
msub = self.dom.createElement('mml:msub')
|
439 |
+
msub.appendChild(mname)
|
440 |
+
msub.appendChild(join(subs))
|
441 |
+
ci.appendChild(msub)
|
442 |
+
else:
|
443 |
+
if not subs:
|
444 |
+
msup = self.dom.createElement('mml:msup')
|
445 |
+
msup.appendChild(mname)
|
446 |
+
msup.appendChild(join(supers))
|
447 |
+
ci.appendChild(msup)
|
448 |
+
else:
|
449 |
+
msubsup = self.dom.createElement('mml:msubsup')
|
450 |
+
msubsup.appendChild(mname)
|
451 |
+
msubsup.appendChild(join(subs))
|
452 |
+
msubsup.appendChild(join(supers))
|
453 |
+
ci.appendChild(msubsup)
|
454 |
+
return ci
|
455 |
+
|
456 |
+
_print_MatrixSymbol = _print_Symbol
|
457 |
+
_print_RandomSymbol = _print_Symbol
|
458 |
+
|
459 |
+
def _print_Pow(self, e):
|
460 |
+
# Here we use root instead of power if the exponent is the reciprocal
|
461 |
+
# of an integer
|
462 |
+
if (self._settings['root_notation'] and e.exp.is_Rational
|
463 |
+
and e.exp.p == 1):
|
464 |
+
x = self.dom.createElement('apply')
|
465 |
+
x.appendChild(self.dom.createElement('root'))
|
466 |
+
if e.exp.q != 2:
|
467 |
+
xmldeg = self.dom.createElement('degree')
|
468 |
+
xmlcn = self.dom.createElement('cn')
|
469 |
+
xmlcn.appendChild(self.dom.createTextNode(str(e.exp.q)))
|
470 |
+
xmldeg.appendChild(xmlcn)
|
471 |
+
x.appendChild(xmldeg)
|
472 |
+
x.appendChild(self._print(e.base))
|
473 |
+
return x
|
474 |
+
|
475 |
+
x = self.dom.createElement('apply')
|
476 |
+
x_1 = self.dom.createElement(self.mathml_tag(e))
|
477 |
+
x.appendChild(x_1)
|
478 |
+
x.appendChild(self._print(e.base))
|
479 |
+
x.appendChild(self._print(e.exp))
|
480 |
+
return x
|
481 |
+
|
482 |
+
def _print_Number(self, e):
|
483 |
+
x = self.dom.createElement(self.mathml_tag(e))
|
484 |
+
x.appendChild(self.dom.createTextNode(str(e)))
|
485 |
+
return x
|
486 |
+
|
487 |
+
def _print_Float(self, e):
|
488 |
+
x = self.dom.createElement(self.mathml_tag(e))
|
489 |
+
repr_e = mlib_to_str(e._mpf_, repr_dps(e._prec))
|
490 |
+
x.appendChild(self.dom.createTextNode(repr_e))
|
491 |
+
return x
|
492 |
+
|
493 |
+
def _print_Derivative(self, e):
|
494 |
+
x = self.dom.createElement('apply')
|
495 |
+
diff_symbol = self.mathml_tag(e)
|
496 |
+
if requires_partial(e.expr):
|
497 |
+
diff_symbol = 'partialdiff'
|
498 |
+
x.appendChild(self.dom.createElement(diff_symbol))
|
499 |
+
x_1 = self.dom.createElement('bvar')
|
500 |
+
|
501 |
+
for sym, times in reversed(e.variable_count):
|
502 |
+
x_1.appendChild(self._print(sym))
|
503 |
+
if times > 1:
|
504 |
+
degree = self.dom.createElement('degree')
|
505 |
+
degree.appendChild(self._print(sympify(times)))
|
506 |
+
x_1.appendChild(degree)
|
507 |
+
|
508 |
+
x.appendChild(x_1)
|
509 |
+
x.appendChild(self._print(e.expr))
|
510 |
+
return x
|
511 |
+
|
512 |
+
def _print_Function(self, e):
|
513 |
+
x = self.dom.createElement("apply")
|
514 |
+
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
|
515 |
+
for arg in e.args:
|
516 |
+
x.appendChild(self._print(arg))
|
517 |
+
return x
|
518 |
+
|
519 |
+
def _print_Basic(self, e):
|
520 |
+
x = self.dom.createElement(self.mathml_tag(e))
|
521 |
+
for arg in e.args:
|
522 |
+
x.appendChild(self._print(arg))
|
523 |
+
return x
|
524 |
+
|
525 |
+
def _print_AssocOp(self, e):
|
526 |
+
x = self.dom.createElement('apply')
|
527 |
+
x_1 = self.dom.createElement(self.mathml_tag(e))
|
528 |
+
x.appendChild(x_1)
|
529 |
+
for arg in e.args:
|
530 |
+
x.appendChild(self._print(arg))
|
531 |
+
return x
|
532 |
+
|
533 |
+
def _print_Relational(self, e):
|
534 |
+
x = self.dom.createElement('apply')
|
535 |
+
x.appendChild(self.dom.createElement(self.mathml_tag(e)))
|
536 |
+
x.appendChild(self._print(e.lhs))
|
537 |
+
x.appendChild(self._print(e.rhs))
|
538 |
+
return x
|
539 |
+
|
540 |
+
def _print_list(self, seq):
|
541 |
+
"""MathML reference for the <list> element:
|
542 |
+
https://www.w3.org/TR/MathML2/chapter4.html#contm.list"""
|
543 |
+
dom_element = self.dom.createElement('list')
|
544 |
+
for item in seq:
|
545 |
+
dom_element.appendChild(self._print(item))
|
546 |
+
return dom_element
|
547 |
+
|
548 |
+
def _print_int(self, p):
|
549 |
+
dom_element = self.dom.createElement(self.mathml_tag(p))
|
550 |
+
dom_element.appendChild(self.dom.createTextNode(str(p)))
|
551 |
+
return dom_element
|
552 |
+
|
553 |
+
_print_Implies = _print_AssocOp
|
554 |
+
_print_Not = _print_AssocOp
|
555 |
+
_print_Xor = _print_AssocOp
|
556 |
+
|
557 |
+
def _print_FiniteSet(self, e):
|
558 |
+
x = self.dom.createElement('set')
|
559 |
+
for arg in e.args:
|
560 |
+
x.appendChild(self._print(arg))
|
561 |
+
return x
|
562 |
+
|
563 |
+
def _print_Complement(self, e):
|
564 |
+
x = self.dom.createElement('apply')
|
565 |
+
x.appendChild(self.dom.createElement('setdiff'))
|
566 |
+
for arg in e.args:
|
567 |
+
x.appendChild(self._print(arg))
|
568 |
+
return x
|
569 |
+
|
570 |
+
def _print_ProductSet(self, e):
|
571 |
+
x = self.dom.createElement('apply')
|
572 |
+
x.appendChild(self.dom.createElement('cartesianproduct'))
|
573 |
+
for arg in e.args:
|
574 |
+
x.appendChild(self._print(arg))
|
575 |
+
return x
|
576 |
+
|
577 |
+
# XXX Symmetric difference is not supported for MathML content printers.
|
578 |
+
|
579 |
+
|
580 |
+
class MathMLPresentationPrinter(MathMLPrinterBase):
|
581 |
+
"""Prints an expression to the Presentation MathML markup language.
|
582 |
+
|
583 |
+
References: https://www.w3.org/TR/MathML2/chapter3.html
|
584 |
+
"""
|
585 |
+
printmethod = "_mathml_presentation"
|
586 |
+
|
587 |
+
def mathml_tag(self, e):
|
588 |
+
"""Returns the MathML tag for an expression."""
|
589 |
+
translate = {
|
590 |
+
'Number': 'mn',
|
591 |
+
'Limit': '→',
|
592 |
+
'Derivative': 'ⅆ',
|
593 |
+
'int': 'mn',
|
594 |
+
'Symbol': 'mi',
|
595 |
+
'Integral': '∫',
|
596 |
+
'Sum': '∑',
|
597 |
+
'sin': 'sin',
|
598 |
+
'cos': 'cos',
|
599 |
+
'tan': 'tan',
|
600 |
+
'cot': 'cot',
|
601 |
+
'asin': 'arcsin',
|
602 |
+
'asinh': 'arcsinh',
|
603 |
+
'acos': 'arccos',
|
604 |
+
'acosh': 'arccosh',
|
605 |
+
'atan': 'arctan',
|
606 |
+
'atanh': 'arctanh',
|
607 |
+
'acot': 'arccot',
|
608 |
+
'atan2': 'arctan',
|
609 |
+
'Equality': '=',
|
610 |
+
'Unequality': '≠',
|
611 |
+
'GreaterThan': '≥',
|
612 |
+
'LessThan': '≤',
|
613 |
+
'StrictGreaterThan': '>',
|
614 |
+
'StrictLessThan': '<',
|
615 |
+
'lerchphi': 'Φ',
|
616 |
+
'zeta': 'ζ',
|
617 |
+
'dirichlet_eta': 'η',
|
618 |
+
'elliptic_k': 'Κ',
|
619 |
+
'lowergamma': 'γ',
|
620 |
+
'uppergamma': 'Γ',
|
621 |
+
'gamma': 'Γ',
|
622 |
+
'totient': 'ϕ',
|
623 |
+
'reduced_totient': 'λ',
|
624 |
+
'primenu': 'ν',
|
625 |
+
'primeomega': 'Ω',
|
626 |
+
'fresnels': 'S',
|
627 |
+
'fresnelc': 'C',
|
628 |
+
'LambertW': 'W',
|
629 |
+
'Heaviside': 'Θ',
|
630 |
+
'BooleanTrue': 'True',
|
631 |
+
'BooleanFalse': 'False',
|
632 |
+
'NoneType': 'None',
|
633 |
+
'mathieus': 'S',
|
634 |
+
'mathieuc': 'C',
|
635 |
+
'mathieusprime': 'S′',
|
636 |
+
'mathieucprime': 'C′',
|
637 |
+
}
|
638 |
+
|
639 |
+
def mul_symbol_selection():
|
640 |
+
if (self._settings["mul_symbol"] is None or
|
641 |
+
self._settings["mul_symbol"] == 'None'):
|
642 |
+
return '⁢'
|
643 |
+
elif self._settings["mul_symbol"] == 'times':
|
644 |
+
return '×'
|
645 |
+
elif self._settings["mul_symbol"] == 'dot':
|
646 |
+
return '·'
|
647 |
+
elif self._settings["mul_symbol"] == 'ldot':
|
648 |
+
return '․'
|
649 |
+
elif not isinstance(self._settings["mul_symbol"], str):
|
650 |
+
raise TypeError
|
651 |
+
else:
|
652 |
+
return self._settings["mul_symbol"]
|
653 |
+
for cls in e.__class__.__mro__:
|
654 |
+
n = cls.__name__
|
655 |
+
if n in translate:
|
656 |
+
return translate[n]
|
657 |
+
# Not found in the MRO set
|
658 |
+
if e.__class__.__name__ == "Mul":
|
659 |
+
return mul_symbol_selection()
|
660 |
+
n = e.__class__.__name__
|
661 |
+
return n.lower()
|
662 |
+
|
663 |
+
def parenthesize(self, item, level, strict=False):
|
664 |
+
prec_val = precedence_traditional(item)
|
665 |
+
if (prec_val < level) or ((not strict) and prec_val <= level):
|
666 |
+
brac = self.dom.createElement('mfenced')
|
667 |
+
brac.appendChild(self._print(item))
|
668 |
+
return brac
|
669 |
+
else:
|
670 |
+
return self._print(item)
|
671 |
+
|
672 |
+
def _print_Mul(self, expr):
|
673 |
+
|
674 |
+
def multiply(expr, mrow):
|
675 |
+
from sympy.simplify import fraction
|
676 |
+
numer, denom = fraction(expr)
|
677 |
+
if denom is not S.One:
|
678 |
+
frac = self.dom.createElement('mfrac')
|
679 |
+
if self._settings["fold_short_frac"] and len(str(expr)) < 7:
|
680 |
+
frac.setAttribute('bevelled', 'true')
|
681 |
+
xnum = self._print(numer)
|
682 |
+
xden = self._print(denom)
|
683 |
+
frac.appendChild(xnum)
|
684 |
+
frac.appendChild(xden)
|
685 |
+
mrow.appendChild(frac)
|
686 |
+
return mrow
|
687 |
+
|
688 |
+
coeff, terms = expr.as_coeff_mul()
|
689 |
+
if coeff is S.One and len(terms) == 1:
|
690 |
+
mrow.appendChild(self._print(terms[0]))
|
691 |
+
return mrow
|
692 |
+
if self.order != 'old':
|
693 |
+
terms = Mul._from_args(terms).as_ordered_factors()
|
694 |
+
|
695 |
+
if coeff != 1:
|
696 |
+
x = self._print(coeff)
|
697 |
+
y = self.dom.createElement('mo')
|
698 |
+
y.appendChild(self.dom.createTextNode(self.mathml_tag(expr)))
|
699 |
+
mrow.appendChild(x)
|
700 |
+
mrow.appendChild(y)
|
701 |
+
for term in terms:
|
702 |
+
mrow.appendChild(self.parenthesize(term, PRECEDENCE['Mul']))
|
703 |
+
if not term == terms[-1]:
|
704 |
+
y = self.dom.createElement('mo')
|
705 |
+
y.appendChild(self.dom.createTextNode(self.mathml_tag(expr)))
|
706 |
+
mrow.appendChild(y)
|
707 |
+
return mrow
|
708 |
+
mrow = self.dom.createElement('mrow')
|
709 |
+
if expr.could_extract_minus_sign():
|
710 |
+
x = self.dom.createElement('mo')
|
711 |
+
x.appendChild(self.dom.createTextNode('-'))
|
712 |
+
mrow.appendChild(x)
|
713 |
+
mrow = multiply(-expr, mrow)
|
714 |
+
else:
|
715 |
+
mrow = multiply(expr, mrow)
|
716 |
+
|
717 |
+
return mrow
|
718 |
+
|
719 |
+
def _print_Add(self, expr, order=None):
|
720 |
+
mrow = self.dom.createElement('mrow')
|
721 |
+
args = self._as_ordered_terms(expr, order=order)
|
722 |
+
mrow.appendChild(self._print(args[0]))
|
723 |
+
for arg in args[1:]:
|
724 |
+
if arg.could_extract_minus_sign():
|
725 |
+
# use minus
|
726 |
+
x = self.dom.createElement('mo')
|
727 |
+
x.appendChild(self.dom.createTextNode('-'))
|
728 |
+
y = self._print(-arg)
|
729 |
+
# invert expression since this is now minused
|
730 |
+
else:
|
731 |
+
x = self.dom.createElement('mo')
|
732 |
+
x.appendChild(self.dom.createTextNode('+'))
|
733 |
+
y = self._print(arg)
|
734 |
+
mrow.appendChild(x)
|
735 |
+
mrow.appendChild(y)
|
736 |
+
|
737 |
+
return mrow
|
738 |
+
|
739 |
+
def _print_MatrixBase(self, m):
|
740 |
+
table = self.dom.createElement('mtable')
|
741 |
+
for i in range(m.rows):
|
742 |
+
x = self.dom.createElement('mtr')
|
743 |
+
for j in range(m.cols):
|
744 |
+
y = self.dom.createElement('mtd')
|
745 |
+
y.appendChild(self._print(m[i, j]))
|
746 |
+
x.appendChild(y)
|
747 |
+
table.appendChild(x)
|
748 |
+
if self._settings["mat_delim"] == '':
|
749 |
+
return table
|
750 |
+
brac = self.dom.createElement('mfenced')
|
751 |
+
if self._settings["mat_delim"] == "[":
|
752 |
+
brac.setAttribute('close', ']')
|
753 |
+
brac.setAttribute('open', '[')
|
754 |
+
brac.appendChild(table)
|
755 |
+
return brac
|
756 |
+
|
757 |
+
def _get_printed_Rational(self, e, folded=None):
|
758 |
+
if e.p < 0:
|
759 |
+
p = -e.p
|
760 |
+
else:
|
761 |
+
p = e.p
|
762 |
+
x = self.dom.createElement('mfrac')
|
763 |
+
if folded or self._settings["fold_short_frac"]:
|
764 |
+
x.setAttribute('bevelled', 'true')
|
765 |
+
x.appendChild(self._print(p))
|
766 |
+
x.appendChild(self._print(e.q))
|
767 |
+
if e.p < 0:
|
768 |
+
mrow = self.dom.createElement('mrow')
|
769 |
+
mo = self.dom.createElement('mo')
|
770 |
+
mo.appendChild(self.dom.createTextNode('-'))
|
771 |
+
mrow.appendChild(mo)
|
772 |
+
mrow.appendChild(x)
|
773 |
+
return mrow
|
774 |
+
else:
|
775 |
+
return x
|
776 |
+
|
777 |
+
def _print_Rational(self, e):
|
778 |
+
if e.q == 1:
|
779 |
+
# don't divide
|
780 |
+
return self._print(e.p)
|
781 |
+
|
782 |
+
return self._get_printed_Rational(e, self._settings["fold_short_frac"])
|
783 |
+
|
784 |
+
def _print_Limit(self, e):
|
785 |
+
mrow = self.dom.createElement('mrow')
|
786 |
+
munder = self.dom.createElement('munder')
|
787 |
+
mi = self.dom.createElement('mi')
|
788 |
+
mi.appendChild(self.dom.createTextNode('lim'))
|
789 |
+
|
790 |
+
x = self.dom.createElement('mrow')
|
791 |
+
x_1 = self._print(e.args[1])
|
792 |
+
arrow = self.dom.createElement('mo')
|
793 |
+
arrow.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
|
794 |
+
x_2 = self._print(e.args[2])
|
795 |
+
x.appendChild(x_1)
|
796 |
+
x.appendChild(arrow)
|
797 |
+
x.appendChild(x_2)
|
798 |
+
|
799 |
+
munder.appendChild(mi)
|
800 |
+
munder.appendChild(x)
|
801 |
+
mrow.appendChild(munder)
|
802 |
+
mrow.appendChild(self._print(e.args[0]))
|
803 |
+
|
804 |
+
return mrow
|
805 |
+
|
806 |
+
def _print_ImaginaryUnit(self, e):
|
807 |
+
x = self.dom.createElement('mi')
|
808 |
+
x.appendChild(self.dom.createTextNode('ⅈ'))
|
809 |
+
return x
|
810 |
+
|
811 |
+
def _print_GoldenRatio(self, e):
|
812 |
+
x = self.dom.createElement('mi')
|
813 |
+
x.appendChild(self.dom.createTextNode('Φ'))
|
814 |
+
return x
|
815 |
+
|
816 |
+
def _print_Exp1(self, e):
|
817 |
+
x = self.dom.createElement('mi')
|
818 |
+
x.appendChild(self.dom.createTextNode('ⅇ'))
|
819 |
+
return x
|
820 |
+
|
821 |
+
def _print_Pi(self, e):
|
822 |
+
x = self.dom.createElement('mi')
|
823 |
+
x.appendChild(self.dom.createTextNode('π'))
|
824 |
+
return x
|
825 |
+
|
826 |
+
def _print_Infinity(self, e):
|
827 |
+
x = self.dom.createElement('mi')
|
828 |
+
x.appendChild(self.dom.createTextNode('∞'))
|
829 |
+
return x
|
830 |
+
|
831 |
+
def _print_NegativeInfinity(self, e):
|
832 |
+
mrow = self.dom.createElement('mrow')
|
833 |
+
y = self.dom.createElement('mo')
|
834 |
+
y.appendChild(self.dom.createTextNode('-'))
|
835 |
+
x = self._print_Infinity(e)
|
836 |
+
mrow.appendChild(y)
|
837 |
+
mrow.appendChild(x)
|
838 |
+
return mrow
|
839 |
+
|
840 |
+
def _print_HBar(self, e):
|
841 |
+
x = self.dom.createElement('mi')
|
842 |
+
x.appendChild(self.dom.createTextNode('ℏ'))
|
843 |
+
return x
|
844 |
+
|
845 |
+
def _print_EulerGamma(self, e):
|
846 |
+
x = self.dom.createElement('mi')
|
847 |
+
x.appendChild(self.dom.createTextNode('γ'))
|
848 |
+
return x
|
849 |
+
|
850 |
+
def _print_TribonacciConstant(self, e):
|
851 |
+
x = self.dom.createElement('mi')
|
852 |
+
x.appendChild(self.dom.createTextNode('TribonacciConstant'))
|
853 |
+
return x
|
854 |
+
|
855 |
+
def _print_Dagger(self, e):
|
856 |
+
msup = self.dom.createElement('msup')
|
857 |
+
msup.appendChild(self._print(e.args[0]))
|
858 |
+
msup.appendChild(self.dom.createTextNode('†'))
|
859 |
+
return msup
|
860 |
+
|
861 |
+
def _print_Contains(self, e):
|
862 |
+
mrow = self.dom.createElement('mrow')
|
863 |
+
mrow.appendChild(self._print(e.args[0]))
|
864 |
+
mo = self.dom.createElement('mo')
|
865 |
+
mo.appendChild(self.dom.createTextNode('∈'))
|
866 |
+
mrow.appendChild(mo)
|
867 |
+
mrow.appendChild(self._print(e.args[1]))
|
868 |
+
return mrow
|
869 |
+
|
870 |
+
def _print_HilbertSpace(self, e):
|
871 |
+
x = self.dom.createElement('mi')
|
872 |
+
x.appendChild(self.dom.createTextNode('ℋ'))
|
873 |
+
return x
|
874 |
+
|
875 |
+
def _print_ComplexSpace(self, e):
|
876 |
+
msup = self.dom.createElement('msup')
|
877 |
+
msup.appendChild(self.dom.createTextNode('𝒞'))
|
878 |
+
msup.appendChild(self._print(e.args[0]))
|
879 |
+
return msup
|
880 |
+
|
881 |
+
def _print_FockSpace(self, e):
|
882 |
+
x = self.dom.createElement('mi')
|
883 |
+
x.appendChild(self.dom.createTextNode('ℱ'))
|
884 |
+
return x
|
885 |
+
|
886 |
+
|
887 |
+
def _print_Integral(self, expr):
|
888 |
+
intsymbols = {1: "∫", 2: "∬", 3: "∭"}
|
889 |
+
|
890 |
+
mrow = self.dom.createElement('mrow')
|
891 |
+
if len(expr.limits) <= 3 and all(len(lim) == 1 for lim in expr.limits):
|
892 |
+
# Only up to three-integral signs exists
|
893 |
+
mo = self.dom.createElement('mo')
|
894 |
+
mo.appendChild(self.dom.createTextNode(intsymbols[len(expr.limits)]))
|
895 |
+
mrow.appendChild(mo)
|
896 |
+
else:
|
897 |
+
# Either more than three or limits provided
|
898 |
+
for lim in reversed(expr.limits):
|
899 |
+
mo = self.dom.createElement('mo')
|
900 |
+
mo.appendChild(self.dom.createTextNode(intsymbols[1]))
|
901 |
+
if len(lim) == 1:
|
902 |
+
mrow.appendChild(mo)
|
903 |
+
if len(lim) == 2:
|
904 |
+
msup = self.dom.createElement('msup')
|
905 |
+
msup.appendChild(mo)
|
906 |
+
msup.appendChild(self._print(lim[1]))
|
907 |
+
mrow.appendChild(msup)
|
908 |
+
if len(lim) == 3:
|
909 |
+
msubsup = self.dom.createElement('msubsup')
|
910 |
+
msubsup.appendChild(mo)
|
911 |
+
msubsup.appendChild(self._print(lim[1]))
|
912 |
+
msubsup.appendChild(self._print(lim[2]))
|
913 |
+
mrow.appendChild(msubsup)
|
914 |
+
# print function
|
915 |
+
mrow.appendChild(self.parenthesize(expr.function, PRECEDENCE["Mul"],
|
916 |
+
strict=True))
|
917 |
+
# print integration variables
|
918 |
+
for lim in reversed(expr.limits):
|
919 |
+
d = self.dom.createElement('mo')
|
920 |
+
d.appendChild(self.dom.createTextNode('ⅆ'))
|
921 |
+
mrow.appendChild(d)
|
922 |
+
mrow.appendChild(self._print(lim[0]))
|
923 |
+
return mrow
|
924 |
+
|
925 |
+
def _print_Sum(self, e):
|
926 |
+
limits = list(e.limits)
|
927 |
+
subsup = self.dom.createElement('munderover')
|
928 |
+
low_elem = self._print(limits[0][1])
|
929 |
+
up_elem = self._print(limits[0][2])
|
930 |
+
summand = self.dom.createElement('mo')
|
931 |
+
summand.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
|
932 |
+
|
933 |
+
low = self.dom.createElement('mrow')
|
934 |
+
var = self._print(limits[0][0])
|
935 |
+
equal = self.dom.createElement('mo')
|
936 |
+
equal.appendChild(self.dom.createTextNode('='))
|
937 |
+
low.appendChild(var)
|
938 |
+
low.appendChild(equal)
|
939 |
+
low.appendChild(low_elem)
|
940 |
+
|
941 |
+
subsup.appendChild(summand)
|
942 |
+
subsup.appendChild(low)
|
943 |
+
subsup.appendChild(up_elem)
|
944 |
+
|
945 |
+
mrow = self.dom.createElement('mrow')
|
946 |
+
mrow.appendChild(subsup)
|
947 |
+
if len(str(e.function)) == 1:
|
948 |
+
mrow.appendChild(self._print(e.function))
|
949 |
+
else:
|
950 |
+
fence = self.dom.createElement('mfenced')
|
951 |
+
fence.appendChild(self._print(e.function))
|
952 |
+
mrow.appendChild(fence)
|
953 |
+
|
954 |
+
return mrow
|
955 |
+
|
956 |
+
def _print_Symbol(self, sym, style='plain'):
|
957 |
+
def join(items):
|
958 |
+
if len(items) > 1:
|
959 |
+
mrow = self.dom.createElement('mrow')
|
960 |
+
for i, item in enumerate(items):
|
961 |
+
if i > 0:
|
962 |
+
mo = self.dom.createElement('mo')
|
963 |
+
mo.appendChild(self.dom.createTextNode(" "))
|
964 |
+
mrow.appendChild(mo)
|
965 |
+
mi = self.dom.createElement('mi')
|
966 |
+
mi.appendChild(self.dom.createTextNode(item))
|
967 |
+
mrow.appendChild(mi)
|
968 |
+
return mrow
|
969 |
+
else:
|
970 |
+
mi = self.dom.createElement('mi')
|
971 |
+
mi.appendChild(self.dom.createTextNode(items[0]))
|
972 |
+
return mi
|
973 |
+
|
974 |
+
# translate name, supers and subs to unicode characters
|
975 |
+
def translate(s):
|
976 |
+
if s in greek_unicode:
|
977 |
+
return greek_unicode.get(s)
|
978 |
+
else:
|
979 |
+
return s
|
980 |
+
|
981 |
+
name, supers, subs = split_super_sub(sym.name)
|
982 |
+
name = translate(name)
|
983 |
+
supers = [translate(sup) for sup in supers]
|
984 |
+
subs = [translate(sub) for sub in subs]
|
985 |
+
|
986 |
+
mname = self.dom.createElement('mi')
|
987 |
+
mname.appendChild(self.dom.createTextNode(name))
|
988 |
+
if len(supers) == 0:
|
989 |
+
if len(subs) == 0:
|
990 |
+
x = mname
|
991 |
+
else:
|
992 |
+
x = self.dom.createElement('msub')
|
993 |
+
x.appendChild(mname)
|
994 |
+
x.appendChild(join(subs))
|
995 |
+
else:
|
996 |
+
if len(subs) == 0:
|
997 |
+
x = self.dom.createElement('msup')
|
998 |
+
x.appendChild(mname)
|
999 |
+
x.appendChild(join(supers))
|
1000 |
+
else:
|
1001 |
+
x = self.dom.createElement('msubsup')
|
1002 |
+
x.appendChild(mname)
|
1003 |
+
x.appendChild(join(subs))
|
1004 |
+
x.appendChild(join(supers))
|
1005 |
+
# Set bold font?
|
1006 |
+
if style == 'bold':
|
1007 |
+
x.setAttribute('mathvariant', 'bold')
|
1008 |
+
return x
|
1009 |
+
|
1010 |
+
def _print_MatrixSymbol(self, sym):
|
1011 |
+
return self._print_Symbol(sym,
|
1012 |
+
style=self._settings['mat_symbol_style'])
|
1013 |
+
|
1014 |
+
_print_RandomSymbol = _print_Symbol
|
1015 |
+
|
1016 |
+
def _print_conjugate(self, expr):
|
1017 |
+
enc = self.dom.createElement('menclose')
|
1018 |
+
enc.setAttribute('notation', 'top')
|
1019 |
+
enc.appendChild(self._print(expr.args[0]))
|
1020 |
+
return enc
|
1021 |
+
|
1022 |
+
def _print_operator_after(self, op, expr):
|
1023 |
+
row = self.dom.createElement('mrow')
|
1024 |
+
row.appendChild(self.parenthesize(expr, PRECEDENCE["Func"]))
|
1025 |
+
mo = self.dom.createElement('mo')
|
1026 |
+
mo.appendChild(self.dom.createTextNode(op))
|
1027 |
+
row.appendChild(mo)
|
1028 |
+
return row
|
1029 |
+
|
1030 |
+
def _print_factorial(self, expr):
|
1031 |
+
return self._print_operator_after('!', expr.args[0])
|
1032 |
+
|
1033 |
+
def _print_factorial2(self, expr):
|
1034 |
+
return self._print_operator_after('!!', expr.args[0])
|
1035 |
+
|
1036 |
+
def _print_binomial(self, expr):
|
1037 |
+
brac = self.dom.createElement('mfenced')
|
1038 |
+
frac = self.dom.createElement('mfrac')
|
1039 |
+
frac.setAttribute('linethickness', '0')
|
1040 |
+
frac.appendChild(self._print(expr.args[0]))
|
1041 |
+
frac.appendChild(self._print(expr.args[1]))
|
1042 |
+
brac.appendChild(frac)
|
1043 |
+
return brac
|
1044 |
+
|
1045 |
+
def _print_Pow(self, e):
|
1046 |
+
# Here we use root instead of power if the exponent is the
|
1047 |
+
# reciprocal of an integer
|
1048 |
+
if (e.exp.is_Rational and abs(e.exp.p) == 1 and e.exp.q != 1 and
|
1049 |
+
self._settings['root_notation']):
|
1050 |
+
if e.exp.q == 2:
|
1051 |
+
x = self.dom.createElement('msqrt')
|
1052 |
+
x.appendChild(self._print(e.base))
|
1053 |
+
if e.exp.q != 2:
|
1054 |
+
x = self.dom.createElement('mroot')
|
1055 |
+
x.appendChild(self._print(e.base))
|
1056 |
+
x.appendChild(self._print(e.exp.q))
|
1057 |
+
if e.exp.p == -1:
|
1058 |
+
frac = self.dom.createElement('mfrac')
|
1059 |
+
frac.appendChild(self._print(1))
|
1060 |
+
frac.appendChild(x)
|
1061 |
+
return frac
|
1062 |
+
else:
|
1063 |
+
return x
|
1064 |
+
|
1065 |
+
if e.exp.is_Rational and e.exp.q != 1:
|
1066 |
+
if e.exp.is_negative:
|
1067 |
+
top = self.dom.createElement('mfrac')
|
1068 |
+
top.appendChild(self._print(1))
|
1069 |
+
x = self.dom.createElement('msup')
|
1070 |
+
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
|
1071 |
+
x.appendChild(self._get_printed_Rational(-e.exp,
|
1072 |
+
self._settings['fold_frac_powers']))
|
1073 |
+
top.appendChild(x)
|
1074 |
+
return top
|
1075 |
+
else:
|
1076 |
+
x = self.dom.createElement('msup')
|
1077 |
+
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
|
1078 |
+
x.appendChild(self._get_printed_Rational(e.exp,
|
1079 |
+
self._settings['fold_frac_powers']))
|
1080 |
+
return x
|
1081 |
+
|
1082 |
+
if e.exp.is_negative:
|
1083 |
+
top = self.dom.createElement('mfrac')
|
1084 |
+
top.appendChild(self._print(1))
|
1085 |
+
if e.exp == -1:
|
1086 |
+
top.appendChild(self._print(e.base))
|
1087 |
+
else:
|
1088 |
+
x = self.dom.createElement('msup')
|
1089 |
+
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
|
1090 |
+
x.appendChild(self._print(-e.exp))
|
1091 |
+
top.appendChild(x)
|
1092 |
+
return top
|
1093 |
+
|
1094 |
+
x = self.dom.createElement('msup')
|
1095 |
+
x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow']))
|
1096 |
+
x.appendChild(self._print(e.exp))
|
1097 |
+
return x
|
1098 |
+
|
1099 |
+
def _print_Number(self, e):
|
1100 |
+
x = self.dom.createElement(self.mathml_tag(e))
|
1101 |
+
x.appendChild(self.dom.createTextNode(str(e)))
|
1102 |
+
return x
|
1103 |
+
|
1104 |
+
def _print_AccumulationBounds(self, i):
|
1105 |
+
brac = self.dom.createElement('mfenced')
|
1106 |
+
brac.setAttribute('close', '\u27e9')
|
1107 |
+
brac.setAttribute('open', '\u27e8')
|
1108 |
+
brac.appendChild(self._print(i.min))
|
1109 |
+
brac.appendChild(self._print(i.max))
|
1110 |
+
return brac
|
1111 |
+
|
1112 |
+
def _print_Derivative(self, e):
|
1113 |
+
|
1114 |
+
if requires_partial(e.expr):
|
1115 |
+
d = '∂'
|
1116 |
+
else:
|
1117 |
+
d = self.mathml_tag(e)
|
1118 |
+
|
1119 |
+
# Determine denominator
|
1120 |
+
m = self.dom.createElement('mrow')
|
1121 |
+
dim = 0 # Total diff dimension, for numerator
|
1122 |
+
for sym, num in reversed(e.variable_count):
|
1123 |
+
dim += num
|
1124 |
+
if num >= 2:
|
1125 |
+
x = self.dom.createElement('msup')
|
1126 |
+
xx = self.dom.createElement('mo')
|
1127 |
+
xx.appendChild(self.dom.createTextNode(d))
|
1128 |
+
x.appendChild(xx)
|
1129 |
+
x.appendChild(self._print(num))
|
1130 |
+
else:
|
1131 |
+
x = self.dom.createElement('mo')
|
1132 |
+
x.appendChild(self.dom.createTextNode(d))
|
1133 |
+
m.appendChild(x)
|
1134 |
+
y = self._print(sym)
|
1135 |
+
m.appendChild(y)
|
1136 |
+
|
1137 |
+
mnum = self.dom.createElement('mrow')
|
1138 |
+
if dim >= 2:
|
1139 |
+
x = self.dom.createElement('msup')
|
1140 |
+
xx = self.dom.createElement('mo')
|
1141 |
+
xx.appendChild(self.dom.createTextNode(d))
|
1142 |
+
x.appendChild(xx)
|
1143 |
+
x.appendChild(self._print(dim))
|
1144 |
+
else:
|
1145 |
+
x = self.dom.createElement('mo')
|
1146 |
+
x.appendChild(self.dom.createTextNode(d))
|
1147 |
+
|
1148 |
+
mnum.appendChild(x)
|
1149 |
+
mrow = self.dom.createElement('mrow')
|
1150 |
+
frac = self.dom.createElement('mfrac')
|
1151 |
+
frac.appendChild(mnum)
|
1152 |
+
frac.appendChild(m)
|
1153 |
+
mrow.appendChild(frac)
|
1154 |
+
|
1155 |
+
# Print function
|
1156 |
+
mrow.appendChild(self._print(e.expr))
|
1157 |
+
|
1158 |
+
return mrow
|
1159 |
+
|
1160 |
+
def _print_Function(self, e):
|
1161 |
+
mrow = self.dom.createElement('mrow')
|
1162 |
+
x = self.dom.createElement('mi')
|
1163 |
+
if self.mathml_tag(e) == 'log' and self._settings["ln_notation"]:
|
1164 |
+
x.appendChild(self.dom.createTextNode('ln'))
|
1165 |
+
else:
|
1166 |
+
x.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
|
1167 |
+
y = self.dom.createElement('mfenced')
|
1168 |
+
for arg in e.args:
|
1169 |
+
y.appendChild(self._print(arg))
|
1170 |
+
mrow.appendChild(x)
|
1171 |
+
mrow.appendChild(y)
|
1172 |
+
return mrow
|
1173 |
+
|
1174 |
+
def _print_Float(self, expr):
|
1175 |
+
# Based off of that in StrPrinter
|
1176 |
+
dps = prec_to_dps(expr._prec)
|
1177 |
+
str_real = mlib_to_str(expr._mpf_, dps, strip_zeros=True)
|
1178 |
+
|
1179 |
+
# Must always have a mul symbol (as 2.5 10^{20} just looks odd)
|
1180 |
+
# thus we use the number separator
|
1181 |
+
separator = self._settings['mul_symbol_mathml_numbers']
|
1182 |
+
mrow = self.dom.createElement('mrow')
|
1183 |
+
if 'e' in str_real:
|
1184 |
+
(mant, exp) = str_real.split('e')
|
1185 |
+
|
1186 |
+
if exp[0] == '+':
|
1187 |
+
exp = exp[1:]
|
1188 |
+
|
1189 |
+
mn = self.dom.createElement('mn')
|
1190 |
+
mn.appendChild(self.dom.createTextNode(mant))
|
1191 |
+
mrow.appendChild(mn)
|
1192 |
+
mo = self.dom.createElement('mo')
|
1193 |
+
mo.appendChild(self.dom.createTextNode(separator))
|
1194 |
+
mrow.appendChild(mo)
|
1195 |
+
msup = self.dom.createElement('msup')
|
1196 |
+
mn = self.dom.createElement('mn')
|
1197 |
+
mn.appendChild(self.dom.createTextNode("10"))
|
1198 |
+
msup.appendChild(mn)
|
1199 |
+
mn = self.dom.createElement('mn')
|
1200 |
+
mn.appendChild(self.dom.createTextNode(exp))
|
1201 |
+
msup.appendChild(mn)
|
1202 |
+
mrow.appendChild(msup)
|
1203 |
+
return mrow
|
1204 |
+
elif str_real == "+inf":
|
1205 |
+
return self._print_Infinity(None)
|
1206 |
+
elif str_real == "-inf":
|
1207 |
+
return self._print_NegativeInfinity(None)
|
1208 |
+
else:
|
1209 |
+
mn = self.dom.createElement('mn')
|
1210 |
+
mn.appendChild(self.dom.createTextNode(str_real))
|
1211 |
+
return mn
|
1212 |
+
|
1213 |
+
def _print_polylog(self, expr):
|
1214 |
+
mrow = self.dom.createElement('mrow')
|
1215 |
+
m = self.dom.createElement('msub')
|
1216 |
+
|
1217 |
+
mi = self.dom.createElement('mi')
|
1218 |
+
mi.appendChild(self.dom.createTextNode('Li'))
|
1219 |
+
m.appendChild(mi)
|
1220 |
+
m.appendChild(self._print(expr.args[0]))
|
1221 |
+
mrow.appendChild(m)
|
1222 |
+
brac = self.dom.createElement('mfenced')
|
1223 |
+
brac.appendChild(self._print(expr.args[1]))
|
1224 |
+
mrow.appendChild(brac)
|
1225 |
+
return mrow
|
1226 |
+
|
1227 |
+
def _print_Basic(self, e):
|
1228 |
+
mrow = self.dom.createElement('mrow')
|
1229 |
+
mi = self.dom.createElement('mi')
|
1230 |
+
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
|
1231 |
+
mrow.appendChild(mi)
|
1232 |
+
brac = self.dom.createElement('mfenced')
|
1233 |
+
for arg in e.args:
|
1234 |
+
brac.appendChild(self._print(arg))
|
1235 |
+
mrow.appendChild(brac)
|
1236 |
+
return mrow
|
1237 |
+
|
1238 |
+
def _print_Tuple(self, e):
|
1239 |
+
mrow = self.dom.createElement('mrow')
|
1240 |
+
x = self.dom.createElement('mfenced')
|
1241 |
+
for arg in e.args:
|
1242 |
+
x.appendChild(self._print(arg))
|
1243 |
+
mrow.appendChild(x)
|
1244 |
+
return mrow
|
1245 |
+
|
1246 |
+
def _print_Interval(self, i):
|
1247 |
+
mrow = self.dom.createElement('mrow')
|
1248 |
+
brac = self.dom.createElement('mfenced')
|
1249 |
+
if i.start == i.end:
|
1250 |
+
# Most often, this type of Interval is converted to a FiniteSet
|
1251 |
+
brac.setAttribute('close', '}')
|
1252 |
+
brac.setAttribute('open', '{')
|
1253 |
+
brac.appendChild(self._print(i.start))
|
1254 |
+
else:
|
1255 |
+
if i.right_open:
|
1256 |
+
brac.setAttribute('close', ')')
|
1257 |
+
else:
|
1258 |
+
brac.setAttribute('close', ']')
|
1259 |
+
|
1260 |
+
if i.left_open:
|
1261 |
+
brac.setAttribute('open', '(')
|
1262 |
+
else:
|
1263 |
+
brac.setAttribute('open', '[')
|
1264 |
+
brac.appendChild(self._print(i.start))
|
1265 |
+
brac.appendChild(self._print(i.end))
|
1266 |
+
|
1267 |
+
mrow.appendChild(brac)
|
1268 |
+
return mrow
|
1269 |
+
|
1270 |
+
def _print_Abs(self, expr, exp=None):
|
1271 |
+
mrow = self.dom.createElement('mrow')
|
1272 |
+
x = self.dom.createElement('mfenced')
|
1273 |
+
x.setAttribute('close', '|')
|
1274 |
+
x.setAttribute('open', '|')
|
1275 |
+
x.appendChild(self._print(expr.args[0]))
|
1276 |
+
mrow.appendChild(x)
|
1277 |
+
return mrow
|
1278 |
+
|
1279 |
+
_print_Determinant = _print_Abs
|
1280 |
+
|
1281 |
+
def _print_re_im(self, c, expr):
|
1282 |
+
mrow = self.dom.createElement('mrow')
|
1283 |
+
mi = self.dom.createElement('mi')
|
1284 |
+
mi.setAttribute('mathvariant', 'fraktur')
|
1285 |
+
mi.appendChild(self.dom.createTextNode(c))
|
1286 |
+
mrow.appendChild(mi)
|
1287 |
+
brac = self.dom.createElement('mfenced')
|
1288 |
+
brac.appendChild(self._print(expr))
|
1289 |
+
mrow.appendChild(brac)
|
1290 |
+
return mrow
|
1291 |
+
|
1292 |
+
def _print_re(self, expr, exp=None):
|
1293 |
+
return self._print_re_im('R', expr.args[0])
|
1294 |
+
|
1295 |
+
def _print_im(self, expr, exp=None):
|
1296 |
+
return self._print_re_im('I', expr.args[0])
|
1297 |
+
|
1298 |
+
def _print_AssocOp(self, e):
|
1299 |
+
mrow = self.dom.createElement('mrow')
|
1300 |
+
mi = self.dom.createElement('mi')
|
1301 |
+
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
|
1302 |
+
mrow.appendChild(mi)
|
1303 |
+
for arg in e.args:
|
1304 |
+
mrow.appendChild(self._print(arg))
|
1305 |
+
return mrow
|
1306 |
+
|
1307 |
+
def _print_SetOp(self, expr, symbol, prec):
|
1308 |
+
mrow = self.dom.createElement('mrow')
|
1309 |
+
mrow.appendChild(self.parenthesize(expr.args[0], prec))
|
1310 |
+
for arg in expr.args[1:]:
|
1311 |
+
x = self.dom.createElement('mo')
|
1312 |
+
x.appendChild(self.dom.createTextNode(symbol))
|
1313 |
+
y = self.parenthesize(arg, prec)
|
1314 |
+
mrow.appendChild(x)
|
1315 |
+
mrow.appendChild(y)
|
1316 |
+
return mrow
|
1317 |
+
|
1318 |
+
def _print_Union(self, expr):
|
1319 |
+
prec = PRECEDENCE_TRADITIONAL['Union']
|
1320 |
+
return self._print_SetOp(expr, '∪', prec)
|
1321 |
+
|
1322 |
+
def _print_Intersection(self, expr):
|
1323 |
+
prec = PRECEDENCE_TRADITIONAL['Intersection']
|
1324 |
+
return self._print_SetOp(expr, '∩', prec)
|
1325 |
+
|
1326 |
+
def _print_Complement(self, expr):
|
1327 |
+
prec = PRECEDENCE_TRADITIONAL['Complement']
|
1328 |
+
return self._print_SetOp(expr, '∖', prec)
|
1329 |
+
|
1330 |
+
def _print_SymmetricDifference(self, expr):
|
1331 |
+
prec = PRECEDENCE_TRADITIONAL['SymmetricDifference']
|
1332 |
+
return self._print_SetOp(expr, '∆', prec)
|
1333 |
+
|
1334 |
+
def _print_ProductSet(self, expr):
|
1335 |
+
prec = PRECEDENCE_TRADITIONAL['ProductSet']
|
1336 |
+
return self._print_SetOp(expr, '×', prec)
|
1337 |
+
|
1338 |
+
def _print_FiniteSet(self, s):
|
1339 |
+
return self._print_set(s.args)
|
1340 |
+
|
1341 |
+
def _print_set(self, s):
|
1342 |
+
items = sorted(s, key=default_sort_key)
|
1343 |
+
brac = self.dom.createElement('mfenced')
|
1344 |
+
brac.setAttribute('close', '}')
|
1345 |
+
brac.setAttribute('open', '{')
|
1346 |
+
for item in items:
|
1347 |
+
brac.appendChild(self._print(item))
|
1348 |
+
return brac
|
1349 |
+
|
1350 |
+
_print_frozenset = _print_set
|
1351 |
+
|
1352 |
+
def _print_LogOp(self, args, symbol):
|
1353 |
+
mrow = self.dom.createElement('mrow')
|
1354 |
+
if args[0].is_Boolean and not args[0].is_Not:
|
1355 |
+
brac = self.dom.createElement('mfenced')
|
1356 |
+
brac.appendChild(self._print(args[0]))
|
1357 |
+
mrow.appendChild(brac)
|
1358 |
+
else:
|
1359 |
+
mrow.appendChild(self._print(args[0]))
|
1360 |
+
for arg in args[1:]:
|
1361 |
+
x = self.dom.createElement('mo')
|
1362 |
+
x.appendChild(self.dom.createTextNode(symbol))
|
1363 |
+
if arg.is_Boolean and not arg.is_Not:
|
1364 |
+
y = self.dom.createElement('mfenced')
|
1365 |
+
y.appendChild(self._print(arg))
|
1366 |
+
else:
|
1367 |
+
y = self._print(arg)
|
1368 |
+
mrow.appendChild(x)
|
1369 |
+
mrow.appendChild(y)
|
1370 |
+
return mrow
|
1371 |
+
|
1372 |
+
def _print_BasisDependent(self, expr):
|
1373 |
+
from sympy.vector import Vector
|
1374 |
+
|
1375 |
+
if expr == expr.zero:
|
1376 |
+
# Not clear if this is ever called
|
1377 |
+
return self._print(expr.zero)
|
1378 |
+
if isinstance(expr, Vector):
|
1379 |
+
items = expr.separate().items()
|
1380 |
+
else:
|
1381 |
+
items = [(0, expr)]
|
1382 |
+
|
1383 |
+
mrow = self.dom.createElement('mrow')
|
1384 |
+
for system, vect in items:
|
1385 |
+
inneritems = list(vect.components.items())
|
1386 |
+
inneritems.sort(key = lambda x:x[0].__str__())
|
1387 |
+
for i, (k, v) in enumerate(inneritems):
|
1388 |
+
if v == 1:
|
1389 |
+
if i: # No + for first item
|
1390 |
+
mo = self.dom.createElement('mo')
|
1391 |
+
mo.appendChild(self.dom.createTextNode('+'))
|
1392 |
+
mrow.appendChild(mo)
|
1393 |
+
mrow.appendChild(self._print(k))
|
1394 |
+
elif v == -1:
|
1395 |
+
mo = self.dom.createElement('mo')
|
1396 |
+
mo.appendChild(self.dom.createTextNode('-'))
|
1397 |
+
mrow.appendChild(mo)
|
1398 |
+
mrow.appendChild(self._print(k))
|
1399 |
+
else:
|
1400 |
+
if i: # No + for first item
|
1401 |
+
mo = self.dom.createElement('mo')
|
1402 |
+
mo.appendChild(self.dom.createTextNode('+'))
|
1403 |
+
mrow.appendChild(mo)
|
1404 |
+
mbrac = self.dom.createElement('mfenced')
|
1405 |
+
mbrac.appendChild(self._print(v))
|
1406 |
+
mrow.appendChild(mbrac)
|
1407 |
+
mo = self.dom.createElement('mo')
|
1408 |
+
mo.appendChild(self.dom.createTextNode('⁢'))
|
1409 |
+
mrow.appendChild(mo)
|
1410 |
+
mrow.appendChild(self._print(k))
|
1411 |
+
return mrow
|
1412 |
+
|
1413 |
+
|
1414 |
+
def _print_And(self, expr):
|
1415 |
+
args = sorted(expr.args, key=default_sort_key)
|
1416 |
+
return self._print_LogOp(args, '∧')
|
1417 |
+
|
1418 |
+
def _print_Or(self, expr):
|
1419 |
+
args = sorted(expr.args, key=default_sort_key)
|
1420 |
+
return self._print_LogOp(args, '∨')
|
1421 |
+
|
1422 |
+
def _print_Xor(self, expr):
|
1423 |
+
args = sorted(expr.args, key=default_sort_key)
|
1424 |
+
return self._print_LogOp(args, '⊻')
|
1425 |
+
|
1426 |
+
def _print_Implies(self, expr):
|
1427 |
+
return self._print_LogOp(expr.args, '⇒')
|
1428 |
+
|
1429 |
+
def _print_Equivalent(self, expr):
|
1430 |
+
args = sorted(expr.args, key=default_sort_key)
|
1431 |
+
return self._print_LogOp(args, '⇔')
|
1432 |
+
|
1433 |
+
def _print_Not(self, e):
|
1434 |
+
mrow = self.dom.createElement('mrow')
|
1435 |
+
mo = self.dom.createElement('mo')
|
1436 |
+
mo.appendChild(self.dom.createTextNode('¬'))
|
1437 |
+
mrow.appendChild(mo)
|
1438 |
+
if (e.args[0].is_Boolean):
|
1439 |
+
x = self.dom.createElement('mfenced')
|
1440 |
+
x.appendChild(self._print(e.args[0]))
|
1441 |
+
else:
|
1442 |
+
x = self._print(e.args[0])
|
1443 |
+
mrow.appendChild(x)
|
1444 |
+
return mrow
|
1445 |
+
|
1446 |
+
def _print_bool(self, e):
|
1447 |
+
mi = self.dom.createElement('mi')
|
1448 |
+
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
|
1449 |
+
return mi
|
1450 |
+
|
1451 |
+
_print_BooleanTrue = _print_bool
|
1452 |
+
_print_BooleanFalse = _print_bool
|
1453 |
+
|
1454 |
+
def _print_NoneType(self, e):
|
1455 |
+
mi = self.dom.createElement('mi')
|
1456 |
+
mi.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
|
1457 |
+
return mi
|
1458 |
+
|
1459 |
+
def _print_Range(self, s):
|
1460 |
+
dots = "\u2026"
|
1461 |
+
brac = self.dom.createElement('mfenced')
|
1462 |
+
brac.setAttribute('close', '}')
|
1463 |
+
brac.setAttribute('open', '{')
|
1464 |
+
|
1465 |
+
if s.start.is_infinite and s.stop.is_infinite:
|
1466 |
+
if s.step.is_positive:
|
1467 |
+
printset = dots, -1, 0, 1, dots
|
1468 |
+
else:
|
1469 |
+
printset = dots, 1, 0, -1, dots
|
1470 |
+
elif s.start.is_infinite:
|
1471 |
+
printset = dots, s[-1] - s.step, s[-1]
|
1472 |
+
elif s.stop.is_infinite:
|
1473 |
+
it = iter(s)
|
1474 |
+
printset = next(it), next(it), dots
|
1475 |
+
elif len(s) > 4:
|
1476 |
+
it = iter(s)
|
1477 |
+
printset = next(it), next(it), dots, s[-1]
|
1478 |
+
else:
|
1479 |
+
printset = tuple(s)
|
1480 |
+
|
1481 |
+
for el in printset:
|
1482 |
+
if el == dots:
|
1483 |
+
mi = self.dom.createElement('mi')
|
1484 |
+
mi.appendChild(self.dom.createTextNode(dots))
|
1485 |
+
brac.appendChild(mi)
|
1486 |
+
else:
|
1487 |
+
brac.appendChild(self._print(el))
|
1488 |
+
|
1489 |
+
return brac
|
1490 |
+
|
1491 |
+
def _hprint_variadic_function(self, expr):
|
1492 |
+
args = sorted(expr.args, key=default_sort_key)
|
1493 |
+
mrow = self.dom.createElement('mrow')
|
1494 |
+
mo = self.dom.createElement('mo')
|
1495 |
+
mo.appendChild(self.dom.createTextNode((str(expr.func)).lower()))
|
1496 |
+
mrow.appendChild(mo)
|
1497 |
+
brac = self.dom.createElement('mfenced')
|
1498 |
+
for symbol in args:
|
1499 |
+
brac.appendChild(self._print(symbol))
|
1500 |
+
mrow.appendChild(brac)
|
1501 |
+
return mrow
|
1502 |
+
|
1503 |
+
_print_Min = _print_Max = _hprint_variadic_function
|
1504 |
+
|
1505 |
+
def _print_exp(self, expr):
|
1506 |
+
msup = self.dom.createElement('msup')
|
1507 |
+
msup.appendChild(self._print_Exp1(None))
|
1508 |
+
msup.appendChild(self._print(expr.args[0]))
|
1509 |
+
return msup
|
1510 |
+
|
1511 |
+
def _print_Relational(self, e):
|
1512 |
+
mrow = self.dom.createElement('mrow')
|
1513 |
+
mrow.appendChild(self._print(e.lhs))
|
1514 |
+
x = self.dom.createElement('mo')
|
1515 |
+
x.appendChild(self.dom.createTextNode(self.mathml_tag(e)))
|
1516 |
+
mrow.appendChild(x)
|
1517 |
+
mrow.appendChild(self._print(e.rhs))
|
1518 |
+
return mrow
|
1519 |
+
|
1520 |
+
def _print_int(self, p):
|
1521 |
+
dom_element = self.dom.createElement(self.mathml_tag(p))
|
1522 |
+
dom_element.appendChild(self.dom.createTextNode(str(p)))
|
1523 |
+
return dom_element
|
1524 |
+
|
1525 |
+
def _print_BaseScalar(self, e):
|
1526 |
+
msub = self.dom.createElement('msub')
|
1527 |
+
index, system = e._id
|
1528 |
+
mi = self.dom.createElement('mi')
|
1529 |
+
mi.setAttribute('mathvariant', 'bold')
|
1530 |
+
mi.appendChild(self.dom.createTextNode(system._variable_names[index]))
|
1531 |
+
msub.appendChild(mi)
|
1532 |
+
mi = self.dom.createElement('mi')
|
1533 |
+
mi.setAttribute('mathvariant', 'bold')
|
1534 |
+
mi.appendChild(self.dom.createTextNode(system._name))
|
1535 |
+
msub.appendChild(mi)
|
1536 |
+
return msub
|
1537 |
+
|
1538 |
+
def _print_BaseVector(self, e):
|
1539 |
+
msub = self.dom.createElement('msub')
|
1540 |
+
index, system = e._id
|
1541 |
+
mover = self.dom.createElement('mover')
|
1542 |
+
mi = self.dom.createElement('mi')
|
1543 |
+
mi.setAttribute('mathvariant', 'bold')
|
1544 |
+
mi.appendChild(self.dom.createTextNode(system._vector_names[index]))
|
1545 |
+
mover.appendChild(mi)
|
1546 |
+
mo = self.dom.createElement('mo')
|
1547 |
+
mo.appendChild(self.dom.createTextNode('^'))
|
1548 |
+
mover.appendChild(mo)
|
1549 |
+
msub.appendChild(mover)
|
1550 |
+
mi = self.dom.createElement('mi')
|
1551 |
+
mi.setAttribute('mathvariant', 'bold')
|
1552 |
+
mi.appendChild(self.dom.createTextNode(system._name))
|
1553 |
+
msub.appendChild(mi)
|
1554 |
+
return msub
|
1555 |
+
|
1556 |
+
def _print_VectorZero(self, e):
|
1557 |
+
mover = self.dom.createElement('mover')
|
1558 |
+
mi = self.dom.createElement('mi')
|
1559 |
+
mi.setAttribute('mathvariant', 'bold')
|
1560 |
+
mi.appendChild(self.dom.createTextNode("0"))
|
1561 |
+
mover.appendChild(mi)
|
1562 |
+
mo = self.dom.createElement('mo')
|
1563 |
+
mo.appendChild(self.dom.createTextNode('^'))
|
1564 |
+
mover.appendChild(mo)
|
1565 |
+
return mover
|
1566 |
+
|
1567 |
+
def _print_Cross(self, expr):
|
1568 |
+
mrow = self.dom.createElement('mrow')
|
1569 |
+
vec1 = expr._expr1
|
1570 |
+
vec2 = expr._expr2
|
1571 |
+
mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul']))
|
1572 |
+
mo = self.dom.createElement('mo')
|
1573 |
+
mo.appendChild(self.dom.createTextNode('×'))
|
1574 |
+
mrow.appendChild(mo)
|
1575 |
+
mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul']))
|
1576 |
+
return mrow
|
1577 |
+
|
1578 |
+
def _print_Curl(self, expr):
|
1579 |
+
mrow = self.dom.createElement('mrow')
|
1580 |
+
mo = self.dom.createElement('mo')
|
1581 |
+
mo.appendChild(self.dom.createTextNode('∇'))
|
1582 |
+
mrow.appendChild(mo)
|
1583 |
+
mo = self.dom.createElement('mo')
|
1584 |
+
mo.appendChild(self.dom.createTextNode('×'))
|
1585 |
+
mrow.appendChild(mo)
|
1586 |
+
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
|
1587 |
+
return mrow
|
1588 |
+
|
1589 |
+
def _print_Divergence(self, expr):
|
1590 |
+
mrow = self.dom.createElement('mrow')
|
1591 |
+
mo = self.dom.createElement('mo')
|
1592 |
+
mo.appendChild(self.dom.createTextNode('∇'))
|
1593 |
+
mrow.appendChild(mo)
|
1594 |
+
mo = self.dom.createElement('mo')
|
1595 |
+
mo.appendChild(self.dom.createTextNode('·'))
|
1596 |
+
mrow.appendChild(mo)
|
1597 |
+
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
|
1598 |
+
return mrow
|
1599 |
+
|
1600 |
+
def _print_Dot(self, expr):
|
1601 |
+
mrow = self.dom.createElement('mrow')
|
1602 |
+
vec1 = expr._expr1
|
1603 |
+
vec2 = expr._expr2
|
1604 |
+
mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul']))
|
1605 |
+
mo = self.dom.createElement('mo')
|
1606 |
+
mo.appendChild(self.dom.createTextNode('·'))
|
1607 |
+
mrow.appendChild(mo)
|
1608 |
+
mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul']))
|
1609 |
+
return mrow
|
1610 |
+
|
1611 |
+
def _print_Gradient(self, expr):
|
1612 |
+
mrow = self.dom.createElement('mrow')
|
1613 |
+
mo = self.dom.createElement('mo')
|
1614 |
+
mo.appendChild(self.dom.createTextNode('∇'))
|
1615 |
+
mrow.appendChild(mo)
|
1616 |
+
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
|
1617 |
+
return mrow
|
1618 |
+
|
1619 |
+
def _print_Laplacian(self, expr):
|
1620 |
+
mrow = self.dom.createElement('mrow')
|
1621 |
+
mo = self.dom.createElement('mo')
|
1622 |
+
mo.appendChild(self.dom.createTextNode('∆'))
|
1623 |
+
mrow.appendChild(mo)
|
1624 |
+
mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul']))
|
1625 |
+
return mrow
|
1626 |
+
|
1627 |
+
def _print_Integers(self, e):
|
1628 |
+
x = self.dom.createElement('mi')
|
1629 |
+
x.setAttribute('mathvariant', 'normal')
|
1630 |
+
x.appendChild(self.dom.createTextNode('ℤ'))
|
1631 |
+
return x
|
1632 |
+
|
1633 |
+
def _print_Complexes(self, e):
|
1634 |
+
x = self.dom.createElement('mi')
|
1635 |
+
x.setAttribute('mathvariant', 'normal')
|
1636 |
+
x.appendChild(self.dom.createTextNode('ℂ'))
|
1637 |
+
return x
|
1638 |
+
|
1639 |
+
def _print_Reals(self, e):
|
1640 |
+
x = self.dom.createElement('mi')
|
1641 |
+
x.setAttribute('mathvariant', 'normal')
|
1642 |
+
x.appendChild(self.dom.createTextNode('ℝ'))
|
1643 |
+
return x
|
1644 |
+
|
1645 |
+
def _print_Naturals(self, e):
|
1646 |
+
x = self.dom.createElement('mi')
|
1647 |
+
x.setAttribute('mathvariant', 'normal')
|
1648 |
+
x.appendChild(self.dom.createTextNode('ℕ'))
|
1649 |
+
return x
|
1650 |
+
|
1651 |
+
def _print_Naturals0(self, e):
|
1652 |
+
sub = self.dom.createElement('msub')
|
1653 |
+
x = self.dom.createElement('mi')
|
1654 |
+
x.setAttribute('mathvariant', 'normal')
|
1655 |
+
x.appendChild(self.dom.createTextNode('ℕ'))
|
1656 |
+
sub.appendChild(x)
|
1657 |
+
sub.appendChild(self._print(S.Zero))
|
1658 |
+
return sub
|
1659 |
+
|
1660 |
+
def _print_SingularityFunction(self, expr):
|
1661 |
+
shift = expr.args[0] - expr.args[1]
|
1662 |
+
power = expr.args[2]
|
1663 |
+
sup = self.dom.createElement('msup')
|
1664 |
+
brac = self.dom.createElement('mfenced')
|
1665 |
+
brac.setAttribute('close', '\u27e9')
|
1666 |
+
brac.setAttribute('open', '\u27e8')
|
1667 |
+
brac.appendChild(self._print(shift))
|
1668 |
+
sup.appendChild(brac)
|
1669 |
+
sup.appendChild(self._print(power))
|
1670 |
+
return sup
|
1671 |
+
|
1672 |
+
def _print_NaN(self, e):
|
1673 |
+
x = self.dom.createElement('mi')
|
1674 |
+
x.appendChild(self.dom.createTextNode('NaN'))
|
1675 |
+
return x
|
1676 |
+
|
1677 |
+
def _print_number_function(self, e, name):
|
1678 |
+
# Print name_arg[0] for one argument or name_arg[0](arg[1])
|
1679 |
+
# for more than one argument
|
1680 |
+
sub = self.dom.createElement('msub')
|
1681 |
+
mi = self.dom.createElement('mi')
|
1682 |
+
mi.appendChild(self.dom.createTextNode(name))
|
1683 |
+
sub.appendChild(mi)
|
1684 |
+
sub.appendChild(self._print(e.args[0]))
|
1685 |
+
if len(e.args) == 1:
|
1686 |
+
return sub
|
1687 |
+
# TODO: copy-pasted from _print_Function: can we do better?
|
1688 |
+
mrow = self.dom.createElement('mrow')
|
1689 |
+
y = self.dom.createElement('mfenced')
|
1690 |
+
for arg in e.args[1:]:
|
1691 |
+
y.appendChild(self._print(arg))
|
1692 |
+
mrow.appendChild(sub)
|
1693 |
+
mrow.appendChild(y)
|
1694 |
+
return mrow
|
1695 |
+
|
1696 |
+
def _print_bernoulli(self, e):
|
1697 |
+
return self._print_number_function(e, 'B')
|
1698 |
+
|
1699 |
+
_print_bell = _print_bernoulli
|
1700 |
+
|
1701 |
+
def _print_catalan(self, e):
|
1702 |
+
return self._print_number_function(e, 'C')
|
1703 |
+
|
1704 |
+
def _print_euler(self, e):
|
1705 |
+
return self._print_number_function(e, 'E')
|
1706 |
+
|
1707 |
+
def _print_fibonacci(self, e):
|
1708 |
+
return self._print_number_function(e, 'F')
|
1709 |
+
|
1710 |
+
def _print_lucas(self, e):
|
1711 |
+
return self._print_number_function(e, 'L')
|
1712 |
+
|
1713 |
+
def _print_stieltjes(self, e):
|
1714 |
+
return self._print_number_function(e, 'γ')
|
1715 |
+
|
1716 |
+
def _print_tribonacci(self, e):
|
1717 |
+
return self._print_number_function(e, 'T')
|
1718 |
+
|
1719 |
+
def _print_ComplexInfinity(self, e):
|
1720 |
+
x = self.dom.createElement('mover')
|
1721 |
+
mo = self.dom.createElement('mo')
|
1722 |
+
mo.appendChild(self.dom.createTextNode('∞'))
|
1723 |
+
x.appendChild(mo)
|
1724 |
+
mo = self.dom.createElement('mo')
|
1725 |
+
mo.appendChild(self.dom.createTextNode('~'))
|
1726 |
+
x.appendChild(mo)
|
1727 |
+
return x
|
1728 |
+
|
1729 |
+
def _print_EmptySet(self, e):
|
1730 |
+
x = self.dom.createElement('mo')
|
1731 |
+
x.appendChild(self.dom.createTextNode('∅'))
|
1732 |
+
return x
|
1733 |
+
|
1734 |
+
def _print_UniversalSet(self, e):
|
1735 |
+
x = self.dom.createElement('mo')
|
1736 |
+
x.appendChild(self.dom.createTextNode('𝕌'))
|
1737 |
+
return x
|
1738 |
+
|
1739 |
+
def _print_Adjoint(self, expr):
|
1740 |
+
from sympy.matrices import MatrixSymbol
|
1741 |
+
mat = expr.arg
|
1742 |
+
sup = self.dom.createElement('msup')
|
1743 |
+
if not isinstance(mat, MatrixSymbol):
|
1744 |
+
brac = self.dom.createElement('mfenced')
|
1745 |
+
brac.appendChild(self._print(mat))
|
1746 |
+
sup.appendChild(brac)
|
1747 |
+
else:
|
1748 |
+
sup.appendChild(self._print(mat))
|
1749 |
+
mo = self.dom.createElement('mo')
|
1750 |
+
mo.appendChild(self.dom.createTextNode('†'))
|
1751 |
+
sup.appendChild(mo)
|
1752 |
+
return sup
|
1753 |
+
|
1754 |
+
def _print_Transpose(self, expr):
|
1755 |
+
from sympy.matrices import MatrixSymbol
|
1756 |
+
mat = expr.arg
|
1757 |
+
sup = self.dom.createElement('msup')
|
1758 |
+
if not isinstance(mat, MatrixSymbol):
|
1759 |
+
brac = self.dom.createElement('mfenced')
|
1760 |
+
brac.appendChild(self._print(mat))
|
1761 |
+
sup.appendChild(brac)
|
1762 |
+
else:
|
1763 |
+
sup.appendChild(self._print(mat))
|
1764 |
+
mo = self.dom.createElement('mo')
|
1765 |
+
mo.appendChild(self.dom.createTextNode('T'))
|
1766 |
+
sup.appendChild(mo)
|
1767 |
+
return sup
|
1768 |
+
|
1769 |
+
def _print_Inverse(self, expr):
|
1770 |
+
from sympy.matrices import MatrixSymbol
|
1771 |
+
mat = expr.arg
|
1772 |
+
sup = self.dom.createElement('msup')
|
1773 |
+
if not isinstance(mat, MatrixSymbol):
|
1774 |
+
brac = self.dom.createElement('mfenced')
|
1775 |
+
brac.appendChild(self._print(mat))
|
1776 |
+
sup.appendChild(brac)
|
1777 |
+
else:
|
1778 |
+
sup.appendChild(self._print(mat))
|
1779 |
+
sup.appendChild(self._print(-1))
|
1780 |
+
return sup
|
1781 |
+
|
1782 |
+
def _print_MatMul(self, expr):
|
1783 |
+
from sympy.matrices.expressions.matmul import MatMul
|
1784 |
+
|
1785 |
+
x = self.dom.createElement('mrow')
|
1786 |
+
args = expr.args
|
1787 |
+
if isinstance(args[0], Mul):
|
1788 |
+
args = args[0].as_ordered_factors() + list(args[1:])
|
1789 |
+
else:
|
1790 |
+
args = list(args)
|
1791 |
+
|
1792 |
+
if isinstance(expr, MatMul) and expr.could_extract_minus_sign():
|
1793 |
+
if args[0] == -1:
|
1794 |
+
args = args[1:]
|
1795 |
+
else:
|
1796 |
+
args[0] = -args[0]
|
1797 |
+
mo = self.dom.createElement('mo')
|
1798 |
+
mo.appendChild(self.dom.createTextNode('-'))
|
1799 |
+
x.appendChild(mo)
|
1800 |
+
|
1801 |
+
for arg in args[:-1]:
|
1802 |
+
x.appendChild(self.parenthesize(arg, precedence_traditional(expr),
|
1803 |
+
False))
|
1804 |
+
mo = self.dom.createElement('mo')
|
1805 |
+
mo.appendChild(self.dom.createTextNode('⁢'))
|
1806 |
+
x.appendChild(mo)
|
1807 |
+
x.appendChild(self.parenthesize(args[-1], precedence_traditional(expr),
|
1808 |
+
False))
|
1809 |
+
return x
|
1810 |
+
|
1811 |
+
def _print_MatPow(self, expr):
|
1812 |
+
from sympy.matrices import MatrixSymbol
|
1813 |
+
base, exp = expr.base, expr.exp
|
1814 |
+
sup = self.dom.createElement('msup')
|
1815 |
+
if not isinstance(base, MatrixSymbol):
|
1816 |
+
brac = self.dom.createElement('mfenced')
|
1817 |
+
brac.appendChild(self._print(base))
|
1818 |
+
sup.appendChild(brac)
|
1819 |
+
else:
|
1820 |
+
sup.appendChild(self._print(base))
|
1821 |
+
sup.appendChild(self._print(exp))
|
1822 |
+
return sup
|
1823 |
+
|
1824 |
+
def _print_HadamardProduct(self, expr):
|
1825 |
+
x = self.dom.createElement('mrow')
|
1826 |
+
args = expr.args
|
1827 |
+
for arg in args[:-1]:
|
1828 |
+
x.appendChild(
|
1829 |
+
self.parenthesize(arg, precedence_traditional(expr), False))
|
1830 |
+
mo = self.dom.createElement('mo')
|
1831 |
+
mo.appendChild(self.dom.createTextNode('∘'))
|
1832 |
+
x.appendChild(mo)
|
1833 |
+
x.appendChild(
|
1834 |
+
self.parenthesize(args[-1], precedence_traditional(expr), False))
|
1835 |
+
return x
|
1836 |
+
|
1837 |
+
def _print_ZeroMatrix(self, Z):
|
1838 |
+
x = self.dom.createElement('mn')
|
1839 |
+
x.appendChild(self.dom.createTextNode('𝟘'))
|
1840 |
+
return x
|
1841 |
+
|
1842 |
+
def _print_OneMatrix(self, Z):
|
1843 |
+
x = self.dom.createElement('mn')
|
1844 |
+
x.appendChild(self.dom.createTextNode('𝟙'))
|
1845 |
+
return x
|
1846 |
+
|
1847 |
+
def _print_Identity(self, I):
|
1848 |
+
x = self.dom.createElement('mi')
|
1849 |
+
x.appendChild(self.dom.createTextNode('𝕀'))
|
1850 |
+
return x
|
1851 |
+
|
1852 |
+
def _print_floor(self, e):
|
1853 |
+
mrow = self.dom.createElement('mrow')
|
1854 |
+
x = self.dom.createElement('mfenced')
|
1855 |
+
x.setAttribute('close', '\u230B')
|
1856 |
+
x.setAttribute('open', '\u230A')
|
1857 |
+
x.appendChild(self._print(e.args[0]))
|
1858 |
+
mrow.appendChild(x)
|
1859 |
+
return mrow
|
1860 |
+
|
1861 |
+
def _print_ceiling(self, e):
|
1862 |
+
mrow = self.dom.createElement('mrow')
|
1863 |
+
x = self.dom.createElement('mfenced')
|
1864 |
+
x.setAttribute('close', '\u2309')
|
1865 |
+
x.setAttribute('open', '\u2308')
|
1866 |
+
x.appendChild(self._print(e.args[0]))
|
1867 |
+
mrow.appendChild(x)
|
1868 |
+
return mrow
|
1869 |
+
|
1870 |
+
def _print_Lambda(self, e):
|
1871 |
+
x = self.dom.createElement('mfenced')
|
1872 |
+
mrow = self.dom.createElement('mrow')
|
1873 |
+
symbols = e.args[0]
|
1874 |
+
if len(symbols) == 1:
|
1875 |
+
symbols = self._print(symbols[0])
|
1876 |
+
else:
|
1877 |
+
symbols = self._print(symbols)
|
1878 |
+
mrow.appendChild(symbols)
|
1879 |
+
mo = self.dom.createElement('mo')
|
1880 |
+
mo.appendChild(self.dom.createTextNode('↦'))
|
1881 |
+
mrow.appendChild(mo)
|
1882 |
+
mrow.appendChild(self._print(e.args[1]))
|
1883 |
+
x.appendChild(mrow)
|
1884 |
+
return x
|
1885 |
+
|
1886 |
+
def _print_tuple(self, e):
|
1887 |
+
x = self.dom.createElement('mfenced')
|
1888 |
+
for i in e:
|
1889 |
+
x.appendChild(self._print(i))
|
1890 |
+
return x
|
1891 |
+
|
1892 |
+
def _print_IndexedBase(self, e):
|
1893 |
+
return self._print(e.label)
|
1894 |
+
|
1895 |
+
def _print_Indexed(self, e):
|
1896 |
+
x = self.dom.createElement('msub')
|
1897 |
+
x.appendChild(self._print(e.base))
|
1898 |
+
if len(e.indices) == 1:
|
1899 |
+
x.appendChild(self._print(e.indices[0]))
|
1900 |
+
return x
|
1901 |
+
x.appendChild(self._print(e.indices))
|
1902 |
+
return x
|
1903 |
+
|
1904 |
+
def _print_MatrixElement(self, e):
|
1905 |
+
x = self.dom.createElement('msub')
|
1906 |
+
x.appendChild(self.parenthesize(e.parent, PRECEDENCE["Atom"], strict = True))
|
1907 |
+
brac = self.dom.createElement('mfenced')
|
1908 |
+
brac.setAttribute("close", "")
|
1909 |
+
brac.setAttribute("open", "")
|
1910 |
+
for i in e.indices:
|
1911 |
+
brac.appendChild(self._print(i))
|
1912 |
+
x.appendChild(brac)
|
1913 |
+
return x
|
1914 |
+
|
1915 |
+
def _print_elliptic_f(self, e):
|
1916 |
+
x = self.dom.createElement('mrow')
|
1917 |
+
mi = self.dom.createElement('mi')
|
1918 |
+
mi.appendChild(self.dom.createTextNode('𝖥'))
|
1919 |
+
x.appendChild(mi)
|
1920 |
+
y = self.dom.createElement('mfenced')
|
1921 |
+
y.setAttribute("separators", "|")
|
1922 |
+
for i in e.args:
|
1923 |
+
y.appendChild(self._print(i))
|
1924 |
+
x.appendChild(y)
|
1925 |
+
return x
|
1926 |
+
|
1927 |
+
def _print_elliptic_e(self, e):
|
1928 |
+
x = self.dom.createElement('mrow')
|
1929 |
+
mi = self.dom.createElement('mi')
|
1930 |
+
mi.appendChild(self.dom.createTextNode('𝖤'))
|
1931 |
+
x.appendChild(mi)
|
1932 |
+
y = self.dom.createElement('mfenced')
|
1933 |
+
y.setAttribute("separators", "|")
|
1934 |
+
for i in e.args:
|
1935 |
+
y.appendChild(self._print(i))
|
1936 |
+
x.appendChild(y)
|
1937 |
+
return x
|
1938 |
+
|
1939 |
+
def _print_elliptic_pi(self, e):
|
1940 |
+
x = self.dom.createElement('mrow')
|
1941 |
+
mi = self.dom.createElement('mi')
|
1942 |
+
mi.appendChild(self.dom.createTextNode('𝛱'))
|
1943 |
+
x.appendChild(mi)
|
1944 |
+
y = self.dom.createElement('mfenced')
|
1945 |
+
if len(e.args) == 2:
|
1946 |
+
y.setAttribute("separators", "|")
|
1947 |
+
else:
|
1948 |
+
y.setAttribute("separators", ";|")
|
1949 |
+
for i in e.args:
|
1950 |
+
y.appendChild(self._print(i))
|
1951 |
+
x.appendChild(y)
|
1952 |
+
return x
|
1953 |
+
|
1954 |
+
def _print_Ei(self, e):
|
1955 |
+
x = self.dom.createElement('mrow')
|
1956 |
+
mi = self.dom.createElement('mi')
|
1957 |
+
mi.appendChild(self.dom.createTextNode('Ei'))
|
1958 |
+
x.appendChild(mi)
|
1959 |
+
x.appendChild(self._print(e.args))
|
1960 |
+
return x
|
1961 |
+
|
1962 |
+
def _print_expint(self, e):
|
1963 |
+
x = self.dom.createElement('mrow')
|
1964 |
+
y = self.dom.createElement('msub')
|
1965 |
+
mo = self.dom.createElement('mo')
|
1966 |
+
mo.appendChild(self.dom.createTextNode('E'))
|
1967 |
+
y.appendChild(mo)
|
1968 |
+
y.appendChild(self._print(e.args[0]))
|
1969 |
+
x.appendChild(y)
|
1970 |
+
x.appendChild(self._print(e.args[1:]))
|
1971 |
+
return x
|
1972 |
+
|
1973 |
+
def _print_jacobi(self, e):
|
1974 |
+
x = self.dom.createElement('mrow')
|
1975 |
+
y = self.dom.createElement('msubsup')
|
1976 |
+
mo = self.dom.createElement('mo')
|
1977 |
+
mo.appendChild(self.dom.createTextNode('P'))
|
1978 |
+
y.appendChild(mo)
|
1979 |
+
y.appendChild(self._print(e.args[0]))
|
1980 |
+
y.appendChild(self._print(e.args[1:3]))
|
1981 |
+
x.appendChild(y)
|
1982 |
+
x.appendChild(self._print(e.args[3:]))
|
1983 |
+
return x
|
1984 |
+
|
1985 |
+
def _print_gegenbauer(self, e):
|
1986 |
+
x = self.dom.createElement('mrow')
|
1987 |
+
y = self.dom.createElement('msubsup')
|
1988 |
+
mo = self.dom.createElement('mo')
|
1989 |
+
mo.appendChild(self.dom.createTextNode('C'))
|
1990 |
+
y.appendChild(mo)
|
1991 |
+
y.appendChild(self._print(e.args[0]))
|
1992 |
+
y.appendChild(self._print(e.args[1:2]))
|
1993 |
+
x.appendChild(y)
|
1994 |
+
x.appendChild(self._print(e.args[2:]))
|
1995 |
+
return x
|
1996 |
+
|
1997 |
+
def _print_chebyshevt(self, e):
|
1998 |
+
x = self.dom.createElement('mrow')
|
1999 |
+
y = self.dom.createElement('msub')
|
2000 |
+
mo = self.dom.createElement('mo')
|
2001 |
+
mo.appendChild(self.dom.createTextNode('T'))
|
2002 |
+
y.appendChild(mo)
|
2003 |
+
y.appendChild(self._print(e.args[0]))
|
2004 |
+
x.appendChild(y)
|
2005 |
+
x.appendChild(self._print(e.args[1:]))
|
2006 |
+
return x
|
2007 |
+
|
2008 |
+
def _print_chebyshevu(self, e):
|
2009 |
+
x = self.dom.createElement('mrow')
|
2010 |
+
y = self.dom.createElement('msub')
|
2011 |
+
mo = self.dom.createElement('mo')
|
2012 |
+
mo.appendChild(self.dom.createTextNode('U'))
|
2013 |
+
y.appendChild(mo)
|
2014 |
+
y.appendChild(self._print(e.args[0]))
|
2015 |
+
x.appendChild(y)
|
2016 |
+
x.appendChild(self._print(e.args[1:]))
|
2017 |
+
return x
|
2018 |
+
|
2019 |
+
def _print_legendre(self, e):
|
2020 |
+
x = self.dom.createElement('mrow')
|
2021 |
+
y = self.dom.createElement('msub')
|
2022 |
+
mo = self.dom.createElement('mo')
|
2023 |
+
mo.appendChild(self.dom.createTextNode('P'))
|
2024 |
+
y.appendChild(mo)
|
2025 |
+
y.appendChild(self._print(e.args[0]))
|
2026 |
+
x.appendChild(y)
|
2027 |
+
x.appendChild(self._print(e.args[1:]))
|
2028 |
+
return x
|
2029 |
+
|
2030 |
+
def _print_assoc_legendre(self, e):
|
2031 |
+
x = self.dom.createElement('mrow')
|
2032 |
+
y = self.dom.createElement('msubsup')
|
2033 |
+
mo = self.dom.createElement('mo')
|
2034 |
+
mo.appendChild(self.dom.createTextNode('P'))
|
2035 |
+
y.appendChild(mo)
|
2036 |
+
y.appendChild(self._print(e.args[0]))
|
2037 |
+
y.appendChild(self._print(e.args[1:2]))
|
2038 |
+
x.appendChild(y)
|
2039 |
+
x.appendChild(self._print(e.args[2:]))
|
2040 |
+
return x
|
2041 |
+
|
2042 |
+
def _print_laguerre(self, e):
|
2043 |
+
x = self.dom.createElement('mrow')
|
2044 |
+
y = self.dom.createElement('msub')
|
2045 |
+
mo = self.dom.createElement('mo')
|
2046 |
+
mo.appendChild(self.dom.createTextNode('L'))
|
2047 |
+
y.appendChild(mo)
|
2048 |
+
y.appendChild(self._print(e.args[0]))
|
2049 |
+
x.appendChild(y)
|
2050 |
+
x.appendChild(self._print(e.args[1:]))
|
2051 |
+
return x
|
2052 |
+
|
2053 |
+
def _print_assoc_laguerre(self, e):
|
2054 |
+
x = self.dom.createElement('mrow')
|
2055 |
+
y = self.dom.createElement('msubsup')
|
2056 |
+
mo = self.dom.createElement('mo')
|
2057 |
+
mo.appendChild(self.dom.createTextNode('L'))
|
2058 |
+
y.appendChild(mo)
|
2059 |
+
y.appendChild(self._print(e.args[0]))
|
2060 |
+
y.appendChild(self._print(e.args[1:2]))
|
2061 |
+
x.appendChild(y)
|
2062 |
+
x.appendChild(self._print(e.args[2:]))
|
2063 |
+
return x
|
2064 |
+
|
2065 |
+
def _print_hermite(self, e):
|
2066 |
+
x = self.dom.createElement('mrow')
|
2067 |
+
y = self.dom.createElement('msub')
|
2068 |
+
mo = self.dom.createElement('mo')
|
2069 |
+
mo.appendChild(self.dom.createTextNode('H'))
|
2070 |
+
y.appendChild(mo)
|
2071 |
+
y.appendChild(self._print(e.args[0]))
|
2072 |
+
x.appendChild(y)
|
2073 |
+
x.appendChild(self._print(e.args[1:]))
|
2074 |
+
return x
|
2075 |
+
|
2076 |
+
|
2077 |
+
@print_function(MathMLPrinterBase)
|
2078 |
+
def mathml(expr, printer='content', **settings):
|
2079 |
+
"""Returns the MathML representation of expr. If printer is presentation
|
2080 |
+
then prints Presentation MathML else prints content MathML.
|
2081 |
+
"""
|
2082 |
+
if printer == 'presentation':
|
2083 |
+
return MathMLPresentationPrinter(settings).doprint(expr)
|
2084 |
+
else:
|
2085 |
+
return MathMLContentPrinter(settings).doprint(expr)
|
2086 |
+
|
2087 |
+
|
2088 |
+
def print_mathml(expr, printer='content', **settings):
|
2089 |
+
"""
|
2090 |
+
Prints a pretty representation of the MathML code for expr. If printer is
|
2091 |
+
presentation then prints Presentation MathML else prints content MathML.
|
2092 |
+
|
2093 |
+
Examples
|
2094 |
+
========
|
2095 |
+
|
2096 |
+
>>> ##
|
2097 |
+
>>> from sympy import print_mathml
|
2098 |
+
>>> from sympy.abc import x
|
2099 |
+
>>> print_mathml(x+1) #doctest: +NORMALIZE_WHITESPACE
|
2100 |
+
<apply>
|
2101 |
+
<plus/>
|
2102 |
+
<ci>x</ci>
|
2103 |
+
<cn>1</cn>
|
2104 |
+
</apply>
|
2105 |
+
>>> print_mathml(x+1, printer='presentation')
|
2106 |
+
<mrow>
|
2107 |
+
<mi>x</mi>
|
2108 |
+
<mo>+</mo>
|
2109 |
+
<mn>1</mn>
|
2110 |
+
</mrow>
|
2111 |
+
|
2112 |
+
"""
|
2113 |
+
if printer == 'presentation':
|
2114 |
+
s = MathMLPresentationPrinter(settings)
|
2115 |
+
else:
|
2116 |
+
s = MathMLContentPrinter(settings)
|
2117 |
+
xml = s._print(sympify(expr))
|
2118 |
+
s.apply_patch()
|
2119 |
+
pretty_xml = xml.toprettyxml()
|
2120 |
+
s.restore_patch()
|
2121 |
+
|
2122 |
+
print(pretty_xml)
|
2123 |
+
|
2124 |
+
|
2125 |
+
# For backward compatibility
|
2126 |
+
MathMLPrinter = MathMLContentPrinter
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/numpy.py
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S
|
2 |
+
from sympy.core.function import Lambda
|
3 |
+
from sympy.core.power import Pow
|
4 |
+
from .pycode import PythonCodePrinter, _known_functions_math, _print_known_const, _print_known_func, _unpack_integral_limits, ArrayPrinter
|
5 |
+
from .codeprinter import CodePrinter
|
6 |
+
|
7 |
+
|
8 |
+
_not_in_numpy = 'erf erfc factorial gamma loggamma'.split()
|
9 |
+
_in_numpy = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_numpy]
|
10 |
+
_known_functions_numpy = dict(_in_numpy, **{
|
11 |
+
'acos': 'arccos',
|
12 |
+
'acosh': 'arccosh',
|
13 |
+
'asin': 'arcsin',
|
14 |
+
'asinh': 'arcsinh',
|
15 |
+
'atan': 'arctan',
|
16 |
+
'atan2': 'arctan2',
|
17 |
+
'atanh': 'arctanh',
|
18 |
+
'exp2': 'exp2',
|
19 |
+
'sign': 'sign',
|
20 |
+
'logaddexp': 'logaddexp',
|
21 |
+
'logaddexp2': 'logaddexp2',
|
22 |
+
})
|
23 |
+
_known_constants_numpy = {
|
24 |
+
'Exp1': 'e',
|
25 |
+
'Pi': 'pi',
|
26 |
+
'EulerGamma': 'euler_gamma',
|
27 |
+
'NaN': 'nan',
|
28 |
+
'Infinity': 'PINF',
|
29 |
+
'NegativeInfinity': 'NINF'
|
30 |
+
}
|
31 |
+
|
32 |
+
_numpy_known_functions = {k: 'numpy.' + v for k, v in _known_functions_numpy.items()}
|
33 |
+
_numpy_known_constants = {k: 'numpy.' + v for k, v in _known_constants_numpy.items()}
|
34 |
+
|
35 |
+
class NumPyPrinter(ArrayPrinter, PythonCodePrinter):
|
36 |
+
"""
|
37 |
+
Numpy printer which handles vectorized piecewise functions,
|
38 |
+
logical operators, etc.
|
39 |
+
"""
|
40 |
+
|
41 |
+
_module = 'numpy'
|
42 |
+
_kf = _numpy_known_functions
|
43 |
+
_kc = _numpy_known_constants
|
44 |
+
|
45 |
+
def __init__(self, settings=None):
|
46 |
+
"""
|
47 |
+
`settings` is passed to CodePrinter.__init__()
|
48 |
+
`module` specifies the array module to use, currently 'NumPy', 'CuPy'
|
49 |
+
or 'JAX'.
|
50 |
+
"""
|
51 |
+
self.language = "Python with {}".format(self._module)
|
52 |
+
self.printmethod = "_{}code".format(self._module)
|
53 |
+
|
54 |
+
self._kf = {**PythonCodePrinter._kf, **self._kf}
|
55 |
+
|
56 |
+
super().__init__(settings=settings)
|
57 |
+
|
58 |
+
|
59 |
+
def _print_seq(self, seq):
|
60 |
+
"General sequence printer: converts to tuple"
|
61 |
+
# Print tuples here instead of lists because numba supports
|
62 |
+
# tuples in nopython mode.
|
63 |
+
delimiter=', '
|
64 |
+
return '({},)'.format(delimiter.join(self._print(item) for item in seq))
|
65 |
+
|
66 |
+
def _print_MatMul(self, expr):
|
67 |
+
"Matrix multiplication printer"
|
68 |
+
if expr.as_coeff_matrices()[0] is not S.One:
|
69 |
+
expr_list = expr.as_coeff_matrices()[1]+[(expr.as_coeff_matrices()[0])]
|
70 |
+
return '({})'.format(').dot('.join(self._print(i) for i in expr_list))
|
71 |
+
return '({})'.format(').dot('.join(self._print(i) for i in expr.args))
|
72 |
+
|
73 |
+
def _print_MatPow(self, expr):
|
74 |
+
"Matrix power printer"
|
75 |
+
return '{}({}, {})'.format(self._module_format(self._module + '.linalg.matrix_power'),
|
76 |
+
self._print(expr.args[0]), self._print(expr.args[1]))
|
77 |
+
|
78 |
+
def _print_Inverse(self, expr):
|
79 |
+
"Matrix inverse printer"
|
80 |
+
return '{}({})'.format(self._module_format(self._module + '.linalg.inv'),
|
81 |
+
self._print(expr.args[0]))
|
82 |
+
|
83 |
+
def _print_DotProduct(self, expr):
|
84 |
+
# DotProduct allows any shape order, but numpy.dot does matrix
|
85 |
+
# multiplication, so we have to make sure it gets 1 x n by n x 1.
|
86 |
+
arg1, arg2 = expr.args
|
87 |
+
if arg1.shape[0] != 1:
|
88 |
+
arg1 = arg1.T
|
89 |
+
if arg2.shape[1] != 1:
|
90 |
+
arg2 = arg2.T
|
91 |
+
|
92 |
+
return "%s(%s, %s)" % (self._module_format(self._module + '.dot'),
|
93 |
+
self._print(arg1),
|
94 |
+
self._print(arg2))
|
95 |
+
|
96 |
+
def _print_MatrixSolve(self, expr):
|
97 |
+
return "%s(%s, %s)" % (self._module_format(self._module + '.linalg.solve'),
|
98 |
+
self._print(expr.matrix),
|
99 |
+
self._print(expr.vector))
|
100 |
+
|
101 |
+
def _print_ZeroMatrix(self, expr):
|
102 |
+
return '{}({})'.format(self._module_format(self._module + '.zeros'),
|
103 |
+
self._print(expr.shape))
|
104 |
+
|
105 |
+
def _print_OneMatrix(self, expr):
|
106 |
+
return '{}({})'.format(self._module_format(self._module + '.ones'),
|
107 |
+
self._print(expr.shape))
|
108 |
+
|
109 |
+
def _print_FunctionMatrix(self, expr):
|
110 |
+
from sympy.abc import i, j
|
111 |
+
lamda = expr.lamda
|
112 |
+
if not isinstance(lamda, Lambda):
|
113 |
+
lamda = Lambda((i, j), lamda(i, j))
|
114 |
+
return '{}(lambda {}: {}, {})'.format(self._module_format(self._module + '.fromfunction'),
|
115 |
+
', '.join(self._print(arg) for arg in lamda.args[0]),
|
116 |
+
self._print(lamda.args[1]), self._print(expr.shape))
|
117 |
+
|
118 |
+
def _print_HadamardProduct(self, expr):
|
119 |
+
func = self._module_format(self._module + '.multiply')
|
120 |
+
return ''.join('{}({}, '.format(func, self._print(arg)) \
|
121 |
+
for arg in expr.args[:-1]) + "{}{}".format(self._print(expr.args[-1]),
|
122 |
+
')' * (len(expr.args) - 1))
|
123 |
+
|
124 |
+
def _print_KroneckerProduct(self, expr):
|
125 |
+
func = self._module_format(self._module + '.kron')
|
126 |
+
return ''.join('{}({}, '.format(func, self._print(arg)) \
|
127 |
+
for arg in expr.args[:-1]) + "{}{}".format(self._print(expr.args[-1]),
|
128 |
+
')' * (len(expr.args) - 1))
|
129 |
+
|
130 |
+
def _print_Adjoint(self, expr):
|
131 |
+
return '{}({}({}))'.format(
|
132 |
+
self._module_format(self._module + '.conjugate'),
|
133 |
+
self._module_format(self._module + '.transpose'),
|
134 |
+
self._print(expr.args[0]))
|
135 |
+
|
136 |
+
def _print_DiagonalOf(self, expr):
|
137 |
+
vect = '{}({})'.format(
|
138 |
+
self._module_format(self._module + '.diag'),
|
139 |
+
self._print(expr.arg))
|
140 |
+
return '{}({}, (-1, 1))'.format(
|
141 |
+
self._module_format(self._module + '.reshape'), vect)
|
142 |
+
|
143 |
+
def _print_DiagMatrix(self, expr):
|
144 |
+
return '{}({})'.format(self._module_format(self._module + '.diagflat'),
|
145 |
+
self._print(expr.args[0]))
|
146 |
+
|
147 |
+
def _print_DiagonalMatrix(self, expr):
|
148 |
+
return '{}({}, {}({}, {}))'.format(self._module_format(self._module + '.multiply'),
|
149 |
+
self._print(expr.arg), self._module_format(self._module + '.eye'),
|
150 |
+
self._print(expr.shape[0]), self._print(expr.shape[1]))
|
151 |
+
|
152 |
+
def _print_Piecewise(self, expr):
|
153 |
+
"Piecewise function printer"
|
154 |
+
from sympy.logic.boolalg import ITE, simplify_logic
|
155 |
+
def print_cond(cond):
|
156 |
+
""" Problem having an ITE in the cond. """
|
157 |
+
if cond.has(ITE):
|
158 |
+
return self._print(simplify_logic(cond))
|
159 |
+
else:
|
160 |
+
return self._print(cond)
|
161 |
+
exprs = '[{}]'.format(','.join(self._print(arg.expr) for arg in expr.args))
|
162 |
+
conds = '[{}]'.format(','.join(print_cond(arg.cond) for arg in expr.args))
|
163 |
+
# If [default_value, True] is a (expr, cond) sequence in a Piecewise object
|
164 |
+
# it will behave the same as passing the 'default' kwarg to select()
|
165 |
+
# *as long as* it is the last element in expr.args.
|
166 |
+
# If this is not the case, it may be triggered prematurely.
|
167 |
+
return '{}({}, {}, default={})'.format(
|
168 |
+
self._module_format(self._module + '.select'), conds, exprs,
|
169 |
+
self._print(S.NaN))
|
170 |
+
|
171 |
+
def _print_Relational(self, expr):
|
172 |
+
"Relational printer for Equality and Unequality"
|
173 |
+
op = {
|
174 |
+
'==' :'equal',
|
175 |
+
'!=' :'not_equal',
|
176 |
+
'<' :'less',
|
177 |
+
'<=' :'less_equal',
|
178 |
+
'>' :'greater',
|
179 |
+
'>=' :'greater_equal',
|
180 |
+
}
|
181 |
+
if expr.rel_op in op:
|
182 |
+
lhs = self._print(expr.lhs)
|
183 |
+
rhs = self._print(expr.rhs)
|
184 |
+
return '{op}({lhs}, {rhs})'.format(op=self._module_format(self._module + '.'+op[expr.rel_op]),
|
185 |
+
lhs=lhs, rhs=rhs)
|
186 |
+
return super()._print_Relational(expr)
|
187 |
+
|
188 |
+
def _print_And(self, expr):
|
189 |
+
"Logical And printer"
|
190 |
+
# We have to override LambdaPrinter because it uses Python 'and' keyword.
|
191 |
+
# If LambdaPrinter didn't define it, we could use StrPrinter's
|
192 |
+
# version of the function and add 'logical_and' to NUMPY_TRANSLATIONS.
|
193 |
+
return '{}.reduce(({}))'.format(self._module_format(self._module + '.logical_and'), ','.join(self._print(i) for i in expr.args))
|
194 |
+
|
195 |
+
def _print_Or(self, expr):
|
196 |
+
"Logical Or printer"
|
197 |
+
# We have to override LambdaPrinter because it uses Python 'or' keyword.
|
198 |
+
# If LambdaPrinter didn't define it, we could use StrPrinter's
|
199 |
+
# version of the function and add 'logical_or' to NUMPY_TRANSLATIONS.
|
200 |
+
return '{}.reduce(({}))'.format(self._module_format(self._module + '.logical_or'), ','.join(self._print(i) for i in expr.args))
|
201 |
+
|
202 |
+
def _print_Not(self, expr):
|
203 |
+
"Logical Not printer"
|
204 |
+
# We have to override LambdaPrinter because it uses Python 'not' keyword.
|
205 |
+
# If LambdaPrinter didn't define it, we would still have to define our
|
206 |
+
# own because StrPrinter doesn't define it.
|
207 |
+
return '{}({})'.format(self._module_format(self._module + '.logical_not'), ','.join(self._print(i) for i in expr.args))
|
208 |
+
|
209 |
+
def _print_Pow(self, expr, rational=False):
|
210 |
+
# XXX Workaround for negative integer power error
|
211 |
+
if expr.exp.is_integer and expr.exp.is_negative:
|
212 |
+
expr = Pow(expr.base, expr.exp.evalf(), evaluate=False)
|
213 |
+
return self._hprint_Pow(expr, rational=rational, sqrt=self._module + '.sqrt')
|
214 |
+
|
215 |
+
def _print_Min(self, expr):
|
216 |
+
return '{}(({}), axis=0)'.format(self._module_format(self._module + '.amin'), ','.join(self._print(i) for i in expr.args))
|
217 |
+
|
218 |
+
def _print_Max(self, expr):
|
219 |
+
return '{}(({}), axis=0)'.format(self._module_format(self._module + '.amax'), ','.join(self._print(i) for i in expr.args))
|
220 |
+
|
221 |
+
def _print_arg(self, expr):
|
222 |
+
return "%s(%s)" % (self._module_format(self._module + '.angle'), self._print(expr.args[0]))
|
223 |
+
|
224 |
+
def _print_im(self, expr):
|
225 |
+
return "%s(%s)" % (self._module_format(self._module + '.imag'), self._print(expr.args[0]))
|
226 |
+
|
227 |
+
def _print_Mod(self, expr):
|
228 |
+
return "%s(%s)" % (self._module_format(self._module + '.mod'), ', '.join(
|
229 |
+
(self._print(arg) for arg in expr.args)))
|
230 |
+
|
231 |
+
def _print_re(self, expr):
|
232 |
+
return "%s(%s)" % (self._module_format(self._module + '.real'), self._print(expr.args[0]))
|
233 |
+
|
234 |
+
def _print_sinc(self, expr):
|
235 |
+
return "%s(%s)" % (self._module_format(self._module + '.sinc'), self._print(expr.args[0]/S.Pi))
|
236 |
+
|
237 |
+
def _print_MatrixBase(self, expr):
|
238 |
+
func = self.known_functions.get(expr.__class__.__name__, None)
|
239 |
+
if func is None:
|
240 |
+
func = self._module_format(self._module + '.array')
|
241 |
+
return "%s(%s)" % (func, self._print(expr.tolist()))
|
242 |
+
|
243 |
+
def _print_Identity(self, expr):
|
244 |
+
shape = expr.shape
|
245 |
+
if all(dim.is_Integer for dim in shape):
|
246 |
+
return "%s(%s)" % (self._module_format(self._module + '.eye'), self._print(expr.shape[0]))
|
247 |
+
else:
|
248 |
+
raise NotImplementedError("Symbolic matrix dimensions are not yet supported for identity matrices")
|
249 |
+
|
250 |
+
def _print_BlockMatrix(self, expr):
|
251 |
+
return '{}({})'.format(self._module_format(self._module + '.block'),
|
252 |
+
self._print(expr.args[0].tolist()))
|
253 |
+
|
254 |
+
def _print_NDimArray(self, expr):
|
255 |
+
if len(expr.shape) == 1:
|
256 |
+
return self._module + '.array(' + self._print(expr.args[0]) + ')'
|
257 |
+
if len(expr.shape) == 2:
|
258 |
+
return self._print(expr.tomatrix())
|
259 |
+
# Should be possible to extend to more dimensions
|
260 |
+
return CodePrinter._print_not_supported(self, expr)
|
261 |
+
|
262 |
+
_add = "add"
|
263 |
+
_einsum = "einsum"
|
264 |
+
_transpose = "transpose"
|
265 |
+
_ones = "ones"
|
266 |
+
_zeros = "zeros"
|
267 |
+
|
268 |
+
_print_lowergamma = CodePrinter._print_not_supported
|
269 |
+
_print_uppergamma = CodePrinter._print_not_supported
|
270 |
+
_print_fresnelc = CodePrinter._print_not_supported
|
271 |
+
_print_fresnels = CodePrinter._print_not_supported
|
272 |
+
|
273 |
+
for func in _numpy_known_functions:
|
274 |
+
setattr(NumPyPrinter, f'_print_{func}', _print_known_func)
|
275 |
+
|
276 |
+
for const in _numpy_known_constants:
|
277 |
+
setattr(NumPyPrinter, f'_print_{const}', _print_known_const)
|
278 |
+
|
279 |
+
|
280 |
+
_known_functions_scipy_special = {
|
281 |
+
'Ei': 'expi',
|
282 |
+
'erf': 'erf',
|
283 |
+
'erfc': 'erfc',
|
284 |
+
'besselj': 'jv',
|
285 |
+
'bessely': 'yv',
|
286 |
+
'besseli': 'iv',
|
287 |
+
'besselk': 'kv',
|
288 |
+
'cosm1': 'cosm1',
|
289 |
+
'powm1': 'powm1',
|
290 |
+
'factorial': 'factorial',
|
291 |
+
'gamma': 'gamma',
|
292 |
+
'loggamma': 'gammaln',
|
293 |
+
'digamma': 'psi',
|
294 |
+
'polygamma': 'polygamma',
|
295 |
+
'RisingFactorial': 'poch',
|
296 |
+
'jacobi': 'eval_jacobi',
|
297 |
+
'gegenbauer': 'eval_gegenbauer',
|
298 |
+
'chebyshevt': 'eval_chebyt',
|
299 |
+
'chebyshevu': 'eval_chebyu',
|
300 |
+
'legendre': 'eval_legendre',
|
301 |
+
'hermite': 'eval_hermite',
|
302 |
+
'laguerre': 'eval_laguerre',
|
303 |
+
'assoc_laguerre': 'eval_genlaguerre',
|
304 |
+
'beta': 'beta',
|
305 |
+
'LambertW' : 'lambertw',
|
306 |
+
}
|
307 |
+
|
308 |
+
_known_constants_scipy_constants = {
|
309 |
+
'GoldenRatio': 'golden_ratio',
|
310 |
+
'Pi': 'pi',
|
311 |
+
}
|
312 |
+
_scipy_known_functions = {k : "scipy.special." + v for k, v in _known_functions_scipy_special.items()}
|
313 |
+
_scipy_known_constants = {k : "scipy.constants." + v for k, v in _known_constants_scipy_constants.items()}
|
314 |
+
|
315 |
+
class SciPyPrinter(NumPyPrinter):
|
316 |
+
|
317 |
+
_kf = {**NumPyPrinter._kf, **_scipy_known_functions}
|
318 |
+
_kc = {**NumPyPrinter._kc, **_scipy_known_constants}
|
319 |
+
|
320 |
+
def __init__(self, settings=None):
|
321 |
+
super().__init__(settings=settings)
|
322 |
+
self.language = "Python with SciPy and NumPy"
|
323 |
+
|
324 |
+
def _print_SparseRepMatrix(self, expr):
|
325 |
+
i, j, data = [], [], []
|
326 |
+
for (r, c), v in expr.todok().items():
|
327 |
+
i.append(r)
|
328 |
+
j.append(c)
|
329 |
+
data.append(v)
|
330 |
+
|
331 |
+
return "{name}(({data}, ({i}, {j})), shape={shape})".format(
|
332 |
+
name=self._module_format('scipy.sparse.coo_matrix'),
|
333 |
+
data=data, i=i, j=j, shape=expr.shape
|
334 |
+
)
|
335 |
+
|
336 |
+
_print_ImmutableSparseMatrix = _print_SparseRepMatrix
|
337 |
+
|
338 |
+
# SciPy's lpmv has a different order of arguments from assoc_legendre
|
339 |
+
def _print_assoc_legendre(self, expr):
|
340 |
+
return "{0}({2}, {1}, {3})".format(
|
341 |
+
self._module_format('scipy.special.lpmv'),
|
342 |
+
self._print(expr.args[0]),
|
343 |
+
self._print(expr.args[1]),
|
344 |
+
self._print(expr.args[2]))
|
345 |
+
|
346 |
+
def _print_lowergamma(self, expr):
|
347 |
+
return "{0}({2})*{1}({2}, {3})".format(
|
348 |
+
self._module_format('scipy.special.gamma'),
|
349 |
+
self._module_format('scipy.special.gammainc'),
|
350 |
+
self._print(expr.args[0]),
|
351 |
+
self._print(expr.args[1]))
|
352 |
+
|
353 |
+
def _print_uppergamma(self, expr):
|
354 |
+
return "{0}({2})*{1}({2}, {3})".format(
|
355 |
+
self._module_format('scipy.special.gamma'),
|
356 |
+
self._module_format('scipy.special.gammaincc'),
|
357 |
+
self._print(expr.args[0]),
|
358 |
+
self._print(expr.args[1]))
|
359 |
+
|
360 |
+
def _print_betainc(self, expr):
|
361 |
+
betainc = self._module_format('scipy.special.betainc')
|
362 |
+
beta = self._module_format('scipy.special.beta')
|
363 |
+
args = [self._print(arg) for arg in expr.args]
|
364 |
+
return f"({betainc}({args[0]}, {args[1]}, {args[3]}) - {betainc}({args[0]}, {args[1]}, {args[2]})) \
|
365 |
+
* {beta}({args[0]}, {args[1]})"
|
366 |
+
|
367 |
+
def _print_betainc_regularized(self, expr):
|
368 |
+
return "{0}({1}, {2}, {4}) - {0}({1}, {2}, {3})".format(
|
369 |
+
self._module_format('scipy.special.betainc'),
|
370 |
+
self._print(expr.args[0]),
|
371 |
+
self._print(expr.args[1]),
|
372 |
+
self._print(expr.args[2]),
|
373 |
+
self._print(expr.args[3]))
|
374 |
+
|
375 |
+
def _print_fresnels(self, expr):
|
376 |
+
return "{}({})[0]".format(
|
377 |
+
self._module_format("scipy.special.fresnel"),
|
378 |
+
self._print(expr.args[0]))
|
379 |
+
|
380 |
+
def _print_fresnelc(self, expr):
|
381 |
+
return "{}({})[1]".format(
|
382 |
+
self._module_format("scipy.special.fresnel"),
|
383 |
+
self._print(expr.args[0]))
|
384 |
+
|
385 |
+
def _print_airyai(self, expr):
|
386 |
+
return "{}({})[0]".format(
|
387 |
+
self._module_format("scipy.special.airy"),
|
388 |
+
self._print(expr.args[0]))
|
389 |
+
|
390 |
+
def _print_airyaiprime(self, expr):
|
391 |
+
return "{}({})[1]".format(
|
392 |
+
self._module_format("scipy.special.airy"),
|
393 |
+
self._print(expr.args[0]))
|
394 |
+
|
395 |
+
def _print_airybi(self, expr):
|
396 |
+
return "{}({})[2]".format(
|
397 |
+
self._module_format("scipy.special.airy"),
|
398 |
+
self._print(expr.args[0]))
|
399 |
+
|
400 |
+
def _print_airybiprime(self, expr):
|
401 |
+
return "{}({})[3]".format(
|
402 |
+
self._module_format("scipy.special.airy"),
|
403 |
+
self._print(expr.args[0]))
|
404 |
+
|
405 |
+
def _print_bernoulli(self, expr):
|
406 |
+
# scipy's bernoulli is inconsistent with SymPy's so rewrite
|
407 |
+
return self._print(expr._eval_rewrite_as_zeta(*expr.args))
|
408 |
+
|
409 |
+
def _print_harmonic(self, expr):
|
410 |
+
return self._print(expr._eval_rewrite_as_zeta(*expr.args))
|
411 |
+
|
412 |
+
def _print_Integral(self, e):
|
413 |
+
integration_vars, limits = _unpack_integral_limits(e)
|
414 |
+
|
415 |
+
if len(limits) == 1:
|
416 |
+
# nicer (but not necessary) to prefer quad over nquad for 1D case
|
417 |
+
module_str = self._module_format("scipy.integrate.quad")
|
418 |
+
limit_str = "%s, %s" % tuple(map(self._print, limits[0]))
|
419 |
+
else:
|
420 |
+
module_str = self._module_format("scipy.integrate.nquad")
|
421 |
+
limit_str = "({})".format(", ".join(
|
422 |
+
"(%s, %s)" % tuple(map(self._print, l)) for l in limits))
|
423 |
+
|
424 |
+
return "{}(lambda {}: {}, {})[0]".format(
|
425 |
+
module_str,
|
426 |
+
", ".join(map(self._print, integration_vars)),
|
427 |
+
self._print(e.args[0]),
|
428 |
+
limit_str)
|
429 |
+
|
430 |
+
def _print_Si(self, expr):
|
431 |
+
return "{}({})[0]".format(
|
432 |
+
self._module_format("scipy.special.sici"),
|
433 |
+
self._print(expr.args[0]))
|
434 |
+
|
435 |
+
def _print_Ci(self, expr):
|
436 |
+
return "{}({})[1]".format(
|
437 |
+
self._module_format("scipy.special.sici"),
|
438 |
+
self._print(expr.args[0]))
|
439 |
+
|
440 |
+
for func in _scipy_known_functions:
|
441 |
+
setattr(SciPyPrinter, f'_print_{func}', _print_known_func)
|
442 |
+
|
443 |
+
for const in _scipy_known_constants:
|
444 |
+
setattr(SciPyPrinter, f'_print_{const}', _print_known_const)
|
445 |
+
|
446 |
+
|
447 |
+
_cupy_known_functions = {k : "cupy." + v for k, v in _known_functions_numpy.items()}
|
448 |
+
_cupy_known_constants = {k : "cupy." + v for k, v in _known_constants_numpy.items()}
|
449 |
+
|
450 |
+
class CuPyPrinter(NumPyPrinter):
|
451 |
+
"""
|
452 |
+
CuPy printer which handles vectorized piecewise functions,
|
453 |
+
logical operators, etc.
|
454 |
+
"""
|
455 |
+
|
456 |
+
_module = 'cupy'
|
457 |
+
_kf = _cupy_known_functions
|
458 |
+
_kc = _cupy_known_constants
|
459 |
+
|
460 |
+
def __init__(self, settings=None):
|
461 |
+
super().__init__(settings=settings)
|
462 |
+
|
463 |
+
for func in _cupy_known_functions:
|
464 |
+
setattr(CuPyPrinter, f'_print_{func}', _print_known_func)
|
465 |
+
|
466 |
+
for const in _cupy_known_constants:
|
467 |
+
setattr(CuPyPrinter, f'_print_{const}', _print_known_const)
|
468 |
+
|
469 |
+
|
470 |
+
_jax_known_functions = {k: 'jax.numpy.' + v for k, v in _known_functions_numpy.items()}
|
471 |
+
_jax_known_constants = {k: 'jax.numpy.' + v for k, v in _known_constants_numpy.items()}
|
472 |
+
|
473 |
+
class JaxPrinter(NumPyPrinter):
|
474 |
+
"""
|
475 |
+
JAX printer which handles vectorized piecewise functions,
|
476 |
+
logical operators, etc.
|
477 |
+
"""
|
478 |
+
_module = "jax.numpy"
|
479 |
+
|
480 |
+
_kf = _jax_known_functions
|
481 |
+
_kc = _jax_known_constants
|
482 |
+
|
483 |
+
def __init__(self, settings=None):
|
484 |
+
super().__init__(settings=settings)
|
485 |
+
|
486 |
+
# These need specific override to allow for the lack of "jax.numpy.reduce"
|
487 |
+
def _print_And(self, expr):
|
488 |
+
"Logical And printer"
|
489 |
+
return "{}({}.asarray([{}]), axis=0)".format(
|
490 |
+
self._module_format(self._module + ".all"),
|
491 |
+
self._module_format(self._module),
|
492 |
+
",".join(self._print(i) for i in expr.args),
|
493 |
+
)
|
494 |
+
|
495 |
+
def _print_Or(self, expr):
|
496 |
+
"Logical Or printer"
|
497 |
+
return "{}({}.asarray([{}]), axis=0)".format(
|
498 |
+
self._module_format(self._module + ".any"),
|
499 |
+
self._module_format(self._module),
|
500 |
+
",".join(self._print(i) for i in expr.args),
|
501 |
+
)
|
502 |
+
|
503 |
+
for func in _jax_known_functions:
|
504 |
+
setattr(JaxPrinter, f'_print_{func}', _print_known_func)
|
505 |
+
|
506 |
+
for const in _jax_known_constants:
|
507 |
+
setattr(JaxPrinter, f'_print_{const}', _print_known_const)
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/octave.py
ADDED
@@ -0,0 +1,719 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Octave (and Matlab) code printer
|
3 |
+
|
4 |
+
The `OctaveCodePrinter` converts SymPy expressions into Octave expressions.
|
5 |
+
It uses a subset of the Octave language for Matlab compatibility.
|
6 |
+
|
7 |
+
A complete code generator, which uses `octave_code` extensively, can be found
|
8 |
+
in `sympy.utilities.codegen`. The `codegen` module can be used to generate
|
9 |
+
complete source code files.
|
10 |
+
|
11 |
+
"""
|
12 |
+
|
13 |
+
from __future__ import annotations
|
14 |
+
from typing import Any
|
15 |
+
|
16 |
+
from sympy.core import Mul, Pow, S, Rational
|
17 |
+
from sympy.core.mul import _keep_coeff
|
18 |
+
from sympy.core.numbers import equal_valued
|
19 |
+
from sympy.printing.codeprinter import CodePrinter
|
20 |
+
from sympy.printing.precedence import precedence, PRECEDENCE
|
21 |
+
from re import search
|
22 |
+
|
23 |
+
# List of known functions. First, those that have the same name in
|
24 |
+
# SymPy and Octave. This is almost certainly incomplete!
|
25 |
+
known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc",
|
26 |
+
"asin", "acos", "acot", "atan", "atan2", "asec", "acsc",
|
27 |
+
"sinh", "cosh", "tanh", "coth", "csch", "sech",
|
28 |
+
"asinh", "acosh", "atanh", "acoth", "asech", "acsch",
|
29 |
+
"erfc", "erfi", "erf", "erfinv", "erfcinv",
|
30 |
+
"besseli", "besselj", "besselk", "bessely",
|
31 |
+
"bernoulli", "beta", "euler", "exp", "factorial", "floor",
|
32 |
+
"fresnelc", "fresnels", "gamma", "harmonic", "log",
|
33 |
+
"polylog", "sign", "zeta", "legendre"]
|
34 |
+
|
35 |
+
# These functions have different names ("SymPy": "Octave"), more
|
36 |
+
# generally a mapping to (argument_conditions, octave_function).
|
37 |
+
known_fcns_src2 = {
|
38 |
+
"Abs": "abs",
|
39 |
+
"arg": "angle", # arg/angle ok in Octave but only angle in Matlab
|
40 |
+
"binomial": "bincoeff",
|
41 |
+
"ceiling": "ceil",
|
42 |
+
"chebyshevu": "chebyshevU",
|
43 |
+
"chebyshevt": "chebyshevT",
|
44 |
+
"Chi": "coshint",
|
45 |
+
"Ci": "cosint",
|
46 |
+
"conjugate": "conj",
|
47 |
+
"DiracDelta": "dirac",
|
48 |
+
"Heaviside": "heaviside",
|
49 |
+
"im": "imag",
|
50 |
+
"laguerre": "laguerreL",
|
51 |
+
"LambertW": "lambertw",
|
52 |
+
"li": "logint",
|
53 |
+
"loggamma": "gammaln",
|
54 |
+
"Max": "max",
|
55 |
+
"Min": "min",
|
56 |
+
"Mod": "mod",
|
57 |
+
"polygamma": "psi",
|
58 |
+
"re": "real",
|
59 |
+
"RisingFactorial": "pochhammer",
|
60 |
+
"Shi": "sinhint",
|
61 |
+
"Si": "sinint",
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
class OctaveCodePrinter(CodePrinter):
|
66 |
+
"""
|
67 |
+
A printer to convert expressions to strings of Octave/Matlab code.
|
68 |
+
"""
|
69 |
+
printmethod = "_octave"
|
70 |
+
language = "Octave"
|
71 |
+
|
72 |
+
_operators = {
|
73 |
+
'and': '&',
|
74 |
+
'or': '|',
|
75 |
+
'not': '~',
|
76 |
+
}
|
77 |
+
|
78 |
+
_default_settings: dict[str, Any] = {
|
79 |
+
'order': None,
|
80 |
+
'full_prec': 'auto',
|
81 |
+
'precision': 17,
|
82 |
+
'user_functions': {},
|
83 |
+
'human': True,
|
84 |
+
'allow_unknown_functions': False,
|
85 |
+
'contract': True,
|
86 |
+
'inline': True,
|
87 |
+
}
|
88 |
+
# Note: contract is for expressing tensors as loops (if True), or just
|
89 |
+
# assignment (if False). FIXME: this should be looked a more carefully
|
90 |
+
# for Octave.
|
91 |
+
|
92 |
+
|
93 |
+
def __init__(self, settings={}):
|
94 |
+
super().__init__(settings)
|
95 |
+
self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1))
|
96 |
+
self.known_functions.update(dict(known_fcns_src2))
|
97 |
+
userfuncs = settings.get('user_functions', {})
|
98 |
+
self.known_functions.update(userfuncs)
|
99 |
+
|
100 |
+
|
101 |
+
def _rate_index_position(self, p):
|
102 |
+
return p*5
|
103 |
+
|
104 |
+
|
105 |
+
def _get_statement(self, codestring):
|
106 |
+
return "%s;" % codestring
|
107 |
+
|
108 |
+
|
109 |
+
def _get_comment(self, text):
|
110 |
+
return "% {}".format(text)
|
111 |
+
|
112 |
+
|
113 |
+
def _declare_number_const(self, name, value):
|
114 |
+
return "{} = {};".format(name, value)
|
115 |
+
|
116 |
+
|
117 |
+
def _format_code(self, lines):
|
118 |
+
return self.indent_code(lines)
|
119 |
+
|
120 |
+
|
121 |
+
def _traverse_matrix_indices(self, mat):
|
122 |
+
# Octave uses Fortran order (column-major)
|
123 |
+
rows, cols = mat.shape
|
124 |
+
return ((i, j) for j in range(cols) for i in range(rows))
|
125 |
+
|
126 |
+
|
127 |
+
def _get_loop_opening_ending(self, indices):
|
128 |
+
open_lines = []
|
129 |
+
close_lines = []
|
130 |
+
for i in indices:
|
131 |
+
# Octave arrays start at 1 and end at dimension
|
132 |
+
var, start, stop = map(self._print,
|
133 |
+
[i.label, i.lower + 1, i.upper + 1])
|
134 |
+
open_lines.append("for %s = %s:%s" % (var, start, stop))
|
135 |
+
close_lines.append("end")
|
136 |
+
return open_lines, close_lines
|
137 |
+
|
138 |
+
|
139 |
+
def _print_Mul(self, expr):
|
140 |
+
# print complex numbers nicely in Octave
|
141 |
+
if (expr.is_number and expr.is_imaginary and
|
142 |
+
(S.ImaginaryUnit*expr).is_Integer):
|
143 |
+
return "%si" % self._print(-S.ImaginaryUnit*expr)
|
144 |
+
|
145 |
+
# cribbed from str.py
|
146 |
+
prec = precedence(expr)
|
147 |
+
|
148 |
+
c, e = expr.as_coeff_Mul()
|
149 |
+
if c < 0:
|
150 |
+
expr = _keep_coeff(-c, e)
|
151 |
+
sign = "-"
|
152 |
+
else:
|
153 |
+
sign = ""
|
154 |
+
|
155 |
+
a = [] # items in the numerator
|
156 |
+
b = [] # items that are in the denominator (if any)
|
157 |
+
|
158 |
+
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
|
159 |
+
|
160 |
+
if self.order not in ('old', 'none'):
|
161 |
+
args = expr.as_ordered_factors()
|
162 |
+
else:
|
163 |
+
# use make_args in case expr was something like -x -> x
|
164 |
+
args = Mul.make_args(expr)
|
165 |
+
|
166 |
+
# Gather args for numerator/denominator
|
167 |
+
for item in args:
|
168 |
+
if (item.is_commutative and item.is_Pow and item.exp.is_Rational
|
169 |
+
and item.exp.is_negative):
|
170 |
+
if item.exp != -1:
|
171 |
+
b.append(Pow(item.base, -item.exp, evaluate=False))
|
172 |
+
else:
|
173 |
+
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
|
174 |
+
pow_paren.append(item)
|
175 |
+
b.append(Pow(item.base, -item.exp))
|
176 |
+
elif item.is_Rational and item is not S.Infinity:
|
177 |
+
if item.p != 1:
|
178 |
+
a.append(Rational(item.p))
|
179 |
+
if item.q != 1:
|
180 |
+
b.append(Rational(item.q))
|
181 |
+
else:
|
182 |
+
a.append(item)
|
183 |
+
|
184 |
+
a = a or [S.One]
|
185 |
+
|
186 |
+
a_str = [self.parenthesize(x, prec) for x in a]
|
187 |
+
b_str = [self.parenthesize(x, prec) for x in b]
|
188 |
+
|
189 |
+
# To parenthesize Pow with exp = -1 and having more than one Symbol
|
190 |
+
for item in pow_paren:
|
191 |
+
if item.base in b:
|
192 |
+
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
|
193 |
+
|
194 |
+
# from here it differs from str.py to deal with "*" and ".*"
|
195 |
+
def multjoin(a, a_str):
|
196 |
+
# here we probably are assuming the constants will come first
|
197 |
+
r = a_str[0]
|
198 |
+
for i in range(1, len(a)):
|
199 |
+
mulsym = '*' if a[i-1].is_number else '.*'
|
200 |
+
r = r + mulsym + a_str[i]
|
201 |
+
return r
|
202 |
+
|
203 |
+
if not b:
|
204 |
+
return sign + multjoin(a, a_str)
|
205 |
+
elif len(b) == 1:
|
206 |
+
divsym = '/' if b[0].is_number else './'
|
207 |
+
return sign + multjoin(a, a_str) + divsym + b_str[0]
|
208 |
+
else:
|
209 |
+
divsym = '/' if all(bi.is_number for bi in b) else './'
|
210 |
+
return (sign + multjoin(a, a_str) +
|
211 |
+
divsym + "(%s)" % multjoin(b, b_str))
|
212 |
+
|
213 |
+
def _print_Relational(self, expr):
|
214 |
+
lhs_code = self._print(expr.lhs)
|
215 |
+
rhs_code = self._print(expr.rhs)
|
216 |
+
op = expr.rel_op
|
217 |
+
return "{} {} {}".format(lhs_code, op, rhs_code)
|
218 |
+
|
219 |
+
def _print_Pow(self, expr):
|
220 |
+
powsymbol = '^' if all(x.is_number for x in expr.args) else '.^'
|
221 |
+
|
222 |
+
PREC = precedence(expr)
|
223 |
+
|
224 |
+
if equal_valued(expr.exp, 0.5):
|
225 |
+
return "sqrt(%s)" % self._print(expr.base)
|
226 |
+
|
227 |
+
if expr.is_commutative:
|
228 |
+
if equal_valued(expr.exp, -0.5):
|
229 |
+
sym = '/' if expr.base.is_number else './'
|
230 |
+
return "1" + sym + "sqrt(%s)" % self._print(expr.base)
|
231 |
+
if equal_valued(expr.exp, -1):
|
232 |
+
sym = '/' if expr.base.is_number else './'
|
233 |
+
return "1" + sym + "%s" % self.parenthesize(expr.base, PREC)
|
234 |
+
|
235 |
+
return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol,
|
236 |
+
self.parenthesize(expr.exp, PREC))
|
237 |
+
|
238 |
+
|
239 |
+
def _print_MatPow(self, expr):
|
240 |
+
PREC = precedence(expr)
|
241 |
+
return '%s^%s' % (self.parenthesize(expr.base, PREC),
|
242 |
+
self.parenthesize(expr.exp, PREC))
|
243 |
+
|
244 |
+
def _print_MatrixSolve(self, expr):
|
245 |
+
PREC = precedence(expr)
|
246 |
+
return "%s \\ %s" % (self.parenthesize(expr.matrix, PREC),
|
247 |
+
self.parenthesize(expr.vector, PREC))
|
248 |
+
|
249 |
+
def _print_Pi(self, expr):
|
250 |
+
return 'pi'
|
251 |
+
|
252 |
+
|
253 |
+
def _print_ImaginaryUnit(self, expr):
|
254 |
+
return "1i"
|
255 |
+
|
256 |
+
|
257 |
+
def _print_Exp1(self, expr):
|
258 |
+
return "exp(1)"
|
259 |
+
|
260 |
+
|
261 |
+
def _print_GoldenRatio(self, expr):
|
262 |
+
# FIXME: how to do better, e.g., for octave_code(2*GoldenRatio)?
|
263 |
+
#return self._print((1+sqrt(S(5)))/2)
|
264 |
+
return "(1+sqrt(5))/2"
|
265 |
+
|
266 |
+
|
267 |
+
def _print_Assignment(self, expr):
|
268 |
+
from sympy.codegen.ast import Assignment
|
269 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
270 |
+
from sympy.tensor.indexed import IndexedBase
|
271 |
+
# Copied from codeprinter, but remove special MatrixSymbol treatment
|
272 |
+
lhs = expr.lhs
|
273 |
+
rhs = expr.rhs
|
274 |
+
# We special case assignments that take multiple lines
|
275 |
+
if not self._settings["inline"] and isinstance(expr.rhs, Piecewise):
|
276 |
+
# Here we modify Piecewise so each expression is now
|
277 |
+
# an Assignment, and then continue on the print.
|
278 |
+
expressions = []
|
279 |
+
conditions = []
|
280 |
+
for (e, c) in rhs.args:
|
281 |
+
expressions.append(Assignment(lhs, e))
|
282 |
+
conditions.append(c)
|
283 |
+
temp = Piecewise(*zip(expressions, conditions))
|
284 |
+
return self._print(temp)
|
285 |
+
if self._settings["contract"] and (lhs.has(IndexedBase) or
|
286 |
+
rhs.has(IndexedBase)):
|
287 |
+
# Here we check if there is looping to be done, and if so
|
288 |
+
# print the required loops.
|
289 |
+
return self._doprint_loops(rhs, lhs)
|
290 |
+
else:
|
291 |
+
lhs_code = self._print(lhs)
|
292 |
+
rhs_code = self._print(rhs)
|
293 |
+
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
|
294 |
+
|
295 |
+
|
296 |
+
def _print_Infinity(self, expr):
|
297 |
+
return 'inf'
|
298 |
+
|
299 |
+
|
300 |
+
def _print_NegativeInfinity(self, expr):
|
301 |
+
return '-inf'
|
302 |
+
|
303 |
+
|
304 |
+
def _print_NaN(self, expr):
|
305 |
+
return 'NaN'
|
306 |
+
|
307 |
+
|
308 |
+
def _print_list(self, expr):
|
309 |
+
return '{' + ', '.join(self._print(a) for a in expr) + '}'
|
310 |
+
_print_tuple = _print_list
|
311 |
+
_print_Tuple = _print_list
|
312 |
+
_print_List = _print_list
|
313 |
+
|
314 |
+
|
315 |
+
def _print_BooleanTrue(self, expr):
|
316 |
+
return "true"
|
317 |
+
|
318 |
+
|
319 |
+
def _print_BooleanFalse(self, expr):
|
320 |
+
return "false"
|
321 |
+
|
322 |
+
|
323 |
+
def _print_bool(self, expr):
|
324 |
+
return str(expr).lower()
|
325 |
+
|
326 |
+
|
327 |
+
# Could generate quadrature code for definite Integrals?
|
328 |
+
#_print_Integral = _print_not_supported
|
329 |
+
|
330 |
+
|
331 |
+
def _print_MatrixBase(self, A):
|
332 |
+
# Handle zero dimensions:
|
333 |
+
if (A.rows, A.cols) == (0, 0):
|
334 |
+
return '[]'
|
335 |
+
elif S.Zero in A.shape:
|
336 |
+
return 'zeros(%s, %s)' % (A.rows, A.cols)
|
337 |
+
elif (A.rows, A.cols) == (1, 1):
|
338 |
+
# Octave does not distinguish between scalars and 1x1 matrices
|
339 |
+
return self._print(A[0, 0])
|
340 |
+
return "[%s]" % "; ".join(" ".join([self._print(a) for a in A[r, :]])
|
341 |
+
for r in range(A.rows))
|
342 |
+
|
343 |
+
|
344 |
+
def _print_SparseRepMatrix(self, A):
|
345 |
+
from sympy.matrices import Matrix
|
346 |
+
L = A.col_list();
|
347 |
+
# make row vectors of the indices and entries
|
348 |
+
I = Matrix([[k[0] + 1 for k in L]])
|
349 |
+
J = Matrix([[k[1] + 1 for k in L]])
|
350 |
+
AIJ = Matrix([[k[2] for k in L]])
|
351 |
+
return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J),
|
352 |
+
self._print(AIJ), A.rows, A.cols)
|
353 |
+
|
354 |
+
|
355 |
+
def _print_MatrixElement(self, expr):
|
356 |
+
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
|
357 |
+
+ '(%s, %s)' % (expr.i + 1, expr.j + 1)
|
358 |
+
|
359 |
+
|
360 |
+
def _print_MatrixSlice(self, expr):
|
361 |
+
def strslice(x, lim):
|
362 |
+
l = x[0] + 1
|
363 |
+
h = x[1]
|
364 |
+
step = x[2]
|
365 |
+
lstr = self._print(l)
|
366 |
+
hstr = 'end' if h == lim else self._print(h)
|
367 |
+
if step == 1:
|
368 |
+
if l == 1 and h == lim:
|
369 |
+
return ':'
|
370 |
+
if l == h:
|
371 |
+
return lstr
|
372 |
+
else:
|
373 |
+
return lstr + ':' + hstr
|
374 |
+
else:
|
375 |
+
return ':'.join((lstr, self._print(step), hstr))
|
376 |
+
return (self._print(expr.parent) + '(' +
|
377 |
+
strslice(expr.rowslice, expr.parent.shape[0]) + ', ' +
|
378 |
+
strslice(expr.colslice, expr.parent.shape[1]) + ')')
|
379 |
+
|
380 |
+
|
381 |
+
def _print_Indexed(self, expr):
|
382 |
+
inds = [ self._print(i) for i in expr.indices ]
|
383 |
+
return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds))
|
384 |
+
|
385 |
+
|
386 |
+
def _print_Idx(self, expr):
|
387 |
+
return self._print(expr.label)
|
388 |
+
|
389 |
+
|
390 |
+
def _print_KroneckerDelta(self, expr):
|
391 |
+
prec = PRECEDENCE["Pow"]
|
392 |
+
return "double(%s == %s)" % tuple(self.parenthesize(x, prec)
|
393 |
+
for x in expr.args)
|
394 |
+
|
395 |
+
def _print_HadamardProduct(self, expr):
|
396 |
+
return '.*'.join([self.parenthesize(arg, precedence(expr))
|
397 |
+
for arg in expr.args])
|
398 |
+
|
399 |
+
def _print_HadamardPower(self, expr):
|
400 |
+
PREC = precedence(expr)
|
401 |
+
return '.**'.join([
|
402 |
+
self.parenthesize(expr.base, PREC),
|
403 |
+
self.parenthesize(expr.exp, PREC)
|
404 |
+
])
|
405 |
+
|
406 |
+
def _print_Identity(self, expr):
|
407 |
+
shape = expr.shape
|
408 |
+
if len(shape) == 2 and shape[0] == shape[1]:
|
409 |
+
shape = [shape[0]]
|
410 |
+
s = ", ".join(self._print(n) for n in shape)
|
411 |
+
return "eye(" + s + ")"
|
412 |
+
|
413 |
+
def _print_lowergamma(self, expr):
|
414 |
+
# Octave implements regularized incomplete gamma function
|
415 |
+
return "(gammainc({1}, {0}).*gamma({0}))".format(
|
416 |
+
self._print(expr.args[0]), self._print(expr.args[1]))
|
417 |
+
|
418 |
+
|
419 |
+
def _print_uppergamma(self, expr):
|
420 |
+
return "(gammainc({1}, {0}, 'upper').*gamma({0}))".format(
|
421 |
+
self._print(expr.args[0]), self._print(expr.args[1]))
|
422 |
+
|
423 |
+
|
424 |
+
def _print_sinc(self, expr):
|
425 |
+
#Note: Divide by pi because Octave implements normalized sinc function.
|
426 |
+
return "sinc(%s)" % self._print(expr.args[0]/S.Pi)
|
427 |
+
|
428 |
+
|
429 |
+
def _print_hankel1(self, expr):
|
430 |
+
return "besselh(%s, 1, %s)" % (self._print(expr.order),
|
431 |
+
self._print(expr.argument))
|
432 |
+
|
433 |
+
|
434 |
+
def _print_hankel2(self, expr):
|
435 |
+
return "besselh(%s, 2, %s)" % (self._print(expr.order),
|
436 |
+
self._print(expr.argument))
|
437 |
+
|
438 |
+
|
439 |
+
# Note: as of 2015, Octave doesn't have spherical Bessel functions
|
440 |
+
def _print_jn(self, expr):
|
441 |
+
from sympy.functions import sqrt, besselj
|
442 |
+
x = expr.argument
|
443 |
+
expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x)
|
444 |
+
return self._print(expr2)
|
445 |
+
|
446 |
+
|
447 |
+
def _print_yn(self, expr):
|
448 |
+
from sympy.functions import sqrt, bessely
|
449 |
+
x = expr.argument
|
450 |
+
expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x)
|
451 |
+
return self._print(expr2)
|
452 |
+
|
453 |
+
|
454 |
+
def _print_airyai(self, expr):
|
455 |
+
return "airy(0, %s)" % self._print(expr.args[0])
|
456 |
+
|
457 |
+
|
458 |
+
def _print_airyaiprime(self, expr):
|
459 |
+
return "airy(1, %s)" % self._print(expr.args[0])
|
460 |
+
|
461 |
+
|
462 |
+
def _print_airybi(self, expr):
|
463 |
+
return "airy(2, %s)" % self._print(expr.args[0])
|
464 |
+
|
465 |
+
|
466 |
+
def _print_airybiprime(self, expr):
|
467 |
+
return "airy(3, %s)" % self._print(expr.args[0])
|
468 |
+
|
469 |
+
|
470 |
+
def _print_expint(self, expr):
|
471 |
+
mu, x = expr.args
|
472 |
+
if mu != 1:
|
473 |
+
return self._print_not_supported(expr)
|
474 |
+
return "expint(%s)" % self._print(x)
|
475 |
+
|
476 |
+
|
477 |
+
def _one_or_two_reversed_args(self, expr):
|
478 |
+
assert len(expr.args) <= 2
|
479 |
+
return '{name}({args})'.format(
|
480 |
+
name=self.known_functions[expr.__class__.__name__],
|
481 |
+
args=", ".join([self._print(x) for x in reversed(expr.args)])
|
482 |
+
)
|
483 |
+
|
484 |
+
|
485 |
+
_print_DiracDelta = _print_LambertW = _one_or_two_reversed_args
|
486 |
+
|
487 |
+
|
488 |
+
def _nested_binary_math_func(self, expr):
|
489 |
+
return '{name}({arg1}, {arg2})'.format(
|
490 |
+
name=self.known_functions[expr.__class__.__name__],
|
491 |
+
arg1=self._print(expr.args[0]),
|
492 |
+
arg2=self._print(expr.func(*expr.args[1:]))
|
493 |
+
)
|
494 |
+
|
495 |
+
_print_Max = _print_Min = _nested_binary_math_func
|
496 |
+
|
497 |
+
|
498 |
+
def _print_Piecewise(self, expr):
|
499 |
+
if expr.args[-1].cond != True:
|
500 |
+
# We need the last conditional to be a True, otherwise the resulting
|
501 |
+
# function may not return a result.
|
502 |
+
raise ValueError("All Piecewise expressions must contain an "
|
503 |
+
"(expr, True) statement to be used as a default "
|
504 |
+
"condition. Without one, the generated "
|
505 |
+
"expression may not evaluate to anything under "
|
506 |
+
"some condition.")
|
507 |
+
lines = []
|
508 |
+
if self._settings["inline"]:
|
509 |
+
# Express each (cond, expr) pair in a nested Horner form:
|
510 |
+
# (condition) .* (expr) + (not cond) .* (<others>)
|
511 |
+
# Expressions that result in multiple statements won't work here.
|
512 |
+
ecpairs = ["({0}).*({1}) + (~({0})).*(".format
|
513 |
+
(self._print(c), self._print(e))
|
514 |
+
for e, c in expr.args[:-1]]
|
515 |
+
elast = "%s" % self._print(expr.args[-1].expr)
|
516 |
+
pw = " ...\n".join(ecpairs) + elast + ")"*len(ecpairs)
|
517 |
+
# Note: current need these outer brackets for 2*pw. Would be
|
518 |
+
# nicer to teach parenthesize() to do this for us when needed!
|
519 |
+
return "(" + pw + ")"
|
520 |
+
else:
|
521 |
+
for i, (e, c) in enumerate(expr.args):
|
522 |
+
if i == 0:
|
523 |
+
lines.append("if (%s)" % self._print(c))
|
524 |
+
elif i == len(expr.args) - 1 and c == True:
|
525 |
+
lines.append("else")
|
526 |
+
else:
|
527 |
+
lines.append("elseif (%s)" % self._print(c))
|
528 |
+
code0 = self._print(e)
|
529 |
+
lines.append(code0)
|
530 |
+
if i == len(expr.args) - 1:
|
531 |
+
lines.append("end")
|
532 |
+
return "\n".join(lines)
|
533 |
+
|
534 |
+
|
535 |
+
def _print_zeta(self, expr):
|
536 |
+
if len(expr.args) == 1:
|
537 |
+
return "zeta(%s)" % self._print(expr.args[0])
|
538 |
+
else:
|
539 |
+
# Matlab two argument zeta is not equivalent to SymPy's
|
540 |
+
return self._print_not_supported(expr)
|
541 |
+
|
542 |
+
|
543 |
+
def indent_code(self, code):
|
544 |
+
"""Accepts a string of code or a list of code lines"""
|
545 |
+
|
546 |
+
# code mostly copied from ccode
|
547 |
+
if isinstance(code, str):
|
548 |
+
code_lines = self.indent_code(code.splitlines(True))
|
549 |
+
return ''.join(code_lines)
|
550 |
+
|
551 |
+
tab = " "
|
552 |
+
inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ')
|
553 |
+
dec_regex = ('^end$', '^elseif ', '^else$')
|
554 |
+
|
555 |
+
# pre-strip left-space from the code
|
556 |
+
code = [ line.lstrip(' \t') for line in code ]
|
557 |
+
|
558 |
+
increase = [ int(any(search(re, line) for re in inc_regex))
|
559 |
+
for line in code ]
|
560 |
+
decrease = [ int(any(search(re, line) for re in dec_regex))
|
561 |
+
for line in code ]
|
562 |
+
|
563 |
+
pretty = []
|
564 |
+
level = 0
|
565 |
+
for n, line in enumerate(code):
|
566 |
+
if line in ('', '\n'):
|
567 |
+
pretty.append(line)
|
568 |
+
continue
|
569 |
+
level -= decrease[n]
|
570 |
+
pretty.append("%s%s" % (tab*level, line))
|
571 |
+
level += increase[n]
|
572 |
+
return pretty
|
573 |
+
|
574 |
+
|
575 |
+
def octave_code(expr, assign_to=None, **settings):
|
576 |
+
r"""Converts `expr` to a string of Octave (or Matlab) code.
|
577 |
+
|
578 |
+
The string uses a subset of the Octave language for Matlab compatibility.
|
579 |
+
|
580 |
+
Parameters
|
581 |
+
==========
|
582 |
+
|
583 |
+
expr : Expr
|
584 |
+
A SymPy expression to be converted.
|
585 |
+
assign_to : optional
|
586 |
+
When given, the argument is used as the name of the variable to which
|
587 |
+
the expression is assigned. Can be a string, ``Symbol``,
|
588 |
+
``MatrixSymbol``, or ``Indexed`` type. This can be helpful for
|
589 |
+
expressions that generate multi-line statements.
|
590 |
+
precision : integer, optional
|
591 |
+
The precision for numbers such as pi [default=16].
|
592 |
+
user_functions : dict, optional
|
593 |
+
A dictionary where keys are ``FunctionClass`` instances and values are
|
594 |
+
their string representations. Alternatively, the dictionary value can
|
595 |
+
be a list of tuples i.e. [(argument_test, cfunction_string)]. See
|
596 |
+
below for examples.
|
597 |
+
human : bool, optional
|
598 |
+
If True, the result is a single string that may contain some constant
|
599 |
+
declarations for the number symbols. If False, the same information is
|
600 |
+
returned in a tuple of (symbols_to_declare, not_supported_functions,
|
601 |
+
code_text). [default=True].
|
602 |
+
contract: bool, optional
|
603 |
+
If True, ``Indexed`` instances are assumed to obey tensor contraction
|
604 |
+
rules and the corresponding nested loops over indices are generated.
|
605 |
+
Setting contract=False will not generate loops, instead the user is
|
606 |
+
responsible to provide values for the indices in the code.
|
607 |
+
[default=True].
|
608 |
+
inline: bool, optional
|
609 |
+
If True, we try to create single-statement code instead of multiple
|
610 |
+
statements. [default=True].
|
611 |
+
|
612 |
+
Examples
|
613 |
+
========
|
614 |
+
|
615 |
+
>>> from sympy import octave_code, symbols, sin, pi
|
616 |
+
>>> x = symbols('x')
|
617 |
+
>>> octave_code(sin(x).series(x).removeO())
|
618 |
+
'x.^5/120 - x.^3/6 + x'
|
619 |
+
|
620 |
+
>>> from sympy import Rational, ceiling
|
621 |
+
>>> x, y, tau = symbols("x, y, tau")
|
622 |
+
>>> octave_code((2*tau)**Rational(7, 2))
|
623 |
+
'8*sqrt(2)*tau.^(7/2)'
|
624 |
+
|
625 |
+
Note that element-wise (Hadamard) operations are used by default between
|
626 |
+
symbols. This is because its very common in Octave to write "vectorized"
|
627 |
+
code. It is harmless if the values are scalars.
|
628 |
+
|
629 |
+
>>> octave_code(sin(pi*x*y), assign_to="s")
|
630 |
+
's = sin(pi*x.*y);'
|
631 |
+
|
632 |
+
If you need a matrix product "*" or matrix power "^", you can specify the
|
633 |
+
symbol as a ``MatrixSymbol``.
|
634 |
+
|
635 |
+
>>> from sympy import Symbol, MatrixSymbol
|
636 |
+
>>> n = Symbol('n', integer=True, positive=True)
|
637 |
+
>>> A = MatrixSymbol('A', n, n)
|
638 |
+
>>> octave_code(3*pi*A**3)
|
639 |
+
'(3*pi)*A^3'
|
640 |
+
|
641 |
+
This class uses several rules to decide which symbol to use a product.
|
642 |
+
Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
|
643 |
+
A HadamardProduct can be used to specify componentwise multiplication ".*"
|
644 |
+
of two MatrixSymbols. There is currently there is no easy way to specify
|
645 |
+
scalar symbols, so sometimes the code might have some minor cosmetic
|
646 |
+
issues. For example, suppose x and y are scalars and A is a Matrix, then
|
647 |
+
while a human programmer might write "(x^2*y)*A^3", we generate:
|
648 |
+
|
649 |
+
>>> octave_code(x**2*y*A**3)
|
650 |
+
'(x.^2.*y)*A^3'
|
651 |
+
|
652 |
+
Matrices are supported using Octave inline notation. When using
|
653 |
+
``assign_to`` with matrices, the name can be specified either as a string
|
654 |
+
or as a ``MatrixSymbol``. The dimensions must align in the latter case.
|
655 |
+
|
656 |
+
>>> from sympy import Matrix, MatrixSymbol
|
657 |
+
>>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
|
658 |
+
>>> octave_code(mat, assign_to='A')
|
659 |
+
'A = [x.^2 sin(x) ceil(x)];'
|
660 |
+
|
661 |
+
``Piecewise`` expressions are implemented with logical masking by default.
|
662 |
+
Alternatively, you can pass "inline=False" to use if-else conditionals.
|
663 |
+
Note that if the ``Piecewise`` lacks a default term, represented by
|
664 |
+
``(expr, True)`` then an error will be thrown. This is to prevent
|
665 |
+
generating an expression that may not evaluate to anything.
|
666 |
+
|
667 |
+
>>> from sympy import Piecewise
|
668 |
+
>>> pw = Piecewise((x + 1, x > 0), (x, True))
|
669 |
+
>>> octave_code(pw, assign_to=tau)
|
670 |
+
'tau = ((x > 0).*(x + 1) + (~(x > 0)).*(x));'
|
671 |
+
|
672 |
+
Note that any expression that can be generated normally can also exist
|
673 |
+
inside a Matrix:
|
674 |
+
|
675 |
+
>>> mat = Matrix([[x**2, pw, sin(x)]])
|
676 |
+
>>> octave_code(mat, assign_to='A')
|
677 |
+
'A = [x.^2 ((x > 0).*(x + 1) + (~(x > 0)).*(x)) sin(x)];'
|
678 |
+
|
679 |
+
Custom printing can be defined for certain types by passing a dictionary of
|
680 |
+
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
|
681 |
+
dictionary value can be a list of tuples i.e., [(argument_test,
|
682 |
+
cfunction_string)]. This can be used to call a custom Octave function.
|
683 |
+
|
684 |
+
>>> from sympy import Function
|
685 |
+
>>> f = Function('f')
|
686 |
+
>>> g = Function('g')
|
687 |
+
>>> custom_functions = {
|
688 |
+
... "f": "existing_octave_fcn",
|
689 |
+
... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
|
690 |
+
... (lambda x: not x.is_Matrix, "my_fcn")]
|
691 |
+
... }
|
692 |
+
>>> mat = Matrix([[1, x]])
|
693 |
+
>>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
|
694 |
+
'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
|
695 |
+
|
696 |
+
Support for loops is provided through ``Indexed`` types. With
|
697 |
+
``contract=True`` these expressions will be turned into loops, whereas
|
698 |
+
``contract=False`` will just print the assignment expression that should be
|
699 |
+
looped over:
|
700 |
+
|
701 |
+
>>> from sympy import Eq, IndexedBase, Idx
|
702 |
+
>>> len_y = 5
|
703 |
+
>>> y = IndexedBase('y', shape=(len_y,))
|
704 |
+
>>> t = IndexedBase('t', shape=(len_y,))
|
705 |
+
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
|
706 |
+
>>> i = Idx('i', len_y-1)
|
707 |
+
>>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
|
708 |
+
>>> octave_code(e.rhs, assign_to=e.lhs, contract=False)
|
709 |
+
'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));'
|
710 |
+
"""
|
711 |
+
return OctaveCodePrinter(settings).doprint(expr, assign_to)
|
712 |
+
|
713 |
+
|
714 |
+
def print_octave_code(expr, **settings):
|
715 |
+
"""Prints the Octave (or Matlab) representation of the given expression.
|
716 |
+
|
717 |
+
See `octave_code` for the meaning of the optional arguments.
|
718 |
+
"""
|
719 |
+
print(octave_code(expr, **settings))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/preview.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from os.path import join
|
3 |
+
import shutil
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
try:
|
7 |
+
from subprocess import STDOUT, CalledProcessError, check_output
|
8 |
+
except ImportError:
|
9 |
+
pass
|
10 |
+
|
11 |
+
from sympy.utilities.decorator import doctest_depends_on
|
12 |
+
from sympy.utilities.misc import debug
|
13 |
+
from .latex import latex
|
14 |
+
|
15 |
+
__doctest_requires__ = {('preview',): ['pyglet']}
|
16 |
+
|
17 |
+
|
18 |
+
def _check_output_no_window(*args, **kwargs):
|
19 |
+
# Avoid showing a cmd.exe window when running this
|
20 |
+
# on Windows
|
21 |
+
if os.name == 'nt':
|
22 |
+
creation_flag = 0x08000000 # CREATE_NO_WINDOW
|
23 |
+
else:
|
24 |
+
creation_flag = 0 # Default value
|
25 |
+
return check_output(*args, creationflags=creation_flag, **kwargs)
|
26 |
+
|
27 |
+
|
28 |
+
def system_default_viewer(fname, fmt):
|
29 |
+
""" Open fname with the default system viewer.
|
30 |
+
|
31 |
+
In practice, it is impossible for python to know when the system viewer is
|
32 |
+
done. For this reason, we ensure the passed file will not be deleted under
|
33 |
+
it, and this function does not attempt to block.
|
34 |
+
"""
|
35 |
+
# copy to a new temporary file that will not be deleted
|
36 |
+
with tempfile.NamedTemporaryFile(prefix='sympy-preview-',
|
37 |
+
suffix=os.path.splitext(fname)[1],
|
38 |
+
delete=False) as temp_f:
|
39 |
+
with open(fname, 'rb') as f:
|
40 |
+
shutil.copyfileobj(f, temp_f)
|
41 |
+
|
42 |
+
import platform
|
43 |
+
if platform.system() == 'Darwin':
|
44 |
+
import subprocess
|
45 |
+
subprocess.call(('open', temp_f.name))
|
46 |
+
elif platform.system() == 'Windows':
|
47 |
+
os.startfile(temp_f.name)
|
48 |
+
else:
|
49 |
+
import subprocess
|
50 |
+
subprocess.call(('xdg-open', temp_f.name))
|
51 |
+
|
52 |
+
|
53 |
+
def pyglet_viewer(fname, fmt):
|
54 |
+
try:
|
55 |
+
from pyglet import window, image, gl
|
56 |
+
from pyglet.window import key
|
57 |
+
from pyglet.image.codecs import ImageDecodeException
|
58 |
+
except ImportError:
|
59 |
+
raise ImportError("pyglet is required for preview.\n visit https://pyglet.org/")
|
60 |
+
|
61 |
+
try:
|
62 |
+
img = image.load(fname)
|
63 |
+
except ImageDecodeException:
|
64 |
+
raise ValueError("pyglet preview does not work for '{}' files.".format(fmt))
|
65 |
+
|
66 |
+
offset = 25
|
67 |
+
|
68 |
+
config = gl.Config(double_buffer=False)
|
69 |
+
win = window.Window(
|
70 |
+
width=img.width + 2*offset,
|
71 |
+
height=img.height + 2*offset,
|
72 |
+
caption="SymPy",
|
73 |
+
resizable=False,
|
74 |
+
config=config
|
75 |
+
)
|
76 |
+
|
77 |
+
win.set_vsync(False)
|
78 |
+
|
79 |
+
try:
|
80 |
+
def on_close():
|
81 |
+
win.has_exit = True
|
82 |
+
|
83 |
+
win.on_close = on_close
|
84 |
+
|
85 |
+
def on_key_press(symbol, modifiers):
|
86 |
+
if symbol in [key.Q, key.ESCAPE]:
|
87 |
+
on_close()
|
88 |
+
|
89 |
+
win.on_key_press = on_key_press
|
90 |
+
|
91 |
+
def on_expose():
|
92 |
+
gl.glClearColor(1.0, 1.0, 1.0, 1.0)
|
93 |
+
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
|
94 |
+
|
95 |
+
img.blit(
|
96 |
+
(win.width - img.width) / 2,
|
97 |
+
(win.height - img.height) / 2
|
98 |
+
)
|
99 |
+
|
100 |
+
win.on_expose = on_expose
|
101 |
+
|
102 |
+
while not win.has_exit:
|
103 |
+
win.dispatch_events()
|
104 |
+
win.flip()
|
105 |
+
except KeyboardInterrupt:
|
106 |
+
pass
|
107 |
+
|
108 |
+
win.close()
|
109 |
+
|
110 |
+
|
111 |
+
def _get_latex_main(expr, *, preamble=None, packages=(), extra_preamble=None,
|
112 |
+
euler=True, fontsize=None, **latex_settings):
|
113 |
+
"""
|
114 |
+
Generate string of a LaTeX document rendering ``expr``.
|
115 |
+
"""
|
116 |
+
if preamble is None:
|
117 |
+
actual_packages = packages + ("amsmath", "amsfonts")
|
118 |
+
if euler:
|
119 |
+
actual_packages += ("euler",)
|
120 |
+
package_includes = "\n" + "\n".join(["\\usepackage{%s}" % p
|
121 |
+
for p in actual_packages])
|
122 |
+
if extra_preamble:
|
123 |
+
package_includes += extra_preamble
|
124 |
+
|
125 |
+
if not fontsize:
|
126 |
+
fontsize = "12pt"
|
127 |
+
elif isinstance(fontsize, int):
|
128 |
+
fontsize = "{}pt".format(fontsize)
|
129 |
+
preamble = r"""\documentclass[varwidth,%s]{standalone}
|
130 |
+
%s
|
131 |
+
|
132 |
+
\begin{document}
|
133 |
+
""" % (fontsize, package_includes)
|
134 |
+
else:
|
135 |
+
if packages or extra_preamble:
|
136 |
+
raise ValueError("The \"packages\" or \"extra_preamble\" keywords"
|
137 |
+
"must not be set if a "
|
138 |
+
"custom LaTeX preamble was specified")
|
139 |
+
|
140 |
+
if isinstance(expr, str):
|
141 |
+
latex_string = expr
|
142 |
+
else:
|
143 |
+
latex_string = ('$\\displaystyle ' +
|
144 |
+
latex(expr, mode='plain', **latex_settings) +
|
145 |
+
'$')
|
146 |
+
|
147 |
+
return preamble + '\n' + latex_string + '\n\n' + r"\end{document}"
|
148 |
+
|
149 |
+
|
150 |
+
@doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',),
|
151 |
+
disable_viewers=('evince', 'gimp', 'superior-dvi-viewer'))
|
152 |
+
def preview(expr, output='png', viewer=None, euler=True, packages=(),
|
153 |
+
filename=None, outputbuffer=None, preamble=None, dvioptions=None,
|
154 |
+
outputTexFile=None, extra_preamble=None, fontsize=None,
|
155 |
+
**latex_settings):
|
156 |
+
r"""
|
157 |
+
View expression or LaTeX markup in PNG, DVI, PostScript or PDF form.
|
158 |
+
|
159 |
+
If the expr argument is an expression, it will be exported to LaTeX and
|
160 |
+
then compiled using the available TeX distribution. The first argument,
|
161 |
+
'expr', may also be a LaTeX string. The function will then run the
|
162 |
+
appropriate viewer for the given output format or use the user defined
|
163 |
+
one. By default png output is generated.
|
164 |
+
|
165 |
+
By default pretty Euler fonts are used for typesetting (they were used to
|
166 |
+
typeset the well known "Concrete Mathematics" book). For that to work, you
|
167 |
+
need the 'eulervm.sty' LaTeX style (in Debian/Ubuntu, install the
|
168 |
+
texlive-fonts-extra package). If you prefer default AMS fonts or your
|
169 |
+
system lacks 'eulervm' LaTeX package then unset the 'euler' keyword
|
170 |
+
argument.
|
171 |
+
|
172 |
+
To use viewer auto-detection, lets say for 'png' output, issue
|
173 |
+
|
174 |
+
>>> from sympy import symbols, preview, Symbol
|
175 |
+
>>> x, y = symbols("x,y")
|
176 |
+
|
177 |
+
>>> preview(x + y, output='png')
|
178 |
+
|
179 |
+
This will choose 'pyglet' by default. To select a different one, do
|
180 |
+
|
181 |
+
>>> preview(x + y, output='png', viewer='gimp')
|
182 |
+
|
183 |
+
The 'png' format is considered special. For all other formats the rules
|
184 |
+
are slightly different. As an example we will take 'dvi' output format. If
|
185 |
+
you would run
|
186 |
+
|
187 |
+
>>> preview(x + y, output='dvi')
|
188 |
+
|
189 |
+
then 'view' will look for available 'dvi' viewers on your system
|
190 |
+
(predefined in the function, so it will try evince, first, then kdvi and
|
191 |
+
xdvi). If nothing is found, it will fall back to using a system file
|
192 |
+
association (via ``open`` and ``xdg-open``). To always use your system file
|
193 |
+
association without searching for the above readers, use
|
194 |
+
|
195 |
+
>>> from sympy.printing.preview import system_default_viewer
|
196 |
+
>>> preview(x + y, output='dvi', viewer=system_default_viewer)
|
197 |
+
|
198 |
+
If this still does not find the viewer you want, it can be set explicitly.
|
199 |
+
|
200 |
+
>>> preview(x + y, output='dvi', viewer='superior-dvi-viewer')
|
201 |
+
|
202 |
+
This will skip auto-detection and will run user specified
|
203 |
+
'superior-dvi-viewer'. If ``view`` fails to find it on your system it will
|
204 |
+
gracefully raise an exception.
|
205 |
+
|
206 |
+
You may also enter ``'file'`` for the viewer argument. Doing so will cause
|
207 |
+
this function to return a file object in read-only mode, if ``filename``
|
208 |
+
is unset. However, if it was set, then 'preview' writes the generated
|
209 |
+
file to this filename instead.
|
210 |
+
|
211 |
+
There is also support for writing to a ``io.BytesIO`` like object, which
|
212 |
+
needs to be passed to the ``outputbuffer`` argument.
|
213 |
+
|
214 |
+
>>> from io import BytesIO
|
215 |
+
>>> obj = BytesIO()
|
216 |
+
>>> preview(x + y, output='png', viewer='BytesIO',
|
217 |
+
... outputbuffer=obj)
|
218 |
+
|
219 |
+
The LaTeX preamble can be customized by setting the 'preamble' keyword
|
220 |
+
argument. This can be used, e.g., to set a different font size, use a
|
221 |
+
custom documentclass or import certain set of LaTeX packages.
|
222 |
+
|
223 |
+
>>> preamble = "\\documentclass[10pt]{article}\n" \
|
224 |
+
... "\\usepackage{amsmath,amsfonts}\\begin{document}"
|
225 |
+
>>> preview(x + y, output='png', preamble=preamble)
|
226 |
+
|
227 |
+
It is also possible to use the standard preamble and provide additional
|
228 |
+
information to the preamble using the ``extra_preamble`` keyword argument.
|
229 |
+
|
230 |
+
>>> from sympy import sin
|
231 |
+
>>> extra_preamble = "\\renewcommand{\\sin}{\\cos}"
|
232 |
+
>>> preview(sin(x), output='png', extra_preamble=extra_preamble)
|
233 |
+
|
234 |
+
If the value of 'output' is different from 'dvi' then command line
|
235 |
+
options can be set ('dvioptions' argument) for the execution of the
|
236 |
+
'dvi'+output conversion tool. These options have to be in the form of a
|
237 |
+
list of strings (see ``subprocess.Popen``).
|
238 |
+
|
239 |
+
Additional keyword args will be passed to the :func:`~sympy.printing.latex.latex` call,
|
240 |
+
e.g., the ``symbol_names`` flag.
|
241 |
+
|
242 |
+
>>> phidd = Symbol('phidd')
|
243 |
+
>>> preview(phidd, symbol_names={phidd: r'\ddot{\varphi}'})
|
244 |
+
|
245 |
+
For post-processing the generated TeX File can be written to a file by
|
246 |
+
passing the desired filename to the 'outputTexFile' keyword
|
247 |
+
argument. To write the TeX code to a file named
|
248 |
+
``"sample.tex"`` and run the default png viewer to display the resulting
|
249 |
+
bitmap, do
|
250 |
+
|
251 |
+
>>> preview(x + y, outputTexFile="sample.tex")
|
252 |
+
|
253 |
+
|
254 |
+
"""
|
255 |
+
# pyglet is the default for png
|
256 |
+
if viewer is None and output == "png":
|
257 |
+
try:
|
258 |
+
import pyglet # noqa: F401
|
259 |
+
except ImportError:
|
260 |
+
pass
|
261 |
+
else:
|
262 |
+
viewer = pyglet_viewer
|
263 |
+
|
264 |
+
# look up a known application
|
265 |
+
if viewer is None:
|
266 |
+
# sorted in order from most pretty to most ugly
|
267 |
+
# very discussable, but indeed 'gv' looks awful :)
|
268 |
+
candidates = {
|
269 |
+
"dvi": [ "evince", "okular", "kdvi", "xdvi" ],
|
270 |
+
"ps": [ "evince", "okular", "gsview", "gv" ],
|
271 |
+
"pdf": [ "evince", "okular", "kpdf", "acroread", "xpdf", "gv" ],
|
272 |
+
}
|
273 |
+
|
274 |
+
for candidate in candidates.get(output, []):
|
275 |
+
path = shutil.which(candidate)
|
276 |
+
if path is not None:
|
277 |
+
viewer = path
|
278 |
+
break
|
279 |
+
|
280 |
+
# otherwise, use the system default for file association
|
281 |
+
if viewer is None:
|
282 |
+
viewer = system_default_viewer
|
283 |
+
|
284 |
+
if viewer == "file":
|
285 |
+
if filename is None:
|
286 |
+
raise ValueError("filename has to be specified if viewer=\"file\"")
|
287 |
+
elif viewer == "BytesIO":
|
288 |
+
if outputbuffer is None:
|
289 |
+
raise ValueError("outputbuffer has to be a BytesIO "
|
290 |
+
"compatible object if viewer=\"BytesIO\"")
|
291 |
+
elif not callable(viewer) and not shutil.which(viewer):
|
292 |
+
raise OSError("Unrecognized viewer: %s" % viewer)
|
293 |
+
|
294 |
+
latex_main = _get_latex_main(expr, preamble=preamble, packages=packages,
|
295 |
+
euler=euler, extra_preamble=extra_preamble,
|
296 |
+
fontsize=fontsize, **latex_settings)
|
297 |
+
|
298 |
+
debug("Latex code:")
|
299 |
+
debug(latex_main)
|
300 |
+
with tempfile.TemporaryDirectory() as workdir:
|
301 |
+
with open(join(workdir, 'texput.tex'), 'w', encoding='utf-8') as fh:
|
302 |
+
fh.write(latex_main)
|
303 |
+
|
304 |
+
if outputTexFile is not None:
|
305 |
+
shutil.copyfile(join(workdir, 'texput.tex'), outputTexFile)
|
306 |
+
|
307 |
+
if not shutil.which('latex'):
|
308 |
+
raise RuntimeError("latex program is not installed")
|
309 |
+
|
310 |
+
try:
|
311 |
+
_check_output_no_window(
|
312 |
+
['latex', '-halt-on-error', '-interaction=nonstopmode',
|
313 |
+
'texput.tex'],
|
314 |
+
cwd=workdir,
|
315 |
+
stderr=STDOUT)
|
316 |
+
except CalledProcessError as e:
|
317 |
+
raise RuntimeError(
|
318 |
+
"'latex' exited abnormally with the following output:\n%s" %
|
319 |
+
e.output)
|
320 |
+
|
321 |
+
src = "texput.%s" % (output)
|
322 |
+
|
323 |
+
if output != "dvi":
|
324 |
+
# in order of preference
|
325 |
+
commandnames = {
|
326 |
+
"ps": ["dvips"],
|
327 |
+
"pdf": ["dvipdfmx", "dvipdfm", "dvipdf"],
|
328 |
+
"png": ["dvipng"],
|
329 |
+
"svg": ["dvisvgm"],
|
330 |
+
}
|
331 |
+
try:
|
332 |
+
cmd_variants = commandnames[output]
|
333 |
+
except KeyError:
|
334 |
+
raise ValueError("Invalid output format: %s" % output) from None
|
335 |
+
|
336 |
+
# find an appropriate command
|
337 |
+
for cmd_variant in cmd_variants:
|
338 |
+
cmd_path = shutil.which(cmd_variant)
|
339 |
+
if cmd_path:
|
340 |
+
cmd = [cmd_path]
|
341 |
+
break
|
342 |
+
else:
|
343 |
+
if len(cmd_variants) > 1:
|
344 |
+
raise RuntimeError("None of %s are installed" % ", ".join(cmd_variants))
|
345 |
+
else:
|
346 |
+
raise RuntimeError("%s is not installed" % cmd_variants[0])
|
347 |
+
|
348 |
+
defaultoptions = {
|
349 |
+
"dvipng": ["-T", "tight", "-z", "9", "--truecolor"],
|
350 |
+
"dvisvgm": ["--no-fonts"],
|
351 |
+
}
|
352 |
+
|
353 |
+
commandend = {
|
354 |
+
"dvips": ["-o", src, "texput.dvi"],
|
355 |
+
"dvipdf": ["texput.dvi", src],
|
356 |
+
"dvipdfm": ["-o", src, "texput.dvi"],
|
357 |
+
"dvipdfmx": ["-o", src, "texput.dvi"],
|
358 |
+
"dvipng": ["-o", src, "texput.dvi"],
|
359 |
+
"dvisvgm": ["-o", src, "texput.dvi"],
|
360 |
+
}
|
361 |
+
|
362 |
+
if dvioptions is not None:
|
363 |
+
cmd.extend(dvioptions)
|
364 |
+
else:
|
365 |
+
cmd.extend(defaultoptions.get(cmd_variant, []))
|
366 |
+
cmd.extend(commandend[cmd_variant])
|
367 |
+
|
368 |
+
try:
|
369 |
+
_check_output_no_window(cmd, cwd=workdir, stderr=STDOUT)
|
370 |
+
except CalledProcessError as e:
|
371 |
+
raise RuntimeError(
|
372 |
+
"'%s' exited abnormally with the following output:\n%s" %
|
373 |
+
(' '.join(cmd), e.output))
|
374 |
+
|
375 |
+
|
376 |
+
if viewer == "file":
|
377 |
+
shutil.move(join(workdir, src), filename)
|
378 |
+
elif viewer == "BytesIO":
|
379 |
+
with open(join(workdir, src), 'rb') as fh:
|
380 |
+
outputbuffer.write(fh.read())
|
381 |
+
elif callable(viewer):
|
382 |
+
viewer(join(workdir, src), fmt=output)
|
383 |
+
else:
|
384 |
+
try:
|
385 |
+
_check_output_no_window(
|
386 |
+
[viewer, src], cwd=workdir, stderr=STDOUT)
|
387 |
+
except CalledProcessError as e:
|
388 |
+
raise RuntimeError(
|
389 |
+
"'%s %s' exited abnormally with the following output:\n%s" %
|
390 |
+
(viewer, src, e.output))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/printer.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Printing subsystem driver
|
2 |
+
|
3 |
+
SymPy's printing system works the following way: Any expression can be
|
4 |
+
passed to a designated Printer who then is responsible to return an
|
5 |
+
adequate representation of that expression.
|
6 |
+
|
7 |
+
**The basic concept is the following:**
|
8 |
+
|
9 |
+
1. Let the object print itself if it knows how.
|
10 |
+
2. Take the best fitting method defined in the printer.
|
11 |
+
3. As fall-back use the emptyPrinter method for the printer.
|
12 |
+
|
13 |
+
Which Method is Responsible for Printing?
|
14 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
15 |
+
|
16 |
+
The whole printing process is started by calling ``.doprint(expr)`` on the printer
|
17 |
+
which you want to use. This method looks for an appropriate method which can
|
18 |
+
print the given expression in the given style that the printer defines.
|
19 |
+
While looking for the method, it follows these steps:
|
20 |
+
|
21 |
+
1. **Let the object print itself if it knows how.**
|
22 |
+
|
23 |
+
The printer looks for a specific method in every object. The name of that method
|
24 |
+
depends on the specific printer and is defined under ``Printer.printmethod``.
|
25 |
+
For example, StrPrinter calls ``_sympystr`` and LatexPrinter calls ``_latex``.
|
26 |
+
Look at the documentation of the printer that you want to use.
|
27 |
+
The name of the method is specified there.
|
28 |
+
|
29 |
+
This was the original way of doing printing in sympy. Every class had
|
30 |
+
its own latex, mathml, str and repr methods, but it turned out that it
|
31 |
+
is hard to produce a high quality printer, if all the methods are spread
|
32 |
+
out that far. Therefore all printing code was combined into the different
|
33 |
+
printers, which works great for built-in SymPy objects, but not that
|
34 |
+
good for user defined classes where it is inconvenient to patch the
|
35 |
+
printers.
|
36 |
+
|
37 |
+
2. **Take the best fitting method defined in the printer.**
|
38 |
+
|
39 |
+
The printer loops through expr classes (class + its bases), and tries
|
40 |
+
to dispatch the work to ``_print_<EXPR_CLASS>``
|
41 |
+
|
42 |
+
e.g., suppose we have the following class hierarchy::
|
43 |
+
|
44 |
+
Basic
|
45 |
+
|
|
46 |
+
Atom
|
47 |
+
|
|
48 |
+
Number
|
49 |
+
|
|
50 |
+
Rational
|
51 |
+
|
52 |
+
then, for ``expr=Rational(...)``, the Printer will try
|
53 |
+
to call printer methods in the order as shown in the figure below::
|
54 |
+
|
55 |
+
p._print(expr)
|
56 |
+
|
|
57 |
+
|-- p._print_Rational(expr)
|
58 |
+
|
|
59 |
+
|-- p._print_Number(expr)
|
60 |
+
|
|
61 |
+
|-- p._print_Atom(expr)
|
62 |
+
|
|
63 |
+
`-- p._print_Basic(expr)
|
64 |
+
|
65 |
+
if ``._print_Rational`` method exists in the printer, then it is called,
|
66 |
+
and the result is returned back. Otherwise, the printer tries to call
|
67 |
+
``._print_Number`` and so on.
|
68 |
+
|
69 |
+
3. **As a fall-back use the emptyPrinter method for the printer.**
|
70 |
+
|
71 |
+
As fall-back ``self.emptyPrinter`` will be called with the expression. If
|
72 |
+
not defined in the Printer subclass this will be the same as ``str(expr)``.
|
73 |
+
|
74 |
+
.. _printer_example:
|
75 |
+
|
76 |
+
Example of Custom Printer
|
77 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^
|
78 |
+
|
79 |
+
In the example below, we have a printer which prints the derivative of a function
|
80 |
+
in a shorter form.
|
81 |
+
|
82 |
+
.. code-block:: python
|
83 |
+
|
84 |
+
from sympy.core.symbol import Symbol
|
85 |
+
from sympy.printing.latex import LatexPrinter, print_latex
|
86 |
+
from sympy.core.function import UndefinedFunction, Function
|
87 |
+
|
88 |
+
|
89 |
+
class MyLatexPrinter(LatexPrinter):
|
90 |
+
\"\"\"Print derivative of a function of symbols in a shorter form.
|
91 |
+
\"\"\"
|
92 |
+
def _print_Derivative(self, expr):
|
93 |
+
function, *vars = expr.args
|
94 |
+
if not isinstance(type(function), UndefinedFunction) or \\
|
95 |
+
not all(isinstance(i, Symbol) for i in vars):
|
96 |
+
return super()._print_Derivative(expr)
|
97 |
+
|
98 |
+
# If you want the printer to work correctly for nested
|
99 |
+
# expressions then use self._print() instead of str() or latex().
|
100 |
+
# See the example of nested modulo below in the custom printing
|
101 |
+
# method section.
|
102 |
+
return "{}_{{{}}}".format(
|
103 |
+
self._print(Symbol(function.func.__name__)),
|
104 |
+
''.join(self._print(i) for i in vars))
|
105 |
+
|
106 |
+
|
107 |
+
def print_my_latex(expr):
|
108 |
+
\"\"\" Most of the printers define their own wrappers for print().
|
109 |
+
These wrappers usually take printer settings. Our printer does not have
|
110 |
+
any settings.
|
111 |
+
\"\"\"
|
112 |
+
print(MyLatexPrinter().doprint(expr))
|
113 |
+
|
114 |
+
|
115 |
+
y = Symbol("y")
|
116 |
+
x = Symbol("x")
|
117 |
+
f = Function("f")
|
118 |
+
expr = f(x, y).diff(x, y)
|
119 |
+
|
120 |
+
# Print the expression using the normal latex printer and our custom
|
121 |
+
# printer.
|
122 |
+
print_latex(expr)
|
123 |
+
print_my_latex(expr)
|
124 |
+
|
125 |
+
The output of the code above is::
|
126 |
+
|
127 |
+
\\frac{\\partial^{2}}{\\partial x\\partial y} f{\\left(x,y \\right)}
|
128 |
+
f_{xy}
|
129 |
+
|
130 |
+
.. _printer_method_example:
|
131 |
+
|
132 |
+
Example of Custom Printing Method
|
133 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
134 |
+
|
135 |
+
In the example below, the latex printing of the modulo operator is modified.
|
136 |
+
This is done by overriding the method ``_latex`` of ``Mod``.
|
137 |
+
|
138 |
+
>>> from sympy import Symbol, Mod, Integer, print_latex
|
139 |
+
|
140 |
+
>>> # Always use printer._print()
|
141 |
+
>>> class ModOp(Mod):
|
142 |
+
... def _latex(self, printer):
|
143 |
+
... a, b = [printer._print(i) for i in self.args]
|
144 |
+
... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
|
145 |
+
|
146 |
+
Comparing the output of our custom operator to the builtin one:
|
147 |
+
|
148 |
+
>>> x = Symbol('x')
|
149 |
+
>>> m = Symbol('m')
|
150 |
+
>>> print_latex(Mod(x, m))
|
151 |
+
x \\bmod m
|
152 |
+
>>> print_latex(ModOp(x, m))
|
153 |
+
\\operatorname{Mod}{\\left(x, m\\right)}
|
154 |
+
|
155 |
+
Common mistakes
|
156 |
+
~~~~~~~~~~~~~~~
|
157 |
+
It's important to always use ``self._print(obj)`` to print subcomponents of
|
158 |
+
an expression when customizing a printer. Mistakes include:
|
159 |
+
|
160 |
+
1. Using ``self.doprint(obj)`` instead:
|
161 |
+
|
162 |
+
>>> # This example does not work properly, as only the outermost call may use
|
163 |
+
>>> # doprint.
|
164 |
+
>>> class ModOpModeWrong(Mod):
|
165 |
+
... def _latex(self, printer):
|
166 |
+
... a, b = [printer.doprint(i) for i in self.args]
|
167 |
+
... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
|
168 |
+
|
169 |
+
This fails when the ``mode`` argument is passed to the printer:
|
170 |
+
|
171 |
+
>>> print_latex(ModOp(x, m), mode='inline') # ok
|
172 |
+
$\\operatorname{Mod}{\\left(x, m\\right)}$
|
173 |
+
>>> print_latex(ModOpModeWrong(x, m), mode='inline') # bad
|
174 |
+
$\\operatorname{Mod}{\\left($x$, $m$\\right)}$
|
175 |
+
|
176 |
+
2. Using ``str(obj)`` instead:
|
177 |
+
|
178 |
+
>>> class ModOpNestedWrong(Mod):
|
179 |
+
... def _latex(self, printer):
|
180 |
+
... a, b = [str(i) for i in self.args]
|
181 |
+
... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
|
182 |
+
|
183 |
+
This fails on nested objects:
|
184 |
+
|
185 |
+
>>> # Nested modulo.
|
186 |
+
>>> print_latex(ModOp(ModOp(x, m), Integer(7))) # ok
|
187 |
+
\\operatorname{Mod}{\\left(\\operatorname{Mod}{\\left(x, m\\right)}, 7\\right)}
|
188 |
+
>>> print_latex(ModOpNestedWrong(ModOpNestedWrong(x, m), Integer(7))) # bad
|
189 |
+
\\operatorname{Mod}{\\left(ModOpNestedWrong(x, m), 7\\right)}
|
190 |
+
|
191 |
+
3. Using ``LatexPrinter()._print(obj)`` instead.
|
192 |
+
|
193 |
+
>>> from sympy.printing.latex import LatexPrinter
|
194 |
+
>>> class ModOpSettingsWrong(Mod):
|
195 |
+
... def _latex(self, printer):
|
196 |
+
... a, b = [LatexPrinter()._print(i) for i in self.args]
|
197 |
+
... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
|
198 |
+
|
199 |
+
This causes all the settings to be discarded in the subobjects. As an
|
200 |
+
example, the ``full_prec`` setting which shows floats to full precision is
|
201 |
+
ignored:
|
202 |
+
|
203 |
+
>>> from sympy import Float
|
204 |
+
>>> print_latex(ModOp(Float(1) * x, m), full_prec=True) # ok
|
205 |
+
\\operatorname{Mod}{\\left(1.00000000000000 x, m\\right)}
|
206 |
+
>>> print_latex(ModOpSettingsWrong(Float(1) * x, m), full_prec=True) # bad
|
207 |
+
\\operatorname{Mod}{\\left(1.0 x, m\\right)}
|
208 |
+
|
209 |
+
"""
|
210 |
+
|
211 |
+
from __future__ import annotations
|
212 |
+
import sys
|
213 |
+
from typing import Any, Type
|
214 |
+
import inspect
|
215 |
+
from contextlib import contextmanager
|
216 |
+
from functools import cmp_to_key, update_wrapper
|
217 |
+
|
218 |
+
from sympy.core.add import Add
|
219 |
+
from sympy.core.basic import Basic
|
220 |
+
|
221 |
+
from sympy.core.function import AppliedUndef, UndefinedFunction, Function
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
@contextmanager
|
226 |
+
def printer_context(printer, **kwargs):
|
227 |
+
original = printer._context.copy()
|
228 |
+
try:
|
229 |
+
printer._context.update(kwargs)
|
230 |
+
yield
|
231 |
+
finally:
|
232 |
+
printer._context = original
|
233 |
+
|
234 |
+
|
235 |
+
class Printer:
|
236 |
+
""" Generic printer
|
237 |
+
|
238 |
+
Its job is to provide infrastructure for implementing new printers easily.
|
239 |
+
|
240 |
+
If you want to define your custom Printer or your custom printing method
|
241 |
+
for your custom class then see the example above: printer_example_ .
|
242 |
+
"""
|
243 |
+
|
244 |
+
_global_settings: dict[str, Any] = {}
|
245 |
+
|
246 |
+
_default_settings: dict[str, Any] = {}
|
247 |
+
|
248 |
+
printmethod = None # type: str
|
249 |
+
|
250 |
+
@classmethod
|
251 |
+
def _get_initial_settings(cls):
|
252 |
+
settings = cls._default_settings.copy()
|
253 |
+
for key, val in cls._global_settings.items():
|
254 |
+
if key in cls._default_settings:
|
255 |
+
settings[key] = val
|
256 |
+
return settings
|
257 |
+
|
258 |
+
def __init__(self, settings=None):
|
259 |
+
self._str = str
|
260 |
+
|
261 |
+
self._settings = self._get_initial_settings()
|
262 |
+
self._context = {} # mutable during printing
|
263 |
+
|
264 |
+
if settings is not None:
|
265 |
+
self._settings.update(settings)
|
266 |
+
|
267 |
+
if len(self._settings) > len(self._default_settings):
|
268 |
+
for key in self._settings:
|
269 |
+
if key not in self._default_settings:
|
270 |
+
raise TypeError("Unknown setting '%s'." % key)
|
271 |
+
|
272 |
+
# _print_level is the number of times self._print() was recursively
|
273 |
+
# called. See StrPrinter._print_Float() for an example of usage
|
274 |
+
self._print_level = 0
|
275 |
+
|
276 |
+
@classmethod
|
277 |
+
def set_global_settings(cls, **settings):
|
278 |
+
"""Set system-wide printing settings. """
|
279 |
+
for key, val in settings.items():
|
280 |
+
if val is not None:
|
281 |
+
cls._global_settings[key] = val
|
282 |
+
|
283 |
+
@property
|
284 |
+
def order(self):
|
285 |
+
if 'order' in self._settings:
|
286 |
+
return self._settings['order']
|
287 |
+
else:
|
288 |
+
raise AttributeError("No order defined.")
|
289 |
+
|
290 |
+
def doprint(self, expr):
|
291 |
+
"""Returns printer's representation for expr (as a string)"""
|
292 |
+
return self._str(self._print(expr))
|
293 |
+
|
294 |
+
def _print(self, expr, **kwargs) -> str:
|
295 |
+
"""Internal dispatcher
|
296 |
+
|
297 |
+
Tries the following concepts to print an expression:
|
298 |
+
1. Let the object print itself if it knows how.
|
299 |
+
2. Take the best fitting method defined in the printer.
|
300 |
+
3. As fall-back use the emptyPrinter method for the printer.
|
301 |
+
"""
|
302 |
+
self._print_level += 1
|
303 |
+
try:
|
304 |
+
# If the printer defines a name for a printing method
|
305 |
+
# (Printer.printmethod) and the object knows for itself how it
|
306 |
+
# should be printed, use that method.
|
307 |
+
if self.printmethod and hasattr(expr, self.printmethod):
|
308 |
+
if not (isinstance(expr, type) and issubclass(expr, Basic)):
|
309 |
+
return getattr(expr, self.printmethod)(self, **kwargs)
|
310 |
+
|
311 |
+
# See if the class of expr is known, or if one of its super
|
312 |
+
# classes is known, and use that print function
|
313 |
+
# Exception: ignore the subclasses of Undefined, so that, e.g.,
|
314 |
+
# Function('gamma') does not get dispatched to _print_gamma
|
315 |
+
classes = type(expr).__mro__
|
316 |
+
if AppliedUndef in classes:
|
317 |
+
classes = classes[classes.index(AppliedUndef):]
|
318 |
+
if UndefinedFunction in classes:
|
319 |
+
classes = classes[classes.index(UndefinedFunction):]
|
320 |
+
# Another exception: if someone subclasses a known function, e.g.,
|
321 |
+
# gamma, and changes the name, then ignore _print_gamma
|
322 |
+
if Function in classes:
|
323 |
+
i = classes.index(Function)
|
324 |
+
classes = tuple(c for c in classes[:i] if \
|
325 |
+
c.__name__ == classes[0].__name__ or \
|
326 |
+
c.__name__.endswith("Base")) + classes[i:]
|
327 |
+
for cls in classes:
|
328 |
+
printmethodname = '_print_' + cls.__name__
|
329 |
+
printmethod = getattr(self, printmethodname, None)
|
330 |
+
if printmethod is not None:
|
331 |
+
return printmethod(expr, **kwargs)
|
332 |
+
# Unknown object, fall back to the emptyPrinter.
|
333 |
+
return self.emptyPrinter(expr)
|
334 |
+
finally:
|
335 |
+
self._print_level -= 1
|
336 |
+
|
337 |
+
def emptyPrinter(self, expr):
|
338 |
+
return str(expr)
|
339 |
+
|
340 |
+
def _as_ordered_terms(self, expr, order=None):
|
341 |
+
"""A compatibility function for ordering terms in Add. """
|
342 |
+
order = order or self.order
|
343 |
+
|
344 |
+
if order == 'old':
|
345 |
+
return sorted(Add.make_args(expr), key=cmp_to_key(Basic._compare_pretty))
|
346 |
+
elif order == 'none':
|
347 |
+
return list(expr.args)
|
348 |
+
else:
|
349 |
+
return expr.as_ordered_terms(order=order)
|
350 |
+
|
351 |
+
|
352 |
+
class _PrintFunction:
|
353 |
+
"""
|
354 |
+
Function wrapper to replace ``**settings`` in the signature with printer defaults
|
355 |
+
"""
|
356 |
+
def __init__(self, f, print_cls: Type[Printer]):
|
357 |
+
# find all the non-setting arguments
|
358 |
+
params = list(inspect.signature(f).parameters.values())
|
359 |
+
assert params.pop(-1).kind == inspect.Parameter.VAR_KEYWORD
|
360 |
+
self.__other_params = params
|
361 |
+
|
362 |
+
self.__print_cls = print_cls
|
363 |
+
update_wrapper(self, f)
|
364 |
+
|
365 |
+
def __reduce__(self):
|
366 |
+
# Since this is used as a decorator, it replaces the original function.
|
367 |
+
# The default pickling will try to pickle self.__wrapped__ and fail
|
368 |
+
# because the wrapped function can't be retrieved by name.
|
369 |
+
return self.__wrapped__.__qualname__
|
370 |
+
|
371 |
+
def __call__(self, *args, **kwargs):
|
372 |
+
return self.__wrapped__(*args, **kwargs)
|
373 |
+
|
374 |
+
@property
|
375 |
+
def __signature__(self) -> inspect.Signature:
|
376 |
+
settings = self.__print_cls._get_initial_settings()
|
377 |
+
return inspect.Signature(
|
378 |
+
parameters=self.__other_params + [
|
379 |
+
inspect.Parameter(k, inspect.Parameter.KEYWORD_ONLY, default=v)
|
380 |
+
for k, v in settings.items()
|
381 |
+
],
|
382 |
+
return_annotation=self.__wrapped__.__annotations__.get('return', inspect.Signature.empty) # type:ignore
|
383 |
+
)
|
384 |
+
|
385 |
+
|
386 |
+
def print_function(print_cls):
|
387 |
+
""" A decorator to replace kwargs with the printer settings in __signature__ """
|
388 |
+
def decorator(f):
|
389 |
+
if sys.version_info < (3, 9):
|
390 |
+
# We have to create a subclass so that `help` actually shows the docstring in older Python versions.
|
391 |
+
# IPython and Sphinx do not need this, only a raw Python console.
|
392 |
+
cls = type(f'{f.__qualname__}_PrintFunction', (_PrintFunction,), {"__doc__": f.__doc__})
|
393 |
+
else:
|
394 |
+
cls = _PrintFunction
|
395 |
+
return cls(f, print_cls)
|
396 |
+
return decorator
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/pycode.py
ADDED
@@ -0,0 +1,750 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Python code printers
|
3 |
+
|
4 |
+
This module contains Python code printers for plain Python as well as NumPy & SciPy enabled code.
|
5 |
+
"""
|
6 |
+
from collections import defaultdict
|
7 |
+
from itertools import chain
|
8 |
+
from sympy.core import S
|
9 |
+
from sympy.core.mod import Mod
|
10 |
+
from .precedence import precedence
|
11 |
+
from .codeprinter import CodePrinter
|
12 |
+
|
13 |
+
_kw = {
|
14 |
+
'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
|
15 |
+
'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in',
|
16 |
+
'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while',
|
17 |
+
'with', 'yield', 'None', 'False', 'nonlocal', 'True'
|
18 |
+
}
|
19 |
+
|
20 |
+
_known_functions = {
|
21 |
+
'Abs': 'abs',
|
22 |
+
'Min': 'min',
|
23 |
+
'Max': 'max',
|
24 |
+
}
|
25 |
+
_known_functions_math = {
|
26 |
+
'acos': 'acos',
|
27 |
+
'acosh': 'acosh',
|
28 |
+
'asin': 'asin',
|
29 |
+
'asinh': 'asinh',
|
30 |
+
'atan': 'atan',
|
31 |
+
'atan2': 'atan2',
|
32 |
+
'atanh': 'atanh',
|
33 |
+
'ceiling': 'ceil',
|
34 |
+
'cos': 'cos',
|
35 |
+
'cosh': 'cosh',
|
36 |
+
'erf': 'erf',
|
37 |
+
'erfc': 'erfc',
|
38 |
+
'exp': 'exp',
|
39 |
+
'expm1': 'expm1',
|
40 |
+
'factorial': 'factorial',
|
41 |
+
'floor': 'floor',
|
42 |
+
'gamma': 'gamma',
|
43 |
+
'hypot': 'hypot',
|
44 |
+
'loggamma': 'lgamma',
|
45 |
+
'log': 'log',
|
46 |
+
'ln': 'log',
|
47 |
+
'log10': 'log10',
|
48 |
+
'log1p': 'log1p',
|
49 |
+
'log2': 'log2',
|
50 |
+
'sin': 'sin',
|
51 |
+
'sinh': 'sinh',
|
52 |
+
'Sqrt': 'sqrt',
|
53 |
+
'tan': 'tan',
|
54 |
+
'tanh': 'tanh'
|
55 |
+
} # Not used from ``math``: [copysign isclose isfinite isinf isnan ldexp frexp pow modf
|
56 |
+
# radians trunc fmod fsum gcd degrees fabs]
|
57 |
+
_known_constants_math = {
|
58 |
+
'Exp1': 'e',
|
59 |
+
'Pi': 'pi',
|
60 |
+
'E': 'e',
|
61 |
+
'Infinity': 'inf',
|
62 |
+
'NaN': 'nan',
|
63 |
+
'ComplexInfinity': 'nan'
|
64 |
+
}
|
65 |
+
|
66 |
+
def _print_known_func(self, expr):
|
67 |
+
known = self.known_functions[expr.__class__.__name__]
|
68 |
+
return '{name}({args})'.format(name=self._module_format(known),
|
69 |
+
args=', '.join((self._print(arg) for arg in expr.args)))
|
70 |
+
|
71 |
+
|
72 |
+
def _print_known_const(self, expr):
|
73 |
+
known = self.known_constants[expr.__class__.__name__]
|
74 |
+
return self._module_format(known)
|
75 |
+
|
76 |
+
|
77 |
+
class AbstractPythonCodePrinter(CodePrinter):
|
78 |
+
printmethod = "_pythoncode"
|
79 |
+
language = "Python"
|
80 |
+
reserved_words = _kw
|
81 |
+
modules = None # initialized to a set in __init__
|
82 |
+
tab = ' '
|
83 |
+
_kf = dict(chain(
|
84 |
+
_known_functions.items(),
|
85 |
+
[(k, 'math.' + v) for k, v in _known_functions_math.items()]
|
86 |
+
))
|
87 |
+
_kc = {k: 'math.'+v for k, v in _known_constants_math.items()}
|
88 |
+
_operators = {'and': 'and', 'or': 'or', 'not': 'not'}
|
89 |
+
_default_settings = dict(
|
90 |
+
CodePrinter._default_settings,
|
91 |
+
user_functions={},
|
92 |
+
precision=17,
|
93 |
+
inline=True,
|
94 |
+
fully_qualified_modules=True,
|
95 |
+
contract=False,
|
96 |
+
standard='python3',
|
97 |
+
)
|
98 |
+
|
99 |
+
def __init__(self, settings=None):
|
100 |
+
super().__init__(settings)
|
101 |
+
|
102 |
+
# Python standard handler
|
103 |
+
std = self._settings['standard']
|
104 |
+
if std is None:
|
105 |
+
import sys
|
106 |
+
std = 'python{}'.format(sys.version_info.major)
|
107 |
+
if std != 'python3':
|
108 |
+
raise ValueError('Only Python 3 is supported.')
|
109 |
+
self.standard = std
|
110 |
+
|
111 |
+
self.module_imports = defaultdict(set)
|
112 |
+
|
113 |
+
# Known functions and constants handler
|
114 |
+
self.known_functions = dict(self._kf, **(settings or {}).get(
|
115 |
+
'user_functions', {}))
|
116 |
+
self.known_constants = dict(self._kc, **(settings or {}).get(
|
117 |
+
'user_constants', {}))
|
118 |
+
|
119 |
+
def _declare_number_const(self, name, value):
|
120 |
+
return "%s = %s" % (name, value)
|
121 |
+
|
122 |
+
def _module_format(self, fqn, register=True):
|
123 |
+
parts = fqn.split('.')
|
124 |
+
if register and len(parts) > 1:
|
125 |
+
self.module_imports['.'.join(parts[:-1])].add(parts[-1])
|
126 |
+
|
127 |
+
if self._settings['fully_qualified_modules']:
|
128 |
+
return fqn
|
129 |
+
else:
|
130 |
+
return fqn.split('(')[0].split('[')[0].split('.')[-1]
|
131 |
+
|
132 |
+
def _format_code(self, lines):
|
133 |
+
return lines
|
134 |
+
|
135 |
+
def _get_statement(self, codestring):
|
136 |
+
return "{}".format(codestring)
|
137 |
+
|
138 |
+
def _get_comment(self, text):
|
139 |
+
return " # {}".format(text)
|
140 |
+
|
141 |
+
def _expand_fold_binary_op(self, op, args):
|
142 |
+
"""
|
143 |
+
This method expands a fold on binary operations.
|
144 |
+
|
145 |
+
``functools.reduce`` is an example of a folded operation.
|
146 |
+
|
147 |
+
For example, the expression
|
148 |
+
|
149 |
+
`A + B + C + D`
|
150 |
+
|
151 |
+
is folded into
|
152 |
+
|
153 |
+
`((A + B) + C) + D`
|
154 |
+
"""
|
155 |
+
if len(args) == 1:
|
156 |
+
return self._print(args[0])
|
157 |
+
else:
|
158 |
+
return "%s(%s, %s)" % (
|
159 |
+
self._module_format(op),
|
160 |
+
self._expand_fold_binary_op(op, args[:-1]),
|
161 |
+
self._print(args[-1]),
|
162 |
+
)
|
163 |
+
|
164 |
+
def _expand_reduce_binary_op(self, op, args):
|
165 |
+
"""
|
166 |
+
This method expands a reductin on binary operations.
|
167 |
+
|
168 |
+
Notice: this is NOT the same as ``functools.reduce``.
|
169 |
+
|
170 |
+
For example, the expression
|
171 |
+
|
172 |
+
`A + B + C + D`
|
173 |
+
|
174 |
+
is reduced into:
|
175 |
+
|
176 |
+
`(A + B) + (C + D)`
|
177 |
+
"""
|
178 |
+
if len(args) == 1:
|
179 |
+
return self._print(args[0])
|
180 |
+
else:
|
181 |
+
N = len(args)
|
182 |
+
Nhalf = N // 2
|
183 |
+
return "%s(%s, %s)" % (
|
184 |
+
self._module_format(op),
|
185 |
+
self._expand_reduce_binary_op(args[:Nhalf]),
|
186 |
+
self._expand_reduce_binary_op(args[Nhalf:]),
|
187 |
+
)
|
188 |
+
|
189 |
+
def _print_NaN(self, expr):
|
190 |
+
return "float('nan')"
|
191 |
+
|
192 |
+
def _print_Infinity(self, expr):
|
193 |
+
return "float('inf')"
|
194 |
+
|
195 |
+
def _print_NegativeInfinity(self, expr):
|
196 |
+
return "float('-inf')"
|
197 |
+
|
198 |
+
def _print_ComplexInfinity(self, expr):
|
199 |
+
return self._print_NaN(expr)
|
200 |
+
|
201 |
+
def _print_Mod(self, expr):
|
202 |
+
PREC = precedence(expr)
|
203 |
+
return ('{} % {}'.format(*(self.parenthesize(x, PREC) for x in expr.args)))
|
204 |
+
|
205 |
+
def _print_Piecewise(self, expr):
|
206 |
+
result = []
|
207 |
+
i = 0
|
208 |
+
for arg in expr.args:
|
209 |
+
e = arg.expr
|
210 |
+
c = arg.cond
|
211 |
+
if i == 0:
|
212 |
+
result.append('(')
|
213 |
+
result.append('(')
|
214 |
+
result.append(self._print(e))
|
215 |
+
result.append(')')
|
216 |
+
result.append(' if ')
|
217 |
+
result.append(self._print(c))
|
218 |
+
result.append(' else ')
|
219 |
+
i += 1
|
220 |
+
result = result[:-1]
|
221 |
+
if result[-1] == 'True':
|
222 |
+
result = result[:-2]
|
223 |
+
result.append(')')
|
224 |
+
else:
|
225 |
+
result.append(' else None)')
|
226 |
+
return ''.join(result)
|
227 |
+
|
228 |
+
def _print_Relational(self, expr):
|
229 |
+
"Relational printer for Equality and Unequality"
|
230 |
+
op = {
|
231 |
+
'==' :'equal',
|
232 |
+
'!=' :'not_equal',
|
233 |
+
'<' :'less',
|
234 |
+
'<=' :'less_equal',
|
235 |
+
'>' :'greater',
|
236 |
+
'>=' :'greater_equal',
|
237 |
+
}
|
238 |
+
if expr.rel_op in op:
|
239 |
+
lhs = self._print(expr.lhs)
|
240 |
+
rhs = self._print(expr.rhs)
|
241 |
+
return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs)
|
242 |
+
return super()._print_Relational(expr)
|
243 |
+
|
244 |
+
def _print_ITE(self, expr):
|
245 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
246 |
+
return self._print(expr.rewrite(Piecewise))
|
247 |
+
|
248 |
+
def _print_Sum(self, expr):
|
249 |
+
loops = (
|
250 |
+
'for {i} in range({a}, {b}+1)'.format(
|
251 |
+
i=self._print(i),
|
252 |
+
a=self._print(a),
|
253 |
+
b=self._print(b))
|
254 |
+
for i, a, b in expr.limits)
|
255 |
+
return '(builtins.sum({function} {loops}))'.format(
|
256 |
+
function=self._print(expr.function),
|
257 |
+
loops=' '.join(loops))
|
258 |
+
|
259 |
+
def _print_ImaginaryUnit(self, expr):
|
260 |
+
return '1j'
|
261 |
+
|
262 |
+
def _print_KroneckerDelta(self, expr):
|
263 |
+
a, b = expr.args
|
264 |
+
|
265 |
+
return '(1 if {a} == {b} else 0)'.format(
|
266 |
+
a = self._print(a),
|
267 |
+
b = self._print(b)
|
268 |
+
)
|
269 |
+
|
270 |
+
def _print_MatrixBase(self, expr):
|
271 |
+
name = expr.__class__.__name__
|
272 |
+
func = self.known_functions.get(name, name)
|
273 |
+
return "%s(%s)" % (func, self._print(expr.tolist()))
|
274 |
+
|
275 |
+
_print_SparseRepMatrix = \
|
276 |
+
_print_MutableSparseMatrix = \
|
277 |
+
_print_ImmutableSparseMatrix = \
|
278 |
+
_print_Matrix = \
|
279 |
+
_print_DenseMatrix = \
|
280 |
+
_print_MutableDenseMatrix = \
|
281 |
+
_print_ImmutableMatrix = \
|
282 |
+
_print_ImmutableDenseMatrix = \
|
283 |
+
lambda self, expr: self._print_MatrixBase(expr)
|
284 |
+
|
285 |
+
def _indent_codestring(self, codestring):
|
286 |
+
return '\n'.join([self.tab + line for line in codestring.split('\n')])
|
287 |
+
|
288 |
+
def _print_FunctionDefinition(self, fd):
|
289 |
+
body = '\n'.join((self._print(arg) for arg in fd.body))
|
290 |
+
return "def {name}({parameters}):\n{body}".format(
|
291 |
+
name=self._print(fd.name),
|
292 |
+
parameters=', '.join([self._print(var.symbol) for var in fd.parameters]),
|
293 |
+
body=self._indent_codestring(body)
|
294 |
+
)
|
295 |
+
|
296 |
+
def _print_While(self, whl):
|
297 |
+
body = '\n'.join((self._print(arg) for arg in whl.body))
|
298 |
+
return "while {cond}:\n{body}".format(
|
299 |
+
cond=self._print(whl.condition),
|
300 |
+
body=self._indent_codestring(body)
|
301 |
+
)
|
302 |
+
|
303 |
+
def _print_Declaration(self, decl):
|
304 |
+
return '%s = %s' % (
|
305 |
+
self._print(decl.variable.symbol),
|
306 |
+
self._print(decl.variable.value)
|
307 |
+
)
|
308 |
+
|
309 |
+
def _print_Return(self, ret):
|
310 |
+
arg, = ret.args
|
311 |
+
return 'return %s' % self._print(arg)
|
312 |
+
|
313 |
+
def _print_Print(self, prnt):
|
314 |
+
print_args = ', '.join((self._print(arg) for arg in prnt.print_args))
|
315 |
+
if prnt.format_string != None: # Must be '!= None', cannot be 'is not None'
|
316 |
+
print_args = '{} % ({})'.format(
|
317 |
+
self._print(prnt.format_string), print_args)
|
318 |
+
if prnt.file != None: # Must be '!= None', cannot be 'is not None'
|
319 |
+
print_args += ', file=%s' % self._print(prnt.file)
|
320 |
+
|
321 |
+
return 'print(%s)' % print_args
|
322 |
+
|
323 |
+
def _print_Stream(self, strm):
|
324 |
+
if str(strm.name) == 'stdout':
|
325 |
+
return self._module_format('sys.stdout')
|
326 |
+
elif str(strm.name) == 'stderr':
|
327 |
+
return self._module_format('sys.stderr')
|
328 |
+
else:
|
329 |
+
return self._print(strm.name)
|
330 |
+
|
331 |
+
def _print_NoneToken(self, arg):
|
332 |
+
return 'None'
|
333 |
+
|
334 |
+
def _hprint_Pow(self, expr, rational=False, sqrt='math.sqrt'):
|
335 |
+
"""Printing helper function for ``Pow``
|
336 |
+
|
337 |
+
Notes
|
338 |
+
=====
|
339 |
+
|
340 |
+
This preprocesses the ``sqrt`` as math formatter and prints division
|
341 |
+
|
342 |
+
Examples
|
343 |
+
========
|
344 |
+
|
345 |
+
>>> from sympy import sqrt
|
346 |
+
>>> from sympy.printing.pycode import PythonCodePrinter
|
347 |
+
>>> from sympy.abc import x
|
348 |
+
|
349 |
+
Python code printer automatically looks up ``math.sqrt``.
|
350 |
+
|
351 |
+
>>> printer = PythonCodePrinter()
|
352 |
+
>>> printer._hprint_Pow(sqrt(x), rational=True)
|
353 |
+
'x**(1/2)'
|
354 |
+
>>> printer._hprint_Pow(sqrt(x), rational=False)
|
355 |
+
'math.sqrt(x)'
|
356 |
+
>>> printer._hprint_Pow(1/sqrt(x), rational=True)
|
357 |
+
'x**(-1/2)'
|
358 |
+
>>> printer._hprint_Pow(1/sqrt(x), rational=False)
|
359 |
+
'1/math.sqrt(x)'
|
360 |
+
>>> printer._hprint_Pow(1/x, rational=False)
|
361 |
+
'1/x'
|
362 |
+
>>> printer._hprint_Pow(1/x, rational=True)
|
363 |
+
'x**(-1)'
|
364 |
+
|
365 |
+
Using sqrt from numpy or mpmath
|
366 |
+
|
367 |
+
>>> printer._hprint_Pow(sqrt(x), sqrt='numpy.sqrt')
|
368 |
+
'numpy.sqrt(x)'
|
369 |
+
>>> printer._hprint_Pow(sqrt(x), sqrt='mpmath.sqrt')
|
370 |
+
'mpmath.sqrt(x)'
|
371 |
+
|
372 |
+
See Also
|
373 |
+
========
|
374 |
+
|
375 |
+
sympy.printing.str.StrPrinter._print_Pow
|
376 |
+
"""
|
377 |
+
PREC = precedence(expr)
|
378 |
+
|
379 |
+
if expr.exp == S.Half and not rational:
|
380 |
+
func = self._module_format(sqrt)
|
381 |
+
arg = self._print(expr.base)
|
382 |
+
return '{func}({arg})'.format(func=func, arg=arg)
|
383 |
+
|
384 |
+
if expr.is_commutative and not rational:
|
385 |
+
if -expr.exp is S.Half:
|
386 |
+
func = self._module_format(sqrt)
|
387 |
+
num = self._print(S.One)
|
388 |
+
arg = self._print(expr.base)
|
389 |
+
return f"{num}/{func}({arg})"
|
390 |
+
if expr.exp is S.NegativeOne:
|
391 |
+
num = self._print(S.One)
|
392 |
+
arg = self.parenthesize(expr.base, PREC, strict=False)
|
393 |
+
return f"{num}/{arg}"
|
394 |
+
|
395 |
+
|
396 |
+
base_str = self.parenthesize(expr.base, PREC, strict=False)
|
397 |
+
exp_str = self.parenthesize(expr.exp, PREC, strict=False)
|
398 |
+
return "{}**{}".format(base_str, exp_str)
|
399 |
+
|
400 |
+
|
401 |
+
class ArrayPrinter:
|
402 |
+
|
403 |
+
def _arrayify(self, indexed):
|
404 |
+
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
|
405 |
+
try:
|
406 |
+
return convert_indexed_to_array(indexed)
|
407 |
+
except Exception:
|
408 |
+
return indexed
|
409 |
+
|
410 |
+
def _get_einsum_string(self, subranks, contraction_indices):
|
411 |
+
letters = self._get_letter_generator_for_einsum()
|
412 |
+
contraction_string = ""
|
413 |
+
counter = 0
|
414 |
+
d = {j: min(i) for i in contraction_indices for j in i}
|
415 |
+
indices = []
|
416 |
+
for rank_arg in subranks:
|
417 |
+
lindices = []
|
418 |
+
for i in range(rank_arg):
|
419 |
+
if counter in d:
|
420 |
+
lindices.append(d[counter])
|
421 |
+
else:
|
422 |
+
lindices.append(counter)
|
423 |
+
counter += 1
|
424 |
+
indices.append(lindices)
|
425 |
+
mapping = {}
|
426 |
+
letters_free = []
|
427 |
+
letters_dum = []
|
428 |
+
for i in indices:
|
429 |
+
for j in i:
|
430 |
+
if j not in mapping:
|
431 |
+
l = next(letters)
|
432 |
+
mapping[j] = l
|
433 |
+
else:
|
434 |
+
l = mapping[j]
|
435 |
+
contraction_string += l
|
436 |
+
if j in d:
|
437 |
+
if l not in letters_dum:
|
438 |
+
letters_dum.append(l)
|
439 |
+
else:
|
440 |
+
letters_free.append(l)
|
441 |
+
contraction_string += ","
|
442 |
+
contraction_string = contraction_string[:-1]
|
443 |
+
return contraction_string, letters_free, letters_dum
|
444 |
+
|
445 |
+
def _get_letter_generator_for_einsum(self):
|
446 |
+
for i in range(97, 123):
|
447 |
+
yield chr(i)
|
448 |
+
for i in range(65, 91):
|
449 |
+
yield chr(i)
|
450 |
+
raise ValueError("out of letters")
|
451 |
+
|
452 |
+
def _print_ArrayTensorProduct(self, expr):
|
453 |
+
letters = self._get_letter_generator_for_einsum()
|
454 |
+
contraction_string = ",".join(["".join([next(letters) for j in range(i)]) for i in expr.subranks])
|
455 |
+
return '%s("%s", %s)' % (
|
456 |
+
self._module_format(self._module + "." + self._einsum),
|
457 |
+
contraction_string,
|
458 |
+
", ".join([self._print(arg) for arg in expr.args])
|
459 |
+
)
|
460 |
+
|
461 |
+
def _print_ArrayContraction(self, expr):
|
462 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
|
463 |
+
base = expr.expr
|
464 |
+
contraction_indices = expr.contraction_indices
|
465 |
+
|
466 |
+
if isinstance(base, ArrayTensorProduct):
|
467 |
+
elems = ",".join(["%s" % (self._print(arg)) for arg in base.args])
|
468 |
+
ranks = base.subranks
|
469 |
+
else:
|
470 |
+
elems = self._print(base)
|
471 |
+
ranks = [len(base.shape)]
|
472 |
+
|
473 |
+
contraction_string, letters_free, letters_dum = self._get_einsum_string(ranks, contraction_indices)
|
474 |
+
|
475 |
+
if not contraction_indices:
|
476 |
+
return self._print(base)
|
477 |
+
if isinstance(base, ArrayTensorProduct):
|
478 |
+
elems = ",".join(["%s" % (self._print(arg)) for arg in base.args])
|
479 |
+
else:
|
480 |
+
elems = self._print(base)
|
481 |
+
return "%s(\"%s\", %s)" % (
|
482 |
+
self._module_format(self._module + "." + self._einsum),
|
483 |
+
"{}->{}".format(contraction_string, "".join(sorted(letters_free))),
|
484 |
+
elems,
|
485 |
+
)
|
486 |
+
|
487 |
+
def _print_ArrayDiagonal(self, expr):
|
488 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
|
489 |
+
diagonal_indices = list(expr.diagonal_indices)
|
490 |
+
if isinstance(expr.expr, ArrayTensorProduct):
|
491 |
+
subranks = expr.expr.subranks
|
492 |
+
elems = expr.expr.args
|
493 |
+
else:
|
494 |
+
subranks = expr.subranks
|
495 |
+
elems = [expr.expr]
|
496 |
+
diagonal_string, letters_free, letters_dum = self._get_einsum_string(subranks, diagonal_indices)
|
497 |
+
elems = [self._print(i) for i in elems]
|
498 |
+
return '%s("%s", %s)' % (
|
499 |
+
self._module_format(self._module + "." + self._einsum),
|
500 |
+
"{}->{}".format(diagonal_string, "".join(letters_free+letters_dum)),
|
501 |
+
", ".join(elems)
|
502 |
+
)
|
503 |
+
|
504 |
+
def _print_PermuteDims(self, expr):
|
505 |
+
return "%s(%s, %s)" % (
|
506 |
+
self._module_format(self._module + "." + self._transpose),
|
507 |
+
self._print(expr.expr),
|
508 |
+
self._print(expr.permutation.array_form),
|
509 |
+
)
|
510 |
+
|
511 |
+
def _print_ArrayAdd(self, expr):
|
512 |
+
return self._expand_fold_binary_op(self._module + "." + self._add, expr.args)
|
513 |
+
|
514 |
+
def _print_OneArray(self, expr):
|
515 |
+
return "%s((%s,))" % (
|
516 |
+
self._module_format(self._module+ "." + self._ones),
|
517 |
+
','.join(map(self._print,expr.args))
|
518 |
+
)
|
519 |
+
|
520 |
+
def _print_ZeroArray(self, expr):
|
521 |
+
return "%s((%s,))" % (
|
522 |
+
self._module_format(self._module+ "." + self._zeros),
|
523 |
+
','.join(map(self._print,expr.args))
|
524 |
+
)
|
525 |
+
|
526 |
+
def _print_Assignment(self, expr):
|
527 |
+
#XXX: maybe this needs to happen at a higher level e.g. at _print or
|
528 |
+
#doprint?
|
529 |
+
lhs = self._print(self._arrayify(expr.lhs))
|
530 |
+
rhs = self._print(self._arrayify(expr.rhs))
|
531 |
+
return "%s = %s" % ( lhs, rhs )
|
532 |
+
|
533 |
+
def _print_IndexedBase(self, expr):
|
534 |
+
return self._print_ArraySymbol(expr)
|
535 |
+
|
536 |
+
|
537 |
+
class PythonCodePrinter(AbstractPythonCodePrinter):
|
538 |
+
|
539 |
+
def _print_sign(self, e):
|
540 |
+
return '(0.0 if {e} == 0 else {f}(1, {e}))'.format(
|
541 |
+
f=self._module_format('math.copysign'), e=self._print(e.args[0]))
|
542 |
+
|
543 |
+
def _print_Not(self, expr):
|
544 |
+
PREC = precedence(expr)
|
545 |
+
return self._operators['not'] + self.parenthesize(expr.args[0], PREC)
|
546 |
+
|
547 |
+
def _print_Indexed(self, expr):
|
548 |
+
base = expr.args[0]
|
549 |
+
index = expr.args[1:]
|
550 |
+
return "{}[{}]".format(str(base), ", ".join([self._print(ind) for ind in index]))
|
551 |
+
|
552 |
+
def _print_Pow(self, expr, rational=False):
|
553 |
+
return self._hprint_Pow(expr, rational=rational)
|
554 |
+
|
555 |
+
def _print_Rational(self, expr):
|
556 |
+
return '{}/{}'.format(expr.p, expr.q)
|
557 |
+
|
558 |
+
def _print_Half(self, expr):
|
559 |
+
return self._print_Rational(expr)
|
560 |
+
|
561 |
+
def _print_frac(self, expr):
|
562 |
+
return self._print_Mod(Mod(expr.args[0], 1))
|
563 |
+
|
564 |
+
def _print_Symbol(self, expr):
|
565 |
+
|
566 |
+
name = super()._print_Symbol(expr)
|
567 |
+
|
568 |
+
if name in self.reserved_words:
|
569 |
+
if self._settings['error_on_reserved']:
|
570 |
+
msg = ('This expression includes the symbol "{}" which is a '
|
571 |
+
'reserved keyword in this language.')
|
572 |
+
raise ValueError(msg.format(name))
|
573 |
+
return name + self._settings['reserved_word_suffix']
|
574 |
+
elif '{' in name: # Remove curly braces from subscripted variables
|
575 |
+
return name.replace('{', '').replace('}', '')
|
576 |
+
else:
|
577 |
+
return name
|
578 |
+
|
579 |
+
_print_lowergamma = CodePrinter._print_not_supported
|
580 |
+
_print_uppergamma = CodePrinter._print_not_supported
|
581 |
+
_print_fresnelc = CodePrinter._print_not_supported
|
582 |
+
_print_fresnels = CodePrinter._print_not_supported
|
583 |
+
|
584 |
+
|
585 |
+
for k in PythonCodePrinter._kf:
|
586 |
+
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func)
|
587 |
+
|
588 |
+
for k in _known_constants_math:
|
589 |
+
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const)
|
590 |
+
|
591 |
+
|
592 |
+
def pycode(expr, **settings):
|
593 |
+
""" Converts an expr to a string of Python code
|
594 |
+
|
595 |
+
Parameters
|
596 |
+
==========
|
597 |
+
|
598 |
+
expr : Expr
|
599 |
+
A SymPy expression.
|
600 |
+
fully_qualified_modules : bool
|
601 |
+
Whether or not to write out full module names of functions
|
602 |
+
(``math.sin`` vs. ``sin``). default: ``True``.
|
603 |
+
standard : str or None, optional
|
604 |
+
Only 'python3' (default) is supported.
|
605 |
+
This parameter may be removed in the future.
|
606 |
+
|
607 |
+
Examples
|
608 |
+
========
|
609 |
+
|
610 |
+
>>> from sympy import pycode, tan, Symbol
|
611 |
+
>>> pycode(tan(Symbol('x')) + 1)
|
612 |
+
'math.tan(x) + 1'
|
613 |
+
|
614 |
+
"""
|
615 |
+
return PythonCodePrinter(settings).doprint(expr)
|
616 |
+
|
617 |
+
|
618 |
+
_not_in_mpmath = 'log1p log2'.split()
|
619 |
+
_in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath]
|
620 |
+
_known_functions_mpmath = dict(_in_mpmath, **{
|
621 |
+
'beta': 'beta',
|
622 |
+
'frac': 'frac',
|
623 |
+
'fresnelc': 'fresnelc',
|
624 |
+
'fresnels': 'fresnels',
|
625 |
+
'sign': 'sign',
|
626 |
+
'loggamma': 'loggamma',
|
627 |
+
'hyper': 'hyper',
|
628 |
+
'meijerg': 'meijerg',
|
629 |
+
'besselj': 'besselj',
|
630 |
+
'bessely': 'bessely',
|
631 |
+
'besseli': 'besseli',
|
632 |
+
'besselk': 'besselk',
|
633 |
+
})
|
634 |
+
_known_constants_mpmath = {
|
635 |
+
'Exp1': 'e',
|
636 |
+
'Pi': 'pi',
|
637 |
+
'GoldenRatio': 'phi',
|
638 |
+
'EulerGamma': 'euler',
|
639 |
+
'Catalan': 'catalan',
|
640 |
+
'NaN': 'nan',
|
641 |
+
'Infinity': 'inf',
|
642 |
+
'NegativeInfinity': 'ninf'
|
643 |
+
}
|
644 |
+
|
645 |
+
|
646 |
+
def _unpack_integral_limits(integral_expr):
|
647 |
+
""" helper function for _print_Integral that
|
648 |
+
- accepts an Integral expression
|
649 |
+
- returns a tuple of
|
650 |
+
- a list variables of integration
|
651 |
+
- a list of tuples of the upper and lower limits of integration
|
652 |
+
"""
|
653 |
+
integration_vars = []
|
654 |
+
limits = []
|
655 |
+
for integration_range in integral_expr.limits:
|
656 |
+
if len(integration_range) == 3:
|
657 |
+
integration_var, lower_limit, upper_limit = integration_range
|
658 |
+
else:
|
659 |
+
raise NotImplementedError("Only definite integrals are supported")
|
660 |
+
integration_vars.append(integration_var)
|
661 |
+
limits.append((lower_limit, upper_limit))
|
662 |
+
return integration_vars, limits
|
663 |
+
|
664 |
+
|
665 |
+
class MpmathPrinter(PythonCodePrinter):
|
666 |
+
"""
|
667 |
+
Lambda printer for mpmath which maintains precision for floats
|
668 |
+
"""
|
669 |
+
printmethod = "_mpmathcode"
|
670 |
+
|
671 |
+
language = "Python with mpmath"
|
672 |
+
|
673 |
+
_kf = dict(chain(
|
674 |
+
_known_functions.items(),
|
675 |
+
[(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()]
|
676 |
+
))
|
677 |
+
_kc = {k: 'mpmath.'+v for k, v in _known_constants_mpmath.items()}
|
678 |
+
|
679 |
+
def _print_Float(self, e):
|
680 |
+
# XXX: This does not handle setting mpmath.mp.dps. It is assumed that
|
681 |
+
# the caller of the lambdified function will have set it to sufficient
|
682 |
+
# precision to match the Floats in the expression.
|
683 |
+
|
684 |
+
# Remove 'mpz' if gmpy is installed.
|
685 |
+
args = str(tuple(map(int, e._mpf_)))
|
686 |
+
return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args)
|
687 |
+
|
688 |
+
|
689 |
+
def _print_Rational(self, e):
|
690 |
+
return "{func}({p})/{func}({q})".format(
|
691 |
+
func=self._module_format('mpmath.mpf'),
|
692 |
+
q=self._print(e.q),
|
693 |
+
p=self._print(e.p)
|
694 |
+
)
|
695 |
+
|
696 |
+
def _print_Half(self, e):
|
697 |
+
return self._print_Rational(e)
|
698 |
+
|
699 |
+
def _print_uppergamma(self, e):
|
700 |
+
return "{}({}, {}, {})".format(
|
701 |
+
self._module_format('mpmath.gammainc'),
|
702 |
+
self._print(e.args[0]),
|
703 |
+
self._print(e.args[1]),
|
704 |
+
self._module_format('mpmath.inf'))
|
705 |
+
|
706 |
+
def _print_lowergamma(self, e):
|
707 |
+
return "{}({}, 0, {})".format(
|
708 |
+
self._module_format('mpmath.gammainc'),
|
709 |
+
self._print(e.args[0]),
|
710 |
+
self._print(e.args[1]))
|
711 |
+
|
712 |
+
def _print_log2(self, e):
|
713 |
+
return '{0}({1})/{0}(2)'.format(
|
714 |
+
self._module_format('mpmath.log'), self._print(e.args[0]))
|
715 |
+
|
716 |
+
def _print_log1p(self, e):
|
717 |
+
return '{}({})'.format(
|
718 |
+
self._module_format('mpmath.log1p'), self._print(e.args[0]))
|
719 |
+
|
720 |
+
def _print_Pow(self, expr, rational=False):
|
721 |
+
return self._hprint_Pow(expr, rational=rational, sqrt='mpmath.sqrt')
|
722 |
+
|
723 |
+
def _print_Integral(self, e):
|
724 |
+
integration_vars, limits = _unpack_integral_limits(e)
|
725 |
+
|
726 |
+
return "{}(lambda {}: {}, {})".format(
|
727 |
+
self._module_format("mpmath.quad"),
|
728 |
+
", ".join(map(self._print, integration_vars)),
|
729 |
+
self._print(e.args[0]),
|
730 |
+
", ".join("(%s, %s)" % tuple(map(self._print, l)) for l in limits))
|
731 |
+
|
732 |
+
|
733 |
+
for k in MpmathPrinter._kf:
|
734 |
+
setattr(MpmathPrinter, '_print_%s' % k, _print_known_func)
|
735 |
+
|
736 |
+
for k in _known_constants_mpmath:
|
737 |
+
setattr(MpmathPrinter, '_print_%s' % k, _print_known_const)
|
738 |
+
|
739 |
+
|
740 |
+
class SymPyPrinter(AbstractPythonCodePrinter):
|
741 |
+
|
742 |
+
language = "Python with SymPy"
|
743 |
+
|
744 |
+
def _print_Function(self, expr):
|
745 |
+
mod = expr.func.__module__ or ''
|
746 |
+
return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__),
|
747 |
+
', '.join((self._print(arg) for arg in expr.args)))
|
748 |
+
|
749 |
+
def _print_Pow(self, expr, rational=False):
|
750 |
+
return self._hprint_Pow(expr, rational=rational, sqrt='sympy.sqrt')
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/python.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import keyword as kw
|
2 |
+
import sympy
|
3 |
+
from .repr import ReprPrinter
|
4 |
+
from .str import StrPrinter
|
5 |
+
|
6 |
+
# A list of classes that should be printed using StrPrinter
|
7 |
+
STRPRINT = ("Add", "Infinity", "Integer", "Mul", "NegativeInfinity",
|
8 |
+
"Pow", "Zero")
|
9 |
+
|
10 |
+
|
11 |
+
class PythonPrinter(ReprPrinter, StrPrinter):
|
12 |
+
"""A printer which converts an expression into its Python interpretation."""
|
13 |
+
|
14 |
+
def __init__(self, settings=None):
|
15 |
+
super().__init__(settings)
|
16 |
+
self.symbols = []
|
17 |
+
self.functions = []
|
18 |
+
|
19 |
+
# Create print methods for classes that should use StrPrinter instead
|
20 |
+
# of ReprPrinter.
|
21 |
+
for name in STRPRINT:
|
22 |
+
f_name = "_print_%s" % name
|
23 |
+
f = getattr(StrPrinter, f_name)
|
24 |
+
setattr(PythonPrinter, f_name, f)
|
25 |
+
|
26 |
+
def _print_Function(self, expr):
|
27 |
+
func = expr.func.__name__
|
28 |
+
if not hasattr(sympy, func) and func not in self.functions:
|
29 |
+
self.functions.append(func)
|
30 |
+
return StrPrinter._print_Function(self, expr)
|
31 |
+
|
32 |
+
# procedure (!) for defining symbols which have be defined in print_python()
|
33 |
+
def _print_Symbol(self, expr):
|
34 |
+
symbol = self._str(expr)
|
35 |
+
if symbol not in self.symbols:
|
36 |
+
self.symbols.append(symbol)
|
37 |
+
return StrPrinter._print_Symbol(self, expr)
|
38 |
+
|
39 |
+
def _print_module(self, expr):
|
40 |
+
raise ValueError('Modules in the expression are unacceptable')
|
41 |
+
|
42 |
+
|
43 |
+
def python(expr, **settings):
|
44 |
+
"""Return Python interpretation of passed expression
|
45 |
+
(can be passed to the exec() function without any modifications)"""
|
46 |
+
|
47 |
+
printer = PythonPrinter(settings)
|
48 |
+
exprp = printer.doprint(expr)
|
49 |
+
|
50 |
+
result = ''
|
51 |
+
# Returning found symbols and functions
|
52 |
+
renamings = {}
|
53 |
+
for symbolname in printer.symbols:
|
54 |
+
# Remove curly braces from subscripted variables
|
55 |
+
if '{' in symbolname:
|
56 |
+
newsymbolname = symbolname.replace('{', '').replace('}', '')
|
57 |
+
renamings[sympy.Symbol(symbolname)] = newsymbolname
|
58 |
+
else:
|
59 |
+
newsymbolname = symbolname
|
60 |
+
|
61 |
+
# Escape symbol names that are reserved Python keywords
|
62 |
+
if kw.iskeyword(newsymbolname):
|
63 |
+
while True:
|
64 |
+
newsymbolname += "_"
|
65 |
+
if (newsymbolname not in printer.symbols and
|
66 |
+
newsymbolname not in printer.functions):
|
67 |
+
renamings[sympy.Symbol(
|
68 |
+
symbolname)] = sympy.Symbol(newsymbolname)
|
69 |
+
break
|
70 |
+
result += newsymbolname + ' = Symbol(\'' + symbolname + '\')\n'
|
71 |
+
|
72 |
+
for functionname in printer.functions:
|
73 |
+
newfunctionname = functionname
|
74 |
+
# Escape function names that are reserved Python keywords
|
75 |
+
if kw.iskeyword(newfunctionname):
|
76 |
+
while True:
|
77 |
+
newfunctionname += "_"
|
78 |
+
if (newfunctionname not in printer.symbols and
|
79 |
+
newfunctionname not in printer.functions):
|
80 |
+
renamings[sympy.Function(
|
81 |
+
functionname)] = sympy.Function(newfunctionname)
|
82 |
+
break
|
83 |
+
result += newfunctionname + ' = Function(\'' + functionname + '\')\n'
|
84 |
+
|
85 |
+
if renamings:
|
86 |
+
exprp = expr.subs(renamings)
|
87 |
+
result += 'e = ' + printer._str(exprp)
|
88 |
+
return result
|
89 |
+
|
90 |
+
|
91 |
+
def print_python(expr, **settings):
|
92 |
+
"""Print output of python() function"""
|
93 |
+
print(python(expr, **settings))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/repr.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A Printer for generating executable code.
|
3 |
+
|
4 |
+
The most important function here is srepr that returns a string so that the
|
5 |
+
relation eval(srepr(expr))=expr holds in an appropriate environment.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from __future__ import annotations
|
9 |
+
from typing import Any
|
10 |
+
|
11 |
+
from sympy.core.function import AppliedUndef
|
12 |
+
from sympy.core.mul import Mul
|
13 |
+
from mpmath.libmp import repr_dps, to_str as mlib_to_str
|
14 |
+
|
15 |
+
from .printer import Printer, print_function
|
16 |
+
|
17 |
+
|
18 |
+
class ReprPrinter(Printer):
|
19 |
+
printmethod = "_sympyrepr"
|
20 |
+
|
21 |
+
_default_settings: dict[str, Any] = {
|
22 |
+
"order": None,
|
23 |
+
"perm_cyclic" : True,
|
24 |
+
}
|
25 |
+
|
26 |
+
def reprify(self, args, sep):
|
27 |
+
"""
|
28 |
+
Prints each item in `args` and joins them with `sep`.
|
29 |
+
"""
|
30 |
+
return sep.join([self.doprint(item) for item in args])
|
31 |
+
|
32 |
+
def emptyPrinter(self, expr):
|
33 |
+
"""
|
34 |
+
The fallback printer.
|
35 |
+
"""
|
36 |
+
if isinstance(expr, str):
|
37 |
+
return expr
|
38 |
+
elif hasattr(expr, "__srepr__"):
|
39 |
+
return expr.__srepr__()
|
40 |
+
elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"):
|
41 |
+
l = []
|
42 |
+
for o in expr.args:
|
43 |
+
l.append(self._print(o))
|
44 |
+
return expr.__class__.__name__ + '(%s)' % ', '.join(l)
|
45 |
+
elif hasattr(expr, "__module__") and hasattr(expr, "__name__"):
|
46 |
+
return "<'%s.%s'>" % (expr.__module__, expr.__name__)
|
47 |
+
else:
|
48 |
+
return str(expr)
|
49 |
+
|
50 |
+
def _print_Add(self, expr, order=None):
|
51 |
+
args = self._as_ordered_terms(expr, order=order)
|
52 |
+
args = map(self._print, args)
|
53 |
+
clsname = type(expr).__name__
|
54 |
+
return clsname + "(%s)" % ", ".join(args)
|
55 |
+
|
56 |
+
def _print_Cycle(self, expr):
|
57 |
+
return expr.__repr__()
|
58 |
+
|
59 |
+
def _print_Permutation(self, expr):
|
60 |
+
from sympy.combinatorics.permutations import Permutation, Cycle
|
61 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
62 |
+
|
63 |
+
perm_cyclic = Permutation.print_cyclic
|
64 |
+
if perm_cyclic is not None:
|
65 |
+
sympy_deprecation_warning(
|
66 |
+
f"""
|
67 |
+
Setting Permutation.print_cyclic is deprecated. Instead use
|
68 |
+
init_printing(perm_cyclic={perm_cyclic}).
|
69 |
+
""",
|
70 |
+
deprecated_since_version="1.6",
|
71 |
+
active_deprecations_target="deprecated-permutation-print_cyclic",
|
72 |
+
stacklevel=7,
|
73 |
+
)
|
74 |
+
else:
|
75 |
+
perm_cyclic = self._settings.get("perm_cyclic", True)
|
76 |
+
|
77 |
+
if perm_cyclic:
|
78 |
+
if not expr.size:
|
79 |
+
return 'Permutation()'
|
80 |
+
# before taking Cycle notation, see if the last element is
|
81 |
+
# a singleton and move it to the head of the string
|
82 |
+
s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):]
|
83 |
+
last = s.rfind('(')
|
84 |
+
if not last == 0 and ',' not in s[last:]:
|
85 |
+
s = s[last:] + s[:last]
|
86 |
+
return 'Permutation%s' %s
|
87 |
+
else:
|
88 |
+
s = expr.support()
|
89 |
+
if not s:
|
90 |
+
if expr.size < 5:
|
91 |
+
return 'Permutation(%s)' % str(expr.array_form)
|
92 |
+
return 'Permutation([], size=%s)' % expr.size
|
93 |
+
trim = str(expr.array_form[:s[-1] + 1]) + ', size=%s' % expr.size
|
94 |
+
use = full = str(expr.array_form)
|
95 |
+
if len(trim) < len(full):
|
96 |
+
use = trim
|
97 |
+
return 'Permutation(%s)' % use
|
98 |
+
|
99 |
+
def _print_Function(self, expr):
|
100 |
+
r = self._print(expr.func)
|
101 |
+
r += '(%s)' % ', '.join([self._print(a) for a in expr.args])
|
102 |
+
return r
|
103 |
+
|
104 |
+
def _print_Heaviside(self, expr):
|
105 |
+
# Same as _print_Function but uses pargs to suppress default value for
|
106 |
+
# 2nd arg.
|
107 |
+
r = self._print(expr.func)
|
108 |
+
r += '(%s)' % ', '.join([self._print(a) for a in expr.pargs])
|
109 |
+
return r
|
110 |
+
|
111 |
+
def _print_FunctionClass(self, expr):
|
112 |
+
if issubclass(expr, AppliedUndef):
|
113 |
+
return 'Function(%r)' % (expr.__name__)
|
114 |
+
else:
|
115 |
+
return expr.__name__
|
116 |
+
|
117 |
+
def _print_Half(self, expr):
|
118 |
+
return 'Rational(1, 2)'
|
119 |
+
|
120 |
+
def _print_RationalConstant(self, expr):
|
121 |
+
return str(expr)
|
122 |
+
|
123 |
+
def _print_AtomicExpr(self, expr):
|
124 |
+
return str(expr)
|
125 |
+
|
126 |
+
def _print_NumberSymbol(self, expr):
|
127 |
+
return str(expr)
|
128 |
+
|
129 |
+
def _print_Integer(self, expr):
|
130 |
+
return 'Integer(%i)' % expr.p
|
131 |
+
|
132 |
+
def _print_Complexes(self, expr):
|
133 |
+
return 'Complexes'
|
134 |
+
|
135 |
+
def _print_Integers(self, expr):
|
136 |
+
return 'Integers'
|
137 |
+
|
138 |
+
def _print_Naturals(self, expr):
|
139 |
+
return 'Naturals'
|
140 |
+
|
141 |
+
def _print_Naturals0(self, expr):
|
142 |
+
return 'Naturals0'
|
143 |
+
|
144 |
+
def _print_Rationals(self, expr):
|
145 |
+
return 'Rationals'
|
146 |
+
|
147 |
+
def _print_Reals(self, expr):
|
148 |
+
return 'Reals'
|
149 |
+
|
150 |
+
def _print_EmptySet(self, expr):
|
151 |
+
return 'EmptySet'
|
152 |
+
|
153 |
+
def _print_UniversalSet(self, expr):
|
154 |
+
return 'UniversalSet'
|
155 |
+
|
156 |
+
def _print_EmptySequence(self, expr):
|
157 |
+
return 'EmptySequence'
|
158 |
+
|
159 |
+
def _print_list(self, expr):
|
160 |
+
return "[%s]" % self.reprify(expr, ", ")
|
161 |
+
|
162 |
+
def _print_dict(self, expr):
|
163 |
+
sep = ", "
|
164 |
+
dict_kvs = ["%s: %s" % (self.doprint(key), self.doprint(value)) for key, value in expr.items()]
|
165 |
+
return "{%s}" % sep.join(dict_kvs)
|
166 |
+
|
167 |
+
def _print_set(self, expr):
|
168 |
+
if not expr:
|
169 |
+
return "set()"
|
170 |
+
return "{%s}" % self.reprify(expr, ", ")
|
171 |
+
|
172 |
+
def _print_MatrixBase(self, expr):
|
173 |
+
# special case for some empty matrices
|
174 |
+
if (expr.rows == 0) ^ (expr.cols == 0):
|
175 |
+
return '%s(%s, %s, %s)' % (expr.__class__.__name__,
|
176 |
+
self._print(expr.rows),
|
177 |
+
self._print(expr.cols),
|
178 |
+
self._print([]))
|
179 |
+
l = []
|
180 |
+
for i in range(expr.rows):
|
181 |
+
l.append([])
|
182 |
+
for j in range(expr.cols):
|
183 |
+
l[-1].append(expr[i, j])
|
184 |
+
return '%s(%s)' % (expr.__class__.__name__, self._print(l))
|
185 |
+
|
186 |
+
def _print_BooleanTrue(self, expr):
|
187 |
+
return "true"
|
188 |
+
|
189 |
+
def _print_BooleanFalse(self, expr):
|
190 |
+
return "false"
|
191 |
+
|
192 |
+
def _print_NaN(self, expr):
|
193 |
+
return "nan"
|
194 |
+
|
195 |
+
def _print_Mul(self, expr, order=None):
|
196 |
+
if self.order not in ('old', 'none'):
|
197 |
+
args = expr.as_ordered_factors()
|
198 |
+
else:
|
199 |
+
# use make_args in case expr was something like -x -> x
|
200 |
+
args = Mul.make_args(expr)
|
201 |
+
|
202 |
+
args = map(self._print, args)
|
203 |
+
clsname = type(expr).__name__
|
204 |
+
return clsname + "(%s)" % ", ".join(args)
|
205 |
+
|
206 |
+
def _print_Rational(self, expr):
|
207 |
+
return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q))
|
208 |
+
|
209 |
+
def _print_PythonRational(self, expr):
|
210 |
+
return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q)
|
211 |
+
|
212 |
+
def _print_Fraction(self, expr):
|
213 |
+
return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator))
|
214 |
+
|
215 |
+
def _print_Float(self, expr):
|
216 |
+
r = mlib_to_str(expr._mpf_, repr_dps(expr._prec))
|
217 |
+
return "%s('%s', precision=%i)" % (expr.__class__.__name__, r, expr._prec)
|
218 |
+
|
219 |
+
def _print_Sum2(self, expr):
|
220 |
+
return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i),
|
221 |
+
self._print(expr.a), self._print(expr.b))
|
222 |
+
|
223 |
+
def _print_Str(self, s):
|
224 |
+
return "%s(%s)" % (s.__class__.__name__, self._print(s.name))
|
225 |
+
|
226 |
+
def _print_Symbol(self, expr):
|
227 |
+
d = expr._assumptions_orig
|
228 |
+
# print the dummy_index like it was an assumption
|
229 |
+
if expr.is_Dummy:
|
230 |
+
d['dummy_index'] = expr.dummy_index
|
231 |
+
|
232 |
+
if d == {}:
|
233 |
+
return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name))
|
234 |
+
else:
|
235 |
+
attr = ['%s=%s' % (k, v) for k, v in d.items()]
|
236 |
+
return "%s(%s, %s)" % (expr.__class__.__name__,
|
237 |
+
self._print(expr.name), ', '.join(attr))
|
238 |
+
|
239 |
+
def _print_CoordinateSymbol(self, expr):
|
240 |
+
d = expr._assumptions.generator
|
241 |
+
|
242 |
+
if d == {}:
|
243 |
+
return "%s(%s, %s)" % (
|
244 |
+
expr.__class__.__name__,
|
245 |
+
self._print(expr.coord_sys),
|
246 |
+
self._print(expr.index)
|
247 |
+
)
|
248 |
+
else:
|
249 |
+
attr = ['%s=%s' % (k, v) for k, v in d.items()]
|
250 |
+
return "%s(%s, %s, %s)" % (
|
251 |
+
expr.__class__.__name__,
|
252 |
+
self._print(expr.coord_sys),
|
253 |
+
self._print(expr.index),
|
254 |
+
', '.join(attr)
|
255 |
+
)
|
256 |
+
|
257 |
+
def _print_Predicate(self, expr):
|
258 |
+
return "Q.%s" % expr.name
|
259 |
+
|
260 |
+
def _print_AppliedPredicate(self, expr):
|
261 |
+
# will be changed to just expr.args when args overriding is removed
|
262 |
+
args = expr._args
|
263 |
+
return "%s(%s)" % (expr.__class__.__name__, self.reprify(args, ", "))
|
264 |
+
|
265 |
+
def _print_str(self, expr):
|
266 |
+
return repr(expr)
|
267 |
+
|
268 |
+
def _print_tuple(self, expr):
|
269 |
+
if len(expr) == 1:
|
270 |
+
return "(%s,)" % self._print(expr[0])
|
271 |
+
else:
|
272 |
+
return "(%s)" % self.reprify(expr, ", ")
|
273 |
+
|
274 |
+
def _print_WildFunction(self, expr):
|
275 |
+
return "%s('%s')" % (expr.__class__.__name__, expr.name)
|
276 |
+
|
277 |
+
def _print_AlgebraicNumber(self, expr):
|
278 |
+
return "%s(%s, %s)" % (expr.__class__.__name__,
|
279 |
+
self._print(expr.root), self._print(expr.coeffs()))
|
280 |
+
|
281 |
+
def _print_PolyRing(self, ring):
|
282 |
+
return "%s(%s, %s, %s)" % (ring.__class__.__name__,
|
283 |
+
self._print(ring.symbols), self._print(ring.domain), self._print(ring.order))
|
284 |
+
|
285 |
+
def _print_FracField(self, field):
|
286 |
+
return "%s(%s, %s, %s)" % (field.__class__.__name__,
|
287 |
+
self._print(field.symbols), self._print(field.domain), self._print(field.order))
|
288 |
+
|
289 |
+
def _print_PolyElement(self, poly):
|
290 |
+
terms = list(poly.terms())
|
291 |
+
terms.sort(key=poly.ring.order, reverse=True)
|
292 |
+
return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms))
|
293 |
+
|
294 |
+
def _print_FracElement(self, frac):
|
295 |
+
numer_terms = list(frac.numer.terms())
|
296 |
+
numer_terms.sort(key=frac.field.order, reverse=True)
|
297 |
+
denom_terms = list(frac.denom.terms())
|
298 |
+
denom_terms.sort(key=frac.field.order, reverse=True)
|
299 |
+
numer = self._print(numer_terms)
|
300 |
+
denom = self._print(denom_terms)
|
301 |
+
return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom)
|
302 |
+
|
303 |
+
def _print_FractionField(self, domain):
|
304 |
+
cls = domain.__class__.__name__
|
305 |
+
field = self._print(domain.field)
|
306 |
+
return "%s(%s)" % (cls, field)
|
307 |
+
|
308 |
+
def _print_PolynomialRingBase(self, ring):
|
309 |
+
cls = ring.__class__.__name__
|
310 |
+
dom = self._print(ring.domain)
|
311 |
+
gens = ', '.join(map(self._print, ring.gens))
|
312 |
+
order = str(ring.order)
|
313 |
+
if order != ring.default_order:
|
314 |
+
orderstr = ", order=" + order
|
315 |
+
else:
|
316 |
+
orderstr = ""
|
317 |
+
return "%s(%s, %s%s)" % (cls, dom, gens, orderstr)
|
318 |
+
|
319 |
+
def _print_DMP(self, p):
|
320 |
+
cls = p.__class__.__name__
|
321 |
+
rep = self._print(p.rep)
|
322 |
+
dom = self._print(p.dom)
|
323 |
+
if p.ring is not None:
|
324 |
+
ringstr = ", ring=" + self._print(p.ring)
|
325 |
+
else:
|
326 |
+
ringstr = ""
|
327 |
+
return "%s(%s, %s%s)" % (cls, rep, dom, ringstr)
|
328 |
+
|
329 |
+
def _print_MonogenicFiniteExtension(self, ext):
|
330 |
+
# The expanded tree shown by srepr(ext.modulus)
|
331 |
+
# is not practical.
|
332 |
+
return "FiniteExtension(%s)" % str(ext.modulus)
|
333 |
+
|
334 |
+
def _print_ExtensionElement(self, f):
|
335 |
+
rep = self._print(f.rep)
|
336 |
+
ext = self._print(f.ext)
|
337 |
+
return "ExtElem(%s, %s)" % (rep, ext)
|
338 |
+
|
339 |
+
@print_function(ReprPrinter)
|
340 |
+
def srepr(expr, **settings):
|
341 |
+
"""return expr in repr form"""
|
342 |
+
return ReprPrinter(settings).doprint(expr)
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/str.py
ADDED
@@ -0,0 +1,1027 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A Printer for generating readable representation of most SymPy classes.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
from typing import Any
|
7 |
+
|
8 |
+
from sympy.core import S, Rational, Pow, Basic, Mul, Number
|
9 |
+
from sympy.core.mul import _keep_coeff
|
10 |
+
from sympy.core.relational import Relational
|
11 |
+
from sympy.core.sorting import default_sort_key
|
12 |
+
from sympy.core.sympify import SympifyError
|
13 |
+
from sympy.utilities.iterables import sift
|
14 |
+
from .precedence import precedence, PRECEDENCE
|
15 |
+
from .printer import Printer, print_function
|
16 |
+
|
17 |
+
from mpmath.libmp import prec_to_dps, to_str as mlib_to_str
|
18 |
+
|
19 |
+
|
20 |
+
class StrPrinter(Printer):
|
21 |
+
printmethod = "_sympystr"
|
22 |
+
_default_settings: dict[str, Any] = {
|
23 |
+
"order": None,
|
24 |
+
"full_prec": "auto",
|
25 |
+
"sympy_integers": False,
|
26 |
+
"abbrev": False,
|
27 |
+
"perm_cyclic": True,
|
28 |
+
"min": None,
|
29 |
+
"max": None,
|
30 |
+
}
|
31 |
+
|
32 |
+
_relationals: dict[str, str] = {}
|
33 |
+
|
34 |
+
def parenthesize(self, item, level, strict=False):
|
35 |
+
if (precedence(item) < level) or ((not strict) and precedence(item) <= level):
|
36 |
+
return "(%s)" % self._print(item)
|
37 |
+
else:
|
38 |
+
return self._print(item)
|
39 |
+
|
40 |
+
def stringify(self, args, sep, level=0):
|
41 |
+
return sep.join([self.parenthesize(item, level) for item in args])
|
42 |
+
|
43 |
+
def emptyPrinter(self, expr):
|
44 |
+
if isinstance(expr, str):
|
45 |
+
return expr
|
46 |
+
elif isinstance(expr, Basic):
|
47 |
+
return repr(expr)
|
48 |
+
else:
|
49 |
+
return str(expr)
|
50 |
+
|
51 |
+
def _print_Add(self, expr, order=None):
|
52 |
+
terms = self._as_ordered_terms(expr, order=order)
|
53 |
+
|
54 |
+
prec = precedence(expr)
|
55 |
+
l = []
|
56 |
+
for term in terms:
|
57 |
+
t = self._print(term)
|
58 |
+
if t.startswith('-') and not term.is_Add:
|
59 |
+
sign = "-"
|
60 |
+
t = t[1:]
|
61 |
+
else:
|
62 |
+
sign = "+"
|
63 |
+
if precedence(term) < prec or term.is_Add:
|
64 |
+
l.extend([sign, "(%s)" % t])
|
65 |
+
else:
|
66 |
+
l.extend([sign, t])
|
67 |
+
sign = l.pop(0)
|
68 |
+
if sign == '+':
|
69 |
+
sign = ""
|
70 |
+
return sign + ' '.join(l)
|
71 |
+
|
72 |
+
def _print_BooleanTrue(self, expr):
|
73 |
+
return "True"
|
74 |
+
|
75 |
+
def _print_BooleanFalse(self, expr):
|
76 |
+
return "False"
|
77 |
+
|
78 |
+
def _print_Not(self, expr):
|
79 |
+
return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"]))
|
80 |
+
|
81 |
+
def _print_And(self, expr):
|
82 |
+
args = list(expr.args)
|
83 |
+
for j, i in enumerate(args):
|
84 |
+
if isinstance(i, Relational) and (
|
85 |
+
i.canonical.rhs is S.NegativeInfinity):
|
86 |
+
args.insert(0, args.pop(j))
|
87 |
+
return self.stringify(args, " & ", PRECEDENCE["BitwiseAnd"])
|
88 |
+
|
89 |
+
def _print_Or(self, expr):
|
90 |
+
return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"])
|
91 |
+
|
92 |
+
def _print_Xor(self, expr):
|
93 |
+
return self.stringify(expr.args, " ^ ", PRECEDENCE["BitwiseXor"])
|
94 |
+
|
95 |
+
def _print_AppliedPredicate(self, expr):
|
96 |
+
return '%s(%s)' % (
|
97 |
+
self._print(expr.function), self.stringify(expr.arguments, ", "))
|
98 |
+
|
99 |
+
def _print_Basic(self, expr):
|
100 |
+
l = [self._print(o) for o in expr.args]
|
101 |
+
return expr.__class__.__name__ + "(%s)" % ", ".join(l)
|
102 |
+
|
103 |
+
def _print_BlockMatrix(self, B):
|
104 |
+
if B.blocks.shape == (1, 1):
|
105 |
+
self._print(B.blocks[0, 0])
|
106 |
+
return self._print(B.blocks)
|
107 |
+
|
108 |
+
def _print_Catalan(self, expr):
|
109 |
+
return 'Catalan'
|
110 |
+
|
111 |
+
def _print_ComplexInfinity(self, expr):
|
112 |
+
return 'zoo'
|
113 |
+
|
114 |
+
def _print_ConditionSet(self, s):
|
115 |
+
args = tuple([self._print(i) for i in (s.sym, s.condition)])
|
116 |
+
if s.base_set is S.UniversalSet:
|
117 |
+
return 'ConditionSet(%s, %s)' % args
|
118 |
+
args += (self._print(s.base_set),)
|
119 |
+
return 'ConditionSet(%s, %s, %s)' % args
|
120 |
+
|
121 |
+
def _print_Derivative(self, expr):
|
122 |
+
dexpr = expr.expr
|
123 |
+
dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
|
124 |
+
return 'Derivative(%s)' % ", ".join((self._print(arg) for arg in [dexpr] + dvars))
|
125 |
+
|
126 |
+
def _print_dict(self, d):
|
127 |
+
keys = sorted(d.keys(), key=default_sort_key)
|
128 |
+
items = []
|
129 |
+
|
130 |
+
for key in keys:
|
131 |
+
item = "%s: %s" % (self._print(key), self._print(d[key]))
|
132 |
+
items.append(item)
|
133 |
+
|
134 |
+
return "{%s}" % ", ".join(items)
|
135 |
+
|
136 |
+
def _print_Dict(self, expr):
|
137 |
+
return self._print_dict(expr)
|
138 |
+
|
139 |
+
def _print_RandomDomain(self, d):
|
140 |
+
if hasattr(d, 'as_boolean'):
|
141 |
+
return 'Domain: ' + self._print(d.as_boolean())
|
142 |
+
elif hasattr(d, 'set'):
|
143 |
+
return ('Domain: ' + self._print(d.symbols) + ' in ' +
|
144 |
+
self._print(d.set))
|
145 |
+
else:
|
146 |
+
return 'Domain on ' + self._print(d.symbols)
|
147 |
+
|
148 |
+
def _print_Dummy(self, expr):
|
149 |
+
return '_' + expr.name
|
150 |
+
|
151 |
+
def _print_EulerGamma(self, expr):
|
152 |
+
return 'EulerGamma'
|
153 |
+
|
154 |
+
def _print_Exp1(self, expr):
|
155 |
+
return 'E'
|
156 |
+
|
157 |
+
def _print_ExprCondPair(self, expr):
|
158 |
+
return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond))
|
159 |
+
|
160 |
+
def _print_Function(self, expr):
|
161 |
+
return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ")
|
162 |
+
|
163 |
+
def _print_GoldenRatio(self, expr):
|
164 |
+
return 'GoldenRatio'
|
165 |
+
|
166 |
+
def _print_Heaviside(self, expr):
|
167 |
+
# Same as _print_Function but uses pargs to suppress default 1/2 for
|
168 |
+
# 2nd args
|
169 |
+
return expr.func.__name__ + "(%s)" % self.stringify(expr.pargs, ", ")
|
170 |
+
|
171 |
+
def _print_TribonacciConstant(self, expr):
|
172 |
+
return 'TribonacciConstant'
|
173 |
+
|
174 |
+
def _print_ImaginaryUnit(self, expr):
|
175 |
+
return 'I'
|
176 |
+
|
177 |
+
def _print_Infinity(self, expr):
|
178 |
+
return 'oo'
|
179 |
+
|
180 |
+
def _print_Integral(self, expr):
|
181 |
+
def _xab_tostr(xab):
|
182 |
+
if len(xab) == 1:
|
183 |
+
return self._print(xab[0])
|
184 |
+
else:
|
185 |
+
return self._print((xab[0],) + tuple(xab[1:]))
|
186 |
+
L = ', '.join([_xab_tostr(l) for l in expr.limits])
|
187 |
+
return 'Integral(%s, %s)' % (self._print(expr.function), L)
|
188 |
+
|
189 |
+
def _print_Interval(self, i):
|
190 |
+
fin = 'Interval{m}({a}, {b})'
|
191 |
+
a, b, l, r = i.args
|
192 |
+
if a.is_infinite and b.is_infinite:
|
193 |
+
m = ''
|
194 |
+
elif a.is_infinite and not r:
|
195 |
+
m = ''
|
196 |
+
elif b.is_infinite and not l:
|
197 |
+
m = ''
|
198 |
+
elif not l and not r:
|
199 |
+
m = ''
|
200 |
+
elif l and r:
|
201 |
+
m = '.open'
|
202 |
+
elif l:
|
203 |
+
m = '.Lopen'
|
204 |
+
else:
|
205 |
+
m = '.Ropen'
|
206 |
+
return fin.format(**{'a': a, 'b': b, 'm': m})
|
207 |
+
|
208 |
+
def _print_AccumulationBounds(self, i):
|
209 |
+
return "AccumBounds(%s, %s)" % (self._print(i.min),
|
210 |
+
self._print(i.max))
|
211 |
+
|
212 |
+
def _print_Inverse(self, I):
|
213 |
+
return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"])
|
214 |
+
|
215 |
+
def _print_Lambda(self, obj):
|
216 |
+
expr = obj.expr
|
217 |
+
sig = obj.signature
|
218 |
+
if len(sig) == 1 and sig[0].is_symbol:
|
219 |
+
sig = sig[0]
|
220 |
+
return "Lambda(%s, %s)" % (self._print(sig), self._print(expr))
|
221 |
+
|
222 |
+
def _print_LatticeOp(self, expr):
|
223 |
+
args = sorted(expr.args, key=default_sort_key)
|
224 |
+
return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args)
|
225 |
+
|
226 |
+
def _print_Limit(self, expr):
|
227 |
+
e, z, z0, dir = expr.args
|
228 |
+
return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print, (e, z, z0, dir)))
|
229 |
+
|
230 |
+
|
231 |
+
def _print_list(self, expr):
|
232 |
+
return "[%s]" % self.stringify(expr, ", ")
|
233 |
+
|
234 |
+
def _print_List(self, expr):
|
235 |
+
return self._print_list(expr)
|
236 |
+
|
237 |
+
def _print_MatrixBase(self, expr):
|
238 |
+
return expr._format_str(self)
|
239 |
+
|
240 |
+
def _print_MatrixElement(self, expr):
|
241 |
+
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
|
242 |
+
+ '[%s, %s]' % (self._print(expr.i), self._print(expr.j))
|
243 |
+
|
244 |
+
def _print_MatrixSlice(self, expr):
|
245 |
+
def strslice(x, dim):
|
246 |
+
x = list(x)
|
247 |
+
if x[2] == 1:
|
248 |
+
del x[2]
|
249 |
+
if x[0] == 0:
|
250 |
+
x[0] = ''
|
251 |
+
if x[1] == dim:
|
252 |
+
x[1] = ''
|
253 |
+
return ':'.join((self._print(arg) for arg in x))
|
254 |
+
return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + '[' +
|
255 |
+
strslice(expr.rowslice, expr.parent.rows) + ', ' +
|
256 |
+
strslice(expr.colslice, expr.parent.cols) + ']')
|
257 |
+
|
258 |
+
def _print_DeferredVector(self, expr):
|
259 |
+
return expr.name
|
260 |
+
|
261 |
+
def _print_Mul(self, expr):
|
262 |
+
|
263 |
+
prec = precedence(expr)
|
264 |
+
|
265 |
+
# Check for unevaluated Mul. In this case we need to make sure the
|
266 |
+
# identities are visible, multiple Rational factors are not combined
|
267 |
+
# etc so we display in a straight-forward form that fully preserves all
|
268 |
+
# args and their order.
|
269 |
+
args = expr.args
|
270 |
+
if args[0] is S.One or any(
|
271 |
+
isinstance(a, Number) or
|
272 |
+
a.is_Pow and all(ai.is_Integer for ai in a.args)
|
273 |
+
for a in args[1:]):
|
274 |
+
d, n = sift(args, lambda x:
|
275 |
+
isinstance(x, Pow) and bool(x.exp.as_coeff_Mul()[0] < 0),
|
276 |
+
binary=True)
|
277 |
+
for i, di in enumerate(d):
|
278 |
+
if di.exp.is_Number:
|
279 |
+
e = -di.exp
|
280 |
+
else:
|
281 |
+
dargs = list(di.exp.args)
|
282 |
+
dargs[0] = -dargs[0]
|
283 |
+
e = Mul._from_args(dargs)
|
284 |
+
d[i] = Pow(di.base, e, evaluate=False) if e - 1 else di.base
|
285 |
+
|
286 |
+
pre = []
|
287 |
+
# don't parenthesize first factor if negative
|
288 |
+
if n and not n[0].is_Add and n[0].could_extract_minus_sign():
|
289 |
+
pre = [self._print(n.pop(0))]
|
290 |
+
|
291 |
+
nfactors = pre + [self.parenthesize(a, prec, strict=False)
|
292 |
+
for a in n]
|
293 |
+
if not nfactors:
|
294 |
+
nfactors = ['1']
|
295 |
+
|
296 |
+
# don't parenthesize first of denominator unless singleton
|
297 |
+
if len(d) > 1 and d[0].could_extract_minus_sign():
|
298 |
+
pre = [self._print(d.pop(0))]
|
299 |
+
else:
|
300 |
+
pre = []
|
301 |
+
dfactors = pre + [self.parenthesize(a, prec, strict=False)
|
302 |
+
for a in d]
|
303 |
+
|
304 |
+
n = '*'.join(nfactors)
|
305 |
+
d = '*'.join(dfactors)
|
306 |
+
if len(dfactors) > 1:
|
307 |
+
return '%s/(%s)' % (n, d)
|
308 |
+
elif dfactors:
|
309 |
+
return '%s/%s' % (n, d)
|
310 |
+
return n
|
311 |
+
|
312 |
+
c, e = expr.as_coeff_Mul()
|
313 |
+
if c < 0:
|
314 |
+
expr = _keep_coeff(-c, e)
|
315 |
+
sign = "-"
|
316 |
+
else:
|
317 |
+
sign = ""
|
318 |
+
|
319 |
+
a = [] # items in the numerator
|
320 |
+
b = [] # items that are in the denominator (if any)
|
321 |
+
|
322 |
+
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
|
323 |
+
|
324 |
+
if self.order not in ('old', 'none'):
|
325 |
+
args = expr.as_ordered_factors()
|
326 |
+
else:
|
327 |
+
# use make_args in case expr was something like -x -> x
|
328 |
+
args = Mul.make_args(expr)
|
329 |
+
|
330 |
+
# Gather args for numerator/denominator
|
331 |
+
def apow(i):
|
332 |
+
b, e = i.as_base_exp()
|
333 |
+
eargs = list(Mul.make_args(e))
|
334 |
+
if eargs[0] is S.NegativeOne:
|
335 |
+
eargs = eargs[1:]
|
336 |
+
else:
|
337 |
+
eargs[0] = -eargs[0]
|
338 |
+
e = Mul._from_args(eargs)
|
339 |
+
if isinstance(i, Pow):
|
340 |
+
return i.func(b, e, evaluate=False)
|
341 |
+
return i.func(e, evaluate=False)
|
342 |
+
for item in args:
|
343 |
+
if (item.is_commutative and
|
344 |
+
isinstance(item, Pow) and
|
345 |
+
bool(item.exp.as_coeff_Mul()[0] < 0)):
|
346 |
+
if item.exp is not S.NegativeOne:
|
347 |
+
b.append(apow(item))
|
348 |
+
else:
|
349 |
+
if (len(item.args[0].args) != 1 and
|
350 |
+
isinstance(item.base, (Mul, Pow))):
|
351 |
+
# To avoid situations like #14160
|
352 |
+
pow_paren.append(item)
|
353 |
+
b.append(item.base)
|
354 |
+
elif item.is_Rational and item is not S.Infinity:
|
355 |
+
if item.p != 1:
|
356 |
+
a.append(Rational(item.p))
|
357 |
+
if item.q != 1:
|
358 |
+
b.append(Rational(item.q))
|
359 |
+
else:
|
360 |
+
a.append(item)
|
361 |
+
|
362 |
+
a = a or [S.One]
|
363 |
+
|
364 |
+
a_str = [self.parenthesize(x, prec, strict=False) for x in a]
|
365 |
+
b_str = [self.parenthesize(x, prec, strict=False) for x in b]
|
366 |
+
|
367 |
+
# To parenthesize Pow with exp = -1 and having more than one Symbol
|
368 |
+
for item in pow_paren:
|
369 |
+
if item.base in b:
|
370 |
+
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
|
371 |
+
|
372 |
+
if not b:
|
373 |
+
return sign + '*'.join(a_str)
|
374 |
+
elif len(b) == 1:
|
375 |
+
return sign + '*'.join(a_str) + "/" + b_str[0]
|
376 |
+
else:
|
377 |
+
return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
|
378 |
+
|
379 |
+
def _print_MatMul(self, expr):
|
380 |
+
c, m = expr.as_coeff_mmul()
|
381 |
+
|
382 |
+
sign = ""
|
383 |
+
if c.is_number:
|
384 |
+
re, im = c.as_real_imag()
|
385 |
+
if im.is_zero and re.is_negative:
|
386 |
+
expr = _keep_coeff(-c, m)
|
387 |
+
sign = "-"
|
388 |
+
elif re.is_zero and im.is_negative:
|
389 |
+
expr = _keep_coeff(-c, m)
|
390 |
+
sign = "-"
|
391 |
+
|
392 |
+
return sign + '*'.join(
|
393 |
+
[self.parenthesize(arg, precedence(expr)) for arg in expr.args]
|
394 |
+
)
|
395 |
+
|
396 |
+
def _print_ElementwiseApplyFunction(self, expr):
|
397 |
+
return "{}.({})".format(
|
398 |
+
expr.function,
|
399 |
+
self._print(expr.expr),
|
400 |
+
)
|
401 |
+
|
402 |
+
def _print_NaN(self, expr):
|
403 |
+
return 'nan'
|
404 |
+
|
405 |
+
def _print_NegativeInfinity(self, expr):
|
406 |
+
return '-oo'
|
407 |
+
|
408 |
+
def _print_Order(self, expr):
|
409 |
+
if not expr.variables or all(p is S.Zero for p in expr.point):
|
410 |
+
if len(expr.variables) <= 1:
|
411 |
+
return 'O(%s)' % self._print(expr.expr)
|
412 |
+
else:
|
413 |
+
return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0)
|
414 |
+
else:
|
415 |
+
return 'O(%s)' % self.stringify(expr.args, ', ', 0)
|
416 |
+
|
417 |
+
def _print_Ordinal(self, expr):
|
418 |
+
return expr.__str__()
|
419 |
+
|
420 |
+
def _print_Cycle(self, expr):
|
421 |
+
return expr.__str__()
|
422 |
+
|
423 |
+
def _print_Permutation(self, expr):
|
424 |
+
from sympy.combinatorics.permutations import Permutation, Cycle
|
425 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
426 |
+
|
427 |
+
perm_cyclic = Permutation.print_cyclic
|
428 |
+
if perm_cyclic is not None:
|
429 |
+
sympy_deprecation_warning(
|
430 |
+
f"""
|
431 |
+
Setting Permutation.print_cyclic is deprecated. Instead use
|
432 |
+
init_printing(perm_cyclic={perm_cyclic}).
|
433 |
+
""",
|
434 |
+
deprecated_since_version="1.6",
|
435 |
+
active_deprecations_target="deprecated-permutation-print_cyclic",
|
436 |
+
stacklevel=7,
|
437 |
+
)
|
438 |
+
else:
|
439 |
+
perm_cyclic = self._settings.get("perm_cyclic", True)
|
440 |
+
|
441 |
+
if perm_cyclic:
|
442 |
+
if not expr.size:
|
443 |
+
return '()'
|
444 |
+
# before taking Cycle notation, see if the last element is
|
445 |
+
# a singleton and move it to the head of the string
|
446 |
+
s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):]
|
447 |
+
last = s.rfind('(')
|
448 |
+
if not last == 0 and ',' not in s[last:]:
|
449 |
+
s = s[last:] + s[:last]
|
450 |
+
s = s.replace(',', '')
|
451 |
+
return s
|
452 |
+
else:
|
453 |
+
s = expr.support()
|
454 |
+
if not s:
|
455 |
+
if expr.size < 5:
|
456 |
+
return 'Permutation(%s)' % self._print(expr.array_form)
|
457 |
+
return 'Permutation([], size=%s)' % self._print(expr.size)
|
458 |
+
trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size)
|
459 |
+
use = full = self._print(expr.array_form)
|
460 |
+
if len(trim) < len(full):
|
461 |
+
use = trim
|
462 |
+
return 'Permutation(%s)' % use
|
463 |
+
|
464 |
+
def _print_Subs(self, obj):
|
465 |
+
expr, old, new = obj.args
|
466 |
+
if len(obj.point) == 1:
|
467 |
+
old = old[0]
|
468 |
+
new = new[0]
|
469 |
+
return "Subs(%s, %s, %s)" % (
|
470 |
+
self._print(expr), self._print(old), self._print(new))
|
471 |
+
|
472 |
+
def _print_TensorIndex(self, expr):
|
473 |
+
return expr._print()
|
474 |
+
|
475 |
+
def _print_TensorHead(self, expr):
|
476 |
+
return expr._print()
|
477 |
+
|
478 |
+
def _print_Tensor(self, expr):
|
479 |
+
return expr._print()
|
480 |
+
|
481 |
+
def _print_TensMul(self, expr):
|
482 |
+
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
|
483 |
+
sign, args = expr._get_args_for_traditional_printer()
|
484 |
+
return sign + "*".join(
|
485 |
+
[self.parenthesize(arg, precedence(expr)) for arg in args]
|
486 |
+
)
|
487 |
+
|
488 |
+
def _print_TensAdd(self, expr):
|
489 |
+
return expr._print()
|
490 |
+
|
491 |
+
def _print_ArraySymbol(self, expr):
|
492 |
+
return self._print(expr.name)
|
493 |
+
|
494 |
+
def _print_ArrayElement(self, expr):
|
495 |
+
return "%s[%s]" % (
|
496 |
+
self.parenthesize(expr.name, PRECEDENCE["Func"], True), ", ".join([self._print(i) for i in expr.indices]))
|
497 |
+
|
498 |
+
def _print_PermutationGroup(self, expr):
|
499 |
+
p = [' %s' % self._print(a) for a in expr.args]
|
500 |
+
return 'PermutationGroup([\n%s])' % ',\n'.join(p)
|
501 |
+
|
502 |
+
def _print_Pi(self, expr):
|
503 |
+
return 'pi'
|
504 |
+
|
505 |
+
def _print_PolyRing(self, ring):
|
506 |
+
return "Polynomial ring in %s over %s with %s order" % \
|
507 |
+
(", ".join((self._print(rs) for rs in ring.symbols)),
|
508 |
+
self._print(ring.domain), self._print(ring.order))
|
509 |
+
|
510 |
+
def _print_FracField(self, field):
|
511 |
+
return "Rational function field in %s over %s with %s order" % \
|
512 |
+
(", ".join((self._print(fs) for fs in field.symbols)),
|
513 |
+
self._print(field.domain), self._print(field.order))
|
514 |
+
|
515 |
+
def _print_FreeGroupElement(self, elm):
|
516 |
+
return elm.__str__()
|
517 |
+
|
518 |
+
def _print_GaussianElement(self, poly):
|
519 |
+
return "(%s + %s*I)" % (poly.x, poly.y)
|
520 |
+
|
521 |
+
def _print_PolyElement(self, poly):
|
522 |
+
return poly.str(self, PRECEDENCE, "%s**%s", "*")
|
523 |
+
|
524 |
+
def _print_FracElement(self, frac):
|
525 |
+
if frac.denom == 1:
|
526 |
+
return self._print(frac.numer)
|
527 |
+
else:
|
528 |
+
numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True)
|
529 |
+
denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True)
|
530 |
+
return numer + "/" + denom
|
531 |
+
|
532 |
+
def _print_Poly(self, expr):
|
533 |
+
ATOM_PREC = PRECEDENCE["Atom"] - 1
|
534 |
+
terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ]
|
535 |
+
|
536 |
+
for monom, coeff in expr.terms():
|
537 |
+
s_monom = []
|
538 |
+
|
539 |
+
for i, e in enumerate(monom):
|
540 |
+
if e > 0:
|
541 |
+
if e == 1:
|
542 |
+
s_monom.append(gens[i])
|
543 |
+
else:
|
544 |
+
s_monom.append(gens[i] + "**%d" % e)
|
545 |
+
|
546 |
+
s_monom = "*".join(s_monom)
|
547 |
+
|
548 |
+
if coeff.is_Add:
|
549 |
+
if s_monom:
|
550 |
+
s_coeff = "(" + self._print(coeff) + ")"
|
551 |
+
else:
|
552 |
+
s_coeff = self._print(coeff)
|
553 |
+
else:
|
554 |
+
if s_monom:
|
555 |
+
if coeff is S.One:
|
556 |
+
terms.extend(['+', s_monom])
|
557 |
+
continue
|
558 |
+
|
559 |
+
if coeff is S.NegativeOne:
|
560 |
+
terms.extend(['-', s_monom])
|
561 |
+
continue
|
562 |
+
|
563 |
+
s_coeff = self._print(coeff)
|
564 |
+
|
565 |
+
if not s_monom:
|
566 |
+
s_term = s_coeff
|
567 |
+
else:
|
568 |
+
s_term = s_coeff + "*" + s_monom
|
569 |
+
|
570 |
+
if s_term.startswith('-'):
|
571 |
+
terms.extend(['-', s_term[1:]])
|
572 |
+
else:
|
573 |
+
terms.extend(['+', s_term])
|
574 |
+
|
575 |
+
if terms[0] in ('-', '+'):
|
576 |
+
modifier = terms.pop(0)
|
577 |
+
|
578 |
+
if modifier == '-':
|
579 |
+
terms[0] = '-' + terms[0]
|
580 |
+
|
581 |
+
format = expr.__class__.__name__ + "(%s, %s"
|
582 |
+
|
583 |
+
from sympy.polys.polyerrors import PolynomialError
|
584 |
+
|
585 |
+
try:
|
586 |
+
format += ", modulus=%s" % expr.get_modulus()
|
587 |
+
except PolynomialError:
|
588 |
+
format += ", domain='%s'" % expr.get_domain()
|
589 |
+
|
590 |
+
format += ")"
|
591 |
+
|
592 |
+
for index, item in enumerate(gens):
|
593 |
+
if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"):
|
594 |
+
gens[index] = item[1:len(item) - 1]
|
595 |
+
|
596 |
+
return format % (' '.join(terms), ', '.join(gens))
|
597 |
+
|
598 |
+
def _print_UniversalSet(self, p):
|
599 |
+
return 'UniversalSet'
|
600 |
+
|
601 |
+
def _print_AlgebraicNumber(self, expr):
|
602 |
+
if expr.is_aliased:
|
603 |
+
return self._print(expr.as_poly().as_expr())
|
604 |
+
else:
|
605 |
+
return self._print(expr.as_expr())
|
606 |
+
|
607 |
+
def _print_Pow(self, expr, rational=False):
|
608 |
+
"""Printing helper function for ``Pow``
|
609 |
+
|
610 |
+
Parameters
|
611 |
+
==========
|
612 |
+
|
613 |
+
rational : bool, optional
|
614 |
+
If ``True``, it will not attempt printing ``sqrt(x)`` or
|
615 |
+
``x**S.Half`` as ``sqrt``, and will use ``x**(1/2)``
|
616 |
+
instead.
|
617 |
+
|
618 |
+
See examples for additional details
|
619 |
+
|
620 |
+
Examples
|
621 |
+
========
|
622 |
+
|
623 |
+
>>> from sympy import sqrt, StrPrinter
|
624 |
+
>>> from sympy.abc import x
|
625 |
+
|
626 |
+
How ``rational`` keyword works with ``sqrt``:
|
627 |
+
|
628 |
+
>>> printer = StrPrinter()
|
629 |
+
>>> printer._print_Pow(sqrt(x), rational=True)
|
630 |
+
'x**(1/2)'
|
631 |
+
>>> printer._print_Pow(sqrt(x), rational=False)
|
632 |
+
'sqrt(x)'
|
633 |
+
>>> printer._print_Pow(1/sqrt(x), rational=True)
|
634 |
+
'x**(-1/2)'
|
635 |
+
>>> printer._print_Pow(1/sqrt(x), rational=False)
|
636 |
+
'1/sqrt(x)'
|
637 |
+
|
638 |
+
Notes
|
639 |
+
=====
|
640 |
+
|
641 |
+
``sqrt(x)`` is canonicalized as ``Pow(x, S.Half)`` in SymPy,
|
642 |
+
so there is no need of defining a separate printer for ``sqrt``.
|
643 |
+
Instead, it should be handled here as well.
|
644 |
+
"""
|
645 |
+
PREC = precedence(expr)
|
646 |
+
|
647 |
+
if expr.exp is S.Half and not rational:
|
648 |
+
return "sqrt(%s)" % self._print(expr.base)
|
649 |
+
|
650 |
+
if expr.is_commutative:
|
651 |
+
if -expr.exp is S.Half and not rational:
|
652 |
+
# Note: Don't test "expr.exp == -S.Half" here, because that will
|
653 |
+
# match -0.5, which we don't want.
|
654 |
+
return "%s/sqrt(%s)" % tuple((self._print(arg) for arg in (S.One, expr.base)))
|
655 |
+
if expr.exp is -S.One:
|
656 |
+
# Similarly to the S.Half case, don't test with "==" here.
|
657 |
+
return '%s/%s' % (self._print(S.One),
|
658 |
+
self.parenthesize(expr.base, PREC, strict=False))
|
659 |
+
|
660 |
+
e = self.parenthesize(expr.exp, PREC, strict=False)
|
661 |
+
if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1:
|
662 |
+
# the parenthesized exp should be '(Rational(a, b))' so strip parens,
|
663 |
+
# but just check to be sure.
|
664 |
+
if e.startswith('(Rational'):
|
665 |
+
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1])
|
666 |
+
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e)
|
667 |
+
|
668 |
+
def _print_UnevaluatedExpr(self, expr):
|
669 |
+
return self._print(expr.args[0])
|
670 |
+
|
671 |
+
def _print_MatPow(self, expr):
|
672 |
+
PREC = precedence(expr)
|
673 |
+
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False),
|
674 |
+
self.parenthesize(expr.exp, PREC, strict=False))
|
675 |
+
|
676 |
+
def _print_Integer(self, expr):
|
677 |
+
if self._settings.get("sympy_integers", False):
|
678 |
+
return "S(%s)" % (expr)
|
679 |
+
return str(expr.p)
|
680 |
+
|
681 |
+
def _print_Integers(self, expr):
|
682 |
+
return 'Integers'
|
683 |
+
|
684 |
+
def _print_Naturals(self, expr):
|
685 |
+
return 'Naturals'
|
686 |
+
|
687 |
+
def _print_Naturals0(self, expr):
|
688 |
+
return 'Naturals0'
|
689 |
+
|
690 |
+
def _print_Rationals(self, expr):
|
691 |
+
return 'Rationals'
|
692 |
+
|
693 |
+
def _print_Reals(self, expr):
|
694 |
+
return 'Reals'
|
695 |
+
|
696 |
+
def _print_Complexes(self, expr):
|
697 |
+
return 'Complexes'
|
698 |
+
|
699 |
+
def _print_EmptySet(self, expr):
|
700 |
+
return 'EmptySet'
|
701 |
+
|
702 |
+
def _print_EmptySequence(self, expr):
|
703 |
+
return 'EmptySequence'
|
704 |
+
|
705 |
+
def _print_int(self, expr):
|
706 |
+
return str(expr)
|
707 |
+
|
708 |
+
def _print_mpz(self, expr):
|
709 |
+
return str(expr)
|
710 |
+
|
711 |
+
def _print_Rational(self, expr):
|
712 |
+
if expr.q == 1:
|
713 |
+
return str(expr.p)
|
714 |
+
else:
|
715 |
+
if self._settings.get("sympy_integers", False):
|
716 |
+
return "S(%s)/%s" % (expr.p, expr.q)
|
717 |
+
return "%s/%s" % (expr.p, expr.q)
|
718 |
+
|
719 |
+
def _print_PythonRational(self, expr):
|
720 |
+
if expr.q == 1:
|
721 |
+
return str(expr.p)
|
722 |
+
else:
|
723 |
+
return "%d/%d" % (expr.p, expr.q)
|
724 |
+
|
725 |
+
def _print_Fraction(self, expr):
|
726 |
+
if expr.denominator == 1:
|
727 |
+
return str(expr.numerator)
|
728 |
+
else:
|
729 |
+
return "%s/%s" % (expr.numerator, expr.denominator)
|
730 |
+
|
731 |
+
def _print_mpq(self, expr):
|
732 |
+
if expr.denominator == 1:
|
733 |
+
return str(expr.numerator)
|
734 |
+
else:
|
735 |
+
return "%s/%s" % (expr.numerator, expr.denominator)
|
736 |
+
|
737 |
+
def _print_Float(self, expr):
|
738 |
+
prec = expr._prec
|
739 |
+
if prec < 5:
|
740 |
+
dps = 0
|
741 |
+
else:
|
742 |
+
dps = prec_to_dps(expr._prec)
|
743 |
+
if self._settings["full_prec"] is True:
|
744 |
+
strip = False
|
745 |
+
elif self._settings["full_prec"] is False:
|
746 |
+
strip = True
|
747 |
+
elif self._settings["full_prec"] == "auto":
|
748 |
+
strip = self._print_level > 1
|
749 |
+
low = self._settings["min"] if "min" in self._settings else None
|
750 |
+
high = self._settings["max"] if "max" in self._settings else None
|
751 |
+
rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high)
|
752 |
+
if rv.startswith('-.0'):
|
753 |
+
rv = '-0.' + rv[3:]
|
754 |
+
elif rv.startswith('.0'):
|
755 |
+
rv = '0.' + rv[2:]
|
756 |
+
if rv.startswith('+'):
|
757 |
+
# e.g., +inf -> inf
|
758 |
+
rv = rv[1:]
|
759 |
+
return rv
|
760 |
+
|
761 |
+
def _print_Relational(self, expr):
|
762 |
+
|
763 |
+
charmap = {
|
764 |
+
"==": "Eq",
|
765 |
+
"!=": "Ne",
|
766 |
+
":=": "Assignment",
|
767 |
+
'+=': "AddAugmentedAssignment",
|
768 |
+
"-=": "SubAugmentedAssignment",
|
769 |
+
"*=": "MulAugmentedAssignment",
|
770 |
+
"/=": "DivAugmentedAssignment",
|
771 |
+
"%=": "ModAugmentedAssignment",
|
772 |
+
}
|
773 |
+
|
774 |
+
if expr.rel_op in charmap:
|
775 |
+
return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs),
|
776 |
+
self._print(expr.rhs))
|
777 |
+
|
778 |
+
return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)),
|
779 |
+
self._relationals.get(expr.rel_op) or expr.rel_op,
|
780 |
+
self.parenthesize(expr.rhs, precedence(expr)))
|
781 |
+
|
782 |
+
def _print_ComplexRootOf(self, expr):
|
783 |
+
return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'),
|
784 |
+
expr.index)
|
785 |
+
|
786 |
+
def _print_RootSum(self, expr):
|
787 |
+
args = [self._print_Add(expr.expr, order='lex')]
|
788 |
+
|
789 |
+
if expr.fun is not S.IdentityFunction:
|
790 |
+
args.append(self._print(expr.fun))
|
791 |
+
|
792 |
+
return "RootSum(%s)" % ", ".join(args)
|
793 |
+
|
794 |
+
def _print_GroebnerBasis(self, basis):
|
795 |
+
cls = basis.__class__.__name__
|
796 |
+
|
797 |
+
exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs]
|
798 |
+
exprs = "[%s]" % ", ".join(exprs)
|
799 |
+
|
800 |
+
gens = [ self._print(gen) for gen in basis.gens ]
|
801 |
+
domain = "domain='%s'" % self._print(basis.domain)
|
802 |
+
order = "order='%s'" % self._print(basis.order)
|
803 |
+
|
804 |
+
args = [exprs] + gens + [domain, order]
|
805 |
+
|
806 |
+
return "%s(%s)" % (cls, ", ".join(args))
|
807 |
+
|
808 |
+
def _print_set(self, s):
|
809 |
+
items = sorted(s, key=default_sort_key)
|
810 |
+
|
811 |
+
args = ', '.join(self._print(item) for item in items)
|
812 |
+
if not args:
|
813 |
+
return "set()"
|
814 |
+
return '{%s}' % args
|
815 |
+
|
816 |
+
def _print_FiniteSet(self, s):
|
817 |
+
from sympy.sets.sets import FiniteSet
|
818 |
+
items = sorted(s, key=default_sort_key)
|
819 |
+
|
820 |
+
args = ', '.join(self._print(item) for item in items)
|
821 |
+
if any(item.has(FiniteSet) for item in items):
|
822 |
+
return 'FiniteSet({})'.format(args)
|
823 |
+
return '{{{}}}'.format(args)
|
824 |
+
|
825 |
+
def _print_Partition(self, s):
|
826 |
+
items = sorted(s, key=default_sort_key)
|
827 |
+
|
828 |
+
args = ', '.join(self._print(arg) for arg in items)
|
829 |
+
return 'Partition({})'.format(args)
|
830 |
+
|
831 |
+
def _print_frozenset(self, s):
|
832 |
+
if not s:
|
833 |
+
return "frozenset()"
|
834 |
+
return "frozenset(%s)" % self._print_set(s)
|
835 |
+
|
836 |
+
def _print_Sum(self, expr):
|
837 |
+
def _xab_tostr(xab):
|
838 |
+
if len(xab) == 1:
|
839 |
+
return self._print(xab[0])
|
840 |
+
else:
|
841 |
+
return self._print((xab[0],) + tuple(xab[1:]))
|
842 |
+
L = ', '.join([_xab_tostr(l) for l in expr.limits])
|
843 |
+
return 'Sum(%s, %s)' % (self._print(expr.function), L)
|
844 |
+
|
845 |
+
def _print_Symbol(self, expr):
|
846 |
+
return expr.name
|
847 |
+
_print_MatrixSymbol = _print_Symbol
|
848 |
+
_print_RandomSymbol = _print_Symbol
|
849 |
+
|
850 |
+
def _print_Identity(self, expr):
|
851 |
+
return "I"
|
852 |
+
|
853 |
+
def _print_ZeroMatrix(self, expr):
|
854 |
+
return "0"
|
855 |
+
|
856 |
+
def _print_OneMatrix(self, expr):
|
857 |
+
return "1"
|
858 |
+
|
859 |
+
def _print_Predicate(self, expr):
|
860 |
+
return "Q.%s" % expr.name
|
861 |
+
|
862 |
+
def _print_str(self, expr):
|
863 |
+
return str(expr)
|
864 |
+
|
865 |
+
def _print_tuple(self, expr):
|
866 |
+
if len(expr) == 1:
|
867 |
+
return "(%s,)" % self._print(expr[0])
|
868 |
+
else:
|
869 |
+
return "(%s)" % self.stringify(expr, ", ")
|
870 |
+
|
871 |
+
def _print_Tuple(self, expr):
|
872 |
+
return self._print_tuple(expr)
|
873 |
+
|
874 |
+
def _print_Transpose(self, T):
|
875 |
+
return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"])
|
876 |
+
|
877 |
+
def _print_Uniform(self, expr):
|
878 |
+
return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b))
|
879 |
+
|
880 |
+
def _print_Quantity(self, expr):
|
881 |
+
if self._settings.get("abbrev", False):
|
882 |
+
return "%s" % expr.abbrev
|
883 |
+
return "%s" % expr.name
|
884 |
+
|
885 |
+
def _print_Quaternion(self, expr):
|
886 |
+
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args]
|
887 |
+
a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")]
|
888 |
+
return " + ".join(a)
|
889 |
+
|
890 |
+
def _print_Dimension(self, expr):
|
891 |
+
return str(expr)
|
892 |
+
|
893 |
+
def _print_Wild(self, expr):
|
894 |
+
return expr.name + '_'
|
895 |
+
|
896 |
+
def _print_WildFunction(self, expr):
|
897 |
+
return expr.name + '_'
|
898 |
+
|
899 |
+
def _print_WildDot(self, expr):
|
900 |
+
return expr.name
|
901 |
+
|
902 |
+
def _print_WildPlus(self, expr):
|
903 |
+
return expr.name
|
904 |
+
|
905 |
+
def _print_WildStar(self, expr):
|
906 |
+
return expr.name
|
907 |
+
|
908 |
+
def _print_Zero(self, expr):
|
909 |
+
if self._settings.get("sympy_integers", False):
|
910 |
+
return "S(0)"
|
911 |
+
return "0"
|
912 |
+
|
913 |
+
def _print_DMP(self, p):
|
914 |
+
try:
|
915 |
+
if p.ring is not None:
|
916 |
+
# TODO incorporate order
|
917 |
+
return self._print(p.ring.to_sympy(p))
|
918 |
+
except SympifyError:
|
919 |
+
pass
|
920 |
+
|
921 |
+
cls = p.__class__.__name__
|
922 |
+
rep = self._print(p.rep)
|
923 |
+
dom = self._print(p.dom)
|
924 |
+
ring = self._print(p.ring)
|
925 |
+
|
926 |
+
return "%s(%s, %s, %s)" % (cls, rep, dom, ring)
|
927 |
+
|
928 |
+
def _print_DMF(self, expr):
|
929 |
+
return self._print_DMP(expr)
|
930 |
+
|
931 |
+
def _print_Object(self, obj):
|
932 |
+
return 'Object("%s")' % obj.name
|
933 |
+
|
934 |
+
def _print_IdentityMorphism(self, morphism):
|
935 |
+
return 'IdentityMorphism(%s)' % morphism.domain
|
936 |
+
|
937 |
+
def _print_NamedMorphism(self, morphism):
|
938 |
+
return 'NamedMorphism(%s, %s, "%s")' % \
|
939 |
+
(morphism.domain, morphism.codomain, morphism.name)
|
940 |
+
|
941 |
+
def _print_Category(self, category):
|
942 |
+
return 'Category("%s")' % category.name
|
943 |
+
|
944 |
+
def _print_Manifold(self, manifold):
|
945 |
+
return manifold.name.name
|
946 |
+
|
947 |
+
def _print_Patch(self, patch):
|
948 |
+
return patch.name.name
|
949 |
+
|
950 |
+
def _print_CoordSystem(self, coords):
|
951 |
+
return coords.name.name
|
952 |
+
|
953 |
+
def _print_BaseScalarField(self, field):
|
954 |
+
return field._coord_sys.symbols[field._index].name
|
955 |
+
|
956 |
+
def _print_BaseVectorField(self, field):
|
957 |
+
return 'e_%s' % field._coord_sys.symbols[field._index].name
|
958 |
+
|
959 |
+
def _print_Differential(self, diff):
|
960 |
+
field = diff._form_field
|
961 |
+
if hasattr(field, '_coord_sys'):
|
962 |
+
return 'd%s' % field._coord_sys.symbols[field._index].name
|
963 |
+
else:
|
964 |
+
return 'd(%s)' % self._print(field)
|
965 |
+
|
966 |
+
def _print_Tr(self, expr):
|
967 |
+
#TODO : Handle indices
|
968 |
+
return "%s(%s)" % ("Tr", self._print(expr.args[0]))
|
969 |
+
|
970 |
+
def _print_Str(self, s):
|
971 |
+
return self._print(s.name)
|
972 |
+
|
973 |
+
def _print_AppliedBinaryRelation(self, expr):
|
974 |
+
rel = expr.function
|
975 |
+
return '%s(%s, %s)' % (self._print(rel),
|
976 |
+
self._print(expr.lhs),
|
977 |
+
self._print(expr.rhs))
|
978 |
+
|
979 |
+
|
980 |
+
@print_function(StrPrinter)
|
981 |
+
def sstr(expr, **settings):
|
982 |
+
"""Returns the expression as a string.
|
983 |
+
|
984 |
+
For large expressions where speed is a concern, use the setting
|
985 |
+
order='none'. If abbrev=True setting is used then units are printed in
|
986 |
+
abbreviated form.
|
987 |
+
|
988 |
+
Examples
|
989 |
+
========
|
990 |
+
|
991 |
+
>>> from sympy import symbols, Eq, sstr
|
992 |
+
>>> a, b = symbols('a b')
|
993 |
+
>>> sstr(Eq(a + b, 0))
|
994 |
+
'Eq(a + b, 0)'
|
995 |
+
"""
|
996 |
+
|
997 |
+
p = StrPrinter(settings)
|
998 |
+
s = p.doprint(expr)
|
999 |
+
|
1000 |
+
return s
|
1001 |
+
|
1002 |
+
|
1003 |
+
class StrReprPrinter(StrPrinter):
|
1004 |
+
"""(internal) -- see sstrrepr"""
|
1005 |
+
|
1006 |
+
def _print_str(self, s):
|
1007 |
+
return repr(s)
|
1008 |
+
|
1009 |
+
def _print_Str(self, s):
|
1010 |
+
# Str does not to be printed same as str here
|
1011 |
+
return "%s(%s)" % (s.__class__.__name__, self._print(s.name))
|
1012 |
+
|
1013 |
+
|
1014 |
+
@print_function(StrReprPrinter)
|
1015 |
+
def sstrrepr(expr, **settings):
|
1016 |
+
"""return expr in mixed str/repr form
|
1017 |
+
|
1018 |
+
i.e. strings are returned in repr form with quotes, and everything else
|
1019 |
+
is returned in str form.
|
1020 |
+
|
1021 |
+
This function could be useful for hooking into sys.displayhook
|
1022 |
+
"""
|
1023 |
+
|
1024 |
+
p = StrReprPrinter(settings)
|
1025 |
+
s = p.doprint(expr)
|
1026 |
+
|
1027 |
+
return s
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_aesaracode.py
ADDED
@@ -0,0 +1,626 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Important note on tests in this module - the Aesara printing functions use a
|
3 |
+
global cache by default, which means that tests using it will modify global
|
4 |
+
state and thus not be independent from each other. Instead of using the "cache"
|
5 |
+
keyword argument each time, this module uses the aesara_code_ and
|
6 |
+
aesara_function_ functions defined below which default to using a new, empty
|
7 |
+
cache instead.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import logging
|
11 |
+
|
12 |
+
from sympy.external import import_module
|
13 |
+
from sympy.testing.pytest import raises, SKIP
|
14 |
+
|
15 |
+
from sympy.utilities.exceptions import ignore_warnings
|
16 |
+
|
17 |
+
|
18 |
+
aesaralogger = logging.getLogger('aesara.configdefaults')
|
19 |
+
aesaralogger.setLevel(logging.CRITICAL)
|
20 |
+
aesara = import_module('aesara')
|
21 |
+
aesaralogger.setLevel(logging.WARNING)
|
22 |
+
|
23 |
+
|
24 |
+
if aesara:
|
25 |
+
import numpy as np
|
26 |
+
aet = aesara.tensor
|
27 |
+
from aesara.scalar.basic import Scalar
|
28 |
+
from aesara.graph.basic import Variable
|
29 |
+
from aesara.tensor.var import TensorVariable
|
30 |
+
from aesara.tensor.elemwise import Elemwise, DimShuffle
|
31 |
+
from aesara.tensor.math import Dot
|
32 |
+
|
33 |
+
from sympy.printing.aesaracode import true_divide
|
34 |
+
|
35 |
+
xt, yt, zt = [aet.scalar(name, 'floatX') for name in 'xyz']
|
36 |
+
Xt, Yt, Zt = [aet.tensor('floatX', (False, False), name=n) for n in 'XYZ']
|
37 |
+
else:
|
38 |
+
#bin/test will not execute any tests now
|
39 |
+
disabled = True
|
40 |
+
|
41 |
+
import sympy as sy
|
42 |
+
from sympy.core.singleton import S
|
43 |
+
from sympy.abc import x, y, z, t
|
44 |
+
from sympy.printing.aesaracode import (aesara_code, dim_handling,
|
45 |
+
aesara_function)
|
46 |
+
|
47 |
+
|
48 |
+
# Default set of matrix symbols for testing - make square so we can both
|
49 |
+
# multiply and perform elementwise operations between them.
|
50 |
+
X, Y, Z = [sy.MatrixSymbol(n, 4, 4) for n in 'XYZ']
|
51 |
+
|
52 |
+
# For testing AppliedUndef
|
53 |
+
f_t = sy.Function('f')(t)
|
54 |
+
|
55 |
+
|
56 |
+
def aesara_code_(expr, **kwargs):
|
57 |
+
""" Wrapper for aesara_code that uses a new, empty cache by default. """
|
58 |
+
kwargs.setdefault('cache', {})
|
59 |
+
return aesara_code(expr, **kwargs)
|
60 |
+
|
61 |
+
def aesara_function_(inputs, outputs, **kwargs):
|
62 |
+
""" Wrapper for aesara_function that uses a new, empty cache by default. """
|
63 |
+
kwargs.setdefault('cache', {})
|
64 |
+
return aesara_function(inputs, outputs, **kwargs)
|
65 |
+
|
66 |
+
|
67 |
+
def fgraph_of(*exprs):
|
68 |
+
""" Transform SymPy expressions into Aesara Computation.
|
69 |
+
|
70 |
+
Parameters
|
71 |
+
==========
|
72 |
+
exprs
|
73 |
+
SymPy expressions
|
74 |
+
|
75 |
+
Returns
|
76 |
+
=======
|
77 |
+
aesara.graph.fg.FunctionGraph
|
78 |
+
"""
|
79 |
+
outs = list(map(aesara_code_, exprs))
|
80 |
+
ins = list(aesara.graph.basic.graph_inputs(outs))
|
81 |
+
ins, outs = aesara.graph.basic.clone(ins, outs)
|
82 |
+
return aesara.graph.fg.FunctionGraph(ins, outs)
|
83 |
+
|
84 |
+
|
85 |
+
def aesara_simplify(fgraph):
|
86 |
+
""" Simplify a Aesara Computation.
|
87 |
+
|
88 |
+
Parameters
|
89 |
+
==========
|
90 |
+
fgraph : aesara.graph.fg.FunctionGraph
|
91 |
+
|
92 |
+
Returns
|
93 |
+
=======
|
94 |
+
aesara.graph.fg.FunctionGraph
|
95 |
+
"""
|
96 |
+
mode = aesara.compile.get_default_mode().excluding("fusion")
|
97 |
+
fgraph = fgraph.clone()
|
98 |
+
mode.optimizer.optimize(fgraph)
|
99 |
+
return fgraph
|
100 |
+
|
101 |
+
|
102 |
+
def theq(a, b):
|
103 |
+
""" Test two Aesara objects for equality.
|
104 |
+
|
105 |
+
Also accepts numeric types and lists/tuples of supported types.
|
106 |
+
|
107 |
+
Note - debugprint() has a bug where it will accept numeric types but does
|
108 |
+
not respect the "file" argument and in this case and instead prints the number
|
109 |
+
to stdout and returns an empty string. This can lead to tests passing where
|
110 |
+
they should fail because any two numbers will always compare as equal. To
|
111 |
+
prevent this we treat numbers as a separate case.
|
112 |
+
"""
|
113 |
+
numeric_types = (int, float, np.number)
|
114 |
+
a_is_num = isinstance(a, numeric_types)
|
115 |
+
b_is_num = isinstance(b, numeric_types)
|
116 |
+
|
117 |
+
# Compare numeric types using regular equality
|
118 |
+
if a_is_num or b_is_num:
|
119 |
+
if not (a_is_num and b_is_num):
|
120 |
+
return False
|
121 |
+
|
122 |
+
return a == b
|
123 |
+
|
124 |
+
# Compare sequences element-wise
|
125 |
+
a_is_seq = isinstance(a, (tuple, list))
|
126 |
+
b_is_seq = isinstance(b, (tuple, list))
|
127 |
+
|
128 |
+
if a_is_seq or b_is_seq:
|
129 |
+
if not (a_is_seq and b_is_seq) or type(a) != type(b):
|
130 |
+
return False
|
131 |
+
|
132 |
+
return list(map(theq, a)) == list(map(theq, b))
|
133 |
+
|
134 |
+
# Otherwise, assume debugprint() can handle it
|
135 |
+
astr = aesara.printing.debugprint(a, file='str')
|
136 |
+
bstr = aesara.printing.debugprint(b, file='str')
|
137 |
+
|
138 |
+
# Check for bug mentioned above
|
139 |
+
for argname, argval, argstr in [('a', a, astr), ('b', b, bstr)]:
|
140 |
+
if argstr == '':
|
141 |
+
raise TypeError(
|
142 |
+
'aesara.printing.debugprint(%s) returned empty string '
|
143 |
+
'(%s is instance of %r)'
|
144 |
+
% (argname, argname, type(argval))
|
145 |
+
)
|
146 |
+
|
147 |
+
return astr == bstr
|
148 |
+
|
149 |
+
|
150 |
+
def test_example_symbols():
|
151 |
+
"""
|
152 |
+
Check that the example symbols in this module print to their Aesara
|
153 |
+
equivalents, as many of the other tests depend on this.
|
154 |
+
"""
|
155 |
+
assert theq(xt, aesara_code_(x))
|
156 |
+
assert theq(yt, aesara_code_(y))
|
157 |
+
assert theq(zt, aesara_code_(z))
|
158 |
+
assert theq(Xt, aesara_code_(X))
|
159 |
+
assert theq(Yt, aesara_code_(Y))
|
160 |
+
assert theq(Zt, aesara_code_(Z))
|
161 |
+
|
162 |
+
|
163 |
+
def test_Symbol():
|
164 |
+
""" Test printing a Symbol to a aesara variable. """
|
165 |
+
xx = aesara_code_(x)
|
166 |
+
assert isinstance(xx, Variable)
|
167 |
+
assert xx.broadcastable == ()
|
168 |
+
assert xx.name == x.name
|
169 |
+
|
170 |
+
xx2 = aesara_code_(x, broadcastables={x: (False,)})
|
171 |
+
assert xx2.broadcastable == (False,)
|
172 |
+
assert xx2.name == x.name
|
173 |
+
|
174 |
+
def test_MatrixSymbol():
|
175 |
+
""" Test printing a MatrixSymbol to a aesara variable. """
|
176 |
+
XX = aesara_code_(X)
|
177 |
+
assert isinstance(XX, TensorVariable)
|
178 |
+
assert XX.broadcastable == (False, False)
|
179 |
+
|
180 |
+
@SKIP # TODO - this is currently not checked but should be implemented
|
181 |
+
def test_MatrixSymbol_wrong_dims():
|
182 |
+
""" Test MatrixSymbol with invalid broadcastable. """
|
183 |
+
bcs = [(), (False,), (True,), (True, False), (False, True,), (True, True)]
|
184 |
+
for bc in bcs:
|
185 |
+
with raises(ValueError):
|
186 |
+
aesara_code_(X, broadcastables={X: bc})
|
187 |
+
|
188 |
+
def test_AppliedUndef():
|
189 |
+
""" Test printing AppliedUndef instance, which works similarly to Symbol. """
|
190 |
+
ftt = aesara_code_(f_t)
|
191 |
+
assert isinstance(ftt, TensorVariable)
|
192 |
+
assert ftt.broadcastable == ()
|
193 |
+
assert ftt.name == 'f_t'
|
194 |
+
|
195 |
+
|
196 |
+
def test_add():
|
197 |
+
expr = x + y
|
198 |
+
comp = aesara_code_(expr)
|
199 |
+
assert comp.owner.op == aesara.tensor.add
|
200 |
+
|
201 |
+
def test_trig():
|
202 |
+
assert theq(aesara_code_(sy.sin(x)), aet.sin(xt))
|
203 |
+
assert theq(aesara_code_(sy.tan(x)), aet.tan(xt))
|
204 |
+
|
205 |
+
def test_many():
|
206 |
+
""" Test printing a complex expression with multiple symbols. """
|
207 |
+
expr = sy.exp(x**2 + sy.cos(y)) * sy.log(2*z)
|
208 |
+
comp = aesara_code_(expr)
|
209 |
+
expected = aet.exp(xt**2 + aet.cos(yt)) * aet.log(2*zt)
|
210 |
+
assert theq(comp, expected)
|
211 |
+
|
212 |
+
|
213 |
+
def test_dtype():
|
214 |
+
""" Test specifying specific data types through the dtype argument. """
|
215 |
+
for dtype in ['float32', 'float64', 'int8', 'int16', 'int32', 'int64']:
|
216 |
+
assert aesara_code_(x, dtypes={x: dtype}).type.dtype == dtype
|
217 |
+
|
218 |
+
# "floatX" type
|
219 |
+
assert aesara_code_(x, dtypes={x: 'floatX'}).type.dtype in ('float32', 'float64')
|
220 |
+
|
221 |
+
# Type promotion
|
222 |
+
assert aesara_code_(x + 1, dtypes={x: 'float32'}).type.dtype == 'float32'
|
223 |
+
assert aesara_code_(x + y, dtypes={x: 'float64', y: 'float32'}).type.dtype == 'float64'
|
224 |
+
|
225 |
+
|
226 |
+
def test_broadcastables():
|
227 |
+
""" Test the "broadcastables" argument when printing symbol-like objects. """
|
228 |
+
|
229 |
+
# No restrictions on shape
|
230 |
+
for s in [x, f_t]:
|
231 |
+
for bc in [(), (False,), (True,), (False, False), (True, False)]:
|
232 |
+
assert aesara_code_(s, broadcastables={s: bc}).broadcastable == bc
|
233 |
+
|
234 |
+
# TODO - matrix broadcasting?
|
235 |
+
|
236 |
+
def test_broadcasting():
|
237 |
+
""" Test "broadcastable" attribute after applying element-wise binary op. """
|
238 |
+
|
239 |
+
expr = x + y
|
240 |
+
|
241 |
+
cases = [
|
242 |
+
[(), (), ()],
|
243 |
+
[(False,), (False,), (False,)],
|
244 |
+
[(True,), (False,), (False,)],
|
245 |
+
[(False, True), (False, False), (False, False)],
|
246 |
+
[(True, False), (False, False), (False, False)],
|
247 |
+
]
|
248 |
+
|
249 |
+
for bc1, bc2, bc3 in cases:
|
250 |
+
comp = aesara_code_(expr, broadcastables={x: bc1, y: bc2})
|
251 |
+
assert comp.broadcastable == bc3
|
252 |
+
|
253 |
+
|
254 |
+
def test_MatMul():
|
255 |
+
expr = X*Y*Z
|
256 |
+
expr_t = aesara_code_(expr)
|
257 |
+
assert isinstance(expr_t.owner.op, Dot)
|
258 |
+
assert theq(expr_t, Xt.dot(Yt).dot(Zt))
|
259 |
+
|
260 |
+
def test_Transpose():
|
261 |
+
assert isinstance(aesara_code_(X.T).owner.op, DimShuffle)
|
262 |
+
|
263 |
+
def test_MatAdd():
|
264 |
+
expr = X+Y+Z
|
265 |
+
assert isinstance(aesara_code_(expr).owner.op, Elemwise)
|
266 |
+
|
267 |
+
|
268 |
+
def test_Rationals():
|
269 |
+
assert theq(aesara_code_(sy.Integer(2) / 3), true_divide(2, 3))
|
270 |
+
assert theq(aesara_code_(S.Half), true_divide(1, 2))
|
271 |
+
|
272 |
+
def test_Integers():
|
273 |
+
assert aesara_code_(sy.Integer(3)) == 3
|
274 |
+
|
275 |
+
def test_factorial():
|
276 |
+
n = sy.Symbol('n')
|
277 |
+
assert aesara_code_(sy.factorial(n))
|
278 |
+
|
279 |
+
def test_Derivative():
|
280 |
+
with ignore_warnings(UserWarning):
|
281 |
+
simp = lambda expr: aesara_simplify(fgraph_of(expr))
|
282 |
+
assert theq(simp(aesara_code_(sy.Derivative(sy.sin(x), x, evaluate=False))),
|
283 |
+
simp(aesara.grad(aet.sin(xt), xt)))
|
284 |
+
|
285 |
+
|
286 |
+
def test_aesara_function_simple():
|
287 |
+
""" Test aesara_function() with single output. """
|
288 |
+
f = aesara_function_([x, y], [x+y])
|
289 |
+
assert f(2, 3) == 5
|
290 |
+
|
291 |
+
def test_aesara_function_multi():
|
292 |
+
""" Test aesara_function() with multiple outputs. """
|
293 |
+
f = aesara_function_([x, y], [x+y, x-y])
|
294 |
+
o1, o2 = f(2, 3)
|
295 |
+
assert o1 == 5
|
296 |
+
assert o2 == -1
|
297 |
+
|
298 |
+
def test_aesara_function_numpy():
|
299 |
+
""" Test aesara_function() vs Numpy implementation. """
|
300 |
+
f = aesara_function_([x, y], [x+y], dim=1,
|
301 |
+
dtypes={x: 'float64', y: 'float64'})
|
302 |
+
assert np.linalg.norm(f([1, 2], [3, 4]) - np.asarray([4, 6])) < 1e-9
|
303 |
+
|
304 |
+
f = aesara_function_([x, y], [x+y], dtypes={x: 'float64', y: 'float64'},
|
305 |
+
dim=1)
|
306 |
+
xx = np.arange(3).astype('float64')
|
307 |
+
yy = 2*np.arange(3).astype('float64')
|
308 |
+
assert np.linalg.norm(f(xx, yy) - 3*np.arange(3)) < 1e-9
|
309 |
+
|
310 |
+
|
311 |
+
def test_aesara_function_matrix():
|
312 |
+
m = sy.Matrix([[x, y], [z, x + y + z]])
|
313 |
+
expected = np.array([[1.0, 2.0], [3.0, 1.0 + 2.0 + 3.0]])
|
314 |
+
f = aesara_function_([x, y, z], [m])
|
315 |
+
np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected)
|
316 |
+
f = aesara_function_([x, y, z], [m], scalar=True)
|
317 |
+
np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected)
|
318 |
+
f = aesara_function_([x, y, z], [m, m])
|
319 |
+
assert isinstance(f(1.0, 2.0, 3.0), type([]))
|
320 |
+
np.testing.assert_allclose(f(1.0, 2.0, 3.0)[0], expected)
|
321 |
+
np.testing.assert_allclose(f(1.0, 2.0, 3.0)[1], expected)
|
322 |
+
|
323 |
+
def test_dim_handling():
|
324 |
+
assert dim_handling([x], dim=2) == {x: (False, False)}
|
325 |
+
assert dim_handling([x, y], dims={x: 1, y: 2}) == {x: (False, True),
|
326 |
+
y: (False, False)}
|
327 |
+
assert dim_handling([x], broadcastables={x: (False,)}) == {x: (False,)}
|
328 |
+
|
329 |
+
def test_aesara_function_kwargs():
|
330 |
+
"""
|
331 |
+
Test passing additional kwargs from aesara_function() to aesara.function().
|
332 |
+
"""
|
333 |
+
import numpy as np
|
334 |
+
f = aesara_function_([x, y, z], [x+y], dim=1, on_unused_input='ignore',
|
335 |
+
dtypes={x: 'float64', y: 'float64', z: 'float64'})
|
336 |
+
assert np.linalg.norm(f([1, 2], [3, 4], [0, 0]) - np.asarray([4, 6])) < 1e-9
|
337 |
+
|
338 |
+
f = aesara_function_([x, y, z], [x+y],
|
339 |
+
dtypes={x: 'float64', y: 'float64', z: 'float64'},
|
340 |
+
dim=1, on_unused_input='ignore')
|
341 |
+
xx = np.arange(3).astype('float64')
|
342 |
+
yy = 2*np.arange(3).astype('float64')
|
343 |
+
zz = 2*np.arange(3).astype('float64')
|
344 |
+
assert np.linalg.norm(f(xx, yy, zz) - 3*np.arange(3)) < 1e-9
|
345 |
+
|
346 |
+
def test_aesara_function_scalar():
|
347 |
+
""" Test the "scalar" argument to aesara_function(). """
|
348 |
+
from aesara.compile.function.types import Function
|
349 |
+
|
350 |
+
args = [
|
351 |
+
([x, y], [x + y], None, [0]), # Single 0d output
|
352 |
+
([X, Y], [X + Y], None, [2]), # Single 2d output
|
353 |
+
([x, y], [x + y], {x: 0, y: 1}, [1]), # Single 1d output
|
354 |
+
([x, y], [x + y, x - y], None, [0, 0]), # Two 0d outputs
|
355 |
+
([x, y, X, Y], [x + y, X + Y], None, [0, 2]), # One 0d output, one 2d
|
356 |
+
]
|
357 |
+
|
358 |
+
# Create and test functions with and without the scalar setting
|
359 |
+
for inputs, outputs, in_dims, out_dims in args:
|
360 |
+
for scalar in [False, True]:
|
361 |
+
|
362 |
+
f = aesara_function_(inputs, outputs, dims=in_dims, scalar=scalar)
|
363 |
+
|
364 |
+
# Check the aesara_function attribute is set whether wrapped or not
|
365 |
+
assert isinstance(f.aesara_function, Function)
|
366 |
+
|
367 |
+
# Feed in inputs of the appropriate size and get outputs
|
368 |
+
in_values = [
|
369 |
+
np.ones([1 if bc else 5 for bc in i.type.broadcastable])
|
370 |
+
for i in f.aesara_function.input_storage
|
371 |
+
]
|
372 |
+
out_values = f(*in_values)
|
373 |
+
if not isinstance(out_values, list):
|
374 |
+
out_values = [out_values]
|
375 |
+
|
376 |
+
# Check output types and shapes
|
377 |
+
assert len(out_dims) == len(out_values)
|
378 |
+
for d, value in zip(out_dims, out_values):
|
379 |
+
|
380 |
+
if scalar and d == 0:
|
381 |
+
# Should have been converted to a scalar value
|
382 |
+
assert isinstance(value, np.number)
|
383 |
+
|
384 |
+
else:
|
385 |
+
# Otherwise should be an array
|
386 |
+
assert isinstance(value, np.ndarray)
|
387 |
+
assert value.ndim == d
|
388 |
+
|
389 |
+
def test_aesara_function_bad_kwarg():
|
390 |
+
"""
|
391 |
+
Passing an unknown keyword argument to aesara_function() should raise an
|
392 |
+
exception.
|
393 |
+
"""
|
394 |
+
raises(Exception, lambda : aesara_function_([x], [x+1], foobar=3))
|
395 |
+
|
396 |
+
|
397 |
+
def test_slice():
|
398 |
+
assert aesara_code_(slice(1, 2, 3)) == slice(1, 2, 3)
|
399 |
+
|
400 |
+
def theq_slice(s1, s2):
|
401 |
+
for attr in ['start', 'stop', 'step']:
|
402 |
+
a1 = getattr(s1, attr)
|
403 |
+
a2 = getattr(s2, attr)
|
404 |
+
if a1 is None or a2 is None:
|
405 |
+
if not (a1 is None or a2 is None):
|
406 |
+
return False
|
407 |
+
elif not theq(a1, a2):
|
408 |
+
return False
|
409 |
+
return True
|
410 |
+
|
411 |
+
dtypes = {x: 'int32', y: 'int32'}
|
412 |
+
assert theq_slice(aesara_code_(slice(x, y), dtypes=dtypes), slice(xt, yt))
|
413 |
+
assert theq_slice(aesara_code_(slice(1, x, 3), dtypes=dtypes), slice(1, xt, 3))
|
414 |
+
|
415 |
+
def test_MatrixSlice():
|
416 |
+
cache = {}
|
417 |
+
|
418 |
+
n = sy.Symbol('n', integer=True)
|
419 |
+
X = sy.MatrixSymbol('X', n, n)
|
420 |
+
|
421 |
+
Y = X[1:2:3, 4:5:6]
|
422 |
+
Yt = aesara_code_(Y, cache=cache)
|
423 |
+
|
424 |
+
s = Scalar('int64')
|
425 |
+
assert tuple(Yt.owner.op.idx_list) == (slice(s, s, s), slice(s, s, s))
|
426 |
+
assert Yt.owner.inputs[0] == aesara_code_(X, cache=cache)
|
427 |
+
# == doesn't work in Aesara like it does in SymPy. You have to use
|
428 |
+
# equals.
|
429 |
+
assert all(Yt.owner.inputs[i].data == i for i in range(1, 7))
|
430 |
+
|
431 |
+
k = sy.Symbol('k')
|
432 |
+
aesara_code_(k, dtypes={k: 'int32'})
|
433 |
+
start, stop, step = 4, k, 2
|
434 |
+
Y = X[start:stop:step]
|
435 |
+
Yt = aesara_code_(Y, dtypes={n: 'int32', k: 'int32'})
|
436 |
+
# assert Yt.owner.op.idx_list[0].stop == kt
|
437 |
+
|
438 |
+
def test_BlockMatrix():
|
439 |
+
n = sy.Symbol('n', integer=True)
|
440 |
+
A, B, C, D = [sy.MatrixSymbol(name, n, n) for name in 'ABCD']
|
441 |
+
At, Bt, Ct, Dt = map(aesara_code_, (A, B, C, D))
|
442 |
+
Block = sy.BlockMatrix([[A, B], [C, D]])
|
443 |
+
Blockt = aesara_code_(Block)
|
444 |
+
solutions = [aet.join(0, aet.join(1, At, Bt), aet.join(1, Ct, Dt)),
|
445 |
+
aet.join(1, aet.join(0, At, Ct), aet.join(0, Bt, Dt))]
|
446 |
+
assert any(theq(Blockt, solution) for solution in solutions)
|
447 |
+
|
448 |
+
@SKIP
|
449 |
+
def test_BlockMatrix_Inverse_execution():
|
450 |
+
k, n = 2, 4
|
451 |
+
dtype = 'float32'
|
452 |
+
A = sy.MatrixSymbol('A', n, k)
|
453 |
+
B = sy.MatrixSymbol('B', n, n)
|
454 |
+
inputs = A, B
|
455 |
+
output = B.I*A
|
456 |
+
|
457 |
+
cutsizes = {A: [(n//2, n//2), (k//2, k//2)],
|
458 |
+
B: [(n//2, n//2), (n//2, n//2)]}
|
459 |
+
cutinputs = [sy.blockcut(i, *cutsizes[i]) for i in inputs]
|
460 |
+
cutoutput = output.subs(dict(zip(inputs, cutinputs)))
|
461 |
+
|
462 |
+
dtypes = dict(zip(inputs, [dtype]*len(inputs)))
|
463 |
+
f = aesara_function_(inputs, [output], dtypes=dtypes, cache={})
|
464 |
+
fblocked = aesara_function_(inputs, [sy.block_collapse(cutoutput)],
|
465 |
+
dtypes=dtypes, cache={})
|
466 |
+
|
467 |
+
ninputs = [np.random.rand(*x.shape).astype(dtype) for x in inputs]
|
468 |
+
ninputs = [np.arange(n*k).reshape(A.shape).astype(dtype),
|
469 |
+
np.eye(n).astype(dtype)]
|
470 |
+
ninputs[1] += np.ones(B.shape)*1e-5
|
471 |
+
|
472 |
+
assert np.allclose(f(*ninputs), fblocked(*ninputs), rtol=1e-5)
|
473 |
+
|
474 |
+
def test_DenseMatrix():
|
475 |
+
from aesara.tensor.basic import Join
|
476 |
+
|
477 |
+
t = sy.Symbol('theta')
|
478 |
+
for MatrixType in [sy.Matrix, sy.ImmutableMatrix]:
|
479 |
+
X = MatrixType([[sy.cos(t), -sy.sin(t)], [sy.sin(t), sy.cos(t)]])
|
480 |
+
tX = aesara_code_(X)
|
481 |
+
assert isinstance(tX, TensorVariable)
|
482 |
+
assert isinstance(tX.owner.op, Join)
|
483 |
+
|
484 |
+
|
485 |
+
def test_cache_basic():
|
486 |
+
""" Test single symbol-like objects are cached when printed by themselves. """
|
487 |
+
|
488 |
+
# Pairs of objects which should be considered equivalent with respect to caching
|
489 |
+
pairs = [
|
490 |
+
(x, sy.Symbol('x')),
|
491 |
+
(X, sy.MatrixSymbol('X', *X.shape)),
|
492 |
+
(f_t, sy.Function('f')(sy.Symbol('t'))),
|
493 |
+
]
|
494 |
+
|
495 |
+
for s1, s2 in pairs:
|
496 |
+
cache = {}
|
497 |
+
st = aesara_code_(s1, cache=cache)
|
498 |
+
|
499 |
+
# Test hit with same instance
|
500 |
+
assert aesara_code_(s1, cache=cache) is st
|
501 |
+
|
502 |
+
# Test miss with same instance but new cache
|
503 |
+
assert aesara_code_(s1, cache={}) is not st
|
504 |
+
|
505 |
+
# Test hit with different but equivalent instance
|
506 |
+
assert aesara_code_(s2, cache=cache) is st
|
507 |
+
|
508 |
+
def test_global_cache():
|
509 |
+
""" Test use of the global cache. """
|
510 |
+
from sympy.printing.aesaracode import global_cache
|
511 |
+
|
512 |
+
backup = dict(global_cache)
|
513 |
+
try:
|
514 |
+
# Temporarily empty global cache
|
515 |
+
global_cache.clear()
|
516 |
+
|
517 |
+
for s in [x, X, f_t]:
|
518 |
+
st = aesara_code(s)
|
519 |
+
assert aesara_code(s) is st
|
520 |
+
|
521 |
+
finally:
|
522 |
+
# Restore global cache
|
523 |
+
global_cache.update(backup)
|
524 |
+
|
525 |
+
def test_cache_types_distinct():
|
526 |
+
"""
|
527 |
+
Test that symbol-like objects of different types (Symbol, MatrixSymbol,
|
528 |
+
AppliedUndef) are distinguished by the cache even if they have the same
|
529 |
+
name.
|
530 |
+
"""
|
531 |
+
symbols = [sy.Symbol('f_t'), sy.MatrixSymbol('f_t', 4, 4), f_t]
|
532 |
+
|
533 |
+
cache = {} # Single shared cache
|
534 |
+
printed = {}
|
535 |
+
|
536 |
+
for s in symbols:
|
537 |
+
st = aesara_code_(s, cache=cache)
|
538 |
+
assert st not in printed.values()
|
539 |
+
printed[s] = st
|
540 |
+
|
541 |
+
# Check all printed objects are distinct
|
542 |
+
assert len(set(map(id, printed.values()))) == len(symbols)
|
543 |
+
|
544 |
+
# Check retrieving
|
545 |
+
for s, st in printed.items():
|
546 |
+
assert aesara_code(s, cache=cache) is st
|
547 |
+
|
548 |
+
def test_symbols_are_created_once():
|
549 |
+
"""
|
550 |
+
Test that a symbol is cached and reused when it appears in an expression
|
551 |
+
more than once.
|
552 |
+
"""
|
553 |
+
expr = sy.Add(x, x, evaluate=False)
|
554 |
+
comp = aesara_code_(expr)
|
555 |
+
|
556 |
+
assert theq(comp, xt + xt)
|
557 |
+
assert not theq(comp, xt + aesara_code_(x))
|
558 |
+
|
559 |
+
def test_cache_complex():
|
560 |
+
"""
|
561 |
+
Test caching on a complicated expression with multiple symbols appearing
|
562 |
+
multiple times.
|
563 |
+
"""
|
564 |
+
expr = x ** 2 + (y - sy.exp(x)) * sy.sin(z - x * y)
|
565 |
+
symbol_names = {s.name for s in expr.free_symbols}
|
566 |
+
expr_t = aesara_code_(expr)
|
567 |
+
|
568 |
+
# Iterate through variables in the Aesara computational graph that the
|
569 |
+
# printed expression depends on
|
570 |
+
seen = set()
|
571 |
+
for v in aesara.graph.basic.ancestors([expr_t]):
|
572 |
+
# Owner-less, non-constant variables should be our symbols
|
573 |
+
if v.owner is None and not isinstance(v, aesara.graph.basic.Constant):
|
574 |
+
# Check it corresponds to a symbol and appears only once
|
575 |
+
assert v.name in symbol_names
|
576 |
+
assert v.name not in seen
|
577 |
+
seen.add(v.name)
|
578 |
+
|
579 |
+
# Check all were present
|
580 |
+
assert seen == symbol_names
|
581 |
+
|
582 |
+
|
583 |
+
def test_Piecewise():
|
584 |
+
# A piecewise linear
|
585 |
+
expr = sy.Piecewise((0, x<0), (x, x<2), (1, True)) # ___/III
|
586 |
+
result = aesara_code_(expr)
|
587 |
+
assert result.owner.op == aet.switch
|
588 |
+
|
589 |
+
expected = aet.switch(xt<0, 0, aet.switch(xt<2, xt, 1))
|
590 |
+
assert theq(result, expected)
|
591 |
+
|
592 |
+
expr = sy.Piecewise((x, x < 0))
|
593 |
+
result = aesara_code_(expr)
|
594 |
+
expected = aet.switch(xt < 0, xt, np.nan)
|
595 |
+
assert theq(result, expected)
|
596 |
+
|
597 |
+
expr = sy.Piecewise((0, sy.And(x>0, x<2)), \
|
598 |
+
(x, sy.Or(x>2, x<0)))
|
599 |
+
result = aesara_code_(expr)
|
600 |
+
expected = aet.switch(aet.and_(xt>0,xt<2), 0, \
|
601 |
+
aet.switch(aet.or_(xt>2, xt<0), xt, np.nan))
|
602 |
+
assert theq(result, expected)
|
603 |
+
|
604 |
+
|
605 |
+
def test_Relationals():
|
606 |
+
assert theq(aesara_code_(sy.Eq(x, y)), aet.eq(xt, yt))
|
607 |
+
# assert theq(aesara_code_(sy.Ne(x, y)), aet.neq(xt, yt)) # TODO - implement
|
608 |
+
assert theq(aesara_code_(x > y), xt > yt)
|
609 |
+
assert theq(aesara_code_(x < y), xt < yt)
|
610 |
+
assert theq(aesara_code_(x >= y), xt >= yt)
|
611 |
+
assert theq(aesara_code_(x <= y), xt <= yt)
|
612 |
+
|
613 |
+
|
614 |
+
def test_complexfunctions():
|
615 |
+
dtypes = {x:'complex128', y:'complex128'}
|
616 |
+
xt, yt = aesara_code(x, dtypes=dtypes), aesara_code(y, dtypes=dtypes)
|
617 |
+
from sympy.functions.elementary.complexes import conjugate
|
618 |
+
from aesara.tensor import as_tensor_variable as atv
|
619 |
+
from aesara.tensor import complex as cplx
|
620 |
+
assert theq(aesara_code(y*conjugate(x), dtypes=dtypes), yt*(xt.conj()))
|
621 |
+
assert theq(aesara_code((1+2j)*x), xt*(atv(1.0)+atv(2.0)*cplx(0,1)))
|
622 |
+
|
623 |
+
|
624 |
+
def test_constantfunctions():
|
625 |
+
tf = aesara_function([],[1+1j])
|
626 |
+
assert(tf()==1+1j)
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_c.py
ADDED
@@ -0,0 +1,875 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import (
|
2 |
+
S, pi, oo, Symbol, symbols, Rational, Integer, Float, Function, Mod, GoldenRatio, EulerGamma, Catalan,
|
3 |
+
Lambda, Dummy, nan, Mul, Pow, UnevaluatedExpr
|
4 |
+
)
|
5 |
+
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
|
6 |
+
from sympy.functions import (
|
7 |
+
Abs, acos, acosh, asin, asinh, atan, atanh, atan2, ceiling, cos, cosh, erf,
|
8 |
+
erfc, exp, floor, gamma, log, loggamma, Max, Min, Piecewise, sign, sin, sinh,
|
9 |
+
sqrt, tan, tanh, fibonacci, lucas
|
10 |
+
)
|
11 |
+
from sympy.sets import Range
|
12 |
+
from sympy.logic import ITE, Implies, Equivalent
|
13 |
+
from sympy.codegen import For, aug_assign, Assignment
|
14 |
+
from sympy.testing.pytest import raises, XFAIL
|
15 |
+
from sympy.printing.c import C89CodePrinter, C99CodePrinter, get_math_macros
|
16 |
+
from sympy.codegen.ast import (
|
17 |
+
AddAugmentedAssignment, Element, Type, FloatType, Declaration, Pointer, Variable, value_const, pointer_const,
|
18 |
+
While, Scope, Print, FunctionPrototype, FunctionDefinition, FunctionCall, Return,
|
19 |
+
real, float32, float64, float80, float128, intc, Comment, CodeBlock
|
20 |
+
)
|
21 |
+
from sympy.codegen.cfunctions import expm1, log1p, exp2, log2, fma, log10, Cbrt, hypot, Sqrt
|
22 |
+
from sympy.codegen.cnodes import restrict
|
23 |
+
from sympy.utilities.lambdify import implemented_function
|
24 |
+
from sympy.tensor import IndexedBase, Idx
|
25 |
+
from sympy.matrices import Matrix, MatrixSymbol, SparseMatrix
|
26 |
+
|
27 |
+
from sympy.printing.codeprinter import ccode
|
28 |
+
|
29 |
+
x, y, z = symbols('x,y,z')
|
30 |
+
|
31 |
+
|
32 |
+
def test_printmethod():
|
33 |
+
class fabs(Abs):
|
34 |
+
def _ccode(self, printer):
|
35 |
+
return "fabs(%s)" % printer._print(self.args[0])
|
36 |
+
|
37 |
+
assert ccode(fabs(x)) == "fabs(x)"
|
38 |
+
|
39 |
+
|
40 |
+
def test_ccode_sqrt():
|
41 |
+
assert ccode(sqrt(x)) == "sqrt(x)"
|
42 |
+
assert ccode(x**0.5) == "sqrt(x)"
|
43 |
+
assert ccode(sqrt(x)) == "sqrt(x)"
|
44 |
+
|
45 |
+
|
46 |
+
def test_ccode_Pow():
|
47 |
+
assert ccode(x**3) == "pow(x, 3)"
|
48 |
+
assert ccode(x**(y**3)) == "pow(x, pow(y, 3))"
|
49 |
+
g = implemented_function('g', Lambda(x, 2*x))
|
50 |
+
assert ccode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
|
51 |
+
"pow(3.5*2*x, -x + pow(y, x))/(pow(x, 2) + y)"
|
52 |
+
assert ccode(x**-1.0) == '1.0/x'
|
53 |
+
assert ccode(x**Rational(2, 3)) == 'pow(x, 2.0/3.0)'
|
54 |
+
assert ccode(x**Rational(2, 3), type_aliases={real: float80}) == 'powl(x, 2.0L/3.0L)'
|
55 |
+
_cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"),
|
56 |
+
(lambda base, exp: not exp.is_integer, "pow")]
|
57 |
+
assert ccode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)'
|
58 |
+
assert ccode(x**0.5, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 0.5)'
|
59 |
+
assert ccode(x**Rational(16, 5), user_functions={'Pow': _cond_cfunc}) == 'pow(x, 16.0/5.0)'
|
60 |
+
_cond_cfunc2 = [(lambda base, exp: base == 2, lambda base, exp: 'exp2(%s)' % exp),
|
61 |
+
(lambda base, exp: base != 2, 'pow')]
|
62 |
+
# Related to gh-11353
|
63 |
+
assert ccode(2**x, user_functions={'Pow': _cond_cfunc2}) == 'exp2(x)'
|
64 |
+
assert ccode(x**2, user_functions={'Pow': _cond_cfunc2}) == 'pow(x, 2)'
|
65 |
+
# For issue 14160
|
66 |
+
assert ccode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
|
67 |
+
evaluate=False)) == '-2*x/(y*y)'
|
68 |
+
|
69 |
+
|
70 |
+
def test_ccode_Max():
|
71 |
+
# Test for gh-11926
|
72 |
+
assert ccode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))'
|
73 |
+
|
74 |
+
|
75 |
+
def test_ccode_Min_performance():
|
76 |
+
#Shouldn't take more than a few seconds
|
77 |
+
big_min = Min(*symbols('a[0:50]'))
|
78 |
+
for curr_standard in ('c89', 'c99', 'c11'):
|
79 |
+
output = ccode(big_min, standard=curr_standard)
|
80 |
+
assert output.count('(') == output.count(')')
|
81 |
+
|
82 |
+
|
83 |
+
def test_ccode_constants_mathh():
|
84 |
+
assert ccode(exp(1)) == "M_E"
|
85 |
+
assert ccode(pi) == "M_PI"
|
86 |
+
assert ccode(oo, standard='c89') == "HUGE_VAL"
|
87 |
+
assert ccode(-oo, standard='c89') == "-HUGE_VAL"
|
88 |
+
assert ccode(oo) == "INFINITY"
|
89 |
+
assert ccode(-oo, standard='c99') == "-INFINITY"
|
90 |
+
assert ccode(pi, type_aliases={real: float80}) == "M_PIl"
|
91 |
+
|
92 |
+
|
93 |
+
def test_ccode_constants_other():
|
94 |
+
assert ccode(2*GoldenRatio) == "const double GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17)
|
95 |
+
assert ccode(
|
96 |
+
2*Catalan) == "const double Catalan = %s;\n2*Catalan" % Catalan.evalf(17)
|
97 |
+
assert ccode(2*EulerGamma) == "const double EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17)
|
98 |
+
|
99 |
+
|
100 |
+
def test_ccode_Rational():
|
101 |
+
assert ccode(Rational(3, 7)) == "3.0/7.0"
|
102 |
+
assert ccode(Rational(3, 7), type_aliases={real: float80}) == "3.0L/7.0L"
|
103 |
+
assert ccode(Rational(18, 9)) == "2"
|
104 |
+
assert ccode(Rational(3, -7)) == "-3.0/7.0"
|
105 |
+
assert ccode(Rational(3, -7), type_aliases={real: float80}) == "-3.0L/7.0L"
|
106 |
+
assert ccode(Rational(-3, -7)) == "3.0/7.0"
|
107 |
+
assert ccode(Rational(-3, -7), type_aliases={real: float80}) == "3.0L/7.0L"
|
108 |
+
assert ccode(x + Rational(3, 7)) == "x + 3.0/7.0"
|
109 |
+
assert ccode(x + Rational(3, 7), type_aliases={real: float80}) == "x + 3.0L/7.0L"
|
110 |
+
assert ccode(Rational(3, 7)*x) == "(3.0/7.0)*x"
|
111 |
+
assert ccode(Rational(3, 7)*x, type_aliases={real: float80}) == "(3.0L/7.0L)*x"
|
112 |
+
|
113 |
+
|
114 |
+
def test_ccode_Integer():
|
115 |
+
assert ccode(Integer(67)) == "67"
|
116 |
+
assert ccode(Integer(-1)) == "-1"
|
117 |
+
|
118 |
+
|
119 |
+
def test_ccode_functions():
|
120 |
+
assert ccode(sin(x) ** cos(x)) == "pow(sin(x), cos(x))"
|
121 |
+
|
122 |
+
|
123 |
+
def test_ccode_inline_function():
|
124 |
+
x = symbols('x')
|
125 |
+
g = implemented_function('g', Lambda(x, 2*x))
|
126 |
+
assert ccode(g(x)) == "2*x"
|
127 |
+
g = implemented_function('g', Lambda(x, 2*x/Catalan))
|
128 |
+
assert ccode(
|
129 |
+
g(x)) == "const double Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17)
|
130 |
+
A = IndexedBase('A')
|
131 |
+
i = Idx('i', symbols('n', integer=True))
|
132 |
+
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
|
133 |
+
assert ccode(g(A[i]), assign_to=A[i]) == (
|
134 |
+
"for (int i=0; i<n; i++){\n"
|
135 |
+
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
|
136 |
+
"}"
|
137 |
+
)
|
138 |
+
|
139 |
+
|
140 |
+
def test_ccode_exceptions():
|
141 |
+
assert ccode(gamma(x), standard='C99') == "tgamma(x)"
|
142 |
+
gamma_c89 = ccode(gamma(x), standard='C89')
|
143 |
+
assert 'not supported in c' in gamma_c89.lower()
|
144 |
+
gamma_c89 = ccode(gamma(x), standard='C89', allow_unknown_functions=False)
|
145 |
+
assert 'not supported in c' in gamma_c89.lower()
|
146 |
+
gamma_c89 = ccode(gamma(x), standard='C89', allow_unknown_functions=True)
|
147 |
+
assert 'not supported in c' not in gamma_c89.lower()
|
148 |
+
|
149 |
+
|
150 |
+
def test_ccode_functions2():
|
151 |
+
assert ccode(ceiling(x)) == "ceil(x)"
|
152 |
+
assert ccode(Abs(x)) == "fabs(x)"
|
153 |
+
assert ccode(gamma(x)) == "tgamma(x)"
|
154 |
+
r, s = symbols('r,s', real=True)
|
155 |
+
assert ccode(Mod(ceiling(r), ceiling(s))) == '((ceil(r) % ceil(s)) + '\
|
156 |
+
'ceil(s)) % ceil(s)'
|
157 |
+
assert ccode(Mod(r, s)) == "fmod(r, s)"
|
158 |
+
p1, p2 = symbols('p1 p2', integer=True, positive=True)
|
159 |
+
assert ccode(Mod(p1, p2)) == 'p1 % p2'
|
160 |
+
assert ccode(Mod(p1, p2 + 3)) == 'p1 % (p2 + 3)'
|
161 |
+
assert ccode(Mod(-3, -7, evaluate=False)) == '(-3) % (-7)'
|
162 |
+
assert ccode(-Mod(3, 7, evaluate=False)) == '-(3 % 7)'
|
163 |
+
assert ccode(r*Mod(p1, p2)) == 'r*(p1 % p2)'
|
164 |
+
assert ccode(Mod(p1, p2)**s) == 'pow(p1 % p2, s)'
|
165 |
+
n = symbols('n', integer=True, negative=True)
|
166 |
+
assert ccode(Mod(-n, p2)) == '(-n) % p2'
|
167 |
+
assert ccode(fibonacci(n)) == '(1.0/5.0)*pow(2, -n)*sqrt(5)*(-pow(1 - sqrt(5), n) + pow(1 + sqrt(5), n))'
|
168 |
+
assert ccode(lucas(n)) == 'pow(2, -n)*(pow(1 - sqrt(5), n) + pow(1 + sqrt(5), n))'
|
169 |
+
|
170 |
+
|
171 |
+
def test_ccode_user_functions():
|
172 |
+
x = symbols('x', integer=False)
|
173 |
+
n = symbols('n', integer=True)
|
174 |
+
custom_functions = {
|
175 |
+
"ceiling": "ceil",
|
176 |
+
"Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")],
|
177 |
+
}
|
178 |
+
assert ccode(ceiling(x), user_functions=custom_functions) == "ceil(x)"
|
179 |
+
assert ccode(Abs(x), user_functions=custom_functions) == "fabs(x)"
|
180 |
+
assert ccode(Abs(n), user_functions=custom_functions) == "abs(n)"
|
181 |
+
|
182 |
+
expr = Symbol('a')
|
183 |
+
muladd = Function('muladd')
|
184 |
+
for i in range(0, 100):
|
185 |
+
# the large number of terms acts as a regression test for gh-23839
|
186 |
+
expr = muladd(Rational(1, 2), Symbol(f'a{i}'), expr)
|
187 |
+
out = ccode(expr, user_functions={'muladd':'muladd'})
|
188 |
+
assert 'a99' in out
|
189 |
+
assert out.count('muladd') == 100
|
190 |
+
|
191 |
+
|
192 |
+
def test_ccode_boolean():
|
193 |
+
assert ccode(True) == "true"
|
194 |
+
assert ccode(S.true) == "true"
|
195 |
+
assert ccode(False) == "false"
|
196 |
+
assert ccode(S.false) == "false"
|
197 |
+
assert ccode(x & y) == "x && y"
|
198 |
+
assert ccode(x | y) == "x || y"
|
199 |
+
assert ccode(~x) == "!x"
|
200 |
+
assert ccode(x & y & z) == "x && y && z"
|
201 |
+
assert ccode(x | y | z) == "x || y || z"
|
202 |
+
assert ccode((x & y) | z) == "z || x && y"
|
203 |
+
assert ccode((x | y) & z) == "z && (x || y)"
|
204 |
+
# Automatic rewrites
|
205 |
+
assert ccode(x ^ y) == '(x || y) && (!x || !y)'
|
206 |
+
assert ccode((x ^ y) ^ z) == '(x || y || z) && (x || !y || !z) && (y || !x || !z) && (z || !x || !y)'
|
207 |
+
assert ccode(Implies(x, y)) == 'y || !x'
|
208 |
+
assert ccode(Equivalent(x, z ^ y, Implies(z, x))) == '(x || (y || !z) && (z || !y)) && (z && !x || (y || z) && (!y || !z))'
|
209 |
+
|
210 |
+
|
211 |
+
def test_ccode_Relational():
|
212 |
+
assert ccode(Eq(x, y)) == "x == y"
|
213 |
+
assert ccode(Ne(x, y)) == "x != y"
|
214 |
+
assert ccode(Le(x, y)) == "x <= y"
|
215 |
+
assert ccode(Lt(x, y)) == "x < y"
|
216 |
+
assert ccode(Gt(x, y)) == "x > y"
|
217 |
+
assert ccode(Ge(x, y)) == "x >= y"
|
218 |
+
|
219 |
+
|
220 |
+
def test_ccode_Piecewise():
|
221 |
+
expr = Piecewise((x, x < 1), (x**2, True))
|
222 |
+
assert ccode(expr) == (
|
223 |
+
"((x < 1) ? (\n"
|
224 |
+
" x\n"
|
225 |
+
")\n"
|
226 |
+
": (\n"
|
227 |
+
" pow(x, 2)\n"
|
228 |
+
"))")
|
229 |
+
assert ccode(expr, assign_to="c") == (
|
230 |
+
"if (x < 1) {\n"
|
231 |
+
" c = x;\n"
|
232 |
+
"}\n"
|
233 |
+
"else {\n"
|
234 |
+
" c = pow(x, 2);\n"
|
235 |
+
"}")
|
236 |
+
expr = Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True))
|
237 |
+
assert ccode(expr) == (
|
238 |
+
"((x < 1) ? (\n"
|
239 |
+
" x\n"
|
240 |
+
")\n"
|
241 |
+
": ((x < 2) ? (\n"
|
242 |
+
" x + 1\n"
|
243 |
+
")\n"
|
244 |
+
": (\n"
|
245 |
+
" pow(x, 2)\n"
|
246 |
+
")))")
|
247 |
+
assert ccode(expr, assign_to='c') == (
|
248 |
+
"if (x < 1) {\n"
|
249 |
+
" c = x;\n"
|
250 |
+
"}\n"
|
251 |
+
"else if (x < 2) {\n"
|
252 |
+
" c = x + 1;\n"
|
253 |
+
"}\n"
|
254 |
+
"else {\n"
|
255 |
+
" c = pow(x, 2);\n"
|
256 |
+
"}")
|
257 |
+
# Check that Piecewise without a True (default) condition error
|
258 |
+
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
|
259 |
+
raises(ValueError, lambda: ccode(expr))
|
260 |
+
|
261 |
+
|
262 |
+
def test_ccode_sinc():
|
263 |
+
from sympy.functions.elementary.trigonometric import sinc
|
264 |
+
expr = sinc(x)
|
265 |
+
assert ccode(expr) == (
|
266 |
+
"((x != 0) ? (\n"
|
267 |
+
" sin(x)/x\n"
|
268 |
+
")\n"
|
269 |
+
": (\n"
|
270 |
+
" 1\n"
|
271 |
+
"))")
|
272 |
+
|
273 |
+
|
274 |
+
def test_ccode_Piecewise_deep():
|
275 |
+
p = ccode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)))
|
276 |
+
assert p == (
|
277 |
+
"2*((x < 1) ? (\n"
|
278 |
+
" x\n"
|
279 |
+
")\n"
|
280 |
+
": ((x < 2) ? (\n"
|
281 |
+
" x + 1\n"
|
282 |
+
")\n"
|
283 |
+
": (\n"
|
284 |
+
" pow(x, 2)\n"
|
285 |
+
")))")
|
286 |
+
expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1
|
287 |
+
assert ccode(expr) == (
|
288 |
+
"pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
|
289 |
+
" 0\n"
|
290 |
+
")\n"
|
291 |
+
": (\n"
|
292 |
+
" 1\n"
|
293 |
+
")) + cos(z) - 1")
|
294 |
+
assert ccode(expr, assign_to='c') == (
|
295 |
+
"c = pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
|
296 |
+
" 0\n"
|
297 |
+
")\n"
|
298 |
+
": (\n"
|
299 |
+
" 1\n"
|
300 |
+
")) + cos(z) - 1;")
|
301 |
+
|
302 |
+
|
303 |
+
def test_ccode_ITE():
|
304 |
+
expr = ITE(x < 1, y, z)
|
305 |
+
assert ccode(expr) == (
|
306 |
+
"((x < 1) ? (\n"
|
307 |
+
" y\n"
|
308 |
+
")\n"
|
309 |
+
": (\n"
|
310 |
+
" z\n"
|
311 |
+
"))")
|
312 |
+
|
313 |
+
|
314 |
+
def test_ccode_settings():
|
315 |
+
raises(TypeError, lambda: ccode(sin(x), method="garbage"))
|
316 |
+
|
317 |
+
|
318 |
+
def test_ccode_Indexed():
|
319 |
+
s, n, m, o = symbols('s n m o', integer=True)
|
320 |
+
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
|
321 |
+
|
322 |
+
x = IndexedBase('x')[j]
|
323 |
+
A = IndexedBase('A')[i, j]
|
324 |
+
B = IndexedBase('B')[i, j, k]
|
325 |
+
|
326 |
+
p = C99CodePrinter()
|
327 |
+
|
328 |
+
assert p._print_Indexed(x) == 'x[j]'
|
329 |
+
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
|
330 |
+
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
|
331 |
+
|
332 |
+
A = IndexedBase('A', shape=(5,3))[i, j]
|
333 |
+
assert p._print_Indexed(A) == 'A[%s]' % (3*i + j)
|
334 |
+
|
335 |
+
A = IndexedBase('A', shape=(5,3), strides='F')[i, j]
|
336 |
+
assert ccode(A) == 'A[%s]' % (i + 5*j)
|
337 |
+
|
338 |
+
A = IndexedBase('A', shape=(29,29), strides=(1, s), offset=o)[i, j]
|
339 |
+
assert ccode(A) == 'A[o + s*j + i]'
|
340 |
+
|
341 |
+
Abase = IndexedBase('A', strides=(s, m, n), offset=o)
|
342 |
+
assert ccode(Abase[i, j, k]) == 'A[m*j + n*k + o + s*i]'
|
343 |
+
assert ccode(Abase[2, 3, k]) == 'A[3*m + n*k + o + 2*s]'
|
344 |
+
|
345 |
+
|
346 |
+
def test_Element():
|
347 |
+
assert ccode(Element('x', 'ij')) == 'x[i][j]'
|
348 |
+
assert ccode(Element('x', 'ij', strides='kl', offset='o')) == 'x[i*k + j*l + o]'
|
349 |
+
assert ccode(Element('x', (3,))) == 'x[3]'
|
350 |
+
assert ccode(Element('x', (3,4,5))) == 'x[3][4][5]'
|
351 |
+
|
352 |
+
|
353 |
+
def test_ccode_Indexed_without_looking_for_contraction():
|
354 |
+
len_y = 5
|
355 |
+
y = IndexedBase('y', shape=(len_y,))
|
356 |
+
x = IndexedBase('x', shape=(len_y,))
|
357 |
+
Dy = IndexedBase('Dy', shape=(len_y-1,))
|
358 |
+
i = Idx('i', len_y-1)
|
359 |
+
e = Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
|
360 |
+
code0 = ccode(e.rhs, assign_to=e.lhs, contract=False)
|
361 |
+
assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1)
|
362 |
+
|
363 |
+
|
364 |
+
def test_ccode_loops_matrix_vector():
|
365 |
+
n, m = symbols('n m', integer=True)
|
366 |
+
A = IndexedBase('A')
|
367 |
+
x = IndexedBase('x')
|
368 |
+
y = IndexedBase('y')
|
369 |
+
i = Idx('i', m)
|
370 |
+
j = Idx('j', n)
|
371 |
+
|
372 |
+
s = (
|
373 |
+
'for (int i=0; i<m; i++){\n'
|
374 |
+
' y[i] = 0;\n'
|
375 |
+
'}\n'
|
376 |
+
'for (int i=0; i<m; i++){\n'
|
377 |
+
' for (int j=0; j<n; j++){\n'
|
378 |
+
' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\
|
379 |
+
' }\n'
|
380 |
+
'}'
|
381 |
+
)
|
382 |
+
assert ccode(A[i, j]*x[j], assign_to=y[i]) == s
|
383 |
+
|
384 |
+
|
385 |
+
def test_dummy_loops():
|
386 |
+
i, m = symbols('i m', integer=True, cls=Dummy)
|
387 |
+
x = IndexedBase('x')
|
388 |
+
y = IndexedBase('y')
|
389 |
+
i = Idx(i, m)
|
390 |
+
|
391 |
+
expected = (
|
392 |
+
'for (int i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
|
393 |
+
' y[i_%(icount)i] = x[i_%(icount)i];\n'
|
394 |
+
'}'
|
395 |
+
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
|
396 |
+
|
397 |
+
assert ccode(x[i], assign_to=y[i]) == expected
|
398 |
+
|
399 |
+
|
400 |
+
def test_ccode_loops_add():
|
401 |
+
n, m = symbols('n m', integer=True)
|
402 |
+
A = IndexedBase('A')
|
403 |
+
x = IndexedBase('x')
|
404 |
+
y = IndexedBase('y')
|
405 |
+
z = IndexedBase('z')
|
406 |
+
i = Idx('i', m)
|
407 |
+
j = Idx('j', n)
|
408 |
+
|
409 |
+
s = (
|
410 |
+
'for (int i=0; i<m; i++){\n'
|
411 |
+
' y[i] = x[i] + z[i];\n'
|
412 |
+
'}\n'
|
413 |
+
'for (int i=0; i<m; i++){\n'
|
414 |
+
' for (int j=0; j<n; j++){\n'
|
415 |
+
' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\
|
416 |
+
' }\n'
|
417 |
+
'}'
|
418 |
+
)
|
419 |
+
assert ccode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) == s
|
420 |
+
|
421 |
+
|
422 |
+
def test_ccode_loops_multiple_contractions():
|
423 |
+
n, m, o, p = symbols('n m o p', integer=True)
|
424 |
+
a = IndexedBase('a')
|
425 |
+
b = IndexedBase('b')
|
426 |
+
y = IndexedBase('y')
|
427 |
+
i = Idx('i', m)
|
428 |
+
j = Idx('j', n)
|
429 |
+
k = Idx('k', o)
|
430 |
+
l = Idx('l', p)
|
431 |
+
|
432 |
+
s = (
|
433 |
+
'for (int i=0; i<m; i++){\n'
|
434 |
+
' y[i] = 0;\n'
|
435 |
+
'}\n'
|
436 |
+
'for (int i=0; i<m; i++){\n'
|
437 |
+
' for (int j=0; j<n; j++){\n'
|
438 |
+
' for (int k=0; k<o; k++){\n'
|
439 |
+
' for (int l=0; l<p; l++){\n'
|
440 |
+
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
|
441 |
+
' }\n'
|
442 |
+
' }\n'
|
443 |
+
' }\n'
|
444 |
+
'}'
|
445 |
+
)
|
446 |
+
assert ccode(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) == s
|
447 |
+
|
448 |
+
|
449 |
+
def test_ccode_loops_addfactor():
|
450 |
+
n, m, o, p = symbols('n m o p', integer=True)
|
451 |
+
a = IndexedBase('a')
|
452 |
+
b = IndexedBase('b')
|
453 |
+
c = IndexedBase('c')
|
454 |
+
y = IndexedBase('y')
|
455 |
+
i = Idx('i', m)
|
456 |
+
j = Idx('j', n)
|
457 |
+
k = Idx('k', o)
|
458 |
+
l = Idx('l', p)
|
459 |
+
|
460 |
+
s = (
|
461 |
+
'for (int i=0; i<m; i++){\n'
|
462 |
+
' y[i] = 0;\n'
|
463 |
+
'}\n'
|
464 |
+
'for (int i=0; i<m; i++){\n'
|
465 |
+
' for (int j=0; j<n; j++){\n'
|
466 |
+
' for (int k=0; k<o; k++){\n'
|
467 |
+
' for (int l=0; l<p; l++){\n'
|
468 |
+
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
|
469 |
+
' }\n'
|
470 |
+
' }\n'
|
471 |
+
' }\n'
|
472 |
+
'}'
|
473 |
+
)
|
474 |
+
assert ccode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) == s
|
475 |
+
|
476 |
+
|
477 |
+
def test_ccode_loops_multiple_terms():
|
478 |
+
n, m, o, p = symbols('n m o p', integer=True)
|
479 |
+
a = IndexedBase('a')
|
480 |
+
b = IndexedBase('b')
|
481 |
+
c = IndexedBase('c')
|
482 |
+
y = IndexedBase('y')
|
483 |
+
i = Idx('i', m)
|
484 |
+
j = Idx('j', n)
|
485 |
+
k = Idx('k', o)
|
486 |
+
|
487 |
+
s0 = (
|
488 |
+
'for (int i=0; i<m; i++){\n'
|
489 |
+
' y[i] = 0;\n'
|
490 |
+
'}\n'
|
491 |
+
)
|
492 |
+
s1 = (
|
493 |
+
'for (int i=0; i<m; i++){\n'
|
494 |
+
' for (int j=0; j<n; j++){\n'
|
495 |
+
' for (int k=0; k<o; k++){\n'
|
496 |
+
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
|
497 |
+
' }\n'
|
498 |
+
' }\n'
|
499 |
+
'}\n'
|
500 |
+
)
|
501 |
+
s2 = (
|
502 |
+
'for (int i=0; i<m; i++){\n'
|
503 |
+
' for (int k=0; k<o; k++){\n'
|
504 |
+
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
|
505 |
+
' }\n'
|
506 |
+
'}\n'
|
507 |
+
)
|
508 |
+
s3 = (
|
509 |
+
'for (int i=0; i<m; i++){\n'
|
510 |
+
' for (int j=0; j<n; j++){\n'
|
511 |
+
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
|
512 |
+
' }\n'
|
513 |
+
'}\n'
|
514 |
+
)
|
515 |
+
c = ccode(b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
|
516 |
+
assert (c == s0 + s1 + s2 + s3[:-1] or
|
517 |
+
c == s0 + s1 + s3 + s2[:-1] or
|
518 |
+
c == s0 + s2 + s1 + s3[:-1] or
|
519 |
+
c == s0 + s2 + s3 + s1[:-1] or
|
520 |
+
c == s0 + s3 + s1 + s2[:-1] or
|
521 |
+
c == s0 + s3 + s2 + s1[:-1])
|
522 |
+
|
523 |
+
|
524 |
+
def test_dereference_printing():
|
525 |
+
expr = x + y + sin(z) + z
|
526 |
+
assert ccode(expr, dereference=[z]) == "x + y + (*z) + sin((*z))"
|
527 |
+
|
528 |
+
|
529 |
+
def test_Matrix_printing():
|
530 |
+
# Test returning a Matrix
|
531 |
+
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
|
532 |
+
A = MatrixSymbol('A', 3, 1)
|
533 |
+
assert ccode(mat, A) == (
|
534 |
+
"A[0] = x*y;\n"
|
535 |
+
"if (y > 0) {\n"
|
536 |
+
" A[1] = x + 2;\n"
|
537 |
+
"}\n"
|
538 |
+
"else {\n"
|
539 |
+
" A[1] = y;\n"
|
540 |
+
"}\n"
|
541 |
+
"A[2] = sin(z);")
|
542 |
+
# Test using MatrixElements in expressions
|
543 |
+
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
|
544 |
+
assert ccode(expr) == (
|
545 |
+
"((x > 0) ? (\n"
|
546 |
+
" 2*A[2]\n"
|
547 |
+
")\n"
|
548 |
+
": (\n"
|
549 |
+
" A[2]\n"
|
550 |
+
")) + sin(A[1]) + A[0]")
|
551 |
+
# Test using MatrixElements in a Matrix
|
552 |
+
q = MatrixSymbol('q', 5, 1)
|
553 |
+
M = MatrixSymbol('M', 3, 3)
|
554 |
+
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
|
555 |
+
[q[1,0] + q[2,0], q[3, 0], 5],
|
556 |
+
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
|
557 |
+
assert ccode(m, M) == (
|
558 |
+
"M[0] = sin(q[1]);\n"
|
559 |
+
"M[1] = 0;\n"
|
560 |
+
"M[2] = cos(q[2]);\n"
|
561 |
+
"M[3] = q[1] + q[2];\n"
|
562 |
+
"M[4] = q[3];\n"
|
563 |
+
"M[5] = 5;\n"
|
564 |
+
"M[6] = 2*q[4]/q[1];\n"
|
565 |
+
"M[7] = sqrt(q[0]) + 4;\n"
|
566 |
+
"M[8] = 0;")
|
567 |
+
|
568 |
+
|
569 |
+
def test_sparse_matrix():
|
570 |
+
# gh-15791
|
571 |
+
assert 'Not supported in C' in ccode(SparseMatrix([[1, 2, 3]]))
|
572 |
+
|
573 |
+
|
574 |
+
def test_ccode_reserved_words():
|
575 |
+
x, y = symbols('x, if')
|
576 |
+
with raises(ValueError):
|
577 |
+
ccode(y**2, error_on_reserved=True, standard='C99')
|
578 |
+
assert ccode(y**2) == 'pow(if_, 2)'
|
579 |
+
assert ccode(x * y**2, dereference=[y]) == 'pow((*if_), 2)*x'
|
580 |
+
assert ccode(y**2, reserved_word_suffix='_unreserved') == 'pow(if_unreserved, 2)'
|
581 |
+
|
582 |
+
|
583 |
+
def test_ccode_sign():
|
584 |
+
expr1, ref1 = sign(x) * y, 'y*(((x) > 0) - ((x) < 0))'
|
585 |
+
expr2, ref2 = sign(cos(x)), '(((cos(x)) > 0) - ((cos(x)) < 0))'
|
586 |
+
expr3, ref3 = sign(2 * x + x**2) * x + x**2, 'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))'
|
587 |
+
assert ccode(expr1) == ref1
|
588 |
+
assert ccode(expr1, 'z') == 'z = %s;' % ref1
|
589 |
+
assert ccode(expr2) == ref2
|
590 |
+
assert ccode(expr3) == ref3
|
591 |
+
|
592 |
+
def test_ccode_Assignment():
|
593 |
+
assert ccode(Assignment(x, y + z)) == 'x = y + z;'
|
594 |
+
assert ccode(aug_assign(x, '+', y + z)) == 'x += y + z;'
|
595 |
+
|
596 |
+
|
597 |
+
def test_ccode_For():
|
598 |
+
f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)])
|
599 |
+
assert ccode(f) == ("for (x = 0; x < 10; x += 2) {\n"
|
600 |
+
" y *= x;\n"
|
601 |
+
"}")
|
602 |
+
|
603 |
+
def test_ccode_Max_Min():
|
604 |
+
assert ccode(Max(x, 0), standard='C89') == '((0 > x) ? 0 : x)'
|
605 |
+
assert ccode(Max(x, 0), standard='C99') == 'fmax(0, x)'
|
606 |
+
assert ccode(Min(x, 0, sqrt(x)), standard='c89') == (
|
607 |
+
'((0 < ((x < sqrt(x)) ? x : sqrt(x))) ? 0 : ((x < sqrt(x)) ? x : sqrt(x)))'
|
608 |
+
)
|
609 |
+
|
610 |
+
def test_ccode_standard():
|
611 |
+
assert ccode(expm1(x), standard='c99') == 'expm1(x)'
|
612 |
+
assert ccode(nan, standard='c99') == 'NAN'
|
613 |
+
assert ccode(float('nan'), standard='c99') == 'NAN'
|
614 |
+
|
615 |
+
|
616 |
+
def test_C89CodePrinter():
|
617 |
+
c89printer = C89CodePrinter()
|
618 |
+
assert c89printer.language == 'C'
|
619 |
+
assert c89printer.standard == 'C89'
|
620 |
+
assert 'void' in c89printer.reserved_words
|
621 |
+
assert 'template' not in c89printer.reserved_words
|
622 |
+
|
623 |
+
|
624 |
+
def test_C99CodePrinter():
|
625 |
+
assert C99CodePrinter().doprint(expm1(x)) == 'expm1(x)'
|
626 |
+
assert C99CodePrinter().doprint(log1p(x)) == 'log1p(x)'
|
627 |
+
assert C99CodePrinter().doprint(exp2(x)) == 'exp2(x)'
|
628 |
+
assert C99CodePrinter().doprint(log2(x)) == 'log2(x)'
|
629 |
+
assert C99CodePrinter().doprint(fma(x, y, -z)) == 'fma(x, y, -z)'
|
630 |
+
assert C99CodePrinter().doprint(log10(x)) == 'log10(x)'
|
631 |
+
assert C99CodePrinter().doprint(Cbrt(x)) == 'cbrt(x)' # note Cbrt due to cbrt already taken.
|
632 |
+
assert C99CodePrinter().doprint(hypot(x, y)) == 'hypot(x, y)'
|
633 |
+
assert C99CodePrinter().doprint(loggamma(x)) == 'lgamma(x)'
|
634 |
+
assert C99CodePrinter().doprint(Max(x, 3, x**2)) == 'fmax(3, fmax(x, pow(x, 2)))'
|
635 |
+
assert C99CodePrinter().doprint(Min(x, 3)) == 'fmin(3, x)'
|
636 |
+
c99printer = C99CodePrinter()
|
637 |
+
assert c99printer.language == 'C'
|
638 |
+
assert c99printer.standard == 'C99'
|
639 |
+
assert 'restrict' in c99printer.reserved_words
|
640 |
+
assert 'using' not in c99printer.reserved_words
|
641 |
+
|
642 |
+
|
643 |
+
@XFAIL
|
644 |
+
def test_C99CodePrinter__precision_f80():
|
645 |
+
f80_printer = C99CodePrinter({"type_aliases": {real: float80}})
|
646 |
+
assert f80_printer.doprint(sin(x+Float('2.1'))) == 'sinl(x + 2.1L)'
|
647 |
+
|
648 |
+
|
649 |
+
def test_C99CodePrinter__precision():
|
650 |
+
n = symbols('n', integer=True)
|
651 |
+
p = symbols('p', integer=True, positive=True)
|
652 |
+
f32_printer = C99CodePrinter({"type_aliases": {real: float32}})
|
653 |
+
f64_printer = C99CodePrinter({"type_aliases": {real: float64}})
|
654 |
+
f80_printer = C99CodePrinter({"type_aliases": {real: float80}})
|
655 |
+
assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)'
|
656 |
+
assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)'
|
657 |
+
assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)'
|
658 |
+
|
659 |
+
for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']):
|
660 |
+
def check(expr, ref):
|
661 |
+
assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper())
|
662 |
+
check(Abs(n), 'abs(n)')
|
663 |
+
check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})')
|
664 |
+
check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))')
|
665 |
+
check(exp(x*8.0), 'exp{s}(8.0{S}*x)')
|
666 |
+
check(exp2(x), 'exp2{s}(x)')
|
667 |
+
check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)')
|
668 |
+
check(Mod(p, 2), 'p % 2')
|
669 |
+
check(Mod(2*p + 3, 3*p + 5, evaluate=False), '(2*p + 3) % (3*p + 5)')
|
670 |
+
check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})')
|
671 |
+
check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})')
|
672 |
+
check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)')
|
673 |
+
check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)')
|
674 |
+
check(log2(x*8.0), 'log2{s}(8.0{S}*x)')
|
675 |
+
check(log1p(x), 'log1p{s}(x)')
|
676 |
+
check(2**x, 'pow{s}(2, x)')
|
677 |
+
check(2.0**x, 'pow{s}(2.0{S}, x)')
|
678 |
+
check(x**3, 'pow{s}(x, 3)')
|
679 |
+
check(x**4.0, 'pow{s}(x, 4.0{S})')
|
680 |
+
check(sqrt(3+x), 'sqrt{s}(x + 3)')
|
681 |
+
check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})')
|
682 |
+
check(hypot(x, y), 'hypot{s}(x, y)')
|
683 |
+
check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})')
|
684 |
+
check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})')
|
685 |
+
check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})')
|
686 |
+
check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})')
|
687 |
+
check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})')
|
688 |
+
check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})')
|
689 |
+
check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)')
|
690 |
+
|
691 |
+
check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})')
|
692 |
+
check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})')
|
693 |
+
check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})')
|
694 |
+
check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})')
|
695 |
+
check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})')
|
696 |
+
check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})')
|
697 |
+
check(erf(42.*x), 'erf{s}(42.0{S}*x)')
|
698 |
+
check(erfc(42.*x), 'erfc{s}(42.0{S}*x)')
|
699 |
+
check(gamma(x), 'tgamma{s}(x)')
|
700 |
+
check(loggamma(x), 'lgamma{s}(x)')
|
701 |
+
|
702 |
+
check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})")
|
703 |
+
check(floor(x + 2.), "floor{s}(x + 2.0{S})")
|
704 |
+
check(fma(x, y, -z), 'fma{s}(x, y, -z)')
|
705 |
+
check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))')
|
706 |
+
check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)')
|
707 |
+
|
708 |
+
|
709 |
+
def test_get_math_macros():
|
710 |
+
macros = get_math_macros()
|
711 |
+
assert macros[exp(1)] == 'M_E'
|
712 |
+
assert macros[1/Sqrt(2)] == 'M_SQRT1_2'
|
713 |
+
|
714 |
+
|
715 |
+
def test_ccode_Declaration():
|
716 |
+
i = symbols('i', integer=True)
|
717 |
+
var1 = Variable(i, type=Type.from_expr(i))
|
718 |
+
dcl1 = Declaration(var1)
|
719 |
+
assert ccode(dcl1) == 'int i'
|
720 |
+
|
721 |
+
var2 = Variable(x, type=float32, attrs={value_const})
|
722 |
+
dcl2a = Declaration(var2)
|
723 |
+
assert ccode(dcl2a) == 'const float x'
|
724 |
+
dcl2b = var2.as_Declaration(value=pi)
|
725 |
+
assert ccode(dcl2b) == 'const float x = M_PI'
|
726 |
+
|
727 |
+
var3 = Variable(y, type=Type('bool'))
|
728 |
+
dcl3 = Declaration(var3)
|
729 |
+
printer = C89CodePrinter()
|
730 |
+
assert 'stdbool.h' not in printer.headers
|
731 |
+
assert printer.doprint(dcl3) == 'bool y'
|
732 |
+
assert 'stdbool.h' in printer.headers
|
733 |
+
|
734 |
+
u = symbols('u', real=True)
|
735 |
+
ptr4 = Pointer.deduced(u, attrs={pointer_const, restrict})
|
736 |
+
dcl4 = Declaration(ptr4)
|
737 |
+
assert ccode(dcl4) == 'double * const restrict u'
|
738 |
+
|
739 |
+
var5 = Variable(x, Type('__float128'), attrs={value_const})
|
740 |
+
dcl5a = Declaration(var5)
|
741 |
+
assert ccode(dcl5a) == 'const __float128 x'
|
742 |
+
var5b = Variable(var5.symbol, var5.type, pi, attrs=var5.attrs)
|
743 |
+
dcl5b = Declaration(var5b)
|
744 |
+
assert ccode(dcl5b) == 'const __float128 x = M_PI'
|
745 |
+
|
746 |
+
|
747 |
+
def test_C99CodePrinter_custom_type():
|
748 |
+
# We will look at __float128 (new in glibc 2.26)
|
749 |
+
f128 = FloatType('_Float128', float128.nbits, float128.nmant, float128.nexp)
|
750 |
+
p128 = C99CodePrinter({
|
751 |
+
"type_aliases": {real: f128},
|
752 |
+
"type_literal_suffixes": {f128: 'Q'},
|
753 |
+
"type_func_suffixes": {f128: 'f128'},
|
754 |
+
"type_math_macro_suffixes": {
|
755 |
+
real: 'f128',
|
756 |
+
f128: 'f128'
|
757 |
+
},
|
758 |
+
"type_macros": {
|
759 |
+
f128: ('__STDC_WANT_IEC_60559_TYPES_EXT__',)
|
760 |
+
}
|
761 |
+
})
|
762 |
+
assert p128.doprint(x) == 'x'
|
763 |
+
assert not p128.headers
|
764 |
+
assert not p128.libraries
|
765 |
+
assert not p128.macros
|
766 |
+
assert p128.doprint(2.0) == '2.0Q'
|
767 |
+
assert not p128.headers
|
768 |
+
assert not p128.libraries
|
769 |
+
assert p128.macros == {'__STDC_WANT_IEC_60559_TYPES_EXT__'}
|
770 |
+
|
771 |
+
assert p128.doprint(Rational(1, 2)) == '1.0Q/2.0Q'
|
772 |
+
assert p128.doprint(sin(x)) == 'sinf128(x)'
|
773 |
+
assert p128.doprint(cos(2., evaluate=False)) == 'cosf128(2.0Q)'
|
774 |
+
assert p128.doprint(x**-1.0) == '1.0Q/x'
|
775 |
+
|
776 |
+
var5 = Variable(x, f128, attrs={value_const})
|
777 |
+
|
778 |
+
dcl5a = Declaration(var5)
|
779 |
+
assert ccode(dcl5a) == 'const _Float128 x'
|
780 |
+
var5b = Variable(x, f128, pi, attrs={value_const})
|
781 |
+
dcl5b = Declaration(var5b)
|
782 |
+
assert p128.doprint(dcl5b) == 'const _Float128 x = M_PIf128'
|
783 |
+
var5b = Variable(x, f128, value=Catalan.evalf(38), attrs={value_const})
|
784 |
+
dcl5c = Declaration(var5b)
|
785 |
+
assert p128.doprint(dcl5c) == 'const _Float128 x = %sQ' % Catalan.evalf(f128.decimal_dig)
|
786 |
+
|
787 |
+
|
788 |
+
def test_MatrixElement_printing():
|
789 |
+
# test cases for issue #11821
|
790 |
+
A = MatrixSymbol("A", 1, 3)
|
791 |
+
B = MatrixSymbol("B", 1, 3)
|
792 |
+
C = MatrixSymbol("C", 1, 3)
|
793 |
+
|
794 |
+
assert(ccode(A[0, 0]) == "A[0]")
|
795 |
+
assert(ccode(3 * A[0, 0]) == "3*A[0]")
|
796 |
+
|
797 |
+
F = C[0, 0].subs(C, A - B)
|
798 |
+
assert(ccode(F) == "(A - B)[0]")
|
799 |
+
|
800 |
+
def test_ccode_math_macros():
|
801 |
+
assert ccode(z + exp(1)) == 'z + M_E'
|
802 |
+
assert ccode(z + log2(exp(1))) == 'z + M_LOG2E'
|
803 |
+
assert ccode(z + 1/log(2)) == 'z + M_LOG2E'
|
804 |
+
assert ccode(z + log(2)) == 'z + M_LN2'
|
805 |
+
assert ccode(z + log(10)) == 'z + M_LN10'
|
806 |
+
assert ccode(z + pi) == 'z + M_PI'
|
807 |
+
assert ccode(z + pi/2) == 'z + M_PI_2'
|
808 |
+
assert ccode(z + pi/4) == 'z + M_PI_4'
|
809 |
+
assert ccode(z + 1/pi) == 'z + M_1_PI'
|
810 |
+
assert ccode(z + 2/pi) == 'z + M_2_PI'
|
811 |
+
assert ccode(z + 2/sqrt(pi)) == 'z + M_2_SQRTPI'
|
812 |
+
assert ccode(z + 2/Sqrt(pi)) == 'z + M_2_SQRTPI'
|
813 |
+
assert ccode(z + sqrt(2)) == 'z + M_SQRT2'
|
814 |
+
assert ccode(z + Sqrt(2)) == 'z + M_SQRT2'
|
815 |
+
assert ccode(z + 1/sqrt(2)) == 'z + M_SQRT1_2'
|
816 |
+
assert ccode(z + 1/Sqrt(2)) == 'z + M_SQRT1_2'
|
817 |
+
|
818 |
+
|
819 |
+
def test_ccode_Type():
|
820 |
+
assert ccode(Type('float')) == 'float'
|
821 |
+
assert ccode(intc) == 'int'
|
822 |
+
|
823 |
+
|
824 |
+
def test_ccode_codegen_ast():
|
825 |
+
# Note that C only allows comments of the form /* ... */, double forward
|
826 |
+
# slash is not standard C, and some C compilers will grind to a halt upon
|
827 |
+
# encountering them.
|
828 |
+
assert ccode(Comment("this is a comment")) == "/* this is a comment */" # not //
|
829 |
+
assert ccode(While(abs(x) > 1, [aug_assign(x, '-', 1)])) == (
|
830 |
+
'while (fabs(x) > 1) {\n'
|
831 |
+
' x -= 1;\n'
|
832 |
+
'}'
|
833 |
+
)
|
834 |
+
assert ccode(Scope([AddAugmentedAssignment(x, 1)])) == (
|
835 |
+
'{\n'
|
836 |
+
' x += 1;\n'
|
837 |
+
'}'
|
838 |
+
)
|
839 |
+
inp_x = Declaration(Variable(x, type=real))
|
840 |
+
assert ccode(FunctionPrototype(real, 'pwer', [inp_x])) == 'double pwer(double x)'
|
841 |
+
assert ccode(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) == (
|
842 |
+
'double pwer(double x){\n'
|
843 |
+
' x = pow(x, 2);\n'
|
844 |
+
'}'
|
845 |
+
)
|
846 |
+
|
847 |
+
# Elements of CodeBlock are formatted as statements:
|
848 |
+
block = CodeBlock(
|
849 |
+
x,
|
850 |
+
Print([x, y], "%d %d"),
|
851 |
+
FunctionCall('pwer', [x]),
|
852 |
+
Return(x),
|
853 |
+
)
|
854 |
+
assert ccode(block) == '\n'.join([
|
855 |
+
'x;',
|
856 |
+
'printf("%d %d", x, y);',
|
857 |
+
'pwer(x);',
|
858 |
+
'return x;',
|
859 |
+
])
|
860 |
+
|
861 |
+
def test_ccode_UnevaluatedExpr():
|
862 |
+
assert ccode(UnevaluatedExpr(y * x) + z) == "z + x*y"
|
863 |
+
assert ccode(UnevaluatedExpr(y + x) + z) == "z + (x + y)" # gh-21955
|
864 |
+
w = symbols('w')
|
865 |
+
assert ccode(UnevaluatedExpr(y + x) + UnevaluatedExpr(z + w)) == "(w + z) + (x + y)"
|
866 |
+
|
867 |
+
p, q, r = symbols("p q r", real=True)
|
868 |
+
q_r = UnevaluatedExpr(q + r)
|
869 |
+
expr = abs(exp(p+q_r))
|
870 |
+
assert ccode(expr) == "exp(p + (q + r))"
|
871 |
+
|
872 |
+
|
873 |
+
def test_ccode_array_like_containers():
|
874 |
+
assert ccode([2,3,4]) == "{2, 3, 4}"
|
875 |
+
assert ccode((2,3,4)) == "{2, 3, 4}"
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_codeprinter.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.printing.codeprinter import CodePrinter
|
2 |
+
from sympy.core import symbols
|
3 |
+
from sympy.core.symbol import Dummy
|
4 |
+
from sympy.testing.pytest import raises
|
5 |
+
|
6 |
+
|
7 |
+
def setup_test_printer(**kwargs):
|
8 |
+
p = CodePrinter(settings=kwargs)
|
9 |
+
p._not_supported = set()
|
10 |
+
p._number_symbols = set()
|
11 |
+
return p
|
12 |
+
|
13 |
+
|
14 |
+
def test_print_Dummy():
|
15 |
+
d = Dummy('d')
|
16 |
+
p = setup_test_printer()
|
17 |
+
assert p._print_Dummy(d) == "d_%i" % d.dummy_index
|
18 |
+
|
19 |
+
def test_print_Symbol():
|
20 |
+
|
21 |
+
x, y = symbols('x, if')
|
22 |
+
|
23 |
+
p = setup_test_printer()
|
24 |
+
assert p._print(x) == 'x'
|
25 |
+
assert p._print(y) == 'if'
|
26 |
+
|
27 |
+
p.reserved_words.update(['if'])
|
28 |
+
assert p._print(y) == 'if_'
|
29 |
+
|
30 |
+
p = setup_test_printer(error_on_reserved=True)
|
31 |
+
p.reserved_words.update(['if'])
|
32 |
+
with raises(ValueError):
|
33 |
+
p._print(y)
|
34 |
+
|
35 |
+
p = setup_test_printer(reserved_word_suffix='_He_Man')
|
36 |
+
p.reserved_words.update(['if'])
|
37 |
+
assert p._print(y) == 'if_He_Man'
|
38 |
+
|
39 |
+
def test_issue_15791():
|
40 |
+
class CrashingCodePrinter(CodePrinter):
|
41 |
+
def emptyPrinter(self, obj):
|
42 |
+
raise NotImplementedError
|
43 |
+
|
44 |
+
from sympy.matrices import (
|
45 |
+
MutableSparseMatrix,
|
46 |
+
ImmutableSparseMatrix,
|
47 |
+
)
|
48 |
+
|
49 |
+
c = CrashingCodePrinter()
|
50 |
+
|
51 |
+
# these should not silently succeed
|
52 |
+
with raises(NotImplementedError):
|
53 |
+
c.doprint(ImmutableSparseMatrix(2, 2, {}))
|
54 |
+
with raises(NotImplementedError):
|
55 |
+
c.doprint(MutableSparseMatrix(2, 2, {}))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_conventions.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from sympy.core.function import (Derivative, Function)
|
4 |
+
from sympy.core.numbers import oo
|
5 |
+
from sympy.core.symbol import symbols
|
6 |
+
from sympy.functions.elementary.exponential import exp
|
7 |
+
from sympy.functions.elementary.trigonometric import cos
|
8 |
+
from sympy.integrals.integrals import Integral
|
9 |
+
from sympy.functions.special.bessel import besselj
|
10 |
+
from sympy.functions.special.polynomials import legendre
|
11 |
+
from sympy.functions.combinatorial.numbers import bell
|
12 |
+
from sympy.printing.conventions import split_super_sub, requires_partial
|
13 |
+
from sympy.testing.pytest import XFAIL
|
14 |
+
|
15 |
+
def test_super_sub():
|
16 |
+
assert split_super_sub("beta_13_2") == ("beta", [], ["13", "2"])
|
17 |
+
assert split_super_sub("beta_132_20") == ("beta", [], ["132", "20"])
|
18 |
+
assert split_super_sub("beta_13") == ("beta", [], ["13"])
|
19 |
+
assert split_super_sub("x_a_b") == ("x", [], ["a", "b"])
|
20 |
+
assert split_super_sub("x_1_2_3") == ("x", [], ["1", "2", "3"])
|
21 |
+
assert split_super_sub("x_a_b1") == ("x", [], ["a", "b1"])
|
22 |
+
assert split_super_sub("x_a_1") == ("x", [], ["a", "1"])
|
23 |
+
assert split_super_sub("x_1_a") == ("x", [], ["1", "a"])
|
24 |
+
assert split_super_sub("x_1^aa") == ("x", ["aa"], ["1"])
|
25 |
+
assert split_super_sub("x_1__aa") == ("x", ["aa"], ["1"])
|
26 |
+
assert split_super_sub("x_11^a") == ("x", ["a"], ["11"])
|
27 |
+
assert split_super_sub("x_11__a") == ("x", ["a"], ["11"])
|
28 |
+
assert split_super_sub("x_a_b_c_d") == ("x", [], ["a", "b", "c", "d"])
|
29 |
+
assert split_super_sub("x_a_b^c^d") == ("x", ["c", "d"], ["a", "b"])
|
30 |
+
assert split_super_sub("x_a_b__c__d") == ("x", ["c", "d"], ["a", "b"])
|
31 |
+
assert split_super_sub("x_a^b_c^d") == ("x", ["b", "d"], ["a", "c"])
|
32 |
+
assert split_super_sub("x_a__b_c__d") == ("x", ["b", "d"], ["a", "c"])
|
33 |
+
assert split_super_sub("x^a^b_c_d") == ("x", ["a", "b"], ["c", "d"])
|
34 |
+
assert split_super_sub("x__a__b_c_d") == ("x", ["a", "b"], ["c", "d"])
|
35 |
+
assert split_super_sub("x^a^b^c^d") == ("x", ["a", "b", "c", "d"], [])
|
36 |
+
assert split_super_sub("x__a__b__c__d") == ("x", ["a", "b", "c", "d"], [])
|
37 |
+
assert split_super_sub("alpha_11") == ("alpha", [], ["11"])
|
38 |
+
assert split_super_sub("alpha_11_11") == ("alpha", [], ["11", "11"])
|
39 |
+
assert split_super_sub("w1") == ("w", [], ["1"])
|
40 |
+
assert split_super_sub("w𝟙") == ("w", [], ["𝟙"])
|
41 |
+
assert split_super_sub("w11") == ("w", [], ["11"])
|
42 |
+
assert split_super_sub("w𝟙𝟙") == ("w", [], ["𝟙𝟙"])
|
43 |
+
assert split_super_sub("w𝟙2𝟙") == ("w", [], ["𝟙2𝟙"])
|
44 |
+
assert split_super_sub("w1^a") == ("w", ["a"], ["1"])
|
45 |
+
assert split_super_sub("ω1") == ("ω", [], ["1"])
|
46 |
+
assert split_super_sub("ω11") == ("ω", [], ["11"])
|
47 |
+
assert split_super_sub("ω1^a") == ("ω", ["a"], ["1"])
|
48 |
+
assert split_super_sub("ω𝟙^α") == ("ω", ["α"], ["𝟙"])
|
49 |
+
assert split_super_sub("ω𝟙2^3α") == ("ω", ["3α"], ["𝟙2"])
|
50 |
+
assert split_super_sub("") == ("", [], [])
|
51 |
+
|
52 |
+
|
53 |
+
def test_requires_partial():
|
54 |
+
x, y, z, t, nu = symbols('x y z t nu')
|
55 |
+
n = symbols('n', integer=True)
|
56 |
+
|
57 |
+
f = x * y
|
58 |
+
assert requires_partial(Derivative(f, x)) is True
|
59 |
+
assert requires_partial(Derivative(f, y)) is True
|
60 |
+
|
61 |
+
## integrating out one of the variables
|
62 |
+
assert requires_partial(Derivative(Integral(exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False
|
63 |
+
|
64 |
+
## bessel function with smooth parameter
|
65 |
+
f = besselj(nu, x)
|
66 |
+
assert requires_partial(Derivative(f, x)) is True
|
67 |
+
assert requires_partial(Derivative(f, nu)) is True
|
68 |
+
|
69 |
+
## bessel function with integer parameter
|
70 |
+
f = besselj(n, x)
|
71 |
+
assert requires_partial(Derivative(f, x)) is False
|
72 |
+
# this is not really valid (differentiating with respect to an integer)
|
73 |
+
# but there's no reason to use the partial derivative symbol there. make
|
74 |
+
# sure we don't throw an exception here, though
|
75 |
+
assert requires_partial(Derivative(f, n)) is False
|
76 |
+
|
77 |
+
## bell polynomial
|
78 |
+
f = bell(n, x)
|
79 |
+
assert requires_partial(Derivative(f, x)) is False
|
80 |
+
# again, invalid
|
81 |
+
assert requires_partial(Derivative(f, n)) is False
|
82 |
+
|
83 |
+
## legendre polynomial
|
84 |
+
f = legendre(0, x)
|
85 |
+
assert requires_partial(Derivative(f, x)) is False
|
86 |
+
|
87 |
+
f = legendre(n, x)
|
88 |
+
assert requires_partial(Derivative(f, x)) is False
|
89 |
+
# again, invalid
|
90 |
+
assert requires_partial(Derivative(f, n)) is False
|
91 |
+
|
92 |
+
f = x ** n
|
93 |
+
assert requires_partial(Derivative(f, x)) is False
|
94 |
+
|
95 |
+
assert requires_partial(Derivative(Integral((x*y) ** n * exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False
|
96 |
+
|
97 |
+
# parametric equation
|
98 |
+
f = (exp(t), cos(t))
|
99 |
+
g = sum(f)
|
100 |
+
assert requires_partial(Derivative(g, t)) is False
|
101 |
+
|
102 |
+
f = symbols('f', cls=Function)
|
103 |
+
assert requires_partial(Derivative(f(x), x)) is False
|
104 |
+
assert requires_partial(Derivative(f(x), y)) is False
|
105 |
+
assert requires_partial(Derivative(f(x, y), x)) is True
|
106 |
+
assert requires_partial(Derivative(f(x, y), y)) is True
|
107 |
+
assert requires_partial(Derivative(f(x, y), z)) is True
|
108 |
+
assert requires_partial(Derivative(f(x, y), x, y)) is True
|
109 |
+
|
110 |
+
@XFAIL
|
111 |
+
def test_requires_partial_unspecified_variables():
|
112 |
+
x, y = symbols('x y')
|
113 |
+
# function of unspecified variables
|
114 |
+
f = symbols('f', cls=Function)
|
115 |
+
assert requires_partial(Derivative(f, x)) is False
|
116 |
+
assert requires_partial(Derivative(f, x, y)) is True
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_cupy.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.functions.elementary.exponential import log
|
3 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
4 |
+
from sympy.utilities.lambdify import lambdify
|
5 |
+
from sympy.abc import x, i, a, b
|
6 |
+
from sympy.codegen.numpy_nodes import logaddexp
|
7 |
+
from sympy.printing.numpy import CuPyPrinter, _cupy_known_constants, _cupy_known_functions
|
8 |
+
|
9 |
+
from sympy.testing.pytest import skip
|
10 |
+
from sympy.external import import_module
|
11 |
+
|
12 |
+
cp = import_module('cupy')
|
13 |
+
|
14 |
+
def test_cupy_print():
|
15 |
+
prntr = CuPyPrinter()
|
16 |
+
assert prntr.doprint(logaddexp(a, b)) == 'cupy.logaddexp(a, b)'
|
17 |
+
assert prntr.doprint(sqrt(x)) == 'cupy.sqrt(x)'
|
18 |
+
assert prntr.doprint(log(x)) == 'cupy.log(x)'
|
19 |
+
assert prntr.doprint("acos(x)") == 'cupy.arccos(x)'
|
20 |
+
assert prntr.doprint("exp(x)") == 'cupy.exp(x)'
|
21 |
+
assert prntr.doprint("Abs(x)") == 'abs(x)'
|
22 |
+
|
23 |
+
def test_not_cupy_print():
|
24 |
+
prntr = CuPyPrinter()
|
25 |
+
assert "Not supported" in prntr.doprint("abcd(x)")
|
26 |
+
|
27 |
+
def test_cupy_sum():
|
28 |
+
if not cp:
|
29 |
+
skip("CuPy not installed")
|
30 |
+
|
31 |
+
s = Sum(x ** i, (i, a, b))
|
32 |
+
f = lambdify((a, b, x), s, 'cupy')
|
33 |
+
|
34 |
+
a_, b_ = 0, 10
|
35 |
+
x_ = cp.linspace(-1, +1, 10)
|
36 |
+
assert cp.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1)))
|
37 |
+
|
38 |
+
s = Sum(i * x, (i, a, b))
|
39 |
+
f = lambdify((a, b, x), s, 'numpy')
|
40 |
+
|
41 |
+
a_, b_ = 0, 10
|
42 |
+
x_ = cp.linspace(-1, +1, 10)
|
43 |
+
assert cp.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1)))
|
44 |
+
|
45 |
+
def test_cupy_known_funcs_consts():
|
46 |
+
assert _cupy_known_constants['NaN'] == 'cupy.nan'
|
47 |
+
assert _cupy_known_constants['EulerGamma'] == 'cupy.euler_gamma'
|
48 |
+
|
49 |
+
assert _cupy_known_functions['acos'] == 'cupy.arccos'
|
50 |
+
assert _cupy_known_functions['log'] == 'cupy.log'
|
51 |
+
|
52 |
+
def test_cupy_print_methods():
|
53 |
+
prntr = CuPyPrinter()
|
54 |
+
assert hasattr(prntr, '_print_acos')
|
55 |
+
assert hasattr(prntr, '_print_log')
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_cxx.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.symbol import symbols
|
2 |
+
from sympy.functions import beta, Ei, zeta, Max, Min, sqrt, riemann_xi, frac
|
3 |
+
from sympy.printing.cxx import CXX98CodePrinter, CXX11CodePrinter, CXX17CodePrinter, cxxcode
|
4 |
+
from sympy.codegen.cfunctions import log1p
|
5 |
+
|
6 |
+
|
7 |
+
x, y, u, v = symbols('x y u v')
|
8 |
+
|
9 |
+
|
10 |
+
def test_CXX98CodePrinter():
|
11 |
+
assert CXX98CodePrinter().doprint(Max(x, 3)) in ('std::max(x, 3)', 'std::max(3, x)')
|
12 |
+
assert CXX98CodePrinter().doprint(Min(x, 3, sqrt(x))) == 'std::min(3, std::min(x, std::sqrt(x)))'
|
13 |
+
cxx98printer = CXX98CodePrinter()
|
14 |
+
assert cxx98printer.language == 'C++'
|
15 |
+
assert cxx98printer.standard == 'C++98'
|
16 |
+
assert 'template' in cxx98printer.reserved_words
|
17 |
+
assert 'alignas' not in cxx98printer.reserved_words
|
18 |
+
|
19 |
+
|
20 |
+
def test_CXX11CodePrinter():
|
21 |
+
assert CXX11CodePrinter().doprint(log1p(x)) == 'std::log1p(x)'
|
22 |
+
|
23 |
+
cxx11printer = CXX11CodePrinter()
|
24 |
+
assert cxx11printer.language == 'C++'
|
25 |
+
assert cxx11printer.standard == 'C++11'
|
26 |
+
assert 'operator' in cxx11printer.reserved_words
|
27 |
+
assert 'noexcept' in cxx11printer.reserved_words
|
28 |
+
assert 'concept' not in cxx11printer.reserved_words
|
29 |
+
|
30 |
+
|
31 |
+
def test_subclass_print_method():
|
32 |
+
class MyPrinter(CXX11CodePrinter):
|
33 |
+
def _print_log1p(self, expr):
|
34 |
+
return 'my_library::log1p(%s)' % ', '.join(map(self._print, expr.args))
|
35 |
+
|
36 |
+
assert MyPrinter().doprint(log1p(x)) == 'my_library::log1p(x)'
|
37 |
+
|
38 |
+
|
39 |
+
def test_subclass_print_method__ns():
|
40 |
+
class MyPrinter(CXX11CodePrinter):
|
41 |
+
_ns = 'my_library::'
|
42 |
+
|
43 |
+
p = CXX11CodePrinter()
|
44 |
+
myp = MyPrinter()
|
45 |
+
|
46 |
+
assert p.doprint(log1p(x)) == 'std::log1p(x)'
|
47 |
+
assert myp.doprint(log1p(x)) == 'my_library::log1p(x)'
|
48 |
+
|
49 |
+
|
50 |
+
def test_CXX17CodePrinter():
|
51 |
+
assert CXX17CodePrinter().doprint(beta(x, y)) == 'std::beta(x, y)'
|
52 |
+
assert CXX17CodePrinter().doprint(Ei(x)) == 'std::expint(x)'
|
53 |
+
assert CXX17CodePrinter().doprint(zeta(x)) == 'std::riemann_zeta(x)'
|
54 |
+
|
55 |
+
# Automatic rewrite
|
56 |
+
assert CXX17CodePrinter().doprint(frac(x)) == 'x - std::floor(x)'
|
57 |
+
assert CXX17CodePrinter().doprint(riemann_xi(x)) == '(1.0/2.0)*std::pow(M_PI, -1.0/2.0*x)*x*(x - 1)*std::tgamma((1.0/2.0)*x)*std::riemann_zeta(x)'
|
58 |
+
|
59 |
+
|
60 |
+
def test_cxxcode():
|
61 |
+
assert sorted(cxxcode(sqrt(x)*.5).split('*')) == sorted(['0.5', 'std::sqrt(x)'])
|
62 |
+
|
63 |
+
def test_cxxcode_nested_minmax():
|
64 |
+
assert cxxcode(Max(Min(x, y), Min(u, v))) \
|
65 |
+
== 'std::max(std::min(u, v), std::min(x, y))'
|
66 |
+
assert cxxcode(Min(Max(x, y), Max(u, v))) \
|
67 |
+
== 'std::min(std::max(u, v), std::max(x, y))'
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_dot.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.printing.dot import (purestr, styleof, attrprint, dotnode,
|
2 |
+
dotedges, dotprint)
|
3 |
+
from sympy.core.basic import Basic
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
from sympy.core.numbers import (Float, Integer)
|
6 |
+
from sympy.core.singleton import S
|
7 |
+
from sympy.core.symbol import (Symbol, symbols)
|
8 |
+
from sympy.printing.repr import srepr
|
9 |
+
from sympy.abc import x
|
10 |
+
|
11 |
+
|
12 |
+
def test_purestr():
|
13 |
+
assert purestr(Symbol('x')) == "Symbol('x')"
|
14 |
+
assert purestr(Basic(S(1), S(2))) == "Basic(Integer(1), Integer(2))"
|
15 |
+
assert purestr(Float(2)) == "Float('2.0', precision=53)"
|
16 |
+
|
17 |
+
assert purestr(Symbol('x'), with_args=True) == ("Symbol('x')", ())
|
18 |
+
assert purestr(Basic(S(1), S(2)), with_args=True) == \
|
19 |
+
('Basic(Integer(1), Integer(2))', ('Integer(1)', 'Integer(2)'))
|
20 |
+
assert purestr(Float(2), with_args=True) == \
|
21 |
+
("Float('2.0', precision=53)", ())
|
22 |
+
|
23 |
+
|
24 |
+
def test_styleof():
|
25 |
+
styles = [(Basic, {'color': 'blue', 'shape': 'ellipse'}),
|
26 |
+
(Expr, {'color': 'black'})]
|
27 |
+
assert styleof(Basic(S(1)), styles) == {'color': 'blue', 'shape': 'ellipse'}
|
28 |
+
|
29 |
+
assert styleof(x + 1, styles) == {'color': 'black', 'shape': 'ellipse'}
|
30 |
+
|
31 |
+
|
32 |
+
def test_attrprint():
|
33 |
+
assert attrprint({'color': 'blue', 'shape': 'ellipse'}) == \
|
34 |
+
'"color"="blue", "shape"="ellipse"'
|
35 |
+
|
36 |
+
def test_dotnode():
|
37 |
+
|
38 |
+
assert dotnode(x, repeat=False) == \
|
39 |
+
'"Symbol(\'x\')" ["color"="black", "label"="x", "shape"="ellipse"];'
|
40 |
+
assert dotnode(x+2, repeat=False) == \
|
41 |
+
'"Add(Integer(2), Symbol(\'x\'))" ' \
|
42 |
+
'["color"="black", "label"="Add", "shape"="ellipse"];', \
|
43 |
+
dotnode(x+2,repeat=0)
|
44 |
+
|
45 |
+
assert dotnode(x + x**2, repeat=False) == \
|
46 |
+
'"Add(Symbol(\'x\'), Pow(Symbol(\'x\'), Integer(2)))" ' \
|
47 |
+
'["color"="black", "label"="Add", "shape"="ellipse"];'
|
48 |
+
assert dotnode(x + x**2, repeat=True) == \
|
49 |
+
'"Add(Symbol(\'x\'), Pow(Symbol(\'x\'), Integer(2)))_()" ' \
|
50 |
+
'["color"="black", "label"="Add", "shape"="ellipse"];'
|
51 |
+
|
52 |
+
def test_dotedges():
|
53 |
+
assert sorted(dotedges(x+2, repeat=False)) == [
|
54 |
+
'"Add(Integer(2), Symbol(\'x\'))" -> "Integer(2)";',
|
55 |
+
'"Add(Integer(2), Symbol(\'x\'))" -> "Symbol(\'x\')";'
|
56 |
+
]
|
57 |
+
assert sorted(dotedges(x + 2, repeat=True)) == [
|
58 |
+
'"Add(Integer(2), Symbol(\'x\'))_()" -> "Integer(2)_(0,)";',
|
59 |
+
'"Add(Integer(2), Symbol(\'x\'))_()" -> "Symbol(\'x\')_(1,)";'
|
60 |
+
]
|
61 |
+
|
62 |
+
def test_dotprint():
|
63 |
+
text = dotprint(x+2, repeat=False)
|
64 |
+
assert all(e in text for e in dotedges(x+2, repeat=False))
|
65 |
+
assert all(
|
66 |
+
n in text for n in [dotnode(expr, repeat=False)
|
67 |
+
for expr in (x, Integer(2), x+2)])
|
68 |
+
assert 'digraph' in text
|
69 |
+
|
70 |
+
text = dotprint(x+x**2, repeat=False)
|
71 |
+
assert all(e in text for e in dotedges(x+x**2, repeat=False))
|
72 |
+
assert all(
|
73 |
+
n in text for n in [dotnode(expr, repeat=False)
|
74 |
+
for expr in (x, Integer(2), x**2)])
|
75 |
+
assert 'digraph' in text
|
76 |
+
|
77 |
+
text = dotprint(x+x**2, repeat=True)
|
78 |
+
assert all(e in text for e in dotedges(x+x**2, repeat=True))
|
79 |
+
assert all(
|
80 |
+
n in text for n in [dotnode(expr, pos=())
|
81 |
+
for expr in [x + x**2]])
|
82 |
+
|
83 |
+
text = dotprint(x**x, repeat=True)
|
84 |
+
assert all(e in text for e in dotedges(x**x, repeat=True))
|
85 |
+
assert all(
|
86 |
+
n in text for n in [dotnode(x, pos=(0,)), dotnode(x, pos=(1,))])
|
87 |
+
assert 'digraph' in text
|
88 |
+
|
89 |
+
def test_dotprint_depth():
|
90 |
+
text = dotprint(3*x+2, depth=1)
|
91 |
+
assert dotnode(3*x+2) in text
|
92 |
+
assert dotnode(x) not in text
|
93 |
+
text = dotprint(3*x+2)
|
94 |
+
assert "depth" not in text
|
95 |
+
|
96 |
+
def test_Matrix_and_non_basics():
|
97 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
98 |
+
n = Symbol('n')
|
99 |
+
assert dotprint(MatrixSymbol('X', n, n)) == \
|
100 |
+
"""digraph{
|
101 |
+
|
102 |
+
# Graph style
|
103 |
+
"ordering"="out"
|
104 |
+
"rankdir"="TD"
|
105 |
+
|
106 |
+
#########
|
107 |
+
# Nodes #
|
108 |
+
#########
|
109 |
+
|
110 |
+
"MatrixSymbol(Str('X'), Symbol('n'), Symbol('n'))_()" ["color"="black", "label"="MatrixSymbol", "shape"="ellipse"];
|
111 |
+
"Str('X')_(0,)" ["color"="blue", "label"="X", "shape"="ellipse"];
|
112 |
+
"Symbol('n')_(1,)" ["color"="black", "label"="n", "shape"="ellipse"];
|
113 |
+
"Symbol('n')_(2,)" ["color"="black", "label"="n", "shape"="ellipse"];
|
114 |
+
|
115 |
+
#########
|
116 |
+
# Edges #
|
117 |
+
#########
|
118 |
+
|
119 |
+
"MatrixSymbol(Str('X'), Symbol('n'), Symbol('n'))_()" -> "Str('X')_(0,)";
|
120 |
+
"MatrixSymbol(Str('X'), Symbol('n'), Symbol('n'))_()" -> "Symbol('n')_(1,)";
|
121 |
+
"MatrixSymbol(Str('X'), Symbol('n'), Symbol('n'))_()" -> "Symbol('n')_(2,)";
|
122 |
+
}"""
|
123 |
+
|
124 |
+
|
125 |
+
def test_labelfunc():
|
126 |
+
text = dotprint(x + 2, labelfunc=srepr)
|
127 |
+
assert "Symbol('x')" in text
|
128 |
+
assert "Integer(2)" in text
|
129 |
+
|
130 |
+
|
131 |
+
def test_commutative():
|
132 |
+
x, y = symbols('x y', commutative=False)
|
133 |
+
assert dotprint(x + y) == dotprint(y + x)
|
134 |
+
assert dotprint(x*y) != dotprint(y*x)
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_fortran.py
ADDED
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.add import Add
|
2 |
+
from sympy.core.expr import Expr
|
3 |
+
from sympy.core.function import (Function, Lambda, diff)
|
4 |
+
from sympy.core.mod import Mod
|
5 |
+
from sympy.core import (Catalan, EulerGamma, GoldenRatio)
|
6 |
+
from sympy.core.numbers import (E, Float, I, Integer, Rational, pi)
|
7 |
+
from sympy.core.relational import Eq
|
8 |
+
from sympy.core.singleton import S
|
9 |
+
from sympy.core.symbol import (Dummy, symbols)
|
10 |
+
from sympy.functions.combinatorial.factorials import factorial
|
11 |
+
from sympy.functions.elementary.complexes import (conjugate, sign)
|
12 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
13 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
14 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
15 |
+
from sympy.functions.elementary.trigonometric import (atan2, cos, sin)
|
16 |
+
from sympy.functions.special.gamma_functions import gamma
|
17 |
+
from sympy.integrals.integrals import Integral
|
18 |
+
from sympy.sets.fancysets import Range
|
19 |
+
|
20 |
+
from sympy.codegen import For, Assignment, aug_assign
|
21 |
+
from sympy.codegen.ast import Declaration, Variable, float32, float64, \
|
22 |
+
value_const, real, bool_, While, FunctionPrototype, FunctionDefinition, \
|
23 |
+
integer, Return, Element
|
24 |
+
from sympy.core.expr import UnevaluatedExpr
|
25 |
+
from sympy.core.relational import Relational
|
26 |
+
from sympy.logic.boolalg import And, Or, Not, Equivalent, Xor
|
27 |
+
from sympy.matrices import Matrix, MatrixSymbol
|
28 |
+
from sympy.printing.fortran import fcode, FCodePrinter
|
29 |
+
from sympy.tensor import IndexedBase, Idx
|
30 |
+
from sympy.tensor.array.expressions import ArraySymbol, ArrayElement
|
31 |
+
from sympy.utilities.lambdify import implemented_function
|
32 |
+
from sympy.testing.pytest import raises
|
33 |
+
|
34 |
+
|
35 |
+
def test_UnevaluatedExpr():
|
36 |
+
p, q, r = symbols("p q r", real=True)
|
37 |
+
q_r = UnevaluatedExpr(q + r)
|
38 |
+
expr = abs(exp(p+q_r))
|
39 |
+
assert fcode(expr, source_format="free") == "exp(p + (q + r))"
|
40 |
+
x, y, z = symbols("x y z")
|
41 |
+
y_z = UnevaluatedExpr(y + z)
|
42 |
+
expr2 = abs(exp(x+y_z))
|
43 |
+
assert fcode(expr2, human=False)[2].lstrip() == "exp(re(x) + re(y + z))"
|
44 |
+
assert fcode(expr2, user_functions={"re": "realpart"}).lstrip() == "exp(realpart(x) + realpart(y + z))"
|
45 |
+
|
46 |
+
|
47 |
+
def test_printmethod():
|
48 |
+
x = symbols('x')
|
49 |
+
|
50 |
+
class nint(Function):
|
51 |
+
def _fcode(self, printer):
|
52 |
+
return "nint(%s)" % printer._print(self.args[0])
|
53 |
+
assert fcode(nint(x)) == " nint(x)"
|
54 |
+
|
55 |
+
|
56 |
+
def test_fcode_sign(): #issue 12267
|
57 |
+
x=symbols('x')
|
58 |
+
y=symbols('y', integer=True)
|
59 |
+
z=symbols('z', complex=True)
|
60 |
+
assert fcode(sign(x), standard=95, source_format='free') == "merge(0d0, dsign(1d0, x), x == 0d0)"
|
61 |
+
assert fcode(sign(y), standard=95, source_format='free') == "merge(0, isign(1, y), y == 0)"
|
62 |
+
assert fcode(sign(z), standard=95, source_format='free') == "merge(cmplx(0d0, 0d0), z/abs(z), abs(z) == 0d0)"
|
63 |
+
raises(NotImplementedError, lambda: fcode(sign(x)))
|
64 |
+
|
65 |
+
|
66 |
+
def test_fcode_Pow():
|
67 |
+
x, y = symbols('x,y')
|
68 |
+
n = symbols('n', integer=True)
|
69 |
+
|
70 |
+
assert fcode(x**3) == " x**3"
|
71 |
+
assert fcode(x**(y**3)) == " x**(y**3)"
|
72 |
+
assert fcode(1/(sin(x)*3.5)**(x - y**x)/(x**2 + y)) == \
|
73 |
+
" (3.5d0*sin(x))**(-x + y**x)/(x**2 + y)"
|
74 |
+
assert fcode(sqrt(x)) == ' sqrt(x)'
|
75 |
+
assert fcode(sqrt(n)) == ' sqrt(dble(n))'
|
76 |
+
assert fcode(x**0.5) == ' sqrt(x)'
|
77 |
+
assert fcode(sqrt(x)) == ' sqrt(x)'
|
78 |
+
assert fcode(sqrt(10)) == ' sqrt(10.0d0)'
|
79 |
+
assert fcode(x**-1.0) == ' 1d0/x'
|
80 |
+
assert fcode(x**-2.0, 'y', source_format='free') == 'y = x**(-2.0d0)' # 2823
|
81 |
+
assert fcode(x**Rational(3, 7)) == ' x**(3.0d0/7.0d0)'
|
82 |
+
|
83 |
+
|
84 |
+
def test_fcode_Rational():
|
85 |
+
x = symbols('x')
|
86 |
+
assert fcode(Rational(3, 7)) == " 3.0d0/7.0d0"
|
87 |
+
assert fcode(Rational(18, 9)) == " 2"
|
88 |
+
assert fcode(Rational(3, -7)) == " -3.0d0/7.0d0"
|
89 |
+
assert fcode(Rational(-3, -7)) == " 3.0d0/7.0d0"
|
90 |
+
assert fcode(x + Rational(3, 7)) == " x + 3.0d0/7.0d0"
|
91 |
+
assert fcode(Rational(3, 7)*x) == " (3.0d0/7.0d0)*x"
|
92 |
+
|
93 |
+
|
94 |
+
def test_fcode_Integer():
|
95 |
+
assert fcode(Integer(67)) == " 67"
|
96 |
+
assert fcode(Integer(-1)) == " -1"
|
97 |
+
|
98 |
+
|
99 |
+
def test_fcode_Float():
|
100 |
+
assert fcode(Float(42.0)) == " 42.0000000000000d0"
|
101 |
+
assert fcode(Float(-1e20)) == " -1.00000000000000d+20"
|
102 |
+
|
103 |
+
|
104 |
+
def test_fcode_functions():
|
105 |
+
x, y = symbols('x,y')
|
106 |
+
assert fcode(sin(x) ** cos(y)) == " sin(x)**cos(y)"
|
107 |
+
raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=66))
|
108 |
+
raises(NotImplementedError, lambda: fcode(x % y, standard=66))
|
109 |
+
raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=77))
|
110 |
+
raises(NotImplementedError, lambda: fcode(x % y, standard=77))
|
111 |
+
for standard in [90, 95, 2003, 2008]:
|
112 |
+
assert fcode(Mod(x, y), standard=standard) == " modulo(x, y)"
|
113 |
+
assert fcode(x % y, standard=standard) == " modulo(x, y)"
|
114 |
+
|
115 |
+
|
116 |
+
def test_case():
|
117 |
+
ob = FCodePrinter()
|
118 |
+
x,x_,x__,y,X,X_,Y = symbols('x,x_,x__,y,X,X_,Y')
|
119 |
+
assert fcode(exp(x_) + sin(x*y) + cos(X*Y)) == \
|
120 |
+
' exp(x_) + sin(x*y) + cos(X__*Y_)'
|
121 |
+
assert fcode(exp(x__) + 2*x*Y*X_**Rational(7, 2)) == \
|
122 |
+
' 2*X_**(7.0d0/2.0d0)*Y*x + exp(x__)'
|
123 |
+
assert fcode(exp(x_) + sin(x*y) + cos(X*Y), name_mangling=False) == \
|
124 |
+
' exp(x_) + sin(x*y) + cos(X*Y)'
|
125 |
+
assert fcode(x - cos(X), name_mangling=False) == ' x - cos(X)'
|
126 |
+
assert ob.doprint(X*sin(x) + x_, assign_to='me') == ' me = X*sin(x_) + x__'
|
127 |
+
assert ob.doprint(X*sin(x), assign_to='mu') == ' mu = X*sin(x_)'
|
128 |
+
assert ob.doprint(x_, assign_to='ad') == ' ad = x__'
|
129 |
+
n, m = symbols('n,m', integer=True)
|
130 |
+
A = IndexedBase('A')
|
131 |
+
x = IndexedBase('x')
|
132 |
+
y = IndexedBase('y')
|
133 |
+
i = Idx('i', m)
|
134 |
+
I = Idx('I', n)
|
135 |
+
assert fcode(A[i, I]*x[I], assign_to=y[i], source_format='free') == (
|
136 |
+
"do i = 1, m\n"
|
137 |
+
" y(i) = 0\n"
|
138 |
+
"end do\n"
|
139 |
+
"do i = 1, m\n"
|
140 |
+
" do I_ = 1, n\n"
|
141 |
+
" y(i) = A(i, I_)*x(I_) + y(i)\n"
|
142 |
+
" end do\n"
|
143 |
+
"end do" )
|
144 |
+
|
145 |
+
|
146 |
+
#issue 6814
|
147 |
+
def test_fcode_functions_with_integers():
|
148 |
+
x= symbols('x')
|
149 |
+
log10_17 = log(10).evalf(17)
|
150 |
+
loglog10_17 = '0.8340324452479558d0'
|
151 |
+
assert fcode(x * log(10)) == " x*%sd0" % log10_17
|
152 |
+
assert fcode(x * log(10)) == " x*%sd0" % log10_17
|
153 |
+
assert fcode(x * log(S(10))) == " x*%sd0" % log10_17
|
154 |
+
assert fcode(log(S(10))) == " %sd0" % log10_17
|
155 |
+
assert fcode(exp(10)) == " %sd0" % exp(10).evalf(17)
|
156 |
+
assert fcode(x * log(log(10))) == " x*%s" % loglog10_17
|
157 |
+
assert fcode(x * log(log(S(10)))) == " x*%s" % loglog10_17
|
158 |
+
|
159 |
+
|
160 |
+
def test_fcode_NumberSymbol():
|
161 |
+
prec = 17
|
162 |
+
p = FCodePrinter()
|
163 |
+
assert fcode(Catalan) == ' parameter (Catalan = %sd0)\n Catalan' % Catalan.evalf(prec)
|
164 |
+
assert fcode(EulerGamma) == ' parameter (EulerGamma = %sd0)\n EulerGamma' % EulerGamma.evalf(prec)
|
165 |
+
assert fcode(E) == ' parameter (E = %sd0)\n E' % E.evalf(prec)
|
166 |
+
assert fcode(GoldenRatio) == ' parameter (GoldenRatio = %sd0)\n GoldenRatio' % GoldenRatio.evalf(prec)
|
167 |
+
assert fcode(pi) == ' parameter (pi = %sd0)\n pi' % pi.evalf(prec)
|
168 |
+
assert fcode(
|
169 |
+
pi, precision=5) == ' parameter (pi = %sd0)\n pi' % pi.evalf(5)
|
170 |
+
assert fcode(Catalan, human=False) == ({
|
171 |
+
(Catalan, p._print(Catalan.evalf(prec)))}, set(), ' Catalan')
|
172 |
+
assert fcode(EulerGamma, human=False) == ({(EulerGamma, p._print(
|
173 |
+
EulerGamma.evalf(prec)))}, set(), ' EulerGamma')
|
174 |
+
assert fcode(E, human=False) == (
|
175 |
+
{(E, p._print(E.evalf(prec)))}, set(), ' E')
|
176 |
+
assert fcode(GoldenRatio, human=False) == ({(GoldenRatio, p._print(
|
177 |
+
GoldenRatio.evalf(prec)))}, set(), ' GoldenRatio')
|
178 |
+
assert fcode(pi, human=False) == (
|
179 |
+
{(pi, p._print(pi.evalf(prec)))}, set(), ' pi')
|
180 |
+
assert fcode(pi, precision=5, human=False) == (
|
181 |
+
{(pi, p._print(pi.evalf(5)))}, set(), ' pi')
|
182 |
+
|
183 |
+
|
184 |
+
def test_fcode_complex():
|
185 |
+
assert fcode(I) == " cmplx(0,1)"
|
186 |
+
x = symbols('x')
|
187 |
+
assert fcode(4*I) == " cmplx(0,4)"
|
188 |
+
assert fcode(3 + 4*I) == " cmplx(3,4)"
|
189 |
+
assert fcode(3 + 4*I + x) == " cmplx(3,4) + x"
|
190 |
+
assert fcode(I*x) == " cmplx(0,1)*x"
|
191 |
+
assert fcode(3 + 4*I - x) == " cmplx(3,4) - x"
|
192 |
+
x = symbols('x', imaginary=True)
|
193 |
+
assert fcode(5*x) == " 5*x"
|
194 |
+
assert fcode(I*x) == " cmplx(0,1)*x"
|
195 |
+
assert fcode(3 + x) == " x + 3"
|
196 |
+
|
197 |
+
|
198 |
+
def test_implicit():
|
199 |
+
x, y = symbols('x,y')
|
200 |
+
assert fcode(sin(x)) == " sin(x)"
|
201 |
+
assert fcode(atan2(x, y)) == " atan2(x, y)"
|
202 |
+
assert fcode(conjugate(x)) == " conjg(x)"
|
203 |
+
|
204 |
+
|
205 |
+
def test_not_fortran():
|
206 |
+
x = symbols('x')
|
207 |
+
g = Function('g')
|
208 |
+
gamma_f = fcode(gamma(x))
|
209 |
+
assert gamma_f == "C Not supported in Fortran:\nC gamma\n gamma(x)"
|
210 |
+
assert fcode(Integral(sin(x))) == "C Not supported in Fortran:\nC Integral\n Integral(sin(x), x)"
|
211 |
+
assert fcode(g(x)) == "C Not supported in Fortran:\nC g\n g(x)"
|
212 |
+
|
213 |
+
|
214 |
+
def test_user_functions():
|
215 |
+
x = symbols('x')
|
216 |
+
assert fcode(sin(x), user_functions={"sin": "zsin"}) == " zsin(x)"
|
217 |
+
x = symbols('x')
|
218 |
+
assert fcode(
|
219 |
+
gamma(x), user_functions={"gamma": "mygamma"}) == " mygamma(x)"
|
220 |
+
g = Function('g')
|
221 |
+
assert fcode(g(x), user_functions={"g": "great"}) == " great(x)"
|
222 |
+
n = symbols('n', integer=True)
|
223 |
+
assert fcode(
|
224 |
+
factorial(n), user_functions={"factorial": "fct"}) == " fct(n)"
|
225 |
+
|
226 |
+
|
227 |
+
def test_inline_function():
|
228 |
+
x = symbols('x')
|
229 |
+
g = implemented_function('g', Lambda(x, 2*x))
|
230 |
+
assert fcode(g(x)) == " 2*x"
|
231 |
+
g = implemented_function('g', Lambda(x, 2*pi/x))
|
232 |
+
assert fcode(g(x)) == (
|
233 |
+
" parameter (pi = %sd0)\n"
|
234 |
+
" 2*pi/x"
|
235 |
+
) % pi.evalf(17)
|
236 |
+
A = IndexedBase('A')
|
237 |
+
i = Idx('i', symbols('n', integer=True))
|
238 |
+
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
|
239 |
+
assert fcode(g(A[i]), assign_to=A[i]) == (
|
240 |
+
" do i = 1, n\n"
|
241 |
+
" A(i) = (A(i) + 1)*(A(i) + 2)*A(i)\n"
|
242 |
+
" end do"
|
243 |
+
)
|
244 |
+
|
245 |
+
|
246 |
+
def test_assign_to():
|
247 |
+
x = symbols('x')
|
248 |
+
assert fcode(sin(x), assign_to="s") == " s = sin(x)"
|
249 |
+
|
250 |
+
|
251 |
+
def test_line_wrapping():
|
252 |
+
x, y = symbols('x,y')
|
253 |
+
assert fcode(((x + y)**10).expand(), assign_to="var") == (
|
254 |
+
" var = x**10 + 10*x**9*y + 45*x**8*y**2 + 120*x**7*y**3 + 210*x**6*\n"
|
255 |
+
" @ y**4 + 252*x**5*y**5 + 210*x**4*y**6 + 120*x**3*y**7 + 45*x**2*y\n"
|
256 |
+
" @ **8 + 10*x*y**9 + y**10"
|
257 |
+
)
|
258 |
+
e = [x**i for i in range(11)]
|
259 |
+
assert fcode(Add(*e)) == (
|
260 |
+
" x**10 + x**9 + x**8 + x**7 + x**6 + x**5 + x**4 + x**3 + x**2 + x\n"
|
261 |
+
" @ + 1"
|
262 |
+
)
|
263 |
+
|
264 |
+
|
265 |
+
def test_fcode_precedence():
|
266 |
+
x, y = symbols("x y")
|
267 |
+
assert fcode(And(x < y, y < x + 1), source_format="free") == \
|
268 |
+
"x < y .and. y < x + 1"
|
269 |
+
assert fcode(Or(x < y, y < x + 1), source_format="free") == \
|
270 |
+
"x < y .or. y < x + 1"
|
271 |
+
assert fcode(Xor(x < y, y < x + 1, evaluate=False),
|
272 |
+
source_format="free") == "x < y .neqv. y < x + 1"
|
273 |
+
assert fcode(Equivalent(x < y, y < x + 1), source_format="free") == \
|
274 |
+
"x < y .eqv. y < x + 1"
|
275 |
+
|
276 |
+
|
277 |
+
def test_fcode_Logical():
|
278 |
+
x, y, z = symbols("x y z")
|
279 |
+
# unary Not
|
280 |
+
assert fcode(Not(x), source_format="free") == ".not. x"
|
281 |
+
# binary And
|
282 |
+
assert fcode(And(x, y), source_format="free") == "x .and. y"
|
283 |
+
assert fcode(And(x, Not(y)), source_format="free") == "x .and. .not. y"
|
284 |
+
assert fcode(And(Not(x), y), source_format="free") == "y .and. .not. x"
|
285 |
+
assert fcode(And(Not(x), Not(y)), source_format="free") == \
|
286 |
+
".not. x .and. .not. y"
|
287 |
+
assert fcode(Not(And(x, y), evaluate=False), source_format="free") == \
|
288 |
+
".not. (x .and. y)"
|
289 |
+
# binary Or
|
290 |
+
assert fcode(Or(x, y), source_format="free") == "x .or. y"
|
291 |
+
assert fcode(Or(x, Not(y)), source_format="free") == "x .or. .not. y"
|
292 |
+
assert fcode(Or(Not(x), y), source_format="free") == "y .or. .not. x"
|
293 |
+
assert fcode(Or(Not(x), Not(y)), source_format="free") == \
|
294 |
+
".not. x .or. .not. y"
|
295 |
+
assert fcode(Not(Or(x, y), evaluate=False), source_format="free") == \
|
296 |
+
".not. (x .or. y)"
|
297 |
+
# mixed And/Or
|
298 |
+
assert fcode(And(Or(y, z), x), source_format="free") == "x .and. (y .or. z)"
|
299 |
+
assert fcode(And(Or(z, x), y), source_format="free") == "y .and. (x .or. z)"
|
300 |
+
assert fcode(And(Or(x, y), z), source_format="free") == "z .and. (x .or. y)"
|
301 |
+
assert fcode(Or(And(y, z), x), source_format="free") == "x .or. y .and. z"
|
302 |
+
assert fcode(Or(And(z, x), y), source_format="free") == "y .or. x .and. z"
|
303 |
+
assert fcode(Or(And(x, y), z), source_format="free") == "z .or. x .and. y"
|
304 |
+
# trinary And
|
305 |
+
assert fcode(And(x, y, z), source_format="free") == "x .and. y .and. z"
|
306 |
+
assert fcode(And(x, y, Not(z)), source_format="free") == \
|
307 |
+
"x .and. y .and. .not. z"
|
308 |
+
assert fcode(And(x, Not(y), z), source_format="free") == \
|
309 |
+
"x .and. z .and. .not. y"
|
310 |
+
assert fcode(And(Not(x), y, z), source_format="free") == \
|
311 |
+
"y .and. z .and. .not. x"
|
312 |
+
assert fcode(Not(And(x, y, z), evaluate=False), source_format="free") == \
|
313 |
+
".not. (x .and. y .and. z)"
|
314 |
+
# trinary Or
|
315 |
+
assert fcode(Or(x, y, z), source_format="free") == "x .or. y .or. z"
|
316 |
+
assert fcode(Or(x, y, Not(z)), source_format="free") == \
|
317 |
+
"x .or. y .or. .not. z"
|
318 |
+
assert fcode(Or(x, Not(y), z), source_format="free") == \
|
319 |
+
"x .or. z .or. .not. y"
|
320 |
+
assert fcode(Or(Not(x), y, z), source_format="free") == \
|
321 |
+
"y .or. z .or. .not. x"
|
322 |
+
assert fcode(Not(Or(x, y, z), evaluate=False), source_format="free") == \
|
323 |
+
".not. (x .or. y .or. z)"
|
324 |
+
|
325 |
+
|
326 |
+
def test_fcode_Xlogical():
|
327 |
+
x, y, z = symbols("x y z")
|
328 |
+
# binary Xor
|
329 |
+
assert fcode(Xor(x, y, evaluate=False), source_format="free") == \
|
330 |
+
"x .neqv. y"
|
331 |
+
assert fcode(Xor(x, Not(y), evaluate=False), source_format="free") == \
|
332 |
+
"x .neqv. .not. y"
|
333 |
+
assert fcode(Xor(Not(x), y, evaluate=False), source_format="free") == \
|
334 |
+
"y .neqv. .not. x"
|
335 |
+
assert fcode(Xor(Not(x), Not(y), evaluate=False),
|
336 |
+
source_format="free") == ".not. x .neqv. .not. y"
|
337 |
+
assert fcode(Not(Xor(x, y, evaluate=False), evaluate=False),
|
338 |
+
source_format="free") == ".not. (x .neqv. y)"
|
339 |
+
# binary Equivalent
|
340 |
+
assert fcode(Equivalent(x, y), source_format="free") == "x .eqv. y"
|
341 |
+
assert fcode(Equivalent(x, Not(y)), source_format="free") == \
|
342 |
+
"x .eqv. .not. y"
|
343 |
+
assert fcode(Equivalent(Not(x), y), source_format="free") == \
|
344 |
+
"y .eqv. .not. x"
|
345 |
+
assert fcode(Equivalent(Not(x), Not(y)), source_format="free") == \
|
346 |
+
".not. x .eqv. .not. y"
|
347 |
+
assert fcode(Not(Equivalent(x, y), evaluate=False),
|
348 |
+
source_format="free") == ".not. (x .eqv. y)"
|
349 |
+
# mixed And/Equivalent
|
350 |
+
assert fcode(Equivalent(And(y, z), x), source_format="free") == \
|
351 |
+
"x .eqv. y .and. z"
|
352 |
+
assert fcode(Equivalent(And(z, x), y), source_format="free") == \
|
353 |
+
"y .eqv. x .and. z"
|
354 |
+
assert fcode(Equivalent(And(x, y), z), source_format="free") == \
|
355 |
+
"z .eqv. x .and. y"
|
356 |
+
assert fcode(And(Equivalent(y, z), x), source_format="free") == \
|
357 |
+
"x .and. (y .eqv. z)"
|
358 |
+
assert fcode(And(Equivalent(z, x), y), source_format="free") == \
|
359 |
+
"y .and. (x .eqv. z)"
|
360 |
+
assert fcode(And(Equivalent(x, y), z), source_format="free") == \
|
361 |
+
"z .and. (x .eqv. y)"
|
362 |
+
# mixed Or/Equivalent
|
363 |
+
assert fcode(Equivalent(Or(y, z), x), source_format="free") == \
|
364 |
+
"x .eqv. y .or. z"
|
365 |
+
assert fcode(Equivalent(Or(z, x), y), source_format="free") == \
|
366 |
+
"y .eqv. x .or. z"
|
367 |
+
assert fcode(Equivalent(Or(x, y), z), source_format="free") == \
|
368 |
+
"z .eqv. x .or. y"
|
369 |
+
assert fcode(Or(Equivalent(y, z), x), source_format="free") == \
|
370 |
+
"x .or. (y .eqv. z)"
|
371 |
+
assert fcode(Or(Equivalent(z, x), y), source_format="free") == \
|
372 |
+
"y .or. (x .eqv. z)"
|
373 |
+
assert fcode(Or(Equivalent(x, y), z), source_format="free") == \
|
374 |
+
"z .or. (x .eqv. y)"
|
375 |
+
# mixed Xor/Equivalent
|
376 |
+
assert fcode(Equivalent(Xor(y, z, evaluate=False), x),
|
377 |
+
source_format="free") == "x .eqv. (y .neqv. z)"
|
378 |
+
assert fcode(Equivalent(Xor(z, x, evaluate=False), y),
|
379 |
+
source_format="free") == "y .eqv. (x .neqv. z)"
|
380 |
+
assert fcode(Equivalent(Xor(x, y, evaluate=False), z),
|
381 |
+
source_format="free") == "z .eqv. (x .neqv. y)"
|
382 |
+
assert fcode(Xor(Equivalent(y, z), x, evaluate=False),
|
383 |
+
source_format="free") == "x .neqv. (y .eqv. z)"
|
384 |
+
assert fcode(Xor(Equivalent(z, x), y, evaluate=False),
|
385 |
+
source_format="free") == "y .neqv. (x .eqv. z)"
|
386 |
+
assert fcode(Xor(Equivalent(x, y), z, evaluate=False),
|
387 |
+
source_format="free") == "z .neqv. (x .eqv. y)"
|
388 |
+
# mixed And/Xor
|
389 |
+
assert fcode(Xor(And(y, z), x, evaluate=False), source_format="free") == \
|
390 |
+
"x .neqv. y .and. z"
|
391 |
+
assert fcode(Xor(And(z, x), y, evaluate=False), source_format="free") == \
|
392 |
+
"y .neqv. x .and. z"
|
393 |
+
assert fcode(Xor(And(x, y), z, evaluate=False), source_format="free") == \
|
394 |
+
"z .neqv. x .and. y"
|
395 |
+
assert fcode(And(Xor(y, z, evaluate=False), x), source_format="free") == \
|
396 |
+
"x .and. (y .neqv. z)"
|
397 |
+
assert fcode(And(Xor(z, x, evaluate=False), y), source_format="free") == \
|
398 |
+
"y .and. (x .neqv. z)"
|
399 |
+
assert fcode(And(Xor(x, y, evaluate=False), z), source_format="free") == \
|
400 |
+
"z .and. (x .neqv. y)"
|
401 |
+
# mixed Or/Xor
|
402 |
+
assert fcode(Xor(Or(y, z), x, evaluate=False), source_format="free") == \
|
403 |
+
"x .neqv. y .or. z"
|
404 |
+
assert fcode(Xor(Or(z, x), y, evaluate=False), source_format="free") == \
|
405 |
+
"y .neqv. x .or. z"
|
406 |
+
assert fcode(Xor(Or(x, y), z, evaluate=False), source_format="free") == \
|
407 |
+
"z .neqv. x .or. y"
|
408 |
+
assert fcode(Or(Xor(y, z, evaluate=False), x), source_format="free") == \
|
409 |
+
"x .or. (y .neqv. z)"
|
410 |
+
assert fcode(Or(Xor(z, x, evaluate=False), y), source_format="free") == \
|
411 |
+
"y .or. (x .neqv. z)"
|
412 |
+
assert fcode(Or(Xor(x, y, evaluate=False), z), source_format="free") == \
|
413 |
+
"z .or. (x .neqv. y)"
|
414 |
+
# trinary Xor
|
415 |
+
assert fcode(Xor(x, y, z, evaluate=False), source_format="free") == \
|
416 |
+
"x .neqv. y .neqv. z"
|
417 |
+
assert fcode(Xor(x, y, Not(z), evaluate=False), source_format="free") == \
|
418 |
+
"x .neqv. y .neqv. .not. z"
|
419 |
+
assert fcode(Xor(x, Not(y), z, evaluate=False), source_format="free") == \
|
420 |
+
"x .neqv. z .neqv. .not. y"
|
421 |
+
assert fcode(Xor(Not(x), y, z, evaluate=False), source_format="free") == \
|
422 |
+
"y .neqv. z .neqv. .not. x"
|
423 |
+
|
424 |
+
|
425 |
+
def test_fcode_Relational():
|
426 |
+
x, y = symbols("x y")
|
427 |
+
assert fcode(Relational(x, y, "=="), source_format="free") == "x == y"
|
428 |
+
assert fcode(Relational(x, y, "!="), source_format="free") == "x /= y"
|
429 |
+
assert fcode(Relational(x, y, ">="), source_format="free") == "x >= y"
|
430 |
+
assert fcode(Relational(x, y, "<="), source_format="free") == "x <= y"
|
431 |
+
assert fcode(Relational(x, y, ">"), source_format="free") == "x > y"
|
432 |
+
assert fcode(Relational(x, y, "<"), source_format="free") == "x < y"
|
433 |
+
|
434 |
+
|
435 |
+
def test_fcode_Piecewise():
|
436 |
+
x = symbols('x')
|
437 |
+
expr = Piecewise((x, x < 1), (x**2, True))
|
438 |
+
# Check that inline conditional (merge) fails if standard isn't 95+
|
439 |
+
raises(NotImplementedError, lambda: fcode(expr))
|
440 |
+
code = fcode(expr, standard=95)
|
441 |
+
expected = " merge(x, x**2, x < 1)"
|
442 |
+
assert code == expected
|
443 |
+
assert fcode(Piecewise((x, x < 1), (x**2, True)), assign_to="var") == (
|
444 |
+
" if (x < 1) then\n"
|
445 |
+
" var = x\n"
|
446 |
+
" else\n"
|
447 |
+
" var = x**2\n"
|
448 |
+
" end if"
|
449 |
+
)
|
450 |
+
a = cos(x)/x
|
451 |
+
b = sin(x)/x
|
452 |
+
for i in range(10):
|
453 |
+
a = diff(a, x)
|
454 |
+
b = diff(b, x)
|
455 |
+
expected = (
|
456 |
+
" if (x < 0) then\n"
|
457 |
+
" weird_name = -cos(x)/x + 10*sin(x)/x**2 + 90*cos(x)/x**3 - 720*\n"
|
458 |
+
" @ sin(x)/x**4 - 5040*cos(x)/x**5 + 30240*sin(x)/x**6 + 151200*cos(x\n"
|
459 |
+
" @ )/x**7 - 604800*sin(x)/x**8 - 1814400*cos(x)/x**9 + 3628800*sin(x\n"
|
460 |
+
" @ )/x**10 + 3628800*cos(x)/x**11\n"
|
461 |
+
" else\n"
|
462 |
+
" weird_name = -sin(x)/x - 10*cos(x)/x**2 + 90*sin(x)/x**3 + 720*\n"
|
463 |
+
" @ cos(x)/x**4 - 5040*sin(x)/x**5 - 30240*cos(x)/x**6 + 151200*sin(x\n"
|
464 |
+
" @ )/x**7 + 604800*cos(x)/x**8 - 1814400*sin(x)/x**9 - 3628800*cos(x\n"
|
465 |
+
" @ )/x**10 + 3628800*sin(x)/x**11\n"
|
466 |
+
" end if"
|
467 |
+
)
|
468 |
+
code = fcode(Piecewise((a, x < 0), (b, True)), assign_to="weird_name")
|
469 |
+
assert code == expected
|
470 |
+
code = fcode(Piecewise((x, x < 1), (x**2, x > 1), (sin(x), True)), standard=95)
|
471 |
+
expected = " merge(x, merge(x**2, sin(x), x > 1), x < 1)"
|
472 |
+
assert code == expected
|
473 |
+
# Check that Piecewise without a True (default) condition error
|
474 |
+
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
|
475 |
+
raises(ValueError, lambda: fcode(expr))
|
476 |
+
|
477 |
+
|
478 |
+
def test_wrap_fortran():
|
479 |
+
# "########################################################################"
|
480 |
+
printer = FCodePrinter()
|
481 |
+
lines = [
|
482 |
+
"C This is a long comment on a single line that must be wrapped properly to produce nice output",
|
483 |
+
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
|
484 |
+
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
|
485 |
+
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
|
486 |
+
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
|
487 |
+
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
|
488 |
+
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
|
489 |
+
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
|
490 |
+
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
|
491 |
+
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
|
492 |
+
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
|
493 |
+
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
|
494 |
+
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
|
495 |
+
" this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly",
|
496 |
+
" this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly",
|
497 |
+
]
|
498 |
+
wrapped_lines = printer._wrap_fortran(lines)
|
499 |
+
expected_lines = [
|
500 |
+
"C This is a long comment on a single line that must be wrapped",
|
501 |
+
"C properly to produce nice output",
|
502 |
+
" this = is + a + long + and + nasty + fortran + statement + that *",
|
503 |
+
" @ must + be + wrapped + properly",
|
504 |
+
" this = is + a + long + and + nasty + fortran + statement + that *",
|
505 |
+
" @ must + be + wrapped + properly",
|
506 |
+
" this = is + a + long + and + nasty + fortran + statement + that",
|
507 |
+
" @ * must + be + wrapped + properly",
|
508 |
+
" this = is + a + long + and + nasty + fortran + statement + that*",
|
509 |
+
" @ must + be + wrapped + properly",
|
510 |
+
" this = is + a + long + and + nasty + fortran + statement + that*",
|
511 |
+
" @ must + be + wrapped + properly",
|
512 |
+
" this = is + a + long + and + nasty + fortran + statement + that",
|
513 |
+
" @ *must + be + wrapped + properly",
|
514 |
+
" this = is + a + long + and + nasty + fortran + statement +",
|
515 |
+
" @ that*must + be + wrapped + properly",
|
516 |
+
" this = is + a + long + and + nasty + fortran + statement + that**",
|
517 |
+
" @ must + be + wrapped + properly",
|
518 |
+
" this = is + a + long + and + nasty + fortran + statement + that**",
|
519 |
+
" @ must + be + wrapped + properly",
|
520 |
+
" this = is + a + long + and + nasty + fortran + statement + that",
|
521 |
+
" @ **must + be + wrapped + properly",
|
522 |
+
" this = is + a + long + and + nasty + fortran + statement + that",
|
523 |
+
" @ **must + be + wrapped + properly",
|
524 |
+
" this = is + a + long + and + nasty + fortran + statement +",
|
525 |
+
" @ that**must + be + wrapped + properly",
|
526 |
+
" this = is + a + long + and + nasty + fortran + statement(that)/",
|
527 |
+
" @ must + be + wrapped + properly",
|
528 |
+
" this = is + a + long + and + nasty + fortran + statement(that)",
|
529 |
+
" @ /must + be + wrapped + properly",
|
530 |
+
]
|
531 |
+
for line in wrapped_lines:
|
532 |
+
assert len(line) <= 72
|
533 |
+
for w, e in zip(wrapped_lines, expected_lines):
|
534 |
+
assert w == e
|
535 |
+
assert len(wrapped_lines) == len(expected_lines)
|
536 |
+
|
537 |
+
|
538 |
+
def test_wrap_fortran_keep_d0():
|
539 |
+
printer = FCodePrinter()
|
540 |
+
lines = [
|
541 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0',
|
542 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break =1.0d0',
|
543 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
|
544 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
|
545 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
|
546 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break = 10.0d0'
|
547 |
+
]
|
548 |
+
expected = [
|
549 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0',
|
550 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break =',
|
551 |
+
' @ 1.0d0',
|
552 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break =',
|
553 |
+
' @ 1.0d0',
|
554 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break =',
|
555 |
+
' @ 1.0d0',
|
556 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break =',
|
557 |
+
' @ 1.0d0',
|
558 |
+
' this_variable_is_very_long_because_we_try_to_test_line_break =',
|
559 |
+
' @ 10.0d0'
|
560 |
+
]
|
561 |
+
assert printer._wrap_fortran(lines) == expected
|
562 |
+
|
563 |
+
|
564 |
+
def test_settings():
|
565 |
+
raises(TypeError, lambda: fcode(S(4), method="garbage"))
|
566 |
+
|
567 |
+
|
568 |
+
def test_free_form_code_line():
|
569 |
+
x, y = symbols('x,y')
|
570 |
+
assert fcode(cos(x) + sin(y), source_format='free') == "sin(y) + cos(x)"
|
571 |
+
|
572 |
+
|
573 |
+
def test_free_form_continuation_line():
|
574 |
+
x, y = symbols('x,y')
|
575 |
+
result = fcode(((cos(x) + sin(y))**(7)).expand(), source_format='free')
|
576 |
+
expected = (
|
577 |
+
'sin(y)**7 + 7*sin(y)**6*cos(x) + 21*sin(y)**5*cos(x)**2 + 35*sin(y)**4* &\n'
|
578 |
+
' cos(x)**3 + 35*sin(y)**3*cos(x)**4 + 21*sin(y)**2*cos(x)**5 + 7* &\n'
|
579 |
+
' sin(y)*cos(x)**6 + cos(x)**7'
|
580 |
+
)
|
581 |
+
assert result == expected
|
582 |
+
|
583 |
+
|
584 |
+
def test_free_form_comment_line():
|
585 |
+
printer = FCodePrinter({'source_format': 'free'})
|
586 |
+
lines = [ "! This is a long comment on a single line that must be wrapped properly to produce nice output"]
|
587 |
+
expected = [
|
588 |
+
'! This is a long comment on a single line that must be wrapped properly',
|
589 |
+
'! to produce nice output']
|
590 |
+
assert printer._wrap_fortran(lines) == expected
|
591 |
+
|
592 |
+
|
593 |
+
def test_loops():
|
594 |
+
n, m = symbols('n,m', integer=True)
|
595 |
+
A = IndexedBase('A')
|
596 |
+
x = IndexedBase('x')
|
597 |
+
y = IndexedBase('y')
|
598 |
+
i = Idx('i', m)
|
599 |
+
j = Idx('j', n)
|
600 |
+
|
601 |
+
expected = (
|
602 |
+
'do i = 1, m\n'
|
603 |
+
' y(i) = 0\n'
|
604 |
+
'end do\n'
|
605 |
+
'do i = 1, m\n'
|
606 |
+
' do j = 1, n\n'
|
607 |
+
' y(i) = %(rhs)s\n'
|
608 |
+
' end do\n'
|
609 |
+
'end do'
|
610 |
+
)
|
611 |
+
|
612 |
+
code = fcode(A[i, j]*x[j], assign_to=y[i], source_format='free')
|
613 |
+
assert (code == expected % {'rhs': 'y(i) + A(i, j)*x(j)'} or
|
614 |
+
code == expected % {'rhs': 'y(i) + x(j)*A(i, j)'} or
|
615 |
+
code == expected % {'rhs': 'x(j)*A(i, j) + y(i)'} or
|
616 |
+
code == expected % {'rhs': 'A(i, j)*x(j) + y(i)'})
|
617 |
+
|
618 |
+
|
619 |
+
def test_dummy_loops():
|
620 |
+
i, m = symbols('i m', integer=True, cls=Dummy)
|
621 |
+
x = IndexedBase('x')
|
622 |
+
y = IndexedBase('y')
|
623 |
+
i = Idx(i, m)
|
624 |
+
|
625 |
+
expected = (
|
626 |
+
'do i_%(icount)i = 1, m_%(mcount)i\n'
|
627 |
+
' y(i_%(icount)i) = x(i_%(icount)i)\n'
|
628 |
+
'end do'
|
629 |
+
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
|
630 |
+
code = fcode(x[i], assign_to=y[i], source_format='free')
|
631 |
+
assert code == expected
|
632 |
+
|
633 |
+
|
634 |
+
def test_fcode_Indexed_without_looking_for_contraction():
|
635 |
+
len_y = 5
|
636 |
+
y = IndexedBase('y', shape=(len_y,))
|
637 |
+
x = IndexedBase('x', shape=(len_y,))
|
638 |
+
Dy = IndexedBase('Dy', shape=(len_y-1,))
|
639 |
+
i = Idx('i', len_y-1)
|
640 |
+
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
|
641 |
+
code0 = fcode(e.rhs, assign_to=e.lhs, contract=False)
|
642 |
+
assert code0.endswith('Dy(i) = (y(i + 1) - y(i))/(x(i + 1) - x(i))')
|
643 |
+
|
644 |
+
|
645 |
+
def test_element_like_objects():
|
646 |
+
len_y = 5
|
647 |
+
y = ArraySymbol('y', shape=(len_y,))
|
648 |
+
x = ArraySymbol('x', shape=(len_y,))
|
649 |
+
Dy = ArraySymbol('Dy', shape=(len_y-1,))
|
650 |
+
i = Idx('i', len_y-1)
|
651 |
+
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
|
652 |
+
code0 = fcode(Assignment(e.lhs, e.rhs))
|
653 |
+
assert code0.endswith('Dy(i) = (y(i + 1) - y(i))/(x(i + 1) - x(i))')
|
654 |
+
|
655 |
+
class ElementExpr(Element, Expr):
|
656 |
+
pass
|
657 |
+
|
658 |
+
e = e.subs((a, ElementExpr(a.name, a.indices)) for a in e.atoms(ArrayElement) )
|
659 |
+
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
|
660 |
+
code0 = fcode(Assignment(e.lhs, e.rhs))
|
661 |
+
assert code0.endswith('Dy(i) = (y(i + 1) - y(i))/(x(i + 1) - x(i))')
|
662 |
+
|
663 |
+
|
664 |
+
def test_derived_classes():
|
665 |
+
class MyFancyFCodePrinter(FCodePrinter):
|
666 |
+
_default_settings = FCodePrinter._default_settings.copy()
|
667 |
+
|
668 |
+
printer = MyFancyFCodePrinter()
|
669 |
+
x = symbols('x')
|
670 |
+
assert printer.doprint(sin(x), "bork") == " bork = sin(x)"
|
671 |
+
|
672 |
+
|
673 |
+
def test_indent():
|
674 |
+
codelines = (
|
675 |
+
'subroutine test(a)\n'
|
676 |
+
'integer :: a, i, j\n'
|
677 |
+
'\n'
|
678 |
+
'do\n'
|
679 |
+
'do \n'
|
680 |
+
'do j = 1, 5\n'
|
681 |
+
'if (a>b) then\n'
|
682 |
+
'if(b>0) then\n'
|
683 |
+
'a = 3\n'
|
684 |
+
'donot_indent_me = 2\n'
|
685 |
+
'do_not_indent_me_either = 2\n'
|
686 |
+
'ifIam_indented_something_went_wrong = 2\n'
|
687 |
+
'if_I_am_indented_something_went_wrong = 2\n'
|
688 |
+
'end should not be unindented here\n'
|
689 |
+
'end if\n'
|
690 |
+
'endif\n'
|
691 |
+
'end do\n'
|
692 |
+
'end do\n'
|
693 |
+
'enddo\n'
|
694 |
+
'end subroutine\n'
|
695 |
+
'\n'
|
696 |
+
'subroutine test2(a)\n'
|
697 |
+
'integer :: a\n'
|
698 |
+
'do\n'
|
699 |
+
'a = a + 1\n'
|
700 |
+
'end do \n'
|
701 |
+
'end subroutine\n'
|
702 |
+
)
|
703 |
+
expected = (
|
704 |
+
'subroutine test(a)\n'
|
705 |
+
'integer :: a, i, j\n'
|
706 |
+
'\n'
|
707 |
+
'do\n'
|
708 |
+
' do \n'
|
709 |
+
' do j = 1, 5\n'
|
710 |
+
' if (a>b) then\n'
|
711 |
+
' if(b>0) then\n'
|
712 |
+
' a = 3\n'
|
713 |
+
' donot_indent_me = 2\n'
|
714 |
+
' do_not_indent_me_either = 2\n'
|
715 |
+
' ifIam_indented_something_went_wrong = 2\n'
|
716 |
+
' if_I_am_indented_something_went_wrong = 2\n'
|
717 |
+
' end should not be unindented here\n'
|
718 |
+
' end if\n'
|
719 |
+
' endif\n'
|
720 |
+
' end do\n'
|
721 |
+
' end do\n'
|
722 |
+
'enddo\n'
|
723 |
+
'end subroutine\n'
|
724 |
+
'\n'
|
725 |
+
'subroutine test2(a)\n'
|
726 |
+
'integer :: a\n'
|
727 |
+
'do\n'
|
728 |
+
' a = a + 1\n'
|
729 |
+
'end do \n'
|
730 |
+
'end subroutine\n'
|
731 |
+
)
|
732 |
+
p = FCodePrinter({'source_format': 'free'})
|
733 |
+
result = p.indent_code(codelines)
|
734 |
+
assert result == expected
|
735 |
+
|
736 |
+
def test_Matrix_printing():
|
737 |
+
x, y, z = symbols('x,y,z')
|
738 |
+
# Test returning a Matrix
|
739 |
+
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
|
740 |
+
A = MatrixSymbol('A', 3, 1)
|
741 |
+
assert fcode(mat, A) == (
|
742 |
+
" A(1, 1) = x*y\n"
|
743 |
+
" if (y > 0) then\n"
|
744 |
+
" A(2, 1) = x + 2\n"
|
745 |
+
" else\n"
|
746 |
+
" A(2, 1) = y\n"
|
747 |
+
" end if\n"
|
748 |
+
" A(3, 1) = sin(z)")
|
749 |
+
# Test using MatrixElements in expressions
|
750 |
+
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
|
751 |
+
assert fcode(expr, standard=95) == (
|
752 |
+
" merge(2*A(3, 1), A(3, 1), x > 0) + sin(A(2, 1)) + A(1, 1)")
|
753 |
+
# Test using MatrixElements in a Matrix
|
754 |
+
q = MatrixSymbol('q', 5, 1)
|
755 |
+
M = MatrixSymbol('M', 3, 3)
|
756 |
+
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
|
757 |
+
[q[1,0] + q[2,0], q[3, 0], 5],
|
758 |
+
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
|
759 |
+
assert fcode(m, M) == (
|
760 |
+
" M(1, 1) = sin(q(2, 1))\n"
|
761 |
+
" M(2, 1) = q(2, 1) + q(3, 1)\n"
|
762 |
+
" M(3, 1) = 2*q(5, 1)/q(2, 1)\n"
|
763 |
+
" M(1, 2) = 0\n"
|
764 |
+
" M(2, 2) = q(4, 1)\n"
|
765 |
+
" M(3, 2) = sqrt(q(1, 1)) + 4\n"
|
766 |
+
" M(1, 3) = cos(q(3, 1))\n"
|
767 |
+
" M(2, 3) = 5\n"
|
768 |
+
" M(3, 3) = 0")
|
769 |
+
|
770 |
+
|
771 |
+
def test_fcode_For():
|
772 |
+
x, y = symbols('x y')
|
773 |
+
|
774 |
+
f = For(x, Range(0, 10, 2), [Assignment(y, x * y)])
|
775 |
+
sol = fcode(f)
|
776 |
+
assert sol == (" do x = 0, 9, 2\n"
|
777 |
+
" y = x*y\n"
|
778 |
+
" end do")
|
779 |
+
|
780 |
+
|
781 |
+
def test_fcode_Declaration():
|
782 |
+
def check(expr, ref, **kwargs):
|
783 |
+
assert fcode(expr, standard=95, source_format='free', **kwargs) == ref
|
784 |
+
|
785 |
+
i = symbols('i', integer=True)
|
786 |
+
var1 = Variable.deduced(i)
|
787 |
+
dcl1 = Declaration(var1)
|
788 |
+
check(dcl1, "integer*4 :: i")
|
789 |
+
|
790 |
+
|
791 |
+
x, y = symbols('x y')
|
792 |
+
var2 = Variable(x, float32, value=42, attrs={value_const})
|
793 |
+
dcl2b = Declaration(var2)
|
794 |
+
check(dcl2b, 'real*4, parameter :: x = 42')
|
795 |
+
|
796 |
+
var3 = Variable(y, type=bool_)
|
797 |
+
dcl3 = Declaration(var3)
|
798 |
+
check(dcl3, 'logical :: y')
|
799 |
+
|
800 |
+
check(float32, "real*4")
|
801 |
+
check(float64, "real*8")
|
802 |
+
check(real, "real*4", type_aliases={real: float32})
|
803 |
+
check(real, "real*8", type_aliases={real: float64})
|
804 |
+
|
805 |
+
|
806 |
+
def test_MatrixElement_printing():
|
807 |
+
# test cases for issue #11821
|
808 |
+
A = MatrixSymbol("A", 1, 3)
|
809 |
+
B = MatrixSymbol("B", 1, 3)
|
810 |
+
C = MatrixSymbol("C", 1, 3)
|
811 |
+
|
812 |
+
assert(fcode(A[0, 0]) == " A(1, 1)")
|
813 |
+
assert(fcode(3 * A[0, 0]) == " 3*A(1, 1)")
|
814 |
+
|
815 |
+
F = C[0, 0].subs(C, A - B)
|
816 |
+
assert(fcode(F) == " (A - B)(1, 1)")
|
817 |
+
|
818 |
+
|
819 |
+
def test_aug_assign():
|
820 |
+
x = symbols('x')
|
821 |
+
assert fcode(aug_assign(x, '+', 1), source_format='free') == 'x = x + 1'
|
822 |
+
|
823 |
+
|
824 |
+
def test_While():
|
825 |
+
x = symbols('x')
|
826 |
+
assert fcode(While(abs(x) > 1, [aug_assign(x, '-', 1)]), source_format='free') == (
|
827 |
+
'do while (abs(x) > 1)\n'
|
828 |
+
' x = x - 1\n'
|
829 |
+
'end do'
|
830 |
+
)
|
831 |
+
|
832 |
+
|
833 |
+
def test_FunctionPrototype_print():
|
834 |
+
x = symbols('x')
|
835 |
+
n = symbols('n', integer=True)
|
836 |
+
vx = Variable(x, type=real)
|
837 |
+
vn = Variable(n, type=integer)
|
838 |
+
fp1 = FunctionPrototype(real, 'power', [vx, vn])
|
839 |
+
# Should be changed to proper test once multi-line generation is working
|
840 |
+
# see https://github.com/sympy/sympy/issues/15824
|
841 |
+
raises(NotImplementedError, lambda: fcode(fp1))
|
842 |
+
|
843 |
+
|
844 |
+
def test_FunctionDefinition_print():
|
845 |
+
x = symbols('x')
|
846 |
+
n = symbols('n', integer=True)
|
847 |
+
vx = Variable(x, type=real)
|
848 |
+
vn = Variable(n, type=integer)
|
849 |
+
body = [Assignment(x, x**n), Return(x)]
|
850 |
+
fd1 = FunctionDefinition(real, 'power', [vx, vn], body)
|
851 |
+
# Should be changed to proper test once multi-line generation is working
|
852 |
+
# see https://github.com/sympy/sympy/issues/15824
|
853 |
+
raises(NotImplementedError, lambda: fcode(fd1))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_glsl.py
ADDED
@@ -0,0 +1,998 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import (pi, symbols, Rational, Integer, GoldenRatio, EulerGamma,
|
2 |
+
Catalan, Lambda, Dummy, Eq, Ne, Le, Lt, Gt, Ge)
|
3 |
+
from sympy.functions import Piecewise, sin, cos, Abs, exp, ceiling, sqrt
|
4 |
+
from sympy.testing.pytest import raises, warns_deprecated_sympy
|
5 |
+
from sympy.printing.glsl import GLSLPrinter
|
6 |
+
from sympy.printing.str import StrPrinter
|
7 |
+
from sympy.utilities.lambdify import implemented_function
|
8 |
+
from sympy.tensor import IndexedBase, Idx
|
9 |
+
from sympy.matrices import Matrix, MatrixSymbol
|
10 |
+
from sympy.core import Tuple
|
11 |
+
from sympy.printing.glsl import glsl_code
|
12 |
+
import textwrap
|
13 |
+
|
14 |
+
x, y, z = symbols('x,y,z')
|
15 |
+
|
16 |
+
|
17 |
+
def test_printmethod():
|
18 |
+
assert glsl_code(Abs(x)) == "abs(x)"
|
19 |
+
|
20 |
+
def test_print_without_operators():
|
21 |
+
assert glsl_code(x*y,use_operators = False) == 'mul(x, y)'
|
22 |
+
assert glsl_code(x**y+z,use_operators = False) == 'add(pow(x, y), z)'
|
23 |
+
assert glsl_code(x*(y+z),use_operators = False) == 'mul(x, add(y, z))'
|
24 |
+
assert glsl_code(x*(y+z),use_operators = False) == 'mul(x, add(y, z))'
|
25 |
+
assert glsl_code(x*(y+z**y**0.5),use_operators = False) == 'mul(x, add(y, pow(z, sqrt(y))))'
|
26 |
+
assert glsl_code(-x-y, use_operators=False, zero='zero()') == 'sub(zero(), add(x, y))'
|
27 |
+
assert glsl_code(-x-y, use_operators=False) == 'sub(0.0, add(x, y))'
|
28 |
+
|
29 |
+
def test_glsl_code_sqrt():
|
30 |
+
assert glsl_code(sqrt(x)) == "sqrt(x)"
|
31 |
+
assert glsl_code(x**0.5) == "sqrt(x)"
|
32 |
+
assert glsl_code(sqrt(x)) == "sqrt(x)"
|
33 |
+
|
34 |
+
|
35 |
+
def test_glsl_code_Pow():
|
36 |
+
g = implemented_function('g', Lambda(x, 2*x))
|
37 |
+
assert glsl_code(x**3) == "pow(x, 3.0)"
|
38 |
+
assert glsl_code(x**(y**3)) == "pow(x, pow(y, 3.0))"
|
39 |
+
assert glsl_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
|
40 |
+
"pow(3.5*2*x, -x + pow(y, x))/(pow(x, 2.0) + y)"
|
41 |
+
assert glsl_code(x**-1.0) == '1.0/x'
|
42 |
+
|
43 |
+
|
44 |
+
def test_glsl_code_Relational():
|
45 |
+
assert glsl_code(Eq(x, y)) == "x == y"
|
46 |
+
assert glsl_code(Ne(x, y)) == "x != y"
|
47 |
+
assert glsl_code(Le(x, y)) == "x <= y"
|
48 |
+
assert glsl_code(Lt(x, y)) == "x < y"
|
49 |
+
assert glsl_code(Gt(x, y)) == "x > y"
|
50 |
+
assert glsl_code(Ge(x, y)) == "x >= y"
|
51 |
+
|
52 |
+
|
53 |
+
def test_glsl_code_constants_mathh():
|
54 |
+
assert glsl_code(exp(1)) == "float E = 2.71828183;\nE"
|
55 |
+
assert glsl_code(pi) == "float pi = 3.14159265;\npi"
|
56 |
+
# assert glsl_code(oo) == "Number.POSITIVE_INFINITY"
|
57 |
+
# assert glsl_code(-oo) == "Number.NEGATIVE_INFINITY"
|
58 |
+
|
59 |
+
|
60 |
+
def test_glsl_code_constants_other():
|
61 |
+
assert glsl_code(2*GoldenRatio) == "float GoldenRatio = 1.61803399;\n2*GoldenRatio"
|
62 |
+
assert glsl_code(2*Catalan) == "float Catalan = 0.915965594;\n2*Catalan"
|
63 |
+
assert glsl_code(2*EulerGamma) == "float EulerGamma = 0.577215665;\n2*EulerGamma"
|
64 |
+
|
65 |
+
|
66 |
+
def test_glsl_code_Rational():
|
67 |
+
assert glsl_code(Rational(3, 7)) == "3.0/7.0"
|
68 |
+
assert glsl_code(Rational(18, 9)) == "2"
|
69 |
+
assert glsl_code(Rational(3, -7)) == "-3.0/7.0"
|
70 |
+
assert glsl_code(Rational(-3, -7)) == "3.0/7.0"
|
71 |
+
|
72 |
+
|
73 |
+
def test_glsl_code_Integer():
|
74 |
+
assert glsl_code(Integer(67)) == "67"
|
75 |
+
assert glsl_code(Integer(-1)) == "-1"
|
76 |
+
|
77 |
+
|
78 |
+
def test_glsl_code_functions():
|
79 |
+
assert glsl_code(sin(x) ** cos(x)) == "pow(sin(x), cos(x))"
|
80 |
+
|
81 |
+
|
82 |
+
def test_glsl_code_inline_function():
|
83 |
+
x = symbols('x')
|
84 |
+
g = implemented_function('g', Lambda(x, 2*x))
|
85 |
+
assert glsl_code(g(x)) == "2*x"
|
86 |
+
g = implemented_function('g', Lambda(x, 2*x/Catalan))
|
87 |
+
assert glsl_code(g(x)) == "float Catalan = 0.915965594;\n2*x/Catalan"
|
88 |
+
A = IndexedBase('A')
|
89 |
+
i = Idx('i', symbols('n', integer=True))
|
90 |
+
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
|
91 |
+
assert glsl_code(g(A[i]), assign_to=A[i]) == (
|
92 |
+
"for (int i=0; i<n; i++){\n"
|
93 |
+
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
|
94 |
+
"}"
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
def test_glsl_code_exceptions():
|
99 |
+
assert glsl_code(ceiling(x)) == "ceil(x)"
|
100 |
+
assert glsl_code(Abs(x)) == "abs(x)"
|
101 |
+
|
102 |
+
|
103 |
+
def test_glsl_code_boolean():
|
104 |
+
assert glsl_code(x & y) == "x && y"
|
105 |
+
assert glsl_code(x | y) == "x || y"
|
106 |
+
assert glsl_code(~x) == "!x"
|
107 |
+
assert glsl_code(x & y & z) == "x && y && z"
|
108 |
+
assert glsl_code(x | y | z) == "x || y || z"
|
109 |
+
assert glsl_code((x & y) | z) == "z || x && y"
|
110 |
+
assert glsl_code((x | y) & z) == "z && (x || y)"
|
111 |
+
|
112 |
+
|
113 |
+
def test_glsl_code_Piecewise():
|
114 |
+
expr = Piecewise((x, x < 1), (x**2, True))
|
115 |
+
p = glsl_code(expr)
|
116 |
+
s = \
|
117 |
+
"""\
|
118 |
+
((x < 1) ? (
|
119 |
+
x
|
120 |
+
)
|
121 |
+
: (
|
122 |
+
pow(x, 2.0)
|
123 |
+
))\
|
124 |
+
"""
|
125 |
+
assert p == s
|
126 |
+
assert glsl_code(expr, assign_to="c") == (
|
127 |
+
"if (x < 1) {\n"
|
128 |
+
" c = x;\n"
|
129 |
+
"}\n"
|
130 |
+
"else {\n"
|
131 |
+
" c = pow(x, 2.0);\n"
|
132 |
+
"}")
|
133 |
+
# Check that Piecewise without a True (default) condition error
|
134 |
+
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
|
135 |
+
raises(ValueError, lambda: glsl_code(expr))
|
136 |
+
|
137 |
+
|
138 |
+
def test_glsl_code_Piecewise_deep():
|
139 |
+
p = glsl_code(2*Piecewise((x, x < 1), (x**2, True)))
|
140 |
+
s = \
|
141 |
+
"""\
|
142 |
+
2*((x < 1) ? (
|
143 |
+
x
|
144 |
+
)
|
145 |
+
: (
|
146 |
+
pow(x, 2.0)
|
147 |
+
))\
|
148 |
+
"""
|
149 |
+
assert p == s
|
150 |
+
|
151 |
+
|
152 |
+
def test_glsl_code_settings():
|
153 |
+
raises(TypeError, lambda: glsl_code(sin(x), method="garbage"))
|
154 |
+
|
155 |
+
|
156 |
+
def test_glsl_code_Indexed():
|
157 |
+
n, m, o = symbols('n m o', integer=True)
|
158 |
+
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
|
159 |
+
p = GLSLPrinter()
|
160 |
+
p._not_c = set()
|
161 |
+
|
162 |
+
x = IndexedBase('x')[j]
|
163 |
+
assert p._print_Indexed(x) == 'x[j]'
|
164 |
+
A = IndexedBase('A')[i, j]
|
165 |
+
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
|
166 |
+
B = IndexedBase('B')[i, j, k]
|
167 |
+
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
|
168 |
+
|
169 |
+
assert p._not_c == set()
|
170 |
+
|
171 |
+
def test_glsl_code_list_tuple_Tuple():
|
172 |
+
assert glsl_code([1,2,3,4]) == 'vec4(1, 2, 3, 4)'
|
173 |
+
assert glsl_code([1,2,3],glsl_types=False) == 'float[3](1, 2, 3)'
|
174 |
+
assert glsl_code([1,2,3]) == glsl_code((1,2,3))
|
175 |
+
assert glsl_code([1,2,3]) == glsl_code(Tuple(1,2,3))
|
176 |
+
|
177 |
+
m = MatrixSymbol('A',3,4)
|
178 |
+
assert glsl_code([m[0],m[1]])
|
179 |
+
|
180 |
+
def test_glsl_code_loops_matrix_vector():
|
181 |
+
n, m = symbols('n m', integer=True)
|
182 |
+
A = IndexedBase('A')
|
183 |
+
x = IndexedBase('x')
|
184 |
+
y = IndexedBase('y')
|
185 |
+
i = Idx('i', m)
|
186 |
+
j = Idx('j', n)
|
187 |
+
|
188 |
+
s = (
|
189 |
+
'for (int i=0; i<m; i++){\n'
|
190 |
+
' y[i] = 0.0;\n'
|
191 |
+
'}\n'
|
192 |
+
'for (int i=0; i<m; i++){\n'
|
193 |
+
' for (int j=0; j<n; j++){\n'
|
194 |
+
' y[i] = A[n*i + j]*x[j] + y[i];\n'
|
195 |
+
' }\n'
|
196 |
+
'}'
|
197 |
+
)
|
198 |
+
|
199 |
+
c = glsl_code(A[i, j]*x[j], assign_to=y[i])
|
200 |
+
assert c == s
|
201 |
+
|
202 |
+
|
203 |
+
def test_dummy_loops():
|
204 |
+
i, m = symbols('i m', integer=True, cls=Dummy)
|
205 |
+
x = IndexedBase('x')
|
206 |
+
y = IndexedBase('y')
|
207 |
+
i = Idx(i, m)
|
208 |
+
|
209 |
+
expected = (
|
210 |
+
'for (int i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
|
211 |
+
' y[i_%(icount)i] = x[i_%(icount)i];\n'
|
212 |
+
'}'
|
213 |
+
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
|
214 |
+
code = glsl_code(x[i], assign_to=y[i])
|
215 |
+
assert code == expected
|
216 |
+
|
217 |
+
|
218 |
+
def test_glsl_code_loops_add():
|
219 |
+
n, m = symbols('n m', integer=True)
|
220 |
+
A = IndexedBase('A')
|
221 |
+
x = IndexedBase('x')
|
222 |
+
y = IndexedBase('y')
|
223 |
+
z = IndexedBase('z')
|
224 |
+
i = Idx('i', m)
|
225 |
+
j = Idx('j', n)
|
226 |
+
|
227 |
+
s = (
|
228 |
+
'for (int i=0; i<m; i++){\n'
|
229 |
+
' y[i] = x[i] + z[i];\n'
|
230 |
+
'}\n'
|
231 |
+
'for (int i=0; i<m; i++){\n'
|
232 |
+
' for (int j=0; j<n; j++){\n'
|
233 |
+
' y[i] = A[n*i + j]*x[j] + y[i];\n'
|
234 |
+
' }\n'
|
235 |
+
'}'
|
236 |
+
)
|
237 |
+
c = glsl_code(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i])
|
238 |
+
assert c == s
|
239 |
+
|
240 |
+
|
241 |
+
def test_glsl_code_loops_multiple_contractions():
|
242 |
+
n, m, o, p = symbols('n m o p', integer=True)
|
243 |
+
a = IndexedBase('a')
|
244 |
+
b = IndexedBase('b')
|
245 |
+
y = IndexedBase('y')
|
246 |
+
i = Idx('i', m)
|
247 |
+
j = Idx('j', n)
|
248 |
+
k = Idx('k', o)
|
249 |
+
l = Idx('l', p)
|
250 |
+
|
251 |
+
s = (
|
252 |
+
'for (int i=0; i<m; i++){\n'
|
253 |
+
' y[i] = 0.0;\n'
|
254 |
+
'}\n'
|
255 |
+
'for (int i=0; i<m; i++){\n'
|
256 |
+
' for (int j=0; j<n; j++){\n'
|
257 |
+
' for (int k=0; k<o; k++){\n'
|
258 |
+
' for (int l=0; l<p; l++){\n'
|
259 |
+
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
|
260 |
+
' }\n'
|
261 |
+
' }\n'
|
262 |
+
' }\n'
|
263 |
+
'}'
|
264 |
+
)
|
265 |
+
c = glsl_code(b[j, k, l]*a[i, j, k, l], assign_to=y[i])
|
266 |
+
assert c == s
|
267 |
+
|
268 |
+
|
269 |
+
def test_glsl_code_loops_addfactor():
|
270 |
+
n, m, o, p = symbols('n m o p', integer=True)
|
271 |
+
a = IndexedBase('a')
|
272 |
+
b = IndexedBase('b')
|
273 |
+
c = IndexedBase('c')
|
274 |
+
y = IndexedBase('y')
|
275 |
+
i = Idx('i', m)
|
276 |
+
j = Idx('j', n)
|
277 |
+
k = Idx('k', o)
|
278 |
+
l = Idx('l', p)
|
279 |
+
|
280 |
+
s = (
|
281 |
+
'for (int i=0; i<m; i++){\n'
|
282 |
+
' y[i] = 0.0;\n'
|
283 |
+
'}\n'
|
284 |
+
'for (int i=0; i<m; i++){\n'
|
285 |
+
' for (int j=0; j<n; j++){\n'
|
286 |
+
' for (int k=0; k<o; k++){\n'
|
287 |
+
' for (int l=0; l<p; l++){\n'
|
288 |
+
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
|
289 |
+
' }\n'
|
290 |
+
' }\n'
|
291 |
+
' }\n'
|
292 |
+
'}'
|
293 |
+
)
|
294 |
+
c = glsl_code((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
|
295 |
+
assert c == s
|
296 |
+
|
297 |
+
|
298 |
+
def test_glsl_code_loops_multiple_terms():
|
299 |
+
n, m, o, p = symbols('n m o p', integer=True)
|
300 |
+
a = IndexedBase('a')
|
301 |
+
b = IndexedBase('b')
|
302 |
+
c = IndexedBase('c')
|
303 |
+
y = IndexedBase('y')
|
304 |
+
i = Idx('i', m)
|
305 |
+
j = Idx('j', n)
|
306 |
+
k = Idx('k', o)
|
307 |
+
|
308 |
+
s0 = (
|
309 |
+
'for (int i=0; i<m; i++){\n'
|
310 |
+
' y[i] = 0.0;\n'
|
311 |
+
'}\n'
|
312 |
+
)
|
313 |
+
s1 = (
|
314 |
+
'for (int i=0; i<m; i++){\n'
|
315 |
+
' for (int j=0; j<n; j++){\n'
|
316 |
+
' for (int k=0; k<o; k++){\n'
|
317 |
+
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
|
318 |
+
' }\n'
|
319 |
+
' }\n'
|
320 |
+
'}\n'
|
321 |
+
)
|
322 |
+
s2 = (
|
323 |
+
'for (int i=0; i<m; i++){\n'
|
324 |
+
' for (int k=0; k<o; k++){\n'
|
325 |
+
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
|
326 |
+
' }\n'
|
327 |
+
'}\n'
|
328 |
+
)
|
329 |
+
s3 = (
|
330 |
+
'for (int i=0; i<m; i++){\n'
|
331 |
+
' for (int j=0; j<n; j++){\n'
|
332 |
+
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
|
333 |
+
' }\n'
|
334 |
+
'}\n'
|
335 |
+
)
|
336 |
+
c = glsl_code(
|
337 |
+
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
|
338 |
+
assert (c == s0 + s1 + s2 + s3[:-1] or
|
339 |
+
c == s0 + s1 + s3 + s2[:-1] or
|
340 |
+
c == s0 + s2 + s1 + s3[:-1] or
|
341 |
+
c == s0 + s2 + s3 + s1[:-1] or
|
342 |
+
c == s0 + s3 + s1 + s2[:-1] or
|
343 |
+
c == s0 + s3 + s2 + s1[:-1])
|
344 |
+
|
345 |
+
|
346 |
+
def test_Matrix_printing():
|
347 |
+
# Test returning a Matrix
|
348 |
+
|
349 |
+
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
|
350 |
+
A = MatrixSymbol('A', 3, 1)
|
351 |
+
assert glsl_code(mat, assign_to=A) == (
|
352 |
+
'''A[0][0] = x*y;
|
353 |
+
if (y > 0) {
|
354 |
+
A[1][0] = x + 2;
|
355 |
+
}
|
356 |
+
else {
|
357 |
+
A[1][0] = y;
|
358 |
+
}
|
359 |
+
A[2][0] = sin(z);''' )
|
360 |
+
assert glsl_code(Matrix([A[0],A[1]]))
|
361 |
+
# Test using MatrixElements in expressions
|
362 |
+
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
|
363 |
+
assert glsl_code(expr) == (
|
364 |
+
'''((x > 0) ? (
|
365 |
+
2*A[2][0]
|
366 |
+
)
|
367 |
+
: (
|
368 |
+
A[2][0]
|
369 |
+
)) + sin(A[1][0]) + A[0][0]''' )
|
370 |
+
|
371 |
+
# Test using MatrixElements in a Matrix
|
372 |
+
q = MatrixSymbol('q', 5, 1)
|
373 |
+
M = MatrixSymbol('M', 3, 3)
|
374 |
+
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
|
375 |
+
[q[1,0] + q[2,0], q[3, 0], 5],
|
376 |
+
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
|
377 |
+
assert glsl_code(m,M) == (
|
378 |
+
'''M[0][0] = sin(q[1]);
|
379 |
+
M[0][1] = 0;
|
380 |
+
M[0][2] = cos(q[2]);
|
381 |
+
M[1][0] = q[1] + q[2];
|
382 |
+
M[1][1] = q[3];
|
383 |
+
M[1][2] = 5;
|
384 |
+
M[2][0] = 2*q[4]/q[1];
|
385 |
+
M[2][1] = sqrt(q[0]) + 4;
|
386 |
+
M[2][2] = 0;'''
|
387 |
+
)
|
388 |
+
|
389 |
+
def test_Matrices_1x7():
|
390 |
+
gl = glsl_code
|
391 |
+
A = Matrix([1,2,3,4,5,6,7])
|
392 |
+
assert gl(A) == 'float[7](1, 2, 3, 4, 5, 6, 7)'
|
393 |
+
assert gl(A.transpose()) == 'float[7](1, 2, 3, 4, 5, 6, 7)'
|
394 |
+
|
395 |
+
def test_Matrices_1x7_array_type_int():
|
396 |
+
gl = glsl_code
|
397 |
+
A = Matrix([1,2,3,4,5,6,7])
|
398 |
+
assert gl(A, array_type='int') == 'int[7](1, 2, 3, 4, 5, 6, 7)'
|
399 |
+
|
400 |
+
def test_Tuple_array_type_custom():
|
401 |
+
gl = glsl_code
|
402 |
+
A = symbols('a b c')
|
403 |
+
assert gl(A, array_type='AbcType', glsl_types=False) == 'AbcType[3](a, b, c)'
|
404 |
+
|
405 |
+
def test_Matrices_1x7_spread_assign_to_symbols():
|
406 |
+
gl = glsl_code
|
407 |
+
A = Matrix([1,2,3,4,5,6,7])
|
408 |
+
assign_to = symbols('x.a x.b x.c x.d x.e x.f x.g')
|
409 |
+
assert gl(A, assign_to=assign_to) == textwrap.dedent('''\
|
410 |
+
x.a = 1;
|
411 |
+
x.b = 2;
|
412 |
+
x.c = 3;
|
413 |
+
x.d = 4;
|
414 |
+
x.e = 5;
|
415 |
+
x.f = 6;
|
416 |
+
x.g = 7;'''
|
417 |
+
)
|
418 |
+
|
419 |
+
def test_spread_assign_to_nested_symbols():
|
420 |
+
gl = glsl_code
|
421 |
+
expr = ((1,2,3), (1,2,3))
|
422 |
+
assign_to = (symbols('a b c'), symbols('x y z'))
|
423 |
+
assert gl(expr, assign_to=assign_to) == textwrap.dedent('''\
|
424 |
+
a = 1;
|
425 |
+
b = 2;
|
426 |
+
c = 3;
|
427 |
+
x = 1;
|
428 |
+
y = 2;
|
429 |
+
z = 3;'''
|
430 |
+
)
|
431 |
+
|
432 |
+
def test_spread_assign_to_deeply_nested_symbols():
|
433 |
+
gl = glsl_code
|
434 |
+
a, b, c, x, y, z = symbols('a b c x y z')
|
435 |
+
expr = (((1,2),3), ((1,2),3))
|
436 |
+
assign_to = (((a, b), c), ((x, y), z))
|
437 |
+
assert gl(expr, assign_to=assign_to) == textwrap.dedent('''\
|
438 |
+
a = 1;
|
439 |
+
b = 2;
|
440 |
+
c = 3;
|
441 |
+
x = 1;
|
442 |
+
y = 2;
|
443 |
+
z = 3;'''
|
444 |
+
)
|
445 |
+
|
446 |
+
def test_matrix_of_tuples_spread_assign_to_symbols():
|
447 |
+
gl = glsl_code
|
448 |
+
with warns_deprecated_sympy():
|
449 |
+
expr = Matrix([[(1,2),(3,4)],[(5,6),(7,8)]])
|
450 |
+
assign_to = (symbols('a b'), symbols('c d'), symbols('e f'), symbols('g h'))
|
451 |
+
assert gl(expr, assign_to) == textwrap.dedent('''\
|
452 |
+
a = 1;
|
453 |
+
b = 2;
|
454 |
+
c = 3;
|
455 |
+
d = 4;
|
456 |
+
e = 5;
|
457 |
+
f = 6;
|
458 |
+
g = 7;
|
459 |
+
h = 8;'''
|
460 |
+
)
|
461 |
+
|
462 |
+
def test_cannot_assign_to_cause_mismatched_length():
|
463 |
+
expr = (1, 2)
|
464 |
+
assign_to = symbols('x y z')
|
465 |
+
raises(ValueError, lambda: glsl_code(expr, assign_to))
|
466 |
+
|
467 |
+
def test_matrix_4x4_assign():
|
468 |
+
gl = glsl_code
|
469 |
+
expr = MatrixSymbol('A',4,4) * MatrixSymbol('B',4,4) + MatrixSymbol('C',4,4)
|
470 |
+
assign_to = MatrixSymbol('X',4,4)
|
471 |
+
assert gl(expr, assign_to=assign_to) == textwrap.dedent('''\
|
472 |
+
X[0][0] = A[0][0]*B[0][0] + A[0][1]*B[1][0] + A[0][2]*B[2][0] + A[0][3]*B[3][0] + C[0][0];
|
473 |
+
X[0][1] = A[0][0]*B[0][1] + A[0][1]*B[1][1] + A[0][2]*B[2][1] + A[0][3]*B[3][1] + C[0][1];
|
474 |
+
X[0][2] = A[0][0]*B[0][2] + A[0][1]*B[1][2] + A[0][2]*B[2][2] + A[0][3]*B[3][2] + C[0][2];
|
475 |
+
X[0][3] = A[0][0]*B[0][3] + A[0][1]*B[1][3] + A[0][2]*B[2][3] + A[0][3]*B[3][3] + C[0][3];
|
476 |
+
X[1][0] = A[1][0]*B[0][0] + A[1][1]*B[1][0] + A[1][2]*B[2][0] + A[1][3]*B[3][0] + C[1][0];
|
477 |
+
X[1][1] = A[1][0]*B[0][1] + A[1][1]*B[1][1] + A[1][2]*B[2][1] + A[1][3]*B[3][1] + C[1][1];
|
478 |
+
X[1][2] = A[1][0]*B[0][2] + A[1][1]*B[1][2] + A[1][2]*B[2][2] + A[1][3]*B[3][2] + C[1][2];
|
479 |
+
X[1][3] = A[1][0]*B[0][3] + A[1][1]*B[1][3] + A[1][2]*B[2][3] + A[1][3]*B[3][3] + C[1][3];
|
480 |
+
X[2][0] = A[2][0]*B[0][0] + A[2][1]*B[1][0] + A[2][2]*B[2][0] + A[2][3]*B[3][0] + C[2][0];
|
481 |
+
X[2][1] = A[2][0]*B[0][1] + A[2][1]*B[1][1] + A[2][2]*B[2][1] + A[2][3]*B[3][1] + C[2][1];
|
482 |
+
X[2][2] = A[2][0]*B[0][2] + A[2][1]*B[1][2] + A[2][2]*B[2][2] + A[2][3]*B[3][2] + C[2][2];
|
483 |
+
X[2][3] = A[2][0]*B[0][3] + A[2][1]*B[1][3] + A[2][2]*B[2][3] + A[2][3]*B[3][3] + C[2][3];
|
484 |
+
X[3][0] = A[3][0]*B[0][0] + A[3][1]*B[1][0] + A[3][2]*B[2][0] + A[3][3]*B[3][0] + C[3][0];
|
485 |
+
X[3][1] = A[3][0]*B[0][1] + A[3][1]*B[1][1] + A[3][2]*B[2][1] + A[3][3]*B[3][1] + C[3][1];
|
486 |
+
X[3][2] = A[3][0]*B[0][2] + A[3][1]*B[1][2] + A[3][2]*B[2][2] + A[3][3]*B[3][2] + C[3][2];
|
487 |
+
X[3][3] = A[3][0]*B[0][3] + A[3][1]*B[1][3] + A[3][2]*B[2][3] + A[3][3]*B[3][3] + C[3][3];'''
|
488 |
+
)
|
489 |
+
|
490 |
+
def test_1xN_vecs():
|
491 |
+
gl = glsl_code
|
492 |
+
for i in range(1,10):
|
493 |
+
A = Matrix(range(i))
|
494 |
+
assert gl(A.transpose()) == gl(A)
|
495 |
+
assert gl(A,mat_transpose=True) == gl(A)
|
496 |
+
if i > 1:
|
497 |
+
if i <= 4:
|
498 |
+
assert gl(A) == 'vec%s(%s)' % (i,', '.join(str(s) for s in range(i)))
|
499 |
+
else:
|
500 |
+
assert gl(A) == 'float[%s](%s)' % (i,', '.join(str(s) for s in range(i)))
|
501 |
+
|
502 |
+
def test_MxN_mats():
|
503 |
+
generatedAssertions='def test_misc_mats():\n'
|
504 |
+
for i in range(1,6):
|
505 |
+
for j in range(1,6):
|
506 |
+
A = Matrix([[x + y*j for x in range(j)] for y in range(i)])
|
507 |
+
gl = glsl_code(A)
|
508 |
+
glTransposed = glsl_code(A,mat_transpose=True)
|
509 |
+
generatedAssertions+=' mat = '+StrPrinter()._print(A)+'\n\n'
|
510 |
+
generatedAssertions+=' gl = \'\'\''+gl+'\'\'\'\n'
|
511 |
+
generatedAssertions+=' glTransposed = \'\'\''+glTransposed+'\'\'\'\n\n'
|
512 |
+
generatedAssertions+=' assert glsl_code(mat) == gl\n'
|
513 |
+
generatedAssertions+=' assert glsl_code(mat,mat_transpose=True) == glTransposed\n'
|
514 |
+
if i == 1 and j == 1:
|
515 |
+
assert gl == '0'
|
516 |
+
elif i <= 4 and j <= 4 and i>1 and j>1:
|
517 |
+
assert gl.startswith('mat%s' % j)
|
518 |
+
assert glTransposed.startswith('mat%s' % i)
|
519 |
+
elif i == 1 and j <= 4:
|
520 |
+
assert gl.startswith('vec')
|
521 |
+
elif j == 1 and i <= 4:
|
522 |
+
assert gl.startswith('vec')
|
523 |
+
elif i == 1:
|
524 |
+
assert gl.startswith('float[%s]('% j*i)
|
525 |
+
assert glTransposed.startswith('float[%s]('% j*i)
|
526 |
+
elif j == 1:
|
527 |
+
assert gl.startswith('float[%s]('% i*j)
|
528 |
+
assert glTransposed.startswith('float[%s]('% i*j)
|
529 |
+
else:
|
530 |
+
assert gl.startswith('float[%s](' % (i*j))
|
531 |
+
assert glTransposed.startswith('float[%s](' % (i*j))
|
532 |
+
glNested = glsl_code(A,mat_nested=True)
|
533 |
+
glNestedTransposed = glsl_code(A,mat_transpose=True,mat_nested=True)
|
534 |
+
assert glNested.startswith('float[%s][%s]' % (i,j))
|
535 |
+
assert glNestedTransposed.startswith('float[%s][%s]' % (j,i))
|
536 |
+
generatedAssertions+=' glNested = \'\'\''+glNested+'\'\'\'\n'
|
537 |
+
generatedAssertions+=' glNestedTransposed = \'\'\''+glNestedTransposed+'\'\'\'\n\n'
|
538 |
+
generatedAssertions+=' assert glsl_code(mat,mat_nested=True) == glNested\n'
|
539 |
+
generatedAssertions+=' assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed\n\n'
|
540 |
+
generateAssertions = False # set this to true to write bake these generated tests to a file
|
541 |
+
if generateAssertions:
|
542 |
+
gen = open('test_glsl_generated_matrices.py','w')
|
543 |
+
gen.write(generatedAssertions)
|
544 |
+
gen.close()
|
545 |
+
|
546 |
+
|
547 |
+
# these assertions were generated from the previous function
|
548 |
+
# glsl has complicated rules and this makes it easier to look over all the cases
|
549 |
+
def test_misc_mats():
|
550 |
+
|
551 |
+
mat = Matrix([[0]])
|
552 |
+
|
553 |
+
gl = '''0'''
|
554 |
+
glTransposed = '''0'''
|
555 |
+
|
556 |
+
assert glsl_code(mat) == gl
|
557 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
558 |
+
|
559 |
+
mat = Matrix([[0, 1]])
|
560 |
+
|
561 |
+
gl = '''vec2(0, 1)'''
|
562 |
+
glTransposed = '''vec2(0, 1)'''
|
563 |
+
|
564 |
+
assert glsl_code(mat) == gl
|
565 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
566 |
+
|
567 |
+
mat = Matrix([[0, 1, 2]])
|
568 |
+
|
569 |
+
gl = '''vec3(0, 1, 2)'''
|
570 |
+
glTransposed = '''vec3(0, 1, 2)'''
|
571 |
+
|
572 |
+
assert glsl_code(mat) == gl
|
573 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
574 |
+
|
575 |
+
mat = Matrix([[0, 1, 2, 3]])
|
576 |
+
|
577 |
+
gl = '''vec4(0, 1, 2, 3)'''
|
578 |
+
glTransposed = '''vec4(0, 1, 2, 3)'''
|
579 |
+
|
580 |
+
assert glsl_code(mat) == gl
|
581 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
582 |
+
|
583 |
+
mat = Matrix([[0, 1, 2, 3, 4]])
|
584 |
+
|
585 |
+
gl = '''float[5](0, 1, 2, 3, 4)'''
|
586 |
+
glTransposed = '''float[5](0, 1, 2, 3, 4)'''
|
587 |
+
|
588 |
+
assert glsl_code(mat) == gl
|
589 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
590 |
+
|
591 |
+
mat = Matrix([
|
592 |
+
[0],
|
593 |
+
[1]])
|
594 |
+
|
595 |
+
gl = '''vec2(0, 1)'''
|
596 |
+
glTransposed = '''vec2(0, 1)'''
|
597 |
+
|
598 |
+
assert glsl_code(mat) == gl
|
599 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
600 |
+
|
601 |
+
mat = Matrix([
|
602 |
+
[0, 1],
|
603 |
+
[2, 3]])
|
604 |
+
|
605 |
+
gl = '''mat2(0, 1, 2, 3)'''
|
606 |
+
glTransposed = '''mat2(0, 2, 1, 3)'''
|
607 |
+
|
608 |
+
assert glsl_code(mat) == gl
|
609 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
610 |
+
|
611 |
+
mat = Matrix([
|
612 |
+
[0, 1, 2],
|
613 |
+
[3, 4, 5]])
|
614 |
+
|
615 |
+
gl = '''mat3x2(0, 1, 2, 3, 4, 5)'''
|
616 |
+
glTransposed = '''mat2x3(0, 3, 1, 4, 2, 5)'''
|
617 |
+
|
618 |
+
assert glsl_code(mat) == gl
|
619 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
620 |
+
|
621 |
+
mat = Matrix([
|
622 |
+
[0, 1, 2, 3],
|
623 |
+
[4, 5, 6, 7]])
|
624 |
+
|
625 |
+
gl = '''mat4x2(0, 1, 2, 3, 4, 5, 6, 7)'''
|
626 |
+
glTransposed = '''mat2x4(0, 4, 1, 5, 2, 6, 3, 7)'''
|
627 |
+
|
628 |
+
assert glsl_code(mat) == gl
|
629 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
630 |
+
|
631 |
+
mat = Matrix([
|
632 |
+
[0, 1, 2, 3, 4],
|
633 |
+
[5, 6, 7, 8, 9]])
|
634 |
+
|
635 |
+
gl = '''float[10](
|
636 |
+
0, 1, 2, 3, 4,
|
637 |
+
5, 6, 7, 8, 9
|
638 |
+
) /* a 2x5 matrix */'''
|
639 |
+
glTransposed = '''float[10](
|
640 |
+
0, 5,
|
641 |
+
1, 6,
|
642 |
+
2, 7,
|
643 |
+
3, 8,
|
644 |
+
4, 9
|
645 |
+
) /* a 5x2 matrix */'''
|
646 |
+
|
647 |
+
assert glsl_code(mat) == gl
|
648 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
649 |
+
glNested = '''float[2][5](
|
650 |
+
float[](0, 1, 2, 3, 4),
|
651 |
+
float[](5, 6, 7, 8, 9)
|
652 |
+
)'''
|
653 |
+
glNestedTransposed = '''float[5][2](
|
654 |
+
float[](0, 5),
|
655 |
+
float[](1, 6),
|
656 |
+
float[](2, 7),
|
657 |
+
float[](3, 8),
|
658 |
+
float[](4, 9)
|
659 |
+
)'''
|
660 |
+
|
661 |
+
assert glsl_code(mat,mat_nested=True) == glNested
|
662 |
+
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
|
663 |
+
|
664 |
+
mat = Matrix([
|
665 |
+
[0],
|
666 |
+
[1],
|
667 |
+
[2]])
|
668 |
+
|
669 |
+
gl = '''vec3(0, 1, 2)'''
|
670 |
+
glTransposed = '''vec3(0, 1, 2)'''
|
671 |
+
|
672 |
+
assert glsl_code(mat) == gl
|
673 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
674 |
+
|
675 |
+
mat = Matrix([
|
676 |
+
[0, 1],
|
677 |
+
[2, 3],
|
678 |
+
[4, 5]])
|
679 |
+
|
680 |
+
gl = '''mat2x3(0, 1, 2, 3, 4, 5)'''
|
681 |
+
glTransposed = '''mat3x2(0, 2, 4, 1, 3, 5)'''
|
682 |
+
|
683 |
+
assert glsl_code(mat) == gl
|
684 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
685 |
+
|
686 |
+
mat = Matrix([
|
687 |
+
[0, 1, 2],
|
688 |
+
[3, 4, 5],
|
689 |
+
[6, 7, 8]])
|
690 |
+
|
691 |
+
gl = '''mat3(0, 1, 2, 3, 4, 5, 6, 7, 8)'''
|
692 |
+
glTransposed = '''mat3(0, 3, 6, 1, 4, 7, 2, 5, 8)'''
|
693 |
+
|
694 |
+
assert glsl_code(mat) == gl
|
695 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
696 |
+
|
697 |
+
mat = Matrix([
|
698 |
+
[0, 1, 2, 3],
|
699 |
+
[4, 5, 6, 7],
|
700 |
+
[8, 9, 10, 11]])
|
701 |
+
|
702 |
+
gl = '''mat4x3(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)'''
|
703 |
+
glTransposed = '''mat3x4(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11)'''
|
704 |
+
|
705 |
+
assert glsl_code(mat) == gl
|
706 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
707 |
+
|
708 |
+
mat = Matrix([
|
709 |
+
[ 0, 1, 2, 3, 4],
|
710 |
+
[ 5, 6, 7, 8, 9],
|
711 |
+
[10, 11, 12, 13, 14]])
|
712 |
+
|
713 |
+
gl = '''float[15](
|
714 |
+
0, 1, 2, 3, 4,
|
715 |
+
5, 6, 7, 8, 9,
|
716 |
+
10, 11, 12, 13, 14
|
717 |
+
) /* a 3x5 matrix */'''
|
718 |
+
glTransposed = '''float[15](
|
719 |
+
0, 5, 10,
|
720 |
+
1, 6, 11,
|
721 |
+
2, 7, 12,
|
722 |
+
3, 8, 13,
|
723 |
+
4, 9, 14
|
724 |
+
) /* a 5x3 matrix */'''
|
725 |
+
|
726 |
+
assert glsl_code(mat) == gl
|
727 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
728 |
+
glNested = '''float[3][5](
|
729 |
+
float[]( 0, 1, 2, 3, 4),
|
730 |
+
float[]( 5, 6, 7, 8, 9),
|
731 |
+
float[](10, 11, 12, 13, 14)
|
732 |
+
)'''
|
733 |
+
glNestedTransposed = '''float[5][3](
|
734 |
+
float[](0, 5, 10),
|
735 |
+
float[](1, 6, 11),
|
736 |
+
float[](2, 7, 12),
|
737 |
+
float[](3, 8, 13),
|
738 |
+
float[](4, 9, 14)
|
739 |
+
)'''
|
740 |
+
|
741 |
+
assert glsl_code(mat,mat_nested=True) == glNested
|
742 |
+
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
|
743 |
+
|
744 |
+
mat = Matrix([
|
745 |
+
[0],
|
746 |
+
[1],
|
747 |
+
[2],
|
748 |
+
[3]])
|
749 |
+
|
750 |
+
gl = '''vec4(0, 1, 2, 3)'''
|
751 |
+
glTransposed = '''vec4(0, 1, 2, 3)'''
|
752 |
+
|
753 |
+
assert glsl_code(mat) == gl
|
754 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
755 |
+
|
756 |
+
mat = Matrix([
|
757 |
+
[0, 1],
|
758 |
+
[2, 3],
|
759 |
+
[4, 5],
|
760 |
+
[6, 7]])
|
761 |
+
|
762 |
+
gl = '''mat2x4(0, 1, 2, 3, 4, 5, 6, 7)'''
|
763 |
+
glTransposed = '''mat4x2(0, 2, 4, 6, 1, 3, 5, 7)'''
|
764 |
+
|
765 |
+
assert glsl_code(mat) == gl
|
766 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
767 |
+
|
768 |
+
mat = Matrix([
|
769 |
+
[0, 1, 2],
|
770 |
+
[3, 4, 5],
|
771 |
+
[6, 7, 8],
|
772 |
+
[9, 10, 11]])
|
773 |
+
|
774 |
+
gl = '''mat3x4(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)'''
|
775 |
+
glTransposed = '''mat4x3(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11)'''
|
776 |
+
|
777 |
+
assert glsl_code(mat) == gl
|
778 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
779 |
+
|
780 |
+
mat = Matrix([
|
781 |
+
[ 0, 1, 2, 3],
|
782 |
+
[ 4, 5, 6, 7],
|
783 |
+
[ 8, 9, 10, 11],
|
784 |
+
[12, 13, 14, 15]])
|
785 |
+
|
786 |
+
gl = '''mat4( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)'''
|
787 |
+
glTransposed = '''mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15)'''
|
788 |
+
|
789 |
+
assert glsl_code(mat) == gl
|
790 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
791 |
+
|
792 |
+
mat = Matrix([
|
793 |
+
[ 0, 1, 2, 3, 4],
|
794 |
+
[ 5, 6, 7, 8, 9],
|
795 |
+
[10, 11, 12, 13, 14],
|
796 |
+
[15, 16, 17, 18, 19]])
|
797 |
+
|
798 |
+
gl = '''float[20](
|
799 |
+
0, 1, 2, 3, 4,
|
800 |
+
5, 6, 7, 8, 9,
|
801 |
+
10, 11, 12, 13, 14,
|
802 |
+
15, 16, 17, 18, 19
|
803 |
+
) /* a 4x5 matrix */'''
|
804 |
+
glTransposed = '''float[20](
|
805 |
+
0, 5, 10, 15,
|
806 |
+
1, 6, 11, 16,
|
807 |
+
2, 7, 12, 17,
|
808 |
+
3, 8, 13, 18,
|
809 |
+
4, 9, 14, 19
|
810 |
+
) /* a 5x4 matrix */'''
|
811 |
+
|
812 |
+
assert glsl_code(mat) == gl
|
813 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
814 |
+
glNested = '''float[4][5](
|
815 |
+
float[]( 0, 1, 2, 3, 4),
|
816 |
+
float[]( 5, 6, 7, 8, 9),
|
817 |
+
float[](10, 11, 12, 13, 14),
|
818 |
+
float[](15, 16, 17, 18, 19)
|
819 |
+
)'''
|
820 |
+
glNestedTransposed = '''float[5][4](
|
821 |
+
float[](0, 5, 10, 15),
|
822 |
+
float[](1, 6, 11, 16),
|
823 |
+
float[](2, 7, 12, 17),
|
824 |
+
float[](3, 8, 13, 18),
|
825 |
+
float[](4, 9, 14, 19)
|
826 |
+
)'''
|
827 |
+
|
828 |
+
assert glsl_code(mat,mat_nested=True) == glNested
|
829 |
+
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
|
830 |
+
|
831 |
+
mat = Matrix([
|
832 |
+
[0],
|
833 |
+
[1],
|
834 |
+
[2],
|
835 |
+
[3],
|
836 |
+
[4]])
|
837 |
+
|
838 |
+
gl = '''float[5](0, 1, 2, 3, 4)'''
|
839 |
+
glTransposed = '''float[5](0, 1, 2, 3, 4)'''
|
840 |
+
|
841 |
+
assert glsl_code(mat) == gl
|
842 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
843 |
+
|
844 |
+
mat = Matrix([
|
845 |
+
[0, 1],
|
846 |
+
[2, 3],
|
847 |
+
[4, 5],
|
848 |
+
[6, 7],
|
849 |
+
[8, 9]])
|
850 |
+
|
851 |
+
gl = '''float[10](
|
852 |
+
0, 1,
|
853 |
+
2, 3,
|
854 |
+
4, 5,
|
855 |
+
6, 7,
|
856 |
+
8, 9
|
857 |
+
) /* a 5x2 matrix */'''
|
858 |
+
glTransposed = '''float[10](
|
859 |
+
0, 2, 4, 6, 8,
|
860 |
+
1, 3, 5, 7, 9
|
861 |
+
) /* a 2x5 matrix */'''
|
862 |
+
|
863 |
+
assert glsl_code(mat) == gl
|
864 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
865 |
+
glNested = '''float[5][2](
|
866 |
+
float[](0, 1),
|
867 |
+
float[](2, 3),
|
868 |
+
float[](4, 5),
|
869 |
+
float[](6, 7),
|
870 |
+
float[](8, 9)
|
871 |
+
)'''
|
872 |
+
glNestedTransposed = '''float[2][5](
|
873 |
+
float[](0, 2, 4, 6, 8),
|
874 |
+
float[](1, 3, 5, 7, 9)
|
875 |
+
)'''
|
876 |
+
|
877 |
+
assert glsl_code(mat,mat_nested=True) == glNested
|
878 |
+
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
|
879 |
+
|
880 |
+
mat = Matrix([
|
881 |
+
[ 0, 1, 2],
|
882 |
+
[ 3, 4, 5],
|
883 |
+
[ 6, 7, 8],
|
884 |
+
[ 9, 10, 11],
|
885 |
+
[12, 13, 14]])
|
886 |
+
|
887 |
+
gl = '''float[15](
|
888 |
+
0, 1, 2,
|
889 |
+
3, 4, 5,
|
890 |
+
6, 7, 8,
|
891 |
+
9, 10, 11,
|
892 |
+
12, 13, 14
|
893 |
+
) /* a 5x3 matrix */'''
|
894 |
+
glTransposed = '''float[15](
|
895 |
+
0, 3, 6, 9, 12,
|
896 |
+
1, 4, 7, 10, 13,
|
897 |
+
2, 5, 8, 11, 14
|
898 |
+
) /* a 3x5 matrix */'''
|
899 |
+
|
900 |
+
assert glsl_code(mat) == gl
|
901 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
902 |
+
glNested = '''float[5][3](
|
903 |
+
float[]( 0, 1, 2),
|
904 |
+
float[]( 3, 4, 5),
|
905 |
+
float[]( 6, 7, 8),
|
906 |
+
float[]( 9, 10, 11),
|
907 |
+
float[](12, 13, 14)
|
908 |
+
)'''
|
909 |
+
glNestedTransposed = '''float[3][5](
|
910 |
+
float[](0, 3, 6, 9, 12),
|
911 |
+
float[](1, 4, 7, 10, 13),
|
912 |
+
float[](2, 5, 8, 11, 14)
|
913 |
+
)'''
|
914 |
+
|
915 |
+
assert glsl_code(mat,mat_nested=True) == glNested
|
916 |
+
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
|
917 |
+
|
918 |
+
mat = Matrix([
|
919 |
+
[ 0, 1, 2, 3],
|
920 |
+
[ 4, 5, 6, 7],
|
921 |
+
[ 8, 9, 10, 11],
|
922 |
+
[12, 13, 14, 15],
|
923 |
+
[16, 17, 18, 19]])
|
924 |
+
|
925 |
+
gl = '''float[20](
|
926 |
+
0, 1, 2, 3,
|
927 |
+
4, 5, 6, 7,
|
928 |
+
8, 9, 10, 11,
|
929 |
+
12, 13, 14, 15,
|
930 |
+
16, 17, 18, 19
|
931 |
+
) /* a 5x4 matrix */'''
|
932 |
+
glTransposed = '''float[20](
|
933 |
+
0, 4, 8, 12, 16,
|
934 |
+
1, 5, 9, 13, 17,
|
935 |
+
2, 6, 10, 14, 18,
|
936 |
+
3, 7, 11, 15, 19
|
937 |
+
) /* a 4x5 matrix */'''
|
938 |
+
|
939 |
+
assert glsl_code(mat) == gl
|
940 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
941 |
+
glNested = '''float[5][4](
|
942 |
+
float[]( 0, 1, 2, 3),
|
943 |
+
float[]( 4, 5, 6, 7),
|
944 |
+
float[]( 8, 9, 10, 11),
|
945 |
+
float[](12, 13, 14, 15),
|
946 |
+
float[](16, 17, 18, 19)
|
947 |
+
)'''
|
948 |
+
glNestedTransposed = '''float[4][5](
|
949 |
+
float[](0, 4, 8, 12, 16),
|
950 |
+
float[](1, 5, 9, 13, 17),
|
951 |
+
float[](2, 6, 10, 14, 18),
|
952 |
+
float[](3, 7, 11, 15, 19)
|
953 |
+
)'''
|
954 |
+
|
955 |
+
assert glsl_code(mat,mat_nested=True) == glNested
|
956 |
+
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
|
957 |
+
|
958 |
+
mat = Matrix([
|
959 |
+
[ 0, 1, 2, 3, 4],
|
960 |
+
[ 5, 6, 7, 8, 9],
|
961 |
+
[10, 11, 12, 13, 14],
|
962 |
+
[15, 16, 17, 18, 19],
|
963 |
+
[20, 21, 22, 23, 24]])
|
964 |
+
|
965 |
+
gl = '''float[25](
|
966 |
+
0, 1, 2, 3, 4,
|
967 |
+
5, 6, 7, 8, 9,
|
968 |
+
10, 11, 12, 13, 14,
|
969 |
+
15, 16, 17, 18, 19,
|
970 |
+
20, 21, 22, 23, 24
|
971 |
+
) /* a 5x5 matrix */'''
|
972 |
+
glTransposed = '''float[25](
|
973 |
+
0, 5, 10, 15, 20,
|
974 |
+
1, 6, 11, 16, 21,
|
975 |
+
2, 7, 12, 17, 22,
|
976 |
+
3, 8, 13, 18, 23,
|
977 |
+
4, 9, 14, 19, 24
|
978 |
+
) /* a 5x5 matrix */'''
|
979 |
+
|
980 |
+
assert glsl_code(mat) == gl
|
981 |
+
assert glsl_code(mat,mat_transpose=True) == glTransposed
|
982 |
+
glNested = '''float[5][5](
|
983 |
+
float[]( 0, 1, 2, 3, 4),
|
984 |
+
float[]( 5, 6, 7, 8, 9),
|
985 |
+
float[](10, 11, 12, 13, 14),
|
986 |
+
float[](15, 16, 17, 18, 19),
|
987 |
+
float[](20, 21, 22, 23, 24)
|
988 |
+
)'''
|
989 |
+
glNestedTransposed = '''float[5][5](
|
990 |
+
float[](0, 5, 10, 15, 20),
|
991 |
+
float[](1, 6, 11, 16, 21),
|
992 |
+
float[](2, 7, 12, 17, 22),
|
993 |
+
float[](3, 8, 13, 18, 23),
|
994 |
+
float[](4, 9, 14, 19, 24)
|
995 |
+
)'''
|
996 |
+
|
997 |
+
assert glsl_code(mat,mat_nested=True) == glNested
|
998 |
+
assert glsl_code(mat,mat_nested=True,mat_transpose=True) == glNestedTransposed
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_gtk.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.functions.elementary.trigonometric import sin
|
2 |
+
from sympy.printing.gtk import print_gtk
|
3 |
+
from sympy.testing.pytest import XFAIL, raises
|
4 |
+
|
5 |
+
# this test fails if python-lxml isn't installed. We don't want to depend on
|
6 |
+
# anything with SymPy
|
7 |
+
|
8 |
+
|
9 |
+
@XFAIL
|
10 |
+
def test_1():
|
11 |
+
from sympy.abc import x
|
12 |
+
print_gtk(x**2, start_viewer=False)
|
13 |
+
print_gtk(x**2 + sin(x)/4, start_viewer=False)
|
14 |
+
|
15 |
+
|
16 |
+
def test_settings():
|
17 |
+
from sympy.abc import x
|
18 |
+
raises(TypeError, lambda: print_gtk(x, method="garbage"))
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_jax.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.core.mod import Mod
|
3 |
+
from sympy.core.relational import (Equality, Unequality)
|
4 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
5 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
6 |
+
from sympy.matrices.expressions.blockmatrix import BlockMatrix
|
7 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
8 |
+
from sympy.matrices.expressions.special import Identity
|
9 |
+
from sympy.utilities.lambdify import lambdify
|
10 |
+
|
11 |
+
from sympy.abc import x, i, j, a, b, c, d
|
12 |
+
from sympy.core import Pow
|
13 |
+
from sympy.codegen.matrix_nodes import MatrixSolve
|
14 |
+
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
|
15 |
+
from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Sqrt
|
16 |
+
from sympy.tensor.array import Array
|
17 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \
|
18 |
+
PermuteDims, ArrayDiagonal
|
19 |
+
from sympy.printing.numpy import JaxPrinter, _jax_known_constants, _jax_known_functions
|
20 |
+
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
21 |
+
|
22 |
+
from sympy.testing.pytest import skip, raises
|
23 |
+
from sympy.external import import_module
|
24 |
+
|
25 |
+
# Unlike NumPy which will aggressively promote operands to double precision,
|
26 |
+
# jax always uses single precision. Double precision in jax can be
|
27 |
+
# configured before the call to `import jax`, however this must be explicitly
|
28 |
+
# configured and is not fully supported. Thus, the tests here have been modified
|
29 |
+
# from the tests in test_numpy.py, only in the fact that they assert lambdify
|
30 |
+
# function accuracy to only single precision accuracy.
|
31 |
+
# https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
|
32 |
+
|
33 |
+
jax = import_module('jax')
|
34 |
+
|
35 |
+
if jax:
|
36 |
+
deafult_float_info = jax.numpy.finfo(jax.numpy.array([]).dtype)
|
37 |
+
JAX_DEFAULT_EPSILON = deafult_float_info.eps
|
38 |
+
|
39 |
+
def test_jax_piecewise_regression():
|
40 |
+
"""
|
41 |
+
NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid
|
42 |
+
breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+.
|
43 |
+
See gh-9747 and gh-9749 for details.
|
44 |
+
"""
|
45 |
+
printer = JaxPrinter()
|
46 |
+
p = Piecewise((1, x < 0), (0, True))
|
47 |
+
assert printer.doprint(p) == \
|
48 |
+
'jax.numpy.select([jax.numpy.less(x, 0),True], [1,0], default=jax.numpy.nan)'
|
49 |
+
assert printer.module_imports == {'jax.numpy': {'select', 'less', 'nan'}}
|
50 |
+
|
51 |
+
|
52 |
+
def test_jax_logaddexp():
|
53 |
+
lae = logaddexp(a, b)
|
54 |
+
assert JaxPrinter().doprint(lae) == 'jax.numpy.logaddexp(a, b)'
|
55 |
+
lae2 = logaddexp2(a, b)
|
56 |
+
assert JaxPrinter().doprint(lae2) == 'jax.numpy.logaddexp2(a, b)'
|
57 |
+
|
58 |
+
|
59 |
+
def test_jax_sum():
|
60 |
+
if not jax:
|
61 |
+
skip("JAX not installed")
|
62 |
+
|
63 |
+
s = Sum(x ** i, (i, a, b))
|
64 |
+
f = lambdify((a, b, x), s, 'jax')
|
65 |
+
|
66 |
+
a_, b_ = 0, 10
|
67 |
+
x_ = jax.numpy.linspace(-1, +1, 10)
|
68 |
+
assert jax.numpy.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1)))
|
69 |
+
|
70 |
+
s = Sum(i * x, (i, a, b))
|
71 |
+
f = lambdify((a, b, x), s, 'jax')
|
72 |
+
|
73 |
+
a_, b_ = 0, 10
|
74 |
+
x_ = jax.numpy.linspace(-1, +1, 10)
|
75 |
+
assert jax.numpy.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1)))
|
76 |
+
|
77 |
+
|
78 |
+
def test_jax_multiple_sums():
|
79 |
+
if not jax:
|
80 |
+
skip("JAX not installed")
|
81 |
+
|
82 |
+
s = Sum((x + j) * i, (i, a, b), (j, c, d))
|
83 |
+
f = lambdify((a, b, c, d, x), s, 'jax')
|
84 |
+
|
85 |
+
a_, b_ = 0, 10
|
86 |
+
c_, d_ = 11, 21
|
87 |
+
x_ = jax.numpy.linspace(-1, +1, 10)
|
88 |
+
assert jax.numpy.allclose(f(a_, b_, c_, d_, x_),
|
89 |
+
sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1)))
|
90 |
+
|
91 |
+
|
92 |
+
def test_jax_codegen_einsum():
|
93 |
+
if not jax:
|
94 |
+
skip("JAX not installed")
|
95 |
+
|
96 |
+
M = MatrixSymbol("M", 2, 2)
|
97 |
+
N = MatrixSymbol("N", 2, 2)
|
98 |
+
|
99 |
+
cg = convert_matrix_to_array(M * N)
|
100 |
+
f = lambdify((M, N), cg, 'jax')
|
101 |
+
|
102 |
+
ma = jax.numpy.array([[1, 2], [3, 4]])
|
103 |
+
mb = jax.numpy.array([[1,-2], [-1, 3]])
|
104 |
+
assert (f(ma, mb) == jax.numpy.matmul(ma, mb)).all()
|
105 |
+
|
106 |
+
|
107 |
+
def test_jax_codegen_extra():
|
108 |
+
if not jax:
|
109 |
+
skip("JAX not installed")
|
110 |
+
|
111 |
+
M = MatrixSymbol("M", 2, 2)
|
112 |
+
N = MatrixSymbol("N", 2, 2)
|
113 |
+
P = MatrixSymbol("P", 2, 2)
|
114 |
+
Q = MatrixSymbol("Q", 2, 2)
|
115 |
+
ma = jax.numpy.array([[1, 2], [3, 4]])
|
116 |
+
mb = jax.numpy.array([[1,-2], [-1, 3]])
|
117 |
+
mc = jax.numpy.array([[2, 0], [1, 2]])
|
118 |
+
md = jax.numpy.array([[1,-1], [4, 7]])
|
119 |
+
|
120 |
+
cg = ArrayTensorProduct(M, N)
|
121 |
+
f = lambdify((M, N), cg, 'jax')
|
122 |
+
assert (f(ma, mb) == jax.numpy.einsum(ma, [0, 1], mb, [2, 3])).all()
|
123 |
+
|
124 |
+
cg = ArrayAdd(M, N)
|
125 |
+
f = lambdify((M, N), cg, 'jax')
|
126 |
+
assert (f(ma, mb) == ma+mb).all()
|
127 |
+
|
128 |
+
cg = ArrayAdd(M, N, P)
|
129 |
+
f = lambdify((M, N, P), cg, 'jax')
|
130 |
+
assert (f(ma, mb, mc) == ma+mb+mc).all()
|
131 |
+
|
132 |
+
cg = ArrayAdd(M, N, P, Q)
|
133 |
+
f = lambdify((M, N, P, Q), cg, 'jax')
|
134 |
+
assert (f(ma, mb, mc, md) == ma+mb+mc+md).all()
|
135 |
+
|
136 |
+
cg = PermuteDims(M, [1, 0])
|
137 |
+
f = lambdify((M,), cg, 'jax')
|
138 |
+
assert (f(ma) == ma.T).all()
|
139 |
+
|
140 |
+
cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0])
|
141 |
+
f = lambdify((M, N), cg, 'jax')
|
142 |
+
assert (f(ma, mb) == jax.numpy.transpose(jax.numpy.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all()
|
143 |
+
|
144 |
+
cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2))
|
145 |
+
f = lambdify((M, N), cg, 'jax')
|
146 |
+
assert (f(ma, mb) == jax.numpy.diagonal(jax.numpy.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all()
|
147 |
+
|
148 |
+
|
149 |
+
def test_jax_relational():
|
150 |
+
if not jax:
|
151 |
+
skip("JAX not installed")
|
152 |
+
|
153 |
+
e = Equality(x, 1)
|
154 |
+
|
155 |
+
f = lambdify((x,), e, 'jax')
|
156 |
+
x_ = jax.numpy.array([0, 1, 2])
|
157 |
+
assert jax.numpy.array_equal(f(x_), [False, True, False])
|
158 |
+
|
159 |
+
e = Unequality(x, 1)
|
160 |
+
|
161 |
+
f = lambdify((x,), e, 'jax')
|
162 |
+
x_ = jax.numpy.array([0, 1, 2])
|
163 |
+
assert jax.numpy.array_equal(f(x_), [True, False, True])
|
164 |
+
|
165 |
+
e = (x < 1)
|
166 |
+
|
167 |
+
f = lambdify((x,), e, 'jax')
|
168 |
+
x_ = jax.numpy.array([0, 1, 2])
|
169 |
+
assert jax.numpy.array_equal(f(x_), [True, False, False])
|
170 |
+
|
171 |
+
e = (x <= 1)
|
172 |
+
|
173 |
+
f = lambdify((x,), e, 'jax')
|
174 |
+
x_ = jax.numpy.array([0, 1, 2])
|
175 |
+
assert jax.numpy.array_equal(f(x_), [True, True, False])
|
176 |
+
|
177 |
+
e = (x > 1)
|
178 |
+
|
179 |
+
f = lambdify((x,), e, 'jax')
|
180 |
+
x_ = jax.numpy.array([0, 1, 2])
|
181 |
+
assert jax.numpy.array_equal(f(x_), [False, False, True])
|
182 |
+
|
183 |
+
e = (x >= 1)
|
184 |
+
|
185 |
+
f = lambdify((x,), e, 'jax')
|
186 |
+
x_ = jax.numpy.array([0, 1, 2])
|
187 |
+
assert jax.numpy.array_equal(f(x_), [False, True, True])
|
188 |
+
|
189 |
+
# Multi-condition expressions
|
190 |
+
e = (x >= 1) & (x < 2)
|
191 |
+
f = lambdify((x,), e, 'jax')
|
192 |
+
x_ = jax.numpy.array([0, 1, 2])
|
193 |
+
assert jax.numpy.array_equal(f(x_), [False, True, False])
|
194 |
+
|
195 |
+
e = (x >= 1) | (x < 2)
|
196 |
+
f = lambdify((x,), e, 'jax')
|
197 |
+
x_ = jax.numpy.array([0, 1, 2])
|
198 |
+
assert jax.numpy.array_equal(f(x_), [True, True, True])
|
199 |
+
|
200 |
+
def test_jax_mod():
|
201 |
+
if not jax:
|
202 |
+
skip("JAX not installed")
|
203 |
+
|
204 |
+
e = Mod(a, b)
|
205 |
+
f = lambdify((a, b), e, 'jax')
|
206 |
+
|
207 |
+
a_ = jax.numpy.array([0, 1, 2, 3])
|
208 |
+
b_ = 2
|
209 |
+
assert jax.numpy.array_equal(f(a_, b_), [0, 1, 0, 1])
|
210 |
+
|
211 |
+
a_ = jax.numpy.array([0, 1, 2, 3])
|
212 |
+
b_ = jax.numpy.array([2, 2, 2, 2])
|
213 |
+
assert jax.numpy.array_equal(f(a_, b_), [0, 1, 0, 1])
|
214 |
+
|
215 |
+
a_ = jax.numpy.array([2, 3, 4, 5])
|
216 |
+
b_ = jax.numpy.array([2, 3, 4, 5])
|
217 |
+
assert jax.numpy.array_equal(f(a_, b_), [0, 0, 0, 0])
|
218 |
+
|
219 |
+
|
220 |
+
def test_jax_pow():
|
221 |
+
if not jax:
|
222 |
+
skip('JAX not installed')
|
223 |
+
|
224 |
+
expr = Pow(2, -1, evaluate=False)
|
225 |
+
f = lambdify([], expr, 'jax')
|
226 |
+
assert f() == 0.5
|
227 |
+
|
228 |
+
|
229 |
+
def test_jax_expm1():
|
230 |
+
if not jax:
|
231 |
+
skip("JAX not installed")
|
232 |
+
|
233 |
+
f = lambdify((a,), expm1(a), 'jax')
|
234 |
+
assert abs(f(1e-10) - 1e-10 - 5e-21) <= 1e-10 * JAX_DEFAULT_EPSILON
|
235 |
+
|
236 |
+
|
237 |
+
def test_jax_log1p():
|
238 |
+
if not jax:
|
239 |
+
skip("JAX not installed")
|
240 |
+
|
241 |
+
f = lambdify((a,), log1p(a), 'jax')
|
242 |
+
assert abs(f(1e-99) - 1e-99) <= 1e-99 * JAX_DEFAULT_EPSILON
|
243 |
+
|
244 |
+
def test_jax_hypot():
|
245 |
+
if not jax:
|
246 |
+
skip("JAX not installed")
|
247 |
+
assert abs(lambdify((a, b), hypot(a, b), 'jax')(3, 4) - 5) <= JAX_DEFAULT_EPSILON
|
248 |
+
|
249 |
+
def test_jax_log10():
|
250 |
+
if not jax:
|
251 |
+
skip("JAX not installed")
|
252 |
+
|
253 |
+
assert abs(lambdify((a,), log10(a), 'jax')(100) - 2) <= JAX_DEFAULT_EPSILON
|
254 |
+
|
255 |
+
|
256 |
+
def test_jax_exp2():
|
257 |
+
if not jax:
|
258 |
+
skip("JAX not installed")
|
259 |
+
assert abs(lambdify((a,), exp2(a), 'jax')(5) - 32) <= JAX_DEFAULT_EPSILON
|
260 |
+
|
261 |
+
|
262 |
+
def test_jax_log2():
|
263 |
+
if not jax:
|
264 |
+
skip("JAX not installed")
|
265 |
+
assert abs(lambdify((a,), log2(a), 'jax')(256) - 8) <= JAX_DEFAULT_EPSILON
|
266 |
+
|
267 |
+
|
268 |
+
def test_jax_Sqrt():
|
269 |
+
if not jax:
|
270 |
+
skip("JAX not installed")
|
271 |
+
assert abs(lambdify((a,), Sqrt(a), 'jax')(4) - 2) <= JAX_DEFAULT_EPSILON
|
272 |
+
|
273 |
+
|
274 |
+
def test_jax_sqrt():
|
275 |
+
if not jax:
|
276 |
+
skip("JAX not installed")
|
277 |
+
assert abs(lambdify((a,), sqrt(a), 'jax')(4) - 2) <= JAX_DEFAULT_EPSILON
|
278 |
+
|
279 |
+
|
280 |
+
def test_jax_matsolve():
|
281 |
+
if not jax:
|
282 |
+
skip("JAX not installed")
|
283 |
+
|
284 |
+
M = MatrixSymbol("M", 3, 3)
|
285 |
+
x = MatrixSymbol("x", 3, 1)
|
286 |
+
|
287 |
+
expr = M**(-1) * x + x
|
288 |
+
matsolve_expr = MatrixSolve(M, x) + x
|
289 |
+
|
290 |
+
f = lambdify((M, x), expr, 'jax')
|
291 |
+
f_matsolve = lambdify((M, x), matsolve_expr, 'jax')
|
292 |
+
|
293 |
+
m0 = jax.numpy.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]])
|
294 |
+
assert jax.numpy.linalg.matrix_rank(m0) == 3
|
295 |
+
|
296 |
+
x0 = jax.numpy.array([3, 4, 5])
|
297 |
+
|
298 |
+
assert jax.numpy.allclose(f_matsolve(m0, x0), f(m0, x0))
|
299 |
+
|
300 |
+
|
301 |
+
def test_16857():
|
302 |
+
if not jax:
|
303 |
+
skip("JAX not installed")
|
304 |
+
|
305 |
+
a_1 = MatrixSymbol('a_1', 10, 3)
|
306 |
+
a_2 = MatrixSymbol('a_2', 10, 3)
|
307 |
+
a_3 = MatrixSymbol('a_3', 10, 3)
|
308 |
+
a_4 = MatrixSymbol('a_4', 10, 3)
|
309 |
+
A = BlockMatrix([[a_1, a_2], [a_3, a_4]])
|
310 |
+
assert A.shape == (20, 6)
|
311 |
+
|
312 |
+
printer = JaxPrinter()
|
313 |
+
assert printer.doprint(A) == 'jax.numpy.block([[a_1, a_2], [a_3, a_4]])'
|
314 |
+
|
315 |
+
|
316 |
+
def test_issue_17006():
|
317 |
+
if not jax:
|
318 |
+
skip("JAX not installed")
|
319 |
+
|
320 |
+
M = MatrixSymbol("M", 2, 2)
|
321 |
+
|
322 |
+
f = lambdify(M, M + Identity(2), 'jax')
|
323 |
+
ma = jax.numpy.array([[1, 2], [3, 4]])
|
324 |
+
mr = jax.numpy.array([[2, 2], [3, 5]])
|
325 |
+
|
326 |
+
assert (f(ma) == mr).all()
|
327 |
+
|
328 |
+
from sympy.core.symbol import symbols
|
329 |
+
n = symbols('n', integer=True)
|
330 |
+
N = MatrixSymbol("M", n, n)
|
331 |
+
raises(NotImplementedError, lambda: lambdify(N, N + Identity(n), 'jax'))
|
332 |
+
|
333 |
+
def test_jax_array():
|
334 |
+
assert JaxPrinter().doprint(Array(((1, 2), (3, 5)))) == 'jax.numpy.array([[1, 2], [3, 5]])'
|
335 |
+
assert JaxPrinter().doprint(Array((1, 2))) == 'jax.numpy.array((1, 2))'
|
336 |
+
|
337 |
+
def test_jax_known_funcs_consts():
|
338 |
+
assert _jax_known_constants['NaN'] == 'jax.numpy.nan'
|
339 |
+
assert _jax_known_constants['EulerGamma'] == 'jax.numpy.euler_gamma'
|
340 |
+
|
341 |
+
assert _jax_known_functions['acos'] == 'jax.numpy.arccos'
|
342 |
+
assert _jax_known_functions['log'] == 'jax.numpy.log'
|
343 |
+
|
344 |
+
def test_jax_print_methods():
|
345 |
+
prntr = JaxPrinter()
|
346 |
+
assert hasattr(prntr, '_print_acos')
|
347 |
+
assert hasattr(prntr, '_print_log')
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_jscode.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import (pi, oo, symbols, Rational, Integer, GoldenRatio,
|
2 |
+
EulerGamma, Catalan, Lambda, Dummy, S, Eq, Ne, Le,
|
3 |
+
Lt, Gt, Ge, Mod)
|
4 |
+
from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt,
|
5 |
+
sinh, cosh, tanh, asin, acos, acosh, Max, Min)
|
6 |
+
from sympy.testing.pytest import raises
|
7 |
+
from sympy.printing.jscode import JavascriptCodePrinter
|
8 |
+
from sympy.utilities.lambdify import implemented_function
|
9 |
+
from sympy.tensor import IndexedBase, Idx
|
10 |
+
from sympy.matrices import Matrix, MatrixSymbol
|
11 |
+
|
12 |
+
from sympy.printing.jscode import jscode
|
13 |
+
|
14 |
+
x, y, z = symbols('x,y,z')
|
15 |
+
|
16 |
+
|
17 |
+
def test_printmethod():
|
18 |
+
assert jscode(Abs(x)) == "Math.abs(x)"
|
19 |
+
|
20 |
+
|
21 |
+
def test_jscode_sqrt():
|
22 |
+
assert jscode(sqrt(x)) == "Math.sqrt(x)"
|
23 |
+
assert jscode(x**0.5) == "Math.sqrt(x)"
|
24 |
+
assert jscode(x**(S.One/3)) == "Math.cbrt(x)"
|
25 |
+
|
26 |
+
|
27 |
+
def test_jscode_Pow():
|
28 |
+
g = implemented_function('g', Lambda(x, 2*x))
|
29 |
+
assert jscode(x**3) == "Math.pow(x, 3)"
|
30 |
+
assert jscode(x**(y**3)) == "Math.pow(x, Math.pow(y, 3))"
|
31 |
+
assert jscode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
|
32 |
+
"Math.pow(3.5*2*x, -x + Math.pow(y, x))/(Math.pow(x, 2) + y)"
|
33 |
+
assert jscode(x**-1.0) == '1/x'
|
34 |
+
|
35 |
+
|
36 |
+
def test_jscode_constants_mathh():
|
37 |
+
assert jscode(exp(1)) == "Math.E"
|
38 |
+
assert jscode(pi) == "Math.PI"
|
39 |
+
assert jscode(oo) == "Number.POSITIVE_INFINITY"
|
40 |
+
assert jscode(-oo) == "Number.NEGATIVE_INFINITY"
|
41 |
+
|
42 |
+
|
43 |
+
def test_jscode_constants_other():
|
44 |
+
assert jscode(
|
45 |
+
2*GoldenRatio) == "var GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17)
|
46 |
+
assert jscode(2*Catalan) == "var Catalan = %s;\n2*Catalan" % Catalan.evalf(17)
|
47 |
+
assert jscode(
|
48 |
+
2*EulerGamma) == "var EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17)
|
49 |
+
|
50 |
+
|
51 |
+
def test_jscode_Rational():
|
52 |
+
assert jscode(Rational(3, 7)) == "3/7"
|
53 |
+
assert jscode(Rational(18, 9)) == "2"
|
54 |
+
assert jscode(Rational(3, -7)) == "-3/7"
|
55 |
+
assert jscode(Rational(-3, -7)) == "3/7"
|
56 |
+
|
57 |
+
|
58 |
+
def test_Relational():
|
59 |
+
assert jscode(Eq(x, y)) == "x == y"
|
60 |
+
assert jscode(Ne(x, y)) == "x != y"
|
61 |
+
assert jscode(Le(x, y)) == "x <= y"
|
62 |
+
assert jscode(Lt(x, y)) == "x < y"
|
63 |
+
assert jscode(Gt(x, y)) == "x > y"
|
64 |
+
assert jscode(Ge(x, y)) == "x >= y"
|
65 |
+
|
66 |
+
|
67 |
+
def test_Mod():
|
68 |
+
assert jscode(Mod(x, y)) == '((x % y) + y) % y'
|
69 |
+
assert jscode(Mod(x, x + y)) == '((x % (x + y)) + (x + y)) % (x + y)'
|
70 |
+
p1, p2 = symbols('p1 p2', positive=True)
|
71 |
+
assert jscode(Mod(p1, p2)) == 'p1 % p2'
|
72 |
+
assert jscode(Mod(p1, p2 + 3)) == 'p1 % (p2 + 3)'
|
73 |
+
assert jscode(Mod(-3, -7, evaluate=False)) == '(-3) % (-7)'
|
74 |
+
assert jscode(-Mod(p1, p2)) == '-(p1 % p2)'
|
75 |
+
assert jscode(x*Mod(p1, p2)) == 'x*(p1 % p2)'
|
76 |
+
|
77 |
+
|
78 |
+
def test_jscode_Integer():
|
79 |
+
assert jscode(Integer(67)) == "67"
|
80 |
+
assert jscode(Integer(-1)) == "-1"
|
81 |
+
|
82 |
+
|
83 |
+
def test_jscode_functions():
|
84 |
+
assert jscode(sin(x) ** cos(x)) == "Math.pow(Math.sin(x), Math.cos(x))"
|
85 |
+
assert jscode(sinh(x) * cosh(x)) == "Math.sinh(x)*Math.cosh(x)"
|
86 |
+
assert jscode(Max(x, y) + Min(x, y)) == "Math.max(x, y) + Math.min(x, y)"
|
87 |
+
assert jscode(tanh(x)*acosh(y)) == "Math.tanh(x)*Math.acosh(y)"
|
88 |
+
assert jscode(asin(x)-acos(y)) == "-Math.acos(y) + Math.asin(x)"
|
89 |
+
|
90 |
+
|
91 |
+
def test_jscode_inline_function():
|
92 |
+
x = symbols('x')
|
93 |
+
g = implemented_function('g', Lambda(x, 2*x))
|
94 |
+
assert jscode(g(x)) == "2*x"
|
95 |
+
g = implemented_function('g', Lambda(x, 2*x/Catalan))
|
96 |
+
assert jscode(g(x)) == "var Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17)
|
97 |
+
A = IndexedBase('A')
|
98 |
+
i = Idx('i', symbols('n', integer=True))
|
99 |
+
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
|
100 |
+
assert jscode(g(A[i]), assign_to=A[i]) == (
|
101 |
+
"for (var i=0; i<n; i++){\n"
|
102 |
+
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
|
103 |
+
"}"
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
def test_jscode_exceptions():
|
108 |
+
assert jscode(ceiling(x)) == "Math.ceil(x)"
|
109 |
+
assert jscode(Abs(x)) == "Math.abs(x)"
|
110 |
+
|
111 |
+
|
112 |
+
def test_jscode_boolean():
|
113 |
+
assert jscode(x & y) == "x && y"
|
114 |
+
assert jscode(x | y) == "x || y"
|
115 |
+
assert jscode(~x) == "!x"
|
116 |
+
assert jscode(x & y & z) == "x && y && z"
|
117 |
+
assert jscode(x | y | z) == "x || y || z"
|
118 |
+
assert jscode((x & y) | z) == "z || x && y"
|
119 |
+
assert jscode((x | y) & z) == "z && (x || y)"
|
120 |
+
|
121 |
+
|
122 |
+
def test_jscode_Piecewise():
|
123 |
+
expr = Piecewise((x, x < 1), (x**2, True))
|
124 |
+
p = jscode(expr)
|
125 |
+
s = \
|
126 |
+
"""\
|
127 |
+
((x < 1) ? (
|
128 |
+
x
|
129 |
+
)
|
130 |
+
: (
|
131 |
+
Math.pow(x, 2)
|
132 |
+
))\
|
133 |
+
"""
|
134 |
+
assert p == s
|
135 |
+
assert jscode(expr, assign_to="c") == (
|
136 |
+
"if (x < 1) {\n"
|
137 |
+
" c = x;\n"
|
138 |
+
"}\n"
|
139 |
+
"else {\n"
|
140 |
+
" c = Math.pow(x, 2);\n"
|
141 |
+
"}")
|
142 |
+
# Check that Piecewise without a True (default) condition error
|
143 |
+
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
|
144 |
+
raises(ValueError, lambda: jscode(expr))
|
145 |
+
|
146 |
+
|
147 |
+
def test_jscode_Piecewise_deep():
|
148 |
+
p = jscode(2*Piecewise((x, x < 1), (x**2, True)))
|
149 |
+
s = \
|
150 |
+
"""\
|
151 |
+
2*((x < 1) ? (
|
152 |
+
x
|
153 |
+
)
|
154 |
+
: (
|
155 |
+
Math.pow(x, 2)
|
156 |
+
))\
|
157 |
+
"""
|
158 |
+
assert p == s
|
159 |
+
|
160 |
+
|
161 |
+
def test_jscode_settings():
|
162 |
+
raises(TypeError, lambda: jscode(sin(x), method="garbage"))
|
163 |
+
|
164 |
+
|
165 |
+
def test_jscode_Indexed():
|
166 |
+
n, m, o = symbols('n m o', integer=True)
|
167 |
+
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
|
168 |
+
p = JavascriptCodePrinter()
|
169 |
+
p._not_c = set()
|
170 |
+
|
171 |
+
x = IndexedBase('x')[j]
|
172 |
+
assert p._print_Indexed(x) == 'x[j]'
|
173 |
+
A = IndexedBase('A')[i, j]
|
174 |
+
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
|
175 |
+
B = IndexedBase('B')[i, j, k]
|
176 |
+
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
|
177 |
+
|
178 |
+
assert p._not_c == set()
|
179 |
+
|
180 |
+
|
181 |
+
def test_jscode_loops_matrix_vector():
|
182 |
+
n, m = symbols('n m', integer=True)
|
183 |
+
A = IndexedBase('A')
|
184 |
+
x = IndexedBase('x')
|
185 |
+
y = IndexedBase('y')
|
186 |
+
i = Idx('i', m)
|
187 |
+
j = Idx('j', n)
|
188 |
+
|
189 |
+
s = (
|
190 |
+
'for (var i=0; i<m; i++){\n'
|
191 |
+
' y[i] = 0;\n'
|
192 |
+
'}\n'
|
193 |
+
'for (var i=0; i<m; i++){\n'
|
194 |
+
' for (var j=0; j<n; j++){\n'
|
195 |
+
' y[i] = A[n*i + j]*x[j] + y[i];\n'
|
196 |
+
' }\n'
|
197 |
+
'}'
|
198 |
+
)
|
199 |
+
c = jscode(A[i, j]*x[j], assign_to=y[i])
|
200 |
+
assert c == s
|
201 |
+
|
202 |
+
|
203 |
+
def test_dummy_loops():
|
204 |
+
i, m = symbols('i m', integer=True, cls=Dummy)
|
205 |
+
x = IndexedBase('x')
|
206 |
+
y = IndexedBase('y')
|
207 |
+
i = Idx(i, m)
|
208 |
+
|
209 |
+
expected = (
|
210 |
+
'for (var i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
|
211 |
+
' y[i_%(icount)i] = x[i_%(icount)i];\n'
|
212 |
+
'}'
|
213 |
+
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
|
214 |
+
code = jscode(x[i], assign_to=y[i])
|
215 |
+
assert code == expected
|
216 |
+
|
217 |
+
|
218 |
+
def test_jscode_loops_add():
|
219 |
+
n, m = symbols('n m', integer=True)
|
220 |
+
A = IndexedBase('A')
|
221 |
+
x = IndexedBase('x')
|
222 |
+
y = IndexedBase('y')
|
223 |
+
z = IndexedBase('z')
|
224 |
+
i = Idx('i', m)
|
225 |
+
j = Idx('j', n)
|
226 |
+
|
227 |
+
s = (
|
228 |
+
'for (var i=0; i<m; i++){\n'
|
229 |
+
' y[i] = x[i] + z[i];\n'
|
230 |
+
'}\n'
|
231 |
+
'for (var i=0; i<m; i++){\n'
|
232 |
+
' for (var j=0; j<n; j++){\n'
|
233 |
+
' y[i] = A[n*i + j]*x[j] + y[i];\n'
|
234 |
+
' }\n'
|
235 |
+
'}'
|
236 |
+
)
|
237 |
+
c = jscode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i])
|
238 |
+
assert c == s
|
239 |
+
|
240 |
+
|
241 |
+
def test_jscode_loops_multiple_contractions():
|
242 |
+
n, m, o, p = symbols('n m o p', integer=True)
|
243 |
+
a = IndexedBase('a')
|
244 |
+
b = IndexedBase('b')
|
245 |
+
y = IndexedBase('y')
|
246 |
+
i = Idx('i', m)
|
247 |
+
j = Idx('j', n)
|
248 |
+
k = Idx('k', o)
|
249 |
+
l = Idx('l', p)
|
250 |
+
|
251 |
+
s = (
|
252 |
+
'for (var i=0; i<m; i++){\n'
|
253 |
+
' y[i] = 0;\n'
|
254 |
+
'}\n'
|
255 |
+
'for (var i=0; i<m; i++){\n'
|
256 |
+
' for (var j=0; j<n; j++){\n'
|
257 |
+
' for (var k=0; k<o; k++){\n'
|
258 |
+
' for (var l=0; l<p; l++){\n'
|
259 |
+
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
|
260 |
+
' }\n'
|
261 |
+
' }\n'
|
262 |
+
' }\n'
|
263 |
+
'}'
|
264 |
+
)
|
265 |
+
c = jscode(b[j, k, l]*a[i, j, k, l], assign_to=y[i])
|
266 |
+
assert c == s
|
267 |
+
|
268 |
+
|
269 |
+
def test_jscode_loops_addfactor():
|
270 |
+
n, m, o, p = symbols('n m o p', integer=True)
|
271 |
+
a = IndexedBase('a')
|
272 |
+
b = IndexedBase('b')
|
273 |
+
c = IndexedBase('c')
|
274 |
+
y = IndexedBase('y')
|
275 |
+
i = Idx('i', m)
|
276 |
+
j = Idx('j', n)
|
277 |
+
k = Idx('k', o)
|
278 |
+
l = Idx('l', p)
|
279 |
+
|
280 |
+
s = (
|
281 |
+
'for (var i=0; i<m; i++){\n'
|
282 |
+
' y[i] = 0;\n'
|
283 |
+
'}\n'
|
284 |
+
'for (var i=0; i<m; i++){\n'
|
285 |
+
' for (var j=0; j<n; j++){\n'
|
286 |
+
' for (var k=0; k<o; k++){\n'
|
287 |
+
' for (var l=0; l<p; l++){\n'
|
288 |
+
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
|
289 |
+
' }\n'
|
290 |
+
' }\n'
|
291 |
+
' }\n'
|
292 |
+
'}'
|
293 |
+
)
|
294 |
+
c = jscode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
|
295 |
+
assert c == s
|
296 |
+
|
297 |
+
|
298 |
+
def test_jscode_loops_multiple_terms():
|
299 |
+
n, m, o, p = symbols('n m o p', integer=True)
|
300 |
+
a = IndexedBase('a')
|
301 |
+
b = IndexedBase('b')
|
302 |
+
c = IndexedBase('c')
|
303 |
+
y = IndexedBase('y')
|
304 |
+
i = Idx('i', m)
|
305 |
+
j = Idx('j', n)
|
306 |
+
k = Idx('k', o)
|
307 |
+
|
308 |
+
s0 = (
|
309 |
+
'for (var i=0; i<m; i++){\n'
|
310 |
+
' y[i] = 0;\n'
|
311 |
+
'}\n'
|
312 |
+
)
|
313 |
+
s1 = (
|
314 |
+
'for (var i=0; i<m; i++){\n'
|
315 |
+
' for (var j=0; j<n; j++){\n'
|
316 |
+
' for (var k=0; k<o; k++){\n'
|
317 |
+
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
|
318 |
+
' }\n'
|
319 |
+
' }\n'
|
320 |
+
'}\n'
|
321 |
+
)
|
322 |
+
s2 = (
|
323 |
+
'for (var i=0; i<m; i++){\n'
|
324 |
+
' for (var k=0; k<o; k++){\n'
|
325 |
+
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
|
326 |
+
' }\n'
|
327 |
+
'}\n'
|
328 |
+
)
|
329 |
+
s3 = (
|
330 |
+
'for (var i=0; i<m; i++){\n'
|
331 |
+
' for (var j=0; j<n; j++){\n'
|
332 |
+
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
|
333 |
+
' }\n'
|
334 |
+
'}\n'
|
335 |
+
)
|
336 |
+
c = jscode(
|
337 |
+
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
|
338 |
+
assert (c == s0 + s1 + s2 + s3[:-1] or
|
339 |
+
c == s0 + s1 + s3 + s2[:-1] or
|
340 |
+
c == s0 + s2 + s1 + s3[:-1] or
|
341 |
+
c == s0 + s2 + s3 + s1[:-1] or
|
342 |
+
c == s0 + s3 + s1 + s2[:-1] or
|
343 |
+
c == s0 + s3 + s2 + s1[:-1])
|
344 |
+
|
345 |
+
|
346 |
+
def test_Matrix_printing():
|
347 |
+
# Test returning a Matrix
|
348 |
+
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
|
349 |
+
A = MatrixSymbol('A', 3, 1)
|
350 |
+
assert jscode(mat, A) == (
|
351 |
+
"A[0] = x*y;\n"
|
352 |
+
"if (y > 0) {\n"
|
353 |
+
" A[1] = x + 2;\n"
|
354 |
+
"}\n"
|
355 |
+
"else {\n"
|
356 |
+
" A[1] = y;\n"
|
357 |
+
"}\n"
|
358 |
+
"A[2] = Math.sin(z);")
|
359 |
+
# Test using MatrixElements in expressions
|
360 |
+
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
|
361 |
+
assert jscode(expr) == (
|
362 |
+
"((x > 0) ? (\n"
|
363 |
+
" 2*A[2]\n"
|
364 |
+
")\n"
|
365 |
+
": (\n"
|
366 |
+
" A[2]\n"
|
367 |
+
")) + Math.sin(A[1]) + A[0]")
|
368 |
+
# Test using MatrixElements in a Matrix
|
369 |
+
q = MatrixSymbol('q', 5, 1)
|
370 |
+
M = MatrixSymbol('M', 3, 3)
|
371 |
+
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
|
372 |
+
[q[1,0] + q[2,0], q[3, 0], 5],
|
373 |
+
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
|
374 |
+
assert jscode(m, M) == (
|
375 |
+
"M[0] = Math.sin(q[1]);\n"
|
376 |
+
"M[1] = 0;\n"
|
377 |
+
"M[2] = Math.cos(q[2]);\n"
|
378 |
+
"M[3] = q[1] + q[2];\n"
|
379 |
+
"M[4] = q[3];\n"
|
380 |
+
"M[5] = 5;\n"
|
381 |
+
"M[6] = 2*q[4]/q[1];\n"
|
382 |
+
"M[7] = Math.sqrt(q[0]) + 4;\n"
|
383 |
+
"M[8] = 0;")
|
384 |
+
|
385 |
+
|
386 |
+
def test_MatrixElement_printing():
|
387 |
+
# test cases for issue #11821
|
388 |
+
A = MatrixSymbol("A", 1, 3)
|
389 |
+
B = MatrixSymbol("B", 1, 3)
|
390 |
+
C = MatrixSymbol("C", 1, 3)
|
391 |
+
|
392 |
+
assert(jscode(A[0, 0]) == "A[0]")
|
393 |
+
assert(jscode(3 * A[0, 0]) == "3*A[0]")
|
394 |
+
|
395 |
+
F = C[0, 0].subs(C, A - B)
|
396 |
+
assert(jscode(F) == "(A - B)[0]")
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_julia.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer,
|
2 |
+
Tuple, Symbol, Eq, Ne, Le, Lt, Gt, Ge)
|
3 |
+
from sympy.core import EulerGamma, GoldenRatio, Catalan, Lambda, Mul, Pow
|
4 |
+
from sympy.functions import Piecewise, sqrt, ceiling, exp, sin, cos
|
5 |
+
from sympy.testing.pytest import raises
|
6 |
+
from sympy.utilities.lambdify import implemented_function
|
7 |
+
from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity,
|
8 |
+
HadamardProduct, SparseMatrix)
|
9 |
+
from sympy.functions.special.bessel import (jn, yn, besselj, bessely, besseli,
|
10 |
+
besselk, hankel1, hankel2, airyai,
|
11 |
+
airybi, airyaiprime, airybiprime)
|
12 |
+
from sympy.testing.pytest import XFAIL
|
13 |
+
|
14 |
+
from sympy.printing.julia import julia_code
|
15 |
+
|
16 |
+
x, y, z = symbols('x,y,z')
|
17 |
+
|
18 |
+
|
19 |
+
def test_Integer():
|
20 |
+
assert julia_code(Integer(67)) == "67"
|
21 |
+
assert julia_code(Integer(-1)) == "-1"
|
22 |
+
|
23 |
+
|
24 |
+
def test_Rational():
|
25 |
+
assert julia_code(Rational(3, 7)) == "3 // 7"
|
26 |
+
assert julia_code(Rational(18, 9)) == "2"
|
27 |
+
assert julia_code(Rational(3, -7)) == "-3 // 7"
|
28 |
+
assert julia_code(Rational(-3, -7)) == "3 // 7"
|
29 |
+
assert julia_code(x + Rational(3, 7)) == "x + 3 // 7"
|
30 |
+
assert julia_code(Rational(3, 7)*x) == "(3 // 7) * x"
|
31 |
+
|
32 |
+
|
33 |
+
def test_Relational():
|
34 |
+
assert julia_code(Eq(x, y)) == "x == y"
|
35 |
+
assert julia_code(Ne(x, y)) == "x != y"
|
36 |
+
assert julia_code(Le(x, y)) == "x <= y"
|
37 |
+
assert julia_code(Lt(x, y)) == "x < y"
|
38 |
+
assert julia_code(Gt(x, y)) == "x > y"
|
39 |
+
assert julia_code(Ge(x, y)) == "x >= y"
|
40 |
+
|
41 |
+
|
42 |
+
def test_Function():
|
43 |
+
assert julia_code(sin(x) ** cos(x)) == "sin(x) .^ cos(x)"
|
44 |
+
assert julia_code(abs(x)) == "abs(x)"
|
45 |
+
assert julia_code(ceiling(x)) == "ceil(x)"
|
46 |
+
|
47 |
+
|
48 |
+
def test_Pow():
|
49 |
+
assert julia_code(x**3) == "x .^ 3"
|
50 |
+
assert julia_code(x**(y**3)) == "x .^ (y .^ 3)"
|
51 |
+
assert julia_code(x**Rational(2, 3)) == 'x .^ (2 // 3)'
|
52 |
+
g = implemented_function('g', Lambda(x, 2*x))
|
53 |
+
assert julia_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
|
54 |
+
"(3.5 * 2 * x) .^ (-x + y .^ x) ./ (x .^ 2 + y)"
|
55 |
+
# For issue 14160
|
56 |
+
assert julia_code(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
|
57 |
+
evaluate=False)) == '-2 * x ./ (y .* y)'
|
58 |
+
|
59 |
+
|
60 |
+
def test_basic_ops():
|
61 |
+
assert julia_code(x*y) == "x .* y"
|
62 |
+
assert julia_code(x + y) == "x + y"
|
63 |
+
assert julia_code(x - y) == "x - y"
|
64 |
+
assert julia_code(-x) == "-x"
|
65 |
+
|
66 |
+
|
67 |
+
def test_1_over_x_and_sqrt():
|
68 |
+
# 1.0 and 0.5 would do something different in regular StrPrinter,
|
69 |
+
# but these are exact in IEEE floating point so no different here.
|
70 |
+
assert julia_code(1/x) == '1 ./ x'
|
71 |
+
assert julia_code(x**-1) == julia_code(x**-1.0) == '1 ./ x'
|
72 |
+
assert julia_code(1/sqrt(x)) == '1 ./ sqrt(x)'
|
73 |
+
assert julia_code(x**-S.Half) == julia_code(x**-0.5) == '1 ./ sqrt(x)'
|
74 |
+
assert julia_code(sqrt(x)) == 'sqrt(x)'
|
75 |
+
assert julia_code(x**S.Half) == julia_code(x**0.5) == 'sqrt(x)'
|
76 |
+
assert julia_code(1/pi) == '1 / pi'
|
77 |
+
assert julia_code(pi**-1) == julia_code(pi**-1.0) == '1 / pi'
|
78 |
+
assert julia_code(pi**-0.5) == '1 / sqrt(pi)'
|
79 |
+
|
80 |
+
|
81 |
+
def test_mix_number_mult_symbols():
|
82 |
+
assert julia_code(3*x) == "3 * x"
|
83 |
+
assert julia_code(pi*x) == "pi * x"
|
84 |
+
assert julia_code(3/x) == "3 ./ x"
|
85 |
+
assert julia_code(pi/x) == "pi ./ x"
|
86 |
+
assert julia_code(x/3) == "x / 3"
|
87 |
+
assert julia_code(x/pi) == "x / pi"
|
88 |
+
assert julia_code(x*y) == "x .* y"
|
89 |
+
assert julia_code(3*x*y) == "3 * x .* y"
|
90 |
+
assert julia_code(3*pi*x*y) == "3 * pi * x .* y"
|
91 |
+
assert julia_code(x/y) == "x ./ y"
|
92 |
+
assert julia_code(3*x/y) == "3 * x ./ y"
|
93 |
+
assert julia_code(x*y/z) == "x .* y ./ z"
|
94 |
+
assert julia_code(x/y*z) == "x .* z ./ y"
|
95 |
+
assert julia_code(1/x/y) == "1 ./ (x .* y)"
|
96 |
+
assert julia_code(2*pi*x/y/z) == "2 * pi * x ./ (y .* z)"
|
97 |
+
assert julia_code(3*pi/x) == "3 * pi ./ x"
|
98 |
+
assert julia_code(S(3)/5) == "3 // 5"
|
99 |
+
assert julia_code(S(3)/5*x) == "(3 // 5) * x"
|
100 |
+
assert julia_code(x/y/z) == "x ./ (y .* z)"
|
101 |
+
assert julia_code((x+y)/z) == "(x + y) ./ z"
|
102 |
+
assert julia_code((x+y)/(z+x)) == "(x + y) ./ (x + z)"
|
103 |
+
assert julia_code((x+y)/EulerGamma) == "(x + y) / eulergamma"
|
104 |
+
assert julia_code(x/3/pi) == "x / (3 * pi)"
|
105 |
+
assert julia_code(S(3)/5*x*y/pi) == "(3 // 5) * x .* y / pi"
|
106 |
+
|
107 |
+
|
108 |
+
def test_mix_number_pow_symbols():
|
109 |
+
assert julia_code(pi**3) == 'pi ^ 3'
|
110 |
+
assert julia_code(x**2) == 'x .^ 2'
|
111 |
+
assert julia_code(x**(pi**3)) == 'x .^ (pi ^ 3)'
|
112 |
+
assert julia_code(x**y) == 'x .^ y'
|
113 |
+
assert julia_code(x**(y**z)) == 'x .^ (y .^ z)'
|
114 |
+
assert julia_code((x**y)**z) == '(x .^ y) .^ z'
|
115 |
+
|
116 |
+
|
117 |
+
def test_imag():
|
118 |
+
I = S('I')
|
119 |
+
assert julia_code(I) == "im"
|
120 |
+
assert julia_code(5*I) == "5im"
|
121 |
+
assert julia_code((S(3)/2)*I) == "(3 // 2) * im"
|
122 |
+
assert julia_code(3+4*I) == "3 + 4im"
|
123 |
+
|
124 |
+
|
125 |
+
def test_constants():
|
126 |
+
assert julia_code(pi) == "pi"
|
127 |
+
assert julia_code(oo) == "Inf"
|
128 |
+
assert julia_code(-oo) == "-Inf"
|
129 |
+
assert julia_code(S.NegativeInfinity) == "-Inf"
|
130 |
+
assert julia_code(S.NaN) == "NaN"
|
131 |
+
assert julia_code(S.Exp1) == "e"
|
132 |
+
assert julia_code(exp(1)) == "e"
|
133 |
+
|
134 |
+
|
135 |
+
def test_constants_other():
|
136 |
+
assert julia_code(2*GoldenRatio) == "2 * golden"
|
137 |
+
assert julia_code(2*Catalan) == "2 * catalan"
|
138 |
+
assert julia_code(2*EulerGamma) == "2 * eulergamma"
|
139 |
+
|
140 |
+
|
141 |
+
def test_boolean():
|
142 |
+
assert julia_code(x & y) == "x && y"
|
143 |
+
assert julia_code(x | y) == "x || y"
|
144 |
+
assert julia_code(~x) == "!x"
|
145 |
+
assert julia_code(x & y & z) == "x && y && z"
|
146 |
+
assert julia_code(x | y | z) == "x || y || z"
|
147 |
+
assert julia_code((x & y) | z) == "z || x && y"
|
148 |
+
assert julia_code((x | y) & z) == "z && (x || y)"
|
149 |
+
|
150 |
+
|
151 |
+
def test_Matrices():
|
152 |
+
assert julia_code(Matrix(1, 1, [10])) == "[10]"
|
153 |
+
A = Matrix([[1, sin(x/2), abs(x)],
|
154 |
+
[0, 1, pi],
|
155 |
+
[0, exp(1), ceiling(x)]]);
|
156 |
+
expected = ("[1 sin(x / 2) abs(x);\n"
|
157 |
+
"0 1 pi;\n"
|
158 |
+
"0 e ceil(x)]")
|
159 |
+
assert julia_code(A) == expected
|
160 |
+
# row and columns
|
161 |
+
assert julia_code(A[:,0]) == "[1, 0, 0]"
|
162 |
+
assert julia_code(A[0,:]) == "[1 sin(x / 2) abs(x)]"
|
163 |
+
# empty matrices
|
164 |
+
assert julia_code(Matrix(0, 0, [])) == 'zeros(0, 0)'
|
165 |
+
assert julia_code(Matrix(0, 3, [])) == 'zeros(0, 3)'
|
166 |
+
# annoying to read but correct
|
167 |
+
assert julia_code(Matrix([[x, x - y, -y]])) == "[x x - y -y]"
|
168 |
+
|
169 |
+
|
170 |
+
def test_vector_entries_hadamard():
|
171 |
+
# For a row or column, user might to use the other dimension
|
172 |
+
A = Matrix([[1, sin(2/x), 3*pi/x/5]])
|
173 |
+
assert julia_code(A) == "[1 sin(2 ./ x) (3 // 5) * pi ./ x]"
|
174 |
+
assert julia_code(A.T) == "[1, sin(2 ./ x), (3 // 5) * pi ./ x]"
|
175 |
+
|
176 |
+
|
177 |
+
@XFAIL
|
178 |
+
def test_Matrices_entries_not_hadamard():
|
179 |
+
# For Matrix with col >= 2, row >= 2, they need to be scalars
|
180 |
+
# FIXME: is it worth worrying about this? Its not wrong, just
|
181 |
+
# leave it user's responsibility to put scalar data for x.
|
182 |
+
A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]])
|
183 |
+
expected = ("[1 sin(2/x) 3*pi/(5*x);\n"
|
184 |
+
"1 2 x*y]") # <- we give x.*y
|
185 |
+
assert julia_code(A) == expected
|
186 |
+
|
187 |
+
|
188 |
+
def test_MatrixSymbol():
|
189 |
+
n = Symbol('n', integer=True)
|
190 |
+
A = MatrixSymbol('A', n, n)
|
191 |
+
B = MatrixSymbol('B', n, n)
|
192 |
+
assert julia_code(A*B) == "A * B"
|
193 |
+
assert julia_code(B*A) == "B * A"
|
194 |
+
assert julia_code(2*A*B) == "2 * A * B"
|
195 |
+
assert julia_code(B*2*A) == "2 * B * A"
|
196 |
+
assert julia_code(A*(B + 3*Identity(n))) == "A * (3 * eye(n) + B)"
|
197 |
+
assert julia_code(A**(x**2)) == "A ^ (x .^ 2)"
|
198 |
+
assert julia_code(A**3) == "A ^ 3"
|
199 |
+
assert julia_code(A**S.Half) == "A ^ (1 // 2)"
|
200 |
+
|
201 |
+
|
202 |
+
def test_special_matrices():
|
203 |
+
assert julia_code(6*Identity(3)) == "6 * eye(3)"
|
204 |
+
|
205 |
+
|
206 |
+
def test_containers():
|
207 |
+
assert julia_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
|
208 |
+
"Any[1, 2, 3, Any[4, 5, Any[6, 7]], 8, Any[9, 10], 11]"
|
209 |
+
assert julia_code((1, 2, (3, 4))) == "(1, 2, (3, 4))"
|
210 |
+
assert julia_code([1]) == "Any[1]"
|
211 |
+
assert julia_code((1,)) == "(1,)"
|
212 |
+
assert julia_code(Tuple(*[1, 2, 3])) == "(1, 2, 3)"
|
213 |
+
assert julia_code((1, x*y, (3, x**2))) == "(1, x .* y, (3, x .^ 2))"
|
214 |
+
# scalar, matrix, empty matrix and empty list
|
215 |
+
assert julia_code((1, eye(3), Matrix(0, 0, []), [])) == "(1, [1 0 0;\n0 1 0;\n0 0 1], zeros(0, 0), Any[])"
|
216 |
+
|
217 |
+
|
218 |
+
def test_julia_noninline():
|
219 |
+
source = julia_code((x+y)/Catalan, assign_to='me', inline=False)
|
220 |
+
expected = (
|
221 |
+
"const Catalan = %s\n"
|
222 |
+
"me = (x + y) / Catalan"
|
223 |
+
) % Catalan.evalf(17)
|
224 |
+
assert source == expected
|
225 |
+
|
226 |
+
|
227 |
+
def test_julia_piecewise():
|
228 |
+
expr = Piecewise((x, x < 1), (x**2, True))
|
229 |
+
assert julia_code(expr) == "((x < 1) ? (x) : (x .^ 2))"
|
230 |
+
assert julia_code(expr, assign_to="r") == (
|
231 |
+
"r = ((x < 1) ? (x) : (x .^ 2))")
|
232 |
+
assert julia_code(expr, assign_to="r", inline=False) == (
|
233 |
+
"if (x < 1)\n"
|
234 |
+
" r = x\n"
|
235 |
+
"else\n"
|
236 |
+
" r = x .^ 2\n"
|
237 |
+
"end")
|
238 |
+
expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True))
|
239 |
+
expected = ("((x < 1) ? (x .^ 2) :\n"
|
240 |
+
"(x < 2) ? (x .^ 3) :\n"
|
241 |
+
"(x < 3) ? (x .^ 4) : (x .^ 5))")
|
242 |
+
assert julia_code(expr) == expected
|
243 |
+
assert julia_code(expr, assign_to="r") == "r = " + expected
|
244 |
+
assert julia_code(expr, assign_to="r", inline=False) == (
|
245 |
+
"if (x < 1)\n"
|
246 |
+
" r = x .^ 2\n"
|
247 |
+
"elseif (x < 2)\n"
|
248 |
+
" r = x .^ 3\n"
|
249 |
+
"elseif (x < 3)\n"
|
250 |
+
" r = x .^ 4\n"
|
251 |
+
"else\n"
|
252 |
+
" r = x .^ 5\n"
|
253 |
+
"end")
|
254 |
+
# Check that Piecewise without a True (default) condition error
|
255 |
+
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
|
256 |
+
raises(ValueError, lambda: julia_code(expr))
|
257 |
+
|
258 |
+
|
259 |
+
def test_julia_piecewise_times_const():
|
260 |
+
pw = Piecewise((x, x < 1), (x**2, True))
|
261 |
+
assert julia_code(2*pw) == "2 * ((x < 1) ? (x) : (x .^ 2))"
|
262 |
+
assert julia_code(pw/x) == "((x < 1) ? (x) : (x .^ 2)) ./ x"
|
263 |
+
assert julia_code(pw/(x*y)) == "((x < 1) ? (x) : (x .^ 2)) ./ (x .* y)"
|
264 |
+
assert julia_code(pw/3) == "((x < 1) ? (x) : (x .^ 2)) / 3"
|
265 |
+
|
266 |
+
|
267 |
+
def test_julia_matrix_assign_to():
|
268 |
+
A = Matrix([[1, 2, 3]])
|
269 |
+
assert julia_code(A, assign_to='a') == "a = [1 2 3]"
|
270 |
+
A = Matrix([[1, 2], [3, 4]])
|
271 |
+
assert julia_code(A, assign_to='A') == "A = [1 2;\n3 4]"
|
272 |
+
|
273 |
+
|
274 |
+
def test_julia_matrix_assign_to_more():
|
275 |
+
# assigning to Symbol or MatrixSymbol requires lhs/rhs match
|
276 |
+
A = Matrix([[1, 2, 3]])
|
277 |
+
B = MatrixSymbol('B', 1, 3)
|
278 |
+
C = MatrixSymbol('C', 2, 3)
|
279 |
+
assert julia_code(A, assign_to=B) == "B = [1 2 3]"
|
280 |
+
raises(ValueError, lambda: julia_code(A, assign_to=x))
|
281 |
+
raises(ValueError, lambda: julia_code(A, assign_to=C))
|
282 |
+
|
283 |
+
|
284 |
+
def test_julia_matrix_1x1():
|
285 |
+
A = Matrix([[3]])
|
286 |
+
B = MatrixSymbol('B', 1, 1)
|
287 |
+
C = MatrixSymbol('C', 1, 2)
|
288 |
+
assert julia_code(A, assign_to=B) == "B = [3]"
|
289 |
+
# FIXME?
|
290 |
+
#assert julia_code(A, assign_to=x) == "x = [3]"
|
291 |
+
raises(ValueError, lambda: julia_code(A, assign_to=C))
|
292 |
+
|
293 |
+
|
294 |
+
def test_julia_matrix_elements():
|
295 |
+
A = Matrix([[x, 2, x*y]])
|
296 |
+
assert julia_code(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x .^ 2 + x .* y + 2"
|
297 |
+
A = MatrixSymbol('AA', 1, 3)
|
298 |
+
assert julia_code(A) == "AA"
|
299 |
+
assert julia_code(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \
|
300 |
+
"sin(AA[1,2]) + AA[1,1] .^ 2 + AA[1,3]"
|
301 |
+
assert julia_code(sum(A)) == "AA[1,1] + AA[1,2] + AA[1,3]"
|
302 |
+
|
303 |
+
|
304 |
+
def test_julia_boolean():
|
305 |
+
assert julia_code(True) == "true"
|
306 |
+
assert julia_code(S.true) == "true"
|
307 |
+
assert julia_code(False) == "false"
|
308 |
+
assert julia_code(S.false) == "false"
|
309 |
+
|
310 |
+
|
311 |
+
def test_julia_not_supported():
|
312 |
+
assert julia_code(S.ComplexInfinity) == (
|
313 |
+
"# Not supported in Julia:\n"
|
314 |
+
"# ComplexInfinity\n"
|
315 |
+
"zoo"
|
316 |
+
)
|
317 |
+
f = Function('f')
|
318 |
+
assert julia_code(f(x).diff(x)) == (
|
319 |
+
"# Not supported in Julia:\n"
|
320 |
+
"# Derivative\n"
|
321 |
+
"Derivative(f(x), x)"
|
322 |
+
)
|
323 |
+
|
324 |
+
|
325 |
+
def test_trick_indent_with_end_else_words():
|
326 |
+
# words starting with "end" or "else" do not confuse the indenter
|
327 |
+
t1 = S('endless');
|
328 |
+
t2 = S('elsewhere');
|
329 |
+
pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True))
|
330 |
+
assert julia_code(pw, inline=False) == (
|
331 |
+
"if (x < 0)\n"
|
332 |
+
" endless\n"
|
333 |
+
"elseif (x <= 1)\n"
|
334 |
+
" elsewhere\n"
|
335 |
+
"else\n"
|
336 |
+
" 1\n"
|
337 |
+
"end")
|
338 |
+
|
339 |
+
|
340 |
+
def test_haramard():
|
341 |
+
A = MatrixSymbol('A', 3, 3)
|
342 |
+
B = MatrixSymbol('B', 3, 3)
|
343 |
+
v = MatrixSymbol('v', 3, 1)
|
344 |
+
h = MatrixSymbol('h', 1, 3)
|
345 |
+
C = HadamardProduct(A, B)
|
346 |
+
assert julia_code(C) == "A .* B"
|
347 |
+
assert julia_code(C*v) == "(A .* B) * v"
|
348 |
+
assert julia_code(h*C*v) == "h * (A .* B) * v"
|
349 |
+
assert julia_code(C*A) == "(A .* B) * A"
|
350 |
+
# mixing Hadamard and scalar strange b/c we vectorize scalars
|
351 |
+
assert julia_code(C*x*y) == "(x .* y) * (A .* B)"
|
352 |
+
|
353 |
+
|
354 |
+
def test_sparse():
|
355 |
+
M = SparseMatrix(5, 6, {})
|
356 |
+
M[2, 2] = 10;
|
357 |
+
M[1, 2] = 20;
|
358 |
+
M[1, 3] = 22;
|
359 |
+
M[0, 3] = 30;
|
360 |
+
M[3, 0] = x*y;
|
361 |
+
assert julia_code(M) == (
|
362 |
+
"sparse([4, 2, 3, 1, 2], [1, 3, 3, 4, 4], [x .* y, 20, 10, 30, 22], 5, 6)"
|
363 |
+
)
|
364 |
+
|
365 |
+
|
366 |
+
def test_specfun():
|
367 |
+
n = Symbol('n')
|
368 |
+
for f in [besselj, bessely, besseli, besselk]:
|
369 |
+
assert julia_code(f(n, x)) == f.__name__ + '(n, x)'
|
370 |
+
for f in [airyai, airyaiprime, airybi, airybiprime]:
|
371 |
+
assert julia_code(f(x)) == f.__name__ + '(x)'
|
372 |
+
assert julia_code(hankel1(n, x)) == 'hankelh1(n, x)'
|
373 |
+
assert julia_code(hankel2(n, x)) == 'hankelh2(n, x)'
|
374 |
+
assert julia_code(jn(n, x)) == 'sqrt(2) * sqrt(pi) * sqrt(1 ./ x) .* besselj(n + 1 // 2, x) / 2'
|
375 |
+
assert julia_code(yn(n, x)) == 'sqrt(2) * sqrt(pi) * sqrt(1 ./ x) .* bessely(n + 1 // 2, x) / 2'
|
376 |
+
|
377 |
+
|
378 |
+
def test_MatrixElement_printing():
|
379 |
+
# test cases for issue #11821
|
380 |
+
A = MatrixSymbol("A", 1, 3)
|
381 |
+
B = MatrixSymbol("B", 1, 3)
|
382 |
+
C = MatrixSymbol("C", 1, 3)
|
383 |
+
|
384 |
+
assert(julia_code(A[0, 0]) == "A[1,1]")
|
385 |
+
assert(julia_code(3 * A[0, 0]) == "3 * A[1,1]")
|
386 |
+
|
387 |
+
F = C[0, 0].subs(C, A - B)
|
388 |
+
assert(julia_code(F) == "(A - B)[1,1]")
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_lambdarepr.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.core.expr import Expr
|
3 |
+
from sympy.core.symbol import symbols
|
4 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
5 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
6 |
+
from sympy.functions.elementary.trigonometric import sin
|
7 |
+
from sympy.matrices.dense import MutableDenseMatrix as Matrix
|
8 |
+
from sympy.sets.sets import Interval
|
9 |
+
from sympy.utilities.lambdify import lambdify
|
10 |
+
from sympy.testing.pytest import raises
|
11 |
+
|
12 |
+
from sympy.printing.tensorflow import TensorflowPrinter
|
13 |
+
from sympy.printing.lambdarepr import lambdarepr, LambdaPrinter, NumExprPrinter
|
14 |
+
|
15 |
+
|
16 |
+
x, y, z = symbols("x,y,z")
|
17 |
+
i, a, b = symbols("i,a,b")
|
18 |
+
j, c, d = symbols("j,c,d")
|
19 |
+
|
20 |
+
|
21 |
+
def test_basic():
|
22 |
+
assert lambdarepr(x*y) == "x*y"
|
23 |
+
assert lambdarepr(x + y) in ["y + x", "x + y"]
|
24 |
+
assert lambdarepr(x**y) == "x**y"
|
25 |
+
|
26 |
+
|
27 |
+
def test_matrix():
|
28 |
+
# Test printing a Matrix that has an element that is printed differently
|
29 |
+
# with the LambdaPrinter than with the StrPrinter.
|
30 |
+
e = x % 2
|
31 |
+
assert lambdarepr(e) != str(e)
|
32 |
+
assert lambdarepr(Matrix([e])) == 'ImmutableDenseMatrix([[x % 2]])'
|
33 |
+
|
34 |
+
|
35 |
+
def test_piecewise():
|
36 |
+
# In each case, test eval() the lambdarepr() to make sure there are a
|
37 |
+
# correct number of parentheses. It will give a SyntaxError if there aren't.
|
38 |
+
|
39 |
+
h = "lambda x: "
|
40 |
+
|
41 |
+
p = Piecewise((x, x < 0))
|
42 |
+
l = lambdarepr(p)
|
43 |
+
eval(h + l)
|
44 |
+
assert l == "((x) if (x < 0) else None)"
|
45 |
+
|
46 |
+
p = Piecewise(
|
47 |
+
(1, x < 1),
|
48 |
+
(2, x < 2),
|
49 |
+
(0, True)
|
50 |
+
)
|
51 |
+
l = lambdarepr(p)
|
52 |
+
eval(h + l)
|
53 |
+
assert l == "((1) if (x < 1) else (2) if (x < 2) else (0))"
|
54 |
+
|
55 |
+
p = Piecewise(
|
56 |
+
(1, x < 1),
|
57 |
+
(2, x < 2),
|
58 |
+
)
|
59 |
+
l = lambdarepr(p)
|
60 |
+
eval(h + l)
|
61 |
+
assert l == "((1) if (x < 1) else (2) if (x < 2) else None)"
|
62 |
+
|
63 |
+
p = Piecewise(
|
64 |
+
(x, x < 1),
|
65 |
+
(x**2, Interval(3, 4, True, False).contains(x)),
|
66 |
+
(0, True),
|
67 |
+
)
|
68 |
+
l = lambdarepr(p)
|
69 |
+
eval(h + l)
|
70 |
+
assert l == "((x) if (x < 1) else (x**2) if (((x <= 4)) and ((x > 3))) else (0))"
|
71 |
+
|
72 |
+
p = Piecewise(
|
73 |
+
(x**2, x < 0),
|
74 |
+
(x, x < 1),
|
75 |
+
(2 - x, x >= 1),
|
76 |
+
(0, True), evaluate=False
|
77 |
+
)
|
78 |
+
l = lambdarepr(p)
|
79 |
+
eval(h + l)
|
80 |
+
assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\
|
81 |
+
" else (2 - x) if (x >= 1) else (0))"
|
82 |
+
|
83 |
+
p = Piecewise(
|
84 |
+
(x**2, x < 0),
|
85 |
+
(x, x < 1),
|
86 |
+
(2 - x, x >= 1), evaluate=False
|
87 |
+
)
|
88 |
+
l = lambdarepr(p)
|
89 |
+
eval(h + l)
|
90 |
+
assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\
|
91 |
+
" else (2 - x) if (x >= 1) else None)"
|
92 |
+
|
93 |
+
p = Piecewise(
|
94 |
+
(1, x >= 1),
|
95 |
+
(2, x >= 2),
|
96 |
+
(3, x >= 3),
|
97 |
+
(4, x >= 4),
|
98 |
+
(5, x >= 5),
|
99 |
+
(6, True)
|
100 |
+
)
|
101 |
+
l = lambdarepr(p)
|
102 |
+
eval(h + l)
|
103 |
+
assert l == "((1) if (x >= 1) else (2) if (x >= 2) else (3) if (x >= 3)"\
|
104 |
+
" else (4) if (x >= 4) else (5) if (x >= 5) else (6))"
|
105 |
+
|
106 |
+
p = Piecewise(
|
107 |
+
(1, x <= 1),
|
108 |
+
(2, x <= 2),
|
109 |
+
(3, x <= 3),
|
110 |
+
(4, x <= 4),
|
111 |
+
(5, x <= 5),
|
112 |
+
(6, True)
|
113 |
+
)
|
114 |
+
l = lambdarepr(p)
|
115 |
+
eval(h + l)
|
116 |
+
assert l == "((1) if (x <= 1) else (2) if (x <= 2) else (3) if (x <= 3)"\
|
117 |
+
" else (4) if (x <= 4) else (5) if (x <= 5) else (6))"
|
118 |
+
|
119 |
+
p = Piecewise(
|
120 |
+
(1, x > 1),
|
121 |
+
(2, x > 2),
|
122 |
+
(3, x > 3),
|
123 |
+
(4, x > 4),
|
124 |
+
(5, x > 5),
|
125 |
+
(6, True)
|
126 |
+
)
|
127 |
+
l = lambdarepr(p)
|
128 |
+
eval(h + l)
|
129 |
+
assert l =="((1) if (x > 1) else (2) if (x > 2) else (3) if (x > 3)"\
|
130 |
+
" else (4) if (x > 4) else (5) if (x > 5) else (6))"
|
131 |
+
|
132 |
+
p = Piecewise(
|
133 |
+
(1, x < 1),
|
134 |
+
(2, x < 2),
|
135 |
+
(3, x < 3),
|
136 |
+
(4, x < 4),
|
137 |
+
(5, x < 5),
|
138 |
+
(6, True)
|
139 |
+
)
|
140 |
+
l = lambdarepr(p)
|
141 |
+
eval(h + l)
|
142 |
+
assert l == "((1) if (x < 1) else (2) if (x < 2) else (3) if (x < 3)"\
|
143 |
+
" else (4) if (x < 4) else (5) if (x < 5) else (6))"
|
144 |
+
|
145 |
+
p = Piecewise(
|
146 |
+
(Piecewise(
|
147 |
+
(1, x > 0),
|
148 |
+
(2, True)
|
149 |
+
), y > 0),
|
150 |
+
(3, True)
|
151 |
+
)
|
152 |
+
l = lambdarepr(p)
|
153 |
+
eval(h + l)
|
154 |
+
assert l == "((((1) if (x > 0) else (2))) if (y > 0) else (3))"
|
155 |
+
|
156 |
+
|
157 |
+
def test_sum__1():
|
158 |
+
# In each case, test eval() the lambdarepr() to make sure that
|
159 |
+
# it evaluates to the same results as the symbolic expression
|
160 |
+
s = Sum(x ** i, (i, a, b))
|
161 |
+
l = lambdarepr(s)
|
162 |
+
assert l == "(builtins.sum(x**i for i in range(a, b+1)))"
|
163 |
+
|
164 |
+
args = x, a, b
|
165 |
+
f = lambdify(args, s)
|
166 |
+
v = 2, 3, 8
|
167 |
+
assert f(*v) == s.subs(zip(args, v)).doit()
|
168 |
+
|
169 |
+
def test_sum__2():
|
170 |
+
s = Sum(i * x, (i, a, b))
|
171 |
+
l = lambdarepr(s)
|
172 |
+
assert l == "(builtins.sum(i*x for i in range(a, b+1)))"
|
173 |
+
|
174 |
+
args = x, a, b
|
175 |
+
f = lambdify(args, s)
|
176 |
+
v = 2, 3, 8
|
177 |
+
assert f(*v) == s.subs(zip(args, v)).doit()
|
178 |
+
|
179 |
+
|
180 |
+
def test_multiple_sums():
|
181 |
+
s = Sum(i * x + j, (i, a, b), (j, c, d))
|
182 |
+
|
183 |
+
l = lambdarepr(s)
|
184 |
+
assert l == "(builtins.sum(i*x + j for i in range(a, b+1) for j in range(c, d+1)))"
|
185 |
+
|
186 |
+
args = x, a, b, c, d
|
187 |
+
f = lambdify(args, s)
|
188 |
+
vals = 2, 3, 4, 5, 6
|
189 |
+
f_ref = s.subs(zip(args, vals)).doit()
|
190 |
+
f_res = f(*vals)
|
191 |
+
assert f_res == f_ref
|
192 |
+
|
193 |
+
|
194 |
+
def test_sqrt():
|
195 |
+
prntr = LambdaPrinter({'standard' : 'python3'})
|
196 |
+
assert prntr._print_Pow(sqrt(x), rational=False) == 'sqrt(x)'
|
197 |
+
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
|
198 |
+
|
199 |
+
|
200 |
+
def test_settings():
|
201 |
+
raises(TypeError, lambda: lambdarepr(sin(x), method="garbage"))
|
202 |
+
|
203 |
+
|
204 |
+
def test_numexpr():
|
205 |
+
# test ITE rewrite as Piecewise
|
206 |
+
from sympy.logic.boolalg import ITE
|
207 |
+
expr = ITE(x > 0, True, False, evaluate=False)
|
208 |
+
assert NumExprPrinter().doprint(expr) == \
|
209 |
+
"numexpr.evaluate('where((x > 0), True, False)', truediv=True)"
|
210 |
+
|
211 |
+
from sympy.codegen.ast import Return, FunctionDefinition, Variable, Assignment
|
212 |
+
func_def = FunctionDefinition(None, 'foo', [Variable(x)], [Assignment(y,x), Return(y**2)])
|
213 |
+
expected = "def foo(x):\n"\
|
214 |
+
" y = numexpr.evaluate('x', truediv=True)\n"\
|
215 |
+
" return numexpr.evaluate('y**2', truediv=True)"
|
216 |
+
assert NumExprPrinter().doprint(func_def) == expected
|
217 |
+
|
218 |
+
|
219 |
+
class CustomPrintedObject(Expr):
|
220 |
+
def _lambdacode(self, printer):
|
221 |
+
return 'lambda'
|
222 |
+
|
223 |
+
def _tensorflowcode(self, printer):
|
224 |
+
return 'tensorflow'
|
225 |
+
|
226 |
+
def _numpycode(self, printer):
|
227 |
+
return 'numpy'
|
228 |
+
|
229 |
+
def _numexprcode(self, printer):
|
230 |
+
return 'numexpr'
|
231 |
+
|
232 |
+
def _mpmathcode(self, printer):
|
233 |
+
return 'mpmath'
|
234 |
+
|
235 |
+
|
236 |
+
def test_printmethod():
|
237 |
+
# In each case, printmethod is called to test
|
238 |
+
# its working
|
239 |
+
|
240 |
+
obj = CustomPrintedObject()
|
241 |
+
assert LambdaPrinter().doprint(obj) == 'lambda'
|
242 |
+
assert TensorflowPrinter().doprint(obj) == 'tensorflow'
|
243 |
+
assert NumExprPrinter().doprint(obj) == "numexpr.evaluate('numexpr', truediv=True)"
|
244 |
+
|
245 |
+
assert NumExprPrinter().doprint(Piecewise((y, x >= 0), (z, x < 0))) == \
|
246 |
+
"numexpr.evaluate('where((x >= 0), y, z)', truediv=True)"
|
env-llmeval/lib/python3.10/site-packages/sympy/printing/tests/test_latex.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|