applied-ai-018 commited on
Commit
37dcb99
·
verified ·
1 Parent(s): e7bb10c

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/numpy/_utils/__init__.py +29 -0
  2. env-llmeval/lib/python3.10/site-packages/numpy/_utils/__pycache__/__init__.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/numpy/_utils/__pycache__/_convertions.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/numpy/_utils/__pycache__/_inspect.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/numpy/_utils/__pycache__/_pep440.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/numpy/_utils/_convertions.py +18 -0
  7. env-llmeval/lib/python3.10/site-packages/numpy/_utils/_inspect.py +191 -0
  8. env-llmeval/lib/python3.10/site-packages/numpy/_utils/_pep440.py +487 -0
  9. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/__init__.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_array_object.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_constants.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_creation_functions.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_data_type_functions.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_dtypes.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_elementwise_functions.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_indexing_functions.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_manipulation_functions.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_searching_functions.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_set_functions.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_sorting_functions.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_statistical_functions.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_typing.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_utility_functions.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/linalg.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/setup.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_array_object.py +1133 -0
  27. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_data_type_functions.py +197 -0
  28. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_dtypes.py +180 -0
  29. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_manipulation_functions.py +112 -0
  30. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_searching_functions.py +51 -0
  31. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_sorting_functions.py +54 -0
  32. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_typing.py +76 -0
  33. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_utility_functions.py +37 -0
  34. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__init__.py +7 -0
  35. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_array_object.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_creation_functions.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_data_type_functions.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_elementwise_functions.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_indexing_functions.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_manipulation_functions.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_set_functions.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_sorting_functions.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_validation.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_array_object.py +395 -0
  46. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_creation_functions.py +142 -0
  47. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_data_type_functions.py +31 -0
  48. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_elementwise_functions.py +114 -0
  49. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_indexing_functions.py +24 -0
  50. env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_manipulation_functions.py +37 -0
env-llmeval/lib/python3.10/site-packages/numpy/_utils/__init__.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This is a module for defining private helpers which do not depend on the
3
+ rest of NumPy.
4
+
5
+ Everything in here must be self-contained so that it can be
6
+ imported anywhere else without creating circular imports.
7
+ If a utility requires the import of NumPy, it probably belongs
8
+ in ``numpy.core``.
9
+ """
10
+
11
+ from ._convertions import asunicode, asbytes
12
+
13
+
14
+ def set_module(module):
15
+ """Private decorator for overriding __module__ on a function or class.
16
+
17
+ Example usage::
18
+
19
+ @set_module('numpy')
20
+ def example():
21
+ pass
22
+
23
+ assert example.__module__ == 'numpy'
24
+ """
25
+ def decorator(func):
26
+ if module is not None:
27
+ func.__module__ = module
28
+ return func
29
+ return decorator
env-llmeval/lib/python3.10/site-packages/numpy/_utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.04 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/_utils/__pycache__/_convertions.cpython-310.pyc ADDED
Binary file (619 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/_utils/__pycache__/_inspect.cpython-310.pyc ADDED
Binary file (7.62 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/_utils/__pycache__/_pep440.cpython-310.pyc ADDED
Binary file (12.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/_utils/_convertions.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A set of methods retained from np.compat module that
3
+ are still used across codebase.
4
+ """
5
+
6
+ __all__ = ["asunicode", "asbytes"]
7
+
8
+
9
+ def asunicode(s):
10
+ if isinstance(s, bytes):
11
+ return s.decode('latin1')
12
+ return str(s)
13
+
14
+
15
+ def asbytes(s):
16
+ if isinstance(s, bytes):
17
+ return s
18
+ return str(s).encode('latin1')
env-llmeval/lib/python3.10/site-packages/numpy/_utils/_inspect.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Subset of inspect module from upstream python
2
+
3
+ We use this instead of upstream because upstream inspect is slow to import, and
4
+ significantly contributes to numpy import times. Importing this copy has almost
5
+ no overhead.
6
+
7
+ """
8
+ import types
9
+
10
+ __all__ = ['getargspec', 'formatargspec']
11
+
12
+ # ----------------------------------------------------------- type-checking
13
+ def ismethod(object):
14
+ """Return true if the object is an instance method.
15
+
16
+ Instance method objects provide these attributes:
17
+ __doc__ documentation string
18
+ __name__ name with which this method was defined
19
+ im_class class object in which this method belongs
20
+ im_func function object containing implementation of method
21
+ im_self instance to which this method is bound, or None
22
+
23
+ """
24
+ return isinstance(object, types.MethodType)
25
+
26
+ def isfunction(object):
27
+ """Return true if the object is a user-defined function.
28
+
29
+ Function objects provide these attributes:
30
+ __doc__ documentation string
31
+ __name__ name with which this function was defined
32
+ func_code code object containing compiled function bytecode
33
+ func_defaults tuple of any default values for arguments
34
+ func_doc (same as __doc__)
35
+ func_globals global namespace in which this function was defined
36
+ func_name (same as __name__)
37
+
38
+ """
39
+ return isinstance(object, types.FunctionType)
40
+
41
+ def iscode(object):
42
+ """Return true if the object is a code object.
43
+
44
+ Code objects provide these attributes:
45
+ co_argcount number of arguments (not including * or ** args)
46
+ co_code string of raw compiled bytecode
47
+ co_consts tuple of constants used in the bytecode
48
+ co_filename name of file in which this code object was created
49
+ co_firstlineno number of first line in Python source code
50
+ co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
51
+ co_lnotab encoded mapping of line numbers to bytecode indices
52
+ co_name name with which this code object was defined
53
+ co_names tuple of names of local variables
54
+ co_nlocals number of local variables
55
+ co_stacksize virtual machine stack space required
56
+ co_varnames tuple of names of arguments and local variables
57
+
58
+ """
59
+ return isinstance(object, types.CodeType)
60
+
61
+ # ------------------------------------------------ argument list extraction
62
+ # These constants are from Python's compile.h.
63
+ CO_OPTIMIZED, CO_NEWLOCALS, CO_VARARGS, CO_VARKEYWORDS = 1, 2, 4, 8
64
+
65
+ def getargs(co):
66
+ """Get information about the arguments accepted by a code object.
67
+
68
+ Three things are returned: (args, varargs, varkw), where 'args' is
69
+ a list of argument names (possibly containing nested lists), and
70
+ 'varargs' and 'varkw' are the names of the * and ** arguments or None.
71
+
72
+ """
73
+
74
+ if not iscode(co):
75
+ raise TypeError('arg is not a code object')
76
+
77
+ nargs = co.co_argcount
78
+ names = co.co_varnames
79
+ args = list(names[:nargs])
80
+
81
+ # The following acrobatics are for anonymous (tuple) arguments.
82
+ # Which we do not need to support, so remove to avoid importing
83
+ # the dis module.
84
+ for i in range(nargs):
85
+ if args[i][:1] in ['', '.']:
86
+ raise TypeError("tuple function arguments are not supported")
87
+ varargs = None
88
+ if co.co_flags & CO_VARARGS:
89
+ varargs = co.co_varnames[nargs]
90
+ nargs = nargs + 1
91
+ varkw = None
92
+ if co.co_flags & CO_VARKEYWORDS:
93
+ varkw = co.co_varnames[nargs]
94
+ return args, varargs, varkw
95
+
96
+ def getargspec(func):
97
+ """Get the names and default values of a function's arguments.
98
+
99
+ A tuple of four things is returned: (args, varargs, varkw, defaults).
100
+ 'args' is a list of the argument names (it may contain nested lists).
101
+ 'varargs' and 'varkw' are the names of the * and ** arguments or None.
102
+ 'defaults' is an n-tuple of the default values of the last n arguments.
103
+
104
+ """
105
+
106
+ if ismethod(func):
107
+ func = func.__func__
108
+ if not isfunction(func):
109
+ raise TypeError('arg is not a Python function')
110
+ args, varargs, varkw = getargs(func.__code__)
111
+ return args, varargs, varkw, func.__defaults__
112
+
113
+ def getargvalues(frame):
114
+ """Get information about arguments passed into a particular frame.
115
+
116
+ A tuple of four things is returned: (args, varargs, varkw, locals).
117
+ 'args' is a list of the argument names (it may contain nested lists).
118
+ 'varargs' and 'varkw' are the names of the * and ** arguments or None.
119
+ 'locals' is the locals dictionary of the given frame.
120
+
121
+ """
122
+ args, varargs, varkw = getargs(frame.f_code)
123
+ return args, varargs, varkw, frame.f_locals
124
+
125
+ def joinseq(seq):
126
+ if len(seq) == 1:
127
+ return '(' + seq[0] + ',)'
128
+ else:
129
+ return '(' + ', '.join(seq) + ')'
130
+
131
+ def strseq(object, convert, join=joinseq):
132
+ """Recursively walk a sequence, stringifying each element.
133
+
134
+ """
135
+ if type(object) in [list, tuple]:
136
+ return join([strseq(_o, convert, join) for _o in object])
137
+ else:
138
+ return convert(object)
139
+
140
+ def formatargspec(args, varargs=None, varkw=None, defaults=None,
141
+ formatarg=str,
142
+ formatvarargs=lambda name: '*' + name,
143
+ formatvarkw=lambda name: '**' + name,
144
+ formatvalue=lambda value: '=' + repr(value),
145
+ join=joinseq):
146
+ """Format an argument spec from the 4 values returned by getargspec.
147
+
148
+ The first four arguments are (args, varargs, varkw, defaults). The
149
+ other four arguments are the corresponding optional formatting functions
150
+ that are called to turn names and values into strings. The ninth
151
+ argument is an optional function to format the sequence of arguments.
152
+
153
+ """
154
+ specs = []
155
+ if defaults:
156
+ firstdefault = len(args) - len(defaults)
157
+ for i in range(len(args)):
158
+ spec = strseq(args[i], formatarg, join)
159
+ if defaults and i >= firstdefault:
160
+ spec = spec + formatvalue(defaults[i - firstdefault])
161
+ specs.append(spec)
162
+ if varargs is not None:
163
+ specs.append(formatvarargs(varargs))
164
+ if varkw is not None:
165
+ specs.append(formatvarkw(varkw))
166
+ return '(' + ', '.join(specs) + ')'
167
+
168
+ def formatargvalues(args, varargs, varkw, locals,
169
+ formatarg=str,
170
+ formatvarargs=lambda name: '*' + name,
171
+ formatvarkw=lambda name: '**' + name,
172
+ formatvalue=lambda value: '=' + repr(value),
173
+ join=joinseq):
174
+ """Format an argument spec from the 4 values returned by getargvalues.
175
+
176
+ The first four arguments are (args, varargs, varkw, locals). The
177
+ next four arguments are the corresponding optional formatting functions
178
+ that are called to turn names and values into strings. The ninth
179
+ argument is an optional function to format the sequence of arguments.
180
+
181
+ """
182
+ def convert(name, locals=locals,
183
+ formatarg=formatarg, formatvalue=formatvalue):
184
+ return formatarg(name) + formatvalue(locals[name])
185
+ specs = [strseq(arg, convert, join) for arg in args]
186
+
187
+ if varargs:
188
+ specs.append(formatvarargs(varargs) + formatvalue(locals[varargs]))
189
+ if varkw:
190
+ specs.append(formatvarkw(varkw) + formatvalue(locals[varkw]))
191
+ return '(' + ', '.join(specs) + ')'
env-llmeval/lib/python3.10/site-packages/numpy/_utils/_pep440.py ADDED
@@ -0,0 +1,487 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Utility to compare pep440 compatible version strings.
2
+
3
+ The LooseVersion and StrictVersion classes that distutils provides don't
4
+ work; they don't recognize anything like alpha/beta/rc/dev versions.
5
+ """
6
+
7
+ # Copyright (c) Donald Stufft and individual contributors.
8
+ # All rights reserved.
9
+
10
+ # Redistribution and use in source and binary forms, with or without
11
+ # modification, are permitted provided that the following conditions are met:
12
+
13
+ # 1. Redistributions of source code must retain the above copyright notice,
14
+ # this list of conditions and the following disclaimer.
15
+
16
+ # 2. Redistributions in binary form must reproduce the above copyright
17
+ # notice, this list of conditions and the following disclaimer in the
18
+ # documentation and/or other materials provided with the distribution.
19
+
20
+ # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23
+ # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
24
+ # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25
+ # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26
+ # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27
+ # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28
+ # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29
+ # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30
+ # POSSIBILITY OF SUCH DAMAGE.
31
+
32
+ import collections
33
+ import itertools
34
+ import re
35
+
36
+
37
+ __all__ = [
38
+ "parse", "Version", "LegacyVersion", "InvalidVersion", "VERSION_PATTERN",
39
+ ]
40
+
41
+
42
+ # BEGIN packaging/_structures.py
43
+
44
+
45
+ class Infinity:
46
+ def __repr__(self):
47
+ return "Infinity"
48
+
49
+ def __hash__(self):
50
+ return hash(repr(self))
51
+
52
+ def __lt__(self, other):
53
+ return False
54
+
55
+ def __le__(self, other):
56
+ return False
57
+
58
+ def __eq__(self, other):
59
+ return isinstance(other, self.__class__)
60
+
61
+ def __ne__(self, other):
62
+ return not isinstance(other, self.__class__)
63
+
64
+ def __gt__(self, other):
65
+ return True
66
+
67
+ def __ge__(self, other):
68
+ return True
69
+
70
+ def __neg__(self):
71
+ return NegativeInfinity
72
+
73
+
74
+ Infinity = Infinity()
75
+
76
+
77
+ class NegativeInfinity:
78
+ def __repr__(self):
79
+ return "-Infinity"
80
+
81
+ def __hash__(self):
82
+ return hash(repr(self))
83
+
84
+ def __lt__(self, other):
85
+ return True
86
+
87
+ def __le__(self, other):
88
+ return True
89
+
90
+ def __eq__(self, other):
91
+ return isinstance(other, self.__class__)
92
+
93
+ def __ne__(self, other):
94
+ return not isinstance(other, self.__class__)
95
+
96
+ def __gt__(self, other):
97
+ return False
98
+
99
+ def __ge__(self, other):
100
+ return False
101
+
102
+ def __neg__(self):
103
+ return Infinity
104
+
105
+
106
+ # BEGIN packaging/version.py
107
+
108
+
109
+ NegativeInfinity = NegativeInfinity()
110
+
111
+ _Version = collections.namedtuple(
112
+ "_Version",
113
+ ["epoch", "release", "dev", "pre", "post", "local"],
114
+ )
115
+
116
+
117
+ def parse(version):
118
+ """
119
+ Parse the given version string and return either a :class:`Version` object
120
+ or a :class:`LegacyVersion` object depending on if the given version is
121
+ a valid PEP 440 version or a legacy version.
122
+ """
123
+ try:
124
+ return Version(version)
125
+ except InvalidVersion:
126
+ return LegacyVersion(version)
127
+
128
+
129
+ class InvalidVersion(ValueError):
130
+ """
131
+ An invalid version was found, users should refer to PEP 440.
132
+ """
133
+
134
+
135
+ class _BaseVersion:
136
+
137
+ def __hash__(self):
138
+ return hash(self._key)
139
+
140
+ def __lt__(self, other):
141
+ return self._compare(other, lambda s, o: s < o)
142
+
143
+ def __le__(self, other):
144
+ return self._compare(other, lambda s, o: s <= o)
145
+
146
+ def __eq__(self, other):
147
+ return self._compare(other, lambda s, o: s == o)
148
+
149
+ def __ge__(self, other):
150
+ return self._compare(other, lambda s, o: s >= o)
151
+
152
+ def __gt__(self, other):
153
+ return self._compare(other, lambda s, o: s > o)
154
+
155
+ def __ne__(self, other):
156
+ return self._compare(other, lambda s, o: s != o)
157
+
158
+ def _compare(self, other, method):
159
+ if not isinstance(other, _BaseVersion):
160
+ return NotImplemented
161
+
162
+ return method(self._key, other._key)
163
+
164
+
165
+ class LegacyVersion(_BaseVersion):
166
+
167
+ def __init__(self, version):
168
+ self._version = str(version)
169
+ self._key = _legacy_cmpkey(self._version)
170
+
171
+ def __str__(self):
172
+ return self._version
173
+
174
+ def __repr__(self):
175
+ return "<LegacyVersion({0})>".format(repr(str(self)))
176
+
177
+ @property
178
+ def public(self):
179
+ return self._version
180
+
181
+ @property
182
+ def base_version(self):
183
+ return self._version
184
+
185
+ @property
186
+ def local(self):
187
+ return None
188
+
189
+ @property
190
+ def is_prerelease(self):
191
+ return False
192
+
193
+ @property
194
+ def is_postrelease(self):
195
+ return False
196
+
197
+
198
+ _legacy_version_component_re = re.compile(
199
+ r"(\d+ | [a-z]+ | \.| -)", re.VERBOSE,
200
+ )
201
+
202
+ _legacy_version_replacement_map = {
203
+ "pre": "c", "preview": "c", "-": "final-", "rc": "c", "dev": "@",
204
+ }
205
+
206
+
207
+ def _parse_version_parts(s):
208
+ for part in _legacy_version_component_re.split(s):
209
+ part = _legacy_version_replacement_map.get(part, part)
210
+
211
+ if not part or part == ".":
212
+ continue
213
+
214
+ if part[:1] in "0123456789":
215
+ # pad for numeric comparison
216
+ yield part.zfill(8)
217
+ else:
218
+ yield "*" + part
219
+
220
+ # ensure that alpha/beta/candidate are before final
221
+ yield "*final"
222
+
223
+
224
+ def _legacy_cmpkey(version):
225
+ # We hardcode an epoch of -1 here. A PEP 440 version can only have an epoch
226
+ # greater than or equal to 0. This will effectively put the LegacyVersion,
227
+ # which uses the defacto standard originally implemented by setuptools,
228
+ # as before all PEP 440 versions.
229
+ epoch = -1
230
+
231
+ # This scheme is taken from pkg_resources.parse_version setuptools prior to
232
+ # its adoption of the packaging library.
233
+ parts = []
234
+ for part in _parse_version_parts(version.lower()):
235
+ if part.startswith("*"):
236
+ # remove "-" before a prerelease tag
237
+ if part < "*final":
238
+ while parts and parts[-1] == "*final-":
239
+ parts.pop()
240
+
241
+ # remove trailing zeros from each series of numeric parts
242
+ while parts and parts[-1] == "00000000":
243
+ parts.pop()
244
+
245
+ parts.append(part)
246
+ parts = tuple(parts)
247
+
248
+ return epoch, parts
249
+
250
+
251
+ # Deliberately not anchored to the start and end of the string, to make it
252
+ # easier for 3rd party code to reuse
253
+ VERSION_PATTERN = r"""
254
+ v?
255
+ (?:
256
+ (?:(?P<epoch>[0-9]+)!)? # epoch
257
+ (?P<release>[0-9]+(?:\.[0-9]+)*) # release segment
258
+ (?P<pre> # pre-release
259
+ [-_\.]?
260
+ (?P<pre_l>(a|b|c|rc|alpha|beta|pre|preview))
261
+ [-_\.]?
262
+ (?P<pre_n>[0-9]+)?
263
+ )?
264
+ (?P<post> # post release
265
+ (?:-(?P<post_n1>[0-9]+))
266
+ |
267
+ (?:
268
+ [-_\.]?
269
+ (?P<post_l>post|rev|r)
270
+ [-_\.]?
271
+ (?P<post_n2>[0-9]+)?
272
+ )
273
+ )?
274
+ (?P<dev> # dev release
275
+ [-_\.]?
276
+ (?P<dev_l>dev)
277
+ [-_\.]?
278
+ (?P<dev_n>[0-9]+)?
279
+ )?
280
+ )
281
+ (?:\+(?P<local>[a-z0-9]+(?:[-_\.][a-z0-9]+)*))? # local version
282
+ """
283
+
284
+
285
+ class Version(_BaseVersion):
286
+
287
+ _regex = re.compile(
288
+ r"^\s*" + VERSION_PATTERN + r"\s*$",
289
+ re.VERBOSE | re.IGNORECASE,
290
+ )
291
+
292
+ def __init__(self, version):
293
+ # Validate the version and parse it into pieces
294
+ match = self._regex.search(version)
295
+ if not match:
296
+ raise InvalidVersion("Invalid version: '{0}'".format(version))
297
+
298
+ # Store the parsed out pieces of the version
299
+ self._version = _Version(
300
+ epoch=int(match.group("epoch")) if match.group("epoch") else 0,
301
+ release=tuple(int(i) for i in match.group("release").split(".")),
302
+ pre=_parse_letter_version(
303
+ match.group("pre_l"),
304
+ match.group("pre_n"),
305
+ ),
306
+ post=_parse_letter_version(
307
+ match.group("post_l"),
308
+ match.group("post_n1") or match.group("post_n2"),
309
+ ),
310
+ dev=_parse_letter_version(
311
+ match.group("dev_l"),
312
+ match.group("dev_n"),
313
+ ),
314
+ local=_parse_local_version(match.group("local")),
315
+ )
316
+
317
+ # Generate a key which will be used for sorting
318
+ self._key = _cmpkey(
319
+ self._version.epoch,
320
+ self._version.release,
321
+ self._version.pre,
322
+ self._version.post,
323
+ self._version.dev,
324
+ self._version.local,
325
+ )
326
+
327
+ def __repr__(self):
328
+ return "<Version({0})>".format(repr(str(self)))
329
+
330
+ def __str__(self):
331
+ parts = []
332
+
333
+ # Epoch
334
+ if self._version.epoch != 0:
335
+ parts.append("{0}!".format(self._version.epoch))
336
+
337
+ # Release segment
338
+ parts.append(".".join(str(x) for x in self._version.release))
339
+
340
+ # Pre-release
341
+ if self._version.pre is not None:
342
+ parts.append("".join(str(x) for x in self._version.pre))
343
+
344
+ # Post-release
345
+ if self._version.post is not None:
346
+ parts.append(".post{0}".format(self._version.post[1]))
347
+
348
+ # Development release
349
+ if self._version.dev is not None:
350
+ parts.append(".dev{0}".format(self._version.dev[1]))
351
+
352
+ # Local version segment
353
+ if self._version.local is not None:
354
+ parts.append(
355
+ "+{0}".format(".".join(str(x) for x in self._version.local))
356
+ )
357
+
358
+ return "".join(parts)
359
+
360
+ @property
361
+ def public(self):
362
+ return str(self).split("+", 1)[0]
363
+
364
+ @property
365
+ def base_version(self):
366
+ parts = []
367
+
368
+ # Epoch
369
+ if self._version.epoch != 0:
370
+ parts.append("{0}!".format(self._version.epoch))
371
+
372
+ # Release segment
373
+ parts.append(".".join(str(x) for x in self._version.release))
374
+
375
+ return "".join(parts)
376
+
377
+ @property
378
+ def local(self):
379
+ version_string = str(self)
380
+ if "+" in version_string:
381
+ return version_string.split("+", 1)[1]
382
+
383
+ @property
384
+ def is_prerelease(self):
385
+ return bool(self._version.dev or self._version.pre)
386
+
387
+ @property
388
+ def is_postrelease(self):
389
+ return bool(self._version.post)
390
+
391
+
392
+ def _parse_letter_version(letter, number):
393
+ if letter:
394
+ # We assume there is an implicit 0 in a pre-release if there is
395
+ # no numeral associated with it.
396
+ if number is None:
397
+ number = 0
398
+
399
+ # We normalize any letters to their lower-case form
400
+ letter = letter.lower()
401
+
402
+ # We consider some words to be alternate spellings of other words and
403
+ # in those cases we want to normalize the spellings to our preferred
404
+ # spelling.
405
+ if letter == "alpha":
406
+ letter = "a"
407
+ elif letter == "beta":
408
+ letter = "b"
409
+ elif letter in ["c", "pre", "preview"]:
410
+ letter = "rc"
411
+ elif letter in ["rev", "r"]:
412
+ letter = "post"
413
+
414
+ return letter, int(number)
415
+ if not letter and number:
416
+ # We assume that if we are given a number but not given a letter,
417
+ # then this is using the implicit post release syntax (e.g., 1.0-1)
418
+ letter = "post"
419
+
420
+ return letter, int(number)
421
+
422
+
423
+ _local_version_seperators = re.compile(r"[\._-]")
424
+
425
+
426
+ def _parse_local_version(local):
427
+ """
428
+ Takes a string like abc.1.twelve and turns it into ("abc", 1, "twelve").
429
+ """
430
+ if local is not None:
431
+ return tuple(
432
+ part.lower() if not part.isdigit() else int(part)
433
+ for part in _local_version_seperators.split(local)
434
+ )
435
+
436
+
437
+ def _cmpkey(epoch, release, pre, post, dev, local):
438
+ # When we compare a release version, we want to compare it with all of the
439
+ # trailing zeros removed. So we'll use a reverse the list, drop all the now
440
+ # leading zeros until we come to something non-zero, then take the rest,
441
+ # re-reverse it back into the correct order, and make it a tuple and use
442
+ # that for our sorting key.
443
+ release = tuple(
444
+ reversed(list(
445
+ itertools.dropwhile(
446
+ lambda x: x == 0,
447
+ reversed(release),
448
+ )
449
+ ))
450
+ )
451
+
452
+ # We need to "trick" the sorting algorithm to put 1.0.dev0 before 1.0a0.
453
+ # We'll do this by abusing the pre-segment, but we _only_ want to do this
454
+ # if there is no pre- or a post-segment. If we have one of those, then
455
+ # the normal sorting rules will handle this case correctly.
456
+ if pre is None and post is None and dev is not None:
457
+ pre = -Infinity
458
+ # Versions without a pre-release (except as noted above) should sort after
459
+ # those with one.
460
+ elif pre is None:
461
+ pre = Infinity
462
+
463
+ # Versions without a post-segment should sort before those with one.
464
+ if post is None:
465
+ post = -Infinity
466
+
467
+ # Versions without a development segment should sort after those with one.
468
+ if dev is None:
469
+ dev = Infinity
470
+
471
+ if local is None:
472
+ # Versions without a local segment should sort before those with one.
473
+ local = -Infinity
474
+ else:
475
+ # Versions with a local segment need that segment parsed to implement
476
+ # the sorting rules in PEP440.
477
+ # - Alphanumeric segments sort before numeric segments
478
+ # - Alphanumeric segments sort lexicographically
479
+ # - Numeric segments sort numerically
480
+ # - Shorter versions sort before longer versions when the prefixes
481
+ # match exactly
482
+ local = tuple(
483
+ (i, "") if isinstance(i, int) else (-Infinity, i)
484
+ for i in local
485
+ )
486
+
487
+ return epoch, release, pre, post, dev, local
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (9.87 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_array_object.cpython-310.pyc ADDED
Binary file (28.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_constants.cpython-310.pyc ADDED
Binary file (269 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_creation_functions.cpython-310.pyc ADDED
Binary file (8.48 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_data_type_functions.cpython-310.pyc ADDED
Binary file (5.82 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_dtypes.cpython-310.pyc ADDED
Binary file (2.51 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_elementwise_functions.cpython-310.pyc ADDED
Binary file (19.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_indexing_functions.cpython-310.pyc ADDED
Binary file (984 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_manipulation_functions.cpython-310.pyc ADDED
Binary file (3.69 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_searching_functions.cpython-310.pyc ADDED
Binary file (2.15 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_set_functions.cpython-310.pyc ADDED
Binary file (2.26 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_sorting_functions.cpython-310.pyc ADDED
Binary file (1.56 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_statistical_functions.cpython-310.pyc ADDED
Binary file (2.76 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_typing.cpython-310.pyc ADDED
Binary file (2.06 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/_utility_functions.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/linalg.cpython-310.pyc ADDED
Binary file (13.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__pycache__/setup.cpython-310.pyc ADDED
Binary file (563 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_array_object.py ADDED
@@ -0,0 +1,1133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Wrapper class around the ndarray object for the array API standard.
3
+
4
+ The array API standard defines some behaviors differently than ndarray, in
5
+ particular, type promotion rules are different (the standard has no
6
+ value-based casting). The standard also specifies a more limited subset of
7
+ array methods and functionalities than are implemented on ndarray. Since the
8
+ goal of the array_api namespace is to be a minimal implementation of the array
9
+ API standard, we need to define a separate wrapper class for the array_api
10
+ namespace.
11
+
12
+ The standard compliant class is only a wrapper class. It is *not* a subclass
13
+ of ndarray.
14
+ """
15
+
16
+ from __future__ import annotations
17
+
18
+ import operator
19
+ from enum import IntEnum
20
+ from ._creation_functions import asarray
21
+ from ._dtypes import (
22
+ _all_dtypes,
23
+ _boolean_dtypes,
24
+ _integer_dtypes,
25
+ _integer_or_boolean_dtypes,
26
+ _floating_dtypes,
27
+ _complex_floating_dtypes,
28
+ _numeric_dtypes,
29
+ _result_type,
30
+ _dtype_categories,
31
+ )
32
+
33
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Any, SupportsIndex
34
+ import types
35
+
36
+ if TYPE_CHECKING:
37
+ from ._typing import Any, PyCapsule, Device, Dtype
38
+ import numpy.typing as npt
39
+
40
+ import numpy as np
41
+
42
+ from numpy import array_api
43
+
44
+
45
+ class Array:
46
+ """
47
+ n-d array object for the array API namespace.
48
+
49
+ See the docstring of :py:obj:`np.ndarray <numpy.ndarray>` for more
50
+ information.
51
+
52
+ This is a wrapper around numpy.ndarray that restricts the usage to only
53
+ those things that are required by the array API namespace. Note,
54
+ attributes on this object that start with a single underscore are not part
55
+ of the API specification and should only be used internally. This object
56
+ should not be constructed directly. Rather, use one of the creation
57
+ functions, such as asarray().
58
+
59
+ """
60
+ _array: np.ndarray[Any, Any]
61
+
62
+ # Use a custom constructor instead of __init__, as manually initializing
63
+ # this class is not supported API.
64
+ @classmethod
65
+ def _new(cls, x, /):
66
+ """
67
+ This is a private method for initializing the array API Array
68
+ object.
69
+
70
+ Functions outside of the array_api submodule should not use this
71
+ method. Use one of the creation functions instead, such as
72
+ ``asarray``.
73
+
74
+ """
75
+ obj = super().__new__(cls)
76
+ # Note: The spec does not have array scalars, only 0-D arrays.
77
+ if isinstance(x, np.generic):
78
+ # Convert the array scalar to a 0-D array
79
+ x = np.asarray(x)
80
+ if x.dtype not in _all_dtypes:
81
+ raise TypeError(
82
+ f"The array_api namespace does not support the dtype '{x.dtype}'"
83
+ )
84
+ obj._array = x
85
+ return obj
86
+
87
+ # Prevent Array() from working
88
+ def __new__(cls, *args, **kwargs):
89
+ raise TypeError(
90
+ "The array_api Array object should not be instantiated directly. Use an array creation function, such as asarray(), instead."
91
+ )
92
+
93
+ # These functions are not required by the spec, but are implemented for
94
+ # the sake of usability.
95
+
96
+ def __str__(self: Array, /) -> str:
97
+ """
98
+ Performs the operation __str__.
99
+ """
100
+ return self._array.__str__().replace("array", "Array")
101
+
102
+ def __repr__(self: Array, /) -> str:
103
+ """
104
+ Performs the operation __repr__.
105
+ """
106
+ suffix = f", dtype={self.dtype.name})"
107
+ if 0 in self.shape:
108
+ prefix = "empty("
109
+ mid = str(self.shape)
110
+ else:
111
+ prefix = "Array("
112
+ mid = np.array2string(self._array, separator=', ', prefix=prefix, suffix=suffix)
113
+ return prefix + mid + suffix
114
+
115
+ # This function is not required by the spec, but we implement it here for
116
+ # convenience so that np.asarray(np.array_api.Array) will work.
117
+ def __array__(self, dtype: None | np.dtype[Any] = None) -> npt.NDArray[Any]:
118
+ """
119
+ Warning: this method is NOT part of the array API spec. Implementers
120
+ of other libraries need not include it, and users should not assume it
121
+ will be present in other implementations.
122
+
123
+ """
124
+ return np.asarray(self._array, dtype=dtype)
125
+
126
+ # These are various helper functions to make the array behavior match the
127
+ # spec in places where it either deviates from or is more strict than
128
+ # NumPy behavior
129
+
130
+ def _check_allowed_dtypes(self, other: bool | int | float | Array, dtype_category: str, op: str) -> Array:
131
+ """
132
+ Helper function for operators to only allow specific input dtypes
133
+
134
+ Use like
135
+
136
+ other = self._check_allowed_dtypes(other, 'numeric', '__add__')
137
+ if other is NotImplemented:
138
+ return other
139
+ """
140
+
141
+ if self.dtype not in _dtype_categories[dtype_category]:
142
+ raise TypeError(f"Only {dtype_category} dtypes are allowed in {op}")
143
+ if isinstance(other, (int, complex, float, bool)):
144
+ other = self._promote_scalar(other)
145
+ elif isinstance(other, Array):
146
+ if other.dtype not in _dtype_categories[dtype_category]:
147
+ raise TypeError(f"Only {dtype_category} dtypes are allowed in {op}")
148
+ else:
149
+ return NotImplemented
150
+
151
+ # This will raise TypeError for type combinations that are not allowed
152
+ # to promote in the spec (even if the NumPy array operator would
153
+ # promote them).
154
+ res_dtype = _result_type(self.dtype, other.dtype)
155
+ if op.startswith("__i"):
156
+ # Note: NumPy will allow in-place operators in some cases where
157
+ # the type promoted operator does not match the left-hand side
158
+ # operand. For example,
159
+
160
+ # >>> a = np.array(1, dtype=np.int8)
161
+ # >>> a += np.array(1, dtype=np.int16)
162
+
163
+ # The spec explicitly disallows this.
164
+ if res_dtype != self.dtype:
165
+ raise TypeError(
166
+ f"Cannot perform {op} with dtypes {self.dtype} and {other.dtype}"
167
+ )
168
+
169
+ return other
170
+
171
+ # Helper function to match the type promotion rules in the spec
172
+ def _promote_scalar(self, scalar):
173
+ """
174
+ Returns a promoted version of a Python scalar appropriate for use with
175
+ operations on self.
176
+
177
+ This may raise an OverflowError in cases where the scalar is an
178
+ integer that is too large to fit in a NumPy integer dtype, or
179
+ TypeError when the scalar type is incompatible with the dtype of self.
180
+ """
181
+ # Note: Only Python scalar types that match the array dtype are
182
+ # allowed.
183
+ if isinstance(scalar, bool):
184
+ if self.dtype not in _boolean_dtypes:
185
+ raise TypeError(
186
+ "Python bool scalars can only be promoted with bool arrays"
187
+ )
188
+ elif isinstance(scalar, int):
189
+ if self.dtype in _boolean_dtypes:
190
+ raise TypeError(
191
+ "Python int scalars cannot be promoted with bool arrays"
192
+ )
193
+ if self.dtype in _integer_dtypes:
194
+ info = np.iinfo(self.dtype)
195
+ if not (info.min <= scalar <= info.max):
196
+ raise OverflowError(
197
+ "Python int scalars must be within the bounds of the dtype for integer arrays"
198
+ )
199
+ # int + array(floating) is allowed
200
+ elif isinstance(scalar, float):
201
+ if self.dtype not in _floating_dtypes:
202
+ raise TypeError(
203
+ "Python float scalars can only be promoted with floating-point arrays."
204
+ )
205
+ elif isinstance(scalar, complex):
206
+ if self.dtype not in _complex_floating_dtypes:
207
+ raise TypeError(
208
+ "Python complex scalars can only be promoted with complex floating-point arrays."
209
+ )
210
+ else:
211
+ raise TypeError("'scalar' must be a Python scalar")
212
+
213
+ # Note: scalars are unconditionally cast to the same dtype as the
214
+ # array.
215
+
216
+ # Note: the spec only specifies integer-dtype/int promotion
217
+ # behavior for integers within the bounds of the integer dtype.
218
+ # Outside of those bounds we use the default NumPy behavior (either
219
+ # cast or raise OverflowError).
220
+ return Array._new(np.array(scalar, self.dtype))
221
+
222
+ @staticmethod
223
+ def _normalize_two_args(x1, x2) -> Tuple[Array, Array]:
224
+ """
225
+ Normalize inputs to two arg functions to fix type promotion rules
226
+
227
+ NumPy deviates from the spec type promotion rules in cases where one
228
+ argument is 0-dimensional and the other is not. For example:
229
+
230
+ >>> import numpy as np
231
+ >>> a = np.array([1.0], dtype=np.float32)
232
+ >>> b = np.array(1.0, dtype=np.float64)
233
+ >>> np.add(a, b) # The spec says this should be float64
234
+ array([2.], dtype=float32)
235
+
236
+ To fix this, we add a dimension to the 0-dimension array before passing it
237
+ through. This works because a dimension would be added anyway from
238
+ broadcasting, so the resulting shape is the same, but this prevents NumPy
239
+ from not promoting the dtype.
240
+ """
241
+ # Another option would be to use signature=(x1.dtype, x2.dtype, None),
242
+ # but that only works for ufuncs, so we would have to call the ufuncs
243
+ # directly in the operator methods. One should also note that this
244
+ # sort of trick wouldn't work for functions like searchsorted, which
245
+ # don't do normal broadcasting, but there aren't any functions like
246
+ # that in the array API namespace.
247
+ if x1.ndim == 0 and x2.ndim != 0:
248
+ # The _array[None] workaround was chosen because it is relatively
249
+ # performant. broadcast_to(x1._array, x2.shape) is much slower. We
250
+ # could also manually type promote x2, but that is more complicated
251
+ # and about the same performance as this.
252
+ x1 = Array._new(x1._array[None])
253
+ elif x2.ndim == 0 and x1.ndim != 0:
254
+ x2 = Array._new(x2._array[None])
255
+ return (x1, x2)
256
+
257
+ # Note: A large fraction of allowed indices are disallowed here (see the
258
+ # docstring below)
259
+ def _validate_index(self, key):
260
+ """
261
+ Validate an index according to the array API.
262
+
263
+ The array API specification only requires a subset of indices that are
264
+ supported by NumPy. This function will reject any index that is
265
+ allowed by NumPy but not required by the array API specification. We
266
+ always raise ``IndexError`` on such indices (the spec does not require
267
+ any specific behavior on them, but this makes the NumPy array API
268
+ namespace a minimal implementation of the spec). See
269
+ https://data-apis.org/array-api/latest/API_specification/indexing.html
270
+ for the full list of required indexing behavior
271
+
272
+ This function raises IndexError if the index ``key`` is invalid. It
273
+ only raises ``IndexError`` on indices that are not already rejected by
274
+ NumPy, as NumPy will already raise the appropriate error on such
275
+ indices. ``shape`` may be None, in which case, only cases that are
276
+ independent of the array shape are checked.
277
+
278
+ The following cases are allowed by NumPy, but not specified by the array
279
+ API specification:
280
+
281
+ - Indices to not include an implicit ellipsis at the end. That is,
282
+ every axis of an array must be explicitly indexed or an ellipsis
283
+ included. This behaviour is sometimes referred to as flat indexing.
284
+
285
+ - The start and stop of a slice may not be out of bounds. In
286
+ particular, for a slice ``i:j:k`` on an axis of size ``n``, only the
287
+ following are allowed:
288
+
289
+ - ``i`` or ``j`` omitted (``None``).
290
+ - ``-n <= i <= max(0, n - 1)``.
291
+ - For ``k > 0`` or ``k`` omitted (``None``), ``-n <= j <= n``.
292
+ - For ``k < 0``, ``-n - 1 <= j <= max(0, n - 1)``.
293
+
294
+ - Boolean array indices are not allowed as part of a larger tuple
295
+ index.
296
+
297
+ - Integer array indices are not allowed (with the exception of 0-D
298
+ arrays, which are treated the same as scalars).
299
+
300
+ Additionally, it should be noted that indices that would return a
301
+ scalar in NumPy will return a 0-D array. Array scalars are not allowed
302
+ in the specification, only 0-D arrays. This is done in the
303
+ ``Array._new`` constructor, not this function.
304
+
305
+ """
306
+ _key = key if isinstance(key, tuple) else (key,)
307
+ for i in _key:
308
+ if isinstance(i, bool) or not (
309
+ isinstance(i, SupportsIndex) # i.e. ints
310
+ or isinstance(i, slice)
311
+ or i == Ellipsis
312
+ or i is None
313
+ or isinstance(i, Array)
314
+ or isinstance(i, np.ndarray)
315
+ ):
316
+ raise IndexError(
317
+ f"Single-axes index {i} has {type(i)=}, but only "
318
+ "integers, slices (:), ellipsis (...), newaxis (None), "
319
+ "zero-dimensional integer arrays and boolean arrays "
320
+ "are specified in the Array API."
321
+ )
322
+
323
+ nonexpanding_key = []
324
+ single_axes = []
325
+ n_ellipsis = 0
326
+ key_has_mask = False
327
+ for i in _key:
328
+ if i is not None:
329
+ nonexpanding_key.append(i)
330
+ if isinstance(i, Array) or isinstance(i, np.ndarray):
331
+ if i.dtype in _boolean_dtypes:
332
+ key_has_mask = True
333
+ single_axes.append(i)
334
+ else:
335
+ # i must not be an array here, to avoid elementwise equals
336
+ if i == Ellipsis:
337
+ n_ellipsis += 1
338
+ else:
339
+ single_axes.append(i)
340
+
341
+ n_single_axes = len(single_axes)
342
+ if n_ellipsis > 1:
343
+ return # handled by ndarray
344
+ elif n_ellipsis == 0:
345
+ # Note boolean masks must be the sole index, which we check for
346
+ # later on.
347
+ if not key_has_mask and n_single_axes < self.ndim:
348
+ raise IndexError(
349
+ f"{self.ndim=}, but the multi-axes index only specifies "
350
+ f"{n_single_axes} dimensions. If this was intentional, "
351
+ "add a trailing ellipsis (...) which expands into as many "
352
+ "slices (:) as necessary - this is what np.ndarray arrays "
353
+ "implicitly do, but such flat indexing behaviour is not "
354
+ "specified in the Array API."
355
+ )
356
+
357
+ if n_ellipsis == 0:
358
+ indexed_shape = self.shape
359
+ else:
360
+ ellipsis_start = None
361
+ for pos, i in enumerate(nonexpanding_key):
362
+ if not (isinstance(i, Array) or isinstance(i, np.ndarray)):
363
+ if i == Ellipsis:
364
+ ellipsis_start = pos
365
+ break
366
+ assert ellipsis_start is not None # sanity check
367
+ ellipsis_end = self.ndim - (n_single_axes - ellipsis_start)
368
+ indexed_shape = (
369
+ self.shape[:ellipsis_start] + self.shape[ellipsis_end:]
370
+ )
371
+ for i, side in zip(single_axes, indexed_shape):
372
+ if isinstance(i, slice):
373
+ if side == 0:
374
+ f_range = "0 (or None)"
375
+ else:
376
+ f_range = f"between -{side} and {side - 1} (or None)"
377
+ if i.start is not None:
378
+ try:
379
+ start = operator.index(i.start)
380
+ except TypeError:
381
+ pass # handled by ndarray
382
+ else:
383
+ if not (-side <= start <= side):
384
+ raise IndexError(
385
+ f"Slice {i} contains {start=}, but should be "
386
+ f"{f_range} for an axis of size {side} "
387
+ "(out-of-bounds starts are not specified in "
388
+ "the Array API)"
389
+ )
390
+ if i.stop is not None:
391
+ try:
392
+ stop = operator.index(i.stop)
393
+ except TypeError:
394
+ pass # handled by ndarray
395
+ else:
396
+ if not (-side <= stop <= side):
397
+ raise IndexError(
398
+ f"Slice {i} contains {stop=}, but should be "
399
+ f"{f_range} for an axis of size {side} "
400
+ "(out-of-bounds stops are not specified in "
401
+ "the Array API)"
402
+ )
403
+ elif isinstance(i, Array):
404
+ if i.dtype in _boolean_dtypes and len(_key) != 1:
405
+ assert isinstance(key, tuple) # sanity check
406
+ raise IndexError(
407
+ f"Single-axes index {i} is a boolean array and "
408
+ f"{len(key)=}, but masking is only specified in the "
409
+ "Array API when the array is the sole index."
410
+ )
411
+ elif i.dtype in _integer_dtypes and i.ndim != 0:
412
+ raise IndexError(
413
+ f"Single-axes index {i} is a non-zero-dimensional "
414
+ "integer array, but advanced integer indexing is not "
415
+ "specified in the Array API."
416
+ )
417
+ elif isinstance(i, tuple):
418
+ raise IndexError(
419
+ f"Single-axes index {i} is a tuple, but nested tuple "
420
+ "indices are not specified in the Array API."
421
+ )
422
+
423
+ # Everything below this line is required by the spec.
424
+
425
+ def __abs__(self: Array, /) -> Array:
426
+ """
427
+ Performs the operation __abs__.
428
+ """
429
+ if self.dtype not in _numeric_dtypes:
430
+ raise TypeError("Only numeric dtypes are allowed in __abs__")
431
+ res = self._array.__abs__()
432
+ return self.__class__._new(res)
433
+
434
+ def __add__(self: Array, other: Union[int, float, Array], /) -> Array:
435
+ """
436
+ Performs the operation __add__.
437
+ """
438
+ other = self._check_allowed_dtypes(other, "numeric", "__add__")
439
+ if other is NotImplemented:
440
+ return other
441
+ self, other = self._normalize_two_args(self, other)
442
+ res = self._array.__add__(other._array)
443
+ return self.__class__._new(res)
444
+
445
+ def __and__(self: Array, other: Union[int, bool, Array], /) -> Array:
446
+ """
447
+ Performs the operation __and__.
448
+ """
449
+ other = self._check_allowed_dtypes(other, "integer or boolean", "__and__")
450
+ if other is NotImplemented:
451
+ return other
452
+ self, other = self._normalize_two_args(self, other)
453
+ res = self._array.__and__(other._array)
454
+ return self.__class__._new(res)
455
+
456
+ def __array_namespace__(
457
+ self: Array, /, *, api_version: Optional[str] = None
458
+ ) -> types.ModuleType:
459
+ if api_version is not None and not api_version.startswith("2021."):
460
+ raise ValueError(f"Unrecognized array API version: {api_version!r}")
461
+ return array_api
462
+
463
+ def __bool__(self: Array, /) -> bool:
464
+ """
465
+ Performs the operation __bool__.
466
+ """
467
+ # Note: This is an error here.
468
+ if self._array.ndim != 0:
469
+ raise TypeError("bool is only allowed on arrays with 0 dimensions")
470
+ res = self._array.__bool__()
471
+ return res
472
+
473
+ def __complex__(self: Array, /) -> complex:
474
+ """
475
+ Performs the operation __complex__.
476
+ """
477
+ # Note: This is an error here.
478
+ if self._array.ndim != 0:
479
+ raise TypeError("complex is only allowed on arrays with 0 dimensions")
480
+ res = self._array.__complex__()
481
+ return res
482
+
483
+ def __dlpack__(self: Array, /, *, stream: None = None) -> PyCapsule:
484
+ """
485
+ Performs the operation __dlpack__.
486
+ """
487
+ return self._array.__dlpack__(stream=stream)
488
+
489
+ def __dlpack_device__(self: Array, /) -> Tuple[IntEnum, int]:
490
+ """
491
+ Performs the operation __dlpack_device__.
492
+ """
493
+ # Note: device support is required for this
494
+ return self._array.__dlpack_device__()
495
+
496
+ def __eq__(self: Array, other: Union[int, float, bool, Array], /) -> Array:
497
+ """
498
+ Performs the operation __eq__.
499
+ """
500
+ # Even though "all" dtypes are allowed, we still require them to be
501
+ # promotable with each other.
502
+ other = self._check_allowed_dtypes(other, "all", "__eq__")
503
+ if other is NotImplemented:
504
+ return other
505
+ self, other = self._normalize_two_args(self, other)
506
+ res = self._array.__eq__(other._array)
507
+ return self.__class__._new(res)
508
+
509
+ def __float__(self: Array, /) -> float:
510
+ """
511
+ Performs the operation __float__.
512
+ """
513
+ # Note: This is an error here.
514
+ if self._array.ndim != 0:
515
+ raise TypeError("float is only allowed on arrays with 0 dimensions")
516
+ if self.dtype in _complex_floating_dtypes:
517
+ raise TypeError("float is not allowed on complex floating-point arrays")
518
+ res = self._array.__float__()
519
+ return res
520
+
521
+ def __floordiv__(self: Array, other: Union[int, float, Array], /) -> Array:
522
+ """
523
+ Performs the operation __floordiv__.
524
+ """
525
+ other = self._check_allowed_dtypes(other, "real numeric", "__floordiv__")
526
+ if other is NotImplemented:
527
+ return other
528
+ self, other = self._normalize_two_args(self, other)
529
+ res = self._array.__floordiv__(other._array)
530
+ return self.__class__._new(res)
531
+
532
+ def __ge__(self: Array, other: Union[int, float, Array], /) -> Array:
533
+ """
534
+ Performs the operation __ge__.
535
+ """
536
+ other = self._check_allowed_dtypes(other, "real numeric", "__ge__")
537
+ if other is NotImplemented:
538
+ return other
539
+ self, other = self._normalize_two_args(self, other)
540
+ res = self._array.__ge__(other._array)
541
+ return self.__class__._new(res)
542
+
543
+ def __getitem__(
544
+ self: Array,
545
+ key: Union[
546
+ int,
547
+ slice,
548
+ ellipsis,
549
+ Tuple[Union[int, slice, ellipsis, None], ...],
550
+ Array,
551
+ ],
552
+ /,
553
+ ) -> Array:
554
+ """
555
+ Performs the operation __getitem__.
556
+ """
557
+ # Note: Only indices required by the spec are allowed. See the
558
+ # docstring of _validate_index
559
+ self._validate_index(key)
560
+ if isinstance(key, Array):
561
+ # Indexing self._array with array_api arrays can be erroneous
562
+ key = key._array
563
+ res = self._array.__getitem__(key)
564
+ return self._new(res)
565
+
566
+ def __gt__(self: Array, other: Union[int, float, Array], /) -> Array:
567
+ """
568
+ Performs the operation __gt__.
569
+ """
570
+ other = self._check_allowed_dtypes(other, "real numeric", "__gt__")
571
+ if other is NotImplemented:
572
+ return other
573
+ self, other = self._normalize_two_args(self, other)
574
+ res = self._array.__gt__(other._array)
575
+ return self.__class__._new(res)
576
+
577
+ def __int__(self: Array, /) -> int:
578
+ """
579
+ Performs the operation __int__.
580
+ """
581
+ # Note: This is an error here.
582
+ if self._array.ndim != 0:
583
+ raise TypeError("int is only allowed on arrays with 0 dimensions")
584
+ if self.dtype in _complex_floating_dtypes:
585
+ raise TypeError("int is not allowed on complex floating-point arrays")
586
+ res = self._array.__int__()
587
+ return res
588
+
589
+ def __index__(self: Array, /) -> int:
590
+ """
591
+ Performs the operation __index__.
592
+ """
593
+ res = self._array.__index__()
594
+ return res
595
+
596
+ def __invert__(self: Array, /) -> Array:
597
+ """
598
+ Performs the operation __invert__.
599
+ """
600
+ if self.dtype not in _integer_or_boolean_dtypes:
601
+ raise TypeError("Only integer or boolean dtypes are allowed in __invert__")
602
+ res = self._array.__invert__()
603
+ return self.__class__._new(res)
604
+
605
+ def __le__(self: Array, other: Union[int, float, Array], /) -> Array:
606
+ """
607
+ Performs the operation __le__.
608
+ """
609
+ other = self._check_allowed_dtypes(other, "real numeric", "__le__")
610
+ if other is NotImplemented:
611
+ return other
612
+ self, other = self._normalize_two_args(self, other)
613
+ res = self._array.__le__(other._array)
614
+ return self.__class__._new(res)
615
+
616
+ def __lshift__(self: Array, other: Union[int, Array], /) -> Array:
617
+ """
618
+ Performs the operation __lshift__.
619
+ """
620
+ other = self._check_allowed_dtypes(other, "integer", "__lshift__")
621
+ if other is NotImplemented:
622
+ return other
623
+ self, other = self._normalize_two_args(self, other)
624
+ res = self._array.__lshift__(other._array)
625
+ return self.__class__._new(res)
626
+
627
+ def __lt__(self: Array, other: Union[int, float, Array], /) -> Array:
628
+ """
629
+ Performs the operation __lt__.
630
+ """
631
+ other = self._check_allowed_dtypes(other, "real numeric", "__lt__")
632
+ if other is NotImplemented:
633
+ return other
634
+ self, other = self._normalize_two_args(self, other)
635
+ res = self._array.__lt__(other._array)
636
+ return self.__class__._new(res)
637
+
638
+ def __matmul__(self: Array, other: Array, /) -> Array:
639
+ """
640
+ Performs the operation __matmul__.
641
+ """
642
+ # matmul is not defined for scalars, but without this, we may get
643
+ # the wrong error message from asarray.
644
+ other = self._check_allowed_dtypes(other, "numeric", "__matmul__")
645
+ if other is NotImplemented:
646
+ return other
647
+ res = self._array.__matmul__(other._array)
648
+ return self.__class__._new(res)
649
+
650
+ def __mod__(self: Array, other: Union[int, float, Array], /) -> Array:
651
+ """
652
+ Performs the operation __mod__.
653
+ """
654
+ other = self._check_allowed_dtypes(other, "real numeric", "__mod__")
655
+ if other is NotImplemented:
656
+ return other
657
+ self, other = self._normalize_two_args(self, other)
658
+ res = self._array.__mod__(other._array)
659
+ return self.__class__._new(res)
660
+
661
+ def __mul__(self: Array, other: Union[int, float, Array], /) -> Array:
662
+ """
663
+ Performs the operation __mul__.
664
+ """
665
+ other = self._check_allowed_dtypes(other, "numeric", "__mul__")
666
+ if other is NotImplemented:
667
+ return other
668
+ self, other = self._normalize_two_args(self, other)
669
+ res = self._array.__mul__(other._array)
670
+ return self.__class__._new(res)
671
+
672
+ def __ne__(self: Array, other: Union[int, float, bool, Array], /) -> Array:
673
+ """
674
+ Performs the operation __ne__.
675
+ """
676
+ other = self._check_allowed_dtypes(other, "all", "__ne__")
677
+ if other is NotImplemented:
678
+ return other
679
+ self, other = self._normalize_two_args(self, other)
680
+ res = self._array.__ne__(other._array)
681
+ return self.__class__._new(res)
682
+
683
+ def __neg__(self: Array, /) -> Array:
684
+ """
685
+ Performs the operation __neg__.
686
+ """
687
+ if self.dtype not in _numeric_dtypes:
688
+ raise TypeError("Only numeric dtypes are allowed in __neg__")
689
+ res = self._array.__neg__()
690
+ return self.__class__._new(res)
691
+
692
+ def __or__(self: Array, other: Union[int, bool, Array], /) -> Array:
693
+ """
694
+ Performs the operation __or__.
695
+ """
696
+ other = self._check_allowed_dtypes(other, "integer or boolean", "__or__")
697
+ if other is NotImplemented:
698
+ return other
699
+ self, other = self._normalize_two_args(self, other)
700
+ res = self._array.__or__(other._array)
701
+ return self.__class__._new(res)
702
+
703
+ def __pos__(self: Array, /) -> Array:
704
+ """
705
+ Performs the operation __pos__.
706
+ """
707
+ if self.dtype not in _numeric_dtypes:
708
+ raise TypeError("Only numeric dtypes are allowed in __pos__")
709
+ res = self._array.__pos__()
710
+ return self.__class__._new(res)
711
+
712
+ def __pow__(self: Array, other: Union[int, float, Array], /) -> Array:
713
+ """
714
+ Performs the operation __pow__.
715
+ """
716
+ from ._elementwise_functions import pow
717
+
718
+ other = self._check_allowed_dtypes(other, "numeric", "__pow__")
719
+ if other is NotImplemented:
720
+ return other
721
+ # Note: NumPy's __pow__ does not follow type promotion rules for 0-d
722
+ # arrays, so we use pow() here instead.
723
+ return pow(self, other)
724
+
725
+ def __rshift__(self: Array, other: Union[int, Array], /) -> Array:
726
+ """
727
+ Performs the operation __rshift__.
728
+ """
729
+ other = self._check_allowed_dtypes(other, "integer", "__rshift__")
730
+ if other is NotImplemented:
731
+ return other
732
+ self, other = self._normalize_two_args(self, other)
733
+ res = self._array.__rshift__(other._array)
734
+ return self.__class__._new(res)
735
+
736
+ def __setitem__(
737
+ self,
738
+ key: Union[
739
+ int, slice, ellipsis, Tuple[Union[int, slice, ellipsis], ...], Array
740
+ ],
741
+ value: Union[int, float, bool, Array],
742
+ /,
743
+ ) -> None:
744
+ """
745
+ Performs the operation __setitem__.
746
+ """
747
+ # Note: Only indices required by the spec are allowed. See the
748
+ # docstring of _validate_index
749
+ self._validate_index(key)
750
+ if isinstance(key, Array):
751
+ # Indexing self._array with array_api arrays can be erroneous
752
+ key = key._array
753
+ self._array.__setitem__(key, asarray(value)._array)
754
+
755
+ def __sub__(self: Array, other: Union[int, float, Array], /) -> Array:
756
+ """
757
+ Performs the operation __sub__.
758
+ """
759
+ other = self._check_allowed_dtypes(other, "numeric", "__sub__")
760
+ if other is NotImplemented:
761
+ return other
762
+ self, other = self._normalize_two_args(self, other)
763
+ res = self._array.__sub__(other._array)
764
+ return self.__class__._new(res)
765
+
766
+ # PEP 484 requires int to be a subtype of float, but __truediv__ should
767
+ # not accept int.
768
+ def __truediv__(self: Array, other: Union[float, Array], /) -> Array:
769
+ """
770
+ Performs the operation __truediv__.
771
+ """
772
+ other = self._check_allowed_dtypes(other, "floating-point", "__truediv__")
773
+ if other is NotImplemented:
774
+ return other
775
+ self, other = self._normalize_two_args(self, other)
776
+ res = self._array.__truediv__(other._array)
777
+ return self.__class__._new(res)
778
+
779
+ def __xor__(self: Array, other: Union[int, bool, Array], /) -> Array:
780
+ """
781
+ Performs the operation __xor__.
782
+ """
783
+ other = self._check_allowed_dtypes(other, "integer or boolean", "__xor__")
784
+ if other is NotImplemented:
785
+ return other
786
+ self, other = self._normalize_two_args(self, other)
787
+ res = self._array.__xor__(other._array)
788
+ return self.__class__._new(res)
789
+
790
+ def __iadd__(self: Array, other: Union[int, float, Array], /) -> Array:
791
+ """
792
+ Performs the operation __iadd__.
793
+ """
794
+ other = self._check_allowed_dtypes(other, "numeric", "__iadd__")
795
+ if other is NotImplemented:
796
+ return other
797
+ self._array.__iadd__(other._array)
798
+ return self
799
+
800
+ def __radd__(self: Array, other: Union[int, float, Array], /) -> Array:
801
+ """
802
+ Performs the operation __radd__.
803
+ """
804
+ other = self._check_allowed_dtypes(other, "numeric", "__radd__")
805
+ if other is NotImplemented:
806
+ return other
807
+ self, other = self._normalize_two_args(self, other)
808
+ res = self._array.__radd__(other._array)
809
+ return self.__class__._new(res)
810
+
811
+ def __iand__(self: Array, other: Union[int, bool, Array], /) -> Array:
812
+ """
813
+ Performs the operation __iand__.
814
+ """
815
+ other = self._check_allowed_dtypes(other, "integer or boolean", "__iand__")
816
+ if other is NotImplemented:
817
+ return other
818
+ self._array.__iand__(other._array)
819
+ return self
820
+
821
+ def __rand__(self: Array, other: Union[int, bool, Array], /) -> Array:
822
+ """
823
+ Performs the operation __rand__.
824
+ """
825
+ other = self._check_allowed_dtypes(other, "integer or boolean", "__rand__")
826
+ if other is NotImplemented:
827
+ return other
828
+ self, other = self._normalize_two_args(self, other)
829
+ res = self._array.__rand__(other._array)
830
+ return self.__class__._new(res)
831
+
832
+ def __ifloordiv__(self: Array, other: Union[int, float, Array], /) -> Array:
833
+ """
834
+ Performs the operation __ifloordiv__.
835
+ """
836
+ other = self._check_allowed_dtypes(other, "real numeric", "__ifloordiv__")
837
+ if other is NotImplemented:
838
+ return other
839
+ self._array.__ifloordiv__(other._array)
840
+ return self
841
+
842
+ def __rfloordiv__(self: Array, other: Union[int, float, Array], /) -> Array:
843
+ """
844
+ Performs the operation __rfloordiv__.
845
+ """
846
+ other = self._check_allowed_dtypes(other, "real numeric", "__rfloordiv__")
847
+ if other is NotImplemented:
848
+ return other
849
+ self, other = self._normalize_two_args(self, other)
850
+ res = self._array.__rfloordiv__(other._array)
851
+ return self.__class__._new(res)
852
+
853
+ def __ilshift__(self: Array, other: Union[int, Array], /) -> Array:
854
+ """
855
+ Performs the operation __ilshift__.
856
+ """
857
+ other = self._check_allowed_dtypes(other, "integer", "__ilshift__")
858
+ if other is NotImplemented:
859
+ return other
860
+ self._array.__ilshift__(other._array)
861
+ return self
862
+
863
+ def __rlshift__(self: Array, other: Union[int, Array], /) -> Array:
864
+ """
865
+ Performs the operation __rlshift__.
866
+ """
867
+ other = self._check_allowed_dtypes(other, "integer", "__rlshift__")
868
+ if other is NotImplemented:
869
+ return other
870
+ self, other = self._normalize_two_args(self, other)
871
+ res = self._array.__rlshift__(other._array)
872
+ return self.__class__._new(res)
873
+
874
+ def __imatmul__(self: Array, other: Array, /) -> Array:
875
+ """
876
+ Performs the operation __imatmul__.
877
+ """
878
+ # matmul is not defined for scalars, but without this, we may get
879
+ # the wrong error message from asarray.
880
+ other = self._check_allowed_dtypes(other, "numeric", "__imatmul__")
881
+ if other is NotImplemented:
882
+ return other
883
+ res = self._array.__imatmul__(other._array)
884
+ return self.__class__._new(res)
885
+
886
+ def __rmatmul__(self: Array, other: Array, /) -> Array:
887
+ """
888
+ Performs the operation __rmatmul__.
889
+ """
890
+ # matmul is not defined for scalars, but without this, we may get
891
+ # the wrong error message from asarray.
892
+ other = self._check_allowed_dtypes(other, "numeric", "__rmatmul__")
893
+ if other is NotImplemented:
894
+ return other
895
+ res = self._array.__rmatmul__(other._array)
896
+ return self.__class__._new(res)
897
+
898
+ def __imod__(self: Array, other: Union[int, float, Array], /) -> Array:
899
+ """
900
+ Performs the operation __imod__.
901
+ """
902
+ other = self._check_allowed_dtypes(other, "real numeric", "__imod__")
903
+ if other is NotImplemented:
904
+ return other
905
+ self._array.__imod__(other._array)
906
+ return self
907
+
908
+ def __rmod__(self: Array, other: Union[int, float, Array], /) -> Array:
909
+ """
910
+ Performs the operation __rmod__.
911
+ """
912
+ other = self._check_allowed_dtypes(other, "real numeric", "__rmod__")
913
+ if other is NotImplemented:
914
+ return other
915
+ self, other = self._normalize_two_args(self, other)
916
+ res = self._array.__rmod__(other._array)
917
+ return self.__class__._new(res)
918
+
919
+ def __imul__(self: Array, other: Union[int, float, Array], /) -> Array:
920
+ """
921
+ Performs the operation __imul__.
922
+ """
923
+ other = self._check_allowed_dtypes(other, "numeric", "__imul__")
924
+ if other is NotImplemented:
925
+ return other
926
+ self._array.__imul__(other._array)
927
+ return self
928
+
929
+ def __rmul__(self: Array, other: Union[int, float, Array], /) -> Array:
930
+ """
931
+ Performs the operation __rmul__.
932
+ """
933
+ other = self._check_allowed_dtypes(other, "numeric", "__rmul__")
934
+ if other is NotImplemented:
935
+ return other
936
+ self, other = self._normalize_two_args(self, other)
937
+ res = self._array.__rmul__(other._array)
938
+ return self.__class__._new(res)
939
+
940
+ def __ior__(self: Array, other: Union[int, bool, Array], /) -> Array:
941
+ """
942
+ Performs the operation __ior__.
943
+ """
944
+ other = self._check_allowed_dtypes(other, "integer or boolean", "__ior__")
945
+ if other is NotImplemented:
946
+ return other
947
+ self._array.__ior__(other._array)
948
+ return self
949
+
950
+ def __ror__(self: Array, other: Union[int, bool, Array], /) -> Array:
951
+ """
952
+ Performs the operation __ror__.
953
+ """
954
+ other = self._check_allowed_dtypes(other, "integer or boolean", "__ror__")
955
+ if other is NotImplemented:
956
+ return other
957
+ self, other = self._normalize_two_args(self, other)
958
+ res = self._array.__ror__(other._array)
959
+ return self.__class__._new(res)
960
+
961
+ def __ipow__(self: Array, other: Union[int, float, Array], /) -> Array:
962
+ """
963
+ Performs the operation __ipow__.
964
+ """
965
+ other = self._check_allowed_dtypes(other, "numeric", "__ipow__")
966
+ if other is NotImplemented:
967
+ return other
968
+ self._array.__ipow__(other._array)
969
+ return self
970
+
971
+ def __rpow__(self: Array, other: Union[int, float, Array], /) -> Array:
972
+ """
973
+ Performs the operation __rpow__.
974
+ """
975
+ from ._elementwise_functions import pow
976
+
977
+ other = self._check_allowed_dtypes(other, "numeric", "__rpow__")
978
+ if other is NotImplemented:
979
+ return other
980
+ # Note: NumPy's __pow__ does not follow the spec type promotion rules
981
+ # for 0-d arrays, so we use pow() here instead.
982
+ return pow(other, self)
983
+
984
+ def __irshift__(self: Array, other: Union[int, Array], /) -> Array:
985
+ """
986
+ Performs the operation __irshift__.
987
+ """
988
+ other = self._check_allowed_dtypes(other, "integer", "__irshift__")
989
+ if other is NotImplemented:
990
+ return other
991
+ self._array.__irshift__(other._array)
992
+ return self
993
+
994
+ def __rrshift__(self: Array, other: Union[int, Array], /) -> Array:
995
+ """
996
+ Performs the operation __rrshift__.
997
+ """
998
+ other = self._check_allowed_dtypes(other, "integer", "__rrshift__")
999
+ if other is NotImplemented:
1000
+ return other
1001
+ self, other = self._normalize_two_args(self, other)
1002
+ res = self._array.__rrshift__(other._array)
1003
+ return self.__class__._new(res)
1004
+
1005
+ def __isub__(self: Array, other: Union[int, float, Array], /) -> Array:
1006
+ """
1007
+ Performs the operation __isub__.
1008
+ """
1009
+ other = self._check_allowed_dtypes(other, "numeric", "__isub__")
1010
+ if other is NotImplemented:
1011
+ return other
1012
+ self._array.__isub__(other._array)
1013
+ return self
1014
+
1015
+ def __rsub__(self: Array, other: Union[int, float, Array], /) -> Array:
1016
+ """
1017
+ Performs the operation __rsub__.
1018
+ """
1019
+ other = self._check_allowed_dtypes(other, "numeric", "__rsub__")
1020
+ if other is NotImplemented:
1021
+ return other
1022
+ self, other = self._normalize_two_args(self, other)
1023
+ res = self._array.__rsub__(other._array)
1024
+ return self.__class__._new(res)
1025
+
1026
+ def __itruediv__(self: Array, other: Union[float, Array], /) -> Array:
1027
+ """
1028
+ Performs the operation __itruediv__.
1029
+ """
1030
+ other = self._check_allowed_dtypes(other, "floating-point", "__itruediv__")
1031
+ if other is NotImplemented:
1032
+ return other
1033
+ self._array.__itruediv__(other._array)
1034
+ return self
1035
+
1036
+ def __rtruediv__(self: Array, other: Union[float, Array], /) -> Array:
1037
+ """
1038
+ Performs the operation __rtruediv__.
1039
+ """
1040
+ other = self._check_allowed_dtypes(other, "floating-point", "__rtruediv__")
1041
+ if other is NotImplemented:
1042
+ return other
1043
+ self, other = self._normalize_two_args(self, other)
1044
+ res = self._array.__rtruediv__(other._array)
1045
+ return self.__class__._new(res)
1046
+
1047
+ def __ixor__(self: Array, other: Union[int, bool, Array], /) -> Array:
1048
+ """
1049
+ Performs the operation __ixor__.
1050
+ """
1051
+ other = self._check_allowed_dtypes(other, "integer or boolean", "__ixor__")
1052
+ if other is NotImplemented:
1053
+ return other
1054
+ self._array.__ixor__(other._array)
1055
+ return self
1056
+
1057
+ def __rxor__(self: Array, other: Union[int, bool, Array], /) -> Array:
1058
+ """
1059
+ Performs the operation __rxor__.
1060
+ """
1061
+ other = self._check_allowed_dtypes(other, "integer or boolean", "__rxor__")
1062
+ if other is NotImplemented:
1063
+ return other
1064
+ self, other = self._normalize_two_args(self, other)
1065
+ res = self._array.__rxor__(other._array)
1066
+ return self.__class__._new(res)
1067
+
1068
+ def to_device(self: Array, device: Device, /, stream: None = None) -> Array:
1069
+ if stream is not None:
1070
+ raise ValueError("The stream argument to to_device() is not supported")
1071
+ if device == 'cpu':
1072
+ return self
1073
+ raise ValueError(f"Unsupported device {device!r}")
1074
+
1075
+ @property
1076
+ def dtype(self) -> Dtype:
1077
+ """
1078
+ Array API compatible wrapper for :py:meth:`np.ndarray.dtype <numpy.ndarray.dtype>`.
1079
+
1080
+ See its docstring for more information.
1081
+ """
1082
+ return self._array.dtype
1083
+
1084
+ @property
1085
+ def device(self) -> Device:
1086
+ return "cpu"
1087
+
1088
+ # Note: mT is new in array API spec (see matrix_transpose)
1089
+ @property
1090
+ def mT(self) -> Array:
1091
+ from .linalg import matrix_transpose
1092
+ return matrix_transpose(self)
1093
+
1094
+ @property
1095
+ def ndim(self) -> int:
1096
+ """
1097
+ Array API compatible wrapper for :py:meth:`np.ndarray.ndim <numpy.ndarray.ndim>`.
1098
+
1099
+ See its docstring for more information.
1100
+ """
1101
+ return self._array.ndim
1102
+
1103
+ @property
1104
+ def shape(self) -> Tuple[int, ...]:
1105
+ """
1106
+ Array API compatible wrapper for :py:meth:`np.ndarray.shape <numpy.ndarray.shape>`.
1107
+
1108
+ See its docstring for more information.
1109
+ """
1110
+ return self._array.shape
1111
+
1112
+ @property
1113
+ def size(self) -> int:
1114
+ """
1115
+ Array API compatible wrapper for :py:meth:`np.ndarray.size <numpy.ndarray.size>`.
1116
+
1117
+ See its docstring for more information.
1118
+ """
1119
+ return self._array.size
1120
+
1121
+ @property
1122
+ def T(self) -> Array:
1123
+ """
1124
+ Array API compatible wrapper for :py:meth:`np.ndarray.T <numpy.ndarray.T>`.
1125
+
1126
+ See its docstring for more information.
1127
+ """
1128
+ # Note: T only works on 2-dimensional arrays. See the corresponding
1129
+ # note in the specification:
1130
+ # https://data-apis.org/array-api/latest/API_specification/array_object.html#t
1131
+ if self.ndim != 2:
1132
+ raise ValueError("x.T requires x to have 2 dimensions. Use x.mT to transpose stacks of matrices and permute_dims() to permute dimensions.")
1133
+ return self.__class__._new(self._array.T)
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_data_type_functions.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from ._array_object import Array
4
+ from ._dtypes import (
5
+ _all_dtypes,
6
+ _boolean_dtypes,
7
+ _signed_integer_dtypes,
8
+ _unsigned_integer_dtypes,
9
+ _integer_dtypes,
10
+ _real_floating_dtypes,
11
+ _complex_floating_dtypes,
12
+ _numeric_dtypes,
13
+ _result_type,
14
+ )
15
+
16
+ from dataclasses import dataclass
17
+ from typing import TYPE_CHECKING, List, Tuple, Union
18
+
19
+ if TYPE_CHECKING:
20
+ from ._typing import Dtype
21
+ from collections.abc import Sequence
22
+
23
+ import numpy as np
24
+
25
+
26
+ # Note: astype is a function, not an array method as in NumPy.
27
+ def astype(x: Array, dtype: Dtype, /, *, copy: bool = True) -> Array:
28
+ if not copy and dtype == x.dtype:
29
+ return x
30
+ return Array._new(x._array.astype(dtype=dtype, copy=copy))
31
+
32
+
33
+ def broadcast_arrays(*arrays: Array) -> List[Array]:
34
+ """
35
+ Array API compatible wrapper for :py:func:`np.broadcast_arrays <numpy.broadcast_arrays>`.
36
+
37
+ See its docstring for more information.
38
+ """
39
+ from ._array_object import Array
40
+
41
+ return [
42
+ Array._new(array) for array in np.broadcast_arrays(*[a._array for a in arrays])
43
+ ]
44
+
45
+
46
+ def broadcast_to(x: Array, /, shape: Tuple[int, ...]) -> Array:
47
+ """
48
+ Array API compatible wrapper for :py:func:`np.broadcast_to <numpy.broadcast_to>`.
49
+
50
+ See its docstring for more information.
51
+ """
52
+ from ._array_object import Array
53
+
54
+ return Array._new(np.broadcast_to(x._array, shape))
55
+
56
+
57
+ def can_cast(from_: Union[Dtype, Array], to: Dtype, /) -> bool:
58
+ """
59
+ Array API compatible wrapper for :py:func:`np.can_cast <numpy.can_cast>`.
60
+
61
+ See its docstring for more information.
62
+ """
63
+ if isinstance(from_, Array):
64
+ from_ = from_.dtype
65
+ elif from_ not in _all_dtypes:
66
+ raise TypeError(f"{from_=}, but should be an array_api array or dtype")
67
+ if to not in _all_dtypes:
68
+ raise TypeError(f"{to=}, but should be a dtype")
69
+ # Note: We avoid np.can_cast() as it has discrepancies with the array API,
70
+ # since NumPy allows cross-kind casting (e.g., NumPy allows bool -> int8).
71
+ # See https://github.com/numpy/numpy/issues/20870
72
+ try:
73
+ # We promote `from_` and `to` together. We then check if the promoted
74
+ # dtype is `to`, which indicates if `from_` can (up)cast to `to`.
75
+ dtype = _result_type(from_, to)
76
+ return to == dtype
77
+ except TypeError:
78
+ # _result_type() raises if the dtypes don't promote together
79
+ return False
80
+
81
+
82
+ # These are internal objects for the return types of finfo and iinfo, since
83
+ # the NumPy versions contain extra data that isn't part of the spec.
84
+ @dataclass
85
+ class finfo_object:
86
+ bits: int
87
+ # Note: The types of the float data here are float, whereas in NumPy they
88
+ # are scalars of the corresponding float dtype.
89
+ eps: float
90
+ max: float
91
+ min: float
92
+ smallest_normal: float
93
+ dtype: Dtype
94
+
95
+
96
+ @dataclass
97
+ class iinfo_object:
98
+ bits: int
99
+ max: int
100
+ min: int
101
+ dtype: Dtype
102
+
103
+
104
+ def finfo(type: Union[Dtype, Array], /) -> finfo_object:
105
+ """
106
+ Array API compatible wrapper for :py:func:`np.finfo <numpy.finfo>`.
107
+
108
+ See its docstring for more information.
109
+ """
110
+ fi = np.finfo(type)
111
+ # Note: The types of the float data here are float, whereas in NumPy they
112
+ # are scalars of the corresponding float dtype.
113
+ return finfo_object(
114
+ fi.bits,
115
+ float(fi.eps),
116
+ float(fi.max),
117
+ float(fi.min),
118
+ float(fi.smallest_normal),
119
+ fi.dtype,
120
+ )
121
+
122
+
123
+ def iinfo(type: Union[Dtype, Array], /) -> iinfo_object:
124
+ """
125
+ Array API compatible wrapper for :py:func:`np.iinfo <numpy.iinfo>`.
126
+
127
+ See its docstring for more information.
128
+ """
129
+ ii = np.iinfo(type)
130
+ return iinfo_object(ii.bits, ii.max, ii.min, ii.dtype)
131
+
132
+
133
+ # Note: isdtype is a new function from the 2022.12 array API specification.
134
+ def isdtype(
135
+ dtype: Dtype, kind: Union[Dtype, str, Tuple[Union[Dtype, str], ...]]
136
+ ) -> bool:
137
+ """
138
+ Returns a boolean indicating whether a provided dtype is of a specified data type ``kind``.
139
+
140
+ See
141
+ https://data-apis.org/array-api/latest/API_specification/generated/array_api.isdtype.html
142
+ for more details
143
+ """
144
+ if isinstance(kind, tuple):
145
+ # Disallow nested tuples
146
+ if any(isinstance(k, tuple) for k in kind):
147
+ raise TypeError("'kind' must be a dtype, str, or tuple of dtypes and strs")
148
+ return any(isdtype(dtype, k) for k in kind)
149
+ elif isinstance(kind, str):
150
+ if kind == 'bool':
151
+ return dtype in _boolean_dtypes
152
+ elif kind == 'signed integer':
153
+ return dtype in _signed_integer_dtypes
154
+ elif kind == 'unsigned integer':
155
+ return dtype in _unsigned_integer_dtypes
156
+ elif kind == 'integral':
157
+ return dtype in _integer_dtypes
158
+ elif kind == 'real floating':
159
+ return dtype in _real_floating_dtypes
160
+ elif kind == 'complex floating':
161
+ return dtype in _complex_floating_dtypes
162
+ elif kind == 'numeric':
163
+ return dtype in _numeric_dtypes
164
+ else:
165
+ raise ValueError(f"Unrecognized data type kind: {kind!r}")
166
+ elif kind in _all_dtypes:
167
+ return dtype == kind
168
+ else:
169
+ raise TypeError(f"'kind' must be a dtype, str, or tuple of dtypes and strs, not {type(kind).__name__}")
170
+
171
+ def result_type(*arrays_and_dtypes: Union[Array, Dtype]) -> Dtype:
172
+ """
173
+ Array API compatible wrapper for :py:func:`np.result_type <numpy.result_type>`.
174
+
175
+ See its docstring for more information.
176
+ """
177
+ # Note: we use a custom implementation that gives only the type promotions
178
+ # required by the spec rather than using np.result_type. NumPy implements
179
+ # too many extra type promotions like int64 + uint64 -> float64, and does
180
+ # value-based casting on scalar arrays.
181
+ A = []
182
+ for a in arrays_and_dtypes:
183
+ if isinstance(a, Array):
184
+ a = a.dtype
185
+ elif isinstance(a, np.ndarray) or a not in _all_dtypes:
186
+ raise TypeError("result_type() inputs must be array_api arrays or dtypes")
187
+ A.append(a)
188
+
189
+ if len(A) == 0:
190
+ raise ValueError("at least one array or dtype is required")
191
+ elif len(A) == 1:
192
+ return A[0]
193
+ else:
194
+ t = A[0]
195
+ for t2 in A[1:]:
196
+ t = _result_type(t, t2)
197
+ return t
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_dtypes.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ # Note: we use dtype objects instead of dtype classes. The spec does not
4
+ # require any behavior on dtypes other than equality.
5
+ int8 = np.dtype("int8")
6
+ int16 = np.dtype("int16")
7
+ int32 = np.dtype("int32")
8
+ int64 = np.dtype("int64")
9
+ uint8 = np.dtype("uint8")
10
+ uint16 = np.dtype("uint16")
11
+ uint32 = np.dtype("uint32")
12
+ uint64 = np.dtype("uint64")
13
+ float32 = np.dtype("float32")
14
+ float64 = np.dtype("float64")
15
+ complex64 = np.dtype("complex64")
16
+ complex128 = np.dtype("complex128")
17
+ # Note: This name is changed
18
+ bool = np.dtype("bool")
19
+
20
+ _all_dtypes = (
21
+ int8,
22
+ int16,
23
+ int32,
24
+ int64,
25
+ uint8,
26
+ uint16,
27
+ uint32,
28
+ uint64,
29
+ float32,
30
+ float64,
31
+ complex64,
32
+ complex128,
33
+ bool,
34
+ )
35
+ _boolean_dtypes = (bool,)
36
+ _real_floating_dtypes = (float32, float64)
37
+ _floating_dtypes = (float32, float64, complex64, complex128)
38
+ _complex_floating_dtypes = (complex64, complex128)
39
+ _integer_dtypes = (int8, int16, int32, int64, uint8, uint16, uint32, uint64)
40
+ _signed_integer_dtypes = (int8, int16, int32, int64)
41
+ _unsigned_integer_dtypes = (uint8, uint16, uint32, uint64)
42
+ _integer_or_boolean_dtypes = (
43
+ bool,
44
+ int8,
45
+ int16,
46
+ int32,
47
+ int64,
48
+ uint8,
49
+ uint16,
50
+ uint32,
51
+ uint64,
52
+ )
53
+ _real_numeric_dtypes = (
54
+ float32,
55
+ float64,
56
+ int8,
57
+ int16,
58
+ int32,
59
+ int64,
60
+ uint8,
61
+ uint16,
62
+ uint32,
63
+ uint64,
64
+ )
65
+ _numeric_dtypes = (
66
+ float32,
67
+ float64,
68
+ complex64,
69
+ complex128,
70
+ int8,
71
+ int16,
72
+ int32,
73
+ int64,
74
+ uint8,
75
+ uint16,
76
+ uint32,
77
+ uint64,
78
+ )
79
+
80
+ _dtype_categories = {
81
+ "all": _all_dtypes,
82
+ "real numeric": _real_numeric_dtypes,
83
+ "numeric": _numeric_dtypes,
84
+ "integer": _integer_dtypes,
85
+ "integer or boolean": _integer_or_boolean_dtypes,
86
+ "boolean": _boolean_dtypes,
87
+ "real floating-point": _floating_dtypes,
88
+ "complex floating-point": _complex_floating_dtypes,
89
+ "floating-point": _floating_dtypes,
90
+ }
91
+
92
+
93
+ # Note: the spec defines a restricted type promotion table compared to NumPy.
94
+ # In particular, cross-kind promotions like integer + float or boolean +
95
+ # integer are not allowed, even for functions that accept both kinds.
96
+ # Additionally, NumPy promotes signed integer + uint64 to float64, but this
97
+ # promotion is not allowed here. To be clear, Python scalar int objects are
98
+ # allowed to promote to floating-point dtypes, but only in array operators
99
+ # (see Array._promote_scalar) method in _array_object.py.
100
+ _promotion_table = {
101
+ (int8, int8): int8,
102
+ (int8, int16): int16,
103
+ (int8, int32): int32,
104
+ (int8, int64): int64,
105
+ (int16, int8): int16,
106
+ (int16, int16): int16,
107
+ (int16, int32): int32,
108
+ (int16, int64): int64,
109
+ (int32, int8): int32,
110
+ (int32, int16): int32,
111
+ (int32, int32): int32,
112
+ (int32, int64): int64,
113
+ (int64, int8): int64,
114
+ (int64, int16): int64,
115
+ (int64, int32): int64,
116
+ (int64, int64): int64,
117
+ (uint8, uint8): uint8,
118
+ (uint8, uint16): uint16,
119
+ (uint8, uint32): uint32,
120
+ (uint8, uint64): uint64,
121
+ (uint16, uint8): uint16,
122
+ (uint16, uint16): uint16,
123
+ (uint16, uint32): uint32,
124
+ (uint16, uint64): uint64,
125
+ (uint32, uint8): uint32,
126
+ (uint32, uint16): uint32,
127
+ (uint32, uint32): uint32,
128
+ (uint32, uint64): uint64,
129
+ (uint64, uint8): uint64,
130
+ (uint64, uint16): uint64,
131
+ (uint64, uint32): uint64,
132
+ (uint64, uint64): uint64,
133
+ (int8, uint8): int16,
134
+ (int8, uint16): int32,
135
+ (int8, uint32): int64,
136
+ (int16, uint8): int16,
137
+ (int16, uint16): int32,
138
+ (int16, uint32): int64,
139
+ (int32, uint8): int32,
140
+ (int32, uint16): int32,
141
+ (int32, uint32): int64,
142
+ (int64, uint8): int64,
143
+ (int64, uint16): int64,
144
+ (int64, uint32): int64,
145
+ (uint8, int8): int16,
146
+ (uint16, int8): int32,
147
+ (uint32, int8): int64,
148
+ (uint8, int16): int16,
149
+ (uint16, int16): int32,
150
+ (uint32, int16): int64,
151
+ (uint8, int32): int32,
152
+ (uint16, int32): int32,
153
+ (uint32, int32): int64,
154
+ (uint8, int64): int64,
155
+ (uint16, int64): int64,
156
+ (uint32, int64): int64,
157
+ (float32, float32): float32,
158
+ (float32, float64): float64,
159
+ (float64, float32): float64,
160
+ (float64, float64): float64,
161
+ (complex64, complex64): complex64,
162
+ (complex64, complex128): complex128,
163
+ (complex128, complex64): complex128,
164
+ (complex128, complex128): complex128,
165
+ (float32, complex64): complex64,
166
+ (float32, complex128): complex128,
167
+ (float64, complex64): complex128,
168
+ (float64, complex128): complex128,
169
+ (complex64, float32): complex64,
170
+ (complex64, float64): complex128,
171
+ (complex128, float32): complex128,
172
+ (complex128, float64): complex128,
173
+ (bool, bool): bool,
174
+ }
175
+
176
+
177
+ def _result_type(type1, type2):
178
+ if (type1, type2) in _promotion_table:
179
+ return _promotion_table[type1, type2]
180
+ raise TypeError(f"{type1} and {type2} cannot be type promoted together")
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_manipulation_functions.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from ._array_object import Array
4
+ from ._data_type_functions import result_type
5
+
6
+ from typing import List, Optional, Tuple, Union
7
+
8
+ import numpy as np
9
+
10
+ # Note: the function name is different here
11
+ def concat(
12
+ arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: Optional[int] = 0
13
+ ) -> Array:
14
+ """
15
+ Array API compatible wrapper for :py:func:`np.concatenate <numpy.concatenate>`.
16
+
17
+ See its docstring for more information.
18
+ """
19
+ # Note: Casting rules here are different from the np.concatenate default
20
+ # (no for scalars with axis=None, no cross-kind casting)
21
+ dtype = result_type(*arrays)
22
+ arrays = tuple(a._array for a in arrays)
23
+ return Array._new(np.concatenate(arrays, axis=axis, dtype=dtype))
24
+
25
+
26
+ def expand_dims(x: Array, /, *, axis: int) -> Array:
27
+ """
28
+ Array API compatible wrapper for :py:func:`np.expand_dims <numpy.expand_dims>`.
29
+
30
+ See its docstring for more information.
31
+ """
32
+ return Array._new(np.expand_dims(x._array, axis))
33
+
34
+
35
+ def flip(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> Array:
36
+ """
37
+ Array API compatible wrapper for :py:func:`np.flip <numpy.flip>`.
38
+
39
+ See its docstring for more information.
40
+ """
41
+ return Array._new(np.flip(x._array, axis=axis))
42
+
43
+
44
+ # Note: The function name is different here (see also matrix_transpose).
45
+ # Unlike transpose(), the axes argument is required.
46
+ def permute_dims(x: Array, /, axes: Tuple[int, ...]) -> Array:
47
+ """
48
+ Array API compatible wrapper for :py:func:`np.transpose <numpy.transpose>`.
49
+
50
+ See its docstring for more information.
51
+ """
52
+ return Array._new(np.transpose(x._array, axes))
53
+
54
+
55
+ # Note: the optional argument is called 'shape', not 'newshape'
56
+ def reshape(x: Array,
57
+ /,
58
+ shape: Tuple[int, ...],
59
+ *,
60
+ copy: Optional[Bool] = None) -> Array:
61
+ """
62
+ Array API compatible wrapper for :py:func:`np.reshape <numpy.reshape>`.
63
+
64
+ See its docstring for more information.
65
+ """
66
+
67
+ data = x._array
68
+ if copy:
69
+ data = np.copy(data)
70
+
71
+ reshaped = np.reshape(data, shape)
72
+
73
+ if copy is False and not np.shares_memory(data, reshaped):
74
+ raise AttributeError("Incompatible shape for in-place modification.")
75
+
76
+ return Array._new(reshaped)
77
+
78
+
79
+ def roll(
80
+ x: Array,
81
+ /,
82
+ shift: Union[int, Tuple[int, ...]],
83
+ *,
84
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
85
+ ) -> Array:
86
+ """
87
+ Array API compatible wrapper for :py:func:`np.roll <numpy.roll>`.
88
+
89
+ See its docstring for more information.
90
+ """
91
+ return Array._new(np.roll(x._array, shift, axis=axis))
92
+
93
+
94
+ def squeeze(x: Array, /, axis: Union[int, Tuple[int, ...]]) -> Array:
95
+ """
96
+ Array API compatible wrapper for :py:func:`np.squeeze <numpy.squeeze>`.
97
+
98
+ See its docstring for more information.
99
+ """
100
+ return Array._new(np.squeeze(x._array, axis=axis))
101
+
102
+
103
+ def stack(arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: int = 0) -> Array:
104
+ """
105
+ Array API compatible wrapper for :py:func:`np.stack <numpy.stack>`.
106
+
107
+ See its docstring for more information.
108
+ """
109
+ # Call result type here just to raise on disallowed type combinations
110
+ result_type(*arrays)
111
+ arrays = tuple(a._array for a in arrays)
112
+ return Array._new(np.stack(arrays, axis=axis))
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_searching_functions.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from ._array_object import Array
4
+ from ._dtypes import _result_type, _real_numeric_dtypes
5
+
6
+ from typing import Optional, Tuple
7
+
8
+ import numpy as np
9
+
10
+
11
+ def argmax(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array:
12
+ """
13
+ Array API compatible wrapper for :py:func:`np.argmax <numpy.argmax>`.
14
+
15
+ See its docstring for more information.
16
+ """
17
+ if x.dtype not in _real_numeric_dtypes:
18
+ raise TypeError("Only real numeric dtypes are allowed in argmax")
19
+ return Array._new(np.asarray(np.argmax(x._array, axis=axis, keepdims=keepdims)))
20
+
21
+
22
+ def argmin(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array:
23
+ """
24
+ Array API compatible wrapper for :py:func:`np.argmin <numpy.argmin>`.
25
+
26
+ See its docstring for more information.
27
+ """
28
+ if x.dtype not in _real_numeric_dtypes:
29
+ raise TypeError("Only real numeric dtypes are allowed in argmin")
30
+ return Array._new(np.asarray(np.argmin(x._array, axis=axis, keepdims=keepdims)))
31
+
32
+
33
+ def nonzero(x: Array, /) -> Tuple[Array, ...]:
34
+ """
35
+ Array API compatible wrapper for :py:func:`np.nonzero <numpy.nonzero>`.
36
+
37
+ See its docstring for more information.
38
+ """
39
+ return tuple(Array._new(i) for i in np.nonzero(x._array))
40
+
41
+
42
+ def where(condition: Array, x1: Array, x2: Array, /) -> Array:
43
+ """
44
+ Array API compatible wrapper for :py:func:`np.where <numpy.where>`.
45
+
46
+ See its docstring for more information.
47
+ """
48
+ # Call result type here just to raise on disallowed type combinations
49
+ _result_type(x1.dtype, x2.dtype)
50
+ x1, x2 = Array._normalize_two_args(x1, x2)
51
+ return Array._new(np.where(condition._array, x1._array, x2._array))
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_sorting_functions.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from ._array_object import Array
4
+ from ._dtypes import _real_numeric_dtypes
5
+
6
+ import numpy as np
7
+
8
+
9
+ # Note: the descending keyword argument is new in this function
10
+ def argsort(
11
+ x: Array, /, *, axis: int = -1, descending: bool = False, stable: bool = True
12
+ ) -> Array:
13
+ """
14
+ Array API compatible wrapper for :py:func:`np.argsort <numpy.argsort>`.
15
+
16
+ See its docstring for more information.
17
+ """
18
+ if x.dtype not in _real_numeric_dtypes:
19
+ raise TypeError("Only real numeric dtypes are allowed in argsort")
20
+ # Note: this keyword argument is different, and the default is different.
21
+ kind = "stable" if stable else "quicksort"
22
+ if not descending:
23
+ res = np.argsort(x._array, axis=axis, kind=kind)
24
+ else:
25
+ # As NumPy has no native descending sort, we imitate it here. Note that
26
+ # simply flipping the results of np.argsort(x._array, ...) would not
27
+ # respect the relative order like it would in native descending sorts.
28
+ res = np.flip(
29
+ np.argsort(np.flip(x._array, axis=axis), axis=axis, kind=kind),
30
+ axis=axis,
31
+ )
32
+ # Rely on flip()/argsort() to validate axis
33
+ normalised_axis = axis if axis >= 0 else x.ndim + axis
34
+ max_i = x.shape[normalised_axis] - 1
35
+ res = max_i - res
36
+ return Array._new(res)
37
+
38
+ # Note: the descending keyword argument is new in this function
39
+ def sort(
40
+ x: Array, /, *, axis: int = -1, descending: bool = False, stable: bool = True
41
+ ) -> Array:
42
+ """
43
+ Array API compatible wrapper for :py:func:`np.sort <numpy.sort>`.
44
+
45
+ See its docstring for more information.
46
+ """
47
+ if x.dtype not in _real_numeric_dtypes:
48
+ raise TypeError("Only real numeric dtypes are allowed in sort")
49
+ # Note: this keyword argument is different, and the default is different.
50
+ kind = "stable" if stable else "quicksort"
51
+ res = np.sort(x._array, axis=axis, kind=kind)
52
+ if descending:
53
+ res = np.flip(res, axis=axis)
54
+ return Array._new(res)
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_typing.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file defines the types for type annotations.
3
+
4
+ These names aren't part of the module namespace, but they are used in the
5
+ annotations in the function signatures. The functions in the module are only
6
+ valid for inputs that match the given type annotations.
7
+ """
8
+
9
+ from __future__ import annotations
10
+
11
+ __all__ = [
12
+ "Array",
13
+ "Device",
14
+ "Dtype",
15
+ "SupportsDLPack",
16
+ "SupportsBufferProtocol",
17
+ "PyCapsule",
18
+ ]
19
+
20
+ import sys
21
+
22
+ from typing import (
23
+ Any,
24
+ Literal,
25
+ Sequence,
26
+ Type,
27
+ Union,
28
+ TypeVar,
29
+ Protocol,
30
+ )
31
+
32
+ from ._array_object import Array
33
+ from numpy import (
34
+ dtype,
35
+ int8,
36
+ int16,
37
+ int32,
38
+ int64,
39
+ uint8,
40
+ uint16,
41
+ uint32,
42
+ uint64,
43
+ float32,
44
+ float64,
45
+ )
46
+
47
+ _T_co = TypeVar("_T_co", covariant=True)
48
+
49
+ class NestedSequence(Protocol[_T_co]):
50
+ def __getitem__(self, key: int, /) -> _T_co | NestedSequence[_T_co]: ...
51
+ def __len__(self, /) -> int: ...
52
+
53
+ Device = Literal["cpu"]
54
+
55
+ Dtype = dtype[Union[
56
+ int8,
57
+ int16,
58
+ int32,
59
+ int64,
60
+ uint8,
61
+ uint16,
62
+ uint32,
63
+ uint64,
64
+ float32,
65
+ float64,
66
+ ]]
67
+
68
+ if sys.version_info >= (3, 12):
69
+ from collections.abc import Buffer as SupportsBufferProtocol
70
+ else:
71
+ SupportsBufferProtocol = Any
72
+
73
+ PyCapsule = Any
74
+
75
+ class SupportsDLPack(Protocol):
76
+ def __dlpack__(self, /, *, stream: None = ...) -> PyCapsule: ...
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_utility_functions.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from ._array_object import Array
4
+
5
+ from typing import Optional, Tuple, Union
6
+
7
+ import numpy as np
8
+
9
+
10
+ def all(
11
+ x: Array,
12
+ /,
13
+ *,
14
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
15
+ keepdims: bool = False,
16
+ ) -> Array:
17
+ """
18
+ Array API compatible wrapper for :py:func:`np.all <numpy.all>`.
19
+
20
+ See its docstring for more information.
21
+ """
22
+ return Array._new(np.asarray(np.all(x._array, axis=axis, keepdims=keepdims)))
23
+
24
+
25
+ def any(
26
+ x: Array,
27
+ /,
28
+ *,
29
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
30
+ keepdims: bool = False,
31
+ ) -> Array:
32
+ """
33
+ Array API compatible wrapper for :py:func:`np.any <numpy.any>`.
34
+
35
+ See its docstring for more information.
36
+ """
37
+ return Array._new(np.asarray(np.any(x._array, axis=axis, keepdims=keepdims)))
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for the array API namespace.
3
+
4
+ Note, full compliance with the array API can be tested with the official array API test
5
+ suite https://github.com/data-apis/array-api-tests. This test suite primarily
6
+ focuses on those things that are not tested by the official test suite.
7
+ """
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (476 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_array_object.cpython-310.pyc ADDED
Binary file (14.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_creation_functions.cpython-310.pyc ADDED
Binary file (8.12 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_data_type_functions.cpython-310.pyc ADDED
Binary file (1.35 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_elementwise_functions.cpython-310.pyc ADDED
Binary file (3.18 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_indexing_functions.cpython-310.pyc ADDED
Binary file (852 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_manipulation_functions.cpython-310.pyc ADDED
Binary file (1.77 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_set_functions.cpython-310.pyc ADDED
Binary file (831 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_sorting_functions.cpython-310.pyc ADDED
Binary file (848 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/__pycache__/test_validation.cpython-310.pyc ADDED
Binary file (1.22 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_array_object.py ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ from numpy.testing import assert_raises, suppress_warnings
4
+ import numpy as np
5
+ import pytest
6
+
7
+ from .. import ones, asarray, reshape, result_type, all, equal
8
+ from .._array_object import Array
9
+ from .._dtypes import (
10
+ _all_dtypes,
11
+ _boolean_dtypes,
12
+ _real_floating_dtypes,
13
+ _floating_dtypes,
14
+ _complex_floating_dtypes,
15
+ _integer_dtypes,
16
+ _integer_or_boolean_dtypes,
17
+ _real_numeric_dtypes,
18
+ _numeric_dtypes,
19
+ int8,
20
+ int16,
21
+ int32,
22
+ int64,
23
+ uint64,
24
+ bool as bool_,
25
+ )
26
+
27
+
28
+ def test_validate_index():
29
+ # The indexing tests in the official array API test suite test that the
30
+ # array object correctly handles the subset of indices that are required
31
+ # by the spec. But the NumPy array API implementation specifically
32
+ # disallows any index not required by the spec, via Array._validate_index.
33
+ # This test focuses on testing that non-valid indices are correctly
34
+ # rejected. See
35
+ # https://data-apis.org/array-api/latest/API_specification/indexing.html
36
+ # and the docstring of Array._validate_index for the exact indexing
37
+ # behavior that should be allowed. This does not test indices that are
38
+ # already invalid in NumPy itself because Array will generally just pass
39
+ # such indices directly to the underlying np.ndarray.
40
+
41
+ a = ones((3, 4))
42
+
43
+ # Out of bounds slices are not allowed
44
+ assert_raises(IndexError, lambda: a[:4])
45
+ assert_raises(IndexError, lambda: a[:-4])
46
+ assert_raises(IndexError, lambda: a[:3:-1])
47
+ assert_raises(IndexError, lambda: a[:-5:-1])
48
+ assert_raises(IndexError, lambda: a[4:])
49
+ assert_raises(IndexError, lambda: a[-4:])
50
+ assert_raises(IndexError, lambda: a[4::-1])
51
+ assert_raises(IndexError, lambda: a[-4::-1])
52
+
53
+ assert_raises(IndexError, lambda: a[...,:5])
54
+ assert_raises(IndexError, lambda: a[...,:-5])
55
+ assert_raises(IndexError, lambda: a[...,:5:-1])
56
+ assert_raises(IndexError, lambda: a[...,:-6:-1])
57
+ assert_raises(IndexError, lambda: a[...,5:])
58
+ assert_raises(IndexError, lambda: a[...,-5:])
59
+ assert_raises(IndexError, lambda: a[...,5::-1])
60
+ assert_raises(IndexError, lambda: a[...,-5::-1])
61
+
62
+ # Boolean indices cannot be part of a larger tuple index
63
+ assert_raises(IndexError, lambda: a[a[:,0]==1,0])
64
+ assert_raises(IndexError, lambda: a[a[:,0]==1,...])
65
+ assert_raises(IndexError, lambda: a[..., a[0]==1])
66
+ assert_raises(IndexError, lambda: a[[True, True, True]])
67
+ assert_raises(IndexError, lambda: a[(True, True, True),])
68
+
69
+ # Integer array indices are not allowed (except for 0-D)
70
+ idx = asarray([[0, 1]])
71
+ assert_raises(IndexError, lambda: a[idx])
72
+ assert_raises(IndexError, lambda: a[idx,])
73
+ assert_raises(IndexError, lambda: a[[0, 1]])
74
+ assert_raises(IndexError, lambda: a[(0, 1), (0, 1)])
75
+ assert_raises(IndexError, lambda: a[[0, 1]])
76
+ assert_raises(IndexError, lambda: a[np.array([[0, 1]])])
77
+
78
+ # Multiaxis indices must contain exactly as many indices as dimensions
79
+ assert_raises(IndexError, lambda: a[()])
80
+ assert_raises(IndexError, lambda: a[0,])
81
+ assert_raises(IndexError, lambda: a[0])
82
+ assert_raises(IndexError, lambda: a[:])
83
+
84
+ def test_operators():
85
+ # For every operator, we test that it works for the required type
86
+ # combinations and raises TypeError otherwise
87
+ binary_op_dtypes = {
88
+ "__add__": "numeric",
89
+ "__and__": "integer_or_boolean",
90
+ "__eq__": "all",
91
+ "__floordiv__": "real numeric",
92
+ "__ge__": "real numeric",
93
+ "__gt__": "real numeric",
94
+ "__le__": "real numeric",
95
+ "__lshift__": "integer",
96
+ "__lt__": "real numeric",
97
+ "__mod__": "real numeric",
98
+ "__mul__": "numeric",
99
+ "__ne__": "all",
100
+ "__or__": "integer_or_boolean",
101
+ "__pow__": "numeric",
102
+ "__rshift__": "integer",
103
+ "__sub__": "numeric",
104
+ "__truediv__": "floating",
105
+ "__xor__": "integer_or_boolean",
106
+ }
107
+ # Recompute each time because of in-place ops
108
+ def _array_vals():
109
+ for d in _integer_dtypes:
110
+ yield asarray(1, dtype=d)
111
+ for d in _boolean_dtypes:
112
+ yield asarray(False, dtype=d)
113
+ for d in _floating_dtypes:
114
+ yield asarray(1.0, dtype=d)
115
+
116
+
117
+ BIG_INT = int(1e30)
118
+ for op, dtypes in binary_op_dtypes.items():
119
+ ops = [op]
120
+ if op not in ["__eq__", "__ne__", "__le__", "__ge__", "__lt__", "__gt__"]:
121
+ rop = "__r" + op[2:]
122
+ iop = "__i" + op[2:]
123
+ ops += [rop, iop]
124
+ for s in [1, 1.0, 1j, BIG_INT, False]:
125
+ for _op in ops:
126
+ for a in _array_vals():
127
+ # Test array op scalar. From the spec, the following combinations
128
+ # are supported:
129
+
130
+ # - Python bool for a bool array dtype,
131
+ # - a Python int within the bounds of the given dtype for integer array dtypes,
132
+ # - a Python int or float for real floating-point array dtypes
133
+ # - a Python int, float, or complex for complex floating-point array dtypes
134
+
135
+ if ((dtypes == "all"
136
+ or dtypes == "numeric" and a.dtype in _numeric_dtypes
137
+ or dtypes == "real numeric" and a.dtype in _real_numeric_dtypes
138
+ or dtypes == "integer" and a.dtype in _integer_dtypes
139
+ or dtypes == "integer_or_boolean" and a.dtype in _integer_or_boolean_dtypes
140
+ or dtypes == "boolean" and a.dtype in _boolean_dtypes
141
+ or dtypes == "floating" and a.dtype in _floating_dtypes
142
+ )
143
+ # bool is a subtype of int, which is why we avoid
144
+ # isinstance here.
145
+ and (a.dtype in _boolean_dtypes and type(s) == bool
146
+ or a.dtype in _integer_dtypes and type(s) == int
147
+ or a.dtype in _real_floating_dtypes and type(s) in [float, int]
148
+ or a.dtype in _complex_floating_dtypes and type(s) in [complex, float, int]
149
+ )):
150
+ if a.dtype in _integer_dtypes and s == BIG_INT:
151
+ assert_raises(OverflowError, lambda: getattr(a, _op)(s))
152
+ else:
153
+ # Only test for no error
154
+ with suppress_warnings() as sup:
155
+ # ignore warnings from pow(BIG_INT)
156
+ sup.filter(RuntimeWarning,
157
+ "invalid value encountered in power")
158
+ getattr(a, _op)(s)
159
+ else:
160
+ assert_raises(TypeError, lambda: getattr(a, _op)(s))
161
+
162
+ # Test array op array.
163
+ for _op in ops:
164
+ for x in _array_vals():
165
+ for y in _array_vals():
166
+ # See the promotion table in NEP 47 or the array
167
+ # API spec page on type promotion. Mixed kind
168
+ # promotion is not defined.
169
+ if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
170
+ or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
171
+ or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
172
+ or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
173
+ or x.dtype in _boolean_dtypes and y.dtype not in _boolean_dtypes
174
+ or y.dtype in _boolean_dtypes and x.dtype not in _boolean_dtypes
175
+ or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
176
+ or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
177
+ ):
178
+ assert_raises(TypeError, lambda: getattr(x, _op)(y))
179
+ # Ensure in-place operators only promote to the same dtype as the left operand.
180
+ elif (
181
+ _op.startswith("__i")
182
+ and result_type(x.dtype, y.dtype) != x.dtype
183
+ ):
184
+ assert_raises(TypeError, lambda: getattr(x, _op)(y))
185
+ # Ensure only those dtypes that are required for every operator are allowed.
186
+ elif (dtypes == "all" and (x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
187
+ or x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
188
+ or (dtypes == "real numeric" and x.dtype in _real_numeric_dtypes and y.dtype in _real_numeric_dtypes)
189
+ or (dtypes == "numeric" and x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
190
+ or dtypes == "integer" and x.dtype in _integer_dtypes and y.dtype in _integer_dtypes
191
+ or dtypes == "integer_or_boolean" and (x.dtype in _integer_dtypes and y.dtype in _integer_dtypes
192
+ or x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes)
193
+ or dtypes == "boolean" and x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
194
+ or dtypes == "floating" and x.dtype in _floating_dtypes and y.dtype in _floating_dtypes
195
+ ):
196
+ getattr(x, _op)(y)
197
+ else:
198
+ assert_raises(TypeError, lambda: getattr(x, _op)(y))
199
+
200
+ unary_op_dtypes = {
201
+ "__abs__": "numeric",
202
+ "__invert__": "integer_or_boolean",
203
+ "__neg__": "numeric",
204
+ "__pos__": "numeric",
205
+ }
206
+ for op, dtypes in unary_op_dtypes.items():
207
+ for a in _array_vals():
208
+ if (
209
+ dtypes == "numeric"
210
+ and a.dtype in _numeric_dtypes
211
+ or dtypes == "integer_or_boolean"
212
+ and a.dtype in _integer_or_boolean_dtypes
213
+ ):
214
+ # Only test for no error
215
+ getattr(a, op)()
216
+ else:
217
+ assert_raises(TypeError, lambda: getattr(a, op)())
218
+
219
+ # Finally, matmul() must be tested separately, because it works a bit
220
+ # different from the other operations.
221
+ def _matmul_array_vals():
222
+ for a in _array_vals():
223
+ yield a
224
+ for d in _all_dtypes:
225
+ yield ones((3, 4), dtype=d)
226
+ yield ones((4, 2), dtype=d)
227
+ yield ones((4, 4), dtype=d)
228
+
229
+ # Scalars always error
230
+ for _op in ["__matmul__", "__rmatmul__", "__imatmul__"]:
231
+ for s in [1, 1.0, False]:
232
+ for a in _matmul_array_vals():
233
+ if (type(s) in [float, int] and a.dtype in _floating_dtypes
234
+ or type(s) == int and a.dtype in _integer_dtypes):
235
+ # Type promotion is valid, but @ is not allowed on 0-D
236
+ # inputs, so the error is a ValueError
237
+ assert_raises(ValueError, lambda: getattr(a, _op)(s))
238
+ else:
239
+ assert_raises(TypeError, lambda: getattr(a, _op)(s))
240
+
241
+ for x in _matmul_array_vals():
242
+ for y in _matmul_array_vals():
243
+ if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
244
+ or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
245
+ or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
246
+ or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
247
+ or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
248
+ or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
249
+ or x.dtype in _boolean_dtypes
250
+ or y.dtype in _boolean_dtypes
251
+ ):
252
+ assert_raises(TypeError, lambda: x.__matmul__(y))
253
+ assert_raises(TypeError, lambda: y.__rmatmul__(x))
254
+ assert_raises(TypeError, lambda: x.__imatmul__(y))
255
+ elif x.shape == () or y.shape == () or x.shape[1] != y.shape[0]:
256
+ assert_raises(ValueError, lambda: x.__matmul__(y))
257
+ assert_raises(ValueError, lambda: y.__rmatmul__(x))
258
+ if result_type(x.dtype, y.dtype) != x.dtype:
259
+ assert_raises(TypeError, lambda: x.__imatmul__(y))
260
+ else:
261
+ assert_raises(ValueError, lambda: x.__imatmul__(y))
262
+ else:
263
+ x.__matmul__(y)
264
+ y.__rmatmul__(x)
265
+ if result_type(x.dtype, y.dtype) != x.dtype:
266
+ assert_raises(TypeError, lambda: x.__imatmul__(y))
267
+ elif y.shape[0] != y.shape[1]:
268
+ # This one fails because x @ y has a different shape from x
269
+ assert_raises(ValueError, lambda: x.__imatmul__(y))
270
+ else:
271
+ x.__imatmul__(y)
272
+
273
+
274
+ def test_python_scalar_construtors():
275
+ b = asarray(False)
276
+ i = asarray(0)
277
+ f = asarray(0.0)
278
+ c = asarray(0j)
279
+
280
+ assert bool(b) == False
281
+ assert int(i) == 0
282
+ assert float(f) == 0.0
283
+ assert operator.index(i) == 0
284
+
285
+ # bool/int/float/complex should only be allowed on 0-D arrays.
286
+ assert_raises(TypeError, lambda: bool(asarray([False])))
287
+ assert_raises(TypeError, lambda: int(asarray([0])))
288
+ assert_raises(TypeError, lambda: float(asarray([0.0])))
289
+ assert_raises(TypeError, lambda: complex(asarray([0j])))
290
+ assert_raises(TypeError, lambda: operator.index(asarray([0])))
291
+
292
+ # bool should work on all types of arrays
293
+ assert bool(b) is bool(i) is bool(f) is bool(c) is False
294
+
295
+ # int should fail on complex arrays
296
+ assert int(b) == int(i) == int(f) == 0
297
+ assert_raises(TypeError, lambda: int(c))
298
+
299
+ # float should fail on complex arrays
300
+ assert float(b) == float(i) == float(f) == 0.0
301
+ assert_raises(TypeError, lambda: float(c))
302
+
303
+ # complex should work on all types of arrays
304
+ assert complex(b) == complex(i) == complex(f) == complex(c) == 0j
305
+
306
+ # index should only work on integer arrays
307
+ assert operator.index(i) == 0
308
+ assert_raises(TypeError, lambda: operator.index(b))
309
+ assert_raises(TypeError, lambda: operator.index(f))
310
+ assert_raises(TypeError, lambda: operator.index(c))
311
+
312
+
313
+ def test_device_property():
314
+ a = ones((3, 4))
315
+ assert a.device == 'cpu'
316
+
317
+ assert all(equal(a.to_device('cpu'), a))
318
+ assert_raises(ValueError, lambda: a.to_device('gpu'))
319
+
320
+ assert all(equal(asarray(a, device='cpu'), a))
321
+ assert_raises(ValueError, lambda: asarray(a, device='gpu'))
322
+
323
+ def test_array_properties():
324
+ a = ones((1, 2, 3))
325
+ b = ones((2, 3))
326
+ assert_raises(ValueError, lambda: a.T)
327
+
328
+ assert isinstance(b.T, Array)
329
+ assert b.T.shape == (3, 2)
330
+
331
+ assert isinstance(a.mT, Array)
332
+ assert a.mT.shape == (1, 3, 2)
333
+ assert isinstance(b.mT, Array)
334
+ assert b.mT.shape == (3, 2)
335
+
336
+ def test___array__():
337
+ a = ones((2, 3), dtype=int16)
338
+ assert np.asarray(a) is a._array
339
+ b = np.asarray(a, dtype=np.float64)
340
+ assert np.all(np.equal(b, np.ones((2, 3), dtype=np.float64)))
341
+ assert b.dtype == np.float64
342
+
343
+ def test_allow_newaxis():
344
+ a = ones(5)
345
+ indexed_a = a[None, :]
346
+ assert indexed_a.shape == (1, 5)
347
+
348
+ def test_disallow_flat_indexing_with_newaxis():
349
+ a = ones((3, 3, 3))
350
+ with pytest.raises(IndexError):
351
+ a[None, 0, 0]
352
+
353
+ def test_disallow_mask_with_newaxis():
354
+ a = ones((3, 3, 3))
355
+ with pytest.raises(IndexError):
356
+ a[None, asarray(True)]
357
+
358
+ @pytest.mark.parametrize("shape", [(), (5,), (3, 3, 3)])
359
+ @pytest.mark.parametrize("index", ["string", False, True])
360
+ def test_error_on_invalid_index(shape, index):
361
+ a = ones(shape)
362
+ with pytest.raises(IndexError):
363
+ a[index]
364
+
365
+ def test_mask_0d_array_without_errors():
366
+ a = ones(())
367
+ a[asarray(True)]
368
+
369
+ @pytest.mark.parametrize(
370
+ "i", [slice(5), slice(5, 0), asarray(True), asarray([0, 1])]
371
+ )
372
+ def test_error_on_invalid_index_with_ellipsis(i):
373
+ a = ones((3, 3, 3))
374
+ with pytest.raises(IndexError):
375
+ a[..., i]
376
+ with pytest.raises(IndexError):
377
+ a[i, ...]
378
+
379
+ def test_array_keys_use_private_array():
380
+ """
381
+ Indexing operations convert array keys before indexing the internal array
382
+
383
+ Fails when array_api array keys are not converted into NumPy-proper arrays
384
+ in __getitem__(). This is achieved by passing array_api arrays with 0-sized
385
+ dimensions, which NumPy-proper treats erroneously - not sure why!
386
+
387
+ TODO: Find and use appropriate __setitem__() case.
388
+ """
389
+ a = ones((0, 0), dtype=bool_)
390
+ assert a[a].shape == (0,)
391
+
392
+ a = ones((0,), dtype=bool_)
393
+ key = ones((0, 0), dtype=bool_)
394
+ with pytest.raises(IndexError):
395
+ a[key]
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_creation_functions.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy.testing import assert_raises
2
+ import numpy as np
3
+
4
+ from .. import all
5
+ from .._creation_functions import (
6
+ asarray,
7
+ arange,
8
+ empty,
9
+ empty_like,
10
+ eye,
11
+ full,
12
+ full_like,
13
+ linspace,
14
+ meshgrid,
15
+ ones,
16
+ ones_like,
17
+ zeros,
18
+ zeros_like,
19
+ )
20
+ from .._dtypes import float32, float64
21
+ from .._array_object import Array
22
+
23
+
24
+ def test_asarray_errors():
25
+ # Test various protections against incorrect usage
26
+ assert_raises(TypeError, lambda: Array([1]))
27
+ assert_raises(TypeError, lambda: asarray(["a"]))
28
+ assert_raises(ValueError, lambda: asarray([1.0], dtype=np.float16))
29
+ assert_raises(OverflowError, lambda: asarray(2**100))
30
+ # Preferably this would be OverflowError
31
+ # assert_raises(OverflowError, lambda: asarray([2**100]))
32
+ assert_raises(TypeError, lambda: asarray([2**100]))
33
+ asarray([1], device="cpu") # Doesn't error
34
+ assert_raises(ValueError, lambda: asarray([1], device="gpu"))
35
+
36
+ assert_raises(ValueError, lambda: asarray([1], dtype=int))
37
+ assert_raises(ValueError, lambda: asarray([1], dtype="i"))
38
+
39
+
40
+ def test_asarray_copy():
41
+ a = asarray([1])
42
+ b = asarray(a, copy=True)
43
+ a[0] = 0
44
+ assert all(b[0] == 1)
45
+ assert all(a[0] == 0)
46
+ a = asarray([1])
47
+ b = asarray(a, copy=np._CopyMode.ALWAYS)
48
+ a[0] = 0
49
+ assert all(b[0] == 1)
50
+ assert all(a[0] == 0)
51
+ a = asarray([1])
52
+ b = asarray(a, copy=np._CopyMode.NEVER)
53
+ a[0] = 0
54
+ assert all(b[0] == 0)
55
+ assert_raises(NotImplementedError, lambda: asarray(a, copy=False))
56
+ assert_raises(NotImplementedError,
57
+ lambda: asarray(a, copy=np._CopyMode.IF_NEEDED))
58
+
59
+
60
+ def test_arange_errors():
61
+ arange(1, device="cpu") # Doesn't error
62
+ assert_raises(ValueError, lambda: arange(1, device="gpu"))
63
+ assert_raises(ValueError, lambda: arange(1, dtype=int))
64
+ assert_raises(ValueError, lambda: arange(1, dtype="i"))
65
+
66
+
67
+ def test_empty_errors():
68
+ empty((1,), device="cpu") # Doesn't error
69
+ assert_raises(ValueError, lambda: empty((1,), device="gpu"))
70
+ assert_raises(ValueError, lambda: empty((1,), dtype=int))
71
+ assert_raises(ValueError, lambda: empty((1,), dtype="i"))
72
+
73
+
74
+ def test_empty_like_errors():
75
+ empty_like(asarray(1), device="cpu") # Doesn't error
76
+ assert_raises(ValueError, lambda: empty_like(asarray(1), device="gpu"))
77
+ assert_raises(ValueError, lambda: empty_like(asarray(1), dtype=int))
78
+ assert_raises(ValueError, lambda: empty_like(asarray(1), dtype="i"))
79
+
80
+
81
+ def test_eye_errors():
82
+ eye(1, device="cpu") # Doesn't error
83
+ assert_raises(ValueError, lambda: eye(1, device="gpu"))
84
+ assert_raises(ValueError, lambda: eye(1, dtype=int))
85
+ assert_raises(ValueError, lambda: eye(1, dtype="i"))
86
+
87
+
88
+ def test_full_errors():
89
+ full((1,), 0, device="cpu") # Doesn't error
90
+ assert_raises(ValueError, lambda: full((1,), 0, device="gpu"))
91
+ assert_raises(ValueError, lambda: full((1,), 0, dtype=int))
92
+ assert_raises(ValueError, lambda: full((1,), 0, dtype="i"))
93
+
94
+
95
+ def test_full_like_errors():
96
+ full_like(asarray(1), 0, device="cpu") # Doesn't error
97
+ assert_raises(ValueError, lambda: full_like(asarray(1), 0, device="gpu"))
98
+ assert_raises(ValueError, lambda: full_like(asarray(1), 0, dtype=int))
99
+ assert_raises(ValueError, lambda: full_like(asarray(1), 0, dtype="i"))
100
+
101
+
102
+ def test_linspace_errors():
103
+ linspace(0, 1, 10, device="cpu") # Doesn't error
104
+ assert_raises(ValueError, lambda: linspace(0, 1, 10, device="gpu"))
105
+ assert_raises(ValueError, lambda: linspace(0, 1, 10, dtype=float))
106
+ assert_raises(ValueError, lambda: linspace(0, 1, 10, dtype="f"))
107
+
108
+
109
+ def test_ones_errors():
110
+ ones((1,), device="cpu") # Doesn't error
111
+ assert_raises(ValueError, lambda: ones((1,), device="gpu"))
112
+ assert_raises(ValueError, lambda: ones((1,), dtype=int))
113
+ assert_raises(ValueError, lambda: ones((1,), dtype="i"))
114
+
115
+
116
+ def test_ones_like_errors():
117
+ ones_like(asarray(1), device="cpu") # Doesn't error
118
+ assert_raises(ValueError, lambda: ones_like(asarray(1), device="gpu"))
119
+ assert_raises(ValueError, lambda: ones_like(asarray(1), dtype=int))
120
+ assert_raises(ValueError, lambda: ones_like(asarray(1), dtype="i"))
121
+
122
+
123
+ def test_zeros_errors():
124
+ zeros((1,), device="cpu") # Doesn't error
125
+ assert_raises(ValueError, lambda: zeros((1,), device="gpu"))
126
+ assert_raises(ValueError, lambda: zeros((1,), dtype=int))
127
+ assert_raises(ValueError, lambda: zeros((1,), dtype="i"))
128
+
129
+
130
+ def test_zeros_like_errors():
131
+ zeros_like(asarray(1), device="cpu") # Doesn't error
132
+ assert_raises(ValueError, lambda: zeros_like(asarray(1), device="gpu"))
133
+ assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype=int))
134
+ assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype="i"))
135
+
136
+ def test_meshgrid_dtype_errors():
137
+ # Doesn't raise
138
+ meshgrid()
139
+ meshgrid(asarray([1.], dtype=float32))
140
+ meshgrid(asarray([1.], dtype=float32), asarray([1.], dtype=float32))
141
+
142
+ assert_raises(ValueError, lambda: meshgrid(asarray([1.], dtype=float32), asarray([1.], dtype=float64)))
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_data_type_functions.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from numpy.testing import assert_raises
4
+ from numpy import array_api as xp
5
+ import numpy as np
6
+
7
+ @pytest.mark.parametrize(
8
+ "from_, to, expected",
9
+ [
10
+ (xp.int8, xp.int16, True),
11
+ (xp.int16, xp.int8, False),
12
+ (xp.bool, xp.int8, False),
13
+ (xp.asarray(0, dtype=xp.uint8), xp.int8, False),
14
+ ],
15
+ )
16
+ def test_can_cast(from_, to, expected):
17
+ """
18
+ can_cast() returns correct result
19
+ """
20
+ assert xp.can_cast(from_, to) == expected
21
+
22
+ def test_isdtype_strictness():
23
+ assert_raises(TypeError, lambda: xp.isdtype(xp.float64, 64))
24
+ assert_raises(ValueError, lambda: xp.isdtype(xp.float64, 'f8'))
25
+
26
+ assert_raises(TypeError, lambda: xp.isdtype(xp.float64, (('integral',),)))
27
+ assert_raises(TypeError, lambda: xp.isdtype(xp.float64, np.object_))
28
+
29
+ # TODO: These will require https://github.com/numpy/numpy/issues/23883
30
+ # assert_raises(TypeError, lambda: xp.isdtype(xp.float64, None))
31
+ # assert_raises(TypeError, lambda: xp.isdtype(xp.float64, np.float64))
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_elementwise_functions.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import getfullargspec
2
+
3
+ from numpy.testing import assert_raises
4
+
5
+ from .. import asarray, _elementwise_functions
6
+ from .._elementwise_functions import bitwise_left_shift, bitwise_right_shift
7
+ from .._dtypes import (
8
+ _dtype_categories,
9
+ _boolean_dtypes,
10
+ _floating_dtypes,
11
+ _integer_dtypes,
12
+ )
13
+
14
+
15
+ def nargs(func):
16
+ return len(getfullargspec(func).args)
17
+
18
+
19
+ def test_function_types():
20
+ # Test that every function accepts only the required input types. We only
21
+ # test the negative cases here (error). The positive cases are tested in
22
+ # the array API test suite.
23
+
24
+ elementwise_function_input_types = {
25
+ "abs": "numeric",
26
+ "acos": "floating-point",
27
+ "acosh": "floating-point",
28
+ "add": "numeric",
29
+ "asin": "floating-point",
30
+ "asinh": "floating-point",
31
+ "atan": "floating-point",
32
+ "atan2": "real floating-point",
33
+ "atanh": "floating-point",
34
+ "bitwise_and": "integer or boolean",
35
+ "bitwise_invert": "integer or boolean",
36
+ "bitwise_left_shift": "integer",
37
+ "bitwise_or": "integer or boolean",
38
+ "bitwise_right_shift": "integer",
39
+ "bitwise_xor": "integer or boolean",
40
+ "ceil": "real numeric",
41
+ "conj": "complex floating-point",
42
+ "cos": "floating-point",
43
+ "cosh": "floating-point",
44
+ "divide": "floating-point",
45
+ "equal": "all",
46
+ "exp": "floating-point",
47
+ "expm1": "floating-point",
48
+ "floor": "real numeric",
49
+ "floor_divide": "real numeric",
50
+ "greater": "real numeric",
51
+ "greater_equal": "real numeric",
52
+ "imag": "complex floating-point",
53
+ "isfinite": "numeric",
54
+ "isinf": "numeric",
55
+ "isnan": "numeric",
56
+ "less": "real numeric",
57
+ "less_equal": "real numeric",
58
+ "log": "floating-point",
59
+ "logaddexp": "real floating-point",
60
+ "log10": "floating-point",
61
+ "log1p": "floating-point",
62
+ "log2": "floating-point",
63
+ "logical_and": "boolean",
64
+ "logical_not": "boolean",
65
+ "logical_or": "boolean",
66
+ "logical_xor": "boolean",
67
+ "multiply": "numeric",
68
+ "negative": "numeric",
69
+ "not_equal": "all",
70
+ "positive": "numeric",
71
+ "pow": "numeric",
72
+ "real": "complex floating-point",
73
+ "remainder": "real numeric",
74
+ "round": "numeric",
75
+ "sign": "numeric",
76
+ "sin": "floating-point",
77
+ "sinh": "floating-point",
78
+ "sqrt": "floating-point",
79
+ "square": "numeric",
80
+ "subtract": "numeric",
81
+ "tan": "floating-point",
82
+ "tanh": "floating-point",
83
+ "trunc": "real numeric",
84
+ }
85
+
86
+ def _array_vals():
87
+ for d in _integer_dtypes:
88
+ yield asarray(1, dtype=d)
89
+ for d in _boolean_dtypes:
90
+ yield asarray(False, dtype=d)
91
+ for d in _floating_dtypes:
92
+ yield asarray(1.0, dtype=d)
93
+
94
+ for x in _array_vals():
95
+ for func_name, types in elementwise_function_input_types.items():
96
+ dtypes = _dtype_categories[types]
97
+ func = getattr(_elementwise_functions, func_name)
98
+ if nargs(func) == 2:
99
+ for y in _array_vals():
100
+ if x.dtype not in dtypes or y.dtype not in dtypes:
101
+ assert_raises(TypeError, lambda: func(x, y))
102
+ else:
103
+ if x.dtype not in dtypes:
104
+ assert_raises(TypeError, lambda: func(x))
105
+
106
+
107
+ def test_bitwise_shift_error():
108
+ # bitwise shift functions should raise when the second argument is negative
109
+ assert_raises(
110
+ ValueError, lambda: bitwise_left_shift(asarray([1, 1]), asarray([1, -1]))
111
+ )
112
+ assert_raises(
113
+ ValueError, lambda: bitwise_right_shift(asarray([1, 1]), asarray([1, -1]))
114
+ )
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_indexing_functions.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from numpy import array_api as xp
4
+
5
+
6
+ @pytest.mark.parametrize(
7
+ "x, indices, axis, expected",
8
+ [
9
+ ([2, 3], [1, 1, 0], 0, [3, 3, 2]),
10
+ ([2, 3], [1, 1, 0], -1, [3, 3, 2]),
11
+ ([[2, 3]], [1], -1, [[3]]),
12
+ ([[2, 3]], [0, 0], 0, [[2, 3], [2, 3]]),
13
+ ],
14
+ )
15
+ def test_take_function(x, indices, axis, expected):
16
+ """
17
+ Indices respect relative order of a descending stable-sort
18
+
19
+ See https://github.com/numpy/numpy/issues/20778
20
+ """
21
+ x = xp.asarray(x)
22
+ indices = xp.asarray(indices)
23
+ out = xp.take(x, indices, axis=axis)
24
+ assert xp.all(out == xp.asarray(expected))
env-llmeval/lib/python3.10/site-packages/numpy/array_api/tests/test_manipulation_functions.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy.testing import assert_raises
2
+ import numpy as np
3
+
4
+ from .. import all
5
+ from .._creation_functions import asarray
6
+ from .._dtypes import float64, int8
7
+ from .._manipulation_functions import (
8
+ concat,
9
+ reshape,
10
+ stack
11
+ )
12
+
13
+
14
+ def test_concat_errors():
15
+ assert_raises(TypeError, lambda: concat((1, 1), axis=None))
16
+ assert_raises(TypeError, lambda: concat([asarray([1], dtype=int8),
17
+ asarray([1], dtype=float64)]))
18
+
19
+
20
+ def test_stack_errors():
21
+ assert_raises(TypeError, lambda: stack([asarray([1, 1], dtype=int8),
22
+ asarray([2, 2], dtype=float64)]))
23
+
24
+
25
+ def test_reshape_copy():
26
+ a = asarray(np.ones((2, 3)))
27
+ b = reshape(a, (3, 2), copy=True)
28
+ assert not np.shares_memory(a._array, b._array)
29
+
30
+ a = asarray(np.ones((2, 3)))
31
+ b = reshape(a, (3, 2), copy=False)
32
+ assert np.shares_memory(a._array, b._array)
33
+
34
+ a = asarray(np.ones((2, 3)).T)
35
+ b = reshape(a, (3, 2), copy=True)
36
+ assert_raises(AttributeError, lambda: reshape(a, (2, 3), copy=False))
37
+