Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_astype.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_comparison.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_construction.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_function.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_indexing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_logical.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_ops.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_repr.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/test_compat.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/test_eval.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/test_compat.py +32 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/test_eval.py +1991 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__init__.py +15 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/conftest.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/test_cat.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/test_extract.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/test_find_replace.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/test_get_dummies.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/test_string_array.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/conftest.py +132 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_api.py +198 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_case_justify.py +427 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_cat.py +427 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_extract.py +724 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_find_replace.py +972 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_get_dummies.py +53 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_split_partition.py +734 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_string_array.py +112 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_strings.py +720 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_api.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_array_to_datetime.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_ccalendar.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_conversion.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_fields.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_libfrequencies.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_liboffsets.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_np_datetime.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_npy_units.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_parse_iso8601.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_parsing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_period.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_resolution.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_strptime.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_arithmetic.cpython-310.pyc
ADDED
Binary file (3.59 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_astype.cpython-310.pyc
ADDED
Binary file (1.58 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_comparison.cpython-310.pyc
ADDED
Binary file (2.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_construction.cpython-310.pyc
ADDED
Binary file (8.29 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_function.cpython-310.pyc
ADDED
Binary file (3.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_indexing.cpython-310.pyc
ADDED
Binary file (639 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_logical.cpython-310.pyc
ADDED
Binary file (6.79 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_ops.cpython-310.pyc
ADDED
Binary file (1.18 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_repr.cpython-310.pyc
ADDED
Binary file (650 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (189 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/test_compat.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/__pycache__/test_eval.cpython-310.pyc
ADDED
Binary file (58.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/test_compat.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas.compat._optional import VERSIONS
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
from pandas.core.computation import expr
|
7 |
+
from pandas.core.computation.engines import ENGINES
|
8 |
+
from pandas.util.version import Version
|
9 |
+
|
10 |
+
|
11 |
+
def test_compat():
|
12 |
+
# test we have compat with our version of numexpr
|
13 |
+
|
14 |
+
from pandas.core.computation.check import NUMEXPR_INSTALLED
|
15 |
+
|
16 |
+
ne = pytest.importorskip("numexpr")
|
17 |
+
|
18 |
+
ver = ne.__version__
|
19 |
+
if Version(ver) < Version(VERSIONS["numexpr"]):
|
20 |
+
assert not NUMEXPR_INSTALLED
|
21 |
+
else:
|
22 |
+
assert NUMEXPR_INSTALLED
|
23 |
+
|
24 |
+
|
25 |
+
@pytest.mark.parametrize("engine", ENGINES)
|
26 |
+
@pytest.mark.parametrize("parser", expr.PARSERS)
|
27 |
+
def test_invalid_numexpr_version(engine, parser):
|
28 |
+
if engine == "numexpr":
|
29 |
+
pytest.importorskip("numexpr")
|
30 |
+
a, b = 1, 2 # noqa: F841
|
31 |
+
res = pd.eval("a + b", engine=engine, parser=parser)
|
32 |
+
assert res == 3
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/computation/test_eval.py
ADDED
@@ -0,0 +1,1991 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from functools import reduce
|
4 |
+
from itertools import product
|
5 |
+
import operator
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pytest
|
9 |
+
|
10 |
+
from pandas.compat import PY312
|
11 |
+
from pandas.errors import (
|
12 |
+
NumExprClobberingError,
|
13 |
+
PerformanceWarning,
|
14 |
+
UndefinedVariableError,
|
15 |
+
)
|
16 |
+
import pandas.util._test_decorators as td
|
17 |
+
|
18 |
+
from pandas.core.dtypes.common import (
|
19 |
+
is_bool,
|
20 |
+
is_float,
|
21 |
+
is_list_like,
|
22 |
+
is_scalar,
|
23 |
+
)
|
24 |
+
|
25 |
+
import pandas as pd
|
26 |
+
from pandas import (
|
27 |
+
DataFrame,
|
28 |
+
Index,
|
29 |
+
Series,
|
30 |
+
date_range,
|
31 |
+
period_range,
|
32 |
+
timedelta_range,
|
33 |
+
)
|
34 |
+
import pandas._testing as tm
|
35 |
+
from pandas.core.computation import (
|
36 |
+
expr,
|
37 |
+
pytables,
|
38 |
+
)
|
39 |
+
from pandas.core.computation.engines import ENGINES
|
40 |
+
from pandas.core.computation.expr import (
|
41 |
+
BaseExprVisitor,
|
42 |
+
PandasExprVisitor,
|
43 |
+
PythonExprVisitor,
|
44 |
+
)
|
45 |
+
from pandas.core.computation.expressions import (
|
46 |
+
NUMEXPR_INSTALLED,
|
47 |
+
USE_NUMEXPR,
|
48 |
+
)
|
49 |
+
from pandas.core.computation.ops import (
|
50 |
+
ARITH_OPS_SYMS,
|
51 |
+
SPECIAL_CASE_ARITH_OPS_SYMS,
|
52 |
+
_binary_math_ops,
|
53 |
+
_binary_ops_dict,
|
54 |
+
_unary_math_ops,
|
55 |
+
)
|
56 |
+
from pandas.core.computation.scope import DEFAULT_GLOBALS
|
57 |
+
|
58 |
+
|
59 |
+
@pytest.fixture(
|
60 |
+
params=(
|
61 |
+
pytest.param(
|
62 |
+
engine,
|
63 |
+
marks=[
|
64 |
+
pytest.mark.skipif(
|
65 |
+
engine == "numexpr" and not USE_NUMEXPR,
|
66 |
+
reason=f"numexpr enabled->{USE_NUMEXPR}, "
|
67 |
+
f"installed->{NUMEXPR_INSTALLED}",
|
68 |
+
),
|
69 |
+
td.skip_if_no("numexpr"),
|
70 |
+
],
|
71 |
+
)
|
72 |
+
for engine in ENGINES
|
73 |
+
)
|
74 |
+
)
|
75 |
+
def engine(request):
|
76 |
+
return request.param
|
77 |
+
|
78 |
+
|
79 |
+
@pytest.fixture(params=expr.PARSERS)
|
80 |
+
def parser(request):
|
81 |
+
return request.param
|
82 |
+
|
83 |
+
|
84 |
+
def _eval_single_bin(lhs, cmp1, rhs, engine):
|
85 |
+
c = _binary_ops_dict[cmp1]
|
86 |
+
if ENGINES[engine].has_neg_frac:
|
87 |
+
try:
|
88 |
+
return c(lhs, rhs)
|
89 |
+
except ValueError as e:
|
90 |
+
if str(e).startswith(
|
91 |
+
"negative number cannot be raised to a fractional power"
|
92 |
+
):
|
93 |
+
return np.nan
|
94 |
+
raise
|
95 |
+
return c(lhs, rhs)
|
96 |
+
|
97 |
+
|
98 |
+
# TODO: using range(5) here is a kludge
|
99 |
+
@pytest.fixture(
|
100 |
+
params=list(range(5)),
|
101 |
+
ids=["DataFrame", "Series", "SeriesNaN", "DataFrameNaN", "float"],
|
102 |
+
)
|
103 |
+
def lhs(request):
|
104 |
+
nan_df1 = DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
|
105 |
+
nan_df1[nan_df1 > 0.5] = np.nan
|
106 |
+
|
107 |
+
opts = (
|
108 |
+
DataFrame(np.random.default_rng(2).standard_normal((10, 5))),
|
109 |
+
Series(np.random.default_rng(2).standard_normal(5)),
|
110 |
+
Series([1, 2, np.nan, np.nan, 5]),
|
111 |
+
nan_df1,
|
112 |
+
np.random.default_rng(2).standard_normal(),
|
113 |
+
)
|
114 |
+
return opts[request.param]
|
115 |
+
|
116 |
+
|
117 |
+
rhs = lhs
|
118 |
+
midhs = lhs
|
119 |
+
|
120 |
+
|
121 |
+
@pytest.fixture
|
122 |
+
def idx_func_dict():
|
123 |
+
return {
|
124 |
+
"i": lambda n: Index(np.arange(n), dtype=np.int64),
|
125 |
+
"f": lambda n: Index(np.arange(n), dtype=np.float64),
|
126 |
+
"s": lambda n: Index([f"{i}_{chr(i)}" for i in range(97, 97 + n)]),
|
127 |
+
"dt": lambda n: date_range("2020-01-01", periods=n),
|
128 |
+
"td": lambda n: timedelta_range("1 day", periods=n),
|
129 |
+
"p": lambda n: period_range("2020-01-01", periods=n, freq="D"),
|
130 |
+
}
|
131 |
+
|
132 |
+
|
133 |
+
class TestEval:
|
134 |
+
@pytest.mark.parametrize(
|
135 |
+
"cmp1",
|
136 |
+
["!=", "==", "<=", ">=", "<", ">"],
|
137 |
+
ids=["ne", "eq", "le", "ge", "lt", "gt"],
|
138 |
+
)
|
139 |
+
@pytest.mark.parametrize("cmp2", [">", "<"], ids=["gt", "lt"])
|
140 |
+
@pytest.mark.parametrize("binop", expr.BOOL_OPS_SYMS)
|
141 |
+
def test_complex_cmp_ops(self, cmp1, cmp2, binop, lhs, rhs, engine, parser):
|
142 |
+
if parser == "python" and binop in ["and", "or"]:
|
143 |
+
msg = "'BoolOp' nodes are not implemented"
|
144 |
+
with pytest.raises(NotImplementedError, match=msg):
|
145 |
+
ex = f"(lhs {cmp1} rhs) {binop} (lhs {cmp2} rhs)"
|
146 |
+
pd.eval(ex, engine=engine, parser=parser)
|
147 |
+
return
|
148 |
+
|
149 |
+
lhs_new = _eval_single_bin(lhs, cmp1, rhs, engine)
|
150 |
+
rhs_new = _eval_single_bin(lhs, cmp2, rhs, engine)
|
151 |
+
expected = _eval_single_bin(lhs_new, binop, rhs_new, engine)
|
152 |
+
|
153 |
+
ex = f"(lhs {cmp1} rhs) {binop} (lhs {cmp2} rhs)"
|
154 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
155 |
+
tm.assert_equal(result, expected)
|
156 |
+
|
157 |
+
@pytest.mark.parametrize("cmp_op", expr.CMP_OPS_SYMS)
|
158 |
+
def test_simple_cmp_ops(self, cmp_op, lhs, rhs, engine, parser):
|
159 |
+
lhs = lhs < 0
|
160 |
+
rhs = rhs < 0
|
161 |
+
|
162 |
+
if parser == "python" and cmp_op in ["in", "not in"]:
|
163 |
+
msg = "'(In|NotIn)' nodes are not implemented"
|
164 |
+
|
165 |
+
with pytest.raises(NotImplementedError, match=msg):
|
166 |
+
ex = f"lhs {cmp_op} rhs"
|
167 |
+
pd.eval(ex, engine=engine, parser=parser)
|
168 |
+
return
|
169 |
+
|
170 |
+
ex = f"lhs {cmp_op} rhs"
|
171 |
+
msg = "|".join(
|
172 |
+
[
|
173 |
+
r"only list-like( or dict-like)? objects are allowed to be "
|
174 |
+
r"passed to (DataFrame\.)?isin\(\), you passed a "
|
175 |
+
r"(`|')bool(`|')",
|
176 |
+
"argument of type 'bool' is not iterable",
|
177 |
+
]
|
178 |
+
)
|
179 |
+
if cmp_op in ("in", "not in") and not is_list_like(rhs):
|
180 |
+
with pytest.raises(TypeError, match=msg):
|
181 |
+
pd.eval(
|
182 |
+
ex,
|
183 |
+
engine=engine,
|
184 |
+
parser=parser,
|
185 |
+
local_dict={"lhs": lhs, "rhs": rhs},
|
186 |
+
)
|
187 |
+
else:
|
188 |
+
expected = _eval_single_bin(lhs, cmp_op, rhs, engine)
|
189 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
190 |
+
tm.assert_equal(result, expected)
|
191 |
+
|
192 |
+
@pytest.mark.parametrize("op", expr.CMP_OPS_SYMS)
|
193 |
+
def test_compound_invert_op(self, op, lhs, rhs, request, engine, parser):
|
194 |
+
if parser == "python" and op in ["in", "not in"]:
|
195 |
+
msg = "'(In|NotIn)' nodes are not implemented"
|
196 |
+
with pytest.raises(NotImplementedError, match=msg):
|
197 |
+
ex = f"~(lhs {op} rhs)"
|
198 |
+
pd.eval(ex, engine=engine, parser=parser)
|
199 |
+
return
|
200 |
+
|
201 |
+
if (
|
202 |
+
is_float(lhs)
|
203 |
+
and not is_float(rhs)
|
204 |
+
and op in ["in", "not in"]
|
205 |
+
and engine == "python"
|
206 |
+
and parser == "pandas"
|
207 |
+
):
|
208 |
+
mark = pytest.mark.xfail(
|
209 |
+
reason="Looks like expected is negative, unclear whether "
|
210 |
+
"expected is incorrect or result is incorrect"
|
211 |
+
)
|
212 |
+
request.applymarker(mark)
|
213 |
+
skip_these = ["in", "not in"]
|
214 |
+
ex = f"~(lhs {op} rhs)"
|
215 |
+
|
216 |
+
msg = "|".join(
|
217 |
+
[
|
218 |
+
r"only list-like( or dict-like)? objects are allowed to be "
|
219 |
+
r"passed to (DataFrame\.)?isin\(\), you passed a "
|
220 |
+
r"(`|')float(`|')",
|
221 |
+
"argument of type 'float' is not iterable",
|
222 |
+
]
|
223 |
+
)
|
224 |
+
if is_scalar(rhs) and op in skip_these:
|
225 |
+
with pytest.raises(TypeError, match=msg):
|
226 |
+
pd.eval(
|
227 |
+
ex,
|
228 |
+
engine=engine,
|
229 |
+
parser=parser,
|
230 |
+
local_dict={"lhs": lhs, "rhs": rhs},
|
231 |
+
)
|
232 |
+
else:
|
233 |
+
# compound
|
234 |
+
if is_scalar(lhs) and is_scalar(rhs):
|
235 |
+
lhs, rhs = (np.array([x]) for x in (lhs, rhs))
|
236 |
+
expected = _eval_single_bin(lhs, op, rhs, engine)
|
237 |
+
if is_scalar(expected):
|
238 |
+
expected = not expected
|
239 |
+
else:
|
240 |
+
expected = ~expected
|
241 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
242 |
+
tm.assert_almost_equal(expected, result)
|
243 |
+
|
244 |
+
@pytest.mark.parametrize("cmp1", ["<", ">"])
|
245 |
+
@pytest.mark.parametrize("cmp2", ["<", ">"])
|
246 |
+
def test_chained_cmp_op(self, cmp1, cmp2, lhs, midhs, rhs, engine, parser):
|
247 |
+
mid = midhs
|
248 |
+
if parser == "python":
|
249 |
+
ex1 = f"lhs {cmp1} mid {cmp2} rhs"
|
250 |
+
msg = "'BoolOp' nodes are not implemented"
|
251 |
+
with pytest.raises(NotImplementedError, match=msg):
|
252 |
+
pd.eval(ex1, engine=engine, parser=parser)
|
253 |
+
return
|
254 |
+
|
255 |
+
lhs_new = _eval_single_bin(lhs, cmp1, mid, engine)
|
256 |
+
rhs_new = _eval_single_bin(mid, cmp2, rhs, engine)
|
257 |
+
|
258 |
+
if lhs_new is not None and rhs_new is not None:
|
259 |
+
ex1 = f"lhs {cmp1} mid {cmp2} rhs"
|
260 |
+
ex2 = f"lhs {cmp1} mid and mid {cmp2} rhs"
|
261 |
+
ex3 = f"(lhs {cmp1} mid) & (mid {cmp2} rhs)"
|
262 |
+
expected = _eval_single_bin(lhs_new, "&", rhs_new, engine)
|
263 |
+
|
264 |
+
for ex in (ex1, ex2, ex3):
|
265 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
266 |
+
|
267 |
+
tm.assert_almost_equal(result, expected)
|
268 |
+
|
269 |
+
@pytest.mark.parametrize(
|
270 |
+
"arith1", sorted(set(ARITH_OPS_SYMS).difference(SPECIAL_CASE_ARITH_OPS_SYMS))
|
271 |
+
)
|
272 |
+
def test_binary_arith_ops(self, arith1, lhs, rhs, engine, parser):
|
273 |
+
ex = f"lhs {arith1} rhs"
|
274 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
275 |
+
expected = _eval_single_bin(lhs, arith1, rhs, engine)
|
276 |
+
|
277 |
+
tm.assert_almost_equal(result, expected)
|
278 |
+
ex = f"lhs {arith1} rhs {arith1} rhs"
|
279 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
280 |
+
nlhs = _eval_single_bin(lhs, arith1, rhs, engine)
|
281 |
+
try:
|
282 |
+
nlhs, ghs = nlhs.align(rhs)
|
283 |
+
except (ValueError, TypeError, AttributeError):
|
284 |
+
# ValueError: series frame or frame series align
|
285 |
+
# TypeError, AttributeError: series or frame with scalar align
|
286 |
+
return
|
287 |
+
else:
|
288 |
+
if engine == "numexpr":
|
289 |
+
import numexpr as ne
|
290 |
+
|
291 |
+
# direct numpy comparison
|
292 |
+
expected = ne.evaluate(f"nlhs {arith1} ghs")
|
293 |
+
# Update assert statement due to unreliable numerical
|
294 |
+
# precision component (GH37328)
|
295 |
+
# TODO: update testing code so that assert_almost_equal statement
|
296 |
+
# can be replaced again by the assert_numpy_array_equal statement
|
297 |
+
tm.assert_almost_equal(result.values, expected)
|
298 |
+
else:
|
299 |
+
expected = eval(f"nlhs {arith1} ghs")
|
300 |
+
tm.assert_almost_equal(result, expected)
|
301 |
+
|
302 |
+
# modulus, pow, and floor division require special casing
|
303 |
+
|
304 |
+
def test_modulus(self, lhs, rhs, engine, parser):
|
305 |
+
ex = r"lhs % rhs"
|
306 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
307 |
+
expected = lhs % rhs
|
308 |
+
tm.assert_almost_equal(result, expected)
|
309 |
+
|
310 |
+
if engine == "numexpr":
|
311 |
+
import numexpr as ne
|
312 |
+
|
313 |
+
expected = ne.evaluate(r"expected % rhs")
|
314 |
+
if isinstance(result, (DataFrame, Series)):
|
315 |
+
tm.assert_almost_equal(result.values, expected)
|
316 |
+
else:
|
317 |
+
tm.assert_almost_equal(result, expected.item())
|
318 |
+
else:
|
319 |
+
expected = _eval_single_bin(expected, "%", rhs, engine)
|
320 |
+
tm.assert_almost_equal(result, expected)
|
321 |
+
|
322 |
+
def test_floor_division(self, lhs, rhs, engine, parser):
|
323 |
+
ex = "lhs // rhs"
|
324 |
+
|
325 |
+
if engine == "python":
|
326 |
+
res = pd.eval(ex, engine=engine, parser=parser)
|
327 |
+
expected = lhs // rhs
|
328 |
+
tm.assert_equal(res, expected)
|
329 |
+
else:
|
330 |
+
msg = (
|
331 |
+
r"unsupported operand type\(s\) for //: 'VariableNode' and "
|
332 |
+
"'VariableNode'"
|
333 |
+
)
|
334 |
+
with pytest.raises(TypeError, match=msg):
|
335 |
+
pd.eval(
|
336 |
+
ex,
|
337 |
+
local_dict={"lhs": lhs, "rhs": rhs},
|
338 |
+
engine=engine,
|
339 |
+
parser=parser,
|
340 |
+
)
|
341 |
+
|
342 |
+
@td.skip_if_windows
|
343 |
+
def test_pow(self, lhs, rhs, engine, parser):
|
344 |
+
# odd failure on win32 platform, so skip
|
345 |
+
ex = "lhs ** rhs"
|
346 |
+
expected = _eval_single_bin(lhs, "**", rhs, engine)
|
347 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
348 |
+
|
349 |
+
if (
|
350 |
+
is_scalar(lhs)
|
351 |
+
and is_scalar(rhs)
|
352 |
+
and isinstance(expected, (complex, np.complexfloating))
|
353 |
+
and np.isnan(result)
|
354 |
+
):
|
355 |
+
msg = "(DataFrame.columns|numpy array) are different"
|
356 |
+
with pytest.raises(AssertionError, match=msg):
|
357 |
+
tm.assert_numpy_array_equal(result, expected)
|
358 |
+
else:
|
359 |
+
tm.assert_almost_equal(result, expected)
|
360 |
+
|
361 |
+
ex = "(lhs ** rhs) ** rhs"
|
362 |
+
result = pd.eval(ex, engine=engine, parser=parser)
|
363 |
+
|
364 |
+
middle = _eval_single_bin(lhs, "**", rhs, engine)
|
365 |
+
expected = _eval_single_bin(middle, "**", rhs, engine)
|
366 |
+
tm.assert_almost_equal(result, expected)
|
367 |
+
|
368 |
+
def test_check_single_invert_op(self, lhs, engine, parser):
|
369 |
+
# simple
|
370 |
+
try:
|
371 |
+
elb = lhs.astype(bool)
|
372 |
+
except AttributeError:
|
373 |
+
elb = np.array([bool(lhs)])
|
374 |
+
expected = ~elb
|
375 |
+
result = pd.eval("~elb", engine=engine, parser=parser)
|
376 |
+
tm.assert_almost_equal(expected, result)
|
377 |
+
|
378 |
+
def test_frame_invert(self, engine, parser):
|
379 |
+
expr = "~lhs"
|
380 |
+
|
381 |
+
# ~ ##
|
382 |
+
# frame
|
383 |
+
# float always raises
|
384 |
+
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2)))
|
385 |
+
if engine == "numexpr":
|
386 |
+
msg = "couldn't find matching opcode for 'invert_dd'"
|
387 |
+
with pytest.raises(NotImplementedError, match=msg):
|
388 |
+
pd.eval(expr, engine=engine, parser=parser)
|
389 |
+
else:
|
390 |
+
msg = "ufunc 'invert' not supported for the input types"
|
391 |
+
with pytest.raises(TypeError, match=msg):
|
392 |
+
pd.eval(expr, engine=engine, parser=parser)
|
393 |
+
|
394 |
+
# int raises on numexpr
|
395 |
+
lhs = DataFrame(np.random.default_rng(2).integers(5, size=(5, 2)))
|
396 |
+
if engine == "numexpr":
|
397 |
+
msg = "couldn't find matching opcode for 'invert"
|
398 |
+
with pytest.raises(NotImplementedError, match=msg):
|
399 |
+
pd.eval(expr, engine=engine, parser=parser)
|
400 |
+
else:
|
401 |
+
expect = ~lhs
|
402 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
403 |
+
tm.assert_frame_equal(expect, result)
|
404 |
+
|
405 |
+
# bool always works
|
406 |
+
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2)) > 0.5)
|
407 |
+
expect = ~lhs
|
408 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
409 |
+
tm.assert_frame_equal(expect, result)
|
410 |
+
|
411 |
+
# object raises
|
412 |
+
lhs = DataFrame(
|
413 |
+
{"b": ["a", 1, 2.0], "c": np.random.default_rng(2).standard_normal(3) > 0.5}
|
414 |
+
)
|
415 |
+
if engine == "numexpr":
|
416 |
+
with pytest.raises(ValueError, match="unknown type object"):
|
417 |
+
pd.eval(expr, engine=engine, parser=parser)
|
418 |
+
else:
|
419 |
+
msg = "bad operand type for unary ~: 'str'"
|
420 |
+
with pytest.raises(TypeError, match=msg):
|
421 |
+
pd.eval(expr, engine=engine, parser=parser)
|
422 |
+
|
423 |
+
def test_series_invert(self, engine, parser):
|
424 |
+
# ~ ####
|
425 |
+
expr = "~lhs"
|
426 |
+
|
427 |
+
# series
|
428 |
+
# float raises
|
429 |
+
lhs = Series(np.random.default_rng(2).standard_normal(5))
|
430 |
+
if engine == "numexpr":
|
431 |
+
msg = "couldn't find matching opcode for 'invert_dd'"
|
432 |
+
with pytest.raises(NotImplementedError, match=msg):
|
433 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
434 |
+
else:
|
435 |
+
msg = "ufunc 'invert' not supported for the input types"
|
436 |
+
with pytest.raises(TypeError, match=msg):
|
437 |
+
pd.eval(expr, engine=engine, parser=parser)
|
438 |
+
|
439 |
+
# int raises on numexpr
|
440 |
+
lhs = Series(np.random.default_rng(2).integers(5, size=5))
|
441 |
+
if engine == "numexpr":
|
442 |
+
msg = "couldn't find matching opcode for 'invert"
|
443 |
+
with pytest.raises(NotImplementedError, match=msg):
|
444 |
+
pd.eval(expr, engine=engine, parser=parser)
|
445 |
+
else:
|
446 |
+
expect = ~lhs
|
447 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
448 |
+
tm.assert_series_equal(expect, result)
|
449 |
+
|
450 |
+
# bool
|
451 |
+
lhs = Series(np.random.default_rng(2).standard_normal(5) > 0.5)
|
452 |
+
expect = ~lhs
|
453 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
454 |
+
tm.assert_series_equal(expect, result)
|
455 |
+
|
456 |
+
# float
|
457 |
+
# int
|
458 |
+
# bool
|
459 |
+
|
460 |
+
# object
|
461 |
+
lhs = Series(["a", 1, 2.0])
|
462 |
+
if engine == "numexpr":
|
463 |
+
with pytest.raises(ValueError, match="unknown type object"):
|
464 |
+
pd.eval(expr, engine=engine, parser=parser)
|
465 |
+
else:
|
466 |
+
msg = "bad operand type for unary ~: 'str'"
|
467 |
+
with pytest.raises(TypeError, match=msg):
|
468 |
+
pd.eval(expr, engine=engine, parser=parser)
|
469 |
+
|
470 |
+
def test_frame_negate(self, engine, parser):
|
471 |
+
expr = "-lhs"
|
472 |
+
|
473 |
+
# float
|
474 |
+
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2)))
|
475 |
+
expect = -lhs
|
476 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
477 |
+
tm.assert_frame_equal(expect, result)
|
478 |
+
|
479 |
+
# int
|
480 |
+
lhs = DataFrame(np.random.default_rng(2).integers(5, size=(5, 2)))
|
481 |
+
expect = -lhs
|
482 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
483 |
+
tm.assert_frame_equal(expect, result)
|
484 |
+
|
485 |
+
# bool doesn't work with numexpr but works elsewhere
|
486 |
+
lhs = DataFrame(np.random.default_rng(2).standard_normal((5, 2)) > 0.5)
|
487 |
+
if engine == "numexpr":
|
488 |
+
msg = "couldn't find matching opcode for 'neg_bb'"
|
489 |
+
with pytest.raises(NotImplementedError, match=msg):
|
490 |
+
pd.eval(expr, engine=engine, parser=parser)
|
491 |
+
else:
|
492 |
+
expect = -lhs
|
493 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
494 |
+
tm.assert_frame_equal(expect, result)
|
495 |
+
|
496 |
+
def test_series_negate(self, engine, parser):
|
497 |
+
expr = "-lhs"
|
498 |
+
|
499 |
+
# float
|
500 |
+
lhs = Series(np.random.default_rng(2).standard_normal(5))
|
501 |
+
expect = -lhs
|
502 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
503 |
+
tm.assert_series_equal(expect, result)
|
504 |
+
|
505 |
+
# int
|
506 |
+
lhs = Series(np.random.default_rng(2).integers(5, size=5))
|
507 |
+
expect = -lhs
|
508 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
509 |
+
tm.assert_series_equal(expect, result)
|
510 |
+
|
511 |
+
# bool doesn't work with numexpr but works elsewhere
|
512 |
+
lhs = Series(np.random.default_rng(2).standard_normal(5) > 0.5)
|
513 |
+
if engine == "numexpr":
|
514 |
+
msg = "couldn't find matching opcode for 'neg_bb'"
|
515 |
+
with pytest.raises(NotImplementedError, match=msg):
|
516 |
+
pd.eval(expr, engine=engine, parser=parser)
|
517 |
+
else:
|
518 |
+
expect = -lhs
|
519 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
520 |
+
tm.assert_series_equal(expect, result)
|
521 |
+
|
522 |
+
@pytest.mark.parametrize(
|
523 |
+
"lhs",
|
524 |
+
[
|
525 |
+
# Float
|
526 |
+
DataFrame(np.random.default_rng(2).standard_normal((5, 2))),
|
527 |
+
# Int
|
528 |
+
DataFrame(np.random.default_rng(2).integers(5, size=(5, 2))),
|
529 |
+
# bool doesn't work with numexpr but works elsewhere
|
530 |
+
DataFrame(np.random.default_rng(2).standard_normal((5, 2)) > 0.5),
|
531 |
+
],
|
532 |
+
)
|
533 |
+
def test_frame_pos(self, lhs, engine, parser):
|
534 |
+
expr = "+lhs"
|
535 |
+
expect = lhs
|
536 |
+
|
537 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
538 |
+
tm.assert_frame_equal(expect, result)
|
539 |
+
|
540 |
+
@pytest.mark.parametrize(
|
541 |
+
"lhs",
|
542 |
+
[
|
543 |
+
# Float
|
544 |
+
Series(np.random.default_rng(2).standard_normal(5)),
|
545 |
+
# Int
|
546 |
+
Series(np.random.default_rng(2).integers(5, size=5)),
|
547 |
+
# bool doesn't work with numexpr but works elsewhere
|
548 |
+
Series(np.random.default_rng(2).standard_normal(5) > 0.5),
|
549 |
+
],
|
550 |
+
)
|
551 |
+
def test_series_pos(self, lhs, engine, parser):
|
552 |
+
expr = "+lhs"
|
553 |
+
expect = lhs
|
554 |
+
|
555 |
+
result = pd.eval(expr, engine=engine, parser=parser)
|
556 |
+
tm.assert_series_equal(expect, result)
|
557 |
+
|
558 |
+
def test_scalar_unary(self, engine, parser):
|
559 |
+
msg = "bad operand type for unary ~: 'float'"
|
560 |
+
warn = None
|
561 |
+
if PY312 and not (engine == "numexpr" and parser == "pandas"):
|
562 |
+
warn = DeprecationWarning
|
563 |
+
with pytest.raises(TypeError, match=msg):
|
564 |
+
pd.eval("~1.0", engine=engine, parser=parser)
|
565 |
+
|
566 |
+
assert pd.eval("-1.0", parser=parser, engine=engine) == -1.0
|
567 |
+
assert pd.eval("+1.0", parser=parser, engine=engine) == +1.0
|
568 |
+
assert pd.eval("~1", parser=parser, engine=engine) == ~1
|
569 |
+
assert pd.eval("-1", parser=parser, engine=engine) == -1
|
570 |
+
assert pd.eval("+1", parser=parser, engine=engine) == +1
|
571 |
+
with tm.assert_produces_warning(
|
572 |
+
warn, match="Bitwise inversion", check_stacklevel=False
|
573 |
+
):
|
574 |
+
assert pd.eval("~True", parser=parser, engine=engine) == ~True
|
575 |
+
with tm.assert_produces_warning(
|
576 |
+
warn, match="Bitwise inversion", check_stacklevel=False
|
577 |
+
):
|
578 |
+
assert pd.eval("~False", parser=parser, engine=engine) == ~False
|
579 |
+
assert pd.eval("-True", parser=parser, engine=engine) == -True
|
580 |
+
assert pd.eval("-False", parser=parser, engine=engine) == -False
|
581 |
+
assert pd.eval("+True", parser=parser, engine=engine) == +True
|
582 |
+
assert pd.eval("+False", parser=parser, engine=engine) == +False
|
583 |
+
|
584 |
+
def test_unary_in_array(self):
|
585 |
+
# GH 11235
|
586 |
+
# TODO: 2022-01-29: result return list with numexpr 2.7.3 in CI
|
587 |
+
# but cannot reproduce locally
|
588 |
+
result = np.array(
|
589 |
+
pd.eval("[-True, True, +True, -False, False, +False, -37, 37, ~37, +37]"),
|
590 |
+
dtype=np.object_,
|
591 |
+
)
|
592 |
+
expected = np.array(
|
593 |
+
[
|
594 |
+
-True,
|
595 |
+
True,
|
596 |
+
+True,
|
597 |
+
-False,
|
598 |
+
False,
|
599 |
+
+False,
|
600 |
+
-37,
|
601 |
+
37,
|
602 |
+
~37,
|
603 |
+
+37,
|
604 |
+
],
|
605 |
+
dtype=np.object_,
|
606 |
+
)
|
607 |
+
tm.assert_numpy_array_equal(result, expected)
|
608 |
+
|
609 |
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
610 |
+
@pytest.mark.parametrize("expr", ["x < -0.1", "-5 > x"])
|
611 |
+
def test_float_comparison_bin_op(self, dtype, expr):
|
612 |
+
# GH 16363
|
613 |
+
df = DataFrame({"x": np.array([0], dtype=dtype)})
|
614 |
+
res = df.eval(expr)
|
615 |
+
assert res.values == np.array([False])
|
616 |
+
|
617 |
+
def test_unary_in_function(self):
|
618 |
+
# GH 46471
|
619 |
+
df = DataFrame({"x": [0, 1, np.nan]})
|
620 |
+
|
621 |
+
result = df.eval("x.fillna(-1)")
|
622 |
+
expected = df.x.fillna(-1)
|
623 |
+
# column name becomes None if using numexpr
|
624 |
+
# only check names when the engine is not numexpr
|
625 |
+
tm.assert_series_equal(result, expected, check_names=not USE_NUMEXPR)
|
626 |
+
|
627 |
+
result = df.eval("x.shift(1, fill_value=-1)")
|
628 |
+
expected = df.x.shift(1, fill_value=-1)
|
629 |
+
tm.assert_series_equal(result, expected, check_names=not USE_NUMEXPR)
|
630 |
+
|
631 |
+
@pytest.mark.parametrize(
|
632 |
+
"ex",
|
633 |
+
(
|
634 |
+
"1 or 2",
|
635 |
+
"1 and 2",
|
636 |
+
"a and b",
|
637 |
+
"a or b",
|
638 |
+
"1 or 2 and (3 + 2) > 3",
|
639 |
+
"2 * x > 2 or 1 and 2",
|
640 |
+
"2 * df > 3 and 1 or a",
|
641 |
+
),
|
642 |
+
)
|
643 |
+
def test_disallow_scalar_bool_ops(self, ex, engine, parser):
|
644 |
+
x, a, b = np.random.default_rng(2).standard_normal(3), 1, 2 # noqa: F841
|
645 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((3, 2))) # noqa: F841
|
646 |
+
|
647 |
+
msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not"
|
648 |
+
with pytest.raises(NotImplementedError, match=msg):
|
649 |
+
pd.eval(ex, engine=engine, parser=parser)
|
650 |
+
|
651 |
+
def test_identical(self, engine, parser):
|
652 |
+
# see gh-10546
|
653 |
+
x = 1
|
654 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
655 |
+
assert result == 1
|
656 |
+
assert is_scalar(result)
|
657 |
+
|
658 |
+
x = 1.5
|
659 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
660 |
+
assert result == 1.5
|
661 |
+
assert is_scalar(result)
|
662 |
+
|
663 |
+
x = False
|
664 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
665 |
+
assert not result
|
666 |
+
assert is_bool(result)
|
667 |
+
assert is_scalar(result)
|
668 |
+
|
669 |
+
x = np.array([1])
|
670 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
671 |
+
tm.assert_numpy_array_equal(result, np.array([1]))
|
672 |
+
assert result.shape == (1,)
|
673 |
+
|
674 |
+
x = np.array([1.5])
|
675 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
676 |
+
tm.assert_numpy_array_equal(result, np.array([1.5]))
|
677 |
+
assert result.shape == (1,)
|
678 |
+
|
679 |
+
x = np.array([False]) # noqa: F841
|
680 |
+
result = pd.eval("x", engine=engine, parser=parser)
|
681 |
+
tm.assert_numpy_array_equal(result, np.array([False]))
|
682 |
+
assert result.shape == (1,)
|
683 |
+
|
684 |
+
def test_line_continuation(self, engine, parser):
|
685 |
+
# GH 11149
|
686 |
+
exp = """1 + 2 * \
|
687 |
+
5 - 1 + 2 """
|
688 |
+
result = pd.eval(exp, engine=engine, parser=parser)
|
689 |
+
assert result == 12
|
690 |
+
|
691 |
+
def test_float_truncation(self, engine, parser):
|
692 |
+
# GH 14241
|
693 |
+
exp = "1000000000.006"
|
694 |
+
result = pd.eval(exp, engine=engine, parser=parser)
|
695 |
+
expected = np.float64(exp)
|
696 |
+
assert result == expected
|
697 |
+
|
698 |
+
df = DataFrame({"A": [1000000000.0009, 1000000000.0011, 1000000000.0015]})
|
699 |
+
cutoff = 1000000000.0006
|
700 |
+
result = df.query(f"A < {cutoff:.4f}")
|
701 |
+
assert result.empty
|
702 |
+
|
703 |
+
cutoff = 1000000000.0010
|
704 |
+
result = df.query(f"A > {cutoff:.4f}")
|
705 |
+
expected = df.loc[[1, 2], :]
|
706 |
+
tm.assert_frame_equal(expected, result)
|
707 |
+
|
708 |
+
exact = 1000000000.0011
|
709 |
+
result = df.query(f"A == {exact:.4f}")
|
710 |
+
expected = df.loc[[1], :]
|
711 |
+
tm.assert_frame_equal(expected, result)
|
712 |
+
|
713 |
+
def test_disallow_python_keywords(self):
|
714 |
+
# GH 18221
|
715 |
+
df = DataFrame([[0, 0, 0]], columns=["foo", "bar", "class"])
|
716 |
+
msg = "Python keyword not valid identifier in numexpr query"
|
717 |
+
with pytest.raises(SyntaxError, match=msg):
|
718 |
+
df.query("class == 0")
|
719 |
+
|
720 |
+
df = DataFrame()
|
721 |
+
df.index.name = "lambda"
|
722 |
+
with pytest.raises(SyntaxError, match=msg):
|
723 |
+
df.query("lambda == 0")
|
724 |
+
|
725 |
+
def test_true_false_logic(self):
|
726 |
+
# GH 25823
|
727 |
+
# This behavior is deprecated in Python 3.12
|
728 |
+
with tm.maybe_produces_warning(
|
729 |
+
DeprecationWarning, PY312, check_stacklevel=False
|
730 |
+
):
|
731 |
+
assert pd.eval("not True") == -2
|
732 |
+
assert pd.eval("not False") == -1
|
733 |
+
assert pd.eval("True and not True") == 0
|
734 |
+
|
735 |
+
def test_and_logic_string_match(self):
|
736 |
+
# GH 25823
|
737 |
+
event = Series({"a": "hello"})
|
738 |
+
assert pd.eval(f"{event.str.match('hello').a}")
|
739 |
+
assert pd.eval(f"{event.str.match('hello').a and event.str.match('hello').a}")
|
740 |
+
|
741 |
+
|
742 |
+
# -------------------------------------
|
743 |
+
# gh-12388: Typecasting rules consistency with python
|
744 |
+
|
745 |
+
|
746 |
+
class TestTypeCasting:
|
747 |
+
@pytest.mark.parametrize("op", ["+", "-", "*", "**", "/"])
|
748 |
+
# maybe someday... numexpr has too many upcasting rules now
|
749 |
+
# chain(*(np.core.sctypes[x] for x in ['uint', 'int', 'float']))
|
750 |
+
@pytest.mark.parametrize("dt", [np.float32, np.float64])
|
751 |
+
@pytest.mark.parametrize("left_right", [("df", "3"), ("3", "df")])
|
752 |
+
def test_binop_typecasting(self, engine, parser, op, dt, left_right):
|
753 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)), dtype=dt)
|
754 |
+
left, right = left_right
|
755 |
+
s = f"{left} {op} {right}"
|
756 |
+
res = pd.eval(s, engine=engine, parser=parser)
|
757 |
+
assert df.values.dtype == dt
|
758 |
+
assert res.values.dtype == dt
|
759 |
+
tm.assert_frame_equal(res, eval(s))
|
760 |
+
|
761 |
+
|
762 |
+
# -------------------------------------
|
763 |
+
# Basic and complex alignment
|
764 |
+
|
765 |
+
|
766 |
+
def should_warn(*args):
|
767 |
+
not_mono = not any(map(operator.attrgetter("is_monotonic_increasing"), args))
|
768 |
+
only_one_dt = reduce(
|
769 |
+
operator.xor, (issubclass(x.dtype.type, np.datetime64) for x in args)
|
770 |
+
)
|
771 |
+
return not_mono and only_one_dt
|
772 |
+
|
773 |
+
|
774 |
+
class TestAlignment:
|
775 |
+
index_types = ["i", "s", "dt"]
|
776 |
+
lhs_index_types = index_types + ["s"] # 'p'
|
777 |
+
|
778 |
+
def test_align_nested_unary_op(self, engine, parser):
|
779 |
+
s = "df * ~2"
|
780 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
781 |
+
res = pd.eval(s, engine=engine, parser=parser)
|
782 |
+
tm.assert_frame_equal(res, df * ~2)
|
783 |
+
|
784 |
+
@pytest.mark.filterwarnings("always::RuntimeWarning")
|
785 |
+
@pytest.mark.parametrize("lr_idx_type", lhs_index_types)
|
786 |
+
@pytest.mark.parametrize("rr_idx_type", index_types)
|
787 |
+
@pytest.mark.parametrize("c_idx_type", index_types)
|
788 |
+
def test_basic_frame_alignment(
|
789 |
+
self, engine, parser, lr_idx_type, rr_idx_type, c_idx_type, idx_func_dict
|
790 |
+
):
|
791 |
+
df = DataFrame(
|
792 |
+
np.random.default_rng(2).standard_normal((10, 10)),
|
793 |
+
index=idx_func_dict[lr_idx_type](10),
|
794 |
+
columns=idx_func_dict[c_idx_type](10),
|
795 |
+
)
|
796 |
+
df2 = DataFrame(
|
797 |
+
np.random.default_rng(2).standard_normal((20, 10)),
|
798 |
+
index=idx_func_dict[rr_idx_type](20),
|
799 |
+
columns=idx_func_dict[c_idx_type](10),
|
800 |
+
)
|
801 |
+
# only warns if not monotonic and not sortable
|
802 |
+
if should_warn(df.index, df2.index):
|
803 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
804 |
+
res = pd.eval("df + df2", engine=engine, parser=parser)
|
805 |
+
else:
|
806 |
+
res = pd.eval("df + df2", engine=engine, parser=parser)
|
807 |
+
tm.assert_frame_equal(res, df + df2)
|
808 |
+
|
809 |
+
@pytest.mark.parametrize("r_idx_type", lhs_index_types)
|
810 |
+
@pytest.mark.parametrize("c_idx_type", lhs_index_types)
|
811 |
+
def test_frame_comparison(
|
812 |
+
self, engine, parser, r_idx_type, c_idx_type, idx_func_dict
|
813 |
+
):
|
814 |
+
df = DataFrame(
|
815 |
+
np.random.default_rng(2).standard_normal((10, 10)),
|
816 |
+
index=idx_func_dict[r_idx_type](10),
|
817 |
+
columns=idx_func_dict[c_idx_type](10),
|
818 |
+
)
|
819 |
+
res = pd.eval("df < 2", engine=engine, parser=parser)
|
820 |
+
tm.assert_frame_equal(res, df < 2)
|
821 |
+
|
822 |
+
df3 = DataFrame(
|
823 |
+
np.random.default_rng(2).standard_normal(df.shape),
|
824 |
+
index=df.index,
|
825 |
+
columns=df.columns,
|
826 |
+
)
|
827 |
+
res = pd.eval("df < df3", engine=engine, parser=parser)
|
828 |
+
tm.assert_frame_equal(res, df < df3)
|
829 |
+
|
830 |
+
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
|
831 |
+
@pytest.mark.parametrize("r1", lhs_index_types)
|
832 |
+
@pytest.mark.parametrize("c1", index_types)
|
833 |
+
@pytest.mark.parametrize("r2", index_types)
|
834 |
+
@pytest.mark.parametrize("c2", index_types)
|
835 |
+
def test_medium_complex_frame_alignment(
|
836 |
+
self, engine, parser, r1, c1, r2, c2, idx_func_dict
|
837 |
+
):
|
838 |
+
df = DataFrame(
|
839 |
+
np.random.default_rng(2).standard_normal((3, 2)),
|
840 |
+
index=idx_func_dict[r1](3),
|
841 |
+
columns=idx_func_dict[c1](2),
|
842 |
+
)
|
843 |
+
df2 = DataFrame(
|
844 |
+
np.random.default_rng(2).standard_normal((4, 2)),
|
845 |
+
index=idx_func_dict[r2](4),
|
846 |
+
columns=idx_func_dict[c2](2),
|
847 |
+
)
|
848 |
+
df3 = DataFrame(
|
849 |
+
np.random.default_rng(2).standard_normal((5, 2)),
|
850 |
+
index=idx_func_dict[r2](5),
|
851 |
+
columns=idx_func_dict[c2](2),
|
852 |
+
)
|
853 |
+
if should_warn(df.index, df2.index, df3.index):
|
854 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
855 |
+
res = pd.eval("df + df2 + df3", engine=engine, parser=parser)
|
856 |
+
else:
|
857 |
+
res = pd.eval("df + df2 + df3", engine=engine, parser=parser)
|
858 |
+
tm.assert_frame_equal(res, df + df2 + df3)
|
859 |
+
|
860 |
+
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
|
861 |
+
@pytest.mark.parametrize("index_name", ["index", "columns"])
|
862 |
+
@pytest.mark.parametrize("c_idx_type", index_types)
|
863 |
+
@pytest.mark.parametrize("r_idx_type", lhs_index_types)
|
864 |
+
def test_basic_frame_series_alignment(
|
865 |
+
self, engine, parser, index_name, r_idx_type, c_idx_type, idx_func_dict
|
866 |
+
):
|
867 |
+
df = DataFrame(
|
868 |
+
np.random.default_rng(2).standard_normal((10, 10)),
|
869 |
+
index=idx_func_dict[r_idx_type](10),
|
870 |
+
columns=idx_func_dict[c_idx_type](10),
|
871 |
+
)
|
872 |
+
index = getattr(df, index_name)
|
873 |
+
s = Series(np.random.default_rng(2).standard_normal(5), index[:5])
|
874 |
+
|
875 |
+
if should_warn(df.index, s.index):
|
876 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
877 |
+
res = pd.eval("df + s", engine=engine, parser=parser)
|
878 |
+
else:
|
879 |
+
res = pd.eval("df + s", engine=engine, parser=parser)
|
880 |
+
|
881 |
+
if r_idx_type == "dt" or c_idx_type == "dt":
|
882 |
+
expected = df.add(s) if engine == "numexpr" else df + s
|
883 |
+
else:
|
884 |
+
expected = df + s
|
885 |
+
tm.assert_frame_equal(res, expected)
|
886 |
+
|
887 |
+
@pytest.mark.parametrize("index_name", ["index", "columns"])
|
888 |
+
@pytest.mark.parametrize(
|
889 |
+
"r_idx_type, c_idx_type",
|
890 |
+
list(product(["i", "s"], ["i", "s"])) + [("dt", "dt")],
|
891 |
+
)
|
892 |
+
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
|
893 |
+
def test_basic_series_frame_alignment(
|
894 |
+
self, request, engine, parser, index_name, r_idx_type, c_idx_type, idx_func_dict
|
895 |
+
):
|
896 |
+
if (
|
897 |
+
engine == "numexpr"
|
898 |
+
and parser in ("pandas", "python")
|
899 |
+
and index_name == "index"
|
900 |
+
and r_idx_type == "i"
|
901 |
+
and c_idx_type == "s"
|
902 |
+
):
|
903 |
+
reason = (
|
904 |
+
f"Flaky column ordering when engine={engine}, "
|
905 |
+
f"parser={parser}, index_name={index_name}, "
|
906 |
+
f"r_idx_type={r_idx_type}, c_idx_type={c_idx_type}"
|
907 |
+
)
|
908 |
+
request.applymarker(pytest.mark.xfail(reason=reason, strict=False))
|
909 |
+
df = DataFrame(
|
910 |
+
np.random.default_rng(2).standard_normal((10, 7)),
|
911 |
+
index=idx_func_dict[r_idx_type](10),
|
912 |
+
columns=idx_func_dict[c_idx_type](7),
|
913 |
+
)
|
914 |
+
index = getattr(df, index_name)
|
915 |
+
s = Series(np.random.default_rng(2).standard_normal(5), index[:5])
|
916 |
+
if should_warn(s.index, df.index):
|
917 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
918 |
+
res = pd.eval("s + df", engine=engine, parser=parser)
|
919 |
+
else:
|
920 |
+
res = pd.eval("s + df", engine=engine, parser=parser)
|
921 |
+
|
922 |
+
if r_idx_type == "dt" or c_idx_type == "dt":
|
923 |
+
expected = df.add(s) if engine == "numexpr" else s + df
|
924 |
+
else:
|
925 |
+
expected = s + df
|
926 |
+
tm.assert_frame_equal(res, expected)
|
927 |
+
|
928 |
+
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
|
929 |
+
@pytest.mark.parametrize("c_idx_type", index_types)
|
930 |
+
@pytest.mark.parametrize("r_idx_type", lhs_index_types)
|
931 |
+
@pytest.mark.parametrize("index_name", ["index", "columns"])
|
932 |
+
@pytest.mark.parametrize("op", ["+", "*"])
|
933 |
+
def test_series_frame_commutativity(
|
934 |
+
self, engine, parser, index_name, op, r_idx_type, c_idx_type, idx_func_dict
|
935 |
+
):
|
936 |
+
df = DataFrame(
|
937 |
+
np.random.default_rng(2).standard_normal((10, 10)),
|
938 |
+
index=idx_func_dict[r_idx_type](10),
|
939 |
+
columns=idx_func_dict[c_idx_type](10),
|
940 |
+
)
|
941 |
+
index = getattr(df, index_name)
|
942 |
+
s = Series(np.random.default_rng(2).standard_normal(5), index[:5])
|
943 |
+
|
944 |
+
lhs = f"s {op} df"
|
945 |
+
rhs = f"df {op} s"
|
946 |
+
if should_warn(df.index, s.index):
|
947 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
948 |
+
a = pd.eval(lhs, engine=engine, parser=parser)
|
949 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
950 |
+
b = pd.eval(rhs, engine=engine, parser=parser)
|
951 |
+
else:
|
952 |
+
a = pd.eval(lhs, engine=engine, parser=parser)
|
953 |
+
b = pd.eval(rhs, engine=engine, parser=parser)
|
954 |
+
|
955 |
+
if r_idx_type != "dt" and c_idx_type != "dt":
|
956 |
+
if engine == "numexpr":
|
957 |
+
tm.assert_frame_equal(a, b)
|
958 |
+
|
959 |
+
@pytest.mark.filterwarnings("always::RuntimeWarning")
|
960 |
+
@pytest.mark.parametrize("r1", lhs_index_types)
|
961 |
+
@pytest.mark.parametrize("c1", index_types)
|
962 |
+
@pytest.mark.parametrize("r2", index_types)
|
963 |
+
@pytest.mark.parametrize("c2", index_types)
|
964 |
+
def test_complex_series_frame_alignment(
|
965 |
+
self, engine, parser, r1, c1, r2, c2, idx_func_dict
|
966 |
+
):
|
967 |
+
n = 3
|
968 |
+
m1 = 5
|
969 |
+
m2 = 2 * m1
|
970 |
+
df = DataFrame(
|
971 |
+
np.random.default_rng(2).standard_normal((m1, n)),
|
972 |
+
index=idx_func_dict[r1](m1),
|
973 |
+
columns=idx_func_dict[c1](n),
|
974 |
+
)
|
975 |
+
df2 = DataFrame(
|
976 |
+
np.random.default_rng(2).standard_normal((m2, n)),
|
977 |
+
index=idx_func_dict[r2](m2),
|
978 |
+
columns=idx_func_dict[c2](n),
|
979 |
+
)
|
980 |
+
index = df2.columns
|
981 |
+
ser = Series(np.random.default_rng(2).standard_normal(n), index[:n])
|
982 |
+
|
983 |
+
if r2 == "dt" or c2 == "dt":
|
984 |
+
if engine == "numexpr":
|
985 |
+
expected2 = df2.add(ser)
|
986 |
+
else:
|
987 |
+
expected2 = df2 + ser
|
988 |
+
else:
|
989 |
+
expected2 = df2 + ser
|
990 |
+
|
991 |
+
if r1 == "dt" or c1 == "dt":
|
992 |
+
if engine == "numexpr":
|
993 |
+
expected = expected2.add(df)
|
994 |
+
else:
|
995 |
+
expected = expected2 + df
|
996 |
+
else:
|
997 |
+
expected = expected2 + df
|
998 |
+
|
999 |
+
if should_warn(df2.index, ser.index, df.index):
|
1000 |
+
with tm.assert_produces_warning(RuntimeWarning):
|
1001 |
+
res = pd.eval("df2 + ser + df", engine=engine, parser=parser)
|
1002 |
+
else:
|
1003 |
+
res = pd.eval("df2 + ser + df", engine=engine, parser=parser)
|
1004 |
+
assert res.shape == expected.shape
|
1005 |
+
tm.assert_frame_equal(res, expected)
|
1006 |
+
|
1007 |
+
def test_performance_warning_for_poor_alignment(self, engine, parser):
|
1008 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((1000, 10)))
|
1009 |
+
s = Series(np.random.default_rng(2).standard_normal(10000))
|
1010 |
+
if engine == "numexpr":
|
1011 |
+
seen = PerformanceWarning
|
1012 |
+
else:
|
1013 |
+
seen = False
|
1014 |
+
|
1015 |
+
with tm.assert_produces_warning(seen):
|
1016 |
+
pd.eval("df + s", engine=engine, parser=parser)
|
1017 |
+
|
1018 |
+
s = Series(np.random.default_rng(2).standard_normal(1000))
|
1019 |
+
with tm.assert_produces_warning(False):
|
1020 |
+
pd.eval("df + s", engine=engine, parser=parser)
|
1021 |
+
|
1022 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 10000)))
|
1023 |
+
s = Series(np.random.default_rng(2).standard_normal(10000))
|
1024 |
+
with tm.assert_produces_warning(False):
|
1025 |
+
pd.eval("df + s", engine=engine, parser=parser)
|
1026 |
+
|
1027 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 10)))
|
1028 |
+
s = Series(np.random.default_rng(2).standard_normal(10000))
|
1029 |
+
|
1030 |
+
is_python_engine = engine == "python"
|
1031 |
+
|
1032 |
+
if not is_python_engine:
|
1033 |
+
wrn = PerformanceWarning
|
1034 |
+
else:
|
1035 |
+
wrn = False
|
1036 |
+
|
1037 |
+
with tm.assert_produces_warning(wrn) as w:
|
1038 |
+
pd.eval("df + s", engine=engine, parser=parser)
|
1039 |
+
|
1040 |
+
if not is_python_engine:
|
1041 |
+
assert len(w) == 1
|
1042 |
+
msg = str(w[0].message)
|
1043 |
+
logged = np.log10(s.size - df.shape[1])
|
1044 |
+
expected = (
|
1045 |
+
f"Alignment difference on axis 1 is larger "
|
1046 |
+
f"than an order of magnitude on term 'df', "
|
1047 |
+
f"by more than {logged:.4g}; performance may suffer."
|
1048 |
+
)
|
1049 |
+
assert msg == expected
|
1050 |
+
|
1051 |
+
|
1052 |
+
# ------------------------------------
|
1053 |
+
# Slightly more complex ops
|
1054 |
+
|
1055 |
+
|
1056 |
+
class TestOperations:
|
1057 |
+
def eval(self, *args, **kwargs):
|
1058 |
+
kwargs["level"] = kwargs.pop("level", 0) + 1
|
1059 |
+
return pd.eval(*args, **kwargs)
|
1060 |
+
|
1061 |
+
def test_simple_arith_ops(self, engine, parser):
|
1062 |
+
exclude_arith = []
|
1063 |
+
if parser == "python":
|
1064 |
+
exclude_arith = ["in", "not in"]
|
1065 |
+
|
1066 |
+
arith_ops = [
|
1067 |
+
op
|
1068 |
+
for op in expr.ARITH_OPS_SYMS + expr.CMP_OPS_SYMS
|
1069 |
+
if op not in exclude_arith
|
1070 |
+
]
|
1071 |
+
|
1072 |
+
ops = (op for op in arith_ops if op != "//")
|
1073 |
+
|
1074 |
+
for op in ops:
|
1075 |
+
ex = f"1 {op} 1"
|
1076 |
+
ex2 = f"x {op} 1"
|
1077 |
+
ex3 = f"1 {op} (x + 1)"
|
1078 |
+
|
1079 |
+
if op in ("in", "not in"):
|
1080 |
+
msg = "argument of type 'int' is not iterable"
|
1081 |
+
with pytest.raises(TypeError, match=msg):
|
1082 |
+
pd.eval(ex, engine=engine, parser=parser)
|
1083 |
+
else:
|
1084 |
+
expec = _eval_single_bin(1, op, 1, engine)
|
1085 |
+
x = self.eval(ex, engine=engine, parser=parser)
|
1086 |
+
assert x == expec
|
1087 |
+
|
1088 |
+
expec = _eval_single_bin(x, op, 1, engine)
|
1089 |
+
y = self.eval(ex2, local_dict={"x": x}, engine=engine, parser=parser)
|
1090 |
+
assert y == expec
|
1091 |
+
|
1092 |
+
expec = _eval_single_bin(1, op, x + 1, engine)
|
1093 |
+
y = self.eval(ex3, local_dict={"x": x}, engine=engine, parser=parser)
|
1094 |
+
assert y == expec
|
1095 |
+
|
1096 |
+
@pytest.mark.parametrize("rhs", [True, False])
|
1097 |
+
@pytest.mark.parametrize("lhs", [True, False])
|
1098 |
+
@pytest.mark.parametrize("op", expr.BOOL_OPS_SYMS)
|
1099 |
+
def test_simple_bool_ops(self, rhs, lhs, op):
|
1100 |
+
ex = f"{lhs} {op} {rhs}"
|
1101 |
+
|
1102 |
+
if parser == "python" and op in ["and", "or"]:
|
1103 |
+
msg = "'BoolOp' nodes are not implemented"
|
1104 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1105 |
+
self.eval(ex)
|
1106 |
+
return
|
1107 |
+
|
1108 |
+
res = self.eval(ex)
|
1109 |
+
exp = eval(ex)
|
1110 |
+
assert res == exp
|
1111 |
+
|
1112 |
+
@pytest.mark.parametrize("rhs", [True, False])
|
1113 |
+
@pytest.mark.parametrize("lhs", [True, False])
|
1114 |
+
@pytest.mark.parametrize("op", expr.BOOL_OPS_SYMS)
|
1115 |
+
def test_bool_ops_with_constants(self, rhs, lhs, op):
|
1116 |
+
ex = f"{lhs} {op} {rhs}"
|
1117 |
+
|
1118 |
+
if parser == "python" and op in ["and", "or"]:
|
1119 |
+
msg = "'BoolOp' nodes are not implemented"
|
1120 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1121 |
+
self.eval(ex)
|
1122 |
+
return
|
1123 |
+
|
1124 |
+
res = self.eval(ex)
|
1125 |
+
exp = eval(ex)
|
1126 |
+
assert res == exp
|
1127 |
+
|
1128 |
+
def test_4d_ndarray_fails(self):
|
1129 |
+
x = np.random.default_rng(2).standard_normal((3, 4, 5, 6))
|
1130 |
+
y = Series(np.random.default_rng(2).standard_normal(10))
|
1131 |
+
msg = "N-dimensional objects, where N > 2, are not supported with eval"
|
1132 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1133 |
+
self.eval("x + y", local_dict={"x": x, "y": y})
|
1134 |
+
|
1135 |
+
def test_constant(self):
|
1136 |
+
x = self.eval("1")
|
1137 |
+
assert x == 1
|
1138 |
+
|
1139 |
+
def test_single_variable(self):
|
1140 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
|
1141 |
+
df2 = self.eval("df", local_dict={"df": df})
|
1142 |
+
tm.assert_frame_equal(df, df2)
|
1143 |
+
|
1144 |
+
def test_failing_subscript_with_name_error(self):
|
1145 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) # noqa: F841
|
1146 |
+
with pytest.raises(NameError, match="name 'x' is not defined"):
|
1147 |
+
self.eval("df[x > 2] > 2")
|
1148 |
+
|
1149 |
+
def test_lhs_expression_subscript(self):
|
1150 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
1151 |
+
result = self.eval("(df + 1)[df > 2]", local_dict={"df": df})
|
1152 |
+
expected = (df + 1)[df > 2]
|
1153 |
+
tm.assert_frame_equal(result, expected)
|
1154 |
+
|
1155 |
+
def test_attr_expression(self):
|
1156 |
+
df = DataFrame(
|
1157 |
+
np.random.default_rng(2).standard_normal((5, 3)), columns=list("abc")
|
1158 |
+
)
|
1159 |
+
expr1 = "df.a < df.b"
|
1160 |
+
expec1 = df.a < df.b
|
1161 |
+
expr2 = "df.a + df.b + df.c"
|
1162 |
+
expec2 = df.a + df.b + df.c
|
1163 |
+
expr3 = "df.a + df.b + df.c[df.b < 0]"
|
1164 |
+
expec3 = df.a + df.b + df.c[df.b < 0]
|
1165 |
+
exprs = expr1, expr2, expr3
|
1166 |
+
expecs = expec1, expec2, expec3
|
1167 |
+
for e, expec in zip(exprs, expecs):
|
1168 |
+
tm.assert_series_equal(expec, self.eval(e, local_dict={"df": df}))
|
1169 |
+
|
1170 |
+
def test_assignment_fails(self):
|
1171 |
+
df = DataFrame(
|
1172 |
+
np.random.default_rng(2).standard_normal((5, 3)), columns=list("abc")
|
1173 |
+
)
|
1174 |
+
df2 = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
1175 |
+
expr1 = "df = df2"
|
1176 |
+
msg = "cannot assign without a target object"
|
1177 |
+
with pytest.raises(ValueError, match=msg):
|
1178 |
+
self.eval(expr1, local_dict={"df": df, "df2": df2})
|
1179 |
+
|
1180 |
+
def test_assignment_column_multiple_raise(self):
|
1181 |
+
df = DataFrame(
|
1182 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
1183 |
+
)
|
1184 |
+
# multiple assignees
|
1185 |
+
with pytest.raises(SyntaxError, match="invalid syntax"):
|
1186 |
+
df.eval("d c = a + b")
|
1187 |
+
|
1188 |
+
def test_assignment_column_invalid_assign(self):
|
1189 |
+
df = DataFrame(
|
1190 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
1191 |
+
)
|
1192 |
+
# invalid assignees
|
1193 |
+
msg = "left hand side of an assignment must be a single name"
|
1194 |
+
with pytest.raises(SyntaxError, match=msg):
|
1195 |
+
df.eval("d,c = a + b")
|
1196 |
+
|
1197 |
+
def test_assignment_column_invalid_assign_function_call(self):
|
1198 |
+
df = DataFrame(
|
1199 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
1200 |
+
)
|
1201 |
+
msg = "cannot assign to function call"
|
1202 |
+
with pytest.raises(SyntaxError, match=msg):
|
1203 |
+
df.eval('Timestamp("20131001") = a + b')
|
1204 |
+
|
1205 |
+
def test_assignment_single_assign_existing(self):
|
1206 |
+
df = DataFrame(
|
1207 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
1208 |
+
)
|
1209 |
+
# single assignment - existing variable
|
1210 |
+
expected = df.copy()
|
1211 |
+
expected["a"] = expected["a"] + expected["b"]
|
1212 |
+
df.eval("a = a + b", inplace=True)
|
1213 |
+
tm.assert_frame_equal(df, expected)
|
1214 |
+
|
1215 |
+
def test_assignment_single_assign_new(self):
|
1216 |
+
df = DataFrame(
|
1217 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
1218 |
+
)
|
1219 |
+
# single assignment - new variable
|
1220 |
+
expected = df.copy()
|
1221 |
+
expected["c"] = expected["a"] + expected["b"]
|
1222 |
+
df.eval("c = a + b", inplace=True)
|
1223 |
+
tm.assert_frame_equal(df, expected)
|
1224 |
+
|
1225 |
+
def test_assignment_single_assign_local_overlap(self):
|
1226 |
+
df = DataFrame(
|
1227 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
1228 |
+
)
|
1229 |
+
df = df.copy()
|
1230 |
+
a = 1 # noqa: F841
|
1231 |
+
df.eval("a = 1 + b", inplace=True)
|
1232 |
+
|
1233 |
+
expected = df.copy()
|
1234 |
+
expected["a"] = 1 + expected["b"]
|
1235 |
+
tm.assert_frame_equal(df, expected)
|
1236 |
+
|
1237 |
+
def test_assignment_single_assign_name(self):
|
1238 |
+
df = DataFrame(
|
1239 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
a = 1 # noqa: F841
|
1243 |
+
old_a = df.a.copy()
|
1244 |
+
df.eval("a = a + b", inplace=True)
|
1245 |
+
result = old_a + df.b
|
1246 |
+
tm.assert_series_equal(result, df.a, check_names=False)
|
1247 |
+
assert result.name is None
|
1248 |
+
|
1249 |
+
def test_assignment_multiple_raises(self):
|
1250 |
+
df = DataFrame(
|
1251 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
1252 |
+
)
|
1253 |
+
# multiple assignment
|
1254 |
+
df.eval("c = a + b", inplace=True)
|
1255 |
+
msg = "can only assign a single expression"
|
1256 |
+
with pytest.raises(SyntaxError, match=msg):
|
1257 |
+
df.eval("c = a = b")
|
1258 |
+
|
1259 |
+
def test_assignment_explicit(self):
|
1260 |
+
df = DataFrame(
|
1261 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
1262 |
+
)
|
1263 |
+
# explicit targets
|
1264 |
+
self.eval("c = df.a + df.b", local_dict={"df": df}, target=df, inplace=True)
|
1265 |
+
expected = df.copy()
|
1266 |
+
expected["c"] = expected["a"] + expected["b"]
|
1267 |
+
tm.assert_frame_equal(df, expected)
|
1268 |
+
|
1269 |
+
def test_column_in(self):
|
1270 |
+
# GH 11235
|
1271 |
+
df = DataFrame({"a": [11], "b": [-32]})
|
1272 |
+
result = df.eval("a in [11, -32]")
|
1273 |
+
expected = Series([True])
|
1274 |
+
# TODO: 2022-01-29: Name check failed with numexpr 2.7.3 in CI
|
1275 |
+
# but cannot reproduce locally
|
1276 |
+
tm.assert_series_equal(result, expected, check_names=False)
|
1277 |
+
|
1278 |
+
@pytest.mark.xfail(reason="Unknown: Omitted test_ in name prior.")
|
1279 |
+
def test_assignment_not_inplace(self):
|
1280 |
+
# see gh-9297
|
1281 |
+
df = DataFrame(
|
1282 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=list("ab")
|
1283 |
+
)
|
1284 |
+
|
1285 |
+
actual = df.eval("c = a + b", inplace=False)
|
1286 |
+
assert actual is not None
|
1287 |
+
|
1288 |
+
expected = df.copy()
|
1289 |
+
expected["c"] = expected["a"] + expected["b"]
|
1290 |
+
tm.assert_frame_equal(df, expected)
|
1291 |
+
|
1292 |
+
def test_multi_line_expression(self, warn_copy_on_write):
|
1293 |
+
# GH 11149
|
1294 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
1295 |
+
expected = df.copy()
|
1296 |
+
|
1297 |
+
expected["c"] = expected["a"] + expected["b"]
|
1298 |
+
expected["d"] = expected["c"] + expected["b"]
|
1299 |
+
answer = df.eval(
|
1300 |
+
"""
|
1301 |
+
c = a + b
|
1302 |
+
d = c + b""",
|
1303 |
+
inplace=True,
|
1304 |
+
)
|
1305 |
+
tm.assert_frame_equal(expected, df)
|
1306 |
+
assert answer is None
|
1307 |
+
|
1308 |
+
expected["a"] = expected["a"] - 1
|
1309 |
+
expected["e"] = expected["a"] + 2
|
1310 |
+
answer = df.eval(
|
1311 |
+
"""
|
1312 |
+
a = a - 1
|
1313 |
+
e = a + 2""",
|
1314 |
+
inplace=True,
|
1315 |
+
)
|
1316 |
+
tm.assert_frame_equal(expected, df)
|
1317 |
+
assert answer is None
|
1318 |
+
|
1319 |
+
# multi-line not valid if not all assignments
|
1320 |
+
msg = "Multi-line expressions are only valid if all expressions contain"
|
1321 |
+
with pytest.raises(ValueError, match=msg):
|
1322 |
+
df.eval(
|
1323 |
+
"""
|
1324 |
+
a = b + 2
|
1325 |
+
b - 2""",
|
1326 |
+
inplace=False,
|
1327 |
+
)
|
1328 |
+
|
1329 |
+
def test_multi_line_expression_not_inplace(self):
|
1330 |
+
# GH 11149
|
1331 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
1332 |
+
expected = df.copy()
|
1333 |
+
|
1334 |
+
expected["c"] = expected["a"] + expected["b"]
|
1335 |
+
expected["d"] = expected["c"] + expected["b"]
|
1336 |
+
df = df.eval(
|
1337 |
+
"""
|
1338 |
+
c = a + b
|
1339 |
+
d = c + b""",
|
1340 |
+
inplace=False,
|
1341 |
+
)
|
1342 |
+
tm.assert_frame_equal(expected, df)
|
1343 |
+
|
1344 |
+
expected["a"] = expected["a"] - 1
|
1345 |
+
expected["e"] = expected["a"] + 2
|
1346 |
+
df = df.eval(
|
1347 |
+
"""
|
1348 |
+
a = a - 1
|
1349 |
+
e = a + 2""",
|
1350 |
+
inplace=False,
|
1351 |
+
)
|
1352 |
+
tm.assert_frame_equal(expected, df)
|
1353 |
+
|
1354 |
+
def test_multi_line_expression_local_variable(self):
|
1355 |
+
# GH 15342
|
1356 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
1357 |
+
expected = df.copy()
|
1358 |
+
|
1359 |
+
local_var = 7
|
1360 |
+
expected["c"] = expected["a"] * local_var
|
1361 |
+
expected["d"] = expected["c"] + local_var
|
1362 |
+
answer = df.eval(
|
1363 |
+
"""
|
1364 |
+
c = a * @local_var
|
1365 |
+
d = c + @local_var
|
1366 |
+
""",
|
1367 |
+
inplace=True,
|
1368 |
+
)
|
1369 |
+
tm.assert_frame_equal(expected, df)
|
1370 |
+
assert answer is None
|
1371 |
+
|
1372 |
+
def test_multi_line_expression_callable_local_variable(self):
|
1373 |
+
# 26426
|
1374 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
1375 |
+
|
1376 |
+
def local_func(a, b):
|
1377 |
+
return b
|
1378 |
+
|
1379 |
+
expected = df.copy()
|
1380 |
+
expected["c"] = expected["a"] * local_func(1, 7)
|
1381 |
+
expected["d"] = expected["c"] + local_func(1, 7)
|
1382 |
+
answer = df.eval(
|
1383 |
+
"""
|
1384 |
+
c = a * @local_func(1, 7)
|
1385 |
+
d = c + @local_func(1, 7)
|
1386 |
+
""",
|
1387 |
+
inplace=True,
|
1388 |
+
)
|
1389 |
+
tm.assert_frame_equal(expected, df)
|
1390 |
+
assert answer is None
|
1391 |
+
|
1392 |
+
def test_multi_line_expression_callable_local_variable_with_kwargs(self):
|
1393 |
+
# 26426
|
1394 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
1395 |
+
|
1396 |
+
def local_func(a, b):
|
1397 |
+
return b
|
1398 |
+
|
1399 |
+
expected = df.copy()
|
1400 |
+
expected["c"] = expected["a"] * local_func(b=7, a=1)
|
1401 |
+
expected["d"] = expected["c"] + local_func(b=7, a=1)
|
1402 |
+
answer = df.eval(
|
1403 |
+
"""
|
1404 |
+
c = a * @local_func(b=7, a=1)
|
1405 |
+
d = c + @local_func(b=7, a=1)
|
1406 |
+
""",
|
1407 |
+
inplace=True,
|
1408 |
+
)
|
1409 |
+
tm.assert_frame_equal(expected, df)
|
1410 |
+
assert answer is None
|
1411 |
+
|
1412 |
+
def test_assignment_in_query(self):
|
1413 |
+
# GH 8664
|
1414 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
1415 |
+
df_orig = df.copy()
|
1416 |
+
msg = "cannot assign without a target object"
|
1417 |
+
with pytest.raises(ValueError, match=msg):
|
1418 |
+
df.query("a = 1")
|
1419 |
+
tm.assert_frame_equal(df, df_orig)
|
1420 |
+
|
1421 |
+
def test_query_inplace(self):
|
1422 |
+
# see gh-11149
|
1423 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
1424 |
+
expected = df.copy()
|
1425 |
+
expected = expected[expected["a"] == 2]
|
1426 |
+
df.query("a == 2", inplace=True)
|
1427 |
+
tm.assert_frame_equal(expected, df)
|
1428 |
+
|
1429 |
+
df = {}
|
1430 |
+
expected = {"a": 3}
|
1431 |
+
|
1432 |
+
self.eval("a = 1 + 2", target=df, inplace=True)
|
1433 |
+
tm.assert_dict_equal(df, expected)
|
1434 |
+
|
1435 |
+
@pytest.mark.parametrize("invalid_target", [1, "cat", [1, 2], np.array([]), (1, 3)])
|
1436 |
+
def test_cannot_item_assign(self, invalid_target):
|
1437 |
+
msg = "Cannot assign expression output to target"
|
1438 |
+
expression = "a = 1 + 2"
|
1439 |
+
|
1440 |
+
with pytest.raises(ValueError, match=msg):
|
1441 |
+
self.eval(expression, target=invalid_target, inplace=True)
|
1442 |
+
|
1443 |
+
if hasattr(invalid_target, "copy"):
|
1444 |
+
with pytest.raises(ValueError, match=msg):
|
1445 |
+
self.eval(expression, target=invalid_target, inplace=False)
|
1446 |
+
|
1447 |
+
@pytest.mark.parametrize("invalid_target", [1, "cat", (1, 3)])
|
1448 |
+
def test_cannot_copy_item(self, invalid_target):
|
1449 |
+
msg = "Cannot return a copy of the target"
|
1450 |
+
expression = "a = 1 + 2"
|
1451 |
+
|
1452 |
+
with pytest.raises(ValueError, match=msg):
|
1453 |
+
self.eval(expression, target=invalid_target, inplace=False)
|
1454 |
+
|
1455 |
+
@pytest.mark.parametrize("target", [1, "cat", [1, 2], np.array([]), (1, 3), {1: 2}])
|
1456 |
+
def test_inplace_no_assignment(self, target):
|
1457 |
+
expression = "1 + 2"
|
1458 |
+
|
1459 |
+
assert self.eval(expression, target=target, inplace=False) == 3
|
1460 |
+
|
1461 |
+
msg = "Cannot operate inplace if there is no assignment"
|
1462 |
+
with pytest.raises(ValueError, match=msg):
|
1463 |
+
self.eval(expression, target=target, inplace=True)
|
1464 |
+
|
1465 |
+
def test_basic_period_index_boolean_expression(self):
|
1466 |
+
df = DataFrame(
|
1467 |
+
np.random.default_rng(2).standard_normal((2, 2)),
|
1468 |
+
columns=period_range("2020-01-01", freq="D", periods=2),
|
1469 |
+
)
|
1470 |
+
e = df < 2
|
1471 |
+
r = self.eval("df < 2", local_dict={"df": df})
|
1472 |
+
x = df < 2
|
1473 |
+
|
1474 |
+
tm.assert_frame_equal(r, e)
|
1475 |
+
tm.assert_frame_equal(x, e)
|
1476 |
+
|
1477 |
+
def test_basic_period_index_subscript_expression(self):
|
1478 |
+
df = DataFrame(
|
1479 |
+
np.random.default_rng(2).standard_normal((2, 2)),
|
1480 |
+
columns=period_range("2020-01-01", freq="D", periods=2),
|
1481 |
+
)
|
1482 |
+
r = self.eval("df[df < 2 + 3]", local_dict={"df": df})
|
1483 |
+
e = df[df < 2 + 3]
|
1484 |
+
tm.assert_frame_equal(r, e)
|
1485 |
+
|
1486 |
+
def test_nested_period_index_subscript_expression(self):
|
1487 |
+
df = DataFrame(
|
1488 |
+
np.random.default_rng(2).standard_normal((2, 2)),
|
1489 |
+
columns=period_range("2020-01-01", freq="D", periods=2),
|
1490 |
+
)
|
1491 |
+
r = self.eval("df[df[df < 2] < 2] + df * 2", local_dict={"df": df})
|
1492 |
+
e = df[df[df < 2] < 2] + df * 2
|
1493 |
+
tm.assert_frame_equal(r, e)
|
1494 |
+
|
1495 |
+
def test_date_boolean(self, engine, parser):
|
1496 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
1497 |
+
df["dates1"] = date_range("1/1/2012", periods=5)
|
1498 |
+
res = self.eval(
|
1499 |
+
"df.dates1 < 20130101",
|
1500 |
+
local_dict={"df": df},
|
1501 |
+
engine=engine,
|
1502 |
+
parser=parser,
|
1503 |
+
)
|
1504 |
+
expec = df.dates1 < "20130101"
|
1505 |
+
tm.assert_series_equal(res, expec, check_names=False)
|
1506 |
+
|
1507 |
+
def test_simple_in_ops(self, engine, parser):
|
1508 |
+
if parser != "python":
|
1509 |
+
res = pd.eval("1 in [1, 2]", engine=engine, parser=parser)
|
1510 |
+
assert res
|
1511 |
+
|
1512 |
+
res = pd.eval("2 in (1, 2)", engine=engine, parser=parser)
|
1513 |
+
assert res
|
1514 |
+
|
1515 |
+
res = pd.eval("3 in (1, 2)", engine=engine, parser=parser)
|
1516 |
+
assert not res
|
1517 |
+
|
1518 |
+
res = pd.eval("3 not in (1, 2)", engine=engine, parser=parser)
|
1519 |
+
assert res
|
1520 |
+
|
1521 |
+
res = pd.eval("[3] not in (1, 2)", engine=engine, parser=parser)
|
1522 |
+
assert res
|
1523 |
+
|
1524 |
+
res = pd.eval("[3] in ([3], 2)", engine=engine, parser=parser)
|
1525 |
+
assert res
|
1526 |
+
|
1527 |
+
res = pd.eval("[[3]] in [[[3]], 2]", engine=engine, parser=parser)
|
1528 |
+
assert res
|
1529 |
+
|
1530 |
+
res = pd.eval("(3,) in [(3,), 2]", engine=engine, parser=parser)
|
1531 |
+
assert res
|
1532 |
+
|
1533 |
+
res = pd.eval("(3,) not in [(3,), 2]", engine=engine, parser=parser)
|
1534 |
+
assert not res
|
1535 |
+
|
1536 |
+
res = pd.eval("[(3,)] in [[(3,)], 2]", engine=engine, parser=parser)
|
1537 |
+
assert res
|
1538 |
+
else:
|
1539 |
+
msg = "'In' nodes are not implemented"
|
1540 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1541 |
+
pd.eval("1 in [1, 2]", engine=engine, parser=parser)
|
1542 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1543 |
+
pd.eval("2 in (1, 2)", engine=engine, parser=parser)
|
1544 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1545 |
+
pd.eval("3 in (1, 2)", engine=engine, parser=parser)
|
1546 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1547 |
+
pd.eval("[(3,)] in (1, 2, [(3,)])", engine=engine, parser=parser)
|
1548 |
+
msg = "'NotIn' nodes are not implemented"
|
1549 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1550 |
+
pd.eval("3 not in (1, 2)", engine=engine, parser=parser)
|
1551 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1552 |
+
pd.eval("[3] not in (1, 2, [[3]])", engine=engine, parser=parser)
|
1553 |
+
|
1554 |
+
def test_check_many_exprs(self, engine, parser):
|
1555 |
+
a = 1 # noqa: F841
|
1556 |
+
expr = " * ".join("a" * 33)
|
1557 |
+
expected = 1
|
1558 |
+
res = pd.eval(expr, engine=engine, parser=parser)
|
1559 |
+
assert res == expected
|
1560 |
+
|
1561 |
+
@pytest.mark.parametrize(
|
1562 |
+
"expr",
|
1563 |
+
[
|
1564 |
+
"df > 2 and df > 3",
|
1565 |
+
"df > 2 or df > 3",
|
1566 |
+
"not df > 2",
|
1567 |
+
],
|
1568 |
+
)
|
1569 |
+
def test_fails_and_or_not(self, expr, engine, parser):
|
1570 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
1571 |
+
if parser == "python":
|
1572 |
+
msg = "'BoolOp' nodes are not implemented"
|
1573 |
+
if "not" in expr:
|
1574 |
+
msg = "'Not' nodes are not implemented"
|
1575 |
+
|
1576 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1577 |
+
pd.eval(
|
1578 |
+
expr,
|
1579 |
+
local_dict={"df": df},
|
1580 |
+
parser=parser,
|
1581 |
+
engine=engine,
|
1582 |
+
)
|
1583 |
+
else:
|
1584 |
+
# smoke-test, should not raise
|
1585 |
+
pd.eval(
|
1586 |
+
expr,
|
1587 |
+
local_dict={"df": df},
|
1588 |
+
parser=parser,
|
1589 |
+
engine=engine,
|
1590 |
+
)
|
1591 |
+
|
1592 |
+
@pytest.mark.parametrize("char", ["|", "&"])
|
1593 |
+
def test_fails_ampersand_pipe(self, char, engine, parser):
|
1594 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) # noqa: F841
|
1595 |
+
ex = f"(df + 2)[df > 1] > 0 {char} (df > 0)"
|
1596 |
+
if parser == "python":
|
1597 |
+
msg = "cannot evaluate scalar only bool ops"
|
1598 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1599 |
+
pd.eval(ex, parser=parser, engine=engine)
|
1600 |
+
else:
|
1601 |
+
# smoke-test, should not raise
|
1602 |
+
pd.eval(ex, parser=parser, engine=engine)
|
1603 |
+
|
1604 |
+
|
1605 |
+
class TestMath:
|
1606 |
+
def eval(self, *args, **kwargs):
|
1607 |
+
kwargs["level"] = kwargs.pop("level", 0) + 1
|
1608 |
+
return pd.eval(*args, **kwargs)
|
1609 |
+
|
1610 |
+
@pytest.mark.skipif(
|
1611 |
+
not NUMEXPR_INSTALLED, reason="Unary ops only implemented for numexpr"
|
1612 |
+
)
|
1613 |
+
@pytest.mark.parametrize("fn", _unary_math_ops)
|
1614 |
+
def test_unary_functions(self, fn):
|
1615 |
+
df = DataFrame({"a": np.random.default_rng(2).standard_normal(10)})
|
1616 |
+
a = df.a
|
1617 |
+
|
1618 |
+
expr = f"{fn}(a)"
|
1619 |
+
got = self.eval(expr)
|
1620 |
+
with np.errstate(all="ignore"):
|
1621 |
+
expect = getattr(np, fn)(a)
|
1622 |
+
tm.assert_series_equal(got, expect, check_names=False)
|
1623 |
+
|
1624 |
+
@pytest.mark.parametrize("fn", _binary_math_ops)
|
1625 |
+
def test_binary_functions(self, fn):
|
1626 |
+
df = DataFrame(
|
1627 |
+
{
|
1628 |
+
"a": np.random.default_rng(2).standard_normal(10),
|
1629 |
+
"b": np.random.default_rng(2).standard_normal(10),
|
1630 |
+
}
|
1631 |
+
)
|
1632 |
+
a = df.a
|
1633 |
+
b = df.b
|
1634 |
+
|
1635 |
+
expr = f"{fn}(a, b)"
|
1636 |
+
got = self.eval(expr)
|
1637 |
+
with np.errstate(all="ignore"):
|
1638 |
+
expect = getattr(np, fn)(a, b)
|
1639 |
+
tm.assert_almost_equal(got, expect, check_names=False)
|
1640 |
+
|
1641 |
+
def test_df_use_case(self, engine, parser):
|
1642 |
+
df = DataFrame(
|
1643 |
+
{
|
1644 |
+
"a": np.random.default_rng(2).standard_normal(10),
|
1645 |
+
"b": np.random.default_rng(2).standard_normal(10),
|
1646 |
+
}
|
1647 |
+
)
|
1648 |
+
df.eval(
|
1649 |
+
"e = arctan2(sin(a), b)",
|
1650 |
+
engine=engine,
|
1651 |
+
parser=parser,
|
1652 |
+
inplace=True,
|
1653 |
+
)
|
1654 |
+
got = df.e
|
1655 |
+
expect = np.arctan2(np.sin(df.a), df.b)
|
1656 |
+
tm.assert_series_equal(got, expect, check_names=False)
|
1657 |
+
|
1658 |
+
def test_df_arithmetic_subexpression(self, engine, parser):
|
1659 |
+
df = DataFrame(
|
1660 |
+
{
|
1661 |
+
"a": np.random.default_rng(2).standard_normal(10),
|
1662 |
+
"b": np.random.default_rng(2).standard_normal(10),
|
1663 |
+
}
|
1664 |
+
)
|
1665 |
+
df.eval("e = sin(a + b)", engine=engine, parser=parser, inplace=True)
|
1666 |
+
got = df.e
|
1667 |
+
expect = np.sin(df.a + df.b)
|
1668 |
+
tm.assert_series_equal(got, expect, check_names=False)
|
1669 |
+
|
1670 |
+
@pytest.mark.parametrize(
|
1671 |
+
"dtype, expect_dtype",
|
1672 |
+
[
|
1673 |
+
(np.int32, np.float64),
|
1674 |
+
(np.int64, np.float64),
|
1675 |
+
(np.float32, np.float32),
|
1676 |
+
(np.float64, np.float64),
|
1677 |
+
pytest.param(np.complex128, np.complex128, marks=td.skip_if_windows),
|
1678 |
+
],
|
1679 |
+
)
|
1680 |
+
def test_result_types(self, dtype, expect_dtype, engine, parser):
|
1681 |
+
# xref https://github.com/pandas-dev/pandas/issues/12293
|
1682 |
+
# this fails on Windows, apparently a floating point precision issue
|
1683 |
+
|
1684 |
+
# Did not test complex64 because DataFrame is converting it to
|
1685 |
+
# complex128. Due to https://github.com/pandas-dev/pandas/issues/10952
|
1686 |
+
df = DataFrame(
|
1687 |
+
{"a": np.random.default_rng(2).standard_normal(10).astype(dtype)}
|
1688 |
+
)
|
1689 |
+
assert df.a.dtype == dtype
|
1690 |
+
df.eval("b = sin(a)", engine=engine, parser=parser, inplace=True)
|
1691 |
+
got = df.b
|
1692 |
+
expect = np.sin(df.a)
|
1693 |
+
assert expect.dtype == got.dtype
|
1694 |
+
assert expect_dtype == got.dtype
|
1695 |
+
tm.assert_series_equal(got, expect, check_names=False)
|
1696 |
+
|
1697 |
+
def test_undefined_func(self, engine, parser):
|
1698 |
+
df = DataFrame({"a": np.random.default_rng(2).standard_normal(10)})
|
1699 |
+
msg = '"mysin" is not a supported function'
|
1700 |
+
|
1701 |
+
with pytest.raises(ValueError, match=msg):
|
1702 |
+
df.eval("mysin(a)", engine=engine, parser=parser)
|
1703 |
+
|
1704 |
+
def test_keyword_arg(self, engine, parser):
|
1705 |
+
df = DataFrame({"a": np.random.default_rng(2).standard_normal(10)})
|
1706 |
+
msg = 'Function "sin" does not support keyword arguments'
|
1707 |
+
|
1708 |
+
with pytest.raises(TypeError, match=msg):
|
1709 |
+
df.eval("sin(x=a)", engine=engine, parser=parser)
|
1710 |
+
|
1711 |
+
|
1712 |
+
_var_s = np.random.default_rng(2).standard_normal(10)
|
1713 |
+
|
1714 |
+
|
1715 |
+
class TestScope:
|
1716 |
+
def test_global_scope(self, engine, parser):
|
1717 |
+
e = "_var_s * 2"
|
1718 |
+
tm.assert_numpy_array_equal(
|
1719 |
+
_var_s * 2, pd.eval(e, engine=engine, parser=parser)
|
1720 |
+
)
|
1721 |
+
|
1722 |
+
def test_no_new_locals(self, engine, parser):
|
1723 |
+
x = 1
|
1724 |
+
lcls = locals().copy()
|
1725 |
+
pd.eval("x + 1", local_dict=lcls, engine=engine, parser=parser)
|
1726 |
+
lcls2 = locals().copy()
|
1727 |
+
lcls2.pop("lcls")
|
1728 |
+
assert lcls == lcls2
|
1729 |
+
|
1730 |
+
def test_no_new_globals(self, engine, parser):
|
1731 |
+
x = 1 # noqa: F841
|
1732 |
+
gbls = globals().copy()
|
1733 |
+
pd.eval("x + 1", engine=engine, parser=parser)
|
1734 |
+
gbls2 = globals().copy()
|
1735 |
+
assert gbls == gbls2
|
1736 |
+
|
1737 |
+
def test_empty_locals(self, engine, parser):
|
1738 |
+
# GH 47084
|
1739 |
+
x = 1 # noqa: F841
|
1740 |
+
msg = "name 'x' is not defined"
|
1741 |
+
with pytest.raises(UndefinedVariableError, match=msg):
|
1742 |
+
pd.eval("x + 1", engine=engine, parser=parser, local_dict={})
|
1743 |
+
|
1744 |
+
def test_empty_globals(self, engine, parser):
|
1745 |
+
# GH 47084
|
1746 |
+
msg = "name '_var_s' is not defined"
|
1747 |
+
e = "_var_s * 2"
|
1748 |
+
with pytest.raises(UndefinedVariableError, match=msg):
|
1749 |
+
pd.eval(e, engine=engine, parser=parser, global_dict={})
|
1750 |
+
|
1751 |
+
|
1752 |
+
@td.skip_if_no("numexpr")
|
1753 |
+
def test_invalid_engine():
|
1754 |
+
msg = "Invalid engine 'asdf' passed"
|
1755 |
+
with pytest.raises(KeyError, match=msg):
|
1756 |
+
pd.eval("x + y", local_dict={"x": 1, "y": 2}, engine="asdf")
|
1757 |
+
|
1758 |
+
|
1759 |
+
@td.skip_if_no("numexpr")
|
1760 |
+
@pytest.mark.parametrize(
|
1761 |
+
("use_numexpr", "expected"),
|
1762 |
+
(
|
1763 |
+
(True, "numexpr"),
|
1764 |
+
(False, "python"),
|
1765 |
+
),
|
1766 |
+
)
|
1767 |
+
def test_numexpr_option_respected(use_numexpr, expected):
|
1768 |
+
# GH 32556
|
1769 |
+
from pandas.core.computation.eval import _check_engine
|
1770 |
+
|
1771 |
+
with pd.option_context("compute.use_numexpr", use_numexpr):
|
1772 |
+
result = _check_engine(None)
|
1773 |
+
assert result == expected
|
1774 |
+
|
1775 |
+
|
1776 |
+
@td.skip_if_no("numexpr")
|
1777 |
+
def test_numexpr_option_incompatible_op():
|
1778 |
+
# GH 32556
|
1779 |
+
with pd.option_context("compute.use_numexpr", False):
|
1780 |
+
df = DataFrame(
|
1781 |
+
{"A": [True, False, True, False, None, None], "B": [1, 2, 3, 4, 5, 6]}
|
1782 |
+
)
|
1783 |
+
result = df.query("A.isnull()")
|
1784 |
+
expected = DataFrame({"A": [None, None], "B": [5, 6]}, index=[4, 5])
|
1785 |
+
tm.assert_frame_equal(result, expected)
|
1786 |
+
|
1787 |
+
|
1788 |
+
@td.skip_if_no("numexpr")
|
1789 |
+
def test_invalid_parser():
|
1790 |
+
msg = "Invalid parser 'asdf' passed"
|
1791 |
+
with pytest.raises(KeyError, match=msg):
|
1792 |
+
pd.eval("x + y", local_dict={"x": 1, "y": 2}, parser="asdf")
|
1793 |
+
|
1794 |
+
|
1795 |
+
_parsers: dict[str, type[BaseExprVisitor]] = {
|
1796 |
+
"python": PythonExprVisitor,
|
1797 |
+
"pytables": pytables.PyTablesExprVisitor,
|
1798 |
+
"pandas": PandasExprVisitor,
|
1799 |
+
}
|
1800 |
+
|
1801 |
+
|
1802 |
+
@pytest.mark.parametrize("engine", ENGINES)
|
1803 |
+
@pytest.mark.parametrize("parser", _parsers)
|
1804 |
+
def test_disallowed_nodes(engine, parser):
|
1805 |
+
VisitorClass = _parsers[parser]
|
1806 |
+
inst = VisitorClass("x + 1", engine, parser)
|
1807 |
+
|
1808 |
+
for ops in VisitorClass.unsupported_nodes:
|
1809 |
+
msg = "nodes are not implemented"
|
1810 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1811 |
+
getattr(inst, ops)()
|
1812 |
+
|
1813 |
+
|
1814 |
+
def test_syntax_error_exprs(engine, parser):
|
1815 |
+
e = "s +"
|
1816 |
+
with pytest.raises(SyntaxError, match="invalid syntax"):
|
1817 |
+
pd.eval(e, engine=engine, parser=parser)
|
1818 |
+
|
1819 |
+
|
1820 |
+
def test_name_error_exprs(engine, parser):
|
1821 |
+
e = "s + t"
|
1822 |
+
msg = "name 's' is not defined"
|
1823 |
+
with pytest.raises(NameError, match=msg):
|
1824 |
+
pd.eval(e, engine=engine, parser=parser)
|
1825 |
+
|
1826 |
+
|
1827 |
+
@pytest.mark.parametrize("express", ["a + @b", "@a + b", "@a + @b"])
|
1828 |
+
def test_invalid_local_variable_reference(engine, parser, express):
|
1829 |
+
a, b = 1, 2 # noqa: F841
|
1830 |
+
|
1831 |
+
if parser != "pandas":
|
1832 |
+
with pytest.raises(SyntaxError, match="The '@' prefix is only"):
|
1833 |
+
pd.eval(express, engine=engine, parser=parser)
|
1834 |
+
else:
|
1835 |
+
with pytest.raises(SyntaxError, match="The '@' prefix is not"):
|
1836 |
+
pd.eval(express, engine=engine, parser=parser)
|
1837 |
+
|
1838 |
+
|
1839 |
+
def test_numexpr_builtin_raises(engine, parser):
|
1840 |
+
sin, dotted_line = 1, 2
|
1841 |
+
if engine == "numexpr":
|
1842 |
+
msg = "Variables in expression .+"
|
1843 |
+
with pytest.raises(NumExprClobberingError, match=msg):
|
1844 |
+
pd.eval("sin + dotted_line", engine=engine, parser=parser)
|
1845 |
+
else:
|
1846 |
+
res = pd.eval("sin + dotted_line", engine=engine, parser=parser)
|
1847 |
+
assert res == sin + dotted_line
|
1848 |
+
|
1849 |
+
|
1850 |
+
def test_bad_resolver_raises(engine, parser):
|
1851 |
+
cannot_resolve = 42, 3.0
|
1852 |
+
with pytest.raises(TypeError, match="Resolver of type .+"):
|
1853 |
+
pd.eval("1 + 2", resolvers=cannot_resolve, engine=engine, parser=parser)
|
1854 |
+
|
1855 |
+
|
1856 |
+
def test_empty_string_raises(engine, parser):
|
1857 |
+
# GH 13139
|
1858 |
+
with pytest.raises(ValueError, match="expr cannot be an empty string"):
|
1859 |
+
pd.eval("", engine=engine, parser=parser)
|
1860 |
+
|
1861 |
+
|
1862 |
+
def test_more_than_one_expression_raises(engine, parser):
|
1863 |
+
with pytest.raises(SyntaxError, match="only a single expression is allowed"):
|
1864 |
+
pd.eval("1 + 1; 2 + 2", engine=engine, parser=parser)
|
1865 |
+
|
1866 |
+
|
1867 |
+
@pytest.mark.parametrize("cmp", ("and", "or"))
|
1868 |
+
@pytest.mark.parametrize("lhs", (int, float))
|
1869 |
+
@pytest.mark.parametrize("rhs", (int, float))
|
1870 |
+
def test_bool_ops_fails_on_scalars(lhs, cmp, rhs, engine, parser):
|
1871 |
+
gen = {
|
1872 |
+
int: lambda: np.random.default_rng(2).integers(10),
|
1873 |
+
float: np.random.default_rng(2).standard_normal,
|
1874 |
+
}
|
1875 |
+
|
1876 |
+
mid = gen[lhs]() # noqa: F841
|
1877 |
+
lhs = gen[lhs]()
|
1878 |
+
rhs = gen[rhs]()
|
1879 |
+
|
1880 |
+
ex1 = f"lhs {cmp} mid {cmp} rhs"
|
1881 |
+
ex2 = f"lhs {cmp} mid and mid {cmp} rhs"
|
1882 |
+
ex3 = f"(lhs {cmp} mid) & (mid {cmp} rhs)"
|
1883 |
+
for ex in (ex1, ex2, ex3):
|
1884 |
+
msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not"
|
1885 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1886 |
+
pd.eval(ex, engine=engine, parser=parser)
|
1887 |
+
|
1888 |
+
|
1889 |
+
@pytest.mark.parametrize(
|
1890 |
+
"other",
|
1891 |
+
[
|
1892 |
+
"'x'",
|
1893 |
+
"...",
|
1894 |
+
],
|
1895 |
+
)
|
1896 |
+
def test_equals_various(other):
|
1897 |
+
df = DataFrame({"A": ["a", "b", "c"]}, dtype=object)
|
1898 |
+
result = df.eval(f"A == {other}")
|
1899 |
+
expected = Series([False, False, False], name="A")
|
1900 |
+
if USE_NUMEXPR:
|
1901 |
+
# https://github.com/pandas-dev/pandas/issues/10239
|
1902 |
+
# lose name with numexpr engine. Remove when that's fixed.
|
1903 |
+
expected.name = None
|
1904 |
+
tm.assert_series_equal(result, expected)
|
1905 |
+
|
1906 |
+
|
1907 |
+
def test_inf(engine, parser):
|
1908 |
+
s = "inf + 1"
|
1909 |
+
expected = np.inf
|
1910 |
+
result = pd.eval(s, engine=engine, parser=parser)
|
1911 |
+
assert result == expected
|
1912 |
+
|
1913 |
+
|
1914 |
+
@pytest.mark.parametrize("column", ["Temp(°C)", "Capacitance(μF)"])
|
1915 |
+
def test_query_token(engine, column):
|
1916 |
+
# See: https://github.com/pandas-dev/pandas/pull/42826
|
1917 |
+
df = DataFrame(
|
1918 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=[column, "b"]
|
1919 |
+
)
|
1920 |
+
expected = df[df[column] > 5]
|
1921 |
+
query_string = f"`{column}` > 5"
|
1922 |
+
result = df.query(query_string, engine=engine)
|
1923 |
+
tm.assert_frame_equal(result, expected)
|
1924 |
+
|
1925 |
+
|
1926 |
+
def test_negate_lt_eq_le(engine, parser):
|
1927 |
+
df = DataFrame([[0, 10], [1, 20]], columns=["cat", "count"])
|
1928 |
+
expected = df[~(df.cat > 0)]
|
1929 |
+
|
1930 |
+
result = df.query("~(cat > 0)", engine=engine, parser=parser)
|
1931 |
+
tm.assert_frame_equal(result, expected)
|
1932 |
+
|
1933 |
+
if parser == "python":
|
1934 |
+
msg = "'Not' nodes are not implemented"
|
1935 |
+
with pytest.raises(NotImplementedError, match=msg):
|
1936 |
+
df.query("not (cat > 0)", engine=engine, parser=parser)
|
1937 |
+
else:
|
1938 |
+
result = df.query("not (cat > 0)", engine=engine, parser=parser)
|
1939 |
+
tm.assert_frame_equal(result, expected)
|
1940 |
+
|
1941 |
+
|
1942 |
+
@pytest.mark.parametrize(
|
1943 |
+
"column",
|
1944 |
+
DEFAULT_GLOBALS.keys(),
|
1945 |
+
)
|
1946 |
+
def test_eval_no_support_column_name(request, column):
|
1947 |
+
# GH 44603
|
1948 |
+
if column in ["True", "False", "inf", "Inf"]:
|
1949 |
+
request.applymarker(
|
1950 |
+
pytest.mark.xfail(
|
1951 |
+
raises=KeyError,
|
1952 |
+
reason=f"GH 47859 DataFrame eval not supported with {column}",
|
1953 |
+
)
|
1954 |
+
)
|
1955 |
+
|
1956 |
+
df = DataFrame(
|
1957 |
+
np.random.default_rng(2).integers(0, 100, size=(10, 2)),
|
1958 |
+
columns=[column, "col1"],
|
1959 |
+
)
|
1960 |
+
expected = df[df[column] > 6]
|
1961 |
+
result = df.query(f"{column}>6")
|
1962 |
+
|
1963 |
+
tm.assert_frame_equal(result, expected)
|
1964 |
+
|
1965 |
+
|
1966 |
+
def test_set_inplace(using_copy_on_write, warn_copy_on_write):
|
1967 |
+
# https://github.com/pandas-dev/pandas/issues/47449
|
1968 |
+
# Ensure we don't only update the DataFrame inplace, but also the actual
|
1969 |
+
# column values, such that references to this column also get updated
|
1970 |
+
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
|
1971 |
+
result_view = df[:]
|
1972 |
+
ser = df["A"]
|
1973 |
+
with tm.assert_cow_warning(warn_copy_on_write):
|
1974 |
+
df.eval("A = B + C", inplace=True)
|
1975 |
+
expected = DataFrame({"A": [11, 13, 15], "B": [4, 5, 6], "C": [7, 8, 9]})
|
1976 |
+
tm.assert_frame_equal(df, expected)
|
1977 |
+
if not using_copy_on_write:
|
1978 |
+
tm.assert_series_equal(ser, expected["A"])
|
1979 |
+
tm.assert_series_equal(result_view["A"], expected["A"])
|
1980 |
+
else:
|
1981 |
+
expected = Series([1, 2, 3], name="A")
|
1982 |
+
tm.assert_series_equal(ser, expected)
|
1983 |
+
tm.assert_series_equal(result_view["A"], expected)
|
1984 |
+
|
1985 |
+
|
1986 |
+
class TestValidate:
|
1987 |
+
@pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0])
|
1988 |
+
def test_validate_bool_args(self, value):
|
1989 |
+
msg = 'For argument "inplace" expected type bool, received type'
|
1990 |
+
with pytest.raises(ValueError, match=msg):
|
1991 |
+
pd.eval("2+2", inplace=value)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
object_pyarrow_numpy = ("object", "string[pyarrow_numpy]")
|
6 |
+
|
7 |
+
|
8 |
+
def _convert_na_value(ser, expected):
|
9 |
+
if ser.dtype != object:
|
10 |
+
if ser.dtype.storage == "pyarrow_numpy":
|
11 |
+
expected = expected.fillna(np.nan)
|
12 |
+
else:
|
13 |
+
# GH#18463
|
14 |
+
expected = expected.fillna(pd.NA)
|
15 |
+
return expected
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (533 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (3.02 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/test_cat.cpython-310.pyc
ADDED
Binary file (9.57 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/test_extract.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/test_find_replace.cpython-310.pyc
ADDED
Binary file (23.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/test_get_dummies.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/__pycache__/test_string_array.cpython-310.pyc
ADDED
Binary file (2.78 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/conftest.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import Series
|
4 |
+
from pandas.core.strings.accessor import StringMethods
|
5 |
+
|
6 |
+
_any_string_method = [
|
7 |
+
("cat", (), {"sep": ","}),
|
8 |
+
("cat", (Series(list("zyx")),), {"sep": ",", "join": "left"}),
|
9 |
+
("center", (10,), {}),
|
10 |
+
("contains", ("a",), {}),
|
11 |
+
("count", ("a",), {}),
|
12 |
+
("decode", ("UTF-8",), {}),
|
13 |
+
("encode", ("UTF-8",), {}),
|
14 |
+
("endswith", ("a",), {}),
|
15 |
+
("endswith", ((),), {}),
|
16 |
+
("endswith", (("a",),), {}),
|
17 |
+
("endswith", (("a", "b"),), {}),
|
18 |
+
("endswith", (("a", "MISSING"),), {}),
|
19 |
+
("endswith", ("a",), {"na": True}),
|
20 |
+
("endswith", ("a",), {"na": False}),
|
21 |
+
("extract", ("([a-z]*)",), {"expand": False}),
|
22 |
+
("extract", ("([a-z]*)",), {"expand": True}),
|
23 |
+
("extractall", ("([a-z]*)",), {}),
|
24 |
+
("find", ("a",), {}),
|
25 |
+
("findall", ("a",), {}),
|
26 |
+
("get", (0,), {}),
|
27 |
+
# because "index" (and "rindex") fail intentionally
|
28 |
+
# if the string is not found, search only for empty string
|
29 |
+
("index", ("",), {}),
|
30 |
+
("join", (",",), {}),
|
31 |
+
("ljust", (10,), {}),
|
32 |
+
("match", ("a",), {}),
|
33 |
+
("fullmatch", ("a",), {}),
|
34 |
+
("normalize", ("NFC",), {}),
|
35 |
+
("pad", (10,), {}),
|
36 |
+
("partition", (" ",), {"expand": False}),
|
37 |
+
("partition", (" ",), {"expand": True}),
|
38 |
+
("repeat", (3,), {}),
|
39 |
+
("replace", ("a", "z"), {}),
|
40 |
+
("rfind", ("a",), {}),
|
41 |
+
("rindex", ("",), {}),
|
42 |
+
("rjust", (10,), {}),
|
43 |
+
("rpartition", (" ",), {"expand": False}),
|
44 |
+
("rpartition", (" ",), {"expand": True}),
|
45 |
+
("slice", (0, 1), {}),
|
46 |
+
("slice_replace", (0, 1, "z"), {}),
|
47 |
+
("split", (" ",), {"expand": False}),
|
48 |
+
("split", (" ",), {"expand": True}),
|
49 |
+
("startswith", ("a",), {}),
|
50 |
+
("startswith", (("a",),), {}),
|
51 |
+
("startswith", (("a", "b"),), {}),
|
52 |
+
("startswith", (("a", "MISSING"),), {}),
|
53 |
+
("startswith", ((),), {}),
|
54 |
+
("startswith", ("a",), {"na": True}),
|
55 |
+
("startswith", ("a",), {"na": False}),
|
56 |
+
("removeprefix", ("a",), {}),
|
57 |
+
("removesuffix", ("a",), {}),
|
58 |
+
# translating unicode points of "a" to "d"
|
59 |
+
("translate", ({97: 100},), {}),
|
60 |
+
("wrap", (2,), {}),
|
61 |
+
("zfill", (10,), {}),
|
62 |
+
] + list(
|
63 |
+
zip(
|
64 |
+
[
|
65 |
+
# methods without positional arguments: zip with empty tuple and empty dict
|
66 |
+
"capitalize",
|
67 |
+
"cat",
|
68 |
+
"get_dummies",
|
69 |
+
"isalnum",
|
70 |
+
"isalpha",
|
71 |
+
"isdecimal",
|
72 |
+
"isdigit",
|
73 |
+
"islower",
|
74 |
+
"isnumeric",
|
75 |
+
"isspace",
|
76 |
+
"istitle",
|
77 |
+
"isupper",
|
78 |
+
"len",
|
79 |
+
"lower",
|
80 |
+
"lstrip",
|
81 |
+
"partition",
|
82 |
+
"rpartition",
|
83 |
+
"rsplit",
|
84 |
+
"rstrip",
|
85 |
+
"slice",
|
86 |
+
"slice_replace",
|
87 |
+
"split",
|
88 |
+
"strip",
|
89 |
+
"swapcase",
|
90 |
+
"title",
|
91 |
+
"upper",
|
92 |
+
"casefold",
|
93 |
+
],
|
94 |
+
[()] * 100,
|
95 |
+
[{}] * 100,
|
96 |
+
)
|
97 |
+
)
|
98 |
+
ids, _, _ = zip(*_any_string_method) # use method name as fixture-id
|
99 |
+
missing_methods = {f for f in dir(StringMethods) if not f.startswith("_")} - set(ids)
|
100 |
+
|
101 |
+
# test that the above list captures all methods of StringMethods
|
102 |
+
assert not missing_methods
|
103 |
+
|
104 |
+
|
105 |
+
@pytest.fixture(params=_any_string_method, ids=ids)
|
106 |
+
def any_string_method(request):
|
107 |
+
"""
|
108 |
+
Fixture for all public methods of `StringMethods`
|
109 |
+
|
110 |
+
This fixture returns a tuple of the method name and sample arguments
|
111 |
+
necessary to call the method.
|
112 |
+
|
113 |
+
Returns
|
114 |
+
-------
|
115 |
+
method_name : str
|
116 |
+
The name of the method in `StringMethods`
|
117 |
+
args : tuple
|
118 |
+
Sample values for the positional arguments
|
119 |
+
kwargs : dict
|
120 |
+
Sample values for the keyword arguments
|
121 |
+
|
122 |
+
Examples
|
123 |
+
--------
|
124 |
+
>>> def test_something(any_string_method):
|
125 |
+
... s = Series(['a', 'b', np.nan, 'd'])
|
126 |
+
...
|
127 |
+
... method_name, args, kwargs = any_string_method
|
128 |
+
... method = getattr(s.str, method_name)
|
129 |
+
... # will not raise
|
130 |
+
... method(*args, **kwargs)
|
131 |
+
"""
|
132 |
+
return request.param
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_api.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
CategoricalDtype,
|
6 |
+
DataFrame,
|
7 |
+
Index,
|
8 |
+
MultiIndex,
|
9 |
+
Series,
|
10 |
+
_testing as tm,
|
11 |
+
option_context,
|
12 |
+
)
|
13 |
+
from pandas.core.strings.accessor import StringMethods
|
14 |
+
|
15 |
+
# subset of the full set from pandas/conftest.py
|
16 |
+
_any_allowed_skipna_inferred_dtype = [
|
17 |
+
("string", ["a", np.nan, "c"]),
|
18 |
+
("bytes", [b"a", np.nan, b"c"]),
|
19 |
+
("empty", [np.nan, np.nan, np.nan]),
|
20 |
+
("empty", []),
|
21 |
+
("mixed-integer", ["a", np.nan, 2]),
|
22 |
+
]
|
23 |
+
ids, _ = zip(*_any_allowed_skipna_inferred_dtype) # use inferred type as id
|
24 |
+
|
25 |
+
|
26 |
+
@pytest.fixture(params=_any_allowed_skipna_inferred_dtype, ids=ids)
|
27 |
+
def any_allowed_skipna_inferred_dtype(request):
|
28 |
+
"""
|
29 |
+
Fixture for all (inferred) dtypes allowed in StringMethods.__init__
|
30 |
+
|
31 |
+
The covered (inferred) types are:
|
32 |
+
* 'string'
|
33 |
+
* 'empty'
|
34 |
+
* 'bytes'
|
35 |
+
* 'mixed'
|
36 |
+
* 'mixed-integer'
|
37 |
+
|
38 |
+
Returns
|
39 |
+
-------
|
40 |
+
inferred_dtype : str
|
41 |
+
The string for the inferred dtype from _libs.lib.infer_dtype
|
42 |
+
values : np.ndarray
|
43 |
+
An array of object dtype that will be inferred to have
|
44 |
+
`inferred_dtype`
|
45 |
+
|
46 |
+
Examples
|
47 |
+
--------
|
48 |
+
>>> from pandas._libs import lib
|
49 |
+
>>>
|
50 |
+
>>> def test_something(any_allowed_skipna_inferred_dtype):
|
51 |
+
... inferred_dtype, values = any_allowed_skipna_inferred_dtype
|
52 |
+
... # will pass
|
53 |
+
... assert lib.infer_dtype(values, skipna=True) == inferred_dtype
|
54 |
+
...
|
55 |
+
... # constructor for .str-accessor will also pass
|
56 |
+
... Series(values).str
|
57 |
+
"""
|
58 |
+
inferred_dtype, values = request.param
|
59 |
+
values = np.array(values, dtype=object) # object dtype to avoid casting
|
60 |
+
|
61 |
+
# correctness of inference tested in tests/dtypes/test_inference.py
|
62 |
+
return inferred_dtype, values
|
63 |
+
|
64 |
+
|
65 |
+
def test_api(any_string_dtype):
|
66 |
+
# GH 6106, GH 9322
|
67 |
+
assert Series.str is StringMethods
|
68 |
+
assert isinstance(Series([""], dtype=any_string_dtype).str, StringMethods)
|
69 |
+
|
70 |
+
|
71 |
+
def test_api_mi_raises():
|
72 |
+
# GH 23679
|
73 |
+
mi = MultiIndex.from_arrays([["a", "b", "c"]])
|
74 |
+
msg = "Can only use .str accessor with Index, not MultiIndex"
|
75 |
+
with pytest.raises(AttributeError, match=msg):
|
76 |
+
mi.str
|
77 |
+
assert not hasattr(mi, "str")
|
78 |
+
|
79 |
+
|
80 |
+
@pytest.mark.parametrize("dtype", [object, "category"])
|
81 |
+
def test_api_per_dtype(index_or_series, dtype, any_skipna_inferred_dtype):
|
82 |
+
# one instance of parametrized fixture
|
83 |
+
box = index_or_series
|
84 |
+
inferred_dtype, values = any_skipna_inferred_dtype
|
85 |
+
|
86 |
+
t = box(values, dtype=dtype) # explicit dtype to avoid casting
|
87 |
+
|
88 |
+
types_passing_constructor = [
|
89 |
+
"string",
|
90 |
+
"unicode",
|
91 |
+
"empty",
|
92 |
+
"bytes",
|
93 |
+
"mixed",
|
94 |
+
"mixed-integer",
|
95 |
+
]
|
96 |
+
if inferred_dtype in types_passing_constructor:
|
97 |
+
# GH 6106
|
98 |
+
assert isinstance(t.str, StringMethods)
|
99 |
+
else:
|
100 |
+
# GH 9184, GH 23011, GH 23163
|
101 |
+
msg = "Can only use .str accessor with string values.*"
|
102 |
+
with pytest.raises(AttributeError, match=msg):
|
103 |
+
t.str
|
104 |
+
assert not hasattr(t, "str")
|
105 |
+
|
106 |
+
|
107 |
+
@pytest.mark.parametrize("dtype", [object, "category"])
|
108 |
+
def test_api_per_method(
|
109 |
+
index_or_series,
|
110 |
+
dtype,
|
111 |
+
any_allowed_skipna_inferred_dtype,
|
112 |
+
any_string_method,
|
113 |
+
request,
|
114 |
+
):
|
115 |
+
# this test does not check correctness of the different methods,
|
116 |
+
# just that the methods work on the specified (inferred) dtypes,
|
117 |
+
# and raise on all others
|
118 |
+
box = index_or_series
|
119 |
+
|
120 |
+
# one instance of each parametrized fixture
|
121 |
+
inferred_dtype, values = any_allowed_skipna_inferred_dtype
|
122 |
+
method_name, args, kwargs = any_string_method
|
123 |
+
|
124 |
+
reason = None
|
125 |
+
if box is Index and values.size == 0:
|
126 |
+
if method_name in ["partition", "rpartition"] and kwargs.get("expand", True):
|
127 |
+
raises = TypeError
|
128 |
+
reason = "Method cannot deal with empty Index"
|
129 |
+
elif method_name == "split" and kwargs.get("expand", None):
|
130 |
+
raises = TypeError
|
131 |
+
reason = "Split fails on empty Series when expand=True"
|
132 |
+
elif method_name == "get_dummies":
|
133 |
+
raises = ValueError
|
134 |
+
reason = "Need to fortify get_dummies corner cases"
|
135 |
+
|
136 |
+
elif (
|
137 |
+
box is Index
|
138 |
+
and inferred_dtype == "empty"
|
139 |
+
and dtype == object
|
140 |
+
and method_name == "get_dummies"
|
141 |
+
):
|
142 |
+
raises = ValueError
|
143 |
+
reason = "Need to fortify get_dummies corner cases"
|
144 |
+
|
145 |
+
if reason is not None:
|
146 |
+
mark = pytest.mark.xfail(raises=raises, reason=reason)
|
147 |
+
request.applymarker(mark)
|
148 |
+
|
149 |
+
t = box(values, dtype=dtype) # explicit dtype to avoid casting
|
150 |
+
method = getattr(t.str, method_name)
|
151 |
+
|
152 |
+
bytes_allowed = method_name in ["decode", "get", "len", "slice"]
|
153 |
+
# as of v0.23.4, all methods except 'cat' are very lenient with the
|
154 |
+
# allowed data types, just returning NaN for entries that error.
|
155 |
+
# This could be changed with an 'errors'-kwarg to the `str`-accessor,
|
156 |
+
# see discussion in GH 13877
|
157 |
+
mixed_allowed = method_name not in ["cat"]
|
158 |
+
|
159 |
+
allowed_types = (
|
160 |
+
["string", "unicode", "empty"]
|
161 |
+
+ ["bytes"] * bytes_allowed
|
162 |
+
+ ["mixed", "mixed-integer"] * mixed_allowed
|
163 |
+
)
|
164 |
+
|
165 |
+
if inferred_dtype in allowed_types:
|
166 |
+
# xref GH 23555, GH 23556
|
167 |
+
with option_context("future.no_silent_downcasting", True):
|
168 |
+
method(*args, **kwargs) # works!
|
169 |
+
else:
|
170 |
+
# GH 23011, GH 23163
|
171 |
+
msg = (
|
172 |
+
f"Cannot use .str.{method_name} with values of "
|
173 |
+
f"inferred dtype {repr(inferred_dtype)}."
|
174 |
+
)
|
175 |
+
with pytest.raises(TypeError, match=msg):
|
176 |
+
method(*args, **kwargs)
|
177 |
+
|
178 |
+
|
179 |
+
def test_api_for_categorical(any_string_method, any_string_dtype):
|
180 |
+
# https://github.com/pandas-dev/pandas/issues/10661
|
181 |
+
s = Series(list("aabb"), dtype=any_string_dtype)
|
182 |
+
s = s + " " + s
|
183 |
+
c = s.astype("category")
|
184 |
+
c = c.astype(CategoricalDtype(c.dtype.categories.astype("object")))
|
185 |
+
assert isinstance(c.str, StringMethods)
|
186 |
+
|
187 |
+
method_name, args, kwargs = any_string_method
|
188 |
+
|
189 |
+
result = getattr(c.str, method_name)(*args, **kwargs)
|
190 |
+
expected = getattr(s.astype("object").str, method_name)(*args, **kwargs)
|
191 |
+
|
192 |
+
if isinstance(result, DataFrame):
|
193 |
+
tm.assert_frame_equal(result, expected)
|
194 |
+
elif isinstance(result, Series):
|
195 |
+
tm.assert_series_equal(result, expected)
|
196 |
+
else:
|
197 |
+
# str.cat(others=None) returns string, for example
|
198 |
+
assert result == expected
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_case_justify.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
import operator
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from pandas import (
|
8 |
+
Series,
|
9 |
+
_testing as tm,
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
def test_title(any_string_dtype):
|
14 |
+
s = Series(["FOO", "BAR", np.nan, "Blah", "blurg"], dtype=any_string_dtype)
|
15 |
+
result = s.str.title()
|
16 |
+
expected = Series(["Foo", "Bar", np.nan, "Blah", "Blurg"], dtype=any_string_dtype)
|
17 |
+
tm.assert_series_equal(result, expected)
|
18 |
+
|
19 |
+
|
20 |
+
def test_title_mixed_object():
|
21 |
+
s = Series(["FOO", np.nan, "bar", True, datetime.today(), "blah", None, 1, 2.0])
|
22 |
+
result = s.str.title()
|
23 |
+
expected = Series(
|
24 |
+
["Foo", np.nan, "Bar", np.nan, np.nan, "Blah", None, np.nan, np.nan],
|
25 |
+
dtype=object,
|
26 |
+
)
|
27 |
+
tm.assert_almost_equal(result, expected)
|
28 |
+
|
29 |
+
|
30 |
+
def test_lower_upper(any_string_dtype):
|
31 |
+
s = Series(["om", np.nan, "nom", "nom"], dtype=any_string_dtype)
|
32 |
+
|
33 |
+
result = s.str.upper()
|
34 |
+
expected = Series(["OM", np.nan, "NOM", "NOM"], dtype=any_string_dtype)
|
35 |
+
tm.assert_series_equal(result, expected)
|
36 |
+
|
37 |
+
result = result.str.lower()
|
38 |
+
tm.assert_series_equal(result, s)
|
39 |
+
|
40 |
+
|
41 |
+
def test_lower_upper_mixed_object():
|
42 |
+
s = Series(["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0])
|
43 |
+
|
44 |
+
result = s.str.upper()
|
45 |
+
expected = Series(
|
46 |
+
["A", np.nan, "B", np.nan, np.nan, "FOO", None, np.nan, np.nan], dtype=object
|
47 |
+
)
|
48 |
+
tm.assert_series_equal(result, expected)
|
49 |
+
|
50 |
+
result = s.str.lower()
|
51 |
+
expected = Series(
|
52 |
+
["a", np.nan, "b", np.nan, np.nan, "foo", None, np.nan, np.nan], dtype=object
|
53 |
+
)
|
54 |
+
tm.assert_series_equal(result, expected)
|
55 |
+
|
56 |
+
|
57 |
+
@pytest.mark.parametrize(
|
58 |
+
"data, expected",
|
59 |
+
[
|
60 |
+
(
|
61 |
+
["FOO", "BAR", np.nan, "Blah", "blurg"],
|
62 |
+
["Foo", "Bar", np.nan, "Blah", "Blurg"],
|
63 |
+
),
|
64 |
+
(["a", "b", "c"], ["A", "B", "C"]),
|
65 |
+
(["a b", "a bc. de"], ["A b", "A bc. de"]),
|
66 |
+
],
|
67 |
+
)
|
68 |
+
def test_capitalize(data, expected, any_string_dtype):
|
69 |
+
s = Series(data, dtype=any_string_dtype)
|
70 |
+
result = s.str.capitalize()
|
71 |
+
expected = Series(expected, dtype=any_string_dtype)
|
72 |
+
tm.assert_series_equal(result, expected)
|
73 |
+
|
74 |
+
|
75 |
+
def test_capitalize_mixed_object():
|
76 |
+
s = Series(["FOO", np.nan, "bar", True, datetime.today(), "blah", None, 1, 2.0])
|
77 |
+
result = s.str.capitalize()
|
78 |
+
expected = Series(
|
79 |
+
["Foo", np.nan, "Bar", np.nan, np.nan, "Blah", None, np.nan, np.nan],
|
80 |
+
dtype=object,
|
81 |
+
)
|
82 |
+
tm.assert_series_equal(result, expected)
|
83 |
+
|
84 |
+
|
85 |
+
def test_swapcase(any_string_dtype):
|
86 |
+
s = Series(["FOO", "BAR", np.nan, "Blah", "blurg"], dtype=any_string_dtype)
|
87 |
+
result = s.str.swapcase()
|
88 |
+
expected = Series(["foo", "bar", np.nan, "bLAH", "BLURG"], dtype=any_string_dtype)
|
89 |
+
tm.assert_series_equal(result, expected)
|
90 |
+
|
91 |
+
|
92 |
+
def test_swapcase_mixed_object():
|
93 |
+
s = Series(["FOO", np.nan, "bar", True, datetime.today(), "Blah", None, 1, 2.0])
|
94 |
+
result = s.str.swapcase()
|
95 |
+
expected = Series(
|
96 |
+
["foo", np.nan, "BAR", np.nan, np.nan, "bLAH", None, np.nan, np.nan],
|
97 |
+
dtype=object,
|
98 |
+
)
|
99 |
+
tm.assert_series_equal(result, expected)
|
100 |
+
|
101 |
+
|
102 |
+
def test_casefold():
|
103 |
+
# GH25405
|
104 |
+
expected = Series(["ss", np.nan, "case", "ssd"])
|
105 |
+
s = Series(["ß", np.nan, "case", "ßd"])
|
106 |
+
result = s.str.casefold()
|
107 |
+
|
108 |
+
tm.assert_series_equal(result, expected)
|
109 |
+
|
110 |
+
|
111 |
+
def test_casemethods(any_string_dtype):
|
112 |
+
values = ["aaa", "bbb", "CCC", "Dddd", "eEEE"]
|
113 |
+
s = Series(values, dtype=any_string_dtype)
|
114 |
+
assert s.str.lower().tolist() == [v.lower() for v in values]
|
115 |
+
assert s.str.upper().tolist() == [v.upper() for v in values]
|
116 |
+
assert s.str.title().tolist() == [v.title() for v in values]
|
117 |
+
assert s.str.capitalize().tolist() == [v.capitalize() for v in values]
|
118 |
+
assert s.str.swapcase().tolist() == [v.swapcase() for v in values]
|
119 |
+
|
120 |
+
|
121 |
+
def test_pad(any_string_dtype):
|
122 |
+
s = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"], dtype=any_string_dtype)
|
123 |
+
|
124 |
+
result = s.str.pad(5, side="left")
|
125 |
+
expected = Series(
|
126 |
+
[" a", " b", np.nan, " c", np.nan, "eeeeee"], dtype=any_string_dtype
|
127 |
+
)
|
128 |
+
tm.assert_series_equal(result, expected)
|
129 |
+
|
130 |
+
result = s.str.pad(5, side="right")
|
131 |
+
expected = Series(
|
132 |
+
["a ", "b ", np.nan, "c ", np.nan, "eeeeee"], dtype=any_string_dtype
|
133 |
+
)
|
134 |
+
tm.assert_series_equal(result, expected)
|
135 |
+
|
136 |
+
result = s.str.pad(5, side="both")
|
137 |
+
expected = Series(
|
138 |
+
[" a ", " b ", np.nan, " c ", np.nan, "eeeeee"], dtype=any_string_dtype
|
139 |
+
)
|
140 |
+
tm.assert_series_equal(result, expected)
|
141 |
+
|
142 |
+
|
143 |
+
def test_pad_mixed_object():
|
144 |
+
s = Series(["a", np.nan, "b", True, datetime.today(), "ee", None, 1, 2.0])
|
145 |
+
|
146 |
+
result = s.str.pad(5, side="left")
|
147 |
+
expected = Series(
|
148 |
+
[" a", np.nan, " b", np.nan, np.nan, " ee", None, np.nan, np.nan],
|
149 |
+
dtype=object,
|
150 |
+
)
|
151 |
+
tm.assert_series_equal(result, expected)
|
152 |
+
|
153 |
+
result = s.str.pad(5, side="right")
|
154 |
+
expected = Series(
|
155 |
+
["a ", np.nan, "b ", np.nan, np.nan, "ee ", None, np.nan, np.nan],
|
156 |
+
dtype=object,
|
157 |
+
)
|
158 |
+
tm.assert_series_equal(result, expected)
|
159 |
+
|
160 |
+
result = s.str.pad(5, side="both")
|
161 |
+
expected = Series(
|
162 |
+
[" a ", np.nan, " b ", np.nan, np.nan, " ee ", None, np.nan, np.nan],
|
163 |
+
dtype=object,
|
164 |
+
)
|
165 |
+
tm.assert_series_equal(result, expected)
|
166 |
+
|
167 |
+
|
168 |
+
def test_pad_fillchar(any_string_dtype):
|
169 |
+
s = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"], dtype=any_string_dtype)
|
170 |
+
|
171 |
+
result = s.str.pad(5, side="left", fillchar="X")
|
172 |
+
expected = Series(
|
173 |
+
["XXXXa", "XXXXb", np.nan, "XXXXc", np.nan, "eeeeee"], dtype=any_string_dtype
|
174 |
+
)
|
175 |
+
tm.assert_series_equal(result, expected)
|
176 |
+
|
177 |
+
result = s.str.pad(5, side="right", fillchar="X")
|
178 |
+
expected = Series(
|
179 |
+
["aXXXX", "bXXXX", np.nan, "cXXXX", np.nan, "eeeeee"], dtype=any_string_dtype
|
180 |
+
)
|
181 |
+
tm.assert_series_equal(result, expected)
|
182 |
+
|
183 |
+
result = s.str.pad(5, side="both", fillchar="X")
|
184 |
+
expected = Series(
|
185 |
+
["XXaXX", "XXbXX", np.nan, "XXcXX", np.nan, "eeeeee"], dtype=any_string_dtype
|
186 |
+
)
|
187 |
+
tm.assert_series_equal(result, expected)
|
188 |
+
|
189 |
+
|
190 |
+
def test_pad_fillchar_bad_arg_raises(any_string_dtype):
|
191 |
+
s = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"], dtype=any_string_dtype)
|
192 |
+
|
193 |
+
msg = "fillchar must be a character, not str"
|
194 |
+
with pytest.raises(TypeError, match=msg):
|
195 |
+
s.str.pad(5, fillchar="XY")
|
196 |
+
|
197 |
+
msg = "fillchar must be a character, not int"
|
198 |
+
with pytest.raises(TypeError, match=msg):
|
199 |
+
s.str.pad(5, fillchar=5)
|
200 |
+
|
201 |
+
|
202 |
+
@pytest.mark.parametrize("method_name", ["center", "ljust", "rjust", "zfill", "pad"])
|
203 |
+
def test_pad_width_bad_arg_raises(method_name, any_string_dtype):
|
204 |
+
# see gh-13598
|
205 |
+
s = Series(["1", "22", "a", "bb"], dtype=any_string_dtype)
|
206 |
+
op = operator.methodcaller(method_name, "f")
|
207 |
+
|
208 |
+
msg = "width must be of integer type, not str"
|
209 |
+
with pytest.raises(TypeError, match=msg):
|
210 |
+
op(s.str)
|
211 |
+
|
212 |
+
|
213 |
+
def test_center_ljust_rjust(any_string_dtype):
|
214 |
+
s = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"], dtype=any_string_dtype)
|
215 |
+
|
216 |
+
result = s.str.center(5)
|
217 |
+
expected = Series(
|
218 |
+
[" a ", " b ", np.nan, " c ", np.nan, "eeeeee"], dtype=any_string_dtype
|
219 |
+
)
|
220 |
+
tm.assert_series_equal(result, expected)
|
221 |
+
|
222 |
+
result = s.str.ljust(5)
|
223 |
+
expected = Series(
|
224 |
+
["a ", "b ", np.nan, "c ", np.nan, "eeeeee"], dtype=any_string_dtype
|
225 |
+
)
|
226 |
+
tm.assert_series_equal(result, expected)
|
227 |
+
|
228 |
+
result = s.str.rjust(5)
|
229 |
+
expected = Series(
|
230 |
+
[" a", " b", np.nan, " c", np.nan, "eeeeee"], dtype=any_string_dtype
|
231 |
+
)
|
232 |
+
tm.assert_series_equal(result, expected)
|
233 |
+
|
234 |
+
|
235 |
+
def test_center_ljust_rjust_mixed_object():
|
236 |
+
s = Series(["a", np.nan, "b", True, datetime.today(), "c", "eee", None, 1, 2.0])
|
237 |
+
|
238 |
+
result = s.str.center(5)
|
239 |
+
expected = Series(
|
240 |
+
[
|
241 |
+
" a ",
|
242 |
+
np.nan,
|
243 |
+
" b ",
|
244 |
+
np.nan,
|
245 |
+
np.nan,
|
246 |
+
" c ",
|
247 |
+
" eee ",
|
248 |
+
None,
|
249 |
+
np.nan,
|
250 |
+
np.nan,
|
251 |
+
],
|
252 |
+
dtype=object,
|
253 |
+
)
|
254 |
+
tm.assert_series_equal(result, expected)
|
255 |
+
|
256 |
+
result = s.str.ljust(5)
|
257 |
+
expected = Series(
|
258 |
+
[
|
259 |
+
"a ",
|
260 |
+
np.nan,
|
261 |
+
"b ",
|
262 |
+
np.nan,
|
263 |
+
np.nan,
|
264 |
+
"c ",
|
265 |
+
"eee ",
|
266 |
+
None,
|
267 |
+
np.nan,
|
268 |
+
np.nan,
|
269 |
+
],
|
270 |
+
dtype=object,
|
271 |
+
)
|
272 |
+
tm.assert_series_equal(result, expected)
|
273 |
+
|
274 |
+
result = s.str.rjust(5)
|
275 |
+
expected = Series(
|
276 |
+
[
|
277 |
+
" a",
|
278 |
+
np.nan,
|
279 |
+
" b",
|
280 |
+
np.nan,
|
281 |
+
np.nan,
|
282 |
+
" c",
|
283 |
+
" eee",
|
284 |
+
None,
|
285 |
+
np.nan,
|
286 |
+
np.nan,
|
287 |
+
],
|
288 |
+
dtype=object,
|
289 |
+
)
|
290 |
+
tm.assert_series_equal(result, expected)
|
291 |
+
|
292 |
+
|
293 |
+
def test_center_ljust_rjust_fillchar(any_string_dtype):
|
294 |
+
if any_string_dtype == "string[pyarrow_numpy]":
|
295 |
+
pytest.skip(
|
296 |
+
"Arrow logic is different, "
|
297 |
+
"see https://github.com/pandas-dev/pandas/pull/54533/files#r1299808126",
|
298 |
+
)
|
299 |
+
s = Series(["a", "bb", "cccc", "ddddd", "eeeeee"], dtype=any_string_dtype)
|
300 |
+
|
301 |
+
result = s.str.center(5, fillchar="X")
|
302 |
+
expected = Series(
|
303 |
+
["XXaXX", "XXbbX", "Xcccc", "ddddd", "eeeeee"], dtype=any_string_dtype
|
304 |
+
)
|
305 |
+
tm.assert_series_equal(result, expected)
|
306 |
+
expected = np.array([v.center(5, "X") for v in np.array(s)], dtype=np.object_)
|
307 |
+
tm.assert_numpy_array_equal(np.array(result, dtype=np.object_), expected)
|
308 |
+
|
309 |
+
result = s.str.ljust(5, fillchar="X")
|
310 |
+
expected = Series(
|
311 |
+
["aXXXX", "bbXXX", "ccccX", "ddddd", "eeeeee"], dtype=any_string_dtype
|
312 |
+
)
|
313 |
+
tm.assert_series_equal(result, expected)
|
314 |
+
expected = np.array([v.ljust(5, "X") for v in np.array(s)], dtype=np.object_)
|
315 |
+
tm.assert_numpy_array_equal(np.array(result, dtype=np.object_), expected)
|
316 |
+
|
317 |
+
result = s.str.rjust(5, fillchar="X")
|
318 |
+
expected = Series(
|
319 |
+
["XXXXa", "XXXbb", "Xcccc", "ddddd", "eeeeee"], dtype=any_string_dtype
|
320 |
+
)
|
321 |
+
tm.assert_series_equal(result, expected)
|
322 |
+
expected = np.array([v.rjust(5, "X") for v in np.array(s)], dtype=np.object_)
|
323 |
+
tm.assert_numpy_array_equal(np.array(result, dtype=np.object_), expected)
|
324 |
+
|
325 |
+
|
326 |
+
def test_center_ljust_rjust_fillchar_bad_arg_raises(any_string_dtype):
|
327 |
+
s = Series(["a", "bb", "cccc", "ddddd", "eeeeee"], dtype=any_string_dtype)
|
328 |
+
|
329 |
+
# If fillchar is not a character, normal str raises TypeError
|
330 |
+
# 'aaa'.ljust(5, 'XY')
|
331 |
+
# TypeError: must be char, not str
|
332 |
+
template = "fillchar must be a character, not {dtype}"
|
333 |
+
|
334 |
+
with pytest.raises(TypeError, match=template.format(dtype="str")):
|
335 |
+
s.str.center(5, fillchar="XY")
|
336 |
+
|
337 |
+
with pytest.raises(TypeError, match=template.format(dtype="str")):
|
338 |
+
s.str.ljust(5, fillchar="XY")
|
339 |
+
|
340 |
+
with pytest.raises(TypeError, match=template.format(dtype="str")):
|
341 |
+
s.str.rjust(5, fillchar="XY")
|
342 |
+
|
343 |
+
with pytest.raises(TypeError, match=template.format(dtype="int")):
|
344 |
+
s.str.center(5, fillchar=1)
|
345 |
+
|
346 |
+
with pytest.raises(TypeError, match=template.format(dtype="int")):
|
347 |
+
s.str.ljust(5, fillchar=1)
|
348 |
+
|
349 |
+
with pytest.raises(TypeError, match=template.format(dtype="int")):
|
350 |
+
s.str.rjust(5, fillchar=1)
|
351 |
+
|
352 |
+
|
353 |
+
def test_zfill(any_string_dtype):
|
354 |
+
s = Series(["1", "22", "aaa", "333", "45678"], dtype=any_string_dtype)
|
355 |
+
|
356 |
+
result = s.str.zfill(5)
|
357 |
+
expected = Series(
|
358 |
+
["00001", "00022", "00aaa", "00333", "45678"], dtype=any_string_dtype
|
359 |
+
)
|
360 |
+
tm.assert_series_equal(result, expected)
|
361 |
+
expected = np.array([v.zfill(5) for v in np.array(s)], dtype=np.object_)
|
362 |
+
tm.assert_numpy_array_equal(np.array(result, dtype=np.object_), expected)
|
363 |
+
|
364 |
+
result = s.str.zfill(3)
|
365 |
+
expected = Series(["001", "022", "aaa", "333", "45678"], dtype=any_string_dtype)
|
366 |
+
tm.assert_series_equal(result, expected)
|
367 |
+
expected = np.array([v.zfill(3) for v in np.array(s)], dtype=np.object_)
|
368 |
+
tm.assert_numpy_array_equal(np.array(result, dtype=np.object_), expected)
|
369 |
+
|
370 |
+
s = Series(["1", np.nan, "aaa", np.nan, "45678"], dtype=any_string_dtype)
|
371 |
+
result = s.str.zfill(5)
|
372 |
+
expected = Series(
|
373 |
+
["00001", np.nan, "00aaa", np.nan, "45678"], dtype=any_string_dtype
|
374 |
+
)
|
375 |
+
tm.assert_series_equal(result, expected)
|
376 |
+
|
377 |
+
|
378 |
+
def test_wrap(any_string_dtype):
|
379 |
+
# test values are: two words less than width, two words equal to width,
|
380 |
+
# two words greater than width, one word less than width, one word
|
381 |
+
# equal to width, one word greater than width, multiple tokens with
|
382 |
+
# trailing whitespace equal to width
|
383 |
+
s = Series(
|
384 |
+
[
|
385 |
+
"hello world",
|
386 |
+
"hello world!",
|
387 |
+
"hello world!!",
|
388 |
+
"abcdefabcde",
|
389 |
+
"abcdefabcdef",
|
390 |
+
"abcdefabcdefa",
|
391 |
+
"ab ab ab ab ",
|
392 |
+
"ab ab ab ab a",
|
393 |
+
"\t",
|
394 |
+
],
|
395 |
+
dtype=any_string_dtype,
|
396 |
+
)
|
397 |
+
|
398 |
+
# expected values
|
399 |
+
expected = Series(
|
400 |
+
[
|
401 |
+
"hello world",
|
402 |
+
"hello world!",
|
403 |
+
"hello\nworld!!",
|
404 |
+
"abcdefabcde",
|
405 |
+
"abcdefabcdef",
|
406 |
+
"abcdefabcdef\na",
|
407 |
+
"ab ab ab ab",
|
408 |
+
"ab ab ab ab\na",
|
409 |
+
"",
|
410 |
+
],
|
411 |
+
dtype=any_string_dtype,
|
412 |
+
)
|
413 |
+
|
414 |
+
result = s.str.wrap(12, break_long_words=True)
|
415 |
+
tm.assert_series_equal(result, expected)
|
416 |
+
|
417 |
+
|
418 |
+
def test_wrap_unicode(any_string_dtype):
|
419 |
+
# test with pre and post whitespace (non-unicode), NaN, and non-ascii Unicode
|
420 |
+
s = Series(
|
421 |
+
[" pre ", np.nan, "\xac\u20ac\U00008000 abadcafe"], dtype=any_string_dtype
|
422 |
+
)
|
423 |
+
expected = Series(
|
424 |
+
[" pre", np.nan, "\xac\u20ac\U00008000 ab\nadcafe"], dtype=any_string_dtype
|
425 |
+
)
|
426 |
+
result = s.str.wrap(6)
|
427 |
+
tm.assert_series_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_cat.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas.util._test_decorators as td
|
7 |
+
|
8 |
+
from pandas import (
|
9 |
+
DataFrame,
|
10 |
+
Index,
|
11 |
+
MultiIndex,
|
12 |
+
Series,
|
13 |
+
_testing as tm,
|
14 |
+
concat,
|
15 |
+
option_context,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
@pytest.mark.parametrize("other", [None, Series, Index])
|
20 |
+
def test_str_cat_name(index_or_series, other):
|
21 |
+
# GH 21053
|
22 |
+
box = index_or_series
|
23 |
+
values = ["a", "b"]
|
24 |
+
if other:
|
25 |
+
other = other(values)
|
26 |
+
else:
|
27 |
+
other = values
|
28 |
+
result = box(values, name="name").str.cat(other, sep=",")
|
29 |
+
assert result.name == "name"
|
30 |
+
|
31 |
+
|
32 |
+
@pytest.mark.parametrize(
|
33 |
+
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
|
34 |
+
)
|
35 |
+
def test_str_cat(index_or_series, infer_string):
|
36 |
+
with option_context("future.infer_string", infer_string):
|
37 |
+
box = index_or_series
|
38 |
+
# test_cat above tests "str_cat" from ndarray;
|
39 |
+
# here testing "str.cat" from Series/Index to ndarray/list
|
40 |
+
s = box(["a", "a", "b", "b", "c", np.nan])
|
41 |
+
|
42 |
+
# single array
|
43 |
+
result = s.str.cat()
|
44 |
+
expected = "aabbc"
|
45 |
+
assert result == expected
|
46 |
+
|
47 |
+
result = s.str.cat(na_rep="-")
|
48 |
+
expected = "aabbc-"
|
49 |
+
assert result == expected
|
50 |
+
|
51 |
+
result = s.str.cat(sep="_", na_rep="NA")
|
52 |
+
expected = "a_a_b_b_c_NA"
|
53 |
+
assert result == expected
|
54 |
+
|
55 |
+
t = np.array(["a", np.nan, "b", "d", "foo", np.nan], dtype=object)
|
56 |
+
expected = box(["aa", "a-", "bb", "bd", "cfoo", "--"])
|
57 |
+
|
58 |
+
# Series/Index with array
|
59 |
+
result = s.str.cat(t, na_rep="-")
|
60 |
+
tm.assert_equal(result, expected)
|
61 |
+
|
62 |
+
# Series/Index with list
|
63 |
+
result = s.str.cat(list(t), na_rep="-")
|
64 |
+
tm.assert_equal(result, expected)
|
65 |
+
|
66 |
+
# errors for incorrect lengths
|
67 |
+
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
|
68 |
+
z = Series(["1", "2", "3"])
|
69 |
+
|
70 |
+
with pytest.raises(ValueError, match=rgx):
|
71 |
+
s.str.cat(z.values)
|
72 |
+
|
73 |
+
with pytest.raises(ValueError, match=rgx):
|
74 |
+
s.str.cat(list(z))
|
75 |
+
|
76 |
+
|
77 |
+
def test_str_cat_raises_intuitive_error(index_or_series):
|
78 |
+
# GH 11334
|
79 |
+
box = index_or_series
|
80 |
+
s = box(["a", "b", "c", "d"])
|
81 |
+
message = "Did you mean to supply a `sep` keyword?"
|
82 |
+
with pytest.raises(ValueError, match=message):
|
83 |
+
s.str.cat("|")
|
84 |
+
with pytest.raises(ValueError, match=message):
|
85 |
+
s.str.cat(" ")
|
86 |
+
|
87 |
+
|
88 |
+
@pytest.mark.parametrize(
|
89 |
+
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
|
90 |
+
)
|
91 |
+
@pytest.mark.parametrize("sep", ["", None])
|
92 |
+
@pytest.mark.parametrize("dtype_target", ["object", "category"])
|
93 |
+
@pytest.mark.parametrize("dtype_caller", ["object", "category"])
|
94 |
+
def test_str_cat_categorical(
|
95 |
+
index_or_series, dtype_caller, dtype_target, sep, infer_string
|
96 |
+
):
|
97 |
+
box = index_or_series
|
98 |
+
|
99 |
+
with option_context("future.infer_string", infer_string):
|
100 |
+
s = Index(["a", "a", "b", "a"], dtype=dtype_caller)
|
101 |
+
s = s if box == Index else Series(s, index=s, dtype=s.dtype)
|
102 |
+
t = Index(["b", "a", "b", "c"], dtype=dtype_target)
|
103 |
+
|
104 |
+
expected = Index(
|
105 |
+
["ab", "aa", "bb", "ac"], dtype=object if dtype_caller == "object" else None
|
106 |
+
)
|
107 |
+
expected = (
|
108 |
+
expected
|
109 |
+
if box == Index
|
110 |
+
else Series(
|
111 |
+
expected, index=Index(s, dtype=dtype_caller), dtype=expected.dtype
|
112 |
+
)
|
113 |
+
)
|
114 |
+
|
115 |
+
# Series/Index with unaligned Index -> t.values
|
116 |
+
result = s.str.cat(t.values, sep=sep)
|
117 |
+
tm.assert_equal(result, expected)
|
118 |
+
|
119 |
+
# Series/Index with Series having matching Index
|
120 |
+
t = Series(t.values, index=Index(s, dtype=dtype_caller))
|
121 |
+
result = s.str.cat(t, sep=sep)
|
122 |
+
tm.assert_equal(result, expected)
|
123 |
+
|
124 |
+
# Series/Index with Series.values
|
125 |
+
result = s.str.cat(t.values, sep=sep)
|
126 |
+
tm.assert_equal(result, expected)
|
127 |
+
|
128 |
+
# Series/Index with Series having different Index
|
129 |
+
t = Series(t.values, index=t.values)
|
130 |
+
expected = Index(
|
131 |
+
["aa", "aa", "bb", "bb", "aa"],
|
132 |
+
dtype=object if dtype_caller == "object" else None,
|
133 |
+
)
|
134 |
+
dtype = object if dtype_caller == "object" else s.dtype.categories.dtype
|
135 |
+
expected = (
|
136 |
+
expected
|
137 |
+
if box == Index
|
138 |
+
else Series(
|
139 |
+
expected,
|
140 |
+
index=Index(expected.str[:1], dtype=dtype),
|
141 |
+
dtype=expected.dtype,
|
142 |
+
)
|
143 |
+
)
|
144 |
+
|
145 |
+
result = s.str.cat(t, sep=sep)
|
146 |
+
tm.assert_equal(result, expected)
|
147 |
+
|
148 |
+
|
149 |
+
@pytest.mark.parametrize(
|
150 |
+
"data",
|
151 |
+
[[1, 2, 3], [0.1, 0.2, 0.3], [1, 2, "b"]],
|
152 |
+
ids=["integers", "floats", "mixed"],
|
153 |
+
)
|
154 |
+
# without dtype=object, np.array would cast [1, 2, 'b'] to ['1', '2', 'b']
|
155 |
+
@pytest.mark.parametrize(
|
156 |
+
"box",
|
157 |
+
[Series, Index, list, lambda x: np.array(x, dtype=object)],
|
158 |
+
ids=["Series", "Index", "list", "np.array"],
|
159 |
+
)
|
160 |
+
def test_str_cat_wrong_dtype_raises(box, data):
|
161 |
+
# GH 22722
|
162 |
+
s = Series(["a", "b", "c"])
|
163 |
+
t = box(data)
|
164 |
+
|
165 |
+
msg = "Concatenation requires list-likes containing only strings.*"
|
166 |
+
with pytest.raises(TypeError, match=msg):
|
167 |
+
# need to use outer and na_rep, as otherwise Index would not raise
|
168 |
+
s.str.cat(t, join="outer", na_rep="-")
|
169 |
+
|
170 |
+
|
171 |
+
def test_str_cat_mixed_inputs(index_or_series):
|
172 |
+
box = index_or_series
|
173 |
+
s = Index(["a", "b", "c", "d"])
|
174 |
+
s = s if box == Index else Series(s, index=s)
|
175 |
+
|
176 |
+
t = Series(["A", "B", "C", "D"], index=s.values)
|
177 |
+
d = concat([t, Series(s, index=s)], axis=1)
|
178 |
+
|
179 |
+
expected = Index(["aAa", "bBb", "cCc", "dDd"])
|
180 |
+
expected = expected if box == Index else Series(expected.values, index=s.values)
|
181 |
+
|
182 |
+
# Series/Index with DataFrame
|
183 |
+
result = s.str.cat(d)
|
184 |
+
tm.assert_equal(result, expected)
|
185 |
+
|
186 |
+
# Series/Index with two-dimensional ndarray
|
187 |
+
result = s.str.cat(d.values)
|
188 |
+
tm.assert_equal(result, expected)
|
189 |
+
|
190 |
+
# Series/Index with list of Series
|
191 |
+
result = s.str.cat([t, s])
|
192 |
+
tm.assert_equal(result, expected)
|
193 |
+
|
194 |
+
# Series/Index with mixed list of Series/array
|
195 |
+
result = s.str.cat([t, s.values])
|
196 |
+
tm.assert_equal(result, expected)
|
197 |
+
|
198 |
+
# Series/Index with list of Series; different indexes
|
199 |
+
t.index = ["b", "c", "d", "a"]
|
200 |
+
expected = box(["aDa", "bAb", "cBc", "dCd"])
|
201 |
+
expected = expected if box == Index else Series(expected.values, index=s.values)
|
202 |
+
result = s.str.cat([t, s])
|
203 |
+
tm.assert_equal(result, expected)
|
204 |
+
|
205 |
+
# Series/Index with mixed list; different index
|
206 |
+
result = s.str.cat([t, s.values])
|
207 |
+
tm.assert_equal(result, expected)
|
208 |
+
|
209 |
+
# Series/Index with DataFrame; different indexes
|
210 |
+
d.index = ["b", "c", "d", "a"]
|
211 |
+
expected = box(["aDd", "bAa", "cBb", "dCc"])
|
212 |
+
expected = expected if box == Index else Series(expected.values, index=s.values)
|
213 |
+
result = s.str.cat(d)
|
214 |
+
tm.assert_equal(result, expected)
|
215 |
+
|
216 |
+
# errors for incorrect lengths
|
217 |
+
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
|
218 |
+
z = Series(["1", "2", "3"])
|
219 |
+
e = concat([z, z], axis=1)
|
220 |
+
|
221 |
+
# two-dimensional ndarray
|
222 |
+
with pytest.raises(ValueError, match=rgx):
|
223 |
+
s.str.cat(e.values)
|
224 |
+
|
225 |
+
# list of list-likes
|
226 |
+
with pytest.raises(ValueError, match=rgx):
|
227 |
+
s.str.cat([z.values, s.values])
|
228 |
+
|
229 |
+
# mixed list of Series/list-like
|
230 |
+
with pytest.raises(ValueError, match=rgx):
|
231 |
+
s.str.cat([z.values, s])
|
232 |
+
|
233 |
+
# errors for incorrect arguments in list-like
|
234 |
+
rgx = "others must be Series, Index, DataFrame,.*"
|
235 |
+
# make sure None/NaN do not crash checks in _get_series_list
|
236 |
+
u = Series(["a", np.nan, "c", None])
|
237 |
+
|
238 |
+
# mix of string and Series
|
239 |
+
with pytest.raises(TypeError, match=rgx):
|
240 |
+
s.str.cat([u, "u"])
|
241 |
+
|
242 |
+
# DataFrame in list
|
243 |
+
with pytest.raises(TypeError, match=rgx):
|
244 |
+
s.str.cat([u, d])
|
245 |
+
|
246 |
+
# 2-dim ndarray in list
|
247 |
+
with pytest.raises(TypeError, match=rgx):
|
248 |
+
s.str.cat([u, d.values])
|
249 |
+
|
250 |
+
# nested lists
|
251 |
+
with pytest.raises(TypeError, match=rgx):
|
252 |
+
s.str.cat([u, [u, d]])
|
253 |
+
|
254 |
+
# forbidden input type: set
|
255 |
+
# GH 23009
|
256 |
+
with pytest.raises(TypeError, match=rgx):
|
257 |
+
s.str.cat(set(u))
|
258 |
+
|
259 |
+
# forbidden input type: set in list
|
260 |
+
# GH 23009
|
261 |
+
with pytest.raises(TypeError, match=rgx):
|
262 |
+
s.str.cat([u, set(u)])
|
263 |
+
|
264 |
+
# other forbidden input type, e.g. int
|
265 |
+
with pytest.raises(TypeError, match=rgx):
|
266 |
+
s.str.cat(1)
|
267 |
+
|
268 |
+
# nested list-likes
|
269 |
+
with pytest.raises(TypeError, match=rgx):
|
270 |
+
s.str.cat(iter([t.values, list(s)]))
|
271 |
+
|
272 |
+
|
273 |
+
@pytest.mark.parametrize("join", ["left", "outer", "inner", "right"])
|
274 |
+
def test_str_cat_align_indexed(index_or_series, join):
|
275 |
+
# https://github.com/pandas-dev/pandas/issues/18657
|
276 |
+
box = index_or_series
|
277 |
+
|
278 |
+
s = Series(["a", "b", "c", "d"], index=["a", "b", "c", "d"])
|
279 |
+
t = Series(["D", "A", "E", "B"], index=["d", "a", "e", "b"])
|
280 |
+
sa, ta = s.align(t, join=join)
|
281 |
+
# result after manual alignment of inputs
|
282 |
+
expected = sa.str.cat(ta, na_rep="-")
|
283 |
+
|
284 |
+
if box == Index:
|
285 |
+
s = Index(s)
|
286 |
+
sa = Index(sa)
|
287 |
+
expected = Index(expected)
|
288 |
+
|
289 |
+
result = s.str.cat(t, join=join, na_rep="-")
|
290 |
+
tm.assert_equal(result, expected)
|
291 |
+
|
292 |
+
|
293 |
+
@pytest.mark.parametrize("join", ["left", "outer", "inner", "right"])
|
294 |
+
def test_str_cat_align_mixed_inputs(join):
|
295 |
+
s = Series(["a", "b", "c", "d"])
|
296 |
+
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1])
|
297 |
+
d = concat([t, t], axis=1)
|
298 |
+
|
299 |
+
expected_outer = Series(["aaa", "bbb", "c--", "ddd", "-ee"])
|
300 |
+
expected = expected_outer.loc[s.index.join(t.index, how=join)]
|
301 |
+
|
302 |
+
# list of Series
|
303 |
+
result = s.str.cat([t, t], join=join, na_rep="-")
|
304 |
+
tm.assert_series_equal(result, expected)
|
305 |
+
|
306 |
+
# DataFrame
|
307 |
+
result = s.str.cat(d, join=join, na_rep="-")
|
308 |
+
tm.assert_series_equal(result, expected)
|
309 |
+
|
310 |
+
# mixed list of indexed/unindexed
|
311 |
+
u = np.array(["A", "B", "C", "D"])
|
312 |
+
expected_outer = Series(["aaA", "bbB", "c-C", "ddD", "-e-"])
|
313 |
+
# joint index of rhs [t, u]; u will be forced have index of s
|
314 |
+
rhs_idx = (
|
315 |
+
t.index.intersection(s.index)
|
316 |
+
if join == "inner"
|
317 |
+
else t.index.union(s.index)
|
318 |
+
if join == "outer"
|
319 |
+
else t.index.append(s.index.difference(t.index))
|
320 |
+
)
|
321 |
+
|
322 |
+
expected = expected_outer.loc[s.index.join(rhs_idx, how=join)]
|
323 |
+
result = s.str.cat([t, u], join=join, na_rep="-")
|
324 |
+
tm.assert_series_equal(result, expected)
|
325 |
+
|
326 |
+
with pytest.raises(TypeError, match="others must be Series,.*"):
|
327 |
+
# nested lists are forbidden
|
328 |
+
s.str.cat([t, list(u)], join=join)
|
329 |
+
|
330 |
+
# errors for incorrect lengths
|
331 |
+
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
|
332 |
+
z = Series(["1", "2", "3"]).values
|
333 |
+
|
334 |
+
# unindexed object of wrong length
|
335 |
+
with pytest.raises(ValueError, match=rgx):
|
336 |
+
s.str.cat(z, join=join)
|
337 |
+
|
338 |
+
# unindexed object of wrong length in list
|
339 |
+
with pytest.raises(ValueError, match=rgx):
|
340 |
+
s.str.cat([t, z], join=join)
|
341 |
+
|
342 |
+
|
343 |
+
def test_str_cat_all_na(index_or_series, index_or_series2):
|
344 |
+
# GH 24044
|
345 |
+
box = index_or_series
|
346 |
+
other = index_or_series2
|
347 |
+
|
348 |
+
# check that all NaNs in caller / target work
|
349 |
+
s = Index(["a", "b", "c", "d"])
|
350 |
+
s = s if box == Index else Series(s, index=s)
|
351 |
+
t = other([np.nan] * 4, dtype=object)
|
352 |
+
# add index of s for alignment
|
353 |
+
t = t if other == Index else Series(t, index=s)
|
354 |
+
|
355 |
+
# all-NA target
|
356 |
+
if box == Series:
|
357 |
+
expected = Series([np.nan] * 4, index=s.index, dtype=s.dtype)
|
358 |
+
else: # box == Index
|
359 |
+
# TODO: Strimg option, this should return string dtype
|
360 |
+
expected = Index([np.nan] * 4, dtype=object)
|
361 |
+
result = s.str.cat(t, join="left")
|
362 |
+
tm.assert_equal(result, expected)
|
363 |
+
|
364 |
+
# all-NA caller (only for Series)
|
365 |
+
if other == Series:
|
366 |
+
expected = Series([np.nan] * 4, dtype=object, index=t.index)
|
367 |
+
result = t.str.cat(s, join="left")
|
368 |
+
tm.assert_series_equal(result, expected)
|
369 |
+
|
370 |
+
|
371 |
+
def test_str_cat_special_cases():
|
372 |
+
s = Series(["a", "b", "c", "d"])
|
373 |
+
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1])
|
374 |
+
|
375 |
+
# iterator of elements with different types
|
376 |
+
expected = Series(["aaa", "bbb", "c-c", "ddd", "-e-"])
|
377 |
+
result = s.str.cat(iter([t, s.values]), join="outer", na_rep="-")
|
378 |
+
tm.assert_series_equal(result, expected)
|
379 |
+
|
380 |
+
# right-align with different indexes in others
|
381 |
+
expected = Series(["aa-", "d-d"], index=[0, 3])
|
382 |
+
result = s.str.cat([t.loc[[0]], t.loc[[3]]], join="right", na_rep="-")
|
383 |
+
tm.assert_series_equal(result, expected)
|
384 |
+
|
385 |
+
|
386 |
+
def test_cat_on_filtered_index():
|
387 |
+
df = DataFrame(
|
388 |
+
index=MultiIndex.from_product(
|
389 |
+
[[2011, 2012], [1, 2, 3]], names=["year", "month"]
|
390 |
+
)
|
391 |
+
)
|
392 |
+
|
393 |
+
df = df.reset_index()
|
394 |
+
df = df[df.month > 1]
|
395 |
+
|
396 |
+
str_year = df.year.astype("str")
|
397 |
+
str_month = df.month.astype("str")
|
398 |
+
str_both = str_year.str.cat(str_month, sep=" ")
|
399 |
+
|
400 |
+
assert str_both.loc[1] == "2011 2"
|
401 |
+
|
402 |
+
str_multiple = str_year.str.cat([str_month, str_month], sep=" ")
|
403 |
+
|
404 |
+
assert str_multiple.loc[1] == "2011 2 2"
|
405 |
+
|
406 |
+
|
407 |
+
@pytest.mark.parametrize("klass", [tuple, list, np.array, Series, Index])
|
408 |
+
def test_cat_different_classes(klass):
|
409 |
+
# https://github.com/pandas-dev/pandas/issues/33425
|
410 |
+
s = Series(["a", "b", "c"])
|
411 |
+
result = s.str.cat(klass(["x", "y", "z"]))
|
412 |
+
expected = Series(["ax", "by", "cz"])
|
413 |
+
tm.assert_series_equal(result, expected)
|
414 |
+
|
415 |
+
|
416 |
+
def test_cat_on_series_dot_str():
|
417 |
+
# GH 28277
|
418 |
+
ps = Series(["AbC", "de", "FGHI", "j", "kLLLm"])
|
419 |
+
|
420 |
+
message = re.escape(
|
421 |
+
"others must be Series, Index, DataFrame, np.ndarray "
|
422 |
+
"or list-like (either containing only strings or "
|
423 |
+
"containing only objects of type Series/Index/"
|
424 |
+
"np.ndarray[1-dim])"
|
425 |
+
)
|
426 |
+
with pytest.raises(TypeError, match=message):
|
427 |
+
ps.str.cat(others=ps.str)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_extract.py
ADDED
@@ -0,0 +1,724 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
import re
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from pandas.core.dtypes.dtypes import ArrowDtype
|
8 |
+
|
9 |
+
from pandas import (
|
10 |
+
DataFrame,
|
11 |
+
Index,
|
12 |
+
MultiIndex,
|
13 |
+
Series,
|
14 |
+
_testing as tm,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def test_extract_expand_kwarg_wrong_type_raises(any_string_dtype):
|
19 |
+
# TODO: should this raise TypeError
|
20 |
+
values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
|
21 |
+
with pytest.raises(ValueError, match="expand must be True or False"):
|
22 |
+
values.str.extract(".*(BAD[_]+).*(BAD)", expand=None)
|
23 |
+
|
24 |
+
|
25 |
+
def test_extract_expand_kwarg(any_string_dtype):
|
26 |
+
s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
|
27 |
+
expected = DataFrame(["BAD__", np.nan, np.nan], dtype=any_string_dtype)
|
28 |
+
|
29 |
+
result = s.str.extract(".*(BAD[_]+).*")
|
30 |
+
tm.assert_frame_equal(result, expected)
|
31 |
+
|
32 |
+
result = s.str.extract(".*(BAD[_]+).*", expand=True)
|
33 |
+
tm.assert_frame_equal(result, expected)
|
34 |
+
|
35 |
+
expected = DataFrame(
|
36 |
+
[["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
|
37 |
+
)
|
38 |
+
result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
|
39 |
+
tm.assert_frame_equal(result, expected)
|
40 |
+
|
41 |
+
|
42 |
+
def test_extract_expand_False_mixed_object():
|
43 |
+
ser = Series(
|
44 |
+
["aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0]
|
45 |
+
)
|
46 |
+
|
47 |
+
# two groups
|
48 |
+
result = ser.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
|
49 |
+
er = [np.nan, np.nan] # empty row
|
50 |
+
expected = DataFrame(
|
51 |
+
[["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object
|
52 |
+
)
|
53 |
+
tm.assert_frame_equal(result, expected)
|
54 |
+
|
55 |
+
# single group
|
56 |
+
result = ser.str.extract(".*(BAD[_]+).*BAD", expand=False)
|
57 |
+
expected = Series(
|
58 |
+
["BAD_", np.nan, "BAD_", np.nan, np.nan, np.nan, None, np.nan, np.nan],
|
59 |
+
dtype=object,
|
60 |
+
)
|
61 |
+
tm.assert_series_equal(result, expected)
|
62 |
+
|
63 |
+
|
64 |
+
def test_extract_expand_index_raises():
|
65 |
+
# GH9980
|
66 |
+
# Index only works with one regex group since
|
67 |
+
# multi-group would expand to a frame
|
68 |
+
idx = Index(["A1", "A2", "A3", "A4", "B5"])
|
69 |
+
msg = "only one regex group is supported with Index"
|
70 |
+
with pytest.raises(ValueError, match=msg):
|
71 |
+
idx.str.extract("([AB])([123])", expand=False)
|
72 |
+
|
73 |
+
|
74 |
+
def test_extract_expand_no_capture_groups_raises(index_or_series, any_string_dtype):
|
75 |
+
s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype)
|
76 |
+
msg = "pattern contains no capture groups"
|
77 |
+
|
78 |
+
# no groups
|
79 |
+
with pytest.raises(ValueError, match=msg):
|
80 |
+
s_or_idx.str.extract("[ABC][123]", expand=False)
|
81 |
+
|
82 |
+
# only non-capturing groups
|
83 |
+
with pytest.raises(ValueError, match=msg):
|
84 |
+
s_or_idx.str.extract("(?:[AB]).*", expand=False)
|
85 |
+
|
86 |
+
|
87 |
+
def test_extract_expand_single_capture_group(index_or_series, any_string_dtype):
|
88 |
+
# single group renames series/index properly
|
89 |
+
s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype)
|
90 |
+
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False)
|
91 |
+
|
92 |
+
expected = index_or_series(["A", "A"], name="uno", dtype=any_string_dtype)
|
93 |
+
if index_or_series == Series:
|
94 |
+
tm.assert_series_equal(result, expected)
|
95 |
+
else:
|
96 |
+
tm.assert_index_equal(result, expected)
|
97 |
+
|
98 |
+
|
99 |
+
def test_extract_expand_capture_groups(any_string_dtype):
|
100 |
+
s = Series(["A1", "B2", "C3"], dtype=any_string_dtype)
|
101 |
+
# one group, no matches
|
102 |
+
result = s.str.extract("(_)", expand=False)
|
103 |
+
expected = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype)
|
104 |
+
tm.assert_series_equal(result, expected)
|
105 |
+
|
106 |
+
# two groups, no matches
|
107 |
+
result = s.str.extract("(_)(_)", expand=False)
|
108 |
+
expected = DataFrame(
|
109 |
+
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
|
110 |
+
)
|
111 |
+
tm.assert_frame_equal(result, expected)
|
112 |
+
|
113 |
+
# one group, some matches
|
114 |
+
result = s.str.extract("([AB])[123]", expand=False)
|
115 |
+
expected = Series(["A", "B", np.nan], dtype=any_string_dtype)
|
116 |
+
tm.assert_series_equal(result, expected)
|
117 |
+
|
118 |
+
# two groups, some matches
|
119 |
+
result = s.str.extract("([AB])([123])", expand=False)
|
120 |
+
expected = DataFrame(
|
121 |
+
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
|
122 |
+
)
|
123 |
+
tm.assert_frame_equal(result, expected)
|
124 |
+
|
125 |
+
# one named group
|
126 |
+
result = s.str.extract("(?P<letter>[AB])", expand=False)
|
127 |
+
expected = Series(["A", "B", np.nan], name="letter", dtype=any_string_dtype)
|
128 |
+
tm.assert_series_equal(result, expected)
|
129 |
+
|
130 |
+
# two named groups
|
131 |
+
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False)
|
132 |
+
expected = DataFrame(
|
133 |
+
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
|
134 |
+
columns=["letter", "number"],
|
135 |
+
dtype=any_string_dtype,
|
136 |
+
)
|
137 |
+
tm.assert_frame_equal(result, expected)
|
138 |
+
|
139 |
+
# mix named and unnamed groups
|
140 |
+
result = s.str.extract("([AB])(?P<number>[123])", expand=False)
|
141 |
+
expected = DataFrame(
|
142 |
+
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
|
143 |
+
columns=[0, "number"],
|
144 |
+
dtype=any_string_dtype,
|
145 |
+
)
|
146 |
+
tm.assert_frame_equal(result, expected)
|
147 |
+
|
148 |
+
# one normal group, one non-capturing group
|
149 |
+
result = s.str.extract("([AB])(?:[123])", expand=False)
|
150 |
+
expected = Series(["A", "B", np.nan], dtype=any_string_dtype)
|
151 |
+
tm.assert_series_equal(result, expected)
|
152 |
+
|
153 |
+
# two normal groups, one non-capturing group
|
154 |
+
s = Series(["A11", "B22", "C33"], dtype=any_string_dtype)
|
155 |
+
result = s.str.extract("([AB])([123])(?:[123])", expand=False)
|
156 |
+
expected = DataFrame(
|
157 |
+
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
|
158 |
+
)
|
159 |
+
tm.assert_frame_equal(result, expected)
|
160 |
+
|
161 |
+
# one optional group followed by one normal group
|
162 |
+
s = Series(["A1", "B2", "3"], dtype=any_string_dtype)
|
163 |
+
result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=False)
|
164 |
+
expected = DataFrame(
|
165 |
+
[["A", "1"], ["B", "2"], [np.nan, "3"]],
|
166 |
+
columns=["letter", "number"],
|
167 |
+
dtype=any_string_dtype,
|
168 |
+
)
|
169 |
+
tm.assert_frame_equal(result, expected)
|
170 |
+
|
171 |
+
# one normal group followed by one optional group
|
172 |
+
s = Series(["A1", "B2", "C"], dtype=any_string_dtype)
|
173 |
+
result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=False)
|
174 |
+
expected = DataFrame(
|
175 |
+
[["A", "1"], ["B", "2"], ["C", np.nan]],
|
176 |
+
columns=["letter", "number"],
|
177 |
+
dtype=any_string_dtype,
|
178 |
+
)
|
179 |
+
tm.assert_frame_equal(result, expected)
|
180 |
+
|
181 |
+
|
182 |
+
def test_extract_expand_capture_groups_index(index, any_string_dtype):
|
183 |
+
# https://github.com/pandas-dev/pandas/issues/6348
|
184 |
+
# not passing index to the extractor
|
185 |
+
data = ["A1", "B2", "C"]
|
186 |
+
|
187 |
+
if len(index) == 0:
|
188 |
+
pytest.skip("Test requires len(index) > 0")
|
189 |
+
while len(index) < len(data):
|
190 |
+
index = index.repeat(2)
|
191 |
+
|
192 |
+
index = index[: len(data)]
|
193 |
+
ser = Series(data, index=index, dtype=any_string_dtype)
|
194 |
+
|
195 |
+
result = ser.str.extract(r"(\d)", expand=False)
|
196 |
+
expected = Series(["1", "2", np.nan], index=index, dtype=any_string_dtype)
|
197 |
+
tm.assert_series_equal(result, expected)
|
198 |
+
|
199 |
+
result = ser.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=False)
|
200 |
+
expected = DataFrame(
|
201 |
+
[["A", "1"], ["B", "2"], ["C", np.nan]],
|
202 |
+
columns=["letter", "number"],
|
203 |
+
index=index,
|
204 |
+
dtype=any_string_dtype,
|
205 |
+
)
|
206 |
+
tm.assert_frame_equal(result, expected)
|
207 |
+
|
208 |
+
|
209 |
+
def test_extract_single_series_name_is_preserved(any_string_dtype):
|
210 |
+
s = Series(["a3", "b3", "c2"], name="bob", dtype=any_string_dtype)
|
211 |
+
result = s.str.extract(r"(?P<sue>[a-z])", expand=False)
|
212 |
+
expected = Series(["a", "b", "c"], name="sue", dtype=any_string_dtype)
|
213 |
+
tm.assert_series_equal(result, expected)
|
214 |
+
|
215 |
+
|
216 |
+
def test_extract_expand_True(any_string_dtype):
|
217 |
+
# Contains tests like those in test_match and some others.
|
218 |
+
s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
|
219 |
+
|
220 |
+
result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=True)
|
221 |
+
expected = DataFrame(
|
222 |
+
[["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
|
223 |
+
)
|
224 |
+
tm.assert_frame_equal(result, expected)
|
225 |
+
|
226 |
+
|
227 |
+
def test_extract_expand_True_mixed_object():
|
228 |
+
er = [np.nan, np.nan] # empty row
|
229 |
+
mixed = Series(
|
230 |
+
[
|
231 |
+
"aBAD_BAD",
|
232 |
+
np.nan,
|
233 |
+
"BAD_b_BAD",
|
234 |
+
True,
|
235 |
+
datetime.today(),
|
236 |
+
"foo",
|
237 |
+
None,
|
238 |
+
1,
|
239 |
+
2.0,
|
240 |
+
]
|
241 |
+
)
|
242 |
+
|
243 |
+
result = mixed.str.extract(".*(BAD[_]+).*(BAD)", expand=True)
|
244 |
+
expected = DataFrame(
|
245 |
+
[["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object
|
246 |
+
)
|
247 |
+
tm.assert_frame_equal(result, expected)
|
248 |
+
|
249 |
+
|
250 |
+
def test_extract_expand_True_single_capture_group_raises(
|
251 |
+
index_or_series, any_string_dtype
|
252 |
+
):
|
253 |
+
# these should work for both Series and Index
|
254 |
+
# no groups
|
255 |
+
s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype)
|
256 |
+
msg = "pattern contains no capture groups"
|
257 |
+
with pytest.raises(ValueError, match=msg):
|
258 |
+
s_or_idx.str.extract("[ABC][123]", expand=True)
|
259 |
+
|
260 |
+
# only non-capturing groups
|
261 |
+
with pytest.raises(ValueError, match=msg):
|
262 |
+
s_or_idx.str.extract("(?:[AB]).*", expand=True)
|
263 |
+
|
264 |
+
|
265 |
+
def test_extract_expand_True_single_capture_group(index_or_series, any_string_dtype):
|
266 |
+
# single group renames series/index properly
|
267 |
+
s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype)
|
268 |
+
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True)
|
269 |
+
expected = DataFrame({"uno": ["A", "A"]}, dtype=any_string_dtype)
|
270 |
+
tm.assert_frame_equal(result, expected)
|
271 |
+
|
272 |
+
|
273 |
+
@pytest.mark.parametrize("name", [None, "series_name"])
|
274 |
+
def test_extract_series(name, any_string_dtype):
|
275 |
+
# extract should give the same result whether or not the series has a name.
|
276 |
+
s = Series(["A1", "B2", "C3"], name=name, dtype=any_string_dtype)
|
277 |
+
|
278 |
+
# one group, no matches
|
279 |
+
result = s.str.extract("(_)", expand=True)
|
280 |
+
expected = DataFrame([np.nan, np.nan, np.nan], dtype=any_string_dtype)
|
281 |
+
tm.assert_frame_equal(result, expected)
|
282 |
+
|
283 |
+
# two groups, no matches
|
284 |
+
result = s.str.extract("(_)(_)", expand=True)
|
285 |
+
expected = DataFrame(
|
286 |
+
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
|
287 |
+
)
|
288 |
+
tm.assert_frame_equal(result, expected)
|
289 |
+
|
290 |
+
# one group, some matches
|
291 |
+
result = s.str.extract("([AB])[123]", expand=True)
|
292 |
+
expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype)
|
293 |
+
tm.assert_frame_equal(result, expected)
|
294 |
+
|
295 |
+
# two groups, some matches
|
296 |
+
result = s.str.extract("([AB])([123])", expand=True)
|
297 |
+
expected = DataFrame(
|
298 |
+
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
|
299 |
+
)
|
300 |
+
tm.assert_frame_equal(result, expected)
|
301 |
+
|
302 |
+
# one named group
|
303 |
+
result = s.str.extract("(?P<letter>[AB])", expand=True)
|
304 |
+
expected = DataFrame({"letter": ["A", "B", np.nan]}, dtype=any_string_dtype)
|
305 |
+
tm.assert_frame_equal(result, expected)
|
306 |
+
|
307 |
+
# two named groups
|
308 |
+
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True)
|
309 |
+
expected = DataFrame(
|
310 |
+
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
|
311 |
+
columns=["letter", "number"],
|
312 |
+
dtype=any_string_dtype,
|
313 |
+
)
|
314 |
+
tm.assert_frame_equal(result, expected)
|
315 |
+
|
316 |
+
# mix named and unnamed groups
|
317 |
+
result = s.str.extract("([AB])(?P<number>[123])", expand=True)
|
318 |
+
expected = DataFrame(
|
319 |
+
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
|
320 |
+
columns=[0, "number"],
|
321 |
+
dtype=any_string_dtype,
|
322 |
+
)
|
323 |
+
tm.assert_frame_equal(result, expected)
|
324 |
+
|
325 |
+
# one normal group, one non-capturing group
|
326 |
+
result = s.str.extract("([AB])(?:[123])", expand=True)
|
327 |
+
expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype)
|
328 |
+
tm.assert_frame_equal(result, expected)
|
329 |
+
|
330 |
+
|
331 |
+
def test_extract_optional_groups(any_string_dtype):
|
332 |
+
# two normal groups, one non-capturing group
|
333 |
+
s = Series(["A11", "B22", "C33"], dtype=any_string_dtype)
|
334 |
+
result = s.str.extract("([AB])([123])(?:[123])", expand=True)
|
335 |
+
expected = DataFrame(
|
336 |
+
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
|
337 |
+
)
|
338 |
+
tm.assert_frame_equal(result, expected)
|
339 |
+
|
340 |
+
# one optional group followed by one normal group
|
341 |
+
s = Series(["A1", "B2", "3"], dtype=any_string_dtype)
|
342 |
+
result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=True)
|
343 |
+
expected = DataFrame(
|
344 |
+
[["A", "1"], ["B", "2"], [np.nan, "3"]],
|
345 |
+
columns=["letter", "number"],
|
346 |
+
dtype=any_string_dtype,
|
347 |
+
)
|
348 |
+
tm.assert_frame_equal(result, expected)
|
349 |
+
|
350 |
+
# one normal group followed by one optional group
|
351 |
+
s = Series(["A1", "B2", "C"], dtype=any_string_dtype)
|
352 |
+
result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=True)
|
353 |
+
expected = DataFrame(
|
354 |
+
[["A", "1"], ["B", "2"], ["C", np.nan]],
|
355 |
+
columns=["letter", "number"],
|
356 |
+
dtype=any_string_dtype,
|
357 |
+
)
|
358 |
+
tm.assert_frame_equal(result, expected)
|
359 |
+
|
360 |
+
|
361 |
+
def test_extract_dataframe_capture_groups_index(index, any_string_dtype):
|
362 |
+
# GH6348
|
363 |
+
# not passing index to the extractor
|
364 |
+
|
365 |
+
data = ["A1", "B2", "C"]
|
366 |
+
|
367 |
+
if len(index) < len(data):
|
368 |
+
pytest.skip(f"Index needs more than {len(data)} values")
|
369 |
+
|
370 |
+
index = index[: len(data)]
|
371 |
+
s = Series(data, index=index, dtype=any_string_dtype)
|
372 |
+
|
373 |
+
result = s.str.extract(r"(\d)", expand=True)
|
374 |
+
expected = DataFrame(["1", "2", np.nan], index=index, dtype=any_string_dtype)
|
375 |
+
tm.assert_frame_equal(result, expected)
|
376 |
+
|
377 |
+
result = s.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=True)
|
378 |
+
expected = DataFrame(
|
379 |
+
[["A", "1"], ["B", "2"], ["C", np.nan]],
|
380 |
+
columns=["letter", "number"],
|
381 |
+
index=index,
|
382 |
+
dtype=any_string_dtype,
|
383 |
+
)
|
384 |
+
tm.assert_frame_equal(result, expected)
|
385 |
+
|
386 |
+
|
387 |
+
def test_extract_single_group_returns_frame(any_string_dtype):
|
388 |
+
# GH11386 extract should always return DataFrame, even when
|
389 |
+
# there is only one group. Prior to v0.18.0, extract returned
|
390 |
+
# Series when there was only one group in the regex.
|
391 |
+
s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype)
|
392 |
+
result = s.str.extract(r"(?P<letter>[a-z])", expand=True)
|
393 |
+
expected = DataFrame({"letter": ["a", "b", "c"]}, dtype=any_string_dtype)
|
394 |
+
tm.assert_frame_equal(result, expected)
|
395 |
+
|
396 |
+
|
397 |
+
def test_extractall(any_string_dtype):
|
398 |
+
data = [
|
399 |
+
"[email protected]",
|
400 |
+
"[email protected]",
|
401 |
+
"[email protected]",
|
402 |
+
"[email protected] some text [email protected]",
|
403 |
+
"[email protected] some text [email protected] and [email protected]",
|
404 |
+
np.nan,
|
405 |
+
"",
|
406 |
+
]
|
407 |
+
expected_tuples = [
|
408 |
+
("dave", "google", "com"),
|
409 |
+
("tdhock5", "gmail", "com"),
|
410 |
+
("maudelaperriere", "gmail", "com"),
|
411 |
+
("rob", "gmail", "com"),
|
412 |
+
("steve", "gmail", "com"),
|
413 |
+
("a", "b", "com"),
|
414 |
+
("c", "d", "com"),
|
415 |
+
("e", "f", "com"),
|
416 |
+
]
|
417 |
+
pat = r"""
|
418 |
+
(?P<user>[a-z0-9]+)
|
419 |
+
@
|
420 |
+
(?P<domain>[a-z]+)
|
421 |
+
\.
|
422 |
+
(?P<tld>[a-z]{2,4})
|
423 |
+
"""
|
424 |
+
expected_columns = ["user", "domain", "tld"]
|
425 |
+
s = Series(data, dtype=any_string_dtype)
|
426 |
+
# extractall should return a DataFrame with one row for each match, indexed by the
|
427 |
+
# subject from which the match came.
|
428 |
+
expected_index = MultiIndex.from_tuples(
|
429 |
+
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2)],
|
430 |
+
names=(None, "match"),
|
431 |
+
)
|
432 |
+
expected = DataFrame(
|
433 |
+
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
|
434 |
+
)
|
435 |
+
result = s.str.extractall(pat, flags=re.VERBOSE)
|
436 |
+
tm.assert_frame_equal(result, expected)
|
437 |
+
|
438 |
+
# The index of the input Series should be used to construct the index of the output
|
439 |
+
# DataFrame:
|
440 |
+
mi = MultiIndex.from_tuples(
|
441 |
+
[
|
442 |
+
("single", "Dave"),
|
443 |
+
("single", "Toby"),
|
444 |
+
("single", "Maude"),
|
445 |
+
("multiple", "robAndSteve"),
|
446 |
+
("multiple", "abcdef"),
|
447 |
+
("none", "missing"),
|
448 |
+
("none", "empty"),
|
449 |
+
]
|
450 |
+
)
|
451 |
+
s = Series(data, index=mi, dtype=any_string_dtype)
|
452 |
+
expected_index = MultiIndex.from_tuples(
|
453 |
+
[
|
454 |
+
("single", "Dave", 0),
|
455 |
+
("single", "Toby", 0),
|
456 |
+
("single", "Maude", 0),
|
457 |
+
("multiple", "robAndSteve", 0),
|
458 |
+
("multiple", "robAndSteve", 1),
|
459 |
+
("multiple", "abcdef", 0),
|
460 |
+
("multiple", "abcdef", 1),
|
461 |
+
("multiple", "abcdef", 2),
|
462 |
+
],
|
463 |
+
names=(None, None, "match"),
|
464 |
+
)
|
465 |
+
expected = DataFrame(
|
466 |
+
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
|
467 |
+
)
|
468 |
+
result = s.str.extractall(pat, flags=re.VERBOSE)
|
469 |
+
tm.assert_frame_equal(result, expected)
|
470 |
+
|
471 |
+
# MultiIndexed subject with names.
|
472 |
+
s = Series(data, index=mi, dtype=any_string_dtype)
|
473 |
+
s.index.names = ("matches", "description")
|
474 |
+
expected_index.names = ("matches", "description", "match")
|
475 |
+
expected = DataFrame(
|
476 |
+
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
|
477 |
+
)
|
478 |
+
result = s.str.extractall(pat, flags=re.VERBOSE)
|
479 |
+
tm.assert_frame_equal(result, expected)
|
480 |
+
|
481 |
+
|
482 |
+
@pytest.mark.parametrize(
|
483 |
+
"pat,expected_names",
|
484 |
+
[
|
485 |
+
# optional groups.
|
486 |
+
("(?P<letter>[AB])?(?P<number>[123])", ["letter", "number"]),
|
487 |
+
# only one of two groups has a name.
|
488 |
+
("([AB])?(?P<number>[123])", [0, "number"]),
|
489 |
+
],
|
490 |
+
)
|
491 |
+
def test_extractall_column_names(pat, expected_names, any_string_dtype):
|
492 |
+
s = Series(["", "A1", "32"], dtype=any_string_dtype)
|
493 |
+
|
494 |
+
result = s.str.extractall(pat)
|
495 |
+
expected = DataFrame(
|
496 |
+
[("A", "1"), (np.nan, "3"), (np.nan, "2")],
|
497 |
+
index=MultiIndex.from_tuples([(1, 0), (2, 0), (2, 1)], names=(None, "match")),
|
498 |
+
columns=expected_names,
|
499 |
+
dtype=any_string_dtype,
|
500 |
+
)
|
501 |
+
tm.assert_frame_equal(result, expected)
|
502 |
+
|
503 |
+
|
504 |
+
def test_extractall_single_group(any_string_dtype):
|
505 |
+
s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype)
|
506 |
+
expected_index = MultiIndex.from_tuples(
|
507 |
+
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
|
508 |
+
)
|
509 |
+
|
510 |
+
# extractall(one named group) returns DataFrame with one named column.
|
511 |
+
result = s.str.extractall(r"(?P<letter>[a-z])")
|
512 |
+
expected = DataFrame(
|
513 |
+
{"letter": ["a", "b", "d", "c"]}, index=expected_index, dtype=any_string_dtype
|
514 |
+
)
|
515 |
+
tm.assert_frame_equal(result, expected)
|
516 |
+
|
517 |
+
# extractall(one un-named group) returns DataFrame with one un-named column.
|
518 |
+
result = s.str.extractall(r"([a-z])")
|
519 |
+
expected = DataFrame(
|
520 |
+
["a", "b", "d", "c"], index=expected_index, dtype=any_string_dtype
|
521 |
+
)
|
522 |
+
tm.assert_frame_equal(result, expected)
|
523 |
+
|
524 |
+
|
525 |
+
def test_extractall_single_group_with_quantifier(any_string_dtype):
|
526 |
+
# GH#13382
|
527 |
+
# extractall(one un-named group with quantifier) returns DataFrame with one un-named
|
528 |
+
# column.
|
529 |
+
s = Series(["ab3", "abc3", "d4cd2"], name="series_name", dtype=any_string_dtype)
|
530 |
+
result = s.str.extractall(r"([a-z]+)")
|
531 |
+
expected = DataFrame(
|
532 |
+
["ab", "abc", "d", "cd"],
|
533 |
+
index=MultiIndex.from_tuples(
|
534 |
+
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
|
535 |
+
),
|
536 |
+
dtype=any_string_dtype,
|
537 |
+
)
|
538 |
+
tm.assert_frame_equal(result, expected)
|
539 |
+
|
540 |
+
|
541 |
+
@pytest.mark.parametrize(
|
542 |
+
"data, names",
|
543 |
+
[
|
544 |
+
([], (None,)),
|
545 |
+
([], ("i1",)),
|
546 |
+
([], (None, "i2")),
|
547 |
+
([], ("i1", "i2")),
|
548 |
+
(["a3", "b3", "d4c2"], (None,)),
|
549 |
+
(["a3", "b3", "d4c2"], ("i1", "i2")),
|
550 |
+
(["a3", "b3", "d4c2"], (None, "i2")),
|
551 |
+
(["a3", "b3", "d4c2"], ("i1", "i2")),
|
552 |
+
],
|
553 |
+
)
|
554 |
+
def test_extractall_no_matches(data, names, any_string_dtype):
|
555 |
+
# GH19075 extractall with no matches should return a valid MultiIndex
|
556 |
+
n = len(data)
|
557 |
+
if len(names) == 1:
|
558 |
+
index = Index(range(n), name=names[0])
|
559 |
+
else:
|
560 |
+
tuples = (tuple([i] * (n - 1)) for i in range(n))
|
561 |
+
index = MultiIndex.from_tuples(tuples, names=names)
|
562 |
+
s = Series(data, name="series_name", index=index, dtype=any_string_dtype)
|
563 |
+
expected_index = MultiIndex.from_tuples([], names=(names + ("match",)))
|
564 |
+
|
565 |
+
# one un-named group.
|
566 |
+
result = s.str.extractall("(z)")
|
567 |
+
expected = DataFrame(columns=[0], index=expected_index, dtype=any_string_dtype)
|
568 |
+
tm.assert_frame_equal(result, expected)
|
569 |
+
|
570 |
+
# two un-named groups.
|
571 |
+
result = s.str.extractall("(z)(z)")
|
572 |
+
expected = DataFrame(columns=[0, 1], index=expected_index, dtype=any_string_dtype)
|
573 |
+
tm.assert_frame_equal(result, expected)
|
574 |
+
|
575 |
+
# one named group.
|
576 |
+
result = s.str.extractall("(?P<first>z)")
|
577 |
+
expected = DataFrame(
|
578 |
+
columns=["first"], index=expected_index, dtype=any_string_dtype
|
579 |
+
)
|
580 |
+
tm.assert_frame_equal(result, expected)
|
581 |
+
|
582 |
+
# two named groups.
|
583 |
+
result = s.str.extractall("(?P<first>z)(?P<second>z)")
|
584 |
+
expected = DataFrame(
|
585 |
+
columns=["first", "second"], index=expected_index, dtype=any_string_dtype
|
586 |
+
)
|
587 |
+
tm.assert_frame_equal(result, expected)
|
588 |
+
|
589 |
+
# one named, one un-named.
|
590 |
+
result = s.str.extractall("(z)(?P<second>z)")
|
591 |
+
expected = DataFrame(
|
592 |
+
columns=[0, "second"], index=expected_index, dtype=any_string_dtype
|
593 |
+
)
|
594 |
+
tm.assert_frame_equal(result, expected)
|
595 |
+
|
596 |
+
|
597 |
+
def test_extractall_stringindex(any_string_dtype):
|
598 |
+
s = Series(["a1a2", "b1", "c1"], name="xxx", dtype=any_string_dtype)
|
599 |
+
result = s.str.extractall(r"[ab](?P<digit>\d)")
|
600 |
+
expected = DataFrame(
|
601 |
+
{"digit": ["1", "2", "1"]},
|
602 |
+
index=MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, "match"]),
|
603 |
+
dtype=any_string_dtype,
|
604 |
+
)
|
605 |
+
tm.assert_frame_equal(result, expected)
|
606 |
+
|
607 |
+
# index should return the same result as the default index without name thus
|
608 |
+
# index.name doesn't affect to the result
|
609 |
+
if any_string_dtype == "object":
|
610 |
+
for idx in [
|
611 |
+
Index(["a1a2", "b1", "c1"], dtype=object),
|
612 |
+
Index(["a1a2", "b1", "c1"], name="xxx", dtype=object),
|
613 |
+
]:
|
614 |
+
result = idx.str.extractall(r"[ab](?P<digit>\d)")
|
615 |
+
tm.assert_frame_equal(result, expected)
|
616 |
+
|
617 |
+
s = Series(
|
618 |
+
["a1a2", "b1", "c1"],
|
619 |
+
name="s_name",
|
620 |
+
index=Index(["XX", "yy", "zz"], name="idx_name"),
|
621 |
+
dtype=any_string_dtype,
|
622 |
+
)
|
623 |
+
result = s.str.extractall(r"[ab](?P<digit>\d)")
|
624 |
+
expected = DataFrame(
|
625 |
+
{"digit": ["1", "2", "1"]},
|
626 |
+
index=MultiIndex.from_tuples(
|
627 |
+
[("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", "match"]
|
628 |
+
),
|
629 |
+
dtype=any_string_dtype,
|
630 |
+
)
|
631 |
+
tm.assert_frame_equal(result, expected)
|
632 |
+
|
633 |
+
|
634 |
+
def test_extractall_no_capture_groups_raises(any_string_dtype):
|
635 |
+
# Does not make sense to use extractall with a regex that has no capture groups.
|
636 |
+
# (it returns DataFrame with one column for each capture group)
|
637 |
+
s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype)
|
638 |
+
with pytest.raises(ValueError, match="no capture groups"):
|
639 |
+
s.str.extractall(r"[a-z]")
|
640 |
+
|
641 |
+
|
642 |
+
def test_extract_index_one_two_groups():
|
643 |
+
s = Series(["a3", "b3", "d4c2"], index=["A3", "B3", "D4"], name="series_name")
|
644 |
+
r = s.index.str.extract(r"([A-Z])", expand=True)
|
645 |
+
e = DataFrame(["A", "B", "D"])
|
646 |
+
tm.assert_frame_equal(r, e)
|
647 |
+
|
648 |
+
# Prior to v0.18.0, index.str.extract(regex with one group)
|
649 |
+
# returned Index. With more than one group, extract raised an
|
650 |
+
# error (GH9980). Now extract always returns DataFrame.
|
651 |
+
r = s.index.str.extract(r"(?P<letter>[A-Z])(?P<digit>[0-9])", expand=True)
|
652 |
+
e_list = [("A", "3"), ("B", "3"), ("D", "4")]
|
653 |
+
e = DataFrame(e_list, columns=["letter", "digit"])
|
654 |
+
tm.assert_frame_equal(r, e)
|
655 |
+
|
656 |
+
|
657 |
+
def test_extractall_same_as_extract(any_string_dtype):
|
658 |
+
s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype)
|
659 |
+
|
660 |
+
pattern_two_noname = r"([a-z])([0-9])"
|
661 |
+
extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
|
662 |
+
has_multi_index = s.str.extractall(pattern_two_noname)
|
663 |
+
no_multi_index = has_multi_index.xs(0, level="match")
|
664 |
+
tm.assert_frame_equal(extract_two_noname, no_multi_index)
|
665 |
+
|
666 |
+
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
|
667 |
+
extract_two_named = s.str.extract(pattern_two_named, expand=True)
|
668 |
+
has_multi_index = s.str.extractall(pattern_two_named)
|
669 |
+
no_multi_index = has_multi_index.xs(0, level="match")
|
670 |
+
tm.assert_frame_equal(extract_two_named, no_multi_index)
|
671 |
+
|
672 |
+
pattern_one_named = r"(?P<group_name>[a-z])"
|
673 |
+
extract_one_named = s.str.extract(pattern_one_named, expand=True)
|
674 |
+
has_multi_index = s.str.extractall(pattern_one_named)
|
675 |
+
no_multi_index = has_multi_index.xs(0, level="match")
|
676 |
+
tm.assert_frame_equal(extract_one_named, no_multi_index)
|
677 |
+
|
678 |
+
pattern_one_noname = r"([a-z])"
|
679 |
+
extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
|
680 |
+
has_multi_index = s.str.extractall(pattern_one_noname)
|
681 |
+
no_multi_index = has_multi_index.xs(0, level="match")
|
682 |
+
tm.assert_frame_equal(extract_one_noname, no_multi_index)
|
683 |
+
|
684 |
+
|
685 |
+
def test_extractall_same_as_extract_subject_index(any_string_dtype):
|
686 |
+
# same as above tests, but s has an MultiIndex.
|
687 |
+
mi = MultiIndex.from_tuples(
|
688 |
+
[("A", "first"), ("B", "second"), ("C", "third")],
|
689 |
+
names=("capital", "ordinal"),
|
690 |
+
)
|
691 |
+
s = Series(["a3", "b3", "c2"], index=mi, name="series_name", dtype=any_string_dtype)
|
692 |
+
|
693 |
+
pattern_two_noname = r"([a-z])([0-9])"
|
694 |
+
extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
|
695 |
+
has_match_index = s.str.extractall(pattern_two_noname)
|
696 |
+
no_match_index = has_match_index.xs(0, level="match")
|
697 |
+
tm.assert_frame_equal(extract_two_noname, no_match_index)
|
698 |
+
|
699 |
+
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
|
700 |
+
extract_two_named = s.str.extract(pattern_two_named, expand=True)
|
701 |
+
has_match_index = s.str.extractall(pattern_two_named)
|
702 |
+
no_match_index = has_match_index.xs(0, level="match")
|
703 |
+
tm.assert_frame_equal(extract_two_named, no_match_index)
|
704 |
+
|
705 |
+
pattern_one_named = r"(?P<group_name>[a-z])"
|
706 |
+
extract_one_named = s.str.extract(pattern_one_named, expand=True)
|
707 |
+
has_match_index = s.str.extractall(pattern_one_named)
|
708 |
+
no_match_index = has_match_index.xs(0, level="match")
|
709 |
+
tm.assert_frame_equal(extract_one_named, no_match_index)
|
710 |
+
|
711 |
+
pattern_one_noname = r"([a-z])"
|
712 |
+
extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
|
713 |
+
has_match_index = s.str.extractall(pattern_one_noname)
|
714 |
+
no_match_index = has_match_index.xs(0, level="match")
|
715 |
+
tm.assert_frame_equal(extract_one_noname, no_match_index)
|
716 |
+
|
717 |
+
|
718 |
+
def test_extractall_preserves_dtype():
|
719 |
+
# Ensure that when extractall is called on a series with specific dtypes set, that
|
720 |
+
# the dtype is preserved in the resulting DataFrame's column.
|
721 |
+
pa = pytest.importorskip("pyarrow")
|
722 |
+
|
723 |
+
result = Series(["abc", "ab"], dtype=ArrowDtype(pa.string())).str.extractall("(ab)")
|
724 |
+
assert result.dtypes[0] == "string[pyarrow]"
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_find_replace.py
ADDED
@@ -0,0 +1,972 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
import re
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from pandas.errors import PerformanceWarning
|
8 |
+
import pandas.util._test_decorators as td
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
from pandas import (
|
12 |
+
Series,
|
13 |
+
_testing as tm,
|
14 |
+
)
|
15 |
+
from pandas.tests.strings import (
|
16 |
+
_convert_na_value,
|
17 |
+
object_pyarrow_numpy,
|
18 |
+
)
|
19 |
+
|
20 |
+
# --------------------------------------------------------------------------------------
|
21 |
+
# str.contains
|
22 |
+
# --------------------------------------------------------------------------------------
|
23 |
+
|
24 |
+
|
25 |
+
def using_pyarrow(dtype):
|
26 |
+
return dtype in ("string[pyarrow]", "string[pyarrow_numpy]")
|
27 |
+
|
28 |
+
|
29 |
+
def test_contains(any_string_dtype):
|
30 |
+
values = np.array(
|
31 |
+
["foo", np.nan, "fooommm__foo", "mmm_", "foommm[_]+bar"], dtype=np.object_
|
32 |
+
)
|
33 |
+
values = Series(values, dtype=any_string_dtype)
|
34 |
+
pat = "mmm[_]+"
|
35 |
+
|
36 |
+
result = values.str.contains(pat)
|
37 |
+
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
38 |
+
expected = Series(
|
39 |
+
np.array([False, np.nan, True, True, False], dtype=np.object_),
|
40 |
+
dtype=expected_dtype,
|
41 |
+
)
|
42 |
+
tm.assert_series_equal(result, expected)
|
43 |
+
|
44 |
+
result = values.str.contains(pat, regex=False)
|
45 |
+
expected = Series(
|
46 |
+
np.array([False, np.nan, False, False, True], dtype=np.object_),
|
47 |
+
dtype=expected_dtype,
|
48 |
+
)
|
49 |
+
tm.assert_series_equal(result, expected)
|
50 |
+
|
51 |
+
values = Series(
|
52 |
+
np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=object),
|
53 |
+
dtype=any_string_dtype,
|
54 |
+
)
|
55 |
+
result = values.str.contains(pat)
|
56 |
+
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
57 |
+
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
|
58 |
+
tm.assert_series_equal(result, expected)
|
59 |
+
|
60 |
+
# case insensitive using regex
|
61 |
+
values = Series(
|
62 |
+
np.array(["Foo", "xYz", "fOOomMm__fOo", "MMM_"], dtype=object),
|
63 |
+
dtype=any_string_dtype,
|
64 |
+
)
|
65 |
+
|
66 |
+
result = values.str.contains("FOO|mmm", case=False)
|
67 |
+
expected = Series(np.array([True, False, True, True]), dtype=expected_dtype)
|
68 |
+
tm.assert_series_equal(result, expected)
|
69 |
+
|
70 |
+
# case insensitive without regex
|
71 |
+
result = values.str.contains("foo", regex=False, case=False)
|
72 |
+
expected = Series(np.array([True, False, True, False]), dtype=expected_dtype)
|
73 |
+
tm.assert_series_equal(result, expected)
|
74 |
+
|
75 |
+
# unicode
|
76 |
+
values = Series(
|
77 |
+
np.array(["foo", np.nan, "fooommm__foo", "mmm_"], dtype=np.object_),
|
78 |
+
dtype=any_string_dtype,
|
79 |
+
)
|
80 |
+
pat = "mmm[_]+"
|
81 |
+
|
82 |
+
result = values.str.contains(pat)
|
83 |
+
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
84 |
+
expected = Series(
|
85 |
+
np.array([False, np.nan, True, True], dtype=np.object_), dtype=expected_dtype
|
86 |
+
)
|
87 |
+
tm.assert_series_equal(result, expected)
|
88 |
+
|
89 |
+
result = values.str.contains(pat, na=False)
|
90 |
+
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
91 |
+
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
|
92 |
+
tm.assert_series_equal(result, expected)
|
93 |
+
|
94 |
+
values = Series(
|
95 |
+
np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=np.object_),
|
96 |
+
dtype=any_string_dtype,
|
97 |
+
)
|
98 |
+
result = values.str.contains(pat)
|
99 |
+
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
|
100 |
+
tm.assert_series_equal(result, expected)
|
101 |
+
|
102 |
+
|
103 |
+
def test_contains_object_mixed():
|
104 |
+
mixed = Series(
|
105 |
+
np.array(
|
106 |
+
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
|
107 |
+
dtype=object,
|
108 |
+
)
|
109 |
+
)
|
110 |
+
result = mixed.str.contains("o")
|
111 |
+
expected = Series(
|
112 |
+
np.array(
|
113 |
+
[False, np.nan, False, np.nan, np.nan, True, None, np.nan, np.nan],
|
114 |
+
dtype=np.object_,
|
115 |
+
)
|
116 |
+
)
|
117 |
+
tm.assert_series_equal(result, expected)
|
118 |
+
|
119 |
+
|
120 |
+
def test_contains_na_kwarg_for_object_category():
|
121 |
+
# gh 22158
|
122 |
+
|
123 |
+
# na for category
|
124 |
+
values = Series(["a", "b", "c", "a", np.nan], dtype="category")
|
125 |
+
result = values.str.contains("a", na=True)
|
126 |
+
expected = Series([True, False, False, True, True])
|
127 |
+
tm.assert_series_equal(result, expected)
|
128 |
+
|
129 |
+
result = values.str.contains("a", na=False)
|
130 |
+
expected = Series([True, False, False, True, False])
|
131 |
+
tm.assert_series_equal(result, expected)
|
132 |
+
|
133 |
+
# na for objects
|
134 |
+
values = Series(["a", "b", "c", "a", np.nan])
|
135 |
+
result = values.str.contains("a", na=True)
|
136 |
+
expected = Series([True, False, False, True, True])
|
137 |
+
tm.assert_series_equal(result, expected)
|
138 |
+
|
139 |
+
result = values.str.contains("a", na=False)
|
140 |
+
expected = Series([True, False, False, True, False])
|
141 |
+
tm.assert_series_equal(result, expected)
|
142 |
+
|
143 |
+
|
144 |
+
@pytest.mark.parametrize(
|
145 |
+
"na, expected",
|
146 |
+
[
|
147 |
+
(None, pd.NA),
|
148 |
+
(True, True),
|
149 |
+
(False, False),
|
150 |
+
(0, False),
|
151 |
+
(3, True),
|
152 |
+
(np.nan, pd.NA),
|
153 |
+
],
|
154 |
+
)
|
155 |
+
@pytest.mark.parametrize("regex", [True, False])
|
156 |
+
def test_contains_na_kwarg_for_nullable_string_dtype(
|
157 |
+
nullable_string_dtype, na, expected, regex
|
158 |
+
):
|
159 |
+
# https://github.com/pandas-dev/pandas/pull/41025#issuecomment-824062416
|
160 |
+
|
161 |
+
values = Series(["a", "b", "c", "a", np.nan], dtype=nullable_string_dtype)
|
162 |
+
result = values.str.contains("a", na=na, regex=regex)
|
163 |
+
expected = Series([True, False, False, True, expected], dtype="boolean")
|
164 |
+
tm.assert_series_equal(result, expected)
|
165 |
+
|
166 |
+
|
167 |
+
def test_contains_moar(any_string_dtype):
|
168 |
+
# PR #1179
|
169 |
+
s = Series(
|
170 |
+
["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
|
171 |
+
dtype=any_string_dtype,
|
172 |
+
)
|
173 |
+
|
174 |
+
result = s.str.contains("a")
|
175 |
+
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
176 |
+
expected = Series(
|
177 |
+
[False, False, False, True, True, False, np.nan, False, False, True],
|
178 |
+
dtype=expected_dtype,
|
179 |
+
)
|
180 |
+
tm.assert_series_equal(result, expected)
|
181 |
+
|
182 |
+
result = s.str.contains("a", case=False)
|
183 |
+
expected = Series(
|
184 |
+
[True, False, False, True, True, False, np.nan, True, False, True],
|
185 |
+
dtype=expected_dtype,
|
186 |
+
)
|
187 |
+
tm.assert_series_equal(result, expected)
|
188 |
+
|
189 |
+
result = s.str.contains("Aa")
|
190 |
+
expected = Series(
|
191 |
+
[False, False, False, True, False, False, np.nan, False, False, False],
|
192 |
+
dtype=expected_dtype,
|
193 |
+
)
|
194 |
+
tm.assert_series_equal(result, expected)
|
195 |
+
|
196 |
+
result = s.str.contains("ba")
|
197 |
+
expected = Series(
|
198 |
+
[False, False, False, True, False, False, np.nan, False, False, False],
|
199 |
+
dtype=expected_dtype,
|
200 |
+
)
|
201 |
+
tm.assert_series_equal(result, expected)
|
202 |
+
|
203 |
+
result = s.str.contains("ba", case=False)
|
204 |
+
expected = Series(
|
205 |
+
[False, False, False, True, True, False, np.nan, True, False, False],
|
206 |
+
dtype=expected_dtype,
|
207 |
+
)
|
208 |
+
tm.assert_series_equal(result, expected)
|
209 |
+
|
210 |
+
|
211 |
+
def test_contains_nan(any_string_dtype):
|
212 |
+
# PR #14171
|
213 |
+
s = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype)
|
214 |
+
|
215 |
+
result = s.str.contains("foo", na=False)
|
216 |
+
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
217 |
+
expected = Series([False, False, False], dtype=expected_dtype)
|
218 |
+
tm.assert_series_equal(result, expected)
|
219 |
+
|
220 |
+
result = s.str.contains("foo", na=True)
|
221 |
+
expected = Series([True, True, True], dtype=expected_dtype)
|
222 |
+
tm.assert_series_equal(result, expected)
|
223 |
+
|
224 |
+
result = s.str.contains("foo", na="foo")
|
225 |
+
if any_string_dtype == "object":
|
226 |
+
expected = Series(["foo", "foo", "foo"], dtype=np.object_)
|
227 |
+
elif any_string_dtype == "string[pyarrow_numpy]":
|
228 |
+
expected = Series([True, True, True], dtype=np.bool_)
|
229 |
+
else:
|
230 |
+
expected = Series([True, True, True], dtype="boolean")
|
231 |
+
tm.assert_series_equal(result, expected)
|
232 |
+
|
233 |
+
result = s.str.contains("foo")
|
234 |
+
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
235 |
+
expected = Series([np.nan, np.nan, np.nan], dtype=expected_dtype)
|
236 |
+
tm.assert_series_equal(result, expected)
|
237 |
+
|
238 |
+
|
239 |
+
# --------------------------------------------------------------------------------------
|
240 |
+
# str.startswith
|
241 |
+
# --------------------------------------------------------------------------------------
|
242 |
+
|
243 |
+
|
244 |
+
@pytest.mark.parametrize("pat", ["foo", ("foo", "baz")])
|
245 |
+
@pytest.mark.parametrize("dtype", ["object", "category"])
|
246 |
+
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
|
247 |
+
@pytest.mark.parametrize("na", [True, False])
|
248 |
+
def test_startswith(pat, dtype, null_value, na):
|
249 |
+
# add category dtype parametrizations for GH-36241
|
250 |
+
values = Series(
|
251 |
+
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
|
252 |
+
dtype=dtype,
|
253 |
+
)
|
254 |
+
|
255 |
+
result = values.str.startswith(pat)
|
256 |
+
exp = Series([False, np.nan, True, False, False, np.nan, True])
|
257 |
+
if dtype == "object" and null_value is pd.NA:
|
258 |
+
# GH#18463
|
259 |
+
exp = exp.fillna(null_value)
|
260 |
+
elif dtype == "object" and null_value is None:
|
261 |
+
exp[exp.isna()] = None
|
262 |
+
tm.assert_series_equal(result, exp)
|
263 |
+
|
264 |
+
result = values.str.startswith(pat, na=na)
|
265 |
+
exp = Series([False, na, True, False, False, na, True])
|
266 |
+
tm.assert_series_equal(result, exp)
|
267 |
+
|
268 |
+
# mixed
|
269 |
+
mixed = np.array(
|
270 |
+
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
|
271 |
+
dtype=np.object_,
|
272 |
+
)
|
273 |
+
rs = Series(mixed).str.startswith("f")
|
274 |
+
xp = Series([False, np.nan, False, np.nan, np.nan, True, None, np.nan, np.nan])
|
275 |
+
tm.assert_series_equal(rs, xp)
|
276 |
+
|
277 |
+
|
278 |
+
@pytest.mark.parametrize("na", [None, True, False])
|
279 |
+
def test_startswith_nullable_string_dtype(nullable_string_dtype, na):
|
280 |
+
values = Series(
|
281 |
+
["om", None, "foo_nom", "nom", "bar_foo", None, "foo", "regex", "rege."],
|
282 |
+
dtype=nullable_string_dtype,
|
283 |
+
)
|
284 |
+
result = values.str.startswith("foo", na=na)
|
285 |
+
exp = Series(
|
286 |
+
[False, na, True, False, False, na, True, False, False], dtype="boolean"
|
287 |
+
)
|
288 |
+
tm.assert_series_equal(result, exp)
|
289 |
+
|
290 |
+
result = values.str.startswith("rege.", na=na)
|
291 |
+
exp = Series(
|
292 |
+
[False, na, False, False, False, na, False, False, True], dtype="boolean"
|
293 |
+
)
|
294 |
+
tm.assert_series_equal(result, exp)
|
295 |
+
|
296 |
+
|
297 |
+
# --------------------------------------------------------------------------------------
|
298 |
+
# str.endswith
|
299 |
+
# --------------------------------------------------------------------------------------
|
300 |
+
|
301 |
+
|
302 |
+
@pytest.mark.parametrize("pat", ["foo", ("foo", "baz")])
|
303 |
+
@pytest.mark.parametrize("dtype", ["object", "category"])
|
304 |
+
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
|
305 |
+
@pytest.mark.parametrize("na", [True, False])
|
306 |
+
def test_endswith(pat, dtype, null_value, na):
|
307 |
+
# add category dtype parametrizations for GH-36241
|
308 |
+
values = Series(
|
309 |
+
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
|
310 |
+
dtype=dtype,
|
311 |
+
)
|
312 |
+
|
313 |
+
result = values.str.endswith(pat)
|
314 |
+
exp = Series([False, np.nan, False, False, True, np.nan, True])
|
315 |
+
if dtype == "object" and null_value is pd.NA:
|
316 |
+
# GH#18463
|
317 |
+
exp = exp.fillna(null_value)
|
318 |
+
elif dtype == "object" and null_value is None:
|
319 |
+
exp[exp.isna()] = None
|
320 |
+
tm.assert_series_equal(result, exp)
|
321 |
+
|
322 |
+
result = values.str.endswith(pat, na=na)
|
323 |
+
exp = Series([False, na, False, False, True, na, True])
|
324 |
+
tm.assert_series_equal(result, exp)
|
325 |
+
|
326 |
+
# mixed
|
327 |
+
mixed = np.array(
|
328 |
+
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
|
329 |
+
dtype=object,
|
330 |
+
)
|
331 |
+
rs = Series(mixed).str.endswith("f")
|
332 |
+
xp = Series([False, np.nan, False, np.nan, np.nan, False, None, np.nan, np.nan])
|
333 |
+
tm.assert_series_equal(rs, xp)
|
334 |
+
|
335 |
+
|
336 |
+
@pytest.mark.parametrize("na", [None, True, False])
|
337 |
+
def test_endswith_nullable_string_dtype(nullable_string_dtype, na):
|
338 |
+
values = Series(
|
339 |
+
["om", None, "foo_nom", "nom", "bar_foo", None, "foo", "regex", "rege."],
|
340 |
+
dtype=nullable_string_dtype,
|
341 |
+
)
|
342 |
+
result = values.str.endswith("foo", na=na)
|
343 |
+
exp = Series(
|
344 |
+
[False, na, False, False, True, na, True, False, False], dtype="boolean"
|
345 |
+
)
|
346 |
+
tm.assert_series_equal(result, exp)
|
347 |
+
|
348 |
+
result = values.str.endswith("rege.", na=na)
|
349 |
+
exp = Series(
|
350 |
+
[False, na, False, False, False, na, False, False, True], dtype="boolean"
|
351 |
+
)
|
352 |
+
tm.assert_series_equal(result, exp)
|
353 |
+
|
354 |
+
|
355 |
+
# --------------------------------------------------------------------------------------
|
356 |
+
# str.replace
|
357 |
+
# --------------------------------------------------------------------------------------
|
358 |
+
|
359 |
+
|
360 |
+
def test_replace(any_string_dtype):
|
361 |
+
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
362 |
+
|
363 |
+
result = ser.str.replace("BAD[_]*", "", regex=True)
|
364 |
+
expected = Series(["foobar", np.nan], dtype=any_string_dtype)
|
365 |
+
tm.assert_series_equal(result, expected)
|
366 |
+
|
367 |
+
|
368 |
+
def test_replace_max_replacements(any_string_dtype):
|
369 |
+
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
370 |
+
|
371 |
+
expected = Series(["foobarBAD", np.nan], dtype=any_string_dtype)
|
372 |
+
result = ser.str.replace("BAD[_]*", "", n=1, regex=True)
|
373 |
+
tm.assert_series_equal(result, expected)
|
374 |
+
|
375 |
+
expected = Series(["foo__barBAD", np.nan], dtype=any_string_dtype)
|
376 |
+
result = ser.str.replace("BAD", "", n=1, regex=False)
|
377 |
+
tm.assert_series_equal(result, expected)
|
378 |
+
|
379 |
+
|
380 |
+
def test_replace_mixed_object():
|
381 |
+
ser = Series(
|
382 |
+
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
|
383 |
+
)
|
384 |
+
result = Series(ser).str.replace("BAD[_]*", "", regex=True)
|
385 |
+
expected = Series(
|
386 |
+
["a", np.nan, "b", np.nan, np.nan, "foo", None, np.nan, np.nan], dtype=object
|
387 |
+
)
|
388 |
+
tm.assert_series_equal(result, expected)
|
389 |
+
|
390 |
+
|
391 |
+
def test_replace_unicode(any_string_dtype):
|
392 |
+
ser = Series([b"abcd,\xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
|
393 |
+
expected = Series([b"abcd, \xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
|
394 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
395 |
+
result = ser.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE, regex=True)
|
396 |
+
tm.assert_series_equal(result, expected)
|
397 |
+
|
398 |
+
|
399 |
+
@pytest.mark.parametrize("repl", [None, 3, {"a": "b"}])
|
400 |
+
@pytest.mark.parametrize("data", [["a", "b", None], ["a", "b", "c", "ad"]])
|
401 |
+
def test_replace_wrong_repl_type_raises(any_string_dtype, index_or_series, repl, data):
|
402 |
+
# https://github.com/pandas-dev/pandas/issues/13438
|
403 |
+
msg = "repl must be a string or callable"
|
404 |
+
obj = index_or_series(data, dtype=any_string_dtype)
|
405 |
+
with pytest.raises(TypeError, match=msg):
|
406 |
+
obj.str.replace("a", repl)
|
407 |
+
|
408 |
+
|
409 |
+
def test_replace_callable(any_string_dtype):
|
410 |
+
# GH 15055
|
411 |
+
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
412 |
+
|
413 |
+
# test with callable
|
414 |
+
repl = lambda m: m.group(0).swapcase()
|
415 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
416 |
+
result = ser.str.replace("[a-z][A-Z]{2}", repl, n=2, regex=True)
|
417 |
+
expected = Series(["foObaD__baRbaD", np.nan], dtype=any_string_dtype)
|
418 |
+
tm.assert_series_equal(result, expected)
|
419 |
+
|
420 |
+
|
421 |
+
@pytest.mark.parametrize(
|
422 |
+
"repl", [lambda: None, lambda m, x: None, lambda m, x, y=None: None]
|
423 |
+
)
|
424 |
+
def test_replace_callable_raises(any_string_dtype, repl):
|
425 |
+
# GH 15055
|
426 |
+
values = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
427 |
+
|
428 |
+
# test with wrong number of arguments, raising an error
|
429 |
+
msg = (
|
430 |
+
r"((takes)|(missing)) (?(2)from \d+ to )?\d+ "
|
431 |
+
r"(?(3)required )positional arguments?"
|
432 |
+
)
|
433 |
+
with pytest.raises(TypeError, match=msg):
|
434 |
+
with tm.maybe_produces_warning(
|
435 |
+
PerformanceWarning, using_pyarrow(any_string_dtype)
|
436 |
+
):
|
437 |
+
values.str.replace("a", repl, regex=True)
|
438 |
+
|
439 |
+
|
440 |
+
def test_replace_callable_named_groups(any_string_dtype):
|
441 |
+
# test regex named groups
|
442 |
+
ser = Series(["Foo Bar Baz", np.nan], dtype=any_string_dtype)
|
443 |
+
pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)"
|
444 |
+
repl = lambda m: m.group("middle").swapcase()
|
445 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
446 |
+
result = ser.str.replace(pat, repl, regex=True)
|
447 |
+
expected = Series(["bAR", np.nan], dtype=any_string_dtype)
|
448 |
+
tm.assert_series_equal(result, expected)
|
449 |
+
|
450 |
+
|
451 |
+
def test_replace_compiled_regex(any_string_dtype):
|
452 |
+
# GH 15446
|
453 |
+
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
454 |
+
|
455 |
+
# test with compiled regex
|
456 |
+
pat = re.compile(r"BAD_*")
|
457 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
458 |
+
result = ser.str.replace(pat, "", regex=True)
|
459 |
+
expected = Series(["foobar", np.nan], dtype=any_string_dtype)
|
460 |
+
tm.assert_series_equal(result, expected)
|
461 |
+
|
462 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
463 |
+
result = ser.str.replace(pat, "", n=1, regex=True)
|
464 |
+
expected = Series(["foobarBAD", np.nan], dtype=any_string_dtype)
|
465 |
+
tm.assert_series_equal(result, expected)
|
466 |
+
|
467 |
+
|
468 |
+
def test_replace_compiled_regex_mixed_object():
|
469 |
+
pat = re.compile(r"BAD_*")
|
470 |
+
ser = Series(
|
471 |
+
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
|
472 |
+
)
|
473 |
+
result = Series(ser).str.replace(pat, "", regex=True)
|
474 |
+
expected = Series(
|
475 |
+
["a", np.nan, "b", np.nan, np.nan, "foo", None, np.nan, np.nan], dtype=object
|
476 |
+
)
|
477 |
+
tm.assert_series_equal(result, expected)
|
478 |
+
|
479 |
+
|
480 |
+
def test_replace_compiled_regex_unicode(any_string_dtype):
|
481 |
+
ser = Series([b"abcd,\xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
|
482 |
+
expected = Series([b"abcd, \xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
|
483 |
+
pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE)
|
484 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
485 |
+
result = ser.str.replace(pat, ", ", regex=True)
|
486 |
+
tm.assert_series_equal(result, expected)
|
487 |
+
|
488 |
+
|
489 |
+
def test_replace_compiled_regex_raises(any_string_dtype):
|
490 |
+
# case and flags provided to str.replace will have no effect
|
491 |
+
# and will produce warnings
|
492 |
+
ser = Series(["fooBAD__barBAD__bad", np.nan], dtype=any_string_dtype)
|
493 |
+
pat = re.compile(r"BAD_*")
|
494 |
+
|
495 |
+
msg = "case and flags cannot be set when pat is a compiled regex"
|
496 |
+
|
497 |
+
with pytest.raises(ValueError, match=msg):
|
498 |
+
ser.str.replace(pat, "", flags=re.IGNORECASE, regex=True)
|
499 |
+
|
500 |
+
with pytest.raises(ValueError, match=msg):
|
501 |
+
ser.str.replace(pat, "", case=False, regex=True)
|
502 |
+
|
503 |
+
with pytest.raises(ValueError, match=msg):
|
504 |
+
ser.str.replace(pat, "", case=True, regex=True)
|
505 |
+
|
506 |
+
|
507 |
+
def test_replace_compiled_regex_callable(any_string_dtype):
|
508 |
+
# test with callable
|
509 |
+
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
510 |
+
repl = lambda m: m.group(0).swapcase()
|
511 |
+
pat = re.compile("[a-z][A-Z]{2}")
|
512 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
513 |
+
result = ser.str.replace(pat, repl, n=2, regex=True)
|
514 |
+
expected = Series(["foObaD__baRbaD", np.nan], dtype=any_string_dtype)
|
515 |
+
tm.assert_series_equal(result, expected)
|
516 |
+
|
517 |
+
|
518 |
+
@pytest.mark.parametrize(
|
519 |
+
"regex,expected", [(True, ["bao", "bao", np.nan]), (False, ["bao", "foo", np.nan])]
|
520 |
+
)
|
521 |
+
def test_replace_literal(regex, expected, any_string_dtype):
|
522 |
+
# GH16808 literal replace (regex=False vs regex=True)
|
523 |
+
ser = Series(["f.o", "foo", np.nan], dtype=any_string_dtype)
|
524 |
+
expected = Series(expected, dtype=any_string_dtype)
|
525 |
+
result = ser.str.replace("f.", "ba", regex=regex)
|
526 |
+
tm.assert_series_equal(result, expected)
|
527 |
+
|
528 |
+
|
529 |
+
def test_replace_literal_callable_raises(any_string_dtype):
|
530 |
+
ser = Series([], dtype=any_string_dtype)
|
531 |
+
repl = lambda m: m.group(0).swapcase()
|
532 |
+
|
533 |
+
msg = "Cannot use a callable replacement when regex=False"
|
534 |
+
with pytest.raises(ValueError, match=msg):
|
535 |
+
ser.str.replace("abc", repl, regex=False)
|
536 |
+
|
537 |
+
|
538 |
+
def test_replace_literal_compiled_raises(any_string_dtype):
|
539 |
+
ser = Series([], dtype=any_string_dtype)
|
540 |
+
pat = re.compile("[a-z][A-Z]{2}")
|
541 |
+
|
542 |
+
msg = "Cannot use a compiled regex as replacement pattern with regex=False"
|
543 |
+
with pytest.raises(ValueError, match=msg):
|
544 |
+
ser.str.replace(pat, "", regex=False)
|
545 |
+
|
546 |
+
|
547 |
+
def test_replace_moar(any_string_dtype):
|
548 |
+
# PR #1179
|
549 |
+
ser = Series(
|
550 |
+
["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
|
551 |
+
dtype=any_string_dtype,
|
552 |
+
)
|
553 |
+
|
554 |
+
result = ser.str.replace("A", "YYY")
|
555 |
+
expected = Series(
|
556 |
+
["YYY", "B", "C", "YYYaba", "Baca", "", np.nan, "CYYYBYYY", "dog", "cat"],
|
557 |
+
dtype=any_string_dtype,
|
558 |
+
)
|
559 |
+
tm.assert_series_equal(result, expected)
|
560 |
+
|
561 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
562 |
+
result = ser.str.replace("A", "YYY", case=False)
|
563 |
+
expected = Series(
|
564 |
+
[
|
565 |
+
"YYY",
|
566 |
+
"B",
|
567 |
+
"C",
|
568 |
+
"YYYYYYbYYY",
|
569 |
+
"BYYYcYYY",
|
570 |
+
"",
|
571 |
+
np.nan,
|
572 |
+
"CYYYBYYY",
|
573 |
+
"dog",
|
574 |
+
"cYYYt",
|
575 |
+
],
|
576 |
+
dtype=any_string_dtype,
|
577 |
+
)
|
578 |
+
tm.assert_series_equal(result, expected)
|
579 |
+
|
580 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
581 |
+
result = ser.str.replace("^.a|dog", "XX-XX ", case=False, regex=True)
|
582 |
+
expected = Series(
|
583 |
+
[
|
584 |
+
"A",
|
585 |
+
"B",
|
586 |
+
"C",
|
587 |
+
"XX-XX ba",
|
588 |
+
"XX-XX ca",
|
589 |
+
"",
|
590 |
+
np.nan,
|
591 |
+
"XX-XX BA",
|
592 |
+
"XX-XX ",
|
593 |
+
"XX-XX t",
|
594 |
+
],
|
595 |
+
dtype=any_string_dtype,
|
596 |
+
)
|
597 |
+
tm.assert_series_equal(result, expected)
|
598 |
+
|
599 |
+
|
600 |
+
def test_replace_not_case_sensitive_not_regex(any_string_dtype):
|
601 |
+
# https://github.com/pandas-dev/pandas/issues/41602
|
602 |
+
ser = Series(["A.", "a.", "Ab", "ab", np.nan], dtype=any_string_dtype)
|
603 |
+
|
604 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
605 |
+
result = ser.str.replace("a", "c", case=False, regex=False)
|
606 |
+
expected = Series(["c.", "c.", "cb", "cb", np.nan], dtype=any_string_dtype)
|
607 |
+
tm.assert_series_equal(result, expected)
|
608 |
+
|
609 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
610 |
+
result = ser.str.replace("a.", "c.", case=False, regex=False)
|
611 |
+
expected = Series(["c.", "c.", "Ab", "ab", np.nan], dtype=any_string_dtype)
|
612 |
+
tm.assert_series_equal(result, expected)
|
613 |
+
|
614 |
+
|
615 |
+
def test_replace_regex(any_string_dtype):
|
616 |
+
# https://github.com/pandas-dev/pandas/pull/24809
|
617 |
+
s = Series(["a", "b", "ac", np.nan, ""], dtype=any_string_dtype)
|
618 |
+
result = s.str.replace("^.$", "a", regex=True)
|
619 |
+
expected = Series(["a", "a", "ac", np.nan, ""], dtype=any_string_dtype)
|
620 |
+
tm.assert_series_equal(result, expected)
|
621 |
+
|
622 |
+
|
623 |
+
@pytest.mark.parametrize("regex", [True, False])
|
624 |
+
def test_replace_regex_single_character(regex, any_string_dtype):
|
625 |
+
# https://github.com/pandas-dev/pandas/pull/24809, enforced in 2.0
|
626 |
+
# GH 24804
|
627 |
+
s = Series(["a.b", ".", "b", np.nan, ""], dtype=any_string_dtype)
|
628 |
+
|
629 |
+
result = s.str.replace(".", "a", regex=regex)
|
630 |
+
if regex:
|
631 |
+
expected = Series(["aaa", "a", "a", np.nan, ""], dtype=any_string_dtype)
|
632 |
+
else:
|
633 |
+
expected = Series(["aab", "a", "b", np.nan, ""], dtype=any_string_dtype)
|
634 |
+
tm.assert_series_equal(result, expected)
|
635 |
+
|
636 |
+
|
637 |
+
# --------------------------------------------------------------------------------------
|
638 |
+
# str.match
|
639 |
+
# --------------------------------------------------------------------------------------
|
640 |
+
|
641 |
+
|
642 |
+
def test_match(any_string_dtype):
|
643 |
+
# New match behavior introduced in 0.13
|
644 |
+
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
645 |
+
|
646 |
+
values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
|
647 |
+
result = values.str.match(".*(BAD[_]+).*(BAD)")
|
648 |
+
expected = Series([True, np.nan, False], dtype=expected_dtype)
|
649 |
+
tm.assert_series_equal(result, expected)
|
650 |
+
|
651 |
+
values = Series(
|
652 |
+
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
|
653 |
+
)
|
654 |
+
result = values.str.match(".*BAD[_]+.*BAD")
|
655 |
+
expected = Series([True, True, np.nan, False], dtype=expected_dtype)
|
656 |
+
tm.assert_series_equal(result, expected)
|
657 |
+
|
658 |
+
result = values.str.match("BAD[_]+.*BAD")
|
659 |
+
expected = Series([False, True, np.nan, False], dtype=expected_dtype)
|
660 |
+
tm.assert_series_equal(result, expected)
|
661 |
+
|
662 |
+
values = Series(
|
663 |
+
["fooBAD__barBAD", "^BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
|
664 |
+
)
|
665 |
+
result = values.str.match("^BAD[_]+.*BAD")
|
666 |
+
expected = Series([False, False, np.nan, False], dtype=expected_dtype)
|
667 |
+
tm.assert_series_equal(result, expected)
|
668 |
+
|
669 |
+
result = values.str.match("\\^BAD[_]+.*BAD")
|
670 |
+
expected = Series([False, True, np.nan, False], dtype=expected_dtype)
|
671 |
+
tm.assert_series_equal(result, expected)
|
672 |
+
|
673 |
+
|
674 |
+
def test_match_mixed_object():
|
675 |
+
mixed = Series(
|
676 |
+
[
|
677 |
+
"aBAD_BAD",
|
678 |
+
np.nan,
|
679 |
+
"BAD_b_BAD",
|
680 |
+
True,
|
681 |
+
datetime.today(),
|
682 |
+
"foo",
|
683 |
+
None,
|
684 |
+
1,
|
685 |
+
2.0,
|
686 |
+
]
|
687 |
+
)
|
688 |
+
result = Series(mixed).str.match(".*(BAD[_]+).*(BAD)")
|
689 |
+
expected = Series([True, np.nan, True, np.nan, np.nan, False, None, np.nan, np.nan])
|
690 |
+
assert isinstance(result, Series)
|
691 |
+
tm.assert_series_equal(result, expected)
|
692 |
+
|
693 |
+
|
694 |
+
def test_match_na_kwarg(any_string_dtype):
|
695 |
+
# GH #6609
|
696 |
+
s = Series(["a", "b", np.nan], dtype=any_string_dtype)
|
697 |
+
|
698 |
+
result = s.str.match("a", na=False)
|
699 |
+
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
700 |
+
expected = Series([True, False, False], dtype=expected_dtype)
|
701 |
+
tm.assert_series_equal(result, expected)
|
702 |
+
|
703 |
+
result = s.str.match("a")
|
704 |
+
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
705 |
+
expected = Series([True, False, np.nan], dtype=expected_dtype)
|
706 |
+
tm.assert_series_equal(result, expected)
|
707 |
+
|
708 |
+
|
709 |
+
def test_match_case_kwarg(any_string_dtype):
|
710 |
+
values = Series(["ab", "AB", "abc", "ABC"], dtype=any_string_dtype)
|
711 |
+
result = values.str.match("ab", case=False)
|
712 |
+
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
713 |
+
expected = Series([True, True, True, True], dtype=expected_dtype)
|
714 |
+
tm.assert_series_equal(result, expected)
|
715 |
+
|
716 |
+
|
717 |
+
# --------------------------------------------------------------------------------------
|
718 |
+
# str.fullmatch
|
719 |
+
# --------------------------------------------------------------------------------------
|
720 |
+
|
721 |
+
|
722 |
+
def test_fullmatch(any_string_dtype):
|
723 |
+
# GH 32806
|
724 |
+
ser = Series(
|
725 |
+
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
|
726 |
+
)
|
727 |
+
result = ser.str.fullmatch(".*BAD[_]+.*BAD")
|
728 |
+
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
729 |
+
expected = Series([True, False, np.nan, False], dtype=expected_dtype)
|
730 |
+
tm.assert_series_equal(result, expected)
|
731 |
+
|
732 |
+
|
733 |
+
def test_fullmatch_dollar_literal(any_string_dtype):
|
734 |
+
# GH 56652
|
735 |
+
ser = Series(["foo", "foo$foo", np.nan, "foo$"], dtype=any_string_dtype)
|
736 |
+
result = ser.str.fullmatch("foo\\$")
|
737 |
+
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
738 |
+
expected = Series([False, False, np.nan, True], dtype=expected_dtype)
|
739 |
+
tm.assert_series_equal(result, expected)
|
740 |
+
|
741 |
+
|
742 |
+
def test_fullmatch_na_kwarg(any_string_dtype):
|
743 |
+
ser = Series(
|
744 |
+
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
|
745 |
+
)
|
746 |
+
result = ser.str.fullmatch(".*BAD[_]+.*BAD", na=False)
|
747 |
+
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
748 |
+
expected = Series([True, False, False, False], dtype=expected_dtype)
|
749 |
+
tm.assert_series_equal(result, expected)
|
750 |
+
|
751 |
+
|
752 |
+
def test_fullmatch_case_kwarg(any_string_dtype):
|
753 |
+
ser = Series(["ab", "AB", "abc", "ABC"], dtype=any_string_dtype)
|
754 |
+
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
755 |
+
|
756 |
+
expected = Series([True, False, False, False], dtype=expected_dtype)
|
757 |
+
|
758 |
+
result = ser.str.fullmatch("ab", case=True)
|
759 |
+
tm.assert_series_equal(result, expected)
|
760 |
+
|
761 |
+
expected = Series([True, True, False, False], dtype=expected_dtype)
|
762 |
+
|
763 |
+
result = ser.str.fullmatch("ab", case=False)
|
764 |
+
tm.assert_series_equal(result, expected)
|
765 |
+
|
766 |
+
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
767 |
+
result = ser.str.fullmatch("ab", flags=re.IGNORECASE)
|
768 |
+
tm.assert_series_equal(result, expected)
|
769 |
+
|
770 |
+
|
771 |
+
# --------------------------------------------------------------------------------------
|
772 |
+
# str.findall
|
773 |
+
# --------------------------------------------------------------------------------------
|
774 |
+
|
775 |
+
|
776 |
+
def test_findall(any_string_dtype):
|
777 |
+
ser = Series(["fooBAD__barBAD", np.nan, "foo", "BAD"], dtype=any_string_dtype)
|
778 |
+
result = ser.str.findall("BAD[_]*")
|
779 |
+
expected = Series([["BAD__", "BAD"], np.nan, [], ["BAD"]])
|
780 |
+
expected = _convert_na_value(ser, expected)
|
781 |
+
tm.assert_series_equal(result, expected)
|
782 |
+
|
783 |
+
|
784 |
+
def test_findall_mixed_object():
|
785 |
+
ser = Series(
|
786 |
+
[
|
787 |
+
"fooBAD__barBAD",
|
788 |
+
np.nan,
|
789 |
+
"foo",
|
790 |
+
True,
|
791 |
+
datetime.today(),
|
792 |
+
"BAD",
|
793 |
+
None,
|
794 |
+
1,
|
795 |
+
2.0,
|
796 |
+
]
|
797 |
+
)
|
798 |
+
|
799 |
+
result = ser.str.findall("BAD[_]*")
|
800 |
+
expected = Series(
|
801 |
+
[
|
802 |
+
["BAD__", "BAD"],
|
803 |
+
np.nan,
|
804 |
+
[],
|
805 |
+
np.nan,
|
806 |
+
np.nan,
|
807 |
+
["BAD"],
|
808 |
+
None,
|
809 |
+
np.nan,
|
810 |
+
np.nan,
|
811 |
+
]
|
812 |
+
)
|
813 |
+
|
814 |
+
tm.assert_series_equal(result, expected)
|
815 |
+
|
816 |
+
|
817 |
+
# --------------------------------------------------------------------------------------
|
818 |
+
# str.find
|
819 |
+
# --------------------------------------------------------------------------------------
|
820 |
+
|
821 |
+
|
822 |
+
def test_find(any_string_dtype):
|
823 |
+
ser = Series(
|
824 |
+
["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF", "XXXX"], dtype=any_string_dtype
|
825 |
+
)
|
826 |
+
expected_dtype = np.int64 if any_string_dtype in object_pyarrow_numpy else "Int64"
|
827 |
+
|
828 |
+
result = ser.str.find("EF")
|
829 |
+
expected = Series([4, 3, 1, 0, -1], dtype=expected_dtype)
|
830 |
+
tm.assert_series_equal(result, expected)
|
831 |
+
expected = np.array([v.find("EF") for v in np.array(ser)], dtype=np.int64)
|
832 |
+
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
833 |
+
|
834 |
+
result = ser.str.rfind("EF")
|
835 |
+
expected = Series([4, 5, 7, 4, -1], dtype=expected_dtype)
|
836 |
+
tm.assert_series_equal(result, expected)
|
837 |
+
expected = np.array([v.rfind("EF") for v in np.array(ser)], dtype=np.int64)
|
838 |
+
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
839 |
+
|
840 |
+
result = ser.str.find("EF", 3)
|
841 |
+
expected = Series([4, 3, 7, 4, -1], dtype=expected_dtype)
|
842 |
+
tm.assert_series_equal(result, expected)
|
843 |
+
expected = np.array([v.find("EF", 3) for v in np.array(ser)], dtype=np.int64)
|
844 |
+
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
845 |
+
|
846 |
+
result = ser.str.rfind("EF", 3)
|
847 |
+
expected = Series([4, 5, 7, 4, -1], dtype=expected_dtype)
|
848 |
+
tm.assert_series_equal(result, expected)
|
849 |
+
expected = np.array([v.rfind("EF", 3) for v in np.array(ser)], dtype=np.int64)
|
850 |
+
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
851 |
+
|
852 |
+
result = ser.str.find("EF", 3, 6)
|
853 |
+
expected = Series([4, 3, -1, 4, -1], dtype=expected_dtype)
|
854 |
+
tm.assert_series_equal(result, expected)
|
855 |
+
expected = np.array([v.find("EF", 3, 6) for v in np.array(ser)], dtype=np.int64)
|
856 |
+
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
857 |
+
|
858 |
+
result = ser.str.rfind("EF", 3, 6)
|
859 |
+
expected = Series([4, 3, -1, 4, -1], dtype=expected_dtype)
|
860 |
+
tm.assert_series_equal(result, expected)
|
861 |
+
expected = np.array([v.rfind("EF", 3, 6) for v in np.array(ser)], dtype=np.int64)
|
862 |
+
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
863 |
+
|
864 |
+
|
865 |
+
def test_find_bad_arg_raises(any_string_dtype):
|
866 |
+
ser = Series([], dtype=any_string_dtype)
|
867 |
+
with pytest.raises(TypeError, match="expected a string object, not int"):
|
868 |
+
ser.str.find(0)
|
869 |
+
|
870 |
+
with pytest.raises(TypeError, match="expected a string object, not int"):
|
871 |
+
ser.str.rfind(0)
|
872 |
+
|
873 |
+
|
874 |
+
def test_find_nan(any_string_dtype):
|
875 |
+
ser = Series(
|
876 |
+
["ABCDEFG", np.nan, "DEFGHIJEF", np.nan, "XXXX"], dtype=any_string_dtype
|
877 |
+
)
|
878 |
+
expected_dtype = np.float64 if any_string_dtype in object_pyarrow_numpy else "Int64"
|
879 |
+
|
880 |
+
result = ser.str.find("EF")
|
881 |
+
expected = Series([4, np.nan, 1, np.nan, -1], dtype=expected_dtype)
|
882 |
+
tm.assert_series_equal(result, expected)
|
883 |
+
|
884 |
+
result = ser.str.rfind("EF")
|
885 |
+
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
|
886 |
+
tm.assert_series_equal(result, expected)
|
887 |
+
|
888 |
+
result = ser.str.find("EF", 3)
|
889 |
+
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
|
890 |
+
tm.assert_series_equal(result, expected)
|
891 |
+
|
892 |
+
result = ser.str.rfind("EF", 3)
|
893 |
+
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
|
894 |
+
tm.assert_series_equal(result, expected)
|
895 |
+
|
896 |
+
result = ser.str.find("EF", 3, 6)
|
897 |
+
expected = Series([4, np.nan, -1, np.nan, -1], dtype=expected_dtype)
|
898 |
+
tm.assert_series_equal(result, expected)
|
899 |
+
|
900 |
+
result = ser.str.rfind("EF", 3, 6)
|
901 |
+
expected = Series([4, np.nan, -1, np.nan, -1], dtype=expected_dtype)
|
902 |
+
tm.assert_series_equal(result, expected)
|
903 |
+
|
904 |
+
|
905 |
+
# --------------------------------------------------------------------------------------
|
906 |
+
# str.translate
|
907 |
+
# --------------------------------------------------------------------------------------
|
908 |
+
|
909 |
+
|
910 |
+
@pytest.mark.parametrize(
|
911 |
+
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
|
912 |
+
)
|
913 |
+
def test_translate(index_or_series, any_string_dtype, infer_string):
|
914 |
+
obj = index_or_series(
|
915 |
+
["abcdefg", "abcc", "cdddfg", "cdefggg"], dtype=any_string_dtype
|
916 |
+
)
|
917 |
+
table = str.maketrans("abc", "cde")
|
918 |
+
result = obj.str.translate(table)
|
919 |
+
expected = index_or_series(
|
920 |
+
["cdedefg", "cdee", "edddfg", "edefggg"], dtype=any_string_dtype
|
921 |
+
)
|
922 |
+
tm.assert_equal(result, expected)
|
923 |
+
|
924 |
+
|
925 |
+
def test_translate_mixed_object():
|
926 |
+
# Series with non-string values
|
927 |
+
s = Series(["a", "b", "c", 1.2])
|
928 |
+
table = str.maketrans("abc", "cde")
|
929 |
+
expected = Series(["c", "d", "e", np.nan], dtype=object)
|
930 |
+
result = s.str.translate(table)
|
931 |
+
tm.assert_series_equal(result, expected)
|
932 |
+
|
933 |
+
|
934 |
+
# --------------------------------------------------------------------------------------
|
935 |
+
|
936 |
+
|
937 |
+
def test_flags_kwarg(any_string_dtype):
|
938 |
+
data = {
|
939 |
+
"Dave": "[email protected]",
|
940 |
+
"Steve": "[email protected]",
|
941 |
+
"Rob": "[email protected]",
|
942 |
+
"Wes": np.nan,
|
943 |
+
}
|
944 |
+
data = Series(data, dtype=any_string_dtype)
|
945 |
+
|
946 |
+
pat = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"
|
947 |
+
|
948 |
+
use_pyarrow = using_pyarrow(any_string_dtype)
|
949 |
+
|
950 |
+
result = data.str.extract(pat, flags=re.IGNORECASE, expand=True)
|
951 |
+
assert result.iloc[0].tolist() == ["dave", "google", "com"]
|
952 |
+
|
953 |
+
with tm.maybe_produces_warning(PerformanceWarning, use_pyarrow):
|
954 |
+
result = data.str.match(pat, flags=re.IGNORECASE)
|
955 |
+
assert result.iloc[0]
|
956 |
+
|
957 |
+
with tm.maybe_produces_warning(PerformanceWarning, use_pyarrow):
|
958 |
+
result = data.str.fullmatch(pat, flags=re.IGNORECASE)
|
959 |
+
assert result.iloc[0]
|
960 |
+
|
961 |
+
result = data.str.findall(pat, flags=re.IGNORECASE)
|
962 |
+
assert result.iloc[0][0] == ("dave", "google", "com")
|
963 |
+
|
964 |
+
result = data.str.count(pat, flags=re.IGNORECASE)
|
965 |
+
assert result.iloc[0] == 1
|
966 |
+
|
967 |
+
msg = "has match groups"
|
968 |
+
with tm.assert_produces_warning(
|
969 |
+
UserWarning, match=msg, raise_on_extra_warnings=not use_pyarrow
|
970 |
+
):
|
971 |
+
result = data.str.contains(pat, flags=re.IGNORECASE)
|
972 |
+
assert result.iloc[0]
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_get_dummies.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
DataFrame,
|
5 |
+
Index,
|
6 |
+
MultiIndex,
|
7 |
+
Series,
|
8 |
+
_testing as tm,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
def test_get_dummies(any_string_dtype):
|
13 |
+
s = Series(["a|b", "a|c", np.nan], dtype=any_string_dtype)
|
14 |
+
result = s.str.get_dummies("|")
|
15 |
+
expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list("abc"))
|
16 |
+
tm.assert_frame_equal(result, expected)
|
17 |
+
|
18 |
+
s = Series(["a;b", "a", 7], dtype=any_string_dtype)
|
19 |
+
result = s.str.get_dummies(";")
|
20 |
+
expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list("7ab"))
|
21 |
+
tm.assert_frame_equal(result, expected)
|
22 |
+
|
23 |
+
|
24 |
+
def test_get_dummies_index():
|
25 |
+
# GH9980, GH8028
|
26 |
+
idx = Index(["a|b", "a|c", "b|c"])
|
27 |
+
result = idx.str.get_dummies("|")
|
28 |
+
|
29 |
+
expected = MultiIndex.from_tuples(
|
30 |
+
[(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=("a", "b", "c")
|
31 |
+
)
|
32 |
+
tm.assert_index_equal(result, expected)
|
33 |
+
|
34 |
+
|
35 |
+
def test_get_dummies_with_name_dummy(any_string_dtype):
|
36 |
+
# GH 12180
|
37 |
+
# Dummies named 'name' should work as expected
|
38 |
+
s = Series(["a", "b,name", "b"], dtype=any_string_dtype)
|
39 |
+
result = s.str.get_dummies(",")
|
40 |
+
expected = DataFrame([[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=["a", "b", "name"])
|
41 |
+
tm.assert_frame_equal(result, expected)
|
42 |
+
|
43 |
+
|
44 |
+
def test_get_dummies_with_name_dummy_index():
|
45 |
+
# GH 12180
|
46 |
+
# Dummies named 'name' should work as expected
|
47 |
+
idx = Index(["a|b", "name|c", "b|name"])
|
48 |
+
result = idx.str.get_dummies("|")
|
49 |
+
|
50 |
+
expected = MultiIndex.from_tuples(
|
51 |
+
[(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=("a", "b", "c", "name")
|
52 |
+
)
|
53 |
+
tm.assert_index_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_split_partition.py
ADDED
@@ -0,0 +1,734 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
import re
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
from pandas import (
|
9 |
+
DataFrame,
|
10 |
+
Index,
|
11 |
+
MultiIndex,
|
12 |
+
Series,
|
13 |
+
_testing as tm,
|
14 |
+
)
|
15 |
+
from pandas.tests.strings import (
|
16 |
+
_convert_na_value,
|
17 |
+
object_pyarrow_numpy,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
@pytest.mark.parametrize("method", ["split", "rsplit"])
|
22 |
+
def test_split(any_string_dtype, method):
|
23 |
+
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
|
24 |
+
|
25 |
+
result = getattr(values.str, method)("_")
|
26 |
+
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
|
27 |
+
exp = _convert_na_value(values, exp)
|
28 |
+
tm.assert_series_equal(result, exp)
|
29 |
+
|
30 |
+
|
31 |
+
@pytest.mark.parametrize("method", ["split", "rsplit"])
|
32 |
+
def test_split_more_than_one_char(any_string_dtype, method):
|
33 |
+
# more than one char
|
34 |
+
values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"], dtype=any_string_dtype)
|
35 |
+
result = getattr(values.str, method)("__")
|
36 |
+
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
|
37 |
+
exp = _convert_na_value(values, exp)
|
38 |
+
tm.assert_series_equal(result, exp)
|
39 |
+
|
40 |
+
result = getattr(values.str, method)("__", expand=False)
|
41 |
+
tm.assert_series_equal(result, exp)
|
42 |
+
|
43 |
+
|
44 |
+
def test_split_more_regex_split(any_string_dtype):
|
45 |
+
# regex split
|
46 |
+
values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype)
|
47 |
+
result = values.str.split("[,_]")
|
48 |
+
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
|
49 |
+
exp = _convert_na_value(values, exp)
|
50 |
+
tm.assert_series_equal(result, exp)
|
51 |
+
|
52 |
+
|
53 |
+
def test_split_regex(any_string_dtype):
|
54 |
+
# GH 43563
|
55 |
+
# explicit regex = True split
|
56 |
+
values = Series("xxxjpgzzz.jpg", dtype=any_string_dtype)
|
57 |
+
result = values.str.split(r"\.jpg", regex=True)
|
58 |
+
exp = Series([["xxxjpgzzz", ""]])
|
59 |
+
tm.assert_series_equal(result, exp)
|
60 |
+
|
61 |
+
|
62 |
+
def test_split_regex_explicit(any_string_dtype):
|
63 |
+
# explicit regex = True split with compiled regex
|
64 |
+
regex_pat = re.compile(r".jpg")
|
65 |
+
values = Series("xxxjpgzzz.jpg", dtype=any_string_dtype)
|
66 |
+
result = values.str.split(regex_pat)
|
67 |
+
exp = Series([["xx", "zzz", ""]])
|
68 |
+
tm.assert_series_equal(result, exp)
|
69 |
+
|
70 |
+
# explicit regex = False split
|
71 |
+
result = values.str.split(r"\.jpg", regex=False)
|
72 |
+
exp = Series([["xxxjpgzzz.jpg"]])
|
73 |
+
tm.assert_series_equal(result, exp)
|
74 |
+
|
75 |
+
# non explicit regex split, pattern length == 1
|
76 |
+
result = values.str.split(r".")
|
77 |
+
exp = Series([["xxxjpgzzz", "jpg"]])
|
78 |
+
tm.assert_series_equal(result, exp)
|
79 |
+
|
80 |
+
# non explicit regex split, pattern length != 1
|
81 |
+
result = values.str.split(r".jpg")
|
82 |
+
exp = Series([["xx", "zzz", ""]])
|
83 |
+
tm.assert_series_equal(result, exp)
|
84 |
+
|
85 |
+
# regex=False with pattern compiled regex raises error
|
86 |
+
with pytest.raises(
|
87 |
+
ValueError,
|
88 |
+
match="Cannot use a compiled regex as replacement pattern with regex=False",
|
89 |
+
):
|
90 |
+
values.str.split(regex_pat, regex=False)
|
91 |
+
|
92 |
+
|
93 |
+
@pytest.mark.parametrize("expand", [None, False])
|
94 |
+
@pytest.mark.parametrize("method", ["split", "rsplit"])
|
95 |
+
def test_split_object_mixed(expand, method):
|
96 |
+
mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0])
|
97 |
+
result = getattr(mixed.str, method)("_", expand=expand)
|
98 |
+
exp = Series(
|
99 |
+
[
|
100 |
+
["a", "b", "c"],
|
101 |
+
np.nan,
|
102 |
+
["d", "e", "f"],
|
103 |
+
np.nan,
|
104 |
+
np.nan,
|
105 |
+
None,
|
106 |
+
np.nan,
|
107 |
+
np.nan,
|
108 |
+
]
|
109 |
+
)
|
110 |
+
assert isinstance(result, Series)
|
111 |
+
tm.assert_almost_equal(result, exp)
|
112 |
+
|
113 |
+
|
114 |
+
@pytest.mark.parametrize("method", ["split", "rsplit"])
|
115 |
+
@pytest.mark.parametrize("n", [None, 0])
|
116 |
+
def test_split_n(any_string_dtype, method, n):
|
117 |
+
s = Series(["a b", pd.NA, "b c"], dtype=any_string_dtype)
|
118 |
+
expected = Series([["a", "b"], pd.NA, ["b", "c"]])
|
119 |
+
result = getattr(s.str, method)(" ", n=n)
|
120 |
+
expected = _convert_na_value(s, expected)
|
121 |
+
tm.assert_series_equal(result, expected)
|
122 |
+
|
123 |
+
|
124 |
+
def test_rsplit(any_string_dtype):
|
125 |
+
# regex split is not supported by rsplit
|
126 |
+
values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype)
|
127 |
+
result = values.str.rsplit("[,_]")
|
128 |
+
exp = Series([["a,b_c"], ["c_d,e"], np.nan, ["f,g,h"]])
|
129 |
+
exp = _convert_na_value(values, exp)
|
130 |
+
tm.assert_series_equal(result, exp)
|
131 |
+
|
132 |
+
|
133 |
+
def test_rsplit_max_number(any_string_dtype):
|
134 |
+
# setting max number of splits, make sure it's from reverse
|
135 |
+
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
|
136 |
+
result = values.str.rsplit("_", n=1)
|
137 |
+
exp = Series([["a_b", "c"], ["c_d", "e"], np.nan, ["f_g", "h"]])
|
138 |
+
exp = _convert_na_value(values, exp)
|
139 |
+
tm.assert_series_equal(result, exp)
|
140 |
+
|
141 |
+
|
142 |
+
def test_split_blank_string(any_string_dtype):
|
143 |
+
# expand blank split GH 20067
|
144 |
+
values = Series([""], name="test", dtype=any_string_dtype)
|
145 |
+
result = values.str.split(expand=True)
|
146 |
+
exp = DataFrame([[]], dtype=any_string_dtype) # NOTE: this is NOT an empty df
|
147 |
+
tm.assert_frame_equal(result, exp)
|
148 |
+
|
149 |
+
|
150 |
+
def test_split_blank_string_with_non_empty(any_string_dtype):
|
151 |
+
values = Series(["a b c", "a b", "", " "], name="test", dtype=any_string_dtype)
|
152 |
+
result = values.str.split(expand=True)
|
153 |
+
exp = DataFrame(
|
154 |
+
[
|
155 |
+
["a", "b", "c"],
|
156 |
+
["a", "b", None],
|
157 |
+
[None, None, None],
|
158 |
+
[None, None, None],
|
159 |
+
],
|
160 |
+
dtype=any_string_dtype,
|
161 |
+
)
|
162 |
+
tm.assert_frame_equal(result, exp)
|
163 |
+
|
164 |
+
|
165 |
+
@pytest.mark.parametrize("method", ["split", "rsplit"])
|
166 |
+
def test_split_noargs(any_string_dtype, method):
|
167 |
+
# #1859
|
168 |
+
s = Series(["Wes McKinney", "Travis Oliphant"], dtype=any_string_dtype)
|
169 |
+
result = getattr(s.str, method)()
|
170 |
+
expected = ["Travis", "Oliphant"]
|
171 |
+
assert result[1] == expected
|
172 |
+
|
173 |
+
|
174 |
+
@pytest.mark.parametrize(
|
175 |
+
"data, pat",
|
176 |
+
[
|
177 |
+
(["bd asdf jfg", "kjasdflqw asdfnfk"], None),
|
178 |
+
(["bd asdf jfg", "kjasdflqw asdfnfk"], "asdf"),
|
179 |
+
(["bd_asdf_jfg", "kjasdflqw_asdfnfk"], "_"),
|
180 |
+
],
|
181 |
+
)
|
182 |
+
@pytest.mark.parametrize("n", [-1, 0])
|
183 |
+
def test_split_maxsplit(data, pat, any_string_dtype, n):
|
184 |
+
# re.split 0, str.split -1
|
185 |
+
s = Series(data, dtype=any_string_dtype)
|
186 |
+
|
187 |
+
result = s.str.split(pat=pat, n=n)
|
188 |
+
xp = s.str.split(pat=pat)
|
189 |
+
tm.assert_series_equal(result, xp)
|
190 |
+
|
191 |
+
|
192 |
+
@pytest.mark.parametrize(
|
193 |
+
"data, pat, expected",
|
194 |
+
[
|
195 |
+
(
|
196 |
+
["split once", "split once too!"],
|
197 |
+
None,
|
198 |
+
Series({0: ["split", "once"], 1: ["split", "once too!"]}),
|
199 |
+
),
|
200 |
+
(
|
201 |
+
["split_once", "split_once_too!"],
|
202 |
+
"_",
|
203 |
+
Series({0: ["split", "once"], 1: ["split", "once_too!"]}),
|
204 |
+
),
|
205 |
+
],
|
206 |
+
)
|
207 |
+
def test_split_no_pat_with_nonzero_n(data, pat, expected, any_string_dtype):
|
208 |
+
s = Series(data, dtype=any_string_dtype)
|
209 |
+
result = s.str.split(pat=pat, n=1)
|
210 |
+
tm.assert_series_equal(expected, result, check_index_type=False)
|
211 |
+
|
212 |
+
|
213 |
+
def test_split_to_dataframe_no_splits(any_string_dtype):
|
214 |
+
s = Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)
|
215 |
+
result = s.str.split("_", expand=True)
|
216 |
+
exp = DataFrame({0: Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)})
|
217 |
+
tm.assert_frame_equal(result, exp)
|
218 |
+
|
219 |
+
|
220 |
+
def test_split_to_dataframe(any_string_dtype):
|
221 |
+
s = Series(["some_equal_splits", "with_no_nans"], dtype=any_string_dtype)
|
222 |
+
result = s.str.split("_", expand=True)
|
223 |
+
exp = DataFrame(
|
224 |
+
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
|
225 |
+
dtype=any_string_dtype,
|
226 |
+
)
|
227 |
+
tm.assert_frame_equal(result, exp)
|
228 |
+
|
229 |
+
|
230 |
+
def test_split_to_dataframe_unequal_splits(any_string_dtype):
|
231 |
+
s = Series(
|
232 |
+
["some_unequal_splits", "one_of_these_things_is_not"], dtype=any_string_dtype
|
233 |
+
)
|
234 |
+
result = s.str.split("_", expand=True)
|
235 |
+
exp = DataFrame(
|
236 |
+
{
|
237 |
+
0: ["some", "one"],
|
238 |
+
1: ["unequal", "of"],
|
239 |
+
2: ["splits", "these"],
|
240 |
+
3: [None, "things"],
|
241 |
+
4: [None, "is"],
|
242 |
+
5: [None, "not"],
|
243 |
+
},
|
244 |
+
dtype=any_string_dtype,
|
245 |
+
)
|
246 |
+
tm.assert_frame_equal(result, exp)
|
247 |
+
|
248 |
+
|
249 |
+
def test_split_to_dataframe_with_index(any_string_dtype):
|
250 |
+
s = Series(
|
251 |
+
["some_splits", "with_index"], index=["preserve", "me"], dtype=any_string_dtype
|
252 |
+
)
|
253 |
+
result = s.str.split("_", expand=True)
|
254 |
+
exp = DataFrame(
|
255 |
+
{0: ["some", "with"], 1: ["splits", "index"]},
|
256 |
+
index=["preserve", "me"],
|
257 |
+
dtype=any_string_dtype,
|
258 |
+
)
|
259 |
+
tm.assert_frame_equal(result, exp)
|
260 |
+
|
261 |
+
with pytest.raises(ValueError, match="expand must be"):
|
262 |
+
s.str.split("_", expand="not_a_boolean")
|
263 |
+
|
264 |
+
|
265 |
+
def test_split_to_multiindex_expand_no_splits():
|
266 |
+
# https://github.com/pandas-dev/pandas/issues/23677
|
267 |
+
|
268 |
+
idx = Index(["nosplit", "alsonosplit", np.nan])
|
269 |
+
result = idx.str.split("_", expand=True)
|
270 |
+
exp = idx
|
271 |
+
tm.assert_index_equal(result, exp)
|
272 |
+
assert result.nlevels == 1
|
273 |
+
|
274 |
+
|
275 |
+
def test_split_to_multiindex_expand():
|
276 |
+
idx = Index(["some_equal_splits", "with_no_nans", np.nan, None])
|
277 |
+
result = idx.str.split("_", expand=True)
|
278 |
+
exp = MultiIndex.from_tuples(
|
279 |
+
[
|
280 |
+
("some", "equal", "splits"),
|
281 |
+
("with", "no", "nans"),
|
282 |
+
[np.nan, np.nan, np.nan],
|
283 |
+
[None, None, None],
|
284 |
+
]
|
285 |
+
)
|
286 |
+
tm.assert_index_equal(result, exp)
|
287 |
+
assert result.nlevels == 3
|
288 |
+
|
289 |
+
|
290 |
+
def test_split_to_multiindex_expand_unequal_splits():
|
291 |
+
idx = Index(["some_unequal_splits", "one_of_these_things_is_not", np.nan, None])
|
292 |
+
result = idx.str.split("_", expand=True)
|
293 |
+
exp = MultiIndex.from_tuples(
|
294 |
+
[
|
295 |
+
("some", "unequal", "splits", np.nan, np.nan, np.nan),
|
296 |
+
("one", "of", "these", "things", "is", "not"),
|
297 |
+
(np.nan, np.nan, np.nan, np.nan, np.nan, np.nan),
|
298 |
+
(None, None, None, None, None, None),
|
299 |
+
]
|
300 |
+
)
|
301 |
+
tm.assert_index_equal(result, exp)
|
302 |
+
assert result.nlevels == 6
|
303 |
+
|
304 |
+
with pytest.raises(ValueError, match="expand must be"):
|
305 |
+
idx.str.split("_", expand="not_a_boolean")
|
306 |
+
|
307 |
+
|
308 |
+
def test_rsplit_to_dataframe_expand_no_splits(any_string_dtype):
|
309 |
+
s = Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)
|
310 |
+
result = s.str.rsplit("_", expand=True)
|
311 |
+
exp = DataFrame({0: Series(["nosplit", "alsonosplit"])}, dtype=any_string_dtype)
|
312 |
+
tm.assert_frame_equal(result, exp)
|
313 |
+
|
314 |
+
|
315 |
+
def test_rsplit_to_dataframe_expand(any_string_dtype):
|
316 |
+
s = Series(["some_equal_splits", "with_no_nans"], dtype=any_string_dtype)
|
317 |
+
result = s.str.rsplit("_", expand=True)
|
318 |
+
exp = DataFrame(
|
319 |
+
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
|
320 |
+
dtype=any_string_dtype,
|
321 |
+
)
|
322 |
+
tm.assert_frame_equal(result, exp)
|
323 |
+
|
324 |
+
result = s.str.rsplit("_", expand=True, n=2)
|
325 |
+
exp = DataFrame(
|
326 |
+
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
|
327 |
+
dtype=any_string_dtype,
|
328 |
+
)
|
329 |
+
tm.assert_frame_equal(result, exp)
|
330 |
+
|
331 |
+
result = s.str.rsplit("_", expand=True, n=1)
|
332 |
+
exp = DataFrame(
|
333 |
+
{0: ["some_equal", "with_no"], 1: ["splits", "nans"]}, dtype=any_string_dtype
|
334 |
+
)
|
335 |
+
tm.assert_frame_equal(result, exp)
|
336 |
+
|
337 |
+
|
338 |
+
def test_rsplit_to_dataframe_expand_with_index(any_string_dtype):
|
339 |
+
s = Series(
|
340 |
+
["some_splits", "with_index"], index=["preserve", "me"], dtype=any_string_dtype
|
341 |
+
)
|
342 |
+
result = s.str.rsplit("_", expand=True)
|
343 |
+
exp = DataFrame(
|
344 |
+
{0: ["some", "with"], 1: ["splits", "index"]},
|
345 |
+
index=["preserve", "me"],
|
346 |
+
dtype=any_string_dtype,
|
347 |
+
)
|
348 |
+
tm.assert_frame_equal(result, exp)
|
349 |
+
|
350 |
+
|
351 |
+
def test_rsplit_to_multiindex_expand_no_split():
|
352 |
+
idx = Index(["nosplit", "alsonosplit"])
|
353 |
+
result = idx.str.rsplit("_", expand=True)
|
354 |
+
exp = idx
|
355 |
+
tm.assert_index_equal(result, exp)
|
356 |
+
assert result.nlevels == 1
|
357 |
+
|
358 |
+
|
359 |
+
def test_rsplit_to_multiindex_expand():
|
360 |
+
idx = Index(["some_equal_splits", "with_no_nans"])
|
361 |
+
result = idx.str.rsplit("_", expand=True)
|
362 |
+
exp = MultiIndex.from_tuples([("some", "equal", "splits"), ("with", "no", "nans")])
|
363 |
+
tm.assert_index_equal(result, exp)
|
364 |
+
assert result.nlevels == 3
|
365 |
+
|
366 |
+
|
367 |
+
def test_rsplit_to_multiindex_expand_n():
|
368 |
+
idx = Index(["some_equal_splits", "with_no_nans"])
|
369 |
+
result = idx.str.rsplit("_", expand=True, n=1)
|
370 |
+
exp = MultiIndex.from_tuples([("some_equal", "splits"), ("with_no", "nans")])
|
371 |
+
tm.assert_index_equal(result, exp)
|
372 |
+
assert result.nlevels == 2
|
373 |
+
|
374 |
+
|
375 |
+
def test_split_nan_expand(any_string_dtype):
|
376 |
+
# gh-18450
|
377 |
+
s = Series(["foo,bar,baz", np.nan], dtype=any_string_dtype)
|
378 |
+
result = s.str.split(",", expand=True)
|
379 |
+
exp = DataFrame(
|
380 |
+
[["foo", "bar", "baz"], [np.nan, np.nan, np.nan]], dtype=any_string_dtype
|
381 |
+
)
|
382 |
+
tm.assert_frame_equal(result, exp)
|
383 |
+
|
384 |
+
# check that these are actually np.nan/pd.NA and not None
|
385 |
+
# TODO see GH 18463
|
386 |
+
# tm.assert_frame_equal does not differentiate
|
387 |
+
if any_string_dtype in object_pyarrow_numpy:
|
388 |
+
assert all(np.isnan(x) for x in result.iloc[1])
|
389 |
+
else:
|
390 |
+
assert all(x is pd.NA for x in result.iloc[1])
|
391 |
+
|
392 |
+
|
393 |
+
def test_split_with_name_series(any_string_dtype):
|
394 |
+
# GH 12617
|
395 |
+
|
396 |
+
# should preserve name
|
397 |
+
s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
|
398 |
+
res = s.str.split(",")
|
399 |
+
exp = Series([["a", "b"], ["c", "d"]], name="xxx")
|
400 |
+
tm.assert_series_equal(res, exp)
|
401 |
+
|
402 |
+
res = s.str.split(",", expand=True)
|
403 |
+
exp = DataFrame([["a", "b"], ["c", "d"]], dtype=any_string_dtype)
|
404 |
+
tm.assert_frame_equal(res, exp)
|
405 |
+
|
406 |
+
|
407 |
+
def test_split_with_name_index():
|
408 |
+
# GH 12617
|
409 |
+
idx = Index(["a,b", "c,d"], name="xxx")
|
410 |
+
res = idx.str.split(",")
|
411 |
+
exp = Index([["a", "b"], ["c", "d"]], name="xxx")
|
412 |
+
assert res.nlevels == 1
|
413 |
+
tm.assert_index_equal(res, exp)
|
414 |
+
|
415 |
+
res = idx.str.split(",", expand=True)
|
416 |
+
exp = MultiIndex.from_tuples([("a", "b"), ("c", "d")])
|
417 |
+
assert res.nlevels == 2
|
418 |
+
tm.assert_index_equal(res, exp)
|
419 |
+
|
420 |
+
|
421 |
+
@pytest.mark.parametrize(
|
422 |
+
"method, exp",
|
423 |
+
[
|
424 |
+
[
|
425 |
+
"partition",
|
426 |
+
[
|
427 |
+
("a", "__", "b__c"),
|
428 |
+
("c", "__", "d__e"),
|
429 |
+
np.nan,
|
430 |
+
("f", "__", "g__h"),
|
431 |
+
None,
|
432 |
+
],
|
433 |
+
],
|
434 |
+
[
|
435 |
+
"rpartition",
|
436 |
+
[
|
437 |
+
("a__b", "__", "c"),
|
438 |
+
("c__d", "__", "e"),
|
439 |
+
np.nan,
|
440 |
+
("f__g", "__", "h"),
|
441 |
+
None,
|
442 |
+
],
|
443 |
+
],
|
444 |
+
],
|
445 |
+
)
|
446 |
+
def test_partition_series_more_than_one_char(method, exp, any_string_dtype):
|
447 |
+
# https://github.com/pandas-dev/pandas/issues/23558
|
448 |
+
# more than one char
|
449 |
+
s = Series(["a__b__c", "c__d__e", np.nan, "f__g__h", None], dtype=any_string_dtype)
|
450 |
+
result = getattr(s.str, method)("__", expand=False)
|
451 |
+
expected = Series(exp)
|
452 |
+
expected = _convert_na_value(s, expected)
|
453 |
+
tm.assert_series_equal(result, expected)
|
454 |
+
|
455 |
+
|
456 |
+
@pytest.mark.parametrize(
|
457 |
+
"method, exp",
|
458 |
+
[
|
459 |
+
[
|
460 |
+
"partition",
|
461 |
+
[("a", " ", "b c"), ("c", " ", "d e"), np.nan, ("f", " ", "g h"), None],
|
462 |
+
],
|
463 |
+
[
|
464 |
+
"rpartition",
|
465 |
+
[("a b", " ", "c"), ("c d", " ", "e"), np.nan, ("f g", " ", "h"), None],
|
466 |
+
],
|
467 |
+
],
|
468 |
+
)
|
469 |
+
def test_partition_series_none(any_string_dtype, method, exp):
|
470 |
+
# https://github.com/pandas-dev/pandas/issues/23558
|
471 |
+
# None
|
472 |
+
s = Series(["a b c", "c d e", np.nan, "f g h", None], dtype=any_string_dtype)
|
473 |
+
result = getattr(s.str, method)(expand=False)
|
474 |
+
expected = Series(exp)
|
475 |
+
expected = _convert_na_value(s, expected)
|
476 |
+
tm.assert_series_equal(result, expected)
|
477 |
+
|
478 |
+
|
479 |
+
@pytest.mark.parametrize(
|
480 |
+
"method, exp",
|
481 |
+
[
|
482 |
+
[
|
483 |
+
"partition",
|
484 |
+
[("abc", "", ""), ("cde", "", ""), np.nan, ("fgh", "", ""), None],
|
485 |
+
],
|
486 |
+
[
|
487 |
+
"rpartition",
|
488 |
+
[("", "", "abc"), ("", "", "cde"), np.nan, ("", "", "fgh"), None],
|
489 |
+
],
|
490 |
+
],
|
491 |
+
)
|
492 |
+
def test_partition_series_not_split(any_string_dtype, method, exp):
|
493 |
+
# https://github.com/pandas-dev/pandas/issues/23558
|
494 |
+
# Not split
|
495 |
+
s = Series(["abc", "cde", np.nan, "fgh", None], dtype=any_string_dtype)
|
496 |
+
result = getattr(s.str, method)("_", expand=False)
|
497 |
+
expected = Series(exp)
|
498 |
+
expected = _convert_na_value(s, expected)
|
499 |
+
tm.assert_series_equal(result, expected)
|
500 |
+
|
501 |
+
|
502 |
+
@pytest.mark.parametrize(
|
503 |
+
"method, exp",
|
504 |
+
[
|
505 |
+
[
|
506 |
+
"partition",
|
507 |
+
[("a", "_", "b_c"), ("c", "_", "d_e"), np.nan, ("f", "_", "g_h")],
|
508 |
+
],
|
509 |
+
[
|
510 |
+
"rpartition",
|
511 |
+
[("a_b", "_", "c"), ("c_d", "_", "e"), np.nan, ("f_g", "_", "h")],
|
512 |
+
],
|
513 |
+
],
|
514 |
+
)
|
515 |
+
def test_partition_series_unicode(any_string_dtype, method, exp):
|
516 |
+
# https://github.com/pandas-dev/pandas/issues/23558
|
517 |
+
# unicode
|
518 |
+
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
|
519 |
+
|
520 |
+
result = getattr(s.str, method)("_", expand=False)
|
521 |
+
expected = Series(exp)
|
522 |
+
expected = _convert_na_value(s, expected)
|
523 |
+
tm.assert_series_equal(result, expected)
|
524 |
+
|
525 |
+
|
526 |
+
@pytest.mark.parametrize("method", ["partition", "rpartition"])
|
527 |
+
def test_partition_series_stdlib(any_string_dtype, method):
|
528 |
+
# https://github.com/pandas-dev/pandas/issues/23558
|
529 |
+
# compare to standard lib
|
530 |
+
s = Series(["A_B_C", "B_C_D", "E_F_G", "EFGHEF"], dtype=any_string_dtype)
|
531 |
+
result = getattr(s.str, method)("_", expand=False).tolist()
|
532 |
+
assert result == [getattr(v, method)("_") for v in s]
|
533 |
+
|
534 |
+
|
535 |
+
@pytest.mark.parametrize(
|
536 |
+
"method, expand, exp, exp_levels",
|
537 |
+
[
|
538 |
+
[
|
539 |
+
"partition",
|
540 |
+
False,
|
541 |
+
np.array(
|
542 |
+
[("a", "_", "b_c"), ("c", "_", "d_e"), ("f", "_", "g_h"), np.nan, None],
|
543 |
+
dtype=object,
|
544 |
+
),
|
545 |
+
1,
|
546 |
+
],
|
547 |
+
[
|
548 |
+
"rpartition",
|
549 |
+
False,
|
550 |
+
np.array(
|
551 |
+
[("a_b", "_", "c"), ("c_d", "_", "e"), ("f_g", "_", "h"), np.nan, None],
|
552 |
+
dtype=object,
|
553 |
+
),
|
554 |
+
1,
|
555 |
+
],
|
556 |
+
],
|
557 |
+
)
|
558 |
+
def test_partition_index(method, expand, exp, exp_levels):
|
559 |
+
# https://github.com/pandas-dev/pandas/issues/23558
|
560 |
+
|
561 |
+
values = Index(["a_b_c", "c_d_e", "f_g_h", np.nan, None])
|
562 |
+
|
563 |
+
result = getattr(values.str, method)("_", expand=expand)
|
564 |
+
exp = Index(exp)
|
565 |
+
tm.assert_index_equal(result, exp)
|
566 |
+
assert result.nlevels == exp_levels
|
567 |
+
|
568 |
+
|
569 |
+
@pytest.mark.parametrize(
|
570 |
+
"method, exp",
|
571 |
+
[
|
572 |
+
[
|
573 |
+
"partition",
|
574 |
+
{
|
575 |
+
0: ["a", "c", np.nan, "f", None],
|
576 |
+
1: ["_", "_", np.nan, "_", None],
|
577 |
+
2: ["b_c", "d_e", np.nan, "g_h", None],
|
578 |
+
},
|
579 |
+
],
|
580 |
+
[
|
581 |
+
"rpartition",
|
582 |
+
{
|
583 |
+
0: ["a_b", "c_d", np.nan, "f_g", None],
|
584 |
+
1: ["_", "_", np.nan, "_", None],
|
585 |
+
2: ["c", "e", np.nan, "h", None],
|
586 |
+
},
|
587 |
+
],
|
588 |
+
],
|
589 |
+
)
|
590 |
+
def test_partition_to_dataframe(any_string_dtype, method, exp):
|
591 |
+
# https://github.com/pandas-dev/pandas/issues/23558
|
592 |
+
|
593 |
+
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None], dtype=any_string_dtype)
|
594 |
+
result = getattr(s.str, method)("_")
|
595 |
+
expected = DataFrame(
|
596 |
+
exp,
|
597 |
+
dtype=any_string_dtype,
|
598 |
+
)
|
599 |
+
tm.assert_frame_equal(result, expected)
|
600 |
+
|
601 |
+
|
602 |
+
@pytest.mark.parametrize(
|
603 |
+
"method, exp",
|
604 |
+
[
|
605 |
+
[
|
606 |
+
"partition",
|
607 |
+
{
|
608 |
+
0: ["a", "c", np.nan, "f", None],
|
609 |
+
1: ["_", "_", np.nan, "_", None],
|
610 |
+
2: ["b_c", "d_e", np.nan, "g_h", None],
|
611 |
+
},
|
612 |
+
],
|
613 |
+
[
|
614 |
+
"rpartition",
|
615 |
+
{
|
616 |
+
0: ["a_b", "c_d", np.nan, "f_g", None],
|
617 |
+
1: ["_", "_", np.nan, "_", None],
|
618 |
+
2: ["c", "e", np.nan, "h", None],
|
619 |
+
},
|
620 |
+
],
|
621 |
+
],
|
622 |
+
)
|
623 |
+
def test_partition_to_dataframe_from_series(any_string_dtype, method, exp):
|
624 |
+
# https://github.com/pandas-dev/pandas/issues/23558
|
625 |
+
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None], dtype=any_string_dtype)
|
626 |
+
result = getattr(s.str, method)("_", expand=True)
|
627 |
+
expected = DataFrame(
|
628 |
+
exp,
|
629 |
+
dtype=any_string_dtype,
|
630 |
+
)
|
631 |
+
tm.assert_frame_equal(result, expected)
|
632 |
+
|
633 |
+
|
634 |
+
def test_partition_with_name(any_string_dtype):
|
635 |
+
# GH 12617
|
636 |
+
|
637 |
+
s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
|
638 |
+
result = s.str.partition(",")
|
639 |
+
expected = DataFrame(
|
640 |
+
{0: ["a", "c"], 1: [",", ","], 2: ["b", "d"]}, dtype=any_string_dtype
|
641 |
+
)
|
642 |
+
tm.assert_frame_equal(result, expected)
|
643 |
+
|
644 |
+
|
645 |
+
def test_partition_with_name_expand(any_string_dtype):
|
646 |
+
# GH 12617
|
647 |
+
# should preserve name
|
648 |
+
s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
|
649 |
+
result = s.str.partition(",", expand=False)
|
650 |
+
expected = Series([("a", ",", "b"), ("c", ",", "d")], name="xxx")
|
651 |
+
tm.assert_series_equal(result, expected)
|
652 |
+
|
653 |
+
|
654 |
+
def test_partition_index_with_name():
|
655 |
+
idx = Index(["a,b", "c,d"], name="xxx")
|
656 |
+
result = idx.str.partition(",")
|
657 |
+
expected = MultiIndex.from_tuples([("a", ",", "b"), ("c", ",", "d")])
|
658 |
+
assert result.nlevels == 3
|
659 |
+
tm.assert_index_equal(result, expected)
|
660 |
+
|
661 |
+
|
662 |
+
def test_partition_index_with_name_expand_false():
|
663 |
+
idx = Index(["a,b", "c,d"], name="xxx")
|
664 |
+
# should preserve name
|
665 |
+
result = idx.str.partition(",", expand=False)
|
666 |
+
expected = Index(np.array([("a", ",", "b"), ("c", ",", "d")]), name="xxx")
|
667 |
+
assert result.nlevels == 1
|
668 |
+
tm.assert_index_equal(result, expected)
|
669 |
+
|
670 |
+
|
671 |
+
@pytest.mark.parametrize("method", ["partition", "rpartition"])
|
672 |
+
def test_partition_sep_kwarg(any_string_dtype, method):
|
673 |
+
# GH 22676; depr kwarg "pat" in favor of "sep"
|
674 |
+
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
|
675 |
+
|
676 |
+
expected = getattr(s.str, method)(sep="_")
|
677 |
+
result = getattr(s.str, method)("_")
|
678 |
+
tm.assert_frame_equal(result, expected)
|
679 |
+
|
680 |
+
|
681 |
+
def test_get():
|
682 |
+
ser = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
|
683 |
+
result = ser.str.split("_").str.get(1)
|
684 |
+
expected = Series(["b", "d", np.nan, "g"], dtype=object)
|
685 |
+
tm.assert_series_equal(result, expected)
|
686 |
+
|
687 |
+
|
688 |
+
def test_get_mixed_object():
|
689 |
+
ser = Series(["a_b_c", np.nan, "c_d_e", True, datetime.today(), None, 1, 2.0])
|
690 |
+
result = ser.str.split("_").str.get(1)
|
691 |
+
expected = Series(
|
692 |
+
["b", np.nan, "d", np.nan, np.nan, None, np.nan, np.nan], dtype=object
|
693 |
+
)
|
694 |
+
tm.assert_series_equal(result, expected)
|
695 |
+
|
696 |
+
|
697 |
+
@pytest.mark.parametrize("idx", [2, -3])
|
698 |
+
def test_get_bounds(idx):
|
699 |
+
ser = Series(["1_2_3_4_5", "6_7_8_9_10", "11_12"])
|
700 |
+
result = ser.str.split("_").str.get(idx)
|
701 |
+
expected = Series(["3", "8", np.nan], dtype=object)
|
702 |
+
tm.assert_series_equal(result, expected)
|
703 |
+
|
704 |
+
|
705 |
+
@pytest.mark.parametrize(
|
706 |
+
"idx, exp", [[2, [3, 3, np.nan, "b"]], [-1, [3, 3, np.nan, np.nan]]]
|
707 |
+
)
|
708 |
+
def test_get_complex(idx, exp):
|
709 |
+
# GH 20671, getting value not in dict raising `KeyError`
|
710 |
+
ser = Series([(1, 2, 3), [1, 2, 3], {1, 2, 3}, {1: "a", 2: "b", 3: "c"}])
|
711 |
+
|
712 |
+
result = ser.str.get(idx)
|
713 |
+
expected = Series(exp)
|
714 |
+
tm.assert_series_equal(result, expected)
|
715 |
+
|
716 |
+
|
717 |
+
@pytest.mark.parametrize("to_type", [tuple, list, np.array])
|
718 |
+
def test_get_complex_nested(to_type):
|
719 |
+
ser = Series([to_type([to_type([1, 2])])])
|
720 |
+
|
721 |
+
result = ser.str.get(0)
|
722 |
+
expected = Series([to_type([1, 2])])
|
723 |
+
tm.assert_series_equal(result, expected)
|
724 |
+
|
725 |
+
result = ser.str.get(1)
|
726 |
+
expected = Series([np.nan])
|
727 |
+
tm.assert_series_equal(result, expected)
|
728 |
+
|
729 |
+
|
730 |
+
def test_get_strings(any_string_dtype):
|
731 |
+
ser = Series(["a", "ab", np.nan, "abc"], dtype=any_string_dtype)
|
732 |
+
result = ser.str.get(2)
|
733 |
+
expected = Series([np.nan, np.nan, np.nan, "c"], dtype=any_string_dtype)
|
734 |
+
tm.assert_series_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_string_array.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas._libs import lib
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
NA,
|
8 |
+
DataFrame,
|
9 |
+
Series,
|
10 |
+
_testing as tm,
|
11 |
+
option_context,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
@pytest.mark.filterwarnings("ignore:Falling back")
|
16 |
+
def test_string_array(nullable_string_dtype, any_string_method):
|
17 |
+
method_name, args, kwargs = any_string_method
|
18 |
+
|
19 |
+
data = ["a", "bb", np.nan, "ccc"]
|
20 |
+
a = Series(data, dtype=object)
|
21 |
+
b = Series(data, dtype=nullable_string_dtype)
|
22 |
+
|
23 |
+
if method_name == "decode":
|
24 |
+
with pytest.raises(TypeError, match="a bytes-like object is required"):
|
25 |
+
getattr(b.str, method_name)(*args, **kwargs)
|
26 |
+
return
|
27 |
+
|
28 |
+
expected = getattr(a.str, method_name)(*args, **kwargs)
|
29 |
+
result = getattr(b.str, method_name)(*args, **kwargs)
|
30 |
+
|
31 |
+
if isinstance(expected, Series):
|
32 |
+
if expected.dtype == "object" and lib.is_string_array(
|
33 |
+
expected.dropna().values,
|
34 |
+
):
|
35 |
+
assert result.dtype == nullable_string_dtype
|
36 |
+
result = result.astype(object)
|
37 |
+
|
38 |
+
elif expected.dtype == "object" and lib.is_bool_array(
|
39 |
+
expected.values, skipna=True
|
40 |
+
):
|
41 |
+
assert result.dtype == "boolean"
|
42 |
+
result = result.astype(object)
|
43 |
+
|
44 |
+
elif expected.dtype == "bool":
|
45 |
+
assert result.dtype == "boolean"
|
46 |
+
result = result.astype("bool")
|
47 |
+
|
48 |
+
elif expected.dtype == "float" and expected.isna().any():
|
49 |
+
assert result.dtype == "Int64"
|
50 |
+
result = result.astype("float")
|
51 |
+
|
52 |
+
if expected.dtype == object:
|
53 |
+
# GH#18463
|
54 |
+
expected[expected.isna()] = NA
|
55 |
+
|
56 |
+
elif isinstance(expected, DataFrame):
|
57 |
+
columns = expected.select_dtypes(include="object").columns
|
58 |
+
assert all(result[columns].dtypes == nullable_string_dtype)
|
59 |
+
result[columns] = result[columns].astype(object)
|
60 |
+
with option_context("future.no_silent_downcasting", True):
|
61 |
+
expected[columns] = expected[columns].fillna(NA) # GH#18463
|
62 |
+
|
63 |
+
tm.assert_equal(result, expected)
|
64 |
+
|
65 |
+
|
66 |
+
@pytest.mark.parametrize(
|
67 |
+
"method,expected",
|
68 |
+
[
|
69 |
+
("count", [2, None]),
|
70 |
+
("find", [0, None]),
|
71 |
+
("index", [0, None]),
|
72 |
+
("rindex", [2, None]),
|
73 |
+
],
|
74 |
+
)
|
75 |
+
def test_string_array_numeric_integer_array(nullable_string_dtype, method, expected):
|
76 |
+
s = Series(["aba", None], dtype=nullable_string_dtype)
|
77 |
+
result = getattr(s.str, method)("a")
|
78 |
+
expected = Series(expected, dtype="Int64")
|
79 |
+
tm.assert_series_equal(result, expected)
|
80 |
+
|
81 |
+
|
82 |
+
@pytest.mark.parametrize(
|
83 |
+
"method,expected",
|
84 |
+
[
|
85 |
+
("isdigit", [False, None, True]),
|
86 |
+
("isalpha", [True, None, False]),
|
87 |
+
("isalnum", [True, None, True]),
|
88 |
+
("isnumeric", [False, None, True]),
|
89 |
+
],
|
90 |
+
)
|
91 |
+
def test_string_array_boolean_array(nullable_string_dtype, method, expected):
|
92 |
+
s = Series(["a", None, "1"], dtype=nullable_string_dtype)
|
93 |
+
result = getattr(s.str, method)()
|
94 |
+
expected = Series(expected, dtype="boolean")
|
95 |
+
tm.assert_series_equal(result, expected)
|
96 |
+
|
97 |
+
|
98 |
+
def test_string_array_extract(nullable_string_dtype):
|
99 |
+
# https://github.com/pandas-dev/pandas/issues/30969
|
100 |
+
# Only expand=False & multiple groups was failing
|
101 |
+
|
102 |
+
a = Series(["a1", "b2", "cc"], dtype=nullable_string_dtype)
|
103 |
+
b = Series(["a1", "b2", "cc"], dtype="object")
|
104 |
+
pat = r"(\w)(\d)"
|
105 |
+
|
106 |
+
result = a.str.extract(pat, expand=False)
|
107 |
+
expected = b.str.extract(pat, expand=False)
|
108 |
+
expected = expected.fillna(NA) # GH#18463
|
109 |
+
assert all(result.dtypes == nullable_string_dtype)
|
110 |
+
|
111 |
+
result = result.astype(object)
|
112 |
+
tm.assert_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/strings/test_strings.py
ADDED
@@ -0,0 +1,720 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
timedelta,
|
4 |
+
)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pytest
|
8 |
+
|
9 |
+
from pandas import (
|
10 |
+
DataFrame,
|
11 |
+
Index,
|
12 |
+
MultiIndex,
|
13 |
+
Series,
|
14 |
+
)
|
15 |
+
import pandas._testing as tm
|
16 |
+
from pandas.core.strings.accessor import StringMethods
|
17 |
+
from pandas.tests.strings import object_pyarrow_numpy
|
18 |
+
|
19 |
+
|
20 |
+
@pytest.mark.parametrize("pattern", [0, True, Series(["foo", "bar"])])
|
21 |
+
def test_startswith_endswith_non_str_patterns(pattern):
|
22 |
+
# GH3485
|
23 |
+
ser = Series(["foo", "bar"])
|
24 |
+
msg = f"expected a string or tuple, not {type(pattern).__name__}"
|
25 |
+
with pytest.raises(TypeError, match=msg):
|
26 |
+
ser.str.startswith(pattern)
|
27 |
+
with pytest.raises(TypeError, match=msg):
|
28 |
+
ser.str.endswith(pattern)
|
29 |
+
|
30 |
+
|
31 |
+
def test_iter_raises():
|
32 |
+
# GH 54173
|
33 |
+
ser = Series(["foo", "bar"])
|
34 |
+
with pytest.raises(TypeError, match="'StringMethods' object is not iterable"):
|
35 |
+
iter(ser.str)
|
36 |
+
|
37 |
+
|
38 |
+
# test integer/float dtypes (inferred by constructor) and mixed
|
39 |
+
|
40 |
+
|
41 |
+
def test_count(any_string_dtype):
|
42 |
+
ser = Series(["foo", "foofoo", np.nan, "foooofooofommmfoo"], dtype=any_string_dtype)
|
43 |
+
result = ser.str.count("f[o]+")
|
44 |
+
expected_dtype = np.float64 if any_string_dtype in object_pyarrow_numpy else "Int64"
|
45 |
+
expected = Series([1, 2, np.nan, 4], dtype=expected_dtype)
|
46 |
+
tm.assert_series_equal(result, expected)
|
47 |
+
|
48 |
+
|
49 |
+
def test_count_mixed_object():
|
50 |
+
ser = Series(
|
51 |
+
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
|
52 |
+
dtype=object,
|
53 |
+
)
|
54 |
+
result = ser.str.count("a")
|
55 |
+
expected = Series([1, np.nan, 0, np.nan, np.nan, 0, np.nan, np.nan, np.nan])
|
56 |
+
tm.assert_series_equal(result, expected)
|
57 |
+
|
58 |
+
|
59 |
+
def test_repeat(any_string_dtype):
|
60 |
+
ser = Series(["a", "b", np.nan, "c", np.nan, "d"], dtype=any_string_dtype)
|
61 |
+
|
62 |
+
result = ser.str.repeat(3)
|
63 |
+
expected = Series(
|
64 |
+
["aaa", "bbb", np.nan, "ccc", np.nan, "ddd"], dtype=any_string_dtype
|
65 |
+
)
|
66 |
+
tm.assert_series_equal(result, expected)
|
67 |
+
|
68 |
+
result = ser.str.repeat([1, 2, 3, 4, 5, 6])
|
69 |
+
expected = Series(
|
70 |
+
["a", "bb", np.nan, "cccc", np.nan, "dddddd"], dtype=any_string_dtype
|
71 |
+
)
|
72 |
+
tm.assert_series_equal(result, expected)
|
73 |
+
|
74 |
+
|
75 |
+
def test_repeat_mixed_object():
|
76 |
+
ser = Series(["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0])
|
77 |
+
result = ser.str.repeat(3)
|
78 |
+
expected = Series(
|
79 |
+
["aaa", np.nan, "bbb", np.nan, np.nan, "foofoofoo", None, np.nan, np.nan],
|
80 |
+
dtype=object,
|
81 |
+
)
|
82 |
+
tm.assert_series_equal(result, expected)
|
83 |
+
|
84 |
+
|
85 |
+
@pytest.mark.parametrize("arg, repeat", [[None, 4], ["b", None]])
|
86 |
+
def test_repeat_with_null(any_string_dtype, arg, repeat):
|
87 |
+
# GH: 31632
|
88 |
+
ser = Series(["a", arg], dtype=any_string_dtype)
|
89 |
+
result = ser.str.repeat([3, repeat])
|
90 |
+
expected = Series(["aaa", None], dtype=any_string_dtype)
|
91 |
+
tm.assert_series_equal(result, expected)
|
92 |
+
|
93 |
+
|
94 |
+
def test_empty_str_methods(any_string_dtype):
|
95 |
+
empty_str = empty = Series(dtype=any_string_dtype)
|
96 |
+
if any_string_dtype in object_pyarrow_numpy:
|
97 |
+
empty_int = Series(dtype="int64")
|
98 |
+
empty_bool = Series(dtype=bool)
|
99 |
+
else:
|
100 |
+
empty_int = Series(dtype="Int64")
|
101 |
+
empty_bool = Series(dtype="boolean")
|
102 |
+
empty_object = Series(dtype=object)
|
103 |
+
empty_bytes = Series(dtype=object)
|
104 |
+
empty_df = DataFrame()
|
105 |
+
|
106 |
+
# GH7241
|
107 |
+
# (extract) on empty series
|
108 |
+
|
109 |
+
tm.assert_series_equal(empty_str, empty.str.cat(empty))
|
110 |
+
assert "" == empty.str.cat()
|
111 |
+
tm.assert_series_equal(empty_str, empty.str.title())
|
112 |
+
tm.assert_series_equal(empty_int, empty.str.count("a"))
|
113 |
+
tm.assert_series_equal(empty_bool, empty.str.contains("a"))
|
114 |
+
tm.assert_series_equal(empty_bool, empty.str.startswith("a"))
|
115 |
+
tm.assert_series_equal(empty_bool, empty.str.endswith("a"))
|
116 |
+
tm.assert_series_equal(empty_str, empty.str.lower())
|
117 |
+
tm.assert_series_equal(empty_str, empty.str.upper())
|
118 |
+
tm.assert_series_equal(empty_str, empty.str.replace("a", "b"))
|
119 |
+
tm.assert_series_equal(empty_str, empty.str.repeat(3))
|
120 |
+
tm.assert_series_equal(empty_bool, empty.str.match("^a"))
|
121 |
+
tm.assert_frame_equal(
|
122 |
+
DataFrame(columns=[0], dtype=any_string_dtype),
|
123 |
+
empty.str.extract("()", expand=True),
|
124 |
+
)
|
125 |
+
tm.assert_frame_equal(
|
126 |
+
DataFrame(columns=[0, 1], dtype=any_string_dtype),
|
127 |
+
empty.str.extract("()()", expand=True),
|
128 |
+
)
|
129 |
+
tm.assert_series_equal(empty_str, empty.str.extract("()", expand=False))
|
130 |
+
tm.assert_frame_equal(
|
131 |
+
DataFrame(columns=[0, 1], dtype=any_string_dtype),
|
132 |
+
empty.str.extract("()()", expand=False),
|
133 |
+
)
|
134 |
+
tm.assert_frame_equal(empty_df.set_axis([], axis=1), empty.str.get_dummies())
|
135 |
+
tm.assert_series_equal(empty_str, empty_str.str.join(""))
|
136 |
+
tm.assert_series_equal(empty_int, empty.str.len())
|
137 |
+
tm.assert_series_equal(empty_object, empty_str.str.findall("a"))
|
138 |
+
tm.assert_series_equal(empty_int, empty.str.find("a"))
|
139 |
+
tm.assert_series_equal(empty_int, empty.str.rfind("a"))
|
140 |
+
tm.assert_series_equal(empty_str, empty.str.pad(42))
|
141 |
+
tm.assert_series_equal(empty_str, empty.str.center(42))
|
142 |
+
tm.assert_series_equal(empty_object, empty.str.split("a"))
|
143 |
+
tm.assert_series_equal(empty_object, empty.str.rsplit("a"))
|
144 |
+
tm.assert_series_equal(empty_object, empty.str.partition("a", expand=False))
|
145 |
+
tm.assert_frame_equal(empty_df, empty.str.partition("a"))
|
146 |
+
tm.assert_series_equal(empty_object, empty.str.rpartition("a", expand=False))
|
147 |
+
tm.assert_frame_equal(empty_df, empty.str.rpartition("a"))
|
148 |
+
tm.assert_series_equal(empty_str, empty.str.slice(stop=1))
|
149 |
+
tm.assert_series_equal(empty_str, empty.str.slice(step=1))
|
150 |
+
tm.assert_series_equal(empty_str, empty.str.strip())
|
151 |
+
tm.assert_series_equal(empty_str, empty.str.lstrip())
|
152 |
+
tm.assert_series_equal(empty_str, empty.str.rstrip())
|
153 |
+
tm.assert_series_equal(empty_str, empty.str.wrap(42))
|
154 |
+
tm.assert_series_equal(empty_str, empty.str.get(0))
|
155 |
+
tm.assert_series_equal(empty_object, empty_bytes.str.decode("ascii"))
|
156 |
+
tm.assert_series_equal(empty_bytes, empty.str.encode("ascii"))
|
157 |
+
# ismethods should always return boolean (GH 29624)
|
158 |
+
tm.assert_series_equal(empty_bool, empty.str.isalnum())
|
159 |
+
tm.assert_series_equal(empty_bool, empty.str.isalpha())
|
160 |
+
tm.assert_series_equal(empty_bool, empty.str.isdigit())
|
161 |
+
tm.assert_series_equal(empty_bool, empty.str.isspace())
|
162 |
+
tm.assert_series_equal(empty_bool, empty.str.islower())
|
163 |
+
tm.assert_series_equal(empty_bool, empty.str.isupper())
|
164 |
+
tm.assert_series_equal(empty_bool, empty.str.istitle())
|
165 |
+
tm.assert_series_equal(empty_bool, empty.str.isnumeric())
|
166 |
+
tm.assert_series_equal(empty_bool, empty.str.isdecimal())
|
167 |
+
tm.assert_series_equal(empty_str, empty.str.capitalize())
|
168 |
+
tm.assert_series_equal(empty_str, empty.str.swapcase())
|
169 |
+
tm.assert_series_equal(empty_str, empty.str.normalize("NFC"))
|
170 |
+
|
171 |
+
table = str.maketrans("a", "b")
|
172 |
+
tm.assert_series_equal(empty_str, empty.str.translate(table))
|
173 |
+
|
174 |
+
|
175 |
+
@pytest.mark.parametrize(
|
176 |
+
"method, expected",
|
177 |
+
[
|
178 |
+
("isalnum", [True, True, True, True, True, False, True, True, False, False]),
|
179 |
+
("isalpha", [True, True, True, False, False, False, True, False, False, False]),
|
180 |
+
(
|
181 |
+
"isdigit",
|
182 |
+
[False, False, False, True, False, False, False, True, False, False],
|
183 |
+
),
|
184 |
+
(
|
185 |
+
"isnumeric",
|
186 |
+
[False, False, False, True, False, False, False, True, False, False],
|
187 |
+
),
|
188 |
+
(
|
189 |
+
"isspace",
|
190 |
+
[False, False, False, False, False, False, False, False, False, True],
|
191 |
+
),
|
192 |
+
(
|
193 |
+
"islower",
|
194 |
+
[False, True, False, False, False, False, False, False, False, False],
|
195 |
+
),
|
196 |
+
(
|
197 |
+
"isupper",
|
198 |
+
[True, False, False, False, True, False, True, False, False, False],
|
199 |
+
),
|
200 |
+
(
|
201 |
+
"istitle",
|
202 |
+
[True, False, True, False, True, False, False, False, False, False],
|
203 |
+
),
|
204 |
+
],
|
205 |
+
)
|
206 |
+
def test_ismethods(method, expected, any_string_dtype):
|
207 |
+
ser = Series(
|
208 |
+
["A", "b", "Xy", "4", "3A", "", "TT", "55", "-", " "], dtype=any_string_dtype
|
209 |
+
)
|
210 |
+
expected_dtype = "bool" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
211 |
+
expected = Series(expected, dtype=expected_dtype)
|
212 |
+
result = getattr(ser.str, method)()
|
213 |
+
tm.assert_series_equal(result, expected)
|
214 |
+
|
215 |
+
# compare with standard library
|
216 |
+
expected = [getattr(item, method)() for item in ser]
|
217 |
+
assert list(result) == expected
|
218 |
+
|
219 |
+
|
220 |
+
@pytest.mark.parametrize(
|
221 |
+
"method, expected",
|
222 |
+
[
|
223 |
+
("isnumeric", [False, True, True, False, True, True, False]),
|
224 |
+
("isdecimal", [False, True, False, False, False, True, False]),
|
225 |
+
],
|
226 |
+
)
|
227 |
+
def test_isnumeric_unicode(method, expected, any_string_dtype):
|
228 |
+
# 0x00bc: ¼ VULGAR FRACTION ONE QUARTER
|
229 |
+
# 0x2605: ★ not number
|
230 |
+
# 0x1378: ፸ ETHIOPIC NUMBER SEVENTY
|
231 |
+
# 0xFF13: 3 Em 3 # noqa: RUF003
|
232 |
+
ser = Series(
|
233 |
+
["A", "3", "¼", "★", "፸", "3", "four"], dtype=any_string_dtype # noqa: RUF001
|
234 |
+
)
|
235 |
+
expected_dtype = "bool" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
236 |
+
expected = Series(expected, dtype=expected_dtype)
|
237 |
+
result = getattr(ser.str, method)()
|
238 |
+
tm.assert_series_equal(result, expected)
|
239 |
+
|
240 |
+
# compare with standard library
|
241 |
+
expected = [getattr(item, method)() for item in ser]
|
242 |
+
assert list(result) == expected
|
243 |
+
|
244 |
+
|
245 |
+
@pytest.mark.parametrize(
|
246 |
+
"method, expected",
|
247 |
+
[
|
248 |
+
("isnumeric", [False, np.nan, True, False, np.nan, True, False]),
|
249 |
+
("isdecimal", [False, np.nan, False, False, np.nan, True, False]),
|
250 |
+
],
|
251 |
+
)
|
252 |
+
def test_isnumeric_unicode_missing(method, expected, any_string_dtype):
|
253 |
+
values = ["A", np.nan, "¼", "★", np.nan, "3", "four"] # noqa: RUF001
|
254 |
+
ser = Series(values, dtype=any_string_dtype)
|
255 |
+
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
256 |
+
expected = Series(expected, dtype=expected_dtype)
|
257 |
+
result = getattr(ser.str, method)()
|
258 |
+
tm.assert_series_equal(result, expected)
|
259 |
+
|
260 |
+
|
261 |
+
def test_spilt_join_roundtrip(any_string_dtype):
|
262 |
+
ser = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
|
263 |
+
result = ser.str.split("_").str.join("_")
|
264 |
+
expected = ser.astype(object)
|
265 |
+
tm.assert_series_equal(result, expected)
|
266 |
+
|
267 |
+
|
268 |
+
def test_spilt_join_roundtrip_mixed_object():
|
269 |
+
ser = Series(
|
270 |
+
["a_b", np.nan, "asdf_cas_asdf", True, datetime.today(), "foo", None, 1, 2.0]
|
271 |
+
)
|
272 |
+
result = ser.str.split("_").str.join("_")
|
273 |
+
expected = Series(
|
274 |
+
["a_b", np.nan, "asdf_cas_asdf", np.nan, np.nan, "foo", None, np.nan, np.nan],
|
275 |
+
dtype=object,
|
276 |
+
)
|
277 |
+
tm.assert_series_equal(result, expected)
|
278 |
+
|
279 |
+
|
280 |
+
def test_len(any_string_dtype):
|
281 |
+
ser = Series(
|
282 |
+
["foo", "fooo", "fooooo", np.nan, "fooooooo", "foo\n", "あ"],
|
283 |
+
dtype=any_string_dtype,
|
284 |
+
)
|
285 |
+
result = ser.str.len()
|
286 |
+
expected_dtype = "float64" if any_string_dtype in object_pyarrow_numpy else "Int64"
|
287 |
+
expected = Series([3, 4, 6, np.nan, 8, 4, 1], dtype=expected_dtype)
|
288 |
+
tm.assert_series_equal(result, expected)
|
289 |
+
|
290 |
+
|
291 |
+
def test_len_mixed():
|
292 |
+
ser = Series(
|
293 |
+
["a_b", np.nan, "asdf_cas_asdf", True, datetime.today(), "foo", None, 1, 2.0]
|
294 |
+
)
|
295 |
+
result = ser.str.len()
|
296 |
+
expected = Series([3, np.nan, 13, np.nan, np.nan, 3, np.nan, np.nan, np.nan])
|
297 |
+
tm.assert_series_equal(result, expected)
|
298 |
+
|
299 |
+
|
300 |
+
@pytest.mark.parametrize(
|
301 |
+
"method,sub,start,end,expected",
|
302 |
+
[
|
303 |
+
("index", "EF", None, None, [4, 3, 1, 0]),
|
304 |
+
("rindex", "EF", None, None, [4, 5, 7, 4]),
|
305 |
+
("index", "EF", 3, None, [4, 3, 7, 4]),
|
306 |
+
("rindex", "EF", 3, None, [4, 5, 7, 4]),
|
307 |
+
("index", "E", 4, 8, [4, 5, 7, 4]),
|
308 |
+
("rindex", "E", 0, 5, [4, 3, 1, 4]),
|
309 |
+
],
|
310 |
+
)
|
311 |
+
def test_index(method, sub, start, end, index_or_series, any_string_dtype, expected):
|
312 |
+
obj = index_or_series(
|
313 |
+
["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF"], dtype=any_string_dtype
|
314 |
+
)
|
315 |
+
expected_dtype = np.int64 if any_string_dtype in object_pyarrow_numpy else "Int64"
|
316 |
+
expected = index_or_series(expected, dtype=expected_dtype)
|
317 |
+
|
318 |
+
result = getattr(obj.str, method)(sub, start, end)
|
319 |
+
|
320 |
+
if index_or_series is Series:
|
321 |
+
tm.assert_series_equal(result, expected)
|
322 |
+
else:
|
323 |
+
tm.assert_index_equal(result, expected)
|
324 |
+
|
325 |
+
# compare with standard library
|
326 |
+
expected = [getattr(item, method)(sub, start, end) for item in obj]
|
327 |
+
assert list(result) == expected
|
328 |
+
|
329 |
+
|
330 |
+
def test_index_not_found_raises(index_or_series, any_string_dtype):
|
331 |
+
obj = index_or_series(
|
332 |
+
["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF"], dtype=any_string_dtype
|
333 |
+
)
|
334 |
+
with pytest.raises(ValueError, match="substring not found"):
|
335 |
+
obj.str.index("DE")
|
336 |
+
|
337 |
+
|
338 |
+
@pytest.mark.parametrize("method", ["index", "rindex"])
|
339 |
+
def test_index_wrong_type_raises(index_or_series, any_string_dtype, method):
|
340 |
+
obj = index_or_series([], dtype=any_string_dtype)
|
341 |
+
msg = "expected a string object, not int"
|
342 |
+
|
343 |
+
with pytest.raises(TypeError, match=msg):
|
344 |
+
getattr(obj.str, method)(0)
|
345 |
+
|
346 |
+
|
347 |
+
@pytest.mark.parametrize(
|
348 |
+
"method, exp",
|
349 |
+
[
|
350 |
+
["index", [1, 1, 0]],
|
351 |
+
["rindex", [3, 1, 2]],
|
352 |
+
],
|
353 |
+
)
|
354 |
+
def test_index_missing(any_string_dtype, method, exp):
|
355 |
+
ser = Series(["abcb", "ab", "bcbe", np.nan], dtype=any_string_dtype)
|
356 |
+
expected_dtype = np.float64 if any_string_dtype in object_pyarrow_numpy else "Int64"
|
357 |
+
|
358 |
+
result = getattr(ser.str, method)("b")
|
359 |
+
expected = Series(exp + [np.nan], dtype=expected_dtype)
|
360 |
+
tm.assert_series_equal(result, expected)
|
361 |
+
|
362 |
+
|
363 |
+
def test_pipe_failures(any_string_dtype):
|
364 |
+
# #2119
|
365 |
+
ser = Series(["A|B|C"], dtype=any_string_dtype)
|
366 |
+
|
367 |
+
result = ser.str.split("|")
|
368 |
+
expected = Series([["A", "B", "C"]], dtype=object)
|
369 |
+
tm.assert_series_equal(result, expected)
|
370 |
+
|
371 |
+
result = ser.str.replace("|", " ", regex=False)
|
372 |
+
expected = Series(["A B C"], dtype=any_string_dtype)
|
373 |
+
tm.assert_series_equal(result, expected)
|
374 |
+
|
375 |
+
|
376 |
+
@pytest.mark.parametrize(
|
377 |
+
"start, stop, step, expected",
|
378 |
+
[
|
379 |
+
(2, 5, None, ["foo", "bar", np.nan, "baz"]),
|
380 |
+
(0, 3, -1, ["", "", np.nan, ""]),
|
381 |
+
(None, None, -1, ["owtoofaa", "owtrabaa", np.nan, "xuqzabaa"]),
|
382 |
+
(3, 10, 2, ["oto", "ato", np.nan, "aqx"]),
|
383 |
+
(3, 0, -1, ["ofa", "aba", np.nan, "aba"]),
|
384 |
+
],
|
385 |
+
)
|
386 |
+
def test_slice(start, stop, step, expected, any_string_dtype):
|
387 |
+
ser = Series(["aafootwo", "aabartwo", np.nan, "aabazqux"], dtype=any_string_dtype)
|
388 |
+
result = ser.str.slice(start, stop, step)
|
389 |
+
expected = Series(expected, dtype=any_string_dtype)
|
390 |
+
tm.assert_series_equal(result, expected)
|
391 |
+
|
392 |
+
|
393 |
+
@pytest.mark.parametrize(
|
394 |
+
"start, stop, step, expected",
|
395 |
+
[
|
396 |
+
(2, 5, None, ["foo", np.nan, "bar", np.nan, np.nan, None, np.nan, np.nan]),
|
397 |
+
(4, 1, -1, ["oof", np.nan, "rab", np.nan, np.nan, None, np.nan, np.nan]),
|
398 |
+
],
|
399 |
+
)
|
400 |
+
def test_slice_mixed_object(start, stop, step, expected):
|
401 |
+
ser = Series(["aafootwo", np.nan, "aabartwo", True, datetime.today(), None, 1, 2.0])
|
402 |
+
result = ser.str.slice(start, stop, step)
|
403 |
+
expected = Series(expected, dtype=object)
|
404 |
+
tm.assert_series_equal(result, expected)
|
405 |
+
|
406 |
+
|
407 |
+
@pytest.mark.parametrize(
|
408 |
+
"start,stop,repl,expected",
|
409 |
+
[
|
410 |
+
(2, 3, None, ["shrt", "a it longer", "evnlongerthanthat", "", np.nan]),
|
411 |
+
(2, 3, "z", ["shzrt", "a zit longer", "evznlongerthanthat", "z", np.nan]),
|
412 |
+
(2, 2, "z", ["shzort", "a zbit longer", "evzenlongerthanthat", "z", np.nan]),
|
413 |
+
(2, 1, "z", ["shzort", "a zbit longer", "evzenlongerthanthat", "z", np.nan]),
|
414 |
+
(-1, None, "z", ["shorz", "a bit longez", "evenlongerthanthaz", "z", np.nan]),
|
415 |
+
(None, -2, "z", ["zrt", "zer", "zat", "z", np.nan]),
|
416 |
+
(6, 8, "z", ["shortz", "a bit znger", "evenlozerthanthat", "z", np.nan]),
|
417 |
+
(-10, 3, "z", ["zrt", "a zit longer", "evenlongzerthanthat", "z", np.nan]),
|
418 |
+
],
|
419 |
+
)
|
420 |
+
def test_slice_replace(start, stop, repl, expected, any_string_dtype):
|
421 |
+
ser = Series(
|
422 |
+
["short", "a bit longer", "evenlongerthanthat", "", np.nan],
|
423 |
+
dtype=any_string_dtype,
|
424 |
+
)
|
425 |
+
expected = Series(expected, dtype=any_string_dtype)
|
426 |
+
result = ser.str.slice_replace(start, stop, repl)
|
427 |
+
tm.assert_series_equal(result, expected)
|
428 |
+
|
429 |
+
|
430 |
+
@pytest.mark.parametrize(
|
431 |
+
"method, exp",
|
432 |
+
[
|
433 |
+
["strip", ["aa", "bb", np.nan, "cc"]],
|
434 |
+
["lstrip", ["aa ", "bb \n", np.nan, "cc "]],
|
435 |
+
["rstrip", [" aa", " bb", np.nan, "cc"]],
|
436 |
+
],
|
437 |
+
)
|
438 |
+
def test_strip_lstrip_rstrip(any_string_dtype, method, exp):
|
439 |
+
ser = Series([" aa ", " bb \n", np.nan, "cc "], dtype=any_string_dtype)
|
440 |
+
|
441 |
+
result = getattr(ser.str, method)()
|
442 |
+
expected = Series(exp, dtype=any_string_dtype)
|
443 |
+
tm.assert_series_equal(result, expected)
|
444 |
+
|
445 |
+
|
446 |
+
@pytest.mark.parametrize(
|
447 |
+
"method, exp",
|
448 |
+
[
|
449 |
+
["strip", ["aa", np.nan, "bb"]],
|
450 |
+
["lstrip", ["aa ", np.nan, "bb \t\n"]],
|
451 |
+
["rstrip", [" aa", np.nan, " bb"]],
|
452 |
+
],
|
453 |
+
)
|
454 |
+
def test_strip_lstrip_rstrip_mixed_object(method, exp):
|
455 |
+
ser = Series([" aa ", np.nan, " bb \t\n", True, datetime.today(), None, 1, 2.0])
|
456 |
+
|
457 |
+
result = getattr(ser.str, method)()
|
458 |
+
expected = Series(exp + [np.nan, np.nan, None, np.nan, np.nan], dtype=object)
|
459 |
+
tm.assert_series_equal(result, expected)
|
460 |
+
|
461 |
+
|
462 |
+
@pytest.mark.parametrize(
|
463 |
+
"method, exp",
|
464 |
+
[
|
465 |
+
["strip", ["ABC", " BNSD", "LDFJH "]],
|
466 |
+
["lstrip", ["ABCxx", " BNSD", "LDFJH xx"]],
|
467 |
+
["rstrip", ["xxABC", "xx BNSD", "LDFJH "]],
|
468 |
+
],
|
469 |
+
)
|
470 |
+
def test_strip_lstrip_rstrip_args(any_string_dtype, method, exp):
|
471 |
+
ser = Series(["xxABCxx", "xx BNSD", "LDFJH xx"], dtype=any_string_dtype)
|
472 |
+
|
473 |
+
result = getattr(ser.str, method)("x")
|
474 |
+
expected = Series(exp, dtype=any_string_dtype)
|
475 |
+
tm.assert_series_equal(result, expected)
|
476 |
+
|
477 |
+
|
478 |
+
@pytest.mark.parametrize(
|
479 |
+
"prefix, expected", [("a", ["b", " b c", "bc"]), ("ab", ["", "a b c", "bc"])]
|
480 |
+
)
|
481 |
+
def test_removeprefix(any_string_dtype, prefix, expected):
|
482 |
+
ser = Series(["ab", "a b c", "bc"], dtype=any_string_dtype)
|
483 |
+
result = ser.str.removeprefix(prefix)
|
484 |
+
ser_expected = Series(expected, dtype=any_string_dtype)
|
485 |
+
tm.assert_series_equal(result, ser_expected)
|
486 |
+
|
487 |
+
|
488 |
+
@pytest.mark.parametrize(
|
489 |
+
"suffix, expected", [("c", ["ab", "a b ", "b"]), ("bc", ["ab", "a b c", ""])]
|
490 |
+
)
|
491 |
+
def test_removesuffix(any_string_dtype, suffix, expected):
|
492 |
+
ser = Series(["ab", "a b c", "bc"], dtype=any_string_dtype)
|
493 |
+
result = ser.str.removesuffix(suffix)
|
494 |
+
ser_expected = Series(expected, dtype=any_string_dtype)
|
495 |
+
tm.assert_series_equal(result, ser_expected)
|
496 |
+
|
497 |
+
|
498 |
+
def test_string_slice_get_syntax(any_string_dtype):
|
499 |
+
ser = Series(
|
500 |
+
["YYY", "B", "C", "YYYYYYbYYY", "BYYYcYYY", np.nan, "CYYYBYYY", "dog", "cYYYt"],
|
501 |
+
dtype=any_string_dtype,
|
502 |
+
)
|
503 |
+
|
504 |
+
result = ser.str[0]
|
505 |
+
expected = ser.str.get(0)
|
506 |
+
tm.assert_series_equal(result, expected)
|
507 |
+
|
508 |
+
result = ser.str[:3]
|
509 |
+
expected = ser.str.slice(stop=3)
|
510 |
+
tm.assert_series_equal(result, expected)
|
511 |
+
|
512 |
+
result = ser.str[2::-1]
|
513 |
+
expected = ser.str.slice(start=2, step=-1)
|
514 |
+
tm.assert_series_equal(result, expected)
|
515 |
+
|
516 |
+
|
517 |
+
def test_string_slice_out_of_bounds_nested():
|
518 |
+
ser = Series([(1, 2), (1,), (3, 4, 5)])
|
519 |
+
result = ser.str[1]
|
520 |
+
expected = Series([2, np.nan, 4])
|
521 |
+
tm.assert_series_equal(result, expected)
|
522 |
+
|
523 |
+
|
524 |
+
def test_string_slice_out_of_bounds(any_string_dtype):
|
525 |
+
ser = Series(["foo", "b", "ba"], dtype=any_string_dtype)
|
526 |
+
result = ser.str[1]
|
527 |
+
expected = Series(["o", np.nan, "a"], dtype=any_string_dtype)
|
528 |
+
tm.assert_series_equal(result, expected)
|
529 |
+
|
530 |
+
|
531 |
+
def test_encode_decode(any_string_dtype):
|
532 |
+
ser = Series(["a", "b", "a\xe4"], dtype=any_string_dtype).str.encode("utf-8")
|
533 |
+
result = ser.str.decode("utf-8")
|
534 |
+
expected = ser.map(lambda x: x.decode("utf-8")).astype(object)
|
535 |
+
tm.assert_series_equal(result, expected)
|
536 |
+
|
537 |
+
|
538 |
+
def test_encode_errors_kwarg(any_string_dtype):
|
539 |
+
ser = Series(["a", "b", "a\x9d"], dtype=any_string_dtype)
|
540 |
+
|
541 |
+
msg = (
|
542 |
+
r"'charmap' codec can't encode character '\\x9d' in position 1: "
|
543 |
+
"character maps to <undefined>"
|
544 |
+
)
|
545 |
+
with pytest.raises(UnicodeEncodeError, match=msg):
|
546 |
+
ser.str.encode("cp1252")
|
547 |
+
|
548 |
+
result = ser.str.encode("cp1252", "ignore")
|
549 |
+
expected = ser.map(lambda x: x.encode("cp1252", "ignore"))
|
550 |
+
tm.assert_series_equal(result, expected)
|
551 |
+
|
552 |
+
|
553 |
+
def test_decode_errors_kwarg():
|
554 |
+
ser = Series([b"a", b"b", b"a\x9d"])
|
555 |
+
|
556 |
+
msg = (
|
557 |
+
"'charmap' codec can't decode byte 0x9d in position 1: "
|
558 |
+
"character maps to <undefined>"
|
559 |
+
)
|
560 |
+
with pytest.raises(UnicodeDecodeError, match=msg):
|
561 |
+
ser.str.decode("cp1252")
|
562 |
+
|
563 |
+
result = ser.str.decode("cp1252", "ignore")
|
564 |
+
expected = ser.map(lambda x: x.decode("cp1252", "ignore")).astype(object)
|
565 |
+
tm.assert_series_equal(result, expected)
|
566 |
+
|
567 |
+
|
568 |
+
@pytest.mark.parametrize(
|
569 |
+
"form, expected",
|
570 |
+
[
|
571 |
+
("NFKC", ["ABC", "ABC", "123", np.nan, "アイエ"]),
|
572 |
+
("NFC", ["ABC", "ABC", "123", np.nan, "アイエ"]), # noqa: RUF001
|
573 |
+
],
|
574 |
+
)
|
575 |
+
def test_normalize(form, expected, any_string_dtype):
|
576 |
+
ser = Series(
|
577 |
+
["ABC", "ABC", "123", np.nan, "アイエ"], # noqa: RUF001
|
578 |
+
index=["a", "b", "c", "d", "e"],
|
579 |
+
dtype=any_string_dtype,
|
580 |
+
)
|
581 |
+
expected = Series(expected, index=["a", "b", "c", "d", "e"], dtype=any_string_dtype)
|
582 |
+
result = ser.str.normalize(form)
|
583 |
+
tm.assert_series_equal(result, expected)
|
584 |
+
|
585 |
+
|
586 |
+
def test_normalize_bad_arg_raises(any_string_dtype):
|
587 |
+
ser = Series(
|
588 |
+
["ABC", "ABC", "123", np.nan, "アイエ"], # noqa: RUF001
|
589 |
+
index=["a", "b", "c", "d", "e"],
|
590 |
+
dtype=any_string_dtype,
|
591 |
+
)
|
592 |
+
with pytest.raises(ValueError, match="invalid normalization form"):
|
593 |
+
ser.str.normalize("xxx")
|
594 |
+
|
595 |
+
|
596 |
+
def test_normalize_index():
|
597 |
+
idx = Index(["ABC", "123", "アイエ"]) # noqa: RUF001
|
598 |
+
expected = Index(["ABC", "123", "アイエ"])
|
599 |
+
result = idx.str.normalize("NFKC")
|
600 |
+
tm.assert_index_equal(result, expected)
|
601 |
+
|
602 |
+
|
603 |
+
@pytest.mark.parametrize(
|
604 |
+
"values,inferred_type",
|
605 |
+
[
|
606 |
+
(["a", "b"], "string"),
|
607 |
+
(["a", "b", 1], "mixed-integer"),
|
608 |
+
(["a", "b", 1.3], "mixed"),
|
609 |
+
(["a", "b", 1.3, 1], "mixed-integer"),
|
610 |
+
(["aa", datetime(2011, 1, 1)], "mixed"),
|
611 |
+
],
|
612 |
+
)
|
613 |
+
def test_index_str_accessor_visibility(values, inferred_type, index_or_series):
|
614 |
+
obj = index_or_series(values)
|
615 |
+
if index_or_series is Index:
|
616 |
+
assert obj.inferred_type == inferred_type
|
617 |
+
|
618 |
+
assert isinstance(obj.str, StringMethods)
|
619 |
+
|
620 |
+
|
621 |
+
@pytest.mark.parametrize(
|
622 |
+
"values,inferred_type",
|
623 |
+
[
|
624 |
+
([1, np.nan], "floating"),
|
625 |
+
([datetime(2011, 1, 1)], "datetime64"),
|
626 |
+
([timedelta(1)], "timedelta64"),
|
627 |
+
],
|
628 |
+
)
|
629 |
+
def test_index_str_accessor_non_string_values_raises(
|
630 |
+
values, inferred_type, index_or_series
|
631 |
+
):
|
632 |
+
obj = index_or_series(values)
|
633 |
+
if index_or_series is Index:
|
634 |
+
assert obj.inferred_type == inferred_type
|
635 |
+
|
636 |
+
msg = "Can only use .str accessor with string values"
|
637 |
+
with pytest.raises(AttributeError, match=msg):
|
638 |
+
obj.str
|
639 |
+
|
640 |
+
|
641 |
+
def test_index_str_accessor_multiindex_raises():
|
642 |
+
# MultiIndex has mixed dtype, but not allow to use accessor
|
643 |
+
idx = MultiIndex.from_tuples([("a", "b"), ("a", "b")])
|
644 |
+
assert idx.inferred_type == "mixed"
|
645 |
+
|
646 |
+
msg = "Can only use .str accessor with Index, not MultiIndex"
|
647 |
+
with pytest.raises(AttributeError, match=msg):
|
648 |
+
idx.str
|
649 |
+
|
650 |
+
|
651 |
+
def test_str_accessor_no_new_attributes(any_string_dtype):
|
652 |
+
# https://github.com/pandas-dev/pandas/issues/10673
|
653 |
+
ser = Series(list("aabbcde"), dtype=any_string_dtype)
|
654 |
+
with pytest.raises(AttributeError, match="You cannot add any new attribute"):
|
655 |
+
ser.str.xlabel = "a"
|
656 |
+
|
657 |
+
|
658 |
+
def test_cat_on_bytes_raises():
|
659 |
+
lhs = Series(np.array(list("abc"), "S1").astype(object))
|
660 |
+
rhs = Series(np.array(list("def"), "S1").astype(object))
|
661 |
+
msg = "Cannot use .str.cat with values of inferred dtype 'bytes'"
|
662 |
+
with pytest.raises(TypeError, match=msg):
|
663 |
+
lhs.str.cat(rhs)
|
664 |
+
|
665 |
+
|
666 |
+
def test_str_accessor_in_apply_func():
|
667 |
+
# https://github.com/pandas-dev/pandas/issues/38979
|
668 |
+
df = DataFrame(zip("abc", "def"))
|
669 |
+
expected = Series(["A/D", "B/E", "C/F"])
|
670 |
+
result = df.apply(lambda f: "/".join(f.str.upper()), axis=1)
|
671 |
+
tm.assert_series_equal(result, expected)
|
672 |
+
|
673 |
+
|
674 |
+
def test_zfill():
|
675 |
+
# https://github.com/pandas-dev/pandas/issues/20868
|
676 |
+
value = Series(["-1", "1", "1000", 10, np.nan])
|
677 |
+
expected = Series(["-01", "001", "1000", np.nan, np.nan], dtype=object)
|
678 |
+
tm.assert_series_equal(value.str.zfill(3), expected)
|
679 |
+
|
680 |
+
value = Series(["-2", "+5"])
|
681 |
+
expected = Series(["-0002", "+0005"])
|
682 |
+
tm.assert_series_equal(value.str.zfill(5), expected)
|
683 |
+
|
684 |
+
|
685 |
+
def test_zfill_with_non_integer_argument():
|
686 |
+
value = Series(["-2", "+5"])
|
687 |
+
wid = "a"
|
688 |
+
msg = f"width must be of integer type, not {type(wid).__name__}"
|
689 |
+
with pytest.raises(TypeError, match=msg):
|
690 |
+
value.str.zfill(wid)
|
691 |
+
|
692 |
+
|
693 |
+
def test_zfill_with_leading_sign():
|
694 |
+
value = Series(["-cat", "-1", "+dog"])
|
695 |
+
expected = Series(["-0cat", "-0001", "+0dog"])
|
696 |
+
tm.assert_series_equal(value.str.zfill(5), expected)
|
697 |
+
|
698 |
+
|
699 |
+
def test_get_with_dict_label():
|
700 |
+
# GH47911
|
701 |
+
s = Series(
|
702 |
+
[
|
703 |
+
{"name": "Hello", "value": "World"},
|
704 |
+
{"name": "Goodbye", "value": "Planet"},
|
705 |
+
{"value": "Sea"},
|
706 |
+
]
|
707 |
+
)
|
708 |
+
result = s.str.get("name")
|
709 |
+
expected = Series(["Hello", "Goodbye", None], dtype=object)
|
710 |
+
tm.assert_series_equal(result, expected)
|
711 |
+
result = s.str.get("value")
|
712 |
+
expected = Series(["World", "Planet", "Sea"], dtype=object)
|
713 |
+
tm.assert_series_equal(result, expected)
|
714 |
+
|
715 |
+
|
716 |
+
def test_series_str_decode():
|
717 |
+
# GH 22613
|
718 |
+
result = Series([b"x", b"y"]).str.decode(encoding="UTF-8", errors="strict")
|
719 |
+
expected = Series(["x", "y"], dtype="object")
|
720 |
+
tm.assert_series_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_api.cpython-310.pyc
ADDED
Binary file (1.41 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_array_to_datetime.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_ccalendar.cpython-310.pyc
ADDED
Binary file (2.14 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_conversion.cpython-310.pyc
ADDED
Binary file (4.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_fields.cpython-310.pyc
ADDED
Binary file (1.64 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_libfrequencies.cpython-310.pyc
ADDED
Binary file (825 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_liboffsets.cpython-310.pyc
ADDED
Binary file (4.48 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_np_datetime.cpython-310.pyc
ADDED
Binary file (5.77 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_npy_units.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_parse_iso8601.cpython-310.pyc
ADDED
Binary file (3.27 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_parsing.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_period.cpython-310.pyc
ADDED
Binary file (3.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_resolution.cpython-310.pyc
ADDED
Binary file (1.79 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_strptime.cpython-310.pyc
ADDED
Binary file (3.71 kB). View file
|
|