applied-ai-018 commited on
Commit
4d8282d
·
verified ·
1 Parent(s): eed846f

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__init__.py +0 -0
  2. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/__init__.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arrow_compat.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_function.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_indexing.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arithmetic.py +248 -0
  8. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arrow_compat.py +209 -0
  9. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_function.py +74 -0
  10. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_indexing.py +60 -0
  11. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__init__.py +0 -0
  12. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/__init__.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_arrow_compat.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_astype.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_constructors.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_reductions.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/test_arrow_compat.py +130 -0
  18. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/test_astype.py +67 -0
  19. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/test_constructors.py +156 -0
  20. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/test_reductions.py +42 -0
  21. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__init__.py +0 -0
  22. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_array.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_astype.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_combine_concat.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_constructors.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_libsparse.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_arithmetics.py +514 -0
  28. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_astype.py +133 -0
  29. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_combine_concat.py +62 -0
  30. env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_unary.py +79 -0
  31. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__init__.py +0 -0
  32. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/__init__.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/conftest.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_api.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_apply.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_cython_aggregations.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_dtypes.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_ewm.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_expanding.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_groupby.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_numba.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_online.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_rolling.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_rolling_functions.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_rolling_quantile.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_timeseries_window.cpython-310.pyc +0 -0
  47. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_win_type.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/conftest.py +146 -0
  49. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/moments/__init__.py +0 -0
  50. env-llmeval/lib/python3.10/site-packages/pandas/tests/window/moments/__pycache__/__init__.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (191 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arithmetic.cpython-310.pyc ADDED
Binary file (6.48 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arrow_compat.cpython-310.pyc ADDED
Binary file (6.35 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_function.cpython-310.pyc ADDED
Binary file (2.53 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (2.07 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arithmetic.py ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import Any
4
+
5
+ import numpy as np
6
+ import pytest
7
+
8
+ import pandas as pd
9
+ import pandas._testing as tm
10
+
11
+ # integer dtypes
12
+ arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
13
+ scalars: list[Any] = [2] * len(arrays)
14
+ # floating dtypes
15
+ arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES]
16
+ scalars += [0.2, 0.2]
17
+ # boolean
18
+ arrays += [pd.array([True, False, True, None], dtype="boolean")]
19
+ scalars += [False]
20
+
21
+
22
+ @pytest.fixture(params=zip(arrays, scalars), ids=[a.dtype.name for a in arrays])
23
+ def data(request):
24
+ """Fixture returning parametrized (array, scalar) tuple.
25
+
26
+ Used to test equivalence of scalars, numpy arrays with array ops, and the
27
+ equivalence of DataFrame and Series ops.
28
+ """
29
+ return request.param
30
+
31
+
32
+ def check_skip(data, op_name):
33
+ if isinstance(data.dtype, pd.BooleanDtype) and "sub" in op_name:
34
+ pytest.skip("subtract not implemented for boolean")
35
+
36
+
37
+ def is_bool_not_implemented(data, op_name):
38
+ # match non-masked behavior
39
+ return data.dtype.kind == "b" and op_name.strip("_").lstrip("r") in [
40
+ "pow",
41
+ "truediv",
42
+ "floordiv",
43
+ ]
44
+
45
+
46
+ # Test equivalence of scalars, numpy arrays with array ops
47
+ # -----------------------------------------------------------------------------
48
+
49
+
50
+ def test_array_scalar_like_equivalence(data, all_arithmetic_operators):
51
+ data, scalar = data
52
+ op = tm.get_op_from_name(all_arithmetic_operators)
53
+ check_skip(data, all_arithmetic_operators)
54
+
55
+ scalar_array = pd.array([scalar] * len(data), dtype=data.dtype)
56
+
57
+ # TODO also add len-1 array (np.array([scalar], dtype=data.dtype.numpy_dtype))
58
+ for scalar in [scalar, data.dtype.type(scalar)]:
59
+ if is_bool_not_implemented(data, all_arithmetic_operators):
60
+ msg = "operator '.*' not implemented for bool dtypes"
61
+ with pytest.raises(NotImplementedError, match=msg):
62
+ op(data, scalar)
63
+ with pytest.raises(NotImplementedError, match=msg):
64
+ op(data, scalar_array)
65
+ else:
66
+ result = op(data, scalar)
67
+ expected = op(data, scalar_array)
68
+ tm.assert_extension_array_equal(result, expected)
69
+
70
+
71
+ def test_array_NA(data, all_arithmetic_operators):
72
+ data, _ = data
73
+ op = tm.get_op_from_name(all_arithmetic_operators)
74
+ check_skip(data, all_arithmetic_operators)
75
+
76
+ scalar = pd.NA
77
+ scalar_array = pd.array([pd.NA] * len(data), dtype=data.dtype)
78
+
79
+ mask = data._mask.copy()
80
+
81
+ if is_bool_not_implemented(data, all_arithmetic_operators):
82
+ msg = "operator '.*' not implemented for bool dtypes"
83
+ with pytest.raises(NotImplementedError, match=msg):
84
+ op(data, scalar)
85
+ # GH#45421 check op doesn't alter data._mask inplace
86
+ tm.assert_numpy_array_equal(mask, data._mask)
87
+ return
88
+
89
+ result = op(data, scalar)
90
+ # GH#45421 check op doesn't alter data._mask inplace
91
+ tm.assert_numpy_array_equal(mask, data._mask)
92
+
93
+ expected = op(data, scalar_array)
94
+ tm.assert_numpy_array_equal(mask, data._mask)
95
+
96
+ tm.assert_extension_array_equal(result, expected)
97
+
98
+
99
+ def test_numpy_array_equivalence(data, all_arithmetic_operators):
100
+ data, scalar = data
101
+ op = tm.get_op_from_name(all_arithmetic_operators)
102
+ check_skip(data, all_arithmetic_operators)
103
+
104
+ numpy_array = np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype)
105
+ pd_array = pd.array(numpy_array, dtype=data.dtype)
106
+
107
+ if is_bool_not_implemented(data, all_arithmetic_operators):
108
+ msg = "operator '.*' not implemented for bool dtypes"
109
+ with pytest.raises(NotImplementedError, match=msg):
110
+ op(data, numpy_array)
111
+ with pytest.raises(NotImplementedError, match=msg):
112
+ op(data, pd_array)
113
+ return
114
+
115
+ result = op(data, numpy_array)
116
+ expected = op(data, pd_array)
117
+ tm.assert_extension_array_equal(result, expected)
118
+
119
+
120
+ # Test equivalence with Series and DataFrame ops
121
+ # -----------------------------------------------------------------------------
122
+
123
+
124
+ def test_frame(data, all_arithmetic_operators):
125
+ data, scalar = data
126
+ op = tm.get_op_from_name(all_arithmetic_operators)
127
+ check_skip(data, all_arithmetic_operators)
128
+
129
+ # DataFrame with scalar
130
+ df = pd.DataFrame({"A": data})
131
+
132
+ if is_bool_not_implemented(data, all_arithmetic_operators):
133
+ msg = "operator '.*' not implemented for bool dtypes"
134
+ with pytest.raises(NotImplementedError, match=msg):
135
+ op(df, scalar)
136
+ with pytest.raises(NotImplementedError, match=msg):
137
+ op(data, scalar)
138
+ return
139
+
140
+ result = op(df, scalar)
141
+ expected = pd.DataFrame({"A": op(data, scalar)})
142
+ tm.assert_frame_equal(result, expected)
143
+
144
+
145
+ def test_series(data, all_arithmetic_operators):
146
+ data, scalar = data
147
+ op = tm.get_op_from_name(all_arithmetic_operators)
148
+ check_skip(data, all_arithmetic_operators)
149
+
150
+ ser = pd.Series(data)
151
+
152
+ others = [
153
+ scalar,
154
+ np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype),
155
+ pd.array([scalar] * len(data), dtype=data.dtype),
156
+ pd.Series([scalar] * len(data), dtype=data.dtype),
157
+ ]
158
+
159
+ for other in others:
160
+ if is_bool_not_implemented(data, all_arithmetic_operators):
161
+ msg = "operator '.*' not implemented for bool dtypes"
162
+ with pytest.raises(NotImplementedError, match=msg):
163
+ op(ser, other)
164
+
165
+ else:
166
+ result = op(ser, other)
167
+ expected = pd.Series(op(data, other))
168
+ tm.assert_series_equal(result, expected)
169
+
170
+
171
+ # Test generic characteristics / errors
172
+ # -----------------------------------------------------------------------------
173
+
174
+
175
+ def test_error_invalid_object(data, all_arithmetic_operators):
176
+ data, _ = data
177
+
178
+ op = all_arithmetic_operators
179
+ opa = getattr(data, op)
180
+
181
+ # 2d -> return NotImplemented
182
+ result = opa(pd.DataFrame({"A": data}))
183
+ assert result is NotImplemented
184
+
185
+ msg = r"can only perform ops with 1-d structures"
186
+ with pytest.raises(NotImplementedError, match=msg):
187
+ opa(np.arange(len(data)).reshape(-1, len(data)))
188
+
189
+
190
+ def test_error_len_mismatch(data, all_arithmetic_operators):
191
+ # operating with a list-like with non-matching length raises
192
+ data, scalar = data
193
+ op = tm.get_op_from_name(all_arithmetic_operators)
194
+
195
+ other = [scalar] * (len(data) - 1)
196
+
197
+ err = ValueError
198
+ msg = "|".join(
199
+ [
200
+ r"operands could not be broadcast together with shapes \(3,\) \(4,\)",
201
+ r"operands could not be broadcast together with shapes \(4,\) \(3,\)",
202
+ ]
203
+ )
204
+ if data.dtype.kind == "b" and all_arithmetic_operators.strip("_") in [
205
+ "sub",
206
+ "rsub",
207
+ ]:
208
+ err = TypeError
209
+ msg = (
210
+ r"numpy boolean subtract, the `\-` operator, is not supported, use "
211
+ r"the bitwise_xor, the `\^` operator, or the logical_xor function instead"
212
+ )
213
+ elif is_bool_not_implemented(data, all_arithmetic_operators):
214
+ msg = "operator '.*' not implemented for bool dtypes"
215
+ err = NotImplementedError
216
+
217
+ for other in [other, np.array(other)]:
218
+ with pytest.raises(err, match=msg):
219
+ op(data, other)
220
+
221
+ s = pd.Series(data)
222
+ with pytest.raises(err, match=msg):
223
+ op(s, other)
224
+
225
+
226
+ @pytest.mark.parametrize("op", ["__neg__", "__abs__", "__invert__"])
227
+ def test_unary_op_does_not_propagate_mask(data, op):
228
+ # https://github.com/pandas-dev/pandas/issues/39943
229
+ data, _ = data
230
+ ser = pd.Series(data)
231
+
232
+ if op == "__invert__" and data.dtype.kind == "f":
233
+ # we follow numpy in raising
234
+ msg = "ufunc 'invert' not supported for the input types"
235
+ with pytest.raises(TypeError, match=msg):
236
+ getattr(ser, op)()
237
+ with pytest.raises(TypeError, match=msg):
238
+ getattr(data, op)()
239
+ with pytest.raises(TypeError, match=msg):
240
+ # Check that this is still the numpy behavior
241
+ getattr(data._data, op)()
242
+
243
+ return
244
+
245
+ result = getattr(ser, op)()
246
+ expected = result.copy(deep=True)
247
+ ser[0] = None
248
+ tm.assert_series_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arrow_compat.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+ pytestmark = pytest.mark.filterwarnings(
8
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
9
+ )
10
+
11
+ pa = pytest.importorskip("pyarrow")
12
+
13
+ from pandas.core.arrays.arrow._arrow_utils import pyarrow_array_to_numpy_and_mask
14
+
15
+ arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
16
+ arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES]
17
+ arrays += [pd.array([True, False, True, None], dtype="boolean")]
18
+
19
+
20
+ @pytest.fixture(params=arrays, ids=[a.dtype.name for a in arrays])
21
+ def data(request):
22
+ """
23
+ Fixture returning parametrized array from given dtype, including integer,
24
+ float and boolean
25
+ """
26
+ return request.param
27
+
28
+
29
+ def test_arrow_array(data):
30
+ arr = pa.array(data)
31
+ expected = pa.array(
32
+ data.to_numpy(object, na_value=None),
33
+ type=pa.from_numpy_dtype(data.dtype.numpy_dtype),
34
+ )
35
+ assert arr.equals(expected)
36
+
37
+
38
+ def test_arrow_roundtrip(data):
39
+ df = pd.DataFrame({"a": data})
40
+ table = pa.table(df)
41
+ assert table.field("a").type == str(data.dtype.numpy_dtype)
42
+
43
+ result = table.to_pandas()
44
+ assert result["a"].dtype == data.dtype
45
+ tm.assert_frame_equal(result, df)
46
+
47
+
48
+ def test_dataframe_from_arrow_types_mapper():
49
+ def types_mapper(arrow_type):
50
+ if pa.types.is_boolean(arrow_type):
51
+ return pd.BooleanDtype()
52
+ elif pa.types.is_integer(arrow_type):
53
+ return pd.Int64Dtype()
54
+
55
+ bools_array = pa.array([True, None, False], type=pa.bool_())
56
+ ints_array = pa.array([1, None, 2], type=pa.int64())
57
+ small_ints_array = pa.array([-1, 0, 7], type=pa.int8())
58
+ record_batch = pa.RecordBatch.from_arrays(
59
+ [bools_array, ints_array, small_ints_array], ["bools", "ints", "small_ints"]
60
+ )
61
+ result = record_batch.to_pandas(types_mapper=types_mapper)
62
+ bools = pd.Series([True, None, False], dtype="boolean")
63
+ ints = pd.Series([1, None, 2], dtype="Int64")
64
+ small_ints = pd.Series([-1, 0, 7], dtype="Int64")
65
+ expected = pd.DataFrame({"bools": bools, "ints": ints, "small_ints": small_ints})
66
+ tm.assert_frame_equal(result, expected)
67
+
68
+
69
+ def test_arrow_load_from_zero_chunks(data):
70
+ # GH-41040
71
+
72
+ df = pd.DataFrame({"a": data[0:0]})
73
+ table = pa.table(df)
74
+ assert table.field("a").type == str(data.dtype.numpy_dtype)
75
+ table = pa.table(
76
+ [pa.chunked_array([], type=table.field("a").type)], schema=table.schema
77
+ )
78
+ result = table.to_pandas()
79
+ assert result["a"].dtype == data.dtype
80
+ tm.assert_frame_equal(result, df)
81
+
82
+
83
+ def test_arrow_from_arrow_uint():
84
+ # https://github.com/pandas-dev/pandas/issues/31896
85
+ # possible mismatch in types
86
+
87
+ dtype = pd.UInt32Dtype()
88
+ result = dtype.__from_arrow__(pa.array([1, 2, 3, 4, None], type="int64"))
89
+ expected = pd.array([1, 2, 3, 4, None], dtype="UInt32")
90
+
91
+ tm.assert_extension_array_equal(result, expected)
92
+
93
+
94
+ def test_arrow_sliced(data):
95
+ # https://github.com/pandas-dev/pandas/issues/38525
96
+
97
+ df = pd.DataFrame({"a": data})
98
+ table = pa.table(df)
99
+ result = table.slice(2, None).to_pandas()
100
+ expected = df.iloc[2:].reset_index(drop=True)
101
+ tm.assert_frame_equal(result, expected)
102
+
103
+ # no missing values
104
+ df2 = df.fillna(data[0])
105
+ table = pa.table(df2)
106
+ result = table.slice(2, None).to_pandas()
107
+ expected = df2.iloc[2:].reset_index(drop=True)
108
+ tm.assert_frame_equal(result, expected)
109
+
110
+
111
+ @pytest.fixture
112
+ def np_dtype_to_arrays(any_real_numpy_dtype):
113
+ """
114
+ Fixture returning actual and expected dtype, pandas and numpy arrays and
115
+ mask from a given numpy dtype
116
+ """
117
+ np_dtype = np.dtype(any_real_numpy_dtype)
118
+ pa_type = pa.from_numpy_dtype(np_dtype)
119
+
120
+ # None ensures the creation of a bitmask buffer.
121
+ pa_array = pa.array([0, 1, 2, None], type=pa_type)
122
+ # Since masked Arrow buffer slots are not required to contain a specific
123
+ # value, assert only the first three values of the created np.array
124
+ np_expected = np.array([0, 1, 2], dtype=np_dtype)
125
+ mask_expected = np.array([True, True, True, False])
126
+ return np_dtype, pa_array, np_expected, mask_expected
127
+
128
+
129
+ def test_pyarrow_array_to_numpy_and_mask(np_dtype_to_arrays):
130
+ """
131
+ Test conversion from pyarrow array to numpy array.
132
+
133
+ Modifies the pyarrow buffer to contain padding and offset, which are
134
+ considered valid buffers by pyarrow.
135
+
136
+ Also tests empty pyarrow arrays with non empty buffers.
137
+ See https://github.com/pandas-dev/pandas/issues/40896
138
+ """
139
+ np_dtype, pa_array, np_expected, mask_expected = np_dtype_to_arrays
140
+ data, mask = pyarrow_array_to_numpy_and_mask(pa_array, np_dtype)
141
+ tm.assert_numpy_array_equal(data[:3], np_expected)
142
+ tm.assert_numpy_array_equal(mask, mask_expected)
143
+
144
+ mask_buffer = pa_array.buffers()[0]
145
+ data_buffer = pa_array.buffers()[1]
146
+ data_buffer_bytes = pa_array.buffers()[1].to_pybytes()
147
+
148
+ # Add trailing padding to the buffer.
149
+ data_buffer_trail = pa.py_buffer(data_buffer_bytes + b"\x00")
150
+ pa_array_trail = pa.Array.from_buffers(
151
+ type=pa_array.type,
152
+ length=len(pa_array),
153
+ buffers=[mask_buffer, data_buffer_trail],
154
+ offset=pa_array.offset,
155
+ )
156
+ pa_array_trail.validate()
157
+ data, mask = pyarrow_array_to_numpy_and_mask(pa_array_trail, np_dtype)
158
+ tm.assert_numpy_array_equal(data[:3], np_expected)
159
+ tm.assert_numpy_array_equal(mask, mask_expected)
160
+
161
+ # Add offset to the buffer.
162
+ offset = b"\x00" * (pa_array.type.bit_width // 8)
163
+ data_buffer_offset = pa.py_buffer(offset + data_buffer_bytes)
164
+ mask_buffer_offset = pa.py_buffer(b"\x0E")
165
+ pa_array_offset = pa.Array.from_buffers(
166
+ type=pa_array.type,
167
+ length=len(pa_array),
168
+ buffers=[mask_buffer_offset, data_buffer_offset],
169
+ offset=pa_array.offset + 1,
170
+ )
171
+ pa_array_offset.validate()
172
+ data, mask = pyarrow_array_to_numpy_and_mask(pa_array_offset, np_dtype)
173
+ tm.assert_numpy_array_equal(data[:3], np_expected)
174
+ tm.assert_numpy_array_equal(mask, mask_expected)
175
+
176
+ # Empty array
177
+ np_expected_empty = np.array([], dtype=np_dtype)
178
+ mask_expected_empty = np.array([], dtype=np.bool_)
179
+
180
+ pa_array_offset = pa.Array.from_buffers(
181
+ type=pa_array.type,
182
+ length=0,
183
+ buffers=[mask_buffer, data_buffer],
184
+ offset=pa_array.offset,
185
+ )
186
+ pa_array_offset.validate()
187
+ data, mask = pyarrow_array_to_numpy_and_mask(pa_array_offset, np_dtype)
188
+ tm.assert_numpy_array_equal(data[:3], np_expected_empty)
189
+ tm.assert_numpy_array_equal(mask, mask_expected_empty)
190
+
191
+
192
+ @pytest.mark.parametrize(
193
+ "arr", [pa.nulls(10), pa.chunked_array([pa.nulls(4), pa.nulls(6)])]
194
+ )
195
+ def test_from_arrow_null(data, arr):
196
+ res = data.dtype.__from_arrow__(arr)
197
+ assert res.isna().all()
198
+ assert len(res) == 10
199
+
200
+
201
+ def test_from_arrow_type_error(data):
202
+ # ensure that __from_arrow__ returns a TypeError when getting a wrong
203
+ # array type
204
+
205
+ arr = pa.array(data).cast("string")
206
+ with pytest.raises(TypeError, match=None):
207
+ # we don't test the exact error message, only the fact that it raises
208
+ # a TypeError is relevant
209
+ data.dtype.__from_arrow__(arr)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_function.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes.common import is_integer_dtype
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.core.arrays import BaseMaskedArray
9
+
10
+ arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
11
+ arrays += [
12
+ pd.array([0.141, -0.268, 5.895, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES
13
+ ]
14
+
15
+
16
+ @pytest.fixture(params=arrays, ids=[a.dtype.name for a in arrays])
17
+ def data(request):
18
+ """
19
+ Fixture returning parametrized 'data' array with different integer and
20
+ floating point types
21
+ """
22
+ return request.param
23
+
24
+
25
+ @pytest.fixture()
26
+ def numpy_dtype(data):
27
+ """
28
+ Fixture returning numpy dtype from 'data' input array.
29
+ """
30
+ # For integer dtype, the numpy conversion must be done to float
31
+ if is_integer_dtype(data):
32
+ numpy_dtype = float
33
+ else:
34
+ numpy_dtype = data.dtype.type
35
+ return numpy_dtype
36
+
37
+
38
+ def test_round(data, numpy_dtype):
39
+ # No arguments
40
+ result = data.round()
41
+ expected = pd.array(
42
+ np.round(data.to_numpy(dtype=numpy_dtype, na_value=None)), dtype=data.dtype
43
+ )
44
+ tm.assert_extension_array_equal(result, expected)
45
+
46
+ # Decimals argument
47
+ result = data.round(decimals=2)
48
+ expected = pd.array(
49
+ np.round(data.to_numpy(dtype=numpy_dtype, na_value=None), decimals=2),
50
+ dtype=data.dtype,
51
+ )
52
+ tm.assert_extension_array_equal(result, expected)
53
+
54
+
55
+ def test_tolist(data):
56
+ result = data.tolist()
57
+ expected = list(data)
58
+ tm.assert_equal(result, expected)
59
+
60
+
61
+ def test_to_numpy():
62
+ # GH#56991
63
+
64
+ class MyStringArray(BaseMaskedArray):
65
+ dtype = pd.StringDtype()
66
+ _dtype_cls = pd.StringDtype
67
+ _internal_fill_value = pd.NA
68
+
69
+ arr = MyStringArray(
70
+ values=np.array(["a", "b", "c"]), mask=np.array([False, True, False])
71
+ )
72
+ result = arr.to_numpy()
73
+ expected = np.array(["a", pd.NA, "c"])
74
+ tm.assert_numpy_array_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_indexing.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+
8
+
9
+ class TestSetitemValidation:
10
+ def _check_setitem_invalid(self, arr, invalid):
11
+ msg = f"Invalid value '{str(invalid)}' for dtype {arr.dtype}"
12
+ msg = re.escape(msg)
13
+ with pytest.raises(TypeError, match=msg):
14
+ arr[0] = invalid
15
+
16
+ with pytest.raises(TypeError, match=msg):
17
+ arr[:] = invalid
18
+
19
+ with pytest.raises(TypeError, match=msg):
20
+ arr[[0]] = invalid
21
+
22
+ # FIXME: don't leave commented-out
23
+ # with pytest.raises(TypeError):
24
+ # arr[[0]] = [invalid]
25
+
26
+ # with pytest.raises(TypeError):
27
+ # arr[[0]] = np.array([invalid], dtype=object)
28
+
29
+ # Series non-coercion, behavior subject to change
30
+ ser = pd.Series(arr)
31
+ with pytest.raises(TypeError, match=msg):
32
+ ser[0] = invalid
33
+ # TODO: so, so many other variants of this...
34
+
35
+ _invalid_scalars = [
36
+ 1 + 2j,
37
+ "True",
38
+ "1",
39
+ "1.0",
40
+ pd.NaT,
41
+ np.datetime64("NaT"),
42
+ np.timedelta64("NaT"),
43
+ ]
44
+
45
+ @pytest.mark.parametrize(
46
+ "invalid", _invalid_scalars + [1, 1.0, np.int64(1), np.float64(1)]
47
+ )
48
+ def test_setitem_validation_scalar_bool(self, invalid):
49
+ arr = pd.array([True, False, None], dtype="boolean")
50
+ self._check_setitem_invalid(arr, invalid)
51
+
52
+ @pytest.mark.parametrize("invalid", _invalid_scalars + [True, 1.5, np.float64(1.5)])
53
+ def test_setitem_validation_scalar_int(self, invalid, any_int_ea_dtype):
54
+ arr = pd.array([1, 2, None], dtype=any_int_ea_dtype)
55
+ self._check_setitem_invalid(arr, invalid)
56
+
57
+ @pytest.mark.parametrize("invalid", _invalid_scalars + [True])
58
+ def test_setitem_validation_scalar_float(self, invalid, float_ea_dtype):
59
+ arr = pd.array([1, 2, None], dtype=float_ea_dtype)
60
+ self._check_setitem_invalid(arr, invalid)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (191 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_arrow_compat.cpython-310.pyc ADDED
Binary file (3.68 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_astype.cpython-310.pyc ADDED
Binary file (2.34 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (5.37 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_reductions.cpython-310.pyc ADDED
Binary file (1.22 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/test_arrow_compat.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas.compat.pyarrow import pa_version_under10p1
4
+
5
+ from pandas.core.dtypes.dtypes import PeriodDtype
6
+
7
+ import pandas as pd
8
+ import pandas._testing as tm
9
+ from pandas.core.arrays import (
10
+ PeriodArray,
11
+ period_array,
12
+ )
13
+
14
+ pytestmark = pytest.mark.filterwarnings(
15
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
16
+ )
17
+
18
+
19
+ pa = pytest.importorskip("pyarrow")
20
+
21
+
22
+ def test_arrow_extension_type():
23
+ from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
24
+
25
+ p1 = ArrowPeriodType("D")
26
+ p2 = ArrowPeriodType("D")
27
+ p3 = ArrowPeriodType("M")
28
+
29
+ assert p1.freq == "D"
30
+ assert p1 == p2
31
+ assert p1 != p3
32
+ assert hash(p1) == hash(p2)
33
+ assert hash(p1) != hash(p3)
34
+
35
+
36
+ @pytest.mark.xfail(not pa_version_under10p1, reason="Wrong behavior with pyarrow 10")
37
+ @pytest.mark.parametrize(
38
+ "data, freq",
39
+ [
40
+ (pd.date_range("2017", periods=3), "D"),
41
+ (pd.date_range("2017", periods=3, freq="YE"), "Y-DEC"),
42
+ ],
43
+ )
44
+ def test_arrow_array(data, freq):
45
+ from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
46
+
47
+ periods = period_array(data, freq=freq)
48
+ result = pa.array(periods)
49
+ assert isinstance(result.type, ArrowPeriodType)
50
+ assert result.type.freq == freq
51
+ expected = pa.array(periods.asi8, type="int64")
52
+ assert result.storage.equals(expected)
53
+
54
+ # convert to its storage type
55
+ result = pa.array(periods, type=pa.int64())
56
+ assert result.equals(expected)
57
+
58
+ # unsupported conversions
59
+ msg = "Not supported to convert PeriodArray to 'double' type"
60
+ with pytest.raises(TypeError, match=msg):
61
+ pa.array(periods, type="float64")
62
+
63
+ with pytest.raises(TypeError, match="different 'freq'"):
64
+ pa.array(periods, type=ArrowPeriodType("T"))
65
+
66
+
67
+ def test_arrow_array_missing():
68
+ from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
69
+
70
+ arr = PeriodArray([1, 2, 3], dtype="period[D]")
71
+ arr[1] = pd.NaT
72
+
73
+ result = pa.array(arr)
74
+ assert isinstance(result.type, ArrowPeriodType)
75
+ assert result.type.freq == "D"
76
+ expected = pa.array([1, None, 3], type="int64")
77
+ assert result.storage.equals(expected)
78
+
79
+
80
+ def test_arrow_table_roundtrip():
81
+ from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
82
+
83
+ arr = PeriodArray([1, 2, 3], dtype="period[D]")
84
+ arr[1] = pd.NaT
85
+ df = pd.DataFrame({"a": arr})
86
+
87
+ table = pa.table(df)
88
+ assert isinstance(table.field("a").type, ArrowPeriodType)
89
+ result = table.to_pandas()
90
+ assert isinstance(result["a"].dtype, PeriodDtype)
91
+ tm.assert_frame_equal(result, df)
92
+
93
+ table2 = pa.concat_tables([table, table])
94
+ result = table2.to_pandas()
95
+ expected = pd.concat([df, df], ignore_index=True)
96
+ tm.assert_frame_equal(result, expected)
97
+
98
+
99
+ def test_arrow_load_from_zero_chunks():
100
+ # GH-41040
101
+
102
+ from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
103
+
104
+ arr = PeriodArray([], dtype="period[D]")
105
+ df = pd.DataFrame({"a": arr})
106
+
107
+ table = pa.table(df)
108
+ assert isinstance(table.field("a").type, ArrowPeriodType)
109
+ table = pa.table(
110
+ [pa.chunked_array([], type=table.column(0).type)], schema=table.schema
111
+ )
112
+
113
+ result = table.to_pandas()
114
+ assert isinstance(result["a"].dtype, PeriodDtype)
115
+ tm.assert_frame_equal(result, df)
116
+
117
+
118
+ def test_arrow_table_roundtrip_without_metadata():
119
+ arr = PeriodArray([1, 2, 3], dtype="period[h]")
120
+ arr[1] = pd.NaT
121
+ df = pd.DataFrame({"a": arr})
122
+
123
+ table = pa.table(df)
124
+ # remove the metadata
125
+ table = table.replace_schema_metadata()
126
+ assert table.schema.metadata is None
127
+
128
+ result = table.to_pandas()
129
+ assert isinstance(result["a"].dtype, PeriodDtype)
130
+ tm.assert_frame_equal(result, df)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/test_astype.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes.dtypes import PeriodDtype
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.core.arrays import period_array
9
+
10
+
11
+ @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
12
+ def test_astype_int(dtype):
13
+ # We choose to ignore the sign and size of integers for
14
+ # Period/Datetime/Timedelta astype
15
+ arr = period_array(["2000", "2001", None], freq="D")
16
+
17
+ if np.dtype(dtype) != np.int64:
18
+ with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
19
+ arr.astype(dtype)
20
+ return
21
+
22
+ result = arr.astype(dtype)
23
+ expected = arr._ndarray.view("i8")
24
+ tm.assert_numpy_array_equal(result, expected)
25
+
26
+
27
+ def test_astype_copies():
28
+ arr = period_array(["2000", "2001", None], freq="D")
29
+ result = arr.astype(np.int64, copy=False)
30
+
31
+ # Add the `.base`, since we now use `.asi8` which returns a view.
32
+ # We could maybe override it in PeriodArray to return ._ndarray directly.
33
+ assert result.base is arr._ndarray
34
+
35
+ result = arr.astype(np.int64, copy=True)
36
+ assert result is not arr._ndarray
37
+ tm.assert_numpy_array_equal(result, arr._ndarray.view("i8"))
38
+
39
+
40
+ def test_astype_categorical():
41
+ arr = period_array(["2000", "2001", "2001", None], freq="D")
42
+ result = arr.astype("category")
43
+ categories = pd.PeriodIndex(["2000", "2001"], freq="D")
44
+ expected = pd.Categorical.from_codes([0, 1, 1, -1], categories=categories)
45
+ tm.assert_categorical_equal(result, expected)
46
+
47
+
48
+ def test_astype_period():
49
+ arr = period_array(["2000", "2001", None], freq="D")
50
+ result = arr.astype(PeriodDtype("M"))
51
+ expected = period_array(["2000", "2001", None], freq="M")
52
+ tm.assert_period_array_equal(result, expected)
53
+
54
+
55
+ @pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"])
56
+ def test_astype_datetime(dtype):
57
+ arr = period_array(["2000", "2001", None], freq="D")
58
+ # slice off the [ns] so that the regex matches.
59
+ if dtype == "timedelta64[ns]":
60
+ with pytest.raises(TypeError, match=dtype[:-4]):
61
+ arr.astype(dtype)
62
+
63
+ else:
64
+ # GH#45038 allow period->dt64 because we allow dt64->period
65
+ result = arr.astype(dtype)
66
+ expected = pd.DatetimeIndex(["2000", "2001", pd.NaT], dtype=dtype)._data
67
+ tm.assert_datetime_array_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/test_constructors.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._libs.tslibs import iNaT
5
+ from pandas._libs.tslibs.offsets import MonthEnd
6
+ from pandas._libs.tslibs.period import IncompatibleFrequency
7
+
8
+ import pandas as pd
9
+ import pandas._testing as tm
10
+ from pandas.core.arrays import (
11
+ PeriodArray,
12
+ period_array,
13
+ )
14
+
15
+
16
+ @pytest.mark.parametrize(
17
+ "data, freq, expected",
18
+ [
19
+ ([pd.Period("2017", "D")], None, [17167]),
20
+ ([pd.Period("2017", "D")], "D", [17167]),
21
+ ([2017], "D", [17167]),
22
+ (["2017"], "D", [17167]),
23
+ ([pd.Period("2017", "D")], pd.tseries.offsets.Day(), [17167]),
24
+ ([pd.Period("2017", "D"), None], None, [17167, iNaT]),
25
+ (pd.Series(pd.date_range("2017", periods=3)), None, [17167, 17168, 17169]),
26
+ (pd.date_range("2017", periods=3), None, [17167, 17168, 17169]),
27
+ (pd.period_range("2017", periods=4, freq="Q"), None, [188, 189, 190, 191]),
28
+ ],
29
+ )
30
+ def test_period_array_ok(data, freq, expected):
31
+ result = period_array(data, freq=freq).asi8
32
+ expected = np.asarray(expected, dtype=np.int64)
33
+ tm.assert_numpy_array_equal(result, expected)
34
+
35
+
36
+ def test_period_array_readonly_object():
37
+ # https://github.com/pandas-dev/pandas/issues/25403
38
+ pa = period_array([pd.Period("2019-01-01")])
39
+ arr = np.asarray(pa, dtype="object")
40
+ arr.setflags(write=False)
41
+
42
+ result = period_array(arr)
43
+ tm.assert_period_array_equal(result, pa)
44
+
45
+ result = pd.Series(arr)
46
+ tm.assert_series_equal(result, pd.Series(pa))
47
+
48
+ result = pd.DataFrame({"A": arr})
49
+ tm.assert_frame_equal(result, pd.DataFrame({"A": pa}))
50
+
51
+
52
+ def test_from_datetime64_freq_changes():
53
+ # https://github.com/pandas-dev/pandas/issues/23438
54
+ arr = pd.date_range("2017", periods=3, freq="D")
55
+ result = PeriodArray._from_datetime64(arr, freq="M")
56
+ expected = period_array(["2017-01-01", "2017-01-01", "2017-01-01"], freq="M")
57
+ tm.assert_period_array_equal(result, expected)
58
+
59
+
60
+ @pytest.mark.parametrize("freq", ["2M", MonthEnd(2)])
61
+ def test_from_datetime64_freq_2M(freq):
62
+ arr = np.array(
63
+ ["2020-01-01T00:00:00", "2020-01-02T00:00:00"], dtype="datetime64[ns]"
64
+ )
65
+ result = PeriodArray._from_datetime64(arr, freq)
66
+ expected = period_array(["2020-01", "2020-01"], freq=freq)
67
+ tm.assert_period_array_equal(result, expected)
68
+
69
+
70
+ @pytest.mark.parametrize(
71
+ "data, freq, msg",
72
+ [
73
+ (
74
+ [pd.Period("2017", "D"), pd.Period("2017", "Y")],
75
+ None,
76
+ "Input has different freq",
77
+ ),
78
+ ([pd.Period("2017", "D")], "Y", "Input has different freq"),
79
+ ],
80
+ )
81
+ def test_period_array_raises(data, freq, msg):
82
+ with pytest.raises(IncompatibleFrequency, match=msg):
83
+ period_array(data, freq)
84
+
85
+
86
+ def test_period_array_non_period_series_raies():
87
+ ser = pd.Series([1, 2, 3])
88
+ with pytest.raises(TypeError, match="dtype"):
89
+ PeriodArray(ser, dtype="period[D]")
90
+
91
+
92
+ def test_period_array_freq_mismatch():
93
+ arr = period_array(["2000", "2001"], freq="D")
94
+ with pytest.raises(IncompatibleFrequency, match="freq"):
95
+ PeriodArray(arr, dtype="period[M]")
96
+
97
+ dtype = pd.PeriodDtype(pd.tseries.offsets.MonthEnd())
98
+ with pytest.raises(IncompatibleFrequency, match="freq"):
99
+ PeriodArray(arr, dtype=dtype)
100
+
101
+
102
+ def test_from_sequence_disallows_i8():
103
+ arr = period_array(["2000", "2001"], freq="D")
104
+
105
+ msg = str(arr[0].ordinal)
106
+ with pytest.raises(TypeError, match=msg):
107
+ PeriodArray._from_sequence(arr.asi8, dtype=arr.dtype)
108
+
109
+ with pytest.raises(TypeError, match=msg):
110
+ PeriodArray._from_sequence(list(arr.asi8), dtype=arr.dtype)
111
+
112
+
113
+ def test_from_td64nat_sequence_raises():
114
+ # GH#44507
115
+ td = pd.NaT.to_numpy("m8[ns]")
116
+
117
+ dtype = pd.period_range("2005-01-01", periods=3, freq="D").dtype
118
+
119
+ arr = np.array([None], dtype=object)
120
+ arr[0] = td
121
+
122
+ msg = "Value must be Period, string, integer, or datetime"
123
+ with pytest.raises(ValueError, match=msg):
124
+ PeriodArray._from_sequence(arr, dtype=dtype)
125
+
126
+ with pytest.raises(ValueError, match=msg):
127
+ pd.PeriodIndex(arr, dtype=dtype)
128
+ with pytest.raises(ValueError, match=msg):
129
+ pd.Index(arr, dtype=dtype)
130
+ with pytest.raises(ValueError, match=msg):
131
+ pd.array(arr, dtype=dtype)
132
+ with pytest.raises(ValueError, match=msg):
133
+ pd.Series(arr, dtype=dtype)
134
+ with pytest.raises(ValueError, match=msg):
135
+ pd.DataFrame(arr, dtype=dtype)
136
+
137
+
138
+ def test_freq_deprecated():
139
+ # GH#52462
140
+ data = np.arange(5).astype(np.int64)
141
+ msg = "The 'freq' keyword in the PeriodArray constructor is deprecated"
142
+ with tm.assert_produces_warning(FutureWarning, match=msg):
143
+ res = PeriodArray(data, freq="M")
144
+
145
+ expected = PeriodArray(data, dtype="period[M]")
146
+ tm.assert_equal(res, expected)
147
+
148
+
149
+ def test_period_array_from_datetime64():
150
+ arr = np.array(
151
+ ["2020-01-01T00:00:00", "2020-02-02T00:00:00"], dtype="datetime64[ns]"
152
+ )
153
+ result = PeriodArray._from_datetime64(arr, freq=MonthEnd(2))
154
+
155
+ expected = period_array(["2020-01-01", "2020-02-01"], freq=MonthEnd(2))
156
+ tm.assert_period_array_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/period/test_reductions.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import pandas as pd
4
+ from pandas.core.arrays import period_array
5
+
6
+
7
+ class TestReductions:
8
+ def test_min_max(self):
9
+ arr = period_array(
10
+ [
11
+ "2000-01-03",
12
+ "2000-01-03",
13
+ "NaT",
14
+ "2000-01-02",
15
+ "2000-01-05",
16
+ "2000-01-04",
17
+ ],
18
+ freq="D",
19
+ )
20
+
21
+ result = arr.min()
22
+ expected = pd.Period("2000-01-02", freq="D")
23
+ assert result == expected
24
+
25
+ result = arr.max()
26
+ expected = pd.Period("2000-01-05", freq="D")
27
+ assert result == expected
28
+
29
+ result = arr.min(skipna=False)
30
+ assert result is pd.NaT
31
+
32
+ result = arr.max(skipna=False)
33
+ assert result is pd.NaT
34
+
35
+ @pytest.mark.parametrize("skipna", [True, False])
36
+ def test_min_max_empty(self, skipna):
37
+ arr = period_array([], freq="D")
38
+ result = arr.min(skipna=skipna)
39
+ assert result is pd.NaT
40
+
41
+ result = arr.max(skipna=skipna)
42
+ assert result is pd.NaT
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_array.cpython-310.pyc ADDED
Binary file (14.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_astype.cpython-310.pyc ADDED
Binary file (3.96 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_combine_concat.cpython-310.pyc ADDED
Binary file (2.19 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_libsparse.cpython-310.pyc ADDED
Binary file (13.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_arithmetics.py ADDED
@@ -0,0 +1,514 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ from pandas import SparseDtype
8
+ import pandas._testing as tm
9
+ from pandas.core.arrays.sparse import SparseArray
10
+
11
+
12
+ @pytest.fixture(params=["integer", "block"])
13
+ def kind(request):
14
+ """kind kwarg to pass to SparseArray"""
15
+ return request.param
16
+
17
+
18
+ @pytest.fixture(params=[True, False])
19
+ def mix(request):
20
+ """
21
+ Fixture returning True or False, determining whether to operate
22
+ op(sparse, dense) instead of op(sparse, sparse)
23
+ """
24
+ return request.param
25
+
26
+
27
+ class TestSparseArrayArithmetics:
28
+ def _assert(self, a, b):
29
+ # We have to use tm.assert_sp_array_equal. See GH #45126
30
+ tm.assert_numpy_array_equal(a, b)
31
+
32
+ def _check_numeric_ops(self, a, b, a_dense, b_dense, mix: bool, op):
33
+ # Check that arithmetic behavior matches non-Sparse Series arithmetic
34
+
35
+ if isinstance(a_dense, np.ndarray):
36
+ expected = op(pd.Series(a_dense), b_dense).values
37
+ elif isinstance(b_dense, np.ndarray):
38
+ expected = op(a_dense, pd.Series(b_dense)).values
39
+ else:
40
+ raise NotImplementedError
41
+
42
+ with np.errstate(invalid="ignore", divide="ignore"):
43
+ if mix:
44
+ result = op(a, b_dense).to_dense()
45
+ else:
46
+ result = op(a, b).to_dense()
47
+
48
+ self._assert(result, expected)
49
+
50
+ def _check_bool_result(self, res):
51
+ assert isinstance(res, SparseArray)
52
+ assert isinstance(res.dtype, SparseDtype)
53
+ assert res.dtype.subtype == np.bool_
54
+ assert isinstance(res.fill_value, bool)
55
+
56
+ def _check_comparison_ops(self, a, b, a_dense, b_dense):
57
+ with np.errstate(invalid="ignore"):
58
+ # Unfortunately, trying to wrap the computation of each expected
59
+ # value is with np.errstate() is too tedious.
60
+ #
61
+ # sparse & sparse
62
+ self._check_bool_result(a == b)
63
+ self._assert((a == b).to_dense(), a_dense == b_dense)
64
+
65
+ self._check_bool_result(a != b)
66
+ self._assert((a != b).to_dense(), a_dense != b_dense)
67
+
68
+ self._check_bool_result(a >= b)
69
+ self._assert((a >= b).to_dense(), a_dense >= b_dense)
70
+
71
+ self._check_bool_result(a <= b)
72
+ self._assert((a <= b).to_dense(), a_dense <= b_dense)
73
+
74
+ self._check_bool_result(a > b)
75
+ self._assert((a > b).to_dense(), a_dense > b_dense)
76
+
77
+ self._check_bool_result(a < b)
78
+ self._assert((a < b).to_dense(), a_dense < b_dense)
79
+
80
+ # sparse & dense
81
+ self._check_bool_result(a == b_dense)
82
+ self._assert((a == b_dense).to_dense(), a_dense == b_dense)
83
+
84
+ self._check_bool_result(a != b_dense)
85
+ self._assert((a != b_dense).to_dense(), a_dense != b_dense)
86
+
87
+ self._check_bool_result(a >= b_dense)
88
+ self._assert((a >= b_dense).to_dense(), a_dense >= b_dense)
89
+
90
+ self._check_bool_result(a <= b_dense)
91
+ self._assert((a <= b_dense).to_dense(), a_dense <= b_dense)
92
+
93
+ self._check_bool_result(a > b_dense)
94
+ self._assert((a > b_dense).to_dense(), a_dense > b_dense)
95
+
96
+ self._check_bool_result(a < b_dense)
97
+ self._assert((a < b_dense).to_dense(), a_dense < b_dense)
98
+
99
+ def _check_logical_ops(self, a, b, a_dense, b_dense):
100
+ # sparse & sparse
101
+ self._check_bool_result(a & b)
102
+ self._assert((a & b).to_dense(), a_dense & b_dense)
103
+
104
+ self._check_bool_result(a | b)
105
+ self._assert((a | b).to_dense(), a_dense | b_dense)
106
+ # sparse & dense
107
+ self._check_bool_result(a & b_dense)
108
+ self._assert((a & b_dense).to_dense(), a_dense & b_dense)
109
+
110
+ self._check_bool_result(a | b_dense)
111
+ self._assert((a | b_dense).to_dense(), a_dense | b_dense)
112
+
113
+ @pytest.mark.parametrize("scalar", [0, 1, 3])
114
+ @pytest.mark.parametrize("fill_value", [None, 0, 2])
115
+ def test_float_scalar(
116
+ self, kind, mix, all_arithmetic_functions, fill_value, scalar, request
117
+ ):
118
+ op = all_arithmetic_functions
119
+ values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
120
+ a = SparseArray(values, kind=kind, fill_value=fill_value)
121
+ self._check_numeric_ops(a, scalar, values, scalar, mix, op)
122
+
123
+ def test_float_scalar_comparison(self, kind):
124
+ values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
125
+
126
+ a = SparseArray(values, kind=kind)
127
+ self._check_comparison_ops(a, 1, values, 1)
128
+ self._check_comparison_ops(a, 0, values, 0)
129
+ self._check_comparison_ops(a, 3, values, 3)
130
+
131
+ a = SparseArray(values, kind=kind, fill_value=0)
132
+ self._check_comparison_ops(a, 1, values, 1)
133
+ self._check_comparison_ops(a, 0, values, 0)
134
+ self._check_comparison_ops(a, 3, values, 3)
135
+
136
+ a = SparseArray(values, kind=kind, fill_value=2)
137
+ self._check_comparison_ops(a, 1, values, 1)
138
+ self._check_comparison_ops(a, 0, values, 0)
139
+ self._check_comparison_ops(a, 3, values, 3)
140
+
141
+ def test_float_same_index_without_nans(self, kind, mix, all_arithmetic_functions):
142
+ # when sp_index are the same
143
+ op = all_arithmetic_functions
144
+
145
+ values = np.array([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0])
146
+ rvalues = np.array([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0])
147
+
148
+ a = SparseArray(values, kind=kind, fill_value=0)
149
+ b = SparseArray(rvalues, kind=kind, fill_value=0)
150
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
151
+
152
+ def test_float_same_index_with_nans(
153
+ self, kind, mix, all_arithmetic_functions, request
154
+ ):
155
+ # when sp_index are the same
156
+ op = all_arithmetic_functions
157
+ values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
158
+ rvalues = np.array([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan])
159
+
160
+ a = SparseArray(values, kind=kind)
161
+ b = SparseArray(rvalues, kind=kind)
162
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
163
+
164
+ def test_float_same_index_comparison(self, kind):
165
+ # when sp_index are the same
166
+ values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
167
+ rvalues = np.array([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan])
168
+
169
+ a = SparseArray(values, kind=kind)
170
+ b = SparseArray(rvalues, kind=kind)
171
+ self._check_comparison_ops(a, b, values, rvalues)
172
+
173
+ values = np.array([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0])
174
+ rvalues = np.array([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0])
175
+
176
+ a = SparseArray(values, kind=kind, fill_value=0)
177
+ b = SparseArray(rvalues, kind=kind, fill_value=0)
178
+ self._check_comparison_ops(a, b, values, rvalues)
179
+
180
+ def test_float_array(self, kind, mix, all_arithmetic_functions):
181
+ op = all_arithmetic_functions
182
+
183
+ values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
184
+ rvalues = np.array([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
185
+
186
+ a = SparseArray(values, kind=kind)
187
+ b = SparseArray(rvalues, kind=kind)
188
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
189
+ self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
190
+
191
+ a = SparseArray(values, kind=kind, fill_value=0)
192
+ b = SparseArray(rvalues, kind=kind)
193
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
194
+
195
+ a = SparseArray(values, kind=kind, fill_value=0)
196
+ b = SparseArray(rvalues, kind=kind, fill_value=0)
197
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
198
+
199
+ a = SparseArray(values, kind=kind, fill_value=1)
200
+ b = SparseArray(rvalues, kind=kind, fill_value=2)
201
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
202
+
203
+ def test_float_array_different_kind(self, mix, all_arithmetic_functions):
204
+ op = all_arithmetic_functions
205
+
206
+ values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
207
+ rvalues = np.array([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
208
+
209
+ a = SparseArray(values, kind="integer")
210
+ b = SparseArray(rvalues, kind="block")
211
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
212
+ self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
213
+
214
+ a = SparseArray(values, kind="integer", fill_value=0)
215
+ b = SparseArray(rvalues, kind="block")
216
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
217
+
218
+ a = SparseArray(values, kind="integer", fill_value=0)
219
+ b = SparseArray(rvalues, kind="block", fill_value=0)
220
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
221
+
222
+ a = SparseArray(values, kind="integer", fill_value=1)
223
+ b = SparseArray(rvalues, kind="block", fill_value=2)
224
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
225
+
226
+ def test_float_array_comparison(self, kind):
227
+ values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
228
+ rvalues = np.array([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
229
+
230
+ a = SparseArray(values, kind=kind)
231
+ b = SparseArray(rvalues, kind=kind)
232
+ self._check_comparison_ops(a, b, values, rvalues)
233
+ self._check_comparison_ops(a, b * 0, values, rvalues * 0)
234
+
235
+ a = SparseArray(values, kind=kind, fill_value=0)
236
+ b = SparseArray(rvalues, kind=kind)
237
+ self._check_comparison_ops(a, b, values, rvalues)
238
+
239
+ a = SparseArray(values, kind=kind, fill_value=0)
240
+ b = SparseArray(rvalues, kind=kind, fill_value=0)
241
+ self._check_comparison_ops(a, b, values, rvalues)
242
+
243
+ a = SparseArray(values, kind=kind, fill_value=1)
244
+ b = SparseArray(rvalues, kind=kind, fill_value=2)
245
+ self._check_comparison_ops(a, b, values, rvalues)
246
+
247
+ def test_int_array(self, kind, mix, all_arithmetic_functions):
248
+ op = all_arithmetic_functions
249
+
250
+ # have to specify dtype explicitly until fixing GH 667
251
+ dtype = np.int64
252
+
253
+ values = np.array([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
254
+ rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
255
+
256
+ a = SparseArray(values, dtype=dtype, kind=kind)
257
+ assert a.dtype == SparseDtype(dtype)
258
+ b = SparseArray(rvalues, dtype=dtype, kind=kind)
259
+ assert b.dtype == SparseDtype(dtype)
260
+
261
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
262
+ self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
263
+
264
+ a = SparseArray(values, fill_value=0, dtype=dtype, kind=kind)
265
+ assert a.dtype == SparseDtype(dtype)
266
+ b = SparseArray(rvalues, dtype=dtype, kind=kind)
267
+ assert b.dtype == SparseDtype(dtype)
268
+
269
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
270
+
271
+ a = SparseArray(values, fill_value=0, dtype=dtype, kind=kind)
272
+ assert a.dtype == SparseDtype(dtype)
273
+ b = SparseArray(rvalues, fill_value=0, dtype=dtype, kind=kind)
274
+ assert b.dtype == SparseDtype(dtype)
275
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
276
+
277
+ a = SparseArray(values, fill_value=1, dtype=dtype, kind=kind)
278
+ assert a.dtype == SparseDtype(dtype, fill_value=1)
279
+ b = SparseArray(rvalues, fill_value=2, dtype=dtype, kind=kind)
280
+ assert b.dtype == SparseDtype(dtype, fill_value=2)
281
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
282
+
283
+ def test_int_array_comparison(self, kind):
284
+ dtype = "int64"
285
+ # int32 NI ATM
286
+
287
+ values = np.array([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
288
+ rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
289
+
290
+ a = SparseArray(values, dtype=dtype, kind=kind)
291
+ b = SparseArray(rvalues, dtype=dtype, kind=kind)
292
+ self._check_comparison_ops(a, b, values, rvalues)
293
+ self._check_comparison_ops(a, b * 0, values, rvalues * 0)
294
+
295
+ a = SparseArray(values, dtype=dtype, kind=kind, fill_value=0)
296
+ b = SparseArray(rvalues, dtype=dtype, kind=kind)
297
+ self._check_comparison_ops(a, b, values, rvalues)
298
+
299
+ a = SparseArray(values, dtype=dtype, kind=kind, fill_value=0)
300
+ b = SparseArray(rvalues, dtype=dtype, kind=kind, fill_value=0)
301
+ self._check_comparison_ops(a, b, values, rvalues)
302
+
303
+ a = SparseArray(values, dtype=dtype, kind=kind, fill_value=1)
304
+ b = SparseArray(rvalues, dtype=dtype, kind=kind, fill_value=2)
305
+ self._check_comparison_ops(a, b, values, rvalues)
306
+
307
+ @pytest.mark.parametrize("fill_value", [True, False, np.nan])
308
+ def test_bool_same_index(self, kind, fill_value):
309
+ # GH 14000
310
+ # when sp_index are the same
311
+ values = np.array([True, False, True, True], dtype=np.bool_)
312
+ rvalues = np.array([True, False, True, True], dtype=np.bool_)
313
+
314
+ a = SparseArray(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
315
+ b = SparseArray(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
316
+ self._check_logical_ops(a, b, values, rvalues)
317
+
318
+ @pytest.mark.parametrize("fill_value", [True, False, np.nan])
319
+ def test_bool_array_logical(self, kind, fill_value):
320
+ # GH 14000
321
+ # when sp_index are the same
322
+ values = np.array([True, False, True, False, True, True], dtype=np.bool_)
323
+ rvalues = np.array([True, False, False, True, False, True], dtype=np.bool_)
324
+
325
+ a = SparseArray(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
326
+ b = SparseArray(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
327
+ self._check_logical_ops(a, b, values, rvalues)
328
+
329
+ def test_mixed_array_float_int(self, kind, mix, all_arithmetic_functions, request):
330
+ op = all_arithmetic_functions
331
+ rdtype = "int64"
332
+ values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
333
+ rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype)
334
+
335
+ a = SparseArray(values, kind=kind)
336
+ b = SparseArray(rvalues, kind=kind)
337
+ assert b.dtype == SparseDtype(rdtype)
338
+
339
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
340
+ self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
341
+
342
+ a = SparseArray(values, kind=kind, fill_value=0)
343
+ b = SparseArray(rvalues, kind=kind)
344
+ assert b.dtype == SparseDtype(rdtype)
345
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
346
+
347
+ a = SparseArray(values, kind=kind, fill_value=0)
348
+ b = SparseArray(rvalues, kind=kind, fill_value=0)
349
+ assert b.dtype == SparseDtype(rdtype)
350
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
351
+
352
+ a = SparseArray(values, kind=kind, fill_value=1)
353
+ b = SparseArray(rvalues, kind=kind, fill_value=2)
354
+ assert b.dtype == SparseDtype(rdtype, fill_value=2)
355
+ self._check_numeric_ops(a, b, values, rvalues, mix, op)
356
+
357
+ def test_mixed_array_comparison(self, kind):
358
+ rdtype = "int64"
359
+ # int32 NI ATM
360
+
361
+ values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
362
+ rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype)
363
+
364
+ a = SparseArray(values, kind=kind)
365
+ b = SparseArray(rvalues, kind=kind)
366
+ assert b.dtype == SparseDtype(rdtype)
367
+
368
+ self._check_comparison_ops(a, b, values, rvalues)
369
+ self._check_comparison_ops(a, b * 0, values, rvalues * 0)
370
+
371
+ a = SparseArray(values, kind=kind, fill_value=0)
372
+ b = SparseArray(rvalues, kind=kind)
373
+ assert b.dtype == SparseDtype(rdtype)
374
+ self._check_comparison_ops(a, b, values, rvalues)
375
+
376
+ a = SparseArray(values, kind=kind, fill_value=0)
377
+ b = SparseArray(rvalues, kind=kind, fill_value=0)
378
+ assert b.dtype == SparseDtype(rdtype)
379
+ self._check_comparison_ops(a, b, values, rvalues)
380
+
381
+ a = SparseArray(values, kind=kind, fill_value=1)
382
+ b = SparseArray(rvalues, kind=kind, fill_value=2)
383
+ assert b.dtype == SparseDtype(rdtype, fill_value=2)
384
+ self._check_comparison_ops(a, b, values, rvalues)
385
+
386
+ def test_xor(self):
387
+ s = SparseArray([True, True, False, False])
388
+ t = SparseArray([True, False, True, False])
389
+ result = s ^ t
390
+ sp_index = pd.core.arrays.sparse.IntIndex(4, np.array([0, 1, 2], dtype="int32"))
391
+ expected = SparseArray([False, True, True], sparse_index=sp_index)
392
+ tm.assert_sp_array_equal(result, expected)
393
+
394
+
395
+ @pytest.mark.parametrize("op", [operator.eq, operator.add])
396
+ def test_with_list(op):
397
+ arr = SparseArray([0, 1], fill_value=0)
398
+ result = op(arr, [0, 1])
399
+ expected = op(arr, SparseArray([0, 1]))
400
+ tm.assert_sp_array_equal(result, expected)
401
+
402
+
403
+ def test_with_dataframe():
404
+ # GH#27910
405
+ arr = SparseArray([0, 1], fill_value=0)
406
+ df = pd.DataFrame([[1, 2], [3, 4]])
407
+ result = arr.__add__(df)
408
+ assert result is NotImplemented
409
+
410
+
411
+ def test_with_zerodim_ndarray():
412
+ # GH#27910
413
+ arr = SparseArray([0, 1], fill_value=0)
414
+
415
+ result = arr * np.array(2)
416
+ expected = arr * 2
417
+ tm.assert_sp_array_equal(result, expected)
418
+
419
+
420
+ @pytest.mark.parametrize("ufunc", [np.abs, np.exp])
421
+ @pytest.mark.parametrize(
422
+ "arr", [SparseArray([0, 0, -1, 1]), SparseArray([None, None, -1, 1])]
423
+ )
424
+ def test_ufuncs(ufunc, arr):
425
+ result = ufunc(arr)
426
+ fill_value = ufunc(arr.fill_value)
427
+ expected = SparseArray(ufunc(np.asarray(arr)), fill_value=fill_value)
428
+ tm.assert_sp_array_equal(result, expected)
429
+
430
+
431
+ @pytest.mark.parametrize(
432
+ "a, b",
433
+ [
434
+ (SparseArray([0, 0, 0]), np.array([0, 1, 2])),
435
+ (SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
436
+ (SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
437
+ (SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
438
+ (SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
439
+ ],
440
+ )
441
+ @pytest.mark.parametrize("ufunc", [np.add, np.greater])
442
+ def test_binary_ufuncs(ufunc, a, b):
443
+ # can't say anything about fill value here.
444
+ result = ufunc(a, b)
445
+ expected = ufunc(np.asarray(a), np.asarray(b))
446
+ assert isinstance(result, SparseArray)
447
+ tm.assert_numpy_array_equal(np.asarray(result), expected)
448
+
449
+
450
+ def test_ndarray_inplace():
451
+ sparray = SparseArray([0, 2, 0, 0])
452
+ ndarray = np.array([0, 1, 2, 3])
453
+ ndarray += sparray
454
+ expected = np.array([0, 3, 2, 3])
455
+ tm.assert_numpy_array_equal(ndarray, expected)
456
+
457
+
458
+ def test_sparray_inplace():
459
+ sparray = SparseArray([0, 2, 0, 0])
460
+ ndarray = np.array([0, 1, 2, 3])
461
+ sparray += ndarray
462
+ expected = SparseArray([0, 3, 2, 3], fill_value=0)
463
+ tm.assert_sp_array_equal(sparray, expected)
464
+
465
+
466
+ @pytest.mark.parametrize("cons", [list, np.array, SparseArray])
467
+ def test_mismatched_length_cmp_op(cons):
468
+ left = SparseArray([True, True])
469
+ right = cons([True, True, True])
470
+ with pytest.raises(ValueError, match="operands have mismatched length"):
471
+ left & right
472
+
473
+
474
+ @pytest.mark.parametrize("op", ["add", "sub", "mul", "truediv", "floordiv", "pow"])
475
+ @pytest.mark.parametrize("fill_value", [np.nan, 3])
476
+ def test_binary_operators(op, fill_value):
477
+ op = getattr(operator, op)
478
+ data1 = np.random.default_rng(2).standard_normal(20)
479
+ data2 = np.random.default_rng(2).standard_normal(20)
480
+
481
+ data1[::2] = fill_value
482
+ data2[::3] = fill_value
483
+
484
+ first = SparseArray(data1, fill_value=fill_value)
485
+ second = SparseArray(data2, fill_value=fill_value)
486
+
487
+ with np.errstate(all="ignore"):
488
+ res = op(first, second)
489
+ exp = SparseArray(
490
+ op(first.to_dense(), second.to_dense()), fill_value=first.fill_value
491
+ )
492
+ assert isinstance(res, SparseArray)
493
+ tm.assert_almost_equal(res.to_dense(), exp.to_dense())
494
+
495
+ res2 = op(first, second.to_dense())
496
+ assert isinstance(res2, SparseArray)
497
+ tm.assert_sp_array_equal(res, res2)
498
+
499
+ res3 = op(first.to_dense(), second)
500
+ assert isinstance(res3, SparseArray)
501
+ tm.assert_sp_array_equal(res, res3)
502
+
503
+ res4 = op(first, 4)
504
+ assert isinstance(res4, SparseArray)
505
+
506
+ # Ignore this if the actual op raises (e.g. pow).
507
+ try:
508
+ exp = op(first.to_dense(), 4)
509
+ exp_fv = op(first.fill_value, 4)
510
+ except ValueError:
511
+ pass
512
+ else:
513
+ tm.assert_almost_equal(res4.fill_value, exp_fv)
514
+ tm.assert_almost_equal(res4.to_dense(), exp)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_astype.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._libs.sparse import IntIndex
5
+
6
+ from pandas import (
7
+ SparseDtype,
8
+ Timestamp,
9
+ )
10
+ import pandas._testing as tm
11
+ from pandas.core.arrays.sparse import SparseArray
12
+
13
+
14
+ class TestAstype:
15
+ def test_astype(self):
16
+ # float -> float
17
+ arr = SparseArray([None, None, 0, 2])
18
+ result = arr.astype("Sparse[float32]")
19
+ expected = SparseArray([None, None, 0, 2], dtype=np.dtype("float32"))
20
+ tm.assert_sp_array_equal(result, expected)
21
+
22
+ dtype = SparseDtype("float64", fill_value=0)
23
+ result = arr.astype(dtype)
24
+ expected = SparseArray._simple_new(
25
+ np.array([0.0, 2.0], dtype=dtype.subtype), IntIndex(4, [2, 3]), dtype
26
+ )
27
+ tm.assert_sp_array_equal(result, expected)
28
+
29
+ dtype = SparseDtype("int64", 0)
30
+ result = arr.astype(dtype)
31
+ expected = SparseArray._simple_new(
32
+ np.array([0, 2], dtype=np.int64), IntIndex(4, [2, 3]), dtype
33
+ )
34
+ tm.assert_sp_array_equal(result, expected)
35
+
36
+ arr = SparseArray([0, np.nan, 0, 1], fill_value=0)
37
+ with pytest.raises(ValueError, match="NA"):
38
+ arr.astype("Sparse[i8]")
39
+
40
+ def test_astype_bool(self):
41
+ a = SparseArray([1, 0, 0, 1], dtype=SparseDtype(int, 0))
42
+ result = a.astype(bool)
43
+ expected = np.array([1, 0, 0, 1], dtype=bool)
44
+ tm.assert_numpy_array_equal(result, expected)
45
+
46
+ # update fill value
47
+ result = a.astype(SparseDtype(bool, False))
48
+ expected = SparseArray(
49
+ [True, False, False, True], dtype=SparseDtype(bool, False)
50
+ )
51
+ tm.assert_sp_array_equal(result, expected)
52
+
53
+ def test_astype_all(self, any_real_numpy_dtype):
54
+ vals = np.array([1, 2, 3])
55
+ arr = SparseArray(vals, fill_value=1)
56
+ typ = np.dtype(any_real_numpy_dtype)
57
+ res = arr.astype(typ)
58
+ tm.assert_numpy_array_equal(res, vals.astype(any_real_numpy_dtype))
59
+
60
+ @pytest.mark.parametrize(
61
+ "arr, dtype, expected",
62
+ [
63
+ (
64
+ SparseArray([0, 1]),
65
+ "float",
66
+ SparseArray([0.0, 1.0], dtype=SparseDtype(float, 0.0)),
67
+ ),
68
+ (SparseArray([0, 1]), bool, SparseArray([False, True])),
69
+ (
70
+ SparseArray([0, 1], fill_value=1),
71
+ bool,
72
+ SparseArray([False, True], dtype=SparseDtype(bool, True)),
73
+ ),
74
+ pytest.param(
75
+ SparseArray([0, 1]),
76
+ "datetime64[ns]",
77
+ SparseArray(
78
+ np.array([0, 1], dtype="datetime64[ns]"),
79
+ dtype=SparseDtype("datetime64[ns]", Timestamp("1970")),
80
+ ),
81
+ ),
82
+ (
83
+ SparseArray([0, 1, 10]),
84
+ str,
85
+ SparseArray(["0", "1", "10"], dtype=SparseDtype(str, "0")),
86
+ ),
87
+ (SparseArray(["10", "20"]), float, SparseArray([10.0, 20.0])),
88
+ (
89
+ SparseArray([0, 1, 0]),
90
+ object,
91
+ SparseArray([0, 1, 0], dtype=SparseDtype(object, 0)),
92
+ ),
93
+ ],
94
+ )
95
+ def test_astype_more(self, arr, dtype, expected):
96
+ result = arr.astype(arr.dtype.update_dtype(dtype))
97
+ tm.assert_sp_array_equal(result, expected)
98
+
99
+ def test_astype_nan_raises(self):
100
+ arr = SparseArray([1.0, np.nan])
101
+ with pytest.raises(ValueError, match="Cannot convert non-finite"):
102
+ arr.astype(int)
103
+
104
+ def test_astype_copy_false(self):
105
+ # GH#34456 bug caused by using .view instead of .astype in astype_nansafe
106
+ arr = SparseArray([1, 2, 3])
107
+
108
+ dtype = SparseDtype(float, 0)
109
+
110
+ result = arr.astype(dtype, copy=False)
111
+ expected = SparseArray([1.0, 2.0, 3.0], fill_value=0.0)
112
+ tm.assert_sp_array_equal(result, expected)
113
+
114
+ def test_astype_dt64_to_int64(self):
115
+ # GH#49631 match non-sparse behavior
116
+ values = np.array(["NaT", "2016-01-02", "2016-01-03"], dtype="M8[ns]")
117
+
118
+ arr = SparseArray(values)
119
+ result = arr.astype("int64")
120
+ expected = values.astype("int64")
121
+ tm.assert_numpy_array_equal(result, expected)
122
+
123
+ # we should also be able to cast to equivalent Sparse[int64]
124
+ dtype_int64 = SparseDtype("int64", np.iinfo(np.int64).min)
125
+ result2 = arr.astype(dtype_int64)
126
+ tm.assert_numpy_array_equal(result2.to_numpy(), expected)
127
+
128
+ # GH#50087 we should match the non-sparse behavior regardless of
129
+ # if we have a fill_value other than NaT
130
+ dtype = SparseDtype("datetime64[ns]", values[1])
131
+ arr3 = SparseArray(values, dtype=dtype)
132
+ result3 = arr3.astype("int64")
133
+ tm.assert_numpy_array_equal(result3, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_combine_concat.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.core.arrays.sparse import SparseArray
7
+
8
+
9
+ class TestSparseArrayConcat:
10
+ @pytest.mark.parametrize("kind", ["integer", "block"])
11
+ def test_basic(self, kind):
12
+ a = SparseArray([1, 0, 0, 2], kind=kind)
13
+ b = SparseArray([1, 0, 2, 2], kind=kind)
14
+
15
+ result = SparseArray._concat_same_type([a, b])
16
+ # Can't make any assertions about the sparse index itself
17
+ # since we aren't don't merge sparse blocs across arrays
18
+ # in to_concat
19
+ expected = np.array([1, 2, 1, 2, 2], dtype="int64")
20
+ tm.assert_numpy_array_equal(result.sp_values, expected)
21
+ assert result.kind == kind
22
+
23
+ @pytest.mark.parametrize("kind", ["integer", "block"])
24
+ def test_uses_first_kind(self, kind):
25
+ other = "integer" if kind == "block" else "block"
26
+ a = SparseArray([1, 0, 0, 2], kind=kind)
27
+ b = SparseArray([1, 0, 2, 2], kind=other)
28
+
29
+ result = SparseArray._concat_same_type([a, b])
30
+ expected = np.array([1, 2, 1, 2, 2], dtype="int64")
31
+ tm.assert_numpy_array_equal(result.sp_values, expected)
32
+ assert result.kind == kind
33
+
34
+
35
+ @pytest.mark.parametrize(
36
+ "other, expected_dtype",
37
+ [
38
+ # compatible dtype -> preserve sparse
39
+ (pd.Series([3, 4, 5], dtype="int64"), pd.SparseDtype("int64", 0)),
40
+ # (pd.Series([3, 4, 5], dtype="Int64"), pd.SparseDtype("int64", 0)),
41
+ # incompatible dtype -> Sparse[common dtype]
42
+ (pd.Series([1.5, 2.5, 3.5], dtype="float64"), pd.SparseDtype("float64", 0)),
43
+ # incompatible dtype -> Sparse[object] dtype
44
+ (pd.Series(["a", "b", "c"], dtype=object), pd.SparseDtype(object, 0)),
45
+ # categorical with compatible categories -> dtype of the categories
46
+ (pd.Series([3, 4, 5], dtype="category"), np.dtype("int64")),
47
+ (pd.Series([1.5, 2.5, 3.5], dtype="category"), np.dtype("float64")),
48
+ # categorical with incompatible categories -> object dtype
49
+ (pd.Series(["a", "b", "c"], dtype="category"), np.dtype(object)),
50
+ ],
51
+ )
52
+ def test_concat_with_non_sparse(other, expected_dtype):
53
+ # https://github.com/pandas-dev/pandas/issues/34336
54
+ s_sparse = pd.Series([1, 0, 2], dtype=pd.SparseDtype("int64", 0))
55
+
56
+ result = pd.concat([s_sparse, other], ignore_index=True)
57
+ expected = pd.Series(list(s_sparse) + list(other)).astype(expected_dtype)
58
+ tm.assert_series_equal(result, expected)
59
+
60
+ result = pd.concat([other, s_sparse], ignore_index=True)
61
+ expected = pd.Series(list(other) + list(s_sparse)).astype(expected_dtype)
62
+ tm.assert_series_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_unary.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.core.arrays import SparseArray
9
+
10
+
11
+ @pytest.mark.filterwarnings("ignore:invalid value encountered in cast:RuntimeWarning")
12
+ @pytest.mark.parametrize("fill_value", [0, np.nan])
13
+ @pytest.mark.parametrize("op", [operator.pos, operator.neg])
14
+ def test_unary_op(op, fill_value):
15
+ arr = np.array([0, 1, np.nan, 2])
16
+ sparray = SparseArray(arr, fill_value=fill_value)
17
+ result = op(sparray)
18
+ expected = SparseArray(op(arr), fill_value=op(fill_value))
19
+ tm.assert_sp_array_equal(result, expected)
20
+
21
+
22
+ @pytest.mark.parametrize("fill_value", [True, False])
23
+ def test_invert(fill_value):
24
+ arr = np.array([True, False, False, True])
25
+ sparray = SparseArray(arr, fill_value=fill_value)
26
+ result = ~sparray
27
+ expected = SparseArray(~arr, fill_value=not fill_value)
28
+ tm.assert_sp_array_equal(result, expected)
29
+
30
+ result = ~pd.Series(sparray)
31
+ expected = pd.Series(expected)
32
+ tm.assert_series_equal(result, expected)
33
+
34
+ result = ~pd.DataFrame({"A": sparray})
35
+ expected = pd.DataFrame({"A": expected})
36
+ tm.assert_frame_equal(result, expected)
37
+
38
+
39
+ class TestUnaryMethods:
40
+ @pytest.mark.filterwarnings(
41
+ "ignore:invalid value encountered in cast:RuntimeWarning"
42
+ )
43
+ def test_neg_operator(self):
44
+ arr = SparseArray([-1, -2, np.nan, 3], fill_value=np.nan, dtype=np.int8)
45
+ res = -arr
46
+ exp = SparseArray([1, 2, np.nan, -3], fill_value=np.nan, dtype=np.int8)
47
+ tm.assert_sp_array_equal(exp, res)
48
+
49
+ arr = SparseArray([-1, -2, 1, 3], fill_value=-1, dtype=np.int8)
50
+ res = -arr
51
+ exp = SparseArray([1, 2, -1, -3], fill_value=1, dtype=np.int8)
52
+ tm.assert_sp_array_equal(exp, res)
53
+
54
+ @pytest.mark.filterwarnings(
55
+ "ignore:invalid value encountered in cast:RuntimeWarning"
56
+ )
57
+ def test_abs_operator(self):
58
+ arr = SparseArray([-1, -2, np.nan, 3], fill_value=np.nan, dtype=np.int8)
59
+ res = abs(arr)
60
+ exp = SparseArray([1, 2, np.nan, 3], fill_value=np.nan, dtype=np.int8)
61
+ tm.assert_sp_array_equal(exp, res)
62
+
63
+ arr = SparseArray([-1, -2, 1, 3], fill_value=-1, dtype=np.int8)
64
+ res = abs(arr)
65
+ exp = SparseArray([1, 2, 1, 3], fill_value=1, dtype=np.int8)
66
+ tm.assert_sp_array_equal(exp, res)
67
+
68
+ def test_invert_operator(self):
69
+ arr = SparseArray([False, True, False, True], fill_value=False, dtype=np.bool_)
70
+ exp = SparseArray(
71
+ np.invert([False, True, False, True]), fill_value=True, dtype=np.bool_
72
+ )
73
+ res = ~arr
74
+ tm.assert_sp_array_equal(exp, res)
75
+
76
+ arr = SparseArray([0, 1, 0, 2, 3, 0], fill_value=0, dtype=np.int32)
77
+ res = ~arr
78
+ exp = SparseArray([-1, -2, -1, -3, -4, -1], fill_value=-1, dtype=np.int32)
79
+ tm.assert_sp_array_equal(exp, res)
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (184 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (3.46 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_api.cpython-310.pyc ADDED
Binary file (11.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_apply.cpython-310.pyc ADDED
Binary file (11 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_cython_aggregations.cpython-310.pyc ADDED
Binary file (3.51 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_dtypes.cpython-310.pyc ADDED
Binary file (4.06 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_ewm.cpython-310.pyc ADDED
Binary file (18.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_expanding.cpython-310.pyc ADDED
Binary file (21.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_groupby.cpython-310.pyc ADDED
Binary file (38.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_numba.cpython-310.pyc ADDED
Binary file (14.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_online.cpython-310.pyc ADDED
Binary file (3.15 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_rolling.cpython-310.pyc ADDED
Binary file (48.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_rolling_functions.cpython-310.pyc ADDED
Binary file (17.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_rolling_quantile.cpython-310.pyc ADDED
Binary file (5.51 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_timeseries_window.cpython-310.pyc ADDED
Binary file (18.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/__pycache__/test_win_type.cpython-310.pyc ADDED
Binary file (14.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/conftest.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ timedelta,
4
+ )
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ import pandas.util._test_decorators as td
10
+
11
+ from pandas import (
12
+ DataFrame,
13
+ Series,
14
+ bdate_range,
15
+ )
16
+
17
+
18
+ @pytest.fixture(params=[True, False])
19
+ def raw(request):
20
+ """raw keyword argument for rolling.apply"""
21
+ return request.param
22
+
23
+
24
+ @pytest.fixture(
25
+ params=[
26
+ "sum",
27
+ "mean",
28
+ "median",
29
+ "max",
30
+ "min",
31
+ "var",
32
+ "std",
33
+ "kurt",
34
+ "skew",
35
+ "count",
36
+ "sem",
37
+ ]
38
+ )
39
+ def arithmetic_win_operators(request):
40
+ return request.param
41
+
42
+
43
+ @pytest.fixture(params=[True, False])
44
+ def center(request):
45
+ return request.param
46
+
47
+
48
+ @pytest.fixture(params=[None, 1])
49
+ def min_periods(request):
50
+ return request.param
51
+
52
+
53
+ @pytest.fixture(params=[True, False])
54
+ def parallel(request):
55
+ """parallel keyword argument for numba.jit"""
56
+ return request.param
57
+
58
+
59
+ # Can parameterize nogil & nopython over True | False, but limiting per
60
+ # https://github.com/pandas-dev/pandas/pull/41971#issuecomment-860607472
61
+
62
+
63
+ @pytest.fixture(params=[False])
64
+ def nogil(request):
65
+ """nogil keyword argument for numba.jit"""
66
+ return request.param
67
+
68
+
69
+ @pytest.fixture(params=[True])
70
+ def nopython(request):
71
+ """nopython keyword argument for numba.jit"""
72
+ return request.param
73
+
74
+
75
+ @pytest.fixture(params=[True, False])
76
+ def adjust(request):
77
+ """adjust keyword argument for ewm"""
78
+ return request.param
79
+
80
+
81
+ @pytest.fixture(params=[True, False])
82
+ def ignore_na(request):
83
+ """ignore_na keyword argument for ewm"""
84
+ return request.param
85
+
86
+
87
+ @pytest.fixture(params=[True, False])
88
+ def numeric_only(request):
89
+ """numeric_only keyword argument"""
90
+ return request.param
91
+
92
+
93
+ @pytest.fixture(
94
+ params=[
95
+ pytest.param("numba", marks=[td.skip_if_no("numba"), pytest.mark.single_cpu]),
96
+ "cython",
97
+ ]
98
+ )
99
+ def engine(request):
100
+ """engine keyword argument for rolling.apply"""
101
+ return request.param
102
+
103
+
104
+ @pytest.fixture(
105
+ params=[
106
+ pytest.param(
107
+ ("numba", True), marks=[td.skip_if_no("numba"), pytest.mark.single_cpu]
108
+ ),
109
+ ("cython", True),
110
+ ("cython", False),
111
+ ]
112
+ )
113
+ def engine_and_raw(request):
114
+ """engine and raw keyword arguments for rolling.apply"""
115
+ return request.param
116
+
117
+
118
+ @pytest.fixture(params=["1 day", timedelta(days=1), np.timedelta64(1, "D")])
119
+ def halflife_with_times(request):
120
+ """Halflife argument for EWM when times is specified."""
121
+ return request.param
122
+
123
+
124
+ @pytest.fixture
125
+ def series():
126
+ """Make mocked series as fixture."""
127
+ arr = np.random.default_rng(2).standard_normal(100)
128
+ locs = np.arange(20, 40)
129
+ arr[locs] = np.nan
130
+ series = Series(arr, index=bdate_range(datetime(2009, 1, 1), periods=100))
131
+ return series
132
+
133
+
134
+ @pytest.fixture
135
+ def frame():
136
+ """Make mocked frame as fixture."""
137
+ return DataFrame(
138
+ np.random.default_rng(2).standard_normal((100, 10)),
139
+ index=bdate_range(datetime(2009, 1, 1), periods=100),
140
+ )
141
+
142
+
143
+ @pytest.fixture(params=[None, 1, 2, 5, 10])
144
+ def step(request):
145
+ """step keyword argument for rolling window operations."""
146
+ return request.param
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/moments/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/window/moments/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (192 Bytes). View file