applied-ai-018 commited on
Commit
3ad422d
·
verified ·
1 Parent(s): b62d97e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/numpy/core/_add_newdocs.py +0 -0
  2. env-llmeval/lib/python3.10/site-packages/numpy/core/_add_newdocs_scalars.py +372 -0
  3. env-llmeval/lib/python3.10/site-packages/numpy/core/_asarray.py +134 -0
  4. env-llmeval/lib/python3.10/site-packages/numpy/core/_exceptions.py +172 -0
  5. env-llmeval/lib/python3.10/site-packages/numpy/core/_machar.py +356 -0
  6. env-llmeval/lib/python3.10/site-packages/numpy/core/_operand_flag_tests.cpython-310-x86_64-linux-gnu.so +0 -0
  7. env-llmeval/lib/python3.10/site-packages/numpy/core/_rational_tests.cpython-310-x86_64-linux-gnu.so +0 -0
  8. env-llmeval/lib/python3.10/site-packages/numpy/core/_string_helpers.py +100 -0
  9. env-llmeval/lib/python3.10/site-packages/numpy/core/_ufunc_config.pyi +37 -0
  10. env-llmeval/lib/python3.10/site-packages/numpy/core/arrayprint.py +1725 -0
  11. env-llmeval/lib/python3.10/site-packages/numpy/core/defchararray.pyi +421 -0
  12. env-llmeval/lib/python3.10/site-packages/numpy/core/einsumfunc.py +1443 -0
  13. env-llmeval/lib/python3.10/site-packages/numpy/core/getlimits.py +735 -0
  14. env-llmeval/lib/python3.10/site-packages/numpy/core/getlimits.pyi +6 -0
  15. env-llmeval/lib/python3.10/site-packages/numpy/core/multiarray.py +1715 -0
  16. env-llmeval/lib/python3.10/site-packages/numpy/core/numeric.py +2530 -0
  17. env-llmeval/lib/python3.10/site-packages/numpy/core/numeric.pyi +660 -0
  18. env-llmeval/lib/python3.10/site-packages/numpy/core/shape_base.pyi +123 -0
  19. env-llmeval/lib/python3.10/site-packages/numpy/core/umath.py +36 -0
  20. env-llmeval/lib/python3.10/site-packages/numpy/core/umath_tests.py +13 -0
  21. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimd.c +27 -0
  22. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimdhp.c +15 -0
  23. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx.c +20 -0
  24. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx2.c +20 -0
  25. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_clx.c +22 -0
  26. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_cnl.c +24 -0
  27. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_icl.c +26 -0
  28. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knl.c +25 -0
  29. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knm.c +30 -0
  30. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_skx.c +26 -0
  31. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512cd.c +20 -0
  32. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512f.c +20 -0
  33. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_f16c.c +22 -0
  34. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_fma3.c +22 -0
  35. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon.c +19 -0
  36. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_fp16.c +11 -0
  37. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_vfpv4.c +21 -0
  38. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_popcnt.c +32 -0
  39. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse.c +20 -0
  40. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse2.c +20 -0
  41. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse3.c +20 -0
  42. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse41.c +20 -0
  43. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_ssse3.c +20 -0
  44. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx.c +21 -0
  45. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx3.c +13 -0
  46. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx4.c +14 -0
  47. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vx.c +16 -0
  48. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vxe2.c +21 -0
  49. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_xop.c +12 -0
  50. env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/extra_avx512bw_mask.c +18 -0
env-llmeval/lib/python3.10/site-packages/numpy/core/_add_newdocs.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/numpy/core/_add_newdocs_scalars.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file is separate from ``_add_newdocs.py`` so that it can be mocked out by
3
+ our sphinx ``conf.py`` during doc builds, where we want to avoid showing
4
+ platform-dependent information.
5
+ """
6
+ import sys
7
+ import os
8
+ from numpy.core import dtype
9
+ from numpy.core import numerictypes as _numerictypes
10
+ from numpy.core.function_base import add_newdoc
11
+
12
+ ##############################################################################
13
+ #
14
+ # Documentation for concrete scalar classes
15
+ #
16
+ ##############################################################################
17
+
18
+ def numeric_type_aliases(aliases):
19
+ def type_aliases_gen():
20
+ for alias, doc in aliases:
21
+ try:
22
+ alias_type = getattr(_numerictypes, alias)
23
+ except AttributeError:
24
+ # The set of aliases that actually exist varies between platforms
25
+ pass
26
+ else:
27
+ yield (alias_type, alias, doc)
28
+ return list(type_aliases_gen())
29
+
30
+
31
+ possible_aliases = numeric_type_aliases([
32
+ ('int8', '8-bit signed integer (``-128`` to ``127``)'),
33
+ ('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'),
34
+ ('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'),
35
+ ('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'),
36
+ ('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'),
37
+ ('uint8', '8-bit unsigned integer (``0`` to ``255``)'),
38
+ ('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'),
39
+ ('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'),
40
+ ('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'),
41
+ ('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'),
42
+ ('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'),
43
+ ('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'),
44
+ ('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'),
45
+ ('float96', '96-bit extended-precision floating-point number type'),
46
+ ('float128', '128-bit extended-precision floating-point number type'),
47
+ ('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'),
48
+ ('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'),
49
+ ('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'),
50
+ ('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'),
51
+ ])
52
+
53
+
54
+ def _get_platform_and_machine():
55
+ try:
56
+ system, _, _, _, machine = os.uname()
57
+ except AttributeError:
58
+ system = sys.platform
59
+ if system == 'win32':
60
+ machine = os.environ.get('PROCESSOR_ARCHITEW6432', '') \
61
+ or os.environ.get('PROCESSOR_ARCHITECTURE', '')
62
+ else:
63
+ machine = 'unknown'
64
+ return system, machine
65
+
66
+
67
+ _system, _machine = _get_platform_and_machine()
68
+ _doc_alias_string = f":Alias on this platform ({_system} {_machine}):"
69
+
70
+
71
+ def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
72
+ # note: `:field: value` is rST syntax which renders as field lists.
73
+ o = getattr(_numerictypes, obj)
74
+
75
+ character_code = dtype(o).char
76
+ canonical_name_doc = "" if obj == o.__name__ else \
77
+ f":Canonical name: `numpy.{obj}`\n "
78
+ if fixed_aliases:
79
+ alias_doc = ''.join(f":Alias: `numpy.{alias}`\n "
80
+ for alias in fixed_aliases)
81
+ else:
82
+ alias_doc = ''
83
+ alias_doc += ''.join(f"{_doc_alias_string} `numpy.{alias}`: {doc}.\n "
84
+ for (alias_type, alias, doc) in possible_aliases if alias_type is o)
85
+
86
+ docstring = f"""
87
+ {doc.strip()}
88
+
89
+ :Character code: ``'{character_code}'``
90
+ {canonical_name_doc}{alias_doc}
91
+ """
92
+
93
+ add_newdoc('numpy.core.numerictypes', obj, docstring)
94
+
95
+
96
+ add_newdoc_for_scalar_type('bool_', [],
97
+ """
98
+ Boolean type (True or False), stored as a byte.
99
+
100
+ .. warning::
101
+
102
+ The :class:`bool_` type is not a subclass of the :class:`int_` type
103
+ (the :class:`bool_` is not even a number type). This is different
104
+ than Python's default implementation of :class:`bool` as a
105
+ sub-class of :class:`int`.
106
+ """)
107
+
108
+ add_newdoc_for_scalar_type('byte', [],
109
+ """
110
+ Signed integer type, compatible with C ``char``.
111
+ """)
112
+
113
+ add_newdoc_for_scalar_type('short', [],
114
+ """
115
+ Signed integer type, compatible with C ``short``.
116
+ """)
117
+
118
+ add_newdoc_for_scalar_type('intc', [],
119
+ """
120
+ Signed integer type, compatible with C ``int``.
121
+ """)
122
+
123
+ add_newdoc_for_scalar_type('int_', [],
124
+ """
125
+ Signed integer type, compatible with Python `int` and C ``long``.
126
+ """)
127
+
128
+ add_newdoc_for_scalar_type('longlong', [],
129
+ """
130
+ Signed integer type, compatible with C ``long long``.
131
+ """)
132
+
133
+ add_newdoc_for_scalar_type('ubyte', [],
134
+ """
135
+ Unsigned integer type, compatible with C ``unsigned char``.
136
+ """)
137
+
138
+ add_newdoc_for_scalar_type('ushort', [],
139
+ """
140
+ Unsigned integer type, compatible with C ``unsigned short``.
141
+ """)
142
+
143
+ add_newdoc_for_scalar_type('uintc', [],
144
+ """
145
+ Unsigned integer type, compatible with C ``unsigned int``.
146
+ """)
147
+
148
+ add_newdoc_for_scalar_type('uint', [],
149
+ """
150
+ Unsigned integer type, compatible with C ``unsigned long``.
151
+ """)
152
+
153
+ add_newdoc_for_scalar_type('ulonglong', [],
154
+ """
155
+ Signed integer type, compatible with C ``unsigned long long``.
156
+ """)
157
+
158
+ add_newdoc_for_scalar_type('half', [],
159
+ """
160
+ Half-precision floating-point number type.
161
+ """)
162
+
163
+ add_newdoc_for_scalar_type('single', [],
164
+ """
165
+ Single-precision floating-point number type, compatible with C ``float``.
166
+ """)
167
+
168
+ add_newdoc_for_scalar_type('double', ['float_'],
169
+ """
170
+ Double-precision floating-point number type, compatible with Python `float`
171
+ and C ``double``.
172
+ """)
173
+
174
+ add_newdoc_for_scalar_type('longdouble', ['longfloat'],
175
+ """
176
+ Extended-precision floating-point number type, compatible with C
177
+ ``long double`` but not necessarily with IEEE 754 quadruple-precision.
178
+ """)
179
+
180
+ add_newdoc_for_scalar_type('csingle', ['singlecomplex'],
181
+ """
182
+ Complex number type composed of two single-precision floating-point
183
+ numbers.
184
+ """)
185
+
186
+ add_newdoc_for_scalar_type('cdouble', ['cfloat', 'complex_'],
187
+ """
188
+ Complex number type composed of two double-precision floating-point
189
+ numbers, compatible with Python `complex`.
190
+ """)
191
+
192
+ add_newdoc_for_scalar_type('clongdouble', ['clongfloat', 'longcomplex'],
193
+ """
194
+ Complex number type composed of two extended-precision floating-point
195
+ numbers.
196
+ """)
197
+
198
+ add_newdoc_for_scalar_type('object_', [],
199
+ """
200
+ Any Python object.
201
+ """)
202
+
203
+ add_newdoc_for_scalar_type('str_', ['unicode_'],
204
+ r"""
205
+ A unicode string.
206
+
207
+ This type strips trailing null codepoints.
208
+
209
+ >>> s = np.str_("abc\x00")
210
+ >>> s
211
+ 'abc'
212
+
213
+ Unlike the builtin `str`, this supports the :ref:`python:bufferobjects`, exposing its
214
+ contents as UCS4:
215
+
216
+ >>> m = memoryview(np.str_("abc"))
217
+ >>> m.format
218
+ '3w'
219
+ >>> m.tobytes()
220
+ b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
221
+ """)
222
+
223
+ add_newdoc_for_scalar_type('bytes_', ['string_'],
224
+ r"""
225
+ A byte string.
226
+
227
+ When used in arrays, this type strips trailing null bytes.
228
+ """)
229
+
230
+ add_newdoc_for_scalar_type('void', [],
231
+ r"""
232
+ np.void(length_or_data, /, dtype=None)
233
+
234
+ Create a new structured or unstructured void scalar.
235
+
236
+ Parameters
237
+ ----------
238
+ length_or_data : int, array-like, bytes-like, object
239
+ One of multiple meanings (see notes). The length or
240
+ bytes data of an unstructured void. Or alternatively,
241
+ the data to be stored in the new scalar when `dtype`
242
+ is provided.
243
+ This can be an array-like, in which case an array may
244
+ be returned.
245
+ dtype : dtype, optional
246
+ If provided the dtype of the new scalar. This dtype must
247
+ be "void" dtype (i.e. a structured or unstructured void,
248
+ see also :ref:`defining-structured-types`).
249
+
250
+ ..versionadded:: 1.24
251
+
252
+ Notes
253
+ -----
254
+ For historical reasons and because void scalars can represent both
255
+ arbitrary byte data and structured dtypes, the void constructor
256
+ has three calling conventions:
257
+
258
+ 1. ``np.void(5)`` creates a ``dtype="V5"`` scalar filled with five
259
+ ``\0`` bytes. The 5 can be a Python or NumPy integer.
260
+ 2. ``np.void(b"bytes-like")`` creates a void scalar from the byte string.
261
+ The dtype itemsize will match the byte string length, here ``"V10"``.
262
+ 3. When a ``dtype=`` is passed the call is roughly the same as an
263
+ array creation. However, a void scalar rather than array is returned.
264
+
265
+ Please see the examples which show all three different conventions.
266
+
267
+ Examples
268
+ --------
269
+ >>> np.void(5)
270
+ void(b'\x00\x00\x00\x00\x00')
271
+ >>> np.void(b'abcd')
272
+ void(b'\x61\x62\x63\x64')
273
+ >>> np.void((5, 3.2, "eggs"), dtype="i,d,S5")
274
+ (5, 3.2, b'eggs') # looks like a tuple, but is `np.void`
275
+ >>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)])
276
+ (3, 3) # looks like a tuple, but is `np.void`
277
+
278
+ """)
279
+
280
+ add_newdoc_for_scalar_type('datetime64', [],
281
+ """
282
+ If created from a 64-bit integer, it represents an offset from
283
+ ``1970-01-01T00:00:00``.
284
+ If created from string, the string can be in ISO 8601 date
285
+ or datetime format.
286
+
287
+ >>> np.datetime64(10, 'Y')
288
+ numpy.datetime64('1980')
289
+ >>> np.datetime64('1980', 'Y')
290
+ numpy.datetime64('1980')
291
+ >>> np.datetime64(10, 'D')
292
+ numpy.datetime64('1970-01-11')
293
+
294
+ See :ref:`arrays.datetime` for more information.
295
+ """)
296
+
297
+ add_newdoc_for_scalar_type('timedelta64', [],
298
+ """
299
+ A timedelta stored as a 64-bit integer.
300
+
301
+ See :ref:`arrays.datetime` for more information.
302
+ """)
303
+
304
+ add_newdoc('numpy.core.numerictypes', "integer", ('is_integer',
305
+ """
306
+ integer.is_integer() -> bool
307
+
308
+ Return ``True`` if the number is finite with integral value.
309
+
310
+ .. versionadded:: 1.22
311
+
312
+ Examples
313
+ --------
314
+ >>> np.int64(-2).is_integer()
315
+ True
316
+ >>> np.uint32(5).is_integer()
317
+ True
318
+ """))
319
+
320
+ # TODO: work out how to put this on the base class, np.floating
321
+ for float_name in ('half', 'single', 'double', 'longdouble'):
322
+ add_newdoc('numpy.core.numerictypes', float_name, ('as_integer_ratio',
323
+ """
324
+ {ftype}.as_integer_ratio() -> (int, int)
325
+
326
+ Return a pair of integers, whose ratio is exactly equal to the original
327
+ floating point number, and with a positive denominator.
328
+ Raise `OverflowError` on infinities and a `ValueError` on NaNs.
329
+
330
+ >>> np.{ftype}(10.0).as_integer_ratio()
331
+ (10, 1)
332
+ >>> np.{ftype}(0.0).as_integer_ratio()
333
+ (0, 1)
334
+ >>> np.{ftype}(-.25).as_integer_ratio()
335
+ (-1, 4)
336
+ """.format(ftype=float_name)))
337
+
338
+ add_newdoc('numpy.core.numerictypes', float_name, ('is_integer',
339
+ f"""
340
+ {float_name}.is_integer() -> bool
341
+
342
+ Return ``True`` if the floating point number is finite with integral
343
+ value, and ``False`` otherwise.
344
+
345
+ .. versionadded:: 1.22
346
+
347
+ Examples
348
+ --------
349
+ >>> np.{float_name}(-2.0).is_integer()
350
+ True
351
+ >>> np.{float_name}(3.2).is_integer()
352
+ False
353
+ """))
354
+
355
+ for int_name in ('int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
356
+ 'int64', 'uint64', 'int64', 'uint64', 'int64', 'uint64'):
357
+ # Add negative examples for signed cases by checking typecode
358
+ add_newdoc('numpy.core.numerictypes', int_name, ('bit_count',
359
+ f"""
360
+ {int_name}.bit_count() -> int
361
+
362
+ Computes the number of 1-bits in the absolute value of the input.
363
+ Analogous to the builtin `int.bit_count` or ``popcount`` in C++.
364
+
365
+ Examples
366
+ --------
367
+ >>> np.{int_name}(127).bit_count()
368
+ 7""" +
369
+ (f"""
370
+ >>> np.{int_name}(-127).bit_count()
371
+ 7
372
+ """ if dtype(int_name).char.islower() else "")))
env-llmeval/lib/python3.10/site-packages/numpy/core/_asarray.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Functions in the ``as*array`` family that promote array-likes into arrays.
3
+
4
+ `require` fits this category despite its name not matching this pattern.
5
+ """
6
+ from .overrides import (
7
+ array_function_dispatch,
8
+ set_array_function_like_doc,
9
+ set_module,
10
+ )
11
+ from .multiarray import array, asanyarray
12
+
13
+
14
+ __all__ = ["require"]
15
+
16
+
17
+ POSSIBLE_FLAGS = {
18
+ 'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C',
19
+ 'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F',
20
+ 'A': 'A', 'ALIGNED': 'A',
21
+ 'W': 'W', 'WRITEABLE': 'W',
22
+ 'O': 'O', 'OWNDATA': 'O',
23
+ 'E': 'E', 'ENSUREARRAY': 'E'
24
+ }
25
+
26
+
27
+ @set_array_function_like_doc
28
+ @set_module('numpy')
29
+ def require(a, dtype=None, requirements=None, *, like=None):
30
+ """
31
+ Return an ndarray of the provided type that satisfies requirements.
32
+
33
+ This function is useful to be sure that an array with the correct flags
34
+ is returned for passing to compiled code (perhaps through ctypes).
35
+
36
+ Parameters
37
+ ----------
38
+ a : array_like
39
+ The object to be converted to a type-and-requirement-satisfying array.
40
+ dtype : data-type
41
+ The required data-type. If None preserve the current dtype. If your
42
+ application requires the data to be in native byteorder, include
43
+ a byteorder specification as a part of the dtype specification.
44
+ requirements : str or sequence of str
45
+ The requirements list can be any of the following
46
+
47
+ * 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
48
+ * 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
49
+ * 'ALIGNED' ('A') - ensure a data-type aligned array
50
+ * 'WRITEABLE' ('W') - ensure a writable array
51
+ * 'OWNDATA' ('O') - ensure an array that owns its own data
52
+ * 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass
53
+ ${ARRAY_FUNCTION_LIKE}
54
+
55
+ .. versionadded:: 1.20.0
56
+
57
+ Returns
58
+ -------
59
+ out : ndarray
60
+ Array with specified requirements and type if given.
61
+
62
+ See Also
63
+ --------
64
+ asarray : Convert input to an ndarray.
65
+ asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
66
+ ascontiguousarray : Convert input to a contiguous array.
67
+ asfortranarray : Convert input to an ndarray with column-major
68
+ memory order.
69
+ ndarray.flags : Information about the memory layout of the array.
70
+
71
+ Notes
72
+ -----
73
+ The returned array will be guaranteed to have the listed requirements
74
+ by making a copy if needed.
75
+
76
+ Examples
77
+ --------
78
+ >>> x = np.arange(6).reshape(2,3)
79
+ >>> x.flags
80
+ C_CONTIGUOUS : True
81
+ F_CONTIGUOUS : False
82
+ OWNDATA : False
83
+ WRITEABLE : True
84
+ ALIGNED : True
85
+ WRITEBACKIFCOPY : False
86
+
87
+ >>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
88
+ >>> y.flags
89
+ C_CONTIGUOUS : False
90
+ F_CONTIGUOUS : True
91
+ OWNDATA : True
92
+ WRITEABLE : True
93
+ ALIGNED : True
94
+ WRITEBACKIFCOPY : False
95
+
96
+ """
97
+ if like is not None:
98
+ return _require_with_like(
99
+ like,
100
+ a,
101
+ dtype=dtype,
102
+ requirements=requirements,
103
+ )
104
+
105
+ if not requirements:
106
+ return asanyarray(a, dtype=dtype)
107
+
108
+ requirements = {POSSIBLE_FLAGS[x.upper()] for x in requirements}
109
+
110
+ if 'E' in requirements:
111
+ requirements.remove('E')
112
+ subok = False
113
+ else:
114
+ subok = True
115
+
116
+ order = 'A'
117
+ if requirements >= {'C', 'F'}:
118
+ raise ValueError('Cannot specify both "C" and "F" order')
119
+ elif 'F' in requirements:
120
+ order = 'F'
121
+ requirements.remove('F')
122
+ elif 'C' in requirements:
123
+ order = 'C'
124
+ requirements.remove('C')
125
+
126
+ arr = array(a, dtype=dtype, order=order, copy=False, subok=subok)
127
+
128
+ for prop in requirements:
129
+ if not arr.flags[prop]:
130
+ return arr.copy(order)
131
+ return arr
132
+
133
+
134
+ _require_with_like = array_function_dispatch()(require)
env-llmeval/lib/python3.10/site-packages/numpy/core/_exceptions.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Various richly-typed exceptions, that also help us deal with string formatting
3
+ in python where it's easier.
4
+
5
+ By putting the formatting in `__str__`, we also avoid paying the cost for
6
+ users who silence the exceptions.
7
+ """
8
+ from .._utils import set_module
9
+
10
+ def _unpack_tuple(tup):
11
+ if len(tup) == 1:
12
+ return tup[0]
13
+ else:
14
+ return tup
15
+
16
+
17
+ def _display_as_base(cls):
18
+ """
19
+ A decorator that makes an exception class look like its base.
20
+
21
+ We use this to hide subclasses that are implementation details - the user
22
+ should catch the base type, which is what the traceback will show them.
23
+
24
+ Classes decorated with this decorator are subject to removal without a
25
+ deprecation warning.
26
+ """
27
+ assert issubclass(cls, Exception)
28
+ cls.__name__ = cls.__base__.__name__
29
+ return cls
30
+
31
+
32
+ class UFuncTypeError(TypeError):
33
+ """ Base class for all ufunc exceptions """
34
+ def __init__(self, ufunc):
35
+ self.ufunc = ufunc
36
+
37
+
38
+ @_display_as_base
39
+ class _UFuncNoLoopError(UFuncTypeError):
40
+ """ Thrown when a ufunc loop cannot be found """
41
+ def __init__(self, ufunc, dtypes):
42
+ super().__init__(ufunc)
43
+ self.dtypes = tuple(dtypes)
44
+
45
+ def __str__(self):
46
+ return (
47
+ "ufunc {!r} did not contain a loop with signature matching types "
48
+ "{!r} -> {!r}"
49
+ ).format(
50
+ self.ufunc.__name__,
51
+ _unpack_tuple(self.dtypes[:self.ufunc.nin]),
52
+ _unpack_tuple(self.dtypes[self.ufunc.nin:])
53
+ )
54
+
55
+
56
+ @_display_as_base
57
+ class _UFuncBinaryResolutionError(_UFuncNoLoopError):
58
+ """ Thrown when a binary resolution fails """
59
+ def __init__(self, ufunc, dtypes):
60
+ super().__init__(ufunc, dtypes)
61
+ assert len(self.dtypes) == 2
62
+
63
+ def __str__(self):
64
+ return (
65
+ "ufunc {!r} cannot use operands with types {!r} and {!r}"
66
+ ).format(
67
+ self.ufunc.__name__, *self.dtypes
68
+ )
69
+
70
+
71
+ @_display_as_base
72
+ class _UFuncCastingError(UFuncTypeError):
73
+ def __init__(self, ufunc, casting, from_, to):
74
+ super().__init__(ufunc)
75
+ self.casting = casting
76
+ self.from_ = from_
77
+ self.to = to
78
+
79
+
80
+ @_display_as_base
81
+ class _UFuncInputCastingError(_UFuncCastingError):
82
+ """ Thrown when a ufunc input cannot be casted """
83
+ def __init__(self, ufunc, casting, from_, to, i):
84
+ super().__init__(ufunc, casting, from_, to)
85
+ self.in_i = i
86
+
87
+ def __str__(self):
88
+ # only show the number if more than one input exists
89
+ i_str = "{} ".format(self.in_i) if self.ufunc.nin != 1 else ""
90
+ return (
91
+ "Cannot cast ufunc {!r} input {}from {!r} to {!r} with casting "
92
+ "rule {!r}"
93
+ ).format(
94
+ self.ufunc.__name__, i_str, self.from_, self.to, self.casting
95
+ )
96
+
97
+
98
+ @_display_as_base
99
+ class _UFuncOutputCastingError(_UFuncCastingError):
100
+ """ Thrown when a ufunc output cannot be casted """
101
+ def __init__(self, ufunc, casting, from_, to, i):
102
+ super().__init__(ufunc, casting, from_, to)
103
+ self.out_i = i
104
+
105
+ def __str__(self):
106
+ # only show the number if more than one output exists
107
+ i_str = "{} ".format(self.out_i) if self.ufunc.nout != 1 else ""
108
+ return (
109
+ "Cannot cast ufunc {!r} output {}from {!r} to {!r} with casting "
110
+ "rule {!r}"
111
+ ).format(
112
+ self.ufunc.__name__, i_str, self.from_, self.to, self.casting
113
+ )
114
+
115
+
116
+ @_display_as_base
117
+ class _ArrayMemoryError(MemoryError):
118
+ """ Thrown when an array cannot be allocated"""
119
+ def __init__(self, shape, dtype):
120
+ self.shape = shape
121
+ self.dtype = dtype
122
+
123
+ @property
124
+ def _total_size(self):
125
+ num_bytes = self.dtype.itemsize
126
+ for dim in self.shape:
127
+ num_bytes *= dim
128
+ return num_bytes
129
+
130
+ @staticmethod
131
+ def _size_to_string(num_bytes):
132
+ """ Convert a number of bytes into a binary size string """
133
+
134
+ # https://en.wikipedia.org/wiki/Binary_prefix
135
+ LOG2_STEP = 10
136
+ STEP = 1024
137
+ units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
138
+
139
+ unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
140
+ unit_val = 1 << (unit_i * LOG2_STEP)
141
+ n_units = num_bytes / unit_val
142
+ del unit_val
143
+
144
+ # ensure we pick a unit that is correct after rounding
145
+ if round(n_units) == STEP:
146
+ unit_i += 1
147
+ n_units /= STEP
148
+
149
+ # deal with sizes so large that we don't have units for them
150
+ if unit_i >= len(units):
151
+ new_unit_i = len(units) - 1
152
+ n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
153
+ unit_i = new_unit_i
154
+
155
+ unit_name = units[unit_i]
156
+ # format with a sensible number of digits
157
+ if unit_i == 0:
158
+ # no decimal point on bytes
159
+ return '{:.0f} {}'.format(n_units, unit_name)
160
+ elif round(n_units) < 1000:
161
+ # 3 significant figures, if none are dropped to the left of the .
162
+ return '{:#.3g} {}'.format(n_units, unit_name)
163
+ else:
164
+ # just give all the digits otherwise
165
+ return '{:#.0f} {}'.format(n_units, unit_name)
166
+
167
+ def __str__(self):
168
+ size_str = self._size_to_string(self._total_size)
169
+ return (
170
+ "Unable to allocate {} for an array with shape {} and data type {}"
171
+ .format(size_str, self.shape, self.dtype)
172
+ )
env-llmeval/lib/python3.10/site-packages/numpy/core/_machar.py ADDED
@@ -0,0 +1,356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Machine arithmetic - determine the parameters of the
3
+ floating-point arithmetic system
4
+
5
+ Author: Pearu Peterson, September 2003
6
+
7
+ """
8
+ __all__ = ['MachAr']
9
+
10
+ from .fromnumeric import any
11
+ from ._ufunc_config import errstate
12
+ from .._utils import set_module
13
+
14
+ # Need to speed this up...especially for longfloat
15
+
16
+ # Deprecated 2021-10-20, NumPy 1.22
17
+ class MachAr:
18
+ """
19
+ Diagnosing machine parameters.
20
+
21
+ Attributes
22
+ ----------
23
+ ibeta : int
24
+ Radix in which numbers are represented.
25
+ it : int
26
+ Number of base-`ibeta` digits in the floating point mantissa M.
27
+ machep : int
28
+ Exponent of the smallest (most negative) power of `ibeta` that,
29
+ added to 1.0, gives something different from 1.0
30
+ eps : float
31
+ Floating-point number ``beta**machep`` (floating point precision)
32
+ negep : int
33
+ Exponent of the smallest power of `ibeta` that, subtracted
34
+ from 1.0, gives something different from 1.0.
35
+ epsneg : float
36
+ Floating-point number ``beta**negep``.
37
+ iexp : int
38
+ Number of bits in the exponent (including its sign and bias).
39
+ minexp : int
40
+ Smallest (most negative) power of `ibeta` consistent with there
41
+ being no leading zeros in the mantissa.
42
+ xmin : float
43
+ Floating-point number ``beta**minexp`` (the smallest [in
44
+ magnitude] positive floating point number with full precision).
45
+ maxexp : int
46
+ Smallest (positive) power of `ibeta` that causes overflow.
47
+ xmax : float
48
+ ``(1-epsneg) * beta**maxexp`` (the largest [in magnitude]
49
+ usable floating value).
50
+ irnd : int
51
+ In ``range(6)``, information on what kind of rounding is done
52
+ in addition, and on how underflow is handled.
53
+ ngrd : int
54
+ Number of 'guard digits' used when truncating the product
55
+ of two mantissas to fit the representation.
56
+ epsilon : float
57
+ Same as `eps`.
58
+ tiny : float
59
+ An alias for `smallest_normal`, kept for backwards compatibility.
60
+ huge : float
61
+ Same as `xmax`.
62
+ precision : float
63
+ ``- int(-log10(eps))``
64
+ resolution : float
65
+ ``- 10**(-precision)``
66
+ smallest_normal : float
67
+ The smallest positive floating point number with 1 as leading bit in
68
+ the mantissa following IEEE-754. Same as `xmin`.
69
+ smallest_subnormal : float
70
+ The smallest positive floating point number with 0 as leading bit in
71
+ the mantissa following IEEE-754.
72
+
73
+ Parameters
74
+ ----------
75
+ float_conv : function, optional
76
+ Function that converts an integer or integer array to a float
77
+ or float array. Default is `float`.
78
+ int_conv : function, optional
79
+ Function that converts a float or float array to an integer or
80
+ integer array. Default is `int`.
81
+ float_to_float : function, optional
82
+ Function that converts a float array to float. Default is `float`.
83
+ Note that this does not seem to do anything useful in the current
84
+ implementation.
85
+ float_to_str : function, optional
86
+ Function that converts a single float to a string. Default is
87
+ ``lambda v:'%24.16e' %v``.
88
+ title : str, optional
89
+ Title that is printed in the string representation of `MachAr`.
90
+
91
+ See Also
92
+ --------
93
+ finfo : Machine limits for floating point types.
94
+ iinfo : Machine limits for integer types.
95
+
96
+ References
97
+ ----------
98
+ .. [1] Press, Teukolsky, Vetterling and Flannery,
99
+ "Numerical Recipes in C++," 2nd ed,
100
+ Cambridge University Press, 2002, p. 31.
101
+
102
+ """
103
+
104
+ def __init__(self, float_conv=float,int_conv=int,
105
+ float_to_float=float,
106
+ float_to_str=lambda v:'%24.16e' % v,
107
+ title='Python floating point number'):
108
+ """
109
+
110
+ float_conv - convert integer to float (array)
111
+ int_conv - convert float (array) to integer
112
+ float_to_float - convert float array to float
113
+ float_to_str - convert array float to str
114
+ title - description of used floating point numbers
115
+
116
+ """
117
+ # We ignore all errors here because we are purposely triggering
118
+ # underflow to detect the properties of the runninng arch.
119
+ with errstate(under='ignore'):
120
+ self._do_init(float_conv, int_conv, float_to_float, float_to_str, title)
121
+
122
+ def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title):
123
+ max_iterN = 10000
124
+ msg = "Did not converge after %d tries with %s"
125
+ one = float_conv(1)
126
+ two = one + one
127
+ zero = one - one
128
+
129
+ # Do we really need to do this? Aren't they 2 and 2.0?
130
+ # Determine ibeta and beta
131
+ a = one
132
+ for _ in range(max_iterN):
133
+ a = a + a
134
+ temp = a + one
135
+ temp1 = temp - a
136
+ if any(temp1 - one != zero):
137
+ break
138
+ else:
139
+ raise RuntimeError(msg % (_, one.dtype))
140
+ b = one
141
+ for _ in range(max_iterN):
142
+ b = b + b
143
+ temp = a + b
144
+ itemp = int_conv(temp-a)
145
+ if any(itemp != 0):
146
+ break
147
+ else:
148
+ raise RuntimeError(msg % (_, one.dtype))
149
+ ibeta = itemp
150
+ beta = float_conv(ibeta)
151
+
152
+ # Determine it and irnd
153
+ it = -1
154
+ b = one
155
+ for _ in range(max_iterN):
156
+ it = it + 1
157
+ b = b * beta
158
+ temp = b + one
159
+ temp1 = temp - b
160
+ if any(temp1 - one != zero):
161
+ break
162
+ else:
163
+ raise RuntimeError(msg % (_, one.dtype))
164
+
165
+ betah = beta / two
166
+ a = one
167
+ for _ in range(max_iterN):
168
+ a = a + a
169
+ temp = a + one
170
+ temp1 = temp - a
171
+ if any(temp1 - one != zero):
172
+ break
173
+ else:
174
+ raise RuntimeError(msg % (_, one.dtype))
175
+ temp = a + betah
176
+ irnd = 0
177
+ if any(temp-a != zero):
178
+ irnd = 1
179
+ tempa = a + beta
180
+ temp = tempa + betah
181
+ if irnd == 0 and any(temp-tempa != zero):
182
+ irnd = 2
183
+
184
+ # Determine negep and epsneg
185
+ negep = it + 3
186
+ betain = one / beta
187
+ a = one
188
+ for i in range(negep):
189
+ a = a * betain
190
+ b = a
191
+ for _ in range(max_iterN):
192
+ temp = one - a
193
+ if any(temp-one != zero):
194
+ break
195
+ a = a * beta
196
+ negep = negep - 1
197
+ # Prevent infinite loop on PPC with gcc 4.0:
198
+ if negep < 0:
199
+ raise RuntimeError("could not determine machine tolerance "
200
+ "for 'negep', locals() -> %s" % (locals()))
201
+ else:
202
+ raise RuntimeError(msg % (_, one.dtype))
203
+ negep = -negep
204
+ epsneg = a
205
+
206
+ # Determine machep and eps
207
+ machep = - it - 3
208
+ a = b
209
+
210
+ for _ in range(max_iterN):
211
+ temp = one + a
212
+ if any(temp-one != zero):
213
+ break
214
+ a = a * beta
215
+ machep = machep + 1
216
+ else:
217
+ raise RuntimeError(msg % (_, one.dtype))
218
+ eps = a
219
+
220
+ # Determine ngrd
221
+ ngrd = 0
222
+ temp = one + eps
223
+ if irnd == 0 and any(temp*one - one != zero):
224
+ ngrd = 1
225
+
226
+ # Determine iexp
227
+ i = 0
228
+ k = 1
229
+ z = betain
230
+ t = one + eps
231
+ nxres = 0
232
+ for _ in range(max_iterN):
233
+ y = z
234
+ z = y*y
235
+ a = z*one # Check here for underflow
236
+ temp = z*t
237
+ if any(a+a == zero) or any(abs(z) >= y):
238
+ break
239
+ temp1 = temp * betain
240
+ if any(temp1*beta == z):
241
+ break
242
+ i = i + 1
243
+ k = k + k
244
+ else:
245
+ raise RuntimeError(msg % (_, one.dtype))
246
+ if ibeta != 10:
247
+ iexp = i + 1
248
+ mx = k + k
249
+ else:
250
+ iexp = 2
251
+ iz = ibeta
252
+ while k >= iz:
253
+ iz = iz * ibeta
254
+ iexp = iexp + 1
255
+ mx = iz + iz - 1
256
+
257
+ # Determine minexp and xmin
258
+ for _ in range(max_iterN):
259
+ xmin = y
260
+ y = y * betain
261
+ a = y * one
262
+ temp = y * t
263
+ if any((a + a) != zero) and any(abs(y) < xmin):
264
+ k = k + 1
265
+ temp1 = temp * betain
266
+ if any(temp1*beta == y) and any(temp != y):
267
+ nxres = 3
268
+ xmin = y
269
+ break
270
+ else:
271
+ break
272
+ else:
273
+ raise RuntimeError(msg % (_, one.dtype))
274
+ minexp = -k
275
+
276
+ # Determine maxexp, xmax
277
+ if mx <= k + k - 3 and ibeta != 10:
278
+ mx = mx + mx
279
+ iexp = iexp + 1
280
+ maxexp = mx + minexp
281
+ irnd = irnd + nxres
282
+ if irnd >= 2:
283
+ maxexp = maxexp - 2
284
+ i = maxexp + minexp
285
+ if ibeta == 2 and not i:
286
+ maxexp = maxexp - 1
287
+ if i > 20:
288
+ maxexp = maxexp - 1
289
+ if any(a != y):
290
+ maxexp = maxexp - 2
291
+ xmax = one - epsneg
292
+ if any(xmax*one != xmax):
293
+ xmax = one - beta*epsneg
294
+ xmax = xmax / (xmin*beta*beta*beta)
295
+ i = maxexp + minexp + 3
296
+ for j in range(i):
297
+ if ibeta == 2:
298
+ xmax = xmax + xmax
299
+ else:
300
+ xmax = xmax * beta
301
+
302
+ smallest_subnormal = abs(xmin / beta ** (it))
303
+
304
+ self.ibeta = ibeta
305
+ self.it = it
306
+ self.negep = negep
307
+ self.epsneg = float_to_float(epsneg)
308
+ self._str_epsneg = float_to_str(epsneg)
309
+ self.machep = machep
310
+ self.eps = float_to_float(eps)
311
+ self._str_eps = float_to_str(eps)
312
+ self.ngrd = ngrd
313
+ self.iexp = iexp
314
+ self.minexp = minexp
315
+ self.xmin = float_to_float(xmin)
316
+ self._str_xmin = float_to_str(xmin)
317
+ self.maxexp = maxexp
318
+ self.xmax = float_to_float(xmax)
319
+ self._str_xmax = float_to_str(xmax)
320
+ self.irnd = irnd
321
+
322
+ self.title = title
323
+ # Commonly used parameters
324
+ self.epsilon = self.eps
325
+ self.tiny = self.xmin
326
+ self.huge = self.xmax
327
+ self.smallest_normal = self.xmin
328
+ self._str_smallest_normal = float_to_str(self.xmin)
329
+ self.smallest_subnormal = float_to_float(smallest_subnormal)
330
+ self._str_smallest_subnormal = float_to_str(smallest_subnormal)
331
+
332
+ import math
333
+ self.precision = int(-math.log10(float_to_float(self.eps)))
334
+ ten = two + two + two + two + two
335
+ resolution = ten ** (-self.precision)
336
+ self.resolution = float_to_float(resolution)
337
+ self._str_resolution = float_to_str(resolution)
338
+
339
+ def __str__(self):
340
+ fmt = (
341
+ 'Machine parameters for %(title)s\n'
342
+ '---------------------------------------------------------------------\n'
343
+ 'ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s\n'
344
+ 'machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)\n'
345
+ 'negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)\n'
346
+ 'minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)\n'
347
+ 'maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)\n'
348
+ 'smallest_normal=%(smallest_normal)s '
349
+ 'smallest_subnormal=%(smallest_subnormal)s\n'
350
+ '---------------------------------------------------------------------\n'
351
+ )
352
+ return fmt % self.__dict__
353
+
354
+
355
+ if __name__ == '__main__':
356
+ print(MachAr())
env-llmeval/lib/python3.10/site-packages/numpy/core/_operand_flag_tests.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (16.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/_rational_tests.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (59.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/core/_string_helpers.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ String-handling utilities to avoid locale-dependence.
3
+
4
+ Used primarily to generate type name aliases.
5
+ """
6
+ # "import string" is costly to import!
7
+ # Construct the translation tables directly
8
+ # "A" = chr(65), "a" = chr(97)
9
+ _all_chars = tuple(map(chr, range(256)))
10
+ _ascii_upper = _all_chars[65:65+26]
11
+ _ascii_lower = _all_chars[97:97+26]
12
+ LOWER_TABLE = "".join(_all_chars[:65] + _ascii_lower + _all_chars[65+26:])
13
+ UPPER_TABLE = "".join(_all_chars[:97] + _ascii_upper + _all_chars[97+26:])
14
+
15
+
16
+ def english_lower(s):
17
+ """ Apply English case rules to convert ASCII strings to all lower case.
18
+
19
+ This is an internal utility function to replace calls to str.lower() such
20
+ that we can avoid changing behavior with changing locales. In particular,
21
+ Turkish has distinct dotted and dotless variants of the Latin letter "I" in
22
+ both lowercase and uppercase. Thus, "I".lower() != "i" in a "tr" locale.
23
+
24
+ Parameters
25
+ ----------
26
+ s : str
27
+
28
+ Returns
29
+ -------
30
+ lowered : str
31
+
32
+ Examples
33
+ --------
34
+ >>> from numpy.core.numerictypes import english_lower
35
+ >>> english_lower('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
36
+ 'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789_'
37
+ >>> english_lower('')
38
+ ''
39
+ """
40
+ lowered = s.translate(LOWER_TABLE)
41
+ return lowered
42
+
43
+
44
+ def english_upper(s):
45
+ """ Apply English case rules to convert ASCII strings to all upper case.
46
+
47
+ This is an internal utility function to replace calls to str.upper() such
48
+ that we can avoid changing behavior with changing locales. In particular,
49
+ Turkish has distinct dotted and dotless variants of the Latin letter "I" in
50
+ both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale.
51
+
52
+ Parameters
53
+ ----------
54
+ s : str
55
+
56
+ Returns
57
+ -------
58
+ uppered : str
59
+
60
+ Examples
61
+ --------
62
+ >>> from numpy.core.numerictypes import english_upper
63
+ >>> english_upper('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
64
+ 'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'
65
+ >>> english_upper('')
66
+ ''
67
+ """
68
+ uppered = s.translate(UPPER_TABLE)
69
+ return uppered
70
+
71
+
72
+ def english_capitalize(s):
73
+ """ Apply English case rules to convert the first character of an ASCII
74
+ string to upper case.
75
+
76
+ This is an internal utility function to replace calls to str.capitalize()
77
+ such that we can avoid changing behavior with changing locales.
78
+
79
+ Parameters
80
+ ----------
81
+ s : str
82
+
83
+ Returns
84
+ -------
85
+ capitalized : str
86
+
87
+ Examples
88
+ --------
89
+ >>> from numpy.core.numerictypes import english_capitalize
90
+ >>> english_capitalize('int8')
91
+ 'Int8'
92
+ >>> english_capitalize('Int8')
93
+ 'Int8'
94
+ >>> english_capitalize('')
95
+ ''
96
+ """
97
+ if s:
98
+ return english_upper(s[0]) + s[1:]
99
+ else:
100
+ return s
env-llmeval/lib/python3.10/site-packages/numpy/core/_ufunc_config.pyi ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Callable
2
+ from typing import Any, Literal, TypedDict
3
+
4
+ from numpy import _SupportsWrite
5
+
6
+ _ErrKind = Literal["ignore", "warn", "raise", "call", "print", "log"]
7
+ _ErrFunc = Callable[[str, int], Any]
8
+
9
+ class _ErrDict(TypedDict):
10
+ divide: _ErrKind
11
+ over: _ErrKind
12
+ under: _ErrKind
13
+ invalid: _ErrKind
14
+
15
+ class _ErrDictOptional(TypedDict, total=False):
16
+ all: None | _ErrKind
17
+ divide: None | _ErrKind
18
+ over: None | _ErrKind
19
+ under: None | _ErrKind
20
+ invalid: None | _ErrKind
21
+
22
+ def seterr(
23
+ all: None | _ErrKind = ...,
24
+ divide: None | _ErrKind = ...,
25
+ over: None | _ErrKind = ...,
26
+ under: None | _ErrKind = ...,
27
+ invalid: None | _ErrKind = ...,
28
+ ) -> _ErrDict: ...
29
+ def geterr() -> _ErrDict: ...
30
+ def setbufsize(size: int) -> int: ...
31
+ def getbufsize() -> int: ...
32
+ def seterrcall(
33
+ func: None | _ErrFunc | _SupportsWrite[str]
34
+ ) -> None | _ErrFunc | _SupportsWrite[str]: ...
35
+ def geterrcall() -> None | _ErrFunc | _SupportsWrite[str]: ...
36
+
37
+ # See `numpy/__init__.pyi` for the `errstate` class and `no_nep5_warnings`
env-llmeval/lib/python3.10/site-packages/numpy/core/arrayprint.py ADDED
@@ -0,0 +1,1725 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Array printing function
2
+
3
+ $Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $
4
+
5
+ """
6
+ __all__ = ["array2string", "array_str", "array_repr", "set_string_function",
7
+ "set_printoptions", "get_printoptions", "printoptions",
8
+ "format_float_positional", "format_float_scientific"]
9
+ __docformat__ = 'restructuredtext'
10
+
11
+ #
12
+ # Written by Konrad Hinsen <[email protected]>
13
+ # last revision: 1996-3-13
14
+ # modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details)
15
+ # and by Perry Greenfield 2000-4-1 for numarray
16
+ # and by Travis Oliphant 2005-8-22 for numpy
17
+
18
+
19
+ # Note: Both scalartypes.c.src and arrayprint.py implement strs for numpy
20
+ # scalars but for different purposes. scalartypes.c.src has str/reprs for when
21
+ # the scalar is printed on its own, while arrayprint.py has strs for when
22
+ # scalars are printed inside an ndarray. Only the latter strs are currently
23
+ # user-customizable.
24
+
25
+ import functools
26
+ import numbers
27
+ import sys
28
+ try:
29
+ from _thread import get_ident
30
+ except ImportError:
31
+ from _dummy_thread import get_ident
32
+
33
+ import numpy as np
34
+ from . import numerictypes as _nt
35
+ from .umath import absolute, isinf, isfinite, isnat
36
+ from . import multiarray
37
+ from .multiarray import (array, dragon4_positional, dragon4_scientific,
38
+ datetime_as_string, datetime_data, ndarray,
39
+ set_legacy_print_mode)
40
+ from .fromnumeric import any
41
+ from .numeric import concatenate, asarray, errstate
42
+ from .numerictypes import (longlong, intc, int_, float_, complex_, bool_,
43
+ flexible)
44
+ from .overrides import array_function_dispatch, set_module
45
+ import operator
46
+ import warnings
47
+ import contextlib
48
+
49
+ _format_options = {
50
+ 'edgeitems': 3, # repr N leading and trailing items of each dimension
51
+ 'threshold': 1000, # total items > triggers array summarization
52
+ 'floatmode': 'maxprec',
53
+ 'precision': 8, # precision of floating point representations
54
+ 'suppress': False, # suppress printing small floating values in exp format
55
+ 'linewidth': 75,
56
+ 'nanstr': 'nan',
57
+ 'infstr': 'inf',
58
+ 'sign': '-',
59
+ 'formatter': None,
60
+ # Internally stored as an int to simplify comparisons; converted from/to
61
+ # str/False on the way in/out.
62
+ 'legacy': sys.maxsize}
63
+
64
+ def _make_options_dict(precision=None, threshold=None, edgeitems=None,
65
+ linewidth=None, suppress=None, nanstr=None, infstr=None,
66
+ sign=None, formatter=None, floatmode=None, legacy=None):
67
+ """
68
+ Make a dictionary out of the non-None arguments, plus conversion of
69
+ *legacy* and sanity checks.
70
+ """
71
+
72
+ options = {k: v for k, v in locals().items() if v is not None}
73
+
74
+ if suppress is not None:
75
+ options['suppress'] = bool(suppress)
76
+
77
+ modes = ['fixed', 'unique', 'maxprec', 'maxprec_equal']
78
+ if floatmode not in modes + [None]:
79
+ raise ValueError("floatmode option must be one of " +
80
+ ", ".join('"{}"'.format(m) for m in modes))
81
+
82
+ if sign not in [None, '-', '+', ' ']:
83
+ raise ValueError("sign option must be one of ' ', '+', or '-'")
84
+
85
+ if legacy == False:
86
+ options['legacy'] = sys.maxsize
87
+ elif legacy == '1.13':
88
+ options['legacy'] = 113
89
+ elif legacy == '1.21':
90
+ options['legacy'] = 121
91
+ elif legacy is None:
92
+ pass # OK, do nothing.
93
+ else:
94
+ warnings.warn(
95
+ "legacy printing option can currently only be '1.13', '1.21', or "
96
+ "`False`", stacklevel=3)
97
+
98
+ if threshold is not None:
99
+ # forbid the bad threshold arg suggested by stack overflow, gh-12351
100
+ if not isinstance(threshold, numbers.Number):
101
+ raise TypeError("threshold must be numeric")
102
+ if np.isnan(threshold):
103
+ raise ValueError("threshold must be non-NAN, try "
104
+ "sys.maxsize for untruncated representation")
105
+
106
+ if precision is not None:
107
+ # forbid the bad precision arg as suggested by issue #18254
108
+ try:
109
+ options['precision'] = operator.index(precision)
110
+ except TypeError as e:
111
+ raise TypeError('precision must be an integer') from e
112
+
113
+ return options
114
+
115
+
116
+ @set_module('numpy')
117
+ def set_printoptions(precision=None, threshold=None, edgeitems=None,
118
+ linewidth=None, suppress=None, nanstr=None, infstr=None,
119
+ formatter=None, sign=None, floatmode=None, *, legacy=None):
120
+ """
121
+ Set printing options.
122
+
123
+ These options determine the way floating point numbers, arrays and
124
+ other NumPy objects are displayed.
125
+
126
+ Parameters
127
+ ----------
128
+ precision : int or None, optional
129
+ Number of digits of precision for floating point output (default 8).
130
+ May be None if `floatmode` is not `fixed`, to print as many digits as
131
+ necessary to uniquely specify the value.
132
+ threshold : int, optional
133
+ Total number of array elements which trigger summarization
134
+ rather than full repr (default 1000).
135
+ To always use the full repr without summarization, pass `sys.maxsize`.
136
+ edgeitems : int, optional
137
+ Number of array items in summary at beginning and end of
138
+ each dimension (default 3).
139
+ linewidth : int, optional
140
+ The number of characters per line for the purpose of inserting
141
+ line breaks (default 75).
142
+ suppress : bool, optional
143
+ If True, always print floating point numbers using fixed point
144
+ notation, in which case numbers equal to zero in the current precision
145
+ will print as zero. If False, then scientific notation is used when
146
+ absolute value of the smallest number is < 1e-4 or the ratio of the
147
+ maximum absolute value to the minimum is > 1e3. The default is False.
148
+ nanstr : str, optional
149
+ String representation of floating point not-a-number (default nan).
150
+ infstr : str, optional
151
+ String representation of floating point infinity (default inf).
152
+ sign : string, either '-', '+', or ' ', optional
153
+ Controls printing of the sign of floating-point types. If '+', always
154
+ print the sign of positive values. If ' ', always prints a space
155
+ (whitespace character) in the sign position of positive values. If
156
+ '-', omit the sign character of positive values. (default '-')
157
+ formatter : dict of callables, optional
158
+ If not None, the keys should indicate the type(s) that the respective
159
+ formatting function applies to. Callables should return a string.
160
+ Types that are not specified (by their corresponding keys) are handled
161
+ by the default formatters. Individual types for which a formatter
162
+ can be set are:
163
+
164
+ - 'bool'
165
+ - 'int'
166
+ - 'timedelta' : a `numpy.timedelta64`
167
+ - 'datetime' : a `numpy.datetime64`
168
+ - 'float'
169
+ - 'longfloat' : 128-bit floats
170
+ - 'complexfloat'
171
+ - 'longcomplexfloat' : composed of two 128-bit floats
172
+ - 'numpystr' : types `numpy.bytes_` and `numpy.str_`
173
+ - 'object' : `np.object_` arrays
174
+
175
+ Other keys that can be used to set a group of types at once are:
176
+
177
+ - 'all' : sets all types
178
+ - 'int_kind' : sets 'int'
179
+ - 'float_kind' : sets 'float' and 'longfloat'
180
+ - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
181
+ - 'str_kind' : sets 'numpystr'
182
+ floatmode : str, optional
183
+ Controls the interpretation of the `precision` option for
184
+ floating-point types. Can take the following values
185
+ (default maxprec_equal):
186
+
187
+ * 'fixed': Always print exactly `precision` fractional digits,
188
+ even if this would print more or fewer digits than
189
+ necessary to specify the value uniquely.
190
+ * 'unique': Print the minimum number of fractional digits necessary
191
+ to represent each value uniquely. Different elements may
192
+ have a different number of digits. The value of the
193
+ `precision` option is ignored.
194
+ * 'maxprec': Print at most `precision` fractional digits, but if
195
+ an element can be uniquely represented with fewer digits
196
+ only print it with that many.
197
+ * 'maxprec_equal': Print at most `precision` fractional digits,
198
+ but if every element in the array can be uniquely
199
+ represented with an equal number of fewer digits, use that
200
+ many digits for all elements.
201
+ legacy : string or `False`, optional
202
+ If set to the string `'1.13'` enables 1.13 legacy printing mode. This
203
+ approximates numpy 1.13 print output by including a space in the sign
204
+ position of floats and different behavior for 0d arrays. This also
205
+ enables 1.21 legacy printing mode (described below).
206
+
207
+ If set to the string `'1.21'` enables 1.21 legacy printing mode. This
208
+ approximates numpy 1.21 print output of complex structured dtypes
209
+ by not inserting spaces after commas that separate fields and after
210
+ colons.
211
+
212
+ If set to `False`, disables legacy mode.
213
+
214
+ Unrecognized strings will be ignored with a warning for forward
215
+ compatibility.
216
+
217
+ .. versionadded:: 1.14.0
218
+ .. versionchanged:: 1.22.0
219
+
220
+ See Also
221
+ --------
222
+ get_printoptions, printoptions, set_string_function, array2string
223
+
224
+ Notes
225
+ -----
226
+ `formatter` is always reset with a call to `set_printoptions`.
227
+
228
+ Use `printoptions` as a context manager to set the values temporarily.
229
+
230
+ Examples
231
+ --------
232
+ Floating point precision can be set:
233
+
234
+ >>> np.set_printoptions(precision=4)
235
+ >>> np.array([1.123456789])
236
+ [1.1235]
237
+
238
+ Long arrays can be summarised:
239
+
240
+ >>> np.set_printoptions(threshold=5)
241
+ >>> np.arange(10)
242
+ array([0, 1, 2, ..., 7, 8, 9])
243
+
244
+ Small results can be suppressed:
245
+
246
+ >>> eps = np.finfo(float).eps
247
+ >>> x = np.arange(4.)
248
+ >>> x**2 - (x + eps)**2
249
+ array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
250
+ >>> np.set_printoptions(suppress=True)
251
+ >>> x**2 - (x + eps)**2
252
+ array([-0., -0., 0., 0.])
253
+
254
+ A custom formatter can be used to display array elements as desired:
255
+
256
+ >>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
257
+ >>> x = np.arange(3)
258
+ >>> x
259
+ array([int: 0, int: -1, int: -2])
260
+ >>> np.set_printoptions() # formatter gets reset
261
+ >>> x
262
+ array([0, 1, 2])
263
+
264
+ To put back the default options, you can use:
265
+
266
+ >>> np.set_printoptions(edgeitems=3, infstr='inf',
267
+ ... linewidth=75, nanstr='nan', precision=8,
268
+ ... suppress=False, threshold=1000, formatter=None)
269
+
270
+ Also to temporarily override options, use `printoptions` as a context manager:
271
+
272
+ >>> with np.printoptions(precision=2, suppress=True, threshold=5):
273
+ ... np.linspace(0, 10, 10)
274
+ array([ 0. , 1.11, 2.22, ..., 7.78, 8.89, 10. ])
275
+
276
+ """
277
+ opt = _make_options_dict(precision, threshold, edgeitems, linewidth,
278
+ suppress, nanstr, infstr, sign, formatter,
279
+ floatmode, legacy)
280
+ # formatter is always reset
281
+ opt['formatter'] = formatter
282
+ _format_options.update(opt)
283
+
284
+ # set the C variable for legacy mode
285
+ if _format_options['legacy'] == 113:
286
+ set_legacy_print_mode(113)
287
+ # reset the sign option in legacy mode to avoid confusion
288
+ _format_options['sign'] = '-'
289
+ elif _format_options['legacy'] == 121:
290
+ set_legacy_print_mode(121)
291
+ elif _format_options['legacy'] == sys.maxsize:
292
+ set_legacy_print_mode(0)
293
+
294
+
295
+ @set_module('numpy')
296
+ def get_printoptions():
297
+ """
298
+ Return the current print options.
299
+
300
+ Returns
301
+ -------
302
+ print_opts : dict
303
+ Dictionary of current print options with keys
304
+
305
+ - precision : int
306
+ - threshold : int
307
+ - edgeitems : int
308
+ - linewidth : int
309
+ - suppress : bool
310
+ - nanstr : str
311
+ - infstr : str
312
+ - formatter : dict of callables
313
+ - sign : str
314
+
315
+ For a full description of these options, see `set_printoptions`.
316
+
317
+ See Also
318
+ --------
319
+ set_printoptions, printoptions, set_string_function
320
+
321
+ """
322
+ opts = _format_options.copy()
323
+ opts['legacy'] = {
324
+ 113: '1.13', 121: '1.21', sys.maxsize: False,
325
+ }[opts['legacy']]
326
+ return opts
327
+
328
+
329
+ def _get_legacy_print_mode():
330
+ """Return the legacy print mode as an int."""
331
+ return _format_options['legacy']
332
+
333
+
334
+ @set_module('numpy')
335
+ @contextlib.contextmanager
336
+ def printoptions(*args, **kwargs):
337
+ """Context manager for setting print options.
338
+
339
+ Set print options for the scope of the `with` block, and restore the old
340
+ options at the end. See `set_printoptions` for the full description of
341
+ available options.
342
+
343
+ Examples
344
+ --------
345
+
346
+ >>> from numpy.testing import assert_equal
347
+ >>> with np.printoptions(precision=2):
348
+ ... np.array([2.0]) / 3
349
+ array([0.67])
350
+
351
+ The `as`-clause of the `with`-statement gives the current print options:
352
+
353
+ >>> with np.printoptions(precision=2) as opts:
354
+ ... assert_equal(opts, np.get_printoptions())
355
+
356
+ See Also
357
+ --------
358
+ set_printoptions, get_printoptions
359
+
360
+ """
361
+ opts = np.get_printoptions()
362
+ try:
363
+ np.set_printoptions(*args, **kwargs)
364
+ yield np.get_printoptions()
365
+ finally:
366
+ np.set_printoptions(**opts)
367
+
368
+
369
+ def _leading_trailing(a, edgeitems, index=()):
370
+ """
371
+ Keep only the N-D corners (leading and trailing edges) of an array.
372
+
373
+ Should be passed a base-class ndarray, since it makes no guarantees about
374
+ preserving subclasses.
375
+ """
376
+ axis = len(index)
377
+ if axis == a.ndim:
378
+ return a[index]
379
+
380
+ if a.shape[axis] > 2*edgeitems:
381
+ return concatenate((
382
+ _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]),
383
+ _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:])
384
+ ), axis=axis)
385
+ else:
386
+ return _leading_trailing(a, edgeitems, index + np.index_exp[:])
387
+
388
+
389
+ def _object_format(o):
390
+ """ Object arrays containing lists should be printed unambiguously """
391
+ if type(o) is list:
392
+ fmt = 'list({!r})'
393
+ else:
394
+ fmt = '{!r}'
395
+ return fmt.format(o)
396
+
397
+ def repr_format(x):
398
+ return repr(x)
399
+
400
+ def str_format(x):
401
+ return str(x)
402
+
403
+ def _get_formatdict(data, *, precision, floatmode, suppress, sign, legacy,
404
+ formatter, **kwargs):
405
+ # note: extra arguments in kwargs are ignored
406
+
407
+ # wrapped in lambdas to avoid taking a code path with the wrong type of data
408
+ formatdict = {
409
+ 'bool': lambda: BoolFormat(data),
410
+ 'int': lambda: IntegerFormat(data),
411
+ 'float': lambda: FloatingFormat(
412
+ data, precision, floatmode, suppress, sign, legacy=legacy),
413
+ 'longfloat': lambda: FloatingFormat(
414
+ data, precision, floatmode, suppress, sign, legacy=legacy),
415
+ 'complexfloat': lambda: ComplexFloatingFormat(
416
+ data, precision, floatmode, suppress, sign, legacy=legacy),
417
+ 'longcomplexfloat': lambda: ComplexFloatingFormat(
418
+ data, precision, floatmode, suppress, sign, legacy=legacy),
419
+ 'datetime': lambda: DatetimeFormat(data, legacy=legacy),
420
+ 'timedelta': lambda: TimedeltaFormat(data),
421
+ 'object': lambda: _object_format,
422
+ 'void': lambda: str_format,
423
+ 'numpystr': lambda: repr_format}
424
+
425
+ # we need to wrap values in `formatter` in a lambda, so that the interface
426
+ # is the same as the above values.
427
+ def indirect(x):
428
+ return lambda: x
429
+
430
+ if formatter is not None:
431
+ fkeys = [k for k in formatter.keys() if formatter[k] is not None]
432
+ if 'all' in fkeys:
433
+ for key in formatdict.keys():
434
+ formatdict[key] = indirect(formatter['all'])
435
+ if 'int_kind' in fkeys:
436
+ for key in ['int']:
437
+ formatdict[key] = indirect(formatter['int_kind'])
438
+ if 'float_kind' in fkeys:
439
+ for key in ['float', 'longfloat']:
440
+ formatdict[key] = indirect(formatter['float_kind'])
441
+ if 'complex_kind' in fkeys:
442
+ for key in ['complexfloat', 'longcomplexfloat']:
443
+ formatdict[key] = indirect(formatter['complex_kind'])
444
+ if 'str_kind' in fkeys:
445
+ formatdict['numpystr'] = indirect(formatter['str_kind'])
446
+ for key in formatdict.keys():
447
+ if key in fkeys:
448
+ formatdict[key] = indirect(formatter[key])
449
+
450
+ return formatdict
451
+
452
+ def _get_format_function(data, **options):
453
+ """
454
+ find the right formatting function for the dtype_
455
+ """
456
+ dtype_ = data.dtype
457
+ dtypeobj = dtype_.type
458
+ formatdict = _get_formatdict(data, **options)
459
+ if dtypeobj is None:
460
+ return formatdict["numpystr"]()
461
+ elif issubclass(dtypeobj, _nt.bool_):
462
+ return formatdict['bool']()
463
+ elif issubclass(dtypeobj, _nt.integer):
464
+ if issubclass(dtypeobj, _nt.timedelta64):
465
+ return formatdict['timedelta']()
466
+ else:
467
+ return formatdict['int']()
468
+ elif issubclass(dtypeobj, _nt.floating):
469
+ if issubclass(dtypeobj, _nt.longfloat):
470
+ return formatdict['longfloat']()
471
+ else:
472
+ return formatdict['float']()
473
+ elif issubclass(dtypeobj, _nt.complexfloating):
474
+ if issubclass(dtypeobj, _nt.clongfloat):
475
+ return formatdict['longcomplexfloat']()
476
+ else:
477
+ return formatdict['complexfloat']()
478
+ elif issubclass(dtypeobj, (_nt.str_, _nt.bytes_)):
479
+ return formatdict['numpystr']()
480
+ elif issubclass(dtypeobj, _nt.datetime64):
481
+ return formatdict['datetime']()
482
+ elif issubclass(dtypeobj, _nt.object_):
483
+ return formatdict['object']()
484
+ elif issubclass(dtypeobj, _nt.void):
485
+ if dtype_.names is not None:
486
+ return StructuredVoidFormat.from_data(data, **options)
487
+ else:
488
+ return formatdict['void']()
489
+ else:
490
+ return formatdict['numpystr']()
491
+
492
+
493
+ def _recursive_guard(fillvalue='...'):
494
+ """
495
+ Like the python 3.2 reprlib.recursive_repr, but forwards *args and **kwargs
496
+
497
+ Decorates a function such that if it calls itself with the same first
498
+ argument, it returns `fillvalue` instead of recursing.
499
+
500
+ Largely copied from reprlib.recursive_repr
501
+ """
502
+
503
+ def decorating_function(f):
504
+ repr_running = set()
505
+
506
+ @functools.wraps(f)
507
+ def wrapper(self, *args, **kwargs):
508
+ key = id(self), get_ident()
509
+ if key in repr_running:
510
+ return fillvalue
511
+ repr_running.add(key)
512
+ try:
513
+ return f(self, *args, **kwargs)
514
+ finally:
515
+ repr_running.discard(key)
516
+
517
+ return wrapper
518
+
519
+ return decorating_function
520
+
521
+
522
+ # gracefully handle recursive calls, when object arrays contain themselves
523
+ @_recursive_guard()
524
+ def _array2string(a, options, separator=' ', prefix=""):
525
+ # The formatter __init__s in _get_format_function cannot deal with
526
+ # subclasses yet, and we also need to avoid recursion issues in
527
+ # _formatArray with subclasses which return 0d arrays in place of scalars
528
+ data = asarray(a)
529
+ if a.shape == ():
530
+ a = data
531
+
532
+ if a.size > options['threshold']:
533
+ summary_insert = "..."
534
+ data = _leading_trailing(data, options['edgeitems'])
535
+ else:
536
+ summary_insert = ""
537
+
538
+ # find the right formatting function for the array
539
+ format_function = _get_format_function(data, **options)
540
+
541
+ # skip over "["
542
+ next_line_prefix = " "
543
+ # skip over array(
544
+ next_line_prefix += " "*len(prefix)
545
+
546
+ lst = _formatArray(a, format_function, options['linewidth'],
547
+ next_line_prefix, separator, options['edgeitems'],
548
+ summary_insert, options['legacy'])
549
+ return lst
550
+
551
+
552
+ def _array2string_dispatcher(
553
+ a, max_line_width=None, precision=None,
554
+ suppress_small=None, separator=None, prefix=None,
555
+ style=None, formatter=None, threshold=None,
556
+ edgeitems=None, sign=None, floatmode=None, suffix=None,
557
+ *, legacy=None):
558
+ return (a,)
559
+
560
+
561
+ @array_function_dispatch(_array2string_dispatcher, module='numpy')
562
+ def array2string(a, max_line_width=None, precision=None,
563
+ suppress_small=None, separator=' ', prefix="",
564
+ style=np._NoValue, formatter=None, threshold=None,
565
+ edgeitems=None, sign=None, floatmode=None, suffix="",
566
+ *, legacy=None):
567
+ """
568
+ Return a string representation of an array.
569
+
570
+ Parameters
571
+ ----------
572
+ a : ndarray
573
+ Input array.
574
+ max_line_width : int, optional
575
+ Inserts newlines if text is longer than `max_line_width`.
576
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
577
+ precision : int or None, optional
578
+ Floating point precision.
579
+ Defaults to ``numpy.get_printoptions()['precision']``.
580
+ suppress_small : bool, optional
581
+ Represent numbers "very close" to zero as zero; default is False.
582
+ Very close is defined by precision: if the precision is 8, e.g.,
583
+ numbers smaller (in absolute value) than 5e-9 are represented as
584
+ zero.
585
+ Defaults to ``numpy.get_printoptions()['suppress']``.
586
+ separator : str, optional
587
+ Inserted between elements.
588
+ prefix : str, optional
589
+ suffix : str, optional
590
+ The length of the prefix and suffix strings are used to respectively
591
+ align and wrap the output. An array is typically printed as::
592
+
593
+ prefix + array2string(a) + suffix
594
+
595
+ The output is left-padded by the length of the prefix string, and
596
+ wrapping is forced at the column ``max_line_width - len(suffix)``.
597
+ It should be noted that the content of prefix and suffix strings are
598
+ not included in the output.
599
+ style : _NoValue, optional
600
+ Has no effect, do not use.
601
+
602
+ .. deprecated:: 1.14.0
603
+ formatter : dict of callables, optional
604
+ If not None, the keys should indicate the type(s) that the respective
605
+ formatting function applies to. Callables should return a string.
606
+ Types that are not specified (by their corresponding keys) are handled
607
+ by the default formatters. Individual types for which a formatter
608
+ can be set are:
609
+
610
+ - 'bool'
611
+ - 'int'
612
+ - 'timedelta' : a `numpy.timedelta64`
613
+ - 'datetime' : a `numpy.datetime64`
614
+ - 'float'
615
+ - 'longfloat' : 128-bit floats
616
+ - 'complexfloat'
617
+ - 'longcomplexfloat' : composed of two 128-bit floats
618
+ - 'void' : type `numpy.void`
619
+ - 'numpystr' : types `numpy.bytes_` and `numpy.str_`
620
+
621
+ Other keys that can be used to set a group of types at once are:
622
+
623
+ - 'all' : sets all types
624
+ - 'int_kind' : sets 'int'
625
+ - 'float_kind' : sets 'float' and 'longfloat'
626
+ - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
627
+ - 'str_kind' : sets 'numpystr'
628
+ threshold : int, optional
629
+ Total number of array elements which trigger summarization
630
+ rather than full repr.
631
+ Defaults to ``numpy.get_printoptions()['threshold']``.
632
+ edgeitems : int, optional
633
+ Number of array items in summary at beginning and end of
634
+ each dimension.
635
+ Defaults to ``numpy.get_printoptions()['edgeitems']``.
636
+ sign : string, either '-', '+', or ' ', optional
637
+ Controls printing of the sign of floating-point types. If '+', always
638
+ print the sign of positive values. If ' ', always prints a space
639
+ (whitespace character) in the sign position of positive values. If
640
+ '-', omit the sign character of positive values.
641
+ Defaults to ``numpy.get_printoptions()['sign']``.
642
+ floatmode : str, optional
643
+ Controls the interpretation of the `precision` option for
644
+ floating-point types.
645
+ Defaults to ``numpy.get_printoptions()['floatmode']``.
646
+ Can take the following values:
647
+
648
+ - 'fixed': Always print exactly `precision` fractional digits,
649
+ even if this would print more or fewer digits than
650
+ necessary to specify the value uniquely.
651
+ - 'unique': Print the minimum number of fractional digits necessary
652
+ to represent each value uniquely. Different elements may
653
+ have a different number of digits. The value of the
654
+ `precision` option is ignored.
655
+ - 'maxprec': Print at most `precision` fractional digits, but if
656
+ an element can be uniquely represented with fewer digits
657
+ only print it with that many.
658
+ - 'maxprec_equal': Print at most `precision` fractional digits,
659
+ but if every element in the array can be uniquely
660
+ represented with an equal number of fewer digits, use that
661
+ many digits for all elements.
662
+ legacy : string or `False`, optional
663
+ If set to the string `'1.13'` enables 1.13 legacy printing mode. This
664
+ approximates numpy 1.13 print output by including a space in the sign
665
+ position of floats and different behavior for 0d arrays. If set to
666
+ `False`, disables legacy mode. Unrecognized strings will be ignored
667
+ with a warning for forward compatibility.
668
+
669
+ .. versionadded:: 1.14.0
670
+
671
+ Returns
672
+ -------
673
+ array_str : str
674
+ String representation of the array.
675
+
676
+ Raises
677
+ ------
678
+ TypeError
679
+ if a callable in `formatter` does not return a string.
680
+
681
+ See Also
682
+ --------
683
+ array_str, array_repr, set_printoptions, get_printoptions
684
+
685
+ Notes
686
+ -----
687
+ If a formatter is specified for a certain type, the `precision` keyword is
688
+ ignored for that type.
689
+
690
+ This is a very flexible function; `array_repr` and `array_str` are using
691
+ `array2string` internally so keywords with the same name should work
692
+ identically in all three functions.
693
+
694
+ Examples
695
+ --------
696
+ >>> x = np.array([1e-16,1,2,3])
697
+ >>> np.array2string(x, precision=2, separator=',',
698
+ ... suppress_small=True)
699
+ '[0.,1.,2.,3.]'
700
+
701
+ >>> x = np.arange(3.)
702
+ >>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
703
+ '[0.00 1.00 2.00]'
704
+
705
+ >>> x = np.arange(3)
706
+ >>> np.array2string(x, formatter={'int':lambda x: hex(x)})
707
+ '[0x0 0x1 0x2]'
708
+
709
+ """
710
+
711
+ overrides = _make_options_dict(precision, threshold, edgeitems,
712
+ max_line_width, suppress_small, None, None,
713
+ sign, formatter, floatmode, legacy)
714
+ options = _format_options.copy()
715
+ options.update(overrides)
716
+
717
+ if options['legacy'] <= 113:
718
+ if style is np._NoValue:
719
+ style = repr
720
+
721
+ if a.shape == () and a.dtype.names is None:
722
+ return style(a.item())
723
+ elif style is not np._NoValue:
724
+ # Deprecation 11-9-2017 v1.14
725
+ warnings.warn("'style' argument is deprecated and no longer functional"
726
+ " except in 1.13 'legacy' mode",
727
+ DeprecationWarning, stacklevel=2)
728
+
729
+ if options['legacy'] > 113:
730
+ options['linewidth'] -= len(suffix)
731
+
732
+ # treat as a null array if any of shape elements == 0
733
+ if a.size == 0:
734
+ return "[]"
735
+
736
+ return _array2string(a, options, separator, prefix)
737
+
738
+
739
+ def _extendLine(s, line, word, line_width, next_line_prefix, legacy):
740
+ needs_wrap = len(line) + len(word) > line_width
741
+ if legacy > 113:
742
+ # don't wrap lines if it won't help
743
+ if len(line) <= len(next_line_prefix):
744
+ needs_wrap = False
745
+
746
+ if needs_wrap:
747
+ s += line.rstrip() + "\n"
748
+ line = next_line_prefix
749
+ line += word
750
+ return s, line
751
+
752
+
753
+ def _extendLine_pretty(s, line, word, line_width, next_line_prefix, legacy):
754
+ """
755
+ Extends line with nicely formatted (possibly multi-line) string ``word``.
756
+ """
757
+ words = word.splitlines()
758
+ if len(words) == 1 or legacy <= 113:
759
+ return _extendLine(s, line, word, line_width, next_line_prefix, legacy)
760
+
761
+ max_word_length = max(len(word) for word in words)
762
+ if (len(line) + max_word_length > line_width and
763
+ len(line) > len(next_line_prefix)):
764
+ s += line.rstrip() + '\n'
765
+ line = next_line_prefix + words[0]
766
+ indent = next_line_prefix
767
+ else:
768
+ indent = len(line)*' '
769
+ line += words[0]
770
+
771
+ for word in words[1::]:
772
+ s += line.rstrip() + '\n'
773
+ line = indent + word
774
+
775
+ suffix_length = max_word_length - len(words[-1])
776
+ line += suffix_length*' '
777
+
778
+ return s, line
779
+
780
+ def _formatArray(a, format_function, line_width, next_line_prefix,
781
+ separator, edge_items, summary_insert, legacy):
782
+ """formatArray is designed for two modes of operation:
783
+
784
+ 1. Full output
785
+
786
+ 2. Summarized output
787
+
788
+ """
789
+ def recurser(index, hanging_indent, curr_width):
790
+ """
791
+ By using this local function, we don't need to recurse with all the
792
+ arguments. Since this function is not created recursively, the cost is
793
+ not significant
794
+ """
795
+ axis = len(index)
796
+ axes_left = a.ndim - axis
797
+
798
+ if axes_left == 0:
799
+ return format_function(a[index])
800
+
801
+ # when recursing, add a space to align with the [ added, and reduce the
802
+ # length of the line by 1
803
+ next_hanging_indent = hanging_indent + ' '
804
+ if legacy <= 113:
805
+ next_width = curr_width
806
+ else:
807
+ next_width = curr_width - len(']')
808
+
809
+ a_len = a.shape[axis]
810
+ show_summary = summary_insert and 2*edge_items < a_len
811
+ if show_summary:
812
+ leading_items = edge_items
813
+ trailing_items = edge_items
814
+ else:
815
+ leading_items = 0
816
+ trailing_items = a_len
817
+
818
+ # stringify the array with the hanging indent on the first line too
819
+ s = ''
820
+
821
+ # last axis (rows) - wrap elements if they would not fit on one line
822
+ if axes_left == 1:
823
+ # the length up until the beginning of the separator / bracket
824
+ if legacy <= 113:
825
+ elem_width = curr_width - len(separator.rstrip())
826
+ else:
827
+ elem_width = curr_width - max(len(separator.rstrip()), len(']'))
828
+
829
+ line = hanging_indent
830
+ for i in range(leading_items):
831
+ word = recurser(index + (i,), next_hanging_indent, next_width)
832
+ s, line = _extendLine_pretty(
833
+ s, line, word, elem_width, hanging_indent, legacy)
834
+ line += separator
835
+
836
+ if show_summary:
837
+ s, line = _extendLine(
838
+ s, line, summary_insert, elem_width, hanging_indent, legacy)
839
+ if legacy <= 113:
840
+ line += ", "
841
+ else:
842
+ line += separator
843
+
844
+ for i in range(trailing_items, 1, -1):
845
+ word = recurser(index + (-i,), next_hanging_indent, next_width)
846
+ s, line = _extendLine_pretty(
847
+ s, line, word, elem_width, hanging_indent, legacy)
848
+ line += separator
849
+
850
+ if legacy <= 113:
851
+ # width of the separator is not considered on 1.13
852
+ elem_width = curr_width
853
+ word = recurser(index + (-1,), next_hanging_indent, next_width)
854
+ s, line = _extendLine_pretty(
855
+ s, line, word, elem_width, hanging_indent, legacy)
856
+
857
+ s += line
858
+
859
+ # other axes - insert newlines between rows
860
+ else:
861
+ s = ''
862
+ line_sep = separator.rstrip() + '\n'*(axes_left - 1)
863
+
864
+ for i in range(leading_items):
865
+ nested = recurser(index + (i,), next_hanging_indent, next_width)
866
+ s += hanging_indent + nested + line_sep
867
+
868
+ if show_summary:
869
+ if legacy <= 113:
870
+ # trailing space, fixed nbr of newlines, and fixed separator
871
+ s += hanging_indent + summary_insert + ", \n"
872
+ else:
873
+ s += hanging_indent + summary_insert + line_sep
874
+
875
+ for i in range(trailing_items, 1, -1):
876
+ nested = recurser(index + (-i,), next_hanging_indent,
877
+ next_width)
878
+ s += hanging_indent + nested + line_sep
879
+
880
+ nested = recurser(index + (-1,), next_hanging_indent, next_width)
881
+ s += hanging_indent + nested
882
+
883
+ # remove the hanging indent, and wrap in []
884
+ s = '[' + s[len(hanging_indent):] + ']'
885
+ return s
886
+
887
+ try:
888
+ # invoke the recursive part with an initial index and prefix
889
+ return recurser(index=(),
890
+ hanging_indent=next_line_prefix,
891
+ curr_width=line_width)
892
+ finally:
893
+ # recursive closures have a cyclic reference to themselves, which
894
+ # requires gc to collect (gh-10620). To avoid this problem, for
895
+ # performance and PyPy friendliness, we break the cycle:
896
+ recurser = None
897
+
898
+ def _none_or_positive_arg(x, name):
899
+ if x is None:
900
+ return -1
901
+ if x < 0:
902
+ raise ValueError("{} must be >= 0".format(name))
903
+ return x
904
+
905
+ class FloatingFormat:
906
+ """ Formatter for subtypes of np.floating """
907
+ def __init__(self, data, precision, floatmode, suppress_small, sign=False,
908
+ *, legacy=None):
909
+ # for backcompatibility, accept bools
910
+ if isinstance(sign, bool):
911
+ sign = '+' if sign else '-'
912
+
913
+ self._legacy = legacy
914
+ if self._legacy <= 113:
915
+ # when not 0d, legacy does not support '-'
916
+ if data.shape != () and sign == '-':
917
+ sign = ' '
918
+
919
+ self.floatmode = floatmode
920
+ if floatmode == 'unique':
921
+ self.precision = None
922
+ else:
923
+ self.precision = precision
924
+
925
+ self.precision = _none_or_positive_arg(self.precision, 'precision')
926
+
927
+ self.suppress_small = suppress_small
928
+ self.sign = sign
929
+ self.exp_format = False
930
+ self.large_exponent = False
931
+
932
+ self.fillFormat(data)
933
+
934
+ def fillFormat(self, data):
935
+ # only the finite values are used to compute the number of digits
936
+ finite_vals = data[isfinite(data)]
937
+
938
+ # choose exponential mode based on the non-zero finite values:
939
+ abs_non_zero = absolute(finite_vals[finite_vals != 0])
940
+ if len(abs_non_zero) != 0:
941
+ max_val = np.max(abs_non_zero)
942
+ min_val = np.min(abs_non_zero)
943
+ with errstate(over='ignore'): # division can overflow
944
+ if max_val >= 1.e8 or (not self.suppress_small and
945
+ (min_val < 0.0001 or max_val/min_val > 1000.)):
946
+ self.exp_format = True
947
+
948
+ # do a first pass of printing all the numbers, to determine sizes
949
+ if len(finite_vals) == 0:
950
+ self.pad_left = 0
951
+ self.pad_right = 0
952
+ self.trim = '.'
953
+ self.exp_size = -1
954
+ self.unique = True
955
+ self.min_digits = None
956
+ elif self.exp_format:
957
+ trim, unique = '.', True
958
+ if self.floatmode == 'fixed' or self._legacy <= 113:
959
+ trim, unique = 'k', False
960
+ strs = (dragon4_scientific(x, precision=self.precision,
961
+ unique=unique, trim=trim, sign=self.sign == '+')
962
+ for x in finite_vals)
963
+ frac_strs, _, exp_strs = zip(*(s.partition('e') for s in strs))
964
+ int_part, frac_part = zip(*(s.split('.') for s in frac_strs))
965
+ self.exp_size = max(len(s) for s in exp_strs) - 1
966
+
967
+ self.trim = 'k'
968
+ self.precision = max(len(s) for s in frac_part)
969
+ self.min_digits = self.precision
970
+ self.unique = unique
971
+
972
+ # for back-compat with np 1.13, use 2 spaces & sign and full prec
973
+ if self._legacy <= 113:
974
+ self.pad_left = 3
975
+ else:
976
+ # this should be only 1 or 2. Can be calculated from sign.
977
+ self.pad_left = max(len(s) for s in int_part)
978
+ # pad_right is only needed for nan length calculation
979
+ self.pad_right = self.exp_size + 2 + self.precision
980
+ else:
981
+ trim, unique = '.', True
982
+ if self.floatmode == 'fixed':
983
+ trim, unique = 'k', False
984
+ strs = (dragon4_positional(x, precision=self.precision,
985
+ fractional=True,
986
+ unique=unique, trim=trim,
987
+ sign=self.sign == '+')
988
+ for x in finite_vals)
989
+ int_part, frac_part = zip(*(s.split('.') for s in strs))
990
+ if self._legacy <= 113:
991
+ self.pad_left = 1 + max(len(s.lstrip('-+')) for s in int_part)
992
+ else:
993
+ self.pad_left = max(len(s) for s in int_part)
994
+ self.pad_right = max(len(s) for s in frac_part)
995
+ self.exp_size = -1
996
+ self.unique = unique
997
+
998
+ if self.floatmode in ['fixed', 'maxprec_equal']:
999
+ self.precision = self.min_digits = self.pad_right
1000
+ self.trim = 'k'
1001
+ else:
1002
+ self.trim = '.'
1003
+ self.min_digits = 0
1004
+
1005
+ if self._legacy > 113:
1006
+ # account for sign = ' ' by adding one to pad_left
1007
+ if self.sign == ' ' and not any(np.signbit(finite_vals)):
1008
+ self.pad_left += 1
1009
+
1010
+ # if there are non-finite values, may need to increase pad_left
1011
+ if data.size != finite_vals.size:
1012
+ neginf = self.sign != '-' or any(data[isinf(data)] < 0)
1013
+ nanlen = len(_format_options['nanstr'])
1014
+ inflen = len(_format_options['infstr']) + neginf
1015
+ offset = self.pad_right + 1 # +1 for decimal pt
1016
+ self.pad_left = max(self.pad_left, nanlen - offset, inflen - offset)
1017
+
1018
+ def __call__(self, x):
1019
+ if not np.isfinite(x):
1020
+ with errstate(invalid='ignore'):
1021
+ if np.isnan(x):
1022
+ sign = '+' if self.sign == '+' else ''
1023
+ ret = sign + _format_options['nanstr']
1024
+ else: # isinf
1025
+ sign = '-' if x < 0 else '+' if self.sign == '+' else ''
1026
+ ret = sign + _format_options['infstr']
1027
+ return ' '*(self.pad_left + self.pad_right + 1 - len(ret)) + ret
1028
+
1029
+ if self.exp_format:
1030
+ return dragon4_scientific(x,
1031
+ precision=self.precision,
1032
+ min_digits=self.min_digits,
1033
+ unique=self.unique,
1034
+ trim=self.trim,
1035
+ sign=self.sign == '+',
1036
+ pad_left=self.pad_left,
1037
+ exp_digits=self.exp_size)
1038
+ else:
1039
+ return dragon4_positional(x,
1040
+ precision=self.precision,
1041
+ min_digits=self.min_digits,
1042
+ unique=self.unique,
1043
+ fractional=True,
1044
+ trim=self.trim,
1045
+ sign=self.sign == '+',
1046
+ pad_left=self.pad_left,
1047
+ pad_right=self.pad_right)
1048
+
1049
+
1050
+ @set_module('numpy')
1051
+ def format_float_scientific(x, precision=None, unique=True, trim='k',
1052
+ sign=False, pad_left=None, exp_digits=None,
1053
+ min_digits=None):
1054
+ """
1055
+ Format a floating-point scalar as a decimal string in scientific notation.
1056
+
1057
+ Provides control over rounding, trimming and padding. Uses and assumes
1058
+ IEEE unbiased rounding. Uses the "Dragon4" algorithm.
1059
+
1060
+ Parameters
1061
+ ----------
1062
+ x : python float or numpy floating scalar
1063
+ Value to format.
1064
+ precision : non-negative integer or None, optional
1065
+ Maximum number of digits to print. May be None if `unique` is
1066
+ `True`, but must be an integer if unique is `False`.
1067
+ unique : boolean, optional
1068
+ If `True`, use a digit-generation strategy which gives the shortest
1069
+ representation which uniquely identifies the floating-point number from
1070
+ other values of the same type, by judicious rounding. If `precision`
1071
+ is given fewer digits than necessary can be printed. If `min_digits`
1072
+ is given more can be printed, in which cases the last digit is rounded
1073
+ with unbiased rounding.
1074
+ If `False`, digits are generated as if printing an infinite-precision
1075
+ value and stopping after `precision` digits, rounding the remaining
1076
+ value with unbiased rounding
1077
+ trim : one of 'k', '.', '0', '-', optional
1078
+ Controls post-processing trimming of trailing digits, as follows:
1079
+
1080
+ * 'k' : keep trailing zeros, keep decimal point (no trimming)
1081
+ * '.' : trim all trailing zeros, leave decimal point
1082
+ * '0' : trim all but the zero before the decimal point. Insert the
1083
+ zero if it is missing.
1084
+ * '-' : trim trailing zeros and any trailing decimal point
1085
+ sign : boolean, optional
1086
+ Whether to show the sign for positive values.
1087
+ pad_left : non-negative integer, optional
1088
+ Pad the left side of the string with whitespace until at least that
1089
+ many characters are to the left of the decimal point.
1090
+ exp_digits : non-negative integer, optional
1091
+ Pad the exponent with zeros until it contains at least this many digits.
1092
+ If omitted, the exponent will be at least 2 digits.
1093
+ min_digits : non-negative integer or None, optional
1094
+ Minimum number of digits to print. This only has an effect for
1095
+ `unique=True`. In that case more digits than necessary to uniquely
1096
+ identify the value may be printed and rounded unbiased.
1097
+
1098
+ -- versionadded:: 1.21.0
1099
+
1100
+ Returns
1101
+ -------
1102
+ rep : string
1103
+ The string representation of the floating point value
1104
+
1105
+ See Also
1106
+ --------
1107
+ format_float_positional
1108
+
1109
+ Examples
1110
+ --------
1111
+ >>> np.format_float_scientific(np.float32(np.pi))
1112
+ '3.1415927e+00'
1113
+ >>> s = np.float32(1.23e24)
1114
+ >>> np.format_float_scientific(s, unique=False, precision=15)
1115
+ '1.230000071797338e+24'
1116
+ >>> np.format_float_scientific(s, exp_digits=4)
1117
+ '1.23e+0024'
1118
+ """
1119
+ precision = _none_or_positive_arg(precision, 'precision')
1120
+ pad_left = _none_or_positive_arg(pad_left, 'pad_left')
1121
+ exp_digits = _none_or_positive_arg(exp_digits, 'exp_digits')
1122
+ min_digits = _none_or_positive_arg(min_digits, 'min_digits')
1123
+ if min_digits > 0 and precision > 0 and min_digits > precision:
1124
+ raise ValueError("min_digits must be less than or equal to precision")
1125
+ return dragon4_scientific(x, precision=precision, unique=unique,
1126
+ trim=trim, sign=sign, pad_left=pad_left,
1127
+ exp_digits=exp_digits, min_digits=min_digits)
1128
+
1129
+
1130
+ @set_module('numpy')
1131
+ def format_float_positional(x, precision=None, unique=True,
1132
+ fractional=True, trim='k', sign=False,
1133
+ pad_left=None, pad_right=None, min_digits=None):
1134
+ """
1135
+ Format a floating-point scalar as a decimal string in positional notation.
1136
+
1137
+ Provides control over rounding, trimming and padding. Uses and assumes
1138
+ IEEE unbiased rounding. Uses the "Dragon4" algorithm.
1139
+
1140
+ Parameters
1141
+ ----------
1142
+ x : python float or numpy floating scalar
1143
+ Value to format.
1144
+ precision : non-negative integer or None, optional
1145
+ Maximum number of digits to print. May be None if `unique` is
1146
+ `True`, but must be an integer if unique is `False`.
1147
+ unique : boolean, optional
1148
+ If `True`, use a digit-generation strategy which gives the shortest
1149
+ representation which uniquely identifies the floating-point number from
1150
+ other values of the same type, by judicious rounding. If `precision`
1151
+ is given fewer digits than necessary can be printed, or if `min_digits`
1152
+ is given more can be printed, in which cases the last digit is rounded
1153
+ with unbiased rounding.
1154
+ If `False`, digits are generated as if printing an infinite-precision
1155
+ value and stopping after `precision` digits, rounding the remaining
1156
+ value with unbiased rounding
1157
+ fractional : boolean, optional
1158
+ If `True`, the cutoffs of `precision` and `min_digits` refer to the
1159
+ total number of digits after the decimal point, including leading
1160
+ zeros.
1161
+ If `False`, `precision` and `min_digits` refer to the total number of
1162
+ significant digits, before or after the decimal point, ignoring leading
1163
+ zeros.
1164
+ trim : one of 'k', '.', '0', '-', optional
1165
+ Controls post-processing trimming of trailing digits, as follows:
1166
+
1167
+ * 'k' : keep trailing zeros, keep decimal point (no trimming)
1168
+ * '.' : trim all trailing zeros, leave decimal point
1169
+ * '0' : trim all but the zero before the decimal point. Insert the
1170
+ zero if it is missing.
1171
+ * '-' : trim trailing zeros and any trailing decimal point
1172
+ sign : boolean, optional
1173
+ Whether to show the sign for positive values.
1174
+ pad_left : non-negative integer, optional
1175
+ Pad the left side of the string with whitespace until at least that
1176
+ many characters are to the left of the decimal point.
1177
+ pad_right : non-negative integer, optional
1178
+ Pad the right side of the string with whitespace until at least that
1179
+ many characters are to the right of the decimal point.
1180
+ min_digits : non-negative integer or None, optional
1181
+ Minimum number of digits to print. Only has an effect if `unique=True`
1182
+ in which case additional digits past those necessary to uniquely
1183
+ identify the value may be printed, rounding the last additional digit.
1184
+
1185
+ -- versionadded:: 1.21.0
1186
+
1187
+ Returns
1188
+ -------
1189
+ rep : string
1190
+ The string representation of the floating point value
1191
+
1192
+ See Also
1193
+ --------
1194
+ format_float_scientific
1195
+
1196
+ Examples
1197
+ --------
1198
+ >>> np.format_float_positional(np.float32(np.pi))
1199
+ '3.1415927'
1200
+ >>> np.format_float_positional(np.float16(np.pi))
1201
+ '3.14'
1202
+ >>> np.format_float_positional(np.float16(0.3))
1203
+ '0.3'
1204
+ >>> np.format_float_positional(np.float16(0.3), unique=False, precision=10)
1205
+ '0.3000488281'
1206
+ """
1207
+ precision = _none_or_positive_arg(precision, 'precision')
1208
+ pad_left = _none_or_positive_arg(pad_left, 'pad_left')
1209
+ pad_right = _none_or_positive_arg(pad_right, 'pad_right')
1210
+ min_digits = _none_or_positive_arg(min_digits, 'min_digits')
1211
+ if not fractional and precision == 0:
1212
+ raise ValueError("precision must be greater than 0 if "
1213
+ "fractional=False")
1214
+ if min_digits > 0 and precision > 0 and min_digits > precision:
1215
+ raise ValueError("min_digits must be less than or equal to precision")
1216
+ return dragon4_positional(x, precision=precision, unique=unique,
1217
+ fractional=fractional, trim=trim,
1218
+ sign=sign, pad_left=pad_left,
1219
+ pad_right=pad_right, min_digits=min_digits)
1220
+
1221
+
1222
+ class IntegerFormat:
1223
+ def __init__(self, data):
1224
+ if data.size > 0:
1225
+ max_str_len = max(len(str(np.max(data))),
1226
+ len(str(np.min(data))))
1227
+ else:
1228
+ max_str_len = 0
1229
+ self.format = '%{}d'.format(max_str_len)
1230
+
1231
+ def __call__(self, x):
1232
+ return self.format % x
1233
+
1234
+
1235
+ class BoolFormat:
1236
+ def __init__(self, data, **kwargs):
1237
+ # add an extra space so " True" and "False" have the same length and
1238
+ # array elements align nicely when printed, except in 0d arrays
1239
+ self.truestr = ' True' if data.shape != () else 'True'
1240
+
1241
+ def __call__(self, x):
1242
+ return self.truestr if x else "False"
1243
+
1244
+
1245
+ class ComplexFloatingFormat:
1246
+ """ Formatter for subtypes of np.complexfloating """
1247
+ def __init__(self, x, precision, floatmode, suppress_small,
1248
+ sign=False, *, legacy=None):
1249
+ # for backcompatibility, accept bools
1250
+ if isinstance(sign, bool):
1251
+ sign = '+' if sign else '-'
1252
+
1253
+ floatmode_real = floatmode_imag = floatmode
1254
+ if legacy <= 113:
1255
+ floatmode_real = 'maxprec_equal'
1256
+ floatmode_imag = 'maxprec'
1257
+
1258
+ self.real_format = FloatingFormat(
1259
+ x.real, precision, floatmode_real, suppress_small,
1260
+ sign=sign, legacy=legacy
1261
+ )
1262
+ self.imag_format = FloatingFormat(
1263
+ x.imag, precision, floatmode_imag, suppress_small,
1264
+ sign='+', legacy=legacy
1265
+ )
1266
+
1267
+ def __call__(self, x):
1268
+ r = self.real_format(x.real)
1269
+ i = self.imag_format(x.imag)
1270
+
1271
+ # add the 'j' before the terminal whitespace in i
1272
+ sp = len(i.rstrip())
1273
+ i = i[:sp] + 'j' + i[sp:]
1274
+
1275
+ return r + i
1276
+
1277
+
1278
+ class _TimelikeFormat:
1279
+ def __init__(self, data):
1280
+ non_nat = data[~isnat(data)]
1281
+ if len(non_nat) > 0:
1282
+ # Max str length of non-NaT elements
1283
+ max_str_len = max(len(self._format_non_nat(np.max(non_nat))),
1284
+ len(self._format_non_nat(np.min(non_nat))))
1285
+ else:
1286
+ max_str_len = 0
1287
+ if len(non_nat) < data.size:
1288
+ # data contains a NaT
1289
+ max_str_len = max(max_str_len, 5)
1290
+ self._format = '%{}s'.format(max_str_len)
1291
+ self._nat = "'NaT'".rjust(max_str_len)
1292
+
1293
+ def _format_non_nat(self, x):
1294
+ # override in subclass
1295
+ raise NotImplementedError
1296
+
1297
+ def __call__(self, x):
1298
+ if isnat(x):
1299
+ return self._nat
1300
+ else:
1301
+ return self._format % self._format_non_nat(x)
1302
+
1303
+
1304
+ class DatetimeFormat(_TimelikeFormat):
1305
+ def __init__(self, x, unit=None, timezone=None, casting='same_kind',
1306
+ legacy=False):
1307
+ # Get the unit from the dtype
1308
+ if unit is None:
1309
+ if x.dtype.kind == 'M':
1310
+ unit = datetime_data(x.dtype)[0]
1311
+ else:
1312
+ unit = 's'
1313
+
1314
+ if timezone is None:
1315
+ timezone = 'naive'
1316
+ self.timezone = timezone
1317
+ self.unit = unit
1318
+ self.casting = casting
1319
+ self.legacy = legacy
1320
+
1321
+ # must be called after the above are configured
1322
+ super().__init__(x)
1323
+
1324
+ def __call__(self, x):
1325
+ if self.legacy <= 113:
1326
+ return self._format_non_nat(x)
1327
+ return super().__call__(x)
1328
+
1329
+ def _format_non_nat(self, x):
1330
+ return "'%s'" % datetime_as_string(x,
1331
+ unit=self.unit,
1332
+ timezone=self.timezone,
1333
+ casting=self.casting)
1334
+
1335
+
1336
+ class TimedeltaFormat(_TimelikeFormat):
1337
+ def _format_non_nat(self, x):
1338
+ return str(x.astype('i8'))
1339
+
1340
+
1341
+ class SubArrayFormat:
1342
+ def __init__(self, format_function, **options):
1343
+ self.format_function = format_function
1344
+ self.threshold = options['threshold']
1345
+ self.edge_items = options['edgeitems']
1346
+
1347
+ def __call__(self, a):
1348
+ self.summary_insert = "..." if a.size > self.threshold else ""
1349
+ return self.format_array(a)
1350
+
1351
+ def format_array(self, a):
1352
+ if np.ndim(a) == 0:
1353
+ return self.format_function(a)
1354
+
1355
+ if self.summary_insert and a.shape[0] > 2*self.edge_items:
1356
+ formatted = (
1357
+ [self.format_array(a_) for a_ in a[:self.edge_items]]
1358
+ + [self.summary_insert]
1359
+ + [self.format_array(a_) for a_ in a[-self.edge_items:]]
1360
+ )
1361
+ else:
1362
+ formatted = [self.format_array(a_) for a_ in a]
1363
+
1364
+ return "[" + ", ".join(formatted) + "]"
1365
+
1366
+
1367
+ class StructuredVoidFormat:
1368
+ """
1369
+ Formatter for structured np.void objects.
1370
+
1371
+ This does not work on structured alias types like np.dtype(('i4', 'i2,i2')),
1372
+ as alias scalars lose their field information, and the implementation
1373
+ relies upon np.void.__getitem__.
1374
+ """
1375
+ def __init__(self, format_functions):
1376
+ self.format_functions = format_functions
1377
+
1378
+ @classmethod
1379
+ def from_data(cls, data, **options):
1380
+ """
1381
+ This is a second way to initialize StructuredVoidFormat, using the raw data
1382
+ as input. Added to avoid changing the signature of __init__.
1383
+ """
1384
+ format_functions = []
1385
+ for field_name in data.dtype.names:
1386
+ format_function = _get_format_function(data[field_name], **options)
1387
+ if data.dtype[field_name].shape != ():
1388
+ format_function = SubArrayFormat(format_function, **options)
1389
+ format_functions.append(format_function)
1390
+ return cls(format_functions)
1391
+
1392
+ def __call__(self, x):
1393
+ str_fields = [
1394
+ format_function(field)
1395
+ for field, format_function in zip(x, self.format_functions)
1396
+ ]
1397
+ if len(str_fields) == 1:
1398
+ return "({},)".format(str_fields[0])
1399
+ else:
1400
+ return "({})".format(", ".join(str_fields))
1401
+
1402
+
1403
+ def _void_scalar_repr(x):
1404
+ """
1405
+ Implements the repr for structured-void scalars. It is called from the
1406
+ scalartypes.c.src code, and is placed here because it uses the elementwise
1407
+ formatters defined above.
1408
+ """
1409
+ return StructuredVoidFormat.from_data(array(x), **_format_options)(x)
1410
+
1411
+
1412
+ _typelessdata = [int_, float_, complex_, bool_]
1413
+
1414
+
1415
+ def dtype_is_implied(dtype):
1416
+ """
1417
+ Determine if the given dtype is implied by the representation of its values.
1418
+
1419
+ Parameters
1420
+ ----------
1421
+ dtype : dtype
1422
+ Data type
1423
+
1424
+ Returns
1425
+ -------
1426
+ implied : bool
1427
+ True if the dtype is implied by the representation of its values.
1428
+
1429
+ Examples
1430
+ --------
1431
+ >>> np.core.arrayprint.dtype_is_implied(int)
1432
+ True
1433
+ >>> np.array([1, 2, 3], int)
1434
+ array([1, 2, 3])
1435
+ >>> np.core.arrayprint.dtype_is_implied(np.int8)
1436
+ False
1437
+ >>> np.array([1, 2, 3], np.int8)
1438
+ array([1, 2, 3], dtype=int8)
1439
+ """
1440
+ dtype = np.dtype(dtype)
1441
+ if _format_options['legacy'] <= 113 and dtype.type == bool_:
1442
+ return False
1443
+
1444
+ # not just void types can be structured, and names are not part of the repr
1445
+ if dtype.names is not None:
1446
+ return False
1447
+
1448
+ # should care about endianness *unless size is 1* (e.g., int8, bool)
1449
+ if not dtype.isnative:
1450
+ return False
1451
+
1452
+ return dtype.type in _typelessdata
1453
+
1454
+
1455
+ def dtype_short_repr(dtype):
1456
+ """
1457
+ Convert a dtype to a short form which evaluates to the same dtype.
1458
+
1459
+ The intent is roughly that the following holds
1460
+
1461
+ >>> from numpy import *
1462
+ >>> dt = np.int64([1, 2]).dtype
1463
+ >>> assert eval(dtype_short_repr(dt)) == dt
1464
+ """
1465
+ if type(dtype).__repr__ != np.dtype.__repr__:
1466
+ # TODO: Custom repr for user DTypes, logic should likely move.
1467
+ return repr(dtype)
1468
+ if dtype.names is not None:
1469
+ # structured dtypes give a list or tuple repr
1470
+ return str(dtype)
1471
+ elif issubclass(dtype.type, flexible):
1472
+ # handle these separately so they don't give garbage like str256
1473
+ return "'%s'" % str(dtype)
1474
+
1475
+ typename = dtype.name
1476
+ if not dtype.isnative:
1477
+ # deal with cases like dtype('<u2') that are identical to an
1478
+ # established dtype (in this case uint16)
1479
+ # except that they have a different endianness.
1480
+ return "'%s'" % str(dtype)
1481
+ # quote typenames which can't be represented as python variable names
1482
+ if typename and not (typename[0].isalpha() and typename.isalnum()):
1483
+ typename = repr(typename)
1484
+ return typename
1485
+
1486
+
1487
+ def _array_repr_implementation(
1488
+ arr, max_line_width=None, precision=None, suppress_small=None,
1489
+ array2string=array2string):
1490
+ """Internal version of array_repr() that allows overriding array2string."""
1491
+ if max_line_width is None:
1492
+ max_line_width = _format_options['linewidth']
1493
+
1494
+ if type(arr) is not ndarray:
1495
+ class_name = type(arr).__name__
1496
+ else:
1497
+ class_name = "array"
1498
+
1499
+ skipdtype = dtype_is_implied(arr.dtype) and arr.size > 0
1500
+
1501
+ prefix = class_name + "("
1502
+ suffix = ")" if skipdtype else ","
1503
+
1504
+ if (_format_options['legacy'] <= 113 and
1505
+ arr.shape == () and not arr.dtype.names):
1506
+ lst = repr(arr.item())
1507
+ elif arr.size > 0 or arr.shape == (0,):
1508
+ lst = array2string(arr, max_line_width, precision, suppress_small,
1509
+ ', ', prefix, suffix=suffix)
1510
+ else: # show zero-length shape unless it is (0,)
1511
+ lst = "[], shape=%s" % (repr(arr.shape),)
1512
+
1513
+ arr_str = prefix + lst + suffix
1514
+
1515
+ if skipdtype:
1516
+ return arr_str
1517
+
1518
+ dtype_str = "dtype={})".format(dtype_short_repr(arr.dtype))
1519
+
1520
+ # compute whether we should put dtype on a new line: Do so if adding the
1521
+ # dtype would extend the last line past max_line_width.
1522
+ # Note: This line gives the correct result even when rfind returns -1.
1523
+ last_line_len = len(arr_str) - (arr_str.rfind('\n') + 1)
1524
+ spacer = " "
1525
+ if _format_options['legacy'] <= 113:
1526
+ if issubclass(arr.dtype.type, flexible):
1527
+ spacer = '\n' + ' '*len(class_name + "(")
1528
+ elif last_line_len + len(dtype_str) + 1 > max_line_width:
1529
+ spacer = '\n' + ' '*len(class_name + "(")
1530
+
1531
+ return arr_str + spacer + dtype_str
1532
+
1533
+
1534
+ def _array_repr_dispatcher(
1535
+ arr, max_line_width=None, precision=None, suppress_small=None):
1536
+ return (arr,)
1537
+
1538
+
1539
+ @array_function_dispatch(_array_repr_dispatcher, module='numpy')
1540
+ def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
1541
+ """
1542
+ Return the string representation of an array.
1543
+
1544
+ Parameters
1545
+ ----------
1546
+ arr : ndarray
1547
+ Input array.
1548
+ max_line_width : int, optional
1549
+ Inserts newlines if text is longer than `max_line_width`.
1550
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
1551
+ precision : int, optional
1552
+ Floating point precision.
1553
+ Defaults to ``numpy.get_printoptions()['precision']``.
1554
+ suppress_small : bool, optional
1555
+ Represent numbers "very close" to zero as zero; default is False.
1556
+ Very close is defined by precision: if the precision is 8, e.g.,
1557
+ numbers smaller (in absolute value) than 5e-9 are represented as
1558
+ zero.
1559
+ Defaults to ``numpy.get_printoptions()['suppress']``.
1560
+
1561
+ Returns
1562
+ -------
1563
+ string : str
1564
+ The string representation of an array.
1565
+
1566
+ See Also
1567
+ --------
1568
+ array_str, array2string, set_printoptions
1569
+
1570
+ Examples
1571
+ --------
1572
+ >>> np.array_repr(np.array([1,2]))
1573
+ 'array([1, 2])'
1574
+ >>> np.array_repr(np.ma.array([0.]))
1575
+ 'MaskedArray([0.])'
1576
+ >>> np.array_repr(np.array([], np.int32))
1577
+ 'array([], dtype=int32)'
1578
+
1579
+ >>> x = np.array([1e-6, 4e-7, 2, 3])
1580
+ >>> np.array_repr(x, precision=6, suppress_small=True)
1581
+ 'array([0.000001, 0. , 2. , 3. ])'
1582
+
1583
+ """
1584
+ return _array_repr_implementation(
1585
+ arr, max_line_width, precision, suppress_small)
1586
+
1587
+
1588
+ @_recursive_guard()
1589
+ def _guarded_repr_or_str(v):
1590
+ if isinstance(v, bytes):
1591
+ return repr(v)
1592
+ return str(v)
1593
+
1594
+
1595
+ def _array_str_implementation(
1596
+ a, max_line_width=None, precision=None, suppress_small=None,
1597
+ array2string=array2string):
1598
+ """Internal version of array_str() that allows overriding array2string."""
1599
+ if (_format_options['legacy'] <= 113 and
1600
+ a.shape == () and not a.dtype.names):
1601
+ return str(a.item())
1602
+
1603
+ # the str of 0d arrays is a special case: It should appear like a scalar,
1604
+ # so floats are not truncated by `precision`, and strings are not wrapped
1605
+ # in quotes. So we return the str of the scalar value.
1606
+ if a.shape == ():
1607
+ # obtain a scalar and call str on it, avoiding problems for subclasses
1608
+ # for which indexing with () returns a 0d instead of a scalar by using
1609
+ # ndarray's getindex. Also guard against recursive 0d object arrays.
1610
+ return _guarded_repr_or_str(np.ndarray.__getitem__(a, ()))
1611
+
1612
+ return array2string(a, max_line_width, precision, suppress_small, ' ', "")
1613
+
1614
+
1615
+ def _array_str_dispatcher(
1616
+ a, max_line_width=None, precision=None, suppress_small=None):
1617
+ return (a,)
1618
+
1619
+
1620
+ @array_function_dispatch(_array_str_dispatcher, module='numpy')
1621
+ def array_str(a, max_line_width=None, precision=None, suppress_small=None):
1622
+ """
1623
+ Return a string representation of the data in an array.
1624
+
1625
+ The data in the array is returned as a single string. This function is
1626
+ similar to `array_repr`, the difference being that `array_repr` also
1627
+ returns information on the kind of array and its data type.
1628
+
1629
+ Parameters
1630
+ ----------
1631
+ a : ndarray
1632
+ Input array.
1633
+ max_line_width : int, optional
1634
+ Inserts newlines if text is longer than `max_line_width`.
1635
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
1636
+ precision : int, optional
1637
+ Floating point precision.
1638
+ Defaults to ``numpy.get_printoptions()['precision']``.
1639
+ suppress_small : bool, optional
1640
+ Represent numbers "very close" to zero as zero; default is False.
1641
+ Very close is defined by precision: if the precision is 8, e.g.,
1642
+ numbers smaller (in absolute value) than 5e-9 are represented as
1643
+ zero.
1644
+ Defaults to ``numpy.get_printoptions()['suppress']``.
1645
+
1646
+ See Also
1647
+ --------
1648
+ array2string, array_repr, set_printoptions
1649
+
1650
+ Examples
1651
+ --------
1652
+ >>> np.array_str(np.arange(3))
1653
+ '[0 1 2]'
1654
+
1655
+ """
1656
+ return _array_str_implementation(
1657
+ a, max_line_width, precision, suppress_small)
1658
+
1659
+
1660
+ # needed if __array_function__ is disabled
1661
+ _array2string_impl = getattr(array2string, '__wrapped__', array2string)
1662
+ _default_array_str = functools.partial(_array_str_implementation,
1663
+ array2string=_array2string_impl)
1664
+ _default_array_repr = functools.partial(_array_repr_implementation,
1665
+ array2string=_array2string_impl)
1666
+
1667
+
1668
+ def set_string_function(f, repr=True):
1669
+ """
1670
+ Set a Python function to be used when pretty printing arrays.
1671
+
1672
+ Parameters
1673
+ ----------
1674
+ f : function or None
1675
+ Function to be used to pretty print arrays. The function should expect
1676
+ a single array argument and return a string of the representation of
1677
+ the array. If None, the function is reset to the default NumPy function
1678
+ to print arrays.
1679
+ repr : bool, optional
1680
+ If True (default), the function for pretty printing (``__repr__``)
1681
+ is set, if False the function that returns the default string
1682
+ representation (``__str__``) is set.
1683
+
1684
+ See Also
1685
+ --------
1686
+ set_printoptions, get_printoptions
1687
+
1688
+ Examples
1689
+ --------
1690
+ >>> def pprint(arr):
1691
+ ... return 'HA! - What are you going to do now?'
1692
+ ...
1693
+ >>> np.set_string_function(pprint)
1694
+ >>> a = np.arange(10)
1695
+ >>> a
1696
+ HA! - What are you going to do now?
1697
+ >>> _ = a
1698
+ >>> # [0 1 2 3 4 5 6 7 8 9]
1699
+
1700
+ We can reset the function to the default:
1701
+
1702
+ >>> np.set_string_function(None)
1703
+ >>> a
1704
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
1705
+
1706
+ `repr` affects either pretty printing or normal string representation.
1707
+ Note that ``__repr__`` is still affected by setting ``__str__``
1708
+ because the width of each array element in the returned string becomes
1709
+ equal to the length of the result of ``__str__()``.
1710
+
1711
+ >>> x = np.arange(4)
1712
+ >>> np.set_string_function(lambda x:'random', repr=False)
1713
+ >>> x.__str__()
1714
+ 'random'
1715
+ >>> x.__repr__()
1716
+ 'array([0, 1, 2, 3])'
1717
+
1718
+ """
1719
+ if f is None:
1720
+ if repr:
1721
+ return multiarray.set_string_function(_default_array_repr, 1)
1722
+ else:
1723
+ return multiarray.set_string_function(_default_array_str, 0)
1724
+ else:
1725
+ return multiarray.set_string_function(f, repr)
env-llmeval/lib/python3.10/site-packages/numpy/core/defchararray.pyi ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Literal as L,
3
+ overload,
4
+ TypeVar,
5
+ Any,
6
+ )
7
+
8
+ from numpy import (
9
+ chararray as chararray,
10
+ dtype,
11
+ str_,
12
+ bytes_,
13
+ int_,
14
+ bool_,
15
+ object_,
16
+ _OrderKACF,
17
+ )
18
+
19
+ from numpy._typing import (
20
+ NDArray,
21
+ _ArrayLikeStr_co as U_co,
22
+ _ArrayLikeBytes_co as S_co,
23
+ _ArrayLikeInt_co as i_co,
24
+ _ArrayLikeBool_co as b_co,
25
+ )
26
+
27
+ from numpy.core.multiarray import compare_chararrays as compare_chararrays
28
+
29
+ _SCT = TypeVar("_SCT", str_, bytes_)
30
+ _CharArray = chararray[Any, dtype[_SCT]]
31
+
32
+ __all__: list[str]
33
+
34
+ # Comparison
35
+ @overload
36
+ def equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
37
+ @overload
38
+ def equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
39
+
40
+ @overload
41
+ def not_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
42
+ @overload
43
+ def not_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
44
+
45
+ @overload
46
+ def greater_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
47
+ @overload
48
+ def greater_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
49
+
50
+ @overload
51
+ def less_equal(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
52
+ @overload
53
+ def less_equal(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
54
+
55
+ @overload
56
+ def greater(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
57
+ @overload
58
+ def greater(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
59
+
60
+ @overload
61
+ def less(x1: U_co, x2: U_co) -> NDArray[bool_]: ...
62
+ @overload
63
+ def less(x1: S_co, x2: S_co) -> NDArray[bool_]: ...
64
+
65
+ # String operations
66
+ @overload
67
+ def add(x1: U_co, x2: U_co) -> NDArray[str_]: ...
68
+ @overload
69
+ def add(x1: S_co, x2: S_co) -> NDArray[bytes_]: ...
70
+
71
+ @overload
72
+ def multiply(a: U_co, i: i_co) -> NDArray[str_]: ...
73
+ @overload
74
+ def multiply(a: S_co, i: i_co) -> NDArray[bytes_]: ...
75
+
76
+ @overload
77
+ def mod(a: U_co, value: Any) -> NDArray[str_]: ...
78
+ @overload
79
+ def mod(a: S_co, value: Any) -> NDArray[bytes_]: ...
80
+
81
+ @overload
82
+ def capitalize(a: U_co) -> NDArray[str_]: ...
83
+ @overload
84
+ def capitalize(a: S_co) -> NDArray[bytes_]: ...
85
+
86
+ @overload
87
+ def center(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
88
+ @overload
89
+ def center(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
90
+
91
+ def decode(
92
+ a: S_co,
93
+ encoding: None | str = ...,
94
+ errors: None | str = ...,
95
+ ) -> NDArray[str_]: ...
96
+
97
+ def encode(
98
+ a: U_co,
99
+ encoding: None | str = ...,
100
+ errors: None | str = ...,
101
+ ) -> NDArray[bytes_]: ...
102
+
103
+ @overload
104
+ def expandtabs(a: U_co, tabsize: i_co = ...) -> NDArray[str_]: ...
105
+ @overload
106
+ def expandtabs(a: S_co, tabsize: i_co = ...) -> NDArray[bytes_]: ...
107
+
108
+ @overload
109
+ def join(sep: U_co, seq: U_co) -> NDArray[str_]: ...
110
+ @overload
111
+ def join(sep: S_co, seq: S_co) -> NDArray[bytes_]: ...
112
+
113
+ @overload
114
+ def ljust(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
115
+ @overload
116
+ def ljust(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
117
+
118
+ @overload
119
+ def lower(a: U_co) -> NDArray[str_]: ...
120
+ @overload
121
+ def lower(a: S_co) -> NDArray[bytes_]: ...
122
+
123
+ @overload
124
+ def lstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
125
+ @overload
126
+ def lstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
127
+
128
+ @overload
129
+ def partition(a: U_co, sep: U_co) -> NDArray[str_]: ...
130
+ @overload
131
+ def partition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
132
+
133
+ @overload
134
+ def replace(
135
+ a: U_co,
136
+ old: U_co,
137
+ new: U_co,
138
+ count: None | i_co = ...,
139
+ ) -> NDArray[str_]: ...
140
+ @overload
141
+ def replace(
142
+ a: S_co,
143
+ old: S_co,
144
+ new: S_co,
145
+ count: None | i_co = ...,
146
+ ) -> NDArray[bytes_]: ...
147
+
148
+ @overload
149
+ def rjust(
150
+ a: U_co,
151
+ width: i_co,
152
+ fillchar: U_co = ...,
153
+ ) -> NDArray[str_]: ...
154
+ @overload
155
+ def rjust(
156
+ a: S_co,
157
+ width: i_co,
158
+ fillchar: S_co = ...,
159
+ ) -> NDArray[bytes_]: ...
160
+
161
+ @overload
162
+ def rpartition(a: U_co, sep: U_co) -> NDArray[str_]: ...
163
+ @overload
164
+ def rpartition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
165
+
166
+ @overload
167
+ def rsplit(
168
+ a: U_co,
169
+ sep: None | U_co = ...,
170
+ maxsplit: None | i_co = ...,
171
+ ) -> NDArray[object_]: ...
172
+ @overload
173
+ def rsplit(
174
+ a: S_co,
175
+ sep: None | S_co = ...,
176
+ maxsplit: None | i_co = ...,
177
+ ) -> NDArray[object_]: ...
178
+
179
+ @overload
180
+ def rstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
181
+ @overload
182
+ def rstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
183
+
184
+ @overload
185
+ def split(
186
+ a: U_co,
187
+ sep: None | U_co = ...,
188
+ maxsplit: None | i_co = ...,
189
+ ) -> NDArray[object_]: ...
190
+ @overload
191
+ def split(
192
+ a: S_co,
193
+ sep: None | S_co = ...,
194
+ maxsplit: None | i_co = ...,
195
+ ) -> NDArray[object_]: ...
196
+
197
+ @overload
198
+ def splitlines(a: U_co, keepends: None | b_co = ...) -> NDArray[object_]: ...
199
+ @overload
200
+ def splitlines(a: S_co, keepends: None | b_co = ...) -> NDArray[object_]: ...
201
+
202
+ @overload
203
+ def strip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
204
+ @overload
205
+ def strip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
206
+
207
+ @overload
208
+ def swapcase(a: U_co) -> NDArray[str_]: ...
209
+ @overload
210
+ def swapcase(a: S_co) -> NDArray[bytes_]: ...
211
+
212
+ @overload
213
+ def title(a: U_co) -> NDArray[str_]: ...
214
+ @overload
215
+ def title(a: S_co) -> NDArray[bytes_]: ...
216
+
217
+ @overload
218
+ def translate(
219
+ a: U_co,
220
+ table: U_co,
221
+ deletechars: None | U_co = ...,
222
+ ) -> NDArray[str_]: ...
223
+ @overload
224
+ def translate(
225
+ a: S_co,
226
+ table: S_co,
227
+ deletechars: None | S_co = ...,
228
+ ) -> NDArray[bytes_]: ...
229
+
230
+ @overload
231
+ def upper(a: U_co) -> NDArray[str_]: ...
232
+ @overload
233
+ def upper(a: S_co) -> NDArray[bytes_]: ...
234
+
235
+ @overload
236
+ def zfill(a: U_co, width: i_co) -> NDArray[str_]: ...
237
+ @overload
238
+ def zfill(a: S_co, width: i_co) -> NDArray[bytes_]: ...
239
+
240
+ # String information
241
+ @overload
242
+ def count(
243
+ a: U_co,
244
+ sub: U_co,
245
+ start: i_co = ...,
246
+ end: None | i_co = ...,
247
+ ) -> NDArray[int_]: ...
248
+ @overload
249
+ def count(
250
+ a: S_co,
251
+ sub: S_co,
252
+ start: i_co = ...,
253
+ end: None | i_co = ...,
254
+ ) -> NDArray[int_]: ...
255
+
256
+ @overload
257
+ def endswith(
258
+ a: U_co,
259
+ suffix: U_co,
260
+ start: i_co = ...,
261
+ end: None | i_co = ...,
262
+ ) -> NDArray[bool_]: ...
263
+ @overload
264
+ def endswith(
265
+ a: S_co,
266
+ suffix: S_co,
267
+ start: i_co = ...,
268
+ end: None | i_co = ...,
269
+ ) -> NDArray[bool_]: ...
270
+
271
+ @overload
272
+ def find(
273
+ a: U_co,
274
+ sub: U_co,
275
+ start: i_co = ...,
276
+ end: None | i_co = ...,
277
+ ) -> NDArray[int_]: ...
278
+ @overload
279
+ def find(
280
+ a: S_co,
281
+ sub: S_co,
282
+ start: i_co = ...,
283
+ end: None | i_co = ...,
284
+ ) -> NDArray[int_]: ...
285
+
286
+ @overload
287
+ def index(
288
+ a: U_co,
289
+ sub: U_co,
290
+ start: i_co = ...,
291
+ end: None | i_co = ...,
292
+ ) -> NDArray[int_]: ...
293
+ @overload
294
+ def index(
295
+ a: S_co,
296
+ sub: S_co,
297
+ start: i_co = ...,
298
+ end: None | i_co = ...,
299
+ ) -> NDArray[int_]: ...
300
+
301
+ def isalpha(a: U_co | S_co) -> NDArray[bool_]: ...
302
+ def isalnum(a: U_co | S_co) -> NDArray[bool_]: ...
303
+ def isdecimal(a: U_co | S_co) -> NDArray[bool_]: ...
304
+ def isdigit(a: U_co | S_co) -> NDArray[bool_]: ...
305
+ def islower(a: U_co | S_co) -> NDArray[bool_]: ...
306
+ def isnumeric(a: U_co | S_co) -> NDArray[bool_]: ...
307
+ def isspace(a: U_co | S_co) -> NDArray[bool_]: ...
308
+ def istitle(a: U_co | S_co) -> NDArray[bool_]: ...
309
+ def isupper(a: U_co | S_co) -> NDArray[bool_]: ...
310
+
311
+ @overload
312
+ def rfind(
313
+ a: U_co,
314
+ sub: U_co,
315
+ start: i_co = ...,
316
+ end: None | i_co = ...,
317
+ ) -> NDArray[int_]: ...
318
+ @overload
319
+ def rfind(
320
+ a: S_co,
321
+ sub: S_co,
322
+ start: i_co = ...,
323
+ end: None | i_co = ...,
324
+ ) -> NDArray[int_]: ...
325
+
326
+ @overload
327
+ def rindex(
328
+ a: U_co,
329
+ sub: U_co,
330
+ start: i_co = ...,
331
+ end: None | i_co = ...,
332
+ ) -> NDArray[int_]: ...
333
+ @overload
334
+ def rindex(
335
+ a: S_co,
336
+ sub: S_co,
337
+ start: i_co = ...,
338
+ end: None | i_co = ...,
339
+ ) -> NDArray[int_]: ...
340
+
341
+ @overload
342
+ def startswith(
343
+ a: U_co,
344
+ prefix: U_co,
345
+ start: i_co = ...,
346
+ end: None | i_co = ...,
347
+ ) -> NDArray[bool_]: ...
348
+ @overload
349
+ def startswith(
350
+ a: S_co,
351
+ prefix: S_co,
352
+ start: i_co = ...,
353
+ end: None | i_co = ...,
354
+ ) -> NDArray[bool_]: ...
355
+
356
+ def str_len(A: U_co | S_co) -> NDArray[int_]: ...
357
+
358
+ # Overload 1 and 2: str- or bytes-based array-likes
359
+ # overload 3: arbitrary object with unicode=False (-> bytes_)
360
+ # overload 4: arbitrary object with unicode=True (-> str_)
361
+ @overload
362
+ def array(
363
+ obj: U_co,
364
+ itemsize: None | int = ...,
365
+ copy: bool = ...,
366
+ unicode: L[False] = ...,
367
+ order: _OrderKACF = ...,
368
+ ) -> _CharArray[str_]: ...
369
+ @overload
370
+ def array(
371
+ obj: S_co,
372
+ itemsize: None | int = ...,
373
+ copy: bool = ...,
374
+ unicode: L[False] = ...,
375
+ order: _OrderKACF = ...,
376
+ ) -> _CharArray[bytes_]: ...
377
+ @overload
378
+ def array(
379
+ obj: object,
380
+ itemsize: None | int = ...,
381
+ copy: bool = ...,
382
+ unicode: L[False] = ...,
383
+ order: _OrderKACF = ...,
384
+ ) -> _CharArray[bytes_]: ...
385
+ @overload
386
+ def array(
387
+ obj: object,
388
+ itemsize: None | int = ...,
389
+ copy: bool = ...,
390
+ unicode: L[True] = ...,
391
+ order: _OrderKACF = ...,
392
+ ) -> _CharArray[str_]: ...
393
+
394
+ @overload
395
+ def asarray(
396
+ obj: U_co,
397
+ itemsize: None | int = ...,
398
+ unicode: L[False] = ...,
399
+ order: _OrderKACF = ...,
400
+ ) -> _CharArray[str_]: ...
401
+ @overload
402
+ def asarray(
403
+ obj: S_co,
404
+ itemsize: None | int = ...,
405
+ unicode: L[False] = ...,
406
+ order: _OrderKACF = ...,
407
+ ) -> _CharArray[bytes_]: ...
408
+ @overload
409
+ def asarray(
410
+ obj: object,
411
+ itemsize: None | int = ...,
412
+ unicode: L[False] = ...,
413
+ order: _OrderKACF = ...,
414
+ ) -> _CharArray[bytes_]: ...
415
+ @overload
416
+ def asarray(
417
+ obj: object,
418
+ itemsize: None | int = ...,
419
+ unicode: L[True] = ...,
420
+ order: _OrderKACF = ...,
421
+ ) -> _CharArray[str_]: ...
env-llmeval/lib/python3.10/site-packages/numpy/core/einsumfunc.py ADDED
@@ -0,0 +1,1443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Implementation of optimized einsum.
3
+
4
+ """
5
+ import itertools
6
+ import operator
7
+
8
+ from numpy.core.multiarray import c_einsum
9
+ from numpy.core.numeric import asanyarray, tensordot
10
+ from numpy.core.overrides import array_function_dispatch
11
+
12
+ __all__ = ['einsum', 'einsum_path']
13
+
14
+ einsum_symbols = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
15
+ einsum_symbols_set = set(einsum_symbols)
16
+
17
+
18
+ def _flop_count(idx_contraction, inner, num_terms, size_dictionary):
19
+ """
20
+ Computes the number of FLOPS in the contraction.
21
+
22
+ Parameters
23
+ ----------
24
+ idx_contraction : iterable
25
+ The indices involved in the contraction
26
+ inner : bool
27
+ Does this contraction require an inner product?
28
+ num_terms : int
29
+ The number of terms in a contraction
30
+ size_dictionary : dict
31
+ The size of each of the indices in idx_contraction
32
+
33
+ Returns
34
+ -------
35
+ flop_count : int
36
+ The total number of FLOPS required for the contraction.
37
+
38
+ Examples
39
+ --------
40
+
41
+ >>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5})
42
+ 30
43
+
44
+ >>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5})
45
+ 60
46
+
47
+ """
48
+
49
+ overall_size = _compute_size_by_dict(idx_contraction, size_dictionary)
50
+ op_factor = max(1, num_terms - 1)
51
+ if inner:
52
+ op_factor += 1
53
+
54
+ return overall_size * op_factor
55
+
56
+ def _compute_size_by_dict(indices, idx_dict):
57
+ """
58
+ Computes the product of the elements in indices based on the dictionary
59
+ idx_dict.
60
+
61
+ Parameters
62
+ ----------
63
+ indices : iterable
64
+ Indices to base the product on.
65
+ idx_dict : dictionary
66
+ Dictionary of index sizes
67
+
68
+ Returns
69
+ -------
70
+ ret : int
71
+ The resulting product.
72
+
73
+ Examples
74
+ --------
75
+ >>> _compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5})
76
+ 90
77
+
78
+ """
79
+ ret = 1
80
+ for i in indices:
81
+ ret *= idx_dict[i]
82
+ return ret
83
+
84
+
85
+ def _find_contraction(positions, input_sets, output_set):
86
+ """
87
+ Finds the contraction for a given set of input and output sets.
88
+
89
+ Parameters
90
+ ----------
91
+ positions : iterable
92
+ Integer positions of terms used in the contraction.
93
+ input_sets : list
94
+ List of sets that represent the lhs side of the einsum subscript
95
+ output_set : set
96
+ Set that represents the rhs side of the overall einsum subscript
97
+
98
+ Returns
99
+ -------
100
+ new_result : set
101
+ The indices of the resulting contraction
102
+ remaining : list
103
+ List of sets that have not been contracted, the new set is appended to
104
+ the end of this list
105
+ idx_removed : set
106
+ Indices removed from the entire contraction
107
+ idx_contraction : set
108
+ The indices used in the current contraction
109
+
110
+ Examples
111
+ --------
112
+
113
+ # A simple dot product test case
114
+ >>> pos = (0, 1)
115
+ >>> isets = [set('ab'), set('bc')]
116
+ >>> oset = set('ac')
117
+ >>> _find_contraction(pos, isets, oset)
118
+ ({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'})
119
+
120
+ # A more complex case with additional terms in the contraction
121
+ >>> pos = (0, 2)
122
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
123
+ >>> oset = set('ac')
124
+ >>> _find_contraction(pos, isets, oset)
125
+ ({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'})
126
+ """
127
+
128
+ idx_contract = set()
129
+ idx_remain = output_set.copy()
130
+ remaining = []
131
+ for ind, value in enumerate(input_sets):
132
+ if ind in positions:
133
+ idx_contract |= value
134
+ else:
135
+ remaining.append(value)
136
+ idx_remain |= value
137
+
138
+ new_result = idx_remain & idx_contract
139
+ idx_removed = (idx_contract - new_result)
140
+ remaining.append(new_result)
141
+
142
+ return (new_result, remaining, idx_removed, idx_contract)
143
+
144
+
145
+ def _optimal_path(input_sets, output_set, idx_dict, memory_limit):
146
+ """
147
+ Computes all possible pair contractions, sieves the results based
148
+ on ``memory_limit`` and returns the lowest cost path. This algorithm
149
+ scales factorial with respect to the elements in the list ``input_sets``.
150
+
151
+ Parameters
152
+ ----------
153
+ input_sets : list
154
+ List of sets that represent the lhs side of the einsum subscript
155
+ output_set : set
156
+ Set that represents the rhs side of the overall einsum subscript
157
+ idx_dict : dictionary
158
+ Dictionary of index sizes
159
+ memory_limit : int
160
+ The maximum number of elements in a temporary array
161
+
162
+ Returns
163
+ -------
164
+ path : list
165
+ The optimal contraction order within the memory limit constraint.
166
+
167
+ Examples
168
+ --------
169
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
170
+ >>> oset = set()
171
+ >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
172
+ >>> _optimal_path(isets, oset, idx_sizes, 5000)
173
+ [(0, 2), (0, 1)]
174
+ """
175
+
176
+ full_results = [(0, [], input_sets)]
177
+ for iteration in range(len(input_sets) - 1):
178
+ iter_results = []
179
+
180
+ # Compute all unique pairs
181
+ for curr in full_results:
182
+ cost, positions, remaining = curr
183
+ for con in itertools.combinations(range(len(input_sets) - iteration), 2):
184
+
185
+ # Find the contraction
186
+ cont = _find_contraction(con, remaining, output_set)
187
+ new_result, new_input_sets, idx_removed, idx_contract = cont
188
+
189
+ # Sieve the results based on memory_limit
190
+ new_size = _compute_size_by_dict(new_result, idx_dict)
191
+ if new_size > memory_limit:
192
+ continue
193
+
194
+ # Build (total_cost, positions, indices_remaining)
195
+ total_cost = cost + _flop_count(idx_contract, idx_removed, len(con), idx_dict)
196
+ new_pos = positions + [con]
197
+ iter_results.append((total_cost, new_pos, new_input_sets))
198
+
199
+ # Update combinatorial list, if we did not find anything return best
200
+ # path + remaining contractions
201
+ if iter_results:
202
+ full_results = iter_results
203
+ else:
204
+ path = min(full_results, key=lambda x: x[0])[1]
205
+ path += [tuple(range(len(input_sets) - iteration))]
206
+ return path
207
+
208
+ # If we have not found anything return single einsum contraction
209
+ if len(full_results) == 0:
210
+ return [tuple(range(len(input_sets)))]
211
+
212
+ path = min(full_results, key=lambda x: x[0])[1]
213
+ return path
214
+
215
+ def _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, naive_cost):
216
+ """Compute the cost (removed size + flops) and resultant indices for
217
+ performing the contraction specified by ``positions``.
218
+
219
+ Parameters
220
+ ----------
221
+ positions : tuple of int
222
+ The locations of the proposed tensors to contract.
223
+ input_sets : list of sets
224
+ The indices found on each tensors.
225
+ output_set : set
226
+ The output indices of the expression.
227
+ idx_dict : dict
228
+ Mapping of each index to its size.
229
+ memory_limit : int
230
+ The total allowed size for an intermediary tensor.
231
+ path_cost : int
232
+ The contraction cost so far.
233
+ naive_cost : int
234
+ The cost of the unoptimized expression.
235
+
236
+ Returns
237
+ -------
238
+ cost : (int, int)
239
+ A tuple containing the size of any indices removed, and the flop cost.
240
+ positions : tuple of int
241
+ The locations of the proposed tensors to contract.
242
+ new_input_sets : list of sets
243
+ The resulting new list of indices if this proposed contraction is performed.
244
+
245
+ """
246
+
247
+ # Find the contraction
248
+ contract = _find_contraction(positions, input_sets, output_set)
249
+ idx_result, new_input_sets, idx_removed, idx_contract = contract
250
+
251
+ # Sieve the results based on memory_limit
252
+ new_size = _compute_size_by_dict(idx_result, idx_dict)
253
+ if new_size > memory_limit:
254
+ return None
255
+
256
+ # Build sort tuple
257
+ old_sizes = (_compute_size_by_dict(input_sets[p], idx_dict) for p in positions)
258
+ removed_size = sum(old_sizes) - new_size
259
+
260
+ # NB: removed_size used to be just the size of any removed indices i.e.:
261
+ # helpers.compute_size_by_dict(idx_removed, idx_dict)
262
+ cost = _flop_count(idx_contract, idx_removed, len(positions), idx_dict)
263
+ sort = (-removed_size, cost)
264
+
265
+ # Sieve based on total cost as well
266
+ if (path_cost + cost) > naive_cost:
267
+ return None
268
+
269
+ # Add contraction to possible choices
270
+ return [sort, positions, new_input_sets]
271
+
272
+
273
+ def _update_other_results(results, best):
274
+ """Update the positions and provisional input_sets of ``results`` based on
275
+ performing the contraction result ``best``. Remove any involving the tensors
276
+ contracted.
277
+
278
+ Parameters
279
+ ----------
280
+ results : list
281
+ List of contraction results produced by ``_parse_possible_contraction``.
282
+ best : list
283
+ The best contraction of ``results`` i.e. the one that will be performed.
284
+
285
+ Returns
286
+ -------
287
+ mod_results : list
288
+ The list of modified results, updated with outcome of ``best`` contraction.
289
+ """
290
+
291
+ best_con = best[1]
292
+ bx, by = best_con
293
+ mod_results = []
294
+
295
+ for cost, (x, y), con_sets in results:
296
+
297
+ # Ignore results involving tensors just contracted
298
+ if x in best_con or y in best_con:
299
+ continue
300
+
301
+ # Update the input_sets
302
+ del con_sets[by - int(by > x) - int(by > y)]
303
+ del con_sets[bx - int(bx > x) - int(bx > y)]
304
+ con_sets.insert(-1, best[2][-1])
305
+
306
+ # Update the position indices
307
+ mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by)
308
+ mod_results.append((cost, mod_con, con_sets))
309
+
310
+ return mod_results
311
+
312
+ def _greedy_path(input_sets, output_set, idx_dict, memory_limit):
313
+ """
314
+ Finds the path by contracting the best pair until the input list is
315
+ exhausted. The best pair is found by minimizing the tuple
316
+ ``(-prod(indices_removed), cost)``. What this amounts to is prioritizing
317
+ matrix multiplication or inner product operations, then Hadamard like
318
+ operations, and finally outer operations. Outer products are limited by
319
+ ``memory_limit``. This algorithm scales cubically with respect to the
320
+ number of elements in the list ``input_sets``.
321
+
322
+ Parameters
323
+ ----------
324
+ input_sets : list
325
+ List of sets that represent the lhs side of the einsum subscript
326
+ output_set : set
327
+ Set that represents the rhs side of the overall einsum subscript
328
+ idx_dict : dictionary
329
+ Dictionary of index sizes
330
+ memory_limit : int
331
+ The maximum number of elements in a temporary array
332
+
333
+ Returns
334
+ -------
335
+ path : list
336
+ The greedy contraction order within the memory limit constraint.
337
+
338
+ Examples
339
+ --------
340
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
341
+ >>> oset = set()
342
+ >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
343
+ >>> _greedy_path(isets, oset, idx_sizes, 5000)
344
+ [(0, 2), (0, 1)]
345
+ """
346
+
347
+ # Handle trivial cases that leaked through
348
+ if len(input_sets) == 1:
349
+ return [(0,)]
350
+ elif len(input_sets) == 2:
351
+ return [(0, 1)]
352
+
353
+ # Build up a naive cost
354
+ contract = _find_contraction(range(len(input_sets)), input_sets, output_set)
355
+ idx_result, new_input_sets, idx_removed, idx_contract = contract
356
+ naive_cost = _flop_count(idx_contract, idx_removed, len(input_sets), idx_dict)
357
+
358
+ # Initially iterate over all pairs
359
+ comb_iter = itertools.combinations(range(len(input_sets)), 2)
360
+ known_contractions = []
361
+
362
+ path_cost = 0
363
+ path = []
364
+
365
+ for iteration in range(len(input_sets) - 1):
366
+
367
+ # Iterate over all pairs on first step, only previously found pairs on subsequent steps
368
+ for positions in comb_iter:
369
+
370
+ # Always initially ignore outer products
371
+ if input_sets[positions[0]].isdisjoint(input_sets[positions[1]]):
372
+ continue
373
+
374
+ result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost,
375
+ naive_cost)
376
+ if result is not None:
377
+ known_contractions.append(result)
378
+
379
+ # If we do not have a inner contraction, rescan pairs including outer products
380
+ if len(known_contractions) == 0:
381
+
382
+ # Then check the outer products
383
+ for positions in itertools.combinations(range(len(input_sets)), 2):
384
+ result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit,
385
+ path_cost, naive_cost)
386
+ if result is not None:
387
+ known_contractions.append(result)
388
+
389
+ # If we still did not find any remaining contractions, default back to einsum like behavior
390
+ if len(known_contractions) == 0:
391
+ path.append(tuple(range(len(input_sets))))
392
+ break
393
+
394
+ # Sort based on first index
395
+ best = min(known_contractions, key=lambda x: x[0])
396
+
397
+ # Now propagate as many unused contractions as possible to next iteration
398
+ known_contractions = _update_other_results(known_contractions, best)
399
+
400
+ # Next iteration only compute contractions with the new tensor
401
+ # All other contractions have been accounted for
402
+ input_sets = best[2]
403
+ new_tensor_pos = len(input_sets) - 1
404
+ comb_iter = ((i, new_tensor_pos) for i in range(new_tensor_pos))
405
+
406
+ # Update path and total cost
407
+ path.append(best[1])
408
+ path_cost += best[0][1]
409
+
410
+ return path
411
+
412
+
413
+ def _can_dot(inputs, result, idx_removed):
414
+ """
415
+ Checks if we can use BLAS (np.tensordot) call and its beneficial to do so.
416
+
417
+ Parameters
418
+ ----------
419
+ inputs : list of str
420
+ Specifies the subscripts for summation.
421
+ result : str
422
+ Resulting summation.
423
+ idx_removed : set
424
+ Indices that are removed in the summation
425
+
426
+
427
+ Returns
428
+ -------
429
+ type : bool
430
+ Returns true if BLAS should and can be used, else False
431
+
432
+ Notes
433
+ -----
434
+ If the operations is BLAS level 1 or 2 and is not already aligned
435
+ we default back to einsum as the memory movement to copy is more
436
+ costly than the operation itself.
437
+
438
+
439
+ Examples
440
+ --------
441
+
442
+ # Standard GEMM operation
443
+ >>> _can_dot(['ij', 'jk'], 'ik', set('j'))
444
+ True
445
+
446
+ # Can use the standard BLAS, but requires odd data movement
447
+ >>> _can_dot(['ijj', 'jk'], 'ik', set('j'))
448
+ False
449
+
450
+ # DDOT where the memory is not aligned
451
+ >>> _can_dot(['ijk', 'ikj'], '', set('ijk'))
452
+ False
453
+
454
+ """
455
+
456
+ # All `dot` calls remove indices
457
+ if len(idx_removed) == 0:
458
+ return False
459
+
460
+ # BLAS can only handle two operands
461
+ if len(inputs) != 2:
462
+ return False
463
+
464
+ input_left, input_right = inputs
465
+
466
+ for c in set(input_left + input_right):
467
+ # can't deal with repeated indices on same input or more than 2 total
468
+ nl, nr = input_left.count(c), input_right.count(c)
469
+ if (nl > 1) or (nr > 1) or (nl + nr > 2):
470
+ return False
471
+
472
+ # can't do implicit summation or dimension collapse e.g.
473
+ # "ab,bc->c" (implicitly sum over 'a')
474
+ # "ab,ca->ca" (take diagonal of 'a')
475
+ if nl + nr - 1 == int(c in result):
476
+ return False
477
+
478
+ # Build a few temporaries
479
+ set_left = set(input_left)
480
+ set_right = set(input_right)
481
+ keep_left = set_left - idx_removed
482
+ keep_right = set_right - idx_removed
483
+ rs = len(idx_removed)
484
+
485
+ # At this point we are a DOT, GEMV, or GEMM operation
486
+
487
+ # Handle inner products
488
+
489
+ # DDOT with aligned data
490
+ if input_left == input_right:
491
+ return True
492
+
493
+ # DDOT without aligned data (better to use einsum)
494
+ if set_left == set_right:
495
+ return False
496
+
497
+ # Handle the 4 possible (aligned) GEMV or GEMM cases
498
+
499
+ # GEMM or GEMV no transpose
500
+ if input_left[-rs:] == input_right[:rs]:
501
+ return True
502
+
503
+ # GEMM or GEMV transpose both
504
+ if input_left[:rs] == input_right[-rs:]:
505
+ return True
506
+
507
+ # GEMM or GEMV transpose right
508
+ if input_left[-rs:] == input_right[-rs:]:
509
+ return True
510
+
511
+ # GEMM or GEMV transpose left
512
+ if input_left[:rs] == input_right[:rs]:
513
+ return True
514
+
515
+ # Einsum is faster than GEMV if we have to copy data
516
+ if not keep_left or not keep_right:
517
+ return False
518
+
519
+ # We are a matrix-matrix product, but we need to copy data
520
+ return True
521
+
522
+
523
+ def _parse_einsum_input(operands):
524
+ """
525
+ A reproduction of einsum c side einsum parsing in python.
526
+
527
+ Returns
528
+ -------
529
+ input_strings : str
530
+ Parsed input strings
531
+ output_string : str
532
+ Parsed output string
533
+ operands : list of array_like
534
+ The operands to use in the numpy contraction
535
+
536
+ Examples
537
+ --------
538
+ The operand list is simplified to reduce printing:
539
+
540
+ >>> np.random.seed(123)
541
+ >>> a = np.random.rand(4, 4)
542
+ >>> b = np.random.rand(4, 4, 4)
543
+ >>> _parse_einsum_input(('...a,...a->...', a, b))
544
+ ('za,xza', 'xz', [a, b]) # may vary
545
+
546
+ >>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
547
+ ('za,xza', 'xz', [a, b]) # may vary
548
+ """
549
+
550
+ if len(operands) == 0:
551
+ raise ValueError("No input operands")
552
+
553
+ if isinstance(operands[0], str):
554
+ subscripts = operands[0].replace(" ", "")
555
+ operands = [asanyarray(v) for v in operands[1:]]
556
+
557
+ # Ensure all characters are valid
558
+ for s in subscripts:
559
+ if s in '.,->':
560
+ continue
561
+ if s not in einsum_symbols:
562
+ raise ValueError("Character %s is not a valid symbol." % s)
563
+
564
+ else:
565
+ tmp_operands = list(operands)
566
+ operand_list = []
567
+ subscript_list = []
568
+ for p in range(len(operands) // 2):
569
+ operand_list.append(tmp_operands.pop(0))
570
+ subscript_list.append(tmp_operands.pop(0))
571
+
572
+ output_list = tmp_operands[-1] if len(tmp_operands) else None
573
+ operands = [asanyarray(v) for v in operand_list]
574
+ subscripts = ""
575
+ last = len(subscript_list) - 1
576
+ for num, sub in enumerate(subscript_list):
577
+ for s in sub:
578
+ if s is Ellipsis:
579
+ subscripts += "..."
580
+ else:
581
+ try:
582
+ s = operator.index(s)
583
+ except TypeError as e:
584
+ raise TypeError("For this input type lists must contain "
585
+ "either int or Ellipsis") from e
586
+ subscripts += einsum_symbols[s]
587
+ if num != last:
588
+ subscripts += ","
589
+
590
+ if output_list is not None:
591
+ subscripts += "->"
592
+ for s in output_list:
593
+ if s is Ellipsis:
594
+ subscripts += "..."
595
+ else:
596
+ try:
597
+ s = operator.index(s)
598
+ except TypeError as e:
599
+ raise TypeError("For this input type lists must contain "
600
+ "either int or Ellipsis") from e
601
+ subscripts += einsum_symbols[s]
602
+ # Check for proper "->"
603
+ if ("-" in subscripts) or (">" in subscripts):
604
+ invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1)
605
+ if invalid or (subscripts.count("->") != 1):
606
+ raise ValueError("Subscripts can only contain one '->'.")
607
+
608
+ # Parse ellipses
609
+ if "." in subscripts:
610
+ used = subscripts.replace(".", "").replace(",", "").replace("->", "")
611
+ unused = list(einsum_symbols_set - set(used))
612
+ ellipse_inds = "".join(unused)
613
+ longest = 0
614
+
615
+ if "->" in subscripts:
616
+ input_tmp, output_sub = subscripts.split("->")
617
+ split_subscripts = input_tmp.split(",")
618
+ out_sub = True
619
+ else:
620
+ split_subscripts = subscripts.split(',')
621
+ out_sub = False
622
+
623
+ for num, sub in enumerate(split_subscripts):
624
+ if "." in sub:
625
+ if (sub.count(".") != 3) or (sub.count("...") != 1):
626
+ raise ValueError("Invalid Ellipses.")
627
+
628
+ # Take into account numerical values
629
+ if operands[num].shape == ():
630
+ ellipse_count = 0
631
+ else:
632
+ ellipse_count = max(operands[num].ndim, 1)
633
+ ellipse_count -= (len(sub) - 3)
634
+
635
+ if ellipse_count > longest:
636
+ longest = ellipse_count
637
+
638
+ if ellipse_count < 0:
639
+ raise ValueError("Ellipses lengths do not match.")
640
+ elif ellipse_count == 0:
641
+ split_subscripts[num] = sub.replace('...', '')
642
+ else:
643
+ rep_inds = ellipse_inds[-ellipse_count:]
644
+ split_subscripts[num] = sub.replace('...', rep_inds)
645
+
646
+ subscripts = ",".join(split_subscripts)
647
+ if longest == 0:
648
+ out_ellipse = ""
649
+ else:
650
+ out_ellipse = ellipse_inds[-longest:]
651
+
652
+ if out_sub:
653
+ subscripts += "->" + output_sub.replace("...", out_ellipse)
654
+ else:
655
+ # Special care for outputless ellipses
656
+ output_subscript = ""
657
+ tmp_subscripts = subscripts.replace(",", "")
658
+ for s in sorted(set(tmp_subscripts)):
659
+ if s not in (einsum_symbols):
660
+ raise ValueError("Character %s is not a valid symbol." % s)
661
+ if tmp_subscripts.count(s) == 1:
662
+ output_subscript += s
663
+ normal_inds = ''.join(sorted(set(output_subscript) -
664
+ set(out_ellipse)))
665
+
666
+ subscripts += "->" + out_ellipse + normal_inds
667
+
668
+ # Build output string if does not exist
669
+ if "->" in subscripts:
670
+ input_subscripts, output_subscript = subscripts.split("->")
671
+ else:
672
+ input_subscripts = subscripts
673
+ # Build output subscripts
674
+ tmp_subscripts = subscripts.replace(",", "")
675
+ output_subscript = ""
676
+ for s in sorted(set(tmp_subscripts)):
677
+ if s not in einsum_symbols:
678
+ raise ValueError("Character %s is not a valid symbol." % s)
679
+ if tmp_subscripts.count(s) == 1:
680
+ output_subscript += s
681
+
682
+ # Make sure output subscripts are in the input
683
+ for char in output_subscript:
684
+ if char not in input_subscripts:
685
+ raise ValueError("Output character %s did not appear in the input"
686
+ % char)
687
+
688
+ # Make sure number operands is equivalent to the number of terms
689
+ if len(input_subscripts.split(',')) != len(operands):
690
+ raise ValueError("Number of einsum subscripts must be equal to the "
691
+ "number of operands.")
692
+
693
+ return (input_subscripts, output_subscript, operands)
694
+
695
+
696
+ def _einsum_path_dispatcher(*operands, optimize=None, einsum_call=None):
697
+ # NOTE: technically, we should only dispatch on array-like arguments, not
698
+ # subscripts (given as strings). But separating operands into
699
+ # arrays/subscripts is a little tricky/slow (given einsum's two supported
700
+ # signatures), so as a practical shortcut we dispatch on everything.
701
+ # Strings will be ignored for dispatching since they don't define
702
+ # __array_function__.
703
+ return operands
704
+
705
+
706
+ @array_function_dispatch(_einsum_path_dispatcher, module='numpy')
707
+ def einsum_path(*operands, optimize='greedy', einsum_call=False):
708
+ """
709
+ einsum_path(subscripts, *operands, optimize='greedy')
710
+
711
+ Evaluates the lowest cost contraction order for an einsum expression by
712
+ considering the creation of intermediate arrays.
713
+
714
+ Parameters
715
+ ----------
716
+ subscripts : str
717
+ Specifies the subscripts for summation.
718
+ *operands : list of array_like
719
+ These are the arrays for the operation.
720
+ optimize : {bool, list, tuple, 'greedy', 'optimal'}
721
+ Choose the type of path. If a tuple is provided, the second argument is
722
+ assumed to be the maximum intermediate size created. If only a single
723
+ argument is provided the largest input or output array size is used
724
+ as a maximum intermediate size.
725
+
726
+ * if a list is given that starts with ``einsum_path``, uses this as the
727
+ contraction path
728
+ * if False no optimization is taken
729
+ * if True defaults to the 'greedy' algorithm
730
+ * 'optimal' An algorithm that combinatorially explores all possible
731
+ ways of contracting the listed tensors and chooses the least costly
732
+ path. Scales exponentially with the number of terms in the
733
+ contraction.
734
+ * 'greedy' An algorithm that chooses the best pair contraction
735
+ at each step. Effectively, this algorithm searches the largest inner,
736
+ Hadamard, and then outer products at each step. Scales cubically with
737
+ the number of terms in the contraction. Equivalent to the 'optimal'
738
+ path for most contractions.
739
+
740
+ Default is 'greedy'.
741
+
742
+ Returns
743
+ -------
744
+ path : list of tuples
745
+ A list representation of the einsum path.
746
+ string_repr : str
747
+ A printable representation of the einsum path.
748
+
749
+ Notes
750
+ -----
751
+ The resulting path indicates which terms of the input contraction should be
752
+ contracted first, the result of this contraction is then appended to the
753
+ end of the contraction list. This list can then be iterated over until all
754
+ intermediate contractions are complete.
755
+
756
+ See Also
757
+ --------
758
+ einsum, linalg.multi_dot
759
+
760
+ Examples
761
+ --------
762
+
763
+ We can begin with a chain dot example. In this case, it is optimal to
764
+ contract the ``b`` and ``c`` tensors first as represented by the first
765
+ element of the path ``(1, 2)``. The resulting tensor is added to the end
766
+ of the contraction and the remaining contraction ``(0, 1)`` is then
767
+ completed.
768
+
769
+ >>> np.random.seed(123)
770
+ >>> a = np.random.rand(2, 2)
771
+ >>> b = np.random.rand(2, 5)
772
+ >>> c = np.random.rand(5, 2)
773
+ >>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy')
774
+ >>> print(path_info[0])
775
+ ['einsum_path', (1, 2), (0, 1)]
776
+ >>> print(path_info[1])
777
+ Complete contraction: ij,jk,kl->il # may vary
778
+ Naive scaling: 4
779
+ Optimized scaling: 3
780
+ Naive FLOP count: 1.600e+02
781
+ Optimized FLOP count: 5.600e+01
782
+ Theoretical speedup: 2.857
783
+ Largest intermediate: 4.000e+00 elements
784
+ -------------------------------------------------------------------------
785
+ scaling current remaining
786
+ -------------------------------------------------------------------------
787
+ 3 kl,jk->jl ij,jl->il
788
+ 3 jl,ij->il il->il
789
+
790
+
791
+ A more complex index transformation example.
792
+
793
+ >>> I = np.random.rand(10, 10, 10, 10)
794
+ >>> C = np.random.rand(10, 10)
795
+ >>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C,
796
+ ... optimize='greedy')
797
+
798
+ >>> print(path_info[0])
799
+ ['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)]
800
+ >>> print(path_info[1])
801
+ Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary
802
+ Naive scaling: 8
803
+ Optimized scaling: 5
804
+ Naive FLOP count: 8.000e+08
805
+ Optimized FLOP count: 8.000e+05
806
+ Theoretical speedup: 1000.000
807
+ Largest intermediate: 1.000e+04 elements
808
+ --------------------------------------------------------------------------
809
+ scaling current remaining
810
+ --------------------------------------------------------------------------
811
+ 5 abcd,ea->bcde fb,gc,hd,bcde->efgh
812
+ 5 bcde,fb->cdef gc,hd,cdef->efgh
813
+ 5 cdef,gc->defg hd,defg->efgh
814
+ 5 defg,hd->efgh efgh->efgh
815
+ """
816
+
817
+ # Figure out what the path really is
818
+ path_type = optimize
819
+ if path_type is True:
820
+ path_type = 'greedy'
821
+ if path_type is None:
822
+ path_type = False
823
+
824
+ explicit_einsum_path = False
825
+ memory_limit = None
826
+
827
+ # No optimization or a named path algorithm
828
+ if (path_type is False) or isinstance(path_type, str):
829
+ pass
830
+
831
+ # Given an explicit path
832
+ elif len(path_type) and (path_type[0] == 'einsum_path'):
833
+ explicit_einsum_path = True
834
+
835
+ # Path tuple with memory limit
836
+ elif ((len(path_type) == 2) and isinstance(path_type[0], str) and
837
+ isinstance(path_type[1], (int, float))):
838
+ memory_limit = int(path_type[1])
839
+ path_type = path_type[0]
840
+
841
+ else:
842
+ raise TypeError("Did not understand the path: %s" % str(path_type))
843
+
844
+ # Hidden option, only einsum should call this
845
+ einsum_call_arg = einsum_call
846
+
847
+ # Python side parsing
848
+ input_subscripts, output_subscript, operands = _parse_einsum_input(operands)
849
+
850
+ # Build a few useful list and sets
851
+ input_list = input_subscripts.split(',')
852
+ input_sets = [set(x) for x in input_list]
853
+ output_set = set(output_subscript)
854
+ indices = set(input_subscripts.replace(',', ''))
855
+
856
+ # Get length of each unique dimension and ensure all dimensions are correct
857
+ dimension_dict = {}
858
+ broadcast_indices = [[] for x in range(len(input_list))]
859
+ for tnum, term in enumerate(input_list):
860
+ sh = operands[tnum].shape
861
+ if len(sh) != len(term):
862
+ raise ValueError("Einstein sum subscript %s does not contain the "
863
+ "correct number of indices for operand %d."
864
+ % (input_subscripts[tnum], tnum))
865
+ for cnum, char in enumerate(term):
866
+ dim = sh[cnum]
867
+
868
+ # Build out broadcast indices
869
+ if dim == 1:
870
+ broadcast_indices[tnum].append(char)
871
+
872
+ if char in dimension_dict.keys():
873
+ # For broadcasting cases we always want the largest dim size
874
+ if dimension_dict[char] == 1:
875
+ dimension_dict[char] = dim
876
+ elif dim not in (1, dimension_dict[char]):
877
+ raise ValueError("Size of label '%s' for operand %d (%d) "
878
+ "does not match previous terms (%d)."
879
+ % (char, tnum, dimension_dict[char], dim))
880
+ else:
881
+ dimension_dict[char] = dim
882
+
883
+ # Convert broadcast inds to sets
884
+ broadcast_indices = [set(x) for x in broadcast_indices]
885
+
886
+ # Compute size of each input array plus the output array
887
+ size_list = [_compute_size_by_dict(term, dimension_dict)
888
+ for term in input_list + [output_subscript]]
889
+ max_size = max(size_list)
890
+
891
+ if memory_limit is None:
892
+ memory_arg = max_size
893
+ else:
894
+ memory_arg = memory_limit
895
+
896
+ # Compute naive cost
897
+ # This isn't quite right, need to look into exactly how einsum does this
898
+ inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0
899
+ naive_cost = _flop_count(indices, inner_product, len(input_list), dimension_dict)
900
+
901
+ # Compute the path
902
+ if explicit_einsum_path:
903
+ path = path_type[1:]
904
+ elif (
905
+ (path_type is False)
906
+ or (len(input_list) in [1, 2])
907
+ or (indices == output_set)
908
+ ):
909
+ # Nothing to be optimized, leave it to einsum
910
+ path = [tuple(range(len(input_list)))]
911
+ elif path_type == "greedy":
912
+ path = _greedy_path(input_sets, output_set, dimension_dict, memory_arg)
913
+ elif path_type == "optimal":
914
+ path = _optimal_path(input_sets, output_set, dimension_dict, memory_arg)
915
+ else:
916
+ raise KeyError("Path name %s not found", path_type)
917
+
918
+ cost_list, scale_list, size_list, contraction_list = [], [], [], []
919
+
920
+ # Build contraction tuple (positions, gemm, einsum_str, remaining)
921
+ for cnum, contract_inds in enumerate(path):
922
+ # Make sure we remove inds from right to left
923
+ contract_inds = tuple(sorted(list(contract_inds), reverse=True))
924
+
925
+ contract = _find_contraction(contract_inds, input_sets, output_set)
926
+ out_inds, input_sets, idx_removed, idx_contract = contract
927
+
928
+ cost = _flop_count(idx_contract, idx_removed, len(contract_inds), dimension_dict)
929
+ cost_list.append(cost)
930
+ scale_list.append(len(idx_contract))
931
+ size_list.append(_compute_size_by_dict(out_inds, dimension_dict))
932
+
933
+ bcast = set()
934
+ tmp_inputs = []
935
+ for x in contract_inds:
936
+ tmp_inputs.append(input_list.pop(x))
937
+ bcast |= broadcast_indices.pop(x)
938
+
939
+ new_bcast_inds = bcast - idx_removed
940
+
941
+ # If we're broadcasting, nix blas
942
+ if not len(idx_removed & bcast):
943
+ do_blas = _can_dot(tmp_inputs, out_inds, idx_removed)
944
+ else:
945
+ do_blas = False
946
+
947
+ # Last contraction
948
+ if (cnum - len(path)) == -1:
949
+ idx_result = output_subscript
950
+ else:
951
+ sort_result = [(dimension_dict[ind], ind) for ind in out_inds]
952
+ idx_result = "".join([x[1] for x in sorted(sort_result)])
953
+
954
+ input_list.append(idx_result)
955
+ broadcast_indices.append(new_bcast_inds)
956
+ einsum_str = ",".join(tmp_inputs) + "->" + idx_result
957
+
958
+ contraction = (contract_inds, idx_removed, einsum_str, input_list[:], do_blas)
959
+ contraction_list.append(contraction)
960
+
961
+ opt_cost = sum(cost_list) + 1
962
+
963
+ if len(input_list) != 1:
964
+ # Explicit "einsum_path" is usually trusted, but we detect this kind of
965
+ # mistake in order to prevent from returning an intermediate value.
966
+ raise RuntimeError(
967
+ "Invalid einsum_path is specified: {} more operands has to be "
968
+ "contracted.".format(len(input_list) - 1))
969
+
970
+ if einsum_call_arg:
971
+ return (operands, contraction_list)
972
+
973
+ # Return the path along with a nice string representation
974
+ overall_contraction = input_subscripts + "->" + output_subscript
975
+ header = ("scaling", "current", "remaining")
976
+
977
+ speedup = naive_cost / opt_cost
978
+ max_i = max(size_list)
979
+
980
+ path_print = " Complete contraction: %s\n" % overall_contraction
981
+ path_print += " Naive scaling: %d\n" % len(indices)
982
+ path_print += " Optimized scaling: %d\n" % max(scale_list)
983
+ path_print += " Naive FLOP count: %.3e\n" % naive_cost
984
+ path_print += " Optimized FLOP count: %.3e\n" % opt_cost
985
+ path_print += " Theoretical speedup: %3.3f\n" % speedup
986
+ path_print += " Largest intermediate: %.3e elements\n" % max_i
987
+ path_print += "-" * 74 + "\n"
988
+ path_print += "%6s %24s %40s\n" % header
989
+ path_print += "-" * 74
990
+
991
+ for n, contraction in enumerate(contraction_list):
992
+ inds, idx_rm, einsum_str, remaining, blas = contraction
993
+ remaining_str = ",".join(remaining) + "->" + output_subscript
994
+ path_run = (scale_list[n], einsum_str, remaining_str)
995
+ path_print += "\n%4d %24s %40s" % path_run
996
+
997
+ path = ['einsum_path'] + path
998
+ return (path, path_print)
999
+
1000
+
1001
+ def _einsum_dispatcher(*operands, out=None, optimize=None, **kwargs):
1002
+ # Arguably we dispatch on more arguments than we really should; see note in
1003
+ # _einsum_path_dispatcher for why.
1004
+ yield from operands
1005
+ yield out
1006
+
1007
+
1008
+ # Rewrite einsum to handle different cases
1009
+ @array_function_dispatch(_einsum_dispatcher, module='numpy')
1010
+ def einsum(*operands, out=None, optimize=False, **kwargs):
1011
+ """
1012
+ einsum(subscripts, *operands, out=None, dtype=None, order='K',
1013
+ casting='safe', optimize=False)
1014
+
1015
+ Evaluates the Einstein summation convention on the operands.
1016
+
1017
+ Using the Einstein summation convention, many common multi-dimensional,
1018
+ linear algebraic array operations can be represented in a simple fashion.
1019
+ In *implicit* mode `einsum` computes these values.
1020
+
1021
+ In *explicit* mode, `einsum` provides further flexibility to compute
1022
+ other array operations that might not be considered classical Einstein
1023
+ summation operations, by disabling, or forcing summation over specified
1024
+ subscript labels.
1025
+
1026
+ See the notes and examples for clarification.
1027
+
1028
+ Parameters
1029
+ ----------
1030
+ subscripts : str
1031
+ Specifies the subscripts for summation as comma separated list of
1032
+ subscript labels. An implicit (classical Einstein summation)
1033
+ calculation is performed unless the explicit indicator '->' is
1034
+ included as well as subscript labels of the precise output form.
1035
+ operands : list of array_like
1036
+ These are the arrays for the operation.
1037
+ out : ndarray, optional
1038
+ If provided, the calculation is done into this array.
1039
+ dtype : {data-type, None}, optional
1040
+ If provided, forces the calculation to use the data type specified.
1041
+ Note that you may have to also give a more liberal `casting`
1042
+ parameter to allow the conversions. Default is None.
1043
+ order : {'C', 'F', 'A', 'K'}, optional
1044
+ Controls the memory layout of the output. 'C' means it should
1045
+ be C contiguous. 'F' means it should be Fortran contiguous,
1046
+ 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
1047
+ 'K' means it should be as close to the layout as the inputs as
1048
+ is possible, including arbitrarily permuted axes.
1049
+ Default is 'K'.
1050
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
1051
+ Controls what kind of data casting may occur. Setting this to
1052
+ 'unsafe' is not recommended, as it can adversely affect accumulations.
1053
+
1054
+ * 'no' means the data types should not be cast at all.
1055
+ * 'equiv' means only byte-order changes are allowed.
1056
+ * 'safe' means only casts which can preserve values are allowed.
1057
+ * 'same_kind' means only safe casts or casts within a kind,
1058
+ like float64 to float32, are allowed.
1059
+ * 'unsafe' means any data conversions may be done.
1060
+
1061
+ Default is 'safe'.
1062
+ optimize : {False, True, 'greedy', 'optimal'}, optional
1063
+ Controls if intermediate optimization should occur. No optimization
1064
+ will occur if False and True will default to the 'greedy' algorithm.
1065
+ Also accepts an explicit contraction list from the ``np.einsum_path``
1066
+ function. See ``np.einsum_path`` for more details. Defaults to False.
1067
+
1068
+ Returns
1069
+ -------
1070
+ output : ndarray
1071
+ The calculation based on the Einstein summation convention.
1072
+
1073
+ See Also
1074
+ --------
1075
+ einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
1076
+ einops :
1077
+ similar verbose interface is provided by
1078
+ `einops <https://github.com/arogozhnikov/einops>`_ package to cover
1079
+ additional operations: transpose, reshape/flatten, repeat/tile,
1080
+ squeeze/unsqueeze and reductions.
1081
+ opt_einsum :
1082
+ `opt_einsum <https://optimized-einsum.readthedocs.io/en/stable/>`_
1083
+ optimizes contraction order for einsum-like expressions
1084
+ in backend-agnostic manner.
1085
+
1086
+ Notes
1087
+ -----
1088
+ .. versionadded:: 1.6.0
1089
+
1090
+ The Einstein summation convention can be used to compute
1091
+ many multi-dimensional, linear algebraic array operations. `einsum`
1092
+ provides a succinct way of representing these.
1093
+
1094
+ A non-exhaustive list of these operations,
1095
+ which can be computed by `einsum`, is shown below along with examples:
1096
+
1097
+ * Trace of an array, :py:func:`numpy.trace`.
1098
+ * Return a diagonal, :py:func:`numpy.diag`.
1099
+ * Array axis summations, :py:func:`numpy.sum`.
1100
+ * Transpositions and permutations, :py:func:`numpy.transpose`.
1101
+ * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
1102
+ * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
1103
+ * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
1104
+ * Tensor contractions, :py:func:`numpy.tensordot`.
1105
+ * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
1106
+
1107
+ The subscripts string is a comma-separated list of subscript labels,
1108
+ where each label refers to a dimension of the corresponding operand.
1109
+ Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
1110
+ is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label
1111
+ appears only once, it is not summed, so ``np.einsum('i', a)`` produces a
1112
+ view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)``
1113
+ describes traditional matrix multiplication and is equivalent to
1114
+ :py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one
1115
+ operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent
1116
+ to :py:func:`np.trace(a) <numpy.trace>`.
1117
+
1118
+ In *implicit mode*, the chosen subscripts are important
1119
+ since the axes of the output are reordered alphabetically. This
1120
+ means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
1121
+ ``np.einsum('ji', a)`` takes its transpose. Additionally,
1122
+ ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
1123
+ ``np.einsum('ij,jh', a, b)`` returns the transpose of the
1124
+ multiplication since subscript 'h' precedes subscript 'i'.
1125
+
1126
+ In *explicit mode* the output can be directly controlled by
1127
+ specifying output subscript labels. This requires the
1128
+ identifier '->' as well as the list of output subscript labels.
1129
+ This feature increases the flexibility of the function since
1130
+ summing can be disabled or forced when required. The call
1131
+ ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`,
1132
+ and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`.
1133
+ The difference is that `einsum` does not allow broadcasting by default.
1134
+ Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
1135
+ order of the output subscript labels and therefore returns matrix
1136
+ multiplication, unlike the example above in implicit mode.
1137
+
1138
+ To enable and control broadcasting, use an ellipsis. Default
1139
+ NumPy-style broadcasting is done by adding an ellipsis
1140
+ to the left of each term, like ``np.einsum('...ii->...i', a)``.
1141
+ To take the trace along the first and last axes,
1142
+ you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
1143
+ product with the left-most indices instead of rightmost, one can do
1144
+ ``np.einsum('ij...,jk...->ik...', a, b)``.
1145
+
1146
+ When there is only one operand, no axes are summed, and no output
1147
+ parameter is provided, a view into the operand is returned instead
1148
+ of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
1149
+ produces a view (changed in version 1.10.0).
1150
+
1151
+ `einsum` also provides an alternative way to provide the subscripts
1152
+ and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
1153
+ If the output shape is not provided in this format `einsum` will be
1154
+ calculated in implicit mode, otherwise it will be performed explicitly.
1155
+ The examples below have corresponding `einsum` calls with the two
1156
+ parameter methods.
1157
+
1158
+ .. versionadded:: 1.10.0
1159
+
1160
+ Views returned from einsum are now writeable whenever the input array
1161
+ is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
1162
+ have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>`
1163
+ and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
1164
+ of a 2D array.
1165
+
1166
+ .. versionadded:: 1.12.0
1167
+
1168
+ Added the ``optimize`` argument which will optimize the contraction order
1169
+ of an einsum expression. For a contraction with three or more operands this
1170
+ can greatly increase the computational efficiency at the cost of a larger
1171
+ memory footprint during computation.
1172
+
1173
+ Typically a 'greedy' algorithm is applied which empirical tests have shown
1174
+ returns the optimal path in the majority of cases. In some cases 'optimal'
1175
+ will return the superlative path through a more expensive, exhaustive search.
1176
+ For iterative calculations it may be advisable to calculate the optimal path
1177
+ once and reuse that path by supplying it as an argument. An example is given
1178
+ below.
1179
+
1180
+ See :py:func:`numpy.einsum_path` for more details.
1181
+
1182
+ Examples
1183
+ --------
1184
+ >>> a = np.arange(25).reshape(5,5)
1185
+ >>> b = np.arange(5)
1186
+ >>> c = np.arange(6).reshape(2,3)
1187
+
1188
+ Trace of a matrix:
1189
+
1190
+ >>> np.einsum('ii', a)
1191
+ 60
1192
+ >>> np.einsum(a, [0,0])
1193
+ 60
1194
+ >>> np.trace(a)
1195
+ 60
1196
+
1197
+ Extract the diagonal (requires explicit form):
1198
+
1199
+ >>> np.einsum('ii->i', a)
1200
+ array([ 0, 6, 12, 18, 24])
1201
+ >>> np.einsum(a, [0,0], [0])
1202
+ array([ 0, 6, 12, 18, 24])
1203
+ >>> np.diag(a)
1204
+ array([ 0, 6, 12, 18, 24])
1205
+
1206
+ Sum over an axis (requires explicit form):
1207
+
1208
+ >>> np.einsum('ij->i', a)
1209
+ array([ 10, 35, 60, 85, 110])
1210
+ >>> np.einsum(a, [0,1], [0])
1211
+ array([ 10, 35, 60, 85, 110])
1212
+ >>> np.sum(a, axis=1)
1213
+ array([ 10, 35, 60, 85, 110])
1214
+
1215
+ For higher dimensional arrays summing a single axis can be done with ellipsis:
1216
+
1217
+ >>> np.einsum('...j->...', a)
1218
+ array([ 10, 35, 60, 85, 110])
1219
+ >>> np.einsum(a, [Ellipsis,1], [Ellipsis])
1220
+ array([ 10, 35, 60, 85, 110])
1221
+
1222
+ Compute a matrix transpose, or reorder any number of axes:
1223
+
1224
+ >>> np.einsum('ji', c)
1225
+ array([[0, 3],
1226
+ [1, 4],
1227
+ [2, 5]])
1228
+ >>> np.einsum('ij->ji', c)
1229
+ array([[0, 3],
1230
+ [1, 4],
1231
+ [2, 5]])
1232
+ >>> np.einsum(c, [1,0])
1233
+ array([[0, 3],
1234
+ [1, 4],
1235
+ [2, 5]])
1236
+ >>> np.transpose(c)
1237
+ array([[0, 3],
1238
+ [1, 4],
1239
+ [2, 5]])
1240
+
1241
+ Vector inner products:
1242
+
1243
+ >>> np.einsum('i,i', b, b)
1244
+ 30
1245
+ >>> np.einsum(b, [0], b, [0])
1246
+ 30
1247
+ >>> np.inner(b,b)
1248
+ 30
1249
+
1250
+ Matrix vector multiplication:
1251
+
1252
+ >>> np.einsum('ij,j', a, b)
1253
+ array([ 30, 80, 130, 180, 230])
1254
+ >>> np.einsum(a, [0,1], b, [1])
1255
+ array([ 30, 80, 130, 180, 230])
1256
+ >>> np.dot(a, b)
1257
+ array([ 30, 80, 130, 180, 230])
1258
+ >>> np.einsum('...j,j', a, b)
1259
+ array([ 30, 80, 130, 180, 230])
1260
+
1261
+ Broadcasting and scalar multiplication:
1262
+
1263
+ >>> np.einsum('..., ...', 3, c)
1264
+ array([[ 0, 3, 6],
1265
+ [ 9, 12, 15]])
1266
+ >>> np.einsum(',ij', 3, c)
1267
+ array([[ 0, 3, 6],
1268
+ [ 9, 12, 15]])
1269
+ >>> np.einsum(3, [Ellipsis], c, [Ellipsis])
1270
+ array([[ 0, 3, 6],
1271
+ [ 9, 12, 15]])
1272
+ >>> np.multiply(3, c)
1273
+ array([[ 0, 3, 6],
1274
+ [ 9, 12, 15]])
1275
+
1276
+ Vector outer product:
1277
+
1278
+ >>> np.einsum('i,j', np.arange(2)+1, b)
1279
+ array([[0, 1, 2, 3, 4],
1280
+ [0, 2, 4, 6, 8]])
1281
+ >>> np.einsum(np.arange(2)+1, [0], b, [1])
1282
+ array([[0, 1, 2, 3, 4],
1283
+ [0, 2, 4, 6, 8]])
1284
+ >>> np.outer(np.arange(2)+1, b)
1285
+ array([[0, 1, 2, 3, 4],
1286
+ [0, 2, 4, 6, 8]])
1287
+
1288
+ Tensor contraction:
1289
+
1290
+ >>> a = np.arange(60.).reshape(3,4,5)
1291
+ >>> b = np.arange(24.).reshape(4,3,2)
1292
+ >>> np.einsum('ijk,jil->kl', a, b)
1293
+ array([[4400., 4730.],
1294
+ [4532., 4874.],
1295
+ [4664., 5018.],
1296
+ [4796., 5162.],
1297
+ [4928., 5306.]])
1298
+ >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
1299
+ array([[4400., 4730.],
1300
+ [4532., 4874.],
1301
+ [4664., 5018.],
1302
+ [4796., 5162.],
1303
+ [4928., 5306.]])
1304
+ >>> np.tensordot(a,b, axes=([1,0],[0,1]))
1305
+ array([[4400., 4730.],
1306
+ [4532., 4874.],
1307
+ [4664., 5018.],
1308
+ [4796., 5162.],
1309
+ [4928., 5306.]])
1310
+
1311
+ Writeable returned arrays (since version 1.10.0):
1312
+
1313
+ >>> a = np.zeros((3, 3))
1314
+ >>> np.einsum('ii->i', a)[:] = 1
1315
+ >>> a
1316
+ array([[1., 0., 0.],
1317
+ [0., 1., 0.],
1318
+ [0., 0., 1.]])
1319
+
1320
+ Example of ellipsis use:
1321
+
1322
+ >>> a = np.arange(6).reshape((3,2))
1323
+ >>> b = np.arange(12).reshape((4,3))
1324
+ >>> np.einsum('ki,jk->ij', a, b)
1325
+ array([[10, 28, 46, 64],
1326
+ [13, 40, 67, 94]])
1327
+ >>> np.einsum('ki,...k->i...', a, b)
1328
+ array([[10, 28, 46, 64],
1329
+ [13, 40, 67, 94]])
1330
+ >>> np.einsum('k...,jk', a, b)
1331
+ array([[10, 28, 46, 64],
1332
+ [13, 40, 67, 94]])
1333
+
1334
+ Chained array operations. For more complicated contractions, speed ups
1335
+ might be achieved by repeatedly computing a 'greedy' path or pre-computing the
1336
+ 'optimal' path and repeatedly applying it, using an
1337
+ `einsum_path` insertion (since version 1.12.0). Performance improvements can be
1338
+ particularly significant with larger arrays:
1339
+
1340
+ >>> a = np.ones(64).reshape(2,4,8)
1341
+
1342
+ Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
1343
+
1344
+ >>> for iteration in range(500):
1345
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
1346
+
1347
+ Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
1348
+
1349
+ >>> for iteration in range(500):
1350
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
1351
+
1352
+ Greedy `einsum` (faster optimal path approximation): ~160ms
1353
+
1354
+ >>> for iteration in range(500):
1355
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
1356
+
1357
+ Optimal `einsum` (best usage pattern in some use cases): ~110ms
1358
+
1359
+ >>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0]
1360
+ >>> for iteration in range(500):
1361
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
1362
+
1363
+ """
1364
+ # Special handling if out is specified
1365
+ specified_out = out is not None
1366
+
1367
+ # If no optimization, run pure einsum
1368
+ if optimize is False:
1369
+ if specified_out:
1370
+ kwargs['out'] = out
1371
+ return c_einsum(*operands, **kwargs)
1372
+
1373
+ # Check the kwargs to avoid a more cryptic error later, without having to
1374
+ # repeat default values here
1375
+ valid_einsum_kwargs = ['dtype', 'order', 'casting']
1376
+ unknown_kwargs = [k for (k, v) in kwargs.items() if
1377
+ k not in valid_einsum_kwargs]
1378
+ if len(unknown_kwargs):
1379
+ raise TypeError("Did not understand the following kwargs: %s"
1380
+ % unknown_kwargs)
1381
+
1382
+ # Build the contraction list and operand
1383
+ operands, contraction_list = einsum_path(*operands, optimize=optimize,
1384
+ einsum_call=True)
1385
+
1386
+ # Handle order kwarg for output array, c_einsum allows mixed case
1387
+ output_order = kwargs.pop('order', 'K')
1388
+ if output_order.upper() == 'A':
1389
+ if all(arr.flags.f_contiguous for arr in operands):
1390
+ output_order = 'F'
1391
+ else:
1392
+ output_order = 'C'
1393
+
1394
+ # Start contraction loop
1395
+ for num, contraction in enumerate(contraction_list):
1396
+ inds, idx_rm, einsum_str, remaining, blas = contraction
1397
+ tmp_operands = [operands.pop(x) for x in inds]
1398
+
1399
+ # Do we need to deal with the output?
1400
+ handle_out = specified_out and ((num + 1) == len(contraction_list))
1401
+
1402
+ # Call tensordot if still possible
1403
+ if blas:
1404
+ # Checks have already been handled
1405
+ input_str, results_index = einsum_str.split('->')
1406
+ input_left, input_right = input_str.split(',')
1407
+
1408
+ tensor_result = input_left + input_right
1409
+ for s in idx_rm:
1410
+ tensor_result = tensor_result.replace(s, "")
1411
+
1412
+ # Find indices to contract over
1413
+ left_pos, right_pos = [], []
1414
+ for s in sorted(idx_rm):
1415
+ left_pos.append(input_left.find(s))
1416
+ right_pos.append(input_right.find(s))
1417
+
1418
+ # Contract!
1419
+ new_view = tensordot(*tmp_operands, axes=(tuple(left_pos), tuple(right_pos)))
1420
+
1421
+ # Build a new view if needed
1422
+ if (tensor_result != results_index) or handle_out:
1423
+ if handle_out:
1424
+ kwargs["out"] = out
1425
+ new_view = c_einsum(tensor_result + '->' + results_index, new_view, **kwargs)
1426
+
1427
+ # Call einsum
1428
+ else:
1429
+ # If out was specified
1430
+ if handle_out:
1431
+ kwargs["out"] = out
1432
+
1433
+ # Do the contraction
1434
+ new_view = c_einsum(einsum_str, *tmp_operands, **kwargs)
1435
+
1436
+ # Append new items and dereference what we can
1437
+ operands.append(new_view)
1438
+ del tmp_operands, new_view
1439
+
1440
+ if specified_out:
1441
+ return out
1442
+ else:
1443
+ return asanyarray(operands[0], order=output_order)
env-llmeval/lib/python3.10/site-packages/numpy/core/getlimits.py ADDED
@@ -0,0 +1,735 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Machine limits for Float32 and Float64 and (long double) if available...
2
+
3
+ """
4
+ __all__ = ['finfo', 'iinfo']
5
+
6
+ import warnings
7
+
8
+ from .._utils import set_module
9
+ from ._machar import MachAr
10
+ from . import numeric
11
+ from . import numerictypes as ntypes
12
+ from .numeric import array, inf, NaN
13
+ from .umath import log10, exp2, nextafter, isnan
14
+
15
+
16
+ def _fr0(a):
17
+ """fix rank-0 --> rank-1"""
18
+ if a.ndim == 0:
19
+ a = a.copy()
20
+ a.shape = (1,)
21
+ return a
22
+
23
+
24
+ def _fr1(a):
25
+ """fix rank > 0 --> rank-0"""
26
+ if a.size == 1:
27
+ a = a.copy()
28
+ a.shape = ()
29
+ return a
30
+
31
+
32
+ class MachArLike:
33
+ """ Object to simulate MachAr instance """
34
+ def __init__(self, ftype, *, eps, epsneg, huge, tiny,
35
+ ibeta, smallest_subnormal=None, **kwargs):
36
+ self.params = _MACHAR_PARAMS[ftype]
37
+ self.ftype = ftype
38
+ self.title = self.params['title']
39
+ # Parameter types same as for discovered MachAr object.
40
+ if not smallest_subnormal:
41
+ self._smallest_subnormal = nextafter(
42
+ self.ftype(0), self.ftype(1), dtype=self.ftype)
43
+ else:
44
+ self._smallest_subnormal = smallest_subnormal
45
+ self.epsilon = self.eps = self._float_to_float(eps)
46
+ self.epsneg = self._float_to_float(epsneg)
47
+ self.xmax = self.huge = self._float_to_float(huge)
48
+ self.xmin = self._float_to_float(tiny)
49
+ self.smallest_normal = self.tiny = self._float_to_float(tiny)
50
+ self.ibeta = self.params['itype'](ibeta)
51
+ self.__dict__.update(kwargs)
52
+ self.precision = int(-log10(self.eps))
53
+ self.resolution = self._float_to_float(
54
+ self._float_conv(10) ** (-self.precision))
55
+ self._str_eps = self._float_to_str(self.eps)
56
+ self._str_epsneg = self._float_to_str(self.epsneg)
57
+ self._str_xmin = self._float_to_str(self.xmin)
58
+ self._str_xmax = self._float_to_str(self.xmax)
59
+ self._str_resolution = self._float_to_str(self.resolution)
60
+ self._str_smallest_normal = self._float_to_str(self.xmin)
61
+
62
+ @property
63
+ def smallest_subnormal(self):
64
+ """Return the value for the smallest subnormal.
65
+
66
+ Returns
67
+ -------
68
+ smallest_subnormal : float
69
+ value for the smallest subnormal.
70
+
71
+ Warns
72
+ -----
73
+ UserWarning
74
+ If the calculated value for the smallest subnormal is zero.
75
+ """
76
+ # Check that the calculated value is not zero, in case it raises a
77
+ # warning.
78
+ value = self._smallest_subnormal
79
+ if self.ftype(0) == value:
80
+ warnings.warn(
81
+ 'The value of the smallest subnormal for {} type '
82
+ 'is zero.'.format(self.ftype), UserWarning, stacklevel=2)
83
+
84
+ return self._float_to_float(value)
85
+
86
+ @property
87
+ def _str_smallest_subnormal(self):
88
+ """Return the string representation of the smallest subnormal."""
89
+ return self._float_to_str(self.smallest_subnormal)
90
+
91
+ def _float_to_float(self, value):
92
+ """Converts float to float.
93
+
94
+ Parameters
95
+ ----------
96
+ value : float
97
+ value to be converted.
98
+ """
99
+ return _fr1(self._float_conv(value))
100
+
101
+ def _float_conv(self, value):
102
+ """Converts float to conv.
103
+
104
+ Parameters
105
+ ----------
106
+ value : float
107
+ value to be converted.
108
+ """
109
+ return array([value], self.ftype)
110
+
111
+ def _float_to_str(self, value):
112
+ """Converts float to str.
113
+
114
+ Parameters
115
+ ----------
116
+ value : float
117
+ value to be converted.
118
+ """
119
+ return self.params['fmt'] % array(_fr0(value)[0], self.ftype)
120
+
121
+
122
+ _convert_to_float = {
123
+ ntypes.csingle: ntypes.single,
124
+ ntypes.complex_: ntypes.float_,
125
+ ntypes.clongfloat: ntypes.longfloat
126
+ }
127
+
128
+ # Parameters for creating MachAr / MachAr-like objects
129
+ _title_fmt = 'numpy {} precision floating point number'
130
+ _MACHAR_PARAMS = {
131
+ ntypes.double: dict(
132
+ itype = ntypes.int64,
133
+ fmt = '%24.16e',
134
+ title = _title_fmt.format('double')),
135
+ ntypes.single: dict(
136
+ itype = ntypes.int32,
137
+ fmt = '%15.7e',
138
+ title = _title_fmt.format('single')),
139
+ ntypes.longdouble: dict(
140
+ itype = ntypes.longlong,
141
+ fmt = '%s',
142
+ title = _title_fmt.format('long double')),
143
+ ntypes.half: dict(
144
+ itype = ntypes.int16,
145
+ fmt = '%12.5e',
146
+ title = _title_fmt.format('half'))}
147
+
148
+ # Key to identify the floating point type. Key is result of
149
+ # ftype('-0.1').newbyteorder('<').tobytes()
150
+ #
151
+ # 20230201 - use (ftype(-1.0) / ftype(10.0)).newbyteorder('<').tobytes()
152
+ # instead because stold may have deficiencies on some platforms.
153
+ # See:
154
+ # https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure
155
+
156
+ _KNOWN_TYPES = {}
157
+ def _register_type(machar, bytepat):
158
+ _KNOWN_TYPES[bytepat] = machar
159
+ _float_ma = {}
160
+
161
+
162
+ def _register_known_types():
163
+ # Known parameters for float16
164
+ # See docstring of MachAr class for description of parameters.
165
+ f16 = ntypes.float16
166
+ float16_ma = MachArLike(f16,
167
+ machep=-10,
168
+ negep=-11,
169
+ minexp=-14,
170
+ maxexp=16,
171
+ it=10,
172
+ iexp=5,
173
+ ibeta=2,
174
+ irnd=5,
175
+ ngrd=0,
176
+ eps=exp2(f16(-10)),
177
+ epsneg=exp2(f16(-11)),
178
+ huge=f16(65504),
179
+ tiny=f16(2 ** -14))
180
+ _register_type(float16_ma, b'f\xae')
181
+ _float_ma[16] = float16_ma
182
+
183
+ # Known parameters for float32
184
+ f32 = ntypes.float32
185
+ float32_ma = MachArLike(f32,
186
+ machep=-23,
187
+ negep=-24,
188
+ minexp=-126,
189
+ maxexp=128,
190
+ it=23,
191
+ iexp=8,
192
+ ibeta=2,
193
+ irnd=5,
194
+ ngrd=0,
195
+ eps=exp2(f32(-23)),
196
+ epsneg=exp2(f32(-24)),
197
+ huge=f32((1 - 2 ** -24) * 2**128),
198
+ tiny=exp2(f32(-126)))
199
+ _register_type(float32_ma, b'\xcd\xcc\xcc\xbd')
200
+ _float_ma[32] = float32_ma
201
+
202
+ # Known parameters for float64
203
+ f64 = ntypes.float64
204
+ epsneg_f64 = 2.0 ** -53.0
205
+ tiny_f64 = 2.0 ** -1022.0
206
+ float64_ma = MachArLike(f64,
207
+ machep=-52,
208
+ negep=-53,
209
+ minexp=-1022,
210
+ maxexp=1024,
211
+ it=52,
212
+ iexp=11,
213
+ ibeta=2,
214
+ irnd=5,
215
+ ngrd=0,
216
+ eps=2.0 ** -52.0,
217
+ epsneg=epsneg_f64,
218
+ huge=(1.0 - epsneg_f64) / tiny_f64 * f64(4),
219
+ tiny=tiny_f64)
220
+ _register_type(float64_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf')
221
+ _float_ma[64] = float64_ma
222
+
223
+ # Known parameters for IEEE 754 128-bit binary float
224
+ ld = ntypes.longdouble
225
+ epsneg_f128 = exp2(ld(-113))
226
+ tiny_f128 = exp2(ld(-16382))
227
+ # Ignore runtime error when this is not f128
228
+ with numeric.errstate(all='ignore'):
229
+ huge_f128 = (ld(1) - epsneg_f128) / tiny_f128 * ld(4)
230
+ float128_ma = MachArLike(ld,
231
+ machep=-112,
232
+ negep=-113,
233
+ minexp=-16382,
234
+ maxexp=16384,
235
+ it=112,
236
+ iexp=15,
237
+ ibeta=2,
238
+ irnd=5,
239
+ ngrd=0,
240
+ eps=exp2(ld(-112)),
241
+ epsneg=epsneg_f128,
242
+ huge=huge_f128,
243
+ tiny=tiny_f128)
244
+ # IEEE 754 128-bit binary float
245
+ _register_type(float128_ma,
246
+ b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf')
247
+ _float_ma[128] = float128_ma
248
+
249
+ # Known parameters for float80 (Intel 80-bit extended precision)
250
+ epsneg_f80 = exp2(ld(-64))
251
+ tiny_f80 = exp2(ld(-16382))
252
+ # Ignore runtime error when this is not f80
253
+ with numeric.errstate(all='ignore'):
254
+ huge_f80 = (ld(1) - epsneg_f80) / tiny_f80 * ld(4)
255
+ float80_ma = MachArLike(ld,
256
+ machep=-63,
257
+ negep=-64,
258
+ minexp=-16382,
259
+ maxexp=16384,
260
+ it=63,
261
+ iexp=15,
262
+ ibeta=2,
263
+ irnd=5,
264
+ ngrd=0,
265
+ eps=exp2(ld(-63)),
266
+ epsneg=epsneg_f80,
267
+ huge=huge_f80,
268
+ tiny=tiny_f80)
269
+ # float80, first 10 bytes containing actual storage
270
+ _register_type(float80_ma, b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf')
271
+ _float_ma[80] = float80_ma
272
+
273
+ # Guessed / known parameters for double double; see:
274
+ # https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic
275
+ # These numbers have the same exponent range as float64, but extended number of
276
+ # digits in the significand.
277
+ huge_dd = nextafter(ld(inf), ld(0), dtype=ld)
278
+ # As the smallest_normal in double double is so hard to calculate we set
279
+ # it to NaN.
280
+ smallest_normal_dd = NaN
281
+ # Leave the same value for the smallest subnormal as double
282
+ smallest_subnormal_dd = ld(nextafter(0., 1.))
283
+ float_dd_ma = MachArLike(ld,
284
+ machep=-105,
285
+ negep=-106,
286
+ minexp=-1022,
287
+ maxexp=1024,
288
+ it=105,
289
+ iexp=11,
290
+ ibeta=2,
291
+ irnd=5,
292
+ ngrd=0,
293
+ eps=exp2(ld(-105)),
294
+ epsneg=exp2(ld(-106)),
295
+ huge=huge_dd,
296
+ tiny=smallest_normal_dd,
297
+ smallest_subnormal=smallest_subnormal_dd)
298
+ # double double; low, high order (e.g. PPC 64)
299
+ _register_type(float_dd_ma,
300
+ b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf')
301
+ # double double; high, low order (e.g. PPC 64 le)
302
+ _register_type(float_dd_ma,
303
+ b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<')
304
+ _float_ma['dd'] = float_dd_ma
305
+
306
+
307
+ def _get_machar(ftype):
308
+ """ Get MachAr instance or MachAr-like instance
309
+
310
+ Get parameters for floating point type, by first trying signatures of
311
+ various known floating point types, then, if none match, attempting to
312
+ identify parameters by analysis.
313
+
314
+ Parameters
315
+ ----------
316
+ ftype : class
317
+ Numpy floating point type class (e.g. ``np.float64``)
318
+
319
+ Returns
320
+ -------
321
+ ma_like : instance of :class:`MachAr` or :class:`MachArLike`
322
+ Object giving floating point parameters for `ftype`.
323
+
324
+ Warns
325
+ -----
326
+ UserWarning
327
+ If the binary signature of the float type is not in the dictionary of
328
+ known float types.
329
+ """
330
+ params = _MACHAR_PARAMS.get(ftype)
331
+ if params is None:
332
+ raise ValueError(repr(ftype))
333
+ # Detect known / suspected types
334
+ # ftype(-1.0) / ftype(10.0) is better than ftype('-0.1') because stold
335
+ # may be deficient
336
+ key = (ftype(-1.0) / ftype(10.)).newbyteorder('<').tobytes()
337
+ ma_like = None
338
+ if ftype == ntypes.longdouble:
339
+ # Could be 80 bit == 10 byte extended precision, where last bytes can
340
+ # be random garbage.
341
+ # Comparing first 10 bytes to pattern first to avoid branching on the
342
+ # random garbage.
343
+ ma_like = _KNOWN_TYPES.get(key[:10])
344
+ if ma_like is None:
345
+ # see if the full key is known.
346
+ ma_like = _KNOWN_TYPES.get(key)
347
+ if ma_like is None and len(key) == 16:
348
+ # machine limits could be f80 masquerading as np.float128,
349
+ # find all keys with length 16 and make new dict, but make the keys
350
+ # only 10 bytes long, the last bytes can be random garbage
351
+ _kt = {k[:10]: v for k, v in _KNOWN_TYPES.items() if len(k) == 16}
352
+ ma_like = _kt.get(key[:10])
353
+ if ma_like is not None:
354
+ return ma_like
355
+ # Fall back to parameter discovery
356
+ warnings.warn(
357
+ f'Signature {key} for {ftype} does not match any known type: '
358
+ 'falling back to type probe function.\n'
359
+ 'This warnings indicates broken support for the dtype!',
360
+ UserWarning, stacklevel=2)
361
+ return _discovered_machar(ftype)
362
+
363
+
364
+ def _discovered_machar(ftype):
365
+ """ Create MachAr instance with found information on float types
366
+
367
+ TODO: MachAr should be retired completely ideally. We currently only
368
+ ever use it system with broken longdouble (valgrind, WSL).
369
+ """
370
+ params = _MACHAR_PARAMS[ftype]
371
+ return MachAr(lambda v: array([v], ftype),
372
+ lambda v:_fr0(v.astype(params['itype']))[0],
373
+ lambda v:array(_fr0(v)[0], ftype),
374
+ lambda v: params['fmt'] % array(_fr0(v)[0], ftype),
375
+ params['title'])
376
+
377
+
378
+ @set_module('numpy')
379
+ class finfo:
380
+ """
381
+ finfo(dtype)
382
+
383
+ Machine limits for floating point types.
384
+
385
+ Attributes
386
+ ----------
387
+ bits : int
388
+ The number of bits occupied by the type.
389
+ dtype : dtype
390
+ Returns the dtype for which `finfo` returns information. For complex
391
+ input, the returned dtype is the associated ``float*`` dtype for its
392
+ real and complex components.
393
+ eps : float
394
+ The difference between 1.0 and the next smallest representable float
395
+ larger than 1.0. For example, for 64-bit binary floats in the IEEE-754
396
+ standard, ``eps = 2**-52``, approximately 2.22e-16.
397
+ epsneg : float
398
+ The difference between 1.0 and the next smallest representable float
399
+ less than 1.0. For example, for 64-bit binary floats in the IEEE-754
400
+ standard, ``epsneg = 2**-53``, approximately 1.11e-16.
401
+ iexp : int
402
+ The number of bits in the exponent portion of the floating point
403
+ representation.
404
+ machep : int
405
+ The exponent that yields `eps`.
406
+ max : floating point number of the appropriate type
407
+ The largest representable number.
408
+ maxexp : int
409
+ The smallest positive power of the base (2) that causes overflow.
410
+ min : floating point number of the appropriate type
411
+ The smallest representable number, typically ``-max``.
412
+ minexp : int
413
+ The most negative power of the base (2) consistent with there
414
+ being no leading 0's in the mantissa.
415
+ negep : int
416
+ The exponent that yields `epsneg`.
417
+ nexp : int
418
+ The number of bits in the exponent including its sign and bias.
419
+ nmant : int
420
+ The number of bits in the mantissa.
421
+ precision : int
422
+ The approximate number of decimal digits to which this kind of
423
+ float is precise.
424
+ resolution : floating point number of the appropriate type
425
+ The approximate decimal resolution of this type, i.e.,
426
+ ``10**-precision``.
427
+ tiny : float
428
+ An alias for `smallest_normal`, kept for backwards compatibility.
429
+ smallest_normal : float
430
+ The smallest positive floating point number with 1 as leading bit in
431
+ the mantissa following IEEE-754 (see Notes).
432
+ smallest_subnormal : float
433
+ The smallest positive floating point number with 0 as leading bit in
434
+ the mantissa following IEEE-754.
435
+
436
+ Parameters
437
+ ----------
438
+ dtype : float, dtype, or instance
439
+ Kind of floating point or complex floating point
440
+ data-type about which to get information.
441
+
442
+ See Also
443
+ --------
444
+ iinfo : The equivalent for integer data types.
445
+ spacing : The distance between a value and the nearest adjacent number
446
+ nextafter : The next floating point value after x1 towards x2
447
+
448
+ Notes
449
+ -----
450
+ For developers of NumPy: do not instantiate this at the module level.
451
+ The initial calculation of these parameters is expensive and negatively
452
+ impacts import times. These objects are cached, so calling ``finfo()``
453
+ repeatedly inside your functions is not a problem.
454
+
455
+ Note that ``smallest_normal`` is not actually the smallest positive
456
+ representable value in a NumPy floating point type. As in the IEEE-754
457
+ standard [1]_, NumPy floating point types make use of subnormal numbers to
458
+ fill the gap between 0 and ``smallest_normal``. However, subnormal numbers
459
+ may have significantly reduced precision [2]_.
460
+
461
+ This function can also be used for complex data types as well. If used,
462
+ the output will be the same as the corresponding real float type
463
+ (e.g. numpy.finfo(numpy.csingle) is the same as numpy.finfo(numpy.single)).
464
+ However, the output is true for the real and imaginary components.
465
+
466
+ References
467
+ ----------
468
+ .. [1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008,
469
+ pp.1-70, 2008, http://www.doi.org/10.1109/IEEESTD.2008.4610935
470
+ .. [2] Wikipedia, "Denormal Numbers",
471
+ https://en.wikipedia.org/wiki/Denormal_number
472
+
473
+ Examples
474
+ --------
475
+ >>> np.finfo(np.float64).dtype
476
+ dtype('float64')
477
+ >>> np.finfo(np.complex64).dtype
478
+ dtype('float32')
479
+
480
+ """
481
+
482
+ _finfo_cache = {}
483
+
484
+ def __new__(cls, dtype):
485
+ try:
486
+ obj = cls._finfo_cache.get(dtype) # most common path
487
+ if obj is not None:
488
+ return obj
489
+ except TypeError:
490
+ pass
491
+
492
+ if dtype is None:
493
+ # Deprecated in NumPy 1.25, 2023-01-16
494
+ warnings.warn(
495
+ "finfo() dtype cannot be None. This behavior will "
496
+ "raise an error in the future. (Deprecated in NumPy 1.25)",
497
+ DeprecationWarning,
498
+ stacklevel=2
499
+ )
500
+
501
+ try:
502
+ dtype = numeric.dtype(dtype)
503
+ except TypeError:
504
+ # In case a float instance was given
505
+ dtype = numeric.dtype(type(dtype))
506
+
507
+ obj = cls._finfo_cache.get(dtype)
508
+ if obj is not None:
509
+ return obj
510
+ dtypes = [dtype]
511
+ newdtype = numeric.obj2sctype(dtype)
512
+ if newdtype is not dtype:
513
+ dtypes.append(newdtype)
514
+ dtype = newdtype
515
+ if not issubclass(dtype, numeric.inexact):
516
+ raise ValueError("data type %r not inexact" % (dtype))
517
+ obj = cls._finfo_cache.get(dtype)
518
+ if obj is not None:
519
+ return obj
520
+ if not issubclass(dtype, numeric.floating):
521
+ newdtype = _convert_to_float[dtype]
522
+ if newdtype is not dtype:
523
+ # dtype changed, for example from complex128 to float64
524
+ dtypes.append(newdtype)
525
+ dtype = newdtype
526
+
527
+ obj = cls._finfo_cache.get(dtype, None)
528
+ if obj is not None:
529
+ # the original dtype was not in the cache, but the new
530
+ # dtype is in the cache. we add the original dtypes to
531
+ # the cache and return the result
532
+ for dt in dtypes:
533
+ cls._finfo_cache[dt] = obj
534
+ return obj
535
+ obj = object.__new__(cls)._init(dtype)
536
+ for dt in dtypes:
537
+ cls._finfo_cache[dt] = obj
538
+ return obj
539
+
540
+ def _init(self, dtype):
541
+ self.dtype = numeric.dtype(dtype)
542
+ machar = _get_machar(dtype)
543
+
544
+ for word in ['precision', 'iexp',
545
+ 'maxexp', 'minexp', 'negep',
546
+ 'machep']:
547
+ setattr(self, word, getattr(machar, word))
548
+ for word in ['resolution', 'epsneg', 'smallest_subnormal']:
549
+ setattr(self, word, getattr(machar, word).flat[0])
550
+ self.bits = self.dtype.itemsize * 8
551
+ self.max = machar.huge.flat[0]
552
+ self.min = -self.max
553
+ self.eps = machar.eps.flat[0]
554
+ self.nexp = machar.iexp
555
+ self.nmant = machar.it
556
+ self._machar = machar
557
+ self._str_tiny = machar._str_xmin.strip()
558
+ self._str_max = machar._str_xmax.strip()
559
+ self._str_epsneg = machar._str_epsneg.strip()
560
+ self._str_eps = machar._str_eps.strip()
561
+ self._str_resolution = machar._str_resolution.strip()
562
+ self._str_smallest_normal = machar._str_smallest_normal.strip()
563
+ self._str_smallest_subnormal = machar._str_smallest_subnormal.strip()
564
+ return self
565
+
566
+ def __str__(self):
567
+ fmt = (
568
+ 'Machine parameters for %(dtype)s\n'
569
+ '---------------------------------------------------------------\n'
570
+ 'precision = %(precision)3s resolution = %(_str_resolution)s\n'
571
+ 'machep = %(machep)6s eps = %(_str_eps)s\n'
572
+ 'negep = %(negep)6s epsneg = %(_str_epsneg)s\n'
573
+ 'minexp = %(minexp)6s tiny = %(_str_tiny)s\n'
574
+ 'maxexp = %(maxexp)6s max = %(_str_max)s\n'
575
+ 'nexp = %(nexp)6s min = -max\n'
576
+ 'smallest_normal = %(_str_smallest_normal)s '
577
+ 'smallest_subnormal = %(_str_smallest_subnormal)s\n'
578
+ '---------------------------------------------------------------\n'
579
+ )
580
+ return fmt % self.__dict__
581
+
582
+ def __repr__(self):
583
+ c = self.__class__.__name__
584
+ d = self.__dict__.copy()
585
+ d['klass'] = c
586
+ return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s,"
587
+ " max=%(_str_max)s, dtype=%(dtype)s)") % d)
588
+
589
+ @property
590
+ def smallest_normal(self):
591
+ """Return the value for the smallest normal.
592
+
593
+ Returns
594
+ -------
595
+ smallest_normal : float
596
+ Value for the smallest normal.
597
+
598
+ Warns
599
+ -----
600
+ UserWarning
601
+ If the calculated value for the smallest normal is requested for
602
+ double-double.
603
+ """
604
+ # This check is necessary because the value for smallest_normal is
605
+ # platform dependent for longdouble types.
606
+ if isnan(self._machar.smallest_normal.flat[0]):
607
+ warnings.warn(
608
+ 'The value of smallest normal is undefined for double double',
609
+ UserWarning, stacklevel=2)
610
+ return self._machar.smallest_normal.flat[0]
611
+
612
+ @property
613
+ def tiny(self):
614
+ """Return the value for tiny, alias of smallest_normal.
615
+
616
+ Returns
617
+ -------
618
+ tiny : float
619
+ Value for the smallest normal, alias of smallest_normal.
620
+
621
+ Warns
622
+ -----
623
+ UserWarning
624
+ If the calculated value for the smallest normal is requested for
625
+ double-double.
626
+ """
627
+ return self.smallest_normal
628
+
629
+
630
+ @set_module('numpy')
631
+ class iinfo:
632
+ """
633
+ iinfo(type)
634
+
635
+ Machine limits for integer types.
636
+
637
+ Attributes
638
+ ----------
639
+ bits : int
640
+ The number of bits occupied by the type.
641
+ dtype : dtype
642
+ Returns the dtype for which `iinfo` returns information.
643
+ min : int
644
+ The smallest integer expressible by the type.
645
+ max : int
646
+ The largest integer expressible by the type.
647
+
648
+ Parameters
649
+ ----------
650
+ int_type : integer type, dtype, or instance
651
+ The kind of integer data type to get information about.
652
+
653
+ See Also
654
+ --------
655
+ finfo : The equivalent for floating point data types.
656
+
657
+ Examples
658
+ --------
659
+ With types:
660
+
661
+ >>> ii16 = np.iinfo(np.int16)
662
+ >>> ii16.min
663
+ -32768
664
+ >>> ii16.max
665
+ 32767
666
+ >>> ii32 = np.iinfo(np.int32)
667
+ >>> ii32.min
668
+ -2147483648
669
+ >>> ii32.max
670
+ 2147483647
671
+
672
+ With instances:
673
+
674
+ >>> ii32 = np.iinfo(np.int32(10))
675
+ >>> ii32.min
676
+ -2147483648
677
+ >>> ii32.max
678
+ 2147483647
679
+
680
+ """
681
+
682
+ _min_vals = {}
683
+ _max_vals = {}
684
+
685
+ def __init__(self, int_type):
686
+ try:
687
+ self.dtype = numeric.dtype(int_type)
688
+ except TypeError:
689
+ self.dtype = numeric.dtype(type(int_type))
690
+ self.kind = self.dtype.kind
691
+ self.bits = self.dtype.itemsize * 8
692
+ self.key = "%s%d" % (self.kind, self.bits)
693
+ if self.kind not in 'iu':
694
+ raise ValueError("Invalid integer data type %r." % (self.kind,))
695
+
696
+ @property
697
+ def min(self):
698
+ """Minimum value of given dtype."""
699
+ if self.kind == 'u':
700
+ return 0
701
+ else:
702
+ try:
703
+ val = iinfo._min_vals[self.key]
704
+ except KeyError:
705
+ val = int(-(1 << (self.bits-1)))
706
+ iinfo._min_vals[self.key] = val
707
+ return val
708
+
709
+ @property
710
+ def max(self):
711
+ """Maximum value of given dtype."""
712
+ try:
713
+ val = iinfo._max_vals[self.key]
714
+ except KeyError:
715
+ if self.kind == 'u':
716
+ val = int((1 << self.bits) - 1)
717
+ else:
718
+ val = int((1 << (self.bits-1)) - 1)
719
+ iinfo._max_vals[self.key] = val
720
+ return val
721
+
722
+ def __str__(self):
723
+ """String representation."""
724
+ fmt = (
725
+ 'Machine parameters for %(dtype)s\n'
726
+ '---------------------------------------------------------------\n'
727
+ 'min = %(min)s\n'
728
+ 'max = %(max)s\n'
729
+ '---------------------------------------------------------------\n'
730
+ )
731
+ return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max}
732
+
733
+ def __repr__(self):
734
+ return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__,
735
+ self.min, self.max, self.dtype)
env-llmeval/lib/python3.10/site-packages/numpy/core/getlimits.pyi ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from numpy import (
2
+ finfo as finfo,
3
+ iinfo as iinfo,
4
+ )
5
+
6
+ __all__: list[str]
env-llmeval/lib/python3.10/site-packages/numpy/core/multiarray.py ADDED
@@ -0,0 +1,1715 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Create the numpy.core.multiarray namespace for backward compatibility. In v1.16
3
+ the multiarray and umath c-extension modules were merged into a single
4
+ _multiarray_umath extension module. So we replicate the old namespace
5
+ by importing from the extension module.
6
+
7
+ """
8
+
9
+ import functools
10
+ from . import overrides
11
+ from . import _multiarray_umath
12
+ from ._multiarray_umath import * # noqa: F403
13
+ # These imports are needed for backward compatibility,
14
+ # do not change them. issue gh-15518
15
+ # _get_ndarray_c_version is semi-public, on purpose not added to __all__
16
+ from ._multiarray_umath import (
17
+ fastCopyAndTranspose, _flagdict, from_dlpack, _place, _reconstruct,
18
+ _vec_string, _ARRAY_API, _monotonicity, _get_ndarray_c_version,
19
+ _get_madvise_hugepage, _set_madvise_hugepage,
20
+ _get_promotion_state, _set_promotion_state, _using_numpy2_behavior
21
+ )
22
+
23
+ __all__ = [
24
+ '_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS',
25
+ 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS',
26
+ 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI',
27
+ 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP',
28
+ '_flagdict', 'from_dlpack', '_place', '_reconstruct', '_vec_string',
29
+ '_monotonicity', 'add_docstring', 'arange', 'array', 'asarray',
30
+ 'asanyarray', 'ascontiguousarray', 'asfortranarray', 'bincount',
31
+ 'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast',
32
+ 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2',
33
+ 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data',
34
+ 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype',
35
+ 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat',
36
+ 'frombuffer', 'fromfile', 'fromiter', 'fromstring',
37
+ 'get_handler_name', 'get_handler_version', 'inner', 'interp',
38
+ 'interp_complex', 'is_busday', 'lexsort', 'matmul', 'may_share_memory',
39
+ 'min_scalar_type', 'ndarray', 'nditer', 'nested_iters',
40
+ 'normalize_axis_index', 'packbits', 'promote_types', 'putmask',
41
+ 'ravel_multi_index', 'result_type', 'scalar', 'set_datetimeparse_function',
42
+ 'set_legacy_print_mode', 'set_numeric_ops', 'set_string_function',
43
+ 'set_typeDict', 'shares_memory', 'tracemalloc_domain', 'typeinfo',
44
+ 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros',
45
+ '_get_promotion_state', '_set_promotion_state', '_using_numpy2_behavior']
46
+
47
+ # For backward compatibility, make sure pickle imports these functions from here
48
+ _reconstruct.__module__ = 'numpy.core.multiarray'
49
+ scalar.__module__ = 'numpy.core.multiarray'
50
+
51
+
52
+ from_dlpack.__module__ = 'numpy'
53
+ arange.__module__ = 'numpy'
54
+ array.__module__ = 'numpy'
55
+ asarray.__module__ = 'numpy'
56
+ asanyarray.__module__ = 'numpy'
57
+ ascontiguousarray.__module__ = 'numpy'
58
+ asfortranarray.__module__ = 'numpy'
59
+ datetime_data.__module__ = 'numpy'
60
+ empty.__module__ = 'numpy'
61
+ frombuffer.__module__ = 'numpy'
62
+ fromfile.__module__ = 'numpy'
63
+ fromiter.__module__ = 'numpy'
64
+ frompyfunc.__module__ = 'numpy'
65
+ fromstring.__module__ = 'numpy'
66
+ geterrobj.__module__ = 'numpy'
67
+ may_share_memory.__module__ = 'numpy'
68
+ nested_iters.__module__ = 'numpy'
69
+ promote_types.__module__ = 'numpy'
70
+ set_numeric_ops.__module__ = 'numpy'
71
+ seterrobj.__module__ = 'numpy'
72
+ zeros.__module__ = 'numpy'
73
+ _get_promotion_state.__module__ = 'numpy'
74
+ _set_promotion_state.__module__ = 'numpy'
75
+ _using_numpy2_behavior.__module__ = 'numpy'
76
+
77
+
78
+ # We can't verify dispatcher signatures because NumPy's C functions don't
79
+ # support introspection.
80
+ array_function_from_c_func_and_dispatcher = functools.partial(
81
+ overrides.array_function_from_dispatcher,
82
+ module='numpy', docs_from_dispatcher=True, verify=False)
83
+
84
+
85
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like)
86
+ def empty_like(prototype, dtype=None, order=None, subok=None, shape=None):
87
+ """
88
+ empty_like(prototype, dtype=None, order='K', subok=True, shape=None)
89
+
90
+ Return a new array with the same shape and type as a given array.
91
+
92
+ Parameters
93
+ ----------
94
+ prototype : array_like
95
+ The shape and data-type of `prototype` define these same attributes
96
+ of the returned array.
97
+ dtype : data-type, optional
98
+ Overrides the data type of the result.
99
+
100
+ .. versionadded:: 1.6.0
101
+ order : {'C', 'F', 'A', or 'K'}, optional
102
+ Overrides the memory layout of the result. 'C' means C-order,
103
+ 'F' means F-order, 'A' means 'F' if `prototype` is Fortran
104
+ contiguous, 'C' otherwise. 'K' means match the layout of `prototype`
105
+ as closely as possible.
106
+
107
+ .. versionadded:: 1.6.0
108
+ subok : bool, optional.
109
+ If True, then the newly created array will use the sub-class
110
+ type of `prototype`, otherwise it will be a base-class array. Defaults
111
+ to True.
112
+ shape : int or sequence of ints, optional.
113
+ Overrides the shape of the result. If order='K' and the number of
114
+ dimensions is unchanged, will try to keep order, otherwise,
115
+ order='C' is implied.
116
+
117
+ .. versionadded:: 1.17.0
118
+
119
+ Returns
120
+ -------
121
+ out : ndarray
122
+ Array of uninitialized (arbitrary) data with the same
123
+ shape and type as `prototype`.
124
+
125
+ See Also
126
+ --------
127
+ ones_like : Return an array of ones with shape and type of input.
128
+ zeros_like : Return an array of zeros with shape and type of input.
129
+ full_like : Return a new array with shape of input filled with value.
130
+ empty : Return a new uninitialized array.
131
+
132
+ Notes
133
+ -----
134
+ This function does *not* initialize the returned array; to do that use
135
+ `zeros_like` or `ones_like` instead. It may be marginally faster than
136
+ the functions that do set the array values.
137
+
138
+ Examples
139
+ --------
140
+ >>> a = ([1,2,3], [4,5,6]) # a is array-like
141
+ >>> np.empty_like(a)
142
+ array([[-1073741821, -1073741821, 3], # uninitialized
143
+ [ 0, 0, -1073741821]])
144
+ >>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
145
+ >>> np.empty_like(a)
146
+ array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized
147
+ [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
148
+
149
+ """
150
+ return (prototype,)
151
+
152
+
153
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.concatenate)
154
+ def concatenate(arrays, axis=None, out=None, *, dtype=None, casting=None):
155
+ """
156
+ concatenate((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind")
157
+
158
+ Join a sequence of arrays along an existing axis.
159
+
160
+ Parameters
161
+ ----------
162
+ a1, a2, ... : sequence of array_like
163
+ The arrays must have the same shape, except in the dimension
164
+ corresponding to `axis` (the first, by default).
165
+ axis : int, optional
166
+ The axis along which the arrays will be joined. If axis is None,
167
+ arrays are flattened before use. Default is 0.
168
+ out : ndarray, optional
169
+ If provided, the destination to place the result. The shape must be
170
+ correct, matching that of what concatenate would have returned if no
171
+ out argument were specified.
172
+ dtype : str or dtype
173
+ If provided, the destination array will have this dtype. Cannot be
174
+ provided together with `out`.
175
+
176
+ .. versionadded:: 1.20.0
177
+
178
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
179
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
180
+
181
+ .. versionadded:: 1.20.0
182
+
183
+ Returns
184
+ -------
185
+ res : ndarray
186
+ The concatenated array.
187
+
188
+ See Also
189
+ --------
190
+ ma.concatenate : Concatenate function that preserves input masks.
191
+ array_split : Split an array into multiple sub-arrays of equal or
192
+ near-equal size.
193
+ split : Split array into a list of multiple sub-arrays of equal size.
194
+ hsplit : Split array into multiple sub-arrays horizontally (column wise).
195
+ vsplit : Split array into multiple sub-arrays vertically (row wise).
196
+ dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
197
+ stack : Stack a sequence of arrays along a new axis.
198
+ block : Assemble arrays from blocks.
199
+ hstack : Stack arrays in sequence horizontally (column wise).
200
+ vstack : Stack arrays in sequence vertically (row wise).
201
+ dstack : Stack arrays in sequence depth wise (along third dimension).
202
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
203
+
204
+ Notes
205
+ -----
206
+ When one or more of the arrays to be concatenated is a MaskedArray,
207
+ this function will return a MaskedArray object instead of an ndarray,
208
+ but the input masks are *not* preserved. In cases where a MaskedArray
209
+ is expected as input, use the ma.concatenate function from the masked
210
+ array module instead.
211
+
212
+ Examples
213
+ --------
214
+ >>> a = np.array([[1, 2], [3, 4]])
215
+ >>> b = np.array([[5, 6]])
216
+ >>> np.concatenate((a, b), axis=0)
217
+ array([[1, 2],
218
+ [3, 4],
219
+ [5, 6]])
220
+ >>> np.concatenate((a, b.T), axis=1)
221
+ array([[1, 2, 5],
222
+ [3, 4, 6]])
223
+ >>> np.concatenate((a, b), axis=None)
224
+ array([1, 2, 3, 4, 5, 6])
225
+
226
+ This function will not preserve masking of MaskedArray inputs.
227
+
228
+ >>> a = np.ma.arange(3)
229
+ >>> a[1] = np.ma.masked
230
+ >>> b = np.arange(2, 5)
231
+ >>> a
232
+ masked_array(data=[0, --, 2],
233
+ mask=[False, True, False],
234
+ fill_value=999999)
235
+ >>> b
236
+ array([2, 3, 4])
237
+ >>> np.concatenate([a, b])
238
+ masked_array(data=[0, 1, 2, 2, 3, 4],
239
+ mask=False,
240
+ fill_value=999999)
241
+ >>> np.ma.concatenate([a, b])
242
+ masked_array(data=[0, --, 2, 2, 3, 4],
243
+ mask=[False, True, False, False, False, False],
244
+ fill_value=999999)
245
+
246
+ """
247
+ if out is not None:
248
+ # optimize for the typical case where only arrays is provided
249
+ arrays = list(arrays)
250
+ arrays.append(out)
251
+ return arrays
252
+
253
+
254
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.inner)
255
+ def inner(a, b):
256
+ """
257
+ inner(a, b, /)
258
+
259
+ Inner product of two arrays.
260
+
261
+ Ordinary inner product of vectors for 1-D arrays (without complex
262
+ conjugation), in higher dimensions a sum product over the last axes.
263
+
264
+ Parameters
265
+ ----------
266
+ a, b : array_like
267
+ If `a` and `b` are nonscalar, their last dimensions must match.
268
+
269
+ Returns
270
+ -------
271
+ out : ndarray
272
+ If `a` and `b` are both
273
+ scalars or both 1-D arrays then a scalar is returned; otherwise
274
+ an array is returned.
275
+ ``out.shape = (*a.shape[:-1], *b.shape[:-1])``
276
+
277
+ Raises
278
+ ------
279
+ ValueError
280
+ If both `a` and `b` are nonscalar and their last dimensions have
281
+ different sizes.
282
+
283
+ See Also
284
+ --------
285
+ tensordot : Sum products over arbitrary axes.
286
+ dot : Generalised matrix product, using second last dimension of `b`.
287
+ einsum : Einstein summation convention.
288
+
289
+ Notes
290
+ -----
291
+ For vectors (1-D arrays) it computes the ordinary inner-product::
292
+
293
+ np.inner(a, b) = sum(a[:]*b[:])
294
+
295
+ More generally, if ``ndim(a) = r > 0`` and ``ndim(b) = s > 0``::
296
+
297
+ np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))
298
+
299
+ or explicitly::
300
+
301
+ np.inner(a, b)[i0,...,ir-2,j0,...,js-2]
302
+ = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:])
303
+
304
+ In addition `a` or `b` may be scalars, in which case::
305
+
306
+ np.inner(a,b) = a*b
307
+
308
+ Examples
309
+ --------
310
+ Ordinary inner product for vectors:
311
+
312
+ >>> a = np.array([1,2,3])
313
+ >>> b = np.array([0,1,0])
314
+ >>> np.inner(a, b)
315
+ 2
316
+
317
+ Some multidimensional examples:
318
+
319
+ >>> a = np.arange(24).reshape((2,3,4))
320
+ >>> b = np.arange(4)
321
+ >>> c = np.inner(a, b)
322
+ >>> c.shape
323
+ (2, 3)
324
+ >>> c
325
+ array([[ 14, 38, 62],
326
+ [ 86, 110, 134]])
327
+
328
+ >>> a = np.arange(2).reshape((1,1,2))
329
+ >>> b = np.arange(6).reshape((3,2))
330
+ >>> c = np.inner(a, b)
331
+ >>> c.shape
332
+ (1, 1, 3)
333
+ >>> c
334
+ array([[[1, 3, 5]]])
335
+
336
+ An example where `b` is a scalar:
337
+
338
+ >>> np.inner(np.eye(2), 7)
339
+ array([[7., 0.],
340
+ [0., 7.]])
341
+
342
+ """
343
+ return (a, b)
344
+
345
+
346
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.where)
347
+ def where(condition, x=None, y=None):
348
+ """
349
+ where(condition, [x, y], /)
350
+
351
+ Return elements chosen from `x` or `y` depending on `condition`.
352
+
353
+ .. note::
354
+ When only `condition` is provided, this function is a shorthand for
355
+ ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be
356
+ preferred, as it behaves correctly for subclasses. The rest of this
357
+ documentation covers only the case where all three arguments are
358
+ provided.
359
+
360
+ Parameters
361
+ ----------
362
+ condition : array_like, bool
363
+ Where True, yield `x`, otherwise yield `y`.
364
+ x, y : array_like
365
+ Values from which to choose. `x`, `y` and `condition` need to be
366
+ broadcastable to some shape.
367
+
368
+ Returns
369
+ -------
370
+ out : ndarray
371
+ An array with elements from `x` where `condition` is True, and elements
372
+ from `y` elsewhere.
373
+
374
+ See Also
375
+ --------
376
+ choose
377
+ nonzero : The function that is called when x and y are omitted
378
+
379
+ Notes
380
+ -----
381
+ If all the arrays are 1-D, `where` is equivalent to::
382
+
383
+ [xv if c else yv
384
+ for c, xv, yv in zip(condition, x, y)]
385
+
386
+ Examples
387
+ --------
388
+ >>> a = np.arange(10)
389
+ >>> a
390
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
391
+ >>> np.where(a < 5, a, 10*a)
392
+ array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90])
393
+
394
+ This can be used on multidimensional arrays too:
395
+
396
+ >>> np.where([[True, False], [True, True]],
397
+ ... [[1, 2], [3, 4]],
398
+ ... [[9, 8], [7, 6]])
399
+ array([[1, 8],
400
+ [3, 4]])
401
+
402
+ The shapes of x, y, and the condition are broadcast together:
403
+
404
+ >>> x, y = np.ogrid[:3, :4]
405
+ >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast
406
+ array([[10, 0, 0, 0],
407
+ [10, 11, 1, 1],
408
+ [10, 11, 12, 2]])
409
+
410
+ >>> a = np.array([[0, 1, 2],
411
+ ... [0, 2, 4],
412
+ ... [0, 3, 6]])
413
+ >>> np.where(a < 4, a, -1) # -1 is broadcast
414
+ array([[ 0, 1, 2],
415
+ [ 0, 2, -1],
416
+ [ 0, 3, -1]])
417
+ """
418
+ return (condition, x, y)
419
+
420
+
421
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.lexsort)
422
+ def lexsort(keys, axis=None):
423
+ """
424
+ lexsort(keys, axis=-1)
425
+
426
+ Perform an indirect stable sort using a sequence of keys.
427
+
428
+ Given multiple sorting keys, which can be interpreted as columns in a
429
+ spreadsheet, lexsort returns an array of integer indices that describes
430
+ the sort order by multiple columns. The last key in the sequence is used
431
+ for the primary sort order, the second-to-last key for the secondary sort
432
+ order, and so on. The keys argument must be a sequence of objects that
433
+ can be converted to arrays of the same shape. If a 2D array is provided
434
+ for the keys argument, its rows are interpreted as the sorting keys and
435
+ sorting is according to the last row, second last row etc.
436
+
437
+ Parameters
438
+ ----------
439
+ keys : (k, N) array or tuple containing k (N,)-shaped sequences
440
+ The `k` different "columns" to be sorted. The last column (or row if
441
+ `keys` is a 2D array) is the primary sort key.
442
+ axis : int, optional
443
+ Axis to be indirectly sorted. By default, sort over the last axis.
444
+
445
+ Returns
446
+ -------
447
+ indices : (N,) ndarray of ints
448
+ Array of indices that sort the keys along the specified axis.
449
+
450
+ See Also
451
+ --------
452
+ argsort : Indirect sort.
453
+ ndarray.sort : In-place sort.
454
+ sort : Return a sorted copy of an array.
455
+
456
+ Examples
457
+ --------
458
+ Sort names: first by surname, then by name.
459
+
460
+ >>> surnames = ('Hertz', 'Galilei', 'Hertz')
461
+ >>> first_names = ('Heinrich', 'Galileo', 'Gustav')
462
+ >>> ind = np.lexsort((first_names, surnames))
463
+ >>> ind
464
+ array([1, 2, 0])
465
+
466
+ >>> [surnames[i] + ", " + first_names[i] for i in ind]
467
+ ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']
468
+
469
+ Sort two columns of numbers:
470
+
471
+ >>> a = [1,5,1,4,3,4,4] # First column
472
+ >>> b = [9,4,0,4,0,2,1] # Second column
473
+ >>> ind = np.lexsort((b,a)) # Sort by a, then by b
474
+ >>> ind
475
+ array([2, 0, 4, 6, 5, 3, 1])
476
+
477
+ >>> [(a[i],b[i]) for i in ind]
478
+ [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]
479
+
480
+ Note that sorting is first according to the elements of ``a``.
481
+ Secondary sorting is according to the elements of ``b``.
482
+
483
+ A normal ``argsort`` would have yielded:
484
+
485
+ >>> [(a[i],b[i]) for i in np.argsort(a)]
486
+ [(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)]
487
+
488
+ Structured arrays are sorted lexically by ``argsort``:
489
+
490
+ >>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)],
491
+ ... dtype=np.dtype([('x', int), ('y', int)]))
492
+
493
+ >>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
494
+ array([2, 0, 4, 6, 5, 3, 1])
495
+
496
+ """
497
+ if isinstance(keys, tuple):
498
+ return keys
499
+ else:
500
+ return (keys,)
501
+
502
+
503
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.can_cast)
504
+ def can_cast(from_, to, casting=None):
505
+ """
506
+ can_cast(from_, to, casting='safe')
507
+
508
+ Returns True if cast between data types can occur according to the
509
+ casting rule. If from is a scalar or array scalar, also returns
510
+ True if the scalar value can be cast without overflow or truncation
511
+ to an integer.
512
+
513
+ Parameters
514
+ ----------
515
+ from_ : dtype, dtype specifier, scalar, or array
516
+ Data type, scalar, or array to cast from.
517
+ to : dtype or dtype specifier
518
+ Data type to cast to.
519
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
520
+ Controls what kind of data casting may occur.
521
+
522
+ * 'no' means the data types should not be cast at all.
523
+ * 'equiv' means only byte-order changes are allowed.
524
+ * 'safe' means only casts which can preserve values are allowed.
525
+ * 'same_kind' means only safe casts or casts within a kind,
526
+ like float64 to float32, are allowed.
527
+ * 'unsafe' means any data conversions may be done.
528
+
529
+ Returns
530
+ -------
531
+ out : bool
532
+ True if cast can occur according to the casting rule.
533
+
534
+ Notes
535
+ -----
536
+ .. versionchanged:: 1.17.0
537
+ Casting between a simple data type and a structured one is possible only
538
+ for "unsafe" casting. Casting to multiple fields is allowed, but
539
+ casting from multiple fields is not.
540
+
541
+ .. versionchanged:: 1.9.0
542
+ Casting from numeric to string types in 'safe' casting mode requires
543
+ that the string dtype length is long enough to store the maximum
544
+ integer/float value converted.
545
+
546
+ See also
547
+ --------
548
+ dtype, result_type
549
+
550
+ Examples
551
+ --------
552
+ Basic examples
553
+
554
+ >>> np.can_cast(np.int32, np.int64)
555
+ True
556
+ >>> np.can_cast(np.float64, complex)
557
+ True
558
+ >>> np.can_cast(complex, float)
559
+ False
560
+
561
+ >>> np.can_cast('i8', 'f8')
562
+ True
563
+ >>> np.can_cast('i8', 'f4')
564
+ False
565
+ >>> np.can_cast('i4', 'S4')
566
+ False
567
+
568
+ Casting scalars
569
+
570
+ >>> np.can_cast(100, 'i1')
571
+ True
572
+ >>> np.can_cast(150, 'i1')
573
+ False
574
+ >>> np.can_cast(150, 'u1')
575
+ True
576
+
577
+ >>> np.can_cast(3.5e100, np.float32)
578
+ False
579
+ >>> np.can_cast(1000.0, np.float32)
580
+ True
581
+
582
+ Array scalar checks the value, array does not
583
+
584
+ >>> np.can_cast(np.array(1000.0), np.float32)
585
+ True
586
+ >>> np.can_cast(np.array([1000.0]), np.float32)
587
+ False
588
+
589
+ Using the casting rules
590
+
591
+ >>> np.can_cast('i8', 'i8', 'no')
592
+ True
593
+ >>> np.can_cast('<i8', '>i8', 'no')
594
+ False
595
+
596
+ >>> np.can_cast('<i8', '>i8', 'equiv')
597
+ True
598
+ >>> np.can_cast('<i4', '>i8', 'equiv')
599
+ False
600
+
601
+ >>> np.can_cast('<i4', '>i8', 'safe')
602
+ True
603
+ >>> np.can_cast('<i8', '>i4', 'safe')
604
+ False
605
+
606
+ >>> np.can_cast('<i8', '>i4', 'same_kind')
607
+ True
608
+ >>> np.can_cast('<i8', '>u4', 'same_kind')
609
+ False
610
+
611
+ >>> np.can_cast('<i8', '>u4', 'unsafe')
612
+ True
613
+
614
+ """
615
+ return (from_,)
616
+
617
+
618
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.min_scalar_type)
619
+ def min_scalar_type(a):
620
+ """
621
+ min_scalar_type(a, /)
622
+
623
+ For scalar ``a``, returns the data type with the smallest size
624
+ and smallest scalar kind which can hold its value. For non-scalar
625
+ array ``a``, returns the vector's dtype unmodified.
626
+
627
+ Floating point values are not demoted to integers,
628
+ and complex values are not demoted to floats.
629
+
630
+ Parameters
631
+ ----------
632
+ a : scalar or array_like
633
+ The value whose minimal data type is to be found.
634
+
635
+ Returns
636
+ -------
637
+ out : dtype
638
+ The minimal data type.
639
+
640
+ Notes
641
+ -----
642
+ .. versionadded:: 1.6.0
643
+
644
+ See Also
645
+ --------
646
+ result_type, promote_types, dtype, can_cast
647
+
648
+ Examples
649
+ --------
650
+ >>> np.min_scalar_type(10)
651
+ dtype('uint8')
652
+
653
+ >>> np.min_scalar_type(-260)
654
+ dtype('int16')
655
+
656
+ >>> np.min_scalar_type(3.1)
657
+ dtype('float16')
658
+
659
+ >>> np.min_scalar_type(1e50)
660
+ dtype('float64')
661
+
662
+ >>> np.min_scalar_type(np.arange(4,dtype='f8'))
663
+ dtype('float64')
664
+
665
+ """
666
+ return (a,)
667
+
668
+
669
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.result_type)
670
+ def result_type(*arrays_and_dtypes):
671
+ """
672
+ result_type(*arrays_and_dtypes)
673
+
674
+ Returns the type that results from applying the NumPy
675
+ type promotion rules to the arguments.
676
+
677
+ Type promotion in NumPy works similarly to the rules in languages
678
+ like C++, with some slight differences. When both scalars and
679
+ arrays are used, the array's type takes precedence and the actual value
680
+ of the scalar is taken into account.
681
+
682
+ For example, calculating 3*a, where a is an array of 32-bit floats,
683
+ intuitively should result in a 32-bit float output. If the 3 is a
684
+ 32-bit integer, the NumPy rules indicate it can't convert losslessly
685
+ into a 32-bit float, so a 64-bit float should be the result type.
686
+ By examining the value of the constant, '3', we see that it fits in
687
+ an 8-bit integer, which can be cast losslessly into the 32-bit float.
688
+
689
+ Parameters
690
+ ----------
691
+ arrays_and_dtypes : list of arrays and dtypes
692
+ The operands of some operation whose result type is needed.
693
+
694
+ Returns
695
+ -------
696
+ out : dtype
697
+ The result type.
698
+
699
+ See also
700
+ --------
701
+ dtype, promote_types, min_scalar_type, can_cast
702
+
703
+ Notes
704
+ -----
705
+ .. versionadded:: 1.6.0
706
+
707
+ The specific algorithm used is as follows.
708
+
709
+ Categories are determined by first checking which of boolean,
710
+ integer (int/uint), or floating point (float/complex) the maximum
711
+ kind of all the arrays and the scalars are.
712
+
713
+ If there are only scalars or the maximum category of the scalars
714
+ is higher than the maximum category of the arrays,
715
+ the data types are combined with :func:`promote_types`
716
+ to produce the return value.
717
+
718
+ Otherwise, `min_scalar_type` is called on each scalar, and
719
+ the resulting data types are all combined with :func:`promote_types`
720
+ to produce the return value.
721
+
722
+ The set of int values is not a subset of the uint values for types
723
+ with the same number of bits, something not reflected in
724
+ :func:`min_scalar_type`, but handled as a special case in `result_type`.
725
+
726
+ Examples
727
+ --------
728
+ >>> np.result_type(3, np.arange(7, dtype='i1'))
729
+ dtype('int8')
730
+
731
+ >>> np.result_type('i4', 'c8')
732
+ dtype('complex128')
733
+
734
+ >>> np.result_type(3.0, -2)
735
+ dtype('float64')
736
+
737
+ """
738
+ return arrays_and_dtypes
739
+
740
+
741
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.dot)
742
+ def dot(a, b, out=None):
743
+ """
744
+ dot(a, b, out=None)
745
+
746
+ Dot product of two arrays. Specifically,
747
+
748
+ - If both `a` and `b` are 1-D arrays, it is inner product of vectors
749
+ (without complex conjugation).
750
+
751
+ - If both `a` and `b` are 2-D arrays, it is matrix multiplication,
752
+ but using :func:`matmul` or ``a @ b`` is preferred.
753
+
754
+ - If either `a` or `b` is 0-D (scalar), it is equivalent to
755
+ :func:`multiply` and using ``numpy.multiply(a, b)`` or ``a * b`` is
756
+ preferred.
757
+
758
+ - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over
759
+ the last axis of `a` and `b`.
760
+
761
+ - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a
762
+ sum product over the last axis of `a` and the second-to-last axis of
763
+ `b`::
764
+
765
+ dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
766
+
767
+ It uses an optimized BLAS library when possible (see `numpy.linalg`).
768
+
769
+ Parameters
770
+ ----------
771
+ a : array_like
772
+ First argument.
773
+ b : array_like
774
+ Second argument.
775
+ out : ndarray, optional
776
+ Output argument. This must have the exact kind that would be returned
777
+ if it was not used. In particular, it must have the right type, must be
778
+ C-contiguous, and its dtype must be the dtype that would be returned
779
+ for `dot(a,b)`. This is a performance feature. Therefore, if these
780
+ conditions are not met, an exception is raised, instead of attempting
781
+ to be flexible.
782
+
783
+ Returns
784
+ -------
785
+ output : ndarray
786
+ Returns the dot product of `a` and `b`. If `a` and `b` are both
787
+ scalars or both 1-D arrays then a scalar is returned; otherwise
788
+ an array is returned.
789
+ If `out` is given, then it is returned.
790
+
791
+ Raises
792
+ ------
793
+ ValueError
794
+ If the last dimension of `a` is not the same size as
795
+ the second-to-last dimension of `b`.
796
+
797
+ See Also
798
+ --------
799
+ vdot : Complex-conjugating dot product.
800
+ tensordot : Sum products over arbitrary axes.
801
+ einsum : Einstein summation convention.
802
+ matmul : '@' operator as method with out parameter.
803
+ linalg.multi_dot : Chained dot product.
804
+
805
+ Examples
806
+ --------
807
+ >>> np.dot(3, 4)
808
+ 12
809
+
810
+ Neither argument is complex-conjugated:
811
+
812
+ >>> np.dot([2j, 3j], [2j, 3j])
813
+ (-13+0j)
814
+
815
+ For 2-D arrays it is the matrix product:
816
+
817
+ >>> a = [[1, 0], [0, 1]]
818
+ >>> b = [[4, 1], [2, 2]]
819
+ >>> np.dot(a, b)
820
+ array([[4, 1],
821
+ [2, 2]])
822
+
823
+ >>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
824
+ >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
825
+ >>> np.dot(a, b)[2,3,2,1,2,2]
826
+ 499128
827
+ >>> sum(a[2,3,2,:] * b[1,2,:,2])
828
+ 499128
829
+
830
+ """
831
+ return (a, b, out)
832
+
833
+
834
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.vdot)
835
+ def vdot(a, b):
836
+ """
837
+ vdot(a, b, /)
838
+
839
+ Return the dot product of two vectors.
840
+
841
+ The vdot(`a`, `b`) function handles complex numbers differently than
842
+ dot(`a`, `b`). If the first argument is complex the complex conjugate
843
+ of the first argument is used for the calculation of the dot product.
844
+
845
+ Note that `vdot` handles multidimensional arrays differently than `dot`:
846
+ it does *not* perform a matrix product, but flattens input arguments
847
+ to 1-D vectors first. Consequently, it should only be used for vectors.
848
+
849
+ Parameters
850
+ ----------
851
+ a : array_like
852
+ If `a` is complex the complex conjugate is taken before calculation
853
+ of the dot product.
854
+ b : array_like
855
+ Second argument to the dot product.
856
+
857
+ Returns
858
+ -------
859
+ output : ndarray
860
+ Dot product of `a` and `b`. Can be an int, float, or
861
+ complex depending on the types of `a` and `b`.
862
+
863
+ See Also
864
+ --------
865
+ dot : Return the dot product without using the complex conjugate of the
866
+ first argument.
867
+
868
+ Examples
869
+ --------
870
+ >>> a = np.array([1+2j,3+4j])
871
+ >>> b = np.array([5+6j,7+8j])
872
+ >>> np.vdot(a, b)
873
+ (70-8j)
874
+ >>> np.vdot(b, a)
875
+ (70+8j)
876
+
877
+ Note that higher-dimensional arrays are flattened!
878
+
879
+ >>> a = np.array([[1, 4], [5, 6]])
880
+ >>> b = np.array([[4, 1], [2, 2]])
881
+ >>> np.vdot(a, b)
882
+ 30
883
+ >>> np.vdot(b, a)
884
+ 30
885
+ >>> 1*4 + 4*1 + 5*2 + 6*2
886
+ 30
887
+
888
+ """
889
+ return (a, b)
890
+
891
+
892
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.bincount)
893
+ def bincount(x, weights=None, minlength=None):
894
+ """
895
+ bincount(x, /, weights=None, minlength=0)
896
+
897
+ Count number of occurrences of each value in array of non-negative ints.
898
+
899
+ The number of bins (of size 1) is one larger than the largest value in
900
+ `x`. If `minlength` is specified, there will be at least this number
901
+ of bins in the output array (though it will be longer if necessary,
902
+ depending on the contents of `x`).
903
+ Each bin gives the number of occurrences of its index value in `x`.
904
+ If `weights` is specified the input array is weighted by it, i.e. if a
905
+ value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead
906
+ of ``out[n] += 1``.
907
+
908
+ Parameters
909
+ ----------
910
+ x : array_like, 1 dimension, nonnegative ints
911
+ Input array.
912
+ weights : array_like, optional
913
+ Weights, array of the same shape as `x`.
914
+ minlength : int, optional
915
+ A minimum number of bins for the output array.
916
+
917
+ .. versionadded:: 1.6.0
918
+
919
+ Returns
920
+ -------
921
+ out : ndarray of ints
922
+ The result of binning the input array.
923
+ The length of `out` is equal to ``np.amax(x)+1``.
924
+
925
+ Raises
926
+ ------
927
+ ValueError
928
+ If the input is not 1-dimensional, or contains elements with negative
929
+ values, or if `minlength` is negative.
930
+ TypeError
931
+ If the type of the input is float or complex.
932
+
933
+ See Also
934
+ --------
935
+ histogram, digitize, unique
936
+
937
+ Examples
938
+ --------
939
+ >>> np.bincount(np.arange(5))
940
+ array([1, 1, 1, 1, 1])
941
+ >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
942
+ array([1, 3, 1, 1, 0, 0, 0, 1])
943
+
944
+ >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
945
+ >>> np.bincount(x).size == np.amax(x)+1
946
+ True
947
+
948
+ The input array needs to be of integer dtype, otherwise a
949
+ TypeError is raised:
950
+
951
+ >>> np.bincount(np.arange(5, dtype=float))
952
+ Traceback (most recent call last):
953
+ ...
954
+ TypeError: Cannot cast array data from dtype('float64') to dtype('int64')
955
+ according to the rule 'safe'
956
+
957
+ A possible use of ``bincount`` is to perform sums over
958
+ variable-size chunks of an array, using the ``weights`` keyword.
959
+
960
+ >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
961
+ >>> x = np.array([0, 1, 1, 2, 2, 2])
962
+ >>> np.bincount(x, weights=w)
963
+ array([ 0.3, 0.7, 1.1])
964
+
965
+ """
966
+ return (x, weights)
967
+
968
+
969
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.ravel_multi_index)
970
+ def ravel_multi_index(multi_index, dims, mode=None, order=None):
971
+ """
972
+ ravel_multi_index(multi_index, dims, mode='raise', order='C')
973
+
974
+ Converts a tuple of index arrays into an array of flat
975
+ indices, applying boundary modes to the multi-index.
976
+
977
+ Parameters
978
+ ----------
979
+ multi_index : tuple of array_like
980
+ A tuple of integer arrays, one array for each dimension.
981
+ dims : tuple of ints
982
+ The shape of array into which the indices from ``multi_index`` apply.
983
+ mode : {'raise', 'wrap', 'clip'}, optional
984
+ Specifies how out-of-bounds indices are handled. Can specify
985
+ either one mode or a tuple of modes, one mode per index.
986
+
987
+ * 'raise' -- raise an error (default)
988
+ * 'wrap' -- wrap around
989
+ * 'clip' -- clip to the range
990
+
991
+ In 'clip' mode, a negative index which would normally
992
+ wrap will clip to 0 instead.
993
+ order : {'C', 'F'}, optional
994
+ Determines whether the multi-index should be viewed as
995
+ indexing in row-major (C-style) or column-major
996
+ (Fortran-style) order.
997
+
998
+ Returns
999
+ -------
1000
+ raveled_indices : ndarray
1001
+ An array of indices into the flattened version of an array
1002
+ of dimensions ``dims``.
1003
+
1004
+ See Also
1005
+ --------
1006
+ unravel_index
1007
+
1008
+ Notes
1009
+ -----
1010
+ .. versionadded:: 1.6.0
1011
+
1012
+ Examples
1013
+ --------
1014
+ >>> arr = np.array([[3,6,6],[4,5,1]])
1015
+ >>> np.ravel_multi_index(arr, (7,6))
1016
+ array([22, 41, 37])
1017
+ >>> np.ravel_multi_index(arr, (7,6), order='F')
1018
+ array([31, 41, 13])
1019
+ >>> np.ravel_multi_index(arr, (4,6), mode='clip')
1020
+ array([22, 23, 19])
1021
+ >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
1022
+ array([12, 13, 13])
1023
+
1024
+ >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
1025
+ 1621
1026
+ """
1027
+ return multi_index
1028
+
1029
+
1030
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.unravel_index)
1031
+ def unravel_index(indices, shape=None, order=None):
1032
+ """
1033
+ unravel_index(indices, shape, order='C')
1034
+
1035
+ Converts a flat index or array of flat indices into a tuple
1036
+ of coordinate arrays.
1037
+
1038
+ Parameters
1039
+ ----------
1040
+ indices : array_like
1041
+ An integer array whose elements are indices into the flattened
1042
+ version of an array of dimensions ``shape``. Before version 1.6.0,
1043
+ this function accepted just one index value.
1044
+ shape : tuple of ints
1045
+ The shape of the array to use for unraveling ``indices``.
1046
+
1047
+ .. versionchanged:: 1.16.0
1048
+ Renamed from ``dims`` to ``shape``.
1049
+
1050
+ order : {'C', 'F'}, optional
1051
+ Determines whether the indices should be viewed as indexing in
1052
+ row-major (C-style) or column-major (Fortran-style) order.
1053
+
1054
+ .. versionadded:: 1.6.0
1055
+
1056
+ Returns
1057
+ -------
1058
+ unraveled_coords : tuple of ndarray
1059
+ Each array in the tuple has the same shape as the ``indices``
1060
+ array.
1061
+
1062
+ See Also
1063
+ --------
1064
+ ravel_multi_index
1065
+
1066
+ Examples
1067
+ --------
1068
+ >>> np.unravel_index([22, 41, 37], (7,6))
1069
+ (array([3, 6, 6]), array([4, 5, 1]))
1070
+ >>> np.unravel_index([31, 41, 13], (7,6), order='F')
1071
+ (array([3, 6, 6]), array([4, 5, 1]))
1072
+
1073
+ >>> np.unravel_index(1621, (6,7,8,9))
1074
+ (3, 1, 4, 1)
1075
+
1076
+ """
1077
+ return (indices,)
1078
+
1079
+
1080
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.copyto)
1081
+ def copyto(dst, src, casting=None, where=None):
1082
+ """
1083
+ copyto(dst, src, casting='same_kind', where=True)
1084
+
1085
+ Copies values from one array to another, broadcasting as necessary.
1086
+
1087
+ Raises a TypeError if the `casting` rule is violated, and if
1088
+ `where` is provided, it selects which elements to copy.
1089
+
1090
+ .. versionadded:: 1.7.0
1091
+
1092
+ Parameters
1093
+ ----------
1094
+ dst : ndarray
1095
+ The array into which values are copied.
1096
+ src : array_like
1097
+ The array from which values are copied.
1098
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
1099
+ Controls what kind of data casting may occur when copying.
1100
+
1101
+ * 'no' means the data types should not be cast at all.
1102
+ * 'equiv' means only byte-order changes are allowed.
1103
+ * 'safe' means only casts which can preserve values are allowed.
1104
+ * 'same_kind' means only safe casts or casts within a kind,
1105
+ like float64 to float32, are allowed.
1106
+ * 'unsafe' means any data conversions may be done.
1107
+ where : array_like of bool, optional
1108
+ A boolean array which is broadcasted to match the dimensions
1109
+ of `dst`, and selects elements to copy from `src` to `dst`
1110
+ wherever it contains the value True.
1111
+
1112
+ Examples
1113
+ --------
1114
+ >>> A = np.array([4, 5, 6])
1115
+ >>> B = [1, 2, 3]
1116
+ >>> np.copyto(A, B)
1117
+ >>> A
1118
+ array([1, 2, 3])
1119
+
1120
+ >>> A = np.array([[1, 2, 3], [4, 5, 6]])
1121
+ >>> B = [[4, 5, 6], [7, 8, 9]]
1122
+ >>> np.copyto(A, B)
1123
+ >>> A
1124
+ array([[4, 5, 6],
1125
+ [7, 8, 9]])
1126
+
1127
+ """
1128
+ return (dst, src, where)
1129
+
1130
+
1131
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask)
1132
+ def putmask(a, /, mask, values):
1133
+ """
1134
+ putmask(a, mask, values)
1135
+
1136
+ Changes elements of an array based on conditional and input values.
1137
+
1138
+ Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``.
1139
+
1140
+ If `values` is not the same size as `a` and `mask` then it will repeat.
1141
+ This gives behavior different from ``a[mask] = values``.
1142
+
1143
+ Parameters
1144
+ ----------
1145
+ a : ndarray
1146
+ Target array.
1147
+ mask : array_like
1148
+ Boolean mask array. It has to be the same shape as `a`.
1149
+ values : array_like
1150
+ Values to put into `a` where `mask` is True. If `values` is smaller
1151
+ than `a` it will be repeated.
1152
+
1153
+ See Also
1154
+ --------
1155
+ place, put, take, copyto
1156
+
1157
+ Examples
1158
+ --------
1159
+ >>> x = np.arange(6).reshape(2, 3)
1160
+ >>> np.putmask(x, x>2, x**2)
1161
+ >>> x
1162
+ array([[ 0, 1, 2],
1163
+ [ 9, 16, 25]])
1164
+
1165
+ If `values` is smaller than `a` it is repeated:
1166
+
1167
+ >>> x = np.arange(5)
1168
+ >>> np.putmask(x, x>1, [-33, -44])
1169
+ >>> x
1170
+ array([ 0, 1, -33, -44, -33])
1171
+
1172
+ """
1173
+ return (a, mask, values)
1174
+
1175
+
1176
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits)
1177
+ def packbits(a, axis=None, bitorder='big'):
1178
+ """
1179
+ packbits(a, /, axis=None, bitorder='big')
1180
+
1181
+ Packs the elements of a binary-valued array into bits in a uint8 array.
1182
+
1183
+ The result is padded to full bytes by inserting zero bits at the end.
1184
+
1185
+ Parameters
1186
+ ----------
1187
+ a : array_like
1188
+ An array of integers or booleans whose elements should be packed to
1189
+ bits.
1190
+ axis : int, optional
1191
+ The dimension over which bit-packing is done.
1192
+ ``None`` implies packing the flattened array.
1193
+ bitorder : {'big', 'little'}, optional
1194
+ The order of the input bits. 'big' will mimic bin(val),
1195
+ ``[0, 0, 0, 0, 0, 0, 1, 1] => 3 = 0b00000011``, 'little' will
1196
+ reverse the order so ``[1, 1, 0, 0, 0, 0, 0, 0] => 3``.
1197
+ Defaults to 'big'.
1198
+
1199
+ .. versionadded:: 1.17.0
1200
+
1201
+ Returns
1202
+ -------
1203
+ packed : ndarray
1204
+ Array of type uint8 whose elements represent bits corresponding to the
1205
+ logical (0 or nonzero) value of the input elements. The shape of
1206
+ `packed` has the same number of dimensions as the input (unless `axis`
1207
+ is None, in which case the output is 1-D).
1208
+
1209
+ See Also
1210
+ --------
1211
+ unpackbits: Unpacks elements of a uint8 array into a binary-valued output
1212
+ array.
1213
+
1214
+ Examples
1215
+ --------
1216
+ >>> a = np.array([[[1,0,1],
1217
+ ... [0,1,0]],
1218
+ ... [[1,1,0],
1219
+ ... [0,0,1]]])
1220
+ >>> b = np.packbits(a, axis=-1)
1221
+ >>> b
1222
+ array([[[160],
1223
+ [ 64]],
1224
+ [[192],
1225
+ [ 32]]], dtype=uint8)
1226
+
1227
+ Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
1228
+ and 32 = 0010 0000.
1229
+
1230
+ """
1231
+ return (a,)
1232
+
1233
+
1234
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits)
1235
+ def unpackbits(a, axis=None, count=None, bitorder='big'):
1236
+ """
1237
+ unpackbits(a, /, axis=None, count=None, bitorder='big')
1238
+
1239
+ Unpacks elements of a uint8 array into a binary-valued output array.
1240
+
1241
+ Each element of `a` represents a bit-field that should be unpacked
1242
+ into a binary-valued output array. The shape of the output array is
1243
+ either 1-D (if `axis` is ``None``) or the same shape as the input
1244
+ array with unpacking done along the axis specified.
1245
+
1246
+ Parameters
1247
+ ----------
1248
+ a : ndarray, uint8 type
1249
+ Input array.
1250
+ axis : int, optional
1251
+ The dimension over which bit-unpacking is done.
1252
+ ``None`` implies unpacking the flattened array.
1253
+ count : int or None, optional
1254
+ The number of elements to unpack along `axis`, provided as a way
1255
+ of undoing the effect of packing a size that is not a multiple
1256
+ of eight. A non-negative number means to only unpack `count`
1257
+ bits. A negative number means to trim off that many bits from
1258
+ the end. ``None`` means to unpack the entire array (the
1259
+ default). Counts larger than the available number of bits will
1260
+ add zero padding to the output. Negative counts must not
1261
+ exceed the available number of bits.
1262
+
1263
+ .. versionadded:: 1.17.0
1264
+
1265
+ bitorder : {'big', 'little'}, optional
1266
+ The order of the returned bits. 'big' will mimic bin(val),
1267
+ ``3 = 0b00000011 => [0, 0, 0, 0, 0, 0, 1, 1]``, 'little' will reverse
1268
+ the order to ``[1, 1, 0, 0, 0, 0, 0, 0]``.
1269
+ Defaults to 'big'.
1270
+
1271
+ .. versionadded:: 1.17.0
1272
+
1273
+ Returns
1274
+ -------
1275
+ unpacked : ndarray, uint8 type
1276
+ The elements are binary-valued (0 or 1).
1277
+
1278
+ See Also
1279
+ --------
1280
+ packbits : Packs the elements of a binary-valued array into bits in
1281
+ a uint8 array.
1282
+
1283
+ Examples
1284
+ --------
1285
+ >>> a = np.array([[2], [7], [23]], dtype=np.uint8)
1286
+ >>> a
1287
+ array([[ 2],
1288
+ [ 7],
1289
+ [23]], dtype=uint8)
1290
+ >>> b = np.unpackbits(a, axis=1)
1291
+ >>> b
1292
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
1293
+ [0, 0, 0, 0, 0, 1, 1, 1],
1294
+ [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
1295
+ >>> c = np.unpackbits(a, axis=1, count=-3)
1296
+ >>> c
1297
+ array([[0, 0, 0, 0, 0],
1298
+ [0, 0, 0, 0, 0],
1299
+ [0, 0, 0, 1, 0]], dtype=uint8)
1300
+
1301
+ >>> p = np.packbits(b, axis=0)
1302
+ >>> np.unpackbits(p, axis=0)
1303
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
1304
+ [0, 0, 0, 0, 0, 1, 1, 1],
1305
+ [0, 0, 0, 1, 0, 1, 1, 1],
1306
+ [0, 0, 0, 0, 0, 0, 0, 0],
1307
+ [0, 0, 0, 0, 0, 0, 0, 0],
1308
+ [0, 0, 0, 0, 0, 0, 0, 0],
1309
+ [0, 0, 0, 0, 0, 0, 0, 0],
1310
+ [0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
1311
+ >>> np.array_equal(b, np.unpackbits(p, axis=0, count=b.shape[0]))
1312
+ True
1313
+
1314
+ """
1315
+ return (a,)
1316
+
1317
+
1318
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory)
1319
+ def shares_memory(a, b, max_work=None):
1320
+ """
1321
+ shares_memory(a, b, /, max_work=None)
1322
+
1323
+ Determine if two arrays share memory.
1324
+
1325
+ .. warning::
1326
+
1327
+ This function can be exponentially slow for some inputs, unless
1328
+ `max_work` is set to a finite number or ``MAY_SHARE_BOUNDS``.
1329
+ If in doubt, use `numpy.may_share_memory` instead.
1330
+
1331
+ Parameters
1332
+ ----------
1333
+ a, b : ndarray
1334
+ Input arrays
1335
+ max_work : int, optional
1336
+ Effort to spend on solving the overlap problem (maximum number
1337
+ of candidate solutions to consider). The following special
1338
+ values are recognized:
1339
+
1340
+ max_work=MAY_SHARE_EXACT (default)
1341
+ The problem is solved exactly. In this case, the function returns
1342
+ True only if there is an element shared between the arrays. Finding
1343
+ the exact solution may take extremely long in some cases.
1344
+ max_work=MAY_SHARE_BOUNDS
1345
+ Only the memory bounds of a and b are checked.
1346
+
1347
+ Raises
1348
+ ------
1349
+ numpy.exceptions.TooHardError
1350
+ Exceeded max_work.
1351
+
1352
+ Returns
1353
+ -------
1354
+ out : bool
1355
+
1356
+ See Also
1357
+ --------
1358
+ may_share_memory
1359
+
1360
+ Examples
1361
+ --------
1362
+ >>> x = np.array([1, 2, 3, 4])
1363
+ >>> np.shares_memory(x, np.array([5, 6, 7]))
1364
+ False
1365
+ >>> np.shares_memory(x[::2], x)
1366
+ True
1367
+ >>> np.shares_memory(x[::2], x[1::2])
1368
+ False
1369
+
1370
+ Checking whether two arrays share memory is NP-complete, and
1371
+ runtime may increase exponentially in the number of
1372
+ dimensions. Hence, `max_work` should generally be set to a finite
1373
+ number, as it is possible to construct examples that take
1374
+ extremely long to run:
1375
+
1376
+ >>> from numpy.lib.stride_tricks import as_strided
1377
+ >>> x = np.zeros([192163377], dtype=np.int8)
1378
+ >>> x1 = as_strided(x, strides=(36674, 61119, 85569), shape=(1049, 1049, 1049))
1379
+ >>> x2 = as_strided(x[64023025:], strides=(12223, 12224, 1), shape=(1049, 1049, 1))
1380
+ >>> np.shares_memory(x1, x2, max_work=1000)
1381
+ Traceback (most recent call last):
1382
+ ...
1383
+ numpy.exceptions.TooHardError: Exceeded max_work
1384
+
1385
+ Running ``np.shares_memory(x1, x2)`` without `max_work` set takes
1386
+ around 1 minute for this case. It is possible to find problems
1387
+ that take still significantly longer.
1388
+
1389
+ """
1390
+ return (a, b)
1391
+
1392
+
1393
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.may_share_memory)
1394
+ def may_share_memory(a, b, max_work=None):
1395
+ """
1396
+ may_share_memory(a, b, /, max_work=None)
1397
+
1398
+ Determine if two arrays might share memory
1399
+
1400
+ A return of True does not necessarily mean that the two arrays
1401
+ share any element. It just means that they *might*.
1402
+
1403
+ Only the memory bounds of a and b are checked by default.
1404
+
1405
+ Parameters
1406
+ ----------
1407
+ a, b : ndarray
1408
+ Input arrays
1409
+ max_work : int, optional
1410
+ Effort to spend on solving the overlap problem. See
1411
+ `shares_memory` for details. Default for ``may_share_memory``
1412
+ is to do a bounds check.
1413
+
1414
+ Returns
1415
+ -------
1416
+ out : bool
1417
+
1418
+ See Also
1419
+ --------
1420
+ shares_memory
1421
+
1422
+ Examples
1423
+ --------
1424
+ >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
1425
+ False
1426
+ >>> x = np.zeros([3, 4])
1427
+ >>> np.may_share_memory(x[:,0], x[:,1])
1428
+ True
1429
+
1430
+ """
1431
+ return (a, b)
1432
+
1433
+
1434
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.is_busday)
1435
+ def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None):
1436
+ """
1437
+ is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None)
1438
+
1439
+ Calculates which of the given dates are valid days, and which are not.
1440
+
1441
+ .. versionadded:: 1.7.0
1442
+
1443
+ Parameters
1444
+ ----------
1445
+ dates : array_like of datetime64[D]
1446
+ The array of dates to process.
1447
+ weekmask : str or array_like of bool, optional
1448
+ A seven-element array indicating which of Monday through Sunday are
1449
+ valid days. May be specified as a length-seven list or array, like
1450
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
1451
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
1452
+ weekdays, optionally separated by white space. Valid abbreviations
1453
+ are: Mon Tue Wed Thu Fri Sat Sun
1454
+ holidays : array_like of datetime64[D], optional
1455
+ An array of dates to consider as invalid dates. They may be
1456
+ specified in any order, and NaT (not-a-time) dates are ignored.
1457
+ This list is saved in a normalized form that is suited for
1458
+ fast calculations of valid days.
1459
+ busdaycal : busdaycalendar, optional
1460
+ A `busdaycalendar` object which specifies the valid days. If this
1461
+ parameter is provided, neither weekmask nor holidays may be
1462
+ provided.
1463
+ out : array of bool, optional
1464
+ If provided, this array is filled with the result.
1465
+
1466
+ Returns
1467
+ -------
1468
+ out : array of bool
1469
+ An array with the same shape as ``dates``, containing True for
1470
+ each valid day, and False for each invalid day.
1471
+
1472
+ See Also
1473
+ --------
1474
+ busdaycalendar : An object that specifies a custom set of valid days.
1475
+ busday_offset : Applies an offset counted in valid days.
1476
+ busday_count : Counts how many valid days are in a half-open date range.
1477
+
1478
+ Examples
1479
+ --------
1480
+ >>> # The weekdays are Friday, Saturday, and Monday
1481
+ ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
1482
+ ... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
1483
+ array([False, False, True])
1484
+ """
1485
+ return (dates, weekmask, holidays, out)
1486
+
1487
+
1488
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_offset)
1489
+ def busday_offset(dates, offsets, roll=None, weekmask=None, holidays=None,
1490
+ busdaycal=None, out=None):
1491
+ """
1492
+ busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None)
1493
+
1494
+ First adjusts the date to fall on a valid day according to
1495
+ the ``roll`` rule, then applies offsets to the given dates
1496
+ counted in valid days.
1497
+
1498
+ .. versionadded:: 1.7.0
1499
+
1500
+ Parameters
1501
+ ----------
1502
+ dates : array_like of datetime64[D]
1503
+ The array of dates to process.
1504
+ offsets : array_like of int
1505
+ The array of offsets, which is broadcast with ``dates``.
1506
+ roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', 'modifiedfollowing', 'modifiedpreceding'}, optional
1507
+ How to treat dates that do not fall on a valid day. The default
1508
+ is 'raise'.
1509
+
1510
+ * 'raise' means to raise an exception for an invalid day.
1511
+ * 'nat' means to return a NaT (not-a-time) for an invalid day.
1512
+ * 'forward' and 'following' mean to take the first valid day
1513
+ later in time.
1514
+ * 'backward' and 'preceding' mean to take the first valid day
1515
+ earlier in time.
1516
+ * 'modifiedfollowing' means to take the first valid day
1517
+ later in time unless it is across a Month boundary, in which
1518
+ case to take the first valid day earlier in time.
1519
+ * 'modifiedpreceding' means to take the first valid day
1520
+ earlier in time unless it is across a Month boundary, in which
1521
+ case to take the first valid day later in time.
1522
+ weekmask : str or array_like of bool, optional
1523
+ A seven-element array indicating which of Monday through Sunday are
1524
+ valid days. May be specified as a length-seven list or array, like
1525
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
1526
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
1527
+ weekdays, optionally separated by white space. Valid abbreviations
1528
+ are: Mon Tue Wed Thu Fri Sat Sun
1529
+ holidays : array_like of datetime64[D], optional
1530
+ An array of dates to consider as invalid dates. They may be
1531
+ specified in any order, and NaT (not-a-time) dates are ignored.
1532
+ This list is saved in a normalized form that is suited for
1533
+ fast calculations of valid days.
1534
+ busdaycal : busdaycalendar, optional
1535
+ A `busdaycalendar` object which specifies the valid days. If this
1536
+ parameter is provided, neither weekmask nor holidays may be
1537
+ provided.
1538
+ out : array of datetime64[D], optional
1539
+ If provided, this array is filled with the result.
1540
+
1541
+ Returns
1542
+ -------
1543
+ out : array of datetime64[D]
1544
+ An array with a shape from broadcasting ``dates`` and ``offsets``
1545
+ together, containing the dates with offsets applied.
1546
+
1547
+ See Also
1548
+ --------
1549
+ busdaycalendar : An object that specifies a custom set of valid days.
1550
+ is_busday : Returns a boolean array indicating valid days.
1551
+ busday_count : Counts how many valid days are in a half-open date range.
1552
+
1553
+ Examples
1554
+ --------
1555
+ >>> # First business day in October 2011 (not accounting for holidays)
1556
+ ... np.busday_offset('2011-10', 0, roll='forward')
1557
+ numpy.datetime64('2011-10-03')
1558
+ >>> # Last business day in February 2012 (not accounting for holidays)
1559
+ ... np.busday_offset('2012-03', -1, roll='forward')
1560
+ numpy.datetime64('2012-02-29')
1561
+ >>> # Third Wednesday in January 2011
1562
+ ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
1563
+ numpy.datetime64('2011-01-19')
1564
+ >>> # 2012 Mother's Day in Canada and the U.S.
1565
+ ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
1566
+ numpy.datetime64('2012-05-13')
1567
+
1568
+ >>> # First business day on or after a date
1569
+ ... np.busday_offset('2011-03-20', 0, roll='forward')
1570
+ numpy.datetime64('2011-03-21')
1571
+ >>> np.busday_offset('2011-03-22', 0, roll='forward')
1572
+ numpy.datetime64('2011-03-22')
1573
+ >>> # First business day after a date
1574
+ ... np.busday_offset('2011-03-20', 1, roll='backward')
1575
+ numpy.datetime64('2011-03-21')
1576
+ >>> np.busday_offset('2011-03-22', 1, roll='backward')
1577
+ numpy.datetime64('2011-03-23')
1578
+ """
1579
+ return (dates, offsets, weekmask, holidays, out)
1580
+
1581
+
1582
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_count)
1583
+ def busday_count(begindates, enddates, weekmask=None, holidays=None,
1584
+ busdaycal=None, out=None):
1585
+ """
1586
+ busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None)
1587
+
1588
+ Counts the number of valid days between `begindates` and
1589
+ `enddates`, not including the day of `enddates`.
1590
+
1591
+ If ``enddates`` specifies a date value that is earlier than the
1592
+ corresponding ``begindates`` date value, the count will be negative.
1593
+
1594
+ .. versionadded:: 1.7.0
1595
+
1596
+ Parameters
1597
+ ----------
1598
+ begindates : array_like of datetime64[D]
1599
+ The array of the first dates for counting.
1600
+ enddates : array_like of datetime64[D]
1601
+ The array of the end dates for counting, which are excluded
1602
+ from the count themselves.
1603
+ weekmask : str or array_like of bool, optional
1604
+ A seven-element array indicating which of Monday through Sunday are
1605
+ valid days. May be specified as a length-seven list or array, like
1606
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
1607
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
1608
+ weekdays, optionally separated by white space. Valid abbreviations
1609
+ are: Mon Tue Wed Thu Fri Sat Sun
1610
+ holidays : array_like of datetime64[D], optional
1611
+ An array of dates to consider as invalid dates. They may be
1612
+ specified in any order, and NaT (not-a-time) dates are ignored.
1613
+ This list is saved in a normalized form that is suited for
1614
+ fast calculations of valid days.
1615
+ busdaycal : busdaycalendar, optional
1616
+ A `busdaycalendar` object which specifies the valid days. If this
1617
+ parameter is provided, neither weekmask nor holidays may be
1618
+ provided.
1619
+ out : array of int, optional
1620
+ If provided, this array is filled with the result.
1621
+
1622
+ Returns
1623
+ -------
1624
+ out : array of int
1625
+ An array with a shape from broadcasting ``begindates`` and ``enddates``
1626
+ together, containing the number of valid days between
1627
+ the begin and end dates.
1628
+
1629
+ See Also
1630
+ --------
1631
+ busdaycalendar : An object that specifies a custom set of valid days.
1632
+ is_busday : Returns a boolean array indicating valid days.
1633
+ busday_offset : Applies an offset counted in valid days.
1634
+
1635
+ Examples
1636
+ --------
1637
+ >>> # Number of weekdays in January 2011
1638
+ ... np.busday_count('2011-01', '2011-02')
1639
+ 21
1640
+ >>> # Number of weekdays in 2011
1641
+ >>> np.busday_count('2011', '2012')
1642
+ 260
1643
+ >>> # Number of Saturdays in 2011
1644
+ ... np.busday_count('2011', '2012', weekmask='Sat')
1645
+ 53
1646
+ """
1647
+ return (begindates, enddates, weekmask, holidays, out)
1648
+
1649
+
1650
+ @array_function_from_c_func_and_dispatcher(
1651
+ _multiarray_umath.datetime_as_string)
1652
+ def datetime_as_string(arr, unit=None, timezone=None, casting=None):
1653
+ """
1654
+ datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind')
1655
+
1656
+ Convert an array of datetimes into an array of strings.
1657
+
1658
+ Parameters
1659
+ ----------
1660
+ arr : array_like of datetime64
1661
+ The array of UTC timestamps to format.
1662
+ unit : str
1663
+ One of None, 'auto', or a :ref:`datetime unit <arrays.dtypes.dateunits>`.
1664
+ timezone : {'naive', 'UTC', 'local'} or tzinfo
1665
+ Timezone information to use when displaying the datetime. If 'UTC', end
1666
+ with a Z to indicate UTC time. If 'local', convert to the local timezone
1667
+ first, and suffix with a +-#### timezone offset. If a tzinfo object,
1668
+ then do as with 'local', but use the specified timezone.
1669
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}
1670
+ Casting to allow when changing between datetime units.
1671
+
1672
+ Returns
1673
+ -------
1674
+ str_arr : ndarray
1675
+ An array of strings the same shape as `arr`.
1676
+
1677
+ Examples
1678
+ --------
1679
+ >>> import pytz
1680
+ >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]')
1681
+ >>> d
1682
+ array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30',
1683
+ '2002-10-27T07:30'], dtype='datetime64[m]')
1684
+
1685
+ Setting the timezone to UTC shows the same information, but with a Z suffix
1686
+
1687
+ >>> np.datetime_as_string(d, timezone='UTC')
1688
+ array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z',
1689
+ '2002-10-27T07:30Z'], dtype='<U35')
1690
+
1691
+ Note that we picked datetimes that cross a DST boundary. Passing in a
1692
+ ``pytz`` timezone object will print the appropriate offset
1693
+
1694
+ >>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern'))
1695
+ array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400',
1696
+ '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='<U39')
1697
+
1698
+ Passing in a unit will change the precision
1699
+
1700
+ >>> np.datetime_as_string(d, unit='h')
1701
+ array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'],
1702
+ dtype='<U32')
1703
+ >>> np.datetime_as_string(d, unit='s')
1704
+ array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00',
1705
+ '2002-10-27T07:30:00'], dtype='<U38')
1706
+
1707
+ 'casting' can be used to specify whether precision can be changed
1708
+
1709
+ >>> np.datetime_as_string(d, unit='h', casting='safe')
1710
+ Traceback (most recent call last):
1711
+ ...
1712
+ TypeError: Cannot create a datetime string as units 'h' from a NumPy
1713
+ datetime with units 'm' according to the rule 'safe'
1714
+ """
1715
+ return (arr,)
env-llmeval/lib/python3.10/site-packages/numpy/core/numeric.py ADDED
@@ -0,0 +1,2530 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import itertools
3
+ import operator
4
+ import sys
5
+ import warnings
6
+ import numbers
7
+ import builtins
8
+
9
+ import numpy as np
10
+ from . import multiarray
11
+ from .multiarray import (
12
+ fastCopyAndTranspose, ALLOW_THREADS,
13
+ BUFSIZE, CLIP, MAXDIMS, MAY_SHARE_BOUNDS, MAY_SHARE_EXACT, RAISE,
14
+ WRAP, arange, array, asarray, asanyarray, ascontiguousarray,
15
+ asfortranarray, broadcast, can_cast, compare_chararrays,
16
+ concatenate, copyto, dot, dtype, empty,
17
+ empty_like, flatiter, frombuffer, from_dlpack, fromfile, fromiter,
18
+ fromstring, inner, lexsort, matmul, may_share_memory,
19
+ min_scalar_type, ndarray, nditer, nested_iters, promote_types,
20
+ putmask, result_type, set_numeric_ops, shares_memory, vdot, where,
21
+ zeros, normalize_axis_index, _get_promotion_state, _set_promotion_state,
22
+ _using_numpy2_behavior)
23
+
24
+ from . import overrides
25
+ from . import umath
26
+ from . import shape_base
27
+ from .overrides import set_array_function_like_doc, set_module
28
+ from .umath import (multiply, invert, sin, PINF, NAN)
29
+ from . import numerictypes
30
+ from .numerictypes import longlong, intc, int_, float_, complex_, bool_
31
+ from ..exceptions import ComplexWarning, TooHardError, AxisError
32
+ from ._ufunc_config import errstate, _no_nep50_warning
33
+
34
+ bitwise_not = invert
35
+ ufunc = type(sin)
36
+ newaxis = None
37
+
38
+ array_function_dispatch = functools.partial(
39
+ overrides.array_function_dispatch, module='numpy')
40
+
41
+
42
+ __all__ = [
43
+ 'newaxis', 'ndarray', 'flatiter', 'nditer', 'nested_iters', 'ufunc',
44
+ 'arange', 'array', 'asarray', 'asanyarray', 'ascontiguousarray',
45
+ 'asfortranarray', 'zeros', 'count_nonzero', 'empty', 'broadcast', 'dtype',
46
+ 'fromstring', 'fromfile', 'frombuffer', 'from_dlpack', 'where',
47
+ 'argwhere', 'copyto', 'concatenate', 'fastCopyAndTranspose', 'lexsort',
48
+ 'set_numeric_ops', 'can_cast', 'promote_types', 'min_scalar_type',
49
+ 'result_type', 'isfortran', 'empty_like', 'zeros_like', 'ones_like',
50
+ 'correlate', 'convolve', 'inner', 'dot', 'outer', 'vdot', 'roll',
51
+ 'rollaxis', 'moveaxis', 'cross', 'tensordot', 'little_endian',
52
+ 'fromiter', 'array_equal', 'array_equiv', 'indices', 'fromfunction',
53
+ 'isclose', 'isscalar', 'binary_repr', 'base_repr', 'ones',
54
+ 'identity', 'allclose', 'compare_chararrays', 'putmask',
55
+ 'flatnonzero', 'Inf', 'inf', 'infty', 'Infinity', 'nan', 'NaN',
56
+ 'False_', 'True_', 'bitwise_not', 'CLIP', 'RAISE', 'WRAP', 'MAXDIMS',
57
+ 'BUFSIZE', 'ALLOW_THREADS', 'full', 'full_like',
58
+ 'matmul', 'shares_memory', 'may_share_memory', 'MAY_SHARE_BOUNDS',
59
+ 'MAY_SHARE_EXACT', '_get_promotion_state', '_set_promotion_state',
60
+ '_using_numpy2_behavior']
61
+
62
+
63
+ def _zeros_like_dispatcher(a, dtype=None, order=None, subok=None, shape=None):
64
+ return (a,)
65
+
66
+
67
+ @array_function_dispatch(_zeros_like_dispatcher)
68
+ def zeros_like(a, dtype=None, order='K', subok=True, shape=None):
69
+ """
70
+ Return an array of zeros with the same shape and type as a given array.
71
+
72
+ Parameters
73
+ ----------
74
+ a : array_like
75
+ The shape and data-type of `a` define these same attributes of
76
+ the returned array.
77
+ dtype : data-type, optional
78
+ Overrides the data type of the result.
79
+
80
+ .. versionadded:: 1.6.0
81
+ order : {'C', 'F', 'A', or 'K'}, optional
82
+ Overrides the memory layout of the result. 'C' means C-order,
83
+ 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
84
+ 'C' otherwise. 'K' means match the layout of `a` as closely
85
+ as possible.
86
+
87
+ .. versionadded:: 1.6.0
88
+ subok : bool, optional.
89
+ If True, then the newly created array will use the sub-class
90
+ type of `a`, otherwise it will be a base-class array. Defaults
91
+ to True.
92
+ shape : int or sequence of ints, optional.
93
+ Overrides the shape of the result. If order='K' and the number of
94
+ dimensions is unchanged, will try to keep order, otherwise,
95
+ order='C' is implied.
96
+
97
+ .. versionadded:: 1.17.0
98
+
99
+ Returns
100
+ -------
101
+ out : ndarray
102
+ Array of zeros with the same shape and type as `a`.
103
+
104
+ See Also
105
+ --------
106
+ empty_like : Return an empty array with shape and type of input.
107
+ ones_like : Return an array of ones with shape and type of input.
108
+ full_like : Return a new array with shape of input filled with value.
109
+ zeros : Return a new array setting values to zero.
110
+
111
+ Examples
112
+ --------
113
+ >>> x = np.arange(6)
114
+ >>> x = x.reshape((2, 3))
115
+ >>> x
116
+ array([[0, 1, 2],
117
+ [3, 4, 5]])
118
+ >>> np.zeros_like(x)
119
+ array([[0, 0, 0],
120
+ [0, 0, 0]])
121
+
122
+ >>> y = np.arange(3, dtype=float)
123
+ >>> y
124
+ array([0., 1., 2.])
125
+ >>> np.zeros_like(y)
126
+ array([0., 0., 0.])
127
+
128
+ """
129
+ res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape)
130
+ # needed instead of a 0 to get same result as zeros for string dtypes
131
+ z = zeros(1, dtype=res.dtype)
132
+ multiarray.copyto(res, z, casting='unsafe')
133
+ return res
134
+
135
+
136
+ @set_array_function_like_doc
137
+ @set_module('numpy')
138
+ def ones(shape, dtype=None, order='C', *, like=None):
139
+ """
140
+ Return a new array of given shape and type, filled with ones.
141
+
142
+ Parameters
143
+ ----------
144
+ shape : int or sequence of ints
145
+ Shape of the new array, e.g., ``(2, 3)`` or ``2``.
146
+ dtype : data-type, optional
147
+ The desired data-type for the array, e.g., `numpy.int8`. Default is
148
+ `numpy.float64`.
149
+ order : {'C', 'F'}, optional, default: C
150
+ Whether to store multi-dimensional data in row-major
151
+ (C-style) or column-major (Fortran-style) order in
152
+ memory.
153
+ ${ARRAY_FUNCTION_LIKE}
154
+
155
+ .. versionadded:: 1.20.0
156
+
157
+ Returns
158
+ -------
159
+ out : ndarray
160
+ Array of ones with the given shape, dtype, and order.
161
+
162
+ See Also
163
+ --------
164
+ ones_like : Return an array of ones with shape and type of input.
165
+ empty : Return a new uninitialized array.
166
+ zeros : Return a new array setting values to zero.
167
+ full : Return a new array of given shape filled with value.
168
+
169
+
170
+ Examples
171
+ --------
172
+ >>> np.ones(5)
173
+ array([1., 1., 1., 1., 1.])
174
+
175
+ >>> np.ones((5,), dtype=int)
176
+ array([1, 1, 1, 1, 1])
177
+
178
+ >>> np.ones((2, 1))
179
+ array([[1.],
180
+ [1.]])
181
+
182
+ >>> s = (2,2)
183
+ >>> np.ones(s)
184
+ array([[1., 1.],
185
+ [1., 1.]])
186
+
187
+ """
188
+ if like is not None:
189
+ return _ones_with_like(like, shape, dtype=dtype, order=order)
190
+
191
+ a = empty(shape, dtype, order)
192
+ multiarray.copyto(a, 1, casting='unsafe')
193
+ return a
194
+
195
+
196
+ _ones_with_like = array_function_dispatch()(ones)
197
+
198
+
199
+ def _ones_like_dispatcher(a, dtype=None, order=None, subok=None, shape=None):
200
+ return (a,)
201
+
202
+
203
+ @array_function_dispatch(_ones_like_dispatcher)
204
+ def ones_like(a, dtype=None, order='K', subok=True, shape=None):
205
+ """
206
+ Return an array of ones with the same shape and type as a given array.
207
+
208
+ Parameters
209
+ ----------
210
+ a : array_like
211
+ The shape and data-type of `a` define these same attributes of
212
+ the returned array.
213
+ dtype : data-type, optional
214
+ Overrides the data type of the result.
215
+
216
+ .. versionadded:: 1.6.0
217
+ order : {'C', 'F', 'A', or 'K'}, optional
218
+ Overrides the memory layout of the result. 'C' means C-order,
219
+ 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
220
+ 'C' otherwise. 'K' means match the layout of `a` as closely
221
+ as possible.
222
+
223
+ .. versionadded:: 1.6.0
224
+ subok : bool, optional.
225
+ If True, then the newly created array will use the sub-class
226
+ type of `a`, otherwise it will be a base-class array. Defaults
227
+ to True.
228
+ shape : int or sequence of ints, optional.
229
+ Overrides the shape of the result. If order='K' and the number of
230
+ dimensions is unchanged, will try to keep order, otherwise,
231
+ order='C' is implied.
232
+
233
+ .. versionadded:: 1.17.0
234
+
235
+ Returns
236
+ -------
237
+ out : ndarray
238
+ Array of ones with the same shape and type as `a`.
239
+
240
+ See Also
241
+ --------
242
+ empty_like : Return an empty array with shape and type of input.
243
+ zeros_like : Return an array of zeros with shape and type of input.
244
+ full_like : Return a new array with shape of input filled with value.
245
+ ones : Return a new array setting values to one.
246
+
247
+ Examples
248
+ --------
249
+ >>> x = np.arange(6)
250
+ >>> x = x.reshape((2, 3))
251
+ >>> x
252
+ array([[0, 1, 2],
253
+ [3, 4, 5]])
254
+ >>> np.ones_like(x)
255
+ array([[1, 1, 1],
256
+ [1, 1, 1]])
257
+
258
+ >>> y = np.arange(3, dtype=float)
259
+ >>> y
260
+ array([0., 1., 2.])
261
+ >>> np.ones_like(y)
262
+ array([1., 1., 1.])
263
+
264
+ """
265
+ res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape)
266
+ multiarray.copyto(res, 1, casting='unsafe')
267
+ return res
268
+
269
+
270
+ def _full_dispatcher(shape, fill_value, dtype=None, order=None, *, like=None):
271
+ return(like,)
272
+
273
+
274
+ @set_array_function_like_doc
275
+ @set_module('numpy')
276
+ def full(shape, fill_value, dtype=None, order='C', *, like=None):
277
+ """
278
+ Return a new array of given shape and type, filled with `fill_value`.
279
+
280
+ Parameters
281
+ ----------
282
+ shape : int or sequence of ints
283
+ Shape of the new array, e.g., ``(2, 3)`` or ``2``.
284
+ fill_value : scalar or array_like
285
+ Fill value.
286
+ dtype : data-type, optional
287
+ The desired data-type for the array The default, None, means
288
+ ``np.array(fill_value).dtype``.
289
+ order : {'C', 'F'}, optional
290
+ Whether to store multidimensional data in C- or Fortran-contiguous
291
+ (row- or column-wise) order in memory.
292
+ ${ARRAY_FUNCTION_LIKE}
293
+
294
+ .. versionadded:: 1.20.0
295
+
296
+ Returns
297
+ -------
298
+ out : ndarray
299
+ Array of `fill_value` with the given shape, dtype, and order.
300
+
301
+ See Also
302
+ --------
303
+ full_like : Return a new array with shape of input filled with value.
304
+ empty : Return a new uninitialized array.
305
+ ones : Return a new array setting values to one.
306
+ zeros : Return a new array setting values to zero.
307
+
308
+ Examples
309
+ --------
310
+ >>> np.full((2, 2), np.inf)
311
+ array([[inf, inf],
312
+ [inf, inf]])
313
+ >>> np.full((2, 2), 10)
314
+ array([[10, 10],
315
+ [10, 10]])
316
+
317
+ >>> np.full((2, 2), [1, 2])
318
+ array([[1, 2],
319
+ [1, 2]])
320
+
321
+ """
322
+ if like is not None:
323
+ return _full_with_like(
324
+ like, shape, fill_value, dtype=dtype, order=order)
325
+
326
+ if dtype is None:
327
+ fill_value = asarray(fill_value)
328
+ dtype = fill_value.dtype
329
+ a = empty(shape, dtype, order)
330
+ multiarray.copyto(a, fill_value, casting='unsafe')
331
+ return a
332
+
333
+
334
+ _full_with_like = array_function_dispatch()(full)
335
+
336
+
337
+ def _full_like_dispatcher(a, fill_value, dtype=None, order=None, subok=None, shape=None):
338
+ return (a,)
339
+
340
+
341
+ @array_function_dispatch(_full_like_dispatcher)
342
+ def full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None):
343
+ """
344
+ Return a full array with the same shape and type as a given array.
345
+
346
+ Parameters
347
+ ----------
348
+ a : array_like
349
+ The shape and data-type of `a` define these same attributes of
350
+ the returned array.
351
+ fill_value : array_like
352
+ Fill value.
353
+ dtype : data-type, optional
354
+ Overrides the data type of the result.
355
+ order : {'C', 'F', 'A', or 'K'}, optional
356
+ Overrides the memory layout of the result. 'C' means C-order,
357
+ 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
358
+ 'C' otherwise. 'K' means match the layout of `a` as closely
359
+ as possible.
360
+ subok : bool, optional.
361
+ If True, then the newly created array will use the sub-class
362
+ type of `a`, otherwise it will be a base-class array. Defaults
363
+ to True.
364
+ shape : int or sequence of ints, optional.
365
+ Overrides the shape of the result. If order='K' and the number of
366
+ dimensions is unchanged, will try to keep order, otherwise,
367
+ order='C' is implied.
368
+
369
+ .. versionadded:: 1.17.0
370
+
371
+ Returns
372
+ -------
373
+ out : ndarray
374
+ Array of `fill_value` with the same shape and type as `a`.
375
+
376
+ See Also
377
+ --------
378
+ empty_like : Return an empty array with shape and type of input.
379
+ ones_like : Return an array of ones with shape and type of input.
380
+ zeros_like : Return an array of zeros with shape and type of input.
381
+ full : Return a new array of given shape filled with value.
382
+
383
+ Examples
384
+ --------
385
+ >>> x = np.arange(6, dtype=int)
386
+ >>> np.full_like(x, 1)
387
+ array([1, 1, 1, 1, 1, 1])
388
+ >>> np.full_like(x, 0.1)
389
+ array([0, 0, 0, 0, 0, 0])
390
+ >>> np.full_like(x, 0.1, dtype=np.double)
391
+ array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
392
+ >>> np.full_like(x, np.nan, dtype=np.double)
393
+ array([nan, nan, nan, nan, nan, nan])
394
+
395
+ >>> y = np.arange(6, dtype=np.double)
396
+ >>> np.full_like(y, 0.1)
397
+ array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
398
+
399
+ >>> y = np.zeros([2, 2, 3], dtype=int)
400
+ >>> np.full_like(y, [0, 0, 255])
401
+ array([[[ 0, 0, 255],
402
+ [ 0, 0, 255]],
403
+ [[ 0, 0, 255],
404
+ [ 0, 0, 255]]])
405
+ """
406
+ res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape)
407
+ multiarray.copyto(res, fill_value, casting='unsafe')
408
+ return res
409
+
410
+
411
+ def _count_nonzero_dispatcher(a, axis=None, *, keepdims=None):
412
+ return (a,)
413
+
414
+
415
+ @array_function_dispatch(_count_nonzero_dispatcher)
416
+ def count_nonzero(a, axis=None, *, keepdims=False):
417
+ """
418
+ Counts the number of non-zero values in the array ``a``.
419
+
420
+ The word "non-zero" is in reference to the Python 2.x
421
+ built-in method ``__nonzero__()`` (renamed ``__bool__()``
422
+ in Python 3.x) of Python objects that tests an object's
423
+ "truthfulness". For example, any number is considered
424
+ truthful if it is nonzero, whereas any string is considered
425
+ truthful if it is not the empty string. Thus, this function
426
+ (recursively) counts how many elements in ``a`` (and in
427
+ sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()``
428
+ method evaluated to ``True``.
429
+
430
+ Parameters
431
+ ----------
432
+ a : array_like
433
+ The array for which to count non-zeros.
434
+ axis : int or tuple, optional
435
+ Axis or tuple of axes along which to count non-zeros.
436
+ Default is None, meaning that non-zeros will be counted
437
+ along a flattened version of ``a``.
438
+
439
+ .. versionadded:: 1.12.0
440
+
441
+ keepdims : bool, optional
442
+ If this is set to True, the axes that are counted are left
443
+ in the result as dimensions with size one. With this option,
444
+ the result will broadcast correctly against the input array.
445
+
446
+ .. versionadded:: 1.19.0
447
+
448
+ Returns
449
+ -------
450
+ count : int or array of int
451
+ Number of non-zero values in the array along a given axis.
452
+ Otherwise, the total number of non-zero values in the array
453
+ is returned.
454
+
455
+ See Also
456
+ --------
457
+ nonzero : Return the coordinates of all the non-zero values.
458
+
459
+ Examples
460
+ --------
461
+ >>> np.count_nonzero(np.eye(4))
462
+ 4
463
+ >>> a = np.array([[0, 1, 7, 0],
464
+ ... [3, 0, 2, 19]])
465
+ >>> np.count_nonzero(a)
466
+ 5
467
+ >>> np.count_nonzero(a, axis=0)
468
+ array([1, 1, 2, 1])
469
+ >>> np.count_nonzero(a, axis=1)
470
+ array([2, 3])
471
+ >>> np.count_nonzero(a, axis=1, keepdims=True)
472
+ array([[2],
473
+ [3]])
474
+ """
475
+ if axis is None and not keepdims:
476
+ return multiarray.count_nonzero(a)
477
+
478
+ a = asanyarray(a)
479
+
480
+ # TODO: this works around .astype(bool) not working properly (gh-9847)
481
+ if np.issubdtype(a.dtype, np.character):
482
+ a_bool = a != a.dtype.type()
483
+ else:
484
+ a_bool = a.astype(np.bool_, copy=False)
485
+
486
+ return a_bool.sum(axis=axis, dtype=np.intp, keepdims=keepdims)
487
+
488
+
489
+ @set_module('numpy')
490
+ def isfortran(a):
491
+ """
492
+ Check if the array is Fortran contiguous but *not* C contiguous.
493
+
494
+ This function is obsolete and, because of changes due to relaxed stride
495
+ checking, its return value for the same array may differ for versions
496
+ of NumPy >= 1.10.0 and previous versions. If you only want to check if an
497
+ array is Fortran contiguous use ``a.flags.f_contiguous`` instead.
498
+
499
+ Parameters
500
+ ----------
501
+ a : ndarray
502
+ Input array.
503
+
504
+ Returns
505
+ -------
506
+ isfortran : bool
507
+ Returns True if the array is Fortran contiguous but *not* C contiguous.
508
+
509
+
510
+ Examples
511
+ --------
512
+
513
+ np.array allows to specify whether the array is written in C-contiguous
514
+ order (last index varies the fastest), or FORTRAN-contiguous order in
515
+ memory (first index varies the fastest).
516
+
517
+ >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
518
+ >>> a
519
+ array([[1, 2, 3],
520
+ [4, 5, 6]])
521
+ >>> np.isfortran(a)
522
+ False
523
+
524
+ >>> b = np.array([[1, 2, 3], [4, 5, 6]], order='F')
525
+ >>> b
526
+ array([[1, 2, 3],
527
+ [4, 5, 6]])
528
+ >>> np.isfortran(b)
529
+ True
530
+
531
+
532
+ The transpose of a C-ordered array is a FORTRAN-ordered array.
533
+
534
+ >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
535
+ >>> a
536
+ array([[1, 2, 3],
537
+ [4, 5, 6]])
538
+ >>> np.isfortran(a)
539
+ False
540
+ >>> b = a.T
541
+ >>> b
542
+ array([[1, 4],
543
+ [2, 5],
544
+ [3, 6]])
545
+ >>> np.isfortran(b)
546
+ True
547
+
548
+ C-ordered arrays evaluate as False even if they are also FORTRAN-ordered.
549
+
550
+ >>> np.isfortran(np.array([1, 2], order='F'))
551
+ False
552
+
553
+ """
554
+ return a.flags.fnc
555
+
556
+
557
+ def _argwhere_dispatcher(a):
558
+ return (a,)
559
+
560
+
561
+ @array_function_dispatch(_argwhere_dispatcher)
562
+ def argwhere(a):
563
+ """
564
+ Find the indices of array elements that are non-zero, grouped by element.
565
+
566
+ Parameters
567
+ ----------
568
+ a : array_like
569
+ Input data.
570
+
571
+ Returns
572
+ -------
573
+ index_array : (N, a.ndim) ndarray
574
+ Indices of elements that are non-zero. Indices are grouped by element.
575
+ This array will have shape ``(N, a.ndim)`` where ``N`` is the number of
576
+ non-zero items.
577
+
578
+ See Also
579
+ --------
580
+ where, nonzero
581
+
582
+ Notes
583
+ -----
584
+ ``np.argwhere(a)`` is almost the same as ``np.transpose(np.nonzero(a))``,
585
+ but produces a result of the correct shape for a 0D array.
586
+
587
+ The output of ``argwhere`` is not suitable for indexing arrays.
588
+ For this purpose use ``nonzero(a)`` instead.
589
+
590
+ Examples
591
+ --------
592
+ >>> x = np.arange(6).reshape(2,3)
593
+ >>> x
594
+ array([[0, 1, 2],
595
+ [3, 4, 5]])
596
+ >>> np.argwhere(x>1)
597
+ array([[0, 2],
598
+ [1, 0],
599
+ [1, 1],
600
+ [1, 2]])
601
+
602
+ """
603
+ # nonzero does not behave well on 0d, so promote to 1d
604
+ if np.ndim(a) == 0:
605
+ a = shape_base.atleast_1d(a)
606
+ # then remove the added dimension
607
+ return argwhere(a)[:,:0]
608
+ return transpose(nonzero(a))
609
+
610
+
611
+ def _flatnonzero_dispatcher(a):
612
+ return (a,)
613
+
614
+
615
+ @array_function_dispatch(_flatnonzero_dispatcher)
616
+ def flatnonzero(a):
617
+ """
618
+ Return indices that are non-zero in the flattened version of a.
619
+
620
+ This is equivalent to ``np.nonzero(np.ravel(a))[0]``.
621
+
622
+ Parameters
623
+ ----------
624
+ a : array_like
625
+ Input data.
626
+
627
+ Returns
628
+ -------
629
+ res : ndarray
630
+ Output array, containing the indices of the elements of ``a.ravel()``
631
+ that are non-zero.
632
+
633
+ See Also
634
+ --------
635
+ nonzero : Return the indices of the non-zero elements of the input array.
636
+ ravel : Return a 1-D array containing the elements of the input array.
637
+
638
+ Examples
639
+ --------
640
+ >>> x = np.arange(-2, 3)
641
+ >>> x
642
+ array([-2, -1, 0, 1, 2])
643
+ >>> np.flatnonzero(x)
644
+ array([0, 1, 3, 4])
645
+
646
+ Use the indices of the non-zero elements as an index array to extract
647
+ these elements:
648
+
649
+ >>> x.ravel()[np.flatnonzero(x)]
650
+ array([-2, -1, 1, 2])
651
+
652
+ """
653
+ return np.nonzero(np.ravel(a))[0]
654
+
655
+
656
+ def _correlate_dispatcher(a, v, mode=None):
657
+ return (a, v)
658
+
659
+
660
+ @array_function_dispatch(_correlate_dispatcher)
661
+ def correlate(a, v, mode='valid'):
662
+ r"""
663
+ Cross-correlation of two 1-dimensional sequences.
664
+
665
+ This function computes the correlation as generally defined in signal
666
+ processing texts:
667
+
668
+ .. math:: c_k = \sum_n a_{n+k} \cdot \overline{v}_n
669
+
670
+ with a and v sequences being zero-padded where necessary and
671
+ :math:`\overline x` denoting complex conjugation.
672
+
673
+ Parameters
674
+ ----------
675
+ a, v : array_like
676
+ Input sequences.
677
+ mode : {'valid', 'same', 'full'}, optional
678
+ Refer to the `convolve` docstring. Note that the default
679
+ is 'valid', unlike `convolve`, which uses 'full'.
680
+ old_behavior : bool
681
+ `old_behavior` was removed in NumPy 1.10. If you need the old
682
+ behavior, use `multiarray.correlate`.
683
+
684
+ Returns
685
+ -------
686
+ out : ndarray
687
+ Discrete cross-correlation of `a` and `v`.
688
+
689
+ See Also
690
+ --------
691
+ convolve : Discrete, linear convolution of two one-dimensional sequences.
692
+ multiarray.correlate : Old, no conjugate, version of correlate.
693
+ scipy.signal.correlate : uses FFT which has superior performance on large arrays.
694
+
695
+ Notes
696
+ -----
697
+ The definition of correlation above is not unique and sometimes correlation
698
+ may be defined differently. Another common definition is:
699
+
700
+ .. math:: c'_k = \sum_n a_{n} \cdot \overline{v_{n+k}}
701
+
702
+ which is related to :math:`c_k` by :math:`c'_k = c_{-k}`.
703
+
704
+ `numpy.correlate` may perform slowly in large arrays (i.e. n = 1e5) because it does
705
+ not use the FFT to compute the convolution; in that case, `scipy.signal.correlate` might
706
+ be preferable.
707
+
708
+
709
+ Examples
710
+ --------
711
+ >>> np.correlate([1, 2, 3], [0, 1, 0.5])
712
+ array([3.5])
713
+ >>> np.correlate([1, 2, 3], [0, 1, 0.5], "same")
714
+ array([2. , 3.5, 3. ])
715
+ >>> np.correlate([1, 2, 3], [0, 1, 0.5], "full")
716
+ array([0.5, 2. , 3.5, 3. , 0. ])
717
+
718
+ Using complex sequences:
719
+
720
+ >>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full')
721
+ array([ 0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j ])
722
+
723
+ Note that you get the time reversed, complex conjugated result
724
+ (:math:`\overline{c_{-k}}`) when the two input sequences a and v change
725
+ places:
726
+
727
+ >>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full')
728
+ array([ 0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j])
729
+
730
+ """
731
+ return multiarray.correlate2(a, v, mode)
732
+
733
+
734
+ def _convolve_dispatcher(a, v, mode=None):
735
+ return (a, v)
736
+
737
+
738
+ @array_function_dispatch(_convolve_dispatcher)
739
+ def convolve(a, v, mode='full'):
740
+ """
741
+ Returns the discrete, linear convolution of two one-dimensional sequences.
742
+
743
+ The convolution operator is often seen in signal processing, where it
744
+ models the effect of a linear time-invariant system on a signal [1]_. In
745
+ probability theory, the sum of two independent random variables is
746
+ distributed according to the convolution of their individual
747
+ distributions.
748
+
749
+ If `v` is longer than `a`, the arrays are swapped before computation.
750
+
751
+ Parameters
752
+ ----------
753
+ a : (N,) array_like
754
+ First one-dimensional input array.
755
+ v : (M,) array_like
756
+ Second one-dimensional input array.
757
+ mode : {'full', 'valid', 'same'}, optional
758
+ 'full':
759
+ By default, mode is 'full'. This returns the convolution
760
+ at each point of overlap, with an output shape of (N+M-1,). At
761
+ the end-points of the convolution, the signals do not overlap
762
+ completely, and boundary effects may be seen.
763
+
764
+ 'same':
765
+ Mode 'same' returns output of length ``max(M, N)``. Boundary
766
+ effects are still visible.
767
+
768
+ 'valid':
769
+ Mode 'valid' returns output of length
770
+ ``max(M, N) - min(M, N) + 1``. The convolution product is only given
771
+ for points where the signals overlap completely. Values outside
772
+ the signal boundary have no effect.
773
+
774
+ Returns
775
+ -------
776
+ out : ndarray
777
+ Discrete, linear convolution of `a` and `v`.
778
+
779
+ See Also
780
+ --------
781
+ scipy.signal.fftconvolve : Convolve two arrays using the Fast Fourier
782
+ Transform.
783
+ scipy.linalg.toeplitz : Used to construct the convolution operator.
784
+ polymul : Polynomial multiplication. Same output as convolve, but also
785
+ accepts poly1d objects as input.
786
+
787
+ Notes
788
+ -----
789
+ The discrete convolution operation is defined as
790
+
791
+ .. math:: (a * v)_n = \\sum_{m = -\\infty}^{\\infty} a_m v_{n - m}
792
+
793
+ It can be shown that a convolution :math:`x(t) * y(t)` in time/space
794
+ is equivalent to the multiplication :math:`X(f) Y(f)` in the Fourier
795
+ domain, after appropriate padding (padding is necessary to prevent
796
+ circular convolution). Since multiplication is more efficient (faster)
797
+ than convolution, the function `scipy.signal.fftconvolve` exploits the
798
+ FFT to calculate the convolution of large data-sets.
799
+
800
+ References
801
+ ----------
802
+ .. [1] Wikipedia, "Convolution",
803
+ https://en.wikipedia.org/wiki/Convolution
804
+
805
+ Examples
806
+ --------
807
+ Note how the convolution operator flips the second array
808
+ before "sliding" the two across one another:
809
+
810
+ >>> np.convolve([1, 2, 3], [0, 1, 0.5])
811
+ array([0. , 1. , 2.5, 4. , 1.5])
812
+
813
+ Only return the middle values of the convolution.
814
+ Contains boundary effects, where zeros are taken
815
+ into account:
816
+
817
+ >>> np.convolve([1,2,3],[0,1,0.5], 'same')
818
+ array([1. , 2.5, 4. ])
819
+
820
+ The two arrays are of the same length, so there
821
+ is only one position where they completely overlap:
822
+
823
+ >>> np.convolve([1,2,3],[0,1,0.5], 'valid')
824
+ array([2.5])
825
+
826
+ """
827
+ a, v = array(a, copy=False, ndmin=1), array(v, copy=False, ndmin=1)
828
+ if (len(v) > len(a)):
829
+ a, v = v, a
830
+ if len(a) == 0:
831
+ raise ValueError('a cannot be empty')
832
+ if len(v) == 0:
833
+ raise ValueError('v cannot be empty')
834
+ return multiarray.correlate(a, v[::-1], mode)
835
+
836
+
837
+ def _outer_dispatcher(a, b, out=None):
838
+ return (a, b, out)
839
+
840
+
841
+ @array_function_dispatch(_outer_dispatcher)
842
+ def outer(a, b, out=None):
843
+ """
844
+ Compute the outer product of two vectors.
845
+
846
+ Given two vectors `a` and `b` of length ``M`` and ``N``, repsectively,
847
+ the outer product [1]_ is::
848
+
849
+ [[a_0*b_0 a_0*b_1 ... a_0*b_{N-1} ]
850
+ [a_1*b_0 .
851
+ [ ... .
852
+ [a_{M-1}*b_0 a_{M-1}*b_{N-1} ]]
853
+
854
+ Parameters
855
+ ----------
856
+ a : (M,) array_like
857
+ First input vector. Input is flattened if
858
+ not already 1-dimensional.
859
+ b : (N,) array_like
860
+ Second input vector. Input is flattened if
861
+ not already 1-dimensional.
862
+ out : (M, N) ndarray, optional
863
+ A location where the result is stored
864
+
865
+ .. versionadded:: 1.9.0
866
+
867
+ Returns
868
+ -------
869
+ out : (M, N) ndarray
870
+ ``out[i, j] = a[i] * b[j]``
871
+
872
+ See also
873
+ --------
874
+ inner
875
+ einsum : ``einsum('i,j->ij', a.ravel(), b.ravel())`` is the equivalent.
876
+ ufunc.outer : A generalization to dimensions other than 1D and other
877
+ operations. ``np.multiply.outer(a.ravel(), b.ravel())``
878
+ is the equivalent.
879
+ tensordot : ``np.tensordot(a.ravel(), b.ravel(), axes=((), ()))``
880
+ is the equivalent.
881
+
882
+ References
883
+ ----------
884
+ .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3rd
885
+ ed., Baltimore, MD, Johns Hopkins University Press, 1996,
886
+ pg. 8.
887
+
888
+ Examples
889
+ --------
890
+ Make a (*very* coarse) grid for computing a Mandelbrot set:
891
+
892
+ >>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
893
+ >>> rl
894
+ array([[-2., -1., 0., 1., 2.],
895
+ [-2., -1., 0., 1., 2.],
896
+ [-2., -1., 0., 1., 2.],
897
+ [-2., -1., 0., 1., 2.],
898
+ [-2., -1., 0., 1., 2.]])
899
+ >>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
900
+ >>> im
901
+ array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
902
+ [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
903
+ [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
904
+ [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
905
+ [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
906
+ >>> grid = rl + im
907
+ >>> grid
908
+ array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],
909
+ [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
910
+ [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
911
+ [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
912
+ [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])
913
+
914
+ An example using a "vector" of letters:
915
+
916
+ >>> x = np.array(['a', 'b', 'c'], dtype=object)
917
+ >>> np.outer(x, [1, 2, 3])
918
+ array([['a', 'aa', 'aaa'],
919
+ ['b', 'bb', 'bbb'],
920
+ ['c', 'cc', 'ccc']], dtype=object)
921
+
922
+ """
923
+ a = asarray(a)
924
+ b = asarray(b)
925
+ return multiply(a.ravel()[:, newaxis], b.ravel()[newaxis, :], out)
926
+
927
+
928
+ def _tensordot_dispatcher(a, b, axes=None):
929
+ return (a, b)
930
+
931
+
932
+ @array_function_dispatch(_tensordot_dispatcher)
933
+ def tensordot(a, b, axes=2):
934
+ """
935
+ Compute tensor dot product along specified axes.
936
+
937
+ Given two tensors, `a` and `b`, and an array_like object containing
938
+ two array_like objects, ``(a_axes, b_axes)``, sum the products of
939
+ `a`'s and `b`'s elements (components) over the axes specified by
940
+ ``a_axes`` and ``b_axes``. The third argument can be a single non-negative
941
+ integer_like scalar, ``N``; if it is such, then the last ``N`` dimensions
942
+ of `a` and the first ``N`` dimensions of `b` are summed over.
943
+
944
+ Parameters
945
+ ----------
946
+ a, b : array_like
947
+ Tensors to "dot".
948
+
949
+ axes : int or (2,) array_like
950
+ * integer_like
951
+ If an int N, sum over the last N axes of `a` and the first N axes
952
+ of `b` in order. The sizes of the corresponding axes must match.
953
+ * (2,) array_like
954
+ Or, a list of axes to be summed over, first sequence applying to `a`,
955
+ second to `b`. Both elements array_like must be of the same length.
956
+
957
+ Returns
958
+ -------
959
+ output : ndarray
960
+ The tensor dot product of the input.
961
+
962
+ See Also
963
+ --------
964
+ dot, einsum
965
+
966
+ Notes
967
+ -----
968
+ Three common use cases are:
969
+ * ``axes = 0`` : tensor product :math:`a\\otimes b`
970
+ * ``axes = 1`` : tensor dot product :math:`a\\cdot b`
971
+ * ``axes = 2`` : (default) tensor double contraction :math:`a:b`
972
+
973
+ When `axes` is integer_like, the sequence for evaluation will be: first
974
+ the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and
975
+ Nth axis in `b` last.
976
+
977
+ When there is more than one axis to sum over - and they are not the last
978
+ (first) axes of `a` (`b`) - the argument `axes` should consist of
979
+ two sequences of the same length, with the first axis to sum over given
980
+ first in both sequences, the second axis second, and so forth.
981
+
982
+ The shape of the result consists of the non-contracted axes of the
983
+ first tensor, followed by the non-contracted axes of the second.
984
+
985
+ Examples
986
+ --------
987
+ A "traditional" example:
988
+
989
+ >>> a = np.arange(60.).reshape(3,4,5)
990
+ >>> b = np.arange(24.).reshape(4,3,2)
991
+ >>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
992
+ >>> c.shape
993
+ (5, 2)
994
+ >>> c
995
+ array([[4400., 4730.],
996
+ [4532., 4874.],
997
+ [4664., 5018.],
998
+ [4796., 5162.],
999
+ [4928., 5306.]])
1000
+ >>> # A slower but equivalent way of computing the same...
1001
+ >>> d = np.zeros((5,2))
1002
+ >>> for i in range(5):
1003
+ ... for j in range(2):
1004
+ ... for k in range(3):
1005
+ ... for n in range(4):
1006
+ ... d[i,j] += a[k,n,i] * b[n,k,j]
1007
+ >>> c == d
1008
+ array([[ True, True],
1009
+ [ True, True],
1010
+ [ True, True],
1011
+ [ True, True],
1012
+ [ True, True]])
1013
+
1014
+ An extended example taking advantage of the overloading of + and \\*:
1015
+
1016
+ >>> a = np.array(range(1, 9))
1017
+ >>> a.shape = (2, 2, 2)
1018
+ >>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
1019
+ >>> A.shape = (2, 2)
1020
+ >>> a; A
1021
+ array([[[1, 2],
1022
+ [3, 4]],
1023
+ [[5, 6],
1024
+ [7, 8]]])
1025
+ array([['a', 'b'],
1026
+ ['c', 'd']], dtype=object)
1027
+
1028
+ >>> np.tensordot(a, A) # third argument default is 2 for double-contraction
1029
+ array(['abbcccdddd', 'aaaaabbbbbbcccccccdddddddd'], dtype=object)
1030
+
1031
+ >>> np.tensordot(a, A, 1)
1032
+ array([[['acc', 'bdd'],
1033
+ ['aaacccc', 'bbbdddd']],
1034
+ [['aaaaacccccc', 'bbbbbdddddd'],
1035
+ ['aaaaaaacccccccc', 'bbbbbbbdddddddd']]], dtype=object)
1036
+
1037
+ >>> np.tensordot(a, A, 0) # tensor product (result too long to incl.)
1038
+ array([[[[['a', 'b'],
1039
+ ['c', 'd']],
1040
+ ...
1041
+
1042
+ >>> np.tensordot(a, A, (0, 1))
1043
+ array([[['abbbbb', 'cddddd'],
1044
+ ['aabbbbbb', 'ccdddddd']],
1045
+ [['aaabbbbbbb', 'cccddddddd'],
1046
+ ['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object)
1047
+
1048
+ >>> np.tensordot(a, A, (2, 1))
1049
+ array([[['abb', 'cdd'],
1050
+ ['aaabbbb', 'cccdddd']],
1051
+ [['aaaaabbbbbb', 'cccccdddddd'],
1052
+ ['aaaaaaabbbbbbbb', 'cccccccdddddddd']]], dtype=object)
1053
+
1054
+ >>> np.tensordot(a, A, ((0, 1), (0, 1)))
1055
+ array(['abbbcccccddddddd', 'aabbbbccccccdddddddd'], dtype=object)
1056
+
1057
+ >>> np.tensordot(a, A, ((2, 1), (1, 0)))
1058
+ array(['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object)
1059
+
1060
+ """
1061
+ try:
1062
+ iter(axes)
1063
+ except Exception:
1064
+ axes_a = list(range(-axes, 0))
1065
+ axes_b = list(range(0, axes))
1066
+ else:
1067
+ axes_a, axes_b = axes
1068
+ try:
1069
+ na = len(axes_a)
1070
+ axes_a = list(axes_a)
1071
+ except TypeError:
1072
+ axes_a = [axes_a]
1073
+ na = 1
1074
+ try:
1075
+ nb = len(axes_b)
1076
+ axes_b = list(axes_b)
1077
+ except TypeError:
1078
+ axes_b = [axes_b]
1079
+ nb = 1
1080
+
1081
+ a, b = asarray(a), asarray(b)
1082
+ as_ = a.shape
1083
+ nda = a.ndim
1084
+ bs = b.shape
1085
+ ndb = b.ndim
1086
+ equal = True
1087
+ if na != nb:
1088
+ equal = False
1089
+ else:
1090
+ for k in range(na):
1091
+ if as_[axes_a[k]] != bs[axes_b[k]]:
1092
+ equal = False
1093
+ break
1094
+ if axes_a[k] < 0:
1095
+ axes_a[k] += nda
1096
+ if axes_b[k] < 0:
1097
+ axes_b[k] += ndb
1098
+ if not equal:
1099
+ raise ValueError("shape-mismatch for sum")
1100
+
1101
+ # Move the axes to sum over to the end of "a"
1102
+ # and to the front of "b"
1103
+ notin = [k for k in range(nda) if k not in axes_a]
1104
+ newaxes_a = notin + axes_a
1105
+ N2 = 1
1106
+ for axis in axes_a:
1107
+ N2 *= as_[axis]
1108
+ newshape_a = (int(multiply.reduce([as_[ax] for ax in notin])), N2)
1109
+ olda = [as_[axis] for axis in notin]
1110
+
1111
+ notin = [k for k in range(ndb) if k not in axes_b]
1112
+ newaxes_b = axes_b + notin
1113
+ N2 = 1
1114
+ for axis in axes_b:
1115
+ N2 *= bs[axis]
1116
+ newshape_b = (N2, int(multiply.reduce([bs[ax] for ax in notin])))
1117
+ oldb = [bs[axis] for axis in notin]
1118
+
1119
+ at = a.transpose(newaxes_a).reshape(newshape_a)
1120
+ bt = b.transpose(newaxes_b).reshape(newshape_b)
1121
+ res = dot(at, bt)
1122
+ return res.reshape(olda + oldb)
1123
+
1124
+
1125
+ def _roll_dispatcher(a, shift, axis=None):
1126
+ return (a,)
1127
+
1128
+
1129
+ @array_function_dispatch(_roll_dispatcher)
1130
+ def roll(a, shift, axis=None):
1131
+ """
1132
+ Roll array elements along a given axis.
1133
+
1134
+ Elements that roll beyond the last position are re-introduced at
1135
+ the first.
1136
+
1137
+ Parameters
1138
+ ----------
1139
+ a : array_like
1140
+ Input array.
1141
+ shift : int or tuple of ints
1142
+ The number of places by which elements are shifted. If a tuple,
1143
+ then `axis` must be a tuple of the same size, and each of the
1144
+ given axes is shifted by the corresponding number. If an int
1145
+ while `axis` is a tuple of ints, then the same value is used for
1146
+ all given axes.
1147
+ axis : int or tuple of ints, optional
1148
+ Axis or axes along which elements are shifted. By default, the
1149
+ array is flattened before shifting, after which the original
1150
+ shape is restored.
1151
+
1152
+ Returns
1153
+ -------
1154
+ res : ndarray
1155
+ Output array, with the same shape as `a`.
1156
+
1157
+ See Also
1158
+ --------
1159
+ rollaxis : Roll the specified axis backwards, until it lies in a
1160
+ given position.
1161
+
1162
+ Notes
1163
+ -----
1164
+ .. versionadded:: 1.12.0
1165
+
1166
+ Supports rolling over multiple dimensions simultaneously.
1167
+
1168
+ Examples
1169
+ --------
1170
+ >>> x = np.arange(10)
1171
+ >>> np.roll(x, 2)
1172
+ array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
1173
+ >>> np.roll(x, -2)
1174
+ array([2, 3, 4, 5, 6, 7, 8, 9, 0, 1])
1175
+
1176
+ >>> x2 = np.reshape(x, (2, 5))
1177
+ >>> x2
1178
+ array([[0, 1, 2, 3, 4],
1179
+ [5, 6, 7, 8, 9]])
1180
+ >>> np.roll(x2, 1)
1181
+ array([[9, 0, 1, 2, 3],
1182
+ [4, 5, 6, 7, 8]])
1183
+ >>> np.roll(x2, -1)
1184
+ array([[1, 2, 3, 4, 5],
1185
+ [6, 7, 8, 9, 0]])
1186
+ >>> np.roll(x2, 1, axis=0)
1187
+ array([[5, 6, 7, 8, 9],
1188
+ [0, 1, 2, 3, 4]])
1189
+ >>> np.roll(x2, -1, axis=0)
1190
+ array([[5, 6, 7, 8, 9],
1191
+ [0, 1, 2, 3, 4]])
1192
+ >>> np.roll(x2, 1, axis=1)
1193
+ array([[4, 0, 1, 2, 3],
1194
+ [9, 5, 6, 7, 8]])
1195
+ >>> np.roll(x2, -1, axis=1)
1196
+ array([[1, 2, 3, 4, 0],
1197
+ [6, 7, 8, 9, 5]])
1198
+ >>> np.roll(x2, (1, 1), axis=(1, 0))
1199
+ array([[9, 5, 6, 7, 8],
1200
+ [4, 0, 1, 2, 3]])
1201
+ >>> np.roll(x2, (2, 1), axis=(1, 0))
1202
+ array([[8, 9, 5, 6, 7],
1203
+ [3, 4, 0, 1, 2]])
1204
+
1205
+ """
1206
+ a = asanyarray(a)
1207
+ if axis is None:
1208
+ return roll(a.ravel(), shift, 0).reshape(a.shape)
1209
+
1210
+ else:
1211
+ axis = normalize_axis_tuple(axis, a.ndim, allow_duplicate=True)
1212
+ broadcasted = broadcast(shift, axis)
1213
+ if broadcasted.ndim > 1:
1214
+ raise ValueError(
1215
+ "'shift' and 'axis' should be scalars or 1D sequences")
1216
+ shifts = {ax: 0 for ax in range(a.ndim)}
1217
+ for sh, ax in broadcasted:
1218
+ shifts[ax] += sh
1219
+
1220
+ rolls = [((slice(None), slice(None)),)] * a.ndim
1221
+ for ax, offset in shifts.items():
1222
+ offset %= a.shape[ax] or 1 # If `a` is empty, nothing matters.
1223
+ if offset:
1224
+ # (original, result), (original, result)
1225
+ rolls[ax] = ((slice(None, -offset), slice(offset, None)),
1226
+ (slice(-offset, None), slice(None, offset)))
1227
+
1228
+ result = empty_like(a)
1229
+ for indices in itertools.product(*rolls):
1230
+ arr_index, res_index = zip(*indices)
1231
+ result[res_index] = a[arr_index]
1232
+
1233
+ return result
1234
+
1235
+
1236
+ def _rollaxis_dispatcher(a, axis, start=None):
1237
+ return (a,)
1238
+
1239
+
1240
+ @array_function_dispatch(_rollaxis_dispatcher)
1241
+ def rollaxis(a, axis, start=0):
1242
+ """
1243
+ Roll the specified axis backwards, until it lies in a given position.
1244
+
1245
+ This function continues to be supported for backward compatibility, but you
1246
+ should prefer `moveaxis`. The `moveaxis` function was added in NumPy
1247
+ 1.11.
1248
+
1249
+ Parameters
1250
+ ----------
1251
+ a : ndarray
1252
+ Input array.
1253
+ axis : int
1254
+ The axis to be rolled. The positions of the other axes do not
1255
+ change relative to one another.
1256
+ start : int, optional
1257
+ When ``start <= axis``, the axis is rolled back until it lies in
1258
+ this position. When ``start > axis``, the axis is rolled until it
1259
+ lies before this position. The default, 0, results in a "complete"
1260
+ roll. The following table describes how negative values of ``start``
1261
+ are interpreted:
1262
+
1263
+ .. table::
1264
+ :align: left
1265
+
1266
+ +-------------------+----------------------+
1267
+ | ``start`` | Normalized ``start`` |
1268
+ +===================+======================+
1269
+ | ``-(arr.ndim+1)`` | raise ``AxisError`` |
1270
+ +-------------------+----------------------+
1271
+ | ``-arr.ndim`` | 0 |
1272
+ +-------------------+----------------------+
1273
+ | |vdots| | |vdots| |
1274
+ +-------------------+----------------------+
1275
+ | ``-1`` | ``arr.ndim-1`` |
1276
+ +-------------------+----------------------+
1277
+ | ``0`` | ``0`` |
1278
+ +-------------------+----------------------+
1279
+ | |vdots| | |vdots| |
1280
+ +-------------------+----------------------+
1281
+ | ``arr.ndim`` | ``arr.ndim`` |
1282
+ +-------------------+----------------------+
1283
+ | ``arr.ndim + 1`` | raise ``AxisError`` |
1284
+ +-------------------+----------------------+
1285
+
1286
+ .. |vdots| unicode:: U+22EE .. Vertical Ellipsis
1287
+
1288
+ Returns
1289
+ -------
1290
+ res : ndarray
1291
+ For NumPy >= 1.10.0 a view of `a` is always returned. For earlier
1292
+ NumPy versions a view of `a` is returned only if the order of the
1293
+ axes is changed, otherwise the input array is returned.
1294
+
1295
+ See Also
1296
+ --------
1297
+ moveaxis : Move array axes to new positions.
1298
+ roll : Roll the elements of an array by a number of positions along a
1299
+ given axis.
1300
+
1301
+ Examples
1302
+ --------
1303
+ >>> a = np.ones((3,4,5,6))
1304
+ >>> np.rollaxis(a, 3, 1).shape
1305
+ (3, 6, 4, 5)
1306
+ >>> np.rollaxis(a, 2).shape
1307
+ (5, 3, 4, 6)
1308
+ >>> np.rollaxis(a, 1, 4).shape
1309
+ (3, 5, 6, 4)
1310
+
1311
+ """
1312
+ n = a.ndim
1313
+ axis = normalize_axis_index(axis, n)
1314
+ if start < 0:
1315
+ start += n
1316
+ msg = "'%s' arg requires %d <= %s < %d, but %d was passed in"
1317
+ if not (0 <= start < n + 1):
1318
+ raise AxisError(msg % ('start', -n, 'start', n + 1, start))
1319
+ if axis < start:
1320
+ # it's been removed
1321
+ start -= 1
1322
+ if axis == start:
1323
+ return a[...]
1324
+ axes = list(range(0, n))
1325
+ axes.remove(axis)
1326
+ axes.insert(start, axis)
1327
+ return a.transpose(axes)
1328
+
1329
+
1330
+ def normalize_axis_tuple(axis, ndim, argname=None, allow_duplicate=False):
1331
+ """
1332
+ Normalizes an axis argument into a tuple of non-negative integer axes.
1333
+
1334
+ This handles shorthands such as ``1`` and converts them to ``(1,)``,
1335
+ as well as performing the handling of negative indices covered by
1336
+ `normalize_axis_index`.
1337
+
1338
+ By default, this forbids axes from being specified multiple times.
1339
+
1340
+ Used internally by multi-axis-checking logic.
1341
+
1342
+ .. versionadded:: 1.13.0
1343
+
1344
+ Parameters
1345
+ ----------
1346
+ axis : int, iterable of int
1347
+ The un-normalized index or indices of the axis.
1348
+ ndim : int
1349
+ The number of dimensions of the array that `axis` should be normalized
1350
+ against.
1351
+ argname : str, optional
1352
+ A prefix to put before the error message, typically the name of the
1353
+ argument.
1354
+ allow_duplicate : bool, optional
1355
+ If False, the default, disallow an axis from being specified twice.
1356
+
1357
+ Returns
1358
+ -------
1359
+ normalized_axes : tuple of int
1360
+ The normalized axis index, such that `0 <= normalized_axis < ndim`
1361
+
1362
+ Raises
1363
+ ------
1364
+ AxisError
1365
+ If any axis provided is out of range
1366
+ ValueError
1367
+ If an axis is repeated
1368
+
1369
+ See also
1370
+ --------
1371
+ normalize_axis_index : normalizing a single scalar axis
1372
+ """
1373
+ # Optimization to speed-up the most common cases.
1374
+ if type(axis) not in (tuple, list):
1375
+ try:
1376
+ axis = [operator.index(axis)]
1377
+ except TypeError:
1378
+ pass
1379
+ # Going via an iterator directly is slower than via list comprehension.
1380
+ axis = tuple([normalize_axis_index(ax, ndim, argname) for ax in axis])
1381
+ if not allow_duplicate and len(set(axis)) != len(axis):
1382
+ if argname:
1383
+ raise ValueError('repeated axis in `{}` argument'.format(argname))
1384
+ else:
1385
+ raise ValueError('repeated axis')
1386
+ return axis
1387
+
1388
+
1389
+ def _moveaxis_dispatcher(a, source, destination):
1390
+ return (a,)
1391
+
1392
+
1393
+ @array_function_dispatch(_moveaxis_dispatcher)
1394
+ def moveaxis(a, source, destination):
1395
+ """
1396
+ Move axes of an array to new positions.
1397
+
1398
+ Other axes remain in their original order.
1399
+
1400
+ .. versionadded:: 1.11.0
1401
+
1402
+ Parameters
1403
+ ----------
1404
+ a : np.ndarray
1405
+ The array whose axes should be reordered.
1406
+ source : int or sequence of int
1407
+ Original positions of the axes to move. These must be unique.
1408
+ destination : int or sequence of int
1409
+ Destination positions for each of the original axes. These must also be
1410
+ unique.
1411
+
1412
+ Returns
1413
+ -------
1414
+ result : np.ndarray
1415
+ Array with moved axes. This array is a view of the input array.
1416
+
1417
+ See Also
1418
+ --------
1419
+ transpose : Permute the dimensions of an array.
1420
+ swapaxes : Interchange two axes of an array.
1421
+
1422
+ Examples
1423
+ --------
1424
+ >>> x = np.zeros((3, 4, 5))
1425
+ >>> np.moveaxis(x, 0, -1).shape
1426
+ (4, 5, 3)
1427
+ >>> np.moveaxis(x, -1, 0).shape
1428
+ (5, 3, 4)
1429
+
1430
+ These all achieve the same result:
1431
+
1432
+ >>> np.transpose(x).shape
1433
+ (5, 4, 3)
1434
+ >>> np.swapaxes(x, 0, -1).shape
1435
+ (5, 4, 3)
1436
+ >>> np.moveaxis(x, [0, 1], [-1, -2]).shape
1437
+ (5, 4, 3)
1438
+ >>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape
1439
+ (5, 4, 3)
1440
+
1441
+ """
1442
+ try:
1443
+ # allow duck-array types if they define transpose
1444
+ transpose = a.transpose
1445
+ except AttributeError:
1446
+ a = asarray(a)
1447
+ transpose = a.transpose
1448
+
1449
+ source = normalize_axis_tuple(source, a.ndim, 'source')
1450
+ destination = normalize_axis_tuple(destination, a.ndim, 'destination')
1451
+ if len(source) != len(destination):
1452
+ raise ValueError('`source` and `destination` arguments must have '
1453
+ 'the same number of elements')
1454
+
1455
+ order = [n for n in range(a.ndim) if n not in source]
1456
+
1457
+ for dest, src in sorted(zip(destination, source)):
1458
+ order.insert(dest, src)
1459
+
1460
+ result = transpose(order)
1461
+ return result
1462
+
1463
+
1464
+ def _cross_dispatcher(a, b, axisa=None, axisb=None, axisc=None, axis=None):
1465
+ return (a, b)
1466
+
1467
+
1468
+ @array_function_dispatch(_cross_dispatcher)
1469
+ def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None):
1470
+ """
1471
+ Return the cross product of two (arrays of) vectors.
1472
+
1473
+ The cross product of `a` and `b` in :math:`R^3` is a vector perpendicular
1474
+ to both `a` and `b`. If `a` and `b` are arrays of vectors, the vectors
1475
+ are defined by the last axis of `a` and `b` by default, and these axes
1476
+ can have dimensions 2 or 3. Where the dimension of either `a` or `b` is
1477
+ 2, the third component of the input vector is assumed to be zero and the
1478
+ cross product calculated accordingly. In cases where both input vectors
1479
+ have dimension 2, the z-component of the cross product is returned.
1480
+
1481
+ Parameters
1482
+ ----------
1483
+ a : array_like
1484
+ Components of the first vector(s).
1485
+ b : array_like
1486
+ Components of the second vector(s).
1487
+ axisa : int, optional
1488
+ Axis of `a` that defines the vector(s). By default, the last axis.
1489
+ axisb : int, optional
1490
+ Axis of `b` that defines the vector(s). By default, the last axis.
1491
+ axisc : int, optional
1492
+ Axis of `c` containing the cross product vector(s). Ignored if
1493
+ both input vectors have dimension 2, as the return is scalar.
1494
+ By default, the last axis.
1495
+ axis : int, optional
1496
+ If defined, the axis of `a`, `b` and `c` that defines the vector(s)
1497
+ and cross product(s). Overrides `axisa`, `axisb` and `axisc`.
1498
+
1499
+ Returns
1500
+ -------
1501
+ c : ndarray
1502
+ Vector cross product(s).
1503
+
1504
+ Raises
1505
+ ------
1506
+ ValueError
1507
+ When the dimension of the vector(s) in `a` and/or `b` does not
1508
+ equal 2 or 3.
1509
+
1510
+ See Also
1511
+ --------
1512
+ inner : Inner product
1513
+ outer : Outer product.
1514
+ ix_ : Construct index arrays.
1515
+
1516
+ Notes
1517
+ -----
1518
+ .. versionadded:: 1.9.0
1519
+
1520
+ Supports full broadcasting of the inputs.
1521
+
1522
+ Examples
1523
+ --------
1524
+ Vector cross-product.
1525
+
1526
+ >>> x = [1, 2, 3]
1527
+ >>> y = [4, 5, 6]
1528
+ >>> np.cross(x, y)
1529
+ array([-3, 6, -3])
1530
+
1531
+ One vector with dimension 2.
1532
+
1533
+ >>> x = [1, 2]
1534
+ >>> y = [4, 5, 6]
1535
+ >>> np.cross(x, y)
1536
+ array([12, -6, -3])
1537
+
1538
+ Equivalently:
1539
+
1540
+ >>> x = [1, 2, 0]
1541
+ >>> y = [4, 5, 6]
1542
+ >>> np.cross(x, y)
1543
+ array([12, -6, -3])
1544
+
1545
+ Both vectors with dimension 2.
1546
+
1547
+ >>> x = [1,2]
1548
+ >>> y = [4,5]
1549
+ >>> np.cross(x, y)
1550
+ array(-3)
1551
+
1552
+ Multiple vector cross-products. Note that the direction of the cross
1553
+ product vector is defined by the *right-hand rule*.
1554
+
1555
+ >>> x = np.array([[1,2,3], [4,5,6]])
1556
+ >>> y = np.array([[4,5,6], [1,2,3]])
1557
+ >>> np.cross(x, y)
1558
+ array([[-3, 6, -3],
1559
+ [ 3, -6, 3]])
1560
+
1561
+ The orientation of `c` can be changed using the `axisc` keyword.
1562
+
1563
+ >>> np.cross(x, y, axisc=0)
1564
+ array([[-3, 3],
1565
+ [ 6, -6],
1566
+ [-3, 3]])
1567
+
1568
+ Change the vector definition of `x` and `y` using `axisa` and `axisb`.
1569
+
1570
+ >>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]])
1571
+ >>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]])
1572
+ >>> np.cross(x, y)
1573
+ array([[ -6, 12, -6],
1574
+ [ 0, 0, 0],
1575
+ [ 6, -12, 6]])
1576
+ >>> np.cross(x, y, axisa=0, axisb=0)
1577
+ array([[-24, 48, -24],
1578
+ [-30, 60, -30],
1579
+ [-36, 72, -36]])
1580
+
1581
+ """
1582
+ if axis is not None:
1583
+ axisa, axisb, axisc = (axis,) * 3
1584
+ a = asarray(a)
1585
+ b = asarray(b)
1586
+ # Check axisa and axisb are within bounds
1587
+ axisa = normalize_axis_index(axisa, a.ndim, msg_prefix='axisa')
1588
+ axisb = normalize_axis_index(axisb, b.ndim, msg_prefix='axisb')
1589
+
1590
+ # Move working axis to the end of the shape
1591
+ a = moveaxis(a, axisa, -1)
1592
+ b = moveaxis(b, axisb, -1)
1593
+ msg = ("incompatible dimensions for cross product\n"
1594
+ "(dimension must be 2 or 3)")
1595
+ if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3):
1596
+ raise ValueError(msg)
1597
+
1598
+ # Create the output array
1599
+ shape = broadcast(a[..., 0], b[..., 0]).shape
1600
+ if a.shape[-1] == 3 or b.shape[-1] == 3:
1601
+ shape += (3,)
1602
+ # Check axisc is within bounds
1603
+ axisc = normalize_axis_index(axisc, len(shape), msg_prefix='axisc')
1604
+ dtype = promote_types(a.dtype, b.dtype)
1605
+ cp = empty(shape, dtype)
1606
+
1607
+ # recast arrays as dtype
1608
+ a = a.astype(dtype)
1609
+ b = b.astype(dtype)
1610
+
1611
+ # create local aliases for readability
1612
+ a0 = a[..., 0]
1613
+ a1 = a[..., 1]
1614
+ if a.shape[-1] == 3:
1615
+ a2 = a[..., 2]
1616
+ b0 = b[..., 0]
1617
+ b1 = b[..., 1]
1618
+ if b.shape[-1] == 3:
1619
+ b2 = b[..., 2]
1620
+ if cp.ndim != 0 and cp.shape[-1] == 3:
1621
+ cp0 = cp[..., 0]
1622
+ cp1 = cp[..., 1]
1623
+ cp2 = cp[..., 2]
1624
+
1625
+ if a.shape[-1] == 2:
1626
+ if b.shape[-1] == 2:
1627
+ # a0 * b1 - a1 * b0
1628
+ multiply(a0, b1, out=cp)
1629
+ cp -= a1 * b0
1630
+ return cp
1631
+ else:
1632
+ assert b.shape[-1] == 3
1633
+ # cp0 = a1 * b2 - 0 (a2 = 0)
1634
+ # cp1 = 0 - a0 * b2 (a2 = 0)
1635
+ # cp2 = a0 * b1 - a1 * b0
1636
+ multiply(a1, b2, out=cp0)
1637
+ multiply(a0, b2, out=cp1)
1638
+ negative(cp1, out=cp1)
1639
+ multiply(a0, b1, out=cp2)
1640
+ cp2 -= a1 * b0
1641
+ else:
1642
+ assert a.shape[-1] == 3
1643
+ if b.shape[-1] == 3:
1644
+ # cp0 = a1 * b2 - a2 * b1
1645
+ # cp1 = a2 * b0 - a0 * b2
1646
+ # cp2 = a0 * b1 - a1 * b0
1647
+ multiply(a1, b2, out=cp0)
1648
+ tmp = array(a2 * b1)
1649
+ cp0 -= tmp
1650
+ multiply(a2, b0, out=cp1)
1651
+ multiply(a0, b2, out=tmp)
1652
+ cp1 -= tmp
1653
+ multiply(a0, b1, out=cp2)
1654
+ multiply(a1, b0, out=tmp)
1655
+ cp2 -= tmp
1656
+ else:
1657
+ assert b.shape[-1] == 2
1658
+ # cp0 = 0 - a2 * b1 (b2 = 0)
1659
+ # cp1 = a2 * b0 - 0 (b2 = 0)
1660
+ # cp2 = a0 * b1 - a1 * b0
1661
+ multiply(a2, b1, out=cp0)
1662
+ negative(cp0, out=cp0)
1663
+ multiply(a2, b0, out=cp1)
1664
+ multiply(a0, b1, out=cp2)
1665
+ cp2 -= a1 * b0
1666
+
1667
+ return moveaxis(cp, -1, axisc)
1668
+
1669
+
1670
+ little_endian = (sys.byteorder == 'little')
1671
+
1672
+
1673
+ @set_module('numpy')
1674
+ def indices(dimensions, dtype=int, sparse=False):
1675
+ """
1676
+ Return an array representing the indices of a grid.
1677
+
1678
+ Compute an array where the subarrays contain index values 0, 1, ...
1679
+ varying only along the corresponding axis.
1680
+
1681
+ Parameters
1682
+ ----------
1683
+ dimensions : sequence of ints
1684
+ The shape of the grid.
1685
+ dtype : dtype, optional
1686
+ Data type of the result.
1687
+ sparse : boolean, optional
1688
+ Return a sparse representation of the grid instead of a dense
1689
+ representation. Default is False.
1690
+
1691
+ .. versionadded:: 1.17
1692
+
1693
+ Returns
1694
+ -------
1695
+ grid : one ndarray or tuple of ndarrays
1696
+ If sparse is False:
1697
+ Returns one array of grid indices,
1698
+ ``grid.shape = (len(dimensions),) + tuple(dimensions)``.
1699
+ If sparse is True:
1700
+ Returns a tuple of arrays, with
1701
+ ``grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1)`` with
1702
+ dimensions[i] in the ith place
1703
+
1704
+ See Also
1705
+ --------
1706
+ mgrid, ogrid, meshgrid
1707
+
1708
+ Notes
1709
+ -----
1710
+ The output shape in the dense case is obtained by prepending the number
1711
+ of dimensions in front of the tuple of dimensions, i.e. if `dimensions`
1712
+ is a tuple ``(r0, ..., rN-1)`` of length ``N``, the output shape is
1713
+ ``(N, r0, ..., rN-1)``.
1714
+
1715
+ The subarrays ``grid[k]`` contains the N-D array of indices along the
1716
+ ``k-th`` axis. Explicitly::
1717
+
1718
+ grid[k, i0, i1, ..., iN-1] = ik
1719
+
1720
+ Examples
1721
+ --------
1722
+ >>> grid = np.indices((2, 3))
1723
+ >>> grid.shape
1724
+ (2, 2, 3)
1725
+ >>> grid[0] # row indices
1726
+ array([[0, 0, 0],
1727
+ [1, 1, 1]])
1728
+ >>> grid[1] # column indices
1729
+ array([[0, 1, 2],
1730
+ [0, 1, 2]])
1731
+
1732
+ The indices can be used as an index into an array.
1733
+
1734
+ >>> x = np.arange(20).reshape(5, 4)
1735
+ >>> row, col = np.indices((2, 3))
1736
+ >>> x[row, col]
1737
+ array([[0, 1, 2],
1738
+ [4, 5, 6]])
1739
+
1740
+ Note that it would be more straightforward in the above example to
1741
+ extract the required elements directly with ``x[:2, :3]``.
1742
+
1743
+ If sparse is set to true, the grid will be returned in a sparse
1744
+ representation.
1745
+
1746
+ >>> i, j = np.indices((2, 3), sparse=True)
1747
+ >>> i.shape
1748
+ (2, 1)
1749
+ >>> j.shape
1750
+ (1, 3)
1751
+ >>> i # row indices
1752
+ array([[0],
1753
+ [1]])
1754
+ >>> j # column indices
1755
+ array([[0, 1, 2]])
1756
+
1757
+ """
1758
+ dimensions = tuple(dimensions)
1759
+ N = len(dimensions)
1760
+ shape = (1,)*N
1761
+ if sparse:
1762
+ res = tuple()
1763
+ else:
1764
+ res = empty((N,)+dimensions, dtype=dtype)
1765
+ for i, dim in enumerate(dimensions):
1766
+ idx = arange(dim, dtype=dtype).reshape(
1767
+ shape[:i] + (dim,) + shape[i+1:]
1768
+ )
1769
+ if sparse:
1770
+ res = res + (idx,)
1771
+ else:
1772
+ res[i] = idx
1773
+ return res
1774
+
1775
+
1776
+ @set_array_function_like_doc
1777
+ @set_module('numpy')
1778
+ def fromfunction(function, shape, *, dtype=float, like=None, **kwargs):
1779
+ """
1780
+ Construct an array by executing a function over each coordinate.
1781
+
1782
+ The resulting array therefore has a value ``fn(x, y, z)`` at
1783
+ coordinate ``(x, y, z)``.
1784
+
1785
+ Parameters
1786
+ ----------
1787
+ function : callable
1788
+ The function is called with N parameters, where N is the rank of
1789
+ `shape`. Each parameter represents the coordinates of the array
1790
+ varying along a specific axis. For example, if `shape`
1791
+ were ``(2, 2)``, then the parameters would be
1792
+ ``array([[0, 0], [1, 1]])`` and ``array([[0, 1], [0, 1]])``
1793
+ shape : (N,) tuple of ints
1794
+ Shape of the output array, which also determines the shape of
1795
+ the coordinate arrays passed to `function`.
1796
+ dtype : data-type, optional
1797
+ Data-type of the coordinate arrays passed to `function`.
1798
+ By default, `dtype` is float.
1799
+ ${ARRAY_FUNCTION_LIKE}
1800
+
1801
+ .. versionadded:: 1.20.0
1802
+
1803
+ Returns
1804
+ -------
1805
+ fromfunction : any
1806
+ The result of the call to `function` is passed back directly.
1807
+ Therefore the shape of `fromfunction` is completely determined by
1808
+ `function`. If `function` returns a scalar value, the shape of
1809
+ `fromfunction` would not match the `shape` parameter.
1810
+
1811
+ See Also
1812
+ --------
1813
+ indices, meshgrid
1814
+
1815
+ Notes
1816
+ -----
1817
+ Keywords other than `dtype` and `like` are passed to `function`.
1818
+
1819
+ Examples
1820
+ --------
1821
+ >>> np.fromfunction(lambda i, j: i, (2, 2), dtype=float)
1822
+ array([[0., 0.],
1823
+ [1., 1.]])
1824
+
1825
+ >>> np.fromfunction(lambda i, j: j, (2, 2), dtype=float)
1826
+ array([[0., 1.],
1827
+ [0., 1.]])
1828
+
1829
+ >>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
1830
+ array([[ True, False, False],
1831
+ [False, True, False],
1832
+ [False, False, True]])
1833
+
1834
+ >>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
1835
+ array([[0, 1, 2],
1836
+ [1, 2, 3],
1837
+ [2, 3, 4]])
1838
+
1839
+ """
1840
+ if like is not None:
1841
+ return _fromfunction_with_like(
1842
+ like, function, shape, dtype=dtype, **kwargs)
1843
+
1844
+ args = indices(shape, dtype=dtype)
1845
+ return function(*args, **kwargs)
1846
+
1847
+
1848
+ _fromfunction_with_like = array_function_dispatch()(fromfunction)
1849
+
1850
+
1851
+ def _frombuffer(buf, dtype, shape, order):
1852
+ return frombuffer(buf, dtype=dtype).reshape(shape, order=order)
1853
+
1854
+
1855
+ @set_module('numpy')
1856
+ def isscalar(element):
1857
+ """
1858
+ Returns True if the type of `element` is a scalar type.
1859
+
1860
+ Parameters
1861
+ ----------
1862
+ element : any
1863
+ Input argument, can be of any type and shape.
1864
+
1865
+ Returns
1866
+ -------
1867
+ val : bool
1868
+ True if `element` is a scalar type, False if it is not.
1869
+
1870
+ See Also
1871
+ --------
1872
+ ndim : Get the number of dimensions of an array
1873
+
1874
+ Notes
1875
+ -----
1876
+ If you need a stricter way to identify a *numerical* scalar, use
1877
+ ``isinstance(x, numbers.Number)``, as that returns ``False`` for most
1878
+ non-numerical elements such as strings.
1879
+
1880
+ In most cases ``np.ndim(x) == 0`` should be used instead of this function,
1881
+ as that will also return true for 0d arrays. This is how numpy overloads
1882
+ functions in the style of the ``dx`` arguments to `gradient` and the ``bins``
1883
+ argument to `histogram`. Some key differences:
1884
+
1885
+ +--------------------------------------+---------------+-------------------+
1886
+ | x |``isscalar(x)``|``np.ndim(x) == 0``|
1887
+ +======================================+===============+===================+
1888
+ | PEP 3141 numeric objects (including | ``True`` | ``True`` |
1889
+ | builtins) | | |
1890
+ +--------------------------------------+---------------+-------------------+
1891
+ | builtin string and buffer objects | ``True`` | ``True`` |
1892
+ +--------------------------------------+---------------+-------------------+
1893
+ | other builtin objects, like | ``False`` | ``True`` |
1894
+ | `pathlib.Path`, `Exception`, | | |
1895
+ | the result of `re.compile` | | |
1896
+ +--------------------------------------+---------------+-------------------+
1897
+ | third-party objects like | ``False`` | ``True`` |
1898
+ | `matplotlib.figure.Figure` | | |
1899
+ +--------------------------------------+---------------+-------------------+
1900
+ | zero-dimensional numpy arrays | ``False`` | ``True`` |
1901
+ +--------------------------------------+---------------+-------------------+
1902
+ | other numpy arrays | ``False`` | ``False`` |
1903
+ +--------------------------------------+---------------+-------------------+
1904
+ | `list`, `tuple`, and other sequence | ``False`` | ``False`` |
1905
+ | objects | | |
1906
+ +--------------------------------------+---------------+-------------------+
1907
+
1908
+ Examples
1909
+ --------
1910
+ >>> np.isscalar(3.1)
1911
+ True
1912
+ >>> np.isscalar(np.array(3.1))
1913
+ False
1914
+ >>> np.isscalar([3.1])
1915
+ False
1916
+ >>> np.isscalar(False)
1917
+ True
1918
+ >>> np.isscalar('numpy')
1919
+ True
1920
+
1921
+ NumPy supports PEP 3141 numbers:
1922
+
1923
+ >>> from fractions import Fraction
1924
+ >>> np.isscalar(Fraction(5, 17))
1925
+ True
1926
+ >>> from numbers import Number
1927
+ >>> np.isscalar(Number())
1928
+ True
1929
+
1930
+ """
1931
+ return (isinstance(element, generic)
1932
+ or type(element) in ScalarType
1933
+ or isinstance(element, numbers.Number))
1934
+
1935
+
1936
+ @set_module('numpy')
1937
+ def binary_repr(num, width=None):
1938
+ """
1939
+ Return the binary representation of the input number as a string.
1940
+
1941
+ For negative numbers, if width is not given, a minus sign is added to the
1942
+ front. If width is given, the two's complement of the number is
1943
+ returned, with respect to that width.
1944
+
1945
+ In a two's-complement system negative numbers are represented by the two's
1946
+ complement of the absolute value. This is the most common method of
1947
+ representing signed integers on computers [1]_. A N-bit two's-complement
1948
+ system can represent every integer in the range
1949
+ :math:`-2^{N-1}` to :math:`+2^{N-1}-1`.
1950
+
1951
+ Parameters
1952
+ ----------
1953
+ num : int
1954
+ Only an integer decimal number can be used.
1955
+ width : int, optional
1956
+ The length of the returned string if `num` is positive, or the length
1957
+ of the two's complement if `num` is negative, provided that `width` is
1958
+ at least a sufficient number of bits for `num` to be represented in the
1959
+ designated form.
1960
+
1961
+ If the `width` value is insufficient, it will be ignored, and `num` will
1962
+ be returned in binary (`num` > 0) or two's complement (`num` < 0) form
1963
+ with its width equal to the minimum number of bits needed to represent
1964
+ the number in the designated form. This behavior is deprecated and will
1965
+ later raise an error.
1966
+
1967
+ .. deprecated:: 1.12.0
1968
+
1969
+ Returns
1970
+ -------
1971
+ bin : str
1972
+ Binary representation of `num` or two's complement of `num`.
1973
+
1974
+ See Also
1975
+ --------
1976
+ base_repr: Return a string representation of a number in the given base
1977
+ system.
1978
+ bin: Python's built-in binary representation generator of an integer.
1979
+
1980
+ Notes
1981
+ -----
1982
+ `binary_repr` is equivalent to using `base_repr` with base 2, but about 25x
1983
+ faster.
1984
+
1985
+ References
1986
+ ----------
1987
+ .. [1] Wikipedia, "Two's complement",
1988
+ https://en.wikipedia.org/wiki/Two's_complement
1989
+
1990
+ Examples
1991
+ --------
1992
+ >>> np.binary_repr(3)
1993
+ '11'
1994
+ >>> np.binary_repr(-3)
1995
+ '-11'
1996
+ >>> np.binary_repr(3, width=4)
1997
+ '0011'
1998
+
1999
+ The two's complement is returned when the input number is negative and
2000
+ width is specified:
2001
+
2002
+ >>> np.binary_repr(-3, width=3)
2003
+ '101'
2004
+ >>> np.binary_repr(-3, width=5)
2005
+ '11101'
2006
+
2007
+ """
2008
+ def warn_if_insufficient(width, binwidth):
2009
+ if width is not None and width < binwidth:
2010
+ warnings.warn(
2011
+ "Insufficient bit width provided. This behavior "
2012
+ "will raise an error in the future.", DeprecationWarning,
2013
+ stacklevel=3)
2014
+
2015
+ # Ensure that num is a Python integer to avoid overflow or unwanted
2016
+ # casts to floating point.
2017
+ num = operator.index(num)
2018
+
2019
+ if num == 0:
2020
+ return '0' * (width or 1)
2021
+
2022
+ elif num > 0:
2023
+ binary = bin(num)[2:]
2024
+ binwidth = len(binary)
2025
+ outwidth = (binwidth if width is None
2026
+ else builtins.max(binwidth, width))
2027
+ warn_if_insufficient(width, binwidth)
2028
+ return binary.zfill(outwidth)
2029
+
2030
+ else:
2031
+ if width is None:
2032
+ return '-' + bin(-num)[2:]
2033
+
2034
+ else:
2035
+ poswidth = len(bin(-num)[2:])
2036
+
2037
+ # See gh-8679: remove extra digit
2038
+ # for numbers at boundaries.
2039
+ if 2**(poswidth - 1) == -num:
2040
+ poswidth -= 1
2041
+
2042
+ twocomp = 2**(poswidth + 1) + num
2043
+ binary = bin(twocomp)[2:]
2044
+ binwidth = len(binary)
2045
+
2046
+ outwidth = builtins.max(binwidth, width)
2047
+ warn_if_insufficient(width, binwidth)
2048
+ return '1' * (outwidth - binwidth) + binary
2049
+
2050
+
2051
+ @set_module('numpy')
2052
+ def base_repr(number, base=2, padding=0):
2053
+ """
2054
+ Return a string representation of a number in the given base system.
2055
+
2056
+ Parameters
2057
+ ----------
2058
+ number : int
2059
+ The value to convert. Positive and negative values are handled.
2060
+ base : int, optional
2061
+ Convert `number` to the `base` number system. The valid range is 2-36,
2062
+ the default value is 2.
2063
+ padding : int, optional
2064
+ Number of zeros padded on the left. Default is 0 (no padding).
2065
+
2066
+ Returns
2067
+ -------
2068
+ out : str
2069
+ String representation of `number` in `base` system.
2070
+
2071
+ See Also
2072
+ --------
2073
+ binary_repr : Faster version of `base_repr` for base 2.
2074
+
2075
+ Examples
2076
+ --------
2077
+ >>> np.base_repr(5)
2078
+ '101'
2079
+ >>> np.base_repr(6, 5)
2080
+ '11'
2081
+ >>> np.base_repr(7, base=5, padding=3)
2082
+ '00012'
2083
+
2084
+ >>> np.base_repr(10, base=16)
2085
+ 'A'
2086
+ >>> np.base_repr(32, base=16)
2087
+ '20'
2088
+
2089
+ """
2090
+ digits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
2091
+ if base > len(digits):
2092
+ raise ValueError("Bases greater than 36 not handled in base_repr.")
2093
+ elif base < 2:
2094
+ raise ValueError("Bases less than 2 not handled in base_repr.")
2095
+
2096
+ num = abs(number)
2097
+ res = []
2098
+ while num:
2099
+ res.append(digits[num % base])
2100
+ num //= base
2101
+ if padding:
2102
+ res.append('0' * padding)
2103
+ if number < 0:
2104
+ res.append('-')
2105
+ return ''.join(reversed(res or '0'))
2106
+
2107
+
2108
+ # These are all essentially abbreviations
2109
+ # These might wind up in a special abbreviations module
2110
+
2111
+
2112
+ def _maketup(descr, val):
2113
+ dt = dtype(descr)
2114
+ # Place val in all scalar tuples:
2115
+ fields = dt.fields
2116
+ if fields is None:
2117
+ return val
2118
+ else:
2119
+ res = [_maketup(fields[name][0], val) for name in dt.names]
2120
+ return tuple(res)
2121
+
2122
+
2123
+ @set_array_function_like_doc
2124
+ @set_module('numpy')
2125
+ def identity(n, dtype=None, *, like=None):
2126
+ """
2127
+ Return the identity array.
2128
+
2129
+ The identity array is a square array with ones on
2130
+ the main diagonal.
2131
+
2132
+ Parameters
2133
+ ----------
2134
+ n : int
2135
+ Number of rows (and columns) in `n` x `n` output.
2136
+ dtype : data-type, optional
2137
+ Data-type of the output. Defaults to ``float``.
2138
+ ${ARRAY_FUNCTION_LIKE}
2139
+
2140
+ .. versionadded:: 1.20.0
2141
+
2142
+ Returns
2143
+ -------
2144
+ out : ndarray
2145
+ `n` x `n` array with its main diagonal set to one,
2146
+ and all other elements 0.
2147
+
2148
+ Examples
2149
+ --------
2150
+ >>> np.identity(3)
2151
+ array([[1., 0., 0.],
2152
+ [0., 1., 0.],
2153
+ [0., 0., 1.]])
2154
+
2155
+ """
2156
+ if like is not None:
2157
+ return _identity_with_like(like, n, dtype=dtype)
2158
+
2159
+ from numpy import eye
2160
+ return eye(n, dtype=dtype, like=like)
2161
+
2162
+
2163
+ _identity_with_like = array_function_dispatch()(identity)
2164
+
2165
+
2166
+ def _allclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None):
2167
+ return (a, b)
2168
+
2169
+
2170
+ @array_function_dispatch(_allclose_dispatcher)
2171
+ def allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
2172
+ """
2173
+ Returns True if two arrays are element-wise equal within a tolerance.
2174
+
2175
+ The tolerance values are positive, typically very small numbers. The
2176
+ relative difference (`rtol` * abs(`b`)) and the absolute difference
2177
+ `atol` are added together to compare against the absolute difference
2178
+ between `a` and `b`.
2179
+
2180
+ NaNs are treated as equal if they are in the same place and if
2181
+ ``equal_nan=True``. Infs are treated as equal if they are in the same
2182
+ place and of the same sign in both arrays.
2183
+
2184
+ Parameters
2185
+ ----------
2186
+ a, b : array_like
2187
+ Input arrays to compare.
2188
+ rtol : float
2189
+ The relative tolerance parameter (see Notes).
2190
+ atol : float
2191
+ The absolute tolerance parameter (see Notes).
2192
+ equal_nan : bool
2193
+ Whether to compare NaN's as equal. If True, NaN's in `a` will be
2194
+ considered equal to NaN's in `b` in the output array.
2195
+
2196
+ .. versionadded:: 1.10.0
2197
+
2198
+ Returns
2199
+ -------
2200
+ allclose : bool
2201
+ Returns True if the two arrays are equal within the given
2202
+ tolerance; False otherwise.
2203
+
2204
+ See Also
2205
+ --------
2206
+ isclose, all, any, equal
2207
+
2208
+ Notes
2209
+ -----
2210
+ If the following equation is element-wise True, then allclose returns
2211
+ True.
2212
+
2213
+ absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
2214
+
2215
+ The above equation is not symmetric in `a` and `b`, so that
2216
+ ``allclose(a, b)`` might be different from ``allclose(b, a)`` in
2217
+ some rare cases.
2218
+
2219
+ The comparison of `a` and `b` uses standard broadcasting, which
2220
+ means that `a` and `b` need not have the same shape in order for
2221
+ ``allclose(a, b)`` to evaluate to True. The same is true for
2222
+ `equal` but not `array_equal`.
2223
+
2224
+ `allclose` is not defined for non-numeric data types.
2225
+ `bool` is considered a numeric data-type for this purpose.
2226
+
2227
+ Examples
2228
+ --------
2229
+ >>> np.allclose([1e10,1e-7], [1.00001e10,1e-8])
2230
+ False
2231
+ >>> np.allclose([1e10,1e-8], [1.00001e10,1e-9])
2232
+ True
2233
+ >>> np.allclose([1e10,1e-8], [1.0001e10,1e-9])
2234
+ False
2235
+ >>> np.allclose([1.0, np.nan], [1.0, np.nan])
2236
+ False
2237
+ >>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
2238
+ True
2239
+
2240
+ """
2241
+ res = all(isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan))
2242
+ return bool(res)
2243
+
2244
+
2245
+ def _isclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None):
2246
+ return (a, b)
2247
+
2248
+
2249
+ @array_function_dispatch(_isclose_dispatcher)
2250
+ def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
2251
+ """
2252
+ Returns a boolean array where two arrays are element-wise equal within a
2253
+ tolerance.
2254
+
2255
+ The tolerance values are positive, typically very small numbers. The
2256
+ relative difference (`rtol` * abs(`b`)) and the absolute difference
2257
+ `atol` are added together to compare against the absolute difference
2258
+ between `a` and `b`.
2259
+
2260
+ .. warning:: The default `atol` is not appropriate for comparing numbers
2261
+ that are much smaller than one (see Notes).
2262
+
2263
+ Parameters
2264
+ ----------
2265
+ a, b : array_like
2266
+ Input arrays to compare.
2267
+ rtol : float
2268
+ The relative tolerance parameter (see Notes).
2269
+ atol : float
2270
+ The absolute tolerance parameter (see Notes).
2271
+ equal_nan : bool
2272
+ Whether to compare NaN's as equal. If True, NaN's in `a` will be
2273
+ considered equal to NaN's in `b` in the output array.
2274
+
2275
+ Returns
2276
+ -------
2277
+ y : array_like
2278
+ Returns a boolean array of where `a` and `b` are equal within the
2279
+ given tolerance. If both `a` and `b` are scalars, returns a single
2280
+ boolean value.
2281
+
2282
+ See Also
2283
+ --------
2284
+ allclose
2285
+ math.isclose
2286
+
2287
+ Notes
2288
+ -----
2289
+ .. versionadded:: 1.7.0
2290
+
2291
+ For finite values, isclose uses the following equation to test whether
2292
+ two floating point values are equivalent.
2293
+
2294
+ absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
2295
+
2296
+ Unlike the built-in `math.isclose`, the above equation is not symmetric
2297
+ in `a` and `b` -- it assumes `b` is the reference value -- so that
2298
+ `isclose(a, b)` might be different from `isclose(b, a)`. Furthermore,
2299
+ the default value of atol is not zero, and is used to determine what
2300
+ small values should be considered close to zero. The default value is
2301
+ appropriate for expected values of order unity: if the expected values
2302
+ are significantly smaller than one, it can result in false positives.
2303
+ `atol` should be carefully selected for the use case at hand. A zero value
2304
+ for `atol` will result in `False` if either `a` or `b` is zero.
2305
+
2306
+ `isclose` is not defined for non-numeric data types.
2307
+ `bool` is considered a numeric data-type for this purpose.
2308
+
2309
+ Examples
2310
+ --------
2311
+ >>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
2312
+ array([ True, False])
2313
+ >>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
2314
+ array([ True, True])
2315
+ >>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
2316
+ array([False, True])
2317
+ >>> np.isclose([1.0, np.nan], [1.0, np.nan])
2318
+ array([ True, False])
2319
+ >>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
2320
+ array([ True, True])
2321
+ >>> np.isclose([1e-8, 1e-7], [0.0, 0.0])
2322
+ array([ True, False])
2323
+ >>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0)
2324
+ array([False, False])
2325
+ >>> np.isclose([1e-10, 1e-10], [1e-20, 0.0])
2326
+ array([ True, True])
2327
+ >>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0)
2328
+ array([False, True])
2329
+ """
2330
+ def within_tol(x, y, atol, rtol):
2331
+ with errstate(invalid='ignore'), _no_nep50_warning():
2332
+ return less_equal(abs(x-y), atol + rtol * abs(y))
2333
+
2334
+ x = asanyarray(a)
2335
+ y = asanyarray(b)
2336
+
2337
+ # Make sure y is an inexact type to avoid bad behavior on abs(MIN_INT).
2338
+ # This will cause casting of x later. Also, make sure to allow subclasses
2339
+ # (e.g., for numpy.ma).
2340
+ # NOTE: We explicitly allow timedelta, which used to work. This could
2341
+ # possibly be deprecated. See also gh-18286.
2342
+ # timedelta works if `atol` is an integer or also a timedelta.
2343
+ # Although, the default tolerances are unlikely to be useful
2344
+ if y.dtype.kind != "m":
2345
+ dt = multiarray.result_type(y, 1.)
2346
+ y = asanyarray(y, dtype=dt)
2347
+
2348
+ xfin = isfinite(x)
2349
+ yfin = isfinite(y)
2350
+ if all(xfin) and all(yfin):
2351
+ return within_tol(x, y, atol, rtol)
2352
+ else:
2353
+ finite = xfin & yfin
2354
+ cond = zeros_like(finite, subok=True)
2355
+ # Because we're using boolean indexing, x & y must be the same shape.
2356
+ # Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in
2357
+ # lib.stride_tricks, though, so we can't import it here.
2358
+ x = x * ones_like(cond)
2359
+ y = y * ones_like(cond)
2360
+ # Avoid subtraction with infinite/nan values...
2361
+ cond[finite] = within_tol(x[finite], y[finite], atol, rtol)
2362
+ # Check for equality of infinite values...
2363
+ cond[~finite] = (x[~finite] == y[~finite])
2364
+ if equal_nan:
2365
+ # Make NaN == NaN
2366
+ both_nan = isnan(x) & isnan(y)
2367
+
2368
+ # Needed to treat masked arrays correctly. = True would not work.
2369
+ cond[both_nan] = both_nan[both_nan]
2370
+
2371
+ return cond[()] # Flatten 0d arrays to scalars
2372
+
2373
+
2374
+ def _array_equal_dispatcher(a1, a2, equal_nan=None):
2375
+ return (a1, a2)
2376
+
2377
+
2378
+ @array_function_dispatch(_array_equal_dispatcher)
2379
+ def array_equal(a1, a2, equal_nan=False):
2380
+ """
2381
+ True if two arrays have the same shape and elements, False otherwise.
2382
+
2383
+ Parameters
2384
+ ----------
2385
+ a1, a2 : array_like
2386
+ Input arrays.
2387
+ equal_nan : bool
2388
+ Whether to compare NaN's as equal. If the dtype of a1 and a2 is
2389
+ complex, values will be considered equal if either the real or the
2390
+ imaginary component of a given value is ``nan``.
2391
+
2392
+ .. versionadded:: 1.19.0
2393
+
2394
+ Returns
2395
+ -------
2396
+ b : bool
2397
+ Returns True if the arrays are equal.
2398
+
2399
+ See Also
2400
+ --------
2401
+ allclose: Returns True if two arrays are element-wise equal within a
2402
+ tolerance.
2403
+ array_equiv: Returns True if input arrays are shape consistent and all
2404
+ elements equal.
2405
+
2406
+ Examples
2407
+ --------
2408
+ >>> np.array_equal([1, 2], [1, 2])
2409
+ True
2410
+ >>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
2411
+ True
2412
+ >>> np.array_equal([1, 2], [1, 2, 3])
2413
+ False
2414
+ >>> np.array_equal([1, 2], [1, 4])
2415
+ False
2416
+ >>> a = np.array([1, np.nan])
2417
+ >>> np.array_equal(a, a)
2418
+ False
2419
+ >>> np.array_equal(a, a, equal_nan=True)
2420
+ True
2421
+
2422
+ When ``equal_nan`` is True, complex values with nan components are
2423
+ considered equal if either the real *or* the imaginary components are nan.
2424
+
2425
+ >>> a = np.array([1 + 1j])
2426
+ >>> b = a.copy()
2427
+ >>> a.real = np.nan
2428
+ >>> b.imag = np.nan
2429
+ >>> np.array_equal(a, b, equal_nan=True)
2430
+ True
2431
+ """
2432
+ try:
2433
+ a1, a2 = asarray(a1), asarray(a2)
2434
+ except Exception:
2435
+ return False
2436
+ if a1.shape != a2.shape:
2437
+ return False
2438
+ if not equal_nan:
2439
+ return bool(asarray(a1 == a2).all())
2440
+ # Handling NaN values if equal_nan is True
2441
+ a1nan, a2nan = isnan(a1), isnan(a2)
2442
+ # NaN's occur at different locations
2443
+ if not (a1nan == a2nan).all():
2444
+ return False
2445
+ # Shapes of a1, a2 and masks are guaranteed to be consistent by this point
2446
+ return bool(asarray(a1[~a1nan] == a2[~a1nan]).all())
2447
+
2448
+
2449
+ def _array_equiv_dispatcher(a1, a2):
2450
+ return (a1, a2)
2451
+
2452
+
2453
+ @array_function_dispatch(_array_equiv_dispatcher)
2454
+ def array_equiv(a1, a2):
2455
+ """
2456
+ Returns True if input arrays are shape consistent and all elements equal.
2457
+
2458
+ Shape consistent means they are either the same shape, or one input array
2459
+ can be broadcasted to create the same shape as the other one.
2460
+
2461
+ Parameters
2462
+ ----------
2463
+ a1, a2 : array_like
2464
+ Input arrays.
2465
+
2466
+ Returns
2467
+ -------
2468
+ out : bool
2469
+ True if equivalent, False otherwise.
2470
+
2471
+ Examples
2472
+ --------
2473
+ >>> np.array_equiv([1, 2], [1, 2])
2474
+ True
2475
+ >>> np.array_equiv([1, 2], [1, 3])
2476
+ False
2477
+
2478
+ Showing the shape equivalence:
2479
+
2480
+ >>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
2481
+ True
2482
+ >>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
2483
+ False
2484
+
2485
+ >>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
2486
+ False
2487
+
2488
+ """
2489
+ try:
2490
+ a1, a2 = asarray(a1), asarray(a2)
2491
+ except Exception:
2492
+ return False
2493
+ try:
2494
+ multiarray.broadcast(a1, a2)
2495
+ except Exception:
2496
+ return False
2497
+
2498
+ return bool(asarray(a1 == a2).all())
2499
+
2500
+
2501
+ Inf = inf = infty = Infinity = PINF
2502
+ nan = NaN = NAN
2503
+ False_ = bool_(False)
2504
+ True_ = bool_(True)
2505
+
2506
+
2507
+ def extend_all(module):
2508
+ existing = set(__all__)
2509
+ mall = getattr(module, '__all__')
2510
+ for a in mall:
2511
+ if a not in existing:
2512
+ __all__.append(a)
2513
+
2514
+
2515
+ from .umath import *
2516
+ from .numerictypes import *
2517
+ from . import fromnumeric
2518
+ from .fromnumeric import *
2519
+ from . import arrayprint
2520
+ from .arrayprint import *
2521
+ from . import _asarray
2522
+ from ._asarray import *
2523
+ from . import _ufunc_config
2524
+ from ._ufunc_config import *
2525
+ extend_all(fromnumeric)
2526
+ extend_all(umath)
2527
+ extend_all(numerictypes)
2528
+ extend_all(arrayprint)
2529
+ extend_all(_asarray)
2530
+ extend_all(_ufunc_config)
env-llmeval/lib/python3.10/site-packages/numpy/core/numeric.pyi ADDED
@@ -0,0 +1,660 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Callable, Sequence
2
+ from typing import (
3
+ Any,
4
+ overload,
5
+ TypeVar,
6
+ Literal,
7
+ SupportsAbs,
8
+ SupportsIndex,
9
+ NoReturn,
10
+ )
11
+ if sys.version_info >= (3, 10):
12
+ from typing import TypeGuard
13
+ else:
14
+ from typing_extensions import TypeGuard
15
+
16
+ from numpy import (
17
+ ComplexWarning as ComplexWarning,
18
+ generic,
19
+ unsignedinteger,
20
+ signedinteger,
21
+ floating,
22
+ complexfloating,
23
+ bool_,
24
+ int_,
25
+ intp,
26
+ float64,
27
+ timedelta64,
28
+ object_,
29
+ _OrderKACF,
30
+ _OrderCF,
31
+ )
32
+
33
+ from numpy._typing import (
34
+ ArrayLike,
35
+ NDArray,
36
+ DTypeLike,
37
+ _ShapeLike,
38
+ _DTypeLike,
39
+ _ArrayLike,
40
+ _SupportsArrayFunc,
41
+ _ScalarLike_co,
42
+ _ArrayLikeBool_co,
43
+ _ArrayLikeUInt_co,
44
+ _ArrayLikeInt_co,
45
+ _ArrayLikeFloat_co,
46
+ _ArrayLikeComplex_co,
47
+ _ArrayLikeTD64_co,
48
+ _ArrayLikeObject_co,
49
+ _ArrayLikeUnknown,
50
+ )
51
+
52
+ _T = TypeVar("_T")
53
+ _SCT = TypeVar("_SCT", bound=generic)
54
+ _ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
55
+
56
+ _CorrelateMode = Literal["valid", "same", "full"]
57
+
58
+ __all__: list[str]
59
+
60
+ @overload
61
+ def zeros_like(
62
+ a: _ArrayType,
63
+ dtype: None = ...,
64
+ order: _OrderKACF = ...,
65
+ subok: Literal[True] = ...,
66
+ shape: None = ...,
67
+ ) -> _ArrayType: ...
68
+ @overload
69
+ def zeros_like(
70
+ a: _ArrayLike[_SCT],
71
+ dtype: None = ...,
72
+ order: _OrderKACF = ...,
73
+ subok: bool = ...,
74
+ shape: None | _ShapeLike = ...,
75
+ ) -> NDArray[_SCT]: ...
76
+ @overload
77
+ def zeros_like(
78
+ a: object,
79
+ dtype: None = ...,
80
+ order: _OrderKACF = ...,
81
+ subok: bool = ...,
82
+ shape: None | _ShapeLike= ...,
83
+ ) -> NDArray[Any]: ...
84
+ @overload
85
+ def zeros_like(
86
+ a: Any,
87
+ dtype: _DTypeLike[_SCT],
88
+ order: _OrderKACF = ...,
89
+ subok: bool = ...,
90
+ shape: None | _ShapeLike= ...,
91
+ ) -> NDArray[_SCT]: ...
92
+ @overload
93
+ def zeros_like(
94
+ a: Any,
95
+ dtype: DTypeLike,
96
+ order: _OrderKACF = ...,
97
+ subok: bool = ...,
98
+ shape: None | _ShapeLike= ...,
99
+ ) -> NDArray[Any]: ...
100
+
101
+ @overload
102
+ def ones(
103
+ shape: _ShapeLike,
104
+ dtype: None = ...,
105
+ order: _OrderCF = ...,
106
+ *,
107
+ like: _SupportsArrayFunc = ...,
108
+ ) -> NDArray[float64]: ...
109
+ @overload
110
+ def ones(
111
+ shape: _ShapeLike,
112
+ dtype: _DTypeLike[_SCT],
113
+ order: _OrderCF = ...,
114
+ *,
115
+ like: _SupportsArrayFunc = ...,
116
+ ) -> NDArray[_SCT]: ...
117
+ @overload
118
+ def ones(
119
+ shape: _ShapeLike,
120
+ dtype: DTypeLike,
121
+ order: _OrderCF = ...,
122
+ *,
123
+ like: _SupportsArrayFunc = ...,
124
+ ) -> NDArray[Any]: ...
125
+
126
+ @overload
127
+ def ones_like(
128
+ a: _ArrayType,
129
+ dtype: None = ...,
130
+ order: _OrderKACF = ...,
131
+ subok: Literal[True] = ...,
132
+ shape: None = ...,
133
+ ) -> _ArrayType: ...
134
+ @overload
135
+ def ones_like(
136
+ a: _ArrayLike[_SCT],
137
+ dtype: None = ...,
138
+ order: _OrderKACF = ...,
139
+ subok: bool = ...,
140
+ shape: None | _ShapeLike = ...,
141
+ ) -> NDArray[_SCT]: ...
142
+ @overload
143
+ def ones_like(
144
+ a: object,
145
+ dtype: None = ...,
146
+ order: _OrderKACF = ...,
147
+ subok: bool = ...,
148
+ shape: None | _ShapeLike= ...,
149
+ ) -> NDArray[Any]: ...
150
+ @overload
151
+ def ones_like(
152
+ a: Any,
153
+ dtype: _DTypeLike[_SCT],
154
+ order: _OrderKACF = ...,
155
+ subok: bool = ...,
156
+ shape: None | _ShapeLike= ...,
157
+ ) -> NDArray[_SCT]: ...
158
+ @overload
159
+ def ones_like(
160
+ a: Any,
161
+ dtype: DTypeLike,
162
+ order: _OrderKACF = ...,
163
+ subok: bool = ...,
164
+ shape: None | _ShapeLike= ...,
165
+ ) -> NDArray[Any]: ...
166
+
167
+ @overload
168
+ def full(
169
+ shape: _ShapeLike,
170
+ fill_value: Any,
171
+ dtype: None = ...,
172
+ order: _OrderCF = ...,
173
+ *,
174
+ like: _SupportsArrayFunc = ...,
175
+ ) -> NDArray[Any]: ...
176
+ @overload
177
+ def full(
178
+ shape: _ShapeLike,
179
+ fill_value: Any,
180
+ dtype: _DTypeLike[_SCT],
181
+ order: _OrderCF = ...,
182
+ *,
183
+ like: _SupportsArrayFunc = ...,
184
+ ) -> NDArray[_SCT]: ...
185
+ @overload
186
+ def full(
187
+ shape: _ShapeLike,
188
+ fill_value: Any,
189
+ dtype: DTypeLike,
190
+ order: _OrderCF = ...,
191
+ *,
192
+ like: _SupportsArrayFunc = ...,
193
+ ) -> NDArray[Any]: ...
194
+
195
+ @overload
196
+ def full_like(
197
+ a: _ArrayType,
198
+ fill_value: Any,
199
+ dtype: None = ...,
200
+ order: _OrderKACF = ...,
201
+ subok: Literal[True] = ...,
202
+ shape: None = ...,
203
+ ) -> _ArrayType: ...
204
+ @overload
205
+ def full_like(
206
+ a: _ArrayLike[_SCT],
207
+ fill_value: Any,
208
+ dtype: None = ...,
209
+ order: _OrderKACF = ...,
210
+ subok: bool = ...,
211
+ shape: None | _ShapeLike = ...,
212
+ ) -> NDArray[_SCT]: ...
213
+ @overload
214
+ def full_like(
215
+ a: object,
216
+ fill_value: Any,
217
+ dtype: None = ...,
218
+ order: _OrderKACF = ...,
219
+ subok: bool = ...,
220
+ shape: None | _ShapeLike= ...,
221
+ ) -> NDArray[Any]: ...
222
+ @overload
223
+ def full_like(
224
+ a: Any,
225
+ fill_value: Any,
226
+ dtype: _DTypeLike[_SCT],
227
+ order: _OrderKACF = ...,
228
+ subok: bool = ...,
229
+ shape: None | _ShapeLike= ...,
230
+ ) -> NDArray[_SCT]: ...
231
+ @overload
232
+ def full_like(
233
+ a: Any,
234
+ fill_value: Any,
235
+ dtype: DTypeLike,
236
+ order: _OrderKACF = ...,
237
+ subok: bool = ...,
238
+ shape: None | _ShapeLike= ...,
239
+ ) -> NDArray[Any]: ...
240
+
241
+ @overload
242
+ def count_nonzero(
243
+ a: ArrayLike,
244
+ axis: None = ...,
245
+ *,
246
+ keepdims: Literal[False] = ...,
247
+ ) -> int: ...
248
+ @overload
249
+ def count_nonzero(
250
+ a: ArrayLike,
251
+ axis: _ShapeLike = ...,
252
+ *,
253
+ keepdims: bool = ...,
254
+ ) -> Any: ... # TODO: np.intp or ndarray[np.intp]
255
+
256
+ def isfortran(a: NDArray[Any] | generic) -> bool: ...
257
+
258
+ def argwhere(a: ArrayLike) -> NDArray[intp]: ...
259
+
260
+ def flatnonzero(a: ArrayLike) -> NDArray[intp]: ...
261
+
262
+ @overload
263
+ def correlate(
264
+ a: _ArrayLikeUnknown,
265
+ v: _ArrayLikeUnknown,
266
+ mode: _CorrelateMode = ...,
267
+ ) -> NDArray[Any]: ...
268
+ @overload
269
+ def correlate(
270
+ a: _ArrayLikeBool_co,
271
+ v: _ArrayLikeBool_co,
272
+ mode: _CorrelateMode = ...,
273
+ ) -> NDArray[bool_]: ...
274
+ @overload
275
+ def correlate(
276
+ a: _ArrayLikeUInt_co,
277
+ v: _ArrayLikeUInt_co,
278
+ mode: _CorrelateMode = ...,
279
+ ) -> NDArray[unsignedinteger[Any]]: ...
280
+ @overload
281
+ def correlate(
282
+ a: _ArrayLikeInt_co,
283
+ v: _ArrayLikeInt_co,
284
+ mode: _CorrelateMode = ...,
285
+ ) -> NDArray[signedinteger[Any]]: ...
286
+ @overload
287
+ def correlate(
288
+ a: _ArrayLikeFloat_co,
289
+ v: _ArrayLikeFloat_co,
290
+ mode: _CorrelateMode = ...,
291
+ ) -> NDArray[floating[Any]]: ...
292
+ @overload
293
+ def correlate(
294
+ a: _ArrayLikeComplex_co,
295
+ v: _ArrayLikeComplex_co,
296
+ mode: _CorrelateMode = ...,
297
+ ) -> NDArray[complexfloating[Any, Any]]: ...
298
+ @overload
299
+ def correlate(
300
+ a: _ArrayLikeTD64_co,
301
+ v: _ArrayLikeTD64_co,
302
+ mode: _CorrelateMode = ...,
303
+ ) -> NDArray[timedelta64]: ...
304
+ @overload
305
+ def correlate(
306
+ a: _ArrayLikeObject_co,
307
+ v: _ArrayLikeObject_co,
308
+ mode: _CorrelateMode = ...,
309
+ ) -> NDArray[object_]: ...
310
+
311
+ @overload
312
+ def convolve(
313
+ a: _ArrayLikeUnknown,
314
+ v: _ArrayLikeUnknown,
315
+ mode: _CorrelateMode = ...,
316
+ ) -> NDArray[Any]: ...
317
+ @overload
318
+ def convolve(
319
+ a: _ArrayLikeBool_co,
320
+ v: _ArrayLikeBool_co,
321
+ mode: _CorrelateMode = ...,
322
+ ) -> NDArray[bool_]: ...
323
+ @overload
324
+ def convolve(
325
+ a: _ArrayLikeUInt_co,
326
+ v: _ArrayLikeUInt_co,
327
+ mode: _CorrelateMode = ...,
328
+ ) -> NDArray[unsignedinteger[Any]]: ...
329
+ @overload
330
+ def convolve(
331
+ a: _ArrayLikeInt_co,
332
+ v: _ArrayLikeInt_co,
333
+ mode: _CorrelateMode = ...,
334
+ ) -> NDArray[signedinteger[Any]]: ...
335
+ @overload
336
+ def convolve(
337
+ a: _ArrayLikeFloat_co,
338
+ v: _ArrayLikeFloat_co,
339
+ mode: _CorrelateMode = ...,
340
+ ) -> NDArray[floating[Any]]: ...
341
+ @overload
342
+ def convolve(
343
+ a: _ArrayLikeComplex_co,
344
+ v: _ArrayLikeComplex_co,
345
+ mode: _CorrelateMode = ...,
346
+ ) -> NDArray[complexfloating[Any, Any]]: ...
347
+ @overload
348
+ def convolve(
349
+ a: _ArrayLikeTD64_co,
350
+ v: _ArrayLikeTD64_co,
351
+ mode: _CorrelateMode = ...,
352
+ ) -> NDArray[timedelta64]: ...
353
+ @overload
354
+ def convolve(
355
+ a: _ArrayLikeObject_co,
356
+ v: _ArrayLikeObject_co,
357
+ mode: _CorrelateMode = ...,
358
+ ) -> NDArray[object_]: ...
359
+
360
+ @overload
361
+ def outer(
362
+ a: _ArrayLikeUnknown,
363
+ b: _ArrayLikeUnknown,
364
+ out: None = ...,
365
+ ) -> NDArray[Any]: ...
366
+ @overload
367
+ def outer(
368
+ a: _ArrayLikeBool_co,
369
+ b: _ArrayLikeBool_co,
370
+ out: None = ...,
371
+ ) -> NDArray[bool_]: ...
372
+ @overload
373
+ def outer(
374
+ a: _ArrayLikeUInt_co,
375
+ b: _ArrayLikeUInt_co,
376
+ out: None = ...,
377
+ ) -> NDArray[unsignedinteger[Any]]: ...
378
+ @overload
379
+ def outer(
380
+ a: _ArrayLikeInt_co,
381
+ b: _ArrayLikeInt_co,
382
+ out: None = ...,
383
+ ) -> NDArray[signedinteger[Any]]: ...
384
+ @overload
385
+ def outer(
386
+ a: _ArrayLikeFloat_co,
387
+ b: _ArrayLikeFloat_co,
388
+ out: None = ...,
389
+ ) -> NDArray[floating[Any]]: ...
390
+ @overload
391
+ def outer(
392
+ a: _ArrayLikeComplex_co,
393
+ b: _ArrayLikeComplex_co,
394
+ out: None = ...,
395
+ ) -> NDArray[complexfloating[Any, Any]]: ...
396
+ @overload
397
+ def outer(
398
+ a: _ArrayLikeTD64_co,
399
+ b: _ArrayLikeTD64_co,
400
+ out: None = ...,
401
+ ) -> NDArray[timedelta64]: ...
402
+ @overload
403
+ def outer(
404
+ a: _ArrayLikeObject_co,
405
+ b: _ArrayLikeObject_co,
406
+ out: None = ...,
407
+ ) -> NDArray[object_]: ...
408
+ @overload
409
+ def outer(
410
+ a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
411
+ b: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
412
+ out: _ArrayType,
413
+ ) -> _ArrayType: ...
414
+
415
+ @overload
416
+ def tensordot(
417
+ a: _ArrayLikeUnknown,
418
+ b: _ArrayLikeUnknown,
419
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
420
+ ) -> NDArray[Any]: ...
421
+ @overload
422
+ def tensordot(
423
+ a: _ArrayLikeBool_co,
424
+ b: _ArrayLikeBool_co,
425
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
426
+ ) -> NDArray[bool_]: ...
427
+ @overload
428
+ def tensordot(
429
+ a: _ArrayLikeUInt_co,
430
+ b: _ArrayLikeUInt_co,
431
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
432
+ ) -> NDArray[unsignedinteger[Any]]: ...
433
+ @overload
434
+ def tensordot(
435
+ a: _ArrayLikeInt_co,
436
+ b: _ArrayLikeInt_co,
437
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
438
+ ) -> NDArray[signedinteger[Any]]: ...
439
+ @overload
440
+ def tensordot(
441
+ a: _ArrayLikeFloat_co,
442
+ b: _ArrayLikeFloat_co,
443
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
444
+ ) -> NDArray[floating[Any]]: ...
445
+ @overload
446
+ def tensordot(
447
+ a: _ArrayLikeComplex_co,
448
+ b: _ArrayLikeComplex_co,
449
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
450
+ ) -> NDArray[complexfloating[Any, Any]]: ...
451
+ @overload
452
+ def tensordot(
453
+ a: _ArrayLikeTD64_co,
454
+ b: _ArrayLikeTD64_co,
455
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
456
+ ) -> NDArray[timedelta64]: ...
457
+ @overload
458
+ def tensordot(
459
+ a: _ArrayLikeObject_co,
460
+ b: _ArrayLikeObject_co,
461
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
462
+ ) -> NDArray[object_]: ...
463
+
464
+ @overload
465
+ def roll(
466
+ a: _ArrayLike[_SCT],
467
+ shift: _ShapeLike,
468
+ axis: None | _ShapeLike = ...,
469
+ ) -> NDArray[_SCT]: ...
470
+ @overload
471
+ def roll(
472
+ a: ArrayLike,
473
+ shift: _ShapeLike,
474
+ axis: None | _ShapeLike = ...,
475
+ ) -> NDArray[Any]: ...
476
+
477
+ def rollaxis(
478
+ a: NDArray[_SCT],
479
+ axis: int,
480
+ start: int = ...,
481
+ ) -> NDArray[_SCT]: ...
482
+
483
+ def moveaxis(
484
+ a: NDArray[_SCT],
485
+ source: _ShapeLike,
486
+ destination: _ShapeLike,
487
+ ) -> NDArray[_SCT]: ...
488
+
489
+ @overload
490
+ def cross(
491
+ a: _ArrayLikeUnknown,
492
+ b: _ArrayLikeUnknown,
493
+ axisa: int = ...,
494
+ axisb: int = ...,
495
+ axisc: int = ...,
496
+ axis: None | int = ...,
497
+ ) -> NDArray[Any]: ...
498
+ @overload
499
+ def cross(
500
+ a: _ArrayLikeBool_co,
501
+ b: _ArrayLikeBool_co,
502
+ axisa: int = ...,
503
+ axisb: int = ...,
504
+ axisc: int = ...,
505
+ axis: None | int = ...,
506
+ ) -> NoReturn: ...
507
+ @overload
508
+ def cross(
509
+ a: _ArrayLikeUInt_co,
510
+ b: _ArrayLikeUInt_co,
511
+ axisa: int = ...,
512
+ axisb: int = ...,
513
+ axisc: int = ...,
514
+ axis: None | int = ...,
515
+ ) -> NDArray[unsignedinteger[Any]]: ...
516
+ @overload
517
+ def cross(
518
+ a: _ArrayLikeInt_co,
519
+ b: _ArrayLikeInt_co,
520
+ axisa: int = ...,
521
+ axisb: int = ...,
522
+ axisc: int = ...,
523
+ axis: None | int = ...,
524
+ ) -> NDArray[signedinteger[Any]]: ...
525
+ @overload
526
+ def cross(
527
+ a: _ArrayLikeFloat_co,
528
+ b: _ArrayLikeFloat_co,
529
+ axisa: int = ...,
530
+ axisb: int = ...,
531
+ axisc: int = ...,
532
+ axis: None | int = ...,
533
+ ) -> NDArray[floating[Any]]: ...
534
+ @overload
535
+ def cross(
536
+ a: _ArrayLikeComplex_co,
537
+ b: _ArrayLikeComplex_co,
538
+ axisa: int = ...,
539
+ axisb: int = ...,
540
+ axisc: int = ...,
541
+ axis: None | int = ...,
542
+ ) -> NDArray[complexfloating[Any, Any]]: ...
543
+ @overload
544
+ def cross(
545
+ a: _ArrayLikeObject_co,
546
+ b: _ArrayLikeObject_co,
547
+ axisa: int = ...,
548
+ axisb: int = ...,
549
+ axisc: int = ...,
550
+ axis: None | int = ...,
551
+ ) -> NDArray[object_]: ...
552
+
553
+ @overload
554
+ def indices(
555
+ dimensions: Sequence[int],
556
+ dtype: type[int] = ...,
557
+ sparse: Literal[False] = ...,
558
+ ) -> NDArray[int_]: ...
559
+ @overload
560
+ def indices(
561
+ dimensions: Sequence[int],
562
+ dtype: type[int] = ...,
563
+ sparse: Literal[True] = ...,
564
+ ) -> tuple[NDArray[int_], ...]: ...
565
+ @overload
566
+ def indices(
567
+ dimensions: Sequence[int],
568
+ dtype: _DTypeLike[_SCT],
569
+ sparse: Literal[False] = ...,
570
+ ) -> NDArray[_SCT]: ...
571
+ @overload
572
+ def indices(
573
+ dimensions: Sequence[int],
574
+ dtype: _DTypeLike[_SCT],
575
+ sparse: Literal[True],
576
+ ) -> tuple[NDArray[_SCT], ...]: ...
577
+ @overload
578
+ def indices(
579
+ dimensions: Sequence[int],
580
+ dtype: DTypeLike,
581
+ sparse: Literal[False] = ...,
582
+ ) -> NDArray[Any]: ...
583
+ @overload
584
+ def indices(
585
+ dimensions: Sequence[int],
586
+ dtype: DTypeLike,
587
+ sparse: Literal[True],
588
+ ) -> tuple[NDArray[Any], ...]: ...
589
+
590
+ def fromfunction(
591
+ function: Callable[..., _T],
592
+ shape: Sequence[int],
593
+ *,
594
+ dtype: DTypeLike = ...,
595
+ like: _SupportsArrayFunc = ...,
596
+ **kwargs: Any,
597
+ ) -> _T: ...
598
+
599
+ def isscalar(element: object) -> TypeGuard[
600
+ generic | bool | int | float | complex | str | bytes | memoryview
601
+ ]: ...
602
+
603
+ def binary_repr(num: SupportsIndex, width: None | int = ...) -> str: ...
604
+
605
+ def base_repr(
606
+ number: SupportsAbs[float],
607
+ base: float = ...,
608
+ padding: SupportsIndex = ...,
609
+ ) -> str: ...
610
+
611
+ @overload
612
+ def identity(
613
+ n: int,
614
+ dtype: None = ...,
615
+ *,
616
+ like: _SupportsArrayFunc = ...,
617
+ ) -> NDArray[float64]: ...
618
+ @overload
619
+ def identity(
620
+ n: int,
621
+ dtype: _DTypeLike[_SCT],
622
+ *,
623
+ like: _SupportsArrayFunc = ...,
624
+ ) -> NDArray[_SCT]: ...
625
+ @overload
626
+ def identity(
627
+ n: int,
628
+ dtype: DTypeLike,
629
+ *,
630
+ like: _SupportsArrayFunc = ...,
631
+ ) -> NDArray[Any]: ...
632
+
633
+ def allclose(
634
+ a: ArrayLike,
635
+ b: ArrayLike,
636
+ rtol: float = ...,
637
+ atol: float = ...,
638
+ equal_nan: bool = ...,
639
+ ) -> bool: ...
640
+
641
+ @overload
642
+ def isclose(
643
+ a: _ScalarLike_co,
644
+ b: _ScalarLike_co,
645
+ rtol: float = ...,
646
+ atol: float = ...,
647
+ equal_nan: bool = ...,
648
+ ) -> bool_: ...
649
+ @overload
650
+ def isclose(
651
+ a: ArrayLike,
652
+ b: ArrayLike,
653
+ rtol: float = ...,
654
+ atol: float = ...,
655
+ equal_nan: bool = ...,
656
+ ) -> NDArray[bool_]: ...
657
+
658
+ def array_equal(a1: ArrayLike, a2: ArrayLike, equal_nan: bool = ...) -> bool: ...
659
+
660
+ def array_equiv(a1: ArrayLike, a2: ArrayLike) -> bool: ...
env-llmeval/lib/python3.10/site-packages/numpy/core/shape_base.pyi ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Sequence
2
+ from typing import TypeVar, overload, Any, SupportsIndex
3
+
4
+ from numpy import generic, _CastingKind
5
+ from numpy._typing import (
6
+ NDArray,
7
+ ArrayLike,
8
+ DTypeLike,
9
+ _ArrayLike,
10
+ _DTypeLike,
11
+ )
12
+
13
+ _SCT = TypeVar("_SCT", bound=generic)
14
+ _ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
15
+
16
+ __all__: list[str]
17
+
18
+ @overload
19
+ def atleast_1d(arys: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ...
20
+ @overload
21
+ def atleast_1d(arys: ArrayLike, /) -> NDArray[Any]: ...
22
+ @overload
23
+ def atleast_1d(*arys: ArrayLike) -> list[NDArray[Any]]: ...
24
+
25
+ @overload
26
+ def atleast_2d(arys: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ...
27
+ @overload
28
+ def atleast_2d(arys: ArrayLike, /) -> NDArray[Any]: ...
29
+ @overload
30
+ def atleast_2d(*arys: ArrayLike) -> list[NDArray[Any]]: ...
31
+
32
+ @overload
33
+ def atleast_3d(arys: _ArrayLike[_SCT], /) -> NDArray[_SCT]: ...
34
+ @overload
35
+ def atleast_3d(arys: ArrayLike, /) -> NDArray[Any]: ...
36
+ @overload
37
+ def atleast_3d(*arys: ArrayLike) -> list[NDArray[Any]]: ...
38
+
39
+ @overload
40
+ def vstack(
41
+ tup: Sequence[_ArrayLike[_SCT]],
42
+ *,
43
+ dtype: None = ...,
44
+ casting: _CastingKind = ...
45
+ ) -> NDArray[_SCT]: ...
46
+ @overload
47
+ def vstack(
48
+ tup: Sequence[ArrayLike],
49
+ *,
50
+ dtype: _DTypeLike[_SCT],
51
+ casting: _CastingKind = ...
52
+ ) -> NDArray[_SCT]: ...
53
+ @overload
54
+ def vstack(
55
+ tup: Sequence[ArrayLike],
56
+ *,
57
+ dtype: DTypeLike = ...,
58
+ casting: _CastingKind = ...
59
+ ) -> NDArray[Any]: ...
60
+
61
+ @overload
62
+ def hstack(
63
+ tup: Sequence[_ArrayLike[_SCT]],
64
+ *,
65
+ dtype: None = ...,
66
+ casting: _CastingKind = ...
67
+ ) -> NDArray[_SCT]: ...
68
+ @overload
69
+ def hstack(
70
+ tup: Sequence[ArrayLike],
71
+ *,
72
+ dtype: _DTypeLike[_SCT],
73
+ casting: _CastingKind = ...
74
+ ) -> NDArray[_SCT]: ...
75
+ @overload
76
+ def hstack(
77
+ tup: Sequence[ArrayLike],
78
+ *,
79
+ dtype: DTypeLike = ...,
80
+ casting: _CastingKind = ...
81
+ ) -> NDArray[Any]: ...
82
+
83
+ @overload
84
+ def stack(
85
+ arrays: Sequence[_ArrayLike[_SCT]],
86
+ axis: SupportsIndex = ...,
87
+ out: None = ...,
88
+ *,
89
+ dtype: None = ...,
90
+ casting: _CastingKind = ...
91
+ ) -> NDArray[_SCT]: ...
92
+ @overload
93
+ def stack(
94
+ arrays: Sequence[ArrayLike],
95
+ axis: SupportsIndex = ...,
96
+ out: None = ...,
97
+ *,
98
+ dtype: _DTypeLike[_SCT],
99
+ casting: _CastingKind = ...
100
+ ) -> NDArray[_SCT]: ...
101
+ @overload
102
+ def stack(
103
+ arrays: Sequence[ArrayLike],
104
+ axis: SupportsIndex = ...,
105
+ out: None = ...,
106
+ *,
107
+ dtype: DTypeLike = ...,
108
+ casting: _CastingKind = ...
109
+ ) -> NDArray[Any]: ...
110
+ @overload
111
+ def stack(
112
+ arrays: Sequence[ArrayLike],
113
+ axis: SupportsIndex = ...,
114
+ out: _ArrayType = ...,
115
+ *,
116
+ dtype: DTypeLike = ...,
117
+ casting: _CastingKind = ...
118
+ ) -> _ArrayType: ...
119
+
120
+ @overload
121
+ def block(arrays: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
122
+ @overload
123
+ def block(arrays: ArrayLike) -> NDArray[Any]: ...
env-llmeval/lib/python3.10/site-packages/numpy/core/umath.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Create the numpy.core.umath namespace for backward compatibility. In v1.16
3
+ the multiarray and umath c-extension modules were merged into a single
4
+ _multiarray_umath extension module. So we replicate the old namespace
5
+ by importing from the extension module.
6
+
7
+ """
8
+
9
+ from . import _multiarray_umath
10
+ from ._multiarray_umath import * # noqa: F403
11
+ # These imports are needed for backward compatibility,
12
+ # do not change them. issue gh-11862
13
+ # _ones_like is semi-public, on purpose not added to __all__
14
+ from ._multiarray_umath import _UFUNC_API, _add_newdoc_ufunc, _ones_like
15
+
16
+ __all__ = [
17
+ '_UFUNC_API', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG',
18
+ 'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT',
19
+ 'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'NAN',
20
+ 'NINF', 'NZERO', 'PINF', 'PZERO', 'SHIFT_DIVIDEBYZERO', 'SHIFT_INVALID',
21
+ 'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 'UFUNC_BUFSIZE_DEFAULT',
22
+ 'UFUNC_PYVALS_NAME', '_add_newdoc_ufunc', 'absolute', 'add',
23
+ 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh',
24
+ 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'cbrt', 'ceil', 'conj',
25
+ 'conjugate', 'copysign', 'cos', 'cosh', 'deg2rad', 'degrees', 'divide',
26
+ 'divmod', 'e', 'equal', 'euler_gamma', 'exp', 'exp2', 'expm1', 'fabs',
27
+ 'floor', 'floor_divide', 'float_power', 'fmax', 'fmin', 'fmod', 'frexp',
28
+ 'frompyfunc', 'gcd', 'geterrobj', 'greater', 'greater_equal', 'heaviside',
29
+ 'hypot', 'invert', 'isfinite', 'isinf', 'isnan', 'isnat', 'lcm', 'ldexp',
30
+ 'left_shift', 'less', 'less_equal', 'log', 'log10', 'log1p', 'log2',
31
+ 'logaddexp', 'logaddexp2', 'logical_and', 'logical_not', 'logical_or',
32
+ 'logical_xor', 'maximum', 'minimum', 'mod', 'modf', 'multiply', 'negative',
33
+ 'nextafter', 'not_equal', 'pi', 'positive', 'power', 'rad2deg', 'radians',
34
+ 'reciprocal', 'remainder', 'right_shift', 'rint', 'seterrobj', 'sign',
35
+ 'signbit', 'sin', 'sinh', 'spacing', 'sqrt', 'square', 'subtract', 'tan',
36
+ 'tanh', 'true_divide', 'trunc']
env-llmeval/lib/python3.10/site-packages/numpy/core/umath_tests.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Shim for _umath_tests to allow a deprecation period for the new name.
3
+
4
+ """
5
+ import warnings
6
+
7
+ # 2018-04-04, numpy 1.15.0
8
+ warnings.warn(("numpy.core.umath_tests is an internal NumPy "
9
+ "module and should not be imported. It will "
10
+ "be removed in a future NumPy release."),
11
+ category=DeprecationWarning, stacklevel=2)
12
+
13
+ from ._umath_tests import *
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimd.c ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ifdef _MSC_VER
2
+ #include <Intrin.h>
3
+ #endif
4
+ #include <arm_neon.h>
5
+
6
+ int main(int argc, char **argv)
7
+ {
8
+ float *src = (float*)argv[argc-1];
9
+ float32x4_t v1 = vdupq_n_f32(src[0]), v2 = vdupq_n_f32(src[1]);
10
+ /* MAXMIN */
11
+ int ret = (int)vgetq_lane_f32(vmaxnmq_f32(v1, v2), 0);
12
+ ret += (int)vgetq_lane_f32(vminnmq_f32(v1, v2), 0);
13
+ /* ROUNDING */
14
+ ret += (int)vgetq_lane_f32(vrndq_f32(v1), 0);
15
+ #ifdef __aarch64__
16
+ {
17
+ double *src2 = (double*)argv[argc-1];
18
+ float64x2_t vd1 = vdupq_n_f64(src2[0]), vd2 = vdupq_n_f64(src2[1]);
19
+ /* MAXMIN */
20
+ ret += (int)vgetq_lane_f64(vmaxnmq_f64(vd1, vd2), 0);
21
+ ret += (int)vgetq_lane_f64(vminnmq_f64(vd1, vd2), 0);
22
+ /* ROUNDING */
23
+ ret += (int)vgetq_lane_f64(vrndq_f64(vd1), 0);
24
+ }
25
+ #endif
26
+ return ret;
27
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_asimdhp.c ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ifdef _MSC_VER
2
+ #include <Intrin.h>
3
+ #endif
4
+ #include <arm_neon.h>
5
+
6
+ int main(int argc, char **argv)
7
+ {
8
+ float16_t *src = (float16_t*)argv[argc-1];
9
+ float16x8_t vhp = vdupq_n_f16(src[0]);
10
+ float16x4_t vlhp = vdup_n_f16(src[1]);
11
+
12
+ int ret = (int)vgetq_lane_f16(vabdq_f16(vhp, vhp), 0);
13
+ ret += (int)vget_lane_f16(vabd_f16(vlhp, vlhp), 0);
14
+ return ret;
15
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx.c ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #ifndef __AVX__
10
+ #error "HOST/ARCH doesn't support AVX"
11
+ #endif
12
+ #endif
13
+
14
+ #include <immintrin.h>
15
+
16
+ int main(int argc, char **argv)
17
+ {
18
+ __m256 a = _mm256_add_ps(_mm256_loadu_ps((const float*)argv[argc-1]), _mm256_loadu_ps((const float*)argv[1]));
19
+ return (int)_mm_cvtss_f32(_mm256_castps256_ps128(a));
20
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx2.c ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #ifndef __AVX2__
10
+ #error "HOST/ARCH doesn't support AVX2"
11
+ #endif
12
+ #endif
13
+
14
+ #include <immintrin.h>
15
+
16
+ int main(int argc, char **argv)
17
+ {
18
+ __m256i a = _mm256_abs_epi16(_mm256_loadu_si256((const __m256i*)argv[argc-1]));
19
+ return _mm_cvtsi128_si32(_mm256_castsi256_si128(a));
20
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_clx.c ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #ifndef __AVX512VNNI__
10
+ #error "HOST/ARCH doesn't support CascadeLake AVX512 features"
11
+ #endif
12
+ #endif
13
+
14
+ #include <immintrin.h>
15
+
16
+ int main(int argc, char **argv)
17
+ {
18
+ /* VNNI */
19
+ __m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]);
20
+ a = _mm512_dpbusd_epi32(a, _mm512_setzero_si512(), a);
21
+ return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
22
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_cnl.c ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #if !defined(__AVX512VBMI__) || !defined(__AVX512IFMA__)
10
+ #error "HOST/ARCH doesn't support CannonLake AVX512 features"
11
+ #endif
12
+ #endif
13
+
14
+ #include <immintrin.h>
15
+
16
+ int main(int argc, char **argv)
17
+ {
18
+ __m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]);
19
+ /* IFMA */
20
+ a = _mm512_madd52hi_epu64(a, a, _mm512_setzero_si512());
21
+ /* VMBI */
22
+ a = _mm512_permutex2var_epi8(a, _mm512_setzero_si512(), a);
23
+ return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
24
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_icl.c ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #if !defined(__AVX512VPOPCNTDQ__) || !defined(__AVX512BITALG__) || !defined(__AVX512VPOPCNTDQ__)
10
+ #error "HOST/ARCH doesn't support IceLake AVX512 features"
11
+ #endif
12
+ #endif
13
+
14
+ #include <immintrin.h>
15
+
16
+ int main(int argc, char **argv)
17
+ {
18
+ __m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]);
19
+ /* VBMI2 */
20
+ a = _mm512_shrdv_epi64(a, a, _mm512_setzero_si512());
21
+ /* BITLAG */
22
+ a = _mm512_popcnt_epi8(a);
23
+ /* VPOPCNTDQ */
24
+ a = _mm512_popcnt_epi64(a);
25
+ return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
26
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knl.c ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #if !defined(__AVX512ER__) || !defined(__AVX512PF__)
10
+ #error "HOST/ARCH doesn't support Knights Landing AVX512 features"
11
+ #endif
12
+ #endif
13
+
14
+ #include <immintrin.h>
15
+
16
+ int main(int argc, char **argv)
17
+ {
18
+ int base[128]={};
19
+ __m512d ad = _mm512_loadu_pd((const __m512d*)argv[argc-1]);
20
+ /* ER */
21
+ __m512i a = _mm512_castpd_si512(_mm512_exp2a23_pd(ad));
22
+ /* PF */
23
+ _mm512_mask_prefetch_i64scatter_pd(base, _mm512_cmpeq_epi64_mask(a, a), a, 1, _MM_HINT_T1);
24
+ return base[0];
25
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_knm.c ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #if !defined(__AVX5124FMAPS__) || !defined(__AVX5124VNNIW__) || !defined(__AVX512VPOPCNTDQ__)
10
+ #error "HOST/ARCH doesn't support Knights Mill AVX512 features"
11
+ #endif
12
+ #endif
13
+
14
+ #include <immintrin.h>
15
+
16
+ int main(int argc, char **argv)
17
+ {
18
+ __m512i a = _mm512_loadu_si512((const __m512i*)argv[argc-1]);
19
+ __m512 b = _mm512_loadu_ps((const __m512*)argv[argc-2]);
20
+
21
+ /* 4FMAPS */
22
+ b = _mm512_4fmadd_ps(b, b, b, b, b, NULL);
23
+ /* 4VNNIW */
24
+ a = _mm512_4dpwssd_epi32(a, a, a, a, a, NULL);
25
+ /* VPOPCNTDQ */
26
+ a = _mm512_popcnt_epi64(a);
27
+
28
+ a = _mm512_add_epi32(a, _mm512_castps_si512(b));
29
+ return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
30
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512_skx.c ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #if !defined(__AVX512VL__) || !defined(__AVX512BW__) || !defined(__AVX512DQ__)
10
+ #error "HOST/ARCH doesn't support SkyLake AVX512 features"
11
+ #endif
12
+ #endif
13
+
14
+ #include <immintrin.h>
15
+
16
+ int main(int argc, char **argv)
17
+ {
18
+ __m512i aa = _mm512_abs_epi32(_mm512_loadu_si512((const __m512i*)argv[argc-1]));
19
+ /* VL */
20
+ __m256i a = _mm256_abs_epi64(_mm512_extracti64x4_epi64(aa, 1));
21
+ /* DQ */
22
+ __m512i b = _mm512_broadcast_i32x8(a);
23
+ /* BW */
24
+ b = _mm512_abs_epi16(b);
25
+ return _mm_cvtsi128_si32(_mm512_castsi512_si128(b));
26
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512cd.c ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #ifndef __AVX512CD__
10
+ #error "HOST/ARCH doesn't support AVX512CD"
11
+ #endif
12
+ #endif
13
+
14
+ #include <immintrin.h>
15
+
16
+ int main(int argc, char **argv)
17
+ {
18
+ __m512i a = _mm512_lzcnt_epi32(_mm512_loadu_si512((const __m512i*)argv[argc-1]));
19
+ return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
20
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_avx512f.c ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #ifndef __AVX512F__
10
+ #error "HOST/ARCH doesn't support AVX512F"
11
+ #endif
12
+ #endif
13
+
14
+ #include <immintrin.h>
15
+
16
+ int main(int argc, char **argv)
17
+ {
18
+ __m512i a = _mm512_abs_epi32(_mm512_loadu_si512((const __m512i*)argv[argc-1]));
19
+ return _mm_cvtsi128_si32(_mm512_castsi512_si128(a));
20
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_f16c.c ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #ifndef __F16C__
10
+ #error "HOST/ARCH doesn't support F16C"
11
+ #endif
12
+ #endif
13
+
14
+ #include <emmintrin.h>
15
+ #include <immintrin.h>
16
+
17
+ int main(int argc, char **argv)
18
+ {
19
+ __m128 a = _mm_cvtph_ps(_mm_loadu_si128((const __m128i*)argv[argc-1]));
20
+ __m256 a8 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*)argv[argc-2]));
21
+ return (int)(_mm_cvtss_f32(a) + _mm_cvtss_f32(_mm256_castps256_ps128(a8)));
22
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_fma3.c ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #if !defined(__FMA__) && !defined(__AVX2__)
10
+ #error "HOST/ARCH doesn't support FMA3"
11
+ #endif
12
+ #endif
13
+
14
+ #include <xmmintrin.h>
15
+ #include <immintrin.h>
16
+
17
+ int main(int argc, char **argv)
18
+ {
19
+ __m256 a = _mm256_loadu_ps((const float*)argv[argc-1]);
20
+ a = _mm256_fmadd_ps(a, a, a);
21
+ return (int)_mm_cvtss_f32(_mm256_castps256_ps128(a));
22
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon.c ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ifdef _MSC_VER
2
+ #include <Intrin.h>
3
+ #endif
4
+ #include <arm_neon.h>
5
+
6
+ int main(int argc, char **argv)
7
+ {
8
+ // passing from untraced pointers to avoid optimizing out any constants
9
+ // so we can test against the linker.
10
+ float *src = (float*)argv[argc-1];
11
+ float32x4_t v1 = vdupq_n_f32(src[0]), v2 = vdupq_n_f32(src[1]);
12
+ int ret = (int)vgetq_lane_f32(vmulq_f32(v1, v2), 0);
13
+ #ifdef __aarch64__
14
+ double *src2 = (double*)argv[argc-2];
15
+ float64x2_t vd1 = vdupq_n_f64(src2[0]), vd2 = vdupq_n_f64(src2[1]);
16
+ ret += (int)vgetq_lane_f64(vmulq_f64(vd1, vd2), 0);
17
+ #endif
18
+ return ret;
19
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_fp16.c ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ifdef _MSC_VER
2
+ #include <Intrin.h>
3
+ #endif
4
+ #include <arm_neon.h>
5
+
6
+ int main(int argc, char **argv)
7
+ {
8
+ short *src = (short*)argv[argc-1];
9
+ float32x4_t v_z4 = vcvt_f32_f16((float16x4_t)vld1_s16(src));
10
+ return (int)vgetq_lane_f32(v_z4, 0);
11
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_neon_vfpv4.c ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ifdef _MSC_VER
2
+ #include <Intrin.h>
3
+ #endif
4
+ #include <arm_neon.h>
5
+
6
+ int main(int argc, char **argv)
7
+ {
8
+ float *src = (float*)argv[argc-1];
9
+ float32x4_t v1 = vdupq_n_f32(src[0]);
10
+ float32x4_t v2 = vdupq_n_f32(src[1]);
11
+ float32x4_t v3 = vdupq_n_f32(src[2]);
12
+ int ret = (int)vgetq_lane_f32(vfmaq_f32(v1, v2, v3), 0);
13
+ #ifdef __aarch64__
14
+ double *src2 = (double*)argv[argc-2];
15
+ float64x2_t vd1 = vdupq_n_f64(src2[0]);
16
+ float64x2_t vd2 = vdupq_n_f64(src2[1]);
17
+ float64x2_t vd3 = vdupq_n_f64(src2[2]);
18
+ ret += (int)vgetq_lane_f64(vfmaq_f64(vd1, vd2, vd3), 0);
19
+ #endif
20
+ return ret;
21
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_popcnt.c ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env vr `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #if !defined(__SSE4_2__) && !defined(__POPCNT__)
10
+ #error "HOST/ARCH doesn't support POPCNT"
11
+ #endif
12
+ #endif
13
+
14
+ #ifdef _MSC_VER
15
+ #include <nmmintrin.h>
16
+ #else
17
+ #include <popcntintrin.h>
18
+ #endif
19
+
20
+ int main(int argc, char **argv)
21
+ {
22
+ // To make sure popcnt instructions are generated
23
+ // and been tested against the assembler
24
+ unsigned long long a = *((unsigned long long*)argv[argc-1]);
25
+ unsigned int b = *((unsigned int*)argv[argc-2]);
26
+
27
+ #if defined(_M_X64) || defined(__x86_64__)
28
+ a = _mm_popcnt_u64(a);
29
+ #endif
30
+ b = _mm_popcnt_u32(b);
31
+ return (int)a + b;
32
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse.c ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #ifndef __SSE__
10
+ #error "HOST/ARCH doesn't support SSE"
11
+ #endif
12
+ #endif
13
+
14
+ #include <xmmintrin.h>
15
+
16
+ int main(void)
17
+ {
18
+ __m128 a = _mm_add_ps(_mm_setzero_ps(), _mm_setzero_ps());
19
+ return (int)_mm_cvtss_f32(a);
20
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse2.c ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #ifndef __SSE2__
10
+ #error "HOST/ARCH doesn't support SSE2"
11
+ #endif
12
+ #endif
13
+
14
+ #include <emmintrin.h>
15
+
16
+ int main(void)
17
+ {
18
+ __m128i a = _mm_add_epi16(_mm_setzero_si128(), _mm_setzero_si128());
19
+ return _mm_cvtsi128_si32(a);
20
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse3.c ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #ifndef __SSE3__
10
+ #error "HOST/ARCH doesn't support SSE3"
11
+ #endif
12
+ #endif
13
+
14
+ #include <pmmintrin.h>
15
+
16
+ int main(void)
17
+ {
18
+ __m128 a = _mm_hadd_ps(_mm_setzero_ps(), _mm_setzero_ps());
19
+ return (int)_mm_cvtss_f32(a);
20
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_sse41.c ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #ifndef __SSE4_1__
10
+ #error "HOST/ARCH doesn't support SSE41"
11
+ #endif
12
+ #endif
13
+
14
+ #include <smmintrin.h>
15
+
16
+ int main(void)
17
+ {
18
+ __m128 a = _mm_floor_ps(_mm_setzero_ps());
19
+ return (int)_mm_cvtss_f32(a);
20
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_ssse3.c ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if defined(DETECT_FEATURES) && defined(__INTEL_COMPILER)
2
+ /*
3
+ * Unlike GCC and CLANG, Intel Compiler exposes all supported intrinsics,
4
+ * whether or not the build options for those features are specified.
5
+ * Therefore, we must test #definitions of CPU features when option native/host
6
+ * is enabled via `--cpu-baseline` or through env var `CFLAGS` otherwise
7
+ * the test will be broken and leads to enable all possible features.
8
+ */
9
+ #ifndef __SSSE3__
10
+ #error "HOST/ARCH doesn't support SSSE3"
11
+ #endif
12
+ #endif
13
+
14
+ #include <tmmintrin.h>
15
+
16
+ int main(void)
17
+ {
18
+ __m128i a = _mm_hadd_epi16(_mm_setzero_si128(), _mm_setzero_si128());
19
+ return (int)_mm_cvtsi128_si32(a);
20
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx.c ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ifndef __VSX__
2
+ #error "VSX is not supported"
3
+ #endif
4
+ #include <altivec.h>
5
+
6
+ #if (defined(__GNUC__) && !defined(vec_xl)) || (defined(__clang__) && !defined(__IBMC__))
7
+ #define vsx_ld vec_vsx_ld
8
+ #define vsx_st vec_vsx_st
9
+ #else
10
+ #define vsx_ld vec_xl
11
+ #define vsx_st vec_xst
12
+ #endif
13
+
14
+ int main(void)
15
+ {
16
+ unsigned int zout[4];
17
+ unsigned int z4[] = {0, 0, 0, 0};
18
+ __vector unsigned int v_z4 = vsx_ld(0, z4);
19
+ vsx_st(v_z4, 0, zout);
20
+ return zout[0];
21
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx3.c ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ifndef __VSX__
2
+ #error "VSX is not supported"
3
+ #endif
4
+ #include <altivec.h>
5
+
6
+ typedef __vector unsigned int v_uint32x4;
7
+
8
+ int main(void)
9
+ {
10
+ v_uint32x4 z4 = (v_uint32x4){0, 0, 0, 0};
11
+ z4 = vec_absd(z4, z4);
12
+ return (int)vec_extract(z4, 0);
13
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vsx4.c ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ifndef __VSX__
2
+ #error "VSX is not supported"
3
+ #endif
4
+ #include <altivec.h>
5
+
6
+ typedef __vector unsigned int v_uint32x4;
7
+
8
+ int main(void)
9
+ {
10
+ v_uint32x4 v1 = (v_uint32x4){2, 4, 8, 16};
11
+ v_uint32x4 v2 = (v_uint32x4){2, 2, 2, 2};
12
+ v_uint32x4 v3 = vec_mod(v1, v2);
13
+ return (int)vec_extractm(v3);
14
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vx.c ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if (__VEC__ < 10301) || (__ARCH__ < 11)
2
+ #error VX not supported
3
+ #endif
4
+
5
+ #include <vecintrin.h>
6
+ int main(int argc, char **argv)
7
+ {
8
+ __vector double x = vec_abs(vec_xl(argc, (double*)argv));
9
+ __vector double y = vec_load_len((double*)argv, (unsigned int)argc);
10
+
11
+ x = vec_round(vec_ceil(x) + vec_floor(y));
12
+ __vector bool long long m = vec_cmpge(x, y);
13
+ __vector long long i = vec_signed(vec_sel(x, y, m));
14
+
15
+ return (int)vec_extract(i, 0);
16
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_vxe2.c ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #if (__VEC__ < 10303) || (__ARCH__ < 13)
2
+ #error VXE2 not supported
3
+ #endif
4
+
5
+ #include <vecintrin.h>
6
+
7
+ int main(int argc, char **argv)
8
+ {
9
+ int val;
10
+ __vector signed short large = { 'a', 'b', 'c', 'a', 'g', 'h', 'g', 'o' };
11
+ __vector signed short search = { 'g', 'h', 'g', 'o' };
12
+ __vector unsigned char len = { 0 };
13
+ __vector unsigned char res = vec_search_string_cc(large, search, len, &val);
14
+ __vector float x = vec_xl(argc, (float*)argv);
15
+ __vector int i = vec_signed(x);
16
+
17
+ i = vec_srdb(vec_sldb(i, i, 2), i, 3);
18
+ val += (int)vec_extract(res, 1);
19
+ val += vec_extract(i, 0);
20
+ return val;
21
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/cpu_xop.c ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <immintrin.h>
2
+ #ifdef _MSC_VER
3
+ #include <ammintrin.h>
4
+ #else
5
+ #include <x86intrin.h>
6
+ #endif
7
+
8
+ int main(void)
9
+ {
10
+ __m128i a = _mm_comge_epu32(_mm_setzero_si128(), _mm_setzero_si128());
11
+ return _mm_cvtsi128_si32(a);
12
+ }
env-llmeval/lib/python3.10/site-packages/numpy/distutils/checks/extra_avx512bw_mask.c ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <immintrin.h>
2
+ /**
3
+ * Test BW mask operations due to:
4
+ * - MSVC has supported it since vs2019 see,
5
+ * https://developercommunity.visualstudio.com/content/problem/518298/missing-avx512bw-mask-intrinsics.html
6
+ * - Clang >= v8.0
7
+ * - GCC >= v7.1
8
+ */
9
+ int main(void)
10
+ {
11
+ __mmask64 m64 = _mm512_cmpeq_epi8_mask(_mm512_set1_epi8((char)1), _mm512_set1_epi8((char)1));
12
+ m64 = _kor_mask64(m64, m64);
13
+ m64 = _kxor_mask64(m64, m64);
14
+ m64 = _cvtu64_mask64(_cvtmask64_u64(m64));
15
+ m64 = _mm512_kunpackd(m64, m64);
16
+ m64 = (__mmask64)_mm512_kunpackw((__mmask32)m64, (__mmask32)m64);
17
+ return (int)_cvtmask64_u64(m64);
18
+ }