Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/pandas/tests/base/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/base/test_constructors.py +179 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/base/test_transpose.py +56 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/base/test_unique.py +124 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/base/test_value_counts.py +356 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_duplicate_labels.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_finalize.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_frame.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_generic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_label_or_level_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_series.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_to_xarray.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_duplicate_labels.py +413 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_finalize.py +767 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_frame.py +209 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_generic.py +504 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_label_or_level_utils.py +336 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_series.py +159 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_to_xarray.py +130 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/common.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/conftest.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_backend.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_common.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_converter.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_datetimelike.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_groupby.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/common.py +563 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/conftest.py +56 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_color.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_groupby.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_legend.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_subplots.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_hist_box_by.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_color.py +670 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_groupby.py +72 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_legend.py +272 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_subplots.py +752 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_hist_box_by.py +342 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/test_backend.py +98 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/test_boxplot_method.py +761 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/test_common.py +60 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/test_converter.py +410 -0
env-llmeval/lib/python3.10/site-packages/pandas/tests/base/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/base/test_constructors.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from pandas.compat import PYPY
|
8 |
+
|
9 |
+
import pandas as pd
|
10 |
+
from pandas import (
|
11 |
+
DataFrame,
|
12 |
+
Index,
|
13 |
+
Series,
|
14 |
+
)
|
15 |
+
import pandas._testing as tm
|
16 |
+
from pandas.core.accessor import PandasDelegate
|
17 |
+
from pandas.core.base import (
|
18 |
+
NoNewAttributesMixin,
|
19 |
+
PandasObject,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
def series_via_frame_from_dict(x, **kwargs):
|
24 |
+
return DataFrame({"a": x}, **kwargs)["a"]
|
25 |
+
|
26 |
+
|
27 |
+
def series_via_frame_from_scalar(x, **kwargs):
|
28 |
+
return DataFrame(x, **kwargs)[0]
|
29 |
+
|
30 |
+
|
31 |
+
@pytest.fixture(
|
32 |
+
params=[
|
33 |
+
Series,
|
34 |
+
series_via_frame_from_dict,
|
35 |
+
series_via_frame_from_scalar,
|
36 |
+
Index,
|
37 |
+
],
|
38 |
+
ids=["Series", "DataFrame-dict", "DataFrame-array", "Index"],
|
39 |
+
)
|
40 |
+
def constructor(request):
|
41 |
+
return request.param
|
42 |
+
|
43 |
+
|
44 |
+
class TestPandasDelegate:
|
45 |
+
class Delegator:
|
46 |
+
_properties = ["prop"]
|
47 |
+
_methods = ["test_method"]
|
48 |
+
|
49 |
+
def _set_prop(self, value):
|
50 |
+
self.prop = value
|
51 |
+
|
52 |
+
def _get_prop(self):
|
53 |
+
return self.prop
|
54 |
+
|
55 |
+
prop = property(_get_prop, _set_prop, doc="foo property")
|
56 |
+
|
57 |
+
def test_method(self, *args, **kwargs):
|
58 |
+
"""a test method"""
|
59 |
+
|
60 |
+
class Delegate(PandasDelegate, PandasObject):
|
61 |
+
def __init__(self, obj) -> None:
|
62 |
+
self.obj = obj
|
63 |
+
|
64 |
+
def test_invalid_delegation(self):
|
65 |
+
# these show that in order for the delegation to work
|
66 |
+
# the _delegate_* methods need to be overridden to not raise
|
67 |
+
# a TypeError
|
68 |
+
|
69 |
+
self.Delegate._add_delegate_accessors(
|
70 |
+
delegate=self.Delegator,
|
71 |
+
accessors=self.Delegator._properties,
|
72 |
+
typ="property",
|
73 |
+
)
|
74 |
+
self.Delegate._add_delegate_accessors(
|
75 |
+
delegate=self.Delegator, accessors=self.Delegator._methods, typ="method"
|
76 |
+
)
|
77 |
+
|
78 |
+
delegate = self.Delegate(self.Delegator())
|
79 |
+
|
80 |
+
msg = "You cannot access the property prop"
|
81 |
+
with pytest.raises(TypeError, match=msg):
|
82 |
+
delegate.prop
|
83 |
+
|
84 |
+
msg = "The property prop cannot be set"
|
85 |
+
with pytest.raises(TypeError, match=msg):
|
86 |
+
delegate.prop = 5
|
87 |
+
|
88 |
+
msg = "You cannot access the property prop"
|
89 |
+
with pytest.raises(TypeError, match=msg):
|
90 |
+
delegate.prop
|
91 |
+
|
92 |
+
@pytest.mark.skipif(PYPY, reason="not relevant for PyPy")
|
93 |
+
def test_memory_usage(self):
|
94 |
+
# Delegate does not implement memory_usage.
|
95 |
+
# Check that we fall back to in-built `__sizeof__`
|
96 |
+
# GH 12924
|
97 |
+
delegate = self.Delegate(self.Delegator())
|
98 |
+
sys.getsizeof(delegate)
|
99 |
+
|
100 |
+
|
101 |
+
class TestNoNewAttributesMixin:
|
102 |
+
def test_mixin(self):
|
103 |
+
class T(NoNewAttributesMixin):
|
104 |
+
pass
|
105 |
+
|
106 |
+
t = T()
|
107 |
+
assert not hasattr(t, "__frozen")
|
108 |
+
|
109 |
+
t.a = "test"
|
110 |
+
assert t.a == "test"
|
111 |
+
|
112 |
+
t._freeze()
|
113 |
+
assert "__frozen" in dir(t)
|
114 |
+
assert getattr(t, "__frozen")
|
115 |
+
msg = "You cannot add any new attribute"
|
116 |
+
with pytest.raises(AttributeError, match=msg):
|
117 |
+
t.b = "test"
|
118 |
+
|
119 |
+
assert not hasattr(t, "b")
|
120 |
+
|
121 |
+
|
122 |
+
class TestConstruction:
|
123 |
+
# test certain constructor behaviours on dtype inference across Series,
|
124 |
+
# Index and DataFrame
|
125 |
+
|
126 |
+
@pytest.mark.parametrize(
|
127 |
+
"a",
|
128 |
+
[
|
129 |
+
np.array(["2263-01-01"], dtype="datetime64[D]"),
|
130 |
+
np.array([datetime(2263, 1, 1)], dtype=object),
|
131 |
+
np.array([np.datetime64("2263-01-01", "D")], dtype=object),
|
132 |
+
np.array(["2263-01-01"], dtype=object),
|
133 |
+
],
|
134 |
+
ids=[
|
135 |
+
"datetime64[D]",
|
136 |
+
"object-datetime.datetime",
|
137 |
+
"object-numpy-scalar",
|
138 |
+
"object-string",
|
139 |
+
],
|
140 |
+
)
|
141 |
+
def test_constructor_datetime_outofbound(
|
142 |
+
self, a, constructor, request, using_infer_string
|
143 |
+
):
|
144 |
+
# GH-26853 (+ bug GH-26206 out of bound non-ns unit)
|
145 |
+
|
146 |
+
# No dtype specified (dtype inference)
|
147 |
+
# datetime64[non-ns] raise error, other cases result in object dtype
|
148 |
+
# and preserve original data
|
149 |
+
if a.dtype.kind == "M":
|
150 |
+
# Can't fit in nanosecond bounds -> get the nearest supported unit
|
151 |
+
result = constructor(a)
|
152 |
+
assert result.dtype == "M8[s]"
|
153 |
+
else:
|
154 |
+
result = constructor(a)
|
155 |
+
if using_infer_string and "object-string" in request.node.callspec.id:
|
156 |
+
assert result.dtype == "string"
|
157 |
+
else:
|
158 |
+
assert result.dtype == "object"
|
159 |
+
tm.assert_numpy_array_equal(result.to_numpy(), a)
|
160 |
+
|
161 |
+
# Explicit dtype specified
|
162 |
+
# Forced conversion fails for all -> all cases raise error
|
163 |
+
msg = "Out of bounds|Out of bounds .* present at position 0"
|
164 |
+
with pytest.raises(pd.errors.OutOfBoundsDatetime, match=msg):
|
165 |
+
constructor(a, dtype="datetime64[ns]")
|
166 |
+
|
167 |
+
def test_constructor_datetime_nonns(self, constructor):
|
168 |
+
arr = np.array(["2020-01-01T00:00:00.000000"], dtype="datetime64[us]")
|
169 |
+
dta = pd.core.arrays.DatetimeArray._simple_new(arr, dtype=arr.dtype)
|
170 |
+
expected = constructor(dta)
|
171 |
+
assert expected.dtype == arr.dtype
|
172 |
+
|
173 |
+
result = constructor(arr)
|
174 |
+
tm.assert_equal(result, expected)
|
175 |
+
|
176 |
+
# https://github.com/pandas-dev/pandas/issues/34843
|
177 |
+
arr.flags.writeable = False
|
178 |
+
result = constructor(arr)
|
179 |
+
tm.assert_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/base/test_transpose.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
CategoricalDtype,
|
6 |
+
DataFrame,
|
7 |
+
)
|
8 |
+
import pandas._testing as tm
|
9 |
+
|
10 |
+
|
11 |
+
def test_transpose(index_or_series_obj):
|
12 |
+
obj = index_or_series_obj
|
13 |
+
tm.assert_equal(obj.transpose(), obj)
|
14 |
+
|
15 |
+
|
16 |
+
def test_transpose_non_default_axes(index_or_series_obj):
|
17 |
+
msg = "the 'axes' parameter is not supported"
|
18 |
+
obj = index_or_series_obj
|
19 |
+
with pytest.raises(ValueError, match=msg):
|
20 |
+
obj.transpose(1)
|
21 |
+
with pytest.raises(ValueError, match=msg):
|
22 |
+
obj.transpose(axes=1)
|
23 |
+
|
24 |
+
|
25 |
+
def test_numpy_transpose(index_or_series_obj):
|
26 |
+
msg = "the 'axes' parameter is not supported"
|
27 |
+
obj = index_or_series_obj
|
28 |
+
tm.assert_equal(np.transpose(obj), obj)
|
29 |
+
|
30 |
+
with pytest.raises(ValueError, match=msg):
|
31 |
+
np.transpose(obj, axes=1)
|
32 |
+
|
33 |
+
|
34 |
+
@pytest.mark.parametrize(
|
35 |
+
"data, transposed_data, index, columns, dtype",
|
36 |
+
[
|
37 |
+
([[1], [2]], [[1, 2]], ["a", "a"], ["b"], int),
|
38 |
+
([[1], [2]], [[1, 2]], ["a", "a"], ["b"], CategoricalDtype([1, 2])),
|
39 |
+
([[1, 2]], [[1], [2]], ["b"], ["a", "a"], int),
|
40 |
+
([[1, 2]], [[1], [2]], ["b"], ["a", "a"], CategoricalDtype([1, 2])),
|
41 |
+
([[1, 2], [3, 4]], [[1, 3], [2, 4]], ["a", "a"], ["b", "b"], int),
|
42 |
+
(
|
43 |
+
[[1, 2], [3, 4]],
|
44 |
+
[[1, 3], [2, 4]],
|
45 |
+
["a", "a"],
|
46 |
+
["b", "b"],
|
47 |
+
CategoricalDtype([1, 2, 3, 4]),
|
48 |
+
),
|
49 |
+
],
|
50 |
+
)
|
51 |
+
def test_duplicate_labels(data, transposed_data, index, columns, dtype):
|
52 |
+
# GH 42380
|
53 |
+
df = DataFrame(data, index=index, columns=columns, dtype=dtype)
|
54 |
+
result = df.T
|
55 |
+
expected = DataFrame(transposed_data, index=columns, columns=index, dtype=dtype)
|
56 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/base/test_unique.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas._config import using_pyarrow_string_dtype
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import pandas._testing as tm
|
8 |
+
from pandas.tests.base.common import allow_na_ops
|
9 |
+
|
10 |
+
|
11 |
+
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
|
12 |
+
def test_unique(index_or_series_obj):
|
13 |
+
obj = index_or_series_obj
|
14 |
+
obj = np.repeat(obj, range(1, len(obj) + 1))
|
15 |
+
result = obj.unique()
|
16 |
+
|
17 |
+
# dict.fromkeys preserves the order
|
18 |
+
unique_values = list(dict.fromkeys(obj.values))
|
19 |
+
if isinstance(obj, pd.MultiIndex):
|
20 |
+
expected = pd.MultiIndex.from_tuples(unique_values)
|
21 |
+
expected.names = obj.names
|
22 |
+
tm.assert_index_equal(result, expected, exact=True)
|
23 |
+
elif isinstance(obj, pd.Index):
|
24 |
+
expected = pd.Index(unique_values, dtype=obj.dtype)
|
25 |
+
if isinstance(obj.dtype, pd.DatetimeTZDtype):
|
26 |
+
expected = expected.normalize()
|
27 |
+
tm.assert_index_equal(result, expected, exact=True)
|
28 |
+
else:
|
29 |
+
expected = np.array(unique_values)
|
30 |
+
tm.assert_numpy_array_equal(result, expected)
|
31 |
+
|
32 |
+
|
33 |
+
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
|
34 |
+
@pytest.mark.parametrize("null_obj", [np.nan, None])
|
35 |
+
def test_unique_null(null_obj, index_or_series_obj):
|
36 |
+
obj = index_or_series_obj
|
37 |
+
|
38 |
+
if not allow_na_ops(obj):
|
39 |
+
pytest.skip("type doesn't allow for NA operations")
|
40 |
+
elif len(obj) < 1:
|
41 |
+
pytest.skip("Test doesn't make sense on empty data")
|
42 |
+
elif isinstance(obj, pd.MultiIndex):
|
43 |
+
pytest.skip(f"MultiIndex can't hold '{null_obj}'")
|
44 |
+
|
45 |
+
values = obj._values
|
46 |
+
values[0:2] = null_obj
|
47 |
+
|
48 |
+
klass = type(obj)
|
49 |
+
repeated_values = np.repeat(values, range(1, len(values) + 1))
|
50 |
+
obj = klass(repeated_values, dtype=obj.dtype)
|
51 |
+
result = obj.unique()
|
52 |
+
|
53 |
+
unique_values_raw = dict.fromkeys(obj.values)
|
54 |
+
# because np.nan == np.nan is False, but None == None is True
|
55 |
+
# np.nan would be duplicated, whereas None wouldn't
|
56 |
+
unique_values_not_null = [val for val in unique_values_raw if not pd.isnull(val)]
|
57 |
+
unique_values = [null_obj] + unique_values_not_null
|
58 |
+
|
59 |
+
if isinstance(obj, pd.Index):
|
60 |
+
expected = pd.Index(unique_values, dtype=obj.dtype)
|
61 |
+
if isinstance(obj.dtype, pd.DatetimeTZDtype):
|
62 |
+
result = result.normalize()
|
63 |
+
expected = expected.normalize()
|
64 |
+
tm.assert_index_equal(result, expected, exact=True)
|
65 |
+
else:
|
66 |
+
expected = np.array(unique_values, dtype=obj.dtype)
|
67 |
+
tm.assert_numpy_array_equal(result, expected)
|
68 |
+
|
69 |
+
|
70 |
+
def test_nunique(index_or_series_obj):
|
71 |
+
obj = index_or_series_obj
|
72 |
+
obj = np.repeat(obj, range(1, len(obj) + 1))
|
73 |
+
expected = len(obj.unique())
|
74 |
+
assert obj.nunique(dropna=False) == expected
|
75 |
+
|
76 |
+
|
77 |
+
@pytest.mark.parametrize("null_obj", [np.nan, None])
|
78 |
+
def test_nunique_null(null_obj, index_or_series_obj):
|
79 |
+
obj = index_or_series_obj
|
80 |
+
|
81 |
+
if not allow_na_ops(obj):
|
82 |
+
pytest.skip("type doesn't allow for NA operations")
|
83 |
+
elif isinstance(obj, pd.MultiIndex):
|
84 |
+
pytest.skip(f"MultiIndex can't hold '{null_obj}'")
|
85 |
+
|
86 |
+
values = obj._values
|
87 |
+
values[0:2] = null_obj
|
88 |
+
|
89 |
+
klass = type(obj)
|
90 |
+
repeated_values = np.repeat(values, range(1, len(values) + 1))
|
91 |
+
obj = klass(repeated_values, dtype=obj.dtype)
|
92 |
+
|
93 |
+
if isinstance(obj, pd.CategoricalIndex):
|
94 |
+
assert obj.nunique() == len(obj.categories)
|
95 |
+
assert obj.nunique(dropna=False) == len(obj.categories) + 1
|
96 |
+
else:
|
97 |
+
num_unique_values = len(obj.unique())
|
98 |
+
assert obj.nunique() == max(0, num_unique_values - 1)
|
99 |
+
assert obj.nunique(dropna=False) == max(0, num_unique_values)
|
100 |
+
|
101 |
+
|
102 |
+
@pytest.mark.single_cpu
|
103 |
+
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="decoding fails")
|
104 |
+
def test_unique_bad_unicode(index_or_series):
|
105 |
+
# regression test for #34550
|
106 |
+
uval = "\ud83d" # smiley emoji
|
107 |
+
|
108 |
+
obj = index_or_series([uval] * 2)
|
109 |
+
result = obj.unique()
|
110 |
+
|
111 |
+
if isinstance(obj, pd.Index):
|
112 |
+
expected = pd.Index(["\ud83d"], dtype=object)
|
113 |
+
tm.assert_index_equal(result, expected, exact=True)
|
114 |
+
else:
|
115 |
+
expected = np.array(["\ud83d"], dtype=object)
|
116 |
+
tm.assert_numpy_array_equal(result, expected)
|
117 |
+
|
118 |
+
|
119 |
+
@pytest.mark.parametrize("dropna", [True, False])
|
120 |
+
def test_nunique_dropna(dropna):
|
121 |
+
# GH37566
|
122 |
+
ser = pd.Series(["yes", "yes", pd.NA, np.nan, None, pd.NaT])
|
123 |
+
res = ser.nunique(dropna)
|
124 |
+
assert res == 1 if dropna else 5
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/base/test_value_counts.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
from datetime import timedelta
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
from pandas import (
|
9 |
+
DatetimeIndex,
|
10 |
+
Index,
|
11 |
+
Interval,
|
12 |
+
IntervalIndex,
|
13 |
+
MultiIndex,
|
14 |
+
Series,
|
15 |
+
Timedelta,
|
16 |
+
TimedeltaIndex,
|
17 |
+
array,
|
18 |
+
)
|
19 |
+
import pandas._testing as tm
|
20 |
+
from pandas.tests.base.common import allow_na_ops
|
21 |
+
|
22 |
+
|
23 |
+
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
|
24 |
+
def test_value_counts(index_or_series_obj):
|
25 |
+
obj = index_or_series_obj
|
26 |
+
obj = np.repeat(obj, range(1, len(obj) + 1))
|
27 |
+
result = obj.value_counts()
|
28 |
+
|
29 |
+
counter = collections.Counter(obj)
|
30 |
+
expected = Series(dict(counter.most_common()), dtype=np.int64, name="count")
|
31 |
+
|
32 |
+
if obj.dtype != np.float16:
|
33 |
+
expected.index = expected.index.astype(obj.dtype)
|
34 |
+
else:
|
35 |
+
with pytest.raises(NotImplementedError, match="float16 indexes are not "):
|
36 |
+
expected.index.astype(obj.dtype)
|
37 |
+
return
|
38 |
+
if isinstance(expected.index, MultiIndex):
|
39 |
+
expected.index.names = obj.names
|
40 |
+
else:
|
41 |
+
expected.index.name = obj.name
|
42 |
+
|
43 |
+
if not isinstance(result.dtype, np.dtype):
|
44 |
+
if getattr(obj.dtype, "storage", "") == "pyarrow":
|
45 |
+
expected = expected.astype("int64[pyarrow]")
|
46 |
+
else:
|
47 |
+
# i.e IntegerDtype
|
48 |
+
expected = expected.astype("Int64")
|
49 |
+
|
50 |
+
# TODO(GH#32514): Order of entries with the same count is inconsistent
|
51 |
+
# on CI (gh-32449)
|
52 |
+
if obj.duplicated().any():
|
53 |
+
result = result.sort_index()
|
54 |
+
expected = expected.sort_index()
|
55 |
+
tm.assert_series_equal(result, expected)
|
56 |
+
|
57 |
+
|
58 |
+
@pytest.mark.parametrize("null_obj", [np.nan, None])
|
59 |
+
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
|
60 |
+
def test_value_counts_null(null_obj, index_or_series_obj):
|
61 |
+
orig = index_or_series_obj
|
62 |
+
obj = orig.copy()
|
63 |
+
|
64 |
+
if not allow_na_ops(obj):
|
65 |
+
pytest.skip("type doesn't allow for NA operations")
|
66 |
+
elif len(obj) < 1:
|
67 |
+
pytest.skip("Test doesn't make sense on empty data")
|
68 |
+
elif isinstance(orig, MultiIndex):
|
69 |
+
pytest.skip(f"MultiIndex can't hold '{null_obj}'")
|
70 |
+
|
71 |
+
values = obj._values
|
72 |
+
values[0:2] = null_obj
|
73 |
+
|
74 |
+
klass = type(obj)
|
75 |
+
repeated_values = np.repeat(values, range(1, len(values) + 1))
|
76 |
+
obj = klass(repeated_values, dtype=obj.dtype)
|
77 |
+
|
78 |
+
# because np.nan == np.nan is False, but None == None is True
|
79 |
+
# np.nan would be duplicated, whereas None wouldn't
|
80 |
+
counter = collections.Counter(obj.dropna())
|
81 |
+
expected = Series(dict(counter.most_common()), dtype=np.int64, name="count")
|
82 |
+
|
83 |
+
if obj.dtype != np.float16:
|
84 |
+
expected.index = expected.index.astype(obj.dtype)
|
85 |
+
else:
|
86 |
+
with pytest.raises(NotImplementedError, match="float16 indexes are not "):
|
87 |
+
expected.index.astype(obj.dtype)
|
88 |
+
return
|
89 |
+
expected.index.name = obj.name
|
90 |
+
|
91 |
+
result = obj.value_counts()
|
92 |
+
if obj.duplicated().any():
|
93 |
+
# TODO(GH#32514):
|
94 |
+
# Order of entries with the same count is inconsistent on CI (gh-32449)
|
95 |
+
expected = expected.sort_index()
|
96 |
+
result = result.sort_index()
|
97 |
+
|
98 |
+
if not isinstance(result.dtype, np.dtype):
|
99 |
+
if getattr(obj.dtype, "storage", "") == "pyarrow":
|
100 |
+
expected = expected.astype("int64[pyarrow]")
|
101 |
+
else:
|
102 |
+
# i.e IntegerDtype
|
103 |
+
expected = expected.astype("Int64")
|
104 |
+
tm.assert_series_equal(result, expected)
|
105 |
+
|
106 |
+
expected[null_obj] = 3
|
107 |
+
|
108 |
+
result = obj.value_counts(dropna=False)
|
109 |
+
if obj.duplicated().any():
|
110 |
+
# TODO(GH#32514):
|
111 |
+
# Order of entries with the same count is inconsistent on CI (gh-32449)
|
112 |
+
expected = expected.sort_index()
|
113 |
+
result = result.sort_index()
|
114 |
+
tm.assert_series_equal(result, expected)
|
115 |
+
|
116 |
+
|
117 |
+
def test_value_counts_inferred(index_or_series, using_infer_string):
|
118 |
+
klass = index_or_series
|
119 |
+
s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
|
120 |
+
s = klass(s_values)
|
121 |
+
expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"], name="count")
|
122 |
+
tm.assert_series_equal(s.value_counts(), expected)
|
123 |
+
|
124 |
+
if isinstance(s, Index):
|
125 |
+
exp = Index(np.unique(np.array(s_values, dtype=np.object_)))
|
126 |
+
tm.assert_index_equal(s.unique(), exp)
|
127 |
+
else:
|
128 |
+
exp = np.unique(np.array(s_values, dtype=np.object_))
|
129 |
+
if using_infer_string:
|
130 |
+
exp = array(exp)
|
131 |
+
tm.assert_equal(s.unique(), exp)
|
132 |
+
|
133 |
+
assert s.nunique() == 4
|
134 |
+
# don't sort, have to sort after the fact as not sorting is
|
135 |
+
# platform-dep
|
136 |
+
hist = s.value_counts(sort=False).sort_values()
|
137 |
+
expected = Series([3, 1, 4, 2], index=list("acbd"), name="count").sort_values()
|
138 |
+
tm.assert_series_equal(hist, expected)
|
139 |
+
|
140 |
+
# sort ascending
|
141 |
+
hist = s.value_counts(ascending=True)
|
142 |
+
expected = Series([1, 2, 3, 4], index=list("cdab"), name="count")
|
143 |
+
tm.assert_series_equal(hist, expected)
|
144 |
+
|
145 |
+
# relative histogram.
|
146 |
+
hist = s.value_counts(normalize=True)
|
147 |
+
expected = Series(
|
148 |
+
[0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"], name="proportion"
|
149 |
+
)
|
150 |
+
tm.assert_series_equal(hist, expected)
|
151 |
+
|
152 |
+
|
153 |
+
def test_value_counts_bins(index_or_series, using_infer_string):
|
154 |
+
klass = index_or_series
|
155 |
+
s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
|
156 |
+
s = klass(s_values)
|
157 |
+
|
158 |
+
# bins
|
159 |
+
msg = "bins argument only works with numeric data"
|
160 |
+
with pytest.raises(TypeError, match=msg):
|
161 |
+
s.value_counts(bins=1)
|
162 |
+
|
163 |
+
s1 = Series([1, 1, 2, 3])
|
164 |
+
res1 = s1.value_counts(bins=1)
|
165 |
+
exp1 = Series({Interval(0.997, 3.0): 4}, name="count")
|
166 |
+
tm.assert_series_equal(res1, exp1)
|
167 |
+
res1n = s1.value_counts(bins=1, normalize=True)
|
168 |
+
exp1n = Series({Interval(0.997, 3.0): 1.0}, name="proportion")
|
169 |
+
tm.assert_series_equal(res1n, exp1n)
|
170 |
+
|
171 |
+
if isinstance(s1, Index):
|
172 |
+
tm.assert_index_equal(s1.unique(), Index([1, 2, 3]))
|
173 |
+
else:
|
174 |
+
exp = np.array([1, 2, 3], dtype=np.int64)
|
175 |
+
tm.assert_numpy_array_equal(s1.unique(), exp)
|
176 |
+
|
177 |
+
assert s1.nunique() == 3
|
178 |
+
|
179 |
+
# these return the same
|
180 |
+
res4 = s1.value_counts(bins=4, dropna=True)
|
181 |
+
intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
|
182 |
+
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 1, 3, 2]), name="count")
|
183 |
+
tm.assert_series_equal(res4, exp4)
|
184 |
+
|
185 |
+
res4 = s1.value_counts(bins=4, dropna=False)
|
186 |
+
intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
|
187 |
+
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 1, 3, 2]), name="count")
|
188 |
+
tm.assert_series_equal(res4, exp4)
|
189 |
+
|
190 |
+
res4n = s1.value_counts(bins=4, normalize=True)
|
191 |
+
exp4n = Series(
|
192 |
+
[0.5, 0.25, 0.25, 0], index=intervals.take([0, 1, 3, 2]), name="proportion"
|
193 |
+
)
|
194 |
+
tm.assert_series_equal(res4n, exp4n)
|
195 |
+
|
196 |
+
# handle NA's properly
|
197 |
+
s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"]
|
198 |
+
s = klass(s_values)
|
199 |
+
expected = Series([4, 3, 2], index=["b", "a", "d"], name="count")
|
200 |
+
tm.assert_series_equal(s.value_counts(), expected)
|
201 |
+
|
202 |
+
if isinstance(s, Index):
|
203 |
+
exp = Index(["a", "b", np.nan, "d"])
|
204 |
+
tm.assert_index_equal(s.unique(), exp)
|
205 |
+
else:
|
206 |
+
exp = np.array(["a", "b", np.nan, "d"], dtype=object)
|
207 |
+
if using_infer_string:
|
208 |
+
exp = array(exp)
|
209 |
+
tm.assert_equal(s.unique(), exp)
|
210 |
+
assert s.nunique() == 3
|
211 |
+
|
212 |
+
s = klass({}) if klass is dict else klass({}, dtype=object)
|
213 |
+
expected = Series([], dtype=np.int64, name="count")
|
214 |
+
tm.assert_series_equal(s.value_counts(), expected, check_index_type=False)
|
215 |
+
# returned dtype differs depending on original
|
216 |
+
if isinstance(s, Index):
|
217 |
+
tm.assert_index_equal(s.unique(), Index([]), exact=False)
|
218 |
+
else:
|
219 |
+
tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False)
|
220 |
+
|
221 |
+
assert s.nunique() == 0
|
222 |
+
|
223 |
+
|
224 |
+
def test_value_counts_datetime64(index_or_series, unit):
|
225 |
+
klass = index_or_series
|
226 |
+
|
227 |
+
# GH 3002, datetime64[ns]
|
228 |
+
# don't test names though
|
229 |
+
df = pd.DataFrame(
|
230 |
+
{
|
231 |
+
"person_id": ["xxyyzz", "xxyyzz", "xxyyzz", "xxyyww", "foofoo", "foofoo"],
|
232 |
+
"dt": pd.to_datetime(
|
233 |
+
[
|
234 |
+
"2010-01-01",
|
235 |
+
"2010-01-01",
|
236 |
+
"2010-01-01",
|
237 |
+
"2009-01-01",
|
238 |
+
"2008-09-09",
|
239 |
+
"2008-09-09",
|
240 |
+
]
|
241 |
+
).as_unit(unit),
|
242 |
+
"food": ["PIE", "GUM", "EGG", "EGG", "PIE", "GUM"],
|
243 |
+
}
|
244 |
+
)
|
245 |
+
|
246 |
+
s = klass(df["dt"].copy())
|
247 |
+
s.name = None
|
248 |
+
idx = pd.to_datetime(
|
249 |
+
["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"]
|
250 |
+
).as_unit(unit)
|
251 |
+
expected_s = Series([3, 2, 1], index=idx, name="count")
|
252 |
+
tm.assert_series_equal(s.value_counts(), expected_s)
|
253 |
+
|
254 |
+
expected = array(
|
255 |
+
np.array(
|
256 |
+
["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"],
|
257 |
+
dtype=f"datetime64[{unit}]",
|
258 |
+
)
|
259 |
+
)
|
260 |
+
result = s.unique()
|
261 |
+
if isinstance(s, Index):
|
262 |
+
tm.assert_index_equal(result, DatetimeIndex(expected))
|
263 |
+
else:
|
264 |
+
tm.assert_extension_array_equal(result, expected)
|
265 |
+
|
266 |
+
assert s.nunique() == 3
|
267 |
+
|
268 |
+
# with NaT
|
269 |
+
s = df["dt"].copy()
|
270 |
+
s = klass(list(s.values) + [pd.NaT] * 4)
|
271 |
+
if klass is Series:
|
272 |
+
s = s.dt.as_unit(unit)
|
273 |
+
else:
|
274 |
+
s = s.as_unit(unit)
|
275 |
+
|
276 |
+
result = s.value_counts()
|
277 |
+
assert result.index.dtype == f"datetime64[{unit}]"
|
278 |
+
tm.assert_series_equal(result, expected_s)
|
279 |
+
|
280 |
+
result = s.value_counts(dropna=False)
|
281 |
+
expected_s = pd.concat(
|
282 |
+
[
|
283 |
+
Series([4], index=DatetimeIndex([pd.NaT]).as_unit(unit), name="count"),
|
284 |
+
expected_s,
|
285 |
+
]
|
286 |
+
)
|
287 |
+
tm.assert_series_equal(result, expected_s)
|
288 |
+
|
289 |
+
assert s.dtype == f"datetime64[{unit}]"
|
290 |
+
unique = s.unique()
|
291 |
+
assert unique.dtype == f"datetime64[{unit}]"
|
292 |
+
|
293 |
+
# numpy_array_equal cannot compare pd.NaT
|
294 |
+
if isinstance(s, Index):
|
295 |
+
exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]).as_unit(unit)
|
296 |
+
tm.assert_index_equal(unique, exp_idx)
|
297 |
+
else:
|
298 |
+
tm.assert_extension_array_equal(unique[:3], expected)
|
299 |
+
assert pd.isna(unique[3])
|
300 |
+
|
301 |
+
assert s.nunique() == 3
|
302 |
+
assert s.nunique(dropna=False) == 4
|
303 |
+
|
304 |
+
|
305 |
+
def test_value_counts_timedelta64(index_or_series, unit):
|
306 |
+
# timedelta64[ns]
|
307 |
+
klass = index_or_series
|
308 |
+
|
309 |
+
day = Timedelta(timedelta(1)).as_unit(unit)
|
310 |
+
tdi = TimedeltaIndex([day], name="dt").as_unit(unit)
|
311 |
+
|
312 |
+
tdvals = np.zeros(6, dtype=f"m8[{unit}]") + day
|
313 |
+
td = klass(tdvals, name="dt")
|
314 |
+
|
315 |
+
result = td.value_counts()
|
316 |
+
expected_s = Series([6], index=tdi, name="count")
|
317 |
+
tm.assert_series_equal(result, expected_s)
|
318 |
+
|
319 |
+
expected = tdi
|
320 |
+
result = td.unique()
|
321 |
+
if isinstance(td, Index):
|
322 |
+
tm.assert_index_equal(result, expected)
|
323 |
+
else:
|
324 |
+
tm.assert_extension_array_equal(result, expected._values)
|
325 |
+
|
326 |
+
td2 = day + np.zeros(6, dtype=f"m8[{unit}]")
|
327 |
+
td2 = klass(td2, name="dt")
|
328 |
+
result2 = td2.value_counts()
|
329 |
+
tm.assert_series_equal(result2, expected_s)
|
330 |
+
|
331 |
+
|
332 |
+
@pytest.mark.parametrize("dropna", [True, False])
|
333 |
+
def test_value_counts_with_nan(dropna, index_or_series):
|
334 |
+
# GH31944
|
335 |
+
klass = index_or_series
|
336 |
+
values = [True, pd.NA, np.nan]
|
337 |
+
obj = klass(values)
|
338 |
+
res = obj.value_counts(dropna=dropna)
|
339 |
+
if dropna is True:
|
340 |
+
expected = Series([1], index=Index([True], dtype=obj.dtype), name="count")
|
341 |
+
else:
|
342 |
+
expected = Series([1, 1, 1], index=[True, pd.NA, np.nan], name="count")
|
343 |
+
tm.assert_series_equal(res, expected)
|
344 |
+
|
345 |
+
|
346 |
+
def test_value_counts_object_inference_deprecated():
|
347 |
+
# GH#56161
|
348 |
+
dti = pd.date_range("2016-01-01", periods=3, tz="UTC")
|
349 |
+
|
350 |
+
idx = dti.astype(object)
|
351 |
+
msg = "The behavior of value_counts with object-dtype is deprecated"
|
352 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
353 |
+
res = idx.value_counts()
|
354 |
+
|
355 |
+
exp = dti.value_counts()
|
356 |
+
tm.assert_series_equal(res, exp)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_duplicate_labels.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_finalize.cpython-310.pyc
ADDED
Binary file (18.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_frame.cpython-310.pyc
ADDED
Binary file (7.46 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_generic.cpython-310.pyc
ADDED
Binary file (15.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_label_or_level_utils.cpython-310.pyc
ADDED
Binary file (7.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_series.cpython-310.pyc
ADDED
Binary file (5.95 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/__pycache__/test_to_xarray.cpython-310.pyc
ADDED
Binary file (4.25 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_duplicate_labels.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests dealing with the NDFrame.allows_duplicates."""
|
2 |
+
import operator
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import pandas._testing as tm
|
9 |
+
|
10 |
+
not_implemented = pytest.mark.xfail(reason="Not implemented.")
|
11 |
+
|
12 |
+
# ----------------------------------------------------------------------------
|
13 |
+
# Preservation
|
14 |
+
|
15 |
+
|
16 |
+
class TestPreserves:
|
17 |
+
@pytest.mark.parametrize(
|
18 |
+
"cls, data",
|
19 |
+
[
|
20 |
+
(pd.Series, np.array([])),
|
21 |
+
(pd.Series, [1, 2]),
|
22 |
+
(pd.DataFrame, {}),
|
23 |
+
(pd.DataFrame, {"A": [1, 2]}),
|
24 |
+
],
|
25 |
+
)
|
26 |
+
def test_construction_ok(self, cls, data):
|
27 |
+
result = cls(data)
|
28 |
+
assert result.flags.allows_duplicate_labels is True
|
29 |
+
|
30 |
+
result = cls(data).set_flags(allows_duplicate_labels=False)
|
31 |
+
assert result.flags.allows_duplicate_labels is False
|
32 |
+
|
33 |
+
@pytest.mark.parametrize(
|
34 |
+
"func",
|
35 |
+
[
|
36 |
+
operator.itemgetter(["a"]),
|
37 |
+
operator.methodcaller("add", 1),
|
38 |
+
operator.methodcaller("rename", str.upper),
|
39 |
+
operator.methodcaller("rename", "name"),
|
40 |
+
operator.methodcaller("abs"),
|
41 |
+
np.abs,
|
42 |
+
],
|
43 |
+
)
|
44 |
+
def test_preserved_series(self, func):
|
45 |
+
s = pd.Series([0, 1], index=["a", "b"]).set_flags(allows_duplicate_labels=False)
|
46 |
+
assert func(s).flags.allows_duplicate_labels is False
|
47 |
+
|
48 |
+
@pytest.mark.parametrize(
|
49 |
+
"other", [pd.Series(0, index=["a", "b", "c"]), pd.Series(0, index=["a", "b"])]
|
50 |
+
)
|
51 |
+
# TODO: frame
|
52 |
+
@not_implemented
|
53 |
+
def test_align(self, other):
|
54 |
+
s = pd.Series([0, 1], index=["a", "b"]).set_flags(allows_duplicate_labels=False)
|
55 |
+
a, b = s.align(other)
|
56 |
+
assert a.flags.allows_duplicate_labels is False
|
57 |
+
assert b.flags.allows_duplicate_labels is False
|
58 |
+
|
59 |
+
def test_preserved_frame(self):
|
60 |
+
df = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "b"]).set_flags(
|
61 |
+
allows_duplicate_labels=False
|
62 |
+
)
|
63 |
+
assert df.loc[["a"]].flags.allows_duplicate_labels is False
|
64 |
+
assert df.loc[:, ["A", "B"]].flags.allows_duplicate_labels is False
|
65 |
+
|
66 |
+
def test_to_frame(self):
|
67 |
+
ser = pd.Series(dtype=float).set_flags(allows_duplicate_labels=False)
|
68 |
+
assert ser.to_frame().flags.allows_duplicate_labels is False
|
69 |
+
|
70 |
+
@pytest.mark.parametrize("func", ["add", "sub"])
|
71 |
+
@pytest.mark.parametrize("frame", [False, True])
|
72 |
+
@pytest.mark.parametrize("other", [1, pd.Series([1, 2], name="A")])
|
73 |
+
def test_binops(self, func, other, frame):
|
74 |
+
df = pd.Series([1, 2], name="A", index=["a", "b"]).set_flags(
|
75 |
+
allows_duplicate_labels=False
|
76 |
+
)
|
77 |
+
if frame:
|
78 |
+
df = df.to_frame()
|
79 |
+
if isinstance(other, pd.Series) and frame:
|
80 |
+
other = other.to_frame()
|
81 |
+
func = operator.methodcaller(func, other)
|
82 |
+
assert df.flags.allows_duplicate_labels is False
|
83 |
+
assert func(df).flags.allows_duplicate_labels is False
|
84 |
+
|
85 |
+
def test_preserve_getitem(self):
|
86 |
+
df = pd.DataFrame({"A": [1, 2]}).set_flags(allows_duplicate_labels=False)
|
87 |
+
assert df[["A"]].flags.allows_duplicate_labels is False
|
88 |
+
assert df["A"].flags.allows_duplicate_labels is False
|
89 |
+
assert df.loc[0].flags.allows_duplicate_labels is False
|
90 |
+
assert df.loc[[0]].flags.allows_duplicate_labels is False
|
91 |
+
assert df.loc[0, ["A"]].flags.allows_duplicate_labels is False
|
92 |
+
|
93 |
+
def test_ndframe_getitem_caching_issue(
|
94 |
+
self, request, using_copy_on_write, warn_copy_on_write
|
95 |
+
):
|
96 |
+
if not (using_copy_on_write or warn_copy_on_write):
|
97 |
+
request.applymarker(pytest.mark.xfail(reason="Unclear behavior."))
|
98 |
+
# NDFrame.__getitem__ will cache the first df['A']. May need to
|
99 |
+
# invalidate that cache? Update the cached entries?
|
100 |
+
df = pd.DataFrame({"A": [0]}).set_flags(allows_duplicate_labels=False)
|
101 |
+
assert df["A"].flags.allows_duplicate_labels is False
|
102 |
+
df.flags.allows_duplicate_labels = True
|
103 |
+
assert df["A"].flags.allows_duplicate_labels is True
|
104 |
+
|
105 |
+
@pytest.mark.parametrize(
|
106 |
+
"objs, kwargs",
|
107 |
+
[
|
108 |
+
# Series
|
109 |
+
(
|
110 |
+
[
|
111 |
+
pd.Series(1, index=["a", "b"]),
|
112 |
+
pd.Series(2, index=["c", "d"]),
|
113 |
+
],
|
114 |
+
{},
|
115 |
+
),
|
116 |
+
(
|
117 |
+
[
|
118 |
+
pd.Series(1, index=["a", "b"]),
|
119 |
+
pd.Series(2, index=["a", "b"]),
|
120 |
+
],
|
121 |
+
{"ignore_index": True},
|
122 |
+
),
|
123 |
+
(
|
124 |
+
[
|
125 |
+
pd.Series(1, index=["a", "b"]),
|
126 |
+
pd.Series(2, index=["a", "b"]),
|
127 |
+
],
|
128 |
+
{"axis": 1},
|
129 |
+
),
|
130 |
+
# Frame
|
131 |
+
(
|
132 |
+
[
|
133 |
+
pd.DataFrame({"A": [1, 2]}, index=["a", "b"]),
|
134 |
+
pd.DataFrame({"A": [1, 2]}, index=["c", "d"]),
|
135 |
+
],
|
136 |
+
{},
|
137 |
+
),
|
138 |
+
(
|
139 |
+
[
|
140 |
+
pd.DataFrame({"A": [1, 2]}, index=["a", "b"]),
|
141 |
+
pd.DataFrame({"A": [1, 2]}, index=["a", "b"]),
|
142 |
+
],
|
143 |
+
{"ignore_index": True},
|
144 |
+
),
|
145 |
+
(
|
146 |
+
[
|
147 |
+
pd.DataFrame({"A": [1, 2]}, index=["a", "b"]),
|
148 |
+
pd.DataFrame({"B": [1, 2]}, index=["a", "b"]),
|
149 |
+
],
|
150 |
+
{"axis": 1},
|
151 |
+
),
|
152 |
+
# Series / Frame
|
153 |
+
(
|
154 |
+
[
|
155 |
+
pd.DataFrame({"A": [1, 2]}, index=["a", "b"]),
|
156 |
+
pd.Series([1, 2], index=["a", "b"], name="B"),
|
157 |
+
],
|
158 |
+
{"axis": 1},
|
159 |
+
),
|
160 |
+
],
|
161 |
+
)
|
162 |
+
def test_concat(self, objs, kwargs):
|
163 |
+
objs = [x.set_flags(allows_duplicate_labels=False) for x in objs]
|
164 |
+
result = pd.concat(objs, **kwargs)
|
165 |
+
assert result.flags.allows_duplicate_labels is False
|
166 |
+
|
167 |
+
@pytest.mark.parametrize(
|
168 |
+
"left, right, expected",
|
169 |
+
[
|
170 |
+
# false false false
|
171 |
+
pytest.param(
|
172 |
+
pd.DataFrame({"A": [0, 1]}, index=["a", "b"]).set_flags(
|
173 |
+
allows_duplicate_labels=False
|
174 |
+
),
|
175 |
+
pd.DataFrame({"B": [0, 1]}, index=["a", "d"]).set_flags(
|
176 |
+
allows_duplicate_labels=False
|
177 |
+
),
|
178 |
+
False,
|
179 |
+
marks=not_implemented,
|
180 |
+
),
|
181 |
+
# false true false
|
182 |
+
pytest.param(
|
183 |
+
pd.DataFrame({"A": [0, 1]}, index=["a", "b"]).set_flags(
|
184 |
+
allows_duplicate_labels=False
|
185 |
+
),
|
186 |
+
pd.DataFrame({"B": [0, 1]}, index=["a", "d"]),
|
187 |
+
False,
|
188 |
+
marks=not_implemented,
|
189 |
+
),
|
190 |
+
# true true true
|
191 |
+
(
|
192 |
+
pd.DataFrame({"A": [0, 1]}, index=["a", "b"]),
|
193 |
+
pd.DataFrame({"B": [0, 1]}, index=["a", "d"]),
|
194 |
+
True,
|
195 |
+
),
|
196 |
+
],
|
197 |
+
)
|
198 |
+
def test_merge(self, left, right, expected):
|
199 |
+
result = pd.merge(left, right, left_index=True, right_index=True)
|
200 |
+
assert result.flags.allows_duplicate_labels is expected
|
201 |
+
|
202 |
+
@not_implemented
|
203 |
+
def test_groupby(self):
|
204 |
+
# XXX: This is under tested
|
205 |
+
# TODO:
|
206 |
+
# - apply
|
207 |
+
# - transform
|
208 |
+
# - Should passing a grouper that disallows duplicates propagate?
|
209 |
+
df = pd.DataFrame({"A": [1, 2, 3]}).set_flags(allows_duplicate_labels=False)
|
210 |
+
result = df.groupby([0, 0, 1]).agg("count")
|
211 |
+
assert result.flags.allows_duplicate_labels is False
|
212 |
+
|
213 |
+
@pytest.mark.parametrize("frame", [True, False])
|
214 |
+
@not_implemented
|
215 |
+
def test_window(self, frame):
|
216 |
+
df = pd.Series(
|
217 |
+
1,
|
218 |
+
index=pd.date_range("2000", periods=12),
|
219 |
+
name="A",
|
220 |
+
allows_duplicate_labels=False,
|
221 |
+
)
|
222 |
+
if frame:
|
223 |
+
df = df.to_frame()
|
224 |
+
assert df.rolling(3).mean().flags.allows_duplicate_labels is False
|
225 |
+
assert df.ewm(3).mean().flags.allows_duplicate_labels is False
|
226 |
+
assert df.expanding(3).mean().flags.allows_duplicate_labels is False
|
227 |
+
|
228 |
+
|
229 |
+
# ----------------------------------------------------------------------------
|
230 |
+
# Raises
|
231 |
+
|
232 |
+
|
233 |
+
class TestRaises:
|
234 |
+
@pytest.mark.parametrize(
|
235 |
+
"cls, axes",
|
236 |
+
[
|
237 |
+
(pd.Series, {"index": ["a", "a"], "dtype": float}),
|
238 |
+
(pd.DataFrame, {"index": ["a", "a"]}),
|
239 |
+
(pd.DataFrame, {"index": ["a", "a"], "columns": ["b", "b"]}),
|
240 |
+
(pd.DataFrame, {"columns": ["b", "b"]}),
|
241 |
+
],
|
242 |
+
)
|
243 |
+
def test_set_flags_with_duplicates(self, cls, axes):
|
244 |
+
result = cls(**axes)
|
245 |
+
assert result.flags.allows_duplicate_labels is True
|
246 |
+
|
247 |
+
msg = "Index has duplicates."
|
248 |
+
with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
|
249 |
+
cls(**axes).set_flags(allows_duplicate_labels=False)
|
250 |
+
|
251 |
+
@pytest.mark.parametrize(
|
252 |
+
"data",
|
253 |
+
[
|
254 |
+
pd.Series(index=[0, 0], dtype=float),
|
255 |
+
pd.DataFrame(index=[0, 0]),
|
256 |
+
pd.DataFrame(columns=[0, 0]),
|
257 |
+
],
|
258 |
+
)
|
259 |
+
def test_setting_allows_duplicate_labels_raises(self, data):
|
260 |
+
msg = "Index has duplicates."
|
261 |
+
with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
|
262 |
+
data.flags.allows_duplicate_labels = False
|
263 |
+
|
264 |
+
assert data.flags.allows_duplicate_labels is True
|
265 |
+
|
266 |
+
def test_series_raises(self):
|
267 |
+
a = pd.Series(0, index=["a", "b"])
|
268 |
+
b = pd.Series([0, 1], index=["a", "b"]).set_flags(allows_duplicate_labels=False)
|
269 |
+
msg = "Index has duplicates."
|
270 |
+
with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
|
271 |
+
pd.concat([a, b])
|
272 |
+
|
273 |
+
@pytest.mark.parametrize(
|
274 |
+
"getter, target",
|
275 |
+
[
|
276 |
+
(operator.itemgetter(["A", "A"]), None),
|
277 |
+
# loc
|
278 |
+
(operator.itemgetter(["a", "a"]), "loc"),
|
279 |
+
pytest.param(operator.itemgetter(("a", ["A", "A"])), "loc"),
|
280 |
+
(operator.itemgetter((["a", "a"], "A")), "loc"),
|
281 |
+
# iloc
|
282 |
+
(operator.itemgetter([0, 0]), "iloc"),
|
283 |
+
pytest.param(operator.itemgetter((0, [0, 0])), "iloc"),
|
284 |
+
pytest.param(operator.itemgetter(([0, 0], 0)), "iloc"),
|
285 |
+
],
|
286 |
+
)
|
287 |
+
def test_getitem_raises(self, getter, target):
|
288 |
+
df = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "b"]).set_flags(
|
289 |
+
allows_duplicate_labels=False
|
290 |
+
)
|
291 |
+
if target:
|
292 |
+
# df, df.loc, or df.iloc
|
293 |
+
target = getattr(df, target)
|
294 |
+
else:
|
295 |
+
target = df
|
296 |
+
|
297 |
+
msg = "Index has duplicates."
|
298 |
+
with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
|
299 |
+
getter(target)
|
300 |
+
|
301 |
+
@pytest.mark.parametrize(
|
302 |
+
"objs, kwargs",
|
303 |
+
[
|
304 |
+
(
|
305 |
+
[
|
306 |
+
pd.Series(1, index=[0, 1], name="a"),
|
307 |
+
pd.Series(2, index=[0, 1], name="a"),
|
308 |
+
],
|
309 |
+
{"axis": 1},
|
310 |
+
)
|
311 |
+
],
|
312 |
+
)
|
313 |
+
def test_concat_raises(self, objs, kwargs):
|
314 |
+
objs = [x.set_flags(allows_duplicate_labels=False) for x in objs]
|
315 |
+
msg = "Index has duplicates."
|
316 |
+
with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
|
317 |
+
pd.concat(objs, **kwargs)
|
318 |
+
|
319 |
+
@not_implemented
|
320 |
+
def test_merge_raises(self):
|
321 |
+
a = pd.DataFrame({"A": [0, 1, 2]}, index=["a", "b", "c"]).set_flags(
|
322 |
+
allows_duplicate_labels=False
|
323 |
+
)
|
324 |
+
b = pd.DataFrame({"B": [0, 1, 2]}, index=["a", "b", "b"])
|
325 |
+
msg = "Index has duplicates."
|
326 |
+
with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
|
327 |
+
pd.merge(a, b, left_index=True, right_index=True)
|
328 |
+
|
329 |
+
|
330 |
+
@pytest.mark.parametrize(
|
331 |
+
"idx",
|
332 |
+
[
|
333 |
+
pd.Index([1, 1]),
|
334 |
+
pd.Index(["a", "a"]),
|
335 |
+
pd.Index([1.1, 1.1]),
|
336 |
+
pd.PeriodIndex([pd.Period("2000", "D")] * 2),
|
337 |
+
pd.DatetimeIndex([pd.Timestamp("2000")] * 2),
|
338 |
+
pd.TimedeltaIndex([pd.Timedelta("1D")] * 2),
|
339 |
+
pd.CategoricalIndex(["a", "a"]),
|
340 |
+
pd.IntervalIndex([pd.Interval(0, 1)] * 2),
|
341 |
+
pd.MultiIndex.from_tuples([("a", 1), ("a", 1)]),
|
342 |
+
],
|
343 |
+
ids=lambda x: type(x).__name__,
|
344 |
+
)
|
345 |
+
def test_raises_basic(idx):
|
346 |
+
msg = "Index has duplicates."
|
347 |
+
with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
|
348 |
+
pd.Series(1, index=idx).set_flags(allows_duplicate_labels=False)
|
349 |
+
|
350 |
+
with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
|
351 |
+
pd.DataFrame({"A": [1, 1]}, index=idx).set_flags(allows_duplicate_labels=False)
|
352 |
+
|
353 |
+
with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
|
354 |
+
pd.DataFrame([[1, 2]], columns=idx).set_flags(allows_duplicate_labels=False)
|
355 |
+
|
356 |
+
|
357 |
+
def test_format_duplicate_labels_message():
|
358 |
+
idx = pd.Index(["a", "b", "a", "b", "c"])
|
359 |
+
result = idx._format_duplicate_message()
|
360 |
+
expected = pd.DataFrame(
|
361 |
+
{"positions": [[0, 2], [1, 3]]}, index=pd.Index(["a", "b"], name="label")
|
362 |
+
)
|
363 |
+
tm.assert_frame_equal(result, expected)
|
364 |
+
|
365 |
+
|
366 |
+
def test_format_duplicate_labels_message_multi():
|
367 |
+
idx = pd.MultiIndex.from_product([["A"], ["a", "b", "a", "b", "c"]])
|
368 |
+
result = idx._format_duplicate_message()
|
369 |
+
expected = pd.DataFrame(
|
370 |
+
{"positions": [[0, 2], [1, 3]]},
|
371 |
+
index=pd.MultiIndex.from_product([["A"], ["a", "b"]]),
|
372 |
+
)
|
373 |
+
tm.assert_frame_equal(result, expected)
|
374 |
+
|
375 |
+
|
376 |
+
def test_dataframe_insert_raises():
|
377 |
+
df = pd.DataFrame({"A": [1, 2]}).set_flags(allows_duplicate_labels=False)
|
378 |
+
msg = "Cannot specify"
|
379 |
+
with pytest.raises(ValueError, match=msg):
|
380 |
+
df.insert(0, "A", [3, 4], allow_duplicates=True)
|
381 |
+
|
382 |
+
|
383 |
+
@pytest.mark.parametrize(
|
384 |
+
"method, frame_only",
|
385 |
+
[
|
386 |
+
(operator.methodcaller("set_index", "A", inplace=True), True),
|
387 |
+
(operator.methodcaller("reset_index", inplace=True), True),
|
388 |
+
(operator.methodcaller("rename", lambda x: x, inplace=True), False),
|
389 |
+
],
|
390 |
+
)
|
391 |
+
def test_inplace_raises(method, frame_only):
|
392 |
+
df = pd.DataFrame({"A": [0, 0], "B": [1, 2]}).set_flags(
|
393 |
+
allows_duplicate_labels=False
|
394 |
+
)
|
395 |
+
s = df["A"]
|
396 |
+
s.flags.allows_duplicate_labels = False
|
397 |
+
msg = "Cannot specify"
|
398 |
+
|
399 |
+
with pytest.raises(ValueError, match=msg):
|
400 |
+
method(df)
|
401 |
+
if not frame_only:
|
402 |
+
with pytest.raises(ValueError, match=msg):
|
403 |
+
method(s)
|
404 |
+
|
405 |
+
|
406 |
+
def test_pickle():
|
407 |
+
a = pd.Series([1, 2]).set_flags(allows_duplicate_labels=False)
|
408 |
+
b = tm.round_trip_pickle(a)
|
409 |
+
tm.assert_series_equal(a, b)
|
410 |
+
|
411 |
+
a = pd.DataFrame({"A": []}).set_flags(allows_duplicate_labels=False)
|
412 |
+
b = tm.round_trip_pickle(a)
|
413 |
+
tm.assert_frame_equal(a, b)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_finalize.py
ADDED
@@ -0,0 +1,767 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
An exhaustive list of pandas methods exercising NDFrame.__finalize__.
|
3 |
+
"""
|
4 |
+
import operator
|
5 |
+
import re
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pytest
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import pandas._testing as tm
|
12 |
+
|
13 |
+
# TODO:
|
14 |
+
# * Binary methods (mul, div, etc.)
|
15 |
+
# * Binary outputs (align, etc.)
|
16 |
+
# * top-level methods (concat, merge, get_dummies, etc.)
|
17 |
+
# * window
|
18 |
+
# * cumulative reductions
|
19 |
+
|
20 |
+
not_implemented_mark = pytest.mark.xfail(reason="not implemented")
|
21 |
+
|
22 |
+
mi = pd.MultiIndex.from_product([["a", "b"], [0, 1]], names=["A", "B"])
|
23 |
+
|
24 |
+
frame_data = ({"A": [1]},)
|
25 |
+
frame_mi_data = ({"A": [1, 2, 3, 4]}, mi)
|
26 |
+
|
27 |
+
|
28 |
+
# Tuple of
|
29 |
+
# - Callable: Constructor (Series, DataFrame)
|
30 |
+
# - Tuple: Constructor args
|
31 |
+
# - Callable: pass the constructed value with attrs set to this.
|
32 |
+
|
33 |
+
_all_methods = [
|
34 |
+
(pd.Series, ([0],), operator.methodcaller("take", [])),
|
35 |
+
(pd.Series, ([0],), operator.methodcaller("__getitem__", [True])),
|
36 |
+
(pd.Series, ([0],), operator.methodcaller("repeat", 2)),
|
37 |
+
(pd.Series, ([0],), operator.methodcaller("reset_index")),
|
38 |
+
(pd.Series, ([0],), operator.methodcaller("reset_index", drop=True)),
|
39 |
+
(pd.Series, ([0],), operator.methodcaller("to_frame")),
|
40 |
+
(pd.Series, ([0, 0],), operator.methodcaller("drop_duplicates")),
|
41 |
+
(pd.Series, ([0, 0],), operator.methodcaller("duplicated")),
|
42 |
+
(pd.Series, ([0, 0],), operator.methodcaller("round")),
|
43 |
+
(pd.Series, ([0, 0],), operator.methodcaller("rename", lambda x: x + 1)),
|
44 |
+
(pd.Series, ([0, 0],), operator.methodcaller("rename", "name")),
|
45 |
+
(pd.Series, ([0, 0],), operator.methodcaller("set_axis", ["a", "b"])),
|
46 |
+
(pd.Series, ([0, 0],), operator.methodcaller("reindex", [1, 0])),
|
47 |
+
(pd.Series, ([0, 0],), operator.methodcaller("drop", [0])),
|
48 |
+
(pd.Series, (pd.array([0, pd.NA]),), operator.methodcaller("fillna", 0)),
|
49 |
+
(pd.Series, ([0, 0],), operator.methodcaller("replace", {0: 1})),
|
50 |
+
(pd.Series, ([0, 0],), operator.methodcaller("shift")),
|
51 |
+
(pd.Series, ([0, 0],), operator.methodcaller("isin", [0, 1])),
|
52 |
+
(pd.Series, ([0, 0],), operator.methodcaller("between", 0, 2)),
|
53 |
+
(pd.Series, ([0, 0],), operator.methodcaller("isna")),
|
54 |
+
(pd.Series, ([0, 0],), operator.methodcaller("isnull")),
|
55 |
+
(pd.Series, ([0, 0],), operator.methodcaller("notna")),
|
56 |
+
(pd.Series, ([0, 0],), operator.methodcaller("notnull")),
|
57 |
+
(pd.Series, ([1],), operator.methodcaller("add", pd.Series([1]))),
|
58 |
+
# TODO: mul, div, etc.
|
59 |
+
(
|
60 |
+
pd.Series,
|
61 |
+
([0], pd.period_range("2000", periods=1)),
|
62 |
+
operator.methodcaller("to_timestamp"),
|
63 |
+
),
|
64 |
+
(
|
65 |
+
pd.Series,
|
66 |
+
([0], pd.date_range("2000", periods=1)),
|
67 |
+
operator.methodcaller("to_period"),
|
68 |
+
),
|
69 |
+
pytest.param(
|
70 |
+
(
|
71 |
+
pd.DataFrame,
|
72 |
+
frame_data,
|
73 |
+
operator.methodcaller("dot", pd.DataFrame(index=["A"])),
|
74 |
+
),
|
75 |
+
marks=pytest.mark.xfail(reason="Implement binary finalize"),
|
76 |
+
),
|
77 |
+
(pd.DataFrame, frame_data, operator.methodcaller("transpose")),
|
78 |
+
(pd.DataFrame, frame_data, operator.methodcaller("__getitem__", "A")),
|
79 |
+
(pd.DataFrame, frame_data, operator.methodcaller("__getitem__", ["A"])),
|
80 |
+
(pd.DataFrame, frame_data, operator.methodcaller("__getitem__", np.array([True]))),
|
81 |
+
(pd.DataFrame, ({("A", "a"): [1]},), operator.methodcaller("__getitem__", ["A"])),
|
82 |
+
(pd.DataFrame, frame_data, operator.methodcaller("query", "A == 1")),
|
83 |
+
(pd.DataFrame, frame_data, operator.methodcaller("eval", "A + 1", engine="python")),
|
84 |
+
(pd.DataFrame, frame_data, operator.methodcaller("select_dtypes", include="int")),
|
85 |
+
(pd.DataFrame, frame_data, operator.methodcaller("assign", b=1)),
|
86 |
+
(pd.DataFrame, frame_data, operator.methodcaller("set_axis", ["A"])),
|
87 |
+
(pd.DataFrame, frame_data, operator.methodcaller("reindex", [0, 1])),
|
88 |
+
(pd.DataFrame, frame_data, operator.methodcaller("drop", columns=["A"])),
|
89 |
+
(pd.DataFrame, frame_data, operator.methodcaller("drop", index=[0])),
|
90 |
+
(pd.DataFrame, frame_data, operator.methodcaller("rename", columns={"A": "a"})),
|
91 |
+
(pd.DataFrame, frame_data, operator.methodcaller("rename", index=lambda x: x)),
|
92 |
+
(pd.DataFrame, frame_data, operator.methodcaller("fillna", "A")),
|
93 |
+
(pd.DataFrame, frame_data, operator.methodcaller("fillna", method="ffill")),
|
94 |
+
(pd.DataFrame, frame_data, operator.methodcaller("set_index", "A")),
|
95 |
+
(pd.DataFrame, frame_data, operator.methodcaller("reset_index")),
|
96 |
+
(pd.DataFrame, frame_data, operator.methodcaller("isna")),
|
97 |
+
(pd.DataFrame, frame_data, operator.methodcaller("isnull")),
|
98 |
+
(pd.DataFrame, frame_data, operator.methodcaller("notna")),
|
99 |
+
(pd.DataFrame, frame_data, operator.methodcaller("notnull")),
|
100 |
+
(pd.DataFrame, frame_data, operator.methodcaller("dropna")),
|
101 |
+
(pd.DataFrame, frame_data, operator.methodcaller("drop_duplicates")),
|
102 |
+
(pd.DataFrame, frame_data, operator.methodcaller("duplicated")),
|
103 |
+
(pd.DataFrame, frame_data, operator.methodcaller("sort_values", by="A")),
|
104 |
+
(pd.DataFrame, frame_data, operator.methodcaller("sort_index")),
|
105 |
+
(pd.DataFrame, frame_data, operator.methodcaller("nlargest", 1, "A")),
|
106 |
+
(pd.DataFrame, frame_data, operator.methodcaller("nsmallest", 1, "A")),
|
107 |
+
(pd.DataFrame, frame_mi_data, operator.methodcaller("swaplevel")),
|
108 |
+
(
|
109 |
+
pd.DataFrame,
|
110 |
+
frame_data,
|
111 |
+
operator.methodcaller("add", pd.DataFrame(*frame_data)),
|
112 |
+
),
|
113 |
+
# TODO: div, mul, etc.
|
114 |
+
(
|
115 |
+
pd.DataFrame,
|
116 |
+
frame_data,
|
117 |
+
operator.methodcaller("combine", pd.DataFrame(*frame_data), operator.add),
|
118 |
+
),
|
119 |
+
(
|
120 |
+
pd.DataFrame,
|
121 |
+
frame_data,
|
122 |
+
operator.methodcaller("combine_first", pd.DataFrame(*frame_data)),
|
123 |
+
),
|
124 |
+
pytest.param(
|
125 |
+
(
|
126 |
+
pd.DataFrame,
|
127 |
+
frame_data,
|
128 |
+
operator.methodcaller("update", pd.DataFrame(*frame_data)),
|
129 |
+
),
|
130 |
+
marks=not_implemented_mark,
|
131 |
+
),
|
132 |
+
(pd.DataFrame, frame_data, operator.methodcaller("pivot", columns="A")),
|
133 |
+
(
|
134 |
+
pd.DataFrame,
|
135 |
+
({"A": [1], "B": [1]},),
|
136 |
+
operator.methodcaller("pivot_table", columns="A"),
|
137 |
+
),
|
138 |
+
(
|
139 |
+
pd.DataFrame,
|
140 |
+
({"A": [1], "B": [1]},),
|
141 |
+
operator.methodcaller("pivot_table", columns="A", aggfunc=["mean", "sum"]),
|
142 |
+
),
|
143 |
+
(pd.DataFrame, frame_data, operator.methodcaller("stack")),
|
144 |
+
(pd.DataFrame, frame_data, operator.methodcaller("explode", "A")),
|
145 |
+
(pd.DataFrame, frame_mi_data, operator.methodcaller("unstack")),
|
146 |
+
(
|
147 |
+
pd.DataFrame,
|
148 |
+
({"A": ["a", "b", "c"], "B": [1, 3, 5], "C": [2, 4, 6]},),
|
149 |
+
operator.methodcaller("melt", id_vars=["A"], value_vars=["B"]),
|
150 |
+
),
|
151 |
+
(pd.DataFrame, frame_data, operator.methodcaller("map", lambda x: x)),
|
152 |
+
pytest.param(
|
153 |
+
(
|
154 |
+
pd.DataFrame,
|
155 |
+
frame_data,
|
156 |
+
operator.methodcaller("merge", pd.DataFrame({"A": [1]})),
|
157 |
+
),
|
158 |
+
marks=not_implemented_mark,
|
159 |
+
),
|
160 |
+
(pd.DataFrame, frame_data, operator.methodcaller("round", 2)),
|
161 |
+
(pd.DataFrame, frame_data, operator.methodcaller("corr")),
|
162 |
+
pytest.param(
|
163 |
+
(pd.DataFrame, frame_data, operator.methodcaller("cov")),
|
164 |
+
marks=[
|
165 |
+
pytest.mark.filterwarnings("ignore::RuntimeWarning"),
|
166 |
+
],
|
167 |
+
),
|
168 |
+
(
|
169 |
+
pd.DataFrame,
|
170 |
+
frame_data,
|
171 |
+
operator.methodcaller("corrwith", pd.DataFrame(*frame_data)),
|
172 |
+
),
|
173 |
+
(pd.DataFrame, frame_data, operator.methodcaller("count")),
|
174 |
+
(pd.DataFrame, frame_data, operator.methodcaller("nunique")),
|
175 |
+
(pd.DataFrame, frame_data, operator.methodcaller("idxmin")),
|
176 |
+
(pd.DataFrame, frame_data, operator.methodcaller("idxmax")),
|
177 |
+
(pd.DataFrame, frame_data, operator.methodcaller("mode")),
|
178 |
+
(pd.Series, [0], operator.methodcaller("mode")),
|
179 |
+
(pd.DataFrame, frame_data, operator.methodcaller("median")),
|
180 |
+
(
|
181 |
+
pd.DataFrame,
|
182 |
+
frame_data,
|
183 |
+
operator.methodcaller("quantile", numeric_only=True),
|
184 |
+
),
|
185 |
+
(
|
186 |
+
pd.DataFrame,
|
187 |
+
frame_data,
|
188 |
+
operator.methodcaller("quantile", q=[0.25, 0.75], numeric_only=True),
|
189 |
+
),
|
190 |
+
(
|
191 |
+
pd.DataFrame,
|
192 |
+
({"A": [pd.Timedelta(days=1), pd.Timedelta(days=2)]},),
|
193 |
+
operator.methodcaller("quantile", numeric_only=False),
|
194 |
+
),
|
195 |
+
(
|
196 |
+
pd.DataFrame,
|
197 |
+
({"A": [np.datetime64("2022-01-01"), np.datetime64("2022-01-02")]},),
|
198 |
+
operator.methodcaller("quantile", numeric_only=True),
|
199 |
+
),
|
200 |
+
(
|
201 |
+
pd.DataFrame,
|
202 |
+
({"A": [1]}, [pd.Period("2000", "D")]),
|
203 |
+
operator.methodcaller("to_timestamp"),
|
204 |
+
),
|
205 |
+
(
|
206 |
+
pd.DataFrame,
|
207 |
+
({"A": [1]}, [pd.Timestamp("2000")]),
|
208 |
+
operator.methodcaller("to_period", freq="D"),
|
209 |
+
),
|
210 |
+
(pd.DataFrame, frame_mi_data, operator.methodcaller("isin", [1])),
|
211 |
+
(pd.DataFrame, frame_mi_data, operator.methodcaller("isin", pd.Series([1]))),
|
212 |
+
(
|
213 |
+
pd.DataFrame,
|
214 |
+
frame_mi_data,
|
215 |
+
operator.methodcaller("isin", pd.DataFrame({"A": [1]})),
|
216 |
+
),
|
217 |
+
(pd.DataFrame, frame_mi_data, operator.methodcaller("droplevel", "A")),
|
218 |
+
(pd.DataFrame, frame_data, operator.methodcaller("pop", "A")),
|
219 |
+
# Squeeze on columns, otherwise we'll end up with a scalar
|
220 |
+
(pd.DataFrame, frame_data, operator.methodcaller("squeeze", axis="columns")),
|
221 |
+
(pd.Series, ([1, 2],), operator.methodcaller("squeeze")),
|
222 |
+
(pd.Series, ([1, 2],), operator.methodcaller("rename_axis", index="a")),
|
223 |
+
(pd.DataFrame, frame_data, operator.methodcaller("rename_axis", columns="a")),
|
224 |
+
# Unary ops
|
225 |
+
(pd.DataFrame, frame_data, operator.neg),
|
226 |
+
(pd.Series, [1], operator.neg),
|
227 |
+
(pd.DataFrame, frame_data, operator.pos),
|
228 |
+
(pd.Series, [1], operator.pos),
|
229 |
+
(pd.DataFrame, frame_data, operator.inv),
|
230 |
+
(pd.Series, [1], operator.inv),
|
231 |
+
(pd.DataFrame, frame_data, abs),
|
232 |
+
(pd.Series, [1], abs),
|
233 |
+
(pd.DataFrame, frame_data, round),
|
234 |
+
(pd.Series, [1], round),
|
235 |
+
(pd.DataFrame, frame_data, operator.methodcaller("take", [0, 0])),
|
236 |
+
(pd.DataFrame, frame_mi_data, operator.methodcaller("xs", "a")),
|
237 |
+
(pd.Series, (1, mi), operator.methodcaller("xs", "a")),
|
238 |
+
(pd.DataFrame, frame_data, operator.methodcaller("get", "A")),
|
239 |
+
(
|
240 |
+
pd.DataFrame,
|
241 |
+
frame_data,
|
242 |
+
operator.methodcaller("reindex_like", pd.DataFrame({"A": [1, 2, 3]})),
|
243 |
+
),
|
244 |
+
(
|
245 |
+
pd.Series,
|
246 |
+
frame_data,
|
247 |
+
operator.methodcaller("reindex_like", pd.Series([0, 1, 2])),
|
248 |
+
),
|
249 |
+
(pd.DataFrame, frame_data, operator.methodcaller("add_prefix", "_")),
|
250 |
+
(pd.DataFrame, frame_data, operator.methodcaller("add_suffix", "_")),
|
251 |
+
(pd.Series, (1, ["a", "b"]), operator.methodcaller("add_prefix", "_")),
|
252 |
+
(pd.Series, (1, ["a", "b"]), operator.methodcaller("add_suffix", "_")),
|
253 |
+
(pd.Series, ([3, 2],), operator.methodcaller("sort_values")),
|
254 |
+
(pd.Series, ([1] * 10,), operator.methodcaller("head")),
|
255 |
+
(pd.DataFrame, ({"A": [1] * 10},), operator.methodcaller("head")),
|
256 |
+
(pd.Series, ([1] * 10,), operator.methodcaller("tail")),
|
257 |
+
(pd.DataFrame, ({"A": [1] * 10},), operator.methodcaller("tail")),
|
258 |
+
(pd.Series, ([1, 2],), operator.methodcaller("sample", n=2, replace=True)),
|
259 |
+
(pd.DataFrame, (frame_data,), operator.methodcaller("sample", n=2, replace=True)),
|
260 |
+
(pd.Series, ([1, 2],), operator.methodcaller("astype", float)),
|
261 |
+
(pd.DataFrame, frame_data, operator.methodcaller("astype", float)),
|
262 |
+
(pd.Series, ([1, 2],), operator.methodcaller("copy")),
|
263 |
+
(pd.DataFrame, frame_data, operator.methodcaller("copy")),
|
264 |
+
(pd.Series, ([1, 2], None, object), operator.methodcaller("infer_objects")),
|
265 |
+
(
|
266 |
+
pd.DataFrame,
|
267 |
+
({"A": np.array([1, 2], dtype=object)},),
|
268 |
+
operator.methodcaller("infer_objects"),
|
269 |
+
),
|
270 |
+
(pd.Series, ([1, 2],), operator.methodcaller("convert_dtypes")),
|
271 |
+
(pd.DataFrame, frame_data, operator.methodcaller("convert_dtypes")),
|
272 |
+
(pd.Series, ([1, None, 3],), operator.methodcaller("interpolate")),
|
273 |
+
(pd.DataFrame, ({"A": [1, None, 3]},), operator.methodcaller("interpolate")),
|
274 |
+
(pd.Series, ([1, 2],), operator.methodcaller("clip", lower=1)),
|
275 |
+
(pd.DataFrame, frame_data, operator.methodcaller("clip", lower=1)),
|
276 |
+
(
|
277 |
+
pd.Series,
|
278 |
+
(1, pd.date_range("2000", periods=4)),
|
279 |
+
operator.methodcaller("asfreq", "h"),
|
280 |
+
),
|
281 |
+
(
|
282 |
+
pd.DataFrame,
|
283 |
+
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
|
284 |
+
operator.methodcaller("asfreq", "h"),
|
285 |
+
),
|
286 |
+
(
|
287 |
+
pd.Series,
|
288 |
+
(1, pd.date_range("2000", periods=4)),
|
289 |
+
operator.methodcaller("at_time", "12:00"),
|
290 |
+
),
|
291 |
+
(
|
292 |
+
pd.DataFrame,
|
293 |
+
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
|
294 |
+
operator.methodcaller("at_time", "12:00"),
|
295 |
+
),
|
296 |
+
(
|
297 |
+
pd.Series,
|
298 |
+
(1, pd.date_range("2000", periods=4)),
|
299 |
+
operator.methodcaller("between_time", "12:00", "13:00"),
|
300 |
+
),
|
301 |
+
(
|
302 |
+
pd.DataFrame,
|
303 |
+
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
|
304 |
+
operator.methodcaller("between_time", "12:00", "13:00"),
|
305 |
+
),
|
306 |
+
(
|
307 |
+
pd.Series,
|
308 |
+
(1, pd.date_range("2000", periods=4)),
|
309 |
+
operator.methodcaller("last", "3D"),
|
310 |
+
),
|
311 |
+
(
|
312 |
+
pd.DataFrame,
|
313 |
+
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
|
314 |
+
operator.methodcaller("last", "3D"),
|
315 |
+
),
|
316 |
+
(pd.Series, ([1, 2],), operator.methodcaller("rank")),
|
317 |
+
(pd.DataFrame, frame_data, operator.methodcaller("rank")),
|
318 |
+
(pd.Series, ([1, 2],), operator.methodcaller("where", np.array([True, False]))),
|
319 |
+
(pd.DataFrame, frame_data, operator.methodcaller("where", np.array([[True]]))),
|
320 |
+
(pd.Series, ([1, 2],), operator.methodcaller("mask", np.array([True, False]))),
|
321 |
+
(pd.DataFrame, frame_data, operator.methodcaller("mask", np.array([[True]]))),
|
322 |
+
(pd.Series, ([1, 2],), operator.methodcaller("truncate", before=0)),
|
323 |
+
(pd.DataFrame, frame_data, operator.methodcaller("truncate", before=0)),
|
324 |
+
(
|
325 |
+
pd.Series,
|
326 |
+
(1, pd.date_range("2000", periods=4, tz="UTC")),
|
327 |
+
operator.methodcaller("tz_convert", "CET"),
|
328 |
+
),
|
329 |
+
(
|
330 |
+
pd.DataFrame,
|
331 |
+
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4, tz="UTC")),
|
332 |
+
operator.methodcaller("tz_convert", "CET"),
|
333 |
+
),
|
334 |
+
(
|
335 |
+
pd.Series,
|
336 |
+
(1, pd.date_range("2000", periods=4)),
|
337 |
+
operator.methodcaller("tz_localize", "CET"),
|
338 |
+
),
|
339 |
+
(
|
340 |
+
pd.DataFrame,
|
341 |
+
({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
|
342 |
+
operator.methodcaller("tz_localize", "CET"),
|
343 |
+
),
|
344 |
+
(pd.Series, ([1, 2],), operator.methodcaller("describe")),
|
345 |
+
(pd.DataFrame, frame_data, operator.methodcaller("describe")),
|
346 |
+
(pd.Series, ([1, 2],), operator.methodcaller("pct_change")),
|
347 |
+
(pd.DataFrame, frame_data, operator.methodcaller("pct_change")),
|
348 |
+
(pd.Series, ([1],), operator.methodcaller("transform", lambda x: x - x.min())),
|
349 |
+
(
|
350 |
+
pd.DataFrame,
|
351 |
+
frame_mi_data,
|
352 |
+
operator.methodcaller("transform", lambda x: x - x.min()),
|
353 |
+
),
|
354 |
+
(pd.Series, ([1],), operator.methodcaller("apply", lambda x: x)),
|
355 |
+
(pd.DataFrame, frame_mi_data, operator.methodcaller("apply", lambda x: x)),
|
356 |
+
# Cumulative reductions
|
357 |
+
(pd.Series, ([1],), operator.methodcaller("cumsum")),
|
358 |
+
(pd.DataFrame, frame_data, operator.methodcaller("cumsum")),
|
359 |
+
(pd.Series, ([1],), operator.methodcaller("cummin")),
|
360 |
+
(pd.DataFrame, frame_data, operator.methodcaller("cummin")),
|
361 |
+
(pd.Series, ([1],), operator.methodcaller("cummax")),
|
362 |
+
(pd.DataFrame, frame_data, operator.methodcaller("cummax")),
|
363 |
+
(pd.Series, ([1],), operator.methodcaller("cumprod")),
|
364 |
+
(pd.DataFrame, frame_data, operator.methodcaller("cumprod")),
|
365 |
+
# Reductions
|
366 |
+
(pd.DataFrame, frame_data, operator.methodcaller("any")),
|
367 |
+
(pd.DataFrame, frame_data, operator.methodcaller("all")),
|
368 |
+
(pd.DataFrame, frame_data, operator.methodcaller("min")),
|
369 |
+
(pd.DataFrame, frame_data, operator.methodcaller("max")),
|
370 |
+
(pd.DataFrame, frame_data, operator.methodcaller("sum")),
|
371 |
+
(pd.DataFrame, frame_data, operator.methodcaller("std")),
|
372 |
+
(pd.DataFrame, frame_data, operator.methodcaller("mean")),
|
373 |
+
(pd.DataFrame, frame_data, operator.methodcaller("prod")),
|
374 |
+
(pd.DataFrame, frame_data, operator.methodcaller("sem")),
|
375 |
+
(pd.DataFrame, frame_data, operator.methodcaller("skew")),
|
376 |
+
(pd.DataFrame, frame_data, operator.methodcaller("kurt")),
|
377 |
+
]
|
378 |
+
|
379 |
+
|
380 |
+
def idfn(x):
|
381 |
+
xpr = re.compile(r"'(.*)?'")
|
382 |
+
m = xpr.search(str(x))
|
383 |
+
if m:
|
384 |
+
return m.group(1)
|
385 |
+
else:
|
386 |
+
return str(x)
|
387 |
+
|
388 |
+
|
389 |
+
@pytest.fixture(params=_all_methods, ids=lambda x: idfn(x[-1]))
|
390 |
+
def ndframe_method(request):
|
391 |
+
"""
|
392 |
+
An NDFrame method returning an NDFrame.
|
393 |
+
"""
|
394 |
+
return request.param
|
395 |
+
|
396 |
+
|
397 |
+
@pytest.mark.filterwarnings(
|
398 |
+
"ignore:DataFrame.fillna with 'method' is deprecated:FutureWarning",
|
399 |
+
"ignore:last is deprecated:FutureWarning",
|
400 |
+
)
|
401 |
+
def test_finalize_called(ndframe_method):
|
402 |
+
cls, init_args, method = ndframe_method
|
403 |
+
ndframe = cls(*init_args)
|
404 |
+
|
405 |
+
ndframe.attrs = {"a": 1}
|
406 |
+
result = method(ndframe)
|
407 |
+
|
408 |
+
assert result.attrs == {"a": 1}
|
409 |
+
|
410 |
+
|
411 |
+
@pytest.mark.parametrize(
|
412 |
+
"data",
|
413 |
+
[
|
414 |
+
pd.Series(1, pd.date_range("2000", periods=4)),
|
415 |
+
pd.DataFrame({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
|
416 |
+
],
|
417 |
+
)
|
418 |
+
def test_finalize_first(data):
|
419 |
+
deprecated_msg = "first is deprecated"
|
420 |
+
|
421 |
+
data.attrs = {"a": 1}
|
422 |
+
with tm.assert_produces_warning(FutureWarning, match=deprecated_msg):
|
423 |
+
result = data.first("3D")
|
424 |
+
assert result.attrs == {"a": 1}
|
425 |
+
|
426 |
+
|
427 |
+
@pytest.mark.parametrize(
|
428 |
+
"data",
|
429 |
+
[
|
430 |
+
pd.Series(1, pd.date_range("2000", periods=4)),
|
431 |
+
pd.DataFrame({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
|
432 |
+
],
|
433 |
+
)
|
434 |
+
def test_finalize_last(data):
|
435 |
+
# GH 53710
|
436 |
+
deprecated_msg = "last is deprecated"
|
437 |
+
|
438 |
+
data.attrs = {"a": 1}
|
439 |
+
with tm.assert_produces_warning(FutureWarning, match=deprecated_msg):
|
440 |
+
result = data.last("3D")
|
441 |
+
assert result.attrs == {"a": 1}
|
442 |
+
|
443 |
+
|
444 |
+
@not_implemented_mark
|
445 |
+
def test_finalize_called_eval_numexpr():
|
446 |
+
pytest.importorskip("numexpr")
|
447 |
+
df = pd.DataFrame({"A": [1, 2]})
|
448 |
+
df.attrs["A"] = 1
|
449 |
+
result = df.eval("A + 1", engine="numexpr")
|
450 |
+
assert result.attrs == {"A": 1}
|
451 |
+
|
452 |
+
|
453 |
+
# ----------------------------------------------------------------------------
|
454 |
+
# Binary operations
|
455 |
+
|
456 |
+
|
457 |
+
@pytest.mark.parametrize("annotate", ["left", "right", "both"])
|
458 |
+
@pytest.mark.parametrize(
|
459 |
+
"args",
|
460 |
+
[
|
461 |
+
(1, pd.Series([1])),
|
462 |
+
(1, pd.DataFrame({"A": [1]})),
|
463 |
+
(pd.Series([1]), 1),
|
464 |
+
(pd.DataFrame({"A": [1]}), 1),
|
465 |
+
(pd.Series([1]), pd.Series([1])),
|
466 |
+
(pd.DataFrame({"A": [1]}), pd.DataFrame({"A": [1]})),
|
467 |
+
(pd.Series([1]), pd.DataFrame({"A": [1]})),
|
468 |
+
(pd.DataFrame({"A": [1]}), pd.Series([1])),
|
469 |
+
],
|
470 |
+
ids=lambda x: f"({type(x[0]).__name__},{type(x[1]).__name__})",
|
471 |
+
)
|
472 |
+
def test_binops(request, args, annotate, all_binary_operators):
|
473 |
+
# This generates 624 tests... Is that needed?
|
474 |
+
left, right = args
|
475 |
+
if isinstance(left, (pd.DataFrame, pd.Series)):
|
476 |
+
left.attrs = {}
|
477 |
+
if isinstance(right, (pd.DataFrame, pd.Series)):
|
478 |
+
right.attrs = {}
|
479 |
+
|
480 |
+
if annotate == "left" and isinstance(left, int):
|
481 |
+
pytest.skip("left is an int and doesn't support .attrs")
|
482 |
+
if annotate == "right" and isinstance(right, int):
|
483 |
+
pytest.skip("right is an int and doesn't support .attrs")
|
484 |
+
|
485 |
+
if not (isinstance(left, int) or isinstance(right, int)) and annotate != "both":
|
486 |
+
if not all_binary_operators.__name__.startswith("r"):
|
487 |
+
if annotate == "right" and isinstance(left, type(right)):
|
488 |
+
request.applymarker(
|
489 |
+
pytest.mark.xfail(
|
490 |
+
reason=f"{all_binary_operators} doesn't work when right has "
|
491 |
+
f"attrs and both are {type(left)}"
|
492 |
+
)
|
493 |
+
)
|
494 |
+
if not isinstance(left, type(right)):
|
495 |
+
if annotate == "left" and isinstance(left, pd.Series):
|
496 |
+
request.applymarker(
|
497 |
+
pytest.mark.xfail(
|
498 |
+
reason=f"{all_binary_operators} doesn't work when the "
|
499 |
+
"objects are different Series has attrs"
|
500 |
+
)
|
501 |
+
)
|
502 |
+
elif annotate == "right" and isinstance(right, pd.Series):
|
503 |
+
request.applymarker(
|
504 |
+
pytest.mark.xfail(
|
505 |
+
reason=f"{all_binary_operators} doesn't work when the "
|
506 |
+
"objects are different Series has attrs"
|
507 |
+
)
|
508 |
+
)
|
509 |
+
else:
|
510 |
+
if annotate == "left" and isinstance(left, type(right)):
|
511 |
+
request.applymarker(
|
512 |
+
pytest.mark.xfail(
|
513 |
+
reason=f"{all_binary_operators} doesn't work when left has "
|
514 |
+
f"attrs and both are {type(left)}"
|
515 |
+
)
|
516 |
+
)
|
517 |
+
if not isinstance(left, type(right)):
|
518 |
+
if annotate == "right" and isinstance(right, pd.Series):
|
519 |
+
request.applymarker(
|
520 |
+
pytest.mark.xfail(
|
521 |
+
reason=f"{all_binary_operators} doesn't work when the "
|
522 |
+
"objects are different Series has attrs"
|
523 |
+
)
|
524 |
+
)
|
525 |
+
elif annotate == "left" and isinstance(left, pd.Series):
|
526 |
+
request.applymarker(
|
527 |
+
pytest.mark.xfail(
|
528 |
+
reason=f"{all_binary_operators} doesn't work when the "
|
529 |
+
"objects are different Series has attrs"
|
530 |
+
)
|
531 |
+
)
|
532 |
+
if annotate in {"left", "both"} and not isinstance(left, int):
|
533 |
+
left.attrs = {"a": 1}
|
534 |
+
if annotate in {"right", "both"} and not isinstance(right, int):
|
535 |
+
right.attrs = {"a": 1}
|
536 |
+
|
537 |
+
is_cmp = all_binary_operators in [
|
538 |
+
operator.eq,
|
539 |
+
operator.ne,
|
540 |
+
operator.gt,
|
541 |
+
operator.ge,
|
542 |
+
operator.lt,
|
543 |
+
operator.le,
|
544 |
+
]
|
545 |
+
if is_cmp and isinstance(left, pd.DataFrame) and isinstance(right, pd.Series):
|
546 |
+
# in 2.0 silent alignment on comparisons was removed xref GH#28759
|
547 |
+
left, right = left.align(right, axis=1, copy=False)
|
548 |
+
elif is_cmp and isinstance(left, pd.Series) and isinstance(right, pd.DataFrame):
|
549 |
+
right, left = right.align(left, axis=1, copy=False)
|
550 |
+
|
551 |
+
result = all_binary_operators(left, right)
|
552 |
+
assert result.attrs == {"a": 1}
|
553 |
+
|
554 |
+
|
555 |
+
# ----------------------------------------------------------------------------
|
556 |
+
# Accessors
|
557 |
+
|
558 |
+
|
559 |
+
@pytest.mark.parametrize(
|
560 |
+
"method",
|
561 |
+
[
|
562 |
+
operator.methodcaller("capitalize"),
|
563 |
+
operator.methodcaller("casefold"),
|
564 |
+
operator.methodcaller("cat", ["a"]),
|
565 |
+
operator.methodcaller("contains", "a"),
|
566 |
+
operator.methodcaller("count", "a"),
|
567 |
+
operator.methodcaller("encode", "utf-8"),
|
568 |
+
operator.methodcaller("endswith", "a"),
|
569 |
+
operator.methodcaller("extract", r"(\w)(\d)"),
|
570 |
+
operator.methodcaller("extract", r"(\w)(\d)", expand=False),
|
571 |
+
operator.methodcaller("find", "a"),
|
572 |
+
operator.methodcaller("findall", "a"),
|
573 |
+
operator.methodcaller("get", 0),
|
574 |
+
operator.methodcaller("index", "a"),
|
575 |
+
operator.methodcaller("len"),
|
576 |
+
operator.methodcaller("ljust", 4),
|
577 |
+
operator.methodcaller("lower"),
|
578 |
+
operator.methodcaller("lstrip"),
|
579 |
+
operator.methodcaller("match", r"\w"),
|
580 |
+
operator.methodcaller("normalize", "NFC"),
|
581 |
+
operator.methodcaller("pad", 4),
|
582 |
+
operator.methodcaller("partition", "a"),
|
583 |
+
operator.methodcaller("repeat", 2),
|
584 |
+
operator.methodcaller("replace", "a", "b"),
|
585 |
+
operator.methodcaller("rfind", "a"),
|
586 |
+
operator.methodcaller("rindex", "a"),
|
587 |
+
operator.methodcaller("rjust", 4),
|
588 |
+
operator.methodcaller("rpartition", "a"),
|
589 |
+
operator.methodcaller("rstrip"),
|
590 |
+
operator.methodcaller("slice", 4),
|
591 |
+
operator.methodcaller("slice_replace", 1, repl="a"),
|
592 |
+
operator.methodcaller("startswith", "a"),
|
593 |
+
operator.methodcaller("strip"),
|
594 |
+
operator.methodcaller("swapcase"),
|
595 |
+
operator.methodcaller("translate", {"a": "b"}),
|
596 |
+
operator.methodcaller("upper"),
|
597 |
+
operator.methodcaller("wrap", 4),
|
598 |
+
operator.methodcaller("zfill", 4),
|
599 |
+
operator.methodcaller("isalnum"),
|
600 |
+
operator.methodcaller("isalpha"),
|
601 |
+
operator.methodcaller("isdigit"),
|
602 |
+
operator.methodcaller("isspace"),
|
603 |
+
operator.methodcaller("islower"),
|
604 |
+
operator.methodcaller("isupper"),
|
605 |
+
operator.methodcaller("istitle"),
|
606 |
+
operator.methodcaller("isnumeric"),
|
607 |
+
operator.methodcaller("isdecimal"),
|
608 |
+
operator.methodcaller("get_dummies"),
|
609 |
+
],
|
610 |
+
ids=idfn,
|
611 |
+
)
|
612 |
+
def test_string_method(method):
|
613 |
+
s = pd.Series(["a1"])
|
614 |
+
s.attrs = {"a": 1}
|
615 |
+
result = method(s.str)
|
616 |
+
assert result.attrs == {"a": 1}
|
617 |
+
|
618 |
+
|
619 |
+
@pytest.mark.parametrize(
|
620 |
+
"method",
|
621 |
+
[
|
622 |
+
operator.methodcaller("to_period"),
|
623 |
+
operator.methodcaller("tz_localize", "CET"),
|
624 |
+
operator.methodcaller("normalize"),
|
625 |
+
operator.methodcaller("strftime", "%Y"),
|
626 |
+
operator.methodcaller("round", "h"),
|
627 |
+
operator.methodcaller("floor", "h"),
|
628 |
+
operator.methodcaller("ceil", "h"),
|
629 |
+
operator.methodcaller("month_name"),
|
630 |
+
operator.methodcaller("day_name"),
|
631 |
+
],
|
632 |
+
ids=idfn,
|
633 |
+
)
|
634 |
+
def test_datetime_method(method):
|
635 |
+
s = pd.Series(pd.date_range("2000", periods=4))
|
636 |
+
s.attrs = {"a": 1}
|
637 |
+
result = method(s.dt)
|
638 |
+
assert result.attrs == {"a": 1}
|
639 |
+
|
640 |
+
|
641 |
+
@pytest.mark.parametrize(
|
642 |
+
"attr",
|
643 |
+
[
|
644 |
+
"date",
|
645 |
+
"time",
|
646 |
+
"timetz",
|
647 |
+
"year",
|
648 |
+
"month",
|
649 |
+
"day",
|
650 |
+
"hour",
|
651 |
+
"minute",
|
652 |
+
"second",
|
653 |
+
"microsecond",
|
654 |
+
"nanosecond",
|
655 |
+
"dayofweek",
|
656 |
+
"day_of_week",
|
657 |
+
"dayofyear",
|
658 |
+
"day_of_year",
|
659 |
+
"quarter",
|
660 |
+
"is_month_start",
|
661 |
+
"is_month_end",
|
662 |
+
"is_quarter_start",
|
663 |
+
"is_quarter_end",
|
664 |
+
"is_year_start",
|
665 |
+
"is_year_end",
|
666 |
+
"is_leap_year",
|
667 |
+
"daysinmonth",
|
668 |
+
"days_in_month",
|
669 |
+
],
|
670 |
+
)
|
671 |
+
def test_datetime_property(attr):
|
672 |
+
s = pd.Series(pd.date_range("2000", periods=4))
|
673 |
+
s.attrs = {"a": 1}
|
674 |
+
result = getattr(s.dt, attr)
|
675 |
+
assert result.attrs == {"a": 1}
|
676 |
+
|
677 |
+
|
678 |
+
@pytest.mark.parametrize(
|
679 |
+
"attr", ["days", "seconds", "microseconds", "nanoseconds", "components"]
|
680 |
+
)
|
681 |
+
def test_timedelta_property(attr):
|
682 |
+
s = pd.Series(pd.timedelta_range("2000", periods=4))
|
683 |
+
s.attrs = {"a": 1}
|
684 |
+
result = getattr(s.dt, attr)
|
685 |
+
assert result.attrs == {"a": 1}
|
686 |
+
|
687 |
+
|
688 |
+
@pytest.mark.parametrize("method", [operator.methodcaller("total_seconds")])
|
689 |
+
def test_timedelta_methods(method):
|
690 |
+
s = pd.Series(pd.timedelta_range("2000", periods=4))
|
691 |
+
s.attrs = {"a": 1}
|
692 |
+
result = method(s.dt)
|
693 |
+
assert result.attrs == {"a": 1}
|
694 |
+
|
695 |
+
|
696 |
+
@pytest.mark.parametrize(
|
697 |
+
"method",
|
698 |
+
[
|
699 |
+
operator.methodcaller("add_categories", ["c"]),
|
700 |
+
operator.methodcaller("as_ordered"),
|
701 |
+
operator.methodcaller("as_unordered"),
|
702 |
+
lambda x: getattr(x, "codes"),
|
703 |
+
operator.methodcaller("remove_categories", "a"),
|
704 |
+
operator.methodcaller("remove_unused_categories"),
|
705 |
+
operator.methodcaller("rename_categories", {"a": "A", "b": "B"}),
|
706 |
+
operator.methodcaller("reorder_categories", ["b", "a"]),
|
707 |
+
operator.methodcaller("set_categories", ["A", "B"]),
|
708 |
+
],
|
709 |
+
)
|
710 |
+
@not_implemented_mark
|
711 |
+
def test_categorical_accessor(method):
|
712 |
+
s = pd.Series(["a", "b"], dtype="category")
|
713 |
+
s.attrs = {"a": 1}
|
714 |
+
result = method(s.cat)
|
715 |
+
assert result.attrs == {"a": 1}
|
716 |
+
|
717 |
+
|
718 |
+
# ----------------------------------------------------------------------------
|
719 |
+
# Groupby
|
720 |
+
|
721 |
+
|
722 |
+
@pytest.mark.parametrize(
|
723 |
+
"obj", [pd.Series([0, 0]), pd.DataFrame({"A": [0, 1], "B": [1, 2]})]
|
724 |
+
)
|
725 |
+
@pytest.mark.parametrize(
|
726 |
+
"method",
|
727 |
+
[
|
728 |
+
operator.methodcaller("sum"),
|
729 |
+
lambda x: x.apply(lambda y: y),
|
730 |
+
lambda x: x.agg("sum"),
|
731 |
+
lambda x: x.agg("mean"),
|
732 |
+
lambda x: x.agg("median"),
|
733 |
+
],
|
734 |
+
)
|
735 |
+
def test_groupby_finalize(obj, method):
|
736 |
+
obj.attrs = {"a": 1}
|
737 |
+
result = method(obj.groupby([0, 0], group_keys=False))
|
738 |
+
assert result.attrs == {"a": 1}
|
739 |
+
|
740 |
+
|
741 |
+
@pytest.mark.parametrize(
|
742 |
+
"obj", [pd.Series([0, 0]), pd.DataFrame({"A": [0, 1], "B": [1, 2]})]
|
743 |
+
)
|
744 |
+
@pytest.mark.parametrize(
|
745 |
+
"method",
|
746 |
+
[
|
747 |
+
lambda x: x.agg(["sum", "count"]),
|
748 |
+
lambda x: x.agg("std"),
|
749 |
+
lambda x: x.agg("var"),
|
750 |
+
lambda x: x.agg("sem"),
|
751 |
+
lambda x: x.agg("size"),
|
752 |
+
lambda x: x.agg("ohlc"),
|
753 |
+
],
|
754 |
+
)
|
755 |
+
@not_implemented_mark
|
756 |
+
def test_groupby_finalize_not_implemented(obj, method):
|
757 |
+
obj.attrs = {"a": 1}
|
758 |
+
result = method(obj.groupby([0, 0]))
|
759 |
+
assert result.attrs == {"a": 1}
|
760 |
+
|
761 |
+
|
762 |
+
def test_finalize_frame_series_name():
|
763 |
+
# https://github.com/pandas-dev/pandas/pull/37186/files#r506978889
|
764 |
+
# ensure we don't copy the column `name` to the Series.
|
765 |
+
df = pd.DataFrame({"name": [1, 2]})
|
766 |
+
result = pd.Series([1, 2]).__finalize__(df)
|
767 |
+
assert result.name is None
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_frame.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
from operator import methodcaller
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
from pandas import (
|
9 |
+
DataFrame,
|
10 |
+
MultiIndex,
|
11 |
+
Series,
|
12 |
+
date_range,
|
13 |
+
)
|
14 |
+
import pandas._testing as tm
|
15 |
+
|
16 |
+
|
17 |
+
class TestDataFrame:
|
18 |
+
@pytest.mark.parametrize("func", ["_set_axis_name", "rename_axis"])
|
19 |
+
def test_set_axis_name(self, func):
|
20 |
+
df = DataFrame([[1, 2], [3, 4]])
|
21 |
+
|
22 |
+
result = methodcaller(func, "foo")(df)
|
23 |
+
assert df.index.name is None
|
24 |
+
assert result.index.name == "foo"
|
25 |
+
|
26 |
+
result = methodcaller(func, "cols", axis=1)(df)
|
27 |
+
assert df.columns.name is None
|
28 |
+
assert result.columns.name == "cols"
|
29 |
+
|
30 |
+
@pytest.mark.parametrize("func", ["_set_axis_name", "rename_axis"])
|
31 |
+
def test_set_axis_name_mi(self, func):
|
32 |
+
df = DataFrame(
|
33 |
+
np.empty((3, 3)),
|
34 |
+
index=MultiIndex.from_tuples([("A", x) for x in list("aBc")]),
|
35 |
+
columns=MultiIndex.from_tuples([("C", x) for x in list("xyz")]),
|
36 |
+
)
|
37 |
+
|
38 |
+
level_names = ["L1", "L2"]
|
39 |
+
|
40 |
+
result = methodcaller(func, level_names)(df)
|
41 |
+
assert result.index.names == level_names
|
42 |
+
assert result.columns.names == [None, None]
|
43 |
+
|
44 |
+
result = methodcaller(func, level_names, axis=1)(df)
|
45 |
+
assert result.columns.names == ["L1", "L2"]
|
46 |
+
assert result.index.names == [None, None]
|
47 |
+
|
48 |
+
def test_nonzero_single_element(self):
|
49 |
+
# allow single item via bool method
|
50 |
+
msg_warn = (
|
51 |
+
"DataFrame.bool is now deprecated and will be removed "
|
52 |
+
"in future version of pandas"
|
53 |
+
)
|
54 |
+
df = DataFrame([[True]])
|
55 |
+
df1 = DataFrame([[False]])
|
56 |
+
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
|
57 |
+
assert df.bool()
|
58 |
+
|
59 |
+
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
|
60 |
+
assert not df1.bool()
|
61 |
+
|
62 |
+
df = DataFrame([[False, False]])
|
63 |
+
msg_err = "The truth value of a DataFrame is ambiguous"
|
64 |
+
with pytest.raises(ValueError, match=msg_err):
|
65 |
+
bool(df)
|
66 |
+
|
67 |
+
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
|
68 |
+
with pytest.raises(ValueError, match=msg_err):
|
69 |
+
df.bool()
|
70 |
+
|
71 |
+
def test_metadata_propagation_indiv_groupby(self):
|
72 |
+
# groupby
|
73 |
+
df = DataFrame(
|
74 |
+
{
|
75 |
+
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
76 |
+
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
|
77 |
+
"C": np.random.default_rng(2).standard_normal(8),
|
78 |
+
"D": np.random.default_rng(2).standard_normal(8),
|
79 |
+
}
|
80 |
+
)
|
81 |
+
result = df.groupby("A").sum()
|
82 |
+
tm.assert_metadata_equivalent(df, result)
|
83 |
+
|
84 |
+
def test_metadata_propagation_indiv_resample(self):
|
85 |
+
# resample
|
86 |
+
df = DataFrame(
|
87 |
+
np.random.default_rng(2).standard_normal((1000, 2)),
|
88 |
+
index=date_range("20130101", periods=1000, freq="s"),
|
89 |
+
)
|
90 |
+
result = df.resample("1min")
|
91 |
+
tm.assert_metadata_equivalent(df, result)
|
92 |
+
|
93 |
+
def test_metadata_propagation_indiv(self, monkeypatch):
|
94 |
+
# merging with override
|
95 |
+
# GH 6923
|
96 |
+
|
97 |
+
def finalize(self, other, method=None, **kwargs):
|
98 |
+
for name in self._metadata:
|
99 |
+
if method == "merge":
|
100 |
+
left, right = other.left, other.right
|
101 |
+
value = getattr(left, name, "") + "|" + getattr(right, name, "")
|
102 |
+
object.__setattr__(self, name, value)
|
103 |
+
elif method == "concat":
|
104 |
+
value = "+".join(
|
105 |
+
[getattr(o, name) for o in other.objs if getattr(o, name, None)]
|
106 |
+
)
|
107 |
+
object.__setattr__(self, name, value)
|
108 |
+
else:
|
109 |
+
object.__setattr__(self, name, getattr(other, name, ""))
|
110 |
+
|
111 |
+
return self
|
112 |
+
|
113 |
+
with monkeypatch.context() as m:
|
114 |
+
m.setattr(DataFrame, "_metadata", ["filename"])
|
115 |
+
m.setattr(DataFrame, "__finalize__", finalize)
|
116 |
+
|
117 |
+
df1 = DataFrame(
|
118 |
+
np.random.default_rng(2).integers(0, 4, (3, 2)), columns=["a", "b"]
|
119 |
+
)
|
120 |
+
df2 = DataFrame(
|
121 |
+
np.random.default_rng(2).integers(0, 4, (3, 2)), columns=["c", "d"]
|
122 |
+
)
|
123 |
+
DataFrame._metadata = ["filename"]
|
124 |
+
df1.filename = "fname1.csv"
|
125 |
+
df2.filename = "fname2.csv"
|
126 |
+
|
127 |
+
result = df1.merge(df2, left_on=["a"], right_on=["c"], how="inner")
|
128 |
+
assert result.filename == "fname1.csv|fname2.csv"
|
129 |
+
|
130 |
+
# concat
|
131 |
+
# GH#6927
|
132 |
+
df1 = DataFrame(
|
133 |
+
np.random.default_rng(2).integers(0, 4, (3, 2)), columns=list("ab")
|
134 |
+
)
|
135 |
+
df1.filename = "foo"
|
136 |
+
|
137 |
+
result = pd.concat([df1, df1])
|
138 |
+
assert result.filename == "foo+foo"
|
139 |
+
|
140 |
+
def test_set_attribute(self):
|
141 |
+
# Test for consistent setattr behavior when an attribute and a column
|
142 |
+
# have the same name (Issue #8994)
|
143 |
+
df = DataFrame({"x": [1, 2, 3]})
|
144 |
+
|
145 |
+
df.y = 2
|
146 |
+
df["y"] = [2, 4, 6]
|
147 |
+
df.y = 5
|
148 |
+
|
149 |
+
assert df.y == 5
|
150 |
+
tm.assert_series_equal(df["y"], Series([2, 4, 6], name="y"))
|
151 |
+
|
152 |
+
def test_deepcopy_empty(self):
|
153 |
+
# This test covers empty frame copying with non-empty column sets
|
154 |
+
# as reported in issue GH15370
|
155 |
+
empty_frame = DataFrame(data=[], index=[], columns=["A"])
|
156 |
+
empty_frame_copy = deepcopy(empty_frame)
|
157 |
+
|
158 |
+
tm.assert_frame_equal(empty_frame_copy, empty_frame)
|
159 |
+
|
160 |
+
|
161 |
+
# formerly in Generic but only test DataFrame
|
162 |
+
class TestDataFrame2:
|
163 |
+
@pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0])
|
164 |
+
def test_validate_bool_args(self, value):
|
165 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
166 |
+
|
167 |
+
msg = 'For argument "inplace" expected type bool, received type'
|
168 |
+
with pytest.raises(ValueError, match=msg):
|
169 |
+
df.copy().rename_axis(mapper={"a": "x", "b": "y"}, axis=1, inplace=value)
|
170 |
+
|
171 |
+
with pytest.raises(ValueError, match=msg):
|
172 |
+
df.copy().drop("a", axis=1, inplace=value)
|
173 |
+
|
174 |
+
with pytest.raises(ValueError, match=msg):
|
175 |
+
df.copy().fillna(value=0, inplace=value)
|
176 |
+
|
177 |
+
with pytest.raises(ValueError, match=msg):
|
178 |
+
df.copy().replace(to_replace=1, value=7, inplace=value)
|
179 |
+
|
180 |
+
with pytest.raises(ValueError, match=msg):
|
181 |
+
df.copy().interpolate(inplace=value)
|
182 |
+
|
183 |
+
with pytest.raises(ValueError, match=msg):
|
184 |
+
df.copy()._where(cond=df.a > 2, inplace=value)
|
185 |
+
|
186 |
+
with pytest.raises(ValueError, match=msg):
|
187 |
+
df.copy().mask(cond=df.a > 2, inplace=value)
|
188 |
+
|
189 |
+
def test_unexpected_keyword(self):
|
190 |
+
# GH8597
|
191 |
+
df = DataFrame(
|
192 |
+
np.random.default_rng(2).standard_normal((5, 2)), columns=["jim", "joe"]
|
193 |
+
)
|
194 |
+
ca = pd.Categorical([0, 0, 2, 2, 3, np.nan])
|
195 |
+
ts = df["joe"].copy()
|
196 |
+
ts[2] = np.nan
|
197 |
+
|
198 |
+
msg = "unexpected keyword"
|
199 |
+
with pytest.raises(TypeError, match=msg):
|
200 |
+
df.drop("joe", axis=1, in_place=True)
|
201 |
+
|
202 |
+
with pytest.raises(TypeError, match=msg):
|
203 |
+
df.reindex([1, 0], inplace=True)
|
204 |
+
|
205 |
+
with pytest.raises(TypeError, match=msg):
|
206 |
+
ca.fillna(0, inplace=True)
|
207 |
+
|
208 |
+
with pytest.raises(TypeError, match=msg):
|
209 |
+
ts.fillna(0, in_place=True)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_generic.py
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import (
|
2 |
+
copy,
|
3 |
+
deepcopy,
|
4 |
+
)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pytest
|
8 |
+
|
9 |
+
from pandas.core.dtypes.common import is_scalar
|
10 |
+
|
11 |
+
from pandas import (
|
12 |
+
DataFrame,
|
13 |
+
Index,
|
14 |
+
Series,
|
15 |
+
date_range,
|
16 |
+
)
|
17 |
+
import pandas._testing as tm
|
18 |
+
|
19 |
+
# ----------------------------------------------------------------------
|
20 |
+
# Generic types test cases
|
21 |
+
|
22 |
+
|
23 |
+
def construct(box, shape, value=None, dtype=None, **kwargs):
|
24 |
+
"""
|
25 |
+
construct an object for the given shape
|
26 |
+
if value is specified use that if its a scalar
|
27 |
+
if value is an array, repeat it as needed
|
28 |
+
"""
|
29 |
+
if isinstance(shape, int):
|
30 |
+
shape = tuple([shape] * box._AXIS_LEN)
|
31 |
+
if value is not None:
|
32 |
+
if is_scalar(value):
|
33 |
+
if value == "empty":
|
34 |
+
arr = None
|
35 |
+
dtype = np.float64
|
36 |
+
|
37 |
+
# remove the info axis
|
38 |
+
kwargs.pop(box._info_axis_name, None)
|
39 |
+
else:
|
40 |
+
arr = np.empty(shape, dtype=dtype)
|
41 |
+
arr.fill(value)
|
42 |
+
else:
|
43 |
+
fshape = np.prod(shape)
|
44 |
+
arr = value.ravel()
|
45 |
+
new_shape = fshape / arr.shape[0]
|
46 |
+
if fshape % arr.shape[0] != 0:
|
47 |
+
raise Exception("invalid value passed in construct")
|
48 |
+
|
49 |
+
arr = np.repeat(arr, new_shape).reshape(shape)
|
50 |
+
else:
|
51 |
+
arr = np.random.default_rng(2).standard_normal(shape)
|
52 |
+
return box(arr, dtype=dtype, **kwargs)
|
53 |
+
|
54 |
+
|
55 |
+
class TestGeneric:
|
56 |
+
@pytest.mark.parametrize(
|
57 |
+
"func",
|
58 |
+
[
|
59 |
+
str.lower,
|
60 |
+
{x: x.lower() for x in list("ABCD")},
|
61 |
+
Series({x: x.lower() for x in list("ABCD")}),
|
62 |
+
],
|
63 |
+
)
|
64 |
+
def test_rename(self, frame_or_series, func):
|
65 |
+
# single axis
|
66 |
+
idx = list("ABCD")
|
67 |
+
|
68 |
+
for axis in frame_or_series._AXIS_ORDERS:
|
69 |
+
kwargs = {axis: idx}
|
70 |
+
obj = construct(frame_or_series, 4, **kwargs)
|
71 |
+
|
72 |
+
# rename a single axis
|
73 |
+
result = obj.rename(**{axis: func})
|
74 |
+
expected = obj.copy()
|
75 |
+
setattr(expected, axis, list("abcd"))
|
76 |
+
tm.assert_equal(result, expected)
|
77 |
+
|
78 |
+
def test_get_numeric_data(self, frame_or_series):
|
79 |
+
n = 4
|
80 |
+
kwargs = {
|
81 |
+
frame_or_series._get_axis_name(i): list(range(n))
|
82 |
+
for i in range(frame_or_series._AXIS_LEN)
|
83 |
+
}
|
84 |
+
|
85 |
+
# get the numeric data
|
86 |
+
o = construct(frame_or_series, n, **kwargs)
|
87 |
+
result = o._get_numeric_data()
|
88 |
+
tm.assert_equal(result, o)
|
89 |
+
|
90 |
+
# non-inclusion
|
91 |
+
result = o._get_bool_data()
|
92 |
+
expected = construct(frame_or_series, n, value="empty", **kwargs)
|
93 |
+
if isinstance(o, DataFrame):
|
94 |
+
# preserve columns dtype
|
95 |
+
expected.columns = o.columns[:0]
|
96 |
+
# https://github.com/pandas-dev/pandas/issues/50862
|
97 |
+
tm.assert_equal(result.reset_index(drop=True), expected)
|
98 |
+
|
99 |
+
# get the bool data
|
100 |
+
arr = np.array([True, True, False, True])
|
101 |
+
o = construct(frame_or_series, n, value=arr, **kwargs)
|
102 |
+
result = o._get_numeric_data()
|
103 |
+
tm.assert_equal(result, o)
|
104 |
+
|
105 |
+
def test_nonzero(self, frame_or_series):
|
106 |
+
# GH 4633
|
107 |
+
# look at the boolean/nonzero behavior for objects
|
108 |
+
obj = construct(frame_or_series, shape=4)
|
109 |
+
msg = f"The truth value of a {frame_or_series.__name__} is ambiguous"
|
110 |
+
with pytest.raises(ValueError, match=msg):
|
111 |
+
bool(obj == 0)
|
112 |
+
with pytest.raises(ValueError, match=msg):
|
113 |
+
bool(obj == 1)
|
114 |
+
with pytest.raises(ValueError, match=msg):
|
115 |
+
bool(obj)
|
116 |
+
|
117 |
+
obj = construct(frame_or_series, shape=4, value=1)
|
118 |
+
with pytest.raises(ValueError, match=msg):
|
119 |
+
bool(obj == 0)
|
120 |
+
with pytest.raises(ValueError, match=msg):
|
121 |
+
bool(obj == 1)
|
122 |
+
with pytest.raises(ValueError, match=msg):
|
123 |
+
bool(obj)
|
124 |
+
|
125 |
+
obj = construct(frame_or_series, shape=4, value=np.nan)
|
126 |
+
with pytest.raises(ValueError, match=msg):
|
127 |
+
bool(obj == 0)
|
128 |
+
with pytest.raises(ValueError, match=msg):
|
129 |
+
bool(obj == 1)
|
130 |
+
with pytest.raises(ValueError, match=msg):
|
131 |
+
bool(obj)
|
132 |
+
|
133 |
+
# empty
|
134 |
+
obj = construct(frame_or_series, shape=0)
|
135 |
+
with pytest.raises(ValueError, match=msg):
|
136 |
+
bool(obj)
|
137 |
+
|
138 |
+
# invalid behaviors
|
139 |
+
|
140 |
+
obj1 = construct(frame_or_series, shape=4, value=1)
|
141 |
+
obj2 = construct(frame_or_series, shape=4, value=1)
|
142 |
+
|
143 |
+
with pytest.raises(ValueError, match=msg):
|
144 |
+
if obj1:
|
145 |
+
pass
|
146 |
+
|
147 |
+
with pytest.raises(ValueError, match=msg):
|
148 |
+
obj1 and obj2
|
149 |
+
with pytest.raises(ValueError, match=msg):
|
150 |
+
obj1 or obj2
|
151 |
+
with pytest.raises(ValueError, match=msg):
|
152 |
+
not obj1
|
153 |
+
|
154 |
+
def test_frame_or_series_compound_dtypes(self, frame_or_series):
|
155 |
+
# see gh-5191
|
156 |
+
# Compound dtypes should raise NotImplementedError.
|
157 |
+
|
158 |
+
def f(dtype):
|
159 |
+
return construct(frame_or_series, shape=3, value=1, dtype=dtype)
|
160 |
+
|
161 |
+
msg = (
|
162 |
+
"compound dtypes are not implemented "
|
163 |
+
f"in the {frame_or_series.__name__} constructor"
|
164 |
+
)
|
165 |
+
|
166 |
+
with pytest.raises(NotImplementedError, match=msg):
|
167 |
+
f([("A", "datetime64[h]"), ("B", "str"), ("C", "int32")])
|
168 |
+
|
169 |
+
# these work (though results may be unexpected)
|
170 |
+
f("int64")
|
171 |
+
f("float64")
|
172 |
+
f("M8[ns]")
|
173 |
+
|
174 |
+
def test_metadata_propagation(self, frame_or_series):
|
175 |
+
# check that the metadata matches up on the resulting ops
|
176 |
+
|
177 |
+
o = construct(frame_or_series, shape=3)
|
178 |
+
o.name = "foo"
|
179 |
+
o2 = construct(frame_or_series, shape=3)
|
180 |
+
o2.name = "bar"
|
181 |
+
|
182 |
+
# ----------
|
183 |
+
# preserving
|
184 |
+
# ----------
|
185 |
+
|
186 |
+
# simple ops with scalars
|
187 |
+
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]:
|
188 |
+
result = getattr(o, op)(1)
|
189 |
+
tm.assert_metadata_equivalent(o, result)
|
190 |
+
|
191 |
+
# ops with like
|
192 |
+
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]:
|
193 |
+
result = getattr(o, op)(o)
|
194 |
+
tm.assert_metadata_equivalent(o, result)
|
195 |
+
|
196 |
+
# simple boolean
|
197 |
+
for op in ["__eq__", "__le__", "__ge__"]:
|
198 |
+
v1 = getattr(o, op)(o)
|
199 |
+
tm.assert_metadata_equivalent(o, v1)
|
200 |
+
tm.assert_metadata_equivalent(o, v1 & v1)
|
201 |
+
tm.assert_metadata_equivalent(o, v1 | v1)
|
202 |
+
|
203 |
+
# combine_first
|
204 |
+
result = o.combine_first(o2)
|
205 |
+
tm.assert_metadata_equivalent(o, result)
|
206 |
+
|
207 |
+
# ---------------------------
|
208 |
+
# non-preserving (by default)
|
209 |
+
# ---------------------------
|
210 |
+
|
211 |
+
# add non-like
|
212 |
+
result = o + o2
|
213 |
+
tm.assert_metadata_equivalent(result)
|
214 |
+
|
215 |
+
# simple boolean
|
216 |
+
for op in ["__eq__", "__le__", "__ge__"]:
|
217 |
+
# this is a name matching op
|
218 |
+
v1 = getattr(o, op)(o)
|
219 |
+
v2 = getattr(o, op)(o2)
|
220 |
+
tm.assert_metadata_equivalent(v2)
|
221 |
+
tm.assert_metadata_equivalent(v1 & v2)
|
222 |
+
tm.assert_metadata_equivalent(v1 | v2)
|
223 |
+
|
224 |
+
def test_size_compat(self, frame_or_series):
|
225 |
+
# GH8846
|
226 |
+
# size property should be defined
|
227 |
+
|
228 |
+
o = construct(frame_or_series, shape=10)
|
229 |
+
assert o.size == np.prod(o.shape)
|
230 |
+
assert o.size == 10 ** len(o.axes)
|
231 |
+
|
232 |
+
def test_split_compat(self, frame_or_series):
|
233 |
+
# xref GH8846
|
234 |
+
o = construct(frame_or_series, shape=10)
|
235 |
+
with tm.assert_produces_warning(
|
236 |
+
FutureWarning, match=".swapaxes' is deprecated", check_stacklevel=False
|
237 |
+
):
|
238 |
+
assert len(np.array_split(o, 5)) == 5
|
239 |
+
assert len(np.array_split(o, 2)) == 2
|
240 |
+
|
241 |
+
# See gh-12301
|
242 |
+
def test_stat_unexpected_keyword(self, frame_or_series):
|
243 |
+
obj = construct(frame_or_series, 5)
|
244 |
+
starwars = "Star Wars"
|
245 |
+
errmsg = "unexpected keyword"
|
246 |
+
|
247 |
+
with pytest.raises(TypeError, match=errmsg):
|
248 |
+
obj.max(epic=starwars) # stat_function
|
249 |
+
with pytest.raises(TypeError, match=errmsg):
|
250 |
+
obj.var(epic=starwars) # stat_function_ddof
|
251 |
+
with pytest.raises(TypeError, match=errmsg):
|
252 |
+
obj.sum(epic=starwars) # cum_function
|
253 |
+
with pytest.raises(TypeError, match=errmsg):
|
254 |
+
obj.any(epic=starwars) # logical_function
|
255 |
+
|
256 |
+
@pytest.mark.parametrize("func", ["sum", "cumsum", "any", "var"])
|
257 |
+
def test_api_compat(self, func, frame_or_series):
|
258 |
+
# GH 12021
|
259 |
+
# compat for __name__, __qualname__
|
260 |
+
|
261 |
+
obj = construct(frame_or_series, 5)
|
262 |
+
f = getattr(obj, func)
|
263 |
+
assert f.__name__ == func
|
264 |
+
assert f.__qualname__.endswith(func)
|
265 |
+
|
266 |
+
def test_stat_non_defaults_args(self, frame_or_series):
|
267 |
+
obj = construct(frame_or_series, 5)
|
268 |
+
out = np.array([0])
|
269 |
+
errmsg = "the 'out' parameter is not supported"
|
270 |
+
|
271 |
+
with pytest.raises(ValueError, match=errmsg):
|
272 |
+
obj.max(out=out) # stat_function
|
273 |
+
with pytest.raises(ValueError, match=errmsg):
|
274 |
+
obj.var(out=out) # stat_function_ddof
|
275 |
+
with pytest.raises(ValueError, match=errmsg):
|
276 |
+
obj.sum(out=out) # cum_function
|
277 |
+
with pytest.raises(ValueError, match=errmsg):
|
278 |
+
obj.any(out=out) # logical_function
|
279 |
+
|
280 |
+
def test_truncate_out_of_bounds(self, frame_or_series):
|
281 |
+
# GH11382
|
282 |
+
|
283 |
+
# small
|
284 |
+
shape = [2000] + ([1] * (frame_or_series._AXIS_LEN - 1))
|
285 |
+
small = construct(frame_or_series, shape, dtype="int8", value=1)
|
286 |
+
tm.assert_equal(small.truncate(), small)
|
287 |
+
tm.assert_equal(small.truncate(before=0, after=3e3), small)
|
288 |
+
tm.assert_equal(small.truncate(before=-1, after=2e3), small)
|
289 |
+
|
290 |
+
# big
|
291 |
+
shape = [2_000_000] + ([1] * (frame_or_series._AXIS_LEN - 1))
|
292 |
+
big = construct(frame_or_series, shape, dtype="int8", value=1)
|
293 |
+
tm.assert_equal(big.truncate(), big)
|
294 |
+
tm.assert_equal(big.truncate(before=0, after=3e6), big)
|
295 |
+
tm.assert_equal(big.truncate(before=-1, after=2e6), big)
|
296 |
+
|
297 |
+
@pytest.mark.parametrize(
|
298 |
+
"func",
|
299 |
+
[copy, deepcopy, lambda x: x.copy(deep=False), lambda x: x.copy(deep=True)],
|
300 |
+
)
|
301 |
+
@pytest.mark.parametrize("shape", [0, 1, 2])
|
302 |
+
def test_copy_and_deepcopy(self, frame_or_series, shape, func):
|
303 |
+
# GH 15444
|
304 |
+
obj = construct(frame_or_series, shape)
|
305 |
+
obj_copy = func(obj)
|
306 |
+
assert obj_copy is not obj
|
307 |
+
tm.assert_equal(obj_copy, obj)
|
308 |
+
|
309 |
+
def test_data_deprecated(self, frame_or_series):
|
310 |
+
obj = frame_or_series()
|
311 |
+
msg = "(Series|DataFrame)._data is deprecated"
|
312 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
313 |
+
mgr = obj._data
|
314 |
+
assert mgr is obj._mgr
|
315 |
+
|
316 |
+
|
317 |
+
class TestNDFrame:
|
318 |
+
# tests that don't fit elsewhere
|
319 |
+
|
320 |
+
@pytest.mark.parametrize(
|
321 |
+
"ser",
|
322 |
+
[
|
323 |
+
Series(range(10), dtype=np.float64),
|
324 |
+
Series([str(i) for i in range(10)], dtype=object),
|
325 |
+
],
|
326 |
+
)
|
327 |
+
def test_squeeze_series_noop(self, ser):
|
328 |
+
# noop
|
329 |
+
tm.assert_series_equal(ser.squeeze(), ser)
|
330 |
+
|
331 |
+
def test_squeeze_frame_noop(self):
|
332 |
+
# noop
|
333 |
+
df = DataFrame(np.eye(2))
|
334 |
+
tm.assert_frame_equal(df.squeeze(), df)
|
335 |
+
|
336 |
+
def test_squeeze_frame_reindex(self):
|
337 |
+
# squeezing
|
338 |
+
df = DataFrame(
|
339 |
+
np.random.default_rng(2).standard_normal((10, 4)),
|
340 |
+
columns=Index(list("ABCD"), dtype=object),
|
341 |
+
index=date_range("2000-01-01", periods=10, freq="B"),
|
342 |
+
).reindex(columns=["A"])
|
343 |
+
tm.assert_series_equal(df.squeeze(), df["A"])
|
344 |
+
|
345 |
+
def test_squeeze_0_len_dim(self):
|
346 |
+
# don't fail with 0 length dimensions GH11229 & GH8999
|
347 |
+
empty_series = Series([], name="five", dtype=np.float64)
|
348 |
+
empty_frame = DataFrame([empty_series])
|
349 |
+
tm.assert_series_equal(empty_series, empty_series.squeeze())
|
350 |
+
tm.assert_series_equal(empty_series, empty_frame.squeeze())
|
351 |
+
|
352 |
+
def test_squeeze_axis(self):
|
353 |
+
# axis argument
|
354 |
+
df = DataFrame(
|
355 |
+
np.random.default_rng(2).standard_normal((1, 4)),
|
356 |
+
columns=Index(list("ABCD"), dtype=object),
|
357 |
+
index=date_range("2000-01-01", periods=1, freq="B"),
|
358 |
+
).iloc[:, :1]
|
359 |
+
assert df.shape == (1, 1)
|
360 |
+
tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
|
361 |
+
tm.assert_series_equal(df.squeeze(axis="index"), df.iloc[0])
|
362 |
+
tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
|
363 |
+
tm.assert_series_equal(df.squeeze(axis="columns"), df.iloc[:, 0])
|
364 |
+
assert df.squeeze() == df.iloc[0, 0]
|
365 |
+
msg = "No axis named 2 for object type DataFrame"
|
366 |
+
with pytest.raises(ValueError, match=msg):
|
367 |
+
df.squeeze(axis=2)
|
368 |
+
msg = "No axis named x for object type DataFrame"
|
369 |
+
with pytest.raises(ValueError, match=msg):
|
370 |
+
df.squeeze(axis="x")
|
371 |
+
|
372 |
+
def test_squeeze_axis_len_3(self):
|
373 |
+
df = DataFrame(
|
374 |
+
np.random.default_rng(2).standard_normal((3, 4)),
|
375 |
+
columns=Index(list("ABCD"), dtype=object),
|
376 |
+
index=date_range("2000-01-01", periods=3, freq="B"),
|
377 |
+
)
|
378 |
+
tm.assert_frame_equal(df.squeeze(axis=0), df)
|
379 |
+
|
380 |
+
def test_numpy_squeeze(self):
|
381 |
+
s = Series(range(2), dtype=np.float64)
|
382 |
+
tm.assert_series_equal(np.squeeze(s), s)
|
383 |
+
|
384 |
+
df = DataFrame(
|
385 |
+
np.random.default_rng(2).standard_normal((10, 4)),
|
386 |
+
columns=Index(list("ABCD"), dtype=object),
|
387 |
+
index=date_range("2000-01-01", periods=10, freq="B"),
|
388 |
+
).reindex(columns=["A"])
|
389 |
+
tm.assert_series_equal(np.squeeze(df), df["A"])
|
390 |
+
|
391 |
+
@pytest.mark.parametrize(
|
392 |
+
"ser",
|
393 |
+
[
|
394 |
+
Series(range(10), dtype=np.float64),
|
395 |
+
Series([str(i) for i in range(10)], dtype=object),
|
396 |
+
],
|
397 |
+
)
|
398 |
+
def test_transpose_series(self, ser):
|
399 |
+
# calls implementation in pandas/core/base.py
|
400 |
+
tm.assert_series_equal(ser.transpose(), ser)
|
401 |
+
|
402 |
+
def test_transpose_frame(self):
|
403 |
+
df = DataFrame(
|
404 |
+
np.random.default_rng(2).standard_normal((10, 4)),
|
405 |
+
columns=Index(list("ABCD"), dtype=object),
|
406 |
+
index=date_range("2000-01-01", periods=10, freq="B"),
|
407 |
+
)
|
408 |
+
tm.assert_frame_equal(df.transpose().transpose(), df)
|
409 |
+
|
410 |
+
def test_numpy_transpose(self, frame_or_series):
|
411 |
+
obj = DataFrame(
|
412 |
+
np.random.default_rng(2).standard_normal((10, 4)),
|
413 |
+
columns=Index(list("ABCD"), dtype=object),
|
414 |
+
index=date_range("2000-01-01", periods=10, freq="B"),
|
415 |
+
)
|
416 |
+
obj = tm.get_obj(obj, frame_or_series)
|
417 |
+
|
418 |
+
if frame_or_series is Series:
|
419 |
+
# 1D -> np.transpose is no-op
|
420 |
+
tm.assert_series_equal(np.transpose(obj), obj)
|
421 |
+
|
422 |
+
# round-trip preserved
|
423 |
+
tm.assert_equal(np.transpose(np.transpose(obj)), obj)
|
424 |
+
|
425 |
+
msg = "the 'axes' parameter is not supported"
|
426 |
+
with pytest.raises(ValueError, match=msg):
|
427 |
+
np.transpose(obj, axes=1)
|
428 |
+
|
429 |
+
@pytest.mark.parametrize(
|
430 |
+
"ser",
|
431 |
+
[
|
432 |
+
Series(range(10), dtype=np.float64),
|
433 |
+
Series([str(i) for i in range(10)], dtype=object),
|
434 |
+
],
|
435 |
+
)
|
436 |
+
def test_take_series(self, ser):
|
437 |
+
indices = [1, 5, -2, 6, 3, -1]
|
438 |
+
out = ser.take(indices)
|
439 |
+
expected = Series(
|
440 |
+
data=ser.values.take(indices),
|
441 |
+
index=ser.index.take(indices),
|
442 |
+
dtype=ser.dtype,
|
443 |
+
)
|
444 |
+
tm.assert_series_equal(out, expected)
|
445 |
+
|
446 |
+
def test_take_frame(self):
|
447 |
+
indices = [1, 5, -2, 6, 3, -1]
|
448 |
+
df = DataFrame(
|
449 |
+
np.random.default_rng(2).standard_normal((10, 4)),
|
450 |
+
columns=Index(list("ABCD"), dtype=object),
|
451 |
+
index=date_range("2000-01-01", periods=10, freq="B"),
|
452 |
+
)
|
453 |
+
out = df.take(indices)
|
454 |
+
expected = DataFrame(
|
455 |
+
data=df.values.take(indices, axis=0),
|
456 |
+
index=df.index.take(indices),
|
457 |
+
columns=df.columns,
|
458 |
+
)
|
459 |
+
tm.assert_frame_equal(out, expected)
|
460 |
+
|
461 |
+
def test_take_invalid_kwargs(self, frame_or_series):
|
462 |
+
indices = [-3, 2, 0, 1]
|
463 |
+
|
464 |
+
obj = DataFrame(range(5))
|
465 |
+
obj = tm.get_obj(obj, frame_or_series)
|
466 |
+
|
467 |
+
msg = r"take\(\) got an unexpected keyword argument 'foo'"
|
468 |
+
with pytest.raises(TypeError, match=msg):
|
469 |
+
obj.take(indices, foo=2)
|
470 |
+
|
471 |
+
msg = "the 'out' parameter is not supported"
|
472 |
+
with pytest.raises(ValueError, match=msg):
|
473 |
+
obj.take(indices, out=indices)
|
474 |
+
|
475 |
+
msg = "the 'mode' parameter is not supported"
|
476 |
+
with pytest.raises(ValueError, match=msg):
|
477 |
+
obj.take(indices, mode="clip")
|
478 |
+
|
479 |
+
def test_axis_classmethods(self, frame_or_series):
|
480 |
+
box = frame_or_series
|
481 |
+
obj = box(dtype=object)
|
482 |
+
values = box._AXIS_TO_AXIS_NUMBER.keys()
|
483 |
+
for v in values:
|
484 |
+
assert obj._get_axis_number(v) == box._get_axis_number(v)
|
485 |
+
assert obj._get_axis_name(v) == box._get_axis_name(v)
|
486 |
+
assert obj._get_block_manager_axis(v) == box._get_block_manager_axis(v)
|
487 |
+
|
488 |
+
def test_flags_identity(self, frame_or_series):
|
489 |
+
obj = Series([1, 2])
|
490 |
+
if frame_or_series is DataFrame:
|
491 |
+
obj = obj.to_frame()
|
492 |
+
|
493 |
+
assert obj.flags is obj.flags
|
494 |
+
obj2 = obj.copy()
|
495 |
+
assert obj2.flags is not obj.flags
|
496 |
+
|
497 |
+
def test_bool_dep(self) -> None:
|
498 |
+
# GH-51749
|
499 |
+
msg_warn = (
|
500 |
+
"DataFrame.bool is now deprecated and will be removed "
|
501 |
+
"in future version of pandas"
|
502 |
+
)
|
503 |
+
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
|
504 |
+
DataFrame({"col": [False]}).bool()
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_label_or_level_utils.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas.core.dtypes.missing import array_equivalent
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
|
8 |
+
# Fixtures
|
9 |
+
# ========
|
10 |
+
@pytest.fixture
|
11 |
+
def df():
|
12 |
+
"""DataFrame with columns 'L1', 'L2', and 'L3'"""
|
13 |
+
return pd.DataFrame({"L1": [1, 2, 3], "L2": [11, 12, 13], "L3": ["A", "B", "C"]})
|
14 |
+
|
15 |
+
|
16 |
+
@pytest.fixture(params=[[], ["L1"], ["L1", "L2"], ["L1", "L2", "L3"]])
|
17 |
+
def df_levels(request, df):
|
18 |
+
"""DataFrame with columns or index levels 'L1', 'L2', and 'L3'"""
|
19 |
+
levels = request.param
|
20 |
+
|
21 |
+
if levels:
|
22 |
+
df = df.set_index(levels)
|
23 |
+
|
24 |
+
return df
|
25 |
+
|
26 |
+
|
27 |
+
@pytest.fixture
|
28 |
+
def df_ambig(df):
|
29 |
+
"""DataFrame with levels 'L1' and 'L2' and labels 'L1' and 'L3'"""
|
30 |
+
df = df.set_index(["L1", "L2"])
|
31 |
+
|
32 |
+
df["L1"] = df["L3"]
|
33 |
+
|
34 |
+
return df
|
35 |
+
|
36 |
+
|
37 |
+
@pytest.fixture
|
38 |
+
def df_duplabels(df):
|
39 |
+
"""DataFrame with level 'L1' and labels 'L2', 'L3', and 'L2'"""
|
40 |
+
df = df.set_index(["L1"])
|
41 |
+
df = pd.concat([df, df["L2"]], axis=1)
|
42 |
+
|
43 |
+
return df
|
44 |
+
|
45 |
+
|
46 |
+
# Test is label/level reference
|
47 |
+
# =============================
|
48 |
+
def get_labels_levels(df_levels):
|
49 |
+
expected_labels = list(df_levels.columns)
|
50 |
+
expected_levels = [name for name in df_levels.index.names if name is not None]
|
51 |
+
return expected_labels, expected_levels
|
52 |
+
|
53 |
+
|
54 |
+
def assert_label_reference(frame, labels, axis):
|
55 |
+
for label in labels:
|
56 |
+
assert frame._is_label_reference(label, axis=axis)
|
57 |
+
assert not frame._is_level_reference(label, axis=axis)
|
58 |
+
assert frame._is_label_or_level_reference(label, axis=axis)
|
59 |
+
|
60 |
+
|
61 |
+
def assert_level_reference(frame, levels, axis):
|
62 |
+
for level in levels:
|
63 |
+
assert frame._is_level_reference(level, axis=axis)
|
64 |
+
assert not frame._is_label_reference(level, axis=axis)
|
65 |
+
assert frame._is_label_or_level_reference(level, axis=axis)
|
66 |
+
|
67 |
+
|
68 |
+
# DataFrame
|
69 |
+
# ---------
|
70 |
+
def test_is_level_or_label_reference_df_simple(df_levels, axis):
|
71 |
+
axis = df_levels._get_axis_number(axis)
|
72 |
+
# Compute expected labels and levels
|
73 |
+
expected_labels, expected_levels = get_labels_levels(df_levels)
|
74 |
+
|
75 |
+
# Transpose frame if axis == 1
|
76 |
+
if axis == 1:
|
77 |
+
df_levels = df_levels.T
|
78 |
+
|
79 |
+
# Perform checks
|
80 |
+
assert_level_reference(df_levels, expected_levels, axis=axis)
|
81 |
+
assert_label_reference(df_levels, expected_labels, axis=axis)
|
82 |
+
|
83 |
+
|
84 |
+
def test_is_level_reference_df_ambig(df_ambig, axis):
|
85 |
+
axis = df_ambig._get_axis_number(axis)
|
86 |
+
|
87 |
+
# Transpose frame if axis == 1
|
88 |
+
if axis == 1:
|
89 |
+
df_ambig = df_ambig.T
|
90 |
+
|
91 |
+
# df has both an on-axis level and off-axis label named L1
|
92 |
+
# Therefore L1 should reference the label, not the level
|
93 |
+
assert_label_reference(df_ambig, ["L1"], axis=axis)
|
94 |
+
|
95 |
+
# df has an on-axis level named L2 and it is not ambiguous
|
96 |
+
# Therefore L2 is an level reference
|
97 |
+
assert_level_reference(df_ambig, ["L2"], axis=axis)
|
98 |
+
|
99 |
+
# df has a column named L3 and it not an level reference
|
100 |
+
assert_label_reference(df_ambig, ["L3"], axis=axis)
|
101 |
+
|
102 |
+
|
103 |
+
# Series
|
104 |
+
# ------
|
105 |
+
def test_is_level_reference_series_simple_axis0(df):
|
106 |
+
# Make series with L1 as index
|
107 |
+
s = df.set_index("L1").L2
|
108 |
+
assert_level_reference(s, ["L1"], axis=0)
|
109 |
+
assert not s._is_level_reference("L2")
|
110 |
+
|
111 |
+
# Make series with L1 and L2 as index
|
112 |
+
s = df.set_index(["L1", "L2"]).L3
|
113 |
+
assert_level_reference(s, ["L1", "L2"], axis=0)
|
114 |
+
assert not s._is_level_reference("L3")
|
115 |
+
|
116 |
+
|
117 |
+
def test_is_level_reference_series_axis1_error(df):
|
118 |
+
# Make series with L1 as index
|
119 |
+
s = df.set_index("L1").L2
|
120 |
+
|
121 |
+
with pytest.raises(ValueError, match="No axis named 1"):
|
122 |
+
s._is_level_reference("L1", axis=1)
|
123 |
+
|
124 |
+
|
125 |
+
# Test _check_label_or_level_ambiguity_df
|
126 |
+
# =======================================
|
127 |
+
|
128 |
+
|
129 |
+
# DataFrame
|
130 |
+
# ---------
|
131 |
+
def test_check_label_or_level_ambiguity_df(df_ambig, axis):
|
132 |
+
axis = df_ambig._get_axis_number(axis)
|
133 |
+
# Transpose frame if axis == 1
|
134 |
+
if axis == 1:
|
135 |
+
df_ambig = df_ambig.T
|
136 |
+
msg = "'L1' is both a column level and an index label"
|
137 |
+
|
138 |
+
else:
|
139 |
+
msg = "'L1' is both an index level and a column label"
|
140 |
+
# df_ambig has both an on-axis level and off-axis label named L1
|
141 |
+
# Therefore, L1 is ambiguous.
|
142 |
+
with pytest.raises(ValueError, match=msg):
|
143 |
+
df_ambig._check_label_or_level_ambiguity("L1", axis=axis)
|
144 |
+
|
145 |
+
# df_ambig has an on-axis level named L2,, and it is not ambiguous.
|
146 |
+
df_ambig._check_label_or_level_ambiguity("L2", axis=axis)
|
147 |
+
|
148 |
+
# df_ambig has an off-axis label named L3, and it is not ambiguous
|
149 |
+
assert not df_ambig._check_label_or_level_ambiguity("L3", axis=axis)
|
150 |
+
|
151 |
+
|
152 |
+
# Series
|
153 |
+
# ------
|
154 |
+
def test_check_label_or_level_ambiguity_series(df):
|
155 |
+
# A series has no columns and therefore references are never ambiguous
|
156 |
+
|
157 |
+
# Make series with L1 as index
|
158 |
+
s = df.set_index("L1").L2
|
159 |
+
s._check_label_or_level_ambiguity("L1", axis=0)
|
160 |
+
s._check_label_or_level_ambiguity("L2", axis=0)
|
161 |
+
|
162 |
+
# Make series with L1 and L2 as index
|
163 |
+
s = df.set_index(["L1", "L2"]).L3
|
164 |
+
s._check_label_or_level_ambiguity("L1", axis=0)
|
165 |
+
s._check_label_or_level_ambiguity("L2", axis=0)
|
166 |
+
s._check_label_or_level_ambiguity("L3", axis=0)
|
167 |
+
|
168 |
+
|
169 |
+
def test_check_label_or_level_ambiguity_series_axis1_error(df):
|
170 |
+
# Make series with L1 as index
|
171 |
+
s = df.set_index("L1").L2
|
172 |
+
|
173 |
+
with pytest.raises(ValueError, match="No axis named 1"):
|
174 |
+
s._check_label_or_level_ambiguity("L1", axis=1)
|
175 |
+
|
176 |
+
|
177 |
+
# Test _get_label_or_level_values
|
178 |
+
# ===============================
|
179 |
+
def assert_label_values(frame, labels, axis):
|
180 |
+
axis = frame._get_axis_number(axis)
|
181 |
+
for label in labels:
|
182 |
+
if axis == 0:
|
183 |
+
expected = frame[label]._values
|
184 |
+
else:
|
185 |
+
expected = frame.loc[label]._values
|
186 |
+
|
187 |
+
result = frame._get_label_or_level_values(label, axis=axis)
|
188 |
+
assert array_equivalent(expected, result)
|
189 |
+
|
190 |
+
|
191 |
+
def assert_level_values(frame, levels, axis):
|
192 |
+
axis = frame._get_axis_number(axis)
|
193 |
+
for level in levels:
|
194 |
+
if axis == 0:
|
195 |
+
expected = frame.index.get_level_values(level=level)._values
|
196 |
+
else:
|
197 |
+
expected = frame.columns.get_level_values(level=level)._values
|
198 |
+
|
199 |
+
result = frame._get_label_or_level_values(level, axis=axis)
|
200 |
+
assert array_equivalent(expected, result)
|
201 |
+
|
202 |
+
|
203 |
+
# DataFrame
|
204 |
+
# ---------
|
205 |
+
def test_get_label_or_level_values_df_simple(df_levels, axis):
|
206 |
+
# Compute expected labels and levels
|
207 |
+
expected_labels, expected_levels = get_labels_levels(df_levels)
|
208 |
+
|
209 |
+
axis = df_levels._get_axis_number(axis)
|
210 |
+
# Transpose frame if axis == 1
|
211 |
+
if axis == 1:
|
212 |
+
df_levels = df_levels.T
|
213 |
+
|
214 |
+
# Perform checks
|
215 |
+
assert_label_values(df_levels, expected_labels, axis=axis)
|
216 |
+
assert_level_values(df_levels, expected_levels, axis=axis)
|
217 |
+
|
218 |
+
|
219 |
+
def test_get_label_or_level_values_df_ambig(df_ambig, axis):
|
220 |
+
axis = df_ambig._get_axis_number(axis)
|
221 |
+
# Transpose frame if axis == 1
|
222 |
+
if axis == 1:
|
223 |
+
df_ambig = df_ambig.T
|
224 |
+
|
225 |
+
# df has an on-axis level named L2, and it is not ambiguous.
|
226 |
+
assert_level_values(df_ambig, ["L2"], axis=axis)
|
227 |
+
|
228 |
+
# df has an off-axis label named L3, and it is not ambiguous.
|
229 |
+
assert_label_values(df_ambig, ["L3"], axis=axis)
|
230 |
+
|
231 |
+
|
232 |
+
def test_get_label_or_level_values_df_duplabels(df_duplabels, axis):
|
233 |
+
axis = df_duplabels._get_axis_number(axis)
|
234 |
+
# Transpose frame if axis == 1
|
235 |
+
if axis == 1:
|
236 |
+
df_duplabels = df_duplabels.T
|
237 |
+
|
238 |
+
# df has unambiguous level 'L1'
|
239 |
+
assert_level_values(df_duplabels, ["L1"], axis=axis)
|
240 |
+
|
241 |
+
# df has unique label 'L3'
|
242 |
+
assert_label_values(df_duplabels, ["L3"], axis=axis)
|
243 |
+
|
244 |
+
# df has duplicate labels 'L2'
|
245 |
+
if axis == 0:
|
246 |
+
expected_msg = "The column label 'L2' is not unique"
|
247 |
+
else:
|
248 |
+
expected_msg = "The index label 'L2' is not unique"
|
249 |
+
|
250 |
+
with pytest.raises(ValueError, match=expected_msg):
|
251 |
+
assert_label_values(df_duplabels, ["L2"], axis=axis)
|
252 |
+
|
253 |
+
|
254 |
+
# Series
|
255 |
+
# ------
|
256 |
+
def test_get_label_or_level_values_series_axis0(df):
|
257 |
+
# Make series with L1 as index
|
258 |
+
s = df.set_index("L1").L2
|
259 |
+
assert_level_values(s, ["L1"], axis=0)
|
260 |
+
|
261 |
+
# Make series with L1 and L2 as index
|
262 |
+
s = df.set_index(["L1", "L2"]).L3
|
263 |
+
assert_level_values(s, ["L1", "L2"], axis=0)
|
264 |
+
|
265 |
+
|
266 |
+
def test_get_label_or_level_values_series_axis1_error(df):
|
267 |
+
# Make series with L1 as index
|
268 |
+
s = df.set_index("L1").L2
|
269 |
+
|
270 |
+
with pytest.raises(ValueError, match="No axis named 1"):
|
271 |
+
s._get_label_or_level_values("L1", axis=1)
|
272 |
+
|
273 |
+
|
274 |
+
# Test _drop_labels_or_levels
|
275 |
+
# ===========================
|
276 |
+
def assert_labels_dropped(frame, labels, axis):
|
277 |
+
axis = frame._get_axis_number(axis)
|
278 |
+
for label in labels:
|
279 |
+
df_dropped = frame._drop_labels_or_levels(label, axis=axis)
|
280 |
+
|
281 |
+
if axis == 0:
|
282 |
+
assert label in frame.columns
|
283 |
+
assert label not in df_dropped.columns
|
284 |
+
else:
|
285 |
+
assert label in frame.index
|
286 |
+
assert label not in df_dropped.index
|
287 |
+
|
288 |
+
|
289 |
+
def assert_levels_dropped(frame, levels, axis):
|
290 |
+
axis = frame._get_axis_number(axis)
|
291 |
+
for level in levels:
|
292 |
+
df_dropped = frame._drop_labels_or_levels(level, axis=axis)
|
293 |
+
|
294 |
+
if axis == 0:
|
295 |
+
assert level in frame.index.names
|
296 |
+
assert level not in df_dropped.index.names
|
297 |
+
else:
|
298 |
+
assert level in frame.columns.names
|
299 |
+
assert level not in df_dropped.columns.names
|
300 |
+
|
301 |
+
|
302 |
+
# DataFrame
|
303 |
+
# ---------
|
304 |
+
def test_drop_labels_or_levels_df(df_levels, axis):
|
305 |
+
# Compute expected labels and levels
|
306 |
+
expected_labels, expected_levels = get_labels_levels(df_levels)
|
307 |
+
|
308 |
+
axis = df_levels._get_axis_number(axis)
|
309 |
+
# Transpose frame if axis == 1
|
310 |
+
if axis == 1:
|
311 |
+
df_levels = df_levels.T
|
312 |
+
|
313 |
+
# Perform checks
|
314 |
+
assert_labels_dropped(df_levels, expected_labels, axis=axis)
|
315 |
+
assert_levels_dropped(df_levels, expected_levels, axis=axis)
|
316 |
+
|
317 |
+
with pytest.raises(ValueError, match="not valid labels or levels"):
|
318 |
+
df_levels._drop_labels_or_levels("L4", axis=axis)
|
319 |
+
|
320 |
+
|
321 |
+
# Series
|
322 |
+
# ------
|
323 |
+
def test_drop_labels_or_levels_series(df):
|
324 |
+
# Make series with L1 as index
|
325 |
+
s = df.set_index("L1").L2
|
326 |
+
assert_levels_dropped(s, ["L1"], axis=0)
|
327 |
+
|
328 |
+
with pytest.raises(ValueError, match="not valid labels or levels"):
|
329 |
+
s._drop_labels_or_levels("L4", axis=0)
|
330 |
+
|
331 |
+
# Make series with L1 and L2 as index
|
332 |
+
s = df.set_index(["L1", "L2"]).L3
|
333 |
+
assert_levels_dropped(s, ["L1", "L2"], axis=0)
|
334 |
+
|
335 |
+
with pytest.raises(ValueError, match="not valid labels or levels"):
|
336 |
+
s._drop_labels_or_levels("L4", axis=0)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_series.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from operator import methodcaller
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
from pandas import (
|
8 |
+
MultiIndex,
|
9 |
+
Series,
|
10 |
+
date_range,
|
11 |
+
)
|
12 |
+
import pandas._testing as tm
|
13 |
+
|
14 |
+
|
15 |
+
class TestSeries:
|
16 |
+
@pytest.mark.parametrize("func", ["rename_axis", "_set_axis_name"])
|
17 |
+
def test_set_axis_name_mi(self, func):
|
18 |
+
ser = Series(
|
19 |
+
[11, 21, 31],
|
20 |
+
index=MultiIndex.from_tuples(
|
21 |
+
[("A", x) for x in ["a", "B", "c"]], names=["l1", "l2"]
|
22 |
+
),
|
23 |
+
)
|
24 |
+
|
25 |
+
result = methodcaller(func, ["L1", "L2"])(ser)
|
26 |
+
assert ser.index.name is None
|
27 |
+
assert ser.index.names == ["l1", "l2"]
|
28 |
+
assert result.index.name is None
|
29 |
+
assert result.index.names, ["L1", "L2"]
|
30 |
+
|
31 |
+
def test_set_axis_name_raises(self):
|
32 |
+
ser = Series([1])
|
33 |
+
msg = "No axis named 1 for object type Series"
|
34 |
+
with pytest.raises(ValueError, match=msg):
|
35 |
+
ser._set_axis_name(name="a", axis=1)
|
36 |
+
|
37 |
+
def test_get_bool_data_preserve_dtype(self):
|
38 |
+
ser = Series([True, False, True])
|
39 |
+
result = ser._get_bool_data()
|
40 |
+
tm.assert_series_equal(result, ser)
|
41 |
+
|
42 |
+
def test_nonzero_single_element(self):
|
43 |
+
# allow single item via bool method
|
44 |
+
msg_warn = (
|
45 |
+
"Series.bool is now deprecated and will be removed "
|
46 |
+
"in future version of pandas"
|
47 |
+
)
|
48 |
+
ser = Series([True])
|
49 |
+
ser1 = Series([False])
|
50 |
+
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
|
51 |
+
assert ser.bool()
|
52 |
+
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
|
53 |
+
assert not ser1.bool()
|
54 |
+
|
55 |
+
@pytest.mark.parametrize("data", [np.nan, pd.NaT, True, False])
|
56 |
+
def test_nonzero_single_element_raise_1(self, data):
|
57 |
+
# single item nan to raise
|
58 |
+
series = Series([data])
|
59 |
+
|
60 |
+
msg = "The truth value of a Series is ambiguous"
|
61 |
+
with pytest.raises(ValueError, match=msg):
|
62 |
+
bool(series)
|
63 |
+
|
64 |
+
@pytest.mark.parametrize("data", [np.nan, pd.NaT])
|
65 |
+
def test_nonzero_single_element_raise_2(self, data):
|
66 |
+
msg_warn = (
|
67 |
+
"Series.bool is now deprecated and will be removed "
|
68 |
+
"in future version of pandas"
|
69 |
+
)
|
70 |
+
msg_err = "bool cannot act on a non-boolean single element Series"
|
71 |
+
series = Series([data])
|
72 |
+
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
|
73 |
+
with pytest.raises(ValueError, match=msg_err):
|
74 |
+
series.bool()
|
75 |
+
|
76 |
+
@pytest.mark.parametrize("data", [(True, True), (False, False)])
|
77 |
+
def test_nonzero_multiple_element_raise(self, data):
|
78 |
+
# multiple bool are still an error
|
79 |
+
msg_warn = (
|
80 |
+
"Series.bool is now deprecated and will be removed "
|
81 |
+
"in future version of pandas"
|
82 |
+
)
|
83 |
+
msg_err = "The truth value of a Series is ambiguous"
|
84 |
+
series = Series([data])
|
85 |
+
with pytest.raises(ValueError, match=msg_err):
|
86 |
+
bool(series)
|
87 |
+
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
|
88 |
+
with pytest.raises(ValueError, match=msg_err):
|
89 |
+
series.bool()
|
90 |
+
|
91 |
+
@pytest.mark.parametrize("data", [1, 0, "a", 0.0])
|
92 |
+
def test_nonbool_single_element_raise(self, data):
|
93 |
+
# single non-bool are an error
|
94 |
+
msg_warn = (
|
95 |
+
"Series.bool is now deprecated and will be removed "
|
96 |
+
"in future version of pandas"
|
97 |
+
)
|
98 |
+
msg_err1 = "The truth value of a Series is ambiguous"
|
99 |
+
msg_err2 = "bool cannot act on a non-boolean single element Series"
|
100 |
+
series = Series([data])
|
101 |
+
with pytest.raises(ValueError, match=msg_err1):
|
102 |
+
bool(series)
|
103 |
+
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
|
104 |
+
with pytest.raises(ValueError, match=msg_err2):
|
105 |
+
series.bool()
|
106 |
+
|
107 |
+
def test_metadata_propagation_indiv_resample(self):
|
108 |
+
# resample
|
109 |
+
ts = Series(
|
110 |
+
np.random.default_rng(2).random(1000),
|
111 |
+
index=date_range("20130101", periods=1000, freq="s"),
|
112 |
+
name="foo",
|
113 |
+
)
|
114 |
+
result = ts.resample("1min").mean()
|
115 |
+
tm.assert_metadata_equivalent(ts, result)
|
116 |
+
|
117 |
+
result = ts.resample("1min").min()
|
118 |
+
tm.assert_metadata_equivalent(ts, result)
|
119 |
+
|
120 |
+
result = ts.resample("1min").apply(lambda x: x.sum())
|
121 |
+
tm.assert_metadata_equivalent(ts, result)
|
122 |
+
|
123 |
+
def test_metadata_propagation_indiv(self, monkeypatch):
|
124 |
+
# check that the metadata matches up on the resulting ops
|
125 |
+
|
126 |
+
ser = Series(range(3), range(3))
|
127 |
+
ser.name = "foo"
|
128 |
+
ser2 = Series(range(3), range(3))
|
129 |
+
ser2.name = "bar"
|
130 |
+
|
131 |
+
result = ser.T
|
132 |
+
tm.assert_metadata_equivalent(ser, result)
|
133 |
+
|
134 |
+
def finalize(self, other, method=None, **kwargs):
|
135 |
+
for name in self._metadata:
|
136 |
+
if method == "concat" and name == "filename":
|
137 |
+
value = "+".join(
|
138 |
+
[
|
139 |
+
getattr(obj, name)
|
140 |
+
for obj in other.objs
|
141 |
+
if getattr(obj, name, None)
|
142 |
+
]
|
143 |
+
)
|
144 |
+
object.__setattr__(self, name, value)
|
145 |
+
else:
|
146 |
+
object.__setattr__(self, name, getattr(other, name, None))
|
147 |
+
|
148 |
+
return self
|
149 |
+
|
150 |
+
with monkeypatch.context() as m:
|
151 |
+
m.setattr(Series, "_metadata", ["name", "filename"])
|
152 |
+
m.setattr(Series, "__finalize__", finalize)
|
153 |
+
|
154 |
+
ser.filename = "foo"
|
155 |
+
ser2.filename = "bar"
|
156 |
+
|
157 |
+
result = pd.concat([ser, ser2])
|
158 |
+
assert result.filename == "foo+bar"
|
159 |
+
assert result.name is None
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/generic/test_to_xarray.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
Categorical,
|
6 |
+
DataFrame,
|
7 |
+
MultiIndex,
|
8 |
+
Series,
|
9 |
+
date_range,
|
10 |
+
)
|
11 |
+
import pandas._testing as tm
|
12 |
+
|
13 |
+
pytest.importorskip("xarray")
|
14 |
+
|
15 |
+
|
16 |
+
class TestDataFrameToXArray:
|
17 |
+
@pytest.fixture
|
18 |
+
def df(self):
|
19 |
+
return DataFrame(
|
20 |
+
{
|
21 |
+
"a": list("abcd"),
|
22 |
+
"b": list(range(1, 5)),
|
23 |
+
"c": np.arange(3, 7).astype("u1"),
|
24 |
+
"d": np.arange(4.0, 8.0, dtype="float64"),
|
25 |
+
"e": [True, False, True, False],
|
26 |
+
"f": Categorical(list("abcd")),
|
27 |
+
"g": date_range("20130101", periods=4),
|
28 |
+
"h": date_range("20130101", periods=4, tz="US/Eastern"),
|
29 |
+
}
|
30 |
+
)
|
31 |
+
|
32 |
+
def test_to_xarray_index_types(self, index_flat, df, using_infer_string):
|
33 |
+
index = index_flat
|
34 |
+
# MultiIndex is tested in test_to_xarray_with_multiindex
|
35 |
+
if len(index) == 0:
|
36 |
+
pytest.skip("Test doesn't make sense for empty index")
|
37 |
+
|
38 |
+
from xarray import Dataset
|
39 |
+
|
40 |
+
df.index = index[:4]
|
41 |
+
df.index.name = "foo"
|
42 |
+
df.columns.name = "bar"
|
43 |
+
result = df.to_xarray()
|
44 |
+
assert result.sizes["foo"] == 4
|
45 |
+
assert len(result.coords) == 1
|
46 |
+
assert len(result.data_vars) == 8
|
47 |
+
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
|
48 |
+
assert isinstance(result, Dataset)
|
49 |
+
|
50 |
+
# idempotency
|
51 |
+
# datetimes w/tz are preserved
|
52 |
+
# column names are lost
|
53 |
+
expected = df.copy()
|
54 |
+
expected["f"] = expected["f"].astype(
|
55 |
+
object if not using_infer_string else "string[pyarrow_numpy]"
|
56 |
+
)
|
57 |
+
expected.columns.name = None
|
58 |
+
tm.assert_frame_equal(result.to_dataframe(), expected)
|
59 |
+
|
60 |
+
def test_to_xarray_empty(self, df):
|
61 |
+
from xarray import Dataset
|
62 |
+
|
63 |
+
df.index.name = "foo"
|
64 |
+
result = df[0:0].to_xarray()
|
65 |
+
assert result.sizes["foo"] == 0
|
66 |
+
assert isinstance(result, Dataset)
|
67 |
+
|
68 |
+
def test_to_xarray_with_multiindex(self, df, using_infer_string):
|
69 |
+
from xarray import Dataset
|
70 |
+
|
71 |
+
# MultiIndex
|
72 |
+
df.index = MultiIndex.from_product([["a"], range(4)], names=["one", "two"])
|
73 |
+
result = df.to_xarray()
|
74 |
+
assert result.sizes["one"] == 1
|
75 |
+
assert result.sizes["two"] == 4
|
76 |
+
assert len(result.coords) == 2
|
77 |
+
assert len(result.data_vars) == 8
|
78 |
+
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
|
79 |
+
assert isinstance(result, Dataset)
|
80 |
+
|
81 |
+
result = result.to_dataframe()
|
82 |
+
expected = df.copy()
|
83 |
+
expected["f"] = expected["f"].astype(
|
84 |
+
object if not using_infer_string else "string[pyarrow_numpy]"
|
85 |
+
)
|
86 |
+
expected.columns.name = None
|
87 |
+
tm.assert_frame_equal(result, expected)
|
88 |
+
|
89 |
+
|
90 |
+
class TestSeriesToXArray:
|
91 |
+
def test_to_xarray_index_types(self, index_flat):
|
92 |
+
index = index_flat
|
93 |
+
# MultiIndex is tested in test_to_xarray_with_multiindex
|
94 |
+
|
95 |
+
from xarray import DataArray
|
96 |
+
|
97 |
+
ser = Series(range(len(index)), index=index, dtype="int64")
|
98 |
+
ser.index.name = "foo"
|
99 |
+
result = ser.to_xarray()
|
100 |
+
repr(result)
|
101 |
+
assert len(result) == len(index)
|
102 |
+
assert len(result.coords) == 1
|
103 |
+
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
|
104 |
+
assert isinstance(result, DataArray)
|
105 |
+
|
106 |
+
# idempotency
|
107 |
+
tm.assert_series_equal(result.to_series(), ser)
|
108 |
+
|
109 |
+
def test_to_xarray_empty(self):
|
110 |
+
from xarray import DataArray
|
111 |
+
|
112 |
+
ser = Series([], dtype=object)
|
113 |
+
ser.index.name = "foo"
|
114 |
+
result = ser.to_xarray()
|
115 |
+
assert len(result) == 0
|
116 |
+
assert len(result.coords) == 1
|
117 |
+
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
|
118 |
+
assert isinstance(result, DataArray)
|
119 |
+
|
120 |
+
def test_to_xarray_with_multiindex(self):
|
121 |
+
from xarray import DataArray
|
122 |
+
|
123 |
+
mi = MultiIndex.from_product([["a", "b"], range(3)], names=["one", "two"])
|
124 |
+
ser = Series(range(6), dtype="int64", index=mi)
|
125 |
+
result = ser.to_xarray()
|
126 |
+
assert len(result) == 2
|
127 |
+
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
|
128 |
+
assert isinstance(result, DataArray)
|
129 |
+
res = result.to_series()
|
130 |
+
tm.assert_series_equal(res, ser)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/common.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_backend.cpython-310.pyc
ADDED
Binary file (3.51 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_common.cpython-310.pyc
ADDED
Binary file (2.36 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_converter.cpython-310.pyc
ADDED
Binary file (13.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_datetimelike.cpython-310.pyc
ADDED
Binary file (58.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_groupby.cpython-310.pyc
ADDED
Binary file (6.94 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/common.py
ADDED
@@ -0,0 +1,563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module consolidating common testing functions for checking plotting.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from typing import TYPE_CHECKING
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from pandas.core.dtypes.api import is_list_like
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from pandas import Series
|
15 |
+
import pandas._testing as tm
|
16 |
+
|
17 |
+
if TYPE_CHECKING:
|
18 |
+
from collections.abc import Sequence
|
19 |
+
|
20 |
+
from matplotlib.axes import Axes
|
21 |
+
|
22 |
+
|
23 |
+
def _check_legend_labels(axes, labels=None, visible=True):
|
24 |
+
"""
|
25 |
+
Check each axes has expected legend labels
|
26 |
+
|
27 |
+
Parameters
|
28 |
+
----------
|
29 |
+
axes : matplotlib Axes object, or its list-like
|
30 |
+
labels : list-like
|
31 |
+
expected legend labels
|
32 |
+
visible : bool
|
33 |
+
expected legend visibility. labels are checked only when visible is
|
34 |
+
True
|
35 |
+
"""
|
36 |
+
if visible and (labels is None):
|
37 |
+
raise ValueError("labels must be specified when visible is True")
|
38 |
+
axes = _flatten_visible(axes)
|
39 |
+
for ax in axes:
|
40 |
+
if visible:
|
41 |
+
assert ax.get_legend() is not None
|
42 |
+
_check_text_labels(ax.get_legend().get_texts(), labels)
|
43 |
+
else:
|
44 |
+
assert ax.get_legend() is None
|
45 |
+
|
46 |
+
|
47 |
+
def _check_legend_marker(ax, expected_markers=None, visible=True):
|
48 |
+
"""
|
49 |
+
Check ax has expected legend markers
|
50 |
+
|
51 |
+
Parameters
|
52 |
+
----------
|
53 |
+
ax : matplotlib Axes object
|
54 |
+
expected_markers : list-like
|
55 |
+
expected legend markers
|
56 |
+
visible : bool
|
57 |
+
expected legend visibility. labels are checked only when visible is
|
58 |
+
True
|
59 |
+
"""
|
60 |
+
if visible and (expected_markers is None):
|
61 |
+
raise ValueError("Markers must be specified when visible is True")
|
62 |
+
if visible:
|
63 |
+
handles, _ = ax.get_legend_handles_labels()
|
64 |
+
markers = [handle.get_marker() for handle in handles]
|
65 |
+
assert markers == expected_markers
|
66 |
+
else:
|
67 |
+
assert ax.get_legend() is None
|
68 |
+
|
69 |
+
|
70 |
+
def _check_data(xp, rs):
|
71 |
+
"""
|
72 |
+
Check each axes has identical lines
|
73 |
+
|
74 |
+
Parameters
|
75 |
+
----------
|
76 |
+
xp : matplotlib Axes object
|
77 |
+
rs : matplotlib Axes object
|
78 |
+
"""
|
79 |
+
import matplotlib.pyplot as plt
|
80 |
+
|
81 |
+
xp_lines = xp.get_lines()
|
82 |
+
rs_lines = rs.get_lines()
|
83 |
+
|
84 |
+
assert len(xp_lines) == len(rs_lines)
|
85 |
+
for xpl, rsl in zip(xp_lines, rs_lines):
|
86 |
+
xpdata = xpl.get_xydata()
|
87 |
+
rsdata = rsl.get_xydata()
|
88 |
+
tm.assert_almost_equal(xpdata, rsdata)
|
89 |
+
|
90 |
+
plt.close("all")
|
91 |
+
|
92 |
+
|
93 |
+
def _check_visible(collections, visible=True):
|
94 |
+
"""
|
95 |
+
Check each artist is visible or not
|
96 |
+
|
97 |
+
Parameters
|
98 |
+
----------
|
99 |
+
collections : matplotlib Artist or its list-like
|
100 |
+
target Artist or its list or collection
|
101 |
+
visible : bool
|
102 |
+
expected visibility
|
103 |
+
"""
|
104 |
+
from matplotlib.collections import Collection
|
105 |
+
|
106 |
+
if not isinstance(collections, Collection) and not is_list_like(collections):
|
107 |
+
collections = [collections]
|
108 |
+
|
109 |
+
for patch in collections:
|
110 |
+
assert patch.get_visible() == visible
|
111 |
+
|
112 |
+
|
113 |
+
def _check_patches_all_filled(axes: Axes | Sequence[Axes], filled: bool = True) -> None:
|
114 |
+
"""
|
115 |
+
Check for each artist whether it is filled or not
|
116 |
+
|
117 |
+
Parameters
|
118 |
+
----------
|
119 |
+
axes : matplotlib Axes object, or its list-like
|
120 |
+
filled : bool
|
121 |
+
expected filling
|
122 |
+
"""
|
123 |
+
|
124 |
+
axes = _flatten_visible(axes)
|
125 |
+
for ax in axes:
|
126 |
+
for patch in ax.patches:
|
127 |
+
assert patch.fill == filled
|
128 |
+
|
129 |
+
|
130 |
+
def _get_colors_mapped(series, colors):
|
131 |
+
unique = series.unique()
|
132 |
+
# unique and colors length can be differed
|
133 |
+
# depending on slice value
|
134 |
+
mapped = dict(zip(unique, colors))
|
135 |
+
return [mapped[v] for v in series.values]
|
136 |
+
|
137 |
+
|
138 |
+
def _check_colors(collections, linecolors=None, facecolors=None, mapping=None):
|
139 |
+
"""
|
140 |
+
Check each artist has expected line colors and face colors
|
141 |
+
|
142 |
+
Parameters
|
143 |
+
----------
|
144 |
+
collections : list-like
|
145 |
+
list or collection of target artist
|
146 |
+
linecolors : list-like which has the same length as collections
|
147 |
+
list of expected line colors
|
148 |
+
facecolors : list-like which has the same length as collections
|
149 |
+
list of expected face colors
|
150 |
+
mapping : Series
|
151 |
+
Series used for color grouping key
|
152 |
+
used for andrew_curves, parallel_coordinates, radviz test
|
153 |
+
"""
|
154 |
+
from matplotlib import colors
|
155 |
+
from matplotlib.collections import (
|
156 |
+
Collection,
|
157 |
+
LineCollection,
|
158 |
+
PolyCollection,
|
159 |
+
)
|
160 |
+
from matplotlib.lines import Line2D
|
161 |
+
|
162 |
+
conv = colors.ColorConverter
|
163 |
+
if linecolors is not None:
|
164 |
+
if mapping is not None:
|
165 |
+
linecolors = _get_colors_mapped(mapping, linecolors)
|
166 |
+
linecolors = linecolors[: len(collections)]
|
167 |
+
|
168 |
+
assert len(collections) == len(linecolors)
|
169 |
+
for patch, color in zip(collections, linecolors):
|
170 |
+
if isinstance(patch, Line2D):
|
171 |
+
result = patch.get_color()
|
172 |
+
# Line2D may contains string color expression
|
173 |
+
result = conv.to_rgba(result)
|
174 |
+
elif isinstance(patch, (PolyCollection, LineCollection)):
|
175 |
+
result = tuple(patch.get_edgecolor()[0])
|
176 |
+
else:
|
177 |
+
result = patch.get_edgecolor()
|
178 |
+
|
179 |
+
expected = conv.to_rgba(color)
|
180 |
+
assert result == expected
|
181 |
+
|
182 |
+
if facecolors is not None:
|
183 |
+
if mapping is not None:
|
184 |
+
facecolors = _get_colors_mapped(mapping, facecolors)
|
185 |
+
facecolors = facecolors[: len(collections)]
|
186 |
+
|
187 |
+
assert len(collections) == len(facecolors)
|
188 |
+
for patch, color in zip(collections, facecolors):
|
189 |
+
if isinstance(patch, Collection):
|
190 |
+
# returned as list of np.array
|
191 |
+
result = patch.get_facecolor()[0]
|
192 |
+
else:
|
193 |
+
result = patch.get_facecolor()
|
194 |
+
|
195 |
+
if isinstance(result, np.ndarray):
|
196 |
+
result = tuple(result)
|
197 |
+
|
198 |
+
expected = conv.to_rgba(color)
|
199 |
+
assert result == expected
|
200 |
+
|
201 |
+
|
202 |
+
def _check_text_labels(texts, expected):
|
203 |
+
"""
|
204 |
+
Check each text has expected labels
|
205 |
+
|
206 |
+
Parameters
|
207 |
+
----------
|
208 |
+
texts : matplotlib Text object, or its list-like
|
209 |
+
target text, or its list
|
210 |
+
expected : str or list-like which has the same length as texts
|
211 |
+
expected text label, or its list
|
212 |
+
"""
|
213 |
+
if not is_list_like(texts):
|
214 |
+
assert texts.get_text() == expected
|
215 |
+
else:
|
216 |
+
labels = [t.get_text() for t in texts]
|
217 |
+
assert len(labels) == len(expected)
|
218 |
+
for label, e in zip(labels, expected):
|
219 |
+
assert label == e
|
220 |
+
|
221 |
+
|
222 |
+
def _check_ticks_props(axes, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None):
|
223 |
+
"""
|
224 |
+
Check each axes has expected tick properties
|
225 |
+
|
226 |
+
Parameters
|
227 |
+
----------
|
228 |
+
axes : matplotlib Axes object, or its list-like
|
229 |
+
xlabelsize : number
|
230 |
+
expected xticks font size
|
231 |
+
xrot : number
|
232 |
+
expected xticks rotation
|
233 |
+
ylabelsize : number
|
234 |
+
expected yticks font size
|
235 |
+
yrot : number
|
236 |
+
expected yticks rotation
|
237 |
+
"""
|
238 |
+
from matplotlib.ticker import NullFormatter
|
239 |
+
|
240 |
+
axes = _flatten_visible(axes)
|
241 |
+
for ax in axes:
|
242 |
+
if xlabelsize is not None or xrot is not None:
|
243 |
+
if isinstance(ax.xaxis.get_minor_formatter(), NullFormatter):
|
244 |
+
# If minor ticks has NullFormatter, rot / fontsize are not
|
245 |
+
# retained
|
246 |
+
labels = ax.get_xticklabels()
|
247 |
+
else:
|
248 |
+
labels = ax.get_xticklabels() + ax.get_xticklabels(minor=True)
|
249 |
+
|
250 |
+
for label in labels:
|
251 |
+
if xlabelsize is not None:
|
252 |
+
tm.assert_almost_equal(label.get_fontsize(), xlabelsize)
|
253 |
+
if xrot is not None:
|
254 |
+
tm.assert_almost_equal(label.get_rotation(), xrot)
|
255 |
+
|
256 |
+
if ylabelsize is not None or yrot is not None:
|
257 |
+
if isinstance(ax.yaxis.get_minor_formatter(), NullFormatter):
|
258 |
+
labels = ax.get_yticklabels()
|
259 |
+
else:
|
260 |
+
labels = ax.get_yticklabels() + ax.get_yticklabels(minor=True)
|
261 |
+
|
262 |
+
for label in labels:
|
263 |
+
if ylabelsize is not None:
|
264 |
+
tm.assert_almost_equal(label.get_fontsize(), ylabelsize)
|
265 |
+
if yrot is not None:
|
266 |
+
tm.assert_almost_equal(label.get_rotation(), yrot)
|
267 |
+
|
268 |
+
|
269 |
+
def _check_ax_scales(axes, xaxis="linear", yaxis="linear"):
|
270 |
+
"""
|
271 |
+
Check each axes has expected scales
|
272 |
+
|
273 |
+
Parameters
|
274 |
+
----------
|
275 |
+
axes : matplotlib Axes object, or its list-like
|
276 |
+
xaxis : {'linear', 'log'}
|
277 |
+
expected xaxis scale
|
278 |
+
yaxis : {'linear', 'log'}
|
279 |
+
expected yaxis scale
|
280 |
+
"""
|
281 |
+
axes = _flatten_visible(axes)
|
282 |
+
for ax in axes:
|
283 |
+
assert ax.xaxis.get_scale() == xaxis
|
284 |
+
assert ax.yaxis.get_scale() == yaxis
|
285 |
+
|
286 |
+
|
287 |
+
def _check_axes_shape(axes, axes_num=None, layout=None, figsize=None):
|
288 |
+
"""
|
289 |
+
Check expected number of axes is drawn in expected layout
|
290 |
+
|
291 |
+
Parameters
|
292 |
+
----------
|
293 |
+
axes : matplotlib Axes object, or its list-like
|
294 |
+
axes_num : number
|
295 |
+
expected number of axes. Unnecessary axes should be set to
|
296 |
+
invisible.
|
297 |
+
layout : tuple
|
298 |
+
expected layout, (expected number of rows , columns)
|
299 |
+
figsize : tuple
|
300 |
+
expected figsize. default is matplotlib default
|
301 |
+
"""
|
302 |
+
from pandas.plotting._matplotlib.tools import flatten_axes
|
303 |
+
|
304 |
+
if figsize is None:
|
305 |
+
figsize = (6.4, 4.8)
|
306 |
+
visible_axes = _flatten_visible(axes)
|
307 |
+
|
308 |
+
if axes_num is not None:
|
309 |
+
assert len(visible_axes) == axes_num
|
310 |
+
for ax in visible_axes:
|
311 |
+
# check something drawn on visible axes
|
312 |
+
assert len(ax.get_children()) > 0
|
313 |
+
|
314 |
+
if layout is not None:
|
315 |
+
x_set = set()
|
316 |
+
y_set = set()
|
317 |
+
for ax in flatten_axes(axes):
|
318 |
+
# check axes coordinates to estimate layout
|
319 |
+
points = ax.get_position().get_points()
|
320 |
+
x_set.add(points[0][0])
|
321 |
+
y_set.add(points[0][1])
|
322 |
+
result = (len(y_set), len(x_set))
|
323 |
+
assert result == layout
|
324 |
+
|
325 |
+
tm.assert_numpy_array_equal(
|
326 |
+
visible_axes[0].figure.get_size_inches(),
|
327 |
+
np.array(figsize, dtype=np.float64),
|
328 |
+
)
|
329 |
+
|
330 |
+
|
331 |
+
def _flatten_visible(axes: Axes | Sequence[Axes]) -> Sequence[Axes]:
|
332 |
+
"""
|
333 |
+
Flatten axes, and filter only visible
|
334 |
+
|
335 |
+
Parameters
|
336 |
+
----------
|
337 |
+
axes : matplotlib Axes object, or its list-like
|
338 |
+
|
339 |
+
"""
|
340 |
+
from pandas.plotting._matplotlib.tools import flatten_axes
|
341 |
+
|
342 |
+
axes_ndarray = flatten_axes(axes)
|
343 |
+
axes = [ax for ax in axes_ndarray if ax.get_visible()]
|
344 |
+
return axes
|
345 |
+
|
346 |
+
|
347 |
+
def _check_has_errorbars(axes, xerr=0, yerr=0):
|
348 |
+
"""
|
349 |
+
Check axes has expected number of errorbars
|
350 |
+
|
351 |
+
Parameters
|
352 |
+
----------
|
353 |
+
axes : matplotlib Axes object, or its list-like
|
354 |
+
xerr : number
|
355 |
+
expected number of x errorbar
|
356 |
+
yerr : number
|
357 |
+
expected number of y errorbar
|
358 |
+
"""
|
359 |
+
axes = _flatten_visible(axes)
|
360 |
+
for ax in axes:
|
361 |
+
containers = ax.containers
|
362 |
+
xerr_count = 0
|
363 |
+
yerr_count = 0
|
364 |
+
for c in containers:
|
365 |
+
has_xerr = getattr(c, "has_xerr", False)
|
366 |
+
has_yerr = getattr(c, "has_yerr", False)
|
367 |
+
if has_xerr:
|
368 |
+
xerr_count += 1
|
369 |
+
if has_yerr:
|
370 |
+
yerr_count += 1
|
371 |
+
assert xerr == xerr_count
|
372 |
+
assert yerr == yerr_count
|
373 |
+
|
374 |
+
|
375 |
+
def _check_box_return_type(
|
376 |
+
returned, return_type, expected_keys=None, check_ax_title=True
|
377 |
+
):
|
378 |
+
"""
|
379 |
+
Check box returned type is correct
|
380 |
+
|
381 |
+
Parameters
|
382 |
+
----------
|
383 |
+
returned : object to be tested, returned from boxplot
|
384 |
+
return_type : str
|
385 |
+
return_type passed to boxplot
|
386 |
+
expected_keys : list-like, optional
|
387 |
+
group labels in subplot case. If not passed,
|
388 |
+
the function checks assuming boxplot uses single ax
|
389 |
+
check_ax_title : bool
|
390 |
+
Whether to check the ax.title is the same as expected_key
|
391 |
+
Intended to be checked by calling from ``boxplot``.
|
392 |
+
Normal ``plot`` doesn't attach ``ax.title``, it must be disabled.
|
393 |
+
"""
|
394 |
+
from matplotlib.axes import Axes
|
395 |
+
|
396 |
+
types = {"dict": dict, "axes": Axes, "both": tuple}
|
397 |
+
if expected_keys is None:
|
398 |
+
# should be fixed when the returning default is changed
|
399 |
+
if return_type is None:
|
400 |
+
return_type = "dict"
|
401 |
+
|
402 |
+
assert isinstance(returned, types[return_type])
|
403 |
+
if return_type == "both":
|
404 |
+
assert isinstance(returned.ax, Axes)
|
405 |
+
assert isinstance(returned.lines, dict)
|
406 |
+
else:
|
407 |
+
# should be fixed when the returning default is changed
|
408 |
+
if return_type is None:
|
409 |
+
for r in _flatten_visible(returned):
|
410 |
+
assert isinstance(r, Axes)
|
411 |
+
return
|
412 |
+
|
413 |
+
assert isinstance(returned, Series)
|
414 |
+
|
415 |
+
assert sorted(returned.keys()) == sorted(expected_keys)
|
416 |
+
for key, value in returned.items():
|
417 |
+
assert isinstance(value, types[return_type])
|
418 |
+
# check returned dict has correct mapping
|
419 |
+
if return_type == "axes":
|
420 |
+
if check_ax_title:
|
421 |
+
assert value.get_title() == key
|
422 |
+
elif return_type == "both":
|
423 |
+
if check_ax_title:
|
424 |
+
assert value.ax.get_title() == key
|
425 |
+
assert isinstance(value.ax, Axes)
|
426 |
+
assert isinstance(value.lines, dict)
|
427 |
+
elif return_type == "dict":
|
428 |
+
line = value["medians"][0]
|
429 |
+
axes = line.axes
|
430 |
+
if check_ax_title:
|
431 |
+
assert axes.get_title() == key
|
432 |
+
else:
|
433 |
+
raise AssertionError
|
434 |
+
|
435 |
+
|
436 |
+
def _check_grid_settings(obj, kinds, kws={}):
|
437 |
+
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
|
438 |
+
|
439 |
+
import matplotlib as mpl
|
440 |
+
|
441 |
+
def is_grid_on():
|
442 |
+
xticks = mpl.pyplot.gca().xaxis.get_major_ticks()
|
443 |
+
yticks = mpl.pyplot.gca().yaxis.get_major_ticks()
|
444 |
+
xoff = all(not g.gridline.get_visible() for g in xticks)
|
445 |
+
yoff = all(not g.gridline.get_visible() for g in yticks)
|
446 |
+
|
447 |
+
return not (xoff and yoff)
|
448 |
+
|
449 |
+
spndx = 1
|
450 |
+
for kind in kinds:
|
451 |
+
mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
|
452 |
+
spndx += 1
|
453 |
+
mpl.rc("axes", grid=False)
|
454 |
+
obj.plot(kind=kind, **kws)
|
455 |
+
assert not is_grid_on()
|
456 |
+
mpl.pyplot.clf()
|
457 |
+
|
458 |
+
mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
|
459 |
+
spndx += 1
|
460 |
+
mpl.rc("axes", grid=True)
|
461 |
+
obj.plot(kind=kind, grid=False, **kws)
|
462 |
+
assert not is_grid_on()
|
463 |
+
mpl.pyplot.clf()
|
464 |
+
|
465 |
+
if kind not in ["pie", "hexbin", "scatter"]:
|
466 |
+
mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
|
467 |
+
spndx += 1
|
468 |
+
mpl.rc("axes", grid=True)
|
469 |
+
obj.plot(kind=kind, **kws)
|
470 |
+
assert is_grid_on()
|
471 |
+
mpl.pyplot.clf()
|
472 |
+
|
473 |
+
mpl.pyplot.subplot(1, 4 * len(kinds), spndx)
|
474 |
+
spndx += 1
|
475 |
+
mpl.rc("axes", grid=False)
|
476 |
+
obj.plot(kind=kind, grid=True, **kws)
|
477 |
+
assert is_grid_on()
|
478 |
+
mpl.pyplot.clf()
|
479 |
+
|
480 |
+
|
481 |
+
def _unpack_cycler(rcParams, field="color"):
|
482 |
+
"""
|
483 |
+
Auxiliary function for correctly unpacking cycler after MPL >= 1.5
|
484 |
+
"""
|
485 |
+
return [v[field] for v in rcParams["axes.prop_cycle"]]
|
486 |
+
|
487 |
+
|
488 |
+
def get_x_axis(ax):
|
489 |
+
return ax._shared_axes["x"]
|
490 |
+
|
491 |
+
|
492 |
+
def get_y_axis(ax):
|
493 |
+
return ax._shared_axes["y"]
|
494 |
+
|
495 |
+
|
496 |
+
def _check_plot_works(f, default_axes=False, **kwargs):
|
497 |
+
"""
|
498 |
+
Create plot and ensure that plot return object is valid.
|
499 |
+
|
500 |
+
Parameters
|
501 |
+
----------
|
502 |
+
f : func
|
503 |
+
Plotting function.
|
504 |
+
default_axes : bool, optional
|
505 |
+
If False (default):
|
506 |
+
- If `ax` not in `kwargs`, then create subplot(211) and plot there
|
507 |
+
- Create new subplot(212) and plot there as well
|
508 |
+
- Mind special corner case for bootstrap_plot (see `_gen_two_subplots`)
|
509 |
+
If True:
|
510 |
+
- Simply run plotting function with kwargs provided
|
511 |
+
- All required axes instances will be created automatically
|
512 |
+
- It is recommended to use it when the plotting function
|
513 |
+
creates multiple axes itself. It helps avoid warnings like
|
514 |
+
'UserWarning: To output multiple subplots,
|
515 |
+
the figure containing the passed axes is being cleared'
|
516 |
+
**kwargs
|
517 |
+
Keyword arguments passed to the plotting function.
|
518 |
+
|
519 |
+
Returns
|
520 |
+
-------
|
521 |
+
Plot object returned by the last plotting.
|
522 |
+
"""
|
523 |
+
import matplotlib.pyplot as plt
|
524 |
+
|
525 |
+
if default_axes:
|
526 |
+
gen_plots = _gen_default_plot
|
527 |
+
else:
|
528 |
+
gen_plots = _gen_two_subplots
|
529 |
+
|
530 |
+
ret = None
|
531 |
+
try:
|
532 |
+
fig = kwargs.get("figure", plt.gcf())
|
533 |
+
plt.clf()
|
534 |
+
|
535 |
+
for ret in gen_plots(f, fig, **kwargs):
|
536 |
+
tm.assert_is_valid_plot_return_object(ret)
|
537 |
+
|
538 |
+
finally:
|
539 |
+
plt.close(fig)
|
540 |
+
|
541 |
+
return ret
|
542 |
+
|
543 |
+
|
544 |
+
def _gen_default_plot(f, fig, **kwargs):
|
545 |
+
"""
|
546 |
+
Create plot in a default way.
|
547 |
+
"""
|
548 |
+
yield f(**kwargs)
|
549 |
+
|
550 |
+
|
551 |
+
def _gen_two_subplots(f, fig, **kwargs):
|
552 |
+
"""
|
553 |
+
Create plot on two subplots forcefully created.
|
554 |
+
"""
|
555 |
+
if "ax" not in kwargs:
|
556 |
+
fig.add_subplot(211)
|
557 |
+
yield f(**kwargs)
|
558 |
+
|
559 |
+
if f is pd.plotting.bootstrap_plot:
|
560 |
+
assert "ax" not in kwargs
|
561 |
+
else:
|
562 |
+
kwargs["ax"] = fig.add_subplot(212)
|
563 |
+
yield f(**kwargs)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/conftest.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
DataFrame,
|
8 |
+
to_datetime,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
@pytest.fixture(autouse=True)
|
13 |
+
def mpl_cleanup():
|
14 |
+
# matplotlib/testing/decorators.py#L24
|
15 |
+
# 1) Resets units registry
|
16 |
+
# 2) Resets rc_context
|
17 |
+
# 3) Closes all figures
|
18 |
+
mpl = pytest.importorskip("matplotlib")
|
19 |
+
mpl_units = pytest.importorskip("matplotlib.units")
|
20 |
+
plt = pytest.importorskip("matplotlib.pyplot")
|
21 |
+
orig_units_registry = mpl_units.registry.copy()
|
22 |
+
with mpl.rc_context():
|
23 |
+
mpl.use("template")
|
24 |
+
yield
|
25 |
+
mpl_units.registry.clear()
|
26 |
+
mpl_units.registry.update(orig_units_registry)
|
27 |
+
plt.close("all")
|
28 |
+
# https://matplotlib.org/stable/users/prev_whats_new/whats_new_3.6.0.html#garbage-collection-is-no-longer-run-on-figure-close # noqa: E501
|
29 |
+
gc.collect(1)
|
30 |
+
|
31 |
+
|
32 |
+
@pytest.fixture
|
33 |
+
def hist_df():
|
34 |
+
n = 50
|
35 |
+
rng = np.random.default_rng(10)
|
36 |
+
gender = rng.choice(["Male", "Female"], size=n)
|
37 |
+
classroom = rng.choice(["A", "B", "C"], size=n)
|
38 |
+
|
39 |
+
hist_df = DataFrame(
|
40 |
+
{
|
41 |
+
"gender": gender,
|
42 |
+
"classroom": classroom,
|
43 |
+
"height": rng.normal(66, 4, size=n),
|
44 |
+
"weight": rng.normal(161, 32, size=n),
|
45 |
+
"category": rng.integers(4, size=n),
|
46 |
+
"datetime": to_datetime(
|
47 |
+
rng.integers(
|
48 |
+
812419200000000000,
|
49 |
+
819331200000000000,
|
50 |
+
size=n,
|
51 |
+
dtype=np.int64,
|
52 |
+
)
|
53 |
+
),
|
54 |
+
}
|
55 |
+
)
|
56 |
+
return hist_df
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame.cpython-310.pyc
ADDED
Binary file (89.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_color.cpython-310.pyc
ADDED
Binary file (31.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_groupby.cpython-310.pyc
ADDED
Binary file (1.96 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_legend.cpython-310.pyc
ADDED
Binary file (8.67 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_subplots.cpython-310.pyc
ADDED
Binary file (23.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_hist_box_by.cpython-310.pyc
ADDED
Binary file (8.81 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_color.py
ADDED
@@ -0,0 +1,670 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Test cases for DataFrame.plot """
|
2 |
+
import re
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
from pandas import DataFrame
|
9 |
+
import pandas._testing as tm
|
10 |
+
from pandas.tests.plotting.common import (
|
11 |
+
_check_colors,
|
12 |
+
_check_plot_works,
|
13 |
+
_unpack_cycler,
|
14 |
+
)
|
15 |
+
from pandas.util.version import Version
|
16 |
+
|
17 |
+
mpl = pytest.importorskip("matplotlib")
|
18 |
+
plt = pytest.importorskip("matplotlib.pyplot")
|
19 |
+
cm = pytest.importorskip("matplotlib.cm")
|
20 |
+
|
21 |
+
|
22 |
+
def _check_colors_box(bp, box_c, whiskers_c, medians_c, caps_c="k", fliers_c=None):
|
23 |
+
if fliers_c is None:
|
24 |
+
fliers_c = "k"
|
25 |
+
_check_colors(bp["boxes"], linecolors=[box_c] * len(bp["boxes"]))
|
26 |
+
_check_colors(bp["whiskers"], linecolors=[whiskers_c] * len(bp["whiskers"]))
|
27 |
+
_check_colors(bp["medians"], linecolors=[medians_c] * len(bp["medians"]))
|
28 |
+
_check_colors(bp["fliers"], linecolors=[fliers_c] * len(bp["fliers"]))
|
29 |
+
_check_colors(bp["caps"], linecolors=[caps_c] * len(bp["caps"]))
|
30 |
+
|
31 |
+
|
32 |
+
class TestDataFrameColor:
|
33 |
+
@pytest.mark.parametrize(
|
34 |
+
"color", ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9"]
|
35 |
+
)
|
36 |
+
def test_mpl2_color_cycle_str(self, color):
|
37 |
+
# GH 15516
|
38 |
+
df = DataFrame(
|
39 |
+
np.random.default_rng(2).standard_normal((10, 3)), columns=["a", "b", "c"]
|
40 |
+
)
|
41 |
+
_check_plot_works(df.plot, color=color)
|
42 |
+
|
43 |
+
def test_color_single_series_list(self):
|
44 |
+
# GH 3486
|
45 |
+
df = DataFrame({"A": [1, 2, 3]})
|
46 |
+
_check_plot_works(df.plot, color=["red"])
|
47 |
+
|
48 |
+
@pytest.mark.parametrize("color", [(1, 0, 0), (1, 0, 0, 0.5)])
|
49 |
+
def test_rgb_tuple_color(self, color):
|
50 |
+
# GH 16695
|
51 |
+
df = DataFrame({"x": [1, 2], "y": [3, 4]})
|
52 |
+
_check_plot_works(df.plot, x="x", y="y", color=color)
|
53 |
+
|
54 |
+
def test_color_empty_string(self):
|
55 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
|
56 |
+
with pytest.raises(ValueError, match="Invalid color argument:"):
|
57 |
+
df.plot(color="")
|
58 |
+
|
59 |
+
def test_color_and_style_arguments(self):
|
60 |
+
df = DataFrame({"x": [1, 2], "y": [3, 4]})
|
61 |
+
# passing both 'color' and 'style' arguments should be allowed
|
62 |
+
# if there is no color symbol in the style strings:
|
63 |
+
ax = df.plot(color=["red", "black"], style=["-", "--"])
|
64 |
+
# check that the linestyles are correctly set:
|
65 |
+
linestyle = [line.get_linestyle() for line in ax.lines]
|
66 |
+
assert linestyle == ["-", "--"]
|
67 |
+
# check that the colors are correctly set:
|
68 |
+
color = [line.get_color() for line in ax.lines]
|
69 |
+
assert color == ["red", "black"]
|
70 |
+
# passing both 'color' and 'style' arguments should not be allowed
|
71 |
+
# if there is a color symbol in the style strings:
|
72 |
+
msg = (
|
73 |
+
"Cannot pass 'style' string with a color symbol and 'color' keyword "
|
74 |
+
"argument. Please use one or the other or pass 'style' without a color "
|
75 |
+
"symbol"
|
76 |
+
)
|
77 |
+
with pytest.raises(ValueError, match=msg):
|
78 |
+
df.plot(color=["red", "black"], style=["k-", "r--"])
|
79 |
+
|
80 |
+
@pytest.mark.parametrize(
|
81 |
+
"color, expected",
|
82 |
+
[
|
83 |
+
("green", ["green"] * 4),
|
84 |
+
(["yellow", "red", "green", "blue"], ["yellow", "red", "green", "blue"]),
|
85 |
+
],
|
86 |
+
)
|
87 |
+
def test_color_and_marker(self, color, expected):
|
88 |
+
# GH 21003
|
89 |
+
df = DataFrame(np.random.default_rng(2).random((7, 4)))
|
90 |
+
ax = df.plot(color=color, style="d--")
|
91 |
+
# check colors
|
92 |
+
result = [i.get_color() for i in ax.lines]
|
93 |
+
assert result == expected
|
94 |
+
# check markers and linestyles
|
95 |
+
assert all(i.get_linestyle() == "--" for i in ax.lines)
|
96 |
+
assert all(i.get_marker() == "d" for i in ax.lines)
|
97 |
+
|
98 |
+
def test_bar_colors(self):
|
99 |
+
default_colors = _unpack_cycler(plt.rcParams)
|
100 |
+
|
101 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
102 |
+
ax = df.plot.bar()
|
103 |
+
_check_colors(ax.patches[::5], facecolors=default_colors[:5])
|
104 |
+
|
105 |
+
def test_bar_colors_custom(self):
|
106 |
+
custom_colors = "rgcby"
|
107 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
108 |
+
ax = df.plot.bar(color=custom_colors)
|
109 |
+
_check_colors(ax.patches[::5], facecolors=custom_colors)
|
110 |
+
|
111 |
+
@pytest.mark.parametrize("colormap", ["jet", cm.jet])
|
112 |
+
def test_bar_colors_cmap(self, colormap):
|
113 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
114 |
+
|
115 |
+
ax = df.plot.bar(colormap=colormap)
|
116 |
+
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)]
|
117 |
+
_check_colors(ax.patches[::5], facecolors=rgba_colors)
|
118 |
+
|
119 |
+
def test_bar_colors_single_col(self):
|
120 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
121 |
+
ax = df.loc[:, [0]].plot.bar(color="DodgerBlue")
|
122 |
+
_check_colors([ax.patches[0]], facecolors=["DodgerBlue"])
|
123 |
+
|
124 |
+
def test_bar_colors_green(self):
|
125 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
126 |
+
ax = df.plot(kind="bar", color="green")
|
127 |
+
_check_colors(ax.patches[::5], facecolors=["green"] * 5)
|
128 |
+
|
129 |
+
def test_bar_user_colors(self):
|
130 |
+
df = DataFrame(
|
131 |
+
{"A": range(4), "B": range(1, 5), "color": ["red", "blue", "blue", "red"]}
|
132 |
+
)
|
133 |
+
# This should *only* work when `y` is specified, else
|
134 |
+
# we use one color per column
|
135 |
+
ax = df.plot.bar(y="A", color=df["color"])
|
136 |
+
result = [p.get_facecolor() for p in ax.patches]
|
137 |
+
expected = [
|
138 |
+
(1.0, 0.0, 0.0, 1.0),
|
139 |
+
(0.0, 0.0, 1.0, 1.0),
|
140 |
+
(0.0, 0.0, 1.0, 1.0),
|
141 |
+
(1.0, 0.0, 0.0, 1.0),
|
142 |
+
]
|
143 |
+
assert result == expected
|
144 |
+
|
145 |
+
def test_if_scatterplot_colorbar_affects_xaxis_visibility(self):
|
146 |
+
# addressing issue #10611, to ensure colobar does not
|
147 |
+
# interfere with x-axis label and ticklabels with
|
148 |
+
# ipython inline backend.
|
149 |
+
random_array = np.random.default_rng(2).random((10, 3))
|
150 |
+
df = DataFrame(random_array, columns=["A label", "B label", "C label"])
|
151 |
+
|
152 |
+
ax1 = df.plot.scatter(x="A label", y="B label")
|
153 |
+
ax2 = df.plot.scatter(x="A label", y="B label", c="C label")
|
154 |
+
|
155 |
+
vis1 = [vis.get_visible() for vis in ax1.xaxis.get_minorticklabels()]
|
156 |
+
vis2 = [vis.get_visible() for vis in ax2.xaxis.get_minorticklabels()]
|
157 |
+
assert vis1 == vis2
|
158 |
+
|
159 |
+
vis1 = [vis.get_visible() for vis in ax1.xaxis.get_majorticklabels()]
|
160 |
+
vis2 = [vis.get_visible() for vis in ax2.xaxis.get_majorticklabels()]
|
161 |
+
assert vis1 == vis2
|
162 |
+
|
163 |
+
assert (
|
164 |
+
ax1.xaxis.get_label().get_visible() == ax2.xaxis.get_label().get_visible()
|
165 |
+
)
|
166 |
+
|
167 |
+
def test_if_hexbin_xaxis_label_is_visible(self):
|
168 |
+
# addressing issue #10678, to ensure colobar does not
|
169 |
+
# interfere with x-axis label and ticklabels with
|
170 |
+
# ipython inline backend.
|
171 |
+
random_array = np.random.default_rng(2).random((10, 3))
|
172 |
+
df = DataFrame(random_array, columns=["A label", "B label", "C label"])
|
173 |
+
|
174 |
+
ax = df.plot.hexbin("A label", "B label", gridsize=12)
|
175 |
+
assert all(vis.get_visible() for vis in ax.xaxis.get_minorticklabels())
|
176 |
+
assert all(vis.get_visible() for vis in ax.xaxis.get_majorticklabels())
|
177 |
+
assert ax.xaxis.get_label().get_visible()
|
178 |
+
|
179 |
+
def test_if_scatterplot_colorbars_are_next_to_parent_axes(self):
|
180 |
+
random_array = np.random.default_rng(2).random((10, 3))
|
181 |
+
df = DataFrame(random_array, columns=["A label", "B label", "C label"])
|
182 |
+
|
183 |
+
fig, axes = plt.subplots(1, 2)
|
184 |
+
df.plot.scatter("A label", "B label", c="C label", ax=axes[0])
|
185 |
+
df.plot.scatter("A label", "B label", c="C label", ax=axes[1])
|
186 |
+
plt.tight_layout()
|
187 |
+
|
188 |
+
points = np.array([ax.get_position().get_points() for ax in fig.axes])
|
189 |
+
axes_x_coords = points[:, :, 0]
|
190 |
+
parent_distance = axes_x_coords[1, :] - axes_x_coords[0, :]
|
191 |
+
colorbar_distance = axes_x_coords[3, :] - axes_x_coords[2, :]
|
192 |
+
assert np.isclose(parent_distance, colorbar_distance, atol=1e-7).all()
|
193 |
+
|
194 |
+
@pytest.mark.parametrize("cmap", [None, "Greys"])
|
195 |
+
def test_scatter_with_c_column_name_with_colors(self, cmap):
|
196 |
+
# https://github.com/pandas-dev/pandas/issues/34316
|
197 |
+
|
198 |
+
df = DataFrame(
|
199 |
+
[[5.1, 3.5], [4.9, 3.0], [7.0, 3.2], [6.4, 3.2], [5.9, 3.0]],
|
200 |
+
columns=["length", "width"],
|
201 |
+
)
|
202 |
+
df["species"] = ["r", "r", "g", "g", "b"]
|
203 |
+
if cmap is not None:
|
204 |
+
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
|
205 |
+
ax = df.plot.scatter(x=0, y=1, cmap=cmap, c="species")
|
206 |
+
else:
|
207 |
+
ax = df.plot.scatter(x=0, y=1, c="species", cmap=cmap)
|
208 |
+
assert ax.collections[0].colorbar is None
|
209 |
+
|
210 |
+
def test_scatter_colors(self):
|
211 |
+
df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]})
|
212 |
+
with pytest.raises(TypeError, match="Specify exactly one of `c` and `color`"):
|
213 |
+
df.plot.scatter(x="a", y="b", c="c", color="green")
|
214 |
+
|
215 |
+
def test_scatter_colors_not_raising_warnings(self):
|
216 |
+
# GH-53908. Do not raise UserWarning: No data for colormapping
|
217 |
+
# provided via 'c'. Parameters 'cmap' will be ignored
|
218 |
+
df = DataFrame({"x": [1, 2, 3], "y": [1, 2, 3]})
|
219 |
+
with tm.assert_produces_warning(None):
|
220 |
+
df.plot.scatter(x="x", y="y", c="b")
|
221 |
+
|
222 |
+
def test_scatter_colors_default(self):
|
223 |
+
df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]})
|
224 |
+
default_colors = _unpack_cycler(mpl.pyplot.rcParams)
|
225 |
+
|
226 |
+
ax = df.plot.scatter(x="a", y="b", c="c")
|
227 |
+
tm.assert_numpy_array_equal(
|
228 |
+
ax.collections[0].get_facecolor()[0],
|
229 |
+
np.array(mpl.colors.ColorConverter.to_rgba(default_colors[0])),
|
230 |
+
)
|
231 |
+
|
232 |
+
def test_scatter_colors_white(self):
|
233 |
+
df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]})
|
234 |
+
ax = df.plot.scatter(x="a", y="b", color="white")
|
235 |
+
tm.assert_numpy_array_equal(
|
236 |
+
ax.collections[0].get_facecolor()[0],
|
237 |
+
np.array([1, 1, 1, 1], dtype=np.float64),
|
238 |
+
)
|
239 |
+
|
240 |
+
def test_scatter_colorbar_different_cmap(self):
|
241 |
+
# GH 33389
|
242 |
+
df = DataFrame({"x": [1, 2, 3], "y": [1, 3, 2], "c": [1, 2, 3]})
|
243 |
+
df["x2"] = df["x"] + 1
|
244 |
+
|
245 |
+
_, ax = plt.subplots()
|
246 |
+
df.plot("x", "y", c="c", kind="scatter", cmap="cividis", ax=ax)
|
247 |
+
df.plot("x2", "y", c="c", kind="scatter", cmap="magma", ax=ax)
|
248 |
+
|
249 |
+
assert ax.collections[0].cmap.name == "cividis"
|
250 |
+
assert ax.collections[1].cmap.name == "magma"
|
251 |
+
|
252 |
+
def test_line_colors(self):
|
253 |
+
custom_colors = "rgcby"
|
254 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
255 |
+
|
256 |
+
ax = df.plot(color=custom_colors)
|
257 |
+
_check_colors(ax.get_lines(), linecolors=custom_colors)
|
258 |
+
|
259 |
+
plt.close("all")
|
260 |
+
|
261 |
+
ax2 = df.plot(color=custom_colors)
|
262 |
+
lines2 = ax2.get_lines()
|
263 |
+
|
264 |
+
for l1, l2 in zip(ax.get_lines(), lines2):
|
265 |
+
assert l1.get_color() == l2.get_color()
|
266 |
+
|
267 |
+
@pytest.mark.parametrize("colormap", ["jet", cm.jet])
|
268 |
+
def test_line_colors_cmap(self, colormap):
|
269 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
270 |
+
ax = df.plot(colormap=colormap)
|
271 |
+
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
272 |
+
_check_colors(ax.get_lines(), linecolors=rgba_colors)
|
273 |
+
|
274 |
+
def test_line_colors_single_col(self):
|
275 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
276 |
+
# make color a list if plotting one column frame
|
277 |
+
# handles cases like df.plot(color='DodgerBlue')
|
278 |
+
ax = df.loc[:, [0]].plot(color="DodgerBlue")
|
279 |
+
_check_colors(ax.lines, linecolors=["DodgerBlue"])
|
280 |
+
|
281 |
+
def test_line_colors_single_color(self):
|
282 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
283 |
+
ax = df.plot(color="red")
|
284 |
+
_check_colors(ax.get_lines(), linecolors=["red"] * 5)
|
285 |
+
|
286 |
+
def test_line_colors_hex(self):
|
287 |
+
# GH 10299
|
288 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
289 |
+
custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"]
|
290 |
+
ax = df.plot(color=custom_colors)
|
291 |
+
_check_colors(ax.get_lines(), linecolors=custom_colors)
|
292 |
+
|
293 |
+
def test_dont_modify_colors(self):
|
294 |
+
colors = ["r", "g", "b"]
|
295 |
+
DataFrame(np.random.default_rng(2).random((10, 2))).plot(color=colors)
|
296 |
+
assert len(colors) == 3
|
297 |
+
|
298 |
+
def test_line_colors_and_styles_subplots(self):
|
299 |
+
# GH 9894
|
300 |
+
default_colors = _unpack_cycler(mpl.pyplot.rcParams)
|
301 |
+
|
302 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
303 |
+
|
304 |
+
axes = df.plot(subplots=True)
|
305 |
+
for ax, c in zip(axes, list(default_colors)):
|
306 |
+
_check_colors(ax.get_lines(), linecolors=[c])
|
307 |
+
|
308 |
+
@pytest.mark.parametrize("color", ["k", "green"])
|
309 |
+
def test_line_colors_and_styles_subplots_single_color_str(self, color):
|
310 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
311 |
+
axes = df.plot(subplots=True, color=color)
|
312 |
+
for ax in axes:
|
313 |
+
_check_colors(ax.get_lines(), linecolors=[color])
|
314 |
+
|
315 |
+
@pytest.mark.parametrize("color", ["rgcby", list("rgcby")])
|
316 |
+
def test_line_colors_and_styles_subplots_custom_colors(self, color):
|
317 |
+
# GH 9894
|
318 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
319 |
+
axes = df.plot(color=color, subplots=True)
|
320 |
+
for ax, c in zip(axes, list(color)):
|
321 |
+
_check_colors(ax.get_lines(), linecolors=[c])
|
322 |
+
|
323 |
+
def test_line_colors_and_styles_subplots_colormap_hex(self):
|
324 |
+
# GH 9894
|
325 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
326 |
+
# GH 10299
|
327 |
+
custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"]
|
328 |
+
axes = df.plot(color=custom_colors, subplots=True)
|
329 |
+
for ax, c in zip(axes, list(custom_colors)):
|
330 |
+
_check_colors(ax.get_lines(), linecolors=[c])
|
331 |
+
|
332 |
+
@pytest.mark.parametrize("cmap", ["jet", cm.jet])
|
333 |
+
def test_line_colors_and_styles_subplots_colormap_subplot(self, cmap):
|
334 |
+
# GH 9894
|
335 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
336 |
+
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
337 |
+
axes = df.plot(colormap=cmap, subplots=True)
|
338 |
+
for ax, c in zip(axes, rgba_colors):
|
339 |
+
_check_colors(ax.get_lines(), linecolors=[c])
|
340 |
+
|
341 |
+
def test_line_colors_and_styles_subplots_single_col(self):
|
342 |
+
# GH 9894
|
343 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
344 |
+
# make color a list if plotting one column frame
|
345 |
+
# handles cases like df.plot(color='DodgerBlue')
|
346 |
+
axes = df.loc[:, [0]].plot(color="DodgerBlue", subplots=True)
|
347 |
+
_check_colors(axes[0].lines, linecolors=["DodgerBlue"])
|
348 |
+
|
349 |
+
def test_line_colors_and_styles_subplots_single_char(self):
|
350 |
+
# GH 9894
|
351 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
352 |
+
# single character style
|
353 |
+
axes = df.plot(style="r", subplots=True)
|
354 |
+
for ax in axes:
|
355 |
+
_check_colors(ax.get_lines(), linecolors=["r"])
|
356 |
+
|
357 |
+
def test_line_colors_and_styles_subplots_list_styles(self):
|
358 |
+
# GH 9894
|
359 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
360 |
+
# list of styles
|
361 |
+
styles = list("rgcby")
|
362 |
+
axes = df.plot(style=styles, subplots=True)
|
363 |
+
for ax, c in zip(axes, styles):
|
364 |
+
_check_colors(ax.get_lines(), linecolors=[c])
|
365 |
+
|
366 |
+
def test_area_colors(self):
|
367 |
+
from matplotlib.collections import PolyCollection
|
368 |
+
|
369 |
+
custom_colors = "rgcby"
|
370 |
+
df = DataFrame(np.random.default_rng(2).random((5, 5)))
|
371 |
+
|
372 |
+
ax = df.plot.area(color=custom_colors)
|
373 |
+
_check_colors(ax.get_lines(), linecolors=custom_colors)
|
374 |
+
poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
|
375 |
+
_check_colors(poly, facecolors=custom_colors)
|
376 |
+
|
377 |
+
handles, _ = ax.get_legend_handles_labels()
|
378 |
+
_check_colors(handles, facecolors=custom_colors)
|
379 |
+
|
380 |
+
for h in handles:
|
381 |
+
assert h.get_alpha() is None
|
382 |
+
|
383 |
+
def test_area_colors_poly(self):
|
384 |
+
from matplotlib import cm
|
385 |
+
from matplotlib.collections import PolyCollection
|
386 |
+
|
387 |
+
df = DataFrame(np.random.default_rng(2).random((5, 5)))
|
388 |
+
ax = df.plot.area(colormap="jet")
|
389 |
+
jet_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
390 |
+
_check_colors(ax.get_lines(), linecolors=jet_colors)
|
391 |
+
poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
|
392 |
+
_check_colors(poly, facecolors=jet_colors)
|
393 |
+
|
394 |
+
handles, _ = ax.get_legend_handles_labels()
|
395 |
+
_check_colors(handles, facecolors=jet_colors)
|
396 |
+
for h in handles:
|
397 |
+
assert h.get_alpha() is None
|
398 |
+
|
399 |
+
def test_area_colors_stacked_false(self):
|
400 |
+
from matplotlib import cm
|
401 |
+
from matplotlib.collections import PolyCollection
|
402 |
+
|
403 |
+
df = DataFrame(np.random.default_rng(2).random((5, 5)))
|
404 |
+
jet_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
405 |
+
# When stacked=False, alpha is set to 0.5
|
406 |
+
ax = df.plot.area(colormap=cm.jet, stacked=False)
|
407 |
+
_check_colors(ax.get_lines(), linecolors=jet_colors)
|
408 |
+
poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
|
409 |
+
jet_with_alpha = [(c[0], c[1], c[2], 0.5) for c in jet_colors]
|
410 |
+
_check_colors(poly, facecolors=jet_with_alpha)
|
411 |
+
|
412 |
+
handles, _ = ax.get_legend_handles_labels()
|
413 |
+
linecolors = jet_with_alpha
|
414 |
+
_check_colors(handles[: len(jet_colors)], linecolors=linecolors)
|
415 |
+
for h in handles:
|
416 |
+
assert h.get_alpha() == 0.5
|
417 |
+
|
418 |
+
def test_hist_colors(self):
|
419 |
+
default_colors = _unpack_cycler(mpl.pyplot.rcParams)
|
420 |
+
|
421 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
422 |
+
ax = df.plot.hist()
|
423 |
+
_check_colors(ax.patches[::10], facecolors=default_colors[:5])
|
424 |
+
|
425 |
+
def test_hist_colors_single_custom(self):
|
426 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
427 |
+
custom_colors = "rgcby"
|
428 |
+
ax = df.plot.hist(color=custom_colors)
|
429 |
+
_check_colors(ax.patches[::10], facecolors=custom_colors)
|
430 |
+
|
431 |
+
@pytest.mark.parametrize("colormap", ["jet", cm.jet])
|
432 |
+
def test_hist_colors_cmap(self, colormap):
|
433 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
434 |
+
ax = df.plot.hist(colormap=colormap)
|
435 |
+
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)]
|
436 |
+
_check_colors(ax.patches[::10], facecolors=rgba_colors)
|
437 |
+
|
438 |
+
def test_hist_colors_single_col(self):
|
439 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
440 |
+
ax = df.loc[:, [0]].plot.hist(color="DodgerBlue")
|
441 |
+
_check_colors([ax.patches[0]], facecolors=["DodgerBlue"])
|
442 |
+
|
443 |
+
def test_hist_colors_single_color(self):
|
444 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
445 |
+
ax = df.plot(kind="hist", color="green")
|
446 |
+
_check_colors(ax.patches[::10], facecolors=["green"] * 5)
|
447 |
+
|
448 |
+
def test_kde_colors(self):
|
449 |
+
pytest.importorskip("scipy")
|
450 |
+
custom_colors = "rgcby"
|
451 |
+
df = DataFrame(np.random.default_rng(2).random((5, 5)))
|
452 |
+
|
453 |
+
ax = df.plot.kde(color=custom_colors)
|
454 |
+
_check_colors(ax.get_lines(), linecolors=custom_colors)
|
455 |
+
|
456 |
+
@pytest.mark.parametrize("colormap", ["jet", cm.jet])
|
457 |
+
def test_kde_colors_cmap(self, colormap):
|
458 |
+
pytest.importorskip("scipy")
|
459 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
460 |
+
ax = df.plot.kde(colormap=colormap)
|
461 |
+
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
462 |
+
_check_colors(ax.get_lines(), linecolors=rgba_colors)
|
463 |
+
|
464 |
+
def test_kde_colors_and_styles_subplots(self):
|
465 |
+
pytest.importorskip("scipy")
|
466 |
+
default_colors = _unpack_cycler(mpl.pyplot.rcParams)
|
467 |
+
|
468 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
469 |
+
|
470 |
+
axes = df.plot(kind="kde", subplots=True)
|
471 |
+
for ax, c in zip(axes, list(default_colors)):
|
472 |
+
_check_colors(ax.get_lines(), linecolors=[c])
|
473 |
+
|
474 |
+
@pytest.mark.parametrize("colormap", ["k", "red"])
|
475 |
+
def test_kde_colors_and_styles_subplots_single_col_str(self, colormap):
|
476 |
+
pytest.importorskip("scipy")
|
477 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
478 |
+
axes = df.plot(kind="kde", color=colormap, subplots=True)
|
479 |
+
for ax in axes:
|
480 |
+
_check_colors(ax.get_lines(), linecolors=[colormap])
|
481 |
+
|
482 |
+
def test_kde_colors_and_styles_subplots_custom_color(self):
|
483 |
+
pytest.importorskip("scipy")
|
484 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
485 |
+
custom_colors = "rgcby"
|
486 |
+
axes = df.plot(kind="kde", color=custom_colors, subplots=True)
|
487 |
+
for ax, c in zip(axes, list(custom_colors)):
|
488 |
+
_check_colors(ax.get_lines(), linecolors=[c])
|
489 |
+
|
490 |
+
@pytest.mark.parametrize("colormap", ["jet", cm.jet])
|
491 |
+
def test_kde_colors_and_styles_subplots_cmap(self, colormap):
|
492 |
+
pytest.importorskip("scipy")
|
493 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
494 |
+
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
495 |
+
axes = df.plot(kind="kde", colormap=colormap, subplots=True)
|
496 |
+
for ax, c in zip(axes, rgba_colors):
|
497 |
+
_check_colors(ax.get_lines(), linecolors=[c])
|
498 |
+
|
499 |
+
def test_kde_colors_and_styles_subplots_single_col(self):
|
500 |
+
pytest.importorskip("scipy")
|
501 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
502 |
+
# make color a list if plotting one column frame
|
503 |
+
# handles cases like df.plot(color='DodgerBlue')
|
504 |
+
axes = df.loc[:, [0]].plot(kind="kde", color="DodgerBlue", subplots=True)
|
505 |
+
_check_colors(axes[0].lines, linecolors=["DodgerBlue"])
|
506 |
+
|
507 |
+
def test_kde_colors_and_styles_subplots_single_char(self):
|
508 |
+
pytest.importorskip("scipy")
|
509 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
510 |
+
# list of styles
|
511 |
+
# single character style
|
512 |
+
axes = df.plot(kind="kde", style="r", subplots=True)
|
513 |
+
for ax in axes:
|
514 |
+
_check_colors(ax.get_lines(), linecolors=["r"])
|
515 |
+
|
516 |
+
def test_kde_colors_and_styles_subplots_list(self):
|
517 |
+
pytest.importorskip("scipy")
|
518 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
519 |
+
# list of styles
|
520 |
+
styles = list("rgcby")
|
521 |
+
axes = df.plot(kind="kde", style=styles, subplots=True)
|
522 |
+
for ax, c in zip(axes, styles):
|
523 |
+
_check_colors(ax.get_lines(), linecolors=[c])
|
524 |
+
|
525 |
+
def test_boxplot_colors(self):
|
526 |
+
default_colors = _unpack_cycler(mpl.pyplot.rcParams)
|
527 |
+
|
528 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
529 |
+
bp = df.plot.box(return_type="dict")
|
530 |
+
_check_colors_box(
|
531 |
+
bp,
|
532 |
+
default_colors[0],
|
533 |
+
default_colors[0],
|
534 |
+
default_colors[2],
|
535 |
+
default_colors[0],
|
536 |
+
)
|
537 |
+
|
538 |
+
def test_boxplot_colors_dict_colors(self):
|
539 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
540 |
+
dict_colors = {
|
541 |
+
"boxes": "#572923",
|
542 |
+
"whiskers": "#982042",
|
543 |
+
"medians": "#804823",
|
544 |
+
"caps": "#123456",
|
545 |
+
}
|
546 |
+
bp = df.plot.box(color=dict_colors, sym="r+", return_type="dict")
|
547 |
+
_check_colors_box(
|
548 |
+
bp,
|
549 |
+
dict_colors["boxes"],
|
550 |
+
dict_colors["whiskers"],
|
551 |
+
dict_colors["medians"],
|
552 |
+
dict_colors["caps"],
|
553 |
+
"r",
|
554 |
+
)
|
555 |
+
|
556 |
+
def test_boxplot_colors_default_color(self):
|
557 |
+
default_colors = _unpack_cycler(mpl.pyplot.rcParams)
|
558 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
559 |
+
# partial colors
|
560 |
+
dict_colors = {"whiskers": "c", "medians": "m"}
|
561 |
+
bp = df.plot.box(color=dict_colors, return_type="dict")
|
562 |
+
_check_colors_box(bp, default_colors[0], "c", "m", default_colors[0])
|
563 |
+
|
564 |
+
@pytest.mark.parametrize("colormap", ["jet", cm.jet])
|
565 |
+
def test_boxplot_colors_cmap(self, colormap):
|
566 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
567 |
+
bp = df.plot.box(colormap=colormap, return_type="dict")
|
568 |
+
jet_colors = [cm.jet(n) for n in np.linspace(0, 1, 3)]
|
569 |
+
_check_colors_box(
|
570 |
+
bp, jet_colors[0], jet_colors[0], jet_colors[2], jet_colors[0]
|
571 |
+
)
|
572 |
+
|
573 |
+
def test_boxplot_colors_single(self):
|
574 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
575 |
+
# string color is applied to all artists except fliers
|
576 |
+
bp = df.plot.box(color="DodgerBlue", return_type="dict")
|
577 |
+
_check_colors_box(bp, "DodgerBlue", "DodgerBlue", "DodgerBlue", "DodgerBlue")
|
578 |
+
|
579 |
+
def test_boxplot_colors_tuple(self):
|
580 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
581 |
+
# tuple is also applied to all artists except fliers
|
582 |
+
bp = df.plot.box(color=(0, 1, 0), sym="#123456", return_type="dict")
|
583 |
+
_check_colors_box(bp, (0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0), "#123456")
|
584 |
+
|
585 |
+
def test_boxplot_colors_invalid(self):
|
586 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
587 |
+
msg = re.escape(
|
588 |
+
"color dict contains invalid key 'xxxx'. The key must be either "
|
589 |
+
"['boxes', 'whiskers', 'medians', 'caps']"
|
590 |
+
)
|
591 |
+
with pytest.raises(ValueError, match=msg):
|
592 |
+
# Color contains invalid key results in ValueError
|
593 |
+
df.plot.box(color={"boxes": "red", "xxxx": "blue"})
|
594 |
+
|
595 |
+
def test_default_color_cycle(self):
|
596 |
+
import cycler
|
597 |
+
|
598 |
+
colors = list("rgbk")
|
599 |
+
plt.rcParams["axes.prop_cycle"] = cycler.cycler("color", colors)
|
600 |
+
|
601 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
|
602 |
+
ax = df.plot()
|
603 |
+
|
604 |
+
expected = _unpack_cycler(plt.rcParams)[:3]
|
605 |
+
_check_colors(ax.get_lines(), linecolors=expected)
|
606 |
+
|
607 |
+
def test_no_color_bar(self):
|
608 |
+
df = DataFrame(
|
609 |
+
{
|
610 |
+
"A": np.random.default_rng(2).uniform(size=20),
|
611 |
+
"B": np.random.default_rng(2).uniform(size=20),
|
612 |
+
"C": np.arange(20) + np.random.default_rng(2).uniform(size=20),
|
613 |
+
}
|
614 |
+
)
|
615 |
+
ax = df.plot.hexbin(x="A", y="B", colorbar=None)
|
616 |
+
assert ax.collections[0].colorbar is None
|
617 |
+
|
618 |
+
def test_mixing_cmap_and_colormap_raises(self):
|
619 |
+
df = DataFrame(
|
620 |
+
{
|
621 |
+
"A": np.random.default_rng(2).uniform(size=20),
|
622 |
+
"B": np.random.default_rng(2).uniform(size=20),
|
623 |
+
"C": np.arange(20) + np.random.default_rng(2).uniform(size=20),
|
624 |
+
}
|
625 |
+
)
|
626 |
+
msg = "Only specify one of `cmap` and `colormap`"
|
627 |
+
with pytest.raises(TypeError, match=msg):
|
628 |
+
df.plot.hexbin(x="A", y="B", cmap="YlGn", colormap="BuGn")
|
629 |
+
|
630 |
+
def test_passed_bar_colors(self):
|
631 |
+
color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)]
|
632 |
+
colormap = mpl.colors.ListedColormap(color_tuples)
|
633 |
+
barplot = DataFrame([[1, 2, 3]]).plot(kind="bar", cmap=colormap)
|
634 |
+
assert color_tuples == [c.get_facecolor() for c in barplot.patches]
|
635 |
+
|
636 |
+
def test_rcParams_bar_colors(self):
|
637 |
+
color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)]
|
638 |
+
with mpl.rc_context(rc={"axes.prop_cycle": mpl.cycler("color", color_tuples)}):
|
639 |
+
barplot = DataFrame([[1, 2, 3]]).plot(kind="bar")
|
640 |
+
assert color_tuples == [c.get_facecolor() for c in barplot.patches]
|
641 |
+
|
642 |
+
def test_colors_of_columns_with_same_name(self):
|
643 |
+
# ISSUE 11136 -> https://github.com/pandas-dev/pandas/issues/11136
|
644 |
+
# Creating a DataFrame with duplicate column labels and testing colors of them.
|
645 |
+
df = DataFrame({"b": [0, 1, 0], "a": [1, 2, 3]})
|
646 |
+
df1 = DataFrame({"a": [2, 4, 6]})
|
647 |
+
df_concat = pd.concat([df, df1], axis=1)
|
648 |
+
result = df_concat.plot()
|
649 |
+
legend = result.get_legend()
|
650 |
+
if Version(mpl.__version__) < Version("3.7"):
|
651 |
+
handles = legend.legendHandles
|
652 |
+
else:
|
653 |
+
handles = legend.legend_handles
|
654 |
+
for legend, line in zip(handles, result.lines):
|
655 |
+
assert legend.get_color() == line.get_color()
|
656 |
+
|
657 |
+
def test_invalid_colormap(self):
|
658 |
+
df = DataFrame(
|
659 |
+
np.random.default_rng(2).standard_normal((3, 2)), columns=["A", "B"]
|
660 |
+
)
|
661 |
+
msg = "(is not a valid value)|(is not a known colormap)"
|
662 |
+
with pytest.raises((ValueError, KeyError), match=msg):
|
663 |
+
df.plot(colormap="invalid_colormap")
|
664 |
+
|
665 |
+
def test_dataframe_none_color(self):
|
666 |
+
# GH51953
|
667 |
+
df = DataFrame([[1, 2, 3]])
|
668 |
+
ax = df.plot(color=None)
|
669 |
+
expected = _unpack_cycler(mpl.pyplot.rcParams)[:3]
|
670 |
+
_check_colors(ax.get_lines(), linecolors=expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_groupby.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Test cases for DataFrame.plot """
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
from pandas import DataFrame
|
6 |
+
from pandas.tests.plotting.common import _check_visible
|
7 |
+
|
8 |
+
pytest.importorskip("matplotlib")
|
9 |
+
|
10 |
+
|
11 |
+
class TestDataFramePlotsGroupby:
|
12 |
+
def _assert_ytickslabels_visibility(self, axes, expected):
|
13 |
+
for ax, exp in zip(axes, expected):
|
14 |
+
_check_visible(ax.get_yticklabels(), visible=exp)
|
15 |
+
|
16 |
+
def _assert_xtickslabels_visibility(self, axes, expected):
|
17 |
+
for ax, exp in zip(axes, expected):
|
18 |
+
_check_visible(ax.get_xticklabels(), visible=exp)
|
19 |
+
|
20 |
+
@pytest.mark.parametrize(
|
21 |
+
"kwargs, expected",
|
22 |
+
[
|
23 |
+
# behavior without keyword
|
24 |
+
({}, [True, False, True, False]),
|
25 |
+
# set sharey=True should be identical
|
26 |
+
({"sharey": True}, [True, False, True, False]),
|
27 |
+
# sharey=False, all yticklabels should be visible
|
28 |
+
({"sharey": False}, [True, True, True, True]),
|
29 |
+
],
|
30 |
+
)
|
31 |
+
def test_groupby_boxplot_sharey(self, kwargs, expected):
|
32 |
+
# https://github.com/pandas-dev/pandas/issues/20968
|
33 |
+
# sharey can now be switched check whether the right
|
34 |
+
# pair of axes is turned on or off
|
35 |
+
df = DataFrame(
|
36 |
+
{
|
37 |
+
"a": [-1.43, -0.15, -3.70, -1.43, -0.14],
|
38 |
+
"b": [0.56, 0.84, 0.29, 0.56, 0.85],
|
39 |
+
"c": [0, 1, 2, 3, 1],
|
40 |
+
},
|
41 |
+
index=[0, 1, 2, 3, 4],
|
42 |
+
)
|
43 |
+
axes = df.groupby("c").boxplot(**kwargs)
|
44 |
+
self._assert_ytickslabels_visibility(axes, expected)
|
45 |
+
|
46 |
+
@pytest.mark.parametrize(
|
47 |
+
"kwargs, expected",
|
48 |
+
[
|
49 |
+
# behavior without keyword
|
50 |
+
({}, [True, True, True, True]),
|
51 |
+
# set sharex=False should be identical
|
52 |
+
({"sharex": False}, [True, True, True, True]),
|
53 |
+
# sharex=True, xticklabels should be visible
|
54 |
+
# only for bottom plots
|
55 |
+
({"sharex": True}, [False, False, True, True]),
|
56 |
+
],
|
57 |
+
)
|
58 |
+
def test_groupby_boxplot_sharex(self, kwargs, expected):
|
59 |
+
# https://github.com/pandas-dev/pandas/issues/20968
|
60 |
+
# sharex can now be switched check whether the right
|
61 |
+
# pair of axes is turned on or off
|
62 |
+
|
63 |
+
df = DataFrame(
|
64 |
+
{
|
65 |
+
"a": [-1.43, -0.15, -3.70, -1.43, -0.14],
|
66 |
+
"b": [0.56, 0.84, 0.29, 0.56, 0.85],
|
67 |
+
"c": [0, 1, 2, 3, 1],
|
68 |
+
},
|
69 |
+
index=[0, 1, 2, 3, 4],
|
70 |
+
)
|
71 |
+
axes = df.groupby("c").boxplot(**kwargs)
|
72 |
+
self._assert_xtickslabels_visibility(axes, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_legend.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas.util._test_decorators as td
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
DataFrame,
|
8 |
+
date_range,
|
9 |
+
)
|
10 |
+
from pandas.tests.plotting.common import (
|
11 |
+
_check_legend_labels,
|
12 |
+
_check_legend_marker,
|
13 |
+
_check_text_labels,
|
14 |
+
)
|
15 |
+
from pandas.util.version import Version
|
16 |
+
|
17 |
+
mpl = pytest.importorskip("matplotlib")
|
18 |
+
|
19 |
+
|
20 |
+
class TestFrameLegend:
|
21 |
+
@pytest.mark.xfail(
|
22 |
+
reason=(
|
23 |
+
"Open bug in matplotlib "
|
24 |
+
"https://github.com/matplotlib/matplotlib/issues/11357"
|
25 |
+
)
|
26 |
+
)
|
27 |
+
def test_mixed_yerr(self):
|
28 |
+
# https://github.com/pandas-dev/pandas/issues/39522
|
29 |
+
from matplotlib.collections import LineCollection
|
30 |
+
from matplotlib.lines import Line2D
|
31 |
+
|
32 |
+
df = DataFrame([{"x": 1, "a": 1, "b": 1}, {"x": 2, "a": 2, "b": 3}])
|
33 |
+
|
34 |
+
ax = df.plot("x", "a", c="orange", yerr=0.1, label="orange")
|
35 |
+
df.plot("x", "b", c="blue", yerr=None, ax=ax, label="blue")
|
36 |
+
|
37 |
+
legend = ax.get_legend()
|
38 |
+
if Version(mpl.__version__) < Version("3.7"):
|
39 |
+
result_handles = legend.legendHandles
|
40 |
+
else:
|
41 |
+
result_handles = legend.legend_handles
|
42 |
+
|
43 |
+
assert isinstance(result_handles[0], LineCollection)
|
44 |
+
assert isinstance(result_handles[1], Line2D)
|
45 |
+
|
46 |
+
def test_legend_false(self):
|
47 |
+
# https://github.com/pandas-dev/pandas/issues/40044
|
48 |
+
df = DataFrame({"a": [1, 1], "b": [2, 3]})
|
49 |
+
df2 = DataFrame({"d": [2.5, 2.5]})
|
50 |
+
|
51 |
+
ax = df.plot(legend=True, color={"a": "blue", "b": "green"}, secondary_y="b")
|
52 |
+
df2.plot(legend=True, color={"d": "red"}, ax=ax)
|
53 |
+
legend = ax.get_legend()
|
54 |
+
if Version(mpl.__version__) < Version("3.7"):
|
55 |
+
handles = legend.legendHandles
|
56 |
+
else:
|
57 |
+
handles = legend.legend_handles
|
58 |
+
result = [handle.get_color() for handle in handles]
|
59 |
+
expected = ["blue", "green", "red"]
|
60 |
+
assert result == expected
|
61 |
+
|
62 |
+
@pytest.mark.parametrize("kind", ["line", "bar", "barh", "kde", "area", "hist"])
|
63 |
+
def test_df_legend_labels(self, kind):
|
64 |
+
pytest.importorskip("scipy")
|
65 |
+
df = DataFrame(np.random.default_rng(2).random((3, 3)), columns=["a", "b", "c"])
|
66 |
+
df2 = DataFrame(
|
67 |
+
np.random.default_rng(2).random((3, 3)), columns=["d", "e", "f"]
|
68 |
+
)
|
69 |
+
df3 = DataFrame(
|
70 |
+
np.random.default_rng(2).random((3, 3)), columns=["g", "h", "i"]
|
71 |
+
)
|
72 |
+
df4 = DataFrame(
|
73 |
+
np.random.default_rng(2).random((3, 3)), columns=["j", "k", "l"]
|
74 |
+
)
|
75 |
+
|
76 |
+
ax = df.plot(kind=kind, legend=True)
|
77 |
+
_check_legend_labels(ax, labels=df.columns)
|
78 |
+
|
79 |
+
ax = df2.plot(kind=kind, legend=False, ax=ax)
|
80 |
+
_check_legend_labels(ax, labels=df.columns)
|
81 |
+
|
82 |
+
ax = df3.plot(kind=kind, legend=True, ax=ax)
|
83 |
+
_check_legend_labels(ax, labels=df.columns.union(df3.columns))
|
84 |
+
|
85 |
+
ax = df4.plot(kind=kind, legend="reverse", ax=ax)
|
86 |
+
expected = list(df.columns.union(df3.columns)) + list(reversed(df4.columns))
|
87 |
+
_check_legend_labels(ax, labels=expected)
|
88 |
+
|
89 |
+
def test_df_legend_labels_secondary_y(self):
|
90 |
+
pytest.importorskip("scipy")
|
91 |
+
df = DataFrame(np.random.default_rng(2).random((3, 3)), columns=["a", "b", "c"])
|
92 |
+
df2 = DataFrame(
|
93 |
+
np.random.default_rng(2).random((3, 3)), columns=["d", "e", "f"]
|
94 |
+
)
|
95 |
+
df3 = DataFrame(
|
96 |
+
np.random.default_rng(2).random((3, 3)), columns=["g", "h", "i"]
|
97 |
+
)
|
98 |
+
# Secondary Y
|
99 |
+
ax = df.plot(legend=True, secondary_y="b")
|
100 |
+
_check_legend_labels(ax, labels=["a", "b (right)", "c"])
|
101 |
+
ax = df2.plot(legend=False, ax=ax)
|
102 |
+
_check_legend_labels(ax, labels=["a", "b (right)", "c"])
|
103 |
+
ax = df3.plot(kind="bar", legend=True, secondary_y="h", ax=ax)
|
104 |
+
_check_legend_labels(ax, labels=["a", "b (right)", "c", "g", "h (right)", "i"])
|
105 |
+
|
106 |
+
def test_df_legend_labels_time_series(self):
|
107 |
+
# Time Series
|
108 |
+
pytest.importorskip("scipy")
|
109 |
+
ind = date_range("1/1/2014", periods=3)
|
110 |
+
df = DataFrame(
|
111 |
+
np.random.default_rng(2).standard_normal((3, 3)),
|
112 |
+
columns=["a", "b", "c"],
|
113 |
+
index=ind,
|
114 |
+
)
|
115 |
+
df2 = DataFrame(
|
116 |
+
np.random.default_rng(2).standard_normal((3, 3)),
|
117 |
+
columns=["d", "e", "f"],
|
118 |
+
index=ind,
|
119 |
+
)
|
120 |
+
df3 = DataFrame(
|
121 |
+
np.random.default_rng(2).standard_normal((3, 3)),
|
122 |
+
columns=["g", "h", "i"],
|
123 |
+
index=ind,
|
124 |
+
)
|
125 |
+
ax = df.plot(legend=True, secondary_y="b")
|
126 |
+
_check_legend_labels(ax, labels=["a", "b (right)", "c"])
|
127 |
+
ax = df2.plot(legend=False, ax=ax)
|
128 |
+
_check_legend_labels(ax, labels=["a", "b (right)", "c"])
|
129 |
+
ax = df3.plot(legend=True, ax=ax)
|
130 |
+
_check_legend_labels(ax, labels=["a", "b (right)", "c", "g", "h", "i"])
|
131 |
+
|
132 |
+
def test_df_legend_labels_time_series_scatter(self):
|
133 |
+
# Time Series
|
134 |
+
pytest.importorskip("scipy")
|
135 |
+
ind = date_range("1/1/2014", periods=3)
|
136 |
+
df = DataFrame(
|
137 |
+
np.random.default_rng(2).standard_normal((3, 3)),
|
138 |
+
columns=["a", "b", "c"],
|
139 |
+
index=ind,
|
140 |
+
)
|
141 |
+
df2 = DataFrame(
|
142 |
+
np.random.default_rng(2).standard_normal((3, 3)),
|
143 |
+
columns=["d", "e", "f"],
|
144 |
+
index=ind,
|
145 |
+
)
|
146 |
+
df3 = DataFrame(
|
147 |
+
np.random.default_rng(2).standard_normal((3, 3)),
|
148 |
+
columns=["g", "h", "i"],
|
149 |
+
index=ind,
|
150 |
+
)
|
151 |
+
# scatter
|
152 |
+
ax = df.plot.scatter(x="a", y="b", label="data1")
|
153 |
+
_check_legend_labels(ax, labels=["data1"])
|
154 |
+
ax = df2.plot.scatter(x="d", y="e", legend=False, label="data2", ax=ax)
|
155 |
+
_check_legend_labels(ax, labels=["data1"])
|
156 |
+
ax = df3.plot.scatter(x="g", y="h", label="data3", ax=ax)
|
157 |
+
_check_legend_labels(ax, labels=["data1", "data3"])
|
158 |
+
|
159 |
+
def test_df_legend_labels_time_series_no_mutate(self):
|
160 |
+
pytest.importorskip("scipy")
|
161 |
+
ind = date_range("1/1/2014", periods=3)
|
162 |
+
df = DataFrame(
|
163 |
+
np.random.default_rng(2).standard_normal((3, 3)),
|
164 |
+
columns=["a", "b", "c"],
|
165 |
+
index=ind,
|
166 |
+
)
|
167 |
+
# ensure label args pass through and
|
168 |
+
# index name does not mutate
|
169 |
+
# column names don't mutate
|
170 |
+
df5 = df.set_index("a")
|
171 |
+
ax = df5.plot(y="b")
|
172 |
+
_check_legend_labels(ax, labels=["b"])
|
173 |
+
ax = df5.plot(y="b", label="LABEL_b")
|
174 |
+
_check_legend_labels(ax, labels=["LABEL_b"])
|
175 |
+
_check_text_labels(ax.xaxis.get_label(), "a")
|
176 |
+
ax = df5.plot(y="c", label="LABEL_c", ax=ax)
|
177 |
+
_check_legend_labels(ax, labels=["LABEL_b", "LABEL_c"])
|
178 |
+
assert df5.columns.tolist() == ["b", "c"]
|
179 |
+
|
180 |
+
def test_missing_marker_multi_plots_on_same_ax(self):
|
181 |
+
# GH 18222
|
182 |
+
df = DataFrame(data=[[1, 1, 1, 1], [2, 2, 4, 8]], columns=["x", "r", "g", "b"])
|
183 |
+
_, ax = mpl.pyplot.subplots(nrows=1, ncols=3)
|
184 |
+
# Left plot
|
185 |
+
df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[0])
|
186 |
+
df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[0])
|
187 |
+
df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[0])
|
188 |
+
_check_legend_labels(ax[0], labels=["r", "g", "b"])
|
189 |
+
_check_legend_marker(ax[0], expected_markers=["o", "x", "o"])
|
190 |
+
# Center plot
|
191 |
+
df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[1])
|
192 |
+
df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[1])
|
193 |
+
df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[1])
|
194 |
+
_check_legend_labels(ax[1], labels=["b", "r", "g"])
|
195 |
+
_check_legend_marker(ax[1], expected_markers=["o", "o", "x"])
|
196 |
+
# Right plot
|
197 |
+
df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[2])
|
198 |
+
df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[2])
|
199 |
+
df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[2])
|
200 |
+
_check_legend_labels(ax[2], labels=["g", "b", "r"])
|
201 |
+
_check_legend_marker(ax[2], expected_markers=["x", "o", "o"])
|
202 |
+
|
203 |
+
def test_legend_name(self):
|
204 |
+
multi = DataFrame(
|
205 |
+
np.random.default_rng(2).standard_normal((4, 4)),
|
206 |
+
columns=[np.array(["a", "a", "b", "b"]), np.array(["x", "y", "x", "y"])],
|
207 |
+
)
|
208 |
+
multi.columns.names = ["group", "individual"]
|
209 |
+
|
210 |
+
ax = multi.plot()
|
211 |
+
leg_title = ax.legend_.get_title()
|
212 |
+
_check_text_labels(leg_title, "group,individual")
|
213 |
+
|
214 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
215 |
+
ax = df.plot(legend=True, ax=ax)
|
216 |
+
leg_title = ax.legend_.get_title()
|
217 |
+
_check_text_labels(leg_title, "group,individual")
|
218 |
+
|
219 |
+
df.columns.name = "new"
|
220 |
+
ax = df.plot(legend=False, ax=ax)
|
221 |
+
leg_title = ax.legend_.get_title()
|
222 |
+
_check_text_labels(leg_title, "group,individual")
|
223 |
+
|
224 |
+
ax = df.plot(legend=True, ax=ax)
|
225 |
+
leg_title = ax.legend_.get_title()
|
226 |
+
_check_text_labels(leg_title, "new")
|
227 |
+
|
228 |
+
@pytest.mark.parametrize(
|
229 |
+
"kind",
|
230 |
+
[
|
231 |
+
"line",
|
232 |
+
"bar",
|
233 |
+
"barh",
|
234 |
+
pytest.param("kde", marks=td.skip_if_no("scipy")),
|
235 |
+
"area",
|
236 |
+
"hist",
|
237 |
+
],
|
238 |
+
)
|
239 |
+
def test_no_legend(self, kind):
|
240 |
+
df = DataFrame(np.random.default_rng(2).random((3, 3)), columns=["a", "b", "c"])
|
241 |
+
ax = df.plot(kind=kind, legend=False)
|
242 |
+
_check_legend_labels(ax, visible=False)
|
243 |
+
|
244 |
+
def test_missing_markers_legend(self):
|
245 |
+
# 14958
|
246 |
+
df = DataFrame(
|
247 |
+
np.random.default_rng(2).standard_normal((8, 3)), columns=["A", "B", "C"]
|
248 |
+
)
|
249 |
+
ax = df.plot(y=["A"], marker="x", linestyle="solid")
|
250 |
+
df.plot(y=["B"], marker="o", linestyle="dotted", ax=ax)
|
251 |
+
df.plot(y=["C"], marker="<", linestyle="dotted", ax=ax)
|
252 |
+
|
253 |
+
_check_legend_labels(ax, labels=["A", "B", "C"])
|
254 |
+
_check_legend_marker(ax, expected_markers=["x", "o", "<"])
|
255 |
+
|
256 |
+
def test_missing_markers_legend_using_style(self):
|
257 |
+
# 14563
|
258 |
+
df = DataFrame(
|
259 |
+
{
|
260 |
+
"A": [1, 2, 3, 4, 5, 6],
|
261 |
+
"B": [2, 4, 1, 3, 2, 4],
|
262 |
+
"C": [3, 3, 2, 6, 4, 2],
|
263 |
+
"X": [1, 2, 3, 4, 5, 6],
|
264 |
+
}
|
265 |
+
)
|
266 |
+
|
267 |
+
_, ax = mpl.pyplot.subplots()
|
268 |
+
for kind in "ABC":
|
269 |
+
df.plot("X", kind, label=kind, ax=ax, style=".")
|
270 |
+
|
271 |
+
_check_legend_labels(ax, labels=["A", "B", "C"])
|
272 |
+
_check_legend_marker(ax, expected_markers=[".", ".", "."])
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_subplots.py
ADDED
@@ -0,0 +1,752 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Test cases for DataFrame.plot """
|
2 |
+
|
3 |
+
import string
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
from pandas.compat import is_platform_linux
|
9 |
+
from pandas.compat.numpy import np_version_gte1p24
|
10 |
+
|
11 |
+
import pandas as pd
|
12 |
+
from pandas import (
|
13 |
+
DataFrame,
|
14 |
+
Series,
|
15 |
+
date_range,
|
16 |
+
)
|
17 |
+
import pandas._testing as tm
|
18 |
+
from pandas.tests.plotting.common import (
|
19 |
+
_check_axes_shape,
|
20 |
+
_check_box_return_type,
|
21 |
+
_check_legend_labels,
|
22 |
+
_check_ticks_props,
|
23 |
+
_check_visible,
|
24 |
+
_flatten_visible,
|
25 |
+
)
|
26 |
+
|
27 |
+
from pandas.io.formats.printing import pprint_thing
|
28 |
+
|
29 |
+
mpl = pytest.importorskip("matplotlib")
|
30 |
+
plt = pytest.importorskip("matplotlib.pyplot")
|
31 |
+
|
32 |
+
|
33 |
+
class TestDataFramePlotsSubplots:
|
34 |
+
@pytest.mark.slow
|
35 |
+
@pytest.mark.parametrize("kind", ["bar", "barh", "line", "area"])
|
36 |
+
def test_subplots(self, kind):
|
37 |
+
df = DataFrame(
|
38 |
+
np.random.default_rng(2).random((10, 3)),
|
39 |
+
index=list(string.ascii_letters[:10]),
|
40 |
+
)
|
41 |
+
|
42 |
+
axes = df.plot(kind=kind, subplots=True, sharex=True, legend=True)
|
43 |
+
_check_axes_shape(axes, axes_num=3, layout=(3, 1))
|
44 |
+
assert axes.shape == (3,)
|
45 |
+
|
46 |
+
for ax, column in zip(axes, df.columns):
|
47 |
+
_check_legend_labels(ax, labels=[pprint_thing(column)])
|
48 |
+
|
49 |
+
for ax in axes[:-2]:
|
50 |
+
_check_visible(ax.xaxis) # xaxis must be visible for grid
|
51 |
+
_check_visible(ax.get_xticklabels(), visible=False)
|
52 |
+
if kind != "bar":
|
53 |
+
# change https://github.com/pandas-dev/pandas/issues/26714
|
54 |
+
_check_visible(ax.get_xticklabels(minor=True), visible=False)
|
55 |
+
_check_visible(ax.xaxis.get_label(), visible=False)
|
56 |
+
_check_visible(ax.get_yticklabels())
|
57 |
+
|
58 |
+
_check_visible(axes[-1].xaxis)
|
59 |
+
_check_visible(axes[-1].get_xticklabels())
|
60 |
+
_check_visible(axes[-1].get_xticklabels(minor=True))
|
61 |
+
_check_visible(axes[-1].xaxis.get_label())
|
62 |
+
_check_visible(axes[-1].get_yticklabels())
|
63 |
+
|
64 |
+
@pytest.mark.slow
|
65 |
+
@pytest.mark.parametrize("kind", ["bar", "barh", "line", "area"])
|
66 |
+
def test_subplots_no_share_x(self, kind):
|
67 |
+
df = DataFrame(
|
68 |
+
np.random.default_rng(2).random((10, 3)),
|
69 |
+
index=list(string.ascii_letters[:10]),
|
70 |
+
)
|
71 |
+
axes = df.plot(kind=kind, subplots=True, sharex=False)
|
72 |
+
for ax in axes:
|
73 |
+
_check_visible(ax.xaxis)
|
74 |
+
_check_visible(ax.get_xticklabels())
|
75 |
+
_check_visible(ax.get_xticklabels(minor=True))
|
76 |
+
_check_visible(ax.xaxis.get_label())
|
77 |
+
_check_visible(ax.get_yticklabels())
|
78 |
+
|
79 |
+
@pytest.mark.slow
|
80 |
+
@pytest.mark.parametrize("kind", ["bar", "barh", "line", "area"])
|
81 |
+
def test_subplots_no_legend(self, kind):
|
82 |
+
df = DataFrame(
|
83 |
+
np.random.default_rng(2).random((10, 3)),
|
84 |
+
index=list(string.ascii_letters[:10]),
|
85 |
+
)
|
86 |
+
axes = df.plot(kind=kind, subplots=True, legend=False)
|
87 |
+
for ax in axes:
|
88 |
+
assert ax.get_legend() is None
|
89 |
+
|
90 |
+
@pytest.mark.parametrize("kind", ["line", "area"])
|
91 |
+
def test_subplots_timeseries(self, kind):
|
92 |
+
idx = date_range(start="2014-07-01", freq="ME", periods=10)
|
93 |
+
df = DataFrame(np.random.default_rng(2).random((10, 3)), index=idx)
|
94 |
+
|
95 |
+
axes = df.plot(kind=kind, subplots=True, sharex=True)
|
96 |
+
_check_axes_shape(axes, axes_num=3, layout=(3, 1))
|
97 |
+
|
98 |
+
for ax in axes[:-2]:
|
99 |
+
# GH 7801
|
100 |
+
_check_visible(ax.xaxis) # xaxis must be visible for grid
|
101 |
+
_check_visible(ax.get_xticklabels(), visible=False)
|
102 |
+
_check_visible(ax.get_xticklabels(minor=True), visible=False)
|
103 |
+
_check_visible(ax.xaxis.get_label(), visible=False)
|
104 |
+
_check_visible(ax.get_yticklabels())
|
105 |
+
|
106 |
+
_check_visible(axes[-1].xaxis)
|
107 |
+
_check_visible(axes[-1].get_xticklabels())
|
108 |
+
_check_visible(axes[-1].get_xticklabels(minor=True))
|
109 |
+
_check_visible(axes[-1].xaxis.get_label())
|
110 |
+
_check_visible(axes[-1].get_yticklabels())
|
111 |
+
_check_ticks_props(axes, xrot=0)
|
112 |
+
|
113 |
+
@pytest.mark.parametrize("kind", ["line", "area"])
|
114 |
+
def test_subplots_timeseries_rot(self, kind):
|
115 |
+
idx = date_range(start="2014-07-01", freq="ME", periods=10)
|
116 |
+
df = DataFrame(np.random.default_rng(2).random((10, 3)), index=idx)
|
117 |
+
axes = df.plot(kind=kind, subplots=True, sharex=False, rot=45, fontsize=7)
|
118 |
+
for ax in axes:
|
119 |
+
_check_visible(ax.xaxis)
|
120 |
+
_check_visible(ax.get_xticklabels())
|
121 |
+
_check_visible(ax.get_xticklabels(minor=True))
|
122 |
+
_check_visible(ax.xaxis.get_label())
|
123 |
+
_check_visible(ax.get_yticklabels())
|
124 |
+
_check_ticks_props(ax, xlabelsize=7, xrot=45, ylabelsize=7)
|
125 |
+
|
126 |
+
@pytest.mark.parametrize(
|
127 |
+
"col", ["numeric", "timedelta", "datetime_no_tz", "datetime_all_tz"]
|
128 |
+
)
|
129 |
+
def test_subplots_timeseries_y_axis(self, col):
|
130 |
+
# GH16953
|
131 |
+
data = {
|
132 |
+
"numeric": np.array([1, 2, 5]),
|
133 |
+
"timedelta": [
|
134 |
+
pd.Timedelta(-10, unit="s"),
|
135 |
+
pd.Timedelta(10, unit="m"),
|
136 |
+
pd.Timedelta(10, unit="h"),
|
137 |
+
],
|
138 |
+
"datetime_no_tz": [
|
139 |
+
pd.to_datetime("2017-08-01 00:00:00"),
|
140 |
+
pd.to_datetime("2017-08-01 02:00:00"),
|
141 |
+
pd.to_datetime("2017-08-02 00:00:00"),
|
142 |
+
],
|
143 |
+
"datetime_all_tz": [
|
144 |
+
pd.to_datetime("2017-08-01 00:00:00", utc=True),
|
145 |
+
pd.to_datetime("2017-08-01 02:00:00", utc=True),
|
146 |
+
pd.to_datetime("2017-08-02 00:00:00", utc=True),
|
147 |
+
],
|
148 |
+
"text": ["This", "should", "fail"],
|
149 |
+
}
|
150 |
+
testdata = DataFrame(data)
|
151 |
+
|
152 |
+
ax = testdata.plot(y=col)
|
153 |
+
result = ax.get_lines()[0].get_data()[1]
|
154 |
+
expected = testdata[col].values
|
155 |
+
assert (result == expected).all()
|
156 |
+
|
157 |
+
def test_subplots_timeseries_y_text_error(self):
|
158 |
+
# GH16953
|
159 |
+
data = {
|
160 |
+
"numeric": np.array([1, 2, 5]),
|
161 |
+
"text": ["This", "should", "fail"],
|
162 |
+
}
|
163 |
+
testdata = DataFrame(data)
|
164 |
+
msg = "no numeric data to plot"
|
165 |
+
with pytest.raises(TypeError, match=msg):
|
166 |
+
testdata.plot(y="text")
|
167 |
+
|
168 |
+
@pytest.mark.xfail(reason="not support for period, categorical, datetime_mixed_tz")
|
169 |
+
def test_subplots_timeseries_y_axis_not_supported(self):
|
170 |
+
"""
|
171 |
+
This test will fail for:
|
172 |
+
period:
|
173 |
+
since period isn't yet implemented in ``select_dtypes``
|
174 |
+
and because it will need a custom value converter +
|
175 |
+
tick formatter (as was done for x-axis plots)
|
176 |
+
|
177 |
+
categorical:
|
178 |
+
because it will need a custom value converter +
|
179 |
+
tick formatter (also doesn't work for x-axis, as of now)
|
180 |
+
|
181 |
+
datetime_mixed_tz:
|
182 |
+
because of the way how pandas handles ``Series`` of
|
183 |
+
``datetime`` objects with different timezone,
|
184 |
+
generally converting ``datetime`` objects in a tz-aware
|
185 |
+
form could help with this problem
|
186 |
+
"""
|
187 |
+
data = {
|
188 |
+
"numeric": np.array([1, 2, 5]),
|
189 |
+
"period": [
|
190 |
+
pd.Period("2017-08-01 00:00:00", freq="H"),
|
191 |
+
pd.Period("2017-08-01 02:00", freq="H"),
|
192 |
+
pd.Period("2017-08-02 00:00:00", freq="H"),
|
193 |
+
],
|
194 |
+
"categorical": pd.Categorical(
|
195 |
+
["c", "b", "a"], categories=["a", "b", "c"], ordered=False
|
196 |
+
),
|
197 |
+
"datetime_mixed_tz": [
|
198 |
+
pd.to_datetime("2017-08-01 00:00:00", utc=True),
|
199 |
+
pd.to_datetime("2017-08-01 02:00:00"),
|
200 |
+
pd.to_datetime("2017-08-02 00:00:00"),
|
201 |
+
],
|
202 |
+
}
|
203 |
+
testdata = DataFrame(data)
|
204 |
+
ax_period = testdata.plot(x="numeric", y="period")
|
205 |
+
assert (
|
206 |
+
ax_period.get_lines()[0].get_data()[1] == testdata["period"].values
|
207 |
+
).all()
|
208 |
+
ax_categorical = testdata.plot(x="numeric", y="categorical")
|
209 |
+
assert (
|
210 |
+
ax_categorical.get_lines()[0].get_data()[1]
|
211 |
+
== testdata["categorical"].values
|
212 |
+
).all()
|
213 |
+
ax_datetime_mixed_tz = testdata.plot(x="numeric", y="datetime_mixed_tz")
|
214 |
+
assert (
|
215 |
+
ax_datetime_mixed_tz.get_lines()[0].get_data()[1]
|
216 |
+
== testdata["datetime_mixed_tz"].values
|
217 |
+
).all()
|
218 |
+
|
219 |
+
@pytest.mark.parametrize(
|
220 |
+
"layout, exp_layout",
|
221 |
+
[
|
222 |
+
[(2, 2), (2, 2)],
|
223 |
+
[(-1, 2), (2, 2)],
|
224 |
+
[(2, -1), (2, 2)],
|
225 |
+
[(1, 4), (1, 4)],
|
226 |
+
[(-1, 4), (1, 4)],
|
227 |
+
[(4, -1), (4, 1)],
|
228 |
+
],
|
229 |
+
)
|
230 |
+
def test_subplots_layout_multi_column(self, layout, exp_layout):
|
231 |
+
# GH 6667
|
232 |
+
df = DataFrame(
|
233 |
+
np.random.default_rng(2).random((10, 3)),
|
234 |
+
index=list(string.ascii_letters[:10]),
|
235 |
+
)
|
236 |
+
|
237 |
+
axes = df.plot(subplots=True, layout=layout)
|
238 |
+
_check_axes_shape(axes, axes_num=3, layout=exp_layout)
|
239 |
+
assert axes.shape == exp_layout
|
240 |
+
|
241 |
+
def test_subplots_layout_multi_column_error(self):
|
242 |
+
# GH 6667
|
243 |
+
df = DataFrame(
|
244 |
+
np.random.default_rng(2).random((10, 3)),
|
245 |
+
index=list(string.ascii_letters[:10]),
|
246 |
+
)
|
247 |
+
msg = "Layout of 1x1 must be larger than required size 3"
|
248 |
+
|
249 |
+
with pytest.raises(ValueError, match=msg):
|
250 |
+
df.plot(subplots=True, layout=(1, 1))
|
251 |
+
|
252 |
+
msg = "At least one dimension of layout must be positive"
|
253 |
+
with pytest.raises(ValueError, match=msg):
|
254 |
+
df.plot(subplots=True, layout=(-1, -1))
|
255 |
+
|
256 |
+
@pytest.mark.parametrize(
|
257 |
+
"kwargs, expected_axes_num, expected_layout, expected_shape",
|
258 |
+
[
|
259 |
+
({}, 1, (1, 1), (1,)),
|
260 |
+
({"layout": (3, 3)}, 1, (3, 3), (3, 3)),
|
261 |
+
],
|
262 |
+
)
|
263 |
+
def test_subplots_layout_single_column(
|
264 |
+
self, kwargs, expected_axes_num, expected_layout, expected_shape
|
265 |
+
):
|
266 |
+
# GH 6667
|
267 |
+
df = DataFrame(
|
268 |
+
np.random.default_rng(2).random((10, 1)),
|
269 |
+
index=list(string.ascii_letters[:10]),
|
270 |
+
)
|
271 |
+
axes = df.plot(subplots=True, **kwargs)
|
272 |
+
_check_axes_shape(
|
273 |
+
axes,
|
274 |
+
axes_num=expected_axes_num,
|
275 |
+
layout=expected_layout,
|
276 |
+
)
|
277 |
+
assert axes.shape == expected_shape
|
278 |
+
|
279 |
+
@pytest.mark.slow
|
280 |
+
@pytest.mark.parametrize("idx", [range(5), date_range("1/1/2000", periods=5)])
|
281 |
+
def test_subplots_warnings(self, idx):
|
282 |
+
# GH 9464
|
283 |
+
with tm.assert_produces_warning(None):
|
284 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 4)), index=idx)
|
285 |
+
df.plot(subplots=True, layout=(3, 2))
|
286 |
+
|
287 |
+
def test_subplots_multiple_axes(self):
|
288 |
+
# GH 5353, 6970, GH 7069
|
289 |
+
fig, axes = mpl.pyplot.subplots(2, 3)
|
290 |
+
df = DataFrame(
|
291 |
+
np.random.default_rng(2).random((10, 3)),
|
292 |
+
index=list(string.ascii_letters[:10]),
|
293 |
+
)
|
294 |
+
|
295 |
+
returned = df.plot(subplots=True, ax=axes[0], sharex=False, sharey=False)
|
296 |
+
_check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
297 |
+
assert returned.shape == (3,)
|
298 |
+
assert returned[0].figure is fig
|
299 |
+
# draw on second row
|
300 |
+
returned = df.plot(subplots=True, ax=axes[1], sharex=False, sharey=False)
|
301 |
+
_check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
302 |
+
assert returned.shape == (3,)
|
303 |
+
assert returned[0].figure is fig
|
304 |
+
_check_axes_shape(axes, axes_num=6, layout=(2, 3))
|
305 |
+
|
306 |
+
def test_subplots_multiple_axes_error(self):
|
307 |
+
# GH 5353, 6970, GH 7069
|
308 |
+
df = DataFrame(
|
309 |
+
np.random.default_rng(2).random((10, 3)),
|
310 |
+
index=list(string.ascii_letters[:10]),
|
311 |
+
)
|
312 |
+
msg = "The number of passed axes must be 3, the same as the output plot"
|
313 |
+
_, axes = mpl.pyplot.subplots(2, 3)
|
314 |
+
|
315 |
+
with pytest.raises(ValueError, match=msg):
|
316 |
+
# pass different number of axes from required
|
317 |
+
df.plot(subplots=True, ax=axes)
|
318 |
+
|
319 |
+
@pytest.mark.parametrize(
|
320 |
+
"layout, exp_layout",
|
321 |
+
[
|
322 |
+
[(2, 1), (2, 2)],
|
323 |
+
[(2, -1), (2, 2)],
|
324 |
+
[(-1, 2), (2, 2)],
|
325 |
+
],
|
326 |
+
)
|
327 |
+
def test_subplots_multiple_axes_2_dim(self, layout, exp_layout):
|
328 |
+
# GH 5353, 6970, GH 7069
|
329 |
+
# pass 2-dim axes and invalid layout
|
330 |
+
# invalid lauout should not affect to input and return value
|
331 |
+
# (show warning is tested in
|
332 |
+
# TestDataFrameGroupByPlots.test_grouped_box_multiple_axes
|
333 |
+
_, axes = mpl.pyplot.subplots(2, 2)
|
334 |
+
df = DataFrame(
|
335 |
+
np.random.default_rng(2).random((10, 4)),
|
336 |
+
index=list(string.ascii_letters[:10]),
|
337 |
+
)
|
338 |
+
with tm.assert_produces_warning(UserWarning):
|
339 |
+
returned = df.plot(
|
340 |
+
subplots=True, ax=axes, layout=layout, sharex=False, sharey=False
|
341 |
+
)
|
342 |
+
_check_axes_shape(returned, axes_num=4, layout=exp_layout)
|
343 |
+
assert returned.shape == (4,)
|
344 |
+
|
345 |
+
def test_subplots_multiple_axes_single_col(self):
|
346 |
+
# GH 5353, 6970, GH 7069
|
347 |
+
# single column
|
348 |
+
_, axes = mpl.pyplot.subplots(1, 1)
|
349 |
+
df = DataFrame(
|
350 |
+
np.random.default_rng(2).random((10, 1)),
|
351 |
+
index=list(string.ascii_letters[:10]),
|
352 |
+
)
|
353 |
+
|
354 |
+
axes = df.plot(subplots=True, ax=[axes], sharex=False, sharey=False)
|
355 |
+
_check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
356 |
+
assert axes.shape == (1,)
|
357 |
+
|
358 |
+
def test_subplots_ts_share_axes(self):
|
359 |
+
# GH 3964
|
360 |
+
_, axes = mpl.pyplot.subplots(3, 3, sharex=True, sharey=True)
|
361 |
+
mpl.pyplot.subplots_adjust(left=0.05, right=0.95, hspace=0.3, wspace=0.3)
|
362 |
+
df = DataFrame(
|
363 |
+
np.random.default_rng(2).standard_normal((10, 9)),
|
364 |
+
index=date_range(start="2014-07-01", freq="ME", periods=10),
|
365 |
+
)
|
366 |
+
for i, ax in enumerate(axes.ravel()):
|
367 |
+
df[i].plot(ax=ax, fontsize=5)
|
368 |
+
|
369 |
+
# Rows other than bottom should not be visible
|
370 |
+
for ax in axes[0:-1].ravel():
|
371 |
+
_check_visible(ax.get_xticklabels(), visible=False)
|
372 |
+
|
373 |
+
# Bottom row should be visible
|
374 |
+
for ax in axes[-1].ravel():
|
375 |
+
_check_visible(ax.get_xticklabels(), visible=True)
|
376 |
+
|
377 |
+
# First column should be visible
|
378 |
+
for ax in axes[[0, 1, 2], [0]].ravel():
|
379 |
+
_check_visible(ax.get_yticklabels(), visible=True)
|
380 |
+
|
381 |
+
# Other columns should not be visible
|
382 |
+
for ax in axes[[0, 1, 2], [1]].ravel():
|
383 |
+
_check_visible(ax.get_yticklabels(), visible=False)
|
384 |
+
for ax in axes[[0, 1, 2], [2]].ravel():
|
385 |
+
_check_visible(ax.get_yticklabels(), visible=False)
|
386 |
+
|
387 |
+
def test_subplots_sharex_axes_existing_axes(self):
|
388 |
+
# GH 9158
|
389 |
+
d = {"A": [1.0, 2.0, 3.0, 4.0], "B": [4.0, 3.0, 2.0, 1.0], "C": [5, 1, 3, 4]}
|
390 |
+
df = DataFrame(d, index=date_range("2014 10 11", "2014 10 14"))
|
391 |
+
|
392 |
+
axes = df[["A", "B"]].plot(subplots=True)
|
393 |
+
df["C"].plot(ax=axes[0], secondary_y=True)
|
394 |
+
|
395 |
+
_check_visible(axes[0].get_xticklabels(), visible=False)
|
396 |
+
_check_visible(axes[1].get_xticklabels(), visible=True)
|
397 |
+
for ax in axes.ravel():
|
398 |
+
_check_visible(ax.get_yticklabels(), visible=True)
|
399 |
+
|
400 |
+
def test_subplots_dup_columns(self):
|
401 |
+
# GH 10962
|
402 |
+
df = DataFrame(np.random.default_rng(2).random((5, 5)), columns=list("aaaaa"))
|
403 |
+
axes = df.plot(subplots=True)
|
404 |
+
for ax in axes:
|
405 |
+
_check_legend_labels(ax, labels=["a"])
|
406 |
+
assert len(ax.lines) == 1
|
407 |
+
|
408 |
+
def test_subplots_dup_columns_secondary_y(self):
|
409 |
+
# GH 10962
|
410 |
+
df = DataFrame(np.random.default_rng(2).random((5, 5)), columns=list("aaaaa"))
|
411 |
+
axes = df.plot(subplots=True, secondary_y="a")
|
412 |
+
for ax in axes:
|
413 |
+
# (right) is only attached when subplots=False
|
414 |
+
_check_legend_labels(ax, labels=["a"])
|
415 |
+
assert len(ax.lines) == 1
|
416 |
+
|
417 |
+
def test_subplots_dup_columns_secondary_y_no_subplot(self):
|
418 |
+
# GH 10962
|
419 |
+
df = DataFrame(np.random.default_rng(2).random((5, 5)), columns=list("aaaaa"))
|
420 |
+
ax = df.plot(secondary_y="a")
|
421 |
+
_check_legend_labels(ax, labels=["a (right)"] * 5)
|
422 |
+
assert len(ax.lines) == 0
|
423 |
+
assert len(ax.right_ax.lines) == 5
|
424 |
+
|
425 |
+
@pytest.mark.xfail(
|
426 |
+
np_version_gte1p24 and is_platform_linux(),
|
427 |
+
reason="Weird rounding problems",
|
428 |
+
strict=False,
|
429 |
+
)
|
430 |
+
def test_bar_log_no_subplots(self):
|
431 |
+
# GH3254, GH3298 matplotlib/matplotlib#1882, #1892
|
432 |
+
# regressions in 1.2.1
|
433 |
+
expected = np.array([0.1, 1.0, 10.0, 100])
|
434 |
+
|
435 |
+
# no subplots
|
436 |
+
df = DataFrame({"A": [3] * 5, "B": list(range(1, 6))}, index=range(5))
|
437 |
+
ax = df.plot.bar(grid=True, log=True)
|
438 |
+
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
|
439 |
+
|
440 |
+
@pytest.mark.xfail(
|
441 |
+
np_version_gte1p24 and is_platform_linux(),
|
442 |
+
reason="Weird rounding problems",
|
443 |
+
strict=False,
|
444 |
+
)
|
445 |
+
def test_bar_log_subplots(self):
|
446 |
+
expected = np.array([0.1, 1.0, 10.0, 100.0, 1000.0, 1e4])
|
447 |
+
|
448 |
+
ax = DataFrame([Series([200, 300]), Series([300, 500])]).plot.bar(
|
449 |
+
log=True, subplots=True
|
450 |
+
)
|
451 |
+
|
452 |
+
tm.assert_numpy_array_equal(ax[0].yaxis.get_ticklocs(), expected)
|
453 |
+
tm.assert_numpy_array_equal(ax[1].yaxis.get_ticklocs(), expected)
|
454 |
+
|
455 |
+
def test_boxplot_subplots_return_type_default(self, hist_df):
|
456 |
+
df = hist_df
|
457 |
+
|
458 |
+
# normal style: return_type=None
|
459 |
+
result = df.plot.box(subplots=True)
|
460 |
+
assert isinstance(result, Series)
|
461 |
+
_check_box_return_type(
|
462 |
+
result, None, expected_keys=["height", "weight", "category"]
|
463 |
+
)
|
464 |
+
|
465 |
+
@pytest.mark.parametrize("rt", ["dict", "axes", "both"])
|
466 |
+
def test_boxplot_subplots_return_type(self, hist_df, rt):
|
467 |
+
df = hist_df
|
468 |
+
returned = df.plot.box(return_type=rt, subplots=True)
|
469 |
+
_check_box_return_type(
|
470 |
+
returned,
|
471 |
+
rt,
|
472 |
+
expected_keys=["height", "weight", "category"],
|
473 |
+
check_ax_title=False,
|
474 |
+
)
|
475 |
+
|
476 |
+
def test_df_subplots_patterns_minorticks(self):
|
477 |
+
# GH 10657
|
478 |
+
df = DataFrame(
|
479 |
+
np.random.default_rng(2).standard_normal((10, 2)),
|
480 |
+
index=date_range("1/1/2000", periods=10),
|
481 |
+
columns=list("AB"),
|
482 |
+
)
|
483 |
+
|
484 |
+
# shared subplots
|
485 |
+
_, axes = plt.subplots(2, 1, sharex=True)
|
486 |
+
axes = df.plot(subplots=True, ax=axes)
|
487 |
+
for ax in axes:
|
488 |
+
assert len(ax.lines) == 1
|
489 |
+
_check_visible(ax.get_yticklabels(), visible=True)
|
490 |
+
# xaxis of 1st ax must be hidden
|
491 |
+
_check_visible(axes[0].get_xticklabels(), visible=False)
|
492 |
+
_check_visible(axes[0].get_xticklabels(minor=True), visible=False)
|
493 |
+
_check_visible(axes[1].get_xticklabels(), visible=True)
|
494 |
+
_check_visible(axes[1].get_xticklabels(minor=True), visible=True)
|
495 |
+
|
496 |
+
def test_df_subplots_patterns_minorticks_1st_ax_hidden(self):
|
497 |
+
# GH 10657
|
498 |
+
df = DataFrame(
|
499 |
+
np.random.default_rng(2).standard_normal((10, 2)),
|
500 |
+
index=date_range("1/1/2000", periods=10),
|
501 |
+
columns=list("AB"),
|
502 |
+
)
|
503 |
+
_, axes = plt.subplots(2, 1)
|
504 |
+
with tm.assert_produces_warning(UserWarning):
|
505 |
+
axes = df.plot(subplots=True, ax=axes, sharex=True)
|
506 |
+
for ax in axes:
|
507 |
+
assert len(ax.lines) == 1
|
508 |
+
_check_visible(ax.get_yticklabels(), visible=True)
|
509 |
+
# xaxis of 1st ax must be hidden
|
510 |
+
_check_visible(axes[0].get_xticklabels(), visible=False)
|
511 |
+
_check_visible(axes[0].get_xticklabels(minor=True), visible=False)
|
512 |
+
_check_visible(axes[1].get_xticklabels(), visible=True)
|
513 |
+
_check_visible(axes[1].get_xticklabels(minor=True), visible=True)
|
514 |
+
|
515 |
+
def test_df_subplots_patterns_minorticks_not_shared(self):
|
516 |
+
# GH 10657
|
517 |
+
df = DataFrame(
|
518 |
+
np.random.default_rng(2).standard_normal((10, 2)),
|
519 |
+
index=date_range("1/1/2000", periods=10),
|
520 |
+
columns=list("AB"),
|
521 |
+
)
|
522 |
+
# not shared
|
523 |
+
_, axes = plt.subplots(2, 1)
|
524 |
+
axes = df.plot(subplots=True, ax=axes)
|
525 |
+
for ax in axes:
|
526 |
+
assert len(ax.lines) == 1
|
527 |
+
_check_visible(ax.get_yticklabels(), visible=True)
|
528 |
+
_check_visible(ax.get_xticklabels(), visible=True)
|
529 |
+
_check_visible(ax.get_xticklabels(minor=True), visible=True)
|
530 |
+
|
531 |
+
def test_subplots_sharex_false(self):
|
532 |
+
# test when sharex is set to False, two plots should have different
|
533 |
+
# labels, GH 25160
|
534 |
+
df = DataFrame(np.random.default_rng(2).random((10, 2)))
|
535 |
+
df.iloc[5:, 1] = np.nan
|
536 |
+
df.iloc[:5, 0] = np.nan
|
537 |
+
|
538 |
+
_, axs = mpl.pyplot.subplots(2, 1)
|
539 |
+
df.plot.line(ax=axs, subplots=True, sharex=False)
|
540 |
+
|
541 |
+
expected_ax1 = np.arange(4.5, 10, 0.5)
|
542 |
+
expected_ax2 = np.arange(-0.5, 5, 0.5)
|
543 |
+
|
544 |
+
tm.assert_numpy_array_equal(axs[0].get_xticks(), expected_ax1)
|
545 |
+
tm.assert_numpy_array_equal(axs[1].get_xticks(), expected_ax2)
|
546 |
+
|
547 |
+
def test_subplots_constrained_layout(self):
|
548 |
+
# GH 25261
|
549 |
+
idx = date_range(start="now", periods=10)
|
550 |
+
df = DataFrame(np.random.default_rng(2).random((10, 3)), index=idx)
|
551 |
+
kwargs = {}
|
552 |
+
if hasattr(mpl.pyplot.Figure, "get_constrained_layout"):
|
553 |
+
kwargs["constrained_layout"] = True
|
554 |
+
_, axes = mpl.pyplot.subplots(2, **kwargs)
|
555 |
+
with tm.assert_produces_warning(None):
|
556 |
+
df.plot(ax=axes[0])
|
557 |
+
with tm.ensure_clean(return_filelike=True) as path:
|
558 |
+
mpl.pyplot.savefig(path)
|
559 |
+
|
560 |
+
@pytest.mark.parametrize(
|
561 |
+
"index_name, old_label, new_label",
|
562 |
+
[
|
563 |
+
(None, "", "new"),
|
564 |
+
("old", "old", "new"),
|
565 |
+
(None, "", ""),
|
566 |
+
(None, "", 1),
|
567 |
+
(None, "", [1, 2]),
|
568 |
+
],
|
569 |
+
)
|
570 |
+
@pytest.mark.parametrize("kind", ["line", "area", "bar"])
|
571 |
+
def test_xlabel_ylabel_dataframe_subplots(
|
572 |
+
self, kind, index_name, old_label, new_label
|
573 |
+
):
|
574 |
+
# GH 9093
|
575 |
+
df = DataFrame([[1, 2], [2, 5]], columns=["Type A", "Type B"])
|
576 |
+
df.index.name = index_name
|
577 |
+
|
578 |
+
# default is the ylabel is not shown and xlabel is index name
|
579 |
+
axes = df.plot(kind=kind, subplots=True)
|
580 |
+
assert all(ax.get_ylabel() == "" for ax in axes)
|
581 |
+
assert all(ax.get_xlabel() == old_label for ax in axes)
|
582 |
+
|
583 |
+
# old xlabel will be overridden and assigned ylabel will be used as ylabel
|
584 |
+
axes = df.plot(kind=kind, ylabel=new_label, xlabel=new_label, subplots=True)
|
585 |
+
assert all(ax.get_ylabel() == str(new_label) for ax in axes)
|
586 |
+
assert all(ax.get_xlabel() == str(new_label) for ax in axes)
|
587 |
+
|
588 |
+
@pytest.mark.parametrize(
|
589 |
+
"kwargs",
|
590 |
+
[
|
591 |
+
# stacked center
|
592 |
+
{"kind": "bar", "stacked": True},
|
593 |
+
{"kind": "bar", "stacked": True, "width": 0.9},
|
594 |
+
{"kind": "barh", "stacked": True},
|
595 |
+
{"kind": "barh", "stacked": True, "width": 0.9},
|
596 |
+
# center
|
597 |
+
{"kind": "bar", "stacked": False},
|
598 |
+
{"kind": "bar", "stacked": False, "width": 0.9},
|
599 |
+
{"kind": "barh", "stacked": False},
|
600 |
+
{"kind": "barh", "stacked": False, "width": 0.9},
|
601 |
+
# subplots center
|
602 |
+
{"kind": "bar", "subplots": True},
|
603 |
+
{"kind": "bar", "subplots": True, "width": 0.9},
|
604 |
+
{"kind": "barh", "subplots": True},
|
605 |
+
{"kind": "barh", "subplots": True, "width": 0.9},
|
606 |
+
# align edge
|
607 |
+
{"kind": "bar", "stacked": True, "align": "edge"},
|
608 |
+
{"kind": "bar", "stacked": True, "width": 0.9, "align": "edge"},
|
609 |
+
{"kind": "barh", "stacked": True, "align": "edge"},
|
610 |
+
{"kind": "barh", "stacked": True, "width": 0.9, "align": "edge"},
|
611 |
+
{"kind": "bar", "stacked": False, "align": "edge"},
|
612 |
+
{"kind": "bar", "stacked": False, "width": 0.9, "align": "edge"},
|
613 |
+
{"kind": "barh", "stacked": False, "align": "edge"},
|
614 |
+
{"kind": "barh", "stacked": False, "width": 0.9, "align": "edge"},
|
615 |
+
{"kind": "bar", "subplots": True, "align": "edge"},
|
616 |
+
{"kind": "bar", "subplots": True, "width": 0.9, "align": "edge"},
|
617 |
+
{"kind": "barh", "subplots": True, "align": "edge"},
|
618 |
+
{"kind": "barh", "subplots": True, "width": 0.9, "align": "edge"},
|
619 |
+
],
|
620 |
+
)
|
621 |
+
def test_bar_align_multiple_columns(self, kwargs):
|
622 |
+
# GH2157
|
623 |
+
df = DataFrame({"A": [3] * 5, "B": list(range(5))}, index=range(5))
|
624 |
+
self._check_bar_alignment(df, **kwargs)
|
625 |
+
|
626 |
+
@pytest.mark.parametrize(
|
627 |
+
"kwargs",
|
628 |
+
[
|
629 |
+
{"kind": "bar", "stacked": False},
|
630 |
+
{"kind": "bar", "stacked": True},
|
631 |
+
{"kind": "barh", "stacked": False},
|
632 |
+
{"kind": "barh", "stacked": True},
|
633 |
+
{"kind": "bar", "subplots": True},
|
634 |
+
{"kind": "barh", "subplots": True},
|
635 |
+
],
|
636 |
+
)
|
637 |
+
def test_bar_align_single_column(self, kwargs):
|
638 |
+
df = DataFrame(np.random.default_rng(2).standard_normal(5))
|
639 |
+
self._check_bar_alignment(df, **kwargs)
|
640 |
+
|
641 |
+
@pytest.mark.parametrize(
|
642 |
+
"kwargs",
|
643 |
+
[
|
644 |
+
{"kind": "bar", "stacked": False},
|
645 |
+
{"kind": "bar", "stacked": True},
|
646 |
+
{"kind": "barh", "stacked": False},
|
647 |
+
{"kind": "barh", "stacked": True},
|
648 |
+
{"kind": "bar", "subplots": True},
|
649 |
+
{"kind": "barh", "subplots": True},
|
650 |
+
],
|
651 |
+
)
|
652 |
+
def test_bar_barwidth_position(self, kwargs):
|
653 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
654 |
+
self._check_bar_alignment(df, width=0.9, position=0.2, **kwargs)
|
655 |
+
|
656 |
+
@pytest.mark.parametrize("w", [1, 1.0])
|
657 |
+
def test_bar_barwidth_position_int(self, w):
|
658 |
+
# GH 12979
|
659 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
660 |
+
ax = df.plot.bar(stacked=True, width=w)
|
661 |
+
ticks = ax.xaxis.get_ticklocs()
|
662 |
+
tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4]))
|
663 |
+
assert ax.get_xlim() == (-0.75, 4.75)
|
664 |
+
# check left-edge of bars
|
665 |
+
assert ax.patches[0].get_x() == -0.5
|
666 |
+
assert ax.patches[-1].get_x() == 3.5
|
667 |
+
|
668 |
+
@pytest.mark.parametrize(
|
669 |
+
"kind, kwargs",
|
670 |
+
[
|
671 |
+
["bar", {"stacked": True}],
|
672 |
+
["barh", {"stacked": False}],
|
673 |
+
["barh", {"stacked": True}],
|
674 |
+
["bar", {"subplots": True}],
|
675 |
+
["barh", {"subplots": True}],
|
676 |
+
],
|
677 |
+
)
|
678 |
+
def test_bar_barwidth_position_int_width_1(self, kind, kwargs):
|
679 |
+
# GH 12979
|
680 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
|
681 |
+
self._check_bar_alignment(df, kind=kind, width=1, **kwargs)
|
682 |
+
|
683 |
+
def _check_bar_alignment(
|
684 |
+
self,
|
685 |
+
df,
|
686 |
+
kind="bar",
|
687 |
+
stacked=False,
|
688 |
+
subplots=False,
|
689 |
+
align="center",
|
690 |
+
width=0.5,
|
691 |
+
position=0.5,
|
692 |
+
):
|
693 |
+
axes = df.plot(
|
694 |
+
kind=kind,
|
695 |
+
stacked=stacked,
|
696 |
+
subplots=subplots,
|
697 |
+
align=align,
|
698 |
+
width=width,
|
699 |
+
position=position,
|
700 |
+
grid=True,
|
701 |
+
)
|
702 |
+
|
703 |
+
axes = _flatten_visible(axes)
|
704 |
+
|
705 |
+
for ax in axes:
|
706 |
+
if kind == "bar":
|
707 |
+
axis = ax.xaxis
|
708 |
+
ax_min, ax_max = ax.get_xlim()
|
709 |
+
min_edge = min(p.get_x() for p in ax.patches)
|
710 |
+
max_edge = max(p.get_x() + p.get_width() for p in ax.patches)
|
711 |
+
elif kind == "barh":
|
712 |
+
axis = ax.yaxis
|
713 |
+
ax_min, ax_max = ax.get_ylim()
|
714 |
+
min_edge = min(p.get_y() for p in ax.patches)
|
715 |
+
max_edge = max(p.get_y() + p.get_height() for p in ax.patches)
|
716 |
+
else:
|
717 |
+
raise ValueError
|
718 |
+
|
719 |
+
# GH 7498
|
720 |
+
# compare margins between lim and bar edges
|
721 |
+
tm.assert_almost_equal(ax_min, min_edge - 0.25)
|
722 |
+
tm.assert_almost_equal(ax_max, max_edge + 0.25)
|
723 |
+
|
724 |
+
p = ax.patches[0]
|
725 |
+
if kind == "bar" and (stacked is True or subplots is True):
|
726 |
+
edge = p.get_x()
|
727 |
+
center = edge + p.get_width() * position
|
728 |
+
elif kind == "bar" and stacked is False:
|
729 |
+
center = p.get_x() + p.get_width() * len(df.columns) * position
|
730 |
+
edge = p.get_x()
|
731 |
+
elif kind == "barh" and (stacked is True or subplots is True):
|
732 |
+
center = p.get_y() + p.get_height() * position
|
733 |
+
edge = p.get_y()
|
734 |
+
elif kind == "barh" and stacked is False:
|
735 |
+
center = p.get_y() + p.get_height() * len(df.columns) * position
|
736 |
+
edge = p.get_y()
|
737 |
+
else:
|
738 |
+
raise ValueError
|
739 |
+
|
740 |
+
# Check the ticks locates on integer
|
741 |
+
assert (axis.get_ticklocs() == np.arange(len(df))).all()
|
742 |
+
|
743 |
+
if align == "center":
|
744 |
+
# Check whether the bar locates on center
|
745 |
+
tm.assert_almost_equal(axis.get_ticklocs()[0], center)
|
746 |
+
elif align == "edge":
|
747 |
+
# Check whether the bar's edge starts from the tick
|
748 |
+
tm.assert_almost_equal(axis.get_ticklocs()[0], edge)
|
749 |
+
else:
|
750 |
+
raise ValueError
|
751 |
+
|
752 |
+
return axes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_hist_box_by.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas import DataFrame
|
7 |
+
import pandas._testing as tm
|
8 |
+
from pandas.tests.plotting.common import (
|
9 |
+
_check_axes_shape,
|
10 |
+
_check_plot_works,
|
11 |
+
get_x_axis,
|
12 |
+
get_y_axis,
|
13 |
+
)
|
14 |
+
|
15 |
+
pytest.importorskip("matplotlib")
|
16 |
+
|
17 |
+
|
18 |
+
@pytest.fixture
|
19 |
+
def hist_df():
|
20 |
+
df = DataFrame(
|
21 |
+
np.random.default_rng(2).standard_normal((30, 2)), columns=["A", "B"]
|
22 |
+
)
|
23 |
+
df["C"] = np.random.default_rng(2).choice(["a", "b", "c"], 30)
|
24 |
+
df["D"] = np.random.default_rng(2).choice(["a", "b", "c"], 30)
|
25 |
+
return df
|
26 |
+
|
27 |
+
|
28 |
+
class TestHistWithBy:
|
29 |
+
@pytest.mark.slow
|
30 |
+
@pytest.mark.parametrize(
|
31 |
+
"by, column, titles, legends",
|
32 |
+
[
|
33 |
+
("C", "A", ["a", "b", "c"], [["A"]] * 3),
|
34 |
+
("C", ["A", "B"], ["a", "b", "c"], [["A", "B"]] * 3),
|
35 |
+
("C", None, ["a", "b", "c"], [["A", "B"]] * 3),
|
36 |
+
(
|
37 |
+
["C", "D"],
|
38 |
+
"A",
|
39 |
+
[
|
40 |
+
"(a, a)",
|
41 |
+
"(b, b)",
|
42 |
+
"(c, c)",
|
43 |
+
],
|
44 |
+
[["A"]] * 3,
|
45 |
+
),
|
46 |
+
(
|
47 |
+
["C", "D"],
|
48 |
+
["A", "B"],
|
49 |
+
[
|
50 |
+
"(a, a)",
|
51 |
+
"(b, b)",
|
52 |
+
"(c, c)",
|
53 |
+
],
|
54 |
+
[["A", "B"]] * 3,
|
55 |
+
),
|
56 |
+
(
|
57 |
+
["C", "D"],
|
58 |
+
None,
|
59 |
+
[
|
60 |
+
"(a, a)",
|
61 |
+
"(b, b)",
|
62 |
+
"(c, c)",
|
63 |
+
],
|
64 |
+
[["A", "B"]] * 3,
|
65 |
+
),
|
66 |
+
],
|
67 |
+
)
|
68 |
+
def test_hist_plot_by_argument(self, by, column, titles, legends, hist_df):
|
69 |
+
# GH 15079
|
70 |
+
axes = _check_plot_works(
|
71 |
+
hist_df.plot.hist, column=column, by=by, default_axes=True
|
72 |
+
)
|
73 |
+
result_titles = [ax.get_title() for ax in axes]
|
74 |
+
result_legends = [
|
75 |
+
[legend.get_text() for legend in ax.get_legend().texts] for ax in axes
|
76 |
+
]
|
77 |
+
|
78 |
+
assert result_legends == legends
|
79 |
+
assert result_titles == titles
|
80 |
+
|
81 |
+
@pytest.mark.parametrize(
|
82 |
+
"by, column, titles, legends",
|
83 |
+
[
|
84 |
+
(0, "A", ["a", "b", "c"], [["A"]] * 3),
|
85 |
+
(0, None, ["a", "b", "c"], [["A", "B"]] * 3),
|
86 |
+
(
|
87 |
+
[0, "D"],
|
88 |
+
"A",
|
89 |
+
[
|
90 |
+
"(a, a)",
|
91 |
+
"(b, b)",
|
92 |
+
"(c, c)",
|
93 |
+
],
|
94 |
+
[["A"]] * 3,
|
95 |
+
),
|
96 |
+
],
|
97 |
+
)
|
98 |
+
def test_hist_plot_by_0(self, by, column, titles, legends, hist_df):
|
99 |
+
# GH 15079
|
100 |
+
df = hist_df.copy()
|
101 |
+
df = df.rename(columns={"C": 0})
|
102 |
+
|
103 |
+
axes = _check_plot_works(df.plot.hist, default_axes=True, column=column, by=by)
|
104 |
+
result_titles = [ax.get_title() for ax in axes]
|
105 |
+
result_legends = [
|
106 |
+
[legend.get_text() for legend in ax.get_legend().texts] for ax in axes
|
107 |
+
]
|
108 |
+
|
109 |
+
assert result_legends == legends
|
110 |
+
assert result_titles == titles
|
111 |
+
|
112 |
+
@pytest.mark.parametrize(
|
113 |
+
"by, column",
|
114 |
+
[
|
115 |
+
([], ["A"]),
|
116 |
+
([], ["A", "B"]),
|
117 |
+
((), None),
|
118 |
+
((), ["A", "B"]),
|
119 |
+
],
|
120 |
+
)
|
121 |
+
def test_hist_plot_empty_list_string_tuple_by(self, by, column, hist_df):
|
122 |
+
# GH 15079
|
123 |
+
msg = "No group keys passed"
|
124 |
+
with pytest.raises(ValueError, match=msg):
|
125 |
+
_check_plot_works(
|
126 |
+
hist_df.plot.hist, default_axes=True, column=column, by=by
|
127 |
+
)
|
128 |
+
|
129 |
+
@pytest.mark.slow
|
130 |
+
@pytest.mark.parametrize(
|
131 |
+
"by, column, layout, axes_num",
|
132 |
+
[
|
133 |
+
(["C"], "A", (2, 2), 3),
|
134 |
+
("C", "A", (2, 2), 3),
|
135 |
+
(["C"], ["A"], (1, 3), 3),
|
136 |
+
("C", None, (3, 1), 3),
|
137 |
+
("C", ["A", "B"], (3, 1), 3),
|
138 |
+
(["C", "D"], "A", (9, 1), 3),
|
139 |
+
(["C", "D"], "A", (3, 3), 3),
|
140 |
+
(["C", "D"], ["A"], (5, 2), 3),
|
141 |
+
(["C", "D"], ["A", "B"], (9, 1), 3),
|
142 |
+
(["C", "D"], None, (9, 1), 3),
|
143 |
+
(["C", "D"], ["A", "B"], (5, 2), 3),
|
144 |
+
],
|
145 |
+
)
|
146 |
+
def test_hist_plot_layout_with_by(self, by, column, layout, axes_num, hist_df):
|
147 |
+
# GH 15079
|
148 |
+
# _check_plot_works adds an ax so catch warning. see GH #13188
|
149 |
+
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
|
150 |
+
axes = _check_plot_works(
|
151 |
+
hist_df.plot.hist, column=column, by=by, layout=layout
|
152 |
+
)
|
153 |
+
_check_axes_shape(axes, axes_num=axes_num, layout=layout)
|
154 |
+
|
155 |
+
@pytest.mark.parametrize(
|
156 |
+
"msg, by, layout",
|
157 |
+
[
|
158 |
+
("larger than required size", ["C", "D"], (1, 1)),
|
159 |
+
(re.escape("Layout must be a tuple of (rows, columns)"), "C", (1,)),
|
160 |
+
("At least one dimension of layout must be positive", "C", (-1, -1)),
|
161 |
+
],
|
162 |
+
)
|
163 |
+
def test_hist_plot_invalid_layout_with_by_raises(self, msg, by, layout, hist_df):
|
164 |
+
# GH 15079, test if error is raised when invalid layout is given
|
165 |
+
|
166 |
+
with pytest.raises(ValueError, match=msg):
|
167 |
+
hist_df.plot.hist(column=["A", "B"], by=by, layout=layout)
|
168 |
+
|
169 |
+
@pytest.mark.slow
|
170 |
+
def test_axis_share_x_with_by(self, hist_df):
|
171 |
+
# GH 15079
|
172 |
+
ax1, ax2, ax3 = hist_df.plot.hist(column="A", by="C", sharex=True)
|
173 |
+
|
174 |
+
# share x
|
175 |
+
assert get_x_axis(ax1).joined(ax1, ax2)
|
176 |
+
assert get_x_axis(ax2).joined(ax1, ax2)
|
177 |
+
assert get_x_axis(ax3).joined(ax1, ax3)
|
178 |
+
assert get_x_axis(ax3).joined(ax2, ax3)
|
179 |
+
|
180 |
+
# don't share y
|
181 |
+
assert not get_y_axis(ax1).joined(ax1, ax2)
|
182 |
+
assert not get_y_axis(ax2).joined(ax1, ax2)
|
183 |
+
assert not get_y_axis(ax3).joined(ax1, ax3)
|
184 |
+
assert not get_y_axis(ax3).joined(ax2, ax3)
|
185 |
+
|
186 |
+
@pytest.mark.slow
|
187 |
+
def test_axis_share_y_with_by(self, hist_df):
|
188 |
+
# GH 15079
|
189 |
+
ax1, ax2, ax3 = hist_df.plot.hist(column="A", by="C", sharey=True)
|
190 |
+
|
191 |
+
# share y
|
192 |
+
assert get_y_axis(ax1).joined(ax1, ax2)
|
193 |
+
assert get_y_axis(ax2).joined(ax1, ax2)
|
194 |
+
assert get_y_axis(ax3).joined(ax1, ax3)
|
195 |
+
assert get_y_axis(ax3).joined(ax2, ax3)
|
196 |
+
|
197 |
+
# don't share x
|
198 |
+
assert not get_x_axis(ax1).joined(ax1, ax2)
|
199 |
+
assert not get_x_axis(ax2).joined(ax1, ax2)
|
200 |
+
assert not get_x_axis(ax3).joined(ax1, ax3)
|
201 |
+
assert not get_x_axis(ax3).joined(ax2, ax3)
|
202 |
+
|
203 |
+
@pytest.mark.parametrize("figsize", [(12, 8), (20, 10)])
|
204 |
+
def test_figure_shape_hist_with_by(self, figsize, hist_df):
|
205 |
+
# GH 15079
|
206 |
+
axes = hist_df.plot.hist(column="A", by="C", figsize=figsize)
|
207 |
+
_check_axes_shape(axes, axes_num=3, figsize=figsize)
|
208 |
+
|
209 |
+
|
210 |
+
class TestBoxWithBy:
|
211 |
+
@pytest.mark.parametrize(
|
212 |
+
"by, column, titles, xticklabels",
|
213 |
+
[
|
214 |
+
("C", "A", ["A"], [["a", "b", "c"]]),
|
215 |
+
(
|
216 |
+
["C", "D"],
|
217 |
+
"A",
|
218 |
+
["A"],
|
219 |
+
[
|
220 |
+
[
|
221 |
+
"(a, a)",
|
222 |
+
"(b, b)",
|
223 |
+
"(c, c)",
|
224 |
+
]
|
225 |
+
],
|
226 |
+
),
|
227 |
+
("C", ["A", "B"], ["A", "B"], [["a", "b", "c"]] * 2),
|
228 |
+
(
|
229 |
+
["C", "D"],
|
230 |
+
["A", "B"],
|
231 |
+
["A", "B"],
|
232 |
+
[
|
233 |
+
[
|
234 |
+
"(a, a)",
|
235 |
+
"(b, b)",
|
236 |
+
"(c, c)",
|
237 |
+
]
|
238 |
+
]
|
239 |
+
* 2,
|
240 |
+
),
|
241 |
+
(["C"], None, ["A", "B"], [["a", "b", "c"]] * 2),
|
242 |
+
],
|
243 |
+
)
|
244 |
+
def test_box_plot_by_argument(self, by, column, titles, xticklabels, hist_df):
|
245 |
+
# GH 15079
|
246 |
+
axes = _check_plot_works(
|
247 |
+
hist_df.plot.box, default_axes=True, column=column, by=by
|
248 |
+
)
|
249 |
+
result_titles = [ax.get_title() for ax in axes]
|
250 |
+
result_xticklabels = [
|
251 |
+
[label.get_text() for label in ax.get_xticklabels()] for ax in axes
|
252 |
+
]
|
253 |
+
|
254 |
+
assert result_xticklabels == xticklabels
|
255 |
+
assert result_titles == titles
|
256 |
+
|
257 |
+
@pytest.mark.parametrize(
|
258 |
+
"by, column, titles, xticklabels",
|
259 |
+
[
|
260 |
+
(0, "A", ["A"], [["a", "b", "c"]]),
|
261 |
+
(
|
262 |
+
[0, "D"],
|
263 |
+
"A",
|
264 |
+
["A"],
|
265 |
+
[
|
266 |
+
[
|
267 |
+
"(a, a)",
|
268 |
+
"(b, b)",
|
269 |
+
"(c, c)",
|
270 |
+
]
|
271 |
+
],
|
272 |
+
),
|
273 |
+
(0, None, ["A", "B"], [["a", "b", "c"]] * 2),
|
274 |
+
],
|
275 |
+
)
|
276 |
+
def test_box_plot_by_0(self, by, column, titles, xticklabels, hist_df):
|
277 |
+
# GH 15079
|
278 |
+
df = hist_df.copy()
|
279 |
+
df = df.rename(columns={"C": 0})
|
280 |
+
|
281 |
+
axes = _check_plot_works(df.plot.box, default_axes=True, column=column, by=by)
|
282 |
+
result_titles = [ax.get_title() for ax in axes]
|
283 |
+
result_xticklabels = [
|
284 |
+
[label.get_text() for label in ax.get_xticklabels()] for ax in axes
|
285 |
+
]
|
286 |
+
|
287 |
+
assert result_xticklabels == xticklabels
|
288 |
+
assert result_titles == titles
|
289 |
+
|
290 |
+
@pytest.mark.parametrize(
|
291 |
+
"by, column",
|
292 |
+
[
|
293 |
+
([], ["A"]),
|
294 |
+
((), "A"),
|
295 |
+
([], None),
|
296 |
+
((), ["A", "B"]),
|
297 |
+
],
|
298 |
+
)
|
299 |
+
def test_box_plot_with_none_empty_list_by(self, by, column, hist_df):
|
300 |
+
# GH 15079
|
301 |
+
msg = "No group keys passed"
|
302 |
+
with pytest.raises(ValueError, match=msg):
|
303 |
+
_check_plot_works(hist_df.plot.box, default_axes=True, column=column, by=by)
|
304 |
+
|
305 |
+
@pytest.mark.slow
|
306 |
+
@pytest.mark.parametrize(
|
307 |
+
"by, column, layout, axes_num",
|
308 |
+
[
|
309 |
+
(["C"], "A", (1, 1), 1),
|
310 |
+
("C", "A", (1, 1), 1),
|
311 |
+
("C", None, (2, 1), 2),
|
312 |
+
("C", ["A", "B"], (1, 2), 2),
|
313 |
+
(["C", "D"], "A", (1, 1), 1),
|
314 |
+
(["C", "D"], None, (1, 2), 2),
|
315 |
+
],
|
316 |
+
)
|
317 |
+
def test_box_plot_layout_with_by(self, by, column, layout, axes_num, hist_df):
|
318 |
+
# GH 15079
|
319 |
+
axes = _check_plot_works(
|
320 |
+
hist_df.plot.box, default_axes=True, column=column, by=by, layout=layout
|
321 |
+
)
|
322 |
+
_check_axes_shape(axes, axes_num=axes_num, layout=layout)
|
323 |
+
|
324 |
+
@pytest.mark.parametrize(
|
325 |
+
"msg, by, layout",
|
326 |
+
[
|
327 |
+
("larger than required size", ["C", "D"], (1, 1)),
|
328 |
+
(re.escape("Layout must be a tuple of (rows, columns)"), "C", (1,)),
|
329 |
+
("At least one dimension of layout must be positive", "C", (-1, -1)),
|
330 |
+
],
|
331 |
+
)
|
332 |
+
def test_box_plot_invalid_layout_with_by_raises(self, msg, by, layout, hist_df):
|
333 |
+
# GH 15079, test if error is raised when invalid layout is given
|
334 |
+
|
335 |
+
with pytest.raises(ValueError, match=msg):
|
336 |
+
hist_df.plot.box(column=["A", "B"], by=by, layout=layout)
|
337 |
+
|
338 |
+
@pytest.mark.parametrize("figsize", [(12, 8), (20, 10)])
|
339 |
+
def test_figure_shape_hist_with_by(self, figsize, hist_df):
|
340 |
+
# GH 15079
|
341 |
+
axes = hist_df.plot.box(column="A", by="C", figsize=figsize)
|
342 |
+
_check_axes_shape(axes, axes_num=1, figsize=figsize)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/test_backend.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import types
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas.util._test_decorators as td
|
7 |
+
|
8 |
+
import pandas
|
9 |
+
|
10 |
+
|
11 |
+
@pytest.fixture
|
12 |
+
def dummy_backend():
|
13 |
+
db = types.ModuleType("pandas_dummy_backend")
|
14 |
+
setattr(db, "plot", lambda *args, **kwargs: "used_dummy")
|
15 |
+
return db
|
16 |
+
|
17 |
+
|
18 |
+
@pytest.fixture
|
19 |
+
def restore_backend():
|
20 |
+
"""Restore the plotting backend to matplotlib"""
|
21 |
+
with pandas.option_context("plotting.backend", "matplotlib"):
|
22 |
+
yield
|
23 |
+
|
24 |
+
|
25 |
+
def test_backend_is_not_module():
|
26 |
+
msg = "Could not find plotting backend 'not_an_existing_module'."
|
27 |
+
with pytest.raises(ValueError, match=msg):
|
28 |
+
pandas.set_option("plotting.backend", "not_an_existing_module")
|
29 |
+
|
30 |
+
assert pandas.options.plotting.backend == "matplotlib"
|
31 |
+
|
32 |
+
|
33 |
+
def test_backend_is_correct(monkeypatch, restore_backend, dummy_backend):
|
34 |
+
monkeypatch.setitem(sys.modules, "pandas_dummy_backend", dummy_backend)
|
35 |
+
|
36 |
+
pandas.set_option("plotting.backend", "pandas_dummy_backend")
|
37 |
+
assert pandas.get_option("plotting.backend") == "pandas_dummy_backend"
|
38 |
+
assert (
|
39 |
+
pandas.plotting._core._get_plot_backend("pandas_dummy_backend") is dummy_backend
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
def test_backend_can_be_set_in_plot_call(monkeypatch, restore_backend, dummy_backend):
|
44 |
+
monkeypatch.setitem(sys.modules, "pandas_dummy_backend", dummy_backend)
|
45 |
+
df = pandas.DataFrame([1, 2, 3])
|
46 |
+
|
47 |
+
assert pandas.get_option("plotting.backend") == "matplotlib"
|
48 |
+
assert df.plot(backend="pandas_dummy_backend") == "used_dummy"
|
49 |
+
|
50 |
+
|
51 |
+
def test_register_entrypoint(restore_backend, tmp_path, monkeypatch, dummy_backend):
|
52 |
+
monkeypatch.syspath_prepend(tmp_path)
|
53 |
+
monkeypatch.setitem(sys.modules, "pandas_dummy_backend", dummy_backend)
|
54 |
+
|
55 |
+
dist_info = tmp_path / "my_backend-0.0.0.dist-info"
|
56 |
+
dist_info.mkdir()
|
57 |
+
# entry_point name should not match module name - otherwise pandas will
|
58 |
+
# fall back to backend lookup by module name
|
59 |
+
(dist_info / "entry_points.txt").write_bytes(
|
60 |
+
b"[pandas_plotting_backends]\nmy_ep_backend = pandas_dummy_backend\n"
|
61 |
+
)
|
62 |
+
|
63 |
+
assert pandas.plotting._core._get_plot_backend("my_ep_backend") is dummy_backend
|
64 |
+
|
65 |
+
with pandas.option_context("plotting.backend", "my_ep_backend"):
|
66 |
+
assert pandas.plotting._core._get_plot_backend() is dummy_backend
|
67 |
+
|
68 |
+
|
69 |
+
def test_setting_backend_without_plot_raises(monkeypatch):
|
70 |
+
# GH-28163
|
71 |
+
module = types.ModuleType("pandas_plot_backend")
|
72 |
+
monkeypatch.setitem(sys.modules, "pandas_plot_backend", module)
|
73 |
+
|
74 |
+
assert pandas.options.plotting.backend == "matplotlib"
|
75 |
+
with pytest.raises(
|
76 |
+
ValueError, match="Could not find plotting backend 'pandas_plot_backend'."
|
77 |
+
):
|
78 |
+
pandas.set_option("plotting.backend", "pandas_plot_backend")
|
79 |
+
|
80 |
+
assert pandas.options.plotting.backend == "matplotlib"
|
81 |
+
|
82 |
+
|
83 |
+
@td.skip_if_installed("matplotlib")
|
84 |
+
def test_no_matplotlib_ok():
|
85 |
+
msg = (
|
86 |
+
'matplotlib is required for plotting when the default backend "matplotlib" is '
|
87 |
+
"selected."
|
88 |
+
)
|
89 |
+
with pytest.raises(ImportError, match=msg):
|
90 |
+
pandas.plotting._core._get_plot_backend("matplotlib")
|
91 |
+
|
92 |
+
|
93 |
+
def test_extra_kinds_ok(monkeypatch, restore_backend, dummy_backend):
|
94 |
+
# https://github.com/pandas-dev/pandas/pull/28647
|
95 |
+
monkeypatch.setitem(sys.modules, "pandas_dummy_backend", dummy_backend)
|
96 |
+
pandas.set_option("plotting.backend", "pandas_dummy_backend")
|
97 |
+
df = pandas.DataFrame({"A": [1, 2, 3]})
|
98 |
+
df.plot(kind="not a real kind")
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/test_boxplot_method.py
ADDED
@@ -0,0 +1,761 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Test cases for .boxplot method """
|
2 |
+
|
3 |
+
import itertools
|
4 |
+
import string
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pytest
|
8 |
+
|
9 |
+
from pandas import (
|
10 |
+
DataFrame,
|
11 |
+
MultiIndex,
|
12 |
+
Series,
|
13 |
+
date_range,
|
14 |
+
plotting,
|
15 |
+
timedelta_range,
|
16 |
+
)
|
17 |
+
import pandas._testing as tm
|
18 |
+
from pandas.tests.plotting.common import (
|
19 |
+
_check_axes_shape,
|
20 |
+
_check_box_return_type,
|
21 |
+
_check_plot_works,
|
22 |
+
_check_ticks_props,
|
23 |
+
_check_visible,
|
24 |
+
)
|
25 |
+
|
26 |
+
from pandas.io.formats.printing import pprint_thing
|
27 |
+
|
28 |
+
mpl = pytest.importorskip("matplotlib")
|
29 |
+
plt = pytest.importorskip("matplotlib.pyplot")
|
30 |
+
|
31 |
+
|
32 |
+
def _check_ax_limits(col, ax):
|
33 |
+
y_min, y_max = ax.get_ylim()
|
34 |
+
assert y_min <= col.min()
|
35 |
+
assert y_max >= col.max()
|
36 |
+
|
37 |
+
|
38 |
+
class TestDataFramePlots:
|
39 |
+
def test_stacked_boxplot_set_axis(self):
|
40 |
+
# GH2980
|
41 |
+
import matplotlib.pyplot as plt
|
42 |
+
|
43 |
+
n = 80
|
44 |
+
df = DataFrame(
|
45 |
+
{
|
46 |
+
"Clinical": np.random.default_rng(2).choice([0, 1, 2, 3], n),
|
47 |
+
"Confirmed": np.random.default_rng(2).choice([0, 1, 2, 3], n),
|
48 |
+
"Discarded": np.random.default_rng(2).choice([0, 1, 2, 3], n),
|
49 |
+
},
|
50 |
+
index=np.arange(0, n),
|
51 |
+
)
|
52 |
+
ax = df.plot(kind="bar", stacked=True)
|
53 |
+
assert [int(x.get_text()) for x in ax.get_xticklabels()] == df.index.to_list()
|
54 |
+
ax.set_xticks(np.arange(0, 80, 10))
|
55 |
+
plt.draw() # Update changes
|
56 |
+
assert [int(x.get_text()) for x in ax.get_xticklabels()] == list(
|
57 |
+
np.arange(0, 80, 10)
|
58 |
+
)
|
59 |
+
|
60 |
+
@pytest.mark.slow
|
61 |
+
@pytest.mark.parametrize(
|
62 |
+
"kwargs, warn",
|
63 |
+
[
|
64 |
+
[{"return_type": "dict"}, None],
|
65 |
+
[{"column": ["one", "two"]}, None],
|
66 |
+
[{"column": ["one", "two"], "by": "indic"}, UserWarning],
|
67 |
+
[{"column": ["one"], "by": ["indic", "indic2"]}, None],
|
68 |
+
[{"by": "indic"}, UserWarning],
|
69 |
+
[{"by": ["indic", "indic2"]}, UserWarning],
|
70 |
+
[{"notch": 1}, None],
|
71 |
+
[{"by": "indic", "notch": 1}, UserWarning],
|
72 |
+
],
|
73 |
+
)
|
74 |
+
def test_boxplot_legacy1(self, kwargs, warn):
|
75 |
+
df = DataFrame(
|
76 |
+
np.random.default_rng(2).standard_normal((6, 4)),
|
77 |
+
index=list(string.ascii_letters[:6]),
|
78 |
+
columns=["one", "two", "three", "four"],
|
79 |
+
)
|
80 |
+
df["indic"] = ["foo", "bar"] * 3
|
81 |
+
df["indic2"] = ["foo", "bar", "foo"] * 2
|
82 |
+
|
83 |
+
# _check_plot_works can add an ax so catch warning. see GH #13188
|
84 |
+
with tm.assert_produces_warning(warn, check_stacklevel=False):
|
85 |
+
_check_plot_works(df.boxplot, **kwargs)
|
86 |
+
|
87 |
+
def test_boxplot_legacy1_series(self):
|
88 |
+
ser = Series(np.random.default_rng(2).standard_normal(6))
|
89 |
+
_check_plot_works(plotting._core.boxplot, data=ser, return_type="dict")
|
90 |
+
|
91 |
+
def test_boxplot_legacy2(self):
|
92 |
+
df = DataFrame(
|
93 |
+
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
|
94 |
+
)
|
95 |
+
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
|
96 |
+
df["Y"] = Series(["A"] * 10)
|
97 |
+
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
|
98 |
+
_check_plot_works(df.boxplot, by="X")
|
99 |
+
|
100 |
+
def test_boxplot_legacy2_with_ax(self):
|
101 |
+
df = DataFrame(
|
102 |
+
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
|
103 |
+
)
|
104 |
+
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
|
105 |
+
df["Y"] = Series(["A"] * 10)
|
106 |
+
# When ax is supplied and required number of axes is 1,
|
107 |
+
# passed ax should be used:
|
108 |
+
_, ax = mpl.pyplot.subplots()
|
109 |
+
axes = df.boxplot("Col1", by="X", ax=ax)
|
110 |
+
ax_axes = ax.axes
|
111 |
+
assert ax_axes is axes
|
112 |
+
|
113 |
+
def test_boxplot_legacy2_with_ax_return_type(self):
|
114 |
+
df = DataFrame(
|
115 |
+
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
|
116 |
+
)
|
117 |
+
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
|
118 |
+
df["Y"] = Series(["A"] * 10)
|
119 |
+
fig, ax = mpl.pyplot.subplots()
|
120 |
+
axes = df.groupby("Y").boxplot(ax=ax, return_type="axes")
|
121 |
+
ax_axes = ax.axes
|
122 |
+
assert ax_axes is axes["A"]
|
123 |
+
|
124 |
+
def test_boxplot_legacy2_with_multi_col(self):
|
125 |
+
df = DataFrame(
|
126 |
+
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
|
127 |
+
)
|
128 |
+
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
|
129 |
+
df["Y"] = Series(["A"] * 10)
|
130 |
+
# Multiple columns with an ax argument should use same figure
|
131 |
+
fig, ax = mpl.pyplot.subplots()
|
132 |
+
with tm.assert_produces_warning(UserWarning):
|
133 |
+
axes = df.boxplot(
|
134 |
+
column=["Col1", "Col2"], by="X", ax=ax, return_type="axes"
|
135 |
+
)
|
136 |
+
assert axes["Col1"].get_figure() is fig
|
137 |
+
|
138 |
+
def test_boxplot_legacy2_by_none(self):
|
139 |
+
df = DataFrame(
|
140 |
+
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
|
141 |
+
)
|
142 |
+
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
|
143 |
+
df["Y"] = Series(["A"] * 10)
|
144 |
+
# When by is None, check that all relevant lines are present in the
|
145 |
+
# dict
|
146 |
+
_, ax = mpl.pyplot.subplots()
|
147 |
+
d = df.boxplot(ax=ax, return_type="dict")
|
148 |
+
lines = list(itertools.chain.from_iterable(d.values()))
|
149 |
+
assert len(ax.get_lines()) == len(lines)
|
150 |
+
|
151 |
+
def test_boxplot_return_type_none(self, hist_df):
|
152 |
+
# GH 12216; return_type=None & by=None -> axes
|
153 |
+
result = hist_df.boxplot()
|
154 |
+
assert isinstance(result, mpl.pyplot.Axes)
|
155 |
+
|
156 |
+
def test_boxplot_return_type_legacy(self):
|
157 |
+
# API change in https://github.com/pandas-dev/pandas/pull/7096
|
158 |
+
|
159 |
+
df = DataFrame(
|
160 |
+
np.random.default_rng(2).standard_normal((6, 4)),
|
161 |
+
index=list(string.ascii_letters[:6]),
|
162 |
+
columns=["one", "two", "three", "four"],
|
163 |
+
)
|
164 |
+
msg = "return_type must be {'axes', 'dict', 'both'}"
|
165 |
+
with pytest.raises(ValueError, match=msg):
|
166 |
+
df.boxplot(return_type="NOT_A_TYPE")
|
167 |
+
|
168 |
+
result = df.boxplot()
|
169 |
+
_check_box_return_type(result, "axes")
|
170 |
+
|
171 |
+
@pytest.mark.parametrize("return_type", ["dict", "axes", "both"])
|
172 |
+
def test_boxplot_return_type_legacy_return_type(self, return_type):
|
173 |
+
# API change in https://github.com/pandas-dev/pandas/pull/7096
|
174 |
+
|
175 |
+
df = DataFrame(
|
176 |
+
np.random.default_rng(2).standard_normal((6, 4)),
|
177 |
+
index=list(string.ascii_letters[:6]),
|
178 |
+
columns=["one", "two", "three", "four"],
|
179 |
+
)
|
180 |
+
with tm.assert_produces_warning(False):
|
181 |
+
result = df.boxplot(return_type=return_type)
|
182 |
+
_check_box_return_type(result, return_type)
|
183 |
+
|
184 |
+
def test_boxplot_axis_limits(self, hist_df):
|
185 |
+
df = hist_df.copy()
|
186 |
+
df["age"] = np.random.default_rng(2).integers(1, 20, df.shape[0])
|
187 |
+
# One full row
|
188 |
+
height_ax, weight_ax = df.boxplot(["height", "weight"], by="category")
|
189 |
+
_check_ax_limits(df["height"], height_ax)
|
190 |
+
_check_ax_limits(df["weight"], weight_ax)
|
191 |
+
assert weight_ax._sharey == height_ax
|
192 |
+
|
193 |
+
def test_boxplot_axis_limits_two_rows(self, hist_df):
|
194 |
+
df = hist_df.copy()
|
195 |
+
df["age"] = np.random.default_rng(2).integers(1, 20, df.shape[0])
|
196 |
+
# Two rows, one partial
|
197 |
+
p = df.boxplot(["height", "weight", "age"], by="category")
|
198 |
+
height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
|
199 |
+
dummy_ax = p[1, 1]
|
200 |
+
|
201 |
+
_check_ax_limits(df["height"], height_ax)
|
202 |
+
_check_ax_limits(df["weight"], weight_ax)
|
203 |
+
_check_ax_limits(df["age"], age_ax)
|
204 |
+
assert weight_ax._sharey == height_ax
|
205 |
+
assert age_ax._sharey == height_ax
|
206 |
+
assert dummy_ax._sharey is None
|
207 |
+
|
208 |
+
def test_boxplot_empty_column(self):
|
209 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((20, 4)))
|
210 |
+
df.loc[:, 0] = np.nan
|
211 |
+
_check_plot_works(df.boxplot, return_type="axes")
|
212 |
+
|
213 |
+
def test_figsize(self):
|
214 |
+
df = DataFrame(
|
215 |
+
np.random.default_rng(2).random((10, 5)), columns=["A", "B", "C", "D", "E"]
|
216 |
+
)
|
217 |
+
result = df.boxplot(return_type="axes", figsize=(12, 8))
|
218 |
+
assert result.figure.bbox_inches.width == 12
|
219 |
+
assert result.figure.bbox_inches.height == 8
|
220 |
+
|
221 |
+
def test_fontsize(self):
|
222 |
+
df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
|
223 |
+
_check_ticks_props(df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16)
|
224 |
+
|
225 |
+
def test_boxplot_numeric_data(self):
|
226 |
+
# GH 22799
|
227 |
+
df = DataFrame(
|
228 |
+
{
|
229 |
+
"a": date_range("2012-01-01", periods=100),
|
230 |
+
"b": np.random.default_rng(2).standard_normal(100),
|
231 |
+
"c": np.random.default_rng(2).standard_normal(100) + 2,
|
232 |
+
"d": date_range("2012-01-01", periods=100).astype(str),
|
233 |
+
"e": date_range("2012-01-01", periods=100, tz="UTC"),
|
234 |
+
"f": timedelta_range("1 days", periods=100),
|
235 |
+
}
|
236 |
+
)
|
237 |
+
ax = df.plot(kind="box")
|
238 |
+
assert [x.get_text() for x in ax.get_xticklabels()] == ["b", "c"]
|
239 |
+
|
240 |
+
@pytest.mark.parametrize(
|
241 |
+
"colors_kwd, expected",
|
242 |
+
[
|
243 |
+
(
|
244 |
+
{"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
|
245 |
+
{"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
|
246 |
+
),
|
247 |
+
({"boxes": "r"}, {"boxes": "r"}),
|
248 |
+
("r", {"boxes": "r", "whiskers": "r", "medians": "r", "caps": "r"}),
|
249 |
+
],
|
250 |
+
)
|
251 |
+
def test_color_kwd(self, colors_kwd, expected):
|
252 |
+
# GH: 26214
|
253 |
+
df = DataFrame(np.random.default_rng(2).random((10, 2)))
|
254 |
+
result = df.boxplot(color=colors_kwd, return_type="dict")
|
255 |
+
for k, v in expected.items():
|
256 |
+
assert result[k][0].get_color() == v
|
257 |
+
|
258 |
+
@pytest.mark.parametrize(
|
259 |
+
"scheme,expected",
|
260 |
+
[
|
261 |
+
(
|
262 |
+
"dark_background",
|
263 |
+
{
|
264 |
+
"boxes": "#8dd3c7",
|
265 |
+
"whiskers": "#8dd3c7",
|
266 |
+
"medians": "#bfbbd9",
|
267 |
+
"caps": "#8dd3c7",
|
268 |
+
},
|
269 |
+
),
|
270 |
+
(
|
271 |
+
"default",
|
272 |
+
{
|
273 |
+
"boxes": "#1f77b4",
|
274 |
+
"whiskers": "#1f77b4",
|
275 |
+
"medians": "#2ca02c",
|
276 |
+
"caps": "#1f77b4",
|
277 |
+
},
|
278 |
+
),
|
279 |
+
],
|
280 |
+
)
|
281 |
+
def test_colors_in_theme(self, scheme, expected):
|
282 |
+
# GH: 40769
|
283 |
+
df = DataFrame(np.random.default_rng(2).random((10, 2)))
|
284 |
+
import matplotlib.pyplot as plt
|
285 |
+
|
286 |
+
plt.style.use(scheme)
|
287 |
+
result = df.plot.box(return_type="dict")
|
288 |
+
for k, v in expected.items():
|
289 |
+
assert result[k][0].get_color() == v
|
290 |
+
|
291 |
+
@pytest.mark.parametrize(
|
292 |
+
"dict_colors, msg",
|
293 |
+
[({"boxes": "r", "invalid_key": "r"}, "invalid key 'invalid_key'")],
|
294 |
+
)
|
295 |
+
def test_color_kwd_errors(self, dict_colors, msg):
|
296 |
+
# GH: 26214
|
297 |
+
df = DataFrame(np.random.default_rng(2).random((10, 2)))
|
298 |
+
with pytest.raises(ValueError, match=msg):
|
299 |
+
df.boxplot(color=dict_colors, return_type="dict")
|
300 |
+
|
301 |
+
@pytest.mark.parametrize(
|
302 |
+
"props, expected",
|
303 |
+
[
|
304 |
+
("boxprops", "boxes"),
|
305 |
+
("whiskerprops", "whiskers"),
|
306 |
+
("capprops", "caps"),
|
307 |
+
("medianprops", "medians"),
|
308 |
+
],
|
309 |
+
)
|
310 |
+
def test_specified_props_kwd(self, props, expected):
|
311 |
+
# GH 30346
|
312 |
+
df = DataFrame({k: np.random.default_rng(2).random(10) for k in "ABC"})
|
313 |
+
kwd = {props: {"color": "C1"}}
|
314 |
+
result = df.boxplot(return_type="dict", **kwd)
|
315 |
+
|
316 |
+
assert result[expected][0].get_color() == "C1"
|
317 |
+
|
318 |
+
@pytest.mark.parametrize("vert", [True, False])
|
319 |
+
def test_plot_xlabel_ylabel(self, vert):
|
320 |
+
df = DataFrame(
|
321 |
+
{
|
322 |
+
"a": np.random.default_rng(2).standard_normal(10),
|
323 |
+
"b": np.random.default_rng(2).standard_normal(10),
|
324 |
+
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
|
325 |
+
}
|
326 |
+
)
|
327 |
+
xlabel, ylabel = "x", "y"
|
328 |
+
ax = df.plot(kind="box", vert=vert, xlabel=xlabel, ylabel=ylabel)
|
329 |
+
assert ax.get_xlabel() == xlabel
|
330 |
+
assert ax.get_ylabel() == ylabel
|
331 |
+
|
332 |
+
@pytest.mark.parametrize("vert", [True, False])
|
333 |
+
def test_plot_box(self, vert):
|
334 |
+
# GH 54941
|
335 |
+
rng = np.random.default_rng(2)
|
336 |
+
df1 = DataFrame(rng.integers(0, 100, size=(100, 4)), columns=list("ABCD"))
|
337 |
+
df2 = DataFrame(rng.integers(0, 100, size=(100, 4)), columns=list("ABCD"))
|
338 |
+
|
339 |
+
xlabel, ylabel = "x", "y"
|
340 |
+
_, axs = plt.subplots(ncols=2, figsize=(10, 7), sharey=True)
|
341 |
+
df1.plot.box(ax=axs[0], vert=vert, xlabel=xlabel, ylabel=ylabel)
|
342 |
+
df2.plot.box(ax=axs[1], vert=vert, xlabel=xlabel, ylabel=ylabel)
|
343 |
+
for ax in axs:
|
344 |
+
assert ax.get_xlabel() == xlabel
|
345 |
+
assert ax.get_ylabel() == ylabel
|
346 |
+
mpl.pyplot.close()
|
347 |
+
|
348 |
+
@pytest.mark.parametrize("vert", [True, False])
|
349 |
+
def test_boxplot_xlabel_ylabel(self, vert):
|
350 |
+
df = DataFrame(
|
351 |
+
{
|
352 |
+
"a": np.random.default_rng(2).standard_normal(10),
|
353 |
+
"b": np.random.default_rng(2).standard_normal(10),
|
354 |
+
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
|
355 |
+
}
|
356 |
+
)
|
357 |
+
xlabel, ylabel = "x", "y"
|
358 |
+
ax = df.boxplot(vert=vert, xlabel=xlabel, ylabel=ylabel)
|
359 |
+
assert ax.get_xlabel() == xlabel
|
360 |
+
assert ax.get_ylabel() == ylabel
|
361 |
+
|
362 |
+
@pytest.mark.parametrize("vert", [True, False])
|
363 |
+
def test_boxplot_group_xlabel_ylabel(self, vert):
|
364 |
+
df = DataFrame(
|
365 |
+
{
|
366 |
+
"a": np.random.default_rng(2).standard_normal(10),
|
367 |
+
"b": np.random.default_rng(2).standard_normal(10),
|
368 |
+
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
|
369 |
+
}
|
370 |
+
)
|
371 |
+
xlabel, ylabel = "x", "y"
|
372 |
+
ax = df.boxplot(by="group", vert=vert, xlabel=xlabel, ylabel=ylabel)
|
373 |
+
for subplot in ax:
|
374 |
+
assert subplot.get_xlabel() == xlabel
|
375 |
+
assert subplot.get_ylabel() == ylabel
|
376 |
+
mpl.pyplot.close()
|
377 |
+
|
378 |
+
@pytest.mark.parametrize("vert", [True, False])
|
379 |
+
def test_boxplot_group_no_xlabel_ylabel(self, vert):
|
380 |
+
df = DataFrame(
|
381 |
+
{
|
382 |
+
"a": np.random.default_rng(2).standard_normal(10),
|
383 |
+
"b": np.random.default_rng(2).standard_normal(10),
|
384 |
+
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
|
385 |
+
}
|
386 |
+
)
|
387 |
+
ax = df.boxplot(by="group", vert=vert)
|
388 |
+
for subplot in ax:
|
389 |
+
target_label = subplot.get_xlabel() if vert else subplot.get_ylabel()
|
390 |
+
assert target_label == pprint_thing(["group"])
|
391 |
+
mpl.pyplot.close()
|
392 |
+
|
393 |
+
|
394 |
+
class TestDataFrameGroupByPlots:
|
395 |
+
def test_boxplot_legacy1(self, hist_df):
|
396 |
+
grouped = hist_df.groupby(by="gender")
|
397 |
+
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
|
398 |
+
axes = _check_plot_works(grouped.boxplot, return_type="axes")
|
399 |
+
_check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
|
400 |
+
|
401 |
+
def test_boxplot_legacy1_return_type(self, hist_df):
|
402 |
+
grouped = hist_df.groupby(by="gender")
|
403 |
+
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
|
404 |
+
_check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
405 |
+
|
406 |
+
@pytest.mark.slow
|
407 |
+
def test_boxplot_legacy2(self):
|
408 |
+
tuples = zip(string.ascii_letters[:10], range(10))
|
409 |
+
df = DataFrame(
|
410 |
+
np.random.default_rng(2).random((10, 3)),
|
411 |
+
index=MultiIndex.from_tuples(tuples),
|
412 |
+
)
|
413 |
+
grouped = df.groupby(level=1)
|
414 |
+
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
|
415 |
+
axes = _check_plot_works(grouped.boxplot, return_type="axes")
|
416 |
+
_check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
|
417 |
+
|
418 |
+
@pytest.mark.slow
|
419 |
+
def test_boxplot_legacy2_return_type(self):
|
420 |
+
tuples = zip(string.ascii_letters[:10], range(10))
|
421 |
+
df = DataFrame(
|
422 |
+
np.random.default_rng(2).random((10, 3)),
|
423 |
+
index=MultiIndex.from_tuples(tuples),
|
424 |
+
)
|
425 |
+
grouped = df.groupby(level=1)
|
426 |
+
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
|
427 |
+
_check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
428 |
+
|
429 |
+
@pytest.mark.parametrize(
|
430 |
+
"subplots, warn, axes_num, layout",
|
431 |
+
[[True, UserWarning, 3, (2, 2)], [False, None, 1, (1, 1)]],
|
432 |
+
)
|
433 |
+
def test_boxplot_legacy3(self, subplots, warn, axes_num, layout):
|
434 |
+
tuples = zip(string.ascii_letters[:10], range(10))
|
435 |
+
df = DataFrame(
|
436 |
+
np.random.default_rng(2).random((10, 3)),
|
437 |
+
index=MultiIndex.from_tuples(tuples),
|
438 |
+
)
|
439 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
440 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
441 |
+
grouped = df.unstack(level=1).groupby(level=0, axis=1)
|
442 |
+
with tm.assert_produces_warning(warn, check_stacklevel=False):
|
443 |
+
axes = _check_plot_works(
|
444 |
+
grouped.boxplot, subplots=subplots, return_type="axes"
|
445 |
+
)
|
446 |
+
_check_axes_shape(axes, axes_num=axes_num, layout=layout)
|
447 |
+
|
448 |
+
def test_grouped_plot_fignums(self):
|
449 |
+
n = 10
|
450 |
+
weight = Series(np.random.default_rng(2).normal(166, 20, size=n))
|
451 |
+
height = Series(np.random.default_rng(2).normal(60, 10, size=n))
|
452 |
+
gender = np.random.default_rng(2).choice(["male", "female"], size=n)
|
453 |
+
df = DataFrame({"height": height, "weight": weight, "gender": gender})
|
454 |
+
gb = df.groupby("gender")
|
455 |
+
|
456 |
+
res = gb.plot()
|
457 |
+
assert len(mpl.pyplot.get_fignums()) == 2
|
458 |
+
assert len(res) == 2
|
459 |
+
plt.close("all")
|
460 |
+
|
461 |
+
res = gb.boxplot(return_type="axes")
|
462 |
+
assert len(mpl.pyplot.get_fignums()) == 1
|
463 |
+
assert len(res) == 2
|
464 |
+
|
465 |
+
def test_grouped_plot_fignums_excluded_col(self):
|
466 |
+
n = 10
|
467 |
+
weight = Series(np.random.default_rng(2).normal(166, 20, size=n))
|
468 |
+
height = Series(np.random.default_rng(2).normal(60, 10, size=n))
|
469 |
+
gender = np.random.default_rng(2).choice(["male", "female"], size=n)
|
470 |
+
df = DataFrame({"height": height, "weight": weight, "gender": gender})
|
471 |
+
# now works with GH 5610 as gender is excluded
|
472 |
+
df.groupby("gender").hist()
|
473 |
+
|
474 |
+
@pytest.mark.slow
|
475 |
+
def test_grouped_box_return_type(self, hist_df):
|
476 |
+
df = hist_df
|
477 |
+
|
478 |
+
# old style: return_type=None
|
479 |
+
result = df.boxplot(by="gender")
|
480 |
+
assert isinstance(result, np.ndarray)
|
481 |
+
_check_box_return_type(
|
482 |
+
result, None, expected_keys=["height", "weight", "category"]
|
483 |
+
)
|
484 |
+
|
485 |
+
@pytest.mark.slow
|
486 |
+
def test_grouped_box_return_type_groupby(self, hist_df):
|
487 |
+
df = hist_df
|
488 |
+
# now for groupby
|
489 |
+
result = df.groupby("gender").boxplot(return_type="dict")
|
490 |
+
_check_box_return_type(result, "dict", expected_keys=["Male", "Female"])
|
491 |
+
|
492 |
+
@pytest.mark.slow
|
493 |
+
@pytest.mark.parametrize("return_type", ["dict", "axes", "both"])
|
494 |
+
def test_grouped_box_return_type_arg(self, hist_df, return_type):
|
495 |
+
df = hist_df
|
496 |
+
|
497 |
+
returned = df.groupby("classroom").boxplot(return_type=return_type)
|
498 |
+
_check_box_return_type(returned, return_type, expected_keys=["A", "B", "C"])
|
499 |
+
|
500 |
+
returned = df.boxplot(by="classroom", return_type=return_type)
|
501 |
+
_check_box_return_type(
|
502 |
+
returned, return_type, expected_keys=["height", "weight", "category"]
|
503 |
+
)
|
504 |
+
|
505 |
+
@pytest.mark.slow
|
506 |
+
@pytest.mark.parametrize("return_type", ["dict", "axes", "both"])
|
507 |
+
def test_grouped_box_return_type_arg_duplcate_cats(self, return_type):
|
508 |
+
columns2 = "X B C D A".split()
|
509 |
+
df2 = DataFrame(
|
510 |
+
np.random.default_rng(2).standard_normal((6, 5)), columns=columns2
|
511 |
+
)
|
512 |
+
categories2 = "A B".split()
|
513 |
+
df2["category"] = categories2 * 3
|
514 |
+
|
515 |
+
returned = df2.groupby("category").boxplot(return_type=return_type)
|
516 |
+
_check_box_return_type(returned, return_type, expected_keys=categories2)
|
517 |
+
|
518 |
+
returned = df2.boxplot(by="category", return_type=return_type)
|
519 |
+
_check_box_return_type(returned, return_type, expected_keys=columns2)
|
520 |
+
|
521 |
+
@pytest.mark.slow
|
522 |
+
def test_grouped_box_layout_too_small(self, hist_df):
|
523 |
+
df = hist_df
|
524 |
+
|
525 |
+
msg = "Layout of 1x1 must be larger than required size 2"
|
526 |
+
with pytest.raises(ValueError, match=msg):
|
527 |
+
df.boxplot(column=["weight", "height"], by=df.gender, layout=(1, 1))
|
528 |
+
|
529 |
+
@pytest.mark.slow
|
530 |
+
def test_grouped_box_layout_needs_by(self, hist_df):
|
531 |
+
df = hist_df
|
532 |
+
msg = "The 'layout' keyword is not supported when 'by' is None"
|
533 |
+
with pytest.raises(ValueError, match=msg):
|
534 |
+
df.boxplot(
|
535 |
+
column=["height", "weight", "category"],
|
536 |
+
layout=(2, 1),
|
537 |
+
return_type="dict",
|
538 |
+
)
|
539 |
+
|
540 |
+
@pytest.mark.slow
|
541 |
+
def test_grouped_box_layout_positive_layout(self, hist_df):
|
542 |
+
df = hist_df
|
543 |
+
msg = "At least one dimension of layout must be positive"
|
544 |
+
with pytest.raises(ValueError, match=msg):
|
545 |
+
df.boxplot(column=["weight", "height"], by=df.gender, layout=(-1, -1))
|
546 |
+
|
547 |
+
@pytest.mark.slow
|
548 |
+
@pytest.mark.parametrize(
|
549 |
+
"gb_key, axes_num, rows",
|
550 |
+
[["gender", 2, 1], ["category", 4, 2], ["classroom", 3, 2]],
|
551 |
+
)
|
552 |
+
def test_grouped_box_layout_positive_layout_axes(
|
553 |
+
self, hist_df, gb_key, axes_num, rows
|
554 |
+
):
|
555 |
+
df = hist_df
|
556 |
+
# _check_plot_works adds an ax so catch warning. see GH #13188 GH 6769
|
557 |
+
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
|
558 |
+
_check_plot_works(
|
559 |
+
df.groupby(gb_key).boxplot, column="height", return_type="dict"
|
560 |
+
)
|
561 |
+
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=axes_num, layout=(rows, 2))
|
562 |
+
|
563 |
+
@pytest.mark.slow
|
564 |
+
@pytest.mark.parametrize(
|
565 |
+
"col, visible", [["height", False], ["weight", True], ["category", True]]
|
566 |
+
)
|
567 |
+
def test_grouped_box_layout_visible(self, hist_df, col, visible):
|
568 |
+
df = hist_df
|
569 |
+
# GH 5897
|
570 |
+
axes = df.boxplot(
|
571 |
+
column=["height", "weight", "category"], by="gender", return_type="axes"
|
572 |
+
)
|
573 |
+
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(2, 2))
|
574 |
+
ax = axes[col]
|
575 |
+
_check_visible(ax.get_xticklabels(), visible=visible)
|
576 |
+
_check_visible([ax.xaxis.get_label()], visible=visible)
|
577 |
+
|
578 |
+
@pytest.mark.slow
|
579 |
+
def test_grouped_box_layout_shape(self, hist_df):
|
580 |
+
df = hist_df
|
581 |
+
df.groupby("classroom").boxplot(
|
582 |
+
column=["height", "weight", "category"], return_type="dict"
|
583 |
+
)
|
584 |
+
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(2, 2))
|
585 |
+
|
586 |
+
@pytest.mark.slow
|
587 |
+
@pytest.mark.parametrize("cols", [2, -1])
|
588 |
+
def test_grouped_box_layout_works(self, hist_df, cols):
|
589 |
+
df = hist_df
|
590 |
+
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
|
591 |
+
_check_plot_works(
|
592 |
+
df.groupby("category").boxplot,
|
593 |
+
column="height",
|
594 |
+
layout=(3, cols),
|
595 |
+
return_type="dict",
|
596 |
+
)
|
597 |
+
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=4, layout=(3, 2))
|
598 |
+
|
599 |
+
@pytest.mark.slow
|
600 |
+
@pytest.mark.parametrize("rows, res", [[4, 4], [-1, 3]])
|
601 |
+
def test_grouped_box_layout_axes_shape_rows(self, hist_df, rows, res):
|
602 |
+
df = hist_df
|
603 |
+
df.boxplot(
|
604 |
+
column=["height", "weight", "category"], by="gender", layout=(rows, 1)
|
605 |
+
)
|
606 |
+
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(res, 1))
|
607 |
+
|
608 |
+
@pytest.mark.slow
|
609 |
+
@pytest.mark.parametrize("cols, res", [[4, 4], [-1, 3]])
|
610 |
+
def test_grouped_box_layout_axes_shape_cols_groupby(self, hist_df, cols, res):
|
611 |
+
df = hist_df
|
612 |
+
df.groupby("classroom").boxplot(
|
613 |
+
column=["height", "weight", "category"],
|
614 |
+
layout=(1, cols),
|
615 |
+
return_type="dict",
|
616 |
+
)
|
617 |
+
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(1, res))
|
618 |
+
|
619 |
+
@pytest.mark.slow
|
620 |
+
def test_grouped_box_multiple_axes(self, hist_df):
|
621 |
+
# GH 6970, GH 7069
|
622 |
+
df = hist_df
|
623 |
+
|
624 |
+
# check warning to ignore sharex / sharey
|
625 |
+
# this check should be done in the first function which
|
626 |
+
# passes multiple axes to plot, hist or boxplot
|
627 |
+
# location should be changed if other test is added
|
628 |
+
# which has earlier alphabetical order
|
629 |
+
with tm.assert_produces_warning(UserWarning):
|
630 |
+
_, axes = mpl.pyplot.subplots(2, 2)
|
631 |
+
df.groupby("category").boxplot(column="height", return_type="axes", ax=axes)
|
632 |
+
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=4, layout=(2, 2))
|
633 |
+
|
634 |
+
@pytest.mark.slow
|
635 |
+
def test_grouped_box_multiple_axes_on_fig(self, hist_df):
|
636 |
+
# GH 6970, GH 7069
|
637 |
+
df = hist_df
|
638 |
+
fig, axes = mpl.pyplot.subplots(2, 3)
|
639 |
+
with tm.assert_produces_warning(UserWarning):
|
640 |
+
returned = df.boxplot(
|
641 |
+
column=["height", "weight", "category"],
|
642 |
+
by="gender",
|
643 |
+
return_type="axes",
|
644 |
+
ax=axes[0],
|
645 |
+
)
|
646 |
+
returned = np.array(list(returned.values))
|
647 |
+
_check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
648 |
+
tm.assert_numpy_array_equal(returned, axes[0])
|
649 |
+
assert returned[0].figure is fig
|
650 |
+
|
651 |
+
# draw on second row
|
652 |
+
with tm.assert_produces_warning(UserWarning):
|
653 |
+
returned = df.groupby("classroom").boxplot(
|
654 |
+
column=["height", "weight", "category"], return_type="axes", ax=axes[1]
|
655 |
+
)
|
656 |
+
returned = np.array(list(returned.values))
|
657 |
+
_check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
658 |
+
tm.assert_numpy_array_equal(returned, axes[1])
|
659 |
+
assert returned[0].figure is fig
|
660 |
+
|
661 |
+
@pytest.mark.slow
|
662 |
+
def test_grouped_box_multiple_axes_ax_error(self, hist_df):
|
663 |
+
# GH 6970, GH 7069
|
664 |
+
df = hist_df
|
665 |
+
msg = "The number of passed axes must be 3, the same as the output plot"
|
666 |
+
with pytest.raises(ValueError, match=msg):
|
667 |
+
fig, axes = mpl.pyplot.subplots(2, 3)
|
668 |
+
# pass different number of axes from required
|
669 |
+
with tm.assert_produces_warning(UserWarning):
|
670 |
+
axes = df.groupby("classroom").boxplot(ax=axes)
|
671 |
+
|
672 |
+
def test_fontsize(self):
|
673 |
+
df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
|
674 |
+
_check_ticks_props(
|
675 |
+
df.boxplot("a", by="b", fontsize=16), xlabelsize=16, ylabelsize=16
|
676 |
+
)
|
677 |
+
|
678 |
+
@pytest.mark.parametrize(
|
679 |
+
"col, expected_xticklabel",
|
680 |
+
[
|
681 |
+
("v", ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
|
682 |
+
(["v"], ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
|
683 |
+
("v1", ["(a, v1)", "(b, v1)", "(c, v1)", "(d, v1)", "(e, v1)"]),
|
684 |
+
(
|
685 |
+
["v", "v1"],
|
686 |
+
[
|
687 |
+
"(a, v)",
|
688 |
+
"(a, v1)",
|
689 |
+
"(b, v)",
|
690 |
+
"(b, v1)",
|
691 |
+
"(c, v)",
|
692 |
+
"(c, v1)",
|
693 |
+
"(d, v)",
|
694 |
+
"(d, v1)",
|
695 |
+
"(e, v)",
|
696 |
+
"(e, v1)",
|
697 |
+
],
|
698 |
+
),
|
699 |
+
(
|
700 |
+
None,
|
701 |
+
[
|
702 |
+
"(a, v)",
|
703 |
+
"(a, v1)",
|
704 |
+
"(b, v)",
|
705 |
+
"(b, v1)",
|
706 |
+
"(c, v)",
|
707 |
+
"(c, v1)",
|
708 |
+
"(d, v)",
|
709 |
+
"(d, v1)",
|
710 |
+
"(e, v)",
|
711 |
+
"(e, v1)",
|
712 |
+
],
|
713 |
+
),
|
714 |
+
],
|
715 |
+
)
|
716 |
+
def test_groupby_boxplot_subplots_false(self, col, expected_xticklabel):
|
717 |
+
# GH 16748
|
718 |
+
df = DataFrame(
|
719 |
+
{
|
720 |
+
"cat": np.random.default_rng(2).choice(list("abcde"), 100),
|
721 |
+
"v": np.random.default_rng(2).random(100),
|
722 |
+
"v1": np.random.default_rng(2).random(100),
|
723 |
+
}
|
724 |
+
)
|
725 |
+
grouped = df.groupby("cat")
|
726 |
+
|
727 |
+
axes = _check_plot_works(
|
728 |
+
grouped.boxplot, subplots=False, column=col, return_type="axes"
|
729 |
+
)
|
730 |
+
|
731 |
+
result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
|
732 |
+
assert expected_xticklabel == result_xticklabel
|
733 |
+
|
734 |
+
def test_groupby_boxplot_object(self, hist_df):
|
735 |
+
# GH 43480
|
736 |
+
df = hist_df.astype("object")
|
737 |
+
grouped = df.groupby("gender")
|
738 |
+
msg = "boxplot method requires numerical columns, nothing to plot"
|
739 |
+
with pytest.raises(ValueError, match=msg):
|
740 |
+
_check_plot_works(grouped.boxplot, subplots=False)
|
741 |
+
|
742 |
+
def test_boxplot_multiindex_column(self):
|
743 |
+
# GH 16748
|
744 |
+
arrays = [
|
745 |
+
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
|
746 |
+
["one", "two", "one", "two", "one", "two", "one", "two"],
|
747 |
+
]
|
748 |
+
tuples = list(zip(*arrays))
|
749 |
+
index = MultiIndex.from_tuples(tuples, names=["first", "second"])
|
750 |
+
df = DataFrame(
|
751 |
+
np.random.default_rng(2).standard_normal((3, 8)),
|
752 |
+
index=["A", "B", "C"],
|
753 |
+
columns=index,
|
754 |
+
)
|
755 |
+
|
756 |
+
col = [("bar", "one"), ("bar", "two")]
|
757 |
+
axes = _check_plot_works(df.boxplot, column=col, return_type="axes")
|
758 |
+
|
759 |
+
expected_xticklabel = ["(bar, one)", "(bar, two)"]
|
760 |
+
result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
|
761 |
+
assert expected_xticklabel == result_xticklabel
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/test_common.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import DataFrame
|
4 |
+
from pandas.tests.plotting.common import (
|
5 |
+
_check_plot_works,
|
6 |
+
_check_ticks_props,
|
7 |
+
_gen_two_subplots,
|
8 |
+
)
|
9 |
+
|
10 |
+
plt = pytest.importorskip("matplotlib.pyplot")
|
11 |
+
|
12 |
+
|
13 |
+
class TestCommon:
|
14 |
+
def test__check_ticks_props(self):
|
15 |
+
# GH 34768
|
16 |
+
df = DataFrame({"b": [0, 1, 0], "a": [1, 2, 3]})
|
17 |
+
ax = _check_plot_works(df.plot, rot=30)
|
18 |
+
ax.yaxis.set_tick_params(rotation=30)
|
19 |
+
msg = "expected 0.00000 but got "
|
20 |
+
with pytest.raises(AssertionError, match=msg):
|
21 |
+
_check_ticks_props(ax, xrot=0)
|
22 |
+
with pytest.raises(AssertionError, match=msg):
|
23 |
+
_check_ticks_props(ax, xlabelsize=0)
|
24 |
+
with pytest.raises(AssertionError, match=msg):
|
25 |
+
_check_ticks_props(ax, yrot=0)
|
26 |
+
with pytest.raises(AssertionError, match=msg):
|
27 |
+
_check_ticks_props(ax, ylabelsize=0)
|
28 |
+
|
29 |
+
def test__gen_two_subplots_with_ax(self):
|
30 |
+
fig = plt.gcf()
|
31 |
+
gen = _gen_two_subplots(f=lambda **kwargs: None, fig=fig, ax="test")
|
32 |
+
# On the first yield, no subplot should be added since ax was passed
|
33 |
+
next(gen)
|
34 |
+
assert fig.get_axes() == []
|
35 |
+
# On the second, the one axis should match fig.subplot(2, 1, 2)
|
36 |
+
next(gen)
|
37 |
+
axes = fig.get_axes()
|
38 |
+
assert len(axes) == 1
|
39 |
+
subplot_geometry = list(axes[0].get_subplotspec().get_geometry()[:-1])
|
40 |
+
subplot_geometry[-1] += 1
|
41 |
+
assert subplot_geometry == [2, 1, 2]
|
42 |
+
|
43 |
+
def test_colorbar_layout(self):
|
44 |
+
fig = plt.figure()
|
45 |
+
|
46 |
+
axes = fig.subplot_mosaic(
|
47 |
+
"""
|
48 |
+
AB
|
49 |
+
CC
|
50 |
+
"""
|
51 |
+
)
|
52 |
+
|
53 |
+
x = [1, 2, 3]
|
54 |
+
y = [1, 2, 3]
|
55 |
+
|
56 |
+
cs0 = axes["A"].scatter(x, y)
|
57 |
+
axes["B"].scatter(x, y)
|
58 |
+
|
59 |
+
fig.colorbar(cs0, ax=[axes["A"], axes["B"]], location="right")
|
60 |
+
DataFrame(x).plot(ax=axes["C"])
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/plotting/test_converter.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
date,
|
3 |
+
datetime,
|
4 |
+
)
|
5 |
+
import subprocess
|
6 |
+
import sys
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pytest
|
10 |
+
|
11 |
+
import pandas._config.config as cf
|
12 |
+
|
13 |
+
from pandas._libs.tslibs import to_offset
|
14 |
+
|
15 |
+
from pandas import (
|
16 |
+
Index,
|
17 |
+
Period,
|
18 |
+
PeriodIndex,
|
19 |
+
Series,
|
20 |
+
Timestamp,
|
21 |
+
arrays,
|
22 |
+
date_range,
|
23 |
+
)
|
24 |
+
import pandas._testing as tm
|
25 |
+
|
26 |
+
from pandas.plotting import (
|
27 |
+
deregister_matplotlib_converters,
|
28 |
+
register_matplotlib_converters,
|
29 |
+
)
|
30 |
+
from pandas.tseries.offsets import (
|
31 |
+
Day,
|
32 |
+
Micro,
|
33 |
+
Milli,
|
34 |
+
Second,
|
35 |
+
)
|
36 |
+
|
37 |
+
try:
|
38 |
+
from pandas.plotting._matplotlib import converter
|
39 |
+
except ImportError:
|
40 |
+
# try / except, rather than skip, to avoid internal refactoring
|
41 |
+
# causing an improper skip
|
42 |
+
pass
|
43 |
+
|
44 |
+
pytest.importorskip("matplotlib.pyplot")
|
45 |
+
dates = pytest.importorskip("matplotlib.dates")
|
46 |
+
|
47 |
+
|
48 |
+
@pytest.mark.single_cpu
|
49 |
+
def test_registry_mpl_resets():
|
50 |
+
# Check that Matplotlib converters are properly reset (see issue #27481)
|
51 |
+
code = (
|
52 |
+
"import matplotlib.units as units; "
|
53 |
+
"import matplotlib.dates as mdates; "
|
54 |
+
"n_conv = len(units.registry); "
|
55 |
+
"import pandas as pd; "
|
56 |
+
"pd.plotting.register_matplotlib_converters(); "
|
57 |
+
"pd.plotting.deregister_matplotlib_converters(); "
|
58 |
+
"assert len(units.registry) == n_conv"
|
59 |
+
)
|
60 |
+
call = [sys.executable, "-c", code]
|
61 |
+
subprocess.check_output(call)
|
62 |
+
|
63 |
+
|
64 |
+
def test_timtetonum_accepts_unicode():
|
65 |
+
assert converter.time2num("00:01") == converter.time2num("00:01")
|
66 |
+
|
67 |
+
|
68 |
+
class TestRegistration:
|
69 |
+
@pytest.mark.single_cpu
|
70 |
+
def test_dont_register_by_default(self):
|
71 |
+
# Run in subprocess to ensure a clean state
|
72 |
+
code = (
|
73 |
+
"import matplotlib.units; "
|
74 |
+
"import pandas as pd; "
|
75 |
+
"units = dict(matplotlib.units.registry); "
|
76 |
+
"assert pd.Timestamp not in units"
|
77 |
+
)
|
78 |
+
call = [sys.executable, "-c", code]
|
79 |
+
assert subprocess.check_call(call) == 0
|
80 |
+
|
81 |
+
def test_registering_no_warning(self):
|
82 |
+
plt = pytest.importorskip("matplotlib.pyplot")
|
83 |
+
s = Series(range(12), index=date_range("2017", periods=12))
|
84 |
+
_, ax = plt.subplots()
|
85 |
+
|
86 |
+
# Set to the "warn" state, in case this isn't the first test run
|
87 |
+
register_matplotlib_converters()
|
88 |
+
ax.plot(s.index, s.values)
|
89 |
+
plt.close()
|
90 |
+
|
91 |
+
def test_pandas_plots_register(self):
|
92 |
+
plt = pytest.importorskip("matplotlib.pyplot")
|
93 |
+
s = Series(range(12), index=date_range("2017", periods=12))
|
94 |
+
# Set to the "warn" state, in case this isn't the first test run
|
95 |
+
with tm.assert_produces_warning(None) as w:
|
96 |
+
s.plot()
|
97 |
+
|
98 |
+
try:
|
99 |
+
assert len(w) == 0
|
100 |
+
finally:
|
101 |
+
plt.close()
|
102 |
+
|
103 |
+
def test_matplotlib_formatters(self):
|
104 |
+
units = pytest.importorskip("matplotlib.units")
|
105 |
+
|
106 |
+
# Can't make any assertion about the start state.
|
107 |
+
# We we check that toggling converters off removes it, and toggling it
|
108 |
+
# on restores it.
|
109 |
+
|
110 |
+
with cf.option_context("plotting.matplotlib.register_converters", True):
|
111 |
+
with cf.option_context("plotting.matplotlib.register_converters", False):
|
112 |
+
assert Timestamp not in units.registry
|
113 |
+
assert Timestamp in units.registry
|
114 |
+
|
115 |
+
def test_option_no_warning(self):
|
116 |
+
pytest.importorskip("matplotlib.pyplot")
|
117 |
+
ctx = cf.option_context("plotting.matplotlib.register_converters", False)
|
118 |
+
plt = pytest.importorskip("matplotlib.pyplot")
|
119 |
+
s = Series(range(12), index=date_range("2017", periods=12))
|
120 |
+
_, ax = plt.subplots()
|
121 |
+
|
122 |
+
# Test without registering first, no warning
|
123 |
+
with ctx:
|
124 |
+
ax.plot(s.index, s.values)
|
125 |
+
|
126 |
+
# Now test with registering
|
127 |
+
register_matplotlib_converters()
|
128 |
+
with ctx:
|
129 |
+
ax.plot(s.index, s.values)
|
130 |
+
plt.close()
|
131 |
+
|
132 |
+
def test_registry_resets(self):
|
133 |
+
units = pytest.importorskip("matplotlib.units")
|
134 |
+
dates = pytest.importorskip("matplotlib.dates")
|
135 |
+
|
136 |
+
# make a copy, to reset to
|
137 |
+
original = dict(units.registry)
|
138 |
+
|
139 |
+
try:
|
140 |
+
# get to a known state
|
141 |
+
units.registry.clear()
|
142 |
+
date_converter = dates.DateConverter()
|
143 |
+
units.registry[datetime] = date_converter
|
144 |
+
units.registry[date] = date_converter
|
145 |
+
|
146 |
+
register_matplotlib_converters()
|
147 |
+
assert units.registry[date] is not date_converter
|
148 |
+
deregister_matplotlib_converters()
|
149 |
+
assert units.registry[date] is date_converter
|
150 |
+
|
151 |
+
finally:
|
152 |
+
# restore original stater
|
153 |
+
units.registry.clear()
|
154 |
+
for k, v in original.items():
|
155 |
+
units.registry[k] = v
|
156 |
+
|
157 |
+
|
158 |
+
class TestDateTimeConverter:
|
159 |
+
@pytest.fixture
|
160 |
+
def dtc(self):
|
161 |
+
return converter.DatetimeConverter()
|
162 |
+
|
163 |
+
def test_convert_accepts_unicode(self, dtc):
|
164 |
+
r1 = dtc.convert("2000-01-01 12:22", None, None)
|
165 |
+
r2 = dtc.convert("2000-01-01 12:22", None, None)
|
166 |
+
assert r1 == r2, "DatetimeConverter.convert should accept unicode"
|
167 |
+
|
168 |
+
def test_conversion(self, dtc):
|
169 |
+
rs = dtc.convert(["2012-1-1"], None, None)[0]
|
170 |
+
xp = dates.date2num(datetime(2012, 1, 1))
|
171 |
+
assert rs == xp
|
172 |
+
|
173 |
+
rs = dtc.convert("2012-1-1", None, None)
|
174 |
+
assert rs == xp
|
175 |
+
|
176 |
+
rs = dtc.convert(date(2012, 1, 1), None, None)
|
177 |
+
assert rs == xp
|
178 |
+
|
179 |
+
rs = dtc.convert("2012-1-1", None, None)
|
180 |
+
assert rs == xp
|
181 |
+
|
182 |
+
rs = dtc.convert(Timestamp("2012-1-1"), None, None)
|
183 |
+
assert rs == xp
|
184 |
+
|
185 |
+
# also testing datetime64 dtype (GH8614)
|
186 |
+
rs = dtc.convert("2012-01-01", None, None)
|
187 |
+
assert rs == xp
|
188 |
+
|
189 |
+
rs = dtc.convert("2012-01-01 00:00:00+0000", None, None)
|
190 |
+
assert rs == xp
|
191 |
+
|
192 |
+
rs = dtc.convert(
|
193 |
+
np.array(["2012-01-01 00:00:00+0000", "2012-01-02 00:00:00+0000"]),
|
194 |
+
None,
|
195 |
+
None,
|
196 |
+
)
|
197 |
+
assert rs[0] == xp
|
198 |
+
|
199 |
+
# we have a tz-aware date (constructed to that when we turn to utc it
|
200 |
+
# is the same as our sample)
|
201 |
+
ts = Timestamp("2012-01-01").tz_localize("UTC").tz_convert("US/Eastern")
|
202 |
+
rs = dtc.convert(ts, None, None)
|
203 |
+
assert rs == xp
|
204 |
+
|
205 |
+
rs = dtc.convert(ts.to_pydatetime(), None, None)
|
206 |
+
assert rs == xp
|
207 |
+
|
208 |
+
rs = dtc.convert(Index([ts - Day(1), ts]), None, None)
|
209 |
+
assert rs[1] == xp
|
210 |
+
|
211 |
+
rs = dtc.convert(Index([ts - Day(1), ts]).to_pydatetime(), None, None)
|
212 |
+
assert rs[1] == xp
|
213 |
+
|
214 |
+
def test_conversion_float(self, dtc):
|
215 |
+
rtol = 0.5 * 10**-9
|
216 |
+
|
217 |
+
rs = dtc.convert(Timestamp("2012-1-1 01:02:03", tz="UTC"), None, None)
|
218 |
+
xp = converter.mdates.date2num(Timestamp("2012-1-1 01:02:03", tz="UTC"))
|
219 |
+
tm.assert_almost_equal(rs, xp, rtol=rtol)
|
220 |
+
|
221 |
+
rs = dtc.convert(
|
222 |
+
Timestamp("2012-1-1 09:02:03", tz="Asia/Hong_Kong"), None, None
|
223 |
+
)
|
224 |
+
tm.assert_almost_equal(rs, xp, rtol=rtol)
|
225 |
+
|
226 |
+
rs = dtc.convert(datetime(2012, 1, 1, 1, 2, 3), None, None)
|
227 |
+
tm.assert_almost_equal(rs, xp, rtol=rtol)
|
228 |
+
|
229 |
+
@pytest.mark.parametrize(
|
230 |
+
"values",
|
231 |
+
[
|
232 |
+
[date(1677, 1, 1), date(1677, 1, 2)],
|
233 |
+
[datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)],
|
234 |
+
],
|
235 |
+
)
|
236 |
+
def test_conversion_outofbounds_datetime(self, dtc, values):
|
237 |
+
# 2579
|
238 |
+
rs = dtc.convert(values, None, None)
|
239 |
+
xp = converter.mdates.date2num(values)
|
240 |
+
tm.assert_numpy_array_equal(rs, xp)
|
241 |
+
rs = dtc.convert(values[0], None, None)
|
242 |
+
xp = converter.mdates.date2num(values[0])
|
243 |
+
assert rs == xp
|
244 |
+
|
245 |
+
@pytest.mark.parametrize(
|
246 |
+
"time,format_expected",
|
247 |
+
[
|
248 |
+
(0, "00:00"), # time2num(datetime.time.min)
|
249 |
+
(86399.999999, "23:59:59.999999"), # time2num(datetime.time.max)
|
250 |
+
(90000, "01:00"),
|
251 |
+
(3723, "01:02:03"),
|
252 |
+
(39723.2, "11:02:03.200"),
|
253 |
+
],
|
254 |
+
)
|
255 |
+
def test_time_formatter(self, time, format_expected):
|
256 |
+
# issue 18478
|
257 |
+
result = converter.TimeFormatter(None)(time)
|
258 |
+
assert result == format_expected
|
259 |
+
|
260 |
+
@pytest.mark.parametrize("freq", ("B", "ms", "s"))
|
261 |
+
def test_dateindex_conversion(self, freq, dtc):
|
262 |
+
rtol = 10**-9
|
263 |
+
dateindex = date_range("2020-01-01", periods=10, freq=freq)
|
264 |
+
rs = dtc.convert(dateindex, None, None)
|
265 |
+
xp = converter.mdates.date2num(dateindex._mpl_repr())
|
266 |
+
tm.assert_almost_equal(rs, xp, rtol=rtol)
|
267 |
+
|
268 |
+
@pytest.mark.parametrize("offset", [Second(), Milli(), Micro(50)])
|
269 |
+
def test_resolution(self, offset, dtc):
|
270 |
+
# Matplotlib's time representation using floats cannot distinguish
|
271 |
+
# intervals smaller than ~10 microsecond in the common range of years.
|
272 |
+
ts1 = Timestamp("2012-1-1")
|
273 |
+
ts2 = ts1 + offset
|
274 |
+
val1 = dtc.convert(ts1, None, None)
|
275 |
+
val2 = dtc.convert(ts2, None, None)
|
276 |
+
if not val1 < val2:
|
277 |
+
raise AssertionError(f"{val1} is not less than {val2}.")
|
278 |
+
|
279 |
+
def test_convert_nested(self, dtc):
|
280 |
+
inner = [Timestamp("2017-01-01"), Timestamp("2017-01-02")]
|
281 |
+
data = [inner, inner]
|
282 |
+
result = dtc.convert(data, None, None)
|
283 |
+
expected = [dtc.convert(x, None, None) for x in data]
|
284 |
+
assert (np.array(result) == expected).all()
|
285 |
+
|
286 |
+
|
287 |
+
class TestPeriodConverter:
|
288 |
+
@pytest.fixture
|
289 |
+
def pc(self):
|
290 |
+
return converter.PeriodConverter()
|
291 |
+
|
292 |
+
@pytest.fixture
|
293 |
+
def axis(self):
|
294 |
+
class Axis:
|
295 |
+
pass
|
296 |
+
|
297 |
+
axis = Axis()
|
298 |
+
axis.freq = "D"
|
299 |
+
return axis
|
300 |
+
|
301 |
+
def test_convert_accepts_unicode(self, pc, axis):
|
302 |
+
r1 = pc.convert("2012-1-1", None, axis)
|
303 |
+
r2 = pc.convert("2012-1-1", None, axis)
|
304 |
+
assert r1 == r2
|
305 |
+
|
306 |
+
def test_conversion(self, pc, axis):
|
307 |
+
rs = pc.convert(["2012-1-1"], None, axis)[0]
|
308 |
+
xp = Period("2012-1-1").ordinal
|
309 |
+
assert rs == xp
|
310 |
+
|
311 |
+
rs = pc.convert("2012-1-1", None, axis)
|
312 |
+
assert rs == xp
|
313 |
+
|
314 |
+
rs = pc.convert([date(2012, 1, 1)], None, axis)[0]
|
315 |
+
assert rs == xp
|
316 |
+
|
317 |
+
rs = pc.convert(date(2012, 1, 1), None, axis)
|
318 |
+
assert rs == xp
|
319 |
+
|
320 |
+
rs = pc.convert([Timestamp("2012-1-1")], None, axis)[0]
|
321 |
+
assert rs == xp
|
322 |
+
|
323 |
+
rs = pc.convert(Timestamp("2012-1-1"), None, axis)
|
324 |
+
assert rs == xp
|
325 |
+
|
326 |
+
rs = pc.convert("2012-01-01", None, axis)
|
327 |
+
assert rs == xp
|
328 |
+
|
329 |
+
rs = pc.convert("2012-01-01 00:00:00+0000", None, axis)
|
330 |
+
assert rs == xp
|
331 |
+
|
332 |
+
rs = pc.convert(
|
333 |
+
np.array(
|
334 |
+
["2012-01-01 00:00:00", "2012-01-02 00:00:00"],
|
335 |
+
dtype="datetime64[ns]",
|
336 |
+
),
|
337 |
+
None,
|
338 |
+
axis,
|
339 |
+
)
|
340 |
+
assert rs[0] == xp
|
341 |
+
|
342 |
+
def test_integer_passthrough(self, pc, axis):
|
343 |
+
# GH9012
|
344 |
+
rs = pc.convert([0, 1], None, axis)
|
345 |
+
xp = [0, 1]
|
346 |
+
assert rs == xp
|
347 |
+
|
348 |
+
def test_convert_nested(self, pc, axis):
|
349 |
+
data = ["2012-1-1", "2012-1-2"]
|
350 |
+
r1 = pc.convert([data, data], None, axis)
|
351 |
+
r2 = [pc.convert(data, None, axis) for _ in range(2)]
|
352 |
+
assert r1 == r2
|
353 |
+
|
354 |
+
|
355 |
+
class TestTimeDeltaConverter:
|
356 |
+
"""Test timedelta converter"""
|
357 |
+
|
358 |
+
@pytest.mark.parametrize(
|
359 |
+
"x, decimal, format_expected",
|
360 |
+
[
|
361 |
+
(0.0, 0, "00:00:00"),
|
362 |
+
(3972320000000, 1, "01:06:12.3"),
|
363 |
+
(713233432000000, 2, "8 days 06:07:13.43"),
|
364 |
+
(32423432000000, 4, "09:00:23.4320"),
|
365 |
+
],
|
366 |
+
)
|
367 |
+
def test_format_timedelta_ticks(self, x, decimal, format_expected):
|
368 |
+
tdc = converter.TimeSeries_TimedeltaFormatter
|
369 |
+
result = tdc.format_timedelta_ticks(x, pos=None, n_decimals=decimal)
|
370 |
+
assert result == format_expected
|
371 |
+
|
372 |
+
@pytest.mark.parametrize("view_interval", [(1, 2), (2, 1)])
|
373 |
+
def test_call_w_different_view_intervals(self, view_interval, monkeypatch):
|
374 |
+
# previously broke on reversed xlmits; see GH37454
|
375 |
+
class mock_axis:
|
376 |
+
def get_view_interval(self):
|
377 |
+
return view_interval
|
378 |
+
|
379 |
+
tdc = converter.TimeSeries_TimedeltaFormatter()
|
380 |
+
monkeypatch.setattr(tdc, "axis", mock_axis())
|
381 |
+
tdc(0.0, 0)
|
382 |
+
|
383 |
+
|
384 |
+
@pytest.mark.parametrize("year_span", [11.25, 30, 80, 150, 400, 800, 1500, 2500, 3500])
|
385 |
+
# The range is limited to 11.25 at the bottom by if statements in
|
386 |
+
# the _quarterly_finder() function
|
387 |
+
def test_quarterly_finder(year_span):
|
388 |
+
vmin = -1000
|
389 |
+
vmax = vmin + year_span * 4
|
390 |
+
span = vmax - vmin + 1
|
391 |
+
if span < 45:
|
392 |
+
pytest.skip("the quarterly finder is only invoked if the span is >= 45")
|
393 |
+
nyears = span / 4
|
394 |
+
(min_anndef, maj_anndef) = converter._get_default_annual_spacing(nyears)
|
395 |
+
result = converter._quarterly_finder(vmin, vmax, to_offset("QE"))
|
396 |
+
quarters = PeriodIndex(
|
397 |
+
arrays.PeriodArray(np.array([x[0] for x in result]), dtype="period[Q]")
|
398 |
+
)
|
399 |
+
majors = np.array([x[1] for x in result])
|
400 |
+
minors = np.array([x[2] for x in result])
|
401 |
+
major_quarters = quarters[majors]
|
402 |
+
minor_quarters = quarters[minors]
|
403 |
+
check_major_years = major_quarters.year % maj_anndef == 0
|
404 |
+
check_minor_years = minor_quarters.year % min_anndef == 0
|
405 |
+
check_major_quarters = major_quarters.quarter == 1
|
406 |
+
check_minor_quarters = minor_quarters.quarter == 1
|
407 |
+
assert np.all(check_major_years)
|
408 |
+
assert np.all(check_minor_years)
|
409 |
+
assert np.all(check_major_quarters)
|
410 |
+
assert np.all(check_minor_quarters)
|