applied-ai-018 commited on
Commit
462d7f1
·
verified ·
1 Parent(s): 543b8a8

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__init__.py +0 -0
  2. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_asteroidal.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_boundary.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_bridges.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_broadcasting.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_chains.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_chordal.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_cluster.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_communicability.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_core.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_covering.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_cuts.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_cycles.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_d_separation.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_distance_regular.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_dominating.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_efficiency.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_graphical.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_hierarchy.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_hybrid.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_isolate.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_link_prediction.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_lowest_common_ancestors.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_matching.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_max_weight_clique.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_mis.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_moral.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_node_classification.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_non_randomness.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_planar_drawing.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_planarity.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_reciprocity.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_richclub.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_similarity.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_smallworld.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_summarization.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_swap.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_threshold.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_time_dependent.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_tournament.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_triads.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_walks.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_wiener.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_chains.py +140 -0
  46. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_clique.py +291 -0
  47. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_core.py +266 -0
  48. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_d_separation.py +348 -0
  49. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_dag.py +777 -0
  50. llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_distance_measures.py +756 -0
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (198 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_asteroidal.cpython-310.pyc ADDED
Binary file (665 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_boundary.cpython-310.pyc ADDED
Binary file (7.16 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_bridges.cpython-310.pyc ADDED
Binary file (4.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_broadcasting.cpython-310.pyc ADDED
Binary file (2.19 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_chains.cpython-310.pyc ADDED
Binary file (4.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_chordal.cpython-310.pyc ADDED
Binary file (4.42 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_cluster.cpython-310.pyc ADDED
Binary file (15.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_communicability.cpython-310.pyc ADDED
Binary file (2.18 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_core.cpython-310.pyc ADDED
Binary file (9.61 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_covering.cpython-310.pyc ADDED
Binary file (3.74 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_cuts.cpython-310.pyc ADDED
Binary file (6.29 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_cycles.cpython-310.pyc ADDED
Binary file (35.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_d_separation.cpython-310.pyc ADDED
Binary file (9.24 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_distance_regular.cpython-310.pyc ADDED
Binary file (3.83 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_dominating.cpython-310.pyc ADDED
Binary file (1.77 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_efficiency.cpython-310.pyc ADDED
Binary file (2.87 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_graphical.cpython-310.pyc ADDED
Binary file (5.82 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_hierarchy.cpython-310.pyc ADDED
Binary file (1.45 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_hybrid.cpython-310.pyc ADDED
Binary file (848 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_isolate.cpython-310.pyc ADDED
Binary file (1.01 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_link_prediction.cpython-310.pyc ADDED
Binary file (21.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_lowest_common_ancestors.cpython-310.pyc ADDED
Binary file (16 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_matching.cpython-310.pyc ADDED
Binary file (18 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_max_weight_clique.cpython-310.pyc ADDED
Binary file (6.92 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_mis.cpython-310.pyc ADDED
Binary file (2.64 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_moral.cpython-310.pyc ADDED
Binary file (773 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_node_classification.cpython-310.pyc ADDED
Binary file (4.68 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_non_randomness.cpython-310.pyc ADDED
Binary file (1.25 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_planar_drawing.cpython-310.pyc ADDED
Binary file (7.93 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_planarity.cpython-310.pyc ADDED
Binary file (14.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_reciprocity.cpython-310.pyc ADDED
Binary file (1.84 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_richclub.cpython-310.pyc ADDED
Binary file (3.82 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_similarity.cpython-310.pyc ADDED
Binary file (24.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_smallworld.cpython-310.pyc ADDED
Binary file (2.57 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_summarization.cpython-310.pyc ADDED
Binary file (15.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_swap.cpython-310.pyc ADDED
Binary file (8.48 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_threshold.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_time_dependent.cpython-310.pyc ADDED
Binary file (9.31 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_tournament.cpython-310.pyc ADDED
Binary file (6.16 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_triads.cpython-310.pyc ADDED
Binary file (12 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_walks.cpython-310.pyc ADDED
Binary file (1.88 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/__pycache__/test_wiener.cpython-310.pyc ADDED
Binary file (3.18 kB). View file
 
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_chains.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the chain decomposition functions."""
2
+ from itertools import cycle, islice
3
+
4
+ import pytest
5
+
6
+ import networkx as nx
7
+
8
+
9
+ def cycles(seq):
10
+ """Yields cyclic permutations of the given sequence.
11
+
12
+ For example::
13
+
14
+ >>> list(cycles("abc"))
15
+ [('a', 'b', 'c'), ('b', 'c', 'a'), ('c', 'a', 'b')]
16
+
17
+ """
18
+ n = len(seq)
19
+ cycled_seq = cycle(seq)
20
+ for x in seq:
21
+ yield tuple(islice(cycled_seq, n))
22
+ next(cycled_seq)
23
+
24
+
25
+ def cyclic_equals(seq1, seq2):
26
+ """Decide whether two sequences are equal up to cyclic permutations.
27
+
28
+ For example::
29
+
30
+ >>> cyclic_equals("xyz", "zxy")
31
+ True
32
+ >>> cyclic_equals("xyz", "zyx")
33
+ False
34
+
35
+ """
36
+ # Cast seq2 to a tuple since `cycles()` yields tuples.
37
+ seq2 = tuple(seq2)
38
+ return any(x == tuple(seq2) for x in cycles(seq1))
39
+
40
+
41
+ class TestChainDecomposition:
42
+ """Unit tests for the chain decomposition function."""
43
+
44
+ def assertContainsChain(self, chain, expected):
45
+ # A cycle could be expressed in two different orientations, one
46
+ # forward and one backward, so we need to check for cyclic
47
+ # equality in both orientations.
48
+ reversed_chain = list(reversed([tuple(reversed(e)) for e in chain]))
49
+ for candidate in expected:
50
+ if cyclic_equals(chain, candidate):
51
+ break
52
+ if cyclic_equals(reversed_chain, candidate):
53
+ break
54
+ else:
55
+ self.fail("chain not found")
56
+
57
+ def test_decomposition(self):
58
+ edges = [
59
+ # DFS tree edges.
60
+ (1, 2),
61
+ (2, 3),
62
+ (3, 4),
63
+ (3, 5),
64
+ (5, 6),
65
+ (6, 7),
66
+ (7, 8),
67
+ (5, 9),
68
+ (9, 10),
69
+ # Nontree edges.
70
+ (1, 3),
71
+ (1, 4),
72
+ (2, 5),
73
+ (5, 10),
74
+ (6, 8),
75
+ ]
76
+ G = nx.Graph(edges)
77
+ expected = [
78
+ [(1, 3), (3, 2), (2, 1)],
79
+ [(1, 4), (4, 3)],
80
+ [(2, 5), (5, 3)],
81
+ [(5, 10), (10, 9), (9, 5)],
82
+ [(6, 8), (8, 7), (7, 6)],
83
+ ]
84
+ chains = list(nx.chain_decomposition(G, root=1))
85
+ assert len(chains) == len(expected)
86
+
87
+ # This chain decomposition isn't unique
88
+ # for chain in chains:
89
+ # print(chain)
90
+ # self.assertContainsChain(chain, expected)
91
+
92
+ def test_barbell_graph(self):
93
+ # The (3, 0) barbell graph has two triangles joined by a single edge.
94
+ G = nx.barbell_graph(3, 0)
95
+ chains = list(nx.chain_decomposition(G, root=0))
96
+ expected = [[(0, 1), (1, 2), (2, 0)], [(3, 4), (4, 5), (5, 3)]]
97
+ assert len(chains) == len(expected)
98
+ for chain in chains:
99
+ self.assertContainsChain(chain, expected)
100
+
101
+ def test_disconnected_graph(self):
102
+ """Test for a graph with multiple connected components."""
103
+ G = nx.barbell_graph(3, 0)
104
+ H = nx.barbell_graph(3, 0)
105
+ mapping = dict(zip(range(6), "abcdef"))
106
+ nx.relabel_nodes(H, mapping, copy=False)
107
+ G = nx.union(G, H)
108
+ chains = list(nx.chain_decomposition(G))
109
+ expected = [
110
+ [(0, 1), (1, 2), (2, 0)],
111
+ [(3, 4), (4, 5), (5, 3)],
112
+ [("a", "b"), ("b", "c"), ("c", "a")],
113
+ [("d", "e"), ("e", "f"), ("f", "d")],
114
+ ]
115
+ assert len(chains) == len(expected)
116
+ for chain in chains:
117
+ self.assertContainsChain(chain, expected)
118
+
119
+ def test_disconnected_graph_root_node(self):
120
+ """Test for a single component of a disconnected graph."""
121
+ G = nx.barbell_graph(3, 0)
122
+ H = nx.barbell_graph(3, 0)
123
+ mapping = dict(zip(range(6), "abcdef"))
124
+ nx.relabel_nodes(H, mapping, copy=False)
125
+ G = nx.union(G, H)
126
+ chains = list(nx.chain_decomposition(G, root="a"))
127
+ expected = [
128
+ [("a", "b"), ("b", "c"), ("c", "a")],
129
+ [("d", "e"), ("e", "f"), ("f", "d")],
130
+ ]
131
+ assert len(chains) == len(expected)
132
+ for chain in chains:
133
+ self.assertContainsChain(chain, expected)
134
+
135
+ def test_chain_decomposition_root_not_in_G(self):
136
+ """Test chain decomposition when root is not in graph"""
137
+ G = nx.Graph()
138
+ G.add_nodes_from([1, 2, 3])
139
+ with pytest.raises(nx.NodeNotFound):
140
+ nx.has_bridges(G, root=6)
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_clique.py ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx import convert_node_labels_to_integers as cnlti
5
+
6
+
7
+ class TestCliques:
8
+ def setup_method(self):
9
+ z = [3, 4, 3, 4, 2, 4, 2, 1, 1, 1, 1]
10
+ self.G = cnlti(nx.generators.havel_hakimi_graph(z), first_label=1)
11
+ self.cl = list(nx.find_cliques(self.G))
12
+ H = nx.complete_graph(6)
13
+ H = nx.relabel_nodes(H, {i: i + 1 for i in range(6)})
14
+ H.remove_edges_from([(2, 6), (2, 5), (2, 4), (1, 3), (5, 3)])
15
+ self.H = H
16
+
17
+ def test_find_cliques1(self):
18
+ cl = list(nx.find_cliques(self.G))
19
+ rcl = nx.find_cliques_recursive(self.G)
20
+ expected = [[2, 6, 1, 3], [2, 6, 4], [5, 4, 7], [8, 9], [10, 11]]
21
+ assert sorted(map(sorted, cl)) == sorted(map(sorted, rcl))
22
+ assert sorted(map(sorted, cl)) == sorted(map(sorted, expected))
23
+
24
+ def test_selfloops(self):
25
+ self.G.add_edge(1, 1)
26
+ cl = list(nx.find_cliques(self.G))
27
+ rcl = list(nx.find_cliques_recursive(self.G))
28
+ assert set(map(frozenset, cl)) == set(map(frozenset, rcl))
29
+ answer = [{2, 6, 1, 3}, {2, 6, 4}, {5, 4, 7}, {8, 9}, {10, 11}]
30
+ assert len(answer) == len(cl)
31
+ assert all(set(c) in answer for c in cl)
32
+
33
+ def test_find_cliques2(self):
34
+ hcl = list(nx.find_cliques(self.H))
35
+ assert sorted(map(sorted, hcl)) == [[1, 2], [1, 4, 5, 6], [2, 3], [3, 4, 6]]
36
+
37
+ def test_find_cliques3(self):
38
+ # all cliques are [[2, 6, 1, 3], [2, 6, 4], [5, 4, 7], [8, 9], [10, 11]]
39
+
40
+ cl = list(nx.find_cliques(self.G, [2]))
41
+ rcl = nx.find_cliques_recursive(self.G, [2])
42
+ expected = [[2, 6, 1, 3], [2, 6, 4]]
43
+ assert sorted(map(sorted, rcl)) == sorted(map(sorted, expected))
44
+ assert sorted(map(sorted, cl)) == sorted(map(sorted, expected))
45
+
46
+ cl = list(nx.find_cliques(self.G, [2, 3]))
47
+ rcl = nx.find_cliques_recursive(self.G, [2, 3])
48
+ expected = [[2, 6, 1, 3]]
49
+ assert sorted(map(sorted, rcl)) == sorted(map(sorted, expected))
50
+ assert sorted(map(sorted, cl)) == sorted(map(sorted, expected))
51
+
52
+ cl = list(nx.find_cliques(self.G, [2, 6, 4]))
53
+ rcl = nx.find_cliques_recursive(self.G, [2, 6, 4])
54
+ expected = [[2, 6, 4]]
55
+ assert sorted(map(sorted, rcl)) == sorted(map(sorted, expected))
56
+ assert sorted(map(sorted, cl)) == sorted(map(sorted, expected))
57
+
58
+ cl = list(nx.find_cliques(self.G, [2, 6, 4]))
59
+ rcl = nx.find_cliques_recursive(self.G, [2, 6, 4])
60
+ expected = [[2, 6, 4]]
61
+ assert sorted(map(sorted, rcl)) == sorted(map(sorted, expected))
62
+ assert sorted(map(sorted, cl)) == sorted(map(sorted, expected))
63
+
64
+ with pytest.raises(ValueError):
65
+ list(nx.find_cliques(self.G, [2, 6, 4, 1]))
66
+
67
+ with pytest.raises(ValueError):
68
+ list(nx.find_cliques_recursive(self.G, [2, 6, 4, 1]))
69
+
70
+ def test_number_of_cliques(self):
71
+ G = self.G
72
+ assert nx.number_of_cliques(G, 1) == 1
73
+ assert list(nx.number_of_cliques(G, [1]).values()) == [1]
74
+ assert list(nx.number_of_cliques(G, [1, 2]).values()) == [1, 2]
75
+ assert nx.number_of_cliques(G, [1, 2]) == {1: 1, 2: 2}
76
+ assert nx.number_of_cliques(G, 2) == 2
77
+ assert nx.number_of_cliques(G) == {
78
+ 1: 1,
79
+ 2: 2,
80
+ 3: 1,
81
+ 4: 2,
82
+ 5: 1,
83
+ 6: 2,
84
+ 7: 1,
85
+ 8: 1,
86
+ 9: 1,
87
+ 10: 1,
88
+ 11: 1,
89
+ }
90
+ assert nx.number_of_cliques(G, nodes=list(G)) == {
91
+ 1: 1,
92
+ 2: 2,
93
+ 3: 1,
94
+ 4: 2,
95
+ 5: 1,
96
+ 6: 2,
97
+ 7: 1,
98
+ 8: 1,
99
+ 9: 1,
100
+ 10: 1,
101
+ 11: 1,
102
+ }
103
+ assert nx.number_of_cliques(G, nodes=[2, 3, 4]) == {2: 2, 3: 1, 4: 2}
104
+ assert nx.number_of_cliques(G, cliques=self.cl) == {
105
+ 1: 1,
106
+ 2: 2,
107
+ 3: 1,
108
+ 4: 2,
109
+ 5: 1,
110
+ 6: 2,
111
+ 7: 1,
112
+ 8: 1,
113
+ 9: 1,
114
+ 10: 1,
115
+ 11: 1,
116
+ }
117
+ assert nx.number_of_cliques(G, list(G), cliques=self.cl) == {
118
+ 1: 1,
119
+ 2: 2,
120
+ 3: 1,
121
+ 4: 2,
122
+ 5: 1,
123
+ 6: 2,
124
+ 7: 1,
125
+ 8: 1,
126
+ 9: 1,
127
+ 10: 1,
128
+ 11: 1,
129
+ }
130
+
131
+ def test_node_clique_number(self):
132
+ G = self.G
133
+ assert nx.node_clique_number(G, 1) == 4
134
+ assert list(nx.node_clique_number(G, [1]).values()) == [4]
135
+ assert list(nx.node_clique_number(G, [1, 2]).values()) == [4, 4]
136
+ assert nx.node_clique_number(G, [1, 2]) == {1: 4, 2: 4}
137
+ assert nx.node_clique_number(G, 1) == 4
138
+ assert nx.node_clique_number(G) == {
139
+ 1: 4,
140
+ 2: 4,
141
+ 3: 4,
142
+ 4: 3,
143
+ 5: 3,
144
+ 6: 4,
145
+ 7: 3,
146
+ 8: 2,
147
+ 9: 2,
148
+ 10: 2,
149
+ 11: 2,
150
+ }
151
+ assert nx.node_clique_number(G, cliques=self.cl) == {
152
+ 1: 4,
153
+ 2: 4,
154
+ 3: 4,
155
+ 4: 3,
156
+ 5: 3,
157
+ 6: 4,
158
+ 7: 3,
159
+ 8: 2,
160
+ 9: 2,
161
+ 10: 2,
162
+ 11: 2,
163
+ }
164
+ assert nx.node_clique_number(G, [1, 2], cliques=self.cl) == {1: 4, 2: 4}
165
+ assert nx.node_clique_number(G, 1, cliques=self.cl) == 4
166
+
167
+ def test_make_clique_bipartite(self):
168
+ G = self.G
169
+ B = nx.make_clique_bipartite(G)
170
+ assert sorted(B) == [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
171
+ # Project onto the nodes of the original graph.
172
+ H = nx.projected_graph(B, range(1, 12))
173
+ assert H.adj == G.adj
174
+ # Project onto the nodes representing the cliques.
175
+ H1 = nx.projected_graph(B, range(-5, 0))
176
+ # Relabel the negative numbers as positive ones.
177
+ H1 = nx.relabel_nodes(H1, {-v: v for v in range(1, 6)})
178
+ assert sorted(H1) == [1, 2, 3, 4, 5]
179
+
180
+ def test_make_max_clique_graph(self):
181
+ """Tests that the maximal clique graph is the same as the bipartite
182
+ clique graph after being projected onto the nodes representing the
183
+ cliques.
184
+
185
+ """
186
+ G = self.G
187
+ B = nx.make_clique_bipartite(G)
188
+ # Project onto the nodes representing the cliques.
189
+ H1 = nx.projected_graph(B, range(-5, 0))
190
+ # Relabel the negative numbers as nonnegative ones, starting at
191
+ # 0.
192
+ H1 = nx.relabel_nodes(H1, {-v: v - 1 for v in range(1, 6)})
193
+ H2 = nx.make_max_clique_graph(G)
194
+ assert H1.adj == H2.adj
195
+
196
+ def test_directed(self):
197
+ with pytest.raises(nx.NetworkXNotImplemented):
198
+ next(nx.find_cliques(nx.DiGraph()))
199
+
200
+ def test_find_cliques_trivial(self):
201
+ G = nx.Graph()
202
+ assert sorted(nx.find_cliques(G)) == []
203
+ assert sorted(nx.find_cliques_recursive(G)) == []
204
+
205
+ def test_make_max_clique_graph_create_using(self):
206
+ G = nx.Graph([(1, 2), (3, 1), (4, 1), (5, 6)])
207
+ E = nx.Graph([(0, 1), (0, 2), (1, 2)])
208
+ E.add_node(3)
209
+ assert nx.is_isomorphic(nx.make_max_clique_graph(G, create_using=nx.Graph), E)
210
+
211
+
212
+ class TestEnumerateAllCliques:
213
+ def test_paper_figure_4(self):
214
+ # Same graph as given in Fig. 4 of paper enumerate_all_cliques is
215
+ # based on.
216
+ # http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1559964&isnumber=33129
217
+ G = nx.Graph()
218
+ edges_fig_4 = [
219
+ ("a", "b"),
220
+ ("a", "c"),
221
+ ("a", "d"),
222
+ ("a", "e"),
223
+ ("b", "c"),
224
+ ("b", "d"),
225
+ ("b", "e"),
226
+ ("c", "d"),
227
+ ("c", "e"),
228
+ ("d", "e"),
229
+ ("f", "b"),
230
+ ("f", "c"),
231
+ ("f", "g"),
232
+ ("g", "f"),
233
+ ("g", "c"),
234
+ ("g", "d"),
235
+ ("g", "e"),
236
+ ]
237
+ G.add_edges_from(edges_fig_4)
238
+
239
+ cliques = list(nx.enumerate_all_cliques(G))
240
+ clique_sizes = list(map(len, cliques))
241
+ assert sorted(clique_sizes) == clique_sizes
242
+
243
+ expected_cliques = [
244
+ ["a"],
245
+ ["b"],
246
+ ["c"],
247
+ ["d"],
248
+ ["e"],
249
+ ["f"],
250
+ ["g"],
251
+ ["a", "b"],
252
+ ["a", "b", "d"],
253
+ ["a", "b", "d", "e"],
254
+ ["a", "b", "e"],
255
+ ["a", "c"],
256
+ ["a", "c", "d"],
257
+ ["a", "c", "d", "e"],
258
+ ["a", "c", "e"],
259
+ ["a", "d"],
260
+ ["a", "d", "e"],
261
+ ["a", "e"],
262
+ ["b", "c"],
263
+ ["b", "c", "d"],
264
+ ["b", "c", "d", "e"],
265
+ ["b", "c", "e"],
266
+ ["b", "c", "f"],
267
+ ["b", "d"],
268
+ ["b", "d", "e"],
269
+ ["b", "e"],
270
+ ["b", "f"],
271
+ ["c", "d"],
272
+ ["c", "d", "e"],
273
+ ["c", "d", "e", "g"],
274
+ ["c", "d", "g"],
275
+ ["c", "e"],
276
+ ["c", "e", "g"],
277
+ ["c", "f"],
278
+ ["c", "f", "g"],
279
+ ["c", "g"],
280
+ ["d", "e"],
281
+ ["d", "e", "g"],
282
+ ["d", "g"],
283
+ ["e", "g"],
284
+ ["f", "g"],
285
+ ["a", "b", "c"],
286
+ ["a", "b", "c", "d"],
287
+ ["a", "b", "c", "d", "e"],
288
+ ["a", "b", "c", "e"],
289
+ ]
290
+
291
+ assert sorted(map(sorted, cliques)) == sorted(map(sorted, expected_cliques))
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_core.py ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx.utils import nodes_equal
5
+
6
+
7
+ class TestCore:
8
+ @classmethod
9
+ def setup_class(cls):
10
+ # G is the example graph in Figure 1 from Batagelj and
11
+ # Zaversnik's paper titled An O(m) Algorithm for Cores
12
+ # Decomposition of Networks, 2003,
13
+ # http://arXiv.org/abs/cs/0310049. With nodes labeled as
14
+ # shown, the 3-core is given by nodes 1-8, the 2-core by nodes
15
+ # 9-16, the 1-core by nodes 17-20 and node 21 is in the
16
+ # 0-core.
17
+ t1 = nx.convert_node_labels_to_integers(nx.tetrahedral_graph(), 1)
18
+ t2 = nx.convert_node_labels_to_integers(t1, 5)
19
+ G = nx.union(t1, t2)
20
+ G.add_edges_from(
21
+ [
22
+ (3, 7),
23
+ (2, 11),
24
+ (11, 5),
25
+ (11, 12),
26
+ (5, 12),
27
+ (12, 19),
28
+ (12, 18),
29
+ (3, 9),
30
+ (7, 9),
31
+ (7, 10),
32
+ (9, 10),
33
+ (9, 20),
34
+ (17, 13),
35
+ (13, 14),
36
+ (14, 15),
37
+ (15, 16),
38
+ (16, 13),
39
+ ]
40
+ )
41
+ G.add_node(21)
42
+ cls.G = G
43
+
44
+ # Create the graph H resulting from the degree sequence
45
+ # [0, 1, 2, 2, 2, 2, 3] when using the Havel-Hakimi algorithm.
46
+
47
+ degseq = [0, 1, 2, 2, 2, 2, 3]
48
+ H = nx.havel_hakimi_graph(degseq)
49
+ mapping = {6: 0, 0: 1, 4: 3, 5: 6, 3: 4, 1: 2, 2: 5}
50
+ cls.H = nx.relabel_nodes(H, mapping)
51
+
52
+ def test_trivial(self):
53
+ """Empty graph"""
54
+ G = nx.Graph()
55
+ assert nx.core_number(G) == {}
56
+
57
+ def test_core_number(self):
58
+ core = nx.core_number(self.G)
59
+ nodes_by_core = [sorted(n for n in core if core[n] == val) for val in range(4)]
60
+ assert nodes_equal(nodes_by_core[0], [21])
61
+ assert nodes_equal(nodes_by_core[1], [17, 18, 19, 20])
62
+ assert nodes_equal(nodes_by_core[2], [9, 10, 11, 12, 13, 14, 15, 16])
63
+ assert nodes_equal(nodes_by_core[3], [1, 2, 3, 4, 5, 6, 7, 8])
64
+
65
+ def test_core_number2(self):
66
+ core = nx.core_number(self.H)
67
+ nodes_by_core = [sorted(n for n in core if core[n] == val) for val in range(3)]
68
+ assert nodes_equal(nodes_by_core[0], [0])
69
+ assert nodes_equal(nodes_by_core[1], [1, 3])
70
+ assert nodes_equal(nodes_by_core[2], [2, 4, 5, 6])
71
+
72
+ def test_core_number_multigraph(self):
73
+ G = nx.complete_graph(3)
74
+ G = nx.MultiGraph(G)
75
+ G.add_edge(1, 2)
76
+ with pytest.raises(
77
+ nx.NetworkXNotImplemented, match="not implemented for multigraph type"
78
+ ):
79
+ nx.core_number(G)
80
+
81
+ def test_core_number_self_loop(self):
82
+ G = nx.cycle_graph(3)
83
+ G.add_edge(0, 0)
84
+ with pytest.raises(
85
+ nx.NetworkXNotImplemented, match="Input graph has self loops"
86
+ ):
87
+ nx.core_number(G)
88
+
89
+ def test_directed_core_number(self):
90
+ """core number had a bug for directed graphs found in issue #1959"""
91
+ # small example where too timid edge removal can make cn[2] = 3
92
+ G = nx.DiGraph()
93
+ edges = [(1, 2), (2, 1), (2, 3), (2, 4), (3, 4), (4, 3)]
94
+ G.add_edges_from(edges)
95
+ assert nx.core_number(G) == {1: 2, 2: 2, 3: 2, 4: 2}
96
+ # small example where too aggressive edge removal can make cn[2] = 2
97
+ more_edges = [(1, 5), (3, 5), (4, 5), (3, 6), (4, 6), (5, 6)]
98
+ G.add_edges_from(more_edges)
99
+ assert nx.core_number(G) == {1: 3, 2: 3, 3: 3, 4: 3, 5: 3, 6: 3}
100
+
101
+ def test_main_core(self):
102
+ main_core_subgraph = nx.k_core(self.H)
103
+ assert sorted(main_core_subgraph.nodes()) == [2, 4, 5, 6]
104
+
105
+ def test_k_core(self):
106
+ # k=0
107
+ k_core_subgraph = nx.k_core(self.H, k=0)
108
+ assert sorted(k_core_subgraph.nodes()) == sorted(self.H.nodes())
109
+ # k=1
110
+ k_core_subgraph = nx.k_core(self.H, k=1)
111
+ assert sorted(k_core_subgraph.nodes()) == [1, 2, 3, 4, 5, 6]
112
+ # k = 2
113
+ k_core_subgraph = nx.k_core(self.H, k=2)
114
+ assert sorted(k_core_subgraph.nodes()) == [2, 4, 5, 6]
115
+
116
+ def test_k_core_multigraph(self):
117
+ core_number = nx.core_number(self.H)
118
+ H = nx.MultiGraph(self.H)
119
+ with pytest.deprecated_call():
120
+ nx.k_core(H, k=0, core_number=core_number)
121
+
122
+ def test_main_crust(self):
123
+ main_crust_subgraph = nx.k_crust(self.H)
124
+ assert sorted(main_crust_subgraph.nodes()) == [0, 1, 3]
125
+
126
+ def test_k_crust(self):
127
+ # k = 0
128
+ k_crust_subgraph = nx.k_crust(self.H, k=2)
129
+ assert sorted(k_crust_subgraph.nodes()) == sorted(self.H.nodes())
130
+ # k=1
131
+ k_crust_subgraph = nx.k_crust(self.H, k=1)
132
+ assert sorted(k_crust_subgraph.nodes()) == [0, 1, 3]
133
+ # k=2
134
+ k_crust_subgraph = nx.k_crust(self.H, k=0)
135
+ assert sorted(k_crust_subgraph.nodes()) == [0]
136
+
137
+ def test_k_crust_multigraph(self):
138
+ core_number = nx.core_number(self.H)
139
+ H = nx.MultiGraph(self.H)
140
+ with pytest.deprecated_call():
141
+ nx.k_crust(H, k=0, core_number=core_number)
142
+
143
+ def test_main_shell(self):
144
+ main_shell_subgraph = nx.k_shell(self.H)
145
+ assert sorted(main_shell_subgraph.nodes()) == [2, 4, 5, 6]
146
+
147
+ def test_k_shell(self):
148
+ # k=0
149
+ k_shell_subgraph = nx.k_shell(self.H, k=2)
150
+ assert sorted(k_shell_subgraph.nodes()) == [2, 4, 5, 6]
151
+ # k=1
152
+ k_shell_subgraph = nx.k_shell(self.H, k=1)
153
+ assert sorted(k_shell_subgraph.nodes()) == [1, 3]
154
+ # k=2
155
+ k_shell_subgraph = nx.k_shell(self.H, k=0)
156
+ assert sorted(k_shell_subgraph.nodes()) == [0]
157
+
158
+ def test_k_shell_multigraph(self):
159
+ core_number = nx.core_number(self.H)
160
+ H = nx.MultiGraph(self.H)
161
+ with pytest.deprecated_call():
162
+ nx.k_shell(H, k=0, core_number=core_number)
163
+
164
+ def test_k_corona(self):
165
+ # k=0
166
+ k_corona_subgraph = nx.k_corona(self.H, k=2)
167
+ assert sorted(k_corona_subgraph.nodes()) == [2, 4, 5, 6]
168
+ # k=1
169
+ k_corona_subgraph = nx.k_corona(self.H, k=1)
170
+ assert sorted(k_corona_subgraph.nodes()) == [1]
171
+ # k=2
172
+ k_corona_subgraph = nx.k_corona(self.H, k=0)
173
+ assert sorted(k_corona_subgraph.nodes()) == [0]
174
+
175
+ def test_k_corona_multigraph(self):
176
+ core_number = nx.core_number(self.H)
177
+ H = nx.MultiGraph(self.H)
178
+ with pytest.deprecated_call():
179
+ nx.k_corona(H, k=0, core_number=core_number)
180
+
181
+ def test_k_truss(self):
182
+ # k=-1
183
+ k_truss_subgraph = nx.k_truss(self.G, -1)
184
+ assert sorted(k_truss_subgraph.nodes()) == list(range(1, 21))
185
+ # k=0
186
+ k_truss_subgraph = nx.k_truss(self.G, 0)
187
+ assert sorted(k_truss_subgraph.nodes()) == list(range(1, 21))
188
+ # k=1
189
+ k_truss_subgraph = nx.k_truss(self.G, 1)
190
+ assert sorted(k_truss_subgraph.nodes()) == list(range(1, 21))
191
+ # k=2
192
+ k_truss_subgraph = nx.k_truss(self.G, 2)
193
+ assert sorted(k_truss_subgraph.nodes()) == list(range(1, 21))
194
+ # k=3
195
+ k_truss_subgraph = nx.k_truss(self.G, 3)
196
+ assert sorted(k_truss_subgraph.nodes()) == list(range(1, 13))
197
+
198
+ k_truss_subgraph = nx.k_truss(self.G, 4)
199
+ assert sorted(k_truss_subgraph.nodes()) == list(range(1, 9))
200
+
201
+ k_truss_subgraph = nx.k_truss(self.G, 5)
202
+ assert sorted(k_truss_subgraph.nodes()) == []
203
+
204
+ def test_k_truss_digraph(self):
205
+ G = nx.complete_graph(3)
206
+ G = nx.DiGraph(G)
207
+ G.add_edge(2, 1)
208
+ with pytest.raises(
209
+ nx.NetworkXNotImplemented, match="not implemented for directed type"
210
+ ):
211
+ nx.k_truss(G, k=1)
212
+
213
+ def test_k_truss_multigraph(self):
214
+ G = nx.complete_graph(3)
215
+ G = nx.MultiGraph(G)
216
+ G.add_edge(1, 2)
217
+ with pytest.raises(
218
+ nx.NetworkXNotImplemented, match="not implemented for multigraph type"
219
+ ):
220
+ nx.k_truss(G, k=1)
221
+
222
+ def test_k_truss_self_loop(self):
223
+ G = nx.cycle_graph(3)
224
+ G.add_edge(0, 0)
225
+ with pytest.raises(
226
+ nx.NetworkXNotImplemented, match="Input graph has self loops"
227
+ ):
228
+ nx.k_truss(G, k=1)
229
+
230
+ def test_onion_layers(self):
231
+ layers = nx.onion_layers(self.G)
232
+ nodes_by_layer = [
233
+ sorted(n for n in layers if layers[n] == val) for val in range(1, 7)
234
+ ]
235
+ assert nodes_equal(nodes_by_layer[0], [21])
236
+ assert nodes_equal(nodes_by_layer[1], [17, 18, 19, 20])
237
+ assert nodes_equal(nodes_by_layer[2], [10, 12, 13, 14, 15, 16])
238
+ assert nodes_equal(nodes_by_layer[3], [9, 11])
239
+ assert nodes_equal(nodes_by_layer[4], [1, 2, 4, 5, 6, 8])
240
+ assert nodes_equal(nodes_by_layer[5], [3, 7])
241
+
242
+ def test_onion_digraph(self):
243
+ G = nx.complete_graph(3)
244
+ G = nx.DiGraph(G)
245
+ G.add_edge(2, 1)
246
+ with pytest.raises(
247
+ nx.NetworkXNotImplemented, match="not implemented for directed type"
248
+ ):
249
+ nx.onion_layers(G)
250
+
251
+ def test_onion_multigraph(self):
252
+ G = nx.complete_graph(3)
253
+ G = nx.MultiGraph(G)
254
+ G.add_edge(1, 2)
255
+ with pytest.raises(
256
+ nx.NetworkXNotImplemented, match="not implemented for multigraph type"
257
+ ):
258
+ nx.onion_layers(G)
259
+
260
+ def test_onion_self_loop(self):
261
+ G = nx.cycle_graph(3)
262
+ G.add_edge(0, 0)
263
+ with pytest.raises(
264
+ nx.NetworkXNotImplemented, match="Input graph contains self loops"
265
+ ):
266
+ nx.onion_layers(G)
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_d_separation.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import combinations
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+
8
+ def path_graph():
9
+ """Return a path graph of length three."""
10
+ G = nx.path_graph(3, create_using=nx.DiGraph)
11
+ G.graph["name"] = "path"
12
+ nx.freeze(G)
13
+ return G
14
+
15
+
16
+ def fork_graph():
17
+ """Return a three node fork graph."""
18
+ G = nx.DiGraph(name="fork")
19
+ G.add_edges_from([(0, 1), (0, 2)])
20
+ nx.freeze(G)
21
+ return G
22
+
23
+
24
+ def collider_graph():
25
+ """Return a collider/v-structure graph with three nodes."""
26
+ G = nx.DiGraph(name="collider")
27
+ G.add_edges_from([(0, 2), (1, 2)])
28
+ nx.freeze(G)
29
+ return G
30
+
31
+
32
+ def naive_bayes_graph():
33
+ """Return a simply Naive Bayes PGM graph."""
34
+ G = nx.DiGraph(name="naive_bayes")
35
+ G.add_edges_from([(0, 1), (0, 2), (0, 3), (0, 4)])
36
+ nx.freeze(G)
37
+ return G
38
+
39
+
40
+ def asia_graph():
41
+ """Return the 'Asia' PGM graph."""
42
+ G = nx.DiGraph(name="asia")
43
+ G.add_edges_from(
44
+ [
45
+ ("asia", "tuberculosis"),
46
+ ("smoking", "cancer"),
47
+ ("smoking", "bronchitis"),
48
+ ("tuberculosis", "either"),
49
+ ("cancer", "either"),
50
+ ("either", "xray"),
51
+ ("either", "dyspnea"),
52
+ ("bronchitis", "dyspnea"),
53
+ ]
54
+ )
55
+ nx.freeze(G)
56
+ return G
57
+
58
+
59
+ @pytest.fixture(name="path_graph")
60
+ def path_graph_fixture():
61
+ return path_graph()
62
+
63
+
64
+ @pytest.fixture(name="fork_graph")
65
+ def fork_graph_fixture():
66
+ return fork_graph()
67
+
68
+
69
+ @pytest.fixture(name="collider_graph")
70
+ def collider_graph_fixture():
71
+ return collider_graph()
72
+
73
+
74
+ @pytest.fixture(name="naive_bayes_graph")
75
+ def naive_bayes_graph_fixture():
76
+ return naive_bayes_graph()
77
+
78
+
79
+ @pytest.fixture(name="asia_graph")
80
+ def asia_graph_fixture():
81
+ return asia_graph()
82
+
83
+
84
+ @pytest.fixture()
85
+ def large_collider_graph():
86
+ edge_list = [("A", "B"), ("C", "B"), ("B", "D"), ("D", "E"), ("B", "F"), ("G", "E")]
87
+ G = nx.DiGraph(edge_list)
88
+ return G
89
+
90
+
91
+ @pytest.fixture()
92
+ def chain_and_fork_graph():
93
+ edge_list = [("A", "B"), ("B", "C"), ("B", "D"), ("D", "C")]
94
+ G = nx.DiGraph(edge_list)
95
+ return G
96
+
97
+
98
+ @pytest.fixture()
99
+ def no_separating_set_graph():
100
+ edge_list = [("A", "B")]
101
+ G = nx.DiGraph(edge_list)
102
+ return G
103
+
104
+
105
+ @pytest.fixture()
106
+ def large_no_separating_set_graph():
107
+ edge_list = [("A", "B"), ("C", "A"), ("C", "B")]
108
+ G = nx.DiGraph(edge_list)
109
+ return G
110
+
111
+
112
+ @pytest.fixture()
113
+ def collider_trek_graph():
114
+ edge_list = [("A", "B"), ("C", "B"), ("C", "D")]
115
+ G = nx.DiGraph(edge_list)
116
+ return G
117
+
118
+
119
+ @pytest.mark.parametrize(
120
+ "graph",
121
+ [path_graph(), fork_graph(), collider_graph(), naive_bayes_graph(), asia_graph()],
122
+ )
123
+ def test_markov_condition(graph):
124
+ """Test that the Markov condition holds for each PGM graph."""
125
+ for node in graph.nodes:
126
+ parents = set(graph.predecessors(node))
127
+ non_descendants = graph.nodes - nx.descendants(graph, node) - {node} - parents
128
+ assert nx.is_d_separator(graph, {node}, non_descendants, parents)
129
+
130
+
131
+ def test_path_graph_dsep(path_graph):
132
+ """Example-based test of d-separation for path_graph."""
133
+ assert nx.is_d_separator(path_graph, {0}, {2}, {1})
134
+ assert not nx.is_d_separator(path_graph, {0}, {2}, set())
135
+
136
+
137
+ def test_fork_graph_dsep(fork_graph):
138
+ """Example-based test of d-separation for fork_graph."""
139
+ assert nx.is_d_separator(fork_graph, {1}, {2}, {0})
140
+ assert not nx.is_d_separator(fork_graph, {1}, {2}, set())
141
+
142
+
143
+ def test_collider_graph_dsep(collider_graph):
144
+ """Example-based test of d-separation for collider_graph."""
145
+ assert nx.is_d_separator(collider_graph, {0}, {1}, set())
146
+ assert not nx.is_d_separator(collider_graph, {0}, {1}, {2})
147
+
148
+
149
+ def test_naive_bayes_dsep(naive_bayes_graph):
150
+ """Example-based test of d-separation for naive_bayes_graph."""
151
+ for u, v in combinations(range(1, 5), 2):
152
+ assert nx.is_d_separator(naive_bayes_graph, {u}, {v}, {0})
153
+ assert not nx.is_d_separator(naive_bayes_graph, {u}, {v}, set())
154
+
155
+
156
+ def test_asia_graph_dsep(asia_graph):
157
+ """Example-based test of d-separation for asia_graph."""
158
+ assert nx.is_d_separator(
159
+ asia_graph, {"asia", "smoking"}, {"dyspnea", "xray"}, {"bronchitis", "either"}
160
+ )
161
+ assert nx.is_d_separator(
162
+ asia_graph, {"tuberculosis", "cancer"}, {"bronchitis"}, {"smoking", "xray"}
163
+ )
164
+
165
+
166
+ def test_undirected_graphs_are_not_supported():
167
+ """
168
+ Test that undirected graphs are not supported.
169
+
170
+ d-separation and its related algorithms do not apply in
171
+ the case of undirected graphs.
172
+ """
173
+ g = nx.path_graph(3, nx.Graph)
174
+ with pytest.raises(nx.NetworkXNotImplemented):
175
+ nx.is_d_separator(g, {0}, {1}, {2})
176
+ with pytest.raises(nx.NetworkXNotImplemented):
177
+ nx.is_minimal_d_separator(g, {0}, {1}, {2})
178
+ with pytest.raises(nx.NetworkXNotImplemented):
179
+ nx.find_minimal_d_separator(g, {0}, {1})
180
+
181
+
182
+ def test_cyclic_graphs_raise_error():
183
+ """
184
+ Test that cycle graphs should cause erroring.
185
+
186
+ This is because PGMs assume a directed acyclic graph.
187
+ """
188
+ g = nx.cycle_graph(3, nx.DiGraph)
189
+ with pytest.raises(nx.NetworkXError):
190
+ nx.is_d_separator(g, {0}, {1}, {2})
191
+ with pytest.raises(nx.NetworkXError):
192
+ nx.find_minimal_d_separator(g, {0}, {1})
193
+ with pytest.raises(nx.NetworkXError):
194
+ nx.is_minimal_d_separator(g, {0}, {1}, {2})
195
+
196
+
197
+ def test_invalid_nodes_raise_error(asia_graph):
198
+ """
199
+ Test that graphs that have invalid nodes passed in raise errors.
200
+ """
201
+ # Check both set and node arguments
202
+ with pytest.raises(nx.NodeNotFound):
203
+ nx.is_d_separator(asia_graph, {0}, {1}, {2})
204
+ with pytest.raises(nx.NodeNotFound):
205
+ nx.is_d_separator(asia_graph, 0, 1, 2)
206
+ with pytest.raises(nx.NodeNotFound):
207
+ nx.is_minimal_d_separator(asia_graph, {0}, {1}, {2})
208
+ with pytest.raises(nx.NodeNotFound):
209
+ nx.is_minimal_d_separator(asia_graph, 0, 1, 2)
210
+ with pytest.raises(nx.NodeNotFound):
211
+ nx.find_minimal_d_separator(asia_graph, {0}, {1})
212
+ with pytest.raises(nx.NodeNotFound):
213
+ nx.find_minimal_d_separator(asia_graph, 0, 1)
214
+
215
+
216
+ def test_nondisjoint_node_sets_raise_error(collider_graph):
217
+ """
218
+ Test that error is raised when node sets aren't disjoint.
219
+ """
220
+ with pytest.raises(nx.NetworkXError):
221
+ nx.is_d_separator(collider_graph, 0, 1, 0)
222
+ with pytest.raises(nx.NetworkXError):
223
+ nx.is_d_separator(collider_graph, 0, 2, 0)
224
+ with pytest.raises(nx.NetworkXError):
225
+ nx.is_d_separator(collider_graph, 0, 0, 1)
226
+ with pytest.raises(nx.NetworkXError):
227
+ nx.is_d_separator(collider_graph, 1, 0, 0)
228
+ with pytest.raises(nx.NetworkXError):
229
+ nx.find_minimal_d_separator(collider_graph, 0, 0)
230
+ with pytest.raises(nx.NetworkXError):
231
+ nx.find_minimal_d_separator(collider_graph, 0, 1, included=0)
232
+ with pytest.raises(nx.NetworkXError):
233
+ nx.find_minimal_d_separator(collider_graph, 1, 0, included=0)
234
+ with pytest.raises(nx.NetworkXError):
235
+ nx.is_minimal_d_separator(collider_graph, 0, 0, set())
236
+ with pytest.raises(nx.NetworkXError):
237
+ nx.is_minimal_d_separator(collider_graph, 0, 1, set(), included=0)
238
+ with pytest.raises(nx.NetworkXError):
239
+ nx.is_minimal_d_separator(collider_graph, 1, 0, set(), included=0)
240
+
241
+
242
+ def test_is_minimal_d_separator(
243
+ large_collider_graph,
244
+ chain_and_fork_graph,
245
+ no_separating_set_graph,
246
+ large_no_separating_set_graph,
247
+ collider_trek_graph,
248
+ ):
249
+ # Case 1:
250
+ # create a graph A -> B <- C
251
+ # B -> D -> E;
252
+ # B -> F;
253
+ # G -> E;
254
+ assert not nx.is_d_separator(large_collider_graph, {"B"}, {"E"}, set())
255
+
256
+ # minimal set of the corresponding graph
257
+ # for B and E should be (D,)
258
+ Zmin = nx.find_minimal_d_separator(large_collider_graph, "B", "E")
259
+ # check that the minimal d-separator is a d-separating set
260
+ assert nx.is_d_separator(large_collider_graph, "B", "E", Zmin)
261
+ # the minimal separating set should also pass the test for minimality
262
+ assert nx.is_minimal_d_separator(large_collider_graph, "B", "E", Zmin)
263
+ # function should also work with set arguments
264
+ assert nx.is_minimal_d_separator(large_collider_graph, {"A", "B"}, {"G", "E"}, Zmin)
265
+ assert Zmin == {"D"}
266
+
267
+ # Case 2:
268
+ # create a graph A -> B -> C
269
+ # B -> D -> C;
270
+ assert not nx.is_d_separator(chain_and_fork_graph, {"A"}, {"C"}, set())
271
+ Zmin = nx.find_minimal_d_separator(chain_and_fork_graph, "A", "C")
272
+
273
+ # the minimal separating set should pass the test for minimality
274
+ assert nx.is_minimal_d_separator(chain_and_fork_graph, "A", "C", Zmin)
275
+ assert Zmin == {"B"}
276
+ Znotmin = Zmin.union({"D"})
277
+ assert not nx.is_minimal_d_separator(chain_and_fork_graph, "A", "C", Znotmin)
278
+
279
+ # Case 3:
280
+ # create a graph A -> B
281
+
282
+ # there is no m-separating set between A and B at all, so
283
+ # no minimal m-separating set can exist
284
+ assert not nx.is_d_separator(no_separating_set_graph, {"A"}, {"B"}, set())
285
+ assert nx.find_minimal_d_separator(no_separating_set_graph, "A", "B") is None
286
+
287
+ # Case 4:
288
+ # create a graph A -> B with A <- C -> B
289
+
290
+ # there is no m-separating set between A and B at all, so
291
+ # no minimal m-separating set can exist
292
+ # however, the algorithm will initially propose C as a
293
+ # minimal (but invalid) separating set
294
+ assert not nx.is_d_separator(large_no_separating_set_graph, {"A"}, {"B"}, {"C"})
295
+ assert nx.find_minimal_d_separator(large_no_separating_set_graph, "A", "B") is None
296
+
297
+ # Test `included` and `excluded` args
298
+ # create graph A -> B <- C -> D
299
+ assert nx.find_minimal_d_separator(collider_trek_graph, "A", "D", included="B") == {
300
+ "B",
301
+ "C",
302
+ }
303
+ assert (
304
+ nx.find_minimal_d_separator(
305
+ collider_trek_graph, "A", "D", included="B", restricted="B"
306
+ )
307
+ is None
308
+ )
309
+
310
+
311
+ def test_is_minimal_d_separator_checks_dsep():
312
+ """Test that is_minimal_d_separator checks for d-separation as well."""
313
+ g = nx.DiGraph()
314
+ g.add_edges_from(
315
+ [
316
+ ("A", "B"),
317
+ ("A", "E"),
318
+ ("B", "C"),
319
+ ("B", "D"),
320
+ ("D", "C"),
321
+ ("D", "F"),
322
+ ("E", "D"),
323
+ ("E", "F"),
324
+ ]
325
+ )
326
+
327
+ assert not nx.is_d_separator(g, {"C"}, {"F"}, {"D"})
328
+
329
+ # since {'D'} and {} are not d-separators, we return false
330
+ assert not nx.is_minimal_d_separator(g, "C", "F", {"D"})
331
+ assert not nx.is_minimal_d_separator(g, "C", "F", set())
332
+
333
+
334
+ def test__reachable(large_collider_graph):
335
+ reachable = nx.algorithms.d_separation._reachable
336
+ g = large_collider_graph
337
+ x = {"F", "D"}
338
+ ancestors = {"A", "B", "C", "D", "F"}
339
+ assert reachable(g, x, ancestors, {"B"}) == {"B", "F", "D"}
340
+ assert reachable(g, x, ancestors, set()) == ancestors
341
+
342
+
343
+ def test_deprecations():
344
+ G = nx.DiGraph([(0, 1), (1, 2)])
345
+ with pytest.deprecated_call():
346
+ nx.d_separated(G, 0, 2, {1})
347
+ with pytest.deprecated_call():
348
+ z = nx.minimal_d_separator(G, 0, 2)
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_dag.py ADDED
@@ -0,0 +1,777 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import deque
2
+ from itertools import combinations, permutations
3
+
4
+ import pytest
5
+
6
+ import networkx as nx
7
+ from networkx.utils import edges_equal, pairwise
8
+
9
+
10
+ # Recipe from the itertools documentation.
11
+ def _consume(iterator):
12
+ "Consume the iterator entirely."
13
+ # Feed the entire iterator into a zero-length deque.
14
+ deque(iterator, maxlen=0)
15
+
16
+
17
+ class TestDagLongestPath:
18
+ """Unit tests computing the longest path in a directed acyclic graph."""
19
+
20
+ def test_empty(self):
21
+ G = nx.DiGraph()
22
+ assert nx.dag_longest_path(G) == []
23
+
24
+ def test_unweighted1(self):
25
+ edges = [(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (3, 7)]
26
+ G = nx.DiGraph(edges)
27
+ assert nx.dag_longest_path(G) == [1, 2, 3, 5, 6]
28
+
29
+ def test_unweighted2(self):
30
+ edges = [(1, 2), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)]
31
+ G = nx.DiGraph(edges)
32
+ assert nx.dag_longest_path(G) == [1, 2, 3, 4, 5]
33
+
34
+ def test_weighted(self):
35
+ G = nx.DiGraph()
36
+ edges = [(1, 2, -5), (2, 3, 1), (3, 4, 1), (4, 5, 0), (3, 5, 4), (1, 6, 2)]
37
+ G.add_weighted_edges_from(edges)
38
+ assert nx.dag_longest_path(G) == [2, 3, 5]
39
+
40
+ def test_undirected_not_implemented(self):
41
+ G = nx.Graph()
42
+ pytest.raises(nx.NetworkXNotImplemented, nx.dag_longest_path, G)
43
+
44
+ def test_unorderable_nodes(self):
45
+ """Tests that computing the longest path does not depend on
46
+ nodes being orderable.
47
+
48
+ For more information, see issue #1989.
49
+
50
+ """
51
+ # Create the directed path graph on four nodes in a diamond shape,
52
+ # with nodes represented as (unorderable) Python objects.
53
+ nodes = [object() for n in range(4)]
54
+ G = nx.DiGraph()
55
+ G.add_edge(nodes[0], nodes[1])
56
+ G.add_edge(nodes[0], nodes[2])
57
+ G.add_edge(nodes[2], nodes[3])
58
+ G.add_edge(nodes[1], nodes[3])
59
+
60
+ # this will raise NotImplementedError when nodes need to be ordered
61
+ nx.dag_longest_path(G)
62
+
63
+ def test_multigraph_unweighted(self):
64
+ edges = [(1, 2), (2, 3), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)]
65
+ G = nx.MultiDiGraph(edges)
66
+ assert nx.dag_longest_path(G) == [1, 2, 3, 4, 5]
67
+
68
+ def test_multigraph_weighted(self):
69
+ G = nx.MultiDiGraph()
70
+ edges = [
71
+ (1, 2, 2),
72
+ (2, 3, 2),
73
+ (1, 3, 1),
74
+ (1, 3, 5),
75
+ (1, 3, 2),
76
+ ]
77
+ G.add_weighted_edges_from(edges)
78
+ assert nx.dag_longest_path(G) == [1, 3]
79
+
80
+ def test_multigraph_weighted_default_weight(self):
81
+ G = nx.MultiDiGraph([(1, 2), (2, 3)]) # Unweighted edges
82
+ G.add_weighted_edges_from([(1, 3, 1), (1, 3, 5), (1, 3, 2)])
83
+
84
+ # Default value for default weight is 1
85
+ assert nx.dag_longest_path(G) == [1, 3]
86
+ assert nx.dag_longest_path(G, default_weight=3) == [1, 2, 3]
87
+
88
+
89
+ class TestDagLongestPathLength:
90
+ """Unit tests for computing the length of a longest path in a
91
+ directed acyclic graph.
92
+
93
+ """
94
+
95
+ def test_unweighted(self):
96
+ edges = [(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (5, 7)]
97
+ G = nx.DiGraph(edges)
98
+ assert nx.dag_longest_path_length(G) == 4
99
+
100
+ edges = [(1, 2), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)]
101
+ G = nx.DiGraph(edges)
102
+ assert nx.dag_longest_path_length(G) == 4
103
+
104
+ # test degenerate graphs
105
+ G = nx.DiGraph()
106
+ G.add_node(1)
107
+ assert nx.dag_longest_path_length(G) == 0
108
+
109
+ def test_undirected_not_implemented(self):
110
+ G = nx.Graph()
111
+ pytest.raises(nx.NetworkXNotImplemented, nx.dag_longest_path_length, G)
112
+
113
+ def test_weighted(self):
114
+ edges = [(1, 2, -5), (2, 3, 1), (3, 4, 1), (4, 5, 0), (3, 5, 4), (1, 6, 2)]
115
+ G = nx.DiGraph()
116
+ G.add_weighted_edges_from(edges)
117
+ assert nx.dag_longest_path_length(G) == 5
118
+
119
+ def test_multigraph_unweighted(self):
120
+ edges = [(1, 2), (2, 3), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)]
121
+ G = nx.MultiDiGraph(edges)
122
+ assert nx.dag_longest_path_length(G) == 4
123
+
124
+ def test_multigraph_weighted(self):
125
+ G = nx.MultiDiGraph()
126
+ edges = [
127
+ (1, 2, 2),
128
+ (2, 3, 2),
129
+ (1, 3, 1),
130
+ (1, 3, 5),
131
+ (1, 3, 2),
132
+ ]
133
+ G.add_weighted_edges_from(edges)
134
+ assert nx.dag_longest_path_length(G) == 5
135
+
136
+
137
+ class TestDAG:
138
+ @classmethod
139
+ def setup_class(cls):
140
+ pass
141
+
142
+ def test_topological_sort1(self):
143
+ DG = nx.DiGraph([(1, 2), (1, 3), (2, 3)])
144
+
145
+ for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]:
146
+ assert tuple(algorithm(DG)) == (1, 2, 3)
147
+
148
+ DG.add_edge(3, 2)
149
+
150
+ for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]:
151
+ pytest.raises(nx.NetworkXUnfeasible, _consume, algorithm(DG))
152
+
153
+ DG.remove_edge(2, 3)
154
+
155
+ for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]:
156
+ assert tuple(algorithm(DG)) == (1, 3, 2)
157
+
158
+ DG.remove_edge(3, 2)
159
+
160
+ assert tuple(nx.topological_sort(DG)) in {(1, 2, 3), (1, 3, 2)}
161
+ assert tuple(nx.lexicographical_topological_sort(DG)) == (1, 2, 3)
162
+
163
+ def test_is_directed_acyclic_graph(self):
164
+ G = nx.generators.complete_graph(2)
165
+ assert not nx.is_directed_acyclic_graph(G)
166
+ assert not nx.is_directed_acyclic_graph(G.to_directed())
167
+ assert not nx.is_directed_acyclic_graph(nx.Graph([(3, 4), (4, 5)]))
168
+ assert nx.is_directed_acyclic_graph(nx.DiGraph([(3, 4), (4, 5)]))
169
+
170
+ def test_topological_sort2(self):
171
+ DG = nx.DiGraph(
172
+ {
173
+ 1: [2],
174
+ 2: [3],
175
+ 3: [4],
176
+ 4: [5],
177
+ 5: [1],
178
+ 11: [12],
179
+ 12: [13],
180
+ 13: [14],
181
+ 14: [15],
182
+ }
183
+ )
184
+ pytest.raises(nx.NetworkXUnfeasible, _consume, nx.topological_sort(DG))
185
+
186
+ assert not nx.is_directed_acyclic_graph(DG)
187
+
188
+ DG.remove_edge(1, 2)
189
+ _consume(nx.topological_sort(DG))
190
+ assert nx.is_directed_acyclic_graph(DG)
191
+
192
+ def test_topological_sort3(self):
193
+ DG = nx.DiGraph()
194
+ DG.add_edges_from([(1, i) for i in range(2, 5)])
195
+ DG.add_edges_from([(2, i) for i in range(5, 9)])
196
+ DG.add_edges_from([(6, i) for i in range(9, 12)])
197
+ DG.add_edges_from([(4, i) for i in range(12, 15)])
198
+
199
+ def validate(order):
200
+ assert isinstance(order, list)
201
+ assert set(order) == set(DG)
202
+ for u, v in combinations(order, 2):
203
+ assert not nx.has_path(DG, v, u)
204
+
205
+ validate(list(nx.topological_sort(DG)))
206
+
207
+ DG.add_edge(14, 1)
208
+ pytest.raises(nx.NetworkXUnfeasible, _consume, nx.topological_sort(DG))
209
+
210
+ def test_topological_sort4(self):
211
+ G = nx.Graph()
212
+ G.add_edge(1, 2)
213
+ # Only directed graphs can be topologically sorted.
214
+ pytest.raises(nx.NetworkXError, _consume, nx.topological_sort(G))
215
+
216
+ def test_topological_sort5(self):
217
+ G = nx.DiGraph()
218
+ G.add_edge(0, 1)
219
+ assert list(nx.topological_sort(G)) == [0, 1]
220
+
221
+ def test_topological_sort6(self):
222
+ for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]:
223
+
224
+ def runtime_error():
225
+ DG = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
226
+ first = True
227
+ for x in algorithm(DG):
228
+ if first:
229
+ first = False
230
+ DG.add_edge(5 - x, 5)
231
+
232
+ def unfeasible_error():
233
+ DG = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
234
+ first = True
235
+ for x in algorithm(DG):
236
+ if first:
237
+ first = False
238
+ DG.remove_node(4)
239
+
240
+ def runtime_error2():
241
+ DG = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
242
+ first = True
243
+ for x in algorithm(DG):
244
+ if first:
245
+ first = False
246
+ DG.remove_node(2)
247
+
248
+ pytest.raises(RuntimeError, runtime_error)
249
+ pytest.raises(RuntimeError, runtime_error2)
250
+ pytest.raises(nx.NetworkXUnfeasible, unfeasible_error)
251
+
252
+ def test_all_topological_sorts_1(self):
253
+ DG = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 5)])
254
+ assert list(nx.all_topological_sorts(DG)) == [[1, 2, 3, 4, 5]]
255
+
256
+ def test_all_topological_sorts_2(self):
257
+ DG = nx.DiGraph([(1, 3), (2, 1), (2, 4), (4, 3), (4, 5)])
258
+ assert sorted(nx.all_topological_sorts(DG)) == [
259
+ [2, 1, 4, 3, 5],
260
+ [2, 1, 4, 5, 3],
261
+ [2, 4, 1, 3, 5],
262
+ [2, 4, 1, 5, 3],
263
+ [2, 4, 5, 1, 3],
264
+ ]
265
+
266
+ def test_all_topological_sorts_3(self):
267
+ def unfeasible():
268
+ DG = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 2), (4, 5)])
269
+ # convert to list to execute generator
270
+ list(nx.all_topological_sorts(DG))
271
+
272
+ def not_implemented():
273
+ G = nx.Graph([(1, 2), (2, 3)])
274
+ # convert to list to execute generator
275
+ list(nx.all_topological_sorts(G))
276
+
277
+ def not_implemented_2():
278
+ G = nx.MultiGraph([(1, 2), (1, 2), (2, 3)])
279
+ list(nx.all_topological_sorts(G))
280
+
281
+ pytest.raises(nx.NetworkXUnfeasible, unfeasible)
282
+ pytest.raises(nx.NetworkXNotImplemented, not_implemented)
283
+ pytest.raises(nx.NetworkXNotImplemented, not_implemented_2)
284
+
285
+ def test_all_topological_sorts_4(self):
286
+ DG = nx.DiGraph()
287
+ for i in range(7):
288
+ DG.add_node(i)
289
+ assert sorted(map(list, permutations(DG.nodes))) == sorted(
290
+ nx.all_topological_sorts(DG)
291
+ )
292
+
293
+ def test_all_topological_sorts_multigraph_1(self):
294
+ DG = nx.MultiDiGraph([(1, 2), (1, 2), (2, 3), (3, 4), (3, 5), (3, 5), (3, 5)])
295
+ assert sorted(nx.all_topological_sorts(DG)) == sorted(
296
+ [[1, 2, 3, 4, 5], [1, 2, 3, 5, 4]]
297
+ )
298
+
299
+ def test_all_topological_sorts_multigraph_2(self):
300
+ N = 9
301
+ edges = []
302
+ for i in range(1, N):
303
+ edges.extend([(i, i + 1)] * i)
304
+ DG = nx.MultiDiGraph(edges)
305
+ assert list(nx.all_topological_sorts(DG)) == [list(range(1, N + 1))]
306
+
307
+ def test_ancestors(self):
308
+ G = nx.DiGraph()
309
+ ancestors = nx.algorithms.dag.ancestors
310
+ G.add_edges_from([(1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)])
311
+ assert ancestors(G, 6) == {1, 2, 4, 5}
312
+ assert ancestors(G, 3) == {1, 4}
313
+ assert ancestors(G, 1) == set()
314
+ pytest.raises(nx.NetworkXError, ancestors, G, 8)
315
+
316
+ def test_descendants(self):
317
+ G = nx.DiGraph()
318
+ descendants = nx.algorithms.dag.descendants
319
+ G.add_edges_from([(1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)])
320
+ assert descendants(G, 1) == {2, 3, 6}
321
+ assert descendants(G, 4) == {2, 3, 5, 6}
322
+ assert descendants(G, 3) == set()
323
+ pytest.raises(nx.NetworkXError, descendants, G, 8)
324
+
325
+ def test_transitive_closure(self):
326
+ G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
327
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
328
+ assert edges_equal(nx.transitive_closure(G).edges(), solution)
329
+ G = nx.DiGraph([(1, 2), (2, 3), (2, 4)])
330
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)]
331
+ assert edges_equal(nx.transitive_closure(G).edges(), solution)
332
+ G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
333
+ solution = [(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)]
334
+ soln = sorted(solution + [(n, n) for n in G])
335
+ assert edges_equal(sorted(nx.transitive_closure(G).edges()), soln)
336
+
337
+ G = nx.Graph([(1, 2), (2, 3), (3, 4)])
338
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
339
+ assert edges_equal(sorted(nx.transitive_closure(G).edges()), solution)
340
+
341
+ G = nx.MultiGraph([(1, 2), (2, 3), (3, 4)])
342
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
343
+ assert edges_equal(sorted(nx.transitive_closure(G).edges()), solution)
344
+
345
+ G = nx.MultiDiGraph([(1, 2), (2, 3), (3, 4)])
346
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
347
+ assert edges_equal(sorted(nx.transitive_closure(G).edges()), solution)
348
+
349
+ # test if edge data is copied
350
+ G = nx.DiGraph([(1, 2, {"a": 3}), (2, 3, {"b": 0}), (3, 4)])
351
+ H = nx.transitive_closure(G)
352
+ for u, v in G.edges():
353
+ assert G.get_edge_data(u, v) == H.get_edge_data(u, v)
354
+
355
+ k = 10
356
+ G = nx.DiGraph((i, i + 1, {"f": "b", "weight": i}) for i in range(k))
357
+ H = nx.transitive_closure(G)
358
+ for u, v in G.edges():
359
+ assert G.get_edge_data(u, v) == H.get_edge_data(u, v)
360
+
361
+ G = nx.Graph()
362
+ with pytest.raises(nx.NetworkXError):
363
+ nx.transitive_closure(G, reflexive="wrong input")
364
+
365
+ def test_reflexive_transitive_closure(self):
366
+ G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
367
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
368
+ soln = sorted(solution + [(n, n) for n in G])
369
+ assert edges_equal(nx.transitive_closure(G).edges(), solution)
370
+ assert edges_equal(nx.transitive_closure(G, False).edges(), solution)
371
+ assert edges_equal(nx.transitive_closure(G, True).edges(), soln)
372
+ assert edges_equal(nx.transitive_closure(G, None).edges(), solution)
373
+
374
+ G = nx.DiGraph([(1, 2), (2, 3), (2, 4)])
375
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)]
376
+ soln = sorted(solution + [(n, n) for n in G])
377
+ assert edges_equal(nx.transitive_closure(G).edges(), solution)
378
+ assert edges_equal(nx.transitive_closure(G, False).edges(), solution)
379
+ assert edges_equal(nx.transitive_closure(G, True).edges(), soln)
380
+ assert edges_equal(nx.transitive_closure(G, None).edges(), solution)
381
+
382
+ G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
383
+ solution = sorted([(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)])
384
+ soln = sorted(solution + [(n, n) for n in G])
385
+ assert edges_equal(sorted(nx.transitive_closure(G).edges()), soln)
386
+ assert edges_equal(sorted(nx.transitive_closure(G, False).edges()), soln)
387
+ assert edges_equal(sorted(nx.transitive_closure(G, None).edges()), solution)
388
+ assert edges_equal(sorted(nx.transitive_closure(G, True).edges()), soln)
389
+
390
+ G = nx.Graph([(1, 2), (2, 3), (3, 4)])
391
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
392
+ soln = sorted(solution + [(n, n) for n in G])
393
+ assert edges_equal(nx.transitive_closure(G).edges(), solution)
394
+ assert edges_equal(nx.transitive_closure(G, False).edges(), solution)
395
+ assert edges_equal(nx.transitive_closure(G, True).edges(), soln)
396
+ assert edges_equal(nx.transitive_closure(G, None).edges(), solution)
397
+
398
+ G = nx.MultiGraph([(1, 2), (2, 3), (3, 4)])
399
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
400
+ soln = sorted(solution + [(n, n) for n in G])
401
+ assert edges_equal(nx.transitive_closure(G).edges(), solution)
402
+ assert edges_equal(nx.transitive_closure(G, False).edges(), solution)
403
+ assert edges_equal(nx.transitive_closure(G, True).edges(), soln)
404
+ assert edges_equal(nx.transitive_closure(G, None).edges(), solution)
405
+
406
+ G = nx.MultiDiGraph([(1, 2), (2, 3), (3, 4)])
407
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
408
+ soln = sorted(solution + [(n, n) for n in G])
409
+ assert edges_equal(nx.transitive_closure(G).edges(), solution)
410
+ assert edges_equal(nx.transitive_closure(G, False).edges(), solution)
411
+ assert edges_equal(nx.transitive_closure(G, True).edges(), soln)
412
+ assert edges_equal(nx.transitive_closure(G, None).edges(), solution)
413
+
414
+ def test_transitive_closure_dag(self):
415
+ G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
416
+ transitive_closure = nx.algorithms.dag.transitive_closure_dag
417
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
418
+ assert edges_equal(transitive_closure(G).edges(), solution)
419
+ G = nx.DiGraph([(1, 2), (2, 3), (2, 4)])
420
+ solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)]
421
+ assert edges_equal(transitive_closure(G).edges(), solution)
422
+ G = nx.Graph([(1, 2), (2, 3), (3, 4)])
423
+ pytest.raises(nx.NetworkXNotImplemented, transitive_closure, G)
424
+
425
+ # test if edge data is copied
426
+ G = nx.DiGraph([(1, 2, {"a": 3}), (2, 3, {"b": 0}), (3, 4)])
427
+ H = transitive_closure(G)
428
+ for u, v in G.edges():
429
+ assert G.get_edge_data(u, v) == H.get_edge_data(u, v)
430
+
431
+ k = 10
432
+ G = nx.DiGraph((i, i + 1, {"foo": "bar", "weight": i}) for i in range(k))
433
+ H = transitive_closure(G)
434
+ for u, v in G.edges():
435
+ assert G.get_edge_data(u, v) == H.get_edge_data(u, v)
436
+
437
+ def test_transitive_reduction(self):
438
+ G = nx.DiGraph([(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)])
439
+ transitive_reduction = nx.algorithms.dag.transitive_reduction
440
+ solution = [(1, 2), (2, 3), (3, 4)]
441
+ assert edges_equal(transitive_reduction(G).edges(), solution)
442
+ G = nx.DiGraph([(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)])
443
+ transitive_reduction = nx.algorithms.dag.transitive_reduction
444
+ solution = [(1, 2), (2, 3), (2, 4)]
445
+ assert edges_equal(transitive_reduction(G).edges(), solution)
446
+ G = nx.Graph([(1, 2), (2, 3), (3, 4)])
447
+ pytest.raises(nx.NetworkXNotImplemented, transitive_reduction, G)
448
+
449
+ def _check_antichains(self, solution, result):
450
+ sol = [frozenset(a) for a in solution]
451
+ res = [frozenset(a) for a in result]
452
+ assert set(sol) == set(res)
453
+
454
+ def test_antichains(self):
455
+ antichains = nx.algorithms.dag.antichains
456
+ G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
457
+ solution = [[], [4], [3], [2], [1]]
458
+ self._check_antichains(list(antichains(G)), solution)
459
+ G = nx.DiGraph([(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (5, 7)])
460
+ solution = [
461
+ [],
462
+ [4],
463
+ [7],
464
+ [7, 4],
465
+ [6],
466
+ [6, 4],
467
+ [6, 7],
468
+ [6, 7, 4],
469
+ [5],
470
+ [5, 4],
471
+ [3],
472
+ [3, 4],
473
+ [2],
474
+ [1],
475
+ ]
476
+ self._check_antichains(list(antichains(G)), solution)
477
+ G = nx.DiGraph([(1, 2), (1, 3), (3, 4), (3, 5), (5, 6)])
478
+ solution = [
479
+ [],
480
+ [6],
481
+ [5],
482
+ [4],
483
+ [4, 6],
484
+ [4, 5],
485
+ [3],
486
+ [2],
487
+ [2, 6],
488
+ [2, 5],
489
+ [2, 4],
490
+ [2, 4, 6],
491
+ [2, 4, 5],
492
+ [2, 3],
493
+ [1],
494
+ ]
495
+ self._check_antichains(list(antichains(G)), solution)
496
+ G = nx.DiGraph({0: [1, 2], 1: [4], 2: [3], 3: [4]})
497
+ solution = [[], [4], [3], [2], [1], [1, 3], [1, 2], [0]]
498
+ self._check_antichains(list(antichains(G)), solution)
499
+ G = nx.DiGraph()
500
+ self._check_antichains(list(antichains(G)), [[]])
501
+ G = nx.DiGraph()
502
+ G.add_nodes_from([0, 1, 2])
503
+ solution = [[], [0], [1], [1, 0], [2], [2, 0], [2, 1], [2, 1, 0]]
504
+ self._check_antichains(list(antichains(G)), solution)
505
+
506
+ def f(x):
507
+ return list(antichains(x))
508
+
509
+ G = nx.Graph([(1, 2), (2, 3), (3, 4)])
510
+ pytest.raises(nx.NetworkXNotImplemented, f, G)
511
+ G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
512
+ pytest.raises(nx.NetworkXUnfeasible, f, G)
513
+
514
+ def test_lexicographical_topological_sort(self):
515
+ G = nx.DiGraph([(1, 2), (2, 3), (1, 4), (1, 5), (2, 6)])
516
+ assert list(nx.lexicographical_topological_sort(G)) == [1, 2, 3, 4, 5, 6]
517
+ assert list(nx.lexicographical_topological_sort(G, key=lambda x: x)) == [
518
+ 1,
519
+ 2,
520
+ 3,
521
+ 4,
522
+ 5,
523
+ 6,
524
+ ]
525
+ assert list(nx.lexicographical_topological_sort(G, key=lambda x: -x)) == [
526
+ 1,
527
+ 5,
528
+ 4,
529
+ 2,
530
+ 6,
531
+ 3,
532
+ ]
533
+
534
+ def test_lexicographical_topological_sort2(self):
535
+ """
536
+ Check the case of two or more nodes with same key value.
537
+ Want to avoid exception raised due to comparing nodes directly.
538
+ See Issue #3493
539
+ """
540
+
541
+ class Test_Node:
542
+ def __init__(self, n):
543
+ self.label = n
544
+ self.priority = 1
545
+
546
+ def __repr__(self):
547
+ return f"Node({self.label})"
548
+
549
+ def sorting_key(node):
550
+ return node.priority
551
+
552
+ test_nodes = [Test_Node(n) for n in range(4)]
553
+ G = nx.DiGraph()
554
+ edges = [(0, 1), (0, 2), (0, 3), (2, 3)]
555
+ G.add_edges_from((test_nodes[a], test_nodes[b]) for a, b in edges)
556
+
557
+ sorting = list(nx.lexicographical_topological_sort(G, key=sorting_key))
558
+ assert sorting == test_nodes
559
+
560
+
561
+ def test_topological_generations():
562
+ G = nx.DiGraph(
563
+ {1: [2, 3], 2: [4, 5], 3: [7], 4: [], 5: [6, 7], 6: [], 7: []}
564
+ ).reverse()
565
+ # order within each generation is inconsequential
566
+ generations = [sorted(gen) for gen in nx.topological_generations(G)]
567
+ expected = [[4, 6, 7], [3, 5], [2], [1]]
568
+ assert generations == expected
569
+
570
+ MG = nx.MultiDiGraph(G.edges)
571
+ MG.add_edge(2, 1)
572
+ generations = [sorted(gen) for gen in nx.topological_generations(MG)]
573
+ assert generations == expected
574
+
575
+
576
+ def test_topological_generations_empty():
577
+ G = nx.DiGraph()
578
+ assert list(nx.topological_generations(G)) == []
579
+
580
+
581
+ def test_topological_generations_cycle():
582
+ G = nx.DiGraph([[2, 1], [3, 1], [1, 2]])
583
+ with pytest.raises(nx.NetworkXUnfeasible):
584
+ list(nx.topological_generations(G))
585
+
586
+
587
+ def test_is_aperiodic_cycle():
588
+ G = nx.DiGraph()
589
+ nx.add_cycle(G, [1, 2, 3, 4])
590
+ assert not nx.is_aperiodic(G)
591
+
592
+
593
+ def test_is_aperiodic_cycle2():
594
+ G = nx.DiGraph()
595
+ nx.add_cycle(G, [1, 2, 3, 4])
596
+ nx.add_cycle(G, [3, 4, 5, 6, 7])
597
+ assert nx.is_aperiodic(G)
598
+
599
+
600
+ def test_is_aperiodic_cycle3():
601
+ G = nx.DiGraph()
602
+ nx.add_cycle(G, [1, 2, 3, 4])
603
+ nx.add_cycle(G, [3, 4, 5, 6])
604
+ assert not nx.is_aperiodic(G)
605
+
606
+
607
+ def test_is_aperiodic_cycle4():
608
+ G = nx.DiGraph()
609
+ nx.add_cycle(G, [1, 2, 3, 4])
610
+ G.add_edge(1, 3)
611
+ assert nx.is_aperiodic(G)
612
+
613
+
614
+ def test_is_aperiodic_selfloop():
615
+ G = nx.DiGraph()
616
+ nx.add_cycle(G, [1, 2, 3, 4])
617
+ G.add_edge(1, 1)
618
+ assert nx.is_aperiodic(G)
619
+
620
+
621
+ def test_is_aperiodic_undirected_raises():
622
+ G = nx.Graph()
623
+ pytest.raises(nx.NetworkXError, nx.is_aperiodic, G)
624
+
625
+
626
+ def test_is_aperiodic_empty_graph():
627
+ G = nx.empty_graph(create_using=nx.DiGraph)
628
+ with pytest.raises(nx.NetworkXPointlessConcept, match="Graph has no nodes."):
629
+ nx.is_aperiodic(G)
630
+
631
+
632
+ def test_is_aperiodic_bipartite():
633
+ # Bipartite graph
634
+ G = nx.DiGraph(nx.davis_southern_women_graph())
635
+ assert not nx.is_aperiodic(G)
636
+
637
+
638
+ def test_is_aperiodic_rary_tree():
639
+ G = nx.full_rary_tree(3, 27, create_using=nx.DiGraph())
640
+ assert not nx.is_aperiodic(G)
641
+
642
+
643
+ def test_is_aperiodic_disconnected():
644
+ # disconnected graph
645
+ G = nx.DiGraph()
646
+ nx.add_cycle(G, [1, 2, 3, 4])
647
+ nx.add_cycle(G, [5, 6, 7, 8])
648
+ assert not nx.is_aperiodic(G)
649
+ G.add_edge(1, 3)
650
+ G.add_edge(5, 7)
651
+ assert nx.is_aperiodic(G)
652
+
653
+
654
+ def test_is_aperiodic_disconnected2():
655
+ G = nx.DiGraph()
656
+ nx.add_cycle(G, [0, 1, 2])
657
+ G.add_edge(3, 3)
658
+ assert not nx.is_aperiodic(G)
659
+
660
+
661
+ class TestDagToBranching:
662
+ """Unit tests for the :func:`networkx.dag_to_branching` function."""
663
+
664
+ def test_single_root(self):
665
+ """Tests that a directed acyclic graph with a single degree
666
+ zero node produces an arborescence.
667
+
668
+ """
669
+ G = nx.DiGraph([(0, 1), (0, 2), (1, 3), (2, 3)])
670
+ B = nx.dag_to_branching(G)
671
+ expected = nx.DiGraph([(0, 1), (1, 3), (0, 2), (2, 4)])
672
+ assert nx.is_arborescence(B)
673
+ assert nx.is_isomorphic(B, expected)
674
+
675
+ def test_multiple_roots(self):
676
+ """Tests that a directed acyclic graph with multiple degree zero
677
+ nodes creates an arborescence with multiple (weakly) connected
678
+ components.
679
+
680
+ """
681
+ G = nx.DiGraph([(0, 1), (0, 2), (1, 3), (2, 3), (5, 2)])
682
+ B = nx.dag_to_branching(G)
683
+ expected = nx.DiGraph([(0, 1), (1, 3), (0, 2), (2, 4), (5, 6), (6, 7)])
684
+ assert nx.is_branching(B)
685
+ assert not nx.is_arborescence(B)
686
+ assert nx.is_isomorphic(B, expected)
687
+
688
+ # # Attributes are not copied by this function. If they were, this would
689
+ # # be a good test to uncomment.
690
+ # def test_copy_attributes(self):
691
+ # """Tests that node attributes are copied in the branching."""
692
+ # G = nx.DiGraph([(0, 1), (0, 2), (1, 3), (2, 3)])
693
+ # for v in G:
694
+ # G.node[v]['label'] = str(v)
695
+ # B = nx.dag_to_branching(G)
696
+ # # Determine the root node of the branching.
697
+ # root = next(v for v, d in B.in_degree() if d == 0)
698
+ # assert_equal(B.node[root]['label'], '0')
699
+ # children = B[root]
700
+ # # Get the left and right children, nodes 1 and 2, respectively.
701
+ # left, right = sorted(children, key=lambda v: B.node[v]['label'])
702
+ # assert_equal(B.node[left]['label'], '1')
703
+ # assert_equal(B.node[right]['label'], '2')
704
+ # # Get the left grandchild.
705
+ # children = B[left]
706
+ # assert_equal(len(children), 1)
707
+ # left_grandchild = arbitrary_element(children)
708
+ # assert_equal(B.node[left_grandchild]['label'], '3')
709
+ # # Get the right grandchild.
710
+ # children = B[right]
711
+ # assert_equal(len(children), 1)
712
+ # right_grandchild = arbitrary_element(children)
713
+ # assert_equal(B.node[right_grandchild]['label'], '3')
714
+
715
+ def test_already_arborescence(self):
716
+ """Tests that a directed acyclic graph that is already an
717
+ arborescence produces an isomorphic arborescence as output.
718
+
719
+ """
720
+ A = nx.balanced_tree(2, 2, create_using=nx.DiGraph())
721
+ B = nx.dag_to_branching(A)
722
+ assert nx.is_isomorphic(A, B)
723
+
724
+ def test_already_branching(self):
725
+ """Tests that a directed acyclic graph that is already a
726
+ branching produces an isomorphic branching as output.
727
+
728
+ """
729
+ T1 = nx.balanced_tree(2, 2, create_using=nx.DiGraph())
730
+ T2 = nx.balanced_tree(2, 2, create_using=nx.DiGraph())
731
+ G = nx.disjoint_union(T1, T2)
732
+ B = nx.dag_to_branching(G)
733
+ assert nx.is_isomorphic(G, B)
734
+
735
+ def test_not_acyclic(self):
736
+ """Tests that a non-acyclic graph causes an exception."""
737
+ with pytest.raises(nx.HasACycle):
738
+ G = nx.DiGraph(pairwise("abc", cyclic=True))
739
+ nx.dag_to_branching(G)
740
+
741
+ def test_undirected(self):
742
+ with pytest.raises(nx.NetworkXNotImplemented):
743
+ nx.dag_to_branching(nx.Graph())
744
+
745
+ def test_multigraph(self):
746
+ with pytest.raises(nx.NetworkXNotImplemented):
747
+ nx.dag_to_branching(nx.MultiGraph())
748
+
749
+ def test_multidigraph(self):
750
+ with pytest.raises(nx.NetworkXNotImplemented):
751
+ nx.dag_to_branching(nx.MultiDiGraph())
752
+
753
+
754
+ def test_ancestors_descendants_undirected():
755
+ """Regression test to ensure ancestors and descendants work as expected on
756
+ undirected graphs."""
757
+ G = nx.path_graph(5)
758
+ nx.ancestors(G, 2) == nx.descendants(G, 2) == {0, 1, 3, 4}
759
+
760
+
761
+ def test_compute_v_structures_raise():
762
+ G = nx.Graph()
763
+ pytest.raises(nx.NetworkXNotImplemented, nx.compute_v_structures, G)
764
+
765
+
766
+ def test_compute_v_structures():
767
+ edges = [(0, 1), (0, 2), (3, 2)]
768
+ G = nx.DiGraph(edges)
769
+
770
+ v_structs = set(nx.compute_v_structures(G))
771
+ assert len(v_structs) == 1
772
+ assert (0, 2, 3) in v_structs
773
+
774
+ edges = [("A", "B"), ("C", "B"), ("B", "D"), ("D", "E"), ("G", "E")]
775
+ G = nx.DiGraph(edges)
776
+ v_structs = set(nx.compute_v_structures(G))
777
+ assert len(v_structs) == 2
llmeval-env/lib/python3.10/site-packages/networkx/algorithms/tests/test_distance_measures.py ADDED
@@ -0,0 +1,756 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from random import Random
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+ from networkx import convert_node_labels_to_integers as cnlti
7
+ from networkx.algorithms.distance_measures import _extrema_bounding
8
+
9
+
10
+ def test__extrema_bounding_invalid_compute_kwarg():
11
+ G = nx.path_graph(3)
12
+ with pytest.raises(ValueError, match="compute must be one of"):
13
+ _extrema_bounding(G, compute="spam")
14
+
15
+
16
+ class TestDistance:
17
+ def setup_method(self):
18
+ G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted")
19
+ self.G = G
20
+
21
+ def test_eccentricity(self):
22
+ assert nx.eccentricity(self.G, 1) == 6
23
+ e = nx.eccentricity(self.G)
24
+ assert e[1] == 6
25
+
26
+ sp = dict(nx.shortest_path_length(self.G))
27
+ e = nx.eccentricity(self.G, sp=sp)
28
+ assert e[1] == 6
29
+
30
+ e = nx.eccentricity(self.G, v=1)
31
+ assert e == 6
32
+
33
+ # This behavior changed in version 1.8 (ticket #739)
34
+ e = nx.eccentricity(self.G, v=[1, 1])
35
+ assert e[1] == 6
36
+ e = nx.eccentricity(self.G, v=[1, 2])
37
+ assert e[1] == 6
38
+
39
+ # test against graph with one node
40
+ G = nx.path_graph(1)
41
+ e = nx.eccentricity(G)
42
+ assert e[0] == 0
43
+ e = nx.eccentricity(G, v=0)
44
+ assert e == 0
45
+ pytest.raises(nx.NetworkXError, nx.eccentricity, G, 1)
46
+
47
+ # test against empty graph
48
+ G = nx.empty_graph()
49
+ e = nx.eccentricity(G)
50
+ assert e == {}
51
+
52
+ def test_diameter(self):
53
+ assert nx.diameter(self.G) == 6
54
+
55
+ def test_radius(self):
56
+ assert nx.radius(self.G) == 4
57
+
58
+ def test_periphery(self):
59
+ assert set(nx.periphery(self.G)) == {1, 4, 13, 16}
60
+
61
+ def test_center(self):
62
+ assert set(nx.center(self.G)) == {6, 7, 10, 11}
63
+
64
+ def test_bound_diameter(self):
65
+ assert nx.diameter(self.G, usebounds=True) == 6
66
+
67
+ def test_bound_radius(self):
68
+ assert nx.radius(self.G, usebounds=True) == 4
69
+
70
+ def test_bound_periphery(self):
71
+ result = {1, 4, 13, 16}
72
+ assert set(nx.periphery(self.G, usebounds=True)) == result
73
+
74
+ def test_bound_center(self):
75
+ result = {6, 7, 10, 11}
76
+ assert set(nx.center(self.G, usebounds=True)) == result
77
+
78
+ def test_radius_exception(self):
79
+ G = nx.Graph()
80
+ G.add_edge(1, 2)
81
+ G.add_edge(3, 4)
82
+ pytest.raises(nx.NetworkXError, nx.diameter, G)
83
+
84
+ def test_eccentricity_infinite(self):
85
+ with pytest.raises(nx.NetworkXError):
86
+ G = nx.Graph([(1, 2), (3, 4)])
87
+ e = nx.eccentricity(G)
88
+
89
+ def test_eccentricity_undirected_not_connected(self):
90
+ with pytest.raises(nx.NetworkXError):
91
+ G = nx.Graph([(1, 2), (3, 4)])
92
+ e = nx.eccentricity(G, sp=1)
93
+
94
+ def test_eccentricity_directed_weakly_connected(self):
95
+ with pytest.raises(nx.NetworkXError):
96
+ DG = nx.DiGraph([(1, 2), (1, 3)])
97
+ nx.eccentricity(DG)
98
+
99
+
100
+ class TestWeightedDistance:
101
+ def setup_method(self):
102
+ G = nx.Graph()
103
+ G.add_edge(0, 1, weight=0.6, cost=0.6, high_cost=6)
104
+ G.add_edge(0, 2, weight=0.2, cost=0.2, high_cost=2)
105
+ G.add_edge(2, 3, weight=0.1, cost=0.1, high_cost=1)
106
+ G.add_edge(2, 4, weight=0.7, cost=0.7, high_cost=7)
107
+ G.add_edge(2, 5, weight=0.9, cost=0.9, high_cost=9)
108
+ G.add_edge(1, 5, weight=0.3, cost=0.3, high_cost=3)
109
+ self.G = G
110
+ self.weight_fn = lambda v, u, e: 2
111
+
112
+ def test_eccentricity_weight_None(self):
113
+ assert nx.eccentricity(self.G, 1, weight=None) == 3
114
+ e = nx.eccentricity(self.G, weight=None)
115
+ assert e[1] == 3
116
+
117
+ e = nx.eccentricity(self.G, v=1, weight=None)
118
+ assert e == 3
119
+
120
+ # This behavior changed in version 1.8 (ticket #739)
121
+ e = nx.eccentricity(self.G, v=[1, 1], weight=None)
122
+ assert e[1] == 3
123
+ e = nx.eccentricity(self.G, v=[1, 2], weight=None)
124
+ assert e[1] == 3
125
+
126
+ def test_eccentricity_weight_attr(self):
127
+ assert nx.eccentricity(self.G, 1, weight="weight") == 1.5
128
+ e = nx.eccentricity(self.G, weight="weight")
129
+ assert (
130
+ e
131
+ == nx.eccentricity(self.G, weight="cost")
132
+ != nx.eccentricity(self.G, weight="high_cost")
133
+ )
134
+ assert e[1] == 1.5
135
+
136
+ e = nx.eccentricity(self.G, v=1, weight="weight")
137
+ assert e == 1.5
138
+
139
+ # This behavior changed in version 1.8 (ticket #739)
140
+ e = nx.eccentricity(self.G, v=[1, 1], weight="weight")
141
+ assert e[1] == 1.5
142
+ e = nx.eccentricity(self.G, v=[1, 2], weight="weight")
143
+ assert e[1] == 1.5
144
+
145
+ def test_eccentricity_weight_fn(self):
146
+ assert nx.eccentricity(self.G, 1, weight=self.weight_fn) == 6
147
+ e = nx.eccentricity(self.G, weight=self.weight_fn)
148
+ assert e[1] == 6
149
+
150
+ e = nx.eccentricity(self.G, v=1, weight=self.weight_fn)
151
+ assert e == 6
152
+
153
+ # This behavior changed in version 1.8 (ticket #739)
154
+ e = nx.eccentricity(self.G, v=[1, 1], weight=self.weight_fn)
155
+ assert e[1] == 6
156
+ e = nx.eccentricity(self.G, v=[1, 2], weight=self.weight_fn)
157
+ assert e[1] == 6
158
+
159
+ def test_diameter_weight_None(self):
160
+ assert nx.diameter(self.G, weight=None) == 3
161
+
162
+ def test_diameter_weight_attr(self):
163
+ assert (
164
+ nx.diameter(self.G, weight="weight")
165
+ == nx.diameter(self.G, weight="cost")
166
+ == 1.6
167
+ != nx.diameter(self.G, weight="high_cost")
168
+ )
169
+
170
+ def test_diameter_weight_fn(self):
171
+ assert nx.diameter(self.G, weight=self.weight_fn) == 6
172
+
173
+ def test_radius_weight_None(self):
174
+ assert pytest.approx(nx.radius(self.G, weight=None)) == 2
175
+
176
+ def test_radius_weight_attr(self):
177
+ assert (
178
+ pytest.approx(nx.radius(self.G, weight="weight"))
179
+ == pytest.approx(nx.radius(self.G, weight="cost"))
180
+ == 0.9
181
+ != nx.radius(self.G, weight="high_cost")
182
+ )
183
+
184
+ def test_radius_weight_fn(self):
185
+ assert nx.radius(self.G, weight=self.weight_fn) == 4
186
+
187
+ def test_periphery_weight_None(self):
188
+ for v in set(nx.periphery(self.G, weight=None)):
189
+ assert nx.eccentricity(self.G, v, weight=None) == nx.diameter(
190
+ self.G, weight=None
191
+ )
192
+
193
+ def test_periphery_weight_attr(self):
194
+ periphery = set(nx.periphery(self.G, weight="weight"))
195
+ assert (
196
+ periphery
197
+ == set(nx.periphery(self.G, weight="cost"))
198
+ == set(nx.periphery(self.G, weight="high_cost"))
199
+ )
200
+ for v in periphery:
201
+ assert (
202
+ nx.eccentricity(self.G, v, weight="high_cost")
203
+ != nx.eccentricity(self.G, v, weight="weight")
204
+ == nx.eccentricity(self.G, v, weight="cost")
205
+ == nx.diameter(self.G, weight="weight")
206
+ == nx.diameter(self.G, weight="cost")
207
+ != nx.diameter(self.G, weight="high_cost")
208
+ )
209
+ assert nx.eccentricity(self.G, v, weight="high_cost") == nx.diameter(
210
+ self.G, weight="high_cost"
211
+ )
212
+
213
+ def test_periphery_weight_fn(self):
214
+ for v in set(nx.periphery(self.G, weight=self.weight_fn)):
215
+ assert nx.eccentricity(self.G, v, weight=self.weight_fn) == nx.diameter(
216
+ self.G, weight=self.weight_fn
217
+ )
218
+
219
+ def test_center_weight_None(self):
220
+ for v in set(nx.center(self.G, weight=None)):
221
+ assert pytest.approx(nx.eccentricity(self.G, v, weight=None)) == nx.radius(
222
+ self.G, weight=None
223
+ )
224
+
225
+ def test_center_weight_attr(self):
226
+ center = set(nx.center(self.G, weight="weight"))
227
+ assert (
228
+ center
229
+ == set(nx.center(self.G, weight="cost"))
230
+ != set(nx.center(self.G, weight="high_cost"))
231
+ )
232
+ for v in center:
233
+ assert (
234
+ nx.eccentricity(self.G, v, weight="high_cost")
235
+ != pytest.approx(nx.eccentricity(self.G, v, weight="weight"))
236
+ == pytest.approx(nx.eccentricity(self.G, v, weight="cost"))
237
+ == nx.radius(self.G, weight="weight")
238
+ == nx.radius(self.G, weight="cost")
239
+ != nx.radius(self.G, weight="high_cost")
240
+ )
241
+ assert nx.eccentricity(self.G, v, weight="high_cost") == nx.radius(
242
+ self.G, weight="high_cost"
243
+ )
244
+
245
+ def test_center_weight_fn(self):
246
+ for v in set(nx.center(self.G, weight=self.weight_fn)):
247
+ assert nx.eccentricity(self.G, v, weight=self.weight_fn) == nx.radius(
248
+ self.G, weight=self.weight_fn
249
+ )
250
+
251
+ def test_bound_diameter_weight_None(self):
252
+ assert nx.diameter(self.G, usebounds=True, weight=None) == 3
253
+
254
+ def test_bound_diameter_weight_attr(self):
255
+ assert (
256
+ nx.diameter(self.G, usebounds=True, weight="high_cost")
257
+ != nx.diameter(self.G, usebounds=True, weight="weight")
258
+ == nx.diameter(self.G, usebounds=True, weight="cost")
259
+ == 1.6
260
+ != nx.diameter(self.G, usebounds=True, weight="high_cost")
261
+ )
262
+ assert nx.diameter(self.G, usebounds=True, weight="high_cost") == nx.diameter(
263
+ self.G, usebounds=True, weight="high_cost"
264
+ )
265
+
266
+ def test_bound_diameter_weight_fn(self):
267
+ assert nx.diameter(self.G, usebounds=True, weight=self.weight_fn) == 6
268
+
269
+ def test_bound_radius_weight_None(self):
270
+ assert pytest.approx(nx.radius(self.G, usebounds=True, weight=None)) == 2
271
+
272
+ def test_bound_radius_weight_attr(self):
273
+ assert (
274
+ nx.radius(self.G, usebounds=True, weight="high_cost")
275
+ != pytest.approx(nx.radius(self.G, usebounds=True, weight="weight"))
276
+ == pytest.approx(nx.radius(self.G, usebounds=True, weight="cost"))
277
+ == 0.9
278
+ != nx.radius(self.G, usebounds=True, weight="high_cost")
279
+ )
280
+ assert nx.radius(self.G, usebounds=True, weight="high_cost") == nx.radius(
281
+ self.G, usebounds=True, weight="high_cost"
282
+ )
283
+
284
+ def test_bound_radius_weight_fn(self):
285
+ assert nx.radius(self.G, usebounds=True, weight=self.weight_fn) == 4
286
+
287
+ def test_bound_periphery_weight_None(self):
288
+ result = {1, 3, 4}
289
+ assert set(nx.periphery(self.G, usebounds=True, weight=None)) == result
290
+
291
+ def test_bound_periphery_weight_attr(self):
292
+ result = {4, 5}
293
+ assert (
294
+ set(nx.periphery(self.G, usebounds=True, weight="weight"))
295
+ == set(nx.periphery(self.G, usebounds=True, weight="cost"))
296
+ == result
297
+ )
298
+
299
+ def test_bound_periphery_weight_fn(self):
300
+ result = {1, 3, 4}
301
+ assert (
302
+ set(nx.periphery(self.G, usebounds=True, weight=self.weight_fn)) == result
303
+ )
304
+
305
+ def test_bound_center_weight_None(self):
306
+ result = {0, 2, 5}
307
+ assert set(nx.center(self.G, usebounds=True, weight=None)) == result
308
+
309
+ def test_bound_center_weight_attr(self):
310
+ result = {0}
311
+ assert (
312
+ set(nx.center(self.G, usebounds=True, weight="weight"))
313
+ == set(nx.center(self.G, usebounds=True, weight="cost"))
314
+ == result
315
+ )
316
+
317
+ def test_bound_center_weight_fn(self):
318
+ result = {0, 2, 5}
319
+ assert set(nx.center(self.G, usebounds=True, weight=self.weight_fn)) == result
320
+
321
+
322
+ class TestResistanceDistance:
323
+ @classmethod
324
+ def setup_class(cls):
325
+ global np
326
+ np = pytest.importorskip("numpy")
327
+ sp = pytest.importorskip("scipy")
328
+
329
+ def setup_method(self):
330
+ G = nx.Graph()
331
+ G.add_edge(1, 2, weight=2)
332
+ G.add_edge(2, 3, weight=4)
333
+ G.add_edge(3, 4, weight=1)
334
+ G.add_edge(1, 4, weight=3)
335
+ self.G = G
336
+
337
+ def test_resistance_distance_directed_graph(self):
338
+ G = nx.DiGraph()
339
+ with pytest.raises(nx.NetworkXNotImplemented):
340
+ nx.resistance_distance(G)
341
+
342
+ def test_resistance_distance_empty(self):
343
+ G = nx.Graph()
344
+ with pytest.raises(nx.NetworkXError):
345
+ nx.resistance_distance(G)
346
+
347
+ def test_resistance_distance_not_connected(self):
348
+ with pytest.raises(nx.NetworkXError):
349
+ self.G.add_node(5)
350
+ nx.resistance_distance(self.G, 1, 5)
351
+
352
+ def test_resistance_distance_nodeA_not_in_graph(self):
353
+ with pytest.raises(nx.NetworkXError):
354
+ nx.resistance_distance(self.G, 9, 1)
355
+
356
+ def test_resistance_distance_nodeB_not_in_graph(self):
357
+ with pytest.raises(nx.NetworkXError):
358
+ nx.resistance_distance(self.G, 1, 9)
359
+
360
+ def test_resistance_distance(self):
361
+ rd = nx.resistance_distance(self.G, 1, 3, "weight", True)
362
+ test_data = 1 / (1 / (2 + 4) + 1 / (1 + 3))
363
+ assert round(rd, 5) == round(test_data, 5)
364
+
365
+ def test_resistance_distance_noinv(self):
366
+ rd = nx.resistance_distance(self.G, 1, 3, "weight", False)
367
+ test_data = 1 / (1 / (1 / 2 + 1 / 4) + 1 / (1 / 1 + 1 / 3))
368
+ assert round(rd, 5) == round(test_data, 5)
369
+
370
+ def test_resistance_distance_no_weight(self):
371
+ rd = nx.resistance_distance(self.G, 1, 3)
372
+ assert round(rd, 5) == 1
373
+
374
+ def test_resistance_distance_neg_weight(self):
375
+ self.G[2][3]["weight"] = -4
376
+ rd = nx.resistance_distance(self.G, 1, 3, "weight", True)
377
+ test_data = 1 / (1 / (2 + -4) + 1 / (1 + 3))
378
+ assert round(rd, 5) == round(test_data, 5)
379
+
380
+ def test_multigraph(self):
381
+ G = nx.MultiGraph()
382
+ G.add_edge(1, 2, weight=2)
383
+ G.add_edge(2, 3, weight=4)
384
+ G.add_edge(3, 4, weight=1)
385
+ G.add_edge(1, 4, weight=3)
386
+ rd = nx.resistance_distance(G, 1, 3, "weight", True)
387
+ assert np.isclose(rd, 1 / (1 / (2 + 4) + 1 / (1 + 3)))
388
+
389
+ def test_resistance_distance_div0(self):
390
+ with pytest.raises(ZeroDivisionError):
391
+ self.G[1][2]["weight"] = 0
392
+ nx.resistance_distance(self.G, 1, 3, "weight")
393
+
394
+ def test_resistance_distance_same_node(self):
395
+ assert nx.resistance_distance(self.G, 1, 1) == 0
396
+
397
+ def test_resistance_distance_only_nodeA(self):
398
+ rd = nx.resistance_distance(self.G, nodeA=1)
399
+ test_data = {}
400
+ test_data[1] = 0
401
+ test_data[2] = 0.75
402
+ test_data[3] = 1
403
+ test_data[4] = 0.75
404
+ assert type(rd) == dict
405
+ assert sorted(rd.keys()) == sorted(test_data.keys())
406
+ for key in rd:
407
+ assert np.isclose(rd[key], test_data[key])
408
+
409
+ def test_resistance_distance_only_nodeB(self):
410
+ rd = nx.resistance_distance(self.G, nodeB=1)
411
+ test_data = {}
412
+ test_data[1] = 0
413
+ test_data[2] = 0.75
414
+ test_data[3] = 1
415
+ test_data[4] = 0.75
416
+ assert type(rd) == dict
417
+ assert sorted(rd.keys()) == sorted(test_data.keys())
418
+ for key in rd:
419
+ assert np.isclose(rd[key], test_data[key])
420
+
421
+ def test_resistance_distance_all(self):
422
+ rd = nx.resistance_distance(self.G)
423
+ assert type(rd) == dict
424
+ assert round(rd[1][3], 5) == 1
425
+
426
+
427
+ class TestEffectiveGraphResistance:
428
+ @classmethod
429
+ def setup_class(cls):
430
+ global np
431
+ np = pytest.importorskip("numpy")
432
+ sp = pytest.importorskip("scipy")
433
+
434
+ def setup_method(self):
435
+ G = nx.Graph()
436
+ G.add_edge(1, 2, weight=2)
437
+ G.add_edge(1, 3, weight=1)
438
+ G.add_edge(2, 3, weight=4)
439
+ self.G = G
440
+
441
+ def test_effective_graph_resistance_directed_graph(self):
442
+ G = nx.DiGraph()
443
+ with pytest.raises(nx.NetworkXNotImplemented):
444
+ nx.effective_graph_resistance(G)
445
+
446
+ def test_effective_graph_resistance_empty(self):
447
+ G = nx.Graph()
448
+ with pytest.raises(nx.NetworkXError):
449
+ nx.effective_graph_resistance(G)
450
+
451
+ def test_effective_graph_resistance_not_connected(self):
452
+ G = nx.Graph([(1, 2), (3, 4)])
453
+ RG = nx.effective_graph_resistance(G)
454
+ assert np.isinf(RG)
455
+
456
+ def test_effective_graph_resistance(self):
457
+ RG = nx.effective_graph_resistance(self.G, "weight", True)
458
+ rd12 = 1 / (1 / (1 + 4) + 1 / 2)
459
+ rd13 = 1 / (1 / (1 + 2) + 1 / 4)
460
+ rd23 = 1 / (1 / (2 + 4) + 1 / 1)
461
+ assert np.isclose(RG, rd12 + rd13 + rd23)
462
+
463
+ def test_effective_graph_resistance_noinv(self):
464
+ RG = nx.effective_graph_resistance(self.G, "weight", False)
465
+ rd12 = 1 / (1 / (1 / 1 + 1 / 4) + 1 / (1 / 2))
466
+ rd13 = 1 / (1 / (1 / 1 + 1 / 2) + 1 / (1 / 4))
467
+ rd23 = 1 / (1 / (1 / 2 + 1 / 4) + 1 / (1 / 1))
468
+ assert np.isclose(RG, rd12 + rd13 + rd23)
469
+
470
+ def test_effective_graph_resistance_no_weight(self):
471
+ RG = nx.effective_graph_resistance(self.G)
472
+ assert np.isclose(RG, 2)
473
+
474
+ def test_effective_graph_resistance_neg_weight(self):
475
+ self.G[2][3]["weight"] = -4
476
+ RG = nx.effective_graph_resistance(self.G, "weight", True)
477
+ rd12 = 1 / (1 / (1 + -4) + 1 / 2)
478
+ rd13 = 1 / (1 / (1 + 2) + 1 / (-4))
479
+ rd23 = 1 / (1 / (2 + -4) + 1 / 1)
480
+ assert np.isclose(RG, rd12 + rd13 + rd23)
481
+
482
+ def test_effective_graph_resistance_multigraph(self):
483
+ G = nx.MultiGraph()
484
+ G.add_edge(1, 2, weight=2)
485
+ G.add_edge(1, 3, weight=1)
486
+ G.add_edge(2, 3, weight=1)
487
+ G.add_edge(2, 3, weight=3)
488
+ RG = nx.effective_graph_resistance(G, "weight", True)
489
+ edge23 = 1 / (1 / 1 + 1 / 3)
490
+ rd12 = 1 / (1 / (1 + edge23) + 1 / 2)
491
+ rd13 = 1 / (1 / (1 + 2) + 1 / edge23)
492
+ rd23 = 1 / (1 / (2 + edge23) + 1 / 1)
493
+ assert np.isclose(RG, rd12 + rd13 + rd23)
494
+
495
+ def test_effective_graph_resistance_div0(self):
496
+ with pytest.raises(ZeroDivisionError):
497
+ self.G[1][2]["weight"] = 0
498
+ nx.effective_graph_resistance(self.G, "weight")
499
+
500
+ def test_effective_graph_resistance_complete_graph(self):
501
+ N = 10
502
+ G = nx.complete_graph(N)
503
+ RG = nx.effective_graph_resistance(G)
504
+ assert np.isclose(RG, N - 1)
505
+
506
+ def test_effective_graph_resistance_path_graph(self):
507
+ N = 10
508
+ G = nx.path_graph(N)
509
+ RG = nx.effective_graph_resistance(G)
510
+ assert np.isclose(RG, (N - 1) * N * (N + 1) // 6)
511
+
512
+
513
+ class TestBarycenter:
514
+ """Test :func:`networkx.algorithms.distance_measures.barycenter`."""
515
+
516
+ def barycenter_as_subgraph(self, g, **kwargs):
517
+ """Return the subgraph induced on the barycenter of g"""
518
+ b = nx.barycenter(g, **kwargs)
519
+ assert isinstance(b, list)
520
+ assert set(b) <= set(g)
521
+ return g.subgraph(b)
522
+
523
+ def test_must_be_connected(self):
524
+ pytest.raises(nx.NetworkXNoPath, nx.barycenter, nx.empty_graph(5))
525
+
526
+ def test_sp_kwarg(self):
527
+ # Complete graph K_5. Normally it works...
528
+ K_5 = nx.complete_graph(5)
529
+ sp = dict(nx.shortest_path_length(K_5))
530
+ assert nx.barycenter(K_5, sp=sp) == list(K_5)
531
+
532
+ # ...but not with the weight argument
533
+ for u, v, data in K_5.edges.data():
534
+ data["weight"] = 1
535
+ pytest.raises(ValueError, nx.barycenter, K_5, sp=sp, weight="weight")
536
+
537
+ # ...and a corrupted sp can make it seem like K_5 is disconnected
538
+ del sp[0][1]
539
+ pytest.raises(nx.NetworkXNoPath, nx.barycenter, K_5, sp=sp)
540
+
541
+ def test_trees(self):
542
+ """The barycenter of a tree is a single vertex or an edge.
543
+
544
+ See [West01]_, p. 78.
545
+ """
546
+ prng = Random(0xDEADBEEF)
547
+ for i in range(50):
548
+ RT = nx.random_labeled_tree(prng.randint(1, 75), seed=prng)
549
+ b = self.barycenter_as_subgraph(RT)
550
+ if len(b) == 2:
551
+ assert b.size() == 1
552
+ else:
553
+ assert len(b) == 1
554
+ assert b.size() == 0
555
+
556
+ def test_this_one_specific_tree(self):
557
+ """Test the tree pictured at the bottom of [West01]_, p. 78."""
558
+ g = nx.Graph(
559
+ {
560
+ "a": ["b"],
561
+ "b": ["a", "x"],
562
+ "x": ["b", "y"],
563
+ "y": ["x", "z"],
564
+ "z": ["y", 0, 1, 2, 3, 4],
565
+ 0: ["z"],
566
+ 1: ["z"],
567
+ 2: ["z"],
568
+ 3: ["z"],
569
+ 4: ["z"],
570
+ }
571
+ )
572
+ b = self.barycenter_as_subgraph(g, attr="barycentricity")
573
+ assert list(b) == ["z"]
574
+ assert not b.edges
575
+ expected_barycentricity = {
576
+ 0: 23,
577
+ 1: 23,
578
+ 2: 23,
579
+ 3: 23,
580
+ 4: 23,
581
+ "a": 35,
582
+ "b": 27,
583
+ "x": 21,
584
+ "y": 17,
585
+ "z": 15,
586
+ }
587
+ for node, barycentricity in expected_barycentricity.items():
588
+ assert g.nodes[node]["barycentricity"] == barycentricity
589
+
590
+ # Doubling weights should do nothing but double the barycentricities
591
+ for edge in g.edges:
592
+ g.edges[edge]["weight"] = 2
593
+ b = self.barycenter_as_subgraph(g, weight="weight", attr="barycentricity2")
594
+ assert list(b) == ["z"]
595
+ assert not b.edges
596
+ for node, barycentricity in expected_barycentricity.items():
597
+ assert g.nodes[node]["barycentricity2"] == barycentricity * 2
598
+
599
+
600
+ class TestKemenyConstant:
601
+ @classmethod
602
+ def setup_class(cls):
603
+ global np
604
+ np = pytest.importorskip("numpy")
605
+ sp = pytest.importorskip("scipy")
606
+
607
+ def setup_method(self):
608
+ G = nx.Graph()
609
+ w12 = 2
610
+ w13 = 3
611
+ w23 = 4
612
+ G.add_edge(1, 2, weight=w12)
613
+ G.add_edge(1, 3, weight=w13)
614
+ G.add_edge(2, 3, weight=w23)
615
+ self.G = G
616
+
617
+ def test_kemeny_constant_directed(self):
618
+ G = nx.DiGraph()
619
+ G.add_edge(1, 2)
620
+ G.add_edge(1, 3)
621
+ G.add_edge(2, 3)
622
+ with pytest.raises(nx.NetworkXNotImplemented):
623
+ nx.kemeny_constant(G)
624
+
625
+ def test_kemeny_constant_not_connected(self):
626
+ self.G.add_node(5)
627
+ with pytest.raises(nx.NetworkXError):
628
+ nx.kemeny_constant(self.G)
629
+
630
+ def test_kemeny_constant_no_nodes(self):
631
+ G = nx.Graph()
632
+ with pytest.raises(nx.NetworkXError):
633
+ nx.kemeny_constant(G)
634
+
635
+ def test_kemeny_constant_negative_weight(self):
636
+ G = nx.Graph()
637
+ w12 = 2
638
+ w13 = 3
639
+ w23 = -10
640
+ G.add_edge(1, 2, weight=w12)
641
+ G.add_edge(1, 3, weight=w13)
642
+ G.add_edge(2, 3, weight=w23)
643
+ with pytest.raises(nx.NetworkXError):
644
+ nx.kemeny_constant(G, weight="weight")
645
+
646
+ def test_kemeny_constant(self):
647
+ K = nx.kemeny_constant(self.G, weight="weight")
648
+ w12 = 2
649
+ w13 = 3
650
+ w23 = 4
651
+ test_data = (
652
+ 3
653
+ / 2
654
+ * (w12 + w13)
655
+ * (w12 + w23)
656
+ * (w13 + w23)
657
+ / (
658
+ w12**2 * (w13 + w23)
659
+ + w13**2 * (w12 + w23)
660
+ + w23**2 * (w12 + w13)
661
+ + 3 * w12 * w13 * w23
662
+ )
663
+ )
664
+ assert np.isclose(K, test_data)
665
+
666
+ def test_kemeny_constant_no_weight(self):
667
+ K = nx.kemeny_constant(self.G)
668
+ assert np.isclose(K, 4 / 3)
669
+
670
+ def test_kemeny_constant_multigraph(self):
671
+ G = nx.MultiGraph()
672
+ w12_1 = 2
673
+ w12_2 = 1
674
+ w13 = 3
675
+ w23 = 4
676
+ G.add_edge(1, 2, weight=w12_1)
677
+ G.add_edge(1, 2, weight=w12_2)
678
+ G.add_edge(1, 3, weight=w13)
679
+ G.add_edge(2, 3, weight=w23)
680
+ K = nx.kemeny_constant(G, weight="weight")
681
+ w12 = w12_1 + w12_2
682
+ test_data = (
683
+ 3
684
+ / 2
685
+ * (w12 + w13)
686
+ * (w12 + w23)
687
+ * (w13 + w23)
688
+ / (
689
+ w12**2 * (w13 + w23)
690
+ + w13**2 * (w12 + w23)
691
+ + w23**2 * (w12 + w13)
692
+ + 3 * w12 * w13 * w23
693
+ )
694
+ )
695
+ assert np.isclose(K, test_data)
696
+
697
+ def test_kemeny_constant_weight0(self):
698
+ G = nx.Graph()
699
+ w12 = 0
700
+ w13 = 3
701
+ w23 = 4
702
+ G.add_edge(1, 2, weight=w12)
703
+ G.add_edge(1, 3, weight=w13)
704
+ G.add_edge(2, 3, weight=w23)
705
+ K = nx.kemeny_constant(G, weight="weight")
706
+ test_data = (
707
+ 3
708
+ / 2
709
+ * (w12 + w13)
710
+ * (w12 + w23)
711
+ * (w13 + w23)
712
+ / (
713
+ w12**2 * (w13 + w23)
714
+ + w13**2 * (w12 + w23)
715
+ + w23**2 * (w12 + w13)
716
+ + 3 * w12 * w13 * w23
717
+ )
718
+ )
719
+ assert np.isclose(K, test_data)
720
+
721
+ def test_kemeny_constant_selfloop(self):
722
+ G = nx.Graph()
723
+ w11 = 1
724
+ w12 = 2
725
+ w13 = 3
726
+ w23 = 4
727
+ G.add_edge(1, 1, weight=w11)
728
+ G.add_edge(1, 2, weight=w12)
729
+ G.add_edge(1, 3, weight=w13)
730
+ G.add_edge(2, 3, weight=w23)
731
+ K = nx.kemeny_constant(G, weight="weight")
732
+ test_data = (
733
+ (2 * w11 + 3 * w12 + 3 * w13)
734
+ * (w12 + w23)
735
+ * (w13 + w23)
736
+ / (
737
+ (w12 * w13 + w12 * w23 + w13 * w23)
738
+ * (w11 + 2 * w12 + 2 * w13 + 2 * w23)
739
+ )
740
+ )
741
+ assert np.isclose(K, test_data)
742
+
743
+ def test_kemeny_constant_complete_bipartite_graph(self):
744
+ # Theorem 1 in https://www.sciencedirect.com/science/article/pii/S0166218X20302912
745
+ n1 = 5
746
+ n2 = 4
747
+ G = nx.complete_bipartite_graph(n1, n2)
748
+ K = nx.kemeny_constant(G)
749
+ assert np.isclose(K, n1 + n2 - 3 / 2)
750
+
751
+ def test_kemeny_constant_path_graph(self):
752
+ # Theorem 2 in https://www.sciencedirect.com/science/article/pii/S0166218X20302912
753
+ n = 10
754
+ G = nx.path_graph(n)
755
+ K = nx.kemeny_constant(G)
756
+ assert np.isclose(K, n**2 / 3 - 2 * n / 3 + 1 / 2)