applied-ai-018 commited on
Commit
46c1b19
·
verified ·
1 Parent(s): 67a4bb4

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310-x86_64-linux-gnu.so +3 -0
  3. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/__init__.py +0 -0
  4. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_array.py +478 -0
  5. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_datetimes.py +840 -0
  6. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_ndarray_backed.py +75 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_period.py +184 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_timedeltas.py +313 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__init__.py +0 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/__init__.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_getitem.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_mask.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_set_value.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_setitem.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py +499 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py +238 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py +735 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_indexing.py +518 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_setitem.py +1847 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py +50 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_where.py +481 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py +82 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/__init__.py +0 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/__pycache__/__init__.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__init__.py +0 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/__init__.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_freq_code.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_frequencies.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_inference.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_freq_code.py +69 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_frequencies.py +29 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_inference.py +558 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__init__.py +0 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/__init__.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_calendar.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_federal.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_holiday.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_observance.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_calendar.py +119 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_federal.py +58 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_holiday.py +332 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_observance.py +105 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/__init__.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/common.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_hour.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_month.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_year.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_common.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_custom_business_day.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -195,3 +195,4 @@ llmeval-env/lib/python3.10/site-packages/pandas/_libs/interval.cpython-310-x86_6
195
  llmeval-env/lib/python3.10/site-packages/pandas/_libs/join.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
196
  llmeval-env/lib/python3.10/site-packages/pandas/_libs/algos.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
197
  llmeval-env/lib/python3.10/site-packages/pandas/_libs/groupby.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
 
 
195
  llmeval-env/lib/python3.10/site-packages/pandas/_libs/join.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
196
  llmeval-env/lib/python3.10/site-packages/pandas/_libs/algos.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
197
  llmeval-env/lib/python3.10/site-packages/pandas/_libs/groupby.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
198
+ llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2308b178030a6881fbe3c6ada5afd178c04270fabb04a6cd4c58e36bf322e466
3
+ size 1175424
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_array.py ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ import decimal
3
+ import re
4
+
5
+ import numpy as np
6
+ import pytest
7
+ import pytz
8
+
9
+ import pandas as pd
10
+ import pandas._testing as tm
11
+ from pandas.api.extensions import register_extension_dtype
12
+ from pandas.arrays import (
13
+ BooleanArray,
14
+ DatetimeArray,
15
+ FloatingArray,
16
+ IntegerArray,
17
+ IntervalArray,
18
+ SparseArray,
19
+ TimedeltaArray,
20
+ )
21
+ from pandas.core.arrays import (
22
+ NumpyExtensionArray,
23
+ period_array,
24
+ )
25
+ from pandas.tests.extension.decimal import (
26
+ DecimalArray,
27
+ DecimalDtype,
28
+ to_decimal,
29
+ )
30
+
31
+
32
+ @pytest.mark.parametrize("dtype_unit", ["M8[h]", "M8[m]", "m8[h]", "M8[m]"])
33
+ def test_dt64_array(dtype_unit):
34
+ # PR 53817
35
+ dtype_var = np.dtype(dtype_unit)
36
+ msg = (
37
+ r"datetime64 and timedelta64 dtype resolutions other than "
38
+ r"'s', 'ms', 'us', and 'ns' are deprecated. "
39
+ r"In future releases passing unsupported resolutions will "
40
+ r"raise an exception."
41
+ )
42
+ with tm.assert_produces_warning(FutureWarning, match=re.escape(msg)):
43
+ pd.array([], dtype=dtype_var)
44
+
45
+
46
+ @pytest.mark.parametrize(
47
+ "data, dtype, expected",
48
+ [
49
+ # Basic NumPy defaults.
50
+ ([], None, FloatingArray._from_sequence([], dtype="Float64")),
51
+ ([1, 2], None, IntegerArray._from_sequence([1, 2], dtype="Int64")),
52
+ ([1, 2], object, NumpyExtensionArray(np.array([1, 2], dtype=object))),
53
+ (
54
+ [1, 2],
55
+ np.dtype("float32"),
56
+ NumpyExtensionArray(np.array([1.0, 2.0], dtype=np.dtype("float32"))),
57
+ ),
58
+ (
59
+ np.array([], dtype=object),
60
+ None,
61
+ NumpyExtensionArray(np.array([], dtype=object)),
62
+ ),
63
+ (
64
+ np.array([1, 2], dtype="int64"),
65
+ None,
66
+ IntegerArray._from_sequence([1, 2], dtype="Int64"),
67
+ ),
68
+ (
69
+ np.array([1.0, 2.0], dtype="float64"),
70
+ None,
71
+ FloatingArray._from_sequence([1.0, 2.0], dtype="Float64"),
72
+ ),
73
+ # String alias passes through to NumPy
74
+ ([1, 2], "float32", NumpyExtensionArray(np.array([1, 2], dtype="float32"))),
75
+ ([1, 2], "int64", NumpyExtensionArray(np.array([1, 2], dtype=np.int64))),
76
+ # GH#44715 FloatingArray does not support float16, so fall
77
+ # back to NumpyExtensionArray
78
+ (
79
+ np.array([1, 2], dtype=np.float16),
80
+ None,
81
+ NumpyExtensionArray(np.array([1, 2], dtype=np.float16)),
82
+ ),
83
+ # idempotency with e.g. pd.array(pd.array([1, 2], dtype="int64"))
84
+ (
85
+ NumpyExtensionArray(np.array([1, 2], dtype=np.int32)),
86
+ None,
87
+ NumpyExtensionArray(np.array([1, 2], dtype=np.int32)),
88
+ ),
89
+ # Period alias
90
+ (
91
+ [pd.Period("2000", "D"), pd.Period("2001", "D")],
92
+ "Period[D]",
93
+ period_array(["2000", "2001"], freq="D"),
94
+ ),
95
+ # Period dtype
96
+ (
97
+ [pd.Period("2000", "D")],
98
+ pd.PeriodDtype("D"),
99
+ period_array(["2000"], freq="D"),
100
+ ),
101
+ # Datetime (naive)
102
+ (
103
+ [1, 2],
104
+ np.dtype("datetime64[ns]"),
105
+ DatetimeArray._from_sequence(
106
+ np.array([1, 2], dtype="M8[ns]"), dtype="M8[ns]"
107
+ ),
108
+ ),
109
+ (
110
+ [1, 2],
111
+ np.dtype("datetime64[s]"),
112
+ DatetimeArray._from_sequence(
113
+ np.array([1, 2], dtype="M8[s]"), dtype="M8[s]"
114
+ ),
115
+ ),
116
+ (
117
+ np.array([1, 2], dtype="datetime64[ns]"),
118
+ None,
119
+ DatetimeArray._from_sequence(
120
+ np.array([1, 2], dtype="M8[ns]"), dtype="M8[ns]"
121
+ ),
122
+ ),
123
+ (
124
+ pd.DatetimeIndex(["2000", "2001"]),
125
+ np.dtype("datetime64[ns]"),
126
+ DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
127
+ ),
128
+ (
129
+ pd.DatetimeIndex(["2000", "2001"]),
130
+ None,
131
+ DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
132
+ ),
133
+ (
134
+ ["2000", "2001"],
135
+ np.dtype("datetime64[ns]"),
136
+ DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
137
+ ),
138
+ # Datetime (tz-aware)
139
+ (
140
+ ["2000", "2001"],
141
+ pd.DatetimeTZDtype(tz="CET"),
142
+ DatetimeArray._from_sequence(
143
+ ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET")
144
+ ),
145
+ ),
146
+ # Timedelta
147
+ (
148
+ ["1h", "2h"],
149
+ np.dtype("timedelta64[ns]"),
150
+ TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
151
+ ),
152
+ (
153
+ pd.TimedeltaIndex(["1h", "2h"]),
154
+ np.dtype("timedelta64[ns]"),
155
+ TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
156
+ ),
157
+ (
158
+ np.array([1, 2], dtype="m8[s]"),
159
+ np.dtype("timedelta64[s]"),
160
+ TimedeltaArray._from_sequence(
161
+ np.array([1, 2], dtype="m8[s]"), dtype="m8[s]"
162
+ ),
163
+ ),
164
+ (
165
+ pd.TimedeltaIndex(["1h", "2h"]),
166
+ None,
167
+ TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
168
+ ),
169
+ (
170
+ # preserve non-nano, i.e. don't cast to NumpyExtensionArray
171
+ TimedeltaArray._simple_new(
172
+ np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
173
+ ),
174
+ None,
175
+ TimedeltaArray._simple_new(
176
+ np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
177
+ ),
178
+ ),
179
+ (
180
+ # preserve non-nano, i.e. don't cast to NumpyExtensionArray
181
+ TimedeltaArray._simple_new(
182
+ np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
183
+ ),
184
+ np.dtype("m8[s]"),
185
+ TimedeltaArray._simple_new(
186
+ np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
187
+ ),
188
+ ),
189
+ # Category
190
+ (["a", "b"], "category", pd.Categorical(["a", "b"])),
191
+ (
192
+ ["a", "b"],
193
+ pd.CategoricalDtype(None, ordered=True),
194
+ pd.Categorical(["a", "b"], ordered=True),
195
+ ),
196
+ # Interval
197
+ (
198
+ [pd.Interval(1, 2), pd.Interval(3, 4)],
199
+ "interval",
200
+ IntervalArray.from_tuples([(1, 2), (3, 4)]),
201
+ ),
202
+ # Sparse
203
+ ([0, 1], "Sparse[int64]", SparseArray([0, 1], dtype="int64")),
204
+ # IntegerNA
205
+ ([1, None], "Int16", pd.array([1, None], dtype="Int16")),
206
+ (
207
+ pd.Series([1, 2]),
208
+ None,
209
+ NumpyExtensionArray(np.array([1, 2], dtype=np.int64)),
210
+ ),
211
+ # String
212
+ (
213
+ ["a", None],
214
+ "string",
215
+ pd.StringDtype()
216
+ .construct_array_type()
217
+ ._from_sequence(["a", None], dtype=pd.StringDtype()),
218
+ ),
219
+ (
220
+ ["a", None],
221
+ pd.StringDtype(),
222
+ pd.StringDtype()
223
+ .construct_array_type()
224
+ ._from_sequence(["a", None], dtype=pd.StringDtype()),
225
+ ),
226
+ # Boolean
227
+ (
228
+ [True, None],
229
+ "boolean",
230
+ BooleanArray._from_sequence([True, None], dtype="boolean"),
231
+ ),
232
+ (
233
+ [True, None],
234
+ pd.BooleanDtype(),
235
+ BooleanArray._from_sequence([True, None], dtype="boolean"),
236
+ ),
237
+ # Index
238
+ (pd.Index([1, 2]), None, NumpyExtensionArray(np.array([1, 2], dtype=np.int64))),
239
+ # Series[EA] returns the EA
240
+ (
241
+ pd.Series(pd.Categorical(["a", "b"], categories=["a", "b", "c"])),
242
+ None,
243
+ pd.Categorical(["a", "b"], categories=["a", "b", "c"]),
244
+ ),
245
+ # "3rd party" EAs work
246
+ ([decimal.Decimal(0), decimal.Decimal(1)], "decimal", to_decimal([0, 1])),
247
+ # pass an ExtensionArray, but a different dtype
248
+ (
249
+ period_array(["2000", "2001"], freq="D"),
250
+ "category",
251
+ pd.Categorical([pd.Period("2000", "D"), pd.Period("2001", "D")]),
252
+ ),
253
+ ],
254
+ )
255
+ def test_array(data, dtype, expected):
256
+ result = pd.array(data, dtype=dtype)
257
+ tm.assert_equal(result, expected)
258
+
259
+
260
+ def test_array_copy():
261
+ a = np.array([1, 2])
262
+ # default is to copy
263
+ b = pd.array(a, dtype=a.dtype)
264
+ assert not tm.shares_memory(a, b)
265
+
266
+ # copy=True
267
+ b = pd.array(a, dtype=a.dtype, copy=True)
268
+ assert not tm.shares_memory(a, b)
269
+
270
+ # copy=False
271
+ b = pd.array(a, dtype=a.dtype, copy=False)
272
+ assert tm.shares_memory(a, b)
273
+
274
+
275
+ cet = pytz.timezone("CET")
276
+
277
+
278
+ @pytest.mark.parametrize(
279
+ "data, expected",
280
+ [
281
+ # period
282
+ (
283
+ [pd.Period("2000", "D"), pd.Period("2001", "D")],
284
+ period_array(["2000", "2001"], freq="D"),
285
+ ),
286
+ # interval
287
+ ([pd.Interval(0, 1), pd.Interval(1, 2)], IntervalArray.from_breaks([0, 1, 2])),
288
+ # datetime
289
+ (
290
+ [pd.Timestamp("2000"), pd.Timestamp("2001")],
291
+ DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
292
+ ),
293
+ (
294
+ [datetime.datetime(2000, 1, 1), datetime.datetime(2001, 1, 1)],
295
+ DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
296
+ ),
297
+ (
298
+ np.array([1, 2], dtype="M8[ns]"),
299
+ DatetimeArray._from_sequence(np.array([1, 2], dtype="M8[ns]")),
300
+ ),
301
+ (
302
+ np.array([1, 2], dtype="M8[us]"),
303
+ DatetimeArray._simple_new(
304
+ np.array([1, 2], dtype="M8[us]"), dtype=np.dtype("M8[us]")
305
+ ),
306
+ ),
307
+ # datetimetz
308
+ (
309
+ [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2001", tz="CET")],
310
+ DatetimeArray._from_sequence(
311
+ ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET", unit="ns")
312
+ ),
313
+ ),
314
+ (
315
+ [
316
+ datetime.datetime(2000, 1, 1, tzinfo=cet),
317
+ datetime.datetime(2001, 1, 1, tzinfo=cet),
318
+ ],
319
+ DatetimeArray._from_sequence(
320
+ ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz=cet, unit="ns")
321
+ ),
322
+ ),
323
+ # timedelta
324
+ (
325
+ [pd.Timedelta("1h"), pd.Timedelta("2h")],
326
+ TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
327
+ ),
328
+ (
329
+ np.array([1, 2], dtype="m8[ns]"),
330
+ TimedeltaArray._from_sequence(np.array([1, 2], dtype="m8[ns]")),
331
+ ),
332
+ (
333
+ np.array([1, 2], dtype="m8[us]"),
334
+ TimedeltaArray._from_sequence(np.array([1, 2], dtype="m8[us]")),
335
+ ),
336
+ # integer
337
+ ([1, 2], IntegerArray._from_sequence([1, 2], dtype="Int64")),
338
+ ([1, None], IntegerArray._from_sequence([1, None], dtype="Int64")),
339
+ ([1, pd.NA], IntegerArray._from_sequence([1, pd.NA], dtype="Int64")),
340
+ ([1, np.nan], IntegerArray._from_sequence([1, np.nan], dtype="Int64")),
341
+ # float
342
+ ([0.1, 0.2], FloatingArray._from_sequence([0.1, 0.2], dtype="Float64")),
343
+ ([0.1, None], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")),
344
+ ([0.1, np.nan], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")),
345
+ ([0.1, pd.NA], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")),
346
+ # integer-like float
347
+ ([1.0, 2.0], FloatingArray._from_sequence([1.0, 2.0], dtype="Float64")),
348
+ ([1.0, None], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")),
349
+ ([1.0, np.nan], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")),
350
+ ([1.0, pd.NA], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")),
351
+ # mixed-integer-float
352
+ ([1, 2.0], FloatingArray._from_sequence([1.0, 2.0], dtype="Float64")),
353
+ (
354
+ [1, np.nan, 2.0],
355
+ FloatingArray._from_sequence([1.0, None, 2.0], dtype="Float64"),
356
+ ),
357
+ # string
358
+ (
359
+ ["a", "b"],
360
+ pd.StringDtype()
361
+ .construct_array_type()
362
+ ._from_sequence(["a", "b"], dtype=pd.StringDtype()),
363
+ ),
364
+ (
365
+ ["a", None],
366
+ pd.StringDtype()
367
+ .construct_array_type()
368
+ ._from_sequence(["a", None], dtype=pd.StringDtype()),
369
+ ),
370
+ # Boolean
371
+ ([True, False], BooleanArray._from_sequence([True, False], dtype="boolean")),
372
+ ([True, None], BooleanArray._from_sequence([True, None], dtype="boolean")),
373
+ ],
374
+ )
375
+ def test_array_inference(data, expected):
376
+ result = pd.array(data)
377
+ tm.assert_equal(result, expected)
378
+
379
+
380
+ @pytest.mark.parametrize(
381
+ "data",
382
+ [
383
+ # mix of frequencies
384
+ [pd.Period("2000", "D"), pd.Period("2001", "Y")],
385
+ # mix of closed
386
+ [pd.Interval(0, 1, closed="left"), pd.Interval(1, 2, closed="right")],
387
+ # Mix of timezones
388
+ [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000", tz="UTC")],
389
+ # Mix of tz-aware and tz-naive
390
+ [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000")],
391
+ np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")]),
392
+ ],
393
+ )
394
+ def test_array_inference_fails(data):
395
+ result = pd.array(data)
396
+ expected = NumpyExtensionArray(np.array(data, dtype=object))
397
+ tm.assert_extension_array_equal(result, expected)
398
+
399
+
400
+ @pytest.mark.parametrize("data", [np.array(0)])
401
+ def test_nd_raises(data):
402
+ with pytest.raises(ValueError, match="NumpyExtensionArray must be 1-dimensional"):
403
+ pd.array(data, dtype="int64")
404
+
405
+
406
+ def test_scalar_raises():
407
+ with pytest.raises(ValueError, match="Cannot pass scalar '1'"):
408
+ pd.array(1)
409
+
410
+
411
+ def test_dataframe_raises():
412
+ # GH#51167 don't accidentally cast to StringArray by doing inference on columns
413
+ df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
414
+ msg = "Cannot pass DataFrame to 'pandas.array'"
415
+ with pytest.raises(TypeError, match=msg):
416
+ pd.array(df)
417
+
418
+
419
+ def test_bounds_check():
420
+ # GH21796
421
+ with pytest.raises(
422
+ TypeError, match=r"cannot safely cast non-equivalent int(32|64) to uint16"
423
+ ):
424
+ pd.array([-1, 2, 3], dtype="UInt16")
425
+
426
+
427
+ # ---------------------------------------------------------------------------
428
+ # A couple dummy classes to ensure that Series and Indexes are unboxed before
429
+ # getting to the EA classes.
430
+
431
+
432
+ @register_extension_dtype
433
+ class DecimalDtype2(DecimalDtype):
434
+ name = "decimal2"
435
+
436
+ @classmethod
437
+ def construct_array_type(cls):
438
+ """
439
+ Return the array type associated with this dtype.
440
+
441
+ Returns
442
+ -------
443
+ type
444
+ """
445
+ return DecimalArray2
446
+
447
+
448
+ class DecimalArray2(DecimalArray):
449
+ @classmethod
450
+ def _from_sequence(cls, scalars, *, dtype=None, copy=False):
451
+ if isinstance(scalars, (pd.Series, pd.Index)):
452
+ raise TypeError("scalars should not be of type pd.Series or pd.Index")
453
+
454
+ return super()._from_sequence(scalars, dtype=dtype, copy=copy)
455
+
456
+
457
+ def test_array_unboxes(index_or_series):
458
+ box = index_or_series
459
+
460
+ data = box([decimal.Decimal("1"), decimal.Decimal("2")])
461
+ dtype = DecimalDtype2()
462
+ # make sure it works
463
+ with pytest.raises(
464
+ TypeError, match="scalars should not be of type pd.Series or pd.Index"
465
+ ):
466
+ DecimalArray2._from_sequence(data, dtype=dtype)
467
+
468
+ result = pd.array(data, dtype="decimal2")
469
+ expected = DecimalArray2._from_sequence(data.values, dtype=dtype)
470
+ tm.assert_equal(result, expected)
471
+
472
+
473
+ def test_array_to_numpy_na():
474
+ # GH#40638
475
+ arr = pd.array([pd.NA, 1], dtype="string[python]")
476
+ result = arr.to_numpy(na_value=True, dtype=bool)
477
+ expected = np.array([True, True])
478
+ tm.assert_numpy_array_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_datetimes.py ADDED
@@ -0,0 +1,840 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for DatetimeArray
3
+ """
4
+ from __future__ import annotations
5
+
6
+ from datetime import timedelta
7
+ import operator
8
+
9
+ try:
10
+ from zoneinfo import ZoneInfo
11
+ except ImportError:
12
+ # Cannot assign to a type
13
+ ZoneInfo = None # type: ignore[misc, assignment]
14
+
15
+ import numpy as np
16
+ import pytest
17
+
18
+ from pandas._libs.tslibs import tz_compare
19
+
20
+ from pandas.core.dtypes.dtypes import DatetimeTZDtype
21
+
22
+ import pandas as pd
23
+ import pandas._testing as tm
24
+ from pandas.core.arrays import (
25
+ DatetimeArray,
26
+ TimedeltaArray,
27
+ )
28
+
29
+
30
+ class TestNonNano:
31
+ @pytest.fixture(params=["s", "ms", "us"])
32
+ def unit(self, request):
33
+ """Fixture returning parametrized time units"""
34
+ return request.param
35
+
36
+ @pytest.fixture
37
+ def dtype(self, unit, tz_naive_fixture):
38
+ tz = tz_naive_fixture
39
+ if tz is None:
40
+ return np.dtype(f"datetime64[{unit}]")
41
+ else:
42
+ return DatetimeTZDtype(unit=unit, tz=tz)
43
+
44
+ @pytest.fixture
45
+ def dta_dti(self, unit, dtype):
46
+ tz = getattr(dtype, "tz", None)
47
+
48
+ dti = pd.date_range("2016-01-01", periods=55, freq="D", tz=tz)
49
+ if tz is None:
50
+ arr = np.asarray(dti).astype(f"M8[{unit}]")
51
+ else:
52
+ arr = np.asarray(dti.tz_convert("UTC").tz_localize(None)).astype(
53
+ f"M8[{unit}]"
54
+ )
55
+
56
+ dta = DatetimeArray._simple_new(arr, dtype=dtype)
57
+ return dta, dti
58
+
59
+ @pytest.fixture
60
+ def dta(self, dta_dti):
61
+ dta, dti = dta_dti
62
+ return dta
63
+
64
+ def test_non_nano(self, unit, dtype):
65
+ arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]")
66
+ dta = DatetimeArray._simple_new(arr, dtype=dtype)
67
+
68
+ assert dta.dtype == dtype
69
+ assert dta[0].unit == unit
70
+ assert tz_compare(dta.tz, dta[0].tz)
71
+ assert (dta[0] == dta[:1]).all()
72
+
73
+ @pytest.mark.parametrize(
74
+ "field", DatetimeArray._field_ops + DatetimeArray._bool_ops
75
+ )
76
+ def test_fields(self, unit, field, dtype, dta_dti):
77
+ dta, dti = dta_dti
78
+
79
+ assert (dti == dta).all()
80
+
81
+ res = getattr(dta, field)
82
+ expected = getattr(dti._data, field)
83
+ tm.assert_numpy_array_equal(res, expected)
84
+
85
+ def test_normalize(self, unit):
86
+ dti = pd.date_range("2016-01-01 06:00:00", periods=55, freq="D")
87
+ arr = np.asarray(dti).astype(f"M8[{unit}]")
88
+
89
+ dta = DatetimeArray._simple_new(arr, dtype=arr.dtype)
90
+
91
+ assert not dta.is_normalized
92
+
93
+ # TODO: simplify once we can just .astype to other unit
94
+ exp = np.asarray(dti.normalize()).astype(f"M8[{unit}]")
95
+ expected = DatetimeArray._simple_new(exp, dtype=exp.dtype)
96
+
97
+ res = dta.normalize()
98
+ tm.assert_extension_array_equal(res, expected)
99
+
100
+ def test_simple_new_requires_match(self, unit):
101
+ arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]")
102
+ dtype = DatetimeTZDtype(unit, "UTC")
103
+
104
+ dta = DatetimeArray._simple_new(arr, dtype=dtype)
105
+ assert dta.dtype == dtype
106
+
107
+ wrong = DatetimeTZDtype("ns", "UTC")
108
+ with pytest.raises(AssertionError, match=""):
109
+ DatetimeArray._simple_new(arr, dtype=wrong)
110
+
111
+ def test_std_non_nano(self, unit):
112
+ dti = pd.date_range("2016-01-01", periods=55, freq="D")
113
+ arr = np.asarray(dti).astype(f"M8[{unit}]")
114
+
115
+ dta = DatetimeArray._simple_new(arr, dtype=arr.dtype)
116
+
117
+ # we should match the nano-reso std, but floored to our reso.
118
+ res = dta.std()
119
+ assert res._creso == dta._creso
120
+ assert res == dti.std().floor(unit)
121
+
122
+ @pytest.mark.filterwarnings("ignore:Converting to PeriodArray.*:UserWarning")
123
+ def test_to_period(self, dta_dti):
124
+ dta, dti = dta_dti
125
+ result = dta.to_period("D")
126
+ expected = dti._data.to_period("D")
127
+
128
+ tm.assert_extension_array_equal(result, expected)
129
+
130
+ def test_iter(self, dta):
131
+ res = next(iter(dta))
132
+ expected = dta[0]
133
+
134
+ assert type(res) is pd.Timestamp
135
+ assert res._value == expected._value
136
+ assert res._creso == expected._creso
137
+ assert res == expected
138
+
139
+ def test_astype_object(self, dta):
140
+ result = dta.astype(object)
141
+ assert all(x._creso == dta._creso for x in result)
142
+ assert all(x == y for x, y in zip(result, dta))
143
+
144
+ def test_to_pydatetime(self, dta_dti):
145
+ dta, dti = dta_dti
146
+
147
+ result = dta.to_pydatetime()
148
+ expected = dti.to_pydatetime()
149
+ tm.assert_numpy_array_equal(result, expected)
150
+
151
+ @pytest.mark.parametrize("meth", ["time", "timetz", "date"])
152
+ def test_time_date(self, dta_dti, meth):
153
+ dta, dti = dta_dti
154
+
155
+ result = getattr(dta, meth)
156
+ expected = getattr(dti, meth)
157
+ tm.assert_numpy_array_equal(result, expected)
158
+
159
+ def test_format_native_types(self, unit, dtype, dta_dti):
160
+ # In this case we should get the same formatted values with our nano
161
+ # version dti._data as we do with the non-nano dta
162
+ dta, dti = dta_dti
163
+
164
+ res = dta._format_native_types()
165
+ exp = dti._data._format_native_types()
166
+ tm.assert_numpy_array_equal(res, exp)
167
+
168
+ def test_repr(self, dta_dti, unit):
169
+ dta, dti = dta_dti
170
+
171
+ assert repr(dta) == repr(dti._data).replace("[ns", f"[{unit}")
172
+
173
+ # TODO: tests with td64
174
+ def test_compare_mismatched_resolutions(self, comparison_op):
175
+ # comparison that numpy gets wrong bc of silent overflows
176
+ op = comparison_op
177
+
178
+ iinfo = np.iinfo(np.int64)
179
+ vals = np.array([iinfo.min, iinfo.min + 1, iinfo.max], dtype=np.int64)
180
+
181
+ # Construct so that arr2[1] < arr[1] < arr[2] < arr2[2]
182
+ arr = np.array(vals).view("M8[ns]")
183
+ arr2 = arr.view("M8[s]")
184
+
185
+ left = DatetimeArray._simple_new(arr, dtype=arr.dtype)
186
+ right = DatetimeArray._simple_new(arr2, dtype=arr2.dtype)
187
+
188
+ if comparison_op is operator.eq:
189
+ expected = np.array([False, False, False])
190
+ elif comparison_op is operator.ne:
191
+ expected = np.array([True, True, True])
192
+ elif comparison_op in [operator.lt, operator.le]:
193
+ expected = np.array([False, False, True])
194
+ else:
195
+ expected = np.array([False, True, False])
196
+
197
+ result = op(left, right)
198
+ tm.assert_numpy_array_equal(result, expected)
199
+
200
+ result = op(left[1], right)
201
+ tm.assert_numpy_array_equal(result, expected)
202
+
203
+ if op not in [operator.eq, operator.ne]:
204
+ # check that numpy still gets this wrong; if it is fixed we may be
205
+ # able to remove compare_mismatched_resolutions
206
+ np_res = op(left._ndarray, right._ndarray)
207
+ tm.assert_numpy_array_equal(np_res[1:], ~expected[1:])
208
+
209
+ def test_add_mismatched_reso_doesnt_downcast(self):
210
+ # https://github.com/pandas-dev/pandas/pull/48748#issuecomment-1260181008
211
+ td = pd.Timedelta(microseconds=1)
212
+ dti = pd.date_range("2016-01-01", periods=3) - td
213
+ dta = dti._data.as_unit("us")
214
+
215
+ res = dta + td.as_unit("us")
216
+ # even though the result is an even number of days
217
+ # (so we _could_ downcast to unit="s"), we do not.
218
+ assert res.unit == "us"
219
+
220
+ @pytest.mark.parametrize(
221
+ "scalar",
222
+ [
223
+ timedelta(hours=2),
224
+ pd.Timedelta(hours=2),
225
+ np.timedelta64(2, "h"),
226
+ np.timedelta64(2 * 3600 * 1000, "ms"),
227
+ pd.offsets.Minute(120),
228
+ pd.offsets.Hour(2),
229
+ ],
230
+ )
231
+ def test_add_timedeltalike_scalar_mismatched_reso(self, dta_dti, scalar):
232
+ dta, dti = dta_dti
233
+
234
+ td = pd.Timedelta(scalar)
235
+ exp_unit = tm.get_finest_unit(dta.unit, td.unit)
236
+
237
+ expected = (dti + td)._data.as_unit(exp_unit)
238
+ result = dta + scalar
239
+ tm.assert_extension_array_equal(result, expected)
240
+
241
+ result = scalar + dta
242
+ tm.assert_extension_array_equal(result, expected)
243
+
244
+ expected = (dti - td)._data.as_unit(exp_unit)
245
+ result = dta - scalar
246
+ tm.assert_extension_array_equal(result, expected)
247
+
248
+ def test_sub_datetimelike_scalar_mismatch(self):
249
+ dti = pd.date_range("2016-01-01", periods=3)
250
+ dta = dti._data.as_unit("us")
251
+
252
+ ts = dta[0].as_unit("s")
253
+
254
+ result = dta - ts
255
+ expected = (dti - dti[0])._data.as_unit("us")
256
+ assert result.dtype == "m8[us]"
257
+ tm.assert_extension_array_equal(result, expected)
258
+
259
+ def test_sub_datetime64_reso_mismatch(self):
260
+ dti = pd.date_range("2016-01-01", periods=3)
261
+ left = dti._data.as_unit("s")
262
+ right = left.as_unit("ms")
263
+
264
+ result = left - right
265
+ exp_values = np.array([0, 0, 0], dtype="m8[ms]")
266
+ expected = TimedeltaArray._simple_new(
267
+ exp_values,
268
+ dtype=exp_values.dtype,
269
+ )
270
+ tm.assert_extension_array_equal(result, expected)
271
+ result2 = right - left
272
+ tm.assert_extension_array_equal(result2, expected)
273
+
274
+
275
+ class TestDatetimeArrayComparisons:
276
+ # TODO: merge this into tests/arithmetic/test_datetime64 once it is
277
+ # sufficiently robust
278
+
279
+ def test_cmp_dt64_arraylike_tznaive(self, comparison_op):
280
+ # arbitrary tz-naive DatetimeIndex
281
+ op = comparison_op
282
+
283
+ dti = pd.date_range("2016-01-1", freq="MS", periods=9, tz=None)
284
+ arr = dti._data
285
+ assert arr.freq == dti.freq
286
+ assert arr.tz == dti.tz
287
+
288
+ right = dti
289
+
290
+ expected = np.ones(len(arr), dtype=bool)
291
+ if comparison_op.__name__ in ["ne", "gt", "lt"]:
292
+ # for these the comparisons should be all-False
293
+ expected = ~expected
294
+
295
+ result = op(arr, arr)
296
+ tm.assert_numpy_array_equal(result, expected)
297
+ for other in [
298
+ right,
299
+ np.array(right),
300
+ list(right),
301
+ tuple(right),
302
+ right.astype(object),
303
+ ]:
304
+ result = op(arr, other)
305
+ tm.assert_numpy_array_equal(result, expected)
306
+
307
+ result = op(other, arr)
308
+ tm.assert_numpy_array_equal(result, expected)
309
+
310
+
311
+ class TestDatetimeArray:
312
+ def test_astype_ns_to_ms_near_bounds(self):
313
+ # GH#55979
314
+ ts = pd.Timestamp("1677-09-21 00:12:43.145225")
315
+ target = ts.as_unit("ms")
316
+
317
+ dta = DatetimeArray._from_sequence([ts], dtype="M8[ns]")
318
+ assert (dta.view("i8") == ts.as_unit("ns").value).all()
319
+
320
+ result = dta.astype("M8[ms]")
321
+ assert result[0] == target
322
+
323
+ expected = DatetimeArray._from_sequence([ts], dtype="M8[ms]")
324
+ assert (expected.view("i8") == target._value).all()
325
+
326
+ tm.assert_datetime_array_equal(result, expected)
327
+
328
+ def test_astype_non_nano_tznaive(self):
329
+ dti = pd.date_range("2016-01-01", periods=3)
330
+
331
+ res = dti.astype("M8[s]")
332
+ assert res.dtype == "M8[s]"
333
+
334
+ dta = dti._data
335
+ res = dta.astype("M8[s]")
336
+ assert res.dtype == "M8[s]"
337
+ assert isinstance(res, pd.core.arrays.DatetimeArray) # used to be ndarray
338
+
339
+ def test_astype_non_nano_tzaware(self):
340
+ dti = pd.date_range("2016-01-01", periods=3, tz="UTC")
341
+
342
+ res = dti.astype("M8[s, US/Pacific]")
343
+ assert res.dtype == "M8[s, US/Pacific]"
344
+
345
+ dta = dti._data
346
+ res = dta.astype("M8[s, US/Pacific]")
347
+ assert res.dtype == "M8[s, US/Pacific]"
348
+
349
+ # from non-nano to non-nano, preserving reso
350
+ res2 = res.astype("M8[s, UTC]")
351
+ assert res2.dtype == "M8[s, UTC]"
352
+ assert not tm.shares_memory(res2, res)
353
+
354
+ res3 = res.astype("M8[s, UTC]", copy=False)
355
+ assert res2.dtype == "M8[s, UTC]"
356
+ assert tm.shares_memory(res3, res)
357
+
358
+ def test_astype_to_same(self):
359
+ arr = DatetimeArray._from_sequence(
360
+ ["2000"], dtype=DatetimeTZDtype(tz="US/Central")
361
+ )
362
+ result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False)
363
+ assert result is arr
364
+
365
+ @pytest.mark.parametrize("dtype", ["datetime64[ns]", "datetime64[ns, UTC]"])
366
+ @pytest.mark.parametrize(
367
+ "other", ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, CET]"]
368
+ )
369
+ def test_astype_copies(self, dtype, other):
370
+ # https://github.com/pandas-dev/pandas/pull/32490
371
+ ser = pd.Series([1, 2], dtype=dtype)
372
+ orig = ser.copy()
373
+
374
+ err = False
375
+ if (dtype == "datetime64[ns]") ^ (other == "datetime64[ns]"):
376
+ # deprecated in favor of tz_localize
377
+ err = True
378
+
379
+ if err:
380
+ if dtype == "datetime64[ns]":
381
+ msg = "Use obj.tz_localize instead or series.dt.tz_localize instead"
382
+ else:
383
+ msg = "from timezone-aware dtype to timezone-naive dtype"
384
+ with pytest.raises(TypeError, match=msg):
385
+ ser.astype(other)
386
+ else:
387
+ t = ser.astype(other)
388
+ t[:] = pd.NaT
389
+ tm.assert_series_equal(ser, orig)
390
+
391
+ @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
392
+ def test_astype_int(self, dtype):
393
+ arr = DatetimeArray._from_sequence(
394
+ [pd.Timestamp("2000"), pd.Timestamp("2001")], dtype="M8[ns]"
395
+ )
396
+
397
+ if np.dtype(dtype) != np.int64:
398
+ with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
399
+ arr.astype(dtype)
400
+ return
401
+
402
+ result = arr.astype(dtype)
403
+ expected = arr._ndarray.view("i8")
404
+ tm.assert_numpy_array_equal(result, expected)
405
+
406
+ def test_astype_to_sparse_dt64(self):
407
+ # GH#50082
408
+ dti = pd.date_range("2016-01-01", periods=4)
409
+ dta = dti._data
410
+ result = dta.astype("Sparse[datetime64[ns]]")
411
+
412
+ assert result.dtype == "Sparse[datetime64[ns]]"
413
+ assert (result == dta).all()
414
+
415
+ def test_tz_setter_raises(self):
416
+ arr = DatetimeArray._from_sequence(
417
+ ["2000"], dtype=DatetimeTZDtype(tz="US/Central")
418
+ )
419
+ with pytest.raises(AttributeError, match="tz_localize"):
420
+ arr.tz = "UTC"
421
+
422
+ def test_setitem_str_impute_tz(self, tz_naive_fixture):
423
+ # Like for getitem, if we are passed a naive-like string, we impute
424
+ # our own timezone.
425
+ tz = tz_naive_fixture
426
+
427
+ data = np.array([1, 2, 3], dtype="M8[ns]")
428
+ dtype = data.dtype if tz is None else DatetimeTZDtype(tz=tz)
429
+ arr = DatetimeArray._from_sequence(data, dtype=dtype)
430
+ expected = arr.copy()
431
+
432
+ ts = pd.Timestamp("2020-09-08 16:50").tz_localize(tz)
433
+ setter = str(ts.tz_localize(None))
434
+
435
+ # Setting a scalar tznaive string
436
+ expected[0] = ts
437
+ arr[0] = setter
438
+ tm.assert_equal(arr, expected)
439
+
440
+ # Setting a listlike of tznaive strings
441
+ expected[1] = ts
442
+ arr[:2] = [setter, setter]
443
+ tm.assert_equal(arr, expected)
444
+
445
+ def test_setitem_different_tz_raises(self):
446
+ # pre-2.0 we required exact tz match, in 2.0 we require only
447
+ # tzawareness-match
448
+ data = np.array([1, 2, 3], dtype="M8[ns]")
449
+ arr = DatetimeArray._from_sequence(
450
+ data, copy=False, dtype=DatetimeTZDtype(tz="US/Central")
451
+ )
452
+ with pytest.raises(TypeError, match="Cannot compare tz-naive and tz-aware"):
453
+ arr[0] = pd.Timestamp("2000")
454
+
455
+ ts = pd.Timestamp("2000", tz="US/Eastern")
456
+ arr[0] = ts
457
+ assert arr[0] == ts.tz_convert("US/Central")
458
+
459
+ def test_setitem_clears_freq(self):
460
+ a = pd.date_range("2000", periods=2, freq="D", tz="US/Central")._data
461
+ a[0] = pd.Timestamp("2000", tz="US/Central")
462
+ assert a.freq is None
463
+
464
+ @pytest.mark.parametrize(
465
+ "obj",
466
+ [
467
+ pd.Timestamp("2021-01-01"),
468
+ pd.Timestamp("2021-01-01").to_datetime64(),
469
+ pd.Timestamp("2021-01-01").to_pydatetime(),
470
+ ],
471
+ )
472
+ def test_setitem_objects(self, obj):
473
+ # make sure we accept datetime64 and datetime in addition to Timestamp
474
+ dti = pd.date_range("2000", periods=2, freq="D")
475
+ arr = dti._data
476
+
477
+ arr[0] = obj
478
+ assert arr[0] == obj
479
+
480
+ def test_repeat_preserves_tz(self):
481
+ dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central")
482
+ arr = dti._data
483
+
484
+ repeated = arr.repeat([1, 1])
485
+
486
+ # preserves tz and values, but not freq
487
+ expected = DatetimeArray._from_sequence(arr.asi8, dtype=arr.dtype)
488
+ tm.assert_equal(repeated, expected)
489
+
490
+ def test_value_counts_preserves_tz(self):
491
+ dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central")
492
+ arr = dti._data.repeat([4, 3])
493
+
494
+ result = arr.value_counts()
495
+
496
+ # Note: not tm.assert_index_equal, since `freq`s do not match
497
+ assert result.index.equals(dti)
498
+
499
+ arr[-2] = pd.NaT
500
+ result = arr.value_counts(dropna=False)
501
+ expected = pd.Series([4, 2, 1], index=[dti[0], dti[1], pd.NaT], name="count")
502
+ tm.assert_series_equal(result, expected)
503
+
504
+ @pytest.mark.parametrize("method", ["pad", "backfill"])
505
+ def test_fillna_preserves_tz(self, method):
506
+ dti = pd.date_range("2000-01-01", periods=5, freq="D", tz="US/Central")
507
+ arr = DatetimeArray._from_sequence(dti, copy=True)
508
+ arr[2] = pd.NaT
509
+
510
+ fill_val = dti[1] if method == "pad" else dti[3]
511
+ expected = DatetimeArray._from_sequence(
512
+ [dti[0], dti[1], fill_val, dti[3], dti[4]],
513
+ dtype=DatetimeTZDtype(tz="US/Central"),
514
+ )
515
+
516
+ result = arr._pad_or_backfill(method=method)
517
+ tm.assert_extension_array_equal(result, expected)
518
+
519
+ # assert that arr and dti were not modified in-place
520
+ assert arr[2] is pd.NaT
521
+ assert dti[2] == pd.Timestamp("2000-01-03", tz="US/Central")
522
+
523
+ def test_fillna_2d(self):
524
+ dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
525
+ dta = dti._data.reshape(3, 2).copy()
526
+ dta[0, 1] = pd.NaT
527
+ dta[1, 0] = pd.NaT
528
+
529
+ res1 = dta._pad_or_backfill(method="pad")
530
+ expected1 = dta.copy()
531
+ expected1[1, 0] = dta[0, 0]
532
+ tm.assert_extension_array_equal(res1, expected1)
533
+
534
+ res2 = dta._pad_or_backfill(method="backfill")
535
+ expected2 = dta.copy()
536
+ expected2 = dta.copy()
537
+ expected2[1, 0] = dta[2, 0]
538
+ expected2[0, 1] = dta[1, 1]
539
+ tm.assert_extension_array_equal(res2, expected2)
540
+
541
+ # with different ordering for underlying ndarray; behavior should
542
+ # be unchanged
543
+ dta2 = dta._from_backing_data(dta._ndarray.copy(order="F"))
544
+ assert dta2._ndarray.flags["F_CONTIGUOUS"]
545
+ assert not dta2._ndarray.flags["C_CONTIGUOUS"]
546
+ tm.assert_extension_array_equal(dta, dta2)
547
+
548
+ res3 = dta2._pad_or_backfill(method="pad")
549
+ tm.assert_extension_array_equal(res3, expected1)
550
+
551
+ res4 = dta2._pad_or_backfill(method="backfill")
552
+ tm.assert_extension_array_equal(res4, expected2)
553
+
554
+ # test the DataFrame method while we're here
555
+ df = pd.DataFrame(dta)
556
+ res = df.ffill()
557
+ expected = pd.DataFrame(expected1)
558
+ tm.assert_frame_equal(res, expected)
559
+
560
+ res = df.bfill()
561
+ expected = pd.DataFrame(expected2)
562
+ tm.assert_frame_equal(res, expected)
563
+
564
+ def test_array_interface_tz(self):
565
+ tz = "US/Central"
566
+ data = pd.date_range("2017", periods=2, tz=tz)._data
567
+ result = np.asarray(data)
568
+
569
+ expected = np.array(
570
+ [
571
+ pd.Timestamp("2017-01-01T00:00:00", tz=tz),
572
+ pd.Timestamp("2017-01-02T00:00:00", tz=tz),
573
+ ],
574
+ dtype=object,
575
+ )
576
+ tm.assert_numpy_array_equal(result, expected)
577
+
578
+ result = np.asarray(data, dtype=object)
579
+ tm.assert_numpy_array_equal(result, expected)
580
+
581
+ result = np.asarray(data, dtype="M8[ns]")
582
+
583
+ expected = np.array(
584
+ ["2017-01-01T06:00:00", "2017-01-02T06:00:00"], dtype="M8[ns]"
585
+ )
586
+ tm.assert_numpy_array_equal(result, expected)
587
+
588
+ def test_array_interface(self):
589
+ data = pd.date_range("2017", periods=2)._data
590
+ expected = np.array(
591
+ ["2017-01-01T00:00:00", "2017-01-02T00:00:00"], dtype="datetime64[ns]"
592
+ )
593
+
594
+ result = np.asarray(data)
595
+ tm.assert_numpy_array_equal(result, expected)
596
+
597
+ result = np.asarray(data, dtype=object)
598
+ expected = np.array(
599
+ [pd.Timestamp("2017-01-01T00:00:00"), pd.Timestamp("2017-01-02T00:00:00")],
600
+ dtype=object,
601
+ )
602
+ tm.assert_numpy_array_equal(result, expected)
603
+
604
+ @pytest.mark.parametrize("index", [True, False])
605
+ def test_searchsorted_different_tz(self, index):
606
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
607
+ arr = pd.DatetimeIndex(data, freq="D")._data.tz_localize("Asia/Tokyo")
608
+ if index:
609
+ arr = pd.Index(arr)
610
+
611
+ expected = arr.searchsorted(arr[2])
612
+ result = arr.searchsorted(arr[2].tz_convert("UTC"))
613
+ assert result == expected
614
+
615
+ expected = arr.searchsorted(arr[2:6])
616
+ result = arr.searchsorted(arr[2:6].tz_convert("UTC"))
617
+ tm.assert_equal(result, expected)
618
+
619
+ @pytest.mark.parametrize("index", [True, False])
620
+ def test_searchsorted_tzawareness_compat(self, index):
621
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
622
+ arr = pd.DatetimeIndex(data, freq="D")._data
623
+ if index:
624
+ arr = pd.Index(arr)
625
+
626
+ mismatch = arr.tz_localize("Asia/Tokyo")
627
+
628
+ msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
629
+ with pytest.raises(TypeError, match=msg):
630
+ arr.searchsorted(mismatch[0])
631
+ with pytest.raises(TypeError, match=msg):
632
+ arr.searchsorted(mismatch)
633
+
634
+ with pytest.raises(TypeError, match=msg):
635
+ mismatch.searchsorted(arr[0])
636
+ with pytest.raises(TypeError, match=msg):
637
+ mismatch.searchsorted(arr)
638
+
639
+ @pytest.mark.parametrize(
640
+ "other",
641
+ [
642
+ 1,
643
+ np.int64(1),
644
+ 1.0,
645
+ np.timedelta64("NaT"),
646
+ pd.Timedelta(days=2),
647
+ "invalid",
648
+ np.arange(10, dtype="i8") * 24 * 3600 * 10**9,
649
+ np.arange(10).view("timedelta64[ns]") * 24 * 3600 * 10**9,
650
+ pd.Timestamp("2021-01-01").to_period("D"),
651
+ ],
652
+ )
653
+ @pytest.mark.parametrize("index", [True, False])
654
+ def test_searchsorted_invalid_types(self, other, index):
655
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
656
+ arr = pd.DatetimeIndex(data, freq="D")._data
657
+ if index:
658
+ arr = pd.Index(arr)
659
+
660
+ msg = "|".join(
661
+ [
662
+ "searchsorted requires compatible dtype or scalar",
663
+ "value should be a 'Timestamp', 'NaT', or array of those. Got",
664
+ ]
665
+ )
666
+ with pytest.raises(TypeError, match=msg):
667
+ arr.searchsorted(other)
668
+
669
+ def test_shift_fill_value(self):
670
+ dti = pd.date_range("2016-01-01", periods=3)
671
+
672
+ dta = dti._data
673
+ expected = DatetimeArray._from_sequence(np.roll(dta._ndarray, 1))
674
+
675
+ fv = dta[-1]
676
+ for fill_value in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
677
+ result = dta.shift(1, fill_value=fill_value)
678
+ tm.assert_datetime_array_equal(result, expected)
679
+
680
+ dta = dta.tz_localize("UTC")
681
+ expected = expected.tz_localize("UTC")
682
+ fv = dta[-1]
683
+ for fill_value in [fv, fv.to_pydatetime()]:
684
+ result = dta.shift(1, fill_value=fill_value)
685
+ tm.assert_datetime_array_equal(result, expected)
686
+
687
+ def test_shift_value_tzawareness_mismatch(self):
688
+ dti = pd.date_range("2016-01-01", periods=3)
689
+
690
+ dta = dti._data
691
+
692
+ fv = dta[-1].tz_localize("UTC")
693
+ for invalid in [fv, fv.to_pydatetime()]:
694
+ with pytest.raises(TypeError, match="Cannot compare"):
695
+ dta.shift(1, fill_value=invalid)
696
+
697
+ dta = dta.tz_localize("UTC")
698
+ fv = dta[-1].tz_localize(None)
699
+ for invalid in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
700
+ with pytest.raises(TypeError, match="Cannot compare"):
701
+ dta.shift(1, fill_value=invalid)
702
+
703
+ def test_shift_requires_tzmatch(self):
704
+ # pre-2.0 we required exact tz match, in 2.0 we require just
705
+ # matching tzawareness
706
+ dti = pd.date_range("2016-01-01", periods=3, tz="UTC")
707
+ dta = dti._data
708
+
709
+ fill_value = pd.Timestamp("2020-10-18 18:44", tz="US/Pacific")
710
+
711
+ result = dta.shift(1, fill_value=fill_value)
712
+ expected = dta.shift(1, fill_value=fill_value.tz_convert("UTC"))
713
+ tm.assert_equal(result, expected)
714
+
715
+ def test_tz_localize_t2d(self):
716
+ dti = pd.date_range("1994-05-12", periods=12, tz="US/Pacific")
717
+ dta = dti._data.reshape(3, 4)
718
+ result = dta.tz_localize(None)
719
+
720
+ expected = dta.ravel().tz_localize(None).reshape(dta.shape)
721
+ tm.assert_datetime_array_equal(result, expected)
722
+
723
+ roundtrip = expected.tz_localize("US/Pacific")
724
+ tm.assert_datetime_array_equal(roundtrip, dta)
725
+
726
+ easts = ["US/Eastern", "dateutil/US/Eastern"]
727
+ if ZoneInfo is not None:
728
+ try:
729
+ tz = ZoneInfo("US/Eastern")
730
+ except KeyError:
731
+ # no tzdata
732
+ pass
733
+ else:
734
+ # Argument 1 to "append" of "list" has incompatible type "ZoneInfo";
735
+ # expected "str"
736
+ easts.append(tz) # type: ignore[arg-type]
737
+
738
+ @pytest.mark.parametrize("tz", easts)
739
+ def test_iter_zoneinfo_fold(self, tz):
740
+ # GH#49684
741
+ utc_vals = np.array(
742
+ [1320552000, 1320555600, 1320559200, 1320562800], dtype=np.int64
743
+ )
744
+ utc_vals *= 1_000_000_000
745
+
746
+ dta = DatetimeArray._from_sequence(utc_vals).tz_localize("UTC").tz_convert(tz)
747
+
748
+ left = dta[2]
749
+ right = list(dta)[2]
750
+ assert str(left) == str(right)
751
+ # previously there was a bug where with non-pytz right would be
752
+ # Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern')
753
+ # while left would be
754
+ # Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern')
755
+ # The .value's would match (so they would compare as equal),
756
+ # but the folds would not
757
+ assert left.utcoffset() == right.utcoffset()
758
+
759
+ # The same bug in ints_to_pydatetime affected .astype, so we test
760
+ # that here.
761
+ right2 = dta.astype(object)[2]
762
+ assert str(left) == str(right2)
763
+ assert left.utcoffset() == right2.utcoffset()
764
+
765
+ @pytest.mark.parametrize(
766
+ "freq, freq_depr",
767
+ [
768
+ ("2ME", "2M"),
769
+ ("2SME", "2SM"),
770
+ ("2SME", "2sm"),
771
+ ("2QE", "2Q"),
772
+ ("2QE-SEP", "2Q-SEP"),
773
+ ("1YE", "1Y"),
774
+ ("2YE-MAR", "2Y-MAR"),
775
+ ("1YE", "1A"),
776
+ ("2YE-MAR", "2A-MAR"),
777
+ ("2ME", "2m"),
778
+ ("2QE-SEP", "2q-sep"),
779
+ ("2YE-MAR", "2a-mar"),
780
+ ("2YE", "2y"),
781
+ ],
782
+ )
783
+ def test_date_range_frequency_M_Q_Y_A_deprecated(self, freq, freq_depr):
784
+ # GH#9586, GH#54275
785
+ depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed "
786
+ f"in a future version, please use '{freq[1:]}' instead."
787
+
788
+ expected = pd.date_range("1/1/2000", periods=4, freq=freq)
789
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
790
+ result = pd.date_range("1/1/2000", periods=4, freq=freq_depr)
791
+ tm.assert_index_equal(result, expected)
792
+
793
+ @pytest.mark.parametrize("freq_depr", ["2H", "2CBH", "2MIN", "2S", "2mS", "2Us"])
794
+ def test_date_range_uppercase_frequency_deprecated(self, freq_depr):
795
+ # GH#9586, GH#54939
796
+ depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed in a "
797
+ f"future version. Please use '{freq_depr.lower()[1:]}' instead."
798
+
799
+ expected = pd.date_range("1/1/2000", periods=4, freq=freq_depr.lower())
800
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
801
+ result = pd.date_range("1/1/2000", periods=4, freq=freq_depr)
802
+ tm.assert_index_equal(result, expected)
803
+
804
+ @pytest.mark.parametrize(
805
+ "freq_depr",
806
+ [
807
+ "2ye-mar",
808
+ "2ys",
809
+ "2qe",
810
+ "2qs-feb",
811
+ "2bqs",
812
+ "2sms",
813
+ "2bms",
814
+ "2cbme",
815
+ "2me",
816
+ "2w",
817
+ ],
818
+ )
819
+ def test_date_range_lowercase_frequency_deprecated(self, freq_depr):
820
+ # GH#9586, GH#54939
821
+ depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed in a "
822
+ f"future version, please use '{freq_depr.upper()[1:]}' instead."
823
+
824
+ expected = pd.date_range("1/1/2000", periods=4, freq=freq_depr.upper())
825
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
826
+ result = pd.date_range("1/1/2000", periods=4, freq=freq_depr)
827
+ tm.assert_index_equal(result, expected)
828
+
829
+
830
+ def test_factorize_sort_without_freq():
831
+ dta = DatetimeArray._from_sequence([0, 2, 1], dtype="M8[ns]")
832
+
833
+ msg = r"call pd.factorize\(obj, sort=True\) instead"
834
+ with pytest.raises(NotImplementedError, match=msg):
835
+ dta.factorize(sort=True)
836
+
837
+ # Do TimedeltaArray while we're here
838
+ tda = dta - dta[0]
839
+ with pytest.raises(NotImplementedError, match=msg):
840
+ tda.factorize(sort=True)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_ndarray_backed.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for subclasses of NDArrayBackedExtensionArray
3
+ """
4
+ import numpy as np
5
+
6
+ from pandas import (
7
+ CategoricalIndex,
8
+ date_range,
9
+ )
10
+ from pandas.core.arrays import (
11
+ Categorical,
12
+ DatetimeArray,
13
+ NumpyExtensionArray,
14
+ TimedeltaArray,
15
+ )
16
+
17
+
18
+ class TestEmpty:
19
+ def test_empty_categorical(self):
20
+ ci = CategoricalIndex(["a", "b", "c"], ordered=True)
21
+ dtype = ci.dtype
22
+
23
+ # case with int8 codes
24
+ shape = (4,)
25
+ result = Categorical._empty(shape, dtype=dtype)
26
+ assert isinstance(result, Categorical)
27
+ assert result.shape == shape
28
+ assert result._ndarray.dtype == np.int8
29
+
30
+ # case where repr would segfault if we didn't override base implementation
31
+ result = Categorical._empty((4096,), dtype=dtype)
32
+ assert isinstance(result, Categorical)
33
+ assert result.shape == (4096,)
34
+ assert result._ndarray.dtype == np.int8
35
+ repr(result)
36
+
37
+ # case with int16 codes
38
+ ci = CategoricalIndex(list(range(512)) * 4, ordered=False)
39
+ dtype = ci.dtype
40
+ result = Categorical._empty(shape, dtype=dtype)
41
+ assert isinstance(result, Categorical)
42
+ assert result.shape == shape
43
+ assert result._ndarray.dtype == np.int16
44
+
45
+ def test_empty_dt64tz(self):
46
+ dti = date_range("2016-01-01", periods=2, tz="Asia/Tokyo")
47
+ dtype = dti.dtype
48
+
49
+ shape = (0,)
50
+ result = DatetimeArray._empty(shape, dtype=dtype)
51
+ assert result.dtype == dtype
52
+ assert isinstance(result, DatetimeArray)
53
+ assert result.shape == shape
54
+
55
+ def test_empty_dt64(self):
56
+ shape = (3, 9)
57
+ result = DatetimeArray._empty(shape, dtype="datetime64[ns]")
58
+ assert isinstance(result, DatetimeArray)
59
+ assert result.shape == shape
60
+
61
+ def test_empty_td64(self):
62
+ shape = (3, 9)
63
+ result = TimedeltaArray._empty(shape, dtype="m8[ns]")
64
+ assert isinstance(result, TimedeltaArray)
65
+ assert result.shape == shape
66
+
67
+ def test_empty_pandas_array(self):
68
+ arr = NumpyExtensionArray(np.array([1, 2]))
69
+ dtype = arr.dtype
70
+
71
+ shape = (3, 9)
72
+ result = NumpyExtensionArray._empty(shape, dtype=dtype)
73
+ assert isinstance(result, NumpyExtensionArray)
74
+ assert result.dtype == dtype
75
+ assert result.shape == shape
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_period.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._libs.tslibs import iNaT
5
+ from pandas._libs.tslibs.period import IncompatibleFrequency
6
+
7
+ from pandas.core.dtypes.base import _registry as registry
8
+ from pandas.core.dtypes.dtypes import PeriodDtype
9
+
10
+ import pandas as pd
11
+ import pandas._testing as tm
12
+ from pandas.core.arrays import PeriodArray
13
+
14
+ # ----------------------------------------------------------------------------
15
+ # Dtype
16
+
17
+
18
+ def test_registered():
19
+ assert PeriodDtype in registry.dtypes
20
+ result = registry.find("Period[D]")
21
+ expected = PeriodDtype("D")
22
+ assert result == expected
23
+
24
+
25
+ # ----------------------------------------------------------------------------
26
+ # period_array
27
+
28
+
29
+ def test_asi8():
30
+ result = PeriodArray._from_sequence(["2000", "2001", None], dtype="period[D]").asi8
31
+ expected = np.array([10957, 11323, iNaT])
32
+ tm.assert_numpy_array_equal(result, expected)
33
+
34
+
35
+ def test_take_raises():
36
+ arr = PeriodArray._from_sequence(["2000", "2001"], dtype="period[D]")
37
+ with pytest.raises(IncompatibleFrequency, match="freq"):
38
+ arr.take([0, -1], allow_fill=True, fill_value=pd.Period("2000", freq="W"))
39
+
40
+ msg = "value should be a 'Period' or 'NaT'. Got 'str' instead"
41
+ with pytest.raises(TypeError, match=msg):
42
+ arr.take([0, -1], allow_fill=True, fill_value="foo")
43
+
44
+
45
+ def test_fillna_raises():
46
+ arr = PeriodArray._from_sequence(["2000", "2001", "2002"], dtype="period[D]")
47
+ with pytest.raises(ValueError, match="Length"):
48
+ arr.fillna(arr[:2])
49
+
50
+
51
+ def test_fillna_copies():
52
+ arr = PeriodArray._from_sequence(["2000", "2001", "2002"], dtype="period[D]")
53
+ result = arr.fillna(pd.Period("2000", "D"))
54
+ assert result is not arr
55
+
56
+
57
+ # ----------------------------------------------------------------------------
58
+ # setitem
59
+
60
+
61
+ @pytest.mark.parametrize(
62
+ "key, value, expected",
63
+ [
64
+ ([0], pd.Period("2000", "D"), [10957, 1, 2]),
65
+ ([0], None, [iNaT, 1, 2]),
66
+ ([0], np.nan, [iNaT, 1, 2]),
67
+ ([0, 1, 2], pd.Period("2000", "D"), [10957] * 3),
68
+ (
69
+ [0, 1, 2],
70
+ [pd.Period("2000", "D"), pd.Period("2001", "D"), pd.Period("2002", "D")],
71
+ [10957, 11323, 11688],
72
+ ),
73
+ ],
74
+ )
75
+ def test_setitem(key, value, expected):
76
+ arr = PeriodArray(np.arange(3), dtype="period[D]")
77
+ expected = PeriodArray(expected, dtype="period[D]")
78
+ arr[key] = value
79
+ tm.assert_period_array_equal(arr, expected)
80
+
81
+
82
+ def test_setitem_raises_incompatible_freq():
83
+ arr = PeriodArray(np.arange(3), dtype="period[D]")
84
+ with pytest.raises(IncompatibleFrequency, match="freq"):
85
+ arr[0] = pd.Period("2000", freq="Y")
86
+
87
+ other = PeriodArray._from_sequence(["2000", "2001"], dtype="period[Y]")
88
+ with pytest.raises(IncompatibleFrequency, match="freq"):
89
+ arr[[0, 1]] = other
90
+
91
+
92
+ def test_setitem_raises_length():
93
+ arr = PeriodArray(np.arange(3), dtype="period[D]")
94
+ with pytest.raises(ValueError, match="length"):
95
+ arr[[0, 1]] = [pd.Period("2000", freq="D")]
96
+
97
+
98
+ def test_setitem_raises_type():
99
+ arr = PeriodArray(np.arange(3), dtype="period[D]")
100
+ with pytest.raises(TypeError, match="int"):
101
+ arr[0] = 1
102
+
103
+
104
+ # ----------------------------------------------------------------------------
105
+ # Ops
106
+
107
+
108
+ def test_sub_period():
109
+ arr = PeriodArray._from_sequence(["2000", "2001"], dtype="period[D]")
110
+ other = pd.Period("2000", freq="M")
111
+ with pytest.raises(IncompatibleFrequency, match="freq"):
112
+ arr - other
113
+
114
+
115
+ def test_sub_period_overflow():
116
+ # GH#47538
117
+ dti = pd.date_range("1677-09-22", periods=2, freq="D")
118
+ pi = dti.to_period("ns")
119
+
120
+ per = pd.Period._from_ordinal(10**14, pi.freq)
121
+
122
+ with pytest.raises(OverflowError, match="Overflow in int64 addition"):
123
+ pi - per
124
+
125
+ with pytest.raises(OverflowError, match="Overflow in int64 addition"):
126
+ per - pi
127
+
128
+
129
+ # ----------------------------------------------------------------------------
130
+ # Methods
131
+
132
+
133
+ @pytest.mark.parametrize(
134
+ "other",
135
+ [
136
+ pd.Period("2000", freq="h"),
137
+ PeriodArray._from_sequence(["2000", "2001", "2000"], dtype="period[h]"),
138
+ ],
139
+ )
140
+ def test_where_different_freq_raises(other):
141
+ # GH#45768 The PeriodArray method raises, the Series method coerces
142
+ ser = pd.Series(
143
+ PeriodArray._from_sequence(["2000", "2001", "2002"], dtype="period[D]")
144
+ )
145
+ cond = np.array([True, False, True])
146
+
147
+ with pytest.raises(IncompatibleFrequency, match="freq"):
148
+ ser.array._where(cond, other)
149
+
150
+ res = ser.where(cond, other)
151
+ expected = ser.astype(object).where(cond, other)
152
+ tm.assert_series_equal(res, expected)
153
+
154
+
155
+ # ----------------------------------------------------------------------------
156
+ # Printing
157
+
158
+
159
+ def test_repr_small():
160
+ arr = PeriodArray._from_sequence(["2000", "2001"], dtype="period[D]")
161
+ result = str(arr)
162
+ expected = (
163
+ "<PeriodArray>\n['2000-01-01', '2001-01-01']\nLength: 2, dtype: period[D]"
164
+ )
165
+ assert result == expected
166
+
167
+
168
+ def test_repr_large():
169
+ arr = PeriodArray._from_sequence(["2000", "2001"] * 500, dtype="period[D]")
170
+ result = str(arr)
171
+ expected = (
172
+ "<PeriodArray>\n"
173
+ "['2000-01-01', '2001-01-01', '2000-01-01', '2001-01-01', "
174
+ "'2000-01-01',\n"
175
+ " '2001-01-01', '2000-01-01', '2001-01-01', '2000-01-01', "
176
+ "'2001-01-01',\n"
177
+ " ...\n"
178
+ " '2000-01-01', '2001-01-01', '2000-01-01', '2001-01-01', "
179
+ "'2000-01-01',\n"
180
+ " '2001-01-01', '2000-01-01', '2001-01-01', '2000-01-01', "
181
+ "'2001-01-01']\n"
182
+ "Length: 1000, dtype: period[D]"
183
+ )
184
+ assert result == expected
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/test_timedeltas.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import timedelta
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ from pandas import Timedelta
8
+ import pandas._testing as tm
9
+ from pandas.core.arrays import (
10
+ DatetimeArray,
11
+ TimedeltaArray,
12
+ )
13
+
14
+
15
+ class TestNonNano:
16
+ @pytest.fixture(params=["s", "ms", "us"])
17
+ def unit(self, request):
18
+ return request.param
19
+
20
+ @pytest.fixture
21
+ def tda(self, unit):
22
+ arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]")
23
+ return TimedeltaArray._simple_new(arr, dtype=arr.dtype)
24
+
25
+ def test_non_nano(self, unit):
26
+ arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]")
27
+ tda = TimedeltaArray._simple_new(arr, dtype=arr.dtype)
28
+
29
+ assert tda.dtype == arr.dtype
30
+ assert tda[0].unit == unit
31
+
32
+ def test_as_unit_raises(self, tda):
33
+ # GH#50616
34
+ with pytest.raises(ValueError, match="Supported units"):
35
+ tda.as_unit("D")
36
+
37
+ tdi = pd.Index(tda)
38
+ with pytest.raises(ValueError, match="Supported units"):
39
+ tdi.as_unit("D")
40
+
41
+ @pytest.mark.parametrize("field", TimedeltaArray._field_ops)
42
+ def test_fields(self, tda, field):
43
+ as_nano = tda._ndarray.astype("m8[ns]")
44
+ tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
45
+
46
+ result = getattr(tda, field)
47
+ expected = getattr(tda_nano, field)
48
+ tm.assert_numpy_array_equal(result, expected)
49
+
50
+ def test_to_pytimedelta(self, tda):
51
+ as_nano = tda._ndarray.astype("m8[ns]")
52
+ tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
53
+
54
+ result = tda.to_pytimedelta()
55
+ expected = tda_nano.to_pytimedelta()
56
+ tm.assert_numpy_array_equal(result, expected)
57
+
58
+ def test_total_seconds(self, unit, tda):
59
+ as_nano = tda._ndarray.astype("m8[ns]")
60
+ tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
61
+
62
+ result = tda.total_seconds()
63
+ expected = tda_nano.total_seconds()
64
+ tm.assert_numpy_array_equal(result, expected)
65
+
66
+ def test_timedelta_array_total_seconds(self):
67
+ # GH34290
68
+ expected = Timedelta("2 min").total_seconds()
69
+
70
+ result = pd.array([Timedelta("2 min")]).total_seconds()[0]
71
+ assert result == expected
72
+
73
+ def test_total_seconds_nanoseconds(self):
74
+ # issue #48521
75
+ start_time = pd.Series(["2145-11-02 06:00:00"]).astype("datetime64[ns]")
76
+ end_time = pd.Series(["2145-11-02 07:06:00"]).astype("datetime64[ns]")
77
+ expected = (end_time - start_time).values / np.timedelta64(1, "s")
78
+ result = (end_time - start_time).dt.total_seconds().values
79
+ assert result == expected
80
+
81
+ @pytest.mark.parametrize(
82
+ "nat", [np.datetime64("NaT", "ns"), np.datetime64("NaT", "us")]
83
+ )
84
+ def test_add_nat_datetimelike_scalar(self, nat, tda):
85
+ result = tda + nat
86
+ assert isinstance(result, DatetimeArray)
87
+ assert result._creso == tda._creso
88
+ assert result.isna().all()
89
+
90
+ result = nat + tda
91
+ assert isinstance(result, DatetimeArray)
92
+ assert result._creso == tda._creso
93
+ assert result.isna().all()
94
+
95
+ def test_add_pdnat(self, tda):
96
+ result = tda + pd.NaT
97
+ assert isinstance(result, TimedeltaArray)
98
+ assert result._creso == tda._creso
99
+ assert result.isna().all()
100
+
101
+ result = pd.NaT + tda
102
+ assert isinstance(result, TimedeltaArray)
103
+ assert result._creso == tda._creso
104
+ assert result.isna().all()
105
+
106
+ # TODO: 2022-07-11 this is the only test that gets to DTA.tz_convert
107
+ # or tz_localize with non-nano; implement tests specific to that.
108
+ def test_add_datetimelike_scalar(self, tda, tz_naive_fixture):
109
+ ts = pd.Timestamp("2016-01-01", tz=tz_naive_fixture).as_unit("ns")
110
+
111
+ expected = tda.as_unit("ns") + ts
112
+ res = tda + ts
113
+ tm.assert_extension_array_equal(res, expected)
114
+ res = ts + tda
115
+ tm.assert_extension_array_equal(res, expected)
116
+
117
+ ts += Timedelta(1) # case where we can't cast losslessly
118
+
119
+ exp_values = tda._ndarray + ts.asm8
120
+ expected = (
121
+ DatetimeArray._simple_new(exp_values, dtype=exp_values.dtype)
122
+ .tz_localize("UTC")
123
+ .tz_convert(ts.tz)
124
+ )
125
+
126
+ result = tda + ts
127
+ tm.assert_extension_array_equal(result, expected)
128
+
129
+ result = ts + tda
130
+ tm.assert_extension_array_equal(result, expected)
131
+
132
+ def test_mul_scalar(self, tda):
133
+ other = 2
134
+ result = tda * other
135
+ expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
136
+ tm.assert_extension_array_equal(result, expected)
137
+ assert result._creso == tda._creso
138
+
139
+ def test_mul_listlike(self, tda):
140
+ other = np.arange(len(tda))
141
+ result = tda * other
142
+ expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
143
+ tm.assert_extension_array_equal(result, expected)
144
+ assert result._creso == tda._creso
145
+
146
+ def test_mul_listlike_object(self, tda):
147
+ other = np.arange(len(tda))
148
+ result = tda * other.astype(object)
149
+ expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
150
+ tm.assert_extension_array_equal(result, expected)
151
+ assert result._creso == tda._creso
152
+
153
+ def test_div_numeric_scalar(self, tda):
154
+ other = 2
155
+ result = tda / other
156
+ expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype)
157
+ tm.assert_extension_array_equal(result, expected)
158
+ assert result._creso == tda._creso
159
+
160
+ def test_div_td_scalar(self, tda):
161
+ other = timedelta(seconds=1)
162
+ result = tda / other
163
+ expected = tda._ndarray / np.timedelta64(1, "s")
164
+ tm.assert_numpy_array_equal(result, expected)
165
+
166
+ def test_div_numeric_array(self, tda):
167
+ other = np.arange(len(tda))
168
+ result = tda / other
169
+ expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype)
170
+ tm.assert_extension_array_equal(result, expected)
171
+ assert result._creso == tda._creso
172
+
173
+ def test_div_td_array(self, tda):
174
+ other = tda._ndarray + tda._ndarray[-1]
175
+ result = tda / other
176
+ expected = tda._ndarray / other
177
+ tm.assert_numpy_array_equal(result, expected)
178
+
179
+ def test_add_timedeltaarraylike(self, tda):
180
+ tda_nano = tda.astype("m8[ns]")
181
+
182
+ expected = tda_nano * 2
183
+ res = tda_nano + tda
184
+ tm.assert_extension_array_equal(res, expected)
185
+ res = tda + tda_nano
186
+ tm.assert_extension_array_equal(res, expected)
187
+
188
+ expected = tda_nano * 0
189
+ res = tda - tda_nano
190
+ tm.assert_extension_array_equal(res, expected)
191
+
192
+ res = tda_nano - tda
193
+ tm.assert_extension_array_equal(res, expected)
194
+
195
+
196
+ class TestTimedeltaArray:
197
+ @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
198
+ def test_astype_int(self, dtype):
199
+ arr = TimedeltaArray._from_sequence(
200
+ [Timedelta("1h"), Timedelta("2h")], dtype="m8[ns]"
201
+ )
202
+
203
+ if np.dtype(dtype) != np.int64:
204
+ with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
205
+ arr.astype(dtype)
206
+ return
207
+
208
+ result = arr.astype(dtype)
209
+ expected = arr._ndarray.view("i8")
210
+ tm.assert_numpy_array_equal(result, expected)
211
+
212
+ def test_setitem_clears_freq(self):
213
+ a = pd.timedelta_range("1h", periods=2, freq="h")._data
214
+ a[0] = Timedelta("1h")
215
+ assert a.freq is None
216
+
217
+ @pytest.mark.parametrize(
218
+ "obj",
219
+ [
220
+ Timedelta(seconds=1),
221
+ Timedelta(seconds=1).to_timedelta64(),
222
+ Timedelta(seconds=1).to_pytimedelta(),
223
+ ],
224
+ )
225
+ def test_setitem_objects(self, obj):
226
+ # make sure we accept timedelta64 and timedelta in addition to Timedelta
227
+ tdi = pd.timedelta_range("2 Days", periods=4, freq="h")
228
+ arr = tdi._data
229
+
230
+ arr[0] = obj
231
+ assert arr[0] == Timedelta(seconds=1)
232
+
233
+ @pytest.mark.parametrize(
234
+ "other",
235
+ [
236
+ 1,
237
+ np.int64(1),
238
+ 1.0,
239
+ np.datetime64("NaT"),
240
+ pd.Timestamp("2021-01-01"),
241
+ "invalid",
242
+ np.arange(10, dtype="i8") * 24 * 3600 * 10**9,
243
+ (np.arange(10) * 24 * 3600 * 10**9).view("datetime64[ns]"),
244
+ pd.Timestamp("2021-01-01").to_period("D"),
245
+ ],
246
+ )
247
+ @pytest.mark.parametrize("index", [True, False])
248
+ def test_searchsorted_invalid_types(self, other, index):
249
+ data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
250
+ arr = pd.TimedeltaIndex(data, freq="D")._data
251
+ if index:
252
+ arr = pd.Index(arr)
253
+
254
+ msg = "|".join(
255
+ [
256
+ "searchsorted requires compatible dtype or scalar",
257
+ "value should be a 'Timedelta', 'NaT', or array of those. Got",
258
+ ]
259
+ )
260
+ with pytest.raises(TypeError, match=msg):
261
+ arr.searchsorted(other)
262
+
263
+
264
+ class TestUnaryOps:
265
+ def test_abs(self):
266
+ vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
267
+ arr = TimedeltaArray._from_sequence(vals)
268
+
269
+ evals = np.array([3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
270
+ expected = TimedeltaArray._from_sequence(evals)
271
+
272
+ result = abs(arr)
273
+ tm.assert_timedelta_array_equal(result, expected)
274
+
275
+ result2 = np.abs(arr)
276
+ tm.assert_timedelta_array_equal(result2, expected)
277
+
278
+ def test_pos(self):
279
+ vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
280
+ arr = TimedeltaArray._from_sequence(vals)
281
+
282
+ result = +arr
283
+ tm.assert_timedelta_array_equal(result, arr)
284
+ assert not tm.shares_memory(result, arr)
285
+
286
+ result2 = np.positive(arr)
287
+ tm.assert_timedelta_array_equal(result2, arr)
288
+ assert not tm.shares_memory(result2, arr)
289
+
290
+ def test_neg(self):
291
+ vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
292
+ arr = TimedeltaArray._from_sequence(vals)
293
+
294
+ evals = np.array([3600 * 10**9, "NaT", -7200 * 10**9], dtype="m8[ns]")
295
+ expected = TimedeltaArray._from_sequence(evals)
296
+
297
+ result = -arr
298
+ tm.assert_timedelta_array_equal(result, expected)
299
+
300
+ result2 = np.negative(arr)
301
+ tm.assert_timedelta_array_equal(result2, expected)
302
+
303
+ def test_neg_freq(self):
304
+ tdi = pd.timedelta_range("2 Days", periods=4, freq="h")
305
+ arr = tdi._data
306
+
307
+ expected = -tdi._data
308
+
309
+ result = -arr
310
+ tm.assert_timedelta_array_equal(result, expected)
311
+
312
+ result2 = np.negative(arr)
313
+ tm.assert_timedelta_array_equal(result2, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (201 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc ADDED
Binary file (11.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_getitem.cpython-310.pyc ADDED
Binary file (26.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_mask.cpython-310.pyc ADDED
Binary file (1.94 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_set_value.cpython-310.pyc ADDED
Binary file (1.26 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_setitem.cpython-310.pyc ADDED
Binary file (55.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py ADDED
@@ -0,0 +1,499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Also test support for datetime64[ns] in Series / DataFrame
3
+ """
4
+ from datetime import (
5
+ datetime,
6
+ timedelta,
7
+ )
8
+ import re
9
+
10
+ from dateutil.tz import (
11
+ gettz,
12
+ tzutc,
13
+ )
14
+ import numpy as np
15
+ import pytest
16
+ import pytz
17
+
18
+ from pandas._libs import index as libindex
19
+
20
+ import pandas as pd
21
+ from pandas import (
22
+ DataFrame,
23
+ Series,
24
+ Timestamp,
25
+ date_range,
26
+ period_range,
27
+ )
28
+ import pandas._testing as tm
29
+
30
+
31
+ def test_fancy_getitem():
32
+ dti = date_range(
33
+ freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)
34
+ )
35
+
36
+ s = Series(np.arange(len(dti)), index=dti)
37
+
38
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
39
+ with tm.assert_produces_warning(FutureWarning, match=msg):
40
+ assert s[48] == 48
41
+ assert s["1/2/2009"] == 48
42
+ assert s["2009-1-2"] == 48
43
+ assert s[datetime(2009, 1, 2)] == 48
44
+ assert s[Timestamp(datetime(2009, 1, 2))] == 48
45
+ with pytest.raises(KeyError, match=r"^'2009-1-3'$"):
46
+ s["2009-1-3"]
47
+ tm.assert_series_equal(
48
+ s["3/6/2009":"2009-06-05"], s[datetime(2009, 3, 6) : datetime(2009, 6, 5)]
49
+ )
50
+
51
+
52
+ def test_fancy_setitem():
53
+ dti = date_range(
54
+ freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)
55
+ )
56
+
57
+ s = Series(np.arange(len(dti)), index=dti)
58
+
59
+ msg = "Series.__setitem__ treating keys as positions is deprecated"
60
+ with tm.assert_produces_warning(FutureWarning, match=msg):
61
+ s[48] = -1
62
+ assert s.iloc[48] == -1
63
+ s["1/2/2009"] = -2
64
+ assert s.iloc[48] == -2
65
+ s["1/2/2009":"2009-06-05"] = -3
66
+ assert (s[48:54] == -3).all()
67
+
68
+
69
+ @pytest.mark.parametrize("tz_source", ["pytz", "dateutil"])
70
+ def test_getitem_setitem_datetime_tz(tz_source):
71
+ if tz_source == "pytz":
72
+ tzget = pytz.timezone
73
+ else:
74
+ # handle special case for utc in dateutil
75
+ tzget = lambda x: tzutc() if x == "UTC" else gettz(x)
76
+
77
+ N = 50
78
+ # testing with timezone, GH #2785
79
+ rng = date_range("1/1/1990", periods=N, freq="h", tz=tzget("US/Eastern"))
80
+ ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
81
+
82
+ # also test Timestamp tz handling, GH #2789
83
+ result = ts.copy()
84
+ result["1990-01-01 09:00:00+00:00"] = 0
85
+ result["1990-01-01 09:00:00+00:00"] = ts.iloc[4]
86
+ tm.assert_series_equal(result, ts)
87
+
88
+ result = ts.copy()
89
+ result["1990-01-01 03:00:00-06:00"] = 0
90
+ result["1990-01-01 03:00:00-06:00"] = ts.iloc[4]
91
+ tm.assert_series_equal(result, ts)
92
+
93
+ # repeat with datetimes
94
+ result = ts.copy()
95
+ result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = 0
96
+ result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = ts.iloc[4]
97
+ tm.assert_series_equal(result, ts)
98
+
99
+ result = ts.copy()
100
+ dt = Timestamp(1990, 1, 1, 3).tz_localize(tzget("US/Central"))
101
+ dt = dt.to_pydatetime()
102
+ result[dt] = 0
103
+ result[dt] = ts.iloc[4]
104
+ tm.assert_series_equal(result, ts)
105
+
106
+
107
+ def test_getitem_setitem_datetimeindex():
108
+ N = 50
109
+ # testing with timezone, GH #2785
110
+ rng = date_range("1/1/1990", periods=N, freq="h", tz="US/Eastern")
111
+ ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
112
+
113
+ result = ts["1990-01-01 04:00:00"]
114
+ expected = ts.iloc[4]
115
+ assert result == expected
116
+
117
+ result = ts.copy()
118
+ result["1990-01-01 04:00:00"] = 0
119
+ result["1990-01-01 04:00:00"] = ts.iloc[4]
120
+ tm.assert_series_equal(result, ts)
121
+
122
+ result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"]
123
+ expected = ts[4:8]
124
+ tm.assert_series_equal(result, expected)
125
+
126
+ result = ts.copy()
127
+ result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0
128
+ result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8]
129
+ tm.assert_series_equal(result, ts)
130
+
131
+ lb = "1990-01-01 04:00:00"
132
+ rb = "1990-01-01 07:00:00"
133
+ # GH#18435 strings get a pass from tzawareness compat
134
+ result = ts[(ts.index >= lb) & (ts.index <= rb)]
135
+ expected = ts[4:8]
136
+ tm.assert_series_equal(result, expected)
137
+
138
+ lb = "1990-01-01 04:00:00-0500"
139
+ rb = "1990-01-01 07:00:00-0500"
140
+ result = ts[(ts.index >= lb) & (ts.index <= rb)]
141
+ expected = ts[4:8]
142
+ tm.assert_series_equal(result, expected)
143
+
144
+ # But we do not give datetimes a pass on tzawareness compat
145
+ msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
146
+ naive = datetime(1990, 1, 1, 4)
147
+ for key in [naive, Timestamp(naive), np.datetime64(naive, "ns")]:
148
+ with pytest.raises(KeyError, match=re.escape(repr(key))):
149
+ # GH#36148 as of 2.0 we require tzawareness-compat
150
+ ts[key]
151
+
152
+ result = ts.copy()
153
+ # GH#36148 as of 2.0 we do not ignore tzawareness mismatch in indexing,
154
+ # so setting it as a new key casts to object rather than matching
155
+ # rng[4]
156
+ result[naive] = ts.iloc[4]
157
+ assert result.index.dtype == object
158
+ tm.assert_index_equal(result.index[:-1], rng.astype(object))
159
+ assert result.index[-1] == naive
160
+
161
+ msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
162
+ with pytest.raises(TypeError, match=msg):
163
+ # GH#36148 require tzawareness compat as of 2.0
164
+ ts[naive : datetime(1990, 1, 1, 7)]
165
+
166
+ result = ts.copy()
167
+ with pytest.raises(TypeError, match=msg):
168
+ # GH#36148 require tzawareness compat as of 2.0
169
+ result[naive : datetime(1990, 1, 1, 7)] = 0
170
+ with pytest.raises(TypeError, match=msg):
171
+ # GH#36148 require tzawareness compat as of 2.0
172
+ result[naive : datetime(1990, 1, 1, 7)] = 99
173
+ # the __setitems__ here failed, so result should still match ts
174
+ tm.assert_series_equal(result, ts)
175
+
176
+ lb = naive
177
+ rb = datetime(1990, 1, 1, 7)
178
+ msg = r"Invalid comparison between dtype=datetime64\[ns, US/Eastern\] and datetime"
179
+ with pytest.raises(TypeError, match=msg):
180
+ # tznaive vs tzaware comparison is invalid
181
+ # see GH#18376, GH#18162
182
+ ts[(ts.index >= lb) & (ts.index <= rb)]
183
+
184
+ lb = Timestamp(naive).tz_localize(rng.tzinfo)
185
+ rb = Timestamp(datetime(1990, 1, 1, 7)).tz_localize(rng.tzinfo)
186
+ result = ts[(ts.index >= lb) & (ts.index <= rb)]
187
+ expected = ts[4:8]
188
+ tm.assert_series_equal(result, expected)
189
+
190
+ result = ts[ts.index[4]]
191
+ expected = ts.iloc[4]
192
+ assert result == expected
193
+
194
+ result = ts[ts.index[4:8]]
195
+ expected = ts[4:8]
196
+ tm.assert_series_equal(result, expected)
197
+
198
+ result = ts.copy()
199
+ result[ts.index[4:8]] = 0
200
+ result.iloc[4:8] = ts.iloc[4:8]
201
+ tm.assert_series_equal(result, ts)
202
+
203
+ # also test partial date slicing
204
+ result = ts["1990-01-02"]
205
+ expected = ts[24:48]
206
+ tm.assert_series_equal(result, expected)
207
+
208
+ result = ts.copy()
209
+ result["1990-01-02"] = 0
210
+ result["1990-01-02"] = ts[24:48]
211
+ tm.assert_series_equal(result, ts)
212
+
213
+
214
+ def test_getitem_setitem_periodindex():
215
+ N = 50
216
+ rng = period_range("1/1/1990", periods=N, freq="h")
217
+ ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
218
+
219
+ result = ts["1990-01-01 04"]
220
+ expected = ts.iloc[4]
221
+ assert result == expected
222
+
223
+ result = ts.copy()
224
+ result["1990-01-01 04"] = 0
225
+ result["1990-01-01 04"] = ts.iloc[4]
226
+ tm.assert_series_equal(result, ts)
227
+
228
+ result = ts["1990-01-01 04":"1990-01-01 07"]
229
+ expected = ts[4:8]
230
+ tm.assert_series_equal(result, expected)
231
+
232
+ result = ts.copy()
233
+ result["1990-01-01 04":"1990-01-01 07"] = 0
234
+ result["1990-01-01 04":"1990-01-01 07"] = ts[4:8]
235
+ tm.assert_series_equal(result, ts)
236
+
237
+ lb = "1990-01-01 04"
238
+ rb = "1990-01-01 07"
239
+ result = ts[(ts.index >= lb) & (ts.index <= rb)]
240
+ expected = ts[4:8]
241
+ tm.assert_series_equal(result, expected)
242
+
243
+ # GH 2782
244
+ result = ts[ts.index[4]]
245
+ expected = ts.iloc[4]
246
+ assert result == expected
247
+
248
+ result = ts[ts.index[4:8]]
249
+ expected = ts[4:8]
250
+ tm.assert_series_equal(result, expected)
251
+
252
+ result = ts.copy()
253
+ result[ts.index[4:8]] = 0
254
+ result.iloc[4:8] = ts.iloc[4:8]
255
+ tm.assert_series_equal(result, ts)
256
+
257
+
258
+ def test_datetime_indexing():
259
+ index = date_range("1/1/2000", "1/7/2000")
260
+ index = index.repeat(3)
261
+
262
+ s = Series(len(index), index=index)
263
+ stamp = Timestamp("1/8/2000")
264
+
265
+ with pytest.raises(KeyError, match=re.escape(repr(stamp))):
266
+ s[stamp]
267
+ s[stamp] = 0
268
+ assert s[stamp] == 0
269
+
270
+ # not monotonic
271
+ s = Series(len(index), index=index)
272
+ s = s[::-1]
273
+
274
+ with pytest.raises(KeyError, match=re.escape(repr(stamp))):
275
+ s[stamp]
276
+ s[stamp] = 0
277
+ assert s[stamp] == 0
278
+
279
+
280
+ # test duplicates in time series
281
+
282
+
283
+ def test_indexing_with_duplicate_datetimeindex(
284
+ rand_series_with_duplicate_datetimeindex,
285
+ ):
286
+ ts = rand_series_with_duplicate_datetimeindex
287
+
288
+ uniques = ts.index.unique()
289
+ for date in uniques:
290
+ result = ts[date]
291
+
292
+ mask = ts.index == date
293
+ total = (ts.index == date).sum()
294
+ expected = ts[mask]
295
+ if total > 1:
296
+ tm.assert_series_equal(result, expected)
297
+ else:
298
+ tm.assert_almost_equal(result, expected.iloc[0])
299
+
300
+ cp = ts.copy()
301
+ cp[date] = 0
302
+ expected = Series(np.where(mask, 0, ts), index=ts.index)
303
+ tm.assert_series_equal(cp, expected)
304
+
305
+ key = datetime(2000, 1, 6)
306
+ with pytest.raises(KeyError, match=re.escape(repr(key))):
307
+ ts[key]
308
+
309
+ # new index
310
+ ts[datetime(2000, 1, 6)] = 0
311
+ assert ts[datetime(2000, 1, 6)] == 0
312
+
313
+
314
+ def test_loc_getitem_over_size_cutoff(monkeypatch):
315
+ # #1821
316
+
317
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000)
318
+
319
+ # create large list of non periodic datetime
320
+ dates = []
321
+ sec = timedelta(seconds=1)
322
+ half_sec = timedelta(microseconds=500000)
323
+ d = datetime(2011, 12, 5, 20, 30)
324
+ n = 1100
325
+ for i in range(n):
326
+ dates.append(d)
327
+ dates.append(d + sec)
328
+ dates.append(d + sec + half_sec)
329
+ dates.append(d + sec + sec + half_sec)
330
+ d += 3 * sec
331
+
332
+ # duplicate some values in the list
333
+ duplicate_positions = np.random.default_rng(2).integers(0, len(dates) - 1, 20)
334
+ for p in duplicate_positions:
335
+ dates[p + 1] = dates[p]
336
+
337
+ df = DataFrame(
338
+ np.random.default_rng(2).standard_normal((len(dates), 4)),
339
+ index=dates,
340
+ columns=list("ABCD"),
341
+ )
342
+
343
+ pos = n * 3
344
+ timestamp = df.index[pos]
345
+ assert timestamp in df.index
346
+
347
+ # it works!
348
+ df.loc[timestamp]
349
+ assert len(df.loc[[timestamp]]) > 0
350
+
351
+
352
+ def test_indexing_over_size_cutoff_period_index(monkeypatch):
353
+ # GH 27136
354
+
355
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000)
356
+
357
+ n = 1100
358
+ idx = period_range("1/1/2000", freq="min", periods=n)
359
+ assert idx._engine.over_size_threshold
360
+
361
+ s = Series(np.random.default_rng(2).standard_normal(len(idx)), index=idx)
362
+
363
+ pos = n - 1
364
+ timestamp = idx[pos]
365
+ assert timestamp in s.index
366
+
367
+ # it works!
368
+ s[timestamp]
369
+ assert len(s.loc[[timestamp]]) > 0
370
+
371
+
372
+ def test_indexing_unordered():
373
+ # GH 2437
374
+ rng = date_range(start="2011-01-01", end="2011-01-15")
375
+ ts = Series(np.random.default_rng(2).random(len(rng)), index=rng)
376
+ ts2 = pd.concat([ts[0:4], ts[-4:], ts[4:-4]])
377
+
378
+ for t in ts.index:
379
+ expected = ts[t]
380
+ result = ts2[t]
381
+ assert expected == result
382
+
383
+ # GH 3448 (ranges)
384
+ def compare(slobj):
385
+ result = ts2[slobj].copy()
386
+ result = result.sort_index()
387
+ expected = ts[slobj]
388
+ expected.index = expected.index._with_freq(None)
389
+ tm.assert_series_equal(result, expected)
390
+
391
+ for key in [
392
+ slice("2011-01-01", "2011-01-15"),
393
+ slice("2010-12-30", "2011-01-15"),
394
+ slice("2011-01-01", "2011-01-16"),
395
+ # partial ranges
396
+ slice("2011-01-01", "2011-01-6"),
397
+ slice("2011-01-06", "2011-01-8"),
398
+ slice("2011-01-06", "2011-01-12"),
399
+ ]:
400
+ with pytest.raises(
401
+ KeyError, match="Value based partial slicing on non-monotonic"
402
+ ):
403
+ compare(key)
404
+
405
+ # single values
406
+ result = ts2["2011"].sort_index()
407
+ expected = ts["2011"]
408
+ expected.index = expected.index._with_freq(None)
409
+ tm.assert_series_equal(result, expected)
410
+
411
+
412
+ def test_indexing_unordered2():
413
+ # diff freq
414
+ rng = date_range(datetime(2005, 1, 1), periods=20, freq="ME")
415
+ ts = Series(np.arange(len(rng)), index=rng)
416
+ ts = ts.take(np.random.default_rng(2).permutation(20))
417
+
418
+ result = ts["2005"]
419
+ for t in result.index:
420
+ assert t.year == 2005
421
+
422
+
423
+ def test_indexing():
424
+ idx = date_range("2001-1-1", periods=20, freq="ME")
425
+ ts = Series(np.random.default_rng(2).random(len(idx)), index=idx)
426
+
427
+ # getting
428
+
429
+ # GH 3070, make sure semantics work on Series/Frame
430
+ result = ts["2001"]
431
+ tm.assert_series_equal(result, ts.iloc[:12])
432
+
433
+ df = DataFrame({"A": ts.copy()})
434
+
435
+ # GH#36179 pre-2.0 df["2001"] operated as slicing on rows. in 2.0 it behaves
436
+ # like any other key, so raises
437
+ with pytest.raises(KeyError, match="2001"):
438
+ df["2001"]
439
+
440
+ # setting
441
+ ts = Series(np.random.default_rng(2).random(len(idx)), index=idx)
442
+ expected = ts.copy()
443
+ expected.iloc[:12] = 1
444
+ ts["2001"] = 1
445
+ tm.assert_series_equal(ts, expected)
446
+
447
+ expected = df.copy()
448
+ expected.iloc[:12, 0] = 1
449
+ df.loc["2001", "A"] = 1
450
+ tm.assert_frame_equal(df, expected)
451
+
452
+
453
+ def test_getitem_str_month_with_datetimeindex():
454
+ # GH3546 (not including times on the last day)
455
+ idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:00", freq="h")
456
+ ts = Series(range(len(idx)), index=idx)
457
+ expected = ts["2013-05"]
458
+ tm.assert_series_equal(expected, ts)
459
+
460
+ idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:59", freq="s")
461
+ ts = Series(range(len(idx)), index=idx)
462
+ expected = ts["2013-05"]
463
+ tm.assert_series_equal(expected, ts)
464
+
465
+
466
+ def test_getitem_str_year_with_datetimeindex():
467
+ idx = [
468
+ Timestamp("2013-05-31 00:00"),
469
+ Timestamp(datetime(2013, 5, 31, 23, 59, 59, 999999)),
470
+ ]
471
+ ts = Series(range(len(idx)), index=idx)
472
+ expected = ts["2013"]
473
+ tm.assert_series_equal(expected, ts)
474
+
475
+
476
+ def test_getitem_str_second_with_datetimeindex():
477
+ # GH14826, indexing with a seconds resolution string / datetime object
478
+ df = DataFrame(
479
+ np.random.default_rng(2).random((5, 5)),
480
+ columns=["open", "high", "low", "close", "volume"],
481
+ index=date_range("2012-01-02 18:01:00", periods=5, tz="US/Central", freq="s"),
482
+ )
483
+
484
+ # this is a single date, so will raise
485
+ with pytest.raises(KeyError, match=r"^'2012-01-02 18:01:02'$"):
486
+ df["2012-01-02 18:01:02"]
487
+
488
+ msg = r"Timestamp\('2012-01-02 18:01:02-0600', tz='US/Central'\)"
489
+ with pytest.raises(KeyError, match=msg):
490
+ df[df.index[2]]
491
+
492
+
493
+ def test_compare_datetime_with_all_none():
494
+ # GH#54870
495
+ ser = Series(["2020-01-01", "2020-01-02"], dtype="datetime64[ns]")
496
+ ser2 = Series([None, None])
497
+ result = ser > ser2
498
+ expected = Series([False, False])
499
+ tm.assert_series_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ DatetimeIndex,
7
+ Index,
8
+ Series,
9
+ date_range,
10
+ )
11
+ import pandas._testing as tm
12
+
13
+
14
+ def test_get():
15
+ # GH 6383
16
+ s = Series(
17
+ np.array(
18
+ [
19
+ 43,
20
+ 48,
21
+ 60,
22
+ 48,
23
+ 50,
24
+ 51,
25
+ 50,
26
+ 45,
27
+ 57,
28
+ 48,
29
+ 56,
30
+ 45,
31
+ 51,
32
+ 39,
33
+ 55,
34
+ 43,
35
+ 54,
36
+ 52,
37
+ 51,
38
+ 54,
39
+ ]
40
+ )
41
+ )
42
+
43
+ result = s.get(25, 0)
44
+ expected = 0
45
+ assert result == expected
46
+
47
+ s = Series(
48
+ np.array(
49
+ [
50
+ 43,
51
+ 48,
52
+ 60,
53
+ 48,
54
+ 50,
55
+ 51,
56
+ 50,
57
+ 45,
58
+ 57,
59
+ 48,
60
+ 56,
61
+ 45,
62
+ 51,
63
+ 39,
64
+ 55,
65
+ 43,
66
+ 54,
67
+ 52,
68
+ 51,
69
+ 54,
70
+ ]
71
+ ),
72
+ index=Index(
73
+ [
74
+ 25.0,
75
+ 36.0,
76
+ 49.0,
77
+ 64.0,
78
+ 81.0,
79
+ 100.0,
80
+ 121.0,
81
+ 144.0,
82
+ 169.0,
83
+ 196.0,
84
+ 1225.0,
85
+ 1296.0,
86
+ 1369.0,
87
+ 1444.0,
88
+ 1521.0,
89
+ 1600.0,
90
+ 1681.0,
91
+ 1764.0,
92
+ 1849.0,
93
+ 1936.0,
94
+ ],
95
+ dtype=np.float64,
96
+ ),
97
+ )
98
+
99
+ result = s.get(25, 0)
100
+ expected = 43
101
+ assert result == expected
102
+
103
+ # GH 7407
104
+ # with a boolean accessor
105
+ df = pd.DataFrame({"i": [0] * 3, "b": [False] * 3})
106
+ vc = df.i.value_counts()
107
+ result = vc.get(99, default="Missing")
108
+ assert result == "Missing"
109
+
110
+ vc = df.b.value_counts()
111
+ result = vc.get(False, default="Missing")
112
+ assert result == 3
113
+
114
+ result = vc.get(True, default="Missing")
115
+ assert result == "Missing"
116
+
117
+
118
+ def test_get_nan(float_numpy_dtype):
119
+ # GH 8569
120
+ s = Index(range(10), dtype=float_numpy_dtype).to_series()
121
+ assert s.get(np.nan) is None
122
+ assert s.get(np.nan, default="Missing") == "Missing"
123
+
124
+
125
+ def test_get_nan_multiple(float_numpy_dtype):
126
+ # GH 8569
127
+ # ensure that fixing "test_get_nan" above hasn't broken get
128
+ # with multiple elements
129
+ s = Index(range(10), dtype=float_numpy_dtype).to_series()
130
+
131
+ idx = [2, 30]
132
+ assert s.get(idx) is None
133
+
134
+ idx = [2, np.nan]
135
+ assert s.get(idx) is None
136
+
137
+ # GH 17295 - all missing keys
138
+ idx = [20, 30]
139
+ assert s.get(idx) is None
140
+
141
+ idx = [np.nan, np.nan]
142
+ assert s.get(idx) is None
143
+
144
+
145
+ def test_get_with_default():
146
+ # GH#7725
147
+ d0 = ["a", "b", "c", "d"]
148
+ d1 = np.arange(4, dtype="int64")
149
+
150
+ for data, index in ((d0, d1), (d1, d0)):
151
+ s = Series(data, index=index)
152
+ for i, d in zip(index, data):
153
+ assert s.get(i) == d
154
+ assert s.get(i, d) == d
155
+ assert s.get(i, "z") == d
156
+
157
+ assert s.get("e", "z") == "z"
158
+ assert s.get("e", "e") == "e"
159
+
160
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
161
+ warn = None
162
+ if index is d0:
163
+ warn = FutureWarning
164
+ with tm.assert_produces_warning(warn, match=msg):
165
+ assert s.get(10, "z") == "z"
166
+ assert s.get(10, 10) == 10
167
+
168
+
169
+ @pytest.mark.parametrize(
170
+ "arr",
171
+ [
172
+ np.random.default_rng(2).standard_normal(10),
173
+ DatetimeIndex(date_range("2020-01-01", periods=10), name="a").tz_localize(
174
+ tz="US/Eastern"
175
+ ),
176
+ ],
177
+ )
178
+ def test_get_with_ea(arr):
179
+ # GH#21260
180
+ ser = Series(arr, index=[2 * i for i in range(len(arr))])
181
+ assert ser.get(4) == ser.iloc[2]
182
+
183
+ result = ser.get([4, 6])
184
+ expected = ser.iloc[[2, 3]]
185
+ tm.assert_series_equal(result, expected)
186
+
187
+ result = ser.get(slice(2))
188
+ expected = ser.iloc[[0, 1]]
189
+ tm.assert_series_equal(result, expected)
190
+
191
+ assert ser.get(-1) is None
192
+ assert ser.get(ser.index.max() + 1) is None
193
+
194
+ ser = Series(arr[:6], index=list("abcdef"))
195
+ assert ser.get("c") == ser.iloc[2]
196
+
197
+ result = ser.get(slice("b", "d"))
198
+ expected = ser.iloc[[1, 2, 3]]
199
+ tm.assert_series_equal(result, expected)
200
+
201
+ result = ser.get("Z")
202
+ assert result is None
203
+
204
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
205
+ with tm.assert_produces_warning(FutureWarning, match=msg):
206
+ assert ser.get(4) == ser.iloc[4]
207
+ with tm.assert_produces_warning(FutureWarning, match=msg):
208
+ assert ser.get(-1) == ser.iloc[-1]
209
+ with tm.assert_produces_warning(FutureWarning, match=msg):
210
+ assert ser.get(len(ser)) is None
211
+
212
+ # GH#21257
213
+ ser = Series(arr)
214
+ ser2 = ser[::2]
215
+ assert ser2.get(1) is None
216
+
217
+
218
+ def test_getitem_get(string_series, object_series):
219
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
220
+
221
+ for obj in [string_series, object_series]:
222
+ idx = obj.index[5]
223
+
224
+ assert obj[idx] == obj.get(idx)
225
+ assert obj[idx] == obj.iloc[5]
226
+
227
+ with tm.assert_produces_warning(FutureWarning, match=msg):
228
+ assert string_series.get(-1) == string_series.get(string_series.index[-1])
229
+ assert string_series.iloc[5] == string_series.get(string_series.index[5])
230
+
231
+
232
+ def test_get_none():
233
+ # GH#5652
234
+ s1 = Series(dtype=object)
235
+ s2 = Series(dtype=object, index=list("abc"))
236
+ for s in [s1, s2]:
237
+ result = s.get(None)
238
+ assert result is None
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py ADDED
@@ -0,0 +1,735 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Series.__getitem__ test classes are organized by the type of key passed.
3
+ """
4
+ from datetime import (
5
+ date,
6
+ datetime,
7
+ time,
8
+ )
9
+
10
+ import numpy as np
11
+ import pytest
12
+
13
+ from pandas._libs.tslibs import (
14
+ conversion,
15
+ timezones,
16
+ )
17
+
18
+ from pandas.core.dtypes.common import is_scalar
19
+
20
+ import pandas as pd
21
+ from pandas import (
22
+ Categorical,
23
+ DataFrame,
24
+ DatetimeIndex,
25
+ Index,
26
+ Series,
27
+ Timestamp,
28
+ date_range,
29
+ period_range,
30
+ timedelta_range,
31
+ )
32
+ import pandas._testing as tm
33
+ from pandas.core.indexing import IndexingError
34
+
35
+ from pandas.tseries.offsets import BDay
36
+
37
+
38
+ class TestSeriesGetitemScalars:
39
+ def test_getitem_object_index_float_string(self):
40
+ # GH#17286
41
+ ser = Series([1] * 4, index=Index(["a", "b", "c", 1.0]))
42
+ assert ser["a"] == 1
43
+ assert ser[1.0] == 1
44
+
45
+ def test_getitem_float_keys_tuple_values(self):
46
+ # see GH#13509
47
+
48
+ # unique Index
49
+ ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.1, 0.2], name="foo")
50
+ result = ser[0.0]
51
+ assert result == (1, 1)
52
+
53
+ # non-unique Index
54
+ expected = Series([(1, 1), (2, 2)], index=[0.0, 0.0], name="foo")
55
+ ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.0, 0.2], name="foo")
56
+
57
+ result = ser[0.0]
58
+ tm.assert_series_equal(result, expected)
59
+
60
+ def test_getitem_unrecognized_scalar(self):
61
+ # GH#32684 a scalar key that is not recognized by lib.is_scalar
62
+
63
+ # a series that might be produced via `frame.dtypes`
64
+ ser = Series([1, 2], index=[np.dtype("O"), np.dtype("i8")])
65
+
66
+ key = ser.index[1]
67
+
68
+ result = ser[key]
69
+ assert result == 2
70
+
71
+ def test_getitem_negative_out_of_bounds(self):
72
+ ser = Series(["a"] * 10, index=["a"] * 10)
73
+
74
+ msg = "index -11 is out of bounds for axis 0 with size 10|index out of bounds"
75
+ warn_msg = "Series.__getitem__ treating keys as positions is deprecated"
76
+ with pytest.raises(IndexError, match=msg):
77
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
78
+ ser[-11]
79
+
80
+ def test_getitem_out_of_bounds_indexerror(self, datetime_series):
81
+ # don't segfault, GH#495
82
+ msg = r"index \d+ is out of bounds for axis 0 with size \d+"
83
+ warn_msg = "Series.__getitem__ treating keys as positions is deprecated"
84
+ with pytest.raises(IndexError, match=msg):
85
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
86
+ datetime_series[len(datetime_series)]
87
+
88
+ def test_getitem_out_of_bounds_empty_rangeindex_keyerror(self):
89
+ # GH#917
90
+ # With a RangeIndex, an int key gives a KeyError
91
+ ser = Series([], dtype=object)
92
+ with pytest.raises(KeyError, match="-1"):
93
+ ser[-1]
94
+
95
+ def test_getitem_keyerror_with_integer_index(self, any_int_numpy_dtype):
96
+ dtype = any_int_numpy_dtype
97
+ ser = Series(
98
+ np.random.default_rng(2).standard_normal(6),
99
+ index=Index([0, 0, 1, 1, 2, 2], dtype=dtype),
100
+ )
101
+
102
+ with pytest.raises(KeyError, match=r"^5$"):
103
+ ser[5]
104
+
105
+ with pytest.raises(KeyError, match=r"^'c'$"):
106
+ ser["c"]
107
+
108
+ # not monotonic
109
+ ser = Series(
110
+ np.random.default_rng(2).standard_normal(6), index=[2, 2, 0, 0, 1, 1]
111
+ )
112
+
113
+ with pytest.raises(KeyError, match=r"^5$"):
114
+ ser[5]
115
+
116
+ with pytest.raises(KeyError, match=r"^'c'$"):
117
+ ser["c"]
118
+
119
+ def test_getitem_int64(self, datetime_series):
120
+ idx = np.int64(5)
121
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
122
+ with tm.assert_produces_warning(FutureWarning, match=msg):
123
+ res = datetime_series[idx]
124
+ assert res == datetime_series.iloc[5]
125
+
126
+ def test_getitem_full_range(self):
127
+ # github.com/pandas-dev/pandas/commit/4f433773141d2eb384325714a2776bcc5b2e20f7
128
+ ser = Series(range(5), index=list(range(5)))
129
+ result = ser[list(range(5))]
130
+ tm.assert_series_equal(result, ser)
131
+
132
+ # ------------------------------------------------------------------
133
+ # Series with DatetimeIndex
134
+
135
+ @pytest.mark.parametrize("tzstr", ["Europe/Berlin", "dateutil/Europe/Berlin"])
136
+ def test_getitem_pydatetime_tz(self, tzstr):
137
+ tz = timezones.maybe_get_tz(tzstr)
138
+
139
+ index = date_range(
140
+ start="2012-12-24 16:00", end="2012-12-24 18:00", freq="h", tz=tzstr
141
+ )
142
+ ts = Series(index=index, data=index.hour)
143
+ time_pandas = Timestamp("2012-12-24 17:00", tz=tzstr)
144
+
145
+ dt = datetime(2012, 12, 24, 17, 0)
146
+ time_datetime = conversion.localize_pydatetime(dt, tz)
147
+ assert ts[time_pandas] == ts[time_datetime]
148
+
149
+ @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
150
+ def test_string_index_alias_tz_aware(self, tz):
151
+ rng = date_range("1/1/2000", periods=10, tz=tz)
152
+ ser = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
153
+
154
+ result = ser["1/3/2000"]
155
+ tm.assert_almost_equal(result, ser.iloc[2])
156
+
157
+ def test_getitem_time_object(self):
158
+ rng = date_range("1/1/2000", "1/5/2000", freq="5min")
159
+ ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
160
+
161
+ mask = (rng.hour == 9) & (rng.minute == 30)
162
+ result = ts[time(9, 30)]
163
+ expected = ts[mask]
164
+ result.index = result.index._with_freq(None)
165
+ tm.assert_series_equal(result, expected)
166
+
167
+ # ------------------------------------------------------------------
168
+ # Series with CategoricalIndex
169
+
170
+ def test_getitem_scalar_categorical_index(self):
171
+ cats = Categorical([Timestamp("12-31-1999"), Timestamp("12-31-2000")])
172
+
173
+ ser = Series([1, 2], index=cats)
174
+
175
+ expected = ser.iloc[0]
176
+ result = ser[cats[0]]
177
+ assert result == expected
178
+
179
+ def test_getitem_numeric_categorical_listlike_matches_scalar(self):
180
+ # GH#15470
181
+ ser = Series(["a", "b", "c"], index=pd.CategoricalIndex([2, 1, 0]))
182
+
183
+ # 0 is treated as a label
184
+ assert ser[0] == "c"
185
+
186
+ # the listlike analogue should also be treated as labels
187
+ res = ser[[0]]
188
+ expected = ser.iloc[-1:]
189
+ tm.assert_series_equal(res, expected)
190
+
191
+ res2 = ser[[0, 1, 2]]
192
+ tm.assert_series_equal(res2, ser.iloc[::-1])
193
+
194
+ def test_getitem_integer_categorical_not_positional(self):
195
+ # GH#14865
196
+ ser = Series(["a", "b", "c"], index=Index([1, 2, 3], dtype="category"))
197
+ assert ser.get(3) == "c"
198
+ assert ser[3] == "c"
199
+
200
+ def test_getitem_str_with_timedeltaindex(self):
201
+ rng = timedelta_range("1 day 10:11:12", freq="h", periods=500)
202
+ ser = Series(np.arange(len(rng)), index=rng)
203
+
204
+ key = "6 days, 23:11:12"
205
+ indexer = rng.get_loc(key)
206
+ assert indexer == 133
207
+
208
+ result = ser[key]
209
+ assert result == ser.iloc[133]
210
+
211
+ msg = r"^Timedelta\('50 days 00:00:00'\)$"
212
+ with pytest.raises(KeyError, match=msg):
213
+ rng.get_loc("50 days")
214
+ with pytest.raises(KeyError, match=msg):
215
+ ser["50 days"]
216
+
217
+ def test_getitem_bool_index_positional(self):
218
+ # GH#48653
219
+ ser = Series({True: 1, False: 0})
220
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
221
+ with tm.assert_produces_warning(FutureWarning, match=msg):
222
+ result = ser[0]
223
+ assert result == 1
224
+
225
+
226
+ class TestSeriesGetitemSlices:
227
+ def test_getitem_partial_str_slice_with_datetimeindex(self):
228
+ # GH#34860
229
+ arr = date_range("1/1/2008", "1/1/2009")
230
+ ser = arr.to_series()
231
+ result = ser["2008"]
232
+
233
+ rng = date_range(start="2008-01-01", end="2008-12-31")
234
+ expected = Series(rng, index=rng)
235
+
236
+ tm.assert_series_equal(result, expected)
237
+
238
+ def test_getitem_slice_strings_with_datetimeindex(self):
239
+ idx = DatetimeIndex(
240
+ ["1/1/2000", "1/2/2000", "1/2/2000", "1/3/2000", "1/4/2000"]
241
+ )
242
+
243
+ ts = Series(np.random.default_rng(2).standard_normal(len(idx)), index=idx)
244
+
245
+ result = ts["1/2/2000":]
246
+ expected = ts[1:]
247
+ tm.assert_series_equal(result, expected)
248
+
249
+ result = ts["1/2/2000":"1/3/2000"]
250
+ expected = ts[1:4]
251
+ tm.assert_series_equal(result, expected)
252
+
253
+ def test_getitem_partial_str_slice_with_timedeltaindex(self):
254
+ rng = timedelta_range("1 day 10:11:12", freq="h", periods=500)
255
+ ser = Series(np.arange(len(rng)), index=rng)
256
+
257
+ result = ser["5 day":"6 day"]
258
+ expected = ser.iloc[86:134]
259
+ tm.assert_series_equal(result, expected)
260
+
261
+ result = ser["5 day":]
262
+ expected = ser.iloc[86:]
263
+ tm.assert_series_equal(result, expected)
264
+
265
+ result = ser[:"6 day"]
266
+ expected = ser.iloc[:134]
267
+ tm.assert_series_equal(result, expected)
268
+
269
+ def test_getitem_partial_str_slice_high_reso_with_timedeltaindex(self):
270
+ # higher reso
271
+ rng = timedelta_range("1 day 10:11:12", freq="us", periods=2000)
272
+ ser = Series(np.arange(len(rng)), index=rng)
273
+
274
+ result = ser["1 day 10:11:12":]
275
+ expected = ser.iloc[0:]
276
+ tm.assert_series_equal(result, expected)
277
+
278
+ result = ser["1 day 10:11:12.001":]
279
+ expected = ser.iloc[1000:]
280
+ tm.assert_series_equal(result, expected)
281
+
282
+ result = ser["1 days, 10:11:12.001001"]
283
+ assert result == ser.iloc[1001]
284
+
285
+ def test_getitem_slice_2d(self, datetime_series):
286
+ # GH#30588 multi-dimensional indexing deprecated
287
+ with pytest.raises(ValueError, match="Multi-dimensional indexing"):
288
+ datetime_series[:, np.newaxis]
289
+
290
+ def test_getitem_median_slice_bug(self):
291
+ index = date_range("20090415", "20090519", freq="2B")
292
+ ser = Series(np.random.default_rng(2).standard_normal(13), index=index)
293
+
294
+ indexer = [slice(6, 7, None)]
295
+ msg = "Indexing with a single-item list"
296
+ with pytest.raises(ValueError, match=msg):
297
+ # GH#31299
298
+ ser[indexer]
299
+ # but we're OK with a single-element tuple
300
+ result = ser[(indexer[0],)]
301
+ expected = ser[indexer[0]]
302
+ tm.assert_series_equal(result, expected)
303
+
304
+ @pytest.mark.parametrize(
305
+ "slc, positions",
306
+ [
307
+ [slice(date(2018, 1, 1), None), [0, 1, 2]],
308
+ [slice(date(2019, 1, 2), None), [2]],
309
+ [slice(date(2020, 1, 1), None), []],
310
+ [slice(None, date(2020, 1, 1)), [0, 1, 2]],
311
+ [slice(None, date(2019, 1, 1)), [0]],
312
+ ],
313
+ )
314
+ def test_getitem_slice_date(self, slc, positions):
315
+ # https://github.com/pandas-dev/pandas/issues/31501
316
+ ser = Series(
317
+ [0, 1, 2],
318
+ DatetimeIndex(["2019-01-01", "2019-01-01T06:00:00", "2019-01-02"]),
319
+ )
320
+ result = ser[slc]
321
+ expected = ser.take(positions)
322
+ tm.assert_series_equal(result, expected)
323
+
324
+ def test_getitem_slice_float_raises(self, datetime_series):
325
+ msg = (
326
+ "cannot do slice indexing on DatetimeIndex with these indexers "
327
+ r"\[{key}\] of type float"
328
+ )
329
+ with pytest.raises(TypeError, match=msg.format(key=r"4\.0")):
330
+ datetime_series[4.0:10.0]
331
+
332
+ with pytest.raises(TypeError, match=msg.format(key=r"4\.5")):
333
+ datetime_series[4.5:10.0]
334
+
335
+ def test_getitem_slice_bug(self):
336
+ ser = Series(range(10), index=list(range(10)))
337
+ result = ser[-12:]
338
+ tm.assert_series_equal(result, ser)
339
+
340
+ result = ser[-7:]
341
+ tm.assert_series_equal(result, ser[3:])
342
+
343
+ result = ser[:-12]
344
+ tm.assert_series_equal(result, ser[:0])
345
+
346
+ def test_getitem_slice_integers(self):
347
+ ser = Series(
348
+ np.random.default_rng(2).standard_normal(8),
349
+ index=[2, 4, 6, 8, 10, 12, 14, 16],
350
+ )
351
+
352
+ result = ser[:4]
353
+ expected = Series(ser.values[:4], index=[2, 4, 6, 8])
354
+ tm.assert_series_equal(result, expected)
355
+
356
+
357
+ class TestSeriesGetitemListLike:
358
+ @pytest.mark.parametrize("box", [list, np.array, Index, Series])
359
+ def test_getitem_no_matches(self, box):
360
+ # GH#33462 we expect the same behavior for list/ndarray/Index/Series
361
+ ser = Series(["A", "B"])
362
+
363
+ key = Series(["C"], dtype=object)
364
+ key = box(key)
365
+
366
+ msg = (
367
+ r"None of \[Index\(\['C'\], dtype='object|string'\)\] are in the \[index\]"
368
+ )
369
+ with pytest.raises(KeyError, match=msg):
370
+ ser[key]
371
+
372
+ def test_getitem_intlist_intindex_periodvalues(self):
373
+ ser = Series(period_range("2000-01-01", periods=10, freq="D"))
374
+
375
+ result = ser[[2, 4]]
376
+ exp = Series(
377
+ [pd.Period("2000-01-03", freq="D"), pd.Period("2000-01-05", freq="D")],
378
+ index=[2, 4],
379
+ dtype="Period[D]",
380
+ )
381
+ tm.assert_series_equal(result, exp)
382
+ assert result.dtype == "Period[D]"
383
+
384
+ @pytest.mark.parametrize("box", [list, np.array, Index])
385
+ def test_getitem_intlist_intervalindex_non_int(self, box):
386
+ # GH#33404 fall back to positional since ints are unambiguous
387
+ dti = date_range("2000-01-03", periods=3)._with_freq(None)
388
+ ii = pd.IntervalIndex.from_breaks(dti)
389
+ ser = Series(range(len(ii)), index=ii)
390
+
391
+ expected = ser.iloc[:1]
392
+ key = box([0])
393
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
394
+ with tm.assert_produces_warning(FutureWarning, match=msg):
395
+ result = ser[key]
396
+ tm.assert_series_equal(result, expected)
397
+
398
+ @pytest.mark.parametrize("box", [list, np.array, Index])
399
+ @pytest.mark.parametrize("dtype", [np.int64, np.float64, np.uint64])
400
+ def test_getitem_intlist_multiindex_numeric_level(self, dtype, box):
401
+ # GH#33404 do _not_ fall back to positional since ints are ambiguous
402
+ idx = Index(range(4)).astype(dtype)
403
+ dti = date_range("2000-01-03", periods=3)
404
+ mi = pd.MultiIndex.from_product([idx, dti])
405
+ ser = Series(range(len(mi))[::-1], index=mi)
406
+
407
+ key = box([5])
408
+ with pytest.raises(KeyError, match="5"):
409
+ ser[key]
410
+
411
+ def test_getitem_uint_array_key(self, any_unsigned_int_numpy_dtype):
412
+ # GH #37218
413
+ ser = Series([1, 2, 3])
414
+ key = np.array([4], dtype=any_unsigned_int_numpy_dtype)
415
+
416
+ with pytest.raises(KeyError, match="4"):
417
+ ser[key]
418
+ with pytest.raises(KeyError, match="4"):
419
+ ser.loc[key]
420
+
421
+
422
+ class TestGetitemBooleanMask:
423
+ def test_getitem_boolean(self, string_series):
424
+ ser = string_series
425
+ mask = ser > ser.median()
426
+
427
+ # passing list is OK
428
+ result = ser[list(mask)]
429
+ expected = ser[mask]
430
+ tm.assert_series_equal(result, expected)
431
+ tm.assert_index_equal(result.index, ser.index[mask])
432
+
433
+ def test_getitem_boolean_empty(self):
434
+ ser = Series([], dtype=np.int64)
435
+ ser.index.name = "index_name"
436
+ ser = ser[ser.isna()]
437
+ assert ser.index.name == "index_name"
438
+ assert ser.dtype == np.int64
439
+
440
+ # GH#5877
441
+ # indexing with empty series
442
+ ser = Series(["A", "B"], dtype=object)
443
+ expected = Series(dtype=object, index=Index([], dtype="int64"))
444
+ result = ser[Series([], dtype=object)]
445
+ tm.assert_series_equal(result, expected)
446
+
447
+ # invalid because of the boolean indexer
448
+ # that's empty or not-aligned
449
+ msg = (
450
+ r"Unalignable boolean Series provided as indexer \(index of "
451
+ r"the boolean Series and of the indexed object do not match"
452
+ )
453
+ with pytest.raises(IndexingError, match=msg):
454
+ ser[Series([], dtype=bool)]
455
+
456
+ with pytest.raises(IndexingError, match=msg):
457
+ ser[Series([True], dtype=bool)]
458
+
459
+ def test_getitem_boolean_object(self, string_series):
460
+ # using column from DataFrame
461
+
462
+ ser = string_series
463
+ mask = ser > ser.median()
464
+ omask = mask.astype(object)
465
+
466
+ # getitem
467
+ result = ser[omask]
468
+ expected = ser[mask]
469
+ tm.assert_series_equal(result, expected)
470
+
471
+ # setitem
472
+ s2 = ser.copy()
473
+ cop = ser.copy()
474
+ cop[omask] = 5
475
+ s2[mask] = 5
476
+ tm.assert_series_equal(cop, s2)
477
+
478
+ # nans raise exception
479
+ omask[5:10] = np.nan
480
+ msg = "Cannot mask with non-boolean array containing NA / NaN values"
481
+ with pytest.raises(ValueError, match=msg):
482
+ ser[omask]
483
+ with pytest.raises(ValueError, match=msg):
484
+ ser[omask] = 5
485
+
486
+ def test_getitem_boolean_dt64_copies(self):
487
+ # GH#36210
488
+ dti = date_range("2016-01-01", periods=4, tz="US/Pacific")
489
+ key = np.array([True, True, False, False])
490
+
491
+ ser = Series(dti._data)
492
+
493
+ res = ser[key]
494
+ assert res._values._ndarray.base is None
495
+
496
+ # compare with numeric case for reference
497
+ ser2 = Series(range(4))
498
+ res2 = ser2[key]
499
+ assert res2._values.base is None
500
+
501
+ def test_getitem_boolean_corner(self, datetime_series):
502
+ ts = datetime_series
503
+ mask_shifted = ts.shift(1, freq=BDay()) > ts.median()
504
+
505
+ msg = (
506
+ r"Unalignable boolean Series provided as indexer \(index of "
507
+ r"the boolean Series and of the indexed object do not match"
508
+ )
509
+ with pytest.raises(IndexingError, match=msg):
510
+ ts[mask_shifted]
511
+
512
+ with pytest.raises(IndexingError, match=msg):
513
+ ts.loc[mask_shifted]
514
+
515
+ def test_getitem_boolean_different_order(self, string_series):
516
+ ordered = string_series.sort_values()
517
+
518
+ sel = string_series[ordered > 0]
519
+ exp = string_series[string_series > 0]
520
+ tm.assert_series_equal(sel, exp)
521
+
522
+ def test_getitem_boolean_contiguous_preserve_freq(self):
523
+ rng = date_range("1/1/2000", "3/1/2000", freq="B")
524
+
525
+ mask = np.zeros(len(rng), dtype=bool)
526
+ mask[10:20] = True
527
+
528
+ masked = rng[mask]
529
+ expected = rng[10:20]
530
+ assert expected.freq == rng.freq
531
+ tm.assert_index_equal(masked, expected)
532
+
533
+ mask[22] = True
534
+ masked = rng[mask]
535
+ assert masked.freq is None
536
+
537
+
538
+ class TestGetitemCallable:
539
+ def test_getitem_callable(self):
540
+ # GH#12533
541
+ ser = Series(4, index=list("ABCD"))
542
+ result = ser[lambda x: "A"]
543
+ assert result == ser.loc["A"]
544
+
545
+ result = ser[lambda x: ["A", "B"]]
546
+ expected = ser.loc[["A", "B"]]
547
+ tm.assert_series_equal(result, expected)
548
+
549
+ result = ser[lambda x: [True, False, True, True]]
550
+ expected = ser.iloc[[0, 2, 3]]
551
+ tm.assert_series_equal(result, expected)
552
+
553
+
554
+ def test_getitem_generator(string_series):
555
+ gen = (x > 0 for x in string_series)
556
+ result = string_series[gen]
557
+ result2 = string_series[iter(string_series > 0)]
558
+ expected = string_series[string_series > 0]
559
+ tm.assert_series_equal(result, expected)
560
+ tm.assert_series_equal(result2, expected)
561
+
562
+
563
+ @pytest.mark.parametrize(
564
+ "series",
565
+ [
566
+ Series([0, 1]),
567
+ Series(date_range("2012-01-01", periods=2)),
568
+ Series(date_range("2012-01-01", periods=2, tz="CET")),
569
+ ],
570
+ )
571
+ def test_getitem_ndim_deprecated(series):
572
+ with pytest.raises(ValueError, match="Multi-dimensional indexing"):
573
+ series[:, None]
574
+
575
+
576
+ def test_getitem_multilevel_scalar_slice_not_implemented(
577
+ multiindex_year_month_day_dataframe_random_data,
578
+ ):
579
+ # not implementing this for now
580
+ df = multiindex_year_month_day_dataframe_random_data
581
+ ser = df["A"]
582
+
583
+ msg = r"\(2000, slice\(3, 4, None\)\)"
584
+ with pytest.raises(TypeError, match=msg):
585
+ ser[2000, 3:4]
586
+
587
+
588
+ def test_getitem_dataframe_raises():
589
+ rng = list(range(10))
590
+ ser = Series(10, index=rng)
591
+ df = DataFrame(rng, index=rng)
592
+ msg = (
593
+ "Indexing a Series with DataFrame is not supported, "
594
+ "use the appropriate DataFrame column"
595
+ )
596
+ with pytest.raises(TypeError, match=msg):
597
+ ser[df > 5]
598
+
599
+
600
+ def test_getitem_assignment_series_alignment():
601
+ # https://github.com/pandas-dev/pandas/issues/37427
602
+ # with getitem, when assigning with a Series, it is not first aligned
603
+ ser = Series(range(10))
604
+ idx = np.array([2, 4, 9])
605
+ ser[idx] = Series([10, 11, 12])
606
+ expected = Series([0, 1, 10, 3, 11, 5, 6, 7, 8, 12])
607
+ tm.assert_series_equal(ser, expected)
608
+
609
+
610
+ def test_getitem_duplicate_index_mistyped_key_raises_keyerror():
611
+ # GH#29189 float_index.get_loc(None) should raise KeyError, not TypeError
612
+ ser = Series([2, 5, 6, 8], index=[2.0, 4.0, 4.0, 5.0])
613
+ with pytest.raises(KeyError, match="None"):
614
+ ser[None]
615
+
616
+ with pytest.raises(KeyError, match="None"):
617
+ ser.index.get_loc(None)
618
+
619
+ with pytest.raises(KeyError, match="None"):
620
+ ser.index._engine.get_loc(None)
621
+
622
+
623
+ def test_getitem_1tuple_slice_without_multiindex():
624
+ ser = Series(range(5))
625
+ key = (slice(3),)
626
+
627
+ result = ser[key]
628
+ expected = ser[key[0]]
629
+ tm.assert_series_equal(result, expected)
630
+
631
+
632
+ def test_getitem_preserve_name(datetime_series):
633
+ result = datetime_series[datetime_series > 0]
634
+ assert result.name == datetime_series.name
635
+
636
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
637
+ with tm.assert_produces_warning(FutureWarning, match=msg):
638
+ result = datetime_series[[0, 2, 4]]
639
+ assert result.name == datetime_series.name
640
+
641
+ result = datetime_series[5:10]
642
+ assert result.name == datetime_series.name
643
+
644
+
645
+ def test_getitem_with_integer_labels():
646
+ # integer indexes, be careful
647
+ ser = Series(
648
+ np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2))
649
+ )
650
+ inds = [0, 2, 5, 7, 8]
651
+ arr_inds = np.array([0, 2, 5, 7, 8])
652
+ with pytest.raises(KeyError, match="not in index"):
653
+ ser[inds]
654
+
655
+ with pytest.raises(KeyError, match="not in index"):
656
+ ser[arr_inds]
657
+
658
+
659
+ def test_getitem_missing(datetime_series):
660
+ # missing
661
+ d = datetime_series.index[0] - BDay()
662
+ msg = r"Timestamp\('1999-12-31 00:00:00'\)"
663
+ with pytest.raises(KeyError, match=msg):
664
+ datetime_series[d]
665
+
666
+
667
+ def test_getitem_fancy(string_series, object_series):
668
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
669
+ with tm.assert_produces_warning(FutureWarning, match=msg):
670
+ slice1 = string_series[[1, 2, 3]]
671
+ slice2 = object_series[[1, 2, 3]]
672
+ assert string_series.index[2] == slice1.index[1]
673
+ assert object_series.index[2] == slice2.index[1]
674
+ assert string_series.iloc[2] == slice1.iloc[1]
675
+ assert object_series.iloc[2] == slice2.iloc[1]
676
+
677
+
678
+ def test_getitem_box_float64(datetime_series):
679
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
680
+ with tm.assert_produces_warning(FutureWarning, match=msg):
681
+ value = datetime_series[5]
682
+ assert isinstance(value, np.float64)
683
+
684
+
685
+ def test_getitem_unordered_dup():
686
+ obj = Series(range(5), index=["c", "a", "a", "b", "b"])
687
+ assert is_scalar(obj["c"])
688
+ assert obj["c"] == 0
689
+
690
+
691
+ def test_getitem_dups():
692
+ ser = Series(range(5), index=["A", "A", "B", "C", "C"], dtype=np.int64)
693
+ expected = Series([3, 4], index=["C", "C"], dtype=np.int64)
694
+ result = ser["C"]
695
+ tm.assert_series_equal(result, expected)
696
+
697
+
698
+ def test_getitem_categorical_str():
699
+ # GH#31765
700
+ ser = Series(range(5), index=Categorical(["a", "b", "c", "a", "b"]))
701
+ result = ser["a"]
702
+ expected = ser.iloc[[0, 3]]
703
+ tm.assert_series_equal(result, expected)
704
+
705
+
706
+ def test_slice_can_reorder_not_uniquely_indexed():
707
+ ser = Series(1, index=["a", "a", "b", "b", "c"])
708
+ ser[::-1] # it works!
709
+
710
+
711
+ @pytest.mark.parametrize("index_vals", ["aabcd", "aadcb"])
712
+ def test_duplicated_index_getitem_positional_indexer(index_vals):
713
+ # GH 11747
714
+ s = Series(range(5), index=list(index_vals))
715
+
716
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
717
+ with tm.assert_produces_warning(FutureWarning, match=msg):
718
+ result = s[3]
719
+ assert result == 3
720
+
721
+
722
+ class TestGetitemDeprecatedIndexers:
723
+ @pytest.mark.parametrize("key", [{1}, {1: 1}])
724
+ def test_getitem_dict_and_set_deprecated(self, key):
725
+ # GH#42825 enforced in 2.0
726
+ ser = Series([1, 2, 3])
727
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
728
+ ser[key]
729
+
730
+ @pytest.mark.parametrize("key", [{1}, {1: 1}])
731
+ def test_setitem_dict_and_set_disallowed(self, key):
732
+ # GH#42825 enforced in 2.0
733
+ ser = Series([1, 2, 3])
734
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
735
+ ser[key] = 1
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_indexing.py ADDED
@@ -0,0 +1,518 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ test get/set & misc """
2
+ from datetime import timedelta
3
+ import re
4
+
5
+ import numpy as np
6
+ import pytest
7
+
8
+ from pandas.errors import IndexingError
9
+
10
+ from pandas import (
11
+ NA,
12
+ DataFrame,
13
+ Index,
14
+ IndexSlice,
15
+ MultiIndex,
16
+ NaT,
17
+ Series,
18
+ Timedelta,
19
+ Timestamp,
20
+ concat,
21
+ date_range,
22
+ isna,
23
+ period_range,
24
+ timedelta_range,
25
+ )
26
+ import pandas._testing as tm
27
+
28
+
29
+ def test_basic_indexing():
30
+ s = Series(
31
+ np.random.default_rng(2).standard_normal(5), index=["a", "b", "a", "a", "b"]
32
+ )
33
+
34
+ warn_msg = "Series.__[sg]etitem__ treating keys as positions is deprecated"
35
+ msg = "index 5 is out of bounds for axis 0 with size 5"
36
+ with pytest.raises(IndexError, match=msg):
37
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
38
+ s[5]
39
+ with pytest.raises(IndexError, match=msg):
40
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
41
+ s[5] = 0
42
+
43
+ with pytest.raises(KeyError, match=r"^'c'$"):
44
+ s["c"]
45
+
46
+ s = s.sort_index()
47
+
48
+ with pytest.raises(IndexError, match=msg):
49
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
50
+ s[5]
51
+ msg = r"index 5 is out of bounds for axis (0|1) with size 5|^5$"
52
+ with pytest.raises(IndexError, match=msg):
53
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
54
+ s[5] = 0
55
+
56
+
57
+ def test_getitem_numeric_should_not_fallback_to_positional(any_numeric_dtype):
58
+ # GH51053
59
+ dtype = any_numeric_dtype
60
+ idx = Index([1, 0, 1], dtype=dtype)
61
+ ser = Series(range(3), index=idx)
62
+ result = ser[1]
63
+ expected = Series([0, 2], index=Index([1, 1], dtype=dtype))
64
+ tm.assert_series_equal(result, expected, check_exact=True)
65
+
66
+
67
+ def test_setitem_numeric_should_not_fallback_to_positional(any_numeric_dtype):
68
+ # GH51053
69
+ dtype = any_numeric_dtype
70
+ idx = Index([1, 0, 1], dtype=dtype)
71
+ ser = Series(range(3), index=idx)
72
+ ser[1] = 10
73
+ expected = Series([10, 1, 10], index=idx)
74
+ tm.assert_series_equal(ser, expected, check_exact=True)
75
+
76
+
77
+ def test_basic_getitem_with_labels(datetime_series):
78
+ indices = datetime_series.index[[5, 10, 15]]
79
+
80
+ result = datetime_series[indices]
81
+ expected = datetime_series.reindex(indices)
82
+ tm.assert_series_equal(result, expected)
83
+
84
+ result = datetime_series[indices[0] : indices[2]]
85
+ expected = datetime_series.loc[indices[0] : indices[2]]
86
+ tm.assert_series_equal(result, expected)
87
+
88
+
89
+ def test_basic_getitem_dt64tz_values():
90
+ # GH12089
91
+ # with tz for values
92
+ ser = Series(
93
+ date_range("2011-01-01", periods=3, tz="US/Eastern"), index=["a", "b", "c"]
94
+ )
95
+ expected = Timestamp("2011-01-01", tz="US/Eastern")
96
+ result = ser.loc["a"]
97
+ assert result == expected
98
+ result = ser.iloc[0]
99
+ assert result == expected
100
+ result = ser["a"]
101
+ assert result == expected
102
+
103
+
104
+ def test_getitem_setitem_ellipsis(using_copy_on_write, warn_copy_on_write):
105
+ s = Series(np.random.default_rng(2).standard_normal(10))
106
+
107
+ result = s[...]
108
+ tm.assert_series_equal(result, s)
109
+
110
+ with tm.assert_cow_warning(warn_copy_on_write):
111
+ s[...] = 5
112
+ if not using_copy_on_write:
113
+ assert (result == 5).all()
114
+
115
+
116
+ @pytest.mark.parametrize(
117
+ "result_1, duplicate_item, expected_1",
118
+ [
119
+ [
120
+ Series({1: 12, 2: [1, 2, 2, 3]}),
121
+ Series({1: 313}),
122
+ Series({1: 12}, dtype=object),
123
+ ],
124
+ [
125
+ Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}),
126
+ Series({1: [1, 2, 3]}),
127
+ Series({1: [1, 2, 3]}),
128
+ ],
129
+ ],
130
+ )
131
+ def test_getitem_with_duplicates_indices(result_1, duplicate_item, expected_1):
132
+ # GH 17610
133
+ result = result_1._append(duplicate_item)
134
+ expected = expected_1._append(duplicate_item)
135
+ tm.assert_series_equal(result[1], expected)
136
+ assert result[2] == result_1[2]
137
+
138
+
139
+ def test_getitem_setitem_integers():
140
+ # caused bug without test
141
+ s = Series([1, 2, 3], ["a", "b", "c"])
142
+
143
+ assert s.iloc[0] == s["a"]
144
+ s.iloc[0] = 5
145
+ tm.assert_almost_equal(s["a"], 5)
146
+
147
+
148
+ def test_series_box_timestamp():
149
+ rng = date_range("20090415", "20090519", freq="B")
150
+ ser = Series(rng)
151
+ assert isinstance(ser[0], Timestamp)
152
+ assert isinstance(ser.at[1], Timestamp)
153
+ assert isinstance(ser.iat[2], Timestamp)
154
+ assert isinstance(ser.loc[3], Timestamp)
155
+ assert isinstance(ser.iloc[4], Timestamp)
156
+
157
+ ser = Series(rng, index=rng)
158
+ msg = "Series.__getitem__ treating keys as positions is deprecated"
159
+ with tm.assert_produces_warning(FutureWarning, match=msg):
160
+ assert isinstance(ser[0], Timestamp)
161
+ assert isinstance(ser.at[rng[1]], Timestamp)
162
+ assert isinstance(ser.iat[2], Timestamp)
163
+ assert isinstance(ser.loc[rng[3]], Timestamp)
164
+ assert isinstance(ser.iloc[4], Timestamp)
165
+
166
+
167
+ def test_series_box_timedelta():
168
+ rng = timedelta_range("1 day 1 s", periods=5, freq="h")
169
+ ser = Series(rng)
170
+ assert isinstance(ser[0], Timedelta)
171
+ assert isinstance(ser.at[1], Timedelta)
172
+ assert isinstance(ser.iat[2], Timedelta)
173
+ assert isinstance(ser.loc[3], Timedelta)
174
+ assert isinstance(ser.iloc[4], Timedelta)
175
+
176
+
177
+ def test_getitem_ambiguous_keyerror(indexer_sl):
178
+ ser = Series(range(10), index=list(range(0, 20, 2)))
179
+ with pytest.raises(KeyError, match=r"^1$"):
180
+ indexer_sl(ser)[1]
181
+
182
+
183
+ def test_getitem_dups_with_missing(indexer_sl):
184
+ # breaks reindex, so need to use .loc internally
185
+ # GH 4246
186
+ ser = Series([1, 2, 3, 4], ["foo", "bar", "foo", "bah"])
187
+ with pytest.raises(KeyError, match=re.escape("['bam'] not in index")):
188
+ indexer_sl(ser)[["foo", "bar", "bah", "bam"]]
189
+
190
+
191
+ def test_setitem_ambiguous_keyerror(indexer_sl):
192
+ s = Series(range(10), index=list(range(0, 20, 2)))
193
+
194
+ # equivalent of an append
195
+ s2 = s.copy()
196
+ indexer_sl(s2)[1] = 5
197
+ expected = concat([s, Series([5], index=[1])])
198
+ tm.assert_series_equal(s2, expected)
199
+
200
+
201
+ def test_setitem(datetime_series):
202
+ datetime_series[datetime_series.index[5]] = np.nan
203
+ datetime_series.iloc[[1, 2, 17]] = np.nan
204
+ datetime_series.iloc[6] = np.nan
205
+ assert np.isnan(datetime_series.iloc[6])
206
+ assert np.isnan(datetime_series.iloc[2])
207
+ datetime_series[np.isnan(datetime_series)] = 5
208
+ assert not np.isnan(datetime_series.iloc[2])
209
+
210
+
211
+ def test_setslice(datetime_series):
212
+ sl = datetime_series[5:20]
213
+ assert len(sl) == len(sl.index)
214
+ assert sl.index.is_unique is True
215
+
216
+
217
+ def test_basic_getitem_setitem_corner(datetime_series):
218
+ # invalid tuples, e.g. td.ts[:, None] vs. td.ts[:, 2]
219
+ msg = "key of type tuple not found and not a MultiIndex"
220
+ with pytest.raises(KeyError, match=msg):
221
+ datetime_series[:, 2]
222
+ with pytest.raises(KeyError, match=msg):
223
+ datetime_series[:, 2] = 2
224
+
225
+ # weird lists. [slice(0, 5)] raises but not two slices
226
+ msg = "Indexing with a single-item list"
227
+ with pytest.raises(ValueError, match=msg):
228
+ # GH#31299
229
+ datetime_series[[slice(None, 5)]]
230
+
231
+ # but we're OK with a single-element tuple
232
+ result = datetime_series[(slice(None, 5),)]
233
+ expected = datetime_series[:5]
234
+ tm.assert_series_equal(result, expected)
235
+
236
+ # OK
237
+ msg = r"unhashable type(: 'slice')?"
238
+ with pytest.raises(TypeError, match=msg):
239
+ datetime_series[[5, [None, None]]]
240
+ with pytest.raises(TypeError, match=msg):
241
+ datetime_series[[5, [None, None]]] = 2
242
+
243
+
244
+ def test_slice(string_series, object_series, using_copy_on_write, warn_copy_on_write):
245
+ original = string_series.copy()
246
+ numSlice = string_series[10:20]
247
+ numSliceEnd = string_series[-10:]
248
+ objSlice = object_series[10:20]
249
+
250
+ assert string_series.index[9] not in numSlice.index
251
+ assert object_series.index[9] not in objSlice.index
252
+
253
+ assert len(numSlice) == len(numSlice.index)
254
+ assert string_series[numSlice.index[0]] == numSlice[numSlice.index[0]]
255
+
256
+ assert numSlice.index[1] == string_series.index[11]
257
+ tm.assert_numpy_array_equal(np.array(numSliceEnd), np.array(string_series)[-10:])
258
+
259
+ # Test return view.
260
+ sl = string_series[10:20]
261
+ with tm.assert_cow_warning(warn_copy_on_write):
262
+ sl[:] = 0
263
+
264
+ if using_copy_on_write:
265
+ # Doesn't modify parent (CoW)
266
+ tm.assert_series_equal(string_series, original)
267
+ else:
268
+ assert (string_series[10:20] == 0).all()
269
+
270
+
271
+ def test_timedelta_assignment():
272
+ # GH 8209
273
+ s = Series([], dtype=object)
274
+ s.loc["B"] = timedelta(1)
275
+ tm.assert_series_equal(s, Series(Timedelta("1 days"), index=["B"]))
276
+
277
+ s = s.reindex(s.index.insert(0, "A"))
278
+ tm.assert_series_equal(s, Series([np.nan, Timedelta("1 days")], index=["A", "B"]))
279
+
280
+ s.loc["A"] = timedelta(1)
281
+ expected = Series(Timedelta("1 days"), index=["A", "B"])
282
+ tm.assert_series_equal(s, expected)
283
+
284
+
285
+ def test_underlying_data_conversion(using_copy_on_write):
286
+ # GH 4080
287
+ df = DataFrame({c: [1, 2, 3] for c in ["a", "b", "c"]})
288
+ return_value = df.set_index(["a", "b", "c"], inplace=True)
289
+ assert return_value is None
290
+ s = Series([1], index=[(2, 2, 2)])
291
+ df["val"] = 0
292
+ df_original = df.copy()
293
+ df
294
+
295
+ if using_copy_on_write:
296
+ with tm.raises_chained_assignment_error():
297
+ df["val"].update(s)
298
+ expected = df_original
299
+ else:
300
+ with tm.assert_produces_warning(FutureWarning, match="inplace method"):
301
+ df["val"].update(s)
302
+ expected = DataFrame(
303
+ {"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3], "val": [0, 1, 0]}
304
+ )
305
+ return_value = expected.set_index(["a", "b", "c"], inplace=True)
306
+ assert return_value is None
307
+ tm.assert_frame_equal(df, expected)
308
+
309
+
310
+ def test_preserve_refs(datetime_series):
311
+ seq = datetime_series.iloc[[5, 10, 15]]
312
+ seq.iloc[1] = np.nan
313
+ assert not np.isnan(datetime_series.iloc[10])
314
+
315
+
316
+ def test_multilevel_preserve_name(lexsorted_two_level_string_multiindex, indexer_sl):
317
+ index = lexsorted_two_level_string_multiindex
318
+ ser = Series(
319
+ np.random.default_rng(2).standard_normal(len(index)), index=index, name="sth"
320
+ )
321
+
322
+ result = indexer_sl(ser)["foo"]
323
+ assert result.name == ser.name
324
+
325
+
326
+ # miscellaneous methods
327
+
328
+
329
+ @pytest.mark.parametrize(
330
+ "index",
331
+ [
332
+ date_range("2014-01-01", periods=20, freq="MS"),
333
+ period_range("2014-01", periods=20, freq="M"),
334
+ timedelta_range("0", periods=20, freq="h"),
335
+ ],
336
+ )
337
+ def test_slice_with_negative_step(index):
338
+ keystr1 = str(index[9])
339
+ keystr2 = str(index[13])
340
+
341
+ ser = Series(np.arange(20), index)
342
+ SLC = IndexSlice
343
+
344
+ for key in [keystr1, index[9]]:
345
+ tm.assert_indexing_slices_equivalent(ser, SLC[key::-1], SLC[9::-1])
346
+ tm.assert_indexing_slices_equivalent(ser, SLC[:key:-1], SLC[:8:-1])
347
+
348
+ for key2 in [keystr2, index[13]]:
349
+ tm.assert_indexing_slices_equivalent(ser, SLC[key2:key:-1], SLC[13:8:-1])
350
+ tm.assert_indexing_slices_equivalent(ser, SLC[key:key2:-1], SLC[0:0:-1])
351
+
352
+
353
+ def test_tuple_index():
354
+ # GH 35534 - Selecting values when a Series has an Index of tuples
355
+ s = Series([1, 2], index=[("a",), ("b",)])
356
+ assert s[("a",)] == 1
357
+ assert s[("b",)] == 2
358
+ s[("b",)] = 3
359
+ assert s[("b",)] == 3
360
+
361
+
362
+ def test_frozenset_index():
363
+ # GH35747 - Selecting values when a Series has an Index of frozenset
364
+ idx0, idx1 = frozenset("a"), frozenset("b")
365
+ s = Series([1, 2], index=[idx0, idx1])
366
+ assert s[idx0] == 1
367
+ assert s[idx1] == 2
368
+ s[idx1] = 3
369
+ assert s[idx1] == 3
370
+
371
+
372
+ def test_loc_setitem_all_false_indexer():
373
+ # GH#45778
374
+ ser = Series([1, 2], index=["a", "b"])
375
+ expected = ser.copy()
376
+ rhs = Series([6, 7], index=["a", "b"])
377
+ ser.loc[ser > 100] = rhs
378
+ tm.assert_series_equal(ser, expected)
379
+
380
+
381
+ def test_loc_boolean_indexer_non_matching_index():
382
+ # GH#46551
383
+ ser = Series([1])
384
+ result = ser.loc[Series([NA, False], dtype="boolean")]
385
+ expected = Series([], dtype="int64")
386
+ tm.assert_series_equal(result, expected)
387
+
388
+
389
+ def test_loc_boolean_indexer_miss_matching_index():
390
+ # GH#46551
391
+ ser = Series([1])
392
+ indexer = Series([NA, False], dtype="boolean", index=[1, 2])
393
+ with pytest.raises(IndexingError, match="Unalignable"):
394
+ ser.loc[indexer]
395
+
396
+
397
+ def test_loc_setitem_nested_data_enlargement():
398
+ # GH#48614
399
+ df = DataFrame({"a": [1]})
400
+ ser = Series({"label": df})
401
+ ser.loc["new_label"] = df
402
+ expected = Series({"label": df, "new_label": df})
403
+ tm.assert_series_equal(ser, expected)
404
+
405
+
406
+ def test_loc_ea_numeric_index_oob_slice_end():
407
+ # GH#50161
408
+ ser = Series(1, index=Index([0, 1, 2], dtype="Int64"))
409
+ result = ser.loc[2:3]
410
+ expected = Series(1, index=Index([2], dtype="Int64"))
411
+ tm.assert_series_equal(result, expected)
412
+
413
+
414
+ def test_getitem_bool_int_key():
415
+ # GH#48653
416
+ ser = Series({True: 1, False: 0})
417
+ with pytest.raises(KeyError, match="0"):
418
+ ser.loc[0]
419
+
420
+
421
+ @pytest.mark.parametrize("val", [{}, {"b": "x"}])
422
+ @pytest.mark.parametrize("indexer", [[], [False, False], slice(0, -1), np.array([])])
423
+ def test_setitem_empty_indexer(indexer, val):
424
+ # GH#45981
425
+ df = DataFrame({"a": [1, 2], **val})
426
+ expected = df.copy()
427
+ df.loc[indexer] = 1.5
428
+ tm.assert_frame_equal(df, expected)
429
+
430
+
431
+ class TestDeprecatedIndexers:
432
+ @pytest.mark.parametrize("key", [{1}, {1: 1}])
433
+ def test_getitem_dict_and_set_deprecated(self, key):
434
+ # GH#42825 enforced in 2.0
435
+ ser = Series([1, 2])
436
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
437
+ ser.loc[key]
438
+
439
+ @pytest.mark.parametrize("key", [{1}, {1: 1}, ({1}, 2), ({1: 1}, 2)])
440
+ def test_getitem_dict_and_set_deprecated_multiindex(self, key):
441
+ # GH#42825 enforced in 2.0
442
+ ser = Series([1, 2], index=MultiIndex.from_tuples([(1, 2), (3, 4)]))
443
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
444
+ ser.loc[key]
445
+
446
+ @pytest.mark.parametrize("key", [{1}, {1: 1}])
447
+ def test_setitem_dict_and_set_disallowed(self, key):
448
+ # GH#42825 enforced in 2.0
449
+ ser = Series([1, 2])
450
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
451
+ ser.loc[key] = 1
452
+
453
+ @pytest.mark.parametrize("key", [{1}, {1: 1}, ({1}, 2), ({1: 1}, 2)])
454
+ def test_setitem_dict_and_set_disallowed_multiindex(self, key):
455
+ # GH#42825 enforced in 2.0
456
+ ser = Series([1, 2], index=MultiIndex.from_tuples([(1, 2), (3, 4)]))
457
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
458
+ ser.loc[key] = 1
459
+
460
+
461
+ class TestSetitemValidation:
462
+ # This is adapted from pandas/tests/arrays/masked/test_indexing.py
463
+ # but checks for warnings instead of errors.
464
+ def _check_setitem_invalid(self, ser, invalid, indexer, warn):
465
+ msg = "Setting an item of incompatible dtype is deprecated"
466
+ msg = re.escape(msg)
467
+
468
+ orig_ser = ser.copy()
469
+
470
+ with tm.assert_produces_warning(warn, match=msg):
471
+ ser[indexer] = invalid
472
+ ser = orig_ser.copy()
473
+
474
+ with tm.assert_produces_warning(warn, match=msg):
475
+ ser.iloc[indexer] = invalid
476
+ ser = orig_ser.copy()
477
+
478
+ with tm.assert_produces_warning(warn, match=msg):
479
+ ser.loc[indexer] = invalid
480
+ ser = orig_ser.copy()
481
+
482
+ with tm.assert_produces_warning(warn, match=msg):
483
+ ser[:] = invalid
484
+
485
+ _invalid_scalars = [
486
+ 1 + 2j,
487
+ "True",
488
+ "1",
489
+ "1.0",
490
+ NaT,
491
+ np.datetime64("NaT"),
492
+ np.timedelta64("NaT"),
493
+ ]
494
+ _indexers = [0, [0], slice(0, 1), [True, False, False], slice(None, None, None)]
495
+
496
+ @pytest.mark.parametrize(
497
+ "invalid", _invalid_scalars + [1, 1.0, np.int64(1), np.float64(1)]
498
+ )
499
+ @pytest.mark.parametrize("indexer", _indexers)
500
+ def test_setitem_validation_scalar_bool(self, invalid, indexer):
501
+ ser = Series([True, False, False], dtype="bool")
502
+ self._check_setitem_invalid(ser, invalid, indexer, FutureWarning)
503
+
504
+ @pytest.mark.parametrize("invalid", _invalid_scalars + [True, 1.5, np.float64(1.5)])
505
+ @pytest.mark.parametrize("indexer", _indexers)
506
+ def test_setitem_validation_scalar_int(self, invalid, any_int_numpy_dtype, indexer):
507
+ ser = Series([1, 2, 3], dtype=any_int_numpy_dtype)
508
+ if isna(invalid) and invalid is not NaT and not np.isnat(invalid):
509
+ warn = None
510
+ else:
511
+ warn = FutureWarning
512
+ self._check_setitem_invalid(ser, invalid, indexer, warn)
513
+
514
+ @pytest.mark.parametrize("invalid", _invalid_scalars + [True])
515
+ @pytest.mark.parametrize("indexer", _indexers)
516
+ def test_setitem_validation_scalar_float(self, invalid, float_numpy_dtype, indexer):
517
+ ser = Series([1, 2, None], dtype=float_numpy_dtype)
518
+ self._check_setitem_invalid(ser, invalid, indexer, FutureWarning)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_setitem.py ADDED
@@ -0,0 +1,1847 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ date,
3
+ datetime,
4
+ )
5
+ from decimal import Decimal
6
+
7
+ import numpy as np
8
+ import pytest
9
+
10
+ from pandas.compat.numpy import np_version_gte1p24
11
+ from pandas.errors import IndexingError
12
+
13
+ from pandas.core.dtypes.common import is_list_like
14
+
15
+ from pandas import (
16
+ NA,
17
+ Categorical,
18
+ DataFrame,
19
+ DatetimeIndex,
20
+ Index,
21
+ Interval,
22
+ IntervalIndex,
23
+ MultiIndex,
24
+ NaT,
25
+ Period,
26
+ Series,
27
+ Timedelta,
28
+ Timestamp,
29
+ array,
30
+ concat,
31
+ date_range,
32
+ interval_range,
33
+ period_range,
34
+ timedelta_range,
35
+ )
36
+ import pandas._testing as tm
37
+
38
+ from pandas.tseries.offsets import BDay
39
+
40
+
41
+ class TestSetitemDT64Values:
42
+ def test_setitem_none_nan(self):
43
+ series = Series(date_range("1/1/2000", periods=10))
44
+ series[3] = None
45
+ assert series[3] is NaT
46
+
47
+ series[3:5] = None
48
+ assert series[4] is NaT
49
+
50
+ series[5] = np.nan
51
+ assert series[5] is NaT
52
+
53
+ series[5:7] = np.nan
54
+ assert series[6] is NaT
55
+
56
+ def test_setitem_multiindex_empty_slice(self):
57
+ # https://github.com/pandas-dev/pandas/issues/35878
58
+ idx = MultiIndex.from_tuples([("a", 1), ("b", 2)])
59
+ result = Series([1, 2], index=idx)
60
+ expected = result.copy()
61
+ result.loc[[]] = 0
62
+ tm.assert_series_equal(result, expected)
63
+
64
+ def test_setitem_with_string_index(self):
65
+ # GH#23451
66
+ # Set object dtype to avoid upcast when setting date.today()
67
+ ser = Series([1, 2, 3], index=["Date", "b", "other"], dtype=object)
68
+ ser["Date"] = date.today()
69
+ assert ser.Date == date.today()
70
+ assert ser["Date"] == date.today()
71
+
72
+ def test_setitem_tuple_with_datetimetz_values(self):
73
+ # GH#20441
74
+ arr = date_range("2017", periods=4, tz="US/Eastern")
75
+ index = [(0, 1), (0, 2), (0, 3), (0, 4)]
76
+ result = Series(arr, index=index)
77
+ expected = result.copy()
78
+ result[(0, 1)] = np.nan
79
+ expected.iloc[0] = np.nan
80
+ tm.assert_series_equal(result, expected)
81
+
82
+ @pytest.mark.parametrize("tz", ["US/Eastern", "UTC", "Asia/Tokyo"])
83
+ def test_setitem_with_tz(self, tz, indexer_sli):
84
+ orig = Series(date_range("2016-01-01", freq="h", periods=3, tz=tz))
85
+ assert orig.dtype == f"datetime64[ns, {tz}]"
86
+
87
+ exp = Series(
88
+ [
89
+ Timestamp("2016-01-01 00:00", tz=tz),
90
+ Timestamp("2011-01-01 00:00", tz=tz),
91
+ Timestamp("2016-01-01 02:00", tz=tz),
92
+ ],
93
+ dtype=orig.dtype,
94
+ )
95
+
96
+ # scalar
97
+ ser = orig.copy()
98
+ indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz)
99
+ tm.assert_series_equal(ser, exp)
100
+
101
+ # vector
102
+ vals = Series(
103
+ [Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
104
+ index=[1, 2],
105
+ dtype=orig.dtype,
106
+ )
107
+ assert vals.dtype == f"datetime64[ns, {tz}]"
108
+
109
+ exp = Series(
110
+ [
111
+ Timestamp("2016-01-01 00:00", tz=tz),
112
+ Timestamp("2011-01-01 00:00", tz=tz),
113
+ Timestamp("2012-01-01 00:00", tz=tz),
114
+ ],
115
+ dtype=orig.dtype,
116
+ )
117
+
118
+ ser = orig.copy()
119
+ indexer_sli(ser)[[1, 2]] = vals
120
+ tm.assert_series_equal(ser, exp)
121
+
122
+ def test_setitem_with_tz_dst(self, indexer_sli):
123
+ # GH#14146 trouble setting values near DST boundary
124
+ tz = "US/Eastern"
125
+ orig = Series(date_range("2016-11-06", freq="h", periods=3, tz=tz))
126
+ assert orig.dtype == f"datetime64[ns, {tz}]"
127
+
128
+ exp = Series(
129
+ [
130
+ Timestamp("2016-11-06 00:00-04:00", tz=tz),
131
+ Timestamp("2011-01-01 00:00-05:00", tz=tz),
132
+ Timestamp("2016-11-06 01:00-05:00", tz=tz),
133
+ ],
134
+ dtype=orig.dtype,
135
+ )
136
+
137
+ # scalar
138
+ ser = orig.copy()
139
+ indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz)
140
+ tm.assert_series_equal(ser, exp)
141
+
142
+ # vector
143
+ vals = Series(
144
+ [Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
145
+ index=[1, 2],
146
+ dtype=orig.dtype,
147
+ )
148
+ assert vals.dtype == f"datetime64[ns, {tz}]"
149
+
150
+ exp = Series(
151
+ [
152
+ Timestamp("2016-11-06 00:00", tz=tz),
153
+ Timestamp("2011-01-01 00:00", tz=tz),
154
+ Timestamp("2012-01-01 00:00", tz=tz),
155
+ ],
156
+ dtype=orig.dtype,
157
+ )
158
+
159
+ ser = orig.copy()
160
+ indexer_sli(ser)[[1, 2]] = vals
161
+ tm.assert_series_equal(ser, exp)
162
+
163
+ def test_object_series_setitem_dt64array_exact_match(self):
164
+ # make sure the dt64 isn't cast by numpy to integers
165
+ # https://github.com/numpy/numpy/issues/12550
166
+
167
+ ser = Series({"X": np.nan}, dtype=object)
168
+
169
+ indexer = [True]
170
+
171
+ # "exact_match" -> size of array being set matches size of ser
172
+ value = np.array([4], dtype="M8[ns]")
173
+
174
+ ser.iloc[indexer] = value
175
+
176
+ expected = Series([value[0]], index=["X"], dtype=object)
177
+ assert all(isinstance(x, np.datetime64) for x in expected.values)
178
+
179
+ tm.assert_series_equal(ser, expected)
180
+
181
+
182
+ class TestSetitemScalarIndexer:
183
+ def test_setitem_negative_out_of_bounds(self):
184
+ ser = Series(["a"] * 10, index=["a"] * 10)
185
+
186
+ # string index falls back to positional
187
+ msg = "index -11|-1 is out of bounds for axis 0 with size 10"
188
+ warn_msg = "Series.__setitem__ treating keys as positions is deprecated"
189
+ with pytest.raises(IndexError, match=msg):
190
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
191
+ ser[-11] = "foo"
192
+
193
+ @pytest.mark.parametrize("indexer", [tm.loc, tm.at])
194
+ @pytest.mark.parametrize("ser_index", [0, 1])
195
+ def test_setitem_series_object_dtype(self, indexer, ser_index):
196
+ # GH#38303
197
+ ser = Series([0, 0], dtype="object")
198
+ idxr = indexer(ser)
199
+ idxr[0] = Series([42], index=[ser_index])
200
+ expected = Series([Series([42], index=[ser_index]), 0], dtype="object")
201
+ tm.assert_series_equal(ser, expected)
202
+
203
+ @pytest.mark.parametrize("index, exp_value", [(0, 42), (1, np.nan)])
204
+ def test_setitem_series(self, index, exp_value):
205
+ # GH#38303
206
+ ser = Series([0, 0])
207
+ ser.loc[0] = Series([42], index=[index])
208
+ expected = Series([exp_value, 0])
209
+ tm.assert_series_equal(ser, expected)
210
+
211
+
212
+ class TestSetitemSlices:
213
+ def test_setitem_slice_float_raises(self, datetime_series):
214
+ msg = (
215
+ "cannot do slice indexing on DatetimeIndex with these indexers "
216
+ r"\[{key}\] of type float"
217
+ )
218
+ with pytest.raises(TypeError, match=msg.format(key=r"4\.0")):
219
+ datetime_series[4.0:10.0] = 0
220
+
221
+ with pytest.raises(TypeError, match=msg.format(key=r"4\.5")):
222
+ datetime_series[4.5:10.0] = 0
223
+
224
+ def test_setitem_slice(self):
225
+ ser = Series(range(10), index=list(range(10)))
226
+ ser[-12:] = 0
227
+ assert (ser == 0).all()
228
+
229
+ ser[:-12] = 5
230
+ assert (ser == 0).all()
231
+
232
+ def test_setitem_slice_integers(self):
233
+ ser = Series(
234
+ np.random.default_rng(2).standard_normal(8),
235
+ index=[2, 4, 6, 8, 10, 12, 14, 16],
236
+ )
237
+
238
+ ser[:4] = 0
239
+ assert (ser[:4] == 0).all()
240
+ assert not (ser[4:] == 0).any()
241
+
242
+ def test_setitem_slicestep(self):
243
+ # caught this bug when writing tests
244
+ series = Series(
245
+ np.arange(20, dtype=np.float64), index=np.arange(20, dtype=np.int64)
246
+ )
247
+
248
+ series[::2] = 0
249
+ assert (series[::2] == 0).all()
250
+
251
+ def test_setitem_multiindex_slice(self, indexer_sli):
252
+ # GH 8856
253
+ mi = MultiIndex.from_product(([0, 1], list("abcde")))
254
+ result = Series(np.arange(10, dtype=np.int64), mi)
255
+ indexer_sli(result)[::4] = 100
256
+ expected = Series([100, 1, 2, 3, 100, 5, 6, 7, 100, 9], mi)
257
+ tm.assert_series_equal(result, expected)
258
+
259
+
260
+ class TestSetitemBooleanMask:
261
+ def test_setitem_mask_cast(self):
262
+ # GH#2746
263
+ # need to upcast
264
+ ser = Series([1, 2], index=[1, 2], dtype="int64")
265
+ ser[[True, False]] = Series([0], index=[1], dtype="int64")
266
+ expected = Series([0, 2], index=[1, 2], dtype="int64")
267
+
268
+ tm.assert_series_equal(ser, expected)
269
+
270
+ def test_setitem_mask_align_and_promote(self):
271
+ # GH#8387: test that changing types does not break alignment
272
+ ts = Series(
273
+ np.random.default_rng(2).standard_normal(100), index=np.arange(100, 0, -1)
274
+ ).round(5)
275
+ mask = ts > 0
276
+ left = ts.copy()
277
+ right = ts[mask].copy().map(str)
278
+ with tm.assert_produces_warning(
279
+ FutureWarning, match="item of incompatible dtype"
280
+ ):
281
+ left[mask] = right
282
+ expected = ts.map(lambda t: str(t) if t > 0 else t)
283
+ tm.assert_series_equal(left, expected)
284
+
285
+ def test_setitem_mask_promote_strs(self):
286
+ ser = Series([0, 1, 2, 0])
287
+ mask = ser > 0
288
+ ser2 = ser[mask].map(str)
289
+ with tm.assert_produces_warning(
290
+ FutureWarning, match="item of incompatible dtype"
291
+ ):
292
+ ser[mask] = ser2
293
+
294
+ expected = Series([0, "1", "2", 0])
295
+ tm.assert_series_equal(ser, expected)
296
+
297
+ def test_setitem_mask_promote(self):
298
+ ser = Series([0, "foo", "bar", 0])
299
+ mask = Series([False, True, True, False])
300
+ ser2 = ser[mask]
301
+ ser[mask] = ser2
302
+
303
+ expected = Series([0, "foo", "bar", 0])
304
+ tm.assert_series_equal(ser, expected)
305
+
306
+ def test_setitem_boolean(self, string_series):
307
+ mask = string_series > string_series.median()
308
+
309
+ # similar indexed series
310
+ result = string_series.copy()
311
+ result[mask] = string_series * 2
312
+ expected = string_series * 2
313
+ tm.assert_series_equal(result[mask], expected[mask])
314
+
315
+ # needs alignment
316
+ result = string_series.copy()
317
+ result[mask] = (string_series * 2)[0:5]
318
+ expected = (string_series * 2)[0:5].reindex_like(string_series)
319
+ expected[-mask] = string_series[mask]
320
+ tm.assert_series_equal(result[mask], expected[mask])
321
+
322
+ def test_setitem_boolean_corner(self, datetime_series):
323
+ ts = datetime_series
324
+ mask_shifted = ts.shift(1, freq=BDay()) > ts.median()
325
+
326
+ msg = (
327
+ r"Unalignable boolean Series provided as indexer \(index of "
328
+ r"the boolean Series and of the indexed object do not match"
329
+ )
330
+ with pytest.raises(IndexingError, match=msg):
331
+ ts[mask_shifted] = 1
332
+
333
+ with pytest.raises(IndexingError, match=msg):
334
+ ts.loc[mask_shifted] = 1
335
+
336
+ def test_setitem_boolean_different_order(self, string_series):
337
+ ordered = string_series.sort_values()
338
+
339
+ copy = string_series.copy()
340
+ copy[ordered > 0] = 0
341
+
342
+ expected = string_series.copy()
343
+ expected[expected > 0] = 0
344
+
345
+ tm.assert_series_equal(copy, expected)
346
+
347
+ @pytest.mark.parametrize("func", [list, np.array, Series])
348
+ def test_setitem_boolean_python_list(self, func):
349
+ # GH19406
350
+ ser = Series([None, "b", None])
351
+ mask = func([True, False, True])
352
+ ser[mask] = ["a", "c"]
353
+ expected = Series(["a", "b", "c"])
354
+ tm.assert_series_equal(ser, expected)
355
+
356
+ def test_setitem_boolean_nullable_int_types(self, any_numeric_ea_dtype):
357
+ # GH: 26468
358
+ ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
359
+ ser[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype)
360
+ expected = Series([5, 6, 2, 3], dtype=any_numeric_ea_dtype)
361
+ tm.assert_series_equal(ser, expected)
362
+
363
+ ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
364
+ ser.loc[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype)
365
+ tm.assert_series_equal(ser, expected)
366
+
367
+ ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype)
368
+ loc_ser = Series(range(4), dtype=any_numeric_ea_dtype)
369
+ ser.loc[ser > 6] = loc_ser.loc[loc_ser > 1]
370
+ tm.assert_series_equal(ser, expected)
371
+
372
+ def test_setitem_with_bool_mask_and_values_matching_n_trues_in_length(self):
373
+ # GH#30567
374
+ ser = Series([None] * 10)
375
+ mask = [False] * 3 + [True] * 5 + [False] * 2
376
+ ser[mask] = range(5)
377
+ result = ser
378
+ expected = Series([None] * 3 + list(range(5)) + [None] * 2, dtype=object)
379
+ tm.assert_series_equal(result, expected)
380
+
381
+ def test_setitem_nan_with_bool(self):
382
+ # GH 13034
383
+ result = Series([True, False, True])
384
+ with tm.assert_produces_warning(
385
+ FutureWarning, match="item of incompatible dtype"
386
+ ):
387
+ result[0] = np.nan
388
+ expected = Series([np.nan, False, True], dtype=object)
389
+ tm.assert_series_equal(result, expected)
390
+
391
+ def test_setitem_mask_smallint_upcast(self):
392
+ orig = Series([1, 2, 3], dtype="int8")
393
+ alt = np.array([999, 1000, 1001], dtype=np.int64)
394
+
395
+ mask = np.array([True, False, True])
396
+
397
+ ser = orig.copy()
398
+ with tm.assert_produces_warning(
399
+ FutureWarning, match="item of incompatible dtype"
400
+ ):
401
+ ser[mask] = Series(alt)
402
+ expected = Series([999, 2, 1001])
403
+ tm.assert_series_equal(ser, expected)
404
+
405
+ ser2 = orig.copy()
406
+ with tm.assert_produces_warning(
407
+ FutureWarning, match="item of incompatible dtype"
408
+ ):
409
+ ser2.mask(mask, alt, inplace=True)
410
+ tm.assert_series_equal(ser2, expected)
411
+
412
+ ser3 = orig.copy()
413
+ res = ser3.where(~mask, Series(alt))
414
+ tm.assert_series_equal(res, expected)
415
+
416
+ def test_setitem_mask_smallint_no_upcast(self):
417
+ # like test_setitem_mask_smallint_upcast, but while we can't hold 'alt',
418
+ # we *can* hold alt[mask] without casting
419
+ orig = Series([1, 2, 3], dtype="uint8")
420
+ alt = Series([245, 1000, 246], dtype=np.int64)
421
+
422
+ mask = np.array([True, False, True])
423
+
424
+ ser = orig.copy()
425
+ ser[mask] = alt
426
+ expected = Series([245, 2, 246], dtype="uint8")
427
+ tm.assert_series_equal(ser, expected)
428
+
429
+ ser2 = orig.copy()
430
+ ser2.mask(mask, alt, inplace=True)
431
+ tm.assert_series_equal(ser2, expected)
432
+
433
+ # TODO: ser.where(~mask, alt) unnecessarily upcasts to int64
434
+ ser3 = orig.copy()
435
+ res = ser3.where(~mask, alt)
436
+ tm.assert_series_equal(res, expected, check_dtype=False)
437
+
438
+
439
+ class TestSetitemViewCopySemantics:
440
+ def test_setitem_invalidates_datetime_index_freq(self, using_copy_on_write):
441
+ # GH#24096 altering a datetime64tz Series inplace invalidates the
442
+ # `freq` attribute on the underlying DatetimeIndex
443
+
444
+ dti = date_range("20130101", periods=3, tz="US/Eastern")
445
+ ts = dti[1]
446
+ ser = Series(dti)
447
+ assert ser._values is not dti
448
+ if using_copy_on_write:
449
+ assert ser._values._ndarray.base is dti._data._ndarray.base
450
+ else:
451
+ assert ser._values._ndarray.base is not dti._data._ndarray.base
452
+ assert dti.freq == "D"
453
+ ser.iloc[1] = NaT
454
+ assert ser._values.freq is None
455
+
456
+ # check that the DatetimeIndex was not altered in place
457
+ assert ser._values is not dti
458
+ assert ser._values._ndarray.base is not dti._data._ndarray.base
459
+ assert dti[1] == ts
460
+ assert dti.freq == "D"
461
+
462
+ def test_dt64tz_setitem_does_not_mutate_dti(self, using_copy_on_write):
463
+ # GH#21907, GH#24096
464
+ dti = date_range("2016-01-01", periods=10, tz="US/Pacific")
465
+ ts = dti[0]
466
+ ser = Series(dti)
467
+ assert ser._values is not dti
468
+ if using_copy_on_write:
469
+ assert ser._values._ndarray.base is dti._data._ndarray.base
470
+ assert ser._mgr.arrays[0]._ndarray.base is dti._data._ndarray.base
471
+ else:
472
+ assert ser._values._ndarray.base is not dti._data._ndarray.base
473
+ assert ser._mgr.arrays[0]._ndarray.base is not dti._data._ndarray.base
474
+
475
+ assert ser._mgr.arrays[0] is not dti
476
+
477
+ ser[::3] = NaT
478
+ assert ser[0] is NaT
479
+ assert dti[0] == ts
480
+
481
+
482
+ class TestSetitemCallable:
483
+ def test_setitem_callable_key(self):
484
+ # GH#12533
485
+ ser = Series([1, 2, 3, 4], index=list("ABCD"))
486
+ ser[lambda x: "A"] = -1
487
+
488
+ expected = Series([-1, 2, 3, 4], index=list("ABCD"))
489
+ tm.assert_series_equal(ser, expected)
490
+
491
+ def test_setitem_callable_other(self):
492
+ # GH#13299
493
+ inc = lambda x: x + 1
494
+
495
+ # set object dtype to avoid upcast when setting inc
496
+ ser = Series([1, 2, -1, 4], dtype=object)
497
+ ser[ser < 0] = inc
498
+
499
+ expected = Series([1, 2, inc, 4])
500
+ tm.assert_series_equal(ser, expected)
501
+
502
+
503
+ class TestSetitemWithExpansion:
504
+ def test_setitem_empty_series(self):
505
+ # GH#10193
506
+ key = Timestamp("2012-01-01")
507
+ series = Series(dtype=object)
508
+ series[key] = 47
509
+ expected = Series(47, [key])
510
+ tm.assert_series_equal(series, expected)
511
+
512
+ def test_setitem_empty_series_datetimeindex_preserves_freq(self):
513
+ # GH#33573 our index should retain its freq
514
+ dti = DatetimeIndex([], freq="D", dtype="M8[ns]")
515
+ series = Series([], index=dti, dtype=object)
516
+ key = Timestamp("2012-01-01")
517
+ series[key] = 47
518
+ expected = Series(47, DatetimeIndex([key], freq="D").as_unit("ns"))
519
+ tm.assert_series_equal(series, expected)
520
+ assert series.index.freq == expected.index.freq
521
+
522
+ def test_setitem_empty_series_timestamp_preserves_dtype(self):
523
+ # GH 21881
524
+ timestamp = Timestamp(1412526600000000000)
525
+ series = Series([timestamp], index=["timestamp"], dtype=object)
526
+ expected = series["timestamp"]
527
+
528
+ series = Series([], dtype=object)
529
+ series["anything"] = 300.0
530
+ series["timestamp"] = timestamp
531
+ result = series["timestamp"]
532
+ assert result == expected
533
+
534
+ @pytest.mark.parametrize(
535
+ "td",
536
+ [
537
+ Timedelta("9 days"),
538
+ Timedelta("9 days").to_timedelta64(),
539
+ Timedelta("9 days").to_pytimedelta(),
540
+ ],
541
+ )
542
+ def test_append_timedelta_does_not_cast(self, td, using_infer_string, request):
543
+ # GH#22717 inserting a Timedelta should _not_ cast to int64
544
+ if using_infer_string and not isinstance(td, Timedelta):
545
+ # TODO: GH#56010
546
+ request.applymarker(pytest.mark.xfail(reason="inferred as string"))
547
+
548
+ expected = Series(["x", td], index=[0, "td"], dtype=object)
549
+
550
+ ser = Series(["x"])
551
+ ser["td"] = td
552
+ tm.assert_series_equal(ser, expected)
553
+ assert isinstance(ser["td"], Timedelta)
554
+
555
+ ser = Series(["x"])
556
+ ser.loc["td"] = Timedelta("9 days")
557
+ tm.assert_series_equal(ser, expected)
558
+ assert isinstance(ser["td"], Timedelta)
559
+
560
+ def test_setitem_with_expansion_type_promotion(self):
561
+ # GH#12599
562
+ ser = Series(dtype=object)
563
+ ser["a"] = Timestamp("2016-01-01")
564
+ ser["b"] = 3.0
565
+ ser["c"] = "foo"
566
+ expected = Series([Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"])
567
+ tm.assert_series_equal(ser, expected)
568
+
569
+ def test_setitem_not_contained(self, string_series):
570
+ # set item that's not contained
571
+ ser = string_series.copy()
572
+ assert "foobar" not in ser.index
573
+ ser["foobar"] = 1
574
+
575
+ app = Series([1], index=["foobar"], name="series")
576
+ expected = concat([string_series, app])
577
+ tm.assert_series_equal(ser, expected)
578
+
579
+ def test_setitem_keep_precision(self, any_numeric_ea_dtype):
580
+ # GH#32346
581
+ ser = Series([1, 2], dtype=any_numeric_ea_dtype)
582
+ ser[2] = 10
583
+ expected = Series([1, 2, 10], dtype=any_numeric_ea_dtype)
584
+ tm.assert_series_equal(ser, expected)
585
+
586
+ @pytest.mark.parametrize(
587
+ "na, target_na, dtype, target_dtype, indexer, warn",
588
+ [
589
+ (NA, NA, "Int64", "Int64", 1, None),
590
+ (NA, NA, "Int64", "Int64", 2, None),
591
+ (NA, np.nan, "int64", "float64", 1, None),
592
+ (NA, np.nan, "int64", "float64", 2, None),
593
+ (NaT, NaT, "int64", "object", 1, FutureWarning),
594
+ (NaT, NaT, "int64", "object", 2, None),
595
+ (np.nan, NA, "Int64", "Int64", 1, None),
596
+ (np.nan, NA, "Int64", "Int64", 2, None),
597
+ (np.nan, NA, "Float64", "Float64", 1, None),
598
+ (np.nan, NA, "Float64", "Float64", 2, None),
599
+ (np.nan, np.nan, "int64", "float64", 1, None),
600
+ (np.nan, np.nan, "int64", "float64", 2, None),
601
+ ],
602
+ )
603
+ def test_setitem_enlarge_with_na(
604
+ self, na, target_na, dtype, target_dtype, indexer, warn
605
+ ):
606
+ # GH#32346
607
+ ser = Series([1, 2], dtype=dtype)
608
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
609
+ ser[indexer] = na
610
+ expected_values = [1, target_na] if indexer == 1 else [1, 2, target_na]
611
+ expected = Series(expected_values, dtype=target_dtype)
612
+ tm.assert_series_equal(ser, expected)
613
+
614
+ def test_setitem_enlargement_object_none(self, nulls_fixture, using_infer_string):
615
+ # GH#48665
616
+ ser = Series(["a", "b"])
617
+ ser[3] = nulls_fixture
618
+ dtype = (
619
+ "string[pyarrow_numpy]"
620
+ if using_infer_string and not isinstance(nulls_fixture, Decimal)
621
+ else object
622
+ )
623
+ expected = Series(["a", "b", nulls_fixture], index=[0, 1, 3], dtype=dtype)
624
+ tm.assert_series_equal(ser, expected)
625
+ if using_infer_string:
626
+ ser[3] is np.nan
627
+ else:
628
+ assert ser[3] is nulls_fixture
629
+
630
+
631
+ def test_setitem_scalar_into_readonly_backing_data():
632
+ # GH#14359: test that you cannot mutate a read only buffer
633
+
634
+ array = np.zeros(5)
635
+ array.flags.writeable = False # make the array immutable
636
+ series = Series(array, copy=False)
637
+
638
+ for n in series.index:
639
+ msg = "assignment destination is read-only"
640
+ with pytest.raises(ValueError, match=msg):
641
+ series[n] = 1
642
+
643
+ assert array[n] == 0
644
+
645
+
646
+ def test_setitem_slice_into_readonly_backing_data():
647
+ # GH#14359: test that you cannot mutate a read only buffer
648
+
649
+ array = np.zeros(5)
650
+ array.flags.writeable = False # make the array immutable
651
+ series = Series(array, copy=False)
652
+
653
+ msg = "assignment destination is read-only"
654
+ with pytest.raises(ValueError, match=msg):
655
+ series[1:3] = 1
656
+
657
+ assert not array.any()
658
+
659
+
660
+ def test_setitem_categorical_assigning_ops():
661
+ orig = Series(Categorical(["b", "b"], categories=["a", "b"]))
662
+ ser = orig.copy()
663
+ ser[:] = "a"
664
+ exp = Series(Categorical(["a", "a"], categories=["a", "b"]))
665
+ tm.assert_series_equal(ser, exp)
666
+
667
+ ser = orig.copy()
668
+ ser[1] = "a"
669
+ exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
670
+ tm.assert_series_equal(ser, exp)
671
+
672
+ ser = orig.copy()
673
+ ser[ser.index > 0] = "a"
674
+ exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
675
+ tm.assert_series_equal(ser, exp)
676
+
677
+ ser = orig.copy()
678
+ ser[[False, True]] = "a"
679
+ exp = Series(Categorical(["b", "a"], categories=["a", "b"]))
680
+ tm.assert_series_equal(ser, exp)
681
+
682
+ ser = orig.copy()
683
+ ser.index = ["x", "y"]
684
+ ser["y"] = "a"
685
+ exp = Series(Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"])
686
+ tm.assert_series_equal(ser, exp)
687
+
688
+
689
+ def test_setitem_nan_into_categorical():
690
+ # ensure that one can set something to np.nan
691
+ ser = Series(Categorical([1, 2, 3]))
692
+ exp = Series(Categorical([1, np.nan, 3], categories=[1, 2, 3]))
693
+ ser[1] = np.nan
694
+ tm.assert_series_equal(ser, exp)
695
+
696
+
697
+ class TestSetitemCasting:
698
+ @pytest.mark.parametrize("unique", [True, False])
699
+ @pytest.mark.parametrize("val", [3, 3.0, "3"], ids=type)
700
+ def test_setitem_non_bool_into_bool(self, val, indexer_sli, unique):
701
+ # dont cast these 3-like values to bool
702
+ ser = Series([True, False])
703
+ if not unique:
704
+ ser.index = [1, 1]
705
+
706
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
707
+ indexer_sli(ser)[1] = val
708
+ assert type(ser.iloc[1]) == type(val)
709
+
710
+ expected = Series([True, val], dtype=object, index=ser.index)
711
+ if not unique and indexer_sli is not tm.iloc:
712
+ expected = Series([val, val], dtype=object, index=[1, 1])
713
+ tm.assert_series_equal(ser, expected)
714
+
715
+ def test_setitem_boolean_array_into_npbool(self):
716
+ # GH#45462
717
+ ser = Series([True, False, True])
718
+ values = ser._values
719
+ arr = array([True, False, None])
720
+
721
+ ser[:2] = arr[:2] # no NAs -> can set inplace
722
+ assert ser._values is values
723
+
724
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
725
+ ser[1:] = arr[1:] # has an NA -> cast to boolean dtype
726
+ expected = Series(arr)
727
+ tm.assert_series_equal(ser, expected)
728
+
729
+
730
+ class SetitemCastingEquivalents:
731
+ """
732
+ Check each of several methods that _should_ be equivalent to `obj[key] = val`
733
+
734
+ We assume that
735
+ - obj.index is the default Index(range(len(obj)))
736
+ - the setitem does not expand the obj
737
+ """
738
+
739
+ @pytest.fixture
740
+ def is_inplace(self, obj, expected):
741
+ """
742
+ Whether we expect the setting to be in-place or not.
743
+ """
744
+ return expected.dtype == obj.dtype
745
+
746
+ def check_indexer(self, obj, key, expected, val, indexer, is_inplace):
747
+ orig = obj
748
+ obj = obj.copy()
749
+ arr = obj._values
750
+
751
+ indexer(obj)[key] = val
752
+ tm.assert_series_equal(obj, expected)
753
+
754
+ self._check_inplace(is_inplace, orig, arr, obj)
755
+
756
+ def _check_inplace(self, is_inplace, orig, arr, obj):
757
+ if is_inplace is None:
758
+ # We are not (yet) checking whether setting is inplace or not
759
+ pass
760
+ elif is_inplace:
761
+ if arr.dtype.kind in ["m", "M"]:
762
+ # We may not have the same DTA/TDA, but will have the same
763
+ # underlying data
764
+ assert arr._ndarray is obj._values._ndarray
765
+ else:
766
+ assert obj._values is arr
767
+ else:
768
+ # otherwise original array should be unchanged
769
+ tm.assert_equal(arr, orig._values)
770
+
771
+ def test_int_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace):
772
+ if not isinstance(key, int):
773
+ pytest.skip("Not relevant for int key")
774
+
775
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
776
+ self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace)
777
+
778
+ if indexer_sli is tm.loc:
779
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
780
+ self.check_indexer(obj, key, expected, val, tm.at, is_inplace)
781
+ elif indexer_sli is tm.iloc:
782
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
783
+ self.check_indexer(obj, key, expected, val, tm.iat, is_inplace)
784
+
785
+ rng = range(key, key + 1)
786
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
787
+ self.check_indexer(obj, rng, expected, val, indexer_sli, is_inplace)
788
+
789
+ if indexer_sli is not tm.loc:
790
+ # Note: no .loc because that handles slice edges differently
791
+ slc = slice(key, key + 1)
792
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
793
+ self.check_indexer(obj, slc, expected, val, indexer_sli, is_inplace)
794
+
795
+ ilkey = [key]
796
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
797
+ self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace)
798
+
799
+ indkey = np.array(ilkey)
800
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
801
+ self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace)
802
+
803
+ genkey = (x for x in [key])
804
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
805
+ self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace)
806
+
807
+ def test_slice_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace):
808
+ if not isinstance(key, slice):
809
+ pytest.skip("Not relevant for slice key")
810
+
811
+ if indexer_sli is not tm.loc:
812
+ # Note: no .loc because that handles slice edges differently
813
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
814
+ self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace)
815
+
816
+ ilkey = list(range(len(obj)))[key]
817
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
818
+ self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace)
819
+
820
+ indkey = np.array(ilkey)
821
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
822
+ self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace)
823
+
824
+ genkey = (x for x in indkey)
825
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
826
+ self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace)
827
+
828
+ def test_mask_key(self, obj, key, expected, warn, val, indexer_sli):
829
+ # setitem with boolean mask
830
+ mask = np.zeros(obj.shape, dtype=bool)
831
+ mask[key] = True
832
+
833
+ obj = obj.copy()
834
+
835
+ if is_list_like(val) and len(val) < mask.sum():
836
+ msg = "boolean index did not match indexed array along dimension"
837
+ with pytest.raises(IndexError, match=msg):
838
+ indexer_sli(obj)[mask] = val
839
+ return
840
+
841
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
842
+ indexer_sli(obj)[mask] = val
843
+ tm.assert_series_equal(obj, expected)
844
+
845
+ def test_series_where(self, obj, key, expected, warn, val, is_inplace):
846
+ mask = np.zeros(obj.shape, dtype=bool)
847
+ mask[key] = True
848
+
849
+ if is_list_like(val) and len(val) < len(obj):
850
+ # Series.where is not valid here
851
+ msg = "operands could not be broadcast together with shapes"
852
+ with pytest.raises(ValueError, match=msg):
853
+ obj.where(~mask, val)
854
+ return
855
+
856
+ orig = obj
857
+ obj = obj.copy()
858
+ arr = obj._values
859
+
860
+ res = obj.where(~mask, val)
861
+
862
+ if val is NA and res.dtype == object:
863
+ expected = expected.fillna(NA)
864
+ elif val is None and res.dtype == object:
865
+ assert expected.dtype == object
866
+ expected = expected.copy()
867
+ expected[expected.isna()] = None
868
+ tm.assert_series_equal(res, expected)
869
+
870
+ self._check_inplace(is_inplace, orig, arr, obj)
871
+
872
+ def test_index_where(self, obj, key, expected, warn, val, using_infer_string):
873
+ mask = np.zeros(obj.shape, dtype=bool)
874
+ mask[key] = True
875
+
876
+ if using_infer_string and obj.dtype == object:
877
+ with pytest.raises(TypeError, match="Scalar must"):
878
+ Index(obj).where(~mask, val)
879
+ else:
880
+ res = Index(obj).where(~mask, val)
881
+ expected_idx = Index(expected, dtype=expected.dtype)
882
+ tm.assert_index_equal(res, expected_idx)
883
+
884
+ def test_index_putmask(self, obj, key, expected, warn, val, using_infer_string):
885
+ mask = np.zeros(obj.shape, dtype=bool)
886
+ mask[key] = True
887
+
888
+ if using_infer_string and obj.dtype == object:
889
+ with pytest.raises(TypeError, match="Scalar must"):
890
+ Index(obj).putmask(mask, val)
891
+ else:
892
+ res = Index(obj).putmask(mask, val)
893
+ tm.assert_index_equal(res, Index(expected, dtype=expected.dtype))
894
+
895
+
896
+ @pytest.mark.parametrize(
897
+ "obj,expected,key,warn",
898
+ [
899
+ pytest.param(
900
+ # GH#45568 setting a valid NA value into IntervalDtype[int] should
901
+ # cast to IntervalDtype[float]
902
+ Series(interval_range(1, 5)),
903
+ Series(
904
+ [Interval(1, 2), np.nan, Interval(3, 4), Interval(4, 5)],
905
+ dtype="interval[float64]",
906
+ ),
907
+ 1,
908
+ FutureWarning,
909
+ id="interval_int_na_value",
910
+ ),
911
+ pytest.param(
912
+ # these induce dtype changes
913
+ Series([2, 3, 4, 5, 6, 7, 8, 9, 10]),
914
+ Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]),
915
+ slice(None, None, 2),
916
+ None,
917
+ id="int_series_slice_key_step",
918
+ ),
919
+ pytest.param(
920
+ Series([True, True, False, False]),
921
+ Series([np.nan, True, np.nan, False], dtype=object),
922
+ slice(None, None, 2),
923
+ FutureWarning,
924
+ id="bool_series_slice_key_step",
925
+ ),
926
+ pytest.param(
927
+ # these induce dtype changes
928
+ Series(np.arange(10)),
929
+ Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]),
930
+ slice(None, 5),
931
+ None,
932
+ id="int_series_slice_key",
933
+ ),
934
+ pytest.param(
935
+ # changes dtype GH#4463
936
+ Series([1, 2, 3]),
937
+ Series([np.nan, 2, 3]),
938
+ 0,
939
+ None,
940
+ id="int_series_int_key",
941
+ ),
942
+ pytest.param(
943
+ # changes dtype GH#4463
944
+ Series([False]),
945
+ Series([np.nan], dtype=object),
946
+ # TODO: maybe go to float64 since we are changing the _whole_ Series?
947
+ 0,
948
+ FutureWarning,
949
+ id="bool_series_int_key_change_all",
950
+ ),
951
+ pytest.param(
952
+ # changes dtype GH#4463
953
+ Series([False, True]),
954
+ Series([np.nan, True], dtype=object),
955
+ 0,
956
+ FutureWarning,
957
+ id="bool_series_int_key",
958
+ ),
959
+ ],
960
+ )
961
+ class TestSetitemCastingEquivalents(SetitemCastingEquivalents):
962
+ @pytest.fixture(params=[np.nan, np.float64("NaN"), None, NA])
963
+ def val(self, request):
964
+ """
965
+ NA values that should generally be valid_na for *all* dtypes.
966
+
967
+ Include both python float NaN and np.float64; only np.float64 has a
968
+ `dtype` attribute.
969
+ """
970
+ return request.param
971
+
972
+
973
+ class TestSetitemTimedelta64IntoNumeric(SetitemCastingEquivalents):
974
+ # timedelta64 should not be treated as integers when setting into
975
+ # numeric Series
976
+
977
+ @pytest.fixture
978
+ def val(self):
979
+ td = np.timedelta64(4, "ns")
980
+ return td
981
+ # TODO: could also try np.full((1,), td)
982
+
983
+ @pytest.fixture(params=[complex, int, float])
984
+ def dtype(self, request):
985
+ return request.param
986
+
987
+ @pytest.fixture
988
+ def obj(self, dtype):
989
+ arr = np.arange(5).astype(dtype)
990
+ ser = Series(arr)
991
+ return ser
992
+
993
+ @pytest.fixture
994
+ def expected(self, dtype):
995
+ arr = np.arange(5).astype(dtype)
996
+ ser = Series(arr)
997
+ ser = ser.astype(object)
998
+ ser.iloc[0] = np.timedelta64(4, "ns")
999
+ return ser
1000
+
1001
+ @pytest.fixture
1002
+ def key(self):
1003
+ return 0
1004
+
1005
+ @pytest.fixture
1006
+ def warn(self):
1007
+ return FutureWarning
1008
+
1009
+
1010
+ class TestSetitemDT64IntoInt(SetitemCastingEquivalents):
1011
+ # GH#39619 dont cast dt64 to int when doing this setitem
1012
+
1013
+ @pytest.fixture(params=["M8[ns]", "m8[ns]"])
1014
+ def dtype(self, request):
1015
+ return request.param
1016
+
1017
+ @pytest.fixture
1018
+ def scalar(self, dtype):
1019
+ val = np.datetime64("2021-01-18 13:25:00", "ns")
1020
+ if dtype == "m8[ns]":
1021
+ val = val - val
1022
+ return val
1023
+
1024
+ @pytest.fixture
1025
+ def expected(self, scalar):
1026
+ expected = Series([scalar, scalar, 3], dtype=object)
1027
+ assert isinstance(expected[0], type(scalar))
1028
+ return expected
1029
+
1030
+ @pytest.fixture
1031
+ def obj(self):
1032
+ return Series([1, 2, 3])
1033
+
1034
+ @pytest.fixture
1035
+ def key(self):
1036
+ return slice(None, -1)
1037
+
1038
+ @pytest.fixture(params=[None, list, np.array])
1039
+ def val(self, scalar, request):
1040
+ box = request.param
1041
+ if box is None:
1042
+ return scalar
1043
+ return box([scalar, scalar])
1044
+
1045
+ @pytest.fixture
1046
+ def warn(self):
1047
+ return FutureWarning
1048
+
1049
+
1050
+ class TestSetitemNAPeriodDtype(SetitemCastingEquivalents):
1051
+ # Setting compatible NA values into Series with PeriodDtype
1052
+
1053
+ @pytest.fixture
1054
+ def expected(self, key):
1055
+ exp = Series(period_range("2000-01-01", periods=10, freq="D"))
1056
+ exp._values.view("i8")[key] = NaT._value
1057
+ assert exp[key] is NaT or all(x is NaT for x in exp[key])
1058
+ return exp
1059
+
1060
+ @pytest.fixture
1061
+ def obj(self):
1062
+ return Series(period_range("2000-01-01", periods=10, freq="D"))
1063
+
1064
+ @pytest.fixture(params=[3, slice(3, 5)])
1065
+ def key(self, request):
1066
+ return request.param
1067
+
1068
+ @pytest.fixture(params=[None, np.nan])
1069
+ def val(self, request):
1070
+ return request.param
1071
+
1072
+ @pytest.fixture
1073
+ def warn(self):
1074
+ return None
1075
+
1076
+
1077
+ class TestSetitemNADatetimeLikeDtype(SetitemCastingEquivalents):
1078
+ # some nat-like values should be cast to datetime64/timedelta64 when
1079
+ # inserting into a datetime64/timedelta64 series. Others should coerce
1080
+ # to object and retain their dtypes.
1081
+ # GH#18586 for td64 and boolean mask case
1082
+
1083
+ @pytest.fixture(
1084
+ params=["m8[ns]", "M8[ns]", "datetime64[ns, UTC]", "datetime64[ns, US/Central]"]
1085
+ )
1086
+ def dtype(self, request):
1087
+ return request.param
1088
+
1089
+ @pytest.fixture
1090
+ def obj(self, dtype):
1091
+ i8vals = date_range("2016-01-01", periods=3).asi8
1092
+ idx = Index(i8vals, dtype=dtype)
1093
+ assert idx.dtype == dtype
1094
+ return Series(idx)
1095
+
1096
+ @pytest.fixture(
1097
+ params=[
1098
+ None,
1099
+ np.nan,
1100
+ NaT,
1101
+ np.timedelta64("NaT", "ns"),
1102
+ np.datetime64("NaT", "ns"),
1103
+ ]
1104
+ )
1105
+ def val(self, request):
1106
+ return request.param
1107
+
1108
+ @pytest.fixture
1109
+ def is_inplace(self, val, obj):
1110
+ # td64 -> cast to object iff val is datetime64("NaT")
1111
+ # dt64 -> cast to object iff val is timedelta64("NaT")
1112
+ # dt64tz -> cast to object with anything _but_ NaT
1113
+ return val is NaT or val is None or val is np.nan or obj.dtype == val.dtype
1114
+
1115
+ @pytest.fixture
1116
+ def expected(self, obj, val, is_inplace):
1117
+ dtype = obj.dtype if is_inplace else object
1118
+ expected = Series([val] + list(obj[1:]), dtype=dtype)
1119
+ return expected
1120
+
1121
+ @pytest.fixture
1122
+ def key(self):
1123
+ return 0
1124
+
1125
+ @pytest.fixture
1126
+ def warn(self, is_inplace):
1127
+ return None if is_inplace else FutureWarning
1128
+
1129
+
1130
+ class TestSetitemMismatchedTZCastsToObject(SetitemCastingEquivalents):
1131
+ # GH#24024
1132
+ @pytest.fixture
1133
+ def obj(self):
1134
+ return Series(date_range("2000", periods=2, tz="US/Central"))
1135
+
1136
+ @pytest.fixture
1137
+ def val(self):
1138
+ return Timestamp("2000", tz="US/Eastern")
1139
+
1140
+ @pytest.fixture
1141
+ def key(self):
1142
+ return 0
1143
+
1144
+ @pytest.fixture
1145
+ def expected(self, obj, val):
1146
+ # pre-2.0 this would cast to object, in 2.0 we cast the val to
1147
+ # the target tz
1148
+ expected = Series(
1149
+ [
1150
+ val.tz_convert("US/Central"),
1151
+ Timestamp("2000-01-02 00:00:00-06:00", tz="US/Central"),
1152
+ ],
1153
+ dtype=obj.dtype,
1154
+ )
1155
+ return expected
1156
+
1157
+ @pytest.fixture
1158
+ def warn(self):
1159
+ return None
1160
+
1161
+
1162
+ @pytest.mark.parametrize(
1163
+ "obj,expected,warn",
1164
+ [
1165
+ # For numeric series, we should coerce to NaN.
1166
+ (Series([1, 2, 3]), Series([np.nan, 2, 3]), None),
1167
+ (Series([1.0, 2.0, 3.0]), Series([np.nan, 2.0, 3.0]), None),
1168
+ # For datetime series, we should coerce to NaT.
1169
+ (
1170
+ Series([datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]),
1171
+ Series([NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)]),
1172
+ None,
1173
+ ),
1174
+ # For objects, we should preserve the None value.
1175
+ (Series(["foo", "bar", "baz"]), Series([None, "bar", "baz"]), None),
1176
+ ],
1177
+ )
1178
+ class TestSeriesNoneCoercion(SetitemCastingEquivalents):
1179
+ @pytest.fixture
1180
+ def key(self):
1181
+ return 0
1182
+
1183
+ @pytest.fixture
1184
+ def val(self):
1185
+ return None
1186
+
1187
+
1188
+ class TestSetitemFloatIntervalWithIntIntervalValues(SetitemCastingEquivalents):
1189
+ # GH#44201 Cast to shared IntervalDtype rather than object
1190
+
1191
+ def test_setitem_example(self):
1192
+ # Just a case here to make obvious what this test class is aimed at
1193
+ idx = IntervalIndex.from_breaks(range(4))
1194
+ obj = Series(idx)
1195
+ val = Interval(0.5, 1.5)
1196
+
1197
+ with tm.assert_produces_warning(
1198
+ FutureWarning, match="Setting an item of incompatible dtype"
1199
+ ):
1200
+ obj[0] = val
1201
+ assert obj.dtype == "Interval[float64, right]"
1202
+
1203
+ @pytest.fixture
1204
+ def obj(self):
1205
+ idx = IntervalIndex.from_breaks(range(4))
1206
+ return Series(idx)
1207
+
1208
+ @pytest.fixture
1209
+ def val(self):
1210
+ return Interval(0.5, 1.5)
1211
+
1212
+ @pytest.fixture
1213
+ def key(self):
1214
+ return 0
1215
+
1216
+ @pytest.fixture
1217
+ def expected(self, obj, val):
1218
+ data = [val] + list(obj[1:])
1219
+ idx = IntervalIndex(data, dtype="Interval[float64]")
1220
+ return Series(idx)
1221
+
1222
+ @pytest.fixture
1223
+ def warn(self):
1224
+ return FutureWarning
1225
+
1226
+
1227
+ class TestSetitemRangeIntoIntegerSeries(SetitemCastingEquivalents):
1228
+ # GH#44261 Setting a range with sufficiently-small integers into
1229
+ # small-itemsize integer dtypes should not need to upcast
1230
+
1231
+ @pytest.fixture
1232
+ def obj(self, any_int_numpy_dtype):
1233
+ dtype = np.dtype(any_int_numpy_dtype)
1234
+ ser = Series(range(5), dtype=dtype)
1235
+ return ser
1236
+
1237
+ @pytest.fixture
1238
+ def val(self):
1239
+ return range(2, 4)
1240
+
1241
+ @pytest.fixture
1242
+ def key(self):
1243
+ return slice(0, 2)
1244
+
1245
+ @pytest.fixture
1246
+ def expected(self, any_int_numpy_dtype):
1247
+ dtype = np.dtype(any_int_numpy_dtype)
1248
+ exp = Series([2, 3, 2, 3, 4], dtype=dtype)
1249
+ return exp
1250
+
1251
+ @pytest.fixture
1252
+ def warn(self):
1253
+ return None
1254
+
1255
+
1256
+ @pytest.mark.parametrize(
1257
+ "val, warn",
1258
+ [
1259
+ (np.array([2.0, 3.0]), None),
1260
+ (np.array([2.5, 3.5]), FutureWarning),
1261
+ (
1262
+ np.array([2**65, 2**65 + 1], dtype=np.float64),
1263
+ FutureWarning,
1264
+ ), # all ints, but can't cast
1265
+ ],
1266
+ )
1267
+ class TestSetitemFloatNDarrayIntoIntegerSeries(SetitemCastingEquivalents):
1268
+ @pytest.fixture
1269
+ def obj(self):
1270
+ return Series(range(5), dtype=np.int64)
1271
+
1272
+ @pytest.fixture
1273
+ def key(self):
1274
+ return slice(0, 2)
1275
+
1276
+ @pytest.fixture
1277
+ def expected(self, val):
1278
+ if val[0] == 2:
1279
+ # NB: this condition is based on currently-hardcoded "val" cases
1280
+ dtype = np.int64
1281
+ else:
1282
+ dtype = np.float64
1283
+ res_values = np.array(range(5), dtype=dtype)
1284
+ res_values[:2] = val
1285
+ return Series(res_values)
1286
+
1287
+
1288
+ @pytest.mark.parametrize("val", [512, np.int16(512)])
1289
+ class TestSetitemIntoIntegerSeriesNeedsUpcast(SetitemCastingEquivalents):
1290
+ @pytest.fixture
1291
+ def obj(self):
1292
+ return Series([1, 2, 3], dtype=np.int8)
1293
+
1294
+ @pytest.fixture
1295
+ def key(self):
1296
+ return 1
1297
+
1298
+ @pytest.fixture
1299
+ def expected(self):
1300
+ return Series([1, 512, 3], dtype=np.int16)
1301
+
1302
+ @pytest.fixture
1303
+ def warn(self):
1304
+ return FutureWarning
1305
+
1306
+
1307
+ @pytest.mark.parametrize("val", [2**33 + 1.0, 2**33 + 1.1, 2**62])
1308
+ class TestSmallIntegerSetitemUpcast(SetitemCastingEquivalents):
1309
+ # https://github.com/pandas-dev/pandas/issues/39584#issuecomment-941212124
1310
+ @pytest.fixture
1311
+ def obj(self):
1312
+ return Series([1, 2, 3], dtype="i4")
1313
+
1314
+ @pytest.fixture
1315
+ def key(self):
1316
+ return 0
1317
+
1318
+ @pytest.fixture
1319
+ def expected(self, val):
1320
+ if val % 1 != 0:
1321
+ dtype = "f8"
1322
+ else:
1323
+ dtype = "i8"
1324
+ return Series([val, 2, 3], dtype=dtype)
1325
+
1326
+ @pytest.fixture
1327
+ def warn(self):
1328
+ return FutureWarning
1329
+
1330
+
1331
+ class CoercionTest(SetitemCastingEquivalents):
1332
+ # Tests ported from tests.indexing.test_coercion
1333
+
1334
+ @pytest.fixture
1335
+ def key(self):
1336
+ return 1
1337
+
1338
+ @pytest.fixture
1339
+ def expected(self, obj, key, val, exp_dtype):
1340
+ vals = list(obj)
1341
+ vals[key] = val
1342
+ return Series(vals, dtype=exp_dtype)
1343
+
1344
+
1345
+ @pytest.mark.parametrize(
1346
+ "val,exp_dtype,warn",
1347
+ [(np.int32(1), np.int8, None), (np.int16(2**9), np.int16, FutureWarning)],
1348
+ )
1349
+ class TestCoercionInt8(CoercionTest):
1350
+ # previously test_setitem_series_int8 in tests.indexing.test_coercion
1351
+ @pytest.fixture
1352
+ def obj(self):
1353
+ return Series([1, 2, 3, 4], dtype=np.int8)
1354
+
1355
+
1356
+ @pytest.mark.parametrize("val", [1, 1.1, 1 + 1j, True])
1357
+ @pytest.mark.parametrize("exp_dtype", [object])
1358
+ class TestCoercionObject(CoercionTest):
1359
+ # previously test_setitem_series_object in tests.indexing.test_coercion
1360
+ @pytest.fixture
1361
+ def obj(self):
1362
+ return Series(["a", "b", "c", "d"], dtype=object)
1363
+
1364
+ @pytest.fixture
1365
+ def warn(self):
1366
+ return None
1367
+
1368
+
1369
+ @pytest.mark.parametrize(
1370
+ "val,exp_dtype,warn",
1371
+ [
1372
+ (1, np.complex128, None),
1373
+ (1.1, np.complex128, None),
1374
+ (1 + 1j, np.complex128, None),
1375
+ (True, object, FutureWarning),
1376
+ ],
1377
+ )
1378
+ class TestCoercionComplex(CoercionTest):
1379
+ # previously test_setitem_series_complex128 in tests.indexing.test_coercion
1380
+ @pytest.fixture
1381
+ def obj(self):
1382
+ return Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j])
1383
+
1384
+
1385
+ @pytest.mark.parametrize(
1386
+ "val,exp_dtype,warn",
1387
+ [
1388
+ (1, object, FutureWarning),
1389
+ ("3", object, FutureWarning),
1390
+ (3, object, FutureWarning),
1391
+ (1.1, object, FutureWarning),
1392
+ (1 + 1j, object, FutureWarning),
1393
+ (True, bool, None),
1394
+ ],
1395
+ )
1396
+ class TestCoercionBool(CoercionTest):
1397
+ # previously test_setitem_series_bool in tests.indexing.test_coercion
1398
+ @pytest.fixture
1399
+ def obj(self):
1400
+ return Series([True, False, True, False], dtype=bool)
1401
+
1402
+
1403
+ @pytest.mark.parametrize(
1404
+ "val,exp_dtype,warn",
1405
+ [
1406
+ (1, np.int64, None),
1407
+ (1.1, np.float64, FutureWarning),
1408
+ (1 + 1j, np.complex128, FutureWarning),
1409
+ (True, object, FutureWarning),
1410
+ ],
1411
+ )
1412
+ class TestCoercionInt64(CoercionTest):
1413
+ # previously test_setitem_series_int64 in tests.indexing.test_coercion
1414
+ @pytest.fixture
1415
+ def obj(self):
1416
+ return Series([1, 2, 3, 4])
1417
+
1418
+
1419
+ @pytest.mark.parametrize(
1420
+ "val,exp_dtype,warn",
1421
+ [
1422
+ (1, np.float64, None),
1423
+ (1.1, np.float64, None),
1424
+ (1 + 1j, np.complex128, FutureWarning),
1425
+ (True, object, FutureWarning),
1426
+ ],
1427
+ )
1428
+ class TestCoercionFloat64(CoercionTest):
1429
+ # previously test_setitem_series_float64 in tests.indexing.test_coercion
1430
+ @pytest.fixture
1431
+ def obj(self):
1432
+ return Series([1.1, 2.2, 3.3, 4.4])
1433
+
1434
+
1435
+ @pytest.mark.parametrize(
1436
+ "val,exp_dtype,warn",
1437
+ [
1438
+ (1, np.float32, None),
1439
+ pytest.param(
1440
+ 1.1,
1441
+ np.float32,
1442
+ None,
1443
+ marks=pytest.mark.xfail(
1444
+ (
1445
+ not np_version_gte1p24
1446
+ or (np_version_gte1p24 and np._get_promotion_state() != "weak")
1447
+ ),
1448
+ reason="np.float32(1.1) ends up as 1.100000023841858, so "
1449
+ "np_can_hold_element raises and we cast to float64",
1450
+ ),
1451
+ ),
1452
+ (1 + 1j, np.complex128, FutureWarning),
1453
+ (True, object, FutureWarning),
1454
+ (np.uint8(2), np.float32, None),
1455
+ (np.uint32(2), np.float32, None),
1456
+ # float32 cannot hold np.iinfo(np.uint32).max exactly
1457
+ # (closest it can hold is 4294967300.0 which off by 5.0), so
1458
+ # we cast to float64
1459
+ (np.uint32(np.iinfo(np.uint32).max), np.float64, FutureWarning),
1460
+ (np.uint64(2), np.float32, None),
1461
+ (np.int64(2), np.float32, None),
1462
+ ],
1463
+ )
1464
+ class TestCoercionFloat32(CoercionTest):
1465
+ @pytest.fixture
1466
+ def obj(self):
1467
+ return Series([1.1, 2.2, 3.3, 4.4], dtype=np.float32)
1468
+
1469
+ def test_slice_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace):
1470
+ super().test_slice_key(obj, key, expected, warn, val, indexer_sli, is_inplace)
1471
+
1472
+ if isinstance(val, float):
1473
+ # the xfail would xpass bc test_slice_key short-circuits
1474
+ raise AssertionError("xfail not relevant for this test.")
1475
+
1476
+
1477
+ @pytest.mark.parametrize(
1478
+ "val,exp_dtype,warn",
1479
+ [
1480
+ (Timestamp("2012-01-01"), "datetime64[ns]", None),
1481
+ (1, object, FutureWarning),
1482
+ ("x", object, FutureWarning),
1483
+ ],
1484
+ )
1485
+ class TestCoercionDatetime64(CoercionTest):
1486
+ # previously test_setitem_series_datetime64 in tests.indexing.test_coercion
1487
+
1488
+ @pytest.fixture
1489
+ def obj(self):
1490
+ return Series(date_range("2011-01-01", freq="D", periods=4))
1491
+
1492
+ @pytest.fixture
1493
+ def warn(self):
1494
+ return None
1495
+
1496
+
1497
+ @pytest.mark.parametrize(
1498
+ "val,exp_dtype,warn",
1499
+ [
1500
+ (Timestamp("2012-01-01", tz="US/Eastern"), "datetime64[ns, US/Eastern]", None),
1501
+ # pre-2.0, a mis-matched tz would end up casting to object
1502
+ (Timestamp("2012-01-01", tz="US/Pacific"), "datetime64[ns, US/Eastern]", None),
1503
+ (Timestamp("2012-01-01"), object, FutureWarning),
1504
+ (1, object, FutureWarning),
1505
+ ],
1506
+ )
1507
+ class TestCoercionDatetime64TZ(CoercionTest):
1508
+ # previously test_setitem_series_datetime64tz in tests.indexing.test_coercion
1509
+ @pytest.fixture
1510
+ def obj(self):
1511
+ tz = "US/Eastern"
1512
+ return Series(date_range("2011-01-01", freq="D", periods=4, tz=tz))
1513
+
1514
+ @pytest.fixture
1515
+ def warn(self):
1516
+ return None
1517
+
1518
+
1519
+ @pytest.mark.parametrize(
1520
+ "val,exp_dtype,warn",
1521
+ [
1522
+ (Timedelta("12 day"), "timedelta64[ns]", None),
1523
+ (1, object, FutureWarning),
1524
+ ("x", object, FutureWarning),
1525
+ ],
1526
+ )
1527
+ class TestCoercionTimedelta64(CoercionTest):
1528
+ # previously test_setitem_series_timedelta64 in tests.indexing.test_coercion
1529
+ @pytest.fixture
1530
+ def obj(self):
1531
+ return Series(timedelta_range("1 day", periods=4))
1532
+
1533
+ @pytest.fixture
1534
+ def warn(self):
1535
+ return None
1536
+
1537
+
1538
+ @pytest.mark.parametrize(
1539
+ "val", ["foo", Period("2016", freq="Y"), Interval(1, 2, closed="both")]
1540
+ )
1541
+ @pytest.mark.parametrize("exp_dtype", [object])
1542
+ class TestPeriodIntervalCoercion(CoercionTest):
1543
+ # GH#45768
1544
+ @pytest.fixture(
1545
+ params=[
1546
+ period_range("2016-01-01", periods=3, freq="D"),
1547
+ interval_range(1, 5),
1548
+ ]
1549
+ )
1550
+ def obj(self, request):
1551
+ return Series(request.param)
1552
+
1553
+ @pytest.fixture
1554
+ def warn(self):
1555
+ return FutureWarning
1556
+
1557
+
1558
+ def test_20643():
1559
+ # closed by GH#45121
1560
+ orig = Series([0, 1, 2], index=["a", "b", "c"])
1561
+
1562
+ expected = Series([0, 2.7, 2], index=["a", "b", "c"])
1563
+
1564
+ ser = orig.copy()
1565
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1566
+ ser.at["b"] = 2.7
1567
+ tm.assert_series_equal(ser, expected)
1568
+
1569
+ ser = orig.copy()
1570
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1571
+ ser.loc["b"] = 2.7
1572
+ tm.assert_series_equal(ser, expected)
1573
+
1574
+ ser = orig.copy()
1575
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1576
+ ser["b"] = 2.7
1577
+ tm.assert_series_equal(ser, expected)
1578
+
1579
+ ser = orig.copy()
1580
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1581
+ ser.iat[1] = 2.7
1582
+ tm.assert_series_equal(ser, expected)
1583
+
1584
+ ser = orig.copy()
1585
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1586
+ ser.iloc[1] = 2.7
1587
+ tm.assert_series_equal(ser, expected)
1588
+
1589
+ orig_df = orig.to_frame("A")
1590
+ expected_df = expected.to_frame("A")
1591
+
1592
+ df = orig_df.copy()
1593
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1594
+ df.at["b", "A"] = 2.7
1595
+ tm.assert_frame_equal(df, expected_df)
1596
+
1597
+ df = orig_df.copy()
1598
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1599
+ df.loc["b", "A"] = 2.7
1600
+ tm.assert_frame_equal(df, expected_df)
1601
+
1602
+ df = orig_df.copy()
1603
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1604
+ df.iloc[1, 0] = 2.7
1605
+ tm.assert_frame_equal(df, expected_df)
1606
+
1607
+ df = orig_df.copy()
1608
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1609
+ df.iat[1, 0] = 2.7
1610
+ tm.assert_frame_equal(df, expected_df)
1611
+
1612
+
1613
+ def test_20643_comment():
1614
+ # https://github.com/pandas-dev/pandas/issues/20643#issuecomment-431244590
1615
+ # fixed sometime prior to GH#45121
1616
+ orig = Series([0, 1, 2], index=["a", "b", "c"])
1617
+ expected = Series([np.nan, 1, 2], index=["a", "b", "c"])
1618
+
1619
+ ser = orig.copy()
1620
+ ser.iat[0] = None
1621
+ tm.assert_series_equal(ser, expected)
1622
+
1623
+ ser = orig.copy()
1624
+ ser.iloc[0] = None
1625
+ tm.assert_series_equal(ser, expected)
1626
+
1627
+
1628
+ def test_15413():
1629
+ # fixed by GH#45121
1630
+ ser = Series([1, 2, 3])
1631
+
1632
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1633
+ ser[ser == 2] += 0.5
1634
+ expected = Series([1, 2.5, 3])
1635
+ tm.assert_series_equal(ser, expected)
1636
+
1637
+ ser = Series([1, 2, 3])
1638
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1639
+ ser[1] += 0.5
1640
+ tm.assert_series_equal(ser, expected)
1641
+
1642
+ ser = Series([1, 2, 3])
1643
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1644
+ ser.loc[1] += 0.5
1645
+ tm.assert_series_equal(ser, expected)
1646
+
1647
+ ser = Series([1, 2, 3])
1648
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1649
+ ser.iloc[1] += 0.5
1650
+ tm.assert_series_equal(ser, expected)
1651
+
1652
+ ser = Series([1, 2, 3])
1653
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1654
+ ser.iat[1] += 0.5
1655
+ tm.assert_series_equal(ser, expected)
1656
+
1657
+ ser = Series([1, 2, 3])
1658
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1659
+ ser.at[1] += 0.5
1660
+ tm.assert_series_equal(ser, expected)
1661
+
1662
+
1663
+ def test_32878_int_itemsize():
1664
+ # Fixed by GH#45121
1665
+ arr = np.arange(5).astype("i4")
1666
+ ser = Series(arr)
1667
+ val = np.int64(np.iinfo(np.int64).max)
1668
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1669
+ ser[0] = val
1670
+ expected = Series([val, 1, 2, 3, 4], dtype=np.int64)
1671
+ tm.assert_series_equal(ser, expected)
1672
+
1673
+
1674
+ def test_32878_complex_itemsize():
1675
+ arr = np.arange(5).astype("c8")
1676
+ ser = Series(arr)
1677
+ val = np.finfo(np.float64).max
1678
+ val = val.astype("c16")
1679
+
1680
+ # GH#32878 used to coerce val to inf+0.000000e+00j
1681
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1682
+ ser[0] = val
1683
+ assert ser[0] == val
1684
+ expected = Series([val, 1, 2, 3, 4], dtype="c16")
1685
+ tm.assert_series_equal(ser, expected)
1686
+
1687
+
1688
+ def test_37692(indexer_al):
1689
+ # GH#37692
1690
+ ser = Series([1, 2, 3], index=["a", "b", "c"])
1691
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1692
+ indexer_al(ser)["b"] = "test"
1693
+ expected = Series([1, "test", 3], index=["a", "b", "c"], dtype=object)
1694
+ tm.assert_series_equal(ser, expected)
1695
+
1696
+
1697
+ def test_setitem_bool_int_float_consistency(indexer_sli):
1698
+ # GH#21513
1699
+ # bool-with-int and bool-with-float both upcast to object
1700
+ # int-with-float and float-with-int are both non-casting so long
1701
+ # as the setitem can be done losslessly
1702
+ for dtype in [np.float64, np.int64]:
1703
+ ser = Series(0, index=range(3), dtype=dtype)
1704
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1705
+ indexer_sli(ser)[0] = True
1706
+ assert ser.dtype == object
1707
+
1708
+ ser = Series(0, index=range(3), dtype=bool)
1709
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
1710
+ ser[0] = dtype(1)
1711
+ assert ser.dtype == object
1712
+
1713
+ # 1.0 can be held losslessly, so no casting
1714
+ ser = Series(0, index=range(3), dtype=np.int64)
1715
+ indexer_sli(ser)[0] = np.float64(1.0)
1716
+ assert ser.dtype == np.int64
1717
+
1718
+ # 1 can be held losslessly, so no casting
1719
+ ser = Series(0, index=range(3), dtype=np.float64)
1720
+ indexer_sli(ser)[0] = np.int64(1)
1721
+
1722
+
1723
+ def test_setitem_positional_with_casting():
1724
+ # GH#45070 case where in __setitem__ we get a KeyError, then when
1725
+ # we fallback we *also* get a ValueError if we try to set inplace.
1726
+ ser = Series([1, 2, 3], index=["a", "b", "c"])
1727
+
1728
+ warn_msg = "Series.__setitem__ treating keys as positions is deprecated"
1729
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
1730
+ ser[0] = "X"
1731
+ expected = Series(["X", 2, 3], index=["a", "b", "c"], dtype=object)
1732
+ tm.assert_series_equal(ser, expected)
1733
+
1734
+
1735
+ def test_setitem_positional_float_into_int_coerces():
1736
+ # Case where we hit a KeyError and then trying to set in-place incorrectly
1737
+ # casts a float to an int
1738
+ ser = Series([1, 2, 3], index=["a", "b", "c"])
1739
+
1740
+ warn_msg = "Series.__setitem__ treating keys as positions is deprecated"
1741
+ with tm.assert_produces_warning(FutureWarning, match=warn_msg):
1742
+ ser[0] = 1.5
1743
+ expected = Series([1.5, 2, 3], index=["a", "b", "c"])
1744
+ tm.assert_series_equal(ser, expected)
1745
+
1746
+
1747
+ def test_setitem_int_not_positional():
1748
+ # GH#42215 deprecated falling back to positional on __setitem__ with an
1749
+ # int not contained in the index; enforced in 2.0
1750
+ ser = Series([1, 2, 3, 4], index=[1.1, 2.1, 3.0, 4.1])
1751
+ assert not ser.index._should_fallback_to_positional
1752
+ # assert not ser.index.astype(object)._should_fallback_to_positional
1753
+
1754
+ # 3.0 is in our index, so post-enforcement behavior is unchanged
1755
+ ser[3] = 10
1756
+ expected = Series([1, 2, 10, 4], index=ser.index)
1757
+ tm.assert_series_equal(ser, expected)
1758
+
1759
+ # pre-enforcement `ser[5] = 5` raised IndexError
1760
+ ser[5] = 5
1761
+ expected = Series([1, 2, 10, 4, 5], index=[1.1, 2.1, 3.0, 4.1, 5.0])
1762
+ tm.assert_series_equal(ser, expected)
1763
+
1764
+ ii = IntervalIndex.from_breaks(range(10))[::2]
1765
+ ser2 = Series(range(len(ii)), index=ii)
1766
+ exp_index = ii.astype(object).append(Index([4]))
1767
+ expected2 = Series([0, 1, 2, 3, 4, 9], index=exp_index)
1768
+ # pre-enforcement `ser2[4] = 9` interpreted 4 as positional
1769
+ ser2[4] = 9
1770
+ tm.assert_series_equal(ser2, expected2)
1771
+
1772
+ mi = MultiIndex.from_product([ser.index, ["A", "B"]])
1773
+ ser3 = Series(range(len(mi)), index=mi)
1774
+ expected3 = ser3.copy()
1775
+ expected3.loc[4] = 99
1776
+ # pre-enforcement `ser3[4] = 99` interpreted 4 as positional
1777
+ ser3[4] = 99
1778
+ tm.assert_series_equal(ser3, expected3)
1779
+
1780
+
1781
+ def test_setitem_with_bool_indexer():
1782
+ # GH#42530
1783
+
1784
+ df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
1785
+ result = df.pop("b").copy()
1786
+ result[[True, False, False]] = 9
1787
+ expected = Series(data=[9, 5, 6], name="b")
1788
+ tm.assert_series_equal(result, expected)
1789
+
1790
+ df.loc[[True, False, False], "a"] = 10
1791
+ expected = DataFrame({"a": [10, 2, 3]})
1792
+ tm.assert_frame_equal(df, expected)
1793
+
1794
+
1795
+ @pytest.mark.parametrize("size", range(2, 6))
1796
+ @pytest.mark.parametrize(
1797
+ "mask", [[True, False, False, False, False], [True, False], [False]]
1798
+ )
1799
+ @pytest.mark.parametrize(
1800
+ "item", [2.0, np.nan, np.finfo(float).max, np.finfo(float).min]
1801
+ )
1802
+ # Test numpy arrays, lists and tuples as the input to be
1803
+ # broadcast
1804
+ @pytest.mark.parametrize(
1805
+ "box", [lambda x: np.array([x]), lambda x: [x], lambda x: (x,)]
1806
+ )
1807
+ def test_setitem_bool_indexer_dont_broadcast_length1_values(size, mask, item, box):
1808
+ # GH#44265
1809
+ # see also tests.series.indexing.test_where.test_broadcast
1810
+
1811
+ selection = np.resize(mask, size)
1812
+
1813
+ data = np.arange(size, dtype=float)
1814
+
1815
+ ser = Series(data)
1816
+
1817
+ if selection.sum() != 1:
1818
+ msg = (
1819
+ "cannot set using a list-like indexer with a different "
1820
+ "length than the value"
1821
+ )
1822
+ with pytest.raises(ValueError, match=msg):
1823
+ # GH#44265
1824
+ ser[selection] = box(item)
1825
+ else:
1826
+ # In this corner case setting is equivalent to setting with the unboxed
1827
+ # item
1828
+ ser[selection] = box(item)
1829
+
1830
+ expected = Series(np.arange(size, dtype=float))
1831
+ expected[selection] = item
1832
+ tm.assert_series_equal(ser, expected)
1833
+
1834
+
1835
+ def test_setitem_empty_mask_dont_upcast_dt64():
1836
+ dti = date_range("2016-01-01", periods=3)
1837
+ ser = Series(dti)
1838
+ orig = ser.copy()
1839
+ mask = np.zeros(3, dtype=bool)
1840
+
1841
+ ser[mask] = "foo"
1842
+ assert ser.dtype == dti.dtype # no-op -> dont upcast
1843
+ tm.assert_series_equal(ser, orig)
1844
+
1845
+ ser.mask(mask, "foo", inplace=True)
1846
+ assert ser.dtype == dti.dtype # no-op -> dont upcast
1847
+ tm.assert_series_equal(ser, orig)
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import pandas as pd
4
+ from pandas import Series
5
+ import pandas._testing as tm
6
+
7
+
8
+ def test_take_validate_axis():
9
+ # GH#51022
10
+ ser = Series([-1, 5, 6, 2, 4])
11
+
12
+ msg = "No axis named foo for object type Series"
13
+ with pytest.raises(ValueError, match=msg):
14
+ ser.take([1, 2], axis="foo")
15
+
16
+
17
+ def test_take():
18
+ ser = Series([-1, 5, 6, 2, 4])
19
+
20
+ actual = ser.take([1, 3, 4])
21
+ expected = Series([5, 2, 4], index=[1, 3, 4])
22
+ tm.assert_series_equal(actual, expected)
23
+
24
+ actual = ser.take([-1, 3, 4])
25
+ expected = Series([4, 2, 4], index=[4, 3, 4])
26
+ tm.assert_series_equal(actual, expected)
27
+
28
+ msg = "indices are out-of-bounds"
29
+ with pytest.raises(IndexError, match=msg):
30
+ ser.take([1, 10])
31
+ with pytest.raises(IndexError, match=msg):
32
+ ser.take([2, 5])
33
+
34
+
35
+ def test_take_categorical():
36
+ # https://github.com/pandas-dev/pandas/issues/20664
37
+ ser = Series(pd.Categorical(["a", "b", "c"]))
38
+ result = ser.take([-2, -2, 0])
39
+ expected = Series(
40
+ pd.Categorical(["b", "b", "a"], categories=["a", "b", "c"]), index=[1, 1, 0]
41
+ )
42
+ tm.assert_series_equal(result, expected)
43
+
44
+
45
+ def test_take_slice_raises():
46
+ ser = Series([-1, 5, 6, 2, 4])
47
+
48
+ msg = "Series.take requires a sequence of integers, not slice"
49
+ with pytest.raises(TypeError, match=msg):
50
+ ser.take(slice(0, 3, 1))
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_where.py ADDED
@@ -0,0 +1,481 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._config import using_pyarrow_string_dtype
5
+
6
+ from pandas.core.dtypes.common import is_integer
7
+
8
+ import pandas as pd
9
+ from pandas import (
10
+ Series,
11
+ Timestamp,
12
+ date_range,
13
+ isna,
14
+ )
15
+ import pandas._testing as tm
16
+
17
+
18
+ def test_where_unsafe_int(any_signed_int_numpy_dtype):
19
+ s = Series(np.arange(10), dtype=any_signed_int_numpy_dtype)
20
+ mask = s < 5
21
+
22
+ s[mask] = range(2, 7)
23
+ expected = Series(
24
+ list(range(2, 7)) + list(range(5, 10)),
25
+ dtype=any_signed_int_numpy_dtype,
26
+ )
27
+
28
+ tm.assert_series_equal(s, expected)
29
+
30
+
31
+ def test_where_unsafe_float(float_numpy_dtype):
32
+ s = Series(np.arange(10), dtype=float_numpy_dtype)
33
+ mask = s < 5
34
+
35
+ s[mask] = range(2, 7)
36
+ data = list(range(2, 7)) + list(range(5, 10))
37
+ expected = Series(data, dtype=float_numpy_dtype)
38
+
39
+ tm.assert_series_equal(s, expected)
40
+
41
+
42
+ @pytest.mark.parametrize(
43
+ "dtype,expected_dtype",
44
+ [
45
+ (np.int8, np.float64),
46
+ (np.int16, np.float64),
47
+ (np.int32, np.float64),
48
+ (np.int64, np.float64),
49
+ (np.float32, np.float32),
50
+ (np.float64, np.float64),
51
+ ],
52
+ )
53
+ def test_where_unsafe_upcast(dtype, expected_dtype):
54
+ # see gh-9743
55
+ s = Series(np.arange(10), dtype=dtype)
56
+ values = [2.5, 3.5, 4.5, 5.5, 6.5]
57
+ mask = s < 5
58
+ expected = Series(values + list(range(5, 10)), dtype=expected_dtype)
59
+ warn = (
60
+ None
61
+ if np.dtype(dtype).kind == np.dtype(expected_dtype).kind == "f"
62
+ else FutureWarning
63
+ )
64
+ with tm.assert_produces_warning(warn, match="incompatible dtype"):
65
+ s[mask] = values
66
+ tm.assert_series_equal(s, expected)
67
+
68
+
69
+ def test_where_unsafe():
70
+ # see gh-9731
71
+ s = Series(np.arange(10), dtype="int64")
72
+ values = [2.5, 3.5, 4.5, 5.5]
73
+
74
+ mask = s > 5
75
+ expected = Series(list(range(6)) + values, dtype="float64")
76
+
77
+ with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
78
+ s[mask] = values
79
+ tm.assert_series_equal(s, expected)
80
+
81
+ # see gh-3235
82
+ s = Series(np.arange(10), dtype="int64")
83
+ mask = s < 5
84
+ s[mask] = range(2, 7)
85
+ expected = Series(list(range(2, 7)) + list(range(5, 10)), dtype="int64")
86
+ tm.assert_series_equal(s, expected)
87
+ assert s.dtype == expected.dtype
88
+
89
+ s = Series(np.arange(10), dtype="int64")
90
+ mask = s > 5
91
+ s[mask] = [0] * 4
92
+ expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype="int64")
93
+ tm.assert_series_equal(s, expected)
94
+
95
+ s = Series(np.arange(10))
96
+ mask = s > 5
97
+
98
+ msg = "cannot set using a list-like indexer with a different length than the value"
99
+ with pytest.raises(ValueError, match=msg):
100
+ s[mask] = [5, 4, 3, 2, 1]
101
+
102
+ with pytest.raises(ValueError, match=msg):
103
+ s[mask] = [0] * 5
104
+
105
+ # dtype changes
106
+ s = Series([1, 2, 3, 4])
107
+ result = s.where(s > 2, np.nan)
108
+ expected = Series([np.nan, np.nan, 3, 4])
109
+ tm.assert_series_equal(result, expected)
110
+
111
+ # GH 4667
112
+ # setting with None changes dtype
113
+ s = Series(range(10)).astype(float)
114
+ s[8] = None
115
+ result = s[8]
116
+ assert isna(result)
117
+
118
+ s = Series(range(10)).astype(float)
119
+ s[s > 8] = None
120
+ result = s[isna(s)]
121
+ expected = Series(np.nan, index=[9])
122
+ tm.assert_series_equal(result, expected)
123
+
124
+
125
+ def test_where():
126
+ s = Series(np.random.default_rng(2).standard_normal(5))
127
+ cond = s > 0
128
+
129
+ rs = s.where(cond).dropna()
130
+ rs2 = s[cond]
131
+ tm.assert_series_equal(rs, rs2)
132
+
133
+ rs = s.where(cond, -s)
134
+ tm.assert_series_equal(rs, s.abs())
135
+
136
+ rs = s.where(cond)
137
+ assert s.shape == rs.shape
138
+ assert rs is not s
139
+
140
+ # test alignment
141
+ cond = Series([True, False, False, True, False], index=s.index)
142
+ s2 = -(s.abs())
143
+
144
+ expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index)
145
+ rs = s2.where(cond[:3])
146
+ tm.assert_series_equal(rs, expected)
147
+
148
+ expected = s2.abs()
149
+ expected.iloc[0] = s2[0]
150
+ rs = s2.where(cond[:3], -s2)
151
+ tm.assert_series_equal(rs, expected)
152
+
153
+
154
+ def test_where_error():
155
+ s = Series(np.random.default_rng(2).standard_normal(5))
156
+ cond = s > 0
157
+
158
+ msg = "Array conditional must be same shape as self"
159
+ with pytest.raises(ValueError, match=msg):
160
+ s.where(1)
161
+ with pytest.raises(ValueError, match=msg):
162
+ s.where(cond[:3].values, -s)
163
+
164
+ # GH 2745
165
+ s = Series([1, 2])
166
+ s[[True, False]] = [0, 1]
167
+ expected = Series([0, 2])
168
+ tm.assert_series_equal(s, expected)
169
+
170
+ # failures
171
+ msg = "cannot set using a list-like indexer with a different length than the value"
172
+ with pytest.raises(ValueError, match=msg):
173
+ s[[True, False]] = [0, 2, 3]
174
+
175
+ with pytest.raises(ValueError, match=msg):
176
+ s[[True, False]] = []
177
+
178
+
179
+ @pytest.mark.parametrize("klass", [list, tuple, np.array, Series])
180
+ def test_where_array_like(klass):
181
+ # see gh-15414
182
+ s = Series([1, 2, 3])
183
+ cond = [False, True, True]
184
+ expected = Series([np.nan, 2, 3])
185
+
186
+ result = s.where(klass(cond))
187
+ tm.assert_series_equal(result, expected)
188
+
189
+
190
+ @pytest.mark.parametrize(
191
+ "cond",
192
+ [
193
+ [1, 0, 1],
194
+ Series([2, 5, 7]),
195
+ ["True", "False", "True"],
196
+ [Timestamp("2017-01-01"), pd.NaT, Timestamp("2017-01-02")],
197
+ ],
198
+ )
199
+ def test_where_invalid_input(cond):
200
+ # see gh-15414: only boolean arrays accepted
201
+ s = Series([1, 2, 3])
202
+ msg = "Boolean array expected for the condition"
203
+
204
+ with pytest.raises(ValueError, match=msg):
205
+ s.where(cond)
206
+
207
+ msg = "Array conditional must be same shape as self"
208
+ with pytest.raises(ValueError, match=msg):
209
+ s.where([True])
210
+
211
+
212
+ def test_where_ndframe_align():
213
+ msg = "Array conditional must be same shape as self"
214
+ s = Series([1, 2, 3])
215
+
216
+ cond = [True]
217
+ with pytest.raises(ValueError, match=msg):
218
+ s.where(cond)
219
+
220
+ expected = Series([1, np.nan, np.nan])
221
+
222
+ out = s.where(Series(cond))
223
+ tm.assert_series_equal(out, expected)
224
+
225
+ cond = np.array([False, True, False, True])
226
+ with pytest.raises(ValueError, match=msg):
227
+ s.where(cond)
228
+
229
+ expected = Series([np.nan, 2, np.nan])
230
+
231
+ out = s.where(Series(cond))
232
+ tm.assert_series_equal(out, expected)
233
+
234
+
235
+ @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't set ints into string")
236
+ def test_where_setitem_invalid():
237
+ # GH 2702
238
+ # make sure correct exceptions are raised on invalid list assignment
239
+
240
+ msg = (
241
+ lambda x: f"cannot set using a {x} indexer with a "
242
+ "different length than the value"
243
+ )
244
+ # slice
245
+ s = Series(list("abc"))
246
+
247
+ with pytest.raises(ValueError, match=msg("slice")):
248
+ s[0:3] = list(range(27))
249
+
250
+ s[0:3] = list(range(3))
251
+ expected = Series([0, 1, 2])
252
+ tm.assert_series_equal(s.astype(np.int64), expected)
253
+
254
+ # slice with step
255
+ s = Series(list("abcdef"))
256
+
257
+ with pytest.raises(ValueError, match=msg("slice")):
258
+ s[0:4:2] = list(range(27))
259
+
260
+ s = Series(list("abcdef"))
261
+ s[0:4:2] = list(range(2))
262
+ expected = Series([0, "b", 1, "d", "e", "f"])
263
+ tm.assert_series_equal(s, expected)
264
+
265
+ # neg slices
266
+ s = Series(list("abcdef"))
267
+
268
+ with pytest.raises(ValueError, match=msg("slice")):
269
+ s[:-1] = list(range(27))
270
+
271
+ s[-3:-1] = list(range(2))
272
+ expected = Series(["a", "b", "c", 0, 1, "f"])
273
+ tm.assert_series_equal(s, expected)
274
+
275
+ # list
276
+ s = Series(list("abc"))
277
+
278
+ with pytest.raises(ValueError, match=msg("list-like")):
279
+ s[[0, 1, 2]] = list(range(27))
280
+
281
+ s = Series(list("abc"))
282
+
283
+ with pytest.raises(ValueError, match=msg("list-like")):
284
+ s[[0, 1, 2]] = list(range(2))
285
+
286
+ # scalar
287
+ s = Series(list("abc"))
288
+ s[0] = list(range(10))
289
+ expected = Series([list(range(10)), "b", "c"])
290
+ tm.assert_series_equal(s, expected)
291
+
292
+
293
+ @pytest.mark.parametrize("size", range(2, 6))
294
+ @pytest.mark.parametrize(
295
+ "mask", [[True, False, False, False, False], [True, False], [False]]
296
+ )
297
+ @pytest.mark.parametrize(
298
+ "item", [2.0, np.nan, np.finfo(float).max, np.finfo(float).min]
299
+ )
300
+ # Test numpy arrays, lists and tuples as the input to be
301
+ # broadcast
302
+ @pytest.mark.parametrize(
303
+ "box", [lambda x: np.array([x]), lambda x: [x], lambda x: (x,)]
304
+ )
305
+ def test_broadcast(size, mask, item, box):
306
+ # GH#8801, GH#4195
307
+ selection = np.resize(mask, size)
308
+
309
+ data = np.arange(size, dtype=float)
310
+
311
+ # Construct the expected series by taking the source
312
+ # data or item based on the selection
313
+ expected = Series(
314
+ [item if use_item else data[i] for i, use_item in enumerate(selection)]
315
+ )
316
+
317
+ s = Series(data)
318
+
319
+ s[selection] = item
320
+ tm.assert_series_equal(s, expected)
321
+
322
+ s = Series(data)
323
+ result = s.where(~selection, box(item))
324
+ tm.assert_series_equal(result, expected)
325
+
326
+ s = Series(data)
327
+ result = s.mask(selection, box(item))
328
+ tm.assert_series_equal(result, expected)
329
+
330
+
331
+ def test_where_inplace():
332
+ s = Series(np.random.default_rng(2).standard_normal(5))
333
+ cond = s > 0
334
+
335
+ rs = s.copy()
336
+
337
+ rs.where(cond, inplace=True)
338
+ tm.assert_series_equal(rs.dropna(), s[cond])
339
+ tm.assert_series_equal(rs, s.where(cond))
340
+
341
+ rs = s.copy()
342
+ rs.where(cond, -s, inplace=True)
343
+ tm.assert_series_equal(rs, s.where(cond, -s))
344
+
345
+
346
+ def test_where_dups():
347
+ # GH 4550
348
+ # where crashes with dups in index
349
+ s1 = Series(list(range(3)))
350
+ s2 = Series(list(range(3)))
351
+ comb = pd.concat([s1, s2])
352
+ result = comb.where(comb < 2)
353
+ expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2])
354
+ tm.assert_series_equal(result, expected)
355
+
356
+ # GH 4548
357
+ # inplace updating not working with dups
358
+ comb[comb < 1] = 5
359
+ expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2])
360
+ tm.assert_series_equal(comb, expected)
361
+
362
+ comb[comb < 2] += 10
363
+ expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2])
364
+ tm.assert_series_equal(comb, expected)
365
+
366
+
367
+ def test_where_numeric_with_string():
368
+ # GH 9280
369
+ s = Series([1, 2, 3])
370
+ w = s.where(s > 1, "X")
371
+
372
+ assert not is_integer(w[0])
373
+ assert is_integer(w[1])
374
+ assert is_integer(w[2])
375
+ assert isinstance(w[0], str)
376
+ assert w.dtype == "object"
377
+
378
+ w = s.where(s > 1, ["X", "Y", "Z"])
379
+ assert not is_integer(w[0])
380
+ assert is_integer(w[1])
381
+ assert is_integer(w[2])
382
+ assert isinstance(w[0], str)
383
+ assert w.dtype == "object"
384
+
385
+ w = s.where(s > 1, np.array(["X", "Y", "Z"]))
386
+ assert not is_integer(w[0])
387
+ assert is_integer(w[1])
388
+ assert is_integer(w[2])
389
+ assert isinstance(w[0], str)
390
+ assert w.dtype == "object"
391
+
392
+
393
+ @pytest.mark.parametrize("dtype", ["timedelta64[ns]", "datetime64[ns]"])
394
+ def test_where_datetimelike_coerce(dtype):
395
+ ser = Series([1, 2], dtype=dtype)
396
+ expected = Series([10, 10])
397
+ mask = np.array([False, False])
398
+
399
+ msg = "Downcasting behavior in Series and DataFrame methods 'where'"
400
+ with tm.assert_produces_warning(FutureWarning, match=msg):
401
+ rs = ser.where(mask, [10, 10])
402
+ tm.assert_series_equal(rs, expected)
403
+
404
+ with tm.assert_produces_warning(FutureWarning, match=msg):
405
+ rs = ser.where(mask, 10)
406
+ tm.assert_series_equal(rs, expected)
407
+
408
+ with tm.assert_produces_warning(FutureWarning, match=msg):
409
+ rs = ser.where(mask, 10.0)
410
+ tm.assert_series_equal(rs, expected)
411
+
412
+ with tm.assert_produces_warning(FutureWarning, match=msg):
413
+ rs = ser.where(mask, [10.0, 10.0])
414
+ tm.assert_series_equal(rs, expected)
415
+
416
+ rs = ser.where(mask, [10.0, np.nan])
417
+ expected = Series([10, np.nan], dtype="object")
418
+ tm.assert_series_equal(rs, expected)
419
+
420
+
421
+ def test_where_datetimetz():
422
+ # GH 15701
423
+ timestamps = ["2016-12-31 12:00:04+00:00", "2016-12-31 12:00:04.010000+00:00"]
424
+ ser = Series([Timestamp(t) for t in timestamps], dtype="datetime64[ns, UTC]")
425
+ rs = ser.where(Series([False, True]))
426
+ expected = Series([pd.NaT, ser[1]], dtype="datetime64[ns, UTC]")
427
+ tm.assert_series_equal(rs, expected)
428
+
429
+
430
+ def test_where_sparse():
431
+ # GH#17198 make sure we dont get an AttributeError for sp_index
432
+ ser = Series(pd.arrays.SparseArray([1, 2]))
433
+ result = ser.where(ser >= 2, 0)
434
+ expected = Series(pd.arrays.SparseArray([0, 2]))
435
+ tm.assert_series_equal(result, expected)
436
+
437
+
438
+ def test_where_empty_series_and_empty_cond_having_non_bool_dtypes():
439
+ # https://github.com/pandas-dev/pandas/issues/34592
440
+ ser = Series([], dtype=float)
441
+ result = ser.where([])
442
+ tm.assert_series_equal(result, ser)
443
+
444
+
445
+ def test_where_categorical(frame_or_series):
446
+ # https://github.com/pandas-dev/pandas/issues/18888
447
+ exp = frame_or_series(
448
+ pd.Categorical(["A", "A", "B", "B", np.nan], categories=["A", "B", "C"]),
449
+ dtype="category",
450
+ )
451
+ df = frame_or_series(["A", "A", "B", "B", "C"], dtype="category")
452
+ res = df.where(df != "C")
453
+ tm.assert_equal(exp, res)
454
+
455
+
456
+ def test_where_datetimelike_categorical(tz_naive_fixture):
457
+ # GH#37682
458
+ tz = tz_naive_fixture
459
+
460
+ dr = date_range("2001-01-01", periods=3, tz=tz)._with_freq(None)
461
+ lvals = pd.DatetimeIndex([dr[0], dr[1], pd.NaT])
462
+ rvals = pd.Categorical([dr[0], pd.NaT, dr[2]])
463
+
464
+ mask = np.array([True, True, False])
465
+
466
+ # DatetimeIndex.where
467
+ res = lvals.where(mask, rvals)
468
+ tm.assert_index_equal(res, dr)
469
+
470
+ # DatetimeArray.where
471
+ res = lvals._data._where(mask, rvals)
472
+ tm.assert_datetime_array_equal(res, dr._data)
473
+
474
+ # Series.where
475
+ res = Series(lvals).where(mask, rvals)
476
+ tm.assert_series_equal(res, Series(dr))
477
+
478
+ # DataFrame.where
479
+ res = pd.DataFrame(lvals).where(mask[:, None], pd.DataFrame(rvals))
480
+
481
+ tm.assert_frame_equal(res, pd.DataFrame(dr))
llmeval-env/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ MultiIndex,
6
+ Series,
7
+ date_range,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ def test_xs_datetimelike_wrapping():
13
+ # GH#31630 a case where we shouldn't wrap datetime64 in Timestamp
14
+ arr = date_range("2016-01-01", periods=3)._data._ndarray
15
+
16
+ ser = Series(arr, dtype=object)
17
+ for i in range(len(ser)):
18
+ ser.iloc[i] = arr[i]
19
+ assert ser.dtype == object
20
+ assert isinstance(ser[0], np.datetime64)
21
+
22
+ result = ser.xs(0)
23
+ assert isinstance(result, np.datetime64)
24
+
25
+
26
+ class TestXSWithMultiIndex:
27
+ def test_xs_level_series(self, multiindex_dataframe_random_data):
28
+ df = multiindex_dataframe_random_data
29
+ ser = df["A"]
30
+ expected = ser[:, "two"]
31
+ result = df.xs("two", level=1)["A"]
32
+ tm.assert_series_equal(result, expected)
33
+
34
+ def test_series_getitem_multiindex_xs_by_label(self):
35
+ # GH#5684
36
+ idx = MultiIndex.from_tuples(
37
+ [("a", "one"), ("a", "two"), ("b", "one"), ("b", "two")]
38
+ )
39
+ ser = Series([1, 2, 3, 4], index=idx)
40
+ return_value = ser.index.set_names(["L1", "L2"], inplace=True)
41
+ assert return_value is None
42
+ expected = Series([1, 3], index=["a", "b"])
43
+ return_value = expected.index.set_names(["L1"], inplace=True)
44
+ assert return_value is None
45
+
46
+ result = ser.xs("one", level="L2")
47
+ tm.assert_series_equal(result, expected)
48
+
49
+ def test_series_getitem_multiindex_xs(self):
50
+ # GH#6258
51
+ dt = list(date_range("20130903", periods=3))
52
+ idx = MultiIndex.from_product([list("AB"), dt])
53
+ ser = Series([1, 3, 4, 1, 3, 4], index=idx)
54
+ expected = Series([1, 1], index=list("AB"))
55
+
56
+ result = ser.xs("20130903", level=1)
57
+ tm.assert_series_equal(result, expected)
58
+
59
+ def test_series_xs_droplevel_false(self):
60
+ # GH: 19056
61
+ mi = MultiIndex.from_tuples(
62
+ [("a", "x"), ("a", "y"), ("b", "x")], names=["level1", "level2"]
63
+ )
64
+ ser = Series([1, 1, 1], index=mi)
65
+ result = ser.xs("a", axis=0, drop_level=False)
66
+ expected = Series(
67
+ [1, 1],
68
+ index=MultiIndex.from_tuples(
69
+ [("a", "x"), ("a", "y")], names=["level1", "level2"]
70
+ ),
71
+ )
72
+ tm.assert_series_equal(result, expected)
73
+
74
+ def test_xs_key_as_list(self):
75
+ # GH#41760
76
+ mi = MultiIndex.from_tuples([("a", "x")], names=["level1", "level2"])
77
+ ser = Series([1], index=mi)
78
+ with pytest.raises(TypeError, match="list keys are not supported"):
79
+ ser.xs(["a", "x"], axis=0, drop_level=False)
80
+
81
+ with pytest.raises(TypeError, match="list keys are not supported"):
82
+ ser.xs(["a"], axis=0, drop_level=False)
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (193 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (205 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_freq_code.cpython-310.pyc ADDED
Binary file (1.92 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_frequencies.cpython-310.pyc ADDED
Binary file (823 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/__pycache__/test_inference.cpython-310.pyc ADDED
Binary file (13.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_freq_code.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._libs.tslibs import (
5
+ Period,
6
+ to_offset,
7
+ )
8
+
9
+
10
+ @pytest.mark.parametrize(
11
+ "freqstr,exp_freqstr",
12
+ [("D", "D"), ("W", "D"), ("ME", "D"), ("s", "s"), ("min", "s"), ("h", "s")],
13
+ )
14
+ def test_get_to_timestamp_base(freqstr, exp_freqstr):
15
+ off = to_offset(freqstr)
16
+ per = Period._from_ordinal(1, off)
17
+ exp_code = to_offset(exp_freqstr)._period_dtype_code
18
+
19
+ result_code = per._dtype._get_to_timestamp_base()
20
+ assert result_code == exp_code
21
+
22
+
23
+ @pytest.mark.parametrize(
24
+ "args,expected",
25
+ [
26
+ ((1.5, "min"), (90, "s")),
27
+ ((62.4, "min"), (3744, "s")),
28
+ ((1.04, "h"), (3744, "s")),
29
+ ((1, "D"), (1, "D")),
30
+ ((0.342931, "h"), (1234551600, "us")),
31
+ ((1.2345, "D"), (106660800, "ms")),
32
+ ],
33
+ )
34
+ def test_resolution_bumping(args, expected):
35
+ # see gh-14378
36
+ off = to_offset(str(args[0]) + args[1])
37
+ assert off.n == expected[0]
38
+ assert off._prefix == expected[1]
39
+
40
+
41
+ @pytest.mark.parametrize(
42
+ "args",
43
+ [
44
+ (0.5, "ns"),
45
+ # Too much precision in the input can prevent.
46
+ (0.3429324798798269273987982, "h"),
47
+ ],
48
+ )
49
+ def test_cat(args):
50
+ msg = "Invalid frequency"
51
+
52
+ with pytest.raises(ValueError, match=msg):
53
+ to_offset(str(args[0]) + args[1])
54
+
55
+
56
+ @pytest.mark.parametrize(
57
+ "freqstr,expected",
58
+ [
59
+ ("1h", "2021-01-01T09:00:00"),
60
+ ("1D", "2021-01-02T08:00:00"),
61
+ ("1W", "2021-01-03T08:00:00"),
62
+ ("1ME", "2021-01-31T08:00:00"),
63
+ ("1YE", "2021-12-31T08:00:00"),
64
+ ],
65
+ )
66
+ def test_compatibility(freqstr, expected):
67
+ ts_np = np.datetime64("2021-01-01T08:00:00.00")
68
+ do = to_offset(freqstr)
69
+ assert ts_np + do == np.datetime64(expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_frequencies.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas._libs.tslibs import offsets
4
+
5
+ from pandas.tseries.frequencies import (
6
+ is_subperiod,
7
+ is_superperiod,
8
+ )
9
+
10
+
11
+ @pytest.mark.parametrize(
12
+ "p1,p2,expected",
13
+ [
14
+ # Input validation.
15
+ (offsets.MonthEnd(), None, False),
16
+ (offsets.YearEnd(), None, False),
17
+ (None, offsets.YearEnd(), False),
18
+ (None, offsets.MonthEnd(), False),
19
+ (None, None, False),
20
+ (offsets.YearEnd(), offsets.MonthEnd(), True),
21
+ (offsets.Hour(), offsets.Minute(), True),
22
+ (offsets.Second(), offsets.Milli(), True),
23
+ (offsets.Milli(), offsets.Micro(), True),
24
+ (offsets.Micro(), offsets.Nano(), True),
25
+ ],
26
+ )
27
+ def test_super_sub_symmetry(p1, p2, expected):
28
+ assert is_superperiod(p1, p2) is expected
29
+ assert is_subperiod(p2, p1) is expected
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/frequencies/test_inference.py ADDED
@@ -0,0 +1,558 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ timedelta,
4
+ )
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ from pandas._libs.tslibs.ccalendar import (
10
+ DAYS,
11
+ MONTHS,
12
+ )
13
+ from pandas._libs.tslibs.offsets import _get_offset
14
+ from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
15
+ from pandas.compat import is_platform_windows
16
+
17
+ from pandas import (
18
+ DatetimeIndex,
19
+ Index,
20
+ RangeIndex,
21
+ Series,
22
+ Timestamp,
23
+ date_range,
24
+ period_range,
25
+ )
26
+ import pandas._testing as tm
27
+ from pandas.core.arrays import (
28
+ DatetimeArray,
29
+ TimedeltaArray,
30
+ )
31
+ from pandas.core.tools.datetimes import to_datetime
32
+
33
+ from pandas.tseries import (
34
+ frequencies,
35
+ offsets,
36
+ )
37
+
38
+
39
+ @pytest.fixture(
40
+ params=[
41
+ (timedelta(1), "D"),
42
+ (timedelta(hours=1), "h"),
43
+ (timedelta(minutes=1), "min"),
44
+ (timedelta(seconds=1), "s"),
45
+ (np.timedelta64(1, "ns"), "ns"),
46
+ (timedelta(microseconds=1), "us"),
47
+ (timedelta(microseconds=1000), "ms"),
48
+ ]
49
+ )
50
+ def base_delta_code_pair(request):
51
+ return request.param
52
+
53
+
54
+ freqs = (
55
+ [f"QE-{month}" for month in MONTHS]
56
+ + [f"{annual}-{month}" for annual in ["YE", "BYE"] for month in MONTHS]
57
+ + ["ME", "BME", "BMS"]
58
+ + [f"WOM-{count}{day}" for count in range(1, 5) for day in DAYS]
59
+ + [f"W-{day}" for day in DAYS]
60
+ )
61
+
62
+
63
+ @pytest.mark.parametrize("freq", freqs)
64
+ @pytest.mark.parametrize("periods", [5, 7])
65
+ def test_infer_freq_range(periods, freq):
66
+ freq = freq.upper()
67
+
68
+ gen = date_range("1/1/2000", periods=periods, freq=freq)
69
+ index = DatetimeIndex(gen.values)
70
+
71
+ if not freq.startswith("QE-"):
72
+ assert frequencies.infer_freq(index) == gen.freqstr
73
+ else:
74
+ inf_freq = frequencies.infer_freq(index)
75
+ is_dec_range = inf_freq == "QE-DEC" and gen.freqstr in (
76
+ "QE",
77
+ "QE-DEC",
78
+ "QE-SEP",
79
+ "QE-JUN",
80
+ "QE-MAR",
81
+ )
82
+ is_nov_range = inf_freq == "QE-NOV" and gen.freqstr in (
83
+ "QE-NOV",
84
+ "QE-AUG",
85
+ "QE-MAY",
86
+ "QE-FEB",
87
+ )
88
+ is_oct_range = inf_freq == "QE-OCT" and gen.freqstr in (
89
+ "QE-OCT",
90
+ "QE-JUL",
91
+ "QE-APR",
92
+ "QE-JAN",
93
+ )
94
+ assert is_dec_range or is_nov_range or is_oct_range
95
+
96
+
97
+ def test_raise_if_period_index():
98
+ index = period_range(start="1/1/1990", periods=20, freq="M")
99
+ msg = "Check the `freq` attribute instead of using infer_freq"
100
+
101
+ with pytest.raises(TypeError, match=msg):
102
+ frequencies.infer_freq(index)
103
+
104
+
105
+ def test_raise_if_too_few():
106
+ index = DatetimeIndex(["12/31/1998", "1/3/1999"])
107
+ msg = "Need at least 3 dates to infer frequency"
108
+
109
+ with pytest.raises(ValueError, match=msg):
110
+ frequencies.infer_freq(index)
111
+
112
+
113
+ def test_business_daily():
114
+ index = DatetimeIndex(["01/01/1999", "1/4/1999", "1/5/1999"])
115
+ assert frequencies.infer_freq(index) == "B"
116
+
117
+
118
+ def test_business_daily_look_alike():
119
+ # see gh-16624
120
+ #
121
+ # Do not infer "B when "weekend" (2-day gap) in wrong place.
122
+ index = DatetimeIndex(["12/31/1998", "1/3/1999", "1/4/1999"])
123
+ assert frequencies.infer_freq(index) is None
124
+
125
+
126
+ def test_day_corner():
127
+ index = DatetimeIndex(["1/1/2000", "1/2/2000", "1/3/2000"])
128
+ assert frequencies.infer_freq(index) == "D"
129
+
130
+
131
+ def test_non_datetime_index():
132
+ dates = to_datetime(["1/1/2000", "1/2/2000", "1/3/2000"])
133
+ assert frequencies.infer_freq(dates) == "D"
134
+
135
+
136
+ def test_fifth_week_of_month_infer():
137
+ # see gh-9425
138
+ #
139
+ # Only attempt to infer up to WOM-4.
140
+ index = DatetimeIndex(["2014-03-31", "2014-06-30", "2015-03-30"])
141
+ assert frequencies.infer_freq(index) is None
142
+
143
+
144
+ def test_week_of_month_fake():
145
+ # All of these dates are on same day
146
+ # of week and are 4 or 5 weeks apart.
147
+ index = DatetimeIndex(["2013-08-27", "2013-10-01", "2013-10-29", "2013-11-26"])
148
+ assert frequencies.infer_freq(index) != "WOM-4TUE"
149
+
150
+
151
+ def test_fifth_week_of_month():
152
+ # see gh-9425
153
+ #
154
+ # Only supports freq up to WOM-4.
155
+ msg = (
156
+ "Of the four parameters: start, end, periods, "
157
+ "and freq, exactly three must be specified"
158
+ )
159
+
160
+ with pytest.raises(ValueError, match=msg):
161
+ date_range("2014-01-01", freq="WOM-5MON")
162
+
163
+
164
+ def test_monthly_ambiguous():
165
+ rng = DatetimeIndex(["1/31/2000", "2/29/2000", "3/31/2000"])
166
+ assert rng.inferred_freq == "ME"
167
+
168
+
169
+ def test_annual_ambiguous():
170
+ rng = DatetimeIndex(["1/31/2000", "1/31/2001", "1/31/2002"])
171
+ assert rng.inferred_freq == "YE-JAN"
172
+
173
+
174
+ @pytest.mark.parametrize("count", range(1, 5))
175
+ def test_infer_freq_delta(base_delta_code_pair, count):
176
+ b = Timestamp(datetime.now())
177
+ base_delta, code = base_delta_code_pair
178
+
179
+ inc = base_delta * count
180
+ index = DatetimeIndex([b + inc * j for j in range(3)])
181
+
182
+ exp_freq = f"{count:d}{code}" if count > 1 else code
183
+ assert frequencies.infer_freq(index) == exp_freq
184
+
185
+
186
+ @pytest.mark.parametrize(
187
+ "constructor",
188
+ [
189
+ lambda now, delta: DatetimeIndex(
190
+ [now + delta * 7] + [now + delta * j for j in range(3)]
191
+ ),
192
+ lambda now, delta: DatetimeIndex(
193
+ [now + delta * j for j in range(3)] + [now + delta * 7]
194
+ ),
195
+ ],
196
+ )
197
+ def test_infer_freq_custom(base_delta_code_pair, constructor):
198
+ b = Timestamp(datetime.now())
199
+ base_delta, _ = base_delta_code_pair
200
+
201
+ index = constructor(b, base_delta)
202
+ assert frequencies.infer_freq(index) is None
203
+
204
+
205
+ @pytest.mark.parametrize(
206
+ "freq,expected", [("Q", "QE-DEC"), ("Q-NOV", "QE-NOV"), ("Q-OCT", "QE-OCT")]
207
+ )
208
+ def test_infer_freq_index(freq, expected):
209
+ rng = period_range("1959Q2", "2009Q3", freq=freq)
210
+ with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
211
+ rng = Index(rng.to_timestamp("D", how="e").astype(object))
212
+
213
+ assert rng.inferred_freq == expected
214
+
215
+
216
+ @pytest.mark.parametrize(
217
+ "expected,dates",
218
+ list(
219
+ {
220
+ "YS-JAN": ["2009-01-01", "2010-01-01", "2011-01-01", "2012-01-01"],
221
+ "QE-OCT": ["2009-01-31", "2009-04-30", "2009-07-31", "2009-10-31"],
222
+ "ME": ["2010-11-30", "2010-12-31", "2011-01-31", "2011-02-28"],
223
+ "W-SAT": ["2010-12-25", "2011-01-01", "2011-01-08", "2011-01-15"],
224
+ "D": ["2011-01-01", "2011-01-02", "2011-01-03", "2011-01-04"],
225
+ "h": [
226
+ "2011-12-31 22:00",
227
+ "2011-12-31 23:00",
228
+ "2012-01-01 00:00",
229
+ "2012-01-01 01:00",
230
+ ],
231
+ }.items()
232
+ ),
233
+ )
234
+ @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
235
+ def test_infer_freq_tz(tz_naive_fixture, expected, dates, unit):
236
+ # see gh-7310, GH#55609
237
+ tz = tz_naive_fixture
238
+ idx = DatetimeIndex(dates, tz=tz).as_unit(unit)
239
+ assert idx.inferred_freq == expected
240
+
241
+
242
+ def test_infer_freq_tz_series(tz_naive_fixture):
243
+ # infer_freq should work with both tz-naive and tz-aware series. See gh-52456
244
+ tz = tz_naive_fixture
245
+ idx = date_range("2021-01-01", "2021-01-04", tz=tz)
246
+ series = idx.to_series().reset_index(drop=True)
247
+ inferred_freq = frequencies.infer_freq(series)
248
+ assert inferred_freq == "D"
249
+
250
+
251
+ @pytest.mark.parametrize(
252
+ "date_pair",
253
+ [
254
+ ["2013-11-02", "2013-11-5"], # Fall DST
255
+ ["2014-03-08", "2014-03-11"], # Spring DST
256
+ ["2014-01-01", "2014-01-03"], # Regular Time
257
+ ],
258
+ )
259
+ @pytest.mark.parametrize(
260
+ "freq",
261
+ ["h", "3h", "10min", "3601s", "3600001ms", "3600000001us", "3600000000001ns"],
262
+ )
263
+ def test_infer_freq_tz_transition(tz_naive_fixture, date_pair, freq):
264
+ # see gh-8772
265
+ tz = tz_naive_fixture
266
+ idx = date_range(date_pair[0], date_pair[1], freq=freq, tz=tz)
267
+ assert idx.inferred_freq == freq
268
+
269
+
270
+ def test_infer_freq_tz_transition_custom():
271
+ index = date_range("2013-11-03", periods=5, freq="3h").tz_localize(
272
+ "America/Chicago"
273
+ )
274
+ assert index.inferred_freq is None
275
+
276
+
277
+ @pytest.mark.parametrize(
278
+ "data,expected",
279
+ [
280
+ # Hourly freq in a day must result in "h"
281
+ (
282
+ [
283
+ "2014-07-01 09:00",
284
+ "2014-07-01 10:00",
285
+ "2014-07-01 11:00",
286
+ "2014-07-01 12:00",
287
+ "2014-07-01 13:00",
288
+ "2014-07-01 14:00",
289
+ ],
290
+ "h",
291
+ ),
292
+ (
293
+ [
294
+ "2014-07-01 09:00",
295
+ "2014-07-01 10:00",
296
+ "2014-07-01 11:00",
297
+ "2014-07-01 12:00",
298
+ "2014-07-01 13:00",
299
+ "2014-07-01 14:00",
300
+ "2014-07-01 15:00",
301
+ "2014-07-01 16:00",
302
+ "2014-07-02 09:00",
303
+ "2014-07-02 10:00",
304
+ "2014-07-02 11:00",
305
+ ],
306
+ "bh",
307
+ ),
308
+ (
309
+ [
310
+ "2014-07-04 09:00",
311
+ "2014-07-04 10:00",
312
+ "2014-07-04 11:00",
313
+ "2014-07-04 12:00",
314
+ "2014-07-04 13:00",
315
+ "2014-07-04 14:00",
316
+ "2014-07-04 15:00",
317
+ "2014-07-04 16:00",
318
+ "2014-07-07 09:00",
319
+ "2014-07-07 10:00",
320
+ "2014-07-07 11:00",
321
+ ],
322
+ "bh",
323
+ ),
324
+ (
325
+ [
326
+ "2014-07-04 09:00",
327
+ "2014-07-04 10:00",
328
+ "2014-07-04 11:00",
329
+ "2014-07-04 12:00",
330
+ "2014-07-04 13:00",
331
+ "2014-07-04 14:00",
332
+ "2014-07-04 15:00",
333
+ "2014-07-04 16:00",
334
+ "2014-07-07 09:00",
335
+ "2014-07-07 10:00",
336
+ "2014-07-07 11:00",
337
+ "2014-07-07 12:00",
338
+ "2014-07-07 13:00",
339
+ "2014-07-07 14:00",
340
+ "2014-07-07 15:00",
341
+ "2014-07-07 16:00",
342
+ "2014-07-08 09:00",
343
+ "2014-07-08 10:00",
344
+ "2014-07-08 11:00",
345
+ "2014-07-08 12:00",
346
+ "2014-07-08 13:00",
347
+ "2014-07-08 14:00",
348
+ "2014-07-08 15:00",
349
+ "2014-07-08 16:00",
350
+ ],
351
+ "bh",
352
+ ),
353
+ ],
354
+ )
355
+ def test_infer_freq_business_hour(data, expected):
356
+ # see gh-7905
357
+ idx = DatetimeIndex(data)
358
+ assert idx.inferred_freq == expected
359
+
360
+
361
+ def test_not_monotonic():
362
+ rng = DatetimeIndex(["1/31/2000", "1/31/2001", "1/31/2002"])
363
+ rng = rng[::-1]
364
+
365
+ assert rng.inferred_freq == "-1YE-JAN"
366
+
367
+
368
+ def test_non_datetime_index2():
369
+ rng = DatetimeIndex(["1/31/2000", "1/31/2001", "1/31/2002"])
370
+ vals = rng.to_pydatetime()
371
+
372
+ result = frequencies.infer_freq(vals)
373
+ assert result == rng.inferred_freq
374
+
375
+
376
+ @pytest.mark.parametrize(
377
+ "idx",
378
+ [
379
+ Index(np.arange(5), dtype=np.int64),
380
+ Index(np.arange(5), dtype=np.float64),
381
+ period_range("2020-01-01", periods=5),
382
+ RangeIndex(5),
383
+ ],
384
+ )
385
+ def test_invalid_index_types(idx):
386
+ # see gh-48439
387
+ msg = "|".join(
388
+ [
389
+ "cannot infer freq from a non-convertible",
390
+ "Check the `freq` attribute instead of using infer_freq",
391
+ ]
392
+ )
393
+
394
+ with pytest.raises(TypeError, match=msg):
395
+ frequencies.infer_freq(idx)
396
+
397
+
398
+ @pytest.mark.skipif(is_platform_windows(), reason="see gh-10822: Windows issue")
399
+ def test_invalid_index_types_unicode():
400
+ # see gh-10822
401
+ #
402
+ # Odd error message on conversions to datetime for unicode.
403
+ msg = "Unknown datetime string format"
404
+
405
+ with pytest.raises(ValueError, match=msg):
406
+ frequencies.infer_freq(Index(["ZqgszYBfuL"]))
407
+
408
+
409
+ def test_string_datetime_like_compat():
410
+ # see gh-6463
411
+ data = ["2004-01", "2004-02", "2004-03", "2004-04"]
412
+
413
+ expected = frequencies.infer_freq(data)
414
+ result = frequencies.infer_freq(Index(data))
415
+
416
+ assert result == expected
417
+
418
+
419
+ def test_series():
420
+ # see gh-6407
421
+ s = Series(date_range("20130101", "20130110"))
422
+ inferred = frequencies.infer_freq(s)
423
+ assert inferred == "D"
424
+
425
+
426
+ @pytest.mark.parametrize("end", [10, 10.0])
427
+ def test_series_invalid_type(end):
428
+ # see gh-6407
429
+ msg = "cannot infer freq from a non-convertible dtype on a Series"
430
+ s = Series(np.arange(end))
431
+
432
+ with pytest.raises(TypeError, match=msg):
433
+ frequencies.infer_freq(s)
434
+
435
+
436
+ def test_series_inconvertible_string(using_infer_string):
437
+ # see gh-6407
438
+ if using_infer_string:
439
+ msg = "cannot infer freq from"
440
+
441
+ with pytest.raises(TypeError, match=msg):
442
+ frequencies.infer_freq(Series(["foo", "bar"]))
443
+ else:
444
+ msg = "Unknown datetime string format"
445
+
446
+ with pytest.raises(ValueError, match=msg):
447
+ frequencies.infer_freq(Series(["foo", "bar"]))
448
+
449
+
450
+ @pytest.mark.parametrize("freq", [None, "ms"])
451
+ def test_series_period_index(freq):
452
+ # see gh-6407
453
+ #
454
+ # Cannot infer on PeriodIndex
455
+ msg = "cannot infer freq from a non-convertible dtype on a Series"
456
+ s = Series(period_range("2013", periods=10, freq=freq))
457
+
458
+ with pytest.raises(TypeError, match=msg):
459
+ frequencies.infer_freq(s)
460
+
461
+
462
+ @pytest.mark.parametrize("freq", ["ME", "ms", "s"])
463
+ def test_series_datetime_index(freq):
464
+ s = Series(date_range("20130101", periods=10, freq=freq))
465
+ inferred = frequencies.infer_freq(s)
466
+ assert inferred == freq
467
+
468
+
469
+ @pytest.mark.parametrize(
470
+ "offset_func",
471
+ [
472
+ _get_offset,
473
+ lambda freq: date_range("2011-01-01", periods=5, freq=freq),
474
+ ],
475
+ )
476
+ @pytest.mark.parametrize(
477
+ "freq",
478
+ [
479
+ "WEEKDAY",
480
+ "EOM",
481
+ "W@MON",
482
+ "W@TUE",
483
+ "W@WED",
484
+ "W@THU",
485
+ "W@FRI",
486
+ "W@SAT",
487
+ "W@SUN",
488
+ "QE@JAN",
489
+ "QE@FEB",
490
+ "QE@MAR",
491
+ "YE@JAN",
492
+ "YE@FEB",
493
+ "YE@MAR",
494
+ "YE@APR",
495
+ "YE@MAY",
496
+ "YE@JUN",
497
+ "YE@JUL",
498
+ "YE@AUG",
499
+ "YE@SEP",
500
+ "YE@OCT",
501
+ "YE@NOV",
502
+ "YE@DEC",
503
+ "YE@JAN",
504
+ "WOM@1MON",
505
+ "WOM@2MON",
506
+ "WOM@3MON",
507
+ "WOM@4MON",
508
+ "WOM@1TUE",
509
+ "WOM@2TUE",
510
+ "WOM@3TUE",
511
+ "WOM@4TUE",
512
+ "WOM@1WED",
513
+ "WOM@2WED",
514
+ "WOM@3WED",
515
+ "WOM@4WED",
516
+ "WOM@1THU",
517
+ "WOM@2THU",
518
+ "WOM@3THU",
519
+ "WOM@4THU",
520
+ "WOM@1FRI",
521
+ "WOM@2FRI",
522
+ "WOM@3FRI",
523
+ "WOM@4FRI",
524
+ ],
525
+ )
526
+ def test_legacy_offset_warnings(offset_func, freq):
527
+ with pytest.raises(ValueError, match=INVALID_FREQ_ERR_MSG):
528
+ offset_func(freq)
529
+
530
+
531
+ def test_ms_vs_capital_ms():
532
+ left = _get_offset("ms")
533
+ right = _get_offset("MS")
534
+
535
+ assert left == offsets.Milli()
536
+ assert right == offsets.MonthBegin()
537
+
538
+
539
+ def test_infer_freq_non_nano():
540
+ arr = np.arange(10).astype(np.int64).view("M8[s]")
541
+ dta = DatetimeArray._simple_new(arr, dtype=arr.dtype)
542
+ res = frequencies.infer_freq(dta)
543
+ assert res == "s"
544
+
545
+ arr2 = arr.view("m8[ms]")
546
+ tda = TimedeltaArray._simple_new(arr2, dtype=arr2.dtype)
547
+ res2 = frequencies.infer_freq(tda)
548
+ assert res2 == "ms"
549
+
550
+
551
+ def test_infer_freq_non_nano_tzaware(tz_aware_fixture):
552
+ tz = tz_aware_fixture
553
+
554
+ dti = date_range("2016-01-01", periods=365, freq="B", tz=tz)
555
+ dta = dti._data.as_unit("s")
556
+
557
+ res = frequencies.infer_freq(dta)
558
+ assert res == "B"
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (201 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_calendar.cpython-310.pyc ADDED
Binary file (3.77 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_federal.cpython-310.pyc ADDED
Binary file (1.98 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_holiday.cpython-310.pyc ADDED
Binary file (7.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/__pycache__/test_observance.cpython-310.pyc ADDED
Binary file (2.49 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_calendar.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ import pytest
4
+
5
+ from pandas import (
6
+ DatetimeIndex,
7
+ offsets,
8
+ to_datetime,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+ from pandas.tseries.holiday import (
13
+ AbstractHolidayCalendar,
14
+ Holiday,
15
+ Timestamp,
16
+ USFederalHolidayCalendar,
17
+ USLaborDay,
18
+ USThanksgivingDay,
19
+ get_calendar,
20
+ )
21
+
22
+
23
+ @pytest.mark.parametrize(
24
+ "transform", [lambda x: x, lambda x: x.strftime("%Y-%m-%d"), lambda x: Timestamp(x)]
25
+ )
26
+ def test_calendar(transform):
27
+ start_date = datetime(2012, 1, 1)
28
+ end_date = datetime(2012, 12, 31)
29
+
30
+ calendar = USFederalHolidayCalendar()
31
+ holidays = calendar.holidays(transform(start_date), transform(end_date))
32
+
33
+ expected = [
34
+ datetime(2012, 1, 2),
35
+ datetime(2012, 1, 16),
36
+ datetime(2012, 2, 20),
37
+ datetime(2012, 5, 28),
38
+ datetime(2012, 7, 4),
39
+ datetime(2012, 9, 3),
40
+ datetime(2012, 10, 8),
41
+ datetime(2012, 11, 12),
42
+ datetime(2012, 11, 22),
43
+ datetime(2012, 12, 25),
44
+ ]
45
+
46
+ assert list(holidays.to_pydatetime()) == expected
47
+
48
+
49
+ def test_calendar_caching():
50
+ # see gh-9552.
51
+
52
+ class TestCalendar(AbstractHolidayCalendar):
53
+ def __init__(self, name=None, rules=None) -> None:
54
+ super().__init__(name=name, rules=rules)
55
+
56
+ jan1 = TestCalendar(rules=[Holiday("jan1", year=2015, month=1, day=1)])
57
+ jan2 = TestCalendar(rules=[Holiday("jan2", year=2015, month=1, day=2)])
58
+
59
+ # Getting holidays for Jan 1 should not alter results for Jan 2.
60
+ expected = DatetimeIndex(["01-Jan-2015"]).as_unit("ns")
61
+ tm.assert_index_equal(jan1.holidays(), expected)
62
+
63
+ expected2 = DatetimeIndex(["02-Jan-2015"]).as_unit("ns")
64
+ tm.assert_index_equal(jan2.holidays(), expected2)
65
+
66
+
67
+ def test_calendar_observance_dates():
68
+ # see gh-11477
69
+ us_fed_cal = get_calendar("USFederalHolidayCalendar")
70
+ holidays0 = us_fed_cal.holidays(
71
+ datetime(2015, 7, 3), datetime(2015, 7, 3)
72
+ ) # <-- same start and end dates
73
+ holidays1 = us_fed_cal.holidays(
74
+ datetime(2015, 7, 3), datetime(2015, 7, 6)
75
+ ) # <-- different start and end dates
76
+ holidays2 = us_fed_cal.holidays(
77
+ datetime(2015, 7, 3), datetime(2015, 7, 3)
78
+ ) # <-- same start and end dates
79
+
80
+ # These should all produce the same result.
81
+ #
82
+ # In addition, calling with different start and end
83
+ # dates should not alter the output if we call the
84
+ # function again with the same start and end date.
85
+ tm.assert_index_equal(holidays0, holidays1)
86
+ tm.assert_index_equal(holidays0, holidays2)
87
+
88
+
89
+ def test_rule_from_name():
90
+ us_fed_cal = get_calendar("USFederalHolidayCalendar")
91
+ assert us_fed_cal.rule_from_name("Thanksgiving Day") == USThanksgivingDay
92
+
93
+
94
+ def test_calendar_2031():
95
+ # See gh-27790
96
+ #
97
+ # Labor Day 2031 is on September 1. Saturday before is August 30.
98
+ # Next working day after August 30 ought to be Tuesday, September 2.
99
+
100
+ class testCalendar(AbstractHolidayCalendar):
101
+ rules = [USLaborDay]
102
+
103
+ cal = testCalendar()
104
+ workDay = offsets.CustomBusinessDay(calendar=cal)
105
+ Sat_before_Labor_Day_2031 = to_datetime("2031-08-30")
106
+ next_working_day = Sat_before_Labor_Day_2031 + 0 * workDay
107
+ assert next_working_day == to_datetime("2031-09-02")
108
+
109
+
110
+ def test_no_holidays_calendar():
111
+ # Test for issue #31415
112
+
113
+ class NoHolidaysCalendar(AbstractHolidayCalendar):
114
+ pass
115
+
116
+ cal = NoHolidaysCalendar()
117
+ holidays = cal.holidays(Timestamp("01-Jan-2020"), Timestamp("01-Jan-2021"))
118
+ empty_index = DatetimeIndex([]) # Type is DatetimeIndex since return_name=False
119
+ tm.assert_index_equal(holidays, empty_index)
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_federal.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ from pandas import DatetimeIndex
4
+ import pandas._testing as tm
5
+
6
+ from pandas.tseries.holiday import (
7
+ AbstractHolidayCalendar,
8
+ USFederalHolidayCalendar,
9
+ USMartinLutherKingJr,
10
+ USMemorialDay,
11
+ )
12
+
13
+
14
+ def test_no_mlk_before_1986():
15
+ # see gh-10278
16
+ class MLKCalendar(AbstractHolidayCalendar):
17
+ rules = [USMartinLutherKingJr]
18
+
19
+ holidays = MLKCalendar().holidays(start="1984", end="1988").to_pydatetime().tolist()
20
+
21
+ # Testing to make sure holiday is not incorrectly observed before 1986.
22
+ assert holidays == [datetime(1986, 1, 20, 0, 0), datetime(1987, 1, 19, 0, 0)]
23
+
24
+
25
+ def test_memorial_day():
26
+ class MemorialDay(AbstractHolidayCalendar):
27
+ rules = [USMemorialDay]
28
+
29
+ holidays = MemorialDay().holidays(start="1971", end="1980").to_pydatetime().tolist()
30
+
31
+ # Fixes 5/31 error and checked manually against Wikipedia.
32
+ assert holidays == [
33
+ datetime(1971, 5, 31, 0, 0),
34
+ datetime(1972, 5, 29, 0, 0),
35
+ datetime(1973, 5, 28, 0, 0),
36
+ datetime(1974, 5, 27, 0, 0),
37
+ datetime(1975, 5, 26, 0, 0),
38
+ datetime(1976, 5, 31, 0, 0),
39
+ datetime(1977, 5, 30, 0, 0),
40
+ datetime(1978, 5, 29, 0, 0),
41
+ datetime(1979, 5, 28, 0, 0),
42
+ ]
43
+
44
+
45
+ def test_federal_holiday_inconsistent_returntype():
46
+ # GH 49075 test case
47
+ # Instantiate two calendars to rule out _cache
48
+ cal1 = USFederalHolidayCalendar()
49
+ cal2 = USFederalHolidayCalendar()
50
+
51
+ results_2018 = cal1.holidays(start=datetime(2018, 8, 1), end=datetime(2018, 8, 31))
52
+ results_2019 = cal2.holidays(start=datetime(2019, 8, 1), end=datetime(2019, 8, 31))
53
+ expected_results = DatetimeIndex([], dtype="datetime64[ns]", freq=None)
54
+
55
+ # Check against expected results to ensure both date
56
+ # ranges generate expected results as per GH49075 submission
57
+ tm.assert_index_equal(results_2018, expected_results)
58
+ tm.assert_index_equal(results_2019, expected_results)
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_holiday.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ import pytest
4
+ from pytz import utc
5
+
6
+ from pandas import (
7
+ DatetimeIndex,
8
+ Series,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+ from pandas.tseries.holiday import (
13
+ MO,
14
+ SA,
15
+ AbstractHolidayCalendar,
16
+ DateOffset,
17
+ EasterMonday,
18
+ GoodFriday,
19
+ Holiday,
20
+ HolidayCalendarFactory,
21
+ Timestamp,
22
+ USColumbusDay,
23
+ USFederalHolidayCalendar,
24
+ USLaborDay,
25
+ USMartinLutherKingJr,
26
+ USMemorialDay,
27
+ USPresidentsDay,
28
+ USThanksgivingDay,
29
+ get_calendar,
30
+ next_monday,
31
+ )
32
+
33
+
34
+ @pytest.mark.parametrize(
35
+ "holiday,start_date,end_date,expected",
36
+ [
37
+ (
38
+ USMemorialDay,
39
+ datetime(2011, 1, 1),
40
+ datetime(2020, 12, 31),
41
+ [
42
+ datetime(2011, 5, 30),
43
+ datetime(2012, 5, 28),
44
+ datetime(2013, 5, 27),
45
+ datetime(2014, 5, 26),
46
+ datetime(2015, 5, 25),
47
+ datetime(2016, 5, 30),
48
+ datetime(2017, 5, 29),
49
+ datetime(2018, 5, 28),
50
+ datetime(2019, 5, 27),
51
+ datetime(2020, 5, 25),
52
+ ],
53
+ ),
54
+ (
55
+ Holiday("July 4th Eve", month=7, day=3),
56
+ "2001-01-01",
57
+ "2003-03-03",
58
+ [Timestamp("2001-07-03 00:00:00"), Timestamp("2002-07-03 00:00:00")],
59
+ ),
60
+ (
61
+ Holiday("July 4th Eve", month=7, day=3, days_of_week=(0, 1, 2, 3)),
62
+ "2001-01-01",
63
+ "2008-03-03",
64
+ [
65
+ Timestamp("2001-07-03 00:00:00"),
66
+ Timestamp("2002-07-03 00:00:00"),
67
+ Timestamp("2003-07-03 00:00:00"),
68
+ Timestamp("2006-07-03 00:00:00"),
69
+ Timestamp("2007-07-03 00:00:00"),
70
+ ],
71
+ ),
72
+ (
73
+ EasterMonday,
74
+ datetime(2011, 1, 1),
75
+ datetime(2020, 12, 31),
76
+ [
77
+ Timestamp("2011-04-25 00:00:00"),
78
+ Timestamp("2012-04-09 00:00:00"),
79
+ Timestamp("2013-04-01 00:00:00"),
80
+ Timestamp("2014-04-21 00:00:00"),
81
+ Timestamp("2015-04-06 00:00:00"),
82
+ Timestamp("2016-03-28 00:00:00"),
83
+ Timestamp("2017-04-17 00:00:00"),
84
+ Timestamp("2018-04-02 00:00:00"),
85
+ Timestamp("2019-04-22 00:00:00"),
86
+ Timestamp("2020-04-13 00:00:00"),
87
+ ],
88
+ ),
89
+ (
90
+ GoodFriday,
91
+ datetime(2011, 1, 1),
92
+ datetime(2020, 12, 31),
93
+ [
94
+ Timestamp("2011-04-22 00:00:00"),
95
+ Timestamp("2012-04-06 00:00:00"),
96
+ Timestamp("2013-03-29 00:00:00"),
97
+ Timestamp("2014-04-18 00:00:00"),
98
+ Timestamp("2015-04-03 00:00:00"),
99
+ Timestamp("2016-03-25 00:00:00"),
100
+ Timestamp("2017-04-14 00:00:00"),
101
+ Timestamp("2018-03-30 00:00:00"),
102
+ Timestamp("2019-04-19 00:00:00"),
103
+ Timestamp("2020-04-10 00:00:00"),
104
+ ],
105
+ ),
106
+ (
107
+ USThanksgivingDay,
108
+ datetime(2011, 1, 1),
109
+ datetime(2020, 12, 31),
110
+ [
111
+ datetime(2011, 11, 24),
112
+ datetime(2012, 11, 22),
113
+ datetime(2013, 11, 28),
114
+ datetime(2014, 11, 27),
115
+ datetime(2015, 11, 26),
116
+ datetime(2016, 11, 24),
117
+ datetime(2017, 11, 23),
118
+ datetime(2018, 11, 22),
119
+ datetime(2019, 11, 28),
120
+ datetime(2020, 11, 26),
121
+ ],
122
+ ),
123
+ ],
124
+ )
125
+ def test_holiday_dates(holiday, start_date, end_date, expected):
126
+ assert list(holiday.dates(start_date, end_date)) == expected
127
+
128
+ # Verify that timezone info is preserved.
129
+ assert list(
130
+ holiday.dates(
131
+ utc.localize(Timestamp(start_date)), utc.localize(Timestamp(end_date))
132
+ )
133
+ ) == [utc.localize(dt) for dt in expected]
134
+
135
+
136
+ @pytest.mark.parametrize(
137
+ "holiday,start,expected",
138
+ [
139
+ (USMemorialDay, datetime(2015, 7, 1), []),
140
+ (USMemorialDay, "2015-05-25", [Timestamp("2015-05-25")]),
141
+ (USLaborDay, datetime(2015, 7, 1), []),
142
+ (USLaborDay, "2015-09-07", [Timestamp("2015-09-07")]),
143
+ (USColumbusDay, datetime(2015, 7, 1), []),
144
+ (USColumbusDay, "2015-10-12", [Timestamp("2015-10-12")]),
145
+ (USThanksgivingDay, datetime(2015, 7, 1), []),
146
+ (USThanksgivingDay, "2015-11-26", [Timestamp("2015-11-26")]),
147
+ (USMartinLutherKingJr, datetime(2015, 7, 1), []),
148
+ (USMartinLutherKingJr, "2015-01-19", [Timestamp("2015-01-19")]),
149
+ (USPresidentsDay, datetime(2015, 7, 1), []),
150
+ (USPresidentsDay, "2015-02-16", [Timestamp("2015-02-16")]),
151
+ (GoodFriday, datetime(2015, 7, 1), []),
152
+ (GoodFriday, "2015-04-03", [Timestamp("2015-04-03")]),
153
+ (EasterMonday, "2015-04-06", [Timestamp("2015-04-06")]),
154
+ (EasterMonday, datetime(2015, 7, 1), []),
155
+ (EasterMonday, "2015-04-05", []),
156
+ ("New Year's Day", "2015-01-01", [Timestamp("2015-01-01")]),
157
+ ("New Year's Day", "2010-12-31", [Timestamp("2010-12-31")]),
158
+ ("New Year's Day", datetime(2015, 7, 1), []),
159
+ ("New Year's Day", "2011-01-01", []),
160
+ ("Independence Day", "2015-07-03", [Timestamp("2015-07-03")]),
161
+ ("Independence Day", datetime(2015, 7, 1), []),
162
+ ("Independence Day", "2015-07-04", []),
163
+ ("Veterans Day", "2012-11-12", [Timestamp("2012-11-12")]),
164
+ ("Veterans Day", datetime(2015, 7, 1), []),
165
+ ("Veterans Day", "2012-11-11", []),
166
+ ("Christmas Day", "2011-12-26", [Timestamp("2011-12-26")]),
167
+ ("Christmas Day", datetime(2015, 7, 1), []),
168
+ ("Christmas Day", "2011-12-25", []),
169
+ ("Juneteenth National Independence Day", "2020-06-19", []),
170
+ (
171
+ "Juneteenth National Independence Day",
172
+ "2021-06-18",
173
+ [Timestamp("2021-06-18")],
174
+ ),
175
+ ("Juneteenth National Independence Day", "2022-06-19", []),
176
+ (
177
+ "Juneteenth National Independence Day",
178
+ "2022-06-20",
179
+ [Timestamp("2022-06-20")],
180
+ ),
181
+ ],
182
+ )
183
+ def test_holidays_within_dates(holiday, start, expected):
184
+ # see gh-11477
185
+ #
186
+ # Fix holiday behavior where holiday.dates returned dates outside
187
+ # start/end date, or observed rules could not be applied because the
188
+ # holiday was not in the original date range (e.g., 7/4/2015 -> 7/3/2015).
189
+ if isinstance(holiday, str):
190
+ calendar = get_calendar("USFederalHolidayCalendar")
191
+ holiday = calendar.rule_from_name(holiday)
192
+
193
+ assert list(holiday.dates(start, start)) == expected
194
+
195
+ # Verify that timezone info is preserved.
196
+ assert list(
197
+ holiday.dates(utc.localize(Timestamp(start)), utc.localize(Timestamp(start)))
198
+ ) == [utc.localize(dt) for dt in expected]
199
+
200
+
201
+ @pytest.mark.parametrize(
202
+ "transform", [lambda x: x.strftime("%Y-%m-%d"), lambda x: Timestamp(x)]
203
+ )
204
+ def test_argument_types(transform):
205
+ start_date = datetime(2011, 1, 1)
206
+ end_date = datetime(2020, 12, 31)
207
+
208
+ holidays = USThanksgivingDay.dates(start_date, end_date)
209
+ holidays2 = USThanksgivingDay.dates(transform(start_date), transform(end_date))
210
+ tm.assert_index_equal(holidays, holidays2)
211
+
212
+
213
+ @pytest.mark.parametrize(
214
+ "name,kwargs",
215
+ [
216
+ ("One-Time", {"year": 2012, "month": 5, "day": 28}),
217
+ (
218
+ "Range",
219
+ {
220
+ "month": 5,
221
+ "day": 28,
222
+ "start_date": datetime(2012, 1, 1),
223
+ "end_date": datetime(2012, 12, 31),
224
+ "offset": DateOffset(weekday=MO(1)),
225
+ },
226
+ ),
227
+ ],
228
+ )
229
+ def test_special_holidays(name, kwargs):
230
+ base_date = [datetime(2012, 5, 28)]
231
+ holiday = Holiday(name, **kwargs)
232
+
233
+ start_date = datetime(2011, 1, 1)
234
+ end_date = datetime(2020, 12, 31)
235
+
236
+ assert base_date == holiday.dates(start_date, end_date)
237
+
238
+
239
+ def test_get_calendar():
240
+ class TestCalendar(AbstractHolidayCalendar):
241
+ rules = []
242
+
243
+ calendar = get_calendar("TestCalendar")
244
+ assert TestCalendar == type(calendar)
245
+
246
+
247
+ def test_factory():
248
+ class_1 = HolidayCalendarFactory(
249
+ "MemorialDay", AbstractHolidayCalendar, USMemorialDay
250
+ )
251
+ class_2 = HolidayCalendarFactory(
252
+ "Thanksgiving", AbstractHolidayCalendar, USThanksgivingDay
253
+ )
254
+ class_3 = HolidayCalendarFactory("Combined", class_1, class_2)
255
+
256
+ assert len(class_1.rules) == 1
257
+ assert len(class_2.rules) == 1
258
+ assert len(class_3.rules) == 2
259
+
260
+
261
+ def test_both_offset_observance_raises():
262
+ # see gh-10217
263
+ msg = "Cannot use both offset and observance"
264
+ with pytest.raises(NotImplementedError, match=msg):
265
+ Holiday(
266
+ "Cyber Monday",
267
+ month=11,
268
+ day=1,
269
+ offset=[DateOffset(weekday=SA(4))],
270
+ observance=next_monday,
271
+ )
272
+
273
+
274
+ def test_half_open_interval_with_observance():
275
+ # Prompted by GH 49075
276
+ # Check for holidays that have a half-open date interval where
277
+ # they have either a start_date or end_date defined along
278
+ # with a defined observance pattern to make sure that the return type
279
+ # for Holiday.dates() remains consistent before & after the year that
280
+ # marks the 'edge' of the half-open date interval.
281
+
282
+ holiday_1 = Holiday(
283
+ "Arbitrary Holiday - start 2022-03-14",
284
+ start_date=datetime(2022, 3, 14),
285
+ month=3,
286
+ day=14,
287
+ observance=next_monday,
288
+ )
289
+ holiday_2 = Holiday(
290
+ "Arbitrary Holiday 2 - end 2022-03-20",
291
+ end_date=datetime(2022, 3, 20),
292
+ month=3,
293
+ day=20,
294
+ observance=next_monday,
295
+ )
296
+
297
+ class TestHolidayCalendar(AbstractHolidayCalendar):
298
+ rules = [
299
+ USMartinLutherKingJr,
300
+ holiday_1,
301
+ holiday_2,
302
+ USLaborDay,
303
+ ]
304
+
305
+ start = Timestamp("2022-08-01")
306
+ end = Timestamp("2022-08-31")
307
+ year_offset = DateOffset(years=5)
308
+ expected_results = DatetimeIndex([], dtype="datetime64[ns]", freq=None)
309
+ test_cal = TestHolidayCalendar()
310
+
311
+ date_interval_low = test_cal.holidays(start - year_offset, end - year_offset)
312
+ date_window_edge = test_cal.holidays(start, end)
313
+ date_interval_high = test_cal.holidays(start + year_offset, end + year_offset)
314
+
315
+ tm.assert_index_equal(date_interval_low, expected_results)
316
+ tm.assert_index_equal(date_window_edge, expected_results)
317
+ tm.assert_index_equal(date_interval_high, expected_results)
318
+
319
+
320
+ def test_holidays_with_timezone_specified_but_no_occurences():
321
+ # GH 54580
322
+ # _apply_rule() in holiday.py was silently dropping timezones if you passed it
323
+ # an empty list of holiday dates that had timezone information
324
+ start_date = Timestamp("2018-01-01", tz="America/Chicago")
325
+ end_date = Timestamp("2018-01-11", tz="America/Chicago")
326
+ test_case = USFederalHolidayCalendar().holidays(
327
+ start_date, end_date, return_name=True
328
+ )
329
+ expected_results = Series("New Year's Day", index=[start_date])
330
+ expected_results.index = expected_results.index.as_unit("ns")
331
+
332
+ tm.assert_equal(test_case, expected_results)
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/holiday/test_observance.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ import pytest
4
+
5
+ from pandas.tseries.holiday import (
6
+ after_nearest_workday,
7
+ before_nearest_workday,
8
+ nearest_workday,
9
+ next_monday,
10
+ next_monday_or_tuesday,
11
+ next_workday,
12
+ previous_friday,
13
+ previous_workday,
14
+ sunday_to_monday,
15
+ weekend_to_monday,
16
+ )
17
+
18
+ _WEDNESDAY = datetime(2014, 4, 9)
19
+ _THURSDAY = datetime(2014, 4, 10)
20
+ _FRIDAY = datetime(2014, 4, 11)
21
+ _SATURDAY = datetime(2014, 4, 12)
22
+ _SUNDAY = datetime(2014, 4, 13)
23
+ _MONDAY = datetime(2014, 4, 14)
24
+ _TUESDAY = datetime(2014, 4, 15)
25
+ _NEXT_WEDNESDAY = datetime(2014, 4, 16)
26
+
27
+
28
+ @pytest.mark.parametrize("day", [_SATURDAY, _SUNDAY])
29
+ def test_next_monday(day):
30
+ assert next_monday(day) == _MONDAY
31
+
32
+
33
+ @pytest.mark.parametrize(
34
+ "day,expected", [(_SATURDAY, _MONDAY), (_SUNDAY, _TUESDAY), (_MONDAY, _TUESDAY)]
35
+ )
36
+ def test_next_monday_or_tuesday(day, expected):
37
+ assert next_monday_or_tuesday(day) == expected
38
+
39
+
40
+ @pytest.mark.parametrize("day", [_SATURDAY, _SUNDAY])
41
+ def test_previous_friday(day):
42
+ assert previous_friday(day) == _FRIDAY
43
+
44
+
45
+ def test_sunday_to_monday():
46
+ assert sunday_to_monday(_SUNDAY) == _MONDAY
47
+
48
+
49
+ @pytest.mark.parametrize(
50
+ "day,expected", [(_SATURDAY, _FRIDAY), (_SUNDAY, _MONDAY), (_MONDAY, _MONDAY)]
51
+ )
52
+ def test_nearest_workday(day, expected):
53
+ assert nearest_workday(day) == expected
54
+
55
+
56
+ @pytest.mark.parametrize(
57
+ "day,expected", [(_SATURDAY, _MONDAY), (_SUNDAY, _MONDAY), (_MONDAY, _MONDAY)]
58
+ )
59
+ def test_weekend_to_monday(day, expected):
60
+ assert weekend_to_monday(day) == expected
61
+
62
+
63
+ @pytest.mark.parametrize(
64
+ "day,expected",
65
+ [
66
+ (_WEDNESDAY, _THURSDAY),
67
+ (_THURSDAY, _FRIDAY),
68
+ (_SATURDAY, _MONDAY),
69
+ (_SUNDAY, _MONDAY),
70
+ (_MONDAY, _TUESDAY),
71
+ (_TUESDAY, _NEXT_WEDNESDAY), # WED is same week as TUE
72
+ ],
73
+ )
74
+ def test_next_workday(day, expected):
75
+ assert next_workday(day) == expected
76
+
77
+
78
+ @pytest.mark.parametrize(
79
+ "day,expected", [(_SATURDAY, _FRIDAY), (_SUNDAY, _FRIDAY), (_TUESDAY, _MONDAY)]
80
+ )
81
+ def test_previous_workday(day, expected):
82
+ assert previous_workday(day) == expected
83
+
84
+
85
+ @pytest.mark.parametrize(
86
+ "day,expected",
87
+ [
88
+ (_THURSDAY, _WEDNESDAY),
89
+ (_FRIDAY, _THURSDAY),
90
+ (_SATURDAY, _THURSDAY),
91
+ (_SUNDAY, _FRIDAY),
92
+ (_MONDAY, _FRIDAY), # last week Friday
93
+ (_TUESDAY, _MONDAY),
94
+ (_NEXT_WEDNESDAY, _TUESDAY), # WED is same week as TUE
95
+ ],
96
+ )
97
+ def test_before_nearest_workday(day, expected):
98
+ assert before_nearest_workday(day) == expected
99
+
100
+
101
+ @pytest.mark.parametrize(
102
+ "day,expected", [(_SATURDAY, _MONDAY), (_SUNDAY, _TUESDAY), (_FRIDAY, _MONDAY)]
103
+ )
104
+ def test_after_nearest_workday(day, expected):
105
+ assert after_nearest_workday(day) == expected
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (201 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/common.cpython-310.pyc ADDED
Binary file (1.19 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_hour.cpython-310.pyc ADDED
Binary file (27.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_month.cpython-310.pyc ADDED
Binary file (4.51 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_business_year.cpython-310.pyc ADDED
Binary file (4.63 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_common.cpython-310.pyc ADDED
Binary file (4.96 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tseries/offsets/__pycache__/test_custom_business_day.cpython-310.pyc ADDED
Binary file (4.07 kB). View file