applied-ai-018 commited on
Commit
4753e7c
·
verified ·
1 Parent(s): c5449d3

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__init__.py +0 -0
  2. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/__init__.py +6 -0
  3. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/__pycache__/__init__.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/__pycache__/array.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/__pycache__/test_array_with_attr.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/array.py +89 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/test_array_with_attr.py +33 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__init__.py +131 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/accumulate.py +39 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/base.py +2 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/constructors.py +142 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/dtype.py +123 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/groupby.py +174 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/index.py +19 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/interface.py +137 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/io.py +39 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/methods.py +720 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/missing.py +188 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/ops.py +299 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/printing.py +41 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/reduce.py +153 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/reshaping.py +379 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/setitem.py +451 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/conftest.py +230 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_arrow.py +0 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_categorical.py +200 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_common.py +105 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_datetime.py +144 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_extension.py +26 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_interval.py +98 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_masked.py +417 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_numpy.py +426 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_period.py +119 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_sparse.py +498 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_string.py +242 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__init__.py +0 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_almost_equal.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_attr_equal.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_categorical_equal.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_extension_array_equal.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_index_equal.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_interval_array_equal.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_numpy_array_equal.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_deprecate.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_deprecate_kwarg.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_deprecate_nonkeyword_arguments.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_doc.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_numba.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_rewrite_warning.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_shares_memory.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from pandas.tests.extension.array_with_attr.array import (
2
+ FloatAttrArray,
3
+ FloatAttrDtype,
4
+ )
5
+
6
+ __all__ = ["FloatAttrArray", "FloatAttrDtype"]
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (348 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/__pycache__/array.cpython-310.pyc ADDED
Binary file (3.48 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/__pycache__/test_array_with_attr.cpython-310.pyc ADDED
Binary file (1.22 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/array.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Test extension array that has custom attribute information (not stored on the dtype).
3
+
4
+ """
5
+ from __future__ import annotations
6
+
7
+ import numbers
8
+ from typing import TYPE_CHECKING
9
+
10
+ import numpy as np
11
+
12
+ from pandas.core.dtypes.base import ExtensionDtype
13
+
14
+ import pandas as pd
15
+ from pandas.core.arrays import ExtensionArray
16
+
17
+ if TYPE_CHECKING:
18
+ from pandas._typing import type_t
19
+
20
+
21
+ class FloatAttrDtype(ExtensionDtype):
22
+ type = float
23
+ name = "float_attr"
24
+ na_value = np.nan
25
+
26
+ @classmethod
27
+ def construct_array_type(cls) -> type_t[FloatAttrArray]:
28
+ """
29
+ Return the array type associated with this dtype.
30
+
31
+ Returns
32
+ -------
33
+ type
34
+ """
35
+ return FloatAttrArray
36
+
37
+
38
+ class FloatAttrArray(ExtensionArray):
39
+ dtype = FloatAttrDtype()
40
+ __array_priority__ = 1000
41
+
42
+ def __init__(self, values, attr=None) -> None:
43
+ if not isinstance(values, np.ndarray):
44
+ raise TypeError("Need to pass a numpy array of float64 dtype as values")
45
+ if not values.dtype == "float64":
46
+ raise TypeError("Need to pass a numpy array of float64 dtype as values")
47
+ self.data = values
48
+ self.attr = attr
49
+
50
+ @classmethod
51
+ def _from_sequence(cls, scalars, *, dtype=None, copy=False):
52
+ if not copy:
53
+ data = np.asarray(scalars, dtype="float64")
54
+ else:
55
+ data = np.array(scalars, dtype="float64", copy=copy)
56
+ return cls(data)
57
+
58
+ def __getitem__(self, item):
59
+ if isinstance(item, numbers.Integral):
60
+ return self.data[item]
61
+ else:
62
+ # slice, list-like, mask
63
+ item = pd.api.indexers.check_array_indexer(self, item)
64
+ return type(self)(self.data[item], self.attr)
65
+
66
+ def __len__(self) -> int:
67
+ return len(self.data)
68
+
69
+ def isna(self):
70
+ return np.isnan(self.data)
71
+
72
+ def take(self, indexer, allow_fill=False, fill_value=None):
73
+ from pandas.api.extensions import take
74
+
75
+ data = self.data
76
+ if allow_fill and fill_value is None:
77
+ fill_value = self.dtype.na_value
78
+
79
+ result = take(data, indexer, fill_value=fill_value, allow_fill=allow_fill)
80
+ return type(self)(result, self.attr)
81
+
82
+ def copy(self):
83
+ return type(self)(self.data.copy(), self.attr)
84
+
85
+ @classmethod
86
+ def _concat_same_type(cls, to_concat):
87
+ data = np.concatenate([x.data for x in to_concat])
88
+ attr = to_concat[0].attr if len(to_concat) else None
89
+ return cls(data, attr)
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/array_with_attr/test_array_with_attr.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ import pandas as pd
4
+ import pandas._testing as tm
5
+ from pandas.tests.extension.array_with_attr import FloatAttrArray
6
+
7
+
8
+ def test_concat_with_all_na():
9
+ # https://github.com/pandas-dev/pandas/pull/47762
10
+ # ensure that attribute of the column array is preserved (when it gets
11
+ # preserved in reindexing the array) during merge/concat
12
+ arr = FloatAttrArray(np.array([np.nan, np.nan], dtype="float64"), attr="test")
13
+
14
+ df1 = pd.DataFrame({"col": arr, "key": [0, 1]})
15
+ df2 = pd.DataFrame({"key": [0, 1], "col2": [1, 2]})
16
+ result = pd.merge(df1, df2, on="key")
17
+ expected = pd.DataFrame({"col": arr, "key": [0, 1], "col2": [1, 2]})
18
+ tm.assert_frame_equal(result, expected)
19
+ assert result["col"].array.attr == "test"
20
+
21
+ df1 = pd.DataFrame({"col": arr, "key": [0, 1]})
22
+ df2 = pd.DataFrame({"key": [0, 2], "col2": [1, 2]})
23
+ result = pd.merge(df1, df2, on="key")
24
+ expected = pd.DataFrame({"col": arr.take([0]), "key": [0], "col2": [1]})
25
+ tm.assert_frame_equal(result, expected)
26
+ assert result["col"].array.attr == "test"
27
+
28
+ result = pd.concat([df1.set_index("key"), df2.set_index("key")], axis=1)
29
+ expected = pd.DataFrame(
30
+ {"col": arr.take([0, 1, -1]), "col2": [1, np.nan, 2], "key": [0, 1, 2]}
31
+ ).set_index("key")
32
+ tm.assert_frame_equal(result, expected)
33
+ assert result["col"].array.attr == "test"
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/__init__.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Base test suite for extension arrays.
3
+
4
+ These tests are intended for third-party libraries to subclass to validate
5
+ that their extension arrays and dtypes satisfy the interface. Moving or
6
+ renaming the tests should not be done lightly.
7
+
8
+ Libraries are expected to implement a few pytest fixtures to provide data
9
+ for the tests. The fixtures may be located in either
10
+
11
+ * The same module as your test class.
12
+ * A ``conftest.py`` in the same directory as your test class.
13
+
14
+ The full list of fixtures may be found in the ``conftest.py`` next to this
15
+ file.
16
+
17
+ .. code-block:: python
18
+
19
+ import pytest
20
+ from pandas.tests.extension.base import BaseDtypeTests
21
+
22
+
23
+ @pytest.fixture
24
+ def dtype():
25
+ return MyDtype()
26
+
27
+
28
+ class TestMyDtype(BaseDtypeTests):
29
+ pass
30
+
31
+
32
+ Your class ``TestDtype`` will inherit all the tests defined on
33
+ ``BaseDtypeTests``. pytest's fixture discover will supply your ``dtype``
34
+ wherever the test requires it. You're free to implement additional tests.
35
+
36
+ """
37
+ from pandas.tests.extension.base.accumulate import BaseAccumulateTests
38
+ from pandas.tests.extension.base.casting import BaseCastingTests
39
+ from pandas.tests.extension.base.constructors import BaseConstructorsTests
40
+ from pandas.tests.extension.base.dim2 import ( # noqa: F401
41
+ Dim2CompatTests,
42
+ NDArrayBacked2DTests,
43
+ )
44
+ from pandas.tests.extension.base.dtype import BaseDtypeTests
45
+ from pandas.tests.extension.base.getitem import BaseGetitemTests
46
+ from pandas.tests.extension.base.groupby import BaseGroupbyTests
47
+ from pandas.tests.extension.base.index import BaseIndexTests
48
+ from pandas.tests.extension.base.interface import BaseInterfaceTests
49
+ from pandas.tests.extension.base.io import BaseParsingTests
50
+ from pandas.tests.extension.base.methods import BaseMethodsTests
51
+ from pandas.tests.extension.base.missing import BaseMissingTests
52
+ from pandas.tests.extension.base.ops import ( # noqa: F401
53
+ BaseArithmeticOpsTests,
54
+ BaseComparisonOpsTests,
55
+ BaseOpsUtil,
56
+ BaseUnaryOpsTests,
57
+ )
58
+ from pandas.tests.extension.base.printing import BasePrintingTests
59
+ from pandas.tests.extension.base.reduce import BaseReduceTests
60
+ from pandas.tests.extension.base.reshaping import BaseReshapingTests
61
+ from pandas.tests.extension.base.setitem import BaseSetitemTests
62
+
63
+
64
+ # One test class that you can inherit as an alternative to inheriting all the
65
+ # test classes above.
66
+ # Note 1) this excludes Dim2CompatTests and NDArrayBacked2DTests.
67
+ # Note 2) this uses BaseReduceTests and and _not_ BaseBooleanReduceTests,
68
+ # BaseNoReduceTests, or BaseNumericReduceTests
69
+ class ExtensionTests(
70
+ BaseAccumulateTests,
71
+ BaseCastingTests,
72
+ BaseConstructorsTests,
73
+ BaseDtypeTests,
74
+ BaseGetitemTests,
75
+ BaseGroupbyTests,
76
+ BaseIndexTests,
77
+ BaseInterfaceTests,
78
+ BaseParsingTests,
79
+ BaseMethodsTests,
80
+ BaseMissingTests,
81
+ BaseArithmeticOpsTests,
82
+ BaseComparisonOpsTests,
83
+ BaseUnaryOpsTests,
84
+ BasePrintingTests,
85
+ BaseReduceTests,
86
+ BaseReshapingTests,
87
+ BaseSetitemTests,
88
+ Dim2CompatTests,
89
+ ):
90
+ pass
91
+
92
+
93
+ def __getattr__(name: str):
94
+ import warnings
95
+
96
+ if name == "BaseNoReduceTests":
97
+ warnings.warn(
98
+ "BaseNoReduceTests is deprecated and will be removed in a "
99
+ "future version. Use BaseReduceTests and override "
100
+ "`_supports_reduction` instead.",
101
+ FutureWarning,
102
+ )
103
+ from pandas.tests.extension.base.reduce import BaseNoReduceTests
104
+
105
+ return BaseNoReduceTests
106
+
107
+ elif name == "BaseNumericReduceTests":
108
+ warnings.warn(
109
+ "BaseNumericReduceTests is deprecated and will be removed in a "
110
+ "future version. Use BaseReduceTests and override "
111
+ "`_supports_reduction` instead.",
112
+ FutureWarning,
113
+ )
114
+ from pandas.tests.extension.base.reduce import BaseNumericReduceTests
115
+
116
+ return BaseNumericReduceTests
117
+
118
+ elif name == "BaseBooleanReduceTests":
119
+ warnings.warn(
120
+ "BaseBooleanReduceTests is deprecated and will be removed in a "
121
+ "future version. Use BaseReduceTests and override "
122
+ "`_supports_reduction` instead.",
123
+ FutureWarning,
124
+ )
125
+ from pandas.tests.extension.base.reduce import BaseBooleanReduceTests
126
+
127
+ return BaseBooleanReduceTests
128
+
129
+ raise AttributeError(
130
+ f"module 'pandas.tests.extension.base' has no attribute '{name}'"
131
+ )
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/accumulate.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import pandas as pd
4
+ import pandas._testing as tm
5
+
6
+
7
+ class BaseAccumulateTests:
8
+ """
9
+ Accumulation specific tests. Generally these only
10
+ make sense for numeric/boolean operations.
11
+ """
12
+
13
+ def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool:
14
+ # Do we expect this accumulation to be supported for this dtype?
15
+ # We default to assuming "no"; subclass authors should override here.
16
+ return False
17
+
18
+ def check_accumulate(self, ser: pd.Series, op_name: str, skipna: bool):
19
+ try:
20
+ alt = ser.astype("float64")
21
+ except TypeError:
22
+ # e.g. Period can't be cast to float64
23
+ alt = ser.astype(object)
24
+
25
+ result = getattr(ser, op_name)(skipna=skipna)
26
+ expected = getattr(alt, op_name)(skipna=skipna)
27
+ tm.assert_series_equal(result, expected, check_dtype=False)
28
+
29
+ @pytest.mark.parametrize("skipna", [True, False])
30
+ def test_accumulate_series(self, data, all_numeric_accumulations, skipna):
31
+ op_name = all_numeric_accumulations
32
+ ser = pd.Series(data)
33
+
34
+ if self._supports_accumulation(ser, op_name):
35
+ self.check_accumulate(ser, op_name, skipna)
36
+ else:
37
+ with pytest.raises((NotImplementedError, TypeError)):
38
+ # TODO: require TypeError for things that will _never_ work?
39
+ getattr(ser, op_name)(skipna=skipna)
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/base.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ class BaseExtensionTests:
2
+ pass
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/constructors.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.api.extensions import ExtensionArray
7
+ from pandas.core.internals.blocks import EABackedBlock
8
+
9
+
10
+ class BaseConstructorsTests:
11
+ def test_from_sequence_from_cls(self, data):
12
+ result = type(data)._from_sequence(data, dtype=data.dtype)
13
+ tm.assert_extension_array_equal(result, data)
14
+
15
+ data = data[:0]
16
+ result = type(data)._from_sequence(data, dtype=data.dtype)
17
+ tm.assert_extension_array_equal(result, data)
18
+
19
+ def test_array_from_scalars(self, data):
20
+ scalars = [data[0], data[1], data[2]]
21
+ result = data._from_sequence(scalars, dtype=data.dtype)
22
+ assert isinstance(result, type(data))
23
+
24
+ def test_series_constructor(self, data):
25
+ result = pd.Series(data, copy=False)
26
+ assert result.dtype == data.dtype
27
+ assert len(result) == len(data)
28
+ if hasattr(result._mgr, "blocks"):
29
+ assert isinstance(result._mgr.blocks[0], EABackedBlock)
30
+ assert result._mgr.array is data
31
+
32
+ # Series[EA] is unboxed / boxed correctly
33
+ result2 = pd.Series(result)
34
+ assert result2.dtype == data.dtype
35
+ if hasattr(result._mgr, "blocks"):
36
+ assert isinstance(result2._mgr.blocks[0], EABackedBlock)
37
+
38
+ def test_series_constructor_no_data_with_index(self, dtype, na_value):
39
+ result = pd.Series(index=[1, 2, 3], dtype=dtype)
40
+ expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype)
41
+ tm.assert_series_equal(result, expected)
42
+
43
+ # GH 33559 - empty index
44
+ result = pd.Series(index=[], dtype=dtype)
45
+ expected = pd.Series([], index=pd.Index([], dtype="object"), dtype=dtype)
46
+ tm.assert_series_equal(result, expected)
47
+
48
+ def test_series_constructor_scalar_na_with_index(self, dtype, na_value):
49
+ result = pd.Series(na_value, index=[1, 2, 3], dtype=dtype)
50
+ expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype)
51
+ tm.assert_series_equal(result, expected)
52
+
53
+ def test_series_constructor_scalar_with_index(self, data, dtype):
54
+ scalar = data[0]
55
+ result = pd.Series(scalar, index=[1, 2, 3], dtype=dtype)
56
+ expected = pd.Series([scalar] * 3, index=[1, 2, 3], dtype=dtype)
57
+ tm.assert_series_equal(result, expected)
58
+
59
+ result = pd.Series(scalar, index=["foo"], dtype=dtype)
60
+ expected = pd.Series([scalar], index=["foo"], dtype=dtype)
61
+ tm.assert_series_equal(result, expected)
62
+
63
+ @pytest.mark.parametrize("from_series", [True, False])
64
+ def test_dataframe_constructor_from_dict(self, data, from_series):
65
+ if from_series:
66
+ data = pd.Series(data)
67
+ result = pd.DataFrame({"A": data})
68
+ assert result.dtypes["A"] == data.dtype
69
+ assert result.shape == (len(data), 1)
70
+ if hasattr(result._mgr, "blocks"):
71
+ assert isinstance(result._mgr.blocks[0], EABackedBlock)
72
+ assert isinstance(result._mgr.arrays[0], ExtensionArray)
73
+
74
+ def test_dataframe_from_series(self, data):
75
+ result = pd.DataFrame(pd.Series(data))
76
+ assert result.dtypes[0] == data.dtype
77
+ assert result.shape == (len(data), 1)
78
+ if hasattr(result._mgr, "blocks"):
79
+ assert isinstance(result._mgr.blocks[0], EABackedBlock)
80
+ assert isinstance(result._mgr.arrays[0], ExtensionArray)
81
+
82
+ def test_series_given_mismatched_index_raises(self, data):
83
+ msg = r"Length of values \(3\) does not match length of index \(5\)"
84
+ with pytest.raises(ValueError, match=msg):
85
+ pd.Series(data[:3], index=[0, 1, 2, 3, 4])
86
+
87
+ def test_from_dtype(self, data):
88
+ # construct from our dtype & string dtype
89
+ dtype = data.dtype
90
+
91
+ expected = pd.Series(data)
92
+ result = pd.Series(list(data), dtype=dtype)
93
+ tm.assert_series_equal(result, expected)
94
+
95
+ result = pd.Series(list(data), dtype=str(dtype))
96
+ tm.assert_series_equal(result, expected)
97
+
98
+ # gh-30280
99
+
100
+ expected = pd.DataFrame(data).astype(dtype)
101
+ result = pd.DataFrame(list(data), dtype=dtype)
102
+ tm.assert_frame_equal(result, expected)
103
+
104
+ result = pd.DataFrame(list(data), dtype=str(dtype))
105
+ tm.assert_frame_equal(result, expected)
106
+
107
+ def test_pandas_array(self, data):
108
+ # pd.array(extension_array) should be idempotent...
109
+ result = pd.array(data)
110
+ tm.assert_extension_array_equal(result, data)
111
+
112
+ def test_pandas_array_dtype(self, data):
113
+ # ... but specifying dtype will override idempotency
114
+ result = pd.array(data, dtype=np.dtype(object))
115
+ expected = pd.arrays.NumpyExtensionArray(np.asarray(data, dtype=object))
116
+ tm.assert_equal(result, expected)
117
+
118
+ def test_construct_empty_dataframe(self, dtype):
119
+ # GH 33623
120
+ result = pd.DataFrame(columns=["a"], dtype=dtype)
121
+ expected = pd.DataFrame(
122
+ {"a": pd.array([], dtype=dtype)}, index=pd.RangeIndex(0)
123
+ )
124
+ tm.assert_frame_equal(result, expected)
125
+
126
+ def test_empty(self, dtype):
127
+ cls = dtype.construct_array_type()
128
+ result = cls._empty((4,), dtype=dtype)
129
+ assert isinstance(result, cls)
130
+ assert result.dtype == dtype
131
+ assert result.shape == (4,)
132
+
133
+ # GH#19600 method on ExtensionDtype
134
+ result2 = dtype.empty((4,))
135
+ assert isinstance(result2, cls)
136
+ assert result2.dtype == dtype
137
+ assert result2.shape == (4,)
138
+
139
+ result2 = dtype.empty(4)
140
+ assert isinstance(result2, cls)
141
+ assert result2.dtype == dtype
142
+ assert result2.shape == (4,)
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/dtype.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.api.types import (
7
+ infer_dtype,
8
+ is_object_dtype,
9
+ is_string_dtype,
10
+ )
11
+
12
+
13
+ class BaseDtypeTests:
14
+ """Base class for ExtensionDtype classes"""
15
+
16
+ def test_name(self, dtype):
17
+ assert isinstance(dtype.name, str)
18
+
19
+ def test_kind(self, dtype):
20
+ valid = set("biufcmMOSUV")
21
+ assert dtype.kind in valid
22
+
23
+ def test_is_dtype_from_name(self, dtype):
24
+ result = type(dtype).is_dtype(dtype.name)
25
+ assert result is True
26
+
27
+ def test_is_dtype_unboxes_dtype(self, data, dtype):
28
+ assert dtype.is_dtype(data) is True
29
+
30
+ def test_is_dtype_from_self(self, dtype):
31
+ result = type(dtype).is_dtype(dtype)
32
+ assert result is True
33
+
34
+ def test_is_dtype_other_input(self, dtype):
35
+ assert dtype.is_dtype([1, 2, 3]) is False
36
+
37
+ def test_is_not_string_type(self, dtype):
38
+ assert not is_string_dtype(dtype)
39
+
40
+ def test_is_not_object_type(self, dtype):
41
+ assert not is_object_dtype(dtype)
42
+
43
+ def test_eq_with_str(self, dtype):
44
+ assert dtype == dtype.name
45
+ assert dtype != dtype.name + "-suffix"
46
+
47
+ def test_eq_with_numpy_object(self, dtype):
48
+ assert dtype != np.dtype("object")
49
+
50
+ def test_eq_with_self(self, dtype):
51
+ assert dtype == dtype
52
+ assert dtype != object()
53
+
54
+ def test_array_type(self, data, dtype):
55
+ assert dtype.construct_array_type() is type(data)
56
+
57
+ def test_check_dtype(self, data):
58
+ dtype = data.dtype
59
+
60
+ # check equivalency for using .dtypes
61
+ df = pd.DataFrame(
62
+ {
63
+ "A": pd.Series(data, dtype=dtype),
64
+ "B": data,
65
+ "C": pd.Series(["foo"] * len(data), dtype=object),
66
+ "D": 1,
67
+ }
68
+ )
69
+ result = df.dtypes == str(dtype)
70
+ assert np.dtype("int64") != "Int64"
71
+
72
+ expected = pd.Series([True, True, False, False], index=list("ABCD"))
73
+
74
+ tm.assert_series_equal(result, expected)
75
+
76
+ expected = pd.Series([True, True, False, False], index=list("ABCD"))
77
+ result = df.dtypes.apply(str) == str(dtype)
78
+ tm.assert_series_equal(result, expected)
79
+
80
+ def test_hashable(self, dtype):
81
+ hash(dtype) # no error
82
+
83
+ def test_str(self, dtype):
84
+ assert str(dtype) == dtype.name
85
+
86
+ def test_eq(self, dtype):
87
+ assert dtype == dtype.name
88
+ assert dtype != "anonther_type"
89
+
90
+ def test_construct_from_string_own_name(self, dtype):
91
+ result = dtype.construct_from_string(dtype.name)
92
+ assert type(result) is type(dtype)
93
+
94
+ # check OK as classmethod
95
+ result = type(dtype).construct_from_string(dtype.name)
96
+ assert type(result) is type(dtype)
97
+
98
+ def test_construct_from_string_another_type_raises(self, dtype):
99
+ msg = f"Cannot construct a '{type(dtype).__name__}' from 'another_type'"
100
+ with pytest.raises(TypeError, match=msg):
101
+ type(dtype).construct_from_string("another_type")
102
+
103
+ def test_construct_from_string_wrong_type_raises(self, dtype):
104
+ with pytest.raises(
105
+ TypeError,
106
+ match="'construct_from_string' expects a string, got <class 'int'>",
107
+ ):
108
+ type(dtype).construct_from_string(0)
109
+
110
+ def test_get_common_dtype(self, dtype):
111
+ # in practice we will not typically call this with a 1-length list
112
+ # (we shortcut to just use that dtype as the common dtype), but
113
+ # still testing as good practice to have this working (and it is the
114
+ # only case we can test in general)
115
+ assert dtype._get_common_dtype([dtype]) == dtype
116
+
117
+ @pytest.mark.parametrize("skipna", [True, False])
118
+ def test_infer_dtype(self, data, data_missing, skipna):
119
+ # only testing that this works without raising an error
120
+ res = infer_dtype(data, skipna=skipna)
121
+ assert isinstance(res, str)
122
+ res = infer_dtype(data_missing, skipna=skipna)
123
+ assert isinstance(res, str)
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/groupby.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import pytest
4
+
5
+ from pandas.core.dtypes.common import (
6
+ is_bool_dtype,
7
+ is_numeric_dtype,
8
+ is_object_dtype,
9
+ is_string_dtype,
10
+ )
11
+
12
+ import pandas as pd
13
+ import pandas._testing as tm
14
+
15
+
16
+ @pytest.mark.filterwarnings(
17
+ "ignore:The default of observed=False is deprecated:FutureWarning"
18
+ )
19
+ class BaseGroupbyTests:
20
+ """Groupby-specific tests."""
21
+
22
+ def test_grouping_grouper(self, data_for_grouping):
23
+ df = pd.DataFrame(
24
+ {
25
+ "A": pd.Series(
26
+ ["B", "B", None, None, "A", "A", "B", "C"], dtype=object
27
+ ),
28
+ "B": data_for_grouping,
29
+ }
30
+ )
31
+ gr1 = df.groupby("A")._grouper.groupings[0]
32
+ gr2 = df.groupby("B")._grouper.groupings[0]
33
+
34
+ tm.assert_numpy_array_equal(gr1.grouping_vector, df.A.values)
35
+ tm.assert_extension_array_equal(gr2.grouping_vector, data_for_grouping)
36
+
37
+ @pytest.mark.parametrize("as_index", [True, False])
38
+ def test_groupby_extension_agg(self, as_index, data_for_grouping):
39
+ df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
40
+
41
+ is_bool = data_for_grouping.dtype._is_boolean
42
+ if is_bool:
43
+ # only 2 unique values, and the final entry has c==b
44
+ # (see data_for_grouping docstring)
45
+ df = df.iloc[:-1]
46
+
47
+ result = df.groupby("B", as_index=as_index).A.mean()
48
+ _, uniques = pd.factorize(data_for_grouping, sort=True)
49
+
50
+ exp_vals = [3.0, 1.0, 4.0]
51
+ if is_bool:
52
+ exp_vals = exp_vals[:-1]
53
+ if as_index:
54
+ index = pd.Index(uniques, name="B")
55
+ expected = pd.Series(exp_vals, index=index, name="A")
56
+ tm.assert_series_equal(result, expected)
57
+ else:
58
+ expected = pd.DataFrame({"B": uniques, "A": exp_vals})
59
+ tm.assert_frame_equal(result, expected)
60
+
61
+ def test_groupby_agg_extension(self, data_for_grouping):
62
+ # GH#38980 groupby agg on extension type fails for non-numeric types
63
+ df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
64
+
65
+ expected = df.iloc[[0, 2, 4, 7]]
66
+ expected = expected.set_index("A")
67
+
68
+ result = df.groupby("A").agg({"B": "first"})
69
+ tm.assert_frame_equal(result, expected)
70
+
71
+ result = df.groupby("A").agg("first")
72
+ tm.assert_frame_equal(result, expected)
73
+
74
+ result = df.groupby("A").first()
75
+ tm.assert_frame_equal(result, expected)
76
+
77
+ def test_groupby_extension_no_sort(self, data_for_grouping):
78
+ df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
79
+
80
+ is_bool = data_for_grouping.dtype._is_boolean
81
+ if is_bool:
82
+ # only 2 unique values, and the final entry has c==b
83
+ # (see data_for_grouping docstring)
84
+ df = df.iloc[:-1]
85
+
86
+ result = df.groupby("B", sort=False).A.mean()
87
+ _, index = pd.factorize(data_for_grouping, sort=False)
88
+
89
+ index = pd.Index(index, name="B")
90
+ exp_vals = [1.0, 3.0, 4.0]
91
+ if is_bool:
92
+ exp_vals = exp_vals[:-1]
93
+ expected = pd.Series(exp_vals, index=index, name="A")
94
+ tm.assert_series_equal(result, expected)
95
+
96
+ def test_groupby_extension_transform(self, data_for_grouping):
97
+ is_bool = data_for_grouping.dtype._is_boolean
98
+
99
+ valid = data_for_grouping[~data_for_grouping.isna()]
100
+ df = pd.DataFrame({"A": [1, 1, 3, 3, 1, 4], "B": valid})
101
+ is_bool = data_for_grouping.dtype._is_boolean
102
+ if is_bool:
103
+ # only 2 unique values, and the final entry has c==b
104
+ # (see data_for_grouping docstring)
105
+ df = df.iloc[:-1]
106
+
107
+ result = df.groupby("B").A.transform(len)
108
+ expected = pd.Series([3, 3, 2, 2, 3, 1], name="A")
109
+ if is_bool:
110
+ expected = expected[:-1]
111
+
112
+ tm.assert_series_equal(result, expected)
113
+
114
+ def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
115
+ df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
116
+ msg = "DataFrameGroupBy.apply operated on the grouping columns"
117
+ with tm.assert_produces_warning(DeprecationWarning, match=msg):
118
+ df.groupby("B", group_keys=False, observed=False).apply(groupby_apply_op)
119
+ df.groupby("B", group_keys=False, observed=False).A.apply(groupby_apply_op)
120
+ msg = "DataFrameGroupBy.apply operated on the grouping columns"
121
+ with tm.assert_produces_warning(DeprecationWarning, match=msg):
122
+ df.groupby("A", group_keys=False, observed=False).apply(groupby_apply_op)
123
+ df.groupby("A", group_keys=False, observed=False).B.apply(groupby_apply_op)
124
+
125
+ def test_groupby_apply_identity(self, data_for_grouping):
126
+ df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
127
+ result = df.groupby("A").B.apply(lambda x: x.array)
128
+ expected = pd.Series(
129
+ [
130
+ df.B.iloc[[0, 1, 6]].array,
131
+ df.B.iloc[[2, 3]].array,
132
+ df.B.iloc[[4, 5]].array,
133
+ df.B.iloc[[7]].array,
134
+ ],
135
+ index=pd.Index([1, 2, 3, 4], name="A"),
136
+ name="B",
137
+ )
138
+ tm.assert_series_equal(result, expected)
139
+
140
+ def test_in_numeric_groupby(self, data_for_grouping):
141
+ df = pd.DataFrame(
142
+ {
143
+ "A": [1, 1, 2, 2, 3, 3, 1, 4],
144
+ "B": data_for_grouping,
145
+ "C": [1, 1, 1, 1, 1, 1, 1, 1],
146
+ }
147
+ )
148
+
149
+ dtype = data_for_grouping.dtype
150
+ if (
151
+ is_numeric_dtype(dtype)
152
+ or is_bool_dtype(dtype)
153
+ or dtype.name == "decimal"
154
+ or is_string_dtype(dtype)
155
+ or is_object_dtype(dtype)
156
+ or dtype.kind == "m" # in particular duration[*][pyarrow]
157
+ ):
158
+ expected = pd.Index(["B", "C"])
159
+ result = df.groupby("A").sum().columns
160
+ else:
161
+ expected = pd.Index(["C"])
162
+
163
+ msg = "|".join(
164
+ [
165
+ # period/datetime
166
+ "does not support sum operations",
167
+ # all others
168
+ re.escape(f"agg function failed [how->sum,dtype->{dtype}"),
169
+ ]
170
+ )
171
+ with pytest.raises(TypeError, match=msg):
172
+ df.groupby("A").sum()
173
+ result = df.groupby("A").sum(numeric_only=True).columns
174
+ tm.assert_index_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/index.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for Indexes backed by arbitrary ExtensionArrays.
3
+ """
4
+ import pandas as pd
5
+
6
+
7
+ class BaseIndexTests:
8
+ """Tests for Index object backed by an ExtensionArray"""
9
+
10
+ def test_index_from_array(self, data):
11
+ idx = pd.Index(data)
12
+ assert data.dtype == idx.dtype
13
+
14
+ def test_index_from_listlike_with_dtype(self, data):
15
+ idx = pd.Index(data, dtype=data.dtype)
16
+ assert idx.dtype == data.dtype
17
+
18
+ idx = pd.Index(list(data), dtype=data.dtype)
19
+ assert idx.dtype == data.dtype
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/interface.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
5
+ from pandas.core.dtypes.common import is_extension_array_dtype
6
+ from pandas.core.dtypes.dtypes import ExtensionDtype
7
+
8
+ import pandas as pd
9
+ import pandas._testing as tm
10
+
11
+
12
+ class BaseInterfaceTests:
13
+ """Tests that the basic interface is satisfied."""
14
+
15
+ # ------------------------------------------------------------------------
16
+ # Interface
17
+ # ------------------------------------------------------------------------
18
+
19
+ def test_len(self, data):
20
+ assert len(data) == 100
21
+
22
+ def test_size(self, data):
23
+ assert data.size == 100
24
+
25
+ def test_ndim(self, data):
26
+ assert data.ndim == 1
27
+
28
+ def test_can_hold_na_valid(self, data):
29
+ # GH-20761
30
+ assert data._can_hold_na is True
31
+
32
+ def test_contains(self, data, data_missing):
33
+ # GH-37867
34
+ # Tests for membership checks. Membership checks for nan-likes is tricky and
35
+ # the settled on rule is: `nan_like in arr` is True if nan_like is
36
+ # arr.dtype.na_value and arr.isna().any() is True. Else the check returns False.
37
+
38
+ na_value = data.dtype.na_value
39
+ # ensure data without missing values
40
+ data = data[~data.isna()]
41
+
42
+ # first elements are non-missing
43
+ assert data[0] in data
44
+ assert data_missing[0] in data_missing
45
+
46
+ # check the presence of na_value
47
+ assert na_value in data_missing
48
+ assert na_value not in data
49
+
50
+ # the data can never contain other nan-likes than na_value
51
+ for na_value_obj in tm.NULL_OBJECTS:
52
+ if na_value_obj is na_value or type(na_value_obj) == type(na_value):
53
+ # type check for e.g. two instances of Decimal("NAN")
54
+ continue
55
+ assert na_value_obj not in data
56
+ assert na_value_obj not in data_missing
57
+
58
+ def test_memory_usage(self, data):
59
+ s = pd.Series(data)
60
+ result = s.memory_usage(index=False)
61
+ assert result == s.nbytes
62
+
63
+ def test_array_interface(self, data):
64
+ result = np.array(data)
65
+ assert result[0] == data[0]
66
+
67
+ result = np.array(data, dtype=object)
68
+ expected = np.array(list(data), dtype=object)
69
+ if expected.ndim > 1:
70
+ # nested data, explicitly construct as 1D
71
+ expected = construct_1d_object_array_from_listlike(list(data))
72
+ tm.assert_numpy_array_equal(result, expected)
73
+
74
+ def test_is_extension_array_dtype(self, data):
75
+ assert is_extension_array_dtype(data)
76
+ assert is_extension_array_dtype(data.dtype)
77
+ assert is_extension_array_dtype(pd.Series(data))
78
+ assert isinstance(data.dtype, ExtensionDtype)
79
+
80
+ def test_no_values_attribute(self, data):
81
+ # GH-20735: EA's with .values attribute give problems with internal
82
+ # code, disallowing this for now until solved
83
+ assert not hasattr(data, "values")
84
+ assert not hasattr(data, "_values")
85
+
86
+ def test_is_numeric_honored(self, data):
87
+ result = pd.Series(data)
88
+ if hasattr(result._mgr, "blocks"):
89
+ assert result._mgr.blocks[0].is_numeric is data.dtype._is_numeric
90
+
91
+ def test_isna_extension_array(self, data_missing):
92
+ # If your `isna` returns an ExtensionArray, you must also implement
93
+ # _reduce. At the *very* least, you must implement any and all
94
+ na = data_missing.isna()
95
+ if is_extension_array_dtype(na):
96
+ assert na._reduce("any")
97
+ assert na.any()
98
+
99
+ assert not na._reduce("all")
100
+ assert not na.all()
101
+
102
+ assert na.dtype._is_boolean
103
+
104
+ def test_copy(self, data):
105
+ # GH#27083 removing deep keyword from EA.copy
106
+ assert data[0] != data[1]
107
+ result = data.copy()
108
+
109
+ if data.dtype._is_immutable:
110
+ pytest.skip(f"test_copy assumes mutability and {data.dtype} is immutable")
111
+
112
+ data[1] = data[0]
113
+ assert result[1] != result[0]
114
+
115
+ def test_view(self, data):
116
+ # view with no dtype should return a shallow copy, *not* the same
117
+ # object
118
+ assert data[1] != data[0]
119
+
120
+ result = data.view()
121
+ assert result is not data
122
+ assert type(result) == type(data)
123
+
124
+ if data.dtype._is_immutable:
125
+ pytest.skip(f"test_view assumes mutability and {data.dtype} is immutable")
126
+
127
+ result[1] = result[0]
128
+ assert data[1] == data[0]
129
+
130
+ # check specifically that the `dtype` kwarg is accepted
131
+ data.view(dtype=None)
132
+
133
+ def test_tolist(self, data):
134
+ result = data.tolist()
135
+ expected = list(data)
136
+ assert isinstance(result, list)
137
+ assert result == expected
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/io.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import StringIO
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.core.arrays import ExtensionArray
9
+
10
+
11
+ class BaseParsingTests:
12
+ @pytest.mark.parametrize("engine", ["c", "python"])
13
+ def test_EA_types(self, engine, data, request):
14
+ if isinstance(data.dtype, pd.CategoricalDtype):
15
+ # in parsers.pyx _convert_with_dtype there is special-casing for
16
+ # Categorical that pre-empts _from_sequence_of_strings
17
+ pass
18
+ elif isinstance(data.dtype, pd.core.dtypes.dtypes.NumpyEADtype):
19
+ # These get unwrapped internally so are treated as numpy dtypes
20
+ # in the parsers.pyx code
21
+ pass
22
+ elif (
23
+ type(data)._from_sequence_of_strings.__func__
24
+ is ExtensionArray._from_sequence_of_strings.__func__
25
+ ):
26
+ # i.e. the EA hasn't overridden _from_sequence_of_strings
27
+ mark = pytest.mark.xfail(
28
+ reason="_from_sequence_of_strings not implemented",
29
+ raises=NotImplementedError,
30
+ )
31
+ request.node.add_marker(mark)
32
+
33
+ df = pd.DataFrame({"with_dtype": pd.Series(data, dtype=str(data.dtype))})
34
+ csv_output = df.to_csv(index=False, na_rep=np.nan)
35
+ result = pd.read_csv(
36
+ StringIO(csv_output), dtype={"with_dtype": str(data.dtype)}, engine=engine
37
+ )
38
+ expected = df
39
+ tm.assert_frame_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/methods.py ADDED
@@ -0,0 +1,720 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ import operator
3
+
4
+ import numpy as np
5
+ import pytest
6
+
7
+ from pandas._typing import Dtype
8
+
9
+ from pandas.core.dtypes.common import is_bool_dtype
10
+ from pandas.core.dtypes.dtypes import NumpyEADtype
11
+ from pandas.core.dtypes.missing import na_value_for_dtype
12
+
13
+ import pandas as pd
14
+ import pandas._testing as tm
15
+ from pandas.core.sorting import nargsort
16
+
17
+
18
+ class BaseMethodsTests:
19
+ """Various Series and DataFrame methods."""
20
+
21
+ def test_hash_pandas_object(self, data):
22
+ # _hash_pandas_object should return a uint64 ndarray of the same length
23
+ # as the data
24
+ from pandas.core.util.hashing import _default_hash_key
25
+
26
+ res = data._hash_pandas_object(
27
+ encoding="utf-8", hash_key=_default_hash_key, categorize=False
28
+ )
29
+ assert res.dtype == np.uint64
30
+ assert res.shape == data.shape
31
+
32
+ def test_value_counts_default_dropna(self, data):
33
+ # make sure we have consistent default dropna kwarg
34
+ if not hasattr(data, "value_counts"):
35
+ pytest.skip(f"value_counts is not implemented for {type(data)}")
36
+ sig = inspect.signature(data.value_counts)
37
+ kwarg = sig.parameters["dropna"]
38
+ assert kwarg.default is True
39
+
40
+ @pytest.mark.parametrize("dropna", [True, False])
41
+ def test_value_counts(self, all_data, dropna):
42
+ all_data = all_data[:10]
43
+ if dropna:
44
+ other = all_data[~all_data.isna()]
45
+ else:
46
+ other = all_data
47
+
48
+ result = pd.Series(all_data).value_counts(dropna=dropna).sort_index()
49
+ expected = pd.Series(other).value_counts(dropna=dropna).sort_index()
50
+
51
+ tm.assert_series_equal(result, expected)
52
+
53
+ def test_value_counts_with_normalize(self, data):
54
+ # GH 33172
55
+ data = data[:10].unique()
56
+ values = np.array(data[~data.isna()])
57
+ ser = pd.Series(data, dtype=data.dtype)
58
+
59
+ result = ser.value_counts(normalize=True).sort_index()
60
+
61
+ if not isinstance(data, pd.Categorical):
62
+ expected = pd.Series(
63
+ [1 / len(values)] * len(values), index=result.index, name="proportion"
64
+ )
65
+ else:
66
+ expected = pd.Series(0.0, index=result.index, name="proportion")
67
+ expected[result > 0] = 1 / len(values)
68
+
69
+ if getattr(data.dtype, "storage", "") == "pyarrow" or isinstance(
70
+ data.dtype, pd.ArrowDtype
71
+ ):
72
+ # TODO: avoid special-casing
73
+ expected = expected.astype("double[pyarrow]")
74
+ elif getattr(data.dtype, "storage", "") == "pyarrow_numpy":
75
+ # TODO: avoid special-casing
76
+ expected = expected.astype("float64")
77
+ elif na_value_for_dtype(data.dtype) is pd.NA:
78
+ # TODO(GH#44692): avoid special-casing
79
+ expected = expected.astype("Float64")
80
+
81
+ tm.assert_series_equal(result, expected)
82
+
83
+ def test_count(self, data_missing):
84
+ df = pd.DataFrame({"A": data_missing})
85
+ result = df.count(axis="columns")
86
+ expected = pd.Series([0, 1])
87
+ tm.assert_series_equal(result, expected)
88
+
89
+ def test_series_count(self, data_missing):
90
+ # GH#26835
91
+ ser = pd.Series(data_missing)
92
+ result = ser.count()
93
+ expected = 1
94
+ assert result == expected
95
+
96
+ def test_apply_simple_series(self, data):
97
+ result = pd.Series(data).apply(id)
98
+ assert isinstance(result, pd.Series)
99
+
100
+ @pytest.mark.parametrize("na_action", [None, "ignore"])
101
+ def test_map(self, data_missing, na_action):
102
+ result = data_missing.map(lambda x: x, na_action=na_action)
103
+ expected = data_missing.to_numpy()
104
+ tm.assert_numpy_array_equal(result, expected)
105
+
106
+ def test_argsort(self, data_for_sorting):
107
+ result = pd.Series(data_for_sorting).argsort()
108
+ # argsort result gets passed to take, so should be np.intp
109
+ expected = pd.Series(np.array([2, 0, 1], dtype=np.intp))
110
+ tm.assert_series_equal(result, expected)
111
+
112
+ def test_argsort_missing_array(self, data_missing_for_sorting):
113
+ result = data_missing_for_sorting.argsort()
114
+ # argsort result gets passed to take, so should be np.intp
115
+ expected = np.array([2, 0, 1], dtype=np.intp)
116
+ tm.assert_numpy_array_equal(result, expected)
117
+
118
+ def test_argsort_missing(self, data_missing_for_sorting):
119
+ msg = "The behavior of Series.argsort in the presence of NA values"
120
+ with tm.assert_produces_warning(FutureWarning, match=msg):
121
+ result = pd.Series(data_missing_for_sorting).argsort()
122
+ expected = pd.Series(np.array([1, -1, 0], dtype=np.intp))
123
+ tm.assert_series_equal(result, expected)
124
+
125
+ def test_argmin_argmax(self, data_for_sorting, data_missing_for_sorting, na_value):
126
+ # GH 24382
127
+ is_bool = data_for_sorting.dtype._is_boolean
128
+
129
+ exp_argmax = 1
130
+ exp_argmax_repeated = 3
131
+ if is_bool:
132
+ # See data_for_sorting docstring
133
+ exp_argmax = 0
134
+ exp_argmax_repeated = 1
135
+
136
+ # data_for_sorting -> [B, C, A] with A < B < C
137
+ assert data_for_sorting.argmax() == exp_argmax
138
+ assert data_for_sorting.argmin() == 2
139
+
140
+ # with repeated values -> first occurrence
141
+ data = data_for_sorting.take([2, 0, 0, 1, 1, 2])
142
+ assert data.argmax() == exp_argmax_repeated
143
+ assert data.argmin() == 0
144
+
145
+ # with missing values
146
+ # data_missing_for_sorting -> [B, NA, A] with A < B and NA missing.
147
+ assert data_missing_for_sorting.argmax() == 0
148
+ assert data_missing_for_sorting.argmin() == 2
149
+
150
+ @pytest.mark.parametrize("method", ["argmax", "argmin"])
151
+ def test_argmin_argmax_empty_array(self, method, data):
152
+ # GH 24382
153
+ err_msg = "attempt to get"
154
+ with pytest.raises(ValueError, match=err_msg):
155
+ getattr(data[:0], method)()
156
+
157
+ @pytest.mark.parametrize("method", ["argmax", "argmin"])
158
+ def test_argmin_argmax_all_na(self, method, data, na_value):
159
+ # all missing with skipna=True is the same as empty
160
+ err_msg = "attempt to get"
161
+ data_na = type(data)._from_sequence([na_value, na_value], dtype=data.dtype)
162
+ with pytest.raises(ValueError, match=err_msg):
163
+ getattr(data_na, method)()
164
+
165
+ @pytest.mark.parametrize(
166
+ "op_name, skipna, expected",
167
+ [
168
+ ("idxmax", True, 0),
169
+ ("idxmin", True, 2),
170
+ ("argmax", True, 0),
171
+ ("argmin", True, 2),
172
+ ("idxmax", False, np.nan),
173
+ ("idxmin", False, np.nan),
174
+ ("argmax", False, -1),
175
+ ("argmin", False, -1),
176
+ ],
177
+ )
178
+ def test_argreduce_series(
179
+ self, data_missing_for_sorting, op_name, skipna, expected
180
+ ):
181
+ # data_missing_for_sorting -> [B, NA, A] with A < B and NA missing.
182
+ warn = None
183
+ msg = "The behavior of Series.argmax/argmin"
184
+ if op_name.startswith("arg") and expected == -1:
185
+ warn = FutureWarning
186
+ if op_name.startswith("idx") and np.isnan(expected):
187
+ warn = FutureWarning
188
+ msg = f"The behavior of Series.{op_name}"
189
+ ser = pd.Series(data_missing_for_sorting)
190
+ with tm.assert_produces_warning(warn, match=msg):
191
+ result = getattr(ser, op_name)(skipna=skipna)
192
+ tm.assert_almost_equal(result, expected)
193
+
194
+ def test_argmax_argmin_no_skipna_notimplemented(self, data_missing_for_sorting):
195
+ # GH#38733
196
+ data = data_missing_for_sorting
197
+
198
+ with pytest.raises(NotImplementedError, match=""):
199
+ data.argmin(skipna=False)
200
+
201
+ with pytest.raises(NotImplementedError, match=""):
202
+ data.argmax(skipna=False)
203
+
204
+ @pytest.mark.parametrize(
205
+ "na_position, expected",
206
+ [
207
+ ("last", np.array([2, 0, 1], dtype=np.dtype("intp"))),
208
+ ("first", np.array([1, 2, 0], dtype=np.dtype("intp"))),
209
+ ],
210
+ )
211
+ def test_nargsort(self, data_missing_for_sorting, na_position, expected):
212
+ # GH 25439
213
+ result = nargsort(data_missing_for_sorting, na_position=na_position)
214
+ tm.assert_numpy_array_equal(result, expected)
215
+
216
+ @pytest.mark.parametrize("ascending", [True, False])
217
+ def test_sort_values(self, data_for_sorting, ascending, sort_by_key):
218
+ ser = pd.Series(data_for_sorting)
219
+ result = ser.sort_values(ascending=ascending, key=sort_by_key)
220
+ expected = ser.iloc[[2, 0, 1]]
221
+ if not ascending:
222
+ # GH 35922. Expect stable sort
223
+ if ser.nunique() == 2:
224
+ expected = ser.iloc[[0, 1, 2]]
225
+ else:
226
+ expected = ser.iloc[[1, 0, 2]]
227
+
228
+ tm.assert_series_equal(result, expected)
229
+
230
+ @pytest.mark.parametrize("ascending", [True, False])
231
+ def test_sort_values_missing(
232
+ self, data_missing_for_sorting, ascending, sort_by_key
233
+ ):
234
+ ser = pd.Series(data_missing_for_sorting)
235
+ result = ser.sort_values(ascending=ascending, key=sort_by_key)
236
+ if ascending:
237
+ expected = ser.iloc[[2, 0, 1]]
238
+ else:
239
+ expected = ser.iloc[[0, 2, 1]]
240
+ tm.assert_series_equal(result, expected)
241
+
242
+ @pytest.mark.parametrize("ascending", [True, False])
243
+ def test_sort_values_frame(self, data_for_sorting, ascending):
244
+ df = pd.DataFrame({"A": [1, 2, 1], "B": data_for_sorting})
245
+ result = df.sort_values(["A", "B"])
246
+ expected = pd.DataFrame(
247
+ {"A": [1, 1, 2], "B": data_for_sorting.take([2, 0, 1])}, index=[2, 0, 1]
248
+ )
249
+ tm.assert_frame_equal(result, expected)
250
+
251
+ @pytest.mark.parametrize("keep", ["first", "last", False])
252
+ def test_duplicated(self, data, keep):
253
+ arr = data.take([0, 1, 0, 1])
254
+ result = arr.duplicated(keep=keep)
255
+ if keep == "first":
256
+ expected = np.array([False, False, True, True])
257
+ elif keep == "last":
258
+ expected = np.array([True, True, False, False])
259
+ else:
260
+ expected = np.array([True, True, True, True])
261
+ tm.assert_numpy_array_equal(result, expected)
262
+
263
+ @pytest.mark.parametrize("box", [pd.Series, lambda x: x])
264
+ @pytest.mark.parametrize("method", [lambda x: x.unique(), pd.unique])
265
+ def test_unique(self, data, box, method):
266
+ duplicated = box(data._from_sequence([data[0], data[0]], dtype=data.dtype))
267
+
268
+ result = method(duplicated)
269
+
270
+ assert len(result) == 1
271
+ assert isinstance(result, type(data))
272
+ assert result[0] == duplicated[0]
273
+
274
+ def test_factorize(self, data_for_grouping):
275
+ codes, uniques = pd.factorize(data_for_grouping, use_na_sentinel=True)
276
+
277
+ is_bool = data_for_grouping.dtype._is_boolean
278
+ if is_bool:
279
+ # only 2 unique values
280
+ expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 0], dtype=np.intp)
281
+ expected_uniques = data_for_grouping.take([0, 4])
282
+ else:
283
+ expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 2], dtype=np.intp)
284
+ expected_uniques = data_for_grouping.take([0, 4, 7])
285
+
286
+ tm.assert_numpy_array_equal(codes, expected_codes)
287
+ tm.assert_extension_array_equal(uniques, expected_uniques)
288
+
289
+ def test_factorize_equivalence(self, data_for_grouping):
290
+ codes_1, uniques_1 = pd.factorize(data_for_grouping, use_na_sentinel=True)
291
+ codes_2, uniques_2 = data_for_grouping.factorize(use_na_sentinel=True)
292
+
293
+ tm.assert_numpy_array_equal(codes_1, codes_2)
294
+ tm.assert_extension_array_equal(uniques_1, uniques_2)
295
+ assert len(uniques_1) == len(pd.unique(uniques_1))
296
+ assert uniques_1.dtype == data_for_grouping.dtype
297
+
298
+ def test_factorize_empty(self, data):
299
+ codes, uniques = pd.factorize(data[:0])
300
+ expected_codes = np.array([], dtype=np.intp)
301
+ expected_uniques = type(data)._from_sequence([], dtype=data[:0].dtype)
302
+
303
+ tm.assert_numpy_array_equal(codes, expected_codes)
304
+ tm.assert_extension_array_equal(uniques, expected_uniques)
305
+
306
+ def test_fillna_copy_frame(self, data_missing):
307
+ arr = data_missing.take([1, 1])
308
+ df = pd.DataFrame({"A": arr})
309
+ df_orig = df.copy()
310
+
311
+ filled_val = df.iloc[0, 0]
312
+ result = df.fillna(filled_val)
313
+
314
+ result.iloc[0, 0] = filled_val
315
+
316
+ tm.assert_frame_equal(df, df_orig)
317
+
318
+ def test_fillna_copy_series(self, data_missing):
319
+ arr = data_missing.take([1, 1])
320
+ ser = pd.Series(arr, copy=False)
321
+ ser_orig = ser.copy()
322
+
323
+ filled_val = ser[0]
324
+ result = ser.fillna(filled_val)
325
+ result.iloc[0] = filled_val
326
+
327
+ tm.assert_series_equal(ser, ser_orig)
328
+
329
+ def test_fillna_length_mismatch(self, data_missing):
330
+ msg = "Length of 'value' does not match."
331
+ with pytest.raises(ValueError, match=msg):
332
+ data_missing.fillna(data_missing.take([1]))
333
+
334
+ # Subclasses can override if we expect e.g Sparse[bool], boolean, pyarrow[bool]
335
+ _combine_le_expected_dtype: Dtype = NumpyEADtype("bool")
336
+
337
+ def test_combine_le(self, data_repeated):
338
+ # GH 20825
339
+ # Test that combine works when doing a <= (le) comparison
340
+ orig_data1, orig_data2 = data_repeated(2)
341
+ s1 = pd.Series(orig_data1)
342
+ s2 = pd.Series(orig_data2)
343
+ result = s1.combine(s2, lambda x1, x2: x1 <= x2)
344
+ expected = pd.Series(
345
+ pd.array(
346
+ [a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))],
347
+ dtype=self._combine_le_expected_dtype,
348
+ )
349
+ )
350
+ tm.assert_series_equal(result, expected)
351
+
352
+ val = s1.iloc[0]
353
+ result = s1.combine(val, lambda x1, x2: x1 <= x2)
354
+ expected = pd.Series(
355
+ pd.array(
356
+ [a <= val for a in list(orig_data1)],
357
+ dtype=self._combine_le_expected_dtype,
358
+ )
359
+ )
360
+ tm.assert_series_equal(result, expected)
361
+
362
+ def test_combine_add(self, data_repeated):
363
+ # GH 20825
364
+ orig_data1, orig_data2 = data_repeated(2)
365
+ s1 = pd.Series(orig_data1)
366
+ s2 = pd.Series(orig_data2)
367
+
368
+ # Check if the operation is supported pointwise for our scalars. If not,
369
+ # we will expect Series.combine to raise as well.
370
+ try:
371
+ with np.errstate(over="ignore"):
372
+ expected = pd.Series(
373
+ orig_data1._from_sequence(
374
+ [a + b for (a, b) in zip(list(orig_data1), list(orig_data2))]
375
+ )
376
+ )
377
+ except TypeError:
378
+ # If the operation is not supported pointwise for our scalars,
379
+ # then Series.combine should also raise
380
+ with pytest.raises(TypeError):
381
+ s1.combine(s2, lambda x1, x2: x1 + x2)
382
+ return
383
+
384
+ result = s1.combine(s2, lambda x1, x2: x1 + x2)
385
+ tm.assert_series_equal(result, expected)
386
+
387
+ val = s1.iloc[0]
388
+ result = s1.combine(val, lambda x1, x2: x1 + x2)
389
+ expected = pd.Series(
390
+ orig_data1._from_sequence([a + val for a in list(orig_data1)])
391
+ )
392
+ tm.assert_series_equal(result, expected)
393
+
394
+ def test_combine_first(self, data):
395
+ # https://github.com/pandas-dev/pandas/issues/24147
396
+ a = pd.Series(data[:3])
397
+ b = pd.Series(data[2:5], index=[2, 3, 4])
398
+ result = a.combine_first(b)
399
+ expected = pd.Series(data[:5])
400
+ tm.assert_series_equal(result, expected)
401
+
402
+ @pytest.mark.parametrize("frame", [True, False])
403
+ @pytest.mark.parametrize(
404
+ "periods, indices",
405
+ [(-2, [2, 3, 4, -1, -1]), (0, [0, 1, 2, 3, 4]), (2, [-1, -1, 0, 1, 2])],
406
+ )
407
+ def test_container_shift(self, data, frame, periods, indices):
408
+ # https://github.com/pandas-dev/pandas/issues/22386
409
+ subset = data[:5]
410
+ data = pd.Series(subset, name="A")
411
+ expected = pd.Series(subset.take(indices, allow_fill=True), name="A")
412
+
413
+ if frame:
414
+ result = data.to_frame(name="A").assign(B=1).shift(periods)
415
+ expected = pd.concat(
416
+ [expected, pd.Series([1] * 5, name="B").shift(periods)], axis=1
417
+ )
418
+ compare = tm.assert_frame_equal
419
+ else:
420
+ result = data.shift(periods)
421
+ compare = tm.assert_series_equal
422
+
423
+ compare(result, expected)
424
+
425
+ def test_shift_0_periods(self, data):
426
+ # GH#33856 shifting with periods=0 should return a copy, not same obj
427
+ result = data.shift(0)
428
+ assert data[0] != data[1] # otherwise below is invalid
429
+ data[0] = data[1]
430
+ assert result[0] != result[1] # i.e. not the same object/view
431
+
432
+ @pytest.mark.parametrize("periods", [1, -2])
433
+ def test_diff(self, data, periods):
434
+ data = data[:5]
435
+ if is_bool_dtype(data.dtype):
436
+ op = operator.xor
437
+ else:
438
+ op = operator.sub
439
+ try:
440
+ # does this array implement ops?
441
+ op(data, data)
442
+ except Exception:
443
+ pytest.skip(f"{type(data)} does not support diff")
444
+ s = pd.Series(data)
445
+ result = s.diff(periods)
446
+ expected = pd.Series(op(data, data.shift(periods)))
447
+ tm.assert_series_equal(result, expected)
448
+
449
+ df = pd.DataFrame({"A": data, "B": [1.0] * 5})
450
+ result = df.diff(periods)
451
+ if periods == 1:
452
+ b = [np.nan, 0, 0, 0, 0]
453
+ else:
454
+ b = [0, 0, 0, np.nan, np.nan]
455
+ expected = pd.DataFrame({"A": expected, "B": b})
456
+ tm.assert_frame_equal(result, expected)
457
+
458
+ @pytest.mark.parametrize(
459
+ "periods, indices",
460
+ [[-4, [-1, -1]], [-1, [1, -1]], [0, [0, 1]], [1, [-1, 0]], [4, [-1, -1]]],
461
+ )
462
+ def test_shift_non_empty_array(self, data, periods, indices):
463
+ # https://github.com/pandas-dev/pandas/issues/23911
464
+ subset = data[:2]
465
+ result = subset.shift(periods)
466
+ expected = subset.take(indices, allow_fill=True)
467
+ tm.assert_extension_array_equal(result, expected)
468
+
469
+ @pytest.mark.parametrize("periods", [-4, -1, 0, 1, 4])
470
+ def test_shift_empty_array(self, data, periods):
471
+ # https://github.com/pandas-dev/pandas/issues/23911
472
+ empty = data[:0]
473
+ result = empty.shift(periods)
474
+ expected = empty
475
+ tm.assert_extension_array_equal(result, expected)
476
+
477
+ def test_shift_zero_copies(self, data):
478
+ # GH#31502
479
+ result = data.shift(0)
480
+ assert result is not data
481
+
482
+ result = data[:0].shift(2)
483
+ assert result is not data
484
+
485
+ def test_shift_fill_value(self, data):
486
+ arr = data[:4]
487
+ fill_value = data[0]
488
+ result = arr.shift(1, fill_value=fill_value)
489
+ expected = data.take([0, 0, 1, 2])
490
+ tm.assert_extension_array_equal(result, expected)
491
+
492
+ result = arr.shift(-2, fill_value=fill_value)
493
+ expected = data.take([2, 3, 0, 0])
494
+ tm.assert_extension_array_equal(result, expected)
495
+
496
+ def test_not_hashable(self, data):
497
+ # We are in general mutable, so not hashable
498
+ with pytest.raises(TypeError, match="unhashable type"):
499
+ hash(data)
500
+
501
+ def test_hash_pandas_object_works(self, data, as_frame):
502
+ # https://github.com/pandas-dev/pandas/issues/23066
503
+ data = pd.Series(data)
504
+ if as_frame:
505
+ data = data.to_frame()
506
+ a = pd.util.hash_pandas_object(data)
507
+ b = pd.util.hash_pandas_object(data)
508
+ tm.assert_equal(a, b)
509
+
510
+ def test_searchsorted(self, data_for_sorting, as_series):
511
+ if data_for_sorting.dtype._is_boolean:
512
+ return self._test_searchsorted_bool_dtypes(data_for_sorting, as_series)
513
+
514
+ b, c, a = data_for_sorting
515
+ arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c]
516
+
517
+ if as_series:
518
+ arr = pd.Series(arr)
519
+ assert arr.searchsorted(a) == 0
520
+ assert arr.searchsorted(a, side="right") == 1
521
+
522
+ assert arr.searchsorted(b) == 1
523
+ assert arr.searchsorted(b, side="right") == 2
524
+
525
+ assert arr.searchsorted(c) == 2
526
+ assert arr.searchsorted(c, side="right") == 3
527
+
528
+ result = arr.searchsorted(arr.take([0, 2]))
529
+ expected = np.array([0, 2], dtype=np.intp)
530
+
531
+ tm.assert_numpy_array_equal(result, expected)
532
+
533
+ # sorter
534
+ sorter = np.array([1, 2, 0])
535
+ assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
536
+
537
+ def _test_searchsorted_bool_dtypes(self, data_for_sorting, as_series):
538
+ # We call this from test_searchsorted in cases where we have a
539
+ # boolean-like dtype. The non-bool test assumes we have more than 2
540
+ # unique values.
541
+ dtype = data_for_sorting.dtype
542
+ data_for_sorting = pd.array([True, False], dtype=dtype)
543
+ b, a = data_for_sorting
544
+ arr = type(data_for_sorting)._from_sequence([a, b])
545
+
546
+ if as_series:
547
+ arr = pd.Series(arr)
548
+ assert arr.searchsorted(a) == 0
549
+ assert arr.searchsorted(a, side="right") == 1
550
+
551
+ assert arr.searchsorted(b) == 1
552
+ assert arr.searchsorted(b, side="right") == 2
553
+
554
+ result = arr.searchsorted(arr.take([0, 1]))
555
+ expected = np.array([0, 1], dtype=np.intp)
556
+
557
+ tm.assert_numpy_array_equal(result, expected)
558
+
559
+ # sorter
560
+ sorter = np.array([1, 0])
561
+ assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
562
+
563
+ def test_where_series(self, data, na_value, as_frame):
564
+ assert data[0] != data[1]
565
+ cls = type(data)
566
+ a, b = data[:2]
567
+
568
+ orig = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype))
569
+ ser = orig.copy()
570
+ cond = np.array([True, True, False, False])
571
+
572
+ if as_frame:
573
+ ser = ser.to_frame(name="a")
574
+ cond = cond.reshape(-1, 1)
575
+
576
+ result = ser.where(cond)
577
+ expected = pd.Series(
578
+ cls._from_sequence([a, a, na_value, na_value], dtype=data.dtype)
579
+ )
580
+
581
+ if as_frame:
582
+ expected = expected.to_frame(name="a")
583
+ tm.assert_equal(result, expected)
584
+
585
+ ser.mask(~cond, inplace=True)
586
+ tm.assert_equal(ser, expected)
587
+
588
+ # array other
589
+ ser = orig.copy()
590
+ if as_frame:
591
+ ser = ser.to_frame(name="a")
592
+ cond = np.array([True, False, True, True])
593
+ other = cls._from_sequence([a, b, a, b], dtype=data.dtype)
594
+ if as_frame:
595
+ other = pd.DataFrame({"a": other})
596
+ cond = pd.DataFrame({"a": cond})
597
+ result = ser.where(cond, other)
598
+ expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype))
599
+ if as_frame:
600
+ expected = expected.to_frame(name="a")
601
+ tm.assert_equal(result, expected)
602
+
603
+ ser.mask(~cond, other, inplace=True)
604
+ tm.assert_equal(ser, expected)
605
+
606
+ @pytest.mark.parametrize("repeats", [0, 1, 2, [1, 2, 3]])
607
+ def test_repeat(self, data, repeats, as_series, use_numpy):
608
+ arr = type(data)._from_sequence(data[:3], dtype=data.dtype)
609
+ if as_series:
610
+ arr = pd.Series(arr)
611
+
612
+ result = np.repeat(arr, repeats) if use_numpy else arr.repeat(repeats)
613
+
614
+ repeats = [repeats] * 3 if isinstance(repeats, int) else repeats
615
+ expected = [x for x, n in zip(arr, repeats) for _ in range(n)]
616
+ expected = type(data)._from_sequence(expected, dtype=data.dtype)
617
+ if as_series:
618
+ expected = pd.Series(expected, index=arr.index.repeat(repeats))
619
+
620
+ tm.assert_equal(result, expected)
621
+
622
+ @pytest.mark.parametrize(
623
+ "repeats, kwargs, error, msg",
624
+ [
625
+ (2, {"axis": 1}, ValueError, "axis"),
626
+ (-1, {}, ValueError, "negative"),
627
+ ([1, 2], {}, ValueError, "shape"),
628
+ (2, {"foo": "bar"}, TypeError, "'foo'"),
629
+ ],
630
+ )
631
+ def test_repeat_raises(self, data, repeats, kwargs, error, msg, use_numpy):
632
+ with pytest.raises(error, match=msg):
633
+ if use_numpy:
634
+ np.repeat(data, repeats, **kwargs)
635
+ else:
636
+ data.repeat(repeats, **kwargs)
637
+
638
+ def test_delete(self, data):
639
+ result = data.delete(0)
640
+ expected = data[1:]
641
+ tm.assert_extension_array_equal(result, expected)
642
+
643
+ result = data.delete([1, 3])
644
+ expected = data._concat_same_type([data[[0]], data[[2]], data[4:]])
645
+ tm.assert_extension_array_equal(result, expected)
646
+
647
+ def test_insert(self, data):
648
+ # insert at the beginning
649
+ result = data[1:].insert(0, data[0])
650
+ tm.assert_extension_array_equal(result, data)
651
+
652
+ result = data[1:].insert(-len(data[1:]), data[0])
653
+ tm.assert_extension_array_equal(result, data)
654
+
655
+ # insert at the middle
656
+ result = data[:-1].insert(4, data[-1])
657
+
658
+ taker = np.arange(len(data))
659
+ taker[5:] = taker[4:-1]
660
+ taker[4] = len(data) - 1
661
+ expected = data.take(taker)
662
+ tm.assert_extension_array_equal(result, expected)
663
+
664
+ def test_insert_invalid(self, data, invalid_scalar):
665
+ item = invalid_scalar
666
+
667
+ with pytest.raises((TypeError, ValueError)):
668
+ data.insert(0, item)
669
+
670
+ with pytest.raises((TypeError, ValueError)):
671
+ data.insert(4, item)
672
+
673
+ with pytest.raises((TypeError, ValueError)):
674
+ data.insert(len(data) - 1, item)
675
+
676
+ def test_insert_invalid_loc(self, data):
677
+ ub = len(data)
678
+
679
+ with pytest.raises(IndexError):
680
+ data.insert(ub + 1, data[0])
681
+
682
+ with pytest.raises(IndexError):
683
+ data.insert(-ub - 1, data[0])
684
+
685
+ with pytest.raises(TypeError):
686
+ # we expect TypeError here instead of IndexError to match np.insert
687
+ data.insert(1.5, data[0])
688
+
689
+ @pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame])
690
+ def test_equals(self, data, na_value, as_series, box):
691
+ data2 = type(data)._from_sequence([data[0]] * len(data), dtype=data.dtype)
692
+ data_na = type(data)._from_sequence([na_value] * len(data), dtype=data.dtype)
693
+
694
+ data = tm.box_expected(data, box, transpose=False)
695
+ data2 = tm.box_expected(data2, box, transpose=False)
696
+ data_na = tm.box_expected(data_na, box, transpose=False)
697
+
698
+ # we are asserting with `is True/False` explicitly, to test that the
699
+ # result is an actual Python bool, and not something "truthy"
700
+
701
+ assert data.equals(data) is True
702
+ assert data.equals(data.copy()) is True
703
+
704
+ # unequal other data
705
+ assert data.equals(data2) is False
706
+ assert data.equals(data_na) is False
707
+
708
+ # different length
709
+ assert data[:2].equals(data[:3]) is False
710
+
711
+ # empty are equal
712
+ assert data[:0].equals(data[:0]) is True
713
+
714
+ # other types
715
+ assert data.equals(None) is False
716
+ assert data[[0]].equals(data[0]) is False
717
+
718
+ def test_equals_same_data_different_object(self, data):
719
+ # https://github.com/pandas-dev/pandas/issues/34660
720
+ assert pd.Series(data).equals(pd.Series(data))
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/missing.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ class BaseMissingTests:
9
+ def test_isna(self, data_missing):
10
+ expected = np.array([True, False])
11
+
12
+ result = pd.isna(data_missing)
13
+ tm.assert_numpy_array_equal(result, expected)
14
+
15
+ result = pd.Series(data_missing).isna()
16
+ expected = pd.Series(expected)
17
+ tm.assert_series_equal(result, expected)
18
+
19
+ # GH 21189
20
+ result = pd.Series(data_missing).drop([0, 1]).isna()
21
+ expected = pd.Series([], dtype=bool)
22
+ tm.assert_series_equal(result, expected)
23
+
24
+ @pytest.mark.parametrize("na_func", ["isna", "notna"])
25
+ def test_isna_returns_copy(self, data_missing, na_func):
26
+ result = pd.Series(data_missing)
27
+ expected = result.copy()
28
+ mask = getattr(result, na_func)()
29
+ if isinstance(mask.dtype, pd.SparseDtype):
30
+ mask = np.array(mask)
31
+
32
+ mask[:] = True
33
+ tm.assert_series_equal(result, expected)
34
+
35
+ def test_dropna_array(self, data_missing):
36
+ result = data_missing.dropna()
37
+ expected = data_missing[[1]]
38
+ tm.assert_extension_array_equal(result, expected)
39
+
40
+ def test_dropna_series(self, data_missing):
41
+ ser = pd.Series(data_missing)
42
+ result = ser.dropna()
43
+ expected = ser.iloc[[1]]
44
+ tm.assert_series_equal(result, expected)
45
+
46
+ def test_dropna_frame(self, data_missing):
47
+ df = pd.DataFrame({"A": data_missing}, columns=pd.Index(["A"], dtype=object))
48
+
49
+ # defaults
50
+ result = df.dropna()
51
+ expected = df.iloc[[1]]
52
+ tm.assert_frame_equal(result, expected)
53
+
54
+ # axis = 1
55
+ result = df.dropna(axis="columns")
56
+ expected = pd.DataFrame(index=pd.RangeIndex(2), columns=pd.Index([]))
57
+ tm.assert_frame_equal(result, expected)
58
+
59
+ # multiple
60
+ df = pd.DataFrame({"A": data_missing, "B": [1, np.nan]})
61
+ result = df.dropna()
62
+ expected = df.iloc[:0]
63
+ tm.assert_frame_equal(result, expected)
64
+
65
+ def test_fillna_scalar(self, data_missing):
66
+ valid = data_missing[1]
67
+ result = data_missing.fillna(valid)
68
+ expected = data_missing.fillna(valid)
69
+ tm.assert_extension_array_equal(result, expected)
70
+
71
+ @pytest.mark.filterwarnings(
72
+ "ignore:Series.fillna with 'method' is deprecated:FutureWarning"
73
+ )
74
+ def test_fillna_limit_pad(self, data_missing):
75
+ arr = data_missing.take([1, 0, 0, 0, 1])
76
+ result = pd.Series(arr).ffill(limit=2)
77
+ expected = pd.Series(data_missing.take([1, 1, 1, 0, 1]))
78
+ tm.assert_series_equal(result, expected)
79
+
80
+ @pytest.mark.parametrize(
81
+ "limit_area, input_ilocs, expected_ilocs",
82
+ [
83
+ ("outside", [1, 0, 0, 0, 1], [1, 0, 0, 0, 1]),
84
+ ("outside", [1, 0, 1, 0, 1], [1, 0, 1, 0, 1]),
85
+ ("outside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 1]),
86
+ ("outside", [0, 1, 0, 1, 0], [0, 1, 0, 1, 1]),
87
+ ("inside", [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]),
88
+ ("inside", [1, 0, 1, 0, 1], [1, 1, 1, 1, 1]),
89
+ ("inside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 0]),
90
+ ("inside", [0, 1, 0, 1, 0], [0, 1, 1, 1, 0]),
91
+ ],
92
+ )
93
+ def test_ffill_limit_area(
94
+ self, data_missing, limit_area, input_ilocs, expected_ilocs
95
+ ):
96
+ # GH#56616
97
+ arr = data_missing.take(input_ilocs)
98
+ result = pd.Series(arr).ffill(limit_area=limit_area)
99
+ expected = pd.Series(data_missing.take(expected_ilocs))
100
+ tm.assert_series_equal(result, expected)
101
+
102
+ @pytest.mark.filterwarnings(
103
+ "ignore:Series.fillna with 'method' is deprecated:FutureWarning"
104
+ )
105
+ def test_fillna_limit_backfill(self, data_missing):
106
+ arr = data_missing.take([1, 0, 0, 0, 1])
107
+ result = pd.Series(arr).fillna(method="backfill", limit=2)
108
+ expected = pd.Series(data_missing.take([1, 0, 1, 1, 1]))
109
+ tm.assert_series_equal(result, expected)
110
+
111
+ def test_fillna_no_op_returns_copy(self, data):
112
+ data = data[~data.isna()]
113
+
114
+ valid = data[0]
115
+ result = data.fillna(valid)
116
+ assert result is not data
117
+ tm.assert_extension_array_equal(result, data)
118
+
119
+ result = data._pad_or_backfill(method="backfill")
120
+ assert result is not data
121
+ tm.assert_extension_array_equal(result, data)
122
+
123
+ def test_fillna_series(self, data_missing):
124
+ fill_value = data_missing[1]
125
+ ser = pd.Series(data_missing)
126
+
127
+ result = ser.fillna(fill_value)
128
+ expected = pd.Series(
129
+ data_missing._from_sequence(
130
+ [fill_value, fill_value], dtype=data_missing.dtype
131
+ )
132
+ )
133
+ tm.assert_series_equal(result, expected)
134
+
135
+ # Fill with a series
136
+ result = ser.fillna(expected)
137
+ tm.assert_series_equal(result, expected)
138
+
139
+ # Fill with a series not affecting the missing values
140
+ result = ser.fillna(ser)
141
+ tm.assert_series_equal(result, ser)
142
+
143
+ def test_fillna_series_method(self, data_missing, fillna_method):
144
+ fill_value = data_missing[1]
145
+
146
+ if fillna_method == "ffill":
147
+ data_missing = data_missing[::-1]
148
+
149
+ result = getattr(pd.Series(data_missing), fillna_method)()
150
+ expected = pd.Series(
151
+ data_missing._from_sequence(
152
+ [fill_value, fill_value], dtype=data_missing.dtype
153
+ )
154
+ )
155
+
156
+ tm.assert_series_equal(result, expected)
157
+
158
+ def test_fillna_frame(self, data_missing):
159
+ fill_value = data_missing[1]
160
+
161
+ result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value)
162
+
163
+ expected = pd.DataFrame(
164
+ {
165
+ "A": data_missing._from_sequence(
166
+ [fill_value, fill_value], dtype=data_missing.dtype
167
+ ),
168
+ "B": [1, 2],
169
+ }
170
+ )
171
+
172
+ tm.assert_frame_equal(result, expected)
173
+
174
+ def test_fillna_fill_other(self, data):
175
+ result = pd.DataFrame({"A": data, "B": [np.nan] * len(data)}).fillna({"B": 0.0})
176
+
177
+ expected = pd.DataFrame({"A": data, "B": [0.0] * len(result)})
178
+
179
+ tm.assert_frame_equal(result, expected)
180
+
181
+ def test_use_inf_as_na_no_effect(self, data_missing):
182
+ ser = pd.Series(data_missing)
183
+ expected = ser.isna()
184
+ msg = "use_inf_as_na option is deprecated"
185
+ with tm.assert_produces_warning(FutureWarning, match=msg):
186
+ with pd.option_context("mode.use_inf_as_na", True):
187
+ result = ser.isna()
188
+ tm.assert_series_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/ops.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import final
4
+
5
+ import numpy as np
6
+ import pytest
7
+
8
+ from pandas._config import using_pyarrow_string_dtype
9
+
10
+ from pandas.core.dtypes.common import is_string_dtype
11
+
12
+ import pandas as pd
13
+ import pandas._testing as tm
14
+ from pandas.core import ops
15
+
16
+
17
+ class BaseOpsUtil:
18
+ series_scalar_exc: type[Exception] | None = TypeError
19
+ frame_scalar_exc: type[Exception] | None = TypeError
20
+ series_array_exc: type[Exception] | None = TypeError
21
+ divmod_exc: type[Exception] | None = TypeError
22
+
23
+ def _get_expected_exception(
24
+ self, op_name: str, obj, other
25
+ ) -> type[Exception] | None:
26
+ # Find the Exception, if any we expect to raise calling
27
+ # obj.__op_name__(other)
28
+
29
+ # The self.obj_bar_exc pattern isn't great in part because it can depend
30
+ # on op_name or dtypes, but we use it here for backward-compatibility.
31
+ if op_name in ["__divmod__", "__rdivmod__"]:
32
+ result = self.divmod_exc
33
+ elif isinstance(obj, pd.Series) and isinstance(other, pd.Series):
34
+ result = self.series_array_exc
35
+ elif isinstance(obj, pd.Series):
36
+ result = self.series_scalar_exc
37
+ else:
38
+ result = self.frame_scalar_exc
39
+
40
+ if using_pyarrow_string_dtype() and result is not None:
41
+ import pyarrow as pa
42
+
43
+ result = ( # type: ignore[assignment]
44
+ result,
45
+ pa.lib.ArrowNotImplementedError,
46
+ NotImplementedError,
47
+ )
48
+ return result
49
+
50
+ def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result):
51
+ # In _check_op we check that the result of a pointwise operation
52
+ # (found via _combine) matches the result of the vectorized
53
+ # operation obj.__op_name__(other).
54
+ # In some cases pandas dtype inference on the scalar result may not
55
+ # give a matching dtype even if both operations are behaving "correctly".
56
+ # In these cases, do extra required casting here.
57
+ return pointwise_result
58
+
59
+ def get_op_from_name(self, op_name: str):
60
+ return tm.get_op_from_name(op_name)
61
+
62
+ # Subclasses are not expected to need to override check_opname, _check_op,
63
+ # _check_divmod_op, or _combine.
64
+ # Ideally any relevant overriding can be done in _cast_pointwise_result,
65
+ # get_op_from_name, and the specification of `exc`. If you find a use
66
+ # case that still requires overriding _check_op or _combine, please let
67
+ # us know at github.com/pandas-dev/pandas/issues
68
+ @final
69
+ def check_opname(self, ser: pd.Series, op_name: str, other):
70
+ exc = self._get_expected_exception(op_name, ser, other)
71
+ op = self.get_op_from_name(op_name)
72
+
73
+ self._check_op(ser, op, other, op_name, exc)
74
+
75
+ # see comment on check_opname
76
+ @final
77
+ def _combine(self, obj, other, op):
78
+ if isinstance(obj, pd.DataFrame):
79
+ if len(obj.columns) != 1:
80
+ raise NotImplementedError
81
+ expected = obj.iloc[:, 0].combine(other, op).to_frame()
82
+ else:
83
+ expected = obj.combine(other, op)
84
+ return expected
85
+
86
+ # see comment on check_opname
87
+ @final
88
+ def _check_op(
89
+ self, ser: pd.Series, op, other, op_name: str, exc=NotImplementedError
90
+ ):
91
+ # Check that the Series/DataFrame arithmetic/comparison method matches
92
+ # the pointwise result from _combine.
93
+
94
+ if exc is None:
95
+ result = op(ser, other)
96
+ expected = self._combine(ser, other, op)
97
+ expected = self._cast_pointwise_result(op_name, ser, other, expected)
98
+ assert isinstance(result, type(ser))
99
+ tm.assert_equal(result, expected)
100
+ else:
101
+ with pytest.raises(exc):
102
+ op(ser, other)
103
+
104
+ # see comment on check_opname
105
+ @final
106
+ def _check_divmod_op(self, ser: pd.Series, op, other):
107
+ # check that divmod behavior matches behavior of floordiv+mod
108
+ if op is divmod:
109
+ exc = self._get_expected_exception("__divmod__", ser, other)
110
+ else:
111
+ exc = self._get_expected_exception("__rdivmod__", ser, other)
112
+ if exc is None:
113
+ result_div, result_mod = op(ser, other)
114
+ if op is divmod:
115
+ expected_div, expected_mod = ser // other, ser % other
116
+ else:
117
+ expected_div, expected_mod = other // ser, other % ser
118
+ tm.assert_series_equal(result_div, expected_div)
119
+ tm.assert_series_equal(result_mod, expected_mod)
120
+ else:
121
+ with pytest.raises(exc):
122
+ divmod(ser, other)
123
+
124
+
125
+ class BaseArithmeticOpsTests(BaseOpsUtil):
126
+ """
127
+ Various Series and DataFrame arithmetic ops methods.
128
+
129
+ Subclasses supporting various ops should set the class variables
130
+ to indicate that they support ops of that kind
131
+
132
+ * series_scalar_exc = TypeError
133
+ * frame_scalar_exc = TypeError
134
+ * series_array_exc = TypeError
135
+ * divmod_exc = TypeError
136
+ """
137
+
138
+ series_scalar_exc: type[Exception] | None = TypeError
139
+ frame_scalar_exc: type[Exception] | None = TypeError
140
+ series_array_exc: type[Exception] | None = TypeError
141
+ divmod_exc: type[Exception] | None = TypeError
142
+
143
+ def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
144
+ # series & scalar
145
+ if all_arithmetic_operators == "__rmod__" and is_string_dtype(data.dtype):
146
+ pytest.skip("Skip testing Python string formatting")
147
+
148
+ op_name = all_arithmetic_operators
149
+ ser = pd.Series(data)
150
+ self.check_opname(ser, op_name, ser.iloc[0])
151
+
152
+ def test_arith_frame_with_scalar(self, data, all_arithmetic_operators):
153
+ # frame & scalar
154
+ if all_arithmetic_operators == "__rmod__" and is_string_dtype(data.dtype):
155
+ pytest.skip("Skip testing Python string formatting")
156
+
157
+ op_name = all_arithmetic_operators
158
+ df = pd.DataFrame({"A": data})
159
+ self.check_opname(df, op_name, data[0])
160
+
161
+ def test_arith_series_with_array(self, data, all_arithmetic_operators):
162
+ # ndarray & other series
163
+ op_name = all_arithmetic_operators
164
+ ser = pd.Series(data)
165
+ self.check_opname(ser, op_name, pd.Series([ser.iloc[0]] * len(ser)))
166
+
167
+ def test_divmod(self, data):
168
+ ser = pd.Series(data)
169
+ self._check_divmod_op(ser, divmod, 1)
170
+ self._check_divmod_op(1, ops.rdivmod, ser)
171
+
172
+ def test_divmod_series_array(self, data, data_for_twos):
173
+ ser = pd.Series(data)
174
+ self._check_divmod_op(ser, divmod, data)
175
+
176
+ other = data_for_twos
177
+ self._check_divmod_op(other, ops.rdivmod, ser)
178
+
179
+ other = pd.Series(other)
180
+ self._check_divmod_op(other, ops.rdivmod, ser)
181
+
182
+ def test_add_series_with_extension_array(self, data):
183
+ # Check adding an ExtensionArray to a Series of the same dtype matches
184
+ # the behavior of adding the arrays directly and then wrapping in a
185
+ # Series.
186
+
187
+ ser = pd.Series(data)
188
+
189
+ exc = self._get_expected_exception("__add__", ser, data)
190
+ if exc is not None:
191
+ with pytest.raises(exc):
192
+ ser + data
193
+ return
194
+
195
+ result = ser + data
196
+ expected = pd.Series(data + data)
197
+ tm.assert_series_equal(result, expected)
198
+
199
+ @pytest.mark.parametrize("box", [pd.Series, pd.DataFrame, pd.Index])
200
+ @pytest.mark.parametrize(
201
+ "op_name",
202
+ [
203
+ x
204
+ for x in tm.arithmetic_dunder_methods + tm.comparison_dunder_methods
205
+ if not x.startswith("__r")
206
+ ],
207
+ )
208
+ def test_direct_arith_with_ndframe_returns_not_implemented(
209
+ self, data, box, op_name
210
+ ):
211
+ # EAs should return NotImplemented for ops with Series/DataFrame/Index
212
+ # Pandas takes care of unboxing the series and calling the EA's op.
213
+ other = box(data)
214
+
215
+ if hasattr(data, op_name):
216
+ result = getattr(data, op_name)(other)
217
+ assert result is NotImplemented
218
+
219
+
220
+ class BaseComparisonOpsTests(BaseOpsUtil):
221
+ """Various Series and DataFrame comparison ops methods."""
222
+
223
+ def _compare_other(self, ser: pd.Series, data, op, other):
224
+ if op.__name__ in ["eq", "ne"]:
225
+ # comparison should match point-wise comparisons
226
+ result = op(ser, other)
227
+ expected = ser.combine(other, op)
228
+ expected = self._cast_pointwise_result(op.__name__, ser, other, expected)
229
+ tm.assert_series_equal(result, expected)
230
+
231
+ else:
232
+ exc = None
233
+ try:
234
+ result = op(ser, other)
235
+ except Exception as err:
236
+ exc = err
237
+
238
+ if exc is None:
239
+ # Didn't error, then should match pointwise behavior
240
+ expected = ser.combine(other, op)
241
+ expected = self._cast_pointwise_result(
242
+ op.__name__, ser, other, expected
243
+ )
244
+ tm.assert_series_equal(result, expected)
245
+ else:
246
+ with pytest.raises(type(exc)):
247
+ ser.combine(other, op)
248
+
249
+ def test_compare_scalar(self, data, comparison_op):
250
+ ser = pd.Series(data)
251
+ self._compare_other(ser, data, comparison_op, 0)
252
+
253
+ def test_compare_array(self, data, comparison_op):
254
+ ser = pd.Series(data)
255
+ other = pd.Series([data[0]] * len(data), dtype=data.dtype)
256
+ self._compare_other(ser, data, comparison_op, other)
257
+
258
+
259
+ class BaseUnaryOpsTests(BaseOpsUtil):
260
+ def test_invert(self, data):
261
+ ser = pd.Series(data, name="name")
262
+ try:
263
+ # 10 is an arbitrary choice here, just avoid iterating over
264
+ # the whole array to trim test runtime
265
+ [~x for x in data[:10]]
266
+ except TypeError:
267
+ # scalars don't support invert -> we don't expect the vectorized
268
+ # operation to succeed
269
+ with pytest.raises(TypeError):
270
+ ~ser
271
+ with pytest.raises(TypeError):
272
+ ~data
273
+ else:
274
+ # Note we do not reuse the pointwise result to construct expected
275
+ # because python semantics for negating bools are weird see GH#54569
276
+ result = ~ser
277
+ expected = pd.Series(~data, name="name")
278
+ tm.assert_series_equal(result, expected)
279
+
280
+ @pytest.mark.parametrize("ufunc", [np.positive, np.negative, np.abs])
281
+ def test_unary_ufunc_dunder_equivalence(self, data, ufunc):
282
+ # the dunder __pos__ works if and only if np.positive works,
283
+ # same for __neg__/np.negative and __abs__/np.abs
284
+ attr = {np.positive: "__pos__", np.negative: "__neg__", np.abs: "__abs__"}[
285
+ ufunc
286
+ ]
287
+
288
+ exc = None
289
+ try:
290
+ result = getattr(data, attr)()
291
+ except Exception as err:
292
+ exc = err
293
+
294
+ # if __pos__ raised, then so should the ufunc
295
+ with pytest.raises((type(exc), TypeError)):
296
+ ufunc(data)
297
+ else:
298
+ alt = ufunc(data)
299
+ tm.assert_extension_array_equal(result, alt)
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/printing.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+
3
+ import pytest
4
+
5
+ import pandas as pd
6
+
7
+
8
+ class BasePrintingTests:
9
+ """Tests checking the formatting of your EA when printed."""
10
+
11
+ @pytest.mark.parametrize("size", ["big", "small"])
12
+ def test_array_repr(self, data, size):
13
+ if size == "small":
14
+ data = data[:5]
15
+ else:
16
+ data = type(data)._concat_same_type([data] * 5)
17
+
18
+ result = repr(data)
19
+ assert type(data).__name__ in result
20
+ assert f"Length: {len(data)}" in result
21
+ assert str(data.dtype) in result
22
+ if size == "big":
23
+ assert "..." in result
24
+
25
+ def test_array_repr_unicode(self, data):
26
+ result = str(data)
27
+ assert isinstance(result, str)
28
+
29
+ def test_series_repr(self, data):
30
+ ser = pd.Series(data)
31
+ assert data.dtype.name in repr(ser)
32
+
33
+ def test_dataframe_repr(self, data):
34
+ df = pd.DataFrame({"A": data})
35
+ repr(df)
36
+
37
+ def test_dtype_name_in_info(self, data):
38
+ buf = io.StringIO()
39
+ pd.DataFrame({"A": data}).info(buf=buf)
40
+ result = buf.getvalue()
41
+ assert data.dtype.name in result
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/reduce.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import final
2
+
3
+ import pytest
4
+
5
+ import pandas as pd
6
+ import pandas._testing as tm
7
+ from pandas.api.types import is_numeric_dtype
8
+
9
+
10
+ class BaseReduceTests:
11
+ """
12
+ Reduction specific tests. Generally these only
13
+ make sense for numeric/boolean operations.
14
+ """
15
+
16
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
17
+ # Specify if we expect this reduction to succeed.
18
+ return False
19
+
20
+ def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
21
+ # We perform the same operation on the np.float64 data and check
22
+ # that the results match. Override if you need to cast to something
23
+ # other than float64.
24
+ res_op = getattr(ser, op_name)
25
+
26
+ try:
27
+ alt = ser.astype("float64")
28
+ except (TypeError, ValueError):
29
+ # e.g. Interval can't cast (TypeError), StringArray can't cast
30
+ # (ValueError), so let's cast to object and do
31
+ # the reduction pointwise
32
+ alt = ser.astype(object)
33
+
34
+ exp_op = getattr(alt, op_name)
35
+ if op_name == "count":
36
+ result = res_op()
37
+ expected = exp_op()
38
+ else:
39
+ result = res_op(skipna=skipna)
40
+ expected = exp_op(skipna=skipna)
41
+ tm.assert_almost_equal(result, expected)
42
+
43
+ def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool):
44
+ # Find the expected dtype when the given reduction is done on a DataFrame
45
+ # column with this array. The default assumes float64-like behavior,
46
+ # i.e. retains the dtype.
47
+ return arr.dtype
48
+
49
+ # We anticipate that authors should not need to override check_reduce_frame,
50
+ # but should be able to do any necessary overriding in
51
+ # _get_expected_reduction_dtype. If you have a use case where this
52
+ # does not hold, please let us know at github.com/pandas-dev/pandas/issues.
53
+ @final
54
+ def check_reduce_frame(self, ser: pd.Series, op_name: str, skipna: bool):
55
+ # Check that the 2D reduction done in a DataFrame reduction "looks like"
56
+ # a wrapped version of the 1D reduction done by Series.
57
+ arr = ser.array
58
+ df = pd.DataFrame({"a": arr})
59
+
60
+ kwargs = {"ddof": 1} if op_name in ["var", "std"] else {}
61
+
62
+ cmp_dtype = self._get_expected_reduction_dtype(arr, op_name, skipna)
63
+
64
+ # The DataFrame method just calls arr._reduce with keepdims=True,
65
+ # so this first check is perfunctory.
66
+ result1 = arr._reduce(op_name, skipna=skipna, keepdims=True, **kwargs)
67
+ result2 = getattr(df, op_name)(skipna=skipna, **kwargs).array
68
+ tm.assert_extension_array_equal(result1, result2)
69
+
70
+ # Check that the 2D reduction looks like a wrapped version of the
71
+ # 1D reduction
72
+ if not skipna and ser.isna().any():
73
+ expected = pd.array([pd.NA], dtype=cmp_dtype)
74
+ else:
75
+ exp_value = getattr(ser.dropna(), op_name)()
76
+ expected = pd.array([exp_value], dtype=cmp_dtype)
77
+
78
+ tm.assert_extension_array_equal(result1, expected)
79
+
80
+ @pytest.mark.parametrize("skipna", [True, False])
81
+ def test_reduce_series_boolean(self, data, all_boolean_reductions, skipna):
82
+ op_name = all_boolean_reductions
83
+ ser = pd.Series(data)
84
+
85
+ if not self._supports_reduction(ser, op_name):
86
+ # TODO: the message being checked here isn't actually checking anything
87
+ msg = (
88
+ "[Cc]annot perform|Categorical is not ordered for operation|"
89
+ "does not support reduction|"
90
+ )
91
+
92
+ with pytest.raises(TypeError, match=msg):
93
+ getattr(ser, op_name)(skipna=skipna)
94
+
95
+ else:
96
+ self.check_reduce(ser, op_name, skipna)
97
+
98
+ @pytest.mark.filterwarnings("ignore::RuntimeWarning")
99
+ @pytest.mark.parametrize("skipna", [True, False])
100
+ def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna):
101
+ op_name = all_numeric_reductions
102
+ ser = pd.Series(data)
103
+
104
+ if not self._supports_reduction(ser, op_name):
105
+ # TODO: the message being checked here isn't actually checking anything
106
+ msg = (
107
+ "[Cc]annot perform|Categorical is not ordered for operation|"
108
+ "does not support reduction|"
109
+ )
110
+
111
+ with pytest.raises(TypeError, match=msg):
112
+ getattr(ser, op_name)(skipna=skipna)
113
+
114
+ else:
115
+ # min/max with empty produce numpy warnings
116
+ self.check_reduce(ser, op_name, skipna)
117
+
118
+ @pytest.mark.parametrize("skipna", [True, False])
119
+ def test_reduce_frame(self, data, all_numeric_reductions, skipna):
120
+ op_name = all_numeric_reductions
121
+ ser = pd.Series(data)
122
+ if not is_numeric_dtype(ser.dtype):
123
+ pytest.skip(f"{ser.dtype} is not numeric dtype")
124
+
125
+ if op_name in ["count", "kurt", "sem"]:
126
+ pytest.skip(f"{op_name} not an array method")
127
+
128
+ if not self._supports_reduction(ser, op_name):
129
+ pytest.skip(f"Reduction {op_name} not supported for this dtype")
130
+
131
+ self.check_reduce_frame(ser, op_name, skipna)
132
+
133
+
134
+ # TODO(3.0): remove BaseNoReduceTests, BaseNumericReduceTests,
135
+ # BaseBooleanReduceTests
136
+ class BaseNoReduceTests(BaseReduceTests):
137
+ """we don't define any reductions"""
138
+
139
+
140
+ class BaseNumericReduceTests(BaseReduceTests):
141
+ # For backward compatibility only, this only runs the numeric reductions
142
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
143
+ if op_name in ["any", "all"]:
144
+ pytest.skip("These are tested in BaseBooleanReduceTests")
145
+ return True
146
+
147
+
148
+ class BaseBooleanReduceTests(BaseReduceTests):
149
+ # For backward compatibility only, this only runs the numeric reductions
150
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
151
+ if op_name not in ["any", "all"]:
152
+ pytest.skip("These are tested in BaseNumericReduceTests")
153
+ return True
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/reshaping.py ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.api.extensions import ExtensionArray
9
+ from pandas.core.internals.blocks import EABackedBlock
10
+
11
+
12
+ class BaseReshapingTests:
13
+ """Tests for reshaping and concatenation."""
14
+
15
+ @pytest.mark.parametrize("in_frame", [True, False])
16
+ def test_concat(self, data, in_frame):
17
+ wrapped = pd.Series(data)
18
+ if in_frame:
19
+ wrapped = pd.DataFrame(wrapped)
20
+ result = pd.concat([wrapped, wrapped], ignore_index=True)
21
+
22
+ assert len(result) == len(data) * 2
23
+
24
+ if in_frame:
25
+ dtype = result.dtypes[0]
26
+ else:
27
+ dtype = result.dtype
28
+
29
+ assert dtype == data.dtype
30
+ if hasattr(result._mgr, "blocks"):
31
+ assert isinstance(result._mgr.blocks[0], EABackedBlock)
32
+ assert isinstance(result._mgr.arrays[0], ExtensionArray)
33
+
34
+ @pytest.mark.parametrize("in_frame", [True, False])
35
+ def test_concat_all_na_block(self, data_missing, in_frame):
36
+ valid_block = pd.Series(data_missing.take([1, 1]), index=[0, 1])
37
+ na_block = pd.Series(data_missing.take([0, 0]), index=[2, 3])
38
+ if in_frame:
39
+ valid_block = pd.DataFrame({"a": valid_block})
40
+ na_block = pd.DataFrame({"a": na_block})
41
+ result = pd.concat([valid_block, na_block])
42
+ if in_frame:
43
+ expected = pd.DataFrame({"a": data_missing.take([1, 1, 0, 0])})
44
+ tm.assert_frame_equal(result, expected)
45
+ else:
46
+ expected = pd.Series(data_missing.take([1, 1, 0, 0]))
47
+ tm.assert_series_equal(result, expected)
48
+
49
+ def test_concat_mixed_dtypes(self, data):
50
+ # https://github.com/pandas-dev/pandas/issues/20762
51
+ df1 = pd.DataFrame({"A": data[:3]})
52
+ df2 = pd.DataFrame({"A": [1, 2, 3]})
53
+ df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category")
54
+ dfs = [df1, df2, df3]
55
+
56
+ # dataframes
57
+ result = pd.concat(dfs)
58
+ expected = pd.concat([x.astype(object) for x in dfs])
59
+ tm.assert_frame_equal(result, expected)
60
+
61
+ # series
62
+ result = pd.concat([x["A"] for x in dfs])
63
+ expected = pd.concat([x["A"].astype(object) for x in dfs])
64
+ tm.assert_series_equal(result, expected)
65
+
66
+ # simple test for just EA and one other
67
+ result = pd.concat([df1, df2.astype(object)])
68
+ expected = pd.concat([df1.astype("object"), df2.astype("object")])
69
+ tm.assert_frame_equal(result, expected)
70
+
71
+ result = pd.concat([df1["A"], df2["A"].astype(object)])
72
+ expected = pd.concat([df1["A"].astype("object"), df2["A"].astype("object")])
73
+ tm.assert_series_equal(result, expected)
74
+
75
+ def test_concat_columns(self, data, na_value):
76
+ df1 = pd.DataFrame({"A": data[:3]})
77
+ df2 = pd.DataFrame({"B": [1, 2, 3]})
78
+
79
+ expected = pd.DataFrame({"A": data[:3], "B": [1, 2, 3]})
80
+ result = pd.concat([df1, df2], axis=1)
81
+ tm.assert_frame_equal(result, expected)
82
+ result = pd.concat([df1["A"], df2["B"]], axis=1)
83
+ tm.assert_frame_equal(result, expected)
84
+
85
+ # non-aligned
86
+ df2 = pd.DataFrame({"B": [1, 2, 3]}, index=[1, 2, 3])
87
+ expected = pd.DataFrame(
88
+ {
89
+ "A": data._from_sequence(list(data[:3]) + [na_value], dtype=data.dtype),
90
+ "B": [np.nan, 1, 2, 3],
91
+ }
92
+ )
93
+
94
+ result = pd.concat([df1, df2], axis=1)
95
+ tm.assert_frame_equal(result, expected)
96
+ result = pd.concat([df1["A"], df2["B"]], axis=1)
97
+ tm.assert_frame_equal(result, expected)
98
+
99
+ def test_concat_extension_arrays_copy_false(self, data, na_value):
100
+ # GH 20756
101
+ df1 = pd.DataFrame({"A": data[:3]})
102
+ df2 = pd.DataFrame({"B": data[3:7]})
103
+ expected = pd.DataFrame(
104
+ {
105
+ "A": data._from_sequence(list(data[:3]) + [na_value], dtype=data.dtype),
106
+ "B": data[3:7],
107
+ }
108
+ )
109
+ result = pd.concat([df1, df2], axis=1, copy=False)
110
+ tm.assert_frame_equal(result, expected)
111
+
112
+ def test_concat_with_reindex(self, data):
113
+ # GH-33027
114
+ a = pd.DataFrame({"a": data[:5]})
115
+ b = pd.DataFrame({"b": data[:5]})
116
+ result = pd.concat([a, b], ignore_index=True)
117
+ expected = pd.DataFrame(
118
+ {
119
+ "a": data.take(list(range(5)) + ([-1] * 5), allow_fill=True),
120
+ "b": data.take(([-1] * 5) + list(range(5)), allow_fill=True),
121
+ }
122
+ )
123
+ tm.assert_frame_equal(result, expected)
124
+
125
+ def test_align(self, data, na_value):
126
+ a = data[:3]
127
+ b = data[2:5]
128
+ r1, r2 = pd.Series(a).align(pd.Series(b, index=[1, 2, 3]))
129
+
130
+ # Assumes that the ctor can take a list of scalars of the type
131
+ e1 = pd.Series(data._from_sequence(list(a) + [na_value], dtype=data.dtype))
132
+ e2 = pd.Series(data._from_sequence([na_value] + list(b), dtype=data.dtype))
133
+ tm.assert_series_equal(r1, e1)
134
+ tm.assert_series_equal(r2, e2)
135
+
136
+ def test_align_frame(self, data, na_value):
137
+ a = data[:3]
138
+ b = data[2:5]
139
+ r1, r2 = pd.DataFrame({"A": a}).align(pd.DataFrame({"A": b}, index=[1, 2, 3]))
140
+
141
+ # Assumes that the ctor can take a list of scalars of the type
142
+ e1 = pd.DataFrame(
143
+ {"A": data._from_sequence(list(a) + [na_value], dtype=data.dtype)}
144
+ )
145
+ e2 = pd.DataFrame(
146
+ {"A": data._from_sequence([na_value] + list(b), dtype=data.dtype)}
147
+ )
148
+ tm.assert_frame_equal(r1, e1)
149
+ tm.assert_frame_equal(r2, e2)
150
+
151
+ def test_align_series_frame(self, data, na_value):
152
+ # https://github.com/pandas-dev/pandas/issues/20576
153
+ ser = pd.Series(data, name="a")
154
+ df = pd.DataFrame({"col": np.arange(len(ser) + 1)})
155
+ r1, r2 = ser.align(df)
156
+
157
+ e1 = pd.Series(
158
+ data._from_sequence(list(data) + [na_value], dtype=data.dtype),
159
+ name=ser.name,
160
+ )
161
+
162
+ tm.assert_series_equal(r1, e1)
163
+ tm.assert_frame_equal(r2, df)
164
+
165
+ def test_set_frame_expand_regular_with_extension(self, data):
166
+ df = pd.DataFrame({"A": [1] * len(data)})
167
+ df["B"] = data
168
+ expected = pd.DataFrame({"A": [1] * len(data), "B": data})
169
+ tm.assert_frame_equal(df, expected)
170
+
171
+ def test_set_frame_expand_extension_with_regular(self, data):
172
+ df = pd.DataFrame({"A": data})
173
+ df["B"] = [1] * len(data)
174
+ expected = pd.DataFrame({"A": data, "B": [1] * len(data)})
175
+ tm.assert_frame_equal(df, expected)
176
+
177
+ def test_set_frame_overwrite_object(self, data):
178
+ # https://github.com/pandas-dev/pandas/issues/20555
179
+ df = pd.DataFrame({"A": [1] * len(data)}, dtype=object)
180
+ df["A"] = data
181
+ assert df.dtypes["A"] == data.dtype
182
+
183
+ def test_merge(self, data, na_value):
184
+ # GH-20743
185
+ df1 = pd.DataFrame({"ext": data[:3], "int1": [1, 2, 3], "key": [0, 1, 2]})
186
+ df2 = pd.DataFrame({"int2": [1, 2, 3, 4], "key": [0, 0, 1, 3]})
187
+
188
+ res = pd.merge(df1, df2)
189
+ exp = pd.DataFrame(
190
+ {
191
+ "int1": [1, 1, 2],
192
+ "int2": [1, 2, 3],
193
+ "key": [0, 0, 1],
194
+ "ext": data._from_sequence(
195
+ [data[0], data[0], data[1]], dtype=data.dtype
196
+ ),
197
+ }
198
+ )
199
+ tm.assert_frame_equal(res, exp[["ext", "int1", "key", "int2"]])
200
+
201
+ res = pd.merge(df1, df2, how="outer")
202
+ exp = pd.DataFrame(
203
+ {
204
+ "int1": [1, 1, 2, 3, np.nan],
205
+ "int2": [1, 2, 3, np.nan, 4],
206
+ "key": [0, 0, 1, 2, 3],
207
+ "ext": data._from_sequence(
208
+ [data[0], data[0], data[1], data[2], na_value], dtype=data.dtype
209
+ ),
210
+ }
211
+ )
212
+ tm.assert_frame_equal(res, exp[["ext", "int1", "key", "int2"]])
213
+
214
+ def test_merge_on_extension_array(self, data):
215
+ # GH 23020
216
+ a, b = data[:2]
217
+ key = type(data)._from_sequence([a, b], dtype=data.dtype)
218
+
219
+ df = pd.DataFrame({"key": key, "val": [1, 2]})
220
+ result = pd.merge(df, df, on="key")
221
+ expected = pd.DataFrame({"key": key, "val_x": [1, 2], "val_y": [1, 2]})
222
+ tm.assert_frame_equal(result, expected)
223
+
224
+ # order
225
+ result = pd.merge(df.iloc[[1, 0]], df, on="key")
226
+ expected = expected.iloc[[1, 0]].reset_index(drop=True)
227
+ tm.assert_frame_equal(result, expected)
228
+
229
+ def test_merge_on_extension_array_duplicates(self, data):
230
+ # GH 23020
231
+ a, b = data[:2]
232
+ key = type(data)._from_sequence([a, b, a], dtype=data.dtype)
233
+ df1 = pd.DataFrame({"key": key, "val": [1, 2, 3]})
234
+ df2 = pd.DataFrame({"key": key, "val": [1, 2, 3]})
235
+
236
+ result = pd.merge(df1, df2, on="key")
237
+ expected = pd.DataFrame(
238
+ {
239
+ "key": key.take([0, 0, 1, 2, 2]),
240
+ "val_x": [1, 1, 2, 3, 3],
241
+ "val_y": [1, 3, 2, 1, 3],
242
+ }
243
+ )
244
+ tm.assert_frame_equal(result, expected)
245
+
246
+ @pytest.mark.filterwarnings(
247
+ "ignore:The previous implementation of stack is deprecated"
248
+ )
249
+ @pytest.mark.parametrize(
250
+ "columns",
251
+ [
252
+ ["A", "B"],
253
+ pd.MultiIndex.from_tuples(
254
+ [("A", "a"), ("A", "b")], names=["outer", "inner"]
255
+ ),
256
+ ],
257
+ )
258
+ @pytest.mark.parametrize("future_stack", [True, False])
259
+ def test_stack(self, data, columns, future_stack):
260
+ df = pd.DataFrame({"A": data[:5], "B": data[:5]})
261
+ df.columns = columns
262
+ result = df.stack(future_stack=future_stack)
263
+ expected = df.astype(object).stack(future_stack=future_stack)
264
+ # we need a second astype(object), in case the constructor inferred
265
+ # object -> specialized, as is done for period.
266
+ expected = expected.astype(object)
267
+
268
+ if isinstance(expected, pd.Series):
269
+ assert result.dtype == df.iloc[:, 0].dtype
270
+ else:
271
+ assert all(result.dtypes == df.iloc[:, 0].dtype)
272
+
273
+ result = result.astype(object)
274
+ tm.assert_equal(result, expected)
275
+
276
+ @pytest.mark.parametrize(
277
+ "index",
278
+ [
279
+ # Two levels, uniform.
280
+ pd.MultiIndex.from_product(([["A", "B"], ["a", "b"]]), names=["a", "b"]),
281
+ # non-uniform
282
+ pd.MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "b")]),
283
+ # three levels, non-uniform
284
+ pd.MultiIndex.from_product([("A", "B"), ("a", "b", "c"), (0, 1, 2)]),
285
+ pd.MultiIndex.from_tuples(
286
+ [
287
+ ("A", "a", 1),
288
+ ("A", "b", 0),
289
+ ("A", "a", 0),
290
+ ("B", "a", 0),
291
+ ("B", "c", 1),
292
+ ]
293
+ ),
294
+ ],
295
+ )
296
+ @pytest.mark.parametrize("obj", ["series", "frame"])
297
+ def test_unstack(self, data, index, obj):
298
+ data = data[: len(index)]
299
+ if obj == "series":
300
+ ser = pd.Series(data, index=index)
301
+ else:
302
+ ser = pd.DataFrame({"A": data, "B": data}, index=index)
303
+
304
+ n = index.nlevels
305
+ levels = list(range(n))
306
+ # [0, 1, 2]
307
+ # [(0,), (1,), (2,), (0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
308
+ combinations = itertools.chain.from_iterable(
309
+ itertools.permutations(levels, i) for i in range(1, n)
310
+ )
311
+
312
+ for level in combinations:
313
+ result = ser.unstack(level=level)
314
+ assert all(
315
+ isinstance(result[col].array, type(data)) for col in result.columns
316
+ )
317
+
318
+ if obj == "series":
319
+ # We should get the same result with to_frame+unstack+droplevel
320
+ df = ser.to_frame()
321
+
322
+ alt = df.unstack(level=level).droplevel(0, axis=1)
323
+ tm.assert_frame_equal(result, alt)
324
+
325
+ obj_ser = ser.astype(object)
326
+
327
+ expected = obj_ser.unstack(level=level, fill_value=data.dtype.na_value)
328
+ if obj == "series":
329
+ assert (expected.dtypes == object).all()
330
+
331
+ result = result.astype(object)
332
+ tm.assert_frame_equal(result, expected)
333
+
334
+ def test_ravel(self, data):
335
+ # as long as EA is 1D-only, ravel is a no-op
336
+ result = data.ravel()
337
+ assert type(result) == type(data)
338
+
339
+ if data.dtype._is_immutable:
340
+ pytest.skip(f"test_ravel assumes mutability and {data.dtype} is immutable")
341
+
342
+ # Check that we have a view, not a copy
343
+ result[0] = result[1]
344
+ assert data[0] == data[1]
345
+
346
+ def test_transpose(self, data):
347
+ result = data.transpose()
348
+ assert type(result) == type(data)
349
+
350
+ # check we get a new object
351
+ assert result is not data
352
+
353
+ # If we ever _did_ support 2D, shape should be reversed
354
+ assert result.shape == data.shape[::-1]
355
+
356
+ if data.dtype._is_immutable:
357
+ pytest.skip(
358
+ f"test_transpose assumes mutability and {data.dtype} is immutable"
359
+ )
360
+
361
+ # Check that we have a view, not a copy
362
+ result[0] = result[1]
363
+ assert data[0] == data[1]
364
+
365
+ def test_transpose_frame(self, data):
366
+ df = pd.DataFrame({"A": data[:4], "B": data[:4]}, index=["a", "b", "c", "d"])
367
+ result = df.T
368
+ expected = pd.DataFrame(
369
+ {
370
+ "a": type(data)._from_sequence([data[0]] * 2, dtype=data.dtype),
371
+ "b": type(data)._from_sequence([data[1]] * 2, dtype=data.dtype),
372
+ "c": type(data)._from_sequence([data[2]] * 2, dtype=data.dtype),
373
+ "d": type(data)._from_sequence([data[3]] * 2, dtype=data.dtype),
374
+ },
375
+ index=["A", "B"],
376
+ )
377
+ tm.assert_frame_equal(result, expected)
378
+ tm.assert_frame_equal(np.transpose(np.transpose(df)), df)
379
+ tm.assert_frame_equal(np.transpose(np.transpose(df[["A"]])), df[["A"]])
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/base/setitem.py ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ class BaseSetitemTests:
9
+ @pytest.fixture(
10
+ params=[
11
+ lambda x: x.index,
12
+ lambda x: list(x.index),
13
+ lambda x: slice(None),
14
+ lambda x: slice(0, len(x)),
15
+ lambda x: range(len(x)),
16
+ lambda x: list(range(len(x))),
17
+ lambda x: np.ones(len(x), dtype=bool),
18
+ ],
19
+ ids=[
20
+ "index",
21
+ "list[index]",
22
+ "null_slice",
23
+ "full_slice",
24
+ "range",
25
+ "list(range)",
26
+ "mask",
27
+ ],
28
+ )
29
+ def full_indexer(self, request):
30
+ """
31
+ Fixture for an indexer to pass to obj.loc to get/set the full length of the
32
+ object.
33
+
34
+ In some cases, assumes that obj.index is the default RangeIndex.
35
+ """
36
+ return request.param
37
+
38
+ @pytest.fixture(autouse=True)
39
+ def skip_if_immutable(self, dtype, request):
40
+ if dtype._is_immutable:
41
+ node = request.node
42
+ if node.name.split("[")[0] == "test_is_immutable":
43
+ # This fixture is auto-used, but we want to not-skip
44
+ # test_is_immutable.
45
+ return
46
+
47
+ # When BaseSetitemTests is mixed into ExtensionTests, we only
48
+ # want this fixture to operate on the tests defined in this
49
+ # class/file.
50
+ defined_in = node.function.__qualname__.split(".")[0]
51
+ if defined_in == "BaseSetitemTests":
52
+ pytest.skip("__setitem__ test not applicable with immutable dtype")
53
+
54
+ def test_is_immutable(self, data):
55
+ if data.dtype._is_immutable:
56
+ with pytest.raises(TypeError):
57
+ data[0] = data[0]
58
+ else:
59
+ data[0] = data[1]
60
+ assert data[0] == data[1]
61
+
62
+ def test_setitem_scalar_series(self, data, box_in_series):
63
+ if box_in_series:
64
+ data = pd.Series(data)
65
+ data[0] = data[1]
66
+ assert data[0] == data[1]
67
+
68
+ def test_setitem_sequence(self, data, box_in_series):
69
+ if box_in_series:
70
+ data = pd.Series(data)
71
+ original = data.copy()
72
+
73
+ data[[0, 1]] = [data[1], data[0]]
74
+ assert data[0] == original[1]
75
+ assert data[1] == original[0]
76
+
77
+ def test_setitem_sequence_mismatched_length_raises(self, data, as_array):
78
+ ser = pd.Series(data)
79
+ original = ser.copy()
80
+ value = [data[0]]
81
+ if as_array:
82
+ value = data._from_sequence(value, dtype=data.dtype)
83
+
84
+ xpr = "cannot set using a {} indexer with a different length"
85
+ with pytest.raises(ValueError, match=xpr.format("list-like")):
86
+ ser[[0, 1]] = value
87
+ # Ensure no modifications made before the exception
88
+ tm.assert_series_equal(ser, original)
89
+
90
+ with pytest.raises(ValueError, match=xpr.format("slice")):
91
+ ser[slice(3)] = value
92
+ tm.assert_series_equal(ser, original)
93
+
94
+ def test_setitem_empty_indexer(self, data, box_in_series):
95
+ if box_in_series:
96
+ data = pd.Series(data)
97
+ original = data.copy()
98
+ data[np.array([], dtype=int)] = []
99
+ tm.assert_equal(data, original)
100
+
101
+ def test_setitem_sequence_broadcasts(self, data, box_in_series):
102
+ if box_in_series:
103
+ data = pd.Series(data)
104
+ data[[0, 1]] = data[2]
105
+ assert data[0] == data[2]
106
+ assert data[1] == data[2]
107
+
108
+ @pytest.mark.parametrize("setter", ["loc", "iloc"])
109
+ def test_setitem_scalar(self, data, setter):
110
+ arr = pd.Series(data)
111
+ setter = getattr(arr, setter)
112
+ setter[0] = data[1]
113
+ assert arr[0] == data[1]
114
+
115
+ def test_setitem_loc_scalar_mixed(self, data):
116
+ df = pd.DataFrame({"A": np.arange(len(data)), "B": data})
117
+ df.loc[0, "B"] = data[1]
118
+ assert df.loc[0, "B"] == data[1]
119
+
120
+ def test_setitem_loc_scalar_single(self, data):
121
+ df = pd.DataFrame({"B": data})
122
+ df.loc[10, "B"] = data[1]
123
+ assert df.loc[10, "B"] == data[1]
124
+
125
+ def test_setitem_loc_scalar_multiple_homogoneous(self, data):
126
+ df = pd.DataFrame({"A": data, "B": data})
127
+ df.loc[10, "B"] = data[1]
128
+ assert df.loc[10, "B"] == data[1]
129
+
130
+ def test_setitem_iloc_scalar_mixed(self, data):
131
+ df = pd.DataFrame({"A": np.arange(len(data)), "B": data})
132
+ df.iloc[0, 1] = data[1]
133
+ assert df.loc[0, "B"] == data[1]
134
+
135
+ def test_setitem_iloc_scalar_single(self, data):
136
+ df = pd.DataFrame({"B": data})
137
+ df.iloc[10, 0] = data[1]
138
+ assert df.loc[10, "B"] == data[1]
139
+
140
+ def test_setitem_iloc_scalar_multiple_homogoneous(self, data):
141
+ df = pd.DataFrame({"A": data, "B": data})
142
+ df.iloc[10, 1] = data[1]
143
+ assert df.loc[10, "B"] == data[1]
144
+
145
+ @pytest.mark.parametrize(
146
+ "mask",
147
+ [
148
+ np.array([True, True, True, False, False]),
149
+ pd.array([True, True, True, False, False], dtype="boolean"),
150
+ pd.array([True, True, True, pd.NA, pd.NA], dtype="boolean"),
151
+ ],
152
+ ids=["numpy-array", "boolean-array", "boolean-array-na"],
153
+ )
154
+ def test_setitem_mask(self, data, mask, box_in_series):
155
+ arr = data[:5].copy()
156
+ expected = arr.take([0, 0, 0, 3, 4])
157
+ if box_in_series:
158
+ arr = pd.Series(arr)
159
+ expected = pd.Series(expected)
160
+ arr[mask] = data[0]
161
+ tm.assert_equal(expected, arr)
162
+
163
+ def test_setitem_mask_raises(self, data, box_in_series):
164
+ # wrong length
165
+ mask = np.array([True, False])
166
+
167
+ if box_in_series:
168
+ data = pd.Series(data)
169
+
170
+ with pytest.raises(IndexError, match="wrong length"):
171
+ data[mask] = data[0]
172
+
173
+ mask = pd.array(mask, dtype="boolean")
174
+ with pytest.raises(IndexError, match="wrong length"):
175
+ data[mask] = data[0]
176
+
177
+ def test_setitem_mask_boolean_array_with_na(self, data, box_in_series):
178
+ mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
179
+ mask[:3] = True
180
+ mask[3:5] = pd.NA
181
+
182
+ if box_in_series:
183
+ data = pd.Series(data)
184
+
185
+ data[mask] = data[0]
186
+
187
+ assert (data[:3] == data[0]).all()
188
+
189
+ @pytest.mark.parametrize(
190
+ "idx",
191
+ [[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
192
+ ids=["list", "integer-array", "numpy-array"],
193
+ )
194
+ def test_setitem_integer_array(self, data, idx, box_in_series):
195
+ arr = data[:5].copy()
196
+ expected = data.take([0, 0, 0, 3, 4])
197
+
198
+ if box_in_series:
199
+ arr = pd.Series(arr)
200
+ expected = pd.Series(expected)
201
+
202
+ arr[idx] = arr[0]
203
+ tm.assert_equal(arr, expected)
204
+
205
+ @pytest.mark.parametrize(
206
+ "idx, box_in_series",
207
+ [
208
+ ([0, 1, 2, pd.NA], False),
209
+ pytest.param(
210
+ [0, 1, 2, pd.NA], True, marks=pytest.mark.xfail(reason="GH-31948")
211
+ ),
212
+ (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
213
+ (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
214
+ ],
215
+ ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
216
+ )
217
+ def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
218
+ arr = data.copy()
219
+
220
+ # TODO(xfail) this raises KeyError about labels not found (it tries label-based)
221
+ # for list of labels with Series
222
+ if box_in_series:
223
+ arr = pd.Series(data, index=[chr(100 + i) for i in range(len(data))])
224
+
225
+ msg = "Cannot index with an integer indexer containing NA values"
226
+ with pytest.raises(ValueError, match=msg):
227
+ arr[idx] = arr[0]
228
+
229
+ @pytest.mark.parametrize("as_callable", [True, False])
230
+ @pytest.mark.parametrize("setter", ["loc", None])
231
+ def test_setitem_mask_aligned(self, data, as_callable, setter):
232
+ ser = pd.Series(data)
233
+ mask = np.zeros(len(data), dtype=bool)
234
+ mask[:2] = True
235
+
236
+ if as_callable:
237
+ mask2 = lambda x: mask
238
+ else:
239
+ mask2 = mask
240
+
241
+ if setter:
242
+ # loc
243
+ target = getattr(ser, setter)
244
+ else:
245
+ # Series.__setitem__
246
+ target = ser
247
+
248
+ target[mask2] = data[5:7]
249
+
250
+ ser[mask2] = data[5:7]
251
+ assert ser[0] == data[5]
252
+ assert ser[1] == data[6]
253
+
254
+ @pytest.mark.parametrize("setter", ["loc", None])
255
+ def test_setitem_mask_broadcast(self, data, setter):
256
+ ser = pd.Series(data)
257
+ mask = np.zeros(len(data), dtype=bool)
258
+ mask[:2] = True
259
+
260
+ if setter: # loc
261
+ target = getattr(ser, setter)
262
+ else: # __setitem__
263
+ target = ser
264
+
265
+ target[mask] = data[10]
266
+ assert ser[0] == data[10]
267
+ assert ser[1] == data[10]
268
+
269
+ def test_setitem_expand_columns(self, data):
270
+ df = pd.DataFrame({"A": data})
271
+ result = df.copy()
272
+ result["B"] = 1
273
+ expected = pd.DataFrame({"A": data, "B": [1] * len(data)})
274
+ tm.assert_frame_equal(result, expected)
275
+
276
+ result = df.copy()
277
+ result.loc[:, "B"] = 1
278
+ tm.assert_frame_equal(result, expected)
279
+
280
+ # overwrite with new type
281
+ result["B"] = data
282
+ expected = pd.DataFrame({"A": data, "B": data})
283
+ tm.assert_frame_equal(result, expected)
284
+
285
+ def test_setitem_expand_with_extension(self, data):
286
+ df = pd.DataFrame({"A": [1] * len(data)})
287
+ result = df.copy()
288
+ result["B"] = data
289
+ expected = pd.DataFrame({"A": [1] * len(data), "B": data})
290
+ tm.assert_frame_equal(result, expected)
291
+
292
+ result = df.copy()
293
+ result.loc[:, "B"] = data
294
+ tm.assert_frame_equal(result, expected)
295
+
296
+ def test_setitem_frame_invalid_length(self, data):
297
+ df = pd.DataFrame({"A": [1] * len(data)})
298
+ xpr = (
299
+ rf"Length of values \({len(data[:5])}\) "
300
+ rf"does not match length of index \({len(df)}\)"
301
+ )
302
+ with pytest.raises(ValueError, match=xpr):
303
+ df["B"] = data[:5]
304
+
305
+ def test_setitem_tuple_index(self, data):
306
+ ser = pd.Series(data[:2], index=[(0, 0), (0, 1)])
307
+ expected = pd.Series(data.take([1, 1]), index=ser.index)
308
+ ser[(0, 0)] = data[1]
309
+ tm.assert_series_equal(ser, expected)
310
+
311
+ def test_setitem_slice(self, data, box_in_series):
312
+ arr = data[:5].copy()
313
+ expected = data.take([0, 0, 0, 3, 4])
314
+ if box_in_series:
315
+ arr = pd.Series(arr)
316
+ expected = pd.Series(expected)
317
+
318
+ arr[:3] = data[0]
319
+ tm.assert_equal(arr, expected)
320
+
321
+ def test_setitem_loc_iloc_slice(self, data):
322
+ arr = data[:5].copy()
323
+ s = pd.Series(arr, index=["a", "b", "c", "d", "e"])
324
+ expected = pd.Series(data.take([0, 0, 0, 3, 4]), index=s.index)
325
+
326
+ result = s.copy()
327
+ result.iloc[:3] = data[0]
328
+ tm.assert_equal(result, expected)
329
+
330
+ result = s.copy()
331
+ result.loc[:"c"] = data[0]
332
+ tm.assert_equal(result, expected)
333
+
334
+ def test_setitem_slice_mismatch_length_raises(self, data):
335
+ arr = data[:5]
336
+ with pytest.raises(ValueError):
337
+ arr[:1] = arr[:2]
338
+
339
+ def test_setitem_slice_array(self, data):
340
+ arr = data[:5].copy()
341
+ arr[:5] = data[-5:]
342
+ tm.assert_extension_array_equal(arr, data[-5:])
343
+
344
+ def test_setitem_scalar_key_sequence_raise(self, data):
345
+ arr = data[:5].copy()
346
+ with pytest.raises(ValueError):
347
+ arr[0] = arr[[0, 1]]
348
+
349
+ def test_setitem_preserves_views(self, data):
350
+ # GH#28150 setitem shouldn't swap the underlying data
351
+ view1 = data.view()
352
+ view2 = data[:]
353
+
354
+ data[0] = data[1]
355
+ assert view1[0] == data[1]
356
+ assert view2[0] == data[1]
357
+
358
+ def test_setitem_with_expansion_dataframe_column(self, data, full_indexer):
359
+ # https://github.com/pandas-dev/pandas/issues/32395
360
+ df = expected = pd.DataFrame({0: pd.Series(data)})
361
+ result = pd.DataFrame(index=df.index)
362
+
363
+ key = full_indexer(df)
364
+ result.loc[key, 0] = df[0]
365
+
366
+ tm.assert_frame_equal(result, expected)
367
+
368
+ def test_setitem_with_expansion_row(self, data, na_value):
369
+ df = pd.DataFrame({"data": data[:1]})
370
+
371
+ df.loc[1, "data"] = data[1]
372
+ expected = pd.DataFrame({"data": data[:2]})
373
+ tm.assert_frame_equal(df, expected)
374
+
375
+ # https://github.com/pandas-dev/pandas/issues/47284
376
+ df.loc[2, "data"] = na_value
377
+ expected = pd.DataFrame(
378
+ {"data": pd.Series([data[0], data[1], na_value], dtype=data.dtype)}
379
+ )
380
+ tm.assert_frame_equal(df, expected)
381
+
382
+ def test_setitem_series(self, data, full_indexer):
383
+ # https://github.com/pandas-dev/pandas/issues/32395
384
+ ser = pd.Series(data, name="data")
385
+ result = pd.Series(index=ser.index, dtype=object, name="data")
386
+
387
+ # because result has object dtype, the attempt to do setting inplace
388
+ # is successful, and object dtype is retained
389
+ key = full_indexer(ser)
390
+ result.loc[key] = ser
391
+
392
+ expected = pd.Series(
393
+ data.astype(object), index=ser.index, name="data", dtype=object
394
+ )
395
+ tm.assert_series_equal(result, expected)
396
+
397
+ def test_setitem_frame_2d_values(self, data):
398
+ # GH#44514
399
+ df = pd.DataFrame({"A": data})
400
+
401
+ # Avoiding using_array_manager fixture
402
+ # https://github.com/pandas-dev/pandas/pull/44514#discussion_r754002410
403
+ using_array_manager = isinstance(df._mgr, pd.core.internals.ArrayManager)
404
+ using_copy_on_write = pd.options.mode.copy_on_write
405
+
406
+ blk_data = df._mgr.arrays[0]
407
+
408
+ orig = df.copy()
409
+
410
+ df.iloc[:] = df.copy()
411
+ tm.assert_frame_equal(df, orig)
412
+
413
+ df.iloc[:-1] = df.iloc[:-1].copy()
414
+ tm.assert_frame_equal(df, orig)
415
+
416
+ df.iloc[:] = df.values
417
+ tm.assert_frame_equal(df, orig)
418
+ if not using_array_manager and not using_copy_on_write:
419
+ # GH#33457 Check that this setting occurred in-place
420
+ # FIXME(ArrayManager): this should work there too
421
+ assert df._mgr.arrays[0] is blk_data
422
+
423
+ df.iloc[:-1] = df.values[:-1]
424
+ tm.assert_frame_equal(df, orig)
425
+
426
+ def test_delitem_series(self, data):
427
+ # GH#40763
428
+ ser = pd.Series(data, name="data")
429
+
430
+ taker = np.arange(len(ser))
431
+ taker = np.delete(taker, 1)
432
+
433
+ expected = ser[taker]
434
+ del ser[1]
435
+ tm.assert_series_equal(ser, expected)
436
+
437
+ def test_setitem_invalid(self, data, invalid_scalar):
438
+ msg = "" # messages vary by subclass, so we do not test it
439
+ with pytest.raises((ValueError, TypeError), match=msg):
440
+ data[0] = invalid_scalar
441
+
442
+ with pytest.raises((ValueError, TypeError), match=msg):
443
+ data[:] = invalid_scalar
444
+
445
+ def test_setitem_2d_values(self, data):
446
+ # GH50085
447
+ original = data.copy()
448
+ df = pd.DataFrame({"a": data, "b": data})
449
+ df.loc[[0, 1], :] = df.loc[[1, 0], :].values
450
+ assert (df.loc[0, :] == original[1]).all()
451
+ assert (df.loc[1, :] == original[0]).all()
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/conftest.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ import pytest
4
+
5
+ from pandas._config.config import _get_option
6
+
7
+ from pandas import (
8
+ Series,
9
+ options,
10
+ )
11
+
12
+
13
+ @pytest.fixture
14
+ def dtype():
15
+ """A fixture providing the ExtensionDtype to validate."""
16
+ raise NotImplementedError
17
+
18
+
19
+ @pytest.fixture
20
+ def data():
21
+ """
22
+ Length-100 array for this type.
23
+
24
+ * data[0] and data[1] should both be non missing
25
+ * data[0] and data[1] should not be equal
26
+ """
27
+ raise NotImplementedError
28
+
29
+
30
+ @pytest.fixture
31
+ def data_for_twos(dtype):
32
+ """
33
+ Length-100 array in which all the elements are two.
34
+
35
+ Call pytest.skip in your fixture if the dtype does not support divmod.
36
+ """
37
+ if not (dtype._is_numeric or dtype.kind == "m"):
38
+ # Object-dtypes may want to allow this, but for the most part
39
+ # only numeric and timedelta-like dtypes will need to implement this.
40
+ pytest.skip(f"{dtype} is not a numeric dtype")
41
+
42
+ raise NotImplementedError
43
+
44
+
45
+ @pytest.fixture
46
+ def data_missing():
47
+ """Length-2 array with [NA, Valid]"""
48
+ raise NotImplementedError
49
+
50
+
51
+ @pytest.fixture(params=["data", "data_missing"])
52
+ def all_data(request, data, data_missing):
53
+ """Parametrized fixture giving 'data' and 'data_missing'"""
54
+ if request.param == "data":
55
+ return data
56
+ elif request.param == "data_missing":
57
+ return data_missing
58
+
59
+
60
+ @pytest.fixture
61
+ def data_repeated(data):
62
+ """
63
+ Generate many datasets.
64
+
65
+ Parameters
66
+ ----------
67
+ data : fixture implementing `data`
68
+
69
+ Returns
70
+ -------
71
+ Callable[[int], Generator]:
72
+ A callable that takes a `count` argument and
73
+ returns a generator yielding `count` datasets.
74
+ """
75
+
76
+ def gen(count):
77
+ for _ in range(count):
78
+ yield data
79
+
80
+ return gen
81
+
82
+
83
+ @pytest.fixture
84
+ def data_for_sorting():
85
+ """
86
+ Length-3 array with a known sort order.
87
+
88
+ This should be three items [B, C, A] with
89
+ A < B < C
90
+
91
+ For boolean dtypes (for which there are only 2 values available),
92
+ set B=C=True
93
+ """
94
+ raise NotImplementedError
95
+
96
+
97
+ @pytest.fixture
98
+ def data_missing_for_sorting():
99
+ """
100
+ Length-3 array with a known sort order.
101
+
102
+ This should be three items [B, NA, A] with
103
+ A < B and NA missing.
104
+ """
105
+ raise NotImplementedError
106
+
107
+
108
+ @pytest.fixture
109
+ def na_cmp():
110
+ """
111
+ Binary operator for comparing NA values.
112
+
113
+ Should return a function of two arguments that returns
114
+ True if both arguments are (scalar) NA for your type.
115
+
116
+ By default, uses ``operator.is_``
117
+ """
118
+ return operator.is_
119
+
120
+
121
+ @pytest.fixture
122
+ def na_value(dtype):
123
+ """
124
+ The scalar missing value for this type. Default dtype.na_value.
125
+
126
+ TODO: can be removed in 3.x (see https://github.com/pandas-dev/pandas/pull/54930)
127
+ """
128
+ return dtype.na_value
129
+
130
+
131
+ @pytest.fixture
132
+ def data_for_grouping():
133
+ """
134
+ Data for factorization, grouping, and unique tests.
135
+
136
+ Expected to be like [B, B, NA, NA, A, A, B, C]
137
+
138
+ Where A < B < C and NA is missing.
139
+
140
+ If a dtype has _is_boolean = True, i.e. only 2 unique non-NA entries,
141
+ then set C=B.
142
+ """
143
+ raise NotImplementedError
144
+
145
+
146
+ @pytest.fixture(params=[True, False])
147
+ def box_in_series(request):
148
+ """Whether to box the data in a Series"""
149
+ return request.param
150
+
151
+
152
+ @pytest.fixture(
153
+ params=[
154
+ lambda x: 1,
155
+ lambda x: [1] * len(x),
156
+ lambda x: Series([1] * len(x)),
157
+ lambda x: x,
158
+ ],
159
+ ids=["scalar", "list", "series", "object"],
160
+ )
161
+ def groupby_apply_op(request):
162
+ """
163
+ Functions to test groupby.apply().
164
+ """
165
+ return request.param
166
+
167
+
168
+ @pytest.fixture(params=[True, False])
169
+ def as_frame(request):
170
+ """
171
+ Boolean fixture to support Series and Series.to_frame() comparison testing.
172
+ """
173
+ return request.param
174
+
175
+
176
+ @pytest.fixture(params=[True, False])
177
+ def as_series(request):
178
+ """
179
+ Boolean fixture to support arr and Series(arr) comparison testing.
180
+ """
181
+ return request.param
182
+
183
+
184
+ @pytest.fixture(params=[True, False])
185
+ def use_numpy(request):
186
+ """
187
+ Boolean fixture to support comparison testing of ExtensionDtype array
188
+ and numpy array.
189
+ """
190
+ return request.param
191
+
192
+
193
+ @pytest.fixture(params=["ffill", "bfill"])
194
+ def fillna_method(request):
195
+ """
196
+ Parametrized fixture giving method parameters 'ffill' and 'bfill' for
197
+ Series.fillna(method=<method>) testing.
198
+ """
199
+ return request.param
200
+
201
+
202
+ @pytest.fixture(params=[True, False])
203
+ def as_array(request):
204
+ """
205
+ Boolean fixture to support ExtensionDtype _from_sequence method testing.
206
+ """
207
+ return request.param
208
+
209
+
210
+ @pytest.fixture
211
+ def invalid_scalar(data):
212
+ """
213
+ A scalar that *cannot* be held by this ExtensionArray.
214
+
215
+ The default should work for most subclasses, but is not guaranteed.
216
+
217
+ If the array can hold any item (i.e. object dtype), then use pytest.skip.
218
+ """
219
+ return object.__new__(object)
220
+
221
+
222
+ @pytest.fixture
223
+ def using_copy_on_write() -> bool:
224
+ """
225
+ Fixture to check if Copy-on-Write is enabled.
226
+ """
227
+ return (
228
+ options.mode.copy_on_write is True
229
+ and _get_option("mode.data_manager", silent=True) == "block"
230
+ )
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_arrow.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_categorical.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ import string
17
+
18
+ import numpy as np
19
+ import pytest
20
+
21
+ from pandas._config import using_pyarrow_string_dtype
22
+
23
+ import pandas as pd
24
+ from pandas import Categorical
25
+ import pandas._testing as tm
26
+ from pandas.api.types import CategoricalDtype
27
+ from pandas.tests.extension import base
28
+
29
+
30
+ def make_data():
31
+ while True:
32
+ values = np.random.default_rng(2).choice(list(string.ascii_letters), size=100)
33
+ # ensure we meet the requirements
34
+ # 1. first two not null
35
+ # 2. first and second are different
36
+ if values[0] != values[1]:
37
+ break
38
+ return values
39
+
40
+
41
+ @pytest.fixture
42
+ def dtype():
43
+ return CategoricalDtype()
44
+
45
+
46
+ @pytest.fixture
47
+ def data():
48
+ """Length-100 array for this type.
49
+
50
+ * data[0] and data[1] should both be non missing
51
+ * data[0] and data[1] should not be equal
52
+ """
53
+ return Categorical(make_data())
54
+
55
+
56
+ @pytest.fixture
57
+ def data_missing():
58
+ """Length 2 array with [NA, Valid]"""
59
+ return Categorical([np.nan, "A"])
60
+
61
+
62
+ @pytest.fixture
63
+ def data_for_sorting():
64
+ return Categorical(["A", "B", "C"], categories=["C", "A", "B"], ordered=True)
65
+
66
+
67
+ @pytest.fixture
68
+ def data_missing_for_sorting():
69
+ return Categorical(["A", None, "B"], categories=["B", "A"], ordered=True)
70
+
71
+
72
+ @pytest.fixture
73
+ def data_for_grouping():
74
+ return Categorical(["a", "a", None, None, "b", "b", "a", "c"])
75
+
76
+
77
+ class TestCategorical(base.ExtensionTests):
78
+ @pytest.mark.xfail(reason="Memory usage doesn't match")
79
+ def test_memory_usage(self, data):
80
+ # TODO: Is this deliberate?
81
+ super().test_memory_usage(data)
82
+
83
+ def test_contains(self, data, data_missing):
84
+ # GH-37867
85
+ # na value handling in Categorical.__contains__ is deprecated.
86
+ # See base.BaseInterFaceTests.test_contains for more details.
87
+
88
+ na_value = data.dtype.na_value
89
+ # ensure data without missing values
90
+ data = data[~data.isna()]
91
+
92
+ # first elements are non-missing
93
+ assert data[0] in data
94
+ assert data_missing[0] in data_missing
95
+
96
+ # check the presence of na_value
97
+ assert na_value in data_missing
98
+ assert na_value not in data
99
+
100
+ # Categoricals can contain other nan-likes than na_value
101
+ for na_value_obj in tm.NULL_OBJECTS:
102
+ if na_value_obj is na_value:
103
+ continue
104
+ assert na_value_obj not in data
105
+ # this section suffers from super method
106
+ if not using_pyarrow_string_dtype():
107
+ assert na_value_obj in data_missing
108
+
109
+ def test_empty(self, dtype):
110
+ cls = dtype.construct_array_type()
111
+ result = cls._empty((4,), dtype=dtype)
112
+
113
+ assert isinstance(result, cls)
114
+ # the dtype we passed is not initialized, so will not match the
115
+ # dtype on our result.
116
+ assert result.dtype == CategoricalDtype([])
117
+
118
+ @pytest.mark.skip(reason="Backwards compatibility")
119
+ def test_getitem_scalar(self, data):
120
+ # CategoricalDtype.type isn't "correct" since it should
121
+ # be a parent of the elements (object). But don't want
122
+ # to break things by changing.
123
+ super().test_getitem_scalar(data)
124
+
125
+ @pytest.mark.xfail(reason="Unobserved categories included")
126
+ def test_value_counts(self, all_data, dropna):
127
+ return super().test_value_counts(all_data, dropna)
128
+
129
+ def test_combine_add(self, data_repeated):
130
+ # GH 20825
131
+ # When adding categoricals in combine, result is a string
132
+ orig_data1, orig_data2 = data_repeated(2)
133
+ s1 = pd.Series(orig_data1)
134
+ s2 = pd.Series(orig_data2)
135
+ result = s1.combine(s2, lambda x1, x2: x1 + x2)
136
+ expected = pd.Series(
137
+ [a + b for (a, b) in zip(list(orig_data1), list(orig_data2))]
138
+ )
139
+ tm.assert_series_equal(result, expected)
140
+
141
+ val = s1.iloc[0]
142
+ result = s1.combine(val, lambda x1, x2: x1 + x2)
143
+ expected = pd.Series([a + val for a in list(orig_data1)])
144
+ tm.assert_series_equal(result, expected)
145
+
146
+ @pytest.mark.parametrize("na_action", [None, "ignore"])
147
+ def test_map(self, data, na_action):
148
+ result = data.map(lambda x: x, na_action=na_action)
149
+ tm.assert_extension_array_equal(result, data)
150
+
151
+ def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request):
152
+ # frame & scalar
153
+ op_name = all_arithmetic_operators
154
+ if op_name == "__rmod__":
155
+ request.applymarker(
156
+ pytest.mark.xfail(
157
+ reason="rmod never called when string is first argument"
158
+ )
159
+ )
160
+ super().test_arith_frame_with_scalar(data, op_name)
161
+
162
+ def test_arith_series_with_scalar(self, data, all_arithmetic_operators, request):
163
+ op_name = all_arithmetic_operators
164
+ if op_name == "__rmod__":
165
+ request.applymarker(
166
+ pytest.mark.xfail(
167
+ reason="rmod never called when string is first argument"
168
+ )
169
+ )
170
+ super().test_arith_series_with_scalar(data, op_name)
171
+
172
+ def _compare_other(self, ser: pd.Series, data, op, other):
173
+ op_name = f"__{op.__name__}__"
174
+ if op_name not in ["__eq__", "__ne__"]:
175
+ msg = "Unordered Categoricals can only compare equality or not"
176
+ with pytest.raises(TypeError, match=msg):
177
+ op(data, other)
178
+ else:
179
+ return super()._compare_other(ser, data, op, other)
180
+
181
+ @pytest.mark.xfail(reason="Categorical overrides __repr__")
182
+ @pytest.mark.parametrize("size", ["big", "small"])
183
+ def test_array_repr(self, data, size):
184
+ super().test_array_repr(data, size)
185
+
186
+ @pytest.mark.xfail(reason="TBD")
187
+ @pytest.mark.parametrize("as_index", [True, False])
188
+ def test_groupby_extension_agg(self, as_index, data_for_grouping):
189
+ super().test_groupby_extension_agg(as_index, data_for_grouping)
190
+
191
+
192
+ class Test2DCompat(base.NDArrayBacked2DTests):
193
+ def test_repr_2d(self, data):
194
+ # Categorical __repr__ doesn't include "Categorical", so we need
195
+ # to special-case
196
+ res = repr(data.reshape(1, -1))
197
+ assert res.count("\nCategories") == 1
198
+
199
+ res = repr(data.reshape(-1, 1))
200
+ assert res.count("\nCategories") == 1
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_common.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes import dtypes
5
+ from pandas.core.dtypes.common import is_extension_array_dtype
6
+
7
+ import pandas as pd
8
+ import pandas._testing as tm
9
+ from pandas.core.arrays import ExtensionArray
10
+
11
+
12
+ class DummyDtype(dtypes.ExtensionDtype):
13
+ pass
14
+
15
+
16
+ class DummyArray(ExtensionArray):
17
+ def __init__(self, data) -> None:
18
+ self.data = data
19
+
20
+ def __array__(self, dtype=None, copy=None):
21
+ return self.data
22
+
23
+ @property
24
+ def dtype(self):
25
+ return DummyDtype()
26
+
27
+ def astype(self, dtype, copy=True):
28
+ # we don't support anything but a single dtype
29
+ if isinstance(dtype, DummyDtype):
30
+ if copy:
31
+ return type(self)(self.data)
32
+ return self
33
+ elif not copy:
34
+ return np.asarray(self, dtype=dtype)
35
+ else:
36
+ return np.array(self, dtype=dtype, copy=copy)
37
+
38
+
39
+ class TestExtensionArrayDtype:
40
+ @pytest.mark.parametrize(
41
+ "values",
42
+ [
43
+ pd.Categorical([]),
44
+ pd.Categorical([]).dtype,
45
+ pd.Series(pd.Categorical([])),
46
+ DummyDtype(),
47
+ DummyArray(np.array([1, 2])),
48
+ ],
49
+ )
50
+ def test_is_extension_array_dtype(self, values):
51
+ assert is_extension_array_dtype(values)
52
+
53
+ @pytest.mark.parametrize("values", [np.array([]), pd.Series(np.array([]))])
54
+ def test_is_not_extension_array_dtype(self, values):
55
+ assert not is_extension_array_dtype(values)
56
+
57
+
58
+ def test_astype():
59
+ arr = DummyArray(np.array([1, 2, 3]))
60
+ expected = np.array([1, 2, 3], dtype=object)
61
+
62
+ result = arr.astype(object)
63
+ tm.assert_numpy_array_equal(result, expected)
64
+
65
+ result = arr.astype("object")
66
+ tm.assert_numpy_array_equal(result, expected)
67
+
68
+
69
+ def test_astype_no_copy():
70
+ arr = DummyArray(np.array([1, 2, 3], dtype=np.int64))
71
+ result = arr.astype(arr.dtype, copy=False)
72
+
73
+ assert arr is result
74
+
75
+ result = arr.astype(arr.dtype)
76
+ assert arr is not result
77
+
78
+
79
+ @pytest.mark.parametrize("dtype", [dtypes.CategoricalDtype(), dtypes.IntervalDtype()])
80
+ def test_is_extension_array_dtype(dtype):
81
+ assert isinstance(dtype, dtypes.ExtensionDtype)
82
+ assert is_extension_array_dtype(dtype)
83
+
84
+
85
+ class CapturingStringArray(pd.arrays.StringArray):
86
+ """Extend StringArray to capture arguments to __getitem__"""
87
+
88
+ def __getitem__(self, item):
89
+ self.last_item_arg = item
90
+ return super().__getitem__(item)
91
+
92
+
93
+ def test_ellipsis_index():
94
+ # GH#42430 1D slices over extension types turn into N-dimensional slices
95
+ # over ExtensionArrays
96
+ df = pd.DataFrame(
97
+ {"col1": CapturingStringArray(np.array(["hello", "world"], dtype=object))}
98
+ )
99
+ _ = df.iloc[:1]
100
+
101
+ # String comparison because there's no native way to compare slices.
102
+ # Before the fix for GH#42430, last_item_arg would get set to the 2D slice
103
+ # (Ellipsis, slice(None, 1, None))
104
+ out = df["col1"].array.last_item_arg
105
+ assert str(out) == "slice(None, 1, None)"
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_datetime.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ import numpy as np
17
+ import pytest
18
+
19
+ from pandas.core.dtypes.dtypes import DatetimeTZDtype
20
+
21
+ import pandas as pd
22
+ import pandas._testing as tm
23
+ from pandas.core.arrays import DatetimeArray
24
+ from pandas.tests.extension import base
25
+
26
+
27
+ @pytest.fixture(params=["US/Central"])
28
+ def dtype(request):
29
+ return DatetimeTZDtype(unit="ns", tz=request.param)
30
+
31
+
32
+ @pytest.fixture
33
+ def data(dtype):
34
+ data = DatetimeArray._from_sequence(
35
+ pd.date_range("2000", periods=100, tz=dtype.tz), dtype=dtype
36
+ )
37
+ return data
38
+
39
+
40
+ @pytest.fixture
41
+ def data_missing(dtype):
42
+ return DatetimeArray._from_sequence(
43
+ np.array(["NaT", "2000-01-01"], dtype="datetime64[ns]"), dtype=dtype
44
+ )
45
+
46
+
47
+ @pytest.fixture
48
+ def data_for_sorting(dtype):
49
+ a = pd.Timestamp("2000-01-01")
50
+ b = pd.Timestamp("2000-01-02")
51
+ c = pd.Timestamp("2000-01-03")
52
+ return DatetimeArray._from_sequence(
53
+ np.array([b, c, a], dtype="datetime64[ns]"), dtype=dtype
54
+ )
55
+
56
+
57
+ @pytest.fixture
58
+ def data_missing_for_sorting(dtype):
59
+ a = pd.Timestamp("2000-01-01")
60
+ b = pd.Timestamp("2000-01-02")
61
+ return DatetimeArray._from_sequence(
62
+ np.array([b, "NaT", a], dtype="datetime64[ns]"), dtype=dtype
63
+ )
64
+
65
+
66
+ @pytest.fixture
67
+ def data_for_grouping(dtype):
68
+ """
69
+ Expected to be like [B, B, NA, NA, A, A, B, C]
70
+
71
+ Where A < B < C and NA is missing
72
+ """
73
+ a = pd.Timestamp("2000-01-01")
74
+ b = pd.Timestamp("2000-01-02")
75
+ c = pd.Timestamp("2000-01-03")
76
+ na = "NaT"
77
+ return DatetimeArray._from_sequence(
78
+ np.array([b, b, na, na, a, a, b, c], dtype="datetime64[ns]"), dtype=dtype
79
+ )
80
+
81
+
82
+ @pytest.fixture
83
+ def na_cmp():
84
+ def cmp(a, b):
85
+ return a is pd.NaT and a is b
86
+
87
+ return cmp
88
+
89
+
90
+ # ----------------------------------------------------------------------------
91
+ class TestDatetimeArray(base.ExtensionTests):
92
+ def _get_expected_exception(self, op_name, obj, other):
93
+ if op_name in ["__sub__", "__rsub__"]:
94
+ return None
95
+ return super()._get_expected_exception(op_name, obj, other)
96
+
97
+ def _supports_accumulation(self, ser, op_name: str) -> bool:
98
+ return op_name in ["cummin", "cummax"]
99
+
100
+ def _supports_reduction(self, obj, op_name: str) -> bool:
101
+ return op_name in ["min", "max", "median", "mean", "std", "any", "all"]
102
+
103
+ @pytest.mark.parametrize("skipna", [True, False])
104
+ def test_reduce_series_boolean(self, data, all_boolean_reductions, skipna):
105
+ meth = all_boolean_reductions
106
+ msg = f"'{meth}' with datetime64 dtypes is deprecated and will raise in"
107
+ with tm.assert_produces_warning(
108
+ FutureWarning, match=msg, check_stacklevel=False
109
+ ):
110
+ super().test_reduce_series_boolean(data, all_boolean_reductions, skipna)
111
+
112
+ def test_series_constructor(self, data):
113
+ # Series construction drops any .freq attr
114
+ data = data._with_freq(None)
115
+ super().test_series_constructor(data)
116
+
117
+ @pytest.mark.parametrize("na_action", [None, "ignore"])
118
+ def test_map(self, data, na_action):
119
+ result = data.map(lambda x: x, na_action=na_action)
120
+ tm.assert_extension_array_equal(result, data)
121
+
122
+ def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
123
+ if op_name in ["median", "mean", "std"]:
124
+ alt = ser.astype("int64")
125
+
126
+ res_op = getattr(ser, op_name)
127
+ exp_op = getattr(alt, op_name)
128
+ result = res_op(skipna=skipna)
129
+ expected = exp_op(skipna=skipna)
130
+ if op_name in ["mean", "median"]:
131
+ # error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype"
132
+ # has no attribute "tz"
133
+ tz = ser.dtype.tz # type: ignore[union-attr]
134
+ expected = pd.Timestamp(expected, tz=tz)
135
+ else:
136
+ expected = pd.Timedelta(expected)
137
+ tm.assert_almost_equal(result, expected)
138
+
139
+ else:
140
+ return super().check_reduce(ser, op_name, skipna)
141
+
142
+
143
+ class Test2DCompat(base.NDArrayBacked2DTests):
144
+ pass
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_extension.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for behavior if an author does *not* implement EA methods.
3
+ """
4
+ import numpy as np
5
+ import pytest
6
+
7
+ from pandas.core.arrays import ExtensionArray
8
+
9
+
10
+ class MyEA(ExtensionArray):
11
+ def __init__(self, values) -> None:
12
+ self._values = values
13
+
14
+
15
+ @pytest.fixture
16
+ def data():
17
+ arr = np.arange(10)
18
+ return MyEA(arr)
19
+
20
+
21
+ class TestExtensionArray:
22
+ def test_errors(self, data, all_arithmetic_operators):
23
+ # invalid ops
24
+ op_name = all_arithmetic_operators
25
+ with pytest.raises(AttributeError):
26
+ getattr(data, op_name)
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_interval.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ from __future__ import annotations
17
+
18
+ from typing import TYPE_CHECKING
19
+
20
+ import numpy as np
21
+ import pytest
22
+
23
+ from pandas.core.dtypes.dtypes import IntervalDtype
24
+
25
+ from pandas import Interval
26
+ from pandas.core.arrays import IntervalArray
27
+ from pandas.tests.extension import base
28
+
29
+ if TYPE_CHECKING:
30
+ import pandas as pd
31
+
32
+
33
+ def make_data():
34
+ N = 100
35
+ left_array = np.random.default_rng(2).uniform(size=N).cumsum()
36
+ right_array = left_array + np.random.default_rng(2).uniform(size=N)
37
+ return [Interval(left, right) for left, right in zip(left_array, right_array)]
38
+
39
+
40
+ @pytest.fixture
41
+ def dtype():
42
+ return IntervalDtype()
43
+
44
+
45
+ @pytest.fixture
46
+ def data():
47
+ """Length-100 PeriodArray for semantics test."""
48
+ return IntervalArray(make_data())
49
+
50
+
51
+ @pytest.fixture
52
+ def data_missing():
53
+ """Length 2 array with [NA, Valid]"""
54
+ return IntervalArray.from_tuples([None, (0, 1)])
55
+
56
+
57
+ @pytest.fixture
58
+ def data_for_twos():
59
+ pytest.skip("Interval is not a numeric dtype")
60
+
61
+
62
+ @pytest.fixture
63
+ def data_for_sorting():
64
+ return IntervalArray.from_tuples([(1, 2), (2, 3), (0, 1)])
65
+
66
+
67
+ @pytest.fixture
68
+ def data_missing_for_sorting():
69
+ return IntervalArray.from_tuples([(1, 2), None, (0, 1)])
70
+
71
+
72
+ @pytest.fixture
73
+ def data_for_grouping():
74
+ a = (0, 1)
75
+ b = (1, 2)
76
+ c = (2, 3)
77
+ return IntervalArray.from_tuples([b, b, None, None, a, a, b, c])
78
+
79
+
80
+ class TestIntervalArray(base.ExtensionTests):
81
+ divmod_exc = TypeError
82
+
83
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
84
+ return op_name in ["min", "max"]
85
+
86
+ @pytest.mark.xfail(
87
+ reason="Raises with incorrect message bc it disallows *all* listlikes "
88
+ "instead of just wrong-length listlikes"
89
+ )
90
+ def test_fillna_length_mismatch(self, data_missing):
91
+ super().test_fillna_length_mismatch(data_missing)
92
+
93
+
94
+ # TODO: either belongs in tests.arrays.interval or move into base tests.
95
+ def test_fillna_non_scalar_raises(data_missing):
96
+ msg = "can only insert Interval objects and NA into an IntervalArray"
97
+ with pytest.raises(TypeError, match=msg):
98
+ data_missing.fillna([1, 1])
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_masked.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ import warnings
17
+
18
+ import numpy as np
19
+ import pytest
20
+
21
+ from pandas.compat import (
22
+ IS64,
23
+ is_platform_windows,
24
+ )
25
+ from pandas.compat.numpy import np_version_gt2
26
+
27
+ from pandas.core.dtypes.common import (
28
+ is_float_dtype,
29
+ is_signed_integer_dtype,
30
+ is_unsigned_integer_dtype,
31
+ )
32
+
33
+ import pandas as pd
34
+ import pandas._testing as tm
35
+ from pandas.core.arrays.boolean import BooleanDtype
36
+ from pandas.core.arrays.floating import (
37
+ Float32Dtype,
38
+ Float64Dtype,
39
+ )
40
+ from pandas.core.arrays.integer import (
41
+ Int8Dtype,
42
+ Int16Dtype,
43
+ Int32Dtype,
44
+ Int64Dtype,
45
+ UInt8Dtype,
46
+ UInt16Dtype,
47
+ UInt32Dtype,
48
+ UInt64Dtype,
49
+ )
50
+ from pandas.tests.extension import base
51
+
52
+ is_windows_or_32bit = (is_platform_windows() and not np_version_gt2) or not IS64
53
+
54
+ pytestmark = [
55
+ pytest.mark.filterwarnings(
56
+ "ignore:invalid value encountered in divide:RuntimeWarning"
57
+ ),
58
+ pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning"),
59
+ # overflow only relevant for Floating dtype cases cases
60
+ pytest.mark.filterwarnings("ignore:overflow encountered in reduce:RuntimeWarning"),
61
+ ]
62
+
63
+
64
+ def make_data():
65
+ return list(range(1, 9)) + [pd.NA] + list(range(10, 98)) + [pd.NA] + [99, 100]
66
+
67
+
68
+ def make_float_data():
69
+ return (
70
+ list(np.arange(0.1, 0.9, 0.1))
71
+ + [pd.NA]
72
+ + list(np.arange(1, 9.8, 0.1))
73
+ + [pd.NA]
74
+ + [9.9, 10.0]
75
+ )
76
+
77
+
78
+ def make_bool_data():
79
+ return [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False]
80
+
81
+
82
+ @pytest.fixture(
83
+ params=[
84
+ Int8Dtype,
85
+ Int16Dtype,
86
+ Int32Dtype,
87
+ Int64Dtype,
88
+ UInt8Dtype,
89
+ UInt16Dtype,
90
+ UInt32Dtype,
91
+ UInt64Dtype,
92
+ Float32Dtype,
93
+ Float64Dtype,
94
+ BooleanDtype,
95
+ ]
96
+ )
97
+ def dtype(request):
98
+ return request.param()
99
+
100
+
101
+ @pytest.fixture
102
+ def data(dtype):
103
+ if dtype.kind == "f":
104
+ data = make_float_data()
105
+ elif dtype.kind == "b":
106
+ data = make_bool_data()
107
+ else:
108
+ data = make_data()
109
+ return pd.array(data, dtype=dtype)
110
+
111
+
112
+ @pytest.fixture
113
+ def data_for_twos(dtype):
114
+ if dtype.kind == "b":
115
+ return pd.array(np.ones(100), dtype=dtype)
116
+ return pd.array(np.ones(100) * 2, dtype=dtype)
117
+
118
+
119
+ @pytest.fixture
120
+ def data_missing(dtype):
121
+ if dtype.kind == "f":
122
+ return pd.array([pd.NA, 0.1], dtype=dtype)
123
+ elif dtype.kind == "b":
124
+ return pd.array([np.nan, True], dtype=dtype)
125
+ return pd.array([pd.NA, 1], dtype=dtype)
126
+
127
+
128
+ @pytest.fixture
129
+ def data_for_sorting(dtype):
130
+ if dtype.kind == "f":
131
+ return pd.array([0.1, 0.2, 0.0], dtype=dtype)
132
+ elif dtype.kind == "b":
133
+ return pd.array([True, True, False], dtype=dtype)
134
+ return pd.array([1, 2, 0], dtype=dtype)
135
+
136
+
137
+ @pytest.fixture
138
+ def data_missing_for_sorting(dtype):
139
+ if dtype.kind == "f":
140
+ return pd.array([0.1, pd.NA, 0.0], dtype=dtype)
141
+ elif dtype.kind == "b":
142
+ return pd.array([True, np.nan, False], dtype=dtype)
143
+ return pd.array([1, pd.NA, 0], dtype=dtype)
144
+
145
+
146
+ @pytest.fixture
147
+ def na_cmp():
148
+ # we are pd.NA
149
+ return lambda x, y: x is pd.NA and y is pd.NA
150
+
151
+
152
+ @pytest.fixture
153
+ def data_for_grouping(dtype):
154
+ if dtype.kind == "f":
155
+ b = 0.1
156
+ a = 0.0
157
+ c = 0.2
158
+ elif dtype.kind == "b":
159
+ b = True
160
+ a = False
161
+ c = b
162
+ else:
163
+ b = 1
164
+ a = 0
165
+ c = 2
166
+
167
+ na = pd.NA
168
+ return pd.array([b, b, na, na, a, a, b, c], dtype=dtype)
169
+
170
+
171
+ class TestMaskedArrays(base.ExtensionTests):
172
+ @pytest.mark.parametrize("na_action", [None, "ignore"])
173
+ def test_map(self, data_missing, na_action):
174
+ result = data_missing.map(lambda x: x, na_action=na_action)
175
+ if data_missing.dtype == Float32Dtype():
176
+ # map roundtrips through objects, which converts to float64
177
+ expected = data_missing.to_numpy(dtype="float64", na_value=np.nan)
178
+ else:
179
+ expected = data_missing.to_numpy()
180
+ tm.assert_numpy_array_equal(result, expected)
181
+
182
+ def test_map_na_action_ignore(self, data_missing_for_sorting):
183
+ zero = data_missing_for_sorting[2]
184
+ result = data_missing_for_sorting.map(lambda x: zero, na_action="ignore")
185
+ if data_missing_for_sorting.dtype.kind == "b":
186
+ expected = np.array([False, pd.NA, False], dtype=object)
187
+ else:
188
+ expected = np.array([zero, np.nan, zero])
189
+ tm.assert_numpy_array_equal(result, expected)
190
+
191
+ def _get_expected_exception(self, op_name, obj, other):
192
+ try:
193
+ dtype = tm.get_dtype(obj)
194
+ except AttributeError:
195
+ # passed arguments reversed
196
+ dtype = tm.get_dtype(other)
197
+
198
+ if dtype.kind == "b":
199
+ if op_name.strip("_").lstrip("r") in ["pow", "truediv", "floordiv"]:
200
+ # match behavior with non-masked bool dtype
201
+ return NotImplementedError
202
+ elif op_name in ["__sub__", "__rsub__"]:
203
+ # exception message would include "numpy boolean subtract""
204
+ return TypeError
205
+ return None
206
+ return None
207
+
208
+ def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result):
209
+ sdtype = tm.get_dtype(obj)
210
+ expected = pointwise_result
211
+
212
+ if op_name in ("eq", "ne", "le", "ge", "lt", "gt"):
213
+ return expected.astype("boolean")
214
+
215
+ if sdtype.kind in "iu":
216
+ if op_name in ("__rtruediv__", "__truediv__", "__div__"):
217
+ with warnings.catch_warnings():
218
+ warnings.filterwarnings(
219
+ "ignore",
220
+ "Downcasting object dtype arrays",
221
+ category=FutureWarning,
222
+ )
223
+ filled = expected.fillna(np.nan)
224
+ expected = filled.astype("Float64")
225
+ else:
226
+ # combine method result in 'biggest' (int64) dtype
227
+ expected = expected.astype(sdtype)
228
+ elif sdtype.kind == "b":
229
+ if op_name in (
230
+ "__floordiv__",
231
+ "__rfloordiv__",
232
+ "__pow__",
233
+ "__rpow__",
234
+ "__mod__",
235
+ "__rmod__",
236
+ ):
237
+ # combine keeps boolean type
238
+ expected = expected.astype("Int8")
239
+
240
+ elif op_name in ("__truediv__", "__rtruediv__"):
241
+ # combine with bools does not generate the correct result
242
+ # (numpy behaviour for div is to regard the bools as numeric)
243
+ op = self.get_op_from_name(op_name)
244
+ expected = self._combine(obj.astype(float), other, op)
245
+ expected = expected.astype("Float64")
246
+
247
+ if op_name == "__rpow__":
248
+ # for rpow, combine does not propagate NaN
249
+ result = getattr(obj, op_name)(other)
250
+ expected[result.isna()] = np.nan
251
+ else:
252
+ # combine method result in 'biggest' (float64) dtype
253
+ expected = expected.astype(sdtype)
254
+ return expected
255
+
256
+ def test_divmod_series_array(self, data, data_for_twos, request):
257
+ if data.dtype.kind == "b":
258
+ mark = pytest.mark.xfail(
259
+ reason="Inconsistency between floordiv and divmod; we raise for "
260
+ "floordiv but not for divmod. This matches what we do for "
261
+ "non-masked bool dtype."
262
+ )
263
+ request.applymarker(mark)
264
+ super().test_divmod_series_array(data, data_for_twos)
265
+
266
+ def test_combine_le(self, data_repeated):
267
+ # TODO: patching self is a bad pattern here
268
+ orig_data1, orig_data2 = data_repeated(2)
269
+ if orig_data1.dtype.kind == "b":
270
+ self._combine_le_expected_dtype = "boolean"
271
+ else:
272
+ # TODO: can we make this boolean?
273
+ self._combine_le_expected_dtype = object
274
+ super().test_combine_le(data_repeated)
275
+
276
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
277
+ if op_name in ["any", "all"] and ser.dtype.kind != "b":
278
+ pytest.skip(reason="Tested in tests/reductions/test_reductions.py")
279
+ return True
280
+
281
+ def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
282
+ # overwrite to ensure pd.NA is tested instead of np.nan
283
+ # https://github.com/pandas-dev/pandas/issues/30958
284
+
285
+ cmp_dtype = "int64"
286
+ if ser.dtype.kind == "f":
287
+ # Item "dtype[Any]" of "Union[dtype[Any], ExtensionDtype]" has
288
+ # no attribute "numpy_dtype"
289
+ cmp_dtype = ser.dtype.numpy_dtype # type: ignore[union-attr]
290
+ elif ser.dtype.kind == "b":
291
+ if op_name in ["min", "max"]:
292
+ cmp_dtype = "bool"
293
+
294
+ # TODO: prod with integer dtypes does *not* match the result we would
295
+ # get if we used object for cmp_dtype. In that cae the object result
296
+ # is a large integer while the non-object case overflows and returns 0
297
+ alt = ser.dropna().astype(cmp_dtype)
298
+ if op_name == "count":
299
+ result = getattr(ser, op_name)()
300
+ expected = getattr(alt, op_name)()
301
+ else:
302
+ result = getattr(ser, op_name)(skipna=skipna)
303
+ expected = getattr(alt, op_name)(skipna=skipna)
304
+ if not skipna and ser.isna().any() and op_name not in ["any", "all"]:
305
+ expected = pd.NA
306
+ tm.assert_almost_equal(result, expected)
307
+
308
+ def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool):
309
+ if is_float_dtype(arr.dtype):
310
+ cmp_dtype = arr.dtype.name
311
+ elif op_name in ["mean", "median", "var", "std", "skew"]:
312
+ cmp_dtype = "Float64"
313
+ elif op_name in ["max", "min"]:
314
+ cmp_dtype = arr.dtype.name
315
+ elif arr.dtype in ["Int64", "UInt64"]:
316
+ cmp_dtype = arr.dtype.name
317
+ elif is_signed_integer_dtype(arr.dtype):
318
+ # TODO: Why does Window Numpy 2.0 dtype depend on skipna?
319
+ cmp_dtype = (
320
+ "Int32"
321
+ if (is_platform_windows() and (not np_version_gt2 or not skipna))
322
+ or not IS64
323
+ else "Int64"
324
+ )
325
+ elif is_unsigned_integer_dtype(arr.dtype):
326
+ cmp_dtype = (
327
+ "UInt32"
328
+ if (is_platform_windows() and (not np_version_gt2 or not skipna))
329
+ or not IS64
330
+ else "UInt64"
331
+ )
332
+ elif arr.dtype.kind == "b":
333
+ if op_name in ["mean", "median", "var", "std", "skew"]:
334
+ cmp_dtype = "Float64"
335
+ elif op_name in ["min", "max"]:
336
+ cmp_dtype = "boolean"
337
+ elif op_name in ["sum", "prod"]:
338
+ cmp_dtype = (
339
+ "Int32"
340
+ if (is_platform_windows() and (not np_version_gt2 or not skipna))
341
+ or not IS64
342
+ else "Int64"
343
+ )
344
+ else:
345
+ raise TypeError("not supposed to reach this")
346
+ else:
347
+ raise TypeError("not supposed to reach this")
348
+ return cmp_dtype
349
+
350
+ def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool:
351
+ return True
352
+
353
+ def check_accumulate(self, ser: pd.Series, op_name: str, skipna: bool):
354
+ # overwrite to ensure pd.NA is tested instead of np.nan
355
+ # https://github.com/pandas-dev/pandas/issues/30958
356
+ length = 64
357
+ if is_windows_or_32bit:
358
+ # Item "ExtensionDtype" of "Union[dtype[Any], ExtensionDtype]" has
359
+ # no attribute "itemsize"
360
+ if not ser.dtype.itemsize == 8: # type: ignore[union-attr]
361
+ length = 32
362
+
363
+ if ser.dtype.name.startswith("U"):
364
+ expected_dtype = f"UInt{length}"
365
+ elif ser.dtype.name.startswith("I"):
366
+ expected_dtype = f"Int{length}"
367
+ elif ser.dtype.name.startswith("F"):
368
+ # Incompatible types in assignment (expression has type
369
+ # "Union[dtype[Any], ExtensionDtype]", variable has type "str")
370
+ expected_dtype = ser.dtype # type: ignore[assignment]
371
+ elif ser.dtype.kind == "b":
372
+ if op_name in ("cummin", "cummax"):
373
+ expected_dtype = "boolean"
374
+ else:
375
+ expected_dtype = f"Int{length}"
376
+
377
+ if expected_dtype == "Float32" and op_name == "cumprod" and skipna:
378
+ # TODO: xfail?
379
+ pytest.skip(
380
+ f"Float32 precision lead to large differences with op {op_name} "
381
+ f"and skipna={skipna}"
382
+ )
383
+
384
+ if op_name == "cumsum":
385
+ result = getattr(ser, op_name)(skipna=skipna)
386
+ expected = pd.Series(
387
+ pd.array(
388
+ getattr(ser.astype("float64"), op_name)(skipna=skipna),
389
+ dtype=expected_dtype,
390
+ )
391
+ )
392
+ tm.assert_series_equal(result, expected)
393
+ elif op_name in ["cummax", "cummin"]:
394
+ result = getattr(ser, op_name)(skipna=skipna)
395
+ expected = pd.Series(
396
+ pd.array(
397
+ getattr(ser.astype("float64"), op_name)(skipna=skipna),
398
+ dtype=ser.dtype,
399
+ )
400
+ )
401
+ tm.assert_series_equal(result, expected)
402
+ elif op_name == "cumprod":
403
+ result = getattr(ser[:12], op_name)(skipna=skipna)
404
+ expected = pd.Series(
405
+ pd.array(
406
+ getattr(ser[:12].astype("float64"), op_name)(skipna=skipna),
407
+ dtype=expected_dtype,
408
+ )
409
+ )
410
+ tm.assert_series_equal(result, expected)
411
+
412
+ else:
413
+ raise NotImplementedError(f"{op_name} not supported")
414
+
415
+
416
+ class Test2DCompat(base.Dim2CompatTests):
417
+ pass
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_numpy.py ADDED
@@ -0,0 +1,426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ Note: we do not bother with base.BaseIndexTests because NumpyExtensionArray
16
+ will never be held in an Index.
17
+ """
18
+ import numpy as np
19
+ import pytest
20
+
21
+ from pandas.core.dtypes.dtypes import NumpyEADtype
22
+
23
+ import pandas as pd
24
+ import pandas._testing as tm
25
+ from pandas.api.types import is_object_dtype
26
+ from pandas.core.arrays.numpy_ import NumpyExtensionArray
27
+ from pandas.tests.extension import base
28
+
29
+ orig_assert_attr_equal = tm.assert_attr_equal
30
+
31
+
32
+ def _assert_attr_equal(attr: str, left, right, obj: str = "Attributes"):
33
+ """
34
+ patch tm.assert_attr_equal so NumpyEADtype("object") is closed enough to
35
+ np.dtype("object")
36
+ """
37
+ if attr == "dtype":
38
+ lattr = getattr(left, "dtype", None)
39
+ rattr = getattr(right, "dtype", None)
40
+ if isinstance(lattr, NumpyEADtype) and not isinstance(rattr, NumpyEADtype):
41
+ left = left.astype(lattr.numpy_dtype)
42
+ elif isinstance(rattr, NumpyEADtype) and not isinstance(lattr, NumpyEADtype):
43
+ right = right.astype(rattr.numpy_dtype)
44
+
45
+ orig_assert_attr_equal(attr, left, right, obj)
46
+
47
+
48
+ @pytest.fixture(params=["float", "object"])
49
+ def dtype(request):
50
+ return NumpyEADtype(np.dtype(request.param))
51
+
52
+
53
+ @pytest.fixture
54
+ def allow_in_pandas(monkeypatch):
55
+ """
56
+ A monkeypatch to tells pandas to let us in.
57
+
58
+ By default, passing a NumpyExtensionArray to an index / series / frame
59
+ constructor will unbox that NumpyExtensionArray to an ndarray, and treat
60
+ it as a non-EA column. We don't want people using EAs without
61
+ reason.
62
+
63
+ The mechanism for this is a check against ABCNumpyExtensionArray
64
+ in each constructor.
65
+
66
+ But, for testing, we need to allow them in pandas. So we patch
67
+ the _typ of NumpyExtensionArray, so that we evade the ABCNumpyExtensionArray
68
+ check.
69
+ """
70
+ with monkeypatch.context() as m:
71
+ m.setattr(NumpyExtensionArray, "_typ", "extension")
72
+ m.setattr(tm.asserters, "assert_attr_equal", _assert_attr_equal)
73
+ yield
74
+
75
+
76
+ @pytest.fixture
77
+ def data(allow_in_pandas, dtype):
78
+ if dtype.numpy_dtype == "object":
79
+ return pd.Series([(i,) for i in range(100)]).array
80
+ return NumpyExtensionArray(np.arange(1, 101, dtype=dtype._dtype))
81
+
82
+
83
+ @pytest.fixture
84
+ def data_missing(allow_in_pandas, dtype):
85
+ if dtype.numpy_dtype == "object":
86
+ return NumpyExtensionArray(np.array([np.nan, (1,)], dtype=object))
87
+ return NumpyExtensionArray(np.array([np.nan, 1.0]))
88
+
89
+
90
+ @pytest.fixture
91
+ def na_cmp():
92
+ def cmp(a, b):
93
+ return np.isnan(a) and np.isnan(b)
94
+
95
+ return cmp
96
+
97
+
98
+ @pytest.fixture
99
+ def data_for_sorting(allow_in_pandas, dtype):
100
+ """Length-3 array with a known sort order.
101
+
102
+ This should be three items [B, C, A] with
103
+ A < B < C
104
+ """
105
+ if dtype.numpy_dtype == "object":
106
+ # Use an empty tuple for first element, then remove,
107
+ # to disable np.array's shape inference.
108
+ return NumpyExtensionArray(np.array([(), (2,), (3,), (1,)], dtype=object)[1:])
109
+ return NumpyExtensionArray(np.array([1, 2, 0]))
110
+
111
+
112
+ @pytest.fixture
113
+ def data_missing_for_sorting(allow_in_pandas, dtype):
114
+ """Length-3 array with a known sort order.
115
+
116
+ This should be three items [B, NA, A] with
117
+ A < B and NA missing.
118
+ """
119
+ if dtype.numpy_dtype == "object":
120
+ return NumpyExtensionArray(np.array([(1,), np.nan, (0,)], dtype=object))
121
+ return NumpyExtensionArray(np.array([1, np.nan, 0]))
122
+
123
+
124
+ @pytest.fixture
125
+ def data_for_grouping(allow_in_pandas, dtype):
126
+ """Data for factorization, grouping, and unique tests.
127
+
128
+ Expected to be like [B, B, NA, NA, A, A, B, C]
129
+
130
+ Where A < B < C and NA is missing
131
+ """
132
+ if dtype.numpy_dtype == "object":
133
+ a, b, c = (1,), (2,), (3,)
134
+ else:
135
+ a, b, c = np.arange(3)
136
+ return NumpyExtensionArray(
137
+ np.array([b, b, np.nan, np.nan, a, a, b, c], dtype=dtype.numpy_dtype)
138
+ )
139
+
140
+
141
+ @pytest.fixture
142
+ def data_for_twos(dtype):
143
+ if dtype.kind == "O":
144
+ pytest.skip(f"{dtype} is not a numeric dtype")
145
+ arr = np.ones(100) * 2
146
+ return NumpyExtensionArray._from_sequence(arr, dtype=dtype)
147
+
148
+
149
+ @pytest.fixture
150
+ def skip_numpy_object(dtype, request):
151
+ """
152
+ Tests for NumpyExtensionArray with nested data. Users typically won't create
153
+ these objects via `pd.array`, but they can show up through `.array`
154
+ on a Series with nested data. Many of the base tests fail, as they aren't
155
+ appropriate for nested data.
156
+
157
+ This fixture allows these tests to be skipped when used as a usefixtures
158
+ marker to either an individual test or a test class.
159
+ """
160
+ if dtype == "object":
161
+ mark = pytest.mark.xfail(reason="Fails for object dtype")
162
+ request.applymarker(mark)
163
+
164
+
165
+ skip_nested = pytest.mark.usefixtures("skip_numpy_object")
166
+
167
+
168
+ class TestNumpyExtensionArray(base.ExtensionTests):
169
+ @pytest.mark.skip(reason="We don't register our dtype")
170
+ # We don't want to register. This test should probably be split in two.
171
+ def test_from_dtype(self, data):
172
+ pass
173
+
174
+ @skip_nested
175
+ def test_series_constructor_scalar_with_index(self, data, dtype):
176
+ # ValueError: Length of passed values is 1, index implies 3.
177
+ super().test_series_constructor_scalar_with_index(data, dtype)
178
+
179
+ def test_check_dtype(self, data, request, using_infer_string):
180
+ if data.dtype.numpy_dtype == "object":
181
+ request.applymarker(
182
+ pytest.mark.xfail(
183
+ reason=f"NumpyExtensionArray expectedly clashes with a "
184
+ f"NumPy name: {data.dtype.numpy_dtype}"
185
+ )
186
+ )
187
+ super().test_check_dtype(data)
188
+
189
+ def test_is_not_object_type(self, dtype, request):
190
+ if dtype.numpy_dtype == "object":
191
+ # Different from BaseDtypeTests.test_is_not_object_type
192
+ # because NumpyEADtype(object) is an object type
193
+ assert is_object_dtype(dtype)
194
+ else:
195
+ super().test_is_not_object_type(dtype)
196
+
197
+ @skip_nested
198
+ def test_getitem_scalar(self, data):
199
+ # AssertionError
200
+ super().test_getitem_scalar(data)
201
+
202
+ @skip_nested
203
+ def test_shift_fill_value(self, data):
204
+ # np.array shape inference. Shift implementation fails.
205
+ super().test_shift_fill_value(data)
206
+
207
+ @skip_nested
208
+ def test_fillna_copy_frame(self, data_missing):
209
+ # The "scalar" for this array isn't a scalar.
210
+ super().test_fillna_copy_frame(data_missing)
211
+
212
+ @skip_nested
213
+ def test_fillna_copy_series(self, data_missing):
214
+ # The "scalar" for this array isn't a scalar.
215
+ super().test_fillna_copy_series(data_missing)
216
+
217
+ @skip_nested
218
+ def test_searchsorted(self, data_for_sorting, as_series):
219
+ # TODO: NumpyExtensionArray.searchsorted calls ndarray.searchsorted which
220
+ # isn't quite what we want in nested data cases. Instead we need to
221
+ # adapt something like libindex._bin_search.
222
+ super().test_searchsorted(data_for_sorting, as_series)
223
+
224
+ @pytest.mark.xfail(reason="NumpyExtensionArray.diff may fail on dtype")
225
+ def test_diff(self, data, periods):
226
+ return super().test_diff(data, periods)
227
+
228
+ def test_insert(self, data, request):
229
+ if data.dtype.numpy_dtype == object:
230
+ mark = pytest.mark.xfail(reason="Dimension mismatch in np.concatenate")
231
+ request.applymarker(mark)
232
+
233
+ super().test_insert(data)
234
+
235
+ @skip_nested
236
+ def test_insert_invalid(self, data, invalid_scalar):
237
+ # NumpyExtensionArray[object] can hold anything, so skip
238
+ super().test_insert_invalid(data, invalid_scalar)
239
+
240
+ divmod_exc = None
241
+ series_scalar_exc = None
242
+ frame_scalar_exc = None
243
+ series_array_exc = None
244
+
245
+ def test_divmod(self, data):
246
+ divmod_exc = None
247
+ if data.dtype.kind == "O":
248
+ divmod_exc = TypeError
249
+ self.divmod_exc = divmod_exc
250
+ super().test_divmod(data)
251
+
252
+ def test_divmod_series_array(self, data):
253
+ ser = pd.Series(data)
254
+ exc = None
255
+ if data.dtype.kind == "O":
256
+ exc = TypeError
257
+ self.divmod_exc = exc
258
+ self._check_divmod_op(ser, divmod, data)
259
+
260
+ def test_arith_series_with_scalar(self, data, all_arithmetic_operators, request):
261
+ opname = all_arithmetic_operators
262
+ series_scalar_exc = None
263
+ if data.dtype.numpy_dtype == object:
264
+ if opname in ["__mul__", "__rmul__"]:
265
+ mark = pytest.mark.xfail(
266
+ reason="the Series.combine step raises but not the Series method."
267
+ )
268
+ request.node.add_marker(mark)
269
+ series_scalar_exc = TypeError
270
+ self.series_scalar_exc = series_scalar_exc
271
+ super().test_arith_series_with_scalar(data, all_arithmetic_operators)
272
+
273
+ def test_arith_series_with_array(self, data, all_arithmetic_operators):
274
+ opname = all_arithmetic_operators
275
+ series_array_exc = None
276
+ if data.dtype.numpy_dtype == object and opname not in ["__add__", "__radd__"]:
277
+ series_array_exc = TypeError
278
+ self.series_array_exc = series_array_exc
279
+ super().test_arith_series_with_array(data, all_arithmetic_operators)
280
+
281
+ def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request):
282
+ opname = all_arithmetic_operators
283
+ frame_scalar_exc = None
284
+ if data.dtype.numpy_dtype == object:
285
+ if opname in ["__mul__", "__rmul__"]:
286
+ mark = pytest.mark.xfail(
287
+ reason="the Series.combine step raises but not the Series method."
288
+ )
289
+ request.node.add_marker(mark)
290
+ frame_scalar_exc = TypeError
291
+ self.frame_scalar_exc = frame_scalar_exc
292
+ super().test_arith_frame_with_scalar(data, all_arithmetic_operators)
293
+
294
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
295
+ if ser.dtype.kind == "O":
296
+ return op_name in ["sum", "min", "max", "any", "all"]
297
+ return True
298
+
299
+ def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
300
+ res_op = getattr(ser, op_name)
301
+ # avoid coercing int -> float. Just cast to the actual numpy type.
302
+ # error: Item "ExtensionDtype" of "dtype[Any] | ExtensionDtype" has
303
+ # no attribute "numpy_dtype"
304
+ cmp_dtype = ser.dtype.numpy_dtype # type: ignore[union-attr]
305
+ alt = ser.astype(cmp_dtype)
306
+ exp_op = getattr(alt, op_name)
307
+ if op_name == "count":
308
+ result = res_op()
309
+ expected = exp_op()
310
+ else:
311
+ result = res_op(skipna=skipna)
312
+ expected = exp_op(skipna=skipna)
313
+ tm.assert_almost_equal(result, expected)
314
+
315
+ @pytest.mark.skip("TODO: tests not written yet")
316
+ @pytest.mark.parametrize("skipna", [True, False])
317
+ def test_reduce_frame(self, data, all_numeric_reductions, skipna):
318
+ pass
319
+
320
+ @skip_nested
321
+ def test_fillna_series(self, data_missing):
322
+ # Non-scalar "scalar" values.
323
+ super().test_fillna_series(data_missing)
324
+
325
+ @skip_nested
326
+ def test_fillna_frame(self, data_missing):
327
+ # Non-scalar "scalar" values.
328
+ super().test_fillna_frame(data_missing)
329
+
330
+ @skip_nested
331
+ def test_setitem_invalid(self, data, invalid_scalar):
332
+ # object dtype can hold anything, so doesn't raise
333
+ super().test_setitem_invalid(data, invalid_scalar)
334
+
335
+ @skip_nested
336
+ def test_setitem_sequence_broadcasts(self, data, box_in_series):
337
+ # ValueError: cannot set using a list-like indexer with a different
338
+ # length than the value
339
+ super().test_setitem_sequence_broadcasts(data, box_in_series)
340
+
341
+ @skip_nested
342
+ @pytest.mark.parametrize("setter", ["loc", None])
343
+ def test_setitem_mask_broadcast(self, data, setter):
344
+ # ValueError: cannot set using a list-like indexer with a different
345
+ # length than the value
346
+ super().test_setitem_mask_broadcast(data, setter)
347
+
348
+ @skip_nested
349
+ def test_setitem_scalar_key_sequence_raise(self, data):
350
+ # Failed: DID NOT RAISE <class 'ValueError'>
351
+ super().test_setitem_scalar_key_sequence_raise(data)
352
+
353
+ # TODO: there is some issue with NumpyExtensionArray, therefore,
354
+ # skip the setitem test for now, and fix it later (GH 31446)
355
+
356
+ @skip_nested
357
+ @pytest.mark.parametrize(
358
+ "mask",
359
+ [
360
+ np.array([True, True, True, False, False]),
361
+ pd.array([True, True, True, False, False], dtype="boolean"),
362
+ ],
363
+ ids=["numpy-array", "boolean-array"],
364
+ )
365
+ def test_setitem_mask(self, data, mask, box_in_series):
366
+ super().test_setitem_mask(data, mask, box_in_series)
367
+
368
+ @skip_nested
369
+ @pytest.mark.parametrize(
370
+ "idx",
371
+ [[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
372
+ ids=["list", "integer-array", "numpy-array"],
373
+ )
374
+ def test_setitem_integer_array(self, data, idx, box_in_series):
375
+ super().test_setitem_integer_array(data, idx, box_in_series)
376
+
377
+ @pytest.mark.parametrize(
378
+ "idx, box_in_series",
379
+ [
380
+ ([0, 1, 2, pd.NA], False),
381
+ pytest.param([0, 1, 2, pd.NA], True, marks=pytest.mark.xfail),
382
+ (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
383
+ (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
384
+ ],
385
+ ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
386
+ )
387
+ def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
388
+ super().test_setitem_integer_with_missing_raises(data, idx, box_in_series)
389
+
390
+ @skip_nested
391
+ def test_setitem_slice(self, data, box_in_series):
392
+ super().test_setitem_slice(data, box_in_series)
393
+
394
+ @skip_nested
395
+ def test_setitem_loc_iloc_slice(self, data):
396
+ super().test_setitem_loc_iloc_slice(data)
397
+
398
+ def test_setitem_with_expansion_dataframe_column(self, data, full_indexer):
399
+ # https://github.com/pandas-dev/pandas/issues/32395
400
+ df = expected = pd.DataFrame({"data": pd.Series(data)})
401
+ result = pd.DataFrame(index=df.index)
402
+
403
+ # because result has object dtype, the attempt to do setting inplace
404
+ # is successful, and object dtype is retained
405
+ key = full_indexer(df)
406
+ result.loc[key, "data"] = df["data"]
407
+
408
+ # base class method has expected = df; NumpyExtensionArray behaves oddly because
409
+ # we patch _typ for these tests.
410
+ if data.dtype.numpy_dtype != object:
411
+ if not isinstance(key, slice) or key != slice(None):
412
+ expected = pd.DataFrame({"data": data.to_numpy()})
413
+ tm.assert_frame_equal(result, expected, check_column_type=False)
414
+
415
+ @pytest.mark.xfail(reason="NumpyEADtype is unpacked")
416
+ def test_index_from_listlike_with_dtype(self, data):
417
+ super().test_index_from_listlike_with_dtype(data)
418
+
419
+ @skip_nested
420
+ @pytest.mark.parametrize("engine", ["c", "python"])
421
+ def test_EA_types(self, engine, data, request):
422
+ super().test_EA_types(engine, data, request)
423
+
424
+
425
+ class Test2DCompat(base.NDArrayBacked2DTests):
426
+ pass
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_period.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ from __future__ import annotations
17
+
18
+ from typing import TYPE_CHECKING
19
+
20
+ import numpy as np
21
+ import pytest
22
+
23
+ from pandas._libs import (
24
+ Period,
25
+ iNaT,
26
+ )
27
+ from pandas.compat import is_platform_windows
28
+ from pandas.compat.numpy import np_version_gte1p24
29
+
30
+ from pandas.core.dtypes.dtypes import PeriodDtype
31
+
32
+ import pandas._testing as tm
33
+ from pandas.core.arrays import PeriodArray
34
+ from pandas.tests.extension import base
35
+
36
+ if TYPE_CHECKING:
37
+ import pandas as pd
38
+
39
+
40
+ @pytest.fixture(params=["D", "2D"])
41
+ def dtype(request):
42
+ return PeriodDtype(freq=request.param)
43
+
44
+
45
+ @pytest.fixture
46
+ def data(dtype):
47
+ return PeriodArray(np.arange(1970, 2070), dtype=dtype)
48
+
49
+
50
+ @pytest.fixture
51
+ def data_for_sorting(dtype):
52
+ return PeriodArray([2018, 2019, 2017], dtype=dtype)
53
+
54
+
55
+ @pytest.fixture
56
+ def data_missing(dtype):
57
+ return PeriodArray([iNaT, 2017], dtype=dtype)
58
+
59
+
60
+ @pytest.fixture
61
+ def data_missing_for_sorting(dtype):
62
+ return PeriodArray([2018, iNaT, 2017], dtype=dtype)
63
+
64
+
65
+ @pytest.fixture
66
+ def data_for_grouping(dtype):
67
+ B = 2018
68
+ NA = iNaT
69
+ A = 2017
70
+ C = 2019
71
+ return PeriodArray([B, B, NA, NA, A, A, B, C], dtype=dtype)
72
+
73
+
74
+ class TestPeriodArray(base.ExtensionTests):
75
+ def _get_expected_exception(self, op_name, obj, other):
76
+ if op_name in ("__sub__", "__rsub__"):
77
+ return None
78
+ return super()._get_expected_exception(op_name, obj, other)
79
+
80
+ def _supports_accumulation(self, ser, op_name: str) -> bool:
81
+ return op_name in ["cummin", "cummax"]
82
+
83
+ def _supports_reduction(self, obj, op_name: str) -> bool:
84
+ return op_name in ["min", "max", "median"]
85
+
86
+ def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
87
+ if op_name == "median":
88
+ res_op = getattr(ser, op_name)
89
+
90
+ alt = ser.astype("int64")
91
+
92
+ exp_op = getattr(alt, op_name)
93
+ result = res_op(skipna=skipna)
94
+ expected = exp_op(skipna=skipna)
95
+ # error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has no
96
+ # attribute "freq"
97
+ freq = ser.dtype.freq # type: ignore[union-attr]
98
+ expected = Period._from_ordinal(int(expected), freq=freq)
99
+ tm.assert_almost_equal(result, expected)
100
+
101
+ else:
102
+ return super().check_reduce(ser, op_name, skipna)
103
+
104
+ @pytest.mark.parametrize("periods", [1, -2])
105
+ def test_diff(self, data, periods):
106
+ if is_platform_windows() and np_version_gte1p24:
107
+ with tm.assert_produces_warning(RuntimeWarning, check_stacklevel=False):
108
+ super().test_diff(data, periods)
109
+ else:
110
+ super().test_diff(data, periods)
111
+
112
+ @pytest.mark.parametrize("na_action", [None, "ignore"])
113
+ def test_map(self, data, na_action):
114
+ result = data.map(lambda x: x, na_action=na_action)
115
+ tm.assert_extension_array_equal(result, data)
116
+
117
+
118
+ class Test2DCompat(base.NDArrayBacked2DTests):
119
+ pass
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_sparse.py ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+
17
+ import numpy as np
18
+ import pytest
19
+
20
+ from pandas.errors import PerformanceWarning
21
+
22
+ import pandas as pd
23
+ from pandas import SparseDtype
24
+ import pandas._testing as tm
25
+ from pandas.arrays import SparseArray
26
+ from pandas.tests.extension import base
27
+
28
+
29
+ def make_data(fill_value):
30
+ rng = np.random.default_rng(2)
31
+ if np.isnan(fill_value):
32
+ data = rng.uniform(size=100)
33
+ else:
34
+ data = rng.integers(1, 100, size=100, dtype=int)
35
+ if data[0] == data[1]:
36
+ data[0] += 1
37
+
38
+ data[2::3] = fill_value
39
+ return data
40
+
41
+
42
+ @pytest.fixture
43
+ def dtype():
44
+ return SparseDtype()
45
+
46
+
47
+ @pytest.fixture(params=[0, np.nan])
48
+ def data(request):
49
+ """Length-100 PeriodArray for semantics test."""
50
+ res = SparseArray(make_data(request.param), fill_value=request.param)
51
+ return res
52
+
53
+
54
+ @pytest.fixture
55
+ def data_for_twos():
56
+ return SparseArray(np.ones(100) * 2)
57
+
58
+
59
+ @pytest.fixture(params=[0, np.nan])
60
+ def data_missing(request):
61
+ """Length 2 array with [NA, Valid]"""
62
+ return SparseArray([np.nan, 1], fill_value=request.param)
63
+
64
+
65
+ @pytest.fixture(params=[0, np.nan])
66
+ def data_repeated(request):
67
+ """Return different versions of data for count times"""
68
+
69
+ def gen(count):
70
+ for _ in range(count):
71
+ yield SparseArray(make_data(request.param), fill_value=request.param)
72
+
73
+ yield gen
74
+
75
+
76
+ @pytest.fixture(params=[0, np.nan])
77
+ def data_for_sorting(request):
78
+ return SparseArray([2, 3, 1], fill_value=request.param)
79
+
80
+
81
+ @pytest.fixture(params=[0, np.nan])
82
+ def data_missing_for_sorting(request):
83
+ return SparseArray([2, np.nan, 1], fill_value=request.param)
84
+
85
+
86
+ @pytest.fixture
87
+ def na_cmp():
88
+ return lambda left, right: pd.isna(left) and pd.isna(right)
89
+
90
+
91
+ @pytest.fixture(params=[0, np.nan])
92
+ def data_for_grouping(request):
93
+ return SparseArray([1, 1, np.nan, np.nan, 2, 2, 1, 3], fill_value=request.param)
94
+
95
+
96
+ @pytest.fixture(params=[0, np.nan])
97
+ def data_for_compare(request):
98
+ return SparseArray([0, 0, np.nan, -2, -1, 4, 2, 3, 0, 0], fill_value=request.param)
99
+
100
+
101
+ class TestSparseArray(base.ExtensionTests):
102
+ def _supports_reduction(self, obj, op_name: str) -> bool:
103
+ return True
104
+
105
+ @pytest.mark.parametrize("skipna", [True, False])
106
+ def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna, request):
107
+ if all_numeric_reductions in [
108
+ "prod",
109
+ "median",
110
+ "var",
111
+ "std",
112
+ "sem",
113
+ "skew",
114
+ "kurt",
115
+ ]:
116
+ mark = pytest.mark.xfail(
117
+ reason="This should be viable but is not implemented"
118
+ )
119
+ request.node.add_marker(mark)
120
+ elif (
121
+ all_numeric_reductions in ["sum", "max", "min", "mean"]
122
+ and data.dtype.kind == "f"
123
+ and not skipna
124
+ ):
125
+ mark = pytest.mark.xfail(reason="getting a non-nan float")
126
+ request.node.add_marker(mark)
127
+
128
+ super().test_reduce_series_numeric(data, all_numeric_reductions, skipna)
129
+
130
+ @pytest.mark.parametrize("skipna", [True, False])
131
+ def test_reduce_frame(self, data, all_numeric_reductions, skipna, request):
132
+ if all_numeric_reductions in [
133
+ "prod",
134
+ "median",
135
+ "var",
136
+ "std",
137
+ "sem",
138
+ "skew",
139
+ "kurt",
140
+ ]:
141
+ mark = pytest.mark.xfail(
142
+ reason="This should be viable but is not implemented"
143
+ )
144
+ request.node.add_marker(mark)
145
+ elif (
146
+ all_numeric_reductions in ["sum", "max", "min", "mean"]
147
+ and data.dtype.kind == "f"
148
+ and not skipna
149
+ ):
150
+ mark = pytest.mark.xfail(reason="ExtensionArray NA mask are different")
151
+ request.node.add_marker(mark)
152
+
153
+ super().test_reduce_frame(data, all_numeric_reductions, skipna)
154
+
155
+ def _check_unsupported(self, data):
156
+ if data.dtype == SparseDtype(int, 0):
157
+ pytest.skip("Can't store nan in int array.")
158
+
159
+ def test_concat_mixed_dtypes(self, data):
160
+ # https://github.com/pandas-dev/pandas/issues/20762
161
+ # This should be the same, aside from concat([sparse, float])
162
+ df1 = pd.DataFrame({"A": data[:3]})
163
+ df2 = pd.DataFrame({"A": [1, 2, 3]})
164
+ df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category")
165
+ dfs = [df1, df2, df3]
166
+
167
+ # dataframes
168
+ result = pd.concat(dfs)
169
+ expected = pd.concat(
170
+ [x.apply(lambda s: np.asarray(s).astype(object)) for x in dfs]
171
+ )
172
+ tm.assert_frame_equal(result, expected)
173
+
174
+ @pytest.mark.filterwarnings(
175
+ "ignore:The previous implementation of stack is deprecated"
176
+ )
177
+ @pytest.mark.parametrize(
178
+ "columns",
179
+ [
180
+ ["A", "B"],
181
+ pd.MultiIndex.from_tuples(
182
+ [("A", "a"), ("A", "b")], names=["outer", "inner"]
183
+ ),
184
+ ],
185
+ )
186
+ @pytest.mark.parametrize("future_stack", [True, False])
187
+ def test_stack(self, data, columns, future_stack):
188
+ super().test_stack(data, columns, future_stack)
189
+
190
+ def test_concat_columns(self, data, na_value):
191
+ self._check_unsupported(data)
192
+ super().test_concat_columns(data, na_value)
193
+
194
+ def test_concat_extension_arrays_copy_false(self, data, na_value):
195
+ self._check_unsupported(data)
196
+ super().test_concat_extension_arrays_copy_false(data, na_value)
197
+
198
+ def test_align(self, data, na_value):
199
+ self._check_unsupported(data)
200
+ super().test_align(data, na_value)
201
+
202
+ def test_align_frame(self, data, na_value):
203
+ self._check_unsupported(data)
204
+ super().test_align_frame(data, na_value)
205
+
206
+ def test_align_series_frame(self, data, na_value):
207
+ self._check_unsupported(data)
208
+ super().test_align_series_frame(data, na_value)
209
+
210
+ def test_merge(self, data, na_value):
211
+ self._check_unsupported(data)
212
+ super().test_merge(data, na_value)
213
+
214
+ def test_get(self, data):
215
+ ser = pd.Series(data, index=[2 * i for i in range(len(data))])
216
+ if np.isnan(ser.values.fill_value):
217
+ assert np.isnan(ser.get(4)) and np.isnan(ser.iloc[2])
218
+ else:
219
+ assert ser.get(4) == ser.iloc[2]
220
+ assert ser.get(2) == ser.iloc[1]
221
+
222
+ def test_reindex(self, data, na_value):
223
+ self._check_unsupported(data)
224
+ super().test_reindex(data, na_value)
225
+
226
+ def test_isna(self, data_missing):
227
+ sarr = SparseArray(data_missing)
228
+ expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value))
229
+ expected = SparseArray([True, False], dtype=expected_dtype)
230
+ result = sarr.isna()
231
+ tm.assert_sp_array_equal(result, expected)
232
+
233
+ # test isna for arr without na
234
+ sarr = sarr.fillna(0)
235
+ expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value))
236
+ expected = SparseArray([False, False], fill_value=False, dtype=expected_dtype)
237
+ tm.assert_equal(sarr.isna(), expected)
238
+
239
+ def test_fillna_limit_backfill(self, data_missing):
240
+ warns = (PerformanceWarning, FutureWarning)
241
+ with tm.assert_produces_warning(warns, check_stacklevel=False):
242
+ super().test_fillna_limit_backfill(data_missing)
243
+
244
+ def test_fillna_no_op_returns_copy(self, data, request):
245
+ if np.isnan(data.fill_value):
246
+ request.applymarker(
247
+ pytest.mark.xfail(reason="returns array with different fill value")
248
+ )
249
+ super().test_fillna_no_op_returns_copy(data)
250
+
251
+ @pytest.mark.xfail(reason="Unsupported")
252
+ def test_fillna_series(self, data_missing):
253
+ # this one looks doable.
254
+ # TODO: this fails bc we do not pass through data_missing. If we did,
255
+ # the 0-fill case would xpass
256
+ super().test_fillna_series()
257
+
258
+ def test_fillna_frame(self, data_missing):
259
+ # Have to override to specify that fill_value will change.
260
+ fill_value = data_missing[1]
261
+
262
+ result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value)
263
+
264
+ if pd.isna(data_missing.fill_value):
265
+ dtype = SparseDtype(data_missing.dtype, fill_value)
266
+ else:
267
+ dtype = data_missing.dtype
268
+
269
+ expected = pd.DataFrame(
270
+ {
271
+ "A": data_missing._from_sequence([fill_value, fill_value], dtype=dtype),
272
+ "B": [1, 2],
273
+ }
274
+ )
275
+
276
+ tm.assert_frame_equal(result, expected)
277
+
278
+ _combine_le_expected_dtype = "Sparse[bool]"
279
+
280
+ def test_fillna_copy_frame(self, data_missing, using_copy_on_write):
281
+ arr = data_missing.take([1, 1])
282
+ df = pd.DataFrame({"A": arr}, copy=False)
283
+
284
+ filled_val = df.iloc[0, 0]
285
+ result = df.fillna(filled_val)
286
+
287
+ if hasattr(df._mgr, "blocks"):
288
+ if using_copy_on_write:
289
+ assert df.values.base is result.values.base
290
+ else:
291
+ assert df.values.base is not result.values.base
292
+ assert df.A._values.to_dense() is arr.to_dense()
293
+
294
+ def test_fillna_copy_series(self, data_missing, using_copy_on_write):
295
+ arr = data_missing.take([1, 1])
296
+ ser = pd.Series(arr, copy=False)
297
+
298
+ filled_val = ser[0]
299
+ result = ser.fillna(filled_val)
300
+
301
+ if using_copy_on_write:
302
+ assert ser._values is result._values
303
+
304
+ else:
305
+ assert ser._values is not result._values
306
+ assert ser._values.to_dense() is arr.to_dense()
307
+
308
+ @pytest.mark.xfail(reason="Not Applicable")
309
+ def test_fillna_length_mismatch(self, data_missing):
310
+ super().test_fillna_length_mismatch(data_missing)
311
+
312
+ def test_where_series(self, data, na_value):
313
+ assert data[0] != data[1]
314
+ cls = type(data)
315
+ a, b = data[:2]
316
+
317
+ ser = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype))
318
+
319
+ cond = np.array([True, True, False, False])
320
+ result = ser.where(cond)
321
+
322
+ new_dtype = SparseDtype("float", 0.0)
323
+ expected = pd.Series(
324
+ cls._from_sequence([a, a, na_value, na_value], dtype=new_dtype)
325
+ )
326
+ tm.assert_series_equal(result, expected)
327
+
328
+ other = cls._from_sequence([a, b, a, b], dtype=data.dtype)
329
+ cond = np.array([True, False, True, True])
330
+ result = ser.where(cond, other)
331
+ expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype))
332
+ tm.assert_series_equal(result, expected)
333
+
334
+ def test_searchsorted(self, data_for_sorting, as_series):
335
+ with tm.assert_produces_warning(PerformanceWarning, check_stacklevel=False):
336
+ super().test_searchsorted(data_for_sorting, as_series)
337
+
338
+ def test_shift_0_periods(self, data):
339
+ # GH#33856 shifting with periods=0 should return a copy, not same obj
340
+ result = data.shift(0)
341
+
342
+ data._sparse_values[0] = data._sparse_values[1]
343
+ assert result._sparse_values[0] != result._sparse_values[1]
344
+
345
+ @pytest.mark.parametrize("method", ["argmax", "argmin"])
346
+ def test_argmin_argmax_all_na(self, method, data, na_value):
347
+ # overriding because Sparse[int64, 0] cannot handle na_value
348
+ self._check_unsupported(data)
349
+ super().test_argmin_argmax_all_na(method, data, na_value)
350
+
351
+ @pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame])
352
+ def test_equals(self, data, na_value, as_series, box):
353
+ self._check_unsupported(data)
354
+ super().test_equals(data, na_value, as_series, box)
355
+
356
+ @pytest.mark.parametrize(
357
+ "func, na_action, expected",
358
+ [
359
+ (lambda x: x, None, SparseArray([1.0, np.nan])),
360
+ (lambda x: x, "ignore", SparseArray([1.0, np.nan])),
361
+ (str, None, SparseArray(["1.0", "nan"], fill_value="nan")),
362
+ (str, "ignore", SparseArray(["1.0", np.nan])),
363
+ ],
364
+ )
365
+ def test_map(self, func, na_action, expected):
366
+ # GH52096
367
+ data = SparseArray([1, np.nan])
368
+ result = data.map(func, na_action=na_action)
369
+ tm.assert_extension_array_equal(result, expected)
370
+
371
+ @pytest.mark.parametrize("na_action", [None, "ignore"])
372
+ def test_map_raises(self, data, na_action):
373
+ # GH52096
374
+ msg = "fill value in the sparse values not supported"
375
+ with pytest.raises(ValueError, match=msg):
376
+ data.map(lambda x: np.nan, na_action=na_action)
377
+
378
+ @pytest.mark.xfail(raises=TypeError, reason="no sparse StringDtype")
379
+ def test_astype_string(self, data, nullable_string_dtype):
380
+ # TODO: this fails bc we do not pass through nullable_string_dtype;
381
+ # If we did, the 0-cases would xpass
382
+ super().test_astype_string(data)
383
+
384
+ series_scalar_exc = None
385
+ frame_scalar_exc = None
386
+ divmod_exc = None
387
+ series_array_exc = None
388
+
389
+ def _skip_if_different_combine(self, data):
390
+ if data.fill_value == 0:
391
+ # arith ops call on dtype.fill_value so that the sparsity
392
+ # is maintained. Combine can't be called on a dtype in
393
+ # general, so we can't make the expected. This is tested elsewhere
394
+ pytest.skip("Incorrected expected from Series.combine and tested elsewhere")
395
+
396
+ def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
397
+ self._skip_if_different_combine(data)
398
+ super().test_arith_series_with_scalar(data, all_arithmetic_operators)
399
+
400
+ def test_arith_series_with_array(self, data, all_arithmetic_operators):
401
+ self._skip_if_different_combine(data)
402
+ super().test_arith_series_with_array(data, all_arithmetic_operators)
403
+
404
+ def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request):
405
+ if data.dtype.fill_value != 0:
406
+ pass
407
+ elif all_arithmetic_operators.strip("_") not in [
408
+ "mul",
409
+ "rmul",
410
+ "floordiv",
411
+ "rfloordiv",
412
+ "pow",
413
+ "mod",
414
+ "rmod",
415
+ ]:
416
+ mark = pytest.mark.xfail(reason="result dtype.fill_value mismatch")
417
+ request.applymarker(mark)
418
+ super().test_arith_frame_with_scalar(data, all_arithmetic_operators)
419
+
420
+ def _compare_other(
421
+ self, ser: pd.Series, data_for_compare: SparseArray, comparison_op, other
422
+ ):
423
+ op = comparison_op
424
+
425
+ result = op(data_for_compare, other)
426
+ if isinstance(other, pd.Series):
427
+ assert isinstance(result, pd.Series)
428
+ assert isinstance(result.dtype, SparseDtype)
429
+ else:
430
+ assert isinstance(result, SparseArray)
431
+ assert result.dtype.subtype == np.bool_
432
+
433
+ if isinstance(other, pd.Series):
434
+ fill_value = op(data_for_compare.fill_value, other._values.fill_value)
435
+ expected = SparseArray(
436
+ op(data_for_compare.to_dense(), np.asarray(other)),
437
+ fill_value=fill_value,
438
+ dtype=np.bool_,
439
+ )
440
+
441
+ else:
442
+ fill_value = np.all(
443
+ op(np.asarray(data_for_compare.fill_value), np.asarray(other))
444
+ )
445
+
446
+ expected = SparseArray(
447
+ op(data_for_compare.to_dense(), np.asarray(other)),
448
+ fill_value=fill_value,
449
+ dtype=np.bool_,
450
+ )
451
+ if isinstance(other, pd.Series):
452
+ # error: Incompatible types in assignment
453
+ expected = pd.Series(expected) # type: ignore[assignment]
454
+ tm.assert_equal(result, expected)
455
+
456
+ def test_scalar(self, data_for_compare: SparseArray, comparison_op):
457
+ ser = pd.Series(data_for_compare)
458
+ self._compare_other(ser, data_for_compare, comparison_op, 0)
459
+ self._compare_other(ser, data_for_compare, comparison_op, 1)
460
+ self._compare_other(ser, data_for_compare, comparison_op, -1)
461
+ self._compare_other(ser, data_for_compare, comparison_op, np.nan)
462
+
463
+ def test_array(self, data_for_compare: SparseArray, comparison_op, request):
464
+ if data_for_compare.dtype.fill_value == 0 and comparison_op.__name__ in [
465
+ "eq",
466
+ "ge",
467
+ "le",
468
+ ]:
469
+ mark = pytest.mark.xfail(reason="Wrong fill_value")
470
+ request.applymarker(mark)
471
+
472
+ arr = np.linspace(-4, 5, 10)
473
+ ser = pd.Series(data_for_compare)
474
+ self._compare_other(ser, data_for_compare, comparison_op, arr)
475
+
476
+ def test_sparse_array(self, data_for_compare: SparseArray, comparison_op, request):
477
+ if data_for_compare.dtype.fill_value == 0 and comparison_op.__name__ != "gt":
478
+ mark = pytest.mark.xfail(reason="Wrong fill_value")
479
+ request.applymarker(mark)
480
+
481
+ ser = pd.Series(data_for_compare)
482
+ arr = data_for_compare + 1
483
+ self._compare_other(ser, data_for_compare, comparison_op, arr)
484
+ arr = data_for_compare * 2
485
+ self._compare_other(ser, data_for_compare, comparison_op, arr)
486
+
487
+ @pytest.mark.xfail(reason="Different repr")
488
+ def test_array_repr(self, data, size):
489
+ super().test_array_repr(data, size)
490
+
491
+ @pytest.mark.xfail(reason="result does not match expected")
492
+ @pytest.mark.parametrize("as_index", [True, False])
493
+ def test_groupby_extension_agg(self, as_index, data_for_grouping):
494
+ super().test_groupby_extension_agg(as_index, data_for_grouping)
495
+
496
+
497
+ def test_array_type_with_arg(dtype):
498
+ assert dtype.construct_array_type() is SparseArray
llmeval-env/lib/python3.10/site-packages/pandas/tests/extension/test_string.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file contains a minimal set of tests for compliance with the extension
3
+ array interface test suite, and should contain no other tests.
4
+ The test suite for the full functionality of the array is located in
5
+ `pandas/tests/arrays/`.
6
+
7
+ The tests in this file are inherited from the BaseExtensionTests, and only
8
+ minimal tweaks should be applied to get the tests passing (by overwriting a
9
+ parent method).
10
+
11
+ Additional tests should either be added to one of the BaseExtensionTests
12
+ classes (if they are relevant for the extension interface for all dtypes), or
13
+ be added to the array-specific tests in `pandas/tests/arrays/`.
14
+
15
+ """
16
+ from __future__ import annotations
17
+
18
+ import string
19
+ from typing import cast
20
+
21
+ import numpy as np
22
+ import pytest
23
+
24
+ import pandas as pd
25
+ import pandas._testing as tm
26
+ from pandas.api.types import is_string_dtype
27
+ from pandas.core.arrays import ArrowStringArray
28
+ from pandas.core.arrays.string_ import StringDtype
29
+ from pandas.tests.extension import base
30
+
31
+
32
+ def maybe_split_array(arr, chunked):
33
+ if not chunked:
34
+ return arr
35
+ elif arr.dtype.storage != "pyarrow":
36
+ return arr
37
+
38
+ pa = pytest.importorskip("pyarrow")
39
+
40
+ arrow_array = arr._pa_array
41
+ split = len(arrow_array) // 2
42
+ arrow_array = pa.chunked_array(
43
+ [*arrow_array[:split].chunks, *arrow_array[split:].chunks]
44
+ )
45
+ assert arrow_array.num_chunks == 2
46
+ return type(arr)(arrow_array)
47
+
48
+
49
+ @pytest.fixture(params=[True, False])
50
+ def chunked(request):
51
+ return request.param
52
+
53
+
54
+ @pytest.fixture
55
+ def dtype(string_storage):
56
+ return StringDtype(storage=string_storage)
57
+
58
+
59
+ @pytest.fixture
60
+ def data(dtype, chunked):
61
+ strings = np.random.default_rng(2).choice(list(string.ascii_letters), size=100)
62
+ while strings[0] == strings[1]:
63
+ strings = np.random.default_rng(2).choice(list(string.ascii_letters), size=100)
64
+
65
+ arr = dtype.construct_array_type()._from_sequence(strings, dtype=dtype)
66
+ return maybe_split_array(arr, chunked)
67
+
68
+
69
+ @pytest.fixture
70
+ def data_missing(dtype, chunked):
71
+ """Length 2 array with [NA, Valid]"""
72
+ arr = dtype.construct_array_type()._from_sequence([pd.NA, "A"], dtype=dtype)
73
+ return maybe_split_array(arr, chunked)
74
+
75
+
76
+ @pytest.fixture
77
+ def data_for_sorting(dtype, chunked):
78
+ arr = dtype.construct_array_type()._from_sequence(["B", "C", "A"], dtype=dtype)
79
+ return maybe_split_array(arr, chunked)
80
+
81
+
82
+ @pytest.fixture
83
+ def data_missing_for_sorting(dtype, chunked):
84
+ arr = dtype.construct_array_type()._from_sequence(["B", pd.NA, "A"], dtype=dtype)
85
+ return maybe_split_array(arr, chunked)
86
+
87
+
88
+ @pytest.fixture
89
+ def data_for_grouping(dtype, chunked):
90
+ arr = dtype.construct_array_type()._from_sequence(
91
+ ["B", "B", pd.NA, pd.NA, "A", "A", "B", "C"], dtype=dtype
92
+ )
93
+ return maybe_split_array(arr, chunked)
94
+
95
+
96
+ class TestStringArray(base.ExtensionTests):
97
+ def test_eq_with_str(self, dtype):
98
+ assert dtype == f"string[{dtype.storage}]"
99
+ super().test_eq_with_str(dtype)
100
+
101
+ def test_is_not_string_type(self, dtype):
102
+ # Different from BaseDtypeTests.test_is_not_string_type
103
+ # because StringDtype is a string type
104
+ assert is_string_dtype(dtype)
105
+
106
+ def test_view(self, data, request, arrow_string_storage):
107
+ if data.dtype.storage in arrow_string_storage:
108
+ pytest.skip(reason="2D support not implemented for ArrowStringArray")
109
+ super().test_view(data)
110
+
111
+ def test_from_dtype(self, data):
112
+ # base test uses string representation of dtype
113
+ pass
114
+
115
+ def test_transpose(self, data, request, arrow_string_storage):
116
+ if data.dtype.storage in arrow_string_storage:
117
+ pytest.skip(reason="2D support not implemented for ArrowStringArray")
118
+ super().test_transpose(data)
119
+
120
+ def test_setitem_preserves_views(self, data, request, arrow_string_storage):
121
+ if data.dtype.storage in arrow_string_storage:
122
+ pytest.skip(reason="2D support not implemented for ArrowStringArray")
123
+ super().test_setitem_preserves_views(data)
124
+
125
+ def test_dropna_array(self, data_missing):
126
+ result = data_missing.dropna()
127
+ expected = data_missing[[1]]
128
+ tm.assert_extension_array_equal(result, expected)
129
+
130
+ def test_fillna_no_op_returns_copy(self, data):
131
+ data = data[~data.isna()]
132
+
133
+ valid = data[0]
134
+ result = data.fillna(valid)
135
+ assert result is not data
136
+ tm.assert_extension_array_equal(result, data)
137
+
138
+ result = data.fillna(method="backfill")
139
+ assert result is not data
140
+ tm.assert_extension_array_equal(result, data)
141
+
142
+ def _get_expected_exception(
143
+ self, op_name: str, obj, other
144
+ ) -> type[Exception] | None:
145
+ if op_name in ["__divmod__", "__rdivmod__"]:
146
+ if isinstance(obj, pd.Series) and cast(
147
+ StringDtype, tm.get_dtype(obj)
148
+ ).storage in [
149
+ "pyarrow",
150
+ "pyarrow_numpy",
151
+ ]:
152
+ # TODO: re-raise as TypeError?
153
+ return NotImplementedError
154
+ elif isinstance(other, pd.Series) and cast(
155
+ StringDtype, tm.get_dtype(other)
156
+ ).storage in [
157
+ "pyarrow",
158
+ "pyarrow_numpy",
159
+ ]:
160
+ # TODO: re-raise as TypeError?
161
+ return NotImplementedError
162
+ return TypeError
163
+ elif op_name in ["__mod__", "__rmod__", "__pow__", "__rpow__"]:
164
+ if cast(StringDtype, tm.get_dtype(obj)).storage in [
165
+ "pyarrow",
166
+ "pyarrow_numpy",
167
+ ]:
168
+ return NotImplementedError
169
+ return TypeError
170
+ elif op_name in ["__mul__", "__rmul__"]:
171
+ # Can only multiply strings by integers
172
+ return TypeError
173
+ elif op_name in [
174
+ "__truediv__",
175
+ "__rtruediv__",
176
+ "__floordiv__",
177
+ "__rfloordiv__",
178
+ "__sub__",
179
+ "__rsub__",
180
+ ]:
181
+ if cast(StringDtype, tm.get_dtype(obj)).storage in [
182
+ "pyarrow",
183
+ "pyarrow_numpy",
184
+ ]:
185
+ import pyarrow as pa
186
+
187
+ # TODO: better to re-raise as TypeError?
188
+ return pa.ArrowNotImplementedError
189
+ return TypeError
190
+
191
+ return None
192
+
193
+ def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
194
+ return (
195
+ op_name in ["min", "max"]
196
+ or ser.dtype.storage == "pyarrow_numpy" # type: ignore[union-attr]
197
+ and op_name in ("any", "all")
198
+ )
199
+
200
+ def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result):
201
+ dtype = cast(StringDtype, tm.get_dtype(obj))
202
+ if op_name in ["__add__", "__radd__"]:
203
+ cast_to = dtype
204
+ elif dtype.storage == "pyarrow":
205
+ cast_to = "boolean[pyarrow]" # type: ignore[assignment]
206
+ elif dtype.storage == "pyarrow_numpy":
207
+ cast_to = np.bool_ # type: ignore[assignment]
208
+ else:
209
+ cast_to = "boolean" # type: ignore[assignment]
210
+ return pointwise_result.astype(cast_to)
211
+
212
+ def test_compare_scalar(self, data, comparison_op):
213
+ ser = pd.Series(data)
214
+ self._compare_other(ser, data, comparison_op, "abc")
215
+
216
+ @pytest.mark.filterwarnings("ignore:Falling back:pandas.errors.PerformanceWarning")
217
+ def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
218
+ super().test_groupby_extension_apply(data_for_grouping, groupby_apply_op)
219
+
220
+
221
+ class Test2DCompat(base.Dim2CompatTests):
222
+ @pytest.fixture(autouse=True)
223
+ def arrow_not_supported(self, data):
224
+ if isinstance(data, ArrowStringArray):
225
+ pytest.skip(reason="2D support not implemented for ArrowStringArray")
226
+
227
+
228
+ def test_searchsorted_with_na_raises(data_for_sorting, as_series):
229
+ # GH50447
230
+ b, c, a = data_for_sorting
231
+ arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c]
232
+ arr[-1] = pd.NA
233
+
234
+ if as_series:
235
+ arr = pd.Series(arr)
236
+
237
+ msg = (
238
+ "searchsorted requires array to be sorted, "
239
+ "which is impossible with NAs present."
240
+ )
241
+ with pytest.raises(ValueError, match=msg):
242
+ arr.searchsorted(b)
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_almost_equal.cpython-310.pyc ADDED
Binary file (15.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_attr_equal.cpython-310.pyc ADDED
Binary file (1.04 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_categorical_equal.cpython-310.pyc ADDED
Binary file (2.98 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_extension_array_equal.cpython-310.pyc ADDED
Binary file (3.78 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_index_equal.cpython-310.pyc ADDED
Binary file (9.55 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_interval_array_equal.cpython-310.pyc ADDED
Binary file (2.17 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_assert_numpy_array_equal.cpython-310.pyc ADDED
Binary file (6.63 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_deprecate.cpython-310.pyc ADDED
Binary file (2.18 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_deprecate_kwarg.cpython-310.pyc ADDED
Binary file (3.13 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_deprecate_nonkeyword_arguments.cpython-310.pyc ADDED
Binary file (5.45 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_doc.cpython-310.pyc ADDED
Binary file (1.98 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_numba.cpython-310.pyc ADDED
Binary file (698 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_rewrite_warning.cpython-310.pyc ADDED
Binary file (1.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/util/__pycache__/test_shares_memory.cpython-310.pyc ADDED
Binary file (1.06 kB). View file