applied-ai-018 commited on
Commit
c5449d3
·
verified ·
1 Parent(s): 281b140

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_astype.cpython-310.pyc +0 -0
  2. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_interval_pyarrow.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_overlaps.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_function.py +74 -0
  5. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/common.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/conftest.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_categorical.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_datetime.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_floats.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_iat.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_iloc.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_indexers.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_indexing.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_partial.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_scalar.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/__init__.py +0 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/__init__.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/test_interval.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/test_interval_new.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/test_interval.py +227 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/test_interval_new.py +232 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__init__.py +0 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/__init__.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_chaining_and_caching.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_datetime.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_getitem.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_iloc.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_indexing_slow.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_loc.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_multiindex.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_partial.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_setitem.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_slice.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_sorted.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_chaining_and_caching.py +87 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_datetime.py +50 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_getitem.py +410 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_iloc.py +171 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_indexing_slow.py +118 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_loc.py +992 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_multiindex.py +235 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_partial.py +269 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_setitem.py +589 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_slice.py +796 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_sorted.py +153 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/tests/tslibs/__init__.py +0 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_ccalendar.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_conversion.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_fields.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_npy_units.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_astype.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_interval_pyarrow.cpython-310.pyc ADDED
Binary file (4.42 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_overlaps.cpython-310.pyc ADDED
Binary file (3.42 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_function.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes.common import is_integer_dtype
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.core.arrays import BaseMaskedArray
9
+
10
+ arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
11
+ arrays += [
12
+ pd.array([0.141, -0.268, 5.895, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES
13
+ ]
14
+
15
+
16
+ @pytest.fixture(params=arrays, ids=[a.dtype.name for a in arrays])
17
+ def data(request):
18
+ """
19
+ Fixture returning parametrized 'data' array with different integer and
20
+ floating point types
21
+ """
22
+ return request.param
23
+
24
+
25
+ @pytest.fixture()
26
+ def numpy_dtype(data):
27
+ """
28
+ Fixture returning numpy dtype from 'data' input array.
29
+ """
30
+ # For integer dtype, the numpy conversion must be done to float
31
+ if is_integer_dtype(data):
32
+ numpy_dtype = float
33
+ else:
34
+ numpy_dtype = data.dtype.type
35
+ return numpy_dtype
36
+
37
+
38
+ def test_round(data, numpy_dtype):
39
+ # No arguments
40
+ result = data.round()
41
+ expected = pd.array(
42
+ np.round(data.to_numpy(dtype=numpy_dtype, na_value=None)), dtype=data.dtype
43
+ )
44
+ tm.assert_extension_array_equal(result, expected)
45
+
46
+ # Decimals argument
47
+ result = data.round(decimals=2)
48
+ expected = pd.array(
49
+ np.round(data.to_numpy(dtype=numpy_dtype, na_value=None), decimals=2),
50
+ dtype=data.dtype,
51
+ )
52
+ tm.assert_extension_array_equal(result, expected)
53
+
54
+
55
+ def test_tolist(data):
56
+ result = data.tolist()
57
+ expected = list(data)
58
+ tm.assert_equal(result, expected)
59
+
60
+
61
+ def test_to_numpy():
62
+ # GH#56991
63
+
64
+ class MyStringArray(BaseMaskedArray):
65
+ dtype = pd.StringDtype()
66
+ _dtype_cls = pd.StringDtype
67
+ _internal_fill_value = pd.NA
68
+
69
+ arr = MyStringArray(
70
+ values=np.array(["a", "b", "c"]), mask=np.array([False, True, False])
71
+ )
72
+ result = arr.to_numpy()
73
+ expected = np.array(["a", pd.NA, "c"])
74
+ tm.assert_numpy_array_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/common.cpython-310.pyc ADDED
Binary file (1.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (3.55 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_categorical.cpython-310.pyc ADDED
Binary file (15.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_datetime.cpython-310.pyc ADDED
Binary file (5.41 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_floats.cpython-310.pyc ADDED
Binary file (14.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_iat.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_iloc.cpython-310.pyc ADDED
Binary file (44.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_indexers.cpython-310.pyc ADDED
Binary file (2.35 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (31.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_partial.cpython-310.pyc ADDED
Binary file (19.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/__pycache__/test_scalar.cpython-310.pyc ADDED
Binary file (9.76 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (203 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/test_interval.cpython-310.pyc ADDED
Binary file (6.89 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/__pycache__/test_interval_new.cpython-310.pyc ADDED
Binary file (6.75 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/test_interval.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._libs import index as libindex
5
+ from pandas.compat import IS64
6
+
7
+ import pandas as pd
8
+ from pandas import (
9
+ DataFrame,
10
+ IntervalIndex,
11
+ Series,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+
16
+ class TestIntervalIndex:
17
+ @pytest.fixture
18
+ def series_with_interval_index(self):
19
+ return Series(np.arange(5), IntervalIndex.from_breaks(np.arange(6)))
20
+
21
+ def test_getitem_with_scalar(self, series_with_interval_index, indexer_sl):
22
+ ser = series_with_interval_index.copy()
23
+
24
+ expected = ser.iloc[:3]
25
+ tm.assert_series_equal(expected, indexer_sl(ser)[:3])
26
+ tm.assert_series_equal(expected, indexer_sl(ser)[:2.5])
27
+ tm.assert_series_equal(expected, indexer_sl(ser)[0.1:2.5])
28
+ if indexer_sl is tm.loc:
29
+ tm.assert_series_equal(expected, ser.loc[-1:3])
30
+
31
+ expected = ser.iloc[1:4]
32
+ tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 2.5, 3.5]])
33
+ tm.assert_series_equal(expected, indexer_sl(ser)[[2, 3, 4]])
34
+ tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 3, 4]])
35
+
36
+ expected = ser.iloc[2:5]
37
+ tm.assert_series_equal(expected, indexer_sl(ser)[ser >= 2])
38
+
39
+ @pytest.mark.parametrize("direction", ["increasing", "decreasing"])
40
+ def test_getitem_nonoverlapping_monotonic(self, direction, closed, indexer_sl):
41
+ tpls = [(0, 1), (2, 3), (4, 5)]
42
+ if direction == "decreasing":
43
+ tpls = tpls[::-1]
44
+
45
+ idx = IntervalIndex.from_tuples(tpls, closed=closed)
46
+ ser = Series(list("abc"), idx)
47
+
48
+ for key, expected in zip(idx.left, ser):
49
+ if idx.closed_left:
50
+ assert indexer_sl(ser)[key] == expected
51
+ else:
52
+ with pytest.raises(KeyError, match=str(key)):
53
+ indexer_sl(ser)[key]
54
+
55
+ for key, expected in zip(idx.right, ser):
56
+ if idx.closed_right:
57
+ assert indexer_sl(ser)[key] == expected
58
+ else:
59
+ with pytest.raises(KeyError, match=str(key)):
60
+ indexer_sl(ser)[key]
61
+
62
+ for key, expected in zip(idx.mid, ser):
63
+ assert indexer_sl(ser)[key] == expected
64
+
65
+ def test_getitem_non_matching(self, series_with_interval_index, indexer_sl):
66
+ ser = series_with_interval_index.copy()
67
+
68
+ # this is a departure from our current
69
+ # indexing scheme, but simpler
70
+ with pytest.raises(KeyError, match=r"\[-1\] not in index"):
71
+ indexer_sl(ser)[[-1, 3, 4, 5]]
72
+
73
+ with pytest.raises(KeyError, match=r"\[-1\] not in index"):
74
+ indexer_sl(ser)[[-1, 3]]
75
+
76
+ def test_loc_getitem_large_series(self, monkeypatch):
77
+ size_cutoff = 20
78
+ with monkeypatch.context():
79
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff)
80
+ ser = Series(
81
+ np.arange(size_cutoff),
82
+ index=IntervalIndex.from_breaks(np.arange(size_cutoff + 1)),
83
+ )
84
+
85
+ result1 = ser.loc[:8]
86
+ result2 = ser.loc[0:8]
87
+ result3 = ser.loc[0:8:1]
88
+ tm.assert_series_equal(result1, result2)
89
+ tm.assert_series_equal(result1, result3)
90
+
91
+ def test_loc_getitem_frame(self):
92
+ # CategoricalIndex with IntervalIndex categories
93
+ df = DataFrame({"A": range(10)})
94
+ ser = pd.cut(df.A, 5)
95
+ df["B"] = ser
96
+ df = df.set_index("B")
97
+
98
+ result = df.loc[4]
99
+ expected = df.iloc[4:6]
100
+ tm.assert_frame_equal(result, expected)
101
+
102
+ with pytest.raises(KeyError, match="10"):
103
+ df.loc[10]
104
+
105
+ # single list-like
106
+ result = df.loc[[4]]
107
+ expected = df.iloc[4:6]
108
+ tm.assert_frame_equal(result, expected)
109
+
110
+ # non-unique
111
+ result = df.loc[[4, 5]]
112
+ expected = df.take([4, 5, 4, 5])
113
+ tm.assert_frame_equal(result, expected)
114
+
115
+ msg = (
116
+ r"None of \[Index\(\[10\], dtype='object', name='B'\)\] "
117
+ r"are in the \[index\]"
118
+ )
119
+ with pytest.raises(KeyError, match=msg):
120
+ df.loc[[10]]
121
+
122
+ # partial missing
123
+ with pytest.raises(KeyError, match=r"\[10\] not in index"):
124
+ df.loc[[10, 4]]
125
+
126
+ def test_getitem_interval_with_nans(self, frame_or_series, indexer_sl):
127
+ # GH#41831
128
+
129
+ index = IntervalIndex([np.nan, np.nan])
130
+ key = index[:-1]
131
+
132
+ obj = frame_or_series(range(2), index=index)
133
+ if frame_or_series is DataFrame and indexer_sl is tm.setitem:
134
+ obj = obj.T
135
+
136
+ result = indexer_sl(obj)[key]
137
+ expected = obj
138
+
139
+ tm.assert_equal(result, expected)
140
+
141
+ def test_setitem_interval_with_slice(self):
142
+ # GH#54722
143
+ ii = IntervalIndex.from_breaks(range(4, 15))
144
+ ser = Series(range(10), index=ii)
145
+
146
+ orig = ser.copy()
147
+
148
+ # This should be a no-op (used to raise)
149
+ ser.loc[1:3] = 20
150
+ tm.assert_series_equal(ser, orig)
151
+
152
+ ser.loc[6:8] = 19
153
+ orig.iloc[1:4] = 19
154
+ tm.assert_series_equal(ser, orig)
155
+
156
+ ser2 = Series(range(5), index=ii[::2])
157
+ orig2 = ser2.copy()
158
+
159
+ # this used to raise
160
+ ser2.loc[6:8] = 22 # <- raises on main, sets on branch
161
+ orig2.iloc[1] = 22
162
+ tm.assert_series_equal(ser2, orig2)
163
+
164
+ ser2.loc[5:7] = 21
165
+ orig2.iloc[:2] = 21
166
+ tm.assert_series_equal(ser2, orig2)
167
+
168
+
169
+ class TestIntervalIndexInsideMultiIndex:
170
+ def test_mi_intervalindex_slicing_with_scalar(self):
171
+ # GH#27456
172
+ ii = IntervalIndex.from_arrays(
173
+ [0, 1, 10, 11, 0, 1, 10, 11], [1, 2, 11, 12, 1, 2, 11, 12], name="MP"
174
+ )
175
+ idx = pd.MultiIndex.from_arrays(
176
+ [
177
+ pd.Index(["FC", "FC", "FC", "FC", "OWNER", "OWNER", "OWNER", "OWNER"]),
178
+ pd.Index(
179
+ ["RID1", "RID1", "RID2", "RID2", "RID1", "RID1", "RID2", "RID2"]
180
+ ),
181
+ ii,
182
+ ]
183
+ )
184
+
185
+ idx.names = ["Item", "RID", "MP"]
186
+ df = DataFrame({"value": [1, 2, 3, 4, 5, 6, 7, 8]})
187
+ df.index = idx
188
+
189
+ query_df = DataFrame(
190
+ {
191
+ "Item": ["FC", "OWNER", "FC", "OWNER", "OWNER"],
192
+ "RID": ["RID1", "RID1", "RID1", "RID2", "RID2"],
193
+ "MP": [0.2, 1.5, 1.6, 11.1, 10.9],
194
+ }
195
+ )
196
+
197
+ query_df = query_df.sort_index()
198
+
199
+ idx = pd.MultiIndex.from_arrays([query_df.Item, query_df.RID, query_df.MP])
200
+ query_df.index = idx
201
+ result = df.value.loc[query_df.index]
202
+
203
+ # the IntervalIndex level is indexed with floats, which map to
204
+ # the intervals containing them. Matching the behavior we would get
205
+ # with _only_ an IntervalIndex, we get an IntervalIndex level back.
206
+ sliced_level = ii.take([0, 1, 1, 3, 2])
207
+ expected_index = pd.MultiIndex.from_arrays(
208
+ [idx.get_level_values(0), idx.get_level_values(1), sliced_level]
209
+ )
210
+ expected = Series([1, 6, 2, 8, 7], index=expected_index, name="value")
211
+ tm.assert_series_equal(result, expected)
212
+
213
+ @pytest.mark.xfail(not IS64, reason="GH 23440")
214
+ @pytest.mark.parametrize(
215
+ "base",
216
+ [101, 1010],
217
+ )
218
+ def test_reindex_behavior_with_interval_index(self, base):
219
+ # GH 51826
220
+
221
+ ser = Series(
222
+ range(base),
223
+ index=IntervalIndex.from_arrays(range(base), range(1, base + 1)),
224
+ )
225
+ expected_result = Series([np.nan, 0], index=[np.nan, 1.0], dtype=float)
226
+ result = ser.reindex(index=[np.nan, 1.0])
227
+ tm.assert_series_equal(result, expected_result)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/interval/test_interval_new.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas.compat import IS64
7
+
8
+ from pandas import (
9
+ Index,
10
+ Interval,
11
+ IntervalIndex,
12
+ Series,
13
+ )
14
+ import pandas._testing as tm
15
+
16
+
17
+ class TestIntervalIndex:
18
+ @pytest.fixture
19
+ def series_with_interval_index(self):
20
+ return Series(np.arange(5), IntervalIndex.from_breaks(np.arange(6)))
21
+
22
+ def test_loc_with_interval(self, series_with_interval_index, indexer_sl):
23
+ # loc with single label / list of labels:
24
+ # - Intervals: only exact matches
25
+ # - scalars: those that contain it
26
+
27
+ ser = series_with_interval_index.copy()
28
+
29
+ expected = 0
30
+ result = indexer_sl(ser)[Interval(0, 1)]
31
+ assert result == expected
32
+
33
+ expected = ser.iloc[3:5]
34
+ result = indexer_sl(ser)[[Interval(3, 4), Interval(4, 5)]]
35
+ tm.assert_series_equal(expected, result)
36
+
37
+ # missing or not exact
38
+ with pytest.raises(KeyError, match=re.escape("Interval(3, 5, closed='left')")):
39
+ indexer_sl(ser)[Interval(3, 5, closed="left")]
40
+
41
+ with pytest.raises(KeyError, match=re.escape("Interval(3, 5, closed='right')")):
42
+ indexer_sl(ser)[Interval(3, 5)]
43
+
44
+ with pytest.raises(
45
+ KeyError, match=re.escape("Interval(-2, 0, closed='right')")
46
+ ):
47
+ indexer_sl(ser)[Interval(-2, 0)]
48
+
49
+ with pytest.raises(KeyError, match=re.escape("Interval(5, 6, closed='right')")):
50
+ indexer_sl(ser)[Interval(5, 6)]
51
+
52
+ def test_loc_with_scalar(self, series_with_interval_index, indexer_sl):
53
+ # loc with single label / list of labels:
54
+ # - Intervals: only exact matches
55
+ # - scalars: those that contain it
56
+
57
+ ser = series_with_interval_index.copy()
58
+
59
+ assert indexer_sl(ser)[1] == 0
60
+ assert indexer_sl(ser)[1.5] == 1
61
+ assert indexer_sl(ser)[2] == 1
62
+
63
+ expected = ser.iloc[1:4]
64
+ tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 2.5, 3.5]])
65
+ tm.assert_series_equal(expected, indexer_sl(ser)[[2, 3, 4]])
66
+ tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 3, 4]])
67
+
68
+ expected = ser.iloc[[1, 1, 2, 1]]
69
+ tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 2, 2.5, 1.5]])
70
+
71
+ expected = ser.iloc[2:5]
72
+ tm.assert_series_equal(expected, indexer_sl(ser)[ser >= 2])
73
+
74
+ def test_loc_with_slices(self, series_with_interval_index, indexer_sl):
75
+ # loc with slices:
76
+ # - Interval objects: only works with exact matches
77
+ # - scalars: only works for non-overlapping, monotonic intervals,
78
+ # and start/stop select location based on the interval that
79
+ # contains them:
80
+ # (slice_loc(start, stop) == (idx.get_loc(start), idx.get_loc(stop))
81
+
82
+ ser = series_with_interval_index.copy()
83
+
84
+ # slice of interval
85
+
86
+ expected = ser.iloc[:3]
87
+ result = indexer_sl(ser)[Interval(0, 1) : Interval(2, 3)]
88
+ tm.assert_series_equal(expected, result)
89
+
90
+ expected = ser.iloc[3:]
91
+ result = indexer_sl(ser)[Interval(3, 4) :]
92
+ tm.assert_series_equal(expected, result)
93
+
94
+ msg = "Interval objects are not currently supported"
95
+ with pytest.raises(NotImplementedError, match=msg):
96
+ indexer_sl(ser)[Interval(3, 6) :]
97
+
98
+ with pytest.raises(NotImplementedError, match=msg):
99
+ indexer_sl(ser)[Interval(3, 4, closed="left") :]
100
+
101
+ def test_slice_step_ne1(self, series_with_interval_index):
102
+ # GH#31658 slice of scalar with step != 1
103
+ ser = series_with_interval_index.copy()
104
+ expected = ser.iloc[0:4:2]
105
+
106
+ result = ser[0:4:2]
107
+ tm.assert_series_equal(result, expected)
108
+
109
+ result2 = ser[0:4][::2]
110
+ tm.assert_series_equal(result2, expected)
111
+
112
+ def test_slice_float_start_stop(self, series_with_interval_index):
113
+ # GH#31658 slicing with integers is positional, with floats is not
114
+ # supported
115
+ ser = series_with_interval_index.copy()
116
+
117
+ msg = "label-based slicing with step!=1 is not supported for IntervalIndex"
118
+ with pytest.raises(ValueError, match=msg):
119
+ ser[1.5:9.5:2]
120
+
121
+ def test_slice_interval_step(self, series_with_interval_index):
122
+ # GH#31658 allows for integer step!=1, not Interval step
123
+ ser = series_with_interval_index.copy()
124
+ msg = "label-based slicing with step!=1 is not supported for IntervalIndex"
125
+ with pytest.raises(ValueError, match=msg):
126
+ ser[0 : 4 : Interval(0, 1)]
127
+
128
+ def test_loc_with_overlap(self, indexer_sl):
129
+ idx = IntervalIndex.from_tuples([(1, 5), (3, 7)])
130
+ ser = Series(range(len(idx)), index=idx)
131
+
132
+ # scalar
133
+ expected = ser
134
+ result = indexer_sl(ser)[4]
135
+ tm.assert_series_equal(expected, result)
136
+
137
+ result = indexer_sl(ser)[[4]]
138
+ tm.assert_series_equal(expected, result)
139
+
140
+ # interval
141
+ expected = 0
142
+ result = indexer_sl(ser)[Interval(1, 5)]
143
+ assert expected == result
144
+
145
+ expected = ser
146
+ result = indexer_sl(ser)[[Interval(1, 5), Interval(3, 7)]]
147
+ tm.assert_series_equal(expected, result)
148
+
149
+ with pytest.raises(KeyError, match=re.escape("Interval(3, 5, closed='right')")):
150
+ indexer_sl(ser)[Interval(3, 5)]
151
+
152
+ msg = (
153
+ r"None of \[IntervalIndex\(\[\(3, 5\]\], "
154
+ r"dtype='interval\[int64, right\]'\)\] are in the \[index\]"
155
+ )
156
+ with pytest.raises(KeyError, match=msg):
157
+ indexer_sl(ser)[[Interval(3, 5)]]
158
+
159
+ # slices with interval (only exact matches)
160
+ expected = ser
161
+ result = indexer_sl(ser)[Interval(1, 5) : Interval(3, 7)]
162
+ tm.assert_series_equal(expected, result)
163
+
164
+ msg = (
165
+ "'can only get slices from an IntervalIndex if bounds are "
166
+ "non-overlapping and all monotonic increasing or decreasing'"
167
+ )
168
+ with pytest.raises(KeyError, match=msg):
169
+ indexer_sl(ser)[Interval(1, 6) : Interval(3, 8)]
170
+
171
+ if indexer_sl is tm.loc:
172
+ # slices with scalar raise for overlapping intervals
173
+ # TODO KeyError is the appropriate error?
174
+ with pytest.raises(KeyError, match=msg):
175
+ ser.loc[1:4]
176
+
177
+ def test_non_unique(self, indexer_sl):
178
+ idx = IntervalIndex.from_tuples([(1, 3), (3, 7)])
179
+ ser = Series(range(len(idx)), index=idx)
180
+
181
+ result = indexer_sl(ser)[Interval(1, 3)]
182
+ assert result == 0
183
+
184
+ result = indexer_sl(ser)[[Interval(1, 3)]]
185
+ expected = ser.iloc[0:1]
186
+ tm.assert_series_equal(expected, result)
187
+
188
+ def test_non_unique_moar(self, indexer_sl):
189
+ idx = IntervalIndex.from_tuples([(1, 3), (1, 3), (3, 7)])
190
+ ser = Series(range(len(idx)), index=idx)
191
+
192
+ expected = ser.iloc[[0, 1]]
193
+ result = indexer_sl(ser)[Interval(1, 3)]
194
+ tm.assert_series_equal(expected, result)
195
+
196
+ expected = ser
197
+ result = indexer_sl(ser)[Interval(1, 3) :]
198
+ tm.assert_series_equal(expected, result)
199
+
200
+ expected = ser.iloc[[0, 1]]
201
+ result = indexer_sl(ser)[[Interval(1, 3)]]
202
+ tm.assert_series_equal(expected, result)
203
+
204
+ def test_loc_getitem_missing_key_error_message(
205
+ self, frame_or_series, series_with_interval_index
206
+ ):
207
+ # GH#27365
208
+ ser = series_with_interval_index.copy()
209
+ obj = frame_or_series(ser)
210
+ with pytest.raises(KeyError, match=r"\[6\]"):
211
+ obj.loc[[4, 5, 6]]
212
+
213
+
214
+ @pytest.mark.xfail(not IS64, reason="GH 23440")
215
+ @pytest.mark.parametrize(
216
+ "intervals",
217
+ [
218
+ ([Interval(-np.inf, 0.0), Interval(0.0, 1.0)]),
219
+ ([Interval(-np.inf, -2.0), Interval(-2.0, -1.0)]),
220
+ ([Interval(-1.0, 0.0), Interval(0.0, np.inf)]),
221
+ ([Interval(1.0, 2.0), Interval(2.0, np.inf)]),
222
+ ],
223
+ )
224
+ def test_repeating_interval_index_with_infs(intervals):
225
+ # GH 46658
226
+
227
+ interval_index = Index(intervals * 51)
228
+
229
+ expected = np.arange(1, 102, 2, dtype=np.intp)
230
+ result = interval_index.get_indexer_for([intervals[1]])
231
+
232
+ tm.assert_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (205 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_chaining_and_caching.cpython-310.pyc ADDED
Binary file (2.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_datetime.cpython-310.pyc ADDED
Binary file (1.31 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_getitem.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_iloc.cpython-310.pyc ADDED
Binary file (5.84 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_indexing_slow.cpython-310.pyc ADDED
Binary file (3.32 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_loc.cpython-310.pyc ADDED
Binary file (29.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_multiindex.cpython-310.pyc ADDED
Binary file (7.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_partial.cpython-310.pyc ADDED
Binary file (7.05 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_setitem.cpython-310.pyc ADDED
Binary file (17 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_slice.cpython-310.pyc ADDED
Binary file (17.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/__pycache__/test_sorted.cpython-310.pyc ADDED
Binary file (5.51 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_chaining_and_caching.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._libs import index as libindex
5
+ from pandas.errors import SettingWithCopyError
6
+ import pandas.util._test_decorators as td
7
+
8
+ from pandas import (
9
+ DataFrame,
10
+ MultiIndex,
11
+ Series,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+
16
+ def test_detect_chained_assignment(using_copy_on_write, warn_copy_on_write):
17
+ # Inplace ops, originally from:
18
+ # https://stackoverflow.com/questions/20508968/series-fillna-in-a-multiindex-dataframe-does-not-fill-is-this-a-bug
19
+ a = [12, 23]
20
+ b = [123, None]
21
+ c = [1234, 2345]
22
+ d = [12345, 23456]
23
+ tuples = [("eyes", "left"), ("eyes", "right"), ("ears", "left"), ("ears", "right")]
24
+ events = {
25
+ ("eyes", "left"): a,
26
+ ("eyes", "right"): b,
27
+ ("ears", "left"): c,
28
+ ("ears", "right"): d,
29
+ }
30
+ multiind = MultiIndex.from_tuples(tuples, names=["part", "side"])
31
+ zed = DataFrame(events, index=["a", "b"], columns=multiind)
32
+
33
+ if using_copy_on_write:
34
+ with tm.raises_chained_assignment_error():
35
+ zed["eyes"]["right"].fillna(value=555, inplace=True)
36
+ elif warn_copy_on_write:
37
+ with tm.assert_produces_warning(None):
38
+ zed["eyes"]["right"].fillna(value=555, inplace=True)
39
+ else:
40
+ msg = "A value is trying to be set on a copy of a slice from a DataFrame"
41
+ with pytest.raises(SettingWithCopyError, match=msg):
42
+ with tm.assert_produces_warning(None):
43
+ zed["eyes"]["right"].fillna(value=555, inplace=True)
44
+
45
+
46
+ @td.skip_array_manager_invalid_test # with ArrayManager df.loc[0] is not a view
47
+ def test_cache_updating(using_copy_on_write, warn_copy_on_write):
48
+ # 5216
49
+ # make sure that we don't try to set a dead cache
50
+ a = np.random.default_rng(2).random((10, 3))
51
+ df = DataFrame(a, columns=["x", "y", "z"])
52
+ df_original = df.copy()
53
+ tuples = [(i, j) for i in range(5) for j in range(2)]
54
+ index = MultiIndex.from_tuples(tuples)
55
+ df.index = index
56
+
57
+ # setting via chained assignment
58
+ # but actually works, since everything is a view
59
+
60
+ with tm.raises_chained_assignment_error():
61
+ df.loc[0]["z"].iloc[0] = 1.0
62
+
63
+ if using_copy_on_write:
64
+ assert df.loc[(0, 0), "z"] == df_original.loc[0, "z"]
65
+ else:
66
+ result = df.loc[(0, 0), "z"]
67
+ assert result == 1
68
+
69
+ # correct setting
70
+ df.loc[(0, 0), "z"] = 2
71
+ result = df.loc[(0, 0), "z"]
72
+ assert result == 2
73
+
74
+
75
+ def test_indexer_caching(monkeypatch):
76
+ # GH5727
77
+ # make sure that indexers are in the _internal_names_set
78
+ size_cutoff = 20
79
+ with monkeypatch.context():
80
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff)
81
+ index = MultiIndex.from_arrays([np.arange(size_cutoff), np.arange(size_cutoff)])
82
+ s = Series(np.zeros(size_cutoff), index=index)
83
+
84
+ # setitem
85
+ s[s == 0] = 1
86
+ expected = Series(np.ones(size_cutoff), index=index)
87
+ tm.assert_series_equal(s, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_datetime.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ import numpy as np
4
+
5
+ from pandas import (
6
+ DataFrame,
7
+ Index,
8
+ MultiIndex,
9
+ Period,
10
+ Series,
11
+ period_range,
12
+ to_datetime,
13
+ )
14
+ import pandas._testing as tm
15
+
16
+
17
+ def test_multiindex_period_datetime():
18
+ # GH4861, using datetime in period of multiindex raises exception
19
+
20
+ idx1 = Index(["a", "a", "a", "b", "b"])
21
+ idx2 = period_range("2012-01", periods=len(idx1), freq="M")
22
+ s = Series(np.random.default_rng(2).standard_normal(len(idx1)), [idx1, idx2])
23
+
24
+ # try Period as index
25
+ expected = s.iloc[0]
26
+ result = s.loc["a", Period("2012-01")]
27
+ assert result == expected
28
+
29
+ # try datetime as index
30
+ result = s.loc["a", datetime(2012, 1, 1)]
31
+ assert result == expected
32
+
33
+
34
+ def test_multiindex_datetime_columns():
35
+ # GH35015, using datetime as column indices raises exception
36
+
37
+ mi = MultiIndex.from_tuples(
38
+ [(to_datetime("02/29/2020"), to_datetime("03/01/2020"))], names=["a", "b"]
39
+ )
40
+
41
+ df = DataFrame([], columns=mi)
42
+
43
+ expected_df = DataFrame(
44
+ [],
45
+ columns=MultiIndex.from_arrays(
46
+ [[to_datetime("02/29/2020")], [to_datetime("03/01/2020")]], names=["a", "b"]
47
+ ),
48
+ )
49
+
50
+ tm.assert_frame_equal(df, expected_df)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_getitem.py ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DataFrame,
6
+ Index,
7
+ MultiIndex,
8
+ Series,
9
+ )
10
+ import pandas._testing as tm
11
+ from pandas.core.indexing import IndexingError
12
+
13
+ # ----------------------------------------------------------------------------
14
+ # test indexing of Series with multi-level Index
15
+ # ----------------------------------------------------------------------------
16
+
17
+
18
+ @pytest.mark.parametrize(
19
+ "access_method",
20
+ [lambda s, x: s[:, x], lambda s, x: s.loc[:, x], lambda s, x: s.xs(x, level=1)],
21
+ )
22
+ @pytest.mark.parametrize(
23
+ "level1_value, expected",
24
+ [(0, Series([1], index=[0])), (1, Series([2, 3], index=[1, 2]))],
25
+ )
26
+ def test_series_getitem_multiindex(access_method, level1_value, expected):
27
+ # GH 6018
28
+ # series regression getitem with a multi-index
29
+
30
+ mi = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)], names=["A", "B"])
31
+ ser = Series([1, 2, 3], index=mi)
32
+ expected.index.name = "A"
33
+
34
+ result = access_method(ser, level1_value)
35
+ tm.assert_series_equal(result, expected)
36
+
37
+
38
+ @pytest.mark.parametrize("level0_value", ["D", "A"])
39
+ def test_series_getitem_duplicates_multiindex(level0_value):
40
+ # GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise
41
+ # the appropriate error, only in PY3 of course!
42
+
43
+ index = MultiIndex(
44
+ levels=[[level0_value, "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]],
45
+ codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]],
46
+ names=["tag", "day"],
47
+ )
48
+ arr = np.random.default_rng(2).standard_normal((len(index), 1))
49
+ df = DataFrame(arr, index=index, columns=["val"])
50
+
51
+ # confirm indexing on missing value raises KeyError
52
+ if level0_value != "A":
53
+ with pytest.raises(KeyError, match=r"^'A'$"):
54
+ df.val["A"]
55
+
56
+ with pytest.raises(KeyError, match=r"^'X'$"):
57
+ df.val["X"]
58
+
59
+ result = df.val[level0_value]
60
+ expected = Series(
61
+ arr.ravel()[0:3], name="val", index=Index([26, 37, 57], name="day")
62
+ )
63
+ tm.assert_series_equal(result, expected)
64
+
65
+
66
+ def test_series_getitem(multiindex_year_month_day_dataframe_random_data, indexer_sl):
67
+ s = multiindex_year_month_day_dataframe_random_data["A"]
68
+ expected = s.reindex(s.index[42:65])
69
+ expected.index = expected.index.droplevel(0).droplevel(0)
70
+
71
+ result = indexer_sl(s)[2000, 3]
72
+ tm.assert_series_equal(result, expected)
73
+
74
+
75
+ def test_series_getitem_returns_scalar(
76
+ multiindex_year_month_day_dataframe_random_data, indexer_sl
77
+ ):
78
+ s = multiindex_year_month_day_dataframe_random_data["A"]
79
+ expected = s.iloc[49]
80
+
81
+ result = indexer_sl(s)[2000, 3, 10]
82
+ assert result == expected
83
+
84
+
85
+ @pytest.mark.parametrize(
86
+ "indexer,expected_error,expected_error_msg",
87
+ [
88
+ (lambda s: s.__getitem__((2000, 3, 4)), KeyError, r"^\(2000, 3, 4\)$"),
89
+ (lambda s: s[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
90
+ (lambda s: s.loc[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
91
+ (lambda s: s.loc[(2000, 3, 4, 5)], IndexingError, "Too many indexers"),
92
+ (lambda s: s.__getitem__(len(s)), KeyError, ""), # match should include len(s)
93
+ (lambda s: s[len(s)], KeyError, ""), # match should include len(s)
94
+ (
95
+ lambda s: s.iloc[len(s)],
96
+ IndexError,
97
+ "single positional indexer is out-of-bounds",
98
+ ),
99
+ ],
100
+ )
101
+ def test_series_getitem_indexing_errors(
102
+ multiindex_year_month_day_dataframe_random_data,
103
+ indexer,
104
+ expected_error,
105
+ expected_error_msg,
106
+ ):
107
+ s = multiindex_year_month_day_dataframe_random_data["A"]
108
+ with pytest.raises(expected_error, match=expected_error_msg):
109
+ indexer(s)
110
+
111
+
112
+ def test_series_getitem_corner_generator(
113
+ multiindex_year_month_day_dataframe_random_data,
114
+ ):
115
+ s = multiindex_year_month_day_dataframe_random_data["A"]
116
+ result = s[(x > 0 for x in s)]
117
+ expected = s[s > 0]
118
+ tm.assert_series_equal(result, expected)
119
+
120
+
121
+ # ----------------------------------------------------------------------------
122
+ # test indexing of DataFrame with multi-level Index
123
+ # ----------------------------------------------------------------------------
124
+
125
+
126
+ def test_getitem_simple(multiindex_dataframe_random_data):
127
+ df = multiindex_dataframe_random_data.T
128
+ expected = df.values[:, 0]
129
+ result = df["foo", "one"].values
130
+ tm.assert_almost_equal(result, expected)
131
+
132
+
133
+ @pytest.mark.parametrize(
134
+ "indexer,expected_error_msg",
135
+ [
136
+ (lambda df: df[("foo", "four")], r"^\('foo', 'four'\)$"),
137
+ (lambda df: df["foobar"], r"^'foobar'$"),
138
+ ],
139
+ )
140
+ def test_frame_getitem_simple_key_error(
141
+ multiindex_dataframe_random_data, indexer, expected_error_msg
142
+ ):
143
+ df = multiindex_dataframe_random_data.T
144
+ with pytest.raises(KeyError, match=expected_error_msg):
145
+ indexer(df)
146
+
147
+
148
+ def test_tuple_string_column_names():
149
+ # GH#50372
150
+ mi = MultiIndex.from_tuples([("a", "aa"), ("a", "ab"), ("b", "ba"), ("b", "bb")])
151
+ df = DataFrame([range(4), range(1, 5), range(2, 6)], columns=mi)
152
+ df["single_index"] = 0
153
+
154
+ df_flat = df.copy()
155
+ df_flat.columns = df_flat.columns.to_flat_index()
156
+ df_flat["new_single_index"] = 0
157
+
158
+ result = df_flat[[("a", "aa"), "new_single_index"]]
159
+ expected = DataFrame(
160
+ [[0, 0], [1, 0], [2, 0]], columns=Index([("a", "aa"), "new_single_index"])
161
+ )
162
+ tm.assert_frame_equal(result, expected)
163
+
164
+
165
+ def test_frame_getitem_multicolumn_empty_level():
166
+ df = DataFrame({"a": ["1", "2", "3"], "b": ["2", "3", "4"]})
167
+ df.columns = [
168
+ ["level1 item1", "level1 item2"],
169
+ ["", "level2 item2"],
170
+ ["level3 item1", "level3 item2"],
171
+ ]
172
+
173
+ result = df["level1 item1"]
174
+ expected = DataFrame(
175
+ [["1"], ["2"], ["3"]], index=df.index, columns=["level3 item1"]
176
+ )
177
+ tm.assert_frame_equal(result, expected)
178
+
179
+
180
+ @pytest.mark.parametrize(
181
+ "indexer,expected_slice",
182
+ [
183
+ (lambda df: df["foo"], slice(3)),
184
+ (lambda df: df["bar"], slice(3, 5)),
185
+ (lambda df: df.loc[:, "bar"], slice(3, 5)),
186
+ ],
187
+ )
188
+ def test_frame_getitem_toplevel(
189
+ multiindex_dataframe_random_data, indexer, expected_slice
190
+ ):
191
+ df = multiindex_dataframe_random_data.T
192
+ expected = df.reindex(columns=df.columns[expected_slice])
193
+ expected.columns = expected.columns.droplevel(0)
194
+ result = indexer(df)
195
+ tm.assert_frame_equal(result, expected)
196
+
197
+
198
+ def test_frame_mixed_depth_get():
199
+ arrays = [
200
+ ["a", "top", "top", "routine1", "routine1", "routine2"],
201
+ ["", "OD", "OD", "result1", "result2", "result1"],
202
+ ["", "wx", "wy", "", "", ""],
203
+ ]
204
+
205
+ tuples = sorted(zip(*arrays))
206
+ index = MultiIndex.from_tuples(tuples)
207
+ df = DataFrame(np.random.default_rng(2).standard_normal((4, 6)), columns=index)
208
+
209
+ result = df["a"]
210
+ expected = df["a", "", ""].rename("a")
211
+ tm.assert_series_equal(result, expected)
212
+
213
+ result = df["routine1", "result1"]
214
+ expected = df["routine1", "result1", ""]
215
+ expected = expected.rename(("routine1", "result1"))
216
+ tm.assert_series_equal(result, expected)
217
+
218
+
219
+ def test_frame_getitem_nan_multiindex(nulls_fixture):
220
+ # GH#29751
221
+ # loc on a multiindex containing nan values
222
+ n = nulls_fixture # for code readability
223
+ cols = ["a", "b", "c"]
224
+ df = DataFrame(
225
+ [[11, n, 13], [21, n, 23], [31, n, 33], [41, n, 43]],
226
+ columns=cols,
227
+ ).set_index(["a", "b"])
228
+ df["c"] = df["c"].astype("int64")
229
+
230
+ idx = (21, n)
231
+ result = df.loc[:idx]
232
+ expected = DataFrame([[11, n, 13], [21, n, 23]], columns=cols).set_index(["a", "b"])
233
+ expected["c"] = expected["c"].astype("int64")
234
+ tm.assert_frame_equal(result, expected)
235
+
236
+ result = df.loc[idx:]
237
+ expected = DataFrame(
238
+ [[21, n, 23], [31, n, 33], [41, n, 43]], columns=cols
239
+ ).set_index(["a", "b"])
240
+ expected["c"] = expected["c"].astype("int64")
241
+ tm.assert_frame_equal(result, expected)
242
+
243
+ idx1, idx2 = (21, n), (31, n)
244
+ result = df.loc[idx1:idx2]
245
+ expected = DataFrame([[21, n, 23], [31, n, 33]], columns=cols).set_index(["a", "b"])
246
+ expected["c"] = expected["c"].astype("int64")
247
+ tm.assert_frame_equal(result, expected)
248
+
249
+
250
+ @pytest.mark.parametrize(
251
+ "indexer,expected",
252
+ [
253
+ (
254
+ (["b"], ["bar", np.nan]),
255
+ (
256
+ DataFrame(
257
+ [[2, 3], [5, 6]],
258
+ columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
259
+ dtype="int64",
260
+ )
261
+ ),
262
+ ),
263
+ (
264
+ (["a", "b"]),
265
+ (
266
+ DataFrame(
267
+ [[1, 2, 3], [4, 5, 6]],
268
+ columns=MultiIndex.from_tuples(
269
+ [("a", "foo"), ("b", "bar"), ("b", np.nan)]
270
+ ),
271
+ dtype="int64",
272
+ )
273
+ ),
274
+ ),
275
+ (
276
+ (["b"]),
277
+ (
278
+ DataFrame(
279
+ [[2, 3], [5, 6]],
280
+ columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
281
+ dtype="int64",
282
+ )
283
+ ),
284
+ ),
285
+ (
286
+ (["b"], ["bar"]),
287
+ (
288
+ DataFrame(
289
+ [[2], [5]],
290
+ columns=MultiIndex.from_tuples([("b", "bar")]),
291
+ dtype="int64",
292
+ )
293
+ ),
294
+ ),
295
+ (
296
+ (["b"], [np.nan]),
297
+ (
298
+ DataFrame(
299
+ [[3], [6]],
300
+ columns=MultiIndex(
301
+ codes=[[1], [-1]], levels=[["a", "b"], ["bar", "foo"]]
302
+ ),
303
+ dtype="int64",
304
+ )
305
+ ),
306
+ ),
307
+ (("b", np.nan), Series([3, 6], dtype="int64", name=("b", np.nan))),
308
+ ],
309
+ )
310
+ def test_frame_getitem_nan_cols_multiindex(
311
+ indexer,
312
+ expected,
313
+ nulls_fixture,
314
+ ):
315
+ # Slicing MultiIndex including levels with nan values, for more information
316
+ # see GH#25154
317
+ df = DataFrame(
318
+ [[1, 2, 3], [4, 5, 6]],
319
+ columns=MultiIndex.from_tuples(
320
+ [("a", "foo"), ("b", "bar"), ("b", nulls_fixture)]
321
+ ),
322
+ dtype="int64",
323
+ )
324
+
325
+ result = df.loc[:, indexer]
326
+ tm.assert_equal(result, expected)
327
+
328
+
329
+ # ----------------------------------------------------------------------------
330
+ # test indexing of DataFrame with multi-level Index with duplicates
331
+ # ----------------------------------------------------------------------------
332
+
333
+
334
+ @pytest.fixture
335
+ def dataframe_with_duplicate_index():
336
+ """Fixture for DataFrame used in tests for gh-4145 and gh-4146"""
337
+ data = [["a", "d", "e", "c", "f", "b"], [1, 4, 5, 3, 6, 2], [1, 4, 5, 3, 6, 2]]
338
+ index = ["h1", "h3", "h5"]
339
+ columns = MultiIndex(
340
+ levels=[["A", "B"], ["A1", "A2", "B1", "B2"]],
341
+ codes=[[0, 0, 0, 1, 1, 1], [0, 3, 3, 0, 1, 2]],
342
+ names=["main", "sub"],
343
+ )
344
+ return DataFrame(data, index=index, columns=columns)
345
+
346
+
347
+ @pytest.mark.parametrize(
348
+ "indexer", [lambda df: df[("A", "A1")], lambda df: df.loc[:, ("A", "A1")]]
349
+ )
350
+ def test_frame_mi_access(dataframe_with_duplicate_index, indexer):
351
+ # GH 4145
352
+ df = dataframe_with_duplicate_index
353
+ index = Index(["h1", "h3", "h5"])
354
+ columns = MultiIndex.from_tuples([("A", "A1")], names=["main", "sub"])
355
+ expected = DataFrame([["a", 1, 1]], index=columns, columns=index).T
356
+
357
+ result = indexer(df)
358
+ tm.assert_frame_equal(result, expected)
359
+
360
+
361
+ def test_frame_mi_access_returns_series(dataframe_with_duplicate_index):
362
+ # GH 4146, not returning a block manager when selecting a unique index
363
+ # from a duplicate index
364
+ # as of 4879, this returns a Series (which is similar to what happens
365
+ # with a non-unique)
366
+ df = dataframe_with_duplicate_index
367
+ expected = Series(["a", 1, 1], index=["h1", "h3", "h5"], name="A1")
368
+ result = df["A"]["A1"]
369
+ tm.assert_series_equal(result, expected)
370
+
371
+
372
+ def test_frame_mi_access_returns_frame(dataframe_with_duplicate_index):
373
+ # selecting a non_unique from the 2nd level
374
+ df = dataframe_with_duplicate_index
375
+ expected = DataFrame(
376
+ [["d", 4, 4], ["e", 5, 5]],
377
+ index=Index(["B2", "B2"], name="sub"),
378
+ columns=["h1", "h3", "h5"],
379
+ ).T
380
+ result = df["A"]["B2"]
381
+ tm.assert_frame_equal(result, expected)
382
+
383
+
384
+ def test_frame_mi_empty_slice():
385
+ # GH 15454
386
+ df = DataFrame(0, index=range(2), columns=MultiIndex.from_product([[1], [2]]))
387
+ result = df[[]]
388
+ expected = DataFrame(
389
+ index=[0, 1], columns=MultiIndex(levels=[[1], [2]], codes=[[], []])
390
+ )
391
+ tm.assert_frame_equal(result, expected)
392
+
393
+
394
+ def test_loc_empty_multiindex():
395
+ # GH#36936
396
+ arrays = [["a", "a", "b", "a"], ["a", "a", "b", "b"]]
397
+ index = MultiIndex.from_arrays(arrays, names=("idx1", "idx2"))
398
+ df = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
399
+
400
+ # loc on empty multiindex == loc with False mask
401
+ empty_multiindex = df.loc[df.loc[:, "value"] == 0, :].index
402
+ result = df.loc[empty_multiindex, :]
403
+ expected = df.loc[[False] * len(df.index), :]
404
+ tm.assert_frame_equal(result, expected)
405
+
406
+ # replacing value with loc on empty multiindex
407
+ df.loc[df.loc[df.loc[:, "value"] == 0].index, "value"] = 5
408
+ result = df
409
+ expected = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
410
+ tm.assert_frame_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_iloc.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DataFrame,
6
+ MultiIndex,
7
+ Series,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ @pytest.fixture
13
+ def simple_multiindex_dataframe():
14
+ """
15
+ Factory function to create simple 3 x 3 dataframe with
16
+ both columns and row MultiIndex using supplied data or
17
+ random data by default.
18
+ """
19
+
20
+ data = np.random.default_rng(2).standard_normal((3, 3))
21
+ return DataFrame(
22
+ data, columns=[[2, 2, 4], [6, 8, 10]], index=[[4, 4, 8], [8, 10, 12]]
23
+ )
24
+
25
+
26
+ @pytest.mark.parametrize(
27
+ "indexer, expected",
28
+ [
29
+ (
30
+ lambda df: df.iloc[0],
31
+ lambda arr: Series(arr[0], index=[[2, 2, 4], [6, 8, 10]], name=(4, 8)),
32
+ ),
33
+ (
34
+ lambda df: df.iloc[2],
35
+ lambda arr: Series(arr[2], index=[[2, 2, 4], [6, 8, 10]], name=(8, 12)),
36
+ ),
37
+ (
38
+ lambda df: df.iloc[:, 2],
39
+ lambda arr: Series(arr[:, 2], index=[[4, 4, 8], [8, 10, 12]], name=(4, 10)),
40
+ ),
41
+ ],
42
+ )
43
+ def test_iloc_returns_series(indexer, expected, simple_multiindex_dataframe):
44
+ df = simple_multiindex_dataframe
45
+ arr = df.values
46
+ result = indexer(df)
47
+ expected = expected(arr)
48
+ tm.assert_series_equal(result, expected)
49
+
50
+
51
+ def test_iloc_returns_dataframe(simple_multiindex_dataframe):
52
+ df = simple_multiindex_dataframe
53
+ result = df.iloc[[0, 1]]
54
+ expected = df.xs(4, drop_level=False)
55
+ tm.assert_frame_equal(result, expected)
56
+
57
+
58
+ def test_iloc_returns_scalar(simple_multiindex_dataframe):
59
+ df = simple_multiindex_dataframe
60
+ arr = df.values
61
+ result = df.iloc[2, 2]
62
+ expected = arr[2, 2]
63
+ assert result == expected
64
+
65
+
66
+ def test_iloc_getitem_multiple_items():
67
+ # GH 5528
68
+ tup = zip(*[["a", "a", "b", "b"], ["x", "y", "x", "y"]])
69
+ index = MultiIndex.from_tuples(tup)
70
+ df = DataFrame(np.random.default_rng(2).standard_normal((4, 4)), index=index)
71
+ result = df.iloc[[2, 3]]
72
+ expected = df.xs("b", drop_level=False)
73
+ tm.assert_frame_equal(result, expected)
74
+
75
+
76
+ def test_iloc_getitem_labels():
77
+ # this is basically regular indexing
78
+ arr = np.random.default_rng(2).standard_normal((4, 3))
79
+ df = DataFrame(
80
+ arr,
81
+ columns=[["i", "i", "j"], ["A", "A", "B"]],
82
+ index=[["i", "i", "j", "k"], ["X", "X", "Y", "Y"]],
83
+ )
84
+ result = df.iloc[2, 2]
85
+ expected = arr[2, 2]
86
+ assert result == expected
87
+
88
+
89
+ def test_frame_getitem_slice(multiindex_dataframe_random_data):
90
+ df = multiindex_dataframe_random_data
91
+ result = df.iloc[:4]
92
+ expected = df[:4]
93
+ tm.assert_frame_equal(result, expected)
94
+
95
+
96
+ def test_frame_setitem_slice(multiindex_dataframe_random_data):
97
+ df = multiindex_dataframe_random_data
98
+ df.iloc[:4] = 0
99
+
100
+ assert (df.values[:4] == 0).all()
101
+ assert (df.values[4:] != 0).all()
102
+
103
+
104
+ def test_indexing_ambiguity_bug_1678():
105
+ # GH 1678
106
+ columns = MultiIndex.from_tuples(
107
+ [("Ohio", "Green"), ("Ohio", "Red"), ("Colorado", "Green")]
108
+ )
109
+ index = MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1), ("b", 2)])
110
+
111
+ df = DataFrame(np.arange(12).reshape((4, 3)), index=index, columns=columns)
112
+
113
+ result = df.iloc[:, 1]
114
+ expected = df.loc[:, ("Ohio", "Red")]
115
+ tm.assert_series_equal(result, expected)
116
+
117
+
118
+ def test_iloc_integer_locations():
119
+ # GH 13797
120
+ data = [
121
+ ["str00", "str01"],
122
+ ["str10", "str11"],
123
+ ["str20", "srt21"],
124
+ ["str30", "str31"],
125
+ ["str40", "str41"],
126
+ ]
127
+
128
+ index = MultiIndex.from_tuples(
129
+ [("CC", "A"), ("CC", "B"), ("CC", "B"), ("BB", "a"), ("BB", "b")]
130
+ )
131
+
132
+ expected = DataFrame(data)
133
+ df = DataFrame(data, index=index)
134
+
135
+ result = DataFrame([[df.iloc[r, c] for c in range(2)] for r in range(5)])
136
+
137
+ tm.assert_frame_equal(result, expected)
138
+
139
+
140
+ @pytest.mark.parametrize(
141
+ "data, indexes, values, expected_k",
142
+ [
143
+ # test without indexer value in first level of MultiIndex
144
+ ([[2, 22, 5], [2, 33, 6]], [0, -1, 1], [2, 3, 1], [7, 10]),
145
+ # test like code sample 1 in the issue
146
+ ([[1, 22, 555], [1, 33, 666]], [0, -1, 1], [200, 300, 100], [755, 1066]),
147
+ # test like code sample 2 in the issue
148
+ ([[1, 3, 7], [2, 4, 8]], [0, -1, 1], [10, 10, 1000], [17, 1018]),
149
+ # test like code sample 3 in the issue
150
+ ([[1, 11, 4], [2, 22, 5], [3, 33, 6]], [0, -1, 1], [4, 7, 10], [8, 15, 13]),
151
+ ],
152
+ )
153
+ def test_iloc_setitem_int_multiindex_series(data, indexes, values, expected_k):
154
+ # GH17148
155
+ df = DataFrame(data=data, columns=["i", "j", "k"])
156
+ df = df.set_index(["i", "j"])
157
+
158
+ series = df.k.copy()
159
+ for i, v in zip(indexes, values):
160
+ series.iloc[i] += v
161
+
162
+ df["k"] = expected_k
163
+ expected = df.k
164
+ tm.assert_series_equal(series, expected)
165
+
166
+
167
+ def test_getitem_iloc(multiindex_dataframe_random_data):
168
+ df = multiindex_dataframe_random_data
169
+ result = df.iloc[2]
170
+ expected = df.xs(df.index[2])
171
+ tm.assert_series_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_indexing_slow.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ DataFrame,
7
+ Series,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ @pytest.fixture
13
+ def m():
14
+ return 5
15
+
16
+
17
+ @pytest.fixture
18
+ def n():
19
+ return 100
20
+
21
+
22
+ @pytest.fixture
23
+ def cols():
24
+ return ["jim", "joe", "jolie", "joline", "jolia"]
25
+
26
+
27
+ @pytest.fixture
28
+ def vals(n):
29
+ vals = [
30
+ np.random.default_rng(2).integers(0, 10, n),
31
+ np.random.default_rng(2).choice(list("abcdefghij"), n),
32
+ np.random.default_rng(2).choice(
33
+ pd.date_range("20141009", periods=10).tolist(), n
34
+ ),
35
+ np.random.default_rng(2).choice(list("ZYXWVUTSRQ"), n),
36
+ np.random.default_rng(2).standard_normal(n),
37
+ ]
38
+ vals = list(map(tuple, zip(*vals)))
39
+ return vals
40
+
41
+
42
+ @pytest.fixture
43
+ def keys(n, m, vals):
44
+ # bunch of keys for testing
45
+ keys = [
46
+ np.random.default_rng(2).integers(0, 11, m),
47
+ np.random.default_rng(2).choice(list("abcdefghijk"), m),
48
+ np.random.default_rng(2).choice(
49
+ pd.date_range("20141009", periods=11).tolist(), m
50
+ ),
51
+ np.random.default_rng(2).choice(list("ZYXWVUTSRQP"), m),
52
+ ]
53
+ keys = list(map(tuple, zip(*keys)))
54
+ keys += [t[:-1] for t in vals[:: n // m]]
55
+ return keys
56
+
57
+
58
+ # covers both unique index and non-unique index
59
+ @pytest.fixture
60
+ def df(vals, cols):
61
+ return DataFrame(vals, columns=cols)
62
+
63
+
64
+ @pytest.fixture
65
+ def a(df):
66
+ return pd.concat([df, df])
67
+
68
+
69
+ @pytest.fixture
70
+ def b(df, cols):
71
+ return df.drop_duplicates(subset=cols[:-1])
72
+
73
+
74
+ @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
75
+ @pytest.mark.parametrize("lexsort_depth", list(range(5)))
76
+ @pytest.mark.parametrize("frame_fixture", ["a", "b"])
77
+ def test_multiindex_get_loc(request, lexsort_depth, keys, frame_fixture, cols):
78
+ # GH7724, GH2646
79
+
80
+ frame = request.getfixturevalue(frame_fixture)
81
+ if lexsort_depth == 0:
82
+ df = frame.copy(deep=False)
83
+ else:
84
+ df = frame.sort_values(by=cols[:lexsort_depth])
85
+
86
+ mi = df.set_index(cols[:-1])
87
+ assert not mi.index._lexsort_depth < lexsort_depth
88
+ for key in keys:
89
+ mask = np.ones(len(df), dtype=bool)
90
+
91
+ # test for all partials of this key
92
+ for i, k in enumerate(key):
93
+ mask &= df.iloc[:, i] == k
94
+
95
+ if not mask.any():
96
+ assert key[: i + 1] not in mi.index
97
+ continue
98
+
99
+ assert key[: i + 1] in mi.index
100
+ right = df[mask].copy(deep=False)
101
+
102
+ if i + 1 != len(key): # partial key
103
+ return_value = right.drop(cols[: i + 1], axis=1, inplace=True)
104
+ assert return_value is None
105
+ return_value = right.set_index(cols[i + 1 : -1], inplace=True)
106
+ assert return_value is None
107
+ tm.assert_frame_equal(mi.loc[key[: i + 1]], right)
108
+
109
+ else: # full key
110
+ return_value = right.set_index(cols[:-1], inplace=True)
111
+ assert return_value is None
112
+ if len(right) == 1: # single hit
113
+ right = Series(
114
+ right["jolia"].values, name=right.index[0], index=["jolia"]
115
+ )
116
+ tm.assert_series_equal(mi.loc[key[: i + 1]], right)
117
+ else: # multi hit
118
+ tm.assert_frame_equal(mi.loc[key[: i + 1]], right)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_loc.py ADDED
@@ -0,0 +1,992 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.errors import (
5
+ IndexingError,
6
+ PerformanceWarning,
7
+ )
8
+
9
+ import pandas as pd
10
+ from pandas import (
11
+ DataFrame,
12
+ Index,
13
+ MultiIndex,
14
+ Series,
15
+ )
16
+ import pandas._testing as tm
17
+
18
+
19
+ @pytest.fixture
20
+ def single_level_multiindex():
21
+ """single level MultiIndex"""
22
+ return MultiIndex(
23
+ levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"]
24
+ )
25
+
26
+
27
+ @pytest.fixture
28
+ def frame_random_data_integer_multi_index():
29
+ levels = [[0, 1], [0, 1, 2]]
30
+ codes = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
31
+ index = MultiIndex(levels=levels, codes=codes)
32
+ return DataFrame(np.random.default_rng(2).standard_normal((6, 2)), index=index)
33
+
34
+
35
+ class TestMultiIndexLoc:
36
+ def test_loc_setitem_frame_with_multiindex(self, multiindex_dataframe_random_data):
37
+ frame = multiindex_dataframe_random_data
38
+ frame.loc[("bar", "two"), "B"] = 5
39
+ assert frame.loc[("bar", "two"), "B"] == 5
40
+
41
+ # with integer labels
42
+ df = frame.copy()
43
+ df.columns = list(range(3))
44
+ df.loc[("bar", "two"), 1] = 7
45
+ assert df.loc[("bar", "two"), 1] == 7
46
+
47
+ def test_loc_getitem_general(self, any_real_numpy_dtype):
48
+ # GH#2817
49
+ dtype = any_real_numpy_dtype
50
+ data = {
51
+ "amount": {0: 700, 1: 600, 2: 222, 3: 333, 4: 444},
52
+ "col": {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0},
53
+ "num": {0: 12, 1: 11, 2: 12, 3: 12, 4: 12},
54
+ }
55
+ df = DataFrame(data)
56
+ df = df.astype({"col": dtype, "num": dtype})
57
+ df = df.set_index(keys=["col", "num"])
58
+ key = 4.0, 12
59
+
60
+ # emits a PerformanceWarning, ok
61
+ with tm.assert_produces_warning(PerformanceWarning):
62
+ tm.assert_frame_equal(df.loc[key], df.iloc[2:])
63
+
64
+ # this is ok
65
+ return_value = df.sort_index(inplace=True)
66
+ assert return_value is None
67
+ res = df.loc[key]
68
+
69
+ # col has float dtype, result should be float64 Index
70
+ col_arr = np.array([4.0] * 3, dtype=dtype)
71
+ year_arr = np.array([12] * 3, dtype=dtype)
72
+ index = MultiIndex.from_arrays([col_arr, year_arr], names=["col", "num"])
73
+ expected = DataFrame({"amount": [222, 333, 444]}, index=index)
74
+ tm.assert_frame_equal(res, expected)
75
+
76
+ def test_loc_getitem_multiindex_missing_label_raises(self):
77
+ # GH#21593
78
+ df = DataFrame(
79
+ np.random.default_rng(2).standard_normal((3, 3)),
80
+ columns=[[2, 2, 4], [6, 8, 10]],
81
+ index=[[4, 4, 8], [8, 10, 12]],
82
+ )
83
+
84
+ with pytest.raises(KeyError, match=r"^2$"):
85
+ df.loc[2]
86
+
87
+ def test_loc_getitem_list_of_tuples_with_multiindex(
88
+ self, multiindex_year_month_day_dataframe_random_data
89
+ ):
90
+ ser = multiindex_year_month_day_dataframe_random_data["A"]
91
+ expected = ser.reindex(ser.index[49:51])
92
+ result = ser.loc[[(2000, 3, 10), (2000, 3, 13)]]
93
+ tm.assert_series_equal(result, expected)
94
+
95
+ def test_loc_getitem_series(self):
96
+ # GH14730
97
+ # passing a series as a key with a MultiIndex
98
+ index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]])
99
+ x = Series(index=index, data=range(9), dtype=np.float64)
100
+ y = Series([1, 3])
101
+ expected = Series(
102
+ data=[0, 1, 2, 6, 7, 8],
103
+ index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]),
104
+ dtype=np.float64,
105
+ )
106
+ result = x.loc[y]
107
+ tm.assert_series_equal(result, expected)
108
+
109
+ result = x.loc[[1, 3]]
110
+ tm.assert_series_equal(result, expected)
111
+
112
+ # GH15424
113
+ y1 = Series([1, 3], index=[1, 2])
114
+ result = x.loc[y1]
115
+ tm.assert_series_equal(result, expected)
116
+
117
+ empty = Series(data=[], dtype=np.float64)
118
+ expected = Series(
119
+ [],
120
+ index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64),
121
+ dtype=np.float64,
122
+ )
123
+ result = x.loc[empty]
124
+ tm.assert_series_equal(result, expected)
125
+
126
+ def test_loc_getitem_array(self):
127
+ # GH15434
128
+ # passing an array as a key with a MultiIndex
129
+ index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]])
130
+ x = Series(index=index, data=range(9), dtype=np.float64)
131
+ y = np.array([1, 3])
132
+ expected = Series(
133
+ data=[0, 1, 2, 6, 7, 8],
134
+ index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]),
135
+ dtype=np.float64,
136
+ )
137
+ result = x.loc[y]
138
+ tm.assert_series_equal(result, expected)
139
+
140
+ # empty array:
141
+ empty = np.array([])
142
+ expected = Series(
143
+ [],
144
+ index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64),
145
+ dtype="float64",
146
+ )
147
+ result = x.loc[empty]
148
+ tm.assert_series_equal(result, expected)
149
+
150
+ # 0-dim array (scalar):
151
+ scalar = np.int64(1)
152
+ expected = Series(data=[0, 1, 2], index=["A", "B", "C"], dtype=np.float64)
153
+ result = x.loc[scalar]
154
+ tm.assert_series_equal(result, expected)
155
+
156
+ def test_loc_multiindex_labels(self):
157
+ df = DataFrame(
158
+ np.random.default_rng(2).standard_normal((3, 3)),
159
+ columns=[["i", "i", "j"], ["A", "A", "B"]],
160
+ index=[["i", "i", "j"], ["X", "X", "Y"]],
161
+ )
162
+
163
+ # the first 2 rows
164
+ expected = df.iloc[[0, 1]].droplevel(0)
165
+ result = df.loc["i"]
166
+ tm.assert_frame_equal(result, expected)
167
+
168
+ # 2nd (last) column
169
+ expected = df.iloc[:, [2]].droplevel(0, axis=1)
170
+ result = df.loc[:, "j"]
171
+ tm.assert_frame_equal(result, expected)
172
+
173
+ # bottom right corner
174
+ expected = df.iloc[[2], [2]].droplevel(0).droplevel(0, axis=1)
175
+ result = df.loc["j"].loc[:, "j"]
176
+ tm.assert_frame_equal(result, expected)
177
+
178
+ # with a tuple
179
+ expected = df.iloc[[0, 1]]
180
+ result = df.loc[("i", "X")]
181
+ tm.assert_frame_equal(result, expected)
182
+
183
+ def test_loc_multiindex_ints(self):
184
+ df = DataFrame(
185
+ np.random.default_rng(2).standard_normal((3, 3)),
186
+ columns=[[2, 2, 4], [6, 8, 10]],
187
+ index=[[4, 4, 8], [8, 10, 12]],
188
+ )
189
+ expected = df.iloc[[0, 1]].droplevel(0)
190
+ result = df.loc[4]
191
+ tm.assert_frame_equal(result, expected)
192
+
193
+ def test_loc_multiindex_missing_label_raises(self):
194
+ df = DataFrame(
195
+ np.random.default_rng(2).standard_normal((3, 3)),
196
+ columns=[[2, 2, 4], [6, 8, 10]],
197
+ index=[[4, 4, 8], [8, 10, 12]],
198
+ )
199
+
200
+ with pytest.raises(KeyError, match=r"^2$"):
201
+ df.loc[2]
202
+
203
+ @pytest.mark.parametrize("key, pos", [([2, 4], [0, 1]), ([2], []), ([2, 3], [])])
204
+ def test_loc_multiindex_list_missing_label(self, key, pos):
205
+ # GH 27148 - lists with missing labels _do_ raise
206
+ df = DataFrame(
207
+ np.random.default_rng(2).standard_normal((3, 3)),
208
+ columns=[[2, 2, 4], [6, 8, 10]],
209
+ index=[[4, 4, 8], [8, 10, 12]],
210
+ )
211
+
212
+ with pytest.raises(KeyError, match="not in index"):
213
+ df.loc[key]
214
+
215
+ def test_loc_multiindex_too_many_dims_raises(self):
216
+ # GH 14885
217
+ s = Series(
218
+ range(8),
219
+ index=MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]),
220
+ )
221
+
222
+ with pytest.raises(KeyError, match=r"^\('a', 'b'\)$"):
223
+ s.loc["a", "b"]
224
+ with pytest.raises(KeyError, match=r"^\('a', 'd', 'g'\)$"):
225
+ s.loc["a", "d", "g"]
226
+ with pytest.raises(IndexingError, match="Too many indexers"):
227
+ s.loc["a", "d", "g", "j"]
228
+
229
+ def test_loc_multiindex_indexer_none(self):
230
+ # GH6788
231
+ # multi-index indexer is None (meaning take all)
232
+ attributes = ["Attribute" + str(i) for i in range(1)]
233
+ attribute_values = ["Value" + str(i) for i in range(5)]
234
+
235
+ index = MultiIndex.from_product([attributes, attribute_values])
236
+ df = 0.1 * np.random.default_rng(2).standard_normal((10, 1 * 5)) + 0.5
237
+ df = DataFrame(df, columns=index)
238
+ result = df[attributes]
239
+ tm.assert_frame_equal(result, df)
240
+
241
+ # GH 7349
242
+ # loc with a multi-index seems to be doing fallback
243
+ df = DataFrame(
244
+ np.arange(12).reshape(-1, 1),
245
+ index=MultiIndex.from_product([[1, 2, 3, 4], [1, 2, 3]]),
246
+ )
247
+
248
+ expected = df.loc[([1, 2],), :]
249
+ result = df.loc[[1, 2]]
250
+ tm.assert_frame_equal(result, expected)
251
+
252
+ def test_loc_multiindex_incomplete(self):
253
+ # GH 7399
254
+ # incomplete indexers
255
+ s = Series(
256
+ np.arange(15, dtype="int64"),
257
+ MultiIndex.from_product([range(5), ["a", "b", "c"]]),
258
+ )
259
+ expected = s.loc[:, "a":"c"]
260
+
261
+ result = s.loc[0:4, "a":"c"]
262
+ tm.assert_series_equal(result, expected)
263
+
264
+ result = s.loc[:4, "a":"c"]
265
+ tm.assert_series_equal(result, expected)
266
+
267
+ result = s.loc[0:, "a":"c"]
268
+ tm.assert_series_equal(result, expected)
269
+
270
+ # GH 7400
271
+ # multiindexer getitem with list of indexers skips wrong element
272
+ s = Series(
273
+ np.arange(15, dtype="int64"),
274
+ MultiIndex.from_product([range(5), ["a", "b", "c"]]),
275
+ )
276
+ expected = s.iloc[[6, 7, 8, 12, 13, 14]]
277
+ result = s.loc[2:4:2, "a":"c"]
278
+ tm.assert_series_equal(result, expected)
279
+
280
+ def test_get_loc_single_level(self, single_level_multiindex):
281
+ single_level = single_level_multiindex
282
+ s = Series(
283
+ np.random.default_rng(2).standard_normal(len(single_level)),
284
+ index=single_level,
285
+ )
286
+ for k in single_level.values:
287
+ s[k]
288
+
289
+ def test_loc_getitem_int_slice(self):
290
+ # GH 3053
291
+ # loc should treat integer slices like label slices
292
+
293
+ index = MultiIndex.from_product([[6, 7, 8], ["a", "b"]])
294
+ df = DataFrame(np.random.default_rng(2).standard_normal((6, 6)), index, index)
295
+ result = df.loc[6:8, :]
296
+ expected = df
297
+ tm.assert_frame_equal(result, expected)
298
+
299
+ index = MultiIndex.from_product([[10, 20, 30], ["a", "b"]])
300
+ df = DataFrame(np.random.default_rng(2).standard_normal((6, 6)), index, index)
301
+ result = df.loc[20:30, :]
302
+ expected = df.iloc[2:]
303
+ tm.assert_frame_equal(result, expected)
304
+
305
+ # doc examples
306
+ result = df.loc[10, :]
307
+ expected = df.iloc[0:2]
308
+ expected.index = ["a", "b"]
309
+ tm.assert_frame_equal(result, expected)
310
+
311
+ result = df.loc[:, 10]
312
+ expected = df[10]
313
+ tm.assert_frame_equal(result, expected)
314
+
315
+ @pytest.mark.parametrize(
316
+ "indexer_type_1", (list, tuple, set, slice, np.ndarray, Series, Index)
317
+ )
318
+ @pytest.mark.parametrize(
319
+ "indexer_type_2", (list, tuple, set, slice, np.ndarray, Series, Index)
320
+ )
321
+ def test_loc_getitem_nested_indexer(self, indexer_type_1, indexer_type_2):
322
+ # GH #19686
323
+ # .loc should work with nested indexers which can be
324
+ # any list-like objects (see `is_list_like` (`pandas.api.types`)) or slices
325
+
326
+ def convert_nested_indexer(indexer_type, keys):
327
+ if indexer_type == np.ndarray:
328
+ return np.array(keys)
329
+ if indexer_type == slice:
330
+ return slice(*keys)
331
+ return indexer_type(keys)
332
+
333
+ a = [10, 20, 30]
334
+ b = [1, 2, 3]
335
+ index = MultiIndex.from_product([a, b])
336
+ df = DataFrame(
337
+ np.arange(len(index), dtype="int64"), index=index, columns=["Data"]
338
+ )
339
+
340
+ keys = ([10, 20], [2, 3])
341
+ types = (indexer_type_1, indexer_type_2)
342
+
343
+ # check indexers with all the combinations of nested objects
344
+ # of all the valid types
345
+ indexer = tuple(
346
+ convert_nested_indexer(indexer_type, k)
347
+ for indexer_type, k in zip(types, keys)
348
+ )
349
+ if indexer_type_1 is set or indexer_type_2 is set:
350
+ with pytest.raises(TypeError, match="as an indexer is not supported"):
351
+ df.loc[indexer, "Data"]
352
+
353
+ return
354
+ else:
355
+ result = df.loc[indexer, "Data"]
356
+ expected = Series(
357
+ [1, 2, 4, 5], name="Data", index=MultiIndex.from_product(keys)
358
+ )
359
+
360
+ tm.assert_series_equal(result, expected)
361
+
362
+ def test_multiindex_loc_one_dimensional_tuple(self, frame_or_series):
363
+ # GH#37711
364
+ mi = MultiIndex.from_tuples([("a", "A"), ("b", "A")])
365
+ obj = frame_or_series([1, 2], index=mi)
366
+ obj.loc[("a",)] = 0
367
+ expected = frame_or_series([0, 2], index=mi)
368
+ tm.assert_equal(obj, expected)
369
+
370
+ @pytest.mark.parametrize("indexer", [("a",), ("a")])
371
+ def test_multiindex_one_dimensional_tuple_columns(self, indexer):
372
+ # GH#37711
373
+ mi = MultiIndex.from_tuples([("a", "A"), ("b", "A")])
374
+ obj = DataFrame([1, 2], index=mi)
375
+ obj.loc[indexer, :] = 0
376
+ expected = DataFrame([0, 2], index=mi)
377
+ tm.assert_frame_equal(obj, expected)
378
+
379
+ @pytest.mark.parametrize(
380
+ "indexer, exp_value", [(slice(None), 1.0), ((1, 2), np.nan)]
381
+ )
382
+ def test_multiindex_setitem_columns_enlarging(self, indexer, exp_value):
383
+ # GH#39147
384
+ mi = MultiIndex.from_tuples([(1, 2), (3, 4)])
385
+ df = DataFrame([[1, 2], [3, 4]], index=mi, columns=["a", "b"])
386
+ df.loc[indexer, ["c", "d"]] = 1.0
387
+ expected = DataFrame(
388
+ [[1, 2, 1.0, 1.0], [3, 4, exp_value, exp_value]],
389
+ index=mi,
390
+ columns=["a", "b", "c", "d"],
391
+ )
392
+ tm.assert_frame_equal(df, expected)
393
+
394
+ def test_sorted_multiindex_after_union(self):
395
+ # GH#44752
396
+ midx = MultiIndex.from_product(
397
+ [pd.date_range("20110101", periods=2), Index(["a", "b"])]
398
+ )
399
+ ser1 = Series(1, index=midx)
400
+ ser2 = Series(1, index=midx[:2])
401
+ df = pd.concat([ser1, ser2], axis=1)
402
+ expected = df.copy()
403
+ result = df.loc["2011-01-01":"2011-01-02"]
404
+ tm.assert_frame_equal(result, expected)
405
+
406
+ df = DataFrame({0: ser1, 1: ser2})
407
+ result = df.loc["2011-01-01":"2011-01-02"]
408
+ tm.assert_frame_equal(result, expected)
409
+
410
+ df = pd.concat([ser1, ser2.reindex(ser1.index)], axis=1)
411
+ result = df.loc["2011-01-01":"2011-01-02"]
412
+ tm.assert_frame_equal(result, expected)
413
+
414
+ def test_loc_no_second_level_index(self):
415
+ # GH#43599
416
+ df = DataFrame(
417
+ index=MultiIndex.from_product([list("ab"), list("cd"), list("e")]),
418
+ columns=["Val"],
419
+ )
420
+ res = df.loc[np.s_[:, "c", :]]
421
+ expected = DataFrame(
422
+ index=MultiIndex.from_product([list("ab"), list("e")]), columns=["Val"]
423
+ )
424
+ tm.assert_frame_equal(res, expected)
425
+
426
+ def test_loc_multi_index_key_error(self):
427
+ # GH 51892
428
+ df = DataFrame(
429
+ {
430
+ (1, 2): ["a", "b", "c"],
431
+ (1, 3): ["d", "e", "f"],
432
+ (2, 2): ["g", "h", "i"],
433
+ (2, 4): ["j", "k", "l"],
434
+ }
435
+ )
436
+ with pytest.raises(KeyError, match=r"(1, 4)"):
437
+ df.loc[0, (1, 4)]
438
+
439
+
440
+ @pytest.mark.parametrize(
441
+ "indexer, pos",
442
+ [
443
+ ([], []), # empty ok
444
+ (["A"], slice(3)),
445
+ (["A", "D"], []), # "D" isn't present -> raise
446
+ (["D", "E"], []), # no values found -> raise
447
+ (["D"], []), # same, with single item list: GH 27148
448
+ (pd.IndexSlice[:, ["foo"]], slice(2, None, 3)),
449
+ (pd.IndexSlice[:, ["foo", "bah"]], slice(2, None, 3)),
450
+ ],
451
+ )
452
+ def test_loc_getitem_duplicates_multiindex_missing_indexers(indexer, pos):
453
+ # GH 7866
454
+ # multi-index slicing with missing indexers
455
+ idx = MultiIndex.from_product(
456
+ [["A", "B", "C"], ["foo", "bar", "baz"]], names=["one", "two"]
457
+ )
458
+ ser = Series(np.arange(9, dtype="int64"), index=idx).sort_index()
459
+ expected = ser.iloc[pos]
460
+
461
+ if expected.size == 0 and indexer != []:
462
+ with pytest.raises(KeyError, match=str(indexer)):
463
+ ser.loc[indexer]
464
+ elif indexer == (slice(None), ["foo", "bah"]):
465
+ # "bah" is not in idx.levels[1], raising KeyError enforced in 2.0
466
+ with pytest.raises(KeyError, match="'bah'"):
467
+ ser.loc[indexer]
468
+ else:
469
+ result = ser.loc[indexer]
470
+ tm.assert_series_equal(result, expected)
471
+
472
+
473
+ @pytest.mark.parametrize("columns_indexer", [([], slice(None)), (["foo"], [])])
474
+ def test_loc_getitem_duplicates_multiindex_empty_indexer(columns_indexer):
475
+ # GH 8737
476
+ # empty indexer
477
+ multi_index = MultiIndex.from_product((["foo", "bar", "baz"], ["alpha", "beta"]))
478
+ df = DataFrame(
479
+ np.random.default_rng(2).standard_normal((5, 6)),
480
+ index=range(5),
481
+ columns=multi_index,
482
+ )
483
+ df = df.sort_index(level=0, axis=1)
484
+
485
+ expected = DataFrame(index=range(5), columns=multi_index.reindex([])[0])
486
+ result = df.loc[:, columns_indexer]
487
+ tm.assert_frame_equal(result, expected)
488
+
489
+
490
+ def test_loc_getitem_duplicates_multiindex_non_scalar_type_object():
491
+ # regression from < 0.14.0
492
+ # GH 7914
493
+ df = DataFrame(
494
+ [[np.mean, np.median], ["mean", "median"]],
495
+ columns=MultiIndex.from_tuples([("functs", "mean"), ("functs", "median")]),
496
+ index=["function", "name"],
497
+ )
498
+ result = df.loc["function", ("functs", "mean")]
499
+ expected = np.mean
500
+ assert result == expected
501
+
502
+
503
+ def test_loc_getitem_tuple_plus_slice():
504
+ # GH 671
505
+ df = DataFrame(
506
+ {
507
+ "a": np.arange(10),
508
+ "b": np.arange(10),
509
+ "c": np.random.default_rng(2).standard_normal(10),
510
+ "d": np.random.default_rng(2).standard_normal(10),
511
+ }
512
+ ).set_index(["a", "b"])
513
+ expected = df.loc[0, 0]
514
+ result = df.loc[(0, 0), :]
515
+ tm.assert_series_equal(result, expected)
516
+
517
+
518
+ def test_loc_getitem_int(frame_random_data_integer_multi_index):
519
+ df = frame_random_data_integer_multi_index
520
+ result = df.loc[1]
521
+ expected = df[-3:]
522
+ expected.index = expected.index.droplevel(0)
523
+ tm.assert_frame_equal(result, expected)
524
+
525
+
526
+ def test_loc_getitem_int_raises_exception(frame_random_data_integer_multi_index):
527
+ df = frame_random_data_integer_multi_index
528
+ with pytest.raises(KeyError, match=r"^3$"):
529
+ df.loc[3]
530
+
531
+
532
+ def test_loc_getitem_lowerdim_corner(multiindex_dataframe_random_data):
533
+ df = multiindex_dataframe_random_data
534
+
535
+ # test setup - check key not in dataframe
536
+ with pytest.raises(KeyError, match=r"^\('bar', 'three'\)$"):
537
+ df.loc[("bar", "three"), "B"]
538
+
539
+ # in theory should be inserting in a sorted space????
540
+ df.loc[("bar", "three"), "B"] = 0
541
+ expected = 0
542
+ result = df.sort_index().loc[("bar", "three"), "B"]
543
+ assert result == expected
544
+
545
+
546
+ def test_loc_setitem_single_column_slice():
547
+ # case from https://github.com/pandas-dev/pandas/issues/27841
548
+ df = DataFrame(
549
+ "string",
550
+ index=list("abcd"),
551
+ columns=MultiIndex.from_product([["Main"], ("another", "one")]),
552
+ )
553
+ df["labels"] = "a"
554
+ df.loc[:, "labels"] = df.index
555
+ tm.assert_numpy_array_equal(np.asarray(df["labels"]), np.asarray(df.index))
556
+
557
+ # test with non-object block
558
+ df = DataFrame(
559
+ np.nan,
560
+ index=range(4),
561
+ columns=MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")]),
562
+ )
563
+ expected = df.copy()
564
+ df.loc[:, "B"] = np.arange(4)
565
+ expected.iloc[:, 2] = np.arange(4)
566
+ tm.assert_frame_equal(df, expected)
567
+
568
+
569
+ def test_loc_nan_multiindex(using_infer_string):
570
+ # GH 5286
571
+ tups = [
572
+ ("Good Things", "C", np.nan),
573
+ ("Good Things", "R", np.nan),
574
+ ("Bad Things", "C", np.nan),
575
+ ("Bad Things", "T", np.nan),
576
+ ("Okay Things", "N", "B"),
577
+ ("Okay Things", "N", "D"),
578
+ ("Okay Things", "B", np.nan),
579
+ ("Okay Things", "D", np.nan),
580
+ ]
581
+ df = DataFrame(
582
+ np.ones((8, 4)),
583
+ columns=Index(["d1", "d2", "d3", "d4"]),
584
+ index=MultiIndex.from_tuples(tups, names=["u1", "u2", "u3"]),
585
+ )
586
+ result = df.loc["Good Things"].loc["C"]
587
+ expected = DataFrame(
588
+ np.ones((1, 4)),
589
+ index=Index(
590
+ [np.nan],
591
+ dtype="object" if not using_infer_string else "string[pyarrow_numpy]",
592
+ name="u3",
593
+ ),
594
+ columns=Index(["d1", "d2", "d3", "d4"]),
595
+ )
596
+ tm.assert_frame_equal(result, expected)
597
+
598
+
599
+ def test_loc_period_string_indexing():
600
+ # GH 9892
601
+ a = pd.period_range("2013Q1", "2013Q4", freq="Q")
602
+ i = (1111, 2222, 3333)
603
+ idx = MultiIndex.from_product((a, i), names=("Period", "CVR"))
604
+ df = DataFrame(
605
+ index=idx,
606
+ columns=(
607
+ "OMS",
608
+ "OMK",
609
+ "RES",
610
+ "DRIFT_IND",
611
+ "OEVRIG_IND",
612
+ "FIN_IND",
613
+ "VARE_UD",
614
+ "LOEN_UD",
615
+ "FIN_UD",
616
+ ),
617
+ )
618
+ result = df.loc[("2013Q1", 1111), "OMS"]
619
+
620
+ alt = df.loc[(a[0], 1111), "OMS"]
621
+ assert np.isnan(alt)
622
+
623
+ # Because the resolution of the string matches, it is an exact lookup,
624
+ # not a slice
625
+ assert np.isnan(result)
626
+
627
+ alt = df.loc[("2013Q1", 1111), "OMS"]
628
+ assert np.isnan(alt)
629
+
630
+
631
+ def test_loc_datetime_mask_slicing():
632
+ # GH 16699
633
+ dt_idx = pd.to_datetime(["2017-05-04", "2017-05-05"])
634
+ m_idx = MultiIndex.from_product([dt_idx, dt_idx], names=["Idx1", "Idx2"])
635
+ df = DataFrame(
636
+ data=[[1, 2], [3, 4], [5, 6], [7, 6]], index=m_idx, columns=["C1", "C2"]
637
+ )
638
+ result = df.loc[(dt_idx[0], (df.index.get_level_values(1) > "2017-05-04")), "C1"]
639
+ expected = Series(
640
+ [3],
641
+ name="C1",
642
+ index=MultiIndex.from_tuples(
643
+ [(pd.Timestamp("2017-05-04"), pd.Timestamp("2017-05-05"))],
644
+ names=["Idx1", "Idx2"],
645
+ ),
646
+ )
647
+ tm.assert_series_equal(result, expected)
648
+
649
+
650
+ def test_loc_datetime_series_tuple_slicing():
651
+ # https://github.com/pandas-dev/pandas/issues/35858
652
+ date = pd.Timestamp("2000")
653
+ ser = Series(
654
+ 1,
655
+ index=MultiIndex.from_tuples([("a", date)], names=["a", "b"]),
656
+ name="c",
657
+ )
658
+ result = ser.loc[:, [date]]
659
+ tm.assert_series_equal(result, ser)
660
+
661
+
662
+ def test_loc_with_mi_indexer():
663
+ # https://github.com/pandas-dev/pandas/issues/35351
664
+ df = DataFrame(
665
+ data=[["a", 1], ["a", 0], ["b", 1], ["c", 2]],
666
+ index=MultiIndex.from_tuples(
667
+ [(0, 1), (1, 0), (1, 1), (1, 1)], names=["index", "date"]
668
+ ),
669
+ columns=["author", "price"],
670
+ )
671
+ idx = MultiIndex.from_tuples([(0, 1), (1, 1)], names=["index", "date"])
672
+ result = df.loc[idx, :]
673
+ expected = DataFrame(
674
+ [["a", 1], ["b", 1], ["c", 2]],
675
+ index=MultiIndex.from_tuples([(0, 1), (1, 1), (1, 1)], names=["index", "date"]),
676
+ columns=["author", "price"],
677
+ )
678
+ tm.assert_frame_equal(result, expected)
679
+
680
+
681
+ def test_loc_mi_with_level1_named_0():
682
+ # GH#37194
683
+ dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
684
+
685
+ ser = Series(range(3), index=dti)
686
+ df = ser.to_frame()
687
+ df[1] = dti
688
+
689
+ df2 = df.set_index(0, append=True)
690
+ assert df2.index.names == (None, 0)
691
+ df2.index.get_loc(dti[0]) # smoke test
692
+
693
+ result = df2.loc[dti[0]]
694
+ expected = df2.iloc[[0]].droplevel(None)
695
+ tm.assert_frame_equal(result, expected)
696
+
697
+ ser2 = df2[1]
698
+ assert ser2.index.names == (None, 0)
699
+
700
+ result = ser2.loc[dti[0]]
701
+ expected = ser2.iloc[[0]].droplevel(None)
702
+ tm.assert_series_equal(result, expected)
703
+
704
+
705
+ def test_getitem_str_slice():
706
+ # GH#15928
707
+ df = DataFrame(
708
+ [
709
+ ["20160525 13:30:00.023", "MSFT", "51.95", "51.95"],
710
+ ["20160525 13:30:00.048", "GOOG", "720.50", "720.93"],
711
+ ["20160525 13:30:00.076", "AAPL", "98.55", "98.56"],
712
+ ["20160525 13:30:00.131", "AAPL", "98.61", "98.62"],
713
+ ["20160525 13:30:00.135", "MSFT", "51.92", "51.95"],
714
+ ["20160525 13:30:00.135", "AAPL", "98.61", "98.62"],
715
+ ],
716
+ columns="time,ticker,bid,ask".split(","),
717
+ )
718
+ df2 = df.set_index(["ticker", "time"]).sort_index()
719
+
720
+ res = df2.loc[("AAPL", slice("2016-05-25 13:30:00")), :].droplevel(0)
721
+ expected = df2.loc["AAPL"].loc[slice("2016-05-25 13:30:00"), :]
722
+ tm.assert_frame_equal(res, expected)
723
+
724
+
725
+ def test_3levels_leading_period_index():
726
+ # GH#24091
727
+ pi = pd.PeriodIndex(
728
+ ["20181101 1100", "20181101 1200", "20181102 1300", "20181102 1400"],
729
+ name="datetime",
730
+ freq="D",
731
+ )
732
+ lev2 = ["A", "A", "Z", "W"]
733
+ lev3 = ["B", "C", "Q", "F"]
734
+ mi = MultiIndex.from_arrays([pi, lev2, lev3])
735
+
736
+ ser = Series(range(4), index=mi, dtype=np.float64)
737
+ result = ser.loc[(pi[0], "A", "B")]
738
+ assert result == 0.0
739
+
740
+
741
+ class TestKeyErrorsWithMultiIndex:
742
+ def test_missing_keys_raises_keyerror(self):
743
+ # GH#27420 KeyError, not TypeError
744
+ df = DataFrame(np.arange(12).reshape(4, 3), columns=["A", "B", "C"])
745
+ df2 = df.set_index(["A", "B"])
746
+
747
+ with pytest.raises(KeyError, match="1"):
748
+ df2.loc[(1, 6)]
749
+
750
+ def test_missing_key_raises_keyerror2(self):
751
+ # GH#21168 KeyError, not "IndexingError: Too many indexers"
752
+ ser = Series(-1, index=MultiIndex.from_product([[0, 1]] * 2))
753
+
754
+ with pytest.raises(KeyError, match=r"\(0, 3\)"):
755
+ ser.loc[0, 3]
756
+
757
+ def test_missing_key_combination(self):
758
+ # GH: 19556
759
+ mi = MultiIndex.from_arrays(
760
+ [
761
+ np.array(["a", "a", "b", "b"]),
762
+ np.array(["1", "2", "2", "3"]),
763
+ np.array(["c", "d", "c", "d"]),
764
+ ],
765
+ names=["one", "two", "three"],
766
+ )
767
+ df = DataFrame(np.random.default_rng(2).random((4, 3)), index=mi)
768
+ msg = r"\('b', '1', slice\(None, None, None\)\)"
769
+ with pytest.raises(KeyError, match=msg):
770
+ df.loc[("b", "1", slice(None)), :]
771
+ with pytest.raises(KeyError, match=msg):
772
+ df.index.get_locs(("b", "1", slice(None)))
773
+ with pytest.raises(KeyError, match=r"\('b', '1'\)"):
774
+ df.loc[("b", "1"), :]
775
+
776
+
777
+ def test_getitem_loc_commutability(multiindex_year_month_day_dataframe_random_data):
778
+ df = multiindex_year_month_day_dataframe_random_data
779
+ ser = df["A"]
780
+ result = ser[2000, 5]
781
+ expected = df.loc[2000, 5]["A"]
782
+ tm.assert_series_equal(result, expected)
783
+
784
+
785
+ def test_loc_with_nan():
786
+ # GH: 27104
787
+ df = DataFrame(
788
+ {"col": [1, 2, 5], "ind1": ["a", "d", np.nan], "ind2": [1, 4, 5]}
789
+ ).set_index(["ind1", "ind2"])
790
+ result = df.loc[["a"]]
791
+ expected = DataFrame(
792
+ {"col": [1]}, index=MultiIndex.from_tuples([("a", 1)], names=["ind1", "ind2"])
793
+ )
794
+ tm.assert_frame_equal(result, expected)
795
+
796
+ result = df.loc["a"]
797
+ expected = DataFrame({"col": [1]}, index=Index([1], name="ind2"))
798
+ tm.assert_frame_equal(result, expected)
799
+
800
+
801
+ def test_getitem_non_found_tuple():
802
+ # GH: 25236
803
+ df = DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"]).set_index(
804
+ ["a", "b", "c"]
805
+ )
806
+ with pytest.raises(KeyError, match=r"\(2\.0, 2\.0, 3\.0\)"):
807
+ df.loc[(2.0, 2.0, 3.0)]
808
+
809
+
810
+ def test_get_loc_datetime_index():
811
+ # GH#24263
812
+ index = pd.date_range("2001-01-01", periods=100)
813
+ mi = MultiIndex.from_arrays([index])
814
+ # Check if get_loc matches for Index and MultiIndex
815
+ assert mi.get_loc("2001-01") == slice(0, 31, None)
816
+ assert index.get_loc("2001-01") == slice(0, 31, None)
817
+
818
+ loc = mi[::2].get_loc("2001-01")
819
+ expected = index[::2].get_loc("2001-01")
820
+ assert loc == expected
821
+
822
+ loc = mi.repeat(2).get_loc("2001-01")
823
+ expected = index.repeat(2).get_loc("2001-01")
824
+ assert loc == expected
825
+
826
+ loc = mi.append(mi).get_loc("2001-01")
827
+ expected = index.append(index).get_loc("2001-01")
828
+ # TODO: standardize return type for MultiIndex.get_loc
829
+ tm.assert_numpy_array_equal(loc.nonzero()[0], expected)
830
+
831
+
832
+ def test_loc_setitem_indexer_differently_ordered():
833
+ # GH#34603
834
+ mi = MultiIndex.from_product([["a", "b"], [0, 1]])
835
+ df = DataFrame([[1, 2], [3, 4], [5, 6], [7, 8]], index=mi)
836
+
837
+ indexer = ("a", [1, 0])
838
+ df.loc[indexer, :] = np.array([[9, 10], [11, 12]])
839
+ expected = DataFrame([[11, 12], [9, 10], [5, 6], [7, 8]], index=mi)
840
+ tm.assert_frame_equal(df, expected)
841
+
842
+
843
+ def test_loc_getitem_index_differently_ordered_slice_none():
844
+ # GH#31330
845
+ df = DataFrame(
846
+ [[1, 2], [3, 4], [5, 6], [7, 8]],
847
+ index=[["a", "a", "b", "b"], [1, 2, 1, 2]],
848
+ columns=["a", "b"],
849
+ )
850
+ result = df.loc[(slice(None), [2, 1]), :]
851
+ expected = DataFrame(
852
+ [[3, 4], [7, 8], [1, 2], [5, 6]],
853
+ index=[["a", "b", "a", "b"], [2, 2, 1, 1]],
854
+ columns=["a", "b"],
855
+ )
856
+ tm.assert_frame_equal(result, expected)
857
+
858
+
859
+ @pytest.mark.parametrize("indexer", [[1, 2, 7, 6, 2, 3, 8, 7], [1, 2, 7, 6, 3, 8]])
860
+ def test_loc_getitem_index_differently_ordered_slice_none_duplicates(indexer):
861
+ # GH#40978
862
+ df = DataFrame(
863
+ [1] * 8,
864
+ index=MultiIndex.from_tuples(
865
+ [(1, 1), (1, 2), (1, 7), (1, 6), (2, 2), (2, 3), (2, 8), (2, 7)]
866
+ ),
867
+ columns=["a"],
868
+ )
869
+ result = df.loc[(slice(None), indexer), :]
870
+ expected = DataFrame(
871
+ [1] * 8,
872
+ index=[[1, 1, 2, 1, 2, 1, 2, 2], [1, 2, 2, 7, 7, 6, 3, 8]],
873
+ columns=["a"],
874
+ )
875
+ tm.assert_frame_equal(result, expected)
876
+
877
+ result = df.loc[df.index.isin(indexer, level=1), :]
878
+ tm.assert_frame_equal(result, df)
879
+
880
+
881
+ def test_loc_getitem_drops_levels_for_one_row_dataframe():
882
+ # GH#10521 "x" and "z" are both scalar indexing, so those levels are dropped
883
+ mi = MultiIndex.from_arrays([["x"], ["y"], ["z"]], names=["a", "b", "c"])
884
+ df = DataFrame({"d": [0]}, index=mi)
885
+ expected = df.droplevel([0, 2])
886
+ result = df.loc["x", :, "z"]
887
+ tm.assert_frame_equal(result, expected)
888
+
889
+ ser = Series([0], index=mi)
890
+ result = ser.loc["x", :, "z"]
891
+ expected = Series([0], index=Index(["y"], name="b"))
892
+ tm.assert_series_equal(result, expected)
893
+
894
+
895
+ def test_mi_columns_loc_list_label_order():
896
+ # GH 10710
897
+ cols = MultiIndex.from_product([["A", "B", "C"], [1, 2]])
898
+ df = DataFrame(np.zeros((5, 6)), columns=cols)
899
+ result = df.loc[:, ["B", "A"]]
900
+ expected = DataFrame(
901
+ np.zeros((5, 4)),
902
+ columns=MultiIndex.from_tuples([("B", 1), ("B", 2), ("A", 1), ("A", 2)]),
903
+ )
904
+ tm.assert_frame_equal(result, expected)
905
+
906
+
907
+ def test_mi_partial_indexing_list_raises():
908
+ # GH 13501
909
+ frame = DataFrame(
910
+ np.arange(12).reshape((4, 3)),
911
+ index=[["a", "a", "b", "b"], [1, 2, 1, 2]],
912
+ columns=[["Ohio", "Ohio", "Colorado"], ["Green", "Red", "Green"]],
913
+ )
914
+ frame.index.names = ["key1", "key2"]
915
+ frame.columns.names = ["state", "color"]
916
+ with pytest.raises(KeyError, match="\\[2\\] not in index"):
917
+ frame.loc[["b", 2], "Colorado"]
918
+
919
+
920
+ def test_mi_indexing_list_nonexistent_raises():
921
+ # GH 15452
922
+ s = Series(range(4), index=MultiIndex.from_product([[1, 2], ["a", "b"]]))
923
+ with pytest.raises(KeyError, match="\\['not' 'found'\\] not in index"):
924
+ s.loc[["not", "found"]]
925
+
926
+
927
+ def test_mi_add_cell_missing_row_non_unique():
928
+ # GH 16018
929
+ result = DataFrame(
930
+ [[1, 2, 5, 6], [3, 4, 7, 8]],
931
+ index=["a", "a"],
932
+ columns=MultiIndex.from_product([[1, 2], ["A", "B"]]),
933
+ )
934
+ result.loc["c"] = -1
935
+ result.loc["c", (1, "A")] = 3
936
+ result.loc["d", (1, "A")] = 3
937
+ expected = DataFrame(
938
+ [
939
+ [1.0, 2.0, 5.0, 6.0],
940
+ [3.0, 4.0, 7.0, 8.0],
941
+ [3.0, -1.0, -1, -1],
942
+ [3.0, np.nan, np.nan, np.nan],
943
+ ],
944
+ index=["a", "a", "c", "d"],
945
+ columns=MultiIndex.from_product([[1, 2], ["A", "B"]]),
946
+ )
947
+ tm.assert_frame_equal(result, expected)
948
+
949
+
950
+ def test_loc_get_scalar_casting_to_float():
951
+ # GH#41369
952
+ df = DataFrame(
953
+ {"a": 1.0, "b": 2}, index=MultiIndex.from_arrays([[3], [4]], names=["c", "d"])
954
+ )
955
+ result = df.loc[(3, 4), "b"]
956
+ assert result == 2
957
+ assert isinstance(result, np.int64)
958
+ result = df.loc[[(3, 4)], "b"].iloc[0]
959
+ assert result == 2
960
+ assert isinstance(result, np.int64)
961
+
962
+
963
+ def test_loc_empty_single_selector_with_names():
964
+ # GH 19517
965
+ idx = MultiIndex.from_product([["a", "b"], ["A", "B"]], names=[1, 0])
966
+ s2 = Series(index=idx, dtype=np.float64)
967
+ result = s2.loc["a"]
968
+ expected = Series([np.nan, np.nan], index=Index(["A", "B"], name=0))
969
+ tm.assert_series_equal(result, expected)
970
+
971
+
972
+ def test_loc_keyerror_rightmost_key_missing():
973
+ # GH 20951
974
+
975
+ df = DataFrame(
976
+ {
977
+ "A": [100, 100, 200, 200, 300, 300],
978
+ "B": [10, 10, 20, 21, 31, 33],
979
+ "C": range(6),
980
+ }
981
+ )
982
+ df = df.set_index(["A", "B"])
983
+ with pytest.raises(KeyError, match="^1$"):
984
+ df.loc[(100, 1)]
985
+
986
+
987
+ def test_multindex_series_loc_with_tuple_label():
988
+ # GH#43908
989
+ mi = MultiIndex.from_tuples([(1, 2), (3, (4, 5))])
990
+ ser = Series([1, 2], index=mi)
991
+ result = ser.loc[(3, (4, 5))]
992
+ assert result == 2
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_multiindex.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas._libs.index as libindex
5
+ from pandas.errors import PerformanceWarning
6
+
7
+ import pandas as pd
8
+ from pandas import (
9
+ CategoricalDtype,
10
+ DataFrame,
11
+ Index,
12
+ MultiIndex,
13
+ Series,
14
+ )
15
+ import pandas._testing as tm
16
+ from pandas.core.arrays.boolean import BooleanDtype
17
+
18
+
19
+ class TestMultiIndexBasic:
20
+ def test_multiindex_perf_warn(self):
21
+ df = DataFrame(
22
+ {
23
+ "jim": [0, 0, 1, 1],
24
+ "joe": ["x", "x", "z", "y"],
25
+ "jolie": np.random.default_rng(2).random(4),
26
+ }
27
+ ).set_index(["jim", "joe"])
28
+
29
+ with tm.assert_produces_warning(PerformanceWarning):
30
+ df.loc[(1, "z")]
31
+
32
+ df = df.iloc[[2, 1, 3, 0]]
33
+ with tm.assert_produces_warning(PerformanceWarning):
34
+ df.loc[(0,)]
35
+
36
+ @pytest.mark.parametrize("offset", [-5, 5])
37
+ def test_indexing_over_hashtable_size_cutoff(self, monkeypatch, offset):
38
+ size_cutoff = 20
39
+ n = size_cutoff + offset
40
+
41
+ with monkeypatch.context():
42
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff)
43
+ s = Series(np.arange(n), MultiIndex.from_arrays((["a"] * n, np.arange(n))))
44
+
45
+ # hai it works!
46
+ assert s[("a", 5)] == 5
47
+ assert s[("a", 6)] == 6
48
+ assert s[("a", 7)] == 7
49
+
50
+ def test_multi_nan_indexing(self):
51
+ # GH 3588
52
+ df = DataFrame(
53
+ {
54
+ "a": ["R1", "R2", np.nan, "R4"],
55
+ "b": ["C1", "C2", "C3", "C4"],
56
+ "c": [10, 15, np.nan, 20],
57
+ }
58
+ )
59
+ result = df.set_index(["a", "b"], drop=False)
60
+ expected = DataFrame(
61
+ {
62
+ "a": ["R1", "R2", np.nan, "R4"],
63
+ "b": ["C1", "C2", "C3", "C4"],
64
+ "c": [10, 15, np.nan, 20],
65
+ },
66
+ index=[
67
+ Index(["R1", "R2", np.nan, "R4"], name="a"),
68
+ Index(["C1", "C2", "C3", "C4"], name="b"),
69
+ ],
70
+ )
71
+ tm.assert_frame_equal(result, expected)
72
+
73
+ def test_exclusive_nat_column_indexing(self):
74
+ # GH 38025
75
+ # test multi indexing when one column exclusively contains NaT values
76
+ df = DataFrame(
77
+ {
78
+ "a": [pd.NaT, pd.NaT, pd.NaT, pd.NaT],
79
+ "b": ["C1", "C2", "C3", "C4"],
80
+ "c": [10, 15, np.nan, 20],
81
+ }
82
+ )
83
+ df = df.set_index(["a", "b"])
84
+ expected = DataFrame(
85
+ {
86
+ "c": [10, 15, np.nan, 20],
87
+ },
88
+ index=[
89
+ Index([pd.NaT, pd.NaT, pd.NaT, pd.NaT], name="a"),
90
+ Index(["C1", "C2", "C3", "C4"], name="b"),
91
+ ],
92
+ )
93
+ tm.assert_frame_equal(df, expected)
94
+
95
+ def test_nested_tuples_duplicates(self):
96
+ # GH#30892
97
+
98
+ dti = pd.to_datetime(["20190101", "20190101", "20190102"])
99
+ idx = Index(["a", "a", "c"])
100
+ mi = MultiIndex.from_arrays([dti, idx], names=["index1", "index2"])
101
+
102
+ df = DataFrame({"c1": [1, 2, 3], "c2": [np.nan, np.nan, np.nan]}, index=mi)
103
+
104
+ expected = DataFrame({"c1": df["c1"], "c2": [1.0, 1.0, np.nan]}, index=mi)
105
+
106
+ df2 = df.copy(deep=True)
107
+ df2.loc[(dti[0], "a"), "c2"] = 1.0
108
+ tm.assert_frame_equal(df2, expected)
109
+
110
+ df3 = df.copy(deep=True)
111
+ df3.loc[[(dti[0], "a")], "c2"] = 1.0
112
+ tm.assert_frame_equal(df3, expected)
113
+
114
+ def test_multiindex_with_datatime_level_preserves_freq(self):
115
+ # https://github.com/pandas-dev/pandas/issues/35563
116
+ idx = Index(range(2), name="A")
117
+ dti = pd.date_range("2020-01-01", periods=7, freq="D", name="B")
118
+ mi = MultiIndex.from_product([idx, dti])
119
+ df = DataFrame(np.random.default_rng(2).standard_normal((14, 2)), index=mi)
120
+ result = df.loc[0].index
121
+ tm.assert_index_equal(result, dti)
122
+ assert result.freq == dti.freq
123
+
124
+ def test_multiindex_complex(self):
125
+ # GH#42145
126
+ complex_data = [1 + 2j, 4 - 3j, 10 - 1j]
127
+ non_complex_data = [3, 4, 5]
128
+ result = DataFrame(
129
+ {
130
+ "x": complex_data,
131
+ "y": non_complex_data,
132
+ "z": non_complex_data,
133
+ }
134
+ )
135
+ result.set_index(["x", "y"], inplace=True)
136
+ expected = DataFrame(
137
+ {"z": non_complex_data},
138
+ index=MultiIndex.from_arrays(
139
+ [complex_data, non_complex_data],
140
+ names=("x", "y"),
141
+ ),
142
+ )
143
+ tm.assert_frame_equal(result, expected)
144
+
145
+ def test_rename_multiindex_with_duplicates(self):
146
+ # GH 38015
147
+ mi = MultiIndex.from_tuples([("A", "cat"), ("B", "cat"), ("B", "cat")])
148
+ df = DataFrame(index=mi)
149
+ df = df.rename(index={"A": "Apple"}, level=0)
150
+
151
+ mi2 = MultiIndex.from_tuples([("Apple", "cat"), ("B", "cat"), ("B", "cat")])
152
+ expected = DataFrame(index=mi2)
153
+ tm.assert_frame_equal(df, expected)
154
+
155
+ def test_series_align_multiindex_with_nan_overlap_only(self):
156
+ # GH 38439
157
+ mi1 = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]])
158
+ mi2 = MultiIndex.from_arrays([[np.nan, 82.0], [np.nan, np.nan]])
159
+ ser1 = Series([1, 2], index=mi1)
160
+ ser2 = Series([1, 2], index=mi2)
161
+ result1, result2 = ser1.align(ser2)
162
+
163
+ mi = MultiIndex.from_arrays([[81.0, 82.0, np.nan], [np.nan, np.nan, np.nan]])
164
+ expected1 = Series([1.0, np.nan, 2.0], index=mi)
165
+ expected2 = Series([np.nan, 2.0, 1.0], index=mi)
166
+
167
+ tm.assert_series_equal(result1, expected1)
168
+ tm.assert_series_equal(result2, expected2)
169
+
170
+ def test_series_align_multiindex_with_nan(self):
171
+ # GH 38439
172
+ mi1 = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]])
173
+ mi2 = MultiIndex.from_arrays([[np.nan, 81.0], [np.nan, np.nan]])
174
+ ser1 = Series([1, 2], index=mi1)
175
+ ser2 = Series([1, 2], index=mi2)
176
+ result1, result2 = ser1.align(ser2)
177
+
178
+ mi = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]])
179
+ expected1 = Series([1, 2], index=mi)
180
+ expected2 = Series([2, 1], index=mi)
181
+
182
+ tm.assert_series_equal(result1, expected1)
183
+ tm.assert_series_equal(result2, expected2)
184
+
185
+ def test_nunique_smoke(self):
186
+ # GH 34019
187
+ n = DataFrame([[1, 2], [1, 2]]).set_index([0, 1]).index.nunique()
188
+ assert n == 1
189
+
190
+ def test_multiindex_repeated_keys(self):
191
+ # GH19414
192
+ tm.assert_series_equal(
193
+ Series([1, 2], MultiIndex.from_arrays([["a", "b"]])).loc[
194
+ ["a", "a", "b", "b"]
195
+ ],
196
+ Series([1, 1, 2, 2], MultiIndex.from_arrays([["a", "a", "b", "b"]])),
197
+ )
198
+
199
+ def test_multiindex_with_na_missing_key(self):
200
+ # GH46173
201
+ df = DataFrame.from_dict(
202
+ {
203
+ ("foo",): [1, 2, 3],
204
+ ("bar",): [5, 6, 7],
205
+ (None,): [8, 9, 0],
206
+ }
207
+ )
208
+ with pytest.raises(KeyError, match="missing_key"):
209
+ df[[("missing_key",)]]
210
+
211
+ def test_multiindex_dtype_preservation(self):
212
+ # GH51261
213
+ columns = MultiIndex.from_tuples([("A", "B")], names=["lvl1", "lvl2"])
214
+ df = DataFrame(["value"], columns=columns).astype("category")
215
+ df_no_multiindex = df["A"]
216
+ assert isinstance(df_no_multiindex["B"].dtype, CategoricalDtype)
217
+
218
+ # geopandas 1763 analogue
219
+ df = DataFrame(
220
+ [[1, 0], [0, 1]],
221
+ columns=[
222
+ ["foo", "foo"],
223
+ ["location", "location"],
224
+ ["x", "y"],
225
+ ],
226
+ ).assign(bools=Series([True, False], dtype="boolean"))
227
+ assert isinstance(df["bools"].dtype, BooleanDtype)
228
+
229
+ def test_multiindex_from_tuples_with_nan(self):
230
+ # GH#23578
231
+ result = MultiIndex.from_tuples([("a", "b", "c"), np.nan, ("d", "", "")])
232
+ expected = MultiIndex.from_tuples(
233
+ [("a", "b", "c"), (np.nan, np.nan, np.nan), ("d", "", "")]
234
+ )
235
+ tm.assert_index_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_partial.py ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas.util._test_decorators as td
5
+
6
+ from pandas import (
7
+ DataFrame,
8
+ DatetimeIndex,
9
+ MultiIndex,
10
+ date_range,
11
+ )
12
+ import pandas._testing as tm
13
+
14
+
15
+ class TestMultiIndexPartial:
16
+ def test_getitem_partial_int(self):
17
+ # GH 12416
18
+ # with single item
19
+ l1 = [10, 20]
20
+ l2 = ["a", "b"]
21
+ df = DataFrame(index=range(2), columns=MultiIndex.from_product([l1, l2]))
22
+ expected = DataFrame(index=range(2), columns=l2)
23
+ result = df[20]
24
+ tm.assert_frame_equal(result, expected)
25
+
26
+ # with list
27
+ expected = DataFrame(
28
+ index=range(2), columns=MultiIndex.from_product([l1[1:], l2])
29
+ )
30
+ result = df[[20]]
31
+ tm.assert_frame_equal(result, expected)
32
+
33
+ # missing item:
34
+ with pytest.raises(KeyError, match="1"):
35
+ df[1]
36
+ with pytest.raises(KeyError, match=r"'\[1\] not in index'"):
37
+ df[[1]]
38
+
39
+ def test_series_slice_partial(self):
40
+ pass
41
+
42
+ def test_xs_partial(
43
+ self,
44
+ multiindex_dataframe_random_data,
45
+ multiindex_year_month_day_dataframe_random_data,
46
+ ):
47
+ frame = multiindex_dataframe_random_data
48
+ ymd = multiindex_year_month_day_dataframe_random_data
49
+ result = frame.xs("foo")
50
+ result2 = frame.loc["foo"]
51
+ expected = frame.T["foo"].T
52
+ tm.assert_frame_equal(result, expected)
53
+ tm.assert_frame_equal(result, result2)
54
+
55
+ result = ymd.xs((2000, 4))
56
+ expected = ymd.loc[2000, 4]
57
+ tm.assert_frame_equal(result, expected)
58
+
59
+ # ex from #1796
60
+ index = MultiIndex(
61
+ levels=[["foo", "bar"], ["one", "two"], [-1, 1]],
62
+ codes=[
63
+ [0, 0, 0, 0, 1, 1, 1, 1],
64
+ [0, 0, 1, 1, 0, 0, 1, 1],
65
+ [0, 1, 0, 1, 0, 1, 0, 1],
66
+ ],
67
+ )
68
+ df = DataFrame(
69
+ np.random.default_rng(2).standard_normal((8, 4)),
70
+ index=index,
71
+ columns=list("abcd"),
72
+ )
73
+
74
+ result = df.xs(("foo", "one"))
75
+ expected = df.loc["foo", "one"]
76
+ tm.assert_frame_equal(result, expected)
77
+
78
+ def test_getitem_partial(self, multiindex_year_month_day_dataframe_random_data):
79
+ ymd = multiindex_year_month_day_dataframe_random_data
80
+ ymd = ymd.T
81
+ result = ymd[2000, 2]
82
+
83
+ expected = ymd.reindex(columns=ymd.columns[ymd.columns.codes[1] == 1])
84
+ expected.columns = expected.columns.droplevel(0).droplevel(0)
85
+ tm.assert_frame_equal(result, expected)
86
+
87
+ def test_fancy_slice_partial(
88
+ self,
89
+ multiindex_dataframe_random_data,
90
+ multiindex_year_month_day_dataframe_random_data,
91
+ ):
92
+ frame = multiindex_dataframe_random_data
93
+ result = frame.loc["bar":"baz"]
94
+ expected = frame[3:7]
95
+ tm.assert_frame_equal(result, expected)
96
+
97
+ ymd = multiindex_year_month_day_dataframe_random_data
98
+ result = ymd.loc[(2000, 2):(2000, 4)]
99
+ lev = ymd.index.codes[1]
100
+ expected = ymd[(lev >= 1) & (lev <= 3)]
101
+ tm.assert_frame_equal(result, expected)
102
+
103
+ def test_getitem_partial_column_select(self):
104
+ idx = MultiIndex(
105
+ codes=[[0, 0, 0], [0, 1, 1], [1, 0, 1]],
106
+ levels=[["a", "b"], ["x", "y"], ["p", "q"]],
107
+ )
108
+ df = DataFrame(np.random.default_rng(2).random((3, 2)), index=idx)
109
+
110
+ result = df.loc[("a", "y"), :]
111
+ expected = df.loc[("a", "y")]
112
+ tm.assert_frame_equal(result, expected)
113
+
114
+ result = df.loc[("a", "y"), [1, 0]]
115
+ expected = df.loc[("a", "y")][[1, 0]]
116
+ tm.assert_frame_equal(result, expected)
117
+
118
+ with pytest.raises(KeyError, match=r"\('a', 'foo'\)"):
119
+ df.loc[("a", "foo"), :]
120
+
121
+ # TODO(ArrayManager) rewrite test to not use .values
122
+ # exp.loc[2000, 4].values[:] select multiple columns -> .values is not a view
123
+ @td.skip_array_manager_invalid_test
124
+ def test_partial_set(
125
+ self,
126
+ multiindex_year_month_day_dataframe_random_data,
127
+ using_copy_on_write,
128
+ warn_copy_on_write,
129
+ ):
130
+ # GH #397
131
+ ymd = multiindex_year_month_day_dataframe_random_data
132
+ df = ymd.copy()
133
+ exp = ymd.copy()
134
+ df.loc[2000, 4] = 0
135
+ exp.iloc[65:85] = 0
136
+ tm.assert_frame_equal(df, exp)
137
+
138
+ if using_copy_on_write:
139
+ with tm.raises_chained_assignment_error():
140
+ df["A"].loc[2000, 4] = 1
141
+ df.loc[(2000, 4), "A"] = 1
142
+ else:
143
+ with tm.raises_chained_assignment_error():
144
+ df["A"].loc[2000, 4] = 1
145
+ exp.iloc[65:85, 0] = 1
146
+ tm.assert_frame_equal(df, exp)
147
+
148
+ df.loc[2000] = 5
149
+ exp.iloc[:100] = 5
150
+ tm.assert_frame_equal(df, exp)
151
+
152
+ # this works...for now
153
+ with tm.raises_chained_assignment_error():
154
+ df["A"].iloc[14] = 5
155
+ if using_copy_on_write:
156
+ assert df["A"].iloc[14] == exp["A"].iloc[14]
157
+ else:
158
+ assert df["A"].iloc[14] == 5
159
+
160
+ @pytest.mark.parametrize("dtype", [int, float])
161
+ def test_getitem_intkey_leading_level(
162
+ self, multiindex_year_month_day_dataframe_random_data, dtype
163
+ ):
164
+ # GH#33355 dont fall-back to positional when leading level is int
165
+ ymd = multiindex_year_month_day_dataframe_random_data
166
+ levels = ymd.index.levels
167
+ ymd.index = ymd.index.set_levels([levels[0].astype(dtype)] + levels[1:])
168
+ ser = ymd["A"]
169
+ mi = ser.index
170
+ assert isinstance(mi, MultiIndex)
171
+ if dtype is int:
172
+ assert mi.levels[0].dtype == np.dtype(int)
173
+ else:
174
+ assert mi.levels[0].dtype == np.float64
175
+
176
+ assert 14 not in mi.levels[0]
177
+ assert not mi.levels[0]._should_fallback_to_positional
178
+ assert not mi._should_fallback_to_positional
179
+
180
+ with pytest.raises(KeyError, match="14"):
181
+ ser[14]
182
+
183
+ # ---------------------------------------------------------------------
184
+
185
+ def test_setitem_multiple_partial(self, multiindex_dataframe_random_data):
186
+ frame = multiindex_dataframe_random_data
187
+ expected = frame.copy()
188
+ result = frame.copy()
189
+ result.loc[["foo", "bar"]] = 0
190
+ expected.loc["foo"] = 0
191
+ expected.loc["bar"] = 0
192
+ tm.assert_frame_equal(result, expected)
193
+
194
+ expected = frame.copy()
195
+ result = frame.copy()
196
+ result.loc["foo":"bar"] = 0
197
+ expected.loc["foo"] = 0
198
+ expected.loc["bar"] = 0
199
+ tm.assert_frame_equal(result, expected)
200
+
201
+ expected = frame["A"].copy()
202
+ result = frame["A"].copy()
203
+ result.loc[["foo", "bar"]] = 0
204
+ expected.loc["foo"] = 0
205
+ expected.loc["bar"] = 0
206
+ tm.assert_series_equal(result, expected)
207
+
208
+ expected = frame["A"].copy()
209
+ result = frame["A"].copy()
210
+ result.loc["foo":"bar"] = 0
211
+ expected.loc["foo"] = 0
212
+ expected.loc["bar"] = 0
213
+ tm.assert_series_equal(result, expected)
214
+
215
+ @pytest.mark.parametrize(
216
+ "indexer, exp_idx, exp_values",
217
+ [
218
+ (
219
+ slice("2019-2", None),
220
+ DatetimeIndex(["2019-02-01"], dtype="M8[ns]"),
221
+ [2, 3],
222
+ ),
223
+ (
224
+ slice(None, "2019-2"),
225
+ date_range("2019", periods=2, freq="MS"),
226
+ [0, 1, 2, 3],
227
+ ),
228
+ ],
229
+ )
230
+ def test_partial_getitem_loc_datetime(self, indexer, exp_idx, exp_values):
231
+ # GH: 25165
232
+ date_idx = date_range("2019", periods=2, freq="MS")
233
+ df = DataFrame(
234
+ list(range(4)),
235
+ index=MultiIndex.from_product([date_idx, [0, 1]], names=["x", "y"]),
236
+ )
237
+ expected = DataFrame(
238
+ exp_values,
239
+ index=MultiIndex.from_product([exp_idx, [0, 1]], names=["x", "y"]),
240
+ )
241
+ result = df[indexer]
242
+ tm.assert_frame_equal(result, expected)
243
+ result = df.loc[indexer]
244
+ tm.assert_frame_equal(result, expected)
245
+
246
+ result = df.loc(axis=0)[indexer]
247
+ tm.assert_frame_equal(result, expected)
248
+
249
+ result = df.loc[indexer, :]
250
+ tm.assert_frame_equal(result, expected)
251
+
252
+ df2 = df.swaplevel(0, 1).sort_index()
253
+ expected = expected.swaplevel(0, 1).sort_index()
254
+
255
+ result = df2.loc[:, indexer, :]
256
+ tm.assert_frame_equal(result, expected)
257
+
258
+
259
+ def test_loc_getitem_partial_both_axis():
260
+ # gh-12660
261
+ iterables = [["a", "b"], [2, 1]]
262
+ columns = MultiIndex.from_product(iterables, names=["col1", "col2"])
263
+ rows = MultiIndex.from_product(iterables, names=["row1", "row2"])
264
+ df = DataFrame(
265
+ np.random.default_rng(2).standard_normal((4, 4)), index=rows, columns=columns
266
+ )
267
+ expected = df.iloc[:2, 2:].droplevel("row1").droplevel("col1", axis=1)
268
+ result = df.loc["a", "b"]
269
+ tm.assert_frame_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_setitem.py ADDED
@@ -0,0 +1,589 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.errors import SettingWithCopyError
5
+ import pandas.util._test_decorators as td
6
+
7
+ import pandas as pd
8
+ from pandas import (
9
+ DataFrame,
10
+ MultiIndex,
11
+ Series,
12
+ date_range,
13
+ isna,
14
+ notna,
15
+ )
16
+ import pandas._testing as tm
17
+
18
+
19
+ def assert_equal(a, b):
20
+ assert a == b
21
+
22
+
23
+ class TestMultiIndexSetItem:
24
+ def check(self, target, indexers, value, compare_fn=assert_equal, expected=None):
25
+ target.loc[indexers] = value
26
+ result = target.loc[indexers]
27
+ if expected is None:
28
+ expected = value
29
+ compare_fn(result, expected)
30
+
31
+ def test_setitem_multiindex(self):
32
+ # GH#7190
33
+ cols = ["A", "w", "l", "a", "x", "X", "d", "profit"]
34
+ index = MultiIndex.from_product(
35
+ [np.arange(0, 100), np.arange(0, 80)], names=["time", "firm"]
36
+ )
37
+ t, n = 0, 2
38
+
39
+ df = DataFrame(
40
+ np.nan,
41
+ columns=cols,
42
+ index=index,
43
+ )
44
+ self.check(target=df, indexers=((t, n), "X"), value=0)
45
+
46
+ df = DataFrame(-999, columns=cols, index=index)
47
+ self.check(target=df, indexers=((t, n), "X"), value=1)
48
+
49
+ df = DataFrame(columns=cols, index=index)
50
+ self.check(target=df, indexers=((t, n), "X"), value=2)
51
+
52
+ # gh-7218: assigning with 0-dim arrays
53
+ df = DataFrame(-999, columns=cols, index=index)
54
+ self.check(
55
+ target=df,
56
+ indexers=((t, n), "X"),
57
+ value=np.array(3),
58
+ expected=3,
59
+ )
60
+
61
+ def test_setitem_multiindex2(self):
62
+ # GH#5206
63
+ df = DataFrame(
64
+ np.arange(25).reshape(5, 5), columns="A,B,C,D,E".split(","), dtype=float
65
+ )
66
+ df["F"] = 99
67
+ row_selection = df["A"] % 2 == 0
68
+ col_selection = ["B", "C"]
69
+ df.loc[row_selection, col_selection] = df["F"]
70
+ output = DataFrame(99.0, index=[0, 2, 4], columns=["B", "C"])
71
+ tm.assert_frame_equal(df.loc[row_selection, col_selection], output)
72
+ self.check(
73
+ target=df,
74
+ indexers=(row_selection, col_selection),
75
+ value=df["F"],
76
+ compare_fn=tm.assert_frame_equal,
77
+ expected=output,
78
+ )
79
+
80
+ def test_setitem_multiindex3(self):
81
+ # GH#11372
82
+ idx = MultiIndex.from_product(
83
+ [["A", "B", "C"], date_range("2015-01-01", "2015-04-01", freq="MS")]
84
+ )
85
+ cols = MultiIndex.from_product(
86
+ [["foo", "bar"], date_range("2016-01-01", "2016-02-01", freq="MS")]
87
+ )
88
+
89
+ df = DataFrame(
90
+ np.random.default_rng(2).random((12, 4)), index=idx, columns=cols
91
+ )
92
+
93
+ subidx = MultiIndex.from_arrays(
94
+ [["A", "A"], date_range("2015-01-01", "2015-02-01", freq="MS")]
95
+ )
96
+ subcols = MultiIndex.from_arrays(
97
+ [["foo", "foo"], date_range("2016-01-01", "2016-02-01", freq="MS")]
98
+ )
99
+
100
+ vals = DataFrame(
101
+ np.random.default_rng(2).random((2, 2)), index=subidx, columns=subcols
102
+ )
103
+ self.check(
104
+ target=df,
105
+ indexers=(subidx, subcols),
106
+ value=vals,
107
+ compare_fn=tm.assert_frame_equal,
108
+ )
109
+ # set all columns
110
+ vals = DataFrame(
111
+ np.random.default_rng(2).random((2, 4)), index=subidx, columns=cols
112
+ )
113
+ self.check(
114
+ target=df,
115
+ indexers=(subidx, slice(None, None, None)),
116
+ value=vals,
117
+ compare_fn=tm.assert_frame_equal,
118
+ )
119
+ # identity
120
+ copy = df.copy()
121
+ self.check(
122
+ target=df,
123
+ indexers=(df.index, df.columns),
124
+ value=df,
125
+ compare_fn=tm.assert_frame_equal,
126
+ expected=copy,
127
+ )
128
+
129
+ # TODO(ArrayManager) df.loc["bar"] *= 2 doesn't raise an error but results in
130
+ # all NaNs -> doesn't work in the "split" path (also for BlockManager actually)
131
+ @td.skip_array_manager_not_yet_implemented
132
+ def test_multiindex_setitem(self):
133
+ # GH 3738
134
+ # setting with a multi-index right hand side
135
+ arrays = [
136
+ np.array(["bar", "bar", "baz", "qux", "qux", "bar"]),
137
+ np.array(["one", "two", "one", "one", "two", "one"]),
138
+ np.arange(0, 6, 1),
139
+ ]
140
+
141
+ df_orig = DataFrame(
142
+ np.random.default_rng(2).standard_normal((6, 3)),
143
+ index=arrays,
144
+ columns=["A", "B", "C"],
145
+ ).sort_index()
146
+
147
+ expected = df_orig.loc[["bar"]] * 2
148
+ df = df_orig.copy()
149
+ df.loc[["bar"]] *= 2
150
+ tm.assert_frame_equal(df.loc[["bar"]], expected)
151
+
152
+ # raise because these have differing levels
153
+ msg = "cannot align on a multi-index with out specifying the join levels"
154
+ with pytest.raises(TypeError, match=msg):
155
+ df.loc["bar"] *= 2
156
+
157
+ def test_multiindex_setitem2(self):
158
+ # from SO
159
+ # https://stackoverflow.com/questions/24572040/pandas-access-the-level-of-multiindex-for-inplace-operation
160
+ df_orig = DataFrame.from_dict(
161
+ {
162
+ "price": {
163
+ ("DE", "Coal", "Stock"): 2,
164
+ ("DE", "Gas", "Stock"): 4,
165
+ ("DE", "Elec", "Demand"): 1,
166
+ ("FR", "Gas", "Stock"): 5,
167
+ ("FR", "Solar", "SupIm"): 0,
168
+ ("FR", "Wind", "SupIm"): 0,
169
+ }
170
+ }
171
+ )
172
+ df_orig.index = MultiIndex.from_tuples(
173
+ df_orig.index, names=["Sit", "Com", "Type"]
174
+ )
175
+
176
+ expected = df_orig.copy()
177
+ expected.iloc[[0, 1, 3]] *= 2
178
+
179
+ idx = pd.IndexSlice
180
+ df = df_orig.copy()
181
+ df.loc[idx[:, :, "Stock"], :] *= 2
182
+ tm.assert_frame_equal(df, expected)
183
+
184
+ df = df_orig.copy()
185
+ df.loc[idx[:, :, "Stock"], "price"] *= 2
186
+ tm.assert_frame_equal(df, expected)
187
+
188
+ def test_multiindex_assignment(self):
189
+ # GH3777 part 2
190
+
191
+ # mixed dtype
192
+ df = DataFrame(
193
+ np.random.default_rng(2).integers(5, 10, size=9).reshape(3, 3),
194
+ columns=list("abc"),
195
+ index=[[4, 4, 8], [8, 10, 12]],
196
+ )
197
+ df["d"] = np.nan
198
+ arr = np.array([0.0, 1.0])
199
+
200
+ df.loc[4, "d"] = arr
201
+ tm.assert_series_equal(df.loc[4, "d"], Series(arr, index=[8, 10], name="d"))
202
+
203
+ def test_multiindex_assignment_single_dtype(
204
+ self, using_copy_on_write, warn_copy_on_write
205
+ ):
206
+ # GH3777 part 2b
207
+ # single dtype
208
+ arr = np.array([0.0, 1.0])
209
+
210
+ df = DataFrame(
211
+ np.random.default_rng(2).integers(5, 10, size=9).reshape(3, 3),
212
+ columns=list("abc"),
213
+ index=[[4, 4, 8], [8, 10, 12]],
214
+ dtype=np.int64,
215
+ )
216
+ view = df["c"].iloc[:2].values
217
+
218
+ # arr can be losslessly cast to int, so this setitem is inplace
219
+ # INFO(CoW-warn) this does not warn because we directly took .values
220
+ # above, so no reference to a pandas object is alive for `view`
221
+ df.loc[4, "c"] = arr
222
+ exp = Series(arr, index=[8, 10], name="c", dtype="int64")
223
+ result = df.loc[4, "c"]
224
+ tm.assert_series_equal(result, exp)
225
+
226
+ # extra check for inplace-ness
227
+ if not using_copy_on_write:
228
+ tm.assert_numpy_array_equal(view, exp.values)
229
+
230
+ # arr + 0.5 cannot be cast losslessly to int, so we upcast
231
+ with tm.assert_produces_warning(
232
+ FutureWarning, match="item of incompatible dtype"
233
+ ):
234
+ df.loc[4, "c"] = arr + 0.5
235
+ result = df.loc[4, "c"]
236
+ exp = exp + 0.5
237
+ tm.assert_series_equal(result, exp)
238
+
239
+ # scalar ok
240
+ with tm.assert_cow_warning(warn_copy_on_write):
241
+ df.loc[4, "c"] = 10
242
+ exp = Series(10, index=[8, 10], name="c", dtype="float64")
243
+ tm.assert_series_equal(df.loc[4, "c"], exp)
244
+
245
+ # invalid assignments
246
+ msg = "Must have equal len keys and value when setting with an iterable"
247
+ with pytest.raises(ValueError, match=msg):
248
+ df.loc[4, "c"] = [0, 1, 2, 3]
249
+
250
+ with pytest.raises(ValueError, match=msg):
251
+ df.loc[4, "c"] = [0]
252
+
253
+ # But with a length-1 listlike column indexer this behaves like
254
+ # `df.loc[4, "c"] = 0
255
+ with tm.assert_cow_warning(warn_copy_on_write):
256
+ df.loc[4, ["c"]] = [0]
257
+ assert (df.loc[4, "c"] == 0).all()
258
+
259
+ def test_groupby_example(self):
260
+ # groupby example
261
+ NUM_ROWS = 100
262
+ NUM_COLS = 10
263
+ col_names = ["A" + num for num in map(str, np.arange(NUM_COLS).tolist())]
264
+ index_cols = col_names[:5]
265
+
266
+ df = DataFrame(
267
+ np.random.default_rng(2).integers(5, size=(NUM_ROWS, NUM_COLS)),
268
+ dtype=np.int64,
269
+ columns=col_names,
270
+ )
271
+ df = df.set_index(index_cols).sort_index()
272
+ grp = df.groupby(level=index_cols[:4])
273
+ df["new_col"] = np.nan
274
+
275
+ # we are actually operating on a copy here
276
+ # but in this case, that's ok
277
+ for name, df2 in grp:
278
+ new_vals = np.arange(df2.shape[0])
279
+ df.loc[name, "new_col"] = new_vals
280
+
281
+ def test_series_setitem(
282
+ self, multiindex_year_month_day_dataframe_random_data, warn_copy_on_write
283
+ ):
284
+ ymd = multiindex_year_month_day_dataframe_random_data
285
+ s = ymd["A"]
286
+
287
+ with tm.assert_cow_warning(warn_copy_on_write):
288
+ s[2000, 3] = np.nan
289
+ assert isna(s.values[42:65]).all()
290
+ assert notna(s.values[:42]).all()
291
+ assert notna(s.values[65:]).all()
292
+
293
+ with tm.assert_cow_warning(warn_copy_on_write):
294
+ s[2000, 3, 10] = np.nan
295
+ assert isna(s.iloc[49])
296
+
297
+ with pytest.raises(KeyError, match="49"):
298
+ # GH#33355 dont fall-back to positional when leading level is int
299
+ s[49]
300
+
301
+ def test_frame_getitem_setitem_boolean(self, multiindex_dataframe_random_data):
302
+ frame = multiindex_dataframe_random_data
303
+ df = frame.T.copy()
304
+ values = df.values.copy()
305
+
306
+ result = df[df > 0]
307
+ expected = df.where(df > 0)
308
+ tm.assert_frame_equal(result, expected)
309
+
310
+ df[df > 0] = 5
311
+ values[values > 0] = 5
312
+ tm.assert_almost_equal(df.values, values)
313
+
314
+ df[df == 5] = 0
315
+ values[values == 5] = 0
316
+ tm.assert_almost_equal(df.values, values)
317
+
318
+ # a df that needs alignment first
319
+ df[df[:-1] < 0] = 2
320
+ np.putmask(values[:-1], values[:-1] < 0, 2)
321
+ tm.assert_almost_equal(df.values, values)
322
+
323
+ with pytest.raises(TypeError, match="boolean values only"):
324
+ df[df * 0] = 2
325
+
326
+ def test_frame_getitem_setitem_multislice(self):
327
+ levels = [["t1", "t2"], ["a", "b", "c"]]
328
+ codes = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]]
329
+ midx = MultiIndex(codes=codes, levels=levels, names=[None, "id"])
330
+ df = DataFrame({"value": [1, 2, 3, 7, 8]}, index=midx)
331
+
332
+ result = df.loc[:, "value"]
333
+ tm.assert_series_equal(df["value"], result)
334
+
335
+ result = df.loc[df.index[1:3], "value"]
336
+ tm.assert_series_equal(df["value"][1:3], result)
337
+
338
+ result = df.loc[:, :]
339
+ tm.assert_frame_equal(df, result)
340
+
341
+ result = df
342
+ df.loc[:, "value"] = 10
343
+ result["value"] = 10
344
+ tm.assert_frame_equal(df, result)
345
+
346
+ df.loc[:, :] = 10
347
+ tm.assert_frame_equal(df, result)
348
+
349
+ def test_frame_setitem_multi_column(self):
350
+ df = DataFrame(
351
+ np.random.default_rng(2).standard_normal((10, 4)),
352
+ columns=[["a", "a", "b", "b"], [0, 1, 0, 1]],
353
+ )
354
+
355
+ cp = df.copy()
356
+ cp["a"] = cp["b"]
357
+ tm.assert_frame_equal(cp["a"], cp["b"])
358
+
359
+ # set with ndarray
360
+ cp = df.copy()
361
+ cp["a"] = cp["b"].values
362
+ tm.assert_frame_equal(cp["a"], cp["b"])
363
+
364
+ def test_frame_setitem_multi_column2(self):
365
+ # ---------------------------------------
366
+ # GH#1803
367
+ columns = MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")])
368
+ df = DataFrame(index=[1, 3, 5], columns=columns)
369
+
370
+ # Works, but adds a column instead of updating the two existing ones
371
+ df["A"] = 0.0 # Doesn't work
372
+ assert (df["A"].values == 0).all()
373
+
374
+ # it broadcasts
375
+ df["B", "1"] = [1, 2, 3]
376
+ df["A"] = df["B", "1"]
377
+
378
+ sliced_a1 = df["A", "1"]
379
+ sliced_a2 = df["A", "2"]
380
+ sliced_b1 = df["B", "1"]
381
+ tm.assert_series_equal(sliced_a1, sliced_b1, check_names=False)
382
+ tm.assert_series_equal(sliced_a2, sliced_b1, check_names=False)
383
+ assert sliced_a1.name == ("A", "1")
384
+ assert sliced_a2.name == ("A", "2")
385
+ assert sliced_b1.name == ("B", "1")
386
+
387
+ def test_loc_getitem_tuple_plus_columns(
388
+ self, multiindex_year_month_day_dataframe_random_data
389
+ ):
390
+ # GH #1013
391
+ ymd = multiindex_year_month_day_dataframe_random_data
392
+ df = ymd[:5]
393
+
394
+ result = df.loc[(2000, 1, 6), ["A", "B", "C"]]
395
+ expected = df.loc[2000, 1, 6][["A", "B", "C"]]
396
+ tm.assert_series_equal(result, expected)
397
+
398
+ @pytest.mark.filterwarnings("ignore:Setting a value on a view:FutureWarning")
399
+ def test_loc_getitem_setitem_slice_integers(self, frame_or_series):
400
+ index = MultiIndex(
401
+ levels=[[0, 1, 2], [0, 2]], codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]
402
+ )
403
+
404
+ obj = DataFrame(
405
+ np.random.default_rng(2).standard_normal((len(index), 4)),
406
+ index=index,
407
+ columns=["a", "b", "c", "d"],
408
+ )
409
+ obj = tm.get_obj(obj, frame_or_series)
410
+
411
+ res = obj.loc[1:2]
412
+ exp = obj.reindex(obj.index[2:])
413
+ tm.assert_equal(res, exp)
414
+
415
+ obj.loc[1:2] = 7
416
+ assert (obj.loc[1:2] == 7).values.all()
417
+
418
+ def test_setitem_change_dtype(self, multiindex_dataframe_random_data):
419
+ frame = multiindex_dataframe_random_data
420
+ dft = frame.T
421
+ s = dft["foo", "two"]
422
+ dft["foo", "two"] = s > s.median()
423
+ tm.assert_series_equal(dft["foo", "two"], s > s.median())
424
+ # assert isinstance(dft._data.blocks[1].items, MultiIndex)
425
+
426
+ reindexed = dft.reindex(columns=[("foo", "two")])
427
+ tm.assert_series_equal(reindexed["foo", "two"], s > s.median())
428
+
429
+ def test_set_column_scalar_with_loc(
430
+ self, multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write
431
+ ):
432
+ frame = multiindex_dataframe_random_data
433
+ subset = frame.index[[1, 4, 5]]
434
+
435
+ frame.loc[subset] = 99
436
+ assert (frame.loc[subset].values == 99).all()
437
+
438
+ frame_original = frame.copy()
439
+ col = frame["B"]
440
+ with tm.assert_cow_warning(warn_copy_on_write):
441
+ col[subset] = 97
442
+ if using_copy_on_write:
443
+ # chained setitem doesn't work with CoW
444
+ tm.assert_frame_equal(frame, frame_original)
445
+ else:
446
+ assert (frame.loc[subset, "B"] == 97).all()
447
+
448
+ def test_nonunique_assignment_1750(self):
449
+ df = DataFrame(
450
+ [[1, 1, "x", "X"], [1, 1, "y", "Y"], [1, 2, "z", "Z"]], columns=list("ABCD")
451
+ )
452
+
453
+ df = df.set_index(["A", "B"])
454
+ mi = MultiIndex.from_tuples([(1, 1)])
455
+
456
+ df.loc[mi, "C"] = "_"
457
+
458
+ assert (df.xs((1, 1))["C"] == "_").all()
459
+
460
+ def test_astype_assignment_with_dups(self):
461
+ # GH 4686
462
+ # assignment with dups that has a dtype change
463
+ cols = MultiIndex.from_tuples([("A", "1"), ("B", "1"), ("A", "2")])
464
+ df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object)
465
+ index = df.index.copy()
466
+
467
+ df["A"] = df["A"].astype(np.float64)
468
+ tm.assert_index_equal(df.index, index)
469
+
470
+ def test_setitem_nonmonotonic(self):
471
+ # https://github.com/pandas-dev/pandas/issues/31449
472
+ index = MultiIndex.from_tuples(
473
+ [("a", "c"), ("b", "x"), ("a", "d")], names=["l1", "l2"]
474
+ )
475
+ df = DataFrame(data=[0, 1, 2], index=index, columns=["e"])
476
+ df.loc["a", "e"] = np.arange(99, 101, dtype="int64")
477
+ expected = DataFrame({"e": [99, 1, 100]}, index=index)
478
+ tm.assert_frame_equal(df, expected)
479
+
480
+
481
+ class TestSetitemWithExpansionMultiIndex:
482
+ def test_setitem_new_column_mixed_depth(self):
483
+ arrays = [
484
+ ["a", "top", "top", "routine1", "routine1", "routine2"],
485
+ ["", "OD", "OD", "result1", "result2", "result1"],
486
+ ["", "wx", "wy", "", "", ""],
487
+ ]
488
+
489
+ tuples = sorted(zip(*arrays))
490
+ index = MultiIndex.from_tuples(tuples)
491
+ df = DataFrame(np.random.default_rng(2).standard_normal((4, 6)), columns=index)
492
+
493
+ result = df.copy()
494
+ expected = df.copy()
495
+ result["b"] = [1, 2, 3, 4]
496
+ expected["b", "", ""] = [1, 2, 3, 4]
497
+ tm.assert_frame_equal(result, expected)
498
+
499
+ def test_setitem_new_column_all_na(self):
500
+ # GH#1534
501
+ mix = MultiIndex.from_tuples([("1a", "2a"), ("1a", "2b"), ("1a", "2c")])
502
+ df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mix)
503
+ s = Series({(1, 1): 1, (1, 2): 2})
504
+ df["new"] = s
505
+ assert df["new"].isna().all()
506
+
507
+ def test_setitem_enlargement_keep_index_names(self):
508
+ # GH#53053
509
+ mi = MultiIndex.from_tuples([(1, 2, 3)], names=["i1", "i2", "i3"])
510
+ df = DataFrame(data=[[10, 20, 30]], index=mi, columns=["A", "B", "C"])
511
+ df.loc[(0, 0, 0)] = df.loc[(1, 2, 3)]
512
+ mi_expected = MultiIndex.from_tuples(
513
+ [(1, 2, 3), (0, 0, 0)], names=["i1", "i2", "i3"]
514
+ )
515
+ expected = DataFrame(
516
+ data=[[10, 20, 30], [10, 20, 30]],
517
+ index=mi_expected,
518
+ columns=["A", "B", "C"],
519
+ )
520
+ tm.assert_frame_equal(df, expected)
521
+
522
+
523
+ @td.skip_array_manager_invalid_test # df["foo"] select multiple columns -> .values
524
+ # is not a view
525
+ def test_frame_setitem_view_direct(
526
+ multiindex_dataframe_random_data, using_copy_on_write
527
+ ):
528
+ # this works because we are modifying the underlying array
529
+ # really a no-no
530
+ df = multiindex_dataframe_random_data.T
531
+ if using_copy_on_write:
532
+ with pytest.raises(ValueError, match="read-only"):
533
+ df["foo"].values[:] = 0
534
+ assert (df["foo"].values != 0).all()
535
+ else:
536
+ df["foo"].values[:] = 0
537
+ assert (df["foo"].values == 0).all()
538
+
539
+
540
+ def test_frame_setitem_copy_raises(
541
+ multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write
542
+ ):
543
+ # will raise/warn as its chained assignment
544
+ df = multiindex_dataframe_random_data.T
545
+ if using_copy_on_write or warn_copy_on_write:
546
+ with tm.raises_chained_assignment_error():
547
+ df["foo"]["one"] = 2
548
+ else:
549
+ msg = "A value is trying to be set on a copy of a slice from a DataFrame"
550
+ with pytest.raises(SettingWithCopyError, match=msg):
551
+ with tm.raises_chained_assignment_error():
552
+ df["foo"]["one"] = 2
553
+
554
+
555
+ def test_frame_setitem_copy_no_write(
556
+ multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write
557
+ ):
558
+ frame = multiindex_dataframe_random_data.T
559
+ expected = frame
560
+ df = frame.copy()
561
+ if using_copy_on_write or warn_copy_on_write:
562
+ with tm.raises_chained_assignment_error():
563
+ df["foo"]["one"] = 2
564
+ else:
565
+ msg = "A value is trying to be set on a copy of a slice from a DataFrame"
566
+ with pytest.raises(SettingWithCopyError, match=msg):
567
+ with tm.raises_chained_assignment_error():
568
+ df["foo"]["one"] = 2
569
+
570
+ result = df
571
+ tm.assert_frame_equal(result, expected)
572
+
573
+
574
+ def test_frame_setitem_partial_multiindex():
575
+ # GH 54875
576
+ df = DataFrame(
577
+ {
578
+ "a": [1, 2, 3],
579
+ "b": [3, 4, 5],
580
+ "c": 6,
581
+ "d": 7,
582
+ }
583
+ ).set_index(["a", "b", "c"])
584
+ ser = Series(8, index=df.index.droplevel("c"))
585
+ result = df.copy()
586
+ result["d"] = ser
587
+ expected = df.copy()
588
+ expected["d"] = 8
589
+ tm.assert_frame_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_slice.py ADDED
@@ -0,0 +1,796 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ timedelta,
4
+ )
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ from pandas.errors import UnsortedIndexError
10
+
11
+ import pandas as pd
12
+ from pandas import (
13
+ DataFrame,
14
+ Index,
15
+ MultiIndex,
16
+ Series,
17
+ Timestamp,
18
+ )
19
+ import pandas._testing as tm
20
+ from pandas.tests.indexing.common import _mklbl
21
+
22
+
23
+ class TestMultiIndexSlicers:
24
+ def test_per_axis_per_level_getitem(self):
25
+ # GH6134
26
+ # example test case
27
+ ix = MultiIndex.from_product(
28
+ [_mklbl("A", 5), _mklbl("B", 7), _mklbl("C", 4), _mklbl("D", 2)]
29
+ )
30
+ df = DataFrame(np.arange(len(ix.to_numpy())), index=ix)
31
+
32
+ result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :]
33
+ expected = df.loc[
34
+ [
35
+ (
36
+ a,
37
+ b,
38
+ c,
39
+ d,
40
+ )
41
+ for a, b, c, d in df.index.values
42
+ if a in ("A1", "A2", "A3") and c in ("C1", "C3")
43
+ ]
44
+ ]
45
+ tm.assert_frame_equal(result, expected)
46
+
47
+ expected = df.loc[
48
+ [
49
+ (
50
+ a,
51
+ b,
52
+ c,
53
+ d,
54
+ )
55
+ for a, b, c, d in df.index.values
56
+ if a in ("A1", "A2", "A3") and c in ("C1", "C2", "C3")
57
+ ]
58
+ ]
59
+ result = df.loc[(slice("A1", "A3"), slice(None), slice("C1", "C3")), :]
60
+ tm.assert_frame_equal(result, expected)
61
+
62
+ # test multi-index slicing with per axis and per index controls
63
+ index = MultiIndex.from_tuples(
64
+ [("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"]
65
+ )
66
+ columns = MultiIndex.from_tuples(
67
+ [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
68
+ names=["lvl0", "lvl1"],
69
+ )
70
+
71
+ df = DataFrame(
72
+ np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns
73
+ )
74
+ df = df.sort_index(axis=0).sort_index(axis=1)
75
+
76
+ # identity
77
+ result = df.loc[(slice(None), slice(None)), :]
78
+ tm.assert_frame_equal(result, df)
79
+ result = df.loc[(slice(None), slice(None)), (slice(None), slice(None))]
80
+ tm.assert_frame_equal(result, df)
81
+ result = df.loc[:, (slice(None), slice(None))]
82
+ tm.assert_frame_equal(result, df)
83
+
84
+ # index
85
+ result = df.loc[(slice(None), [1]), :]
86
+ expected = df.iloc[[0, 3]]
87
+ tm.assert_frame_equal(result, expected)
88
+
89
+ result = df.loc[(slice(None), 1), :]
90
+ expected = df.iloc[[0, 3]]
91
+ tm.assert_frame_equal(result, expected)
92
+
93
+ # columns
94
+ result = df.loc[:, (slice(None), ["foo"])]
95
+ expected = df.iloc[:, [1, 3]]
96
+ tm.assert_frame_equal(result, expected)
97
+
98
+ # both
99
+ result = df.loc[(slice(None), 1), (slice(None), ["foo"])]
100
+ expected = df.iloc[[0, 3], [1, 3]]
101
+ tm.assert_frame_equal(result, expected)
102
+
103
+ result = df.loc["A", "a"]
104
+ expected = DataFrame(
105
+ {"bar": [1, 5, 9], "foo": [0, 4, 8]},
106
+ index=Index([1, 2, 3], name="two"),
107
+ columns=Index(["bar", "foo"], name="lvl1"),
108
+ )
109
+ tm.assert_frame_equal(result, expected)
110
+
111
+ result = df.loc[(slice(None), [1, 2]), :]
112
+ expected = df.iloc[[0, 1, 3]]
113
+ tm.assert_frame_equal(result, expected)
114
+
115
+ # multi-level series
116
+ s = Series(np.arange(len(ix.to_numpy())), index=ix)
117
+ result = s.loc["A1":"A3", :, ["C1", "C3"]]
118
+ expected = s.loc[
119
+ [
120
+ (
121
+ a,
122
+ b,
123
+ c,
124
+ d,
125
+ )
126
+ for a, b, c, d in s.index.values
127
+ if a in ("A1", "A2", "A3") and c in ("C1", "C3")
128
+ ]
129
+ ]
130
+ tm.assert_series_equal(result, expected)
131
+
132
+ # boolean indexers
133
+ result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :]
134
+ expected = df.iloc[[2, 3]]
135
+ tm.assert_frame_equal(result, expected)
136
+
137
+ msg = (
138
+ "cannot index with a boolean indexer "
139
+ "that is not the same length as the index"
140
+ )
141
+ with pytest.raises(ValueError, match=msg):
142
+ df.loc[(slice(None), np.array([True, False])), :]
143
+
144
+ with pytest.raises(KeyError, match=r"\[1\] not in index"):
145
+ # slice(None) is on the index, [1] is on the columns, but 1 is
146
+ # not in the columns, so we raise
147
+ # This used to treat [1] as positional GH#16396
148
+ df.loc[slice(None), [1]]
149
+
150
+ # not lexsorted
151
+ assert df.index._lexsort_depth == 2
152
+ df = df.sort_index(level=1, axis=0)
153
+ assert df.index._lexsort_depth == 0
154
+
155
+ msg = (
156
+ "MultiIndex slicing requires the index to be "
157
+ r"lexsorted: slicing on levels \[1\], lexsort depth 0"
158
+ )
159
+ with pytest.raises(UnsortedIndexError, match=msg):
160
+ df.loc[(slice(None), slice("bar")), :]
161
+
162
+ # GH 16734: not sorted, but no real slicing
163
+ result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :]
164
+ tm.assert_frame_equal(result, df.iloc[[1, 3], :])
165
+
166
+ def test_multiindex_slicers_non_unique(self):
167
+ # GH 7106
168
+ # non-unique mi index support
169
+ df = (
170
+ DataFrame(
171
+ {
172
+ "A": ["foo", "foo", "foo", "foo"],
173
+ "B": ["a", "a", "a", "a"],
174
+ "C": [1, 2, 1, 3],
175
+ "D": [1, 2, 3, 4],
176
+ }
177
+ )
178
+ .set_index(["A", "B", "C"])
179
+ .sort_index()
180
+ )
181
+ assert not df.index.is_unique
182
+ expected = (
183
+ DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]})
184
+ .set_index(["A", "B", "C"])
185
+ .sort_index()
186
+ )
187
+ result = df.loc[(slice(None), slice(None), 1), :]
188
+ tm.assert_frame_equal(result, expected)
189
+
190
+ # this is equivalent of an xs expression
191
+ result = df.xs(1, level=2, drop_level=False)
192
+ tm.assert_frame_equal(result, expected)
193
+
194
+ df = (
195
+ DataFrame(
196
+ {
197
+ "A": ["foo", "foo", "foo", "foo"],
198
+ "B": ["a", "a", "a", "a"],
199
+ "C": [1, 2, 1, 2],
200
+ "D": [1, 2, 3, 4],
201
+ }
202
+ )
203
+ .set_index(["A", "B", "C"])
204
+ .sort_index()
205
+ )
206
+ assert not df.index.is_unique
207
+ expected = (
208
+ DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]})
209
+ .set_index(["A", "B", "C"])
210
+ .sort_index()
211
+ )
212
+ result = df.loc[(slice(None), slice(None), 1), :]
213
+ assert not result.index.is_unique
214
+ tm.assert_frame_equal(result, expected)
215
+
216
+ # GH12896
217
+ # numpy-implementation dependent bug
218
+ ints = [
219
+ 1,
220
+ 2,
221
+ 3,
222
+ 4,
223
+ 5,
224
+ 6,
225
+ 7,
226
+ 8,
227
+ 9,
228
+ 10,
229
+ 11,
230
+ 12,
231
+ 12,
232
+ 13,
233
+ 14,
234
+ 14,
235
+ 16,
236
+ 17,
237
+ 18,
238
+ 19,
239
+ 200000,
240
+ 200000,
241
+ ]
242
+ n = len(ints)
243
+ idx = MultiIndex.from_arrays([["a"] * n, ints])
244
+ result = Series([1] * n, index=idx)
245
+ result = result.sort_index()
246
+ result = result.loc[(slice(None), slice(100000))]
247
+ expected = Series([1] * (n - 2), index=idx[:-2]).sort_index()
248
+ tm.assert_series_equal(result, expected)
249
+
250
+ def test_multiindex_slicers_datetimelike(self):
251
+ # GH 7429
252
+ # buggy/inconsistent behavior when slicing with datetime-like
253
+ dates = [datetime(2012, 1, 1, 12, 12, 12) + timedelta(days=i) for i in range(6)]
254
+ freq = [1, 2]
255
+ index = MultiIndex.from_product([dates, freq], names=["date", "frequency"])
256
+
257
+ df = DataFrame(
258
+ np.arange(6 * 2 * 4, dtype="int64").reshape(-1, 4),
259
+ index=index,
260
+ columns=list("ABCD"),
261
+ )
262
+
263
+ # multi-axis slicing
264
+ idx = pd.IndexSlice
265
+ expected = df.iloc[[0, 2, 4], [0, 1]]
266
+ result = df.loc[
267
+ (
268
+ slice(
269
+ Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12")
270
+ ),
271
+ slice(1, 1),
272
+ ),
273
+ slice("A", "B"),
274
+ ]
275
+ tm.assert_frame_equal(result, expected)
276
+
277
+ result = df.loc[
278
+ (
279
+ idx[
280
+ Timestamp("2012-01-01 12:12:12") : Timestamp("2012-01-03 12:12:12")
281
+ ],
282
+ idx[1:1],
283
+ ),
284
+ slice("A", "B"),
285
+ ]
286
+ tm.assert_frame_equal(result, expected)
287
+
288
+ result = df.loc[
289
+ (
290
+ slice(
291
+ Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12")
292
+ ),
293
+ 1,
294
+ ),
295
+ slice("A", "B"),
296
+ ]
297
+ tm.assert_frame_equal(result, expected)
298
+
299
+ # with strings
300
+ result = df.loc[
301
+ (slice("2012-01-01 12:12:12", "2012-01-03 12:12:12"), slice(1, 1)),
302
+ slice("A", "B"),
303
+ ]
304
+ tm.assert_frame_equal(result, expected)
305
+
306
+ result = df.loc[
307
+ (idx["2012-01-01 12:12:12":"2012-01-03 12:12:12"], 1), idx["A", "B"]
308
+ ]
309
+ tm.assert_frame_equal(result, expected)
310
+
311
+ def test_multiindex_slicers_edges(self):
312
+ # GH 8132
313
+ # various edge cases
314
+ df = DataFrame(
315
+ {
316
+ "A": ["A0"] * 5 + ["A1"] * 5 + ["A2"] * 5,
317
+ "B": ["B0", "B0", "B1", "B1", "B2"] * 3,
318
+ "DATE": [
319
+ "2013-06-11",
320
+ "2013-07-02",
321
+ "2013-07-09",
322
+ "2013-07-30",
323
+ "2013-08-06",
324
+ "2013-06-11",
325
+ "2013-07-02",
326
+ "2013-07-09",
327
+ "2013-07-30",
328
+ "2013-08-06",
329
+ "2013-09-03",
330
+ "2013-10-01",
331
+ "2013-07-09",
332
+ "2013-08-06",
333
+ "2013-09-03",
334
+ ],
335
+ "VALUES": [22, 35, 14, 9, 4, 40, 18, 4, 2, 5, 1, 2, 3, 4, 2],
336
+ }
337
+ )
338
+
339
+ df["DATE"] = pd.to_datetime(df["DATE"])
340
+ df1 = df.set_index(["A", "B", "DATE"])
341
+ df1 = df1.sort_index()
342
+
343
+ # A1 - Get all values under "A0" and "A1"
344
+ result = df1.loc[(slice("A1")), :]
345
+ expected = df1.iloc[0:10]
346
+ tm.assert_frame_equal(result, expected)
347
+
348
+ # A2 - Get all values from the start to "A2"
349
+ result = df1.loc[(slice("A2")), :]
350
+ expected = df1
351
+ tm.assert_frame_equal(result, expected)
352
+
353
+ # A3 - Get all values under "B1" or "B2"
354
+ result = df1.loc[(slice(None), slice("B1", "B2")), :]
355
+ expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13, 14]]
356
+ tm.assert_frame_equal(result, expected)
357
+
358
+ # A4 - Get all values between 2013-07-02 and 2013-07-09
359
+ result = df1.loc[(slice(None), slice(None), slice("20130702", "20130709")), :]
360
+ expected = df1.iloc[[1, 2, 6, 7, 12]]
361
+ tm.assert_frame_equal(result, expected)
362
+
363
+ # B1 - Get all values in B0 that are also under A0, A1 and A2
364
+ result = df1.loc[(slice("A2"), slice("B0")), :]
365
+ expected = df1.iloc[[0, 1, 5, 6, 10, 11]]
366
+ tm.assert_frame_equal(result, expected)
367
+
368
+ # B2 - Get all values in B0, B1 and B2 (similar to what #2 is doing for
369
+ # the As)
370
+ result = df1.loc[(slice(None), slice("B2")), :]
371
+ expected = df1
372
+ tm.assert_frame_equal(result, expected)
373
+
374
+ # B3 - Get all values from B1 to B2 and up to 2013-08-06
375
+ result = df1.loc[(slice(None), slice("B1", "B2"), slice("2013-08-06")), :]
376
+ expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13]]
377
+ tm.assert_frame_equal(result, expected)
378
+
379
+ # B4 - Same as A4 but the start of the date slice is not a key.
380
+ # shows indexing on a partial selection slice
381
+ result = df1.loc[(slice(None), slice(None), slice("20130701", "20130709")), :]
382
+ expected = df1.iloc[[1, 2, 6, 7, 12]]
383
+ tm.assert_frame_equal(result, expected)
384
+
385
+ def test_per_axis_per_level_doc_examples(self):
386
+ # test index maker
387
+ idx = pd.IndexSlice
388
+
389
+ # from indexing.rst / advanced
390
+ index = MultiIndex.from_product(
391
+ [_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)]
392
+ )
393
+ columns = MultiIndex.from_tuples(
394
+ [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
395
+ names=["lvl0", "lvl1"],
396
+ )
397
+ df = DataFrame(
398
+ np.arange(len(index) * len(columns), dtype="int64").reshape(
399
+ (len(index), len(columns))
400
+ ),
401
+ index=index,
402
+ columns=columns,
403
+ )
404
+ result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :]
405
+ expected = df.loc[
406
+ [
407
+ (
408
+ a,
409
+ b,
410
+ c,
411
+ d,
412
+ )
413
+ for a, b, c, d in df.index.values
414
+ if a in ("A1", "A2", "A3") and c in ("C1", "C3")
415
+ ]
416
+ ]
417
+ tm.assert_frame_equal(result, expected)
418
+ result = df.loc[idx["A1":"A3", :, ["C1", "C3"]], :]
419
+ tm.assert_frame_equal(result, expected)
420
+
421
+ result = df.loc[(slice(None), slice(None), ["C1", "C3"]), :]
422
+ expected = df.loc[
423
+ [
424
+ (
425
+ a,
426
+ b,
427
+ c,
428
+ d,
429
+ )
430
+ for a, b, c, d in df.index.values
431
+ if c in ("C1", "C3")
432
+ ]
433
+ ]
434
+ tm.assert_frame_equal(result, expected)
435
+ result = df.loc[idx[:, :, ["C1", "C3"]], :]
436
+ tm.assert_frame_equal(result, expected)
437
+
438
+ # not sorted
439
+ msg = (
440
+ "MultiIndex slicing requires the index to be lexsorted: "
441
+ r"slicing on levels \[1\], lexsort depth 1"
442
+ )
443
+ with pytest.raises(UnsortedIndexError, match=msg):
444
+ df.loc["A1", ("a", slice("foo"))]
445
+
446
+ # GH 16734: not sorted, but no real slicing
447
+ tm.assert_frame_equal(
448
+ df.loc["A1", (slice(None), "foo")], df.loc["A1"].iloc[:, [0, 2]]
449
+ )
450
+
451
+ df = df.sort_index(axis=1)
452
+
453
+ # slicing
454
+ df.loc["A1", (slice(None), "foo")]
455
+ df.loc[(slice(None), slice(None), ["C1", "C3"]), (slice(None), "foo")]
456
+
457
+ # setitem
458
+ df.loc(axis=0)[:, :, ["C1", "C3"]] = -10
459
+
460
+ def test_loc_axis_arguments(self):
461
+ index = MultiIndex.from_product(
462
+ [_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)]
463
+ )
464
+ columns = MultiIndex.from_tuples(
465
+ [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
466
+ names=["lvl0", "lvl1"],
467
+ )
468
+ df = (
469
+ DataFrame(
470
+ np.arange(len(index) * len(columns), dtype="int64").reshape(
471
+ (len(index), len(columns))
472
+ ),
473
+ index=index,
474
+ columns=columns,
475
+ )
476
+ .sort_index()
477
+ .sort_index(axis=1)
478
+ )
479
+
480
+ # axis 0
481
+ result = df.loc(axis=0)["A1":"A3", :, ["C1", "C3"]]
482
+ expected = df.loc[
483
+ [
484
+ (
485
+ a,
486
+ b,
487
+ c,
488
+ d,
489
+ )
490
+ for a, b, c, d in df.index.values
491
+ if a in ("A1", "A2", "A3") and c in ("C1", "C3")
492
+ ]
493
+ ]
494
+ tm.assert_frame_equal(result, expected)
495
+
496
+ result = df.loc(axis="index")[:, :, ["C1", "C3"]]
497
+ expected = df.loc[
498
+ [
499
+ (
500
+ a,
501
+ b,
502
+ c,
503
+ d,
504
+ )
505
+ for a, b, c, d in df.index.values
506
+ if c in ("C1", "C3")
507
+ ]
508
+ ]
509
+ tm.assert_frame_equal(result, expected)
510
+
511
+ # axis 1
512
+ result = df.loc(axis=1)[:, "foo"]
513
+ expected = df.loc[:, (slice(None), "foo")]
514
+ tm.assert_frame_equal(result, expected)
515
+
516
+ result = df.loc(axis="columns")[:, "foo"]
517
+ expected = df.loc[:, (slice(None), "foo")]
518
+ tm.assert_frame_equal(result, expected)
519
+
520
+ # invalid axis
521
+ for i in [-1, 2, "foo"]:
522
+ msg = f"No axis named {i} for object type DataFrame"
523
+ with pytest.raises(ValueError, match=msg):
524
+ df.loc(axis=i)[:, :, ["C1", "C3"]]
525
+
526
+ def test_loc_axis_single_level_multi_col_indexing_multiindex_col_df(self):
527
+ # GH29519
528
+ df = DataFrame(
529
+ np.arange(27).reshape(3, 9),
530
+ columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]),
531
+ )
532
+ result = df.loc(axis=1)["a1":"a2"]
533
+ expected = df.iloc[:, :-3]
534
+
535
+ tm.assert_frame_equal(result, expected)
536
+
537
+ def test_loc_axis_single_level_single_col_indexing_multiindex_col_df(self):
538
+ # GH29519
539
+ df = DataFrame(
540
+ np.arange(27).reshape(3, 9),
541
+ columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]),
542
+ )
543
+ result = df.loc(axis=1)["a1"]
544
+ expected = df.iloc[:, :3]
545
+ expected.columns = ["b1", "b2", "b3"]
546
+
547
+ tm.assert_frame_equal(result, expected)
548
+
549
+ def test_loc_ax_single_level_indexer_simple_df(self):
550
+ # GH29519
551
+ # test single level indexing on single index column data frame
552
+ df = DataFrame(np.arange(9).reshape(3, 3), columns=["a", "b", "c"])
553
+ result = df.loc(axis=1)["a"]
554
+ expected = Series(np.array([0, 3, 6]), name="a")
555
+ tm.assert_series_equal(result, expected)
556
+
557
+ def test_per_axis_per_level_setitem(self):
558
+ # test index maker
559
+ idx = pd.IndexSlice
560
+
561
+ # test multi-index slicing with per axis and per index controls
562
+ index = MultiIndex.from_tuples(
563
+ [("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"]
564
+ )
565
+ columns = MultiIndex.from_tuples(
566
+ [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
567
+ names=["lvl0", "lvl1"],
568
+ )
569
+
570
+ df_orig = DataFrame(
571
+ np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns
572
+ )
573
+ df_orig = df_orig.sort_index(axis=0).sort_index(axis=1)
574
+
575
+ # identity
576
+ df = df_orig.copy()
577
+ df.loc[(slice(None), slice(None)), :] = 100
578
+ expected = df_orig.copy()
579
+ expected.iloc[:, :] = 100
580
+ tm.assert_frame_equal(df, expected)
581
+
582
+ df = df_orig.copy()
583
+ df.loc(axis=0)[:, :] = 100
584
+ expected = df_orig.copy()
585
+ expected.iloc[:, :] = 100
586
+ tm.assert_frame_equal(df, expected)
587
+
588
+ df = df_orig.copy()
589
+ df.loc[(slice(None), slice(None)), (slice(None), slice(None))] = 100
590
+ expected = df_orig.copy()
591
+ expected.iloc[:, :] = 100
592
+ tm.assert_frame_equal(df, expected)
593
+
594
+ df = df_orig.copy()
595
+ df.loc[:, (slice(None), slice(None))] = 100
596
+ expected = df_orig.copy()
597
+ expected.iloc[:, :] = 100
598
+ tm.assert_frame_equal(df, expected)
599
+
600
+ # index
601
+ df = df_orig.copy()
602
+ df.loc[(slice(None), [1]), :] = 100
603
+ expected = df_orig.copy()
604
+ expected.iloc[[0, 3]] = 100
605
+ tm.assert_frame_equal(df, expected)
606
+
607
+ df = df_orig.copy()
608
+ df.loc[(slice(None), 1), :] = 100
609
+ expected = df_orig.copy()
610
+ expected.iloc[[0, 3]] = 100
611
+ tm.assert_frame_equal(df, expected)
612
+
613
+ df = df_orig.copy()
614
+ df.loc(axis=0)[:, 1] = 100
615
+ expected = df_orig.copy()
616
+ expected.iloc[[0, 3]] = 100
617
+ tm.assert_frame_equal(df, expected)
618
+
619
+ # columns
620
+ df = df_orig.copy()
621
+ df.loc[:, (slice(None), ["foo"])] = 100
622
+ expected = df_orig.copy()
623
+ expected.iloc[:, [1, 3]] = 100
624
+ tm.assert_frame_equal(df, expected)
625
+
626
+ # both
627
+ df = df_orig.copy()
628
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] = 100
629
+ expected = df_orig.copy()
630
+ expected.iloc[[0, 3], [1, 3]] = 100
631
+ tm.assert_frame_equal(df, expected)
632
+
633
+ df = df_orig.copy()
634
+ df.loc[idx[:, 1], idx[:, ["foo"]]] = 100
635
+ expected = df_orig.copy()
636
+ expected.iloc[[0, 3], [1, 3]] = 100
637
+ tm.assert_frame_equal(df, expected)
638
+
639
+ df = df_orig.copy()
640
+ df.loc["A", "a"] = 100
641
+ expected = df_orig.copy()
642
+ expected.iloc[0:3, 0:2] = 100
643
+ tm.assert_frame_equal(df, expected)
644
+
645
+ # setting with a list-like
646
+ df = df_orig.copy()
647
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
648
+ [[100, 100], [100, 100]], dtype="int64"
649
+ )
650
+ expected = df_orig.copy()
651
+ expected.iloc[[0, 3], [1, 3]] = 100
652
+ tm.assert_frame_equal(df, expected)
653
+
654
+ # not enough values
655
+ df = df_orig.copy()
656
+
657
+ msg = "setting an array element with a sequence."
658
+ with pytest.raises(ValueError, match=msg):
659
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
660
+ [[100], [100, 100]], dtype="int64"
661
+ )
662
+
663
+ msg = "Must have equal len keys and value when setting with an iterable"
664
+ with pytest.raises(ValueError, match=msg):
665
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
666
+ [100, 100, 100, 100], dtype="int64"
667
+ )
668
+
669
+ # with an alignable rhs
670
+ df = df_orig.copy()
671
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] = (
672
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] * 5
673
+ )
674
+ expected = df_orig.copy()
675
+ expected.iloc[[0, 3], [1, 3]] = expected.iloc[[0, 3], [1, 3]] * 5
676
+ tm.assert_frame_equal(df, expected)
677
+
678
+ df = df_orig.copy()
679
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] *= df.loc[
680
+ (slice(None), 1), (slice(None), ["foo"])
681
+ ]
682
+ expected = df_orig.copy()
683
+ expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]]
684
+ tm.assert_frame_equal(df, expected)
685
+
686
+ rhs = df_orig.loc[(slice(None), 1), (slice(None), ["foo"])].copy()
687
+ rhs.loc[:, ("c", "bah")] = 10
688
+ df = df_orig.copy()
689
+ df.loc[(slice(None), 1), (slice(None), ["foo"])] *= rhs
690
+ expected = df_orig.copy()
691
+ expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]]
692
+ tm.assert_frame_equal(df, expected)
693
+
694
+ def test_multiindex_label_slicing_with_negative_step(self):
695
+ ser = Series(
696
+ np.arange(20), MultiIndex.from_product([list("abcde"), np.arange(4)])
697
+ )
698
+ SLC = pd.IndexSlice
699
+
700
+ tm.assert_indexing_slices_equivalent(ser, SLC[::-1], SLC[::-1])
701
+
702
+ tm.assert_indexing_slices_equivalent(ser, SLC["d"::-1], SLC[15::-1])
703
+ tm.assert_indexing_slices_equivalent(ser, SLC[("d",)::-1], SLC[15::-1])
704
+
705
+ tm.assert_indexing_slices_equivalent(ser, SLC[:"d":-1], SLC[:11:-1])
706
+ tm.assert_indexing_slices_equivalent(ser, SLC[:("d",):-1], SLC[:11:-1])
707
+
708
+ tm.assert_indexing_slices_equivalent(ser, SLC["d":"b":-1], SLC[15:3:-1])
709
+ tm.assert_indexing_slices_equivalent(ser, SLC[("d",):"b":-1], SLC[15:3:-1])
710
+ tm.assert_indexing_slices_equivalent(ser, SLC["d":("b",):-1], SLC[15:3:-1])
711
+ tm.assert_indexing_slices_equivalent(ser, SLC[("d",):("b",):-1], SLC[15:3:-1])
712
+ tm.assert_indexing_slices_equivalent(ser, SLC["b":"d":-1], SLC[:0])
713
+
714
+ tm.assert_indexing_slices_equivalent(ser, SLC[("c", 2)::-1], SLC[10::-1])
715
+ tm.assert_indexing_slices_equivalent(ser, SLC[:("c", 2):-1], SLC[:9:-1])
716
+ tm.assert_indexing_slices_equivalent(
717
+ ser, SLC[("e", 0):("c", 2):-1], SLC[16:9:-1]
718
+ )
719
+
720
+ def test_multiindex_slice_first_level(self):
721
+ # GH 12697
722
+ freq = ["a", "b", "c", "d"]
723
+ idx = MultiIndex.from_product([freq, range(500)])
724
+ df = DataFrame(list(range(2000)), index=idx, columns=["Test"])
725
+ df_slice = df.loc[pd.IndexSlice[:, 30:70], :]
726
+ result = df_slice.loc["a"]
727
+ expected = DataFrame(list(range(30, 71)), columns=["Test"], index=range(30, 71))
728
+ tm.assert_frame_equal(result, expected)
729
+ result = df_slice.loc["d"]
730
+ expected = DataFrame(
731
+ list(range(1530, 1571)), columns=["Test"], index=range(30, 71)
732
+ )
733
+ tm.assert_frame_equal(result, expected)
734
+
735
+ def test_int_series_slicing(self, multiindex_year_month_day_dataframe_random_data):
736
+ ymd = multiindex_year_month_day_dataframe_random_data
737
+ s = ymd["A"]
738
+ result = s[5:]
739
+ expected = s.reindex(s.index[5:])
740
+ tm.assert_series_equal(result, expected)
741
+
742
+ s = ymd["A"].copy()
743
+ exp = ymd["A"].copy()
744
+ s[5:] = 0
745
+ exp.iloc[5:] = 0
746
+ tm.assert_numpy_array_equal(s.values, exp.values)
747
+
748
+ result = ymd[5:]
749
+ expected = ymd.reindex(s.index[5:])
750
+ tm.assert_frame_equal(result, expected)
751
+
752
+ @pytest.mark.parametrize(
753
+ "dtype, loc, iloc",
754
+ [
755
+ # dtype = int, step = -1
756
+ ("int", slice(None, None, -1), slice(None, None, -1)),
757
+ ("int", slice(3, None, -1), slice(3, None, -1)),
758
+ ("int", slice(None, 1, -1), slice(None, 0, -1)),
759
+ ("int", slice(3, 1, -1), slice(3, 0, -1)),
760
+ # dtype = int, step = -2
761
+ ("int", slice(None, None, -2), slice(None, None, -2)),
762
+ ("int", slice(3, None, -2), slice(3, None, -2)),
763
+ ("int", slice(None, 1, -2), slice(None, 0, -2)),
764
+ ("int", slice(3, 1, -2), slice(3, 0, -2)),
765
+ # dtype = str, step = -1
766
+ ("str", slice(None, None, -1), slice(None, None, -1)),
767
+ ("str", slice("d", None, -1), slice(3, None, -1)),
768
+ ("str", slice(None, "b", -1), slice(None, 0, -1)),
769
+ ("str", slice("d", "b", -1), slice(3, 0, -1)),
770
+ # dtype = str, step = -2
771
+ ("str", slice(None, None, -2), slice(None, None, -2)),
772
+ ("str", slice("d", None, -2), slice(3, None, -2)),
773
+ ("str", slice(None, "b", -2), slice(None, 0, -2)),
774
+ ("str", slice("d", "b", -2), slice(3, 0, -2)),
775
+ ],
776
+ )
777
+ def test_loc_slice_negative_stepsize(self, dtype, loc, iloc):
778
+ # GH#38071
779
+ labels = {
780
+ "str": list("abcde"),
781
+ "int": range(5),
782
+ }[dtype]
783
+
784
+ mi = MultiIndex.from_arrays([labels] * 2)
785
+ df = DataFrame(1.0, index=mi, columns=["A"])
786
+
787
+ SLC = pd.IndexSlice
788
+
789
+ expected = df.iloc[iloc, :]
790
+ result_get_loc = df.loc[SLC[loc], :]
791
+ result_get_locs_level_0 = df.loc[SLC[loc, :], :]
792
+ result_get_locs_level_1 = df.loc[SLC[:, loc], :]
793
+
794
+ tm.assert_frame_equal(result_get_loc, expected)
795
+ tm.assert_frame_equal(result_get_locs_level_0, expected)
796
+ tm.assert_frame_equal(result_get_locs_level_1, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexing/multiindex/test_sorted.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ NA,
6
+ DataFrame,
7
+ MultiIndex,
8
+ Series,
9
+ array,
10
+ )
11
+ import pandas._testing as tm
12
+
13
+
14
+ class TestMultiIndexSorted:
15
+ def test_getitem_multilevel_index_tuple_not_sorted(self):
16
+ index_columns = list("abc")
17
+ df = DataFrame(
18
+ [[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]
19
+ )
20
+ df = df.set_index(index_columns)
21
+ query_index = df.index[:1]
22
+ rs = df.loc[query_index, "data"]
23
+
24
+ xp_idx = MultiIndex.from_tuples([(0, 1, 0)], names=["a", "b", "c"])
25
+ xp = Series(["x"], index=xp_idx, name="data")
26
+ tm.assert_series_equal(rs, xp)
27
+
28
+ def test_getitem_slice_not_sorted(self, multiindex_dataframe_random_data):
29
+ frame = multiindex_dataframe_random_data
30
+ df = frame.sort_index(level=1).T
31
+
32
+ # buglet with int typechecking
33
+ result = df.iloc[:, : np.int32(3)]
34
+ expected = df.reindex(columns=df.columns[:3])
35
+ tm.assert_frame_equal(result, expected)
36
+
37
+ @pytest.mark.parametrize("key", [None, lambda x: x])
38
+ def test_frame_getitem_not_sorted2(self, key):
39
+ # 13431
40
+ df = DataFrame(
41
+ {
42
+ "col1": ["b", "d", "b", "a"],
43
+ "col2": [3, 1, 1, 2],
44
+ "data": ["one", "two", "three", "four"],
45
+ }
46
+ )
47
+
48
+ df2 = df.set_index(["col1", "col2"])
49
+ df2_original = df2.copy()
50
+
51
+ df2.index = df2.index.set_levels(["b", "d", "a"], level="col1")
52
+ df2.index = df2.index.set_codes([0, 1, 0, 2], level="col1")
53
+ assert not df2.index.is_monotonic_increasing
54
+
55
+ assert df2_original.index.equals(df2.index)
56
+ expected = df2.sort_index(key=key)
57
+ assert expected.index.is_monotonic_increasing
58
+
59
+ result = df2.sort_index(level=0, key=key)
60
+ assert result.index.is_monotonic_increasing
61
+ tm.assert_frame_equal(result, expected)
62
+
63
+ def test_sort_values_key(self):
64
+ arrays = [
65
+ ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
66
+ ["one", "two", "one", "two", "one", "two", "one", "two"],
67
+ ]
68
+ tuples = zip(*arrays)
69
+ index = MultiIndex.from_tuples(tuples)
70
+ index = index.sort_values( # sort by third letter
71
+ key=lambda x: x.map(lambda entry: entry[2])
72
+ )
73
+ result = DataFrame(range(8), index=index)
74
+
75
+ arrays = [
76
+ ["foo", "foo", "bar", "bar", "qux", "qux", "baz", "baz"],
77
+ ["one", "two", "one", "two", "one", "two", "one", "two"],
78
+ ]
79
+ tuples = zip(*arrays)
80
+ index = MultiIndex.from_tuples(tuples)
81
+ expected = DataFrame(range(8), index=index)
82
+
83
+ tm.assert_frame_equal(result, expected)
84
+
85
+ def test_argsort_with_na(self):
86
+ # GH48495
87
+ arrays = [
88
+ array([2, NA, 1], dtype="Int64"),
89
+ array([1, 2, 3], dtype="Int64"),
90
+ ]
91
+ index = MultiIndex.from_arrays(arrays)
92
+ result = index.argsort()
93
+ expected = np.array([2, 0, 1], dtype=np.intp)
94
+ tm.assert_numpy_array_equal(result, expected)
95
+
96
+ def test_sort_values_with_na(self):
97
+ # GH48495
98
+ arrays = [
99
+ array([2, NA, 1], dtype="Int64"),
100
+ array([1, 2, 3], dtype="Int64"),
101
+ ]
102
+ index = MultiIndex.from_arrays(arrays)
103
+ index = index.sort_values()
104
+ result = DataFrame(range(3), index=index)
105
+
106
+ arrays = [
107
+ array([1, 2, NA], dtype="Int64"),
108
+ array([3, 1, 2], dtype="Int64"),
109
+ ]
110
+ index = MultiIndex.from_arrays(arrays)
111
+ expected = DataFrame(range(3), index=index)
112
+
113
+ tm.assert_frame_equal(result, expected)
114
+
115
+ def test_frame_getitem_not_sorted(self, multiindex_dataframe_random_data):
116
+ frame = multiindex_dataframe_random_data
117
+ df = frame.T
118
+ df["foo", "four"] = "foo"
119
+
120
+ arrays = [np.array(x) for x in zip(*df.columns.values)]
121
+
122
+ result = df["foo"]
123
+ result2 = df.loc[:, "foo"]
124
+ expected = df.reindex(columns=df.columns[arrays[0] == "foo"])
125
+ expected.columns = expected.columns.droplevel(0)
126
+ tm.assert_frame_equal(result, expected)
127
+ tm.assert_frame_equal(result2, expected)
128
+
129
+ df = df.T
130
+ result = df.xs("foo")
131
+ result2 = df.loc["foo"]
132
+ expected = df.reindex(df.index[arrays[0] == "foo"])
133
+ expected.index = expected.index.droplevel(0)
134
+ tm.assert_frame_equal(result, expected)
135
+ tm.assert_frame_equal(result2, expected)
136
+
137
+ def test_series_getitem_not_sorted(self):
138
+ arrays = [
139
+ ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
140
+ ["one", "two", "one", "two", "one", "two", "one", "two"],
141
+ ]
142
+ tuples = zip(*arrays)
143
+ index = MultiIndex.from_tuples(tuples)
144
+ s = Series(np.random.default_rng(2).standard_normal(8), index=index)
145
+
146
+ arrays = [np.array(x) for x in zip(*index.values)]
147
+
148
+ result = s["qux"]
149
+ result2 = s.loc["qux"]
150
+ expected = s[arrays[0] == "qux"]
151
+ expected.index = expected.index.droplevel(0)
152
+ tm.assert_series_equal(result, expected)
153
+ tm.assert_series_equal(result2, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/tslibs/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_ccalendar.cpython-310.pyc ADDED
Binary file (2.15 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_conversion.cpython-310.pyc ADDED
Binary file (4.71 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_fields.cpython-310.pyc ADDED
Binary file (1.65 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/tslibs/__pycache__/test_npy_units.cpython-310.pyc ADDED
Binary file (1.33 kB). View file