Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__init__.py +221 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_add_docstring.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_char_codes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_extended_precision.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_nested_sequence.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/setup.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/_add_docstring.py +152 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/_array_like.py +167 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/_callable.pyi +338 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/_char_codes.py +111 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/_dtype_like.py +246 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/_extended_precision.py +27 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/_nbit.py +16 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/_nested_sequence.py +86 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/_scalars.py +30 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/_shape.py +7 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/_ufunc.pyi +445 -0
- env-llmeval/lib/python3.10/site-packages/numpy/_typing/setup.py +10 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/__init__.py +80 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/__init__.pyi +30 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/__pycache__/linalg.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/_umath_linalg.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/lapack_lite.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/linalg.py +2836 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/linalg.pyi +297 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_deprecations.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_linalg.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_regression.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/test_deprecations.py +20 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/test_linalg.py +2198 -0
- env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/test_regression.py +145 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/__init__.py +185 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/_polybase.py +1206 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/_polybase.pyi +71 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/chebyshev.py +2082 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/chebyshev.pyi +51 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/hermite.py +1703 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/hermite.pyi +46 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/hermite_e.py +1695 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/laguerre.pyi +46 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/legendre.py +1664 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/polynomial.py +1542 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/polynomial.pyi +41 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/polyutils.pyi +11 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/setup.py +10 -0
- env-llmeval/lib/python3.10/site-packages/numpy/polynomial/tests/__init__.py +0 -0
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__init__.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Private counterpart of ``numpy.typing``."""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from .. import ufunc
|
6 |
+
from .._utils import set_module
|
7 |
+
from typing import TYPE_CHECKING, final
|
8 |
+
|
9 |
+
|
10 |
+
@final # Disallow the creation of arbitrary `NBitBase` subclasses
|
11 |
+
@set_module("numpy.typing")
|
12 |
+
class NBitBase:
|
13 |
+
"""
|
14 |
+
A type representing `numpy.number` precision during static type checking.
|
15 |
+
|
16 |
+
Used exclusively for the purpose static type checking, `NBitBase`
|
17 |
+
represents the base of a hierarchical set of subclasses.
|
18 |
+
Each subsequent subclass is herein used for representing a lower level
|
19 |
+
of precision, *e.g.* ``64Bit > 32Bit > 16Bit``.
|
20 |
+
|
21 |
+
.. versionadded:: 1.20
|
22 |
+
|
23 |
+
Examples
|
24 |
+
--------
|
25 |
+
Below is a typical usage example: `NBitBase` is herein used for annotating
|
26 |
+
a function that takes a float and integer of arbitrary precision
|
27 |
+
as arguments and returns a new float of whichever precision is largest
|
28 |
+
(*e.g.* ``np.float16 + np.int64 -> np.float64``).
|
29 |
+
|
30 |
+
.. code-block:: python
|
31 |
+
|
32 |
+
>>> from __future__ import annotations
|
33 |
+
>>> from typing import TypeVar, TYPE_CHECKING
|
34 |
+
>>> import numpy as np
|
35 |
+
>>> import numpy.typing as npt
|
36 |
+
|
37 |
+
>>> T1 = TypeVar("T1", bound=npt.NBitBase)
|
38 |
+
>>> T2 = TypeVar("T2", bound=npt.NBitBase)
|
39 |
+
|
40 |
+
>>> def add(a: np.floating[T1], b: np.integer[T2]) -> np.floating[T1 | T2]:
|
41 |
+
... return a + b
|
42 |
+
|
43 |
+
>>> a = np.float16()
|
44 |
+
>>> b = np.int64()
|
45 |
+
>>> out = add(a, b)
|
46 |
+
|
47 |
+
>>> if TYPE_CHECKING:
|
48 |
+
... reveal_locals()
|
49 |
+
... # note: Revealed local types are:
|
50 |
+
... # note: a: numpy.floating[numpy.typing._16Bit*]
|
51 |
+
... # note: b: numpy.signedinteger[numpy.typing._64Bit*]
|
52 |
+
... # note: out: numpy.floating[numpy.typing._64Bit*]
|
53 |
+
|
54 |
+
"""
|
55 |
+
|
56 |
+
def __init_subclass__(cls) -> None:
|
57 |
+
allowed_names = {
|
58 |
+
"NBitBase", "_256Bit", "_128Bit", "_96Bit", "_80Bit",
|
59 |
+
"_64Bit", "_32Bit", "_16Bit", "_8Bit",
|
60 |
+
}
|
61 |
+
if cls.__name__ not in allowed_names:
|
62 |
+
raise TypeError('cannot inherit from final class "NBitBase"')
|
63 |
+
super().__init_subclass__()
|
64 |
+
|
65 |
+
|
66 |
+
# Silence errors about subclassing a `@final`-decorated class
|
67 |
+
class _256Bit(NBitBase): # type: ignore[misc]
|
68 |
+
pass
|
69 |
+
|
70 |
+
class _128Bit(_256Bit): # type: ignore[misc]
|
71 |
+
pass
|
72 |
+
|
73 |
+
class _96Bit(_128Bit): # type: ignore[misc]
|
74 |
+
pass
|
75 |
+
|
76 |
+
class _80Bit(_96Bit): # type: ignore[misc]
|
77 |
+
pass
|
78 |
+
|
79 |
+
class _64Bit(_80Bit): # type: ignore[misc]
|
80 |
+
pass
|
81 |
+
|
82 |
+
class _32Bit(_64Bit): # type: ignore[misc]
|
83 |
+
pass
|
84 |
+
|
85 |
+
class _16Bit(_32Bit): # type: ignore[misc]
|
86 |
+
pass
|
87 |
+
|
88 |
+
class _8Bit(_16Bit): # type: ignore[misc]
|
89 |
+
pass
|
90 |
+
|
91 |
+
|
92 |
+
from ._nested_sequence import (
|
93 |
+
_NestedSequence as _NestedSequence,
|
94 |
+
)
|
95 |
+
from ._nbit import (
|
96 |
+
_NBitByte as _NBitByte,
|
97 |
+
_NBitShort as _NBitShort,
|
98 |
+
_NBitIntC as _NBitIntC,
|
99 |
+
_NBitIntP as _NBitIntP,
|
100 |
+
_NBitInt as _NBitInt,
|
101 |
+
_NBitLongLong as _NBitLongLong,
|
102 |
+
_NBitHalf as _NBitHalf,
|
103 |
+
_NBitSingle as _NBitSingle,
|
104 |
+
_NBitDouble as _NBitDouble,
|
105 |
+
_NBitLongDouble as _NBitLongDouble,
|
106 |
+
)
|
107 |
+
from ._char_codes import (
|
108 |
+
_BoolCodes as _BoolCodes,
|
109 |
+
_UInt8Codes as _UInt8Codes,
|
110 |
+
_UInt16Codes as _UInt16Codes,
|
111 |
+
_UInt32Codes as _UInt32Codes,
|
112 |
+
_UInt64Codes as _UInt64Codes,
|
113 |
+
_Int8Codes as _Int8Codes,
|
114 |
+
_Int16Codes as _Int16Codes,
|
115 |
+
_Int32Codes as _Int32Codes,
|
116 |
+
_Int64Codes as _Int64Codes,
|
117 |
+
_Float16Codes as _Float16Codes,
|
118 |
+
_Float32Codes as _Float32Codes,
|
119 |
+
_Float64Codes as _Float64Codes,
|
120 |
+
_Complex64Codes as _Complex64Codes,
|
121 |
+
_Complex128Codes as _Complex128Codes,
|
122 |
+
_ByteCodes as _ByteCodes,
|
123 |
+
_ShortCodes as _ShortCodes,
|
124 |
+
_IntCCodes as _IntCCodes,
|
125 |
+
_IntPCodes as _IntPCodes,
|
126 |
+
_IntCodes as _IntCodes,
|
127 |
+
_LongLongCodes as _LongLongCodes,
|
128 |
+
_UByteCodes as _UByteCodes,
|
129 |
+
_UShortCodes as _UShortCodes,
|
130 |
+
_UIntCCodes as _UIntCCodes,
|
131 |
+
_UIntPCodes as _UIntPCodes,
|
132 |
+
_UIntCodes as _UIntCodes,
|
133 |
+
_ULongLongCodes as _ULongLongCodes,
|
134 |
+
_HalfCodes as _HalfCodes,
|
135 |
+
_SingleCodes as _SingleCodes,
|
136 |
+
_DoubleCodes as _DoubleCodes,
|
137 |
+
_LongDoubleCodes as _LongDoubleCodes,
|
138 |
+
_CSingleCodes as _CSingleCodes,
|
139 |
+
_CDoubleCodes as _CDoubleCodes,
|
140 |
+
_CLongDoubleCodes as _CLongDoubleCodes,
|
141 |
+
_DT64Codes as _DT64Codes,
|
142 |
+
_TD64Codes as _TD64Codes,
|
143 |
+
_StrCodes as _StrCodes,
|
144 |
+
_BytesCodes as _BytesCodes,
|
145 |
+
_VoidCodes as _VoidCodes,
|
146 |
+
_ObjectCodes as _ObjectCodes,
|
147 |
+
)
|
148 |
+
from ._scalars import (
|
149 |
+
_CharLike_co as _CharLike_co,
|
150 |
+
_BoolLike_co as _BoolLike_co,
|
151 |
+
_UIntLike_co as _UIntLike_co,
|
152 |
+
_IntLike_co as _IntLike_co,
|
153 |
+
_FloatLike_co as _FloatLike_co,
|
154 |
+
_ComplexLike_co as _ComplexLike_co,
|
155 |
+
_TD64Like_co as _TD64Like_co,
|
156 |
+
_NumberLike_co as _NumberLike_co,
|
157 |
+
_ScalarLike_co as _ScalarLike_co,
|
158 |
+
_VoidLike_co as _VoidLike_co,
|
159 |
+
)
|
160 |
+
from ._shape import (
|
161 |
+
_Shape as _Shape,
|
162 |
+
_ShapeLike as _ShapeLike,
|
163 |
+
)
|
164 |
+
from ._dtype_like import (
|
165 |
+
DTypeLike as DTypeLike,
|
166 |
+
_DTypeLike as _DTypeLike,
|
167 |
+
_SupportsDType as _SupportsDType,
|
168 |
+
_VoidDTypeLike as _VoidDTypeLike,
|
169 |
+
_DTypeLikeBool as _DTypeLikeBool,
|
170 |
+
_DTypeLikeUInt as _DTypeLikeUInt,
|
171 |
+
_DTypeLikeInt as _DTypeLikeInt,
|
172 |
+
_DTypeLikeFloat as _DTypeLikeFloat,
|
173 |
+
_DTypeLikeComplex as _DTypeLikeComplex,
|
174 |
+
_DTypeLikeTD64 as _DTypeLikeTD64,
|
175 |
+
_DTypeLikeDT64 as _DTypeLikeDT64,
|
176 |
+
_DTypeLikeObject as _DTypeLikeObject,
|
177 |
+
_DTypeLikeVoid as _DTypeLikeVoid,
|
178 |
+
_DTypeLikeStr as _DTypeLikeStr,
|
179 |
+
_DTypeLikeBytes as _DTypeLikeBytes,
|
180 |
+
_DTypeLikeComplex_co as _DTypeLikeComplex_co,
|
181 |
+
)
|
182 |
+
from ._array_like import (
|
183 |
+
NDArray as NDArray,
|
184 |
+
ArrayLike as ArrayLike,
|
185 |
+
_ArrayLike as _ArrayLike,
|
186 |
+
_FiniteNestedSequence as _FiniteNestedSequence,
|
187 |
+
_SupportsArray as _SupportsArray,
|
188 |
+
_SupportsArrayFunc as _SupportsArrayFunc,
|
189 |
+
_ArrayLikeInt as _ArrayLikeInt,
|
190 |
+
_ArrayLikeBool_co as _ArrayLikeBool_co,
|
191 |
+
_ArrayLikeUInt_co as _ArrayLikeUInt_co,
|
192 |
+
_ArrayLikeInt_co as _ArrayLikeInt_co,
|
193 |
+
_ArrayLikeFloat_co as _ArrayLikeFloat_co,
|
194 |
+
_ArrayLikeComplex_co as _ArrayLikeComplex_co,
|
195 |
+
_ArrayLikeNumber_co as _ArrayLikeNumber_co,
|
196 |
+
_ArrayLikeTD64_co as _ArrayLikeTD64_co,
|
197 |
+
_ArrayLikeDT64_co as _ArrayLikeDT64_co,
|
198 |
+
_ArrayLikeObject_co as _ArrayLikeObject_co,
|
199 |
+
_ArrayLikeVoid_co as _ArrayLikeVoid_co,
|
200 |
+
_ArrayLikeStr_co as _ArrayLikeStr_co,
|
201 |
+
_ArrayLikeBytes_co as _ArrayLikeBytes_co,
|
202 |
+
_ArrayLikeUnknown as _ArrayLikeUnknown,
|
203 |
+
_UnknownType as _UnknownType,
|
204 |
+
)
|
205 |
+
|
206 |
+
if TYPE_CHECKING:
|
207 |
+
from ._ufunc import (
|
208 |
+
_UFunc_Nin1_Nout1 as _UFunc_Nin1_Nout1,
|
209 |
+
_UFunc_Nin2_Nout1 as _UFunc_Nin2_Nout1,
|
210 |
+
_UFunc_Nin1_Nout2 as _UFunc_Nin1_Nout2,
|
211 |
+
_UFunc_Nin2_Nout2 as _UFunc_Nin2_Nout2,
|
212 |
+
_GUFunc_Nin2_Nout1 as _GUFunc_Nin2_Nout1,
|
213 |
+
)
|
214 |
+
else:
|
215 |
+
# Declare the (type-check-only) ufunc subclasses as ufunc aliases during
|
216 |
+
# runtime; this helps autocompletion tools such as Jedi (numpy/numpy#19834)
|
217 |
+
_UFunc_Nin1_Nout1 = ufunc
|
218 |
+
_UFunc_Nin2_Nout1 = ufunc
|
219 |
+
_UFunc_Nin1_Nout2 = ufunc
|
220 |
+
_UFunc_Nin2_Nout2 = ufunc
|
221 |
+
_GUFunc_Nin2_Nout1 = ufunc
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (6.13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_add_docstring.cpython-310.pyc
ADDED
Binary file (3.81 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_char_codes.cpython-310.pyc
ADDED
Binary file (5.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_extended_precision.cpython-310.pyc
ADDED
Binary file (870 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/_nested_sequence.cpython-310.pyc
ADDED
Binary file (3.27 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/__pycache__/setup.cpython-310.pyc
ADDED
Binary file (559 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/_add_docstring.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module for creating docstrings for sphinx ``data`` domains."""
|
2 |
+
|
3 |
+
import re
|
4 |
+
import textwrap
|
5 |
+
|
6 |
+
from ._array_like import NDArray
|
7 |
+
|
8 |
+
_docstrings_list = []
|
9 |
+
|
10 |
+
|
11 |
+
def add_newdoc(name: str, value: str, doc: str) -> None:
|
12 |
+
"""Append ``_docstrings_list`` with a docstring for `name`.
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
----------
|
16 |
+
name : str
|
17 |
+
The name of the object.
|
18 |
+
value : str
|
19 |
+
A string-representation of the object.
|
20 |
+
doc : str
|
21 |
+
The docstring of the object.
|
22 |
+
|
23 |
+
"""
|
24 |
+
_docstrings_list.append((name, value, doc))
|
25 |
+
|
26 |
+
|
27 |
+
def _parse_docstrings() -> str:
|
28 |
+
"""Convert all docstrings in ``_docstrings_list`` into a single
|
29 |
+
sphinx-legible text block.
|
30 |
+
|
31 |
+
"""
|
32 |
+
type_list_ret = []
|
33 |
+
for name, value, doc in _docstrings_list:
|
34 |
+
s = textwrap.dedent(doc).replace("\n", "\n ")
|
35 |
+
|
36 |
+
# Replace sections by rubrics
|
37 |
+
lines = s.split("\n")
|
38 |
+
new_lines = []
|
39 |
+
indent = ""
|
40 |
+
for line in lines:
|
41 |
+
m = re.match(r'^(\s+)[-=]+\s*$', line)
|
42 |
+
if m and new_lines:
|
43 |
+
prev = textwrap.dedent(new_lines.pop())
|
44 |
+
if prev == "Examples":
|
45 |
+
indent = ""
|
46 |
+
new_lines.append(f'{m.group(1)}.. rubric:: {prev}')
|
47 |
+
else:
|
48 |
+
indent = 4 * " "
|
49 |
+
new_lines.append(f'{m.group(1)}.. admonition:: {prev}')
|
50 |
+
new_lines.append("")
|
51 |
+
else:
|
52 |
+
new_lines.append(f"{indent}{line}")
|
53 |
+
|
54 |
+
s = "\n".join(new_lines)
|
55 |
+
s_block = f""".. data:: {name}\n :value: {value}\n {s}"""
|
56 |
+
type_list_ret.append(s_block)
|
57 |
+
return "\n".join(type_list_ret)
|
58 |
+
|
59 |
+
|
60 |
+
add_newdoc('ArrayLike', 'typing.Union[...]',
|
61 |
+
"""
|
62 |
+
A `~typing.Union` representing objects that can be coerced
|
63 |
+
into an `~numpy.ndarray`.
|
64 |
+
|
65 |
+
Among others this includes the likes of:
|
66 |
+
|
67 |
+
* Scalars.
|
68 |
+
* (Nested) sequences.
|
69 |
+
* Objects implementing the `~class.__array__` protocol.
|
70 |
+
|
71 |
+
.. versionadded:: 1.20
|
72 |
+
|
73 |
+
See Also
|
74 |
+
--------
|
75 |
+
:term:`array_like`:
|
76 |
+
Any scalar or sequence that can be interpreted as an ndarray.
|
77 |
+
|
78 |
+
Examples
|
79 |
+
--------
|
80 |
+
.. code-block:: python
|
81 |
+
|
82 |
+
>>> import numpy as np
|
83 |
+
>>> import numpy.typing as npt
|
84 |
+
|
85 |
+
>>> def as_array(a: npt.ArrayLike) -> np.ndarray:
|
86 |
+
... return np.array(a)
|
87 |
+
|
88 |
+
""")
|
89 |
+
|
90 |
+
add_newdoc('DTypeLike', 'typing.Union[...]',
|
91 |
+
"""
|
92 |
+
A `~typing.Union` representing objects that can be coerced
|
93 |
+
into a `~numpy.dtype`.
|
94 |
+
|
95 |
+
Among others this includes the likes of:
|
96 |
+
|
97 |
+
* :class:`type` objects.
|
98 |
+
* Character codes or the names of :class:`type` objects.
|
99 |
+
* Objects with the ``.dtype`` attribute.
|
100 |
+
|
101 |
+
.. versionadded:: 1.20
|
102 |
+
|
103 |
+
See Also
|
104 |
+
--------
|
105 |
+
:ref:`Specifying and constructing data types <arrays.dtypes.constructing>`
|
106 |
+
A comprehensive overview of all objects that can be coerced
|
107 |
+
into data types.
|
108 |
+
|
109 |
+
Examples
|
110 |
+
--------
|
111 |
+
.. code-block:: python
|
112 |
+
|
113 |
+
>>> import numpy as np
|
114 |
+
>>> import numpy.typing as npt
|
115 |
+
|
116 |
+
>>> def as_dtype(d: npt.DTypeLike) -> np.dtype:
|
117 |
+
... return np.dtype(d)
|
118 |
+
|
119 |
+
""")
|
120 |
+
|
121 |
+
add_newdoc('NDArray', repr(NDArray),
|
122 |
+
"""
|
123 |
+
A :term:`generic <generic type>` version of
|
124 |
+
`np.ndarray[Any, np.dtype[+ScalarType]] <numpy.ndarray>`.
|
125 |
+
|
126 |
+
Can be used during runtime for typing arrays with a given dtype
|
127 |
+
and unspecified shape.
|
128 |
+
|
129 |
+
.. versionadded:: 1.21
|
130 |
+
|
131 |
+
Examples
|
132 |
+
--------
|
133 |
+
.. code-block:: python
|
134 |
+
|
135 |
+
>>> import numpy as np
|
136 |
+
>>> import numpy.typing as npt
|
137 |
+
|
138 |
+
>>> print(npt.NDArray)
|
139 |
+
numpy.ndarray[typing.Any, numpy.dtype[+ScalarType]]
|
140 |
+
|
141 |
+
>>> print(npt.NDArray[np.float64])
|
142 |
+
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]
|
143 |
+
|
144 |
+
>>> NDArrayInt = npt.NDArray[np.int_]
|
145 |
+
>>> a: NDArrayInt = np.arange(10)
|
146 |
+
|
147 |
+
>>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]:
|
148 |
+
... return np.array(a)
|
149 |
+
|
150 |
+
""")
|
151 |
+
|
152 |
+
_docstrings = _parse_docstrings()
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/_array_like.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import sys
|
4 |
+
from collections.abc import Collection, Callable, Sequence
|
5 |
+
from typing import Any, Protocol, Union, TypeVar, runtime_checkable
|
6 |
+
|
7 |
+
from numpy import (
|
8 |
+
ndarray,
|
9 |
+
dtype,
|
10 |
+
generic,
|
11 |
+
bool_,
|
12 |
+
unsignedinteger,
|
13 |
+
integer,
|
14 |
+
floating,
|
15 |
+
complexfloating,
|
16 |
+
number,
|
17 |
+
timedelta64,
|
18 |
+
datetime64,
|
19 |
+
object_,
|
20 |
+
void,
|
21 |
+
str_,
|
22 |
+
bytes_,
|
23 |
+
)
|
24 |
+
from ._nested_sequence import _NestedSequence
|
25 |
+
|
26 |
+
_T = TypeVar("_T")
|
27 |
+
_ScalarType = TypeVar("_ScalarType", bound=generic)
|
28 |
+
_ScalarType_co = TypeVar("_ScalarType_co", bound=generic, covariant=True)
|
29 |
+
_DType = TypeVar("_DType", bound=dtype[Any])
|
30 |
+
_DType_co = TypeVar("_DType_co", covariant=True, bound=dtype[Any])
|
31 |
+
|
32 |
+
NDArray = ndarray[Any, dtype[_ScalarType_co]]
|
33 |
+
|
34 |
+
# The `_SupportsArray` protocol only cares about the default dtype
|
35 |
+
# (i.e. `dtype=None` or no `dtype` parameter at all) of the to-be returned
|
36 |
+
# array.
|
37 |
+
# Concrete implementations of the protocol are responsible for adding
|
38 |
+
# any and all remaining overloads
|
39 |
+
@runtime_checkable
|
40 |
+
class _SupportsArray(Protocol[_DType_co]):
|
41 |
+
def __array__(self) -> ndarray[Any, _DType_co]: ...
|
42 |
+
|
43 |
+
|
44 |
+
@runtime_checkable
|
45 |
+
class _SupportsArrayFunc(Protocol):
|
46 |
+
"""A protocol class representing `~class.__array_function__`."""
|
47 |
+
def __array_function__(
|
48 |
+
self,
|
49 |
+
func: Callable[..., Any],
|
50 |
+
types: Collection[type[Any]],
|
51 |
+
args: tuple[Any, ...],
|
52 |
+
kwargs: dict[str, Any],
|
53 |
+
) -> object: ...
|
54 |
+
|
55 |
+
|
56 |
+
# TODO: Wait until mypy supports recursive objects in combination with typevars
|
57 |
+
_FiniteNestedSequence = Union[
|
58 |
+
_T,
|
59 |
+
Sequence[_T],
|
60 |
+
Sequence[Sequence[_T]],
|
61 |
+
Sequence[Sequence[Sequence[_T]]],
|
62 |
+
Sequence[Sequence[Sequence[Sequence[_T]]]],
|
63 |
+
]
|
64 |
+
|
65 |
+
# A subset of `npt.ArrayLike` that can be parametrized w.r.t. `np.generic`
|
66 |
+
_ArrayLike = Union[
|
67 |
+
_SupportsArray[dtype[_ScalarType]],
|
68 |
+
_NestedSequence[_SupportsArray[dtype[_ScalarType]]],
|
69 |
+
]
|
70 |
+
|
71 |
+
# A union representing array-like objects; consists of two typevars:
|
72 |
+
# One representing types that can be parametrized w.r.t. `np.dtype`
|
73 |
+
# and another one for the rest
|
74 |
+
_DualArrayLike = Union[
|
75 |
+
_SupportsArray[_DType],
|
76 |
+
_NestedSequence[_SupportsArray[_DType]],
|
77 |
+
_T,
|
78 |
+
_NestedSequence[_T],
|
79 |
+
]
|
80 |
+
|
81 |
+
if sys.version_info >= (3, 12):
|
82 |
+
from collections.abc import Buffer
|
83 |
+
|
84 |
+
ArrayLike = Buffer | _DualArrayLike[
|
85 |
+
dtype[Any],
|
86 |
+
Union[bool, int, float, complex, str, bytes],
|
87 |
+
]
|
88 |
+
else:
|
89 |
+
ArrayLike = _DualArrayLike[
|
90 |
+
dtype[Any],
|
91 |
+
Union[bool, int, float, complex, str, bytes],
|
92 |
+
]
|
93 |
+
|
94 |
+
# `ArrayLike<X>_co`: array-like objects that can be coerced into `X`
|
95 |
+
# given the casting rules `same_kind`
|
96 |
+
_ArrayLikeBool_co = _DualArrayLike[
|
97 |
+
dtype[bool_],
|
98 |
+
bool,
|
99 |
+
]
|
100 |
+
_ArrayLikeUInt_co = _DualArrayLike[
|
101 |
+
dtype[Union[bool_, unsignedinteger[Any]]],
|
102 |
+
bool,
|
103 |
+
]
|
104 |
+
_ArrayLikeInt_co = _DualArrayLike[
|
105 |
+
dtype[Union[bool_, integer[Any]]],
|
106 |
+
Union[bool, int],
|
107 |
+
]
|
108 |
+
_ArrayLikeFloat_co = _DualArrayLike[
|
109 |
+
dtype[Union[bool_, integer[Any], floating[Any]]],
|
110 |
+
Union[bool, int, float],
|
111 |
+
]
|
112 |
+
_ArrayLikeComplex_co = _DualArrayLike[
|
113 |
+
dtype[Union[
|
114 |
+
bool_,
|
115 |
+
integer[Any],
|
116 |
+
floating[Any],
|
117 |
+
complexfloating[Any, Any],
|
118 |
+
]],
|
119 |
+
Union[bool, int, float, complex],
|
120 |
+
]
|
121 |
+
_ArrayLikeNumber_co = _DualArrayLike[
|
122 |
+
dtype[Union[bool_, number[Any]]],
|
123 |
+
Union[bool, int, float, complex],
|
124 |
+
]
|
125 |
+
_ArrayLikeTD64_co = _DualArrayLike[
|
126 |
+
dtype[Union[bool_, integer[Any], timedelta64]],
|
127 |
+
Union[bool, int],
|
128 |
+
]
|
129 |
+
_ArrayLikeDT64_co = Union[
|
130 |
+
_SupportsArray[dtype[datetime64]],
|
131 |
+
_NestedSequence[_SupportsArray[dtype[datetime64]]],
|
132 |
+
]
|
133 |
+
_ArrayLikeObject_co = Union[
|
134 |
+
_SupportsArray[dtype[object_]],
|
135 |
+
_NestedSequence[_SupportsArray[dtype[object_]]],
|
136 |
+
]
|
137 |
+
|
138 |
+
_ArrayLikeVoid_co = Union[
|
139 |
+
_SupportsArray[dtype[void]],
|
140 |
+
_NestedSequence[_SupportsArray[dtype[void]]],
|
141 |
+
]
|
142 |
+
_ArrayLikeStr_co = _DualArrayLike[
|
143 |
+
dtype[str_],
|
144 |
+
str,
|
145 |
+
]
|
146 |
+
_ArrayLikeBytes_co = _DualArrayLike[
|
147 |
+
dtype[bytes_],
|
148 |
+
bytes,
|
149 |
+
]
|
150 |
+
|
151 |
+
_ArrayLikeInt = _DualArrayLike[
|
152 |
+
dtype[integer[Any]],
|
153 |
+
int,
|
154 |
+
]
|
155 |
+
|
156 |
+
# Extra ArrayLike type so that pyright can deal with NDArray[Any]
|
157 |
+
# Used as the first overload, should only match NDArray[Any],
|
158 |
+
# not any actual types.
|
159 |
+
# https://github.com/numpy/numpy/pull/22193
|
160 |
+
class _UnknownType:
|
161 |
+
...
|
162 |
+
|
163 |
+
|
164 |
+
_ArrayLikeUnknown = _DualArrayLike[
|
165 |
+
dtype[_UnknownType],
|
166 |
+
_UnknownType,
|
167 |
+
]
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/_callable.pyi
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A module with various ``typing.Protocol`` subclasses that implement
|
3 |
+
the ``__call__`` magic method.
|
4 |
+
|
5 |
+
See the `Mypy documentation`_ on protocols for more details.
|
6 |
+
|
7 |
+
.. _`Mypy documentation`: https://mypy.readthedocs.io/en/stable/protocols.html#callback-protocols
|
8 |
+
|
9 |
+
"""
|
10 |
+
|
11 |
+
from __future__ import annotations
|
12 |
+
|
13 |
+
from typing import (
|
14 |
+
TypeVar,
|
15 |
+
overload,
|
16 |
+
Any,
|
17 |
+
NoReturn,
|
18 |
+
Protocol,
|
19 |
+
)
|
20 |
+
|
21 |
+
from numpy import (
|
22 |
+
ndarray,
|
23 |
+
dtype,
|
24 |
+
generic,
|
25 |
+
bool_,
|
26 |
+
timedelta64,
|
27 |
+
number,
|
28 |
+
integer,
|
29 |
+
unsignedinteger,
|
30 |
+
signedinteger,
|
31 |
+
int8,
|
32 |
+
int_,
|
33 |
+
floating,
|
34 |
+
float64,
|
35 |
+
complexfloating,
|
36 |
+
complex128,
|
37 |
+
)
|
38 |
+
from ._nbit import _NBitInt, _NBitDouble
|
39 |
+
from ._scalars import (
|
40 |
+
_BoolLike_co,
|
41 |
+
_IntLike_co,
|
42 |
+
_FloatLike_co,
|
43 |
+
_NumberLike_co,
|
44 |
+
)
|
45 |
+
from . import NBitBase
|
46 |
+
from ._array_like import NDArray
|
47 |
+
from ._nested_sequence import _NestedSequence
|
48 |
+
|
49 |
+
_T1 = TypeVar("_T1")
|
50 |
+
_T2 = TypeVar("_T2")
|
51 |
+
_T1_contra = TypeVar("_T1_contra", contravariant=True)
|
52 |
+
_T2_contra = TypeVar("_T2_contra", contravariant=True)
|
53 |
+
_2Tuple = tuple[_T1, _T1]
|
54 |
+
|
55 |
+
_NBit1 = TypeVar("_NBit1", bound=NBitBase)
|
56 |
+
_NBit2 = TypeVar("_NBit2", bound=NBitBase)
|
57 |
+
|
58 |
+
_IntType = TypeVar("_IntType", bound=integer)
|
59 |
+
_FloatType = TypeVar("_FloatType", bound=floating)
|
60 |
+
_NumberType = TypeVar("_NumberType", bound=number)
|
61 |
+
_NumberType_co = TypeVar("_NumberType_co", covariant=True, bound=number)
|
62 |
+
_GenericType_co = TypeVar("_GenericType_co", covariant=True, bound=generic)
|
63 |
+
|
64 |
+
class _BoolOp(Protocol[_GenericType_co]):
|
65 |
+
@overload
|
66 |
+
def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ...
|
67 |
+
@overload # platform dependent
|
68 |
+
def __call__(self, other: int, /) -> int_: ...
|
69 |
+
@overload
|
70 |
+
def __call__(self, other: float, /) -> float64: ...
|
71 |
+
@overload
|
72 |
+
def __call__(self, other: complex, /) -> complex128: ...
|
73 |
+
@overload
|
74 |
+
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
75 |
+
|
76 |
+
class _BoolBitOp(Protocol[_GenericType_co]):
|
77 |
+
@overload
|
78 |
+
def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ...
|
79 |
+
@overload # platform dependent
|
80 |
+
def __call__(self, other: int, /) -> int_: ...
|
81 |
+
@overload
|
82 |
+
def __call__(self, other: _IntType, /) -> _IntType: ...
|
83 |
+
|
84 |
+
class _BoolSub(Protocol):
|
85 |
+
# Note that `other: bool_` is absent here
|
86 |
+
@overload
|
87 |
+
def __call__(self, other: bool, /) -> NoReturn: ...
|
88 |
+
@overload # platform dependent
|
89 |
+
def __call__(self, other: int, /) -> int_: ...
|
90 |
+
@overload
|
91 |
+
def __call__(self, other: float, /) -> float64: ...
|
92 |
+
@overload
|
93 |
+
def __call__(self, other: complex, /) -> complex128: ...
|
94 |
+
@overload
|
95 |
+
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
96 |
+
|
97 |
+
class _BoolTrueDiv(Protocol):
|
98 |
+
@overload
|
99 |
+
def __call__(self, other: float | _IntLike_co, /) -> float64: ...
|
100 |
+
@overload
|
101 |
+
def __call__(self, other: complex, /) -> complex128: ...
|
102 |
+
@overload
|
103 |
+
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
104 |
+
|
105 |
+
class _BoolMod(Protocol):
|
106 |
+
@overload
|
107 |
+
def __call__(self, other: _BoolLike_co, /) -> int8: ...
|
108 |
+
@overload # platform dependent
|
109 |
+
def __call__(self, other: int, /) -> int_: ...
|
110 |
+
@overload
|
111 |
+
def __call__(self, other: float, /) -> float64: ...
|
112 |
+
@overload
|
113 |
+
def __call__(self, other: _IntType, /) -> _IntType: ...
|
114 |
+
@overload
|
115 |
+
def __call__(self, other: _FloatType, /) -> _FloatType: ...
|
116 |
+
|
117 |
+
class _BoolDivMod(Protocol):
|
118 |
+
@overload
|
119 |
+
def __call__(self, other: _BoolLike_co, /) -> _2Tuple[int8]: ...
|
120 |
+
@overload # platform dependent
|
121 |
+
def __call__(self, other: int, /) -> _2Tuple[int_]: ...
|
122 |
+
@overload
|
123 |
+
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
124 |
+
@overload
|
125 |
+
def __call__(self, other: _IntType, /) -> _2Tuple[_IntType]: ...
|
126 |
+
@overload
|
127 |
+
def __call__(self, other: _FloatType, /) -> _2Tuple[_FloatType]: ...
|
128 |
+
|
129 |
+
class _TD64Div(Protocol[_NumberType_co]):
|
130 |
+
@overload
|
131 |
+
def __call__(self, other: timedelta64, /) -> _NumberType_co: ...
|
132 |
+
@overload
|
133 |
+
def __call__(self, other: _BoolLike_co, /) -> NoReturn: ...
|
134 |
+
@overload
|
135 |
+
def __call__(self, other: _FloatLike_co, /) -> timedelta64: ...
|
136 |
+
|
137 |
+
class _IntTrueDiv(Protocol[_NBit1]):
|
138 |
+
@overload
|
139 |
+
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
140 |
+
@overload
|
141 |
+
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
142 |
+
@overload
|
143 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
144 |
+
@overload
|
145 |
+
def __call__(
|
146 |
+
self, other: complex, /,
|
147 |
+
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
148 |
+
@overload
|
149 |
+
def __call__(self, other: integer[_NBit2], /) -> floating[_NBit1 | _NBit2]: ...
|
150 |
+
|
151 |
+
class _UnsignedIntOp(Protocol[_NBit1]):
|
152 |
+
# NOTE: `uint64 + signedinteger -> float64`
|
153 |
+
@overload
|
154 |
+
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
155 |
+
@overload
|
156 |
+
def __call__(
|
157 |
+
self, other: int | signedinteger[Any], /
|
158 |
+
) -> Any: ...
|
159 |
+
@overload
|
160 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
161 |
+
@overload
|
162 |
+
def __call__(
|
163 |
+
self, other: complex, /,
|
164 |
+
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
165 |
+
@overload
|
166 |
+
def __call__(
|
167 |
+
self, other: unsignedinteger[_NBit2], /
|
168 |
+
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
169 |
+
|
170 |
+
class _UnsignedIntBitOp(Protocol[_NBit1]):
|
171 |
+
@overload
|
172 |
+
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
173 |
+
@overload
|
174 |
+
def __call__(self, other: int, /) -> signedinteger[Any]: ...
|
175 |
+
@overload
|
176 |
+
def __call__(self, other: signedinteger[Any], /) -> signedinteger[Any]: ...
|
177 |
+
@overload
|
178 |
+
def __call__(
|
179 |
+
self, other: unsignedinteger[_NBit2], /
|
180 |
+
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
181 |
+
|
182 |
+
class _UnsignedIntMod(Protocol[_NBit1]):
|
183 |
+
@overload
|
184 |
+
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
185 |
+
@overload
|
186 |
+
def __call__(
|
187 |
+
self, other: int | signedinteger[Any], /
|
188 |
+
) -> Any: ...
|
189 |
+
@overload
|
190 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
191 |
+
@overload
|
192 |
+
def __call__(
|
193 |
+
self, other: unsignedinteger[_NBit2], /
|
194 |
+
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
195 |
+
|
196 |
+
class _UnsignedIntDivMod(Protocol[_NBit1]):
|
197 |
+
@overload
|
198 |
+
def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ...
|
199 |
+
@overload
|
200 |
+
def __call__(
|
201 |
+
self, other: int | signedinteger[Any], /
|
202 |
+
) -> _2Tuple[Any]: ...
|
203 |
+
@overload
|
204 |
+
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
205 |
+
@overload
|
206 |
+
def __call__(
|
207 |
+
self, other: unsignedinteger[_NBit2], /
|
208 |
+
) -> _2Tuple[unsignedinteger[_NBit1 | _NBit2]]: ...
|
209 |
+
|
210 |
+
class _SignedIntOp(Protocol[_NBit1]):
|
211 |
+
@overload
|
212 |
+
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
213 |
+
@overload
|
214 |
+
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
215 |
+
@overload
|
216 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
217 |
+
@overload
|
218 |
+
def __call__(
|
219 |
+
self, other: complex, /,
|
220 |
+
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
221 |
+
@overload
|
222 |
+
def __call__(
|
223 |
+
self, other: signedinteger[_NBit2], /,
|
224 |
+
) -> signedinteger[_NBit1 | _NBit2]: ...
|
225 |
+
|
226 |
+
class _SignedIntBitOp(Protocol[_NBit1]):
|
227 |
+
@overload
|
228 |
+
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
229 |
+
@overload
|
230 |
+
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
231 |
+
@overload
|
232 |
+
def __call__(
|
233 |
+
self, other: signedinteger[_NBit2], /,
|
234 |
+
) -> signedinteger[_NBit1 | _NBit2]: ...
|
235 |
+
|
236 |
+
class _SignedIntMod(Protocol[_NBit1]):
|
237 |
+
@overload
|
238 |
+
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
239 |
+
@overload
|
240 |
+
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
241 |
+
@overload
|
242 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
243 |
+
@overload
|
244 |
+
def __call__(
|
245 |
+
self, other: signedinteger[_NBit2], /,
|
246 |
+
) -> signedinteger[_NBit1 | _NBit2]: ...
|
247 |
+
|
248 |
+
class _SignedIntDivMod(Protocol[_NBit1]):
|
249 |
+
@overload
|
250 |
+
def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ...
|
251 |
+
@overload
|
252 |
+
def __call__(self, other: int, /) -> _2Tuple[signedinteger[_NBit1 | _NBitInt]]: ...
|
253 |
+
@overload
|
254 |
+
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
255 |
+
@overload
|
256 |
+
def __call__(
|
257 |
+
self, other: signedinteger[_NBit2], /,
|
258 |
+
) -> _2Tuple[signedinteger[_NBit1 | _NBit2]]: ...
|
259 |
+
|
260 |
+
class _FloatOp(Protocol[_NBit1]):
|
261 |
+
@overload
|
262 |
+
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
263 |
+
@overload
|
264 |
+
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
265 |
+
@overload
|
266 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
267 |
+
@overload
|
268 |
+
def __call__(
|
269 |
+
self, other: complex, /,
|
270 |
+
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
271 |
+
@overload
|
272 |
+
def __call__(
|
273 |
+
self, other: integer[_NBit2] | floating[_NBit2], /
|
274 |
+
) -> floating[_NBit1 | _NBit2]: ...
|
275 |
+
|
276 |
+
class _FloatMod(Protocol[_NBit1]):
|
277 |
+
@overload
|
278 |
+
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
279 |
+
@overload
|
280 |
+
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
281 |
+
@overload
|
282 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
283 |
+
@overload
|
284 |
+
def __call__(
|
285 |
+
self, other: integer[_NBit2] | floating[_NBit2], /
|
286 |
+
) -> floating[_NBit1 | _NBit2]: ...
|
287 |
+
|
288 |
+
class _FloatDivMod(Protocol[_NBit1]):
|
289 |
+
@overload
|
290 |
+
def __call__(self, other: bool, /) -> _2Tuple[floating[_NBit1]]: ...
|
291 |
+
@overload
|
292 |
+
def __call__(self, other: int, /) -> _2Tuple[floating[_NBit1 | _NBitInt]]: ...
|
293 |
+
@overload
|
294 |
+
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
295 |
+
@overload
|
296 |
+
def __call__(
|
297 |
+
self, other: integer[_NBit2] | floating[_NBit2], /
|
298 |
+
) -> _2Tuple[floating[_NBit1 | _NBit2]]: ...
|
299 |
+
|
300 |
+
class _ComplexOp(Protocol[_NBit1]):
|
301 |
+
@overload
|
302 |
+
def __call__(self, other: bool, /) -> complexfloating[_NBit1, _NBit1]: ...
|
303 |
+
@overload
|
304 |
+
def __call__(self, other: int, /) -> complexfloating[_NBit1 | _NBitInt, _NBit1 | _NBitInt]: ...
|
305 |
+
@overload
|
306 |
+
def __call__(
|
307 |
+
self, other: complex, /,
|
308 |
+
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
309 |
+
@overload
|
310 |
+
def __call__(
|
311 |
+
self,
|
312 |
+
other: (
|
313 |
+
integer[_NBit2]
|
314 |
+
| floating[_NBit2]
|
315 |
+
| complexfloating[_NBit2, _NBit2]
|
316 |
+
), /,
|
317 |
+
) -> complexfloating[_NBit1 | _NBit2, _NBit1 | _NBit2]: ...
|
318 |
+
|
319 |
+
class _NumberOp(Protocol):
|
320 |
+
def __call__(self, other: _NumberLike_co, /) -> Any: ...
|
321 |
+
|
322 |
+
class _SupportsLT(Protocol):
|
323 |
+
def __lt__(self, other: Any, /) -> object: ...
|
324 |
+
|
325 |
+
class _SupportsGT(Protocol):
|
326 |
+
def __gt__(self, other: Any, /) -> object: ...
|
327 |
+
|
328 |
+
class _ComparisonOp(Protocol[_T1_contra, _T2_contra]):
|
329 |
+
@overload
|
330 |
+
def __call__(self, other: _T1_contra, /) -> bool_: ...
|
331 |
+
@overload
|
332 |
+
def __call__(self, other: _T2_contra, /) -> NDArray[bool_]: ...
|
333 |
+
@overload
|
334 |
+
def __call__(
|
335 |
+
self,
|
336 |
+
other: _SupportsLT | _SupportsGT | _NestedSequence[_SupportsLT | _SupportsGT],
|
337 |
+
/,
|
338 |
+
) -> Any: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/_char_codes.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
|
3 |
+
_BoolCodes = Literal["?", "=?", "<?", ">?", "bool", "bool_", "bool8"]
|
4 |
+
|
5 |
+
_UInt8Codes = Literal["uint8", "u1", "=u1", "<u1", ">u1"]
|
6 |
+
_UInt16Codes = Literal["uint16", "u2", "=u2", "<u2", ">u2"]
|
7 |
+
_UInt32Codes = Literal["uint32", "u4", "=u4", "<u4", ">u4"]
|
8 |
+
_UInt64Codes = Literal["uint64", "u8", "=u8", "<u8", ">u8"]
|
9 |
+
|
10 |
+
_Int8Codes = Literal["int8", "i1", "=i1", "<i1", ">i1"]
|
11 |
+
_Int16Codes = Literal["int16", "i2", "=i2", "<i2", ">i2"]
|
12 |
+
_Int32Codes = Literal["int32", "i4", "=i4", "<i4", ">i4"]
|
13 |
+
_Int64Codes = Literal["int64", "i8", "=i8", "<i8", ">i8"]
|
14 |
+
|
15 |
+
_Float16Codes = Literal["float16", "f2", "=f2", "<f2", ">f2"]
|
16 |
+
_Float32Codes = Literal["float32", "f4", "=f4", "<f4", ">f4"]
|
17 |
+
_Float64Codes = Literal["float64", "f8", "=f8", "<f8", ">f8"]
|
18 |
+
|
19 |
+
_Complex64Codes = Literal["complex64", "c8", "=c8", "<c8", ">c8"]
|
20 |
+
_Complex128Codes = Literal["complex128", "c16", "=c16", "<c16", ">c16"]
|
21 |
+
|
22 |
+
_ByteCodes = Literal["byte", "b", "=b", "<b", ">b"]
|
23 |
+
_ShortCodes = Literal["short", "h", "=h", "<h", ">h"]
|
24 |
+
_IntCCodes = Literal["intc", "i", "=i", "<i", ">i"]
|
25 |
+
_IntPCodes = Literal["intp", "int0", "p", "=p", "<p", ">p"]
|
26 |
+
_IntCodes = Literal["long", "int", "int_", "l", "=l", "<l", ">l"]
|
27 |
+
_LongLongCodes = Literal["longlong", "q", "=q", "<q", ">q"]
|
28 |
+
|
29 |
+
_UByteCodes = Literal["ubyte", "B", "=B", "<B", ">B"]
|
30 |
+
_UShortCodes = Literal["ushort", "H", "=H", "<H", ">H"]
|
31 |
+
_UIntCCodes = Literal["uintc", "I", "=I", "<I", ">I"]
|
32 |
+
_UIntPCodes = Literal["uintp", "uint0", "P", "=P", "<P", ">P"]
|
33 |
+
_UIntCodes = Literal["ulong", "uint", "L", "=L", "<L", ">L"]
|
34 |
+
_ULongLongCodes = Literal["ulonglong", "Q", "=Q", "<Q", ">Q"]
|
35 |
+
|
36 |
+
_HalfCodes = Literal["half", "e", "=e", "<e", ">e"]
|
37 |
+
_SingleCodes = Literal["single", "f", "=f", "<f", ">f"]
|
38 |
+
_DoubleCodes = Literal["double", "float", "float_", "d", "=d", "<d", ">d"]
|
39 |
+
_LongDoubleCodes = Literal["longdouble", "longfloat", "g", "=g", "<g", ">g"]
|
40 |
+
|
41 |
+
_CSingleCodes = Literal["csingle", "singlecomplex", "F", "=F", "<F", ">F"]
|
42 |
+
_CDoubleCodes = Literal["cdouble", "complex", "complex_", "cfloat", "D", "=D", "<D", ">D"]
|
43 |
+
_CLongDoubleCodes = Literal["clongdouble", "clongfloat", "longcomplex", "G", "=G", "<G", ">G"]
|
44 |
+
|
45 |
+
_StrCodes = Literal["str", "str_", "str0", "unicode", "unicode_", "U", "=U", "<U", ">U"]
|
46 |
+
_BytesCodes = Literal["bytes", "bytes_", "bytes0", "S", "=S", "<S", ">S"]
|
47 |
+
_VoidCodes = Literal["void", "void0", "V", "=V", "<V", ">V"]
|
48 |
+
_ObjectCodes = Literal["object", "object_", "O", "=O", "<O", ">O"]
|
49 |
+
|
50 |
+
_DT64Codes = Literal[
|
51 |
+
"datetime64", "=datetime64", "<datetime64", ">datetime64",
|
52 |
+
"datetime64[Y]", "=datetime64[Y]", "<datetime64[Y]", ">datetime64[Y]",
|
53 |
+
"datetime64[M]", "=datetime64[M]", "<datetime64[M]", ">datetime64[M]",
|
54 |
+
"datetime64[W]", "=datetime64[W]", "<datetime64[W]", ">datetime64[W]",
|
55 |
+
"datetime64[D]", "=datetime64[D]", "<datetime64[D]", ">datetime64[D]",
|
56 |
+
"datetime64[h]", "=datetime64[h]", "<datetime64[h]", ">datetime64[h]",
|
57 |
+
"datetime64[m]", "=datetime64[m]", "<datetime64[m]", ">datetime64[m]",
|
58 |
+
"datetime64[s]", "=datetime64[s]", "<datetime64[s]", ">datetime64[s]",
|
59 |
+
"datetime64[ms]", "=datetime64[ms]", "<datetime64[ms]", ">datetime64[ms]",
|
60 |
+
"datetime64[us]", "=datetime64[us]", "<datetime64[us]", ">datetime64[us]",
|
61 |
+
"datetime64[ns]", "=datetime64[ns]", "<datetime64[ns]", ">datetime64[ns]",
|
62 |
+
"datetime64[ps]", "=datetime64[ps]", "<datetime64[ps]", ">datetime64[ps]",
|
63 |
+
"datetime64[fs]", "=datetime64[fs]", "<datetime64[fs]", ">datetime64[fs]",
|
64 |
+
"datetime64[as]", "=datetime64[as]", "<datetime64[as]", ">datetime64[as]",
|
65 |
+
"M", "=M", "<M", ">M",
|
66 |
+
"M8", "=M8", "<M8", ">M8",
|
67 |
+
"M8[Y]", "=M8[Y]", "<M8[Y]", ">M8[Y]",
|
68 |
+
"M8[M]", "=M8[M]", "<M8[M]", ">M8[M]",
|
69 |
+
"M8[W]", "=M8[W]", "<M8[W]", ">M8[W]",
|
70 |
+
"M8[D]", "=M8[D]", "<M8[D]", ">M8[D]",
|
71 |
+
"M8[h]", "=M8[h]", "<M8[h]", ">M8[h]",
|
72 |
+
"M8[m]", "=M8[m]", "<M8[m]", ">M8[m]",
|
73 |
+
"M8[s]", "=M8[s]", "<M8[s]", ">M8[s]",
|
74 |
+
"M8[ms]", "=M8[ms]", "<M8[ms]", ">M8[ms]",
|
75 |
+
"M8[us]", "=M8[us]", "<M8[us]", ">M8[us]",
|
76 |
+
"M8[ns]", "=M8[ns]", "<M8[ns]", ">M8[ns]",
|
77 |
+
"M8[ps]", "=M8[ps]", "<M8[ps]", ">M8[ps]",
|
78 |
+
"M8[fs]", "=M8[fs]", "<M8[fs]", ">M8[fs]",
|
79 |
+
"M8[as]", "=M8[as]", "<M8[as]", ">M8[as]",
|
80 |
+
]
|
81 |
+
_TD64Codes = Literal[
|
82 |
+
"timedelta64", "=timedelta64", "<timedelta64", ">timedelta64",
|
83 |
+
"timedelta64[Y]", "=timedelta64[Y]", "<timedelta64[Y]", ">timedelta64[Y]",
|
84 |
+
"timedelta64[M]", "=timedelta64[M]", "<timedelta64[M]", ">timedelta64[M]",
|
85 |
+
"timedelta64[W]", "=timedelta64[W]", "<timedelta64[W]", ">timedelta64[W]",
|
86 |
+
"timedelta64[D]", "=timedelta64[D]", "<timedelta64[D]", ">timedelta64[D]",
|
87 |
+
"timedelta64[h]", "=timedelta64[h]", "<timedelta64[h]", ">timedelta64[h]",
|
88 |
+
"timedelta64[m]", "=timedelta64[m]", "<timedelta64[m]", ">timedelta64[m]",
|
89 |
+
"timedelta64[s]", "=timedelta64[s]", "<timedelta64[s]", ">timedelta64[s]",
|
90 |
+
"timedelta64[ms]", "=timedelta64[ms]", "<timedelta64[ms]", ">timedelta64[ms]",
|
91 |
+
"timedelta64[us]", "=timedelta64[us]", "<timedelta64[us]", ">timedelta64[us]",
|
92 |
+
"timedelta64[ns]", "=timedelta64[ns]", "<timedelta64[ns]", ">timedelta64[ns]",
|
93 |
+
"timedelta64[ps]", "=timedelta64[ps]", "<timedelta64[ps]", ">timedelta64[ps]",
|
94 |
+
"timedelta64[fs]", "=timedelta64[fs]", "<timedelta64[fs]", ">timedelta64[fs]",
|
95 |
+
"timedelta64[as]", "=timedelta64[as]", "<timedelta64[as]", ">timedelta64[as]",
|
96 |
+
"m", "=m", "<m", ">m",
|
97 |
+
"m8", "=m8", "<m8", ">m8",
|
98 |
+
"m8[Y]", "=m8[Y]", "<m8[Y]", ">m8[Y]",
|
99 |
+
"m8[M]", "=m8[M]", "<m8[M]", ">m8[M]",
|
100 |
+
"m8[W]", "=m8[W]", "<m8[W]", ">m8[W]",
|
101 |
+
"m8[D]", "=m8[D]", "<m8[D]", ">m8[D]",
|
102 |
+
"m8[h]", "=m8[h]", "<m8[h]", ">m8[h]",
|
103 |
+
"m8[m]", "=m8[m]", "<m8[m]", ">m8[m]",
|
104 |
+
"m8[s]", "=m8[s]", "<m8[s]", ">m8[s]",
|
105 |
+
"m8[ms]", "=m8[ms]", "<m8[ms]", ">m8[ms]",
|
106 |
+
"m8[us]", "=m8[us]", "<m8[us]", ">m8[us]",
|
107 |
+
"m8[ns]", "=m8[ns]", "<m8[ns]", ">m8[ns]",
|
108 |
+
"m8[ps]", "=m8[ps]", "<m8[ps]", ">m8[ps]",
|
109 |
+
"m8[fs]", "=m8[fs]", "<m8[fs]", ">m8[fs]",
|
110 |
+
"m8[as]", "=m8[as]", "<m8[as]", ">m8[as]",
|
111 |
+
]
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/_dtype_like.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Sequence
|
2 |
+
from typing import (
|
3 |
+
Any,
|
4 |
+
Sequence,
|
5 |
+
Union,
|
6 |
+
TypeVar,
|
7 |
+
Protocol,
|
8 |
+
TypedDict,
|
9 |
+
runtime_checkable,
|
10 |
+
)
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
from ._shape import _ShapeLike
|
15 |
+
|
16 |
+
from ._char_codes import (
|
17 |
+
_BoolCodes,
|
18 |
+
_UInt8Codes,
|
19 |
+
_UInt16Codes,
|
20 |
+
_UInt32Codes,
|
21 |
+
_UInt64Codes,
|
22 |
+
_Int8Codes,
|
23 |
+
_Int16Codes,
|
24 |
+
_Int32Codes,
|
25 |
+
_Int64Codes,
|
26 |
+
_Float16Codes,
|
27 |
+
_Float32Codes,
|
28 |
+
_Float64Codes,
|
29 |
+
_Complex64Codes,
|
30 |
+
_Complex128Codes,
|
31 |
+
_ByteCodes,
|
32 |
+
_ShortCodes,
|
33 |
+
_IntCCodes,
|
34 |
+
_IntPCodes,
|
35 |
+
_IntCodes,
|
36 |
+
_LongLongCodes,
|
37 |
+
_UByteCodes,
|
38 |
+
_UShortCodes,
|
39 |
+
_UIntCCodes,
|
40 |
+
_UIntPCodes,
|
41 |
+
_UIntCodes,
|
42 |
+
_ULongLongCodes,
|
43 |
+
_HalfCodes,
|
44 |
+
_SingleCodes,
|
45 |
+
_DoubleCodes,
|
46 |
+
_LongDoubleCodes,
|
47 |
+
_CSingleCodes,
|
48 |
+
_CDoubleCodes,
|
49 |
+
_CLongDoubleCodes,
|
50 |
+
_DT64Codes,
|
51 |
+
_TD64Codes,
|
52 |
+
_StrCodes,
|
53 |
+
_BytesCodes,
|
54 |
+
_VoidCodes,
|
55 |
+
_ObjectCodes,
|
56 |
+
)
|
57 |
+
|
58 |
+
_SCT = TypeVar("_SCT", bound=np.generic)
|
59 |
+
_DType_co = TypeVar("_DType_co", covariant=True, bound=np.dtype[Any])
|
60 |
+
|
61 |
+
_DTypeLikeNested = Any # TODO: wait for support for recursive types
|
62 |
+
|
63 |
+
|
64 |
+
# Mandatory keys
|
65 |
+
class _DTypeDictBase(TypedDict):
|
66 |
+
names: Sequence[str]
|
67 |
+
formats: Sequence[_DTypeLikeNested]
|
68 |
+
|
69 |
+
|
70 |
+
# Mandatory + optional keys
|
71 |
+
class _DTypeDict(_DTypeDictBase, total=False):
|
72 |
+
# Only `str` elements are usable as indexing aliases,
|
73 |
+
# but `titles` can in principle accept any object
|
74 |
+
offsets: Sequence[int]
|
75 |
+
titles: Sequence[Any]
|
76 |
+
itemsize: int
|
77 |
+
aligned: bool
|
78 |
+
|
79 |
+
|
80 |
+
# A protocol for anything with the dtype attribute
|
81 |
+
@runtime_checkable
|
82 |
+
class _SupportsDType(Protocol[_DType_co]):
|
83 |
+
@property
|
84 |
+
def dtype(self) -> _DType_co: ...
|
85 |
+
|
86 |
+
|
87 |
+
# A subset of `npt.DTypeLike` that can be parametrized w.r.t. `np.generic`
|
88 |
+
_DTypeLike = Union[
|
89 |
+
np.dtype[_SCT],
|
90 |
+
type[_SCT],
|
91 |
+
_SupportsDType[np.dtype[_SCT]],
|
92 |
+
]
|
93 |
+
|
94 |
+
|
95 |
+
# Would create a dtype[np.void]
|
96 |
+
_VoidDTypeLike = Union[
|
97 |
+
# (flexible_dtype, itemsize)
|
98 |
+
tuple[_DTypeLikeNested, int],
|
99 |
+
# (fixed_dtype, shape)
|
100 |
+
tuple[_DTypeLikeNested, _ShapeLike],
|
101 |
+
# [(field_name, field_dtype, field_shape), ...]
|
102 |
+
#
|
103 |
+
# The type here is quite broad because NumPy accepts quite a wide
|
104 |
+
# range of inputs inside the list; see the tests for some
|
105 |
+
# examples.
|
106 |
+
list[Any],
|
107 |
+
# {'names': ..., 'formats': ..., 'offsets': ..., 'titles': ...,
|
108 |
+
# 'itemsize': ...}
|
109 |
+
_DTypeDict,
|
110 |
+
# (base_dtype, new_dtype)
|
111 |
+
tuple[_DTypeLikeNested, _DTypeLikeNested],
|
112 |
+
]
|
113 |
+
|
114 |
+
# Anything that can be coerced into numpy.dtype.
|
115 |
+
# Reference: https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
|
116 |
+
DTypeLike = Union[
|
117 |
+
np.dtype[Any],
|
118 |
+
# default data type (float64)
|
119 |
+
None,
|
120 |
+
# array-scalar types and generic types
|
121 |
+
type[Any], # NOTE: We're stuck with `type[Any]` due to object dtypes
|
122 |
+
# anything with a dtype attribute
|
123 |
+
_SupportsDType[np.dtype[Any]],
|
124 |
+
# character codes, type strings or comma-separated fields, e.g., 'float64'
|
125 |
+
str,
|
126 |
+
_VoidDTypeLike,
|
127 |
+
]
|
128 |
+
|
129 |
+
# NOTE: while it is possible to provide the dtype as a dict of
|
130 |
+
# dtype-like objects (e.g. `{'field1': ..., 'field2': ..., ...}`),
|
131 |
+
# this syntax is officially discourged and
|
132 |
+
# therefore not included in the Union defining `DTypeLike`.
|
133 |
+
#
|
134 |
+
# See https://github.com/numpy/numpy/issues/16891 for more details.
|
135 |
+
|
136 |
+
# Aliases for commonly used dtype-like objects.
|
137 |
+
# Note that the precision of `np.number` subclasses is ignored herein.
|
138 |
+
_DTypeLikeBool = Union[
|
139 |
+
type[bool],
|
140 |
+
type[np.bool_],
|
141 |
+
np.dtype[np.bool_],
|
142 |
+
_SupportsDType[np.dtype[np.bool_]],
|
143 |
+
_BoolCodes,
|
144 |
+
]
|
145 |
+
_DTypeLikeUInt = Union[
|
146 |
+
type[np.unsignedinteger],
|
147 |
+
np.dtype[np.unsignedinteger],
|
148 |
+
_SupportsDType[np.dtype[np.unsignedinteger]],
|
149 |
+
_UInt8Codes,
|
150 |
+
_UInt16Codes,
|
151 |
+
_UInt32Codes,
|
152 |
+
_UInt64Codes,
|
153 |
+
_UByteCodes,
|
154 |
+
_UShortCodes,
|
155 |
+
_UIntCCodes,
|
156 |
+
_UIntPCodes,
|
157 |
+
_UIntCodes,
|
158 |
+
_ULongLongCodes,
|
159 |
+
]
|
160 |
+
_DTypeLikeInt = Union[
|
161 |
+
type[int],
|
162 |
+
type[np.signedinteger],
|
163 |
+
np.dtype[np.signedinteger],
|
164 |
+
_SupportsDType[np.dtype[np.signedinteger]],
|
165 |
+
_Int8Codes,
|
166 |
+
_Int16Codes,
|
167 |
+
_Int32Codes,
|
168 |
+
_Int64Codes,
|
169 |
+
_ByteCodes,
|
170 |
+
_ShortCodes,
|
171 |
+
_IntCCodes,
|
172 |
+
_IntPCodes,
|
173 |
+
_IntCodes,
|
174 |
+
_LongLongCodes,
|
175 |
+
]
|
176 |
+
_DTypeLikeFloat = Union[
|
177 |
+
type[float],
|
178 |
+
type[np.floating],
|
179 |
+
np.dtype[np.floating],
|
180 |
+
_SupportsDType[np.dtype[np.floating]],
|
181 |
+
_Float16Codes,
|
182 |
+
_Float32Codes,
|
183 |
+
_Float64Codes,
|
184 |
+
_HalfCodes,
|
185 |
+
_SingleCodes,
|
186 |
+
_DoubleCodes,
|
187 |
+
_LongDoubleCodes,
|
188 |
+
]
|
189 |
+
_DTypeLikeComplex = Union[
|
190 |
+
type[complex],
|
191 |
+
type[np.complexfloating],
|
192 |
+
np.dtype[np.complexfloating],
|
193 |
+
_SupportsDType[np.dtype[np.complexfloating]],
|
194 |
+
_Complex64Codes,
|
195 |
+
_Complex128Codes,
|
196 |
+
_CSingleCodes,
|
197 |
+
_CDoubleCodes,
|
198 |
+
_CLongDoubleCodes,
|
199 |
+
]
|
200 |
+
_DTypeLikeDT64 = Union[
|
201 |
+
type[np.timedelta64],
|
202 |
+
np.dtype[np.timedelta64],
|
203 |
+
_SupportsDType[np.dtype[np.timedelta64]],
|
204 |
+
_TD64Codes,
|
205 |
+
]
|
206 |
+
_DTypeLikeTD64 = Union[
|
207 |
+
type[np.datetime64],
|
208 |
+
np.dtype[np.datetime64],
|
209 |
+
_SupportsDType[np.dtype[np.datetime64]],
|
210 |
+
_DT64Codes,
|
211 |
+
]
|
212 |
+
_DTypeLikeStr = Union[
|
213 |
+
type[str],
|
214 |
+
type[np.str_],
|
215 |
+
np.dtype[np.str_],
|
216 |
+
_SupportsDType[np.dtype[np.str_]],
|
217 |
+
_StrCodes,
|
218 |
+
]
|
219 |
+
_DTypeLikeBytes = Union[
|
220 |
+
type[bytes],
|
221 |
+
type[np.bytes_],
|
222 |
+
np.dtype[np.bytes_],
|
223 |
+
_SupportsDType[np.dtype[np.bytes_]],
|
224 |
+
_BytesCodes,
|
225 |
+
]
|
226 |
+
_DTypeLikeVoid = Union[
|
227 |
+
type[np.void],
|
228 |
+
np.dtype[np.void],
|
229 |
+
_SupportsDType[np.dtype[np.void]],
|
230 |
+
_VoidCodes,
|
231 |
+
_VoidDTypeLike,
|
232 |
+
]
|
233 |
+
_DTypeLikeObject = Union[
|
234 |
+
type,
|
235 |
+
np.dtype[np.object_],
|
236 |
+
_SupportsDType[np.dtype[np.object_]],
|
237 |
+
_ObjectCodes,
|
238 |
+
]
|
239 |
+
|
240 |
+
_DTypeLikeComplex_co = Union[
|
241 |
+
_DTypeLikeBool,
|
242 |
+
_DTypeLikeUInt,
|
243 |
+
_DTypeLikeInt,
|
244 |
+
_DTypeLikeFloat,
|
245 |
+
_DTypeLikeComplex,
|
246 |
+
]
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/_extended_precision.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module with platform-specific extended precision
|
2 |
+
`numpy.number` subclasses.
|
3 |
+
|
4 |
+
The subclasses are defined here (instead of ``__init__.pyi``) such
|
5 |
+
that they can be imported conditionally via the numpy's mypy plugin.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from . import (
|
10 |
+
_80Bit,
|
11 |
+
_96Bit,
|
12 |
+
_128Bit,
|
13 |
+
_256Bit,
|
14 |
+
)
|
15 |
+
|
16 |
+
uint128 = np.unsignedinteger[_128Bit]
|
17 |
+
uint256 = np.unsignedinteger[_256Bit]
|
18 |
+
int128 = np.signedinteger[_128Bit]
|
19 |
+
int256 = np.signedinteger[_256Bit]
|
20 |
+
float80 = np.floating[_80Bit]
|
21 |
+
float96 = np.floating[_96Bit]
|
22 |
+
float128 = np.floating[_128Bit]
|
23 |
+
float256 = np.floating[_256Bit]
|
24 |
+
complex160 = np.complexfloating[_80Bit, _80Bit]
|
25 |
+
complex192 = np.complexfloating[_96Bit, _96Bit]
|
26 |
+
complex256 = np.complexfloating[_128Bit, _128Bit]
|
27 |
+
complex512 = np.complexfloating[_256Bit, _256Bit]
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/_nbit.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module with the precisions of platform-specific `~numpy.number`s."""
|
2 |
+
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
# To-be replaced with a `npt.NBitBase` subclass by numpy's mypy plugin
|
6 |
+
_NBitByte = Any
|
7 |
+
_NBitShort = Any
|
8 |
+
_NBitIntC = Any
|
9 |
+
_NBitIntP = Any
|
10 |
+
_NBitInt = Any
|
11 |
+
_NBitLongLong = Any
|
12 |
+
|
13 |
+
_NBitHalf = Any
|
14 |
+
_NBitSingle = Any
|
15 |
+
_NBitDouble = Any
|
16 |
+
_NBitLongDouble = Any
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/_nested_sequence.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module containing the `_NestedSequence` protocol."""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from collections.abc import Iterator
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
TypeVar,
|
9 |
+
Protocol,
|
10 |
+
runtime_checkable,
|
11 |
+
)
|
12 |
+
|
13 |
+
__all__ = ["_NestedSequence"]
|
14 |
+
|
15 |
+
_T_co = TypeVar("_T_co", covariant=True)
|
16 |
+
|
17 |
+
|
18 |
+
@runtime_checkable
|
19 |
+
class _NestedSequence(Protocol[_T_co]):
|
20 |
+
"""A protocol for representing nested sequences.
|
21 |
+
|
22 |
+
Warning
|
23 |
+
-------
|
24 |
+
`_NestedSequence` currently does not work in combination with typevars,
|
25 |
+
*e.g.* ``def func(a: _NestedSequnce[T]) -> T: ...``.
|
26 |
+
|
27 |
+
See Also
|
28 |
+
--------
|
29 |
+
collections.abc.Sequence
|
30 |
+
ABCs for read-only and mutable :term:`sequences`.
|
31 |
+
|
32 |
+
Examples
|
33 |
+
--------
|
34 |
+
.. code-block:: python
|
35 |
+
|
36 |
+
>>> from __future__ import annotations
|
37 |
+
|
38 |
+
>>> from typing import TYPE_CHECKING
|
39 |
+
>>> import numpy as np
|
40 |
+
>>> from numpy._typing import _NestedSequence
|
41 |
+
|
42 |
+
>>> def get_dtype(seq: _NestedSequence[float]) -> np.dtype[np.float64]:
|
43 |
+
... return np.asarray(seq).dtype
|
44 |
+
|
45 |
+
>>> a = get_dtype([1.0])
|
46 |
+
>>> b = get_dtype([[1.0]])
|
47 |
+
>>> c = get_dtype([[[1.0]]])
|
48 |
+
>>> d = get_dtype([[[[1.0]]]])
|
49 |
+
|
50 |
+
>>> if TYPE_CHECKING:
|
51 |
+
... reveal_locals()
|
52 |
+
... # note: Revealed local types are:
|
53 |
+
... # note: a: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
54 |
+
... # note: b: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
55 |
+
... # note: c: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
56 |
+
... # note: d: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
57 |
+
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __len__(self, /) -> int:
|
61 |
+
"""Implement ``len(self)``."""
|
62 |
+
raise NotImplementedError
|
63 |
+
|
64 |
+
def __getitem__(self, index: int, /) -> _T_co | _NestedSequence[_T_co]:
|
65 |
+
"""Implement ``self[x]``."""
|
66 |
+
raise NotImplementedError
|
67 |
+
|
68 |
+
def __contains__(self, x: object, /) -> bool:
|
69 |
+
"""Implement ``x in self``."""
|
70 |
+
raise NotImplementedError
|
71 |
+
|
72 |
+
def __iter__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]:
|
73 |
+
"""Implement ``iter(self)``."""
|
74 |
+
raise NotImplementedError
|
75 |
+
|
76 |
+
def __reversed__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]:
|
77 |
+
"""Implement ``reversed(self)``."""
|
78 |
+
raise NotImplementedError
|
79 |
+
|
80 |
+
def count(self, value: Any, /) -> int:
|
81 |
+
"""Return the number of occurrences of `value`."""
|
82 |
+
raise NotImplementedError
|
83 |
+
|
84 |
+
def index(self, value: Any, /) -> int:
|
85 |
+
"""Return the first index of `value`."""
|
86 |
+
raise NotImplementedError
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/_scalars.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union, Any
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# NOTE: `_StrLike_co` and `_BytesLike_co` are pointless, as `np.str_` and
|
6 |
+
# `np.bytes_` are already subclasses of their builtin counterpart
|
7 |
+
|
8 |
+
_CharLike_co = Union[str, bytes]
|
9 |
+
|
10 |
+
# The 6 `<X>Like_co` type-aliases below represent all scalars that can be
|
11 |
+
# coerced into `<X>` (with the casting rule `same_kind`)
|
12 |
+
_BoolLike_co = Union[bool, np.bool_]
|
13 |
+
_UIntLike_co = Union[_BoolLike_co, np.unsignedinteger[Any]]
|
14 |
+
_IntLike_co = Union[_BoolLike_co, int, np.integer[Any]]
|
15 |
+
_FloatLike_co = Union[_IntLike_co, float, np.floating[Any]]
|
16 |
+
_ComplexLike_co = Union[_FloatLike_co, complex, np.complexfloating[Any, Any]]
|
17 |
+
_TD64Like_co = Union[_IntLike_co, np.timedelta64]
|
18 |
+
|
19 |
+
_NumberLike_co = Union[int, float, complex, np.number[Any], np.bool_]
|
20 |
+
_ScalarLike_co = Union[
|
21 |
+
int,
|
22 |
+
float,
|
23 |
+
complex,
|
24 |
+
str,
|
25 |
+
bytes,
|
26 |
+
np.generic,
|
27 |
+
]
|
28 |
+
|
29 |
+
# `_VoidLike_co` is technically not a scalar, but it's close enough
|
30 |
+
_VoidLike_co = Union[tuple[Any, ...], np.void]
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/_shape.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Sequence
|
2 |
+
from typing import Union, SupportsIndex
|
3 |
+
|
4 |
+
_Shape = tuple[int, ...]
|
5 |
+
|
6 |
+
# Anything that can be coerced to a shape tuple
|
7 |
+
_ShapeLike = Union[SupportsIndex, Sequence[SupportsIndex]]
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/_ufunc.pyi
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module with private type-check-only `numpy.ufunc` subclasses.
|
2 |
+
|
3 |
+
The signatures of the ufuncs are too varied to reasonably type
|
4 |
+
with a single class. So instead, `ufunc` has been expanded into
|
5 |
+
four private subclasses, one for each combination of
|
6 |
+
`~ufunc.nin` and `~ufunc.nout`.
|
7 |
+
|
8 |
+
"""
|
9 |
+
|
10 |
+
from typing import (
|
11 |
+
Any,
|
12 |
+
Generic,
|
13 |
+
overload,
|
14 |
+
TypeVar,
|
15 |
+
Literal,
|
16 |
+
SupportsIndex,
|
17 |
+
Protocol,
|
18 |
+
)
|
19 |
+
|
20 |
+
from numpy import ufunc, _CastingKind, _OrderKACF
|
21 |
+
from numpy.typing import NDArray
|
22 |
+
|
23 |
+
from ._shape import _ShapeLike
|
24 |
+
from ._scalars import _ScalarLike_co
|
25 |
+
from ._array_like import ArrayLike, _ArrayLikeBool_co, _ArrayLikeInt_co
|
26 |
+
from ._dtype_like import DTypeLike
|
27 |
+
|
28 |
+
_T = TypeVar("_T")
|
29 |
+
_2Tuple = tuple[_T, _T]
|
30 |
+
_3Tuple = tuple[_T, _T, _T]
|
31 |
+
_4Tuple = tuple[_T, _T, _T, _T]
|
32 |
+
|
33 |
+
_NTypes = TypeVar("_NTypes", bound=int)
|
34 |
+
_IDType = TypeVar("_IDType", bound=Any)
|
35 |
+
_NameType = TypeVar("_NameType", bound=str)
|
36 |
+
|
37 |
+
|
38 |
+
class _SupportsArrayUFunc(Protocol):
|
39 |
+
def __array_ufunc__(
|
40 |
+
self,
|
41 |
+
ufunc: ufunc,
|
42 |
+
method: Literal["__call__", "reduce", "reduceat", "accumulate", "outer", "inner"],
|
43 |
+
*inputs: Any,
|
44 |
+
**kwargs: Any,
|
45 |
+
) -> Any: ...
|
46 |
+
|
47 |
+
|
48 |
+
# NOTE: In reality `extobj` should be a length of list 3 containing an
|
49 |
+
# int, an int, and a callable, but there's no way to properly express
|
50 |
+
# non-homogenous lists.
|
51 |
+
# Use `Any` over `Union` to avoid issues related to lists invariance.
|
52 |
+
|
53 |
+
# NOTE: `reduce`, `accumulate`, `reduceat` and `outer` raise a ValueError for
|
54 |
+
# ufuncs that don't accept two input arguments and return one output argument.
|
55 |
+
# In such cases the respective methods are simply typed as `None`.
|
56 |
+
|
57 |
+
# NOTE: Similarly, `at` won't be defined for ufuncs that return
|
58 |
+
# multiple outputs; in such cases `at` is typed as `None`
|
59 |
+
|
60 |
+
# NOTE: If 2 output types are returned then `out` must be a
|
61 |
+
# 2-tuple of arrays. Otherwise `None` or a plain array are also acceptable
|
62 |
+
|
63 |
+
class _UFunc_Nin1_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
64 |
+
@property
|
65 |
+
def __name__(self) -> _NameType: ...
|
66 |
+
@property
|
67 |
+
def ntypes(self) -> _NTypes: ...
|
68 |
+
@property
|
69 |
+
def identity(self) -> _IDType: ...
|
70 |
+
@property
|
71 |
+
def nin(self) -> Literal[1]: ...
|
72 |
+
@property
|
73 |
+
def nout(self) -> Literal[1]: ...
|
74 |
+
@property
|
75 |
+
def nargs(self) -> Literal[2]: ...
|
76 |
+
@property
|
77 |
+
def signature(self) -> None: ...
|
78 |
+
@property
|
79 |
+
def reduce(self) -> None: ...
|
80 |
+
@property
|
81 |
+
def accumulate(self) -> None: ...
|
82 |
+
@property
|
83 |
+
def reduceat(self) -> None: ...
|
84 |
+
@property
|
85 |
+
def outer(self) -> None: ...
|
86 |
+
|
87 |
+
@overload
|
88 |
+
def __call__(
|
89 |
+
self,
|
90 |
+
__x1: _ScalarLike_co,
|
91 |
+
out: None = ...,
|
92 |
+
*,
|
93 |
+
where: None | _ArrayLikeBool_co = ...,
|
94 |
+
casting: _CastingKind = ...,
|
95 |
+
order: _OrderKACF = ...,
|
96 |
+
dtype: DTypeLike = ...,
|
97 |
+
subok: bool = ...,
|
98 |
+
signature: str | _2Tuple[None | str] = ...,
|
99 |
+
extobj: list[Any] = ...,
|
100 |
+
) -> Any: ...
|
101 |
+
@overload
|
102 |
+
def __call__(
|
103 |
+
self,
|
104 |
+
__x1: ArrayLike,
|
105 |
+
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
106 |
+
*,
|
107 |
+
where: None | _ArrayLikeBool_co = ...,
|
108 |
+
casting: _CastingKind = ...,
|
109 |
+
order: _OrderKACF = ...,
|
110 |
+
dtype: DTypeLike = ...,
|
111 |
+
subok: bool = ...,
|
112 |
+
signature: str | _2Tuple[None | str] = ...,
|
113 |
+
extobj: list[Any] = ...,
|
114 |
+
) -> NDArray[Any]: ...
|
115 |
+
@overload
|
116 |
+
def __call__(
|
117 |
+
self,
|
118 |
+
__x1: _SupportsArrayUFunc,
|
119 |
+
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
120 |
+
*,
|
121 |
+
where: None | _ArrayLikeBool_co = ...,
|
122 |
+
casting: _CastingKind = ...,
|
123 |
+
order: _OrderKACF = ...,
|
124 |
+
dtype: DTypeLike = ...,
|
125 |
+
subok: bool = ...,
|
126 |
+
signature: str | _2Tuple[None | str] = ...,
|
127 |
+
extobj: list[Any] = ...,
|
128 |
+
) -> Any: ...
|
129 |
+
|
130 |
+
def at(
|
131 |
+
self,
|
132 |
+
a: _SupportsArrayUFunc,
|
133 |
+
indices: _ArrayLikeInt_co,
|
134 |
+
/,
|
135 |
+
) -> None: ...
|
136 |
+
|
137 |
+
class _UFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
138 |
+
@property
|
139 |
+
def __name__(self) -> _NameType: ...
|
140 |
+
@property
|
141 |
+
def ntypes(self) -> _NTypes: ...
|
142 |
+
@property
|
143 |
+
def identity(self) -> _IDType: ...
|
144 |
+
@property
|
145 |
+
def nin(self) -> Literal[2]: ...
|
146 |
+
@property
|
147 |
+
def nout(self) -> Literal[1]: ...
|
148 |
+
@property
|
149 |
+
def nargs(self) -> Literal[3]: ...
|
150 |
+
@property
|
151 |
+
def signature(self) -> None: ...
|
152 |
+
|
153 |
+
@overload
|
154 |
+
def __call__(
|
155 |
+
self,
|
156 |
+
__x1: _ScalarLike_co,
|
157 |
+
__x2: _ScalarLike_co,
|
158 |
+
out: None = ...,
|
159 |
+
*,
|
160 |
+
where: None | _ArrayLikeBool_co = ...,
|
161 |
+
casting: _CastingKind = ...,
|
162 |
+
order: _OrderKACF = ...,
|
163 |
+
dtype: DTypeLike = ...,
|
164 |
+
subok: bool = ...,
|
165 |
+
signature: str | _3Tuple[None | str] = ...,
|
166 |
+
extobj: list[Any] = ...,
|
167 |
+
) -> Any: ...
|
168 |
+
@overload
|
169 |
+
def __call__(
|
170 |
+
self,
|
171 |
+
__x1: ArrayLike,
|
172 |
+
__x2: ArrayLike,
|
173 |
+
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
174 |
+
*,
|
175 |
+
where: None | _ArrayLikeBool_co = ...,
|
176 |
+
casting: _CastingKind = ...,
|
177 |
+
order: _OrderKACF = ...,
|
178 |
+
dtype: DTypeLike = ...,
|
179 |
+
subok: bool = ...,
|
180 |
+
signature: str | _3Tuple[None | str] = ...,
|
181 |
+
extobj: list[Any] = ...,
|
182 |
+
) -> NDArray[Any]: ...
|
183 |
+
|
184 |
+
def at(
|
185 |
+
self,
|
186 |
+
a: NDArray[Any],
|
187 |
+
indices: _ArrayLikeInt_co,
|
188 |
+
b: ArrayLike,
|
189 |
+
/,
|
190 |
+
) -> None: ...
|
191 |
+
|
192 |
+
def reduce(
|
193 |
+
self,
|
194 |
+
array: ArrayLike,
|
195 |
+
axis: None | _ShapeLike = ...,
|
196 |
+
dtype: DTypeLike = ...,
|
197 |
+
out: None | NDArray[Any] = ...,
|
198 |
+
keepdims: bool = ...,
|
199 |
+
initial: Any = ...,
|
200 |
+
where: _ArrayLikeBool_co = ...,
|
201 |
+
) -> Any: ...
|
202 |
+
|
203 |
+
def accumulate(
|
204 |
+
self,
|
205 |
+
array: ArrayLike,
|
206 |
+
axis: SupportsIndex = ...,
|
207 |
+
dtype: DTypeLike = ...,
|
208 |
+
out: None | NDArray[Any] = ...,
|
209 |
+
) -> NDArray[Any]: ...
|
210 |
+
|
211 |
+
def reduceat(
|
212 |
+
self,
|
213 |
+
array: ArrayLike,
|
214 |
+
indices: _ArrayLikeInt_co,
|
215 |
+
axis: SupportsIndex = ...,
|
216 |
+
dtype: DTypeLike = ...,
|
217 |
+
out: None | NDArray[Any] = ...,
|
218 |
+
) -> NDArray[Any]: ...
|
219 |
+
|
220 |
+
# Expand `**kwargs` into explicit keyword-only arguments
|
221 |
+
@overload
|
222 |
+
def outer(
|
223 |
+
self,
|
224 |
+
A: _ScalarLike_co,
|
225 |
+
B: _ScalarLike_co,
|
226 |
+
/, *,
|
227 |
+
out: None = ...,
|
228 |
+
where: None | _ArrayLikeBool_co = ...,
|
229 |
+
casting: _CastingKind = ...,
|
230 |
+
order: _OrderKACF = ...,
|
231 |
+
dtype: DTypeLike = ...,
|
232 |
+
subok: bool = ...,
|
233 |
+
signature: str | _3Tuple[None | str] = ...,
|
234 |
+
extobj: list[Any] = ...,
|
235 |
+
) -> Any: ...
|
236 |
+
@overload
|
237 |
+
def outer( # type: ignore[misc]
|
238 |
+
self,
|
239 |
+
A: ArrayLike,
|
240 |
+
B: ArrayLike,
|
241 |
+
/, *,
|
242 |
+
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
243 |
+
where: None | _ArrayLikeBool_co = ...,
|
244 |
+
casting: _CastingKind = ...,
|
245 |
+
order: _OrderKACF = ...,
|
246 |
+
dtype: DTypeLike = ...,
|
247 |
+
subok: bool = ...,
|
248 |
+
signature: str | _3Tuple[None | str] = ...,
|
249 |
+
extobj: list[Any] = ...,
|
250 |
+
) -> NDArray[Any]: ...
|
251 |
+
|
252 |
+
class _UFunc_Nin1_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
253 |
+
@property
|
254 |
+
def __name__(self) -> _NameType: ...
|
255 |
+
@property
|
256 |
+
def ntypes(self) -> _NTypes: ...
|
257 |
+
@property
|
258 |
+
def identity(self) -> _IDType: ...
|
259 |
+
@property
|
260 |
+
def nin(self) -> Literal[1]: ...
|
261 |
+
@property
|
262 |
+
def nout(self) -> Literal[2]: ...
|
263 |
+
@property
|
264 |
+
def nargs(self) -> Literal[3]: ...
|
265 |
+
@property
|
266 |
+
def signature(self) -> None: ...
|
267 |
+
@property
|
268 |
+
def at(self) -> None: ...
|
269 |
+
@property
|
270 |
+
def reduce(self) -> None: ...
|
271 |
+
@property
|
272 |
+
def accumulate(self) -> None: ...
|
273 |
+
@property
|
274 |
+
def reduceat(self) -> None: ...
|
275 |
+
@property
|
276 |
+
def outer(self) -> None: ...
|
277 |
+
|
278 |
+
@overload
|
279 |
+
def __call__(
|
280 |
+
self,
|
281 |
+
__x1: _ScalarLike_co,
|
282 |
+
__out1: None = ...,
|
283 |
+
__out2: None = ...,
|
284 |
+
*,
|
285 |
+
where: None | _ArrayLikeBool_co = ...,
|
286 |
+
casting: _CastingKind = ...,
|
287 |
+
order: _OrderKACF = ...,
|
288 |
+
dtype: DTypeLike = ...,
|
289 |
+
subok: bool = ...,
|
290 |
+
signature: str | _3Tuple[None | str] = ...,
|
291 |
+
extobj: list[Any] = ...,
|
292 |
+
) -> _2Tuple[Any]: ...
|
293 |
+
@overload
|
294 |
+
def __call__(
|
295 |
+
self,
|
296 |
+
__x1: ArrayLike,
|
297 |
+
__out1: None | NDArray[Any] = ...,
|
298 |
+
__out2: None | NDArray[Any] = ...,
|
299 |
+
*,
|
300 |
+
out: _2Tuple[NDArray[Any]] = ...,
|
301 |
+
where: None | _ArrayLikeBool_co = ...,
|
302 |
+
casting: _CastingKind = ...,
|
303 |
+
order: _OrderKACF = ...,
|
304 |
+
dtype: DTypeLike = ...,
|
305 |
+
subok: bool = ...,
|
306 |
+
signature: str | _3Tuple[None | str] = ...,
|
307 |
+
extobj: list[Any] = ...,
|
308 |
+
) -> _2Tuple[NDArray[Any]]: ...
|
309 |
+
@overload
|
310 |
+
def __call__(
|
311 |
+
self,
|
312 |
+
__x1: _SupportsArrayUFunc,
|
313 |
+
__out1: None | NDArray[Any] = ...,
|
314 |
+
__out2: None | NDArray[Any] = ...,
|
315 |
+
*,
|
316 |
+
out: _2Tuple[NDArray[Any]] = ...,
|
317 |
+
where: None | _ArrayLikeBool_co = ...,
|
318 |
+
casting: _CastingKind = ...,
|
319 |
+
order: _OrderKACF = ...,
|
320 |
+
dtype: DTypeLike = ...,
|
321 |
+
subok: bool = ...,
|
322 |
+
signature: str | _3Tuple[None | str] = ...,
|
323 |
+
extobj: list[Any] = ...,
|
324 |
+
) -> _2Tuple[Any]: ...
|
325 |
+
|
326 |
+
class _UFunc_Nin2_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
327 |
+
@property
|
328 |
+
def __name__(self) -> _NameType: ...
|
329 |
+
@property
|
330 |
+
def ntypes(self) -> _NTypes: ...
|
331 |
+
@property
|
332 |
+
def identity(self) -> _IDType: ...
|
333 |
+
@property
|
334 |
+
def nin(self) -> Literal[2]: ...
|
335 |
+
@property
|
336 |
+
def nout(self) -> Literal[2]: ...
|
337 |
+
@property
|
338 |
+
def nargs(self) -> Literal[4]: ...
|
339 |
+
@property
|
340 |
+
def signature(self) -> None: ...
|
341 |
+
@property
|
342 |
+
def at(self) -> None: ...
|
343 |
+
@property
|
344 |
+
def reduce(self) -> None: ...
|
345 |
+
@property
|
346 |
+
def accumulate(self) -> None: ...
|
347 |
+
@property
|
348 |
+
def reduceat(self) -> None: ...
|
349 |
+
@property
|
350 |
+
def outer(self) -> None: ...
|
351 |
+
|
352 |
+
@overload
|
353 |
+
def __call__(
|
354 |
+
self,
|
355 |
+
__x1: _ScalarLike_co,
|
356 |
+
__x2: _ScalarLike_co,
|
357 |
+
__out1: None = ...,
|
358 |
+
__out2: None = ...,
|
359 |
+
*,
|
360 |
+
where: None | _ArrayLikeBool_co = ...,
|
361 |
+
casting: _CastingKind = ...,
|
362 |
+
order: _OrderKACF = ...,
|
363 |
+
dtype: DTypeLike = ...,
|
364 |
+
subok: bool = ...,
|
365 |
+
signature: str | _4Tuple[None | str] = ...,
|
366 |
+
extobj: list[Any] = ...,
|
367 |
+
) -> _2Tuple[Any]: ...
|
368 |
+
@overload
|
369 |
+
def __call__(
|
370 |
+
self,
|
371 |
+
__x1: ArrayLike,
|
372 |
+
__x2: ArrayLike,
|
373 |
+
__out1: None | NDArray[Any] = ...,
|
374 |
+
__out2: None | NDArray[Any] = ...,
|
375 |
+
*,
|
376 |
+
out: _2Tuple[NDArray[Any]] = ...,
|
377 |
+
where: None | _ArrayLikeBool_co = ...,
|
378 |
+
casting: _CastingKind = ...,
|
379 |
+
order: _OrderKACF = ...,
|
380 |
+
dtype: DTypeLike = ...,
|
381 |
+
subok: bool = ...,
|
382 |
+
signature: str | _4Tuple[None | str] = ...,
|
383 |
+
extobj: list[Any] = ...,
|
384 |
+
) -> _2Tuple[NDArray[Any]]: ...
|
385 |
+
|
386 |
+
class _GUFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
387 |
+
@property
|
388 |
+
def __name__(self) -> _NameType: ...
|
389 |
+
@property
|
390 |
+
def ntypes(self) -> _NTypes: ...
|
391 |
+
@property
|
392 |
+
def identity(self) -> _IDType: ...
|
393 |
+
@property
|
394 |
+
def nin(self) -> Literal[2]: ...
|
395 |
+
@property
|
396 |
+
def nout(self) -> Literal[1]: ...
|
397 |
+
@property
|
398 |
+
def nargs(self) -> Literal[3]: ...
|
399 |
+
|
400 |
+
# NOTE: In practice the only gufunc in the main namespace is `matmul`,
|
401 |
+
# so we can use its signature here
|
402 |
+
@property
|
403 |
+
def signature(self) -> Literal["(n?,k),(k,m?)->(n?,m?)"]: ...
|
404 |
+
@property
|
405 |
+
def reduce(self) -> None: ...
|
406 |
+
@property
|
407 |
+
def accumulate(self) -> None: ...
|
408 |
+
@property
|
409 |
+
def reduceat(self) -> None: ...
|
410 |
+
@property
|
411 |
+
def outer(self) -> None: ...
|
412 |
+
@property
|
413 |
+
def at(self) -> None: ...
|
414 |
+
|
415 |
+
# Scalar for 1D array-likes; ndarray otherwise
|
416 |
+
@overload
|
417 |
+
def __call__(
|
418 |
+
self,
|
419 |
+
__x1: ArrayLike,
|
420 |
+
__x2: ArrayLike,
|
421 |
+
out: None = ...,
|
422 |
+
*,
|
423 |
+
casting: _CastingKind = ...,
|
424 |
+
order: _OrderKACF = ...,
|
425 |
+
dtype: DTypeLike = ...,
|
426 |
+
subok: bool = ...,
|
427 |
+
signature: str | _3Tuple[None | str] = ...,
|
428 |
+
extobj: list[Any] = ...,
|
429 |
+
axes: list[_2Tuple[SupportsIndex]] = ...,
|
430 |
+
) -> Any: ...
|
431 |
+
@overload
|
432 |
+
def __call__(
|
433 |
+
self,
|
434 |
+
__x1: ArrayLike,
|
435 |
+
__x2: ArrayLike,
|
436 |
+
out: NDArray[Any] | tuple[NDArray[Any]],
|
437 |
+
*,
|
438 |
+
casting: _CastingKind = ...,
|
439 |
+
order: _OrderKACF = ...,
|
440 |
+
dtype: DTypeLike = ...,
|
441 |
+
subok: bool = ...,
|
442 |
+
signature: str | _3Tuple[None | str] = ...,
|
443 |
+
extobj: list[Any] = ...,
|
444 |
+
axes: list[_2Tuple[SupportsIndex]] = ...,
|
445 |
+
) -> NDArray[Any]: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/_typing/setup.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def configuration(parent_package='', top_path=None):
|
2 |
+
from numpy.distutils.misc_util import Configuration
|
3 |
+
config = Configuration('_typing', parent_package, top_path)
|
4 |
+
config.add_data_files('*.pyi')
|
5 |
+
return config
|
6 |
+
|
7 |
+
|
8 |
+
if __name__ == '__main__':
|
9 |
+
from numpy.distutils.core import setup
|
10 |
+
setup(configuration=configuration)
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/__init__.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
``numpy.linalg``
|
3 |
+
================
|
4 |
+
|
5 |
+
The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient
|
6 |
+
low level implementations of standard linear algebra algorithms. Those
|
7 |
+
libraries may be provided by NumPy itself using C versions of a subset of their
|
8 |
+
reference implementations but, when possible, highly optimized libraries that
|
9 |
+
take advantage of specialized processor functionality are preferred. Examples
|
10 |
+
of such libraries are OpenBLAS, MKL (TM), and ATLAS. Because those libraries
|
11 |
+
are multithreaded and processor dependent, environmental variables and external
|
12 |
+
packages such as threadpoolctl may be needed to control the number of threads
|
13 |
+
or specify the processor architecture.
|
14 |
+
|
15 |
+
- OpenBLAS: https://www.openblas.net/
|
16 |
+
- threadpoolctl: https://github.com/joblib/threadpoolctl
|
17 |
+
|
18 |
+
Please note that the most-used linear algebra functions in NumPy are present in
|
19 |
+
the main ``numpy`` namespace rather than in ``numpy.linalg``. There are:
|
20 |
+
``dot``, ``vdot``, ``inner``, ``outer``, ``matmul``, ``tensordot``, ``einsum``,
|
21 |
+
``einsum_path`` and ``kron``.
|
22 |
+
|
23 |
+
Functions present in numpy.linalg are listed below.
|
24 |
+
|
25 |
+
|
26 |
+
Matrix and vector products
|
27 |
+
--------------------------
|
28 |
+
|
29 |
+
multi_dot
|
30 |
+
matrix_power
|
31 |
+
|
32 |
+
Decompositions
|
33 |
+
--------------
|
34 |
+
|
35 |
+
cholesky
|
36 |
+
qr
|
37 |
+
svd
|
38 |
+
|
39 |
+
Matrix eigenvalues
|
40 |
+
------------------
|
41 |
+
|
42 |
+
eig
|
43 |
+
eigh
|
44 |
+
eigvals
|
45 |
+
eigvalsh
|
46 |
+
|
47 |
+
Norms and other numbers
|
48 |
+
-----------------------
|
49 |
+
|
50 |
+
norm
|
51 |
+
cond
|
52 |
+
det
|
53 |
+
matrix_rank
|
54 |
+
slogdet
|
55 |
+
|
56 |
+
Solving equations and inverting matrices
|
57 |
+
----------------------------------------
|
58 |
+
|
59 |
+
solve
|
60 |
+
tensorsolve
|
61 |
+
lstsq
|
62 |
+
inv
|
63 |
+
pinv
|
64 |
+
tensorinv
|
65 |
+
|
66 |
+
Exceptions
|
67 |
+
----------
|
68 |
+
|
69 |
+
LinAlgError
|
70 |
+
|
71 |
+
"""
|
72 |
+
# To get sub-modules
|
73 |
+
from . import linalg
|
74 |
+
from .linalg import *
|
75 |
+
|
76 |
+
__all__ = linalg.__all__.copy()
|
77 |
+
|
78 |
+
from numpy._pytesttester import PytestTester
|
79 |
+
test = PytestTester(__name__)
|
80 |
+
del PytestTester
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/__init__.pyi
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.linalg.linalg import (
|
2 |
+
matrix_power as matrix_power,
|
3 |
+
solve as solve,
|
4 |
+
tensorsolve as tensorsolve,
|
5 |
+
tensorinv as tensorinv,
|
6 |
+
inv as inv,
|
7 |
+
cholesky as cholesky,
|
8 |
+
eigvals as eigvals,
|
9 |
+
eigvalsh as eigvalsh,
|
10 |
+
pinv as pinv,
|
11 |
+
slogdet as slogdet,
|
12 |
+
det as det,
|
13 |
+
svd as svd,
|
14 |
+
eig as eig,
|
15 |
+
eigh as eigh,
|
16 |
+
lstsq as lstsq,
|
17 |
+
norm as norm,
|
18 |
+
qr as qr,
|
19 |
+
cond as cond,
|
20 |
+
matrix_rank as matrix_rank,
|
21 |
+
multi_dot as multi_dot,
|
22 |
+
)
|
23 |
+
|
24 |
+
from numpy._pytesttester import PytestTester
|
25 |
+
|
26 |
+
__all__: list[str]
|
27 |
+
__path__: list[str]
|
28 |
+
test: PytestTester
|
29 |
+
|
30 |
+
class LinAlgError(Exception): ...
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.98 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/__pycache__/linalg.cpython-310.pyc
ADDED
Binary file (83.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/_umath_linalg.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (217 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/lapack_lite.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (29.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/linalg.py
ADDED
@@ -0,0 +1,2836 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Lite version of scipy.linalg.
|
2 |
+
|
3 |
+
Notes
|
4 |
+
-----
|
5 |
+
This module is a lite version of the linalg.py module in SciPy which
|
6 |
+
contains high-level Python interface to the LAPACK library. The lite
|
7 |
+
version only accesses the following LAPACK functions: dgesv, zgesv,
|
8 |
+
dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf,
|
9 |
+
zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr.
|
10 |
+
"""
|
11 |
+
|
12 |
+
__all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv',
|
13 |
+
'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det',
|
14 |
+
'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank',
|
15 |
+
'LinAlgError', 'multi_dot']
|
16 |
+
|
17 |
+
import functools
|
18 |
+
import operator
|
19 |
+
import warnings
|
20 |
+
from typing import NamedTuple, Any
|
21 |
+
|
22 |
+
from .._utils import set_module
|
23 |
+
from numpy.core import (
|
24 |
+
array, asarray, zeros, empty, empty_like, intc, single, double,
|
25 |
+
csingle, cdouble, inexact, complexfloating, newaxis, all, Inf, dot,
|
26 |
+
add, multiply, sqrt, sum, isfinite,
|
27 |
+
finfo, errstate, geterrobj, moveaxis, amin, amax, prod, abs,
|
28 |
+
atleast_2d, intp, asanyarray, object_, matmul,
|
29 |
+
swapaxes, divide, count_nonzero, isnan, sign, argsort, sort,
|
30 |
+
reciprocal
|
31 |
+
)
|
32 |
+
from numpy.core.multiarray import normalize_axis_index
|
33 |
+
from numpy.core import overrides
|
34 |
+
from numpy.lib.twodim_base import triu, eye
|
35 |
+
from numpy.linalg import _umath_linalg
|
36 |
+
|
37 |
+
from numpy._typing import NDArray
|
38 |
+
|
39 |
+
class EigResult(NamedTuple):
|
40 |
+
eigenvalues: NDArray[Any]
|
41 |
+
eigenvectors: NDArray[Any]
|
42 |
+
|
43 |
+
class EighResult(NamedTuple):
|
44 |
+
eigenvalues: NDArray[Any]
|
45 |
+
eigenvectors: NDArray[Any]
|
46 |
+
|
47 |
+
class QRResult(NamedTuple):
|
48 |
+
Q: NDArray[Any]
|
49 |
+
R: NDArray[Any]
|
50 |
+
|
51 |
+
class SlogdetResult(NamedTuple):
|
52 |
+
sign: NDArray[Any]
|
53 |
+
logabsdet: NDArray[Any]
|
54 |
+
|
55 |
+
class SVDResult(NamedTuple):
|
56 |
+
U: NDArray[Any]
|
57 |
+
S: NDArray[Any]
|
58 |
+
Vh: NDArray[Any]
|
59 |
+
|
60 |
+
array_function_dispatch = functools.partial(
|
61 |
+
overrides.array_function_dispatch, module='numpy.linalg')
|
62 |
+
|
63 |
+
|
64 |
+
fortran_int = intc
|
65 |
+
|
66 |
+
|
67 |
+
@set_module('numpy.linalg')
|
68 |
+
class LinAlgError(ValueError):
|
69 |
+
"""
|
70 |
+
Generic Python-exception-derived object raised by linalg functions.
|
71 |
+
|
72 |
+
General purpose exception class, derived from Python's ValueError
|
73 |
+
class, programmatically raised in linalg functions when a Linear
|
74 |
+
Algebra-related condition would prevent further correct execution of the
|
75 |
+
function.
|
76 |
+
|
77 |
+
Parameters
|
78 |
+
----------
|
79 |
+
None
|
80 |
+
|
81 |
+
Examples
|
82 |
+
--------
|
83 |
+
>>> from numpy import linalg as LA
|
84 |
+
>>> LA.inv(np.zeros((2,2)))
|
85 |
+
Traceback (most recent call last):
|
86 |
+
File "<stdin>", line 1, in <module>
|
87 |
+
File "...linalg.py", line 350,
|
88 |
+
in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
|
89 |
+
File "...linalg.py", line 249,
|
90 |
+
in solve
|
91 |
+
raise LinAlgError('Singular matrix')
|
92 |
+
numpy.linalg.LinAlgError: Singular matrix
|
93 |
+
|
94 |
+
"""
|
95 |
+
|
96 |
+
|
97 |
+
def _determine_error_states():
|
98 |
+
errobj = geterrobj()
|
99 |
+
bufsize = errobj[0]
|
100 |
+
|
101 |
+
with errstate(invalid='call', over='ignore',
|
102 |
+
divide='ignore', under='ignore'):
|
103 |
+
invalid_call_errmask = geterrobj()[1]
|
104 |
+
|
105 |
+
return [bufsize, invalid_call_errmask, None]
|
106 |
+
|
107 |
+
# Dealing with errors in _umath_linalg
|
108 |
+
_linalg_error_extobj = _determine_error_states()
|
109 |
+
del _determine_error_states
|
110 |
+
|
111 |
+
def _raise_linalgerror_singular(err, flag):
|
112 |
+
raise LinAlgError("Singular matrix")
|
113 |
+
|
114 |
+
def _raise_linalgerror_nonposdef(err, flag):
|
115 |
+
raise LinAlgError("Matrix is not positive definite")
|
116 |
+
|
117 |
+
def _raise_linalgerror_eigenvalues_nonconvergence(err, flag):
|
118 |
+
raise LinAlgError("Eigenvalues did not converge")
|
119 |
+
|
120 |
+
def _raise_linalgerror_svd_nonconvergence(err, flag):
|
121 |
+
raise LinAlgError("SVD did not converge")
|
122 |
+
|
123 |
+
def _raise_linalgerror_lstsq(err, flag):
|
124 |
+
raise LinAlgError("SVD did not converge in Linear Least Squares")
|
125 |
+
|
126 |
+
def _raise_linalgerror_qr(err, flag):
|
127 |
+
raise LinAlgError("Incorrect argument found while performing "
|
128 |
+
"QR factorization")
|
129 |
+
|
130 |
+
def get_linalg_error_extobj(callback):
|
131 |
+
extobj = list(_linalg_error_extobj) # make a copy
|
132 |
+
extobj[2] = callback
|
133 |
+
return extobj
|
134 |
+
|
135 |
+
def _makearray(a):
|
136 |
+
new = asarray(a)
|
137 |
+
wrap = getattr(a, "__array_prepare__", new.__array_wrap__)
|
138 |
+
return new, wrap
|
139 |
+
|
140 |
+
def isComplexType(t):
|
141 |
+
return issubclass(t, complexfloating)
|
142 |
+
|
143 |
+
_real_types_map = {single : single,
|
144 |
+
double : double,
|
145 |
+
csingle : single,
|
146 |
+
cdouble : double}
|
147 |
+
|
148 |
+
_complex_types_map = {single : csingle,
|
149 |
+
double : cdouble,
|
150 |
+
csingle : csingle,
|
151 |
+
cdouble : cdouble}
|
152 |
+
|
153 |
+
def _realType(t, default=double):
|
154 |
+
return _real_types_map.get(t, default)
|
155 |
+
|
156 |
+
def _complexType(t, default=cdouble):
|
157 |
+
return _complex_types_map.get(t, default)
|
158 |
+
|
159 |
+
def _commonType(*arrays):
|
160 |
+
# in lite version, use higher precision (always double or cdouble)
|
161 |
+
result_type = single
|
162 |
+
is_complex = False
|
163 |
+
for a in arrays:
|
164 |
+
type_ = a.dtype.type
|
165 |
+
if issubclass(type_, inexact):
|
166 |
+
if isComplexType(type_):
|
167 |
+
is_complex = True
|
168 |
+
rt = _realType(type_, default=None)
|
169 |
+
if rt is double:
|
170 |
+
result_type = double
|
171 |
+
elif rt is None:
|
172 |
+
# unsupported inexact scalar
|
173 |
+
raise TypeError("array type %s is unsupported in linalg" %
|
174 |
+
(a.dtype.name,))
|
175 |
+
else:
|
176 |
+
result_type = double
|
177 |
+
if is_complex:
|
178 |
+
result_type = _complex_types_map[result_type]
|
179 |
+
return cdouble, result_type
|
180 |
+
else:
|
181 |
+
return double, result_type
|
182 |
+
|
183 |
+
|
184 |
+
def _to_native_byte_order(*arrays):
|
185 |
+
ret = []
|
186 |
+
for arr in arrays:
|
187 |
+
if arr.dtype.byteorder not in ('=', '|'):
|
188 |
+
ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('=')))
|
189 |
+
else:
|
190 |
+
ret.append(arr)
|
191 |
+
if len(ret) == 1:
|
192 |
+
return ret[0]
|
193 |
+
else:
|
194 |
+
return ret
|
195 |
+
|
196 |
+
|
197 |
+
def _assert_2d(*arrays):
|
198 |
+
for a in arrays:
|
199 |
+
if a.ndim != 2:
|
200 |
+
raise LinAlgError('%d-dimensional array given. Array must be '
|
201 |
+
'two-dimensional' % a.ndim)
|
202 |
+
|
203 |
+
def _assert_stacked_2d(*arrays):
|
204 |
+
for a in arrays:
|
205 |
+
if a.ndim < 2:
|
206 |
+
raise LinAlgError('%d-dimensional array given. Array must be '
|
207 |
+
'at least two-dimensional' % a.ndim)
|
208 |
+
|
209 |
+
def _assert_stacked_square(*arrays):
|
210 |
+
for a in arrays:
|
211 |
+
m, n = a.shape[-2:]
|
212 |
+
if m != n:
|
213 |
+
raise LinAlgError('Last 2 dimensions of the array must be square')
|
214 |
+
|
215 |
+
def _assert_finite(*arrays):
|
216 |
+
for a in arrays:
|
217 |
+
if not isfinite(a).all():
|
218 |
+
raise LinAlgError("Array must not contain infs or NaNs")
|
219 |
+
|
220 |
+
def _is_empty_2d(arr):
|
221 |
+
# check size first for efficiency
|
222 |
+
return arr.size == 0 and prod(arr.shape[-2:]) == 0
|
223 |
+
|
224 |
+
|
225 |
+
def transpose(a):
|
226 |
+
"""
|
227 |
+
Transpose each matrix in a stack of matrices.
|
228 |
+
|
229 |
+
Unlike np.transpose, this only swaps the last two axes, rather than all of
|
230 |
+
them
|
231 |
+
|
232 |
+
Parameters
|
233 |
+
----------
|
234 |
+
a : (...,M,N) array_like
|
235 |
+
|
236 |
+
Returns
|
237 |
+
-------
|
238 |
+
aT : (...,N,M) ndarray
|
239 |
+
"""
|
240 |
+
return swapaxes(a, -1, -2)
|
241 |
+
|
242 |
+
# Linear equations
|
243 |
+
|
244 |
+
def _tensorsolve_dispatcher(a, b, axes=None):
|
245 |
+
return (a, b)
|
246 |
+
|
247 |
+
|
248 |
+
@array_function_dispatch(_tensorsolve_dispatcher)
|
249 |
+
def tensorsolve(a, b, axes=None):
|
250 |
+
"""
|
251 |
+
Solve the tensor equation ``a x = b`` for x.
|
252 |
+
|
253 |
+
It is assumed that all indices of `x` are summed over in the product,
|
254 |
+
together with the rightmost indices of `a`, as is done in, for example,
|
255 |
+
``tensordot(a, x, axes=x.ndim)``.
|
256 |
+
|
257 |
+
Parameters
|
258 |
+
----------
|
259 |
+
a : array_like
|
260 |
+
Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals
|
261 |
+
the shape of that sub-tensor of `a` consisting of the appropriate
|
262 |
+
number of its rightmost indices, and must be such that
|
263 |
+
``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be
|
264 |
+
'square').
|
265 |
+
b : array_like
|
266 |
+
Right-hand tensor, which can be of any shape.
|
267 |
+
axes : tuple of ints, optional
|
268 |
+
Axes in `a` to reorder to the right, before inversion.
|
269 |
+
If None (default), no reordering is done.
|
270 |
+
|
271 |
+
Returns
|
272 |
+
-------
|
273 |
+
x : ndarray, shape Q
|
274 |
+
|
275 |
+
Raises
|
276 |
+
------
|
277 |
+
LinAlgError
|
278 |
+
If `a` is singular or not 'square' (in the above sense).
|
279 |
+
|
280 |
+
See Also
|
281 |
+
--------
|
282 |
+
numpy.tensordot, tensorinv, numpy.einsum
|
283 |
+
|
284 |
+
Examples
|
285 |
+
--------
|
286 |
+
>>> a = np.eye(2*3*4)
|
287 |
+
>>> a.shape = (2*3, 4, 2, 3, 4)
|
288 |
+
>>> b = np.random.randn(2*3, 4)
|
289 |
+
>>> x = np.linalg.tensorsolve(a, b)
|
290 |
+
>>> x.shape
|
291 |
+
(2, 3, 4)
|
292 |
+
>>> np.allclose(np.tensordot(a, x, axes=3), b)
|
293 |
+
True
|
294 |
+
|
295 |
+
"""
|
296 |
+
a, wrap = _makearray(a)
|
297 |
+
b = asarray(b)
|
298 |
+
an = a.ndim
|
299 |
+
|
300 |
+
if axes is not None:
|
301 |
+
allaxes = list(range(0, an))
|
302 |
+
for k in axes:
|
303 |
+
allaxes.remove(k)
|
304 |
+
allaxes.insert(an, k)
|
305 |
+
a = a.transpose(allaxes)
|
306 |
+
|
307 |
+
oldshape = a.shape[-(an-b.ndim):]
|
308 |
+
prod = 1
|
309 |
+
for k in oldshape:
|
310 |
+
prod *= k
|
311 |
+
|
312 |
+
if a.size != prod ** 2:
|
313 |
+
raise LinAlgError(
|
314 |
+
"Input arrays must satisfy the requirement \
|
315 |
+
prod(a.shape[b.ndim:]) == prod(a.shape[:b.ndim])"
|
316 |
+
)
|
317 |
+
|
318 |
+
a = a.reshape(prod, prod)
|
319 |
+
b = b.ravel()
|
320 |
+
res = wrap(solve(a, b))
|
321 |
+
res.shape = oldshape
|
322 |
+
return res
|
323 |
+
|
324 |
+
|
325 |
+
def _solve_dispatcher(a, b):
|
326 |
+
return (a, b)
|
327 |
+
|
328 |
+
|
329 |
+
@array_function_dispatch(_solve_dispatcher)
|
330 |
+
def solve(a, b):
|
331 |
+
"""
|
332 |
+
Solve a linear matrix equation, or system of linear scalar equations.
|
333 |
+
|
334 |
+
Computes the "exact" solution, `x`, of the well-determined, i.e., full
|
335 |
+
rank, linear matrix equation `ax = b`.
|
336 |
+
|
337 |
+
Parameters
|
338 |
+
----------
|
339 |
+
a : (..., M, M) array_like
|
340 |
+
Coefficient matrix.
|
341 |
+
b : {(..., M,), (..., M, K)}, array_like
|
342 |
+
Ordinate or "dependent variable" values.
|
343 |
+
|
344 |
+
Returns
|
345 |
+
-------
|
346 |
+
x : {(..., M,), (..., M, K)} ndarray
|
347 |
+
Solution to the system a x = b. Returned shape is identical to `b`.
|
348 |
+
|
349 |
+
Raises
|
350 |
+
------
|
351 |
+
LinAlgError
|
352 |
+
If `a` is singular or not square.
|
353 |
+
|
354 |
+
See Also
|
355 |
+
--------
|
356 |
+
scipy.linalg.solve : Similar function in SciPy.
|
357 |
+
|
358 |
+
Notes
|
359 |
+
-----
|
360 |
+
|
361 |
+
.. versionadded:: 1.8.0
|
362 |
+
|
363 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
364 |
+
details.
|
365 |
+
|
366 |
+
The solutions are computed using LAPACK routine ``_gesv``.
|
367 |
+
|
368 |
+
`a` must be square and of full-rank, i.e., all rows (or, equivalently,
|
369 |
+
columns) must be linearly independent; if either is not true, use
|
370 |
+
`lstsq` for the least-squares best "solution" of the
|
371 |
+
system/equation.
|
372 |
+
|
373 |
+
References
|
374 |
+
----------
|
375 |
+
.. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
|
376 |
+
FL, Academic Press, Inc., 1980, pg. 22.
|
377 |
+
|
378 |
+
Examples
|
379 |
+
--------
|
380 |
+
Solve the system of equations ``x0 + 2 * x1 = 1`` and ``3 * x0 + 5 * x1 = 2``:
|
381 |
+
|
382 |
+
>>> a = np.array([[1, 2], [3, 5]])
|
383 |
+
>>> b = np.array([1, 2])
|
384 |
+
>>> x = np.linalg.solve(a, b)
|
385 |
+
>>> x
|
386 |
+
array([-1., 1.])
|
387 |
+
|
388 |
+
Check that the solution is correct:
|
389 |
+
|
390 |
+
>>> np.allclose(np.dot(a, x), b)
|
391 |
+
True
|
392 |
+
|
393 |
+
"""
|
394 |
+
a, _ = _makearray(a)
|
395 |
+
_assert_stacked_2d(a)
|
396 |
+
_assert_stacked_square(a)
|
397 |
+
b, wrap = _makearray(b)
|
398 |
+
t, result_t = _commonType(a, b)
|
399 |
+
|
400 |
+
# We use the b = (..., M,) logic, only if the number of extra dimensions
|
401 |
+
# match exactly
|
402 |
+
if b.ndim == a.ndim - 1:
|
403 |
+
gufunc = _umath_linalg.solve1
|
404 |
+
else:
|
405 |
+
gufunc = _umath_linalg.solve
|
406 |
+
|
407 |
+
signature = 'DD->D' if isComplexType(t) else 'dd->d'
|
408 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
|
409 |
+
r = gufunc(a, b, signature=signature, extobj=extobj)
|
410 |
+
|
411 |
+
return wrap(r.astype(result_t, copy=False))
|
412 |
+
|
413 |
+
|
414 |
+
def _tensorinv_dispatcher(a, ind=None):
|
415 |
+
return (a,)
|
416 |
+
|
417 |
+
|
418 |
+
@array_function_dispatch(_tensorinv_dispatcher)
|
419 |
+
def tensorinv(a, ind=2):
|
420 |
+
"""
|
421 |
+
Compute the 'inverse' of an N-dimensional array.
|
422 |
+
|
423 |
+
The result is an inverse for `a` relative to the tensordot operation
|
424 |
+
``tensordot(a, b, ind)``, i. e., up to floating-point accuracy,
|
425 |
+
``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the
|
426 |
+
tensordot operation.
|
427 |
+
|
428 |
+
Parameters
|
429 |
+
----------
|
430 |
+
a : array_like
|
431 |
+
Tensor to 'invert'. Its shape must be 'square', i. e.,
|
432 |
+
``prod(a.shape[:ind]) == prod(a.shape[ind:])``.
|
433 |
+
ind : int, optional
|
434 |
+
Number of first indices that are involved in the inverse sum.
|
435 |
+
Must be a positive integer, default is 2.
|
436 |
+
|
437 |
+
Returns
|
438 |
+
-------
|
439 |
+
b : ndarray
|
440 |
+
`a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``.
|
441 |
+
|
442 |
+
Raises
|
443 |
+
------
|
444 |
+
LinAlgError
|
445 |
+
If `a` is singular or not 'square' (in the above sense).
|
446 |
+
|
447 |
+
See Also
|
448 |
+
--------
|
449 |
+
numpy.tensordot, tensorsolve
|
450 |
+
|
451 |
+
Examples
|
452 |
+
--------
|
453 |
+
>>> a = np.eye(4*6)
|
454 |
+
>>> a.shape = (4, 6, 8, 3)
|
455 |
+
>>> ainv = np.linalg.tensorinv(a, ind=2)
|
456 |
+
>>> ainv.shape
|
457 |
+
(8, 3, 4, 6)
|
458 |
+
>>> b = np.random.randn(4, 6)
|
459 |
+
>>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
|
460 |
+
True
|
461 |
+
|
462 |
+
>>> a = np.eye(4*6)
|
463 |
+
>>> a.shape = (24, 8, 3)
|
464 |
+
>>> ainv = np.linalg.tensorinv(a, ind=1)
|
465 |
+
>>> ainv.shape
|
466 |
+
(8, 3, 24)
|
467 |
+
>>> b = np.random.randn(24)
|
468 |
+
>>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
|
469 |
+
True
|
470 |
+
|
471 |
+
"""
|
472 |
+
a = asarray(a)
|
473 |
+
oldshape = a.shape
|
474 |
+
prod = 1
|
475 |
+
if ind > 0:
|
476 |
+
invshape = oldshape[ind:] + oldshape[:ind]
|
477 |
+
for k in oldshape[ind:]:
|
478 |
+
prod *= k
|
479 |
+
else:
|
480 |
+
raise ValueError("Invalid ind argument.")
|
481 |
+
a = a.reshape(prod, -1)
|
482 |
+
ia = inv(a)
|
483 |
+
return ia.reshape(*invshape)
|
484 |
+
|
485 |
+
|
486 |
+
# Matrix inversion
|
487 |
+
|
488 |
+
def _unary_dispatcher(a):
|
489 |
+
return (a,)
|
490 |
+
|
491 |
+
|
492 |
+
@array_function_dispatch(_unary_dispatcher)
|
493 |
+
def inv(a):
|
494 |
+
"""
|
495 |
+
Compute the (multiplicative) inverse of a matrix.
|
496 |
+
|
497 |
+
Given a square matrix `a`, return the matrix `ainv` satisfying
|
498 |
+
``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``.
|
499 |
+
|
500 |
+
Parameters
|
501 |
+
----------
|
502 |
+
a : (..., M, M) array_like
|
503 |
+
Matrix to be inverted.
|
504 |
+
|
505 |
+
Returns
|
506 |
+
-------
|
507 |
+
ainv : (..., M, M) ndarray or matrix
|
508 |
+
(Multiplicative) inverse of the matrix `a`.
|
509 |
+
|
510 |
+
Raises
|
511 |
+
------
|
512 |
+
LinAlgError
|
513 |
+
If `a` is not square or inversion fails.
|
514 |
+
|
515 |
+
See Also
|
516 |
+
--------
|
517 |
+
scipy.linalg.inv : Similar function in SciPy.
|
518 |
+
|
519 |
+
Notes
|
520 |
+
-----
|
521 |
+
|
522 |
+
.. versionadded:: 1.8.0
|
523 |
+
|
524 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
525 |
+
details.
|
526 |
+
|
527 |
+
Examples
|
528 |
+
--------
|
529 |
+
>>> from numpy.linalg import inv
|
530 |
+
>>> a = np.array([[1., 2.], [3., 4.]])
|
531 |
+
>>> ainv = inv(a)
|
532 |
+
>>> np.allclose(np.dot(a, ainv), np.eye(2))
|
533 |
+
True
|
534 |
+
>>> np.allclose(np.dot(ainv, a), np.eye(2))
|
535 |
+
True
|
536 |
+
|
537 |
+
If a is a matrix object, then the return value is a matrix as well:
|
538 |
+
|
539 |
+
>>> ainv = inv(np.matrix(a))
|
540 |
+
>>> ainv
|
541 |
+
matrix([[-2. , 1. ],
|
542 |
+
[ 1.5, -0.5]])
|
543 |
+
|
544 |
+
Inverses of several matrices can be computed at once:
|
545 |
+
|
546 |
+
>>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
|
547 |
+
>>> inv(a)
|
548 |
+
array([[[-2. , 1. ],
|
549 |
+
[ 1.5 , -0.5 ]],
|
550 |
+
[[-1.25, 0.75],
|
551 |
+
[ 0.75, -0.25]]])
|
552 |
+
|
553 |
+
"""
|
554 |
+
a, wrap = _makearray(a)
|
555 |
+
_assert_stacked_2d(a)
|
556 |
+
_assert_stacked_square(a)
|
557 |
+
t, result_t = _commonType(a)
|
558 |
+
|
559 |
+
signature = 'D->D' if isComplexType(t) else 'd->d'
|
560 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
|
561 |
+
ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)
|
562 |
+
return wrap(ainv.astype(result_t, copy=False))
|
563 |
+
|
564 |
+
|
565 |
+
def _matrix_power_dispatcher(a, n):
|
566 |
+
return (a,)
|
567 |
+
|
568 |
+
|
569 |
+
@array_function_dispatch(_matrix_power_dispatcher)
|
570 |
+
def matrix_power(a, n):
|
571 |
+
"""
|
572 |
+
Raise a square matrix to the (integer) power `n`.
|
573 |
+
|
574 |
+
For positive integers `n`, the power is computed by repeated matrix
|
575 |
+
squarings and matrix multiplications. If ``n == 0``, the identity matrix
|
576 |
+
of the same shape as M is returned. If ``n < 0``, the inverse
|
577 |
+
is computed and then raised to the ``abs(n)``.
|
578 |
+
|
579 |
+
.. note:: Stacks of object matrices are not currently supported.
|
580 |
+
|
581 |
+
Parameters
|
582 |
+
----------
|
583 |
+
a : (..., M, M) array_like
|
584 |
+
Matrix to be "powered".
|
585 |
+
n : int
|
586 |
+
The exponent can be any integer or long integer, positive,
|
587 |
+
negative, or zero.
|
588 |
+
|
589 |
+
Returns
|
590 |
+
-------
|
591 |
+
a**n : (..., M, M) ndarray or matrix object
|
592 |
+
The return value is the same shape and type as `M`;
|
593 |
+
if the exponent is positive or zero then the type of the
|
594 |
+
elements is the same as those of `M`. If the exponent is
|
595 |
+
negative the elements are floating-point.
|
596 |
+
|
597 |
+
Raises
|
598 |
+
------
|
599 |
+
LinAlgError
|
600 |
+
For matrices that are not square or that (for negative powers) cannot
|
601 |
+
be inverted numerically.
|
602 |
+
|
603 |
+
Examples
|
604 |
+
--------
|
605 |
+
>>> from numpy.linalg import matrix_power
|
606 |
+
>>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
|
607 |
+
>>> matrix_power(i, 3) # should = -i
|
608 |
+
array([[ 0, -1],
|
609 |
+
[ 1, 0]])
|
610 |
+
>>> matrix_power(i, 0)
|
611 |
+
array([[1, 0],
|
612 |
+
[0, 1]])
|
613 |
+
>>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
|
614 |
+
array([[ 0., 1.],
|
615 |
+
[-1., 0.]])
|
616 |
+
|
617 |
+
Somewhat more sophisticated example
|
618 |
+
|
619 |
+
>>> q = np.zeros((4, 4))
|
620 |
+
>>> q[0:2, 0:2] = -i
|
621 |
+
>>> q[2:4, 2:4] = i
|
622 |
+
>>> q # one of the three quaternion units not equal to 1
|
623 |
+
array([[ 0., -1., 0., 0.],
|
624 |
+
[ 1., 0., 0., 0.],
|
625 |
+
[ 0., 0., 0., 1.],
|
626 |
+
[ 0., 0., -1., 0.]])
|
627 |
+
>>> matrix_power(q, 2) # = -np.eye(4)
|
628 |
+
array([[-1., 0., 0., 0.],
|
629 |
+
[ 0., -1., 0., 0.],
|
630 |
+
[ 0., 0., -1., 0.],
|
631 |
+
[ 0., 0., 0., -1.]])
|
632 |
+
|
633 |
+
"""
|
634 |
+
a = asanyarray(a)
|
635 |
+
_assert_stacked_2d(a)
|
636 |
+
_assert_stacked_square(a)
|
637 |
+
|
638 |
+
try:
|
639 |
+
n = operator.index(n)
|
640 |
+
except TypeError as e:
|
641 |
+
raise TypeError("exponent must be an integer") from e
|
642 |
+
|
643 |
+
# Fall back on dot for object arrays. Object arrays are not supported by
|
644 |
+
# the current implementation of matmul using einsum
|
645 |
+
if a.dtype != object:
|
646 |
+
fmatmul = matmul
|
647 |
+
elif a.ndim == 2:
|
648 |
+
fmatmul = dot
|
649 |
+
else:
|
650 |
+
raise NotImplementedError(
|
651 |
+
"matrix_power not supported for stacks of object arrays")
|
652 |
+
|
653 |
+
if n == 0:
|
654 |
+
a = empty_like(a)
|
655 |
+
a[...] = eye(a.shape[-2], dtype=a.dtype)
|
656 |
+
return a
|
657 |
+
|
658 |
+
elif n < 0:
|
659 |
+
a = inv(a)
|
660 |
+
n = abs(n)
|
661 |
+
|
662 |
+
# short-cuts.
|
663 |
+
if n == 1:
|
664 |
+
return a
|
665 |
+
|
666 |
+
elif n == 2:
|
667 |
+
return fmatmul(a, a)
|
668 |
+
|
669 |
+
elif n == 3:
|
670 |
+
return fmatmul(fmatmul(a, a), a)
|
671 |
+
|
672 |
+
# Use binary decomposition to reduce the number of matrix multiplications.
|
673 |
+
# Here, we iterate over the bits of n, from LSB to MSB, raise `a` to
|
674 |
+
# increasing powers of 2, and multiply into the result as needed.
|
675 |
+
z = result = None
|
676 |
+
while n > 0:
|
677 |
+
z = a if z is None else fmatmul(z, z)
|
678 |
+
n, bit = divmod(n, 2)
|
679 |
+
if bit:
|
680 |
+
result = z if result is None else fmatmul(result, z)
|
681 |
+
|
682 |
+
return result
|
683 |
+
|
684 |
+
|
685 |
+
# Cholesky decomposition
|
686 |
+
|
687 |
+
|
688 |
+
@array_function_dispatch(_unary_dispatcher)
|
689 |
+
def cholesky(a):
|
690 |
+
"""
|
691 |
+
Cholesky decomposition.
|
692 |
+
|
693 |
+
Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`,
|
694 |
+
where `L` is lower-triangular and .H is the conjugate transpose operator
|
695 |
+
(which is the ordinary transpose if `a` is real-valued). `a` must be
|
696 |
+
Hermitian (symmetric if real-valued) and positive-definite. No
|
697 |
+
checking is performed to verify whether `a` is Hermitian or not.
|
698 |
+
In addition, only the lower-triangular and diagonal elements of `a`
|
699 |
+
are used. Only `L` is actually returned.
|
700 |
+
|
701 |
+
Parameters
|
702 |
+
----------
|
703 |
+
a : (..., M, M) array_like
|
704 |
+
Hermitian (symmetric if all elements are real), positive-definite
|
705 |
+
input matrix.
|
706 |
+
|
707 |
+
Returns
|
708 |
+
-------
|
709 |
+
L : (..., M, M) array_like
|
710 |
+
Lower-triangular Cholesky factor of `a`. Returns a matrix object if
|
711 |
+
`a` is a matrix object.
|
712 |
+
|
713 |
+
Raises
|
714 |
+
------
|
715 |
+
LinAlgError
|
716 |
+
If the decomposition fails, for example, if `a` is not
|
717 |
+
positive-definite.
|
718 |
+
|
719 |
+
See Also
|
720 |
+
--------
|
721 |
+
scipy.linalg.cholesky : Similar function in SciPy.
|
722 |
+
scipy.linalg.cholesky_banded : Cholesky decompose a banded Hermitian
|
723 |
+
positive-definite matrix.
|
724 |
+
scipy.linalg.cho_factor : Cholesky decomposition of a matrix, to use in
|
725 |
+
`scipy.linalg.cho_solve`.
|
726 |
+
|
727 |
+
Notes
|
728 |
+
-----
|
729 |
+
|
730 |
+
.. versionadded:: 1.8.0
|
731 |
+
|
732 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
733 |
+
details.
|
734 |
+
|
735 |
+
The Cholesky decomposition is often used as a fast way of solving
|
736 |
+
|
737 |
+
.. math:: A \\mathbf{x} = \\mathbf{b}
|
738 |
+
|
739 |
+
(when `A` is both Hermitian/symmetric and positive-definite).
|
740 |
+
|
741 |
+
First, we solve for :math:`\\mathbf{y}` in
|
742 |
+
|
743 |
+
.. math:: L \\mathbf{y} = \\mathbf{b},
|
744 |
+
|
745 |
+
and then for :math:`\\mathbf{x}` in
|
746 |
+
|
747 |
+
.. math:: L.H \\mathbf{x} = \\mathbf{y}.
|
748 |
+
|
749 |
+
Examples
|
750 |
+
--------
|
751 |
+
>>> A = np.array([[1,-2j],[2j,5]])
|
752 |
+
>>> A
|
753 |
+
array([[ 1.+0.j, -0.-2.j],
|
754 |
+
[ 0.+2.j, 5.+0.j]])
|
755 |
+
>>> L = np.linalg.cholesky(A)
|
756 |
+
>>> L
|
757 |
+
array([[1.+0.j, 0.+0.j],
|
758 |
+
[0.+2.j, 1.+0.j]])
|
759 |
+
>>> np.dot(L, L.T.conj()) # verify that L * L.H = A
|
760 |
+
array([[1.+0.j, 0.-2.j],
|
761 |
+
[0.+2.j, 5.+0.j]])
|
762 |
+
>>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
|
763 |
+
>>> np.linalg.cholesky(A) # an ndarray object is returned
|
764 |
+
array([[1.+0.j, 0.+0.j],
|
765 |
+
[0.+2.j, 1.+0.j]])
|
766 |
+
>>> # But a matrix object is returned if A is a matrix object
|
767 |
+
>>> np.linalg.cholesky(np.matrix(A))
|
768 |
+
matrix([[ 1.+0.j, 0.+0.j],
|
769 |
+
[ 0.+2.j, 1.+0.j]])
|
770 |
+
|
771 |
+
"""
|
772 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef)
|
773 |
+
gufunc = _umath_linalg.cholesky_lo
|
774 |
+
a, wrap = _makearray(a)
|
775 |
+
_assert_stacked_2d(a)
|
776 |
+
_assert_stacked_square(a)
|
777 |
+
t, result_t = _commonType(a)
|
778 |
+
signature = 'D->D' if isComplexType(t) else 'd->d'
|
779 |
+
r = gufunc(a, signature=signature, extobj=extobj)
|
780 |
+
return wrap(r.astype(result_t, copy=False))
|
781 |
+
|
782 |
+
|
783 |
+
# QR decomposition
|
784 |
+
|
785 |
+
def _qr_dispatcher(a, mode=None):
|
786 |
+
return (a,)
|
787 |
+
|
788 |
+
|
789 |
+
@array_function_dispatch(_qr_dispatcher)
|
790 |
+
def qr(a, mode='reduced'):
|
791 |
+
"""
|
792 |
+
Compute the qr factorization of a matrix.
|
793 |
+
|
794 |
+
Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is
|
795 |
+
upper-triangular.
|
796 |
+
|
797 |
+
Parameters
|
798 |
+
----------
|
799 |
+
a : array_like, shape (..., M, N)
|
800 |
+
An array-like object with the dimensionality of at least 2.
|
801 |
+
mode : {'reduced', 'complete', 'r', 'raw'}, optional
|
802 |
+
If K = min(M, N), then
|
803 |
+
|
804 |
+
* 'reduced' : returns Q, R with dimensions (..., M, K), (..., K, N) (default)
|
805 |
+
* 'complete' : returns Q, R with dimensions (..., M, M), (..., M, N)
|
806 |
+
* 'r' : returns R only with dimensions (..., K, N)
|
807 |
+
* 'raw' : returns h, tau with dimensions (..., N, M), (..., K,)
|
808 |
+
|
809 |
+
The options 'reduced', 'complete, and 'raw' are new in numpy 1.8,
|
810 |
+
see the notes for more information. The default is 'reduced', and to
|
811 |
+
maintain backward compatibility with earlier versions of numpy both
|
812 |
+
it and the old default 'full' can be omitted. Note that array h
|
813 |
+
returned in 'raw' mode is transposed for calling Fortran. The
|
814 |
+
'economic' mode is deprecated. The modes 'full' and 'economic' may
|
815 |
+
be passed using only the first letter for backwards compatibility,
|
816 |
+
but all others must be spelled out. See the Notes for more
|
817 |
+
explanation.
|
818 |
+
|
819 |
+
|
820 |
+
Returns
|
821 |
+
-------
|
822 |
+
When mode is 'reduced' or 'complete', the result will be a namedtuple with
|
823 |
+
the attributes `Q` and `R`.
|
824 |
+
|
825 |
+
Q : ndarray of float or complex, optional
|
826 |
+
A matrix with orthonormal columns. When mode = 'complete' the
|
827 |
+
result is an orthogonal/unitary matrix depending on whether or not
|
828 |
+
a is real/complex. The determinant may be either +/- 1 in that
|
829 |
+
case. In case the number of dimensions in the input array is
|
830 |
+
greater than 2 then a stack of the matrices with above properties
|
831 |
+
is returned.
|
832 |
+
R : ndarray of float or complex, optional
|
833 |
+
The upper-triangular matrix or a stack of upper-triangular
|
834 |
+
matrices if the number of dimensions in the input array is greater
|
835 |
+
than 2.
|
836 |
+
(h, tau) : ndarrays of np.double or np.cdouble, optional
|
837 |
+
The array h contains the Householder reflectors that generate q
|
838 |
+
along with r. The tau array contains scaling factors for the
|
839 |
+
reflectors. In the deprecated 'economic' mode only h is returned.
|
840 |
+
|
841 |
+
Raises
|
842 |
+
------
|
843 |
+
LinAlgError
|
844 |
+
If factoring fails.
|
845 |
+
|
846 |
+
See Also
|
847 |
+
--------
|
848 |
+
scipy.linalg.qr : Similar function in SciPy.
|
849 |
+
scipy.linalg.rq : Compute RQ decomposition of a matrix.
|
850 |
+
|
851 |
+
Notes
|
852 |
+
-----
|
853 |
+
This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``,
|
854 |
+
``dorgqr``, and ``zungqr``.
|
855 |
+
|
856 |
+
For more information on the qr factorization, see for example:
|
857 |
+
https://en.wikipedia.org/wiki/QR_factorization
|
858 |
+
|
859 |
+
Subclasses of `ndarray` are preserved except for the 'raw' mode. So if
|
860 |
+
`a` is of type `matrix`, all the return values will be matrices too.
|
861 |
+
|
862 |
+
New 'reduced', 'complete', and 'raw' options for mode were added in
|
863 |
+
NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'. In
|
864 |
+
addition the options 'full' and 'economic' were deprecated. Because
|
865 |
+
'full' was the previous default and 'reduced' is the new default,
|
866 |
+
backward compatibility can be maintained by letting `mode` default.
|
867 |
+
The 'raw' option was added so that LAPACK routines that can multiply
|
868 |
+
arrays by q using the Householder reflectors can be used. Note that in
|
869 |
+
this case the returned arrays are of type np.double or np.cdouble and
|
870 |
+
the h array is transposed to be FORTRAN compatible. No routines using
|
871 |
+
the 'raw' return are currently exposed by numpy, but some are available
|
872 |
+
in lapack_lite and just await the necessary work.
|
873 |
+
|
874 |
+
Examples
|
875 |
+
--------
|
876 |
+
>>> a = np.random.randn(9, 6)
|
877 |
+
>>> Q, R = np.linalg.qr(a)
|
878 |
+
>>> np.allclose(a, np.dot(Q, R)) # a does equal QR
|
879 |
+
True
|
880 |
+
>>> R2 = np.linalg.qr(a, mode='r')
|
881 |
+
>>> np.allclose(R, R2) # mode='r' returns the same R as mode='full'
|
882 |
+
True
|
883 |
+
>>> a = np.random.normal(size=(3, 2, 2)) # Stack of 2 x 2 matrices as input
|
884 |
+
>>> Q, R = np.linalg.qr(a)
|
885 |
+
>>> Q.shape
|
886 |
+
(3, 2, 2)
|
887 |
+
>>> R.shape
|
888 |
+
(3, 2, 2)
|
889 |
+
>>> np.allclose(a, np.matmul(Q, R))
|
890 |
+
True
|
891 |
+
|
892 |
+
Example illustrating a common use of `qr`: solving of least squares
|
893 |
+
problems
|
894 |
+
|
895 |
+
What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for
|
896 |
+
the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points
|
897 |
+
and you'll see that it should be y0 = 0, m = 1.) The answer is provided
|
898 |
+
by solving the over-determined matrix equation ``Ax = b``, where::
|
899 |
+
|
900 |
+
A = array([[0, 1], [1, 1], [1, 1], [2, 1]])
|
901 |
+
x = array([[y0], [m]])
|
902 |
+
b = array([[1], [0], [2], [1]])
|
903 |
+
|
904 |
+
If A = QR such that Q is orthonormal (which is always possible via
|
905 |
+
Gram-Schmidt), then ``x = inv(R) * (Q.T) * b``. (In numpy practice,
|
906 |
+
however, we simply use `lstsq`.)
|
907 |
+
|
908 |
+
>>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
|
909 |
+
>>> A
|
910 |
+
array([[0, 1],
|
911 |
+
[1, 1],
|
912 |
+
[1, 1],
|
913 |
+
[2, 1]])
|
914 |
+
>>> b = np.array([1, 2, 2, 3])
|
915 |
+
>>> Q, R = np.linalg.qr(A)
|
916 |
+
>>> p = np.dot(Q.T, b)
|
917 |
+
>>> np.dot(np.linalg.inv(R), p)
|
918 |
+
array([ 1., 1.])
|
919 |
+
|
920 |
+
"""
|
921 |
+
if mode not in ('reduced', 'complete', 'r', 'raw'):
|
922 |
+
if mode in ('f', 'full'):
|
923 |
+
# 2013-04-01, 1.8
|
924 |
+
msg = "".join((
|
925 |
+
"The 'full' option is deprecated in favor of 'reduced'.\n",
|
926 |
+
"For backward compatibility let mode default."))
|
927 |
+
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
928 |
+
mode = 'reduced'
|
929 |
+
elif mode in ('e', 'economic'):
|
930 |
+
# 2013-04-01, 1.8
|
931 |
+
msg = "The 'economic' option is deprecated."
|
932 |
+
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
933 |
+
mode = 'economic'
|
934 |
+
else:
|
935 |
+
raise ValueError(f"Unrecognized mode '{mode}'")
|
936 |
+
|
937 |
+
a, wrap = _makearray(a)
|
938 |
+
_assert_stacked_2d(a)
|
939 |
+
m, n = a.shape[-2:]
|
940 |
+
t, result_t = _commonType(a)
|
941 |
+
a = a.astype(t, copy=True)
|
942 |
+
a = _to_native_byte_order(a)
|
943 |
+
mn = min(m, n)
|
944 |
+
|
945 |
+
if m <= n:
|
946 |
+
gufunc = _umath_linalg.qr_r_raw_m
|
947 |
+
else:
|
948 |
+
gufunc = _umath_linalg.qr_r_raw_n
|
949 |
+
|
950 |
+
signature = 'D->D' if isComplexType(t) else 'd->d'
|
951 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_qr)
|
952 |
+
tau = gufunc(a, signature=signature, extobj=extobj)
|
953 |
+
|
954 |
+
# handle modes that don't return q
|
955 |
+
if mode == 'r':
|
956 |
+
r = triu(a[..., :mn, :])
|
957 |
+
r = r.astype(result_t, copy=False)
|
958 |
+
return wrap(r)
|
959 |
+
|
960 |
+
if mode == 'raw':
|
961 |
+
q = transpose(a)
|
962 |
+
q = q.astype(result_t, copy=False)
|
963 |
+
tau = tau.astype(result_t, copy=False)
|
964 |
+
return wrap(q), tau
|
965 |
+
|
966 |
+
if mode == 'economic':
|
967 |
+
a = a.astype(result_t, copy=False)
|
968 |
+
return wrap(a)
|
969 |
+
|
970 |
+
# mc is the number of columns in the resulting q
|
971 |
+
# matrix. If the mode is complete then it is
|
972 |
+
# same as number of rows, and if the mode is reduced,
|
973 |
+
# then it is the minimum of number of rows and columns.
|
974 |
+
if mode == 'complete' and m > n:
|
975 |
+
mc = m
|
976 |
+
gufunc = _umath_linalg.qr_complete
|
977 |
+
else:
|
978 |
+
mc = mn
|
979 |
+
gufunc = _umath_linalg.qr_reduced
|
980 |
+
|
981 |
+
signature = 'DD->D' if isComplexType(t) else 'dd->d'
|
982 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_qr)
|
983 |
+
q = gufunc(a, tau, signature=signature, extobj=extobj)
|
984 |
+
r = triu(a[..., :mc, :])
|
985 |
+
|
986 |
+
q = q.astype(result_t, copy=False)
|
987 |
+
r = r.astype(result_t, copy=False)
|
988 |
+
|
989 |
+
return QRResult(wrap(q), wrap(r))
|
990 |
+
|
991 |
+
# Eigenvalues
|
992 |
+
|
993 |
+
|
994 |
+
@array_function_dispatch(_unary_dispatcher)
|
995 |
+
def eigvals(a):
|
996 |
+
"""
|
997 |
+
Compute the eigenvalues of a general matrix.
|
998 |
+
|
999 |
+
Main difference between `eigvals` and `eig`: the eigenvectors aren't
|
1000 |
+
returned.
|
1001 |
+
|
1002 |
+
Parameters
|
1003 |
+
----------
|
1004 |
+
a : (..., M, M) array_like
|
1005 |
+
A complex- or real-valued matrix whose eigenvalues will be computed.
|
1006 |
+
|
1007 |
+
Returns
|
1008 |
+
-------
|
1009 |
+
w : (..., M,) ndarray
|
1010 |
+
The eigenvalues, each repeated according to its multiplicity.
|
1011 |
+
They are not necessarily ordered, nor are they necessarily
|
1012 |
+
real for real matrices.
|
1013 |
+
|
1014 |
+
Raises
|
1015 |
+
------
|
1016 |
+
LinAlgError
|
1017 |
+
If the eigenvalue computation does not converge.
|
1018 |
+
|
1019 |
+
See Also
|
1020 |
+
--------
|
1021 |
+
eig : eigenvalues and right eigenvectors of general arrays
|
1022 |
+
eigvalsh : eigenvalues of real symmetric or complex Hermitian
|
1023 |
+
(conjugate symmetric) arrays.
|
1024 |
+
eigh : eigenvalues and eigenvectors of real symmetric or complex
|
1025 |
+
Hermitian (conjugate symmetric) arrays.
|
1026 |
+
scipy.linalg.eigvals : Similar function in SciPy.
|
1027 |
+
|
1028 |
+
Notes
|
1029 |
+
-----
|
1030 |
+
|
1031 |
+
.. versionadded:: 1.8.0
|
1032 |
+
|
1033 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
1034 |
+
details.
|
1035 |
+
|
1036 |
+
This is implemented using the ``_geev`` LAPACK routines which compute
|
1037 |
+
the eigenvalues and eigenvectors of general square arrays.
|
1038 |
+
|
1039 |
+
Examples
|
1040 |
+
--------
|
1041 |
+
Illustration, using the fact that the eigenvalues of a diagonal matrix
|
1042 |
+
are its diagonal elements, that multiplying a matrix on the left
|
1043 |
+
by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose
|
1044 |
+
of `Q`), preserves the eigenvalues of the "middle" matrix. In other words,
|
1045 |
+
if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as
|
1046 |
+
``A``:
|
1047 |
+
|
1048 |
+
>>> from numpy import linalg as LA
|
1049 |
+
>>> x = np.random.random()
|
1050 |
+
>>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
|
1051 |
+
>>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
|
1052 |
+
(1.0, 1.0, 0.0)
|
1053 |
+
|
1054 |
+
Now multiply a diagonal matrix by ``Q`` on one side and by ``Q.T`` on the other:
|
1055 |
+
|
1056 |
+
>>> D = np.diag((-1,1))
|
1057 |
+
>>> LA.eigvals(D)
|
1058 |
+
array([-1., 1.])
|
1059 |
+
>>> A = np.dot(Q, D)
|
1060 |
+
>>> A = np.dot(A, Q.T)
|
1061 |
+
>>> LA.eigvals(A)
|
1062 |
+
array([ 1., -1.]) # random
|
1063 |
+
|
1064 |
+
"""
|
1065 |
+
a, wrap = _makearray(a)
|
1066 |
+
_assert_stacked_2d(a)
|
1067 |
+
_assert_stacked_square(a)
|
1068 |
+
_assert_finite(a)
|
1069 |
+
t, result_t = _commonType(a)
|
1070 |
+
|
1071 |
+
extobj = get_linalg_error_extobj(
|
1072 |
+
_raise_linalgerror_eigenvalues_nonconvergence)
|
1073 |
+
signature = 'D->D' if isComplexType(t) else 'd->D'
|
1074 |
+
w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj)
|
1075 |
+
|
1076 |
+
if not isComplexType(t):
|
1077 |
+
if all(w.imag == 0):
|
1078 |
+
w = w.real
|
1079 |
+
result_t = _realType(result_t)
|
1080 |
+
else:
|
1081 |
+
result_t = _complexType(result_t)
|
1082 |
+
|
1083 |
+
return w.astype(result_t, copy=False)
|
1084 |
+
|
1085 |
+
|
1086 |
+
def _eigvalsh_dispatcher(a, UPLO=None):
|
1087 |
+
return (a,)
|
1088 |
+
|
1089 |
+
|
1090 |
+
@array_function_dispatch(_eigvalsh_dispatcher)
|
1091 |
+
def eigvalsh(a, UPLO='L'):
|
1092 |
+
"""
|
1093 |
+
Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
|
1094 |
+
|
1095 |
+
Main difference from eigh: the eigenvectors are not computed.
|
1096 |
+
|
1097 |
+
Parameters
|
1098 |
+
----------
|
1099 |
+
a : (..., M, M) array_like
|
1100 |
+
A complex- or real-valued matrix whose eigenvalues are to be
|
1101 |
+
computed.
|
1102 |
+
UPLO : {'L', 'U'}, optional
|
1103 |
+
Specifies whether the calculation is done with the lower triangular
|
1104 |
+
part of `a` ('L', default) or the upper triangular part ('U').
|
1105 |
+
Irrespective of this value only the real parts of the diagonal will
|
1106 |
+
be considered in the computation to preserve the notion of a Hermitian
|
1107 |
+
matrix. It therefore follows that the imaginary part of the diagonal
|
1108 |
+
will always be treated as zero.
|
1109 |
+
|
1110 |
+
Returns
|
1111 |
+
-------
|
1112 |
+
w : (..., M,) ndarray
|
1113 |
+
The eigenvalues in ascending order, each repeated according to
|
1114 |
+
its multiplicity.
|
1115 |
+
|
1116 |
+
Raises
|
1117 |
+
------
|
1118 |
+
LinAlgError
|
1119 |
+
If the eigenvalue computation does not converge.
|
1120 |
+
|
1121 |
+
See Also
|
1122 |
+
--------
|
1123 |
+
eigh : eigenvalues and eigenvectors of real symmetric or complex Hermitian
|
1124 |
+
(conjugate symmetric) arrays.
|
1125 |
+
eigvals : eigenvalues of general real or complex arrays.
|
1126 |
+
eig : eigenvalues and right eigenvectors of general real or complex
|
1127 |
+
arrays.
|
1128 |
+
scipy.linalg.eigvalsh : Similar function in SciPy.
|
1129 |
+
|
1130 |
+
Notes
|
1131 |
+
-----
|
1132 |
+
|
1133 |
+
.. versionadded:: 1.8.0
|
1134 |
+
|
1135 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
1136 |
+
details.
|
1137 |
+
|
1138 |
+
The eigenvalues are computed using LAPACK routines ``_syevd``, ``_heevd``.
|
1139 |
+
|
1140 |
+
Examples
|
1141 |
+
--------
|
1142 |
+
>>> from numpy import linalg as LA
|
1143 |
+
>>> a = np.array([[1, -2j], [2j, 5]])
|
1144 |
+
>>> LA.eigvalsh(a)
|
1145 |
+
array([ 0.17157288, 5.82842712]) # may vary
|
1146 |
+
|
1147 |
+
>>> # demonstrate the treatment of the imaginary part of the diagonal
|
1148 |
+
>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
|
1149 |
+
>>> a
|
1150 |
+
array([[5.+2.j, 9.-2.j],
|
1151 |
+
[0.+2.j, 2.-1.j]])
|
1152 |
+
>>> # with UPLO='L' this is numerically equivalent to using LA.eigvals()
|
1153 |
+
>>> # with:
|
1154 |
+
>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
|
1155 |
+
>>> b
|
1156 |
+
array([[5.+0.j, 0.-2.j],
|
1157 |
+
[0.+2.j, 2.+0.j]])
|
1158 |
+
>>> wa = LA.eigvalsh(a)
|
1159 |
+
>>> wb = LA.eigvals(b)
|
1160 |
+
>>> wa; wb
|
1161 |
+
array([1., 6.])
|
1162 |
+
array([6.+0.j, 1.+0.j])
|
1163 |
+
|
1164 |
+
"""
|
1165 |
+
UPLO = UPLO.upper()
|
1166 |
+
if UPLO not in ('L', 'U'):
|
1167 |
+
raise ValueError("UPLO argument must be 'L' or 'U'")
|
1168 |
+
|
1169 |
+
extobj = get_linalg_error_extobj(
|
1170 |
+
_raise_linalgerror_eigenvalues_nonconvergence)
|
1171 |
+
if UPLO == 'L':
|
1172 |
+
gufunc = _umath_linalg.eigvalsh_lo
|
1173 |
+
else:
|
1174 |
+
gufunc = _umath_linalg.eigvalsh_up
|
1175 |
+
|
1176 |
+
a, wrap = _makearray(a)
|
1177 |
+
_assert_stacked_2d(a)
|
1178 |
+
_assert_stacked_square(a)
|
1179 |
+
t, result_t = _commonType(a)
|
1180 |
+
signature = 'D->d' if isComplexType(t) else 'd->d'
|
1181 |
+
w = gufunc(a, signature=signature, extobj=extobj)
|
1182 |
+
return w.astype(_realType(result_t), copy=False)
|
1183 |
+
|
1184 |
+
def _convertarray(a):
|
1185 |
+
t, result_t = _commonType(a)
|
1186 |
+
a = a.astype(t).T.copy()
|
1187 |
+
return a, t, result_t
|
1188 |
+
|
1189 |
+
|
1190 |
+
# Eigenvectors
|
1191 |
+
|
1192 |
+
|
1193 |
+
@array_function_dispatch(_unary_dispatcher)
|
1194 |
+
def eig(a):
|
1195 |
+
"""
|
1196 |
+
Compute the eigenvalues and right eigenvectors of a square array.
|
1197 |
+
|
1198 |
+
Parameters
|
1199 |
+
----------
|
1200 |
+
a : (..., M, M) array
|
1201 |
+
Matrices for which the eigenvalues and right eigenvectors will
|
1202 |
+
be computed
|
1203 |
+
|
1204 |
+
Returns
|
1205 |
+
-------
|
1206 |
+
A namedtuple with the following attributes:
|
1207 |
+
|
1208 |
+
eigenvalues : (..., M) array
|
1209 |
+
The eigenvalues, each repeated according to its multiplicity.
|
1210 |
+
The eigenvalues are not necessarily ordered. The resulting
|
1211 |
+
array will be of complex type, unless the imaginary part is
|
1212 |
+
zero in which case it will be cast to a real type. When `a`
|
1213 |
+
is real the resulting eigenvalues will be real (0 imaginary
|
1214 |
+
part) or occur in conjugate pairs
|
1215 |
+
|
1216 |
+
eigenvectors : (..., M, M) array
|
1217 |
+
The normalized (unit "length") eigenvectors, such that the
|
1218 |
+
column ``eigenvectors[:,i]`` is the eigenvector corresponding to the
|
1219 |
+
eigenvalue ``eigenvalues[i]``.
|
1220 |
+
|
1221 |
+
Raises
|
1222 |
+
------
|
1223 |
+
LinAlgError
|
1224 |
+
If the eigenvalue computation does not converge.
|
1225 |
+
|
1226 |
+
See Also
|
1227 |
+
--------
|
1228 |
+
eigvals : eigenvalues of a non-symmetric array.
|
1229 |
+
eigh : eigenvalues and eigenvectors of a real symmetric or complex
|
1230 |
+
Hermitian (conjugate symmetric) array.
|
1231 |
+
eigvalsh : eigenvalues of a real symmetric or complex Hermitian
|
1232 |
+
(conjugate symmetric) array.
|
1233 |
+
scipy.linalg.eig : Similar function in SciPy that also solves the
|
1234 |
+
generalized eigenvalue problem.
|
1235 |
+
scipy.linalg.schur : Best choice for unitary and other non-Hermitian
|
1236 |
+
normal matrices.
|
1237 |
+
|
1238 |
+
Notes
|
1239 |
+
-----
|
1240 |
+
|
1241 |
+
.. versionadded:: 1.8.0
|
1242 |
+
|
1243 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
1244 |
+
details.
|
1245 |
+
|
1246 |
+
This is implemented using the ``_geev`` LAPACK routines which compute
|
1247 |
+
the eigenvalues and eigenvectors of general square arrays.
|
1248 |
+
|
1249 |
+
The number `w` is an eigenvalue of `a` if there exists a vector `v` such
|
1250 |
+
that ``a @ v = w * v``. Thus, the arrays `a`, `eigenvalues`, and
|
1251 |
+
`eigenvectors` satisfy the equations ``a @ eigenvectors[:,i] =
|
1252 |
+
eigenvalues[i] * eigenvalues[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`.
|
1253 |
+
|
1254 |
+
The array `eigenvectors` may not be of maximum rank, that is, some of the
|
1255 |
+
columns may be linearly dependent, although round-off error may obscure
|
1256 |
+
that fact. If the eigenvalues are all different, then theoretically the
|
1257 |
+
eigenvectors are linearly independent and `a` can be diagonalized by a
|
1258 |
+
similarity transformation using `eigenvectors`, i.e, ``inv(eigenvectors) @
|
1259 |
+
a @ eigenvectors`` is diagonal.
|
1260 |
+
|
1261 |
+
For non-Hermitian normal matrices the SciPy function `scipy.linalg.schur`
|
1262 |
+
is preferred because the matrix `eigenvectors` is guaranteed to be
|
1263 |
+
unitary, which is not the case when using `eig`. The Schur factorization
|
1264 |
+
produces an upper triangular matrix rather than a diagonal matrix, but for
|
1265 |
+
normal matrices only the diagonal of the upper triangular matrix is
|
1266 |
+
needed, the rest is roundoff error.
|
1267 |
+
|
1268 |
+
Finally, it is emphasized that `eigenvectors` consists of the *right* (as
|
1269 |
+
in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``y.T @ a
|
1270 |
+
= z * y.T`` for some number `z` is called a *left* eigenvector of `a`,
|
1271 |
+
and, in general, the left and right eigenvectors of a matrix are not
|
1272 |
+
necessarily the (perhaps conjugate) transposes of each other.
|
1273 |
+
|
1274 |
+
References
|
1275 |
+
----------
|
1276 |
+
G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL,
|
1277 |
+
Academic Press, Inc., 1980, Various pp.
|
1278 |
+
|
1279 |
+
Examples
|
1280 |
+
--------
|
1281 |
+
>>> from numpy import linalg as LA
|
1282 |
+
|
1283 |
+
(Almost) trivial example with real eigenvalues and eigenvectors.
|
1284 |
+
|
1285 |
+
>>> eigenvalues, eigenvectors = LA.eig(np.diag((1, 2, 3)))
|
1286 |
+
>>> eigenvalues
|
1287 |
+
array([1., 2., 3.])
|
1288 |
+
>>> eigenvectors
|
1289 |
+
array([[1., 0., 0.],
|
1290 |
+
[0., 1., 0.],
|
1291 |
+
[0., 0., 1.]])
|
1292 |
+
|
1293 |
+
Real matrix possessing complex eigenvalues and eigenvectors; note that the
|
1294 |
+
eigenvalues are complex conjugates of each other.
|
1295 |
+
|
1296 |
+
>>> eigenvalues, eigenvectors = LA.eig(np.array([[1, -1], [1, 1]]))
|
1297 |
+
>>> eigenvalues
|
1298 |
+
array([1.+1.j, 1.-1.j])
|
1299 |
+
>>> eigenvectors
|
1300 |
+
array([[0.70710678+0.j , 0.70710678-0.j ],
|
1301 |
+
[0. -0.70710678j, 0. +0.70710678j]])
|
1302 |
+
|
1303 |
+
Complex-valued matrix with real eigenvalues (but complex-valued eigenvectors);
|
1304 |
+
note that ``a.conj().T == a``, i.e., `a` is Hermitian.
|
1305 |
+
|
1306 |
+
>>> a = np.array([[1, 1j], [-1j, 1]])
|
1307 |
+
>>> eigenvalues, eigenvectors = LA.eig(a)
|
1308 |
+
>>> eigenvalues
|
1309 |
+
array([2.+0.j, 0.+0.j])
|
1310 |
+
>>> eigenvectors
|
1311 |
+
array([[ 0. +0.70710678j, 0.70710678+0.j ], # may vary
|
1312 |
+
[ 0.70710678+0.j , -0. +0.70710678j]])
|
1313 |
+
|
1314 |
+
Be careful about round-off error!
|
1315 |
+
|
1316 |
+
>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
|
1317 |
+
>>> # Theor. eigenvalues are 1 +/- 1e-9
|
1318 |
+
>>> eigenvalues, eigenvectors = LA.eig(a)
|
1319 |
+
>>> eigenvalues
|
1320 |
+
array([1., 1.])
|
1321 |
+
>>> eigenvectors
|
1322 |
+
array([[1., 0.],
|
1323 |
+
[0., 1.]])
|
1324 |
+
|
1325 |
+
"""
|
1326 |
+
a, wrap = _makearray(a)
|
1327 |
+
_assert_stacked_2d(a)
|
1328 |
+
_assert_stacked_square(a)
|
1329 |
+
_assert_finite(a)
|
1330 |
+
t, result_t = _commonType(a)
|
1331 |
+
|
1332 |
+
extobj = get_linalg_error_extobj(
|
1333 |
+
_raise_linalgerror_eigenvalues_nonconvergence)
|
1334 |
+
signature = 'D->DD' if isComplexType(t) else 'd->DD'
|
1335 |
+
w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj)
|
1336 |
+
|
1337 |
+
if not isComplexType(t) and all(w.imag == 0.0):
|
1338 |
+
w = w.real
|
1339 |
+
vt = vt.real
|
1340 |
+
result_t = _realType(result_t)
|
1341 |
+
else:
|
1342 |
+
result_t = _complexType(result_t)
|
1343 |
+
|
1344 |
+
vt = vt.astype(result_t, copy=False)
|
1345 |
+
return EigResult(w.astype(result_t, copy=False), wrap(vt))
|
1346 |
+
|
1347 |
+
|
1348 |
+
@array_function_dispatch(_eigvalsh_dispatcher)
|
1349 |
+
def eigh(a, UPLO='L'):
|
1350 |
+
"""
|
1351 |
+
Return the eigenvalues and eigenvectors of a complex Hermitian
|
1352 |
+
(conjugate symmetric) or a real symmetric matrix.
|
1353 |
+
|
1354 |
+
Returns two objects, a 1-D array containing the eigenvalues of `a`, and
|
1355 |
+
a 2-D square array or matrix (depending on the input type) of the
|
1356 |
+
corresponding eigenvectors (in columns).
|
1357 |
+
|
1358 |
+
Parameters
|
1359 |
+
----------
|
1360 |
+
a : (..., M, M) array
|
1361 |
+
Hermitian or real symmetric matrices whose eigenvalues and
|
1362 |
+
eigenvectors are to be computed.
|
1363 |
+
UPLO : {'L', 'U'}, optional
|
1364 |
+
Specifies whether the calculation is done with the lower triangular
|
1365 |
+
part of `a` ('L', default) or the upper triangular part ('U').
|
1366 |
+
Irrespective of this value only the real parts of the diagonal will
|
1367 |
+
be considered in the computation to preserve the notion of a Hermitian
|
1368 |
+
matrix. It therefore follows that the imaginary part of the diagonal
|
1369 |
+
will always be treated as zero.
|
1370 |
+
|
1371 |
+
Returns
|
1372 |
+
-------
|
1373 |
+
A namedtuple with the following attributes:
|
1374 |
+
|
1375 |
+
eigenvalues : (..., M) ndarray
|
1376 |
+
The eigenvalues in ascending order, each repeated according to
|
1377 |
+
its multiplicity.
|
1378 |
+
eigenvectors : {(..., M, M) ndarray, (..., M, M) matrix}
|
1379 |
+
The column ``eigenvectors[:, i]`` is the normalized eigenvector
|
1380 |
+
corresponding to the eigenvalue ``eigenvalues[i]``. Will return a
|
1381 |
+
matrix object if `a` is a matrix object.
|
1382 |
+
|
1383 |
+
Raises
|
1384 |
+
------
|
1385 |
+
LinAlgError
|
1386 |
+
If the eigenvalue computation does not converge.
|
1387 |
+
|
1388 |
+
See Also
|
1389 |
+
--------
|
1390 |
+
eigvalsh : eigenvalues of real symmetric or complex Hermitian
|
1391 |
+
(conjugate symmetric) arrays.
|
1392 |
+
eig : eigenvalues and right eigenvectors for non-symmetric arrays.
|
1393 |
+
eigvals : eigenvalues of non-symmetric arrays.
|
1394 |
+
scipy.linalg.eigh : Similar function in SciPy (but also solves the
|
1395 |
+
generalized eigenvalue problem).
|
1396 |
+
|
1397 |
+
Notes
|
1398 |
+
-----
|
1399 |
+
|
1400 |
+
.. versionadded:: 1.8.0
|
1401 |
+
|
1402 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
1403 |
+
details.
|
1404 |
+
|
1405 |
+
The eigenvalues/eigenvectors are computed using LAPACK routines ``_syevd``,
|
1406 |
+
``_heevd``.
|
1407 |
+
|
1408 |
+
The eigenvalues of real symmetric or complex Hermitian matrices are always
|
1409 |
+
real. [1]_ The array `eigenvalues` of (column) eigenvectors is unitary and
|
1410 |
+
`a`, `eigenvalues`, and `eigenvectors` satisfy the equations ``dot(a,
|
1411 |
+
eigenvectors[:, i]) = eigenvalues[i] * eigenvectors[:, i]``.
|
1412 |
+
|
1413 |
+
References
|
1414 |
+
----------
|
1415 |
+
.. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
|
1416 |
+
FL, Academic Press, Inc., 1980, pg. 222.
|
1417 |
+
|
1418 |
+
Examples
|
1419 |
+
--------
|
1420 |
+
>>> from numpy import linalg as LA
|
1421 |
+
>>> a = np.array([[1, -2j], [2j, 5]])
|
1422 |
+
>>> a
|
1423 |
+
array([[ 1.+0.j, -0.-2.j],
|
1424 |
+
[ 0.+2.j, 5.+0.j]])
|
1425 |
+
>>> eigenvalues, eigenvectors = LA.eigh(a)
|
1426 |
+
>>> eigenvalues
|
1427 |
+
array([0.17157288, 5.82842712])
|
1428 |
+
>>> eigenvectors
|
1429 |
+
array([[-0.92387953+0.j , -0.38268343+0.j ], # may vary
|
1430 |
+
[ 0. +0.38268343j, 0. -0.92387953j]])
|
1431 |
+
|
1432 |
+
>>> np.dot(a, eigenvectors[:, 0]) - eigenvalues[0] * eigenvectors[:, 0] # verify 1st eigenval/vec pair
|
1433 |
+
array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j])
|
1434 |
+
>>> np.dot(a, eigenvectors[:, 1]) - eigenvalues[1] * eigenvectors[:, 1] # verify 2nd eigenval/vec pair
|
1435 |
+
array([0.+0.j, 0.+0.j])
|
1436 |
+
|
1437 |
+
>>> A = np.matrix(a) # what happens if input is a matrix object
|
1438 |
+
>>> A
|
1439 |
+
matrix([[ 1.+0.j, -0.-2.j],
|
1440 |
+
[ 0.+2.j, 5.+0.j]])
|
1441 |
+
>>> eigenvalues, eigenvectors = LA.eigh(A)
|
1442 |
+
>>> eigenvalues
|
1443 |
+
array([0.17157288, 5.82842712])
|
1444 |
+
>>> eigenvectors
|
1445 |
+
matrix([[-0.92387953+0.j , -0.38268343+0.j ], # may vary
|
1446 |
+
[ 0. +0.38268343j, 0. -0.92387953j]])
|
1447 |
+
|
1448 |
+
>>> # demonstrate the treatment of the imaginary part of the diagonal
|
1449 |
+
>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
|
1450 |
+
>>> a
|
1451 |
+
array([[5.+2.j, 9.-2.j],
|
1452 |
+
[0.+2.j, 2.-1.j]])
|
1453 |
+
>>> # with UPLO='L' this is numerically equivalent to using LA.eig() with:
|
1454 |
+
>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
|
1455 |
+
>>> b
|
1456 |
+
array([[5.+0.j, 0.-2.j],
|
1457 |
+
[0.+2.j, 2.+0.j]])
|
1458 |
+
>>> wa, va = LA.eigh(a)
|
1459 |
+
>>> wb, vb = LA.eig(b)
|
1460 |
+
>>> wa; wb
|
1461 |
+
array([1., 6.])
|
1462 |
+
array([6.+0.j, 1.+0.j])
|
1463 |
+
>>> va; vb
|
1464 |
+
array([[-0.4472136 +0.j , -0.89442719+0.j ], # may vary
|
1465 |
+
[ 0. +0.89442719j, 0. -0.4472136j ]])
|
1466 |
+
array([[ 0.89442719+0.j , -0. +0.4472136j],
|
1467 |
+
[-0. +0.4472136j, 0.89442719+0.j ]])
|
1468 |
+
|
1469 |
+
"""
|
1470 |
+
UPLO = UPLO.upper()
|
1471 |
+
if UPLO not in ('L', 'U'):
|
1472 |
+
raise ValueError("UPLO argument must be 'L' or 'U'")
|
1473 |
+
|
1474 |
+
a, wrap = _makearray(a)
|
1475 |
+
_assert_stacked_2d(a)
|
1476 |
+
_assert_stacked_square(a)
|
1477 |
+
t, result_t = _commonType(a)
|
1478 |
+
|
1479 |
+
extobj = get_linalg_error_extobj(
|
1480 |
+
_raise_linalgerror_eigenvalues_nonconvergence)
|
1481 |
+
if UPLO == 'L':
|
1482 |
+
gufunc = _umath_linalg.eigh_lo
|
1483 |
+
else:
|
1484 |
+
gufunc = _umath_linalg.eigh_up
|
1485 |
+
|
1486 |
+
signature = 'D->dD' if isComplexType(t) else 'd->dd'
|
1487 |
+
w, vt = gufunc(a, signature=signature, extobj=extobj)
|
1488 |
+
w = w.astype(_realType(result_t), copy=False)
|
1489 |
+
vt = vt.astype(result_t, copy=False)
|
1490 |
+
return EighResult(w, wrap(vt))
|
1491 |
+
|
1492 |
+
|
1493 |
+
# Singular value decomposition
|
1494 |
+
|
1495 |
+
def _svd_dispatcher(a, full_matrices=None, compute_uv=None, hermitian=None):
|
1496 |
+
return (a,)
|
1497 |
+
|
1498 |
+
|
1499 |
+
@array_function_dispatch(_svd_dispatcher)
|
1500 |
+
def svd(a, full_matrices=True, compute_uv=True, hermitian=False):
|
1501 |
+
"""
|
1502 |
+
Singular Value Decomposition.
|
1503 |
+
|
1504 |
+
When `a` is a 2D array, and ``full_matrices=False``, then it is
|
1505 |
+
factorized as ``u @ np.diag(s) @ vh = (u * s) @ vh``, where
|
1506 |
+
`u` and the Hermitian transpose of `vh` are 2D arrays with
|
1507 |
+
orthonormal columns and `s` is a 1D array of `a`'s singular
|
1508 |
+
values. When `a` is higher-dimensional, SVD is applied in
|
1509 |
+
stacked mode as explained below.
|
1510 |
+
|
1511 |
+
Parameters
|
1512 |
+
----------
|
1513 |
+
a : (..., M, N) array_like
|
1514 |
+
A real or complex array with ``a.ndim >= 2``.
|
1515 |
+
full_matrices : bool, optional
|
1516 |
+
If True (default), `u` and `vh` have the shapes ``(..., M, M)`` and
|
1517 |
+
``(..., N, N)``, respectively. Otherwise, the shapes are
|
1518 |
+
``(..., M, K)`` and ``(..., K, N)``, respectively, where
|
1519 |
+
``K = min(M, N)``.
|
1520 |
+
compute_uv : bool, optional
|
1521 |
+
Whether or not to compute `u` and `vh` in addition to `s`. True
|
1522 |
+
by default.
|
1523 |
+
hermitian : bool, optional
|
1524 |
+
If True, `a` is assumed to be Hermitian (symmetric if real-valued),
|
1525 |
+
enabling a more efficient method for finding singular values.
|
1526 |
+
Defaults to False.
|
1527 |
+
|
1528 |
+
.. versionadded:: 1.17.0
|
1529 |
+
|
1530 |
+
Returns
|
1531 |
+
-------
|
1532 |
+
When `compute_uv` is True, the result is a namedtuple with the following
|
1533 |
+
attribute names:
|
1534 |
+
|
1535 |
+
U : { (..., M, M), (..., M, K) } array
|
1536 |
+
Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
|
1537 |
+
size as those of the input `a`. The size of the last two dimensions
|
1538 |
+
depends on the value of `full_matrices`. Only returned when
|
1539 |
+
`compute_uv` is True.
|
1540 |
+
S : (..., K) array
|
1541 |
+
Vector(s) with the singular values, within each vector sorted in
|
1542 |
+
descending order. The first ``a.ndim - 2`` dimensions have the same
|
1543 |
+
size as those of the input `a`.
|
1544 |
+
Vh : { (..., N, N), (..., K, N) } array
|
1545 |
+
Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
|
1546 |
+
size as those of the input `a`. The size of the last two dimensions
|
1547 |
+
depends on the value of `full_matrices`. Only returned when
|
1548 |
+
`compute_uv` is True.
|
1549 |
+
|
1550 |
+
Raises
|
1551 |
+
------
|
1552 |
+
LinAlgError
|
1553 |
+
If SVD computation does not converge.
|
1554 |
+
|
1555 |
+
See Also
|
1556 |
+
--------
|
1557 |
+
scipy.linalg.svd : Similar function in SciPy.
|
1558 |
+
scipy.linalg.svdvals : Compute singular values of a matrix.
|
1559 |
+
|
1560 |
+
Notes
|
1561 |
+
-----
|
1562 |
+
|
1563 |
+
.. versionchanged:: 1.8.0
|
1564 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
1565 |
+
details.
|
1566 |
+
|
1567 |
+
The decomposition is performed using LAPACK routine ``_gesdd``.
|
1568 |
+
|
1569 |
+
SVD is usually described for the factorization of a 2D matrix :math:`A`.
|
1570 |
+
The higher-dimensional case will be discussed below. In the 2D case, SVD is
|
1571 |
+
written as :math:`A = U S V^H`, where :math:`A = a`, :math:`U= u`,
|
1572 |
+
:math:`S= \\mathtt{np.diag}(s)` and :math:`V^H = vh`. The 1D array `s`
|
1573 |
+
contains the singular values of `a` and `u` and `vh` are unitary. The rows
|
1574 |
+
of `vh` are the eigenvectors of :math:`A^H A` and the columns of `u` are
|
1575 |
+
the eigenvectors of :math:`A A^H`. In both cases the corresponding
|
1576 |
+
(possibly non-zero) eigenvalues are given by ``s**2``.
|
1577 |
+
|
1578 |
+
If `a` has more than two dimensions, then broadcasting rules apply, as
|
1579 |
+
explained in :ref:`routines.linalg-broadcasting`. This means that SVD is
|
1580 |
+
working in "stacked" mode: it iterates over all indices of the first
|
1581 |
+
``a.ndim - 2`` dimensions and for each combination SVD is applied to the
|
1582 |
+
last two indices. The matrix `a` can be reconstructed from the
|
1583 |
+
decomposition with either ``(u * s[..., None, :]) @ vh`` or
|
1584 |
+
``u @ (s[..., None] * vh)``. (The ``@`` operator can be replaced by the
|
1585 |
+
function ``np.matmul`` for python versions below 3.5.)
|
1586 |
+
|
1587 |
+
If `a` is a ``matrix`` object (as opposed to an ``ndarray``), then so are
|
1588 |
+
all the return values.
|
1589 |
+
|
1590 |
+
Examples
|
1591 |
+
--------
|
1592 |
+
>>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)
|
1593 |
+
>>> b = np.random.randn(2, 7, 8, 3) + 1j*np.random.randn(2, 7, 8, 3)
|
1594 |
+
|
1595 |
+
Reconstruction based on full SVD, 2D case:
|
1596 |
+
|
1597 |
+
>>> U, S, Vh = np.linalg.svd(a, full_matrices=True)
|
1598 |
+
>>> U.shape, S.shape, Vh.shape
|
1599 |
+
((9, 9), (6,), (6, 6))
|
1600 |
+
>>> np.allclose(a, np.dot(U[:, :6] * S, Vh))
|
1601 |
+
True
|
1602 |
+
>>> smat = np.zeros((9, 6), dtype=complex)
|
1603 |
+
>>> smat[:6, :6] = np.diag(S)
|
1604 |
+
>>> np.allclose(a, np.dot(U, np.dot(smat, Vh)))
|
1605 |
+
True
|
1606 |
+
|
1607 |
+
Reconstruction based on reduced SVD, 2D case:
|
1608 |
+
|
1609 |
+
>>> U, S, Vh = np.linalg.svd(a, full_matrices=False)
|
1610 |
+
>>> U.shape, S.shape, Vh.shape
|
1611 |
+
((9, 6), (6,), (6, 6))
|
1612 |
+
>>> np.allclose(a, np.dot(U * S, Vh))
|
1613 |
+
True
|
1614 |
+
>>> smat = np.diag(S)
|
1615 |
+
>>> np.allclose(a, np.dot(U, np.dot(smat, Vh)))
|
1616 |
+
True
|
1617 |
+
|
1618 |
+
Reconstruction based on full SVD, 4D case:
|
1619 |
+
|
1620 |
+
>>> U, S, Vh = np.linalg.svd(b, full_matrices=True)
|
1621 |
+
>>> U.shape, S.shape, Vh.shape
|
1622 |
+
((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3))
|
1623 |
+
>>> np.allclose(b, np.matmul(U[..., :3] * S[..., None, :], Vh))
|
1624 |
+
True
|
1625 |
+
>>> np.allclose(b, np.matmul(U[..., :3], S[..., None] * Vh))
|
1626 |
+
True
|
1627 |
+
|
1628 |
+
Reconstruction based on reduced SVD, 4D case:
|
1629 |
+
|
1630 |
+
>>> U, S, Vh = np.linalg.svd(b, full_matrices=False)
|
1631 |
+
>>> U.shape, S.shape, Vh.shape
|
1632 |
+
((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3))
|
1633 |
+
>>> np.allclose(b, np.matmul(U * S[..., None, :], Vh))
|
1634 |
+
True
|
1635 |
+
>>> np.allclose(b, np.matmul(U, S[..., None] * Vh))
|
1636 |
+
True
|
1637 |
+
|
1638 |
+
"""
|
1639 |
+
import numpy as _nx
|
1640 |
+
a, wrap = _makearray(a)
|
1641 |
+
|
1642 |
+
if hermitian:
|
1643 |
+
# note: lapack svd returns eigenvalues with s ** 2 sorted descending,
|
1644 |
+
# but eig returns s sorted ascending, so we re-order the eigenvalues
|
1645 |
+
# and related arrays to have the correct order
|
1646 |
+
if compute_uv:
|
1647 |
+
s, u = eigh(a)
|
1648 |
+
sgn = sign(s)
|
1649 |
+
s = abs(s)
|
1650 |
+
sidx = argsort(s)[..., ::-1]
|
1651 |
+
sgn = _nx.take_along_axis(sgn, sidx, axis=-1)
|
1652 |
+
s = _nx.take_along_axis(s, sidx, axis=-1)
|
1653 |
+
u = _nx.take_along_axis(u, sidx[..., None, :], axis=-1)
|
1654 |
+
# singular values are unsigned, move the sign into v
|
1655 |
+
vt = transpose(u * sgn[..., None, :]).conjugate()
|
1656 |
+
return SVDResult(wrap(u), s, wrap(vt))
|
1657 |
+
else:
|
1658 |
+
s = eigvalsh(a)
|
1659 |
+
s = abs(s)
|
1660 |
+
return sort(s)[..., ::-1]
|
1661 |
+
|
1662 |
+
_assert_stacked_2d(a)
|
1663 |
+
t, result_t = _commonType(a)
|
1664 |
+
|
1665 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence)
|
1666 |
+
|
1667 |
+
m, n = a.shape[-2:]
|
1668 |
+
if compute_uv:
|
1669 |
+
if full_matrices:
|
1670 |
+
if m < n:
|
1671 |
+
gufunc = _umath_linalg.svd_m_f
|
1672 |
+
else:
|
1673 |
+
gufunc = _umath_linalg.svd_n_f
|
1674 |
+
else:
|
1675 |
+
if m < n:
|
1676 |
+
gufunc = _umath_linalg.svd_m_s
|
1677 |
+
else:
|
1678 |
+
gufunc = _umath_linalg.svd_n_s
|
1679 |
+
|
1680 |
+
signature = 'D->DdD' if isComplexType(t) else 'd->ddd'
|
1681 |
+
u, s, vh = gufunc(a, signature=signature, extobj=extobj)
|
1682 |
+
u = u.astype(result_t, copy=False)
|
1683 |
+
s = s.astype(_realType(result_t), copy=False)
|
1684 |
+
vh = vh.astype(result_t, copy=False)
|
1685 |
+
return SVDResult(wrap(u), s, wrap(vh))
|
1686 |
+
else:
|
1687 |
+
if m < n:
|
1688 |
+
gufunc = _umath_linalg.svd_m
|
1689 |
+
else:
|
1690 |
+
gufunc = _umath_linalg.svd_n
|
1691 |
+
|
1692 |
+
signature = 'D->d' if isComplexType(t) else 'd->d'
|
1693 |
+
s = gufunc(a, signature=signature, extobj=extobj)
|
1694 |
+
s = s.astype(_realType(result_t), copy=False)
|
1695 |
+
return s
|
1696 |
+
|
1697 |
+
|
1698 |
+
def _cond_dispatcher(x, p=None):
|
1699 |
+
return (x,)
|
1700 |
+
|
1701 |
+
|
1702 |
+
@array_function_dispatch(_cond_dispatcher)
|
1703 |
+
def cond(x, p=None):
|
1704 |
+
"""
|
1705 |
+
Compute the condition number of a matrix.
|
1706 |
+
|
1707 |
+
This function is capable of returning the condition number using
|
1708 |
+
one of seven different norms, depending on the value of `p` (see
|
1709 |
+
Parameters below).
|
1710 |
+
|
1711 |
+
Parameters
|
1712 |
+
----------
|
1713 |
+
x : (..., M, N) array_like
|
1714 |
+
The matrix whose condition number is sought.
|
1715 |
+
p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional
|
1716 |
+
Order of the norm used in the condition number computation:
|
1717 |
+
|
1718 |
+
===== ============================
|
1719 |
+
p norm for matrices
|
1720 |
+
===== ============================
|
1721 |
+
None 2-norm, computed directly using the ``SVD``
|
1722 |
+
'fro' Frobenius norm
|
1723 |
+
inf max(sum(abs(x), axis=1))
|
1724 |
+
-inf min(sum(abs(x), axis=1))
|
1725 |
+
1 max(sum(abs(x), axis=0))
|
1726 |
+
-1 min(sum(abs(x), axis=0))
|
1727 |
+
2 2-norm (largest sing. value)
|
1728 |
+
-2 smallest singular value
|
1729 |
+
===== ============================
|
1730 |
+
|
1731 |
+
inf means the `numpy.inf` object, and the Frobenius norm is
|
1732 |
+
the root-of-sum-of-squares norm.
|
1733 |
+
|
1734 |
+
Returns
|
1735 |
+
-------
|
1736 |
+
c : {float, inf}
|
1737 |
+
The condition number of the matrix. May be infinite.
|
1738 |
+
|
1739 |
+
See Also
|
1740 |
+
--------
|
1741 |
+
numpy.linalg.norm
|
1742 |
+
|
1743 |
+
Notes
|
1744 |
+
-----
|
1745 |
+
The condition number of `x` is defined as the norm of `x` times the
|
1746 |
+
norm of the inverse of `x` [1]_; the norm can be the usual L2-norm
|
1747 |
+
(root-of-sum-of-squares) or one of a number of other matrix norms.
|
1748 |
+
|
1749 |
+
References
|
1750 |
+
----------
|
1751 |
+
.. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL,
|
1752 |
+
Academic Press, Inc., 1980, pg. 285.
|
1753 |
+
|
1754 |
+
Examples
|
1755 |
+
--------
|
1756 |
+
>>> from numpy import linalg as LA
|
1757 |
+
>>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
|
1758 |
+
>>> a
|
1759 |
+
array([[ 1, 0, -1],
|
1760 |
+
[ 0, 1, 0],
|
1761 |
+
[ 1, 0, 1]])
|
1762 |
+
>>> LA.cond(a)
|
1763 |
+
1.4142135623730951
|
1764 |
+
>>> LA.cond(a, 'fro')
|
1765 |
+
3.1622776601683795
|
1766 |
+
>>> LA.cond(a, np.inf)
|
1767 |
+
2.0
|
1768 |
+
>>> LA.cond(a, -np.inf)
|
1769 |
+
1.0
|
1770 |
+
>>> LA.cond(a, 1)
|
1771 |
+
2.0
|
1772 |
+
>>> LA.cond(a, -1)
|
1773 |
+
1.0
|
1774 |
+
>>> LA.cond(a, 2)
|
1775 |
+
1.4142135623730951
|
1776 |
+
>>> LA.cond(a, -2)
|
1777 |
+
0.70710678118654746 # may vary
|
1778 |
+
>>> min(LA.svd(a, compute_uv=False))*min(LA.svd(LA.inv(a), compute_uv=False))
|
1779 |
+
0.70710678118654746 # may vary
|
1780 |
+
|
1781 |
+
"""
|
1782 |
+
x = asarray(x) # in case we have a matrix
|
1783 |
+
if _is_empty_2d(x):
|
1784 |
+
raise LinAlgError("cond is not defined on empty arrays")
|
1785 |
+
if p is None or p == 2 or p == -2:
|
1786 |
+
s = svd(x, compute_uv=False)
|
1787 |
+
with errstate(all='ignore'):
|
1788 |
+
if p == -2:
|
1789 |
+
r = s[..., -1] / s[..., 0]
|
1790 |
+
else:
|
1791 |
+
r = s[..., 0] / s[..., -1]
|
1792 |
+
else:
|
1793 |
+
# Call inv(x) ignoring errors. The result array will
|
1794 |
+
# contain nans in the entries where inversion failed.
|
1795 |
+
_assert_stacked_2d(x)
|
1796 |
+
_assert_stacked_square(x)
|
1797 |
+
t, result_t = _commonType(x)
|
1798 |
+
signature = 'D->D' if isComplexType(t) else 'd->d'
|
1799 |
+
with errstate(all='ignore'):
|
1800 |
+
invx = _umath_linalg.inv(x, signature=signature)
|
1801 |
+
r = norm(x, p, axis=(-2, -1)) * norm(invx, p, axis=(-2, -1))
|
1802 |
+
r = r.astype(result_t, copy=False)
|
1803 |
+
|
1804 |
+
# Convert nans to infs unless the original array had nan entries
|
1805 |
+
r = asarray(r)
|
1806 |
+
nan_mask = isnan(r)
|
1807 |
+
if nan_mask.any():
|
1808 |
+
nan_mask &= ~isnan(x).any(axis=(-2, -1))
|
1809 |
+
if r.ndim > 0:
|
1810 |
+
r[nan_mask] = Inf
|
1811 |
+
elif nan_mask:
|
1812 |
+
r[()] = Inf
|
1813 |
+
|
1814 |
+
# Convention is to return scalars instead of 0d arrays
|
1815 |
+
if r.ndim == 0:
|
1816 |
+
r = r[()]
|
1817 |
+
|
1818 |
+
return r
|
1819 |
+
|
1820 |
+
|
1821 |
+
def _matrix_rank_dispatcher(A, tol=None, hermitian=None):
|
1822 |
+
return (A,)
|
1823 |
+
|
1824 |
+
|
1825 |
+
@array_function_dispatch(_matrix_rank_dispatcher)
|
1826 |
+
def matrix_rank(A, tol=None, hermitian=False):
|
1827 |
+
"""
|
1828 |
+
Return matrix rank of array using SVD method
|
1829 |
+
|
1830 |
+
Rank of the array is the number of singular values of the array that are
|
1831 |
+
greater than `tol`.
|
1832 |
+
|
1833 |
+
.. versionchanged:: 1.14
|
1834 |
+
Can now operate on stacks of matrices
|
1835 |
+
|
1836 |
+
Parameters
|
1837 |
+
----------
|
1838 |
+
A : {(M,), (..., M, N)} array_like
|
1839 |
+
Input vector or stack of matrices.
|
1840 |
+
tol : (...) array_like, float, optional
|
1841 |
+
Threshold below which SVD values are considered zero. If `tol` is
|
1842 |
+
None, and ``S`` is an array with singular values for `M`, and
|
1843 |
+
``eps`` is the epsilon value for datatype of ``S``, then `tol` is
|
1844 |
+
set to ``S.max() * max(M, N) * eps``.
|
1845 |
+
|
1846 |
+
.. versionchanged:: 1.14
|
1847 |
+
Broadcasted against the stack of matrices
|
1848 |
+
hermitian : bool, optional
|
1849 |
+
If True, `A` is assumed to be Hermitian (symmetric if real-valued),
|
1850 |
+
enabling a more efficient method for finding singular values.
|
1851 |
+
Defaults to False.
|
1852 |
+
|
1853 |
+
.. versionadded:: 1.14
|
1854 |
+
|
1855 |
+
Returns
|
1856 |
+
-------
|
1857 |
+
rank : (...) array_like
|
1858 |
+
Rank of A.
|
1859 |
+
|
1860 |
+
Notes
|
1861 |
+
-----
|
1862 |
+
The default threshold to detect rank deficiency is a test on the magnitude
|
1863 |
+
of the singular values of `A`. By default, we identify singular values less
|
1864 |
+
than ``S.max() * max(M, N) * eps`` as indicating rank deficiency (with
|
1865 |
+
the symbols defined above). This is the algorithm MATLAB uses [1]. It also
|
1866 |
+
appears in *Numerical recipes* in the discussion of SVD solutions for linear
|
1867 |
+
least squares [2].
|
1868 |
+
|
1869 |
+
This default threshold is designed to detect rank deficiency accounting for
|
1870 |
+
the numerical errors of the SVD computation. Imagine that there is a column
|
1871 |
+
in `A` that is an exact (in floating point) linear combination of other
|
1872 |
+
columns in `A`. Computing the SVD on `A` will not produce a singular value
|
1873 |
+
exactly equal to 0 in general: any difference of the smallest SVD value from
|
1874 |
+
0 will be caused by numerical imprecision in the calculation of the SVD.
|
1875 |
+
Our threshold for small SVD values takes this numerical imprecision into
|
1876 |
+
account, and the default threshold will detect such numerical rank
|
1877 |
+
deficiency. The threshold may declare a matrix `A` rank deficient even if
|
1878 |
+
the linear combination of some columns of `A` is not exactly equal to
|
1879 |
+
another column of `A` but only numerically very close to another column of
|
1880 |
+
`A`.
|
1881 |
+
|
1882 |
+
We chose our default threshold because it is in wide use. Other thresholds
|
1883 |
+
are possible. For example, elsewhere in the 2007 edition of *Numerical
|
1884 |
+
recipes* there is an alternative threshold of ``S.max() *
|
1885 |
+
np.finfo(A.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe
|
1886 |
+
this threshold as being based on "expected roundoff error" (p 71).
|
1887 |
+
|
1888 |
+
The thresholds above deal with floating point roundoff error in the
|
1889 |
+
calculation of the SVD. However, you may have more information about the
|
1890 |
+
sources of error in `A` that would make you consider other tolerance values
|
1891 |
+
to detect *effective* rank deficiency. The most useful measure of the
|
1892 |
+
tolerance depends on the operations you intend to use on your matrix. For
|
1893 |
+
example, if your data come from uncertain measurements with uncertainties
|
1894 |
+
greater than floating point epsilon, choosing a tolerance near that
|
1895 |
+
uncertainty may be preferable. The tolerance may be absolute if the
|
1896 |
+
uncertainties are absolute rather than relative.
|
1897 |
+
|
1898 |
+
References
|
1899 |
+
----------
|
1900 |
+
.. [1] MATLAB reference documentation, "Rank"
|
1901 |
+
https://www.mathworks.com/help/techdoc/ref/rank.html
|
1902 |
+
.. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
|
1903 |
+
"Numerical Recipes (3rd edition)", Cambridge University Press, 2007,
|
1904 |
+
page 795.
|
1905 |
+
|
1906 |
+
Examples
|
1907 |
+
--------
|
1908 |
+
>>> from numpy.linalg import matrix_rank
|
1909 |
+
>>> matrix_rank(np.eye(4)) # Full rank matrix
|
1910 |
+
4
|
1911 |
+
>>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
|
1912 |
+
>>> matrix_rank(I)
|
1913 |
+
3
|
1914 |
+
>>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
|
1915 |
+
1
|
1916 |
+
>>> matrix_rank(np.zeros((4,)))
|
1917 |
+
0
|
1918 |
+
"""
|
1919 |
+
A = asarray(A)
|
1920 |
+
if A.ndim < 2:
|
1921 |
+
return int(not all(A==0))
|
1922 |
+
S = svd(A, compute_uv=False, hermitian=hermitian)
|
1923 |
+
if tol is None:
|
1924 |
+
tol = S.max(axis=-1, keepdims=True) * max(A.shape[-2:]) * finfo(S.dtype).eps
|
1925 |
+
else:
|
1926 |
+
tol = asarray(tol)[..., newaxis]
|
1927 |
+
return count_nonzero(S > tol, axis=-1)
|
1928 |
+
|
1929 |
+
|
1930 |
+
# Generalized inverse
|
1931 |
+
|
1932 |
+
def _pinv_dispatcher(a, rcond=None, hermitian=None):
|
1933 |
+
return (a,)
|
1934 |
+
|
1935 |
+
|
1936 |
+
@array_function_dispatch(_pinv_dispatcher)
|
1937 |
+
def pinv(a, rcond=1e-15, hermitian=False):
|
1938 |
+
"""
|
1939 |
+
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
|
1940 |
+
|
1941 |
+
Calculate the generalized inverse of a matrix using its
|
1942 |
+
singular-value decomposition (SVD) and including all
|
1943 |
+
*large* singular values.
|
1944 |
+
|
1945 |
+
.. versionchanged:: 1.14
|
1946 |
+
Can now operate on stacks of matrices
|
1947 |
+
|
1948 |
+
Parameters
|
1949 |
+
----------
|
1950 |
+
a : (..., M, N) array_like
|
1951 |
+
Matrix or stack of matrices to be pseudo-inverted.
|
1952 |
+
rcond : (...) array_like of float
|
1953 |
+
Cutoff for small singular values.
|
1954 |
+
Singular values less than or equal to
|
1955 |
+
``rcond * largest_singular_value`` are set to zero.
|
1956 |
+
Broadcasts against the stack of matrices.
|
1957 |
+
hermitian : bool, optional
|
1958 |
+
If True, `a` is assumed to be Hermitian (symmetric if real-valued),
|
1959 |
+
enabling a more efficient method for finding singular values.
|
1960 |
+
Defaults to False.
|
1961 |
+
|
1962 |
+
.. versionadded:: 1.17.0
|
1963 |
+
|
1964 |
+
Returns
|
1965 |
+
-------
|
1966 |
+
B : (..., N, M) ndarray
|
1967 |
+
The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so
|
1968 |
+
is `B`.
|
1969 |
+
|
1970 |
+
Raises
|
1971 |
+
------
|
1972 |
+
LinAlgError
|
1973 |
+
If the SVD computation does not converge.
|
1974 |
+
|
1975 |
+
See Also
|
1976 |
+
--------
|
1977 |
+
scipy.linalg.pinv : Similar function in SciPy.
|
1978 |
+
scipy.linalg.pinvh : Compute the (Moore-Penrose) pseudo-inverse of a
|
1979 |
+
Hermitian matrix.
|
1980 |
+
|
1981 |
+
Notes
|
1982 |
+
-----
|
1983 |
+
The pseudo-inverse of a matrix A, denoted :math:`A^+`, is
|
1984 |
+
defined as: "the matrix that 'solves' [the least-squares problem]
|
1985 |
+
:math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then
|
1986 |
+
:math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`.
|
1987 |
+
|
1988 |
+
It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular
|
1989 |
+
value decomposition of A, then
|
1990 |
+
:math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are
|
1991 |
+
orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting
|
1992 |
+
of A's so-called singular values, (followed, typically, by
|
1993 |
+
zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix
|
1994 |
+
consisting of the reciprocals of A's singular values
|
1995 |
+
(again, followed by zeros). [1]_
|
1996 |
+
|
1997 |
+
References
|
1998 |
+
----------
|
1999 |
+
.. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
|
2000 |
+
FL, Academic Press, Inc., 1980, pp. 139-142.
|
2001 |
+
|
2002 |
+
Examples
|
2003 |
+
--------
|
2004 |
+
The following example checks that ``a * a+ * a == a`` and
|
2005 |
+
``a+ * a * a+ == a+``:
|
2006 |
+
|
2007 |
+
>>> a = np.random.randn(9, 6)
|
2008 |
+
>>> B = np.linalg.pinv(a)
|
2009 |
+
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
|
2010 |
+
True
|
2011 |
+
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
|
2012 |
+
True
|
2013 |
+
|
2014 |
+
"""
|
2015 |
+
a, wrap = _makearray(a)
|
2016 |
+
rcond = asarray(rcond)
|
2017 |
+
if _is_empty_2d(a):
|
2018 |
+
m, n = a.shape[-2:]
|
2019 |
+
res = empty(a.shape[:-2] + (n, m), dtype=a.dtype)
|
2020 |
+
return wrap(res)
|
2021 |
+
a = a.conjugate()
|
2022 |
+
u, s, vt = svd(a, full_matrices=False, hermitian=hermitian)
|
2023 |
+
|
2024 |
+
# discard small singular values
|
2025 |
+
cutoff = rcond[..., newaxis] * amax(s, axis=-1, keepdims=True)
|
2026 |
+
large = s > cutoff
|
2027 |
+
s = divide(1, s, where=large, out=s)
|
2028 |
+
s[~large] = 0
|
2029 |
+
|
2030 |
+
res = matmul(transpose(vt), multiply(s[..., newaxis], transpose(u)))
|
2031 |
+
return wrap(res)
|
2032 |
+
|
2033 |
+
|
2034 |
+
# Determinant
|
2035 |
+
|
2036 |
+
|
2037 |
+
@array_function_dispatch(_unary_dispatcher)
|
2038 |
+
def slogdet(a):
|
2039 |
+
"""
|
2040 |
+
Compute the sign and (natural) logarithm of the determinant of an array.
|
2041 |
+
|
2042 |
+
If an array has a very small or very large determinant, then a call to
|
2043 |
+
`det` may overflow or underflow. This routine is more robust against such
|
2044 |
+
issues, because it computes the logarithm of the determinant rather than
|
2045 |
+
the determinant itself.
|
2046 |
+
|
2047 |
+
Parameters
|
2048 |
+
----------
|
2049 |
+
a : (..., M, M) array_like
|
2050 |
+
Input array, has to be a square 2-D array.
|
2051 |
+
|
2052 |
+
Returns
|
2053 |
+
-------
|
2054 |
+
A namedtuple with the following attributes:
|
2055 |
+
|
2056 |
+
sign : (...) array_like
|
2057 |
+
A number representing the sign of the determinant. For a real matrix,
|
2058 |
+
this is 1, 0, or -1. For a complex matrix, this is a complex number
|
2059 |
+
with absolute value 1 (i.e., it is on the unit circle), or else 0.
|
2060 |
+
logabsdet : (...) array_like
|
2061 |
+
The natural log of the absolute value of the determinant.
|
2062 |
+
|
2063 |
+
If the determinant is zero, then `sign` will be 0 and `logabsdet` will be
|
2064 |
+
-Inf. In all cases, the determinant is equal to ``sign * np.exp(logabsdet)``.
|
2065 |
+
|
2066 |
+
See Also
|
2067 |
+
--------
|
2068 |
+
det
|
2069 |
+
|
2070 |
+
Notes
|
2071 |
+
-----
|
2072 |
+
|
2073 |
+
.. versionadded:: 1.8.0
|
2074 |
+
|
2075 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
2076 |
+
details.
|
2077 |
+
|
2078 |
+
.. versionadded:: 1.6.0
|
2079 |
+
|
2080 |
+
The determinant is computed via LU factorization using the LAPACK
|
2081 |
+
routine ``z/dgetrf``.
|
2082 |
+
|
2083 |
+
|
2084 |
+
Examples
|
2085 |
+
--------
|
2086 |
+
The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``:
|
2087 |
+
|
2088 |
+
>>> a = np.array([[1, 2], [3, 4]])
|
2089 |
+
>>> (sign, logabsdet) = np.linalg.slogdet(a)
|
2090 |
+
>>> (sign, logabsdet)
|
2091 |
+
(-1, 0.69314718055994529) # may vary
|
2092 |
+
>>> sign * np.exp(logabsdet)
|
2093 |
+
-2.0
|
2094 |
+
|
2095 |
+
Computing log-determinants for a stack of matrices:
|
2096 |
+
|
2097 |
+
>>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
|
2098 |
+
>>> a.shape
|
2099 |
+
(3, 2, 2)
|
2100 |
+
>>> sign, logabsdet = np.linalg.slogdet(a)
|
2101 |
+
>>> (sign, logabsdet)
|
2102 |
+
(array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154]))
|
2103 |
+
>>> sign * np.exp(logabsdet)
|
2104 |
+
array([-2., -3., -8.])
|
2105 |
+
|
2106 |
+
This routine succeeds where ordinary `det` does not:
|
2107 |
+
|
2108 |
+
>>> np.linalg.det(np.eye(500) * 0.1)
|
2109 |
+
0.0
|
2110 |
+
>>> np.linalg.slogdet(np.eye(500) * 0.1)
|
2111 |
+
(1, -1151.2925464970228)
|
2112 |
+
|
2113 |
+
"""
|
2114 |
+
a = asarray(a)
|
2115 |
+
_assert_stacked_2d(a)
|
2116 |
+
_assert_stacked_square(a)
|
2117 |
+
t, result_t = _commonType(a)
|
2118 |
+
real_t = _realType(result_t)
|
2119 |
+
signature = 'D->Dd' if isComplexType(t) else 'd->dd'
|
2120 |
+
sign, logdet = _umath_linalg.slogdet(a, signature=signature)
|
2121 |
+
sign = sign.astype(result_t, copy=False)
|
2122 |
+
logdet = logdet.astype(real_t, copy=False)
|
2123 |
+
return SlogdetResult(sign, logdet)
|
2124 |
+
|
2125 |
+
|
2126 |
+
@array_function_dispatch(_unary_dispatcher)
|
2127 |
+
def det(a):
|
2128 |
+
"""
|
2129 |
+
Compute the determinant of an array.
|
2130 |
+
|
2131 |
+
Parameters
|
2132 |
+
----------
|
2133 |
+
a : (..., M, M) array_like
|
2134 |
+
Input array to compute determinants for.
|
2135 |
+
|
2136 |
+
Returns
|
2137 |
+
-------
|
2138 |
+
det : (...) array_like
|
2139 |
+
Determinant of `a`.
|
2140 |
+
|
2141 |
+
See Also
|
2142 |
+
--------
|
2143 |
+
slogdet : Another way to represent the determinant, more suitable
|
2144 |
+
for large matrices where underflow/overflow may occur.
|
2145 |
+
scipy.linalg.det : Similar function in SciPy.
|
2146 |
+
|
2147 |
+
Notes
|
2148 |
+
-----
|
2149 |
+
|
2150 |
+
.. versionadded:: 1.8.0
|
2151 |
+
|
2152 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
2153 |
+
details.
|
2154 |
+
|
2155 |
+
The determinant is computed via LU factorization using the LAPACK
|
2156 |
+
routine ``z/dgetrf``.
|
2157 |
+
|
2158 |
+
Examples
|
2159 |
+
--------
|
2160 |
+
The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:
|
2161 |
+
|
2162 |
+
>>> a = np.array([[1, 2], [3, 4]])
|
2163 |
+
>>> np.linalg.det(a)
|
2164 |
+
-2.0 # may vary
|
2165 |
+
|
2166 |
+
Computing determinants for a stack of matrices:
|
2167 |
+
|
2168 |
+
>>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
|
2169 |
+
>>> a.shape
|
2170 |
+
(3, 2, 2)
|
2171 |
+
>>> np.linalg.det(a)
|
2172 |
+
array([-2., -3., -8.])
|
2173 |
+
|
2174 |
+
"""
|
2175 |
+
a = asarray(a)
|
2176 |
+
_assert_stacked_2d(a)
|
2177 |
+
_assert_stacked_square(a)
|
2178 |
+
t, result_t = _commonType(a)
|
2179 |
+
signature = 'D->D' if isComplexType(t) else 'd->d'
|
2180 |
+
r = _umath_linalg.det(a, signature=signature)
|
2181 |
+
r = r.astype(result_t, copy=False)
|
2182 |
+
return r
|
2183 |
+
|
2184 |
+
|
2185 |
+
# Linear Least Squares
|
2186 |
+
|
2187 |
+
def _lstsq_dispatcher(a, b, rcond=None):
|
2188 |
+
return (a, b)
|
2189 |
+
|
2190 |
+
|
2191 |
+
@array_function_dispatch(_lstsq_dispatcher)
|
2192 |
+
def lstsq(a, b, rcond="warn"):
|
2193 |
+
r"""
|
2194 |
+
Return the least-squares solution to a linear matrix equation.
|
2195 |
+
|
2196 |
+
Computes the vector `x` that approximately solves the equation
|
2197 |
+
``a @ x = b``. The equation may be under-, well-, or over-determined
|
2198 |
+
(i.e., the number of linearly independent rows of `a` can be less than,
|
2199 |
+
equal to, or greater than its number of linearly independent columns).
|
2200 |
+
If `a` is square and of full rank, then `x` (but for round-off error)
|
2201 |
+
is the "exact" solution of the equation. Else, `x` minimizes the
|
2202 |
+
Euclidean 2-norm :math:`||b - ax||`. If there are multiple minimizing
|
2203 |
+
solutions, the one with the smallest 2-norm :math:`||x||` is returned.
|
2204 |
+
|
2205 |
+
Parameters
|
2206 |
+
----------
|
2207 |
+
a : (M, N) array_like
|
2208 |
+
"Coefficient" matrix.
|
2209 |
+
b : {(M,), (M, K)} array_like
|
2210 |
+
Ordinate or "dependent variable" values. If `b` is two-dimensional,
|
2211 |
+
the least-squares solution is calculated for each of the `K` columns
|
2212 |
+
of `b`.
|
2213 |
+
rcond : float, optional
|
2214 |
+
Cut-off ratio for small singular values of `a`.
|
2215 |
+
For the purposes of rank determination, singular values are treated
|
2216 |
+
as zero if they are smaller than `rcond` times the largest singular
|
2217 |
+
value of `a`.
|
2218 |
+
|
2219 |
+
.. versionchanged:: 1.14.0
|
2220 |
+
If not set, a FutureWarning is given. The previous default
|
2221 |
+
of ``-1`` will use the machine precision as `rcond` parameter,
|
2222 |
+
the new default will use the machine precision times `max(M, N)`.
|
2223 |
+
To silence the warning and use the new default, use ``rcond=None``,
|
2224 |
+
to keep using the old behavior, use ``rcond=-1``.
|
2225 |
+
|
2226 |
+
Returns
|
2227 |
+
-------
|
2228 |
+
x : {(N,), (N, K)} ndarray
|
2229 |
+
Least-squares solution. If `b` is two-dimensional,
|
2230 |
+
the solutions are in the `K` columns of `x`.
|
2231 |
+
residuals : {(1,), (K,), (0,)} ndarray
|
2232 |
+
Sums of squared residuals: Squared Euclidean 2-norm for each column in
|
2233 |
+
``b - a @ x``.
|
2234 |
+
If the rank of `a` is < N or M <= N, this is an empty array.
|
2235 |
+
If `b` is 1-dimensional, this is a (1,) shape array.
|
2236 |
+
Otherwise the shape is (K,).
|
2237 |
+
rank : int
|
2238 |
+
Rank of matrix `a`.
|
2239 |
+
s : (min(M, N),) ndarray
|
2240 |
+
Singular values of `a`.
|
2241 |
+
|
2242 |
+
Raises
|
2243 |
+
------
|
2244 |
+
LinAlgError
|
2245 |
+
If computation does not converge.
|
2246 |
+
|
2247 |
+
See Also
|
2248 |
+
--------
|
2249 |
+
scipy.linalg.lstsq : Similar function in SciPy.
|
2250 |
+
|
2251 |
+
Notes
|
2252 |
+
-----
|
2253 |
+
If `b` is a matrix, then all array results are returned as matrices.
|
2254 |
+
|
2255 |
+
Examples
|
2256 |
+
--------
|
2257 |
+
Fit a line, ``y = mx + c``, through some noisy data-points:
|
2258 |
+
|
2259 |
+
>>> x = np.array([0, 1, 2, 3])
|
2260 |
+
>>> y = np.array([-1, 0.2, 0.9, 2.1])
|
2261 |
+
|
2262 |
+
By examining the coefficients, we see that the line should have a
|
2263 |
+
gradient of roughly 1 and cut the y-axis at, more or less, -1.
|
2264 |
+
|
2265 |
+
We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
|
2266 |
+
and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`:
|
2267 |
+
|
2268 |
+
>>> A = np.vstack([x, np.ones(len(x))]).T
|
2269 |
+
>>> A
|
2270 |
+
array([[ 0., 1.],
|
2271 |
+
[ 1., 1.],
|
2272 |
+
[ 2., 1.],
|
2273 |
+
[ 3., 1.]])
|
2274 |
+
|
2275 |
+
>>> m, c = np.linalg.lstsq(A, y, rcond=None)[0]
|
2276 |
+
>>> m, c
|
2277 |
+
(1.0 -0.95) # may vary
|
2278 |
+
|
2279 |
+
Plot the data along with the fitted line:
|
2280 |
+
|
2281 |
+
>>> import matplotlib.pyplot as plt
|
2282 |
+
>>> _ = plt.plot(x, y, 'o', label='Original data', markersize=10)
|
2283 |
+
>>> _ = plt.plot(x, m*x + c, 'r', label='Fitted line')
|
2284 |
+
>>> _ = plt.legend()
|
2285 |
+
>>> plt.show()
|
2286 |
+
|
2287 |
+
"""
|
2288 |
+
a, _ = _makearray(a)
|
2289 |
+
b, wrap = _makearray(b)
|
2290 |
+
is_1d = b.ndim == 1
|
2291 |
+
if is_1d:
|
2292 |
+
b = b[:, newaxis]
|
2293 |
+
_assert_2d(a, b)
|
2294 |
+
m, n = a.shape[-2:]
|
2295 |
+
m2, n_rhs = b.shape[-2:]
|
2296 |
+
if m != m2:
|
2297 |
+
raise LinAlgError('Incompatible dimensions')
|
2298 |
+
|
2299 |
+
t, result_t = _commonType(a, b)
|
2300 |
+
result_real_t = _realType(result_t)
|
2301 |
+
|
2302 |
+
# Determine default rcond value
|
2303 |
+
if rcond == "warn":
|
2304 |
+
# 2017-08-19, 1.14.0
|
2305 |
+
warnings.warn("`rcond` parameter will change to the default of "
|
2306 |
+
"machine precision times ``max(M, N)`` where M and N "
|
2307 |
+
"are the input matrix dimensions.\n"
|
2308 |
+
"To use the future default and silence this warning "
|
2309 |
+
"we advise to pass `rcond=None`, to keep using the old, "
|
2310 |
+
"explicitly pass `rcond=-1`.",
|
2311 |
+
FutureWarning, stacklevel=2)
|
2312 |
+
rcond = -1
|
2313 |
+
if rcond is None:
|
2314 |
+
rcond = finfo(t).eps * max(n, m)
|
2315 |
+
|
2316 |
+
if m <= n:
|
2317 |
+
gufunc = _umath_linalg.lstsq_m
|
2318 |
+
else:
|
2319 |
+
gufunc = _umath_linalg.lstsq_n
|
2320 |
+
|
2321 |
+
signature = 'DDd->Ddid' if isComplexType(t) else 'ddd->ddid'
|
2322 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_lstsq)
|
2323 |
+
if n_rhs == 0:
|
2324 |
+
# lapack can't handle n_rhs = 0 - so allocate the array one larger in that axis
|
2325 |
+
b = zeros(b.shape[:-2] + (m, n_rhs + 1), dtype=b.dtype)
|
2326 |
+
x, resids, rank, s = gufunc(a, b, rcond, signature=signature, extobj=extobj)
|
2327 |
+
if m == 0:
|
2328 |
+
x[...] = 0
|
2329 |
+
if n_rhs == 0:
|
2330 |
+
# remove the item we added
|
2331 |
+
x = x[..., :n_rhs]
|
2332 |
+
resids = resids[..., :n_rhs]
|
2333 |
+
|
2334 |
+
# remove the axis we added
|
2335 |
+
if is_1d:
|
2336 |
+
x = x.squeeze(axis=-1)
|
2337 |
+
# we probably should squeeze resids too, but we can't
|
2338 |
+
# without breaking compatibility.
|
2339 |
+
|
2340 |
+
# as documented
|
2341 |
+
if rank != n or m <= n:
|
2342 |
+
resids = array([], result_real_t)
|
2343 |
+
|
2344 |
+
# coerce output arrays
|
2345 |
+
s = s.astype(result_real_t, copy=False)
|
2346 |
+
resids = resids.astype(result_real_t, copy=False)
|
2347 |
+
x = x.astype(result_t, copy=True) # Copying lets the memory in r_parts be freed
|
2348 |
+
return wrap(x), wrap(resids), rank, s
|
2349 |
+
|
2350 |
+
|
2351 |
+
def _multi_svd_norm(x, row_axis, col_axis, op):
|
2352 |
+
"""Compute a function of the singular values of the 2-D matrices in `x`.
|
2353 |
+
|
2354 |
+
This is a private utility function used by `numpy.linalg.norm()`.
|
2355 |
+
|
2356 |
+
Parameters
|
2357 |
+
----------
|
2358 |
+
x : ndarray
|
2359 |
+
row_axis, col_axis : int
|
2360 |
+
The axes of `x` that hold the 2-D matrices.
|
2361 |
+
op : callable
|
2362 |
+
This should be either numpy.amin or `numpy.amax` or `numpy.sum`.
|
2363 |
+
|
2364 |
+
Returns
|
2365 |
+
-------
|
2366 |
+
result : float or ndarray
|
2367 |
+
If `x` is 2-D, the return values is a float.
|
2368 |
+
Otherwise, it is an array with ``x.ndim - 2`` dimensions.
|
2369 |
+
The return values are either the minimum or maximum or sum of the
|
2370 |
+
singular values of the matrices, depending on whether `op`
|
2371 |
+
is `numpy.amin` or `numpy.amax` or `numpy.sum`.
|
2372 |
+
|
2373 |
+
"""
|
2374 |
+
y = moveaxis(x, (row_axis, col_axis), (-2, -1))
|
2375 |
+
result = op(svd(y, compute_uv=False), axis=-1)
|
2376 |
+
return result
|
2377 |
+
|
2378 |
+
|
2379 |
+
def _norm_dispatcher(x, ord=None, axis=None, keepdims=None):
|
2380 |
+
return (x,)
|
2381 |
+
|
2382 |
+
|
2383 |
+
@array_function_dispatch(_norm_dispatcher)
|
2384 |
+
def norm(x, ord=None, axis=None, keepdims=False):
|
2385 |
+
"""
|
2386 |
+
Matrix or vector norm.
|
2387 |
+
|
2388 |
+
This function is able to return one of eight different matrix norms,
|
2389 |
+
or one of an infinite number of vector norms (described below), depending
|
2390 |
+
on the value of the ``ord`` parameter.
|
2391 |
+
|
2392 |
+
Parameters
|
2393 |
+
----------
|
2394 |
+
x : array_like
|
2395 |
+
Input array. If `axis` is None, `x` must be 1-D or 2-D, unless `ord`
|
2396 |
+
is None. If both `axis` and `ord` are None, the 2-norm of
|
2397 |
+
``x.ravel`` will be returned.
|
2398 |
+
ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional
|
2399 |
+
Order of the norm (see table under ``Notes``). inf means numpy's
|
2400 |
+
`inf` object. The default is None.
|
2401 |
+
axis : {None, int, 2-tuple of ints}, optional.
|
2402 |
+
If `axis` is an integer, it specifies the axis of `x` along which to
|
2403 |
+
compute the vector norms. If `axis` is a 2-tuple, it specifies the
|
2404 |
+
axes that hold 2-D matrices, and the matrix norms of these matrices
|
2405 |
+
are computed. If `axis` is None then either a vector norm (when `x`
|
2406 |
+
is 1-D) or a matrix norm (when `x` is 2-D) is returned. The default
|
2407 |
+
is None.
|
2408 |
+
|
2409 |
+
.. versionadded:: 1.8.0
|
2410 |
+
|
2411 |
+
keepdims : bool, optional
|
2412 |
+
If this is set to True, the axes which are normed over are left in the
|
2413 |
+
result as dimensions with size one. With this option the result will
|
2414 |
+
broadcast correctly against the original `x`.
|
2415 |
+
|
2416 |
+
.. versionadded:: 1.10.0
|
2417 |
+
|
2418 |
+
Returns
|
2419 |
+
-------
|
2420 |
+
n : float or ndarray
|
2421 |
+
Norm of the matrix or vector(s).
|
2422 |
+
|
2423 |
+
See Also
|
2424 |
+
--------
|
2425 |
+
scipy.linalg.norm : Similar function in SciPy.
|
2426 |
+
|
2427 |
+
Notes
|
2428 |
+
-----
|
2429 |
+
For values of ``ord < 1``, the result is, strictly speaking, not a
|
2430 |
+
mathematical 'norm', but it may still be useful for various numerical
|
2431 |
+
purposes.
|
2432 |
+
|
2433 |
+
The following norms can be calculated:
|
2434 |
+
|
2435 |
+
===== ============================ ==========================
|
2436 |
+
ord norm for matrices norm for vectors
|
2437 |
+
===== ============================ ==========================
|
2438 |
+
None Frobenius norm 2-norm
|
2439 |
+
'fro' Frobenius norm --
|
2440 |
+
'nuc' nuclear norm --
|
2441 |
+
inf max(sum(abs(x), axis=1)) max(abs(x))
|
2442 |
+
-inf min(sum(abs(x), axis=1)) min(abs(x))
|
2443 |
+
0 -- sum(x != 0)
|
2444 |
+
1 max(sum(abs(x), axis=0)) as below
|
2445 |
+
-1 min(sum(abs(x), axis=0)) as below
|
2446 |
+
2 2-norm (largest sing. value) as below
|
2447 |
+
-2 smallest singular value as below
|
2448 |
+
other -- sum(abs(x)**ord)**(1./ord)
|
2449 |
+
===== ============================ ==========================
|
2450 |
+
|
2451 |
+
The Frobenius norm is given by [1]_:
|
2452 |
+
|
2453 |
+
:math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
|
2454 |
+
|
2455 |
+
The nuclear norm is the sum of the singular values.
|
2456 |
+
|
2457 |
+
Both the Frobenius and nuclear norm orders are only defined for
|
2458 |
+
matrices and raise a ValueError when ``x.ndim != 2``.
|
2459 |
+
|
2460 |
+
References
|
2461 |
+
----------
|
2462 |
+
.. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
|
2463 |
+
Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
|
2464 |
+
|
2465 |
+
Examples
|
2466 |
+
--------
|
2467 |
+
>>> from numpy import linalg as LA
|
2468 |
+
>>> a = np.arange(9) - 4
|
2469 |
+
>>> a
|
2470 |
+
array([-4, -3, -2, ..., 2, 3, 4])
|
2471 |
+
>>> b = a.reshape((3, 3))
|
2472 |
+
>>> b
|
2473 |
+
array([[-4, -3, -2],
|
2474 |
+
[-1, 0, 1],
|
2475 |
+
[ 2, 3, 4]])
|
2476 |
+
|
2477 |
+
>>> LA.norm(a)
|
2478 |
+
7.745966692414834
|
2479 |
+
>>> LA.norm(b)
|
2480 |
+
7.745966692414834
|
2481 |
+
>>> LA.norm(b, 'fro')
|
2482 |
+
7.745966692414834
|
2483 |
+
>>> LA.norm(a, np.inf)
|
2484 |
+
4.0
|
2485 |
+
>>> LA.norm(b, np.inf)
|
2486 |
+
9.0
|
2487 |
+
>>> LA.norm(a, -np.inf)
|
2488 |
+
0.0
|
2489 |
+
>>> LA.norm(b, -np.inf)
|
2490 |
+
2.0
|
2491 |
+
|
2492 |
+
>>> LA.norm(a, 1)
|
2493 |
+
20.0
|
2494 |
+
>>> LA.norm(b, 1)
|
2495 |
+
7.0
|
2496 |
+
>>> LA.norm(a, -1)
|
2497 |
+
-4.6566128774142013e-010
|
2498 |
+
>>> LA.norm(b, -1)
|
2499 |
+
6.0
|
2500 |
+
>>> LA.norm(a, 2)
|
2501 |
+
7.745966692414834
|
2502 |
+
>>> LA.norm(b, 2)
|
2503 |
+
7.3484692283495345
|
2504 |
+
|
2505 |
+
>>> LA.norm(a, -2)
|
2506 |
+
0.0
|
2507 |
+
>>> LA.norm(b, -2)
|
2508 |
+
1.8570331885190563e-016 # may vary
|
2509 |
+
>>> LA.norm(a, 3)
|
2510 |
+
5.8480354764257312 # may vary
|
2511 |
+
>>> LA.norm(a, -3)
|
2512 |
+
0.0
|
2513 |
+
|
2514 |
+
Using the `axis` argument to compute vector norms:
|
2515 |
+
|
2516 |
+
>>> c = np.array([[ 1, 2, 3],
|
2517 |
+
... [-1, 1, 4]])
|
2518 |
+
>>> LA.norm(c, axis=0)
|
2519 |
+
array([ 1.41421356, 2.23606798, 5. ])
|
2520 |
+
>>> LA.norm(c, axis=1)
|
2521 |
+
array([ 3.74165739, 4.24264069])
|
2522 |
+
>>> LA.norm(c, ord=1, axis=1)
|
2523 |
+
array([ 6., 6.])
|
2524 |
+
|
2525 |
+
Using the `axis` argument to compute matrix norms:
|
2526 |
+
|
2527 |
+
>>> m = np.arange(8).reshape(2,2,2)
|
2528 |
+
>>> LA.norm(m, axis=(1,2))
|
2529 |
+
array([ 3.74165739, 11.22497216])
|
2530 |
+
>>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
|
2531 |
+
(3.7416573867739413, 11.224972160321824)
|
2532 |
+
|
2533 |
+
"""
|
2534 |
+
x = asarray(x)
|
2535 |
+
|
2536 |
+
if not issubclass(x.dtype.type, (inexact, object_)):
|
2537 |
+
x = x.astype(float)
|
2538 |
+
|
2539 |
+
# Immediately handle some default, simple, fast, and common cases.
|
2540 |
+
if axis is None:
|
2541 |
+
ndim = x.ndim
|
2542 |
+
if ((ord is None) or
|
2543 |
+
(ord in ('f', 'fro') and ndim == 2) or
|
2544 |
+
(ord == 2 and ndim == 1)):
|
2545 |
+
|
2546 |
+
x = x.ravel(order='K')
|
2547 |
+
if isComplexType(x.dtype.type):
|
2548 |
+
x_real = x.real
|
2549 |
+
x_imag = x.imag
|
2550 |
+
sqnorm = x_real.dot(x_real) + x_imag.dot(x_imag)
|
2551 |
+
else:
|
2552 |
+
sqnorm = x.dot(x)
|
2553 |
+
ret = sqrt(sqnorm)
|
2554 |
+
if keepdims:
|
2555 |
+
ret = ret.reshape(ndim*[1])
|
2556 |
+
return ret
|
2557 |
+
|
2558 |
+
# Normalize the `axis` argument to a tuple.
|
2559 |
+
nd = x.ndim
|
2560 |
+
if axis is None:
|
2561 |
+
axis = tuple(range(nd))
|
2562 |
+
elif not isinstance(axis, tuple):
|
2563 |
+
try:
|
2564 |
+
axis = int(axis)
|
2565 |
+
except Exception as e:
|
2566 |
+
raise TypeError("'axis' must be None, an integer or a tuple of integers") from e
|
2567 |
+
axis = (axis,)
|
2568 |
+
|
2569 |
+
if len(axis) == 1:
|
2570 |
+
if ord == Inf:
|
2571 |
+
return abs(x).max(axis=axis, keepdims=keepdims)
|
2572 |
+
elif ord == -Inf:
|
2573 |
+
return abs(x).min(axis=axis, keepdims=keepdims)
|
2574 |
+
elif ord == 0:
|
2575 |
+
# Zero norm
|
2576 |
+
return (x != 0).astype(x.real.dtype).sum(axis=axis, keepdims=keepdims)
|
2577 |
+
elif ord == 1:
|
2578 |
+
# special case for speedup
|
2579 |
+
return add.reduce(abs(x), axis=axis, keepdims=keepdims)
|
2580 |
+
elif ord is None or ord == 2:
|
2581 |
+
# special case for speedup
|
2582 |
+
s = (x.conj() * x).real
|
2583 |
+
return sqrt(add.reduce(s, axis=axis, keepdims=keepdims))
|
2584 |
+
# None of the str-type keywords for ord ('fro', 'nuc')
|
2585 |
+
# are valid for vectors
|
2586 |
+
elif isinstance(ord, str):
|
2587 |
+
raise ValueError(f"Invalid norm order '{ord}' for vectors")
|
2588 |
+
else:
|
2589 |
+
absx = abs(x)
|
2590 |
+
absx **= ord
|
2591 |
+
ret = add.reduce(absx, axis=axis, keepdims=keepdims)
|
2592 |
+
ret **= reciprocal(ord, dtype=ret.dtype)
|
2593 |
+
return ret
|
2594 |
+
elif len(axis) == 2:
|
2595 |
+
row_axis, col_axis = axis
|
2596 |
+
row_axis = normalize_axis_index(row_axis, nd)
|
2597 |
+
col_axis = normalize_axis_index(col_axis, nd)
|
2598 |
+
if row_axis == col_axis:
|
2599 |
+
raise ValueError('Duplicate axes given.')
|
2600 |
+
if ord == 2:
|
2601 |
+
ret = _multi_svd_norm(x, row_axis, col_axis, amax)
|
2602 |
+
elif ord == -2:
|
2603 |
+
ret = _multi_svd_norm(x, row_axis, col_axis, amin)
|
2604 |
+
elif ord == 1:
|
2605 |
+
if col_axis > row_axis:
|
2606 |
+
col_axis -= 1
|
2607 |
+
ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis)
|
2608 |
+
elif ord == Inf:
|
2609 |
+
if row_axis > col_axis:
|
2610 |
+
row_axis -= 1
|
2611 |
+
ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis)
|
2612 |
+
elif ord == -1:
|
2613 |
+
if col_axis > row_axis:
|
2614 |
+
col_axis -= 1
|
2615 |
+
ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis)
|
2616 |
+
elif ord == -Inf:
|
2617 |
+
if row_axis > col_axis:
|
2618 |
+
row_axis -= 1
|
2619 |
+
ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis)
|
2620 |
+
elif ord in [None, 'fro', 'f']:
|
2621 |
+
ret = sqrt(add.reduce((x.conj() * x).real, axis=axis))
|
2622 |
+
elif ord == 'nuc':
|
2623 |
+
ret = _multi_svd_norm(x, row_axis, col_axis, sum)
|
2624 |
+
else:
|
2625 |
+
raise ValueError("Invalid norm order for matrices.")
|
2626 |
+
if keepdims:
|
2627 |
+
ret_shape = list(x.shape)
|
2628 |
+
ret_shape[axis[0]] = 1
|
2629 |
+
ret_shape[axis[1]] = 1
|
2630 |
+
ret = ret.reshape(ret_shape)
|
2631 |
+
return ret
|
2632 |
+
else:
|
2633 |
+
raise ValueError("Improper number of dimensions to norm.")
|
2634 |
+
|
2635 |
+
|
2636 |
+
# multi_dot
|
2637 |
+
|
2638 |
+
def _multidot_dispatcher(arrays, *, out=None):
|
2639 |
+
yield from arrays
|
2640 |
+
yield out
|
2641 |
+
|
2642 |
+
|
2643 |
+
@array_function_dispatch(_multidot_dispatcher)
|
2644 |
+
def multi_dot(arrays, *, out=None):
|
2645 |
+
"""
|
2646 |
+
Compute the dot product of two or more arrays in a single function call,
|
2647 |
+
while automatically selecting the fastest evaluation order.
|
2648 |
+
|
2649 |
+
`multi_dot` chains `numpy.dot` and uses optimal parenthesization
|
2650 |
+
of the matrices [1]_ [2]_. Depending on the shapes of the matrices,
|
2651 |
+
this can speed up the multiplication a lot.
|
2652 |
+
|
2653 |
+
If the first argument is 1-D it is treated as a row vector.
|
2654 |
+
If the last argument is 1-D it is treated as a column vector.
|
2655 |
+
The other arguments must be 2-D.
|
2656 |
+
|
2657 |
+
Think of `multi_dot` as::
|
2658 |
+
|
2659 |
+
def multi_dot(arrays): return functools.reduce(np.dot, arrays)
|
2660 |
+
|
2661 |
+
|
2662 |
+
Parameters
|
2663 |
+
----------
|
2664 |
+
arrays : sequence of array_like
|
2665 |
+
If the first argument is 1-D it is treated as row vector.
|
2666 |
+
If the last argument is 1-D it is treated as column vector.
|
2667 |
+
The other arguments must be 2-D.
|
2668 |
+
out : ndarray, optional
|
2669 |
+
Output argument. This must have the exact kind that would be returned
|
2670 |
+
if it was not used. In particular, it must have the right type, must be
|
2671 |
+
C-contiguous, and its dtype must be the dtype that would be returned
|
2672 |
+
for `dot(a, b)`. This is a performance feature. Therefore, if these
|
2673 |
+
conditions are not met, an exception is raised, instead of attempting
|
2674 |
+
to be flexible.
|
2675 |
+
|
2676 |
+
.. versionadded:: 1.19.0
|
2677 |
+
|
2678 |
+
Returns
|
2679 |
+
-------
|
2680 |
+
output : ndarray
|
2681 |
+
Returns the dot product of the supplied arrays.
|
2682 |
+
|
2683 |
+
See Also
|
2684 |
+
--------
|
2685 |
+
numpy.dot : dot multiplication with two arguments.
|
2686 |
+
|
2687 |
+
References
|
2688 |
+
----------
|
2689 |
+
|
2690 |
+
.. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378
|
2691 |
+
.. [2] https://en.wikipedia.org/wiki/Matrix_chain_multiplication
|
2692 |
+
|
2693 |
+
Examples
|
2694 |
+
--------
|
2695 |
+
`multi_dot` allows you to write::
|
2696 |
+
|
2697 |
+
>>> from numpy.linalg import multi_dot
|
2698 |
+
>>> # Prepare some data
|
2699 |
+
>>> A = np.random.random((10000, 100))
|
2700 |
+
>>> B = np.random.random((100, 1000))
|
2701 |
+
>>> C = np.random.random((1000, 5))
|
2702 |
+
>>> D = np.random.random((5, 333))
|
2703 |
+
>>> # the actual dot multiplication
|
2704 |
+
>>> _ = multi_dot([A, B, C, D])
|
2705 |
+
|
2706 |
+
instead of::
|
2707 |
+
|
2708 |
+
>>> _ = np.dot(np.dot(np.dot(A, B), C), D)
|
2709 |
+
>>> # or
|
2710 |
+
>>> _ = A.dot(B).dot(C).dot(D)
|
2711 |
+
|
2712 |
+
Notes
|
2713 |
+
-----
|
2714 |
+
The cost for a matrix multiplication can be calculated with the
|
2715 |
+
following function::
|
2716 |
+
|
2717 |
+
def cost(A, B):
|
2718 |
+
return A.shape[0] * A.shape[1] * B.shape[1]
|
2719 |
+
|
2720 |
+
Assume we have three matrices
|
2721 |
+
:math:`A_{10x100}, B_{100x5}, C_{5x50}`.
|
2722 |
+
|
2723 |
+
The costs for the two different parenthesizations are as follows::
|
2724 |
+
|
2725 |
+
cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500
|
2726 |
+
cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000
|
2727 |
+
|
2728 |
+
"""
|
2729 |
+
n = len(arrays)
|
2730 |
+
# optimization only makes sense for len(arrays) > 2
|
2731 |
+
if n < 2:
|
2732 |
+
raise ValueError("Expecting at least two arrays.")
|
2733 |
+
elif n == 2:
|
2734 |
+
return dot(arrays[0], arrays[1], out=out)
|
2735 |
+
|
2736 |
+
arrays = [asanyarray(a) for a in arrays]
|
2737 |
+
|
2738 |
+
# save original ndim to reshape the result array into the proper form later
|
2739 |
+
ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim
|
2740 |
+
# Explicitly convert vectors to 2D arrays to keep the logic of the internal
|
2741 |
+
# _multi_dot_* functions as simple as possible.
|
2742 |
+
if arrays[0].ndim == 1:
|
2743 |
+
arrays[0] = atleast_2d(arrays[0])
|
2744 |
+
if arrays[-1].ndim == 1:
|
2745 |
+
arrays[-1] = atleast_2d(arrays[-1]).T
|
2746 |
+
_assert_2d(*arrays)
|
2747 |
+
|
2748 |
+
# _multi_dot_three is much faster than _multi_dot_matrix_chain_order
|
2749 |
+
if n == 3:
|
2750 |
+
result = _multi_dot_three(arrays[0], arrays[1], arrays[2], out=out)
|
2751 |
+
else:
|
2752 |
+
order = _multi_dot_matrix_chain_order(arrays)
|
2753 |
+
result = _multi_dot(arrays, order, 0, n - 1, out=out)
|
2754 |
+
|
2755 |
+
# return proper shape
|
2756 |
+
if ndim_first == 1 and ndim_last == 1:
|
2757 |
+
return result[0, 0] # scalar
|
2758 |
+
elif ndim_first == 1 or ndim_last == 1:
|
2759 |
+
return result.ravel() # 1-D
|
2760 |
+
else:
|
2761 |
+
return result
|
2762 |
+
|
2763 |
+
|
2764 |
+
def _multi_dot_three(A, B, C, out=None):
|
2765 |
+
"""
|
2766 |
+
Find the best order for three arrays and do the multiplication.
|
2767 |
+
|
2768 |
+
For three arguments `_multi_dot_three` is approximately 15 times faster
|
2769 |
+
than `_multi_dot_matrix_chain_order`
|
2770 |
+
|
2771 |
+
"""
|
2772 |
+
a0, a1b0 = A.shape
|
2773 |
+
b1c0, c1 = C.shape
|
2774 |
+
# cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1
|
2775 |
+
cost1 = a0 * b1c0 * (a1b0 + c1)
|
2776 |
+
# cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1
|
2777 |
+
cost2 = a1b0 * c1 * (a0 + b1c0)
|
2778 |
+
|
2779 |
+
if cost1 < cost2:
|
2780 |
+
return dot(dot(A, B), C, out=out)
|
2781 |
+
else:
|
2782 |
+
return dot(A, dot(B, C), out=out)
|
2783 |
+
|
2784 |
+
|
2785 |
+
def _multi_dot_matrix_chain_order(arrays, return_costs=False):
|
2786 |
+
"""
|
2787 |
+
Return a np.array that encodes the optimal order of mutiplications.
|
2788 |
+
|
2789 |
+
The optimal order array is then used by `_multi_dot()` to do the
|
2790 |
+
multiplication.
|
2791 |
+
|
2792 |
+
Also return the cost matrix if `return_costs` is `True`
|
2793 |
+
|
2794 |
+
The implementation CLOSELY follows Cormen, "Introduction to Algorithms",
|
2795 |
+
Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices.
|
2796 |
+
|
2797 |
+
cost[i, j] = min([
|
2798 |
+
cost[prefix] + cost[suffix] + cost_mult(prefix, suffix)
|
2799 |
+
for k in range(i, j)])
|
2800 |
+
|
2801 |
+
"""
|
2802 |
+
n = len(arrays)
|
2803 |
+
# p stores the dimensions of the matrices
|
2804 |
+
# Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50]
|
2805 |
+
p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]]
|
2806 |
+
# m is a matrix of costs of the subproblems
|
2807 |
+
# m[i,j]: min number of scalar multiplications needed to compute A_{i..j}
|
2808 |
+
m = zeros((n, n), dtype=double)
|
2809 |
+
# s is the actual ordering
|
2810 |
+
# s[i, j] is the value of k at which we split the product A_i..A_j
|
2811 |
+
s = empty((n, n), dtype=intp)
|
2812 |
+
|
2813 |
+
for l in range(1, n):
|
2814 |
+
for i in range(n - l):
|
2815 |
+
j = i + l
|
2816 |
+
m[i, j] = Inf
|
2817 |
+
for k in range(i, j):
|
2818 |
+
q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1]
|
2819 |
+
if q < m[i, j]:
|
2820 |
+
m[i, j] = q
|
2821 |
+
s[i, j] = k # Note that Cormen uses 1-based index
|
2822 |
+
|
2823 |
+
return (s, m) if return_costs else s
|
2824 |
+
|
2825 |
+
|
2826 |
+
def _multi_dot(arrays, order, i, j, out=None):
|
2827 |
+
"""Actually do the multiplication with the given order."""
|
2828 |
+
if i == j:
|
2829 |
+
# the initial call with non-None out should never get here
|
2830 |
+
assert out is None
|
2831 |
+
|
2832 |
+
return arrays[i]
|
2833 |
+
else:
|
2834 |
+
return dot(_multi_dot(arrays, order, i, order[i, j]),
|
2835 |
+
_multi_dot(arrays, order, order[i, j] + 1, j),
|
2836 |
+
out=out)
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/linalg.pyi
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Iterable
|
2 |
+
from typing import (
|
3 |
+
Literal as L,
|
4 |
+
overload,
|
5 |
+
TypeVar,
|
6 |
+
Any,
|
7 |
+
SupportsIndex,
|
8 |
+
SupportsInt,
|
9 |
+
NamedTuple,
|
10 |
+
Generic,
|
11 |
+
)
|
12 |
+
|
13 |
+
from numpy import (
|
14 |
+
generic,
|
15 |
+
floating,
|
16 |
+
complexfloating,
|
17 |
+
int32,
|
18 |
+
float64,
|
19 |
+
complex128,
|
20 |
+
)
|
21 |
+
|
22 |
+
from numpy.linalg import LinAlgError as LinAlgError
|
23 |
+
|
24 |
+
from numpy._typing import (
|
25 |
+
NDArray,
|
26 |
+
ArrayLike,
|
27 |
+
_ArrayLikeInt_co,
|
28 |
+
_ArrayLikeFloat_co,
|
29 |
+
_ArrayLikeComplex_co,
|
30 |
+
_ArrayLikeTD64_co,
|
31 |
+
_ArrayLikeObject_co,
|
32 |
+
)
|
33 |
+
|
34 |
+
_T = TypeVar("_T")
|
35 |
+
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
|
36 |
+
_SCT = TypeVar("_SCT", bound=generic, covariant=True)
|
37 |
+
_SCT2 = TypeVar("_SCT2", bound=generic, covariant=True)
|
38 |
+
|
39 |
+
_2Tuple = tuple[_T, _T]
|
40 |
+
_ModeKind = L["reduced", "complete", "r", "raw"]
|
41 |
+
|
42 |
+
__all__: list[str]
|
43 |
+
|
44 |
+
class EigResult(NamedTuple):
|
45 |
+
eigenvalues: NDArray[Any]
|
46 |
+
eigenvectors: NDArray[Any]
|
47 |
+
|
48 |
+
class EighResult(NamedTuple):
|
49 |
+
eigenvalues: NDArray[Any]
|
50 |
+
eigenvectors: NDArray[Any]
|
51 |
+
|
52 |
+
class QRResult(NamedTuple):
|
53 |
+
Q: NDArray[Any]
|
54 |
+
R: NDArray[Any]
|
55 |
+
|
56 |
+
class SlogdetResult(NamedTuple):
|
57 |
+
# TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
|
58 |
+
# a `(x.ndim - 2)`` dimensionl arrays otherwise
|
59 |
+
sign: Any
|
60 |
+
logabsdet: Any
|
61 |
+
|
62 |
+
class SVDResult(NamedTuple):
|
63 |
+
U: NDArray[Any]
|
64 |
+
S: NDArray[Any]
|
65 |
+
Vh: NDArray[Any]
|
66 |
+
|
67 |
+
@overload
|
68 |
+
def tensorsolve(
|
69 |
+
a: _ArrayLikeInt_co,
|
70 |
+
b: _ArrayLikeInt_co,
|
71 |
+
axes: None | Iterable[int] =...,
|
72 |
+
) -> NDArray[float64]: ...
|
73 |
+
@overload
|
74 |
+
def tensorsolve(
|
75 |
+
a: _ArrayLikeFloat_co,
|
76 |
+
b: _ArrayLikeFloat_co,
|
77 |
+
axes: None | Iterable[int] =...,
|
78 |
+
) -> NDArray[floating[Any]]: ...
|
79 |
+
@overload
|
80 |
+
def tensorsolve(
|
81 |
+
a: _ArrayLikeComplex_co,
|
82 |
+
b: _ArrayLikeComplex_co,
|
83 |
+
axes: None | Iterable[int] =...,
|
84 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
85 |
+
|
86 |
+
@overload
|
87 |
+
def solve(
|
88 |
+
a: _ArrayLikeInt_co,
|
89 |
+
b: _ArrayLikeInt_co,
|
90 |
+
) -> NDArray[float64]: ...
|
91 |
+
@overload
|
92 |
+
def solve(
|
93 |
+
a: _ArrayLikeFloat_co,
|
94 |
+
b: _ArrayLikeFloat_co,
|
95 |
+
) -> NDArray[floating[Any]]: ...
|
96 |
+
@overload
|
97 |
+
def solve(
|
98 |
+
a: _ArrayLikeComplex_co,
|
99 |
+
b: _ArrayLikeComplex_co,
|
100 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
101 |
+
|
102 |
+
@overload
|
103 |
+
def tensorinv(
|
104 |
+
a: _ArrayLikeInt_co,
|
105 |
+
ind: int = ...,
|
106 |
+
) -> NDArray[float64]: ...
|
107 |
+
@overload
|
108 |
+
def tensorinv(
|
109 |
+
a: _ArrayLikeFloat_co,
|
110 |
+
ind: int = ...,
|
111 |
+
) -> NDArray[floating[Any]]: ...
|
112 |
+
@overload
|
113 |
+
def tensorinv(
|
114 |
+
a: _ArrayLikeComplex_co,
|
115 |
+
ind: int = ...,
|
116 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
117 |
+
|
118 |
+
@overload
|
119 |
+
def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
|
120 |
+
@overload
|
121 |
+
def inv(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
|
122 |
+
@overload
|
123 |
+
def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
124 |
+
|
125 |
+
# TODO: The supported input and output dtypes are dependent on the value of `n`.
|
126 |
+
# For example: `n < 0` always casts integer types to float64
|
127 |
+
def matrix_power(
|
128 |
+
a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
129 |
+
n: SupportsIndex,
|
130 |
+
) -> NDArray[Any]: ...
|
131 |
+
|
132 |
+
@overload
|
133 |
+
def cholesky(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
|
134 |
+
@overload
|
135 |
+
def cholesky(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
|
136 |
+
@overload
|
137 |
+
def cholesky(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
138 |
+
|
139 |
+
@overload
|
140 |
+
def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
|
141 |
+
@overload
|
142 |
+
def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
|
143 |
+
@overload
|
144 |
+
def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
|
145 |
+
|
146 |
+
@overload
|
147 |
+
def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
|
148 |
+
@overload
|
149 |
+
def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]] | NDArray[complexfloating[Any, Any]]: ...
|
150 |
+
@overload
|
151 |
+
def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
152 |
+
|
153 |
+
@overload
|
154 |
+
def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
|
155 |
+
@overload
|
156 |
+
def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating[Any]]: ...
|
157 |
+
|
158 |
+
@overload
|
159 |
+
def eig(a: _ArrayLikeInt_co) -> EigResult: ...
|
160 |
+
@overload
|
161 |
+
def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
|
162 |
+
@overload
|
163 |
+
def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
|
164 |
+
|
165 |
+
@overload
|
166 |
+
def eigh(
|
167 |
+
a: _ArrayLikeInt_co,
|
168 |
+
UPLO: L["L", "U", "l", "u"] = ...,
|
169 |
+
) -> EighResult: ...
|
170 |
+
@overload
|
171 |
+
def eigh(
|
172 |
+
a: _ArrayLikeFloat_co,
|
173 |
+
UPLO: L["L", "U", "l", "u"] = ...,
|
174 |
+
) -> EighResult: ...
|
175 |
+
@overload
|
176 |
+
def eigh(
|
177 |
+
a: _ArrayLikeComplex_co,
|
178 |
+
UPLO: L["L", "U", "l", "u"] = ...,
|
179 |
+
) -> EighResult: ...
|
180 |
+
|
181 |
+
@overload
|
182 |
+
def svd(
|
183 |
+
a: _ArrayLikeInt_co,
|
184 |
+
full_matrices: bool = ...,
|
185 |
+
compute_uv: L[True] = ...,
|
186 |
+
hermitian: bool = ...,
|
187 |
+
) -> SVDResult: ...
|
188 |
+
@overload
|
189 |
+
def svd(
|
190 |
+
a: _ArrayLikeFloat_co,
|
191 |
+
full_matrices: bool = ...,
|
192 |
+
compute_uv: L[True] = ...,
|
193 |
+
hermitian: bool = ...,
|
194 |
+
) -> SVDResult: ...
|
195 |
+
@overload
|
196 |
+
def svd(
|
197 |
+
a: _ArrayLikeComplex_co,
|
198 |
+
full_matrices: bool = ...,
|
199 |
+
compute_uv: L[True] = ...,
|
200 |
+
hermitian: bool = ...,
|
201 |
+
) -> SVDResult: ...
|
202 |
+
@overload
|
203 |
+
def svd(
|
204 |
+
a: _ArrayLikeInt_co,
|
205 |
+
full_matrices: bool = ...,
|
206 |
+
compute_uv: L[False] = ...,
|
207 |
+
hermitian: bool = ...,
|
208 |
+
) -> NDArray[float64]: ...
|
209 |
+
@overload
|
210 |
+
def svd(
|
211 |
+
a: _ArrayLikeComplex_co,
|
212 |
+
full_matrices: bool = ...,
|
213 |
+
compute_uv: L[False] = ...,
|
214 |
+
hermitian: bool = ...,
|
215 |
+
) -> NDArray[floating[Any]]: ...
|
216 |
+
|
217 |
+
# TODO: Returns a scalar for 2D arrays and
|
218 |
+
# a `(x.ndim - 2)`` dimensionl array otherwise
|
219 |
+
def cond(x: _ArrayLikeComplex_co, p: None | float | L["fro", "nuc"] = ...) -> Any: ...
|
220 |
+
|
221 |
+
# TODO: Returns `int` for <2D arrays and `intp` otherwise
|
222 |
+
def matrix_rank(
|
223 |
+
A: _ArrayLikeComplex_co,
|
224 |
+
tol: None | _ArrayLikeFloat_co = ...,
|
225 |
+
hermitian: bool = ...,
|
226 |
+
) -> Any: ...
|
227 |
+
|
228 |
+
@overload
|
229 |
+
def pinv(
|
230 |
+
a: _ArrayLikeInt_co,
|
231 |
+
rcond: _ArrayLikeFloat_co = ...,
|
232 |
+
hermitian: bool = ...,
|
233 |
+
) -> NDArray[float64]: ...
|
234 |
+
@overload
|
235 |
+
def pinv(
|
236 |
+
a: _ArrayLikeFloat_co,
|
237 |
+
rcond: _ArrayLikeFloat_co = ...,
|
238 |
+
hermitian: bool = ...,
|
239 |
+
) -> NDArray[floating[Any]]: ...
|
240 |
+
@overload
|
241 |
+
def pinv(
|
242 |
+
a: _ArrayLikeComplex_co,
|
243 |
+
rcond: _ArrayLikeFloat_co = ...,
|
244 |
+
hermitian: bool = ...,
|
245 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
246 |
+
|
247 |
+
# TODO: Returns a 2-tuple of scalars for 2D arrays and
|
248 |
+
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
|
249 |
+
def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
|
250 |
+
|
251 |
+
# TODO: Returns a 2-tuple of scalars for 2D arrays and
|
252 |
+
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
|
253 |
+
def det(a: _ArrayLikeComplex_co) -> Any: ...
|
254 |
+
|
255 |
+
@overload
|
256 |
+
def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: None | float = ...) -> tuple[
|
257 |
+
NDArray[float64],
|
258 |
+
NDArray[float64],
|
259 |
+
int32,
|
260 |
+
NDArray[float64],
|
261 |
+
]: ...
|
262 |
+
@overload
|
263 |
+
def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: None | float = ...) -> tuple[
|
264 |
+
NDArray[floating[Any]],
|
265 |
+
NDArray[floating[Any]],
|
266 |
+
int32,
|
267 |
+
NDArray[floating[Any]],
|
268 |
+
]: ...
|
269 |
+
@overload
|
270 |
+
def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: None | float = ...) -> tuple[
|
271 |
+
NDArray[complexfloating[Any, Any]],
|
272 |
+
NDArray[floating[Any]],
|
273 |
+
int32,
|
274 |
+
NDArray[floating[Any]],
|
275 |
+
]: ...
|
276 |
+
|
277 |
+
@overload
|
278 |
+
def norm(
|
279 |
+
x: ArrayLike,
|
280 |
+
ord: None | float | L["fro", "nuc"] = ...,
|
281 |
+
axis: None = ...,
|
282 |
+
keepdims: bool = ...,
|
283 |
+
) -> floating[Any]: ...
|
284 |
+
@overload
|
285 |
+
def norm(
|
286 |
+
x: ArrayLike,
|
287 |
+
ord: None | float | L["fro", "nuc"] = ...,
|
288 |
+
axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
|
289 |
+
keepdims: bool = ...,
|
290 |
+
) -> Any: ...
|
291 |
+
|
292 |
+
# TODO: Returns a scalar or array
|
293 |
+
def multi_dot(
|
294 |
+
arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
|
295 |
+
*,
|
296 |
+
out: None | NDArray[Any] = ...,
|
297 |
+
) -> Any: ...
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (183 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_deprecations.cpython-310.pyc
ADDED
Binary file (824 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_linalg.cpython-310.pyc
ADDED
Binary file (65.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_regression.cpython-310.pyc
ADDED
Binary file (4.63 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/test_deprecations.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test deprecation and future warnings.
|
2 |
+
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
from numpy.testing import assert_warns
|
6 |
+
|
7 |
+
|
8 |
+
def test_qr_mode_full_future_warning():
|
9 |
+
"""Check mode='full' FutureWarning.
|
10 |
+
|
11 |
+
In numpy 1.8 the mode options 'full' and 'economic' in linalg.qr were
|
12 |
+
deprecated. The release date will probably be sometime in the summer
|
13 |
+
of 2013.
|
14 |
+
|
15 |
+
"""
|
16 |
+
a = np.eye(2)
|
17 |
+
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='full')
|
18 |
+
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='f')
|
19 |
+
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='economic')
|
20 |
+
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='e')
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/test_linalg.py
ADDED
@@ -0,0 +1,2198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Test functions for linalg module
|
2 |
+
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import itertools
|
7 |
+
import traceback
|
8 |
+
import textwrap
|
9 |
+
import subprocess
|
10 |
+
import pytest
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from numpy import array, single, double, csingle, cdouble, dot, identity, matmul
|
14 |
+
from numpy.core import swapaxes
|
15 |
+
from numpy import multiply, atleast_2d, inf, asarray
|
16 |
+
from numpy import linalg
|
17 |
+
from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError
|
18 |
+
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
|
19 |
+
from numpy.testing import (
|
20 |
+
assert_, assert_equal, assert_raises, assert_array_equal,
|
21 |
+
assert_almost_equal, assert_allclose, suppress_warnings,
|
22 |
+
assert_raises_regex, HAS_LAPACK64, IS_WASM
|
23 |
+
)
|
24 |
+
try:
|
25 |
+
import numpy.linalg.lapack_lite
|
26 |
+
except ImportError:
|
27 |
+
# May be broken when numpy was built without BLAS/LAPACK present
|
28 |
+
# If so, ensure we don't break the whole test suite - the `lapack_lite`
|
29 |
+
# submodule should be removed, it's only used in two tests in this file.
|
30 |
+
pass
|
31 |
+
|
32 |
+
|
33 |
+
def consistent_subclass(out, in_):
|
34 |
+
# For ndarray subclass input, our output should have the same subclass
|
35 |
+
# (non-ndarray input gets converted to ndarray).
|
36 |
+
return type(out) is (type(in_) if isinstance(in_, np.ndarray)
|
37 |
+
else np.ndarray)
|
38 |
+
|
39 |
+
|
40 |
+
old_assert_almost_equal = assert_almost_equal
|
41 |
+
|
42 |
+
|
43 |
+
def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw):
|
44 |
+
if asarray(a).dtype.type in (single, csingle):
|
45 |
+
decimal = single_decimal
|
46 |
+
else:
|
47 |
+
decimal = double_decimal
|
48 |
+
old_assert_almost_equal(a, b, decimal=decimal, **kw)
|
49 |
+
|
50 |
+
|
51 |
+
def get_real_dtype(dtype):
|
52 |
+
return {single: single, double: double,
|
53 |
+
csingle: single, cdouble: double}[dtype]
|
54 |
+
|
55 |
+
|
56 |
+
def get_complex_dtype(dtype):
|
57 |
+
return {single: csingle, double: cdouble,
|
58 |
+
csingle: csingle, cdouble: cdouble}[dtype]
|
59 |
+
|
60 |
+
|
61 |
+
def get_rtol(dtype):
|
62 |
+
# Choose a safe rtol
|
63 |
+
if dtype in (single, csingle):
|
64 |
+
return 1e-5
|
65 |
+
else:
|
66 |
+
return 1e-11
|
67 |
+
|
68 |
+
|
69 |
+
# used to categorize tests
|
70 |
+
all_tags = {
|
71 |
+
'square', 'nonsquare', 'hermitian', # mutually exclusive
|
72 |
+
'generalized', 'size-0', 'strided' # optional additions
|
73 |
+
}
|
74 |
+
|
75 |
+
|
76 |
+
class LinalgCase:
|
77 |
+
def __init__(self, name, a, b, tags=set()):
|
78 |
+
"""
|
79 |
+
A bundle of arguments to be passed to a test case, with an identifying
|
80 |
+
name, the operands a and b, and a set of tags to filter the tests
|
81 |
+
"""
|
82 |
+
assert_(isinstance(name, str))
|
83 |
+
self.name = name
|
84 |
+
self.a = a
|
85 |
+
self.b = b
|
86 |
+
self.tags = frozenset(tags) # prevent shared tags
|
87 |
+
|
88 |
+
def check(self, do):
|
89 |
+
"""
|
90 |
+
Run the function `do` on this test case, expanding arguments
|
91 |
+
"""
|
92 |
+
do(self.a, self.b, tags=self.tags)
|
93 |
+
|
94 |
+
def __repr__(self):
|
95 |
+
return f'<LinalgCase: {self.name}>'
|
96 |
+
|
97 |
+
|
98 |
+
def apply_tag(tag, cases):
|
99 |
+
"""
|
100 |
+
Add the given tag (a string) to each of the cases (a list of LinalgCase
|
101 |
+
objects)
|
102 |
+
"""
|
103 |
+
assert tag in all_tags, "Invalid tag"
|
104 |
+
for case in cases:
|
105 |
+
case.tags = case.tags | {tag}
|
106 |
+
return cases
|
107 |
+
|
108 |
+
|
109 |
+
#
|
110 |
+
# Base test cases
|
111 |
+
#
|
112 |
+
|
113 |
+
np.random.seed(1234)
|
114 |
+
|
115 |
+
CASES = []
|
116 |
+
|
117 |
+
# square test cases
|
118 |
+
CASES += apply_tag('square', [
|
119 |
+
LinalgCase("single",
|
120 |
+
array([[1., 2.], [3., 4.]], dtype=single),
|
121 |
+
array([2., 1.], dtype=single)),
|
122 |
+
LinalgCase("double",
|
123 |
+
array([[1., 2.], [3., 4.]], dtype=double),
|
124 |
+
array([2., 1.], dtype=double)),
|
125 |
+
LinalgCase("double_2",
|
126 |
+
array([[1., 2.], [3., 4.]], dtype=double),
|
127 |
+
array([[2., 1., 4.], [3., 4., 6.]], dtype=double)),
|
128 |
+
LinalgCase("csingle",
|
129 |
+
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle),
|
130 |
+
array([2. + 1j, 1. + 2j], dtype=csingle)),
|
131 |
+
LinalgCase("cdouble",
|
132 |
+
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
|
133 |
+
array([2. + 1j, 1. + 2j], dtype=cdouble)),
|
134 |
+
LinalgCase("cdouble_2",
|
135 |
+
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
|
136 |
+
array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)),
|
137 |
+
LinalgCase("0x0",
|
138 |
+
np.empty((0, 0), dtype=double),
|
139 |
+
np.empty((0,), dtype=double),
|
140 |
+
tags={'size-0'}),
|
141 |
+
LinalgCase("8x8",
|
142 |
+
np.random.rand(8, 8),
|
143 |
+
np.random.rand(8)),
|
144 |
+
LinalgCase("1x1",
|
145 |
+
np.random.rand(1, 1),
|
146 |
+
np.random.rand(1)),
|
147 |
+
LinalgCase("nonarray",
|
148 |
+
[[1, 2], [3, 4]],
|
149 |
+
[2, 1]),
|
150 |
+
])
|
151 |
+
|
152 |
+
# non-square test-cases
|
153 |
+
CASES += apply_tag('nonsquare', [
|
154 |
+
LinalgCase("single_nsq_1",
|
155 |
+
array([[1., 2., 3.], [3., 4., 6.]], dtype=single),
|
156 |
+
array([2., 1.], dtype=single)),
|
157 |
+
LinalgCase("single_nsq_2",
|
158 |
+
array([[1., 2.], [3., 4.], [5., 6.]], dtype=single),
|
159 |
+
array([2., 1., 3.], dtype=single)),
|
160 |
+
LinalgCase("double_nsq_1",
|
161 |
+
array([[1., 2., 3.], [3., 4., 6.]], dtype=double),
|
162 |
+
array([2., 1.], dtype=double)),
|
163 |
+
LinalgCase("double_nsq_2",
|
164 |
+
array([[1., 2.], [3., 4.], [5., 6.]], dtype=double),
|
165 |
+
array([2., 1., 3.], dtype=double)),
|
166 |
+
LinalgCase("csingle_nsq_1",
|
167 |
+
array(
|
168 |
+
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle),
|
169 |
+
array([2. + 1j, 1. + 2j], dtype=csingle)),
|
170 |
+
LinalgCase("csingle_nsq_2",
|
171 |
+
array(
|
172 |
+
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle),
|
173 |
+
array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)),
|
174 |
+
LinalgCase("cdouble_nsq_1",
|
175 |
+
array(
|
176 |
+
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
|
177 |
+
array([2. + 1j, 1. + 2j], dtype=cdouble)),
|
178 |
+
LinalgCase("cdouble_nsq_2",
|
179 |
+
array(
|
180 |
+
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
|
181 |
+
array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)),
|
182 |
+
LinalgCase("cdouble_nsq_1_2",
|
183 |
+
array(
|
184 |
+
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
|
185 |
+
array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
|
186 |
+
LinalgCase("cdouble_nsq_2_2",
|
187 |
+
array(
|
188 |
+
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
|
189 |
+
array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
|
190 |
+
LinalgCase("8x11",
|
191 |
+
np.random.rand(8, 11),
|
192 |
+
np.random.rand(8)),
|
193 |
+
LinalgCase("1x5",
|
194 |
+
np.random.rand(1, 5),
|
195 |
+
np.random.rand(1)),
|
196 |
+
LinalgCase("5x1",
|
197 |
+
np.random.rand(5, 1),
|
198 |
+
np.random.rand(5)),
|
199 |
+
LinalgCase("0x4",
|
200 |
+
np.random.rand(0, 4),
|
201 |
+
np.random.rand(0),
|
202 |
+
tags={'size-0'}),
|
203 |
+
LinalgCase("4x0",
|
204 |
+
np.random.rand(4, 0),
|
205 |
+
np.random.rand(4),
|
206 |
+
tags={'size-0'}),
|
207 |
+
])
|
208 |
+
|
209 |
+
# hermitian test-cases
|
210 |
+
CASES += apply_tag('hermitian', [
|
211 |
+
LinalgCase("hsingle",
|
212 |
+
array([[1., 2.], [2., 1.]], dtype=single),
|
213 |
+
None),
|
214 |
+
LinalgCase("hdouble",
|
215 |
+
array([[1., 2.], [2., 1.]], dtype=double),
|
216 |
+
None),
|
217 |
+
LinalgCase("hcsingle",
|
218 |
+
array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle),
|
219 |
+
None),
|
220 |
+
LinalgCase("hcdouble",
|
221 |
+
array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble),
|
222 |
+
None),
|
223 |
+
LinalgCase("hempty",
|
224 |
+
np.empty((0, 0), dtype=double),
|
225 |
+
None,
|
226 |
+
tags={'size-0'}),
|
227 |
+
LinalgCase("hnonarray",
|
228 |
+
[[1, 2], [2, 1]],
|
229 |
+
None),
|
230 |
+
LinalgCase("matrix_b_only",
|
231 |
+
array([[1., 2.], [2., 1.]]),
|
232 |
+
None),
|
233 |
+
LinalgCase("hmatrix_1x1",
|
234 |
+
np.random.rand(1, 1),
|
235 |
+
None),
|
236 |
+
])
|
237 |
+
|
238 |
+
|
239 |
+
#
|
240 |
+
# Gufunc test cases
|
241 |
+
#
|
242 |
+
def _make_generalized_cases():
|
243 |
+
new_cases = []
|
244 |
+
|
245 |
+
for case in CASES:
|
246 |
+
if not isinstance(case.a, np.ndarray):
|
247 |
+
continue
|
248 |
+
|
249 |
+
a = np.array([case.a, 2 * case.a, 3 * case.a])
|
250 |
+
if case.b is None:
|
251 |
+
b = None
|
252 |
+
else:
|
253 |
+
b = np.array([case.b, 7 * case.b, 6 * case.b])
|
254 |
+
new_case = LinalgCase(case.name + "_tile3", a, b,
|
255 |
+
tags=case.tags | {'generalized'})
|
256 |
+
new_cases.append(new_case)
|
257 |
+
|
258 |
+
a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape)
|
259 |
+
if case.b is None:
|
260 |
+
b = None
|
261 |
+
else:
|
262 |
+
b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape)
|
263 |
+
new_case = LinalgCase(case.name + "_tile213", a, b,
|
264 |
+
tags=case.tags | {'generalized'})
|
265 |
+
new_cases.append(new_case)
|
266 |
+
|
267 |
+
return new_cases
|
268 |
+
|
269 |
+
|
270 |
+
CASES += _make_generalized_cases()
|
271 |
+
|
272 |
+
|
273 |
+
#
|
274 |
+
# Generate stride combination variations of the above
|
275 |
+
#
|
276 |
+
def _stride_comb_iter(x):
|
277 |
+
"""
|
278 |
+
Generate cartesian product of strides for all axes
|
279 |
+
"""
|
280 |
+
|
281 |
+
if not isinstance(x, np.ndarray):
|
282 |
+
yield x, "nop"
|
283 |
+
return
|
284 |
+
|
285 |
+
stride_set = [(1,)] * x.ndim
|
286 |
+
stride_set[-1] = (1, 3, -4)
|
287 |
+
if x.ndim > 1:
|
288 |
+
stride_set[-2] = (1, 3, -4)
|
289 |
+
if x.ndim > 2:
|
290 |
+
stride_set[-3] = (1, -4)
|
291 |
+
|
292 |
+
for repeats in itertools.product(*tuple(stride_set)):
|
293 |
+
new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)]
|
294 |
+
slices = tuple([slice(None, None, repeat) for repeat in repeats])
|
295 |
+
|
296 |
+
# new array with different strides, but same data
|
297 |
+
xi = np.empty(new_shape, dtype=x.dtype)
|
298 |
+
xi.view(np.uint32).fill(0xdeadbeef)
|
299 |
+
xi = xi[slices]
|
300 |
+
xi[...] = x
|
301 |
+
xi = xi.view(x.__class__)
|
302 |
+
assert_(np.all(xi == x))
|
303 |
+
yield xi, "stride_" + "_".join(["%+d" % j for j in repeats])
|
304 |
+
|
305 |
+
# generate also zero strides if possible
|
306 |
+
if x.ndim >= 1 and x.shape[-1] == 1:
|
307 |
+
s = list(x.strides)
|
308 |
+
s[-1] = 0
|
309 |
+
xi = np.lib.stride_tricks.as_strided(x, strides=s)
|
310 |
+
yield xi, "stride_xxx_0"
|
311 |
+
if x.ndim >= 2 and x.shape[-2] == 1:
|
312 |
+
s = list(x.strides)
|
313 |
+
s[-2] = 0
|
314 |
+
xi = np.lib.stride_tricks.as_strided(x, strides=s)
|
315 |
+
yield xi, "stride_xxx_0_x"
|
316 |
+
if x.ndim >= 2 and x.shape[:-2] == (1, 1):
|
317 |
+
s = list(x.strides)
|
318 |
+
s[-1] = 0
|
319 |
+
s[-2] = 0
|
320 |
+
xi = np.lib.stride_tricks.as_strided(x, strides=s)
|
321 |
+
yield xi, "stride_xxx_0_0"
|
322 |
+
|
323 |
+
|
324 |
+
def _make_strided_cases():
|
325 |
+
new_cases = []
|
326 |
+
for case in CASES:
|
327 |
+
for a, a_label in _stride_comb_iter(case.a):
|
328 |
+
for b, b_label in _stride_comb_iter(case.b):
|
329 |
+
new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b,
|
330 |
+
tags=case.tags | {'strided'})
|
331 |
+
new_cases.append(new_case)
|
332 |
+
return new_cases
|
333 |
+
|
334 |
+
|
335 |
+
CASES += _make_strided_cases()
|
336 |
+
|
337 |
+
|
338 |
+
#
|
339 |
+
# Test different routines against the above cases
|
340 |
+
#
|
341 |
+
class LinalgTestCase:
|
342 |
+
TEST_CASES = CASES
|
343 |
+
|
344 |
+
def check_cases(self, require=set(), exclude=set()):
|
345 |
+
"""
|
346 |
+
Run func on each of the cases with all of the tags in require, and none
|
347 |
+
of the tags in exclude
|
348 |
+
"""
|
349 |
+
for case in self.TEST_CASES:
|
350 |
+
# filter by require and exclude
|
351 |
+
if case.tags & require != require:
|
352 |
+
continue
|
353 |
+
if case.tags & exclude:
|
354 |
+
continue
|
355 |
+
|
356 |
+
try:
|
357 |
+
case.check(self.do)
|
358 |
+
except Exception as e:
|
359 |
+
msg = f'In test case: {case!r}\n\n'
|
360 |
+
msg += traceback.format_exc()
|
361 |
+
raise AssertionError(msg) from e
|
362 |
+
|
363 |
+
|
364 |
+
class LinalgSquareTestCase(LinalgTestCase):
|
365 |
+
|
366 |
+
def test_sq_cases(self):
|
367 |
+
self.check_cases(require={'square'},
|
368 |
+
exclude={'generalized', 'size-0'})
|
369 |
+
|
370 |
+
def test_empty_sq_cases(self):
|
371 |
+
self.check_cases(require={'square', 'size-0'},
|
372 |
+
exclude={'generalized'})
|
373 |
+
|
374 |
+
|
375 |
+
class LinalgNonsquareTestCase(LinalgTestCase):
|
376 |
+
|
377 |
+
def test_nonsq_cases(self):
|
378 |
+
self.check_cases(require={'nonsquare'},
|
379 |
+
exclude={'generalized', 'size-0'})
|
380 |
+
|
381 |
+
def test_empty_nonsq_cases(self):
|
382 |
+
self.check_cases(require={'nonsquare', 'size-0'},
|
383 |
+
exclude={'generalized'})
|
384 |
+
|
385 |
+
|
386 |
+
class HermitianTestCase(LinalgTestCase):
|
387 |
+
|
388 |
+
def test_herm_cases(self):
|
389 |
+
self.check_cases(require={'hermitian'},
|
390 |
+
exclude={'generalized', 'size-0'})
|
391 |
+
|
392 |
+
def test_empty_herm_cases(self):
|
393 |
+
self.check_cases(require={'hermitian', 'size-0'},
|
394 |
+
exclude={'generalized'})
|
395 |
+
|
396 |
+
|
397 |
+
class LinalgGeneralizedSquareTestCase(LinalgTestCase):
|
398 |
+
|
399 |
+
@pytest.mark.slow
|
400 |
+
def test_generalized_sq_cases(self):
|
401 |
+
self.check_cases(require={'generalized', 'square'},
|
402 |
+
exclude={'size-0'})
|
403 |
+
|
404 |
+
@pytest.mark.slow
|
405 |
+
def test_generalized_empty_sq_cases(self):
|
406 |
+
self.check_cases(require={'generalized', 'square', 'size-0'})
|
407 |
+
|
408 |
+
|
409 |
+
class LinalgGeneralizedNonsquareTestCase(LinalgTestCase):
|
410 |
+
|
411 |
+
@pytest.mark.slow
|
412 |
+
def test_generalized_nonsq_cases(self):
|
413 |
+
self.check_cases(require={'generalized', 'nonsquare'},
|
414 |
+
exclude={'size-0'})
|
415 |
+
|
416 |
+
@pytest.mark.slow
|
417 |
+
def test_generalized_empty_nonsq_cases(self):
|
418 |
+
self.check_cases(require={'generalized', 'nonsquare', 'size-0'})
|
419 |
+
|
420 |
+
|
421 |
+
class HermitianGeneralizedTestCase(LinalgTestCase):
|
422 |
+
|
423 |
+
@pytest.mark.slow
|
424 |
+
def test_generalized_herm_cases(self):
|
425 |
+
self.check_cases(require={'generalized', 'hermitian'},
|
426 |
+
exclude={'size-0'})
|
427 |
+
|
428 |
+
@pytest.mark.slow
|
429 |
+
def test_generalized_empty_herm_cases(self):
|
430 |
+
self.check_cases(require={'generalized', 'hermitian', 'size-0'},
|
431 |
+
exclude={'none'})
|
432 |
+
|
433 |
+
|
434 |
+
def dot_generalized(a, b):
|
435 |
+
a = asarray(a)
|
436 |
+
if a.ndim >= 3:
|
437 |
+
if a.ndim == b.ndim:
|
438 |
+
# matrix x matrix
|
439 |
+
new_shape = a.shape[:-1] + b.shape[-1:]
|
440 |
+
elif a.ndim == b.ndim + 1:
|
441 |
+
# matrix x vector
|
442 |
+
new_shape = a.shape[:-1]
|
443 |
+
else:
|
444 |
+
raise ValueError("Not implemented...")
|
445 |
+
r = np.empty(new_shape, dtype=np.common_type(a, b))
|
446 |
+
for c in itertools.product(*map(range, a.shape[:-2])):
|
447 |
+
r[c] = dot(a[c], b[c])
|
448 |
+
return r
|
449 |
+
else:
|
450 |
+
return dot(a, b)
|
451 |
+
|
452 |
+
|
453 |
+
def identity_like_generalized(a):
|
454 |
+
a = asarray(a)
|
455 |
+
if a.ndim >= 3:
|
456 |
+
r = np.empty(a.shape, dtype=a.dtype)
|
457 |
+
r[...] = identity(a.shape[-2])
|
458 |
+
return r
|
459 |
+
else:
|
460 |
+
return identity(a.shape[0])
|
461 |
+
|
462 |
+
|
463 |
+
class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
464 |
+
# kept apart from TestSolve for use for testing with matrices.
|
465 |
+
def do(self, a, b, tags):
|
466 |
+
x = linalg.solve(a, b)
|
467 |
+
assert_almost_equal(b, dot_generalized(a, x))
|
468 |
+
assert_(consistent_subclass(x, b))
|
469 |
+
|
470 |
+
|
471 |
+
class TestSolve(SolveCases):
|
472 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
473 |
+
def test_types(self, dtype):
|
474 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
475 |
+
assert_equal(linalg.solve(x, x).dtype, dtype)
|
476 |
+
|
477 |
+
def test_0_size(self):
|
478 |
+
class ArraySubclass(np.ndarray):
|
479 |
+
pass
|
480 |
+
# Test system of 0x0 matrices
|
481 |
+
a = np.arange(8).reshape(2, 2, 2)
|
482 |
+
b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)
|
483 |
+
|
484 |
+
expected = linalg.solve(a, b)[:, 0:0, :]
|
485 |
+
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :])
|
486 |
+
assert_array_equal(result, expected)
|
487 |
+
assert_(isinstance(result, ArraySubclass))
|
488 |
+
|
489 |
+
# Test errors for non-square and only b's dimension being 0
|
490 |
+
assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
|
491 |
+
assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :])
|
492 |
+
|
493 |
+
# Test broadcasting error
|
494 |
+
b = np.arange(6).reshape(1, 3, 2) # broadcasting error
|
495 |
+
assert_raises(ValueError, linalg.solve, a, b)
|
496 |
+
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
|
497 |
+
|
498 |
+
# Test zero "single equations" with 0x0 matrices.
|
499 |
+
b = np.arange(2).reshape(1, 2).view(ArraySubclass)
|
500 |
+
expected = linalg.solve(a, b)[:, 0:0]
|
501 |
+
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0])
|
502 |
+
assert_array_equal(result, expected)
|
503 |
+
assert_(isinstance(result, ArraySubclass))
|
504 |
+
|
505 |
+
b = np.arange(3).reshape(1, 3)
|
506 |
+
assert_raises(ValueError, linalg.solve, a, b)
|
507 |
+
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
|
508 |
+
assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)
|
509 |
+
|
510 |
+
def test_0_size_k(self):
|
511 |
+
# test zero multiple equation (K=0) case.
|
512 |
+
class ArraySubclass(np.ndarray):
|
513 |
+
pass
|
514 |
+
a = np.arange(4).reshape(1, 2, 2)
|
515 |
+
b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)
|
516 |
+
|
517 |
+
expected = linalg.solve(a, b)[:, :, 0:0]
|
518 |
+
result = linalg.solve(a, b[:, :, 0:0])
|
519 |
+
assert_array_equal(result, expected)
|
520 |
+
assert_(isinstance(result, ArraySubclass))
|
521 |
+
|
522 |
+
# test both zero.
|
523 |
+
expected = linalg.solve(a, b)[:, 0:0, 0:0]
|
524 |
+
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0])
|
525 |
+
assert_array_equal(result, expected)
|
526 |
+
assert_(isinstance(result, ArraySubclass))
|
527 |
+
|
528 |
+
|
529 |
+
class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
530 |
+
|
531 |
+
def do(self, a, b, tags):
|
532 |
+
a_inv = linalg.inv(a)
|
533 |
+
assert_almost_equal(dot_generalized(a, a_inv),
|
534 |
+
identity_like_generalized(a))
|
535 |
+
assert_(consistent_subclass(a_inv, a))
|
536 |
+
|
537 |
+
|
538 |
+
class TestInv(InvCases):
|
539 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
540 |
+
def test_types(self, dtype):
|
541 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
542 |
+
assert_equal(linalg.inv(x).dtype, dtype)
|
543 |
+
|
544 |
+
def test_0_size(self):
|
545 |
+
# Check that all kinds of 0-sized arrays work
|
546 |
+
class ArraySubclass(np.ndarray):
|
547 |
+
pass
|
548 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
549 |
+
res = linalg.inv(a)
|
550 |
+
assert_(res.dtype.type is np.float64)
|
551 |
+
assert_equal(a.shape, res.shape)
|
552 |
+
assert_(isinstance(res, ArraySubclass))
|
553 |
+
|
554 |
+
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
|
555 |
+
res = linalg.inv(a)
|
556 |
+
assert_(res.dtype.type is np.complex64)
|
557 |
+
assert_equal(a.shape, res.shape)
|
558 |
+
assert_(isinstance(res, ArraySubclass))
|
559 |
+
|
560 |
+
|
561 |
+
class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
562 |
+
|
563 |
+
def do(self, a, b, tags):
|
564 |
+
ev = linalg.eigvals(a)
|
565 |
+
evalues, evectors = linalg.eig(a)
|
566 |
+
assert_almost_equal(ev, evalues)
|
567 |
+
|
568 |
+
|
569 |
+
class TestEigvals(EigvalsCases):
|
570 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
571 |
+
def test_types(self, dtype):
|
572 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
573 |
+
assert_equal(linalg.eigvals(x).dtype, dtype)
|
574 |
+
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
|
575 |
+
assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
|
576 |
+
|
577 |
+
def test_0_size(self):
|
578 |
+
# Check that all kinds of 0-sized arrays work
|
579 |
+
class ArraySubclass(np.ndarray):
|
580 |
+
pass
|
581 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
582 |
+
res = linalg.eigvals(a)
|
583 |
+
assert_(res.dtype.type is np.float64)
|
584 |
+
assert_equal((0, 1), res.shape)
|
585 |
+
# This is just for documentation, it might make sense to change:
|
586 |
+
assert_(isinstance(res, np.ndarray))
|
587 |
+
|
588 |
+
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
|
589 |
+
res = linalg.eigvals(a)
|
590 |
+
assert_(res.dtype.type is np.complex64)
|
591 |
+
assert_equal((0,), res.shape)
|
592 |
+
# This is just for documentation, it might make sense to change:
|
593 |
+
assert_(isinstance(res, np.ndarray))
|
594 |
+
|
595 |
+
|
596 |
+
class EigCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
597 |
+
|
598 |
+
def do(self, a, b, tags):
|
599 |
+
res = linalg.eig(a)
|
600 |
+
eigenvalues, eigenvectors = res.eigenvalues, res.eigenvectors
|
601 |
+
assert_allclose(dot_generalized(a, eigenvectors),
|
602 |
+
np.asarray(eigenvectors) * np.asarray(eigenvalues)[..., None, :],
|
603 |
+
rtol=get_rtol(eigenvalues.dtype))
|
604 |
+
assert_(consistent_subclass(eigenvectors, a))
|
605 |
+
|
606 |
+
|
607 |
+
class TestEig(EigCases):
|
608 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
609 |
+
def test_types(self, dtype):
|
610 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
611 |
+
w, v = np.linalg.eig(x)
|
612 |
+
assert_equal(w.dtype, dtype)
|
613 |
+
assert_equal(v.dtype, dtype)
|
614 |
+
|
615 |
+
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
|
616 |
+
w, v = np.linalg.eig(x)
|
617 |
+
assert_equal(w.dtype, get_complex_dtype(dtype))
|
618 |
+
assert_equal(v.dtype, get_complex_dtype(dtype))
|
619 |
+
|
620 |
+
def test_0_size(self):
|
621 |
+
# Check that all kinds of 0-sized arrays work
|
622 |
+
class ArraySubclass(np.ndarray):
|
623 |
+
pass
|
624 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
625 |
+
res, res_v = linalg.eig(a)
|
626 |
+
assert_(res_v.dtype.type is np.float64)
|
627 |
+
assert_(res.dtype.type is np.float64)
|
628 |
+
assert_equal(a.shape, res_v.shape)
|
629 |
+
assert_equal((0, 1), res.shape)
|
630 |
+
# This is just for documentation, it might make sense to change:
|
631 |
+
assert_(isinstance(a, np.ndarray))
|
632 |
+
|
633 |
+
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
|
634 |
+
res, res_v = linalg.eig(a)
|
635 |
+
assert_(res_v.dtype.type is np.complex64)
|
636 |
+
assert_(res.dtype.type is np.complex64)
|
637 |
+
assert_equal(a.shape, res_v.shape)
|
638 |
+
assert_equal((0,), res.shape)
|
639 |
+
# This is just for documentation, it might make sense to change:
|
640 |
+
assert_(isinstance(a, np.ndarray))
|
641 |
+
|
642 |
+
|
643 |
+
class SVDBaseTests:
|
644 |
+
hermitian = False
|
645 |
+
|
646 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
647 |
+
def test_types(self, dtype):
|
648 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
649 |
+
res = linalg.svd(x)
|
650 |
+
U, S, Vh = res.U, res.S, res.Vh
|
651 |
+
assert_equal(U.dtype, dtype)
|
652 |
+
assert_equal(S.dtype, get_real_dtype(dtype))
|
653 |
+
assert_equal(Vh.dtype, dtype)
|
654 |
+
s = linalg.svd(x, compute_uv=False, hermitian=self.hermitian)
|
655 |
+
assert_equal(s.dtype, get_real_dtype(dtype))
|
656 |
+
|
657 |
+
|
658 |
+
class SVDCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
659 |
+
|
660 |
+
def do(self, a, b, tags):
|
661 |
+
u, s, vt = linalg.svd(a, False)
|
662 |
+
assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :],
|
663 |
+
np.asarray(vt)),
|
664 |
+
rtol=get_rtol(u.dtype))
|
665 |
+
assert_(consistent_subclass(u, a))
|
666 |
+
assert_(consistent_subclass(vt, a))
|
667 |
+
|
668 |
+
|
669 |
+
class TestSVD(SVDCases, SVDBaseTests):
|
670 |
+
def test_empty_identity(self):
|
671 |
+
""" Empty input should put an identity matrix in u or vh """
|
672 |
+
x = np.empty((4, 0))
|
673 |
+
u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
|
674 |
+
assert_equal(u.shape, (4, 4))
|
675 |
+
assert_equal(vh.shape, (0, 0))
|
676 |
+
assert_equal(u, np.eye(4))
|
677 |
+
|
678 |
+
x = np.empty((0, 4))
|
679 |
+
u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
|
680 |
+
assert_equal(u.shape, (0, 0))
|
681 |
+
assert_equal(vh.shape, (4, 4))
|
682 |
+
assert_equal(vh, np.eye(4))
|
683 |
+
|
684 |
+
|
685 |
+
class SVDHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
|
686 |
+
|
687 |
+
def do(self, a, b, tags):
|
688 |
+
u, s, vt = linalg.svd(a, False, hermitian=True)
|
689 |
+
assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :],
|
690 |
+
np.asarray(vt)),
|
691 |
+
rtol=get_rtol(u.dtype))
|
692 |
+
def hermitian(mat):
|
693 |
+
axes = list(range(mat.ndim))
|
694 |
+
axes[-1], axes[-2] = axes[-2], axes[-1]
|
695 |
+
return np.conj(np.transpose(mat, axes=axes))
|
696 |
+
|
697 |
+
assert_almost_equal(np.matmul(u, hermitian(u)), np.broadcast_to(np.eye(u.shape[-1]), u.shape))
|
698 |
+
assert_almost_equal(np.matmul(vt, hermitian(vt)), np.broadcast_to(np.eye(vt.shape[-1]), vt.shape))
|
699 |
+
assert_equal(np.sort(s)[..., ::-1], s)
|
700 |
+
assert_(consistent_subclass(u, a))
|
701 |
+
assert_(consistent_subclass(vt, a))
|
702 |
+
|
703 |
+
|
704 |
+
class TestSVDHermitian(SVDHermitianCases, SVDBaseTests):
|
705 |
+
hermitian = True
|
706 |
+
|
707 |
+
|
708 |
+
class CondCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
709 |
+
# cond(x, p) for p in (None, 2, -2)
|
710 |
+
|
711 |
+
def do(self, a, b, tags):
|
712 |
+
c = asarray(a) # a might be a matrix
|
713 |
+
if 'size-0' in tags:
|
714 |
+
assert_raises(LinAlgError, linalg.cond, c)
|
715 |
+
return
|
716 |
+
|
717 |
+
# +-2 norms
|
718 |
+
s = linalg.svd(c, compute_uv=False)
|
719 |
+
assert_almost_equal(
|
720 |
+
linalg.cond(a), s[..., 0] / s[..., -1],
|
721 |
+
single_decimal=5, double_decimal=11)
|
722 |
+
assert_almost_equal(
|
723 |
+
linalg.cond(a, 2), s[..., 0] / s[..., -1],
|
724 |
+
single_decimal=5, double_decimal=11)
|
725 |
+
assert_almost_equal(
|
726 |
+
linalg.cond(a, -2), s[..., -1] / s[..., 0],
|
727 |
+
single_decimal=5, double_decimal=11)
|
728 |
+
|
729 |
+
# Other norms
|
730 |
+
cinv = np.linalg.inv(c)
|
731 |
+
assert_almost_equal(
|
732 |
+
linalg.cond(a, 1),
|
733 |
+
abs(c).sum(-2).max(-1) * abs(cinv).sum(-2).max(-1),
|
734 |
+
single_decimal=5, double_decimal=11)
|
735 |
+
assert_almost_equal(
|
736 |
+
linalg.cond(a, -1),
|
737 |
+
abs(c).sum(-2).min(-1) * abs(cinv).sum(-2).min(-1),
|
738 |
+
single_decimal=5, double_decimal=11)
|
739 |
+
assert_almost_equal(
|
740 |
+
linalg.cond(a, np.inf),
|
741 |
+
abs(c).sum(-1).max(-1) * abs(cinv).sum(-1).max(-1),
|
742 |
+
single_decimal=5, double_decimal=11)
|
743 |
+
assert_almost_equal(
|
744 |
+
linalg.cond(a, -np.inf),
|
745 |
+
abs(c).sum(-1).min(-1) * abs(cinv).sum(-1).min(-1),
|
746 |
+
single_decimal=5, double_decimal=11)
|
747 |
+
assert_almost_equal(
|
748 |
+
linalg.cond(a, 'fro'),
|
749 |
+
np.sqrt((abs(c)**2).sum(-1).sum(-1)
|
750 |
+
* (abs(cinv)**2).sum(-1).sum(-1)),
|
751 |
+
single_decimal=5, double_decimal=11)
|
752 |
+
|
753 |
+
|
754 |
+
class TestCond(CondCases):
|
755 |
+
def test_basic_nonsvd(self):
|
756 |
+
# Smoketest the non-svd norms
|
757 |
+
A = array([[1., 0, 1], [0, -2., 0], [0, 0, 3.]])
|
758 |
+
assert_almost_equal(linalg.cond(A, inf), 4)
|
759 |
+
assert_almost_equal(linalg.cond(A, -inf), 2/3)
|
760 |
+
assert_almost_equal(linalg.cond(A, 1), 4)
|
761 |
+
assert_almost_equal(linalg.cond(A, -1), 0.5)
|
762 |
+
assert_almost_equal(linalg.cond(A, 'fro'), np.sqrt(265 / 12))
|
763 |
+
|
764 |
+
def test_singular(self):
|
765 |
+
# Singular matrices have infinite condition number for
|
766 |
+
# positive norms, and negative norms shouldn't raise
|
767 |
+
# exceptions
|
768 |
+
As = [np.zeros((2, 2)), np.ones((2, 2))]
|
769 |
+
p_pos = [None, 1, 2, 'fro']
|
770 |
+
p_neg = [-1, -2]
|
771 |
+
for A, p in itertools.product(As, p_pos):
|
772 |
+
# Inversion may not hit exact infinity, so just check the
|
773 |
+
# number is large
|
774 |
+
assert_(linalg.cond(A, p) > 1e15)
|
775 |
+
for A, p in itertools.product(As, p_neg):
|
776 |
+
linalg.cond(A, p)
|
777 |
+
|
778 |
+
@pytest.mark.xfail(True, run=False,
|
779 |
+
reason="Platform/LAPACK-dependent failure, "
|
780 |
+
"see gh-18914")
|
781 |
+
def test_nan(self):
|
782 |
+
# nans should be passed through, not converted to infs
|
783 |
+
ps = [None, 1, -1, 2, -2, 'fro']
|
784 |
+
p_pos = [None, 1, 2, 'fro']
|
785 |
+
|
786 |
+
A = np.ones((2, 2))
|
787 |
+
A[0,1] = np.nan
|
788 |
+
for p in ps:
|
789 |
+
c = linalg.cond(A, p)
|
790 |
+
assert_(isinstance(c, np.float_))
|
791 |
+
assert_(np.isnan(c))
|
792 |
+
|
793 |
+
A = np.ones((3, 2, 2))
|
794 |
+
A[1,0,1] = np.nan
|
795 |
+
for p in ps:
|
796 |
+
c = linalg.cond(A, p)
|
797 |
+
assert_(np.isnan(c[1]))
|
798 |
+
if p in p_pos:
|
799 |
+
assert_(c[0] > 1e15)
|
800 |
+
assert_(c[2] > 1e15)
|
801 |
+
else:
|
802 |
+
assert_(not np.isnan(c[0]))
|
803 |
+
assert_(not np.isnan(c[2]))
|
804 |
+
|
805 |
+
def test_stacked_singular(self):
|
806 |
+
# Check behavior when only some of the stacked matrices are
|
807 |
+
# singular
|
808 |
+
np.random.seed(1234)
|
809 |
+
A = np.random.rand(2, 2, 2, 2)
|
810 |
+
A[0,0] = 0
|
811 |
+
A[1,1] = 0
|
812 |
+
|
813 |
+
for p in (None, 1, 2, 'fro', -1, -2):
|
814 |
+
c = linalg.cond(A, p)
|
815 |
+
assert_equal(c[0,0], np.inf)
|
816 |
+
assert_equal(c[1,1], np.inf)
|
817 |
+
assert_(np.isfinite(c[0,1]))
|
818 |
+
assert_(np.isfinite(c[1,0]))
|
819 |
+
|
820 |
+
|
821 |
+
class PinvCases(LinalgSquareTestCase,
|
822 |
+
LinalgNonsquareTestCase,
|
823 |
+
LinalgGeneralizedSquareTestCase,
|
824 |
+
LinalgGeneralizedNonsquareTestCase):
|
825 |
+
|
826 |
+
def do(self, a, b, tags):
|
827 |
+
a_ginv = linalg.pinv(a)
|
828 |
+
# `a @ a_ginv == I` does not hold if a is singular
|
829 |
+
dot = dot_generalized
|
830 |
+
assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
|
831 |
+
assert_(consistent_subclass(a_ginv, a))
|
832 |
+
|
833 |
+
|
834 |
+
class TestPinv(PinvCases):
|
835 |
+
pass
|
836 |
+
|
837 |
+
|
838 |
+
class PinvHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
|
839 |
+
|
840 |
+
def do(self, a, b, tags):
|
841 |
+
a_ginv = linalg.pinv(a, hermitian=True)
|
842 |
+
# `a @ a_ginv == I` does not hold if a is singular
|
843 |
+
dot = dot_generalized
|
844 |
+
assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
|
845 |
+
assert_(consistent_subclass(a_ginv, a))
|
846 |
+
|
847 |
+
|
848 |
+
class TestPinvHermitian(PinvHermitianCases):
|
849 |
+
pass
|
850 |
+
|
851 |
+
|
852 |
+
class DetCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
853 |
+
|
854 |
+
def do(self, a, b, tags):
|
855 |
+
d = linalg.det(a)
|
856 |
+
res = linalg.slogdet(a)
|
857 |
+
s, ld = res.sign, res.logabsdet
|
858 |
+
if asarray(a).dtype.type in (single, double):
|
859 |
+
ad = asarray(a).astype(double)
|
860 |
+
else:
|
861 |
+
ad = asarray(a).astype(cdouble)
|
862 |
+
ev = linalg.eigvals(ad)
|
863 |
+
assert_almost_equal(d, multiply.reduce(ev, axis=-1))
|
864 |
+
assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))
|
865 |
+
|
866 |
+
s = np.atleast_1d(s)
|
867 |
+
ld = np.atleast_1d(ld)
|
868 |
+
m = (s != 0)
|
869 |
+
assert_almost_equal(np.abs(s[m]), 1)
|
870 |
+
assert_equal(ld[~m], -inf)
|
871 |
+
|
872 |
+
|
873 |
+
class TestDet(DetCases):
|
874 |
+
def test_zero(self):
|
875 |
+
assert_equal(linalg.det([[0.0]]), 0.0)
|
876 |
+
assert_equal(type(linalg.det([[0.0]])), double)
|
877 |
+
assert_equal(linalg.det([[0.0j]]), 0.0)
|
878 |
+
assert_equal(type(linalg.det([[0.0j]])), cdouble)
|
879 |
+
|
880 |
+
assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
|
881 |
+
assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
|
882 |
+
assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
|
883 |
+
assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
|
884 |
+
assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
|
885 |
+
assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)
|
886 |
+
|
887 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
888 |
+
def test_types(self, dtype):
|
889 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
890 |
+
assert_equal(np.linalg.det(x).dtype, dtype)
|
891 |
+
ph, s = np.linalg.slogdet(x)
|
892 |
+
assert_equal(s.dtype, get_real_dtype(dtype))
|
893 |
+
assert_equal(ph.dtype, dtype)
|
894 |
+
|
895 |
+
def test_0_size(self):
|
896 |
+
a = np.zeros((0, 0), dtype=np.complex64)
|
897 |
+
res = linalg.det(a)
|
898 |
+
assert_equal(res, 1.)
|
899 |
+
assert_(res.dtype.type is np.complex64)
|
900 |
+
res = linalg.slogdet(a)
|
901 |
+
assert_equal(res, (1, 0))
|
902 |
+
assert_(res[0].dtype.type is np.complex64)
|
903 |
+
assert_(res[1].dtype.type is np.float32)
|
904 |
+
|
905 |
+
a = np.zeros((0, 0), dtype=np.float64)
|
906 |
+
res = linalg.det(a)
|
907 |
+
assert_equal(res, 1.)
|
908 |
+
assert_(res.dtype.type is np.float64)
|
909 |
+
res = linalg.slogdet(a)
|
910 |
+
assert_equal(res, (1, 0))
|
911 |
+
assert_(res[0].dtype.type is np.float64)
|
912 |
+
assert_(res[1].dtype.type is np.float64)
|
913 |
+
|
914 |
+
|
915 |
+
class LstsqCases(LinalgSquareTestCase, LinalgNonsquareTestCase):
|
916 |
+
|
917 |
+
def do(self, a, b, tags):
|
918 |
+
arr = np.asarray(a)
|
919 |
+
m, n = arr.shape
|
920 |
+
u, s, vt = linalg.svd(a, False)
|
921 |
+
x, residuals, rank, sv = linalg.lstsq(a, b, rcond=-1)
|
922 |
+
if m == 0:
|
923 |
+
assert_((x == 0).all())
|
924 |
+
if m <= n:
|
925 |
+
assert_almost_equal(b, dot(a, x))
|
926 |
+
assert_equal(rank, m)
|
927 |
+
else:
|
928 |
+
assert_equal(rank, n)
|
929 |
+
assert_almost_equal(sv, sv.__array_wrap__(s))
|
930 |
+
if rank == n and m > n:
|
931 |
+
expect_resids = (
|
932 |
+
np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
|
933 |
+
expect_resids = np.asarray(expect_resids)
|
934 |
+
if np.asarray(b).ndim == 1:
|
935 |
+
expect_resids.shape = (1,)
|
936 |
+
assert_equal(residuals.shape, expect_resids.shape)
|
937 |
+
else:
|
938 |
+
expect_resids = np.array([]).view(type(x))
|
939 |
+
assert_almost_equal(residuals, expect_resids)
|
940 |
+
assert_(np.issubdtype(residuals.dtype, np.floating))
|
941 |
+
assert_(consistent_subclass(x, b))
|
942 |
+
assert_(consistent_subclass(residuals, b))
|
943 |
+
|
944 |
+
|
945 |
+
class TestLstsq(LstsqCases):
|
946 |
+
def test_future_rcond(self):
|
947 |
+
a = np.array([[0., 1., 0., 1., 2., 0.],
|
948 |
+
[0., 2., 0., 0., 1., 0.],
|
949 |
+
[1., 0., 1., 0., 0., 4.],
|
950 |
+
[0., 0., 0., 2., 3., 0.]]).T
|
951 |
+
|
952 |
+
b = np.array([1, 0, 0, 0, 0, 0])
|
953 |
+
with suppress_warnings() as sup:
|
954 |
+
w = sup.record(FutureWarning, "`rcond` parameter will change")
|
955 |
+
x, residuals, rank, s = linalg.lstsq(a, b)
|
956 |
+
assert_(rank == 4)
|
957 |
+
x, residuals, rank, s = linalg.lstsq(a, b, rcond=-1)
|
958 |
+
assert_(rank == 4)
|
959 |
+
x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
|
960 |
+
assert_(rank == 3)
|
961 |
+
# Warning should be raised exactly once (first command)
|
962 |
+
assert_(len(w) == 1)
|
963 |
+
|
964 |
+
@pytest.mark.parametrize(["m", "n", "n_rhs"], [
|
965 |
+
(4, 2, 2),
|
966 |
+
(0, 4, 1),
|
967 |
+
(0, 4, 2),
|
968 |
+
(4, 0, 1),
|
969 |
+
(4, 0, 2),
|
970 |
+
(4, 2, 0),
|
971 |
+
(0, 0, 0)
|
972 |
+
])
|
973 |
+
def test_empty_a_b(self, m, n, n_rhs):
|
974 |
+
a = np.arange(m * n).reshape(m, n)
|
975 |
+
b = np.ones((m, n_rhs))
|
976 |
+
x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
|
977 |
+
if m == 0:
|
978 |
+
assert_((x == 0).all())
|
979 |
+
assert_equal(x.shape, (n, n_rhs))
|
980 |
+
assert_equal(residuals.shape, ((n_rhs,) if m > n else (0,)))
|
981 |
+
if m > n and n_rhs > 0:
|
982 |
+
# residuals are exactly the squared norms of b's columns
|
983 |
+
r = b - np.dot(a, x)
|
984 |
+
assert_almost_equal(residuals, (r * r).sum(axis=-2))
|
985 |
+
assert_equal(rank, min(m, n))
|
986 |
+
assert_equal(s.shape, (min(m, n),))
|
987 |
+
|
988 |
+
def test_incompatible_dims(self):
|
989 |
+
# use modified version of docstring example
|
990 |
+
x = np.array([0, 1, 2, 3])
|
991 |
+
y = np.array([-1, 0.2, 0.9, 2.1, 3.3])
|
992 |
+
A = np.vstack([x, np.ones(len(x))]).T
|
993 |
+
with assert_raises_regex(LinAlgError, "Incompatible dimensions"):
|
994 |
+
linalg.lstsq(A, y, rcond=None)
|
995 |
+
|
996 |
+
|
997 |
+
@pytest.mark.parametrize('dt', [np.dtype(c) for c in '?bBhHiIqQefdgFDGO'])
|
998 |
+
class TestMatrixPower:
|
999 |
+
|
1000 |
+
rshft_0 = np.eye(4)
|
1001 |
+
rshft_1 = rshft_0[[3, 0, 1, 2]]
|
1002 |
+
rshft_2 = rshft_0[[2, 3, 0, 1]]
|
1003 |
+
rshft_3 = rshft_0[[1, 2, 3, 0]]
|
1004 |
+
rshft_all = [rshft_0, rshft_1, rshft_2, rshft_3]
|
1005 |
+
noninv = array([[1, 0], [0, 0]])
|
1006 |
+
stacked = np.block([[[rshft_0]]]*2)
|
1007 |
+
#FIXME the 'e' dtype might work in future
|
1008 |
+
dtnoinv = [object, np.dtype('e'), np.dtype('g'), np.dtype('G')]
|
1009 |
+
|
1010 |
+
def test_large_power(self, dt):
|
1011 |
+
rshft = self.rshft_1.astype(dt)
|
1012 |
+
assert_equal(
|
1013 |
+
matrix_power(rshft, 2**100 + 2**10 + 2**5 + 0), self.rshft_0)
|
1014 |
+
assert_equal(
|
1015 |
+
matrix_power(rshft, 2**100 + 2**10 + 2**5 + 1), self.rshft_1)
|
1016 |
+
assert_equal(
|
1017 |
+
matrix_power(rshft, 2**100 + 2**10 + 2**5 + 2), self.rshft_2)
|
1018 |
+
assert_equal(
|
1019 |
+
matrix_power(rshft, 2**100 + 2**10 + 2**5 + 3), self.rshft_3)
|
1020 |
+
|
1021 |
+
def test_power_is_zero(self, dt):
|
1022 |
+
def tz(M):
|
1023 |
+
mz = matrix_power(M, 0)
|
1024 |
+
assert_equal(mz, identity_like_generalized(M))
|
1025 |
+
assert_equal(mz.dtype, M.dtype)
|
1026 |
+
|
1027 |
+
for mat in self.rshft_all:
|
1028 |
+
tz(mat.astype(dt))
|
1029 |
+
if dt != object:
|
1030 |
+
tz(self.stacked.astype(dt))
|
1031 |
+
|
1032 |
+
def test_power_is_one(self, dt):
|
1033 |
+
def tz(mat):
|
1034 |
+
mz = matrix_power(mat, 1)
|
1035 |
+
assert_equal(mz, mat)
|
1036 |
+
assert_equal(mz.dtype, mat.dtype)
|
1037 |
+
|
1038 |
+
for mat in self.rshft_all:
|
1039 |
+
tz(mat.astype(dt))
|
1040 |
+
if dt != object:
|
1041 |
+
tz(self.stacked.astype(dt))
|
1042 |
+
|
1043 |
+
def test_power_is_two(self, dt):
|
1044 |
+
def tz(mat):
|
1045 |
+
mz = matrix_power(mat, 2)
|
1046 |
+
mmul = matmul if mat.dtype != object else dot
|
1047 |
+
assert_equal(mz, mmul(mat, mat))
|
1048 |
+
assert_equal(mz.dtype, mat.dtype)
|
1049 |
+
|
1050 |
+
for mat in self.rshft_all:
|
1051 |
+
tz(mat.astype(dt))
|
1052 |
+
if dt != object:
|
1053 |
+
tz(self.stacked.astype(dt))
|
1054 |
+
|
1055 |
+
def test_power_is_minus_one(self, dt):
|
1056 |
+
def tz(mat):
|
1057 |
+
invmat = matrix_power(mat, -1)
|
1058 |
+
mmul = matmul if mat.dtype != object else dot
|
1059 |
+
assert_almost_equal(
|
1060 |
+
mmul(invmat, mat), identity_like_generalized(mat))
|
1061 |
+
|
1062 |
+
for mat in self.rshft_all:
|
1063 |
+
if dt not in self.dtnoinv:
|
1064 |
+
tz(mat.astype(dt))
|
1065 |
+
|
1066 |
+
def test_exceptions_bad_power(self, dt):
|
1067 |
+
mat = self.rshft_0.astype(dt)
|
1068 |
+
assert_raises(TypeError, matrix_power, mat, 1.5)
|
1069 |
+
assert_raises(TypeError, matrix_power, mat, [1])
|
1070 |
+
|
1071 |
+
def test_exceptions_non_square(self, dt):
|
1072 |
+
assert_raises(LinAlgError, matrix_power, np.array([1], dt), 1)
|
1073 |
+
assert_raises(LinAlgError, matrix_power, np.array([[1], [2]], dt), 1)
|
1074 |
+
assert_raises(LinAlgError, matrix_power, np.ones((4, 3, 2), dt), 1)
|
1075 |
+
|
1076 |
+
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
|
1077 |
+
def test_exceptions_not_invertible(self, dt):
|
1078 |
+
if dt in self.dtnoinv:
|
1079 |
+
return
|
1080 |
+
mat = self.noninv.astype(dt)
|
1081 |
+
assert_raises(LinAlgError, matrix_power, mat, -1)
|
1082 |
+
|
1083 |
+
|
1084 |
+
class TestEigvalshCases(HermitianTestCase, HermitianGeneralizedTestCase):
|
1085 |
+
|
1086 |
+
def do(self, a, b, tags):
|
1087 |
+
# note that eigenvalue arrays returned by eig must be sorted since
|
1088 |
+
# their order isn't guaranteed.
|
1089 |
+
ev = linalg.eigvalsh(a, 'L')
|
1090 |
+
evalues, evectors = linalg.eig(a)
|
1091 |
+
evalues.sort(axis=-1)
|
1092 |
+
assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype))
|
1093 |
+
|
1094 |
+
ev2 = linalg.eigvalsh(a, 'U')
|
1095 |
+
assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype))
|
1096 |
+
|
1097 |
+
|
1098 |
+
class TestEigvalsh:
|
1099 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
1100 |
+
def test_types(self, dtype):
|
1101 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
1102 |
+
w = np.linalg.eigvalsh(x)
|
1103 |
+
assert_equal(w.dtype, get_real_dtype(dtype))
|
1104 |
+
|
1105 |
+
def test_invalid(self):
|
1106 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
|
1107 |
+
assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong")
|
1108 |
+
assert_raises(ValueError, np.linalg.eigvalsh, x, "lower")
|
1109 |
+
assert_raises(ValueError, np.linalg.eigvalsh, x, "upper")
|
1110 |
+
|
1111 |
+
def test_UPLO(self):
|
1112 |
+
Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
|
1113 |
+
Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
|
1114 |
+
tgt = np.array([-1, 1], dtype=np.double)
|
1115 |
+
rtol = get_rtol(np.double)
|
1116 |
+
|
1117 |
+
# Check default is 'L'
|
1118 |
+
w = np.linalg.eigvalsh(Klo)
|
1119 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1120 |
+
# Check 'L'
|
1121 |
+
w = np.linalg.eigvalsh(Klo, UPLO='L')
|
1122 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1123 |
+
# Check 'l'
|
1124 |
+
w = np.linalg.eigvalsh(Klo, UPLO='l')
|
1125 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1126 |
+
# Check 'U'
|
1127 |
+
w = np.linalg.eigvalsh(Kup, UPLO='U')
|
1128 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1129 |
+
# Check 'u'
|
1130 |
+
w = np.linalg.eigvalsh(Kup, UPLO='u')
|
1131 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1132 |
+
|
1133 |
+
def test_0_size(self):
|
1134 |
+
# Check that all kinds of 0-sized arrays work
|
1135 |
+
class ArraySubclass(np.ndarray):
|
1136 |
+
pass
|
1137 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
1138 |
+
res = linalg.eigvalsh(a)
|
1139 |
+
assert_(res.dtype.type is np.float64)
|
1140 |
+
assert_equal((0, 1), res.shape)
|
1141 |
+
# This is just for documentation, it might make sense to change:
|
1142 |
+
assert_(isinstance(res, np.ndarray))
|
1143 |
+
|
1144 |
+
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
|
1145 |
+
res = linalg.eigvalsh(a)
|
1146 |
+
assert_(res.dtype.type is np.float32)
|
1147 |
+
assert_equal((0,), res.shape)
|
1148 |
+
# This is just for documentation, it might make sense to change:
|
1149 |
+
assert_(isinstance(res, np.ndarray))
|
1150 |
+
|
1151 |
+
|
1152 |
+
class TestEighCases(HermitianTestCase, HermitianGeneralizedTestCase):
|
1153 |
+
|
1154 |
+
def do(self, a, b, tags):
|
1155 |
+
# note that eigenvalue arrays returned by eig must be sorted since
|
1156 |
+
# their order isn't guaranteed.
|
1157 |
+
res = linalg.eigh(a)
|
1158 |
+
ev, evc = res.eigenvalues, res.eigenvectors
|
1159 |
+
evalues, evectors = linalg.eig(a)
|
1160 |
+
evalues.sort(axis=-1)
|
1161 |
+
assert_almost_equal(ev, evalues)
|
1162 |
+
|
1163 |
+
assert_allclose(dot_generalized(a, evc),
|
1164 |
+
np.asarray(ev)[..., None, :] * np.asarray(evc),
|
1165 |
+
rtol=get_rtol(ev.dtype))
|
1166 |
+
|
1167 |
+
ev2, evc2 = linalg.eigh(a, 'U')
|
1168 |
+
assert_almost_equal(ev2, evalues)
|
1169 |
+
|
1170 |
+
assert_allclose(dot_generalized(a, evc2),
|
1171 |
+
np.asarray(ev2)[..., None, :] * np.asarray(evc2),
|
1172 |
+
rtol=get_rtol(ev.dtype), err_msg=repr(a))
|
1173 |
+
|
1174 |
+
|
1175 |
+
class TestEigh:
|
1176 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
1177 |
+
def test_types(self, dtype):
|
1178 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
1179 |
+
w, v = np.linalg.eigh(x)
|
1180 |
+
assert_equal(w.dtype, get_real_dtype(dtype))
|
1181 |
+
assert_equal(v.dtype, dtype)
|
1182 |
+
|
1183 |
+
def test_invalid(self):
|
1184 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
|
1185 |
+
assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong")
|
1186 |
+
assert_raises(ValueError, np.linalg.eigh, x, "lower")
|
1187 |
+
assert_raises(ValueError, np.linalg.eigh, x, "upper")
|
1188 |
+
|
1189 |
+
def test_UPLO(self):
|
1190 |
+
Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
|
1191 |
+
Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
|
1192 |
+
tgt = np.array([-1, 1], dtype=np.double)
|
1193 |
+
rtol = get_rtol(np.double)
|
1194 |
+
|
1195 |
+
# Check default is 'L'
|
1196 |
+
w, v = np.linalg.eigh(Klo)
|
1197 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1198 |
+
# Check 'L'
|
1199 |
+
w, v = np.linalg.eigh(Klo, UPLO='L')
|
1200 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1201 |
+
# Check 'l'
|
1202 |
+
w, v = np.linalg.eigh(Klo, UPLO='l')
|
1203 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1204 |
+
# Check 'U'
|
1205 |
+
w, v = np.linalg.eigh(Kup, UPLO='U')
|
1206 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1207 |
+
# Check 'u'
|
1208 |
+
w, v = np.linalg.eigh(Kup, UPLO='u')
|
1209 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1210 |
+
|
1211 |
+
def test_0_size(self):
|
1212 |
+
# Check that all kinds of 0-sized arrays work
|
1213 |
+
class ArraySubclass(np.ndarray):
|
1214 |
+
pass
|
1215 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
1216 |
+
res, res_v = linalg.eigh(a)
|
1217 |
+
assert_(res_v.dtype.type is np.float64)
|
1218 |
+
assert_(res.dtype.type is np.float64)
|
1219 |
+
assert_equal(a.shape, res_v.shape)
|
1220 |
+
assert_equal((0, 1), res.shape)
|
1221 |
+
# This is just for documentation, it might make sense to change:
|
1222 |
+
assert_(isinstance(a, np.ndarray))
|
1223 |
+
|
1224 |
+
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
|
1225 |
+
res, res_v = linalg.eigh(a)
|
1226 |
+
assert_(res_v.dtype.type is np.complex64)
|
1227 |
+
assert_(res.dtype.type is np.float32)
|
1228 |
+
assert_equal(a.shape, res_v.shape)
|
1229 |
+
assert_equal((0,), res.shape)
|
1230 |
+
# This is just for documentation, it might make sense to change:
|
1231 |
+
assert_(isinstance(a, np.ndarray))
|
1232 |
+
|
1233 |
+
|
1234 |
+
class _TestNormBase:
|
1235 |
+
dt = None
|
1236 |
+
dec = None
|
1237 |
+
|
1238 |
+
@staticmethod
|
1239 |
+
def check_dtype(x, res):
|
1240 |
+
if issubclass(x.dtype.type, np.inexact):
|
1241 |
+
assert_equal(res.dtype, x.real.dtype)
|
1242 |
+
else:
|
1243 |
+
# For integer input, don't have to test float precision of output.
|
1244 |
+
assert_(issubclass(res.dtype.type, np.floating))
|
1245 |
+
|
1246 |
+
|
1247 |
+
class _TestNormGeneral(_TestNormBase):
|
1248 |
+
|
1249 |
+
def test_empty(self):
|
1250 |
+
assert_equal(norm([]), 0.0)
|
1251 |
+
assert_equal(norm(array([], dtype=self.dt)), 0.0)
|
1252 |
+
assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)
|
1253 |
+
|
1254 |
+
def test_vector_return_type(self):
|
1255 |
+
a = np.array([1, 0, 1])
|
1256 |
+
|
1257 |
+
exact_types = np.typecodes['AllInteger']
|
1258 |
+
inexact_types = np.typecodes['AllFloat']
|
1259 |
+
|
1260 |
+
all_types = exact_types + inexact_types
|
1261 |
+
|
1262 |
+
for each_type in all_types:
|
1263 |
+
at = a.astype(each_type)
|
1264 |
+
|
1265 |
+
an = norm(at, -np.inf)
|
1266 |
+
self.check_dtype(at, an)
|
1267 |
+
assert_almost_equal(an, 0.0)
|
1268 |
+
|
1269 |
+
with suppress_warnings() as sup:
|
1270 |
+
sup.filter(RuntimeWarning, "divide by zero encountered")
|
1271 |
+
an = norm(at, -1)
|
1272 |
+
self.check_dtype(at, an)
|
1273 |
+
assert_almost_equal(an, 0.0)
|
1274 |
+
|
1275 |
+
an = norm(at, 0)
|
1276 |
+
self.check_dtype(at, an)
|
1277 |
+
assert_almost_equal(an, 2)
|
1278 |
+
|
1279 |
+
an = norm(at, 1)
|
1280 |
+
self.check_dtype(at, an)
|
1281 |
+
assert_almost_equal(an, 2.0)
|
1282 |
+
|
1283 |
+
an = norm(at, 2)
|
1284 |
+
self.check_dtype(at, an)
|
1285 |
+
assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/2.0))
|
1286 |
+
|
1287 |
+
an = norm(at, 4)
|
1288 |
+
self.check_dtype(at, an)
|
1289 |
+
assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/4.0))
|
1290 |
+
|
1291 |
+
an = norm(at, np.inf)
|
1292 |
+
self.check_dtype(at, an)
|
1293 |
+
assert_almost_equal(an, 1.0)
|
1294 |
+
|
1295 |
+
def test_vector(self):
|
1296 |
+
a = [1, 2, 3, 4]
|
1297 |
+
b = [-1, -2, -3, -4]
|
1298 |
+
c = [-1, 2, -3, 4]
|
1299 |
+
|
1300 |
+
def _test(v):
|
1301 |
+
np.testing.assert_almost_equal(norm(v), 30 ** 0.5,
|
1302 |
+
decimal=self.dec)
|
1303 |
+
np.testing.assert_almost_equal(norm(v, inf), 4.0,
|
1304 |
+
decimal=self.dec)
|
1305 |
+
np.testing.assert_almost_equal(norm(v, -inf), 1.0,
|
1306 |
+
decimal=self.dec)
|
1307 |
+
np.testing.assert_almost_equal(norm(v, 1), 10.0,
|
1308 |
+
decimal=self.dec)
|
1309 |
+
np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25,
|
1310 |
+
decimal=self.dec)
|
1311 |
+
np.testing.assert_almost_equal(norm(v, 2), 30 ** 0.5,
|
1312 |
+
decimal=self.dec)
|
1313 |
+
np.testing.assert_almost_equal(norm(v, -2), ((205. / 144) ** -0.5),
|
1314 |
+
decimal=self.dec)
|
1315 |
+
np.testing.assert_almost_equal(norm(v, 0), 4,
|
1316 |
+
decimal=self.dec)
|
1317 |
+
|
1318 |
+
for v in (a, b, c,):
|
1319 |
+
_test(v)
|
1320 |
+
|
1321 |
+
for v in (array(a, dtype=self.dt), array(b, dtype=self.dt),
|
1322 |
+
array(c, dtype=self.dt)):
|
1323 |
+
_test(v)
|
1324 |
+
|
1325 |
+
def test_axis(self):
|
1326 |
+
# Vector norms.
|
1327 |
+
# Compare the use of `axis` with computing the norm of each row
|
1328 |
+
# or column separately.
|
1329 |
+
A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
|
1330 |
+
for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
|
1331 |
+
expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
|
1332 |
+
assert_almost_equal(norm(A, ord=order, axis=0), expected0)
|
1333 |
+
expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])]
|
1334 |
+
assert_almost_equal(norm(A, ord=order, axis=1), expected1)
|
1335 |
+
|
1336 |
+
# Matrix norms.
|
1337 |
+
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
|
1338 |
+
nd = B.ndim
|
1339 |
+
for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']:
|
1340 |
+
for axis in itertools.combinations(range(-nd, nd), 2):
|
1341 |
+
row_axis, col_axis = axis
|
1342 |
+
if row_axis < 0:
|
1343 |
+
row_axis += nd
|
1344 |
+
if col_axis < 0:
|
1345 |
+
col_axis += nd
|
1346 |
+
if row_axis == col_axis:
|
1347 |
+
assert_raises(ValueError, norm, B, ord=order, axis=axis)
|
1348 |
+
else:
|
1349 |
+
n = norm(B, ord=order, axis=axis)
|
1350 |
+
|
1351 |
+
# The logic using k_index only works for nd = 3.
|
1352 |
+
# This has to be changed if nd is increased.
|
1353 |
+
k_index = nd - (row_axis + col_axis)
|
1354 |
+
if row_axis < col_axis:
|
1355 |
+
expected = [norm(B[:].take(k, axis=k_index), ord=order)
|
1356 |
+
for k in range(B.shape[k_index])]
|
1357 |
+
else:
|
1358 |
+
expected = [norm(B[:].take(k, axis=k_index).T, ord=order)
|
1359 |
+
for k in range(B.shape[k_index])]
|
1360 |
+
assert_almost_equal(n, expected)
|
1361 |
+
|
1362 |
+
def test_keepdims(self):
|
1363 |
+
A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
|
1364 |
+
|
1365 |
+
allclose_err = 'order {0}, axis = {1}'
|
1366 |
+
shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}'
|
1367 |
+
|
1368 |
+
# check the order=None, axis=None case
|
1369 |
+
expected = norm(A, ord=None, axis=None)
|
1370 |
+
found = norm(A, ord=None, axis=None, keepdims=True)
|
1371 |
+
assert_allclose(np.squeeze(found), expected,
|
1372 |
+
err_msg=allclose_err.format(None, None))
|
1373 |
+
expected_shape = (1, 1, 1)
|
1374 |
+
assert_(found.shape == expected_shape,
|
1375 |
+
shape_err.format(found.shape, expected_shape, None, None))
|
1376 |
+
|
1377 |
+
# Vector norms.
|
1378 |
+
for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
|
1379 |
+
for k in range(A.ndim):
|
1380 |
+
expected = norm(A, ord=order, axis=k)
|
1381 |
+
found = norm(A, ord=order, axis=k, keepdims=True)
|
1382 |
+
assert_allclose(np.squeeze(found), expected,
|
1383 |
+
err_msg=allclose_err.format(order, k))
|
1384 |
+
expected_shape = list(A.shape)
|
1385 |
+
expected_shape[k] = 1
|
1386 |
+
expected_shape = tuple(expected_shape)
|
1387 |
+
assert_(found.shape == expected_shape,
|
1388 |
+
shape_err.format(found.shape, expected_shape, order, k))
|
1389 |
+
|
1390 |
+
# Matrix norms.
|
1391 |
+
for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro', 'nuc']:
|
1392 |
+
for k in itertools.permutations(range(A.ndim), 2):
|
1393 |
+
expected = norm(A, ord=order, axis=k)
|
1394 |
+
found = norm(A, ord=order, axis=k, keepdims=True)
|
1395 |
+
assert_allclose(np.squeeze(found), expected,
|
1396 |
+
err_msg=allclose_err.format(order, k))
|
1397 |
+
expected_shape = list(A.shape)
|
1398 |
+
expected_shape[k[0]] = 1
|
1399 |
+
expected_shape[k[1]] = 1
|
1400 |
+
expected_shape = tuple(expected_shape)
|
1401 |
+
assert_(found.shape == expected_shape,
|
1402 |
+
shape_err.format(found.shape, expected_shape, order, k))
|
1403 |
+
|
1404 |
+
|
1405 |
+
class _TestNorm2D(_TestNormBase):
|
1406 |
+
# Define the part for 2d arrays separately, so we can subclass this
|
1407 |
+
# and run the tests using np.matrix in matrixlib.tests.test_matrix_linalg.
|
1408 |
+
array = np.array
|
1409 |
+
|
1410 |
+
def test_matrix_empty(self):
|
1411 |
+
assert_equal(norm(self.array([[]], dtype=self.dt)), 0.0)
|
1412 |
+
|
1413 |
+
def test_matrix_return_type(self):
|
1414 |
+
a = self.array([[1, 0, 1], [0, 1, 1]])
|
1415 |
+
|
1416 |
+
exact_types = np.typecodes['AllInteger']
|
1417 |
+
|
1418 |
+
# float32, complex64, float64, complex128 types are the only types
|
1419 |
+
# allowed by `linalg`, which performs the matrix operations used
|
1420 |
+
# within `norm`.
|
1421 |
+
inexact_types = 'fdFD'
|
1422 |
+
|
1423 |
+
all_types = exact_types + inexact_types
|
1424 |
+
|
1425 |
+
for each_type in all_types:
|
1426 |
+
at = a.astype(each_type)
|
1427 |
+
|
1428 |
+
an = norm(at, -np.inf)
|
1429 |
+
self.check_dtype(at, an)
|
1430 |
+
assert_almost_equal(an, 2.0)
|
1431 |
+
|
1432 |
+
with suppress_warnings() as sup:
|
1433 |
+
sup.filter(RuntimeWarning, "divide by zero encountered")
|
1434 |
+
an = norm(at, -1)
|
1435 |
+
self.check_dtype(at, an)
|
1436 |
+
assert_almost_equal(an, 1.0)
|
1437 |
+
|
1438 |
+
an = norm(at, 1)
|
1439 |
+
self.check_dtype(at, an)
|
1440 |
+
assert_almost_equal(an, 2.0)
|
1441 |
+
|
1442 |
+
an = norm(at, 2)
|
1443 |
+
self.check_dtype(at, an)
|
1444 |
+
assert_almost_equal(an, 3.0**(1.0/2.0))
|
1445 |
+
|
1446 |
+
an = norm(at, -2)
|
1447 |
+
self.check_dtype(at, an)
|
1448 |
+
assert_almost_equal(an, 1.0)
|
1449 |
+
|
1450 |
+
an = norm(at, np.inf)
|
1451 |
+
self.check_dtype(at, an)
|
1452 |
+
assert_almost_equal(an, 2.0)
|
1453 |
+
|
1454 |
+
an = norm(at, 'fro')
|
1455 |
+
self.check_dtype(at, an)
|
1456 |
+
assert_almost_equal(an, 2.0)
|
1457 |
+
|
1458 |
+
an = norm(at, 'nuc')
|
1459 |
+
self.check_dtype(at, an)
|
1460 |
+
# Lower bar needed to support low precision floats.
|
1461 |
+
# They end up being off by 1 in the 7th place.
|
1462 |
+
np.testing.assert_almost_equal(an, 2.7320508075688772, decimal=6)
|
1463 |
+
|
1464 |
+
def test_matrix_2x2(self):
|
1465 |
+
A = self.array([[1, 3], [5, 7]], dtype=self.dt)
|
1466 |
+
assert_almost_equal(norm(A), 84 ** 0.5)
|
1467 |
+
assert_almost_equal(norm(A, 'fro'), 84 ** 0.5)
|
1468 |
+
assert_almost_equal(norm(A, 'nuc'), 10.0)
|
1469 |
+
assert_almost_equal(norm(A, inf), 12.0)
|
1470 |
+
assert_almost_equal(norm(A, -inf), 4.0)
|
1471 |
+
assert_almost_equal(norm(A, 1), 10.0)
|
1472 |
+
assert_almost_equal(norm(A, -1), 6.0)
|
1473 |
+
assert_almost_equal(norm(A, 2), 9.1231056256176615)
|
1474 |
+
assert_almost_equal(norm(A, -2), 0.87689437438234041)
|
1475 |
+
|
1476 |
+
assert_raises(ValueError, norm, A, 'nofro')
|
1477 |
+
assert_raises(ValueError, norm, A, -3)
|
1478 |
+
assert_raises(ValueError, norm, A, 0)
|
1479 |
+
|
1480 |
+
def test_matrix_3x3(self):
|
1481 |
+
# This test has been added because the 2x2 example
|
1482 |
+
# happened to have equal nuclear norm and induced 1-norm.
|
1483 |
+
# The 1/10 scaling factor accommodates the absolute tolerance
|
1484 |
+
# used in assert_almost_equal.
|
1485 |
+
A = (1 / 10) * \
|
1486 |
+
self.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=self.dt)
|
1487 |
+
assert_almost_equal(norm(A), (1 / 10) * 89 ** 0.5)
|
1488 |
+
assert_almost_equal(norm(A, 'fro'), (1 / 10) * 89 ** 0.5)
|
1489 |
+
assert_almost_equal(norm(A, 'nuc'), 1.3366836911774836)
|
1490 |
+
assert_almost_equal(norm(A, inf), 1.1)
|
1491 |
+
assert_almost_equal(norm(A, -inf), 0.6)
|
1492 |
+
assert_almost_equal(norm(A, 1), 1.0)
|
1493 |
+
assert_almost_equal(norm(A, -1), 0.4)
|
1494 |
+
assert_almost_equal(norm(A, 2), 0.88722940323461277)
|
1495 |
+
assert_almost_equal(norm(A, -2), 0.19456584790481812)
|
1496 |
+
|
1497 |
+
def test_bad_args(self):
|
1498 |
+
# Check that bad arguments raise the appropriate exceptions.
|
1499 |
+
|
1500 |
+
A = self.array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
|
1501 |
+
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
|
1502 |
+
|
1503 |
+
# Using `axis=<integer>` or passing in a 1-D array implies vector
|
1504 |
+
# norms are being computed, so also using `ord='fro'`
|
1505 |
+
# or `ord='nuc'` or any other string raises a ValueError.
|
1506 |
+
assert_raises(ValueError, norm, A, 'fro', 0)
|
1507 |
+
assert_raises(ValueError, norm, A, 'nuc', 0)
|
1508 |
+
assert_raises(ValueError, norm, [3, 4], 'fro', None)
|
1509 |
+
assert_raises(ValueError, norm, [3, 4], 'nuc', None)
|
1510 |
+
assert_raises(ValueError, norm, [3, 4], 'test', None)
|
1511 |
+
|
1512 |
+
# Similarly, norm should raise an exception when ord is any finite
|
1513 |
+
# number other than 1, 2, -1 or -2 when computing matrix norms.
|
1514 |
+
for order in [0, 3]:
|
1515 |
+
assert_raises(ValueError, norm, A, order, None)
|
1516 |
+
assert_raises(ValueError, norm, A, order, (0, 1))
|
1517 |
+
assert_raises(ValueError, norm, B, order, (1, 2))
|
1518 |
+
|
1519 |
+
# Invalid axis
|
1520 |
+
assert_raises(np.AxisError, norm, B, None, 3)
|
1521 |
+
assert_raises(np.AxisError, norm, B, None, (2, 3))
|
1522 |
+
assert_raises(ValueError, norm, B, None, (0, 1, 2))
|
1523 |
+
|
1524 |
+
|
1525 |
+
class _TestNorm(_TestNorm2D, _TestNormGeneral):
|
1526 |
+
pass
|
1527 |
+
|
1528 |
+
|
1529 |
+
class TestNorm_NonSystematic:
|
1530 |
+
|
1531 |
+
def test_longdouble_norm(self):
|
1532 |
+
# Non-regression test: p-norm of longdouble would previously raise
|
1533 |
+
# UnboundLocalError.
|
1534 |
+
x = np.arange(10, dtype=np.longdouble)
|
1535 |
+
old_assert_almost_equal(norm(x, ord=3), 12.65, decimal=2)
|
1536 |
+
|
1537 |
+
def test_intmin(self):
|
1538 |
+
# Non-regression test: p-norm of signed integer would previously do
|
1539 |
+
# float cast and abs in the wrong order.
|
1540 |
+
x = np.array([-2 ** 31], dtype=np.int32)
|
1541 |
+
old_assert_almost_equal(norm(x, ord=3), 2 ** 31, decimal=5)
|
1542 |
+
|
1543 |
+
def test_complex_high_ord(self):
|
1544 |
+
# gh-4156
|
1545 |
+
d = np.empty((2,), dtype=np.clongdouble)
|
1546 |
+
d[0] = 6 + 7j
|
1547 |
+
d[1] = -6 + 7j
|
1548 |
+
res = 11.615898132184
|
1549 |
+
old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=10)
|
1550 |
+
d = d.astype(np.complex128)
|
1551 |
+
old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=9)
|
1552 |
+
d = d.astype(np.complex64)
|
1553 |
+
old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=5)
|
1554 |
+
|
1555 |
+
|
1556 |
+
# Separate definitions so we can use them for matrix tests.
|
1557 |
+
class _TestNormDoubleBase(_TestNormBase):
|
1558 |
+
dt = np.double
|
1559 |
+
dec = 12
|
1560 |
+
|
1561 |
+
|
1562 |
+
class _TestNormSingleBase(_TestNormBase):
|
1563 |
+
dt = np.float32
|
1564 |
+
dec = 6
|
1565 |
+
|
1566 |
+
|
1567 |
+
class _TestNormInt64Base(_TestNormBase):
|
1568 |
+
dt = np.int64
|
1569 |
+
dec = 12
|
1570 |
+
|
1571 |
+
|
1572 |
+
class TestNormDouble(_TestNorm, _TestNormDoubleBase):
|
1573 |
+
pass
|
1574 |
+
|
1575 |
+
|
1576 |
+
class TestNormSingle(_TestNorm, _TestNormSingleBase):
|
1577 |
+
pass
|
1578 |
+
|
1579 |
+
|
1580 |
+
class TestNormInt64(_TestNorm, _TestNormInt64Base):
|
1581 |
+
pass
|
1582 |
+
|
1583 |
+
|
1584 |
+
class TestMatrixRank:
|
1585 |
+
|
1586 |
+
def test_matrix_rank(self):
|
1587 |
+
# Full rank matrix
|
1588 |
+
assert_equal(4, matrix_rank(np.eye(4)))
|
1589 |
+
# rank deficient matrix
|
1590 |
+
I = np.eye(4)
|
1591 |
+
I[-1, -1] = 0.
|
1592 |
+
assert_equal(matrix_rank(I), 3)
|
1593 |
+
# All zeros - zero rank
|
1594 |
+
assert_equal(matrix_rank(np.zeros((4, 4))), 0)
|
1595 |
+
# 1 dimension - rank 1 unless all 0
|
1596 |
+
assert_equal(matrix_rank([1, 0, 0, 0]), 1)
|
1597 |
+
assert_equal(matrix_rank(np.zeros((4,))), 0)
|
1598 |
+
# accepts array-like
|
1599 |
+
assert_equal(matrix_rank([1]), 1)
|
1600 |
+
# greater than 2 dimensions treated as stacked matrices
|
1601 |
+
ms = np.array([I, np.eye(4), np.zeros((4,4))])
|
1602 |
+
assert_equal(matrix_rank(ms), np.array([3, 4, 0]))
|
1603 |
+
# works on scalar
|
1604 |
+
assert_equal(matrix_rank(1), 1)
|
1605 |
+
|
1606 |
+
def test_symmetric_rank(self):
|
1607 |
+
assert_equal(4, matrix_rank(np.eye(4), hermitian=True))
|
1608 |
+
assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True))
|
1609 |
+
assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True))
|
1610 |
+
# rank deficient matrix
|
1611 |
+
I = np.eye(4)
|
1612 |
+
I[-1, -1] = 0.
|
1613 |
+
assert_equal(3, matrix_rank(I, hermitian=True))
|
1614 |
+
# manually supplied tolerance
|
1615 |
+
I[-1, -1] = 1e-8
|
1616 |
+
assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8))
|
1617 |
+
assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8))
|
1618 |
+
|
1619 |
+
|
1620 |
+
def test_reduced_rank():
|
1621 |
+
# Test matrices with reduced rank
|
1622 |
+
rng = np.random.RandomState(20120714)
|
1623 |
+
for i in range(100):
|
1624 |
+
# Make a rank deficient matrix
|
1625 |
+
X = rng.normal(size=(40, 10))
|
1626 |
+
X[:, 0] = X[:, 1] + X[:, 2]
|
1627 |
+
# Assert that matrix_rank detected deficiency
|
1628 |
+
assert_equal(matrix_rank(X), 9)
|
1629 |
+
X[:, 3] = X[:, 4] + X[:, 5]
|
1630 |
+
assert_equal(matrix_rank(X), 8)
|
1631 |
+
|
1632 |
+
|
1633 |
+
class TestQR:
|
1634 |
+
# Define the array class here, so run this on matrices elsewhere.
|
1635 |
+
array = np.array
|
1636 |
+
|
1637 |
+
def check_qr(self, a):
|
1638 |
+
# This test expects the argument `a` to be an ndarray or
|
1639 |
+
# a subclass of an ndarray of inexact type.
|
1640 |
+
a_type = type(a)
|
1641 |
+
a_dtype = a.dtype
|
1642 |
+
m, n = a.shape
|
1643 |
+
k = min(m, n)
|
1644 |
+
|
1645 |
+
# mode == 'complete'
|
1646 |
+
res = linalg.qr(a, mode='complete')
|
1647 |
+
Q, R = res.Q, res.R
|
1648 |
+
assert_(Q.dtype == a_dtype)
|
1649 |
+
assert_(R.dtype == a_dtype)
|
1650 |
+
assert_(isinstance(Q, a_type))
|
1651 |
+
assert_(isinstance(R, a_type))
|
1652 |
+
assert_(Q.shape == (m, m))
|
1653 |
+
assert_(R.shape == (m, n))
|
1654 |
+
assert_almost_equal(dot(Q, R), a)
|
1655 |
+
assert_almost_equal(dot(Q.T.conj(), Q), np.eye(m))
|
1656 |
+
assert_almost_equal(np.triu(R), R)
|
1657 |
+
|
1658 |
+
# mode == 'reduced'
|
1659 |
+
q1, r1 = linalg.qr(a, mode='reduced')
|
1660 |
+
assert_(q1.dtype == a_dtype)
|
1661 |
+
assert_(r1.dtype == a_dtype)
|
1662 |
+
assert_(isinstance(q1, a_type))
|
1663 |
+
assert_(isinstance(r1, a_type))
|
1664 |
+
assert_(q1.shape == (m, k))
|
1665 |
+
assert_(r1.shape == (k, n))
|
1666 |
+
assert_almost_equal(dot(q1, r1), a)
|
1667 |
+
assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k))
|
1668 |
+
assert_almost_equal(np.triu(r1), r1)
|
1669 |
+
|
1670 |
+
# mode == 'r'
|
1671 |
+
r2 = linalg.qr(a, mode='r')
|
1672 |
+
assert_(r2.dtype == a_dtype)
|
1673 |
+
assert_(isinstance(r2, a_type))
|
1674 |
+
assert_almost_equal(r2, r1)
|
1675 |
+
|
1676 |
+
|
1677 |
+
@pytest.mark.parametrize(["m", "n"], [
|
1678 |
+
(3, 0),
|
1679 |
+
(0, 3),
|
1680 |
+
(0, 0)
|
1681 |
+
])
|
1682 |
+
def test_qr_empty(self, m, n):
|
1683 |
+
k = min(m, n)
|
1684 |
+
a = np.empty((m, n))
|
1685 |
+
|
1686 |
+
self.check_qr(a)
|
1687 |
+
|
1688 |
+
h, tau = np.linalg.qr(a, mode='raw')
|
1689 |
+
assert_equal(h.dtype, np.double)
|
1690 |
+
assert_equal(tau.dtype, np.double)
|
1691 |
+
assert_equal(h.shape, (n, m))
|
1692 |
+
assert_equal(tau.shape, (k,))
|
1693 |
+
|
1694 |
+
def test_mode_raw(self):
|
1695 |
+
# The factorization is not unique and varies between libraries,
|
1696 |
+
# so it is not possible to check against known values. Functional
|
1697 |
+
# testing is a possibility, but awaits the exposure of more
|
1698 |
+
# of the functions in lapack_lite. Consequently, this test is
|
1699 |
+
# very limited in scope. Note that the results are in FORTRAN
|
1700 |
+
# order, hence the h arrays are transposed.
|
1701 |
+
a = self.array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
|
1702 |
+
|
1703 |
+
# Test double
|
1704 |
+
h, tau = linalg.qr(a, mode='raw')
|
1705 |
+
assert_(h.dtype == np.double)
|
1706 |
+
assert_(tau.dtype == np.double)
|
1707 |
+
assert_(h.shape == (2, 3))
|
1708 |
+
assert_(tau.shape == (2,))
|
1709 |
+
|
1710 |
+
h, tau = linalg.qr(a.T, mode='raw')
|
1711 |
+
assert_(h.dtype == np.double)
|
1712 |
+
assert_(tau.dtype == np.double)
|
1713 |
+
assert_(h.shape == (3, 2))
|
1714 |
+
assert_(tau.shape == (2,))
|
1715 |
+
|
1716 |
+
def test_mode_all_but_economic(self):
|
1717 |
+
a = self.array([[1, 2], [3, 4]])
|
1718 |
+
b = self.array([[1, 2], [3, 4], [5, 6]])
|
1719 |
+
for dt in "fd":
|
1720 |
+
m1 = a.astype(dt)
|
1721 |
+
m2 = b.astype(dt)
|
1722 |
+
self.check_qr(m1)
|
1723 |
+
self.check_qr(m2)
|
1724 |
+
self.check_qr(m2.T)
|
1725 |
+
|
1726 |
+
for dt in "fd":
|
1727 |
+
m1 = 1 + 1j * a.astype(dt)
|
1728 |
+
m2 = 1 + 1j * b.astype(dt)
|
1729 |
+
self.check_qr(m1)
|
1730 |
+
self.check_qr(m2)
|
1731 |
+
self.check_qr(m2.T)
|
1732 |
+
|
1733 |
+
def check_qr_stacked(self, a):
|
1734 |
+
# This test expects the argument `a` to be an ndarray or
|
1735 |
+
# a subclass of an ndarray of inexact type.
|
1736 |
+
a_type = type(a)
|
1737 |
+
a_dtype = a.dtype
|
1738 |
+
m, n = a.shape[-2:]
|
1739 |
+
k = min(m, n)
|
1740 |
+
|
1741 |
+
# mode == 'complete'
|
1742 |
+
q, r = linalg.qr(a, mode='complete')
|
1743 |
+
assert_(q.dtype == a_dtype)
|
1744 |
+
assert_(r.dtype == a_dtype)
|
1745 |
+
assert_(isinstance(q, a_type))
|
1746 |
+
assert_(isinstance(r, a_type))
|
1747 |
+
assert_(q.shape[-2:] == (m, m))
|
1748 |
+
assert_(r.shape[-2:] == (m, n))
|
1749 |
+
assert_almost_equal(matmul(q, r), a)
|
1750 |
+
I_mat = np.identity(q.shape[-1])
|
1751 |
+
stack_I_mat = np.broadcast_to(I_mat,
|
1752 |
+
q.shape[:-2] + (q.shape[-1],)*2)
|
1753 |
+
assert_almost_equal(matmul(swapaxes(q, -1, -2).conj(), q), stack_I_mat)
|
1754 |
+
assert_almost_equal(np.triu(r[..., :, :]), r)
|
1755 |
+
|
1756 |
+
# mode == 'reduced'
|
1757 |
+
q1, r1 = linalg.qr(a, mode='reduced')
|
1758 |
+
assert_(q1.dtype == a_dtype)
|
1759 |
+
assert_(r1.dtype == a_dtype)
|
1760 |
+
assert_(isinstance(q1, a_type))
|
1761 |
+
assert_(isinstance(r1, a_type))
|
1762 |
+
assert_(q1.shape[-2:] == (m, k))
|
1763 |
+
assert_(r1.shape[-2:] == (k, n))
|
1764 |
+
assert_almost_equal(matmul(q1, r1), a)
|
1765 |
+
I_mat = np.identity(q1.shape[-1])
|
1766 |
+
stack_I_mat = np.broadcast_to(I_mat,
|
1767 |
+
q1.shape[:-2] + (q1.shape[-1],)*2)
|
1768 |
+
assert_almost_equal(matmul(swapaxes(q1, -1, -2).conj(), q1),
|
1769 |
+
stack_I_mat)
|
1770 |
+
assert_almost_equal(np.triu(r1[..., :, :]), r1)
|
1771 |
+
|
1772 |
+
# mode == 'r'
|
1773 |
+
r2 = linalg.qr(a, mode='r')
|
1774 |
+
assert_(r2.dtype == a_dtype)
|
1775 |
+
assert_(isinstance(r2, a_type))
|
1776 |
+
assert_almost_equal(r2, r1)
|
1777 |
+
|
1778 |
+
@pytest.mark.parametrize("size", [
|
1779 |
+
(3, 4), (4, 3), (4, 4),
|
1780 |
+
(3, 0), (0, 3)])
|
1781 |
+
@pytest.mark.parametrize("outer_size", [
|
1782 |
+
(2, 2), (2,), (2, 3, 4)])
|
1783 |
+
@pytest.mark.parametrize("dt", [
|
1784 |
+
np.single, np.double,
|
1785 |
+
np.csingle, np.cdouble])
|
1786 |
+
def test_stacked_inputs(self, outer_size, size, dt):
|
1787 |
+
|
1788 |
+
A = np.random.normal(size=outer_size + size).astype(dt)
|
1789 |
+
B = np.random.normal(size=outer_size + size).astype(dt)
|
1790 |
+
self.check_qr_stacked(A)
|
1791 |
+
self.check_qr_stacked(A + 1.j*B)
|
1792 |
+
|
1793 |
+
|
1794 |
+
class TestCholesky:
|
1795 |
+
# TODO: are there no other tests for cholesky?
|
1796 |
+
|
1797 |
+
@pytest.mark.parametrize(
|
1798 |
+
'shape', [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)]
|
1799 |
+
)
|
1800 |
+
@pytest.mark.parametrize(
|
1801 |
+
'dtype', (np.float32, np.float64, np.complex64, np.complex128)
|
1802 |
+
)
|
1803 |
+
def test_basic_property(self, shape, dtype):
|
1804 |
+
# Check A = L L^H
|
1805 |
+
np.random.seed(1)
|
1806 |
+
a = np.random.randn(*shape)
|
1807 |
+
if np.issubdtype(dtype, np.complexfloating):
|
1808 |
+
a = a + 1j*np.random.randn(*shape)
|
1809 |
+
|
1810 |
+
t = list(range(len(shape)))
|
1811 |
+
t[-2:] = -1, -2
|
1812 |
+
|
1813 |
+
a = np.matmul(a.transpose(t).conj(), a)
|
1814 |
+
a = np.asarray(a, dtype=dtype)
|
1815 |
+
|
1816 |
+
c = np.linalg.cholesky(a)
|
1817 |
+
|
1818 |
+
b = np.matmul(c, c.transpose(t).conj())
|
1819 |
+
with np._no_nep50_warning():
|
1820 |
+
atol = 500 * a.shape[0] * np.finfo(dtype).eps
|
1821 |
+
assert_allclose(b, a, atol=atol, err_msg=f'{shape} {dtype}\n{a}\n{c}')
|
1822 |
+
|
1823 |
+
def test_0_size(self):
|
1824 |
+
class ArraySubclass(np.ndarray):
|
1825 |
+
pass
|
1826 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
1827 |
+
res = linalg.cholesky(a)
|
1828 |
+
assert_equal(a.shape, res.shape)
|
1829 |
+
assert_(res.dtype.type is np.float64)
|
1830 |
+
# for documentation purpose:
|
1831 |
+
assert_(isinstance(res, np.ndarray))
|
1832 |
+
|
1833 |
+
a = np.zeros((1, 0, 0), dtype=np.complex64).view(ArraySubclass)
|
1834 |
+
res = linalg.cholesky(a)
|
1835 |
+
assert_equal(a.shape, res.shape)
|
1836 |
+
assert_(res.dtype.type is np.complex64)
|
1837 |
+
assert_(isinstance(res, np.ndarray))
|
1838 |
+
|
1839 |
+
|
1840 |
+
def test_byteorder_check():
|
1841 |
+
# Byte order check should pass for native order
|
1842 |
+
if sys.byteorder == 'little':
|
1843 |
+
native = '<'
|
1844 |
+
else:
|
1845 |
+
native = '>'
|
1846 |
+
|
1847 |
+
for dtt in (np.float32, np.float64):
|
1848 |
+
arr = np.eye(4, dtype=dtt)
|
1849 |
+
n_arr = arr.newbyteorder(native)
|
1850 |
+
sw_arr = arr.newbyteorder('S').byteswap()
|
1851 |
+
assert_equal(arr.dtype.byteorder, '=')
|
1852 |
+
for routine in (linalg.inv, linalg.det, linalg.pinv):
|
1853 |
+
# Normal call
|
1854 |
+
res = routine(arr)
|
1855 |
+
# Native but not '='
|
1856 |
+
assert_array_equal(res, routine(n_arr))
|
1857 |
+
# Swapped
|
1858 |
+
assert_array_equal(res, routine(sw_arr))
|
1859 |
+
|
1860 |
+
|
1861 |
+
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
|
1862 |
+
def test_generalized_raise_multiloop():
|
1863 |
+
# It should raise an error even if the error doesn't occur in the
|
1864 |
+
# last iteration of the ufunc inner loop
|
1865 |
+
|
1866 |
+
invertible = np.array([[1, 2], [3, 4]])
|
1867 |
+
non_invertible = np.array([[1, 1], [1, 1]])
|
1868 |
+
|
1869 |
+
x = np.zeros([4, 4, 2, 2])[1::2]
|
1870 |
+
x[...] = invertible
|
1871 |
+
x[0, 0] = non_invertible
|
1872 |
+
|
1873 |
+
assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)
|
1874 |
+
|
1875 |
+
|
1876 |
+
def test_xerbla_override():
|
1877 |
+
# Check that our xerbla has been successfully linked in. If it is not,
|
1878 |
+
# the default xerbla routine is called, which prints a message to stdout
|
1879 |
+
# and may, or may not, abort the process depending on the LAPACK package.
|
1880 |
+
|
1881 |
+
XERBLA_OK = 255
|
1882 |
+
|
1883 |
+
try:
|
1884 |
+
pid = os.fork()
|
1885 |
+
except (OSError, AttributeError):
|
1886 |
+
# fork failed, or not running on POSIX
|
1887 |
+
pytest.skip("Not POSIX or fork failed.")
|
1888 |
+
|
1889 |
+
if pid == 0:
|
1890 |
+
# child; close i/o file handles
|
1891 |
+
os.close(1)
|
1892 |
+
os.close(0)
|
1893 |
+
# Avoid producing core files.
|
1894 |
+
import resource
|
1895 |
+
resource.setrlimit(resource.RLIMIT_CORE, (0, 0))
|
1896 |
+
# These calls may abort.
|
1897 |
+
try:
|
1898 |
+
np.linalg.lapack_lite.xerbla()
|
1899 |
+
except ValueError:
|
1900 |
+
pass
|
1901 |
+
except Exception:
|
1902 |
+
os._exit(os.EX_CONFIG)
|
1903 |
+
|
1904 |
+
try:
|
1905 |
+
a = np.array([[1.]])
|
1906 |
+
np.linalg.lapack_lite.dorgqr(
|
1907 |
+
1, 1, 1, a,
|
1908 |
+
0, # <- invalid value
|
1909 |
+
a, a, 0, 0)
|
1910 |
+
except ValueError as e:
|
1911 |
+
if "DORGQR parameter number 5" in str(e):
|
1912 |
+
# success, reuse error code to mark success as
|
1913 |
+
# FORTRAN STOP returns as success.
|
1914 |
+
os._exit(XERBLA_OK)
|
1915 |
+
|
1916 |
+
# Did not abort, but our xerbla was not linked in.
|
1917 |
+
os._exit(os.EX_CONFIG)
|
1918 |
+
else:
|
1919 |
+
# parent
|
1920 |
+
pid, status = os.wait()
|
1921 |
+
if os.WEXITSTATUS(status) != XERBLA_OK:
|
1922 |
+
pytest.skip('Numpy xerbla not linked in.')
|
1923 |
+
|
1924 |
+
|
1925 |
+
@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess")
|
1926 |
+
@pytest.mark.slow
|
1927 |
+
def test_sdot_bug_8577():
|
1928 |
+
# Regression test that loading certain other libraries does not
|
1929 |
+
# result to wrong results in float32 linear algebra.
|
1930 |
+
#
|
1931 |
+
# There's a bug gh-8577 on OSX that can trigger this, and perhaps
|
1932 |
+
# there are also other situations in which it occurs.
|
1933 |
+
#
|
1934 |
+
# Do the check in a separate process.
|
1935 |
+
|
1936 |
+
bad_libs = ['PyQt5.QtWidgets', 'IPython']
|
1937 |
+
|
1938 |
+
template = textwrap.dedent("""
|
1939 |
+
import sys
|
1940 |
+
{before}
|
1941 |
+
try:
|
1942 |
+
import {bad_lib}
|
1943 |
+
except ImportError:
|
1944 |
+
sys.exit(0)
|
1945 |
+
{after}
|
1946 |
+
x = np.ones(2, dtype=np.float32)
|
1947 |
+
sys.exit(0 if np.allclose(x.dot(x), 2.0) else 1)
|
1948 |
+
""")
|
1949 |
+
|
1950 |
+
for bad_lib in bad_libs:
|
1951 |
+
code = template.format(before="import numpy as np", after="",
|
1952 |
+
bad_lib=bad_lib)
|
1953 |
+
subprocess.check_call([sys.executable, "-c", code])
|
1954 |
+
|
1955 |
+
# Swapped import order
|
1956 |
+
code = template.format(after="import numpy as np", before="",
|
1957 |
+
bad_lib=bad_lib)
|
1958 |
+
subprocess.check_call([sys.executable, "-c", code])
|
1959 |
+
|
1960 |
+
|
1961 |
+
class TestMultiDot:
|
1962 |
+
|
1963 |
+
def test_basic_function_with_three_arguments(self):
|
1964 |
+
# multi_dot with three arguments uses a fast hand coded algorithm to
|
1965 |
+
# determine the optimal order. Therefore test it separately.
|
1966 |
+
A = np.random.random((6, 2))
|
1967 |
+
B = np.random.random((2, 6))
|
1968 |
+
C = np.random.random((6, 2))
|
1969 |
+
|
1970 |
+
assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C))
|
1971 |
+
assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C)))
|
1972 |
+
|
1973 |
+
def test_basic_function_with_two_arguments(self):
|
1974 |
+
# separate code path with two arguments
|
1975 |
+
A = np.random.random((6, 2))
|
1976 |
+
B = np.random.random((2, 6))
|
1977 |
+
|
1978 |
+
assert_almost_equal(multi_dot([A, B]), A.dot(B))
|
1979 |
+
assert_almost_equal(multi_dot([A, B]), np.dot(A, B))
|
1980 |
+
|
1981 |
+
def test_basic_function_with_dynamic_programming_optimization(self):
|
1982 |
+
# multi_dot with four or more arguments uses the dynamic programming
|
1983 |
+
# optimization and therefore deserve a separate
|
1984 |
+
A = np.random.random((6, 2))
|
1985 |
+
B = np.random.random((2, 6))
|
1986 |
+
C = np.random.random((6, 2))
|
1987 |
+
D = np.random.random((2, 1))
|
1988 |
+
assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D))
|
1989 |
+
|
1990 |
+
def test_vector_as_first_argument(self):
|
1991 |
+
# The first argument can be 1-D
|
1992 |
+
A1d = np.random.random(2) # 1-D
|
1993 |
+
B = np.random.random((2, 6))
|
1994 |
+
C = np.random.random((6, 2))
|
1995 |
+
D = np.random.random((2, 2))
|
1996 |
+
|
1997 |
+
# the result should be 1-D
|
1998 |
+
assert_equal(multi_dot([A1d, B, C, D]).shape, (2,))
|
1999 |
+
|
2000 |
+
def test_vector_as_last_argument(self):
|
2001 |
+
# The last argument can be 1-D
|
2002 |
+
A = np.random.random((6, 2))
|
2003 |
+
B = np.random.random((2, 6))
|
2004 |
+
C = np.random.random((6, 2))
|
2005 |
+
D1d = np.random.random(2) # 1-D
|
2006 |
+
|
2007 |
+
# the result should be 1-D
|
2008 |
+
assert_equal(multi_dot([A, B, C, D1d]).shape, (6,))
|
2009 |
+
|
2010 |
+
def test_vector_as_first_and_last_argument(self):
|
2011 |
+
# The first and last arguments can be 1-D
|
2012 |
+
A1d = np.random.random(2) # 1-D
|
2013 |
+
B = np.random.random((2, 6))
|
2014 |
+
C = np.random.random((6, 2))
|
2015 |
+
D1d = np.random.random(2) # 1-D
|
2016 |
+
|
2017 |
+
# the result should be a scalar
|
2018 |
+
assert_equal(multi_dot([A1d, B, C, D1d]).shape, ())
|
2019 |
+
|
2020 |
+
def test_three_arguments_and_out(self):
|
2021 |
+
# multi_dot with three arguments uses a fast hand coded algorithm to
|
2022 |
+
# determine the optimal order. Therefore test it separately.
|
2023 |
+
A = np.random.random((6, 2))
|
2024 |
+
B = np.random.random((2, 6))
|
2025 |
+
C = np.random.random((6, 2))
|
2026 |
+
|
2027 |
+
out = np.zeros((6, 2))
|
2028 |
+
ret = multi_dot([A, B, C], out=out)
|
2029 |
+
assert out is ret
|
2030 |
+
assert_almost_equal(out, A.dot(B).dot(C))
|
2031 |
+
assert_almost_equal(out, np.dot(A, np.dot(B, C)))
|
2032 |
+
|
2033 |
+
def test_two_arguments_and_out(self):
|
2034 |
+
# separate code path with two arguments
|
2035 |
+
A = np.random.random((6, 2))
|
2036 |
+
B = np.random.random((2, 6))
|
2037 |
+
out = np.zeros((6, 6))
|
2038 |
+
ret = multi_dot([A, B], out=out)
|
2039 |
+
assert out is ret
|
2040 |
+
assert_almost_equal(out, A.dot(B))
|
2041 |
+
assert_almost_equal(out, np.dot(A, B))
|
2042 |
+
|
2043 |
+
def test_dynamic_programming_optimization_and_out(self):
|
2044 |
+
# multi_dot with four or more arguments uses the dynamic programming
|
2045 |
+
# optimization and therefore deserve a separate test
|
2046 |
+
A = np.random.random((6, 2))
|
2047 |
+
B = np.random.random((2, 6))
|
2048 |
+
C = np.random.random((6, 2))
|
2049 |
+
D = np.random.random((2, 1))
|
2050 |
+
out = np.zeros((6, 1))
|
2051 |
+
ret = multi_dot([A, B, C, D], out=out)
|
2052 |
+
assert out is ret
|
2053 |
+
assert_almost_equal(out, A.dot(B).dot(C).dot(D))
|
2054 |
+
|
2055 |
+
def test_dynamic_programming_logic(self):
|
2056 |
+
# Test for the dynamic programming part
|
2057 |
+
# This test is directly taken from Cormen page 376.
|
2058 |
+
arrays = [np.random.random((30, 35)),
|
2059 |
+
np.random.random((35, 15)),
|
2060 |
+
np.random.random((15, 5)),
|
2061 |
+
np.random.random((5, 10)),
|
2062 |
+
np.random.random((10, 20)),
|
2063 |
+
np.random.random((20, 25))]
|
2064 |
+
m_expected = np.array([[0., 15750., 7875., 9375., 11875., 15125.],
|
2065 |
+
[0., 0., 2625., 4375., 7125., 10500.],
|
2066 |
+
[0., 0., 0., 750., 2500., 5375.],
|
2067 |
+
[0., 0., 0., 0., 1000., 3500.],
|
2068 |
+
[0., 0., 0., 0., 0., 5000.],
|
2069 |
+
[0., 0., 0., 0., 0., 0.]])
|
2070 |
+
s_expected = np.array([[0, 1, 1, 3, 3, 3],
|
2071 |
+
[0, 0, 2, 3, 3, 3],
|
2072 |
+
[0, 0, 0, 3, 3, 3],
|
2073 |
+
[0, 0, 0, 0, 4, 5],
|
2074 |
+
[0, 0, 0, 0, 0, 5],
|
2075 |
+
[0, 0, 0, 0, 0, 0]], dtype=int)
|
2076 |
+
s_expected -= 1 # Cormen uses 1-based index, python does not.
|
2077 |
+
|
2078 |
+
s, m = _multi_dot_matrix_chain_order(arrays, return_costs=True)
|
2079 |
+
|
2080 |
+
# Only the upper triangular part (without the diagonal) is interesting.
|
2081 |
+
assert_almost_equal(np.triu(s[:-1, 1:]),
|
2082 |
+
np.triu(s_expected[:-1, 1:]))
|
2083 |
+
assert_almost_equal(np.triu(m), np.triu(m_expected))
|
2084 |
+
|
2085 |
+
def test_too_few_input_arrays(self):
|
2086 |
+
assert_raises(ValueError, multi_dot, [])
|
2087 |
+
assert_raises(ValueError, multi_dot, [np.random.random((3, 3))])
|
2088 |
+
|
2089 |
+
|
2090 |
+
class TestTensorinv:
|
2091 |
+
|
2092 |
+
@pytest.mark.parametrize("arr, ind", [
|
2093 |
+
(np.ones((4, 6, 8, 2)), 2),
|
2094 |
+
(np.ones((3, 3, 2)), 1),
|
2095 |
+
])
|
2096 |
+
def test_non_square_handling(self, arr, ind):
|
2097 |
+
with assert_raises(LinAlgError):
|
2098 |
+
linalg.tensorinv(arr, ind=ind)
|
2099 |
+
|
2100 |
+
@pytest.mark.parametrize("shape, ind", [
|
2101 |
+
# examples from docstring
|
2102 |
+
((4, 6, 8, 3), 2),
|
2103 |
+
((24, 8, 3), 1),
|
2104 |
+
])
|
2105 |
+
def test_tensorinv_shape(self, shape, ind):
|
2106 |
+
a = np.eye(24)
|
2107 |
+
a.shape = shape
|
2108 |
+
ainv = linalg.tensorinv(a=a, ind=ind)
|
2109 |
+
expected = a.shape[ind:] + a.shape[:ind]
|
2110 |
+
actual = ainv.shape
|
2111 |
+
assert_equal(actual, expected)
|
2112 |
+
|
2113 |
+
@pytest.mark.parametrize("ind", [
|
2114 |
+
0, -2,
|
2115 |
+
])
|
2116 |
+
def test_tensorinv_ind_limit(self, ind):
|
2117 |
+
a = np.eye(24)
|
2118 |
+
a.shape = (4, 6, 8, 3)
|
2119 |
+
with assert_raises(ValueError):
|
2120 |
+
linalg.tensorinv(a=a, ind=ind)
|
2121 |
+
|
2122 |
+
def test_tensorinv_result(self):
|
2123 |
+
# mimic a docstring example
|
2124 |
+
a = np.eye(24)
|
2125 |
+
a.shape = (24, 8, 3)
|
2126 |
+
ainv = linalg.tensorinv(a, ind=1)
|
2127 |
+
b = np.ones(24)
|
2128 |
+
assert_allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
|
2129 |
+
|
2130 |
+
|
2131 |
+
class TestTensorsolve:
|
2132 |
+
|
2133 |
+
@pytest.mark.parametrize("a, axes", [
|
2134 |
+
(np.ones((4, 6, 8, 2)), None),
|
2135 |
+
(np.ones((3, 3, 2)), (0, 2)),
|
2136 |
+
])
|
2137 |
+
def test_non_square_handling(self, a, axes):
|
2138 |
+
with assert_raises(LinAlgError):
|
2139 |
+
b = np.ones(a.shape[:2])
|
2140 |
+
linalg.tensorsolve(a, b, axes=axes)
|
2141 |
+
|
2142 |
+
@pytest.mark.parametrize("shape",
|
2143 |
+
[(2, 3, 6), (3, 4, 4, 3), (0, 3, 3, 0)],
|
2144 |
+
)
|
2145 |
+
def test_tensorsolve_result(self, shape):
|
2146 |
+
a = np.random.randn(*shape)
|
2147 |
+
b = np.ones(a.shape[:2])
|
2148 |
+
x = np.linalg.tensorsolve(a, b)
|
2149 |
+
assert_allclose(np.tensordot(a, x, axes=len(x.shape)), b)
|
2150 |
+
|
2151 |
+
|
2152 |
+
def test_unsupported_commontype():
|
2153 |
+
# linalg gracefully handles unsupported type
|
2154 |
+
arr = np.array([[1, -2], [2, 5]], dtype='float16')
|
2155 |
+
with assert_raises_regex(TypeError, "unsupported in linalg"):
|
2156 |
+
linalg.cholesky(arr)
|
2157 |
+
|
2158 |
+
|
2159 |
+
#@pytest.mark.slow
|
2160 |
+
#@pytest.mark.xfail(not HAS_LAPACK64, run=False,
|
2161 |
+
# reason="Numpy not compiled with 64-bit BLAS/LAPACK")
|
2162 |
+
#@requires_memory(free_bytes=16e9)
|
2163 |
+
@pytest.mark.skip(reason="Bad memory reports lead to OOM in ci testing")
|
2164 |
+
def test_blas64_dot():
|
2165 |
+
n = 2**32
|
2166 |
+
a = np.zeros([1, n], dtype=np.float32)
|
2167 |
+
b = np.ones([1, 1], dtype=np.float32)
|
2168 |
+
a[0,-1] = 1
|
2169 |
+
c = np.dot(b, a)
|
2170 |
+
assert_equal(c[0,-1], 1)
|
2171 |
+
|
2172 |
+
|
2173 |
+
@pytest.mark.xfail(not HAS_LAPACK64,
|
2174 |
+
reason="Numpy not compiled with 64-bit BLAS/LAPACK")
|
2175 |
+
def test_blas64_geqrf_lwork_smoketest():
|
2176 |
+
# Smoke test LAPACK geqrf lwork call with 64-bit integers
|
2177 |
+
dtype = np.float64
|
2178 |
+
lapack_routine = np.linalg.lapack_lite.dgeqrf
|
2179 |
+
|
2180 |
+
m = 2**32 + 1
|
2181 |
+
n = 2**32 + 1
|
2182 |
+
lda = m
|
2183 |
+
|
2184 |
+
# Dummy arrays, not referenced by the lapack routine, so don't
|
2185 |
+
# need to be of the right size
|
2186 |
+
a = np.zeros([1, 1], dtype=dtype)
|
2187 |
+
work = np.zeros([1], dtype=dtype)
|
2188 |
+
tau = np.zeros([1], dtype=dtype)
|
2189 |
+
|
2190 |
+
# Size query
|
2191 |
+
results = lapack_routine(m, n, a, lda, tau, work, -1, 0)
|
2192 |
+
assert_equal(results['info'], 0)
|
2193 |
+
assert_equal(results['m'], m)
|
2194 |
+
assert_equal(results['n'], m)
|
2195 |
+
|
2196 |
+
# Should result to an integer of a reasonable size
|
2197 |
+
lwork = int(work.item())
|
2198 |
+
assert_(2**32 < lwork < 2**42)
|
env-llmeval/lib/python3.10/site-packages/numpy/linalg/tests/test_regression.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Test functions for linalg module
|
2 |
+
"""
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from numpy import linalg, arange, float64, array, dot, transpose
|
7 |
+
from numpy.testing import (
|
8 |
+
assert_, assert_raises, assert_equal, assert_array_equal,
|
9 |
+
assert_array_almost_equal, assert_array_less
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
class TestRegression:
|
14 |
+
|
15 |
+
def test_eig_build(self):
|
16 |
+
# Ticket #652
|
17 |
+
rva = array([1.03221168e+02 + 0.j,
|
18 |
+
-1.91843603e+01 + 0.j,
|
19 |
+
-6.04004526e-01 + 15.84422474j,
|
20 |
+
-6.04004526e-01 - 15.84422474j,
|
21 |
+
-1.13692929e+01 + 0.j,
|
22 |
+
-6.57612485e-01 + 10.41755503j,
|
23 |
+
-6.57612485e-01 - 10.41755503j,
|
24 |
+
1.82126812e+01 + 0.j,
|
25 |
+
1.06011014e+01 + 0.j,
|
26 |
+
7.80732773e+00 + 0.j,
|
27 |
+
-7.65390898e-01 + 0.j,
|
28 |
+
1.51971555e-15 + 0.j,
|
29 |
+
-1.51308713e-15 + 0.j])
|
30 |
+
a = arange(13 * 13, dtype=float64)
|
31 |
+
a.shape = (13, 13)
|
32 |
+
a = a % 17
|
33 |
+
va, ve = linalg.eig(a)
|
34 |
+
va.sort()
|
35 |
+
rva.sort()
|
36 |
+
assert_array_almost_equal(va, rva)
|
37 |
+
|
38 |
+
def test_eigh_build(self):
|
39 |
+
# Ticket 662.
|
40 |
+
rvals = [68.60568999, 89.57756725, 106.67185574]
|
41 |
+
|
42 |
+
cov = array([[77.70273908, 3.51489954, 15.64602427],
|
43 |
+
[3.51489954, 88.97013878, -1.07431931],
|
44 |
+
[15.64602427, -1.07431931, 98.18223512]])
|
45 |
+
|
46 |
+
vals, vecs = linalg.eigh(cov)
|
47 |
+
assert_array_almost_equal(vals, rvals)
|
48 |
+
|
49 |
+
def test_svd_build(self):
|
50 |
+
# Ticket 627.
|
51 |
+
a = array([[0., 1.], [1., 1.], [2., 1.], [3., 1.]])
|
52 |
+
m, n = a.shape
|
53 |
+
u, s, vh = linalg.svd(a)
|
54 |
+
|
55 |
+
b = dot(transpose(u[:, n:]), a)
|
56 |
+
|
57 |
+
assert_array_almost_equal(b, np.zeros((2, 2)))
|
58 |
+
|
59 |
+
def test_norm_vector_badarg(self):
|
60 |
+
# Regression for #786: Frobenius norm for vectors raises
|
61 |
+
# ValueError.
|
62 |
+
assert_raises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro')
|
63 |
+
|
64 |
+
def test_lapack_endian(self):
|
65 |
+
# For bug #1482
|
66 |
+
a = array([[5.7998084, -2.1825367],
|
67 |
+
[-2.1825367, 9.85910595]], dtype='>f8')
|
68 |
+
b = array(a, dtype='<f8')
|
69 |
+
|
70 |
+
ap = linalg.cholesky(a)
|
71 |
+
bp = linalg.cholesky(b)
|
72 |
+
assert_array_equal(ap, bp)
|
73 |
+
|
74 |
+
def test_large_svd_32bit(self):
|
75 |
+
# See gh-4442, 64bit would require very large/slow matrices.
|
76 |
+
x = np.eye(1000, 66)
|
77 |
+
np.linalg.svd(x)
|
78 |
+
|
79 |
+
def test_svd_no_uv(self):
|
80 |
+
# gh-4733
|
81 |
+
for shape in (3, 4), (4, 4), (4, 3):
|
82 |
+
for t in float, complex:
|
83 |
+
a = np.ones(shape, dtype=t)
|
84 |
+
w = linalg.svd(a, compute_uv=False)
|
85 |
+
c = np.count_nonzero(np.absolute(w) > 0.5)
|
86 |
+
assert_equal(c, 1)
|
87 |
+
assert_equal(np.linalg.matrix_rank(a), 1)
|
88 |
+
assert_array_less(1, np.linalg.norm(a, ord=2))
|
89 |
+
|
90 |
+
def test_norm_object_array(self):
|
91 |
+
# gh-7575
|
92 |
+
testvector = np.array([np.array([0, 1]), 0, 0], dtype=object)
|
93 |
+
|
94 |
+
norm = linalg.norm(testvector)
|
95 |
+
assert_array_equal(norm, [0, 1])
|
96 |
+
assert_(norm.dtype == np.dtype('float64'))
|
97 |
+
|
98 |
+
norm = linalg.norm(testvector, ord=1)
|
99 |
+
assert_array_equal(norm, [0, 1])
|
100 |
+
assert_(norm.dtype != np.dtype('float64'))
|
101 |
+
|
102 |
+
norm = linalg.norm(testvector, ord=2)
|
103 |
+
assert_array_equal(norm, [0, 1])
|
104 |
+
assert_(norm.dtype == np.dtype('float64'))
|
105 |
+
|
106 |
+
assert_raises(ValueError, linalg.norm, testvector, ord='fro')
|
107 |
+
assert_raises(ValueError, linalg.norm, testvector, ord='nuc')
|
108 |
+
assert_raises(ValueError, linalg.norm, testvector, ord=np.inf)
|
109 |
+
assert_raises(ValueError, linalg.norm, testvector, ord=-np.inf)
|
110 |
+
assert_raises(ValueError, linalg.norm, testvector, ord=0)
|
111 |
+
assert_raises(ValueError, linalg.norm, testvector, ord=-1)
|
112 |
+
assert_raises(ValueError, linalg.norm, testvector, ord=-2)
|
113 |
+
|
114 |
+
testmatrix = np.array([[np.array([0, 1]), 0, 0],
|
115 |
+
[0, 0, 0]], dtype=object)
|
116 |
+
|
117 |
+
norm = linalg.norm(testmatrix)
|
118 |
+
assert_array_equal(norm, [0, 1])
|
119 |
+
assert_(norm.dtype == np.dtype('float64'))
|
120 |
+
|
121 |
+
norm = linalg.norm(testmatrix, ord='fro')
|
122 |
+
assert_array_equal(norm, [0, 1])
|
123 |
+
assert_(norm.dtype == np.dtype('float64'))
|
124 |
+
|
125 |
+
assert_raises(TypeError, linalg.norm, testmatrix, ord='nuc')
|
126 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=np.inf)
|
127 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=-np.inf)
|
128 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=0)
|
129 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=1)
|
130 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=-1)
|
131 |
+
assert_raises(TypeError, linalg.norm, testmatrix, ord=2)
|
132 |
+
assert_raises(TypeError, linalg.norm, testmatrix, ord=-2)
|
133 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=3)
|
134 |
+
|
135 |
+
def test_lstsq_complex_larger_rhs(self):
|
136 |
+
# gh-9891
|
137 |
+
size = 20
|
138 |
+
n_rhs = 70
|
139 |
+
G = np.random.randn(size, size) + 1j * np.random.randn(size, size)
|
140 |
+
u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs)
|
141 |
+
b = G.dot(u)
|
142 |
+
# This should work without segmentation fault.
|
143 |
+
u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None)
|
144 |
+
# check results just in case
|
145 |
+
assert_array_almost_equal(u_lstsq, u)
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/__init__.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A sub-package for efficiently dealing with polynomials.
|
3 |
+
|
4 |
+
Within the documentation for this sub-package, a "finite power series,"
|
5 |
+
i.e., a polynomial (also referred to simply as a "series") is represented
|
6 |
+
by a 1-D numpy array of the polynomial's coefficients, ordered from lowest
|
7 |
+
order term to highest. For example, array([1,2,3]) represents
|
8 |
+
``P_0 + 2*P_1 + 3*P_2``, where P_n is the n-th order basis polynomial
|
9 |
+
applicable to the specific module in question, e.g., `polynomial` (which
|
10 |
+
"wraps" the "standard" basis) or `chebyshev`. For optimal performance,
|
11 |
+
all operations on polynomials, including evaluation at an argument, are
|
12 |
+
implemented as operations on the coefficients. Additional (module-specific)
|
13 |
+
information can be found in the docstring for the module of interest.
|
14 |
+
|
15 |
+
This package provides *convenience classes* for each of six different kinds
|
16 |
+
of polynomials:
|
17 |
+
|
18 |
+
======================== ================
|
19 |
+
**Name** **Provides**
|
20 |
+
======================== ================
|
21 |
+
`~polynomial.Polynomial` Power series
|
22 |
+
`~chebyshev.Chebyshev` Chebyshev series
|
23 |
+
`~legendre.Legendre` Legendre series
|
24 |
+
`~laguerre.Laguerre` Laguerre series
|
25 |
+
`~hermite.Hermite` Hermite series
|
26 |
+
`~hermite_e.HermiteE` HermiteE series
|
27 |
+
======================== ================
|
28 |
+
|
29 |
+
These *convenience classes* provide a consistent interface for creating,
|
30 |
+
manipulating, and fitting data with polynomials of different bases.
|
31 |
+
The convenience classes are the preferred interface for the `~numpy.polynomial`
|
32 |
+
package, and are available from the ``numpy.polynomial`` namespace.
|
33 |
+
This eliminates the need to navigate to the corresponding submodules, e.g.
|
34 |
+
``np.polynomial.Polynomial`` or ``np.polynomial.Chebyshev`` instead of
|
35 |
+
``np.polynomial.polynomial.Polynomial`` or
|
36 |
+
``np.polynomial.chebyshev.Chebyshev``, respectively.
|
37 |
+
The classes provide a more consistent and concise interface than the
|
38 |
+
type-specific functions defined in the submodules for each type of polynomial.
|
39 |
+
For example, to fit a Chebyshev polynomial with degree ``1`` to data given
|
40 |
+
by arrays ``xdata`` and ``ydata``, the
|
41 |
+
`~chebyshev.Chebyshev.fit` class method::
|
42 |
+
|
43 |
+
>>> from numpy.polynomial import Chebyshev
|
44 |
+
>>> c = Chebyshev.fit(xdata, ydata, deg=1)
|
45 |
+
|
46 |
+
is preferred over the `chebyshev.chebfit` function from the
|
47 |
+
``np.polynomial.chebyshev`` module::
|
48 |
+
|
49 |
+
>>> from numpy.polynomial.chebyshev import chebfit
|
50 |
+
>>> c = chebfit(xdata, ydata, deg=1)
|
51 |
+
|
52 |
+
See :doc:`routines.polynomials.classes` for more details.
|
53 |
+
|
54 |
+
Convenience Classes
|
55 |
+
===================
|
56 |
+
|
57 |
+
The following lists the various constants and methods common to all of
|
58 |
+
the classes representing the various kinds of polynomials. In the following,
|
59 |
+
the term ``Poly`` represents any one of the convenience classes (e.g.
|
60 |
+
`~polynomial.Polynomial`, `~chebyshev.Chebyshev`, `~hermite.Hermite`, etc.)
|
61 |
+
while the lowercase ``p`` represents an **instance** of a polynomial class.
|
62 |
+
|
63 |
+
Constants
|
64 |
+
---------
|
65 |
+
|
66 |
+
- ``Poly.domain`` -- Default domain
|
67 |
+
- ``Poly.window`` -- Default window
|
68 |
+
- ``Poly.basis_name`` -- String used to represent the basis
|
69 |
+
- ``Poly.maxpower`` -- Maximum value ``n`` such that ``p**n`` is allowed
|
70 |
+
- ``Poly.nickname`` -- String used in printing
|
71 |
+
|
72 |
+
Creation
|
73 |
+
--------
|
74 |
+
|
75 |
+
Methods for creating polynomial instances.
|
76 |
+
|
77 |
+
- ``Poly.basis(degree)`` -- Basis polynomial of given degree
|
78 |
+
- ``Poly.identity()`` -- ``p`` where ``p(x) = x`` for all ``x``
|
79 |
+
- ``Poly.fit(x, y, deg)`` -- ``p`` of degree ``deg`` with coefficients
|
80 |
+
determined by the least-squares fit to the data ``x``, ``y``
|
81 |
+
- ``Poly.fromroots(roots)`` -- ``p`` with specified roots
|
82 |
+
- ``p.copy()`` -- Create a copy of ``p``
|
83 |
+
|
84 |
+
Conversion
|
85 |
+
----------
|
86 |
+
|
87 |
+
Methods for converting a polynomial instance of one kind to another.
|
88 |
+
|
89 |
+
- ``p.cast(Poly)`` -- Convert ``p`` to instance of kind ``Poly``
|
90 |
+
- ``p.convert(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` or map
|
91 |
+
between ``domain`` and ``window``
|
92 |
+
|
93 |
+
Calculus
|
94 |
+
--------
|
95 |
+
- ``p.deriv()`` -- Take the derivative of ``p``
|
96 |
+
- ``p.integ()`` -- Integrate ``p``
|
97 |
+
|
98 |
+
Validation
|
99 |
+
----------
|
100 |
+
- ``Poly.has_samecoef(p1, p2)`` -- Check if coefficients match
|
101 |
+
- ``Poly.has_samedomain(p1, p2)`` -- Check if domains match
|
102 |
+
- ``Poly.has_sametype(p1, p2)`` -- Check if types match
|
103 |
+
- ``Poly.has_samewindow(p1, p2)`` -- Check if windows match
|
104 |
+
|
105 |
+
Misc
|
106 |
+
----
|
107 |
+
- ``p.linspace()`` -- Return ``x, p(x)`` at equally-spaced points in ``domain``
|
108 |
+
- ``p.mapparms()`` -- Return the parameters for the linear mapping between
|
109 |
+
``domain`` and ``window``.
|
110 |
+
- ``p.roots()`` -- Return the roots of `p`.
|
111 |
+
- ``p.trim()`` -- Remove trailing coefficients.
|
112 |
+
- ``p.cutdeg(degree)`` -- Truncate p to given degree
|
113 |
+
- ``p.truncate(size)`` -- Truncate p to given size
|
114 |
+
|
115 |
+
"""
|
116 |
+
from .polynomial import Polynomial
|
117 |
+
from .chebyshev import Chebyshev
|
118 |
+
from .legendre import Legendre
|
119 |
+
from .hermite import Hermite
|
120 |
+
from .hermite_e import HermiteE
|
121 |
+
from .laguerre import Laguerre
|
122 |
+
|
123 |
+
__all__ = [
|
124 |
+
"set_default_printstyle",
|
125 |
+
"polynomial", "Polynomial",
|
126 |
+
"chebyshev", "Chebyshev",
|
127 |
+
"legendre", "Legendre",
|
128 |
+
"hermite", "Hermite",
|
129 |
+
"hermite_e", "HermiteE",
|
130 |
+
"laguerre", "Laguerre",
|
131 |
+
]
|
132 |
+
|
133 |
+
|
134 |
+
def set_default_printstyle(style):
|
135 |
+
"""
|
136 |
+
Set the default format for the string representation of polynomials.
|
137 |
+
|
138 |
+
Values for ``style`` must be valid inputs to ``__format__``, i.e. 'ascii'
|
139 |
+
or 'unicode'.
|
140 |
+
|
141 |
+
Parameters
|
142 |
+
----------
|
143 |
+
style : str
|
144 |
+
Format string for default printing style. Must be either 'ascii' or
|
145 |
+
'unicode'.
|
146 |
+
|
147 |
+
Notes
|
148 |
+
-----
|
149 |
+
The default format depends on the platform: 'unicode' is used on
|
150 |
+
Unix-based systems and 'ascii' on Windows. This determination is based on
|
151 |
+
default font support for the unicode superscript and subscript ranges.
|
152 |
+
|
153 |
+
Examples
|
154 |
+
--------
|
155 |
+
>>> p = np.polynomial.Polynomial([1, 2, 3])
|
156 |
+
>>> c = np.polynomial.Chebyshev([1, 2, 3])
|
157 |
+
>>> np.polynomial.set_default_printstyle('unicode')
|
158 |
+
>>> print(p)
|
159 |
+
1.0 + 2.0·x + 3.0·x²
|
160 |
+
>>> print(c)
|
161 |
+
1.0 + 2.0·T₁(x) + 3.0·T₂(x)
|
162 |
+
>>> np.polynomial.set_default_printstyle('ascii')
|
163 |
+
>>> print(p)
|
164 |
+
1.0 + 2.0 x + 3.0 x**2
|
165 |
+
>>> print(c)
|
166 |
+
1.0 + 2.0 T_1(x) + 3.0 T_2(x)
|
167 |
+
>>> # Formatting supersedes all class/package-level defaults
|
168 |
+
>>> print(f"{p:unicode}")
|
169 |
+
1.0 + 2.0·x + 3.0·x²
|
170 |
+
"""
|
171 |
+
if style not in ('unicode', 'ascii'):
|
172 |
+
raise ValueError(
|
173 |
+
f"Unsupported format string '{style}'. Valid options are 'ascii' "
|
174 |
+
f"and 'unicode'"
|
175 |
+
)
|
176 |
+
_use_unicode = True
|
177 |
+
if style == 'ascii':
|
178 |
+
_use_unicode = False
|
179 |
+
from ._polybase import ABCPolyBase
|
180 |
+
ABCPolyBase._use_unicode = _use_unicode
|
181 |
+
|
182 |
+
|
183 |
+
from numpy._pytesttester import PytestTester
|
184 |
+
test = PytestTester(__name__)
|
185 |
+
del PytestTester
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/_polybase.py
ADDED
@@ -0,0 +1,1206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Abstract base class for the various polynomial Classes.
|
3 |
+
|
4 |
+
The ABCPolyBase class provides the methods needed to implement the common API
|
5 |
+
for the various polynomial classes. It operates as a mixin, but uses the
|
6 |
+
abc module from the stdlib, hence it is only available for Python >= 2.6.
|
7 |
+
|
8 |
+
"""
|
9 |
+
import os
|
10 |
+
import abc
|
11 |
+
import numbers
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
from . import polyutils as pu
|
15 |
+
|
16 |
+
__all__ = ['ABCPolyBase']
|
17 |
+
|
18 |
+
class ABCPolyBase(abc.ABC):
|
19 |
+
"""An abstract base class for immutable series classes.
|
20 |
+
|
21 |
+
ABCPolyBase provides the standard Python numerical methods
|
22 |
+
'+', '-', '*', '//', '%', 'divmod', '**', and '()' along with the
|
23 |
+
methods listed below.
|
24 |
+
|
25 |
+
.. versionadded:: 1.9.0
|
26 |
+
|
27 |
+
Parameters
|
28 |
+
----------
|
29 |
+
coef : array_like
|
30 |
+
Series coefficients in order of increasing degree, i.e.,
|
31 |
+
``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``, where
|
32 |
+
``P_i`` is the basis polynomials of degree ``i``.
|
33 |
+
domain : (2,) array_like, optional
|
34 |
+
Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
|
35 |
+
to the interval ``[window[0], window[1]]`` by shifting and scaling.
|
36 |
+
The default value is the derived class domain.
|
37 |
+
window : (2,) array_like, optional
|
38 |
+
Window, see domain for its use. The default value is the
|
39 |
+
derived class window.
|
40 |
+
symbol : str, optional
|
41 |
+
Symbol used to represent the independent variable in string
|
42 |
+
representations of the polynomial expression, e.g. for printing.
|
43 |
+
The symbol must be a valid Python identifier. Default value is 'x'.
|
44 |
+
|
45 |
+
.. versionadded:: 1.24
|
46 |
+
|
47 |
+
Attributes
|
48 |
+
----------
|
49 |
+
coef : (N,) ndarray
|
50 |
+
Series coefficients in order of increasing degree.
|
51 |
+
domain : (2,) ndarray
|
52 |
+
Domain that is mapped to window.
|
53 |
+
window : (2,) ndarray
|
54 |
+
Window that domain is mapped to.
|
55 |
+
symbol : str
|
56 |
+
Symbol representing the independent variable.
|
57 |
+
|
58 |
+
Class Attributes
|
59 |
+
----------------
|
60 |
+
maxpower : int
|
61 |
+
Maximum power allowed, i.e., the largest number ``n`` such that
|
62 |
+
``p(x)**n`` is allowed. This is to limit runaway polynomial size.
|
63 |
+
domain : (2,) ndarray
|
64 |
+
Default domain of the class.
|
65 |
+
window : (2,) ndarray
|
66 |
+
Default window of the class.
|
67 |
+
|
68 |
+
"""
|
69 |
+
|
70 |
+
# Not hashable
|
71 |
+
__hash__ = None
|
72 |
+
|
73 |
+
# Opt out of numpy ufuncs and Python ops with ndarray subclasses.
|
74 |
+
__array_ufunc__ = None
|
75 |
+
|
76 |
+
# Limit runaway size. T_n^m has degree n*m
|
77 |
+
maxpower = 100
|
78 |
+
|
79 |
+
# Unicode character mappings for improved __str__
|
80 |
+
_superscript_mapping = str.maketrans({
|
81 |
+
"0": "⁰",
|
82 |
+
"1": "¹",
|
83 |
+
"2": "²",
|
84 |
+
"3": "³",
|
85 |
+
"4": "⁴",
|
86 |
+
"5": "⁵",
|
87 |
+
"6": "⁶",
|
88 |
+
"7": "⁷",
|
89 |
+
"8": "⁸",
|
90 |
+
"9": "⁹"
|
91 |
+
})
|
92 |
+
_subscript_mapping = str.maketrans({
|
93 |
+
"0": "₀",
|
94 |
+
"1": "₁",
|
95 |
+
"2": "₂",
|
96 |
+
"3": "₃",
|
97 |
+
"4": "₄",
|
98 |
+
"5": "₅",
|
99 |
+
"6": "₆",
|
100 |
+
"7": "₇",
|
101 |
+
"8": "₈",
|
102 |
+
"9": "₉"
|
103 |
+
})
|
104 |
+
# Some fonts don't support full unicode character ranges necessary for
|
105 |
+
# the full set of superscripts and subscripts, including common/default
|
106 |
+
# fonts in Windows shells/terminals. Therefore, default to ascii-only
|
107 |
+
# printing on windows.
|
108 |
+
_use_unicode = not os.name == 'nt'
|
109 |
+
|
110 |
+
@property
|
111 |
+
def symbol(self):
|
112 |
+
return self._symbol
|
113 |
+
|
114 |
+
@property
|
115 |
+
@abc.abstractmethod
|
116 |
+
def domain(self):
|
117 |
+
pass
|
118 |
+
|
119 |
+
@property
|
120 |
+
@abc.abstractmethod
|
121 |
+
def window(self):
|
122 |
+
pass
|
123 |
+
|
124 |
+
@property
|
125 |
+
@abc.abstractmethod
|
126 |
+
def basis_name(self):
|
127 |
+
pass
|
128 |
+
|
129 |
+
@staticmethod
|
130 |
+
@abc.abstractmethod
|
131 |
+
def _add(c1, c2):
|
132 |
+
pass
|
133 |
+
|
134 |
+
@staticmethod
|
135 |
+
@abc.abstractmethod
|
136 |
+
def _sub(c1, c2):
|
137 |
+
pass
|
138 |
+
|
139 |
+
@staticmethod
|
140 |
+
@abc.abstractmethod
|
141 |
+
def _mul(c1, c2):
|
142 |
+
pass
|
143 |
+
|
144 |
+
@staticmethod
|
145 |
+
@abc.abstractmethod
|
146 |
+
def _div(c1, c2):
|
147 |
+
pass
|
148 |
+
|
149 |
+
@staticmethod
|
150 |
+
@abc.abstractmethod
|
151 |
+
def _pow(c, pow, maxpower=None):
|
152 |
+
pass
|
153 |
+
|
154 |
+
@staticmethod
|
155 |
+
@abc.abstractmethod
|
156 |
+
def _val(x, c):
|
157 |
+
pass
|
158 |
+
|
159 |
+
@staticmethod
|
160 |
+
@abc.abstractmethod
|
161 |
+
def _int(c, m, k, lbnd, scl):
|
162 |
+
pass
|
163 |
+
|
164 |
+
@staticmethod
|
165 |
+
@abc.abstractmethod
|
166 |
+
def _der(c, m, scl):
|
167 |
+
pass
|
168 |
+
|
169 |
+
@staticmethod
|
170 |
+
@abc.abstractmethod
|
171 |
+
def _fit(x, y, deg, rcond, full):
|
172 |
+
pass
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
@abc.abstractmethod
|
176 |
+
def _line(off, scl):
|
177 |
+
pass
|
178 |
+
|
179 |
+
@staticmethod
|
180 |
+
@abc.abstractmethod
|
181 |
+
def _roots(c):
|
182 |
+
pass
|
183 |
+
|
184 |
+
@staticmethod
|
185 |
+
@abc.abstractmethod
|
186 |
+
def _fromroots(r):
|
187 |
+
pass
|
188 |
+
|
189 |
+
def has_samecoef(self, other):
|
190 |
+
"""Check if coefficients match.
|
191 |
+
|
192 |
+
.. versionadded:: 1.6.0
|
193 |
+
|
194 |
+
Parameters
|
195 |
+
----------
|
196 |
+
other : class instance
|
197 |
+
The other class must have the ``coef`` attribute.
|
198 |
+
|
199 |
+
Returns
|
200 |
+
-------
|
201 |
+
bool : boolean
|
202 |
+
True if the coefficients are the same, False otherwise.
|
203 |
+
|
204 |
+
"""
|
205 |
+
if len(self.coef) != len(other.coef):
|
206 |
+
return False
|
207 |
+
elif not np.all(self.coef == other.coef):
|
208 |
+
return False
|
209 |
+
else:
|
210 |
+
return True
|
211 |
+
|
212 |
+
def has_samedomain(self, other):
|
213 |
+
"""Check if domains match.
|
214 |
+
|
215 |
+
.. versionadded:: 1.6.0
|
216 |
+
|
217 |
+
Parameters
|
218 |
+
----------
|
219 |
+
other : class instance
|
220 |
+
The other class must have the ``domain`` attribute.
|
221 |
+
|
222 |
+
Returns
|
223 |
+
-------
|
224 |
+
bool : boolean
|
225 |
+
True if the domains are the same, False otherwise.
|
226 |
+
|
227 |
+
"""
|
228 |
+
return np.all(self.domain == other.domain)
|
229 |
+
|
230 |
+
def has_samewindow(self, other):
|
231 |
+
"""Check if windows match.
|
232 |
+
|
233 |
+
.. versionadded:: 1.6.0
|
234 |
+
|
235 |
+
Parameters
|
236 |
+
----------
|
237 |
+
other : class instance
|
238 |
+
The other class must have the ``window`` attribute.
|
239 |
+
|
240 |
+
Returns
|
241 |
+
-------
|
242 |
+
bool : boolean
|
243 |
+
True if the windows are the same, False otherwise.
|
244 |
+
|
245 |
+
"""
|
246 |
+
return np.all(self.window == other.window)
|
247 |
+
|
248 |
+
def has_sametype(self, other):
|
249 |
+
"""Check if types match.
|
250 |
+
|
251 |
+
.. versionadded:: 1.7.0
|
252 |
+
|
253 |
+
Parameters
|
254 |
+
----------
|
255 |
+
other : object
|
256 |
+
Class instance.
|
257 |
+
|
258 |
+
Returns
|
259 |
+
-------
|
260 |
+
bool : boolean
|
261 |
+
True if other is same class as self
|
262 |
+
|
263 |
+
"""
|
264 |
+
return isinstance(other, self.__class__)
|
265 |
+
|
266 |
+
def _get_coefficients(self, other):
|
267 |
+
"""Interpret other as polynomial coefficients.
|
268 |
+
|
269 |
+
The `other` argument is checked to see if it is of the same
|
270 |
+
class as self with identical domain and window. If so,
|
271 |
+
return its coefficients, otherwise return `other`.
|
272 |
+
|
273 |
+
.. versionadded:: 1.9.0
|
274 |
+
|
275 |
+
Parameters
|
276 |
+
----------
|
277 |
+
other : anything
|
278 |
+
Object to be checked.
|
279 |
+
|
280 |
+
Returns
|
281 |
+
-------
|
282 |
+
coef
|
283 |
+
The coefficients of`other` if it is a compatible instance,
|
284 |
+
of ABCPolyBase, otherwise `other`.
|
285 |
+
|
286 |
+
Raises
|
287 |
+
------
|
288 |
+
TypeError
|
289 |
+
When `other` is an incompatible instance of ABCPolyBase.
|
290 |
+
|
291 |
+
"""
|
292 |
+
if isinstance(other, ABCPolyBase):
|
293 |
+
if not isinstance(other, self.__class__):
|
294 |
+
raise TypeError("Polynomial types differ")
|
295 |
+
elif not np.all(self.domain == other.domain):
|
296 |
+
raise TypeError("Domains differ")
|
297 |
+
elif not np.all(self.window == other.window):
|
298 |
+
raise TypeError("Windows differ")
|
299 |
+
elif self.symbol != other.symbol:
|
300 |
+
raise ValueError("Polynomial symbols differ")
|
301 |
+
return other.coef
|
302 |
+
return other
|
303 |
+
|
304 |
+
def __init__(self, coef, domain=None, window=None, symbol='x'):
|
305 |
+
[coef] = pu.as_series([coef], trim=False)
|
306 |
+
self.coef = coef
|
307 |
+
|
308 |
+
if domain is not None:
|
309 |
+
[domain] = pu.as_series([domain], trim=False)
|
310 |
+
if len(domain) != 2:
|
311 |
+
raise ValueError("Domain has wrong number of elements.")
|
312 |
+
self.domain = domain
|
313 |
+
|
314 |
+
if window is not None:
|
315 |
+
[window] = pu.as_series([window], trim=False)
|
316 |
+
if len(window) != 2:
|
317 |
+
raise ValueError("Window has wrong number of elements.")
|
318 |
+
self.window = window
|
319 |
+
|
320 |
+
# Validation for symbol
|
321 |
+
try:
|
322 |
+
if not symbol.isidentifier():
|
323 |
+
raise ValueError(
|
324 |
+
"Symbol string must be a valid Python identifier"
|
325 |
+
)
|
326 |
+
# If a user passes in something other than a string, the above
|
327 |
+
# results in an AttributeError. Catch this and raise a more
|
328 |
+
# informative exception
|
329 |
+
except AttributeError:
|
330 |
+
raise TypeError("Symbol must be a non-empty string")
|
331 |
+
|
332 |
+
self._symbol = symbol
|
333 |
+
|
334 |
+
def __repr__(self):
|
335 |
+
coef = repr(self.coef)[6:-1]
|
336 |
+
domain = repr(self.domain)[6:-1]
|
337 |
+
window = repr(self.window)[6:-1]
|
338 |
+
name = self.__class__.__name__
|
339 |
+
return (f"{name}({coef}, domain={domain}, window={window}, "
|
340 |
+
f"symbol='{self.symbol}')")
|
341 |
+
|
342 |
+
def __format__(self, fmt_str):
|
343 |
+
if fmt_str == '':
|
344 |
+
return self.__str__()
|
345 |
+
if fmt_str not in ('ascii', 'unicode'):
|
346 |
+
raise ValueError(
|
347 |
+
f"Unsupported format string '{fmt_str}' passed to "
|
348 |
+
f"{self.__class__}.__format__. Valid options are "
|
349 |
+
f"'ascii' and 'unicode'"
|
350 |
+
)
|
351 |
+
if fmt_str == 'ascii':
|
352 |
+
return self._generate_string(self._str_term_ascii)
|
353 |
+
return self._generate_string(self._str_term_unicode)
|
354 |
+
|
355 |
+
def __str__(self):
|
356 |
+
if self._use_unicode:
|
357 |
+
return self._generate_string(self._str_term_unicode)
|
358 |
+
return self._generate_string(self._str_term_ascii)
|
359 |
+
|
360 |
+
def _generate_string(self, term_method):
|
361 |
+
"""
|
362 |
+
Generate the full string representation of the polynomial, using
|
363 |
+
``term_method`` to generate each polynomial term.
|
364 |
+
"""
|
365 |
+
# Get configuration for line breaks
|
366 |
+
linewidth = np.get_printoptions().get('linewidth', 75)
|
367 |
+
if linewidth < 1:
|
368 |
+
linewidth = 1
|
369 |
+
out = pu.format_float(self.coef[0])
|
370 |
+
for i, coef in enumerate(self.coef[1:]):
|
371 |
+
out += " "
|
372 |
+
power = str(i + 1)
|
373 |
+
# Polynomial coefficient
|
374 |
+
# The coefficient array can be an object array with elements that
|
375 |
+
# will raise a TypeError with >= 0 (e.g. strings or Python
|
376 |
+
# complex). In this case, represent the coefficient as-is.
|
377 |
+
try:
|
378 |
+
if coef >= 0:
|
379 |
+
next_term = f"+ " + pu.format_float(coef, parens=True)
|
380 |
+
else:
|
381 |
+
next_term = f"- " + pu.format_float(-coef, parens=True)
|
382 |
+
except TypeError:
|
383 |
+
next_term = f"+ {coef}"
|
384 |
+
# Polynomial term
|
385 |
+
next_term += term_method(power, self.symbol)
|
386 |
+
# Length of the current line with next term added
|
387 |
+
line_len = len(out.split('\n')[-1]) + len(next_term)
|
388 |
+
# If not the last term in the polynomial, it will be two
|
389 |
+
# characters longer due to the +/- with the next term
|
390 |
+
if i < len(self.coef[1:]) - 1:
|
391 |
+
line_len += 2
|
392 |
+
# Handle linebreaking
|
393 |
+
if line_len >= linewidth:
|
394 |
+
next_term = next_term.replace(" ", "\n", 1)
|
395 |
+
out += next_term
|
396 |
+
return out
|
397 |
+
|
398 |
+
@classmethod
|
399 |
+
def _str_term_unicode(cls, i, arg_str):
|
400 |
+
"""
|
401 |
+
String representation of single polynomial term using unicode
|
402 |
+
characters for superscripts and subscripts.
|
403 |
+
"""
|
404 |
+
if cls.basis_name is None:
|
405 |
+
raise NotImplementedError(
|
406 |
+
"Subclasses must define either a basis_name, or override "
|
407 |
+
"_str_term_unicode(cls, i, arg_str)"
|
408 |
+
)
|
409 |
+
return (f"·{cls.basis_name}{i.translate(cls._subscript_mapping)}"
|
410 |
+
f"({arg_str})")
|
411 |
+
|
412 |
+
@classmethod
|
413 |
+
def _str_term_ascii(cls, i, arg_str):
|
414 |
+
"""
|
415 |
+
String representation of a single polynomial term using ** and _ to
|
416 |
+
represent superscripts and subscripts, respectively.
|
417 |
+
"""
|
418 |
+
if cls.basis_name is None:
|
419 |
+
raise NotImplementedError(
|
420 |
+
"Subclasses must define either a basis_name, or override "
|
421 |
+
"_str_term_ascii(cls, i, arg_str)"
|
422 |
+
)
|
423 |
+
return f" {cls.basis_name}_{i}({arg_str})"
|
424 |
+
|
425 |
+
@classmethod
|
426 |
+
def _repr_latex_term(cls, i, arg_str, needs_parens):
|
427 |
+
if cls.basis_name is None:
|
428 |
+
raise NotImplementedError(
|
429 |
+
"Subclasses must define either a basis name, or override "
|
430 |
+
"_repr_latex_term(i, arg_str, needs_parens)")
|
431 |
+
# since we always add parens, we don't care if the expression needs them
|
432 |
+
return f"{{{cls.basis_name}}}_{{{i}}}({arg_str})"
|
433 |
+
|
434 |
+
@staticmethod
|
435 |
+
def _repr_latex_scalar(x, parens=False):
|
436 |
+
# TODO: we're stuck with disabling math formatting until we handle
|
437 |
+
# exponents in this function
|
438 |
+
return r'\text{{{}}}'.format(pu.format_float(x, parens=parens))
|
439 |
+
|
440 |
+
def _repr_latex_(self):
|
441 |
+
# get the scaled argument string to the basis functions
|
442 |
+
off, scale = self.mapparms()
|
443 |
+
if off == 0 and scale == 1:
|
444 |
+
term = self.symbol
|
445 |
+
needs_parens = False
|
446 |
+
elif scale == 1:
|
447 |
+
term = f"{self._repr_latex_scalar(off)} + {self.symbol}"
|
448 |
+
needs_parens = True
|
449 |
+
elif off == 0:
|
450 |
+
term = f"{self._repr_latex_scalar(scale)}{self.symbol}"
|
451 |
+
needs_parens = True
|
452 |
+
else:
|
453 |
+
term = (
|
454 |
+
f"{self._repr_latex_scalar(off)} + "
|
455 |
+
f"{self._repr_latex_scalar(scale)}{self.symbol}"
|
456 |
+
)
|
457 |
+
needs_parens = True
|
458 |
+
|
459 |
+
mute = r"\color{{LightGray}}{{{}}}".format
|
460 |
+
|
461 |
+
parts = []
|
462 |
+
for i, c in enumerate(self.coef):
|
463 |
+
# prevent duplication of + and - signs
|
464 |
+
if i == 0:
|
465 |
+
coef_str = f"{self._repr_latex_scalar(c)}"
|
466 |
+
elif not isinstance(c, numbers.Real):
|
467 |
+
coef_str = f" + ({self._repr_latex_scalar(c)})"
|
468 |
+
elif not np.signbit(c):
|
469 |
+
coef_str = f" + {self._repr_latex_scalar(c, parens=True)}"
|
470 |
+
else:
|
471 |
+
coef_str = f" - {self._repr_latex_scalar(-c, parens=True)}"
|
472 |
+
|
473 |
+
# produce the string for the term
|
474 |
+
term_str = self._repr_latex_term(i, term, needs_parens)
|
475 |
+
if term_str == '1':
|
476 |
+
part = coef_str
|
477 |
+
else:
|
478 |
+
part = rf"{coef_str}\,{term_str}"
|
479 |
+
|
480 |
+
if c == 0:
|
481 |
+
part = mute(part)
|
482 |
+
|
483 |
+
parts.append(part)
|
484 |
+
|
485 |
+
if parts:
|
486 |
+
body = ''.join(parts)
|
487 |
+
else:
|
488 |
+
# in case somehow there are no coefficients at all
|
489 |
+
body = '0'
|
490 |
+
|
491 |
+
return rf"${self.symbol} \mapsto {body}$"
|
492 |
+
|
493 |
+
|
494 |
+
|
495 |
+
# Pickle and copy
|
496 |
+
|
497 |
+
def __getstate__(self):
|
498 |
+
ret = self.__dict__.copy()
|
499 |
+
ret['coef'] = self.coef.copy()
|
500 |
+
ret['domain'] = self.domain.copy()
|
501 |
+
ret['window'] = self.window.copy()
|
502 |
+
ret['symbol'] = self.symbol
|
503 |
+
return ret
|
504 |
+
|
505 |
+
def __setstate__(self, dict):
|
506 |
+
self.__dict__ = dict
|
507 |
+
|
508 |
+
# Call
|
509 |
+
|
510 |
+
def __call__(self, arg):
|
511 |
+
off, scl = pu.mapparms(self.domain, self.window)
|
512 |
+
arg = off + scl*arg
|
513 |
+
return self._val(arg, self.coef)
|
514 |
+
|
515 |
+
def __iter__(self):
|
516 |
+
return iter(self.coef)
|
517 |
+
|
518 |
+
def __len__(self):
|
519 |
+
return len(self.coef)
|
520 |
+
|
521 |
+
# Numeric properties.
|
522 |
+
|
523 |
+
def __neg__(self):
|
524 |
+
return self.__class__(
|
525 |
+
-self.coef, self.domain, self.window, self.symbol
|
526 |
+
)
|
527 |
+
|
528 |
+
def __pos__(self):
|
529 |
+
return self
|
530 |
+
|
531 |
+
def __add__(self, other):
|
532 |
+
othercoef = self._get_coefficients(other)
|
533 |
+
try:
|
534 |
+
coef = self._add(self.coef, othercoef)
|
535 |
+
except Exception:
|
536 |
+
return NotImplemented
|
537 |
+
return self.__class__(coef, self.domain, self.window, self.symbol)
|
538 |
+
|
539 |
+
def __sub__(self, other):
|
540 |
+
othercoef = self._get_coefficients(other)
|
541 |
+
try:
|
542 |
+
coef = self._sub(self.coef, othercoef)
|
543 |
+
except Exception:
|
544 |
+
return NotImplemented
|
545 |
+
return self.__class__(coef, self.domain, self.window, self.symbol)
|
546 |
+
|
547 |
+
def __mul__(self, other):
|
548 |
+
othercoef = self._get_coefficients(other)
|
549 |
+
try:
|
550 |
+
coef = self._mul(self.coef, othercoef)
|
551 |
+
except Exception:
|
552 |
+
return NotImplemented
|
553 |
+
return self.__class__(coef, self.domain, self.window, self.symbol)
|
554 |
+
|
555 |
+
def __truediv__(self, other):
|
556 |
+
# there is no true divide if the rhs is not a Number, although it
|
557 |
+
# could return the first n elements of an infinite series.
|
558 |
+
# It is hard to see where n would come from, though.
|
559 |
+
if not isinstance(other, numbers.Number) or isinstance(other, bool):
|
560 |
+
raise TypeError(
|
561 |
+
f"unsupported types for true division: "
|
562 |
+
f"'{type(self)}', '{type(other)}'"
|
563 |
+
)
|
564 |
+
return self.__floordiv__(other)
|
565 |
+
|
566 |
+
def __floordiv__(self, other):
|
567 |
+
res = self.__divmod__(other)
|
568 |
+
if res is NotImplemented:
|
569 |
+
return res
|
570 |
+
return res[0]
|
571 |
+
|
572 |
+
def __mod__(self, other):
|
573 |
+
res = self.__divmod__(other)
|
574 |
+
if res is NotImplemented:
|
575 |
+
return res
|
576 |
+
return res[1]
|
577 |
+
|
578 |
+
def __divmod__(self, other):
|
579 |
+
othercoef = self._get_coefficients(other)
|
580 |
+
try:
|
581 |
+
quo, rem = self._div(self.coef, othercoef)
|
582 |
+
except ZeroDivisionError:
|
583 |
+
raise
|
584 |
+
except Exception:
|
585 |
+
return NotImplemented
|
586 |
+
quo = self.__class__(quo, self.domain, self.window, self.symbol)
|
587 |
+
rem = self.__class__(rem, self.domain, self.window, self.symbol)
|
588 |
+
return quo, rem
|
589 |
+
|
590 |
+
def __pow__(self, other):
|
591 |
+
coef = self._pow(self.coef, other, maxpower=self.maxpower)
|
592 |
+
res = self.__class__(coef, self.domain, self.window, self.symbol)
|
593 |
+
return res
|
594 |
+
|
595 |
+
def __radd__(self, other):
|
596 |
+
try:
|
597 |
+
coef = self._add(other, self.coef)
|
598 |
+
except Exception:
|
599 |
+
return NotImplemented
|
600 |
+
return self.__class__(coef, self.domain, self.window, self.symbol)
|
601 |
+
|
602 |
+
def __rsub__(self, other):
|
603 |
+
try:
|
604 |
+
coef = self._sub(other, self.coef)
|
605 |
+
except Exception:
|
606 |
+
return NotImplemented
|
607 |
+
return self.__class__(coef, self.domain, self.window, self.symbol)
|
608 |
+
|
609 |
+
def __rmul__(self, other):
|
610 |
+
try:
|
611 |
+
coef = self._mul(other, self.coef)
|
612 |
+
except Exception:
|
613 |
+
return NotImplemented
|
614 |
+
return self.__class__(coef, self.domain, self.window, self.symbol)
|
615 |
+
|
616 |
+
def __rdiv__(self, other):
|
617 |
+
# set to __floordiv__ /.
|
618 |
+
return self.__rfloordiv__(other)
|
619 |
+
|
620 |
+
def __rtruediv__(self, other):
|
621 |
+
# An instance of ABCPolyBase is not considered a
|
622 |
+
# Number.
|
623 |
+
return NotImplemented
|
624 |
+
|
625 |
+
def __rfloordiv__(self, other):
|
626 |
+
res = self.__rdivmod__(other)
|
627 |
+
if res is NotImplemented:
|
628 |
+
return res
|
629 |
+
return res[0]
|
630 |
+
|
631 |
+
def __rmod__(self, other):
|
632 |
+
res = self.__rdivmod__(other)
|
633 |
+
if res is NotImplemented:
|
634 |
+
return res
|
635 |
+
return res[1]
|
636 |
+
|
637 |
+
def __rdivmod__(self, other):
|
638 |
+
try:
|
639 |
+
quo, rem = self._div(other, self.coef)
|
640 |
+
except ZeroDivisionError:
|
641 |
+
raise
|
642 |
+
except Exception:
|
643 |
+
return NotImplemented
|
644 |
+
quo = self.__class__(quo, self.domain, self.window, self.symbol)
|
645 |
+
rem = self.__class__(rem, self.domain, self.window, self.symbol)
|
646 |
+
return quo, rem
|
647 |
+
|
648 |
+
def __eq__(self, other):
|
649 |
+
res = (isinstance(other, self.__class__) and
|
650 |
+
np.all(self.domain == other.domain) and
|
651 |
+
np.all(self.window == other.window) and
|
652 |
+
(self.coef.shape == other.coef.shape) and
|
653 |
+
np.all(self.coef == other.coef) and
|
654 |
+
(self.symbol == other.symbol))
|
655 |
+
return res
|
656 |
+
|
657 |
+
def __ne__(self, other):
|
658 |
+
return not self.__eq__(other)
|
659 |
+
|
660 |
+
#
|
661 |
+
# Extra methods.
|
662 |
+
#
|
663 |
+
|
664 |
+
def copy(self):
|
665 |
+
"""Return a copy.
|
666 |
+
|
667 |
+
Returns
|
668 |
+
-------
|
669 |
+
new_series : series
|
670 |
+
Copy of self.
|
671 |
+
|
672 |
+
"""
|
673 |
+
return self.__class__(self.coef, self.domain, self.window, self.symbol)
|
674 |
+
|
675 |
+
def degree(self):
|
676 |
+
"""The degree of the series.
|
677 |
+
|
678 |
+
.. versionadded:: 1.5.0
|
679 |
+
|
680 |
+
Returns
|
681 |
+
-------
|
682 |
+
degree : int
|
683 |
+
Degree of the series, one less than the number of coefficients.
|
684 |
+
|
685 |
+
Examples
|
686 |
+
--------
|
687 |
+
|
688 |
+
Create a polynomial object for ``1 + 7*x + 4*x**2``:
|
689 |
+
|
690 |
+
>>> poly = np.polynomial.Polynomial([1, 7, 4])
|
691 |
+
>>> print(poly)
|
692 |
+
1.0 + 7.0·x + 4.0·x²
|
693 |
+
>>> poly.degree()
|
694 |
+
2
|
695 |
+
|
696 |
+
Note that this method does not check for non-zero coefficients.
|
697 |
+
You must trim the polynomial to remove any trailing zeroes:
|
698 |
+
|
699 |
+
>>> poly = np.polynomial.Polynomial([1, 7, 0])
|
700 |
+
>>> print(poly)
|
701 |
+
1.0 + 7.0·x + 0.0·x²
|
702 |
+
>>> poly.degree()
|
703 |
+
2
|
704 |
+
>>> poly.trim().degree()
|
705 |
+
1
|
706 |
+
|
707 |
+
"""
|
708 |
+
return len(self) - 1
|
709 |
+
|
710 |
+
def cutdeg(self, deg):
|
711 |
+
"""Truncate series to the given degree.
|
712 |
+
|
713 |
+
Reduce the degree of the series to `deg` by discarding the
|
714 |
+
high order terms. If `deg` is greater than the current degree a
|
715 |
+
copy of the current series is returned. This can be useful in least
|
716 |
+
squares where the coefficients of the high degree terms may be very
|
717 |
+
small.
|
718 |
+
|
719 |
+
.. versionadded:: 1.5.0
|
720 |
+
|
721 |
+
Parameters
|
722 |
+
----------
|
723 |
+
deg : non-negative int
|
724 |
+
The series is reduced to degree `deg` by discarding the high
|
725 |
+
order terms. The value of `deg` must be a non-negative integer.
|
726 |
+
|
727 |
+
Returns
|
728 |
+
-------
|
729 |
+
new_series : series
|
730 |
+
New instance of series with reduced degree.
|
731 |
+
|
732 |
+
"""
|
733 |
+
return self.truncate(deg + 1)
|
734 |
+
|
735 |
+
def trim(self, tol=0):
|
736 |
+
"""Remove trailing coefficients
|
737 |
+
|
738 |
+
Remove trailing coefficients until a coefficient is reached whose
|
739 |
+
absolute value greater than `tol` or the beginning of the series is
|
740 |
+
reached. If all the coefficients would be removed the series is set
|
741 |
+
to ``[0]``. A new series instance is returned with the new
|
742 |
+
coefficients. The current instance remains unchanged.
|
743 |
+
|
744 |
+
Parameters
|
745 |
+
----------
|
746 |
+
tol : non-negative number.
|
747 |
+
All trailing coefficients less than `tol` will be removed.
|
748 |
+
|
749 |
+
Returns
|
750 |
+
-------
|
751 |
+
new_series : series
|
752 |
+
New instance of series with trimmed coefficients.
|
753 |
+
|
754 |
+
"""
|
755 |
+
coef = pu.trimcoef(self.coef, tol)
|
756 |
+
return self.__class__(coef, self.domain, self.window, self.symbol)
|
757 |
+
|
758 |
+
def truncate(self, size):
|
759 |
+
"""Truncate series to length `size`.
|
760 |
+
|
761 |
+
Reduce the series to length `size` by discarding the high
|
762 |
+
degree terms. The value of `size` must be a positive integer. This
|
763 |
+
can be useful in least squares where the coefficients of the
|
764 |
+
high degree terms may be very small.
|
765 |
+
|
766 |
+
Parameters
|
767 |
+
----------
|
768 |
+
size : positive int
|
769 |
+
The series is reduced to length `size` by discarding the high
|
770 |
+
degree terms. The value of `size` must be a positive integer.
|
771 |
+
|
772 |
+
Returns
|
773 |
+
-------
|
774 |
+
new_series : series
|
775 |
+
New instance of series with truncated coefficients.
|
776 |
+
|
777 |
+
"""
|
778 |
+
isize = int(size)
|
779 |
+
if isize != size or isize < 1:
|
780 |
+
raise ValueError("size must be a positive integer")
|
781 |
+
if isize >= len(self.coef):
|
782 |
+
coef = self.coef
|
783 |
+
else:
|
784 |
+
coef = self.coef[:isize]
|
785 |
+
return self.__class__(coef, self.domain, self.window, self.symbol)
|
786 |
+
|
787 |
+
def convert(self, domain=None, kind=None, window=None):
|
788 |
+
"""Convert series to a different kind and/or domain and/or window.
|
789 |
+
|
790 |
+
Parameters
|
791 |
+
----------
|
792 |
+
domain : array_like, optional
|
793 |
+
The domain of the converted series. If the value is None,
|
794 |
+
the default domain of `kind` is used.
|
795 |
+
kind : class, optional
|
796 |
+
The polynomial series type class to which the current instance
|
797 |
+
should be converted. If kind is None, then the class of the
|
798 |
+
current instance is used.
|
799 |
+
window : array_like, optional
|
800 |
+
The window of the converted series. If the value is None,
|
801 |
+
the default window of `kind` is used.
|
802 |
+
|
803 |
+
Returns
|
804 |
+
-------
|
805 |
+
new_series : series
|
806 |
+
The returned class can be of different type than the current
|
807 |
+
instance and/or have a different domain and/or different
|
808 |
+
window.
|
809 |
+
|
810 |
+
Notes
|
811 |
+
-----
|
812 |
+
Conversion between domains and class types can result in
|
813 |
+
numerically ill defined series.
|
814 |
+
|
815 |
+
"""
|
816 |
+
if kind is None:
|
817 |
+
kind = self.__class__
|
818 |
+
if domain is None:
|
819 |
+
domain = kind.domain
|
820 |
+
if window is None:
|
821 |
+
window = kind.window
|
822 |
+
return self(kind.identity(domain, window=window, symbol=self.symbol))
|
823 |
+
|
824 |
+
def mapparms(self):
|
825 |
+
"""Return the mapping parameters.
|
826 |
+
|
827 |
+
The returned values define a linear map ``off + scl*x`` that is
|
828 |
+
applied to the input arguments before the series is evaluated. The
|
829 |
+
map depends on the ``domain`` and ``window``; if the current
|
830 |
+
``domain`` is equal to the ``window`` the resulting map is the
|
831 |
+
identity. If the coefficients of the series instance are to be
|
832 |
+
used by themselves outside this class, then the linear function
|
833 |
+
must be substituted for the ``x`` in the standard representation of
|
834 |
+
the base polynomials.
|
835 |
+
|
836 |
+
Returns
|
837 |
+
-------
|
838 |
+
off, scl : float or complex
|
839 |
+
The mapping function is defined by ``off + scl*x``.
|
840 |
+
|
841 |
+
Notes
|
842 |
+
-----
|
843 |
+
If the current domain is the interval ``[l1, r1]`` and the window
|
844 |
+
is ``[l2, r2]``, then the linear mapping function ``L`` is
|
845 |
+
defined by the equations::
|
846 |
+
|
847 |
+
L(l1) = l2
|
848 |
+
L(r1) = r2
|
849 |
+
|
850 |
+
"""
|
851 |
+
return pu.mapparms(self.domain, self.window)
|
852 |
+
|
853 |
+
def integ(self, m=1, k=[], lbnd=None):
|
854 |
+
"""Integrate.
|
855 |
+
|
856 |
+
Return a series instance that is the definite integral of the
|
857 |
+
current series.
|
858 |
+
|
859 |
+
Parameters
|
860 |
+
----------
|
861 |
+
m : non-negative int
|
862 |
+
The number of integrations to perform.
|
863 |
+
k : array_like
|
864 |
+
Integration constants. The first constant is applied to the
|
865 |
+
first integration, the second to the second, and so on. The
|
866 |
+
list of values must less than or equal to `m` in length and any
|
867 |
+
missing values are set to zero.
|
868 |
+
lbnd : Scalar
|
869 |
+
The lower bound of the definite integral.
|
870 |
+
|
871 |
+
Returns
|
872 |
+
-------
|
873 |
+
new_series : series
|
874 |
+
A new series representing the integral. The domain is the same
|
875 |
+
as the domain of the integrated series.
|
876 |
+
|
877 |
+
"""
|
878 |
+
off, scl = self.mapparms()
|
879 |
+
if lbnd is None:
|
880 |
+
lbnd = 0
|
881 |
+
else:
|
882 |
+
lbnd = off + scl*lbnd
|
883 |
+
coef = self._int(self.coef, m, k, lbnd, 1./scl)
|
884 |
+
return self.__class__(coef, self.domain, self.window, self.symbol)
|
885 |
+
|
886 |
+
def deriv(self, m=1):
|
887 |
+
"""Differentiate.
|
888 |
+
|
889 |
+
Return a series instance of that is the derivative of the current
|
890 |
+
series.
|
891 |
+
|
892 |
+
Parameters
|
893 |
+
----------
|
894 |
+
m : non-negative int
|
895 |
+
Find the derivative of order `m`.
|
896 |
+
|
897 |
+
Returns
|
898 |
+
-------
|
899 |
+
new_series : series
|
900 |
+
A new series representing the derivative. The domain is the same
|
901 |
+
as the domain of the differentiated series.
|
902 |
+
|
903 |
+
"""
|
904 |
+
off, scl = self.mapparms()
|
905 |
+
coef = self._der(self.coef, m, scl)
|
906 |
+
return self.__class__(coef, self.domain, self.window, self.symbol)
|
907 |
+
|
908 |
+
def roots(self):
|
909 |
+
"""Return the roots of the series polynomial.
|
910 |
+
|
911 |
+
Compute the roots for the series. Note that the accuracy of the
|
912 |
+
roots decreases the further outside the `domain` they lie.
|
913 |
+
|
914 |
+
Returns
|
915 |
+
-------
|
916 |
+
roots : ndarray
|
917 |
+
Array containing the roots of the series.
|
918 |
+
|
919 |
+
"""
|
920 |
+
roots = self._roots(self.coef)
|
921 |
+
return pu.mapdomain(roots, self.window, self.domain)
|
922 |
+
|
923 |
+
def linspace(self, n=100, domain=None):
|
924 |
+
"""Return x, y values at equally spaced points in domain.
|
925 |
+
|
926 |
+
Returns the x, y values at `n` linearly spaced points across the
|
927 |
+
domain. Here y is the value of the polynomial at the points x. By
|
928 |
+
default the domain is the same as that of the series instance.
|
929 |
+
This method is intended mostly as a plotting aid.
|
930 |
+
|
931 |
+
.. versionadded:: 1.5.0
|
932 |
+
|
933 |
+
Parameters
|
934 |
+
----------
|
935 |
+
n : int, optional
|
936 |
+
Number of point pairs to return. The default value is 100.
|
937 |
+
domain : {None, array_like}, optional
|
938 |
+
If not None, the specified domain is used instead of that of
|
939 |
+
the calling instance. It should be of the form ``[beg,end]``.
|
940 |
+
The default is None which case the class domain is used.
|
941 |
+
|
942 |
+
Returns
|
943 |
+
-------
|
944 |
+
x, y : ndarray
|
945 |
+
x is equal to linspace(self.domain[0], self.domain[1], n) and
|
946 |
+
y is the series evaluated at element of x.
|
947 |
+
|
948 |
+
"""
|
949 |
+
if domain is None:
|
950 |
+
domain = self.domain
|
951 |
+
x = np.linspace(domain[0], domain[1], n)
|
952 |
+
y = self(x)
|
953 |
+
return x, y
|
954 |
+
|
955 |
+
@classmethod
|
956 |
+
def fit(cls, x, y, deg, domain=None, rcond=None, full=False, w=None,
|
957 |
+
window=None, symbol='x'):
|
958 |
+
"""Least squares fit to data.
|
959 |
+
|
960 |
+
Return a series instance that is the least squares fit to the data
|
961 |
+
`y` sampled at `x`. The domain of the returned instance can be
|
962 |
+
specified and this will often result in a superior fit with less
|
963 |
+
chance of ill conditioning.
|
964 |
+
|
965 |
+
Parameters
|
966 |
+
----------
|
967 |
+
x : array_like, shape (M,)
|
968 |
+
x-coordinates of the M sample points ``(x[i], y[i])``.
|
969 |
+
y : array_like, shape (M,)
|
970 |
+
y-coordinates of the M sample points ``(x[i], y[i])``.
|
971 |
+
deg : int or 1-D array_like
|
972 |
+
Degree(s) of the fitting polynomials. If `deg` is a single integer
|
973 |
+
all terms up to and including the `deg`'th term are included in the
|
974 |
+
fit. For NumPy versions >= 1.11.0 a list of integers specifying the
|
975 |
+
degrees of the terms to include may be used instead.
|
976 |
+
domain : {None, [beg, end], []}, optional
|
977 |
+
Domain to use for the returned series. If ``None``,
|
978 |
+
then a minimal domain that covers the points `x` is chosen. If
|
979 |
+
``[]`` the class domain is used. The default value was the
|
980 |
+
class domain in NumPy 1.4 and ``None`` in later versions.
|
981 |
+
The ``[]`` option was added in numpy 1.5.0.
|
982 |
+
rcond : float, optional
|
983 |
+
Relative condition number of the fit. Singular values smaller
|
984 |
+
than this relative to the largest singular value will be
|
985 |
+
ignored. The default value is len(x)*eps, where eps is the
|
986 |
+
relative precision of the float type, about 2e-16 in most
|
987 |
+
cases.
|
988 |
+
full : bool, optional
|
989 |
+
Switch determining nature of return value. When it is False
|
990 |
+
(the default) just the coefficients are returned, when True
|
991 |
+
diagnostic information from the singular value decomposition is
|
992 |
+
also returned.
|
993 |
+
w : array_like, shape (M,), optional
|
994 |
+
Weights. If not None, the weight ``w[i]`` applies to the unsquared
|
995 |
+
residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
|
996 |
+
chosen so that the errors of the products ``w[i]*y[i]`` all have
|
997 |
+
the same variance. When using inverse-variance weighting, use
|
998 |
+
``w[i] = 1/sigma(y[i])``. The default value is None.
|
999 |
+
|
1000 |
+
.. versionadded:: 1.5.0
|
1001 |
+
window : {[beg, end]}, optional
|
1002 |
+
Window to use for the returned series. The default
|
1003 |
+
value is the default class domain
|
1004 |
+
|
1005 |
+
.. versionadded:: 1.6.0
|
1006 |
+
symbol : str, optional
|
1007 |
+
Symbol representing the independent variable. Default is 'x'.
|
1008 |
+
|
1009 |
+
Returns
|
1010 |
+
-------
|
1011 |
+
new_series : series
|
1012 |
+
A series that represents the least squares fit to the data and
|
1013 |
+
has the domain and window specified in the call. If the
|
1014 |
+
coefficients for the unscaled and unshifted basis polynomials are
|
1015 |
+
of interest, do ``new_series.convert().coef``.
|
1016 |
+
|
1017 |
+
[resid, rank, sv, rcond] : list
|
1018 |
+
These values are only returned if ``full == True``
|
1019 |
+
|
1020 |
+
- resid -- sum of squared residuals of the least squares fit
|
1021 |
+
- rank -- the numerical rank of the scaled Vandermonde matrix
|
1022 |
+
- sv -- singular values of the scaled Vandermonde matrix
|
1023 |
+
- rcond -- value of `rcond`.
|
1024 |
+
|
1025 |
+
For more details, see `linalg.lstsq`.
|
1026 |
+
|
1027 |
+
"""
|
1028 |
+
if domain is None:
|
1029 |
+
domain = pu.getdomain(x)
|
1030 |
+
elif type(domain) is list and len(domain) == 0:
|
1031 |
+
domain = cls.domain
|
1032 |
+
|
1033 |
+
if window is None:
|
1034 |
+
window = cls.window
|
1035 |
+
|
1036 |
+
xnew = pu.mapdomain(x, domain, window)
|
1037 |
+
res = cls._fit(xnew, y, deg, w=w, rcond=rcond, full=full)
|
1038 |
+
if full:
|
1039 |
+
[coef, status] = res
|
1040 |
+
return (
|
1041 |
+
cls(coef, domain=domain, window=window, symbol=symbol), status
|
1042 |
+
)
|
1043 |
+
else:
|
1044 |
+
coef = res
|
1045 |
+
return cls(coef, domain=domain, window=window, symbol=symbol)
|
1046 |
+
|
1047 |
+
@classmethod
|
1048 |
+
def fromroots(cls, roots, domain=[], window=None, symbol='x'):
|
1049 |
+
"""Return series instance that has the specified roots.
|
1050 |
+
|
1051 |
+
Returns a series representing the product
|
1052 |
+
``(x - r[0])*(x - r[1])*...*(x - r[n-1])``, where ``r`` is a
|
1053 |
+
list of roots.
|
1054 |
+
|
1055 |
+
Parameters
|
1056 |
+
----------
|
1057 |
+
roots : array_like
|
1058 |
+
List of roots.
|
1059 |
+
domain : {[], None, array_like}, optional
|
1060 |
+
Domain for the resulting series. If None the domain is the
|
1061 |
+
interval from the smallest root to the largest. If [] the
|
1062 |
+
domain is the class domain. The default is [].
|
1063 |
+
window : {None, array_like}, optional
|
1064 |
+
Window for the returned series. If None the class window is
|
1065 |
+
used. The default is None.
|
1066 |
+
symbol : str, optional
|
1067 |
+
Symbol representing the independent variable. Default is 'x'.
|
1068 |
+
|
1069 |
+
Returns
|
1070 |
+
-------
|
1071 |
+
new_series : series
|
1072 |
+
Series with the specified roots.
|
1073 |
+
|
1074 |
+
"""
|
1075 |
+
[roots] = pu.as_series([roots], trim=False)
|
1076 |
+
if domain is None:
|
1077 |
+
domain = pu.getdomain(roots)
|
1078 |
+
elif type(domain) is list and len(domain) == 0:
|
1079 |
+
domain = cls.domain
|
1080 |
+
|
1081 |
+
if window is None:
|
1082 |
+
window = cls.window
|
1083 |
+
|
1084 |
+
deg = len(roots)
|
1085 |
+
off, scl = pu.mapparms(domain, window)
|
1086 |
+
rnew = off + scl*roots
|
1087 |
+
coef = cls._fromroots(rnew) / scl**deg
|
1088 |
+
return cls(coef, domain=domain, window=window, symbol=symbol)
|
1089 |
+
|
1090 |
+
@classmethod
|
1091 |
+
def identity(cls, domain=None, window=None, symbol='x'):
|
1092 |
+
"""Identity function.
|
1093 |
+
|
1094 |
+
If ``p`` is the returned series, then ``p(x) == x`` for all
|
1095 |
+
values of x.
|
1096 |
+
|
1097 |
+
Parameters
|
1098 |
+
----------
|
1099 |
+
domain : {None, array_like}, optional
|
1100 |
+
If given, the array must be of the form ``[beg, end]``, where
|
1101 |
+
``beg`` and ``end`` are the endpoints of the domain. If None is
|
1102 |
+
given then the class domain is used. The default is None.
|
1103 |
+
window : {None, array_like}, optional
|
1104 |
+
If given, the resulting array must be if the form
|
1105 |
+
``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
|
1106 |
+
the window. If None is given then the class window is used. The
|
1107 |
+
default is None.
|
1108 |
+
symbol : str, optional
|
1109 |
+
Symbol representing the independent variable. Default is 'x'.
|
1110 |
+
|
1111 |
+
Returns
|
1112 |
+
-------
|
1113 |
+
new_series : series
|
1114 |
+
Series of representing the identity.
|
1115 |
+
|
1116 |
+
"""
|
1117 |
+
if domain is None:
|
1118 |
+
domain = cls.domain
|
1119 |
+
if window is None:
|
1120 |
+
window = cls.window
|
1121 |
+
off, scl = pu.mapparms(window, domain)
|
1122 |
+
coef = cls._line(off, scl)
|
1123 |
+
return cls(coef, domain, window, symbol)
|
1124 |
+
|
1125 |
+
@classmethod
|
1126 |
+
def basis(cls, deg, domain=None, window=None, symbol='x'):
|
1127 |
+
"""Series basis polynomial of degree `deg`.
|
1128 |
+
|
1129 |
+
Returns the series representing the basis polynomial of degree `deg`.
|
1130 |
+
|
1131 |
+
.. versionadded:: 1.7.0
|
1132 |
+
|
1133 |
+
Parameters
|
1134 |
+
----------
|
1135 |
+
deg : int
|
1136 |
+
Degree of the basis polynomial for the series. Must be >= 0.
|
1137 |
+
domain : {None, array_like}, optional
|
1138 |
+
If given, the array must be of the form ``[beg, end]``, where
|
1139 |
+
``beg`` and ``end`` are the endpoints of the domain. If None is
|
1140 |
+
given then the class domain is used. The default is None.
|
1141 |
+
window : {None, array_like}, optional
|
1142 |
+
If given, the resulting array must be if the form
|
1143 |
+
``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
|
1144 |
+
the window. If None is given then the class window is used. The
|
1145 |
+
default is None.
|
1146 |
+
symbol : str, optional
|
1147 |
+
Symbol representing the independent variable. Default is 'x'.
|
1148 |
+
|
1149 |
+
Returns
|
1150 |
+
-------
|
1151 |
+
new_series : series
|
1152 |
+
A series with the coefficient of the `deg` term set to one and
|
1153 |
+
all others zero.
|
1154 |
+
|
1155 |
+
"""
|
1156 |
+
if domain is None:
|
1157 |
+
domain = cls.domain
|
1158 |
+
if window is None:
|
1159 |
+
window = cls.window
|
1160 |
+
ideg = int(deg)
|
1161 |
+
|
1162 |
+
if ideg != deg or ideg < 0:
|
1163 |
+
raise ValueError("deg must be non-negative integer")
|
1164 |
+
return cls([0]*ideg + [1], domain, window, symbol)
|
1165 |
+
|
1166 |
+
@classmethod
|
1167 |
+
def cast(cls, series, domain=None, window=None):
|
1168 |
+
"""Convert series to series of this class.
|
1169 |
+
|
1170 |
+
The `series` is expected to be an instance of some polynomial
|
1171 |
+
series of one of the types supported by by the numpy.polynomial
|
1172 |
+
module, but could be some other class that supports the convert
|
1173 |
+
method.
|
1174 |
+
|
1175 |
+
.. versionadded:: 1.7.0
|
1176 |
+
|
1177 |
+
Parameters
|
1178 |
+
----------
|
1179 |
+
series : series
|
1180 |
+
The series instance to be converted.
|
1181 |
+
domain : {None, array_like}, optional
|
1182 |
+
If given, the array must be of the form ``[beg, end]``, where
|
1183 |
+
``beg`` and ``end`` are the endpoints of the domain. If None is
|
1184 |
+
given then the class domain is used. The default is None.
|
1185 |
+
window : {None, array_like}, optional
|
1186 |
+
If given, the resulting array must be if the form
|
1187 |
+
``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
|
1188 |
+
the window. If None is given then the class window is used. The
|
1189 |
+
default is None.
|
1190 |
+
|
1191 |
+
Returns
|
1192 |
+
-------
|
1193 |
+
new_series : series
|
1194 |
+
A series of the same kind as the calling class and equal to
|
1195 |
+
`series` when evaluated.
|
1196 |
+
|
1197 |
+
See Also
|
1198 |
+
--------
|
1199 |
+
convert : similar instance method
|
1200 |
+
|
1201 |
+
"""
|
1202 |
+
if domain is None:
|
1203 |
+
domain = cls.domain
|
1204 |
+
if window is None:
|
1205 |
+
window = cls.window
|
1206 |
+
return series.convert(domain, cls, window)
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/_polybase.pyi
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
from typing import Any, ClassVar
|
3 |
+
|
4 |
+
__all__: list[str]
|
5 |
+
|
6 |
+
class ABCPolyBase(abc.ABC):
|
7 |
+
__hash__: ClassVar[None] # type: ignore[assignment]
|
8 |
+
__array_ufunc__: ClassVar[None]
|
9 |
+
maxpower: ClassVar[int]
|
10 |
+
coef: Any
|
11 |
+
@property
|
12 |
+
def symbol(self) -> str: ...
|
13 |
+
@property
|
14 |
+
@abc.abstractmethod
|
15 |
+
def domain(self): ...
|
16 |
+
@property
|
17 |
+
@abc.abstractmethod
|
18 |
+
def window(self): ...
|
19 |
+
@property
|
20 |
+
@abc.abstractmethod
|
21 |
+
def basis_name(self): ...
|
22 |
+
def has_samecoef(self, other): ...
|
23 |
+
def has_samedomain(self, other): ...
|
24 |
+
def has_samewindow(self, other): ...
|
25 |
+
def has_sametype(self, other): ...
|
26 |
+
def __init__(self, coef, domain=..., window=..., symbol: str = ...) -> None: ...
|
27 |
+
def __format__(self, fmt_str): ...
|
28 |
+
def __call__(self, arg): ...
|
29 |
+
def __iter__(self): ...
|
30 |
+
def __len__(self): ...
|
31 |
+
def __neg__(self): ...
|
32 |
+
def __pos__(self): ...
|
33 |
+
def __add__(self, other): ...
|
34 |
+
def __sub__(self, other): ...
|
35 |
+
def __mul__(self, other): ...
|
36 |
+
def __truediv__(self, other): ...
|
37 |
+
def __floordiv__(self, other): ...
|
38 |
+
def __mod__(self, other): ...
|
39 |
+
def __divmod__(self, other): ...
|
40 |
+
def __pow__(self, other): ...
|
41 |
+
def __radd__(self, other): ...
|
42 |
+
def __rsub__(self, other): ...
|
43 |
+
def __rmul__(self, other): ...
|
44 |
+
def __rdiv__(self, other): ...
|
45 |
+
def __rtruediv__(self, other): ...
|
46 |
+
def __rfloordiv__(self, other): ...
|
47 |
+
def __rmod__(self, other): ...
|
48 |
+
def __rdivmod__(self, other): ...
|
49 |
+
def __eq__(self, other): ...
|
50 |
+
def __ne__(self, other): ...
|
51 |
+
def copy(self): ...
|
52 |
+
def degree(self): ...
|
53 |
+
def cutdeg(self, deg): ...
|
54 |
+
def trim(self, tol=...): ...
|
55 |
+
def truncate(self, size): ...
|
56 |
+
def convert(self, domain=..., kind=..., window=...): ...
|
57 |
+
def mapparms(self): ...
|
58 |
+
def integ(self, m=..., k = ..., lbnd=...): ...
|
59 |
+
def deriv(self, m=...): ...
|
60 |
+
def roots(self): ...
|
61 |
+
def linspace(self, n=..., domain=...): ...
|
62 |
+
@classmethod
|
63 |
+
def fit(cls, x, y, deg, domain=..., rcond=..., full=..., w=..., window=...): ...
|
64 |
+
@classmethod
|
65 |
+
def fromroots(cls, roots, domain = ..., window=...): ...
|
66 |
+
@classmethod
|
67 |
+
def identity(cls, domain=..., window=...): ...
|
68 |
+
@classmethod
|
69 |
+
def basis(cls, deg, domain=..., window=...): ...
|
70 |
+
@classmethod
|
71 |
+
def cast(cls, series, domain=..., window=...): ...
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/chebyshev.py
ADDED
@@ -0,0 +1,2082 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
====================================================
|
3 |
+
Chebyshev Series (:mod:`numpy.polynomial.chebyshev`)
|
4 |
+
====================================================
|
5 |
+
|
6 |
+
This module provides a number of objects (mostly functions) useful for
|
7 |
+
dealing with Chebyshev series, including a `Chebyshev` class that
|
8 |
+
encapsulates the usual arithmetic operations. (General information
|
9 |
+
on how this module represents and works with such polynomials is in the
|
10 |
+
docstring for its "parent" sub-package, `numpy.polynomial`).
|
11 |
+
|
12 |
+
Classes
|
13 |
+
-------
|
14 |
+
|
15 |
+
.. autosummary::
|
16 |
+
:toctree: generated/
|
17 |
+
|
18 |
+
Chebyshev
|
19 |
+
|
20 |
+
|
21 |
+
Constants
|
22 |
+
---------
|
23 |
+
|
24 |
+
.. autosummary::
|
25 |
+
:toctree: generated/
|
26 |
+
|
27 |
+
chebdomain
|
28 |
+
chebzero
|
29 |
+
chebone
|
30 |
+
chebx
|
31 |
+
|
32 |
+
Arithmetic
|
33 |
+
----------
|
34 |
+
|
35 |
+
.. autosummary::
|
36 |
+
:toctree: generated/
|
37 |
+
|
38 |
+
chebadd
|
39 |
+
chebsub
|
40 |
+
chebmulx
|
41 |
+
chebmul
|
42 |
+
chebdiv
|
43 |
+
chebpow
|
44 |
+
chebval
|
45 |
+
chebval2d
|
46 |
+
chebval3d
|
47 |
+
chebgrid2d
|
48 |
+
chebgrid3d
|
49 |
+
|
50 |
+
Calculus
|
51 |
+
--------
|
52 |
+
|
53 |
+
.. autosummary::
|
54 |
+
:toctree: generated/
|
55 |
+
|
56 |
+
chebder
|
57 |
+
chebint
|
58 |
+
|
59 |
+
Misc Functions
|
60 |
+
--------------
|
61 |
+
|
62 |
+
.. autosummary::
|
63 |
+
:toctree: generated/
|
64 |
+
|
65 |
+
chebfromroots
|
66 |
+
chebroots
|
67 |
+
chebvander
|
68 |
+
chebvander2d
|
69 |
+
chebvander3d
|
70 |
+
chebgauss
|
71 |
+
chebweight
|
72 |
+
chebcompanion
|
73 |
+
chebfit
|
74 |
+
chebpts1
|
75 |
+
chebpts2
|
76 |
+
chebtrim
|
77 |
+
chebline
|
78 |
+
cheb2poly
|
79 |
+
poly2cheb
|
80 |
+
chebinterpolate
|
81 |
+
|
82 |
+
See also
|
83 |
+
--------
|
84 |
+
`numpy.polynomial`
|
85 |
+
|
86 |
+
Notes
|
87 |
+
-----
|
88 |
+
The implementations of multiplication, division, integration, and
|
89 |
+
differentiation use the algebraic identities [1]_:
|
90 |
+
|
91 |
+
.. math::
|
92 |
+
T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\
|
93 |
+
z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}.
|
94 |
+
|
95 |
+
where
|
96 |
+
|
97 |
+
.. math:: x = \\frac{z + z^{-1}}{2}.
|
98 |
+
|
99 |
+
These identities allow a Chebyshev series to be expressed as a finite,
|
100 |
+
symmetric Laurent series. In this module, this sort of Laurent series
|
101 |
+
is referred to as a "z-series."
|
102 |
+
|
103 |
+
References
|
104 |
+
----------
|
105 |
+
.. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev
|
106 |
+
Polynomials," *Journal of Statistical Planning and Inference 14*, 2008
|
107 |
+
(https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4)
|
108 |
+
|
109 |
+
"""
|
110 |
+
import numpy as np
|
111 |
+
import numpy.linalg as la
|
112 |
+
from numpy.core.multiarray import normalize_axis_index
|
113 |
+
|
114 |
+
from . import polyutils as pu
|
115 |
+
from ._polybase import ABCPolyBase
|
116 |
+
|
117 |
+
__all__ = [
|
118 |
+
'chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline', 'chebadd',
|
119 |
+
'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebpow', 'chebval',
|
120 |
+
'chebder', 'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots',
|
121 |
+
'chebvander', 'chebfit', 'chebtrim', 'chebroots', 'chebpts1',
|
122 |
+
'chebpts2', 'Chebyshev', 'chebval2d', 'chebval3d', 'chebgrid2d',
|
123 |
+
'chebgrid3d', 'chebvander2d', 'chebvander3d', 'chebcompanion',
|
124 |
+
'chebgauss', 'chebweight', 'chebinterpolate']
|
125 |
+
|
126 |
+
chebtrim = pu.trimcoef
|
127 |
+
|
128 |
+
#
|
129 |
+
# A collection of functions for manipulating z-series. These are private
|
130 |
+
# functions and do minimal error checking.
|
131 |
+
#
|
132 |
+
|
133 |
+
def _cseries_to_zseries(c):
|
134 |
+
"""Convert Chebyshev series to z-series.
|
135 |
+
|
136 |
+
Convert a Chebyshev series to the equivalent z-series. The result is
|
137 |
+
never an empty array. The dtype of the return is the same as that of
|
138 |
+
the input. No checks are run on the arguments as this routine is for
|
139 |
+
internal use.
|
140 |
+
|
141 |
+
Parameters
|
142 |
+
----------
|
143 |
+
c : 1-D ndarray
|
144 |
+
Chebyshev coefficients, ordered from low to high
|
145 |
+
|
146 |
+
Returns
|
147 |
+
-------
|
148 |
+
zs : 1-D ndarray
|
149 |
+
Odd length symmetric z-series, ordered from low to high.
|
150 |
+
|
151 |
+
"""
|
152 |
+
n = c.size
|
153 |
+
zs = np.zeros(2*n-1, dtype=c.dtype)
|
154 |
+
zs[n-1:] = c/2
|
155 |
+
return zs + zs[::-1]
|
156 |
+
|
157 |
+
|
158 |
+
def _zseries_to_cseries(zs):
|
159 |
+
"""Convert z-series to a Chebyshev series.
|
160 |
+
|
161 |
+
Convert a z series to the equivalent Chebyshev series. The result is
|
162 |
+
never an empty array. The dtype of the return is the same as that of
|
163 |
+
the input. No checks are run on the arguments as this routine is for
|
164 |
+
internal use.
|
165 |
+
|
166 |
+
Parameters
|
167 |
+
----------
|
168 |
+
zs : 1-D ndarray
|
169 |
+
Odd length symmetric z-series, ordered from low to high.
|
170 |
+
|
171 |
+
Returns
|
172 |
+
-------
|
173 |
+
c : 1-D ndarray
|
174 |
+
Chebyshev coefficients, ordered from low to high.
|
175 |
+
|
176 |
+
"""
|
177 |
+
n = (zs.size + 1)//2
|
178 |
+
c = zs[n-1:].copy()
|
179 |
+
c[1:n] *= 2
|
180 |
+
return c
|
181 |
+
|
182 |
+
|
183 |
+
def _zseries_mul(z1, z2):
|
184 |
+
"""Multiply two z-series.
|
185 |
+
|
186 |
+
Multiply two z-series to produce a z-series.
|
187 |
+
|
188 |
+
Parameters
|
189 |
+
----------
|
190 |
+
z1, z2 : 1-D ndarray
|
191 |
+
The arrays must be 1-D but this is not checked.
|
192 |
+
|
193 |
+
Returns
|
194 |
+
-------
|
195 |
+
product : 1-D ndarray
|
196 |
+
The product z-series.
|
197 |
+
|
198 |
+
Notes
|
199 |
+
-----
|
200 |
+
This is simply convolution. If symmetric/anti-symmetric z-series are
|
201 |
+
denoted by S/A then the following rules apply:
|
202 |
+
|
203 |
+
S*S, A*A -> S
|
204 |
+
S*A, A*S -> A
|
205 |
+
|
206 |
+
"""
|
207 |
+
return np.convolve(z1, z2)
|
208 |
+
|
209 |
+
|
210 |
+
def _zseries_div(z1, z2):
|
211 |
+
"""Divide the first z-series by the second.
|
212 |
+
|
213 |
+
Divide `z1` by `z2` and return the quotient and remainder as z-series.
|
214 |
+
Warning: this implementation only applies when both z1 and z2 have the
|
215 |
+
same symmetry, which is sufficient for present purposes.
|
216 |
+
|
217 |
+
Parameters
|
218 |
+
----------
|
219 |
+
z1, z2 : 1-D ndarray
|
220 |
+
The arrays must be 1-D and have the same symmetry, but this is not
|
221 |
+
checked.
|
222 |
+
|
223 |
+
Returns
|
224 |
+
-------
|
225 |
+
|
226 |
+
(quotient, remainder) : 1-D ndarrays
|
227 |
+
Quotient and remainder as z-series.
|
228 |
+
|
229 |
+
Notes
|
230 |
+
-----
|
231 |
+
This is not the same as polynomial division on account of the desired form
|
232 |
+
of the remainder. If symmetric/anti-symmetric z-series are denoted by S/A
|
233 |
+
then the following rules apply:
|
234 |
+
|
235 |
+
S/S -> S,S
|
236 |
+
A/A -> S,A
|
237 |
+
|
238 |
+
The restriction to types of the same symmetry could be fixed but seems like
|
239 |
+
unneeded generality. There is no natural form for the remainder in the case
|
240 |
+
where there is no symmetry.
|
241 |
+
|
242 |
+
"""
|
243 |
+
z1 = z1.copy()
|
244 |
+
z2 = z2.copy()
|
245 |
+
lc1 = len(z1)
|
246 |
+
lc2 = len(z2)
|
247 |
+
if lc2 == 1:
|
248 |
+
z1 /= z2
|
249 |
+
return z1, z1[:1]*0
|
250 |
+
elif lc1 < lc2:
|
251 |
+
return z1[:1]*0, z1
|
252 |
+
else:
|
253 |
+
dlen = lc1 - lc2
|
254 |
+
scl = z2[0]
|
255 |
+
z2 /= scl
|
256 |
+
quo = np.empty(dlen + 1, dtype=z1.dtype)
|
257 |
+
i = 0
|
258 |
+
j = dlen
|
259 |
+
while i < j:
|
260 |
+
r = z1[i]
|
261 |
+
quo[i] = z1[i]
|
262 |
+
quo[dlen - i] = r
|
263 |
+
tmp = r*z2
|
264 |
+
z1[i:i+lc2] -= tmp
|
265 |
+
z1[j:j+lc2] -= tmp
|
266 |
+
i += 1
|
267 |
+
j -= 1
|
268 |
+
r = z1[i]
|
269 |
+
quo[i] = r
|
270 |
+
tmp = r*z2
|
271 |
+
z1[i:i+lc2] -= tmp
|
272 |
+
quo /= scl
|
273 |
+
rem = z1[i+1:i-1+lc2].copy()
|
274 |
+
return quo, rem
|
275 |
+
|
276 |
+
|
277 |
+
def _zseries_der(zs):
|
278 |
+
"""Differentiate a z-series.
|
279 |
+
|
280 |
+
The derivative is with respect to x, not z. This is achieved using the
|
281 |
+
chain rule and the value of dx/dz given in the module notes.
|
282 |
+
|
283 |
+
Parameters
|
284 |
+
----------
|
285 |
+
zs : z-series
|
286 |
+
The z-series to differentiate.
|
287 |
+
|
288 |
+
Returns
|
289 |
+
-------
|
290 |
+
derivative : z-series
|
291 |
+
The derivative
|
292 |
+
|
293 |
+
Notes
|
294 |
+
-----
|
295 |
+
The zseries for x (ns) has been multiplied by two in order to avoid
|
296 |
+
using floats that are incompatible with Decimal and likely other
|
297 |
+
specialized scalar types. This scaling has been compensated by
|
298 |
+
multiplying the value of zs by two also so that the two cancels in the
|
299 |
+
division.
|
300 |
+
|
301 |
+
"""
|
302 |
+
n = len(zs)//2
|
303 |
+
ns = np.array([-1, 0, 1], dtype=zs.dtype)
|
304 |
+
zs *= np.arange(-n, n+1)*2
|
305 |
+
d, r = _zseries_div(zs, ns)
|
306 |
+
return d
|
307 |
+
|
308 |
+
|
309 |
+
def _zseries_int(zs):
|
310 |
+
"""Integrate a z-series.
|
311 |
+
|
312 |
+
The integral is with respect to x, not z. This is achieved by a change
|
313 |
+
of variable using dx/dz given in the module notes.
|
314 |
+
|
315 |
+
Parameters
|
316 |
+
----------
|
317 |
+
zs : z-series
|
318 |
+
The z-series to integrate
|
319 |
+
|
320 |
+
Returns
|
321 |
+
-------
|
322 |
+
integral : z-series
|
323 |
+
The indefinite integral
|
324 |
+
|
325 |
+
Notes
|
326 |
+
-----
|
327 |
+
The zseries for x (ns) has been multiplied by two in order to avoid
|
328 |
+
using floats that are incompatible with Decimal and likely other
|
329 |
+
specialized scalar types. This scaling has been compensated by
|
330 |
+
dividing the resulting zs by two.
|
331 |
+
|
332 |
+
"""
|
333 |
+
n = 1 + len(zs)//2
|
334 |
+
ns = np.array([-1, 0, 1], dtype=zs.dtype)
|
335 |
+
zs = _zseries_mul(zs, ns)
|
336 |
+
div = np.arange(-n, n+1)*2
|
337 |
+
zs[:n] /= div[:n]
|
338 |
+
zs[n+1:] /= div[n+1:]
|
339 |
+
zs[n] = 0
|
340 |
+
return zs
|
341 |
+
|
342 |
+
#
|
343 |
+
# Chebyshev series functions
|
344 |
+
#
|
345 |
+
|
346 |
+
|
347 |
+
def poly2cheb(pol):
|
348 |
+
"""
|
349 |
+
Convert a polynomial to a Chebyshev series.
|
350 |
+
|
351 |
+
Convert an array representing the coefficients of a polynomial (relative
|
352 |
+
to the "standard" basis) ordered from lowest degree to highest, to an
|
353 |
+
array of the coefficients of the equivalent Chebyshev series, ordered
|
354 |
+
from lowest to highest degree.
|
355 |
+
|
356 |
+
Parameters
|
357 |
+
----------
|
358 |
+
pol : array_like
|
359 |
+
1-D array containing the polynomial coefficients
|
360 |
+
|
361 |
+
Returns
|
362 |
+
-------
|
363 |
+
c : ndarray
|
364 |
+
1-D array containing the coefficients of the equivalent Chebyshev
|
365 |
+
series.
|
366 |
+
|
367 |
+
See Also
|
368 |
+
--------
|
369 |
+
cheb2poly
|
370 |
+
|
371 |
+
Notes
|
372 |
+
-----
|
373 |
+
The easy way to do conversions between polynomial basis sets
|
374 |
+
is to use the convert method of a class instance.
|
375 |
+
|
376 |
+
Examples
|
377 |
+
--------
|
378 |
+
>>> from numpy import polynomial as P
|
379 |
+
>>> p = P.Polynomial(range(4))
|
380 |
+
>>> p
|
381 |
+
Polynomial([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
|
382 |
+
>>> c = p.convert(kind=P.Chebyshev)
|
383 |
+
>>> c
|
384 |
+
Chebyshev([1. , 3.25, 1. , 0.75], domain=[-1., 1.], window=[-1., 1.])
|
385 |
+
>>> P.chebyshev.poly2cheb(range(4))
|
386 |
+
array([1. , 3.25, 1. , 0.75])
|
387 |
+
|
388 |
+
"""
|
389 |
+
[pol] = pu.as_series([pol])
|
390 |
+
deg = len(pol) - 1
|
391 |
+
res = 0
|
392 |
+
for i in range(deg, -1, -1):
|
393 |
+
res = chebadd(chebmulx(res), pol[i])
|
394 |
+
return res
|
395 |
+
|
396 |
+
|
397 |
+
def cheb2poly(c):
|
398 |
+
"""
|
399 |
+
Convert a Chebyshev series to a polynomial.
|
400 |
+
|
401 |
+
Convert an array representing the coefficients of a Chebyshev series,
|
402 |
+
ordered from lowest degree to highest, to an array of the coefficients
|
403 |
+
of the equivalent polynomial (relative to the "standard" basis) ordered
|
404 |
+
from lowest to highest degree.
|
405 |
+
|
406 |
+
Parameters
|
407 |
+
----------
|
408 |
+
c : array_like
|
409 |
+
1-D array containing the Chebyshev series coefficients, ordered
|
410 |
+
from lowest order term to highest.
|
411 |
+
|
412 |
+
Returns
|
413 |
+
-------
|
414 |
+
pol : ndarray
|
415 |
+
1-D array containing the coefficients of the equivalent polynomial
|
416 |
+
(relative to the "standard" basis) ordered from lowest order term
|
417 |
+
to highest.
|
418 |
+
|
419 |
+
See Also
|
420 |
+
--------
|
421 |
+
poly2cheb
|
422 |
+
|
423 |
+
Notes
|
424 |
+
-----
|
425 |
+
The easy way to do conversions between polynomial basis sets
|
426 |
+
is to use the convert method of a class instance.
|
427 |
+
|
428 |
+
Examples
|
429 |
+
--------
|
430 |
+
>>> from numpy import polynomial as P
|
431 |
+
>>> c = P.Chebyshev(range(4))
|
432 |
+
>>> c
|
433 |
+
Chebyshev([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
|
434 |
+
>>> p = c.convert(kind=P.Polynomial)
|
435 |
+
>>> p
|
436 |
+
Polynomial([-2., -8., 4., 12.], domain=[-1., 1.], window=[-1., 1.])
|
437 |
+
>>> P.chebyshev.cheb2poly(range(4))
|
438 |
+
array([-2., -8., 4., 12.])
|
439 |
+
|
440 |
+
"""
|
441 |
+
from .polynomial import polyadd, polysub, polymulx
|
442 |
+
|
443 |
+
[c] = pu.as_series([c])
|
444 |
+
n = len(c)
|
445 |
+
if n < 3:
|
446 |
+
return c
|
447 |
+
else:
|
448 |
+
c0 = c[-2]
|
449 |
+
c1 = c[-1]
|
450 |
+
# i is the current degree of c1
|
451 |
+
for i in range(n - 1, 1, -1):
|
452 |
+
tmp = c0
|
453 |
+
c0 = polysub(c[i - 2], c1)
|
454 |
+
c1 = polyadd(tmp, polymulx(c1)*2)
|
455 |
+
return polyadd(c0, polymulx(c1))
|
456 |
+
|
457 |
+
|
458 |
+
#
|
459 |
+
# These are constant arrays are of integer type so as to be compatible
|
460 |
+
# with the widest range of other types, such as Decimal.
|
461 |
+
#
|
462 |
+
|
463 |
+
# Chebyshev default domain.
|
464 |
+
chebdomain = np.array([-1, 1])
|
465 |
+
|
466 |
+
# Chebyshev coefficients representing zero.
|
467 |
+
chebzero = np.array([0])
|
468 |
+
|
469 |
+
# Chebyshev coefficients representing one.
|
470 |
+
chebone = np.array([1])
|
471 |
+
|
472 |
+
# Chebyshev coefficients representing the identity x.
|
473 |
+
chebx = np.array([0, 1])
|
474 |
+
|
475 |
+
|
476 |
+
def chebline(off, scl):
|
477 |
+
"""
|
478 |
+
Chebyshev series whose graph is a straight line.
|
479 |
+
|
480 |
+
Parameters
|
481 |
+
----------
|
482 |
+
off, scl : scalars
|
483 |
+
The specified line is given by ``off + scl*x``.
|
484 |
+
|
485 |
+
Returns
|
486 |
+
-------
|
487 |
+
y : ndarray
|
488 |
+
This module's representation of the Chebyshev series for
|
489 |
+
``off + scl*x``.
|
490 |
+
|
491 |
+
See Also
|
492 |
+
--------
|
493 |
+
numpy.polynomial.polynomial.polyline
|
494 |
+
numpy.polynomial.legendre.legline
|
495 |
+
numpy.polynomial.laguerre.lagline
|
496 |
+
numpy.polynomial.hermite.hermline
|
497 |
+
numpy.polynomial.hermite_e.hermeline
|
498 |
+
|
499 |
+
Examples
|
500 |
+
--------
|
501 |
+
>>> import numpy.polynomial.chebyshev as C
|
502 |
+
>>> C.chebline(3,2)
|
503 |
+
array([3, 2])
|
504 |
+
>>> C.chebval(-3, C.chebline(3,2)) # should be -3
|
505 |
+
-3.0
|
506 |
+
|
507 |
+
"""
|
508 |
+
if scl != 0:
|
509 |
+
return np.array([off, scl])
|
510 |
+
else:
|
511 |
+
return np.array([off])
|
512 |
+
|
513 |
+
|
514 |
+
def chebfromroots(roots):
|
515 |
+
"""
|
516 |
+
Generate a Chebyshev series with given roots.
|
517 |
+
|
518 |
+
The function returns the coefficients of the polynomial
|
519 |
+
|
520 |
+
.. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
|
521 |
+
|
522 |
+
in Chebyshev form, where the `r_n` are the roots specified in `roots`.
|
523 |
+
If a zero has multiplicity n, then it must appear in `roots` n times.
|
524 |
+
For instance, if 2 is a root of multiplicity three and 3 is a root of
|
525 |
+
multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
|
526 |
+
roots can appear in any order.
|
527 |
+
|
528 |
+
If the returned coefficients are `c`, then
|
529 |
+
|
530 |
+
.. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x)
|
531 |
+
|
532 |
+
The coefficient of the last term is not generally 1 for monic
|
533 |
+
polynomials in Chebyshev form.
|
534 |
+
|
535 |
+
Parameters
|
536 |
+
----------
|
537 |
+
roots : array_like
|
538 |
+
Sequence containing the roots.
|
539 |
+
|
540 |
+
Returns
|
541 |
+
-------
|
542 |
+
out : ndarray
|
543 |
+
1-D array of coefficients. If all roots are real then `out` is a
|
544 |
+
real array, if some of the roots are complex, then `out` is complex
|
545 |
+
even if all the coefficients in the result are real (see Examples
|
546 |
+
below).
|
547 |
+
|
548 |
+
See Also
|
549 |
+
--------
|
550 |
+
numpy.polynomial.polynomial.polyfromroots
|
551 |
+
numpy.polynomial.legendre.legfromroots
|
552 |
+
numpy.polynomial.laguerre.lagfromroots
|
553 |
+
numpy.polynomial.hermite.hermfromroots
|
554 |
+
numpy.polynomial.hermite_e.hermefromroots
|
555 |
+
|
556 |
+
Examples
|
557 |
+
--------
|
558 |
+
>>> import numpy.polynomial.chebyshev as C
|
559 |
+
>>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
|
560 |
+
array([ 0. , -0.25, 0. , 0.25])
|
561 |
+
>>> j = complex(0,1)
|
562 |
+
>>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
|
563 |
+
array([1.5+0.j, 0. +0.j, 0.5+0.j])
|
564 |
+
|
565 |
+
"""
|
566 |
+
return pu._fromroots(chebline, chebmul, roots)
|
567 |
+
|
568 |
+
|
569 |
+
def chebadd(c1, c2):
|
570 |
+
"""
|
571 |
+
Add one Chebyshev series to another.
|
572 |
+
|
573 |
+
Returns the sum of two Chebyshev series `c1` + `c2`. The arguments
|
574 |
+
are sequences of coefficients ordered from lowest order term to
|
575 |
+
highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
|
576 |
+
|
577 |
+
Parameters
|
578 |
+
----------
|
579 |
+
c1, c2 : array_like
|
580 |
+
1-D arrays of Chebyshev series coefficients ordered from low to
|
581 |
+
high.
|
582 |
+
|
583 |
+
Returns
|
584 |
+
-------
|
585 |
+
out : ndarray
|
586 |
+
Array representing the Chebyshev series of their sum.
|
587 |
+
|
588 |
+
See Also
|
589 |
+
--------
|
590 |
+
chebsub, chebmulx, chebmul, chebdiv, chebpow
|
591 |
+
|
592 |
+
Notes
|
593 |
+
-----
|
594 |
+
Unlike multiplication, division, etc., the sum of two Chebyshev series
|
595 |
+
is a Chebyshev series (without having to "reproject" the result onto
|
596 |
+
the basis set) so addition, just like that of "standard" polynomials,
|
597 |
+
is simply "component-wise."
|
598 |
+
|
599 |
+
Examples
|
600 |
+
--------
|
601 |
+
>>> from numpy.polynomial import chebyshev as C
|
602 |
+
>>> c1 = (1,2,3)
|
603 |
+
>>> c2 = (3,2,1)
|
604 |
+
>>> C.chebadd(c1,c2)
|
605 |
+
array([4., 4., 4.])
|
606 |
+
|
607 |
+
"""
|
608 |
+
return pu._add(c1, c2)
|
609 |
+
|
610 |
+
|
611 |
+
def chebsub(c1, c2):
|
612 |
+
"""
|
613 |
+
Subtract one Chebyshev series from another.
|
614 |
+
|
615 |
+
Returns the difference of two Chebyshev series `c1` - `c2`. The
|
616 |
+
sequences of coefficients are from lowest order term to highest, i.e.,
|
617 |
+
[1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
|
618 |
+
|
619 |
+
Parameters
|
620 |
+
----------
|
621 |
+
c1, c2 : array_like
|
622 |
+
1-D arrays of Chebyshev series coefficients ordered from low to
|
623 |
+
high.
|
624 |
+
|
625 |
+
Returns
|
626 |
+
-------
|
627 |
+
out : ndarray
|
628 |
+
Of Chebyshev series coefficients representing their difference.
|
629 |
+
|
630 |
+
See Also
|
631 |
+
--------
|
632 |
+
chebadd, chebmulx, chebmul, chebdiv, chebpow
|
633 |
+
|
634 |
+
Notes
|
635 |
+
-----
|
636 |
+
Unlike multiplication, division, etc., the difference of two Chebyshev
|
637 |
+
series is a Chebyshev series (without having to "reproject" the result
|
638 |
+
onto the basis set) so subtraction, just like that of "standard"
|
639 |
+
polynomials, is simply "component-wise."
|
640 |
+
|
641 |
+
Examples
|
642 |
+
--------
|
643 |
+
>>> from numpy.polynomial import chebyshev as C
|
644 |
+
>>> c1 = (1,2,3)
|
645 |
+
>>> c2 = (3,2,1)
|
646 |
+
>>> C.chebsub(c1,c2)
|
647 |
+
array([-2., 0., 2.])
|
648 |
+
>>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
|
649 |
+
array([ 2., 0., -2.])
|
650 |
+
|
651 |
+
"""
|
652 |
+
return pu._sub(c1, c2)
|
653 |
+
|
654 |
+
|
655 |
+
def chebmulx(c):
|
656 |
+
"""Multiply a Chebyshev series by x.
|
657 |
+
|
658 |
+
Multiply the polynomial `c` by x, where x is the independent
|
659 |
+
variable.
|
660 |
+
|
661 |
+
|
662 |
+
Parameters
|
663 |
+
----------
|
664 |
+
c : array_like
|
665 |
+
1-D array of Chebyshev series coefficients ordered from low to
|
666 |
+
high.
|
667 |
+
|
668 |
+
Returns
|
669 |
+
-------
|
670 |
+
out : ndarray
|
671 |
+
Array representing the result of the multiplication.
|
672 |
+
|
673 |
+
Notes
|
674 |
+
-----
|
675 |
+
|
676 |
+
.. versionadded:: 1.5.0
|
677 |
+
|
678 |
+
Examples
|
679 |
+
--------
|
680 |
+
>>> from numpy.polynomial import chebyshev as C
|
681 |
+
>>> C.chebmulx([1,2,3])
|
682 |
+
array([1. , 2.5, 1. , 1.5])
|
683 |
+
|
684 |
+
"""
|
685 |
+
# c is a trimmed copy
|
686 |
+
[c] = pu.as_series([c])
|
687 |
+
# The zero series needs special treatment
|
688 |
+
if len(c) == 1 and c[0] == 0:
|
689 |
+
return c
|
690 |
+
|
691 |
+
prd = np.empty(len(c) + 1, dtype=c.dtype)
|
692 |
+
prd[0] = c[0]*0
|
693 |
+
prd[1] = c[0]
|
694 |
+
if len(c) > 1:
|
695 |
+
tmp = c[1:]/2
|
696 |
+
prd[2:] = tmp
|
697 |
+
prd[0:-2] += tmp
|
698 |
+
return prd
|
699 |
+
|
700 |
+
|
701 |
+
def chebmul(c1, c2):
|
702 |
+
"""
|
703 |
+
Multiply one Chebyshev series by another.
|
704 |
+
|
705 |
+
Returns the product of two Chebyshev series `c1` * `c2`. The arguments
|
706 |
+
are sequences of coefficients, from lowest order "term" to highest,
|
707 |
+
e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
|
708 |
+
|
709 |
+
Parameters
|
710 |
+
----------
|
711 |
+
c1, c2 : array_like
|
712 |
+
1-D arrays of Chebyshev series coefficients ordered from low to
|
713 |
+
high.
|
714 |
+
|
715 |
+
Returns
|
716 |
+
-------
|
717 |
+
out : ndarray
|
718 |
+
Of Chebyshev series coefficients representing their product.
|
719 |
+
|
720 |
+
See Also
|
721 |
+
--------
|
722 |
+
chebadd, chebsub, chebmulx, chebdiv, chebpow
|
723 |
+
|
724 |
+
Notes
|
725 |
+
-----
|
726 |
+
In general, the (polynomial) product of two C-series results in terms
|
727 |
+
that are not in the Chebyshev polynomial basis set. Thus, to express
|
728 |
+
the product as a C-series, it is typically necessary to "reproject"
|
729 |
+
the product onto said basis set, which typically produces
|
730 |
+
"unintuitive live" (but correct) results; see Examples section below.
|
731 |
+
|
732 |
+
Examples
|
733 |
+
--------
|
734 |
+
>>> from numpy.polynomial import chebyshev as C
|
735 |
+
>>> c1 = (1,2,3)
|
736 |
+
>>> c2 = (3,2,1)
|
737 |
+
>>> C.chebmul(c1,c2) # multiplication requires "reprojection"
|
738 |
+
array([ 6.5, 12. , 12. , 4. , 1.5])
|
739 |
+
|
740 |
+
"""
|
741 |
+
# c1, c2 are trimmed copies
|
742 |
+
[c1, c2] = pu.as_series([c1, c2])
|
743 |
+
z1 = _cseries_to_zseries(c1)
|
744 |
+
z2 = _cseries_to_zseries(c2)
|
745 |
+
prd = _zseries_mul(z1, z2)
|
746 |
+
ret = _zseries_to_cseries(prd)
|
747 |
+
return pu.trimseq(ret)
|
748 |
+
|
749 |
+
|
750 |
+
def chebdiv(c1, c2):
|
751 |
+
"""
|
752 |
+
Divide one Chebyshev series by another.
|
753 |
+
|
754 |
+
Returns the quotient-with-remainder of two Chebyshev series
|
755 |
+
`c1` / `c2`. The arguments are sequences of coefficients from lowest
|
756 |
+
order "term" to highest, e.g., [1,2,3] represents the series
|
757 |
+
``T_0 + 2*T_1 + 3*T_2``.
|
758 |
+
|
759 |
+
Parameters
|
760 |
+
----------
|
761 |
+
c1, c2 : array_like
|
762 |
+
1-D arrays of Chebyshev series coefficients ordered from low to
|
763 |
+
high.
|
764 |
+
|
765 |
+
Returns
|
766 |
+
-------
|
767 |
+
[quo, rem] : ndarrays
|
768 |
+
Of Chebyshev series coefficients representing the quotient and
|
769 |
+
remainder.
|
770 |
+
|
771 |
+
See Also
|
772 |
+
--------
|
773 |
+
chebadd, chebsub, chebmulx, chebmul, chebpow
|
774 |
+
|
775 |
+
Notes
|
776 |
+
-----
|
777 |
+
In general, the (polynomial) division of one C-series by another
|
778 |
+
results in quotient and remainder terms that are not in the Chebyshev
|
779 |
+
polynomial basis set. Thus, to express these results as C-series, it
|
780 |
+
is typically necessary to "reproject" the results onto said basis
|
781 |
+
set, which typically produces "unintuitive" (but correct) results;
|
782 |
+
see Examples section below.
|
783 |
+
|
784 |
+
Examples
|
785 |
+
--------
|
786 |
+
>>> from numpy.polynomial import chebyshev as C
|
787 |
+
>>> c1 = (1,2,3)
|
788 |
+
>>> c2 = (3,2,1)
|
789 |
+
>>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
|
790 |
+
(array([3.]), array([-8., -4.]))
|
791 |
+
>>> c2 = (0,1,2,3)
|
792 |
+
>>> C.chebdiv(c2,c1) # neither "intuitive"
|
793 |
+
(array([0., 2.]), array([-2., -4.]))
|
794 |
+
|
795 |
+
"""
|
796 |
+
# c1, c2 are trimmed copies
|
797 |
+
[c1, c2] = pu.as_series([c1, c2])
|
798 |
+
if c2[-1] == 0:
|
799 |
+
raise ZeroDivisionError()
|
800 |
+
|
801 |
+
# note: this is more efficient than `pu._div(chebmul, c1, c2)`
|
802 |
+
lc1 = len(c1)
|
803 |
+
lc2 = len(c2)
|
804 |
+
if lc1 < lc2:
|
805 |
+
return c1[:1]*0, c1
|
806 |
+
elif lc2 == 1:
|
807 |
+
return c1/c2[-1], c1[:1]*0
|
808 |
+
else:
|
809 |
+
z1 = _cseries_to_zseries(c1)
|
810 |
+
z2 = _cseries_to_zseries(c2)
|
811 |
+
quo, rem = _zseries_div(z1, z2)
|
812 |
+
quo = pu.trimseq(_zseries_to_cseries(quo))
|
813 |
+
rem = pu.trimseq(_zseries_to_cseries(rem))
|
814 |
+
return quo, rem
|
815 |
+
|
816 |
+
|
817 |
+
def chebpow(c, pow, maxpower=16):
|
818 |
+
"""Raise a Chebyshev series to a power.
|
819 |
+
|
820 |
+
Returns the Chebyshev series `c` raised to the power `pow`. The
|
821 |
+
argument `c` is a sequence of coefficients ordered from low to high.
|
822 |
+
i.e., [1,2,3] is the series ``T_0 + 2*T_1 + 3*T_2.``
|
823 |
+
|
824 |
+
Parameters
|
825 |
+
----------
|
826 |
+
c : array_like
|
827 |
+
1-D array of Chebyshev series coefficients ordered from low to
|
828 |
+
high.
|
829 |
+
pow : integer
|
830 |
+
Power to which the series will be raised
|
831 |
+
maxpower : integer, optional
|
832 |
+
Maximum power allowed. This is mainly to limit growth of the series
|
833 |
+
to unmanageable size. Default is 16
|
834 |
+
|
835 |
+
Returns
|
836 |
+
-------
|
837 |
+
coef : ndarray
|
838 |
+
Chebyshev series of power.
|
839 |
+
|
840 |
+
See Also
|
841 |
+
--------
|
842 |
+
chebadd, chebsub, chebmulx, chebmul, chebdiv
|
843 |
+
|
844 |
+
Examples
|
845 |
+
--------
|
846 |
+
>>> from numpy.polynomial import chebyshev as C
|
847 |
+
>>> C.chebpow([1, 2, 3, 4], 2)
|
848 |
+
array([15.5, 22. , 16. , ..., 12.5, 12. , 8. ])
|
849 |
+
|
850 |
+
"""
|
851 |
+
# note: this is more efficient than `pu._pow(chebmul, c1, c2)`, as it
|
852 |
+
# avoids converting between z and c series repeatedly
|
853 |
+
|
854 |
+
# c is a trimmed copy
|
855 |
+
[c] = pu.as_series([c])
|
856 |
+
power = int(pow)
|
857 |
+
if power != pow or power < 0:
|
858 |
+
raise ValueError("Power must be a non-negative integer.")
|
859 |
+
elif maxpower is not None and power > maxpower:
|
860 |
+
raise ValueError("Power is too large")
|
861 |
+
elif power == 0:
|
862 |
+
return np.array([1], dtype=c.dtype)
|
863 |
+
elif power == 1:
|
864 |
+
return c
|
865 |
+
else:
|
866 |
+
# This can be made more efficient by using powers of two
|
867 |
+
# in the usual way.
|
868 |
+
zs = _cseries_to_zseries(c)
|
869 |
+
prd = zs
|
870 |
+
for i in range(2, power + 1):
|
871 |
+
prd = np.convolve(prd, zs)
|
872 |
+
return _zseries_to_cseries(prd)
|
873 |
+
|
874 |
+
|
875 |
+
def chebder(c, m=1, scl=1, axis=0):
|
876 |
+
"""
|
877 |
+
Differentiate a Chebyshev series.
|
878 |
+
|
879 |
+
Returns the Chebyshev series coefficients `c` differentiated `m` times
|
880 |
+
along `axis`. At each iteration the result is multiplied by `scl` (the
|
881 |
+
scaling factor is for use in a linear change of variable). The argument
|
882 |
+
`c` is an array of coefficients from low to high degree along each
|
883 |
+
axis, e.g., [1,2,3] represents the series ``1*T_0 + 2*T_1 + 3*T_2``
|
884 |
+
while [[1,2],[1,2]] represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) +
|
885 |
+
2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is
|
886 |
+
``y``.
|
887 |
+
|
888 |
+
Parameters
|
889 |
+
----------
|
890 |
+
c : array_like
|
891 |
+
Array of Chebyshev series coefficients. If c is multidimensional
|
892 |
+
the different axis correspond to different variables with the
|
893 |
+
degree in each axis given by the corresponding index.
|
894 |
+
m : int, optional
|
895 |
+
Number of derivatives taken, must be non-negative. (Default: 1)
|
896 |
+
scl : scalar, optional
|
897 |
+
Each differentiation is multiplied by `scl`. The end result is
|
898 |
+
multiplication by ``scl**m``. This is for use in a linear change of
|
899 |
+
variable. (Default: 1)
|
900 |
+
axis : int, optional
|
901 |
+
Axis over which the derivative is taken. (Default: 0).
|
902 |
+
|
903 |
+
.. versionadded:: 1.7.0
|
904 |
+
|
905 |
+
Returns
|
906 |
+
-------
|
907 |
+
der : ndarray
|
908 |
+
Chebyshev series of the derivative.
|
909 |
+
|
910 |
+
See Also
|
911 |
+
--------
|
912 |
+
chebint
|
913 |
+
|
914 |
+
Notes
|
915 |
+
-----
|
916 |
+
In general, the result of differentiating a C-series needs to be
|
917 |
+
"reprojected" onto the C-series basis set. Thus, typically, the
|
918 |
+
result of this function is "unintuitive," albeit correct; see Examples
|
919 |
+
section below.
|
920 |
+
|
921 |
+
Examples
|
922 |
+
--------
|
923 |
+
>>> from numpy.polynomial import chebyshev as C
|
924 |
+
>>> c = (1,2,3,4)
|
925 |
+
>>> C.chebder(c)
|
926 |
+
array([14., 12., 24.])
|
927 |
+
>>> C.chebder(c,3)
|
928 |
+
array([96.])
|
929 |
+
>>> C.chebder(c,scl=-1)
|
930 |
+
array([-14., -12., -24.])
|
931 |
+
>>> C.chebder(c,2,-1)
|
932 |
+
array([12., 96.])
|
933 |
+
|
934 |
+
"""
|
935 |
+
c = np.array(c, ndmin=1, copy=True)
|
936 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
937 |
+
c = c.astype(np.double)
|
938 |
+
cnt = pu._deprecate_as_int(m, "the order of derivation")
|
939 |
+
iaxis = pu._deprecate_as_int(axis, "the axis")
|
940 |
+
if cnt < 0:
|
941 |
+
raise ValueError("The order of derivation must be non-negative")
|
942 |
+
iaxis = normalize_axis_index(iaxis, c.ndim)
|
943 |
+
|
944 |
+
if cnt == 0:
|
945 |
+
return c
|
946 |
+
|
947 |
+
c = np.moveaxis(c, iaxis, 0)
|
948 |
+
n = len(c)
|
949 |
+
if cnt >= n:
|
950 |
+
c = c[:1]*0
|
951 |
+
else:
|
952 |
+
for i in range(cnt):
|
953 |
+
n = n - 1
|
954 |
+
c *= scl
|
955 |
+
der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
|
956 |
+
for j in range(n, 2, -1):
|
957 |
+
der[j - 1] = (2*j)*c[j]
|
958 |
+
c[j - 2] += (j*c[j])/(j - 2)
|
959 |
+
if n > 1:
|
960 |
+
der[1] = 4*c[2]
|
961 |
+
der[0] = c[1]
|
962 |
+
c = der
|
963 |
+
c = np.moveaxis(c, 0, iaxis)
|
964 |
+
return c
|
965 |
+
|
966 |
+
|
967 |
+
def chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
|
968 |
+
"""
|
969 |
+
Integrate a Chebyshev series.
|
970 |
+
|
971 |
+
Returns the Chebyshev series coefficients `c` integrated `m` times from
|
972 |
+
`lbnd` along `axis`. At each iteration the resulting series is
|
973 |
+
**multiplied** by `scl` and an integration constant, `k`, is added.
|
974 |
+
The scaling factor is for use in a linear change of variable. ("Buyer
|
975 |
+
beware": note that, depending on what one is doing, one may want `scl`
|
976 |
+
to be the reciprocal of what one might expect; for more information,
|
977 |
+
see the Notes section below.) The argument `c` is an array of
|
978 |
+
coefficients from low to high degree along each axis, e.g., [1,2,3]
|
979 |
+
represents the series ``T_0 + 2*T_1 + 3*T_2`` while [[1,2],[1,2]]
|
980 |
+
represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) +
|
981 |
+
2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
|
982 |
+
|
983 |
+
Parameters
|
984 |
+
----------
|
985 |
+
c : array_like
|
986 |
+
Array of Chebyshev series coefficients. If c is multidimensional
|
987 |
+
the different axis correspond to different variables with the
|
988 |
+
degree in each axis given by the corresponding index.
|
989 |
+
m : int, optional
|
990 |
+
Order of integration, must be positive. (Default: 1)
|
991 |
+
k : {[], list, scalar}, optional
|
992 |
+
Integration constant(s). The value of the first integral at zero
|
993 |
+
is the first value in the list, the value of the second integral
|
994 |
+
at zero is the second value, etc. If ``k == []`` (the default),
|
995 |
+
all constants are set to zero. If ``m == 1``, a single scalar can
|
996 |
+
be given instead of a list.
|
997 |
+
lbnd : scalar, optional
|
998 |
+
The lower bound of the integral. (Default: 0)
|
999 |
+
scl : scalar, optional
|
1000 |
+
Following each integration the result is *multiplied* by `scl`
|
1001 |
+
before the integration constant is added. (Default: 1)
|
1002 |
+
axis : int, optional
|
1003 |
+
Axis over which the integral is taken. (Default: 0).
|
1004 |
+
|
1005 |
+
.. versionadded:: 1.7.0
|
1006 |
+
|
1007 |
+
Returns
|
1008 |
+
-------
|
1009 |
+
S : ndarray
|
1010 |
+
C-series coefficients of the integral.
|
1011 |
+
|
1012 |
+
Raises
|
1013 |
+
------
|
1014 |
+
ValueError
|
1015 |
+
If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
|
1016 |
+
``np.ndim(scl) != 0``.
|
1017 |
+
|
1018 |
+
See Also
|
1019 |
+
--------
|
1020 |
+
chebder
|
1021 |
+
|
1022 |
+
Notes
|
1023 |
+
-----
|
1024 |
+
Note that the result of each integration is *multiplied* by `scl`.
|
1025 |
+
Why is this important to note? Say one is making a linear change of
|
1026 |
+
variable :math:`u = ax + b` in an integral relative to `x`. Then
|
1027 |
+
:math:`dx = du/a`, so one will need to set `scl` equal to
|
1028 |
+
:math:`1/a`- perhaps not what one would have first thought.
|
1029 |
+
|
1030 |
+
Also note that, in general, the result of integrating a C-series needs
|
1031 |
+
to be "reprojected" onto the C-series basis set. Thus, typically,
|
1032 |
+
the result of this function is "unintuitive," albeit correct; see
|
1033 |
+
Examples section below.
|
1034 |
+
|
1035 |
+
Examples
|
1036 |
+
--------
|
1037 |
+
>>> from numpy.polynomial import chebyshev as C
|
1038 |
+
>>> c = (1,2,3)
|
1039 |
+
>>> C.chebint(c)
|
1040 |
+
array([ 0.5, -0.5, 0.5, 0.5])
|
1041 |
+
>>> C.chebint(c,3)
|
1042 |
+
array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667, # may vary
|
1043 |
+
0.00625 ])
|
1044 |
+
>>> C.chebint(c, k=3)
|
1045 |
+
array([ 3.5, -0.5, 0.5, 0.5])
|
1046 |
+
>>> C.chebint(c,lbnd=-2)
|
1047 |
+
array([ 8.5, -0.5, 0.5, 0.5])
|
1048 |
+
>>> C.chebint(c,scl=-2)
|
1049 |
+
array([-1., 1., -1., -1.])
|
1050 |
+
|
1051 |
+
"""
|
1052 |
+
c = np.array(c, ndmin=1, copy=True)
|
1053 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
1054 |
+
c = c.astype(np.double)
|
1055 |
+
if not np.iterable(k):
|
1056 |
+
k = [k]
|
1057 |
+
cnt = pu._deprecate_as_int(m, "the order of integration")
|
1058 |
+
iaxis = pu._deprecate_as_int(axis, "the axis")
|
1059 |
+
if cnt < 0:
|
1060 |
+
raise ValueError("The order of integration must be non-negative")
|
1061 |
+
if len(k) > cnt:
|
1062 |
+
raise ValueError("Too many integration constants")
|
1063 |
+
if np.ndim(lbnd) != 0:
|
1064 |
+
raise ValueError("lbnd must be a scalar.")
|
1065 |
+
if np.ndim(scl) != 0:
|
1066 |
+
raise ValueError("scl must be a scalar.")
|
1067 |
+
iaxis = normalize_axis_index(iaxis, c.ndim)
|
1068 |
+
|
1069 |
+
if cnt == 0:
|
1070 |
+
return c
|
1071 |
+
|
1072 |
+
c = np.moveaxis(c, iaxis, 0)
|
1073 |
+
k = list(k) + [0]*(cnt - len(k))
|
1074 |
+
for i in range(cnt):
|
1075 |
+
n = len(c)
|
1076 |
+
c *= scl
|
1077 |
+
if n == 1 and np.all(c[0] == 0):
|
1078 |
+
c[0] += k[i]
|
1079 |
+
else:
|
1080 |
+
tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
|
1081 |
+
tmp[0] = c[0]*0
|
1082 |
+
tmp[1] = c[0]
|
1083 |
+
if n > 1:
|
1084 |
+
tmp[2] = c[1]/4
|
1085 |
+
for j in range(2, n):
|
1086 |
+
tmp[j + 1] = c[j]/(2*(j + 1))
|
1087 |
+
tmp[j - 1] -= c[j]/(2*(j - 1))
|
1088 |
+
tmp[0] += k[i] - chebval(lbnd, tmp)
|
1089 |
+
c = tmp
|
1090 |
+
c = np.moveaxis(c, 0, iaxis)
|
1091 |
+
return c
|
1092 |
+
|
1093 |
+
|
1094 |
+
def chebval(x, c, tensor=True):
|
1095 |
+
"""
|
1096 |
+
Evaluate a Chebyshev series at points x.
|
1097 |
+
|
1098 |
+
If `c` is of length `n + 1`, this function returns the value:
|
1099 |
+
|
1100 |
+
.. math:: p(x) = c_0 * T_0(x) + c_1 * T_1(x) + ... + c_n * T_n(x)
|
1101 |
+
|
1102 |
+
The parameter `x` is converted to an array only if it is a tuple or a
|
1103 |
+
list, otherwise it is treated as a scalar. In either case, either `x`
|
1104 |
+
or its elements must support multiplication and addition both with
|
1105 |
+
themselves and with the elements of `c`.
|
1106 |
+
|
1107 |
+
If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
|
1108 |
+
`c` is multidimensional, then the shape of the result depends on the
|
1109 |
+
value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
|
1110 |
+
x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
|
1111 |
+
scalars have shape (,).
|
1112 |
+
|
1113 |
+
Trailing zeros in the coefficients will be used in the evaluation, so
|
1114 |
+
they should be avoided if efficiency is a concern.
|
1115 |
+
|
1116 |
+
Parameters
|
1117 |
+
----------
|
1118 |
+
x : array_like, compatible object
|
1119 |
+
If `x` is a list or tuple, it is converted to an ndarray, otherwise
|
1120 |
+
it is left unchanged and treated as a scalar. In either case, `x`
|
1121 |
+
or its elements must support addition and multiplication with
|
1122 |
+
themselves and with the elements of `c`.
|
1123 |
+
c : array_like
|
1124 |
+
Array of coefficients ordered so that the coefficients for terms of
|
1125 |
+
degree n are contained in c[n]. If `c` is multidimensional the
|
1126 |
+
remaining indices enumerate multiple polynomials. In the two
|
1127 |
+
dimensional case the coefficients may be thought of as stored in
|
1128 |
+
the columns of `c`.
|
1129 |
+
tensor : boolean, optional
|
1130 |
+
If True, the shape of the coefficient array is extended with ones
|
1131 |
+
on the right, one for each dimension of `x`. Scalars have dimension 0
|
1132 |
+
for this action. The result is that every column of coefficients in
|
1133 |
+
`c` is evaluated for every element of `x`. If False, `x` is broadcast
|
1134 |
+
over the columns of `c` for the evaluation. This keyword is useful
|
1135 |
+
when `c` is multidimensional. The default value is True.
|
1136 |
+
|
1137 |
+
.. versionadded:: 1.7.0
|
1138 |
+
|
1139 |
+
Returns
|
1140 |
+
-------
|
1141 |
+
values : ndarray, algebra_like
|
1142 |
+
The shape of the return value is described above.
|
1143 |
+
|
1144 |
+
See Also
|
1145 |
+
--------
|
1146 |
+
chebval2d, chebgrid2d, chebval3d, chebgrid3d
|
1147 |
+
|
1148 |
+
Notes
|
1149 |
+
-----
|
1150 |
+
The evaluation uses Clenshaw recursion, aka synthetic division.
|
1151 |
+
|
1152 |
+
"""
|
1153 |
+
c = np.array(c, ndmin=1, copy=True)
|
1154 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
1155 |
+
c = c.astype(np.double)
|
1156 |
+
if isinstance(x, (tuple, list)):
|
1157 |
+
x = np.asarray(x)
|
1158 |
+
if isinstance(x, np.ndarray) and tensor:
|
1159 |
+
c = c.reshape(c.shape + (1,)*x.ndim)
|
1160 |
+
|
1161 |
+
if len(c) == 1:
|
1162 |
+
c0 = c[0]
|
1163 |
+
c1 = 0
|
1164 |
+
elif len(c) == 2:
|
1165 |
+
c0 = c[0]
|
1166 |
+
c1 = c[1]
|
1167 |
+
else:
|
1168 |
+
x2 = 2*x
|
1169 |
+
c0 = c[-2]
|
1170 |
+
c1 = c[-1]
|
1171 |
+
for i in range(3, len(c) + 1):
|
1172 |
+
tmp = c0
|
1173 |
+
c0 = c[-i] - c1
|
1174 |
+
c1 = tmp + c1*x2
|
1175 |
+
return c0 + c1*x
|
1176 |
+
|
1177 |
+
|
1178 |
+
def chebval2d(x, y, c):
|
1179 |
+
"""
|
1180 |
+
Evaluate a 2-D Chebyshev series at points (x, y).
|
1181 |
+
|
1182 |
+
This function returns the values:
|
1183 |
+
|
1184 |
+
.. math:: p(x,y) = \\sum_{i,j} c_{i,j} * T_i(x) * T_j(y)
|
1185 |
+
|
1186 |
+
The parameters `x` and `y` are converted to arrays only if they are
|
1187 |
+
tuples or a lists, otherwise they are treated as a scalars and they
|
1188 |
+
must have the same shape after conversion. In either case, either `x`
|
1189 |
+
and `y` or their elements must support multiplication and addition both
|
1190 |
+
with themselves and with the elements of `c`.
|
1191 |
+
|
1192 |
+
If `c` is a 1-D array a one is implicitly appended to its shape to make
|
1193 |
+
it 2-D. The shape of the result will be c.shape[2:] + x.shape.
|
1194 |
+
|
1195 |
+
Parameters
|
1196 |
+
----------
|
1197 |
+
x, y : array_like, compatible objects
|
1198 |
+
The two dimensional series is evaluated at the points `(x, y)`,
|
1199 |
+
where `x` and `y` must have the same shape. If `x` or `y` is a list
|
1200 |
+
or tuple, it is first converted to an ndarray, otherwise it is left
|
1201 |
+
unchanged and if it isn't an ndarray it is treated as a scalar.
|
1202 |
+
c : array_like
|
1203 |
+
Array of coefficients ordered so that the coefficient of the term
|
1204 |
+
of multi-degree i,j is contained in ``c[i,j]``. If `c` has
|
1205 |
+
dimension greater than 2 the remaining indices enumerate multiple
|
1206 |
+
sets of coefficients.
|
1207 |
+
|
1208 |
+
Returns
|
1209 |
+
-------
|
1210 |
+
values : ndarray, compatible object
|
1211 |
+
The values of the two dimensional Chebyshev series at points formed
|
1212 |
+
from pairs of corresponding values from `x` and `y`.
|
1213 |
+
|
1214 |
+
See Also
|
1215 |
+
--------
|
1216 |
+
chebval, chebgrid2d, chebval3d, chebgrid3d
|
1217 |
+
|
1218 |
+
Notes
|
1219 |
+
-----
|
1220 |
+
|
1221 |
+
.. versionadded:: 1.7.0
|
1222 |
+
|
1223 |
+
"""
|
1224 |
+
return pu._valnd(chebval, c, x, y)
|
1225 |
+
|
1226 |
+
|
1227 |
+
def chebgrid2d(x, y, c):
|
1228 |
+
"""
|
1229 |
+
Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.
|
1230 |
+
|
1231 |
+
This function returns the values:
|
1232 |
+
|
1233 |
+
.. math:: p(a,b) = \\sum_{i,j} c_{i,j} * T_i(a) * T_j(b),
|
1234 |
+
|
1235 |
+
where the points `(a, b)` consist of all pairs formed by taking
|
1236 |
+
`a` from `x` and `b` from `y`. The resulting points form a grid with
|
1237 |
+
`x` in the first dimension and `y` in the second.
|
1238 |
+
|
1239 |
+
The parameters `x` and `y` are converted to arrays only if they are
|
1240 |
+
tuples or a lists, otherwise they are treated as a scalars. In either
|
1241 |
+
case, either `x` and `y` or their elements must support multiplication
|
1242 |
+
and addition both with themselves and with the elements of `c`.
|
1243 |
+
|
1244 |
+
If `c` has fewer than two dimensions, ones are implicitly appended to
|
1245 |
+
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
|
1246 |
+
x.shape + y.shape.
|
1247 |
+
|
1248 |
+
Parameters
|
1249 |
+
----------
|
1250 |
+
x, y : array_like, compatible objects
|
1251 |
+
The two dimensional series is evaluated at the points in the
|
1252 |
+
Cartesian product of `x` and `y`. If `x` or `y` is a list or
|
1253 |
+
tuple, it is first converted to an ndarray, otherwise it is left
|
1254 |
+
unchanged and, if it isn't an ndarray, it is treated as a scalar.
|
1255 |
+
c : array_like
|
1256 |
+
Array of coefficients ordered so that the coefficient of the term of
|
1257 |
+
multi-degree i,j is contained in `c[i,j]`. If `c` has dimension
|
1258 |
+
greater than two the remaining indices enumerate multiple sets of
|
1259 |
+
coefficients.
|
1260 |
+
|
1261 |
+
Returns
|
1262 |
+
-------
|
1263 |
+
values : ndarray, compatible object
|
1264 |
+
The values of the two dimensional Chebyshev series at points in the
|
1265 |
+
Cartesian product of `x` and `y`.
|
1266 |
+
|
1267 |
+
See Also
|
1268 |
+
--------
|
1269 |
+
chebval, chebval2d, chebval3d, chebgrid3d
|
1270 |
+
|
1271 |
+
Notes
|
1272 |
+
-----
|
1273 |
+
|
1274 |
+
.. versionadded:: 1.7.0
|
1275 |
+
|
1276 |
+
"""
|
1277 |
+
return pu._gridnd(chebval, c, x, y)
|
1278 |
+
|
1279 |
+
|
1280 |
+
def chebval3d(x, y, z, c):
|
1281 |
+
"""
|
1282 |
+
Evaluate a 3-D Chebyshev series at points (x, y, z).
|
1283 |
+
|
1284 |
+
This function returns the values:
|
1285 |
+
|
1286 |
+
.. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * T_i(x) * T_j(y) * T_k(z)
|
1287 |
+
|
1288 |
+
The parameters `x`, `y`, and `z` are converted to arrays only if
|
1289 |
+
they are tuples or a lists, otherwise they are treated as a scalars and
|
1290 |
+
they must have the same shape after conversion. In either case, either
|
1291 |
+
`x`, `y`, and `z` or their elements must support multiplication and
|
1292 |
+
addition both with themselves and with the elements of `c`.
|
1293 |
+
|
1294 |
+
If `c` has fewer than 3 dimensions, ones are implicitly appended to its
|
1295 |
+
shape to make it 3-D. The shape of the result will be c.shape[3:] +
|
1296 |
+
x.shape.
|
1297 |
+
|
1298 |
+
Parameters
|
1299 |
+
----------
|
1300 |
+
x, y, z : array_like, compatible object
|
1301 |
+
The three dimensional series is evaluated at the points
|
1302 |
+
`(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
|
1303 |
+
any of `x`, `y`, or `z` is a list or tuple, it is first converted
|
1304 |
+
to an ndarray, otherwise it is left unchanged and if it isn't an
|
1305 |
+
ndarray it is treated as a scalar.
|
1306 |
+
c : array_like
|
1307 |
+
Array of coefficients ordered so that the coefficient of the term of
|
1308 |
+
multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
|
1309 |
+
greater than 3 the remaining indices enumerate multiple sets of
|
1310 |
+
coefficients.
|
1311 |
+
|
1312 |
+
Returns
|
1313 |
+
-------
|
1314 |
+
values : ndarray, compatible object
|
1315 |
+
The values of the multidimensional polynomial on points formed with
|
1316 |
+
triples of corresponding values from `x`, `y`, and `z`.
|
1317 |
+
|
1318 |
+
See Also
|
1319 |
+
--------
|
1320 |
+
chebval, chebval2d, chebgrid2d, chebgrid3d
|
1321 |
+
|
1322 |
+
Notes
|
1323 |
+
-----
|
1324 |
+
|
1325 |
+
.. versionadded:: 1.7.0
|
1326 |
+
|
1327 |
+
"""
|
1328 |
+
return pu._valnd(chebval, c, x, y, z)
|
1329 |
+
|
1330 |
+
|
1331 |
+
def chebgrid3d(x, y, z, c):
|
1332 |
+
"""
|
1333 |
+
Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.
|
1334 |
+
|
1335 |
+
This function returns the values:
|
1336 |
+
|
1337 |
+
.. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * T_i(a) * T_j(b) * T_k(c)
|
1338 |
+
|
1339 |
+
where the points `(a, b, c)` consist of all triples formed by taking
|
1340 |
+
`a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
|
1341 |
+
a grid with `x` in the first dimension, `y` in the second, and `z` in
|
1342 |
+
the third.
|
1343 |
+
|
1344 |
+
The parameters `x`, `y`, and `z` are converted to arrays only if they
|
1345 |
+
are tuples or a lists, otherwise they are treated as a scalars. In
|
1346 |
+
either case, either `x`, `y`, and `z` or their elements must support
|
1347 |
+
multiplication and addition both with themselves and with the elements
|
1348 |
+
of `c`.
|
1349 |
+
|
1350 |
+
If `c` has fewer than three dimensions, ones are implicitly appended to
|
1351 |
+
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
|
1352 |
+
x.shape + y.shape + z.shape.
|
1353 |
+
|
1354 |
+
Parameters
|
1355 |
+
----------
|
1356 |
+
x, y, z : array_like, compatible objects
|
1357 |
+
The three dimensional series is evaluated at the points in the
|
1358 |
+
Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
|
1359 |
+
list or tuple, it is first converted to an ndarray, otherwise it is
|
1360 |
+
left unchanged and, if it isn't an ndarray, it is treated as a
|
1361 |
+
scalar.
|
1362 |
+
c : array_like
|
1363 |
+
Array of coefficients ordered so that the coefficients for terms of
|
1364 |
+
degree i,j are contained in ``c[i,j]``. If `c` has dimension
|
1365 |
+
greater than two the remaining indices enumerate multiple sets of
|
1366 |
+
coefficients.
|
1367 |
+
|
1368 |
+
Returns
|
1369 |
+
-------
|
1370 |
+
values : ndarray, compatible object
|
1371 |
+
The values of the two dimensional polynomial at points in the Cartesian
|
1372 |
+
product of `x` and `y`.
|
1373 |
+
|
1374 |
+
See Also
|
1375 |
+
--------
|
1376 |
+
chebval, chebval2d, chebgrid2d, chebval3d
|
1377 |
+
|
1378 |
+
Notes
|
1379 |
+
-----
|
1380 |
+
|
1381 |
+
.. versionadded:: 1.7.0
|
1382 |
+
|
1383 |
+
"""
|
1384 |
+
return pu._gridnd(chebval, c, x, y, z)
|
1385 |
+
|
1386 |
+
|
1387 |
+
def chebvander(x, deg):
|
1388 |
+
"""Pseudo-Vandermonde matrix of given degree.
|
1389 |
+
|
1390 |
+
Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
|
1391 |
+
`x`. The pseudo-Vandermonde matrix is defined by
|
1392 |
+
|
1393 |
+
.. math:: V[..., i] = T_i(x),
|
1394 |
+
|
1395 |
+
where `0 <= i <= deg`. The leading indices of `V` index the elements of
|
1396 |
+
`x` and the last index is the degree of the Chebyshev polynomial.
|
1397 |
+
|
1398 |
+
If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
|
1399 |
+
matrix ``V = chebvander(x, n)``, then ``np.dot(V, c)`` and
|
1400 |
+
``chebval(x, c)`` are the same up to roundoff. This equivalence is
|
1401 |
+
useful both for least squares fitting and for the evaluation of a large
|
1402 |
+
number of Chebyshev series of the same degree and sample points.
|
1403 |
+
|
1404 |
+
Parameters
|
1405 |
+
----------
|
1406 |
+
x : array_like
|
1407 |
+
Array of points. The dtype is converted to float64 or complex128
|
1408 |
+
depending on whether any of the elements are complex. If `x` is
|
1409 |
+
scalar it is converted to a 1-D array.
|
1410 |
+
deg : int
|
1411 |
+
Degree of the resulting matrix.
|
1412 |
+
|
1413 |
+
Returns
|
1414 |
+
-------
|
1415 |
+
vander : ndarray
|
1416 |
+
The pseudo Vandermonde matrix. The shape of the returned matrix is
|
1417 |
+
``x.shape + (deg + 1,)``, where The last index is the degree of the
|
1418 |
+
corresponding Chebyshev polynomial. The dtype will be the same as
|
1419 |
+
the converted `x`.
|
1420 |
+
|
1421 |
+
"""
|
1422 |
+
ideg = pu._deprecate_as_int(deg, "deg")
|
1423 |
+
if ideg < 0:
|
1424 |
+
raise ValueError("deg must be non-negative")
|
1425 |
+
|
1426 |
+
x = np.array(x, copy=False, ndmin=1) + 0.0
|
1427 |
+
dims = (ideg + 1,) + x.shape
|
1428 |
+
dtyp = x.dtype
|
1429 |
+
v = np.empty(dims, dtype=dtyp)
|
1430 |
+
# Use forward recursion to generate the entries.
|
1431 |
+
v[0] = x*0 + 1
|
1432 |
+
if ideg > 0:
|
1433 |
+
x2 = 2*x
|
1434 |
+
v[1] = x
|
1435 |
+
for i in range(2, ideg + 1):
|
1436 |
+
v[i] = v[i-1]*x2 - v[i-2]
|
1437 |
+
return np.moveaxis(v, 0, -1)
|
1438 |
+
|
1439 |
+
|
1440 |
+
def chebvander2d(x, y, deg):
|
1441 |
+
"""Pseudo-Vandermonde matrix of given degrees.
|
1442 |
+
|
1443 |
+
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
|
1444 |
+
points `(x, y)`. The pseudo-Vandermonde matrix is defined by
|
1445 |
+
|
1446 |
+
.. math:: V[..., (deg[1] + 1)*i + j] = T_i(x) * T_j(y),
|
1447 |
+
|
1448 |
+
where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
|
1449 |
+
`V` index the points `(x, y)` and the last index encodes the degrees of
|
1450 |
+
the Chebyshev polynomials.
|
1451 |
+
|
1452 |
+
If ``V = chebvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
|
1453 |
+
correspond to the elements of a 2-D coefficient array `c` of shape
|
1454 |
+
(xdeg + 1, ydeg + 1) in the order
|
1455 |
+
|
1456 |
+
.. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
|
1457 |
+
|
1458 |
+
and ``np.dot(V, c.flat)`` and ``chebval2d(x, y, c)`` will be the same
|
1459 |
+
up to roundoff. This equivalence is useful both for least squares
|
1460 |
+
fitting and for the evaluation of a large number of 2-D Chebyshev
|
1461 |
+
series of the same degrees and sample points.
|
1462 |
+
|
1463 |
+
Parameters
|
1464 |
+
----------
|
1465 |
+
x, y : array_like
|
1466 |
+
Arrays of point coordinates, all of the same shape. The dtypes
|
1467 |
+
will be converted to either float64 or complex128 depending on
|
1468 |
+
whether any of the elements are complex. Scalars are converted to
|
1469 |
+
1-D arrays.
|
1470 |
+
deg : list of ints
|
1471 |
+
List of maximum degrees of the form [x_deg, y_deg].
|
1472 |
+
|
1473 |
+
Returns
|
1474 |
+
-------
|
1475 |
+
vander2d : ndarray
|
1476 |
+
The shape of the returned matrix is ``x.shape + (order,)``, where
|
1477 |
+
:math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
|
1478 |
+
as the converted `x` and `y`.
|
1479 |
+
|
1480 |
+
See Also
|
1481 |
+
--------
|
1482 |
+
chebvander, chebvander3d, chebval2d, chebval3d
|
1483 |
+
|
1484 |
+
Notes
|
1485 |
+
-----
|
1486 |
+
|
1487 |
+
.. versionadded:: 1.7.0
|
1488 |
+
|
1489 |
+
"""
|
1490 |
+
return pu._vander_nd_flat((chebvander, chebvander), (x, y), deg)
|
1491 |
+
|
1492 |
+
|
1493 |
+
def chebvander3d(x, y, z, deg):
|
1494 |
+
"""Pseudo-Vandermonde matrix of given degrees.
|
1495 |
+
|
1496 |
+
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
|
1497 |
+
points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
|
1498 |
+
then The pseudo-Vandermonde matrix is defined by
|
1499 |
+
|
1500 |
+
.. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = T_i(x)*T_j(y)*T_k(z),
|
1501 |
+
|
1502 |
+
where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
|
1503 |
+
indices of `V` index the points `(x, y, z)` and the last index encodes
|
1504 |
+
the degrees of the Chebyshev polynomials.
|
1505 |
+
|
1506 |
+
If ``V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
|
1507 |
+
of `V` correspond to the elements of a 3-D coefficient array `c` of
|
1508 |
+
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
|
1509 |
+
|
1510 |
+
.. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
|
1511 |
+
|
1512 |
+
and ``np.dot(V, c.flat)`` and ``chebval3d(x, y, z, c)`` will be the
|
1513 |
+
same up to roundoff. This equivalence is useful both for least squares
|
1514 |
+
fitting and for the evaluation of a large number of 3-D Chebyshev
|
1515 |
+
series of the same degrees and sample points.
|
1516 |
+
|
1517 |
+
Parameters
|
1518 |
+
----------
|
1519 |
+
x, y, z : array_like
|
1520 |
+
Arrays of point coordinates, all of the same shape. The dtypes will
|
1521 |
+
be converted to either float64 or complex128 depending on whether
|
1522 |
+
any of the elements are complex. Scalars are converted to 1-D
|
1523 |
+
arrays.
|
1524 |
+
deg : list of ints
|
1525 |
+
List of maximum degrees of the form [x_deg, y_deg, z_deg].
|
1526 |
+
|
1527 |
+
Returns
|
1528 |
+
-------
|
1529 |
+
vander3d : ndarray
|
1530 |
+
The shape of the returned matrix is ``x.shape + (order,)``, where
|
1531 |
+
:math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
|
1532 |
+
be the same as the converted `x`, `y`, and `z`.
|
1533 |
+
|
1534 |
+
See Also
|
1535 |
+
--------
|
1536 |
+
chebvander, chebvander3d, chebval2d, chebval3d
|
1537 |
+
|
1538 |
+
Notes
|
1539 |
+
-----
|
1540 |
+
|
1541 |
+
.. versionadded:: 1.7.0
|
1542 |
+
|
1543 |
+
"""
|
1544 |
+
return pu._vander_nd_flat((chebvander, chebvander, chebvander), (x, y, z), deg)
|
1545 |
+
|
1546 |
+
|
1547 |
+
def chebfit(x, y, deg, rcond=None, full=False, w=None):
|
1548 |
+
"""
|
1549 |
+
Least squares fit of Chebyshev series to data.
|
1550 |
+
|
1551 |
+
Return the coefficients of a Chebyshev series of degree `deg` that is the
|
1552 |
+
least squares fit to the data values `y` given at points `x`. If `y` is
|
1553 |
+
1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
|
1554 |
+
fits are done, one for each column of `y`, and the resulting
|
1555 |
+
coefficients are stored in the corresponding columns of a 2-D return.
|
1556 |
+
The fitted polynomial(s) are in the form
|
1557 |
+
|
1558 |
+
.. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x),
|
1559 |
+
|
1560 |
+
where `n` is `deg`.
|
1561 |
+
|
1562 |
+
Parameters
|
1563 |
+
----------
|
1564 |
+
x : array_like, shape (M,)
|
1565 |
+
x-coordinates of the M sample points ``(x[i], y[i])``.
|
1566 |
+
y : array_like, shape (M,) or (M, K)
|
1567 |
+
y-coordinates of the sample points. Several data sets of sample
|
1568 |
+
points sharing the same x-coordinates can be fitted at once by
|
1569 |
+
passing in a 2D-array that contains one dataset per column.
|
1570 |
+
deg : int or 1-D array_like
|
1571 |
+
Degree(s) of the fitting polynomials. If `deg` is a single integer,
|
1572 |
+
all terms up to and including the `deg`'th term are included in the
|
1573 |
+
fit. For NumPy versions >= 1.11.0 a list of integers specifying the
|
1574 |
+
degrees of the terms to include may be used instead.
|
1575 |
+
rcond : float, optional
|
1576 |
+
Relative condition number of the fit. Singular values smaller than
|
1577 |
+
this relative to the largest singular value will be ignored. The
|
1578 |
+
default value is len(x)*eps, where eps is the relative precision of
|
1579 |
+
the float type, about 2e-16 in most cases.
|
1580 |
+
full : bool, optional
|
1581 |
+
Switch determining nature of return value. When it is False (the
|
1582 |
+
default) just the coefficients are returned, when True diagnostic
|
1583 |
+
information from the singular value decomposition is also returned.
|
1584 |
+
w : array_like, shape (`M`,), optional
|
1585 |
+
Weights. If not None, the weight ``w[i]`` applies to the unsquared
|
1586 |
+
residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
|
1587 |
+
chosen so that the errors of the products ``w[i]*y[i]`` all have the
|
1588 |
+
same variance. When using inverse-variance weighting, use
|
1589 |
+
``w[i] = 1/sigma(y[i])``. The default value is None.
|
1590 |
+
|
1591 |
+
.. versionadded:: 1.5.0
|
1592 |
+
|
1593 |
+
Returns
|
1594 |
+
-------
|
1595 |
+
coef : ndarray, shape (M,) or (M, K)
|
1596 |
+
Chebyshev coefficients ordered from low to high. If `y` was 2-D,
|
1597 |
+
the coefficients for the data in column k of `y` are in column
|
1598 |
+
`k`.
|
1599 |
+
|
1600 |
+
[residuals, rank, singular_values, rcond] : list
|
1601 |
+
These values are only returned if ``full == True``
|
1602 |
+
|
1603 |
+
- residuals -- sum of squared residuals of the least squares fit
|
1604 |
+
- rank -- the numerical rank of the scaled Vandermonde matrix
|
1605 |
+
- singular_values -- singular values of the scaled Vandermonde matrix
|
1606 |
+
- rcond -- value of `rcond`.
|
1607 |
+
|
1608 |
+
For more details, see `numpy.linalg.lstsq`.
|
1609 |
+
|
1610 |
+
Warns
|
1611 |
+
-----
|
1612 |
+
RankWarning
|
1613 |
+
The rank of the coefficient matrix in the least-squares fit is
|
1614 |
+
deficient. The warning is only raised if ``full == False``. The
|
1615 |
+
warnings can be turned off by
|
1616 |
+
|
1617 |
+
>>> import warnings
|
1618 |
+
>>> warnings.simplefilter('ignore', np.RankWarning)
|
1619 |
+
|
1620 |
+
See Also
|
1621 |
+
--------
|
1622 |
+
numpy.polynomial.polynomial.polyfit
|
1623 |
+
numpy.polynomial.legendre.legfit
|
1624 |
+
numpy.polynomial.laguerre.lagfit
|
1625 |
+
numpy.polynomial.hermite.hermfit
|
1626 |
+
numpy.polynomial.hermite_e.hermefit
|
1627 |
+
chebval : Evaluates a Chebyshev series.
|
1628 |
+
chebvander : Vandermonde matrix of Chebyshev series.
|
1629 |
+
chebweight : Chebyshev weight function.
|
1630 |
+
numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
|
1631 |
+
scipy.interpolate.UnivariateSpline : Computes spline fits.
|
1632 |
+
|
1633 |
+
Notes
|
1634 |
+
-----
|
1635 |
+
The solution is the coefficients of the Chebyshev series `p` that
|
1636 |
+
minimizes the sum of the weighted squared errors
|
1637 |
+
|
1638 |
+
.. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
|
1639 |
+
|
1640 |
+
where :math:`w_j` are the weights. This problem is solved by setting up
|
1641 |
+
as the (typically) overdetermined matrix equation
|
1642 |
+
|
1643 |
+
.. math:: V(x) * c = w * y,
|
1644 |
+
|
1645 |
+
where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
|
1646 |
+
coefficients to be solved for, `w` are the weights, and `y` are the
|
1647 |
+
observed values. This equation is then solved using the singular value
|
1648 |
+
decomposition of `V`.
|
1649 |
+
|
1650 |
+
If some of the singular values of `V` are so small that they are
|
1651 |
+
neglected, then a `RankWarning` will be issued. This means that the
|
1652 |
+
coefficient values may be poorly determined. Using a lower order fit
|
1653 |
+
will usually get rid of the warning. The `rcond` parameter can also be
|
1654 |
+
set to a value smaller than its default, but the resulting fit may be
|
1655 |
+
spurious and have large contributions from roundoff error.
|
1656 |
+
|
1657 |
+
Fits using Chebyshev series are usually better conditioned than fits
|
1658 |
+
using power series, but much can depend on the distribution of the
|
1659 |
+
sample points and the smoothness of the data. If the quality of the fit
|
1660 |
+
is inadequate splines may be a good alternative.
|
1661 |
+
|
1662 |
+
References
|
1663 |
+
----------
|
1664 |
+
.. [1] Wikipedia, "Curve fitting",
|
1665 |
+
https://en.wikipedia.org/wiki/Curve_fitting
|
1666 |
+
|
1667 |
+
Examples
|
1668 |
+
--------
|
1669 |
+
|
1670 |
+
"""
|
1671 |
+
return pu._fit(chebvander, x, y, deg, rcond, full, w)
|
1672 |
+
|
1673 |
+
|
1674 |
+
def chebcompanion(c):
|
1675 |
+
"""Return the scaled companion matrix of c.
|
1676 |
+
|
1677 |
+
The basis polynomials are scaled so that the companion matrix is
|
1678 |
+
symmetric when `c` is a Chebyshev basis polynomial. This provides
|
1679 |
+
better eigenvalue estimates than the unscaled case and for basis
|
1680 |
+
polynomials the eigenvalues are guaranteed to be real if
|
1681 |
+
`numpy.linalg.eigvalsh` is used to obtain them.
|
1682 |
+
|
1683 |
+
Parameters
|
1684 |
+
----------
|
1685 |
+
c : array_like
|
1686 |
+
1-D array of Chebyshev series coefficients ordered from low to high
|
1687 |
+
degree.
|
1688 |
+
|
1689 |
+
Returns
|
1690 |
+
-------
|
1691 |
+
mat : ndarray
|
1692 |
+
Scaled companion matrix of dimensions (deg, deg).
|
1693 |
+
|
1694 |
+
Notes
|
1695 |
+
-----
|
1696 |
+
|
1697 |
+
.. versionadded:: 1.7.0
|
1698 |
+
|
1699 |
+
"""
|
1700 |
+
# c is a trimmed copy
|
1701 |
+
[c] = pu.as_series([c])
|
1702 |
+
if len(c) < 2:
|
1703 |
+
raise ValueError('Series must have maximum degree of at least 1.')
|
1704 |
+
if len(c) == 2:
|
1705 |
+
return np.array([[-c[0]/c[1]]])
|
1706 |
+
|
1707 |
+
n = len(c) - 1
|
1708 |
+
mat = np.zeros((n, n), dtype=c.dtype)
|
1709 |
+
scl = np.array([1.] + [np.sqrt(.5)]*(n-1))
|
1710 |
+
top = mat.reshape(-1)[1::n+1]
|
1711 |
+
bot = mat.reshape(-1)[n::n+1]
|
1712 |
+
top[0] = np.sqrt(.5)
|
1713 |
+
top[1:] = 1/2
|
1714 |
+
bot[...] = top
|
1715 |
+
mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*.5
|
1716 |
+
return mat
|
1717 |
+
|
1718 |
+
|
1719 |
+
def chebroots(c):
|
1720 |
+
"""
|
1721 |
+
Compute the roots of a Chebyshev series.
|
1722 |
+
|
1723 |
+
Return the roots (a.k.a. "zeros") of the polynomial
|
1724 |
+
|
1725 |
+
.. math:: p(x) = \\sum_i c[i] * T_i(x).
|
1726 |
+
|
1727 |
+
Parameters
|
1728 |
+
----------
|
1729 |
+
c : 1-D array_like
|
1730 |
+
1-D array of coefficients.
|
1731 |
+
|
1732 |
+
Returns
|
1733 |
+
-------
|
1734 |
+
out : ndarray
|
1735 |
+
Array of the roots of the series. If all the roots are real,
|
1736 |
+
then `out` is also real, otherwise it is complex.
|
1737 |
+
|
1738 |
+
See Also
|
1739 |
+
--------
|
1740 |
+
numpy.polynomial.polynomial.polyroots
|
1741 |
+
numpy.polynomial.legendre.legroots
|
1742 |
+
numpy.polynomial.laguerre.lagroots
|
1743 |
+
numpy.polynomial.hermite.hermroots
|
1744 |
+
numpy.polynomial.hermite_e.hermeroots
|
1745 |
+
|
1746 |
+
Notes
|
1747 |
+
-----
|
1748 |
+
The root estimates are obtained as the eigenvalues of the companion
|
1749 |
+
matrix, Roots far from the origin of the complex plane may have large
|
1750 |
+
errors due to the numerical instability of the series for such
|
1751 |
+
values. Roots with multiplicity greater than 1 will also show larger
|
1752 |
+
errors as the value of the series near such points is relatively
|
1753 |
+
insensitive to errors in the roots. Isolated roots near the origin can
|
1754 |
+
be improved by a few iterations of Newton's method.
|
1755 |
+
|
1756 |
+
The Chebyshev series basis polynomials aren't powers of `x` so the
|
1757 |
+
results of this function may seem unintuitive.
|
1758 |
+
|
1759 |
+
Examples
|
1760 |
+
--------
|
1761 |
+
>>> import numpy.polynomial.chebyshev as cheb
|
1762 |
+
>>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
|
1763 |
+
array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00]) # may vary
|
1764 |
+
|
1765 |
+
"""
|
1766 |
+
# c is a trimmed copy
|
1767 |
+
[c] = pu.as_series([c])
|
1768 |
+
if len(c) < 2:
|
1769 |
+
return np.array([], dtype=c.dtype)
|
1770 |
+
if len(c) == 2:
|
1771 |
+
return np.array([-c[0]/c[1]])
|
1772 |
+
|
1773 |
+
# rotated companion matrix reduces error
|
1774 |
+
m = chebcompanion(c)[::-1,::-1]
|
1775 |
+
r = la.eigvals(m)
|
1776 |
+
r.sort()
|
1777 |
+
return r
|
1778 |
+
|
1779 |
+
|
1780 |
+
def chebinterpolate(func, deg, args=()):
|
1781 |
+
"""Interpolate a function at the Chebyshev points of the first kind.
|
1782 |
+
|
1783 |
+
Returns the Chebyshev series that interpolates `func` at the Chebyshev
|
1784 |
+
points of the first kind in the interval [-1, 1]. The interpolating
|
1785 |
+
series tends to a minmax approximation to `func` with increasing `deg`
|
1786 |
+
if the function is continuous in the interval.
|
1787 |
+
|
1788 |
+
.. versionadded:: 1.14.0
|
1789 |
+
|
1790 |
+
Parameters
|
1791 |
+
----------
|
1792 |
+
func : function
|
1793 |
+
The function to be approximated. It must be a function of a single
|
1794 |
+
variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
|
1795 |
+
extra arguments passed in the `args` parameter.
|
1796 |
+
deg : int
|
1797 |
+
Degree of the interpolating polynomial
|
1798 |
+
args : tuple, optional
|
1799 |
+
Extra arguments to be used in the function call. Default is no extra
|
1800 |
+
arguments.
|
1801 |
+
|
1802 |
+
Returns
|
1803 |
+
-------
|
1804 |
+
coef : ndarray, shape (deg + 1,)
|
1805 |
+
Chebyshev coefficients of the interpolating series ordered from low to
|
1806 |
+
high.
|
1807 |
+
|
1808 |
+
Examples
|
1809 |
+
--------
|
1810 |
+
>>> import numpy.polynomial.chebyshev as C
|
1811 |
+
>>> C.chebfromfunction(lambda x: np.tanh(x) + 0.5, 8)
|
1812 |
+
array([ 5.00000000e-01, 8.11675684e-01, -9.86864911e-17,
|
1813 |
+
-5.42457905e-02, -2.71387850e-16, 4.51658839e-03,
|
1814 |
+
2.46716228e-17, -3.79694221e-04, -3.26899002e-16])
|
1815 |
+
|
1816 |
+
Notes
|
1817 |
+
-----
|
1818 |
+
|
1819 |
+
The Chebyshev polynomials used in the interpolation are orthogonal when
|
1820 |
+
sampled at the Chebyshev points of the first kind. If it is desired to
|
1821 |
+
constrain some of the coefficients they can simply be set to the desired
|
1822 |
+
value after the interpolation, no new interpolation or fit is needed. This
|
1823 |
+
is especially useful if it is known apriori that some of coefficients are
|
1824 |
+
zero. For instance, if the function is even then the coefficients of the
|
1825 |
+
terms of odd degree in the result can be set to zero.
|
1826 |
+
|
1827 |
+
"""
|
1828 |
+
deg = np.asarray(deg)
|
1829 |
+
|
1830 |
+
# check arguments.
|
1831 |
+
if deg.ndim > 0 or deg.dtype.kind not in 'iu' or deg.size == 0:
|
1832 |
+
raise TypeError("deg must be an int")
|
1833 |
+
if deg < 0:
|
1834 |
+
raise ValueError("expected deg >= 0")
|
1835 |
+
|
1836 |
+
order = deg + 1
|
1837 |
+
xcheb = chebpts1(order)
|
1838 |
+
yfunc = func(xcheb, *args)
|
1839 |
+
m = chebvander(xcheb, deg)
|
1840 |
+
c = np.dot(m.T, yfunc)
|
1841 |
+
c[0] /= order
|
1842 |
+
c[1:] /= 0.5*order
|
1843 |
+
|
1844 |
+
return c
|
1845 |
+
|
1846 |
+
|
1847 |
+
def chebgauss(deg):
|
1848 |
+
"""
|
1849 |
+
Gauss-Chebyshev quadrature.
|
1850 |
+
|
1851 |
+
Computes the sample points and weights for Gauss-Chebyshev quadrature.
|
1852 |
+
These sample points and weights will correctly integrate polynomials of
|
1853 |
+
degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with
|
1854 |
+
the weight function :math:`f(x) = 1/\\sqrt{1 - x^2}`.
|
1855 |
+
|
1856 |
+
Parameters
|
1857 |
+
----------
|
1858 |
+
deg : int
|
1859 |
+
Number of sample points and weights. It must be >= 1.
|
1860 |
+
|
1861 |
+
Returns
|
1862 |
+
-------
|
1863 |
+
x : ndarray
|
1864 |
+
1-D ndarray containing the sample points.
|
1865 |
+
y : ndarray
|
1866 |
+
1-D ndarray containing the weights.
|
1867 |
+
|
1868 |
+
Notes
|
1869 |
+
-----
|
1870 |
+
|
1871 |
+
.. versionadded:: 1.7.0
|
1872 |
+
|
1873 |
+
The results have only been tested up to degree 100, higher degrees may
|
1874 |
+
be problematic. For Gauss-Chebyshev there are closed form solutions for
|
1875 |
+
the sample points and weights. If n = `deg`, then
|
1876 |
+
|
1877 |
+
.. math:: x_i = \\cos(\\pi (2 i - 1) / (2 n))
|
1878 |
+
|
1879 |
+
.. math:: w_i = \\pi / n
|
1880 |
+
|
1881 |
+
"""
|
1882 |
+
ideg = pu._deprecate_as_int(deg, "deg")
|
1883 |
+
if ideg <= 0:
|
1884 |
+
raise ValueError("deg must be a positive integer")
|
1885 |
+
|
1886 |
+
x = np.cos(np.pi * np.arange(1, 2*ideg, 2) / (2.0*ideg))
|
1887 |
+
w = np.ones(ideg)*(np.pi/ideg)
|
1888 |
+
|
1889 |
+
return x, w
|
1890 |
+
|
1891 |
+
|
1892 |
+
def chebweight(x):
|
1893 |
+
"""
|
1894 |
+
The weight function of the Chebyshev polynomials.
|
1895 |
+
|
1896 |
+
The weight function is :math:`1/\\sqrt{1 - x^2}` and the interval of
|
1897 |
+
integration is :math:`[-1, 1]`. The Chebyshev polynomials are
|
1898 |
+
orthogonal, but not normalized, with respect to this weight function.
|
1899 |
+
|
1900 |
+
Parameters
|
1901 |
+
----------
|
1902 |
+
x : array_like
|
1903 |
+
Values at which the weight function will be computed.
|
1904 |
+
|
1905 |
+
Returns
|
1906 |
+
-------
|
1907 |
+
w : ndarray
|
1908 |
+
The weight function at `x`.
|
1909 |
+
|
1910 |
+
Notes
|
1911 |
+
-----
|
1912 |
+
|
1913 |
+
.. versionadded:: 1.7.0
|
1914 |
+
|
1915 |
+
"""
|
1916 |
+
w = 1./(np.sqrt(1. + x) * np.sqrt(1. - x))
|
1917 |
+
return w
|
1918 |
+
|
1919 |
+
|
1920 |
+
def chebpts1(npts):
|
1921 |
+
"""
|
1922 |
+
Chebyshev points of the first kind.
|
1923 |
+
|
1924 |
+
The Chebyshev points of the first kind are the points ``cos(x)``,
|
1925 |
+
where ``x = [pi*(k + .5)/npts for k in range(npts)]``.
|
1926 |
+
|
1927 |
+
Parameters
|
1928 |
+
----------
|
1929 |
+
npts : int
|
1930 |
+
Number of sample points desired.
|
1931 |
+
|
1932 |
+
Returns
|
1933 |
+
-------
|
1934 |
+
pts : ndarray
|
1935 |
+
The Chebyshev points of the first kind.
|
1936 |
+
|
1937 |
+
See Also
|
1938 |
+
--------
|
1939 |
+
chebpts2
|
1940 |
+
|
1941 |
+
Notes
|
1942 |
+
-----
|
1943 |
+
|
1944 |
+
.. versionadded:: 1.5.0
|
1945 |
+
|
1946 |
+
"""
|
1947 |
+
_npts = int(npts)
|
1948 |
+
if _npts != npts:
|
1949 |
+
raise ValueError("npts must be integer")
|
1950 |
+
if _npts < 1:
|
1951 |
+
raise ValueError("npts must be >= 1")
|
1952 |
+
|
1953 |
+
x = 0.5 * np.pi / _npts * np.arange(-_npts+1, _npts+1, 2)
|
1954 |
+
return np.sin(x)
|
1955 |
+
|
1956 |
+
|
1957 |
+
def chebpts2(npts):
|
1958 |
+
"""
|
1959 |
+
Chebyshev points of the second kind.
|
1960 |
+
|
1961 |
+
The Chebyshev points of the second kind are the points ``cos(x)``,
|
1962 |
+
where ``x = [pi*k/(npts - 1) for k in range(npts)]`` sorted in ascending
|
1963 |
+
order.
|
1964 |
+
|
1965 |
+
Parameters
|
1966 |
+
----------
|
1967 |
+
npts : int
|
1968 |
+
Number of sample points desired.
|
1969 |
+
|
1970 |
+
Returns
|
1971 |
+
-------
|
1972 |
+
pts : ndarray
|
1973 |
+
The Chebyshev points of the second kind.
|
1974 |
+
|
1975 |
+
Notes
|
1976 |
+
-----
|
1977 |
+
|
1978 |
+
.. versionadded:: 1.5.0
|
1979 |
+
|
1980 |
+
"""
|
1981 |
+
_npts = int(npts)
|
1982 |
+
if _npts != npts:
|
1983 |
+
raise ValueError("npts must be integer")
|
1984 |
+
if _npts < 2:
|
1985 |
+
raise ValueError("npts must be >= 2")
|
1986 |
+
|
1987 |
+
x = np.linspace(-np.pi, 0, _npts)
|
1988 |
+
return np.cos(x)
|
1989 |
+
|
1990 |
+
|
1991 |
+
#
|
1992 |
+
# Chebyshev series class
|
1993 |
+
#
|
1994 |
+
|
1995 |
+
class Chebyshev(ABCPolyBase):
|
1996 |
+
"""A Chebyshev series class.
|
1997 |
+
|
1998 |
+
The Chebyshev class provides the standard Python numerical methods
|
1999 |
+
'+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
|
2000 |
+
methods listed below.
|
2001 |
+
|
2002 |
+
Parameters
|
2003 |
+
----------
|
2004 |
+
coef : array_like
|
2005 |
+
Chebyshev coefficients in order of increasing degree, i.e.,
|
2006 |
+
``(1, 2, 3)`` gives ``1*T_0(x) + 2*T_1(x) + 3*T_2(x)``.
|
2007 |
+
domain : (2,) array_like, optional
|
2008 |
+
Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
|
2009 |
+
to the interval ``[window[0], window[1]]`` by shifting and scaling.
|
2010 |
+
The default value is [-1, 1].
|
2011 |
+
window : (2,) array_like, optional
|
2012 |
+
Window, see `domain` for its use. The default value is [-1, 1].
|
2013 |
+
|
2014 |
+
.. versionadded:: 1.6.0
|
2015 |
+
symbol : str, optional
|
2016 |
+
Symbol used to represent the independent variable in string
|
2017 |
+
representations of the polynomial expression, e.g. for printing.
|
2018 |
+
The symbol must be a valid Python identifier. Default value is 'x'.
|
2019 |
+
|
2020 |
+
.. versionadded:: 1.24
|
2021 |
+
|
2022 |
+
"""
|
2023 |
+
# Virtual Functions
|
2024 |
+
_add = staticmethod(chebadd)
|
2025 |
+
_sub = staticmethod(chebsub)
|
2026 |
+
_mul = staticmethod(chebmul)
|
2027 |
+
_div = staticmethod(chebdiv)
|
2028 |
+
_pow = staticmethod(chebpow)
|
2029 |
+
_val = staticmethod(chebval)
|
2030 |
+
_int = staticmethod(chebint)
|
2031 |
+
_der = staticmethod(chebder)
|
2032 |
+
_fit = staticmethod(chebfit)
|
2033 |
+
_line = staticmethod(chebline)
|
2034 |
+
_roots = staticmethod(chebroots)
|
2035 |
+
_fromroots = staticmethod(chebfromroots)
|
2036 |
+
|
2037 |
+
@classmethod
|
2038 |
+
def interpolate(cls, func, deg, domain=None, args=()):
|
2039 |
+
"""Interpolate a function at the Chebyshev points of the first kind.
|
2040 |
+
|
2041 |
+
Returns the series that interpolates `func` at the Chebyshev points of
|
2042 |
+
the first kind scaled and shifted to the `domain`. The resulting series
|
2043 |
+
tends to a minmax approximation of `func` when the function is
|
2044 |
+
continuous in the domain.
|
2045 |
+
|
2046 |
+
.. versionadded:: 1.14.0
|
2047 |
+
|
2048 |
+
Parameters
|
2049 |
+
----------
|
2050 |
+
func : function
|
2051 |
+
The function to be interpolated. It must be a function of a single
|
2052 |
+
variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
|
2053 |
+
extra arguments passed in the `args` parameter.
|
2054 |
+
deg : int
|
2055 |
+
Degree of the interpolating polynomial.
|
2056 |
+
domain : {None, [beg, end]}, optional
|
2057 |
+
Domain over which `func` is interpolated. The default is None, in
|
2058 |
+
which case the domain is [-1, 1].
|
2059 |
+
args : tuple, optional
|
2060 |
+
Extra arguments to be used in the function call. Default is no
|
2061 |
+
extra arguments.
|
2062 |
+
|
2063 |
+
Returns
|
2064 |
+
-------
|
2065 |
+
polynomial : Chebyshev instance
|
2066 |
+
Interpolating Chebyshev instance.
|
2067 |
+
|
2068 |
+
Notes
|
2069 |
+
-----
|
2070 |
+
See `numpy.polynomial.chebfromfunction` for more details.
|
2071 |
+
|
2072 |
+
"""
|
2073 |
+
if domain is None:
|
2074 |
+
domain = cls.domain
|
2075 |
+
xfunc = lambda x: func(pu.mapdomain(x, cls.window, domain), *args)
|
2076 |
+
coef = chebinterpolate(xfunc, deg)
|
2077 |
+
return cls(coef, domain=domain)
|
2078 |
+
|
2079 |
+
# Virtual properties
|
2080 |
+
domain = np.array(chebdomain)
|
2081 |
+
window = np.array(chebdomain)
|
2082 |
+
basis_name = 'T'
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/chebyshev.pyi
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from numpy import ndarray, dtype, int_
|
4 |
+
from numpy.polynomial._polybase import ABCPolyBase
|
5 |
+
from numpy.polynomial.polyutils import trimcoef
|
6 |
+
|
7 |
+
__all__: list[str]
|
8 |
+
|
9 |
+
chebtrim = trimcoef
|
10 |
+
|
11 |
+
def poly2cheb(pol): ...
|
12 |
+
def cheb2poly(c): ...
|
13 |
+
|
14 |
+
chebdomain: ndarray[Any, dtype[int_]]
|
15 |
+
chebzero: ndarray[Any, dtype[int_]]
|
16 |
+
chebone: ndarray[Any, dtype[int_]]
|
17 |
+
chebx: ndarray[Any, dtype[int_]]
|
18 |
+
|
19 |
+
def chebline(off, scl): ...
|
20 |
+
def chebfromroots(roots): ...
|
21 |
+
def chebadd(c1, c2): ...
|
22 |
+
def chebsub(c1, c2): ...
|
23 |
+
def chebmulx(c): ...
|
24 |
+
def chebmul(c1, c2): ...
|
25 |
+
def chebdiv(c1, c2): ...
|
26 |
+
def chebpow(c, pow, maxpower=...): ...
|
27 |
+
def chebder(c, m=..., scl=..., axis=...): ...
|
28 |
+
def chebint(c, m=..., k = ..., lbnd=..., scl=..., axis=...): ...
|
29 |
+
def chebval(x, c, tensor=...): ...
|
30 |
+
def chebval2d(x, y, c): ...
|
31 |
+
def chebgrid2d(x, y, c): ...
|
32 |
+
def chebval3d(x, y, z, c): ...
|
33 |
+
def chebgrid3d(x, y, z, c): ...
|
34 |
+
def chebvander(x, deg): ...
|
35 |
+
def chebvander2d(x, y, deg): ...
|
36 |
+
def chebvander3d(x, y, z, deg): ...
|
37 |
+
def chebfit(x, y, deg, rcond=..., full=..., w=...): ...
|
38 |
+
def chebcompanion(c): ...
|
39 |
+
def chebroots(c): ...
|
40 |
+
def chebinterpolate(func, deg, args = ...): ...
|
41 |
+
def chebgauss(deg): ...
|
42 |
+
def chebweight(x): ...
|
43 |
+
def chebpts1(npts): ...
|
44 |
+
def chebpts2(npts): ...
|
45 |
+
|
46 |
+
class Chebyshev(ABCPolyBase):
|
47 |
+
@classmethod
|
48 |
+
def interpolate(cls, func, deg, domain=..., args = ...): ...
|
49 |
+
domain: Any
|
50 |
+
window: Any
|
51 |
+
basis_name: Any
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/hermite.py
ADDED
@@ -0,0 +1,1703 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
==============================================================
|
3 |
+
Hermite Series, "Physicists" (:mod:`numpy.polynomial.hermite`)
|
4 |
+
==============================================================
|
5 |
+
|
6 |
+
This module provides a number of objects (mostly functions) useful for
|
7 |
+
dealing with Hermite series, including a `Hermite` class that
|
8 |
+
encapsulates the usual arithmetic operations. (General information
|
9 |
+
on how this module represents and works with such polynomials is in the
|
10 |
+
docstring for its "parent" sub-package, `numpy.polynomial`).
|
11 |
+
|
12 |
+
Classes
|
13 |
+
-------
|
14 |
+
.. autosummary::
|
15 |
+
:toctree: generated/
|
16 |
+
|
17 |
+
Hermite
|
18 |
+
|
19 |
+
Constants
|
20 |
+
---------
|
21 |
+
.. autosummary::
|
22 |
+
:toctree: generated/
|
23 |
+
|
24 |
+
hermdomain
|
25 |
+
hermzero
|
26 |
+
hermone
|
27 |
+
hermx
|
28 |
+
|
29 |
+
Arithmetic
|
30 |
+
----------
|
31 |
+
.. autosummary::
|
32 |
+
:toctree: generated/
|
33 |
+
|
34 |
+
hermadd
|
35 |
+
hermsub
|
36 |
+
hermmulx
|
37 |
+
hermmul
|
38 |
+
hermdiv
|
39 |
+
hermpow
|
40 |
+
hermval
|
41 |
+
hermval2d
|
42 |
+
hermval3d
|
43 |
+
hermgrid2d
|
44 |
+
hermgrid3d
|
45 |
+
|
46 |
+
Calculus
|
47 |
+
--------
|
48 |
+
.. autosummary::
|
49 |
+
:toctree: generated/
|
50 |
+
|
51 |
+
hermder
|
52 |
+
hermint
|
53 |
+
|
54 |
+
Misc Functions
|
55 |
+
--------------
|
56 |
+
.. autosummary::
|
57 |
+
:toctree: generated/
|
58 |
+
|
59 |
+
hermfromroots
|
60 |
+
hermroots
|
61 |
+
hermvander
|
62 |
+
hermvander2d
|
63 |
+
hermvander3d
|
64 |
+
hermgauss
|
65 |
+
hermweight
|
66 |
+
hermcompanion
|
67 |
+
hermfit
|
68 |
+
hermtrim
|
69 |
+
hermline
|
70 |
+
herm2poly
|
71 |
+
poly2herm
|
72 |
+
|
73 |
+
See also
|
74 |
+
--------
|
75 |
+
`numpy.polynomial`
|
76 |
+
|
77 |
+
"""
|
78 |
+
import numpy as np
|
79 |
+
import numpy.linalg as la
|
80 |
+
from numpy.core.multiarray import normalize_axis_index
|
81 |
+
|
82 |
+
from . import polyutils as pu
|
83 |
+
from ._polybase import ABCPolyBase
|
84 |
+
|
85 |
+
__all__ = [
|
86 |
+
'hermzero', 'hermone', 'hermx', 'hermdomain', 'hermline', 'hermadd',
|
87 |
+
'hermsub', 'hermmulx', 'hermmul', 'hermdiv', 'hermpow', 'hermval',
|
88 |
+
'hermder', 'hermint', 'herm2poly', 'poly2herm', 'hermfromroots',
|
89 |
+
'hermvander', 'hermfit', 'hermtrim', 'hermroots', 'Hermite',
|
90 |
+
'hermval2d', 'hermval3d', 'hermgrid2d', 'hermgrid3d', 'hermvander2d',
|
91 |
+
'hermvander3d', 'hermcompanion', 'hermgauss', 'hermweight']
|
92 |
+
|
93 |
+
hermtrim = pu.trimcoef
|
94 |
+
|
95 |
+
|
96 |
+
def poly2herm(pol):
|
97 |
+
"""
|
98 |
+
poly2herm(pol)
|
99 |
+
|
100 |
+
Convert a polynomial to a Hermite series.
|
101 |
+
|
102 |
+
Convert an array representing the coefficients of a polynomial (relative
|
103 |
+
to the "standard" basis) ordered from lowest degree to highest, to an
|
104 |
+
array of the coefficients of the equivalent Hermite series, ordered
|
105 |
+
from lowest to highest degree.
|
106 |
+
|
107 |
+
Parameters
|
108 |
+
----------
|
109 |
+
pol : array_like
|
110 |
+
1-D array containing the polynomial coefficients
|
111 |
+
|
112 |
+
Returns
|
113 |
+
-------
|
114 |
+
c : ndarray
|
115 |
+
1-D array containing the coefficients of the equivalent Hermite
|
116 |
+
series.
|
117 |
+
|
118 |
+
See Also
|
119 |
+
--------
|
120 |
+
herm2poly
|
121 |
+
|
122 |
+
Notes
|
123 |
+
-----
|
124 |
+
The easy way to do conversions between polynomial basis sets
|
125 |
+
is to use the convert method of a class instance.
|
126 |
+
|
127 |
+
Examples
|
128 |
+
--------
|
129 |
+
>>> from numpy.polynomial.hermite import poly2herm
|
130 |
+
>>> poly2herm(np.arange(4))
|
131 |
+
array([1. , 2.75 , 0.5 , 0.375])
|
132 |
+
|
133 |
+
"""
|
134 |
+
[pol] = pu.as_series([pol])
|
135 |
+
deg = len(pol) - 1
|
136 |
+
res = 0
|
137 |
+
for i in range(deg, -1, -1):
|
138 |
+
res = hermadd(hermmulx(res), pol[i])
|
139 |
+
return res
|
140 |
+
|
141 |
+
|
142 |
+
def herm2poly(c):
|
143 |
+
"""
|
144 |
+
Convert a Hermite series to a polynomial.
|
145 |
+
|
146 |
+
Convert an array representing the coefficients of a Hermite series,
|
147 |
+
ordered from lowest degree to highest, to an array of the coefficients
|
148 |
+
of the equivalent polynomial (relative to the "standard" basis) ordered
|
149 |
+
from lowest to highest degree.
|
150 |
+
|
151 |
+
Parameters
|
152 |
+
----------
|
153 |
+
c : array_like
|
154 |
+
1-D array containing the Hermite series coefficients, ordered
|
155 |
+
from lowest order term to highest.
|
156 |
+
|
157 |
+
Returns
|
158 |
+
-------
|
159 |
+
pol : ndarray
|
160 |
+
1-D array containing the coefficients of the equivalent polynomial
|
161 |
+
(relative to the "standard" basis) ordered from lowest order term
|
162 |
+
to highest.
|
163 |
+
|
164 |
+
See Also
|
165 |
+
--------
|
166 |
+
poly2herm
|
167 |
+
|
168 |
+
Notes
|
169 |
+
-----
|
170 |
+
The easy way to do conversions between polynomial basis sets
|
171 |
+
is to use the convert method of a class instance.
|
172 |
+
|
173 |
+
Examples
|
174 |
+
--------
|
175 |
+
>>> from numpy.polynomial.hermite import herm2poly
|
176 |
+
>>> herm2poly([ 1. , 2.75 , 0.5 , 0.375])
|
177 |
+
array([0., 1., 2., 3.])
|
178 |
+
|
179 |
+
"""
|
180 |
+
from .polynomial import polyadd, polysub, polymulx
|
181 |
+
|
182 |
+
[c] = pu.as_series([c])
|
183 |
+
n = len(c)
|
184 |
+
if n == 1:
|
185 |
+
return c
|
186 |
+
if n == 2:
|
187 |
+
c[1] *= 2
|
188 |
+
return c
|
189 |
+
else:
|
190 |
+
c0 = c[-2]
|
191 |
+
c1 = c[-1]
|
192 |
+
# i is the current degree of c1
|
193 |
+
for i in range(n - 1, 1, -1):
|
194 |
+
tmp = c0
|
195 |
+
c0 = polysub(c[i - 2], c1*(2*(i - 1)))
|
196 |
+
c1 = polyadd(tmp, polymulx(c1)*2)
|
197 |
+
return polyadd(c0, polymulx(c1)*2)
|
198 |
+
|
199 |
+
#
|
200 |
+
# These are constant arrays are of integer type so as to be compatible
|
201 |
+
# with the widest range of other types, such as Decimal.
|
202 |
+
#
|
203 |
+
|
204 |
+
# Hermite
|
205 |
+
hermdomain = np.array([-1, 1])
|
206 |
+
|
207 |
+
# Hermite coefficients representing zero.
|
208 |
+
hermzero = np.array([0])
|
209 |
+
|
210 |
+
# Hermite coefficients representing one.
|
211 |
+
hermone = np.array([1])
|
212 |
+
|
213 |
+
# Hermite coefficients representing the identity x.
|
214 |
+
hermx = np.array([0, 1/2])
|
215 |
+
|
216 |
+
|
217 |
+
def hermline(off, scl):
|
218 |
+
"""
|
219 |
+
Hermite series whose graph is a straight line.
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
Parameters
|
224 |
+
----------
|
225 |
+
off, scl : scalars
|
226 |
+
The specified line is given by ``off + scl*x``.
|
227 |
+
|
228 |
+
Returns
|
229 |
+
-------
|
230 |
+
y : ndarray
|
231 |
+
This module's representation of the Hermite series for
|
232 |
+
``off + scl*x``.
|
233 |
+
|
234 |
+
See Also
|
235 |
+
--------
|
236 |
+
numpy.polynomial.polynomial.polyline
|
237 |
+
numpy.polynomial.chebyshev.chebline
|
238 |
+
numpy.polynomial.legendre.legline
|
239 |
+
numpy.polynomial.laguerre.lagline
|
240 |
+
numpy.polynomial.hermite_e.hermeline
|
241 |
+
|
242 |
+
Examples
|
243 |
+
--------
|
244 |
+
>>> from numpy.polynomial.hermite import hermline, hermval
|
245 |
+
>>> hermval(0,hermline(3, 2))
|
246 |
+
3.0
|
247 |
+
>>> hermval(1,hermline(3, 2))
|
248 |
+
5.0
|
249 |
+
|
250 |
+
"""
|
251 |
+
if scl != 0:
|
252 |
+
return np.array([off, scl/2])
|
253 |
+
else:
|
254 |
+
return np.array([off])
|
255 |
+
|
256 |
+
|
257 |
+
def hermfromroots(roots):
|
258 |
+
"""
|
259 |
+
Generate a Hermite series with given roots.
|
260 |
+
|
261 |
+
The function returns the coefficients of the polynomial
|
262 |
+
|
263 |
+
.. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
|
264 |
+
|
265 |
+
in Hermite form, where the `r_n` are the roots specified in `roots`.
|
266 |
+
If a zero has multiplicity n, then it must appear in `roots` n times.
|
267 |
+
For instance, if 2 is a root of multiplicity three and 3 is a root of
|
268 |
+
multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
|
269 |
+
roots can appear in any order.
|
270 |
+
|
271 |
+
If the returned coefficients are `c`, then
|
272 |
+
|
273 |
+
.. math:: p(x) = c_0 + c_1 * H_1(x) + ... + c_n * H_n(x)
|
274 |
+
|
275 |
+
The coefficient of the last term is not generally 1 for monic
|
276 |
+
polynomials in Hermite form.
|
277 |
+
|
278 |
+
Parameters
|
279 |
+
----------
|
280 |
+
roots : array_like
|
281 |
+
Sequence containing the roots.
|
282 |
+
|
283 |
+
Returns
|
284 |
+
-------
|
285 |
+
out : ndarray
|
286 |
+
1-D array of coefficients. If all roots are real then `out` is a
|
287 |
+
real array, if some of the roots are complex, then `out` is complex
|
288 |
+
even if all the coefficients in the result are real (see Examples
|
289 |
+
below).
|
290 |
+
|
291 |
+
See Also
|
292 |
+
--------
|
293 |
+
numpy.polynomial.polynomial.polyfromroots
|
294 |
+
numpy.polynomial.legendre.legfromroots
|
295 |
+
numpy.polynomial.laguerre.lagfromroots
|
296 |
+
numpy.polynomial.chebyshev.chebfromroots
|
297 |
+
numpy.polynomial.hermite_e.hermefromroots
|
298 |
+
|
299 |
+
Examples
|
300 |
+
--------
|
301 |
+
>>> from numpy.polynomial.hermite import hermfromroots, hermval
|
302 |
+
>>> coef = hermfromroots((-1, 0, 1))
|
303 |
+
>>> hermval((-1, 0, 1), coef)
|
304 |
+
array([0., 0., 0.])
|
305 |
+
>>> coef = hermfromroots((-1j, 1j))
|
306 |
+
>>> hermval((-1j, 1j), coef)
|
307 |
+
array([0.+0.j, 0.+0.j])
|
308 |
+
|
309 |
+
"""
|
310 |
+
return pu._fromroots(hermline, hermmul, roots)
|
311 |
+
|
312 |
+
|
313 |
+
def hermadd(c1, c2):
|
314 |
+
"""
|
315 |
+
Add one Hermite series to another.
|
316 |
+
|
317 |
+
Returns the sum of two Hermite series `c1` + `c2`. The arguments
|
318 |
+
are sequences of coefficients ordered from lowest order term to
|
319 |
+
highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
|
320 |
+
|
321 |
+
Parameters
|
322 |
+
----------
|
323 |
+
c1, c2 : array_like
|
324 |
+
1-D arrays of Hermite series coefficients ordered from low to
|
325 |
+
high.
|
326 |
+
|
327 |
+
Returns
|
328 |
+
-------
|
329 |
+
out : ndarray
|
330 |
+
Array representing the Hermite series of their sum.
|
331 |
+
|
332 |
+
See Also
|
333 |
+
--------
|
334 |
+
hermsub, hermmulx, hermmul, hermdiv, hermpow
|
335 |
+
|
336 |
+
Notes
|
337 |
+
-----
|
338 |
+
Unlike multiplication, division, etc., the sum of two Hermite series
|
339 |
+
is a Hermite series (without having to "reproject" the result onto
|
340 |
+
the basis set) so addition, just like that of "standard" polynomials,
|
341 |
+
is simply "component-wise."
|
342 |
+
|
343 |
+
Examples
|
344 |
+
--------
|
345 |
+
>>> from numpy.polynomial.hermite import hermadd
|
346 |
+
>>> hermadd([1, 2, 3], [1, 2, 3, 4])
|
347 |
+
array([2., 4., 6., 4.])
|
348 |
+
|
349 |
+
"""
|
350 |
+
return pu._add(c1, c2)
|
351 |
+
|
352 |
+
|
353 |
+
def hermsub(c1, c2):
|
354 |
+
"""
|
355 |
+
Subtract one Hermite series from another.
|
356 |
+
|
357 |
+
Returns the difference of two Hermite series `c1` - `c2`. The
|
358 |
+
sequences of coefficients are from lowest order term to highest, i.e.,
|
359 |
+
[1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
|
360 |
+
|
361 |
+
Parameters
|
362 |
+
----------
|
363 |
+
c1, c2 : array_like
|
364 |
+
1-D arrays of Hermite series coefficients ordered from low to
|
365 |
+
high.
|
366 |
+
|
367 |
+
Returns
|
368 |
+
-------
|
369 |
+
out : ndarray
|
370 |
+
Of Hermite series coefficients representing their difference.
|
371 |
+
|
372 |
+
See Also
|
373 |
+
--------
|
374 |
+
hermadd, hermmulx, hermmul, hermdiv, hermpow
|
375 |
+
|
376 |
+
Notes
|
377 |
+
-----
|
378 |
+
Unlike multiplication, division, etc., the difference of two Hermite
|
379 |
+
series is a Hermite series (without having to "reproject" the result
|
380 |
+
onto the basis set) so subtraction, just like that of "standard"
|
381 |
+
polynomials, is simply "component-wise."
|
382 |
+
|
383 |
+
Examples
|
384 |
+
--------
|
385 |
+
>>> from numpy.polynomial.hermite import hermsub
|
386 |
+
>>> hermsub([1, 2, 3, 4], [1, 2, 3])
|
387 |
+
array([0., 0., 0., 4.])
|
388 |
+
|
389 |
+
"""
|
390 |
+
return pu._sub(c1, c2)
|
391 |
+
|
392 |
+
|
393 |
+
def hermmulx(c):
|
394 |
+
"""Multiply a Hermite series by x.
|
395 |
+
|
396 |
+
Multiply the Hermite series `c` by x, where x is the independent
|
397 |
+
variable.
|
398 |
+
|
399 |
+
|
400 |
+
Parameters
|
401 |
+
----------
|
402 |
+
c : array_like
|
403 |
+
1-D array of Hermite series coefficients ordered from low to
|
404 |
+
high.
|
405 |
+
|
406 |
+
Returns
|
407 |
+
-------
|
408 |
+
out : ndarray
|
409 |
+
Array representing the result of the multiplication.
|
410 |
+
|
411 |
+
See Also
|
412 |
+
--------
|
413 |
+
hermadd, hermsub, hermmul, hermdiv, hermpow
|
414 |
+
|
415 |
+
Notes
|
416 |
+
-----
|
417 |
+
The multiplication uses the recursion relationship for Hermite
|
418 |
+
polynomials in the form
|
419 |
+
|
420 |
+
.. math::
|
421 |
+
|
422 |
+
xP_i(x) = (P_{i + 1}(x)/2 + i*P_{i - 1}(x))
|
423 |
+
|
424 |
+
Examples
|
425 |
+
--------
|
426 |
+
>>> from numpy.polynomial.hermite import hermmulx
|
427 |
+
>>> hermmulx([1, 2, 3])
|
428 |
+
array([2. , 6.5, 1. , 1.5])
|
429 |
+
|
430 |
+
"""
|
431 |
+
# c is a trimmed copy
|
432 |
+
[c] = pu.as_series([c])
|
433 |
+
# The zero series needs special treatment
|
434 |
+
if len(c) == 1 and c[0] == 0:
|
435 |
+
return c
|
436 |
+
|
437 |
+
prd = np.empty(len(c) + 1, dtype=c.dtype)
|
438 |
+
prd[0] = c[0]*0
|
439 |
+
prd[1] = c[0]/2
|
440 |
+
for i in range(1, len(c)):
|
441 |
+
prd[i + 1] = c[i]/2
|
442 |
+
prd[i - 1] += c[i]*i
|
443 |
+
return prd
|
444 |
+
|
445 |
+
|
446 |
+
def hermmul(c1, c2):
|
447 |
+
"""
|
448 |
+
Multiply one Hermite series by another.
|
449 |
+
|
450 |
+
Returns the product of two Hermite series `c1` * `c2`. The arguments
|
451 |
+
are sequences of coefficients, from lowest order "term" to highest,
|
452 |
+
e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
|
453 |
+
|
454 |
+
Parameters
|
455 |
+
----------
|
456 |
+
c1, c2 : array_like
|
457 |
+
1-D arrays of Hermite series coefficients ordered from low to
|
458 |
+
high.
|
459 |
+
|
460 |
+
Returns
|
461 |
+
-------
|
462 |
+
out : ndarray
|
463 |
+
Of Hermite series coefficients representing their product.
|
464 |
+
|
465 |
+
See Also
|
466 |
+
--------
|
467 |
+
hermadd, hermsub, hermmulx, hermdiv, hermpow
|
468 |
+
|
469 |
+
Notes
|
470 |
+
-----
|
471 |
+
In general, the (polynomial) product of two C-series results in terms
|
472 |
+
that are not in the Hermite polynomial basis set. Thus, to express
|
473 |
+
the product as a Hermite series, it is necessary to "reproject" the
|
474 |
+
product onto said basis set, which may produce "unintuitive" (but
|
475 |
+
correct) results; see Examples section below.
|
476 |
+
|
477 |
+
Examples
|
478 |
+
--------
|
479 |
+
>>> from numpy.polynomial.hermite import hermmul
|
480 |
+
>>> hermmul([1, 2, 3], [0, 1, 2])
|
481 |
+
array([52., 29., 52., 7., 6.])
|
482 |
+
|
483 |
+
"""
|
484 |
+
# s1, s2 are trimmed copies
|
485 |
+
[c1, c2] = pu.as_series([c1, c2])
|
486 |
+
|
487 |
+
if len(c1) > len(c2):
|
488 |
+
c = c2
|
489 |
+
xs = c1
|
490 |
+
else:
|
491 |
+
c = c1
|
492 |
+
xs = c2
|
493 |
+
|
494 |
+
if len(c) == 1:
|
495 |
+
c0 = c[0]*xs
|
496 |
+
c1 = 0
|
497 |
+
elif len(c) == 2:
|
498 |
+
c0 = c[0]*xs
|
499 |
+
c1 = c[1]*xs
|
500 |
+
else:
|
501 |
+
nd = len(c)
|
502 |
+
c0 = c[-2]*xs
|
503 |
+
c1 = c[-1]*xs
|
504 |
+
for i in range(3, len(c) + 1):
|
505 |
+
tmp = c0
|
506 |
+
nd = nd - 1
|
507 |
+
c0 = hermsub(c[-i]*xs, c1*(2*(nd - 1)))
|
508 |
+
c1 = hermadd(tmp, hermmulx(c1)*2)
|
509 |
+
return hermadd(c0, hermmulx(c1)*2)
|
510 |
+
|
511 |
+
|
512 |
+
def hermdiv(c1, c2):
|
513 |
+
"""
|
514 |
+
Divide one Hermite series by another.
|
515 |
+
|
516 |
+
Returns the quotient-with-remainder of two Hermite series
|
517 |
+
`c1` / `c2`. The arguments are sequences of coefficients from lowest
|
518 |
+
order "term" to highest, e.g., [1,2,3] represents the series
|
519 |
+
``P_0 + 2*P_1 + 3*P_2``.
|
520 |
+
|
521 |
+
Parameters
|
522 |
+
----------
|
523 |
+
c1, c2 : array_like
|
524 |
+
1-D arrays of Hermite series coefficients ordered from low to
|
525 |
+
high.
|
526 |
+
|
527 |
+
Returns
|
528 |
+
-------
|
529 |
+
[quo, rem] : ndarrays
|
530 |
+
Of Hermite series coefficients representing the quotient and
|
531 |
+
remainder.
|
532 |
+
|
533 |
+
See Also
|
534 |
+
--------
|
535 |
+
hermadd, hermsub, hermmulx, hermmul, hermpow
|
536 |
+
|
537 |
+
Notes
|
538 |
+
-----
|
539 |
+
In general, the (polynomial) division of one Hermite series by another
|
540 |
+
results in quotient and remainder terms that are not in the Hermite
|
541 |
+
polynomial basis set. Thus, to express these results as a Hermite
|
542 |
+
series, it is necessary to "reproject" the results onto the Hermite
|
543 |
+
basis set, which may produce "unintuitive" (but correct) results; see
|
544 |
+
Examples section below.
|
545 |
+
|
546 |
+
Examples
|
547 |
+
--------
|
548 |
+
>>> from numpy.polynomial.hermite import hermdiv
|
549 |
+
>>> hermdiv([ 52., 29., 52., 7., 6.], [0, 1, 2])
|
550 |
+
(array([1., 2., 3.]), array([0.]))
|
551 |
+
>>> hermdiv([ 54., 31., 52., 7., 6.], [0, 1, 2])
|
552 |
+
(array([1., 2., 3.]), array([2., 2.]))
|
553 |
+
>>> hermdiv([ 53., 30., 52., 7., 6.], [0, 1, 2])
|
554 |
+
(array([1., 2., 3.]), array([1., 1.]))
|
555 |
+
|
556 |
+
"""
|
557 |
+
return pu._div(hermmul, c1, c2)
|
558 |
+
|
559 |
+
|
560 |
+
def hermpow(c, pow, maxpower=16):
|
561 |
+
"""Raise a Hermite series to a power.
|
562 |
+
|
563 |
+
Returns the Hermite series `c` raised to the power `pow`. The
|
564 |
+
argument `c` is a sequence of coefficients ordered from low to high.
|
565 |
+
i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.``
|
566 |
+
|
567 |
+
Parameters
|
568 |
+
----------
|
569 |
+
c : array_like
|
570 |
+
1-D array of Hermite series coefficients ordered from low to
|
571 |
+
high.
|
572 |
+
pow : integer
|
573 |
+
Power to which the series will be raised
|
574 |
+
maxpower : integer, optional
|
575 |
+
Maximum power allowed. This is mainly to limit growth of the series
|
576 |
+
to unmanageable size. Default is 16
|
577 |
+
|
578 |
+
Returns
|
579 |
+
-------
|
580 |
+
coef : ndarray
|
581 |
+
Hermite series of power.
|
582 |
+
|
583 |
+
See Also
|
584 |
+
--------
|
585 |
+
hermadd, hermsub, hermmulx, hermmul, hermdiv
|
586 |
+
|
587 |
+
Examples
|
588 |
+
--------
|
589 |
+
>>> from numpy.polynomial.hermite import hermpow
|
590 |
+
>>> hermpow([1, 2, 3], 2)
|
591 |
+
array([81., 52., 82., 12., 9.])
|
592 |
+
|
593 |
+
"""
|
594 |
+
return pu._pow(hermmul, c, pow, maxpower)
|
595 |
+
|
596 |
+
|
597 |
+
def hermder(c, m=1, scl=1, axis=0):
|
598 |
+
"""
|
599 |
+
Differentiate a Hermite series.
|
600 |
+
|
601 |
+
Returns the Hermite series coefficients `c` differentiated `m` times
|
602 |
+
along `axis`. At each iteration the result is multiplied by `scl` (the
|
603 |
+
scaling factor is for use in a linear change of variable). The argument
|
604 |
+
`c` is an array of coefficients from low to high degree along each
|
605 |
+
axis, e.g., [1,2,3] represents the series ``1*H_0 + 2*H_1 + 3*H_2``
|
606 |
+
while [[1,2],[1,2]] represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) +
|
607 |
+
2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is
|
608 |
+
``y``.
|
609 |
+
|
610 |
+
Parameters
|
611 |
+
----------
|
612 |
+
c : array_like
|
613 |
+
Array of Hermite series coefficients. If `c` is multidimensional the
|
614 |
+
different axis correspond to different variables with the degree in
|
615 |
+
each axis given by the corresponding index.
|
616 |
+
m : int, optional
|
617 |
+
Number of derivatives taken, must be non-negative. (Default: 1)
|
618 |
+
scl : scalar, optional
|
619 |
+
Each differentiation is multiplied by `scl`. The end result is
|
620 |
+
multiplication by ``scl**m``. This is for use in a linear change of
|
621 |
+
variable. (Default: 1)
|
622 |
+
axis : int, optional
|
623 |
+
Axis over which the derivative is taken. (Default: 0).
|
624 |
+
|
625 |
+
.. versionadded:: 1.7.0
|
626 |
+
|
627 |
+
Returns
|
628 |
+
-------
|
629 |
+
der : ndarray
|
630 |
+
Hermite series of the derivative.
|
631 |
+
|
632 |
+
See Also
|
633 |
+
--------
|
634 |
+
hermint
|
635 |
+
|
636 |
+
Notes
|
637 |
+
-----
|
638 |
+
In general, the result of differentiating a Hermite series does not
|
639 |
+
resemble the same operation on a power series. Thus the result of this
|
640 |
+
function may be "unintuitive," albeit correct; see Examples section
|
641 |
+
below.
|
642 |
+
|
643 |
+
Examples
|
644 |
+
--------
|
645 |
+
>>> from numpy.polynomial.hermite import hermder
|
646 |
+
>>> hermder([ 1. , 0.5, 0.5, 0.5])
|
647 |
+
array([1., 2., 3.])
|
648 |
+
>>> hermder([-0.5, 1./2., 1./8., 1./12., 1./16.], m=2)
|
649 |
+
array([1., 2., 3.])
|
650 |
+
|
651 |
+
"""
|
652 |
+
c = np.array(c, ndmin=1, copy=True)
|
653 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
654 |
+
c = c.astype(np.double)
|
655 |
+
cnt = pu._deprecate_as_int(m, "the order of derivation")
|
656 |
+
iaxis = pu._deprecate_as_int(axis, "the axis")
|
657 |
+
if cnt < 0:
|
658 |
+
raise ValueError("The order of derivation must be non-negative")
|
659 |
+
iaxis = normalize_axis_index(iaxis, c.ndim)
|
660 |
+
|
661 |
+
if cnt == 0:
|
662 |
+
return c
|
663 |
+
|
664 |
+
c = np.moveaxis(c, iaxis, 0)
|
665 |
+
n = len(c)
|
666 |
+
if cnt >= n:
|
667 |
+
c = c[:1]*0
|
668 |
+
else:
|
669 |
+
for i in range(cnt):
|
670 |
+
n = n - 1
|
671 |
+
c *= scl
|
672 |
+
der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
|
673 |
+
for j in range(n, 0, -1):
|
674 |
+
der[j - 1] = (2*j)*c[j]
|
675 |
+
c = der
|
676 |
+
c = np.moveaxis(c, 0, iaxis)
|
677 |
+
return c
|
678 |
+
|
679 |
+
|
680 |
+
def hermint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
|
681 |
+
"""
|
682 |
+
Integrate a Hermite series.
|
683 |
+
|
684 |
+
Returns the Hermite series coefficients `c` integrated `m` times from
|
685 |
+
`lbnd` along `axis`. At each iteration the resulting series is
|
686 |
+
**multiplied** by `scl` and an integration constant, `k`, is added.
|
687 |
+
The scaling factor is for use in a linear change of variable. ("Buyer
|
688 |
+
beware": note that, depending on what one is doing, one may want `scl`
|
689 |
+
to be the reciprocal of what one might expect; for more information,
|
690 |
+
see the Notes section below.) The argument `c` is an array of
|
691 |
+
coefficients from low to high degree along each axis, e.g., [1,2,3]
|
692 |
+
represents the series ``H_0 + 2*H_1 + 3*H_2`` while [[1,2],[1,2]]
|
693 |
+
represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
|
694 |
+
2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
|
695 |
+
|
696 |
+
Parameters
|
697 |
+
----------
|
698 |
+
c : array_like
|
699 |
+
Array of Hermite series coefficients. If c is multidimensional the
|
700 |
+
different axis correspond to different variables with the degree in
|
701 |
+
each axis given by the corresponding index.
|
702 |
+
m : int, optional
|
703 |
+
Order of integration, must be positive. (Default: 1)
|
704 |
+
k : {[], list, scalar}, optional
|
705 |
+
Integration constant(s). The value of the first integral at
|
706 |
+
``lbnd`` is the first value in the list, the value of the second
|
707 |
+
integral at ``lbnd`` is the second value, etc. If ``k == []`` (the
|
708 |
+
default), all constants are set to zero. If ``m == 1``, a single
|
709 |
+
scalar can be given instead of a list.
|
710 |
+
lbnd : scalar, optional
|
711 |
+
The lower bound of the integral. (Default: 0)
|
712 |
+
scl : scalar, optional
|
713 |
+
Following each integration the result is *multiplied* by `scl`
|
714 |
+
before the integration constant is added. (Default: 1)
|
715 |
+
axis : int, optional
|
716 |
+
Axis over which the integral is taken. (Default: 0).
|
717 |
+
|
718 |
+
.. versionadded:: 1.7.0
|
719 |
+
|
720 |
+
Returns
|
721 |
+
-------
|
722 |
+
S : ndarray
|
723 |
+
Hermite series coefficients of the integral.
|
724 |
+
|
725 |
+
Raises
|
726 |
+
------
|
727 |
+
ValueError
|
728 |
+
If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
|
729 |
+
``np.ndim(scl) != 0``.
|
730 |
+
|
731 |
+
See Also
|
732 |
+
--------
|
733 |
+
hermder
|
734 |
+
|
735 |
+
Notes
|
736 |
+
-----
|
737 |
+
Note that the result of each integration is *multiplied* by `scl`.
|
738 |
+
Why is this important to note? Say one is making a linear change of
|
739 |
+
variable :math:`u = ax + b` in an integral relative to `x`. Then
|
740 |
+
:math:`dx = du/a`, so one will need to set `scl` equal to
|
741 |
+
:math:`1/a` - perhaps not what one would have first thought.
|
742 |
+
|
743 |
+
Also note that, in general, the result of integrating a C-series needs
|
744 |
+
to be "reprojected" onto the C-series basis set. Thus, typically,
|
745 |
+
the result of this function is "unintuitive," albeit correct; see
|
746 |
+
Examples section below.
|
747 |
+
|
748 |
+
Examples
|
749 |
+
--------
|
750 |
+
>>> from numpy.polynomial.hermite import hermint
|
751 |
+
>>> hermint([1,2,3]) # integrate once, value 0 at 0.
|
752 |
+
array([1. , 0.5, 0.5, 0.5])
|
753 |
+
>>> hermint([1,2,3], m=2) # integrate twice, value & deriv 0 at 0
|
754 |
+
array([-0.5 , 0.5 , 0.125 , 0.08333333, 0.0625 ]) # may vary
|
755 |
+
>>> hermint([1,2,3], k=1) # integrate once, value 1 at 0.
|
756 |
+
array([2. , 0.5, 0.5, 0.5])
|
757 |
+
>>> hermint([1,2,3], lbnd=-1) # integrate once, value 0 at -1
|
758 |
+
array([-2. , 0.5, 0.5, 0.5])
|
759 |
+
>>> hermint([1,2,3], m=2, k=[1,2], lbnd=-1)
|
760 |
+
array([ 1.66666667, -0.5 , 0.125 , 0.08333333, 0.0625 ]) # may vary
|
761 |
+
|
762 |
+
"""
|
763 |
+
c = np.array(c, ndmin=1, copy=True)
|
764 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
765 |
+
c = c.astype(np.double)
|
766 |
+
if not np.iterable(k):
|
767 |
+
k = [k]
|
768 |
+
cnt = pu._deprecate_as_int(m, "the order of integration")
|
769 |
+
iaxis = pu._deprecate_as_int(axis, "the axis")
|
770 |
+
if cnt < 0:
|
771 |
+
raise ValueError("The order of integration must be non-negative")
|
772 |
+
if len(k) > cnt:
|
773 |
+
raise ValueError("Too many integration constants")
|
774 |
+
if np.ndim(lbnd) != 0:
|
775 |
+
raise ValueError("lbnd must be a scalar.")
|
776 |
+
if np.ndim(scl) != 0:
|
777 |
+
raise ValueError("scl must be a scalar.")
|
778 |
+
iaxis = normalize_axis_index(iaxis, c.ndim)
|
779 |
+
|
780 |
+
if cnt == 0:
|
781 |
+
return c
|
782 |
+
|
783 |
+
c = np.moveaxis(c, iaxis, 0)
|
784 |
+
k = list(k) + [0]*(cnt - len(k))
|
785 |
+
for i in range(cnt):
|
786 |
+
n = len(c)
|
787 |
+
c *= scl
|
788 |
+
if n == 1 and np.all(c[0] == 0):
|
789 |
+
c[0] += k[i]
|
790 |
+
else:
|
791 |
+
tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
|
792 |
+
tmp[0] = c[0]*0
|
793 |
+
tmp[1] = c[0]/2
|
794 |
+
for j in range(1, n):
|
795 |
+
tmp[j + 1] = c[j]/(2*(j + 1))
|
796 |
+
tmp[0] += k[i] - hermval(lbnd, tmp)
|
797 |
+
c = tmp
|
798 |
+
c = np.moveaxis(c, 0, iaxis)
|
799 |
+
return c
|
800 |
+
|
801 |
+
|
802 |
+
def hermval(x, c, tensor=True):
|
803 |
+
"""
|
804 |
+
Evaluate an Hermite series at points x.
|
805 |
+
|
806 |
+
If `c` is of length `n + 1`, this function returns the value:
|
807 |
+
|
808 |
+
.. math:: p(x) = c_0 * H_0(x) + c_1 * H_1(x) + ... + c_n * H_n(x)
|
809 |
+
|
810 |
+
The parameter `x` is converted to an array only if it is a tuple or a
|
811 |
+
list, otherwise it is treated as a scalar. In either case, either `x`
|
812 |
+
or its elements must support multiplication and addition both with
|
813 |
+
themselves and with the elements of `c`.
|
814 |
+
|
815 |
+
If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
|
816 |
+
`c` is multidimensional, then the shape of the result depends on the
|
817 |
+
value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
|
818 |
+
x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
|
819 |
+
scalars have shape (,).
|
820 |
+
|
821 |
+
Trailing zeros in the coefficients will be used in the evaluation, so
|
822 |
+
they should be avoided if efficiency is a concern.
|
823 |
+
|
824 |
+
Parameters
|
825 |
+
----------
|
826 |
+
x : array_like, compatible object
|
827 |
+
If `x` is a list or tuple, it is converted to an ndarray, otherwise
|
828 |
+
it is left unchanged and treated as a scalar. In either case, `x`
|
829 |
+
or its elements must support addition and multiplication with
|
830 |
+
themselves and with the elements of `c`.
|
831 |
+
c : array_like
|
832 |
+
Array of coefficients ordered so that the coefficients for terms of
|
833 |
+
degree n are contained in c[n]. If `c` is multidimensional the
|
834 |
+
remaining indices enumerate multiple polynomials. In the two
|
835 |
+
dimensional case the coefficients may be thought of as stored in
|
836 |
+
the columns of `c`.
|
837 |
+
tensor : boolean, optional
|
838 |
+
If True, the shape of the coefficient array is extended with ones
|
839 |
+
on the right, one for each dimension of `x`. Scalars have dimension 0
|
840 |
+
for this action. The result is that every column of coefficients in
|
841 |
+
`c` is evaluated for every element of `x`. If False, `x` is broadcast
|
842 |
+
over the columns of `c` for the evaluation. This keyword is useful
|
843 |
+
when `c` is multidimensional. The default value is True.
|
844 |
+
|
845 |
+
.. versionadded:: 1.7.0
|
846 |
+
|
847 |
+
Returns
|
848 |
+
-------
|
849 |
+
values : ndarray, algebra_like
|
850 |
+
The shape of the return value is described above.
|
851 |
+
|
852 |
+
See Also
|
853 |
+
--------
|
854 |
+
hermval2d, hermgrid2d, hermval3d, hermgrid3d
|
855 |
+
|
856 |
+
Notes
|
857 |
+
-----
|
858 |
+
The evaluation uses Clenshaw recursion, aka synthetic division.
|
859 |
+
|
860 |
+
Examples
|
861 |
+
--------
|
862 |
+
>>> from numpy.polynomial.hermite import hermval
|
863 |
+
>>> coef = [1,2,3]
|
864 |
+
>>> hermval(1, coef)
|
865 |
+
11.0
|
866 |
+
>>> hermval([[1,2],[3,4]], coef)
|
867 |
+
array([[ 11., 51.],
|
868 |
+
[115., 203.]])
|
869 |
+
|
870 |
+
"""
|
871 |
+
c = np.array(c, ndmin=1, copy=False)
|
872 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
873 |
+
c = c.astype(np.double)
|
874 |
+
if isinstance(x, (tuple, list)):
|
875 |
+
x = np.asarray(x)
|
876 |
+
if isinstance(x, np.ndarray) and tensor:
|
877 |
+
c = c.reshape(c.shape + (1,)*x.ndim)
|
878 |
+
|
879 |
+
x2 = x*2
|
880 |
+
if len(c) == 1:
|
881 |
+
c0 = c[0]
|
882 |
+
c1 = 0
|
883 |
+
elif len(c) == 2:
|
884 |
+
c0 = c[0]
|
885 |
+
c1 = c[1]
|
886 |
+
else:
|
887 |
+
nd = len(c)
|
888 |
+
c0 = c[-2]
|
889 |
+
c1 = c[-1]
|
890 |
+
for i in range(3, len(c) + 1):
|
891 |
+
tmp = c0
|
892 |
+
nd = nd - 1
|
893 |
+
c0 = c[-i] - c1*(2*(nd - 1))
|
894 |
+
c1 = tmp + c1*x2
|
895 |
+
return c0 + c1*x2
|
896 |
+
|
897 |
+
|
898 |
+
def hermval2d(x, y, c):
|
899 |
+
"""
|
900 |
+
Evaluate a 2-D Hermite series at points (x, y).
|
901 |
+
|
902 |
+
This function returns the values:
|
903 |
+
|
904 |
+
.. math:: p(x,y) = \\sum_{i,j} c_{i,j} * H_i(x) * H_j(y)
|
905 |
+
|
906 |
+
The parameters `x` and `y` are converted to arrays only if they are
|
907 |
+
tuples or a lists, otherwise they are treated as a scalars and they
|
908 |
+
must have the same shape after conversion. In either case, either `x`
|
909 |
+
and `y` or their elements must support multiplication and addition both
|
910 |
+
with themselves and with the elements of `c`.
|
911 |
+
|
912 |
+
If `c` is a 1-D array a one is implicitly appended to its shape to make
|
913 |
+
it 2-D. The shape of the result will be c.shape[2:] + x.shape.
|
914 |
+
|
915 |
+
Parameters
|
916 |
+
----------
|
917 |
+
x, y : array_like, compatible objects
|
918 |
+
The two dimensional series is evaluated at the points `(x, y)`,
|
919 |
+
where `x` and `y` must have the same shape. If `x` or `y` is a list
|
920 |
+
or tuple, it is first converted to an ndarray, otherwise it is left
|
921 |
+
unchanged and if it isn't an ndarray it is treated as a scalar.
|
922 |
+
c : array_like
|
923 |
+
Array of coefficients ordered so that the coefficient of the term
|
924 |
+
of multi-degree i,j is contained in ``c[i,j]``. If `c` has
|
925 |
+
dimension greater than two the remaining indices enumerate multiple
|
926 |
+
sets of coefficients.
|
927 |
+
|
928 |
+
Returns
|
929 |
+
-------
|
930 |
+
values : ndarray, compatible object
|
931 |
+
The values of the two dimensional polynomial at points formed with
|
932 |
+
pairs of corresponding values from `x` and `y`.
|
933 |
+
|
934 |
+
See Also
|
935 |
+
--------
|
936 |
+
hermval, hermgrid2d, hermval3d, hermgrid3d
|
937 |
+
|
938 |
+
Notes
|
939 |
+
-----
|
940 |
+
|
941 |
+
.. versionadded:: 1.7.0
|
942 |
+
|
943 |
+
"""
|
944 |
+
return pu._valnd(hermval, c, x, y)
|
945 |
+
|
946 |
+
|
947 |
+
def hermgrid2d(x, y, c):
|
948 |
+
"""
|
949 |
+
Evaluate a 2-D Hermite series on the Cartesian product of x and y.
|
950 |
+
|
951 |
+
This function returns the values:
|
952 |
+
|
953 |
+
.. math:: p(a,b) = \\sum_{i,j} c_{i,j} * H_i(a) * H_j(b)
|
954 |
+
|
955 |
+
where the points `(a, b)` consist of all pairs formed by taking
|
956 |
+
`a` from `x` and `b` from `y`. The resulting points form a grid with
|
957 |
+
`x` in the first dimension and `y` in the second.
|
958 |
+
|
959 |
+
The parameters `x` and `y` are converted to arrays only if they are
|
960 |
+
tuples or a lists, otherwise they are treated as a scalars. In either
|
961 |
+
case, either `x` and `y` or their elements must support multiplication
|
962 |
+
and addition both with themselves and with the elements of `c`.
|
963 |
+
|
964 |
+
If `c` has fewer than two dimensions, ones are implicitly appended to
|
965 |
+
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
|
966 |
+
x.shape.
|
967 |
+
|
968 |
+
Parameters
|
969 |
+
----------
|
970 |
+
x, y : array_like, compatible objects
|
971 |
+
The two dimensional series is evaluated at the points in the
|
972 |
+
Cartesian product of `x` and `y`. If `x` or `y` is a list or
|
973 |
+
tuple, it is first converted to an ndarray, otherwise it is left
|
974 |
+
unchanged and, if it isn't an ndarray, it is treated as a scalar.
|
975 |
+
c : array_like
|
976 |
+
Array of coefficients ordered so that the coefficients for terms of
|
977 |
+
degree i,j are contained in ``c[i,j]``. If `c` has dimension
|
978 |
+
greater than two the remaining indices enumerate multiple sets of
|
979 |
+
coefficients.
|
980 |
+
|
981 |
+
Returns
|
982 |
+
-------
|
983 |
+
values : ndarray, compatible object
|
984 |
+
The values of the two dimensional polynomial at points in the Cartesian
|
985 |
+
product of `x` and `y`.
|
986 |
+
|
987 |
+
See Also
|
988 |
+
--------
|
989 |
+
hermval, hermval2d, hermval3d, hermgrid3d
|
990 |
+
|
991 |
+
Notes
|
992 |
+
-----
|
993 |
+
|
994 |
+
.. versionadded:: 1.7.0
|
995 |
+
|
996 |
+
"""
|
997 |
+
return pu._gridnd(hermval, c, x, y)
|
998 |
+
|
999 |
+
|
1000 |
+
def hermval3d(x, y, z, c):
|
1001 |
+
"""
|
1002 |
+
Evaluate a 3-D Hermite series at points (x, y, z).
|
1003 |
+
|
1004 |
+
This function returns the values:
|
1005 |
+
|
1006 |
+
.. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * H_i(x) * H_j(y) * H_k(z)
|
1007 |
+
|
1008 |
+
The parameters `x`, `y`, and `z` are converted to arrays only if
|
1009 |
+
they are tuples or a lists, otherwise they are treated as a scalars and
|
1010 |
+
they must have the same shape after conversion. In either case, either
|
1011 |
+
`x`, `y`, and `z` or their elements must support multiplication and
|
1012 |
+
addition both with themselves and with the elements of `c`.
|
1013 |
+
|
1014 |
+
If `c` has fewer than 3 dimensions, ones are implicitly appended to its
|
1015 |
+
shape to make it 3-D. The shape of the result will be c.shape[3:] +
|
1016 |
+
x.shape.
|
1017 |
+
|
1018 |
+
Parameters
|
1019 |
+
----------
|
1020 |
+
x, y, z : array_like, compatible object
|
1021 |
+
The three dimensional series is evaluated at the points
|
1022 |
+
`(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
|
1023 |
+
any of `x`, `y`, or `z` is a list or tuple, it is first converted
|
1024 |
+
to an ndarray, otherwise it is left unchanged and if it isn't an
|
1025 |
+
ndarray it is treated as a scalar.
|
1026 |
+
c : array_like
|
1027 |
+
Array of coefficients ordered so that the coefficient of the term of
|
1028 |
+
multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
|
1029 |
+
greater than 3 the remaining indices enumerate multiple sets of
|
1030 |
+
coefficients.
|
1031 |
+
|
1032 |
+
Returns
|
1033 |
+
-------
|
1034 |
+
values : ndarray, compatible object
|
1035 |
+
The values of the multidimensional polynomial on points formed with
|
1036 |
+
triples of corresponding values from `x`, `y`, and `z`.
|
1037 |
+
|
1038 |
+
See Also
|
1039 |
+
--------
|
1040 |
+
hermval, hermval2d, hermgrid2d, hermgrid3d
|
1041 |
+
|
1042 |
+
Notes
|
1043 |
+
-----
|
1044 |
+
|
1045 |
+
.. versionadded:: 1.7.0
|
1046 |
+
|
1047 |
+
"""
|
1048 |
+
return pu._valnd(hermval, c, x, y, z)
|
1049 |
+
|
1050 |
+
|
1051 |
+
def hermgrid3d(x, y, z, c):
|
1052 |
+
"""
|
1053 |
+
Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z.
|
1054 |
+
|
1055 |
+
This function returns the values:
|
1056 |
+
|
1057 |
+
.. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * H_i(a) * H_j(b) * H_k(c)
|
1058 |
+
|
1059 |
+
where the points `(a, b, c)` consist of all triples formed by taking
|
1060 |
+
`a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
|
1061 |
+
a grid with `x` in the first dimension, `y` in the second, and `z` in
|
1062 |
+
the third.
|
1063 |
+
|
1064 |
+
The parameters `x`, `y`, and `z` are converted to arrays only if they
|
1065 |
+
are tuples or a lists, otherwise they are treated as a scalars. In
|
1066 |
+
either case, either `x`, `y`, and `z` or their elements must support
|
1067 |
+
multiplication and addition both with themselves and with the elements
|
1068 |
+
of `c`.
|
1069 |
+
|
1070 |
+
If `c` has fewer than three dimensions, ones are implicitly appended to
|
1071 |
+
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
|
1072 |
+
x.shape + y.shape + z.shape.
|
1073 |
+
|
1074 |
+
Parameters
|
1075 |
+
----------
|
1076 |
+
x, y, z : array_like, compatible objects
|
1077 |
+
The three dimensional series is evaluated at the points in the
|
1078 |
+
Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
|
1079 |
+
list or tuple, it is first converted to an ndarray, otherwise it is
|
1080 |
+
left unchanged and, if it isn't an ndarray, it is treated as a
|
1081 |
+
scalar.
|
1082 |
+
c : array_like
|
1083 |
+
Array of coefficients ordered so that the coefficients for terms of
|
1084 |
+
degree i,j are contained in ``c[i,j]``. If `c` has dimension
|
1085 |
+
greater than two the remaining indices enumerate multiple sets of
|
1086 |
+
coefficients.
|
1087 |
+
|
1088 |
+
Returns
|
1089 |
+
-------
|
1090 |
+
values : ndarray, compatible object
|
1091 |
+
The values of the two dimensional polynomial at points in the Cartesian
|
1092 |
+
product of `x` and `y`.
|
1093 |
+
|
1094 |
+
See Also
|
1095 |
+
--------
|
1096 |
+
hermval, hermval2d, hermgrid2d, hermval3d
|
1097 |
+
|
1098 |
+
Notes
|
1099 |
+
-----
|
1100 |
+
|
1101 |
+
.. versionadded:: 1.7.0
|
1102 |
+
|
1103 |
+
"""
|
1104 |
+
return pu._gridnd(hermval, c, x, y, z)
|
1105 |
+
|
1106 |
+
|
1107 |
+
def hermvander(x, deg):
|
1108 |
+
"""Pseudo-Vandermonde matrix of given degree.
|
1109 |
+
|
1110 |
+
Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
|
1111 |
+
`x`. The pseudo-Vandermonde matrix is defined by
|
1112 |
+
|
1113 |
+
.. math:: V[..., i] = H_i(x),
|
1114 |
+
|
1115 |
+
where `0 <= i <= deg`. The leading indices of `V` index the elements of
|
1116 |
+
`x` and the last index is the degree of the Hermite polynomial.
|
1117 |
+
|
1118 |
+
If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
|
1119 |
+
array ``V = hermvander(x, n)``, then ``np.dot(V, c)`` and
|
1120 |
+
``hermval(x, c)`` are the same up to roundoff. This equivalence is
|
1121 |
+
useful both for least squares fitting and for the evaluation of a large
|
1122 |
+
number of Hermite series of the same degree and sample points.
|
1123 |
+
|
1124 |
+
Parameters
|
1125 |
+
----------
|
1126 |
+
x : array_like
|
1127 |
+
Array of points. The dtype is converted to float64 or complex128
|
1128 |
+
depending on whether any of the elements are complex. If `x` is
|
1129 |
+
scalar it is converted to a 1-D array.
|
1130 |
+
deg : int
|
1131 |
+
Degree of the resulting matrix.
|
1132 |
+
|
1133 |
+
Returns
|
1134 |
+
-------
|
1135 |
+
vander : ndarray
|
1136 |
+
The pseudo-Vandermonde matrix. The shape of the returned matrix is
|
1137 |
+
``x.shape + (deg + 1,)``, where The last index is the degree of the
|
1138 |
+
corresponding Hermite polynomial. The dtype will be the same as
|
1139 |
+
the converted `x`.
|
1140 |
+
|
1141 |
+
Examples
|
1142 |
+
--------
|
1143 |
+
>>> from numpy.polynomial.hermite import hermvander
|
1144 |
+
>>> x = np.array([-1, 0, 1])
|
1145 |
+
>>> hermvander(x, 3)
|
1146 |
+
array([[ 1., -2., 2., 4.],
|
1147 |
+
[ 1., 0., -2., -0.],
|
1148 |
+
[ 1., 2., 2., -4.]])
|
1149 |
+
|
1150 |
+
"""
|
1151 |
+
ideg = pu._deprecate_as_int(deg, "deg")
|
1152 |
+
if ideg < 0:
|
1153 |
+
raise ValueError("deg must be non-negative")
|
1154 |
+
|
1155 |
+
x = np.array(x, copy=False, ndmin=1) + 0.0
|
1156 |
+
dims = (ideg + 1,) + x.shape
|
1157 |
+
dtyp = x.dtype
|
1158 |
+
v = np.empty(dims, dtype=dtyp)
|
1159 |
+
v[0] = x*0 + 1
|
1160 |
+
if ideg > 0:
|
1161 |
+
x2 = x*2
|
1162 |
+
v[1] = x2
|
1163 |
+
for i in range(2, ideg + 1):
|
1164 |
+
v[i] = (v[i-1]*x2 - v[i-2]*(2*(i - 1)))
|
1165 |
+
return np.moveaxis(v, 0, -1)
|
1166 |
+
|
1167 |
+
|
1168 |
+
def hermvander2d(x, y, deg):
|
1169 |
+
"""Pseudo-Vandermonde matrix of given degrees.
|
1170 |
+
|
1171 |
+
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
|
1172 |
+
points `(x, y)`. The pseudo-Vandermonde matrix is defined by
|
1173 |
+
|
1174 |
+
.. math:: V[..., (deg[1] + 1)*i + j] = H_i(x) * H_j(y),
|
1175 |
+
|
1176 |
+
where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
|
1177 |
+
`V` index the points `(x, y)` and the last index encodes the degrees of
|
1178 |
+
the Hermite polynomials.
|
1179 |
+
|
1180 |
+
If ``V = hermvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
|
1181 |
+
correspond to the elements of a 2-D coefficient array `c` of shape
|
1182 |
+
(xdeg + 1, ydeg + 1) in the order
|
1183 |
+
|
1184 |
+
.. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
|
1185 |
+
|
1186 |
+
and ``np.dot(V, c.flat)`` and ``hermval2d(x, y, c)`` will be the same
|
1187 |
+
up to roundoff. This equivalence is useful both for least squares
|
1188 |
+
fitting and for the evaluation of a large number of 2-D Hermite
|
1189 |
+
series of the same degrees and sample points.
|
1190 |
+
|
1191 |
+
Parameters
|
1192 |
+
----------
|
1193 |
+
x, y : array_like
|
1194 |
+
Arrays of point coordinates, all of the same shape. The dtypes
|
1195 |
+
will be converted to either float64 or complex128 depending on
|
1196 |
+
whether any of the elements are complex. Scalars are converted to 1-D
|
1197 |
+
arrays.
|
1198 |
+
deg : list of ints
|
1199 |
+
List of maximum degrees of the form [x_deg, y_deg].
|
1200 |
+
|
1201 |
+
Returns
|
1202 |
+
-------
|
1203 |
+
vander2d : ndarray
|
1204 |
+
The shape of the returned matrix is ``x.shape + (order,)``, where
|
1205 |
+
:math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
|
1206 |
+
as the converted `x` and `y`.
|
1207 |
+
|
1208 |
+
See Also
|
1209 |
+
--------
|
1210 |
+
hermvander, hermvander3d, hermval2d, hermval3d
|
1211 |
+
|
1212 |
+
Notes
|
1213 |
+
-----
|
1214 |
+
|
1215 |
+
.. versionadded:: 1.7.0
|
1216 |
+
|
1217 |
+
"""
|
1218 |
+
return pu._vander_nd_flat((hermvander, hermvander), (x, y), deg)
|
1219 |
+
|
1220 |
+
|
1221 |
+
def hermvander3d(x, y, z, deg):
|
1222 |
+
"""Pseudo-Vandermonde matrix of given degrees.
|
1223 |
+
|
1224 |
+
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
|
1225 |
+
points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
|
1226 |
+
then The pseudo-Vandermonde matrix is defined by
|
1227 |
+
|
1228 |
+
.. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = H_i(x)*H_j(y)*H_k(z),
|
1229 |
+
|
1230 |
+
where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
|
1231 |
+
indices of `V` index the points `(x, y, z)` and the last index encodes
|
1232 |
+
the degrees of the Hermite polynomials.
|
1233 |
+
|
1234 |
+
If ``V = hermvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
|
1235 |
+
of `V` correspond to the elements of a 3-D coefficient array `c` of
|
1236 |
+
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
|
1237 |
+
|
1238 |
+
.. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
|
1239 |
+
|
1240 |
+
and ``np.dot(V, c.flat)`` and ``hermval3d(x, y, z, c)`` will be the
|
1241 |
+
same up to roundoff. This equivalence is useful both for least squares
|
1242 |
+
fitting and for the evaluation of a large number of 3-D Hermite
|
1243 |
+
series of the same degrees and sample points.
|
1244 |
+
|
1245 |
+
Parameters
|
1246 |
+
----------
|
1247 |
+
x, y, z : array_like
|
1248 |
+
Arrays of point coordinates, all of the same shape. The dtypes will
|
1249 |
+
be converted to either float64 or complex128 depending on whether
|
1250 |
+
any of the elements are complex. Scalars are converted to 1-D
|
1251 |
+
arrays.
|
1252 |
+
deg : list of ints
|
1253 |
+
List of maximum degrees of the form [x_deg, y_deg, z_deg].
|
1254 |
+
|
1255 |
+
Returns
|
1256 |
+
-------
|
1257 |
+
vander3d : ndarray
|
1258 |
+
The shape of the returned matrix is ``x.shape + (order,)``, where
|
1259 |
+
:math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
|
1260 |
+
be the same as the converted `x`, `y`, and `z`.
|
1261 |
+
|
1262 |
+
See Also
|
1263 |
+
--------
|
1264 |
+
hermvander, hermvander3d, hermval2d, hermval3d
|
1265 |
+
|
1266 |
+
Notes
|
1267 |
+
-----
|
1268 |
+
|
1269 |
+
.. versionadded:: 1.7.0
|
1270 |
+
|
1271 |
+
"""
|
1272 |
+
return pu._vander_nd_flat((hermvander, hermvander, hermvander), (x, y, z), deg)
|
1273 |
+
|
1274 |
+
|
1275 |
+
def hermfit(x, y, deg, rcond=None, full=False, w=None):
|
1276 |
+
"""
|
1277 |
+
Least squares fit of Hermite series to data.
|
1278 |
+
|
1279 |
+
Return the coefficients of a Hermite series of degree `deg` that is the
|
1280 |
+
least squares fit to the data values `y` given at points `x`. If `y` is
|
1281 |
+
1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
|
1282 |
+
fits are done, one for each column of `y`, and the resulting
|
1283 |
+
coefficients are stored in the corresponding columns of a 2-D return.
|
1284 |
+
The fitted polynomial(s) are in the form
|
1285 |
+
|
1286 |
+
.. math:: p(x) = c_0 + c_1 * H_1(x) + ... + c_n * H_n(x),
|
1287 |
+
|
1288 |
+
where `n` is `deg`.
|
1289 |
+
|
1290 |
+
Parameters
|
1291 |
+
----------
|
1292 |
+
x : array_like, shape (M,)
|
1293 |
+
x-coordinates of the M sample points ``(x[i], y[i])``.
|
1294 |
+
y : array_like, shape (M,) or (M, K)
|
1295 |
+
y-coordinates of the sample points. Several data sets of sample
|
1296 |
+
points sharing the same x-coordinates can be fitted at once by
|
1297 |
+
passing in a 2D-array that contains one dataset per column.
|
1298 |
+
deg : int or 1-D array_like
|
1299 |
+
Degree(s) of the fitting polynomials. If `deg` is a single integer
|
1300 |
+
all terms up to and including the `deg`'th term are included in the
|
1301 |
+
fit. For NumPy versions >= 1.11.0 a list of integers specifying the
|
1302 |
+
degrees of the terms to include may be used instead.
|
1303 |
+
rcond : float, optional
|
1304 |
+
Relative condition number of the fit. Singular values smaller than
|
1305 |
+
this relative to the largest singular value will be ignored. The
|
1306 |
+
default value is len(x)*eps, where eps is the relative precision of
|
1307 |
+
the float type, about 2e-16 in most cases.
|
1308 |
+
full : bool, optional
|
1309 |
+
Switch determining nature of return value. When it is False (the
|
1310 |
+
default) just the coefficients are returned, when True diagnostic
|
1311 |
+
information from the singular value decomposition is also returned.
|
1312 |
+
w : array_like, shape (`M`,), optional
|
1313 |
+
Weights. If not None, the weight ``w[i]`` applies to the unsquared
|
1314 |
+
residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
|
1315 |
+
chosen so that the errors of the products ``w[i]*y[i]`` all have the
|
1316 |
+
same variance. When using inverse-variance weighting, use
|
1317 |
+
``w[i] = 1/sigma(y[i])``. The default value is None.
|
1318 |
+
|
1319 |
+
Returns
|
1320 |
+
-------
|
1321 |
+
coef : ndarray, shape (M,) or (M, K)
|
1322 |
+
Hermite coefficients ordered from low to high. If `y` was 2-D,
|
1323 |
+
the coefficients for the data in column k of `y` are in column
|
1324 |
+
`k`.
|
1325 |
+
|
1326 |
+
[residuals, rank, singular_values, rcond] : list
|
1327 |
+
These values are only returned if ``full == True``
|
1328 |
+
|
1329 |
+
- residuals -- sum of squared residuals of the least squares fit
|
1330 |
+
- rank -- the numerical rank of the scaled Vandermonde matrix
|
1331 |
+
- singular_values -- singular values of the scaled Vandermonde matrix
|
1332 |
+
- rcond -- value of `rcond`.
|
1333 |
+
|
1334 |
+
For more details, see `numpy.linalg.lstsq`.
|
1335 |
+
|
1336 |
+
Warns
|
1337 |
+
-----
|
1338 |
+
RankWarning
|
1339 |
+
The rank of the coefficient matrix in the least-squares fit is
|
1340 |
+
deficient. The warning is only raised if ``full == False``. The
|
1341 |
+
warnings can be turned off by
|
1342 |
+
|
1343 |
+
>>> import warnings
|
1344 |
+
>>> warnings.simplefilter('ignore', np.RankWarning)
|
1345 |
+
|
1346 |
+
See Also
|
1347 |
+
--------
|
1348 |
+
numpy.polynomial.chebyshev.chebfit
|
1349 |
+
numpy.polynomial.legendre.legfit
|
1350 |
+
numpy.polynomial.laguerre.lagfit
|
1351 |
+
numpy.polynomial.polynomial.polyfit
|
1352 |
+
numpy.polynomial.hermite_e.hermefit
|
1353 |
+
hermval : Evaluates a Hermite series.
|
1354 |
+
hermvander : Vandermonde matrix of Hermite series.
|
1355 |
+
hermweight : Hermite weight function
|
1356 |
+
numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
|
1357 |
+
scipy.interpolate.UnivariateSpline : Computes spline fits.
|
1358 |
+
|
1359 |
+
Notes
|
1360 |
+
-----
|
1361 |
+
The solution is the coefficients of the Hermite series `p` that
|
1362 |
+
minimizes the sum of the weighted squared errors
|
1363 |
+
|
1364 |
+
.. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
|
1365 |
+
|
1366 |
+
where the :math:`w_j` are the weights. This problem is solved by
|
1367 |
+
setting up the (typically) overdetermined matrix equation
|
1368 |
+
|
1369 |
+
.. math:: V(x) * c = w * y,
|
1370 |
+
|
1371 |
+
where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
|
1372 |
+
coefficients to be solved for, `w` are the weights, `y` are the
|
1373 |
+
observed values. This equation is then solved using the singular value
|
1374 |
+
decomposition of `V`.
|
1375 |
+
|
1376 |
+
If some of the singular values of `V` are so small that they are
|
1377 |
+
neglected, then a `RankWarning` will be issued. This means that the
|
1378 |
+
coefficient values may be poorly determined. Using a lower order fit
|
1379 |
+
will usually get rid of the warning. The `rcond` parameter can also be
|
1380 |
+
set to a value smaller than its default, but the resulting fit may be
|
1381 |
+
spurious and have large contributions from roundoff error.
|
1382 |
+
|
1383 |
+
Fits using Hermite series are probably most useful when the data can be
|
1384 |
+
approximated by ``sqrt(w(x)) * p(x)``, where `w(x)` is the Hermite
|
1385 |
+
weight. In that case the weight ``sqrt(w(x[i]))`` should be used
|
1386 |
+
together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is
|
1387 |
+
available as `hermweight`.
|
1388 |
+
|
1389 |
+
References
|
1390 |
+
----------
|
1391 |
+
.. [1] Wikipedia, "Curve fitting",
|
1392 |
+
https://en.wikipedia.org/wiki/Curve_fitting
|
1393 |
+
|
1394 |
+
Examples
|
1395 |
+
--------
|
1396 |
+
>>> from numpy.polynomial.hermite import hermfit, hermval
|
1397 |
+
>>> x = np.linspace(-10, 10)
|
1398 |
+
>>> err = np.random.randn(len(x))/10
|
1399 |
+
>>> y = hermval(x, [1, 2, 3]) + err
|
1400 |
+
>>> hermfit(x, y, 2)
|
1401 |
+
array([1.0218, 1.9986, 2.9999]) # may vary
|
1402 |
+
|
1403 |
+
"""
|
1404 |
+
return pu._fit(hermvander, x, y, deg, rcond, full, w)
|
1405 |
+
|
1406 |
+
|
1407 |
+
def hermcompanion(c):
|
1408 |
+
"""Return the scaled companion matrix of c.
|
1409 |
+
|
1410 |
+
The basis polynomials are scaled so that the companion matrix is
|
1411 |
+
symmetric when `c` is an Hermite basis polynomial. This provides
|
1412 |
+
better eigenvalue estimates than the unscaled case and for basis
|
1413 |
+
polynomials the eigenvalues are guaranteed to be real if
|
1414 |
+
`numpy.linalg.eigvalsh` is used to obtain them.
|
1415 |
+
|
1416 |
+
Parameters
|
1417 |
+
----------
|
1418 |
+
c : array_like
|
1419 |
+
1-D array of Hermite series coefficients ordered from low to high
|
1420 |
+
degree.
|
1421 |
+
|
1422 |
+
Returns
|
1423 |
+
-------
|
1424 |
+
mat : ndarray
|
1425 |
+
Scaled companion matrix of dimensions (deg, deg).
|
1426 |
+
|
1427 |
+
Notes
|
1428 |
+
-----
|
1429 |
+
|
1430 |
+
.. versionadded:: 1.7.0
|
1431 |
+
|
1432 |
+
"""
|
1433 |
+
# c is a trimmed copy
|
1434 |
+
[c] = pu.as_series([c])
|
1435 |
+
if len(c) < 2:
|
1436 |
+
raise ValueError('Series must have maximum degree of at least 1.')
|
1437 |
+
if len(c) == 2:
|
1438 |
+
return np.array([[-.5*c[0]/c[1]]])
|
1439 |
+
|
1440 |
+
n = len(c) - 1
|
1441 |
+
mat = np.zeros((n, n), dtype=c.dtype)
|
1442 |
+
scl = np.hstack((1., 1./np.sqrt(2.*np.arange(n - 1, 0, -1))))
|
1443 |
+
scl = np.multiply.accumulate(scl)[::-1]
|
1444 |
+
top = mat.reshape(-1)[1::n+1]
|
1445 |
+
bot = mat.reshape(-1)[n::n+1]
|
1446 |
+
top[...] = np.sqrt(.5*np.arange(1, n))
|
1447 |
+
bot[...] = top
|
1448 |
+
mat[:, -1] -= scl*c[:-1]/(2.0*c[-1])
|
1449 |
+
return mat
|
1450 |
+
|
1451 |
+
|
1452 |
+
def hermroots(c):
|
1453 |
+
"""
|
1454 |
+
Compute the roots of a Hermite series.
|
1455 |
+
|
1456 |
+
Return the roots (a.k.a. "zeros") of the polynomial
|
1457 |
+
|
1458 |
+
.. math:: p(x) = \\sum_i c[i] * H_i(x).
|
1459 |
+
|
1460 |
+
Parameters
|
1461 |
+
----------
|
1462 |
+
c : 1-D array_like
|
1463 |
+
1-D array of coefficients.
|
1464 |
+
|
1465 |
+
Returns
|
1466 |
+
-------
|
1467 |
+
out : ndarray
|
1468 |
+
Array of the roots of the series. If all the roots are real,
|
1469 |
+
then `out` is also real, otherwise it is complex.
|
1470 |
+
|
1471 |
+
See Also
|
1472 |
+
--------
|
1473 |
+
numpy.polynomial.polynomial.polyroots
|
1474 |
+
numpy.polynomial.legendre.legroots
|
1475 |
+
numpy.polynomial.laguerre.lagroots
|
1476 |
+
numpy.polynomial.chebyshev.chebroots
|
1477 |
+
numpy.polynomial.hermite_e.hermeroots
|
1478 |
+
|
1479 |
+
Notes
|
1480 |
+
-----
|
1481 |
+
The root estimates are obtained as the eigenvalues of the companion
|
1482 |
+
matrix, Roots far from the origin of the complex plane may have large
|
1483 |
+
errors due to the numerical instability of the series for such
|
1484 |
+
values. Roots with multiplicity greater than 1 will also show larger
|
1485 |
+
errors as the value of the series near such points is relatively
|
1486 |
+
insensitive to errors in the roots. Isolated roots near the origin can
|
1487 |
+
be improved by a few iterations of Newton's method.
|
1488 |
+
|
1489 |
+
The Hermite series basis polynomials aren't powers of `x` so the
|
1490 |
+
results of this function may seem unintuitive.
|
1491 |
+
|
1492 |
+
Examples
|
1493 |
+
--------
|
1494 |
+
>>> from numpy.polynomial.hermite import hermroots, hermfromroots
|
1495 |
+
>>> coef = hermfromroots([-1, 0, 1])
|
1496 |
+
>>> coef
|
1497 |
+
array([0. , 0.25 , 0. , 0.125])
|
1498 |
+
>>> hermroots(coef)
|
1499 |
+
array([-1.00000000e+00, -1.38777878e-17, 1.00000000e+00])
|
1500 |
+
|
1501 |
+
"""
|
1502 |
+
# c is a trimmed copy
|
1503 |
+
[c] = pu.as_series([c])
|
1504 |
+
if len(c) <= 1:
|
1505 |
+
return np.array([], dtype=c.dtype)
|
1506 |
+
if len(c) == 2:
|
1507 |
+
return np.array([-.5*c[0]/c[1]])
|
1508 |
+
|
1509 |
+
# rotated companion matrix reduces error
|
1510 |
+
m = hermcompanion(c)[::-1,::-1]
|
1511 |
+
r = la.eigvals(m)
|
1512 |
+
r.sort()
|
1513 |
+
return r
|
1514 |
+
|
1515 |
+
|
1516 |
+
def _normed_hermite_n(x, n):
|
1517 |
+
"""
|
1518 |
+
Evaluate a normalized Hermite polynomial.
|
1519 |
+
|
1520 |
+
Compute the value of the normalized Hermite polynomial of degree ``n``
|
1521 |
+
at the points ``x``.
|
1522 |
+
|
1523 |
+
|
1524 |
+
Parameters
|
1525 |
+
----------
|
1526 |
+
x : ndarray of double.
|
1527 |
+
Points at which to evaluate the function
|
1528 |
+
n : int
|
1529 |
+
Degree of the normalized Hermite function to be evaluated.
|
1530 |
+
|
1531 |
+
Returns
|
1532 |
+
-------
|
1533 |
+
values : ndarray
|
1534 |
+
The shape of the return value is described above.
|
1535 |
+
|
1536 |
+
Notes
|
1537 |
+
-----
|
1538 |
+
.. versionadded:: 1.10.0
|
1539 |
+
|
1540 |
+
This function is needed for finding the Gauss points and integration
|
1541 |
+
weights for high degrees. The values of the standard Hermite functions
|
1542 |
+
overflow when n >= 207.
|
1543 |
+
|
1544 |
+
"""
|
1545 |
+
if n == 0:
|
1546 |
+
return np.full(x.shape, 1/np.sqrt(np.sqrt(np.pi)))
|
1547 |
+
|
1548 |
+
c0 = 0.
|
1549 |
+
c1 = 1./np.sqrt(np.sqrt(np.pi))
|
1550 |
+
nd = float(n)
|
1551 |
+
for i in range(n - 1):
|
1552 |
+
tmp = c0
|
1553 |
+
c0 = -c1*np.sqrt((nd - 1.)/nd)
|
1554 |
+
c1 = tmp + c1*x*np.sqrt(2./nd)
|
1555 |
+
nd = nd - 1.0
|
1556 |
+
return c0 + c1*x*np.sqrt(2)
|
1557 |
+
|
1558 |
+
|
1559 |
+
def hermgauss(deg):
|
1560 |
+
"""
|
1561 |
+
Gauss-Hermite quadrature.
|
1562 |
+
|
1563 |
+
Computes the sample points and weights for Gauss-Hermite quadrature.
|
1564 |
+
These sample points and weights will correctly integrate polynomials of
|
1565 |
+
degree :math:`2*deg - 1` or less over the interval :math:`[-\\inf, \\inf]`
|
1566 |
+
with the weight function :math:`f(x) = \\exp(-x^2)`.
|
1567 |
+
|
1568 |
+
Parameters
|
1569 |
+
----------
|
1570 |
+
deg : int
|
1571 |
+
Number of sample points and weights. It must be >= 1.
|
1572 |
+
|
1573 |
+
Returns
|
1574 |
+
-------
|
1575 |
+
x : ndarray
|
1576 |
+
1-D ndarray containing the sample points.
|
1577 |
+
y : ndarray
|
1578 |
+
1-D ndarray containing the weights.
|
1579 |
+
|
1580 |
+
Notes
|
1581 |
+
-----
|
1582 |
+
|
1583 |
+
.. versionadded:: 1.7.0
|
1584 |
+
|
1585 |
+
The results have only been tested up to degree 100, higher degrees may
|
1586 |
+
be problematic. The weights are determined by using the fact that
|
1587 |
+
|
1588 |
+
.. math:: w_k = c / (H'_n(x_k) * H_{n-1}(x_k))
|
1589 |
+
|
1590 |
+
where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
|
1591 |
+
is the k'th root of :math:`H_n`, and then scaling the results to get
|
1592 |
+
the right value when integrating 1.
|
1593 |
+
|
1594 |
+
"""
|
1595 |
+
ideg = pu._deprecate_as_int(deg, "deg")
|
1596 |
+
if ideg <= 0:
|
1597 |
+
raise ValueError("deg must be a positive integer")
|
1598 |
+
|
1599 |
+
# first approximation of roots. We use the fact that the companion
|
1600 |
+
# matrix is symmetric in this case in order to obtain better zeros.
|
1601 |
+
c = np.array([0]*deg + [1], dtype=np.float64)
|
1602 |
+
m = hermcompanion(c)
|
1603 |
+
x = la.eigvalsh(m)
|
1604 |
+
|
1605 |
+
# improve roots by one application of Newton
|
1606 |
+
dy = _normed_hermite_n(x, ideg)
|
1607 |
+
df = _normed_hermite_n(x, ideg - 1) * np.sqrt(2*ideg)
|
1608 |
+
x -= dy/df
|
1609 |
+
|
1610 |
+
# compute the weights. We scale the factor to avoid possible numerical
|
1611 |
+
# overflow.
|
1612 |
+
fm = _normed_hermite_n(x, ideg - 1)
|
1613 |
+
fm /= np.abs(fm).max()
|
1614 |
+
w = 1/(fm * fm)
|
1615 |
+
|
1616 |
+
# for Hermite we can also symmetrize
|
1617 |
+
w = (w + w[::-1])/2
|
1618 |
+
x = (x - x[::-1])/2
|
1619 |
+
|
1620 |
+
# scale w to get the right value
|
1621 |
+
w *= np.sqrt(np.pi) / w.sum()
|
1622 |
+
|
1623 |
+
return x, w
|
1624 |
+
|
1625 |
+
|
1626 |
+
def hermweight(x):
|
1627 |
+
"""
|
1628 |
+
Weight function of the Hermite polynomials.
|
1629 |
+
|
1630 |
+
The weight function is :math:`\\exp(-x^2)` and the interval of
|
1631 |
+
integration is :math:`[-\\inf, \\inf]`. the Hermite polynomials are
|
1632 |
+
orthogonal, but not normalized, with respect to this weight function.
|
1633 |
+
|
1634 |
+
Parameters
|
1635 |
+
----------
|
1636 |
+
x : array_like
|
1637 |
+
Values at which the weight function will be computed.
|
1638 |
+
|
1639 |
+
Returns
|
1640 |
+
-------
|
1641 |
+
w : ndarray
|
1642 |
+
The weight function at `x`.
|
1643 |
+
|
1644 |
+
Notes
|
1645 |
+
-----
|
1646 |
+
|
1647 |
+
.. versionadded:: 1.7.0
|
1648 |
+
|
1649 |
+
"""
|
1650 |
+
w = np.exp(-x**2)
|
1651 |
+
return w
|
1652 |
+
|
1653 |
+
|
1654 |
+
#
|
1655 |
+
# Hermite series class
|
1656 |
+
#
|
1657 |
+
|
1658 |
+
class Hermite(ABCPolyBase):
|
1659 |
+
"""An Hermite series class.
|
1660 |
+
|
1661 |
+
The Hermite class provides the standard Python numerical methods
|
1662 |
+
'+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
|
1663 |
+
attributes and methods listed in the `ABCPolyBase` documentation.
|
1664 |
+
|
1665 |
+
Parameters
|
1666 |
+
----------
|
1667 |
+
coef : array_like
|
1668 |
+
Hermite coefficients in order of increasing degree, i.e,
|
1669 |
+
``(1, 2, 3)`` gives ``1*H_0(x) + 2*H_1(X) + 3*H_2(x)``.
|
1670 |
+
domain : (2,) array_like, optional
|
1671 |
+
Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
|
1672 |
+
to the interval ``[window[0], window[1]]`` by shifting and scaling.
|
1673 |
+
The default value is [-1, 1].
|
1674 |
+
window : (2,) array_like, optional
|
1675 |
+
Window, see `domain` for its use. The default value is [-1, 1].
|
1676 |
+
|
1677 |
+
.. versionadded:: 1.6.0
|
1678 |
+
symbol : str, optional
|
1679 |
+
Symbol used to represent the independent variable in string
|
1680 |
+
representations of the polynomial expression, e.g. for printing.
|
1681 |
+
The symbol must be a valid Python identifier. Default value is 'x'.
|
1682 |
+
|
1683 |
+
.. versionadded:: 1.24
|
1684 |
+
|
1685 |
+
"""
|
1686 |
+
# Virtual Functions
|
1687 |
+
_add = staticmethod(hermadd)
|
1688 |
+
_sub = staticmethod(hermsub)
|
1689 |
+
_mul = staticmethod(hermmul)
|
1690 |
+
_div = staticmethod(hermdiv)
|
1691 |
+
_pow = staticmethod(hermpow)
|
1692 |
+
_val = staticmethod(hermval)
|
1693 |
+
_int = staticmethod(hermint)
|
1694 |
+
_der = staticmethod(hermder)
|
1695 |
+
_fit = staticmethod(hermfit)
|
1696 |
+
_line = staticmethod(hermline)
|
1697 |
+
_roots = staticmethod(hermroots)
|
1698 |
+
_fromroots = staticmethod(hermfromroots)
|
1699 |
+
|
1700 |
+
# Virtual properties
|
1701 |
+
domain = np.array(hermdomain)
|
1702 |
+
window = np.array(hermdomain)
|
1703 |
+
basis_name = 'H'
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/hermite.pyi
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from numpy import ndarray, dtype, int_, float_
|
4 |
+
from numpy.polynomial._polybase import ABCPolyBase
|
5 |
+
from numpy.polynomial.polyutils import trimcoef
|
6 |
+
|
7 |
+
__all__: list[str]
|
8 |
+
|
9 |
+
hermtrim = trimcoef
|
10 |
+
|
11 |
+
def poly2herm(pol): ...
|
12 |
+
def herm2poly(c): ...
|
13 |
+
|
14 |
+
hermdomain: ndarray[Any, dtype[int_]]
|
15 |
+
hermzero: ndarray[Any, dtype[int_]]
|
16 |
+
hermone: ndarray[Any, dtype[int_]]
|
17 |
+
hermx: ndarray[Any, dtype[float_]]
|
18 |
+
|
19 |
+
def hermline(off, scl): ...
|
20 |
+
def hermfromroots(roots): ...
|
21 |
+
def hermadd(c1, c2): ...
|
22 |
+
def hermsub(c1, c2): ...
|
23 |
+
def hermmulx(c): ...
|
24 |
+
def hermmul(c1, c2): ...
|
25 |
+
def hermdiv(c1, c2): ...
|
26 |
+
def hermpow(c, pow, maxpower=...): ...
|
27 |
+
def hermder(c, m=..., scl=..., axis=...): ...
|
28 |
+
def hermint(c, m=..., k = ..., lbnd=..., scl=..., axis=...): ...
|
29 |
+
def hermval(x, c, tensor=...): ...
|
30 |
+
def hermval2d(x, y, c): ...
|
31 |
+
def hermgrid2d(x, y, c): ...
|
32 |
+
def hermval3d(x, y, z, c): ...
|
33 |
+
def hermgrid3d(x, y, z, c): ...
|
34 |
+
def hermvander(x, deg): ...
|
35 |
+
def hermvander2d(x, y, deg): ...
|
36 |
+
def hermvander3d(x, y, z, deg): ...
|
37 |
+
def hermfit(x, y, deg, rcond=..., full=..., w=...): ...
|
38 |
+
def hermcompanion(c): ...
|
39 |
+
def hermroots(c): ...
|
40 |
+
def hermgauss(deg): ...
|
41 |
+
def hermweight(x): ...
|
42 |
+
|
43 |
+
class Hermite(ABCPolyBase):
|
44 |
+
domain: Any
|
45 |
+
window: Any
|
46 |
+
basis_name: Any
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/hermite_e.py
ADDED
@@ -0,0 +1,1695 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
===================================================================
|
3 |
+
HermiteE Series, "Probabilists" (:mod:`numpy.polynomial.hermite_e`)
|
4 |
+
===================================================================
|
5 |
+
|
6 |
+
This module provides a number of objects (mostly functions) useful for
|
7 |
+
dealing with Hermite_e series, including a `HermiteE` class that
|
8 |
+
encapsulates the usual arithmetic operations. (General information
|
9 |
+
on how this module represents and works with such polynomials is in the
|
10 |
+
docstring for its "parent" sub-package, `numpy.polynomial`).
|
11 |
+
|
12 |
+
Classes
|
13 |
+
-------
|
14 |
+
.. autosummary::
|
15 |
+
:toctree: generated/
|
16 |
+
|
17 |
+
HermiteE
|
18 |
+
|
19 |
+
Constants
|
20 |
+
---------
|
21 |
+
.. autosummary::
|
22 |
+
:toctree: generated/
|
23 |
+
|
24 |
+
hermedomain
|
25 |
+
hermezero
|
26 |
+
hermeone
|
27 |
+
hermex
|
28 |
+
|
29 |
+
Arithmetic
|
30 |
+
----------
|
31 |
+
.. autosummary::
|
32 |
+
:toctree: generated/
|
33 |
+
|
34 |
+
hermeadd
|
35 |
+
hermesub
|
36 |
+
hermemulx
|
37 |
+
hermemul
|
38 |
+
hermediv
|
39 |
+
hermepow
|
40 |
+
hermeval
|
41 |
+
hermeval2d
|
42 |
+
hermeval3d
|
43 |
+
hermegrid2d
|
44 |
+
hermegrid3d
|
45 |
+
|
46 |
+
Calculus
|
47 |
+
--------
|
48 |
+
.. autosummary::
|
49 |
+
:toctree: generated/
|
50 |
+
|
51 |
+
hermeder
|
52 |
+
hermeint
|
53 |
+
|
54 |
+
Misc Functions
|
55 |
+
--------------
|
56 |
+
.. autosummary::
|
57 |
+
:toctree: generated/
|
58 |
+
|
59 |
+
hermefromroots
|
60 |
+
hermeroots
|
61 |
+
hermevander
|
62 |
+
hermevander2d
|
63 |
+
hermevander3d
|
64 |
+
hermegauss
|
65 |
+
hermeweight
|
66 |
+
hermecompanion
|
67 |
+
hermefit
|
68 |
+
hermetrim
|
69 |
+
hermeline
|
70 |
+
herme2poly
|
71 |
+
poly2herme
|
72 |
+
|
73 |
+
See also
|
74 |
+
--------
|
75 |
+
`numpy.polynomial`
|
76 |
+
|
77 |
+
"""
|
78 |
+
import numpy as np
|
79 |
+
import numpy.linalg as la
|
80 |
+
from numpy.core.multiarray import normalize_axis_index
|
81 |
+
|
82 |
+
from . import polyutils as pu
|
83 |
+
from ._polybase import ABCPolyBase
|
84 |
+
|
85 |
+
__all__ = [
|
86 |
+
'hermezero', 'hermeone', 'hermex', 'hermedomain', 'hermeline',
|
87 |
+
'hermeadd', 'hermesub', 'hermemulx', 'hermemul', 'hermediv',
|
88 |
+
'hermepow', 'hermeval', 'hermeder', 'hermeint', 'herme2poly',
|
89 |
+
'poly2herme', 'hermefromroots', 'hermevander', 'hermefit', 'hermetrim',
|
90 |
+
'hermeroots', 'HermiteE', 'hermeval2d', 'hermeval3d', 'hermegrid2d',
|
91 |
+
'hermegrid3d', 'hermevander2d', 'hermevander3d', 'hermecompanion',
|
92 |
+
'hermegauss', 'hermeweight']
|
93 |
+
|
94 |
+
hermetrim = pu.trimcoef
|
95 |
+
|
96 |
+
|
97 |
+
def poly2herme(pol):
|
98 |
+
"""
|
99 |
+
poly2herme(pol)
|
100 |
+
|
101 |
+
Convert a polynomial to a Hermite series.
|
102 |
+
|
103 |
+
Convert an array representing the coefficients of a polynomial (relative
|
104 |
+
to the "standard" basis) ordered from lowest degree to highest, to an
|
105 |
+
array of the coefficients of the equivalent Hermite series, ordered
|
106 |
+
from lowest to highest degree.
|
107 |
+
|
108 |
+
Parameters
|
109 |
+
----------
|
110 |
+
pol : array_like
|
111 |
+
1-D array containing the polynomial coefficients
|
112 |
+
|
113 |
+
Returns
|
114 |
+
-------
|
115 |
+
c : ndarray
|
116 |
+
1-D array containing the coefficients of the equivalent Hermite
|
117 |
+
series.
|
118 |
+
|
119 |
+
See Also
|
120 |
+
--------
|
121 |
+
herme2poly
|
122 |
+
|
123 |
+
Notes
|
124 |
+
-----
|
125 |
+
The easy way to do conversions between polynomial basis sets
|
126 |
+
is to use the convert method of a class instance.
|
127 |
+
|
128 |
+
Examples
|
129 |
+
--------
|
130 |
+
>>> from numpy.polynomial.hermite_e import poly2herme
|
131 |
+
>>> poly2herme(np.arange(4))
|
132 |
+
array([ 2., 10., 2., 3.])
|
133 |
+
|
134 |
+
"""
|
135 |
+
[pol] = pu.as_series([pol])
|
136 |
+
deg = len(pol) - 1
|
137 |
+
res = 0
|
138 |
+
for i in range(deg, -1, -1):
|
139 |
+
res = hermeadd(hermemulx(res), pol[i])
|
140 |
+
return res
|
141 |
+
|
142 |
+
|
143 |
+
def herme2poly(c):
|
144 |
+
"""
|
145 |
+
Convert a Hermite series to a polynomial.
|
146 |
+
|
147 |
+
Convert an array representing the coefficients of a Hermite series,
|
148 |
+
ordered from lowest degree to highest, to an array of the coefficients
|
149 |
+
of the equivalent polynomial (relative to the "standard" basis) ordered
|
150 |
+
from lowest to highest degree.
|
151 |
+
|
152 |
+
Parameters
|
153 |
+
----------
|
154 |
+
c : array_like
|
155 |
+
1-D array containing the Hermite series coefficients, ordered
|
156 |
+
from lowest order term to highest.
|
157 |
+
|
158 |
+
Returns
|
159 |
+
-------
|
160 |
+
pol : ndarray
|
161 |
+
1-D array containing the coefficients of the equivalent polynomial
|
162 |
+
(relative to the "standard" basis) ordered from lowest order term
|
163 |
+
to highest.
|
164 |
+
|
165 |
+
See Also
|
166 |
+
--------
|
167 |
+
poly2herme
|
168 |
+
|
169 |
+
Notes
|
170 |
+
-----
|
171 |
+
The easy way to do conversions between polynomial basis sets
|
172 |
+
is to use the convert method of a class instance.
|
173 |
+
|
174 |
+
Examples
|
175 |
+
--------
|
176 |
+
>>> from numpy.polynomial.hermite_e import herme2poly
|
177 |
+
>>> herme2poly([ 2., 10., 2., 3.])
|
178 |
+
array([0., 1., 2., 3.])
|
179 |
+
|
180 |
+
"""
|
181 |
+
from .polynomial import polyadd, polysub, polymulx
|
182 |
+
|
183 |
+
[c] = pu.as_series([c])
|
184 |
+
n = len(c)
|
185 |
+
if n == 1:
|
186 |
+
return c
|
187 |
+
if n == 2:
|
188 |
+
return c
|
189 |
+
else:
|
190 |
+
c0 = c[-2]
|
191 |
+
c1 = c[-1]
|
192 |
+
# i is the current degree of c1
|
193 |
+
for i in range(n - 1, 1, -1):
|
194 |
+
tmp = c0
|
195 |
+
c0 = polysub(c[i - 2], c1*(i - 1))
|
196 |
+
c1 = polyadd(tmp, polymulx(c1))
|
197 |
+
return polyadd(c0, polymulx(c1))
|
198 |
+
|
199 |
+
#
|
200 |
+
# These are constant arrays are of integer type so as to be compatible
|
201 |
+
# with the widest range of other types, such as Decimal.
|
202 |
+
#
|
203 |
+
|
204 |
+
# Hermite
|
205 |
+
hermedomain = np.array([-1, 1])
|
206 |
+
|
207 |
+
# Hermite coefficients representing zero.
|
208 |
+
hermezero = np.array([0])
|
209 |
+
|
210 |
+
# Hermite coefficients representing one.
|
211 |
+
hermeone = np.array([1])
|
212 |
+
|
213 |
+
# Hermite coefficients representing the identity x.
|
214 |
+
hermex = np.array([0, 1])
|
215 |
+
|
216 |
+
|
217 |
+
def hermeline(off, scl):
|
218 |
+
"""
|
219 |
+
Hermite series whose graph is a straight line.
|
220 |
+
|
221 |
+
Parameters
|
222 |
+
----------
|
223 |
+
off, scl : scalars
|
224 |
+
The specified line is given by ``off + scl*x``.
|
225 |
+
|
226 |
+
Returns
|
227 |
+
-------
|
228 |
+
y : ndarray
|
229 |
+
This module's representation of the Hermite series for
|
230 |
+
``off + scl*x``.
|
231 |
+
|
232 |
+
See Also
|
233 |
+
--------
|
234 |
+
numpy.polynomial.polynomial.polyline
|
235 |
+
numpy.polynomial.chebyshev.chebline
|
236 |
+
numpy.polynomial.legendre.legline
|
237 |
+
numpy.polynomial.laguerre.lagline
|
238 |
+
numpy.polynomial.hermite.hermline
|
239 |
+
|
240 |
+
Examples
|
241 |
+
--------
|
242 |
+
>>> from numpy.polynomial.hermite_e import hermeline
|
243 |
+
>>> from numpy.polynomial.hermite_e import hermeline, hermeval
|
244 |
+
>>> hermeval(0,hermeline(3, 2))
|
245 |
+
3.0
|
246 |
+
>>> hermeval(1,hermeline(3, 2))
|
247 |
+
5.0
|
248 |
+
|
249 |
+
"""
|
250 |
+
if scl != 0:
|
251 |
+
return np.array([off, scl])
|
252 |
+
else:
|
253 |
+
return np.array([off])
|
254 |
+
|
255 |
+
|
256 |
+
def hermefromroots(roots):
|
257 |
+
"""
|
258 |
+
Generate a HermiteE series with given roots.
|
259 |
+
|
260 |
+
The function returns the coefficients of the polynomial
|
261 |
+
|
262 |
+
.. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
|
263 |
+
|
264 |
+
in HermiteE form, where the `r_n` are the roots specified in `roots`.
|
265 |
+
If a zero has multiplicity n, then it must appear in `roots` n times.
|
266 |
+
For instance, if 2 is a root of multiplicity three and 3 is a root of
|
267 |
+
multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
|
268 |
+
roots can appear in any order.
|
269 |
+
|
270 |
+
If the returned coefficients are `c`, then
|
271 |
+
|
272 |
+
.. math:: p(x) = c_0 + c_1 * He_1(x) + ... + c_n * He_n(x)
|
273 |
+
|
274 |
+
The coefficient of the last term is not generally 1 for monic
|
275 |
+
polynomials in HermiteE form.
|
276 |
+
|
277 |
+
Parameters
|
278 |
+
----------
|
279 |
+
roots : array_like
|
280 |
+
Sequence containing the roots.
|
281 |
+
|
282 |
+
Returns
|
283 |
+
-------
|
284 |
+
out : ndarray
|
285 |
+
1-D array of coefficients. If all roots are real then `out` is a
|
286 |
+
real array, if some of the roots are complex, then `out` is complex
|
287 |
+
even if all the coefficients in the result are real (see Examples
|
288 |
+
below).
|
289 |
+
|
290 |
+
See Also
|
291 |
+
--------
|
292 |
+
numpy.polynomial.polynomial.polyfromroots
|
293 |
+
numpy.polynomial.legendre.legfromroots
|
294 |
+
numpy.polynomial.laguerre.lagfromroots
|
295 |
+
numpy.polynomial.hermite.hermfromroots
|
296 |
+
numpy.polynomial.chebyshev.chebfromroots
|
297 |
+
|
298 |
+
Examples
|
299 |
+
--------
|
300 |
+
>>> from numpy.polynomial.hermite_e import hermefromroots, hermeval
|
301 |
+
>>> coef = hermefromroots((-1, 0, 1))
|
302 |
+
>>> hermeval((-1, 0, 1), coef)
|
303 |
+
array([0., 0., 0.])
|
304 |
+
>>> coef = hermefromroots((-1j, 1j))
|
305 |
+
>>> hermeval((-1j, 1j), coef)
|
306 |
+
array([0.+0.j, 0.+0.j])
|
307 |
+
|
308 |
+
"""
|
309 |
+
return pu._fromroots(hermeline, hermemul, roots)
|
310 |
+
|
311 |
+
|
312 |
+
def hermeadd(c1, c2):
|
313 |
+
"""
|
314 |
+
Add one Hermite series to another.
|
315 |
+
|
316 |
+
Returns the sum of two Hermite series `c1` + `c2`. The arguments
|
317 |
+
are sequences of coefficients ordered from lowest order term to
|
318 |
+
highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
|
319 |
+
|
320 |
+
Parameters
|
321 |
+
----------
|
322 |
+
c1, c2 : array_like
|
323 |
+
1-D arrays of Hermite series coefficients ordered from low to
|
324 |
+
high.
|
325 |
+
|
326 |
+
Returns
|
327 |
+
-------
|
328 |
+
out : ndarray
|
329 |
+
Array representing the Hermite series of their sum.
|
330 |
+
|
331 |
+
See Also
|
332 |
+
--------
|
333 |
+
hermesub, hermemulx, hermemul, hermediv, hermepow
|
334 |
+
|
335 |
+
Notes
|
336 |
+
-----
|
337 |
+
Unlike multiplication, division, etc., the sum of two Hermite series
|
338 |
+
is a Hermite series (without having to "reproject" the result onto
|
339 |
+
the basis set) so addition, just like that of "standard" polynomials,
|
340 |
+
is simply "component-wise."
|
341 |
+
|
342 |
+
Examples
|
343 |
+
--------
|
344 |
+
>>> from numpy.polynomial.hermite_e import hermeadd
|
345 |
+
>>> hermeadd([1, 2, 3], [1, 2, 3, 4])
|
346 |
+
array([2., 4., 6., 4.])
|
347 |
+
|
348 |
+
"""
|
349 |
+
return pu._add(c1, c2)
|
350 |
+
|
351 |
+
|
352 |
+
def hermesub(c1, c2):
|
353 |
+
"""
|
354 |
+
Subtract one Hermite series from another.
|
355 |
+
|
356 |
+
Returns the difference of two Hermite series `c1` - `c2`. The
|
357 |
+
sequences of coefficients are from lowest order term to highest, i.e.,
|
358 |
+
[1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
|
359 |
+
|
360 |
+
Parameters
|
361 |
+
----------
|
362 |
+
c1, c2 : array_like
|
363 |
+
1-D arrays of Hermite series coefficients ordered from low to
|
364 |
+
high.
|
365 |
+
|
366 |
+
Returns
|
367 |
+
-------
|
368 |
+
out : ndarray
|
369 |
+
Of Hermite series coefficients representing their difference.
|
370 |
+
|
371 |
+
See Also
|
372 |
+
--------
|
373 |
+
hermeadd, hermemulx, hermemul, hermediv, hermepow
|
374 |
+
|
375 |
+
Notes
|
376 |
+
-----
|
377 |
+
Unlike multiplication, division, etc., the difference of two Hermite
|
378 |
+
series is a Hermite series (without having to "reproject" the result
|
379 |
+
onto the basis set) so subtraction, just like that of "standard"
|
380 |
+
polynomials, is simply "component-wise."
|
381 |
+
|
382 |
+
Examples
|
383 |
+
--------
|
384 |
+
>>> from numpy.polynomial.hermite_e import hermesub
|
385 |
+
>>> hermesub([1, 2, 3, 4], [1, 2, 3])
|
386 |
+
array([0., 0., 0., 4.])
|
387 |
+
|
388 |
+
"""
|
389 |
+
return pu._sub(c1, c2)
|
390 |
+
|
391 |
+
|
392 |
+
def hermemulx(c):
|
393 |
+
"""Multiply a Hermite series by x.
|
394 |
+
|
395 |
+
Multiply the Hermite series `c` by x, where x is the independent
|
396 |
+
variable.
|
397 |
+
|
398 |
+
|
399 |
+
Parameters
|
400 |
+
----------
|
401 |
+
c : array_like
|
402 |
+
1-D array of Hermite series coefficients ordered from low to
|
403 |
+
high.
|
404 |
+
|
405 |
+
Returns
|
406 |
+
-------
|
407 |
+
out : ndarray
|
408 |
+
Array representing the result of the multiplication.
|
409 |
+
|
410 |
+
Notes
|
411 |
+
-----
|
412 |
+
The multiplication uses the recursion relationship for Hermite
|
413 |
+
polynomials in the form
|
414 |
+
|
415 |
+
.. math::
|
416 |
+
|
417 |
+
xP_i(x) = (P_{i + 1}(x) + iP_{i - 1}(x)))
|
418 |
+
|
419 |
+
Examples
|
420 |
+
--------
|
421 |
+
>>> from numpy.polynomial.hermite_e import hermemulx
|
422 |
+
>>> hermemulx([1, 2, 3])
|
423 |
+
array([2., 7., 2., 3.])
|
424 |
+
|
425 |
+
"""
|
426 |
+
# c is a trimmed copy
|
427 |
+
[c] = pu.as_series([c])
|
428 |
+
# The zero series needs special treatment
|
429 |
+
if len(c) == 1 and c[0] == 0:
|
430 |
+
return c
|
431 |
+
|
432 |
+
prd = np.empty(len(c) + 1, dtype=c.dtype)
|
433 |
+
prd[0] = c[0]*0
|
434 |
+
prd[1] = c[0]
|
435 |
+
for i in range(1, len(c)):
|
436 |
+
prd[i + 1] = c[i]
|
437 |
+
prd[i - 1] += c[i]*i
|
438 |
+
return prd
|
439 |
+
|
440 |
+
|
441 |
+
def hermemul(c1, c2):
|
442 |
+
"""
|
443 |
+
Multiply one Hermite series by another.
|
444 |
+
|
445 |
+
Returns the product of two Hermite series `c1` * `c2`. The arguments
|
446 |
+
are sequences of coefficients, from lowest order "term" to highest,
|
447 |
+
e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
|
448 |
+
|
449 |
+
Parameters
|
450 |
+
----------
|
451 |
+
c1, c2 : array_like
|
452 |
+
1-D arrays of Hermite series coefficients ordered from low to
|
453 |
+
high.
|
454 |
+
|
455 |
+
Returns
|
456 |
+
-------
|
457 |
+
out : ndarray
|
458 |
+
Of Hermite series coefficients representing their product.
|
459 |
+
|
460 |
+
See Also
|
461 |
+
--------
|
462 |
+
hermeadd, hermesub, hermemulx, hermediv, hermepow
|
463 |
+
|
464 |
+
Notes
|
465 |
+
-----
|
466 |
+
In general, the (polynomial) product of two C-series results in terms
|
467 |
+
that are not in the Hermite polynomial basis set. Thus, to express
|
468 |
+
the product as a Hermite series, it is necessary to "reproject" the
|
469 |
+
product onto said basis set, which may produce "unintuitive" (but
|
470 |
+
correct) results; see Examples section below.
|
471 |
+
|
472 |
+
Examples
|
473 |
+
--------
|
474 |
+
>>> from numpy.polynomial.hermite_e import hermemul
|
475 |
+
>>> hermemul([1, 2, 3], [0, 1, 2])
|
476 |
+
array([14., 15., 28., 7., 6.])
|
477 |
+
|
478 |
+
"""
|
479 |
+
# s1, s2 are trimmed copies
|
480 |
+
[c1, c2] = pu.as_series([c1, c2])
|
481 |
+
|
482 |
+
if len(c1) > len(c2):
|
483 |
+
c = c2
|
484 |
+
xs = c1
|
485 |
+
else:
|
486 |
+
c = c1
|
487 |
+
xs = c2
|
488 |
+
|
489 |
+
if len(c) == 1:
|
490 |
+
c0 = c[0]*xs
|
491 |
+
c1 = 0
|
492 |
+
elif len(c) == 2:
|
493 |
+
c0 = c[0]*xs
|
494 |
+
c1 = c[1]*xs
|
495 |
+
else:
|
496 |
+
nd = len(c)
|
497 |
+
c0 = c[-2]*xs
|
498 |
+
c1 = c[-1]*xs
|
499 |
+
for i in range(3, len(c) + 1):
|
500 |
+
tmp = c0
|
501 |
+
nd = nd - 1
|
502 |
+
c0 = hermesub(c[-i]*xs, c1*(nd - 1))
|
503 |
+
c1 = hermeadd(tmp, hermemulx(c1))
|
504 |
+
return hermeadd(c0, hermemulx(c1))
|
505 |
+
|
506 |
+
|
507 |
+
def hermediv(c1, c2):
|
508 |
+
"""
|
509 |
+
Divide one Hermite series by another.
|
510 |
+
|
511 |
+
Returns the quotient-with-remainder of two Hermite series
|
512 |
+
`c1` / `c2`. The arguments are sequences of coefficients from lowest
|
513 |
+
order "term" to highest, e.g., [1,2,3] represents the series
|
514 |
+
``P_0 + 2*P_1 + 3*P_2``.
|
515 |
+
|
516 |
+
Parameters
|
517 |
+
----------
|
518 |
+
c1, c2 : array_like
|
519 |
+
1-D arrays of Hermite series coefficients ordered from low to
|
520 |
+
high.
|
521 |
+
|
522 |
+
Returns
|
523 |
+
-------
|
524 |
+
[quo, rem] : ndarrays
|
525 |
+
Of Hermite series coefficients representing the quotient and
|
526 |
+
remainder.
|
527 |
+
|
528 |
+
See Also
|
529 |
+
--------
|
530 |
+
hermeadd, hermesub, hermemulx, hermemul, hermepow
|
531 |
+
|
532 |
+
Notes
|
533 |
+
-----
|
534 |
+
In general, the (polynomial) division of one Hermite series by another
|
535 |
+
results in quotient and remainder terms that are not in the Hermite
|
536 |
+
polynomial basis set. Thus, to express these results as a Hermite
|
537 |
+
series, it is necessary to "reproject" the results onto the Hermite
|
538 |
+
basis set, which may produce "unintuitive" (but correct) results; see
|
539 |
+
Examples section below.
|
540 |
+
|
541 |
+
Examples
|
542 |
+
--------
|
543 |
+
>>> from numpy.polynomial.hermite_e import hermediv
|
544 |
+
>>> hermediv([ 14., 15., 28., 7., 6.], [0, 1, 2])
|
545 |
+
(array([1., 2., 3.]), array([0.]))
|
546 |
+
>>> hermediv([ 15., 17., 28., 7., 6.], [0, 1, 2])
|
547 |
+
(array([1., 2., 3.]), array([1., 2.]))
|
548 |
+
|
549 |
+
"""
|
550 |
+
return pu._div(hermemul, c1, c2)
|
551 |
+
|
552 |
+
|
553 |
+
def hermepow(c, pow, maxpower=16):
|
554 |
+
"""Raise a Hermite series to a power.
|
555 |
+
|
556 |
+
Returns the Hermite series `c` raised to the power `pow`. The
|
557 |
+
argument `c` is a sequence of coefficients ordered from low to high.
|
558 |
+
i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.``
|
559 |
+
|
560 |
+
Parameters
|
561 |
+
----------
|
562 |
+
c : array_like
|
563 |
+
1-D array of Hermite series coefficients ordered from low to
|
564 |
+
high.
|
565 |
+
pow : integer
|
566 |
+
Power to which the series will be raised
|
567 |
+
maxpower : integer, optional
|
568 |
+
Maximum power allowed. This is mainly to limit growth of the series
|
569 |
+
to unmanageable size. Default is 16
|
570 |
+
|
571 |
+
Returns
|
572 |
+
-------
|
573 |
+
coef : ndarray
|
574 |
+
Hermite series of power.
|
575 |
+
|
576 |
+
See Also
|
577 |
+
--------
|
578 |
+
hermeadd, hermesub, hermemulx, hermemul, hermediv
|
579 |
+
|
580 |
+
Examples
|
581 |
+
--------
|
582 |
+
>>> from numpy.polynomial.hermite_e import hermepow
|
583 |
+
>>> hermepow([1, 2, 3], 2)
|
584 |
+
array([23., 28., 46., 12., 9.])
|
585 |
+
|
586 |
+
"""
|
587 |
+
return pu._pow(hermemul, c, pow, maxpower)
|
588 |
+
|
589 |
+
|
590 |
+
def hermeder(c, m=1, scl=1, axis=0):
|
591 |
+
"""
|
592 |
+
Differentiate a Hermite_e series.
|
593 |
+
|
594 |
+
Returns the series coefficients `c` differentiated `m` times along
|
595 |
+
`axis`. At each iteration the result is multiplied by `scl` (the
|
596 |
+
scaling factor is for use in a linear change of variable). The argument
|
597 |
+
`c` is an array of coefficients from low to high degree along each
|
598 |
+
axis, e.g., [1,2,3] represents the series ``1*He_0 + 2*He_1 + 3*He_2``
|
599 |
+
while [[1,2],[1,2]] represents ``1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y)
|
600 |
+
+ 2*He_0(x)*He_1(y) + 2*He_1(x)*He_1(y)`` if axis=0 is ``x`` and axis=1
|
601 |
+
is ``y``.
|
602 |
+
|
603 |
+
Parameters
|
604 |
+
----------
|
605 |
+
c : array_like
|
606 |
+
Array of Hermite_e series coefficients. If `c` is multidimensional
|
607 |
+
the different axis correspond to different variables with the
|
608 |
+
degree in each axis given by the corresponding index.
|
609 |
+
m : int, optional
|
610 |
+
Number of derivatives taken, must be non-negative. (Default: 1)
|
611 |
+
scl : scalar, optional
|
612 |
+
Each differentiation is multiplied by `scl`. The end result is
|
613 |
+
multiplication by ``scl**m``. This is for use in a linear change of
|
614 |
+
variable. (Default: 1)
|
615 |
+
axis : int, optional
|
616 |
+
Axis over which the derivative is taken. (Default: 0).
|
617 |
+
|
618 |
+
.. versionadded:: 1.7.0
|
619 |
+
|
620 |
+
Returns
|
621 |
+
-------
|
622 |
+
der : ndarray
|
623 |
+
Hermite series of the derivative.
|
624 |
+
|
625 |
+
See Also
|
626 |
+
--------
|
627 |
+
hermeint
|
628 |
+
|
629 |
+
Notes
|
630 |
+
-----
|
631 |
+
In general, the result of differentiating a Hermite series does not
|
632 |
+
resemble the same operation on a power series. Thus the result of this
|
633 |
+
function may be "unintuitive," albeit correct; see Examples section
|
634 |
+
below.
|
635 |
+
|
636 |
+
Examples
|
637 |
+
--------
|
638 |
+
>>> from numpy.polynomial.hermite_e import hermeder
|
639 |
+
>>> hermeder([ 1., 1., 1., 1.])
|
640 |
+
array([1., 2., 3.])
|
641 |
+
>>> hermeder([-0.25, 1., 1./2., 1./3., 1./4 ], m=2)
|
642 |
+
array([1., 2., 3.])
|
643 |
+
|
644 |
+
"""
|
645 |
+
c = np.array(c, ndmin=1, copy=True)
|
646 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
647 |
+
c = c.astype(np.double)
|
648 |
+
cnt = pu._deprecate_as_int(m, "the order of derivation")
|
649 |
+
iaxis = pu._deprecate_as_int(axis, "the axis")
|
650 |
+
if cnt < 0:
|
651 |
+
raise ValueError("The order of derivation must be non-negative")
|
652 |
+
iaxis = normalize_axis_index(iaxis, c.ndim)
|
653 |
+
|
654 |
+
if cnt == 0:
|
655 |
+
return c
|
656 |
+
|
657 |
+
c = np.moveaxis(c, iaxis, 0)
|
658 |
+
n = len(c)
|
659 |
+
if cnt >= n:
|
660 |
+
return c[:1]*0
|
661 |
+
else:
|
662 |
+
for i in range(cnt):
|
663 |
+
n = n - 1
|
664 |
+
c *= scl
|
665 |
+
der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
|
666 |
+
for j in range(n, 0, -1):
|
667 |
+
der[j - 1] = j*c[j]
|
668 |
+
c = der
|
669 |
+
c = np.moveaxis(c, 0, iaxis)
|
670 |
+
return c
|
671 |
+
|
672 |
+
|
673 |
+
def hermeint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
|
674 |
+
"""
|
675 |
+
Integrate a Hermite_e series.
|
676 |
+
|
677 |
+
Returns the Hermite_e series coefficients `c` integrated `m` times from
|
678 |
+
`lbnd` along `axis`. At each iteration the resulting series is
|
679 |
+
**multiplied** by `scl` and an integration constant, `k`, is added.
|
680 |
+
The scaling factor is for use in a linear change of variable. ("Buyer
|
681 |
+
beware": note that, depending on what one is doing, one may want `scl`
|
682 |
+
to be the reciprocal of what one might expect; for more information,
|
683 |
+
see the Notes section below.) The argument `c` is an array of
|
684 |
+
coefficients from low to high degree along each axis, e.g., [1,2,3]
|
685 |
+
represents the series ``H_0 + 2*H_1 + 3*H_2`` while [[1,2],[1,2]]
|
686 |
+
represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
|
687 |
+
2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
|
688 |
+
|
689 |
+
Parameters
|
690 |
+
----------
|
691 |
+
c : array_like
|
692 |
+
Array of Hermite_e series coefficients. If c is multidimensional
|
693 |
+
the different axis correspond to different variables with the
|
694 |
+
degree in each axis given by the corresponding index.
|
695 |
+
m : int, optional
|
696 |
+
Order of integration, must be positive. (Default: 1)
|
697 |
+
k : {[], list, scalar}, optional
|
698 |
+
Integration constant(s). The value of the first integral at
|
699 |
+
``lbnd`` is the first value in the list, the value of the second
|
700 |
+
integral at ``lbnd`` is the second value, etc. If ``k == []`` (the
|
701 |
+
default), all constants are set to zero. If ``m == 1``, a single
|
702 |
+
scalar can be given instead of a list.
|
703 |
+
lbnd : scalar, optional
|
704 |
+
The lower bound of the integral. (Default: 0)
|
705 |
+
scl : scalar, optional
|
706 |
+
Following each integration the result is *multiplied* by `scl`
|
707 |
+
before the integration constant is added. (Default: 1)
|
708 |
+
axis : int, optional
|
709 |
+
Axis over which the integral is taken. (Default: 0).
|
710 |
+
|
711 |
+
.. versionadded:: 1.7.0
|
712 |
+
|
713 |
+
Returns
|
714 |
+
-------
|
715 |
+
S : ndarray
|
716 |
+
Hermite_e series coefficients of the integral.
|
717 |
+
|
718 |
+
Raises
|
719 |
+
------
|
720 |
+
ValueError
|
721 |
+
If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
|
722 |
+
``np.ndim(scl) != 0``.
|
723 |
+
|
724 |
+
See Also
|
725 |
+
--------
|
726 |
+
hermeder
|
727 |
+
|
728 |
+
Notes
|
729 |
+
-----
|
730 |
+
Note that the result of each integration is *multiplied* by `scl`.
|
731 |
+
Why is this important to note? Say one is making a linear change of
|
732 |
+
variable :math:`u = ax + b` in an integral relative to `x`. Then
|
733 |
+
:math:`dx = du/a`, so one will need to set `scl` equal to
|
734 |
+
:math:`1/a` - perhaps not what one would have first thought.
|
735 |
+
|
736 |
+
Also note that, in general, the result of integrating a C-series needs
|
737 |
+
to be "reprojected" onto the C-series basis set. Thus, typically,
|
738 |
+
the result of this function is "unintuitive," albeit correct; see
|
739 |
+
Examples section below.
|
740 |
+
|
741 |
+
Examples
|
742 |
+
--------
|
743 |
+
>>> from numpy.polynomial.hermite_e import hermeint
|
744 |
+
>>> hermeint([1, 2, 3]) # integrate once, value 0 at 0.
|
745 |
+
array([1., 1., 1., 1.])
|
746 |
+
>>> hermeint([1, 2, 3], m=2) # integrate twice, value & deriv 0 at 0
|
747 |
+
array([-0.25 , 1. , 0.5 , 0.33333333, 0.25 ]) # may vary
|
748 |
+
>>> hermeint([1, 2, 3], k=1) # integrate once, value 1 at 0.
|
749 |
+
array([2., 1., 1., 1.])
|
750 |
+
>>> hermeint([1, 2, 3], lbnd=-1) # integrate once, value 0 at -1
|
751 |
+
array([-1., 1., 1., 1.])
|
752 |
+
>>> hermeint([1, 2, 3], m=2, k=[1, 2], lbnd=-1)
|
753 |
+
array([ 1.83333333, 0. , 0.5 , 0.33333333, 0.25 ]) # may vary
|
754 |
+
|
755 |
+
"""
|
756 |
+
c = np.array(c, ndmin=1, copy=True)
|
757 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
758 |
+
c = c.astype(np.double)
|
759 |
+
if not np.iterable(k):
|
760 |
+
k = [k]
|
761 |
+
cnt = pu._deprecate_as_int(m, "the order of integration")
|
762 |
+
iaxis = pu._deprecate_as_int(axis, "the axis")
|
763 |
+
if cnt < 0:
|
764 |
+
raise ValueError("The order of integration must be non-negative")
|
765 |
+
if len(k) > cnt:
|
766 |
+
raise ValueError("Too many integration constants")
|
767 |
+
if np.ndim(lbnd) != 0:
|
768 |
+
raise ValueError("lbnd must be a scalar.")
|
769 |
+
if np.ndim(scl) != 0:
|
770 |
+
raise ValueError("scl must be a scalar.")
|
771 |
+
iaxis = normalize_axis_index(iaxis, c.ndim)
|
772 |
+
|
773 |
+
if cnt == 0:
|
774 |
+
return c
|
775 |
+
|
776 |
+
c = np.moveaxis(c, iaxis, 0)
|
777 |
+
k = list(k) + [0]*(cnt - len(k))
|
778 |
+
for i in range(cnt):
|
779 |
+
n = len(c)
|
780 |
+
c *= scl
|
781 |
+
if n == 1 and np.all(c[0] == 0):
|
782 |
+
c[0] += k[i]
|
783 |
+
else:
|
784 |
+
tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
|
785 |
+
tmp[0] = c[0]*0
|
786 |
+
tmp[1] = c[0]
|
787 |
+
for j in range(1, n):
|
788 |
+
tmp[j + 1] = c[j]/(j + 1)
|
789 |
+
tmp[0] += k[i] - hermeval(lbnd, tmp)
|
790 |
+
c = tmp
|
791 |
+
c = np.moveaxis(c, 0, iaxis)
|
792 |
+
return c
|
793 |
+
|
794 |
+
|
795 |
+
def hermeval(x, c, tensor=True):
|
796 |
+
"""
|
797 |
+
Evaluate an HermiteE series at points x.
|
798 |
+
|
799 |
+
If `c` is of length `n + 1`, this function returns the value:
|
800 |
+
|
801 |
+
.. math:: p(x) = c_0 * He_0(x) + c_1 * He_1(x) + ... + c_n * He_n(x)
|
802 |
+
|
803 |
+
The parameter `x` is converted to an array only if it is a tuple or a
|
804 |
+
list, otherwise it is treated as a scalar. In either case, either `x`
|
805 |
+
or its elements must support multiplication and addition both with
|
806 |
+
themselves and with the elements of `c`.
|
807 |
+
|
808 |
+
If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
|
809 |
+
`c` is multidimensional, then the shape of the result depends on the
|
810 |
+
value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
|
811 |
+
x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
|
812 |
+
scalars have shape (,).
|
813 |
+
|
814 |
+
Trailing zeros in the coefficients will be used in the evaluation, so
|
815 |
+
they should be avoided if efficiency is a concern.
|
816 |
+
|
817 |
+
Parameters
|
818 |
+
----------
|
819 |
+
x : array_like, compatible object
|
820 |
+
If `x` is a list or tuple, it is converted to an ndarray, otherwise
|
821 |
+
it is left unchanged and treated as a scalar. In either case, `x`
|
822 |
+
or its elements must support addition and multiplication with
|
823 |
+
with themselves and with the elements of `c`.
|
824 |
+
c : array_like
|
825 |
+
Array of coefficients ordered so that the coefficients for terms of
|
826 |
+
degree n are contained in c[n]. If `c` is multidimensional the
|
827 |
+
remaining indices enumerate multiple polynomials. In the two
|
828 |
+
dimensional case the coefficients may be thought of as stored in
|
829 |
+
the columns of `c`.
|
830 |
+
tensor : boolean, optional
|
831 |
+
If True, the shape of the coefficient array is extended with ones
|
832 |
+
on the right, one for each dimension of `x`. Scalars have dimension 0
|
833 |
+
for this action. The result is that every column of coefficients in
|
834 |
+
`c` is evaluated for every element of `x`. If False, `x` is broadcast
|
835 |
+
over the columns of `c` for the evaluation. This keyword is useful
|
836 |
+
when `c` is multidimensional. The default value is True.
|
837 |
+
|
838 |
+
.. versionadded:: 1.7.0
|
839 |
+
|
840 |
+
Returns
|
841 |
+
-------
|
842 |
+
values : ndarray, algebra_like
|
843 |
+
The shape of the return value is described above.
|
844 |
+
|
845 |
+
See Also
|
846 |
+
--------
|
847 |
+
hermeval2d, hermegrid2d, hermeval3d, hermegrid3d
|
848 |
+
|
849 |
+
Notes
|
850 |
+
-----
|
851 |
+
The evaluation uses Clenshaw recursion, aka synthetic division.
|
852 |
+
|
853 |
+
Examples
|
854 |
+
--------
|
855 |
+
>>> from numpy.polynomial.hermite_e import hermeval
|
856 |
+
>>> coef = [1,2,3]
|
857 |
+
>>> hermeval(1, coef)
|
858 |
+
3.0
|
859 |
+
>>> hermeval([[1,2],[3,4]], coef)
|
860 |
+
array([[ 3., 14.],
|
861 |
+
[31., 54.]])
|
862 |
+
|
863 |
+
"""
|
864 |
+
c = np.array(c, ndmin=1, copy=False)
|
865 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
866 |
+
c = c.astype(np.double)
|
867 |
+
if isinstance(x, (tuple, list)):
|
868 |
+
x = np.asarray(x)
|
869 |
+
if isinstance(x, np.ndarray) and tensor:
|
870 |
+
c = c.reshape(c.shape + (1,)*x.ndim)
|
871 |
+
|
872 |
+
if len(c) == 1:
|
873 |
+
c0 = c[0]
|
874 |
+
c1 = 0
|
875 |
+
elif len(c) == 2:
|
876 |
+
c0 = c[0]
|
877 |
+
c1 = c[1]
|
878 |
+
else:
|
879 |
+
nd = len(c)
|
880 |
+
c0 = c[-2]
|
881 |
+
c1 = c[-1]
|
882 |
+
for i in range(3, len(c) + 1):
|
883 |
+
tmp = c0
|
884 |
+
nd = nd - 1
|
885 |
+
c0 = c[-i] - c1*(nd - 1)
|
886 |
+
c1 = tmp + c1*x
|
887 |
+
return c0 + c1*x
|
888 |
+
|
889 |
+
|
890 |
+
def hermeval2d(x, y, c):
|
891 |
+
"""
|
892 |
+
Evaluate a 2-D HermiteE series at points (x, y).
|
893 |
+
|
894 |
+
This function returns the values:
|
895 |
+
|
896 |
+
.. math:: p(x,y) = \\sum_{i,j} c_{i,j} * He_i(x) * He_j(y)
|
897 |
+
|
898 |
+
The parameters `x` and `y` are converted to arrays only if they are
|
899 |
+
tuples or a lists, otherwise they are treated as a scalars and they
|
900 |
+
must have the same shape after conversion. In either case, either `x`
|
901 |
+
and `y` or their elements must support multiplication and addition both
|
902 |
+
with themselves and with the elements of `c`.
|
903 |
+
|
904 |
+
If `c` is a 1-D array a one is implicitly appended to its shape to make
|
905 |
+
it 2-D. The shape of the result will be c.shape[2:] + x.shape.
|
906 |
+
|
907 |
+
Parameters
|
908 |
+
----------
|
909 |
+
x, y : array_like, compatible objects
|
910 |
+
The two dimensional series is evaluated at the points `(x, y)`,
|
911 |
+
where `x` and `y` must have the same shape. If `x` or `y` is a list
|
912 |
+
or tuple, it is first converted to an ndarray, otherwise it is left
|
913 |
+
unchanged and if it isn't an ndarray it is treated as a scalar.
|
914 |
+
c : array_like
|
915 |
+
Array of coefficients ordered so that the coefficient of the term
|
916 |
+
of multi-degree i,j is contained in ``c[i,j]``. If `c` has
|
917 |
+
dimension greater than two the remaining indices enumerate multiple
|
918 |
+
sets of coefficients.
|
919 |
+
|
920 |
+
Returns
|
921 |
+
-------
|
922 |
+
values : ndarray, compatible object
|
923 |
+
The values of the two dimensional polynomial at points formed with
|
924 |
+
pairs of corresponding values from `x` and `y`.
|
925 |
+
|
926 |
+
See Also
|
927 |
+
--------
|
928 |
+
hermeval, hermegrid2d, hermeval3d, hermegrid3d
|
929 |
+
|
930 |
+
Notes
|
931 |
+
-----
|
932 |
+
|
933 |
+
.. versionadded:: 1.7.0
|
934 |
+
|
935 |
+
"""
|
936 |
+
return pu._valnd(hermeval, c, x, y)
|
937 |
+
|
938 |
+
|
939 |
+
def hermegrid2d(x, y, c):
|
940 |
+
"""
|
941 |
+
Evaluate a 2-D HermiteE series on the Cartesian product of x and y.
|
942 |
+
|
943 |
+
This function returns the values:
|
944 |
+
|
945 |
+
.. math:: p(a,b) = \\sum_{i,j} c_{i,j} * H_i(a) * H_j(b)
|
946 |
+
|
947 |
+
where the points `(a, b)` consist of all pairs formed by taking
|
948 |
+
`a` from `x` and `b` from `y`. The resulting points form a grid with
|
949 |
+
`x` in the first dimension and `y` in the second.
|
950 |
+
|
951 |
+
The parameters `x` and `y` are converted to arrays only if they are
|
952 |
+
tuples or a lists, otherwise they are treated as a scalars. In either
|
953 |
+
case, either `x` and `y` or their elements must support multiplication
|
954 |
+
and addition both with themselves and with the elements of `c`.
|
955 |
+
|
956 |
+
If `c` has fewer than two dimensions, ones are implicitly appended to
|
957 |
+
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
|
958 |
+
x.shape.
|
959 |
+
|
960 |
+
Parameters
|
961 |
+
----------
|
962 |
+
x, y : array_like, compatible objects
|
963 |
+
The two dimensional series is evaluated at the points in the
|
964 |
+
Cartesian product of `x` and `y`. If `x` or `y` is a list or
|
965 |
+
tuple, it is first converted to an ndarray, otherwise it is left
|
966 |
+
unchanged and, if it isn't an ndarray, it is treated as a scalar.
|
967 |
+
c : array_like
|
968 |
+
Array of coefficients ordered so that the coefficients for terms of
|
969 |
+
degree i,j are contained in ``c[i,j]``. If `c` has dimension
|
970 |
+
greater than two the remaining indices enumerate multiple sets of
|
971 |
+
coefficients.
|
972 |
+
|
973 |
+
Returns
|
974 |
+
-------
|
975 |
+
values : ndarray, compatible object
|
976 |
+
The values of the two dimensional polynomial at points in the Cartesian
|
977 |
+
product of `x` and `y`.
|
978 |
+
|
979 |
+
See Also
|
980 |
+
--------
|
981 |
+
hermeval, hermeval2d, hermeval3d, hermegrid3d
|
982 |
+
|
983 |
+
Notes
|
984 |
+
-----
|
985 |
+
|
986 |
+
.. versionadded:: 1.7.0
|
987 |
+
|
988 |
+
"""
|
989 |
+
return pu._gridnd(hermeval, c, x, y)
|
990 |
+
|
991 |
+
|
992 |
+
def hermeval3d(x, y, z, c):
|
993 |
+
"""
|
994 |
+
Evaluate a 3-D Hermite_e series at points (x, y, z).
|
995 |
+
|
996 |
+
This function returns the values:
|
997 |
+
|
998 |
+
.. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * He_i(x) * He_j(y) * He_k(z)
|
999 |
+
|
1000 |
+
The parameters `x`, `y`, and `z` are converted to arrays only if
|
1001 |
+
they are tuples or a lists, otherwise they are treated as a scalars and
|
1002 |
+
they must have the same shape after conversion. In either case, either
|
1003 |
+
`x`, `y`, and `z` or their elements must support multiplication and
|
1004 |
+
addition both with themselves and with the elements of `c`.
|
1005 |
+
|
1006 |
+
If `c` has fewer than 3 dimensions, ones are implicitly appended to its
|
1007 |
+
shape to make it 3-D. The shape of the result will be c.shape[3:] +
|
1008 |
+
x.shape.
|
1009 |
+
|
1010 |
+
Parameters
|
1011 |
+
----------
|
1012 |
+
x, y, z : array_like, compatible object
|
1013 |
+
The three dimensional series is evaluated at the points
|
1014 |
+
`(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
|
1015 |
+
any of `x`, `y`, or `z` is a list or tuple, it is first converted
|
1016 |
+
to an ndarray, otherwise it is left unchanged and if it isn't an
|
1017 |
+
ndarray it is treated as a scalar.
|
1018 |
+
c : array_like
|
1019 |
+
Array of coefficients ordered so that the coefficient of the term of
|
1020 |
+
multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
|
1021 |
+
greater than 3 the remaining indices enumerate multiple sets of
|
1022 |
+
coefficients.
|
1023 |
+
|
1024 |
+
Returns
|
1025 |
+
-------
|
1026 |
+
values : ndarray, compatible object
|
1027 |
+
The values of the multidimensional polynomial on points formed with
|
1028 |
+
triples of corresponding values from `x`, `y`, and `z`.
|
1029 |
+
|
1030 |
+
See Also
|
1031 |
+
--------
|
1032 |
+
hermeval, hermeval2d, hermegrid2d, hermegrid3d
|
1033 |
+
|
1034 |
+
Notes
|
1035 |
+
-----
|
1036 |
+
|
1037 |
+
.. versionadded:: 1.7.0
|
1038 |
+
|
1039 |
+
"""
|
1040 |
+
return pu._valnd(hermeval, c, x, y, z)
|
1041 |
+
|
1042 |
+
|
1043 |
+
def hermegrid3d(x, y, z, c):
|
1044 |
+
"""
|
1045 |
+
Evaluate a 3-D HermiteE series on the Cartesian product of x, y, and z.
|
1046 |
+
|
1047 |
+
This function returns the values:
|
1048 |
+
|
1049 |
+
.. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * He_i(a) * He_j(b) * He_k(c)
|
1050 |
+
|
1051 |
+
where the points `(a, b, c)` consist of all triples formed by taking
|
1052 |
+
`a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
|
1053 |
+
a grid with `x` in the first dimension, `y` in the second, and `z` in
|
1054 |
+
the third.
|
1055 |
+
|
1056 |
+
The parameters `x`, `y`, and `z` are converted to arrays only if they
|
1057 |
+
are tuples or a lists, otherwise they are treated as a scalars. In
|
1058 |
+
either case, either `x`, `y`, and `z` or their elements must support
|
1059 |
+
multiplication and addition both with themselves and with the elements
|
1060 |
+
of `c`.
|
1061 |
+
|
1062 |
+
If `c` has fewer than three dimensions, ones are implicitly appended to
|
1063 |
+
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
|
1064 |
+
x.shape + y.shape + z.shape.
|
1065 |
+
|
1066 |
+
Parameters
|
1067 |
+
----------
|
1068 |
+
x, y, z : array_like, compatible objects
|
1069 |
+
The three dimensional series is evaluated at the points in the
|
1070 |
+
Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
|
1071 |
+
list or tuple, it is first converted to an ndarray, otherwise it is
|
1072 |
+
left unchanged and, if it isn't an ndarray, it is treated as a
|
1073 |
+
scalar.
|
1074 |
+
c : array_like
|
1075 |
+
Array of coefficients ordered so that the coefficients for terms of
|
1076 |
+
degree i,j are contained in ``c[i,j]``. If `c` has dimension
|
1077 |
+
greater than two the remaining indices enumerate multiple sets of
|
1078 |
+
coefficients.
|
1079 |
+
|
1080 |
+
Returns
|
1081 |
+
-------
|
1082 |
+
values : ndarray, compatible object
|
1083 |
+
The values of the two dimensional polynomial at points in the Cartesian
|
1084 |
+
product of `x` and `y`.
|
1085 |
+
|
1086 |
+
See Also
|
1087 |
+
--------
|
1088 |
+
hermeval, hermeval2d, hermegrid2d, hermeval3d
|
1089 |
+
|
1090 |
+
Notes
|
1091 |
+
-----
|
1092 |
+
|
1093 |
+
.. versionadded:: 1.7.0
|
1094 |
+
|
1095 |
+
"""
|
1096 |
+
return pu._gridnd(hermeval, c, x, y, z)
|
1097 |
+
|
1098 |
+
|
1099 |
+
def hermevander(x, deg):
|
1100 |
+
"""Pseudo-Vandermonde matrix of given degree.
|
1101 |
+
|
1102 |
+
Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
|
1103 |
+
`x`. The pseudo-Vandermonde matrix is defined by
|
1104 |
+
|
1105 |
+
.. math:: V[..., i] = He_i(x),
|
1106 |
+
|
1107 |
+
where `0 <= i <= deg`. The leading indices of `V` index the elements of
|
1108 |
+
`x` and the last index is the degree of the HermiteE polynomial.
|
1109 |
+
|
1110 |
+
If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
|
1111 |
+
array ``V = hermevander(x, n)``, then ``np.dot(V, c)`` and
|
1112 |
+
``hermeval(x, c)`` are the same up to roundoff. This equivalence is
|
1113 |
+
useful both for least squares fitting and for the evaluation of a large
|
1114 |
+
number of HermiteE series of the same degree and sample points.
|
1115 |
+
|
1116 |
+
Parameters
|
1117 |
+
----------
|
1118 |
+
x : array_like
|
1119 |
+
Array of points. The dtype is converted to float64 or complex128
|
1120 |
+
depending on whether any of the elements are complex. If `x` is
|
1121 |
+
scalar it is converted to a 1-D array.
|
1122 |
+
deg : int
|
1123 |
+
Degree of the resulting matrix.
|
1124 |
+
|
1125 |
+
Returns
|
1126 |
+
-------
|
1127 |
+
vander : ndarray
|
1128 |
+
The pseudo-Vandermonde matrix. The shape of the returned matrix is
|
1129 |
+
``x.shape + (deg + 1,)``, where The last index is the degree of the
|
1130 |
+
corresponding HermiteE polynomial. The dtype will be the same as
|
1131 |
+
the converted `x`.
|
1132 |
+
|
1133 |
+
Examples
|
1134 |
+
--------
|
1135 |
+
>>> from numpy.polynomial.hermite_e import hermevander
|
1136 |
+
>>> x = np.array([-1, 0, 1])
|
1137 |
+
>>> hermevander(x, 3)
|
1138 |
+
array([[ 1., -1., 0., 2.],
|
1139 |
+
[ 1., 0., -1., -0.],
|
1140 |
+
[ 1., 1., 0., -2.]])
|
1141 |
+
|
1142 |
+
"""
|
1143 |
+
ideg = pu._deprecate_as_int(deg, "deg")
|
1144 |
+
if ideg < 0:
|
1145 |
+
raise ValueError("deg must be non-negative")
|
1146 |
+
|
1147 |
+
x = np.array(x, copy=False, ndmin=1) + 0.0
|
1148 |
+
dims = (ideg + 1,) + x.shape
|
1149 |
+
dtyp = x.dtype
|
1150 |
+
v = np.empty(dims, dtype=dtyp)
|
1151 |
+
v[0] = x*0 + 1
|
1152 |
+
if ideg > 0:
|
1153 |
+
v[1] = x
|
1154 |
+
for i in range(2, ideg + 1):
|
1155 |
+
v[i] = (v[i-1]*x - v[i-2]*(i - 1))
|
1156 |
+
return np.moveaxis(v, 0, -1)
|
1157 |
+
|
1158 |
+
|
1159 |
+
def hermevander2d(x, y, deg):
|
1160 |
+
"""Pseudo-Vandermonde matrix of given degrees.
|
1161 |
+
|
1162 |
+
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
|
1163 |
+
points `(x, y)`. The pseudo-Vandermonde matrix is defined by
|
1164 |
+
|
1165 |
+
.. math:: V[..., (deg[1] + 1)*i + j] = He_i(x) * He_j(y),
|
1166 |
+
|
1167 |
+
where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
|
1168 |
+
`V` index the points `(x, y)` and the last index encodes the degrees of
|
1169 |
+
the HermiteE polynomials.
|
1170 |
+
|
1171 |
+
If ``V = hermevander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
|
1172 |
+
correspond to the elements of a 2-D coefficient array `c` of shape
|
1173 |
+
(xdeg + 1, ydeg + 1) in the order
|
1174 |
+
|
1175 |
+
.. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
|
1176 |
+
|
1177 |
+
and ``np.dot(V, c.flat)`` and ``hermeval2d(x, y, c)`` will be the same
|
1178 |
+
up to roundoff. This equivalence is useful both for least squares
|
1179 |
+
fitting and for the evaluation of a large number of 2-D HermiteE
|
1180 |
+
series of the same degrees and sample points.
|
1181 |
+
|
1182 |
+
Parameters
|
1183 |
+
----------
|
1184 |
+
x, y : array_like
|
1185 |
+
Arrays of point coordinates, all of the same shape. The dtypes
|
1186 |
+
will be converted to either float64 or complex128 depending on
|
1187 |
+
whether any of the elements are complex. Scalars are converted to
|
1188 |
+
1-D arrays.
|
1189 |
+
deg : list of ints
|
1190 |
+
List of maximum degrees of the form [x_deg, y_deg].
|
1191 |
+
|
1192 |
+
Returns
|
1193 |
+
-------
|
1194 |
+
vander2d : ndarray
|
1195 |
+
The shape of the returned matrix is ``x.shape + (order,)``, where
|
1196 |
+
:math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
|
1197 |
+
as the converted `x` and `y`.
|
1198 |
+
|
1199 |
+
See Also
|
1200 |
+
--------
|
1201 |
+
hermevander, hermevander3d, hermeval2d, hermeval3d
|
1202 |
+
|
1203 |
+
Notes
|
1204 |
+
-----
|
1205 |
+
|
1206 |
+
.. versionadded:: 1.7.0
|
1207 |
+
|
1208 |
+
"""
|
1209 |
+
return pu._vander_nd_flat((hermevander, hermevander), (x, y), deg)
|
1210 |
+
|
1211 |
+
|
1212 |
+
def hermevander3d(x, y, z, deg):
|
1213 |
+
"""Pseudo-Vandermonde matrix of given degrees.
|
1214 |
+
|
1215 |
+
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
|
1216 |
+
points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
|
1217 |
+
then Hehe pseudo-Vandermonde matrix is defined by
|
1218 |
+
|
1219 |
+
.. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = He_i(x)*He_j(y)*He_k(z),
|
1220 |
+
|
1221 |
+
where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
|
1222 |
+
indices of `V` index the points `(x, y, z)` and the last index encodes
|
1223 |
+
the degrees of the HermiteE polynomials.
|
1224 |
+
|
1225 |
+
If ``V = hermevander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
|
1226 |
+
of `V` correspond to the elements of a 3-D coefficient array `c` of
|
1227 |
+
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
|
1228 |
+
|
1229 |
+
.. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
|
1230 |
+
|
1231 |
+
and ``np.dot(V, c.flat)`` and ``hermeval3d(x, y, z, c)`` will be the
|
1232 |
+
same up to roundoff. This equivalence is useful both for least squares
|
1233 |
+
fitting and for the evaluation of a large number of 3-D HermiteE
|
1234 |
+
series of the same degrees and sample points.
|
1235 |
+
|
1236 |
+
Parameters
|
1237 |
+
----------
|
1238 |
+
x, y, z : array_like
|
1239 |
+
Arrays of point coordinates, all of the same shape. The dtypes will
|
1240 |
+
be converted to either float64 or complex128 depending on whether
|
1241 |
+
any of the elements are complex. Scalars are converted to 1-D
|
1242 |
+
arrays.
|
1243 |
+
deg : list of ints
|
1244 |
+
List of maximum degrees of the form [x_deg, y_deg, z_deg].
|
1245 |
+
|
1246 |
+
Returns
|
1247 |
+
-------
|
1248 |
+
vander3d : ndarray
|
1249 |
+
The shape of the returned matrix is ``x.shape + (order,)``, where
|
1250 |
+
:math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
|
1251 |
+
be the same as the converted `x`, `y`, and `z`.
|
1252 |
+
|
1253 |
+
See Also
|
1254 |
+
--------
|
1255 |
+
hermevander, hermevander3d, hermeval2d, hermeval3d
|
1256 |
+
|
1257 |
+
Notes
|
1258 |
+
-----
|
1259 |
+
|
1260 |
+
.. versionadded:: 1.7.0
|
1261 |
+
|
1262 |
+
"""
|
1263 |
+
return pu._vander_nd_flat((hermevander, hermevander, hermevander), (x, y, z), deg)
|
1264 |
+
|
1265 |
+
|
1266 |
+
def hermefit(x, y, deg, rcond=None, full=False, w=None):
|
1267 |
+
"""
|
1268 |
+
Least squares fit of Hermite series to data.
|
1269 |
+
|
1270 |
+
Return the coefficients of a HermiteE series of degree `deg` that is
|
1271 |
+
the least squares fit to the data values `y` given at points `x`. If
|
1272 |
+
`y` is 1-D the returned coefficients will also be 1-D. If `y` is 2-D
|
1273 |
+
multiple fits are done, one for each column of `y`, and the resulting
|
1274 |
+
coefficients are stored in the corresponding columns of a 2-D return.
|
1275 |
+
The fitted polynomial(s) are in the form
|
1276 |
+
|
1277 |
+
.. math:: p(x) = c_0 + c_1 * He_1(x) + ... + c_n * He_n(x),
|
1278 |
+
|
1279 |
+
where `n` is `deg`.
|
1280 |
+
|
1281 |
+
Parameters
|
1282 |
+
----------
|
1283 |
+
x : array_like, shape (M,)
|
1284 |
+
x-coordinates of the M sample points ``(x[i], y[i])``.
|
1285 |
+
y : array_like, shape (M,) or (M, K)
|
1286 |
+
y-coordinates of the sample points. Several data sets of sample
|
1287 |
+
points sharing the same x-coordinates can be fitted at once by
|
1288 |
+
passing in a 2D-array that contains one dataset per column.
|
1289 |
+
deg : int or 1-D array_like
|
1290 |
+
Degree(s) of the fitting polynomials. If `deg` is a single integer
|
1291 |
+
all terms up to and including the `deg`'th term are included in the
|
1292 |
+
fit. For NumPy versions >= 1.11.0 a list of integers specifying the
|
1293 |
+
degrees of the terms to include may be used instead.
|
1294 |
+
rcond : float, optional
|
1295 |
+
Relative condition number of the fit. Singular values smaller than
|
1296 |
+
this relative to the largest singular value will be ignored. The
|
1297 |
+
default value is len(x)*eps, where eps is the relative precision of
|
1298 |
+
the float type, about 2e-16 in most cases.
|
1299 |
+
full : bool, optional
|
1300 |
+
Switch determining nature of return value. When it is False (the
|
1301 |
+
default) just the coefficients are returned, when True diagnostic
|
1302 |
+
information from the singular value decomposition is also returned.
|
1303 |
+
w : array_like, shape (`M`,), optional
|
1304 |
+
Weights. If not None, the weight ``w[i]`` applies to the unsquared
|
1305 |
+
residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
|
1306 |
+
chosen so that the errors of the products ``w[i]*y[i]`` all have the
|
1307 |
+
same variance. When using inverse-variance weighting, use
|
1308 |
+
``w[i] = 1/sigma(y[i])``. The default value is None.
|
1309 |
+
|
1310 |
+
Returns
|
1311 |
+
-------
|
1312 |
+
coef : ndarray, shape (M,) or (M, K)
|
1313 |
+
Hermite coefficients ordered from low to high. If `y` was 2-D,
|
1314 |
+
the coefficients for the data in column k of `y` are in column
|
1315 |
+
`k`.
|
1316 |
+
|
1317 |
+
[residuals, rank, singular_values, rcond] : list
|
1318 |
+
These values are only returned if ``full == True``
|
1319 |
+
|
1320 |
+
- residuals -- sum of squared residuals of the least squares fit
|
1321 |
+
- rank -- the numerical rank of the scaled Vandermonde matrix
|
1322 |
+
- singular_values -- singular values of the scaled Vandermonde matrix
|
1323 |
+
- rcond -- value of `rcond`.
|
1324 |
+
|
1325 |
+
For more details, see `numpy.linalg.lstsq`.
|
1326 |
+
|
1327 |
+
Warns
|
1328 |
+
-----
|
1329 |
+
RankWarning
|
1330 |
+
The rank of the coefficient matrix in the least-squares fit is
|
1331 |
+
deficient. The warning is only raised if ``full = False``. The
|
1332 |
+
warnings can be turned off by
|
1333 |
+
|
1334 |
+
>>> import warnings
|
1335 |
+
>>> warnings.simplefilter('ignore', np.RankWarning)
|
1336 |
+
|
1337 |
+
See Also
|
1338 |
+
--------
|
1339 |
+
numpy.polynomial.chebyshev.chebfit
|
1340 |
+
numpy.polynomial.legendre.legfit
|
1341 |
+
numpy.polynomial.polynomial.polyfit
|
1342 |
+
numpy.polynomial.hermite.hermfit
|
1343 |
+
numpy.polynomial.laguerre.lagfit
|
1344 |
+
hermeval : Evaluates a Hermite series.
|
1345 |
+
hermevander : pseudo Vandermonde matrix of Hermite series.
|
1346 |
+
hermeweight : HermiteE weight function.
|
1347 |
+
numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
|
1348 |
+
scipy.interpolate.UnivariateSpline : Computes spline fits.
|
1349 |
+
|
1350 |
+
Notes
|
1351 |
+
-----
|
1352 |
+
The solution is the coefficients of the HermiteE series `p` that
|
1353 |
+
minimizes the sum of the weighted squared errors
|
1354 |
+
|
1355 |
+
.. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
|
1356 |
+
|
1357 |
+
where the :math:`w_j` are the weights. This problem is solved by
|
1358 |
+
setting up the (typically) overdetermined matrix equation
|
1359 |
+
|
1360 |
+
.. math:: V(x) * c = w * y,
|
1361 |
+
|
1362 |
+
where `V` is the pseudo Vandermonde matrix of `x`, the elements of `c`
|
1363 |
+
are the coefficients to be solved for, and the elements of `y` are the
|
1364 |
+
observed values. This equation is then solved using the singular value
|
1365 |
+
decomposition of `V`.
|
1366 |
+
|
1367 |
+
If some of the singular values of `V` are so small that they are
|
1368 |
+
neglected, then a `RankWarning` will be issued. This means that the
|
1369 |
+
coefficient values may be poorly determined. Using a lower order fit
|
1370 |
+
will usually get rid of the warning. The `rcond` parameter can also be
|
1371 |
+
set to a value smaller than its default, but the resulting fit may be
|
1372 |
+
spurious and have large contributions from roundoff error.
|
1373 |
+
|
1374 |
+
Fits using HermiteE series are probably most useful when the data can
|
1375 |
+
be approximated by ``sqrt(w(x)) * p(x)``, where `w(x)` is the HermiteE
|
1376 |
+
weight. In that case the weight ``sqrt(w(x[i]))`` should be used
|
1377 |
+
together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is
|
1378 |
+
available as `hermeweight`.
|
1379 |
+
|
1380 |
+
References
|
1381 |
+
----------
|
1382 |
+
.. [1] Wikipedia, "Curve fitting",
|
1383 |
+
https://en.wikipedia.org/wiki/Curve_fitting
|
1384 |
+
|
1385 |
+
Examples
|
1386 |
+
--------
|
1387 |
+
>>> from numpy.polynomial.hermite_e import hermefit, hermeval
|
1388 |
+
>>> x = np.linspace(-10, 10)
|
1389 |
+
>>> np.random.seed(123)
|
1390 |
+
>>> err = np.random.randn(len(x))/10
|
1391 |
+
>>> y = hermeval(x, [1, 2, 3]) + err
|
1392 |
+
>>> hermefit(x, y, 2)
|
1393 |
+
array([ 1.01690445, 1.99951418, 2.99948696]) # may vary
|
1394 |
+
|
1395 |
+
"""
|
1396 |
+
return pu._fit(hermevander, x, y, deg, rcond, full, w)
|
1397 |
+
|
1398 |
+
|
1399 |
+
def hermecompanion(c):
|
1400 |
+
"""
|
1401 |
+
Return the scaled companion matrix of c.
|
1402 |
+
|
1403 |
+
The basis polynomials are scaled so that the companion matrix is
|
1404 |
+
symmetric when `c` is an HermiteE basis polynomial. This provides
|
1405 |
+
better eigenvalue estimates than the unscaled case and for basis
|
1406 |
+
polynomials the eigenvalues are guaranteed to be real if
|
1407 |
+
`numpy.linalg.eigvalsh` is used to obtain them.
|
1408 |
+
|
1409 |
+
Parameters
|
1410 |
+
----------
|
1411 |
+
c : array_like
|
1412 |
+
1-D array of HermiteE series coefficients ordered from low to high
|
1413 |
+
degree.
|
1414 |
+
|
1415 |
+
Returns
|
1416 |
+
-------
|
1417 |
+
mat : ndarray
|
1418 |
+
Scaled companion matrix of dimensions (deg, deg).
|
1419 |
+
|
1420 |
+
Notes
|
1421 |
+
-----
|
1422 |
+
|
1423 |
+
.. versionadded:: 1.7.0
|
1424 |
+
|
1425 |
+
"""
|
1426 |
+
# c is a trimmed copy
|
1427 |
+
[c] = pu.as_series([c])
|
1428 |
+
if len(c) < 2:
|
1429 |
+
raise ValueError('Series must have maximum degree of at least 1.')
|
1430 |
+
if len(c) == 2:
|
1431 |
+
return np.array([[-c[0]/c[1]]])
|
1432 |
+
|
1433 |
+
n = len(c) - 1
|
1434 |
+
mat = np.zeros((n, n), dtype=c.dtype)
|
1435 |
+
scl = np.hstack((1., 1./np.sqrt(np.arange(n - 1, 0, -1))))
|
1436 |
+
scl = np.multiply.accumulate(scl)[::-1]
|
1437 |
+
top = mat.reshape(-1)[1::n+1]
|
1438 |
+
bot = mat.reshape(-1)[n::n+1]
|
1439 |
+
top[...] = np.sqrt(np.arange(1, n))
|
1440 |
+
bot[...] = top
|
1441 |
+
mat[:, -1] -= scl*c[:-1]/c[-1]
|
1442 |
+
return mat
|
1443 |
+
|
1444 |
+
|
1445 |
+
def hermeroots(c):
|
1446 |
+
"""
|
1447 |
+
Compute the roots of a HermiteE series.
|
1448 |
+
|
1449 |
+
Return the roots (a.k.a. "zeros") of the polynomial
|
1450 |
+
|
1451 |
+
.. math:: p(x) = \\sum_i c[i] * He_i(x).
|
1452 |
+
|
1453 |
+
Parameters
|
1454 |
+
----------
|
1455 |
+
c : 1-D array_like
|
1456 |
+
1-D array of coefficients.
|
1457 |
+
|
1458 |
+
Returns
|
1459 |
+
-------
|
1460 |
+
out : ndarray
|
1461 |
+
Array of the roots of the series. If all the roots are real,
|
1462 |
+
then `out` is also real, otherwise it is complex.
|
1463 |
+
|
1464 |
+
See Also
|
1465 |
+
--------
|
1466 |
+
numpy.polynomial.polynomial.polyroots
|
1467 |
+
numpy.polynomial.legendre.legroots
|
1468 |
+
numpy.polynomial.laguerre.lagroots
|
1469 |
+
numpy.polynomial.hermite.hermroots
|
1470 |
+
numpy.polynomial.chebyshev.chebroots
|
1471 |
+
|
1472 |
+
Notes
|
1473 |
+
-----
|
1474 |
+
The root estimates are obtained as the eigenvalues of the companion
|
1475 |
+
matrix, Roots far from the origin of the complex plane may have large
|
1476 |
+
errors due to the numerical instability of the series for such
|
1477 |
+
values. Roots with multiplicity greater than 1 will also show larger
|
1478 |
+
errors as the value of the series near such points is relatively
|
1479 |
+
insensitive to errors in the roots. Isolated roots near the origin can
|
1480 |
+
be improved by a few iterations of Newton's method.
|
1481 |
+
|
1482 |
+
The HermiteE series basis polynomials aren't powers of `x` so the
|
1483 |
+
results of this function may seem unintuitive.
|
1484 |
+
|
1485 |
+
Examples
|
1486 |
+
--------
|
1487 |
+
>>> from numpy.polynomial.hermite_e import hermeroots, hermefromroots
|
1488 |
+
>>> coef = hermefromroots([-1, 0, 1])
|
1489 |
+
>>> coef
|
1490 |
+
array([0., 2., 0., 1.])
|
1491 |
+
>>> hermeroots(coef)
|
1492 |
+
array([-1., 0., 1.]) # may vary
|
1493 |
+
|
1494 |
+
"""
|
1495 |
+
# c is a trimmed copy
|
1496 |
+
[c] = pu.as_series([c])
|
1497 |
+
if len(c) <= 1:
|
1498 |
+
return np.array([], dtype=c.dtype)
|
1499 |
+
if len(c) == 2:
|
1500 |
+
return np.array([-c[0]/c[1]])
|
1501 |
+
|
1502 |
+
# rotated companion matrix reduces error
|
1503 |
+
m = hermecompanion(c)[::-1,::-1]
|
1504 |
+
r = la.eigvals(m)
|
1505 |
+
r.sort()
|
1506 |
+
return r
|
1507 |
+
|
1508 |
+
|
1509 |
+
def _normed_hermite_e_n(x, n):
|
1510 |
+
"""
|
1511 |
+
Evaluate a normalized HermiteE polynomial.
|
1512 |
+
|
1513 |
+
Compute the value of the normalized HermiteE polynomial of degree ``n``
|
1514 |
+
at the points ``x``.
|
1515 |
+
|
1516 |
+
|
1517 |
+
Parameters
|
1518 |
+
----------
|
1519 |
+
x : ndarray of double.
|
1520 |
+
Points at which to evaluate the function
|
1521 |
+
n : int
|
1522 |
+
Degree of the normalized HermiteE function to be evaluated.
|
1523 |
+
|
1524 |
+
Returns
|
1525 |
+
-------
|
1526 |
+
values : ndarray
|
1527 |
+
The shape of the return value is described above.
|
1528 |
+
|
1529 |
+
Notes
|
1530 |
+
-----
|
1531 |
+
.. versionadded:: 1.10.0
|
1532 |
+
|
1533 |
+
This function is needed for finding the Gauss points and integration
|
1534 |
+
weights for high degrees. The values of the standard HermiteE functions
|
1535 |
+
overflow when n >= 207.
|
1536 |
+
|
1537 |
+
"""
|
1538 |
+
if n == 0:
|
1539 |
+
return np.full(x.shape, 1/np.sqrt(np.sqrt(2*np.pi)))
|
1540 |
+
|
1541 |
+
c0 = 0.
|
1542 |
+
c1 = 1./np.sqrt(np.sqrt(2*np.pi))
|
1543 |
+
nd = float(n)
|
1544 |
+
for i in range(n - 1):
|
1545 |
+
tmp = c0
|
1546 |
+
c0 = -c1*np.sqrt((nd - 1.)/nd)
|
1547 |
+
c1 = tmp + c1*x*np.sqrt(1./nd)
|
1548 |
+
nd = nd - 1.0
|
1549 |
+
return c0 + c1*x
|
1550 |
+
|
1551 |
+
|
1552 |
+
def hermegauss(deg):
|
1553 |
+
"""
|
1554 |
+
Gauss-HermiteE quadrature.
|
1555 |
+
|
1556 |
+
Computes the sample points and weights for Gauss-HermiteE quadrature.
|
1557 |
+
These sample points and weights will correctly integrate polynomials of
|
1558 |
+
degree :math:`2*deg - 1` or less over the interval :math:`[-\\inf, \\inf]`
|
1559 |
+
with the weight function :math:`f(x) = \\exp(-x^2/2)`.
|
1560 |
+
|
1561 |
+
Parameters
|
1562 |
+
----------
|
1563 |
+
deg : int
|
1564 |
+
Number of sample points and weights. It must be >= 1.
|
1565 |
+
|
1566 |
+
Returns
|
1567 |
+
-------
|
1568 |
+
x : ndarray
|
1569 |
+
1-D ndarray containing the sample points.
|
1570 |
+
y : ndarray
|
1571 |
+
1-D ndarray containing the weights.
|
1572 |
+
|
1573 |
+
Notes
|
1574 |
+
-----
|
1575 |
+
|
1576 |
+
.. versionadded:: 1.7.0
|
1577 |
+
|
1578 |
+
The results have only been tested up to degree 100, higher degrees may
|
1579 |
+
be problematic. The weights are determined by using the fact that
|
1580 |
+
|
1581 |
+
.. math:: w_k = c / (He'_n(x_k) * He_{n-1}(x_k))
|
1582 |
+
|
1583 |
+
where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
|
1584 |
+
is the k'th root of :math:`He_n`, and then scaling the results to get
|
1585 |
+
the right value when integrating 1.
|
1586 |
+
|
1587 |
+
"""
|
1588 |
+
ideg = pu._deprecate_as_int(deg, "deg")
|
1589 |
+
if ideg <= 0:
|
1590 |
+
raise ValueError("deg must be a positive integer")
|
1591 |
+
|
1592 |
+
# first approximation of roots. We use the fact that the companion
|
1593 |
+
# matrix is symmetric in this case in order to obtain better zeros.
|
1594 |
+
c = np.array([0]*deg + [1])
|
1595 |
+
m = hermecompanion(c)
|
1596 |
+
x = la.eigvalsh(m)
|
1597 |
+
|
1598 |
+
# improve roots by one application of Newton
|
1599 |
+
dy = _normed_hermite_e_n(x, ideg)
|
1600 |
+
df = _normed_hermite_e_n(x, ideg - 1) * np.sqrt(ideg)
|
1601 |
+
x -= dy/df
|
1602 |
+
|
1603 |
+
# compute the weights. We scale the factor to avoid possible numerical
|
1604 |
+
# overflow.
|
1605 |
+
fm = _normed_hermite_e_n(x, ideg - 1)
|
1606 |
+
fm /= np.abs(fm).max()
|
1607 |
+
w = 1/(fm * fm)
|
1608 |
+
|
1609 |
+
# for Hermite_e we can also symmetrize
|
1610 |
+
w = (w + w[::-1])/2
|
1611 |
+
x = (x - x[::-1])/2
|
1612 |
+
|
1613 |
+
# scale w to get the right value
|
1614 |
+
w *= np.sqrt(2*np.pi) / w.sum()
|
1615 |
+
|
1616 |
+
return x, w
|
1617 |
+
|
1618 |
+
|
1619 |
+
def hermeweight(x):
|
1620 |
+
"""Weight function of the Hermite_e polynomials.
|
1621 |
+
|
1622 |
+
The weight function is :math:`\\exp(-x^2/2)` and the interval of
|
1623 |
+
integration is :math:`[-\\inf, \\inf]`. the HermiteE polynomials are
|
1624 |
+
orthogonal, but not normalized, with respect to this weight function.
|
1625 |
+
|
1626 |
+
Parameters
|
1627 |
+
----------
|
1628 |
+
x : array_like
|
1629 |
+
Values at which the weight function will be computed.
|
1630 |
+
|
1631 |
+
Returns
|
1632 |
+
-------
|
1633 |
+
w : ndarray
|
1634 |
+
The weight function at `x`.
|
1635 |
+
|
1636 |
+
Notes
|
1637 |
+
-----
|
1638 |
+
|
1639 |
+
.. versionadded:: 1.7.0
|
1640 |
+
|
1641 |
+
"""
|
1642 |
+
w = np.exp(-.5*x**2)
|
1643 |
+
return w
|
1644 |
+
|
1645 |
+
|
1646 |
+
#
|
1647 |
+
# HermiteE series class
|
1648 |
+
#
|
1649 |
+
|
1650 |
+
class HermiteE(ABCPolyBase):
|
1651 |
+
"""An HermiteE series class.
|
1652 |
+
|
1653 |
+
The HermiteE class provides the standard Python numerical methods
|
1654 |
+
'+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
|
1655 |
+
attributes and methods listed in the `ABCPolyBase` documentation.
|
1656 |
+
|
1657 |
+
Parameters
|
1658 |
+
----------
|
1659 |
+
coef : array_like
|
1660 |
+
HermiteE coefficients in order of increasing degree, i.e,
|
1661 |
+
``(1, 2, 3)`` gives ``1*He_0(x) + 2*He_1(X) + 3*He_2(x)``.
|
1662 |
+
domain : (2,) array_like, optional
|
1663 |
+
Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
|
1664 |
+
to the interval ``[window[0], window[1]]`` by shifting and scaling.
|
1665 |
+
The default value is [-1, 1].
|
1666 |
+
window : (2,) array_like, optional
|
1667 |
+
Window, see `domain` for its use. The default value is [-1, 1].
|
1668 |
+
|
1669 |
+
.. versionadded:: 1.6.0
|
1670 |
+
symbol : str, optional
|
1671 |
+
Symbol used to represent the independent variable in string
|
1672 |
+
representations of the polynomial expression, e.g. for printing.
|
1673 |
+
The symbol must be a valid Python identifier. Default value is 'x'.
|
1674 |
+
|
1675 |
+
.. versionadded:: 1.24
|
1676 |
+
|
1677 |
+
"""
|
1678 |
+
# Virtual Functions
|
1679 |
+
_add = staticmethod(hermeadd)
|
1680 |
+
_sub = staticmethod(hermesub)
|
1681 |
+
_mul = staticmethod(hermemul)
|
1682 |
+
_div = staticmethod(hermediv)
|
1683 |
+
_pow = staticmethod(hermepow)
|
1684 |
+
_val = staticmethod(hermeval)
|
1685 |
+
_int = staticmethod(hermeint)
|
1686 |
+
_der = staticmethod(hermeder)
|
1687 |
+
_fit = staticmethod(hermefit)
|
1688 |
+
_line = staticmethod(hermeline)
|
1689 |
+
_roots = staticmethod(hermeroots)
|
1690 |
+
_fromroots = staticmethod(hermefromroots)
|
1691 |
+
|
1692 |
+
# Virtual properties
|
1693 |
+
domain = np.array(hermedomain)
|
1694 |
+
window = np.array(hermedomain)
|
1695 |
+
basis_name = 'He'
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/laguerre.pyi
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from numpy import ndarray, dtype, int_
|
4 |
+
from numpy.polynomial._polybase import ABCPolyBase
|
5 |
+
from numpy.polynomial.polyutils import trimcoef
|
6 |
+
|
7 |
+
__all__: list[str]
|
8 |
+
|
9 |
+
lagtrim = trimcoef
|
10 |
+
|
11 |
+
def poly2lag(pol): ...
|
12 |
+
def lag2poly(c): ...
|
13 |
+
|
14 |
+
lagdomain: ndarray[Any, dtype[int_]]
|
15 |
+
lagzero: ndarray[Any, dtype[int_]]
|
16 |
+
lagone: ndarray[Any, dtype[int_]]
|
17 |
+
lagx: ndarray[Any, dtype[int_]]
|
18 |
+
|
19 |
+
def lagline(off, scl): ...
|
20 |
+
def lagfromroots(roots): ...
|
21 |
+
def lagadd(c1, c2): ...
|
22 |
+
def lagsub(c1, c2): ...
|
23 |
+
def lagmulx(c): ...
|
24 |
+
def lagmul(c1, c2): ...
|
25 |
+
def lagdiv(c1, c2): ...
|
26 |
+
def lagpow(c, pow, maxpower=...): ...
|
27 |
+
def lagder(c, m=..., scl=..., axis=...): ...
|
28 |
+
def lagint(c, m=..., k = ..., lbnd=..., scl=..., axis=...): ...
|
29 |
+
def lagval(x, c, tensor=...): ...
|
30 |
+
def lagval2d(x, y, c): ...
|
31 |
+
def laggrid2d(x, y, c): ...
|
32 |
+
def lagval3d(x, y, z, c): ...
|
33 |
+
def laggrid3d(x, y, z, c): ...
|
34 |
+
def lagvander(x, deg): ...
|
35 |
+
def lagvander2d(x, y, deg): ...
|
36 |
+
def lagvander3d(x, y, z, deg): ...
|
37 |
+
def lagfit(x, y, deg, rcond=..., full=..., w=...): ...
|
38 |
+
def lagcompanion(c): ...
|
39 |
+
def lagroots(c): ...
|
40 |
+
def laggauss(deg): ...
|
41 |
+
def lagweight(x): ...
|
42 |
+
|
43 |
+
class Laguerre(ABCPolyBase):
|
44 |
+
domain: Any
|
45 |
+
window: Any
|
46 |
+
basis_name: Any
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/legendre.py
ADDED
@@ -0,0 +1,1664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
==================================================
|
3 |
+
Legendre Series (:mod:`numpy.polynomial.legendre`)
|
4 |
+
==================================================
|
5 |
+
|
6 |
+
This module provides a number of objects (mostly functions) useful for
|
7 |
+
dealing with Legendre series, including a `Legendre` class that
|
8 |
+
encapsulates the usual arithmetic operations. (General information
|
9 |
+
on how this module represents and works with such polynomials is in the
|
10 |
+
docstring for its "parent" sub-package, `numpy.polynomial`).
|
11 |
+
|
12 |
+
Classes
|
13 |
+
-------
|
14 |
+
.. autosummary::
|
15 |
+
:toctree: generated/
|
16 |
+
|
17 |
+
Legendre
|
18 |
+
|
19 |
+
Constants
|
20 |
+
---------
|
21 |
+
|
22 |
+
.. autosummary::
|
23 |
+
:toctree: generated/
|
24 |
+
|
25 |
+
legdomain
|
26 |
+
legzero
|
27 |
+
legone
|
28 |
+
legx
|
29 |
+
|
30 |
+
Arithmetic
|
31 |
+
----------
|
32 |
+
|
33 |
+
.. autosummary::
|
34 |
+
:toctree: generated/
|
35 |
+
|
36 |
+
legadd
|
37 |
+
legsub
|
38 |
+
legmulx
|
39 |
+
legmul
|
40 |
+
legdiv
|
41 |
+
legpow
|
42 |
+
legval
|
43 |
+
legval2d
|
44 |
+
legval3d
|
45 |
+
leggrid2d
|
46 |
+
leggrid3d
|
47 |
+
|
48 |
+
Calculus
|
49 |
+
--------
|
50 |
+
|
51 |
+
.. autosummary::
|
52 |
+
:toctree: generated/
|
53 |
+
|
54 |
+
legder
|
55 |
+
legint
|
56 |
+
|
57 |
+
Misc Functions
|
58 |
+
--------------
|
59 |
+
|
60 |
+
.. autosummary::
|
61 |
+
:toctree: generated/
|
62 |
+
|
63 |
+
legfromroots
|
64 |
+
legroots
|
65 |
+
legvander
|
66 |
+
legvander2d
|
67 |
+
legvander3d
|
68 |
+
leggauss
|
69 |
+
legweight
|
70 |
+
legcompanion
|
71 |
+
legfit
|
72 |
+
legtrim
|
73 |
+
legline
|
74 |
+
leg2poly
|
75 |
+
poly2leg
|
76 |
+
|
77 |
+
See also
|
78 |
+
--------
|
79 |
+
numpy.polynomial
|
80 |
+
|
81 |
+
"""
|
82 |
+
import numpy as np
|
83 |
+
import numpy.linalg as la
|
84 |
+
from numpy.core.multiarray import normalize_axis_index
|
85 |
+
|
86 |
+
from . import polyutils as pu
|
87 |
+
from ._polybase import ABCPolyBase
|
88 |
+
|
89 |
+
__all__ = [
|
90 |
+
'legzero', 'legone', 'legx', 'legdomain', 'legline', 'legadd',
|
91 |
+
'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow', 'legval', 'legder',
|
92 |
+
'legint', 'leg2poly', 'poly2leg', 'legfromroots', 'legvander',
|
93 |
+
'legfit', 'legtrim', 'legroots', 'Legendre', 'legval2d', 'legval3d',
|
94 |
+
'leggrid2d', 'leggrid3d', 'legvander2d', 'legvander3d', 'legcompanion',
|
95 |
+
'leggauss', 'legweight']
|
96 |
+
|
97 |
+
legtrim = pu.trimcoef
|
98 |
+
|
99 |
+
|
100 |
+
def poly2leg(pol):
|
101 |
+
"""
|
102 |
+
Convert a polynomial to a Legendre series.
|
103 |
+
|
104 |
+
Convert an array representing the coefficients of a polynomial (relative
|
105 |
+
to the "standard" basis) ordered from lowest degree to highest, to an
|
106 |
+
array of the coefficients of the equivalent Legendre series, ordered
|
107 |
+
from lowest to highest degree.
|
108 |
+
|
109 |
+
Parameters
|
110 |
+
----------
|
111 |
+
pol : array_like
|
112 |
+
1-D array containing the polynomial coefficients
|
113 |
+
|
114 |
+
Returns
|
115 |
+
-------
|
116 |
+
c : ndarray
|
117 |
+
1-D array containing the coefficients of the equivalent Legendre
|
118 |
+
series.
|
119 |
+
|
120 |
+
See Also
|
121 |
+
--------
|
122 |
+
leg2poly
|
123 |
+
|
124 |
+
Notes
|
125 |
+
-----
|
126 |
+
The easy way to do conversions between polynomial basis sets
|
127 |
+
is to use the convert method of a class instance.
|
128 |
+
|
129 |
+
Examples
|
130 |
+
--------
|
131 |
+
>>> from numpy import polynomial as P
|
132 |
+
>>> p = P.Polynomial(np.arange(4))
|
133 |
+
>>> p
|
134 |
+
Polynomial([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
|
135 |
+
>>> c = P.Legendre(P.legendre.poly2leg(p.coef))
|
136 |
+
>>> c
|
137 |
+
Legendre([ 1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1]) # may vary
|
138 |
+
|
139 |
+
"""
|
140 |
+
[pol] = pu.as_series([pol])
|
141 |
+
deg = len(pol) - 1
|
142 |
+
res = 0
|
143 |
+
for i in range(deg, -1, -1):
|
144 |
+
res = legadd(legmulx(res), pol[i])
|
145 |
+
return res
|
146 |
+
|
147 |
+
|
148 |
+
def leg2poly(c):
|
149 |
+
"""
|
150 |
+
Convert a Legendre series to a polynomial.
|
151 |
+
|
152 |
+
Convert an array representing the coefficients of a Legendre series,
|
153 |
+
ordered from lowest degree to highest, to an array of the coefficients
|
154 |
+
of the equivalent polynomial (relative to the "standard" basis) ordered
|
155 |
+
from lowest to highest degree.
|
156 |
+
|
157 |
+
Parameters
|
158 |
+
----------
|
159 |
+
c : array_like
|
160 |
+
1-D array containing the Legendre series coefficients, ordered
|
161 |
+
from lowest order term to highest.
|
162 |
+
|
163 |
+
Returns
|
164 |
+
-------
|
165 |
+
pol : ndarray
|
166 |
+
1-D array containing the coefficients of the equivalent polynomial
|
167 |
+
(relative to the "standard" basis) ordered from lowest order term
|
168 |
+
to highest.
|
169 |
+
|
170 |
+
See Also
|
171 |
+
--------
|
172 |
+
poly2leg
|
173 |
+
|
174 |
+
Notes
|
175 |
+
-----
|
176 |
+
The easy way to do conversions between polynomial basis sets
|
177 |
+
is to use the convert method of a class instance.
|
178 |
+
|
179 |
+
Examples
|
180 |
+
--------
|
181 |
+
>>> from numpy import polynomial as P
|
182 |
+
>>> c = P.Legendre(range(4))
|
183 |
+
>>> c
|
184 |
+
Legendre([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
|
185 |
+
>>> p = c.convert(kind=P.Polynomial)
|
186 |
+
>>> p
|
187 |
+
Polynomial([-1. , -3.5, 3. , 7.5], domain=[-1., 1.], window=[-1., 1.])
|
188 |
+
>>> P.legendre.leg2poly(range(4))
|
189 |
+
array([-1. , -3.5, 3. , 7.5])
|
190 |
+
|
191 |
+
|
192 |
+
"""
|
193 |
+
from .polynomial import polyadd, polysub, polymulx
|
194 |
+
|
195 |
+
[c] = pu.as_series([c])
|
196 |
+
n = len(c)
|
197 |
+
if n < 3:
|
198 |
+
return c
|
199 |
+
else:
|
200 |
+
c0 = c[-2]
|
201 |
+
c1 = c[-1]
|
202 |
+
# i is the current degree of c1
|
203 |
+
for i in range(n - 1, 1, -1):
|
204 |
+
tmp = c0
|
205 |
+
c0 = polysub(c[i - 2], (c1*(i - 1))/i)
|
206 |
+
c1 = polyadd(tmp, (polymulx(c1)*(2*i - 1))/i)
|
207 |
+
return polyadd(c0, polymulx(c1))
|
208 |
+
|
209 |
+
#
|
210 |
+
# These are constant arrays are of integer type so as to be compatible
|
211 |
+
# with the widest range of other types, such as Decimal.
|
212 |
+
#
|
213 |
+
|
214 |
+
# Legendre
|
215 |
+
legdomain = np.array([-1, 1])
|
216 |
+
|
217 |
+
# Legendre coefficients representing zero.
|
218 |
+
legzero = np.array([0])
|
219 |
+
|
220 |
+
# Legendre coefficients representing one.
|
221 |
+
legone = np.array([1])
|
222 |
+
|
223 |
+
# Legendre coefficients representing the identity x.
|
224 |
+
legx = np.array([0, 1])
|
225 |
+
|
226 |
+
|
227 |
+
def legline(off, scl):
|
228 |
+
"""
|
229 |
+
Legendre series whose graph is a straight line.
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
Parameters
|
234 |
+
----------
|
235 |
+
off, scl : scalars
|
236 |
+
The specified line is given by ``off + scl*x``.
|
237 |
+
|
238 |
+
Returns
|
239 |
+
-------
|
240 |
+
y : ndarray
|
241 |
+
This module's representation of the Legendre series for
|
242 |
+
``off + scl*x``.
|
243 |
+
|
244 |
+
See Also
|
245 |
+
--------
|
246 |
+
numpy.polynomial.polynomial.polyline
|
247 |
+
numpy.polynomial.chebyshev.chebline
|
248 |
+
numpy.polynomial.laguerre.lagline
|
249 |
+
numpy.polynomial.hermite.hermline
|
250 |
+
numpy.polynomial.hermite_e.hermeline
|
251 |
+
|
252 |
+
Examples
|
253 |
+
--------
|
254 |
+
>>> import numpy.polynomial.legendre as L
|
255 |
+
>>> L.legline(3,2)
|
256 |
+
array([3, 2])
|
257 |
+
>>> L.legval(-3, L.legline(3,2)) # should be -3
|
258 |
+
-3.0
|
259 |
+
|
260 |
+
"""
|
261 |
+
if scl != 0:
|
262 |
+
return np.array([off, scl])
|
263 |
+
else:
|
264 |
+
return np.array([off])
|
265 |
+
|
266 |
+
|
267 |
+
def legfromroots(roots):
|
268 |
+
"""
|
269 |
+
Generate a Legendre series with given roots.
|
270 |
+
|
271 |
+
The function returns the coefficients of the polynomial
|
272 |
+
|
273 |
+
.. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
|
274 |
+
|
275 |
+
in Legendre form, where the `r_n` are the roots specified in `roots`.
|
276 |
+
If a zero has multiplicity n, then it must appear in `roots` n times.
|
277 |
+
For instance, if 2 is a root of multiplicity three and 3 is a root of
|
278 |
+
multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
|
279 |
+
roots can appear in any order.
|
280 |
+
|
281 |
+
If the returned coefficients are `c`, then
|
282 |
+
|
283 |
+
.. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x)
|
284 |
+
|
285 |
+
The coefficient of the last term is not generally 1 for monic
|
286 |
+
polynomials in Legendre form.
|
287 |
+
|
288 |
+
Parameters
|
289 |
+
----------
|
290 |
+
roots : array_like
|
291 |
+
Sequence containing the roots.
|
292 |
+
|
293 |
+
Returns
|
294 |
+
-------
|
295 |
+
out : ndarray
|
296 |
+
1-D array of coefficients. If all roots are real then `out` is a
|
297 |
+
real array, if some of the roots are complex, then `out` is complex
|
298 |
+
even if all the coefficients in the result are real (see Examples
|
299 |
+
below).
|
300 |
+
|
301 |
+
See Also
|
302 |
+
--------
|
303 |
+
numpy.polynomial.polynomial.polyfromroots
|
304 |
+
numpy.polynomial.chebyshev.chebfromroots
|
305 |
+
numpy.polynomial.laguerre.lagfromroots
|
306 |
+
numpy.polynomial.hermite.hermfromroots
|
307 |
+
numpy.polynomial.hermite_e.hermefromroots
|
308 |
+
|
309 |
+
Examples
|
310 |
+
--------
|
311 |
+
>>> import numpy.polynomial.legendre as L
|
312 |
+
>>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis
|
313 |
+
array([ 0. , -0.4, 0. , 0.4])
|
314 |
+
>>> j = complex(0,1)
|
315 |
+
>>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis
|
316 |
+
array([ 1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j]) # may vary
|
317 |
+
|
318 |
+
"""
|
319 |
+
return pu._fromroots(legline, legmul, roots)
|
320 |
+
|
321 |
+
|
322 |
+
def legadd(c1, c2):
|
323 |
+
"""
|
324 |
+
Add one Legendre series to another.
|
325 |
+
|
326 |
+
Returns the sum of two Legendre series `c1` + `c2`. The arguments
|
327 |
+
are sequences of coefficients ordered from lowest order term to
|
328 |
+
highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
|
329 |
+
|
330 |
+
Parameters
|
331 |
+
----------
|
332 |
+
c1, c2 : array_like
|
333 |
+
1-D arrays of Legendre series coefficients ordered from low to
|
334 |
+
high.
|
335 |
+
|
336 |
+
Returns
|
337 |
+
-------
|
338 |
+
out : ndarray
|
339 |
+
Array representing the Legendre series of their sum.
|
340 |
+
|
341 |
+
See Also
|
342 |
+
--------
|
343 |
+
legsub, legmulx, legmul, legdiv, legpow
|
344 |
+
|
345 |
+
Notes
|
346 |
+
-----
|
347 |
+
Unlike multiplication, division, etc., the sum of two Legendre series
|
348 |
+
is a Legendre series (without having to "reproject" the result onto
|
349 |
+
the basis set) so addition, just like that of "standard" polynomials,
|
350 |
+
is simply "component-wise."
|
351 |
+
|
352 |
+
Examples
|
353 |
+
--------
|
354 |
+
>>> from numpy.polynomial import legendre as L
|
355 |
+
>>> c1 = (1,2,3)
|
356 |
+
>>> c2 = (3,2,1)
|
357 |
+
>>> L.legadd(c1,c2)
|
358 |
+
array([4., 4., 4.])
|
359 |
+
|
360 |
+
"""
|
361 |
+
return pu._add(c1, c2)
|
362 |
+
|
363 |
+
|
364 |
+
def legsub(c1, c2):
|
365 |
+
"""
|
366 |
+
Subtract one Legendre series from another.
|
367 |
+
|
368 |
+
Returns the difference of two Legendre series `c1` - `c2`. The
|
369 |
+
sequences of coefficients are from lowest order term to highest, i.e.,
|
370 |
+
[1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
|
371 |
+
|
372 |
+
Parameters
|
373 |
+
----------
|
374 |
+
c1, c2 : array_like
|
375 |
+
1-D arrays of Legendre series coefficients ordered from low to
|
376 |
+
high.
|
377 |
+
|
378 |
+
Returns
|
379 |
+
-------
|
380 |
+
out : ndarray
|
381 |
+
Of Legendre series coefficients representing their difference.
|
382 |
+
|
383 |
+
See Also
|
384 |
+
--------
|
385 |
+
legadd, legmulx, legmul, legdiv, legpow
|
386 |
+
|
387 |
+
Notes
|
388 |
+
-----
|
389 |
+
Unlike multiplication, division, etc., the difference of two Legendre
|
390 |
+
series is a Legendre series (without having to "reproject" the result
|
391 |
+
onto the basis set) so subtraction, just like that of "standard"
|
392 |
+
polynomials, is simply "component-wise."
|
393 |
+
|
394 |
+
Examples
|
395 |
+
--------
|
396 |
+
>>> from numpy.polynomial import legendre as L
|
397 |
+
>>> c1 = (1,2,3)
|
398 |
+
>>> c2 = (3,2,1)
|
399 |
+
>>> L.legsub(c1,c2)
|
400 |
+
array([-2., 0., 2.])
|
401 |
+
>>> L.legsub(c2,c1) # -C.legsub(c1,c2)
|
402 |
+
array([ 2., 0., -2.])
|
403 |
+
|
404 |
+
"""
|
405 |
+
return pu._sub(c1, c2)
|
406 |
+
|
407 |
+
|
408 |
+
def legmulx(c):
|
409 |
+
"""Multiply a Legendre series by x.
|
410 |
+
|
411 |
+
Multiply the Legendre series `c` by x, where x is the independent
|
412 |
+
variable.
|
413 |
+
|
414 |
+
|
415 |
+
Parameters
|
416 |
+
----------
|
417 |
+
c : array_like
|
418 |
+
1-D array of Legendre series coefficients ordered from low to
|
419 |
+
high.
|
420 |
+
|
421 |
+
Returns
|
422 |
+
-------
|
423 |
+
out : ndarray
|
424 |
+
Array representing the result of the multiplication.
|
425 |
+
|
426 |
+
See Also
|
427 |
+
--------
|
428 |
+
legadd, legmul, legdiv, legpow
|
429 |
+
|
430 |
+
Notes
|
431 |
+
-----
|
432 |
+
The multiplication uses the recursion relationship for Legendre
|
433 |
+
polynomials in the form
|
434 |
+
|
435 |
+
.. math::
|
436 |
+
|
437 |
+
xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1)
|
438 |
+
|
439 |
+
Examples
|
440 |
+
--------
|
441 |
+
>>> from numpy.polynomial import legendre as L
|
442 |
+
>>> L.legmulx([1,2,3])
|
443 |
+
array([ 0.66666667, 2.2, 1.33333333, 1.8]) # may vary
|
444 |
+
|
445 |
+
"""
|
446 |
+
# c is a trimmed copy
|
447 |
+
[c] = pu.as_series([c])
|
448 |
+
# The zero series needs special treatment
|
449 |
+
if len(c) == 1 and c[0] == 0:
|
450 |
+
return c
|
451 |
+
|
452 |
+
prd = np.empty(len(c) + 1, dtype=c.dtype)
|
453 |
+
prd[0] = c[0]*0
|
454 |
+
prd[1] = c[0]
|
455 |
+
for i in range(1, len(c)):
|
456 |
+
j = i + 1
|
457 |
+
k = i - 1
|
458 |
+
s = i + j
|
459 |
+
prd[j] = (c[i]*j)/s
|
460 |
+
prd[k] += (c[i]*i)/s
|
461 |
+
return prd
|
462 |
+
|
463 |
+
|
464 |
+
def legmul(c1, c2):
|
465 |
+
"""
|
466 |
+
Multiply one Legendre series by another.
|
467 |
+
|
468 |
+
Returns the product of two Legendre series `c1` * `c2`. The arguments
|
469 |
+
are sequences of coefficients, from lowest order "term" to highest,
|
470 |
+
e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
|
471 |
+
|
472 |
+
Parameters
|
473 |
+
----------
|
474 |
+
c1, c2 : array_like
|
475 |
+
1-D arrays of Legendre series coefficients ordered from low to
|
476 |
+
high.
|
477 |
+
|
478 |
+
Returns
|
479 |
+
-------
|
480 |
+
out : ndarray
|
481 |
+
Of Legendre series coefficients representing their product.
|
482 |
+
|
483 |
+
See Also
|
484 |
+
--------
|
485 |
+
legadd, legsub, legmulx, legdiv, legpow
|
486 |
+
|
487 |
+
Notes
|
488 |
+
-----
|
489 |
+
In general, the (polynomial) product of two C-series results in terms
|
490 |
+
that are not in the Legendre polynomial basis set. Thus, to express
|
491 |
+
the product as a Legendre series, it is necessary to "reproject" the
|
492 |
+
product onto said basis set, which may produce "unintuitive" (but
|
493 |
+
correct) results; see Examples section below.
|
494 |
+
|
495 |
+
Examples
|
496 |
+
--------
|
497 |
+
>>> from numpy.polynomial import legendre as L
|
498 |
+
>>> c1 = (1,2,3)
|
499 |
+
>>> c2 = (3,2)
|
500 |
+
>>> L.legmul(c1,c2) # multiplication requires "reprojection"
|
501 |
+
array([ 4.33333333, 10.4 , 11.66666667, 3.6 ]) # may vary
|
502 |
+
|
503 |
+
"""
|
504 |
+
# s1, s2 are trimmed copies
|
505 |
+
[c1, c2] = pu.as_series([c1, c2])
|
506 |
+
|
507 |
+
if len(c1) > len(c2):
|
508 |
+
c = c2
|
509 |
+
xs = c1
|
510 |
+
else:
|
511 |
+
c = c1
|
512 |
+
xs = c2
|
513 |
+
|
514 |
+
if len(c) == 1:
|
515 |
+
c0 = c[0]*xs
|
516 |
+
c1 = 0
|
517 |
+
elif len(c) == 2:
|
518 |
+
c0 = c[0]*xs
|
519 |
+
c1 = c[1]*xs
|
520 |
+
else:
|
521 |
+
nd = len(c)
|
522 |
+
c0 = c[-2]*xs
|
523 |
+
c1 = c[-1]*xs
|
524 |
+
for i in range(3, len(c) + 1):
|
525 |
+
tmp = c0
|
526 |
+
nd = nd - 1
|
527 |
+
c0 = legsub(c[-i]*xs, (c1*(nd - 1))/nd)
|
528 |
+
c1 = legadd(tmp, (legmulx(c1)*(2*nd - 1))/nd)
|
529 |
+
return legadd(c0, legmulx(c1))
|
530 |
+
|
531 |
+
|
532 |
+
def legdiv(c1, c2):
|
533 |
+
"""
|
534 |
+
Divide one Legendre series by another.
|
535 |
+
|
536 |
+
Returns the quotient-with-remainder of two Legendre series
|
537 |
+
`c1` / `c2`. The arguments are sequences of coefficients from lowest
|
538 |
+
order "term" to highest, e.g., [1,2,3] represents the series
|
539 |
+
``P_0 + 2*P_1 + 3*P_2``.
|
540 |
+
|
541 |
+
Parameters
|
542 |
+
----------
|
543 |
+
c1, c2 : array_like
|
544 |
+
1-D arrays of Legendre series coefficients ordered from low to
|
545 |
+
high.
|
546 |
+
|
547 |
+
Returns
|
548 |
+
-------
|
549 |
+
quo, rem : ndarrays
|
550 |
+
Of Legendre series coefficients representing the quotient and
|
551 |
+
remainder.
|
552 |
+
|
553 |
+
See Also
|
554 |
+
--------
|
555 |
+
legadd, legsub, legmulx, legmul, legpow
|
556 |
+
|
557 |
+
Notes
|
558 |
+
-----
|
559 |
+
In general, the (polynomial) division of one Legendre series by another
|
560 |
+
results in quotient and remainder terms that are not in the Legendre
|
561 |
+
polynomial basis set. Thus, to express these results as a Legendre
|
562 |
+
series, it is necessary to "reproject" the results onto the Legendre
|
563 |
+
basis set, which may produce "unintuitive" (but correct) results; see
|
564 |
+
Examples section below.
|
565 |
+
|
566 |
+
Examples
|
567 |
+
--------
|
568 |
+
>>> from numpy.polynomial import legendre as L
|
569 |
+
>>> c1 = (1,2,3)
|
570 |
+
>>> c2 = (3,2,1)
|
571 |
+
>>> L.legdiv(c1,c2) # quotient "intuitive," remainder not
|
572 |
+
(array([3.]), array([-8., -4.]))
|
573 |
+
>>> c2 = (0,1,2,3)
|
574 |
+
>>> L.legdiv(c2,c1) # neither "intuitive"
|
575 |
+
(array([-0.07407407, 1.66666667]), array([-1.03703704, -2.51851852])) # may vary
|
576 |
+
|
577 |
+
"""
|
578 |
+
return pu._div(legmul, c1, c2)
|
579 |
+
|
580 |
+
|
581 |
+
def legpow(c, pow, maxpower=16):
|
582 |
+
"""Raise a Legendre series to a power.
|
583 |
+
|
584 |
+
Returns the Legendre series `c` raised to the power `pow`. The
|
585 |
+
argument `c` is a sequence of coefficients ordered from low to high.
|
586 |
+
i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.``
|
587 |
+
|
588 |
+
Parameters
|
589 |
+
----------
|
590 |
+
c : array_like
|
591 |
+
1-D array of Legendre series coefficients ordered from low to
|
592 |
+
high.
|
593 |
+
pow : integer
|
594 |
+
Power to which the series will be raised
|
595 |
+
maxpower : integer, optional
|
596 |
+
Maximum power allowed. This is mainly to limit growth of the series
|
597 |
+
to unmanageable size. Default is 16
|
598 |
+
|
599 |
+
Returns
|
600 |
+
-------
|
601 |
+
coef : ndarray
|
602 |
+
Legendre series of power.
|
603 |
+
|
604 |
+
See Also
|
605 |
+
--------
|
606 |
+
legadd, legsub, legmulx, legmul, legdiv
|
607 |
+
|
608 |
+
"""
|
609 |
+
return pu._pow(legmul, c, pow, maxpower)
|
610 |
+
|
611 |
+
|
612 |
+
def legder(c, m=1, scl=1, axis=0):
|
613 |
+
"""
|
614 |
+
Differentiate a Legendre series.
|
615 |
+
|
616 |
+
Returns the Legendre series coefficients `c` differentiated `m` times
|
617 |
+
along `axis`. At each iteration the result is multiplied by `scl` (the
|
618 |
+
scaling factor is for use in a linear change of variable). The argument
|
619 |
+
`c` is an array of coefficients from low to high degree along each
|
620 |
+
axis, e.g., [1,2,3] represents the series ``1*L_0 + 2*L_1 + 3*L_2``
|
621 |
+
while [[1,2],[1,2]] represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
|
622 |
+
2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is
|
623 |
+
``y``.
|
624 |
+
|
625 |
+
Parameters
|
626 |
+
----------
|
627 |
+
c : array_like
|
628 |
+
Array of Legendre series coefficients. If c is multidimensional the
|
629 |
+
different axis correspond to different variables with the degree in
|
630 |
+
each axis given by the corresponding index.
|
631 |
+
m : int, optional
|
632 |
+
Number of derivatives taken, must be non-negative. (Default: 1)
|
633 |
+
scl : scalar, optional
|
634 |
+
Each differentiation is multiplied by `scl`. The end result is
|
635 |
+
multiplication by ``scl**m``. This is for use in a linear change of
|
636 |
+
variable. (Default: 1)
|
637 |
+
axis : int, optional
|
638 |
+
Axis over which the derivative is taken. (Default: 0).
|
639 |
+
|
640 |
+
.. versionadded:: 1.7.0
|
641 |
+
|
642 |
+
Returns
|
643 |
+
-------
|
644 |
+
der : ndarray
|
645 |
+
Legendre series of the derivative.
|
646 |
+
|
647 |
+
See Also
|
648 |
+
--------
|
649 |
+
legint
|
650 |
+
|
651 |
+
Notes
|
652 |
+
-----
|
653 |
+
In general, the result of differentiating a Legendre series does not
|
654 |
+
resemble the same operation on a power series. Thus the result of this
|
655 |
+
function may be "unintuitive," albeit correct; see Examples section
|
656 |
+
below.
|
657 |
+
|
658 |
+
Examples
|
659 |
+
--------
|
660 |
+
>>> from numpy.polynomial import legendre as L
|
661 |
+
>>> c = (1,2,3,4)
|
662 |
+
>>> L.legder(c)
|
663 |
+
array([ 6., 9., 20.])
|
664 |
+
>>> L.legder(c, 3)
|
665 |
+
array([60.])
|
666 |
+
>>> L.legder(c, scl=-1)
|
667 |
+
array([ -6., -9., -20.])
|
668 |
+
>>> L.legder(c, 2,-1)
|
669 |
+
array([ 9., 60.])
|
670 |
+
|
671 |
+
"""
|
672 |
+
c = np.array(c, ndmin=1, copy=True)
|
673 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
674 |
+
c = c.astype(np.double)
|
675 |
+
cnt = pu._deprecate_as_int(m, "the order of derivation")
|
676 |
+
iaxis = pu._deprecate_as_int(axis, "the axis")
|
677 |
+
if cnt < 0:
|
678 |
+
raise ValueError("The order of derivation must be non-negative")
|
679 |
+
iaxis = normalize_axis_index(iaxis, c.ndim)
|
680 |
+
|
681 |
+
if cnt == 0:
|
682 |
+
return c
|
683 |
+
|
684 |
+
c = np.moveaxis(c, iaxis, 0)
|
685 |
+
n = len(c)
|
686 |
+
if cnt >= n:
|
687 |
+
c = c[:1]*0
|
688 |
+
else:
|
689 |
+
for i in range(cnt):
|
690 |
+
n = n - 1
|
691 |
+
c *= scl
|
692 |
+
der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
|
693 |
+
for j in range(n, 2, -1):
|
694 |
+
der[j - 1] = (2*j - 1)*c[j]
|
695 |
+
c[j - 2] += c[j]
|
696 |
+
if n > 1:
|
697 |
+
der[1] = 3*c[2]
|
698 |
+
der[0] = c[1]
|
699 |
+
c = der
|
700 |
+
c = np.moveaxis(c, 0, iaxis)
|
701 |
+
return c
|
702 |
+
|
703 |
+
|
704 |
+
def legint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
|
705 |
+
"""
|
706 |
+
Integrate a Legendre series.
|
707 |
+
|
708 |
+
Returns the Legendre series coefficients `c` integrated `m` times from
|
709 |
+
`lbnd` along `axis`. At each iteration the resulting series is
|
710 |
+
**multiplied** by `scl` and an integration constant, `k`, is added.
|
711 |
+
The scaling factor is for use in a linear change of variable. ("Buyer
|
712 |
+
beware": note that, depending on what one is doing, one may want `scl`
|
713 |
+
to be the reciprocal of what one might expect; for more information,
|
714 |
+
see the Notes section below.) The argument `c` is an array of
|
715 |
+
coefficients from low to high degree along each axis, e.g., [1,2,3]
|
716 |
+
represents the series ``L_0 + 2*L_1 + 3*L_2`` while [[1,2],[1,2]]
|
717 |
+
represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
|
718 |
+
2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
|
719 |
+
|
720 |
+
Parameters
|
721 |
+
----------
|
722 |
+
c : array_like
|
723 |
+
Array of Legendre series coefficients. If c is multidimensional the
|
724 |
+
different axis correspond to different variables with the degree in
|
725 |
+
each axis given by the corresponding index.
|
726 |
+
m : int, optional
|
727 |
+
Order of integration, must be positive. (Default: 1)
|
728 |
+
k : {[], list, scalar}, optional
|
729 |
+
Integration constant(s). The value of the first integral at
|
730 |
+
``lbnd`` is the first value in the list, the value of the second
|
731 |
+
integral at ``lbnd`` is the second value, etc. If ``k == []`` (the
|
732 |
+
default), all constants are set to zero. If ``m == 1``, a single
|
733 |
+
scalar can be given instead of a list.
|
734 |
+
lbnd : scalar, optional
|
735 |
+
The lower bound of the integral. (Default: 0)
|
736 |
+
scl : scalar, optional
|
737 |
+
Following each integration the result is *multiplied* by `scl`
|
738 |
+
before the integration constant is added. (Default: 1)
|
739 |
+
axis : int, optional
|
740 |
+
Axis over which the integral is taken. (Default: 0).
|
741 |
+
|
742 |
+
.. versionadded:: 1.7.0
|
743 |
+
|
744 |
+
Returns
|
745 |
+
-------
|
746 |
+
S : ndarray
|
747 |
+
Legendre series coefficient array of the integral.
|
748 |
+
|
749 |
+
Raises
|
750 |
+
------
|
751 |
+
ValueError
|
752 |
+
If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
|
753 |
+
``np.ndim(scl) != 0``.
|
754 |
+
|
755 |
+
See Also
|
756 |
+
--------
|
757 |
+
legder
|
758 |
+
|
759 |
+
Notes
|
760 |
+
-----
|
761 |
+
Note that the result of each integration is *multiplied* by `scl`.
|
762 |
+
Why is this important to note? Say one is making a linear change of
|
763 |
+
variable :math:`u = ax + b` in an integral relative to `x`. Then
|
764 |
+
:math:`dx = du/a`, so one will need to set `scl` equal to
|
765 |
+
:math:`1/a` - perhaps not what one would have first thought.
|
766 |
+
|
767 |
+
Also note that, in general, the result of integrating a C-series needs
|
768 |
+
to be "reprojected" onto the C-series basis set. Thus, typically,
|
769 |
+
the result of this function is "unintuitive," albeit correct; see
|
770 |
+
Examples section below.
|
771 |
+
|
772 |
+
Examples
|
773 |
+
--------
|
774 |
+
>>> from numpy.polynomial import legendre as L
|
775 |
+
>>> c = (1,2,3)
|
776 |
+
>>> L.legint(c)
|
777 |
+
array([ 0.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary
|
778 |
+
>>> L.legint(c, 3)
|
779 |
+
array([ 1.66666667e-02, -1.78571429e-02, 4.76190476e-02, # may vary
|
780 |
+
-1.73472348e-18, 1.90476190e-02, 9.52380952e-03])
|
781 |
+
>>> L.legint(c, k=3)
|
782 |
+
array([ 3.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary
|
783 |
+
>>> L.legint(c, lbnd=-2)
|
784 |
+
array([ 7.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary
|
785 |
+
>>> L.legint(c, scl=2)
|
786 |
+
array([ 0.66666667, 0.8 , 1.33333333, 1.2 ]) # may vary
|
787 |
+
|
788 |
+
"""
|
789 |
+
c = np.array(c, ndmin=1, copy=True)
|
790 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
791 |
+
c = c.astype(np.double)
|
792 |
+
if not np.iterable(k):
|
793 |
+
k = [k]
|
794 |
+
cnt = pu._deprecate_as_int(m, "the order of integration")
|
795 |
+
iaxis = pu._deprecate_as_int(axis, "the axis")
|
796 |
+
if cnt < 0:
|
797 |
+
raise ValueError("The order of integration must be non-negative")
|
798 |
+
if len(k) > cnt:
|
799 |
+
raise ValueError("Too many integration constants")
|
800 |
+
if np.ndim(lbnd) != 0:
|
801 |
+
raise ValueError("lbnd must be a scalar.")
|
802 |
+
if np.ndim(scl) != 0:
|
803 |
+
raise ValueError("scl must be a scalar.")
|
804 |
+
iaxis = normalize_axis_index(iaxis, c.ndim)
|
805 |
+
|
806 |
+
if cnt == 0:
|
807 |
+
return c
|
808 |
+
|
809 |
+
c = np.moveaxis(c, iaxis, 0)
|
810 |
+
k = list(k) + [0]*(cnt - len(k))
|
811 |
+
for i in range(cnt):
|
812 |
+
n = len(c)
|
813 |
+
c *= scl
|
814 |
+
if n == 1 and np.all(c[0] == 0):
|
815 |
+
c[0] += k[i]
|
816 |
+
else:
|
817 |
+
tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
|
818 |
+
tmp[0] = c[0]*0
|
819 |
+
tmp[1] = c[0]
|
820 |
+
if n > 1:
|
821 |
+
tmp[2] = c[1]/3
|
822 |
+
for j in range(2, n):
|
823 |
+
t = c[j]/(2*j + 1)
|
824 |
+
tmp[j + 1] = t
|
825 |
+
tmp[j - 1] -= t
|
826 |
+
tmp[0] += k[i] - legval(lbnd, tmp)
|
827 |
+
c = tmp
|
828 |
+
c = np.moveaxis(c, 0, iaxis)
|
829 |
+
return c
|
830 |
+
|
831 |
+
|
832 |
+
def legval(x, c, tensor=True):
|
833 |
+
"""
|
834 |
+
Evaluate a Legendre series at points x.
|
835 |
+
|
836 |
+
If `c` is of length `n + 1`, this function returns the value:
|
837 |
+
|
838 |
+
.. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x)
|
839 |
+
|
840 |
+
The parameter `x` is converted to an array only if it is a tuple or a
|
841 |
+
list, otherwise it is treated as a scalar. In either case, either `x`
|
842 |
+
or its elements must support multiplication and addition both with
|
843 |
+
themselves and with the elements of `c`.
|
844 |
+
|
845 |
+
If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
|
846 |
+
`c` is multidimensional, then the shape of the result depends on the
|
847 |
+
value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
|
848 |
+
x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
|
849 |
+
scalars have shape (,).
|
850 |
+
|
851 |
+
Trailing zeros in the coefficients will be used in the evaluation, so
|
852 |
+
they should be avoided if efficiency is a concern.
|
853 |
+
|
854 |
+
Parameters
|
855 |
+
----------
|
856 |
+
x : array_like, compatible object
|
857 |
+
If `x` is a list or tuple, it is converted to an ndarray, otherwise
|
858 |
+
it is left unchanged and treated as a scalar. In either case, `x`
|
859 |
+
or its elements must support addition and multiplication with
|
860 |
+
themselves and with the elements of `c`.
|
861 |
+
c : array_like
|
862 |
+
Array of coefficients ordered so that the coefficients for terms of
|
863 |
+
degree n are contained in c[n]. If `c` is multidimensional the
|
864 |
+
remaining indices enumerate multiple polynomials. In the two
|
865 |
+
dimensional case the coefficients may be thought of as stored in
|
866 |
+
the columns of `c`.
|
867 |
+
tensor : boolean, optional
|
868 |
+
If True, the shape of the coefficient array is extended with ones
|
869 |
+
on the right, one for each dimension of `x`. Scalars have dimension 0
|
870 |
+
for this action. The result is that every column of coefficients in
|
871 |
+
`c` is evaluated for every element of `x`. If False, `x` is broadcast
|
872 |
+
over the columns of `c` for the evaluation. This keyword is useful
|
873 |
+
when `c` is multidimensional. The default value is True.
|
874 |
+
|
875 |
+
.. versionadded:: 1.7.0
|
876 |
+
|
877 |
+
Returns
|
878 |
+
-------
|
879 |
+
values : ndarray, algebra_like
|
880 |
+
The shape of the return value is described above.
|
881 |
+
|
882 |
+
See Also
|
883 |
+
--------
|
884 |
+
legval2d, leggrid2d, legval3d, leggrid3d
|
885 |
+
|
886 |
+
Notes
|
887 |
+
-----
|
888 |
+
The evaluation uses Clenshaw recursion, aka synthetic division.
|
889 |
+
|
890 |
+
"""
|
891 |
+
c = np.array(c, ndmin=1, copy=False)
|
892 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
893 |
+
c = c.astype(np.double)
|
894 |
+
if isinstance(x, (tuple, list)):
|
895 |
+
x = np.asarray(x)
|
896 |
+
if isinstance(x, np.ndarray) and tensor:
|
897 |
+
c = c.reshape(c.shape + (1,)*x.ndim)
|
898 |
+
|
899 |
+
if len(c) == 1:
|
900 |
+
c0 = c[0]
|
901 |
+
c1 = 0
|
902 |
+
elif len(c) == 2:
|
903 |
+
c0 = c[0]
|
904 |
+
c1 = c[1]
|
905 |
+
else:
|
906 |
+
nd = len(c)
|
907 |
+
c0 = c[-2]
|
908 |
+
c1 = c[-1]
|
909 |
+
for i in range(3, len(c) + 1):
|
910 |
+
tmp = c0
|
911 |
+
nd = nd - 1
|
912 |
+
c0 = c[-i] - (c1*(nd - 1))/nd
|
913 |
+
c1 = tmp + (c1*x*(2*nd - 1))/nd
|
914 |
+
return c0 + c1*x
|
915 |
+
|
916 |
+
|
917 |
+
def legval2d(x, y, c):
|
918 |
+
"""
|
919 |
+
Evaluate a 2-D Legendre series at points (x, y).
|
920 |
+
|
921 |
+
This function returns the values:
|
922 |
+
|
923 |
+
.. math:: p(x,y) = \\sum_{i,j} c_{i,j} * L_i(x) * L_j(y)
|
924 |
+
|
925 |
+
The parameters `x` and `y` are converted to arrays only if they are
|
926 |
+
tuples or a lists, otherwise they are treated as a scalars and they
|
927 |
+
must have the same shape after conversion. In either case, either `x`
|
928 |
+
and `y` or their elements must support multiplication and addition both
|
929 |
+
with themselves and with the elements of `c`.
|
930 |
+
|
931 |
+
If `c` is a 1-D array a one is implicitly appended to its shape to make
|
932 |
+
it 2-D. The shape of the result will be c.shape[2:] + x.shape.
|
933 |
+
|
934 |
+
Parameters
|
935 |
+
----------
|
936 |
+
x, y : array_like, compatible objects
|
937 |
+
The two dimensional series is evaluated at the points `(x, y)`,
|
938 |
+
where `x` and `y` must have the same shape. If `x` or `y` is a list
|
939 |
+
or tuple, it is first converted to an ndarray, otherwise it is left
|
940 |
+
unchanged and if it isn't an ndarray it is treated as a scalar.
|
941 |
+
c : array_like
|
942 |
+
Array of coefficients ordered so that the coefficient of the term
|
943 |
+
of multi-degree i,j is contained in ``c[i,j]``. If `c` has
|
944 |
+
dimension greater than two the remaining indices enumerate multiple
|
945 |
+
sets of coefficients.
|
946 |
+
|
947 |
+
Returns
|
948 |
+
-------
|
949 |
+
values : ndarray, compatible object
|
950 |
+
The values of the two dimensional Legendre series at points formed
|
951 |
+
from pairs of corresponding values from `x` and `y`.
|
952 |
+
|
953 |
+
See Also
|
954 |
+
--------
|
955 |
+
legval, leggrid2d, legval3d, leggrid3d
|
956 |
+
|
957 |
+
Notes
|
958 |
+
-----
|
959 |
+
|
960 |
+
.. versionadded:: 1.7.0
|
961 |
+
|
962 |
+
"""
|
963 |
+
return pu._valnd(legval, c, x, y)
|
964 |
+
|
965 |
+
|
966 |
+
def leggrid2d(x, y, c):
|
967 |
+
"""
|
968 |
+
Evaluate a 2-D Legendre series on the Cartesian product of x and y.
|
969 |
+
|
970 |
+
This function returns the values:
|
971 |
+
|
972 |
+
.. math:: p(a,b) = \\sum_{i,j} c_{i,j} * L_i(a) * L_j(b)
|
973 |
+
|
974 |
+
where the points `(a, b)` consist of all pairs formed by taking
|
975 |
+
`a` from `x` and `b` from `y`. The resulting points form a grid with
|
976 |
+
`x` in the first dimension and `y` in the second.
|
977 |
+
|
978 |
+
The parameters `x` and `y` are converted to arrays only if they are
|
979 |
+
tuples or a lists, otherwise they are treated as a scalars. In either
|
980 |
+
case, either `x` and `y` or their elements must support multiplication
|
981 |
+
and addition both with themselves and with the elements of `c`.
|
982 |
+
|
983 |
+
If `c` has fewer than two dimensions, ones are implicitly appended to
|
984 |
+
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
|
985 |
+
x.shape + y.shape.
|
986 |
+
|
987 |
+
Parameters
|
988 |
+
----------
|
989 |
+
x, y : array_like, compatible objects
|
990 |
+
The two dimensional series is evaluated at the points in the
|
991 |
+
Cartesian product of `x` and `y`. If `x` or `y` is a list or
|
992 |
+
tuple, it is first converted to an ndarray, otherwise it is left
|
993 |
+
unchanged and, if it isn't an ndarray, it is treated as a scalar.
|
994 |
+
c : array_like
|
995 |
+
Array of coefficients ordered so that the coefficient of the term of
|
996 |
+
multi-degree i,j is contained in `c[i,j]`. If `c` has dimension
|
997 |
+
greater than two the remaining indices enumerate multiple sets of
|
998 |
+
coefficients.
|
999 |
+
|
1000 |
+
Returns
|
1001 |
+
-------
|
1002 |
+
values : ndarray, compatible object
|
1003 |
+
The values of the two dimensional Chebyshev series at points in the
|
1004 |
+
Cartesian product of `x` and `y`.
|
1005 |
+
|
1006 |
+
See Also
|
1007 |
+
--------
|
1008 |
+
legval, legval2d, legval3d, leggrid3d
|
1009 |
+
|
1010 |
+
Notes
|
1011 |
+
-----
|
1012 |
+
|
1013 |
+
.. versionadded:: 1.7.0
|
1014 |
+
|
1015 |
+
"""
|
1016 |
+
return pu._gridnd(legval, c, x, y)
|
1017 |
+
|
1018 |
+
|
1019 |
+
def legval3d(x, y, z, c):
|
1020 |
+
"""
|
1021 |
+
Evaluate a 3-D Legendre series at points (x, y, z).
|
1022 |
+
|
1023 |
+
This function returns the values:
|
1024 |
+
|
1025 |
+
.. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z)
|
1026 |
+
|
1027 |
+
The parameters `x`, `y`, and `z` are converted to arrays only if
|
1028 |
+
they are tuples or a lists, otherwise they are treated as a scalars and
|
1029 |
+
they must have the same shape after conversion. In either case, either
|
1030 |
+
`x`, `y`, and `z` or their elements must support multiplication and
|
1031 |
+
addition both with themselves and with the elements of `c`.
|
1032 |
+
|
1033 |
+
If `c` has fewer than 3 dimensions, ones are implicitly appended to its
|
1034 |
+
shape to make it 3-D. The shape of the result will be c.shape[3:] +
|
1035 |
+
x.shape.
|
1036 |
+
|
1037 |
+
Parameters
|
1038 |
+
----------
|
1039 |
+
x, y, z : array_like, compatible object
|
1040 |
+
The three dimensional series is evaluated at the points
|
1041 |
+
`(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
|
1042 |
+
any of `x`, `y`, or `z` is a list or tuple, it is first converted
|
1043 |
+
to an ndarray, otherwise it is left unchanged and if it isn't an
|
1044 |
+
ndarray it is treated as a scalar.
|
1045 |
+
c : array_like
|
1046 |
+
Array of coefficients ordered so that the coefficient of the term of
|
1047 |
+
multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
|
1048 |
+
greater than 3 the remaining indices enumerate multiple sets of
|
1049 |
+
coefficients.
|
1050 |
+
|
1051 |
+
Returns
|
1052 |
+
-------
|
1053 |
+
values : ndarray, compatible object
|
1054 |
+
The values of the multidimensional polynomial on points formed with
|
1055 |
+
triples of corresponding values from `x`, `y`, and `z`.
|
1056 |
+
|
1057 |
+
See Also
|
1058 |
+
--------
|
1059 |
+
legval, legval2d, leggrid2d, leggrid3d
|
1060 |
+
|
1061 |
+
Notes
|
1062 |
+
-----
|
1063 |
+
|
1064 |
+
.. versionadded:: 1.7.0
|
1065 |
+
|
1066 |
+
"""
|
1067 |
+
return pu._valnd(legval, c, x, y, z)
|
1068 |
+
|
1069 |
+
|
1070 |
+
def leggrid3d(x, y, z, c):
|
1071 |
+
"""
|
1072 |
+
Evaluate a 3-D Legendre series on the Cartesian product of x, y, and z.
|
1073 |
+
|
1074 |
+
This function returns the values:
|
1075 |
+
|
1076 |
+
.. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c)
|
1077 |
+
|
1078 |
+
where the points `(a, b, c)` consist of all triples formed by taking
|
1079 |
+
`a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
|
1080 |
+
a grid with `x` in the first dimension, `y` in the second, and `z` in
|
1081 |
+
the third.
|
1082 |
+
|
1083 |
+
The parameters `x`, `y`, and `z` are converted to arrays only if they
|
1084 |
+
are tuples or a lists, otherwise they are treated as a scalars. In
|
1085 |
+
either case, either `x`, `y`, and `z` or their elements must support
|
1086 |
+
multiplication and addition both with themselves and with the elements
|
1087 |
+
of `c`.
|
1088 |
+
|
1089 |
+
If `c` has fewer than three dimensions, ones are implicitly appended to
|
1090 |
+
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
|
1091 |
+
x.shape + y.shape + z.shape.
|
1092 |
+
|
1093 |
+
Parameters
|
1094 |
+
----------
|
1095 |
+
x, y, z : array_like, compatible objects
|
1096 |
+
The three dimensional series is evaluated at the points in the
|
1097 |
+
Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
|
1098 |
+
list or tuple, it is first converted to an ndarray, otherwise it is
|
1099 |
+
left unchanged and, if it isn't an ndarray, it is treated as a
|
1100 |
+
scalar.
|
1101 |
+
c : array_like
|
1102 |
+
Array of coefficients ordered so that the coefficients for terms of
|
1103 |
+
degree i,j are contained in ``c[i,j]``. If `c` has dimension
|
1104 |
+
greater than two the remaining indices enumerate multiple sets of
|
1105 |
+
coefficients.
|
1106 |
+
|
1107 |
+
Returns
|
1108 |
+
-------
|
1109 |
+
values : ndarray, compatible object
|
1110 |
+
The values of the two dimensional polynomial at points in the Cartesian
|
1111 |
+
product of `x` and `y`.
|
1112 |
+
|
1113 |
+
See Also
|
1114 |
+
--------
|
1115 |
+
legval, legval2d, leggrid2d, legval3d
|
1116 |
+
|
1117 |
+
Notes
|
1118 |
+
-----
|
1119 |
+
|
1120 |
+
.. versionadded:: 1.7.0
|
1121 |
+
|
1122 |
+
"""
|
1123 |
+
return pu._gridnd(legval, c, x, y, z)
|
1124 |
+
|
1125 |
+
|
1126 |
+
def legvander(x, deg):
|
1127 |
+
"""Pseudo-Vandermonde matrix of given degree.
|
1128 |
+
|
1129 |
+
Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
|
1130 |
+
`x`. The pseudo-Vandermonde matrix is defined by
|
1131 |
+
|
1132 |
+
.. math:: V[..., i] = L_i(x)
|
1133 |
+
|
1134 |
+
where `0 <= i <= deg`. The leading indices of `V` index the elements of
|
1135 |
+
`x` and the last index is the degree of the Legendre polynomial.
|
1136 |
+
|
1137 |
+
If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
|
1138 |
+
array ``V = legvander(x, n)``, then ``np.dot(V, c)`` and
|
1139 |
+
``legval(x, c)`` are the same up to roundoff. This equivalence is
|
1140 |
+
useful both for least squares fitting and for the evaluation of a large
|
1141 |
+
number of Legendre series of the same degree and sample points.
|
1142 |
+
|
1143 |
+
Parameters
|
1144 |
+
----------
|
1145 |
+
x : array_like
|
1146 |
+
Array of points. The dtype is converted to float64 or complex128
|
1147 |
+
depending on whether any of the elements are complex. If `x` is
|
1148 |
+
scalar it is converted to a 1-D array.
|
1149 |
+
deg : int
|
1150 |
+
Degree of the resulting matrix.
|
1151 |
+
|
1152 |
+
Returns
|
1153 |
+
-------
|
1154 |
+
vander : ndarray
|
1155 |
+
The pseudo-Vandermonde matrix. The shape of the returned matrix is
|
1156 |
+
``x.shape + (deg + 1,)``, where The last index is the degree of the
|
1157 |
+
corresponding Legendre polynomial. The dtype will be the same as
|
1158 |
+
the converted `x`.
|
1159 |
+
|
1160 |
+
"""
|
1161 |
+
ideg = pu._deprecate_as_int(deg, "deg")
|
1162 |
+
if ideg < 0:
|
1163 |
+
raise ValueError("deg must be non-negative")
|
1164 |
+
|
1165 |
+
x = np.array(x, copy=False, ndmin=1) + 0.0
|
1166 |
+
dims = (ideg + 1,) + x.shape
|
1167 |
+
dtyp = x.dtype
|
1168 |
+
v = np.empty(dims, dtype=dtyp)
|
1169 |
+
# Use forward recursion to generate the entries. This is not as accurate
|
1170 |
+
# as reverse recursion in this application but it is more efficient.
|
1171 |
+
v[0] = x*0 + 1
|
1172 |
+
if ideg > 0:
|
1173 |
+
v[1] = x
|
1174 |
+
for i in range(2, ideg + 1):
|
1175 |
+
v[i] = (v[i-1]*x*(2*i - 1) - v[i-2]*(i - 1))/i
|
1176 |
+
return np.moveaxis(v, 0, -1)
|
1177 |
+
|
1178 |
+
|
1179 |
+
def legvander2d(x, y, deg):
|
1180 |
+
"""Pseudo-Vandermonde matrix of given degrees.
|
1181 |
+
|
1182 |
+
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
|
1183 |
+
points `(x, y)`. The pseudo-Vandermonde matrix is defined by
|
1184 |
+
|
1185 |
+
.. math:: V[..., (deg[1] + 1)*i + j] = L_i(x) * L_j(y),
|
1186 |
+
|
1187 |
+
where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
|
1188 |
+
`V` index the points `(x, y)` and the last index encodes the degrees of
|
1189 |
+
the Legendre polynomials.
|
1190 |
+
|
1191 |
+
If ``V = legvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
|
1192 |
+
correspond to the elements of a 2-D coefficient array `c` of shape
|
1193 |
+
(xdeg + 1, ydeg + 1) in the order
|
1194 |
+
|
1195 |
+
.. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
|
1196 |
+
|
1197 |
+
and ``np.dot(V, c.flat)`` and ``legval2d(x, y, c)`` will be the same
|
1198 |
+
up to roundoff. This equivalence is useful both for least squares
|
1199 |
+
fitting and for the evaluation of a large number of 2-D Legendre
|
1200 |
+
series of the same degrees and sample points.
|
1201 |
+
|
1202 |
+
Parameters
|
1203 |
+
----------
|
1204 |
+
x, y : array_like
|
1205 |
+
Arrays of point coordinates, all of the same shape. The dtypes
|
1206 |
+
will be converted to either float64 or complex128 depending on
|
1207 |
+
whether any of the elements are complex. Scalars are converted to
|
1208 |
+
1-D arrays.
|
1209 |
+
deg : list of ints
|
1210 |
+
List of maximum degrees of the form [x_deg, y_deg].
|
1211 |
+
|
1212 |
+
Returns
|
1213 |
+
-------
|
1214 |
+
vander2d : ndarray
|
1215 |
+
The shape of the returned matrix is ``x.shape + (order,)``, where
|
1216 |
+
:math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
|
1217 |
+
as the converted `x` and `y`.
|
1218 |
+
|
1219 |
+
See Also
|
1220 |
+
--------
|
1221 |
+
legvander, legvander3d, legval2d, legval3d
|
1222 |
+
|
1223 |
+
Notes
|
1224 |
+
-----
|
1225 |
+
|
1226 |
+
.. versionadded:: 1.7.0
|
1227 |
+
|
1228 |
+
"""
|
1229 |
+
return pu._vander_nd_flat((legvander, legvander), (x, y), deg)
|
1230 |
+
|
1231 |
+
|
1232 |
+
def legvander3d(x, y, z, deg):
|
1233 |
+
"""Pseudo-Vandermonde matrix of given degrees.
|
1234 |
+
|
1235 |
+
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
|
1236 |
+
points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
|
1237 |
+
then The pseudo-Vandermonde matrix is defined by
|
1238 |
+
|
1239 |
+
.. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z),
|
1240 |
+
|
1241 |
+
where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
|
1242 |
+
indices of `V` index the points `(x, y, z)` and the last index encodes
|
1243 |
+
the degrees of the Legendre polynomials.
|
1244 |
+
|
1245 |
+
If ``V = legvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
|
1246 |
+
of `V` correspond to the elements of a 3-D coefficient array `c` of
|
1247 |
+
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
|
1248 |
+
|
1249 |
+
.. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
|
1250 |
+
|
1251 |
+
and ``np.dot(V, c.flat)`` and ``legval3d(x, y, z, c)`` will be the
|
1252 |
+
same up to roundoff. This equivalence is useful both for least squares
|
1253 |
+
fitting and for the evaluation of a large number of 3-D Legendre
|
1254 |
+
series of the same degrees and sample points.
|
1255 |
+
|
1256 |
+
Parameters
|
1257 |
+
----------
|
1258 |
+
x, y, z : array_like
|
1259 |
+
Arrays of point coordinates, all of the same shape. The dtypes will
|
1260 |
+
be converted to either float64 or complex128 depending on whether
|
1261 |
+
any of the elements are complex. Scalars are converted to 1-D
|
1262 |
+
arrays.
|
1263 |
+
deg : list of ints
|
1264 |
+
List of maximum degrees of the form [x_deg, y_deg, z_deg].
|
1265 |
+
|
1266 |
+
Returns
|
1267 |
+
-------
|
1268 |
+
vander3d : ndarray
|
1269 |
+
The shape of the returned matrix is ``x.shape + (order,)``, where
|
1270 |
+
:math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
|
1271 |
+
be the same as the converted `x`, `y`, and `z`.
|
1272 |
+
|
1273 |
+
See Also
|
1274 |
+
--------
|
1275 |
+
legvander, legvander3d, legval2d, legval3d
|
1276 |
+
|
1277 |
+
Notes
|
1278 |
+
-----
|
1279 |
+
|
1280 |
+
.. versionadded:: 1.7.0
|
1281 |
+
|
1282 |
+
"""
|
1283 |
+
return pu._vander_nd_flat((legvander, legvander, legvander), (x, y, z), deg)
|
1284 |
+
|
1285 |
+
|
1286 |
+
def legfit(x, y, deg, rcond=None, full=False, w=None):
|
1287 |
+
"""
|
1288 |
+
Least squares fit of Legendre series to data.
|
1289 |
+
|
1290 |
+
Return the coefficients of a Legendre series of degree `deg` that is the
|
1291 |
+
least squares fit to the data values `y` given at points `x`. If `y` is
|
1292 |
+
1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
|
1293 |
+
fits are done, one for each column of `y`, and the resulting
|
1294 |
+
coefficients are stored in the corresponding columns of a 2-D return.
|
1295 |
+
The fitted polynomial(s) are in the form
|
1296 |
+
|
1297 |
+
.. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x),
|
1298 |
+
|
1299 |
+
where `n` is `deg`.
|
1300 |
+
|
1301 |
+
Parameters
|
1302 |
+
----------
|
1303 |
+
x : array_like, shape (M,)
|
1304 |
+
x-coordinates of the M sample points ``(x[i], y[i])``.
|
1305 |
+
y : array_like, shape (M,) or (M, K)
|
1306 |
+
y-coordinates of the sample points. Several data sets of sample
|
1307 |
+
points sharing the same x-coordinates can be fitted at once by
|
1308 |
+
passing in a 2D-array that contains one dataset per column.
|
1309 |
+
deg : int or 1-D array_like
|
1310 |
+
Degree(s) of the fitting polynomials. If `deg` is a single integer
|
1311 |
+
all terms up to and including the `deg`'th term are included in the
|
1312 |
+
fit. For NumPy versions >= 1.11.0 a list of integers specifying the
|
1313 |
+
degrees of the terms to include may be used instead.
|
1314 |
+
rcond : float, optional
|
1315 |
+
Relative condition number of the fit. Singular values smaller than
|
1316 |
+
this relative to the largest singular value will be ignored. The
|
1317 |
+
default value is len(x)*eps, where eps is the relative precision of
|
1318 |
+
the float type, about 2e-16 in most cases.
|
1319 |
+
full : bool, optional
|
1320 |
+
Switch determining nature of return value. When it is False (the
|
1321 |
+
default) just the coefficients are returned, when True diagnostic
|
1322 |
+
information from the singular value decomposition is also returned.
|
1323 |
+
w : array_like, shape (`M`,), optional
|
1324 |
+
Weights. If not None, the weight ``w[i]`` applies to the unsquared
|
1325 |
+
residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
|
1326 |
+
chosen so that the errors of the products ``w[i]*y[i]`` all have the
|
1327 |
+
same variance. When using inverse-variance weighting, use
|
1328 |
+
``w[i] = 1/sigma(y[i])``. The default value is None.
|
1329 |
+
|
1330 |
+
.. versionadded:: 1.5.0
|
1331 |
+
|
1332 |
+
Returns
|
1333 |
+
-------
|
1334 |
+
coef : ndarray, shape (M,) or (M, K)
|
1335 |
+
Legendre coefficients ordered from low to high. If `y` was
|
1336 |
+
2-D, the coefficients for the data in column k of `y` are in
|
1337 |
+
column `k`. If `deg` is specified as a list, coefficients for
|
1338 |
+
terms not included in the fit are set equal to zero in the
|
1339 |
+
returned `coef`.
|
1340 |
+
|
1341 |
+
[residuals, rank, singular_values, rcond] : list
|
1342 |
+
These values are only returned if ``full == True``
|
1343 |
+
|
1344 |
+
- residuals -- sum of squared residuals of the least squares fit
|
1345 |
+
- rank -- the numerical rank of the scaled Vandermonde matrix
|
1346 |
+
- singular_values -- singular values of the scaled Vandermonde matrix
|
1347 |
+
- rcond -- value of `rcond`.
|
1348 |
+
|
1349 |
+
For more details, see `numpy.linalg.lstsq`.
|
1350 |
+
|
1351 |
+
Warns
|
1352 |
+
-----
|
1353 |
+
RankWarning
|
1354 |
+
The rank of the coefficient matrix in the least-squares fit is
|
1355 |
+
deficient. The warning is only raised if ``full == False``. The
|
1356 |
+
warnings can be turned off by
|
1357 |
+
|
1358 |
+
>>> import warnings
|
1359 |
+
>>> warnings.simplefilter('ignore', np.RankWarning)
|
1360 |
+
|
1361 |
+
See Also
|
1362 |
+
--------
|
1363 |
+
numpy.polynomial.polynomial.polyfit
|
1364 |
+
numpy.polynomial.chebyshev.chebfit
|
1365 |
+
numpy.polynomial.laguerre.lagfit
|
1366 |
+
numpy.polynomial.hermite.hermfit
|
1367 |
+
numpy.polynomial.hermite_e.hermefit
|
1368 |
+
legval : Evaluates a Legendre series.
|
1369 |
+
legvander : Vandermonde matrix of Legendre series.
|
1370 |
+
legweight : Legendre weight function (= 1).
|
1371 |
+
numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
|
1372 |
+
scipy.interpolate.UnivariateSpline : Computes spline fits.
|
1373 |
+
|
1374 |
+
Notes
|
1375 |
+
-----
|
1376 |
+
The solution is the coefficients of the Legendre series `p` that
|
1377 |
+
minimizes the sum of the weighted squared errors
|
1378 |
+
|
1379 |
+
.. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
|
1380 |
+
|
1381 |
+
where :math:`w_j` are the weights. This problem is solved by setting up
|
1382 |
+
as the (typically) overdetermined matrix equation
|
1383 |
+
|
1384 |
+
.. math:: V(x) * c = w * y,
|
1385 |
+
|
1386 |
+
where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
|
1387 |
+
coefficients to be solved for, `w` are the weights, and `y` are the
|
1388 |
+
observed values. This equation is then solved using the singular value
|
1389 |
+
decomposition of `V`.
|
1390 |
+
|
1391 |
+
If some of the singular values of `V` are so small that they are
|
1392 |
+
neglected, then a `RankWarning` will be issued. This means that the
|
1393 |
+
coefficient values may be poorly determined. Using a lower order fit
|
1394 |
+
will usually get rid of the warning. The `rcond` parameter can also be
|
1395 |
+
set to a value smaller than its default, but the resulting fit may be
|
1396 |
+
spurious and have large contributions from roundoff error.
|
1397 |
+
|
1398 |
+
Fits using Legendre series are usually better conditioned than fits
|
1399 |
+
using power series, but much can depend on the distribution of the
|
1400 |
+
sample points and the smoothness of the data. If the quality of the fit
|
1401 |
+
is inadequate splines may be a good alternative.
|
1402 |
+
|
1403 |
+
References
|
1404 |
+
----------
|
1405 |
+
.. [1] Wikipedia, "Curve fitting",
|
1406 |
+
https://en.wikipedia.org/wiki/Curve_fitting
|
1407 |
+
|
1408 |
+
Examples
|
1409 |
+
--------
|
1410 |
+
|
1411 |
+
"""
|
1412 |
+
return pu._fit(legvander, x, y, deg, rcond, full, w)
|
1413 |
+
|
1414 |
+
|
1415 |
+
def legcompanion(c):
|
1416 |
+
"""Return the scaled companion matrix of c.
|
1417 |
+
|
1418 |
+
The basis polynomials are scaled so that the companion matrix is
|
1419 |
+
symmetric when `c` is an Legendre basis polynomial. This provides
|
1420 |
+
better eigenvalue estimates than the unscaled case and for basis
|
1421 |
+
polynomials the eigenvalues are guaranteed to be real if
|
1422 |
+
`numpy.linalg.eigvalsh` is used to obtain them.
|
1423 |
+
|
1424 |
+
Parameters
|
1425 |
+
----------
|
1426 |
+
c : array_like
|
1427 |
+
1-D array of Legendre series coefficients ordered from low to high
|
1428 |
+
degree.
|
1429 |
+
|
1430 |
+
Returns
|
1431 |
+
-------
|
1432 |
+
mat : ndarray
|
1433 |
+
Scaled companion matrix of dimensions (deg, deg).
|
1434 |
+
|
1435 |
+
Notes
|
1436 |
+
-----
|
1437 |
+
|
1438 |
+
.. versionadded:: 1.7.0
|
1439 |
+
|
1440 |
+
"""
|
1441 |
+
# c is a trimmed copy
|
1442 |
+
[c] = pu.as_series([c])
|
1443 |
+
if len(c) < 2:
|
1444 |
+
raise ValueError('Series must have maximum degree of at least 1.')
|
1445 |
+
if len(c) == 2:
|
1446 |
+
return np.array([[-c[0]/c[1]]])
|
1447 |
+
|
1448 |
+
n = len(c) - 1
|
1449 |
+
mat = np.zeros((n, n), dtype=c.dtype)
|
1450 |
+
scl = 1./np.sqrt(2*np.arange(n) + 1)
|
1451 |
+
top = mat.reshape(-1)[1::n+1]
|
1452 |
+
bot = mat.reshape(-1)[n::n+1]
|
1453 |
+
top[...] = np.arange(1, n)*scl[:n-1]*scl[1:n]
|
1454 |
+
bot[...] = top
|
1455 |
+
mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*(n/(2*n - 1))
|
1456 |
+
return mat
|
1457 |
+
|
1458 |
+
|
1459 |
+
def legroots(c):
|
1460 |
+
"""
|
1461 |
+
Compute the roots of a Legendre series.
|
1462 |
+
|
1463 |
+
Return the roots (a.k.a. "zeros") of the polynomial
|
1464 |
+
|
1465 |
+
.. math:: p(x) = \\sum_i c[i] * L_i(x).
|
1466 |
+
|
1467 |
+
Parameters
|
1468 |
+
----------
|
1469 |
+
c : 1-D array_like
|
1470 |
+
1-D array of coefficients.
|
1471 |
+
|
1472 |
+
Returns
|
1473 |
+
-------
|
1474 |
+
out : ndarray
|
1475 |
+
Array of the roots of the series. If all the roots are real,
|
1476 |
+
then `out` is also real, otherwise it is complex.
|
1477 |
+
|
1478 |
+
See Also
|
1479 |
+
--------
|
1480 |
+
numpy.polynomial.polynomial.polyroots
|
1481 |
+
numpy.polynomial.chebyshev.chebroots
|
1482 |
+
numpy.polynomial.laguerre.lagroots
|
1483 |
+
numpy.polynomial.hermite.hermroots
|
1484 |
+
numpy.polynomial.hermite_e.hermeroots
|
1485 |
+
|
1486 |
+
Notes
|
1487 |
+
-----
|
1488 |
+
The root estimates are obtained as the eigenvalues of the companion
|
1489 |
+
matrix, Roots far from the origin of the complex plane may have large
|
1490 |
+
errors due to the numerical instability of the series for such values.
|
1491 |
+
Roots with multiplicity greater than 1 will also show larger errors as
|
1492 |
+
the value of the series near such points is relatively insensitive to
|
1493 |
+
errors in the roots. Isolated roots near the origin can be improved by
|
1494 |
+
a few iterations of Newton's method.
|
1495 |
+
|
1496 |
+
The Legendre series basis polynomials aren't powers of ``x`` so the
|
1497 |
+
results of this function may seem unintuitive.
|
1498 |
+
|
1499 |
+
Examples
|
1500 |
+
--------
|
1501 |
+
>>> import numpy.polynomial.legendre as leg
|
1502 |
+
>>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots
|
1503 |
+
array([-0.85099543, -0.11407192, 0.51506735]) # may vary
|
1504 |
+
|
1505 |
+
"""
|
1506 |
+
# c is a trimmed copy
|
1507 |
+
[c] = pu.as_series([c])
|
1508 |
+
if len(c) < 2:
|
1509 |
+
return np.array([], dtype=c.dtype)
|
1510 |
+
if len(c) == 2:
|
1511 |
+
return np.array([-c[0]/c[1]])
|
1512 |
+
|
1513 |
+
# rotated companion matrix reduces error
|
1514 |
+
m = legcompanion(c)[::-1,::-1]
|
1515 |
+
r = la.eigvals(m)
|
1516 |
+
r.sort()
|
1517 |
+
return r
|
1518 |
+
|
1519 |
+
|
1520 |
+
def leggauss(deg):
|
1521 |
+
"""
|
1522 |
+
Gauss-Legendre quadrature.
|
1523 |
+
|
1524 |
+
Computes the sample points and weights for Gauss-Legendre quadrature.
|
1525 |
+
These sample points and weights will correctly integrate polynomials of
|
1526 |
+
degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with
|
1527 |
+
the weight function :math:`f(x) = 1`.
|
1528 |
+
|
1529 |
+
Parameters
|
1530 |
+
----------
|
1531 |
+
deg : int
|
1532 |
+
Number of sample points and weights. It must be >= 1.
|
1533 |
+
|
1534 |
+
Returns
|
1535 |
+
-------
|
1536 |
+
x : ndarray
|
1537 |
+
1-D ndarray containing the sample points.
|
1538 |
+
y : ndarray
|
1539 |
+
1-D ndarray containing the weights.
|
1540 |
+
|
1541 |
+
Notes
|
1542 |
+
-----
|
1543 |
+
|
1544 |
+
.. versionadded:: 1.7.0
|
1545 |
+
|
1546 |
+
The results have only been tested up to degree 100, higher degrees may
|
1547 |
+
be problematic. The weights are determined by using the fact that
|
1548 |
+
|
1549 |
+
.. math:: w_k = c / (L'_n(x_k) * L_{n-1}(x_k))
|
1550 |
+
|
1551 |
+
where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
|
1552 |
+
is the k'th root of :math:`L_n`, and then scaling the results to get
|
1553 |
+
the right value when integrating 1.
|
1554 |
+
|
1555 |
+
"""
|
1556 |
+
ideg = pu._deprecate_as_int(deg, "deg")
|
1557 |
+
if ideg <= 0:
|
1558 |
+
raise ValueError("deg must be a positive integer")
|
1559 |
+
|
1560 |
+
# first approximation of roots. We use the fact that the companion
|
1561 |
+
# matrix is symmetric in this case in order to obtain better zeros.
|
1562 |
+
c = np.array([0]*deg + [1])
|
1563 |
+
m = legcompanion(c)
|
1564 |
+
x = la.eigvalsh(m)
|
1565 |
+
|
1566 |
+
# improve roots by one application of Newton
|
1567 |
+
dy = legval(x, c)
|
1568 |
+
df = legval(x, legder(c))
|
1569 |
+
x -= dy/df
|
1570 |
+
|
1571 |
+
# compute the weights. We scale the factor to avoid possible numerical
|
1572 |
+
# overflow.
|
1573 |
+
fm = legval(x, c[1:])
|
1574 |
+
fm /= np.abs(fm).max()
|
1575 |
+
df /= np.abs(df).max()
|
1576 |
+
w = 1/(fm * df)
|
1577 |
+
|
1578 |
+
# for Legendre we can also symmetrize
|
1579 |
+
w = (w + w[::-1])/2
|
1580 |
+
x = (x - x[::-1])/2
|
1581 |
+
|
1582 |
+
# scale w to get the right value
|
1583 |
+
w *= 2. / w.sum()
|
1584 |
+
|
1585 |
+
return x, w
|
1586 |
+
|
1587 |
+
|
1588 |
+
def legweight(x):
|
1589 |
+
"""
|
1590 |
+
Weight function of the Legendre polynomials.
|
1591 |
+
|
1592 |
+
The weight function is :math:`1` and the interval of integration is
|
1593 |
+
:math:`[-1, 1]`. The Legendre polynomials are orthogonal, but not
|
1594 |
+
normalized, with respect to this weight function.
|
1595 |
+
|
1596 |
+
Parameters
|
1597 |
+
----------
|
1598 |
+
x : array_like
|
1599 |
+
Values at which the weight function will be computed.
|
1600 |
+
|
1601 |
+
Returns
|
1602 |
+
-------
|
1603 |
+
w : ndarray
|
1604 |
+
The weight function at `x`.
|
1605 |
+
|
1606 |
+
Notes
|
1607 |
+
-----
|
1608 |
+
|
1609 |
+
.. versionadded:: 1.7.0
|
1610 |
+
|
1611 |
+
"""
|
1612 |
+
w = x*0.0 + 1.0
|
1613 |
+
return w
|
1614 |
+
|
1615 |
+
#
|
1616 |
+
# Legendre series class
|
1617 |
+
#
|
1618 |
+
|
1619 |
+
class Legendre(ABCPolyBase):
|
1620 |
+
"""A Legendre series class.
|
1621 |
+
|
1622 |
+
The Legendre class provides the standard Python numerical methods
|
1623 |
+
'+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
|
1624 |
+
attributes and methods listed in the `ABCPolyBase` documentation.
|
1625 |
+
|
1626 |
+
Parameters
|
1627 |
+
----------
|
1628 |
+
coef : array_like
|
1629 |
+
Legendre coefficients in order of increasing degree, i.e.,
|
1630 |
+
``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``.
|
1631 |
+
domain : (2,) array_like, optional
|
1632 |
+
Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
|
1633 |
+
to the interval ``[window[0], window[1]]`` by shifting and scaling.
|
1634 |
+
The default value is [-1, 1].
|
1635 |
+
window : (2,) array_like, optional
|
1636 |
+
Window, see `domain` for its use. The default value is [-1, 1].
|
1637 |
+
|
1638 |
+
.. versionadded:: 1.6.0
|
1639 |
+
symbol : str, optional
|
1640 |
+
Symbol used to represent the independent variable in string
|
1641 |
+
representations of the polynomial expression, e.g. for printing.
|
1642 |
+
The symbol must be a valid Python identifier. Default value is 'x'.
|
1643 |
+
|
1644 |
+
.. versionadded:: 1.24
|
1645 |
+
|
1646 |
+
"""
|
1647 |
+
# Virtual Functions
|
1648 |
+
_add = staticmethod(legadd)
|
1649 |
+
_sub = staticmethod(legsub)
|
1650 |
+
_mul = staticmethod(legmul)
|
1651 |
+
_div = staticmethod(legdiv)
|
1652 |
+
_pow = staticmethod(legpow)
|
1653 |
+
_val = staticmethod(legval)
|
1654 |
+
_int = staticmethod(legint)
|
1655 |
+
_der = staticmethod(legder)
|
1656 |
+
_fit = staticmethod(legfit)
|
1657 |
+
_line = staticmethod(legline)
|
1658 |
+
_roots = staticmethod(legroots)
|
1659 |
+
_fromroots = staticmethod(legfromroots)
|
1660 |
+
|
1661 |
+
# Virtual properties
|
1662 |
+
domain = np.array(legdomain)
|
1663 |
+
window = np.array(legdomain)
|
1664 |
+
basis_name = 'P'
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/polynomial.py
ADDED
@@ -0,0 +1,1542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=================================================
|
3 |
+
Power Series (:mod:`numpy.polynomial.polynomial`)
|
4 |
+
=================================================
|
5 |
+
|
6 |
+
This module provides a number of objects (mostly functions) useful for
|
7 |
+
dealing with polynomials, including a `Polynomial` class that
|
8 |
+
encapsulates the usual arithmetic operations. (General information
|
9 |
+
on how this module represents and works with polynomial objects is in
|
10 |
+
the docstring for its "parent" sub-package, `numpy.polynomial`).
|
11 |
+
|
12 |
+
Classes
|
13 |
+
-------
|
14 |
+
.. autosummary::
|
15 |
+
:toctree: generated/
|
16 |
+
|
17 |
+
Polynomial
|
18 |
+
|
19 |
+
Constants
|
20 |
+
---------
|
21 |
+
.. autosummary::
|
22 |
+
:toctree: generated/
|
23 |
+
|
24 |
+
polydomain
|
25 |
+
polyzero
|
26 |
+
polyone
|
27 |
+
polyx
|
28 |
+
|
29 |
+
Arithmetic
|
30 |
+
----------
|
31 |
+
.. autosummary::
|
32 |
+
:toctree: generated/
|
33 |
+
|
34 |
+
polyadd
|
35 |
+
polysub
|
36 |
+
polymulx
|
37 |
+
polymul
|
38 |
+
polydiv
|
39 |
+
polypow
|
40 |
+
polyval
|
41 |
+
polyval2d
|
42 |
+
polyval3d
|
43 |
+
polygrid2d
|
44 |
+
polygrid3d
|
45 |
+
|
46 |
+
Calculus
|
47 |
+
--------
|
48 |
+
.. autosummary::
|
49 |
+
:toctree: generated/
|
50 |
+
|
51 |
+
polyder
|
52 |
+
polyint
|
53 |
+
|
54 |
+
Misc Functions
|
55 |
+
--------------
|
56 |
+
.. autosummary::
|
57 |
+
:toctree: generated/
|
58 |
+
|
59 |
+
polyfromroots
|
60 |
+
polyroots
|
61 |
+
polyvalfromroots
|
62 |
+
polyvander
|
63 |
+
polyvander2d
|
64 |
+
polyvander3d
|
65 |
+
polycompanion
|
66 |
+
polyfit
|
67 |
+
polytrim
|
68 |
+
polyline
|
69 |
+
|
70 |
+
See Also
|
71 |
+
--------
|
72 |
+
`numpy.polynomial`
|
73 |
+
|
74 |
+
"""
|
75 |
+
__all__ = [
|
76 |
+
'polyzero', 'polyone', 'polyx', 'polydomain', 'polyline', 'polyadd',
|
77 |
+
'polysub', 'polymulx', 'polymul', 'polydiv', 'polypow', 'polyval',
|
78 |
+
'polyvalfromroots', 'polyder', 'polyint', 'polyfromroots', 'polyvander',
|
79 |
+
'polyfit', 'polytrim', 'polyroots', 'Polynomial', 'polyval2d', 'polyval3d',
|
80 |
+
'polygrid2d', 'polygrid3d', 'polyvander2d', 'polyvander3d']
|
81 |
+
|
82 |
+
import numpy as np
|
83 |
+
import numpy.linalg as la
|
84 |
+
from numpy.core.multiarray import normalize_axis_index
|
85 |
+
|
86 |
+
from . import polyutils as pu
|
87 |
+
from ._polybase import ABCPolyBase
|
88 |
+
|
89 |
+
polytrim = pu.trimcoef
|
90 |
+
|
91 |
+
#
|
92 |
+
# These are constant arrays are of integer type so as to be compatible
|
93 |
+
# with the widest range of other types, such as Decimal.
|
94 |
+
#
|
95 |
+
|
96 |
+
# Polynomial default domain.
|
97 |
+
polydomain = np.array([-1, 1])
|
98 |
+
|
99 |
+
# Polynomial coefficients representing zero.
|
100 |
+
polyzero = np.array([0])
|
101 |
+
|
102 |
+
# Polynomial coefficients representing one.
|
103 |
+
polyone = np.array([1])
|
104 |
+
|
105 |
+
# Polynomial coefficients representing the identity x.
|
106 |
+
polyx = np.array([0, 1])
|
107 |
+
|
108 |
+
#
|
109 |
+
# Polynomial series functions
|
110 |
+
#
|
111 |
+
|
112 |
+
|
113 |
+
def polyline(off, scl):
|
114 |
+
"""
|
115 |
+
Returns an array representing a linear polynomial.
|
116 |
+
|
117 |
+
Parameters
|
118 |
+
----------
|
119 |
+
off, scl : scalars
|
120 |
+
The "y-intercept" and "slope" of the line, respectively.
|
121 |
+
|
122 |
+
Returns
|
123 |
+
-------
|
124 |
+
y : ndarray
|
125 |
+
This module's representation of the linear polynomial ``off +
|
126 |
+
scl*x``.
|
127 |
+
|
128 |
+
See Also
|
129 |
+
--------
|
130 |
+
numpy.polynomial.chebyshev.chebline
|
131 |
+
numpy.polynomial.legendre.legline
|
132 |
+
numpy.polynomial.laguerre.lagline
|
133 |
+
numpy.polynomial.hermite.hermline
|
134 |
+
numpy.polynomial.hermite_e.hermeline
|
135 |
+
|
136 |
+
Examples
|
137 |
+
--------
|
138 |
+
>>> from numpy.polynomial import polynomial as P
|
139 |
+
>>> P.polyline(1,-1)
|
140 |
+
array([ 1, -1])
|
141 |
+
>>> P.polyval(1, P.polyline(1,-1)) # should be 0
|
142 |
+
0.0
|
143 |
+
|
144 |
+
"""
|
145 |
+
if scl != 0:
|
146 |
+
return np.array([off, scl])
|
147 |
+
else:
|
148 |
+
return np.array([off])
|
149 |
+
|
150 |
+
|
151 |
+
def polyfromroots(roots):
|
152 |
+
"""
|
153 |
+
Generate a monic polynomial with given roots.
|
154 |
+
|
155 |
+
Return the coefficients of the polynomial
|
156 |
+
|
157 |
+
.. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
|
158 |
+
|
159 |
+
where the ``r_n`` are the roots specified in `roots`. If a zero has
|
160 |
+
multiplicity n, then it must appear in `roots` n times. For instance,
|
161 |
+
if 2 is a root of multiplicity three and 3 is a root of multiplicity 2,
|
162 |
+
then `roots` looks something like [2, 2, 2, 3, 3]. The roots can appear
|
163 |
+
in any order.
|
164 |
+
|
165 |
+
If the returned coefficients are `c`, then
|
166 |
+
|
167 |
+
.. math:: p(x) = c_0 + c_1 * x + ... + x^n
|
168 |
+
|
169 |
+
The coefficient of the last term is 1 for monic polynomials in this
|
170 |
+
form.
|
171 |
+
|
172 |
+
Parameters
|
173 |
+
----------
|
174 |
+
roots : array_like
|
175 |
+
Sequence containing the roots.
|
176 |
+
|
177 |
+
Returns
|
178 |
+
-------
|
179 |
+
out : ndarray
|
180 |
+
1-D array of the polynomial's coefficients If all the roots are
|
181 |
+
real, then `out` is also real, otherwise it is complex. (see
|
182 |
+
Examples below).
|
183 |
+
|
184 |
+
See Also
|
185 |
+
--------
|
186 |
+
numpy.polynomial.chebyshev.chebfromroots
|
187 |
+
numpy.polynomial.legendre.legfromroots
|
188 |
+
numpy.polynomial.laguerre.lagfromroots
|
189 |
+
numpy.polynomial.hermite.hermfromroots
|
190 |
+
numpy.polynomial.hermite_e.hermefromroots
|
191 |
+
|
192 |
+
Notes
|
193 |
+
-----
|
194 |
+
The coefficients are determined by multiplying together linear factors
|
195 |
+
of the form ``(x - r_i)``, i.e.
|
196 |
+
|
197 |
+
.. math:: p(x) = (x - r_0) (x - r_1) ... (x - r_n)
|
198 |
+
|
199 |
+
where ``n == len(roots) - 1``; note that this implies that ``1`` is always
|
200 |
+
returned for :math:`a_n`.
|
201 |
+
|
202 |
+
Examples
|
203 |
+
--------
|
204 |
+
>>> from numpy.polynomial import polynomial as P
|
205 |
+
>>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x
|
206 |
+
array([ 0., -1., 0., 1.])
|
207 |
+
>>> j = complex(0,1)
|
208 |
+
>>> P.polyfromroots((-j,j)) # complex returned, though values are real
|
209 |
+
array([1.+0.j, 0.+0.j, 1.+0.j])
|
210 |
+
|
211 |
+
"""
|
212 |
+
return pu._fromroots(polyline, polymul, roots)
|
213 |
+
|
214 |
+
|
215 |
+
def polyadd(c1, c2):
|
216 |
+
"""
|
217 |
+
Add one polynomial to another.
|
218 |
+
|
219 |
+
Returns the sum of two polynomials `c1` + `c2`. The arguments are
|
220 |
+
sequences of coefficients from lowest order term to highest, i.e.,
|
221 |
+
[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.
|
222 |
+
|
223 |
+
Parameters
|
224 |
+
----------
|
225 |
+
c1, c2 : array_like
|
226 |
+
1-D arrays of polynomial coefficients ordered from low to high.
|
227 |
+
|
228 |
+
Returns
|
229 |
+
-------
|
230 |
+
out : ndarray
|
231 |
+
The coefficient array representing their sum.
|
232 |
+
|
233 |
+
See Also
|
234 |
+
--------
|
235 |
+
polysub, polymulx, polymul, polydiv, polypow
|
236 |
+
|
237 |
+
Examples
|
238 |
+
--------
|
239 |
+
>>> from numpy.polynomial import polynomial as P
|
240 |
+
>>> c1 = (1,2,3)
|
241 |
+
>>> c2 = (3,2,1)
|
242 |
+
>>> sum = P.polyadd(c1,c2); sum
|
243 |
+
array([4., 4., 4.])
|
244 |
+
>>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
|
245 |
+
28.0
|
246 |
+
|
247 |
+
"""
|
248 |
+
return pu._add(c1, c2)
|
249 |
+
|
250 |
+
|
251 |
+
def polysub(c1, c2):
|
252 |
+
"""
|
253 |
+
Subtract one polynomial from another.
|
254 |
+
|
255 |
+
Returns the difference of two polynomials `c1` - `c2`. The arguments
|
256 |
+
are sequences of coefficients from lowest order term to highest, i.e.,
|
257 |
+
[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.
|
258 |
+
|
259 |
+
Parameters
|
260 |
+
----------
|
261 |
+
c1, c2 : array_like
|
262 |
+
1-D arrays of polynomial coefficients ordered from low to
|
263 |
+
high.
|
264 |
+
|
265 |
+
Returns
|
266 |
+
-------
|
267 |
+
out : ndarray
|
268 |
+
Of coefficients representing their difference.
|
269 |
+
|
270 |
+
See Also
|
271 |
+
--------
|
272 |
+
polyadd, polymulx, polymul, polydiv, polypow
|
273 |
+
|
274 |
+
Examples
|
275 |
+
--------
|
276 |
+
>>> from numpy.polynomial import polynomial as P
|
277 |
+
>>> c1 = (1,2,3)
|
278 |
+
>>> c2 = (3,2,1)
|
279 |
+
>>> P.polysub(c1,c2)
|
280 |
+
array([-2., 0., 2.])
|
281 |
+
>>> P.polysub(c2,c1) # -P.polysub(c1,c2)
|
282 |
+
array([ 2., 0., -2.])
|
283 |
+
|
284 |
+
"""
|
285 |
+
return pu._sub(c1, c2)
|
286 |
+
|
287 |
+
|
288 |
+
def polymulx(c):
|
289 |
+
"""Multiply a polynomial by x.
|
290 |
+
|
291 |
+
Multiply the polynomial `c` by x, where x is the independent
|
292 |
+
variable.
|
293 |
+
|
294 |
+
|
295 |
+
Parameters
|
296 |
+
----------
|
297 |
+
c : array_like
|
298 |
+
1-D array of polynomial coefficients ordered from low to
|
299 |
+
high.
|
300 |
+
|
301 |
+
Returns
|
302 |
+
-------
|
303 |
+
out : ndarray
|
304 |
+
Array representing the result of the multiplication.
|
305 |
+
|
306 |
+
See Also
|
307 |
+
--------
|
308 |
+
polyadd, polysub, polymul, polydiv, polypow
|
309 |
+
|
310 |
+
Notes
|
311 |
+
-----
|
312 |
+
|
313 |
+
.. versionadded:: 1.5.0
|
314 |
+
|
315 |
+
"""
|
316 |
+
# c is a trimmed copy
|
317 |
+
[c] = pu.as_series([c])
|
318 |
+
# The zero series needs special treatment
|
319 |
+
if len(c) == 1 and c[0] == 0:
|
320 |
+
return c
|
321 |
+
|
322 |
+
prd = np.empty(len(c) + 1, dtype=c.dtype)
|
323 |
+
prd[0] = c[0]*0
|
324 |
+
prd[1:] = c
|
325 |
+
return prd
|
326 |
+
|
327 |
+
|
328 |
+
def polymul(c1, c2):
|
329 |
+
"""
|
330 |
+
Multiply one polynomial by another.
|
331 |
+
|
332 |
+
Returns the product of two polynomials `c1` * `c2`. The arguments are
|
333 |
+
sequences of coefficients, from lowest order term to highest, e.g.,
|
334 |
+
[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2.``
|
335 |
+
|
336 |
+
Parameters
|
337 |
+
----------
|
338 |
+
c1, c2 : array_like
|
339 |
+
1-D arrays of coefficients representing a polynomial, relative to the
|
340 |
+
"standard" basis, and ordered from lowest order term to highest.
|
341 |
+
|
342 |
+
Returns
|
343 |
+
-------
|
344 |
+
out : ndarray
|
345 |
+
Of the coefficients of their product.
|
346 |
+
|
347 |
+
See Also
|
348 |
+
--------
|
349 |
+
polyadd, polysub, polymulx, polydiv, polypow
|
350 |
+
|
351 |
+
Examples
|
352 |
+
--------
|
353 |
+
>>> from numpy.polynomial import polynomial as P
|
354 |
+
>>> c1 = (1,2,3)
|
355 |
+
>>> c2 = (3,2,1)
|
356 |
+
>>> P.polymul(c1,c2)
|
357 |
+
array([ 3., 8., 14., 8., 3.])
|
358 |
+
|
359 |
+
"""
|
360 |
+
# c1, c2 are trimmed copies
|
361 |
+
[c1, c2] = pu.as_series([c1, c2])
|
362 |
+
ret = np.convolve(c1, c2)
|
363 |
+
return pu.trimseq(ret)
|
364 |
+
|
365 |
+
|
366 |
+
def polydiv(c1, c2):
|
367 |
+
"""
|
368 |
+
Divide one polynomial by another.
|
369 |
+
|
370 |
+
Returns the quotient-with-remainder of two polynomials `c1` / `c2`.
|
371 |
+
The arguments are sequences of coefficients, from lowest order term
|
372 |
+
to highest, e.g., [1,2,3] represents ``1 + 2*x + 3*x**2``.
|
373 |
+
|
374 |
+
Parameters
|
375 |
+
----------
|
376 |
+
c1, c2 : array_like
|
377 |
+
1-D arrays of polynomial coefficients ordered from low to high.
|
378 |
+
|
379 |
+
Returns
|
380 |
+
-------
|
381 |
+
[quo, rem] : ndarrays
|
382 |
+
Of coefficient series representing the quotient and remainder.
|
383 |
+
|
384 |
+
See Also
|
385 |
+
--------
|
386 |
+
polyadd, polysub, polymulx, polymul, polypow
|
387 |
+
|
388 |
+
Examples
|
389 |
+
--------
|
390 |
+
>>> from numpy.polynomial import polynomial as P
|
391 |
+
>>> c1 = (1,2,3)
|
392 |
+
>>> c2 = (3,2,1)
|
393 |
+
>>> P.polydiv(c1,c2)
|
394 |
+
(array([3.]), array([-8., -4.]))
|
395 |
+
>>> P.polydiv(c2,c1)
|
396 |
+
(array([ 0.33333333]), array([ 2.66666667, 1.33333333])) # may vary
|
397 |
+
|
398 |
+
"""
|
399 |
+
# c1, c2 are trimmed copies
|
400 |
+
[c1, c2] = pu.as_series([c1, c2])
|
401 |
+
if c2[-1] == 0:
|
402 |
+
raise ZeroDivisionError()
|
403 |
+
|
404 |
+
# note: this is more efficient than `pu._div(polymul, c1, c2)`
|
405 |
+
lc1 = len(c1)
|
406 |
+
lc2 = len(c2)
|
407 |
+
if lc1 < lc2:
|
408 |
+
return c1[:1]*0, c1
|
409 |
+
elif lc2 == 1:
|
410 |
+
return c1/c2[-1], c1[:1]*0
|
411 |
+
else:
|
412 |
+
dlen = lc1 - lc2
|
413 |
+
scl = c2[-1]
|
414 |
+
c2 = c2[:-1]/scl
|
415 |
+
i = dlen
|
416 |
+
j = lc1 - 1
|
417 |
+
while i >= 0:
|
418 |
+
c1[i:j] -= c2*c1[j]
|
419 |
+
i -= 1
|
420 |
+
j -= 1
|
421 |
+
return c1[j+1:]/scl, pu.trimseq(c1[:j+1])
|
422 |
+
|
423 |
+
|
424 |
+
def polypow(c, pow, maxpower=None):
|
425 |
+
"""Raise a polynomial to a power.
|
426 |
+
|
427 |
+
Returns the polynomial `c` raised to the power `pow`. The argument
|
428 |
+
`c` is a sequence of coefficients ordered from low to high. i.e.,
|
429 |
+
[1,2,3] is the series ``1 + 2*x + 3*x**2.``
|
430 |
+
|
431 |
+
Parameters
|
432 |
+
----------
|
433 |
+
c : array_like
|
434 |
+
1-D array of array of series coefficients ordered from low to
|
435 |
+
high degree.
|
436 |
+
pow : integer
|
437 |
+
Power to which the series will be raised
|
438 |
+
maxpower : integer, optional
|
439 |
+
Maximum power allowed. This is mainly to limit growth of the series
|
440 |
+
to unmanageable size. Default is 16
|
441 |
+
|
442 |
+
Returns
|
443 |
+
-------
|
444 |
+
coef : ndarray
|
445 |
+
Power series of power.
|
446 |
+
|
447 |
+
See Also
|
448 |
+
--------
|
449 |
+
polyadd, polysub, polymulx, polymul, polydiv
|
450 |
+
|
451 |
+
Examples
|
452 |
+
--------
|
453 |
+
>>> from numpy.polynomial import polynomial as P
|
454 |
+
>>> P.polypow([1,2,3], 2)
|
455 |
+
array([ 1., 4., 10., 12., 9.])
|
456 |
+
|
457 |
+
"""
|
458 |
+
# note: this is more efficient than `pu._pow(polymul, c1, c2)`, as it
|
459 |
+
# avoids calling `as_series` repeatedly
|
460 |
+
return pu._pow(np.convolve, c, pow, maxpower)
|
461 |
+
|
462 |
+
|
463 |
+
def polyder(c, m=1, scl=1, axis=0):
|
464 |
+
"""
|
465 |
+
Differentiate a polynomial.
|
466 |
+
|
467 |
+
Returns the polynomial coefficients `c` differentiated `m` times along
|
468 |
+
`axis`. At each iteration the result is multiplied by `scl` (the
|
469 |
+
scaling factor is for use in a linear change of variable). The
|
470 |
+
argument `c` is an array of coefficients from low to high degree along
|
471 |
+
each axis, e.g., [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``
|
472 |
+
while [[1,2],[1,2]] represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is
|
473 |
+
``x`` and axis=1 is ``y``.
|
474 |
+
|
475 |
+
Parameters
|
476 |
+
----------
|
477 |
+
c : array_like
|
478 |
+
Array of polynomial coefficients. If c is multidimensional the
|
479 |
+
different axis correspond to different variables with the degree
|
480 |
+
in each axis given by the corresponding index.
|
481 |
+
m : int, optional
|
482 |
+
Number of derivatives taken, must be non-negative. (Default: 1)
|
483 |
+
scl : scalar, optional
|
484 |
+
Each differentiation is multiplied by `scl`. The end result is
|
485 |
+
multiplication by ``scl**m``. This is for use in a linear change
|
486 |
+
of variable. (Default: 1)
|
487 |
+
axis : int, optional
|
488 |
+
Axis over which the derivative is taken. (Default: 0).
|
489 |
+
|
490 |
+
.. versionadded:: 1.7.0
|
491 |
+
|
492 |
+
Returns
|
493 |
+
-------
|
494 |
+
der : ndarray
|
495 |
+
Polynomial coefficients of the derivative.
|
496 |
+
|
497 |
+
See Also
|
498 |
+
--------
|
499 |
+
polyint
|
500 |
+
|
501 |
+
Examples
|
502 |
+
--------
|
503 |
+
>>> from numpy.polynomial import polynomial as P
|
504 |
+
>>> c = (1,2,3,4) # 1 + 2x + 3x**2 + 4x**3
|
505 |
+
>>> P.polyder(c) # (d/dx)(c) = 2 + 6x + 12x**2
|
506 |
+
array([ 2., 6., 12.])
|
507 |
+
>>> P.polyder(c,3) # (d**3/dx**3)(c) = 24
|
508 |
+
array([24.])
|
509 |
+
>>> P.polyder(c,scl=-1) # (d/d(-x))(c) = -2 - 6x - 12x**2
|
510 |
+
array([ -2., -6., -12.])
|
511 |
+
>>> P.polyder(c,2,-1) # (d**2/d(-x)**2)(c) = 6 + 24x
|
512 |
+
array([ 6., 24.])
|
513 |
+
|
514 |
+
"""
|
515 |
+
c = np.array(c, ndmin=1, copy=True)
|
516 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
517 |
+
# astype fails with NA
|
518 |
+
c = c + 0.0
|
519 |
+
cdt = c.dtype
|
520 |
+
cnt = pu._deprecate_as_int(m, "the order of derivation")
|
521 |
+
iaxis = pu._deprecate_as_int(axis, "the axis")
|
522 |
+
if cnt < 0:
|
523 |
+
raise ValueError("The order of derivation must be non-negative")
|
524 |
+
iaxis = normalize_axis_index(iaxis, c.ndim)
|
525 |
+
|
526 |
+
if cnt == 0:
|
527 |
+
return c
|
528 |
+
|
529 |
+
c = np.moveaxis(c, iaxis, 0)
|
530 |
+
n = len(c)
|
531 |
+
if cnt >= n:
|
532 |
+
c = c[:1]*0
|
533 |
+
else:
|
534 |
+
for i in range(cnt):
|
535 |
+
n = n - 1
|
536 |
+
c *= scl
|
537 |
+
der = np.empty((n,) + c.shape[1:], dtype=cdt)
|
538 |
+
for j in range(n, 0, -1):
|
539 |
+
der[j - 1] = j*c[j]
|
540 |
+
c = der
|
541 |
+
c = np.moveaxis(c, 0, iaxis)
|
542 |
+
return c
|
543 |
+
|
544 |
+
|
545 |
+
def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
|
546 |
+
"""
|
547 |
+
Integrate a polynomial.
|
548 |
+
|
549 |
+
Returns the polynomial coefficients `c` integrated `m` times from
|
550 |
+
`lbnd` along `axis`. At each iteration the resulting series is
|
551 |
+
**multiplied** by `scl` and an integration constant, `k`, is added.
|
552 |
+
The scaling factor is for use in a linear change of variable. ("Buyer
|
553 |
+
beware": note that, depending on what one is doing, one may want `scl`
|
554 |
+
to be the reciprocal of what one might expect; for more information,
|
555 |
+
see the Notes section below.) The argument `c` is an array of
|
556 |
+
coefficients, from low to high degree along each axis, e.g., [1,2,3]
|
557 |
+
represents the polynomial ``1 + 2*x + 3*x**2`` while [[1,2],[1,2]]
|
558 |
+
represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is ``x`` and axis=1 is
|
559 |
+
``y``.
|
560 |
+
|
561 |
+
Parameters
|
562 |
+
----------
|
563 |
+
c : array_like
|
564 |
+
1-D array of polynomial coefficients, ordered from low to high.
|
565 |
+
m : int, optional
|
566 |
+
Order of integration, must be positive. (Default: 1)
|
567 |
+
k : {[], list, scalar}, optional
|
568 |
+
Integration constant(s). The value of the first integral at zero
|
569 |
+
is the first value in the list, the value of the second integral
|
570 |
+
at zero is the second value, etc. If ``k == []`` (the default),
|
571 |
+
all constants are set to zero. If ``m == 1``, a single scalar can
|
572 |
+
be given instead of a list.
|
573 |
+
lbnd : scalar, optional
|
574 |
+
The lower bound of the integral. (Default: 0)
|
575 |
+
scl : scalar, optional
|
576 |
+
Following each integration the result is *multiplied* by `scl`
|
577 |
+
before the integration constant is added. (Default: 1)
|
578 |
+
axis : int, optional
|
579 |
+
Axis over which the integral is taken. (Default: 0).
|
580 |
+
|
581 |
+
.. versionadded:: 1.7.0
|
582 |
+
|
583 |
+
Returns
|
584 |
+
-------
|
585 |
+
S : ndarray
|
586 |
+
Coefficient array of the integral.
|
587 |
+
|
588 |
+
Raises
|
589 |
+
------
|
590 |
+
ValueError
|
591 |
+
If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
|
592 |
+
``np.ndim(scl) != 0``.
|
593 |
+
|
594 |
+
See Also
|
595 |
+
--------
|
596 |
+
polyder
|
597 |
+
|
598 |
+
Notes
|
599 |
+
-----
|
600 |
+
Note that the result of each integration is *multiplied* by `scl`. Why
|
601 |
+
is this important to note? Say one is making a linear change of
|
602 |
+
variable :math:`u = ax + b` in an integral relative to `x`. Then
|
603 |
+
:math:`dx = du/a`, so one will need to set `scl` equal to
|
604 |
+
:math:`1/a` - perhaps not what one would have first thought.
|
605 |
+
|
606 |
+
Examples
|
607 |
+
--------
|
608 |
+
>>> from numpy.polynomial import polynomial as P
|
609 |
+
>>> c = (1,2,3)
|
610 |
+
>>> P.polyint(c) # should return array([0, 1, 1, 1])
|
611 |
+
array([0., 1., 1., 1.])
|
612 |
+
>>> P.polyint(c,3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
|
613 |
+
array([ 0. , 0. , 0. , 0.16666667, 0.08333333, # may vary
|
614 |
+
0.05 ])
|
615 |
+
>>> P.polyint(c,k=3) # should return array([3, 1, 1, 1])
|
616 |
+
array([3., 1., 1., 1.])
|
617 |
+
>>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1])
|
618 |
+
array([6., 1., 1., 1.])
|
619 |
+
>>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2])
|
620 |
+
array([ 0., -2., -2., -2.])
|
621 |
+
|
622 |
+
"""
|
623 |
+
c = np.array(c, ndmin=1, copy=True)
|
624 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
625 |
+
# astype doesn't preserve mask attribute.
|
626 |
+
c = c + 0.0
|
627 |
+
cdt = c.dtype
|
628 |
+
if not np.iterable(k):
|
629 |
+
k = [k]
|
630 |
+
cnt = pu._deprecate_as_int(m, "the order of integration")
|
631 |
+
iaxis = pu._deprecate_as_int(axis, "the axis")
|
632 |
+
if cnt < 0:
|
633 |
+
raise ValueError("The order of integration must be non-negative")
|
634 |
+
if len(k) > cnt:
|
635 |
+
raise ValueError("Too many integration constants")
|
636 |
+
if np.ndim(lbnd) != 0:
|
637 |
+
raise ValueError("lbnd must be a scalar.")
|
638 |
+
if np.ndim(scl) != 0:
|
639 |
+
raise ValueError("scl must be a scalar.")
|
640 |
+
iaxis = normalize_axis_index(iaxis, c.ndim)
|
641 |
+
|
642 |
+
if cnt == 0:
|
643 |
+
return c
|
644 |
+
|
645 |
+
k = list(k) + [0]*(cnt - len(k))
|
646 |
+
c = np.moveaxis(c, iaxis, 0)
|
647 |
+
for i in range(cnt):
|
648 |
+
n = len(c)
|
649 |
+
c *= scl
|
650 |
+
if n == 1 and np.all(c[0] == 0):
|
651 |
+
c[0] += k[i]
|
652 |
+
else:
|
653 |
+
tmp = np.empty((n + 1,) + c.shape[1:], dtype=cdt)
|
654 |
+
tmp[0] = c[0]*0
|
655 |
+
tmp[1] = c[0]
|
656 |
+
for j in range(1, n):
|
657 |
+
tmp[j + 1] = c[j]/(j + 1)
|
658 |
+
tmp[0] += k[i] - polyval(lbnd, tmp)
|
659 |
+
c = tmp
|
660 |
+
c = np.moveaxis(c, 0, iaxis)
|
661 |
+
return c
|
662 |
+
|
663 |
+
|
664 |
+
def polyval(x, c, tensor=True):
|
665 |
+
"""
|
666 |
+
Evaluate a polynomial at points x.
|
667 |
+
|
668 |
+
If `c` is of length `n + 1`, this function returns the value
|
669 |
+
|
670 |
+
.. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n
|
671 |
+
|
672 |
+
The parameter `x` is converted to an array only if it is a tuple or a
|
673 |
+
list, otherwise it is treated as a scalar. In either case, either `x`
|
674 |
+
or its elements must support multiplication and addition both with
|
675 |
+
themselves and with the elements of `c`.
|
676 |
+
|
677 |
+
If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
|
678 |
+
`c` is multidimensional, then the shape of the result depends on the
|
679 |
+
value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
|
680 |
+
x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
|
681 |
+
scalars have shape (,).
|
682 |
+
|
683 |
+
Trailing zeros in the coefficients will be used in the evaluation, so
|
684 |
+
they should be avoided if efficiency is a concern.
|
685 |
+
|
686 |
+
Parameters
|
687 |
+
----------
|
688 |
+
x : array_like, compatible object
|
689 |
+
If `x` is a list or tuple, it is converted to an ndarray, otherwise
|
690 |
+
it is left unchanged and treated as a scalar. In either case, `x`
|
691 |
+
or its elements must support addition and multiplication with
|
692 |
+
with themselves and with the elements of `c`.
|
693 |
+
c : array_like
|
694 |
+
Array of coefficients ordered so that the coefficients for terms of
|
695 |
+
degree n are contained in c[n]. If `c` is multidimensional the
|
696 |
+
remaining indices enumerate multiple polynomials. In the two
|
697 |
+
dimensional case the coefficients may be thought of as stored in
|
698 |
+
the columns of `c`.
|
699 |
+
tensor : boolean, optional
|
700 |
+
If True, the shape of the coefficient array is extended with ones
|
701 |
+
on the right, one for each dimension of `x`. Scalars have dimension 0
|
702 |
+
for this action. The result is that every column of coefficients in
|
703 |
+
`c` is evaluated for every element of `x`. If False, `x` is broadcast
|
704 |
+
over the columns of `c` for the evaluation. This keyword is useful
|
705 |
+
when `c` is multidimensional. The default value is True.
|
706 |
+
|
707 |
+
.. versionadded:: 1.7.0
|
708 |
+
|
709 |
+
Returns
|
710 |
+
-------
|
711 |
+
values : ndarray, compatible object
|
712 |
+
The shape of the returned array is described above.
|
713 |
+
|
714 |
+
See Also
|
715 |
+
--------
|
716 |
+
polyval2d, polygrid2d, polyval3d, polygrid3d
|
717 |
+
|
718 |
+
Notes
|
719 |
+
-----
|
720 |
+
The evaluation uses Horner's method.
|
721 |
+
|
722 |
+
Examples
|
723 |
+
--------
|
724 |
+
>>> from numpy.polynomial.polynomial import polyval
|
725 |
+
>>> polyval(1, [1,2,3])
|
726 |
+
6.0
|
727 |
+
>>> a = np.arange(4).reshape(2,2)
|
728 |
+
>>> a
|
729 |
+
array([[0, 1],
|
730 |
+
[2, 3]])
|
731 |
+
>>> polyval(a, [1,2,3])
|
732 |
+
array([[ 1., 6.],
|
733 |
+
[17., 34.]])
|
734 |
+
>>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients
|
735 |
+
>>> coef
|
736 |
+
array([[0, 1],
|
737 |
+
[2, 3]])
|
738 |
+
>>> polyval([1,2], coef, tensor=True)
|
739 |
+
array([[2., 4.],
|
740 |
+
[4., 7.]])
|
741 |
+
>>> polyval([1,2], coef, tensor=False)
|
742 |
+
array([2., 7.])
|
743 |
+
|
744 |
+
"""
|
745 |
+
c = np.array(c, ndmin=1, copy=False)
|
746 |
+
if c.dtype.char in '?bBhHiIlLqQpP':
|
747 |
+
# astype fails with NA
|
748 |
+
c = c + 0.0
|
749 |
+
if isinstance(x, (tuple, list)):
|
750 |
+
x = np.asarray(x)
|
751 |
+
if isinstance(x, np.ndarray) and tensor:
|
752 |
+
c = c.reshape(c.shape + (1,)*x.ndim)
|
753 |
+
|
754 |
+
c0 = c[-1] + x*0
|
755 |
+
for i in range(2, len(c) + 1):
|
756 |
+
c0 = c[-i] + c0*x
|
757 |
+
return c0
|
758 |
+
|
759 |
+
|
760 |
+
def polyvalfromroots(x, r, tensor=True):
|
761 |
+
"""
|
762 |
+
Evaluate a polynomial specified by its roots at points x.
|
763 |
+
|
764 |
+
If `r` is of length `N`, this function returns the value
|
765 |
+
|
766 |
+
.. math:: p(x) = \\prod_{n=1}^{N} (x - r_n)
|
767 |
+
|
768 |
+
The parameter `x` is converted to an array only if it is a tuple or a
|
769 |
+
list, otherwise it is treated as a scalar. In either case, either `x`
|
770 |
+
or its elements must support multiplication and addition both with
|
771 |
+
themselves and with the elements of `r`.
|
772 |
+
|
773 |
+
If `r` is a 1-D array, then `p(x)` will have the same shape as `x`. If `r`
|
774 |
+
is multidimensional, then the shape of the result depends on the value of
|
775 |
+
`tensor`. If `tensor` is ``True`` the shape will be r.shape[1:] + x.shape;
|
776 |
+
that is, each polynomial is evaluated at every value of `x`. If `tensor` is
|
777 |
+
``False``, the shape will be r.shape[1:]; that is, each polynomial is
|
778 |
+
evaluated only for the corresponding broadcast value of `x`. Note that
|
779 |
+
scalars have shape (,).
|
780 |
+
|
781 |
+
.. versionadded:: 1.12
|
782 |
+
|
783 |
+
Parameters
|
784 |
+
----------
|
785 |
+
x : array_like, compatible object
|
786 |
+
If `x` is a list or tuple, it is converted to an ndarray, otherwise
|
787 |
+
it is left unchanged and treated as a scalar. In either case, `x`
|
788 |
+
or its elements must support addition and multiplication with
|
789 |
+
with themselves and with the elements of `r`.
|
790 |
+
r : array_like
|
791 |
+
Array of roots. If `r` is multidimensional the first index is the
|
792 |
+
root index, while the remaining indices enumerate multiple
|
793 |
+
polynomials. For instance, in the two dimensional case the roots
|
794 |
+
of each polynomial may be thought of as stored in the columns of `r`.
|
795 |
+
tensor : boolean, optional
|
796 |
+
If True, the shape of the roots array is extended with ones on the
|
797 |
+
right, one for each dimension of `x`. Scalars have dimension 0 for this
|
798 |
+
action. The result is that every column of coefficients in `r` is
|
799 |
+
evaluated for every element of `x`. If False, `x` is broadcast over the
|
800 |
+
columns of `r` for the evaluation. This keyword is useful when `r` is
|
801 |
+
multidimensional. The default value is True.
|
802 |
+
|
803 |
+
Returns
|
804 |
+
-------
|
805 |
+
values : ndarray, compatible object
|
806 |
+
The shape of the returned array is described above.
|
807 |
+
|
808 |
+
See Also
|
809 |
+
--------
|
810 |
+
polyroots, polyfromroots, polyval
|
811 |
+
|
812 |
+
Examples
|
813 |
+
--------
|
814 |
+
>>> from numpy.polynomial.polynomial import polyvalfromroots
|
815 |
+
>>> polyvalfromroots(1, [1,2,3])
|
816 |
+
0.0
|
817 |
+
>>> a = np.arange(4).reshape(2,2)
|
818 |
+
>>> a
|
819 |
+
array([[0, 1],
|
820 |
+
[2, 3]])
|
821 |
+
>>> polyvalfromroots(a, [-1, 0, 1])
|
822 |
+
array([[-0., 0.],
|
823 |
+
[ 6., 24.]])
|
824 |
+
>>> r = np.arange(-2, 2).reshape(2,2) # multidimensional coefficients
|
825 |
+
>>> r # each column of r defines one polynomial
|
826 |
+
array([[-2, -1],
|
827 |
+
[ 0, 1]])
|
828 |
+
>>> b = [-2, 1]
|
829 |
+
>>> polyvalfromroots(b, r, tensor=True)
|
830 |
+
array([[-0., 3.],
|
831 |
+
[ 3., 0.]])
|
832 |
+
>>> polyvalfromroots(b, r, tensor=False)
|
833 |
+
array([-0., 0.])
|
834 |
+
"""
|
835 |
+
r = np.array(r, ndmin=1, copy=False)
|
836 |
+
if r.dtype.char in '?bBhHiIlLqQpP':
|
837 |
+
r = r.astype(np.double)
|
838 |
+
if isinstance(x, (tuple, list)):
|
839 |
+
x = np.asarray(x)
|
840 |
+
if isinstance(x, np.ndarray):
|
841 |
+
if tensor:
|
842 |
+
r = r.reshape(r.shape + (1,)*x.ndim)
|
843 |
+
elif x.ndim >= r.ndim:
|
844 |
+
raise ValueError("x.ndim must be < r.ndim when tensor == False")
|
845 |
+
return np.prod(x - r, axis=0)
|
846 |
+
|
847 |
+
|
848 |
+
def polyval2d(x, y, c):
|
849 |
+
"""
|
850 |
+
Evaluate a 2-D polynomial at points (x, y).
|
851 |
+
|
852 |
+
This function returns the value
|
853 |
+
|
854 |
+
.. math:: p(x,y) = \\sum_{i,j} c_{i,j} * x^i * y^j
|
855 |
+
|
856 |
+
The parameters `x` and `y` are converted to arrays only if they are
|
857 |
+
tuples or a lists, otherwise they are treated as a scalars and they
|
858 |
+
must have the same shape after conversion. In either case, either `x`
|
859 |
+
and `y` or their elements must support multiplication and addition both
|
860 |
+
with themselves and with the elements of `c`.
|
861 |
+
|
862 |
+
If `c` has fewer than two dimensions, ones are implicitly appended to
|
863 |
+
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
|
864 |
+
x.shape.
|
865 |
+
|
866 |
+
Parameters
|
867 |
+
----------
|
868 |
+
x, y : array_like, compatible objects
|
869 |
+
The two dimensional series is evaluated at the points `(x, y)`,
|
870 |
+
where `x` and `y` must have the same shape. If `x` or `y` is a list
|
871 |
+
or tuple, it is first converted to an ndarray, otherwise it is left
|
872 |
+
unchanged and, if it isn't an ndarray, it is treated as a scalar.
|
873 |
+
c : array_like
|
874 |
+
Array of coefficients ordered so that the coefficient of the term
|
875 |
+
of multi-degree i,j is contained in `c[i,j]`. If `c` has
|
876 |
+
dimension greater than two the remaining indices enumerate multiple
|
877 |
+
sets of coefficients.
|
878 |
+
|
879 |
+
Returns
|
880 |
+
-------
|
881 |
+
values : ndarray, compatible object
|
882 |
+
The values of the two dimensional polynomial at points formed with
|
883 |
+
pairs of corresponding values from `x` and `y`.
|
884 |
+
|
885 |
+
See Also
|
886 |
+
--------
|
887 |
+
polyval, polygrid2d, polyval3d, polygrid3d
|
888 |
+
|
889 |
+
Notes
|
890 |
+
-----
|
891 |
+
|
892 |
+
.. versionadded:: 1.7.0
|
893 |
+
|
894 |
+
"""
|
895 |
+
return pu._valnd(polyval, c, x, y)
|
896 |
+
|
897 |
+
|
898 |
+
def polygrid2d(x, y, c):
|
899 |
+
"""
|
900 |
+
Evaluate a 2-D polynomial on the Cartesian product of x and y.
|
901 |
+
|
902 |
+
This function returns the values:
|
903 |
+
|
904 |
+
.. math:: p(a,b) = \\sum_{i,j} c_{i,j} * a^i * b^j
|
905 |
+
|
906 |
+
where the points `(a, b)` consist of all pairs formed by taking
|
907 |
+
`a` from `x` and `b` from `y`. The resulting points form a grid with
|
908 |
+
`x` in the first dimension and `y` in the second.
|
909 |
+
|
910 |
+
The parameters `x` and `y` are converted to arrays only if they are
|
911 |
+
tuples or a lists, otherwise they are treated as a scalars. In either
|
912 |
+
case, either `x` and `y` or their elements must support multiplication
|
913 |
+
and addition both with themselves and with the elements of `c`.
|
914 |
+
|
915 |
+
If `c` has fewer than two dimensions, ones are implicitly appended to
|
916 |
+
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
|
917 |
+
x.shape + y.shape.
|
918 |
+
|
919 |
+
Parameters
|
920 |
+
----------
|
921 |
+
x, y : array_like, compatible objects
|
922 |
+
The two dimensional series is evaluated at the points in the
|
923 |
+
Cartesian product of `x` and `y`. If `x` or `y` is a list or
|
924 |
+
tuple, it is first converted to an ndarray, otherwise it is left
|
925 |
+
unchanged and, if it isn't an ndarray, it is treated as a scalar.
|
926 |
+
c : array_like
|
927 |
+
Array of coefficients ordered so that the coefficients for terms of
|
928 |
+
degree i,j are contained in ``c[i,j]``. If `c` has dimension
|
929 |
+
greater than two the remaining indices enumerate multiple sets of
|
930 |
+
coefficients.
|
931 |
+
|
932 |
+
Returns
|
933 |
+
-------
|
934 |
+
values : ndarray, compatible object
|
935 |
+
The values of the two dimensional polynomial at points in the Cartesian
|
936 |
+
product of `x` and `y`.
|
937 |
+
|
938 |
+
See Also
|
939 |
+
--------
|
940 |
+
polyval, polyval2d, polyval3d, polygrid3d
|
941 |
+
|
942 |
+
Notes
|
943 |
+
-----
|
944 |
+
|
945 |
+
.. versionadded:: 1.7.0
|
946 |
+
|
947 |
+
"""
|
948 |
+
return pu._gridnd(polyval, c, x, y)
|
949 |
+
|
950 |
+
|
951 |
+
def polyval3d(x, y, z, c):
|
952 |
+
"""
|
953 |
+
Evaluate a 3-D polynomial at points (x, y, z).
|
954 |
+
|
955 |
+
This function returns the values:
|
956 |
+
|
957 |
+
.. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * x^i * y^j * z^k
|
958 |
+
|
959 |
+
The parameters `x`, `y`, and `z` are converted to arrays only if
|
960 |
+
they are tuples or a lists, otherwise they are treated as a scalars and
|
961 |
+
they must have the same shape after conversion. In either case, either
|
962 |
+
`x`, `y`, and `z` or their elements must support multiplication and
|
963 |
+
addition both with themselves and with the elements of `c`.
|
964 |
+
|
965 |
+
If `c` has fewer than 3 dimensions, ones are implicitly appended to its
|
966 |
+
shape to make it 3-D. The shape of the result will be c.shape[3:] +
|
967 |
+
x.shape.
|
968 |
+
|
969 |
+
Parameters
|
970 |
+
----------
|
971 |
+
x, y, z : array_like, compatible object
|
972 |
+
The three dimensional series is evaluated at the points
|
973 |
+
`(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
|
974 |
+
any of `x`, `y`, or `z` is a list or tuple, it is first converted
|
975 |
+
to an ndarray, otherwise it is left unchanged and if it isn't an
|
976 |
+
ndarray it is treated as a scalar.
|
977 |
+
c : array_like
|
978 |
+
Array of coefficients ordered so that the coefficient of the term of
|
979 |
+
multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
|
980 |
+
greater than 3 the remaining indices enumerate multiple sets of
|
981 |
+
coefficients.
|
982 |
+
|
983 |
+
Returns
|
984 |
+
-------
|
985 |
+
values : ndarray, compatible object
|
986 |
+
The values of the multidimensional polynomial on points formed with
|
987 |
+
triples of corresponding values from `x`, `y`, and `z`.
|
988 |
+
|
989 |
+
See Also
|
990 |
+
--------
|
991 |
+
polyval, polyval2d, polygrid2d, polygrid3d
|
992 |
+
|
993 |
+
Notes
|
994 |
+
-----
|
995 |
+
|
996 |
+
.. versionadded:: 1.7.0
|
997 |
+
|
998 |
+
"""
|
999 |
+
return pu._valnd(polyval, c, x, y, z)
|
1000 |
+
|
1001 |
+
|
1002 |
+
def polygrid3d(x, y, z, c):
|
1003 |
+
"""
|
1004 |
+
Evaluate a 3-D polynomial on the Cartesian product of x, y and z.
|
1005 |
+
|
1006 |
+
This function returns the values:
|
1007 |
+
|
1008 |
+
.. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * a^i * b^j * c^k
|
1009 |
+
|
1010 |
+
where the points `(a, b, c)` consist of all triples formed by taking
|
1011 |
+
`a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
|
1012 |
+
a grid with `x` in the first dimension, `y` in the second, and `z` in
|
1013 |
+
the third.
|
1014 |
+
|
1015 |
+
The parameters `x`, `y`, and `z` are converted to arrays only if they
|
1016 |
+
are tuples or a lists, otherwise they are treated as a scalars. In
|
1017 |
+
either case, either `x`, `y`, and `z` or their elements must support
|
1018 |
+
multiplication and addition both with themselves and with the elements
|
1019 |
+
of `c`.
|
1020 |
+
|
1021 |
+
If `c` has fewer than three dimensions, ones are implicitly appended to
|
1022 |
+
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
|
1023 |
+
x.shape + y.shape + z.shape.
|
1024 |
+
|
1025 |
+
Parameters
|
1026 |
+
----------
|
1027 |
+
x, y, z : array_like, compatible objects
|
1028 |
+
The three dimensional series is evaluated at the points in the
|
1029 |
+
Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
|
1030 |
+
list or tuple, it is first converted to an ndarray, otherwise it is
|
1031 |
+
left unchanged and, if it isn't an ndarray, it is treated as a
|
1032 |
+
scalar.
|
1033 |
+
c : array_like
|
1034 |
+
Array of coefficients ordered so that the coefficients for terms of
|
1035 |
+
degree i,j are contained in ``c[i,j]``. If `c` has dimension
|
1036 |
+
greater than two the remaining indices enumerate multiple sets of
|
1037 |
+
coefficients.
|
1038 |
+
|
1039 |
+
Returns
|
1040 |
+
-------
|
1041 |
+
values : ndarray, compatible object
|
1042 |
+
The values of the two dimensional polynomial at points in the Cartesian
|
1043 |
+
product of `x` and `y`.
|
1044 |
+
|
1045 |
+
See Also
|
1046 |
+
--------
|
1047 |
+
polyval, polyval2d, polygrid2d, polyval3d
|
1048 |
+
|
1049 |
+
Notes
|
1050 |
+
-----
|
1051 |
+
|
1052 |
+
.. versionadded:: 1.7.0
|
1053 |
+
|
1054 |
+
"""
|
1055 |
+
return pu._gridnd(polyval, c, x, y, z)
|
1056 |
+
|
1057 |
+
|
1058 |
+
def polyvander(x, deg):
|
1059 |
+
"""Vandermonde matrix of given degree.
|
1060 |
+
|
1061 |
+
Returns the Vandermonde matrix of degree `deg` and sample points
|
1062 |
+
`x`. The Vandermonde matrix is defined by
|
1063 |
+
|
1064 |
+
.. math:: V[..., i] = x^i,
|
1065 |
+
|
1066 |
+
where `0 <= i <= deg`. The leading indices of `V` index the elements of
|
1067 |
+
`x` and the last index is the power of `x`.
|
1068 |
+
|
1069 |
+
If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
|
1070 |
+
matrix ``V = polyvander(x, n)``, then ``np.dot(V, c)`` and
|
1071 |
+
``polyval(x, c)`` are the same up to roundoff. This equivalence is
|
1072 |
+
useful both for least squares fitting and for the evaluation of a large
|
1073 |
+
number of polynomials of the same degree and sample points.
|
1074 |
+
|
1075 |
+
Parameters
|
1076 |
+
----------
|
1077 |
+
x : array_like
|
1078 |
+
Array of points. The dtype is converted to float64 or complex128
|
1079 |
+
depending on whether any of the elements are complex. If `x` is
|
1080 |
+
scalar it is converted to a 1-D array.
|
1081 |
+
deg : int
|
1082 |
+
Degree of the resulting matrix.
|
1083 |
+
|
1084 |
+
Returns
|
1085 |
+
-------
|
1086 |
+
vander : ndarray.
|
1087 |
+
The Vandermonde matrix. The shape of the returned matrix is
|
1088 |
+
``x.shape + (deg + 1,)``, where the last index is the power of `x`.
|
1089 |
+
The dtype will be the same as the converted `x`.
|
1090 |
+
|
1091 |
+
See Also
|
1092 |
+
--------
|
1093 |
+
polyvander2d, polyvander3d
|
1094 |
+
|
1095 |
+
"""
|
1096 |
+
ideg = pu._deprecate_as_int(deg, "deg")
|
1097 |
+
if ideg < 0:
|
1098 |
+
raise ValueError("deg must be non-negative")
|
1099 |
+
|
1100 |
+
x = np.array(x, copy=False, ndmin=1) + 0.0
|
1101 |
+
dims = (ideg + 1,) + x.shape
|
1102 |
+
dtyp = x.dtype
|
1103 |
+
v = np.empty(dims, dtype=dtyp)
|
1104 |
+
v[0] = x*0 + 1
|
1105 |
+
if ideg > 0:
|
1106 |
+
v[1] = x
|
1107 |
+
for i in range(2, ideg + 1):
|
1108 |
+
v[i] = v[i-1]*x
|
1109 |
+
return np.moveaxis(v, 0, -1)
|
1110 |
+
|
1111 |
+
|
1112 |
+
def polyvander2d(x, y, deg):
|
1113 |
+
"""Pseudo-Vandermonde matrix of given degrees.
|
1114 |
+
|
1115 |
+
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
|
1116 |
+
points `(x, y)`. The pseudo-Vandermonde matrix is defined by
|
1117 |
+
|
1118 |
+
.. math:: V[..., (deg[1] + 1)*i + j] = x^i * y^j,
|
1119 |
+
|
1120 |
+
where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
|
1121 |
+
`V` index the points `(x, y)` and the last index encodes the powers of
|
1122 |
+
`x` and `y`.
|
1123 |
+
|
1124 |
+
If ``V = polyvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
|
1125 |
+
correspond to the elements of a 2-D coefficient array `c` of shape
|
1126 |
+
(xdeg + 1, ydeg + 1) in the order
|
1127 |
+
|
1128 |
+
.. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
|
1129 |
+
|
1130 |
+
and ``np.dot(V, c.flat)`` and ``polyval2d(x, y, c)`` will be the same
|
1131 |
+
up to roundoff. This equivalence is useful both for least squares
|
1132 |
+
fitting and for the evaluation of a large number of 2-D polynomials
|
1133 |
+
of the same degrees and sample points.
|
1134 |
+
|
1135 |
+
Parameters
|
1136 |
+
----------
|
1137 |
+
x, y : array_like
|
1138 |
+
Arrays of point coordinates, all of the same shape. The dtypes
|
1139 |
+
will be converted to either float64 or complex128 depending on
|
1140 |
+
whether any of the elements are complex. Scalars are converted to
|
1141 |
+
1-D arrays.
|
1142 |
+
deg : list of ints
|
1143 |
+
List of maximum degrees of the form [x_deg, y_deg].
|
1144 |
+
|
1145 |
+
Returns
|
1146 |
+
-------
|
1147 |
+
vander2d : ndarray
|
1148 |
+
The shape of the returned matrix is ``x.shape + (order,)``, where
|
1149 |
+
:math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same
|
1150 |
+
as the converted `x` and `y`.
|
1151 |
+
|
1152 |
+
See Also
|
1153 |
+
--------
|
1154 |
+
polyvander, polyvander3d, polyval2d, polyval3d
|
1155 |
+
|
1156 |
+
"""
|
1157 |
+
return pu._vander_nd_flat((polyvander, polyvander), (x, y), deg)
|
1158 |
+
|
1159 |
+
|
1160 |
+
def polyvander3d(x, y, z, deg):
|
1161 |
+
"""Pseudo-Vandermonde matrix of given degrees.
|
1162 |
+
|
1163 |
+
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
|
1164 |
+
points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
|
1165 |
+
then The pseudo-Vandermonde matrix is defined by
|
1166 |
+
|
1167 |
+
.. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = x^i * y^j * z^k,
|
1168 |
+
|
1169 |
+
where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
|
1170 |
+
indices of `V` index the points `(x, y, z)` and the last index encodes
|
1171 |
+
the powers of `x`, `y`, and `z`.
|
1172 |
+
|
1173 |
+
If ``V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
|
1174 |
+
of `V` correspond to the elements of a 3-D coefficient array `c` of
|
1175 |
+
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
|
1176 |
+
|
1177 |
+
.. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
|
1178 |
+
|
1179 |
+
and ``np.dot(V, c.flat)`` and ``polyval3d(x, y, z, c)`` will be the
|
1180 |
+
same up to roundoff. This equivalence is useful both for least squares
|
1181 |
+
fitting and for the evaluation of a large number of 3-D polynomials
|
1182 |
+
of the same degrees and sample points.
|
1183 |
+
|
1184 |
+
Parameters
|
1185 |
+
----------
|
1186 |
+
x, y, z : array_like
|
1187 |
+
Arrays of point coordinates, all of the same shape. The dtypes will
|
1188 |
+
be converted to either float64 or complex128 depending on whether
|
1189 |
+
any of the elements are complex. Scalars are converted to 1-D
|
1190 |
+
arrays.
|
1191 |
+
deg : list of ints
|
1192 |
+
List of maximum degrees of the form [x_deg, y_deg, z_deg].
|
1193 |
+
|
1194 |
+
Returns
|
1195 |
+
-------
|
1196 |
+
vander3d : ndarray
|
1197 |
+
The shape of the returned matrix is ``x.shape + (order,)``, where
|
1198 |
+
:math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will
|
1199 |
+
be the same as the converted `x`, `y`, and `z`.
|
1200 |
+
|
1201 |
+
See Also
|
1202 |
+
--------
|
1203 |
+
polyvander, polyvander3d, polyval2d, polyval3d
|
1204 |
+
|
1205 |
+
Notes
|
1206 |
+
-----
|
1207 |
+
|
1208 |
+
.. versionadded:: 1.7.0
|
1209 |
+
|
1210 |
+
"""
|
1211 |
+
return pu._vander_nd_flat((polyvander, polyvander, polyvander), (x, y, z), deg)
|
1212 |
+
|
1213 |
+
|
1214 |
+
def polyfit(x, y, deg, rcond=None, full=False, w=None):
|
1215 |
+
"""
|
1216 |
+
Least-squares fit of a polynomial to data.
|
1217 |
+
|
1218 |
+
Return the coefficients of a polynomial of degree `deg` that is the
|
1219 |
+
least squares fit to the data values `y` given at points `x`. If `y` is
|
1220 |
+
1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
|
1221 |
+
fits are done, one for each column of `y`, and the resulting
|
1222 |
+
coefficients are stored in the corresponding columns of a 2-D return.
|
1223 |
+
The fitted polynomial(s) are in the form
|
1224 |
+
|
1225 |
+
.. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n,
|
1226 |
+
|
1227 |
+
where `n` is `deg`.
|
1228 |
+
|
1229 |
+
Parameters
|
1230 |
+
----------
|
1231 |
+
x : array_like, shape (`M`,)
|
1232 |
+
x-coordinates of the `M` sample (data) points ``(x[i], y[i])``.
|
1233 |
+
y : array_like, shape (`M`,) or (`M`, `K`)
|
1234 |
+
y-coordinates of the sample points. Several sets of sample points
|
1235 |
+
sharing the same x-coordinates can be (independently) fit with one
|
1236 |
+
call to `polyfit` by passing in for `y` a 2-D array that contains
|
1237 |
+
one data set per column.
|
1238 |
+
deg : int or 1-D array_like
|
1239 |
+
Degree(s) of the fitting polynomials. If `deg` is a single integer
|
1240 |
+
all terms up to and including the `deg`'th term are included in the
|
1241 |
+
fit. For NumPy versions >= 1.11.0 a list of integers specifying the
|
1242 |
+
degrees of the terms to include may be used instead.
|
1243 |
+
rcond : float, optional
|
1244 |
+
Relative condition number of the fit. Singular values smaller
|
1245 |
+
than `rcond`, relative to the largest singular value, will be
|
1246 |
+
ignored. The default value is ``len(x)*eps``, where `eps` is the
|
1247 |
+
relative precision of the platform's float type, about 2e-16 in
|
1248 |
+
most cases.
|
1249 |
+
full : bool, optional
|
1250 |
+
Switch determining the nature of the return value. When ``False``
|
1251 |
+
(the default) just the coefficients are returned; when ``True``,
|
1252 |
+
diagnostic information from the singular value decomposition (used
|
1253 |
+
to solve the fit's matrix equation) is also returned.
|
1254 |
+
w : array_like, shape (`M`,), optional
|
1255 |
+
Weights. If not None, the weight ``w[i]`` applies to the unsquared
|
1256 |
+
residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
|
1257 |
+
chosen so that the errors of the products ``w[i]*y[i]`` all have the
|
1258 |
+
same variance. When using inverse-variance weighting, use
|
1259 |
+
``w[i] = 1/sigma(y[i])``. The default value is None.
|
1260 |
+
|
1261 |
+
.. versionadded:: 1.5.0
|
1262 |
+
|
1263 |
+
Returns
|
1264 |
+
-------
|
1265 |
+
coef : ndarray, shape (`deg` + 1,) or (`deg` + 1, `K`)
|
1266 |
+
Polynomial coefficients ordered from low to high. If `y` was 2-D,
|
1267 |
+
the coefficients in column `k` of `coef` represent the polynomial
|
1268 |
+
fit to the data in `y`'s `k`-th column.
|
1269 |
+
|
1270 |
+
[residuals, rank, singular_values, rcond] : list
|
1271 |
+
These values are only returned if ``full == True``
|
1272 |
+
|
1273 |
+
- residuals -- sum of squared residuals of the least squares fit
|
1274 |
+
- rank -- the numerical rank of the scaled Vandermonde matrix
|
1275 |
+
- singular_values -- singular values of the scaled Vandermonde matrix
|
1276 |
+
- rcond -- value of `rcond`.
|
1277 |
+
|
1278 |
+
For more details, see `numpy.linalg.lstsq`.
|
1279 |
+
|
1280 |
+
Raises
|
1281 |
+
------
|
1282 |
+
RankWarning
|
1283 |
+
Raised if the matrix in the least-squares fit is rank deficient.
|
1284 |
+
The warning is only raised if ``full == False``. The warnings can
|
1285 |
+
be turned off by:
|
1286 |
+
|
1287 |
+
>>> import warnings
|
1288 |
+
>>> warnings.simplefilter('ignore', np.RankWarning)
|
1289 |
+
|
1290 |
+
See Also
|
1291 |
+
--------
|
1292 |
+
numpy.polynomial.chebyshev.chebfit
|
1293 |
+
numpy.polynomial.legendre.legfit
|
1294 |
+
numpy.polynomial.laguerre.lagfit
|
1295 |
+
numpy.polynomial.hermite.hermfit
|
1296 |
+
numpy.polynomial.hermite_e.hermefit
|
1297 |
+
polyval : Evaluates a polynomial.
|
1298 |
+
polyvander : Vandermonde matrix for powers.
|
1299 |
+
numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
|
1300 |
+
scipy.interpolate.UnivariateSpline : Computes spline fits.
|
1301 |
+
|
1302 |
+
Notes
|
1303 |
+
-----
|
1304 |
+
The solution is the coefficients of the polynomial `p` that minimizes
|
1305 |
+
the sum of the weighted squared errors
|
1306 |
+
|
1307 |
+
.. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
|
1308 |
+
|
1309 |
+
where the :math:`w_j` are the weights. This problem is solved by
|
1310 |
+
setting up the (typically) over-determined matrix equation:
|
1311 |
+
|
1312 |
+
.. math:: V(x) * c = w * y,
|
1313 |
+
|
1314 |
+
where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
|
1315 |
+
coefficients to be solved for, `w` are the weights, and `y` are the
|
1316 |
+
observed values. This equation is then solved using the singular value
|
1317 |
+
decomposition of `V`.
|
1318 |
+
|
1319 |
+
If some of the singular values of `V` are so small that they are
|
1320 |
+
neglected (and `full` == ``False``), a `RankWarning` will be raised.
|
1321 |
+
This means that the coefficient values may be poorly determined.
|
1322 |
+
Fitting to a lower order polynomial will usually get rid of the warning
|
1323 |
+
(but may not be what you want, of course; if you have independent
|
1324 |
+
reason(s) for choosing the degree which isn't working, you may have to:
|
1325 |
+
a) reconsider those reasons, and/or b) reconsider the quality of your
|
1326 |
+
data). The `rcond` parameter can also be set to a value smaller than
|
1327 |
+
its default, but the resulting fit may be spurious and have large
|
1328 |
+
contributions from roundoff error.
|
1329 |
+
|
1330 |
+
Polynomial fits using double precision tend to "fail" at about
|
1331 |
+
(polynomial) degree 20. Fits using Chebyshev or Legendre series are
|
1332 |
+
generally better conditioned, but much can still depend on the
|
1333 |
+
distribution of the sample points and the smoothness of the data. If
|
1334 |
+
the quality of the fit is inadequate, splines may be a good
|
1335 |
+
alternative.
|
1336 |
+
|
1337 |
+
Examples
|
1338 |
+
--------
|
1339 |
+
>>> np.random.seed(123)
|
1340 |
+
>>> from numpy.polynomial import polynomial as P
|
1341 |
+
>>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
|
1342 |
+
>>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + Gaussian noise
|
1343 |
+
>>> c, stats = P.polyfit(x,y,3,full=True)
|
1344 |
+
>>> np.random.seed(123)
|
1345 |
+
>>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1
|
1346 |
+
array([ 0.01909725, -1.30598256, -0.00577963, 1.02644286]) # may vary
|
1347 |
+
>>> stats # note the large SSR, explaining the rather poor results
|
1348 |
+
[array([ 38.06116253]), 4, array([ 1.38446749, 1.32119158, 0.50443316, # may vary
|
1349 |
+
0.28853036]), 1.1324274851176597e-014]
|
1350 |
+
|
1351 |
+
Same thing without the added noise
|
1352 |
+
|
1353 |
+
>>> y = x**3 - x
|
1354 |
+
>>> c, stats = P.polyfit(x,y,3,full=True)
|
1355 |
+
>>> c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1
|
1356 |
+
array([-6.36925336e-18, -1.00000000e+00, -4.08053781e-16, 1.00000000e+00])
|
1357 |
+
>>> stats # note the minuscule SSR
|
1358 |
+
[array([ 7.46346754e-31]), 4, array([ 1.38446749, 1.32119158, # may vary
|
1359 |
+
0.50443316, 0.28853036]), 1.1324274851176597e-014]
|
1360 |
+
|
1361 |
+
"""
|
1362 |
+
return pu._fit(polyvander, x, y, deg, rcond, full, w)
|
1363 |
+
|
1364 |
+
|
1365 |
+
def polycompanion(c):
|
1366 |
+
"""
|
1367 |
+
Return the companion matrix of c.
|
1368 |
+
|
1369 |
+
The companion matrix for power series cannot be made symmetric by
|
1370 |
+
scaling the basis, so this function differs from those for the
|
1371 |
+
orthogonal polynomials.
|
1372 |
+
|
1373 |
+
Parameters
|
1374 |
+
----------
|
1375 |
+
c : array_like
|
1376 |
+
1-D array of polynomial coefficients ordered from low to high
|
1377 |
+
degree.
|
1378 |
+
|
1379 |
+
Returns
|
1380 |
+
-------
|
1381 |
+
mat : ndarray
|
1382 |
+
Companion matrix of dimensions (deg, deg).
|
1383 |
+
|
1384 |
+
Notes
|
1385 |
+
-----
|
1386 |
+
|
1387 |
+
.. versionadded:: 1.7.0
|
1388 |
+
|
1389 |
+
"""
|
1390 |
+
# c is a trimmed copy
|
1391 |
+
[c] = pu.as_series([c])
|
1392 |
+
if len(c) < 2:
|
1393 |
+
raise ValueError('Series must have maximum degree of at least 1.')
|
1394 |
+
if len(c) == 2:
|
1395 |
+
return np.array([[-c[0]/c[1]]])
|
1396 |
+
|
1397 |
+
n = len(c) - 1
|
1398 |
+
mat = np.zeros((n, n), dtype=c.dtype)
|
1399 |
+
bot = mat.reshape(-1)[n::n+1]
|
1400 |
+
bot[...] = 1
|
1401 |
+
mat[:, -1] -= c[:-1]/c[-1]
|
1402 |
+
return mat
|
1403 |
+
|
1404 |
+
|
1405 |
+
def polyroots(c):
|
1406 |
+
"""
|
1407 |
+
Compute the roots of a polynomial.
|
1408 |
+
|
1409 |
+
Return the roots (a.k.a. "zeros") of the polynomial
|
1410 |
+
|
1411 |
+
.. math:: p(x) = \\sum_i c[i] * x^i.
|
1412 |
+
|
1413 |
+
Parameters
|
1414 |
+
----------
|
1415 |
+
c : 1-D array_like
|
1416 |
+
1-D array of polynomial coefficients.
|
1417 |
+
|
1418 |
+
Returns
|
1419 |
+
-------
|
1420 |
+
out : ndarray
|
1421 |
+
Array of the roots of the polynomial. If all the roots are real,
|
1422 |
+
then `out` is also real, otherwise it is complex.
|
1423 |
+
|
1424 |
+
See Also
|
1425 |
+
--------
|
1426 |
+
numpy.polynomial.chebyshev.chebroots
|
1427 |
+
numpy.polynomial.legendre.legroots
|
1428 |
+
numpy.polynomial.laguerre.lagroots
|
1429 |
+
numpy.polynomial.hermite.hermroots
|
1430 |
+
numpy.polynomial.hermite_e.hermeroots
|
1431 |
+
|
1432 |
+
Notes
|
1433 |
+
-----
|
1434 |
+
The root estimates are obtained as the eigenvalues of the companion
|
1435 |
+
matrix, Roots far from the origin of the complex plane may have large
|
1436 |
+
errors due to the numerical instability of the power series for such
|
1437 |
+
values. Roots with multiplicity greater than 1 will also show larger
|
1438 |
+
errors as the value of the series near such points is relatively
|
1439 |
+
insensitive to errors in the roots. Isolated roots near the origin can
|
1440 |
+
be improved by a few iterations of Newton's method.
|
1441 |
+
|
1442 |
+
Examples
|
1443 |
+
--------
|
1444 |
+
>>> import numpy.polynomial.polynomial as poly
|
1445 |
+
>>> poly.polyroots(poly.polyfromroots((-1,0,1)))
|
1446 |
+
array([-1., 0., 1.])
|
1447 |
+
>>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
|
1448 |
+
dtype('float64')
|
1449 |
+
>>> j = complex(0,1)
|
1450 |
+
>>> poly.polyroots(poly.polyfromroots((-j,0,j)))
|
1451 |
+
array([ 0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j]) # may vary
|
1452 |
+
|
1453 |
+
"""
|
1454 |
+
# c is a trimmed copy
|
1455 |
+
[c] = pu.as_series([c])
|
1456 |
+
if len(c) < 2:
|
1457 |
+
return np.array([], dtype=c.dtype)
|
1458 |
+
if len(c) == 2:
|
1459 |
+
return np.array([-c[0]/c[1]])
|
1460 |
+
|
1461 |
+
# rotated companion matrix reduces error
|
1462 |
+
m = polycompanion(c)[::-1,::-1]
|
1463 |
+
r = la.eigvals(m)
|
1464 |
+
r.sort()
|
1465 |
+
return r
|
1466 |
+
|
1467 |
+
|
1468 |
+
#
|
1469 |
+
# polynomial class
|
1470 |
+
#
|
1471 |
+
|
1472 |
+
class Polynomial(ABCPolyBase):
|
1473 |
+
"""A power series class.
|
1474 |
+
|
1475 |
+
The Polynomial class provides the standard Python numerical methods
|
1476 |
+
'+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
|
1477 |
+
attributes and methods listed in the `ABCPolyBase` documentation.
|
1478 |
+
|
1479 |
+
Parameters
|
1480 |
+
----------
|
1481 |
+
coef : array_like
|
1482 |
+
Polynomial coefficients in order of increasing degree, i.e.,
|
1483 |
+
``(1, 2, 3)`` give ``1 + 2*x + 3*x**2``.
|
1484 |
+
domain : (2,) array_like, optional
|
1485 |
+
Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
|
1486 |
+
to the interval ``[window[0], window[1]]`` by shifting and scaling.
|
1487 |
+
The default value is [-1, 1].
|
1488 |
+
window : (2,) array_like, optional
|
1489 |
+
Window, see `domain` for its use. The default value is [-1, 1].
|
1490 |
+
|
1491 |
+
.. versionadded:: 1.6.0
|
1492 |
+
symbol : str, optional
|
1493 |
+
Symbol used to represent the independent variable in string
|
1494 |
+
representations of the polynomial expression, e.g. for printing.
|
1495 |
+
The symbol must be a valid Python identifier. Default value is 'x'.
|
1496 |
+
|
1497 |
+
.. versionadded:: 1.24
|
1498 |
+
|
1499 |
+
"""
|
1500 |
+
# Virtual Functions
|
1501 |
+
_add = staticmethod(polyadd)
|
1502 |
+
_sub = staticmethod(polysub)
|
1503 |
+
_mul = staticmethod(polymul)
|
1504 |
+
_div = staticmethod(polydiv)
|
1505 |
+
_pow = staticmethod(polypow)
|
1506 |
+
_val = staticmethod(polyval)
|
1507 |
+
_int = staticmethod(polyint)
|
1508 |
+
_der = staticmethod(polyder)
|
1509 |
+
_fit = staticmethod(polyfit)
|
1510 |
+
_line = staticmethod(polyline)
|
1511 |
+
_roots = staticmethod(polyroots)
|
1512 |
+
_fromroots = staticmethod(polyfromroots)
|
1513 |
+
|
1514 |
+
# Virtual properties
|
1515 |
+
domain = np.array(polydomain)
|
1516 |
+
window = np.array(polydomain)
|
1517 |
+
basis_name = None
|
1518 |
+
|
1519 |
+
@classmethod
|
1520 |
+
def _str_term_unicode(cls, i, arg_str):
|
1521 |
+
if i == '1':
|
1522 |
+
return f"·{arg_str}"
|
1523 |
+
else:
|
1524 |
+
return f"·{arg_str}{i.translate(cls._superscript_mapping)}"
|
1525 |
+
|
1526 |
+
@staticmethod
|
1527 |
+
def _str_term_ascii(i, arg_str):
|
1528 |
+
if i == '1':
|
1529 |
+
return f" {arg_str}"
|
1530 |
+
else:
|
1531 |
+
return f" {arg_str}**{i}"
|
1532 |
+
|
1533 |
+
@staticmethod
|
1534 |
+
def _repr_latex_term(i, arg_str, needs_parens):
|
1535 |
+
if needs_parens:
|
1536 |
+
arg_str = rf"\left({arg_str}\right)"
|
1537 |
+
if i == 0:
|
1538 |
+
return '1'
|
1539 |
+
elif i == 1:
|
1540 |
+
return arg_str
|
1541 |
+
else:
|
1542 |
+
return f"{arg_str}^{{{i}}}"
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/polynomial.pyi
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from numpy import ndarray, dtype, int_
|
4 |
+
from numpy.polynomial._polybase import ABCPolyBase
|
5 |
+
from numpy.polynomial.polyutils import trimcoef
|
6 |
+
|
7 |
+
__all__: list[str]
|
8 |
+
|
9 |
+
polytrim = trimcoef
|
10 |
+
|
11 |
+
polydomain: ndarray[Any, dtype[int_]]
|
12 |
+
polyzero: ndarray[Any, dtype[int_]]
|
13 |
+
polyone: ndarray[Any, dtype[int_]]
|
14 |
+
polyx: ndarray[Any, dtype[int_]]
|
15 |
+
|
16 |
+
def polyline(off, scl): ...
|
17 |
+
def polyfromroots(roots): ...
|
18 |
+
def polyadd(c1, c2): ...
|
19 |
+
def polysub(c1, c2): ...
|
20 |
+
def polymulx(c): ...
|
21 |
+
def polymul(c1, c2): ...
|
22 |
+
def polydiv(c1, c2): ...
|
23 |
+
def polypow(c, pow, maxpower=...): ...
|
24 |
+
def polyder(c, m=..., scl=..., axis=...): ...
|
25 |
+
def polyint(c, m=..., k=..., lbnd=..., scl=..., axis=...): ...
|
26 |
+
def polyval(x, c, tensor=...): ...
|
27 |
+
def polyvalfromroots(x, r, tensor=...): ...
|
28 |
+
def polyval2d(x, y, c): ...
|
29 |
+
def polygrid2d(x, y, c): ...
|
30 |
+
def polyval3d(x, y, z, c): ...
|
31 |
+
def polygrid3d(x, y, z, c): ...
|
32 |
+
def polyvander(x, deg): ...
|
33 |
+
def polyvander2d(x, y, deg): ...
|
34 |
+
def polyvander3d(x, y, z, deg): ...
|
35 |
+
def polyfit(x, y, deg, rcond=..., full=..., w=...): ...
|
36 |
+
def polyroots(c): ...
|
37 |
+
|
38 |
+
class Polynomial(ABCPolyBase):
|
39 |
+
domain: Any
|
40 |
+
window: Any
|
41 |
+
basis_name: Any
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/polyutils.pyi
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__: list[str]
|
2 |
+
|
3 |
+
class RankWarning(UserWarning): ...
|
4 |
+
|
5 |
+
def trimseq(seq): ...
|
6 |
+
def as_series(alist, trim=...): ...
|
7 |
+
def trimcoef(c, tol=...): ...
|
8 |
+
def getdomain(x): ...
|
9 |
+
def mapparms(old, new): ...
|
10 |
+
def mapdomain(x, old, new): ...
|
11 |
+
def format_float(x, parens=...): ...
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/setup.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def configuration(parent_package='',top_path=None):
|
2 |
+
from numpy.distutils.misc_util import Configuration
|
3 |
+
config = Configuration('polynomial', parent_package, top_path)
|
4 |
+
config.add_subpackage('tests')
|
5 |
+
config.add_data_files('*.pyi')
|
6 |
+
return config
|
7 |
+
|
8 |
+
if __name__ == '__main__':
|
9 |
+
from numpy.distutils.core import setup
|
10 |
+
setup(configuration=configuration)
|
env-llmeval/lib/python3.10/site-packages/numpy/polynomial/tests/__init__.py
ADDED
File without changes
|